

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal 5420 NW Fruit Valley Road Vancouver, Washington

Prepared for:

NuStar Terminals Operations Partnership, L.P.

Prepared by:

Cascadia Associates, LLC 5820 S Kelly Avenue, Suite B Portland, Oregon 97239

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal 5420 NW Fruit Valley Road Vancouver, Washington

Prepared for:

NuStar Terminals Operations Partnership, L.P.
Project No. 0060-001-006
October 23, 2020

Prepared by:

Expires 02/24/2022

Kurt Harrington, P.E. Principal Engineer, Cascadia Associates

Amanda Spencer, R.G., P.E. Principal, Cascadia Associates

CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	2
1.2	Report Organization	3
2.0	BACKGROUND	4
2.1	Site Location, Description, and History	4
2.2	Geology and Hydrogeology	5
2	2.2.1 Geology	5
2	2.2.2 Hydrogeology	5
3.0	SUMMARY OF PREVIOUS INVESTIGATIONS	7
3.1	Environmental Site Assessment – April 2002	7
3.2	Subsurface Investigation – December 2002	8
3.3	Phase II Environmental Site Assessment – 2003	8
3.4	Site Investigations – 2006 to 2008	9
3.5	Periodic Groundwater Monitoring and Draft FS	10
4.0	SUPPLEMENTAL REMEDIAL INVESTIGATION	11
4.1	Summary of Investigation – 2014 through 2016	11
4.2	Pilot Study – 2017	12
4.3	Additional Investigation – 2019	13
4.4	Additional Investigation – February 2020	14
4.5	Groundwater Monitoring – 2014 to 2020	15
5.0	SUMMARY AND UPDATE OF 2010 RISK ASSESSMENT	17
5.1	Land and Beneficial Water Use	17
5.2	Chemicals of Potential Concern	17
5.3	Summary of Chemical Fate and Extent	18
5	5.3.1 Soil	18
5	5.3.2 Groundwater	22
5.4	Conceptual Site Model and Risk Assessment	24
5	5.4.1 Exposure Pathways and Risk Analysis	24
5	5.4.2 Ecological Risk Assessment	25
6.0	APPLICABLE FEDERAL, STATE, AND LOCAL LAWS	26

7.0	DEVE	LOPMENT OF CLEANUP STANDARDS	28
7.	1 Soi	Leaching to Groundwater	28
	7.1.1	Soil Cleanup Levels	28
7.	2 Gro	oundwater	29
	7.2.1	Groundwater Cleanup Levels	29
	7.2.2	Groundwater Point of Compliance	29
8.0	CLEA	NUP ACTION EVALUATION CRITERIA	30
8.	1 MT	CA Threshold Requirements	30
8.2	2 MT	CA Selection Criteria	30
	8.2.1	Use of Permanent Solutions and Disproportionate Cost Analysis	31
	8.2.2	Determination of Reasonable Restoration Time Frame	32
	8.2.3	Qualitative Factors Considered in Evaluating Cleanup Actions	33
9.0		NOLOGY EVALUATION AND CLEANUP ACTION ALTERNATIVE DEVELOPMENT- M , AND VRU AREAS	•
9.		hnology Screeninghnology Screening	
	9.1.1	Preliminary Screening for Soil	
	9.1.2	Preliminary Screening for Groundwater	
9.	2 Dev	velopment of Cleanup Action Alternatives	38
10.0	EVAL	JATION OF CLEANUP ACTION ALTERNATIVES-MW-5, MW-6, AND VRU AREAS	40
10	0.1 Alt	ernative 1: No Action	40
10).2 Alt	ernative 2: MNA	41
10).3 AL1	ernative 3: Hydraulic Containment	42
10).4 Alt	ernative 4: Plume Stabilization, Enhanced Bioremediation	44
10).5 Alt	ernative 5: Groundwater Recirculation	46
10	0.6 Alt	ernative 6: Removal of Accessible Soil, Enhanced Bioremediation (Active)	48
10).7 Cor	nparative Analysis of the Cleanup Alternatives	50
	10.7.1	Protectiveness	50
	10.7.2	Permanence	51
	10.7.3	Long-Term Effectiveness	51
	10.7.4	Management of Short-Term Risks	52
	10.7.5	Implementability	52
	10.7.6	Consideration of Public Concerns	52
	10.7.7	Benefits Rankings, Estimated Costs, and Benefit/Cost Ratios	52

	10.7.8	Evaluation with Respect to Reasonable Restoration Time Frame	53
11.0	TECHN	NOLOGY AND CLEANUP ALTERNATIVE EVALUATION – TRUCK LOADING RACK	AREA 54
11.	1 Tec	hnology Screening and Cleanup Alternatives Development	54
11.	2 Eva	luation of Cleanup Alternatives	54
	11.2.1	Protectiveness	55
	11.2.2	Permanence	55
	11.2.3	Long-Term Effectiveness	55
	11.2.4	Management of Short-Term Risks	56
	11.2.5	Implementability	56
	11.2.6	Consideration of Public Concern	56
	11.2.7	Benefits Rankings, Estimated Costs, and Benefit/Cost Ratios	56
12.0	RECON	MMENDED CLEANUP ACTION ALTERNATIVE	58
13.0	REFEF	RENCES	59
TAE	BLES		

Table 1	Depth to Groundwater and Groundwater Elevations
Table 2	Soil Analytical Data: TPH and VOCs
Table 3	Groundwater Analytical Data: Grab Groundwater Sampling
Table 4	Groundwater Analytical Data: Monitoring Well Sampling
Table 5	Initial Screening of Cleanup Technologies – MW-5, MW-6, and VRU Areas
Table 6	Description of Cleanup Action Alternatives – MW-5, MW-6, and VRU Areas
Table 7	Comparative Analysis of Cleanup Alternatives – MW-5, MW-6, and VRU Areas
Table 8	Evaluation of Reasonable Restoration Time Frame
Table 9	Initial Screening of Cleanup Technologies – Truck Loading Rack Area
Table 10	Comparative Analysis of Cleanup Alternatives – Truck Loading Rack Area

FIGURES

Figure 1	Facility Location Map
Figure 2	Facility Site Plan
Figure 3	Geologic Cross Section A-A'
Figure 4	TPH in Soil in Southwest Area – February 2020
Figure 5	TPH in Grab Groundwater Samples – February 2020
Figure 6	BTEX in Grab Groundwater Samples – February 2020
Figure 7	TPHg and TPHd in Grab Groundwater Results - 2015 to 2019
Figure 8	BTEX in Grab Groundwater Results – 2015 to 2019
Figure 9	TPH in First Encountered Groundwater – Western Area

FIGURES (continued)

Figure 10	BTEX in First Encountered Groundwater – Western Area
Figure 11	Conceptual Site Exposure Model
Figure 12	Remediation Areas
Figure 13	Alternative 3 Hydraulic Containment
Figure 14	Alternative 4 Stabilization and Bioremediation via Petrofix
Figure 15	Alternative 5 Removal of Readily Accessible Soil; Hydraulic Recirculation and
	Enhanced Bioremediation
Figure 16	Alternative 6 Removal of All Accessible Soil

APPENDICES

Appendix A	Boring Logs
Appendix B	Groundwater Contour Maps
Appendix C	Figures from 2010 Remedial Investigation Report
Appendix D	Figures from Additional Investigations 2014 to 2020 $$
Appendix E	Analytical Data Sheets from 2020 Investigation
Appendix F	Simplified Terrestrial Ecological Evaluation
Appendix G	Preliminary Cost Estimates

1.0 INTRODUCTION

This Supplemental Remedial Investigation (SRI) and revised Feasibility Study (FS) was completed for the NuStar Terminals Operations Partnership L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Facility). A location map for the Facility is provided on Figure 1; a Facility plan is provided on Figure 2. The FS was conducted in accordance with the protocols in the Model Toxics Control Act (MTCA) as defined in Washington Administrative Code (WAC) 173-340 and pursuant to Agreed Order No. 09-TC-S DE5250 (Agreed Order) between the Washington State Department of Ecology (Ecology) and NuStar.

On July 12, 2012, NuStar submitted a draft FS to Ecology in accordance with the Agreed Order (Ash Creek, 2012). The technical basis of the FS was the Remedial Investigation (RI) and Risk Assessment (RA) documented in the Remedial Investigation and Risk Assessment Report (RI/RA Report) submitted to Ecology in December 2010 (Ash Creek, 2010) and approved by Ecology on June 23, 2011. The draft FS proposed monitored natural attenuation (MNA) to address residual hydrocarbon constituents (methyl tert butyl ether [MTBE] and benzene) in groundwater in the eastern portion of the Facility.

On October 16, 2013, Ecology provided NuStar with comments on the draft FS. In the months following receipt, NuStar held several meetings with Ecology to discuss Ecology's comments on the FS, as well as additional comments that were presented to NuStar in a February 4, 2014 meeting. The meetings culminated in a Final Project Coordinator's Decision (the "Decision") issued by Ecology on August 26, 2014, which established a series of steps for collecting additional data to support submittal of a revised FS. The additional data requested by Ecology included one year of quarterly groundwater monitoring of four wells, MW-1 through MW-4, located on the eastern portion of the property along with an additional soil and groundwater investigation in the western tank farm areas near historical borings SB-8 and SB-9.

The results of the additional investigations and groundwater monitoring were summarized in the following reports:

- Groundwater Monitoring Results December 2014 dated February 6, 2015 (Apex, 2015a);
- Groundwater Results Report and Groundwater Investigation Work Plan dated May 28, 2015
 (Apex, 2015b);
- September 2015 Groundwater Monitoring Results dated November 5, 2015 (Apex, 2015c); and
- Additional Investigation Summary Report and Pilot Test Work Plan dated August 2, 2017 (Apex, 2017).

The 2017 Additional Investigation Summary Report detailed the investigation work conducted in the western tank farm areas from 2014 through 2016 including the installation of borings SB-8R and SB-9R which subsequently resulted in the installation of wells MW-5 and MW-6 immediately adjacent to these borings, depth-discrete groundwater investigation via the installation of 12 borings in the western tank farm areas, additional delineation outside the tank farm berm areas via the installation of two additional soil borings, and installation of one deep and four shallow compliance monitoring wells across the site as well as a summary of the groundwater monitoring program conducted in 2014 and 2015 on the eastern portion of the site.

The results of the various investigations conducted in the western tank farm areas indicated the presence of petroleum constituents (primarily total petroleum hydrocarbons [TPH] and benzene) in groundwater at concentrations above MTCA Method A (Unrestricted Land Use) Cleanup Levels in two localized areas in the vicinity of historical borings SB-8 and SB-9 (MW-5 and MW-6). Following discussions with Ecology, a pilot study was conducted in one of these areas to evaluate the efficacy of injecting chemical oxidants to address the petroleum hydrocarbons. The results of the pilot study were summarized in the Pilot Study Results report (Cascadia, 2019a) that was submitted to Ecology on January 17, 2019.

While evaluating the results from the pilot study, it became apparent that further delineation of petroleum constituents in soil and groundwater would be beneficial in the western portion of the site to aid in evaluation of applicable remedial alternatives for this FS. Additionally, through the course of various discussions and meetings with Ecology, it was agreed that soil investigation near the Truck Loading Rack area to better define the current presence and extent of petroleum constituents in soil would be helpful. The information and data collected from the additional investigations completed in 2018 and 2019 were reported in the Additional Investigation Results Report dated July 1, 2019 (Cascadia, 2019b), and identified a third small localized area of petroleum constituents in soil and groundwater in the western area of the site. The extent of petroleum hydrocarbons in this area was further defined in February 2020, and the results are presented in this FS report.

In addition to the above investigations, periodic groundwater monitoring has been conducted at the Facility since 2004 and the results are summarized herein.

1.1 PURPOSE

The purpose of this revised FS is to identify and evaluate remedial action alternatives for reducing and/or controlling contaminant concentrations at the Facility to levels that are considered protective of human health and the environment. The objective of the FS is to develop a range of remedial measures and to identify a preferred cleanup approach that is based on a reasoned evaluation of alternatives. The preferred alternative was selected based on a number of factors, including long-term effectiveness, permanence, implementability, cost, restoration time frame, and community concerns.

1.2 REPORT ORGANIZATION

The SRI/Revised FS report is organized as follows:

- **Section 2** presents Facility background information and geologic/hydrogeologic conditions in the site vicinity.
- **Section 3** provides a summary of investigations and studies conducted from 2004 to 2010, which are the studies that comprised and supported the 2010 RI/RA Report and provided the basis for the 2012 FS. This section also includes a brief summary of the 2012 FS.
- **Section 4** presents the SRI, which is comprised of the additional investigations and studies conducted at the Facility from 2014 to 2020 following Ecology's Final Project Coordinator's Decision.
- **Section 5** updates the previously prepared risk assessment, including an updated summary of the extent, fate, and transport of petroleum hydrocarbons in site media. As summarized in Section 5, petroleum hydrocarbons have been identified in soil and groundwater in three localized areas of the Facility, referred to herein as the MW-5, MW-6, and Vapor Recovery Unit (VRU) Areas, and in soil in the Truck Loading Rack Area.
- **Section 6** summarizes federal, state, and local laws potentially applicable to Facility cleanup.
- **Section 7** describes the development of cleanup standards.
- **Sections 8 through 10** describe the basis for evaluating cleanup action alternatives for the MW-5, MW-6, and VRU Areas, initiating with a review of potentially applicable technologies in Section 8 and the development and evaluation of cleanup alternatives in Sections 9 and 10. Because the MW-5, MW-6, and VRU Areas involve petroleum hydrocarbons in saturated soil and groundwater, cleanup technologies for these areas are evaluated together. Supporting information is contained in the appendices.
- **Section 11** presents cleanup action technologies and alternatives for soil in the Truck Loading Rack Area. Petroleum hydrocarbons have not been detected in groundwater nor in soil below the water table in the Truck Loading Rack Area and do not have a leachable fraction; therefore, cleanup technologies were evaluated separately for this area.
- **Section 12** presents the recommended cleanup action for the Facility.

2.0 BACKGROUND

2.1 SITE LOCATION, DESCRIPTION, AND HISTORY

The "Site" is defined consistent with MTCA and the Agreed Order to include the area where a hazardous substance from a release at the Facility has "come to be located." The boundary of the Site as defined in the Agreed Order is shown on Figure 2.

Location. The Facility address is 5420 NW Fruit Valley Road, Vancouver, Washington 98660 (Latitude: 45.6617°N, Longitude: 122.6932°W) (Section 16, Range 1E, Township 2N), as shown on Figure 1. The Facility is located on Clark County Tax Lot No. 147360.

Physical Features. Figure 2 is a Facility Site Plan. The Facility is approximately 31 acres and is roughly rectangular, with dimensions of approximately 800 by 1,800 feet. The Facility is located in a mixed industrial-agricultural area and currently includes a tank farm consisting of seven large aboveground storage tanks (ASTs) contained in four containment areas; a covered truck loading rack; smaller ASTs containing fuel additives; a 42,000-gallon transmix AST; and several buildings used for equipment storage and offices. The large ASTs are used to store jet fuel and range in capacity size from 1,680,000 to 4,599,378 gallons. A former underground storage tank (UST) associated with a vapor recovery system was also located on the Facility and was removed in 2001. The current VRU and adjacent oil/water separator (OWS) are located within a pipeline area between the south and north tank farm containments. The Facility is connected to the municipal sanitary sewer and water supply systems. In accordance with a State Waste Discharge Permit, stormwater is monitored and generally discharged to ground for infiltration. Stormwater from one of the AST containment areas which is lined is directed to a lined Fire System Water Reservoir in the northwestern portion of the Facility. An unlined overflow Storm Pond is located immediately south of the Fire System Water Reservoir and is used for stormwater storage and infiltration during heavy rain events.

Property History. Support Terminals Operating Partnership, L.P. (STOP) purchased the Facility from Cenex Harvest States Cooperative (Cenex) in 2003. In March 2008, STOP changed its name to NuStar.

The property was developed in 1957 as a truck loading terminal. Records are unclear as to whether the Facility was developed by Cenex. Historically, chemicals and other products stored at the Facility included liquid fertilizers and refined petroleum products such as gasoline, diesel and kerosene, de-natured alcohol, and petroleum product additives. The transmix tank is located in the western portion of the Facility (Figure 2), and this is typically where waste (such as from tank-bottom cleanouts or the OWS) would be stored prior to off-site disposal or recycling. There is no indication that materials from tank-bottom cleanouts were buried at the Facility.

Prior to or during Cenex's ownership, American Cyanamid conducted agricultural research—including the testing of herbicides and pesticides—in the southeastern portion of the Facility (Figure 2).

2.2 GEOLOGY AND HYDROGEOLOGY

This section presents the understanding of the geology and hydrogeology as discussed in the RI/RA Report (Ash Creek, 2010) and updated based on investigation conducted during the past seven years.

2.2.1 Geology

Regional Geology. The regional geology is summarized below and is based on reports prepared by Pacific Groundwater Group (PGG, 2001) and AMEC (2002a). The Site and surrounding area is dominated by three primary geologic units: Recent Alluvial deposits, the Pleistocene Alluvial deposits, and the Troutdale Formation.

The Recent Alluvial deposits are the upper unit with deposits approximately 55 feet thick and consist of fine-grained silt and sand within the areas investigated near Vancouver Lake. The Pleistocene Alluvial deposits are approximately 95 to 115 feet thick and consist of coarse-grained sand and gravel. The Pleistocene Alluvial deposits originate from alluvial deposits from the Columbia River and deposits from the catastrophic Missoula Floods. The Troutdale Formation underlies the Pleistocene Alluvial deposits and can be in excess of 1,000 feet thick. It is made up of cemented sandy gravels and semi-consolidated sands, silts, and clays.

Site Geology. During site investigations, soil borings have been advanced to depths of up to 72 feet below ground surface (bgs) at the Facility. Boring logs from these investigations are contained in Appendix A for reference.

A geologic cross-section illustrating Site geology is presented on Figure 3; boring locations are shown on Figure 2. As illustrated on the cross-section and supported by the boring logs, the Recent Alluvial deposits underlying the western portion of the Facility consist of clayey silt, silt with some fine sand, and sandy silt to depths of approximately 28 to 35 feet bgs. In some areas, localized, thin laterally discontinuous sand layers are observed in the silt. Below 28 to 35 feet bgs, the Recent Alluvial deposits consist of layers of fine- to medium-grained sand to a depth of at least 65 feet bgs.

On the eastern portion of the Facility, the base of the silt layer is generally shallower, with fine-to medium-grained sand encountered at approximately 10 feet bgs near the VRU.

2.2.2 Hydrogeology

Regional Hydrogeology. The regional aquifers, Recent Alluvial Aquifer (RAA); Pleistocene Alluvial Aquifer (PAA); and the aquifers of the Troutdale Formation, follow the regional geology discussed above. The regional hydrogeology summarized below is based on reports prepared in support of

Clark Public Utilities (CPU) South Lake Wellfield (PGG, 2001; PGG, 2009), and by Ash Creek (2008a and 2008b).

The RAA is unconfined and receives recharge directly from the land surface and/or surface water features. The PAA directly underlies the RAA and is a productive aquifer with high well yields (several thousand gallons per minute [gpm] without significant drawdown). The groundwater flow system is highly influenced by local surface water bodies. The Columbia River, Vancouver Lake, Vancouver Lake Flushing Channel, and Lake River form natural hydrologic boundaries to the groundwater flow system. Tidal influences and seasonal variations in surface water runoff cause dynamic variation in the stage of the Columbia River, and resulting in adjustments in the stages of the other three connected surface water bodies. The groundwater flow system is also influenced by tidal and seasonal variations in the surface water bodies. Regionally, it is anticipated that groundwater within the RAA and PAA in the vicinity of the Facility would have a net gradient towards Vancouver Lake and the Columbia River.

The Troutdale Gravel Aquifer (TGA) has been observed at a depth of approximately 200 feet at the CPU wellfield located 500 feet north of the Facility. It is approximately 50 feet thick and is underlain by a 100-foot-thick clay confining layer. The Sand and Gravel Aquifer (SGA) of the Troutdale Formation is found beneath the confining layer.

Site Hydrogeology. First encountered groundwater is found in the sandy silt of the RAA. In the western portion of the Facility, depth to first encountered groundwater has ranged from approximately 8 to 22 feet bgs since 2014, and in the eastern portion of the Facility, near the former and current Truck Loading Rack, depth to groundwater has ranged from approximately 20 to 32 feet bgs since 2002. Depth to first groundwater varies seasonally, with the shallower depths generally encountered between December and June and the deeper depths encountered between July and November. Deeper groundwater of the PAA is encountered at depths of approximately 50 to 70 feet bgs beneath the Facility (Ash Creek, 2008a).

Shallow groundwater flow at the Facility has remained, under static conditions, relatively flat with a slight gradient (typically ranging between 0.0001 to 0.0005 foot per foot [ft/ft]) predominantly to the southeast (AMEC, 2002a; SECOR, 2003; Ash Creek, 2009) but at times to the east/northeast, or a divide is observed in the western portion of the Facility, with flow to the west on the western side of the divide and to the east/southeast on the eastern portion of the divide (Cascadia, 2020). Groundwater contour maps prepared for previous investigations are contained in Appendix B of this report for reference.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

Several investigations were conducted at the Facility between 2001 and 2012. The initial investigation addressed evidence of a possible fuel release during UST decommissioning and resulted in further work to define the extent of potentially impacted soil and groundwater (AMEC, 2002a/2002b). In 2003, SECOR conducted a comprehensive Phase II Environmental Site Assessment (ESA) of the Facility as a part of due diligence activities for Cenex during the property transaction to NuStar (SECOR, 2003). Several investigations were conducted between 2006 and 2008 to characterize environmental conditions in support of a remedial investigation and risk assessment (Ash Creek, 2007, 2008a, and 2008b). Four monitoring wells (MW-1 through MW-4) were installed in 2004 and were monitored periodically and/or quarterly during the 2004 to 2012 period. The scope and results of each of these investigations and monitoring were detailed in the RI/RA Report (Ash Creek, 2010) and are summarized below. Figures summarizing data collected prior to 2010 were contained in the 2010 RI/RA (Ash Creek, 2010) and are contained in Appendix C for reference.

Analytical data from the investigations for soil, grab groundwater, and monitoring well sampling are summarized in Tables 2, 3, and 4, respectively.

3.1 ENVIRONMENTAL SITE ASSESSMENT – APRIL 2002

In April 2002, petroleum-impacted soils were encountered during the decommissioning of an underground gasoline-vapor recovery tank. Cenex excavated several test pits to delineate the extent of the impacted soils, and approximately 60 to 100 cubic yards of soil were then excavated. Cenex retained AMEC to conduct further investigations to assess soil and groundwater conditions at and near the former UST. A brief summary of those activities and results is presented below:

- Twelve borings (GP-1 through GP-12) were completed to depths ranging from 20 to 32 feet bgs around the VRU and the former UST pit (Figure 2). Seven soil samples (one each from borings GP-2, GP-3, GP-5, GP-7, GP-8, GP-9, and GP-12) were analyzed for the presence of petroleum hydrocarbons using Northwest Method NWTPH-HCID. Petroleum hydrocarbons were not identified in the soil samples. Results were summarized on Figures 3 and 4 of the 2010 RI/RA (Ash Creek, 2010) which are contained in Appendix C for reference.
- AMEC coordinated the removal of the soil excavated from the former UST area by Cenex and backfilling of the former tank excavation. Confirmation soil sampling conducted at the final limits of the UST excavation did not identify petroleum hydrocarbons or fuel constituents in the residual soil (AMEC, 2002b).
- Groundwater samples were collected from locations GP-3 and GP-7 through GP-12; see Figure 2 for locations. The groundwater samples were analyzed for the presence of TPH as gasoline (TPHg) and diesel (TPHd) using NWTPH-Gx and NWTPH-Dx, respectively; polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270-SIM; and/or volatile organic

compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B. TPHg; TPHd; benzene, toluene, ethylbenzene, and xylenes (BTEX); and several PAH constituents were detected in the grab groundwater samples. Based on the results of the groundwater analyses, AMEC concluded that additional investigation was needed to better assess the subsurface extent of the fuel constituents (AMEC, 2002a).

3.2 SUBSURFACE INVESTIGATION – DECEMBER 2002

In December 2002, further subsurface investigation was conducted to evaluate the extent of petroleum hydrocarbons in soil and groundwater in the vicinities of the former UST, the existing VRU, and the existing and former truck loading racks. The investigation included:

- Twenty-five direct-push borings (GP-13 through GP-37) were completed to depths ranging from 24 to 50 feet bgs. Soil samples selected from borings advanced within the Former Truck Loading Rack (GP-14 and GP-31 through GP-35) and from beneath the existing VRU (GP-26) were submitted for chemical analysis. Locations of the borings are shown on Figure 2.
- Grab depth-discrete groundwater samples were collected from borings GP-21 through GP-25 and GP-28 through GP-30. Fuel constituents were noted to be primarily detected near/southeast of the VRU and decreased rapidly with distance from the unit (Ash Creek, 2010).
- Installation and sampling of four monitoring wells (MW-1 through MW-4). Locations of wells MW-1 through MW-4 are shown on Figure 2.

The subsurface investigation successfully delineated the extent of fuel-related constituents in soil and groundwater near the former UST, VRU, and truck loading racks. Lead concentrations in groundwater were non-detect, supporting that the fuel constituents in the subsurface are not a source of lead to groundwater.

3.3 PHASE II ENVIRONMENTAL SITE ASSESSMENT – 2003

SECOR performed a comprehensive Phase II ESA during April 2003 in support of due diligence efforts during the property transfer from Cenex to NuStar. SECOR conducted research on the historical uses of the Facility to assist in developing the scope of the investigation. SECOR's research of historical operations indicated the following uses or potential areas of concern: fuel storage in ASTs; stormwater pond used to collect non-contact stormwater; slop tank used to store oily wastes prior to recycling or disposal; current and former truck loading racks used to transfer fuel; VRU and OWS; former UST; and former pesticide/herbicide handling and storage areas associated with American Cyanamid's site usage.

SECOR implemented a Facility-wide investigation to assess the potential impacts of each of these Facility uses/areas of potential concern. A brief summary of those activities and results is provided below, and the location of referenced borings and wells are shown on Figure 2:

- Thirteen direct-push borings, three temporary monitoring wells, and 14 hand-auger borings were advanced across the Facility.
- Soil samples were selected for laboratory analysis from locations SB-4, SB-8, SB-9, SB-11, HA-3, HA-5, and PMW-5.
- Groundwater samples were collected from locations SB-1-GW, SB-3-GW, SB-4-GW, SB-8-GW through SB-11-GW, SB-18-GW, PMW-5W, and PMW-7. In addition, the four on-site monitoring wells (MW-1 through MW-4) were re-sampled.
- Significant areas of concern associated with fuel-related constituents in soil or groundwater
 were not identified outside of the former UST/VRU Area. TPH and BTEX concentrations
 detected in soil are shown on Figures 3 and 4 of the 2010 RI/RA; TPH and BTEX
 concentrations detected in groundwater samples collected from the direct-push boring
 locations are shown on Figures 5 and 6 of the 2010 RI/RA (Ash Creek, 2010). Copies of
 these figures are contained in Appendix C for reference.
- Soil and groundwater samples were collected for pesticide, herbicides, triazines, and nitrogen analyses in areas where American Cyanamid historically operated. Triazines, pesticides, and herbicides were not detected in soil or groundwater (Ash Creek, 2010).
 Nitrates were not detected at concentrations that would be indicative of a source.
- Lead concentrations in groundwater appeared slightly elevated and were inconsistent with previous analyses performed by AMEC for lead in groundwater at the Facility. As described below, additional lead analyses were performed on samples collected from Facility monitoring wells and the results were non-detect.

3.4 SITE INVESTIGATIONS – 2006 TO 2008

Ash Creek performed several investigations between 2006 and 2008 to assess the conditions at the Facility. The investigations included sampling of off-site wells, direct-push groundwater assessment of deeper groundwater at the Facility, and a year-long quarterly groundwater monitoring program. Below is a brief summary of the investigations.

- On September 26, 2006, two samples (IRIG-Firestone and House-Firestone) were collected off-site to evaluate the migration potential of groundwater constituents to the north of the Facility. Samples collected from the irrigation wells at the Firestone Property were analyzed for TPHg using NWTPH-Gx, TPHd using NWTPH-Dx, VOCs using EPA Method 8260B, and PAHs using EPA Method 8270 SIM. None of the analyzed constituents were detected in the groundwater samples above method reporting limits (MRLs).
- On June 11, 2007, two direct-push borings (GP-1 and GP-2) were advanced into the PAA unit using a heavy duty Geoprobe Systems® unit to assess deeper groundwater conditions beneath the Facility; the locations of these borings are shown on Figure 2. The direct-push

borings were advanced to depths of between 65 and 72 feet, respectively. Grab groundwater samples collected from the deeper groundwater zone were analyzed for TPHg, TPHd, and VOCs (including BTEX). Except for MTBE, detected at a concentration of 13.7 micrograms per liter (μ g/L) at location GP-1, no other VOCs, TPH, or PAHs were detected in the direct-push explorations.

- A one-year quarterly groundwater monitoring program was initiated in the second quarter of 2007. Groundwater samples were analyzed for TPHg by NWTPH-Gx; TPHd and TPHo by method NWTPH-Dx with silica gel cleanup; and BTEX and fuel oxygenates by EPA Method 8260B. Concentrations decreased significantly—in some cases up to three orders of magnitude—since the initial investigations in 2002/2003 (Table 4). With the exception of TPHg in well MW-3, the results demonstrated constituent concentrations below MTCA Method A Cleanup Levels. The significant and expeditious decreases in groundwater concentrations support the conclusion that the residual concentrations of fuel-related constituents in Facility soil in the eastern portion of the Site are not sufficient to present an ongoing source of degradation to shallow groundwater.
- Groundwater samples were analyzed for lead during one quarterly event; lead concentrations were non-detect in all four wells.

3.5 PERIODIC GROUNDWATER MONITORING AND DRAFT FS

Groundwater monitoring of wells MW-1 through MW-4 was conducted periodically between 2004 and preparation of the RI/RA report in 2010. The results indicated steadily decreasing BTEX and MTBE concentrations (Table 4).

A draft FS was conducted in 2012 and evaluated potential cleanup options for groundwater at the Facility. Three alternatives were evaluated: no action, groundwater recirculation, and MNA. The draft FS included a comparative analysis of the options and concluded that MNA was the preferred alternative. An analysis of benzene and MTBE concentration trends in groundwater was conducted as part of the draft FS and indicated that benzene and MTBE concentrations would be below MTCA Level A criteria in wells MW-1 through MW-4 in 5 to 10 years. As detailed in Section 4, results of continued groundwater monitoring demonstrated that wells MW-1 through MW-4 achieved the MTCA Level A criteria by 2014, confirming the predicted timeframe of the draft 2012 FS and that natural attenuation is actively occurring at the Site.

4.0 SUPPLEMENTAL REMEDIAL INVESTIGATION

Since Ecology's 2014 issuance of the Final Project Coordinator's Decision establishing a series of steps for collecting additional data to support revision and resubmittal of the FS, seven additional soil and groundwater investigations have been conducted, nine monitoring wells have been installed, a remedial action pilot study was completed, and a quarterly groundwater monitoring program was initiated. The results of these additional investigations and studies are summarized below.

Figures summarizing results from investigations conducted from 2014 to 2019 were presented in the *Additional Investigation Summary Report and Pilot Test Work Plan* (Apex, 2017) and/or the May 2019 *Additional Soil and Groundwater Investigation Results Report* (Cascadia, 2019b) and are contained in Appendix D for reference. An additional investigation was conducted in February 2020 in support of this Revised FS; the results are presented in this section, and Appendix E contains the analytical data sheets from the 2020 investigation.

Analytical results from the SRI assessments as well as the historical investigations are summarized in Tables 2, 3, and 4 for soil, grab groundwater, and monitoring well sampling, respectively.

4.1 SUMMARY OF INVESTIGATION – 2014 THROUGH 2016

As presented in Section 1.0, Ecology provided NuStar with comments on the draft FS on October 16, 2013. In the months following receipt, NuStar held several meetings with Ecology to discuss Ecology's comments on the FS, as well as additional comments that were presented to NuStar in a February 4, 2014 meeting. The additional comments included a request for additional groundwater investigation near historical borings SB-8 and SB-9 in the western tank farm areas; the locations of these borings are shown on Figure 2. The preliminary investigation results indicated that petroleum hydrocarbon constituents were present in groundwater near historical borings SB-8 and SB-9 at concentrations above MTCA Method A Cleanup Levels. As a result, additional site investigation, well installation, and groundwater monitoring were conducted to evaluate the magnitude and extent of petroleum hydrocarbon constituents in groundwater in the western portion of the Facility. The results of these investigations are detailed in Apex 2015a, 2015b, 2015c, and 2017, and Cascadia 2019. The soil results are included in Table 2, and the grab groundwater results are summarized in Table 3. Boring and monitoring well locations are shown on Figure 2.

In summary, these investigations included:

- Installing two monitoring wells, MW-5 and MW-6, at the locations of historical borings SB-8 and SB-9, respectively;
- Conducting one year of quarterly groundwater monitoring of existing wells MW-1 through MW-4 and the new wells, MW-5 and MW-6;

- Conducting additional groundwater investigation to define the extent of petroleum hydrocarbons and related constituents in the areas of wells MW-5 and MW-6, including the installation of 12 direct-push borings (B-1 through B-12) and the collection of two to three grab groundwater samples from each boring using temporary well points;
- Conducting a groundwater investigation to delineate the extent of petroleum hydrocarbons in groundwater to the west of wells MW-5 and MW-6, including the installation of two borings, B-13 and B-14, outside and to the west of the tank farm berms of the Facility;
- Installing four shallow compliance wells, MW-7 through MW-10, to monitor the potential for offsite migration to the north, west, and south; and
- Installing two deeper monitoring wells, MW-5D and MW-8D, adjacent to wells MW-5 and MW-8, respectively, to evaluate potential vertical gradients in groundwater.

As shown in Table 3, benzene and toluene were not detected in groundwater in the MW-5 Area and ethylbenzene and xylenes concentrations were low. Although benzene was detected in groundwater in the MW-6 Area, concentrations were low and limited in extent. The results indicated that the impacts consisted predominantly of TPH in the gasoline and diesel hydrocarbon ranges (TPHg and TPHd, respectively). MTBE was not detected.

Detected concentrations of TPH and BTEX in grab groundwater samples obtained from borings B-13 and B-14, and wells MW-7 through MW-10 and MW-8D were below MRLs. The results were presented to Ecology in a meeting on September 22, 2016. During the meeting, Ecology supported the conclusion that the compliance well network was acceptable for monitoring purposes.

4.2 PILOT STUDY - 2017

In the September 2016 meeting, Ecology stated that the FS would need to evaluate active remediation to address the petroleum hydrocarbons in groundwater near wells MW-5 and MW-6 based on the additional groundwater investigations conducted from 2014 to 2016. As such, NuStar indicated that initial evaluations of potential remedial alternatives identified injection of oxygen releasing compound (ORC) and/or *in-situ* chemical oxidation (ISCO) as possible options. However, due to the presence of the heavier hydrocarbons in the saturated soil and shallow groundwater, it was determined that a pilot study would be needed to better evaluate the viability of this option. A pilot study work plan was submitted to Ecology in August 2017 (Apex, 2017) and implemented in October and November 2017. After the injections were completed, one year of groundwater monitoring was conducted to assess the effectiveness of the ORC and ISCO injections. The results of the pilot study were submitted to Ecology in the *Pilot Study Results Report* (Cascadia, 2019ab). The groundwater monitoring conducted following the pilot study did not indicate significant decreases in petroleum constituent concentrations. While the remedial technology was not ruled out as a potential future cleanup option for the Facility, the tight soils in the tank farm area limited the effective distribution of the ISCO/ORC products into the subsurface. The pilot study was beneficial

for identifying physical issues that would have to be overcome for *in situ* injection technologies to be successful at the Facility.

4.3 ADDITIONAL INVESTIGATION – 2019

In 2018, additional investigation in both the western and eastern areas of the Facility were proposed to assist in completing the FS. The additional investigation was conducted in 2019 and consisted of:

- Conducting an additional groundwater investigation in the western tank farm area to better assess the vertical extent of petroleum constituents in groundwater;
- Collecting soil samples from two locations in the overflow storm pond;
- Soil sampling adjacent to the Truck Loading Rack to assess current petroleum hydrocarbon constituent concentrations in soil; and
- Advancing a soil boring followed by a new groundwater monitoring well (MW-11) between existing wells MW-1 and MW-3 to assess whether petroleum hydrocarbons in groundwater in this area are below MTCA Method A Cleanup Levels.

Vertical Definition in the Western Tank Farm Area. Seven additional borings (B-15 through B-21) were installed to define the vertical extent of petroleum hydrocarbons in groundwater around wells MW-5 and MW-6. Results defined the vertical extent in the MW-5 Area as predominantly limited to shallow groundwater above 40 feet below grade. Just one boring had TPH detections to 55 feet below grade. The vertical extent in the MW-6 Area did not extend below 40 feet below grade. During the 2019 investigation in the western tank farm area, an additional apparently localized area of petroleum hydrocarbons in soil was identified in boring B-18 located just to the east of well MW-6.

Soil Sampling in Overflow Storm Pond. Two borings, B-15 and B-16, were installed in the locations where two historical borings, HA-5 and HA-6, were installed for soil sample collection in 2003; TPH and BTEX had been identified at location HA-5 at depths between 3 and 6 feet below grade. Soil results from borings B-15 and B-16 indicated significantly lower TPH concentrations and no BTEX. Results are summarized in Table 2.

Soil in Truck Loading Rack Area. Historical sampling conducted in 2002 and 2003 in the Former Truck Loading Rack, located just east of the current truck loading rack, indicated the presence of petroleum hydrocarbon constituents in soil, generally at the 8- to 10-foot depth interval. Historical grab groundwater sampling conducted in this area did not indicate the presence of petroleum hydrocarbons or related constituents above MTCA Method A Cleanup Levels, and hydrocarbon constituents have not been detected in groundwater samples collected from monitoring well MW-4 located adjacent to this area since the well was installed in 2002 (Table 4).

To assess current soil conditions and to better support remedial alternative evaluations for soil containing residual hydrocarbons in the Truck Loading Rack Area, six soil borings were installed at the locations shown on Figure 2. Borings B-23, B-24, B-25, and B-27 were advanced at or near the locations of historical borings GP-34, GP-14, GP-33, and GP-32, respectively, to assess current hydrocarbon concentrations at these locations. Two additional borings (B-26 and B-28) were advanced in the grassy area to the east of these borings to verify the low to non-detect results reported in the 2002/2003 investigation in this area. As detailed in Section 4, the results of the recent soil sampling and analysis in this area showed that residual hydrocarbons have attenuated significantly since the 2002/2003 investigation and are limited both vertically and laterally in extent.

Groundwater in VRU Area. In reviewing the historical grab groundwater data collected in the Former Truck Loading Rack Area, an area of higher petroleum hydrocarbon concentrations was identified between wells MW-1 and MW-3, near the VRU, specifically at historical boring location GP-8. Historical figures summarizing these data are contained in Appendix D. Monitoring wells MW-1, MW-2, and MW-3 surround the VRU Area, and no longer contain petroleum hydrocarbon constituents at concentrations above MTCA Method A Cleanup Levels. In 2019, boring B-22 was advanced adjacent to historical boring GP-8, in the approximate center of wells MW-1, MW-2, and MW-3. Detected concentrations of gasoline range hydrocarbons as well as benzene, ethylbenzene, and xylenes above MTCA Method A Cleanup Levels were identified in the B-22 grab groundwater sample indicating a highly localized area of residual contamination. Monitoring well MW-11 was installed adjacent to boring B-22 to allow continued monitoring of groundwater in this area.

4.4 ADDITIONAL INVESTIGATION – FEBRUARY 2020

In February 2020, petroleum hydrocarbons in soil and groundwater were further delineated in the western portion of the Facility prior to initiating an updated FS. Specifically, additional borings were completed within the overflow Storm Pond and an area around boring B-18.

Boring B-18 Area. As identified above, an additional localized area of soil and groundwater containing petroleum hydrocarbons was identified in boring B-18, the location of which is shown on Figure 2. The vertical extent of petroleum hydrocarbons in groundwater in this area was defined during the 2019 investigation; however, the lateral extent of petroleum hydrocarbons in soil and shallow groundwater around boring B-18 was not. Nine additional borings (B-29 through B-34 and B-37 through B-39) were advanced around boring location B-18 in February 2020 to better assess the lateral extent of soil and shallow groundwater containing petroleum hydrocarbons in this area. Up to three soil samples and one grab groundwater sample were collected from each location. Samples were analyzed for TPH, BTEX, and naphthalene. Table 2 includes the analytical results of soil samples collected during the 2020 investigation; Table 3 includes the analytical results of the grab groundwater samples. Figure 4 illustrates the extent of TPH in soil around B-18. Figures 5 and 6 illustrate the extent of TPH and BTEX, respectively, in groundwater around boring B-18.

Overflow Storm Pond. As presented above, investigations of the current conditions of soil beneath the overflow Storm Pond were conducted in 2019. The 2019 investigation was conducted via handauger because access by a drill rig was not possible at that time and groundwater samples could not be obtained. A ramp was constructed into the Storm Pond in 2020 and a drill rig was able to access the area. Two borings, B-35 and B-36 were installed in the overflow Storm Pond during the 2020 investigation to assess soil and groundwater conditions beneath the pond. Soil samples from three depth intervals were collected from borings B-35 and B-36. TPHg, TPHd, BTEX, and naphthalene were not detected in any of these samples above MRLs. Analytical results in soil are summarized in Table 2.

Groundwater was encountered at an approximate depth of 6.5 feet bgs beneath the overflow Storm Pond at the time of the investigation, and groundwater samples were collected from a depth interval extending from 6 to 10 feet bgs in borings B-35 and B-36. In addition, a deeper groundwater sample was collected from boring B-36 from a depth of 16 to 20 feet bgs to be comparable to groundwater depths previously sampled in the well MW-6 Area. Analytical results for the groundwater samples are summarized in Table 3; TPHg, TPHd, BTEX, and naphthalene concentrations were below MRLs in the three groundwater samples.

4.5 GROUNDWATER MONITORING – 2014 TO 2020

Comprehensive groundwater monitoring events have been conducted periodically since submittal of the draft FS and Ecology's Project Coordinator Decision. As identified above, the monitoring well network was expanded from the four monitoring wells MW-1 through MW-4 located in the eastern area of the Facility in 2007 to a total network of 11 shallow wells and two deeper wells across the Site. In summary:

- Shallow wells MW-5 and MW-6, screened from 10 to 25 feet bgs, were installed in 2014 to monitor groundwater conditions at former boring locations SB-8R and SB-9R, respectively.
- Shallow wells MW-7 through MW-10, screened from 10 to 25 feet bgs, were installed in 2016 to provide compliance monitoring wells around the lateral extent of the two localized petroleum hydrocarbon areas identified at wells MW-5 and MW-6.
- Deeper wells MW-5D and MW-8D, screened from 35 to 45 feet bgs, were installed in 2016 to monitor deeper groundwater adjacent to wells MW-5 and MW-8.
- Shallow well MW-11, screened from 10 to 25 feet bgs, was installed in 2019 to monitor groundwater conditions in the VRU Area.

Twelve comprehensive monitoring events have been conducted at the Facility in the period from 2014 to 2020. Monitoring included gauging depth to groundwater and collecting groundwater samples from each well. Groundwater samples were analyzed for TPHg, TPHd, TPHo, BTEX, and MTBE. Naphthalene was added to the analytical program in 2019. Depth to groundwater and groundwater elevation data collected during these routine groundwater monitoring events are

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal Vancouver, Washington

tabulated in Table 1; chemical analytical results are summarized in Table 4. Results from the continued groundwater monitoring have confirmed that the TPH and related constituents are confined to two localized areas in the western tank farm—one area around MW-5 and the second around MW-6—and a small area around well MW-11 in the VRU Area.

5.0 SUMMARY AND UPDATE OF 2010 RISK ASSESSMENT

The 2010 RI/RA Report was submitted to Ecology in December 2010. Ecology approved the RI/RA Report in a letter to NuStar dated June 23, 2011. Since that time, additional investigations have been performed to better define the extent of petroleum hydrocarbons and related constituents at the Site, as detailed in Section 3.0. In this section, the Conceptual Site Model (CSM) and RA presented in the 2010 RI/RA report are summarized and updated as appropriate based on new information and data obtained since 2010.

5.1 LAND AND BENEFICIAL WATER USE

Land Use. The Site is an industrial property as defined by WAC 173-340-200. This conclusion is based on the following.

- The Site is located within the City of Vancouver, which has conducted land use planning under the State Growth Management Act (Vancouver Municipal Code [VMC] 20.110.010.A).
- The City of Vancouver zoning map defines the Facility and surrounding area as IL: Light Industrial. The nearest non-industrial zoning is a greenway area located adjacent to and west/northwest of the Facility.
- The Facility is a light refined petroleum products storage and distribution facility that currently handles jet fuel and methanol.

Groundwater Use. Shallow groundwater at the Facility is not currently used for any purpose. CPU installed a domestic water supply wellfield, referred to as the Carol Curtis Wellfield, on vacant land approximately 500 feet north of the Facility in 2010; the location of the wellfield is shown on Figure 1. Currently, the wellfield consists of three production wells screened from 500 to 600 feet bgs in the SGA. The wellfield extracts groundwater at rates between 1,000 to 3,000 gpm. CPU has indicated that it plans to bring additional wells into service that will draw from the PAA. Specifically, it has stated that a PAA production well will be brought into service with a pumping rate of 5,000 gpm by the end of 2021.

Irrigation wells are present near the Facility and include irrigation wells at the Firestone Property located directly north of the Facility. No constituents were detected in water samples collected from wells at the Firestone Property in 2003 and 2006.

Surface Water. There are no surface waters at the Facility. The nearest surface water feature is Vancouver Lake, which is located approximately 2,600 feet west of the Facility. The Columbia River is located approximately 1.75 miles south of the Facility.

5.2 CHEMICALS OF POTENTIAL CONCERN

Previous investigations and activities conducted at the Site have included chemical analysis of more than 150 soil samples, 100 grab groundwater samples, and 16 rounds of groundwater sampling and

analysis for TPH, VOCs, PAHs, and/or lead. These data are of sufficient quality for use in risk assessment, FS, and cleanup level determination. Screening of chemical data for the 2010 RI identified the chemicals of potential concern (COPCs) in soil and groundwater at the Site to be petroleum hydrocarbons (gasoline and diesel), BTEX, and MTBE (Ash Creek, 2010). MTBE has not been detected above MTCA Level A criteria in soil or groundwater sampling conducted at the property since 2015 and is no longer considered a COPC. However, recent soil and groundwater analyses have identified naphthalene above MTCA Level A criteria, and it is now considered a Site COPC.

5.3 SUMMARY OF CHEMICAL FATE AND EXTENT

5.3.1 Soil

Site investigations have identified five areas of localized soil impacts:

- Truck Loading Rack Area;
- VRU Area;
- Northwest tank farm containment area around well MW-5 (referred to as the MW-5 Area);
- Southwest tank farm containment area in the vicinity of well MW-6 and boring B-18 (referred to as the MW-6 Area); and
- Overflow Storm Pond.

Figure 12 identifies the approximate location of these areas at the Facility. This section describes the distribution and extent of COPCs in each of these areas.

Truck Loading Rack Area

Investigations conducted between 2002 and 2005 indicated the presence of residual petroleum hydrocarbons in soil between the depths of approximately 6 to 12 feet in the Truck Loading Rack Area. Additional investigation was conducted in 2019 to assess current conditions in this area (Cascadia, 2019b). As a part of the 2019 investigation, borings B-23, B-24, B-25, and B-27 were advanced to assess current conditions at historical boring locations GP-34, GP-14, GP-33, and GP-32, where previous petroleum hydrocarbon concentrations were above MTCA Method A Cleanup Levels. With the exception of boring B-27, the 2019 results were well below historical concentrations and/or below MRLs (Cascadia, 2019b).

A table comparing the 2002 and 2019 results is provided below.

Table 5.3.1A

Comparison of Historical (2002) and Recent (2019) Soil Samples in Truck Loading Rack Area

Sample ID (Depth ft bgs)	Sample year	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes
GP-34 (6-8)	2002	728	13,600	< 0.500	< 0.500	0.717	16.9
B-23 (6.5 - 7.5)	2019	< 7.26	< 25.0	< 0.0145	< 0.0726	< 0.0363	< 0.109
GP-14 (10-12)	2002	3,230	19,700				
B-24 (10.5-11.5)	2019	< 7.19	< 26.5	< 0.0144	< 0.0719	< 0.0359	< 0.108
GP-33 (8-10)	2002	363	31,500	< 0.500	< 0.500	7.2	33.9
B-25 (8.5 - 9.5)	2019	88.6	7,650	< 0.0148	< 0.0739	< 0.0369	< 0.111
GP-32 (6.5 - 8)	2002	910	2,530	< 5	< 5	< 5	16
B-27 (7 - 8)	2019	1,910	6,620	< 0.0725	< 0.363	1.89	11.1

Shading indicates exceedance of MTCA Method A Cleanup Level. Concentrations in milligrams per kilogram (mg/kg).

It should be noted that the 2019 soil sample collected from a depth of 10 feet at boring B-27 contained TPHg at a concentration of 11,500 mg/kg and TPHd at 23,000 mg/kg. Samples were not collected from this depth historically; therefore, a data comparison cannot be made to assess whether attenuation has occurred. However, as shown in the table below, photoionization detector (PID) readings collected below 10 feet in all of the 2019 borings except B-27 were below 5 parts per million per volume (ppmv), and the readings in boring B-27 decreased rapidly below a depth of 12 feet and were below measurement levels below a depth of 18 feet. These results support that the residual petroleum hydrocarbons in the Truck Loading Rack Area are predominantly limited to a vertical depth interval of approximately 6 to 13 feet.

Table 5.3.1B

PID Measurements for 2019 Soil Samples in Truck Loading Rack Area

	PID Measurement (ppmv)							
2019 Boring	0 to 6 feet	6 to 10 feet	11 to 13 feet	14 to 16 feet	17 to 18 feet	19 to bottom of boring		
B-23	< 5	< 5	< 5	< 5	BOB at 15 feet	BOB at 15 feet		
B-24	< 5	< 5	< 5	< 5	BOB at 15 feet	BOB at 15 feet		
B-25	< 5	1.2 - 21.5	< 5	< 5	BOB at 15 feet	BOB at 15 feet		
B-26	< 5	< 5	< 5	< 5	< 5	< 5		
B-27	< 5	97 - 773	679	25 - 50	5.6	< 5		
B-28	< 5	< 5	< 5	< 5	BOB at 15 feet	BOB at 15 feet		

BOB = bottom of boring

[&]quot;--" indicates sample not analyzed for constituent.

[&]quot;<" indicates analyte not detected at or above the specified laboratory MRL.

The results of the 2019 investigation of the Former Truck Loading Rack indicate that the residual hydrocarbons have attenuated significantly in this area since it was last investigated in 2002. Residual petroleum hydrocarbons in this area are limited to the vicinity of boring B-25 and B-27 and are constrained to the east and west by borings B-23 and B-24, to the north by borings GP-37 and GP-18, and to the south by borings GP-15 and GP-16, as shown on Figure 9. Vertically, the residual petroleum hydrocarbons are limited to the depth interval between 6 and 13 feet bgs.

VRU Area

Investigations conducted in 2002 and 2003 identified petroleum hydrocarbons in soil and groundwater near the VRU and its ancillary decommissioned UST. The UST and soil around the UST were removed. Sampling conducted around the excavation area supported that the excavation removed the majority of the soil containing petroleum hydrocarbons (Ash Creek, 2010). Figure 4 of the 2010 RI summarized the historical soil sampling results in this area and is contained in Appendix C for reference.

MW-5 Area

Investigations conducted within the MW-5 Area focused on assessing the extent of COPCs in groundwater; soil samples were not collected for chemical analysis in this area during recent investigations. However, PID measurements and field screening for visual evidence (e.g., sheen) were conducted and, with the exception of boring B-6, indicate that COPCs are not present in vadose zone soil above seasonal high groundwater which can be as shallow as 9 feet bgs in this area. Field screening in boring B-6 indicated PID measurements up to 680 ppmv between depths of 7 and 10 feet bgs. Boring logs with field screening results are contained in Appendix A for reference. PID measurements are also shown on the geologic cross-section (Figure 3) that aligns southwest to northeast through this area.

MW-6 Area

Investigations were conducted between 2014 and 2020 to delineate the lateral and vertical extent of COPCs within this southwest portion of the tank farm. Investigations conducted around monitoring well MW-6 focused on assessing the extent of COPCs in groundwater; however, the PID readings from the boring logs installed in this area provide information on the extent of soil impacts in the vadose zone. As depicted on Figure 3 and supported by the boring logs in Appendix A, there is limited presence of petroleum hydrocarbons in the upper 10 feet of soil in the MW-6 Area, and PID readings are below 20 ppmv at depths below approximately 21 feet bgs. As also shown on Figure 3, the hydrocarbon mass is limited to the silt layer of the upper RAA beneath the Facility.

B-18 Area

Shallower impacts were noted in and around boring B-18 in 2019, and the February 2020 investigation was conducted to better assess the extent of COPCs in soil and groundwater in this area. The inferred lateral extent of TPHg and TPHd in soil around boring B-18 above MTCA Level A cleanup levels appears to be approximately 100 feet by 80 feet as illustrated on Figure 4.

Near borings B-18 and B-30, the petroleum hydrocarbons were identified in shallower soil, in the 3-to 6-foot depth range, and extended to approximately 22 feet bgs based on analytical data and PID measurements collected in the field. In the remaining borings at which TPH was identified above MTCA Level A criteria, petroleum hydrocarbons were typically observed at depths starting at approximately 12 feet bgs and extending to 21 or 22 feet bgs. Historical high groundwater level in this area is around 8 1/2 feet bgs and support that the petroleum hydrocarbon containing soil below 9 feet is not a part of the vadose zone. The extent of petroleum hydrocarbon containing soil in the vadose zone is defined by borings B-29, B-31, B-32, and B-33, and covers a lateral extent less than approximately 50 feet by 70 feet. Boring logs with field screening results are contained in Appendix A for reference.

As shown in Table 2, ethylbenzene, xylenes, and naphthalene are co-located with the TPH and therefore, the extent of these COPCs in soil is the same as TPH in this area. Toluene was not detected and benzene concentrations, where detected, were typically one or two orders of magnitude less than the ethylbenzene, toluene, and naphthalene concentrations.

Overflow Storm Pond

In 2003, soil samples collected at depths of 3 and 6 feet bgs from one of three hand-augered borings, HA-5, installed in the overflow Storm Pond indicated the presence of TPHg and TPHd at concentrations above MTCA cleanup levels. TPHg and TPHd were non-detect in the soil samples collected from the two other hand auger locations, HA-4 and HA-6. Figure 4 of the 2010 RI summarized these results and is contained in Appendix C for reference.

Hydrocarbons in the overflow Storm Pond have attenuated significantly since 2003, as exemplified by the results at boring B-16. Boring B-16 was advanced in 2019 in the same location as historical boring HA-5 and a sample was collected at 6 feet to assess current concentrations. As shown in the table below, COPC concentrations are much less than those observed in 2003.

Table 5.3.1C

Comparison of Historical (2003) and Recent (2019) Soil Samples in Storm Pond

Sample ID (Depth feet bgs)	Sample year	ТРНд	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes
HA-5 (6)	2003	2,290	10,700	6.7	216	177	1,204
B-16 (5 - 6)	2019	1,900	483	<0.0683	<0.342	0.171	<0.513

Shading indicates exceedance of MTCA Method A Cleanup Level. Concentrations in mg/kg.

In February 2020, additional soil samples were collected in the overflow Storm Pond to further assess soil in the overflow storm pond. Soil samples from three depth intervals were collected from borings B-35 and B-36; boring locations are shown on Figure 2. COPCs were not detected in any of these samples above MRLs. Therefore, based on recent soil sampling, COPCs in soil underlying the Storm Pond appear to be limited to TPHg, at depths above 7 feet, and laterally localized around

boring B-16. Groundwater samples from this area did not contain COPCs, demonstrating that the limited residual TPHg in soil is not leachable.

5.3.2 Groundwater

Groundwater data have been collected over the period from 2002 to 2020. Results indicate the presence of three localized areas of groundwater containing one or more Site COPCs at concentrations above MTCA Level A concentrations. These are:

- MW-5 Area:
- MW-6 Area; and
- Well MW-11 located within the VRU Area.

It is noted that the VRU Area was the subject area in the 2012 draft FS. At that time, the extent of BTEX and MTBE was present in three wells, MW-1 through MW-3 surrounding the VRU. MNA has successfully remediated this area so that now it is a small area localized around new well MW-11, and BTEX/MTBE concentrations are below MTCA Level A criteria in wells MW-1 though MW-3.

Grab groundwater samples collected in the overflow Storm Pond and groundwater samples collected from well MW-4, which is located in the Truck Loading Rack Area, are non-detect for Site COPCs and demonstrate that the limited amount of residual petroleum impacted soil in these areas is not adversely affecting groundwater.

MW-5 Area

Well MW-5 was installed in the northwestern area of the Facility to monitor petroleum hydrocarbons identified in boring SB-8R, advanced in this area in 2003. Groundwater investigations conducted between 2014 and 2019 have defined the lateral and vertical extent of COPCs in groundwater around well MW-5, as shown on Figures 10 and 11 for TPH and BTEX, respectively. Three shallow wells, MW-5, MW-8, and MW-9, screened from 10 to 25 feet bgs and two deeper wells, MW-5D and MW-8D, screened from 35 to 45 feet bgs have been installed in the area to monitor concentration trends in groundwater.

As illustrated on Figure 9, the inferred lateral extent of TPH in first encountered groundwater beneath the MW-5 Area is approximately 100 by 200 feet. The vertical extent of TPH is less than 55 feet bgs and, with the exception of a limited area of low TPH concentrations near borings B-9 and B-20, is generally less than 35 feet bgs in this area (Figure 7).¹

Benzene and toluene are not present in groundwater above MRLs in the MW-5 Area and ethylbenzene and xylenes are limited both laterally and vertically (Table 3). Figure 10 summarizes BTEX results for first encountered groundwater and illustrates that ethylbenzene and xylenes are

¹ TPH was detected in groundwater down to 40 feet at location B-5 at concentrations above MTCA Level A criteria; however, TPH has not been detected above MTCA Level A criteria in groundwater samples from deeper monitoring well MW-5D installed adjacent to this boring.

limited to an area directly around well MW-5. The vertical extent of ethylbenzene and xylenes appears to be less than 30 feet bgs (Figure 8). Although the grab groundwater sample collected at boring B-5 from 35 to 40 feet bgs indicated the presence of ethylbenzene and xylenes (Figure 8), samples from well MW-5D which was installed adjacent to this boring and screened from 35 to 45 feet bgs have not exhibited the presence of BTEX, including ethylbenzene and xylenes (Table 4). No other groundwater samples collected below a depth of 30 feet in this area exhibited BTEX above MRLs (Figure 8).

MW-6 Area

Well MW-6 was installed in the southwestern area of the Facility to monitor petroleum hydrocarbons identified in a boring, SB-9, advanced in this area in 2003. Groundwater investigations conducted between 2015 and 2019 defined the vertical extent of COPCs in groundwater around well MW-6, as shown on Figures 7 and 8 for TPH and BTEX, respectively. As shown on these figures, concentrations decrease rapidly below a depth of 25 to 30 feet bgs and the vertical extent of petroleum hydrocarbons above MTCA Level A criteria does not extend below 40 feet bgs.

Petroleum hydrocarbons were encountered in shallow soil and groundwater samples obtained from boring B-18 in 2019. Additional investigation was conducted in 2020 to better define the lateral extent of petroleum hydrocarbons in soil and groundwater around this boring. As shown on Figure 9, the lateral extent of TPH in first encountered groundwater in the MW-6 Area is approximately 125 feet by 225 feet and incorporates the boring B-18 Area. The extent of BTEX in this area is more limited and is not connected between well MW-6 and boring B-18, as shown on Figure 10.

VRU Area

Wells MW-1 through MW-4 were installed in 2002 to monitoring groundwater in the area around the former VRU and decommissioned UST. Groundwater samples from these wells have been below MTCA Level A criteria since 2010. In 2019, it was noted that historical grab groundwater samples directly adjacent to the former VRU in 2003 contained petroleum constituents at concentrations above MTCA Level A criteria and an additional soil boring, B-22, and monitoring well, MW-11, were installed in this area to better assess current conditions. Monitoring well MW-11 has been monitored for four quarters and the results are tabulated in Table 4 for TPH, BTEX, and naphthalene. As can be seen in Table 4, TPH, BTEX, and naphthalene concentrations in groundwater remain below MTCA Level A criteria in wells MW-1 through MW-4, but TPHg, benzene, ethylbenzene, xylenes, and naphthalene were above MTCA Level A criteria during one or more monitoring events in well MW-11, indicating that a localized area of approximately 50 feet by 50 feet around well MW-11 contains petroleum hydrocarbons in groundwater above MTCA Level A criteria.

5.4 CONCEPTUAL SITE MODEL AND RISK ASSESSMENT

A CSM and RA were prepared for the Facility in 2010 (Ash Creek, 2010). The RA evaluated reasonably likely exposure pathways based on the evaluation of land and water use as presented in the RI/RA report (Ash Creek, 2010). Potential receptors included industrial, construction, and excavation workers and potential future residential drinking water consumption from the CPU wellfield. Exposure pathways evaluated included direct contact with soil and groundwater, inhalation of vapors from soil or groundwater, future drinking water use of groundwater, and soil leaching to groundwater with subsequent use of groundwater. Exposure media included soil, groundwater, and air. The assessment evaluated risk using the COPCs identified in the RI/RA. This section updates the CSM and RA findings based on current Site conditions. The CSM is shown graphically on Figure 11.

5.4.1 Exposure Pathways and Risk Analysis

Exposure pathways were evaluated for both current and potential future on-site and off-site receptors. On-site receptors include industrial workers, construction workers, and excavation (utility) workers. Off-site receptors include current and potential future residents utilizing the CPU wellfield. If an exposure pathway was deemed complete, a risk analysis was performed to assess whether or not residual contamination could adversely impact on-site and off-site receptors. The following summarizes the complete pathways and associated risk.

Direct Contact with Surface Soil. Investigations conducted since 2003 support that soil shallower than 3 feet does not contain petroleum hydrocarbons at concentrations of potential concern for direct contact.

Direct Contact with Subsurface Soil. In the five localized areas discussed in Section 4.3.1, there is a potential for construction and/or excavation workers to encounter contaminated subsurface soils. However, on-site excavation activities are rare and standard operating procedures (SOPs) at the terminal limit potential exposure. Facility workers are aware of the potential for encountering impacted soils at the Facility and are required to wear personal protective equipment (PPE), which significantly reduces the potential for direct contact with Facility soils. Additionally, Facility workers are trained in the appropriate handling of petroleum products. Based on these protective measures, the potential presence of residual hydrocarbons in soil is not anticipated to present an unacceptable risk to on-site construction and excavation workers.

Leaching of Petroleum Hydrocarbons in Soil to Groundwater. With the exception of limited areas in the overflow Storm Pond, the Truck Loading Rack, and around boring B-18, petroleum hydrocarbons are not present in vadose zone soil at concentrations above MTCA Level A criteria. Grab groundwater samples collected in the overflow Storm Pond and near the Truck Loading Rack were non-detect for Site COPCs, demonstrating that residual TPH in vadose zone soil is not adversely impacting shallow groundwater.

However, TPH in vadose zone soil is present in a localized area near MW-5 at depths between approximately 7 and 9 feet and around boring B-18 at depths between 3 and 9 feet bgs, and these soils could represent an ongoing source of hydrocarbons to underlying groundwater in these areas. In addition, TPH is present in saturated soil in the 9- to 22-foot depth interval in the MW-5 and MW-6 Areas. Investigation completed within the VRU Area suggests that a limited amount of saturated soil containing TPH and BTEX exists around well MW-11 between 20 and 22 feet bgs.

Ingestion of Groundwater. The extent of dissolved phase constituents in groundwater has been characterized horizontally and vertically and is limited laterally to three localized areas: one in the southwest around well MW-6; a second in the northwest localized around well MW-5; and a third in the central eastern area around well MW-11. Petroleum hydrocarbon concentrations above MTCA Level A criteria are, for the most part, confined to shallow groundwater within fine-grained soils located between 9 and 25 feet bgs. Currently, there is no domestic use of groundwater from these depths at or in the vicinity of the Facility. However, the CPU plans to install production wells within the PAA, accessing groundwater from depths between 55 and 180 feet bgs, at their wellfield located approximately 500 feet north of the Site.

Summary of Risk Analysis. As identified above, direct contact with soil containing petroleum hydrocarbons does not present an unacceptable risk at the Facility, and the potentially complete exposure pathways appear to be vadose zone soil leaching to groundwater in the boring B-18 Area and future ingestion of groundwater. As noted above, CPU plans to install production wells in the PAA for groundwater withdrawal in 2021. According to Ecology, withdrawal of groundwater from the PAA has the potential to induce groundwater migration from the RAA beneath the Facility towards the CPU wellfield.

5.4.2 Ecological Risk Assessment

A Simplified Terrestrial Ecological Evaluation was conducted and the results documented in a September 21, 2020 memorandum; a copy of the Simplified TEE is contained in Appendix F. Site conditions at the Facility were evaluated consistent with WAC 173-340-7492, with the following conclusions:

- The four criteria: natural areas, vulnerable species, extensive habitat, and risk to significant wildlife populations, do not apply to the site; and therefore, a Simplified TEE is applicable.
- A Simplified TEE was performed and identified three subsurface soil locations with TPHd concentrations above ecological levels of concern listed in Table 4.1 of the TEE Guidance. However, all three locations are below 8 feet in depth, are beneath a paved area that is operated on a continuous basis as a truck loading rack precluding any habitat for birds or small mammals, and will be managed by an institutional control and soil management plan to eliminate the potential for future ecological exposure.

The Simplified TEE supports that the presence of TPH at the site will not present an unacceptable ecological health risk. The Simplified TEE was approved by Ecology on October 8, 2020.

6.0 APPLICABLE FEDERAL, STATE, AND LOCAL LAWS

The MTCA rules (WAC-173-340-710) require that cleanup actions comply with applicable state and federal laws, which are defined as "legally applicable requirements and those requirements that the department determines...are relevant and appropriate requirements" (i.e., ARARs). A cleanup action performed under MTCA authority (e.g., an Agreed Order) is exempt from the procedural requirements of certain state and local environmental laws, although the cleanup action must still comply with the substantive requirements of applicable federal, state, and local laws.

"Legally applicable" requirements include cleanup standards or environmental protection requirements under state or federal laws that specifically address a hazardous substance or cleanup action for a site. "Relevant and appropriate" requirements include cleanup standards or environmental requirements (e.g., cleanup standards, standards of control, environmental criteria, environmental limits, etc.) under state and federal law that, while not legally applicable to the cleanup action, address problems or situations that are considered sufficiently similar to those encountered at the Site. The ARARs applicable for the Site are as follows:

- **Safe Drinking Water Act (42 USC Section 300f).** The Safe Drinking Water Act (SDWA) sets a framework for the Underground Injection Control (UIC) Program to control the injection of wastes into groundwater. EPA and individual states implement the UIC program, which sets standards for safe waste injection practices and bans certain types of injection altogether.
- **Resource Conservation and Recovery Act.** The Resource Conservation and Recovery Act (RCRA) is the principal federal law in the United States governing the disposal of solid waste and hazardous waste. RCRA handles many regulatory functions of hazardous and non-hazardous waste. In the State of Washington, RCRA is implemented by Ecology under the Dangerous Waste Regulations (WAC 173-303).
- State Environmental Policy Act (43.21C Revised Code of Washington [RCW]; WAC 197-11). The State Environmental Policy Act (SEPA) was created to ensure that state and local government officials consider potential environmental impacts when making decisions. These decisions may be related to issuing permits for private projects, constructing public facilities, or adopting regulations, policies, or plans. The SEPA process begins when an application for a permit is submitted to a state or local government agency, or when an agency proposes to take an action such as the implementation of a remedial action. One agency is identified as the "lead agency" under the SEPA Rules (WAC 197-11-924-938) and is responsible for conducting the environmental review for a proposal and documenting that review in the appropriate SEPA documents.
- Washington Hydraulic Code (Chapter 77.55 of RCW; WAC 220-110). Under this code, any organization or agency wishing to conduct any construction activity that will use, divert, obstruct, or change the natural flow or bed of state waters must do so under the

terms of a permit (called the Hydraulic Project Approval [HPA]) issued by the Washington Department of Fish and Wildlife.

- Washington Solid Waste Management Reduction and Recycling Act (Chapter 70.95 RCW; Chapter 173-350 WAC). This act establishes a state-wide program for solid waste handling, recovery, and/or recycling to prevent land, air, and water pollution and conserve the natural and economic resources of the state.
- **Underground Injection Control Program (Chapter 173-218 WAC).** The program was designed to protect groundwater quality by preventing groundwater contamination by regulating the discharge of fluids into UIC wells. The program satisfies the intent and requirements of Washington State Water Pollution Control Act (Chapter 90.48 RCW) as well as Part C of the SDWA.
- State of Washington Water Pollution Control Law (Chapter 90.48 RCW). This legislation defines Ecology's authority and obligations for the wastewater discharge permit program. The Facility's stormwater discharges to ground must comply with State Waste Discharge Permit Number ST 6255 (Permit). The Permit is effective on May 1, 2020, and expires on April 30, 2025. The cleanup action would need to be consistent with the substantive requirements of the Permit, which include effluent limits for authorized discharges to ground, groundwater quality monitoring, and a best management practice that precludes any discharge in excess of the hydraulic capacity of the evaporative/infiltration ponds, so that the surge pond overflows.
- Water Resources Act (Chapter 90.54 RCW). This act establishes fundamental policies for the utilization and management of the waters of the State of Washington. If construction-generated dewatering water or stormwater from the cleanup action is treated for discharge to water of the State of Washington, such discharge would need to comply with the requirements of the Facility's stormwater Permit and/or a National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit.

7.0 DEVELOPMENT OF CLEANUP STANDARDS

This section identifies the cleanup standards for the Site. In accordance with WAC 173-340-700(3), cleanup standards consist of the following components:

- <u>Cleanup Level</u> Hazardous substance concentration that protects human health and the environment;
- Point of Compliance The location on the Site where the cleanup level must be attained; and
- <u>Additional Regulatory Requirements</u> Other requirements that apply to a cleanup action because of the type of action and/or the location of the Site.

No unacceptable risks were identified for current exposure pathways. Cleanup standards were developed in accordance with WAC 173-340-720 through WAC 173-340-760 for the potential future exposure pathway completed by withdrawal of groundwater from the PAA at the CPU wellfield. CPU plans to begin withdrawing groundwater from the PAA within the next year. This section develops cleanup standards for soil leaching to groundwater and for the domestic use of groundwater (i.e., drinking water).

7.1 SOIL LEACHING TO GROUNDWATER

For soil, Method A was used to develop the soil cleanup levels in accordance with WAC 173-340-704(1)(b).

7.1.1 Soil Cleanup Levels

Petroleum hydrocarbons have been identified in two limited areas in vadose zone soil at a depth interval of approximately 6 to 12 feet in the MW-5 and MW-6 Areas. Additionally, saturated silty soil in the 12- to 22-foot depth interval, which represents the zone of seasonal water table fluctuation, has been identified as containing petroleum hydrocarbons above MTCA Level A criteria across much of the area of groundwater impact in the MW-5 and MW-6 Areas. These petroleum hydrocarbons are weathered with little volatile compounds remaining but may have the potential to leach petroleum hydrocarbons to groundwater at concentrations of potential concern. Therefore, soil cleanup levels need to be developed based on protecting groundwater and established based on the highest beneficial use of groundwater. Based on WAC 173-340-720(1)(a), the highest potential beneficial use of groundwater is assumed to be drinking water unless it can be otherwise demonstrated. Method A levels for soil have been developed to be protective of groundwater based on a soil leaching pathway. Subsequently, the proposed MTCA cleanup levels for constituents of concern (COCs) in soil are as follows:

- TPHg 30 mg/kg;
- Benzene 0.03 mg/kg;
- Ethylbenzene 6 mg/kg;

- Toluene 7 mg/kg; and
- Xylenes 9 mg/kg.

7.2 GROUNDWATER

For groundwater, Method A was used to develop the groundwater cleanup levels in accordance with WAC 173-340-704(1)(b).

7.2.1 Groundwater Cleanup Levels

Groundwater cleanup levels must be established based on the highest beneficial use of groundwater, which is assumed to be drinking water unless it can be otherwise demonstrated (WAC 173-340-720(1)(a)). Given that CPU plans to install wells and withdraw groundwater for municipal use from the PAA within the next year, potentially inducing Site COC migration, the highest beneficial use of groundwater at the Site is assumed to be drinking water (WAC 173-340-720(2)). Subsequently, the proposed MTCA cleanup levels for COCs in groundwater are as follows:

- TPHg 800 μg/L (because benzene is or has been present in groundwater);
- TPHd 500 μg/L;
- Benzene $5 \mu g/L$;
- Ethylbenzene 700 μg/L;
- Naphthalene 160 μg/L;
- Toluene 1,000 μg/L; and
- Xylenes 1,000 μg/L.

7.2.2 Groundwater Point of Compliance

Per WAC 173-340-720(8)(b), the standard point of compliance is throughout the Site and throughout the saturated zone. The conditional point of compliance for groundwater shall be monitoring wells MW-1 through MW-11.

8.0 CLEANUP ACTION EVALUATION CRITERIA

Cleanup actions were evaluated and selected based on the requirements of WAC 173-340-360. The following summarizes these MTCA requirements.

8.1 MTCA THRESHOLD REQUIREMENTS

Cleanup action selected under MTCA must meet four "threshold" requirements identified in WAC 173-340-360(2)(a) to be accepted by Ecology. All cleanup must:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with ARARs; and
- Provide for compliance monitoring.

8.2 MTCA SELECTION CRITERIA

When selecting from remedial alternatives that meet the threshold requirements, the following criteria, identified in WAC 173-340-360(2)(b), must be evaluated:

- Use permanent solutions to the maximum extent practicable (see Section 7.2.1);
- Provide for a reasonable restoration time frame (see below);
- Consider public concerns;
- Prevent or minimize present and future releases and migration of hazardous substances in the environment; and
- Do not rely primarily on dilution and dispersion unless the incremental costs of any active remedial measures over the costs of dilution and dispersion grossly exceed the incremental degree of benefits of active remedial measures over the benefits of dilution and dispersion.

For groundwater cleanup actions:

- If practicable, a permanent cleanup action shall be used to achieve the cleanup levels for groundwater at the standard point of compliance; or
- Where a permanent cleanup action is not practicable, the following measures shall be taken:
 - Conduct treatment or removal of the source; and
 - To the maximum extent practicable, implement groundwater containment, including barriers or hydraulic control through groundwater pumping, or both, to avoid lateral and vertical expansion of the groundwater volume affected by the hazardous substance.

• Institutional controls shall be used if concentrations above Method A or B cleanup levels remain at the Site.

8.2.1 Use of Permanent Solutions and Disproportionate Cost Analysis

A disproportionate cost analysis (DCA) is conducted to determine whether a cleanup action uses permanent solutions to the maximum extent practicable. This is done by evaluating the relative benefits and costs of the cleanup action alternatives using the following process.

- Rank the potential alternatives from most to least permanent using the following criteria specified in WAC 173-340-360(3)(f).
 - Protectiveness Overall protectiveness of human health and the environment, including
 the degree to which existing risks are reduced, time required to reduce risk at the
 Facility and attain cleanup standards, on-site and off-site risks resulting from
 implementing the alternative, and improvement of the overall environmental quality.
 - Permanence The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated.
 - Cost The cost to implement the alternative, including the cost of construction, the net present value of any long-term costs, and agency oversight costs that are cost-recoverable. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs, and the cost of maintaining institutional controls. Cost estimates for treatment technologies shall describe pretreatment, analytical, labor, and waste management costs. The design life of the cleanup action shall be estimated, and the cost of replacement or repair of major elements shall be included in the cost estimate.
 - Long-Term Effectiveness Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes. The following types of cleanup action components may be used as a guide, in descending order, when assessing the relative degree of long-term effectiveness: reuse or recycling; destruction or detoxification; immobilization or solidification; on-site or off-site disposal in an engineered, lined, and monitored facility; on-site isolation or containment with attendant engineering controls; and institutional controls and monitoring.

- Management of Short-Term Risks The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks.
- Technical and Administrative Implementability Ability to be implemented, including consideration of whether the alternative is technically possible; availability of necessary off-site facilities, services, and materials; administrative and regulatory requirements; scheduling; size; complexity; monitoring requirements; access for construction operations and monitoring; and integration with existing facility operations and other current or potential remedial actions.
- <u>Consideration of Public Concerns</u> Whether the community has concerns regarding the
 alternative and, if so, the extent to which the alternative addresses those concerns. This
 process includes concerns from individuals, community groups, local governments,
 tribes, federal and state agencies, or any other organization that may have an interest in
 or knowledge of the site.
- The most permanent cleanup action alternative shall be the initial baseline cleanup action.
- Compare the next most permanent cleanup action alternative to the baseline cleanup alternative. The alternative whose costs are disproportionate to the benefits shall be eliminated. Costs are disproportionate to benefits if the incremental costs of the alternative over that of a lower-cost alternative exceed the incremental degree of benefits achieved by the alternative over that of the other lower-cost alternative. The comparison of benefits and costs may be quantitative but will often be qualitative and require the use of best professional judgment.
- Repeat until only one alternative remains.

8.2.2 Determination of Reasonable Restoration Time Frame

To determine whether a cleanup action provides for a reasonable restoration time frame, the following factors from WAC 173-340-360(4) were considered:

- Potential risks posed by the Site to human health and the environment;
- Practicability of achieving a shorter restoration time frame;
- Current and potential future uses of the Site, surrounding areas, and associated resources that are or may be affected by releases from the Site;
- Availability of alternative water supplies;
- Likely effectiveness and reliability of institutional controls;
- Ability to control and monitor migration of hazardous substances from the Site;

- Toxicity of the hazardous substances at the Site; and
- Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar site conditions.

A longer period of time may be used for the restoration time frame for a site to achieve cleanup levels at the point of compliance if the cleanup action selected has a greater degree of long-term effectiveness than on-site or off-site disposal, isolation, or containment options.

8.2.3 Qualitative Factors Considered in Evaluating Cleanup Actions

In evaluating potential cleanup actions, the following factors from WAC 173-340-370 were considered.

- Treatment technologies should be emphasized at sites containing liquid wastes, areas with high concentrations of hazardous substances, highly mobile materials, and/or discrete areas of hazardous substances that lend themselves to treatment.
- For sites with small volumes of hazardous substances, hazardous substances should be destroyed, detoxified, and/or removed to concentrations below cleanup levels throughout the Site.
- For portions of sites that contain large volumes of materials with relatively low levels of hazardous substances where treatment is impracticable, engineering controls—such as containment—may be needed.
- Active measures should be taken to prevent precipitation and runoff from coming into contact with COCs in soils and waste materials.
- When hazardous substances remain on site at concentrations that exceed cleanup levels, those hazardous substances should be consolidated to the maximum extent practicable.
- For facilities within wellhead protection areas and/or overlying groundwater aquifers used for domestic water supply, active measures should be taken to prevent/minimize releases to groundwater via surface infiltration in excess of cleanup levels. Dilution should not be the sole method for demonstrating compliance with cleanup standards in these instances.
- Natural attenuation of hazardous substances may be appropriate at sites where:
 - Source control (including removal and/or treatment of hazardous substances) has been conducted to the maximum extent practicable;
 - Leaving contaminants on site during the restoration time frame does not pose an unacceptable threat to human health or the environment;
 - There is evidence that natural biodegradation or chemical degradation is occurring and will continue to occur at a reasonable rate at the site; and

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal Vancouver, Washington

 Appropriate monitoring requirements are conducted to ensure that the natural attenuation process is taking place and that human health and the environment are protected.

9.0 TECHNOLOGY EVALUATION AND CLEANUP ACTION ALTERNATIVE DEVELOPMENT - MW-5, MW-6, AND VRU AREAS

This section screens technologies to assess whether they might be feasible for the conditions in the MW-5, MW-6, and VRU Areas, and describes the development of the cleanup action alternatives to be evaluated. The alternative development process includes identifying general response actions and corresponding technologies, screening technologies to eliminate technologies that are clearly not feasible, and assembling remaining technologies into a list of site-specific cleanup action alternatives.

9.1 TECHNOLOGY SCREENING

Technologies have been screened for soil and groundwater response actions. Table 5 presents the preliminary screening of the technologies with shaded options eliminated for further consideration. The technologies are discussed further below.

9.1.1 Preliminary Screening for Soil

The list of considered general response actions for **soil** includes:

- **Institutional Controls.** Institutional controls (e.g., land use restrictions and contaminated media management programs) are effective administrative tools for managing residual contamination. Given that some of the soil contamination is near and/or beneath existing infrastructure and therefore not accessible, institutional controls will be included as a component in all remedial alternatives, except for the no action alternative.
- In Situ Solidification/Stabilization. In situ solidification/stabilization (S/S) can be performed to lower the permeability of saturated soil, thus increasing its capacity to hold and immobilize petroleum hydrocarbons. Based on the American Petroleum Institute (API) residual saturation estimates, the silt unit encountered beneath the Facility can likely retain up to 10,000 mg/kg of TPHg and over 20,000 mg/kg of TPHd. To date, detected concentrations of TPH in soil beneath the Site are well below these estimates of residual saturation, indicating that the downward migration of residual contamination is unlikely. Since the Site is underlain by tight fine-grained soils up to depths of 35 feet, in situ S/S appears to be unnecessary and not retained as a technology for development of remedial alternatives.
- *In Situ* Treatment. *In situ* treatment systems, including soil vapor extraction, enhanced bioremediation, chemical oxidation, and thermal conductive heating are generally not technically viable or economical in the fine-grained soils underlying the Facility. Also, inplace soil vapor extraction was not retained because residual contamination is highly weathered and lacks a significant volatile fraction.

• Soil Excavation and Off-Site Disposal. An interim removal action was performed in April 2002, in which 60 to 100 cubic yards of petroleum-impacted soil surrounding an underground gasoline-vapor recovery tank were excavated and transported off-site for disposal in a subtitle D landfill. Excavation and off-site disposal could likewise be used to address accessible petroleum hydrocarbon containing materials (PCM) in other areas of the Facility. The extent of the PCM in soil has been delineated using exploratory borings, as detailed in Sections 2 through 4.3. Some of the PCM in soil is not accessible due to the presence of the existing infrastructure (e.g., ASTs, containment berms, Fire Suppression Water Reservoir). Excavations below a depth of 12 feet would likely require shoring and groundwater management. The excavation and off-site disposal of accessible PCM has been retained as a technology for development of remedial alternatives.

9.1.2 Preliminary Screening for Groundwater

The list of considered general response actions for **groundwater** includes:

- Institutional Controls. Institutional controls (e.g., water use restrictions and contaminated media management programs) can be effective in mitigating direct contact with COCs in shallow groundwater. However, the proximity of the Facility to the CPU's drinking water wellfield greatly incumbers water use restrictions as a general response to managing the COCs in shallow groundwater. Therefore, institutional controls designed to ensure the proper management, disposal, and protection of workers contacting COCs in groundwater will be retained as a component of all groundwater remedial alternatives.
- Monitored Natural Attenuation. Petroleum hydrocarbons can naturally attenuate in groundwater via dispersion, sorption, and biodegradation, each of which can occur as groundwater migrates from source areas. Hydrocarbons are preferentially biodegraded under aerobic conditions. Natural attenuation of contamination in groundwater is retained as a technology for development of remedial alternatives and due to its demonstrated success in the eastern area of the Site. When using natural attenuation as a cleanup component, it is termed MNA to reflect the fact that it must be monitored to ensure its performance.
- Plume Control/Containment. Groundwater pumping and/or the *in-situ* delivery of colloidal activated carbon (e.g., PlumeStop or PetroFix) could be used to contain the COCs in the silt unit beneath the Site. The need for hydraulic control or plume containment as a remedial component is uncertain. The results of quarterly groundwater quality monitoring within the shallow and deeper water bearing zones beneath the Site indicate that petroleum-impacted groundwater is limited to the silt zone, not migrating, and concentrations are relatively low. However, CPU plans to initiate extraction of groundwater from the PAA which underlies the RAA; the silt unit containing COCs at the Site makes up the upper portion of the RAA. It is possible that the CPU's extraction of groundwater from the PAA could influence the groundwater gradients at the Site and cause migration of this

currently stable plume. Therefore, hydraulic containment via groundwater pumping or plume control via direct injections of plume stabilizing reagents have been retained as technologies for development of remedial alternatives.

• *In Situ* Treatment. In October/November 2017, direct injections of RegenOx® (a proprietary *in situ* chemical oxidation substrate manufactured by Regenesis) and ORCAdvanced (an oxygen releasing formulation also manufactured by Regenesis) were pilot tested within the MW-5 Area. The RegenOx®/ORCAdvanced mixture was injected between depths of 15 and 25 feet in 24 direct-push borings spaced 15 feet apart. After the injections were completed, one year of groundwater monitoring was conducted to assess the effectiveness of contaminant mass reduction. The results of the pilot test determined that the tight fine-grained soils beneath the MW-5 Area significantly limited the effective distribution of chemical oxidation and enhanced bioremediation reagents using direct injection. The pilot study was beneficial in identifying physical issues that could be overcome for *in-situ* injection technologies to be successful at the Facility. For example, the lateral spacing between injection points needs to be less (e.g., 6 to 8 feet) and injection rate and pressures decreased to ensure lateral and vertical distribution through the thin fine-grained sand lenses present within the silt.

Therefore, in situ enhanced bioremediation has been retained as a technology for development of remedial alternatives. Specifically, the *in-situ* delivery of dissolved oxygen, and/or other biostimulants to speed up the natural degradation of dissolved phase petroleum hydrocarbons has been retained for remedial alternative development. However, the use of strong oxidants (e.g., Fenton's reagent) produce heat and pressure and can be corrosive on underground infrastructure such as tank bottoms and pipelines. Similarly, the use of thermal conductive heating in soil below steel petroleum storage and conveyance systems is neither safe nor appropriate. The high implementation risks associated using strong oxidants or thermal conductive heating beneath the Facility is reason for not retaining these types of *in situ* treatment technologies.

• Ex Situ Treatment. Groundwater extraction/pumping could be used to provide hydraulic containment in the MW-5, MW-6, and/or MW-11 Areas. Extracted groundwater would be treated aboveground (ex situ) using a combination of oil/water separation, volatilization, and/or carbon adsorption before discharge. The treated water could be discharged to the municipal sanitary system. Alternatively, the treated water could be reinjected if a suitable injection area could be accessed. It is also possible that the treated water could be amended with biostimulants (ex situ) and reinjected within the center of the plume areas to promote in-situ microbial degradation (i.e., groundwater recirculation). Groundwater extraction and ex situ treatment has been retained for remedial alternative development.

9.2 DEVELOPMENT OF CLEANUP ACTION ALTERNATIVES

Common Technologies. Some technologies are potentially applicable to any selected remedy. Common technologies include institutional controls and monitoring and are summarized below.

- Institutional Controls Institutional controls are mechanisms for ensuring the long-term performance of cleanup actions. Institutional controls are often an integral component of remedies where contaminants exceeding cleanup levels remain at the Site. Institutional controls involve administrative/legal tools to provide notification regarding the presence of COCs, regulate the disturbance/management of these materials and the cleanup action components including prohibiting creation of preferential pathways for contaminant migration, and provide for long-term care of cleanup action including long-term monitoring. Under MTCA, the legal instruments for applying institutional controls are termed environmental covenants, equivalent to restrictive covenants for a specific property or portion of a property.
- Monitoring Monitoring includes the sampling and laboratory analysis of various media to
 assess current risks and evaluate the effectiveness of implemented cleanup actions.
 Monitoring would focus on groundwater sampling to assess progress in groundwater
 cleanup. A groundwater monitoring well network already exists at the Site, so groundwater
 samples would be easy to collect at a low to moderate cost. Monitoring does not address
 impacts to soil or groundwater but allows an assessment of Site conditions at the time of the
 sampling.

The Common Technologies will be incorporated into each cleanup action alternative discussed in the sections below. When the specifics of these Common Technologies deviate from the general discussion, they will be elaborated on; otherwise, they may not be explicitly discussed in the evaluation of the alternatives.

Supporting Technologies. Technologies that are applicable only in support of specific cleanup technologies, such as treatment of waste streams, are not evaluated separately but are paired with the appropriate technologies: *ex situ* treatment of groundwater is paired with groundwater pumping, and the base of excavation may be lined with biostimulants prior to backfilling.

Cleanup Action Alternatives for Soil. Retained technologies were combined to form functional alternatives (such as combining the excavation of accessible vadose soil with an *in situ* treatment technology such as enhanced bioremediation). Review of the soil cleanup technologies identified two remedial alternatives for further evaluation:

- Excavation and off-site disposal of PCM; and
- Enhanced bioremediation.

Cleanup Action Alternatives for Groundwater. Technologies were combined to form functional alternatives (such as combining groundwater pumping with an *ex situ* treatment technology such as

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal Vancouver, Washington

carbon adsorption). Review of the technologies identified four remedial alternatives for further evaluation:

- Excavation of PCM in the saturated zone and backfilling remedial excavations with slow release biostimulants to promote bioremediation of remaining COCs in groundwater;
- Direct injection of liquid micron-scale adsorbents and biostimulants to stabilize the dissolved phase plume, mitigate mass flux, and stimulate in-place hydrocarbon biodegradation;
- Groundwater recirculation to contain the plumes and enhance in situ biodegradation of residual petroleum hydrocarbons; and
- Groundwater pumping for hydraulic containment and mass removal throughout the source areas, *ex situ* treatment, and discharge to the municipal sanitary sewer system.

The no action alternative is also kept through the screening process to serve as a baseline for comparison.

10.0 EVALUATION OF CLEANUP ACTION ALTERNATIVES - MW-5, MW-6, AND VRU AREAS

In this section, the retained remedial technologies are assembled into cleanup action alternatives developed to meet the cleanup standards for the Facility discussed in Section 6. The alternatives were then evaluated with the Site conditions in mind, as presented in the fate and transport sections in Section 6. Namely,

- The COPCs are predominantly limited to TPH.
- BTEX and MTBE are either not present or present at low concentrations in small localized areas.
- TPH in soil are present in the saturated silty soil from depths of 12 to 22 feet in the water table fluctuation zone; the occurrence of petroleum hydrocarbons in soil above the water table is limited to a small area to the east of well MW-6 and a small area to the south of MW-5.
- TPH in groundwater are predominantly limited to the silty soil that is present to depths of 30 to 35 feet below the Site. The petroleum hydrocarbons are limited in extent and have not migrated in more than 15 years. Soil investigations and groundwater monitoring have demonstrated that natural attenuation is occurring at the Facility.

Alternative No. 1 (no action) was included as a baseline for comparison. Cleanup action alternatives were identified by arranging the retained components into sequential treatment approaches designed to achieve cleanup standards. In general, the order of selected alternatives ranks from least likely to meet the MTCA Method A cleanup criteria within a reasonable time frame and least permanent (i.e., Alternative No. 1 - No Action) to most likely and most permanent action (i.e., Alternative No. 6 - Removal of Accessible Petroleum-Impacted Soil and Enhanced Bioremediation). Table 6 provides descriptions of the cleanup action alternatives, and provides additional information regarding design assumptions, additional unknowns that may affect the design assumptions, and advantages and disadvantages associated with each alternative. In accordance with WAC 173-340-350(8)(b)(ii)(A), the cleanup action selection process (i.e., FS) includes at least one permanent cleanup action alternative to serve as a baseline against which other alternatives are evaluated for the purposes of determining whether the cleanup action selected is permanent to the maximum extent practicable.

10.1 ALTERNATIVE 1: NO ACTION

The no action alternative is presented to serve as a baseline for comparison.

Description. The no action alternative assumes that no actions are taken to treat, remove, or monitor COCs in soil and groundwater at the Site.

Threshold Requirements. The no action alternative provides no mechanism for compliance monitoring and thus does not meet the threshold requirements.

Use of Permanent Solutions. The no action alternative meets the use of permanent solutions; however, it does not provide the mechanism to document the permanent reduction. Natural processes that reduce concentrations of the COCs have been documented to occur at the Site; however, the proposed action does not provide for the ability to monitor the COCs.

Restoration Time Frame. The no action alternative does not provide for a method to document that this alternative will meet cleanup levels in a reasonable restoration.

Public Concerns. It is anticipated that public stakeholder concern would be significant for any alternative that does not include an active cleanup action.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. The no action alternative does not prevent/minimize releases at the Facility or reduce migration of COCs in groundwater.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. The no action alternative relies upon the benefit of natural attenuation from dilution and dispersion, but the primary mechanism for natural attenuation at this Site appears to be biological breakdown.

10.2 ALTERNATIVE 2: MNA

Description. MNA is a remedial approach that relies on naturally-occurring bacteria to degrade petroleum in soil and groundwater to concentrations less than cleanup levels. MNA is not a "do nothing" component of the cleanup process. Rather, to apply the MNA approach, it is necessary to demonstrate through several lines of evidence that degradation of residual contamination is occurring as a result of bacteriological processes. To demonstrate that MNA is occurring, groundwater samples would be collected on a quarterly basis (from existing monitoring wells) to evaluate the rate of contaminant breakdown and to confirm compliance with MTCA Method A cleanup levels. In compliance with Ecology's MNA guidance, long-term sources of groundwater contamination generally need to be removed or significantly reduced as a condition for the use of MNA as a remedial alternative.

Alternative 2 consists of institutional controls and long-term groundwater quality monitoring. The application of institutional controls provides notification regarding the presence of contaminated materials, regulates the disturbance/management of these materials, and prohibits the creation of preferential pathways for contaminant migration.

The principal assumption of Alternative 2 is that reductions of COCs within the shallow water bearing zone (silt unit) will occur through natural processes such as biodegradation, diffusion, dispersion, hydrolysis, and sorption.

There are no operation and maintenance requirements for this alternative.

The estimated present worth cost for this alternative is \$900,000. These costs include filing institutional controls, groundwater monitoring, Ecology oversight, and a 15 percent contingency over a 30-year period. A detailed breakdown of these costs is presented in Appendix G.

Threshold Requirements. This alternative is not expected to meet two (denoted by "X") of the four minimum MTCA cleanup requirements as described below:

- X Protect human health and the environment if CPU initiates pumping from the PAA (e.g., expanded CPU pumping of the PAA might mobilize COCs in Site groundwater);
- ✓ Comply with cleanup standards (e.g., the natural attenuation of petroleum hydrocarbons in soil and groundwater has already been demonstrated at the Facility);
- X Comply with applicable federal and state laws (e.g., detected concentrations of COCs in groundwater beneath the Site are potentially not protective of human health if mobilized and captured by an expanded CPU wellfield); and
- ✓ Provide for compliance monitoring.

Use of Permanent Solutions. Natural processes that reduce concentrations of the COC have been documented to occur at the Site. Therefore, this alternative meets the use of permanent solutions threshold.

Restoration Time Frame. This alternative is not expected to meet cleanup levels within a reasonable time frame. This determination is because CPU has an active drinking water source wellfield within 500 feet of the Facility leading to an added emphasis on the alternative's ability to adequately control and monitor contaminant migration during the restoration time frame.

Public Concerns. It is anticipated that public stakeholder concern could be significant for an alternative that does not include a more active soil and/or groundwater cleanup action.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. This alternative does not prevent or minimize future releases at the Facility.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. This alternative relies upon the benefit of natural attenuation from dilution and dispersion, but the primary mechanism for natural attenuation at this Site appears to be biological breakdown.

10.3 ALTERNATIVE 3: HYDRAULIC CONTAINMENT

Description. Alternative 3 provides for the hydraulic control and containment of COCs in groundwater detected beneath the Site. Gradient control would be accomplished through the installation of approximately nineteen 35-foot-deep groundwater extraction wells throughout the defined extent of TPH in shallow groundwater. The estimate of 19 extraction wells is based on an assumed radius of influence of 25 feet while pumping from a 4-inch-diameter well at approximately 1 gpm. A pump test would be needed to develop the final design of the hydraulic containment

system. Using submersible pumps, extracted groundwater would be routed to a common holding tank(s) and treatment enclosure. A typical treatment system for groundwater with TPH and relatively low levels of BTEX would likely consist of a coalescing plate separator and granulated carbon adsorption. Treated groundwater would likely be discharged to the municipal sanitary sewer system under permit with the publicly owned treatment works (POTW). In the event air stripping or sparging is needed to remove volatiles from the water before discharge, an air permit would have to be obtained from the Southwest Clean Air Agency.

A conceptual deployment scenario for Alternative 3 is presented on Figure 13.

The pump and treat system equipment would be routinely inspected for proper operation. These inspections would include verifying the operation of system components and the collection of system samples to ensure compliance with discharge criteria. Routine maintenance of the system would include checking equipment performance and providing maintenance, as needed. Frequency of these maintenance tasks is dependent upon pump testing and final design.

The estimated present worth cost for this alternative is approximately \$8,000,000 and includes a 15 percent contingency and assumes that the system will need to be operated for at least 30 years to achieve goals. The design/installation cost (i.e., capital costs) is estimated to be approximately \$900,000. The present worth of the treatment system operation, data analysis, and maintenance costs with long-term groundwater is estimated to be \$7,100,000 over a 30-year period. A detailed breakdown of the cost estimate for Alternative 3 is provided in Appendix G.

Threshold Requirements. This alternative is expected to meet the threshold requirements as follows:

- Protects human health and the environment by controlling the migration of COCs, reducing residual contaminant levels by extracting source area groundwater for *ex situ* treatment, and implementing institutional controls.
- Hydraulic control concurrent with MNA is expected to reduce COC concentrations in soil and groundwater to below MTCA Method A cleanup criteria;
- Numerical standard ARARs were incorporated into the cleanup level determination.
 Procedural ARARs applicable to this alternative include the following,
 - State Water Resources Act The state has jurisdiction over water resources. Withdrawal
 of groundwater for treatment would be conducted in accordance with water resources
 requirements.; and
 - SEPA In accordance with WAC 197-11-253 through -268, Ecology, as the lead agency, would conduct an environmental review to make a determination as to whether the project would have a significant adverse environmental impact. It is unlikely that the project would have an adverse impact, but if necessary, changes could be made to address identified adverse impacts.

 This alternative includes routine groundwater quality monitoring to assess progress of the remedy.

Use of Permanent Solutions. This alternative removes petroleum mass from the subsurface via groundwater extraction and treatment. In addition, natural biodegradation has been demonstrated at this Site within the vadose and saturated zones, which will also provide permanent reduction of COCs.

Restoration Time Frame. It is anticipated that this alternative could take 30 or more years to achieve cleanup levels; therefore, it is not expected to meet cleanup levels within a reasonable time frame.

Public Concerns. This alternative is anticipated to have the highest support from public stakeholders because it is a commonly used remedial method and hydraulic containment could likely be achieved relatively quickly upon implementation.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. This alternative does not prevent or minimize future releases at the Facility. However, it is designed to mitigate the off-site migration of COCs.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. This alternative does not rely on dilution or dispersion; however, its effectiveness will be enhanced by the natural degradation of COCs that has been demonstrated to occur at the Facility.

10.4 ALTERNATIVE 4: PLUME STABILIZATION, ENHANCED BIOREMEDIATION

Description. Alternative 4 includes the direct injection of liquid activated carbon and biostimulants throughout residual source areas to minimize migration of the dissolved phase hydrocarbons and promote biodegradation. Specifically, this alternative assumes direct injection of PetroFix throughout the saturated silt zones in the MW-5, MW-6, B-18, and VRU Areas. The Alternative 4 cost estimate assumes the injection of PetroFix every 6 feet between depths of 15 and 25 feet using direct-push drilling equipment. The exact number and spacing of injection points, and reagent volumes, would be determined through pilot study. The injection of liquid activated carbon (1-2 micron in size) throughout the saturated silt zones is intended to stabilize the dissolved phase hydrocarbons within the silt and limit diffusion out of the silt. The injection of nitrate and/or sulfate electron receptors is designed to stimulate anaerobic biodegradation within subsurface regions exhibiting low levels of dissolved oxygen. The cost estimate assumes 10 years of MNA following the injection program.

A conceptual deployment scenario for Alternative 4 is presented on Figure 14.

The estimated present worth cost for this alternative is \$2,600,000 (including a 15 percent contingency). The PetroFix injections are estimated to be approximately \$1,900,000. The present worth of groundwater monitoring costs is estimated to be \$700,000 over a 10-year period. A detailed breakdown of the cost estimates is provided in Appendix G.

Threshold Requirements. This alternative is expected to meet the threshold requirements as follows:

- ✓ Protects human health and the environment by controlling the migration of COCs and reducing residual contaminant levels through direct injections of plume stabilizing liquid activated carbon and biostimulants to enhanced bioremediation.
- ✓ Efforts to mitigate dissolved phase mass flux concurrent with enhanced biodegradation are expected to reduce COC concentrations in soil and groundwater to below MTCA Method A cleanup criteria;
- ✓ Numerical standard ARARs were incorporated into the cleanup level determination. Procedural ARARs applicable to this alternative include the following:
 - State Water Resources Act The state has jurisdiction over water resources. The
 injection of biostimulants in shallow groundwater for treatment would be conducted in
 accordance with water resources requirements;
 - <u>UIC Program</u> Ecology regulates underground injection through its UIC program. The
 injection of liquid activated carbon and biostimulants in shallow groundwater for plume
 stabilization and enhanced bioremediation would be conducted in accordance with
 Ecology's UIC program; and
 - SEPA In accordance with WAC 197-11-253 through -268, Ecology, as the lead agency, would conduct an environmental review to make a determination as to whether the project would have a significant adverse environmental impact. It is unlikely that the project would have an adverse impact, but if necessary, changes could be made to address identified adverse impacts.
- ✓ Provide for compliance monitoring (includes MNA).

Use of Permanent Solutions. Injections of anaerobic electron acceptors to enhance the natural degradation of residual contamination constitutes a permanent solution.

Restoration Time Frame. It is estimated that Alternative 4 would require approximately 10 years to achieve cleanup levels. For the following reasons, this restoration time frame is considered to be reasonable.

- The potential risks associated with off-site pumping in the PAA would be mitigated through on-site plume control.
- In general, the Site impacts do not have a substantive impact on Site use or resources.
- Because municipal water is available, shallow impacted groundwater beneath the Site is not currently used for drinking water.

- Institutional controls to address the shallow impacted groundwater would include restrictions on groundwater use beneath the Facility. This type of institutional control is effective and reliable.
- There is a long history of groundwater monitoring at the Site.
- Natural biodegradation has been demonstrated beneath the Site.

Public Concerns. The proposed action would be submitted for public comment and concerns raised would be addressed prior to design and implementation.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. This alternative does not prevent or minimize future releases at the Facility. However, it does reduce petroleum hydrocarbon mobility in the underlying silt.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. The alternative does not rely upon dilution and dispersion. MNA will occur via biodegradation.

10.5 ALTERNATIVE 5: GROUNDWATER RECIRCULATION

Description. Alternative 5 includes removal of readily accessible PCM, hydraulic containment of containment of the dissolved phase plumes, and reinjection/recirculation of treated/amended water inside the plumes to stimulate bioremediation.

PCM would be removed from the vadose zone down to 12 feet in two areas where shallower soil impacts were observed in the MW-5 and MW-6 Areas. The areal extent of each excavation is approximately 50 by 75 feet; excavation locations are shown on Figure 15. PCM would be removed to a depth of approximately 12 feet and the excavation would be backfilled with gravel to approximately 2 feet below grade. The upper 2 feet would be capped with a low permeability clay fill cap. An injection gallery would be constructed within each excavated area during the backfill process to allow injection of treated, amended water.

Alternative 5 assumes that hydraulic control and containment would be conducted using the same groundwater pump and treat system as described for Alternative 3. Following extraction and treatment, the extracted groundwater would be amended with biostimulants and reinjected into the backfilled excavations via the injection gallery for infiltration. These inground discharges of treated/amended water would be permitted and monitored in accordance with the state's UIC program. The groundwater extraction points would then pull this amended water through the impacted zone, forming a recirculation treatment cell. The continuous recirculation of oxygen/nutrient-rich water through the impacted zones is designed to actively enhance the biodegradation of residual COCs in soil and groundwater. A pilot test would be needed to develop the final design of the recirculation system.

To address the impacted groundwater in the VRU Area, the alternative would utilize plume stabilizing injections such as described for Alternative 4. This would entail multiple direct

injections of liquid micron-scale adsorbents and biostimulants throughout the silt zone surrounding MW-11 within the VRU Area. An estimated 6-foot by 6-foot injection grid would be used in this area and reagents would be slowly injected at multiple depth intervals through direct-push injection points equipped with a surface seal to preclude daylighting.

A conceptual deployment scenario for Alternative 5 is presented on Figure 15.

The system equipment would be routinely inspected for proper operation. These inspections would include verifying the operation of system components and collection of a system sample to measure dissolved oxygen and hydrocarbon concentrations. Routine maintenance of the system would include checking nutrient supplies (and supplanting as necessary) and equipment maintenance, as needed. Frequency of these maintenance tasks is dependent upon the pilot testing and final design.

The estimated present worth cost for this alternative is \$3,800,000 (including a 15 percent contingency). The design/installation cost (i.e., capital costs) is estimated to be approximately \$1,600,000. It is assumed that the recirculation system would require 5 years to achieve goals, followed by 2 years of monitoring to demonstrate compliance. The present worth of the operation/maintenance, data analysis, and groundwater monitoring costs are estimated to be \$2,200,000 over a 7-year period. A detailed breakdown of the cost estimates is provided in Appendix G.

Threshold Requirements. Alternative 5 meets the threshold requirements as follows.

- This alternative protects human health and the environment by controlling the migration of COCs and reducing residual contaminant levels through targeted removal actions, pumping and treating COCs in groundwater, and treating residual contamination *in situ* through groundwater recirculation and enhanced bioremediation.
- The alternative complies with the cleanup standards by reducing the COC concentration throughout the Site groundwater to below cleanup levels (using a combination of removal actions and *in-situ* treatment).
- Numerical standard ARARs were incorporated into the cleanup level determination.
 Procedural ARARs applicable to this alternative include the following.
 - <u>Underground Injection Control (UIC)</u> The injection program would be permitted under the state UIC program.
 - State Water Resources Act The state has jurisdiction over water resources. Withdrawal
 of groundwater for treatment would be conducted in accordance with water resources
 requirements.
 - SEPA In accordance with WAC 197-11-253 through -268, Ecology, as the lead agency, would conduct an environmental review to make a determination as to whether the project would have a significant adverse environmental impact. As presented above, it is

unlikely that the project would have an adverse impact, but if necessary, changes could be made to address identified adverse impacts.

• The alternative includes compliance monitoring to verify that cleanup levels have been achieved.

Use of Permanent Solutions. Removal and off-site disposal of accessible PCM, removal and treatment of COC-containing groundwater, and enhanced bioremediation of residual contamination all constitute permanent solutions.

Restoration Time Frame. It is estimated that Alternative 5 would require approximately 5 to 7 years to achieve cleanup levels. For the reasons mentioned in the preceding alternative, this restoration time frame is considered to be reasonable.

Public Concerns. The proposed action would be submitted for public comment and concerns raised would be addressed prior to design and implementation.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. This alternative does not prevent or minimize future releases at the Facility. However, it provides hydraulic containment and both *ex-situ* and *in-situ* treatment of dissolved phase COCs.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. This alternative does not rely on dilution/dispersion; rather, it relies upon active removal and treatment of the COCs.

10.6 ALTERNATIVE 6: REMOVAL OF ACCESSIBLE SOIL, ENHANCED BIOREMEDIATION (ACTIVE)

Description. Alternative 6 includes the removal of all accessible petroleum-impacted soil and the placement of ORCs in the completed excavations to enhance aerobic biodegradation of residual contamination.

The removal actions will attempt to remove all PCM to an approximate depth of 22 feet bgs (i.e., both saturated and unsaturated PCM) within the MW-5 and MW-6 Areas. Clean overburden would be separately stockpiled based on field screening results. Contaminated soil would be placed in trucks and transported offsite for disposal under permit with a subtitle D landfill. The depth of excavation will require shoring (e.g., interlocking sheet piling) and excavation dewatering since excavation will extend into the saturated zone. It is assumed that extracted groundwater would be treated with duplex (or more) sand filtration and granular activated carbon vessels and discharged under an NPDES Construction Stormwater General permit. Following completion of the remedial excavations, confirmation soil samples would be collected from the sidewalls and base of the excavation to evaluate the effectiveness of each removal action. The excavations would be backfilled with structural fill and capped with impervious material.

It is assumed that some PCM may be left adjacent to and beneath ASTs, piping, and other immovable infrastructure. Therefore, this alternative includes the placement of ORCs at the final

limits of the remedial excavations prior to backfilling to stimulate the growth of aerobic bacteria and enhance the degradation of residual petroleum hydrocarbons.

Because soil in the VRU Area is, for the most part, inaccessible, this alternative would utilize plume stabilizing injections such as described for Alternative 4 in the VRU Area. This would entail multiple direct injections of liquid micron-scale adsorbents and biostimulants throughout the silt zone surrounding MW-11 within the VRU Area. An estimated 6-foot by 6-foot injection grid would be used in this area, and reagents would be slowly injected at multiple depths intervals through direct-push injection points equipped with a surface seal to preclude daylighting.

A conceptual deployment scenario for Alternative 6 is presented on Figure 16.

The estimated present worth cost for this alternative is \$4,300,000, including a 15 percent contingency and assuming that five years of monitoring will be required following removal to demonstrate compliance. The excavation and injection costs (i.e., capital costs) are estimated to be approximately \$3,900,000. The present worth of groundwater quality monitoring costs are estimated to be \$400,000 over a 5-year period. A detailed breakdown of the cost estimates is provided in Appendix G.

Threshold Requirements. Alternative 6 meets the threshold requirements as follows.

- This alternative protects human health and the environment by reducing residual contaminant levels through targeted removal actions and treating residual contamination *in situ* through the placement of ORCs in the excavations prior to backfilling.
- This alternative complies with the cleanup standards by reducing the COC concentrations throughout the Site groundwater to below cleanup levels (using a combination of removal actions and *in-situ* treatment).
- Numerical standard ARARs were incorporated into the cleanup level determination. Procedural ARARs applicable to this alternative include the following.
 - <u>UIC</u> The injection program beneath the VRU Area would be permitted under the state
 <u>UIC</u> program.
 - State Water Resources Act The state has jurisdiction over water resources. Withdrawal
 of groundwater for treatment would be conducted in accordance with water resources
 requirements.
 - SEPA In accordance with WAC 197-11-253 through -268, Ecology, as the lead agency, would conduct an environmental review to make a determination as to whether the project would have a significant adverse environmental impact. As presented above, it is unlikely that the project would have an adverse impact, but if necessary, changes could be made to address identified adverse impacts.

 This alternative includes compliance monitoring to verify that cleanup levels have been achieved.

Use of Permanent Solutions. Removal and off-site disposal of PCM and enhanced bioremediation of residual contamination constitutes a permanent solution.

Restoration Time Frame. It is estimated that Alternative 6 would require approximately five years to achieve cleanup levels. This restoration time frame is considered to be reasonable.

Public Concerns. The proposed action would be submitted for public comment and concerns raised would be addressed prior to design and implementation.

Prevent/Minimize Releases and Migration of Hazardous Substances in the Environment. This alternative does not prevent or minimize future releases at the Facility. However, it does remove the majority of the PCM and promotes the biodegradation of residual contamination.

Degree to Which Cleanup Action Relies on Dilution/Dispersion. This alternative relies upon active removal and treatment of the COCs.

10.7 COMPARATIVE ANALYSIS OF THE CLEANUP ALTERNATIVES

The potential cleanup action alternatives were subjected to a comparative analysis based on the criteria from WAC 173-340-360(3)(f) as summarized in Section 7. The comparative analysis is a one-to-one assessment of the relative merits of each alternative for each of the evaluation criteria². Table 7 summarizes the comparative analysis. Each alternative has been assigned an MTCA benefits ranking (i.e., numerical score between 1 and 5) relative to the balancing factors. The scores are summed at the bottom of the table for each alternative, and then the alternatives are assigned a benefit/cost ratio using the ranking divided by their estimated cost (present net value). The DCA was performed to evaluate whether a cleanup action uses permanent solutions to the maximum extent practicable. Specifically, the DCA quantifies the environmental benefits of each remedial alternative, and then compares alternative benefits versus costs. Costs are disproportionate to benefits if the incremental cost of a more permanent alternative over that of a lower-cost alternative exceeds the incremental benefits achieved by the alternative. The following discussion provides a rationale for the comparative evaluation presented in Table 7.

10.7.1 Protectiveness

The cleanup alternatives (excluding Alternatives 1 and 2) would all be protective of human health and the environment but vary in the technologies used to achieve that protectiveness. Although there is no evidence that dissolved phase COCs extend beyond the property boundaries, or that the COCs are migrating, Alternatives 3 and 5 include hydraulic containment within the Shallow Zone to prevent future migration should pumping from the PAA at the CPU wellfield change current

² Criteria to evaluate use of permanent solutions to the maximum extent practicable.

groundwater gradients, inducting mass flux from the silt zone. Alternative 3 would address the migration potential to the CPU wellfield using hydraulic containment but mass removal via extraction and *ex situ* treatment would be slow. In addition to hydraulic containment, Alternative 5 includes the removal of accessible vadose zone PCM and recirculation to enhance *in situ* bioremediation. Alternative 4 includes the injections of liquid activated carbon and biostimulants to further immobilize dissolved phase COCs and enhance bioremediation. Alternative 6 includes the removal of accessible PCM within the silt zone of the MW-5 and MW-6 Areas which may act as an ongoing source of COCs to groundwater followed by enhanced aerobic biodegradation at the limits of the excavations, and stabilization of the plume in the VRU Area.

Based on the above considerations, Alternatives 5 and 6 were given ratings of 4 for overall protectiveness (5 = high protectiveness). Alternatives 3 and 4 were assigned ratings of 3 since no source area removal is proposed. Alternatives 1 and 2 were assigned protectiveness ratings of 1 and 2, respectively.

10.7.2 Permanence

Alternative 6 is considered the most permanent alternative because it provides for the most removal PCM via excavation and off-site disposal. Landfill disposal addresses contaminant mobility but does not reduce toxicity or volume (although contaminants may continue to naturally attenuate in the landfill). Alternative 5 would include targeted removal and landfill disposal of readily accessible PCM in the vadose zone. Natural attenuation is reducing soil and groundwater concentrations beneath the Site and will continue to do so in all of the alternatives (including Alternatives 1 and 2). Based on the restoration time frame, Alternatives 5 and 6 were given a rating of 4 for the permanence criterion. Hydraulic containment of groundwater as proposed in Alternatives 3 and 4 would reduce contaminant mobility over Alternatives 1 and 2, and subsequently they were assigned ratings of 3. Alternatives 1 and 2 were assigned ratings of 1 and 2, respectively.

10.7.3 Long-Term Effectiveness

Alternative 6 has the highest certainty for long-term effectiveness because it provides for the removal and off-site disposal of the most PCM in the silt zone. Alternatives 3 and 5 are also anticipated to have high long-term effectiveness via active hydraulic containment and biodegration, both natural via Alternative 3 or enhanced via Alternative 5. The long-term effectiveness of Alternative 4 is less certain as this technology, stabilizing the plume via injection of micro-carbon, is relatively new. Alternative 2 is anticipated to have long-term effectiveness unless pumping from the PAA at the CPU wellfield were to change groundwater gradients.

Based on the above considerations, Alternative 6 was given a rating of 5 for long-term effectiveness. Alternatives 3 and 5 were assigned a rating of 4. Alternative 4 was assigned a rating of 3. Alternative 2 was assigned a rating of 2 based on the CPU plans for pumping from the PAA.

10.7.4 Management of Short-Term Risks

Alternatives 1 and 2 were given low ratings of 1 and 2, respectively, because they do not address the potential for migration of COCs should pumping from the PAA at the CPU wellfield change groundwater gradients and induce COC migration. Alternative 6 was also rated low with a rating of 1, because the excavation in tank farms and around ASTs, piping, and other infrastructure carries high implementation risk. Alternative 4 will require an injection subcontractor to be on site working in the active tank farm areas for an extended amount of time, which also increases short-term risks; therefore, this alternative was also rated relatively low at 2. Alternatives 3 and 5 would require time to install the extraction and treatment systems at the Facility, but this will take significantly less time than the other alternatives, so Alternatives 3 and 5 were given a rating of 4.

10.7.5 Implementability

Alternatives 1 and 2 were given ratings of 5 and 4, respectively, for implementability since they don't involve active cleanup. Of the four active cleanup alternatives, Alternative 6 has the lowest rating of 2 because of the depth of excavation and the difficulties of excavation within an active fuel terminal. Alternative 4 was assigned a slightly higher implementability rating of 3, but installing numerous injection points throughout an active terminal will also carry relatively high implementation difficulties. Alternatives 3 and 5 were assigned an implementability rating of 4 to recognize that installation of the hydraulic containment system will not be without difficulty but will likely be easier than the other active alternatives.

10.7.6 Consideration of Public Concerns

Alternative 6 was given the highest rating of 5 because it is expected to meet the MTCA Method A cleanup levels within the shortest amount of time. Alternative 3 was given the next highest rating at 4 because hydraulic containment through groundwater extraction and treatment is a reliable, well-known technology. Alternatives 4 and 5 were given neutral ratings of 3 because they could provide significant public benefit but are newer technologies. Alternatives 1 and 2 were provided ratings of 1 and 2, respectively, as it is anticipated that they would have the least public acceptance.

10.7.7 Benefits Rankings, Estimated Costs, and Benefit/Cost Ratios

The MTCA benefits rankings, estimated costs, and benefit/cost ratios for five of the alternatives (except Alternative 1) are presented at the bottom of Table 7. MTCA benefits ranking is obtained for each alternative by summing the ratings. The benefit rankings range from a low of 12 for Alternative 1 to a high of 27 for Alternative 6.

The total present worth costs for the alternatives are summarized as follows:

• Alternative 1: \$ 0

Alternative 2: \$900,000Alternative 3: \$8,000,000

Alternative 4: \$ 2,600,000
Alternative 5: \$ 3,800,000
Alternative 6: \$ 4,300,000

The most permanent alternatives (Alternatives 4-6) appear to offer equal protectiveness. Therefore, the additional cost of removing accessible petroleum-contaminated soil (PCS) appears to be disproportionate to the benefit. It is important to note, that changes in assumptions regarding the duration of hydraulic containment and MNA, and their associated treatment system operation/maintenance and groundwater quality monitoring, significantly impact the cleanup alternative costs estimated in the FS. For instance, it is difficult to accurately forecast the differences in biodegradation restoration time between: (a) the placement of biostimulants in the remedial excavations prior to backfilling; versus (b) the recirculation of water amended with biostimulants between the backfilled remedial excavations and extraction wells; versus (c) the direct injections of plume stabilization and biostimulants throughout residual contamination.

The benefit/cost ratio, which is a relative measure of cost effectiveness, is obtained by dividing each alternative's benefits ranking by its estimated cost. Because the cost of Alternative 2 (MNA) is the lowest relative to the other alternatives, its benefit/cost ratio (1.78) is the highest. The next highest benefit/cost ratio is Alternative 4 at 0.69 with Alternative 5 essentially tied at 0.68. The remaining alternatives achieved the following benefit/cost ratios in descending order: Alternative 6 (0.60) and Alternative 3 (0.33).

Conclusion of Comparative Analysis. Based on the results of the DCA presented above, Alternatives 4 and 5 are the most cost effective of the five cleanup alternatives in this FS. However, Alternative 5 is a more proven technology and therefore, under MTCA, Alternative 5 is identified as the alternative that is permanent to the maximum extent practicable.

10.7.8 Evaluation with Respect to Reasonable Restoration Time Frame

A cleanup action is considered to have achieved restoration once cleanup standards have been met. Alternatives 3 through 6 are expected to comply with cleanup standards. The restoration time frame for these alternatives to meet groundwater cleanup levels beneath the Site has been estimated as follows:

• Alternatives 2 and 3: 30 years

Alternative 4: 10 yearsAlternative 5: 7 yearsAlternative 6: 5 years

WAC 173-340-360(4)(b) provides a list of factors to be considered to determine whether a cleanup action provides for a reasonable restoration time frame. Table 8 presents an evaluation of the cleanup alternatives with respect to these factors. Based on that evaluation, Alternatives 4 through 6 are expected to provide for a reasonable restoration time frame.

11.0 TECHNOLOGY AND CLEANUP ALTERNATIVE EVALUATION – TRUCK LOADING RACK AREA

This section screens technologies to assess whether they might be feasible for the conditions in the Truck Loading Rack Area and describes the development of the cleanup action alternatives to be evaluated. The alternative development process includes identifying general response actions and corresponding technologies, screening technologies to eliminate technologies that are clearly not feasible, and assembling remaining technologies into a list of potentially viable cleanup action alternatives for soil in the Truck Loading Rack Area.

11.1 TECHNOLOGY SCREENING AND CLEANUP ALTERNATIVES DEVELOPMENT

Table 9 presents the technology screening and evaluation for possible cleanup technologies for the Truck Loading Rack Area. Following the technology screening process for remedial alternatives applicable to the Truck Loading Rack Area, the following technologies were retained:

- 1. No Action (retained for comparison purposes)
- 2. Institutional Controls
- 3. Excavation
- 4. Off-Site Disposal

Three cleanup alternatives were developed based on the technologies retained. The cleanup alternatives developed for more detailed evaluation are:

- 1. No Action (retained for comparison purposes)
- 2. Institutional Controls Deed Restrictions and Soil Management Plan
- 3. Excavation with Off-Site Disposal

11.2 EVALUATION OF CLEANUP ALTERNATIVES

This section evaluates the cleanup alternatives developed for the Truck Loading Rack Area for protectiveness, permanence, long-term effectiveness, management of short-term risks, implementability, and consideration of public concerns. The evaluation was based on the following summary of conditions and assumptions relevant for the cleanup alternatives evaluation:

- Based on soil borings completed in the Truck Loading Rack Area, the petroleum impacted soil with concentrations of TPH above MTCA Method A cleanup levels is limited to the vadose zone from approximately 6 feet bgs to approximately 16 feet bgs. The extent of soil above MTCA Method A cleanup levels is approximately 40 feet by 90 feet.
- Seasonally high groundwater is encountered at monitoring well MW-4 at approximately 22 feet bgs; therefore, soil containing petroleum hydrocarbons is at least 6 feet above the water table.

 Based on groundwater monitoring conducted to date, there is no leachable fraction remaining in the PCM in the Truck Loading Rack Area, and groundwater in this area is not affected.

Table 10 provides a summary of the ranking of each of the alternatives relative to the others for each of the evaluation criteria. The basis for the rankings is discussed below.

11.2.1 Protectiveness

Alternatives 2 and 3 are scored equally for protectiveness. Alternative 3 would remove the PCS for off-site disposal. However, the PCS in the Truck Loading Rack Area is covered by approximately 6 feet of clean overburden soil, which provides protection to human health and the environment, and can be managed safely in place. Alternative 2 would require that a deed restriction be amended to the property deed. The deed restriction would identify the presence of PCS in the subsurface and require implementation of a soil management plan to manage the PCS should excavations occur in the area. Most often, the soil management plan is prepared and amended to the deed via the deed restriction to ensure its future implementation. The deed restriction and soil management plan included in Alternative 2 would assure protectiveness by preventing inadvertent exposure to or movement of the PCS.

11.2.2 Permanence

Alternative 3 scores higher for permanence because the alternative involves the removal of PCS from the Truck Loading Rack Area. The excavated PCS would be transported off-site to a permitted disposal facility. Alternative 2 would establish restrictions on future uses of the portion of the property at the Truck Loading Rack. The deed restriction would be a legal document, recorded with Clark County and would remain in-place until it could be demonstrated that soil with petroleum hydrocarbon concentrations above MTCA Level A cleanup levels no longer were present in the area. Furthermore, the soil management plan would establish requirements for training personnel on the presence of the PCS remaining in the subsurface and identifying when protective measures described in the soil management plan apply to future excavation activities. The soil management plan would describe protocols that would need to be followed should soil in the restricted area need to be accessed.

11.2.3 Long-Term Effectiveness

Alternative 3 scores higher for long-term effectiveness because the alternative involves the removal of PCS from the Truck Loading Rack Area, whereas Alternative 2 would manage the PCS in place. However, given that the PCS in the vadose zone is not mobile and does not pose a human health or ecological risk unless accessed, Alternative 2 would also provide long-term effectiveness via the implementation of a soil management plan. Soil management plans are well-established tools for managing potential risks of in-place PCS. Amending the soil management plan to the property deed provides a mechanism for its long-term effectiveness.

11.2.4 Management of Short-Term Risks

Alternative 2 has the lowest short-term risk because it is a non-invasive alternative. Alternative 3 would involve the use of heavy construction equipment to excavate soil in close proximity to the Truck Loading Rack, ASTs, and underground piping. The operation of the heavy construction equipment has the potential to damage facility infrastructure. Furthermore, off-site disposal involves the transportation of PCS in dump trucks on public roadways to an approved disposal facility, including risk due to the potential for a traffic accident or release of PCM during transport.

11.2.5 Implementability

Alternative 2 was rated the most implementable alternative because it is a non-invasive alternative. In addition to the logistics of implementing the excavation activities anticipated with Alternative 3, the Truck Loading Rack is a critical element of the Facility operations, and it is anticipated that the Facility would be required to shut-down during the soil excavation. In addition, the ASTs at the Truck Loading Rack would likely need to be emptied for the duration of the excavation activities of Alternative 3.

11.2.6 Consideration of Public Concern

Alternatives 2 and 3 scored the same of consideration of public concern. While Alternative 3 involves removing the PCS, it also requires the PCS be transported off-site for disposal, which will incur significant truck traffic and could cause short-term disruptions to adjacent businesses and residents. Alternative 2 leaves PCS to be managed in place but would not involve any disruptions to local businesses or residents.

11.2.7 Benefits Rankings, Estimated Costs, and Benefit/Cost Ratios

As shown in Table 10, Alternative 2 has a slightly higher score of 4 over the score of 2 for Alternative 3, based on the comparison of the alternatives with respect to protectiveness, permanence, long-term effectiveness, management of short term risks, implementability, and consideration of public concern. The comparison shows that while removal of PCS in Alternative 3 is likely the more permanent alternative, the removal includes significant short-term and implementability risks given the proximity of the excavation area to the truck loading rack, ASTs, and underground piping. Both alternatives would be equally protective; however, the significant disruption to the neighborhood due to increased truck traffic would likely concern the public more than the management of the PCS in place.

The benefit/cost ratio, which is a relative measure of cost effectiveness, is obtained by dividing each alternative's benefits ranking by its estimated cost.

Supplemental Remedial Investigation and Revised Feasibility Study Vancouver Annex Terminal Vancouver, Washington

The total present worth costs for the alternatives are summarized as follows:

Alternative 1: \$ 0

Alternative 2: \$34,455Alternative 3: \$584,670

Alternative 2 has the highest benefit/cost ratio at 11.6, compared to 0.34 for Alternative 3. The significant difference between the cost/benefit ratios for the two alternatives demonstrates that the added permanence of Alternative 3 resulting from the excavation of PCS is disproportionate to the costs associated with implementation of Alternative 3. Given that petroleum hydrocarbons present in the vadose zone at the Truck Loading Rack Area are not migrating nor leaching to groundwater, and the PCS is capped by 6 feet of clean overburden, there is minimal risk to human health or the environment to manage the PCS in place using a deed restriction and soil management plan. Based on this evaluation, the recommended alternative for the Truck Loading Rack Area is Alternative 2: Institutional Controls utilizing a deed restriction on the property to restrict access to the PCS and effectively manage this soil in place.

12.0 RECOMMENDED CLEANUP ACTION ALTERNATIVE

Based on the results of this FS, the recommended cleanup action alternative for the MW-5, MW-6, and VRU Areas is Alternative 5 – Groundwater Recirculation, and for the Truck Loading Rack Area is Institutional Control. These alternatives includes the following treatment technologies:

- Removal of readily accessible PCM in vadose zone soil in the MW-5 and MW-6 Areas;
- Hydraulic containment of the dissolved phase plumes in the MW-5 and MW-6 Areas;
- Reinjection/recirculation of treated/amended water inside the plumes to stimulate bioremediation;
- Injection of plume stabilizing liquid micron-scale adsorbents and biostimulants throughout the silt zone surrounding MW-11 within the VRU Area; and
- Institutional controls for soil in the Truck Loading Rack Area.

This cleanup action was selected for the following reasons.

- The cleanup action meets the threshold requirements: protecting human health and the
 environment, complying with cleanup standards and ARARs, and providing for compliance
 monitoring.
- The restoration time frame is equivalent to other cleanup actions evaluated.
- Based on comparative costs, to the extent practicable, the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances.
- The cleanup action addresses the potential for present and future releases or migration of hazardous substances.
- Leaving contaminants on site during the restoration time frame does not pose an unacceptable threat to human health or the environment based on current exposure pathways.
- There is evidence that the indigenous microorganisms are naturally degrading residual petroleum hydrocarbons in soil and groundwater and can be enhanced following the removal of highly concentrated source areas.
- Appropriate monitoring requirements will be implemented to ensure that the natural attenuation process is taking place and that human health and the environment are protected.

The final design of the cleanup action will be determined at the time of development of the cleanup action plan and will be based on the conditions present at the time of design.

13.0 REFERENCES

AMEC, 2002a. Phase II Environmental Site Assessment, Cenex Harvest State Cooperatives. May 2002.

AMEC, 2002b. Subsurface Investigation and Soil Removal Report, Cenex Harvest State Cooperatives.

December 2002.

Apex Companies, LLC (Apex), 2015a. *Groundwater Monitoring Results – December 2014.* February 6, 2015.

Apex, 2015b. Groundwater Results Report and Groundwater Investigation Work Plan. May 28, 2015.

Apex, 2015c. September 2015 Groundwater Monitoring Results. November 5, 2015.

Apex, 2017. Additional Investigation Summary Report and Pilot Test Work Plan. August 2, 2017.

Ash Creek Associates (Ash Creek), 2007. *Evaluation of Migration Potential Due to Proposed Clark Public Utilities Fruit Valley Well Field.* April 10, 2007.

Ash Creek, 2008a. Results of Direct-Push Groundwater Assessment. January 28, 2008.

Ash Creek, 2008b. Groundwater Monitoring Report - Quarterly Monitoring 2007. January 28, 2008.

Ash Creek, 2009. Remedial Investigation Work Plan. October 2009.

Ash Creek, 2010. Remedial Investigation/Risk Assessment Report. December 29, 2010.

Ash Creek, 2012. *Draft Feasibility Study*. July 12, 2012.

Cascadia Associates, LLC (Cascadia), 2019a. Pilot Study Results Report. January 17, 2019.

Cascadia, 2019b. Additional Investigation Results Report. July 1, 2019.

Cascadia, 2020. 2019 Groundwater Monitoring Report. February 24, 2020.

Newell, C.J., H.S. Rifai, J.T. Wilson, J.A. Connor, J.A. Aziz, and M.P. Suarez, 2002. *Calculations and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies, EPA/540/S-02/500.*November 2002.

Pacific Groundwater Group (PGG), 2001. *Clark Public Utilities Lakeshore Wellfield Exploration and Testing Program.* February 2001.

PGG, 2003. Work Plan for Drilling and Testing Test Well TW-7, Clark Public Utilities Fruit Valley Test Well Site. April 2003.

PGG, 2009. Hydrogeologic Evaluation for Clark Public Utilities South Lake Wellfield, SGA Production Wells PW-2 and PW-3. July 2009.

Prather, Steve. Water Quality Manager, Clark Public Utilities. Email correspondence with Ashleigh Fines of Ash Creek Associates on June 11, 2012.

SECOR, 2003. Results of Phase II Environmental Site Assessment. June 6, 2003.

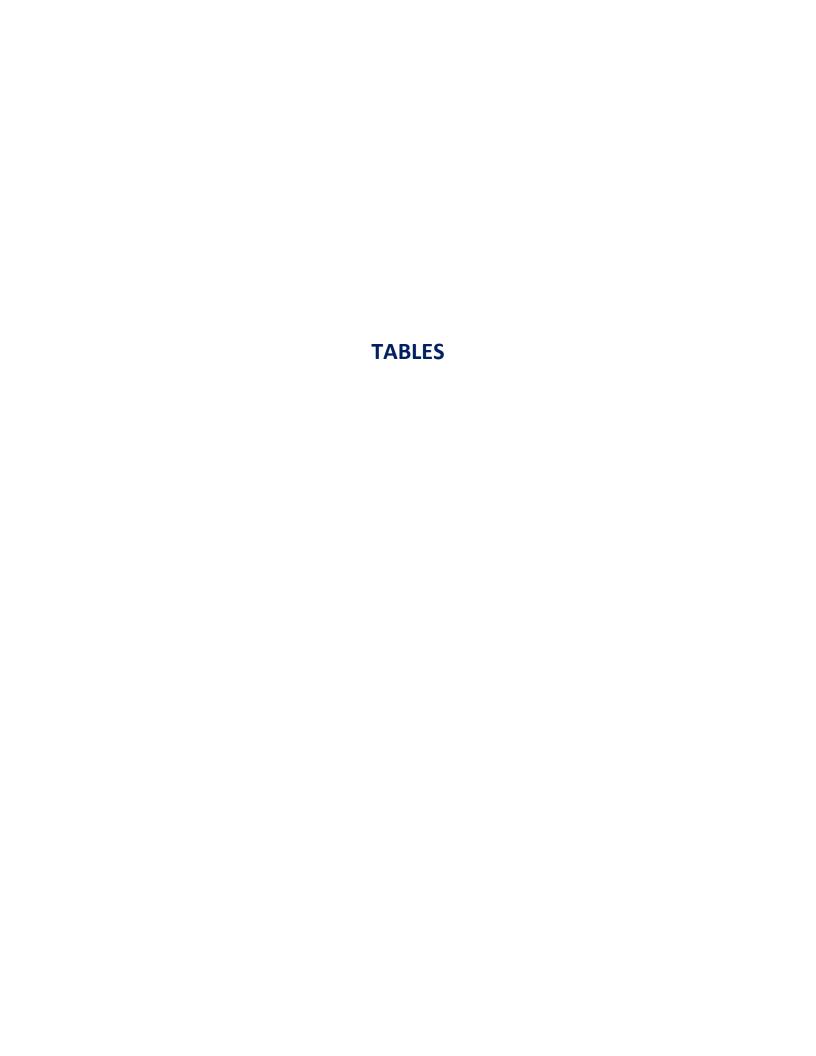


Table 1
Depth to Groundwater and Groundwater Elevations
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	05/14/2002	NS			16.00		NS
	05/25/2007	26.66			14.92		11.74
	08/24/2007	26.66			18.67		7.99
	11/26/2007	26.66			17.91		8.75
	02/27/2008	26.66			16.92		9.74
	03/30/2010	26.66			17.09		9.57
	09/01/2010	26.66			19.19		7.47
	12/16/2014	26.66			16.19		10.47
	03/25/2015	26.66	145 245		15.25		11.41
MW-1	06/24/2015	26.66	14.5 - 24.5		18.43		8.23
	09/15/2015	26.66			19.05		7.61
	11/30/2017	26.72			16.16		10.56
	02/28/2018	26.72			15.07		11.65
	05/29/2018	26.72			8.43		18.29
	08/30/2018	26.72			18.37		8.35
	02/18/2019	26.72			16.51		10.21
	05/20/2019	26.72			13.22		13.50
	08/28/2019	26.72			19.04		7.68
	11/18/2019	26.72			18.64		8.08
	05/14/2002	NS			27.46		NS
	05/25/2007	38.21			26.46		11.75
	08/24/2007	38.21			30.17		8.04
	11/26/2007	38.21			29.42		8.79
	02/27/2008	38.21			28.50		9.71
	03/30/2010	38.21			28.66		9.55
	09/01/2010	38.21			30.74		7.47
	12/16/2014	38.21			27.77		10.44
	03/25/2015	38.21	20 - 35		26.79		11.42
MW-2	06/24/2015	38.21	20 - 33		30.05		8.16
	09/15/2015	38.21			30.65		7.56
	11/30/2017	38.27			27.66		10.61
	02/28/2018	38.27			26.70		11.57
	05/29/2018	38.27			19.96		18.31
	08/30/2018	38.27			29.94		8.33
	02/18/2019	38.27			28.04		10.23
	05/20/2019	38.27			24.73		13.54
	08/28/2019	38.27			30.63		7.64
	11/18/2019	38.27			30.16		8.11

Table 1
Depth to Groundwater and Groundwater Elevations
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

		Top of Casing			Depth to		Groundwater
Well	Date of	Elevation	Screened Interval	Depth To SPH	Groundwater	SPH Thickness	Elevation
Number	Measurement	(feet above MSL)	(feet bgs)	(feet)	(feet)	(feet)	(feet)
	05/14/2002	NS			28.15		NS
	05/25/2007	39.11			27.17		11.94
	08/24/2007	39.11			31.04		8.07
	11/06/2007	39.11			30.36		8.75
	02/27/2008	39.11			28.71		10.40
	03/30/2010	39.11			29.55		9.56
	09/01/2010	39.11			31.65		7.46
	12/16/2014	39.11			28.54		10.57
	03/25/2015	39.11	245 245		27.72		11.39
MW-3	06/24/2015	39.11	24.5 - 34.5		30.85		8.26
	09/15/2015	39.11			31.52		7.59
	11/30/2017	39.17			28.61		10.56
	02/28/2018	39.17			27.18		11.99
	05/29/2018	39.17			20.91		18.26
	08/30/2018	39.17			30.80		8.37
	02/18/2019	39.17			28.94		10.23
	05/20/2019	39.17			26.03		13.14
	08/28/2019	39.17			31.51		7.66
	11/18/2019	39.17			31.06		8.11
	05/14/2002	NS			29.40		NS
	05/25/2007	40.17			28.35		11.82
	08/24/2007	40.17			32.12		8.05
	11/06/2007	40.17			31.40		8.77
	02/27/2008	40.17			30.40		9.77
	03/30/2010	40.17			30.77		9.40
	09/01/2010	40.17			32.62		7.55
	12/16/2014	40.17			29.63		10.54
	03/25/2015	40.17			28.76		11.41
MW-4	06/24/2015	40.17	20 - 35		31.92		8.25
IVI VV -4	09/15/2015	40.17			32.61		7.56
	11/30/2017	40.17			29.59		10.64
	02/28/2018	40.23			28.60		11.63
	05/29/2018	40.23			21.88		18.35
	08/30/2018	40.23			31.86		8.37
	08/30/2018	40.23			30.04		10.19
	05/20/2019	40.23			26.74		13.49
	08/28/2019 11/18/2019	40.23			32.59		7.64 9.14
		40.23			32.09		8.14
	12/16/2014	27.03			16.60		10.43
	03/25/2015	27.03			15.37		11.66
	06/24/2015	27.03			18.89		8.14
	09/15/2015	27.03			19.35		7.68
	10/23/2017	27.03			17.82		9.21
	11/30/2017	27.03	10 - 25		16.39		10.64
MW-5	02/28/2018	27.03			15.41		11.62
	05/29/2018	27.03			8.68		18.35
	08/30/2018	27.03			18.55		8.48
	02/18/2019	27.03			16.70		10.33
	05/20/2019	27.03			13.19		13.84
	08/28/2019	27.03			19.31		7.72
	11/18/2019	27.03			18.92		8.11

Table 1
Depth to Groundwater and Groundwater Elevations
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Well	Date of	Top of Casing Elevation	Screened Interval	Depth To SPH	Depth to Groundwater	SPH Thickness	Groundwater Elevation
Number	Measurement	(feet above MSL)	(feet bgs)	(feet)	(feet)	(feet)	(feet)
	10/24/2017	26.71			17.50		9.21
	11/30/2017	26.71			16.21		10.50
	02/28/2018	26.71			15.20		11.51
	05/29/2018	26.71	35 - 45		8.37		18.34
MW-5D	08/30/2018	26.71	33 43		18.51		8.20
	02/18/2019	26.71			16.43		10.28
	05/20/2019	26.71			12.72		13.99
	08/28/2019	26.71			19.01		7.70
	11/18/2019	26.71			18.62		8.09
	12/16/2014	27.33			16.93		10.40
	03/25/2015	27.33			15.73		11.60
	06/24/2015	27.33			19.34		7.99
	09/15/2015	27.33			19.70		7.63
	10/24/2017	27.33			18.12		9.21
	11/30/2017	27.33	40.05		16.71		10.62
MW-6	02/28/2018	27.33	10 - 25		15.77		11.56
	05/29/2018	27.33			9.03		18.30
	08/30/2018	27.33			18.99		8.34
	02/18/2019	27.33			16.99		10.34
	05/20/2019	27.33			13.56		13.77
	08/28/2019	27.33			19.66		7.67
	11/18/2019	27.33			19.31		8.02
	11/30/2017	21.67			11.12		10.55
	02/28/2018	21.67			10.19		11.48
	05/29/2018	21.67			3.4		18.27
	08/30/2018	21.67	10 - 25		13.26		8.41
MW-7	02/18/2019	21.67			11.41		10.26
	05/20/2019	21.67			7.73		13.94
	08/28/2019	21.67			13.99		7.68
	11/18/2019	21.67			13.76		7.91
	11/30/2017	27.68			16.91		10.77
	02/28/2017	27.68			16.01		11.67
	05/29/2018	27.68			9.31		18.37
	08/30/2018	27.68	10 - 25		19.22		8.46
MW-8	02/18/2019	27.68	10 - 25		17.28		10.40
	05/20/2019	27.68			13.93		13.75
	08/28/2019	27.68			19.94		7.74
	11/18/2019	27.68			19.57		8.11
	11/30/2017	27.87			17.36		10.51
	02/28/2018	27.87			16.35		11.52
	05/29/2018	27.87			9.53		18.34
	08/30/2018	27.87	35 - 45		19.41		8.46
MW-8D	02/18/2019	27.87	33 43		17.59		10.28
	05/20/2019	27.87			13.9		13.97
	08/28/2019	27.87		<u>-</u>	20.21		7.66
	11/18/2019	27.87			19.80		8.07
		27.87			15.00		5.07

Table 1
Depth to Groundwater and Groundwater Elevations
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	11/30/2017	29.39			18.78		10.61
	02/28/2018	29.39			17.79		11.60
	05/29/2018	29.39			11.09		18.30
	08/30/2018	29.39	10 - 25		21.04		8.35
MW-9	02/18/2019	29.39			19.13		10.26
	05/20/2019	29.39			14.63		14.76
	08/28/2019	29.39			21.74		7.65
	11/18/2019	29.39			21.28		8.11
	11/30/2017	28.71			18.16		10.55
	02/28/2018	28.71			17.19		11.52
	05/29/2018	28.71			10.38		18.33
	08/30/2018	28.71	10 - 25		20.3		8.41
MW-10	02/18/2019	28.71			18.42		10.29
	05/20/2019	28.71			14.76		13.95
	08/28/2019	28.71			21.02		7.69
	11/18/2019	28.71			20.67		8.04
	02/18/2019	NS			17.27		NS
	05/20/2019	NS	10 - 25		14.32		NS
MW-11	08/28/2019	NS	10 - 25		19.55		NS
	11/18/2019	NS		-	19.36		NS

Notes:

- 1. Survey elevations determined by Bluedot Group surveying, November 2017.
- 2. Reference elevation (i.e., top of casing) relative to NAVD 88, feet above mean sea level.
- 3. feet above MSL = feet above mean sea level.
- 4. NS = Not surveyed.
- 5. -- = SPH not measured/observed.
- 6. bgs = below ground surface.
- 7. SPH = separate phase hydrocarbon.

Table 2
Soil Analytical Results: TPH and VOCs

NuStar Terminals Operations Partnership L.P. - Annex Terminal

Vancouver, Washington

vancouver, was	_										Co	oncentration	ns in mg/kg (p	pm)							
Sample Location	Sample Date	Depth	ТРН-HCID	ТРНд	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Isopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether
Soil Borings												I					I		I		
GP-2	04/10-04/11/2002	10-12		ND	ND	ND															
GP-3	04/10-04/11/2002	10-12		ND	ND	ND															
GP-5	04/10-04/11/2002	17-19		ND	ND	ND															
GP-7	04/10-04/11/2002	14-16		ND	ND	ND															
GP-8	04/10-04/11/2002	6-8		ND	ND	ND															
GP-9	04/10-04/11/2002	16-18		ND	ND	ND															
GP-12	04/10-04/11/2002	22-24		ND	ND	ND															
GP14	05/09/2002	10-12	DET	3,230	19,700	<1,000															
GP16	05/09/2002	10-12	ND	, ND	ND	ND															
MW2	05/09/2002	25-26.5	ND	314	<25	<50															
GP26	06/26/2002	6-8		5,850			<2.5	9.74	91.3	825	<2.5	<2.5	<10	124	891	293	29.7	125			
GP27	06/26/2002	10-12		4.96			<0.0050	<0.0050	<0.0050	<0.1	<0.05	<0.05	<0.2	<0.5	<0.1	<0.05	<0.2	<0.05			
GP31	06/26/2002	22-24		<2.5	<25	<50	<0.0050	<0.0050	<0.0050	<0.0050											
GP32	06/26/2002	6.5-8		910	2,530	<50	<5	<5	<5	16											
GP32	06/26/2002	8-10		363	31,500	<2,500	<0.500	<0.500	7.2	33.9											
GP34	06/26/2002	6-8		728	13,600	<1,000	<0.500	<0.500	0.717	16.9											
GP35	06/26/2002	8-10		10.3	<25	<50	<0.0050	<0.0050	<0.0050	< 0.0050											
		6-10 4				\30 	<0.0030	<0.0030													
SB-2	04/17/2003	· ·	ND																		
SB-2	04/17/2003	22	ND																		
SB-4	04/17/2003	3	ND		<25	<50															
SB-4	04/17/2003	27	ND		<25	<50															
SB-5	04/17/2003	11	ND																		
SB-6	04/16/2003	3	ND																		
SB-6	04/16/2003	16	ND																		
SB-7	04/17/2003	12	ND																		
SB-8	04/17/2003	8	DET	1,020	7,890	<1,000	<0.500	< 0.500	<0.500	7.45				6.14	31	20.4	<1	3.22	3.54	<0.5	
SB-8	04/17/2003	16	DET	369	1,440	<50	<0.500	< 0.500	<0.500	<1,000				6.47	1.67	<0.5	1.13	0.837	<2.5	0.539	
SB-8R	09/30/2014	12		<5.0	<5.0																
SB-9	04/18/2003	12	DET	504	1,890	<50															
SB-9	04/18/2003	15	DET	168	1,210	<50															
SB-9R	09/30/2014	12		1,000	4,000																
SB-9R	09/30/2014	13.5			3,400																
SB-11	04/16/2003	2.5	ND		<25	<50															
SB-11	04/16/2003	14	ND		<25	<50															
SB-12	04/22/2003	3	ND ND																		
SB-12	04/18/2003	12	ND ND																		
SB-12	04/22/2003	2	ND ND																		
SB-13	04/22/2003	<u> </u>	ND ND																		
		ا دادهاد					0.02														
Washing	gton DOE MTCA Metho	oa A cieanup le	evei	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA

Table 2
Soil Analytical Results: TPH and VOCs

NuStar Terminals Operations Partnership L.P. - Annex Terminal

Vancouver, Washington

											C	oncentratio	ns in mg/kg (p	om)							
Sample Location	Sample Date	Depth	TPH-HCID	ТРНд	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Isopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether
Soil Borings (contin	nued)	<u> </u>																			ether
B-15	01/31/2019	4.5 - 5.5		<7.94	<28.2	<56.5	<0.0159	<0.0794	< 0.0397	<0.119			<0.0794	<0.159							
B-16-1	01/30/2019	3 - 4		<7.80	27.8 F-11	<52.2	<0.0156	<0.0780	<0.0390	<0.117			<0.0780	<0.156							
B-16-2	01/30/2019	5 - 6		1,900	483 F-20	<52.0	<0.0683	<0.342	<0.171	<0.513			<0.342	1.53							
B-17-1	01/31/2019	11.5 - 12.5		<9.32	<28.5	<56.9	<0.0186	< 0.0932	<0.0466	< 0.140			<0.0932	<0.186							
B-17-2	01/31/2019	15 - 16		38.7	323 F-13	<61.2	<0.0174	<0.0872	<0.0436	< 0.131			<0.0872	<0.174							
B-18-1	01/30/2019	6.5 - 7.5		5,100	12,800	<1100	0.295	<0.777	24.5	88.7			<0.777	60.7							
B-18-2	01/30/2019	14 - 15		10,800	7,460	<501	4.05	67.6	98	524			<3.07	111							
B-19	01/29/2019	10 - 11		<7.59	<27.8	<55.6	<0.0152	<0.0759	<0.0380	< 0.114			<0.0759	<0.152							
B-20-1	02/04/2019	10 - 11		302	89.4	<50.0	< 0.0139	<0.0696	<0.0348	< 0.104			< 0.0696	<.0.348							
B-20-2	02/04/2019	12 - 13		35.1	<27.4	<54.7	< 0.0157	< 0.0836	<0.0418	<0.125			< 0.0836	<0.157							
B-21-1	02/01/2019	13 - 14		<8.11	<27.1	<54.3	<0.0162	<0.0811	<0.0405	<0.122			<0.0811	<0.162							
B-21-2	02/01/2019	15.5 - 16.5		10.5	<25.0	<50.0	<0.0131	<0.0656	<0.0328	< 0.0983			< 0.0656	<0.131							
B-23	01/29/2019	6.5 - 7.5		<7.26	<25.0	<50.0	<0.0145	<0.0726	<0.0363	<0.109			<0.0726	<0.145							
B-24	01/28/2019	10.5 - 11.5		<7.19	<26.5	<53.1	<0.0144	< 0.0719	< 0.0359	<0.108			< 0.0719	<0.144							
B-25-1	01/28/2019	6 - 7		10.8	5,540	<534	< 0.0146	<0.0728	< 0.0364	< 0.109			<0.0728	<0.146							
B-25-2	01/28/2019	8.5 - 9.5		88.6	7,650	<518	<0.0148	< 0.0739	< 0.0369	< 0.111			< 0.0739	0.394							
B-26	01/28/2019	8 - 9		<8.16	<27.3	<54.6	< 0.0163	<0.0816	<0.0408	<0.122			<0.0816	< 0.163							
B-27	01/28/2019	7 - 8		1,910	6,620	<493	<0.0725	< 0.363	1.89	11.1			< 0.363	11.2							<10.5
B-27-2	01/28/2019	9 - 10		11,500	23,700	<1190	<0.597	<2.99	71.2	573			<2.99	168							
B-28	01/28/2019	8 - 9		<8.95	<30.2	<60.4	<0.0179	<0.0895	<0.0359	<0.134			<0.0895	<0.179							
B-29(6.5)	02/18/2020	6.5		<6.89	<25.6	<51.3	<0.0138	<0.0689	<0.0344	<0.103				<0.138							
B-29(11)	02/18/2020	11		<7.69	<27.1	<54.1	<0.0154	< 0.0769	<0.0384	<0.115				<0.154							
B-29(21)	02/18/2020	21		<7.04	<26.3	<52.5	<0.0134	<0.0703	<0.0352	<0.115				<0.141							
B-30(4.5)	02/18/2020	4.5		6,510	14,700	<1010	<0.246	<1.23	23.8	223				82.2							
B-30(4.5)	02/19/2020	16		2,930	2,630	<52	0.148	<0.708	18.6	51.9				26.3							
B-30(21.5)	02/19/2020	21.5		1,660	208	<51.5	0.148	<0.708	15.4	12.9				14.3							
B-31(6.5)	02/13/2020	6.5		<7.31	<25.8	<51.6	<0.0146	<0.0731	<0.0366	<0.11				<0.146							
B-31(0.5)	02/18/2020	14		3,940	6,170	<523	0.199	0.154	16.6	30.2				42.2							
B-31(21.5)	02/18/2020	21.5		19.0	54.1	<50	<0.0141	<0.0707	0.289	0.645				0.354							
		9		<7.23	<25	<50 <50		<0.0707	<0.0361												
B-32(9)	02/18/2020	_					<0.0145			<0.108				<0.145							
B-32(12)	02/18/2020	12		<7.9	<25.9	<51.7	<0.0158	<0.079	<0.0395	<0.119				<0.158							
B-32(21)	02/18/2020	21		<6.05	<25.5	<50.9	<0.0121	<0.0605	<0.0303	<0.0908				<0.121							
B-33(6.5)	02/18/2020	6.5		<7.49	<26.8	<53.7	<0.015	<0.0749	<0.0375	<0.112				<0.15							
B-33(18)	02/19/2020	18		437	261	<54.5	<0.0154	<0.0771	<0.0386	<0.116				0.41							
B-33(20)	02/19/2020	20		<7.61	<26.1	<52.2	<0.0152	<0.0761	<0.038	<0.114				<0.152							
B-34(6.5)	02/19/2020	6.5		<7.45	<25.1	<50.3	<0.0149	<0.0745	<0.0373	<0.112				<0.149							
B-34(18)	02/19/2020	18		28.7	47.8	<52.3	<0.0139	<0.0696	<0.0348	<0.104				<0.139							
B-34(20)	02/19/2020	20		<7.82	<27.3	<54.5	<0.0156	<0.0782	<0.0391	<0.117				<0.156							
B-35(6)	02/21/2020	6		<7.1	<26.7	<53.5	<0.0142	<0.071	<0.0355	<0.106				<0.142							
B-35(9)	02/21/2020	9		<8.17	<26.8	<53.6	<0.0163	<0.0817	<0.0409	<0.123				<0.163							
B-35(19)	02/21/2020	19		<7.51	<27.7	<55.4	<0.015	<0.0751	<0.0375	<0.113				<0.15							
B-36(6)	02/21/2020	6		<8.52	<27.5	<55	<0.017	<0.0852	<0.0426	<0.128				<0.17							
B-36(14)	02/21/2020	14		<7.54	<26	<52.1	<0.0151	<0.0754	<0.0377	<0.113				<0.151							
B-36(20)	02/21/2020	20		<6.91	<25.6	<51.2	<0.0138	<0.0691	<0.0345	< 0.104				<0.138							
B-37(6)	02/21/2020	6		<7.92	<27.1	<54.2	<0.0158	<0.0792	<0.0396	<0.119				<0.158							
B-37(13)	02/21/2020	13		2,170	2,300	<53.7	<0.163	< 0.817	0.598	2				4.3							
B-37(21)	02/21/2020	21		454	98.8	<55.2	<0.0223	<0.112	0.186	0.491				0.778							
B-38(6)	02/21/2020	6		<8.46	<26.8	<53.7															
B-38(13)	02/21/2020	13		940	3,900	<283															
B-38(21.5)	02/21/2020	21.5		208	122	<51.2															
B-39(6)	02/21/2020	6		<8.41	<27.2	<54.4															
B-39(13.5)	02/21/2020	13.5		<9.14	<26.5	<53.1															
B-39(21)	02/21/2020	21		<8	<26.2	<52.3															
, ,	gton DOE MTCA Meth	od A cleanup la	vol ^{12.}	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA

Table 2
Soil Analytical Results: TPH and VOCs

NuStar Terminals Operations Partnership L.P. - Annex Terminal

Vancouver, Washington

											C	oncentration	ns in mg/kg (p	pm)							
Sample Location	Sample Date	Depth	TPH-HCID	TPHg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Isopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether
Hand Augers																					
HA-1	04/17/2003	3	ND																		
HA-1	04/17/2003	6	ND																		
HA-2	04/18/2003	2	ND																		
HA-2	04/18/2003	5	ND																		
HA-3	04/17/2003	2					< 0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	< 0.1	<0.5	<0.1	
HA-3	04/17/2003	5.5					< 0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	< 0.1	<0.5	<0.1	
HA-4	04/18/2003	2	ND				<0.1														
HA-4	04/18/2003	5	ND																		
HA-5	04/18/2003	3	DET	3,320	4,780	<50	<5.0	10.5	48.5	500				76.4	341	109	<10	39.1	<25	6.6	
HA-5	04/18/2003	5	DET	2,290	10,700	<250	6.7	216	177	1,204				141	576	176	20.8	83.3	34	<5	
HA-6	04/18/2003	2	ND																		
HA-6	04/18/2003	5	ND																		
HA-7	04/14/2003	6	ND																		
HA-8	04/14/2003	6	ND																		
Soil Sample from A	dvancement of Tempo	orary Monitori	ng Wells		,	,	•		, ,			'					,		ŗ.	,	
PMW-5	04/16/2003	8	ND		31	<50															
PMW-5	04/16/2003	10	DET		146	<50															
PMW-6	04/16/2003	3	ND																		
PMW-6	04/16/2003	12	ND																		
PMW-7	04/16/2003	3	ND																		
PMW-7	04/16/2003	16	ND																		
Soil Samples from	Excavation Confirmati	on		•			_														
N. Wall	05/20/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
N. Wall	05/20/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	< 0.1	<0.1	<0.2	< 0.1	<0.5	<0.1	
E. Wall	05/21/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	< 0.1	<0.5	<0.1	
E. Wall	05/21/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
Washing	gton DOE MTCA Metho	od A cleanup le	evel ^{12.}	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA

Notes:

- 1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by NW-TPH-HCID
- 2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.
- 3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method with silica gel cleanup.
- 4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method with silica gel cleanup.

Note: Flags in the lab reports indicate that TPHg and TPHd results do not fall under the (respective) standard gasoline or diesel ranges, but typically represent an overlap of diesel and gasoline ranges. Specific notes for individual samples can be found in the attached laboratory anlaytical reports.

- 5. mg/kg (ppm) = Milligrams per kilogram (parts per million).
- 6. -- = Not analyzed or not available.
- 7. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 8. ND = Not detected; MRL not available.
- 9. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.
- ${\bf 10.} \ \ \textbf{Boldface} \ \ \text{values represent concentration that exceeds MTCA Method A cleanup level}.$
- 11. TPHg cleanup level dependent on presence of benzene in soil. Cleanup level = 30 mg/kg if benzene is present and 100 mg/kg if benzene is not present.
- 12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.
- 13. NA = Cleanup level not available.

Table 3
Groundwater Analytical Data - Grab Groundwater Sampling
NuStar Terminals Operations Partnership L.P. - Annex Terminal
Vancouver, Washington

												Concentration	ns in mg/L (ppm)								
Sample Location	Sample Date	Depth (feet bgs)	TPH-HCID	ТРН	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Isopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chloroform	Diethylene glycol monomethyl ether	Dissolved Lead
roundwater Samples		21-25		0.483	0.51	<0.28	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											T
B-1(1) B-1(2)	10/22/2015 10/22/2015	26-30		<0.250	0.31	0.38	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-1(3)	10/22/2015	36-40		0.687	0.35	<0.24	<0.00050	<0.00050	0.00053	<0.0010	<0.00050											
B-2(1)	10/23/2015	16-20		4.02	0.77	<0.30	0.0104	0.0155	1.31	3.18	<0.00050											
B-2(2)	10/23/2015	26-30		<0.250	0.2	<0.23	<0.00050	<0.00050	0.0057	0.0108	<0.00050											
B-2(3)	10/23/2015	36-40		2.37	3.5	<0.28	0.0022	0.0019	0.122	0.184 3.9	<0.00050											
B-3(1) B-3(2)	10/23/2015 10/23/2015	16-20 26-30		22.3 25.6	15.9/3.2 ¹⁶ 37.4	0.69 /<0.003 ¹⁶ 0.46	3.94 3.91	0.112 0.104	1.24 1.23	3.52	<0.010 <0.010											
B-4(1)	10/23/2015	16-20		10.3	6.2	<0.300	<0.0012	<0.0012	0.26	0.321	<0.0012											
B-4(2)	10/23/2015	26-30		9.88	2.1	<0.260	0.0012	0.001	0.255	0.214	<0.00050											
B-5(1)	10/27/2015	16-20		34.7	68.4	3.8	<0.025	<0.025	2.77	5.24	<0.025											
B-5(2)	10/27/2015	36-40		20.6	0.89	<0.30	<0.0031	0.0097	0.955	1.26	<0.0031					-						
B-6(1) B-6(2)	10/27/2015 10/27/2015	19-23 51-55		48.6 < 0.250	117/67.7 16 0.35	0.77/0.62 ¹⁶ 0.31	<0.0025 <0.00050	0.005 <0.00050	0.0743 <0.00050	0.0245 <0.0010	<0.0025 <0.00050											
B-6(3)	10/27/2015	61-65		<0.250	0.35	<0.30	<0.00050	<0.00050	<0.00050	<0.0010	0.0025											
B-7 (1)	10/28/2015	21-25		<0.250	<0.170	<0.260	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-7(2)	10/28/2015	26-30		<0.250	<0.190	<0.280	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-8(1)	10/28/2015	16-20		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-8(2)	10/28/2015	21-25		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-9(1) B-9(2)	10/20/2015 10/29/2015	16-20 36-40		1.63 3.03	0.24 0.38	0.28 0.62	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.0010 <0.0010	<0.00050 0.0039											
B-9(3)	10/29/2015	46-50		1.55	0.56	<0.300	<0.00050	<0.00050	<0.00050	<0.0010	0.0048											
B-10(1)	10/29/2015	16-20		32.7	284	0.58	<0.0012	<0.0012	0.377	0.495	<0.0012											
B-10(2)	10/29/2015	36-40		0.421	2.2	0.37	<0.00050	<0.00050	0.0022	0.003	<0.00050											
B-11(1)	10/30/2015	21-25		19.2	46.7	0.92	<0.0025	<0.0025	0.455	0.701	<0.0025											
B-11(2)	10/30/2015	36-40		1.58	6.9	0.62	<0.00050	<0.00050	0.0112	0.0187	<0.00050											
B-11(3) B-12(1)	10/30/2015 10/30/2015	41-45 16-20		<0.250 0.265	0.28 <0.200	0.3 0.36	<0.00050 <0.00050	<0.00050 <0.00050	0.00052 <0.00050	<0.0010 <0.0010	<0.00050 <0.00050											
B-12(1)	10/30/2015	36-40		<0.250	0.29	<0.260	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-12(3)	10/30/2015	41-45		<0.250	<0.200	<0.300	<0.00050	<0.00050	<0.00050	<0.0010	0.001											
B-13 (1)	07/07/2016	15-20		<0.250	<0.18	<0.27	<0.00050	<0.00050	<0.00050	<0.0015												
B-13 (2)	07/07/2016	25-30		<0.250	<0.18	<0.27	<0.00050	<0.00050	<0.00050	<0.0015												
B-14 (1)	07/07/2016	15-20		<0.250 <0.250	<0.18	<0.27	<0.00050	<0.00050 <0.00050	<0.00050	<0.0015												
B-14 (2) B-17-40	07/07/2016 01/31/2019	25-30 40-45		0.187	<0.17 0.233 F-13	<0.26 <0.154	<0.00050 <0.0002	<0.00050	<0.00050 0.000816	<0.0015 <0.0015	<0.001		0.00261									
B-17-50	01/31/2019	50-55		0.741 Q-42	0.397 F-13	<0.162	<0.0002	<0.001	0.00508	0.00574	<0.001		0.011									
B-18-40	01/31/2019	40-45		<0.100	<0.0792	<0.158	<0.0002	<0.001	0.000981	0.00458	<0.001		<0.002									
B-18-50	01/31/2019	50-55		0.154	<0.0784	<0.157	<0.0002	0.00148	0.00194	0.00972	<0.001		0.0023									
B-19-15	01/29/2019	15-20		<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-19-30 B-19-40	01/29/2019 01/29/2019	30-35 40-45		<0.100 <0.100	<0.0784	<0.157 <0.154	<0.0002 <0.0002	<0.001 <0.001	<0.0005 <0.0005	<0.0015 <0.0015	<0.001 <0.001		<0.002 <0.002									
B-19-40 B-19-50	01/29/2019	50-55		<0.100	<0.0769 <0.0800	<0.154	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-20-50	02/04/2019	50-55		2.47	0.214 F-18	<0.167	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-20-60	02/04/2019	60-65		<0.100	<0.0800	<0.160	<0.0002	<0.001	<0.0005	<0.0015	<0.001		< 0.002									
B-21-50	02/01/2019	50-55		<0.100	<0.0784	<0.157	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-21-60	02/01/2019	60-65		<0.100	<0.0777	<0.155	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-22 B-27	01/29/2019 01/28/2019	20-25 30-35		18.8 0.161	0.500 L 0.109 F-18	<0.490 <0.160	0.017 <0.0002	0.018 <0.001	2.2 0.00119	2.5 0.00858	<0.0025 <0.001		<0.010 <0.002								<0.0187	
B-27 GW	02/18/2020	14-19		<0.1	<0.109 F-18 <0.0748	<0.150	<0.0002	<0.001	<0.00119	< 0.00858	<0.001		<0.002								<0.0187	
B-30 GW	02/19/2020	14-19		24.8	2.81	<0.15	0.0378	<0.05	0.721	1.63			0.475									
B-31 GW	02/18/2020	14-19		47	10.3	<1.5	0.0503	0.0578	1.02	2.88			1.04									
B-32 GW	02/18/2020	14-19		<0.1	0.11	<0.158	<0.0002	<0.001	<0.0005	<0.0015			<0.002									
B-33 GW	02/19/2020	14-19		2.4	1.11	<0.151	<0.0002	<0.001	0.00167	<0.0015			0.0122									
B-34 GW B-35 GW	02/19/2020 02/21/2020	14-19 6-10		<0.1 <0.1	0.31 <0.0825	<0.15 <0.165	<0.0002 <0.0002	<0.001 <0.001	<0.0005 <0.0005	<0.0015 <0.0015			<0.002 <0.002									
B-35 GW B-36 GW Shallow	02/21/2020	6-10		<0.1	0.107	<0.158	<0.0002	<0.001	<0.0005	<0.0015	-		<0.002									
B-36 GW Deep	02/21/2020	16-20		<0.1	0.0927	<0.167	<0.0002	<0.001	<0.0005	<0.0015			<0.002									
B-37 GW	02/21/2020	14-19		4.96	0.831	<0.15	<0.002	<0.01	0.0133	0.0384			0.03									
B-38 GW	02/21/2020	14-19		53.3	8.65	<0.748	<0.002	0.0142	1.78	3.26			1.22			-		-				
Washington	n DOE MTCA Method	l Δ cleanun lev	el ^{12.}	0.800 ^{11.}	0.5	0.5	0.005	1	0.7	1	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA	0.015

Table 3 **Groundwater Analytical Data - Grab Groundwater Sampling** NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

												Concentration	s in mg/L (ppm)								
Sample Location	Sample Date	Depth (feet bgs)	ТРН-НСІD	ТРНg	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Isopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chloroform	Diethylene glycol monomethyl ether	Dissolved Lead
listorical Grab Grou	undwater Samples fron	n Soil Borings																				
GP-1	04/10-04/11/2002																					
GP-2	04/10-04/11/2002																					
GP-3	04/10-04/11/2002	24		25.1	ND		5.2	1.03	1.41	1.258			0.14	0.338	0.128		0.113					
GP-4	04/10-04/11/2002																					
GP-5	04/10-04/11/2002	22		ND	ND	ND																
GP-6	04/10-04/11/2002																					
GP-7	04/10-04/11/2002	24		60.2	ND		3.97	16.2	2.17	9.69			0.212	0.914	0.228		0.113					
GP-8	04/10-04/11/2002	23					15	32.9	4.51	19.57			0.462	2.11	0.55		0.268					
GP-9	04/10-04/11/2002	24		0.536			ND	ND	0.00135	0.01153			0.0782	0.0102	0.0114		0.0031	0.0017				
GP-10	04/10-04/11/2002	23		159	ND		4.44	28.1	5.09	23.07			0.476	2.79	0.728		0.358					
GP-11	04/10-04/11/2002	32					14.2	48.3	8.25	36.6			1.91	6.4	1.76		0.835					
GP-12	04/11/2002	32					0.698	1.64	0.363	0.999				0.11	0.0318		0.0244					
GP-13	05/09-05/10/2002						<0.0005	<0.0005	<0.0005	< 0.001												
GP-14	05/09/2002						< 0.001	< 0.001	< 0.001	0.00518	< 0.001		< 0.002	0.00219	< 0.001	<0.002	< 0.001	< 0.005	< 0.001	< 0.001		
GP-15	05/09-05/10/2002						<0.0005	<0.0005	0.0019	0.0186												
GP-16	05/09/2002						< 0.0005	< 0.0005	0.00515	0.0522												
GP-17	05/09-05/10/2002						0.0243	0.00056	0.00186	0.0146												
GP-18	05/09-05/10/2002						0.00064	0.00053	0.00051	0.00411												
GP-19	05/09/2002	34					<0.0005	<0.0005	<0.0005	< 0.001												
GP-20	05/09/2002	34					< 0.0005	< 0.0005	<0.0005	< 0.001												
GP-21	05/10/2002	34					<0.0005	<0.0005	<0.0005	< 0.001												
GP-22	05/10/2002	34					5.81	29.2	6.31	28.6												
GP-23	05/10/2002	34					0.00544	0.101	0.0667	0.302												
GP-24	05/10/2002	24					0.00094	0.0144	0.00846	0.0424												
GP-25	05/10/2002	24					0.00062	0.00882	0.00398	0.0193												
GP-28	06/26/2002	26					<0.0005	< 0.0005	<0.0005	<0.001												
GP-29	06/26/2002	50					0.538	6.14	1.55	7.14												
GP-30	06/26/2002	26					<0.0005	0.000626	0.000507	<0.001												
SB-1	04/17/2003	36	ND																			
SB-2	04/17/2003		ND																			
SB-3	04/18/2003																					
SB-4	04/17/2003		ND		<0.526	<1.05																
SB-5	04/17/2003		ND																			
SB-6	04/18/2003	24	ND																			
SB-7	04/17/2003		ND																			
SB-8	04/17/2003		DET ^{7.}		20.9	<1.17																
SB-8R	09/30/2014		DE 1	45	9.8												-					
SB-9	04/18/2003		DET ^{7.}		66.2	<1.05																
SB-9R	09/30/2014		DE 1	26	3.6	<1.03																
SB-10	04/18/2003		ND		3.0																	
SB-10 SB-11	04/16/2003		ND		<0.500	<1.00																
SB-11 SB-12	04/18/2003		ND ND																			
SB-12 SB-18	04/18/2003		ND 																			
GP-1	06/11/2007	70-72					<0.001	<0.001	<0.001	<0.002	0.0137	<0.001	<0.002	<0.001	<0.001	<0.002	<0.001					
GP-2	06/11/2007	64-66					<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.002	<0.001	<0.001	<0.002	<0.001					
DP-1 GRAB	03/30/2010	60.7-64.7					<0.0005	<0.0005	<0.0005	<0.0015	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.00100
Washingto	on DOE MTCA Method	A cleanup lev	rel ^{12.}	0.800 ^{11.}	0.5	0.5	0.005	1	0.7	1	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA	0.015
lease refer to notes	s at end of table.																					

Table 3
Groundwater Analytical Data - Grab Groundwater Sampling
NuStar Terminals Operations Partnership L.P. - Annex Terminal
Vancouver, Washington

												Concentration	s in mg/L (ppm	1)								
Sample Location	Sample Date	Depth (feet bgs)	TPH-HCID	ТРН	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Isopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chiorotorm	Diethylene glycol monomethyl ether	Dissolved Lead
Groundwater Sample	es from Temporary M	onitoring Well	s																			
PMW-5	04/16/2003	10-20	DET ^{7.}		1.88	< 0.943																
PMW-6	04/16/2003	5-20	ND																			
PMW-7	04/16/2003	9-24	ND																			
Groundwater Sample	e from Irrigation Well																					
IRRIG WELL	04/17/2003						<0.001	<0.001	<0.001	<0.002	<0.001		<0.002	<0.001	<0.001	<0.002	<0.001	<0.005	<0.001	<0.001		
Washingto	on DOE MTCA Method	A cleanup lev	el ^{12.}	0.80011.	0.5	0.5	0.005	1	0.7	1	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA	0.015

Notes:

- 1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by method NWTPH-HCID.
- 2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.
- 3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method. September 2014 samples were analyzed using silica gel cleanup method.
- 4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method.

Note: Flags in the lab reports indicate that TPHg and TPHd results do not fall under the (respective) standard gasoline or diesel ranges, but typically represent an overlap of diesel and gasoline ranges (i.e., F-13, F-18, L). Specific notes for individual samples can be found in the attached laboratory analytical reports and quality review summary report.

- 5. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analysis per EPA Method 8260B.
- 6. Volatile organic compounds (VOCs) analysis per EPA Method 8260B.
- 7. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.
- 8. ND = Not detected; method reporting limit (MRL) not available.
- 9. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 10. mg/L (ppm) = Milligrams per liter (parts per million).
- 11. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.
- 12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.
- 13. **Boldface** values represent concentration that exceeds MTCA Method A cleanup level.
- 14. NA = Cleanup level not available.
- 15. The screened intervals for the October 2015 samples are shown. Sample intake was generally from the centerpoint of each interval see boring logs for more detail.
- 16. For TPHd and TPHo, the first value represents with silica gel cleanup and the second without (i.e., 15.9/3.2).
- 17. DGME = Diethylene glycol monomethyl ether
- 18. L = The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.

Table 4
Groundwater Analytical Data - Monitoring Well Sampling
NuStar Terminals Operations Partnership, L.P. – Annex Terminal
Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)	Naphthalene (mg/L)
	05/14/2002	<0.080	0.455 ^{5.}	<0.500	<0.0005	<0.0005	<0.0005	<0.001		
	05/19/2003				<0.001	<0.001	<0.001	<0.002		
	05/25/2007	<0.080	<0.238	< 0.476	<0.0002	<0.0005	<0.0005	<0.001		
	08/24/2007	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006		
	11/26/2007	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006		
	02/27/2008	<0.080	<0.294	<0.588	<0.0005	<0.0005	<0.0005	<0.001		
	03/31/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
	09/01/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
MW-1	12/16/2014	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005		
	03/25/2015	<0.250	<0.046	<0.093	<0.0005	<0.0005	<0.0005	<0.001		
	06/24/2015	<0.250	<0.100	<0.250	<0.0005	<0.0005	<0.0005	<0.001		
	09/15/2015	<0.250	<0.130	<0.340	<0.0005	<0.0005	0.0015	0.0022		
	02/19/2019	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.00015	<0.001	
	05/20/2019	<0.05	< 0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/29/2019	<0.05	< 0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/19/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	05/14/2002	41.4	<0.250	<0.500	4.35	2.68	1.84	8.72		
	05/14/2002	41.4	<0.250	<0.500	4.35 0.534	0.00975	0.194	0.876		
		0.420								
	05/25/2007	0.439	<0.238	<0.476	0.071	0.00114	0.0361	0.0453		
	08/24/2007	0.102	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006		
	11/26/2007	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006		
	02/27/2008	0.0817	<0.294	<0.588	0.005	<0.0005	<0.0005	<0.001		
	03/31/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
MW-2	09/01/2010	<0.250	<0.250	<0.500	0.0016	<0.0005	<0.0005	<0.0015		
	12/16/2014	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005		
	03/25/2015	<0.250	<0.046	<0.091	<0.0005	<0.0005	<0.0005	<0.001		
	06/24/2015	<0.250	<0.100	<0.250	<0.0005	<0.0005	<0.0005	<0.001		
	09/15/2015	<0.250	0.17 D	0.37	<0.0005	<0.0005	<0.0005	<0.001		
	02/19/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	0.00121	
	05/20/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	0.0031	
	08/29/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	0.00069	<0.00075	0.00125	<0.002
	11/19/2019	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	05/14/2002	4.5	<0.250	<0.500	0.0419	0.0096	0.293	0.521		
	05/19/2003				0.0908	0.0097	0.338	0.5382		
	05/25/2007	0.361	<0.238	<0.476	<0.0005	<0.0005	0.0132	0.0145		
	08/24/2007	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006		
	11/26/2007	<0.080	<0.236	<0.472	0.0011	<0.002	0.0066	<0.006		
N/N/ 2	02/27/2008	2.14	0.387 ^{6.}	<0.500	<0.0005	<0.0005	0.17	0.17		
MW-3	2/27/2008 DUP	1.85	0.342	<0.485	0.0011	<0.0005	0.19	0.2		
	03/31/2010	2.10	<0.250	<0.500	<0.0005	<0.0005	0.018	0.021		
	3/31/2010 DUP	1.90	<0.250	<0.500	<0.0015	<0.0015	0.018	0.020		
	09/01/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
	9/1/2010 DUP	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
	12/16/2014	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005		
Washington	DOE MTCA eanup Level	0.8	0.5	0.5	0.005	1	0.7	1	0.02	0.16

Table 4
Groundwater Analytical Data - Monitoring Well Sampling
NuStar Terminals Operations Partnership, L.P. – Annex Terminal
Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)	Naphthalene (mg/L)
	03/25/2015	<0.418	<0.046	<0.092	<0.0005	<0.0005	<0.0005	<0.001		
	06/24/2015	<0.250	0.120	<0.026	<0.0005	<0.0005	<0.0005	<0.001		
	09/15/2015	<0.250	0.140	<0.250	<0.0008	<0.0008	<0.0008	<0.001		
MW-3	02/18/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	<0.001	
	05/20/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/29/2019									
	11/19/2019	0.114	< 0.0769	<0.154	<0.0002	<0.001	0.00661	0.0113	<0.001	<0.002
	05/14/2002	<0.080	0.358 ^{5.}	<0.500	<0.0005	<0.0005	<0.0005	<0.001		
	05/19/2003				<0.001	<0.001	<0.001	<0.002		
	05/25/2007	<0.080	<0.238	<0.476	<0.0002	<0.0005	<0.0005	< 0.001		
	08/24/2007	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006		
	11/26/2007	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006		
	02/27/2008	<0.080	<0.248	<0.495	<0.0005	<0.0005	<0.0005	< 0.001		
	03/31/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
	09/01/2010	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015		
MW-4	12/16/2014	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005		
	03/25/2015	<0.250	0.074	<0.091	<0.0005	<0.0005	<0.0005	<0.001		
	06/24/2015	<0.250	<0.099	<0.250	<0.0005	<0.0005	<0.0005	<0.001		
	09/15/2015	<0.250	<0.130	<0.340	<0.0005	<0.0005	<0.0005	<0.001		
	02/18/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00150	<0.001	
	05/20/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/29/2019									
	11/19/2019	<0.100	<0.0784	<0.157	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	12/16/2014	15	0.350	<0.500	0.00070	0.00066	0.12	1.2		
	12/16/2014 DUP	15	<0.250	<0.500	0.00088	0.00081	0.18	1.3		
	03/25/2015	18.1	<0.045	<0.091	<0.00050	0.00061	0.218	1.45		
	3/25/2015 DUP	17.2	<0.046	<0.092	0.0005	0.00065	0.236	1.22		
	06/24/2015	15	0.33 D	<0.250	<0.0012	<0.0012	0.228	1.51		
	6/24/2015 DUP	16.8	0.560 D	<0.250	<0.0012	<0.0012	0.232	1.49		
	09/15/2015	17.3	0.82 D	<0.34	<0.00050	0.00060	0.289	1.92		
	07/11/2016	19.4	0.310	<0.29	<0.00084	0.00100	0.215	1.17		
	10/23/2017	7.93 J-	1.26	<0.25	<0.0010	0.00117	0.174	0.99		
	11/30/2017	11.3	1.63	<0.25	<0.0250	<0.0250	0.187	1.21		
MW-5	11/30/17 DUP	10.9	1.75	<0.25	<0.0010	0.00112	0.187	1.48		
	02/28/2018	9.86	1.77	<0.25	<0.0010	0.00115	0.145	0.877		
	05/29/2018	13.2	2.20	<0.25	<0.0010	0.00130	0.271	1.15		
	08/30/2018	18.6	0.819 F-18	<0.151	<0.00200	<0.0100	0.190	0.936		
	8/30/2018 DUP	20.8	0.631 F-18	<0.151	<0.00200	<0.0100	0.212	1.06		
	02/18/2019	29.2	1.06 F-18	<0.151	<0.00200	<0.0100	0.187	1.06	<0.010	
	05/21/2019	22	0.722	<0.0784	<0.002	<0.01	0.252	1.04	<0.010	
	08/28/2019	24.8	0.963	<0.0769	<0.002	<0.01	0.239	1.1	<0.01	2.07
	8/28/2019 DUP	21.7	0.879	<0.0769	<0.002	<0.01	0.179	0.836	<0.01	1.44
	11/18/2019	23.5	0.771	<0.152	<0.004	<0.02	0.257	1.19	<0.02	1.62
	11/18/2019 DUP	20.0	0.696	<0.152	<0.01	<0.05	0.284	1.46	<0.05	1.51
Machinatan	DOE MTCA	0.8		0.5						

Table 4
Groundwater Analytical Data - Monitoring Well Sampling
NuStar Terminals Operations Partnership, L.P. – Annex Terminal
Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)	Naphthalene (mg/L)
	10/24/2017	0.42	0.147 J	<0.25	<0.0010	<0.0010	0.00138	0.00296 J		
	11/30/2017	0.41	0.49	<0.25	<0.0010	<0.0010	<0.0010	<0.0030		
	02/28/2018	0.589	0.249	<0.25	<0.0010	<0.0010	0.00508	0.00204		
	05/29/2018	0.68	<0.38	<0.38	<0.0010	<0.0010	0.00220	<0.0030		
MW-5D	08/30/2018	0.673	<0.0755	<0.151	<0.000200	<0.00100	<0.00050	<0.00150		
	02/18/2019	0.165	<0.0748	<0.150	<0.000200	<0.00100	<0.00050	<0.00150	<0.001	
	05/21/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/28/2019	0.309	<0.0374	<0.0748	<0.0001	<0.0005	0.00078	<0.00075	<0.0005	<0.002
	11/18/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	12/16/2014	15	<0.250	<0.500	0.47	0.065	1.3	2.6		
	03/25/2015	13.7	0.047	<0.092	0.516	0.0756	1.40	2.26		
	06/24/2015	17.7	1.2 D	<0.250	0.423	0.0582	1.58	1.92		
	09/15/2015	15.1	0.54 D	<0.34	0.306	0.0672	1.23	1.92		
	9/15/2015 DUP	14	0.44 D	<0.35	0.328	0.0684	1.32	2.07		
	07/11/2016	15.5	0.23	<0.28	0.358	0.0616	1.63	1.82		
	10/24/2017	7.73	5.07	0.111 J	0.194	0.051	1.51	1.29		
	10/24/2017 DUP	4.19 J	8.96 QJ	1.19 QJ	0.153	0.046	1.18	1.04		
MW-6	11/30/2017	9.42	7.44	0.69	2.223	0.053	1.71	1.12		
	02/28/2018	7.72	3.57	0.152	0.256	0.0423	1.44	0.735		
	05/29/2018	1.5	9.30	0.570	0.23	0.0444	1.38	0.891		
	08/30/2018	20.1	1.24 F-18	<0.151	0.212	0.0452	1.59	1.15		
	02/18/2019	18.2	2.15 F-20	<0.151	0.249	0.0408	1.74	0.577	<0.010	
	05/20/2019	20	1.23	<0.0755	0.218	0.0426	1.86	0.937	<0.010	
	08/29/2019	16.8	1.64	<0.0755	0.177	0.0394	1.69	0.585	< 0.01	0.561
	11/19/2019	6.30	1.95	<0.150	0.0712	<0.02	0.709	0.127	<0.02	0.163
	07/11/2016	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015		
	02/19/2019	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.00015	<0.001	
MW-7	05/20/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
10100-7	08/28/2019	<0.05	<0.0388	<0.0777	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/18/2019	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	07/11/2016	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015		
	7/11/16 DUP	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015		
	02/18/2019	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	<0.001	
MW-8	05/21/2019	<0.05	<0.0374	<0.0748	<0.0001	< 0.0005	<0.0005	<0.00075	<0.0005	
	08/28/2019	<0.05	<0.0412	<0.0825	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/18/2019	<0.100	<0.0755	<0.151	<0.0001	<0.001	<0.00025	<0.0015	<0.001	<0.002
			<0.0755		<0.0002		<0.0005			
	02/18/2019	<0.100		<0.151		<0.001		<0.00015	<0.001	
MW-8D	05/21/2019	<0.05	<0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/28/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/18/2019	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
Washington Method A Cl	DOE MTCA leanup Level	0.8	0.5	0.5	0.005	1	0.7	1	0.02	0.16

Table 4
Groundwater Analytical Data - Monitoring Well Sampling
NuStar Terminals Operations Partnership, L.P. – Annex Terminal
Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)	Naphthalene (mg/L)
	07/11/2016	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015		
	02/18/2019	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.0015	<0.001	
MW-9	05/21/2019	<0.05	<0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/28/2019	<0.05	<0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/18/2019	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	07/11/2016	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015		
	02/19/2019	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.00015	<0.001	
MW-10	05/21/2019	<0.05	<0.0377	<0.0755	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	
	08/29/2019	<0.05	<0.0374	<0.0748	<0.0001	<0.0005	<0.00025	<0.00075	<0.0005	<0.002
	11/19/2019	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.0015	<0.001	<0.002
	02/19/2019	0.727	<0.0748	<0.150	0.00162	0.00176	0.083	0.0652	<0.001	
	05/21/2019	3.05	<0.0374	<0.0748	0.0643	0.00843	0.359	0.0355	<0.0005	
MW-11	08/29/2019	17.4	0.094	<0.0748	0.0038	0.24	1.18	2.52	<0.005	0.121
	11/19/2019	45.0	0.239	<0.151	0.0526	0.159	4.33	7.73	<0.02	0.414
Washington Method A Cl		0.8	0.5	0.5	0.005	1	0.7	1	0.02	0.16

Notes:

- 1. TPHg = Total petroleum hydrocarbons in gasoline carbon range by NW-TPHgx method.
- 2. TPHd = Total petroleum hydrocarbons in diesel carbon range by NW-TPHdx method with silica gel cleanup.
- 3. TPHho = Total petroleum hydrocarbons ion heavy oil carbon range NW-TPHdx method with silica gel cleanup.
- 4. **Bold** values represent concentration that exceeds MTCA Method A cleanup level.
- 5. Analysis completed without silica gel cleanup. Lab detected hydrocarbons with non-petroleum peaks or elution pattern that suggests the presence of biogenic interference.
- 6. Hydrocarbon pattern most closely resembles a blend of heavy gas-/light diesel-range components.
- 7. mg/L (ppm) = Milligrams per liter (parts per million).
- 8. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.
- 9. Washington DOE MTCA Method A cleanup level = Washington Department of Ecology Model Toxics Control Act Method A cleanup level.
- 10. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 11. bgs = below ground surface
- 12. -- = Sample not analyzed for constituent.

Quality Assurance/Quality Control Data Qualifiers

- J = Reported result is an estimated value.
- J- = Reported result is estimated and biased low.
- Q = Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.
- F-18 = Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.
- F-20 = Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
- D = Laboratory report noted discreet peaks that are not indicative of diesel. The laboratory chemist confirmed the peaks were from non-petroleum organic material.

Table 5
Initial Screening of Cleanup Technologies - MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

General Response Action	Remedial Technology	Effectiveness	Implementability	Reasonableness of Cost	Retained?	Reason for Retaining or Eliminating
No Action	None	Low	High	High	Yes	Does not meet remedial action objectives, but will be used as a baseline to compare other alternatives.
	Activity Restrictions (Deed Restrictions/CMMP)	Medium	High	High	Yes	No long-term reduction of contaminant concentrations. To be used in conjunction with cleanup actions to break potentially complete exposure pathways (e.g., direct contact by trench worker and preclude use of shallow groundwater beneath the Facility).
Institutional Controls	Monitoring	Low	High	Medium	Yes	Monitoring is not a treatment technology; however, groundwater quality monitoring is necessary to document current Site conditions and risks. Repeated sampling events will likely be needed to document progress of implemented remedial technology or contaminant migration. Costs will be dependent on the number of mobilizations and the frequency of monitoring.
	Access Restrictions	Low	High	High	No	This technology is not retained because the access to the Site is already controlled with fencing. Access restrictions are not treatment technologies and will not reduce contamination present.
Engineering Controls	Control of Building HVAC System, Vapor Barriers. Sub-Slab Depressurization or Sub-Floor Venting, Alternative Water Supply, Wellhead Treatment	High	Medium	Medium	No	No long-term reduction of contaminant concentrations. To be used in conjunction with cleanup actions to break potentially complete exposure pathways (e.g., vapor intrusion into buildings overlying subsurface contamination). The contamination is highly weathered and vapor intrusion concerns are not an issue. The Facility is serviced by municipal water. Shallow groundwater beneath the Site is not used for domestic purpose, nor does it appear to be hydrogeologically connected to the water bearing zones utilized by the CPU well field.
Petroleum Contaminated Soil						
Ex Situ Treatment Technologies					•	
	Excavation	High	Medium	Low	Yes	The existing infrastructure and operations limit the ability to safely excavate all of the petroleum-impacted soil. Limited petroleum impacts have been observed in the vadose zone, with most impacted areas being in the saturated zone from 12 to 22 feet bgs.
Removal and Disposal	On-Site Disposal	Low	Low	Medium	No	This technology is not retained because it does not remove this long-term source of groundwater contamination, and the placement of the soil onsite would reduce available secondary containment at the Site. Placement of impacted soil onsite would not be compatible with the Facility's industrial stormwater permit.
	Off-Site Disposal	High	High	Low	Yes	
Biological	Landfarming	Medium	Low	Low to Medium	No	This technology is not retained because the placement of the soil onsite for treatment would reduce available secondary containment at the Site.
In Situ Treatment Technologies					•	T
Physical	Soil Vapor Extraction (SVE)	Medium	Medium	Low	No	This technology was not retained because most of the contaminated soil is highly weathered, lacking a significant volatile fraction, and situated within the seasonal water table smear zone. Also, its effectiveness is expected to be severely reduced in the lower permeability soils beneath the Site.
	Low Temperature Thermal Desorption	Medium	Low	Low	No	Cost prohibitive. The technology is not compatible with facility operations due to underground infrastructure.
Biological	Enhanced Bioremediation (Bioaugmentation, Biostimulation)	Medium	Medium to High	Medium	Yes	Natural attenuation of petroleum-impacted soil has been documented at the Site. This natural process can be enhanced by introducing nutrients (biostimulation) and/or microorganisms (bioaugmentation) into the contaminated subsurface zone.

Please refer to notes on last page of table.

Table 5
Initial Screening of Cleanup Technologies - MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

General Response Action	Remedial Technology	Effectiveness	Implementability	Reasonableness of Cost	Retained?	Reason for Retaining or Eliminating
Petroleum Contaminated Groundwate	r					
Ex Situ Treatment Technologies						
Removal/Discharge or Disposal	Groundwater Extraction and <i>Ex Situ</i> Treatment	Medium	Medium	Low	Yes	Retained for hydraulic control. Extraction wells with submersible pumps to create hydraulic gradients that direct contaminant migration into the extraction well. While not efficient, it does reduce contaminant mass in groundwater. Ancillary benefit is that it lowers the water table, which may promote/enhance natural degradation. Aboveground treatment of water is required, with possibilities including oil/water separation, air-stripping, granular activated carbon before discharge to local publicly owned treatment works (POTW).
Kemoval, Discharge of Disposal	Dual Phase Extraction (DPE) with Ex Situ Treatment	Low	Medium	Low	NIO.	Not retained because its designed to remove free product and volatiles from the subsurface. The contamination at the Site is highly weathered and lacks a significant volatile fraction. Also, there's no evidence that free product exists beneath the Site. The DPE is not an efficient technology for providing hydraulic control. Secondary treatment of extracted vapor and groundwater will likely be required, such as including air-stripping or granular activated carbon prior to discharge.
Biological	Enhanced Bioremediation (Bioaugmentation, Biostimulation)	Medium	Medium	Medium	Yes	Natural attenuation of petroleum-impacted soil has been documented at the Site. This natural process can be enhanced by introducing nutrients (biostimulation) and/or microorganisms (bioaugmentation) into extracted groundwater prior to recirculation and/or off-site disposal.
Physical	Coalescing Plate Separator	High	Medium	Medium	Yes	Not a standalone treatment technology, but would be used to treat extracted groundwater prior to reinjection or discharge. Effective at removing petroleum separate phase hydrocarbons (SPH) from extracted groundwater stream. Removed SPH would be transported offsite for disposal. Additional treatment of extracted groundwater may be needed prior to re-injection or disposal.
,	Solids Separation	High	Medium	Medium	Yes	Not a stand alone treatment technology, but would be used treat extracted groundwater prior to reinjection or discharge. Effective at removing TSS from extracted groundwater stream. Removed TSS will be transported offsite for disposal. Additional treatment of extracted groundwater may be needed prior to re-injection or disposal.
Chemical Please refer to notes on last page of to	Activated Carbon	High	Medium	Low to Medium	Yes	Not a standalone treatment technology, but would be used to treat extracted groundwater or vapor prior to reinjection or discharge. Spent carbon would require off-site disposal or treatment to reactivate.

Please refer to notes on last page of table.

Table 5
Initial Screening of Cleanup Technologies - MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

General Response Action	Remedial Technology	Effectiveness	Implementability	Reasonableness of Cost	Retained?	Reason for Retaining or Eliminating
In Situ Treatment Technologies			-	-		
	Air Sparging	Low	Medium	Medium	No	Proven to be effective at reducing volatile concentrations in groundwater, but its effectiveness is reduced in lower permeability soils. Typically is used in conjunction with SVE. Site contamination is highly weathered and its volatile content low. Therefore, not appropriate for use at the Site.
Physical	Vertical Barrier	Low	Low	Low	No	Installation of vertical barriers (sheet piling, soil-bentonite slurry wall, grout, etc.) to prevent migration of groundwater contamination. Effective at preventing lateral migration. Requires keying into an underlying confining unit. Otherwise, cannot prevent downward migration. Site lacks suitable confining unit. Several more cost-effective technologies are available.
	Thermal Treatment (electrical resistive heating)	Medium	Low	Low	No	Cost prohibitive. The technology is not compatible with facility operations due to underground infrastructure.
	Monitored Natural Attenuation	Medium	High	High	Yes	The natural attenuation of petroleum hydrocarbons is well documented at the Site. However, it is not considered a stand alone treatment technology since some source areas are expected to require long restoration time frames.
Biological	Enhanced Bioremediation	medium	Medium	Low to Medium	Yes	This technology is retained because the delivery and effective distribution of electron acceptors, nutrients, and/or microbes that are acclimated to the contaminated groundwater can enhance in situ bioremediation. It radius of influence is expected to be relatively small in the tight fine grained soils beneath the Site.
	Micron-Scale Activated Carbon (PlumeStop, PetroFix)	Medium	Medium	Low to Medium	Yes	This technology has been retained because it should further reduce the migration of dissolved phase contaminants. Dissolved phase contaminants adsorb to the activated carbon, slowing migration of the contaminants. It appears that the liquid carbon can be injected into the subsurface more efficiently than other reagents (e.g., ORC, RegenOx).
Chemical	Oxidant Injection (e.g., Fenton's reagent, persulfate)	Low	Low	Low	No	Contaminants are treated chemically (oxidized) rather than reduced using biological processes. The delivery and effective distribution of oxidant and catalysts would be severely limited in the low permeability silt lenses present in the soil at the Site. Also, high natural organic content of soil may limit the effectiveness of this technology. The chemicals create a strong, exothermic reaction, would be difficult to control, and may be harmful to Site infrastructure.

Notes:

VRU = Vapor Recovery Unit

CPU = Clark Public Utilities

CMMP = Contaminated Media Management Plan

Ex Situ = above ground

In Situ = below ground

bgs = below ground surface

TSS = total suspended solids

ORC = Oxygen Release Compounds

Gray shading indicates that the technology has been eliminated from further consideration.

Table 6
Description of Cleanup Action Alternatives - MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Alternative	Cleanup Action Description	Unknowns	Comm	ents
Alternative	Cleanup Action Description	UIRTIOWIS	Advantages	Disadvantages
<u>Alternative 1</u> No Action	This alternative assumes that no actions are taken to treat, remove, or monitor contaminated soil and groundwater at the Site.	Future distribution of contaminants in soil and groundwater. Mobility of dissolved phase COCs in shallow groundwater. Risks posed by residual contamination (e.g., future contact by earth workers, migration to CPU wellfield). Site conditions (e.g., soil permeability, degree of heterogeneity, preferential pathways) affecting contaminant mobility, plume expansion, and rate of natural attenuation. Cleanup levels and regulatory enforcement action(s).	No cost.	Does not meet the minimum requirements of Washington Administrative Code (WAC) 173-340-360 "Selection of Cleanup Actions." Does not provide a mechanism for compliance monitoring and therefore cannot assess effectiveness, permanence, and reasonableness of the restoration time frame.
Alternative 2 MNA	This alternative consists of institutional controls (IC) and long-term groundwater quality monitoring. The application of IC provide notification regarding the presence of contaminated materials, regulate the disturbance/management of these materials, and prohibit the creation of preferential pathways for contaminant migration. The principal assumption of Alternative 2 is that reductions of COCs within the shallow water bearing zone (silt unit) will occur through natural processes such as biodegradation, diffusion, dispersion, hydrolysis, and sorption.	Same as Alternative 1 (No Action).	Highest benefit to cost ratio relative to other alternatives. Provides compliance monitoring through MNA.	Does not meet remedial threshold requirements. The alternative is not protective of human health or the environment and the alternative does not provide any additional reduction of existing risks at the Site or provide containment to prevent offsite migration for when the expanded CPU pumping of the PAA becomes operational.
<u>Alternative 3</u> Hydraulic Containment	In addition to the implementation of IC and MNA, this alternative is designed to hydraulically control and contain contaminated groundwater detected beneath the Site. Gradient control would be accomplished through the installation of nineteen 35-foot-deep extraction wells throughout the defined extent of TPH in shallow groundwater in beneath the MW-5, MW-6, and MW-11 Areas. The estimate of 19 extraction wells is based on an assumed radius of influence of 25 feet while pumping from a 4-inch-diameter well at 1 gpm. Using submersible pumps, extracted groundwater would be routed to a common treatment system consisting of a coalescing plate oil-water-separator followed by GAC treatment prior to discharge to the POTW. At a total system pumping rate of 19 gpm, the	Pumping tests would be needed to verify drawdown, radius of influence, flow rate, well depth, well locations, and the number of extraction wells needed to provide full hydraulic containment within each area of interest. During the pump test, an aboveground treatment system would be pilot tested to verify the treat train necessary to meet discharge criteria and to establish a maintenance schedule. During full-scale implementation, the following unknowns could have a significant impact on cleanup costs: (a) the amount and degree of maintenance required to keep the full-scale pump & treat system operational; (b) the need for deeper hydraulic containment; (c) the need for significant changes to the <i>ex situ</i> treatment processes and the discharge of treated water (e.g., on-site infiltration); (d) the restoration time frame; (e) changes to cleanup levels; and (f) regulatory enforcement action(s).	If the system is able to remain operational, this alternative is expected to meet the threshold requirements as it protects human health and environment by containing COCs in groundwater, removing dissolved phase contaminants, and improving MNA by lowering the water table.	Low benefit to cost ratio. The alternative does not remove contaminant mass present in vadose zone soil. The effectiveness of dissolve phase contaminant mass removal is expected to diminish relatively quickly if preferential pathways develop with system operation. Groundwater pump & treat systems typically require a significant amount of maintenance and are difficult to keep operational for sustained periods of time. Once operational, it could be difficult to obtain regulatory approval to discontinue hydraulic containment. The long restoration time frame means there that could be new or ongoing releases, further expansion of CPU wellfield, new COCs, and/or lowering of cleanup standards.
<u>Alternative 4</u> Plume Stabilization Enhanced Bioremediation	In addition to the implementation of IC and MNA, this alternative includes the direct injection of micron-scale activated carbon (plume stabilization) and biostimulants (enhanced bioremediation) throughout contaminated smear zones beneath the MW-5, MW-6, and VRU Areas. This alternative assumes 10 years of MNA.	Remedial design investigations would be needed to verify: (a) the lateral and vertical extent of PCM in select areas; and (b) the effectiveness of PetroFix injections on groundwater quality and enhanced bioremediation. Other unknowns include the remedy's impact on terminal operations and regulatory UIC approval of biostimulant injections (e.g., nitrate and sulfate electron acceptors).	The combination of an injectable form of activated carbon that can adsorb contaminants and contain them in a finite zone with electron acceptors that will initially degrade the contaminants via anaerobic pathways and promote syntrophic conditions that sustain degradation will expedite the natural attenuation process and protect downgradient receptors (CPU wellfield). Direct injections are less disruptive to facility operations and carry a lower implementation risk than removal of all accessible PCM.	The <i>in situ</i> stabilization of dissolved phase COCs using liquid activated carbon is a relatively new and untested remedial technology. Additional Site investigations and technology pilot studies are needed to confirm that plume stabilization and enhanced bioremediation will occur within residual source areas as required to meet remedial action objectives.
Alternative 5 Removal of Accessible Vadose Zone PCM Hydraulic Containment and Recirculation Enhanced Bioremediation	and MW-6 Areas, this alternative includes the on-site recirculation of treated/amended water. Gradient control would be accomplished through the installation of eighteen 35-foot-deep extraction wells throughout the defined extent of TPH in shallow groundwater. The estimate of 18 extraction wells is based on an assumed radius of influence of 25 feet while pumping from a 4-inch-diameter well at 1 gpm. Using submersible pumps, extracted groundwater would be routed to a common treatment system consisting of a coalescing plate oil-water-separator followed by GAC treatment to remove COCs. Following the removal of COCs, the extracted groundwater would be amended with biostimulants and discharged into the backfilled excavations for infiltration. The continuous recirculation of oxygen/nutrient-rich water through the COC-containing silt zones is designed to actively enhance the biodegradation of residual COCs in soil and groundwater. This alternative includes the direct injection of liquid micron-scale adsorbents and biostimulants (PetroFix) throughout the impacted silt zone surrounding MW-11 within the VRU Area. This alternative assumes 5 years of groundwater recirculation and 2 years of MNA.	Remedial design investigations would be needed to verify: (a) the lateral and vertical extent of PCM in select area; (b) temporary shoring requirements associated with 12-foot-deep excavations; (c) the radius of influence of extraction wells; (d) treatability of extracted groundwater; (e) the ability to infiltrate treated/amended water within the backfilled excavations; (f) the ability to stimulate biodegradation between water injection and groundwater extraction points; and (g) the ability to control plume migration. Other unknowns include the remedy's impact on terminal operations and regulatory approval of groundwater recirculation. As mentioned, pilot testing within both source areas would be needed to develop the final design of the recirculation system. During full-scale implementation, the following unknowns could have a significant impact on cleanup costs: (a) the amount and degree of maintenance required to keep recirculation system operational; (b) the potential mobilization of undetected free product; (c) the ability to maintain hydraulic containment; (d) the restoration time frame; and (e) the effectiveness of direct injections of adsorbents and biostimulants beneath the VRU Area to achieve cleanup levels.		Groundwater recirculation is expected to mobilize sorbed contamination and it may prove difficult to demonstrate hydraulic containment. Additional Site investigations and extensive technology pilot testing will be needed to demonstrate plume control.
Altornativo 6	In addition to the implementation of IC and MNA, this alternative includes the removal of accessible PCM beneath the MW-5 Area and MW-6/B-18 Areas (i.e., 22 feet bgs) and	(a) The amount of accessible PCM; (b) the quantity and quality of excavation water; (c) excavation wall stability and degree of shoring required to limit settlement and damage to	The alternative provides for the largest immediate reduction in PCM. Relative to the other alternatives, Alternative 6 is designed to meet MTCA Method A cleanup levels within the	Low benefit to cost ratio. Significant interruption to facility operations and likelihood of needing to relocate on-site infrastructure. Risk to damaging infrastructure during
Alternative 6 Removal of Accessible PCM Enhanced Bioremediation	backfill with hydrocarbon degradation stimulating amendments (e.g., ORC). The soil removal actions would require excavation shoring and dewatering. Following excavation, this alternative includes the direct injection of liquid micron-scale adsorbents and	surrounding structures; (d) type of excavation equipment required; (e) permit requirements; (f) the effectiveness of placing ORC at the limits of the excavation to stimulate biodegradation; and (g) restoration time frame.	The state of the s	excavation resulting in release of petroleum products.

MNA Monitored Natural Attenuation PCM Petroleum Containing Material (TPH > MTCA Method A) gpm gallons per minute bgs COCs below ground surface Contaminants of Concern POTW VRU publicly owned treatment works Vapor Recovery Unit ORC Oxygen Release Compounds CPU Clark Public Utilities PAA TPH Pleistocene Alluvial Aquifer total petroleum hydrocarbons GAC Granular Activated Carbon UIC underground injection control

Petroleum Contaminated Soil

Site groundwater flow is generally flat with a slight gradient to the southwest.

Treatment standards for the Site are protective of MTCA Method A Cleanup Levels.

Worker health and safety will be monitored, and a health and safety plan will be adopted for the Site and communicated to workers during cleanup implementation

Constituents of concern potentially include TPH, BTEX and PAHs.

No additional contaminant sources will be encountered during the implementation of remedial action at the Site. Soil disposal is permitted at Subtitle D landfill, as non-hazardous waste.

No ecological receptors will be exposed to COCs above applicable screening levels.

 $The final\ remedial\ approach\ will\ require\ the\ approval\ or\ oversight\ of\ the\ Washington\ Department\ of\ Ecology.$

No costs included for potential third party liability or natural resource damages.

Cost estimates based on time and materials cost using Cascadia Associates rates and markups.

PCS

Table 7
Comparative Analysis of Cleanup Alternatives- MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Evaluation Criteria	Alternative 1 No Action	Alternative 2 MNA	Alternative 3 Hydraulic Containment	Alternative 4 Plume Stabilization Enhanced Bioremediation	Alternative 5 Removal of Accessible Vadose Zone PCM Hydraulic Containment and Recirculation Enhanced Bioremediation	Alternative 6 Removal of Accessible PCM Enhanced Bioremediation
Protectiveness 5 = high protectiveness	No reduction of risks or improvement of overall environmental quality	2 Low/Medium	3 Medium	3 Medium	4 Medium/High	4 Medium/High
Permanence 5 = high permanence	1 Low/Medium	2 Low/Medium	3 Medium	3 Medium	4 Medium/High	4 Medium/High
Reduction of Toxicity	Low. Natural attenuation but no IC to limit exposure	Medium. IC to limit exposure. Petroleum hydrocarbons amenable to natural attenuation.	Medium. IC to limit exposure, GWE and MNA to slowly reduce source area concentrations.	Medium. Reduction in plume mobility and enhanced biodegradation if reagents can be effectively distributed throughout the residual source areas.	Medium/High. Removal and off-site disposal of accessible vadose zone PCS. The active recirculation of biostimulants through residual source areas is expected to enhance biodegradation of residual PCS faster than Alternative 4.	High. Removal and off-site disposal of accessible vadose and smear zone PCS. Placement of ORC in the final limits of the excavation may or may not enhance biodegradation.
Reduction of Mobility	Low. No hydraulic control/containment	Low. No hydraulic control/containment.	Medium. During operation, GWE would influence gradient and limit contaminant plume migration if occurring. May be difficult to keep GWE system continually operational over 28-year restoration time frame.	Medium/High. Closely spaced injections of liquid activated carbon should effectively limit plume migration if occurring.	Medium. GWE, treatment, and recirculation should limit plume migration. However, infiltration could lead to short-term contaminant spreading.	High. Larger source area removal is expected to further reduce plume migration if occurring. Smaller source area footprint and shorter restoration time frame.
Effectiveness Over The Long Term 5 = high effectiveness	1 Low	2 Low/Medium	4 Medium/High	3 Medium	4 Medium/High	5 High
Nature, Degree, and Certainties or Uncertainties of Alternative to be Successful	No source removal or monitoring of contaminant reduction and/or mobility.	No source removal or plume containment. Groundwater quality monitoring would inform need for active cleanup measures.	Anticipated high degree of effectiveness due to a well known technology; however, long restoration time frame reduces overall effectiveness.	Inherent, high degree of uncertainty associated with the volume and extent of residual PCS, effectiveness of PetroFix to reduce dissolved phase mobility and enhance bioremediation, risks/liability posed by residual contaminants, impact to Facility operations, restoration time frame.	Medium/High: Containment via reliable technology, but high degree of uncertainty associated with recirculation radius of influence, ability to establish and maintain hydraulic control, effectiveness of bioenhancement impact to Facility operations, system O&M, restoration time frame.	Some degree of uncertainty with permitting requirements, shore requirements, dewatering requirements, volume and extent of accessible PCS, impact on Facility operations.
Reliability	None	Low/Medium. IC are generally effective. Slow MNA in smear zone. Plume not contained.	High. Reliable technology.	Medium. Provided residual contamination is amenable to natural attenuation/biodegradation.	Medium. Provided recirculation influences gradient and PCS in tight soils are amenable to enhanced biodegradation.	High. Proven source area removal method provided the majority of PCS is accessible.
Magnitude of Residual Risk	Potential direct exposure to COCs in soil and groundwater at concentrations posing an unacceptable risk to human health.	Low/Medium. No source removal. Relies completely on MNA.	Low/Medium. Slow reduction in source area concentrations. Heavy reliance on plume containment.	Medium. Less than preceding alternatives because contaminants are contained in a finite zone with electron acceptors that will initially degrade via anaerobic pathways and promote syntrophic conditions that should sustain complete degradation.	Medium/High. Active implementation of enhanced bioremediation should reduce residual concentrations faster than the passive implementation used in Alternative 3.	High. Less contamination left in place, which reduces reliance on enhanced and/or natural biodegradation.
Effectiveness of Controls Required to Manage Treatment Residues	None	Low/Medium. Heavy reliance on institutional controls.	Medium/High. Hydraulic containment lessens dependence on institutional controls.	Medium/High. The combination of liquid activated carbon with biostimulants should be effective if the reagents can be evenly distributed throughout the source areas.	Medium/High. Faster reduction of contaminant mass reduces dependence on hydraulic containment. However, on-site infiltration may spread the plume vertically.	Medium/High. Further reduction of contaminant mass reduces dependence on bioremediation and MNA.

Please refer to notes on last page of table

Table 7
Comparative Analysis of Cleanup Alternatives- MW-5, MW-6, and VRU Areas
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Evaluation Criteria	Alternative 1 No Action	Alternative 2 MNA	Alternative 3 Hydraulic Containment	Alternative 4 Plume Stabilization Enhanced Bioremediation	Alternative 5 Removal of Accessible Vadose Zone PCM Hydraulic Containment and Recirculation Enhanced Bioremediation	Alternative 6 Removal of Accessible PCM Enhanced Bioremediation
Management of Short-Term Risks 5 = effective risk management	1 Low	2 Low/Medium	4 Medium/High	2 Low/Medium	3 Medium	1 Low/Medium
Implementation Risks	High risk and liability associated with No Action.	High risk and liability posed by long restoration time frame.	Medium/High: Some potetential risk due to installation of system in an active terminal.	Low/Medium. Injection contractor will be onsite for a long time increasing risk of damage to Facility infrastructure and activity. Depends on effective distribution of reagents of reagents throughout source areas.	Medium/High. More infrastructure needed than Alternative 3 therefore, there is more potential for damage to surrounding structures, worker safety, impact Facility operations.	Low/Medium. Potential damage to surrounding structures, worker safety, high cost/benefit ratio, may impact Facility operations.
Effectiveness of Risk Mitigation Measures	None	Medium. No evidence that groundwater contamination extends beyond the Facility, or that contaminant plumes are advancing.	Medium. Further demonstration that off-site plume migration is not occurring.	Medium. Further demonstration that off-site plume migration is not occurring.	Medium. Focused source removal and actively enhanced bioremediation will effectively mitigate toxicity of residual contamination. Infiltration of water through residual contamination could lead to short-term spreading of contamination that may not be contained by GWE.	Low/Medium. Shoring, larger source area removal.
Implementability 5 = high implementability	5 High	4 High/Medium	4 Medium/High	3 Medium	3 Medium	2 Low/Medium
Difficulties and Unknowns Associated with Implementation	Does not constitute a cleanup action.	Easy to implement.	High. Easy to Implement	Medium. Potential difficult permitting requirements, potential damage to infrastructure, impact on Facility operations, radius of influence, actual treatment and infiltration requirements, long-term treatment O&M.	Medium/High. Potential difficult permitting requirements, radius of influence, actual treatment and infiltration requirements, long-term treatment O&M.	Low. Difficult permitting requirements, shoring, excavation, disposal, potential damage to infrastructure, impact on Facility operations.
Ability to Monitor Effectiveness of Remedy	Does not constitute a cleanup action.	High	Medium	Medium	Medium	Medium
Consistency with State, Federal, and Local Requirements	None	Low	Medium	Medium	Medium	Medium
Approval of Other Agencies or Governmental Bodies	Low	Low	Medium	Medium	Medium	Medium
Availability of Equipment, Specialists, and Services	Does not constitute a cleanup action.	High	Medium	Medium	Low/Medium	Medium
Consideration of Public Concerns 5 = high degree of consideration	1 Low	2 Low/Medium	4 Medium/High	3 Medium	3 Medium	5 High

Please refer to notes on last page of table

Table 7
Comparative Analysis of Cleanup Alternatives- MW-5, MW-6, and VRU Areas NuStar Terminals Operations Partnership L.P. – Annex Terminal Vancouver, Washington

Evaluation Criteria	Alternative 1 No Action	Alternative 2 MNA	Alternative 3 Hydraulic Containment	Alternative 4 Plume Stabilization Enhanced Bioremediation	Alternative 5 Removal of Accessible Vadose Zone PCM Hydraulic Containment and Recirculation Enhanced Bioremediation	Alternative 6 Removal of Accessible PCM Enhanced Bioremediation
Acceptance by WDOE 5 = high likelihood of State acceptance	1 Low	2 Low	4 Medium/High	3 Medium	4 Medium/High	5 High
Treatment Preference for High Levels of Mobile Contaminants	None	No active treatment, but IC to prevent exposure and monitoring to assess progress and migration potential.	Contains and treats COCs. Reliable technology. Easy and relatively quick to implement.	Stabilizes and treats COCs.	Removal and off-site disposal of PCM in vadose zone. Hydraulic containment limits mobility. Bioenhancement reduces treatment time.	Removal of accessible PCM to 22 feet and expected large reduction of COCs in groundwater.
Minimize Long-Term Management	None	Does not meet cleanup levels within a reasonable time frame.	Low to moderate potential to meet cleanup levels within a reasonable time frame.	Moderate potential to meet cleanup levels within a reasonable time frame.	Moderate potential to meet cleanup levels within a reasonable time frame.	High potential to meet cleanup levels within a reasonable time frame.
Minimize Risk	None	Residual contaminant concentrations will likely remain above MTCA Method A Standards for long time.	Residual contaminant concentrations will likely remain above MTCA Method A Standards for long time. Mitigates off-site migration.	Plume stabilization further reduces threats to CPU wellfield.	Focused source removal, hydraulic containment, and enhanced bioremediation reduces threats to CPU wellfield.	Rapid and proven reduction of soil and groundwater contaminant concentrations.
MTCA Benefit Ranking ¹	11 Alternative 1	16 Alternative 2	26 Alternative 3	20 Alternative 4	25 Alternative 5	26 Alternative 6
Estimate of Cost Net Present Value ²	\$0	\$900,000	\$8,000,000	\$2,600,000	\$3,800,000	\$4,300,000
Uncertainty of Costs	•	Cost to file institutional controls, time for MNA, and GWM frequency/duration.	Radius of influence, volume of water, discharge and treatment requirements, O&M requirements, and restoration time frame.	Volume of PetroFix required to stabilize plume, ability to effectively distribute reagents into source areas beneath existing infrastructure (e.g., tanks), radius of influence, ability to enhance anaerobic degradation, and restoration time frame.	Facility operations, <i>in situ</i> treatment efficiency, radius of influence, volume of water, infiltration and treatment requirements, O&M requirements, and	Volume and disposal of excavated material, shoring and dewatering requirements, impact on Facility operations, MNA of residual contamination, injection radius of influence (VRU area), and restoration time frame.
Benefit/Cost Ratio ³	N/A	1.78	0.33	0.77	0.66	0.60
Restoration Time Frame	Unknown	30 Years	30 Years	10 Years	7 Years	5 Years

Notes:

IC = Institutional Controls O&M = Operations and Maintenance
GWE = Groundwater Extraction CPU = Clark Public Utilities

ORC = Oxygen Release Compounds GWM = Groundwater Monitoring PCS = Petroleum Contaminated Soil MNA = Monitored Natural Attenuation MTCA = Model Toxics Control Act COCs = Contaminants of Concern N/A = not applicable WDOE = Washington Department of Ecology VRU = Vapor Recovery Unit PCM = Petroleum Contaminated Media

Example of Criteria Scoring and Relationship Between Numbers and Text: 1 = low, 2 = low/medium, 3 = medium, 4 = medium/high, 5 = high.

 $^{^{\ 1}}$ The MTCA benefits ranking is obtained by summing the results of the five criteria.

Net present value costs are estimated in 2020 dollars and then were discounted against a 3% inflation factor. The costs shown are rounded to two significant figures. Itemized estimates are provided in Appendix E.

³ The benefit/cost ratio is obtained by dividing the alternative's MTCA benefits ranking by its estimated cost (in \$million).

Table 8
Evaluation of Reasonable Restoration Time Frame
NuStar Terminals Operations Partnership L.P. – Annex Terminal
Vancouver, Washington

Design Concept	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Estimated Restoration Time Frame	30 years	30 years	10 years	5 to 7 years	3 to 5 years
Potential risks posed by the Site to human health and the environment	Risk is low because: petroleum-impacted soil and groundwater can be managed in place, and plume does not currently reach water bearing zones utilized by the CPU wellfield and is not expected to.	Risk is low for the reasons mentioned in Alternative 2 and hydraulic containment will ensure residual contamination is stable.	Risk is low for the reasons mentioned in Alternative 2 and injections of liquid activated carbon should ensure that residual contamination is stable.	Risk is low because: for the reasons mentioned in Alternative 2 and hydraulic containment will ensure residual contamination is stable.	Risk is low because: for the reasons mentioned in Alterna 2 and direct injections plume stabilizer to ensure residu contamination is stable.
Practicability of achieving shorter restoration time frame	Alternatives 4, 5, and 6 would likely achieve a shorter restoration time frame.	Alternatives 4, 5, and 6 would likely achieve a shorter restoration time frame.	Alternatives 5 and 6 would likely achieve a shorter restoration time frame.	Alternative 6 would likely achieve a shorter restoration time frame.	This alternative would likely achieve the shortest restora time frame.
Current and potential future use of Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site	Current and future use of the Site is petroleum storage and distribution. Current and future use of the surrounding areas is industrial and greenway. Current and future use of deeper groundwater beneath the surrounding area to the north/northwest is domestic water supply (Carol Curtis Wellfield).	Current and future use of the Site is petroleum storage and distribution. Current and future use of the surrounding areas is industrial and greenway. Current and future use of deeper groundwater beneath the surrounding area to the north/northwest is domestic water supply (Carol Curtis Wellfield).	Current and future use of the Site is petroleum storage and distribution. Current and future use of the surrounding areas is industrial and greenway. Current and future use of deeper groundwater beneath the surrounding area to the north/northwest is domestic water supply (Carol Curtis Wellfield).	·	Current and future use of the Site is petroleum storage distribution. Current and future use of the surrounding a is industrial and greenway. Current and future use of degroundwater beneath the surrounding area to the north/northwest is domestic water supply (Carol Curt Wellfield).
Availability of alternate water supplies	The Facility is connected to the municipal water supply.	The Facility is connected to the municipal water supply.	The Facility is connected to the municipal water supply.	The Facility is connected to the municipal water supply.	The Facility is connected to the municipal water supply
Likely effectiveness and reliability of institutional controls	IC are expected to be effective and reliable at maintaining protectiveness of managing soil contamination in place.	IC are expected to be effective and reliable at maintaining protectiveness of managing soil contamination in place.	IC are expected to be effective and reliable at maintaining protectiveness of managing soil contamination in place.	IC are expected to be effective and reliable at maintaining protectiveness of managing soil contamination in place.	IC are expected to be effective and reliable at maintain protectiveness of managing soil contamination in place
Ability to control and monitor migration of hazardous substances from the Site	Remedial investigation results indicate that there is no migration of hazardous substances from the Site.	Remedial investigation results indicate that there is no migration of hazardous substances from the Site.	Remedial investigation results indicate that there is no migration of hazardous substances from the Site.	Remedial investigation results indicate that there is no migration of hazardous substances from the Site.	Remedial investigation results indicate that there is r migration of hazardous substances from the Site.
Toxicity of the hazardous substances at the Site	The hazardous substances at the Site have a relatively low toxicity.	The hazardous substances at the Site have a relatively low toxicity.	The hazardous substances at the Site have a relatively low toxicity.	The hazardous substances at the Site have a relatively low toxicity.	The hazardous substances at the Site have a relatively toxicity.
Natural processes which reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions	Natural processes which reduce concentrations of hazardous substances have been documented to occur at the Site.	Natural processes which reduce concentrations of hazardous substances have been documented to occur at the Site.	Natural processes which reduce concentrations of hazardous substances have been documented to occur at the Site.	Natural processes which reduce concentrations of hazardous substances have been documented to occur at the Site.	Natural processes which reduce concentrations of hazar substances have been documented to occur at the Si
isions Regarding Reasonableness of Restoration Time Frame	-	The restoration time frame estimated for this alternative may not be reasonable if increased pumping in the PAA influences the migration of Site COCs in groundwater.	The restoration time frame estimated for this alternative is reasonable.	The restoration time frame estimated for this alternative is reasonable.	The restoration time frame estimated for this alternati reasonable.

Notes

IC Institutional Controls
COCs Contaminants of Concern
CPU Clark Public Utilities
PAA Pleistocene Alluvial Aquifer

General Assumptions

Site groundwater flow is generally flat with a slight gradient to the southwest.

Treatment standards for the Site are protective of MTCA Method A Cleanup Levels.

Worker health and safety will be monitored, and a health and safety plan will be adopted for the Site and communicated to workers during cleanup implementation.

Constituents of concern potentially include total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); and petroleum aromatic hydrocarbons (PAHs).

No additional contaminant sources will be encountered during the implementation of remedial action at the Site.

No ecological receptors will be exposed to COCs above applicable screening levels.

The final remedial approach will require the approval or oversight of the Washington Department of Ecology.

Table 9
Initial Screening of Cleanup Technologies - Truck Loading Rack Area
NuStar Terminals Operations Partnership, L.P. - Annex Terminal
Vancouver, Washington

0 10 10	= 11	Post Mari		Screening Criteria								
General Response Actions	Technology	Description	Effectiveness	Implementability	Cost	Screening Comments						
Petroleum Contaminated Soil												
NO ACTION	None	No Action	Not effective in achieving remedial action objectives.	Easy to implement.	No capital or O&M costs incurred.	Retained as a baseline for comparison.						
INSTITUTIONAL CONTROLS	Deed Restrictions/ Soil Management Plan (SMP)	Prevents disturbance of any cap (soil cap or asphalt concrete) or other engineering control and ensures appropriate measures are taken during future Site work. Establishes procedure for handling and managing contaminated soils to protect human health and the environment.	Effective at preventing direct contact, but not effective at preventing migration or addressing contaminant reduction.	Deed restriction and SMP easy to implement. SMP would need to be prepared and maintained until it is demonstrated that petroleum hydrocarbons have attenuated below cleanup levels.	Low costs associated with implementing restrictions and/or SMP.	Applicable technology used in conjunction with other technologies.						
	Monitoring	Laboratory analyses of samples.	Effective for documenting Site conditions to evaluate migration and current Site risks. Does not reduce contaminant concentrations.	Easy to implement. On-site and off-site monitoring wells already exist.	Low to moderate costs for monitoring.	Not a standalone technology. Applicable to document Site conditions and effectiveness of any treatment.						
ENGINEERING CONTROLS	Access Restrictions	The use of fencing and signage to prevent access to contaminated media.	Effective at preventing direct contact by humans. Not effective at preventing exposure to ecological receptors or preventing migration.	Easy to implement.	Low costs associated with installation of fencing or signage.	Access to the facility is already controlled by fencing. The use of further fencing is likely incompatible with operations and does not add further protection as personnel and contractors are aware of the presence of petroleum and are required to utilize personal protection equipment.						
	Control of Building HVAC System	Use HVAC system to maintain positive pressure in buildings.	May be effective in preventing migration of volatile contaminants from soil to indoor air as long as a pressure differential is maintained between building and subsurface soil. Does not address contaminant reduction.	Can be easy to implement in buildings with existing HVAC systems. Not applicable to impacted area (outdoor space).	Low costs associated with implementing these controls. Operational costs include additional heating of outdoor air.	Is generally used in conjunction with other engineering controls. Not applicable since there are no buildings present at the Truck Loading Rack.						
	Vapor Barriers	Installation of low-permeable barriers beneath buildings to prevent vapor intrusion.	Effective in preventing migration of volatile contaminants from soil into indoor air. Does not address contaminant reduction.	Easy to implement for new construction. Not applicable to impacted area (outdoor space).	Moderate cost for surface application. High cost for sub-floor installation (removal and replacement of slab floor).	Not applicable since there are no buildings present at the Truck Loading Rack.						
CONTAINMENT Please refer to note at end of ta	Capping	Installation of an engineered cap such as a soil cap or paved with asphalt concrete over the impacted soils.	Effective at preventing direct contact with contaminated soils. Does not address contaminant reduction.	Reasonably easy to implement. Much of the area around the Truck Loading Rack is already paved.	Moderate cost to implement.	Impacted soil is approximately 6 feet below ground surface and is already effectively capped with clean overburden.						

Table 9
Initial Screening of Cleanup Technologies - Truck Loading Rack Area
NuStar Terminals Operations Partnership, L.P. - Annex Terminal
Vancouver, Washington

General Response Actions	Technology	Description		Screening Comments		
			Effectiveness	Implementability	Cost	
REMOVAL/DISCHARGE	Excavation	Excavation of some or all of the impacted soil for further treatment or disposal.	Effective at removing source material from the Site. Addresses direct exposure pathway and potential for migration by reducing contaminant mass present in the subsurface.	The Site is developed as a truck loading rack with a number aboveground storage tanks and underground infrastructure such as piping present adjacent to the impacted area which would likely need to be removed or protected to facilitate excavation. Excavation could be completed with readily available construction equipment and	High costs depending on soil volume excavated.	Applicable to the Site.
	Off-Site Disposal	Excavated soil would be transported by truck to an off-site permitted disposal facility. Soils would require waste profiling and approval by the disposal facility.	Effective for containing contaminated soils and reducing risks associated with direct exposure.	Implementation involves transportation of contaminated soils on public roads.	Moderate to high costs depending on soil volume transported, waste characterization, and distance to disposal facility.	Applicable to the Site.
	On-Site Disposal	Consolidate excavated soil in an on-site, capped disposal area.	No effective at removing the long-term source of groundwater contamination at the Site.	Implementation would involve conventional construction equipment and methods. Much of the Facility is developed as containment areas for aboveground storage tanks, placement of the soil onsite would reduce available secondary containment at the Site.	Moderate to high costs depending on soil volume.	This technology is not retained because there is insufficient space and permitting would likely be prohibitive. Additionally, placement of the soil onsite would reduce available secondary containment at the Site. Placement of impacted soil on-site would not be compatible with the Facility's industrial stormwater permit. Placement of soil on-site would require construction of a cap to prevent direct
<i>EX-SITU</i> PHYSICAL/ CHEMICAL/ THERMAL TREATMENT	Chemical Extraction	Includes the application of chemical oxidants for the purpose of remediating excavated soils. Generally involves reduction/oxidation (redox) reactions that chemically convert hazardous contaminants to less toxic or less mobile forms. Possible oxidants can include peroxides,	Effective at destroying organic contaminants and oxidizing inorganic contaminants.	Risks associated with handling of oxidant in above- ground application. Bench-scale testing would be required during design. Requires staging area for treatment or transport to off-site facility. Air quality standards for site workers may be affected by open-air treatment methods.	High.	Not retained because technology has relatively high implementation risks to workers and less costly options are equally protective and available.
	Solidification/ Stabilization	Contaminants present in excavated soils are immobilized through the addition of binding agents which are mixed into the soil to decrease the permeability of the soil (solidification) or reduce the solubility of the contaminants (stabilization)	Effective at reducing the leaching of contaminants present in the excavated soil prior to disposal. Technology is typically used to stabilize inorganic contamination and is limited in effectiveness in treating organic compounds and fuels.	Implementation would involve conventional construction equipment and methods and could be useful in controlling water present in the excavated material if necessary prior to disposal at a permitted facility.	Low to Moderate.	Not retained because more effective technologies are present for organics and the PCM is present above the water table and is not leaching.
	Incineration	Organic contaminants are destroyed through the use of high temperature combustion (in the presence of oxygen).	Effective at removing organic contaminants from soil.	Would require transportation of excavated soils to a permitted incineration facility. No facility is nearby.	High cost to implement due to transportation costs.	Not retained because more cost effective technologies are present for treatment/removal of organics.
	Soil Washing Contaminants are separated from the excavated soil by washing with amended water to remove organic compounds.		Extracted contaminants would be disposed of as a concentrated liquid waste and treated soil could be reused as backfill. Most suitable to removal of semi-volatile and inorganic contamination from excavated soil.	Requires area for soil treatment or transport to off-site facility. Resultant fluid would need subsequent treatment process or disposal. High implementation risk.	High cost to implement.	Not retained because other more suitable, cost effective and lower implementation risk technologies are available.
	Solar Detoxification	The technology utilizes ultraviolet (UV) light from the sunlight (or artificial) to destroy contaminants through photochemical and thermal reactions.	Can be effectively used for treating organic contaminants.	Requires dry conditions and typically sunlight and enough space to spread soil out.	Low to moderate cost to implement.	Not retained because the technology is not compatible with Site characteristics or operations. Would require a large area to spread out soil and would only be effective during dry summer months.

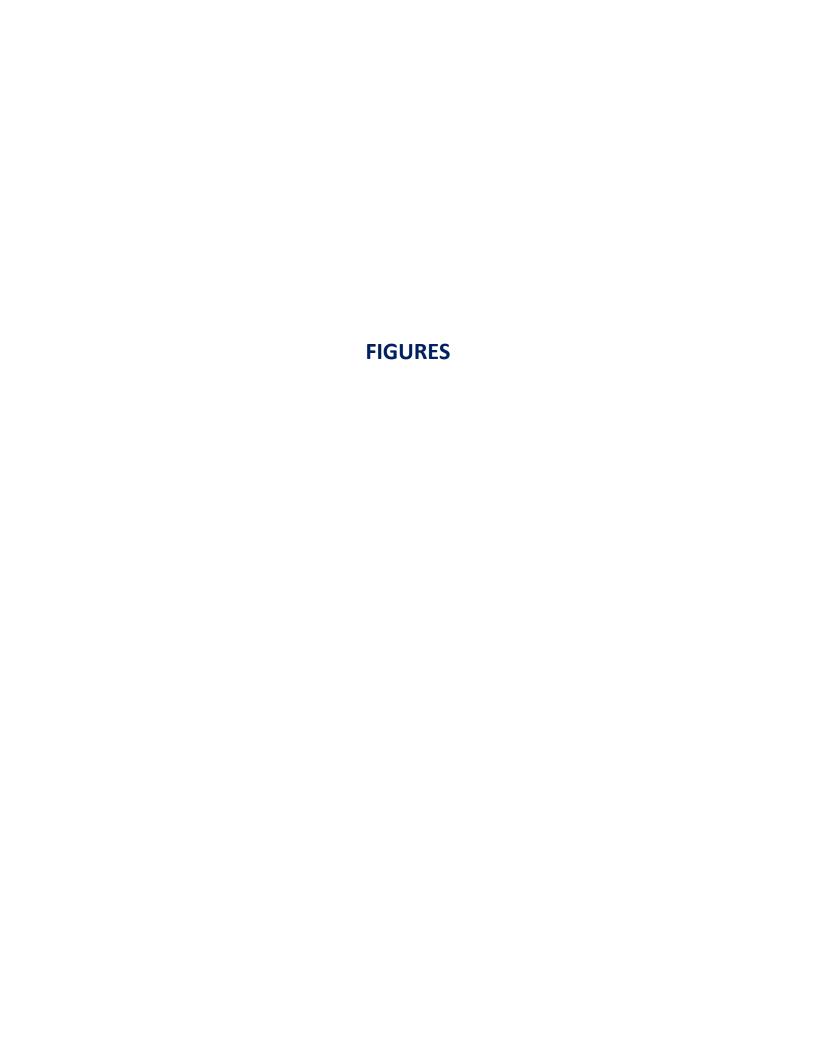
Table 9
Initial Screening of Cleanup Technologies - Truck Loading Rack Area
NuStar Terminals Operations Partnership, L.P. - Annex Terminal
Vancouver, Washington

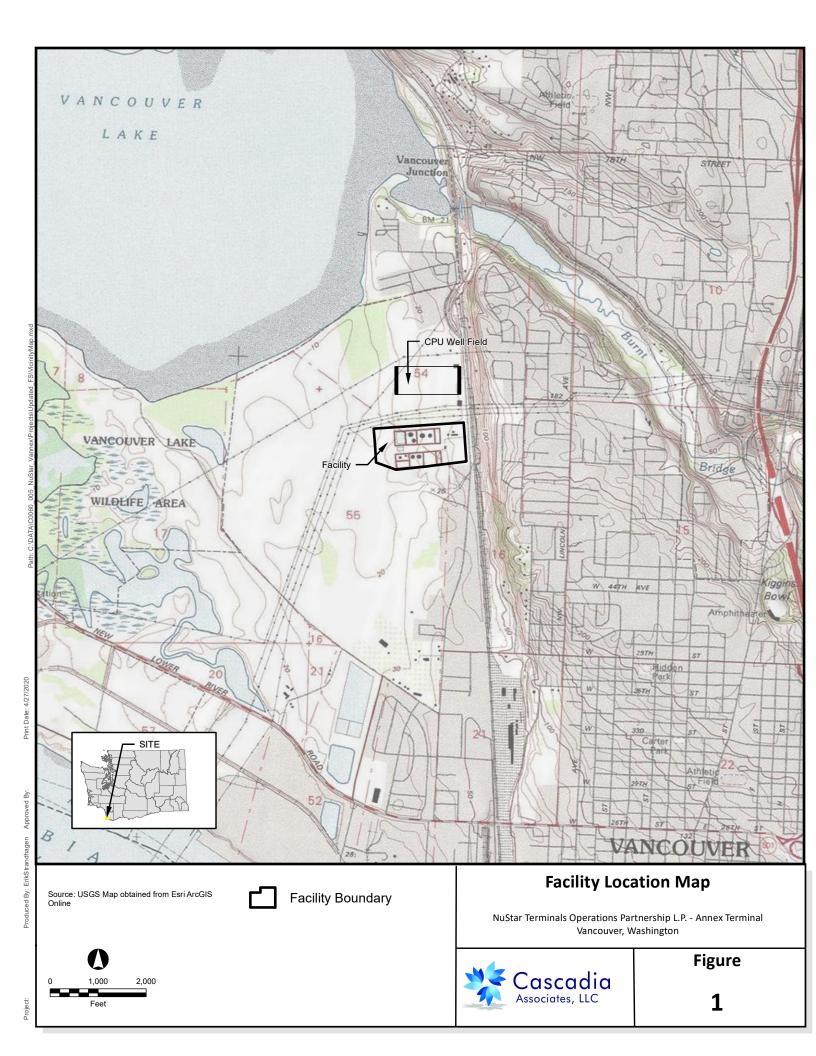
General Response Actions Technology Description		Description		Screening Criteria		Screening Comments
	-	·	Effectiveness	Implementability	Cost	,
<i>EX-SITU</i> BIOLOGICAL TREATMENT	Biopiles	Excavated soils are amended with agents to enhance natural aerobic processes and the pile is aerated with vacuum pumps/blowers.	Effective at removing organic contaminants from the excavated soil. Generally a long-term process	Requires dry conditions, typically done within an enclosure.	Low to moderate.	Not retained because the technology is not compatible with Site operations as it would require space for the long-term operation of the biopile.
	Land Farming	Excavated soils are stockpiled and are tilled to aerate the soil and promote naturally occurring aerobic degradation.	Can be effectively used for treating organic contaminants.	Implementation is relatively easy with common equipment and methods. Requires enough space to spread soil out.	Low to moderate.	Not retained because the storage of large stockpiles of soil on-site is not compatible with Facility operations.
<i>IN-SITU</i> BIOLOGICAL TREATMENT	Bioventing	The introduction of air or oxygen into the unsaturated subsurface to promote aerobic degradation of organic contaminants.	Can be effective removing volativle compounds. Not effective at treating inorganics or low volatility organics.	Relatively easy to implement and maintain.	Low to moderate.	Not retained because the PCM at the Facility has limited volatility remaining; therefore this technology would not be effective nor efficient.
	Land Treatment	Near surface soils are tilled to aerated to enhance naturally occurring bioremediation processes in the soil. Soil can be amended to further enhance the bioremediation processes.	Effective at promoting bioremediation of organic contaminants that are suited to aerobic degradation. Not effective at deeper contamination or inorganics.	Implementation is relatively easy with common equipment and methods.	Low to moderate.	Not retained because the technology is not compatible with Site characteristics. The contaminated soil is covered by 6 feet of clean soil.
	Phytoremediation	Technology uses plants to remove, transfer, stabilize, and destroy contaminants in soil.	Can be effective at removing a variety of contaminants (both organic and inorganic) from near surface soil. Not effective at deeper depths because uptake occurs at the roots.	Implementation is relatively easy if contamination is present near the root zone of the plants. Likely requires a large area for treatment.	Low to moderate	Not retained because the technology is not compatible with Site characteristics. The contaminated soil is covered by 6 feet of clean soil.
<i>IN-SITU</i> PHYSICAL/ CHEMICAL/ THERMAL TREATMENT	Soil Vapor Extraction (SVE)	This technology vacuum pumps/blowers to induce a vacuum on extraction wells or piping. The extracted vapors are discharged to the air. Treatment may be necessary prior to discharge.	Effective at removing volatile organic contaminants from the subsurface. Efficiency is dependent on soil porosity and the ability to induce a vacuum within the subsurface soil to remove the volatile contaminants.	SVE technology is an established treatment technology and installation uses readily available drilling and construction equipment. Would require ongoing operations and maintenance (O&M).	Moderate capital costs for installation and O&M.	Not retained because the technology is not well suited for removal of contaminants in silty environments such as the Site. Additionally the volatile fraction is not a significant part of the Site PCM.
	Chemical Oxidation	Includes the application of chemical oxidants for the purpose of remediating excavated soils. Generally involves reduction/oxidation (redox) reactions that chemically convert hazardous contaminants to less toxic or less mobile forms. Possible oxidants can include peroxides, permanganates, or ozone.	Effective at destroying organic contaminants and oxidizing inorganic contaminants. Complete coverage can be challenging with <i>in-situ</i> application due to soil heterogeneity, varying lithology, and short-circuiting.	The technology uses readily available equipment to inject oxidants in the subsurface and a number of vendors are available. Pilot testing at the Site indicated that <i>in-situ</i> application within the vadose zone likely did not achieve complete coverage.	High.	Not retained based on past pilot testing experience at the Site. Additionally, this technology can be corrosive to piping and therefore is not compatible for use in the Truck Loading Rack setting.
	Soil Flushing	Water or water with an amendment (such as a surfactant, cosolvent, or other agents) are introduced to the vadose zone and/or the saturated zone. Contaminants are removed by partioning to the flushing solution which is then extracted by one or more extraction wells for treatment and disposal at the surface.	Can be effective at removing a wide range of contaminants, including organic contaminants and light non-aqueous phase liquid.	Can be difficult to achieve full coverage in heterogeneous soils due to preferential pathways. Investigations indicate that the impacted soil in the vadose zone is not impacting groundwater, soil flushing would flush contaminants into the shallow groundwater table.	High capital costs for installation, treatment, and O&M.	Not retained because technology could mobilize currently immobile petroleum hydrocarbons and result in migration of contaminants from the vadose zone to the saturated zone. Heterogeneous lithology would likely result in preferential pathways for flushing and incomplete coverage.
	Thermally-Enhanced Removal	High-energy injection of steam/hot air, electrical resistance, electromagnetic, fiber optic, radio frequency) is used to increase the recovery rate of semi-volatile or non-volatile compounds to facilitate extraction (enhanced volatilization or decreased viscosity).	Effective with semi-volatile organic contaminants or viscous compounds that are not otherwise extractable with vapor extraction or fluid extraction technologies.	Usually not a standalone technology, typically used with SVE or other treatment technology to enhance removal of semi-volatile compounds.	High costs to high energy costs and O&M.	Not retained because it is not well suited for the Site contaminants and other less expensive and effective technologies are available.
	Solidification/ Stabilization	Contaminants present in the subsurface are immobilized through the addition of binding agents which are mixed or injected into the soil to decrease the permeability of the soil (solidification) or reduce the solubility of the contaminants (stabilization).	Technology is typically used to stabilize inorganic contamination to prevent leaching and is limited in effectiveness in treating organic compounds and fuels.	Implementation would involve conventional construction equipment and methods.	Low to Moderate.	Not retained because more effective technologies are present for organics.

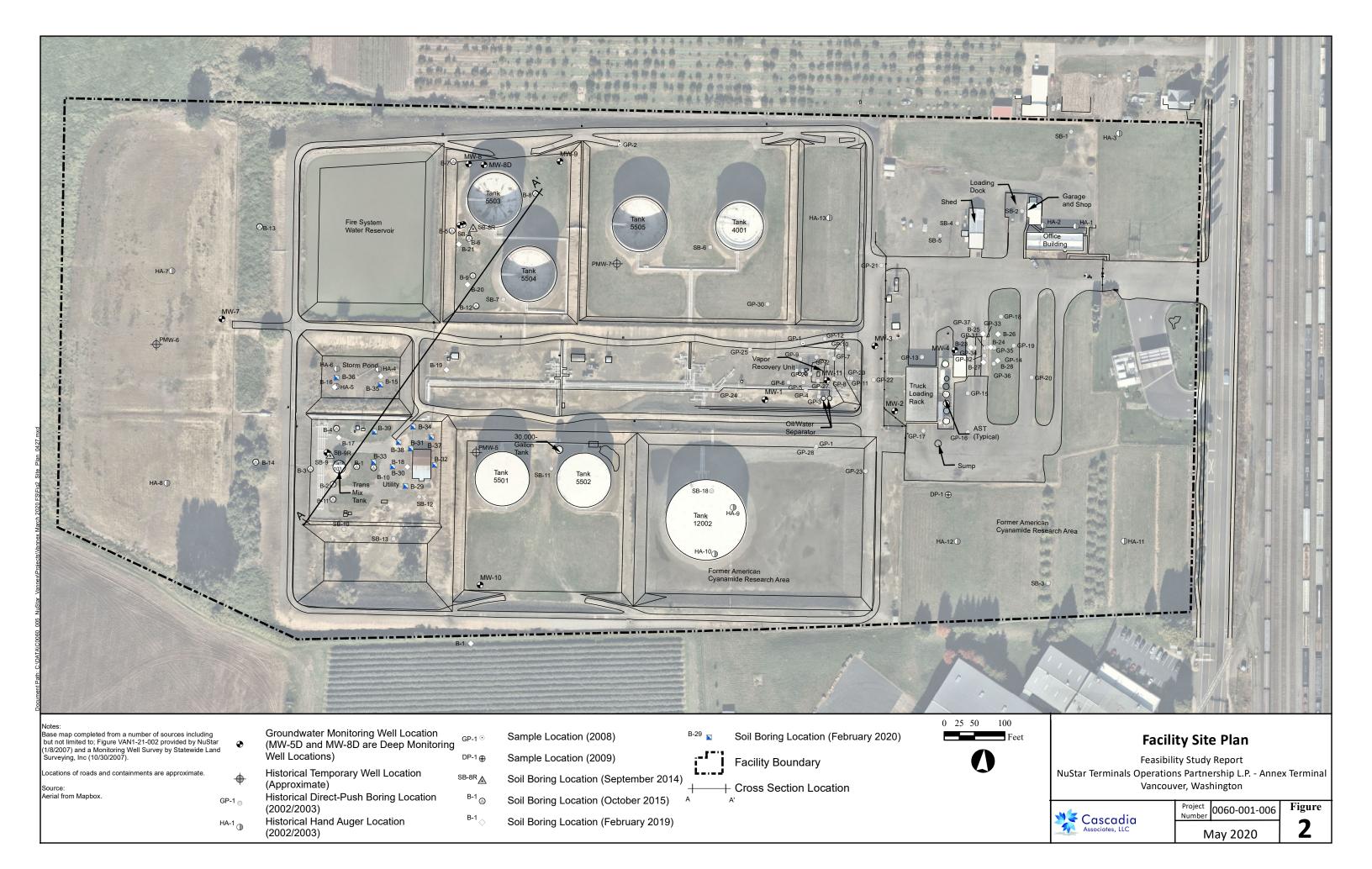
Notes

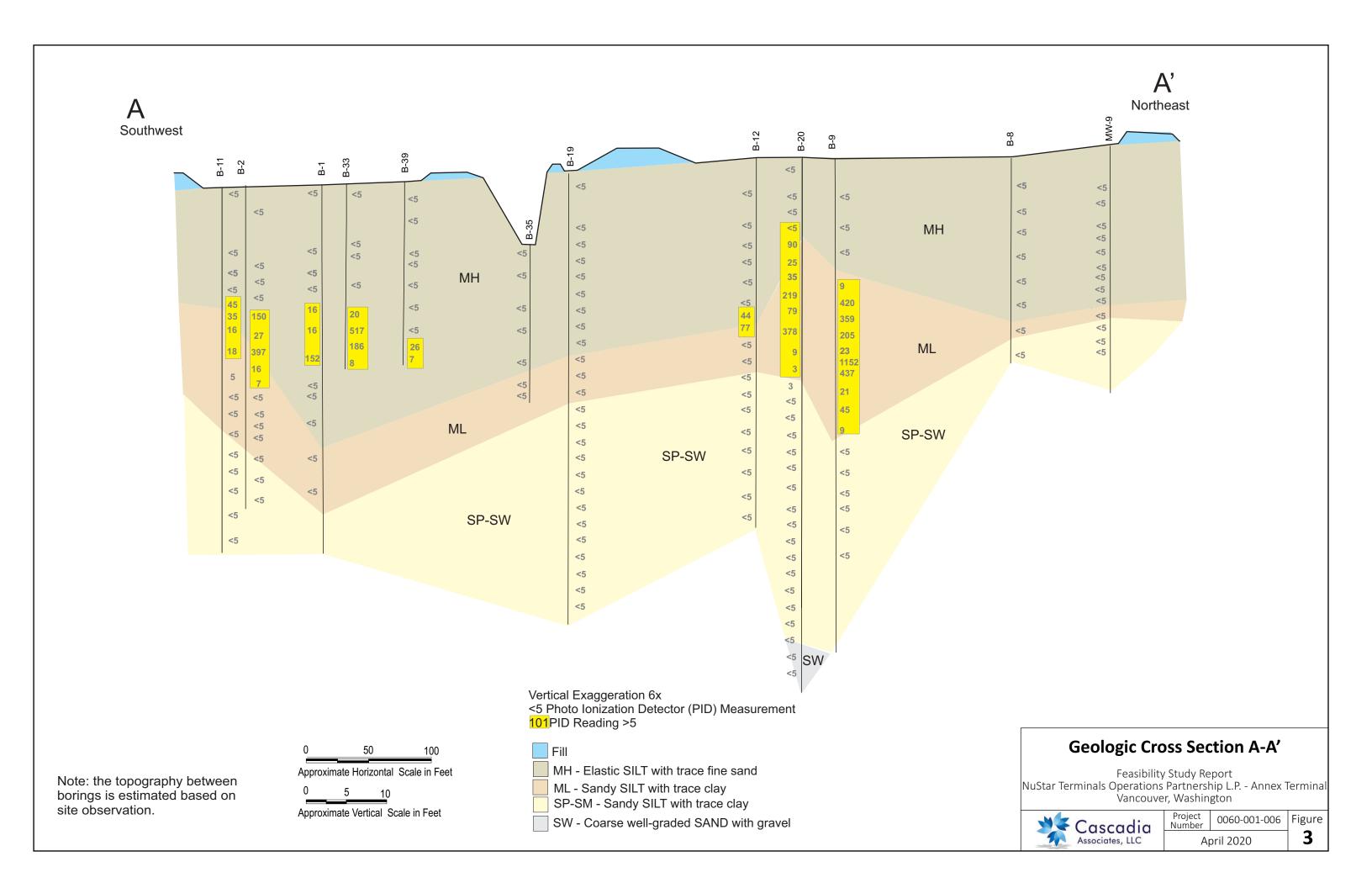
- 1. Shading indicates technologies that have been eliminated from consideration.
- 2. PCM = Petroleum hydrocarbon containing material
- 3. O&M = operations and maintenance

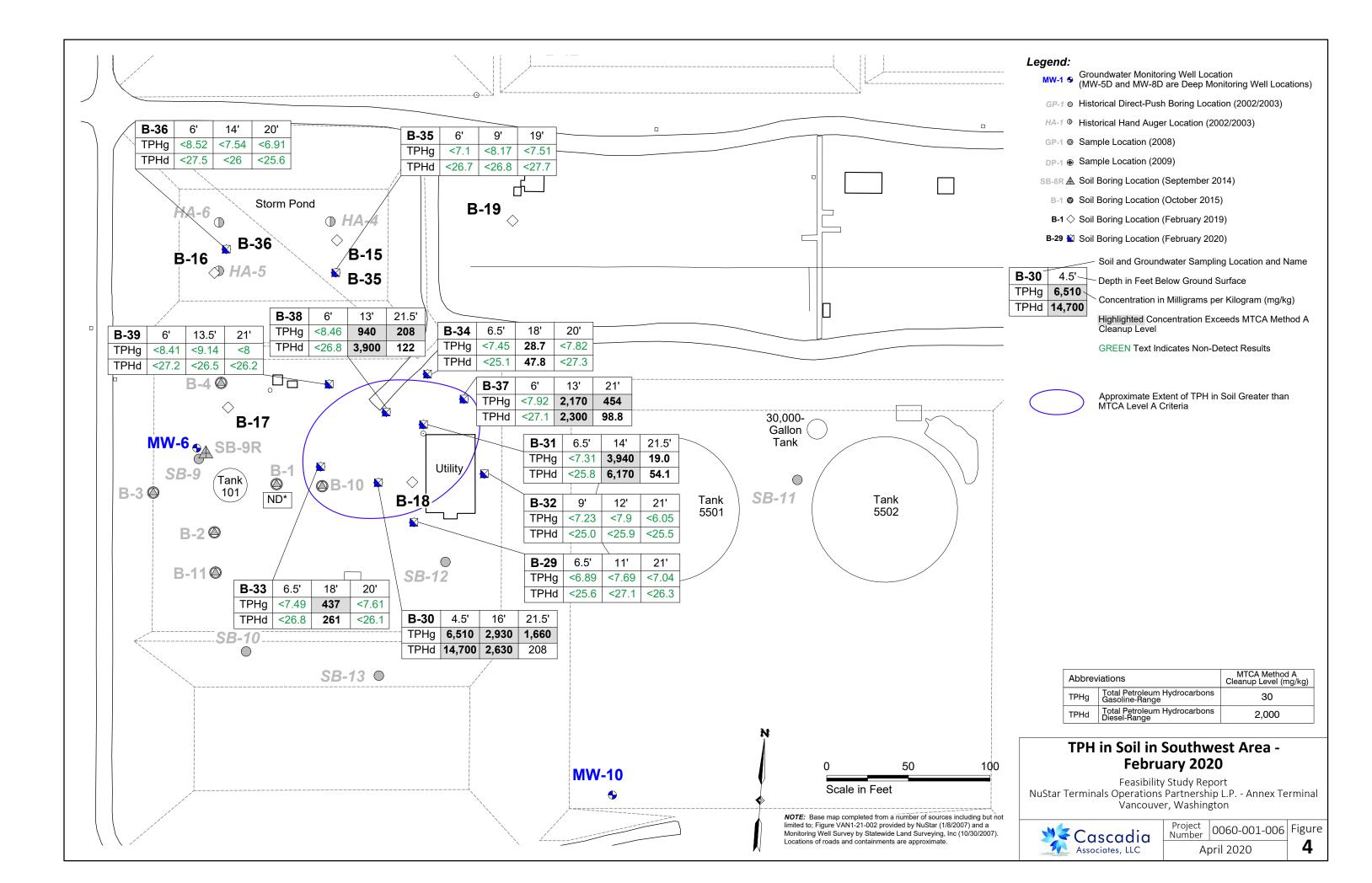
Table 10
Comparative Analysis of Cleanup Alternatives - Truck Loading Rack Area
NuStar Terminals Operations Partnership, L.P. - Annex Terminal
Vancouver, Washington

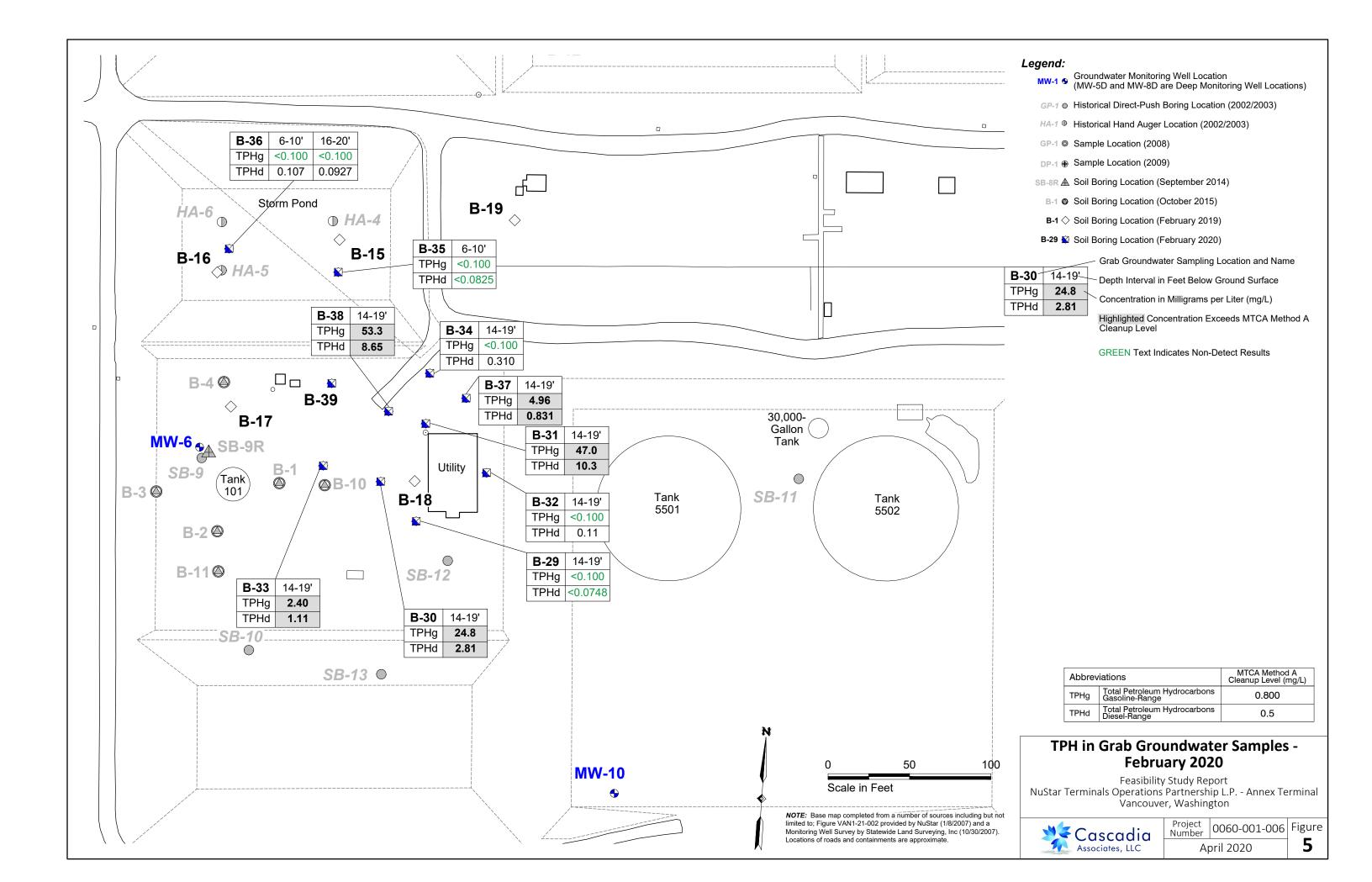

				Ranking Criteria																	
											ageme										
							Lo	ng-Te	rm	Sh	ort-Te	rm									
Groundwater Alternatives	Prot	ective	eness	Pe	rmane	nce	Effe	ectiver	ness		Risks		Impl	ement	ability	Publi	ic Con	cerns	Score	Rank	Cost/Benefit
	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С			
A No Action		-	-		-	-		-	-		0	+		0	+		-	-	-6	3	NA
B Institutional Controls	+		0	+		-	+		-	0		+	0		+	+		0	4	1	11.6
C Excavation and Off-Site Disposal of Impacted Soil	+	0		+	+		+	+		-	-		-	-		+	0		2	2	0.34

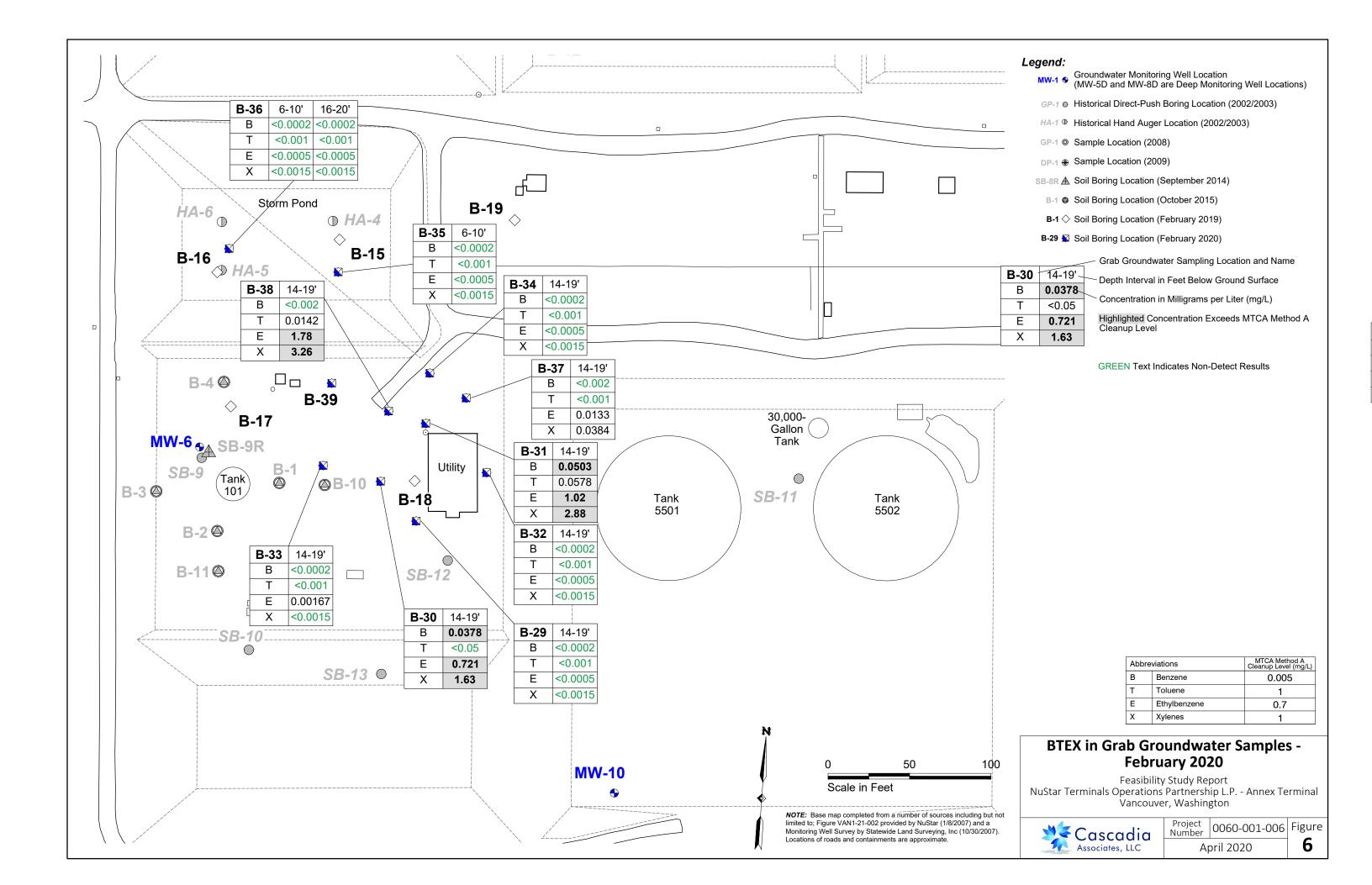

Notes:

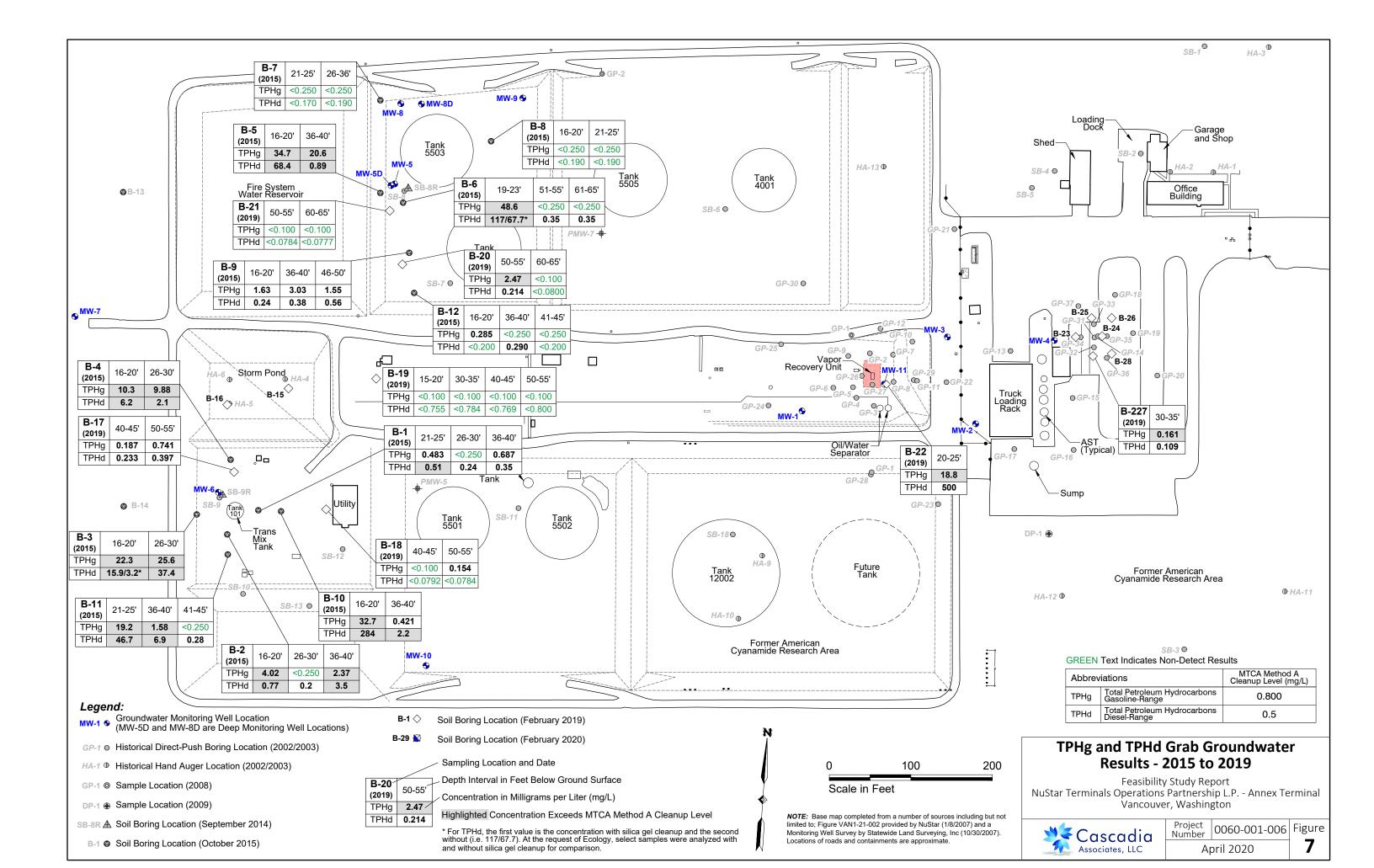

- + = The alternative is favored over the compared alternative (score = 1).
- 0 = The alternative is equal with the compared alternative (score = 0).
- = The alternative is less favorable than the compared alternative (score = -1).

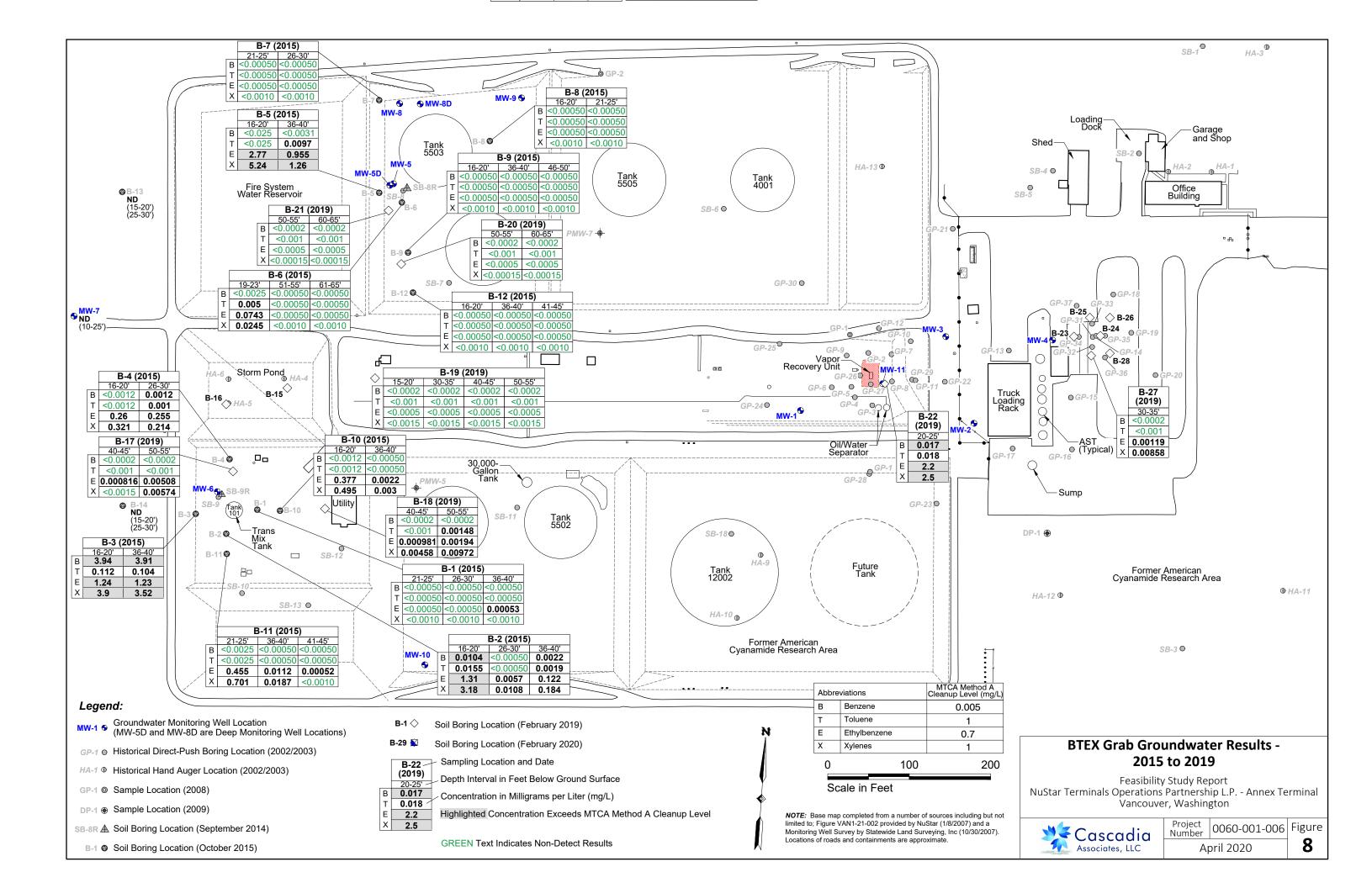

vs. Alternative										
Alternative A		В	С							
Alternative B	Α		С							
Alternative C	Α	В								

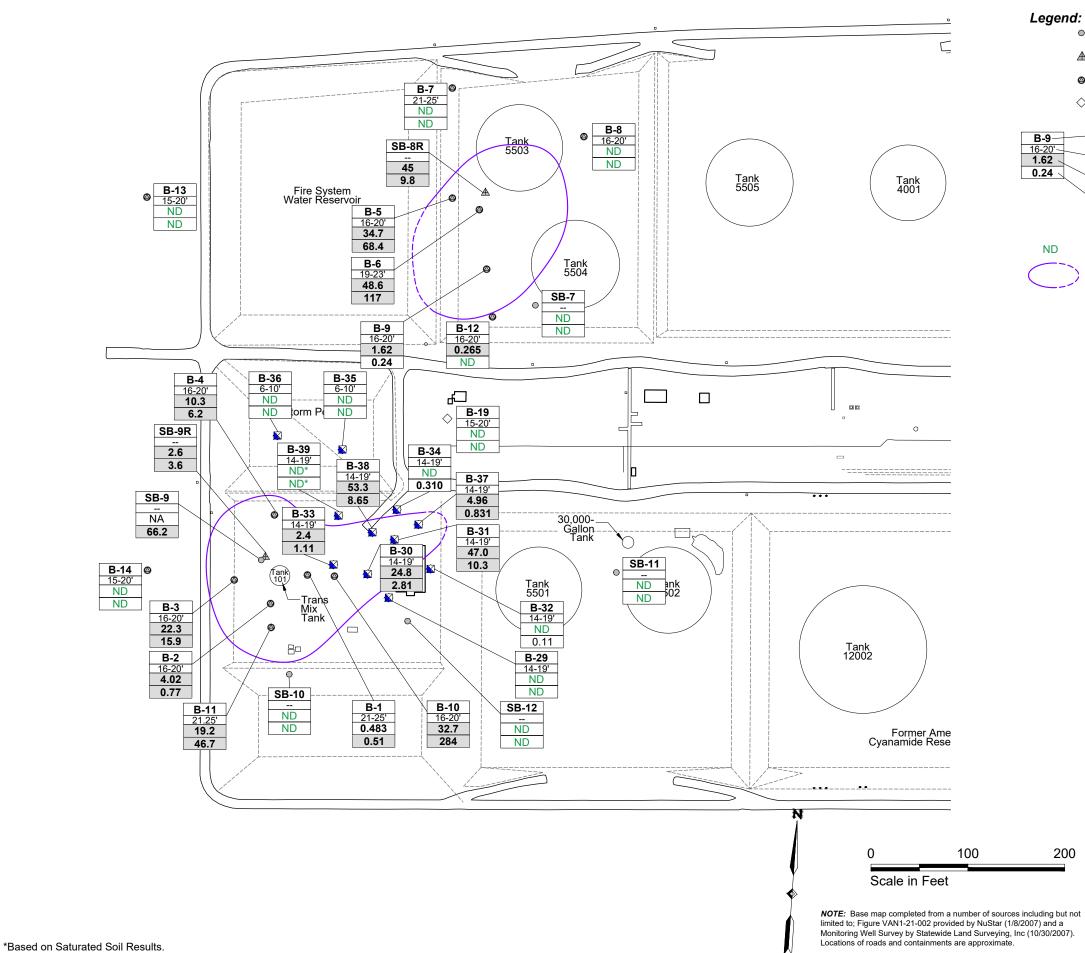












- Historical Direct-Push Boring Location (2002/2003)
- ▲ Soil Boring Location (September 2014)
- Soil Boring Location (October 2015)
- ♦ Soil Boring Location (February 2019)

Location Sampled

Depth Interval in Feet Below Ground Surface

TPHg Concentration in Milligrams per Liter (mg/L)

TPHd Concentration in Milligrams per Liter (mg/L)

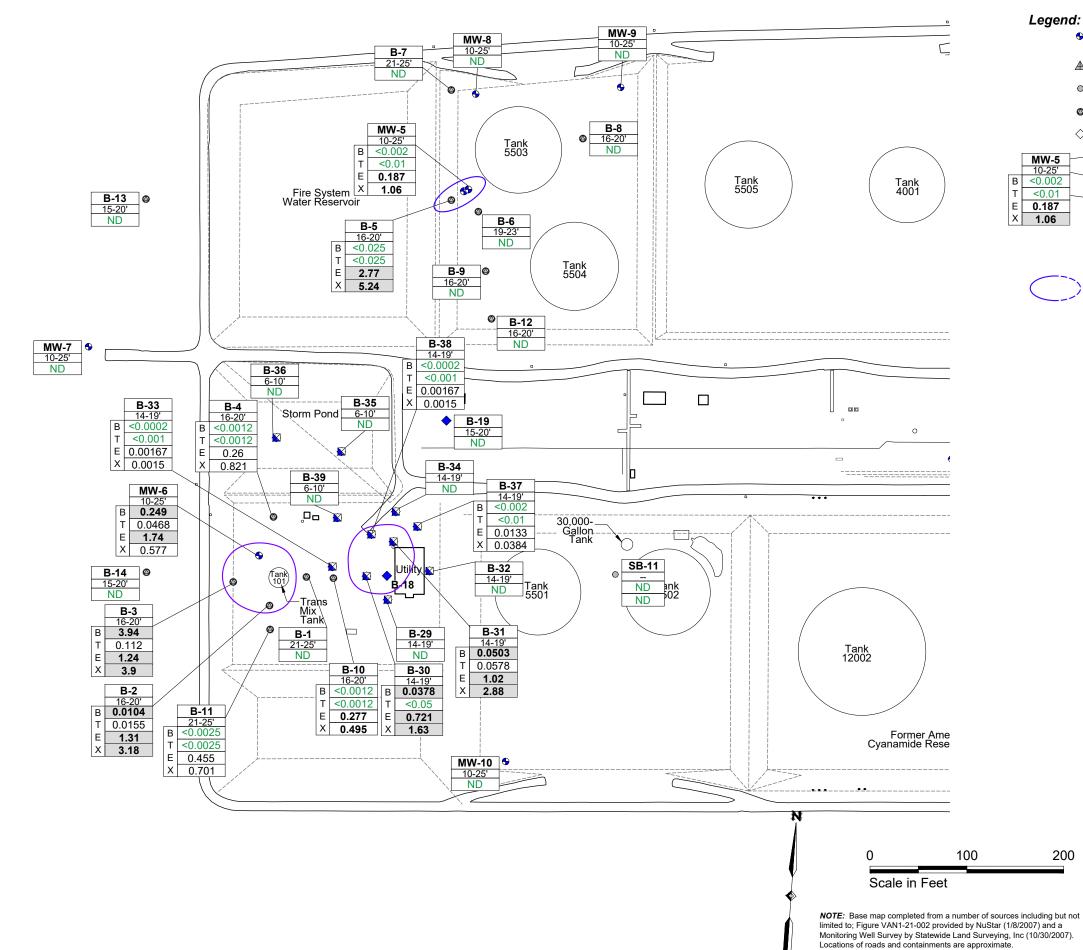
Highlighted Concentration Exceeds MTCA Method A

Not Detected Above Method Reporting Limits.

Extent of TPH Greater Than MTCA Method A Cleanup Levels (Dashed Where Inferred)

NOTE: Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.

GREEN Text Indicates Non-Detect Results


Abbrev	riations	MTCA Method A Cleanup Level (mg/L)		
TPHg	Total Petroleum Hydrocarbons Gasoline-Range	0.800		
TPHd	Total Petroleum Hydrocarbons Diesel-Range	0.5		

TPH in First Encountered Groundwater -Western Area

Feasibility Study Report NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

Project Number	0060-001-006	Figure
A	9	

Legend:

- Groundwater Monitoring Well Location (MW-5D and MW-8D are Deep Monitoring Well Locations)
- ⚠ Historical Direct-Push Boring Location (2002/2003)
- Soil Boring Location (September 2014)
- Soil Boring Location (October 2015)
- ♦ Soil Boring Location (February 2019)

Location Sampled MW-5 < 0.002 <0.01 0.187 X 1.06

Depth of Sample in Feet BGS

Concentration in mg/L

Highlighted Concentration Exceeds MTCA Method A Cleanup Level - February 2019

GREEN Text Indicates Non-Detect Results

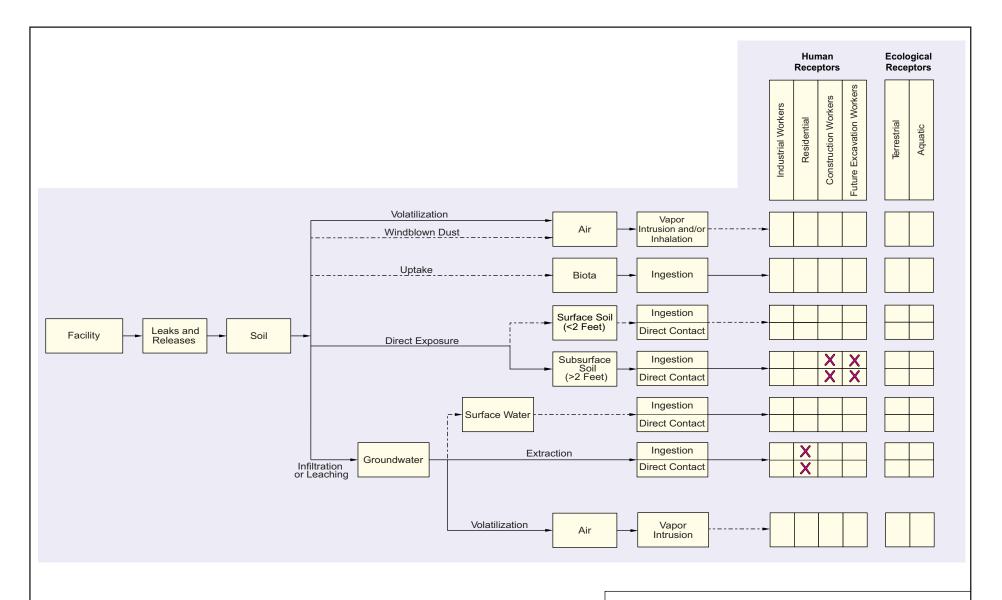
200

Extent of BTEX Above MTCA Method A Cleanup Levels (Dashed Where Uncertain)

NOTES: Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.

MTBE not detected in any samples, so data are not included on this figure.

If BTEX constituents are all below reporting limits, results are presented as 'ND' (Not Detected).


Abbre	viations	MTCA Method A Cleanup Level (mg/L)			
В	Benzene	0.005			
Т	Toluene	1			
Е	Ethylbenzene	0.7			
Х	Xylenes	1			

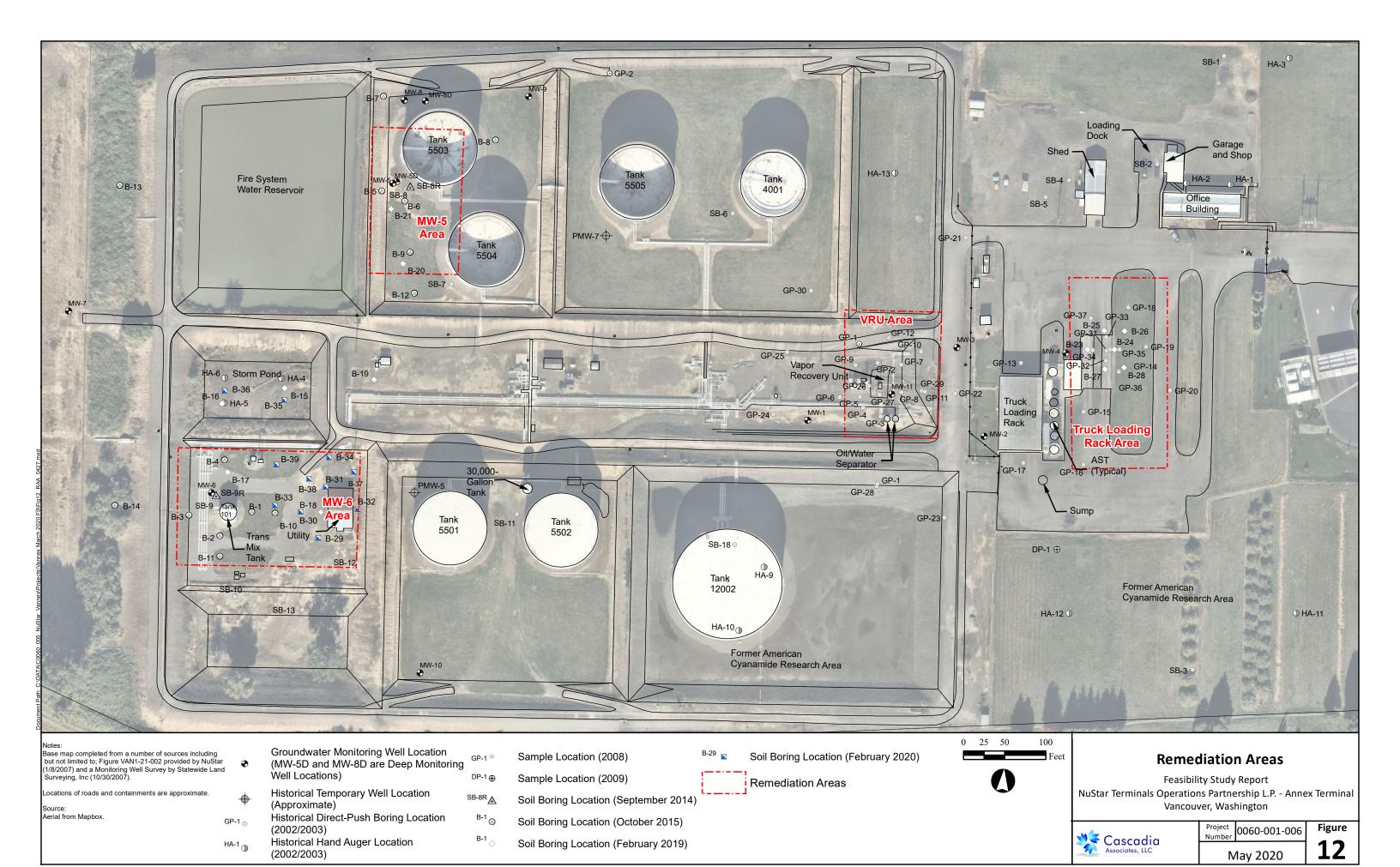
BTEX in First Encountered Groundwater -Western Area

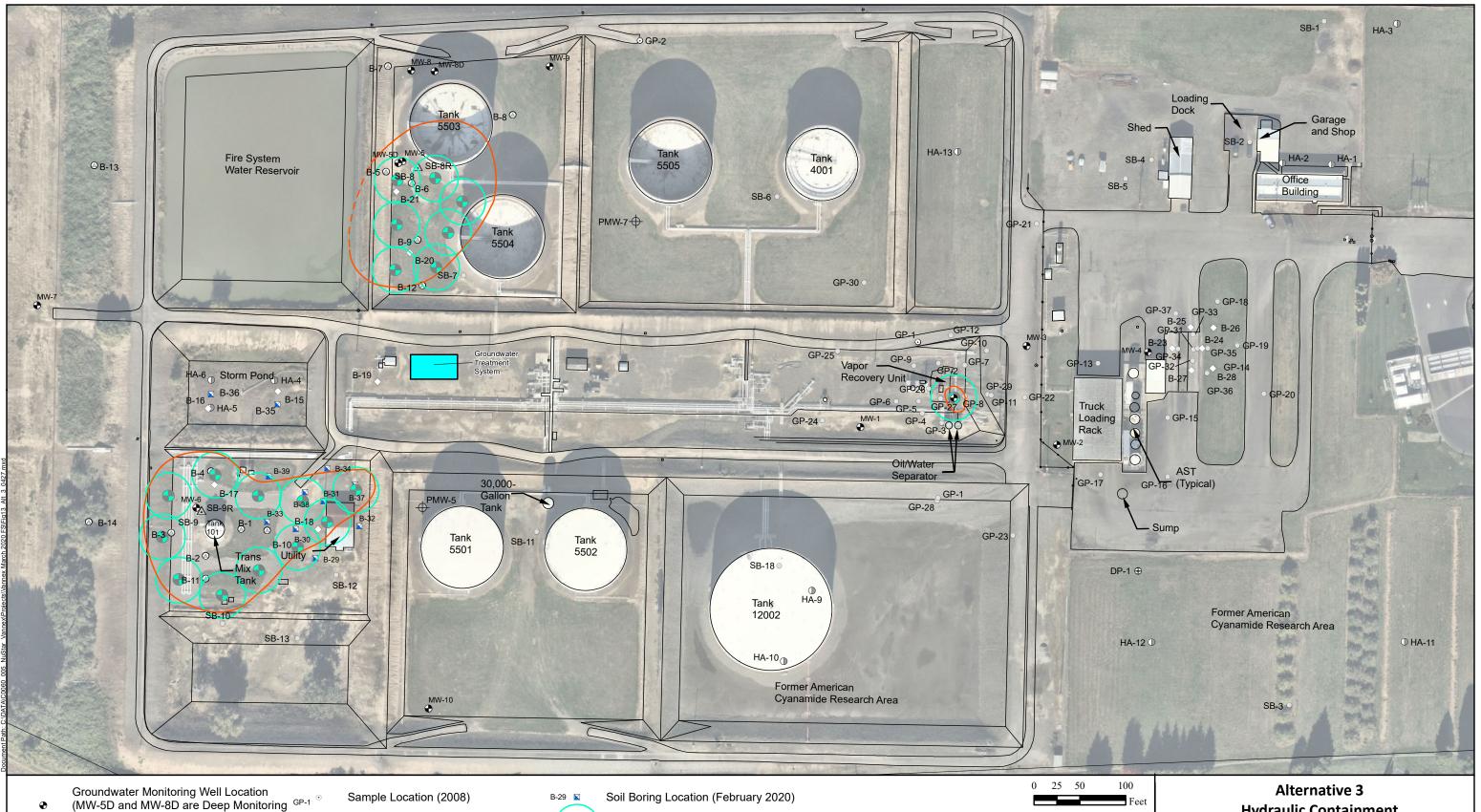
Feasibility Study Report NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

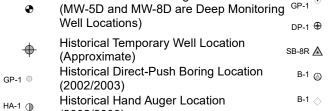
Project Number	0060-001-006	Figure
April 2020		10

Legend:

X Potentially Complete Exposure Pathway


----- Contaminant Pathway not Present or Complete


Conceptual Site Exposure Model


Feasibility Study Report NuStar Terminals Operations Partnership L.P.- Annex Terminal Vancouver, Washington

Project Number	0060-001-006	Figure
April 2020		11

(2002/2003)

Sample Location (2009)

Soil Boring Location (September 2014)

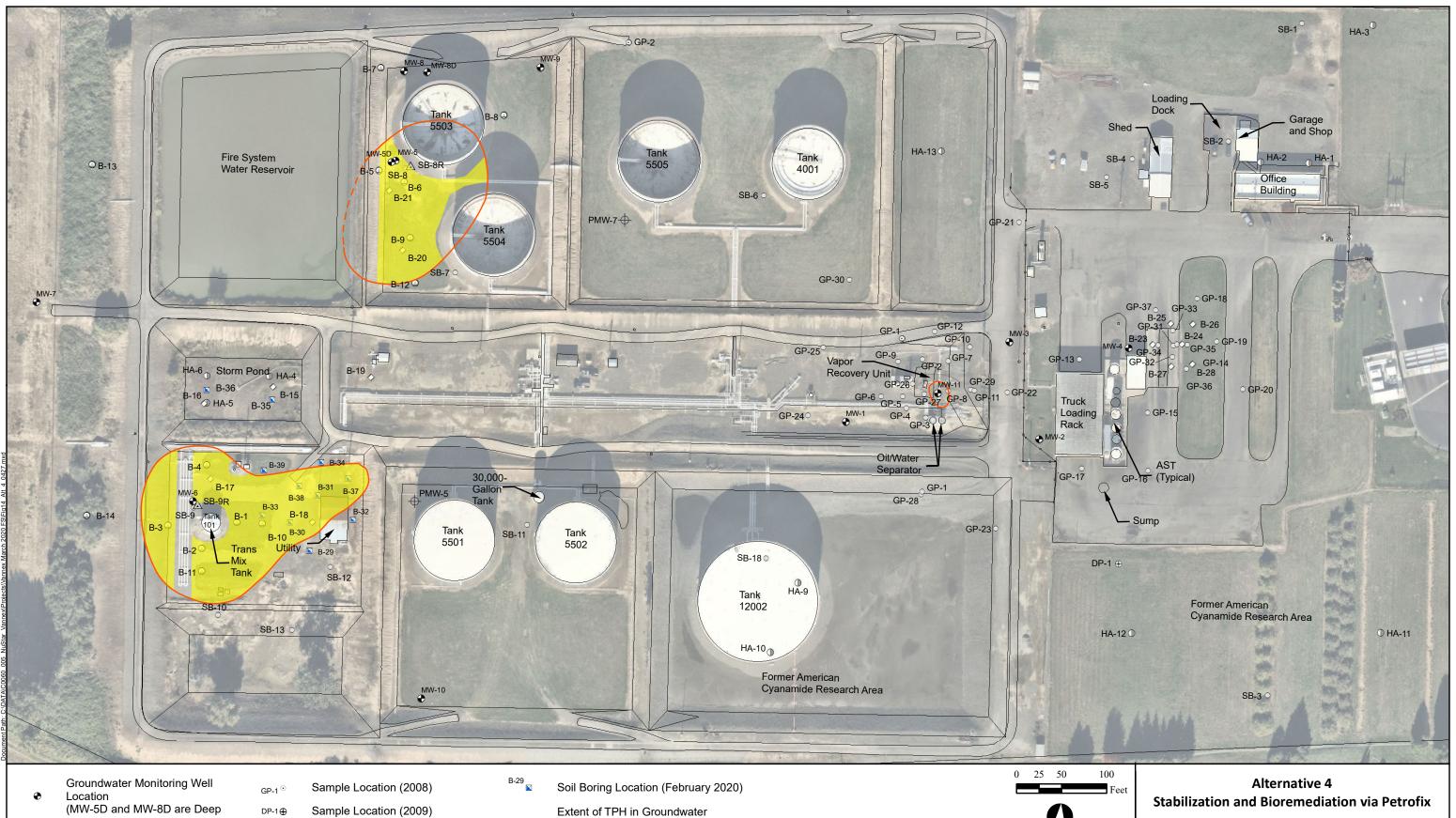
Soil Boring Location (October 2015)

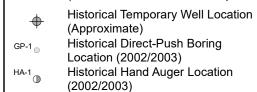
Soil Boring Location (February 2019)

Shallow Groundwater Extraction Well and Estimated Radius of Influence

Extent of TPH in Groundwater Greater Than MTCA Method A Cleanup Levels (Dashed Where Inferred)

Base map completed from a number of sources including but not limited to; Figure VAN1-21-002 provided by NuStar (1/8/2007) and a Monitoring Well Survey by Statewide Land Surveying, Inc (10/30/2007). Locations of roads and Source: Aerial from Mapbox.


Hydraulic Containment


Feasibility Study Report NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

Project Number 0060-001-006

Figure May 2020

SB-8R

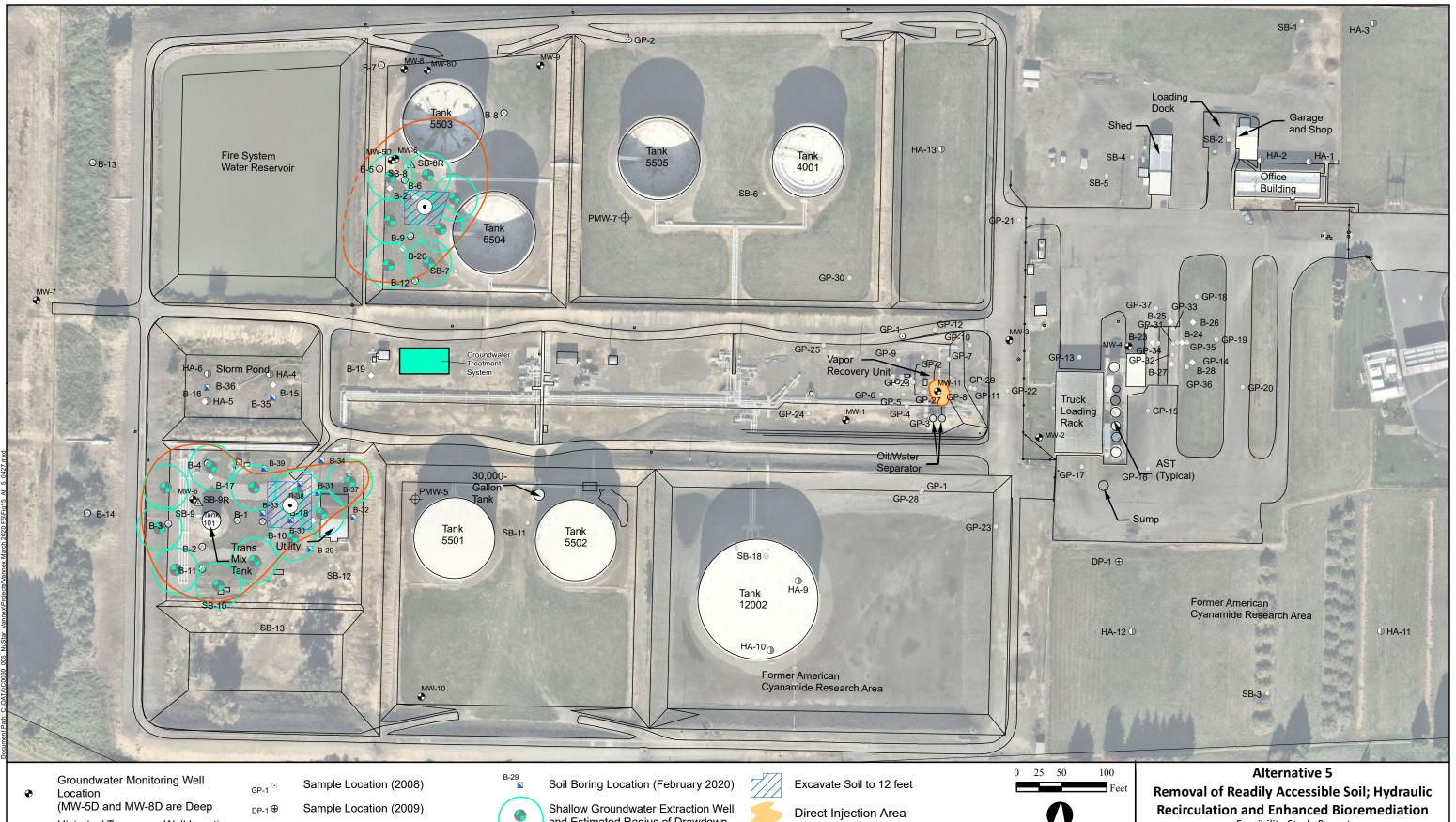
Soil Boring Location (September

Soil Boring Location (October 2015)

Soil Boring Location (February 2019)

Greater Than MTCA Method A Cleanup Levels (Dashed Where Inferred)

PetroFix Injection


Base map completed from a number of sources including but not limited to; Figure VAN1-21-002 provided by NuStar (1/8/2007) and a Monitoring Well Survey by Statewide Land Surveying, Inc (10/30/2007). Locations of roads and containments are approximate. Source: Aerial from Mapbox.

Feasibility Study Report NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

Project Number 0060-001-006 **Figure**

May 2020

Historical Temporary Well Location (Approximate) Historical Direct-Push Boring Location (2002/2003) Historical Hand Auger Location (2002/2003)

Soil Boring Location (September

B-1 ⊚ Soil Boring Location (October 2015)

SB-8R

Soil Boring Location (February 2019)

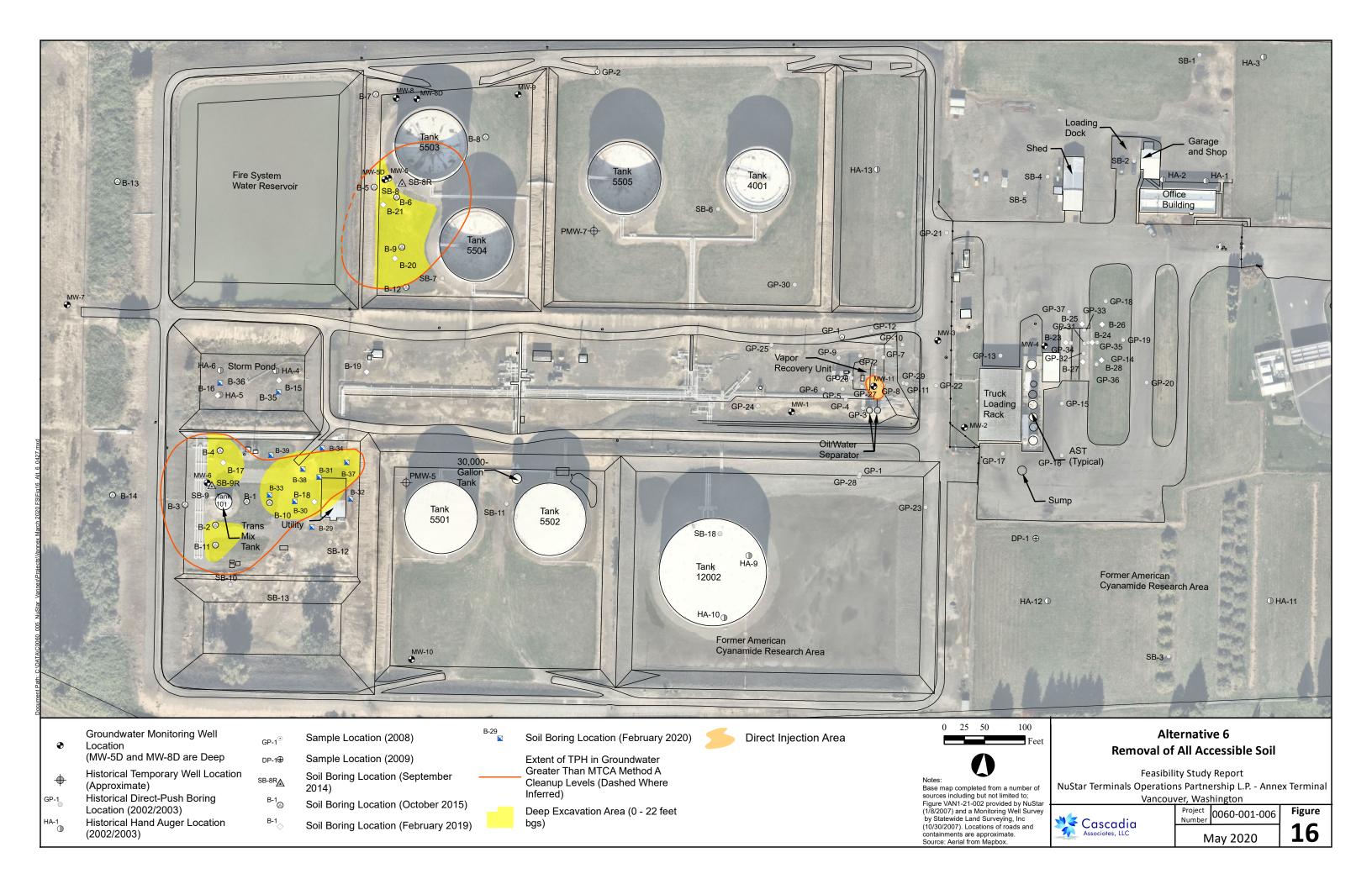
and Estimated Radius of Drawdown

Extent of TPH in Groundwater Greater Than MTCA Method A Cleanup Levels (Dashed Where Inferred)

Recirculation Gallery

Base map completed from a number of sources including but not limited to; Figure VAN1-21-002 provided by NuStar (1/8/2007) and a Monitoring Well Survey by Statewide Land Surveying, Inc (10/30/2007). Locations of roads and containments are approximate. Source: Aerial from Mapbox.

Feasibility Study Report


NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

Project Number 0060-001-006

May 2020

Figure

APPENDIX ABORING LOGS

Apex Companies, LLC 3015 SW First Avenue APEX Portland, Oregon 97201				npaníe Fírst Orego	es, LLC Avenue on 97201	NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: Project Number: 1569-04 Logged By: M. Whitson Date: September 30, 2	2014
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Líth	ologíc Descríptíon	Site Conditions: Partly C Drilling Contractor: Casca Drilling Equipment: Geopt Sampler Type: Macro Co Depth to Water (ATD): 12 Surface Elevation: Not Su Boring Details and	ade Drilling robe 7720DT re 2.5' rveyed
5—	Hand Auger))	< 5	NS	Clayey slightly	y SILT to SILT with clay (ML); yellowish brown (10YR 5/4), y moist, trace sand, medium stiff.		
10		MSB-8R(12.0) MSB-8R(9.0)	<5 <5 IO2	NS NS MS	moist, — Becor	ML); light olive brown (2.5Y 5/3) with rust orange mottling, medium stiff. nes wet, soft. nes very dark greenish gray (GLEY 1 3/10Y).		At Time of Drilling
20—			132	MS				SB-8R (Water Sample) At Time of Sampling
25— 30— 35—			124	,	Note: (n of Boring at 25.0' BGS. Groundwater sample collected from 3/4" PVC rary well using a peristaltic pump.	25 	
								Page 1/2

AP	EX	3015	SW	First /	es, LLC Avenue on 97201	NuStar Termínals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: Project Number: 1569-04 Logged By: M. Whitson Date: September 30, 2	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Líthe	ologíc Descríptíon	Site Conditions: Partly Cl Drilling Contractor: Casca Drilling Equipment: Geopr Sampler Type: Macro Co Depth to Water (ATD): 13 Surface Elevation: Not Sur	ade Drilling robe 7720DT re s.0' rveyed
- - - -	Hand Auger	SB-9R(125)	<5 <5 <5 399 323	NS NS HS HS HS	— With v — Becon SAND very fir SAND very fir very fir	coarse gravel surface over SILT with clay (ML); ellowish brown (10YR 4/4), moist, medium stiff. ery fine sand. nes very dark greenish gray (GLEY 1 3/5GY), moist, le-grained sand, no fines, medium dense. with silt (SP); very dark greenish gray (GLEY 1 3/5GY), wet, le-grained sand, silt fines, loose to medium dense. ML); very dark greenish gray (GLEY 1 3/5GY), wet, trace le sand, soft. of Boring at 25.0' BGS. Groundwater sample collected from 3/4" PVC arry well using a peristaltic pump.		At Time of Drilling SB-9R (Water Sample) At Time of Sampling
								Page 1/2

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

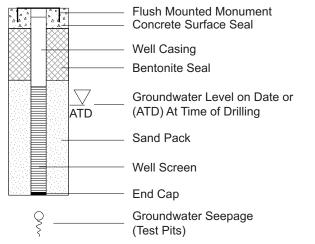
Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

SAND and GRAVEL	Standard Penetration Resistance	SILT or CLAY	Standard Penetration Resistance	Approximate Shear Strength
<u>Density</u>	in Blows/Foot	<u>Density</u>	in Blows/Foot	<u>in TSF</u>
Very loose Loose Medium dense Dense Very dense	0 - 4 4 - 10 10 - 30 30 - 50 >50	Very soft Soft Medium stiff Stiff Very Stiff Hard	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0

Moist	ure	Minor Constituents	Estimated Percentage
Dry	Little perceptible moisture.	Not identified in description	0 - 5
SI. Moist	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Sampling Symbols


BORING AND PUSH-PROBE SYMBOLS

	THE TOOLT TOOL OTHEROLO
	Recovery
	No Recovery
	Temporarily Screened Interval
PID	Photoionization Detector Reading
W	Water Sample
	Sample Submitted for Chemical Analysis
NS	No Sheen
SS	Slight Sheen
MS	Moderate Sheen
HS	Heavy Sheen
BF	Biogenic Film
OT DIT	SOU SAMDLES

TEST PIT SOIL SAMPLES

Grab (Jar)
Bag
Shelby Tube

Groundwater Observations and Monitoring Well Construction

Key to Exploration Logs

NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Project Number 1569-04 Figure Cotober 2014 Key

Apex Companies, LLC 3015 SW First Avenue APEX Portland, Oregon 97201				npaníe Fírst Orego	es, LLC Avenue on 97201	NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: Project Number: 1569-04 Logged By: M. Whitson Date: September 30, 2	2014
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Líth	ologíc Descríptíon	Site Conditions: Partly C Drilling Contractor: Casca Drilling Equipment: Geopt Sampler Type: Macro Co Depth to Water (ATD): 12 Surface Elevation: Not Su Boring Details and	ade Drilling robe 7720DT re 2.5' rveyed
5—	Hand Auger))	< 5	NS	Clayey slightly	y SILT to SILT with clay (ML); yellowish brown (10YR 5/4), y moist, trace sand, medium stiff.		
10		MSB-8R(12.0) MSB-8R(9.0)	<5 <5 IO2	NS NS MS	moist, — Becor	ML); light olive brown (2.5Y 5/3) with rust orange mottling, medium stiff. nes wet, soft. nes very dark greenish gray (GLEY 1 3/10Y).		At Time of Drilling
20—			132	MS				SB-8R (Water Sample) At Time of Sampling
25— 30— 35—			124	,	Note: (n of Boring at 25.0' BGS. Groundwater sample collected from 3/4" PVC rary well using a peristaltic pump.	25 	
								Page 1/2

AP	EX	3015	SW	First /	es, LLC Avenue on 97201	NuStar Termínals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: Project Number: 1569-04 Logged By: M. Whitson Date: September 30, 2	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Líthe	ologíc Descríptíon	Site Conditions: Partly Cl Drilling Contractor: Casca Drilling Equipment: Geopr Sampler Type: Macro Co Depth to Water (ATD): 13 Surface Elevation: Not Sur	ade Drilling robe 7720DT re s.0' rveyed
- - - -	Hand Auger	SB-9R(125)	<5 <5 <5 399 323	NS NS HS HS HS	— With v — Becon SAND very fir SAND very fir very fir	coarse gravel surface over SILT with clay (ML); ellowish brown (10YR 4/4), moist, medium stiff. ery fine sand. nes very dark greenish gray (GLEY 1 3/5GY), moist, le-grained sand, no fines, medium dense. with silt (SP); very dark greenish gray (GLEY 1 3/5GY), wet, le-grained sand, silt fines, loose to medium dense. ML); very dark greenish gray (GLEY 1 3/5GY), wet, trace le sand, soft. of Boring at 25.0' BGS. Groundwater sample collected from 3/4" PVC arry well using a peristaltic pump.		At Time of Drilling SB-9R (Water Sample) At Time of Sampling
								Page 1/2

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

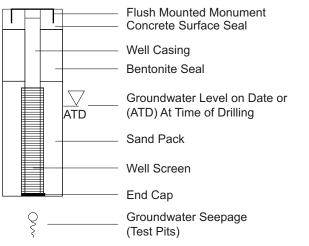
SAND and GRAVEL	Standard Penetration Resistance	SILT or CLAY	Standard Penetration Resistance	Approximate Shear Strength
<u>Density</u>	in Blows/Foot	<u>Density</u>	in Blows/Foot	<u>in TSF</u>
Very loose Loose Medium dense Dense Very dense	0 - 4 4 - 10 10 - 30 30 - 50 >50	Very soft Soft Medium stiff Stiff Very Stiff Hard	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0

Moist	ure	Minor Constituents	Estimated Percentage
Dry	Little perceptible moisture.	Not identified in description	0 - 5
SI. Moist	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Sampling Symbols

Recovery

BORING AND PUSH-PROBE SYMBOLS


	No Recovery
	Temporarily Screened Interval
PID	Photoionization Detector Reading
W	Water Sample
NS	No Sheen
SS	Slight Sheen
MS	Moderate Sheen
HS	Heavy Sheen

TEST PIT SOIL SAMPLES

Biogenic Film

Grab (Jar)
Bag
Shelby Tube

Groundwater Observations and Monitoring Well Construction

Key to Exploration Logs

Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Project Number 1569-05 Figure
November 2015 Key

		۸	Cam		s, LLC Additional Groundwater Investigation Report	Boring Number: B-1
		3015	SW	First /	wenue NuStar Terminals Operations Partnership, L.P Annex Terr	nínal Project Number: 1569-05
ΑP	ΕX	Portl	and, (Orego	vancouver, Washington	Logged By: J. Mattecheck/C. Clough
						Date: October 22, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	ery					Drilling Equipment: Track-Mounted Push Probe
	SO	<u> </u>				Sampler Type: Push Probe
	//Re	amp				Depth to Water (ATD): 23'
ŧ	IVa	S >				Surface Elevation:
, fe	Inte	ator	_			Surface Elevation:
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
	Ш				Grass/organics.	
_			NS	<5	SILT; light brown, dry, medium stiff to very stiff.	
_	Auger				 Becomes clayey. 	<u> </u>
_	Hand					<u> </u>
_			NS	<5		L
_						
5—					Silty CLAY (LP); light brown, slightly moist, medium stiff.	5
_			NS	<5	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	-
_	$\ \ $					-
_	$\ \ \ $					
] /					
	$\parallel \parallel$		NS	<5		
10	\Box					├─ IO
_	$\parallel \parallel \parallel$		NS			<u> </u>
_				<5		
_] /				Clayey SILT with trace fine sand (~10%); light brown, moist,	L
	$\parallel \parallel \parallel \parallel$		NS	< 5	medium plasticity, medium stiff.	
	1/			13		
15	Н					 15
_	H /II				_	<u> </u>
_			NS	16	Becomes medium gray.	
	\parallel / \parallel					
_	1					
_	1/		NS	16		
20-	Н					20
	$\ \ $					⊢
_						L
	╟╫	١٨/				R-1 (1) (Water Sample)
	$\ / \ $	W	NS	152		B-I (I) (Water Sample)
_	1 /		NS	< 5		F H
25—	$\ \cdot\ $					
_			NS	<5		\vdash
_						L A
		١,,,				
_	$\ \ $	W				B-I (2) (Water Sample)
_						⊢ ⊟
30	H					- 30
_			NS	< 5		
]] /[]		CNI	٠,5		
_	$\ / \ $				December of the second	
_	$\parallel \parallel \parallel$			ŀ	Becomes coarser material.	
_	$\parallel \parallel \parallel$		NS	<5	– Fine sand increasing.	<u> </u>
35—	$ \Box $					- 35
_					Poor recovery. Sandy SILT; medium brown, wet.	
_		W				B-I (3) (Water Sample)
						H H
			NS	<5		
					Bottom of Boring at 40.0' BGS.	Page 1/1

<u> </u>		Apex	Con	npaníe Eirct	s, LLC Additional Groundwater Investigation Report venue NuStar Terminals Operations Partnership, L.P Annex Termina	Boring Number: B-2 I Project Number: 1569-05
AP	ĒΧ		and, (Orego	1 97201 Vancouver, Washington	Logged By: C. Clough
						Date: October 23, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	very					Drilling Equipment: Track-Mounted Push Probe
	eco	ıple				Sampler Type: Push Probe
	al/R	Sarr				Depth to Water (ATD): 16'
feet	ıterv	ory				Surface Elevation:
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
	П				Grass/organics.	
_	L				Silty CLAY; light brown, dry, medium stiff to very stiff.	- -
-	Auger					
-	land					
_						
5						5
´ _						
	Щ					
			NS	<5	Silty CLAY; light brown to medium brown, dry,	· †
	$\ /\ $		NS	< 5	medium stiff.	
10						<u> </u>
_			NS	< 5		_
_						
_	$\ /\ $		NS	_	– Becomes gray.	
_	$\ /\ $		CVI	<5	.	
15						<u> </u>
را						I3
	\Box		HS	150	SILT with fine sand; dark gray, wet, very soft.	
	\parallel / \parallel	W	SS	27		B-2 (I) (Water Sample)
-	$\parallel \parallel \parallel$					
20-	Н		NS	707	Sandy SILT; dark gray, slightly moist to moist, medium stiff.	20
-	$\parallel \parallel$		11/3	397	Sandy SILT, dark gray, siignily moist to moist, medium siin.	<u> </u>
_	$\ / \ $					<u> </u>
_	$\ /\ $		NS	16	– Becomes wet.	
	$\parallel \parallel \parallel$		NS	7		
25—				´		25
25 —	7		NS	< 5	Pagamag light brown	
					Becomes light brown.	
	$\ / \ $		NS	<5		
-	$\ /\ $	W				B-2 (2) (Water Sample)
-	$\parallel \parallel$		NS	<5		⊢
30-	H					30
			NS	< 5		<u> </u>
	$\ / \ $				- 4-Inch coarse SAND lens; medium brown, wet.	<u> </u>
_	$\ /\ $		NS	<5		
	$\parallel \parallel \parallel$					
75			NS	<5		
35						35
-	H	W		}	Coarse SAND with fines; medium brown, slightly moist to moist.	B-2 (3) (Water Sample)
_	$\ /\ $		NS	<5	Coarse Sand with lines, medium brown, slightly moist to moist.	\vdash
	I/					
<u></u>					Bottom of Boring at 40.0' BGS.	Page I/I

_4		Ape	х Соп	npaníe	es, LLC	Additional Groundwater Investigation Report	Boring Number:	B-3
A ID.		3015	SW	First /	Avenue	NuStar Terminals Operations Partnership, L.P Annex Terminal	Project Number: 1569	
API	ĿΧ	Portl	and, (Orego	n 97201	Vancouver, Washington	Logged By: C. Cloug	
							Date: October 23,	2015
							Site Conditions:	
	_						Drilling Contractor: Ca	scade Drilling
	ver	\Box					Drilling Equipment: Tra	ack-Mounted Push Probe
	ecc	Jple					Sampler Type: Push F	Probe
	al/R	San					Depth to Water (ATD):	18'
feet	terv	٦٢					Surface Elevation:	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lith	ologic Description	Temporary Scree	n Details and Notes:
					Gravel	/organics.	}	
_				ľ		LAY; medium brown, slightly moist, medium stiff.	_	
	uger		NS	<5	Only O	EAT, medium brown, slightly moist, medium still.		
	Hand Auger							
	Ha							
5—	H						 5	
_	Щ			-	0:11 0	AND P. L.C. P. L.C. P. L.	_	
_	\parallel / \parallel		NS	5	Silty S	AND; light gray, slightly moist, medium dense.		
	\parallel / \parallel						L	
	\parallel / \parallel							
	$\parallel \parallel \parallel$		SS	133				
10-	Н						10	
_	Щ						_	
	/		SS	139				
	\parallel / \parallel				Recon	nes soft, moisture increasing.		
	\parallel / \parallel		SS	339	— Becoi	nes sort, moisture increasing.		
_	/		33	339				
15	Н						<u> </u>	
_	/		SS	177				
	\parallel / \parallel							
	\parallel / \parallel	١.,,	NS	47	Б			7 = p. 7 (1) (2) (1)
	$\parallel \parallel \parallel \parallel$	W			— Becon	nes wet.		B-3 (I) (Water Sample
_			NS	10				
20—	Н						20	
_								
			N. IC					
25—	IH		NS	9			 25	
_							\vdash	
_								
	H	W						B-3 (2) (Water Sample
	\parallel / \parallel	۷۷	NS	< 5				D-3 (Z) (Water Sample
_	\parallel/\parallel		. 45	\J				
30—				+			30	
_					Botton	n of Boring at 30.0' BGS.	<u> </u>	
							L	
\neg								
35—							 35	
_							<u> </u>	
-								
								Page 1/1

API	ΕX	Ape: 3015 Portl	x Cor SW and, 0	npanío Fírst Orego	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: B-4 Project Number: 1569-05 Logged By: C. Clough Date: October 23, 2015
	ery	0				Site Conditions: Drilling Contractor: Cascade Drilling
	SOVE	le II				Drilling Equipment: Track-Mounted Push Probe
	/Rec	amp				Sampler Type: Push Probe Depth to Water (ATD): 13'
et	erval	y S				Surface Elevation:
.h, fe	Inte	ratoı	П			Sandee Elevation.
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
	Auger					
	η Pι					
	Hand					
_						
5						5
_						
_	$ \uparrow $		NS	< 5	SILT with fine sand; medium brown, slightly moist, medium stiff.	
_	\parallel / \parallel		IND	<>>		
_	/		NS	< 5	— Becomes very stiff.	
10	$\ H\ $,,,		<u> </u>
_	Н		NS	< 5		-
_			NS	<5	— Becomes soft, moist.	
_	\parallel / \parallel				— Becomes gray, wet.	
_	/		SS	51		<u> </u>
15	Щ					— 15
_					SILT with sand; medium gray, wet, soft.	
	\parallel / \parallel		SS	268		L
	\parallel / \parallel	W				B-4 (I) (Water Sample)
	$\parallel \parallel \parallel$	VV	SS	284		B-4 (1) (vvaci sample)
-	V II					
20—	П					20
			NS	6	— Increasing sand.	
	\parallel / \parallel					
_	$\parallel \parallel \parallel$					
_	$\parallel \parallel \parallel$		NS	<5		
25—	H				— Becomes sandy SILT.	
_	/		NS	< 5		
_	\parallel / \parallel		143	()		h E
_	$\parallel \parallel \parallel$	W				B-4 (2) (Water Sample)
_	$\parallel \parallel \parallel$		NS	<5		L =
30-	Ш					30 ⊟
_					Bottom of Boring at 30.0' BGS.	
_						
_						_
35						— 35
						<u> </u>
						Page 1/1

		Ane	Con	nnaníe	, LLC Additional Groundwater Investigation Report	Boring Number: B-5
		3015	SW	First /	venue NuStar Terminals Operations Partnership, L.P Annex Termi	nal Project Number: 1569-05
API	EΧ	Portl	and, (Orego	97201 Vancouver, Washington	Logged By: J. Mattecheck
						Date: October 27, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	very					Drilling Equipment: Track-Mounted Push Probe
	eco	ple				Sampler Type: Push Probe
	al/R	Sam				Depth to Water (ATD): 18'
eet	erv	<u>~</u>				Surface Elevation:
Ť, Í	in in	ratc	_		Late to Decree	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
					Grass.	,
	ا اة				Silty CLAY; light brown, slightly moist, low plasticity.	- - -
\dashv	Aug				medium stiff to stiff.	
\dashv	Hand Auger					
-						
5—					- Becomes medium stiff.	5
ا ً						
	7		NS			
\neg	\parallel / \parallel		145			
-	\parallel / \parallel			<5		-
\dashv	/		NS	< 5		_
10—	Ш			()		<u> </u>
	/					
	/		NS	<5		
	\parallel / \parallel		NS	474	Becomes light gray, medium plasticity.	
\dashv	\parallel / \parallel				December light gray, modum placetory.	<u> </u>
\dashv	/		NS	400		<u> </u>
15—	Ш					 15
	/					
	\parallel / \parallel		NS	517		
	\parallel / \parallel					
\exists	\parallel / \parallel	W	NS	153	- Becomes wet.	B-5 (I) (Water Sample
\dashv	/		NS	120		
20—	Щ		INO	120	- Trace fine sand.	<u> </u>
	/		NS	210		
	\parallel / \parallel		IND	210		
	\parallel / \parallel		NS	617		
	\parallel / \parallel					
\dashv	$\parallel \parallel \parallel$		NS	50		
25—	Н					
\dashv	/		NS	64		
	$\ / \ $		NS	90		
	\parallel / \parallel		NS	35	SAND; light gray, moist to wet, coarse to fine-grained, well gra	ded,
\dashv	$\parallel \parallel \parallel$		113	55	medium dense.	´ -
30—	\mathbb{H}					30
\dashv	/		NS	125		<u> </u>
	$\parallel \parallel$		N IC			
	\parallel / \parallel		NS	60		
\neg	$\parallel \parallel \parallel$		NS	5	D	
\dashv			. ,5	-	Becomes light brown.	
35—	H					
\dashv	/		NS	5		\vdash
\Box	$\parallel \parallel$					
	\parallel / \parallel	۱۸,				B-5 (2) (Water Sample
\neg	$\parallel \parallel \parallel$	W	NS	5		B-3 (2) (Water Sample
\dashv						F H
	1				D. II	
					Bottom of Boring at 40.0' BGS.	Page I/I

AP	EX	Ape: 3015 Portl	x Cor SW and,	mpanie First / Orego	Boring Number: B-6 Project Number: 1569-05 Logged By: J. Mattecheck Date: October 27, 2015	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Site Conditions: Drilling Contractor: Cascade Drilling Drilling Equipment: Track-Mounted Push Probe Sampler Type: Push Probe Depth to Water (ATD): 19.5' Surface Elevation: Temporary Screen Details and Notes:
	Hand Auger			,	Grass/organics. Silty CLAY; light brown, slightly moist, low plasticity, trace fine sand (<10%), stiff.	- — — — — — — — — — — — — — — — — — — —
— — — — ——————————————————————————————			NS NS NS	47 530 68I	– Becomes light gray.	
 - 15			NS NS	46I 800 -	– Becomes moderately plastic.	
20—		W	MS MS MS	507 675 690	- Becomes moist to wet, medium stiff. - Becomes wet.	
25—			NS NS MS	272 182 784	SAND; light gray, wet, coarse to fine-grained, well graded, medium dense.	25
30			MS NS MS	793 122 800	– Becomes slightly moist.	
35—			LS NS NS	240		
_			NS	<5		Page 1/2

						Additional Commitment Investigation Depart	Boring Number:	B-6
		Ape:	x Cor	npaní First	es, LLC Avenue	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal	Project Number: 1569-0	
ΑP	ĒΧ	Portl	and,	Orego	on 97201	Vancouver, Washington		
' ''			,	0		rancourer, mashington	Logged By: J. Mattech	
	_						Date: October 27, 20	15
							Site Conditions:	
	_						Drilling Contractor: Caso	
) Se							k-Mounted Push Probe
	Sec	l dd					Sampler Type: Push Pro	bbe
	al/R	San					Depth to Water (ATD): 1	9.5'
feet	ter	Š.					Surface Elevation:	
-£`	<u> </u>	ratc	_		1 7.1			
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithe	ologic Description	Temporary Screen	Details and Notes:
			S	Д				
			N IC	10				
_	1		NS	12				
-	ł		NS	23			_	
_							<u> </u>	
<u> </u>			NS	8				
4.5							45	
45	1				No rec	overy; sampler pushed too far.	45	
-	1					over, y campion passion too iam		
_							<u> </u>	
l _							L	
-	1							
50	ł						50	
_			NS	<5				
	1		NS	<5				
-	1	W					<u> </u>	B-6 (2) (Water Sample
_	ŀ		NS	<5			<u> </u>	
55—							 55	
			N IC	_				
_	1		NS	<5				
-	ł							
_			NS	<5			F	
l _				_	Angula	ar to subangular GRAVEL with trace silt; light brown/gray,		
			NS	<5		parse-grained, dense.	4.0	
60-	1					g. a.m. e.g., a.em. e.g.	 60	
-	ł		NS	< 5			\vdash	
_			NS	<2			_	
l _		w	CNI	<5			L	B-6 (3) (Water Sample
		""	NIC	_				= = (o) (aici sampie
_	1		NS	<5				
65—	1						65	
l –					Botton	n of Boring at 65.0' BGS.	\vdash	
l _							L	
_	1							
-	1						\vdash	
70-								
_								
-	1							
-	1						\vdash	
l –							L	
75							75	
/5							75	
-	1							
-	1						\vdash	
_							L	
_							L	
							•	Page 2/2
I								i age 2/2

_		Ape	c Con	npanie	s. LLC	Additional Groundwater Investigation Report	Boring Number:	B-7
		3015	SW	First /	s, LLC Avenue	luStar Terminals Operations Partnership, L.P Annex Terminal	Project Number: 1569-	05
API	=X	Portl	and, (J rego	n 9720I	Vancouver, Washington	Logged By: J. Mattech	
							Date: October 28, 2	015
							Site Conditions:	
	>	_					Drilling Contractor: Cas	cade Drilling
	ver						Drilling Equipment: Trac	ck-Mounted Push Probe
	Seco	nple					Sampler Type: Push Pr	obe
	/al/F	San					Depth to Water (ATD):	22.5'
feet	iter	ory					Surface Elevation:	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Litholo	ogic Description	Temporary Screen	Details and Notes:
					SILT with t	race gravel.		
\dashv						; light brown, slightly moist, low plasticity,		
-	Hand Auger				medium st	iff to stiff.	_	
\dashv	and ,							
	エ							
_					— Becomes	ctiff	_	
5—					- Decomes	ouii.	5	
\exists			NS	<5				
\dashv	Н		NS	_				
\dashv	/		143	<5			_	
	/							
10—			NS	<5			10	
							10	
\exists	Ħ		NS	< 5				
\dashv								
-	/		NS	<5				
	$\parallel \parallel \parallel$		NS	_				
15—	Ш		INS	<5			<u> </u>	
			NS	<5				
	/		N IC	_	— Becomes	moderately plastic.		
\dashv	$\parallel \parallel \parallel$		NS	<5				
-	$\parallel \parallel$		NS	<5			_	
20—	Щ						20	
	1 /		NS	< 5				
	\parallel / \parallel		1 13	\				
	\parallel / \parallel		NS	<5	— Becomes	wet.		
\exists	$\parallel \parallel \parallel$	W						B-7 (1) (Water Sample
\dashv	$\parallel \parallel$		NS	<5				
25—	Щ						25	
			NS	< 5				
				.5			L	
\neg			NS	<5				D = (2) (1) (1)
\exists	$\parallel \parallel \parallel$	W		İ	SAND: ligh	nt gray, wet, coarse to fine-grained, well graded,		B-7 (2) (Water Sample
\dashv			NS	<5	medium de	ense.		
30—				-			30	
					Bottom of	Boring at 30.0' BGS.		
_]								
\exists								
\dashv								
35—							 35	
\perp								
_								
\exists								
\dashv								
								Page 1/1

_		Apex	c Con	npaníe	s, LLC Additional Groundwater Investigation Report	Boring Number: B-8
	-\/	3015	SW	First /	venue NuStar Terminals Operations Partnership, L.P Annex Termin	
API	ΞX	Porti	and, (J rego	97201 Vancouver, Washington	Logged By: J. Mattecheck
						Date: October 28, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	ver,	\Box				Drilling Equipment: Track-Mounted Push Probe
	eco	ple				Sampler Type: Push Probe
	al/R	Sam				Depth to Water (ATD): 18'
eet	ervi	<u>></u>				Surface Elevation:
, +,	프	rato	_			
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
					Grass/organics.	,
	b				Silty CLAY; light brown, slightly moist, low plasticity,	
\dashv	Auge				stiff to medium stiff.	-
_	Hand Auger					_
_						
5—	\prod		NS			
\dashv			CNI	<5		
\dashv	Ш					
	/		NS	<5		
_						
	$\parallel \parallel$		NS	<5		
10—	Ш					<u> </u>
\dashv	Н		NS	<5		
-				-	Trace fine sand (<10%).	
	/		NS	<5	,	
	$\parallel \parallel \parallel \parallel$					
	$\parallel \parallel$		NS	<5		
15	Н					├─ I5
-			NS			<u> </u>
	/			<5		
	$\parallel / \parallel \parallel$	w	NS	<5	Becomes wet.	B-8 (I) (Water Sample)
	$\parallel \parallel \parallel$	VV			Becomes wet.	b-o (1) (vvater sample)
	$\parallel \parallel$		NS	<5		
20—	Н					20
\dashv			NS	< 5		\vdash
	\parallel / \parallel			()		
	$\parallel / \parallel \parallel$	١٨/	NS	<5	SAND; light gray, wet, coarse to fine-grained, well graded,	B-8 (2) (Water Sample)
	$\parallel \parallel \parallel$	W			medium dense to dense.	b-8 (2) (Water Sample)
\dashv	$\ \ $		NS	<5		F H
25—	\sqcup					25
\dashv					Bottom of Boring at 25.0' BGS.	_
						Γ
-						
30—						
_						_
]						
\dashv						
-						
35—						 35
						Γ
\dashv						
\dashv						<u> </u>
						Page 1/1

API	ΕX	Ape 3015 Portl	Cor SW and, G	npanie First / Orego	es, LLC Avenue on 97201	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: B-9 Project Number: 1569-05 Logged By: C. Clough Date: October 29, 2015			
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lith	ologic Description	Site Conditions: Drilling Contractor: Casc Drilling Equipment: Tracl Sampler Type: Push Pro Depth to Water (ATD): 1 Surface Elevation: Temporary Screen	k-Mo obe 16'	unted Push Probe	
	Hand Auger									
5— — —			NS	< 5	Silty C	LAY; light brown, slightly moist, medium stiff.	5 _ _ _			
10	<u> </u>		NS NS	<5 <5			10 10			
_ _ I5—	4		NS	< 5		nes slightly moist to moist.				
		W	NS SS	9 420 359		nes light gray, sand increasing.			B-9 (1) (Water Sample)	
20—			NS NS	205			20 			
25— —	<u> </u>		SS SS	I,I52 437	Sandy	SILT; light gray.	— 25 —			
30—	<u> </u>		NS NS	2I 45	— Becor	nes fine sand.				
_ _ _ 35—			NS	9	— Becor	nes light brown.	 35			
— — —		W	NS NS	<5 <5	Silty S	AND; light brown, wet.			B-9 (2) (Water Sample)	
_			CVI	<3					Page 1/2	

						Additional Communication Investigation December	Boring Number:	B-9
		Ape:	x Cor	npaní First	es, LLC Avenue	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal	Project Number: 1569-0	
AP	ΕX	Port	land,	Orego	on 97201	Vancouver, Washington	Logged By: C. Clough	
						• •	Date: October 29, 20	115
	Г						Site Conditions:	
							Drilling Contractor: Caso	odo Drilling
	<u>></u>							
	8	 =						k-Mounted Push Probe
	Rec	l dm					Sampler Type: Push Pro	
l +-	val/	S					Depth to Water (ATD): 1	6'
fee	nter	for					Surface Elevation:	
oth,	<u>و</u>	ora	G L		Lith	ologíc Description	T	D . 1 I.M .
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Littin	ologic Description	lemporary Screen	Details and Notes:
	 							
_			NS	<5			_	
<u> </u>] /							
	\parallel / \parallel							
-	11/		NS	<5				
-								
45—	Щ						 45	
_	/		NS	<5				
	/							
_	11 / 1							
-	/	W						B-9 (3) (Water Sample
_	/		NS	<5			<u> </u>	
50-							 50	
					Bottom	n of Boring at 65.0' BGS.		
	1					•		
_	1							
-	-						_	
l –							_	
55—							 55	
] 55—								
-	1							
_	ł						—	
_							_	
l _								
60—	1						 60	
-	l							
-	ł						_	
_							L	
_							L	
							(5	
65—	1						 65	
-	1						<u> </u>	
-							H	
_							L	
							L	
70-	1						70	
-							<u> </u>	
_							L	
_							L	
							L	
-	1							
75	1						 75	
-							H	
_							L	
_							L	
-	1							
				I	1		1	D 3/3
l								Page 2/2

	_	Ape	v Cor	nnaní	s, LLC Additional Groundwater Investigation Report	Boring Number: B-10
		3015	SW	First	Avenue NuStar Terminals Operations Partnership, L.P Annex Terminal	Project Number: 1569-05
AF	PEX	Portl	and, (Orego	vancouver, Washington	Logged By: C. Clough
						Date: October 22, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	ver)					Drilling Equipment: Track-Mounted Push Probe
	eco	ple				Sampler Type: Push Probe
	al/R	Sam				Depth to Water (ATD): 17'
set	erv	>				Surface Elevation:
, H.	l =	rato	_			
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
					Grass surface and some gravel.	
_	1 5					
_	Auger					<u> </u>
_	land					
_						
_						
5—	117					
_	$\parallel \parallel$		NS	< 5	Silty CLAY: light brown, clightly maint, madium atiff	 -
_	$\parallel \parallel \parallel$		1/1/2	<2	Silty CLAY; light brown, slightly moist, medium stiff.	<u> </u>
_	41/1					
	$\parallel \parallel \parallel \parallel$		NS	<5		
	7/ [
10-	+		NS	< 5		<u> </u>
_	$\parallel \parallel \parallel$		143	()		-
_	41/1					
	$\parallel \parallel \parallel \parallel$		N IC	_		
	11/ 1		NS	<5	— Becomes moist.	
_	1/					<u> </u>
15-	+					<u></u> 15
_	41 /		NS	6		
] /				— Pagamag gray wat	
	\parallel / \parallel				— Becomes gray, wet.	
_	11/1	W	NS	41		B-IO (I) (Water Sample)
_	$\parallel \parallel \parallel$				— Trace sands.	h 🗏
20—	+					<u></u> — 20
_	4111					
			N IC	E.4		
_	٦Щ		NS	54		
_	1 /		NS	49	— Sand increasing.	<u> </u>
-	$\parallel \parallel / \parallel$					<u> </u>
25—	4/4		NS	94		25
_] /				Silty CLAY with sand; light brown, wet, medium stiff.	L
	$\parallel \parallel \parallel$					
	11/1		NS	14		
_						<u> </u>
_	$\parallel \parallel \parallel \parallel$					I
- -					 Sand increasing. 	
- - - 30			NS	< 5		30
- - 30—			NS	<5	— Sand increasing. Silty SAND; light brown, wet, loose.	30
- 30—			NS NS	<5 <5		30
- - 30— - -						30
30			NS	< 5	Silty SAND; light brown, wet, loose.	30
30						30
- - -			NS	< 5	Silty SAND; light brown, wet, loose.	
			NS NS	<5 I2 II	Silty SAND; light brown, wet, loose.	
- - -			NS NS	<5 I2	Silty SAND; light brown, wet, loose.	
- - -			NS NS NS	<5 I2 II	Silty SAND; light brown, wet, loose.	
- - -		w	NS NS	<5 I2 II	Silty SAND; light brown, wet, loose.	
- - -		W	NS NS NS	<5 I2 II	Silty SAND; light brown, wet, loose.	
- - -		W	NS NS NS	<5 I2 II	Silty SAND; light brown, wet, loose.	

API	ΕX	Ape 3015 Portl	x Cor SW and,	npanie First Orego	Boring Number: B-11 Project Number: 1569-05 Logged By: C. Clough		
						Date: October 30, 2015	
						Site Conditions:	
	ery					Drilling Contractor: Cascade Drilling Drilling Equipment: Track-Mounted Push Probe	
	SCOV	ole l				Sampler Type: Push Probe	
	al/Re	Samp				Depth to Water (ATD): 15'	
feet	ıterv	ory .				Surface Elevation:	
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:	
	Auger						
_	Hand A						
_	H ²						
5							
_			NS	<5	Silty CLAY; light brown, moist, medium stiff.		
_							
	\parallel / \parallel						
_	$\parallel \parallel \parallel$		NS	< 5			
10	Щ					— IO	
_	Щ		NS	<5			
_	/				— Becomes medium gray.		
_	$\ /\ $		NS	<5	— Moisture increases.		
_	$\parallel \parallel \parallel$		SS	45			
15	Щ		33	15		— I5	
_			NS	35	SILT with fine sand; dark gray, wet, medium stiff.		
_			1 13				
_	\parallel / \parallel					_	
_	$\parallel \parallel \parallel$		SS	16		_	
20-	Н				— Becomes loose.	20	
_			NS	18			
_	\parallel / \parallel						
_	$\parallel \parallel \parallel$	W	NS	5		B-II (I) (Water Sample)	
_	$\parallel \parallel \parallel$		1/13	ر			
25	Н		NS	< 5		<u>25</u>	
_			145	1.5			
_	$\ / \ $				— Becomes light brown, moist.		
_	$\parallel \parallel \parallel$		NS	< 5			
_	$\ \cdot\ $						
30—	\vdash				Silty SAND; light brown, moist.	30	
_			NS	<5			
_	$\ / \ $		NS	< 5	— 4-Inch coarse sand lens.		
_	$\parallel \parallel \parallel$						
_			NS	<5	— Becomes wet.		
35	\vdash		NS	<5		35	
	$\ / \ $						
		W	NS	< 5		B-II (2) (Water Sample)	
						Page 1/2	

AP	EX	Ape: 3015 Portl	x Cor SW and,	npaní Fírst Orego	es, LLC Avenue on 97201	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: Project Number: 1569-05 Logged By: C. Clough Date: October 30, 2015	B-11
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Líthe	ologíc Descríptíon	Site Conditions: Drilling Contractor: Cascac Drilling Equipment: Track-N Sampler Type: Push Probe Depth to Water (ATD): 15' Surface Elevation: Temporary Screen De	Mounted Push Probe
45— 45— 50— 55— 70— 75— 75— 75— 75—		W	NS NS	<5 <5	Bottom	n of Boring at 45.0' BGS.		B-II (3) (Water Sample)
								Page 2/2

API	EX	Apex 3015 Portl	Con SW and. (npaníe Fírst / Orego	, LLC Additional Groundwater Investigation Report venue NuStar Terminals Operations Partnership, L.P Annex 7 97201 Vancouver, Washington	Froject Number: 1569-05
/~\ -\		10111	uria, v	01080	valicouver, washington	Logged By: C. Clough Date: October 30, 2015
						Site Conditions:
						Drilling Contractor: Cascade Drilling
	/ery					Drilling Equipment: Track-Mounted Push Probe
	eco	ple				Sampler Type: Push Probe
	al/R	Sam				Depth to Water (ATD): 17'
feet	terva	ory ,				Surface Elevation:
th,	Core Interval/Recovery	orato	СП		Lithologic Description	
Depth, feet	Cor	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
	ger					
	Hand Auger					
	Han					
_						
5—				}	Silty CLAY to clayey SILT with sand; light brown, dry to slig	5
-			NS	<5	moist, stiff.	-
-	\parallel / \parallel					-
_	$\parallel \parallel \parallel$					-
_	$\parallel \parallel \parallel$		NS	<5		-
10-	Щ					<u> </u>
_	Ш					
	/		NS	<5		
	\parallel / \parallel					
	\parallel / \parallel		NS	<5	B	
	$\parallel \parallel$				– Becomes moist.	
15	\Box					<u> </u>
-	/		NS	<5		
-	\parallel / \parallel				 Becomes wet, sand increasing. 	
_	$\parallel \parallel \parallel$	W	NS	<5		B-12 (1) (Water Sample)
_	$\parallel \parallel \parallel$		NS	44	– Becomes light to dark gray.	F
20—	\vdash			}	Silty SAND; dark gray, wet, loose.	20
-	/		NS	77	Silly SAIND, dark gray, wel, loose.	<u> </u>
_	\parallel / \parallel		NC	_		<u> </u>
_	\parallel / \parallel		NS	<5	Becomes coarse sand, light brown,.	<u> </u>
_	$\parallel \parallel \parallel$		NS	< 5		_
25—	Щ		145			 25
	/					
			NS	<5	SAND with silt; dark gray, wet, dense.	
_!	$\ / \ $					
	$\parallel \parallel \parallel$		NS	<5		
	$\parallel \parallel$					
30			NS	<5		
_						
_	$\ / \ $					-
-	$\parallel \parallel \parallel$		NS	< 5		-
-	$\parallel \parallel$. ,5			-
35—	Н					
_			NS	<5		\vdash
_	$\parallel \parallel$					L 🗏
	$\ /\ $	w				B-12 (2) (Water Sample)
	$\parallel \parallel \parallel$	۷۷	NS	<5		
	$\parallel \parallel$					Г
						Page 1/2

		Ape	x Cor	npani	es, LLC Avenue	Addítíonal Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal	Boring Number: Project Number: 1569-05	B-12
AP	ΕX	Port	land,	Orego	on 97201	Vancouver, Washington		
/ \			,	- 0		vancouvel, vvasinington	Logged By: C. Clough	
							Date: October 30, 2015	
							Site Conditions:	
	_ <						Drilling Contractor: Cascade	
	Se						Drilling Equipment: Track-Mo	ounted Push Probe
	Şec	힐					Sampler Type: Push Probe	
	'al/F	San					Depth to Water (ATD): 17'	
feet	te)r					Surface Elevation:	
ŧ,	<u>-</u>	ratc	=		1.51.	Justa Dunatari		
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Litne	ologic Description	Temporary Screen Det	ails and Notes:
			0,	Δ.				
l _]] /		NS	<5				
	/							
_	11 / 1							
-	/	W	NS	< 5			H E	B-12 (3) (Water Sample)
_	/		143	()			- =	
45							<u> </u>	
'					Botton	n of Boring at 45.0' BGS.	7.5	
_	1					 		
_	1							
-	-						_	
l _							_	
F0								
50—								
-	1						_	
_ _	ł						-	
_	-						_	
l _								
55—	1							
-	1						_	
_	l						_	
_								
60-							60	
-	ł						-	
_							_	
l _								
_]							
65—	1						 65	
-	1						<u> </u>	
-							<u> </u>	
_							L	
_	1							
70-	1							
-							H	
_							_	
							L	
_								
-	1							
75							 75	
_							<u> </u>	
_							L	
							L	
_								
-	1							
					l		<u>I</u>	D 2/2
I								Page 2/2

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

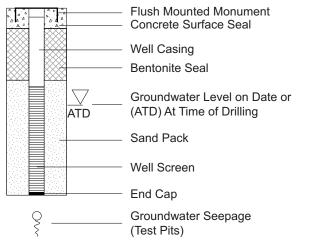
Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

SAND and GRAVEL	Standard Penetration Resistance	SILT or CLAY	Standard Penetration Resistance	Approximate Shear Strength
<u>Density</u>	<u>in Blows/Foot</u>	<u>Density</u>	<u>in Blows/Foot</u>	<u>in TSF</u>
Very loose Loose Medium dense Dense Very dense	0 - 4 4 - 10 10 - 30 30 - 50 >50	Very soft Soft Medium stiff Stiff Very Stiff Hard	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0

Moist	ure	Minor Constituents	Estimated Percentage
Dry	Little perceptible moisture.	Not identified in description	0 - 5
SI. Moist	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Sampling Symbols


BORING AND PUSH-PROBE SYMBOLS

	Recovery
	No Recovery
	Temporarily Screened Interval
PID	Photoionization Detector Reading
W	Water Sample
NS	No Sheen
SS	Slight Sheen
MS	Moderate Sheen
HS	Heavy Sheen
BF	Biogenic Film

TEST PIT SOIL SAMPLES

Grab (Jar)
Bag
Shelby Tube

Groundwater Observations and Monitoring Well Construction

Key to Exploration Logs

2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Project Number 1569-05 Figure

August 2016 Key

API	EX	Ape: 3015 Portl	x Con SW and, (npanío Fírst Orego	2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: B-13 Project Number: 1569-09 Logged By: J. Mattecheck Date: July 7, 2016
						Site Conditions: Overcast
	>					Drilling Contractor: Cascade Drilling
	over					Drilling Equipment: Geoprobe
	Reco	mple				Sampler Type: 5' Push Probe
↓	val/	Sar				Depth to Water (ATD): 15.5'
, fee	nter	tory				Surface Elevation: Not Measured
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Temporary Screen Details and Notes:
_			NS	< 5	Grass/topsoil surface.	
_					SILT; light brown (7.5YR 6/3), dry, medium stiff.	
	<u> </u>		NS	<5	oler, light brown (1.6 fft 6/6), dry, modium ouiii.	
	Auger		NS	< 5		
_	Hand		143	13		
5—			NIC	_		5
			NS	<5	Silty CLAY; light brown (7.5YR 6/3), slightly moist, medium stiff.	
			NS	< 5		<u> </u>
-	\mathbb{H}				— Becomes gray (7.5YR 5/1). — Becomes light brown (7.5YR 6/3).	
-	$\ /\ $		NS	<5		<u> </u>
10-	Щ				Becomes medium stiff to soft.	<u> </u>
_	/		NS	< 5		
_	\parallel / \parallel					
	\parallel / \parallel		NS	< 5		
	$\parallel \parallel \parallel$		N IC	< 5		
l	$\parallel \parallel$		NS	ζ)	Name of the state	
15	\Box				─ With trace fine sand, medium stiff to soft.─ Becomes wet.	─ I5 <u>∨</u>
	/		NS	<5		
-	\parallel / \parallel	w	NS	< 5		B-13 (1) (Water Sample)
-	\parallel / \parallel	VV	143	13		=
-	$\parallel \parallel \parallel$		NS	<5		
20-	Щ					<u> </u>
_	/		NS	< 5		
	$\parallel \parallel$					
	\parallel / \parallel		NS	<5		
	$\parallel \parallel \parallel$			_		_
	$\parallel \parallel$		NS	<5	Silty CLAY with fine sand; brown (7.5YR 4/8), wet, medium stiff to stiff.	
25—					to dan.	25
	/		NS	<5		
	$\parallel \parallel \parallel$	W	NS	< 5		B-13 (2) (Water Sample)
-	$\ /\ $	۷V	1 10	,,		- Sis (2) (Water Sample)
-	$\parallel \parallel \parallel$		NS	<5	Fine SAND with trace silt; gray (7.5YR 5/1), wet, poorly graded,	+ =
30-	Ш				dense.	30
_					Bottom of Boring at 30.0' BGS.	
35—						
						<u> </u>
-						-
-						<u> </u>
						Page 1/1

API	EX	Ape: 3015 Portl	x Con SW and, 0	npaní Fírst Orego	es, LLC Avenue on 97201	2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: B-14 Project Number: 1569-09 Logged By: J. Mattecheck Date: July 7, 2016
							Site Conditions: Overcast
							Drilling Contractor: Cascade Drilling
	very						Drilling Equipment: Geoprobe
	eco	ple					Sampler Type: 5' Push Probe
	al/R	Sarr					Depth to Water (ATD): 15.7'
feet	iterv	ory					Surface Elevation: Not Measured
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lith	ologic Description	Temporary Screen Details and Notes:
			NS	<5	SILT; I	ight brown (7.5YR 6/3), dry, medium stiff.	
			NS	<5			
	uger		NS	<5			
_	Hand Auger		NS	< 5			<u> </u>
5	뿐		NS	<5			
_			1/13	()			
_			NS	<5	SILI W	vith clay; light brown (7.5YR 6/3), slightly moist, medium stiff.	<u> </u>
_	Щ		NS	<5			
	\parallel / \parallel						
10-			NS	<5			IO
10	П		NS	6			
	\parallel / \parallel		NS	6			
	\parallel / \parallel		113	Ü			
_	\parallel / \parallel		NS	6	SILTW	vith clay and fine sand; light brown (7.5YR 6/3),	+
_	$\parallel \parallel \parallel$		NS	6	slightly	moist, medium stiff to soft.	F
15	Н						<u></u>
_			NS	<5	- Becor	mes wet.	
_	\parallel / \parallel		NS	<5			L H
	\parallel / \parallel	W	NS	<5			B-14 (1) (Water Sample)
	$\parallel \parallel \parallel$						
	$\parallel \parallel$		NS	<5			
20-			NS	<5			20
	\parallel / \parallel		NS	<5	SILT w	ith clay and poorly graded fine sand; light brown (7.5YR 6/3)	
_	\parallel / \parallel		IND	<2		moist, wet.	-
_	\parallel / \parallel		NS	<5			F
-	$\parallel \parallel \parallel$		NIC	_			<u> </u>
25—	Щ		NS	< 5			<u>25</u>
	/		NS	<5			L A
	$\parallel \parallel$		NS	<5			L 🗏
	$\ / \ $	W	NS	<5			B-14 (2) (Water Sample)
	$\parallel \parallel \parallel$		CVI	,,,	Casses	o to fine SAND: grov (7 EVD E/4) was well are ded	
	$\parallel \parallel$		NS	<5	dense.	e to fine SAND; gray (7.5YR 5/1), wet, well-graded,	
30-						n of Boring at 30.0' BGS.	30
					Dotton	1 of Borning at 60.0 BGO.	
							<u> </u>
-							<u> </u>
-							<u> </u>
35—							
							Page I/I
							1 agc 1/1

						I · · ·							
					PROJECT:	BORIN							
					Additional Soil and Groundwater Investigation	B-15							
					LOCATION:	WELL I	D:						
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA							
3	(Cas	CC	adic	DRILLING CONTRACTOR:	NORTHING:					EASTING:		
7	A	Associ	ates	, LLC	NuStar Vancouver Annex Facility						24		
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):		C ELEVA	ATION:	
					Hand Auger	Not	meası	ıred		N	Α		
					DRILLING METHOD:		DEPTH	l:		DE	PTH TO	WATER:	
					Direct-Push	10				N	ot enc	ountered	
LOGGE	LOGGED BY:				SAMPLING METHOD:	1	STARTE	D:				PLETED:	
					1.25-Inch Single Tube Sampler	1/31				1,	/31/19		
Elev. (feet)	USCS Graphic Log				Description	Driven/Rec. (ft.)	Driven/Rec. (ft.) Headspace Vapor (ppm) Sheen Soil				Sample Depth	Notes	
0	N	ML			Clayey SILT with trace fine sand, brown, slightly moist, stiff.			,,o					
	N	ML			Fine sand increasing, becomes moist.	2.0/2.0	<5	NS					
2 -		ML			Clayey SILT with sand, brown, wet, medium stiff.	2.0/2.0	<5	NS					
4 -	N	ML			Clayey SILT with trace sand, brown, moist, stiff. Becomes medium stiff.	2.0/2.0	< 5	NS					
6 -		_											
8 -	N	ML				2.0/2.0	<5	NS					
- 10		ML			Becomes wet.	2.0/2.0	<5	NS					

					PROJECT:	BORING	G ID:								
					Additional Soil and Groundwater Investigation	B-16	i								
					LOCATION:	WELL I	WELL ID:								
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA									
7	Cas	SC	ad	lia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:				
1	Assoc				NuStar Vancouver Annex Facility										
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	TOO	CELEVA	TION:			
					Hand Auger		measu		/-	N	Α				
					DRILLING METHOD:	TOTAL	DEPTH			DEI	PTH TO	WATER:			
					Direct-Push	10				N	ot enc	ountered			
LOGGE	D BY:				SAMPLING METHOD:	DATE S	STARTE	D:		DAT	ГЕ СОМІ	PLETED:			
LW					1.25-Inch Single Tube Sampler	1/30/				1/	/30/19				
Elev. (feet)	nscs		Graphic	ĥ	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes			
0		П	П	П	Clayey SILT, with trace fine sand, brown with		>								
-	ML				grey mottles, slightly moist, stiff.	2.0/2.0	<5	NS							
2 -					Becomes moist.	0.0/0.0	<5	NS							
4	ML					2.0/2.0	<5	NS	B-16 ((1)					
•					Clayey SILT, with trace fine sand, gray, wet, stiff.	2.0/2.0	100	MS							
6 -							120	MS	B-16 ((2)					
-	ML					2.0/2.0	112	MS							
8 -							61	MS							
-						2.0/2.0	10.7	NS							
10		ш	ш	ш					l						

					PROJECT:	BORIN	G ID:							
					Additional Soil and Groundwater Investigation	B-17								
					LOCATION:	WELL I	D:							
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA								
45	C ~	00	~ ~	1:~		NORTHING: EASTING:								
1	Ca	SC	(۱	סוג	NuStar Vancouver Annex Facility					LACTING.				
	A350	Liuie	5, L	LC	DRILLING EQUIPMENT:			TOC ELEVATION:						
					Hand auger to 8', Geoprobe 7730 to depth	SURFA	CE ELE	V. (NAV	'D88):					
					DRILLING METHOD:		Not measured NA TOTAL DEPTH: DEPTH							
					Direct-Push	55	DLI III					WATER: ountered		
0005	.D. D./													
_ogge LW	D BA:				SAMPLING METHOD: 2.25-Inch Single Tube Sampler	DATE STARTED: 1/31/19				l	те сомі / 31/19	PLETED:		
					2.25-inch Shigle Tube Sample					1.	131/19			
Elev. (feet)	nscs		Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes		
0		Ш	П	П	Clayey SILT, with trace fine sand, brown, slightly									
	ML	$\ \ \ $			moist, medium stiff.	2.0/2.0	< 5	NS						
	IVIL	$\ \ \ $				2.0/2.0	-5	110						
2 -		\mathbb{H}	\coprod	+	Documentiff				-					
	ML	$\ \ \ $			Becomes stiff.									
_		H	+	+	Clay increasing, becomes moist.	2.0/2.0	<5	NS						
			Ш	Ш	Clay moreasing, secomes molec.									
4 -			Ш	Ш					1					
	ML		Ш	Ш		2.0/2.0	<5	NS						
			Ш	Ш		2.0/2.0	\3	143						
6 -		Ш	Ш	Ш					_					
	ML		Ш	Ш	Clayey SILT, with fine sand, gray/brown, moist, stiff.									
=		Н	+	+	Becomes slightly moist, medium stiff.	2.0/2.0								
	ML		Ш	Ш	Decomes siightiy moist, medidin stiir.		<5	NS						
8 -		ш	Ш				10							
						0/1.5								
								NS						
10 -	ML	Ш	Ш	Ш	Clayey SILT, with fine sand, brown, slightly	0.5/0.5		INO						
10	ML		Ш	Ш	moist, medium stiff. Becomes moist.	_	<5							
_		Ш	+	+		-		NS						
	ML		Ш	Ш	Clayey SILT, with fine sand, brown, moist, medium stiff.									
12 -		H	+	+	Fine sand increasing, becomes wet.	+	<5		B-17	(1)	\boxtimes			
		$\ \ \ $, 2223	5.0/5.0								
_	ML	$\ \ \ $						NS						
14 -	IVIL	$\ \ \ $					<5							
1-7		$\ \ \ $.5							
=		\mathbb{H}	+	+	Clayou CILT with fine cond grow wat maditions			MS						
		$\ \ \ $			Clayey SILT, with fine sand, gray, wet, medium stiff.				B-17	(2)	\square			
16 -		$\ \ \ $					377		1					
	ML	$\ \ \ $												
_		$\ \ $	$\ \ $			5.0/5.0		MS						
18 -		Ш	Ш	\coprod		5.0/5.0	350							
10					Clay increasing, becomes stiff.		330							
_	ML	$\ \ \ $						MS						
		$\ \ \ $					340							
20 -		\mathbb{H}	+	+	Clayey SILT, with fine sand, gray, wet, medium				-					
		$\ \ \ $			stiff.									
_		$\ \ $		_			141	MS						

						PROJECT:	BORIN	G ID:						
						Additional Soil and Groundwater Investigation	B-17							
						LOCATION:	WELL I	D:						
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA							
45	Ca	90	<u> </u>	٦i	C		NORTH	HING:			EASTING:			
1	Asso	ciate	es,	LLC	u	NuStar Vancouver Annex Facility								
						DRILLING EQUIPMENT:	SLIDEA	CE ELE	:\/ (NIA\/	/D88)-	TOC ELEVATION:			
						Hand auger to 8', Geoprobe 7730 to depth	SURFACE ELEV. (NAVD88): Not measured					NA		
						DRILLING METHOD:	TOTAL	DEPTH	l:		DEPTH TO WATER:			
						Direct-Push	55				N	lot enc	ountered	
LOGGE	D BY:					SAMPLING METHOD:		STARTE	D:		l .		PLETED:	
LW						2.25-Inch Single Tube Sampler	1/31		1	T	1.	/31/19		
Elev. (feet) USCS Graphic Log				Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes	
22 -	ML	П		П										
							5.0/5.0							
-								13.7	NS					
24 -														
24 -	ML		П	\prod		Increasing clay, becomes stiff.]				
-		\parallel	\parallel	${f H}$	${\mathbb H}$	Becomes brown.								
					Ш	Decomes brown.		31	NS					
26 -	ML				Ш									
_		\perp	Ц	Ц	Ц									
	ML				Ш	Increasing sand.	5.0/5.0							
28 -		H	H	H	Н	Sandy SILT with clay, brown, wet, medium stiff.	-	5.1	NS					
		Ш			Ш	,								
30 -					Ш			4.1	NS					
					Ш									
_	ML				Ш					-				
32 -	IVIL				Ш									
					Ш		5.0/5.0	25.8	NS					
-					Ш									
34 -														
) 34 ⁻														
-					-	SAND with silt, gray, wet, medium-grained,		26.6	NS					
						medium dense.								
36 -										1				
_								49.1	NS					
	SM						5.0/5.0							
38 -										-				
_														
								6.7	NS					
40 -						SAND with silt, gray, wet, medium-grained,								
	0.4					medium dense.								
_	SM									1				
42 -						Pagaman agarage wastawial	-	18	NS					
	SM					Becomes coarser material.	5.0/5.0							
		n:15	111	1:1	i:I	·	1		1	1				

			DDO IFOT	BORIN	0.10									
			PROJECT:											
			Additional Soil and Groundwater Investigation	B-17 WELL ID:										
			LOCATION:											
14	· ~	1.	5420 NW Fruit Valley Rd, Vancouver, WA.	NA NORTHING: EASTING:										
	Ca	scadia	DRILLING CONTRACTOR: NuStar Vancouver Annex Facility	NORTE	IIING:			EASTING:						
	Assoc	ciates, LLC	DRILLING EQUIPMENT:					TO	` EI E\/A	TION:				
			Hand auger to 8', Geoprobe 7730 to depth		CE ELE meas ı	V. (NAV	D88):	TOC ELEVATION:						
			DRILLING METHOD:		DEPTH					NATED.				
			Direct-Push	55	DEFIII	•				WATER: ountered				
1 0005	.D. D.V		SAMPLING METHOD:		STARTE	D.								
LOGGE LW	:א א רו		2.25-Inch Single Tube Sampler	1/31		U.			1 E COMI /31/19	PLETED:				
			2.20 mon onigie rabe dampier					.,	0 17 10					
Elev. (feet)	SOSN	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes				
44 -			SAND with trace silt, grey, wet, coarse-grained, medium dense.		8.3	NS								
46 -					24.5	NS								
48 -	SM			5.0/5.0	6.6	NS								
50 -					0.9	NS								
52 - -			Silt increasing.	5.0/5.0	1.9	NS								
54 -	SM				25.8									

					PROJECT:	BORIN	G ID:								
					Additional Soil and Groundwater Investigation	B-18	3								
					LOCATION:	WELL	D:								
4					5420 NW Fruit Valley Rd, Vancouver, WA.	NA									
43	Cas		70	lic		NORTHING: EASTING:									
1	Assoc	iates	a C	LC	NuStar Vancouver Annex Facility										
					DRILLING EQUIPMENT:	CLIDEA	CE ELE	V. (NAV	D00/-	TOC ELEVATION:					
					Hand auger to 8', Geoprobe 7730 to depth		measi		D00).	N	Α				
					DRILLING METHOD:	TOTAL	DEPTH	l:		DF	DEPTH TO WATER:				
					Direct-Push	55					ountered				
LOGGE	D BY				SAMPLING METHOD:		STARTE	 :D:			PLETED:				
LW	<i>D D</i> 1.				2.25-Inch Single Tube Sampler	1/30					/30/19				
					·	ı.	a Ĉ		4)						
(fee	တ္ပ		hic	5	D	· Ře	spac (pp	٦) ble		ple				
Elev. (feet)	nscs		Graphic	2	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes			
						۵	ΞŠ	0)	0, 0,		, <u> </u>				
0	ML		Ш	Ш	SILT with gravel, brown, slightly moist, medium stiff.		<5	NS							
-		+	$^{\rm H}$	+	Clayey SILT with trace fine sand, brown, slightly	2.0/2.0									
	ML		Ш	Ш	moist, medium stiff.										
2 -			Ħ	Ħ	Clayey SILT with fine sand, gray, slightly moist,		-								
			Ш	Ш	stiff.	2.0/2.0	< 5	NS							
_	ML		Ш	Ш		2.0/2.0	<5	NO							
4 -	IVIL		Ш	Ш											
			Ш	Ш			<5	NS							
_		Ш	Ш	Ш	<u> </u>	2.0/2.0	_								
			Ш	Ш	Fine sand increasing.										
6 -			Ш	Ш			246	MS							
			Ш	Ш											
-			Ш	Ш		2.0/2.0			B-18	(1)	\boxtimes				
	ML		Ш	Ш			455	MS							
8 -			Ш	Ш			-								
			Ш	Ш		2.0/2.0	451	MS							
			Ш	Ш		2.0/2.0	451	IVIS							
10 -		Ш	Ш	Ш											
			Ш	Ш	Becomes moist.										
-			Ш	Ш			356	MS							
			Ш	Ш											
12 -	ML		Ш	Ш											
			Ш	Ш		5.0/5.0	004								
1			Ш	Ш			604	MS							
14 -		Ш	Ш	Ш											
14	ML		Ш	Ш	Becomes wet.				B-18	(2)	\boxtimes				
_		Ш	\parallel	Ш			647	MS	5 .0 ,	(-)					
			Ш	Ш	Clayey SILT with fine sand, gray, wet, stiff.										
16 -			Ш	Ш											
			Ш	Ш											
-			Ш	Ш											
	ML		Ш	Ш		5.0/5.0	376	MS							
18 -			Ш	Ш											
20 -		Ш	Ш	\coprod			431	MS							
20					Clayey SILT with trace fine sand, gray, wet,		-701	1010							
					medium stiff.										
		$\perp \perp \perp$	Ш	\perp											

					PROJECT:	BORIN	G ID:								
					Additional Soil and Groundwater Investigation	B-18									
					LOCATION:	WELL ID:									
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA									
WE	Ca		ا ام		DRILLING CONTRACTOR:	NORTH	IING [.]			EASTING:					
1	Assoc				NuStar Vancouver Annex Facility										
	7 10000		,		DRILLING EQUIPMENT:	OLIDEA	05 51 5	\	D00\	ТО	C ELEVA	TION:			
					Hand auger to 8', Geoprobe 7730 to depth		measi	V. (NAV ıred	D88):		IA				
					DRILLING METHOD:		DEPTH			DEPTH TO WATER:					
					Direct-Push	55				Not encountered					
LOGGE	D BY:				SAMPLING METHOD:	DATE S	STARTE	D:				PLETED:			
LW					2.25-Inch Single Tube Sampler	1/30	/19			1	/30/19				
eet)	w		<u>0</u>			Driven/Rec. (ft.)	Headspace Vapor (ppm)		ole		<u>e</u>				
Elev. (feet)	nscs		Graphic Log		Description	en/F (ft.)	adsp or (p	Sheen	Soil Sample		Sample Depth	Notes			
Ele			ট			Driv	Нея Vap	က်	ဟ ဟ		Ν̈́Δ				
22 -	IVIL	\prod		П											
~~						5.0/5.0	180	NS							
-		\mathbb{H}	+++	\mathbb{H}	Clay increasing.	-		-							
	ML				Ciay ilicitasing.										
24 -	, , , , , , , , , , , , , , , , , , , ,	$\parallel \parallel$	$\dagger \dagger \dagger$	$\dagger \dagger$	Becomes brown.										
_	ML	Ш	Ш	Ш			14.3	NS							
		Ш			Clayey SILT with trace fine sand, brown, wet,		14.0	'							
26 -		Ш			medium stiff.										
		Ш													
-		Ш					<5	NS							
20	ML	Ш				5.0/5.0									
28 -		Ш					<5	NS							
_		Ш					,0								
		Ш					<5	NS							
30 -				: :	SAND with trace silt, brown, wet, medium to										
					fine-grained, medium dense.		13.4	N.C							
							13.4	NS							
32 -	SM														
						5.0/5.0									
-							<5	NS							
24															
34 -					SAND with silt, brown, wet, coarse to										
_					medium-grained, medium dense.		<5	NS							
36 -	SM														
							<5	NS							
						5.0/5.0	~ 5	143							
38 -					December of the state of the st	3.0,0.0									
					Becomes coarser material.										
-	SM						<5	NS							
40															
40 -					SAND with silt, brown, wet, coarse to										
_	SM				medium-grained, medium dense.		<5	NS							
42 -					Becomes finer material.										
				: :		5.0/5.0									

			PROJECT:	BORIN	G ID:		•						
			Additional Soil and Groundwater Investigation	B-18	}								
			LOCATION:	WELL ID:									
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA									
45	Ca	scadia		NORTH	IING:			EASTING:					
1		ciates, LLC	NuStar Vancouver Annex Facility										
			DRILLING EQUIPMENT:	SURFA	CE ELE	\/ (NA\/	D88).	TOC	ELEVA	TION:			
			Hand auger to 8', Geoprobe 7730 to depth	Not	SURFACE ELEV. (NAVE Not measured				4				
			DRILLING METHOD:	TOTAL	DEPTH	:		DEP	тн то	WATER:			
			Direct-Push	55				No	ot enc	ountered			
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DATI	E COM	PLETED:			
LW			2.25-Inch Single Tube Sampler	1/30				1/3	30/19				
Elev. (feet)	SOSO	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes			
44 -	SM				<5 <5	NS NS							
46 -	SM		SAND with trace silt, brown, wet, medium-grained, medium dense	5.0/5.0	<5 <5	NS							
48 -	SIM			5.0/5.0	<5	NS							
52 -	SM		SAND with silt, brown, wet, medium-grained, medium dense.		< 5	NS							
54 -	SW		SAND with trace gravel, brown, wet, coarse to medium-grained, medium dense.	5.0/5.0	< 5	NS							

					PROJECT:	BORIN	G ID:								
					Additional Soil and Groundwater Investigation	B-19									
					LOCATION:	WELL I	D:								
-					5420 NW Fruit Valley Rd, Vancouver, WA.	NA									
42	Cas	ca	٦	ia	DRILLING CONTRACTOR:	NORTHING: EASTING:									
1	Associ	ates.	LL		NuStar Vancouver Annex Facility										
					DRILLING EQUIPMENT:	CLIDEA	OF F1 F	\	D00\.	TOC ELEVATION:					
					Hand auger to 8', Geoprobe 7730 to depth		measi	V. (NAV ired	D00).	N	Α				
					DRILLING METHOD:	TOTAL	DEPTH	 l:		DEI	PTH TO	WATER:			
					Direct-Push	55				17					
LOGGED) BY·				SAMPLING METHOD:		STARTE	:D.			PLETED:				
LW	, 51.				2.25-Inch Single Tube Sampler	1/29	/19				29/19				
et)						ç.	ce T)		(I)						
(fee	nscs)	Description	t.)	spa (pp	_ - 0	_ ldu		pple th	Nistas			
Elev. (feet)	ns	יי ז	Clapille		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes			
		 	, T		CII T with alove and trace fine could brewe	۵	Ι,	0)							
0					SILT with clay and trace fine sand, brown, slightly moist, medium stiff.										
-	ML				Siightly moist, modium sun.	2.0/2.0	<5	NS							
2 -	Ì	Ш	Ħ	П	Clayey SILT with trace fine sand, brown, slightly										
					moist, stiff.	2.0/2.0	<5	NS							
						2.0/2.0	``	110							
4 -	ML														
-						2.0/2.0	<5	NS							
6 -	Ì	$\dagger \dagger \dagger$	Ħ	Ħ	Becomes moist.		-		-						
	ML					2.0/2.0	< 5	NS							
	IVIL					2.0/2.0	\	110							
8 -		+H	\perp	\perp	CII Turith along and fine aread because alimbths		-								
					SILT with clay and fine sand, brown, slightly moist, medium stiff.										
=	ML				moiot, modium otim.	2.0/2.0	<5	NS							
4.0															
10 -	İ	HI	П	Ħ	Clayey SILT with trace fine sand, brown, moist,		-		D 40	(4)					
	ML				medium stiff.		<5	NS	B-19 ((1)	\bowtie				
	IVIL						\	110							
12 -		+H	\perp	\perp	December										
					Becomes wet.	5.0/5.0									
=	ML							NS							
14 -	İ	Ш	П	Ħ	Clayey SILT with trace fine sand, gray, wet,										
					medium stiff.		<5	NS							
								110							
16 -															
-	ML						<5	NS							
						5.0/5.0									
18 -															
							<5	NS							
							``	'10							
20 -	}	$+\!\!+\!\!\!+\!\!\!\!+$	\parallel	+	Clavey SII T with trace fine and gray wat and										
					Clayey SILT with trace fine sand, gray, wet, soft.										
		∐∐					1.2	NS							

						PROJECT:	BORIN	G ID:					
						Additional Soil and Groundwater Investigation	B-19)					
						LOCATION:	WELL I	D:					
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
为子	Cas	SC	ac	dic	ם כ	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
1	Assoc	ate	s, L	LC		NuStar Vancouver Annex Facility							
						DRILLING EQUIPMENT:		CE ELE		D88):		C ELEVA	ATION:
					L	Hand auger to 8', Geoprobe 7730 to depth		measu				Α	
						DRILLING METHOD:		DEPTH	:				WATER:
					4	Direct-Push	55				1		0, 5750
LOGGED LW) BY:					SAMPLING METHOD: 2.25-Inch Single Tube Sampler	1/29	STARTE /19	D:			ге сом / 29/19	PLETED:
					+	2.23-men dingle rube dampler						23/13	
Elev. (feet)	nscs		Graphic	Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -	IVIL		Ш										
			Ш				5.0/5.0						
+		+	$^{\rm H}$	$^{\rm H}$	$^{+}$	Becomes brown and medium stiff.		<5	NS				
24			Ш										
27			Ш										
-			Ш					<5	NS				
200	ML		Ш										
26 -			Ш										
-			Ш					<5	NS				
			Ш				5.0/5.0						
28 -					:	SAND; gray, wet, coarse-grained, medium dense							
	SM							<5	NS				
									''				
30 -						Silty SAND; gray, wet, medium-grained, medium							
						dense.		-5	NC				
								<5	NS				
32 -													
							5.0/5.0						
1								<5	NS				
34	SM												
-								<5	NS				
36													
30													
-								<5	NS				
							5.0/5.0						
38 -					:#	Increasing silt.							
	SM							<5	NS				
40				#	:	Silty SAND; dark gray ,wet, medium-grained,							
						medium dense		<5	NS				
								•	110				
42 -													
	SM						5.0/5.0						

	PROJECT:	BORING	G ID:					
	Additional Soil and Groundwater Investigation	B-19)					
	LOCATION:	WELL I	D:					
	5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
👺 Cascadia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	TING:	
Associates, LLC	NuStar Vancouver Annex Facility							
	DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88)·	TOC	ELEVA	TION:
	Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ired	D00).	N/	4	
	DRILLING METHOD:	TOTAL	DEPTH	:		DEP	TH TO V	NATER:
	Direct-Push	55				17		
OGGED BY:	SAMPLING METHOD:	DATE S	STARTE	D:		DAT	E COMF	PLETED:
LW	2.25-Inch Single Tube Sampler	1/29/				1/2	29/19	
USCS Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
44 -	Silty SAND; dark gray ,wet, medium-grained, medium dense. Becomes dense.	5.0/5.0	<5 <5 <5	NS NS NS				

					PROJECT:	BORIN	G ID:					
					Additional Soil and Groundwater Investigation	B-20)					
					LOCATION:	WELL I	D:					
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
45	Cas	000	٦,	ia	DRILLING CONTRACTOR:	NORTH	HING:			EAS	STING:	
1	Assoc	iates	, LL	C	NuStar Vancouver Annex Facility							
					DRILLING EQUIPMENT:	SLIDEV	CE ELE	\/ (NIA\/	D88/-	TO	C ELEVA	ATION:
					Hand auger to 8', Geoprobe 7730 to depth		meası		D00).	N	Α	
					DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:
					Direct-Push	60						ountered
LOGGE	D BY:				SAMPLING METHOD:	DATE S	STARTE	D:		DA	ГЕ СОМ	PLETED:
LW					2.25-Inch Single Tube Sampler	2/4/1				2	4/19	
Elev. (feet)	nscs		Graphic	D D	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			П	П	SILT with clay and fine sand, brown, slightly							
_				Ш	moist, medium stiff.	2.0/2.0	<5	NS				
	ML			Ш		2.0/2.0		''				
2 -				Ш								
				Ш		0.0/0.0						
				Ш	Clayey SILT with trace fine sand, brown, slightly	2.0/2.0	<5	NS				
4 -				Ш	moist, medium stiff.							
-				Ш								
-	ML					2.0/2.0	<5	NS				
6 -												
_		Ш		Ш		2.0/2.0	<5	NS				
				Ш	Fine sand increasing.			'''				
8 -	ML			Ш								
				Ш		0.0/0.0						
				П	Sandy SILT with clay, gray, slightly moist,	2.0/2.0	<5					
10 -					medium stiff.							
	ML								B-20	(1)	\boxtimes	
-							82.9					
4.0												
12 -				П	Becomes wet.	5.0/5.0		NS	B-20	(2)	\boxtimes	
	ML			Ш		3.0/3.0			D-20	(2)		
				Ш								
14 -		+	H	Н	Clayey SILT with fine sand, gray, wet, soft.	1						
				Ш	, .,		25					
							35					
16 -				Ш								
				Ш								
-	ML			Ш			219	MS				
10						5.0/5.0						
18 -												
							78.5	MS				
20 -		$\parallel \parallel$	$\dagger \dagger$	$\parallel \parallel$	Sandy SILT with clay, gray, wet, soft.							
				Ш								

NOTES: Bottom of boring at 60 feet bgs.

					PROJECT:	BORIN	G ID:					
					Additional Soil and Groundwater Investigation	B-20						
					LOCATION:	WELL	D:					
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
4	Ca	SCI	a c	lic		NORTH	HING:			EA	STING:	
1	Assoc	ciate	s, Li	.C	NuStar Vancouver Annex Facility							
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88).	ТО	C ELEVA	TION:
					Hand auger to 8', Geoprobe 7730 to depth	Not	measi	ured	<i>D00</i>).	N	IA	
					DRILLING METHOD:	TOTAL	DEPTH	l:		DE	PTH TO	WATER:
					Direct-Push	60				N	lot enc	ountered
LOGGE	D BY:				SAMPLING METHOD:	DATE S	STARTE	:D:		DA ⁻	TE COM	PLETED:
LW	ı				2.25-Inch Single Tube Sampler	2/4/				2	/4/19	
Elev. (feet)	nscs		Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -		Ш		П			378	MS				
	ML	$\ \ $				5.0/5.0	310	IVIO				
-	_	$\ \ $										
		$\ \ $										
24 -		$\ \ $					9.4	NS				
_		Ш	Ш	Ш								
					Clayey SILT with fine sand, gray, wet, soft.							
26 -	ML						3.4	NS				
_					SAND with trace silt, dark gray, wet, coarse to	5.0/5.0			-			
28 -	SM				medium-grained, medium dense.	5.0/5.0	6.1	NS				
20	Oivi						0.1	110				
-			##	##	SAND with trace silt, gray, wet, mediumto							
					fine-grained, medium dense.							
30 -	-				ll o		3	NS				
_	SM											
	Oivi											
32 -							1.4	NS				
						5.0/5.0						
-				##	SAND with trace silt, brown, wet, mediumto				1			
34 -					fine-grained, medium dense.		1.6	NS				
J -1							1.0	'\\				
-	SM								-			
36 -	•						<5	NS				
_												
					SAND with trace silt, brown, wet, coarse to	5.0/5.0						
38 -					medium-grained, medium dense.		<5	NS				
	SM											
_							<5	NS	1			
40 -							\	LINO.				
٠,٥					SAND with trace silt, brown, wet,							
_					medium-grained, medium dense.		<5	NS				
4.5												
42 -	•					5.0/5.0						
			:[:[:[:[:	3.0/5.0						

			PROJECT:	BORIN						
			Additional Soil and Groundwater Investigation	B-20						
			LOCATION:	WELL I	D:					
- 14	, _		5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
3	Ca	scadia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
	Assoc	ciates, LLC	NuStar Vancouver Annex Facility DRILLING EQUIPMENT:					TO	C ELEVA	TION
			Hand auger to 8', Geoprobe 7730 to depth	SURFA	CE ELE meas ı	V. (NAV ired	D88):	1	i A	ATION.
			DRILLING METHOD:		DEPTH					WATER:
			Direct-Push	60						ountered
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DA	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	2/4/1				2	/4/19	
eet)	(n	<u>.0</u>		Driven/Rec. (ft.)	Headspace Vapor (ppm)	_	ole		<u>ө</u>	
Elev. (feet)	nscs	Graphic Log	Description	en/F (ft.)	adsb oor (p	Sheen	Soil Sample		Sample Depth	Notes
Ele		Ğ		Driv	Нея Vap		S		ω̈́Ω	
_	SM				<5	NS				
44 -										
-					<5	NS				
40										
46 -			SAND with gravel, dark gray, wet, loose.							
_					<5	NS				
				5.0/5.0						
48 -	8 -									
					<5	NS				
					\3	INS				
50 -										
-					<5	NS				
52 -										
02				5.0/5.0						
-	SW				<5	NS				
- 4										
54 -										
_					<5	NS				
56 -										
					<5	NS				
				5.0/5.0	\ \	110				
58 -										
_										
60										
l										

					PROJECT:	BORIN	G ID:					
					Additional Soil and Groundwater Investigation	B-21						
					LOCATION:	WELL						
						NA	υ.					
4				•	5420 NW Fruit Valley Rd, Vancouver, WA. DRILLING CONTRACTOR:	NORTH	IINO.			ΕΛ.	STING:	
3	Ça	SCO	O C	la		NORTE	iling.			EAS	STING.	
	Asso	ciates	, LL	C	NuStar Vancouver Annex Facility DRILLING EQUIPMENT:					TO	> E1 E\ /A	TION
						SURFA	CE ELE	V. (NAV	D88):	100	CELEVA	TION.
					Hand auger to 8', Geoprobe 7730 to depth		meası					
					DRILLING METHOD:		DEPTH	i:				WATER:
					Direct-Push	65						ountered
LOGGE	D BY:				SAMPLING METHOD:	1	STARTE	D:				PLETED:
LW		_			2.25-Inch Single Tube Sampler	2/1/1				21	/1/19	
Elev. (feet)	nscs		Graphic od	ĥ	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0		Ш	П	Ш	Clayey SILT with trace fine sand, brown, slightly					ļ		
-					moist, medium stiff.	2.0/2.0	<5	NS				
2 -												
4						2.0/2.0	<5	NS				
4 -	ML					2.0/2.0	< 5	NS				
6 -												
8 -						2.0/2.0	<5	NS				
-					Becomes light gray with red/orange mottles.	2.0/2.0	< 5	NS				
10 -	ML				Fine sand increasing.		< 5	NS				
12 -	ML					5.0/5.0	< 5	NS	D. 04	(4)		
14 -									B-21 ((1)		
16 -	ML				Clayey SILT with fine sand, gray, moist, medium stiff.		8.0	NS	B-21 ((2)		
_					SAND; grey, wet, medium grained, dense	5.0/5.0	160.7	MS	,	. 7		
18 -	SW						389	MS				
20 -					Clayey SILT with fine sand, gray, wet, soft.							
		1 1 1	1 1	1 I I	1	1	504	MS	1			

NOTES: Bottom of boring at 65 feet bgs.

						PROJECT:	BORING ID:						
						Additional Soil and Groundwater Investigation	B-21						
						LOCATION:	WELL I	D:					
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
7	Ca	SC	a	di	a	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
1	Assoc	iat	es, l	LLC		NuStar Vancouver Annex Facility							
						DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	TO	C ELEVA	TION:
						Hand auger to 8', Geoprobe 7730 to depth		meası					
						DRILLING METHOD: Direct-Push		DEPTH	:				WATER:
_OGGE	D DV					SAMPLING METHOD:	65 DATE 6	STARTE	D.				ountered PLETED:
LW	. זם ט					2.25-Inch Single Tube Sampler	2/1/1		υ.			/1/19	-LETED.
						·							
Elev. (feet)	nscs		Graphic	Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -		\coprod	\coprod	\coprod	Ш	Claviliana							
					Ш	Clay increasing.	5.0/5.0						
-					Ш			388	MS				
24 -	ML				Ш								
					Ш								
-					Ш			185	MS				
26 -		Ц	Ш	Ш	Ш								
					Ш	Fine sand increasing.							
-					Ш			23	NS				
28 -	ML				Ш		5.0/5.0						
20					Ш								
-			 			SAND with silt, gray, wet, coarse to	-	7.7	NS				
00						medium-grained, medium dense.							
30 -													
_	SM							71	NS				
32 -							5.0/5.0						
_							3.0/3.0	40	NS				
						Becomes finer material.							
34 -													
_								13	NS				
									''				
36 -													
	SM							<5	NS				
							5.0/5.0	\	INO				
38 -													
								٦.	NC				
								<5	NS				
40 -		l:l											
								<5	NS				
42 -													
							5.0/5.0						

Additional Solid and Groundwater Investigation LOCATION SASSOCION, LIC CASCOLION ASSOCIONAL CONTRACTOR ASSOCIONAL CONTRACTOR NUSTA Vancouver Annex Facility DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD: Direct-Push SAMPLING METHOD: 2.25-Inch Single Tube Sampler Description Becomes brown. Becomes brown				PROJECT:	BORIN	G ID:					
SADE NW Fruit Valley Rd, Vancouver, WA. GRILLING CONTRACTOR. NORTHING: PART Vancouver Annex Facility ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORILLING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Geoprobe 7730 to depth ORITING EQUIPMENT: Hand auger to 8; Ge				Additional Soil and Groundwater Investigation	B-21	l					
DEPLING CONTRACTOR: NuStar Vancouver Annex Facility DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING EQUIPMENT: DIRECT Push DRILLING EQUIPMENT: LW DRILLING EQUIPMENT: SUMMERING: DIRECT Push DRILLING EQUIPMENT: DRILLING EQUIPMENT: SUMMERING: DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING EQUIPMENT: Not measured DATE EXPLICITED: DATE COMPLETED: 2/1/19 DATE COMPLETED: 2/1/19 DRILLING EQUIPMENT: Not measured DATE COMPLETED: 2/1/19 DATE COMPLETED: 2/1/19 Notes DRILLING EQUIPMENT: Not measured DATE COMPLETED: 2/1/19 Notes DRILLING EQUIPMENT: Not measured DATE COMPLETED: 2/1/19 Notes SIM SIM DEPTH TO WATER: Not encountered DATE COMPLETED: 2/1/19 Notes SIM SIM SIM SIM SIM SIM SIM SI				LOCATION:	WELL	ID:					
Associates, ILC RILLING EQUIPMENT: Hand auger to 8, Geoprobe 7730 to depth DRILLING METHOD: Direct-Push 65 ROTAL BETTH: Not measured TOTAL DETTH: Not measured					NA						
DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth Part Hand auger to 8', Geoprobe 7730 to depth Part	7	Ca	scadia	DRILLING CONTRACTOR:	NORTH	HING:			EAS	TING:	
Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD: Direct-Push 65 Not encountered	1	Assoc	iates, LLC								
DRILLING METHOD: Direct-Push SAMPLING METHOD: Direct-Push Dire					SURFA	CE ELE	V. (NAV	D88):	TOC	ELEVA	TION:
Direct-Push SAMPLING METHOD: DATE STARTED: DATE COMPLETED: 2/1/19											
DATE STARTED: DATE COMPLETED: 2/1/19 DAT						. DEPTH	l:				
Notes Part						OT 4 DTE	· D				
Second S		D BY:					D:				PLETED:
44 - 46 - 48 - 48 - 48 - 48 - 48 - 48 -								4)			
44 - 46 - 48 - 48 - 48 - 48 - 48 - 48 -	lev. (fee	nscs	3raphic Log	Description	iven/Re (ft.)	eadspa	Sheen	Soil Sample		Sample Depth	Notes
44 - 46 - 48 - 48 - 48 - 48 - 49 - 49 - 49 - 49	Ш				٥	± >> <5					
46 - 48 - 50 - 5M - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS - 50/5.0 - 5MS				Becomes brown.			''				
46 -	44 -										
46 -						45	NC				
48 - SM						\ \ 3	INO				
48 - SM	46 -										
48 - SM						_					
48 -					5.0/5.0	-	NS				
50 - SM	48 -				3.0/3.0						
50 - SM											
SM	-					<5	NS				
SM	50										
52 -	30 7										
5.0/5.0 <5 NS 56 - SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.	-	SM				<5	NS				
5.0/5.0 <5 NS 56 - SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.											
54 -	52 -				E 0/E 0						
54 -					5.0/5.0		NS				
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.							'				
56 - SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.	54 -										
56 - SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.						_	No				
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense. SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense. SSAND with silt and gravel, gray, wet, coarse to medium dense.						<5	NS				
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense. SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense. SSAND with silt and gravel, gray, wet, coarse to medium dense.	56 -										
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense. SNS SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.											
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.	-						NS				
SM SAND with silt and gravel, gray, wet, coarse to medium-grained, medium dense.	58 _				5.0/5.0						
SM SAND with slit and gravel, gray, wet, coarse to medium-grained, medium dense. SN SAND with slit and gravel, gray, wet, coarse to medium-grained, medium dense.	30 7										
60 SM	-			SAND with cilt and gravel, grav, wet, coarse to		<5	NS				
5.0/5.0 <5 NS		SM		medium-grained, medium dense.							
5.0/5.0	60		1-1-1-1-1-1-1-1								
5.0/5.0						<5	NS				
					.						
<5 NS					5.0/5.0						
						<5	NS				

			PROJECT:	BORIN	C ID:					
			Additional Soil and Groundwater Investigatio	B-21						
			LOCATION:	 WELL I	-					
				NA	υ.					
-14	· ~	1.	5420 NW Fruit Valley Rd, Vancouver, WA.					- 4 6	DTINIO	
33	Cas	scadia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
7	Assoc	iates, LLC	NuStar Vancouver Annex Facility							
		DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	D88).	TOO	C ELEVA	TION:	
			Hand auger to 8', Geoprobe 7730 to depth		meası		200).			
			DRILLING METHOD:	TOTAL	DEPTH	:		DEI	PTH TO	WATER:
			Direct-Push	65				N	ot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DAT	ГЕ СОМ	PLETED:
LW			2.25-Inch Single Tube Sampler	2/1/1	-			2/	/1/19	
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
		-								

						PROJECT:	BORIN	G ID:					
						Additional Soil and Groundwater Investigation	B-22	2					
						LOCATION:	WELL I	D:					
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
ME	C-			_l:	_		NORTH	IING:			FΔS	STING:	
4	Ca	SC	a	al	a	NuStar Vancouver Annex Facility	INOINII					311110.	
	ASSOC	laie	S, I	LC		DRILLING EQUIPMENT:					TO	C ELEVA	TION:
							SURFA	CE ELE meas ı	V. (NAV	D88):	100	CLLLVA	TION.
						Hand auger to 8', Geoprobe 7730 to depth							
						DRILLING METHOD:		DEPTH	l:			PTH TO	WATER:
						Direct-Push	25					7.9	
.OGGE	D BY:					SAMPLING METHOD:		STARTE	D:			TE COMP	PLETED:
LW						2.25-Inch Single Tube Sampler	1/29				1	/29/19	
Elev. (feet)	nscs		Graphic	Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			_	П	П	Clayey SILT with trace fine sand, brown, slightly		>	- °,				
U -	ML					moist, medium stiff.	2.0/2.0	<5	NS				
2 -						SILT with trace clay and fine sand, brown, slightly moist, medium stiff.							
=	ML						2.0/2.0	<5	NS				
4 -							2.0/2.0	< 5	NS				
6 -	ML					Sand increasing.		_	NO				
8 -	SM					SAND with silt, brown, slightly moist, medium-grained, medium dense.	2.0/2.0	<5	NS				
-						Becomes dark gray.	2.0/2.0	<5	NS				
10 -	SM							< 5	NS				
12 -							5.0/5.0						
4.4	ML]: :				Clayey SILT lens with trace fine sand, brown, wet, medium stiff.		<5	NS				
14 - -	SM					SAND with silt, gray, slightly moist, medium-grained, medium dense.		< 5	NS				
16 -						Silt increasing.							
40	SM						5.0/5.0	<5	NS				
18 -	SM					Becomes moist.		<5	NS				
20 -						Silty SAND; gray, wet, medium grained, medium							
_						dense		<5	NS	B-22 ((1)	\boxtimes	

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-22	2					
			LOCATION:	WELL	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
7	Ca	scadia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	TING:	
1	Assoc	iates, LLC	NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	TOC	ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		meası		,			
			DRILLING METHOD:	TOTAL	DEPTH	:		DEF	PTH TO	WATER:
			Direct-Push	25				17	7.9	
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DAT	E COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/29	_			1/	29/19	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -	SM			5.0/5.0	65	NS				
24 -					45	NS				

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation							
			LOCATION:	WELL	ID:					
			5420 NW Fruit Valley Rd, Vancouver, WA.							
7	Ca	scadia iates, LLC	DRILLING CONTRACTOR:	NORTI	HING:			EAS	STING:	
1	Assoc	iates, LLC	NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	TO	C ELEVA	TION:
			DRILLING METHOD:	TOTAL	. DEPTH	:		DE	PTH TO	WATER:
LOGGE	D BY:		SAMPLING METHOD:	DATE	STARTE	D:		DA	TE COM	PLETED:
		Г								
feet)	တ္သ	D Pic		Driven/Rec. (ft.)	Headspace Vapor (ppm)	<u>_</u>	ble		ple h	
Elev. (feet)	NSCS	Graphic Log	Description	riven, (ft	leads	Sheen	Soil Sample		Sample Depth	Notes
0					_ >	0,				
2 -										
-										
4 -										
-										
6 -										
-										
8 -										
-										
10 -										
-										
12 -										
12										
-										
14 -										
14										
-										
16 -										
10										
-										
10										
18 -										
00										
20 -										
N/0-		I	1				I			
NOT	ES:									

			DDO IFOT.	DOD!!!	0.15					1
			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	WELL	ID:					
			LOCATION:	VVELL	ıD.					
-14	7	1.	5420 NW Fruit Valley Rd, Vancouver, WA.	NODTI	IINIO				OTINO	
	Cas	scadia iates, LLC	DRILLING CONTRACTOR:	NORTH	HING:			EAS	STING:	
	Assoc	iates, LLC								TION
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	'D88):	100	C ELEVA	TION:
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:
						_				
LOGGE	D BY:		SAMPLING METHOD:	DATES	STARTE	D:		DA	TE COM	PLETED:
					o ĉ					
Elev. (feet)	ဟ	. <u>e</u> _		Rec	pace	_	Soil Sample		<u>e</u> _	
.×.	nscs	Graphic Log	Description	en/l	ads oor (Sheen	all all		Sample Depth	Notes
Ele		Ō		Driven/Rec. (ft.)	Headspace Vapor (ppm)	S	တတ		s a	
22 -										
~~ -										
-										
24 -										
	•	•			•		_			

NOTES:

					DDO IFCT.	DODIA	IC ID:					
					PROJECT:	BORIN B-2						
					Additional Soil and Groundwater Investigation LOCATION:	WELL						
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA	iD.					
ME	<u></u>			1: .		NORT	HING:			FΔS	STING:	
	Ca	SC	cac	aic	NuStar Vancouver Annex Facility	NORT	ilivo.			LA	JIINO.	
	A5500	ciui	es, L	LC	DRILLING EQUIPMENT:					TO	C ELEVA	TION:
					Hand auger to 8', Geoprobe 7730 to depth	SURFA	NCE ELE meas i	EV. (NAV u red	/D88):		o LLL VI	
					DRILLING METHOD:		. DEPTH			DE	DTU TO	WATER:
					Direct-Push	15						ountered
LOGGEI	D BV:				SAMPLING METHOD:		STARTE	.D.				PLETED:
LW	υ υ ι .				2.25-Inch Single Tube Sampler	1/29		.D.			/29/19	LLTLD.
						_			0			
Elev. (feet)					Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0		+	T	П	Clayey SILT with trace fine sand, brown, slightly		Τ >	- O,				
		Ш			moist, stiff.							
		Ш			,	2.0/2.0	<5	NS				
2 -	ML	Ш										
		Ш										
-		Ш				2.0/2.0	<5	NS				
		Ш										
4 -		H	$\dagger \dagger$	H	SILT with clay, brown, slightly moist, medium sti	ff.	<u> </u>	\	1			
	ML	Ц	Ш	Ш	,	2.0/2.0	<5	NS				
		Ш			Sand increasing.	2.0/2.0	<5	NS				
6 -		Ш					1					
		Ш					<5	NS				
		Ш				2.0/2.0		NC	B-23	(1)	$ \boxtimes $	
8 -	ML	Ш					<5	NS				
	IVIL	Ш					<5	NS				
-		Ш				2.0/2.0						
		Ш										
10 -		Ш					<5	NS				
		Ш		Ш								
	ML	Ш			Clayey SILT with trace fine sand, brown, moist,							
12 -		H	+	Ш	medium stiff. SILT with trace fine sand and clay, brown, dry,		<5	NS				
		Ш			medium stiff.	5.0/5.0						
-		$\ \ $			modisin our.				1			
	ML	$\ \ $						Ne				
14 -		$\ \ $					<5	NS				
		Ш		Ш								
1												

					I	PROJECT:	BORIN	G ID:					
						Additional Soil and Groundwater Investigation	B-24						
					ŀ	LOCATION:	WELLI						
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
45	Ca	C	- ~	d٥	~		NORTH	IING:			EAS	STING:	
1	Asso	ciat	es,	LLC	u	NuStar Vancouver Annex Facility							
						DRILLING EQUIPMENT:	SURFA	CE ELE	V (ΝΔV	(D88)-	TO	C ELEVA	TION:
						Hand auger to 8', Geoprobe 7730 to depth		meası		<i>D00</i>).			
					ŀ	DRILLING METHOD:	TOTAL	DEPTH	l:		DE	PTH TO	WATER:
						Direct-Push	15				N	ot enc	ountered
LOGGE	D BY:					SAMPLING METHOD:	DATE S	STARTE	D:		DA	TE COM	PLETED:
LW						2.25-Inch Single Tube Sampler	1/28				1	/28/19	
et)			O				ec.	ace pm)		<u>o</u>		Φ	
Elev. (feet)	nscs		aphi	Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
Ele	ر		Ö	i			Driv	Нея Vap	တ်	တ တ		ω̈́Ω	
0	ML	\prod	\prod	\prod	\prod	SILT with trace clay, light brown, slightly moist,							
=		\mathbb{H}	$\!$	H	Ш	medium stiff. Trace angular to subangular gravel.	2.0/2.0	<5	NS				
	ML	Ш				Trace angular to subangular graver.							
2 -		H	$\dagger \dagger$	Ħ	H	Clayey SILT; light brown, slightly moist, medium				-			
	-	Ш				stiff.	2.0/2.0	<5	NS				
		Ш					2.0/2.0	\3	143				
4 -		Ш											
	ML	Ш											
_		Ш					2.0/2.0	<5	NS				
6 -		Ш											
ľ		Ш											
=		\mathbb{H}	$\!$	H	Ш	Becomes brown.	2.0/2.0	<5	NS				
		Ш				Decomes prown.							
8 -		Ш											
	ML	Ш					2.0/2.0	< 5	NS				
		Ш					2.0/2.0	\ 5	INS				
10 -		\mathbb{H}	+	H		Clavey SII T with trace fine and brown maint				1			
		$\ \ $				Clayey SILT with trace fine sand, brown, moist, medium stiff.							
-		Ш						<5	NS	B-24 ((1)	$ \bowtie $	
12	ML	Ш											
12 -		$\ \ $			$\ \ $		5.0/5.0						
_		\mathbb{H}	+	\coprod		Condu CII Ti brown olightly maist madismassift		<5	NS				
						Sandy SILT; brown, slightly moist, medium stiff.							
14 -	ML	$\ \ $			$\ \ $				-	-			
		\prod	\coprod		\coprod			<5	NS				
1													

						1						
					PROJECT:	BORIN						
					Additional Soil and Groundwater Investigation	B-25						
					LOCATION:	WELL I	D:					
- 14					5420 NW Fruit Valley Rd, Vancouver, WA.	NA			1			
	Ca				DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
77	Assoc	iate	es, L	LC	NuStar Vancouver Annex Facility						. =: =:	
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	'D88):	100	C ELEVA	TION:
					Hand auger to 8', Geoprobe 7730 to depth		meası					
					DRILLING METHOD:		DEPTH					WATER:
					Direct-Push	15						ountered
LOGGE	D BY:				SAMPLING METHOD:		STARTE	D:				PLETED:
LW					2.25-Inch Single Tube Sampler	1/28/19				1/	/28/19	
Elev. (feet)	w		<u>.0</u>			Driven/Rec. (ft.)	Headspace Vapor (ppm)	_	Soil Sample		<u>o</u>	
۷. (fe	nscs		Graphic	Log	Description	en/F (ft.)	adsp or (r	Sheen	oil		Sample Depth	Notes
Ш	\supset		Ö			Driv	He Vap	က်	တ် တ		ਔŌ	
0	ML	П			SILT with gravel, dark gray, dry, medium stiff		9.2	NS				
	IVIL	Ш	Ш	Ш		2.0/2.0	9.2	INO				
					Clayey SILT with trace fine sand, dark brown,		<5	NS				
2 -					slightly moist, medium stiff.				-			
-						2.0/2.0	<5	NS				
	ML											
4 -												
						2.0/2.0	<5	NS				
								''				
6 -		H	Н	+	Becomes gray and brown.				-			
					becomes gray and brown.		13.5	NS	B-25 ((1)	X	
=	ML					2.0/2.0			-			
							1.2	NS				
8 -					SILT with clay, brown to gray, dry, medium stiff.							
_						2.0/2.0	21.5	MS	B-25 (2)	\boxtimes	
								"""	2 20 ((-)		
10 -	ML											
							13.1	NS				
_									-			
12 -							<5	NS				
12					Becomes light brown.	5.0/5.0	<5	INO				
		$\ \ $				0.0/0.0			-			
	ML											
14 -							<5	NS				
	<u> </u>	ш	ш	ш	I	ļ		IL	J			

						PROJECT:	BORIN	G ID:					
						Additional Soil and Groundwater Investigation	B-26	6					
						LOCATION:	WELL I	D:					
						5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
45	Ca		0	٦i	~	DRILLING CONTRACTOR:	NORTH	HING:			EAS	STING:	
1	Assoc	iate	es, l	LLC	u	NuStar Vancouver Annex Facility							
						DRILLING EQUIPMENT:	CLIDEV	CE EI E	V. (NAV	D88/-	TOO	C ELEVA	ATION:
						Hand auger to 8', Geoprobe 7730 to depth	Not	measi	ired	D00).			
						DRILLING METHOD:	TOTAL	DEPTH	:		DEI	PTH TO	WATER:
						Direct-Push	35						ountered
LOGGE	D BY:					SAMPLING METHOD:	DATE S	STARTE	:D:		DAT	ГЕ СОМ	PLETED:
LW						2.25-Inch Single Tube Sampler	1/28				1/	28/19	
Elev. (feet)	nscs		aphic	Log		Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
Ele\	Ď		Ö	_		'	Orive	Неа /арс	Sh	တိတိ		Sa	
0		Т	П	П	П	SILT; brown, slightly moist, medium stiff.					l		J.
-	ML						2.0/2.0	<5	NS				
2 -	IVIL												
-		H	H	H	Н	Clay increasing.	2.0/2.0	<5	NS				
4 -	ML					, ,							
4	IVIL												
		\perp		\sqcup	Ш	Clavery CILT hypering alignathy magical magalityma at iff	2.0/2.0	<5	NS				
						Clayey SILT, brown, slightly moist, medium stiff.							
6 -													
							2.0/2.0	< 5	NS				
							2.0/2.0		INO				
8 -													
										B-26	(1)	\square	
-							2.0/2.0	<5	NS				
40	ML												
10 -													
								<5	NS				
									'''				
12 -													
							5.0/5.0	_					
-								<5	MS				
14 -					Ш		_						
17						Becomes moist.							
-	ML							<5	NS				
16 -		\dagger	H	H	Н	Sand increasing.	-						
						3		<5	NS				
	ML						5.0/5.0	\ \ 3	INO				
18 -							0.5,5.0						
-						SAND with silt, brown, slightly moist, medium	_	<5	NS				
00	SM					grained, medium dense.							
20 -		Τ	[]	П		Clayey SILT lens, brown, slightly moist, medium							
						stiff.		<5	NS				
		Ш	Ш	Ш	Ш								

NOTES: Bottom of boring at 35 feet bgs.

					PROJECT:	BORIN	G ID:						
					Additional Soil and Groundwater Investigation	B-26	6						
					LOCATION:	WELL I	D:						
					5420 NW Fruit Valley Rd, Vancouver, WA.	NA							
3	Ca	SC	a (lio		NORTH	HING:			EA	STING:		
1	Assoc	ciate	s, L	LC	NuStar Vancouver Annex Facility								
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88)-	то	C ELEVA	TION:	
					Hand auger to 8', Geoprobe 7730 to depth		measi		D00).				
					DRILLING METHOD:	TOTAL	DEPTH	l:		DE	PTH TO	WATER:	
					Direct-Push	35				Not encountered			
OGGE	D BY:				SAMPLING METHOD:	DATE S	STARTE	D:		DATE COMPLETED:			
LW					2.25-Inch Single Tube Sampler	1/28				1	/28/19		
feet)						Rec.	pace (ppm)		Soil Sample		ole n		
Elev. (feet)	OSC		Graphic Log Log Driven/Rec. (ft.) Soil								Sample Depth	Notes	
22 -	IVIL			П									
			Ш			5.0/5.0							
_			: : :	::::	SAND with silt, brown, slightly moist, medium		<5	NS					
					grained, medium dense.								
24 -	014												
_	SM						<5	NS					
							10	110					
26 -		: :	: :		SAND with trace silt, dark brown to gray, moist,								
					coarse grained, medium dense.								
-					gramou, moulum dense.		<5	NS					
20	SM					5.0/5.0							
28 -	SIVI												
_							<5	NS					
30 -			붜	:1:1 <u>:</u>	Clayey SILT lens, brown, moist, medium stiff.								
			$\ \ $		Sisy of Elimino, Stown, motor, moduli still.								
_	ML	$\ \ $	$\ \ $				<5	NS					
32 -		Ш	Ц	Щ									
J2					SAND with trace silt, dark brown to gray, moist,	5.0/5.0							
-	SM				coarse-grained, medium dense.		<5	MS					
34 -	6. -			##	Becomes wet.	\dashv	_						
	SM						<5	NS					

			PROJECT:	BORING	G ID:					
			Additional Soil and Groundwater Investigation	B-27	•					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
7	Cas	scadia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
1	Assoc	iates, LLC	NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA			D88):	TOO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		measu					
			DRILLING METHOD:		DEPTH	:				WATER:
			Direct-Push	35					0.8	
LOGGEI	D BY:		SAMPLING METHOD:	1	STARTE	D:				PLETED:
LW			2.25-Inch Single Tube Sampler	1/28				1/	28/19	
Elev. (feet)	SOSN	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			Asphalt							
4			Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
			moiot, modium oun.							
2 -					<5	NS				
-	ML			2.0/2.0						
4 -					<5	NS				
4										
4				2.0/2.0	<5	NS				
6 -	ML		Becomes gray.		97.2	MS				
_	IVIL		Becomes moist.	2.0/2.0	31.2	IVIO				
8 -	ML		becomes moist.		170	MS	B-27 ((1)	\boxtimes	
°]			Becomes slightly moist.		697	MS				
4				2.0/2.0						
							B-27 (2)	\boxtimes	
10 -					773	MS				
	ML									
12 -										
				5.0/5.0	679	MS				
1										
14 -										
					25	MS				
-			Clayey SILT with trace fine sand, brown to gray,							
16 -			wet, medium stiff.		50	MC				
16	ML				50	MS				
4										
				5.0/5.0						
18 -			SAND with silt, brown, moist, medium grained,	†	21	NS				
			medium dense.							
					5.6	NS				
20 -										
						NO				
-					<5	NS				

			PROJECT:	BORING	G ID:						
			Additional Soil and Groundwater Investigation	B-27	,						
			LOCATION:	WELL I	D:						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA							
36	Ca	scadia		NORTH	IING:			EAS	STING:		
1	Asso	ciates, LLC	NuStar Vancouver Annex Facility								
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88).	TOC ELEVATION:			
			Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ired	<i>D00</i>).				
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:	
			Direct-Push	35				30.8			
LOGGED BY: SAMPLING METHOD:					STARTE	D:		DATE COMPLETED: 1/28/19			
LW			2.25-Inch Single Tube Sampler	1/28							
Elev. (feet)	SOSN	Graphic Log	Description	Driven/Rec. (ft.) Headspace Vapor (ppm) Sheen Soil					Sample Depth	Notes	
22 -											
				5.0/5.0							
-	SM				<5	NS					
24 -											
_					<5	NS					
					73	110					
26 -											
-					<5	NS					
വ				5.0/5.0							
28 -			Becomes gray.								
_					<5	NS					
					-						
30 -	SM										
						,,_					
_					<5	NS					
32 -				_							
J_			Becomes wet.	5.0/5.0							
-					<5	NS					
	SM										
34 -						L.					
	1	- N : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	I .		<5	NS			1		

					PROJECT:	BORIN							
					Additional Soil and Groundwater Investigation	B-28							
					LOCATION:	WELL I	D:						
-14					5420 NW Fruit Valley Rd, Vancouver, WA.	NA				- • •	OTINIO.		
	Ca	SCC	bb	Ia	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:		
	Assoc	iates	, LL	C	NuStar Vancouver Annex Facility					TO	2 51 51/4	TION.	
					DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	/D88):	100	C ELEVA	TION:	
					Hand auger to 8', Geoprobe 7730 to depth		meası						
					DRILLING METHOD:	TOTAL	DEPTH	l:				WATER:	
					Direct-Push	15						ountered	
LOGGE	D BY:				SAMPLING METHOD:	DATE S		:D:			DATE COMPLETED: 1/28/19		
LW					2.25-Inch Single Tube Sampler	1/28/19				1/	/28/19		
Elev. (feet)	nscs		Graphic I od	D D	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes	
0	ML	Ш			SILT; light brown, dry, medium stiff.								
		Ш	$^{+}$	Ш	Description of the state of the	2.0/2.0	<5	NS					
					Becomes dark brown, slightly moist.								
2 -									1				
	ML					0.0/0.0	_						
						2.0/2.0	<5	NS					
4 -		Ш	Ш	Ш									
					SILT with clay, light brown, slightly moist,								
-					medium stiff.	2.0/2.0	<5	NS					
6 -	ML								-				
							_						
						2.0/2.0	<5	NS					
8 -		Ш	Ш	Ш									
	ML				SILT with fine sand and trace clay, brown,				B-28 ((1)	\square		
-		Н	$^{+}$	Н	slightly moist, medium stiff. Clay increasing.	2.0/2.0	<5	NS		,			
					Clay Increasing.								
10 -									1				
							<5	Ne					
							<5	NS					
12 -	ML												
						5.0/5.0							
-							<5	NS					
14 -								\	1				
		Ш					<5	NS					

				PROJECT:	BORING I	D:			
				Additional Western Area Investigation	B-29				
				LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA					
45	Cas	حطط		DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Cas	tes. LL	C	Cascade Environmental LP					
	7 1000010	.00, 11		DRILLING EQUIPMENT:	SURFACE	E ELEV. (1	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount		easure		,.	Not measured
				DRILLING METHOD:	TOTAL				DEPTH TO WATER:
				Direct-push	22.5				Not measured
LOGGEI	n RV:			SAMPLING METHOD:		ΓARTED:			DATE COMPLETED:
IM	J D1.			5' push probe sleeve	2/18/				2/18/2020
				The production of the producti					
fee	S	ohic	g		/Re	spac (ppr	en	ple th	Notes
Elev. (feet)	USCS	Graphic	C	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
					Ω	, ¥ ×		0, _	
0				Gravel					
_	ML			SILT, brown (10YR 5/3), slightly moist, medium stiff,	2.0/2.0				
				low plasticity					
2 -									
_					2.0/2.0				
4 -						_			
						<5	NS		
					2.0/2.0				
_									
6 -						<5	NS	\boxtimes	B-29(6.5)
_					2.0/2.0	\5	INS		B-29(0.3)
					2.0/2.0				
8 -									
				Trace fine sand					
_					2.0/2.0				
						<5	NS		
10	ML		Н	SILT with fine sand, dark yellowish brown (10 YR 4/4),		-			
	IVIL			slightly moist, medium stiff				_	
-				Signery moist, mealant sem				\boxtimes	B-29(11)
				Becomes wet		<5	NS		
12 -				Becomes soft	50/50				
					5.0/5.0				
14 -									
1-4						<5	NS		
_							110		
						<5	NS		
16 -									
-									
					5.0/3.5	<5	NS		
18 -									
						_	.,_		
20						<5	NS		

			PROJECT:	BORING	D:					
			Additional Western Area Investigation	B-29						
			LOCATION:	WELL ID						
			5420 Fruit Valley Road, Vancouver, WA							
7	Cas	cadia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:		
1		tes, LLC	Cascade Environmental LP							
		=	DRILLING EQUIPMENT:	SURFACI	ELEV. (N	NAVD88	i):	TOC ELEVATION:		
			Geoprobe 7720 DT Track Mount	Not m	easure	ed		Not measured		
		-	DRILLING METHOD:	TOTAL I	DEPTH:			DEPTH TO WATER:		
			Direct-push	22.5				Not measured		
LOGGE	D BY:		SAMPLING METHOD:	DATE S	TARTED:			DATE COMPLETED:		
IM			5' push probe sleeve	2/18/	2020			2/18/2020		
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes		
	ML		SILT, brown (10YR 5/3), wet, soft		<5	NS				
22 -			Trace wood debris	2.0/2.0	<5	NS				

				PROJECT: Additional Western Area Investigation	BORING I	D:			
			ŀ	LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA		•			
4/2	Cas	cadi.	_	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Associa	cadio _{ites, LLC}	u	Cascade Environmental LP					
		,	ŀ	DRILLING EQUIPMENT:	SURFACE	E ELEV. (1	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount		easure		,	Not measured
			ŀ	DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
				Direct-push	22				Not measured
LOGGE	D BY:			SAMPLING METHOD:	DATE ST	TARTED:			DATE COMPLETED:
IM				5' push probe sleeve	2/18/				2/18/2020
Elev. (feet)	NSCS	Graphic Log)	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0				Gravel					
_	ML			SILT, dark greenish grey (GLEY 1, 4/1), slightly moist, medium stiff	2.0/2.0				
2 -				Poorly-graded, medium-grained sand	2.0/2.0	_			
					2.0/2.0				
4 -	ML			SILT with trace fine sand, very dark greenish gray (GLEY 1, 3/1), slightly moist, medium stiff, non-plastic	2.0/2.0	740	MS	\boxtimes	B-30(4.5)
6 -						_			
_					2.0/2.0				
8 -					2.0/2.0	100	MS		
			Ш		·				
10 -			Ш			1			
			Ш	Becomes moist					
			Ш			<5			
12 -			Ш						
			Ш	Becomes wet	5.0/4.0				
-									
						5.9	NS		
14 -			Ш			84.3	SS		
_			Ш			- 04.5	55		
			Ш						
16	SM			Silty SAND, very dark gray (GLEY 1, 3/1), wet, loose,					
	~ · · ·			fine-grained		157	SS	\boxtimes	B-30(16.5)
					5.0/4.1	161			
18 -					3.0/ 7.1	101			
						44	NS		
-									
20						345	MS		

			PROJECT:	BORING I	D.			
			Additional Western Area Investigation	B-30	υ.			
			LOCATION:	WELL ID:				
				WEEL ID.				
14	, _		5420 Fruit Valley Road, Vancouver, WA					
33	Cas	cadia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
Associates, LLC			Cascade Environmental LP					
			DRILLING EQUIPMENT:	SURFACE ELEV. (NAVD88):				TOC ELEVATION:
			Geoprobe 7720 DT Track Mount	Not m	easure	d		Not measured
			DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
			Direct-push	22				Not measured
LOGGE	D BY:		SAMPLING METHOD:	DATE ST	TARTED:			DATE COMPLETED:
IM			5' push probe sleeve	2/18/	2/18/2020			2/18/2020
Elev. (feet)	S	Graphic Log		Oriven/Rec. (ft.)	Headspace Vapor(ppm)	Ę	ole h	
). (f	USCS	aph	Description	en/F (ft.)	ads)	Sheen	Sample Depth	Notes
Ele		ָ ט		Driv	Vap	S	ŠΩ	
					97	SS		
_				2.0/2.0				
				,	42	NS	\boxtimes	B-30(21.5)
22				I			1	

				_	220/207	DODING	ID.			
					PROJECT:	BORING B-31	ID:			
				ŀ	Additional Western Area Investigation		_			
					LOCATION:	WELL ID	•			
				L	5420 Fruit Valley Road, Vancouver, WA					I
3	Cas	ca	dio	a	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Associo	ites, l	LC		Cascade Environmental LP					
					DRILLING EQUIPMENT:	SURFACI	E ELEV. (1	NAVD88	3):	TOC ELEVATION:
					Geoprobe 7720 DT Track Mount	Not m	neasure	ed		Not measured
				t	DRILLING METHOD:	TOTAL	DEPTH:			DEPTH TO WATER:
					Direct-push	22				Not measured
LOGGE	D RV·				SAMPLING METHOD:		TARTED:			DATE COMPLETED:
IM	<i>D D</i> 1.				5' push probe sleeve	2/18/				2/18/2020
					5 pash prose siecee					2, 10, 2020
Elev. (feet)	νς.	Granhic	br	,		Driven/Rec. (ft.)	Headspace Vapor(ppm)	L.	h Se	
/. (f	USCS	ק ק	Log		Description	en/F (ft.)	ads _i	Sheen	Sample Depth	Notes
Ele	_	<u> </u>)			Ori,	Нея Vap	S	S O	
0					Gravel					
	ML			\prod	SILT with fine sand, brown (10YR 5/3), slightly moist,	1				
_				$\ \ $	medium stiff	2.0/2.0				
				$\ \ $						
2 -		$\ \ $		$\ \ $			1			
		Ш		Ш						
		Ш		Ш		2.0/2.0				
		Ш		Ш						
4 -		Ш		Ш			_			
		Ш		Ш			<5	NS		
_		Ш		Ш		2.0/2.0				
		Ш		Ш						
6 -		Ш		Ш					5-7	
		Ш		Ш			<5	NS	\boxtimes	B-31(4.5)
=		Ш		Ш		2.0/2.0				
		Ш		Ш						
8 -		Ш		Ш	Red and gray mottles					
		Ш		Ш	med and 8.47 metales					
-	SM			1:	Silty SAND, dark greenish gray (GLEY 1, 4/1), dry,	2.0/2.0				
	0.01				medium dense, poorly-graded, fine-grained		24	NS		
10 -					2. 2 2, p. 2, p. 2 p. 4		1			
-	ML	1:1:1	1:1:	H	SILT with fine sand, very dark greenish gray (GLEY 1,	†				
		$\ \ $			3/1), moist, soft, slight plasticity		27.7			
12 -				$\ \ $	Becomes wet					
				$\ \ $	Seconics wet	5.0/4.0	133.3			
_				$\ \ $						
				$\ \ $						
14 -				$\ \ $					_	
				$\ \ $	Becomes medium stiff		590	MS	\boxtimes	B-31(14)
-				$\ \ $			1			
				$\ \ $						
16 -				$\ \ $						
		$\ \ $		$\ \ $			380	SS		
-				$\ \ $						
				$\ \ $		5.0/4.0	343	SS		
18 -				$\ \ $						
				$\ \ $						
-				$\ \ $						
30				$\ \ $			140	NS		
20 _		Ш	Ш	Ц			1			

F	PROJECT:	BORING ID).			
	Additional Western Area Investigation	B-31				
	LOCATION:	WELL ID:				
	5420 Fruit Valley Road, Vancouver, WA					
Cascadia	DRILLING CONTRACTOR:	NORTHING	G:			EASTING:
Associates, LLC	Cascade Environmental LP					
	DRILLING EQUIPMENT:	SURFACE I	ELEV. (N	IAVD88	TOC ELEVATION:	
	Geoprobe 7720 DT Track Mount	Not me	easure	d		Not measured
	DRILLING METHOD:	TOTAL DE	EPTH:		DEPTH TO WATER:	
	Direct-push	22			Not measured	
LOGGED BY:	SAMPLING METHOD:	DATE STA	ARTED:			DATE COMPLETED:
IM	5' push probe sleeve	2/18/2	2/18/2020			2/18/2020
Elev. (feet) USCS Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
-		2.0/2.0	22.6 23.5 61.1	NS NS	\boxtimes	B-31(21.5)

				PROJECT:	BORING I	D:			
				Additional Western Area Investigation	B-32				
				LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA					
7	Cas	cad	ia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Associo	ites, LLC		Cascade Environmental LP					
				DRILLING EQUIPMENT:	SURFACE	ELEV. (N	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount	Not m	easure	ed		Not measured
				DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
				Direct-push	22				Not measured
LOGGEI	D BY:			SAMPLING METHOD:	DATE ST	TARTED:			DATE COMPLETED:
IM				5' push probe sleeve	2/18/2				2/18/2020
				·					
Elev. (feet)	USCS	Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML	ш	П	SILT, dark yellowish brown (10 YR 4/4), slightly moist,		- >			
-	IVIL			soft, slight plasticity	2.0/2.0				
2 -					2.0/2.0				
4 -				Becomes stiff	2.0/2.0				
6 -					2.0/2.0				
8 -	ML			SILT with poorly-graded fine sand, dark yellowish brown (10 YR 4/4), slightly moist, medium stiff	2.0/2.0	<5	NS		
10 -						<5	NS		
12 -				Becomes wet	5.0/4.5	<5	NS		
14 - -									
16 -						<5	NS		
18 -				Becomes soft	5.0/4.9	<5	NS		
20 _						.5	.,,		

			PROJECT:	BORING	ID:			
			Additional Western Area Investigation	B-32	iD.			
			LOCATION:	WELL ID	:			
			5420 Fruit Valley Road, Vancouver, WA					
7	Cas	cadia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
Associates, LLC			Cascade Environmental LP					
			DRILLING EQUIPMENT:	SURFAC	E ELEV. (N	NAVD88):	TOC ELEVATION:
			Geoprobe 7720 DT Track Mount	Not m	neasure	d		Not measured
			DRILLING METHOD:	TOTAL I	DEPTH:			DEPTH TO WATER:
			Direct-push	22				Not measured
LOGGE	D BY:		SAMPLING METHOD:	DATE S	TARTED:			DATE COMPLETED:
IM			5' push probe sleeve	2/18/	2/18/2020			2/18/2020
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
- -22	22			2.0/2.0	<5	NS		

			PROJECT:	BORING I	D:			
			Additional Western Area Investigation	B-33				
			LOCATION:	WELL ID:	:			
N 4-			5420 Fruit Valley Road, Vancouver, WA					T
3	Cas	cadia ates, LLC	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
7/	Associo	ates, LLC						
			DRILLING EQUIPMENT:	SURFACE			3):	TOC ELEVATION:
			Geoprobe 7720 DT Track Mount	Not measured				Not measured
			DRILLING METHOD:	TOTAL	DEPTH:			DEPTH TO WATER:
			Direct-push	22.5				Not measured
LOGGE	D BY:		SAMPLING METHOD:		TARTED:			DATE COMPLETED:
IM			5' push probe sleeve	2/19/				2/19/2020
Elev. (feet)	USCS	Graphic	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML	ШШ	SILT with trace fine sand, brown (10 YR 4/3), slightly					
			moist, medium stiff, slight plasticity	2.0/2.0				
				2.0/2.0				
2 -					-			
-				2.0/2.0				
4 -					_			
					<5	NS		
				2.0/2.0				
6 -								
0					<5	NS	\boxtimes	B-33(6.5)
_				2.0/2.0	\ \	143		D-33(0.3)
				'				
8 -					-			
					<5	NS		
-				2.0/2.0				
					<5	NS		
10 -					1			
12 -								
				5.0/1.5				
-			Bosomos softer					
	ML	 	Becomes softer SILT, with trace fine sand, very dark gray (GLEY 1,	+	<5			
14 -	IVIL		4/1), wet, soft					
			· " · '		<5	NS		
					20.2	NIC		
16 -					20.2	NS		
10					517	NS		
					31,	'		
				5.0/4.9	186	NS	\boxtimes	B-33(17.5)
18 -								
-								
20					8	NS	\square	D 22/20)
				1			LYL	B 33/30)

			PROJECT:	BORING I	D:			
			Additional Western Area Investigation	B-33				
			LOCATION:	WELL ID:				
			5420 Fruit Valley Road, Vancouver, WA					
7	Casi	cadia	DRILLING CONTRACTOR:	NORTHING:				EASTING:
Associates, LLC			Cascade Environmental LP					
		=	DRILLING EQUIPMENT:	SURFACE ELEV. (NAVD88):				TOC ELEVATION:
			Geoprobe 7720 DT Track Mount	Not m	easure	ed .		Not measured
		-	DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
			Direct-push	22.5				Not measured
LOGGE	D BY:		SAMPLING METHOD:	DATE ST	TARTED:			DATE COMPLETED:
IM			5' push probe sleeve	2/19/2020				2/19/2020
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
22 -	22 -		SILT with sand, dark greenish gray (GLEY 1, 4/1), wet, soft	2.0/2.0	20 <5	NS NS		B 55(25)

				PROJECT:	BORING I	D:			
				Additional Western Area Investigation	B-34				
				LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA					
3/4	Cas	cad	ia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
7	Associa	ites, LL	C	Cascade Environmental LP					
				DRILLING EQUIPMENT:	SURFACE	ELEV. (1	NAVD88	s):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount	Not measured				Not measured
				DRILLING METHOD:	TOTAL [DEPTH:			DEPTH TO WATER:
				Direct-push	22				Not measured
LOGGE	D BY:			SAMPLING METHOD:	DATE S	ΓARTED:			DATE COMPLETED:
IM				5' push probe sleeve	2/19/				2/19/2020
Elev. (feet)	USCS	Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML	Ш	П	SILT, brown (10 YR 5/3), slightly moist, medium stiff		_			
_					2.0/2.0				
2 -					2.0/2.0	<5	NS		
_					2.0/2.0				
6 -				Trace fine sand	2.0/2.0	<5	NS		B-34(6.5)
8 -					2.0/2.0	<5	NS		
					2.0/2.0	<5	NS		
10			Ш			``	113		
-	ML			SILT with fine sand, brown (10 YR 4/3), slightly moist, medium stiff					
12 -						<5	NS		
					5.0/4.9				
_						<5	NS		
14 -				Becomes stiff		<5	NS		
16 -				Becomes wet		<5	NS		
18 -				Becomes dark gray (GLEY 1, 4/1)	5.0/4.9	40.1	NS		B-34(18)
		$\ \ \ $		Becomes grayish brown (10 YR 5/2)					
20 _				Decreasing sand		2.4	NS		

			DD O US CT	BORING	D.			
			PROJECT:		D:			
			Additional Western Area Investigation	B-34				
			LOCATION:	WELL ID	:			
			5420 Fruit Valley Road, Vancouver, WA					
7	Cas	cadia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
Associates, LLC		ites, LLC	Cascade Environmental LP					
			DRILLING EQUIPMENT:	SURFACI	SURFACE ELEV. (NAVD88):			TOC ELEVATION:
			Geoprobe 7720 DT Track Mount	Not m	easure	d		Not measured
		-	DRILLING METHOD:	TOTAL I	DEPTH:			DEPTH TO WATER:
			Direct-push	22				Not measured
LOGGE	D BY:		SAMPLING METHOD:	DATE S	DATE STARTED:			DATE COMPLETED:
IM			5' push probe sleeve	2/19/	2/19/2020			2/19/2020
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
_			D (40.VD 5 (2)	2.0/2.0	<5	NS		
22			Becomes gray brown (10 YR 5/2)		<5	NS		

				PROJECT:	BORING I	D:			
				Additional Western Area Investigation	B-35				
				LOCATION:	WELL ID:	:			
				5420 Fruit Valley Road, Vancouver, WA					
36	Cas	ca	dia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Cas Associa	ites, L	LC	Cascade Environmental LP					
		•		DRILLING EQUIPMENT:	SURFACE	ELEV. (N	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount		easure		,	Not measured
				DRILLING METHOD:	TOTAL DEPTH:				DEPTH TO WATER:
				Direct-push	20	ZE1 1111.			Not measured
10000	D. D.V.			SAMPLING METHOD:		ΓARTED:			DATE COMPLETED:
LOGGEI JW	DBY:			5' push probe sleeve	2/21/3				2/21/2020
				5 push probe sieeve					2/21/2020
Elev. (feet)	USCS	Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML	ш	Ш	SILT, dark brown (7.5 YR 3/2), moist, medium stiff	П				
				(10 11) (10 11) (10 11)					
					2.0/2.0	_			
						<5	NS		
2 -						1			
					20/20				
					2.0/2.0		NC		
						<5	NS		
4 -									
					20/20				
					2.0/2.0				
6								\boxtimes	B-35(6)
	ML			SILT with fine sand, dark brown (7.5 YR 3/2), wet, stiff		<5	NS		B-33(0)
					2.0/2.0		113		
					2.0/2.0				
8 -									
_					2.0/2.0			\boxtimes	B-35(9)
				Becomes medium stiff	2.0, 2.0	<5	NS		2 33(3)
10 -				becomes mediam sem		, ,	113		
						<5	NS		
12 -									
					5.0/5.0				
						<5	NS		
14 -									
						1			
						<5	NS		
16 -									
-									
					5.0/5.0	<5	NS		
18 -									
								\boxtimes	B-35(19)
20						<5	NS		
		ш	<u> </u>		L	1		<u> </u>	J

				PROJECT:	BORING	ID:			
				Additional Western Area Investigation	B-36				
			Ī	LOCATION:	WELL ID	:			
				5420 Fruit Valley Road, Vancouver, WA					
WE	Car		J: ~	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
4	Cas Associa	Cac	וג	Cascade Environmental LP					2.5
Associates, EEC				DRILLING EQUIPMENT:	SURFAC	F FI FV /	NAVD88	1.	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount		neasure		.,.	Not measured
			-	DRILLING METHOD:	TOTAL		-u		
				Direct-push	20	DEPIH.			DEPTH TO WATER:
				<u> </u>					Not measured
LOGGE	D BY:			SAMPLING METHOD: 5' push probe sleeve	2/21/	TARTED:			DATE COMPLETED: 2/21/2020
JW				5 pusii probe sieeve			I	1	2/21/2020
Elev. (feet)	USCS	Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML	Ш	Ш	SILT with trace fine sand, dark gray (7.5 YR 4/1),					
				slightly moist, medium stiff	2.0/2.0				
					2.0/2.0	<5	NS		
2 -							INS		
					2.0/2.0				
					'	<5	NS		
4 -									
-					2.0/2.0				
						<5	NS		
6 -						-		\boxtimes	B-36(6)
-					2.0/2.0				
						<5	NS		
8 -						1			
				Becomes wet					
					2.0/2.0				
						<5	NS		
10 -									
							NIC		
12 -						<5	NS		
12			$ \ \ \ $		5.0/5.0				
					3.0/3.0				
				Increasing fine sand		<5	NS		
14 -				mercasing mic sand		``	143	\boxtimes	B-36(14)
-									
						4			
16 -									
			$ \ \ \ $						
					5.0/5.0	<5	NS		
18 -									
						<5	NS		
20						<5	NS	_	B-36(20)
20			шШ				<u> </u>	\square	5 50(20)

				PROJECT:	BORING I	D:			
			-	Additional Western Area Investigation LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA					
45	Casi	cad	ia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:
1	Cas	tes, LLC		Cascade Environmental LP					
				DRILLING EQUIPMENT:	SURFACE	ELEV. (N	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount	Not m	easure	ed		Not measured
				DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
				Direct-push	22				Not measured
LOGGE	D BY:			SAMPLING METHOD:	1	TARTED:			DATE COMPLETED:
JW				5' push probe sleeve	2/21/				2/21/2020
Elev. (feet)	NSCS	Graphic	LOG	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
<u>и</u>	ML	ПП	П	SILT with trace fine sand, brown (7.5 YR 4/2), slightly		- >			
_	IVIL			moist, medium stiff	2.0/2.0	<5	NS		
2 -					2.0/2.0				
4 -					2.0, 2.0	<5	NS		
-					2.0/2.0	<5	NS		
6 -					2.0/2.0				B-37(6)
8 -						<5	NS		
10 -					2.0/2.0	<5	NS		
_				Becomes wet		<5	NS		
12 -					5.0/5.0				B-37(13)
14 -						<5	NS		5 37(13)
16				(40.)(0.5.(1)					
-	ML			SILT, gray (10 YR 5/1), wet, medium stiff		101	SS		
18 -					5.0/4.0	394	SS		
20						261	SS		

	PROJECT:	BORING II	D.			
	Additional Western Area Investigation	B-37				
	LOCATION:	WELL ID:				
	5420 Fruit Valley Road, Vancouver, WA					
Cascadio	DRILLING CONTRACTOR:	NORTHIN	NG:			EASTING:
Associates, LLC	Cascade Environmental LP					
	DRILLING EQUIPMENT:	SURFACE	ELEV. (N	NAVD88):	TOC ELEVATION:
	Geoprobe 7720 DT Track Mount	Not measured				
	DRILLING METHOD:	TOTAL D	EPTH:		DEPTH TO WATER:	
	Direct-push	22				Not measured
LOGGED BY:	SAMPLING METHOD:	DATE ST	DATE STARTED:			DATE COMPLETED:
JW	5' push probe sleeve	2/21/2	2/21/2020			2/21/2020
Elev. (feet) USCS Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
22	Becomes stiff	2.0/2.0	49	SS	\boxtimes	B-37(21)

			PROJECT:	BORING I	D:			
			Additional Western Area Investigation LOCATION:	WELL ID:				
			5420 Fruit Valley Road, Vancouver, WA					
45	Casi	cadic		NORTHII	NG:			EASTING:
1	Associa	cadic tes, LLC	Cascade Environmental LP					
			DRILLING EQUIPMENT:	SURFACE	E ELEV. (1	NAVD88):	TOC ELEVATION:
			Geoprobe 7720 DT Track Mount		easure	ed		Not measured
			DRILLING METHOD:	TOTAL	DEPTH:			DEPTH TO WATER:
	2.51		Direct-push	DATE STARTED:				Not measured
LOGGEI JW) BA:		SAMPLING METHOD: 5' push probe sleeve	2/21/				DATE COMPLETED: 2/21/2020
		()						
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes
0	ML		SILT, brown (7.5 YR 4/2), slightly moist, medium stiff					
_				2.0/2.0	<5	NS		
2 -					13	113		
_				2.0/2.0	<5	NS		
4 -					. \3	INS		
-				2.0/2.0	_			
6 -					<5	NS	\boxtimes	B-38(6)
0								D-30(0)
-				2.0/2.0				
_					<5	NS		
8 -			Becomes reddish brown (5 YR 5/4)					
_			Becomes reduish brown (3 TK 3/4)	2.0/2.0				
			Trace fine sand		<5	NS		
10 -					_			
					27	NS		
12	ML		SILT, gray (10 YR 5/1), wet, soft					
	IVIL		3121, gray (10 11(3) 1), wet, 301(5.0/5.0				
					584	SS	\boxtimes	B-38(13)
14 -					364	33		
-								
16								
16 -								
-								
				5.0/3.0	220	HS		
18 -								
20					15	SS		
∠∪				1	1	ı	1	

		PROJECT:	BORING	ID.							
		Additional Western Area Investigation		B-38							
		LOCATION:	WELL II	D:							
×.4=		5420 Fruit Valley Road, Vancouver, WA									
Casca	lia	DRILLING CONTRACTOR:	NORTH	ING:			EASTING:				
Associates, L	LC	Cascade Environmental LP									
		DRILLING EQUIPMENT:	SURFAC	E ELEV. (I	NAVD88):	TOC ELEVATION:				
		Geoprobe 7720 DT Track Mount	Not r	neasure	ed		Not measured				
		DRILLING METHOD:	TOTAL	DEPTH:			DEPTH TO WATER:				
		Direct-push	22	22			Not measured				
LOGGED BY:		SAMPLING METHOD:	DATE S	DATE STARTED:			DATE COMPLETED:				
JW		5' push probe sleeve	2/21	2/21/2020			2/21/2020				
Elev. (feet) USCS Graphic	Log	Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	Sheen	Sample Depth	Notes				
			2.0/2.0	721	SS	\boxtimes	B-38(21.5)				

				PROJECT:	BORING I	D:			
				Additional Western Area Investigation LOCATION:	WELL ID:				
				5420 Fruit Valley Road, Vancouver, WA					
4	Casi	cac	lia		NORTHI	NG:			EASTING:
1	Cas Associa	tes, Ll	.C	Cascade Environmental LP					
				DRILLING EQUIPMENT:	SURFACE	ELEV. (N	NAVD88):	TOC ELEVATION:
				Geoprobe 7720 DT Track Mount		easure	d		Not measured
				DRILLING METHOD:	TOTAL D	DEPTH:			DEPTH TO WATER:
				Direct-push	DATE STARTED:				Not measured
LOGGE!	D BY:			SAMPLING METHOD: 5' push probe sleeve	2/21/2				DATE COMPLETED: 2/21/2020
		()		- Patrick Process					
(fee	USCS	Graphic	Log	Description	en/Re (ft.)	Ispa r(pp	Sheen	Sample Depth	Notes
Elev. (feet)	Ď	Gra		Description	Driven/Rec. (ft.)	Headspace Vapor(ppm)	She	San	
О	ML	ПП	ПП	SILT, brown (7.5 YR 5/3), slightly moist, medium stiff		- >			
				, , , , , , , , , , , , , , , , , , , ,	2.0/2.0				
					2.0/2.0	<5	NS		
2 -						. ,	113		
-					2.0/2.0	_			
4 -						<5	NS		
4				Trace fine sand					
-					2.0/2.0				
						<5	NS		
6 -								\boxtimes	B-39(6)
					2.0/2.0				
					2.0/2.0	<5	NS		
8 -	ML		+H	SILT with trace fine sand, brown (7.5 YR 4/4), slightly					
	IVIL			moist, medium stiff					
-				,	2.0/2.0	_			
10 -						<5	NS		
10									
-									
						<5	NS		
12 -					5.0/4.0				
_					5.0/4.0				
				Becomes wet		<5	NS	\boxtimes	B-39(13.5)
14 -									, ,
_									
16 -									
-									
				Becomes dark gray (10 YR 4/1)	5.0/4.0	<5	NS		
18 -									
						26	NS		
20		$\Box\Box$	+11						

			PROJECT	BORING	ID.						
			PROJECT: Additional Western Area Investigation	B-39	iD:						
		-	LOCATION:		WELL ID:						
			5420 Fruit Valley Road, Vancouver, WA								
7	Cas	cadia	DRILLING CONTRACTOR:	NORTHI	NG:			EASTING:			
1	Associa	ates, LLC	Cascade Environmental LP								
		-	DRILLING EQUIPMENT:	IPMENT: SURFACE ELEV. (NAVD88):							
			Geoprobe 7720 DT Track Mount	Not m	neasure	d		Not measured			
			DRILLING METHOD:	TOTAL I	DEPTH:			DEPTH TO WATER:			
			Direct-push	22				Not measured			
LOGGE	D BY:		SAMPLING METHOD:	DATE S	DATE STARTED:			DATE COMPLETED:			
JW			5' push probe sleeve	2/21/	2/21/2020			2/21/2020			
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	ace pm)		Sample Depth	Notes			
- - 22				2.0/2.0	4.7	NS	\boxtimes	B-39(21)			

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT with additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and Geoprobe[®] explorations is estimated based on visual observation and is presented parenthetically on test pit and Geoprobe[®] exploration logs.

	Standard		Standard	Approximate
SAND and GRAVEL	Penetration	SILT or CLAY	Penetration	Shear
	Resistance		Resistance	Strength
<u>Density</u>	in Blows/Foot	<u>Density</u>	in Blows/Foot	<u>in TSF</u>
Very loose	0 - 4	Very soft	0 - 2	<0.125
	* *	Soft	2 - 4	0.125 - 0.25
Loose	4 - 10	Medium stiff	4 - 8	0.25 - 0.5
Medium dense	10 - 30	Stiff	8 - 15	0.5 - 1.0
Dense	30 - 50	Very Stiff	15 - 30	1.0 - 2.0
Very dense	>50	Hard	>30	>2.0

Mois	ture	Minor Constituents	Estimated Percentage
Dry	Little perceptible moisture.	Not identified in description	0 - 5
Damp	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Legends

Sampling Symbols

BORING AND GEOPROBE® SYMBOLS

Split Spoon

Tube (Shelby, Geoprobe®)

Cuttings

Core Run

Temporarily Screened Interval

N Standard Penetration Resistance

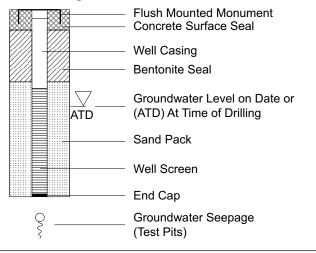
No Sample Recovery

P Tube Pushed, Not Driven

PID Photoionization Detector Reading

W Water Sample

Sample Submitted for Chemical Analysis


TEST PIT SOIL SAMPLES

Grab (Jar)

Bag

Shelby Tube

Groundwater Observations and Monitoring Well Construction

Key to Exploration Logs

Dírect-Push Groundwater Assessment Support Termínal Operating Partners - Vancouver Termínal #2 Vancouver, Washington

Project Number	1126-02	Figure
July	2007	∣Kev

A P	\sh C	reek	Ass	ociat	es, In	ST Services - Vancouver Annex	Log Of Well Number	er GP-1
En	vironmental	and Geo	technical (Consultants	s	Vancouver, Washington	Project Number	1126-02
Boring Lo						· N. ()	Surface Elevation: Not Surve	eyed
						ervices Network	Date Started: 6/11/07	
						(Acetate Lined)	Date Finished: 6/11/07	
Drilling E	quipmer	nt: St	ratap I	robe	_		Logged By: A. Schmidt	
							Depth to Water (ATD): 26.0	'
Depth, feet	Sample ID	Sample	Recovery	Sheen	PID			
	0,					Material Description		Remarks:
						GRAVEL Fill.		
_				No	< 5	SILT; brown, moist, trace sand, (medium stiff).		
-								
_		$ \cdot $						
						Silty SAND; brown, moist, fine-grained,		
5				No	<5	poorly sorted, (loose).	 5	
-						, , , , , , , , , , , , , , , , , , , ,	—	
		$ \cdot $		No	< 5			
_		\		110				
_		П						
_				١	١.		-	
10-		$ \rangle $		No	<5		<u> </u>	
"		$ \cdot $						
	1							
_ _ _		\vdash				CAND because we let fine to me divers and and	 	
_						SAND; brown, moist, fine- to medium-grained,		
		$ \setminus $		No	<5	poorly sorted, (medium dense).		
	1	$ \cdot $						
15		$ \ $	┞┈				<u> 15</u>	
		\square	l⊢				L	
		Λ		No	<5			
						SAND; gray to black, moist, medium-grained,		
_		$ \cdot $		No	<5	poorly sorted, no grading, trace silts, (medium dense).		
_		$ \ $						
20		\square	l					
20		Λ					20	
	i I	$ \rangle $		No	< 5			
_								
_		$ \cdot $						
l		\mathbb{N}						
25—				No	<5			
I –					1			
l _				No	< 5			
		$\lceil \rceil$		1	1			
_]							
_				No	<5		—	
30		$ \rangle $						
		$ \cdot $		No	<5			
		\		1 10	`			
	1							
I –				No	<5		<u> </u>	
l –				1	1			
		$ \cdot $			1		75	
35	1			1	1		35	
-		H			1		<u> </u>	
l –				No	<5		<u> </u>	
_					1			
					1			
-		\		No	<5			
			Ш	1	-	<u> </u>		D :/a
1								Page 1/2

Mir F	∖sh C	Creek	Ass	ociat	es. In	ST Services - Vancouver Annex	Log Of Well Numb	er GP-1
En	vironmental	I and Geo	technical (Consultants	s	Vancouver, Washington	Project Number	1126-02
Boring Lo							Surface Elevation: Not Surv	eyed
						ervices Network	Date Started: 6/11/07	
						(Acetate Lined)	Date Finished: 6/11/07	
Drilling E	quipmer	nt: Sti	ratap	robe			Logged By: A. Schmidt	
							Depth to Water (ATD): 26.0)'
Depth, feet	Sample ID	Sample	Recovery	Sheen	PID			
)eb	am	Sal	Rec	S	1 4			
	S					Material Description		Remarks:
		λ				•		Kellidiks
		\mathbb{N}				No recovery. Crushed liner.		
		$ \setminus $						
_		$ \setminus $						
_		$\ \cdot\ $						
		II \						
45		$ \rangle $				110 1000 1019.		
_		$ \setminus $						
		$ \setminus $						
_ _		$\parallel \parallel$						
_		Ш	l—				_ -	
		\mathbb{N}		No	< 5			
		$\ \cdot\ $		110				
50-		$ \setminus $						
_		$\ \cdot\ $		No	<5			
		$\ \ $	Ш					
_ _						No samples collected from 52.0 to 72.0 feet.		
_						No samples collected from 52.0 to 72.0 feet.	F	
55								
l _								
-								
_							_	
60-							 60	
l _								
-								
-							_	
_					1		_	
65—					1		 65	
_					1		<u> </u>	
					1			
-					1			
l –					1		-	
					1			
70							<u></u> −70	
_								GP-1-1
								G
_					1		 	
l –					1	Boring Terminated at 72.0' BGS.	\vdash	
					1	-	L	
					1			
75					1		 75	
_					1		L	
					1			
l –					1		<u> </u>	
l –					1		\vdash	
					1		L	
I					1			
			•					Page 2/2

À A	\sh C	Creek	Asso	ociato	es, In	ST Services - Vancouver Annex	Log Of Well Numb	per GP-2
Env	vironmental	and Geot	echnical C	Consultants		Vancouver, Washington	Project Number	1126-02
Boring Lo							Surface Elevation: Not Surv	veyed
						rvices Network	Date Started: 6/11/07	
Drilling No.					robe	(Acetate Lined)	Date Finished: 6/11/07 Logged By: A. Schmidt	
	quipinici	10: 311	atapi	ODE			Depth to Water (ATD):	
eet		4.)	~	_			, , ,	
Depth, feet	ple	Sample	Recovery	Sheen	PID			
Эер	Sam	Sa	Rec	SI	1	Maranial Daganianian		
	σ,					Material Description		Remarks
						No soil logging. Groundwater sample only.		
5.							5	
5—								
10							<u> </u>	
15—							— I5	
15								
20-							20	
_								
25—							 25	
30-							 30	
_								
_								
35—							35	
-								
_								
_								
								Page 1/2

A	\sh C	reek	Asso	ociat	es, In	ST Services - Vancouver Annex	Log Of Well Number GP-2
Env	vironmental	and Geot	echnical C	Consultants	5	Vancouver, Washington	Project Number 1126-02
Boring Lo							Surface Elevation: Not Surveyed
						ervices Network	Date Started: 6/11/07
Drilling N					robe	(Acetate Lined)	Date Finished: 6/11/07 Logged By: A. Schmidt
Dinning L	aipinei	ii. Oti	atapi	ODC			Depth to Water (ATD):
Depth, feet	Sample ID	Sample	Recovery	Sheen	PID	Material Description	Remarks
						•	Keinaks
_							<u> </u>
-							
_							-
-							<u> </u>
45—							 45
_							<u> </u>
_							<u> </u>
_							<u> </u>
_							
50—							
_							<u> </u>
_							<u> </u>
_							<u> </u>
_							<u> </u>
55—							55
_							_
_							_
_							
60—							60
00 _							
							L
<u> </u>							
65—							—65 GP-2-1
						Raring Tarminated at 66 0! DCS	
						Boring Terminated at 66.0' BGS.	
=							
70—							 70
_							
-							<u> </u>
_							<u> </u>
_							<u> </u>
75—							 75
_							
=							-
_							-
_							-
							Page 2/2

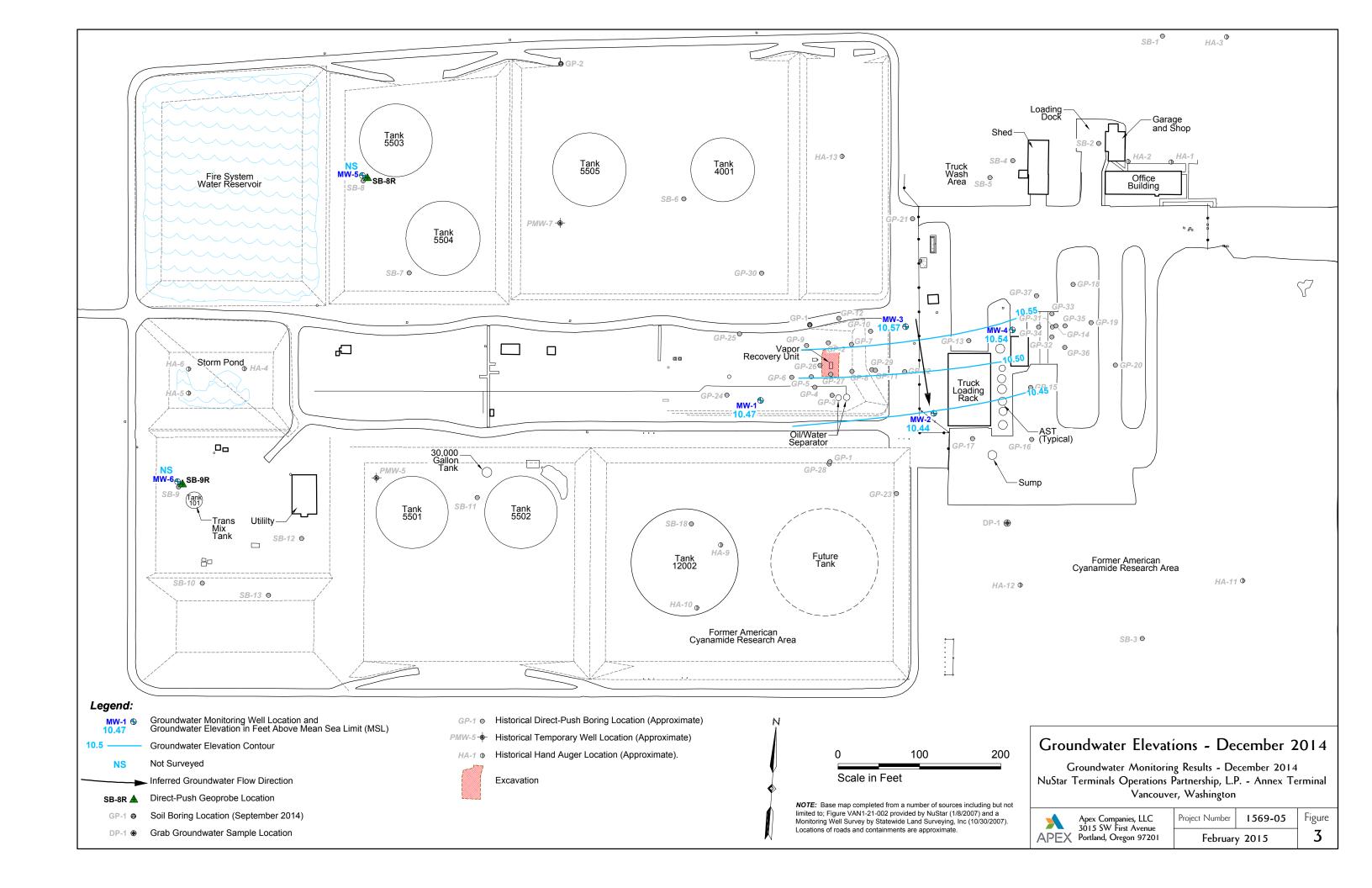
MuStar Vancouver Annex Terminal Pilot Study MW-SD				PROJECT:	BORIN	G ID:					
SA20 MW Fruit Valley Road, Vancouver, WA Associates, LLC Cascado Drilling DellLinks EQUIPMENT: Geoprobe 7822DT DellLinks METHOD: Direct-push LOGGED BY: Ian Maguiro Physical Clearance - Not logged. Description Physical Clearance - Not logged. No recovery. No recovery. No recovery. No recovery. ML Becomes gray SILT; moist, medium stiff. ML ML ML ML ML ML ML ML ML M											
Cascado Drilluno Contractore: Cascado Drilluno Contractore: Cascado Drilluno Contractore: Cascado Drilluno Contractore: Cascado Drilluno: Driect-push Driect-push Direct-push Direct-				LOCATION:							
Cascade Drilling DrilLING EQUIPMENT: Geoprobe 7822DT DRILLING METHOD: Drice-trush 15 LOGGED BY: Ian Maguire 8 SAMPLING METHOD: 10 Description Description Description Description Description Description Description Description Description Description Physical Clearance - Not logged: No recovery: No recovery: No recovery: No recovery: 10 No recovery: No recovery: No recovery: No recovery: SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. No recovery: SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.				5420 NW Fruit Valley Road, Vancouver, WA	MW-	-5D					
Cascade Drillus Coupment: Geoprobe 78:22DT DRILLING METHOD: Direct-push 17.3 LOGGED BY: SAMPLING METHOD: Description SUBFACE ELEV. (NAVD88): Not measured NA DEPTH TO WATER: 17.3 LOGGED BY: SAMPLING METHOD: Description Date Startles: 10/19/2017 DATE COMPLETED: 10/19/2017 DATE COMPLETED: 10/19/2017 Description Physical Clearance - Not logged. O Physical Clearance - Not logged. No recovery: No recovery: SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML Becomes gray SiLT; moist; medium stiff; odor observed. SILT with fine sand; gray; wet; medium stiff.	4	Ca	scadio	DRILLING CONTRACTOR:	NORTH	HING:		EASTING:			
Cooprobe 7822DT DRILLING METHOD: DRILLING METHOD: DICKLUDE PTH: DEPTH TO WATER 17.3 DATE COMPLETED: 10/19/2017 10/20/2017 DATE COMPLETED: 10/19/2017 DATE COMPLETED: DATE COMPLETED: 10/19/2017	Associates, LLC			Cascade Drilling							
DRILLING METHOD: Direct-push (17.3) LOGGED BY: Ian Maguire SAMPLING METHOD: 4-Inch Dual Tube Sampler 10/19/2017 10/20/2017 Description D					SURFA	CE ELE	V. (NAVD88):				
Direct-pub SAMP-LING METHOD: DATE STARTED: DATE COMPLETED: 10/19/2017 10/20/2017 1				-				NA			
LOGGED BY: Ian Maguire SAMPLING METHOD: 4-Inch Dual Tube Sampler Description Description Physical Clearance - Not logged. Physical Clearance - Not logged. SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. SILT with fine sand; gray; wet; medium stiff. Becomes gray SILT; moist; medium stiff. Becomes wet. SILT with fine sand; gray; wet; medium stiff.						. DEPTH:					
In Maguire	10005	D DV		<u> </u>		OT A DTC	D.				
Description Descr			e								
Physical Clearance - Not logged.				,							
Physical Clearance - Not logged.	(fee	SS	phic	Description	n/Re ft.)	Ispa r (pp	th T	Well	ater vel		
Physical Clearance - Not logged.	Elev.	O.S	Gra L	Description	rive (Неас /аро	Det	Construction	Le &		
2 -				Physical Clearance - Not logged.		->	0				
No recovery.											
No recovery.											
No recovery. SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.	2 -										
No recovery. SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.											
No recovery. SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.	-						_				
No recovery. SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.											
No recovery. No recovery. SiLT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML ML ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff.											
No recovery.	_				NA						
No recovery.							_				
No recovery. 10	6 -										
No recovery. 10											
No recovery. 10											
SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff. ML ML ML ML ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. SILT with fine sand; gray; wet; medium stiff. 5.0/5.0 63 — 16	8 -			No management			8				
SILT with fine sand; right brown with dark brownish red mottling; slightly moist, medium stiff. ML ML ML ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. 63 16 5.0/5.0 340				No recovery.							
SILT with fine sand; right brown with dark brownish red mottling; slightly moist, medium stiff. ML ML ML ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. 63 16 5.0/5.0 340	-										
SILT with line sand; right brown with dark brownish red mottling; slightly moist, medium stiff. ML ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. 63 16 5.0/5.0 340	40										
12 - ML	10 -			SILT with fine sand; light brown with dark			_				
12 - ML Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. 5.0/5.0 - 12 - 110 - 110 - 16 - ML	-			brownish red mottling; slightly moist, medium stiff.		<5					
14		ML									
Becomes gray SILT; moist; medium stiff; odor observed. Becomes wet. SILT with fine sand; gray; wet; medium stiff. ML ML ML ML SILT with fine sand; gray; wet; medium stiff. 5.0/5.0	12 -					<5	<u> </u>				
14 - ML Observed. Becomes wet. 110 -					5.0/5.0						
14 - ML Becomes wet. 110 - 16 - 18 - ML SILT with fine sand; gray; wet; medium stiff. 5.0/5.0 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1		MI		Becomes gray SILT; moist; medium stiff; odor]						
ML	14 -										
16 -		ML		becomes wet.		110					
16 -	-		 	SILT with fine sand; grav; wet; medium stiff.							
18 - ML	16			, 3 ,, , ,			46				
18 - ML	16 -					63	16				
18 - ML											
ML					5.0/5.0				\vee		
	18 -										
		ML									
20 20	-					340	_				
	20						20				

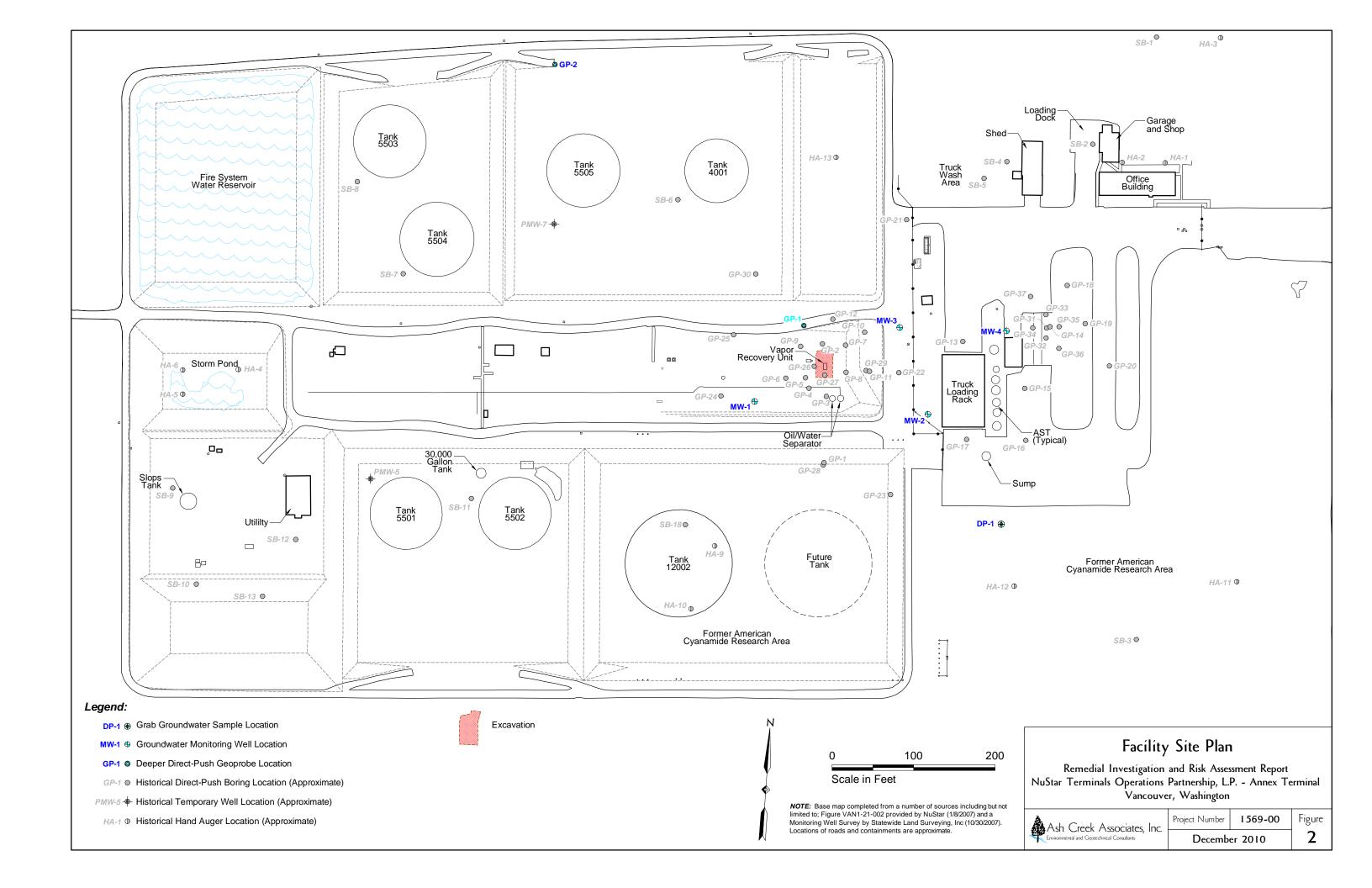
			PROJECT:	BORIN	G ID:						
			NuStar Vancouver Annex Terminal Pilot Study	MW-5D							
			LOCATION:	WELL	D:						
. 4			5420 NW Fruit Valley Road, Vancouver, WA	MW-	-5D						
7	Ca	scadia	DRILLING CONTRACTOR:	NORTH	HING:		EASTING:				
1	Assoc	ciates, LLC	Cascade Drilling								
			DRILLING EQUIPMENT:	SURFA	CE ELE\	/. (NAVD88):	TOC ELEVATION:				
			Geoprobe 7822DT		measu		NA				
			DRILLING METHOD:		DEPTH:		DEPTH TO WATER:				
			Direct-push	45	17.3						
LOGGE	D вү: laguir	· ^	SAMPLING METHOD: 4-Inch Dual Tube Sampler		STARTEI 9/2017):	DATE COMPLETED: 10/20/2017				
	iaguii		4 mon Buar rube campler	_			10/20/2017				
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	£	Well	Water Level			
:lev.	NS	Grap	Description	river	lead	Depth	Construction	Le &			
20					->	20					
					625						
22 -											
			Fine grained CAND: grant with the second state of	2.5/5.0							
-			Fine grained SAND; gray; wet; loose; slight odor								
24 -					10	24					
	SP										
26 -											
			Cond because well and describe to the	-							
-	SP		Sand becomes well graded medium to coarse grained; dark gray to black; medium dense; moist.		10						
		<u> Mariatra da da da da da da da da da da da da da</u>	No recovery.	2.5/5.0							
28 -			,,,,,,,,		33						
30 -											
-											
						00					
32 -				1.8/5.0		— 32					
		**********		1.0/3.0							
			SAND; gray; wet; medium dense; well graded fine to medium; mica present; 10-15% fines.		<5						
34 -	SP		inie to medium, mica present, 10-13% illies.								
					<5						
-			SAND; brown; moist to wet; medium dense;		_						
36 -			poorly graded fine sand with 10% silt.		<5	36					
30	SP					- 30					
-	٥.										
				5.0/5.0	<5						
38 -	SP		Becomes wet.	1							
			SAND; dark gray, wet, medium dense; well	1							
			graded fine to medium sand with little to no fines.		< 5						
40					\'0	40					
Ī											

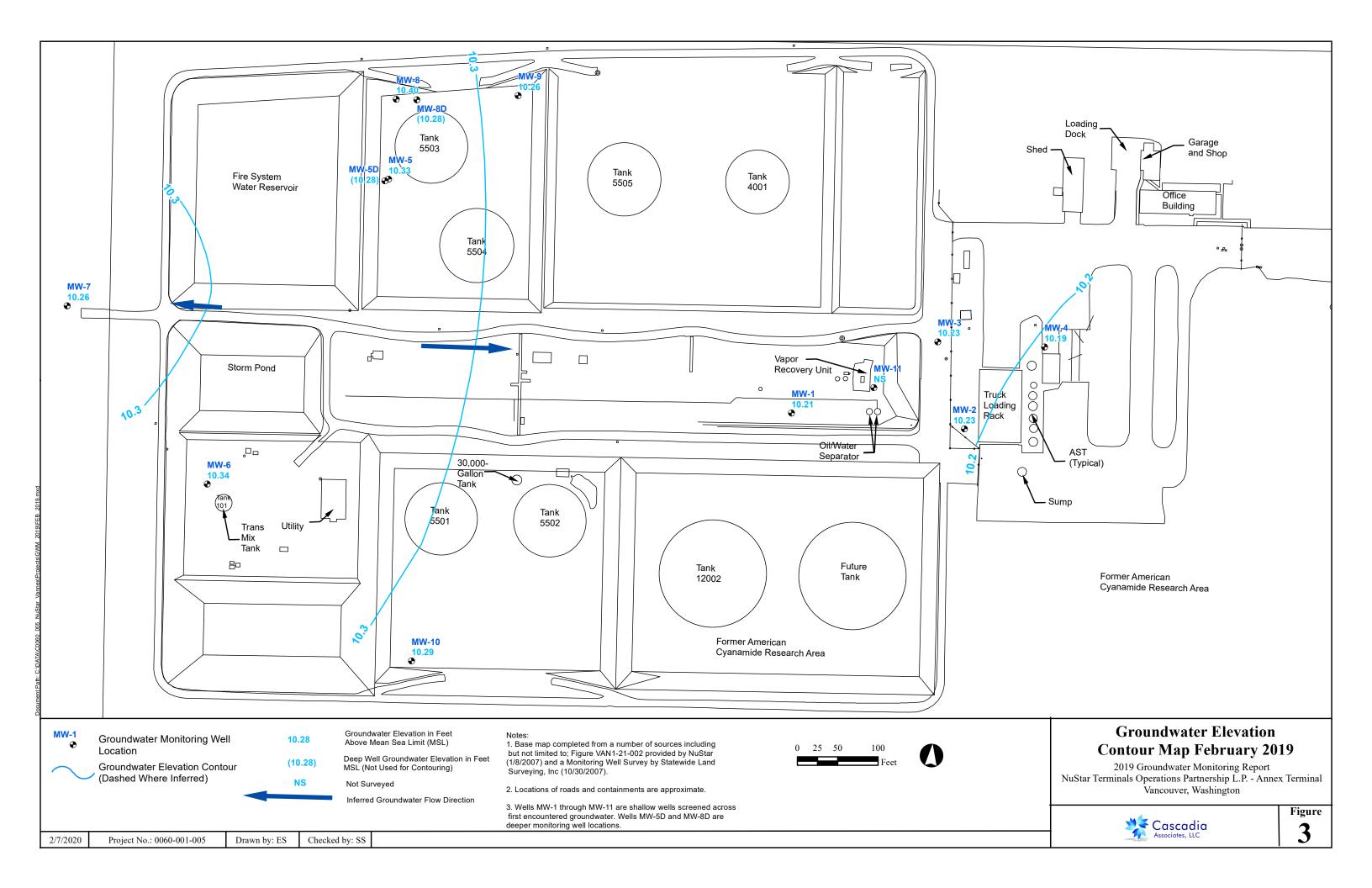
			PROJECT:	BORIN	G ID:							
			NuStar Vancouver Annex Terminal Pilot Study	MW-5D								
			LOCATION:	WELL ID:								
			5420 NW Fruit Valley Road, Vancouver, WA	MW-5D								
46		1.	•	EASTING:								
4	Ça	scadia siates, LLC	Cascade Drilling	NORTI	iling.		EASTING:					
	ASSOC	idles, LLC	DRILLING EQUIPMENT:				TOC ELEVATION:					
			Geoprobe 7822DT		CE ELE meas ı	V. (NAVD88):	NA					
			DRILLING METHOD:		. DEPTH							
			Direct-push	45	. DEFIN	-	DEPTH TO WATER:					
			-		OTABTE	<u> </u>	17.3					
LOGGE		•	SAMPLING METHOD: 4-Inch Dual Tube Sampler	1	STARTE 9/2017		DATE COMPLETED: 10/20/2017					
	laguir	е	4-inch Duai Tube Samplei				10/20/2017					
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Depth	Well Construction	Water Level				
40 - 42 - - 44 -	SP			5.0/5.0	<5 <5	40 - - - - 						
					<5							

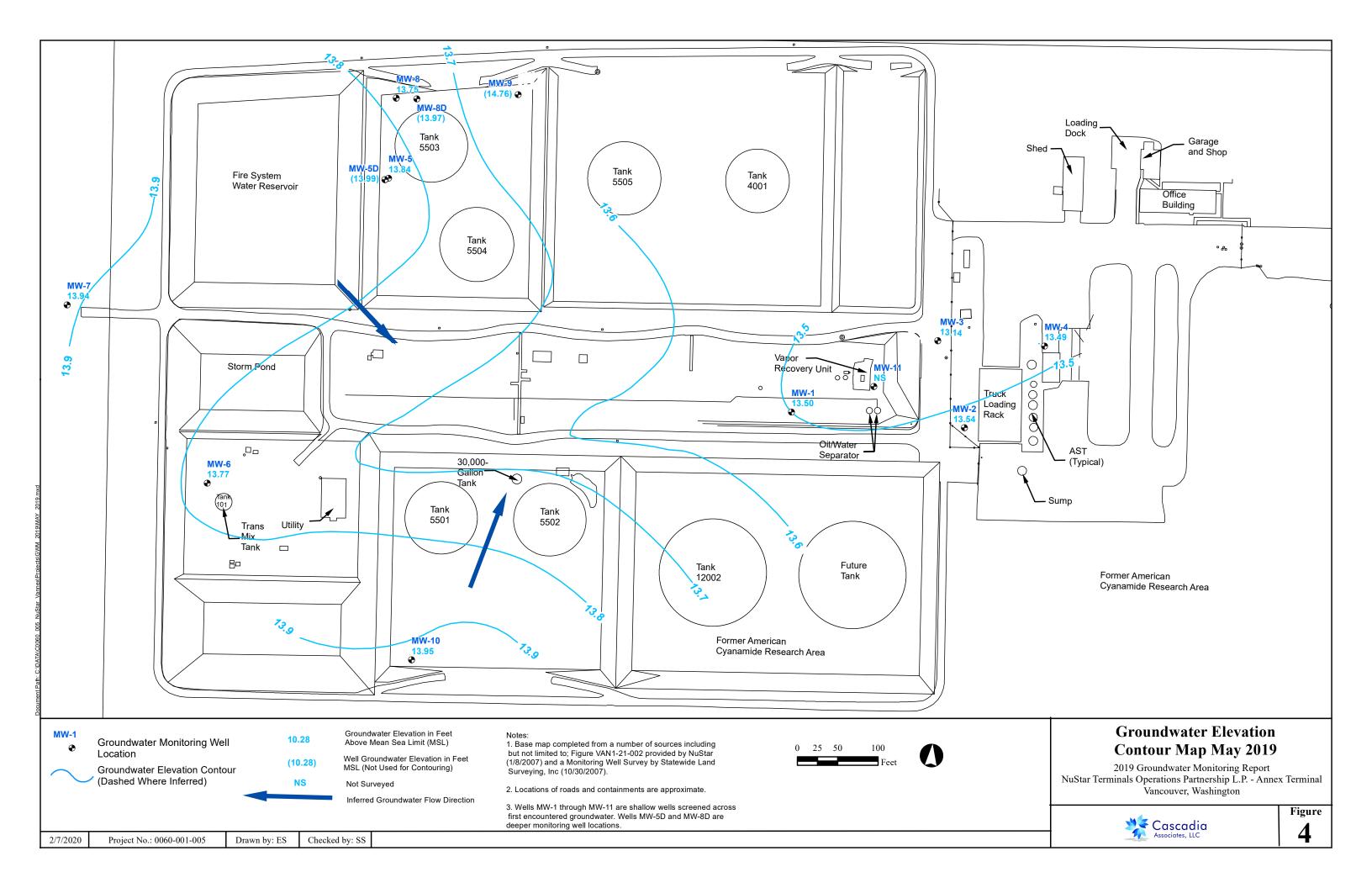
AP	EX	Ape: 3015 Portl	x Cor SW and,	mpanie First Orego	es, LLC Avenue on 97201	2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: MW-7 Project Number: 1569-09 Logged By: J. Mattecheck Date: July 7, 2016
Depth, feet	Core Interval/Recovery	Laboratory Sample ID			. , .		Site Conditions: Overcast Drilling Contractor: Cascade Drilling Drilling Equipment: Geoprobe Sampler Type: 5' Push Probe Depth to Water (ATD): 16' Surface Elevation: Not Measured
Dept	Core	Labor	Sheen	PID	Lith	ologic Description	Well Details and Notes:
_			NS	<5		ll and trace organics.	Flush-Mount Monument
_	ğer		NS	< 5	SILT; I	ight brown (7.5YR 6/3), dry, medium stiff.	Concrete Surface Seal
5—	Hand Auger		NS NS	<5 <5			Bentonite Chips
			NS	< 5	SILT w	vith clay; gray (7.5YR 5/1), slightly moist, medium stiff.	2" Diameter Schedule 40 PVC Casing
10-			NS	< 5			#10/20 Filter Pack Sand
- - -			NS NS	<5 <5	— Becor	nes medium stiff to soft. Trace angular gravels.	XX* Diameter Schedule XX PVC Screen (0.010 - Inch Slot Size)
15—			NS	< 5	Silt CL	nes wet. AY with trace fine sand; brown (7.5YR 4/3), wet, m stiff to stiff.	4" Diameter Borehole
_			NS NS	<5 <5	medidi	m sun to sun.	
20—					— Becor	mes medium stiff to soft.	20
25—							25
					Botton	n of Boring at 30.0' BGS.	
70-							
30—							
							_
75							75
35—							— 35 —
_							
	•						Page I/I

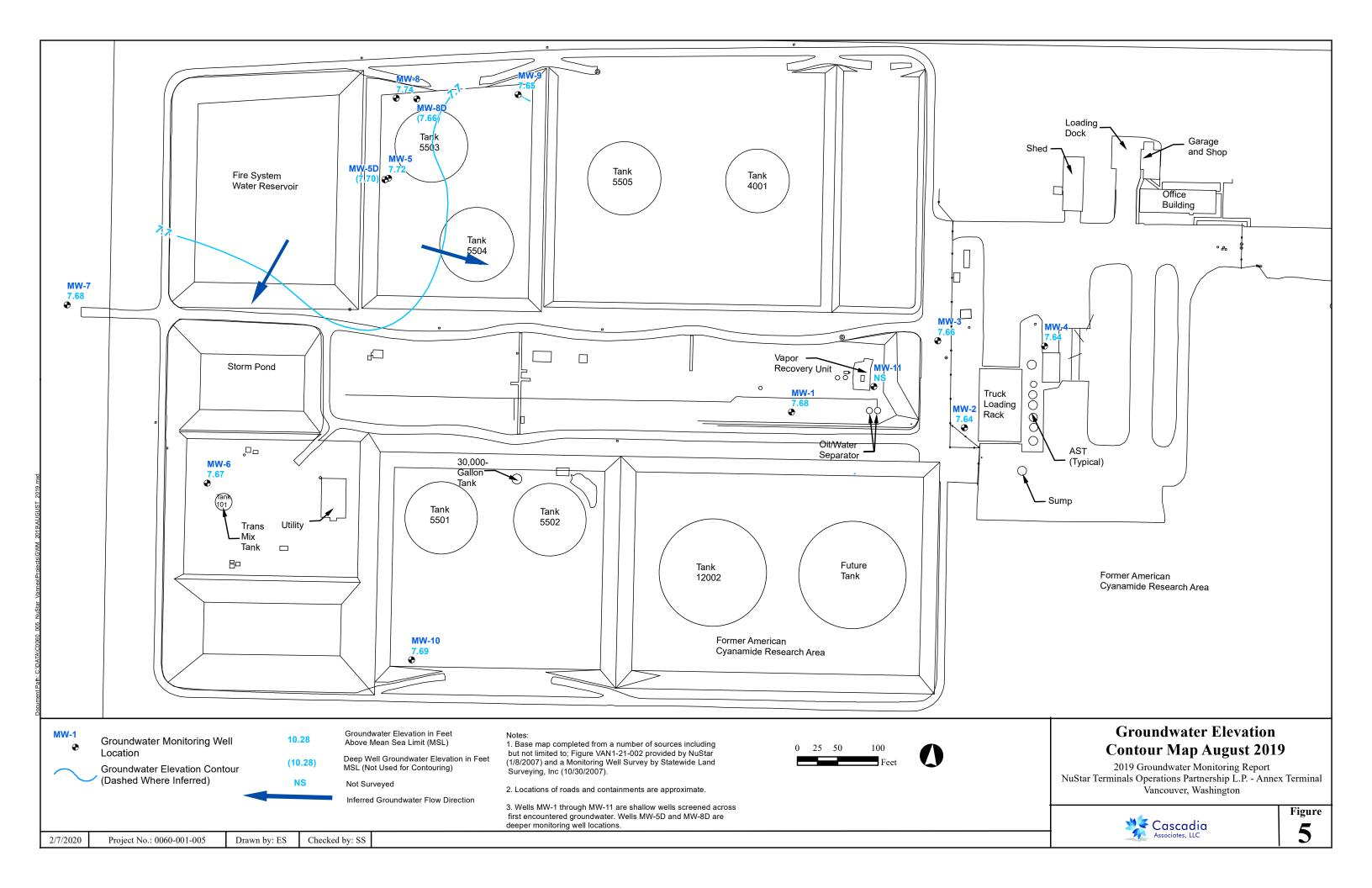
AP	EX	Ape: 3015 Portl	x Cor i SW land, (npanío Fírst Orego	LLC venue 97201 2016 Well Installation and Additional D NuStar Terminals Operations Partnership, Vancouver, Washingto	L.P Annex Terminal Project Number: 1569-09
	Core Interval/Recovery	Laboratory Sample ID			,	Site Conditions: Overcast Drilling Contractor: Cascade Drilling Drilling Equipment: Geoprobe Sampler Type: 5' Push Probe
eet	erval	ry Sa				Depth to Water (ATD): 18' Surface Elevation: Not Measured
Depth, feet	Core In	Laboratc	Sheen	PID	Lithologic Description	Well Details and Notes:
_			NS		Grass/organics.	Flush-Mount Monume
-			NS	<5 <5	SILT; light brown (7.5YR 6/3), dry, medium stif	ff Concrete Surface Seal
_	Ser					
5—	Hand Auger		NS	<5		Bentonite Chips
_	Ϋ́		NS	< 5		
_			NS	< 5	SILT with sand; light brown (7.5YR 6/3), slight medium stiff.	ly moist, 2° Diameter Schedule 40 PVC Casing
-			NS	< 5		
10-	\parallel		NS	< 5		IO #10/20 Filter Pack Sanc
						2" Diameter Schedule
_			NS	< 5	CII T with troop fine and and alow brown (7.5	40 PVC Screen (0.010-1nch Slot Size)
-	$\ \ $		NS	< 5	SILT with trace fine sand and clay; brown (7.5 slightly moist, soft to medium stiff.	
15						- I5 - 4" Diameter Borehole
_	Щ		NS		- Becomes wet.	
-			NS	< 5		
20—			NS	6l		20
_					Becomes gray (7.5YR 5/1).	
-			NS	37		
75	$\ \ $		NS	< 5		
25—					Bottom of Boring at 30.0' BGS.	25 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
-						-
-						-
30—						— — 30
_						-
-						<u> </u>
35—						
-						-
-						<u> </u>
						Page I/I

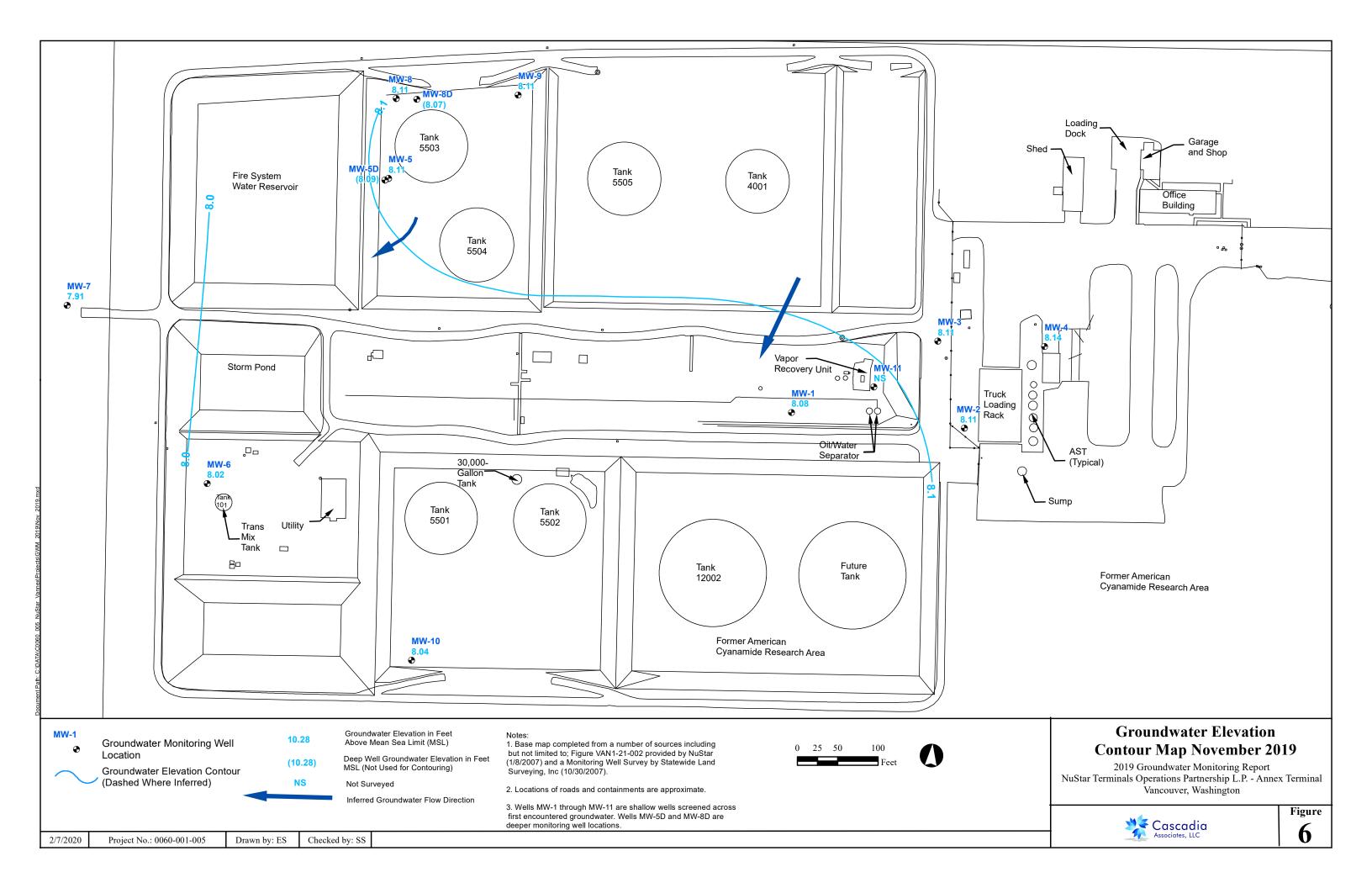

		Ape	х Сог	npaníe	s, LLC 2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P Annex Terminal	Boring Number:						
<u> </u>		3015	SW	First /		Project Number: 1569-09						
API	ΞX	Port	land,	Orego	1 97201 Vancouver, Washington	Logged By: J. Matted	check					
						Date: July 6, 2016						
						Site Conditions: Over	cast					
						Drilling Contractor: Ca	scade Drilling					
	ver)					Drilling Equipment: Geoprobe						
	500	<u>Pe</u>				Sampler Type: 5' Push Probe						
	I/Re	am				Depth to Water (ATD):						
et G	EVA	5			-	Surface Elevation: Not						
, fe	lrt	ator	_			Surface Elevation. 140t	Wicasurcu					
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lithologic Description	Well Details and	Notes:					
			NIC	<5	Rounded cobbles over gravel.	-	Flush-Mount Monument					
			NS		SILT; light brown (7.5YR 6/3), dry, medium stiff.	24 6 4 6	Concrete Surface Seal					
				<5		_ 🔛						
	Ser		NS	< 5								
	Auger					_	Bentonite Chips					
5—	Hand				-	— 5	Demonite Chips					
_	-		NS	<5	-	_						
			1,13	< 5		_	2" Diameter Schedule					
			NS		SILT with fine sand; light brown (7.5YR 6/3), slightly moist,		40 PVC Casing					
	H		N IC	<5	medium stiff to soft.	- 💹	×					
\dashv	$\ /\ $		NS	<5	-	- 💹						
10—	Н				-	— ю						
	1 /			< 5		_ 🔛 🔛						
			NS	(5)								
	/			<5		- 🔛						
_	\parallel / \parallel		NS	< 5	CILT with trace fine and along light brown (7 EVD C/4)	- 💹 🖟						
	/		NS		SILT with trace fine sand and clay; light brown (7.5YR 6/4), wet, medium stiff to soft.	_ 🟻 🔛						
15—				<5	wet, mediam still to soft.	— I5	- 4" Diameter Borehole					
15							4 Diameter Bolehole					
				<5		$ \nabla$						
_	\parallel / \parallel		NS		-	- 💹						
_	\parallel / \parallel		NIC	<5			XXI					
	$\parallel \parallel \parallel$		NS			— KXXI K	XXXI					
	11/			-5								
20—	/ /			<5		_						
-~	Н			<5								
. —	\mathcal{H}		NS	<5 5								
	<u> </u>		NS	<5 5	– Becomes gray (7.5YR 5/1).							
- - -			NS NS	<5 5 31	– Becomes gray (7.5YR 5/1).							
- - -					– Becomes gray (7.5YR 5/1).							
- - -												
			NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray							
			NS NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense.	_ _ _ _						
			NS	3I <5	Coarse to fine, well-graded SAND in a SILT matrix; gray	_ _ _ _						
			NS NS	3I <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray	_ _ _ _						
			NS NS NS	3I <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray	_ _ _ _						
			NS NS	3I <5 5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray	_ _ _ _						
 25 			NS NS NS	3I <5 5 <5 <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray							
			NS NS NS	3I <5 5 <5 <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray	_ _ _ _						
 .5— 			NS NS NS NS	31 <5 <5 <5 <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray							
 .5— 			NS NS NS NS	31 <5 <5 <5 <5	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray							
 5— 			NS NS NS NS NS	3I	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray							
 .5— 			NS NS NS NS NS	3I	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray		Granular Bentonite					
55—			NS NS NS NS NS NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray		Granular Bentonite #10/20 Filter Pack Sand					
55—			NS NS NS NS NS NS	31 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 ·	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		////					
55—			NS NS NS NS NS NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		////					
			NS NS NS NS NS NS NS NS NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		////					
25—			NS NS NS NS NS NS NS NS	3I	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		#10/20 Filter Pack Sand					
			NS NS NS NS NS NS NS NS NS	31	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		///					
25—			NS NS NS NS NS NS NS NS NS NS NS NS NS	3I	Coarse to fine, well-graded SAND in a SILT matrix; gray (7.5YR 5/1), wet, soft to medium dense. Fine to medium-coarse, well-graded SAND; very dark gray (7.5YR 3/1), wet, medium dense to dense.		#10/20 Filter Pack Sand 2" Diameter Schedule					

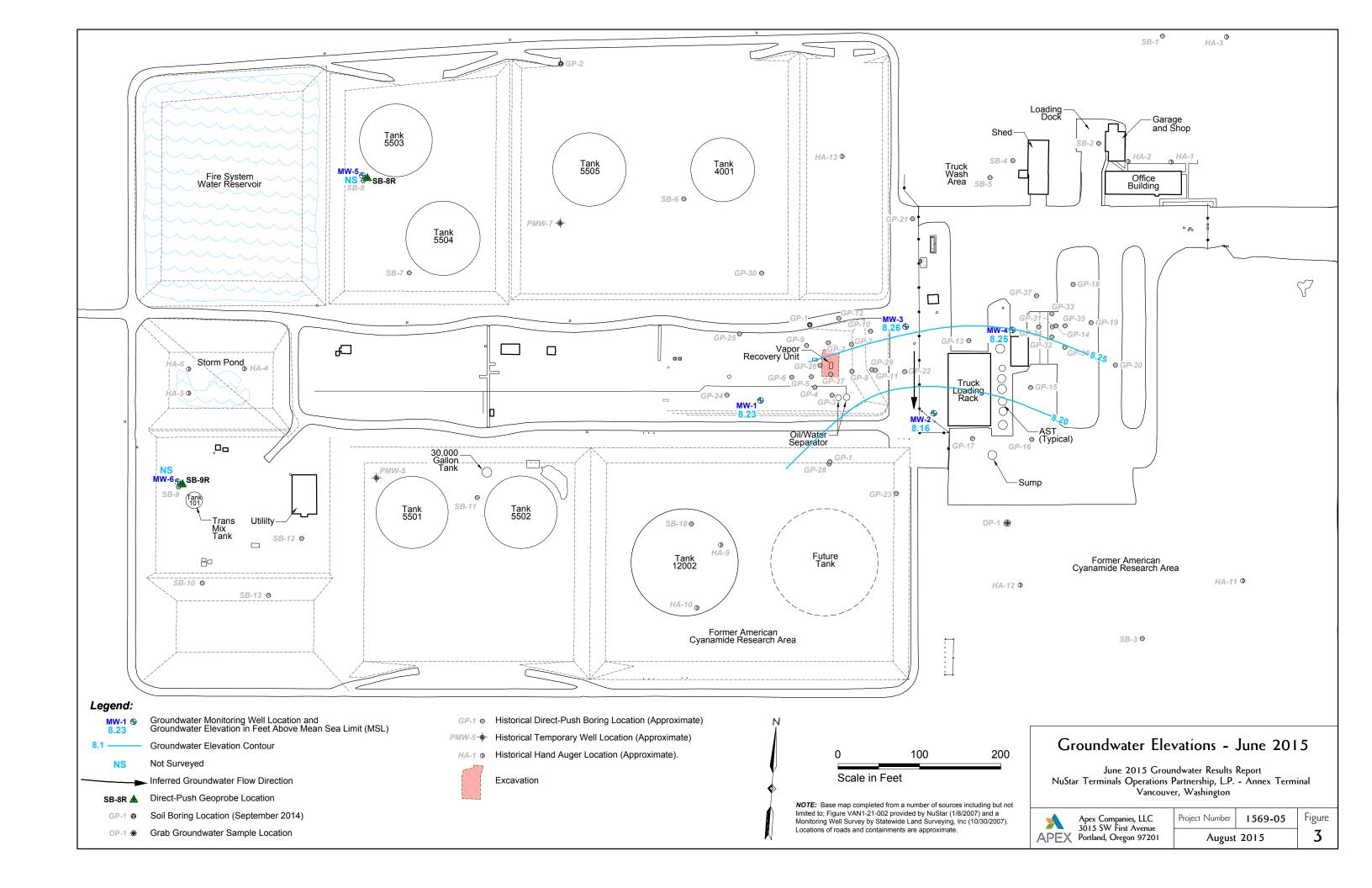

AP	EX	Ape: 3015 Portl	x Cor SW and,	npaní First Orego	es, LLC Avenue on 97201	Additional Groundwater Investigation Report NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Boring Number: MW-8D Project Number: 1569-09 Logged By: J. Mattecheck Date: July 6, 2016				
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Líthe	ologíc Descríptíon	Site Conditions: Overcast Drilling Contractor: Cascade Drilling Drilling Equipment: Geoprobe Sampler Type: 5' Push Probe Depth to Water (ATD): 16.2' Surface Elevation: Not Measured Well Details and Notes:				
45— 45— 50— 55— 60— 70— 75— 75—			NS NS NS	d 5 5 5	Bottom	n of Boring at 45.0' BGS.	4" Diameter Borehole #10/20 Filter Pack Sand 2" Diameter Schedule 40 PVC Screen (0.010-Inch Slot Size)				
							Page 2/2				

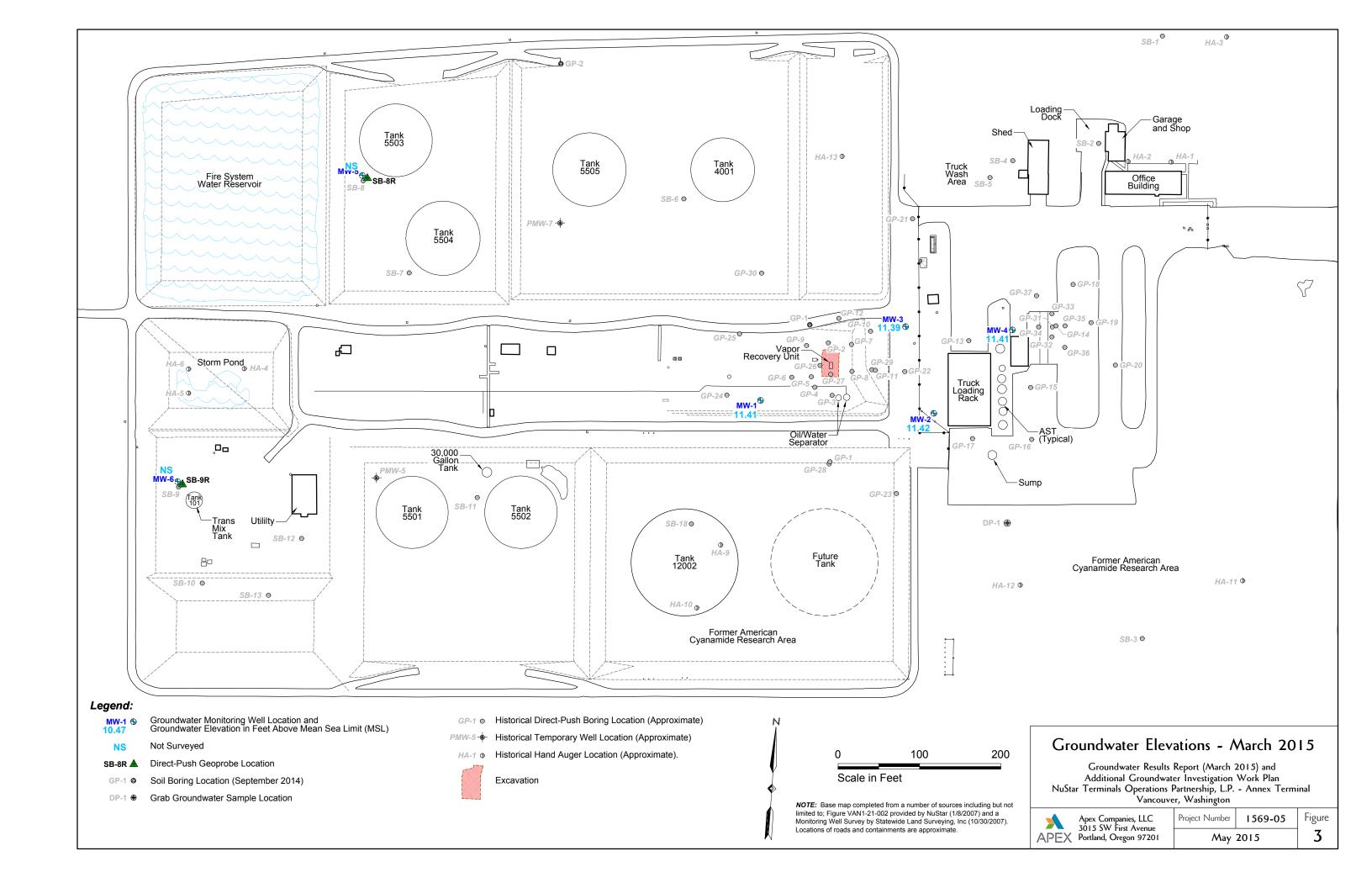

AP	EX	Ape: 3015 Portl	x Cor SW and,	npanío Fírst Orego	LLC 2016 Well Installation and Add Price NuStar Terminals Operations Par Vancouver, V	tnership, L.P Annex Terminal	Boring Number: MW-9 Project Number: 1569-09 Logged By: J. Mattecheck Date: July 6, 2016
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	een	0	Lithologic Description		Site Conditions: Overcast Drilling Contractor: Cascade Drilling Drilling Equipment: Geoprobe Sampler Type: 5' Push Probe Depth to Water (ATD): 16' Surface Elevation: Not Measured Well Details and Notes:
S S S S S S S S S S	Con	Labo	S S S S S S S S S S S S S S S S S S S	Old \$\tau\$ \$\tau	Grass/organics. SILT; light brown (7.5YR 6/3), dry, me SILT with fine sand; light brown (7.5YI SILT with trace fine sand and clay; broslightly moist, soft to medium stiff. Becomes wet. Coarse to fine, well-graded SAND; da (7.5YR 2.5/1), wet, medium dense to the sand of Boring at 30.0' BGS.	R 6/3), dry, medium stiff. Town (7.5YR 6/3),	Well Details and Notes: Flush-Mount Monument Concrete Surface Seal Bentonite Chips 2" Diameter Schedule 40 PVC Casing #10/20 Filter Pack Sand 2" Diameter Schedule 40 PVC Screen (0.010-Inch Slot Size) 4" Diameter Borehole
30—							

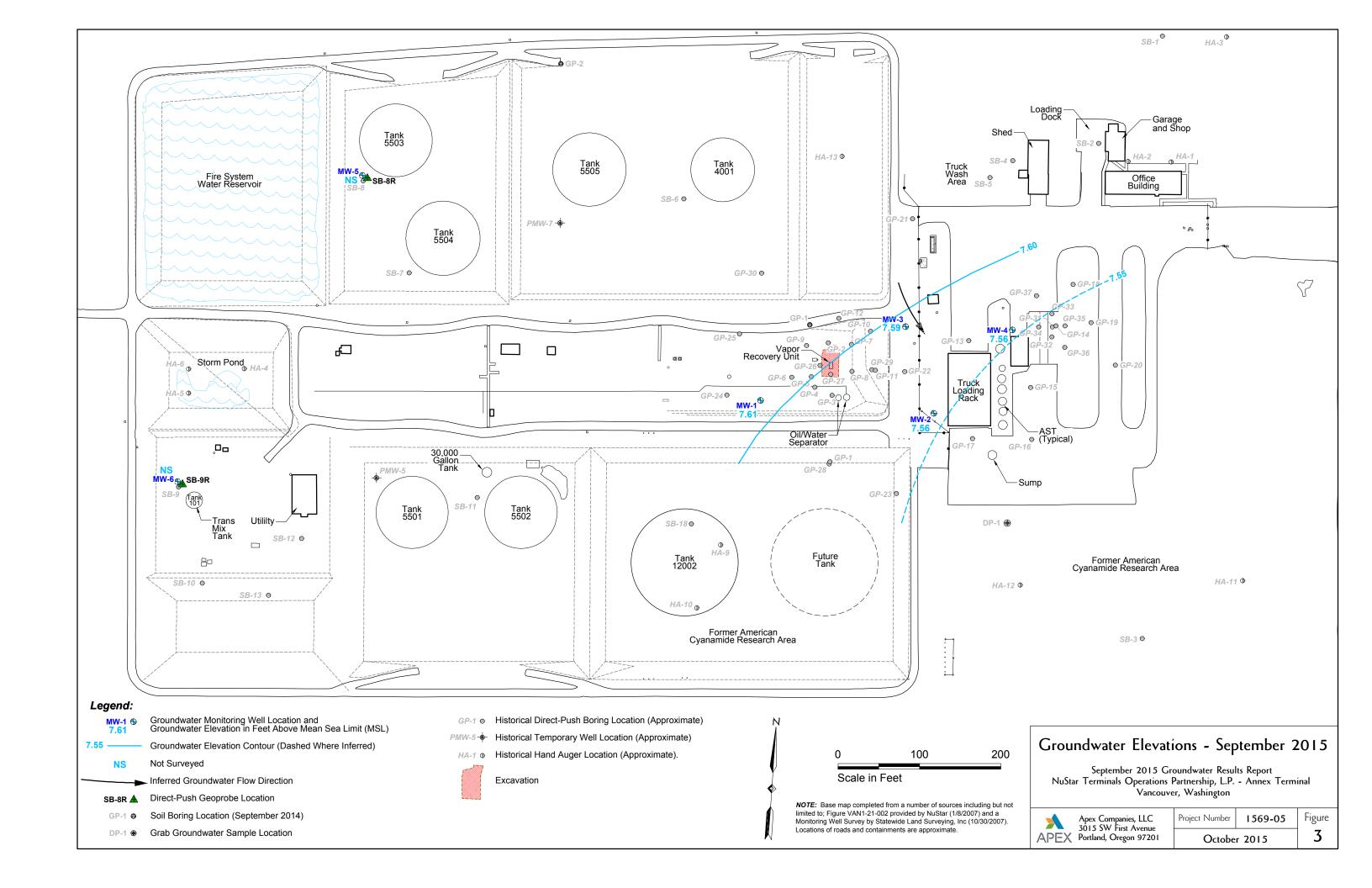

AP	EX	Apex 3015 Portl	x Cor SW and, (npanío Fírst Orego	es, LLC Avenue on 97201	2016 Well Installation and Additional Delineation Work Plan NuStar Terminals Operations Partnership, L.P Annex Terminal Vancouver, Washington	Proje Logg	Boring Number: MW-10 Project Number: 1569-09 Logged By: J. Mattecheck Date: July 6, 2016					
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	Sheen	PID	Lith		Site Conditions: Overcast Drilling Contractor: Cascade Drilling Drilling Equipment: Geoprobe Sampler Type: 5' Push Probe Depth to Water (ATD): 17.25' Surface Elevation: Not Measured Well Details and Notes:						
5—	Hand Auger		NS NS NS NS NS NS NS NS NS NS	<5 <5 <5 <5 <5 <5 <5 <5		organicsght brown (7.5YR 6/3), dry, medium stiff.		·		Δ Δ Δ Δ	Cor Ben	sh-Mount Mon ncrete Surface Su stonite Chips Diameter Schedu PVC Casing	eal
10— ———————————————————————————————————			NS NS NS NS NS NS			LAY; light brown (7.5YR 6/3), slightly moist, medium stiff. LAY with fine sand; light brown (7.5YR 6/3), slightly moist,	1(2" [40 (0.0	Ji/20 Filter Pack S Diameter Schedu PVC Screen 10-Inch Slot Siz Diameter Boreho	ule re)
15			NS NS NS NS NS	\$5 \$5 \$5 \$5 \$5 \$5	Coarse (7.5YF	e to fine, well-graded SAND; dark brown to black 2.5/1), wet, medium dense to dense. e to fine, well-graded SAND; gray (7.5YR 5/1), wet, dense. of Boring at 30.0' BGS.	2	∨_ .0				Jiameter boreno	√tC
35—								5				Page	1/1

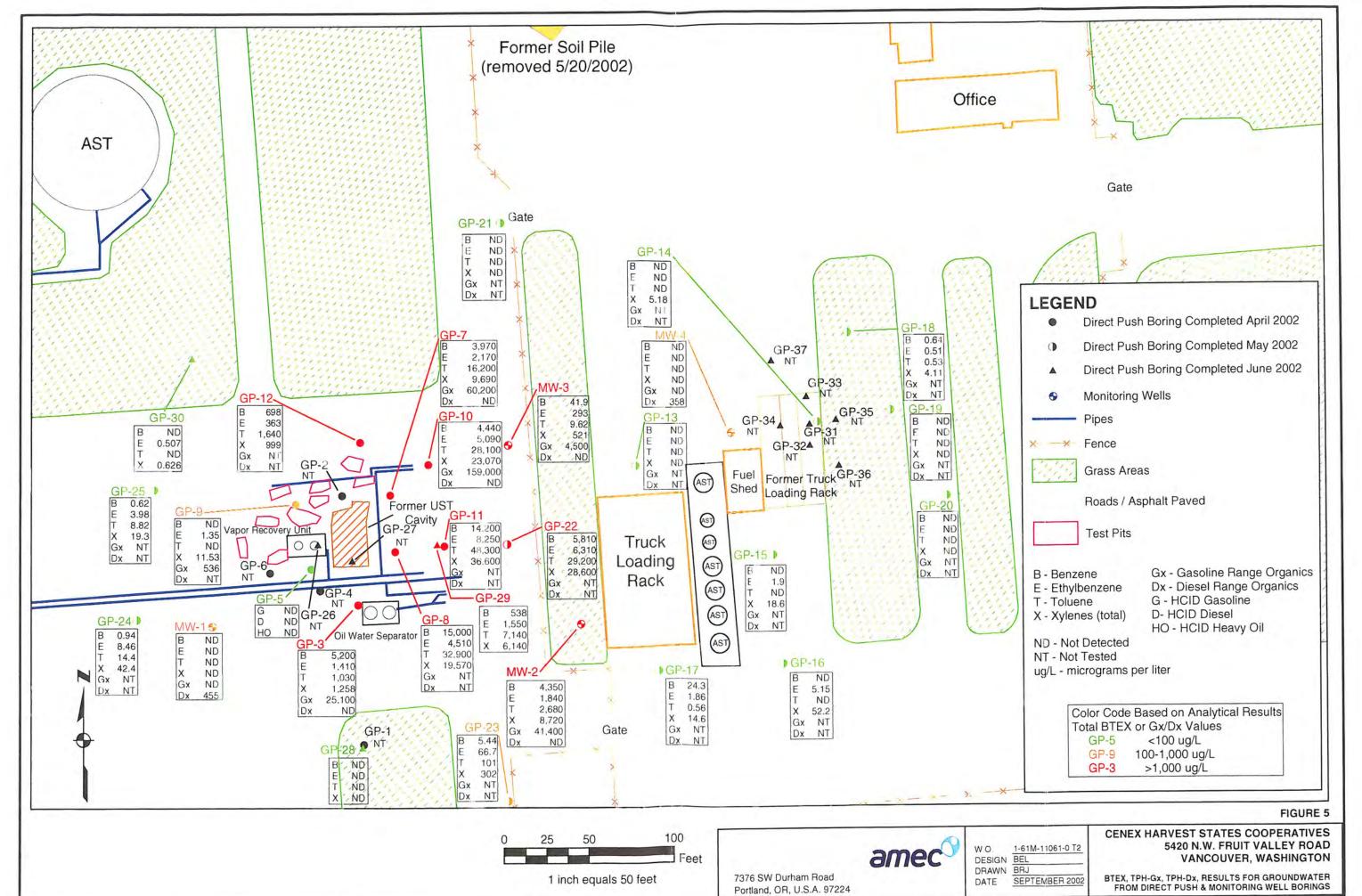

APPENDIX BGROUNDWATER CONTOUR MAPS

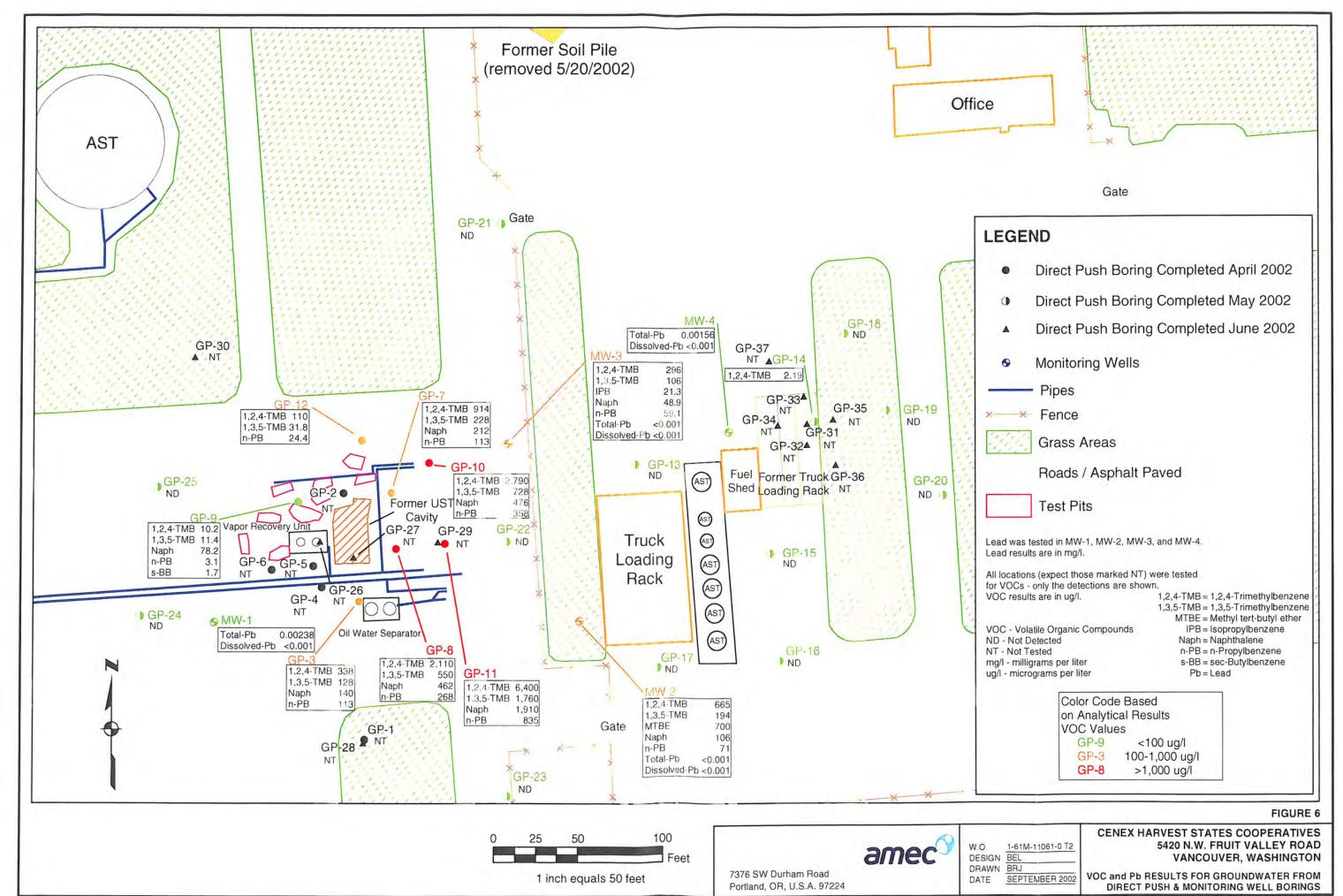


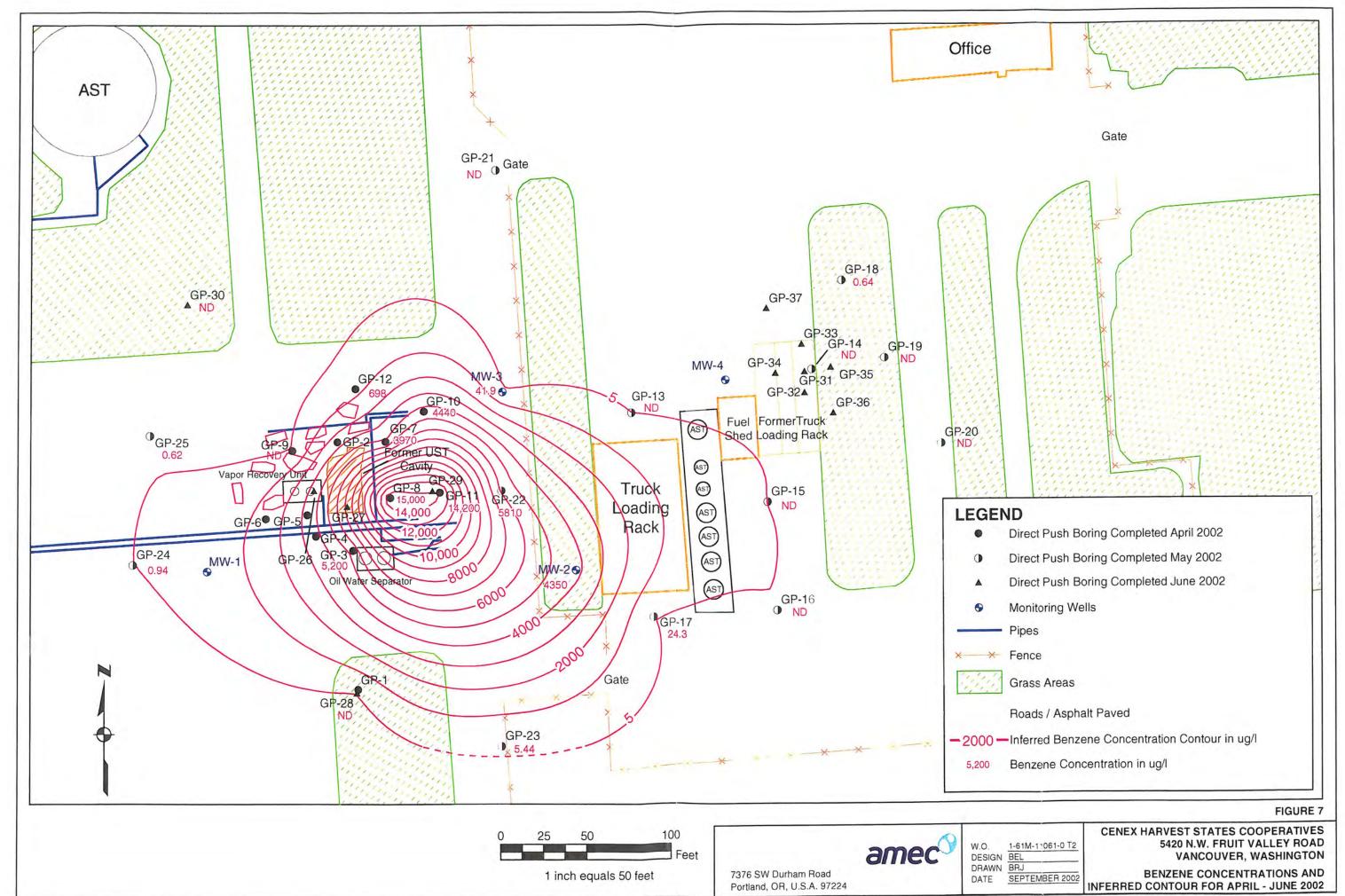


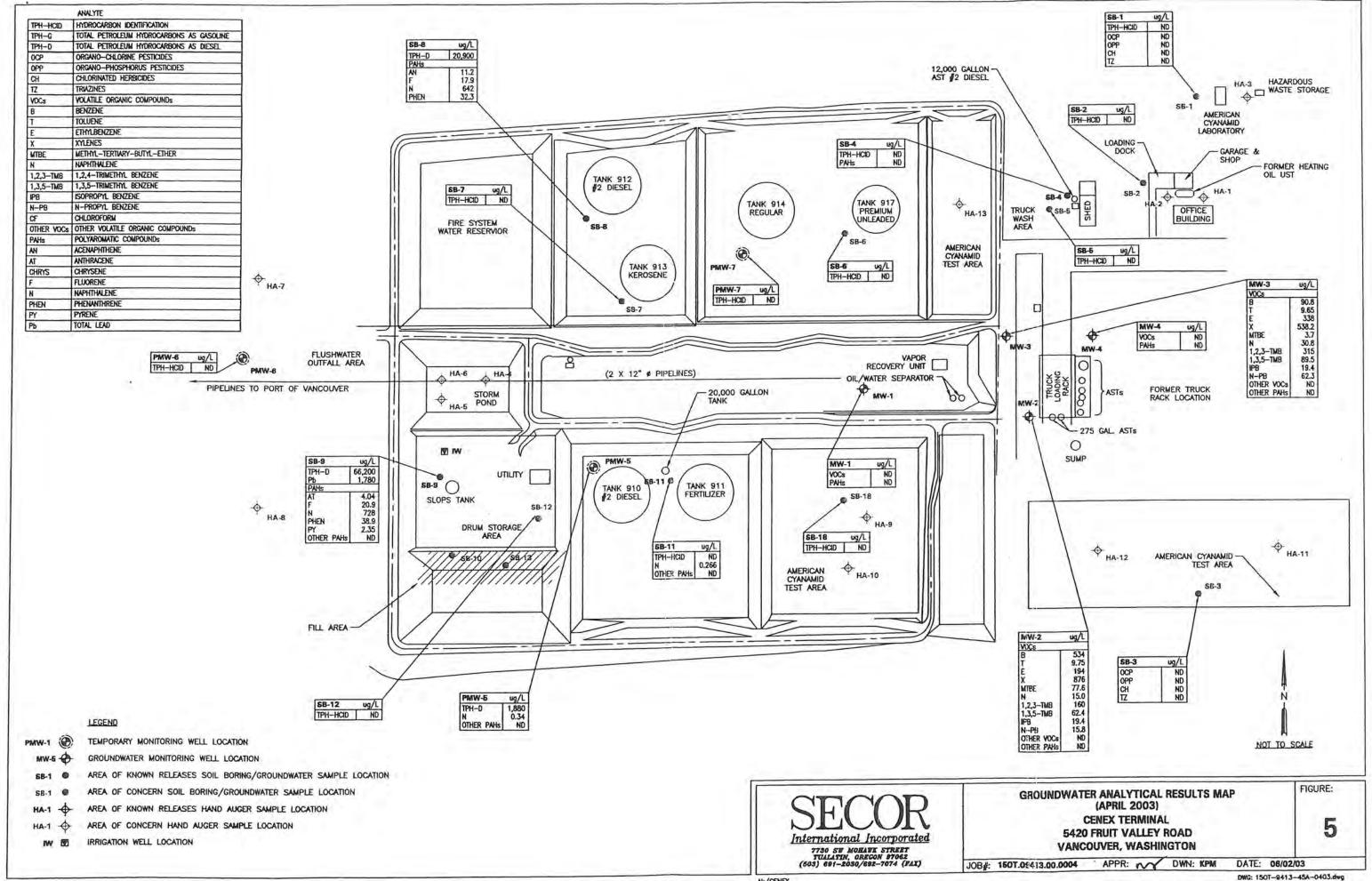


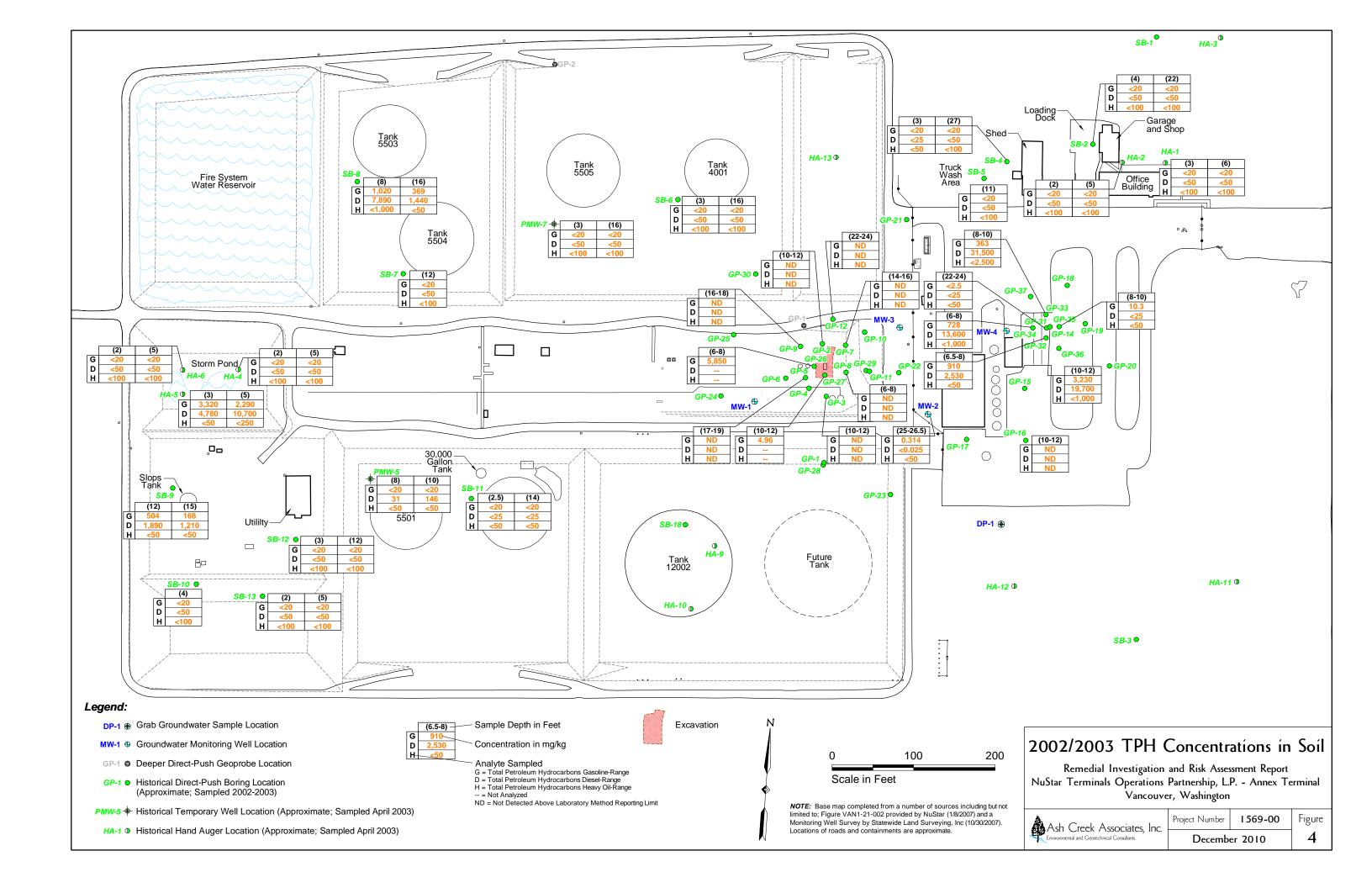


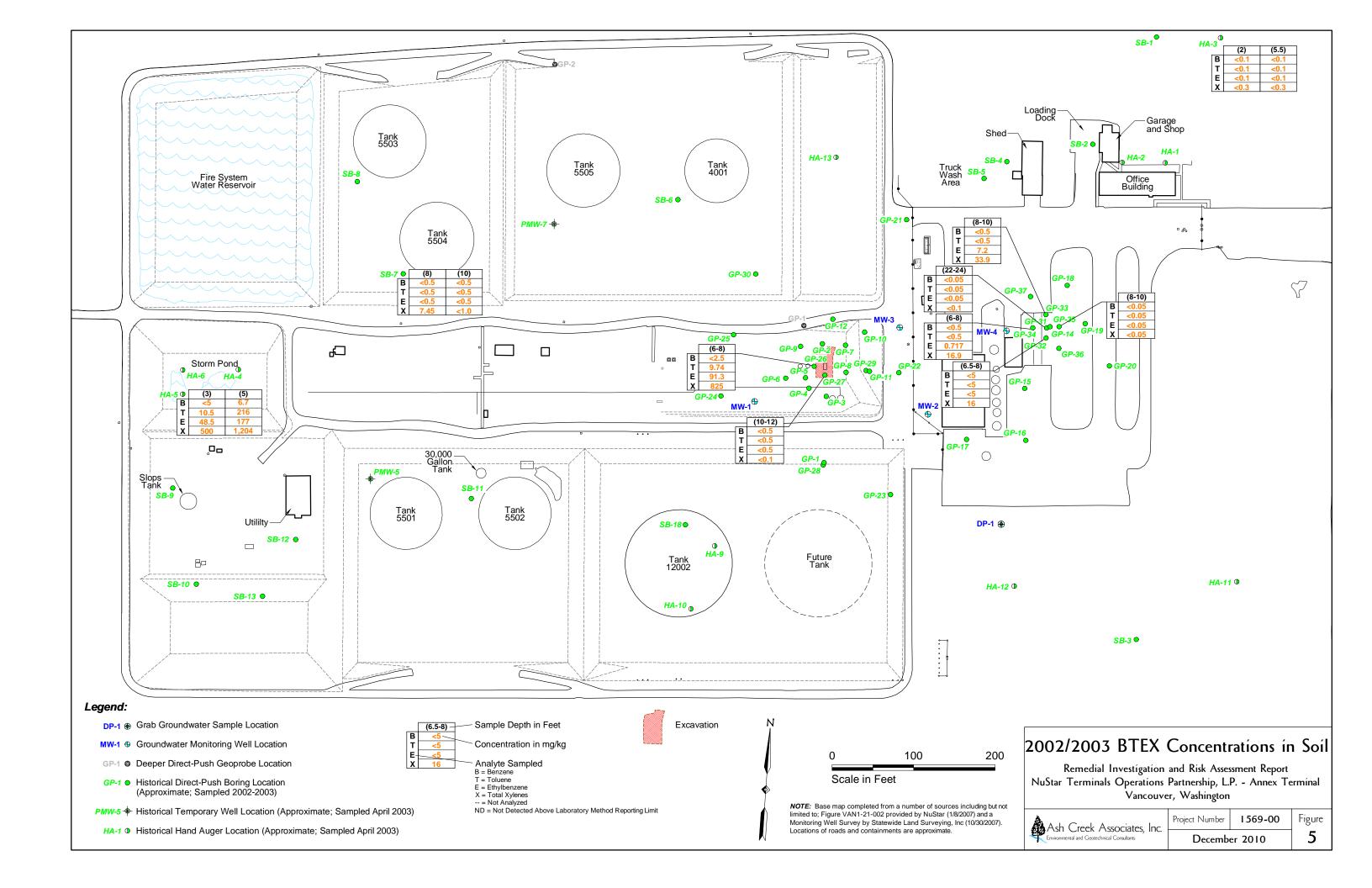


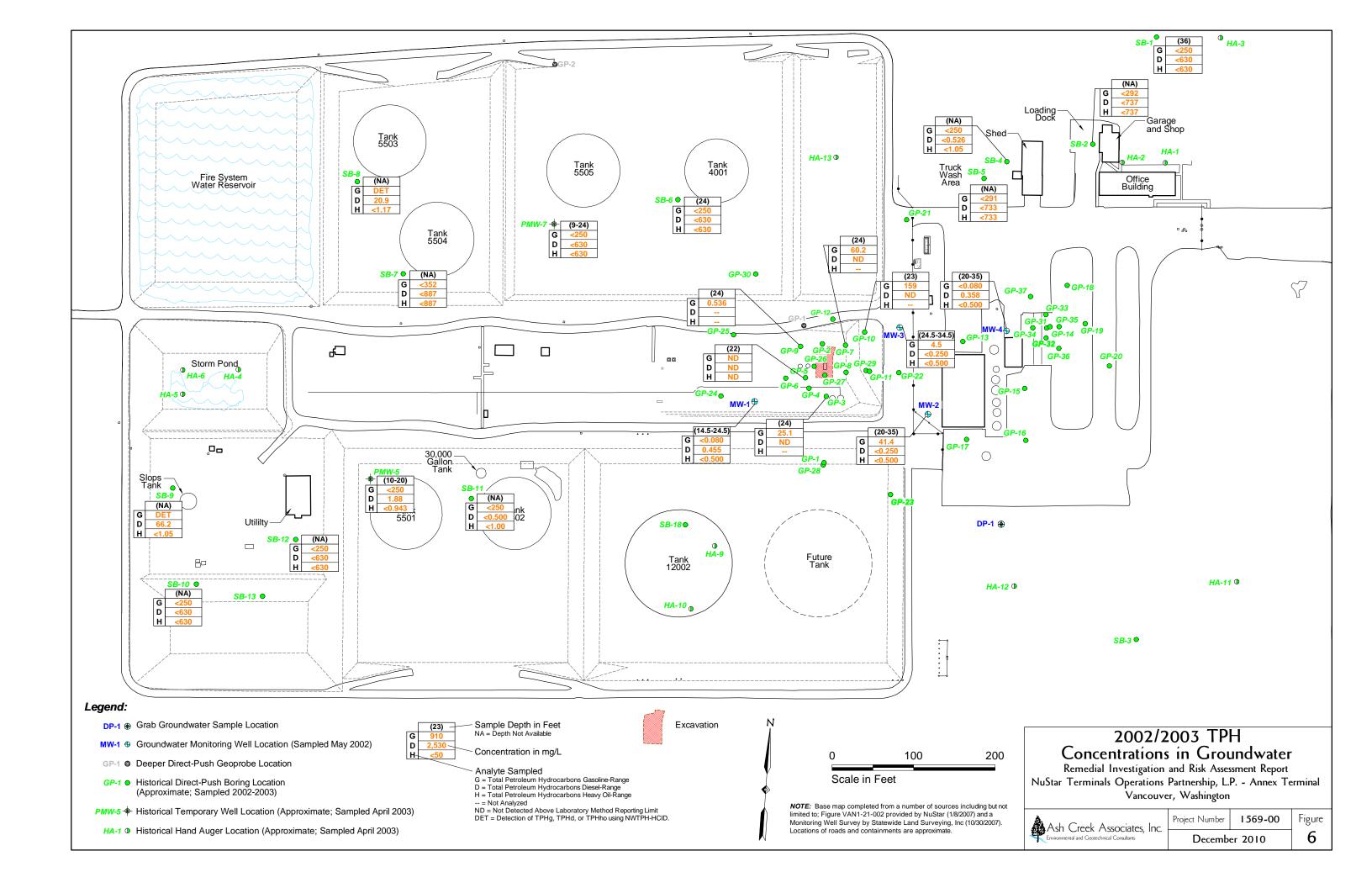


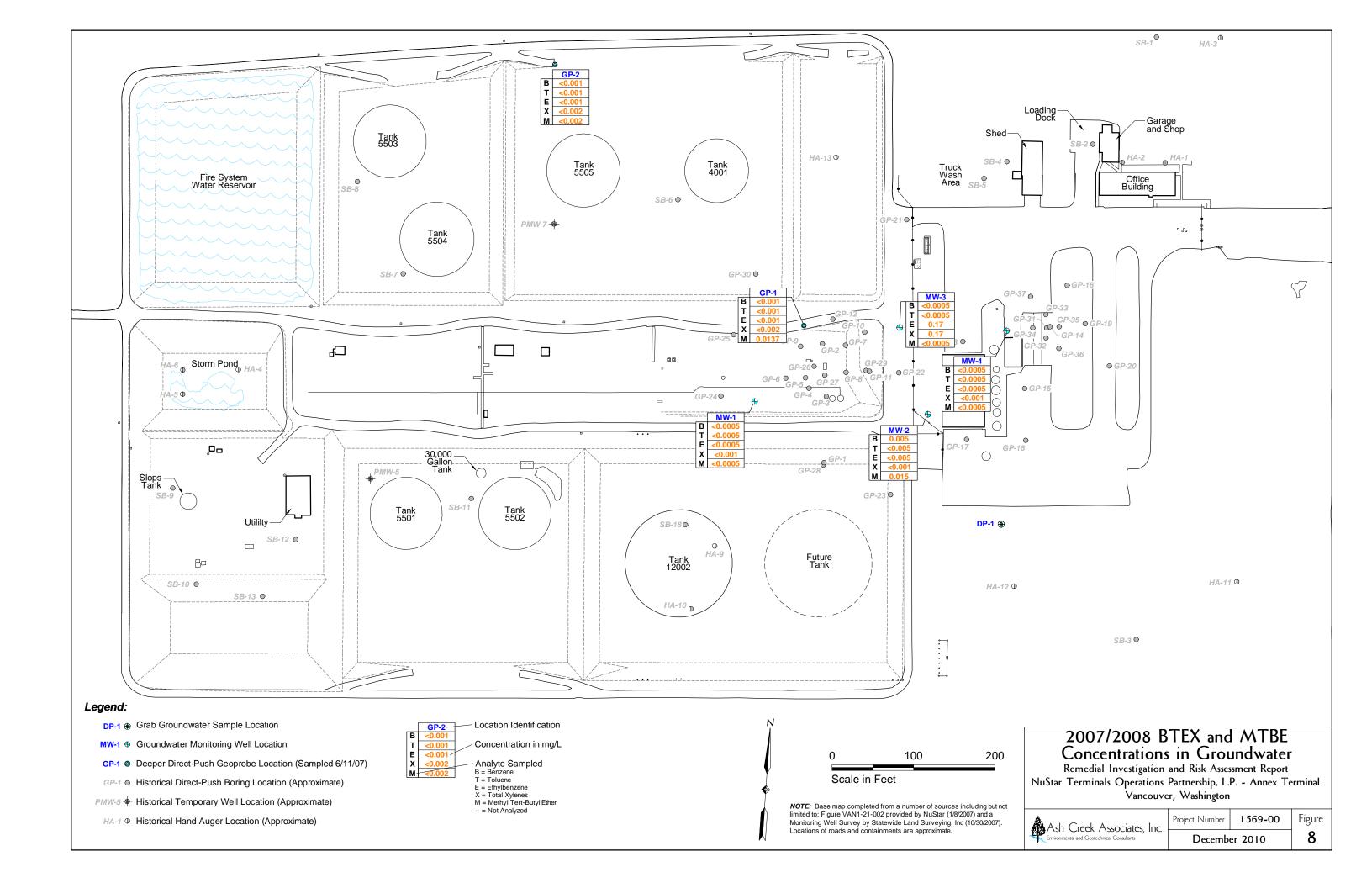


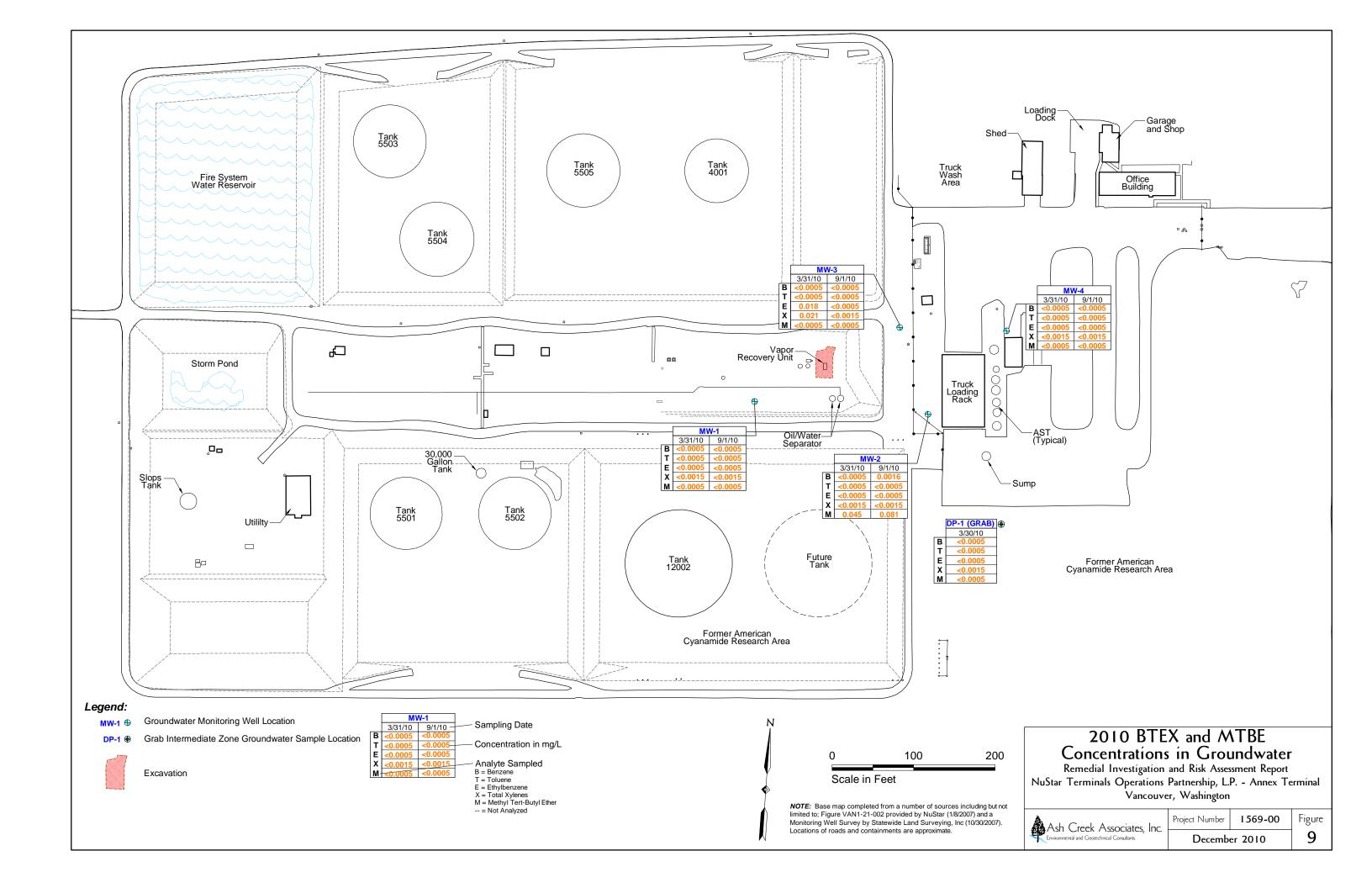


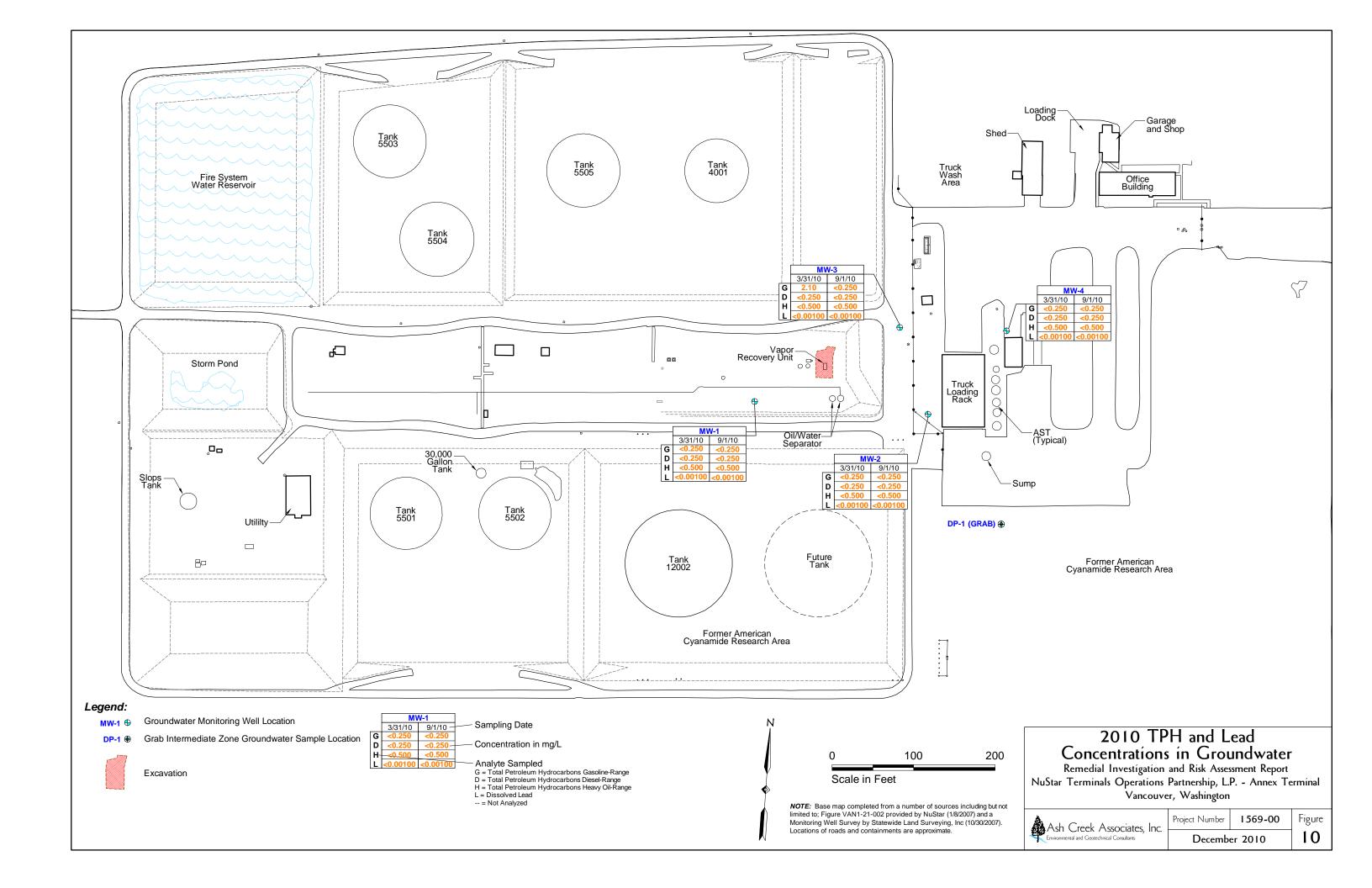

APPENDIX CFIGURES FROM 2010 REMEDIAL INVESTIGATION REPORT

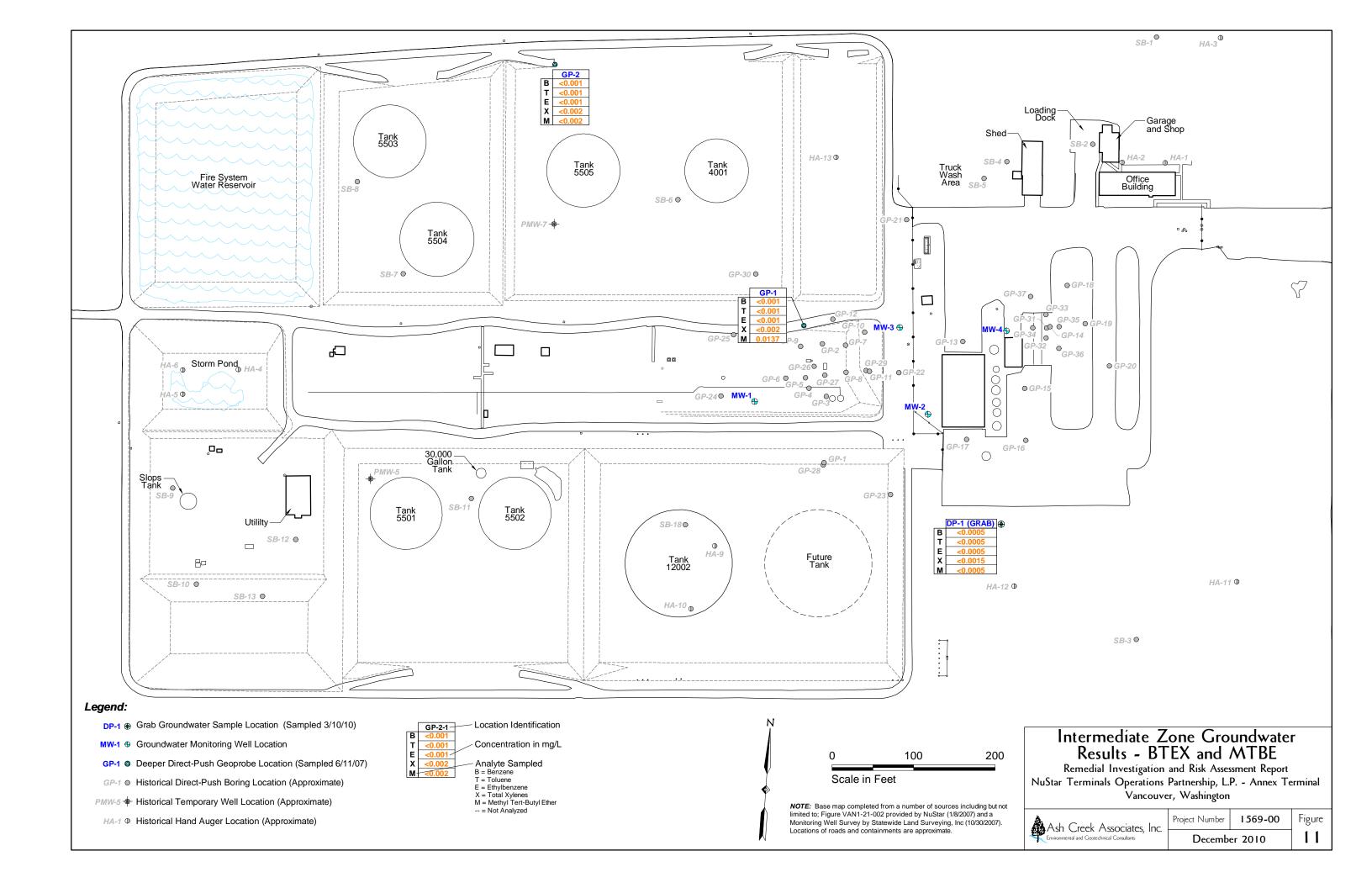


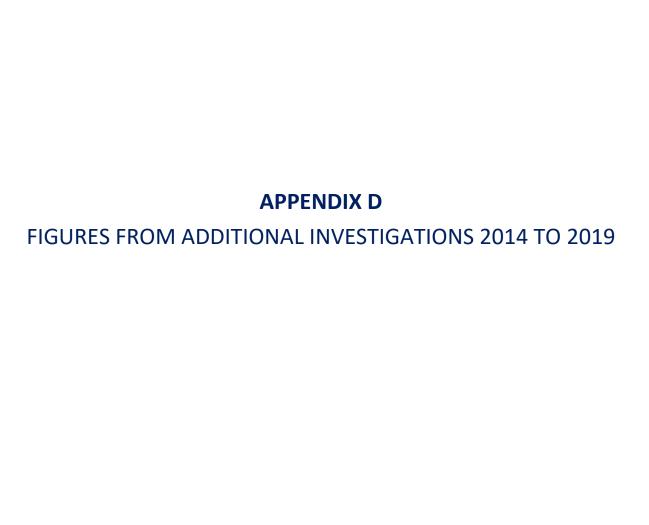


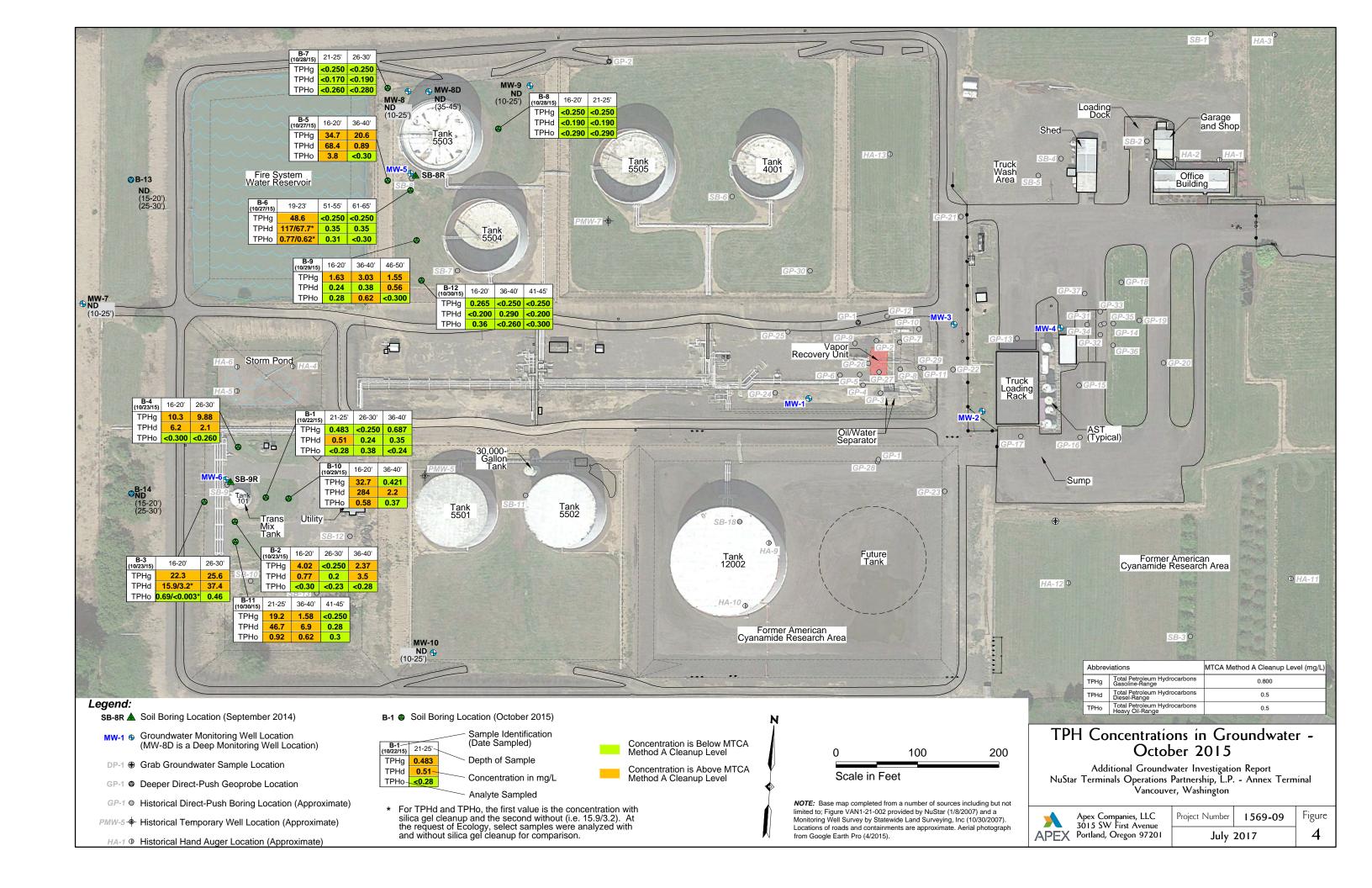


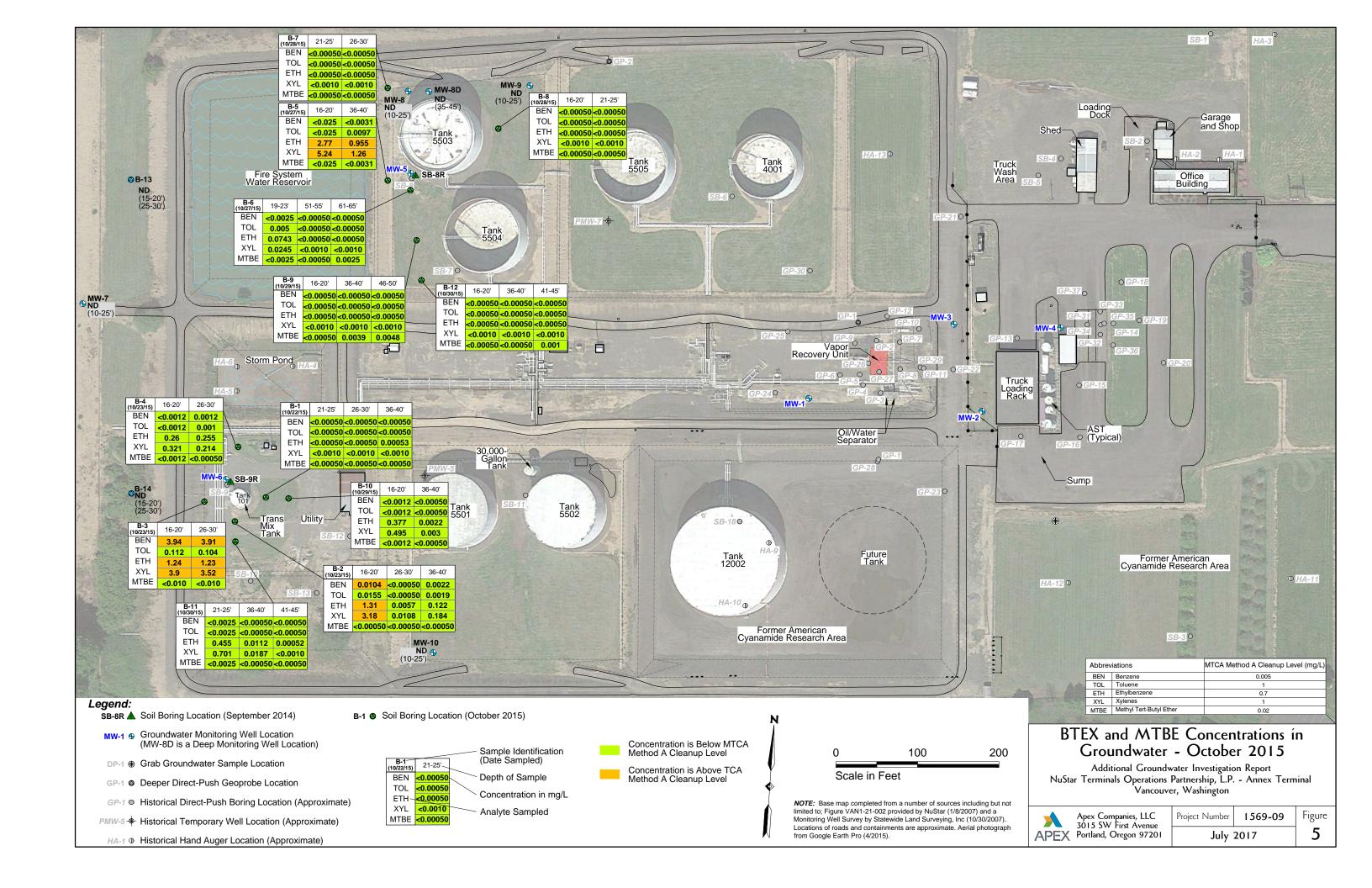


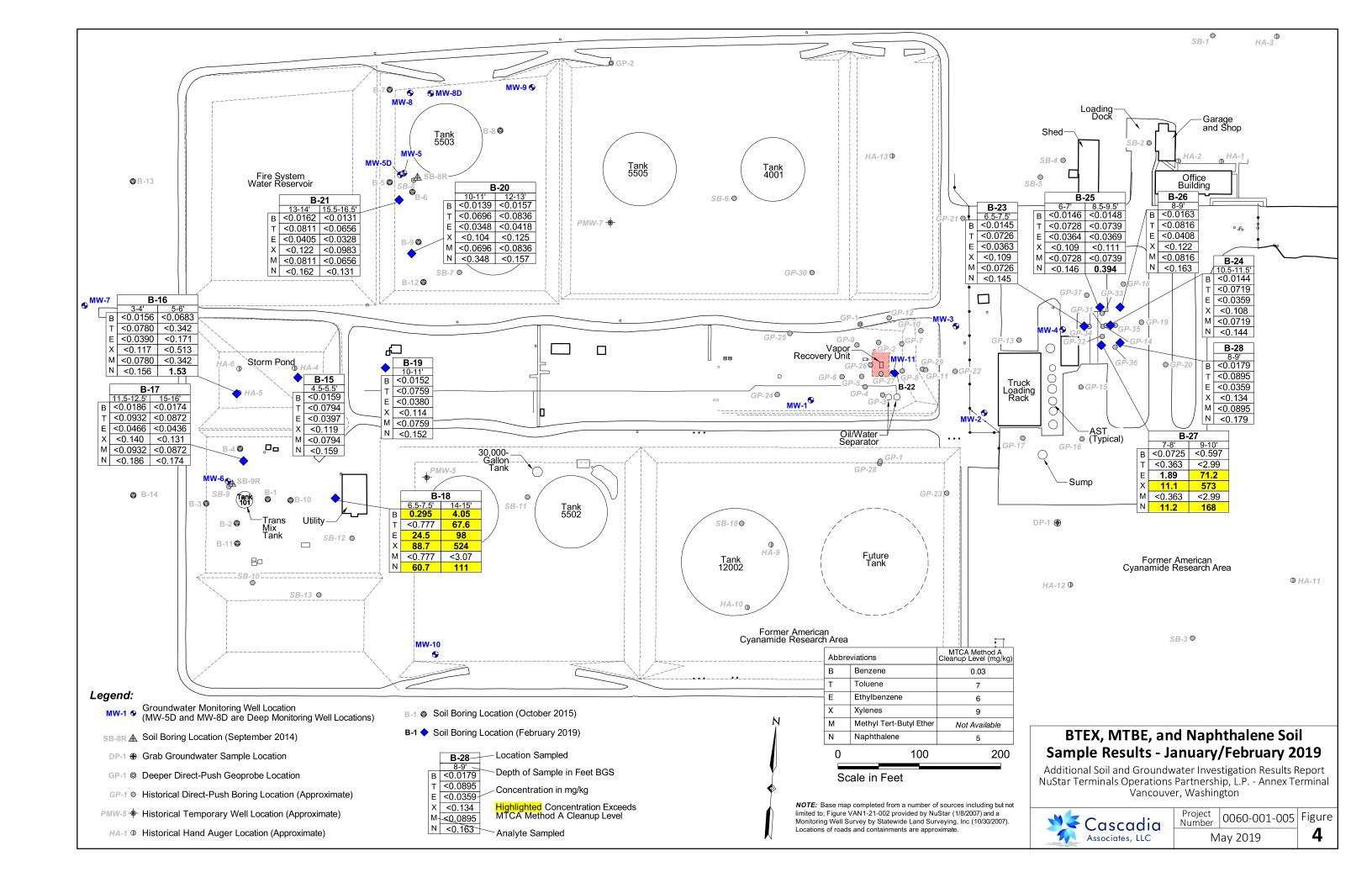


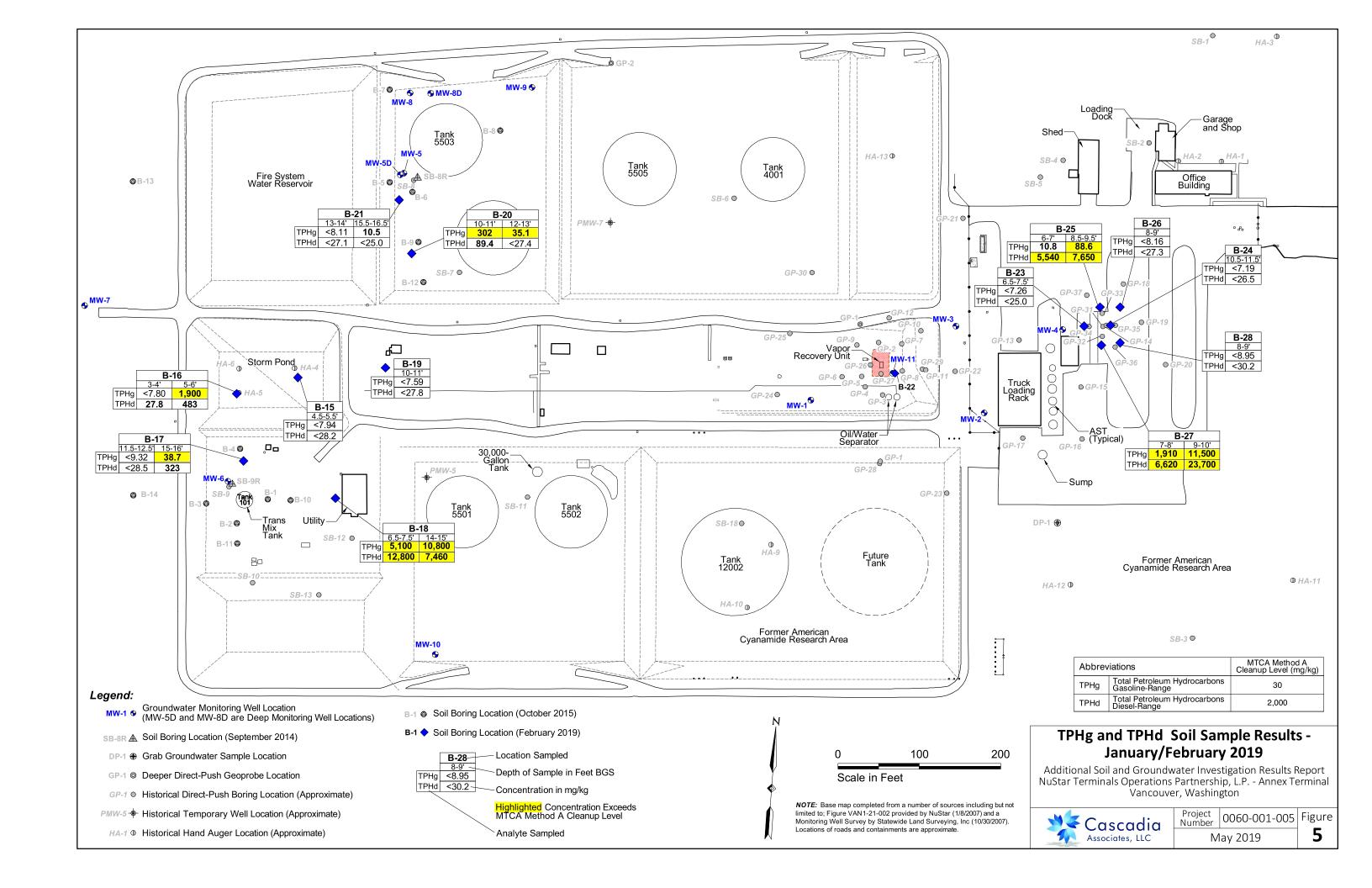


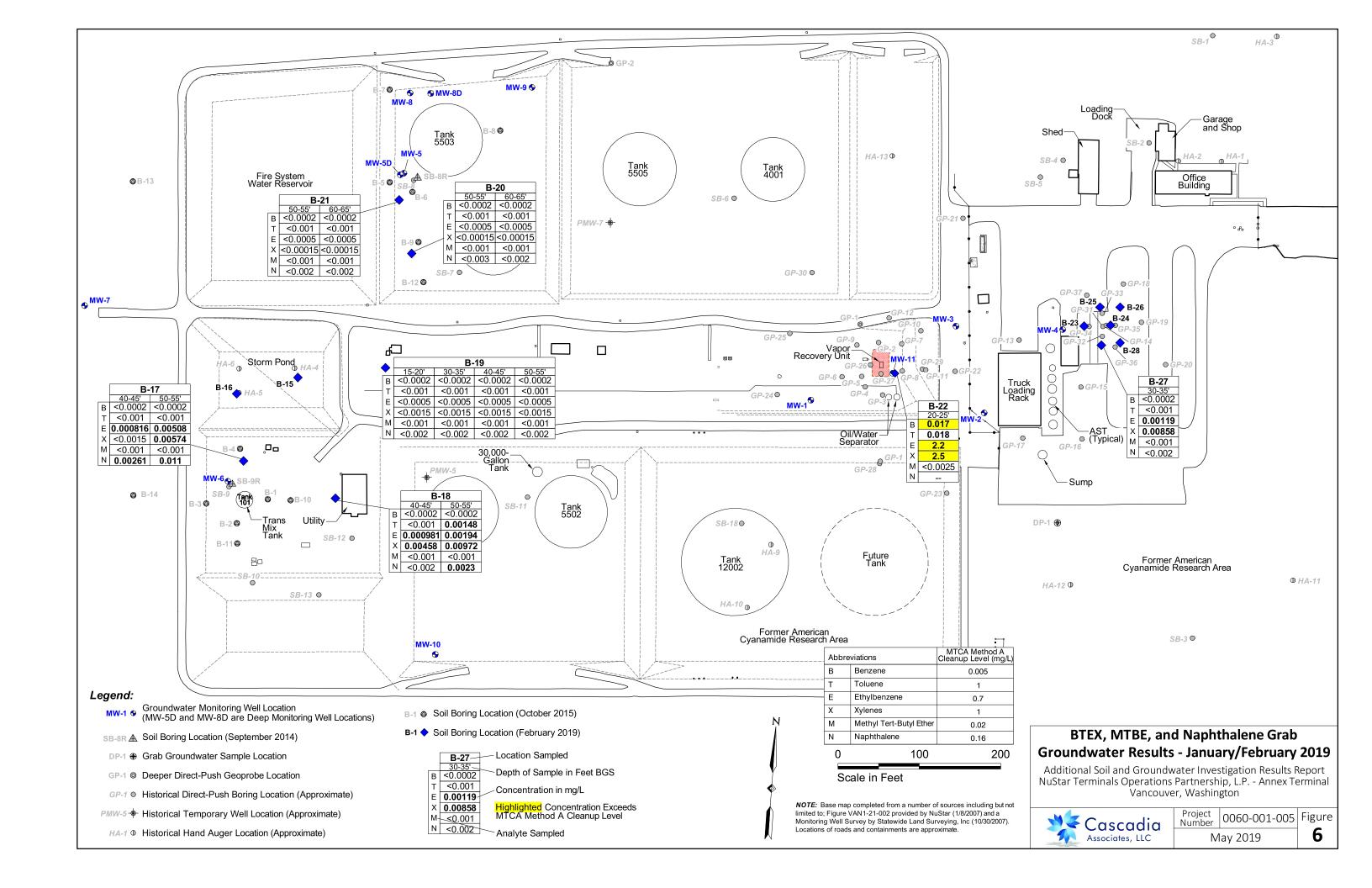


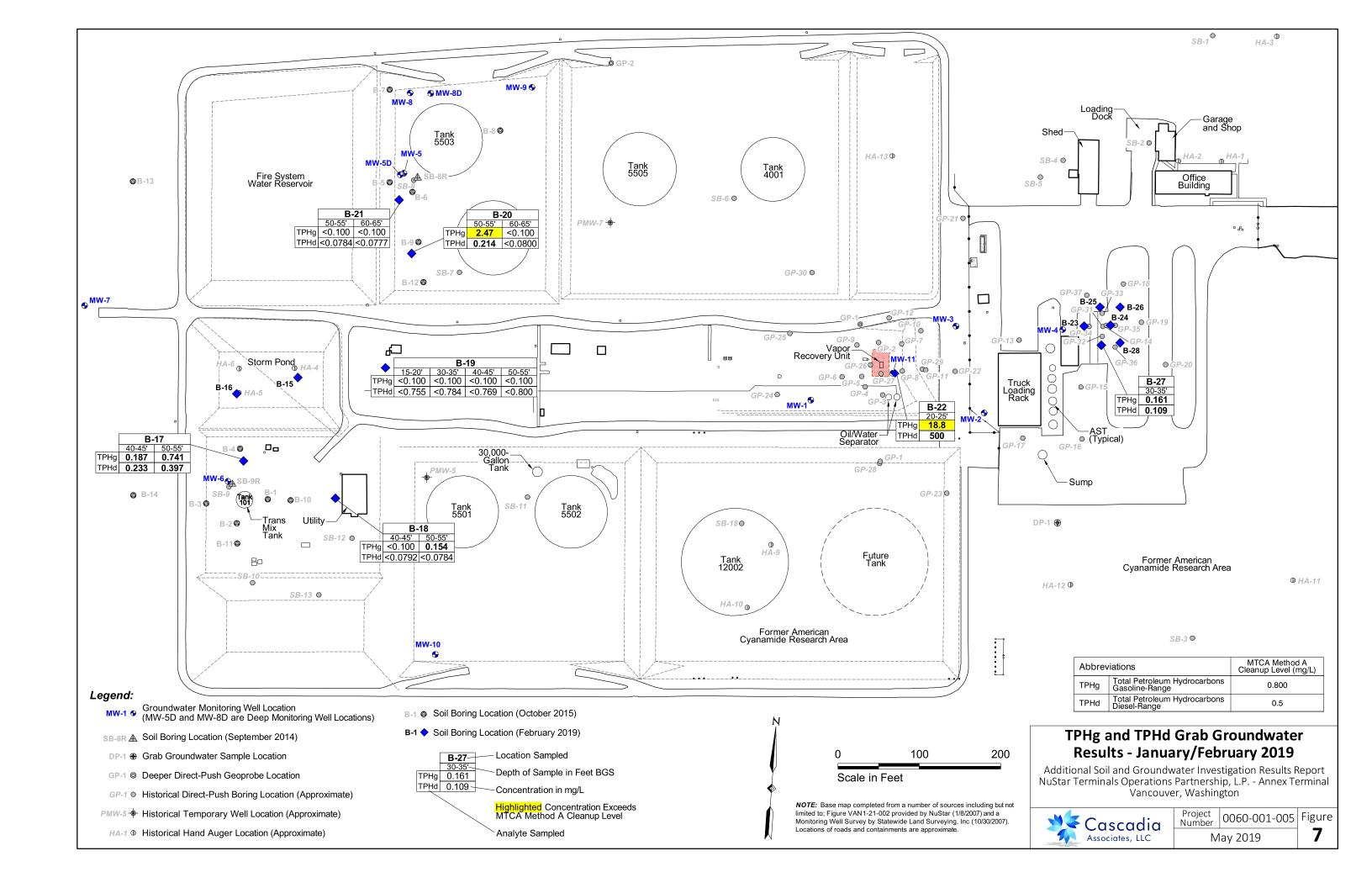


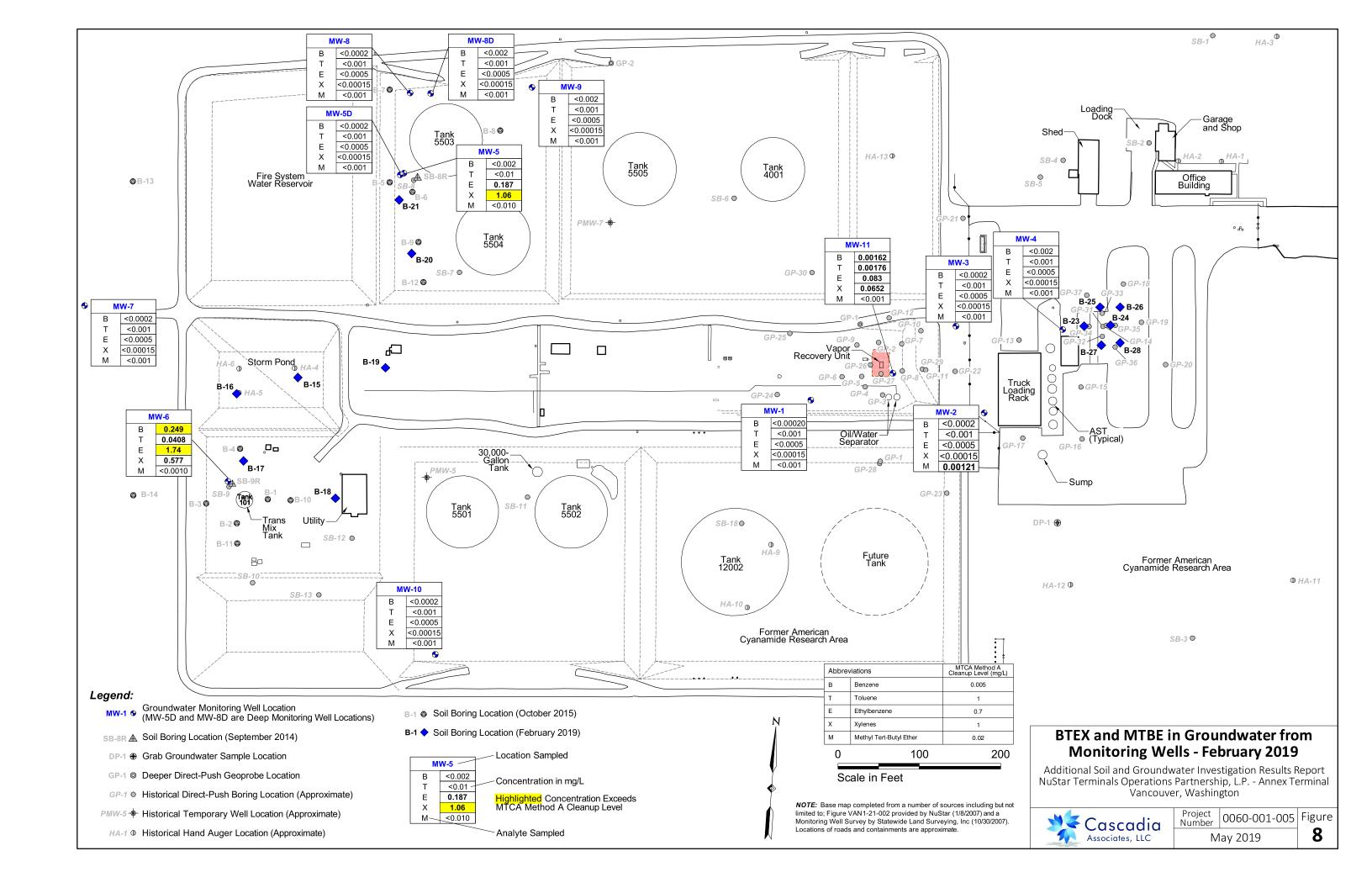


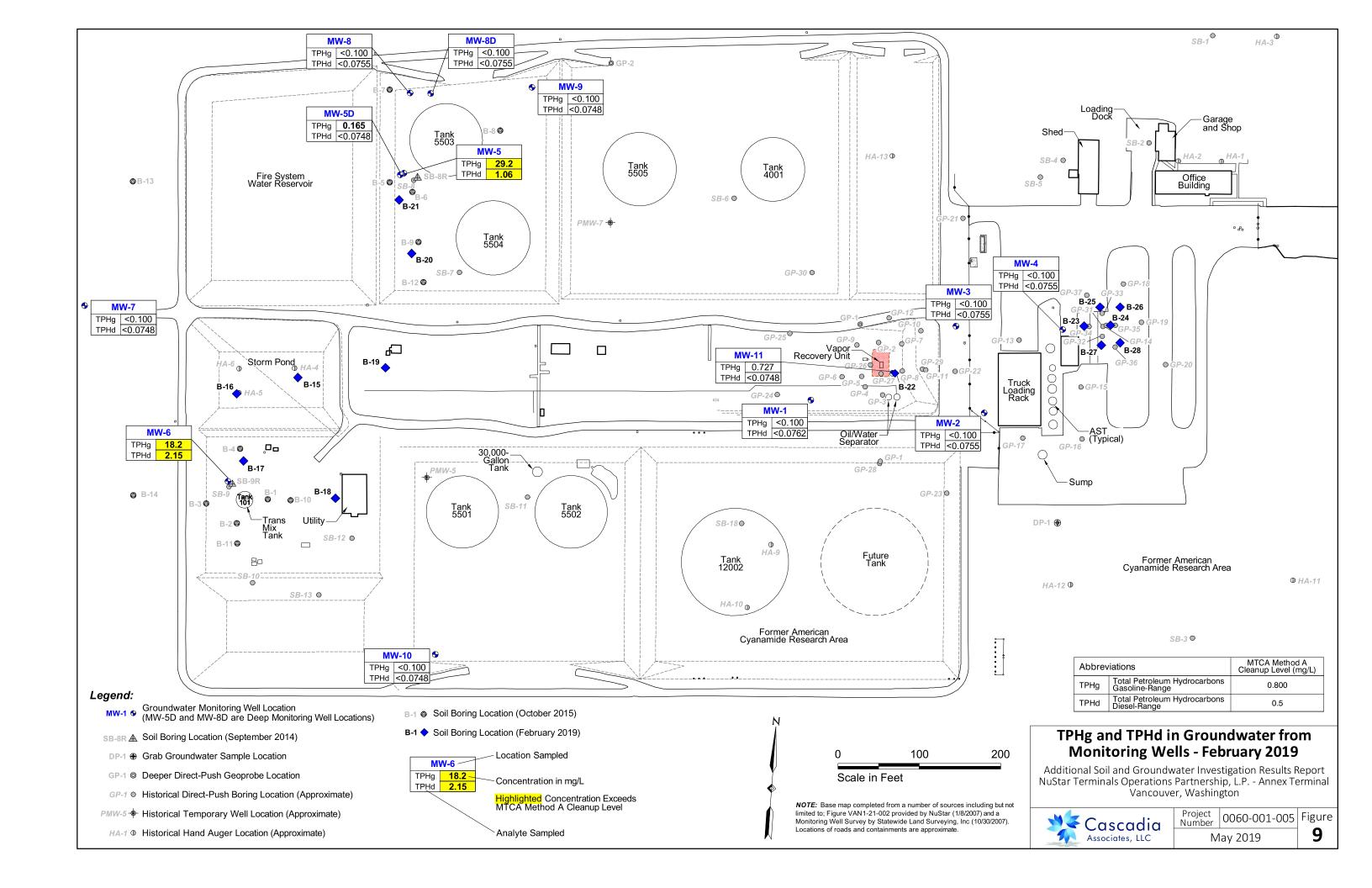


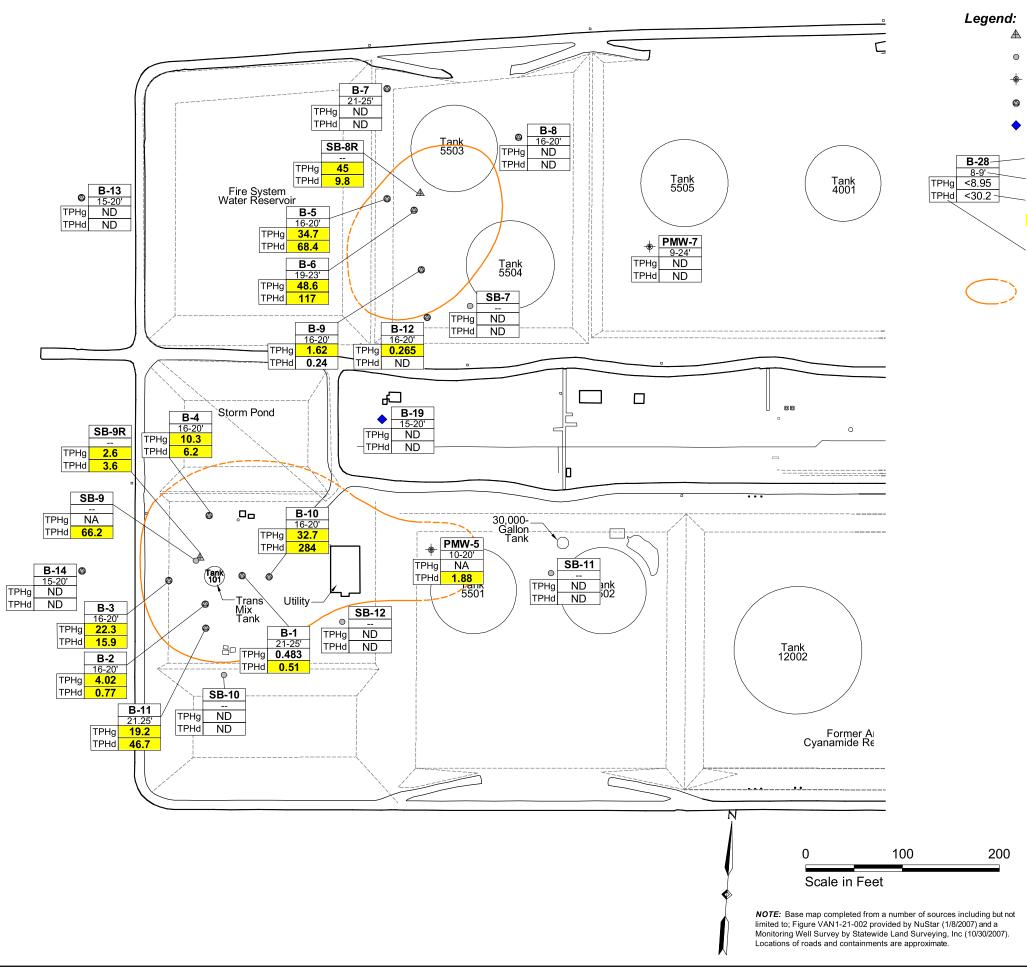


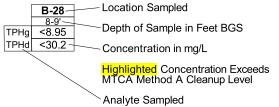








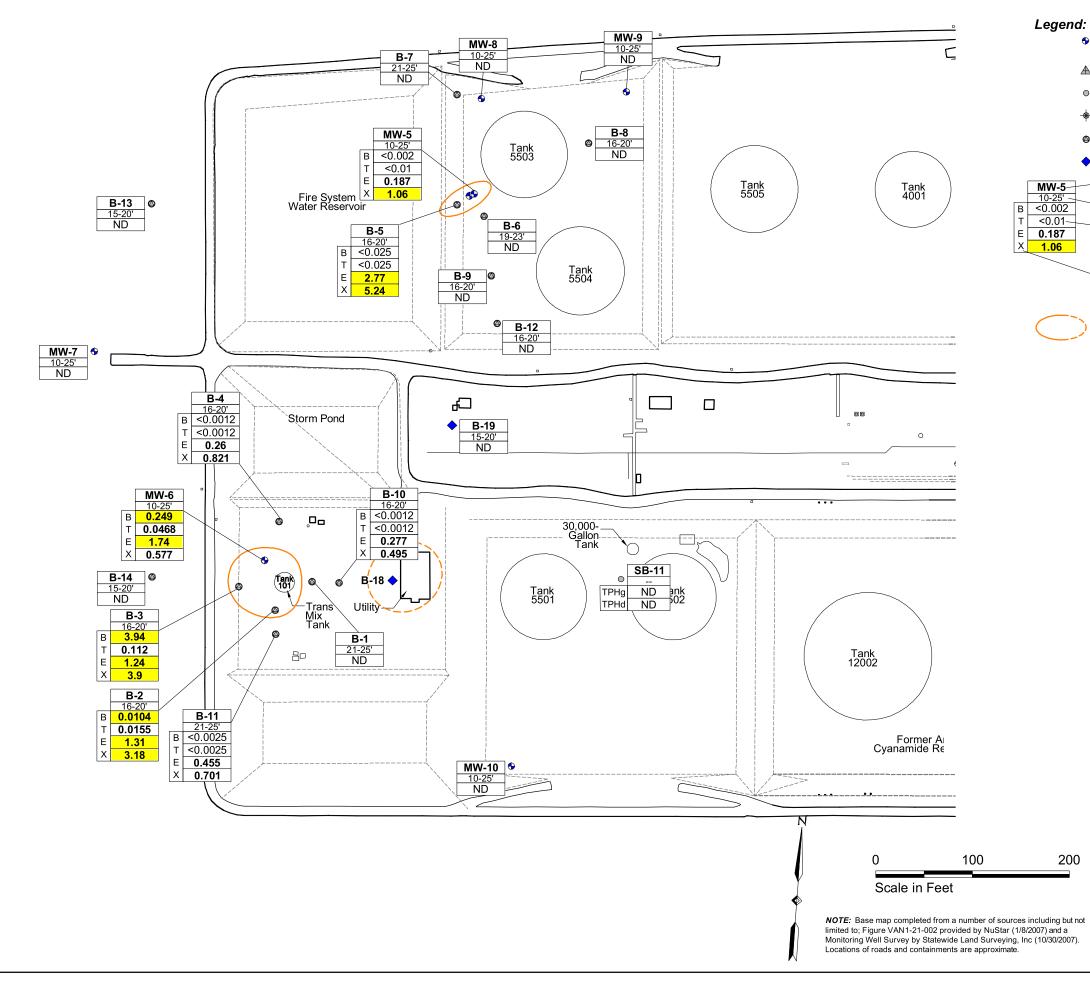




- ▲ Soil Boring Location (September 2014)
- Historical Direct-Push Boring Location (Approximate)
- Historical Temporary Well Location (Approximate)
- Soil Boring Location (October 2015)
- Soil Boring Location (February 2019)

Extent of TPH Above MTCA Method A Cleanup Levels (Dashed Where Inferred)

NOTE: Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.


Al	bbrev	riations	MTCA Method A Cleanup Level (mg/L)				
TF	PHg	Total Petroleum Hydrocarbons Gasoline-Range	0.800				
TF	PHd	Total Petroleum Hydrocarbons Diesel-Range	0.5				

TPH in First Encountered Groundwater - Western Area

Additional Soil and Groundwater Investigation Results Report NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Project Number	0060-001-005	Figure
N/	lav 2019	10

- Groundwater Monitoring Well Location
 (MW-5D and MW-8D are Deep Monitoring Well Locations)
- ▲ Soil Boring Location (September 2014)
- Historical Direct-Push Boring Location (Approximate)
- → Historical Temporary Well Location (Approximate)
- Soil Boring Location (October 2015)
- ♦ Soil Boring Location (February 2019)

Extent of TPH Above MTCA Method A Cleanup Levels (Dashed Where Uncertain)

NOTES: Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.

MTBE not detected in any samples, so data are not included on this figure.

If BTEX constituents are all below reporting limits, results are presented as 'ND' (Not Detected).

Abbrev	viations	MTCA Method A Cleanup Level (mg/L)			
В	Benzene	0.005			
Т	Toluene	1			
E	Ethylbenzene	0.7			
x	Xylenes	1			

BTEX in First Encountered Groundwater -Western Area

Additional Soil and Groundwater Investigation Results Report NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Project Number	0060-001-005	Figure
M	lay 2019	11

APPENDIX EANALYTICAL DATA SHEETS FROM 2020 INVESTIGATION

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Tuesday, March 3, 2020 Amanda Spencer Cascadia Associates 5820 SW Kelly Ave Unit B Portland, OR 97239

RE: A0B0557 - Nustar Vannex - 0060-001-005

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0B0557, which was received by the laboratory on 2/20/2020 at 10:55:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 5.6 degC Cooler #2 4.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Mustar Vannex
Project Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-29(6.5)	A0B0557-01	Soil	02/18/20 09:15	02/20/20 10:55
B-29(11)	A0B0557-02	Soil	02/18/20 10:00	02/20/20 10:55
B-29(21)	A0B0557-03	Soil	02/18/20 10:15	02/20/20 10:55
B-30(4.5)	A0B0557-04	Soil	02/18/20 14:05	02/20/20 10:55
B-30(16)	A0B0557-05	Soil	02/19/20 08:30	02/20/20 10:55
B-30(21.5)	A0B0557-06	Soil	02/19/20 08:35	02/20/20 10:55
B-31(6.5)	A0B0557-07	Soil	02/18/20 11:20	02/20/20 10:55
B-31(14)	A0B0557-08	Soil	02/18/20 12:15	02/20/20 10:55
B-31(21.5)	A0B0557-09	Soil	02/18/20 12:40	02/20/20 10:55
B-32(9)	A0B0557-10	Soil	02/18/20 14:40	02/20/20 10:55
B-32(12)	A0B0557-11	Soil	02/18/20 14:45	02/20/20 10:55
B-32(21)	A0B0557-12	Soil	02/18/20 15:00	02/20/20 10:55
B-33(6.5)	A0B0557-13	Soil	02/19/20 09:15	02/20/20 10:55
B-33(18)	A0B0557-14	Soil	02/19/20 10:50	02/20/20 10:55
B-33(20)	A0B0557-15	Soil	02/19/20 11:00	02/20/20 10:55
B-34(6.5)	A0B0557-16	Soil	02/19/20 10:55	02/20/20 10:55
B-34(18)	A0B0557-17	Soil	02/19/20 13:15	02/20/20 10:55
B-34(20)	A0B0557-18	Soil	02/19/20 13:30	02/20/20 10:55
B-29 GW	A0B0557-19	Water	02/18/20 11:10	02/20/20 10:55
B-30 GW	A0B0557-20	Water	02/19/20 09:45	02/20/20 10:55
B-31 GW	A0B0557-21	Water	02/18/20 13:40	02/20/20 10:55
B-32 GW	A0B0557-22	Water	02/18/20 15:40	02/20/20 10:55
B-33 GW	A0B0557-23	Water	02/19/20 12:15	02/20/20 10:55
B-34 GW	A0B0557-24	Water	02/19/20 14:45	02/20/20 10:55
Trip Blank #2253	A0B0557-25	Water	02/18/20 00:00	02/20/20 10:55

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-29(6.5) (A0B0557-01)				Matrix: Soil		Batch: 0020749		
Diesel	ND		25.6	mg/kg dry	1	02/25/20 21:35	NWTPH-Dx	
Oil	ND		51.3	mg/kg dry	1	02/25/20 21:35	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	5 1	02/25/20 21:35	NWTPH-Dx	
B-29(11) (A0B0557-02)				Matrix: Soil		Batch:	0020749	
Diesel	ND		27.1	mg/kg dry	1	02/26/20 10:02	NWTPH-Dx	
Oil	ND		54.1	mg/kg dry	1	02/26/20 10:02	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	5 1	02/26/20 10:02	NWTPH-Dx	Q-31
B-29(21) (A0B0557-03)				Matrix: Soil		Batch:	0020749	
Diesel	ND		26.3	mg/kg dry	1	02/25/20 23:29	NWTPH-Dx	
Oil	ND		52.5	mg/kg dry	1	02/25/20 23:29	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	5 1	02/25/20 23:29	NWTPH-Dx	
B-30(4.5) (A0B0557-04RE1)		Matrix: Soil			Batch: 0020749			
Diesel	14700		503	mg/kg dry	20	02/26/20 10:42	NWTPH-Dx	
Oil	ND		1010	mg/kg dry	20	02/26/20 10:42	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: %	Limits: 50-150 %	5 20	02/26/20 10:42	NWTPH-Dx	S-01
B-30(16) (A0B0557-05)				Matrix: Soil		Batch:	0020749	
Diesel	2630		26.0	mg/kg dry	1	02/26/20 00:29	NWTPH-Dx	
Oil	ND		52.0	mg/kg dry	1	02/26/20 00:29	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	5 1	02/26/20 00:29	NWTPH-Dx	
B-30(21.5) (A0B0557-06)				Matrix: Soil		Batch:	0020749	
Diesel	208		25.7	mg/kg dry	1	02/26/20 00:49	NWTPH-Dx	
Oil	ND		51.5	mg/kg dry	1	02/26/20 00:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	5 1	02/26/20 00:49	NWTPH-Dx	
B-31(6.5) (A0B0557-07)				Matrix: Soil		Batch:	0020749	
Diesel	ND		25.8	mg/kg dry	1	02/26/20 01:08	NWTPH-Dx	
Oil	ND		51.6	mg/kg dry	1	02/26/20 01:08	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	5 1	02/26/20 01:08	NWTPH-Dx	
B-31(14) (A0B0557-08RE1)				Matrix: Soil		Batch:	0020749	
Diesel	6170		261	mg/kg dry	10	02/26/20 10:22	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date	_	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-31(14) (A0B0557-08RE1)				Matrix: Soil	ix: Soil Batch: 0020749		0020749	
Oil	ND		523	mg/kg dry	10	02/26/20 10:22	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	5 10	02/26/20 10:22	NWTPH-Dx	S-05
B-31(21.5) (A0B0557-09)				Matrix: Soil		Batch:	0020749	
Diesel	54.1		25.0	mg/kg dry	1	02/26/20 01:48	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	02/26/20 01:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	6 1	02/26/20 01:48	NWTPH-Dx	
B-32(9) (A0B0557-10)			Matrix: Soil Batch: 0020758		0020758			
Diesel	ND		25.0	mg/kg dry	1	02/25/20 20:53	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	02/25/20 20:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 100 %	Limits: 50-150 %	6 1	02/25/20 20:53	NWTPH-Dx	
B-32(12) (A0B0557-11)				Matrix: Soil		Batch: 0020758		
Diesel	ND		25.9	mg/kg dry	1	02/25/20 21:13	NWTPH-Dx	
Oil	ND		51.7	mg/kg dry	1	02/25/20 21:13	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	6 1	02/25/20 21:13	NWTPH-Dx	
B-32(21) (A0B0557-12)				Matrix: Soil		Batch: 0020758		
Diesel	ND		25.5	mg/kg dry	1	02/25/20 21:34	NWTPH-Dx	
Oil	ND		50.9	mg/kg dry	1	02/25/20 21:34	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	<i>5</i> 1	02/25/20 21:34	NWTPH-Dx	
B-33(6.5) (A0B0557-13)				Matrix: Soil		Batch:	0020758	
Diesel	ND		26.8	mg/kg dry	1	02/25/20 21:55	NWTPH-Dx	
Oil	ND		53.7	mg/kg dry	1	02/25/20 21:55	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	5 1	02/25/20 21:55	NWTPH-Dx	
B-33(18) (A0B0557-14)				Matrix: Soil		Batch:	0020758	
Diesel	261		27.2	mg/kg dry	1	02/25/20 22:15	NWTPH-Dx	
Oil	ND		54.5	mg/kg dry	1	02/25/20 22:15	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 107%	Limits: 50-150 %	6 I	02/25/20 22:15	NWTPH-Dx	
B-33(20) (A0B0557-15)				Matrix: Soil		Batch:	0020758	
Diesel	ND		26.1	mg/kg dry	1	02/25/20 22:35	NWTPH-Dx	
Oil	ND		52.2	mg/kg dry	1	02/25/20 22:35	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

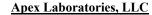
	Die	esel and/or Oil	Hydrocar	bons by NWTPI	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-33(20) (A0B0557-15)				Matrix: Soil		Batch: 0020758		
Surrogate: o-Terphenyl (Surr)		Recove	Recovery: 98 % Limits: 50-		1	02/25/20 22:35	NWTPH-Dx	
B-34(6.5) (A0B0557-16)				Matrix: Soil		Batch:	0020758	
Diesel	ND		25.1	mg/kg dry	1	02/25/20 22:56	NWTPH-Dx	
Oil	ND		50.3	mg/kg dry	1	02/25/20 22:56	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 94%	Limits: 50-150 %	1	02/25/20 22:56	NWTPH-Dx	
B-34(18) (A0B0557-17)				Matrix: Soil		Batch:	0020758	
Diesel	47.8		26.1	mg/kg dry	1	02/25/20 23:16	NWTPH-Dx	
Oil	ND		52.3	mg/kg dry	1	02/25/20 23:16	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 102 %	Limits: 50-150 %	1	02/25/20 23:16	NWTPH-Dx	
B-34(20) (A0B0557-18)			Matrix: Soil		Batch: 0020758			
Diesel	ND		27.3	mg/kg dry	1	02/25/20 23:37	NWTPH-Dx	
Oil	ND		54.5	mg/kg dry	1	02/25/20 23:37	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 97%	Limits: 50-150 %	1	02/25/20 23:37	NWTPH-Dx	
B-29 GW (A0B0557-19)				Matrix: Wate	er	Batch:	0020661	
Diesel	ND		0.0748	mg/L	1	02/24/20 07:58	NWTPH-Dx LL	
Oil	ND		0.150	mg/L	1	02/24/20 07:58	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 71 %	Limits: 50-150 %	1	02/24/20 07:58	NWTPH-Dx LL	
B-30 GW (A0B0557-20)				Matrix: Wate	er	Batch:	0020661	
Diesel	2.81		0.0748	mg/L	1	02/24/20 08:29	NWTPH-Dx LL	F-20
Oil	ND		0.150	mg/L	1	02/24/20 08:29	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 67 %	Limits: 50-150 %	1	02/24/20 08:29	NWTPH-Dx LL	
B-31 GW (A0B0557-21)				Matrix: Wate	er	Batch:	0020661	
Diesel	10.3		0.748	mg/L	10	02/24/20 08:49	NWTPH-Dx LL	F-20
Oil	ND		1.50	mg/L	10	02/24/20 08:49	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 55 %	Limits: 50-150 %	10	02/24/20 08:49	NWTPH-Dx LL	S-05
B-32 GW (A0B0557-22)				Matrix: Wate	er	Batch:	0020661	
Diesel	0.110		0.0792	mg/L	1	02/24/20 09:10	NWTPH-Dx LL	
Oil	ND		0.158	mg/L	1	02/24/20 09:10	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223


ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocarl	ons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-32 GW (A0B0557-22)				Matrix: Water Batch: 0020661				
Surrogate: o-Terphenyl (Surr)		Reco	very: 77%	Limits: 50-150 %	5 1	02/24/20 09:10	NWTPH-Dx LL	
B-33 GW (A0B0557-23)			Matrix: Water Batch: 0020661		0020661			
Diesel	1.11		0.0755	mg/L	1	02/24/20 09:30	NWTPH-Dx LL	F-20
Oil	ND		0.151	mg/L	1	02/24/20 09:30	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 62 %	Limits: 50-150 %	5 1	02/24/20 09:30	NWTPH-Dx LL	
B-34 GW (A0B0557-24)				Matrix: Water		Batch: 0020661		
Diesel	0.310		0.0748	mg/L	1	02/24/20 09:51	NWTPH-Dx LL	
Oil	ND		0.150	mg/L	1	02/24/20 09:51	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 63 %	Limits: 50-150 %	5 1	02/24/20 09:51	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hy	ydrocarbons b	y NWTPH	-Dx with Silica (Gel Colu	mn Cleanup		
	Sample	Detection	Reporting	**		Date	V. 1. 1. 2. 2	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-29 GW (A0B0557-19)				Matrix: Wate	Matrix: Water Batch: 0020825		: 0020825	
Diesel	ND		0.0748	mg/L	1	02/26/20 22:03	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	02/26/20 22:03	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 69 %	Limits: 50-150 %	1	02/26/20 22:03	NWTPH-Dx/SGC	
B-30 GW (A0B0557-20)				Matrix: Wate	r	Batch: 0020825		
Diesel	1.26		0.0748	mg/L 1 02		02/26/20 22:26	NWTPH-Dx/SGC	F-20
Oil	ND		0.150	mg/L	1	02/26/20 22:26	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 50 %	Limits: 50-150 %	1	02/26/20 22:26	NWTPH-Dx/SGC	
B-31 GW (A0B0557-21RE1)				Matrix: Water Batch: 0020825				
Diesel	9.02		0.748	mg/L	10	02/27/20 08:40	NWTPH-Dx/SGC	F-20
Oil	ND		1.50	mg/L	10	02/27/20 08:40	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 45 %	Limits: 50-150 %	10	02/27/20 08:40	NWTPH-Dx/SGC	S-05
B-32 GW (A0B0557-22)				Matrix: Wate	r	Batch	: 0020825	
Diesel	ND		0.0792	mg/L	1	02/26/20 23:12	NWTPH-Dx/SGC	
Oil	ND		0.158	mg/L	1	02/26/20 23:12	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 70 %	Limits: 50-150 %	1	02/26/20 23:12	NWTPH-Dx/SGC	
B-33 GW (A0B0557-23)				Matrix: Wate	r	Batch	: 0020825	
Diesel	1.09		0.0755	mg/L	1	02/26/20 23:35	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	02/26/20 23:35	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 56 %	Limits: 50-150 %	1	02/26/20 23:35	NWTPH-Dx/SGC	
B-34 GW (A0B0557-24)				Matrix: Wate	r	Batch: 0020825		
Diesel	0.213		0.0748	mg/L	1	02/26/20 23:58	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	02/26/20 23:58	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 52 %	Limits: 50-150 %	1	02/26/20 23:58	NWTPH-Dx/SGC	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	/drocarbons (E	Benzene tl	nrough Napht	halene) by	NWTPH-Gx		
	Sample	Detection	Reporting		_	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-29(6.5) (A0B0557-01)				Matrix: So	il	Batch	: 0020607	
Gasoline Range Organics	ND		6.89	mg/kg dry	50	02/20/20 20:18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits: 50-150		02/20/20 20:18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150	% 1	02/20/20 20:18	NWTPH-Gx (MS)	
B-29(11) (A0B0557-02)				Matrix: Soil Batch: 0020607		: 0020607		
Gasoline Range Organics	ND		7.69	mg/kg dry	50	02/20/20 21:12	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 110 %	Limits: 50-150	% 1	02/20/20 21:12	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150	% 1	02/20/20 21:12	NWTPH-Gx (MS)	
B-29(21) (A0B0557-03)				Matrix: So	il	Batch	: 0020640	
Gasoline Range Organics	ND		7.04	mg/kg dry	50	02/20/20 17:46	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150	% 1	02/20/20 17:46	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150	% 1	02/20/20 17:46	NWTPH-Gx (MS)	
B-30(4.5) (A0B0557-04)				Matrix: So	il	Batch: 0020607		
Gasoline Range Organics	6510		123	mg/kg dry	1000	02/20/20 19:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 111 %	Limits: 50-150	% 1	02/20/20 19:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150	% 1	02/20/20 19:24	NWTPH-Gx (MS)	
B-30(16) (A0B0557-05)				Matrix: So	il	Batch	: 0020607	
Gasoline Range Organics	2930		70.8	mg/kg dry	500	02/20/20 18:57	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits: 50-150	% 1	02/20/20 18:57	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150	% I	02/20/20 18:57	NWTPH-Gx (MS)	
B-30(21.5) (A0B0557-06RE1)				Matrix: So	il	Batch	: 0020686	
Gasoline Range Organics	1660		27.1	mg/kg dry	200	02/22/20 15:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 107 %	Limits: 50-150	% 1	02/22/20 15:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150	% 1	02/22/20 15:45	NWTPH-Gx (MS)	
B-31(6.5) (A0B0557-07)				Matrix: Soil		Batch	: 0020657	
Gasoline Range Organics	ND		7.31	mg/kg dry	50	02/21/20 18:59	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 110 %	Limits: 50-150	% 1	02/21/20 18:59	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150	% 1	02/21/20 18:59	NWTPH-Gx (MS)	
B-31(14) (A0B0557-08RE1)				Matrix: So	il	Batch	: 0020686	_
Gasoline Range Organics	3940		149	mg/kg dry	1000	02/22/20 15:18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

Gaso	line Range Hy	ydrocarbons (B	enzene tl	hrough	Naphtha	lene) by	NWTPH-Gx		
	Sample	Detection	Reporting				Date		
Analyte	Result	Limit	Limit	U	nits	Dilution	Analyzed	Method Ref.	Notes
B-31(14) (A0B0557-08RE1)				Mat	rix: Soil		Batch	: 0020686	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits:	50-150 %	1	02/22/20 15:18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %		50-150 %	I	02/22/20 15:18	NWTPH-Gx (MS)	
B-31(21.5) (A0B0557-09)				Mat	rix: Soil		Batch	: 0020657	
Gasoline Range Organics	19.0		7.07	mg/	kg dry	50	02/21/20 18:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 114%	Limits:	50-150 %	1	02/21/20 18:05	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %		50-150 %	1	02/21/20 18:05	NWTPH-Gx (MS)	
B-32(9) (A0B0557-10)				Mat	rix: Soil		Batch	: 0020657	
Gasoline Range Organics	ND		7.23	mg/	kg dry	50	02/21/20 18:32	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 109 %	Limits:	50-150 %	1	02/21/20 18:32	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %		50-150 %	I	02/21/20 18:32	NWTPH-Gx (MS)	
B-32(12) (A0B0557-11)				Matrix: Soil Batch: 002069		: 0020693			
Gasoline Range Organics	ND		7.90	mg/	kg dry	50	02/23/20 19:43	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits:	50-150 %	1	02/23/20 19:43	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %		50-150 %	I	02/23/20 19:43	NWTPH-Gx (MS)	
B-32(21) (A0B0557-12)				Mat	rix: Soil		Batch	: 0020693	
Gasoline Range Organics	ND		6.05	mg/	kg dry	50	02/23/20 20:37	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 108 %	Limits:	50-150 %	1	02/23/20 20:37	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %		50-150 %	1	02/23/20 20:37	NWTPH-Gx (MS)	
B-33(6.5) (A0B0557-13)				Mat	rix: Soil		Batch	: 0020693	
Gasoline Range Organics	ND		7.49	mg/	kg dry	50	02/23/20 21:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits:	50-150 %	1	02/23/20 21:03	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %		50-150 %	I	02/23/20 21:03	NWTPH-Gx (MS)	
B-33(18) (A0B0557-14)				Mat	rix: Soil		Batch	: 0020693	
Gasoline Range Organics	437		7.71	mg/	kg dry	50	02/23/20 21:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 111 %	Limits:	50-150 %	1	02/23/20 21:30	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %		50-150 %	1	02/23/20 21:30	NWTPH-Gx (MS)	
B-33(20) (A0B0557-15)				Mat	rix: Soil	<u> </u>	Batch	: 0020693	
Gasoline Range Organics	ND		7.61	mg/	kg dry	50	02/23/20 21:57	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 112 %	Limits:	50-150 %	1	02/23/20 21:57	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-33(20) (A0B0557-15)				Matrix: Soil		Batch	: 0020693	
Surrogate: 1,4-Difluorobenzene (Sur)		Recov	ery: 92 %	Limits: 50-150 %	6 1	02/23/20 21:57	NWTPH-Gx (MS)	
B-34(6.5) (A0B0557-16)				Matrix: Soil		Batch	: 0020693	
Gasoline Range Organics	ND		7.45	mg/kg dry	50	02/23/20 22:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ry: 106 % 91 %	Limits: 50-150 % 50-150 %		02/23/20 22:24 02/23/20 22:24	NWTPH-Gx (MS) NWTPH-Gx (MS)	
B-34(18) (A0B0557-17)			71,0	Matrix: Soil			: 0020693	
Gasoline Range Organics	28.7		6.96	mg/kg dry	50	02/23/20 22:51	NWTPH-Gx (MS)	F-13
Surrogate: 4-Bromofluorobenzene (Sur)			ry: 121 %	Limits: 50-150 %		02/23/20 22:51	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	6 1	02/23/20 22:51	NWTPH-Gx (MS)	
B-34(20) (A0B0557-18)				Matrix: Soil		Batch	: 0020693	
Gasoline Range Organics	ND		7.82	mg/kg dry	50	02/23/20 23:18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 112 %	Limits: 50-150 %	5 I	02/23/20 23:18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	5 1	02/23/20 23:18	NWTPH-Gx (MS)	
B-29 GW (A0B0557-19)				Matrix: Wate	er	Batch	/23/20 23:18 NWTPH-Gx (MS) /23/20 23:18 NWTPH-Gx (MS) Batch: 0020602	
Gasoline Range Organics	ND		0.100	mg/L	1	02/20/20 20:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 101 %	Limits: 50-150 %		02/20/20 20:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			101 %	50-150 %	6 1	02/20/20 20:02	NWTPH-Gx (MS)	
B-30 GW (A0B0557-20)				Matrix: Wate	er	Batch	: 0020562	
Gasoline Range Organics	24.8		5.00	mg/L	50	02/21/20 12:39	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 101 %	Limits: 50-150 %	5 1	02/21/20 12:39	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			103 %	50-150 %	5 I	02/21/20 12:39	NWTPH-Gx (MS)	
B-31 GW (A0B0557-21)				Matrix: Wate	er	Batch	: 0020602	
Gasoline Range Organics	47.0		5.00	mg/L	50	02/20/20 22:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 102 %	Limits: 50-150 %	6 1	02/20/20 22:44	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			101 %	50-150 %	6 1	02/20/20 22:44	NWTPH-Gx (MS)	
B-32 GW (A0B0557-22)				Matrix: Wate	er	Batch	: 0020602	
Gasoline Range Organics	ND		0.100	mg/L	1	02/20/20 20:29	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 101 %	Limits: 50-150 %	<i>5</i> 1	02/20/20 20:29	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

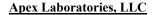
Awa & Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223


ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (B	enzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-32 GW (A0B0557-22)				Matrix: Wate	er	Batch		
Surrogate: 1,4-Difluorobenzene (Sur)		Recovery.	: 102 %	Limits: 50-150 %	1	02/20/20 20:29	NWTPH-Gx (MS)	
B-33 GW (A0B0557-23RE1)				Matrix: Wate	er	Batch	: 0020562	
Gasoline Range Organics	2.40		0.100	mg/L	1	02/21/20 13:06	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 104 % 106 %	Limits: 50-150 % 50-150 %		02/21/20 13:06 02/21/20 13:06	NWTPH-Gx (MS) NWTPH-Gx (MS)	
B-34 GW (A0B0557-24)				Matrix: Wate	er	Batch	: 0020562	
Gasoline Range Organics	ND		0.100	mg/L	1	02/21/20 17:37	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery.	: 106 % 104 %	Limits: 50-150 % 50-150 %		02/21/20 17:37 02/21/20 17:37	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		BTEX+N Cor	npounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
3-29(6.5) (A0B0557-01)				Matrix: Soil		Batch:	0020607	
Benzene	ND		13.8	ug/kg dry	50	02/20/20 20:18	5035A/8260C	
Toluene	ND		68.9	ug/kg dry	50	02/20/20 20:18	5035A/8260C	
Ethylbenzene	ND		34.4	ug/kg dry	50	02/20/20 20:18	5035A/8260C	
Xylenes, total	ND		103	ug/kg dry	50	02/20/20 20:18	5035A/8260C	
Naphthalene	ND		138	ug/kg dry	50	02/20/20 20:18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	109 %	Limits: 80-120 %	1	02/20/20 20:18	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	02/20/20 20:18	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/20/20 20:18	5035A/8260C	
B-29(11) (A0B0557-02)				Matrix: Soil		Batch:	0020607	
Benzene	ND		15.4	ug/kg dry	50	02/20/20 21:12	5035A/8260C	
Toluene	ND		76.9	ug/kg dry	50	02/20/20 21:12	5035A/8260C	
Ethylbenzene	ND		38.4	ug/kg dry	50	02/20/20 21:12	5035A/8260C	
Xylenes, total	ND		115	ug/kg dry	50	02/20/20 21:12	5035A/8260C	
Naphthalene	ND		154	ug/kg dry	50	02/20/20 21:12	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 110 %	Limits: 80-120 %	1	02/20/20 21:12	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/20/20 21:12	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/20/20 21:12	5035A/8260C	
B-29(21) (A0B0557-03)				Matrix: Soil		Batch: 0020640		
Benzene	ND		14.1	ug/kg dry	50	02/20/20 17:46	5035A/8260C	
Toluene	ND		70.4	ug/kg dry	50	02/20/20 17:46	5035A/8260C	
Ethylbenzene	ND		35.2	ug/kg dry	50	02/20/20 17:46	5035A/8260C	
Xylenes, total	ND		106	ug/kg dry	50	02/20/20 17:46	5035A/8260C	
Naphthalene	ND		141	ug/kg dry	50	02/20/20 17:46	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	109 %	Limits: 80-120 %	1	02/20/20 17:46	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	02/20/20 17:46	5035A/8260C	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	02/20/20 17:46	5035A/8260C	
B-30(4.5) (A0B0557-04)				Matrix: Soil		Batch:	0020607	
Benzene	ND		246	ug/kg dry	1000	02/20/20 19:24	5035A/8260C	
Toluene	ND		1230	ug/kg dry	1000	02/20/20 19:24	5035A/8260C	
Ethylbenzene	23800		616	ug/kg dry	1000	02/20/20 19:24	5035A/8260C	
Xylenes, total	223000		1850	ug/kg dry	1000	02/20/20 19:24	5035A/8260C	
Naphthalene	82200		2460	ug/kg dry	1000	02/20/20 19:24	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery		Limits: 80-120 %		02/20/20 19:24	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	02/20/20 19:24	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		BTEX+N Co	mpounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-30(4.5) (A0B0557-04)				Matrix: Soil		Batch:	0020607	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	: 106%	Limits: 80-120 %	1	02/20/20 19:24	5035A/8260C	
B-30(16) (A0B0557-05)				Matrix: Soil		Batch:	0020607	
Benzene	148		142	ug/kg dry	500	02/20/20 18:57	5035A/8260C	
Toluene	ND		708	ug/kg dry	500	02/20/20 18:57	5035A/8260C	
Ethylbenzene	18600		354	ug/kg dry	500	02/20/20 18:57	5035A/8260C	
Xylenes, total	51900		1060	ug/kg dry	500	02/20/20 18:57	5035A/8260C	
Naphthalene	26300		1420	ug/kg dry	500	02/20/20 18:57	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/20/20 18:57	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	02/20/20 18:57	5035A/8260C	
4-Bromofluorobenzene (Surr)			110 %	80-120 %	1	02/20/20 18:57	5035A/8260C	
B-30(21.5) (A0B0557-06RE1)				Matrix: Soil		Batch: 0020686		
Benzene	147		54.3	ug/kg dry	200	02/22/20 15:45	5035A/8260C	
Toluene	ND		271	ug/kg dry	200	02/22/20 15:45	5035A/8260C	
Ethylbenzene	15400		136	ug/kg dry	200	02/22/20 15:45	5035A/8260C	
Xylenes, total	12900		407	ug/kg dry	200	02/22/20 15:45	5035A/8260C	
Naphthalene	14300		543	ug/kg dry	200	02/22/20 15:45	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/22/20 15:45	5035A/8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	02/22/20 15:45	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/22/20 15:45	5035A/8260C	
B-31(6.5) (A0B0557-07)				Matrix: Soil		Batch:	0020657	
Benzene	ND		14.6	ug/kg dry	50	02/21/20 18:59	5035A/8260C	
Toluene	ND		73.1	ug/kg dry	50	02/21/20 18:59	5035A/8260C	
Ethylbenzene	ND		36.6	ug/kg dry	50	02/21/20 18:59	5035A/8260C	
Xylenes, total	ND		110	ug/kg dry	50	02/21/20 18:59	5035A/8260C	
Naphthalene	ND		146	ug/kg dry	50	02/21/20 18:59	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/21/20 18:59	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/21/20 18:59	5035A/8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	02/21/20 18:59	5035A/8260C	
B-31(14) (A0B0557-08)				Matrix: Soil		Batch:	0020657	
Benzene	199		29.9	ug/kg dry	100	02/21/20 20:20	5035A/8260C	
Toluene	154		149	ug/kg dry	100	02/21/20 20:20	5035A/8260C	
Ethylbenzene	16600		74.6	ug/kg dry	100	02/21/20 20:20	5035A/8260C	
Xylenes, total	30200		224	ug/kg dry	100	02/21/20 20:20	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		BTEX+N Co	mpounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-31(14) (A0B0557-08)				Matrix: Soil		Batch:	0020657	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 110 %	Limits: 80-120 %	6 1	02/21/20 20:20	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	6 1	02/21/20 20:20	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	6 1	02/21/20 20:20	5035A/8260C	
B-31(14) (A0B0557-08RE1)				Matrix: Soil		Batch:	0020686	
Naphthalene	42200		2990	ug/kg dry	1000	02/22/20 15:18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 105 %	Limits: 80-120 %	6 1	02/22/20 15:18	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	6 1	02/22/20 15:18	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	6 1	02/22/20 15:18	5035A/8260C	
B-31(21.5) (A0B0557-09)			Matrix: Soil		Batch:	0020657		
Benzene	ND		14.1	ug/kg dry	50	02/21/20 18:05	5035A/8260C	
Toluene	ND		70.7	ug/kg dry	50	02/21/20 18:05	5035A/8260C	
Ethylbenzene	289		35.4	ug/kg dry	50	02/21/20 18:05	5035A/8260C	
Xylenes, total	645		106	ug/kg dry	50	02/21/20 18:05	5035A/8260C	
Naphthalene	354		141	ug/kg dry	50	02/21/20 18:05	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	6 I	02/21/20 18:05	5035A/8260C	
Toluene-d8 (Surr)			92 %	80-120 %	6 1	02/21/20 18:05	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	6 1	02/21/20 18:05	5035A/8260C	
B-32(9) (A0B0557-10)				Matrix: Soil		Batch:	0020657	
Benzene	ND		14.5	ug/kg dry	50	02/21/20 18:32	5035A/8260C	
Toluene	ND		72.3	ug/kg dry	50	02/21/20 18:32	5035A/8260C	
Ethylbenzene	ND		36.1	ug/kg dry	50	02/21/20 18:32	5035A/8260C	
Xylenes, total	ND		108	ug/kg dry	50	02/21/20 18:32	5035A/8260C	
Naphthalene	ND		145	ug/kg dry	50	02/21/20 18:32	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	·: 109 %	Limits: 80-120 %	6 1	02/21/20 18:32	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	6 1	02/21/20 18:32	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	6 1	02/21/20 18:32	5035A/8260C	
B-32(12) (A0B0557-11)				Matrix: Soil		Batch:	0020693	
Benzene	ND		15.8	ug/kg dry	50	02/23/20 19:43	5035A/8260C	
Toluene	ND		79.0	ug/kg dry	50	02/23/20 19:43	5035A/8260C	
Ethylbenzene	ND		39.5	ug/kg dry	50	02/23/20 19:43	5035A/8260C	
Xylenes, total	ND		119	ug/kg dry	50	02/23/20 19:43	5035A/8260C	
Naphthalene	ND		158	ug/kg dry	50	02/23/20 19:43	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	6 1	02/23/20 19:43	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		BTEX+N C	<u>ompounds</u>	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-32(12) (A0B0557-11)				Matrix: Soil		Batch:	0020693	
Surrogate: Toluene-d8 (Surr)		Recor	very: 94%	Limits: 80-120 %	1	02/23/20 19:43	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	02/23/20 19:43	5035A/8260C	
B-32(21) (A0B0557-12)				Matrix: Soil		Batch:	0020693	
Benzene	ND		12.1	ug/kg dry	50	02/23/20 20:37	5035A/8260C	
Toluene	ND		60.5	ug/kg dry	50	02/23/20 20:37	5035A/8260C	
Ethylbenzene	ND		30.3	ug/kg dry	50	02/23/20 20:37	5035A/8260C	
Xylenes, total	ND		90.8	ug/kg dry	50	02/23/20 20:37	5035A/8260C	
Naphthalene	ND		121	ug/kg dry	50	02/23/20 20:37	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	02/23/20 20:37	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/23/20 20:37	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/23/20 20:37	5035A/8260C	
B-33(6.5) (A0B0557-13)		Matrix: Soil Batch: 0020693		0020693				
Benzene	ND		15.0	ug/kg dry	50	02/23/20 21:03	5035A/8260C	
Toluene	ND		74.9	ug/kg dry	50	02/23/20 21:03	5035A/8260C	
Ethylbenzene	ND		37.5	ug/kg dry	50	02/23/20 21:03	5035A/8260C	
Xylenes, total	ND		112	ug/kg dry	50	02/23/20 21:03	5035A/8260C	
Naphthalene	ND		150	ug/kg dry	50	02/23/20 21:03	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	02/23/20 21:03	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/23/20 21:03	5035A/8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	02/23/20 21:03	5035A/8260C	
B-33(18) (A0B0557-14)				Matrix: Soil		Batch:	0020693	
Benzene	ND		15.4	ug/kg dry	50	02/23/20 21:30	5035A/8260C	
Toluene	ND		77.1	ug/kg dry	50	02/23/20 21:30	5035A/8260C	
Ethylbenzene	ND		38.6	ug/kg dry	50	02/23/20 21:30	5035A/8260C	
Xylenes, total	ND		116	ug/kg dry	50	02/23/20 21:30	5035A/8260C	
Naphthalene	410		154	ug/kg dry	50	02/23/20 21:30	5035A/8260C	M-04
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	02/23/20 21:30	5035A/8260C	
Toluene-d8 (Surr)			91 %	80-120 %	1	02/23/20 21:30	5035A/8260C	
4-Bromofluorobenzene (Surr)			112 %	80-120 %	1	02/23/20 21:30	5035A/8260C	
B-33(20) (A0B0557-15)				Matrix: Soil		Batch:	0020693	
Benzene	ND		15.2	ug/kg dry	50	02/23/20 21:57	5035A/8260C	
Toluene	ND		76.1	ug/kg dry	50	02/23/20 21:57	5035A/8260C	
Ethylbenzene	ND		38.0	ug/kg dry	50	02/23/20 21:57	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

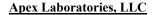
Awa & Somenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223


ANALYTICAL SAMPLE RESULTS

		BTEX+N Co	mpounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-33(20) (A0B0557-15)				Matrix: Soil		Batch:	0020693	
Xylenes, total	ND		114	ug/kg dry	50	02/23/20 21:57	5035A/8260C	
Naphthalene	ND		152	ug/kg dry	50	02/23/20 21:57	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/23/20 21:57	5035A/8260C	
Toluene-d8 (Surr)			92 %	80-120 %	1	02/23/20 21:57	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	02/23/20 21:57	5035A/8260C	
B-34(6.5) (A0B0557-16)				Matrix: Soil		Batch:	0020693	
Benzene	ND		14.9	ug/kg dry	50	02/23/20 22:24	5035A/8260C	
Toluene	ND		74.5	ug/kg dry	50	02/23/20 22:24	5035A/8260C	
Ethylbenzene	ND		37.3	ug/kg dry	50	02/23/20 22:24	5035A/8260C	
Xylenes, total	ND		112	ug/kg dry	50	02/23/20 22:24	5035A/8260C	
Naphthalene	ND		149	ug/kg dry	50	02/23/20 22:24	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	1	02/23/20 22:24	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	02/23/20 22:24	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/23/20 22:24	5035A/8260C	
B-34(18) (A0B0557-17)				Matrix: Soil		Batch: 0020693		
Benzene	ND		13.9	ug/kg dry	50	02/23/20 22:51	5035A/8260C	
Toluene	ND		69.6	ug/kg dry	50	02/23/20 22:51	5035A/8260C	
Ethylbenzene	ND		34.8	ug/kg dry	50	02/23/20 22:51	5035A/8260C	
Xylenes, total	ND		104	ug/kg dry	50	02/23/20 22:51	5035A/8260C	
Naphthalene	ND		139	ug/kg dry	50	02/23/20 22:51	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/23/20 22:51	5035A/8260C	
Toluene-d8 (Surr)			88 %	80-120 %	1	02/23/20 22:51	5035A/8260C	
4-Bromofluorobenzene (Surr)			110 %	80-120 %	1	02/23/20 22:51	5035A/8260C	
B-34(20) (A0B0557-18)				Matrix: Soil		Batch:	0020693	
Benzene	ND		15.6	ug/kg dry	50	02/23/20 23:18	5035A/8260C	
Toluene	ND		78.2	ug/kg dry	50	02/23/20 23:18	5035A/8260C	
Ethylbenzene	ND		39.1	ug/kg dry	50	02/23/20 23:18	5035A/8260C	
Xylenes, total	ND		117	ug/kg dry	50	02/23/20 23:18	5035A/8260C	
Naphthalene	ND		156	ug/kg dry	50	02/23/20 23:18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	1	02/23/20 23:18	5035A/8260C	
Toluene-d8 (Surr)		_	92 %	80-120 %	1	02/23/20 23:18	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/23/20 23:18	5035A/8260C	
B-29 GW (A0B0557-19)				Matrix: Wate	r	Batch:	0020602	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

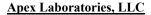
Awa & Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223


ANALYTICAL SAMPLE RESULTS

		BTEX+N Cor	npounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
3-29 GW (A0B0557-19)				Matrix: Wate	er	Batch:	0020602	
Benzene	ND		0.200	ug/L	1	02/20/20 20:02	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/20/20 20:02	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/20/20 20:02	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/20/20 20:02	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/20/20 20:02	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	106 %	Limits: 80-120 %	1	02/20/20 20:02	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/20/20 20:02	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	02/20/20 20:02	EPA 8260C	
B-30 GW (A0B0557-20)				Matrix: Wate	er	Batch:	0020562	
Benzene	37.8		10.0	ug/L	50	02/21/20 12:39	EPA 8260C	
Toluene	ND		50.0	ug/L	50	02/21/20 12:39	EPA 8260C	
Ethylbenzene	721		25.0	ug/L	50	02/21/20 12:39	EPA 8260C	
Xylenes, total	1630		75.0	ug/L	50	02/21/20 12:39	EPA 8260C	
Naphthalene	475		100	ug/L	50	02/21/20 12:39	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	105 %	Limits: 80-120 %	1	02/21/20 12:39	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	02/21/20 12:39	EPA 8260C	
4-Bromofluorobenzene (Surr)			91 %	80-120 %	1	02/21/20 12:39	EPA 8260C	
B-31 GW (A0B0557-21)				Matrix: Wate	er	Batch:	0020602	
Benzene	50.3		10.0	ug/L	50	02/20/20 22:44	EPA 8260C	
Toluene	57.8		50.0	ug/L	50	02/20/20 22:44	EPA 8260C	
Ethylbenzene	1020		25.0	ug/L	50	02/20/20 22:44	EPA 8260C	
Xylenes, total	2880		75.0	ug/L	50	02/20/20 22:44	EPA 8260C	
Naphthalene	1040		100	ug/L	50	02/20/20 22:44	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	103 %	Limits: 80-120 %	1	02/20/20 22:44	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/20/20 22:44	EPA 8260C	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	02/20/20 22:44	EPA 8260C	
B-32 GW (A0B0557-22)				Matrix: Wate	er	Batch:	0020602	
Benzene	ND		0.200	ug/L	1	02/20/20 20:29	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/20/20 20:29	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/20/20 20:29	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/20/20 20:29	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/20/20 20:29	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	105 %	Limits: 80-120 %	1	02/20/20 20:29	EPA 8260C	
Toluene-d8 (Surr)		•	102 %	80-120 %	1	02/20/20 20:29	EPA 8260C	

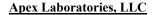
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goa & Jamenyhini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223


ANALYTICAL SAMPLE RESULTS

		BTEX+N C	ompounds	by EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-32 GW (A0B0557-22)				Matrix: Wate	er	Batch:	0020602	
Surrogate: 4-Bromofluorobenzene (Surr)		Reco	very: 96%	Limits: 80-120 %	1	02/20/20 20:29	EPA 8260C	
B-33 GW (A0B0557-23RE1)				Matrix: Water Batch: 0020562		0020562		
Benzene	ND		0.200	ug/L	1	02/21/20 13:06	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/21/20 13:06	EPA 8260C	
Ethylbenzene	1.67		0.500	ug/L	1	02/21/20 13:06	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/21/20 13:06	EPA 8260C	
Naphthalene	12.2		2.00	ug/L	1	02/21/20 13:06	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 80-120 %	1	02/21/20 13:06	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	02/21/20 13:06	EPA 8260C	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	02/21/20 13:06	EPA 8260C	
B-34 GW (A0B0557-24)				Matrix: Wate	er	Batch:	0020562	
Benzene	ND		0.200	ug/L	1	02/21/20 17:37	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/21/20 17:37	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/21/20 17:37	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/21/20 17:37	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/21/20 17:37	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80-120 %	1	02/21/20 17:37	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	02/21/20 17:37	EPA 8260C	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	02/21/20 17:37	EPA 8260C	

Apex Laboratories

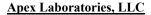
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		Po	ercent Dry W	eight				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-29(6.5) (A0B0557-01)				Matrix: So	oil	Batch:	0020666	
% Solids	76.8		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-29(11) (A0B0557-02)				Matrix: So	oil	Batch:	0020671	
% Solids	71.7		1.00	%	1	02/21/20 15:00	EPA 8000C	
B-29(21) (A0B0557-03)				Matrix: So	oil	Batch:	0020666	
% Solids	74.6		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-30(4.5) (A0B0557-04)				Matrix: So	oil	Batch:	0020666	
% Solids	77.2		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-30(16) (A0B0557-05)				Matrix: So	oil	Batch:	0020666	
% Solids	72.7		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-30(21.5) (A0B0557-06)				Matrix: So	oil	Batch:	0020666	
% Solids	73.8		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-31(6.5) (A0B0557-07)				Matrix: So	oil	Batch:	0020666	
% Solids	72.9		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-31(14) (A0B0557-08)				Matrix: So	oil	Batch:	0020666	
% Solids	71.5		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-31(21.5) (A0B0557-09)				Matrix: So	oil	Batch:	0020666	
% Solids	73.6		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-32(9) (A0B0557-10)				Matrix: So	oil	Batch:	0020666	
% Solids	76.3		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-32(12) (A0B0557-11)				Matrix: So	oil	Batch:	0020666	
% Solids	72.9		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-32(21) (A0B0557-12)				Matrix: So	oil	Batch:	0020666	
% Solids	76.9		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-33(6.5) (A0B0557-13)				Matrix: So	oil	Batch:	0020666	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-33(6.5) (A0B0557-13)				Matrix: So	il	Batch:	0020666	
% Solids	71.3		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-33(18) (A0B0557-14)				Matrix: So	il	Batch:	0020666	
% Solids	71.3		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-33(20) (A0B0557-15)				Matrix: So	il	Batch:	0020666	
% Solids	71.4		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-34(6.5) (A0B0557-16)				Matrix: So	il	Batch:	0020666	
% Solids	73.0		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-34(18) (A0B0557-17)				Matrix: So	il	Batch:	0020666	
% Solids	74.3		1.00	%	1	02/24/20 08:36	EPA 8000C	
B-34(20) (A0B0557-18)				Matrix: So	il	Batch:	0020666	
% Solids	70.1		1.00	%	1	02/24/20 08:36	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

Cascadia Associates
5820 SW Kelly Ave Unit B
Portland, OR 97239

F

Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hydı	ocarbor	ns by NW7	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020661 - EPA 3510C ((Fuels/Acid	Ext.)					Wat	er				
Blank (0020661-BLK1)		Prepared	02/21/20 11:	12 Analyze	d: 02/22/2	0 09:03						
NWTPH-Dx LL												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 80 %	Limits: 50-	150 %	Dilı	ution: 1x					
LCS (0020661-BS1)		Prepared	02/21/20 11:	12 Analyze	d: 02/22/2	0 09:23						
NWTPH-Dx LL												
Diesel	0.395		0.0800	mg/L	1	0.500		79	58 - 115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 85 %	Limits: 50-	150 %	Dilt	ution: 1x		· · · · · · · · · · · · · · · · · · ·			
LCS Dup (0020661-BSD1)		Prepared	02/21/20 11:	12 Analyze	d: 02/22/2	0 09:44						Q-1
NWTPH-Dx LL												
Diesel	0.393		0.0800	mg/L	1	0.500		79	58 - 115%	0.4	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 83 %	Limits: 50-	150 %	Dilı	ution: 1x					
Batch 0020749 - EPA 3546 (F	Fuels)						Soil	l				
Blank (0020749-BLK1)		Prepared	02/25/20 07:	30 Analyze	ed: 02/25/2	0 20:55						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg we								
Oil	ND		50.0	mg/kg we	t 1							
Mineral Oil	ND		36.4	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 94 %	Limits: 50-	150 %	Dilı	ution: 1x					
LCS (0020749-BS1)		Prepared	02/25/20 07:	30 Analyze	ed: 02/25/2	0 21:15						
NWTPH-Dx												
Diesel	112		20.0	mg/kg we	t 1	125		89	76 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 93 %	Limits: 50-	150 %	Dilı	ution: Ix					
Duplicate (0020749-DUP1)		Prepared	02/25/20 07:	30 Analyze	ed: 02/25/2	0 21:55						
OC Source Sample: B-29(6.5) (ANTPH-DX	A0B0557-01)											
Diesel	ND		25.6	mg/kg dr	y 1		ND				30%	
Oil	ND		51.3	mg/kg dr			ND				30%	

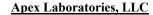
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

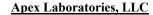
QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 0020749 - EPA 3546 (F	uels)						Soil							
Duplicate (0020749-DUP1)		Prepared	: 02/25/20 07:	30 Analyz	ed: 02/25/2	0 21:55								
QC Source Sample: B-29(6.5) (A	0B0557-01)													
Mineral Oil	ND		51.3	mg/kg dr	y 1		ND				30%			
Surr: o-Terphenyl (Surr)	Recovery: 76% Limits:			Limits: 50-	-150 %	Dilu	tion: 1x							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbor	s by NW7	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020758 - EPA 3546 (Fuels)						Soil					
Blank (0020758-BLK1)		Prepared	: 02/25/20 10:	03 Analyz	ed: 02/25/2	0 12:28						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg we	et 1							
Oil	ND		50.0	mg/kg we	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 93 %	Limits: 50	-150 %	Dilt	ıtion: 1x					
LCS (0020758-BS1)		Prepared	: 02/25/20 10:	03 Analyz	ed: 02/25/2	0 12:48						
NWTPH-Dx												
Diesel	108		20.0	mg/kg we	et 1	125		87	76 - 115%			
Surr: o-Terphenyl (Surr)		Rece	Dili	ıtion: 1x								

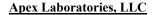
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil I	Hydrocarbo	ns by N	WTPH-Dx	with Silic	a Gel Co	lumn Cl	eanup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020825 - EPA 3510C	(Fuels/Acid	Ext.) w/Silio	ca Gel				Wat	er				
Blank (0020825-BLK1)		Prepared	: 02/21/20 11:1	12 Analyz	ed: 02/26/20	0 20:54						
NWTPH-Dx/SGC												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 72 %	Limits: 50)-150 %	Dilı	ıtion: 1x					
LCS (0020825-BS1)		Prepared	: 02/21/20 11:1	12 Analyz	ed: 02/26/20	0 21:17						
NWTPH-Dx/SGC												
Diesel	0.328		0.0800	mg/L	1	0.500		66	58 - 115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 76 %	Limits: 50)-150 %	Dilı	ıtion: 1x					
LCS Dup (0020825-BSD1)		Prepared	: 02/21/20 11:1	12 Analyz	ed: 02/26/20	0 21:40						Q-1
NWTPH-Dx/SGC												
Diesel	0.350		0.0800	mg/L	1	0.500		70	58 - 115%	6	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 78 %	Limits: 50	0-150 %	Dilı	ution: 1x					

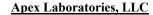
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range F	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020562 - EPA 5030B							Wat	er				
Blank (0020562-BLK1)		Prepared	: 02/21/20 10:	00 Analyz	ed: 02/21/20	0 12:11						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			103 %	50	-150 %		"					
LCS (0020562-BS2)		Prepared	: 02/21/20 10:	00 Analyz	ed: 02/21/20	0 11:44						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.505		0.100	mg/L	1	0.500		101	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 101 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	-150 %		"					

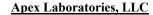
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020602 - EPA 5030B							Wat	er				
Blank (0020602-BLK1)		Prepared	02/20/20 10:	00 Analy	zed: 02/20/2	0 11:55						
NWTPH-Gx (MS)	ND		0.100	/r	1							
Gasoline Range Organics	ND		0.100	mg/L								
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 101 % 106 %	Limits: 5	0-150 % 0-150 %	Dilt	ution: 1x					
LCS (0020602-BS2)		Prepared	: 02/20/20 10:	00 Analy	zed: 02/20/2	0 11:28						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.506		0.100	mg/L	. 1	0.500		101 8	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recor	very: 102 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			106 %	5	0-150 %		"					
Duplicate (0020602-DUP2)		Prepared	: 02/20/20 11:	47 Analy	zed: 02/20/2	0 23:11						T-02
QC Source Sample: B-31 GW (A0)B0557-21)											
NWTPH-Gx (MS) Casalina Panga Organias	47.4		5.00	m a/I	. 50		47.0			0.7	30%	
Gasoline Range Organics Surr: 4-Bromofluorobenzene (Sur)	47.4	Recon		mg/L		Dil.	ution: lx			0.7	3070	
1,4-Difluorobenzene (Sur)		кесоч	102 % 102 %		0-150 %	Din	mon: 1x					

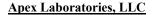
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020607 - EPA 5035A							Soil					
Blank (0020607-BLK1)		Prepared	02/20/20 09:	00 Analyz	zed: 02/20/2	0 13:33						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.0667	mg/kg v	vet 1							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 101 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	0-150 %		"					
LCS (0020607-BS2)		Prepared	: 02/20/20 09:	00 Analyz	zed: 02/20/2	0 13:06						
NWTPH-Gx (MS)												
Gasoline Range Organics	21.8		5.00	mg/kg v	vet 50	25.0		87 8	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 101 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			92 %	50	0-150 %		"					
Duplicate (0020607-DUP1)		Prepared	: 02/18/20 09:	15 Analyz	zed: 02/20/2	0 20:45						
QC Source Sample: B-29(6.5) (Al)B0557-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.89	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 111 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			95 %	50	0-150 %		"					

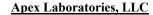
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

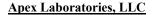
QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 0020640 - EPA 5035A							Soil							
Blank (0020640-BLK1)		Prepared:	02/20/20 09:	00 Analyz	zed: 02/20/2	0 16:14								
NWTPH-Gx (MS)														
Gasoline Range Organics	ND		3.33	mg/kg wet 50										
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 100 %	Limits: 50-150 %		Dilı	ıtion: 1x							
1,4-Difluorobenzene (Sur)			92 %	5(0-150 %		"							
LCS (0020640-BS2)		Prepared:	02/20/20 09:	00 Analyz	zed: 02/20/2) 15:46								
NWTPH-Gx (MS)														
Gasoline Range Organics	22.1		5.00	mg/kg w	vet 50	25.0		89 8	80 - 120%					
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 99 %			Dilı	ution: 1x							
1,4-Difluorobenzene (Sur)			91 %	50	0-150 %		"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range F	lydrocarbo	ns (Benz	zene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020657 - EPA 5035A							Soil					
Blank (0020657-BLK1)		Prepared	: 02/21/20 09:	00 Analyz	zed: 02/21/2	0 12:15						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 103 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	5(0-150 %		"					
LCS (0020657-BS2)		Prepared	: 02/21/20 09:	00 Analyz	zed: 02/21/2	0 11:48						
NWTPH-Gx (MS)												
Gasoline Range Organics	20.4		5.00	mg/kg w	et 50	25.0		81	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 97 %	Limits: 5	0-150 %)% Dilution: 1x						
1,4-Difluorobenzene (Sur)			90 %	50	0-150 %		"					

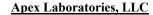
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	ydrocarbo	ns (Benz	ene thro	ugh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020686 - EPA 5035A							Soil					
Blank (0020686-BLK1)		Prepared:	02/22/20 09:	00 Analyz	ed: 02/22/2	0 13:03						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	<u> </u>		0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	-150 %		"					
LCS (0020686-BS2)		Prepared:	02/22/20 09:	00 Analyz	ed: 02/22/2	0 12:36						
NWTPH-Gx (MS)												
Gasoline Range Organics	20.2		5.00	mg/kg w	et 50	25.0		81	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	% Limits: 50-150 %		Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			89 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020693 - EPA 5035A							Soil					
Blank (0020693-BLK1)		Prepared	: 02/23/20 09:	00 Analyz	zed: 02/23/2	0 13:53						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			89 %	50	0-150 %		"					
LCS (0020693-BS2)		Prepared	: 02/23/20 09:	00 Analyz	zed: 02/23/2	0 13:26						
NWTPH-Gx (MS)												
Gasoline Range Organics	21.7		5.00	mg/kg v	vet 50	25.0		87 8	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 117 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	0-150 %		"					
Duplicate (0020693-DUP2)		Prepared	: 02/18/20 14:	45 Analyz	zed: 02/23/2	0 20:10						
QC Source Sample: B-32(12) (A0	B0557-11)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		7.44	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	ounds by	EPA 8260	С					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020562 - EPA 5030B							Wate	er				
Blank (0020562-BLK1)		Prepared:	02/21/20 10:	00 Analyz	zed: 02/21/20	0 12:11						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80)-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	1-120 %		"					
LCS (0020562-BS1)		Prepared:	02/21/20 10:	00 Analyz	ed: 02/21/20	0 11:17						
EPA 8260C												
Benzene	20.0		0.200	ug/L	1	20.0		100	80 - 120%			
Гoluene	18.7		1.00	ug/L	1	20.0		93	80 - 120%			
Ethylbenzene	18.8		0.500	ug/L	1	20.0		94	80 - 120%			
Xylenes, total	54.6		1.50	ug/L	1	60.0		91	80 - 120%			
Naphthalene	18.6		2.00	ug/L	1	20.0		93	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	80	-120 %		"					

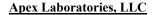
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	ounds by	EPA 8260	C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020602 - EPA 5030B							Wat	er				
Blank (0020602-BLK1)		Prepared	02/20/20 10:	00 Analyz	zed: 02/20/2	0 11:55						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			105 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
LCS (0020602-BS1)		Prepared	: 02/20/20 10:	00 Analyz	zed: 02/20/2	0 11:00						
EPA 8260C												
Benzene	21.6		0.200	ug/L	1	20.0		108	80 - 120%			
Toluene	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
Ethylbenzene	20.0		0.500	ug/L	1	20.0		100	80 - 120%			
Xylenes, total	57.9		1.50	ug/L	1	60.0		97	80 - 120%			
Naphthalene	19.3		2.00	ug/L	1	20.0		96	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	80	0-120 %		"					
Duplicate (0020602-DUP2)		Prepared	: 02/20/20 11:	47 Analyz	zed: 02/20/2	0 23:11						T-0
QC Source Sample: B-31 GW (At	0B0557-21)											
EPA 8260C												
Benzene	51.0		10.0	ug/L	50		50.3			1	30%	
Toluene	54.9		50.0	ug/L	50		57.8			5	30%	
Ethylbenzene	1010		25.0	ug/L	50		1020			0.5	30%	
Xylenes, total	2850		75.0	ug/L	50		2880			1	30%	
Naphthalene	1040		100	ug/L	50		1040			0.3	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	0-120 %		"					

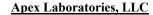
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

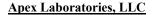
QUALITY CONTROL (QC) SAMPLE RESULTS

			RIEX+	N Compo	unas by	EPA 8260	<u> </u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 0020607 - EPA 5035A							Soil					
Blank (0020607-BLK1)		Prepared	02/20/20 09:	:00 Analyze	ed: 02/20/20	0 13:33						
5035A/8260C												
Benzene	ND		6.67	ug/kg we	t 50							
Toluene	ND		33.3	ug/kg we	t 50							
Ethylbenzene	ND		16.7	ug/kg we	t 50							
Xylenes, total	ND		50.0	ug/kg we	t 50							
Naphthalene	ND		66.7	ug/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 108 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
LCS (0020607-BS1)		Prepared	: 02/20/20 09:	:00 Analyze	ed: 02/20/20	0 11:18						
5035A/8260C												
Benzene	1050		10.0	ug/kg we	t 50	1000		105 8	80 - 120%			
Toluene	1020		50.0	ug/kg we	t 50	1000		102 8	80 - 120%			
Ethylbenzene	1000		25.0	ug/kg we	t 50	1000		100 8	80 - 120%			
Xylenes, total	3210		75.0	ug/kg we	t 50	3000		107 8	80 - 120%			
Naphthalene	877		100	ug/kg we	t 50	1000		88 8	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 107 %	Limits: 80-	-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
Duplicate (0020607-DUP1)		Prepared	02/18/20 09:	:15 Analyze	ed: 02/20/20	0 20:45						
QC Source Sample: B-29(6.5) (A0	B0557-01)											
5035A/8260C												
Benzene	ND		13.8	ug/kg dry	y 50		ND				30%	
Toluene	ND		68.9	ug/kg dry	y 50		ND				30%	
Ethylbenzene	ND		34.4	ug/kg dry	y 50		ND				30%	
Xylenes, total	ND		103	ug/kg dry	y 50		ND				30%	
Naphthalene	ND		138	ug/kg dry	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			92 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	BTEX+N Compounds by EPA 8260C													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 0020607 - EPA 5035A							Soil							
Matrix Spike (0020607-MS1)		Prepared	02/18/20 10:	00 Analyze	ed: 02/20/2	0 21:39								
OC Source Sample: B-29(11) (A0II 5035A/8260C	80557-02)													
Benzene	1500		15.4	ug/kg dry	, 50	1540	ND	98	77 - 121%					
Toluene	1380		76.9	ug/kg dry	50	1540	ND	90	77 - 121%					
Ethylbenzene	1440		38.4	ug/kg dry	50	1540	ND	94	76 - 122%					
Xylenes, total	4600		115	ug/kg dry	50	4610	ND	100	78 - 124%					
Naphthalene	1280		154	ug/kg dry	50	1540	ND	84	62 - 129%					
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 108 %	Limits: 80-	120 %	Dilı	tion: 1x							
Toluene-d8 (Surr)			91 %	80-	120 %		"							
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"							

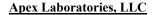
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	unds by	EPA 8260	С					•
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020640 - EPA 5035A							Soil					
Blank (0020640-BLK1)		Prepared:	02/20/20 09:	00 Analyze	ed: 02/20/2	0 16:14						
5035A/8260C												
Benzene	ND		6.67	ug/kg we	t 50							
Toluene	ND		33.3	ug/kg we	t 50							
Ethylbenzene	ND		16.7	ug/kg we	t 50							
Xylenes, total	ND		50.0	ug/kg we	t 50							
Naphthalene	ND		66.7	ug/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-	120 %		"					
LCS (0020640-BS1)		Prepared:	02/20/20 09:	00 Analyze	ed: 02/20/2	0 15:19						
5035A/8260C												
Benzene	1020		10.0	ug/kg we	t 50	1000		102	80 - 120%			
Toluene	960		50.0	ug/kg we	t 50	1000		96	80 - 120%			
Ethylbenzene	1010		25.0	ug/kg we	t 50	1000		101	80 - 120%			
Xylenes, total	3100		75.0	ug/kg we	t 50	3000		103	80 - 120%			
Naphthalene	899		100	ug/kg we	t 50	1000		90	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	unds by	EPA 8260	C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020657 - EPA 5035A							Soil					
Blank (0020657-BLK1)		Prepared	02/21/20 09:	00 Analyze	ed: 02/21/2	0 12:15						
5035A/8260C												
Benzene	ND		6.67	ug/kg we	t 50							
Toluene	ND		33.3	ug/kg we	et 50							
Ethylbenzene	ND		16.7	ug/kg we	et 50							
Xylenes, total	ND		50.0	ug/kg we	et 50							
Naphthalene	ND		66.7	ug/kg we	et 50							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 106 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					
LCS (0020657-BS1)		Prepared	: 02/21/20 09:	00 Analyze	ed: 02/21/20	0 11:21						
<u>5035A/8260C</u>												
Benzene	993		10.0	ug/kg we	et 50	1000		99 8	30 - 120%			
Toluene	971		50.0	ug/kg we	et 50	1000		97 8	30 - 120%			
Ethylbenzene	1020		25.0	ug/kg we	et 50	1000		102	30 - 120%			
Xylenes, total	3200		75.0	ug/kg we	et 50	3000		107	30 - 120%			
Naphthalene	850		100	ug/kg we	et 50	1000		85 8	30 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 104 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-	120 %		"					
Matrix Spike (0020657-MS1)		Prepared	: 02/18/20 11:	20 Analyze	ed: 02/21/20	0 19:26						
QC Source Sample: B-31(6.5) (A0	B0557-07)											
5035A/8260C	1450		146	/lra J	50	1460	ND	00 7	77 1210/			
Benzene Toluene	1450 1340		14.6 73.1	ug/kg dr		1460 1460	ND ND		77 - 121% 77 - 121%			
Ethylbenzene	1340		36.6	ug/kg dr		1460	ND ND		76 - 121%			
•	4460			ug/kg dr	,	4380	ND ND		78 - 124%			
Xylenes, total			110	ug/kg dr								
Naphthalene	1230		146	ug/kg dr		1460	ND	84 (52 - 129%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 107 %	Limits: 80-		Dili	ution: 1x					
Toluene-d8 (Surr)			91 %		120 %							
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					

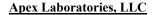
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

	BTEX+N Compounds by EPA 8260C														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 0020686 - EPA 5035A							Soil								
Blank (0020686-BLK1)		Prepared:	02/22/20 09:	:00 Analyze	ed: 02/22/2	0 13:03									
5035A/8260C															
Benzene	ND		6.67	ug/kg we	t 50										
Toluene	ND		33.3	ug/kg we	t 50										
Ethylbenzene	ND		16.7	ug/kg we	t 50										
Xylenes, total	ND		50.0	ug/kg we	t 50										
Naphthalene	ND		66.7	ug/kg we	t 50										
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 107 %	Limits: 80-	120 %	Dilı	ution: 1x								
Toluene-d8 (Surr)			96 %	80-	120 %		"								
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"								
LCS (0020686-BS1)		Prepared:	02/22/20 09:	:00 Analyze	ed: 02/22/2	0 12:09									
5035A/8260C															
Benzene	1010		10.0	ug/kg we	t 50	1000		101	80 - 120%						
Toluene	988		50.0	ug/kg we	t 50	1000		99	80 - 120%						
Ethylbenzene	1010		25.0	ug/kg we	t 50	1000		101	80 - 120%						
Xylenes, total	3220		75.0	ug/kg we	t 50	3000		107	80 - 120%						
Naphthalene	920		100	ug/kg we	t 50	1000		92	80 - 120%						
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 106 %	Limits: 80-	120 %	Dilı	ution: 1x								
Toluene-d8 (Surr)			95 %	80-	120 %		"								
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"								

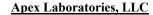
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
						Soil					
	Prepared:	02/23/20 09:	00 Analyze	ed: 02/23/20	0 13:53						
ND		6.67	ug/kg we	t 50							
ND		33.3	ug/kg we	et 50							
ND		16.7	ug/kg we	et 50							
ND		50.0	ug/kg we	t 50							
ND		66.7	ug/kg we	t 50							
	Recov	very: 107 %	Limits: 80-	-120 %	Dilı	ution: 1x					
		96 %	80-	120 %		"					
		109 %	80-	120 %		"					
	Prepared:	02/23/20 09:	00 Analyze	ed: 02/23/20	0 13:00						
1010		10.0	ug/kg we	et 50	1000		101	30 - 120%			
959		50.0			1000		96	30 - 120%			
986		25.0			1000						
3130		75.0	ug/kg we	et 50	3000		104	30 - 120%			
905		100	ug/kg we	et 50	1000		90	30 - 120%			
	Recov	very: 109 %	Limits: 80-	-120 %	Dilı	ution: 1x					
		95 %	80-	120 %		"					
		107 %	80-	120 %		"					
	Prepared:	02/18/20 14:	45 Analyze	ed: 02/23/20	0 20:10						
0557-11)											
ND		14 9	ug/ka des	v 50		ND				30%	
				•							
אורו										30/0	
	Kecov	-			Dili	ution: 1x					
	ND ND ND ND ND 1010 959 986 3130	Prepared: ND ND ND ND Recov Prepared: 1010 959 986 3130 905 Recov Prepared: 0557-11) ND ND ND ND ND ND ND ND ND ND	Prepared: 02/23/20 09: ND	Prepared: 02/23/20 09:00 Analyza	Prepared: 02/23/20 09:00 Analyzed: 02/23/20	Prepared: 02/23/20 09:00 Analyzed: 02/23/20 13:53	ND	Result Limit Limit Units Dilution Amount Result % REC	Result Limit Limit Units Dilution Amount Result % REC Limits	Result Limit Limit Units Dilution Amount Result % REC Limits RPD	Result Limit Limit Units Dilution Amount Result % REC Limits RPD Limit

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020666 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (0020666-DUP2)		Prepared	: 02/21/20 12:0	09 Analy	zed: 02/24/20	0 08:36						
QC Source Sample: B-31(6.5) (A EPA 8000C	<u>(0B0557-07)</u>											
% Solids	73.1		1.00	%	1		72.9			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020671 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (0020671-DUP1)		Prepared	: 02/21/20 12::	51 Analy	zed: 02/21/2	0 15:00						
QC Source Sample: B-29(11) (ACEPA 8000C	0B0557-02)											
% Solids	72.2		1.00	%	1		71.7			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

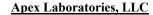
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

SAMPLE PREPARATION INFORMATION


		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020661							
A0B0557-19	Water	NWTPH-Dx LL	02/18/20 11:10	02/21/20 11:12	1070mL/2mL	1000mL/2mL	0.94
A0B0557-20	Water	NWTPH-Dx LL	02/19/20 09:45	02/21/20 11:12	1070mL/2mL	1000mL/2mL	0.94
A0B0557-21	Water	NWTPH-Dx LL	02/18/20 13:40	02/21/20 11:12	1070mL/2mL	1000mL/2mL	0.94
A0B0557-22	Water	NWTPH-Dx LL	02/18/20 15:40	02/21/20 11:12	1010mL/2mL	1000mL/2mL	0.99
A0B0557-23	Water	NWTPH-Dx LL	02/19/20 12:15	02/21/20 11:12	1060mL/2mL	1000mL/2mL	0.94
A0B0557-24	Water	NWTPH-Dx LL	02/19/20 14:45	02/21/20 11:12	1070mL/2mL	1000mL/2mL	0.94
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020749							
A0B0557-01	Soil	NWTPH-Dx	02/18/20 09:15	02/25/20 07:30	10.15g/5mL	10g/5mL	0.99
A0B0557-02	Soil	NWTPH-Dx	02/18/20 10:00	02/25/20 07:30	10.31g/5mL	10g/5mL	0.97
A0B0557-03	Soil	NWTPH-Dx	02/18/20 10:15	02/25/20 07:30	10.21g/5mL	10g/5mL	0.98
A0B0557-04RE1	Soil	NWTPH-Dx	02/18/20 14:05	02/25/20 07:30	10.31g/5mL	10g/5mL	0.97
A0B0557-05	Soil	NWTPH-Dx	02/19/20 08:30	02/25/20 07:30	10.58g/5mL	10g/5mL	0.95
A0B0557-06	Soil	NWTPH-Dx	02/19/20 08:35	02/25/20 07:30	10.52g/5mL	10g/5mL	0.95
A0B0557-07	Soil	NWTPH-Dx	02/18/20 11:20	02/25/20 07:30	10.63g/5mL	10g/5mL	0.94
A0B0557-08RE1	Soil	NWTPH-Dx	02/18/20 12:15	02/25/20 07:30	10.71g/5mL	10g/5mL	0.93
A0B0557-09	Soil	NWTPH-Dx	02/18/20 12:40	02/25/20 07:30	10.88g/5mL	10g/5mL	0.92
Batch: 0020758							
A0B0557-10	Soil	NWTPH-Dx	02/18/20 14:40	02/25/20 13:01	10.68g/5mL	10g/5mL	0.94
A0B0557-11	Soil	NWTPH-Dx	02/18/20 14:45	02/25/20 13:01	10.61g/5mL	10g/5mL	0.94
A0B0557-12	Soil	NWTPH-Dx	02/18/20 15:00	02/25/20 13:01	10.22g/5mL	10g/5mL	0.98
A0B0557-13	Soil	NWTPH-Dx	02/19/20 09:15	02/25/20 13:01	10.45g/5mL	10g/5mL	0.96
A0B0557-14	Soil	NWTPH-Dx	02/19/20 10:50	02/25/20 13:01	10.3g/5mL	10g/5mL	0.97
A0B0557-15	Soil	NWTPH-Dx	02/19/20 11:00	02/25/20 13:01	10.73g/5mL	10g/5mL	0.93
A0B0557-16	Soil	NWTPH-Dx	02/19/20 10:55	02/25/20 13:01	10.9g/5mL	10g/5mL	0.92
A0B0557-17	Soil	NWTPH-Dx	02/19/20 13:15	02/25/20 13:01	10.3g/5mL	10g/5mL	0.97
A0B0557-18	Soil	NWTPH-Dx	02/19/20 13:30	02/25/20 13:01	10.47g/5mL	10g/5mL	0.96

	Diese	l and/or Oil Hydroca	rbons by NWTPH-D	with Silica Gel Co	lumn Cleanup		
Prep: EPA 3510C	(Fuels/Acid Ext.)	w/Silica Gel			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020825							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenighini

Cascadia Associates
5820 SW Kelly Ave Unit B
Portland, OR 97239

Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup

Prep: EPA 3510C (F	uels/Acid Ext.) w/Silica Gel			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A0B0557-19	Water	NWTPH-Dx/SGC	02/18/20 11:10	02/21/20 11:12			0.94
A0B0557-20	Water	NWTPH-Dx/SGC	02/19/20 09:45	02/21/20 11:12			0.94
A0B0557-21RE1	Water	NWTPH-Dx/SGC	02/18/20 13:40	02/21/20 11:12			0.94
A0B0557-22	Water	NWTPH-Dx/SGC	02/18/20 15:40	02/21/20 11:12			0.99
A0B0557-23	Water	NWTPH-Dx/SGC	02/19/20 12:15	02/21/20 11:12			0.94
A0B0557-24	Water	NWTPH-Dx/SGC	02/19/20 14:45	02/21/20 11:12			0.94
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020562			-				
A0B0557-20	Water	NWTPH-Gx (MS)	02/19/20 09:45	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
A0B0557-23RE1	Water	NWTPH-Gx (MS)	02/19/20 12:15	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
A0B0557-24	Water	NWTPH-Gx (MS)	02/19/20 14:45	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
Batch: 0020602							
A0B0557-19	Water	NWTPH-Gx (MS)	02/18/20 11:10	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
A0B0557-21	Water	NWTPH-Gx (MS)	02/18/20 13:40	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
A0B0557-22	Water	NWTPH-Gx (MS)	02/18/20 15:40	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020607							
A0B0557-01	Soil	NWTPH-Gx (MS)	02/18/20 09:15	02/18/20 09:15	6.05g/5mL	5g/5mL	0.83
A0B0557-02	Soil	NWTPH-Gx (MS)	02/18/20 10:00	02/18/20 10:00	6.1g/5mL	5g/5mL	0.82
A0B0557-04	Soil	NWTPH-Gx (MS)	02/18/20 14:05	02/18/20 14:05	6.92g/5mL	5g/5mL	0.72
A0B0557-05	Soil	NWTPH-Gx (MS)	02/19/20 08:30	02/19/20 08:30	6.61g/5mL	5g/5mL	0.76
Batch: 0020640							
A0B0557-03	Soil	NWTPH-Gx (MS)	02/18/20 10:15	02/18/20 10:15	6.27g/5mL	5g/5mL	0.80
Batch: 0020657							
A0B0557-07	Soil	NWTPH-Gx (MS)	02/18/20 11:20	02/18/20 11:20	6.29g/5mL	5g/5mL	0.80
A0B0557-09	Soil	NWTPH-Gx (MS)	02/18/20 12:40	02/18/20 12:40	6.43g/5mL	5g/5mL	0.78
A0B0557-10	Soil	NWTPH-Gx (MS)	02/18/20 14:40	02/18/20 14:40	5.77g/5mL	5g/5mL	0.87
Batch: 0020686							

02/19/20 08:35

Apex Laboratories

A0B0557-06RE1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6.75g/5mL

5g/5mL

02/19/20 08:35

Soil

NWTPH-Gx (MS)

0.74

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

SAMPLE PREPARATION INFORMATION

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A0B0557-08RE1	Soil	NWTPH-Gx (MS)	02/18/20 12:15	02/18/20 12:15	6.4g/5mL	5g/5mL	0.78
Batch: 0020693							
A0B0557-11	Soil	NWTPH-Gx (MS)	02/18/20 14:45	02/18/20 14:45	5.68g/5mL	5g/5mL	0.88
A0B0557-12	Soil	NWTPH-Gx (MS)	02/18/20 15:00	02/18/20 15:00	7.15g/5mL	5g/5mL	0.70
A0B0557-13	Soil	NWTPH-Gx (MS)	02/19/20 09:15	02/19/20 09:15	6.4g/5mL	5g/5mL	0.78
A0B0557-14	Soil	NWTPH-Gx (MS)	02/19/20 10:50	02/19/20 10:50	6.16g/5mL	5g/5mL	0.81
A0B0557-15	Soil	NWTPH-Gx (MS)	02/19/20 11:00	02/19/20 11:00	6.24g/5mL	5g/5mL	0.80
A0B0557-16	Soil	NWTPH-Gx (MS)	02/19/20 10:55	02/19/20 10:55	6.11g/5mL	5g/5mL	0.82
A0B0557-17	Soil	NWTPH-Gx (MS)	02/19/20 13:15	02/19/20 13:15	6.43g/5mL	5g/5mL	0.78
A0B0557-18	Soil	NWTPH-Gx (MS)	02/19/20 13:30	02/19/20 13:30	6.28g/5mL	5g/5mL	0.80
		BTE	K+N Compounds by	EPA 8260C			
Prep: EPA 5030B			· · · ·		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020562	Maura	Wictiou	Sampled	Trepared			
A0B0557-20	Water	EPA 8260C	02/19/20 09:45	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
A0B0557-23RE1	Water	EPA 8260C	02/19/20 09:43	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
A0B0557-24	Water	EPA 8260C	02/19/20 12:13	02/21/20 11:46	5mL/5mL	5mL/5mL	1.00
	water	E1A 8200C	02/19/20 14.43	02/21/20 11.40	SHIL/SHIL	JIIIL/JIIIL	1.00
Batch: 0020602							
A0B0557-19	Water	EPA 8260C	02/18/20 11:10	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
A0B0557-21	Water	EPA 8260C	02/18/20 13:40	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
A0B0557-22	Water	EPA 8260C	02/18/20 15:40	02/20/20 11:47	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020607							
A0B0557-01	Soil	5035A/8260C	02/18/20 09:15	02/18/20 09:15	6.05g/5mL	5g/5mL	0.83
A0B0557-02	Soil	5035A/8260C	02/18/20 10:00	02/18/20 10:00	6.1g/5mL	5g/5mL	0.82
A0B0557-04	Soil	5035A/8260C	02/18/20 14:05	02/18/20 14:05	6.92g/5mL	5g/5mL	0.72
A0B0557-05	Soil	5035A/8260C	02/19/20 08:30	02/19/20 08:30	6.61g/5mL	5g/5mL	0.76
Batch: 0020640							
A0B0557-03	Soil	5035A/8260C	02/18/20 10:15	02/18/20 10:15	6.27g/5mL	5g/5mL	0.80
Batch: 0020657							
A0B0557-07	Soil	5035A/8260C	02/18/20 11:20	02/18/20 11:20	6.29g/5mL	5g/5mL	0.80
					<i>3</i> -	<i>3</i> -	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa A Jamenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

SAMPLE PREPARATION INFORMATION

		BTE	X+N Compounds by	EPA 8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A0B0557-08	Soil	5035A/8260C	02/18/20 12:15	02/18/20 12:15	6.4g/5mL	5g/5mL	0.78
A0B0557-09	Soil	5035A/8260C	02/18/20 12:40	02/18/20 12:40	6.43g/5mL	5g/5mL	0.78
A0B0557-10	Soil	5035A/8260C	02/18/20 14:40	02/18/20 14:40	5.77g/5mL	5g/5mL	0.87
Batch: 0020686							
A0B0557-06RE1	Soil	5035A/8260C	02/19/20 08:35	02/19/20 08:35	6.75g/5mL	5g/5mL	0.74
A0B0557-08RE1	Soil	5035A/8260C	02/18/20 12:15	02/18/20 12:15	6.4g/5mL	5g/5mL	0.78
Batch: 0020693							
A0B0557-11	Soil	5035A/8260C	02/18/20 14:45	02/18/20 14:45	5.68g/5mL	5g/5mL	0.88
A0B0557-12	Soil	5035A/8260C	02/18/20 15:00	02/18/20 15:00	7.15g/5mL	5g/5mL	0.70
A0B0557-13	Soil	5035A/8260C	02/19/20 09:15	02/19/20 09:15	6.4g/5mL	5g/5mL	0.78
A0B0557-14	Soil	5035A/8260C	02/19/20 10:50	02/19/20 10:50	6.16g/5mL	5g/5mL	0.81
A0B0557-15	Soil	5035A/8260C	02/19/20 11:00	02/19/20 11:00	6.24g/5mL	5g/5mL	0.80
A0B0557-16	Soil	5035A/8260C	02/19/20 10:55	02/19/20 10:55	6.11g/5mL	5g/5mL	0.82
A0B0557-17	Soil	5035A/8260C	02/19/20 13:15	02/19/20 13:15	6.43g/5mL	5g/5mL	0.78
A0B0557-18	Soil	5035A/8260C	02/19/20 13:30	02/19/20 13:30	6.28g/5mL	5g/5mL	0.80

			Percent Dry We	ight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Pre
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020666							
A0B0557-01	Soil	EPA 8000C	02/18/20 09:15	02/21/20 12:09			NA
A0B0557-03	Soil	EPA 8000C	02/18/20 10:15	02/21/20 12:09			NA
A0B0557-04	Soil	EPA 8000C	02/18/20 14:05	02/21/20 12:09			NA
A0B0557-05	Soil	EPA 8000C	02/19/20 08:30	02/21/20 12:09			NA
A0B0557-06	Soil	EPA 8000C	02/19/20 08:35	02/21/20 12:09			NA
A0B0557-07	Soil	EPA 8000C	02/18/20 11:20	02/21/20 12:09			NA
A0B0557-08	Soil	EPA 8000C	02/18/20 12:15	02/21/20 12:09			NA
A0B0557-09	Soil	EPA 8000C	02/18/20 12:40	02/21/20 12:09			NA
A0B0557-10	Soil	EPA 8000C	02/18/20 14:40	02/21/20 12:09			NA
A0B0557-11	Soil	EPA 8000C	02/18/20 14:45	02/21/20 12:09			NA
A0B0557-12	Soil	EPA 8000C	02/18/20 15:00	02/21/20 12:09			NA
A0B0557-13	Soil	EPA 8000C	02/19/20 09:15	02/21/20 12:09			NA
A0B0557-14	Soil	EPA 8000C	02/19/20 10:50	02/21/20 12:10			NA
A0B0557-15	Soil	EPA 8000C	02/19/20 11:00	02/21/20 12:10			NA
A0B0557-16	Soil	EPA 8000C	02/19/20 10:55	02/21/20 12:10			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

SAMPLE PREPARATION INFORMATION

	_	_	Percent Dry We	ight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A0B0557-17	Soil	EPA 8000C	02/19/20 13:15	02/21/20 12:10			NA
A0B0557-18	Soil	EPA 8000C	02/19/20 13:30	02/21/20 12:10			NA
Batch: 0020671							
A0B0557-02	Soil	EPA 8000C	02/18/20 10:00	02/21/20 12:53			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Portland, OR 97239Project Manager:Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
M-04	Due to matrix interference, this analyte cannot be accurately quantified. The reported result may contain a high bias.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
T-02	This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Report ID:Portland, OR 97239Project Manager:Amanda SpencerA0B0557 - 03 03 20 1223

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Zomenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Portland, OR 97239Project Manager:Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Portland, OR 97239Project Manager:Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

: :															
Company: askadia Associates	fes Project Mgr: Amanda	da Spe	Spencer	roject Na	me: N	135	7	22	M/C	Project Name: Nustar - Vancouce Annex	1 3	P _r	Project #: 00/00 - (m) - 005	200-100	
Address: 5820 SW Kelly Ave., Swite B	the, Suite B	Pho	.906.		Smail: C	3	3	8	Ş	Email: aspencer (D. Cascadia associados)	1. A.	દ ૂ			
Sampled by: Tour Magicine	ş							7	New	ANAL VSIS BEOTIEST	F	-			
Site Location:						11				-1	ำน				
OR (W) CA		КS			1si 7	iJ IIv				Cq' C	'en '8'	CLP	h.g		
AK 1D	11-1-1		y xe	AOC8					(8) str	, 9Я , в					
	AB ID # ATE AME	DE CONJ	WTPH-D	90 KBD	OOA 09	-imoS 07.	85 PCBs	181 Pest	CRA Me	iority Mo		SIG AV.	12444 14444		
SAMPLEID	Z(J) T C. (Z		78 ; N ;	8			98	08	Я	ʻiv	Z 'A				\dashv
0-71(62)	Ü	7	X	1	_	_									-
8-29(11)	2/18/120 1000 S	~	×										×		
8-29 (21)	2/18/20 1015 5	~	У У У												
B-30 (4.5)	2/18/20 1405 5	~				ļ						-	- >		-
B-30 (16)	2/m/20 830 S	~	× × ×		-	-				-		ļ			-
B-30 (21.5)	2 358 02/11/2	~	, ×			<u> </u>				-		-	· >		
18-31 (6.5)		~	× × ×			ļ							< >		-
B-31 (14)	2/18/20/215	3	×												-
8-31 (21.5)	2/18/20 1240 S	3	,× ,× ,×		<u> </u>			Ì				-	×		-
ઉ-32 (વ)	2/18/20 1440 S	~	××××		-				1			-	. ><		+-
Normal 7	Normal Turn Around Time (TAT) = 10 Business Days	siness Days	*	97	SPECIAL INSTRUCTIONS	LINS	IRUC	TION	Š			4			-
6 E	I Day 2 Day	3 Day			2	ō.	<u>ر</u> ق :	ارسي	7	Jean	3	ş	No Silica ged Cleanup on TPH ox andysis	nadyšis	
(A.f. Kequested (circle)	4 DAY 5 DAY	Other:	- AA	-	+	3	á)) —	3	to Soil Samples					
	SAMPLES ARE HELD FOR 30 DAYS			T											
USHED BY:	RECEIVED BY:			<u>~</u>	RELINQUISHED BY:	USHE	D BY:					REC	RECEIVED BY:		
Marie	2/20/20 MmM		2/40/20		Signature.						Date:	Sign	Signature:	Date:	
Printed Name:			Tinge:		Printed Name	ame:					Time:	.i.F	Printed Name:	Time:	
Jun Magure	1000 Charles Huttery	#	1055												
1 sescusia Associates				<u> </u>	Company:							Con	Company:		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

Company: (ascadia Associates	tes Project Mgr. Amunda Spencer		Project Name: Nustar - Van Couver Annex	Annex Project #: ADGO-MOI - COS	500-100
Address: 5820 5W Kelly Ave., Suite B	que, Suite B	Phone: 503. 905. 6577	77 Email: aspencer (2) Casca chaasseciatics. Com	(0.1	
Sampled by: I am Muquine	الأ		ANALYSIS BEOLIEST	HOTIEST	
Site Location:				,iT	
OR WA CA			ei I II.	3) Cel. Ci.	
AK ID		ai	8 (8) ops Ec tHs occs	Be, G Pb, Se, A _S T	
		EX -C ^x -D ^x	lo Vol	Ba, Fe, IK, OISS.	
	JE TRIX	9 ВЕ	1 besi 1 besi 10 as 10 as 10 as 10 as	o, Cu lo, Ni,	
SAMPLE ID	AQ VIT AM	978 MN MN	808 808 808 822 822 824 928	11, Si Λin, Ν Λ, Za γ, Za TCI	
6-32 (12)	. S SHH 07/81/7	2 × × ×			
B-32 (21)	5 0051 07/81/72	*			
12-22 (4.5)	+	· >		2 3	
(10)	2 .	× <		×	
18-33 (18)	ZABBE S	X X X		×	
8-33 (20)	2/19/20 14,000 5	× × ×		, >	
B-34 (1055-65)	2 S S S S	×		>	
B-34 (4345 (18)	119/215 S 3	×		< < /	
		<i>></i>		7)	
and the second s	1			<	
The second secon					
Normal Fu	Normal Furn Around Time (TAT) = 10 Business Days	ess Days	SPECIAL INSTRUCTIONS:		
	1 Day 2 Day 3 I	3 Day	No Silica gel	No Silica gel Chamme on TPHD, andusis	San Nusis
TAT Requested (circle)			for Soil Rown	Mes	
7	4 DAY 5 DAY	Other:			
	SAMPLES ARE HELD FOR 30 DAYS		1		
RELINQUISHED BY:	RECEIVED BY:		RELINQUISHED BY:	RECEIVED BY:	
Myss	- VI	Date: 120/20		Date: Signature:	Date:
ne:	Time: Printed Name:	June:	Printed Name		
Fan Magicine	1055 Ohirth 12,44.	1055	'Align' manua'.	Ime: Printed Name:	Time:
			Company	7/-	
Cascadic Associates	A DEN LAST	Ę		Company	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

6700 SW Sandburg St., Tigard, OR 97223 Ph; 503-718-2323	OR 97223 Ph: 503-718-2323				
Company: Cascadia Associates	ates Project Mgr. Amanda Spenter		Project Name: UmrConver AM	ANNEX Provient #. 0060-001-005	500-
Address: 500 5820 Sw Kelly Ave., Swith B	Kelly Ave., SuiteB	.906.6	Email:		
Sampled by: I can Magaine	ine		ANALVSIS BEOTHEST	Milest	
Site Location:				fu.	
OR (NA) CA	SW	\$ C	siJ Ilu	CG, Ca	
AK ID	AINE	x -x	Full I Fols F	6, Pb, (c, Pb, c, Se, A	
	XIX	ви в	Meta SCB [®] SIM E	Meta DIS 'Al' K 'Cn' E 'Y' R'	
SAMPLE ID	LAB I DATE TIME TAME	1 0978 1 0978 1 LAAN 1 LAAN	8081 L 8087 L 8740 S 8740 S 8740 S 8760 A	I, Sb., Sn. Co., Co., Co., Co., Co., Co., Co., Co.	
B-29 GW	2/18/20 1110 GW 5	×		N >	
B-30 GW		· ×			
B-31 GW	2/18/28/340 GW 5	+		< >	
8-32 GW	2/18/20 1540/GAU G			< >	
R-33 GW		+			
RS4 (2)				× ;	
		4		V X X	
or a second seco					
Lorenzo	Normal Turn Amanuel Time (TAT), 100				
TAILLIAN .	ran around time (1.e.t.) = (0 business	Jays	Peose run TPH	People run 1740, Loth with and with	+
TAT Requested (circle)	l Day 2 Day 3 Day		Silica ged clemus	was an ownered inter Sumples	Sample
	4 DAY 5 DAY OU	Other:	>		,
	SAMPLES ARE HELD FOR 30 DAYS				
RELINQUISHED BY: signature:	RECEIVED BY: Date: Sionatur	Dates	RELINQUISHED BY:		
my by you	2/20/28 /hals	2/20/20	orginature	Date: Signature:	Date:
Printed Name:	2		Printed Name:	Time: Printed Name:	Time:
ton magaine	1035 Churis 14ther	LD 1055			
(escudir Associates			Соприну:	Company:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0557 - 03 03 20 1223

Client: Cascud	Element WO#: A0 80 557
Project/Project #:	Vustur - Vancouver Annex 0060-001-005
Delivery Info:	
Date/time received: $\frac{\lambda/\lambda}{\lambda}$	о/20 @ 1085 By: CFH
Delivered by: Apex <u> </u>	Client ESS FedEx UPS Swift Senvoy SDS Other
	ate/time inspected: 1/10/10 @ 1300 By: FIL
Chain of Custody included	
Signed/dated by client?	Yes No No
Signed/dated by Apex?	Yes <u>+</u> No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.6 4.4
Received on ice? (Y/N)	Υ Υ
Temp. blanks? (Y/N)	<u> Y</u> <u>Y</u>
Ice type: (Gel/Real/Other)	Renj Renj
Condition:	God God
	ate/time inspected: 420 10 @ 1756 By: WK No Comments:
All samples intact? Yes ≥	No Comments: 1 Trip Blanks # 2253 Provide
All samples intact? Yes Y Bottle labels/COCs agree? NOT on COC.	No Comments: 1 Trip Blanks # 2253 Provide
All samples intact? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No Comments: 1 Trip Blanks # 2253 Provide
All samples intact? Yes Bottle labels/COCs agree? WH on COC. COC/container discrepanc Containers/volumes receiv Do VOA vials have visible	No Comments:
All samples intact? Yes Bottle labels/COCs agree? WH on COC. COC/container discrepanc Containers/volumes receiv Do VOA vials have visible	NoComments:
All samples intact? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No Comments:
All samples intact? Yes Bottle labels/COCs agree? WH ON COC. COC/container discrepanc Containers/volumes receiv Do VOA vials have visible Comments 18 20 Sed Water samples: pH checke	No Comments:
All samples intact? Yes Yeb Market labels/COCs agree? What on COC. COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments 181 20 Sed Water samples: pH checket Comments:	NoComments:
All samples intact? Yes Yeb Market labels/COCs agree? What on COC. COC/container discrepance Containers/volumes receive Do VOA vials have visible Comments 181 20 Sed Water samples: pH checket Comments:	NoComments:
All samples intact? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NoComments:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Monday, March 2, 2020 Amanda Spencer Cascadia Associates 5820 SW Kelly Ave Unit B Portland, OR 97239

RE: A0B0617 - Nustar Vannex - 0060-001-005

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0B0617, which was received by the laboratory on 2/21/2020 at 5:50:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

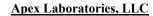
Please note: All samples will be disposed of within 30 days of sample reciept, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 5.8 degC Cooler #2 3.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.


All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Mustar Vannex
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-35(6)	A0B0617-01	Soil	02/21/20 08:50	02/21/20 17:50
B-35(9)	A0B0617-02	Soil	02/21/20 08:55	02/21/20 17:50
B-35(19)	A0B0617-03	Soil	02/21/20 09:05	02/21/20 17:50
B-36(6)	A0B0617-04	Soil	02/21/20 09:20	02/21/20 17:50
B-36(14)	A0B0617-05	Soil	02/21/20 11:05	02/21/20 17:50
B-36(20)	A0B0617-06	Soil	02/21/20 11:40	02/21/20 17:50
B-37(6)	A0B0617-07	Soil	02/21/20 11:25	02/21/20 17:50
B-37(13)	A0B0617-08	Soil	02/21/20 12:20	02/21/20 17:50
B-37(21)	A0B0617-09	Soil	02/21/20 12:35	02/21/20 17:50
B-38(6)	A0B0617-10	Soil	02/21/20 11:55	02/21/20 17:50
B-38(13)	A0B0617-11	Soil	02/21/20 14:10	02/21/20 17:50
B-38(21.5)	A0B0617-12	Soil	02/21/20 14:25	02/21/20 17:50
B-39(6)	A0B0617-13	Soil	02/21/20 13:55	02/21/20 17:50
B-39(13.5)	A0B0617-14	Soil	02/21/20 14:55	02/21/20 17:50
B-39(21)	A0B0617-15	Soil	02/21/20 15:05	02/21/20 17:50
B-35 GW	A0B0617-16	Water	02/21/20 10:50	02/21/20 17:50
B-36 GW Shallow	A0B0617-17	Water	02/21/20 10:40	02/21/20 17:50
B-36 GW Deep	A0B0617-18	Water	02/21/20 12:40	02/21/20 17:50
B-37 GW	A0B0617-19	Water	02/21/20 13:35	02/21/20 17:50
B-38 GW	A0B0617-20	Water	02/21/20 15:15	02/21/20 17:50
Soil IDW	A0B0617-21	Soil	02/21/20 15:20	02/21/20 17:50

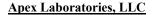
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocarl	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-35(6) (A0B0617-01)				Matrix: Soil		Batch:	0020863	
Diesel	ND		26.7	mg/kg dry	1	02/28/20 00:45	NWTPH-Dx	
Oil	ND		53.5	mg/kg dry	1	02/28/20 00:45	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 76 %	Limits: 50-150 %	5 1	02/28/20 00:45	NWTPH-Dx	
B-35(9) (A0B0617-02)				Matrix: Soil		Batch:	0020863	
Diesel	ND		26.8	mg/kg dry	1	02/28/20 01:07	NWTPH-Dx	
Oil	ND		53.6	mg/kg dry	1	02/28/20 01:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 87 %	Limits: 50-150 %	5 I	02/28/20 01:07	NWTPH-Dx	
B-35(19) (A0B0617-03)			Matrix: Soil			Batch:	0020863	
Diesel	ND		27.7	mg/kg dry	1	02/28/20 01:30	NWTPH-Dx	
Oil	ND		55.4	mg/kg dry	1	02/28/20 01:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 90 %	Limits: 50-150 %	6 1	02/28/20 01:30	NWTPH-Dx	
B-36(6) (A0B0617-04)				Matrix: Soil		Batch:	0020863	
Diesel	ND		27.5	mg/kg dry	1	02/27/20 21:19	NWTPH-Dx	
Oil	ND		55.0	mg/kg dry	1	02/27/20 21:19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recor	very: 96 %	Limits: 50-150 %	6 I	02/27/20 21:19	NWTPH-Dx	
B-36(14) (A0B0617-05)				Matrix: Soil		Batch:		
Diesel	ND		26.0	mg/kg dry	1	02/27/20 21:42	NWTPH-Dx	
Oil	ND		52.1	mg/kg dry	1	02/27/20 21:42	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recor	very: 90 %	Limits: 50-150 %	6 I	02/27/20 21:42	NWTPH-Dx	
B-36(20) (A0B0617-06)				Matrix: Soil		Batch:	0020863	
Diesel	ND		25.6	mg/kg dry	1	02/27/20 22:05	NWTPH-Dx	
Oil	ND		51.2	mg/kg dry	1	02/27/20 22:05	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recor	very: 89 %	Limits: 50-150 %	6 I	02/27/20 22:05	NWTPH-Dx	
B-37(6) (A0B0617-07)				Matrix: Soil		Batch:	0020863	
Diesel	ND		27.1	mg/kg dry	1	02/27/20 22:28	NWTPH-Dx	
Oil	ND		54.2	mg/kg dry	1	02/27/20 22:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 76 %	Limits: 50-150 %	5 1	02/27/20 22:28	NWTPH-Dx	
B-37(13) (A0B0617-08)		Matrix: Soil		Batch: 0020863		<u></u>		
Diesel	2300		26.8	mg/kg dry	1	02/27/20 22:51	NWTPH-Dx	

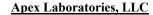
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-37(13) (A0B0617-08)				Matrix: Soil		Batch:	0020863	
Oil	ND		53.7	mg/kg dry	1	02/27/20 22:51	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 I	02/27/20 22:51	NWTPH-Dx	
B-37(21) (A0B0617-09)				Matrix: Soil		Batch:	0020863	
Diesel	98.8		27.6	mg/kg dry	1	02/27/20 23:13	NWTPH-Dx	
Oil	ND		55.2	mg/kg dry	1	02/27/20 23:13	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 99 %	Limits: 50-150 %	6 1	02/27/20 23:13	NWTPH-Dx	
B-38(6) (A0B0617-10)				Matrix: Soil		Batch:	0020863	
Diesel	ND		26.8	mg/kg dry	1	02/27/20 23:36	NWTPH-Dx	
Oil	ND		53.7	mg/kg dry	1	02/27/20 23:36	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87%	Limits: 50-150 %	5 1	02/27/20 23:36	NWTPH-Dx	
B-38(13) (A0B0617-11RE1)				Matrix: Soil		Batch:	0020863	
Diesel	3900		142	mg/kg dry	5	02/28/20 09:22	NWTPH-Dx	
Oil	ND		283	mg/kg dry	5	02/28/20 09:22	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87%	Limits: 50-150 %	5	02/28/20 09:22	NWTPH-Dx	S-05
B-38(21.5) (A0B0617-12)				Matrix: Soil		Batch:	0020863	
Diesel	122		25.6	mg/kg dry	1	02/28/20 00:22	NWTPH-Dx	
Oil	ND		51.2	mg/kg dry	1	02/28/20 00:22	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 98 %	Limits: 50-150 %	<i>5</i> 1	02/28/20 00:22	NWTPH-Dx	
B-39(6) (A0B0617-13)				Matrix: Soil		Batch:	0020863	
Diesel	ND		27.2	mg/kg dry	1	02/28/20 00:45	NWTPH-Dx	
Oil	ND		54.4	mg/kg dry	1	02/28/20 00:45	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50-150 %	6 I	02/28/20 00:45	NWTPH-Dx	
B-39(13.5) (A0B0617-14)				Matrix: Soil		Batch:	0020863	
Diesel	ND		26.5	mg/kg dry	1	02/28/20 01:07	NWTPH-Dx	
Oil	ND		53.1	mg/kg dry	1	02/28/20 01:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 1	02/28/20 01:07	NWTPH-Dx	
B-39(21) (A0B0617-15)				Matrix: Soil		Batch:	0020864	
Diesel	ND		26.2	mg/kg dry	1	02/27/20 22:04	NWTPH-Dx	
Oil	ND		52.3	mg/kg dry	1	02/27/20 22:04	NWTPH-Dx	

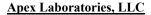
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or Oil I	lydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-39(21) (A0B0617-15)				Matrix: Soil	Ва		0020864	
Surrogate: o-Terphenyl (Surr)		Recovery	·: 83 %	Limits: 50-150 %	1	02/27/20 22:04	NWTPH-Dx	
3-35 GW (A0B0617-16)				Matrix: Wate	er	Batch	0020747	
Diesel	ND		0.0825	mg/L	1	02/25/20 22:35	NWTPH-Dx LL	
Oil	ND		0.165	mg/L	1	02/25/20 22:35	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	·: 80 %	Limits: 50-150 %	1	02/25/20 22:35	NWTPH-Dx LL	
3-36 GW Shallow (A0B0617-17)				Matrix: Wate	er	Batch	0020747	
Diesel	0.107		0.0792	mg/L	1	02/25/20 22:56	NWTPH-Dx LL	F-11
Oil	ND		0.158	mg/L	1	02/25/20 22:56	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 73 %	Limits: 50-150 %	1	02/25/20 22:56	NWTPH-Dx LL	
3-36 GW Deep (A0B0617-18)				Matrix: Wate	er	Batch:	0020747	
Diesel	0.0927		0.0833	mg/L	1	02/25/20 23:16	NWTPH-Dx LL	F-11
Oil	ND		0.167	mg/L	1	02/25/20 23:16	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	: 77 %	Limits: 50-150 %	1	02/25/20 23:16	NWTPH-Dx LL	
3-37 GW (A0B0617-19)				Matrix: Wate	er	Batch:	0020747	
Diesel	0.831		0.0748	mg/L	1	02/25/20 23:37	NWTPH-Dx LL	F-20
Oil	ND		0.150	mg/L	1	02/25/20 23:37	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	·: 70 %	Limits: 50-150 %	1	02/25/20 23:37	NWTPH-Dx LL	
3-38 GW (A0B0617-20RE1)				Matrix: Wate	er	Batch:	0020747	
Diesel	8.65		0.748	mg/L	10	02/26/20 09:42	NWTPH-Dx LL	F-20
Oil	ND		1.50	mg/L	10	02/26/20 09:42	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	y: 61 %	Limits: 50-150 %	10	02/26/20 09:42	NWTPH-Dx LL	S-05
Goil IDW (A0B0617-21)				Matrix: Soil		Batch	0020864	
Diesel	588		27.0	mg/kg dry	1	02/27/20 22:44	NWTPH-Dx	
Oil	ND		54.0	mg/kg dry	1	02/27/20 22:44	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery	·: 93 %	Limits: 50-150 %	1	02/27/20 22:44	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

Dies	el and/or Oil H	ydrocarbons	by NWTPH	-Dx with Silica	Gel Colu	mn Cleanup		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-35 GW (A0B0617-16)				Matrix: Wate	er	Batch	: 0020872	
Diesel	ND		0.0825	mg/L	1	02/27/20 22:24	NWTPH-Dx/SGC	
Oil	ND		0.165	mg/L	1	02/27/20 22:24	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-150 %	1	02/27/20 22:24	NWTPH-Dx/SGC	
B-36 GW Shallow (A0B0617-17)				Matrix: Wate	er	Batch	: 0020872	
Diesel	ND		0.0792	mg/L	1	02/27/20 22:46	NWTPH-Dx/SGC	
Oil	ND		0.158	mg/L	1	02/27/20 22:46	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 68 %	Limits: 50-150 %	1	02/27/20 22:46	NWTPH-Dx/SGC	
B-36 GW Deep (A0B0617-18)				Matrix: Wate	er	Batch	: 0020872	
Diesel	ND		0.0833	mg/L	1	02/27/20 23:09	NWTPH-Dx/SGC	
Oil	ND		0.167	mg/L	1	02/27/20 23:09	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 69 %	Limits: 50-150 %	1	02/27/20 23:09	NWTPH-Dx/SGC	
B-37 GW (A0B0617-19)				Matrix: Wate	er	Batch	: 0020872	
Diesel	0.502		0.0748	mg/L	1	02/27/20 23:32	NWTPH-Dx/SGC	F-20
Oil	ND		0.150	mg/L	1	02/27/20 23:32	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 57 %	Limits: 50-150 %	1	02/27/20 23:32	NWTPH-Dx/SGC	
B-38 GW (A0B0617-20RE1)				Matrix: Wate	er	Batch	: 0020872	
Diesel	6.57		0.374	mg/L	5	02/28/20 08:22	NWTPH-Dx/SGC	F-20
Oil	ND		0.748	mg/L	5	02/28/20 08:22	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 51 %	Limits: 50-150 %	5	02/28/20 08:22	NWTPH-Dx/SGC	S-05

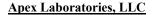
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-35(6) (A0B0617-01)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		7.10	mg/kg dry	50	02/24/20 14:09	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 110 %	Limits: 50-150 %	5 1	02/24/20 14:09	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	5 1	02/24/20 14:09	NWTPH-Gx (MS)	
B-35(9) (A0B0617-02)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		8.17	mg/kg dry	50	02/24/20 15:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106%	Limits: 50-150 %	5 1	02/24/20 15:03	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %	50-150 %	5 1	02/24/20 15:03	NWTPH-Gx (MS)	
B-35(19) (A0B0617-03)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		7.51	mg/kg dry	50	02/24/20 15:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	5 1	02/24/20 15:30	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %	50-150 %	5 1	02/24/20 15:30	NWTPH-Gx (MS)	
B-36(6) (A0B0617-04)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		8.52	mg/kg dry	50	02/24/20 15:57	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	5 1	02/24/20 15:57	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	5 1	02/24/20 15:57	NWTPH-Gx (MS)	
B-36(14) (A0B0617-05)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		7.54	mg/kg dry	50	02/24/20 16:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 109 %	Limits: 50-150 %	5 1	02/24/20 16:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	5 1	02/24/20 16:24	NWTPH-Gx (MS)	
B-36(20) (A0B0617-06)				Matrix: Soil		Batch	: 0020710	
Gasoline Range Organics	ND		6.91	mg/kg dry	50	02/24/20 16:51	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	5 1	02/24/20 16:51	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	5 1	02/24/20 16:51	NWTPH-Gx (MS)	
B-37(6) (A0B0617-07)				Matrix: Soil		Batch	: 0020710	· · ·
Gasoline Range Organics	ND		7.92	mg/kg dry	50	02/24/20 17:18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107%	Limits: 50-150 %	5 1	02/24/20 17:18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	5 1	02/24/20 17:18	NWTPH-Gx (MS)	
B-37(13) (A0B0617-08)				Matrix: Soil Batch: 0020710				
Gasoline Range Organics	2170		81.7	mg/kg dry	500	02/24/20 17:45	NWTPH-Gx (MS)	

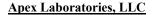
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	ydrocarbons (E	Benzene tl	nrough	Naphtha	lene) by	NWTPH-Gx		
	Sample	Detection	Reporting				Date		
Analyte	Result	Limit	Limit	U	nits	Dilution	Analyzed	Method Ref.	Notes
B-37(13) (A0B0617-08)				Mat	rix: Soil		Batch	: 0020710	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 107 %	Limits:		1	02/24/20 17:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			90 %		50-150 %	1	02/24/20 17:45	NWTPH-Gx (MS)	
B-37(21) (A0B0617-09)				Mat	rix: Soil		Batch	: 0020710	
Gasoline Range Organics	454		11.2	mg	/kg dry	50	02/24/20 18:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 109 %	Limits:	50-150 %	1	02/24/20 18:38	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %		50-150 %	1	02/24/20 18:38	NWTPH-Gx (MS)	
B-38(6) (A0B0617-10)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	ND		8.46	mg	/kg dry	50	02/26/20 20:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 104 %	Limits:	50-150 %	1	02/26/20 20:11	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %		50-150 %	1	02/26/20 20:11	NWTPH-Gx (MS)	
B-38(13) (A0B0617-11)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	940		35.1	mg	/kg dry	200	02/26/20 21:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 111 %	Limits:	50-150 %	1	02/26/20 21:05	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			90 %		50-150 %	1	02/26/20 21:05	NWTPH-Gx (MS)	
B-38(21.5) (A0B0617-12)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	208		8.13	mg	/kg dry	50	02/26/20 20:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 110 %	Limits:	50-150 %	1	02/26/20 20:38	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %		50-150 %	1	02/26/20 20:38	NWTPH-Gx (MS)	
B-39(6) (A0B0617-13)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	ND		8.41	mg	/kg dry	50	02/26/20 21:58	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 105 %	Limits:	50-150 %	1	02/26/20 21:58	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %		50-150 %	1	02/26/20 21:58	NWTPH-Gx (MS)	
B-39(13.5) (A0B0617-14)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	ND		9.14	mg	/kg dry	50	02/26/20 22:25	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 109 %	Limits:	50-150 %	1	02/26/20 22:25	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %		50-150 %	1	02/26/20 22:25	NWTPH-Gx (MS)	
B-39(21) (A0B0617-15)				Mat	rix: Soil		Batch	: 0020794	V-15
Gasoline Range Organics	ND		8.00	mg	/kg dry	50	02/26/20 22:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 108 %	Limits:	50-150 %	1	02/26/20 22:52	NWTPH-Gx (MS)	

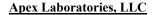
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

				rough Naphti				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
B-39(21) (A0B0617-15)				Matrix: Soi	iI		: 0020794	V-15
Surrogate: 1,4-Difluorobenzene (Sur)		Recov	ery: 92 %	Limits: 50-150	% 1	02/26/20 22:52	NWTPH-Gx (MS)	
B-35 GW (A0B0617-16)				Matrix: Wa	ter	Batch	: 0020689	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/20 18:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)	- 1,2	Recov	ery: 99%	Limits: 50-150		02/22/20 18:05	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			116%	50-150		02/22/20 18:05	NWTPH-Gx (MS)	
B-36 GW Shallow (A0B0617-17)				Matrix: Wa	ter	Batch	: 0020689	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/20 17:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 100 %	Limits: 50-150	% 1	02/22/20 17:11	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			117 %	50-150	% 1	02/22/20 17:11	NWTPH-Gx (MS)	
B-36 GW Deep (A0B0617-18)				Matrix: Wa	ter	Batch	: 0020689	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/20 17:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 100 %	Limits: 50-150	% 1	02/22/20 17:38	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			114 %	50-150	% 1	02/22/20 17:38	NWTPH-Gx (MS)	
B-37 GW (A0B0617-19)				Matrix: Wa	ter	Batch	: 0020689	
Gasoline Range Organics	4.96		1.00	mg/L	10	02/22/20 19:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	ery: 99 %	Limits: 50-150	% 1	02/22/20 19:26	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-150	% 1	02/22/20 19:26	NWTPH-Gx (MS)	
B-38 GW (A0B0617-20)				Matrix: Wa	ter	Batch	: 0020689	
Gasoline Range Organics	53.3		1.00	mg/L	10	02/22/20 20:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 103 %	Limits: 50-150	% 1	02/22/20 20:20	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150	% 1	02/22/20 20:20	NWTPH-Gx (MS)	
Soil IDW (A0B0617-21)				Matrix: Soi	il	Batch	: 0020794	V-15
Gasoline Range Organics	731		8.02	mg/kg dry	50	02/27/20 01:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 112 %	Limits: 50-150	% 1	02/27/20 01:07	NWTPH-Gx (MS)	<u> </u>
1,4-Difluorobenzene (Sur)			91 %	50-150	% 1	02/27/20 01:07	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

		BTEX+N Co	mpounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-35(6) (A0B0617-01)				Matrix: Soil		Batch:	0020710	
Benzene	ND		14.2	ug/kg dry	50	02/24/20 14:09	5035A/8260C	
Toluene	ND		71.0	ug/kg dry	50	02/24/20 14:09	5035A/8260C	
Ethylbenzene	ND		35.5	ug/kg dry	50	02/24/20 14:09	5035A/8260C	
Xylenes, total	ND		106	ug/kg dry	50	02/24/20 14:09	5035A/8260C	
Naphthalene	ND		142	ug/kg dry	50	02/24/20 14:09	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/24/20 14:09	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/24/20 14:09	5035A/8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	02/24/20 14:09	5035A/8260C	
B-35(9) (A0B0617-02)				Matrix: Soil		Batch:	0020710	
Benzene	ND		16.3	ug/kg dry	50	02/24/20 15:03	5035A/8260C	
Toluene	ND		81.7	ug/kg dry	50	02/24/20 15:03	5035A/8260C	
Ethylbenzene	ND		40.9	ug/kg dry	50	02/24/20 15:03	5035A/8260C	
Xylenes, total	ND		123	ug/kg dry	50	02/24/20 15:03	5035A/8260C	
Naphthalene	ND		163	ug/kg dry	50	02/24/20 15:03	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 109 %	Limits: 80-120 %	1	02/24/20 15:03	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	02/24/20 15:03	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/24/20 15:03	5035A/8260C	
B-35(19) (A0B0617-03)				Matrix: Soil		Batch:	0020710	
Benzene	ND		15.0	ug/kg dry	50	02/24/20 15:30	5035A/8260C	
Toluene	ND		75.1	ug/kg dry	50	02/24/20 15:30	5035A/8260C	
Ethylbenzene	ND		37.5	ug/kg dry	50	02/24/20 15:30	5035A/8260C	
Xylenes, total	ND		113	ug/kg dry	50	02/24/20 15:30	5035A/8260C	
Naphthalene	ND		150	ug/kg dry	50	02/24/20 15:30	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/24/20 15:30	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/24/20 15:30	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/24/20 15:30	5035A/8260C	
B-36(6) (A0B0617-04)				Matrix: Soil		Batch:	0020710	
Benzene	ND		17.0	ug/kg dry	50	02/24/20 15:57	5035A/8260C	
Toluene	ND		85.2	ug/kg dry	50	02/24/20 15:57	5035A/8260C	
Ethylbenzene	ND		42.6	ug/kg dry	50	02/24/20 15:57	5035A/8260C	
Xylenes, total	ND		128	ug/kg dry	50	02/24/20 15:57	5035A/8260C	
Naphthalene	ND	<u></u>	170	ug/kg dry	50	02/24/20 15:57	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %		02/24/20 15:57	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/24/20 15:57	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

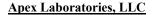
		BTEX+N Co	mpounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-36(6) (A0B0617-04)				Matrix: Soil		Batch:	0020710	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	1	02/24/20 15:57	5035A/8260C	
B-36(14) (A0B0617-05)				Matrix: Soil		Batch:	0020710	
Benzene	ND		15.1	ug/kg dry	50	02/24/20 16:24	5035A/8260C	
Toluene	ND		75.4	ug/kg dry	50	02/24/20 16:24	5035A/8260C	
Ethylbenzene	ND		37.7	ug/kg dry	50	02/24/20 16:24	5035A/8260C	
Xylenes, total	ND		113	ug/kg dry	50	02/24/20 16:24	5035A/8260C	
Naphthalene	ND		151	ug/kg dry	50	02/24/20 16:24	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	1	02/24/20 16:24	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/24/20 16:24	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/24/20 16:24	5035A/8260C	
B-36(20) (A0B0617-06)				Matrix: Soil		Batch:	0020710	
Benzene	ND		13.8	ug/kg dry	50	02/24/20 16:51	5035A/8260C	
Toluene	ND		69.1	ug/kg dry	50	02/24/20 16:51	5035A/8260C	
Ethylbenzene	ND		34.5	ug/kg dry	50	02/24/20 16:51	5035A/8260C	
Xylenes, total	ND		104	ug/kg dry	50	02/24/20 16:51	5035A/8260C	
Naphthalene	ND		138	ug/kg dry	50	02/24/20 16:51	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106%	Limits: 80-120 %	1	02/24/20 16:51	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	02/24/20 16:51	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/24/20 16:51	5035A/8260C	
B-37(6) (A0B0617-07)				Matrix: Soil		Batch:	0020710	
Benzene	ND		15.8	ug/kg dry	50	02/24/20 17:18	5035A/8260C	
Toluene	ND		79.2	ug/kg dry	50	02/24/20 17:18	5035A/8260C	
Ethylbenzene	ND		39.6	ug/kg dry	50	02/24/20 17:18	5035A/8260C	
Xylenes, total	ND		119	ug/kg dry	50	02/24/20 17:18	5035A/8260C	
Naphthalene	ND		158	ug/kg dry	50	02/24/20 17:18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	02/24/20 17:18	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	02/24/20 17:18	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/24/20 17:18	5035A/8260C	
B-37(13) (A0B0617-08)				Matrix: Soil		Batch:	0020710	
Benzene	ND		163	ug/kg dry	500	02/24/20 17:45	5035A/8260C	
Toluene	ND		817	ug/kg dry	500	02/24/20 17:45	5035A/8260C	
Ethylbenzene	598		409	ug/kg dry	500	02/24/20 17:45	5035A/8260C	
Xylenes, total	2000		1230	ug/kg dry	500	02/24/20 17:45	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958


ANALYTICAL SAMPLE RESULTS

		BTEX+N C	ompounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-37(13) (A0B0617-08)				Matrix: Soil		Batch:	0020710	
Naphthalene	4300		1630	ug/kg dry	500	02/24/20 17:45	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80-120 %	1	02/24/20 17:45	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	02/24/20 17:45	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	5 1	02/24/20 17:45	5035A/8260C	
B-37(21) (A0B0617-09)				Matrix: Soil		Batch:	0020710	
Benzene	ND		22.3	ug/kg dry	50	02/24/20 18:38	5035A/8260C	
Toluene	ND		112	ug/kg dry	50	02/24/20 18:38	5035A/8260C	
Ethylbenzene	186		55.8	ug/kg dry	50	02/24/20 18:38	5035A/8260C	
Xylenes, total	491		167	ug/kg dry	50	02/24/20 18:38	5035A/8260C	
Naphthalene	778		223	ug/kg dry	50	02/24/20 18:38	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80-120 %	1	02/24/20 18:38	5035A/8260C	
Toluene-d8 (Surr)			91 %	80-120 %	1	02/24/20 18:38	5035A/8260C	
4-Bromofluorobenzene (Surr)			112 %	80-120 %	5 1	02/24/20 18:38	5035A/8260C	
3-35 GW (A0B0617-16)				Matrix: Wate	er	Batch:	0020689	
Benzene	ND		0.200	ug/L	1	02/22/20 18:05	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/20 18:05	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/20 18:05	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/20 18:05	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/22/20 18:05	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	02/22/20 18:05	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/22/20 18:05	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	5 1	02/22/20 18:05	EPA 8260C	
3-36 GW Shallow (A0B0617-17)				Matrix: Wate	er	Batch:	0020689	
Benzene	ND		0.200	ug/L	1	02/22/20 17:11	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/20 17:11	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/20 17:11	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/20 17:11	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/22/20 17:11	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	02/22/20 17:11	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	02/22/20 17:11	EPA 8260C	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	02/22/20 17:11	EPA 8260C	
3-36 GW Deep (A0B0617-18)				Matrix: Wate	Matrix: Water Batch: 0020689			
Benzene	ND		0.200	ug/L	1	02/22/20 17:38	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

		BTEX+N C	ompounds	by EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-36 GW Deep (A0B0617-18)				Matrix: Wate	er	Batch:	0020689	
Toluene	ND		1.00	ug/L	1	02/22/20 17:38	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/20 17:38	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/20 17:38	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/22/20 17:38	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	02/22/20 17:38	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/22/20 17:38	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/22/20 17:38	EPA 8260C	
B-37 GW (A0B0617-19)				Matrix: Wate	er	Batch:	0020689	
Benzene	ND		2.00	ug/L	10	02/22/20 19:26	EPA 8260C	
Toluene	ND		10.0	ug/L	10	02/22/20 19:26	EPA 8260C	
Ethylbenzene	13.3		5.00	ug/L	10	02/22/20 19:26	EPA 8260C	
Xylenes, total	38.4		15.0	ug/L	10	02/22/20 19:26	EPA 8260C	
Naphthalene	30.0		20.0	ug/L	10	02/22/20 19:26	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	1	02/22/20 19:26	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	02/22/20 19:26	EPA 8260C	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	02/22/20 19:26	EPA 8260C	
B-38 GW (A0B0617-20)				Matrix: Wate	er	Batch:	0020689	
Benzene	ND		2.00	ug/L	10	02/22/20 20:20	EPA 8260C	
Toluene	14.2		10.0	ug/L	10	02/22/20 20:20	EPA 8260C	
Ethylbenzene	1780		5.00	ug/L	10	02/22/20 20:20	EPA 8260C	
Xylenes, total	3260		15.0	ug/L	10	02/22/20 20:20	EPA 8260C	
Naphthalene	1220		20.0	ug/L	10	02/22/20 20:20	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	02/22/20 20:20	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/22/20 20:20	EPA 8260C	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	02/22/20 20:20	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Result	Lillit	Lillit					Notes
B-35(6) (A0B0617-01)				Matrix: S			0020707	
% Solids	72.7		1.00	%	1	02/25/20 09:41	EPA 8000C	
B-35(9) (A0B0617-02)				Matrix: S	oil	Batch:	0020764	
% Solids	69.4		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-35(19) (A0B0617-03)				Matrix: S	oil	Batch:	0020764	
% Solids	72.0		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-36(6) (A0B0617-04)				Matrix: S	oil	Batch:	0020764	
% Solids	67.5		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-36(14) (A0B0617-05)				Matrix: S	oil	Batch:	0020764	
% Solids	72.3		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-36(20) (A0B0617-06)				Matrix: S	oil	Batch:	0020764	
% Solids	75.0		1.00	%	1	02/26/20 08:27		
B-37(6) (A0B0617-07)				Matrix: S	oil	Batch:	0020764	
% Solids	72.3		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-37(13) (A0B0617-08)				Matrix: S	oil	Batch:	0020764	
% Solids	69.0		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-37(21) (A0B0617-09)				Matrix: S	oil	Batch:	0020707	
% Solids	70.8		1.00	%	1	02/25/20 09:41	EPA 8000C	
B-38(6) (A0B0617-10)				Matrix: S	oil	Batch:	0020764	
% Solids	73.1		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-38(13) (A0B0617-11)				Matrix: S	oil	Batch:	0020764	
% Solids	70.3		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-38(21.5) (A0B0617-12)				Matrix: S	oil	Batch:	0020764	
% Solids	72.8		1.00	%	1	02/26/20 08:27	EPA 8000C	
B-39(6) (A0B0617-13)				Matrix: S	oil	Batch:	0020764	

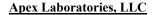
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
B-39(6) (A0B0617-13)				Matrix: So	oil	Batch:	0020764		
% Solids	72.6		1.00	%	1	02/26/20 08:27	EPA 8000C		
B-39(13.5) (A0B0617-14)				Matrix: So	Soil Batch: 0020764				
% Solids	69.0		1.00	%	1	02/26/20 08:27	EPA 8000C		
B-39(21) (A0B0617-15)				Matrix: So	oil	Batch:	0020764		
% Solids	73.5		1.00	%	1	02/26/20 08:27	EPA 8000C		
Soil IDW (A0B0617-21)				Matrix: So	oil	Batch:	0020764		
% Solids	72.3		1.00	%	1	02/26/20 08:27	EPA 8000C		
	•	•	•	•	•	•	•	•	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	lrocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020747 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (0020747-BLK1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/25/2	0 20:53						
NWTPH-Dx LL												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 80 %	Limits: 50	0-150 %	Dil	ution: 1x					
LCS (0020747-BS1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/25/2	0 21:13						
NWTPH-Dx LL												
Diesel	0.403		0.0800	mg/L	1	0.500		81	58 - 115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 84 %	Limits: 50	0-150 %	Dil	ution: 1x					
LCS Dup (0020747-BSD1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/25/2	0 21:34						Q-1
NWTPH-Dx LL												
Diesel	0.408		0.0800	mg/L	1	0.500		82	58 - 115%	1	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 83 %	Limits: 50	0-150 %	Dil	ution: 1x					
Batch 0020863 - EPA 3546 (I	Fuels)						Soil	l				
Blank (0020863-BLK1)		Prepared	: 02/27/20 12:	51 Analyz	ed: 02/27/2	0 21:19						
NWTPH-Dx		•										
Diesel	ND		25.0	mg/kg w	ret 1							
Oil	ND		50.0	mg/kg w	ret 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 98 %	Limits: 50	0-150 %	Dil	ution: 1x					
LCS (0020863-BS1)		Prepared	: 02/27/20 12:	51 Analyz	ed: 02/27/2	0 21:42						
NWTPH-Dx												
Diesel	119		25.0	mg/kg w	ret 1	125		96	76 - 115%			
Surr: o-Terphenyl (Surr)		Reco	very: 103 %	Limits: 50)-150 %	Dil	ution: 1x					
Duplicate (0020863-DUP2)		Prepared	: 02/27/20 12:	51 Analyz	ed: 02/28/2	0 01:30						
QC Source Sample: B-39(13.5) (NWTPH-Dx	(A0B0617-14)						<u> </u>					
Diesel	ND		26.8	mg/kg d	ry 1		ND				30%	

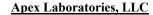
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hy	drocarbon	s by NW1	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020863 - EPA 3546 (F	uels)						Soil					
Duplicate (0020863-DUP2)		Prepared	: 02/27/20 12:5	51 Analy	zed: 02/28/20	01:30						
QC Source Sample: B-39(13.5) (A	A0B0617-14)	Reco	overy: 91 %	Limits: 5	0-150 %	Dilı	ution: 1x					

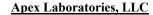
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	r Oil Hydi	ocarbor	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020864 - EPA 3546 (I	uels)						Soil					
Blank (0020864-BLK1)		Prepared	: 02/27/20 12:	:53 Analyze	ed: 02/27/2	0 21:24						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg we	t 1							
Oil	ND		50.0	mg/kg we	et 1							
Surr: o-Terphenyl (Surr)		Rece	overy: 95 %	Limits: 50-	150 %	Dilı	ution: 1x					
LCS (0020864-BS1)		Prepared	: 02/27/20 12:	:53 Analyze	ed: 02/27/2	0 21:44						
NWTPH-Dx												
Diesel	115		25.0	mg/kg we	t 1	125		92	76 - 115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 94 %	Limits: 50-	150 %	Dilı	tion: 1x					
Duplicate (0020864-DUP1)		Prepared	: 02/27/20 12:	:53 Analyze	ed: 02/27/2	0 22:24						
QC Source Sample: B-39(21) (A	0B0617-15)											
NWTPH-Dx	<u></u>											
Diesel	ND		26.6	mg/kg dr	y 1		ND				30%	
Oil	ND		53.2	mg/kg dr			ND				30%	

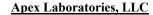
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil	Hydrocarbo	ns by N	WTPH-Dx	with Silic	a Gel Co	lumn Cl	eanup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020872 - EPA 3510C	(Fuels/Acid	Ext.) w/Silid	ca Gel				Wat	er				
Blank (0020872-BLK1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/27/2	0 21:16						
NWTPH-Dx/SGC												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 81 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
LCS (0020872-BS1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/27/2	0 21:39						
NWTPH-Dx/SGC												
Diesel	0.382		0.0800	mg/L	1	0.500		76	58 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 79 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
LCS Dup (0020872-BSD1)		Prepared	: 02/25/20 07:	13 Analyz	ed: 02/27/2	0 22:01						Q-1
NWTPH-Dx/SGC												
Diesel	0.380		0.0800	mg/L	1	0.500		76	58 - 115%	0.5	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 76 %	Limits: 50	-150 %	Dilı	ıtion: 1x					

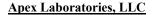
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020689 - EPA 5030B							Wat	er				
Blank (0020689-BLK1)		Prepared	02/22/20 13:	00 Analy	zed: 02/22/2	0 14:55						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recor	very: 100 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			115 %	51	0-150 %		"					
LCS (0020689-BS2)		Prepared	02/22/20 13:	00 Analy	zed: 02/22/2	0 14:28						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.598		0.100	mg/L	1	0.500		120	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recor	very: 100 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"					
Duplicate (0020689-DUP1)		Prepared	02/22/20 15:	15 Analy	zed: 02/22/2	0 19:53						
QC Source Sample: B-37 GW (At)B0617-19)											
NWTPH-Gx (MS)												
Gasoline Range Organics	4.95		1.00	mg/L	10		4.96			0.2	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					<u> </u>
1,4-Difluorobenzene (Sur)			109 %	50	0-150 %		"					

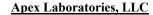
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020710 - EPA 5035A							Soil					
Blank (0020710-BLK1)		Prepared	02/24/20 09:	00 Analyz	ed: 02/24/2	0 12:48						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.0667	mg/kg w	et 1							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 102 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50-	-150 %		"					
LCS (0020710-BS2)		Prepared	02/24/20 09:	00 Analyz	ed: 02/24/2	0 12:21						
NWTPH-Gx (MS)												
Gasoline Range Organics	20.6		5.00	mg/kg w	et 50	25.0		82	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			89 %	50-	-150 %		"					
Duplicate (0020710-DUP1)		Prepared	02/21/20 08:	50 Analyz	ed: 02/24/2	0 14:36						
QC Source Sample: B-35(6) (A0E	<u>80617-01)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		7.87	mg/kg dr	y 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 105 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	50-	-150 %		"					
Duplicate (0020710-DUP2)		Prepared	02/21/20 12:	35 Analyz	ed: 02/24/2	0 19:05						
QC Source Sample: B-37(21) (A0	B0617-09)											
NWTPH-Gx (MS)	4.4=		0.04	Д 1	50		454			2	200/	
Gasoline Range Organics	447		9.04	mg/kg dr	•		454			2	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 113 %	Limits: 50		Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50-	-150 %		"					

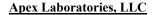
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	ydrocarbo	ns (Benz	ene thro	ıgh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020794 - EPA 5035A							Soil					
Blank (0020794-BLK1)		Prepared:	02/26/20 09:	00 Analyz	zed: 02/26/2) 15:14						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 103 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	0-150 %		"					
LCS (0020794-BS2)		Prepared:	02/26/20 09:	00 Analyz	red: 02/26/2	0 14:47						
NWTPH-Gx (MS)												
Gasoline Range Organics	20.7		5.00	mg/kg w	vet 50	25.0		83	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	0-150 %		"					

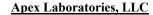
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	ounds by	EPA 8260	C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020689 - EPA 5030B							Wat	er				
Blank (0020689-BLK1)		Prepared	02/22/20 13:	00 Analyz	ed: 02/22/2	0 14:55						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	1-120 %		"					
LCS (0020689-BS1)		Prepared	02/22/20 13:	00 Analyz	ed: 02/22/2	0 14:01						
EPA 8260C												
Benzene	18.7		0.200	ug/L	1	20.0		93	80 - 120%			
Toluene	19.7		1.00	ug/L	1	20.0		99	80 - 120%			
Ethylbenzene	21.3		0.500	ug/L	1	20.0		107	80 - 120%			
Xylenes, total	62.3		1.50	ug/L	1	60.0		104	80 - 120%			
Naphthalene	18.5		2.00	ug/L	1	20.0		92	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 91 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	1-120 %		"					
Duplicate (0020689-DUP1)		Prepared	02/22/20 15:	15 Analyz	red: 02/22/2	0 19:53						
QC Source Sample: B-37 GW (A	0B0617-19)											
EPA 8260C												
Benzene	ND		2.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	14.1		5.00	ug/L	10		13.3			6	30%	
Xylenes, total	38.3		15.0	ug/L	10		38.4			0.3	30%	
Naphthalene	29.8		20.0	ug/L	10		30.0			0.7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 94 % Limits: 80-120 %		Dilı	ution: 1x						
Toluene-d8 (Surr)			102 %		120 %		"					
4-Bromofluorobenzene (Surr)			95 %		120 %		,,					

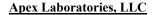
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	ounds by	EPA 8260	С					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020689 - EPA 5030B							Wat	er				
Matrix Spike (0020689-MS1)		Prepared	: 02/22/20 15:	15 Analyz	zed: 02/22/2	0 18:32						
QC Source Sample: B-35 GW (A0	B0617-16)											
EPA 8260C												
Benzene	19.6		0.200	ug/L	1	20.0	ND	98	79 - 120%			
Toluene	20.5		1.00	ug/L	1	20.0	ND	103	80 - 121%			
Ethylbenzene	22.1		0.500	ug/L	1	20.0	ND	110	79 - 121%			
Xylenes, total	65.1		1.50	ug/L	1	60.0	ND	108	79 - 121%			
Naphthalene	19.3		2.00	ug/L	1	20.0	ND	96	61 - 128%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 91 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	80	0-120 %		"					

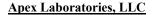
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer


Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

			BIEX+	N Compo	unds by	EPA 8260	<u>. </u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 0020710 - EPA 5035A							Soil					
Blank (0020710-BLK1)		Prepared	02/24/20 09:	00 Analyze	d: 02/24/20	0 12:48						
5035A/8260C												
Benzene	ND		0.133	ug/kg we	t 1							
Toluene	ND		0.667	ug/kg we	t 1							
Ethylbenzene	ND		0.333	ug/kg we	t 1							
Xylenes, total	ND		1.00	ug/kg we	t 1							
Naphthalene	ND		1.33	ug/kg we	t 1							
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 107 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					
LCS (0020710-BS1)		Prepared	: 02/24/20 09:	00 Analyze	d: 02/24/20	0 10:34						
5035A/8260C												
Benzene	987		10.0	ug/kg we	t 50	1000		99 8	80 - 120%			
Toluene	939		50.0	ug/kg we	t 50	1000		94 8	80 - 120%			
Ethylbenzene	975		25.0	ug/kg we	t 50	1000		97 8	80 - 120%			
Xylenes, total	3110		75.0	ug/kg we		3000		104 8	80 - 120%			
Naphthalene	880		100	ug/kg we	t 50	1000		88 8	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 107 %	Limits: 80-	120 %	Dilı	ıtion: lx					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80-	120 %		"					
Duplicate (0020710-DUP1)		Prepared	: 02/21/20 08:	50 Analyze	d: 02/24/20	0 14:36						
QC Source Sample: B-35(6) (A0B)	0617-01)											
5035A/8260C												
Benzene	ND		15.7	ug/kg dry	50		ND				30%	
Toluene	ND		78.7	ug/kg dry	50		ND				30%	
Ethylbenzene	ND		39.3	ug/kg dry	50		ND				30%	
Xylenes, total	ND		118	ug/kg dry	50		ND				30%	
Naphthalene	ND		157	ug/kg dry	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX+	N Compo	unds by	EPA 8260	С					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020710 - EPA 5035A							Soil					
Duplicate (0020710-DUP2)		Prepared	: 02/21/20 12:	35 Analyze	ed: 02/24/2	0 19:05						
QC Source Sample: B-37(21) (A01 5035A/8260C	B0617-09)											
Benzene	ND		18.1	ug/kg dr	y 50		ND				30%	
Toluene	ND		90.4	ug/kg dr	y 50		ND				30%	
Ethylbenzene	162		45.2	ug/kg dr	y 50		186			14	30%	
Xylenes, total	407		136	ug/kg dr	y 50		491			19	30%	
Naphthalene	691		181	ug/kg dr	y 50		778			12	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80-	-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			91 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			111 %	80-	120 %		"					
Matrix Spike (0020710-MS1)		Prepared	: 02/21/20 12:	35 Analyze	ed: 02/24/2	0 19:32						
QC Source Sample: B-37(21) (A01	B0617-09)											
5035A/8260C												
Benzene	2180		22.3	ug/kg dr	y 50	2230	ND	98	77 - 121%			
Toluene	2030		112	ug/kg dr	y 50	2230	ND	91	77 - 121%			
Ethylbenzene	2270		55.8	ug/kg dr		2230	186	93	76 - 122%			
Xylenes, total	7340		167	ug/kg dr	y 50	6700	491	102	78 - 124%			
Naphthalene	3100		223	ug/kg dr	y 50	2230	778	104	62 - 129%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			109 %	80-	120 %		"					

Apex Laboratories

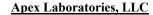
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Mustar Vannex
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958


QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits R	PD	RPD Limit	Notes
Batch 0020707 - Tota	al Solids (Dry Weigh	nt)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0020764 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (0020764-DUP3)		Prepared	: 02/25/20 16:0	07 Analy	zed: 02/26/2	0 08:27						
QC Source Sample: B-37(13) (A	0B0617-08)											
% Solids	67.5		1.00	%	1		69.0			2	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ext.)	<u>)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020747			*				
A0B0617-16	Water	NWTPH-Dx LL	02/21/20 10:50	02/25/20 07:13	970mL/2mL	1000mL/2mL	1.03
A0B0617-17	Water	NWTPH-Dx LL	02/21/20 10:40	02/25/20 07:13	1010mL/2mL	1000mL/2mL	0.99
A0B0617-18	Water	NWTPH-Dx LL	02/21/20 12:40	02/25/20 07:13	960mL/2mL	1000mL/2mL	1.04
A0B0617-19	Water	NWTPH-Dx LL	02/21/20 13:35	02/25/20 07:13	1070mL/2mL	1000mL/2mL	0.94
A0B0617-20RE1	Water	NWTPH-Dx LL	02/21/20 15:15	02/25/20 07:13	1070mL/2mL	1000mL/2mL	0.94
Prep: EPA 3546 (F	-uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020863							
A0B0617-01	Soil	NWTPH-Dx	02/21/20 08:50	02/27/20 12:51	10.29g/5mL	10g/5mL	0.97
A0B0617-02	Soil	NWTPH-Dx	02/21/20 08:55	02/27/20 12:51	10.74g/5mL	10g/5mL	0.93
A0B0617-03	Soil	NWTPH-Dx	02/21/20 09:05	02/27/20 12:51	10.03g/5mL	10g/5mL	1.00
A0B0617-04	Soil	NWTPH-Dx	02/21/20 09:20	02/27/20 12:51	10.77g/5mL	10g/5mL	0.93
A0B0617-05	Soil	NWTPH-Dx	02/21/20 11:05	02/27/20 12:51	10.62g/5mL	10g/5mL	0.94
A0B0617-06	Soil	NWTPH-Dx	02/21/20 11:40	02/27/20 12:51	10.42g/5mL	10g/5mL	0.96
A0B0617-07	Soil	NWTPH-Dx	02/21/20 11:25	02/27/20 12:51	10.21g/5mL	10g/5mL	0.98
A0B0617-08	Soil	NWTPH-Dx	02/21/20 12:20	02/27/20 12:51	10.81g/5mL	10g/5mL	0.93
A0B0617-09	Soil	NWTPH-Dx	02/21/20 12:35	02/27/20 12:51	10.23g/5mL	10g/5mL	0.98
A0B0617-10	Soil	NWTPH-Dx	02/21/20 11:55	02/27/20 12:51	10.2g/5mL	10g/5mL	0.98
A0B0617-11RE1	Soil	NWTPH-Dx	02/21/20 14:10	02/27/20 12:51	10.04g/5mL	10g/5mL	1.00
A0B0617-12	Soil	NWTPH-Dx	02/21/20 14:25	02/27/20 12:51	10.73g/5mL	10g/5mL	0.93
A0B0617-13	Soil	NWTPH-Dx	02/21/20 13:55	02/27/20 12:51	10.12g/5mL	10g/5mL	0.99
A0B0617-14	Soil	NWTPH-Dx	02/21/20 14:55	02/27/20 12:51	10.93g/5mL	10g/5mL	0.92
Batch: 0020864							
A0B0617-15	Soil	NWTPH-Dx	02/21/20 15:05	02/27/20 12:53	10.39g/5mL	10g/5mL	0.96
A0B0617-21	Soil	NWTPH-Dx	02/21/20 15:20	02/27/20 12:53	10.25g/5mL	10g/5mL	0.98

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup								
Prep: EPA 3510C	(Fuels/Acid Ext.		Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 0020872								
A0B0617-16	Water	NWTPH-Dx/SGC	02/21/20 10:50	02/25/20 07:13			1.03	
A0B0617-17	Water	NWTPH-Dx/SGC	02/21/20 10:40	02/25/20 07:13			0.99	
A0B0617-18	Water	NWTPH-Dx/SGC	02/21/20 12:40	02/25/20 07:13			1.04	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

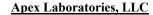
Cascadia Associates
5820 SW Kelly Ave Unit B
Portland, OR 97239

Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup


Prep: EPA 3510C (F	uels/Acid Ext.) w/Silica Gel			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A0B0617-19	Water	NWTPH-Dx/SGC	02/21/20 13:35	02/25/20 07:13			0.94
A0B0617-20RE1	Water	NWTPH-Dx/SGC	02/21/20 15:15	02/25/20 07:13			0.94
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020689				1			
A0B0617-16	Water	NWTPH-Gx (MS)	02/21/20 10:50	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-17	Water	NWTPH-Gx (MS)	02/21/20 10:40	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-18	Water	NWTPH-Gx (MS)	02/21/20 12:40	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-19	Water	NWTPH-Gx (MS)	02/21/20 13:35	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-20	Water	NWTPH-Gx (MS)	02/21/20 15:15	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020710			•	•			
A0B0617-01	Soil	NWTPH-Gx (MS)	02/21/20 08:50	02/21/20 08:50	6.59g/5mL	5g/5mL	0.76
A0B0617-02	Soil	NWTPH-Gx (MS)	02/21/20 08:55	02/21/20 08:55	6.03g/5mL	5g/5mL	0.83
A0B0617-03	Soil	NWTPH-Gx (MS)	02/21/20 09:05	02/21/20 09:05	6.23g/5mL	5g/5mL	0.80
A0B0617-04	Soil	NWTPH-Gx (MS)	02/21/20 09:20	02/21/20 09:20	6.06g/5mL	5g/5mL	0.83
A0B0617-05	Soil	NWTPH-Gx (MS)	02/21/20 11:05	02/21/20 11:05	6.15g/5mL	5g/5mL	0.81
A0B0617-06	Soil	NWTPH-Gx (MS)	02/21/20 11:40	02/21/20 11:40	6.37g/5mL	5g/5mL	0.79
A0B0617-07	Soil	NWTPH-Gx (MS)	02/21/20 11:25	02/21/20 11:25	5.75g/5mL	5g/5mL	0.87
A0B0617-08	Soil	NWTPH-Gx (MS)	02/21/20 12:20	02/21/20 12:20	6.12g/5mL	5g/5mL	0.82
A0B0617-09	Soil	NWTPH-Gx (MS)	02/21/20 12:35	02/21/20 12:35	3.88g/5mL	5g/5mL	1.29
Batch: 0020794							
A0B0617-10	Soil	NWTPH-Gx (MS)	02/21/20 11:55	02/22/20 10:45	5.17g/5mL	5g/5mL	0.97
A0B0617-11	Soil	NWTPH-Gx (MS)	02/21/20 14:10	02/22/20 10:45	5.34g/5mL	5g/5mL	0.94
A0B0617-12	Soil	NWTPH-Gx (MS)	02/21/20 14:25	02/22/20 10:45	5.48g/5mL	5g/5mL	0.91
A0B0617-13	Soil	NWTPH-Gx (MS)	02/21/20 13:55	02/22/20 10:45	5.27g/5mL	5g/5mL	0.95
A0B0617-14	Soil	NWTPH-Gx (MS)	02/21/20 14:55	02/22/20 10:45	5.26g/5mL	5g/5mL	0.95
A0B0617-15	Soil	NWTPH-Gx (MS)	02/21/20 15:05	02/22/20 10:45	5.48g/5mL	5g/5mL	0.91
A0B0617-21	Soil	NWTPH-Gx (MS)	02/21/20 15:20	02/22/20 10:45	5.67g/5mL	5g/5mL	0.88

BTEX+N Compounds by EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smenighini

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

SAMPLE PREPARATION INFORMATION

		BTE	X+N Compounds by	EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020689							
A0B0617-16	Water	EPA 8260C	02/21/20 10:50	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-17	Water	EPA 8260C	02/21/20 10:40	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-18	Water	EPA 8260C	02/21/20 12:40	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-19	Water	EPA 8260C	02/21/20 13:35	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
A0B0617-20	Water	EPA 8260C	02/21/20 15:15	02/22/20 15:15	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prej
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020710							
A0B0617-01	Soil	5035A/8260C	02/21/20 08:50	02/21/20 08:50	6.59g/5mL	5g/5mL	0.76
A0B0617-02	Soil	5035A/8260C	02/21/20 08:55	02/21/20 08:55	6.03g/5mL	5g/5mL	0.83
A0B0617-03	Soil	5035A/8260C	02/21/20 09:05	02/21/20 09:05	6.23g/5mL	5g/5mL	0.80
A0B0617-04	Soil	5035A/8260C	02/21/20 09:20	02/21/20 09:20	6.06g/5mL	5g/5mL	0.83
A0B0617-05	Soil	5035A/8260C	02/21/20 11:05	02/21/20 11:05	6.15g/5mL	5g/5mL	0.81
A0B0617-06	Soil	5035A/8260C	02/21/20 11:40	02/21/20 11:40	6.37g/5mL	5g/5mL	0.79
A0B0617-07	Soil	5035A/8260C	02/21/20 11:25	02/21/20 11:25	5.75g/5mL	5g/5mL	0.87
A0B0617-08	Soil	5035A/8260C	02/21/20 12:20	02/21/20 12:20	6.12g/5mL	5g/5mL	0.82
A0B0617-09	Soil	5035A/8260C	02/21/20 12:35	02/21/20 12:35	3.88g/5mL	5g/5mL	1.29
			Percent Dry We	ight			
Prep: Total Solids (D	ry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Percent Dry Weight							
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0020707							
A0B0617-01	Soil	EPA 8000C	02/21/20 08:50	02/24/20 16:39			NA
A0B0617-09	Soil	EPA 8000C	02/21/20 12:35	02/24/20 16:39			NA
Batch: 0020764							
A0B0617-02	Soil	EPA 8000C	02/21/20 08:55	02/25/20 16:07			NA
A0B0617-03	Soil	EPA 8000C	02/21/20 09:05	02/25/20 16:07			NA
A0B0617-04	Soil	EPA 8000C	02/21/20 09:20	02/25/20 16:07			NA
A0B0617-05	Soil	EPA 8000C	02/21/20 11:05	02/25/20 16:07			NA
A0B0617-06	Soil	EPA 8000C	02/21/20 11:40	02/25/20 16:07			NA
A0B0617-07	Soil	EPA 8000C	02/21/20 11:25	02/25/20 16:07			NA
A0B0617-08	Soil	EPA 8000C	02/21/20 12:20	02/25/20 16:07			NA
A0B0617-10	Soil	EPA 8000C	02/21/20 11:55	02/25/20 16:07			NA
A0B0617-11	Soil	EPA 8000C	02/21/20 14:10	02/25/20 16:07			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: **Nustar Vannex**Project Number: **0060-001-005**Project Manager: **Amanda Spencer**

Report ID: A0B0617 - 03 02 20 0958

SAMPLE PREPARATION INFORMATION

Percent Dry Weight								
Prep: Total Solids (Dry Weight) Sample Default								
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
A0B0617-12	Soil	EPA 8000C	02/21/20 14:25	02/25/20 16:07			NA	
A0B0617-13	Soil	EPA 8000C	02/21/20 13:55	02/25/20 16:07			NA	
A0B0617-14	Soil	EPA 8000C	02/21/20 14:55	02/25/20 16:07			NA	
A0B0617-15	Soil	EPA 8000C	02/21/20 15:05	02/25/20 16:07			NA	
A0B0617-21	Soil	EPA 8000C	02/21/20 15:20	02/25/20 16:07			NA	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Report ID:Portland, OR 97239Project Manager:Amanda SpencerA0B0617 - 03 02 20 0958

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

S-05

F-11	The hydrocarbon pattern	indicates possible wear	thered diesel, mineral oil	l, or a contribution from a relate	ed component.
------	-------------------------	-------------------------	----------------------------	------------------------------------	---------------

F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of

sampling.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Jomenyhini

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Report ID:Portland, OR 97239Project Manager:Amanda SpencerA0B0617 - 03 02 20 0958

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex I	ahor	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Jomenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Portland, OR 97239Project Manager:Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Cascadia AssociatesProject:Nustar Vannex5820 SW Kelly Ave Unit BProject Number:0060-001-005Report ID:Portland, OR 97239Project Manager:Amanda SpencerA0B0617 - 03 02 20 0958

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323 ,	97223 Ph: 503-718-2323				
Company (25 Gedia Associates Project Mgr. A Address 5826 St. Melly Arts State B	Project Mgr. Amanda	Ses, 906 6577-	Project Name Nurtey Whisewer Aganex Carner Posseralisatives Con- Email:	AAMEX Project #:0060-601-005	500-1
Sampled by: Tan Machine			ANALYSIS REQUEST	æquest	
Site Location: OR (MA) CA AK ID SAMPLE ID	TAB ID #	8700 H#IP AOC* 8700 BBDN AOC* 8700 BLEX AALLH-C* AALLH-D* AALLH-HCID	BCBV Metals (8) 8081 best 8082 bCBs 8510 Semi-Aois Enil List 8520 AOCs Enil List	Priority Metals (13) Al. Sh, As, Ba, Be, Cd, Ca, Ca, Ca, Ca, Sp, Hg, Mg, Man, Mo, Ni, K, Se, Ag, Ma, TL TCLP Metals (8) Vaphtmark Type Vap	әліцэлУ
8-35 (6)	2/11/20 \$50 5 3	× × ×		×	
	- \$55 S	XX		· ×	
R-35 (19) 905	5 3			~	
1 🔍	720 5 3	メメ		У.	
8-36 (14)	1105 5 3	X X X			
8-36 (26)	5 30411	メメ		-	
8-3+(6)	1125 5 3	××		×.	
837 (13)	1220 5 3	××		*	
B37(21)	1255 5 3	_X X X		(×.	
3-38(6)	1 5 5311	XX			
Normal 1	Normal Turn Around Time (TAT) 760 Business Day	Days	SPECIAL INSTRUCTIONS:		1. 2 0 3
TAT Requested (circle)	2 Day 31	\ .	No 5:11:Ca get Chear	No Silice get Cleaning an TAMP's analysis to one	766 081
	1	Other:	T		
	SAMPLES ARE HELD FOR 30 DAYS	***************************************			***************************************
RELINQUISHED BY: Signature:	Date: Signature: 2/21 20 20 20	Date:	RELINQUISHED BY: Signature:	Date: Signature:	Date:
Printed Name: Then Modelline	Fine: Printed Nate:	Fine. 5.25	Printed Name:	Time: Printed Name: /	Time:
Company: U ASACA PC	Company:		Company:	Company.	LO.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

Company (ascacia Associated Project Mgr. Amenda		6700 SW Sandburg St., Tigard, OR 9/225 Pr.: 505-718-2523																				
	Project Mg	: Ann		Spencer	3		P.	oject }	lame:	3	車	172	100	3	Project Name: Nustay Vancouver Armex	Je V		Proje	2 #:	98	Project #: 0060 -07-005	
Address: 580 SW Kelly Au. Suite 3	ur, Sui	te 3		Phone: 503.906.6577	8	8	8	7	3,5	3	3	<u>₹</u>	ريّ ا	28	Š.	ospenier (daxadia asociutas . Com Emali	3	FO#				
Sampled by: I Gay Migging 10	Jon Weathanford	Day of											NAL	YSIS	ANALYSIS REQUEST	UEST						
-											1si					, gM IT e						
OR (WA) CA			SA				Cs		List		I llua			(8		Cd, 18,	TCLP	(100	11-		
) E			AINE	CID					[[n _A	sHV.	sloV			3) sls		a, Be. Fe, Pi		8) str	× 0	2000	กลา	
attanamente		X		н-н					SOO.	IM E	-imə	CB2	189,	iolV.		As, B	SICI	Met	ਸੂਹੂ ਮੂ-ਮੂ-	براي پوهند	752 1	
SAMPLEID	DATE	TIME	# OE CO	ALMN	dLMN	ALMN	8 0978	H 0978	A 0978	S 0478	S 0718	d 7808	d 1808	BCBA	Priorit	ΛΙ, Sb, Λ Cr, Co, Mn, Mo,	nZ,V	TCLP	95 36	からずいい	EI A SI	
B-38 (13)	014100/12/7	410 S	7		52	×	-															
8-38 (21.5)		S 2241	2		-	×																
2-29 (6)	-	5 552	7		×	×	-															
1	-	MSS S	7		> >	×		<u> </u>												-		
1		\S\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1		4 ×				<u> </u>							_				+		
R-35 (-1)		050	2 1			\ \f	+>	-	-				1	1				×	×	×		
B-36 GW Shullow		1040 F	2		1	×		-	<u> </u>									3 7	X	of noncests		
R-36 Gw Deep		1240 GB 5	S			<u>ス</u>	_											X	X	, X		
17-37 GW		35 GW 5	3			×												乂	X	×	C)	
R.38 GW		Els Gw	5			v	~											~	X	~ X		
Normal Turn Around Time (TATE	round Time (V.V.	Business						SP	ĮŅ,	SNI.	RUC	TION	:: S	9	વ	F	1	8	150	SPECIAL INSTRUCTIONS: 2 TTPH, and 1515 Per Soil Samples	Sange
1 Day		2 Day	3 Day	20	r				2	জ _	প্র	څ	2	\$		2		9				-
TAT Requested (circle)		SDAV	C	Officer:					<u>~</u>	ž	3	,	王	8	₹ \$	3	-60	4	+ Jan	, <u>S</u>	news my TABO both with & without sille ged Cleaning	Clean
		100								0	P	5	3	, <u>3</u>	13	on Ground water sumples	· \}	(E)				
	SAMPLES ARE HELD FOR 30 DAYS	OR 30 DA)	S	-	4				_	3	The state of the s	1					-	l la	The department of			
RELINQUISHED BY: Signature: Date:		Signature, A	\int_{1}^{∞}	A	A	Date:			Sign	KELLINUT Signature:	38					Ω	Date:	Signature		:: ::	J Pare	
1 \ 2	2/4/20	10	1	7	1	CE	7-1	5		"	\mathcal{J}_{μ}	11			1	2-21-20	3	11	7	(The	3
		rinted Name	A. E.	200	80 5.72	4 7	4 C	ريج	A Printed Name:	ted Na	Ä,	: (;				E (Lime:	E)	Printed Name:			5 17 18
Was roof		12.5	\$	5	1	+	Ļ		1	100	1	1.			n	2		1	2000		3	1
Cascadia Associates		Company.	1	•	\				3	Southans.	- 3	1						3	\leq	_5	1)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Nustar Vannex

Project Number: 0060-001-005

Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

APEX LABS CHAIN OF CUSTODY Lab # MODULY COC 2 of 3	Company Cascacka Associated Project Manda Spencer Project Name: Mastav- Uniconser Atrices Project #: 0060-001-005	From Court of From Co. Port Email:	ANALYSIS KROLUS	CS CS CCS CCS CCS CCS CCS CCS CCS CCS C	1287 1287 1287 1287 1287 1287 1287 1287	LCLP Ne T. C. C. C. C. C. C. C. C. C. C. C. C. C.	441 50 5 3 X X				Normal Turn Around Trane (TAT) —149 Bissinges (1838) SPECIAL INSTRUCTIONS:		4 DAY 5 DAY Other:	SAMPLES ARE HELD FOR 30 DAYS	ED BY: RELINQUISHED BY:	Signature: Signature:	20120 July 2/21/20 A.2 - 21/20 Jun 11/2 321-30	Prince James Prince
APEX LABS 5700 SW Sandburg St., Tigard	CRONSIN CASCACIA 4550	Address: J 622 22.	Site Location:	OR (WA) CA	AK ID	SAMPLE ID	Soil 1DW				Nor	TAT Requested (circle)	COMMON TO THE CONTRACT OF THE		RELINQUISHED BY:	ignature:	San San San San San San San San San San	Frinted Name: Tow Mask

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project Number: Number: 0060-001-005
Project Manager: Amanda Spencer

Report ID: A0B0617 - 03 02 20 0958

	APEX LABS COOLER RECEIPT FORM
Client: COSCAO	LIG ASSOCIATED Element WO#: AO BOULT
Project/Project #:	star Vancouver Annex/1000-001-005
Delivery Info:	
	90 @ 17:50 By: THC
	ent X ESS FedEx UPS Swift Senvoy SDS Other
	time inspected: 2-21-20 @ 17 50 By: 7795
Chain of Custody included?	
Signed/dated by client?	Yes <u>X</u> No
Signed/dated by Apex?	Yes <u>No</u> No
Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition: Cooler out of temp? (Y/N) If some coolers are in temp a Out of temperature samples f Samples Inspection: Date/ All samples intact? YesX	nd some out, were green dots applied to out of temperature samples? Yes/No/NA form initiated? Yes/No/NA //time inspected: 1/2/10 @ 000 By: WK
Bottle labels/COCs agree? Y	Ves_ No \(\times \) Comments: B-38((b) T on Cont. reads 1215.
COC/container discrepancies	form initiated? Yes No NA
Containers/volumes received	appropriate for analysis? Yes 🔀 No Comments:
Do VOA vials have visible he	eadspace? Yes No _× NA
Water samples: pH checked:	Yes YNo_NA_ pH appropriate? Yes No_NA
Comments:	
Additional information:	
Labeled by: Witn	ness: My Cooler Inspected by See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

APPENDIX FSIMPLIFIED TERRESTRIAL ECOLOGICAL EVALUATION

Memorandum

To: Andrew Smith, P.E., LHG; Department of Ecology **Project:** 0060-001-006

From: Amanda Spencer, PE, RG; CC: Renee Robinson,

Cascadia Associates, LLC NuStar Energy, L.P.

Date: September 21, 2020

Subject: NuStar Annex Terminal – Simplified Terrestrial Ecological Evaluation

A Supplemental Remedial Investigation (SRI) and revised Feasibility Study (FS) was completed for the NuStar Terminals Operations Partnership L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Facility). The SRI/FS was conducted in accordance with the protocols in the Model Toxics Control Act (MTCA) as defined in Washington Administrative Code (WAC) 173-340 and pursuant to Agreed Order No. 09-TC-S DE5250 (Agreed Order) between the Washington State Department of Ecology (Ecology) and NuStar. The SRI/FS concluded that the Facility would be excluded from performance of a Terrestrial Ecological Evaluation (TEE) because it is a highly industrialized property with little to no terrestrial habitat (Cascadia, 2020). Based on Ecology's comments on the SRI/FS, we understand that Ecology believes that this exclusion does not apply and a TEE is needed. The first step in performing a TEE is to determine whether a Simplified or Site-specific TEE is needed. Therefore, this memorandum:

- Evaluates whether the Facility would qualify for a Simplified TEE;
- Documents the conclusion that the Facility does qualify for the Simplified TEE; and
- Presents the results of the Simplified TEE.

Figure 1 provides a Facility Location Map and Figure 2 provides an aerial photograph that shows the Facility boundary and neighboring properties.

SITE BACKGROUND

The "site" is defined consistent with MTCA and the Agreed Order to include the area where a hazardous substance from a release at the Facility has "come to be located." The boundary of the site as defined in the Agreed Order is shown on Figure 2.

Location. The Facility address is 5420 NW Fruit Valley Road, Vancouver, Washington 98660 (Latitude: 45.6617°N, Longitude: 122.6932°W) (Section 16, Range 1E, Township 2N), as shown on Figure 1. The Facility is located on Clark County Tax Lot No. 147360.

Physical Features. The Facility is approximately 31 acres and is roughly rectangular, with dimensions of approximately 800 by 1,800 feet. The Facility is located in a mixed industrial-agricultural area and currently includes a tank farm consisting of seven large aboveground storage tanks (ASTs) contained in four containment areas; a covered truck loading rack; smaller ASTs containing fuel additives; a 42,000-gallon transmix AST; and several buildings used for equipment storage and offices. The large ASTs are used to store jet fuel and range in capacity size from 1,680,000 to 4,599,378 gallons. A former underground

storage tank (UST) associated with a vapor recovery system was also located on the Facility and was removed in 2001. The current vapor recovery unit and adjacent oil/water separator (OWS) are located within a pipeline area between the south and north tank farm containments. The Facility is connected to the municipal sanitary sewer and water supply systems. In accordance with a State Waste Discharge Permit, stormwater is monitored and generally discharged to ground for infiltration. Stormwater from one of the AST containment areas which is lined is directed to a lined Fire System Water Reservoir in the northwestern portion of the Facility. An unlined overflow Storm Pond is located immediately south of the Fire System Water Reservoir and is used for stormwater storage and infiltration during heavy rain events.

Property History. Support Terminals Operating Partnership, L.P. (STOP) purchased the Facility from Cenex Harvest States Cooperative (Cenex) in 2003. In March 2008, STOP changed its name to NuStar.

The property was developed in 1957 as a truck loading terminal. Records are unclear as to whether the Facility was developed by Cenex. Historically, chemicals and other products stored at the Facility included liquid fertilizers and refined petroleum products such as gasoline, diesel and kerosene, de-natured alcohol, and petroleum product additives.

RATIONALE FOR SIMPLIFIED TEE

According to the Ecology February 2017 *Technical Document: Terrestrial Ecological Evaluation under the Model Toxics Control Act* ("TEE Guidance") and WAC 173-340-7492, there are four criteria that are to be used to determine whether a Simplified TEE can be performed. If any of the below criteria apply at the site, then a Simplified TEE cannot be performed, and a site-specific terrestrial ecological evaluation is necessary. These criteria are:

- Natural areas:
- Vulnerable species;
- Extensive habitat; or
- Risk to significant wildlife populations.

The subsections below evaluate each of these criteria relative to the requirements of the TEE guidance and the conditions at the site to identify a conclusion. As detailed below, none of the four criteria apply to the site.

Natural Areas

TEE Guidance. "If the site is located on, or directly adjacent to an area where management or land use plans will maintain or restore native or semi-native vegetation, then a site-specific terrestrial ecological evaluation is necessary. Examples of these areas include:

- Green-belts.
- Protected wetlands.
- Forestlands.
- Riparian areas.
- Locally designated environmentally sensitive areas.

- Open space areas managed for wildlife, and;
- Some parks and outdoor recreation areas".

Rationale Supporting that this Criteria Does Not Apply to the Site. The site is not one of the above listed areas nor is it "directly adjacent to" any of these areas. As shown on Figure 2, the land directly south and east of the site is under industrial use. Land directly to the north has been developed and is used for agricultural purposes—it is a blueberry farm. Land to the west and southwest is open space and according to Clark County zoning maps¹, is zoned for "Greenway/open space (GW) and Agriculture/Wildlife (AG/WL)"—see a copy of the zoning map for this area contained in Attachment A. However, as shown on Figure 2, the land to the southwest is clearly developed for agricultural use and the land to the west shows signs of active grading and therefore is clearly not being maintained as an "open space managed for wildlife". Additionally, the grading activity on the land to the west illustrates that it is not a protected wetland nor is it being used to "maintain or restore native or semi-native vegetation".

Conclusion. There are no natural areas consistent with TEE Guidance directly adjacent to the site; therefore, this criterion does not apply.

Vulnerable Species

TEE Guidance. "If the site is used by vulnerable species, a site-specific terrestrial ecological evaluation is necessary. Examples of listed vulnerable species are:

- A threatened or endangered species protected under the Federal Endangered Species Act.
- A wildlife species classified by the Washington State Department of Fish and Wildlife as a "priority species" or "species of concern" under Title 77 RCW, and;
- A plant species classified by the Washington State Department of Natural Resources Natural Heritage Program as "endangered," "threatened," or "sensitive" under Title 79 RCW."

Rationale Supporting that this Criteria Does Not Apply to the Site. The following evaluates each of the above lists of vulnerable species relative to site conditions to support the rationale that this criterion would not apply to the site.

Federal Endangered Species Act. The threatened or endangered species that are found in Clark County that are protected under the Federal Endangered Species Act are:

Birds: Northern spotted owl

Fish: Bull Trout; Steelhead Trout; Coho Salmon; Chinook Salmon; Chum Salmon

Flowering plants: Bradshaw's desert parsley; Water howelia

Mammals: North American wolverine; Brush Prairie pocket gopher

¹ https://gis.clark.wa.gov/gishome/property/?pid=FindSN&account=147403000

As detailed below, none of these species would be present at the site:

- Northern spotted owls live in forests characterized by dense canopy closure of mature and old-growth trees, abundant logs, standing snags, and live trees with broken tops. The site would not provide suitable habitat for the Northern spotted owl.
- The identified threatened or endangered fish are migratory. The only surface water at the site is the fire pond. Therefore, these migratory fish would not be found in a fire pond nor would it be suitable habitat for these fish.
- Bradshaw's desert parsley and Water howelia are wetland species. According to the US Fish and Wildlife website, Bradshaw's desert parsley "occur on seasonally saturated or flooded prairies, adjacent to creeks and small rivers where soils are dense, heavy clays" and Water howelia "predominantly occur in ephemeral wetlands". There are no wetlands at the site.
- No wolverines have been identified at the site; these wolverines are typically found in tundra and
 forested areas. Brush Prairie pocket gophers live in well-drained, easily-crumbled soil; the majority
 of the Facility is covered in pavement or packed gravel, which would not be conducive habitat for
 these pocket gophers.

State Priority Species or Species of Concern. Attachment B lists the wildlife species classified by the Washington State Department of Fish and Wildlife as a "priority species" or "species of concern" under Title 77 RCW. With the exception of birds, amphibians, and small mammals, no wildlife—threatened or otherwise—have been identified at the site by onsite personnel or Cascadia staff because the industrial nature of the facility makes it unsuitable habitat. The Facility is gated, fenced, and operated 24/7, with significant large tanker truck traffic entering and exiting the site.

Birds observed at the site are typically transient, as there are no trees for roosting and the site structures (e.g., buildings, aboveground tanks, truck loading facility) do not provide suitable habitat. Further, as detailed in the FS, the contamination is found below 2 feet and the proposed remedy will be removing this material from the vadose zone (i.e., above a depth of 8 to 10 feet), eliminating the potential exposure to birds or the foods upon which they feed. The proposed remedy will also eliminate exposure to any small mammals or amphibians at the site.

Plant species classified by the Washington State Department of Natural Resources Natural Heritage Program. Attachment C contains the list of vascular plant species classified by the Washington State Department of Natural Resources Natural Heritage Program as "endangered," "threatened," or "sensitive" under Title 79 RCW. Consulting the list identifies that none of the threatened, endangered, or candidate plant species are found in the vicinity of the site. Further, the site is predominantly covered by compacted gravel or pavement. In the few areas where plants are present, the plants consist of weeds or non-native ornamental grasses.

Conclusion. There is no evidence that the site is used by vulnerable species; therefore, this criterion does not apply.

Extensive Habitat

TEE Guidance. "If the site is located on a property that contains at least 10 acres of native vegetation within 500 feet of the site, not including vegetation beyond the property boundaries, a site-specific TEE is necessary."

Rationale Supporting that this Criteria Does Not Apply to the Site. As shown on Figure 1, a vegetated area is present on the Facility to the west of the site. However, the dimensions of this vegetated area are approximately 800 feet by 400 feet, equating to approximately 8 acres, which is less than the criteria specification of 10 acres. Furthermore, this area is a former orchard area where many of the former pear trees that encompassed the orchard are still present. Therefore, this 8-acre area is not vegetated by native vegetation.

As also shown on Figure 1, the area to the west of the 8 vegetated acres on the property is also vegetated. However, the TEE Guidance shows that habitat that is not on the property, even if within 500 feet of the site, does not count towards the 10 acres. This is illustrated on Figure 3.1 of the TEE Guidance, which has been included below for reference.

Site-specific TEE is required. Site -specific TEE is not required. Property Boundary **Property Boundary** 2.5 acres 2.5 acres Native Veg. Native Veg 2.5 acres 2.5 acres Native Veg Native Veg. Area of Area of Contami nation nation 500' 500" 2.5 acres 2.5 acres Native Veg. 2.5 acres 2.5 acre Native Veg Native Veg

Figure 3.1 of the TEE Guidance: Extensive Habitat Scenarios for Determination if a Site-Specific TEE is Necessary

The picture on the left, above, shows the site as the red circle and the property boundary as a square that includes 10 acres of native vegetation, which would then require a site-specific TEE. The picture on the right, above, shows less than 10 acres of native vegetated area within the square property boundary and does not require a site-specific TEE, illustrating that native vegetation acreage that is outside of the property boundary is not being counted towards the 10 acres, even if it is within 500 feet of the site.

Additionally, as noted previously above, the area west of the property is graded and does not appear to maintain native vegetation.

Conclusion. The site is not located on property that includes extensive habitat.

Risk to Significant Wildlife Populations

TEE Guidance. "If the department determines the contamination may present a risk to significant wildlife populations, a site-specific terrestrial ecological evaluation is necessary."

Rationale Supporting that this Criteria Does Not Apply to the Site. As detailed above, there is limited wildlife at the property, and the wildlife that is present consists of: birds that occasionally land on the firewater pond or other structures at the Facility; non-native, stocked fish in the pond; and rodents such as mice. Further, the contamination is generally found 2 or more feet below the ground surface, and the ground surface is predominantly heavily graveled. Therefore, significant wildlife populations are not present at the site and the contamination does not present an unacceptable risk to the limited wildlife that is present.

Conclusion. The site will not present a risk to significant wildlife populations.

SIMPLIFIED TEE

As detailed above, none of the criteria for a site-specific TEE apply to the site and, therefore, a Simplified TEE can be performed. According to WAC 173-340-7492 and the TEE Guidance, the Simplified TEE can be ended and a determination can be made that the site does not pose a significant risk to the environment if <u>any</u> of the following three criteria are met:

- Exposure analysis shows there is not significant exposure as defined in WAC 173-340-7492;
- Pathways analysis indicates that exposure pathways are not complete; or
- Toxicity analysis supports that toxicants are safe for ecological receptors.

The following subsections examines each of these criteria.

Exposure Analysis

According to the TEE Guidance, the Exposure Analysis process, as represented on Figure 4.2 of the TEE Guidance, is designed to determine the potential for significant exposure to ecological receptors that either use or inhabit sites. The TEE may be ended at a site where:

- The total area of soil contamination is not more than 350 square feet; or
- Land use at the site and surrounding area make substantial wildlife exposure unlikely.

As detailed in the SRI/FS, the total area of soil contamination is greater than 350 square feet. However, the site is located on a property which is an active bulk terminal, and the contamination is entirely within the confines of the property. Consistent with the TEE Guidance, Table 4.2 of the guidance was used to make the determination whether land use and wildlife exposure is likely. A copy of the table and the responses relevant to the property are included below.

The Total Score of 11 on Table 4.2 is one point below line 1; therefore, the Simplified TEE continues to the pathway analysis.

Table 4.2 of TEE Guidance: Simplified Terrestrial Ecological Evaluation – Exposure Analysis Procedures

Estimate the area of contiguous (connected) undeveloped land on or within 500 feet of any area of the contaminated soil to the nearest 0.5 acre (0.25 acre if the area is less than 0.5 acre). "Undeveloped land"		Rationale for Numeric Response
means land that is not covered by existing buildings, roads, paved areas or other barriers that will prevent wildfire from feeding on plants,		
earthworms, insects or other food in or on the soil.		
(1) From the table below, find the number of points corresponding to the		
area and enter this number in the box to the right.		
Area (acres) Points	12	There is approximately 8 acres of undeveloped land on the
0.25 or less = 4		Property and adjacent to the site.
0.5 = 5		
1.0 = 6		
1.5 = 7		
2.0 = 8		
2.5 = 9		
3.0 = 10		
3.5 = 11		
4.0 or more = 12		
(2) Is this an industrial or commercial property? See the definition in	3	The site is an industrial property.
WAC 173-340-200. If yes, enter a score of 3 in the box to the right. If no,		
enter a score of 1.		
(3) Enter a score in the box to the right for the habitat quality of the	3	The contaminated soil and surround area is within the bulk
contaminated soil and surrounding area, using the rating system shown		terminal, which is covered by paved or heavily graveled
below. (High = 1, Intermediate = 2, Low = 3)		surfaces, buildings, or above ground storage tanks.
(4) Is the undeveloped land likely to attract wildlife? If yes, enter a score	1	The undeveloped land that is adjacent to the site is former
of 1 in the box to the right. If no, enter a score of 2c.		orchard, disturbed by anthropogenic operations, and is not
		vegetated with non-native vegetation but could attract
		wildlife.
5) Are there any of the following soil hazardous substances present:	4	No.
Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin,		
chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene		
hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or		
pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If		
no, enter a score of 4.		
Add the numbers in the boxes on lines 2 through 5 and enter this number		Total score of 11 is one point below line 1; therefore, the
to the right. If this number is larger than the number in the box on line 1,	11	Simplified TEE continues to the pathway analysis.
the simplified TEE may be ended under WAC 173-340-7292(2) (a) (ii).		

Footnotes to Table .2 of the TEE Guidance:

a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score (1) for questions 3 and 4.

b Habitat rating system. Rate the quality of the habitat as high, intermediate, or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

- Low: Early successional vegetative stands; vegetation predominantly noxious, non-native, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.
- **High:** Area is ecologically significant for one or more of the following reasons: Late successional native plant communities present; relatively high species diversity; used by an uncommon or rare species; priority habitat (as defined by the Washington Department of Fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.
- Intermediate: Area does not rate as either high or low.

c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples:

- Birds frequently visit the area to feed
- Evidence of high use by mammals (tracks, scat, etc...)
- Habitat "island" in an industrial area
- Unusual features of an area that make it important for feeding animals
- \bullet Heavy use during seasonal migrations
- · Areas adjacent to wildlife corridors (i.e., greenbelts and waterways)

Pathway and Toxicity Analyses

According to the TEE Guidance, only potential exposure pathways to wildlife (e.g., small mammals, birds) need be considered for commercial or industrial properties. Additionally, only exposure pathways for priority chemicals of ecological concern listed in Table 4.1 of the TEE Guidance (MTCA Table 749-2) where the chemicals are present at or above the concentrations provided in the table must be considered. Because the latter is both a pathway analysis and a toxicity analysis, the guidance recommends that the pathway and toxicity analyses be conducted concurrently. A copy of Table 4.1 is included in Attachment D for reference.

The chemicals of concern (COCs) identified in the SRI/FS for soil and/or groundwater are total petroleum hydrocarbons (TPH) in the gasoline carbon range (TPHg), TPH in the diesel carbon range (TPHd), benzene, toluene, ethylbenzene, and xylenes. Comparing the constituents on Table 4.1 to the COCs for the site identifies TPHd and TPHg as the priority contaminants of ecological concern that might be present at the site. The levels of potential ecological concern are 12,000 milligrams per kilogram (mg/kg) and 15,000 mg/kg for TPHg and TPHd, respectively, for an industrial or commercial property. Table 1 lists the concentrations of TPHg and TPHd detected at the site and identifies the concentrations above the ecological levels of concern. As shown in Table 1, TPHg concentrations are all below the ecological levels of concern and TPHd exceeds at just three locations. Boring locations are shown on Figure 3.

All three locations are in the truck loading rack area in soil that is more than 8 feet below ground surface. This area is paved, eliminating access by wildlife, including small mammals, to subsurface soil. Additionally, the truck rack is operated on a 24/7 basis to load fuel transport trucks and could not sustain habitat for birds or small mammals. Finally, the mitigation measure proposed for soil in this area in the FS is an institutional control and soil media management plan that will identify the presence of the fuel hydrocarbons and document a plan for handling soil if it is accessed in the future. The plan would mitigate the potential that the subsurface in this area could be excavated and placed at ground surface. Therefore, the pathway for ecological exposure is currently incomplete, and the subsurface soil will be appropriately managed under the proposed remedy so future exposure is mitigated.

CONCLUSIONS

Site conditions at the Facility were evaluated consistent with WAC 173-340-7492, with the following conclusions:

- The four criteria, natural areas, vulnerable species, extensive habitat, and risk to significant wildlife populations, do not apply to the site and therefore, a Simplified TEE is applicable.
- A Simplified TEE was performed and identified three subsurface soil locations with TPHd concentrations above ecological levels of concern listed in Table 4.1 of the TEE Guidance. However, all three locations are below 8 feet in depth, are beneath a paved area that is operated on a continuous basis as a truck loading rack precluding any habitat for birds or small mammals, and will be managed by an institutional control and soil management plan to eliminate the potential for future ecological exposure.
- The Simplified TEE supports that the presence of TPH at the site will not present an unacceptable ecological health risk.

ATTACHMENTS

 Table 1
 Comparison of TPH Concentrations to Ecological Concern Levels

Figure 1 Facility Location Map

Figure 2 Aerial View of Site and Site Vicinity

Figure 3 Site Plan

Attachment A Zoning Map for Site Vicinity
Attachment B State Listed Candidate Species

Attachment C Federal Listed Endangered Species Found in Clark County

Attachment D Table 4.1 of TEE Guidance

REFERENCES

Cascadia Associates, Inc., 2020. Supplemental Remedial Investigation and Feasibility Study Report, NuStar Vancouver Annex Terminal. June 1, 2020.

Washington Department of Ecology, 2017. *Technical Document: Terrestrial Ecological Evaluation under the Model Toxics Control Act.* February 2017.

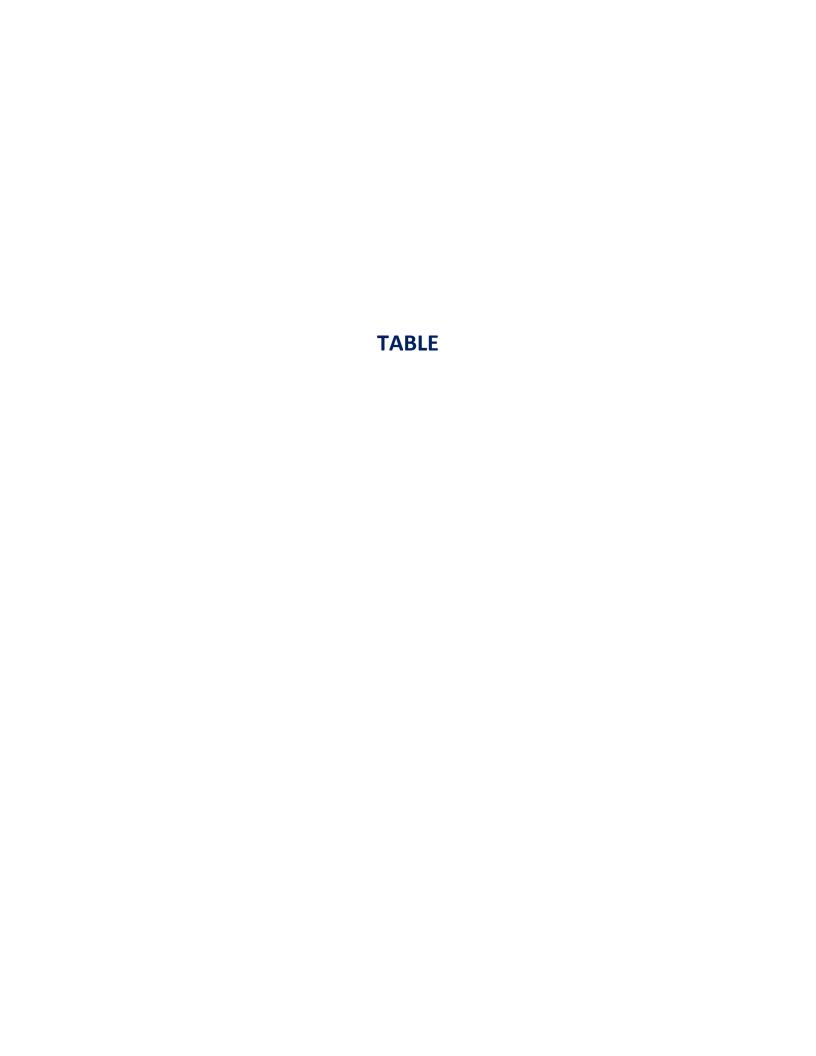


Table 1
Comparison of TPH Concentrations to Ecological Concern Levels
NuStar Terminals Operations Partnership L.P. - Annex Terminal
Vancouver, Washington

			Concentratio	ns in mg/kg (ppm)
Sample Location	Sample Date	Depth	TPHg	TPHd
Soil Borings				
GP-2	04/10-04/11/2002	10-12	ND	ND
GP-3	04/10-04/11/2002	10-12	ND	ND
GP-5	04/10-04/11/2002	17-19	ND	ND
GP-7	04/10-04/11/2002	14-16	ND	ND
GP-8	04/10-04/11/2002	6-8	ND	ND
GP-9	04/10-04/11/2002	16-18	ND	ND
GP-12	04/10-04/11/2002	22-24	ND	ND
GP14	05/09/2002	10-12	3,230	19,700
GP16	05/09/2002	10-12	, ND	ND
MW2	05/09/2002	25-26.5	314	<25
GP26	06/26/2002	6-8	5,850	
GP27	06/26/2002	10-12	4.96	
GP31	06/26/2002	22-24	<2.5	<25
GP32	06/26/2002	6.5-8	910	2,530
GP33	06/26/2002	8-10	363	31,500
GP34	06/26/2002	6-8	728	13,600
GP35	06/26/2002	8-10	10.3	<25
SB-2	04/17/2003	4		<u></u>
SB-2	04/17/2003	22		
SB-4	04/17/2003	3		<25
SB-4	04/17/2003	27		<25
SB-5	04/17/2003	11		
SB-6	04/16/2003	3		
SB-6	04/16/2003	16		
SB-7	04/17/2003	12		
SB-8	04/17/2003	8	1,020	7,890
SB-8	04/17/2003	16	369	1,440
SB-8R	09/30/2014	12	<5.0	<5.0
SB-9	04/18/2003	12	504	1,890
SB-9	04/18/2003	15	168	1,210
SB-9R	09/30/2014	12	1,000	4,000
SB-9R	09/30/2014	13.5		3,400
SB-31	04/16/2003	2.5		<25
SB-11	04/16/2003	2.5 14		<25
SB-11	04/22/2003	3		
SB-12 SB-12	04/22/2003	12		
SB-12	04/18/2003	2		
SB-13	04/22/2003	5		
	TCA Ecological Concer		12 000	15,000
Planta refer to notes		II ECACI	12,000	13,000

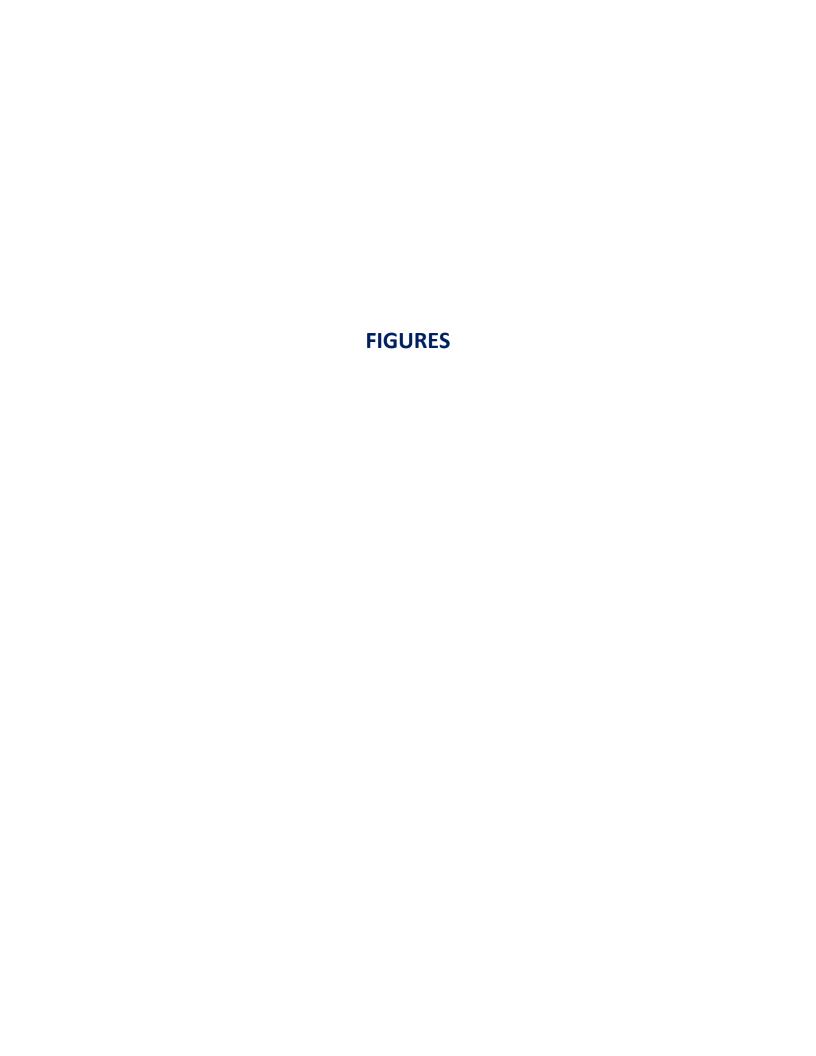
Please refer to notes at end of table.

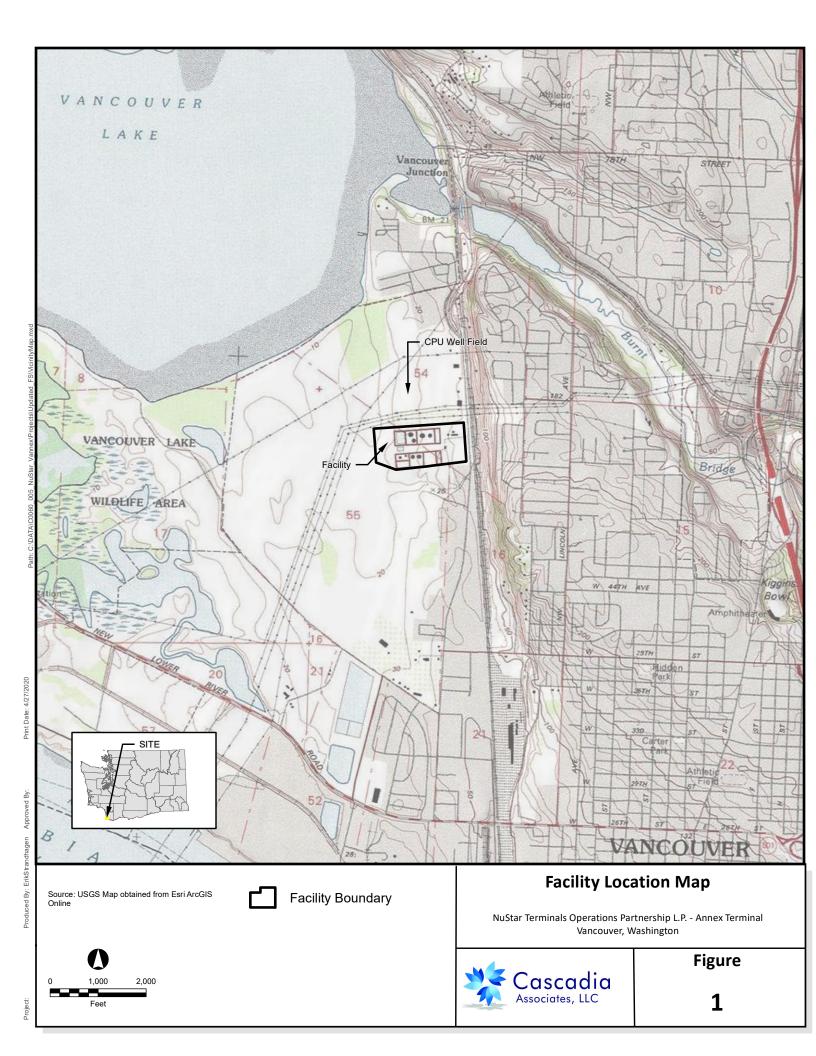
Table 1
Comparison of TPH Concentrations to Ecological Concern Levels
NuStar Terminals Operations Partnership L.P. - Annex Terminal
Vancouver, Washington

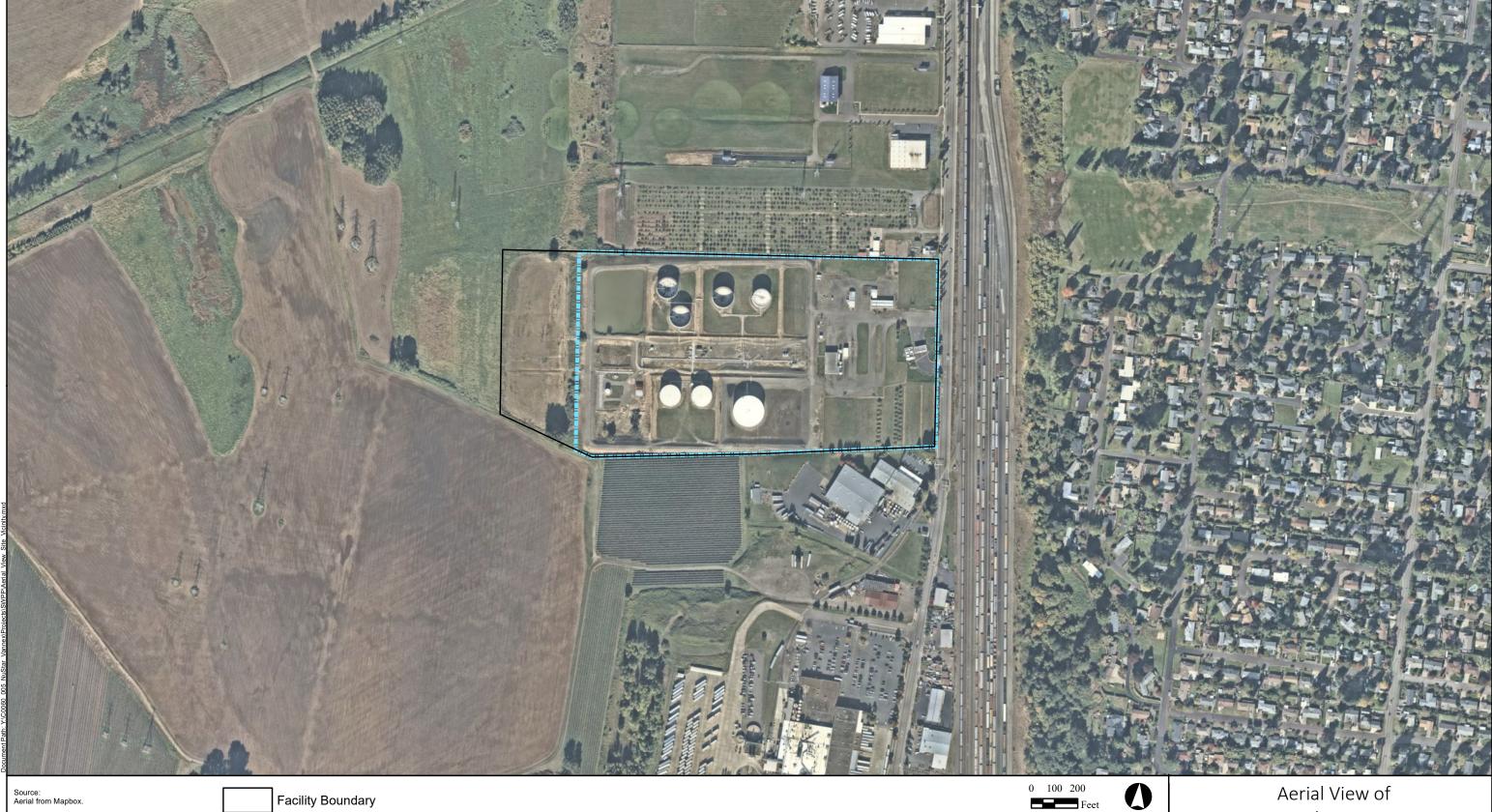
			Concentratio	ns in mg/kg (ppm)
Sample Location	Sample Date	Depth	ТРН	TPHd
Soil Borings (contin	nued)	<u> </u>		
B-15	01/31/2019	4.5 - 5.5	<7.94	<28.2
B-16-1	01/30/2019	3 - 4	<7.80	27.8 F-11
B-16-2	01/30/2019	5 - 6	1,900	483 F-20
B-17-1	01/31/2019	11.5 - 12.5	<9.32	<28.5
B-17-2	01/31/2019	15 - 16	38.7	323 F-13
B-18-1	01/30/2019	6.5 - 7.5	5,100	12,800
B-18-2	01/30/2019	14 - 15	10,800	7,460
B-19	01/29/2019	10 - 11	<7.59	<27.8
B-20-1	02/04/2019	10 - 11	302	89.4
B-20-2	02/04/2019	12 - 13	35.1	<27.4
B-21-1	02/01/2019	13 - 14	<8.11	<27.1
B-21-2	02/01/2019	15.5 - 16.5	10.5	<25.0
B-23	01/29/2019	6.5 - 7.5	<7.26	<25.0
B-24	01/28/2019	10.5 - 11.5	<7.19	<26.5
B-25-1	01/28/2019	6 - 7	10.8	5,540
B-25-2	01/28/2019	8.5 - 9.5	88.6	7,650
B-26	01/28/2019	8 - 9	<8.16	<27.3
B-27	01/28/2019	7 - 8	1,910	6,620
B-27-2	01/28/2019	9 - 10	11,500	23,700
B-28	01/28/2019	8 - 9	<8.95	<30.2
B-29(6.5)	02/18/2020	6.5	<6.89	<25.6
B-29(11)	02/18/2020	11	<7.69	<27.1
B-29(21)	02/18/2020	21	<7.04	<26.3
B-30(4.5)	02/18/2020	4.5	6,510	14,700
B-30(16)	02/19/2020	16	2,930	2,630
B-30(21.5)	02/19/2020	21.5	1,660	208
B-31(6.5)	02/18/2020	6.5	<7.31	<25.8
B-31(14)	02/18/2020	14	3,940	6,170
B-31(21.5)	02/18/2020	21.5	19.0	54.1
B-32(9)	02/18/2020	9	<7.23	<25
B-32(12)	02/18/2020	12	<7.9	<25.9
B-32(21)	02/18/2020	21	<6.05	<25.5
B-33(6.5)	02/18/2020	6.5	<7.49	<26.8
B-33(18)	02/19/2020	18	437	261
B-33(20)	02/19/2020	20	<7.61	<26.1
B-34(6.5)	02/19/2020	6.5	<7.45	<25.1
B-34(18)	02/19/2020	18	28.7	47.8
B-34(20)	02/19/2020	20	<7.82	<27.3
B-35(6)	02/21/2020	6	<7.1	<26.7
B-35(9)	02/21/2020	9	<8.17	<26.8
B-35(19)	02/21/2020	19	<7.51	<27.7
B-36(6)	02/21/2020	6	<8.52	<27.5
B-36(14)	02/21/2020	14	<7.54	<26
B-36(20)	02/21/2020	20	<6.91	<25.6
B-37(6)	02/21/2020	6	<7.92	<27.1
B-37(13)	02/21/2020	13	2,170	2,300
B-37(21)	02/21/2020	21	454	98.8
B-38(6)	02/21/2020	6	<8.46	<26.8
B-38(13)	02/21/2020	13	940	3,900
B-38(21.5)	02/21/2020	21.5	208	122
B-39(6)	02/21/2020	6	<8.41	<27.2
B-39(13.5)	02/21/2020	13.5	<9.14	<26.5
B-39(21)	02/21/2020	21	<8	<26.2
vasnington DOE N	ITCA Ecological Conce	rn Level	12,000	15,000

Please refer to notes at end of table.

Table 1
Comparison of TPH Concentrations to Ecological Concern Levels
NuStar Terminals Operations Partnership L.P. - Annex Terminal
Vancouver, Washington


			Concentration	ns in mg/kg (ppm)
Sample Location	Sample Date	Depth	ТРН	TPHd
Hand Augers	•			
HA-1	04/17/2003	3		
HA-1	04/17/2003	6		
HA-2	04/18/2003	2		
HA-2	04/18/2003	5		
HA-3	04/17/2003	2		
HA-3	04/17/2003	5.5		
HA-4	04/18/2003	2		
HA-4	04/18/2003	5		
HA-5	04/18/2003	3	3,320	4,780
HA-5	04/18/2003	5	2,290	10,700
HA-6	04/18/2003	2		
HA-6	04/18/2003	5		
HA-7	04/14/2003	6		
HA-8	04/14/2003	6		
Soil Sample from Ad	dvancement of Tempo	rary Monitorin	g Wells	
PMW-5	04/16/2003	8		31
PMW-5	04/16/2003	10		146
PMW-6	04/16/2003	3		
PMW-6	04/16/2003	12		
PMW-7	04/16/2003	3		
PMW-7	04/16/2003	16		
Soil Samples from E	xcavation Confirmati	on		
N. Wall	05/20/2002	10		
N. Wall	05/20/2002	3		
E. Wall	05/21/2002	10		
E. Wall	05/21/2002	3		
Washington DOE M	TCA Ecological Conce	rn Level	12,000	15,000


Notes:


- 1. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.
- 2. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method with silica gel cleanup.

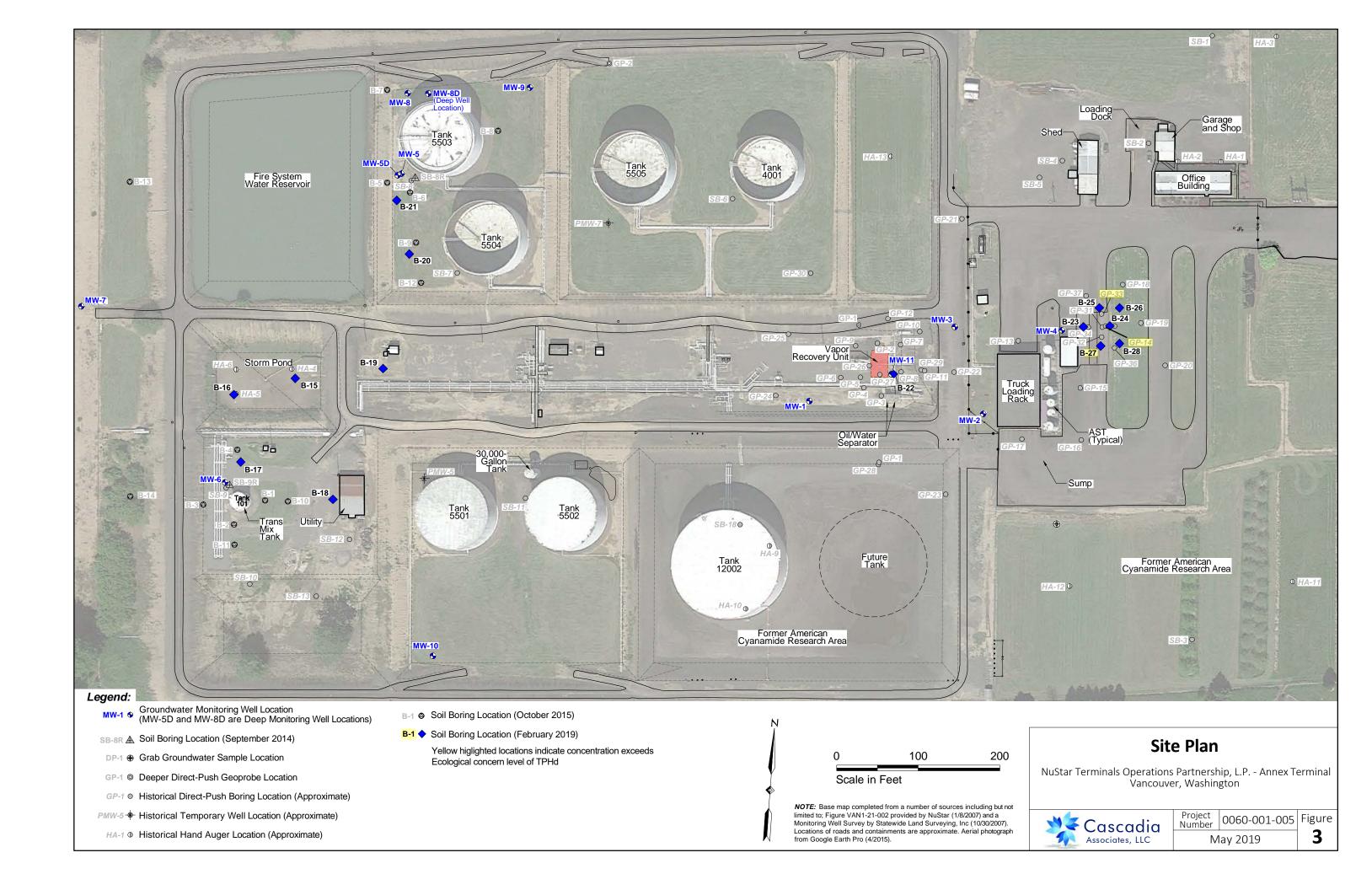
 Note: Flags in the lab reports indicate that TPHg and TPHd results do not fall under the (respective) standard gasoline or diesel ranges, but typically represent an overlap of diesel and gasoline ranges. Specific notes for individual samples can be found in the attached laboratory anlaytical reports.
- 3. mg/kg (ppm) = Milligrams per kilogram (parts per mil
- 4. -- = Not analyzed or not available.
- 5. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 6. ND = Not detected; MRL not available.
- 7. Yellow highlighted values represent concentration that exceeds MTCA Ecological Concern level.
- 8. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.

Source: Aerial from Mapbox.

Facility Boundary

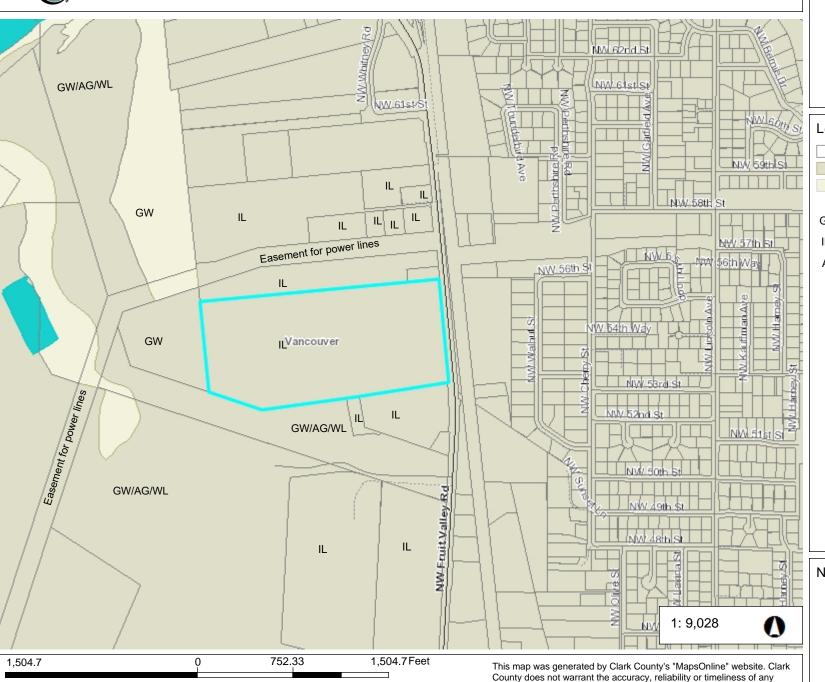
Site Boundary as Defined in the Agreed Order

Aerial View of Site and Site Vicinity


NuStar Terminals Operations Partnership L.P. - Annex Terminal Vancouver, Washington

Project Number 0060-001-006 Figure

September 2020


ATTACHMENT AZONING MAP FOR SITE VICINITY

WGS_1984_Web_Mercator_Auxiliary_Sphere

Clark County, WA. GIS - http://gis.clark.wa.gov

ZONING MAP

Legend

Taxlots

Cities Boundaries

Urban Growth Boundaries

GW- Greenway/Open Space

IL - Light Industrial

AG/WL - Agriculture/Wildlife

Notes: Area outlined in blue is the Facility taxlot boundary

information on this map, and shall not be held liable for losses caused by

using this information.

ATTACHMENT BSTATE LISTED CANDIDATE SPECIES

STATE LISTED SPECIES

Revised February 2020

The Washington Fish and Wildlife Commission has classified the following 45 species as Endangered, Threatened, or Sensitive. The federal status of species under the Endangered Species Act differs in some cases from state status; federal status is indicated by: Federal Endangered (FE), Threatened (FT), or Candidate (FC).

STATE ENDANGERED

A species native to the State of Washington that is seriously threatened with extinction throughout all or a significant portion of its range within the state.

The 32 State Endangered species are designated in Washington Administrative Code 220-610-010

STATE THREATENED

A species native to the state of Washington that is likely to become endangered within the foreseeable future throughout a significant portion of its range within the state without cooperative management or removal of threats.

The 7 State Threatened species are designated in Washington Administrative Code 220-200-100

MANANAL C (2)

STATE SENSITIVE

A species native to the state of Washington that is vulnerable or declining and is likely to become endangered or threatened in a significant portion of its range within the state without cooperative management or removal of threats. The 6 State Sensitive species are designated in Washington Administrative Code 220-200-100

220 010 010	
MAMMALS (14)	
Pygmy Rabbit	FE
Fin Whale	FE
Sei Whale	FE
Blue Whale	FE
	/FE#
*Mexico DPS=T; Central America DPS=E	, I L
North Pacific Right Whale	FE
Sperm Whale	FE
Killer Whale	$FE^{\#}$
#Southern Residents only	
Gray Wolf	$FE^{\#}$
#Federally listed west of north-south line	
following Highways 97, 17, and 395.	
Grizzly Bear	FT
Lynx	FT
Fisher	FC
Columbian White-tailed Deer	FT
Woodland Caribou	FE
BIRDS (9)	
Sandhill Crane	-
Snowy Plover	FT
Upland Sandpiper	-
Marbled Murrelet	FT
Tufted Puffin	-
Columbian Sharp-tailed Grouse	-
Northern Spotted Owl	FT
Yellow-billed Cuckoo	FT
Streaked Horned Lark	FT
REPTILES (3)	
Western Pond Turtle	_
Leatherback Sea Turtle	FE
Loggerhead Sea Turtle	FE
AMPHIBIANS (2)	
Oregon Spotted Frog	FT
NI A I IE	

Northern Leopard Frog

Taylor's Checkerspot

Mardon Skipper Pinto Abalone

Oregon Silverspot Butterfly

INVERTEBRATES (4)

FT

FΕ

MAMMALS (3)	
Sea Otter	-
Western Gray Squirrel	-
Mazama Pocket Gopher	
subsp. glacialis, pugetensis, tumuli, yelmensis	FT
subsp. couchi, louiei, melanops	-
BIRDS (3)	
American White Pelican	-
Greater Sage-Grouse	-
Ferruginous Hawk	-
REPTILES (1)	
Green Sea Turtle	FT

Or contact us at: Wildlife Program (360) 902-2515 Fish Program (360) 902-2700

For more information, check our website: https://wdfw.wa.gov/species-habitats

For more information on federal status, check the US Fish and Wildlife Service or the National Marine Fisheries Service

MAMMALS (1)

FE#

Gray Whale

*Western North Pacific Stock

BIRDS (1)

Common Loon

FISH (3)

Pygmy Whitefish - Margined Sculpin - Olympic Mudminnow -

AMPHIBIAN (1)

Larch Mountain Salamander

STATE CANDIDATE SPECIES

Revised February 2020

The Washington Department of Fish and Wildlife has designated the following 102 species as Candidates for listing in Washington as State Endangered, Threatened, or Sensitive. The Department reviews species for listing following procedures in Washington Administrative Code 220-610-110. The federal status of species under the Endangered Species Act differs in some cases from state status; federal status is indicated by: Federal Endangered (FE), Threatened (FT), or Candidate (FC).

MAMMALS (10)		Walleye Pollock		MOLLU
Townsend's Big-eared Bat	-	South Puget Sound	-	Shortface Lanx
Keen's Myotis Bat	-	Pacific Hake (Whiting) Georgia Basin	-	Ashy (Columbia) Pebb
White-tailed Jackrabbit	-	Black Rockfish#	-	California Floater
Black-tailed Jackrabbit	-	Brown Rockfish#	-	Olympia Oyster
Washington Ground Squirrel	-	Copper Rockfish [#]	-	Columbia Oregonian (s
Townsend's Ground Squirrel		Quillback Rockfish#	-	Poplar Oregonian (snai
South of the Yakima River	-	Tiger Rockfish#	-	Dalles Sideband (snail)
Olympic Marmot	-	Bocaccio Rockfish#	FE	Blue-gray Taildropper
Cascade Red Fox	_	Canary Rockfish	-	<i>S J</i> 11
Wolverine	FC	Yelloweye Rockfish#	FT	INSEC
Pacific Harbor Porpoise	-	Yellowtail Rockfish#	-	Beller's Ground Beetle
•		Greenstriped Rockfish#	-	Mann's Mollusk-eating
BIRDS (17)		Widow Rockfish#	-	Columbia River Tiger
Western Grebe	_	Redstripe Rockfish [#]	-	Hatch's Click Beetle
Clark's Grebe	_	China Rockfish [#]	-	Columbia Clubtail (dra
Short-tailed Albatross	FE	*Puget Sound, the San Juan Islands, and th		Pacific Clubtail
Northern Goshawk	_	Juan de Fuca east of the Sekiu R		Sand-verbena Moth
Golden Eagle	_	Chinook Salmon		Yuma Skipper
Cassin's Auklet	-	Snake River Fall	FT	Shepard's Parnassian
Flammulated Owl	_	Snake River Spring/Summer	FT	Makah Copper
Burrowing Owl	_	Puget Sound	FT	Chinquapin Hairstreak
Vaux's Swift	_	Upper Columbia Spring	FE	Johnson's Hairstreak
White-headed Woodpecker	_	Lower Columbia	FT	Juniper Hairstreak
Black-backed Woodpecker	_	Chum Salmon		Puget Blue
Pileated Woodpecker	_	Hood Canal Summer	FT	Valley Silverspot
Loggerhead Shrike	-	(includes Strait of Juan de Fuca, not Puget S		Silver-bordered Fritilla
Slender-billed White-breasted Nuthat	ch -	Columbia River	FT	Great Arctic
Sage Thrasher	-	Sockeye Salmon	EE	Island Marble
Oregon Vesper Sparrow	-	Snake River	FE	
Sagebrush Sparrow	-	Ozette Lake	FT	OTHER INVER
		Steelhead Snake River	FT	Giant Palouse Earthwo
REPTILES and AMPHIBIAN	IS (10)	Upper Columbia	FT	Leschi's Millipede
Sagebrush Lizard	-	Middle Columbia	FT	Zesem s minipede
Common Sharp-tailed Snake	_	Lower Columbia	FT	
California Mountain Kingsnake	_	Bull Trout	FT	3
Striped Whipsnake	_	Buil Hout	Г1	
Dunn's Salamander	_			
Van Dyke's Salamander	_			
Cascade Torrent Salamander	_			
Western Toad	-			7
Columbia Spotted Frog	-	NOT STATE CANDIDATE	S	Live Live
Rocky Mountain Tailed Frog	-	Fish stocks that have been the subjects o		
		register notices, but have not yet been added	to the state	
FISH (37)		Coho Salmon		Many species of uncer
Mountain Sucker	_	Puget Sound/Strait of Georgia	_	are listed in our State
Lake Chub	-	Lower Columbia	FT	https://wdfw.wa.gov
Leopard Dace	-	Steelhead, Puget Sound DPS	FT	risk/s
Umatilla Dace	-	Green Sturgeon	FT	For more information
River Lamprey	-			https://wdfw.wa.g
Pacific Herring	-			Or con
Eulachon –Southern DPS	FT			Wildlife Program
Pacific Cod				Fish Program (
South and Central Puget Sound	-			1 1311 1 10514111 (
ı				1

USKS (9) blesnail (snail) ail) i1) er (slug)

TC (10)

INSECTS (18)	
Beller's Ground Beetle	-
Mann's Mollusk-eating Ground Beetle	-
Columbia River Tiger Beetle	-
Hatch's Click Beetle	-
Columbia Clubtail (dragonfly)	-
Pacific Clubtail	-
Sand-verbena Moth	-
Yuma Skipper	-
Shepard's Parnassian	-
Makah Copper	-
Chinquapin Hairstreak	-
Johnson's Hairstreak	-
Juniper Hairstreak	-
Puget Blue	-
Valley Silverspot	-
Silver-bordered Fritillary	-
Great Arctic	-
Island Marble	FC

RTEBRATES (2)

vorm

ertain conservation need e Wildlife Action Plan: ov/species-habitats/at-<mark>k/swap</mark>

on, check our website: .gov/species-habitats ntact us:

ım (360) 902-2515 (360) 902-2700

ATTACHMENT C FEDERAL LISTED ENDANGERED SPECIES FOUND IN CLARK COUNTY

2019 Washington Vascular Plant Species of Special Concern

Washington Natural Heritage Progam July 15, 2019

2019 Washington Vascular Plant Species of Special Concern

Washington Natural Heritage Program Report Number: 2019-04

July 15, 2019

Washington Natural Heritage Program Washington Department of Natural Resources Olympia, Washington 98504-7014

ON THE COVER: Broad-fruit mariposa lily (Calochortus nitidus) from Whitman Co., Washington

Photograph by: Walter Fertig, WNHP

Table of Contents

	Page
Table of Contents	ii
Introduction	1
Washington Species of Special Concern	6
Literature Cited	29
Acknowledgments	29

Introduction

For more than 40 years the Washington Natural Heritage Program (WNHP) has maintained a list of Washington plant species of conservation concern. Each of these species is ranked at the global and state scale following the standardized protocol of the NatureServe network. Although WNHP is not a regulatory agency, the program's list and rankings help inform conservation decisions relating to rare plants on federal, state, private, and tribal lands (WDNR 2018).

The WNHP list is periodically updated as new information becomes available on the status and distribution of rare plants in Washington. The following is an update of the June 2018 list (WNHP 2018). No species have been dropped from the previous list, but 13 have been added. New species are indicated by a * preceding the species name (status changes are <u>underlined</u> or crossed through). Additional information is provided on distribution pattern within Washington (local endemic, peripheral, disjunct, etc.) and by county, ecoregion, and major managed area (such as national forest, national park, or state lands).

Each of the main headings in the species list and their codes are briefly described below:

<u>Species/Common Name</u>: Species are organized alphabetically by their scientific name. Nomenclature mostly follows Hitchcock and Cronquist (2018). Pertinent synonyms are included in parentheses. Common names follow the USDA Plants database (http://plants.usda.gov) or NatureServe (http://explorer.natureserve.org).

<u>Heritage Rank</u>: WNHP uses the ranking system developed by NatureServe to assess global and state conservation status of each plant species, subspecies, and variety. Taxa are ranked on a scale of 1 to 5 (from highest to lowest conservation concern).

- G = Global Rank: rangewide status of a full species
- T = Trinomial Rank: rangewide status of a subspecies or variety
- S = State Rank: status of a species, subspecies, or variety within the state of Washington
- 1 = Critically Imperiled at very high risk of extirpation due to very restricted range, very few occurrences, very steep declines, very severe threats, or other factors
- 2 = Imperiled at high risk of extirpation due to restricted range, few occurrences, steep declines, severe threats, or other factors
- 3 = Vulnerable at moderate risk of extirpation due to a fairly restricted range, relatively few occurrences, recent and widespread declines, threats, or other factors
- 4 = Apparently secure at fairly low risk of extirpation due to an extensive range or many occurrences, but with possible cause for some concern as a result of local recent declines, threats, or other factors
- 5 = Secure at very low risk of extirpation due to a very extensive range, abundant occurrences, and little to no concern from decline or threats
- H = Historical– known from only historical occurrences (prior to 1978) but still with some hope of rediscovery
- X = Presumed Extirpated not relocated since 1978 despite intensive searches and virtually no likelihood of rediscovery

- U = Unrankable lack of information or substantially conflicting information about status
- NR = Not Ranked rank not assessed yet
- Q = Questionable questions exist about the taxonomic validity of a species, subspecies, or variety
- ? = Questionable questions exist about the assigned G, T, or S rank of a taxon

<u>State Status</u>: Washington state status is assigned by WNHP. Factors considered include abundance, distribution patterns, number of extant occurrences, vulnerability, threats, existing protection, and taxonomic distinctness. Categories include:

- Endang = Endangered, in danger of becoming extinct or extirpated from Washington
- Threat = Threatened, likely to become Endangered in Washington
- Sens = Sensitive, vulnerable or declining and could become Threatened or Endangered in Washington
- Extirp = possibly extinct or extirpated in Washington (includes state historical species)

<u>Federal Status</u>: Under the US Endangered Species Act (ESA), the US Fish and Wildlife Service recognizes four categories:

- Endang = Endangered. A species, subspecies, or variety in danger of extinction throughout all or a significant portion of its range.
- Threat = Threatened. A species, subspecies, or variety likely to become Endangered in the foreseeable future
- Prop = Proposed. A species, subspecies, or variety formally proposed for listing as Endangered or Threatened (a proposal has been published in the Federal Register, but not a final rule)
- Cand = Candidate. A species, subspecies, or variety being evaluated by USFWS for potential listing as Threatened or Endangered under the ESA, but no formal proposal has been published yet.

The Interagency Special Status and Sensitive Species Program (ISSSSP) of the US Forest Service (USFS) and Bureau of Land Management (BLM) in Washington and Oregon recognize two categories of species of concern (ISSSSP 2019). Strategic species, defined as sensitive species that might potentially occur on BLM or USFS-managed lands, are no longer being recognized in the 2019 ISSSSP list.

- B-Sens = BLM Sensitive; all USFWS candidate and delisted species and WNHP species of concern ranked S1, S1S2, S1S3, S2, or S2S3 found on at least one BLM managed area in Washington.
- F-Sens = Forest Service Sensitive: all USFWS candidate and delisted species and WNHP species of concern ranked S1, S1S2, S1S3, S2, or S2S3 found on at least one USFS managed area in Washington.

<u>Distribution (Dist.) Pattern:</u> Species rarity is often correlated with geographic distribution patterns. The following patterns can be recognized in Washington:

LocEnd = Local Endemic; global range of taxon is less than 16,500 km² or about 1 degree of latitude x 2 degrees of longitude (about the size of an average county)

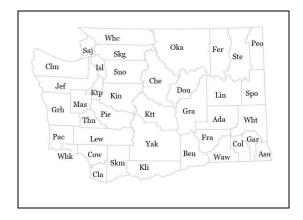
RegEnd = Regional Endemic; global range of taxon is between 16,500 to 250,000 km² (or an area about the size of the state of Washington)

Disjunct = Disjunct; globally widespread but state population is isolated from the main contiguous range by a gap or more than 500 km

Periph = Peripheral; globally widespread but Washington population is at the margin of the main contiguous range of the taxon

Sparse = Sparse; widely distributed across the state but with relatively few populations (less than 20)

Widesp = Widespread; widely distributed globally and in Washington, with more than 20 populations in the state.


<u>County</u>: Three-letter codes are used to document the distribution of plant species by county. Vague or unsubstantiated reports are indicated by ?.

		D' D'
Ada = Adams	Grh = Grays Harbor	Pie = Pierce
Aso = Asotin	Isl = Island	Saj = San Juan
Ben = Benton	Jef = Jefferson	Skg = Skagit
Che = Chelan	Kin = King	Skm = Skamania
Clm = Clallam	Ktp = Kitsap	Sno = Snohomish
Clk = Clark	Ktt = Kittitas	Spo = Spokane
Col = Columbia	Kli = Klickitat	Ste = Stevens
Cow = Cowlitz	Lew = Lewis	Thu = Thurston
Dou = Douglas	Lin = Lincoln	Whk = Wahkiakum
Fer = Ferry	Mas = Mason	Waw = Walla Walla
Fra = Franklin	Oka = Okanogan	Whc = Whatcom
Gar = Garfield	Pac = Pacific	Wht = Whitman
Gra = Grant	Peo = Pend Oreille	Yak = Yakima

<u>Ecoregion</u>: Ecoregions are biologically-defined geographic areas with similar environmental, physiographic, or vegetation patterns. We follow the classification of Camp and Gamon (2011). Two-letter codes are used for ecoregion names. Vague or unsubstantiated reports are indicated by ?.

BM = Blue Mountains EC = East Cascades PC = Pacific Northwest Coast

 $CP = Columbia \ Plateau$ $NC = North \ Cascades$ $PT = Puget \ Trough$ $CR = Canadian \ Rockies$ OK = Okanogan $WC = West \ Cascades$

Washington Counties

Washington Ecoregions

Managed Area: Major Washington state, federal, or tribal land management areas are included when known. Blank listings indicate that a species is only known from private lands or state trust lands. "? "indicates that presence within a management area is not confirmed. Complete managed area information, or data specific to individual plant occurrences, can be obtained from WNHP (www.dnr.wa.gov/natural-heritage-program). The following abbreviations are used:

AFB = Air Force Base (Dept. of Defense)

BLM = Bureau of Land Management

CF = Community Forest

ERP = Environmental Research Park (nuclear reservation)

JB = Joint Base (Dept. of Defense)

NAP = Natural Area Preserve (Washington Dept of Natural Resources)

NF = National Forest

NHP = National Historical Park

NM = National Monument

NP = National Park

NRCA = Natural Resources Conservation Area (Washington Dept of Natural Resources)

NRA = National Recreation Area

NSA = National Scenic Area

NVM = National Volcanic Monument

NWR = National Wildlife Refuge

PUD = Public Utility District

SP = State Park

SWA = State Wildlife Area (Washington Dept of Fish & Wildlife)

TC = Training Center (Dept of Defense)

WA = Wilderness Area

<u>Name Changes</u>: The following species names have been changed to follow the revised taxonomy of Hitchcock and Cronquist (2018):

2018 List 2019 List

Astragalus multiflorus Astragalus tenellus Cheilanthes feei Myriopteris gracilis

Chylismia scapoidea ssp. scapoidea Chylismia scapoidea ssp. brachycarpa Coeloglossum viride var. virescens Dactylorhiza viridis

Collinsia sparsiflora var. bruceae Collinsia sparsiflora var. sparsiflora Lycopodium dendroideum Dendrolycopodium dendroideum

Lycopodium dendroideum Dendrolycopodium dendroideu Minuartia nuttallii var. fragilis Sabulina nuttallii var. fragilis

Minuartia pusilla

Monolepis spathulata

Myosurus clavicaulis

Orobanche californica ssp. grayana

Panunculus cooleyaa

Arcteranthis cooleyaa

Ranunculus cooleyae
Tauschia hooveri
Tauschia tenuissima
Aphylion catifornicum
Arcteranthis cooleyae
Lomatium lithosolamans
Lomatium tenuissimum

Trillium parviflorum Trillium albidum ssp. parviflorum

Washington Species of Special Concern

					al Concern Li		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Abronia umbellata var. acutalata (A. u. ssp. breviflora)	G4G5 TUQ/S1	Endang		RegEnd	Clm, Isl , Ktp, Pac	PC, PT	Willapa NWR
pink sand-verbena Achnatherum richardsonii Richardson's needlegrass	G5/S1	Sens	F-Sens	Periph	Oka, Ste	OK	Little Pend Oreille NWR Okanogan-Wenatchee NF
Actaea elata var. elata (Cimicifuga elata) tall bugbane	G4T4/S3	Sens		RegEnd	Clk, Clm, Cow, Grh, Kin, Lew, Pie, Skm, Thu, Whc	EC, PC, PT, WC	Battle Ground SP Beacon Rock SP Columbia Falls NAP Columbia River Gorge NSA Flaming Geyser SP Gifford Pinchot NF Lewis & Clark SP Olympic NP Paradise Point SP Penrose Point SP
*Actaea laciniata (Cimicifuga laciniata) Mt. Hood bugbane	G4/S2	Sens		RegEnd	Clk, Lew, Skm	WC	Gifford Pinchot NF Mt. St. Helens NVM Yacolt Burn SF
Agoseris aurantiaca var. carnea (A. lackschewitzii) pink agoseris	G5T4Q/ S2	Sens	F-Sens	Sparse	Ktt, Oka	EC, OK	Okanogan-Wenatchee NF
Agoseris elata (A. × elata) tall agoseris	G4/ <u>S3?</u>	Sens		RegEnd	Che, Clm, Cow, Isl, Kli, Ktt, Oka, Pie, Sno, Thu, Whc, Yak	EC, NC, OK, PC, PT, WC	Camas Meadows NAP Conboy Lake NWR Mt. Baker-Snoqualmie NF Mt. Rainier NP Okanogan-Wenatchee NF Pasayten WA
Agrostis mertensii (A. borealis) northern bentgrass	G5/S1S2	Sens	B-Sens F-Sens	Periph	Che, Oka, Skg	NC, OK	Chopaka Mountain NAP Okanogan-Wenatchee NF
Aliciella leptomeria (Gilia leptomeria) Great Basin gilia	G5/S1	Threat		Periph	Ben, Fra, Gra	СР	Hanford ERP Saddle Mountain NWR South Columbia SWA
Allium bisecptrum twincrest onion	G4G5/S1	Threat		Periph	Fra	СР	Palouse Falls SP
Allium campanulatum Sierra onion	G4/S1	Threat	B-Sens F-Sens	Periph	Col, Yak	BM, EC	Okanogan-Wenatchee NF Umatilla NF
Allium constrictum constricted onion	G2G3/ S2S3	Sens	B-Sens	LocEnd	Dou, Gra	СР	Spokane BLM Steamboat Rock SP
Allium dictuon Blue Mountain onion	G2/S2	Threat	F-Sens	LocEnd	Col, Gar	BM	Umatilla NF Wenaha-Tucannon WA
Ammannia robusta grand redstem	G5/S1	Threat	B-Sens F-Sens	Sparse	Aso, Fra, Gra, Kli, Spo, Wht	CP, EC	Columbia River Gorge NSA Hanford ERP Hanford NWR South Columbia SWA Turnbull NWR
Anemone patens var. multifida pasqueflower	G5T5/S1	Threat	B-Sens F-Sens	Periph	Che	EC	Colockum SWA Okanogan-Wenatchee NF
Antennaria corymbosa meadow pussytoes	G5/S1	Threat	B-Sens F-Sens	Periph	<u>Col</u> , <u>Oka</u> , Peo	BM, CR OK	Colville NF Okanogan-Wenatchee NF <u>Umatilla NF</u> <u>Wenaha-Tucanon WA</u>

Washington Species of Special Concern List											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Aphyllon californicum var. grayanum (Orobanche californica ssp. grayana) Gray's broomrape	G4T3T4/ S1	Endang		<u>Periph</u>	Clk, Kli, Yak	CP, EC, PT	Columbia River Gorge NSA Conboy Lake NWR? Fort Vancouver NHS Klickitat Canyon NRCA				
Arabis crucisetosa cross-haired rockcress	G4G5/S1	Threat	B-Sens F-Sens	RegEnd	Aso	BM	Vale BLM				
Arabis olympica (A. furcata var. olympica) Olympic rockcress	G2/S2	Sens	F-Sens	RegEnd	Clm, Jef	PC	Buckhorn WA Olympic NF Olympic NP The Brothers WA				
Arcteranthis cooleyae (Ranunculus cooleyae) Cooley's buttercup	G5/S1	Threat	B-Sens F-Sens	Periph	Grh, Sno	NC, PC	Colonel Bob WA Henry M. Jackson WA Morning Star NRCA Mt. Baker-Snoqualmie NF Olympic NF				
Arenaria paludicola swamp sandwort	G1/SX	Extirp	Endang	Disjunct	Grh?, Kin?, Pie	NC?, PC?, PT	Carlisle Bog NAP?				
Artemisia campestris var. wormskioldii Wormskiold's northern wormwood	G5T1/S1	Endang	B-Sens F-Sens	RegEnd	Ben, Fra, Gra, Kli	CP, EC	Columbia River Gorge NSA Gifford Pinchot NF McNary NWR				
Asclepias cryptoceras (A. cryptoceras ssp. davisii) pallid milkweed	G4/S1	Threat		Periph	Aso	BM	Chief Joseph SWA				
Astragalus arrectus Palouse milkvetch	G2G4/S2	Threat	B-Sens F-Sens	RegEnd	Che, Kli, Ktt, Lin, Wht	CP, EC	Colockum SWA Okanogan-Wenatchee NF Roosevelt Lake NRA				
Astragalus arthurii Arthur's milkvetch	G4/S2	Sens	B-Sens F-Sens	RegEnd	Aso	ВМ, СР	Chief Joesph SWA Nez Perce NHP Umatilla NF Vale BLM				
Astragalus asotinensis Asotin milkvetch	G2/S1	Endang	B-Sens	LocEnd	Aso	BM	Vale BLM				
Astragalus australis var. cottonii Cotton's milkvetch	G5T2Q/ S2	Threat	B-Sens F-Sens	LocEnd	Clm	PC	Olympic NF Olympic NP				
Astragalus columbianus Columbia milkvetch	G2G3/ S2S3	Sens	B-Sens	LocEnd	Ben, Ktt, Waw, Yak	СР	Gingko Petrified Forest SP Hanford ERP Spokane BLM Yakima TC				
Astragalus cusickii var. cusickii (A. eremeticus var. malheurensis) Cusick's milkvetch	G5T4/S2	Sens	B-Sens F-Sens	RegEnd	Aso, Fra, Gar, Lin	ВМ, СР	4-O Ranch SWA Chief Joseph SWA Umatilla NF Vale BLM				
Astragalus diaphanus transparent milkvetch	G4/SX	Extirp		RegEnd	Kli	EC	Columbia River Gorge NSA				
Astragalus geyeri var. geyeri Geyer's milkvetch	G4T4/ S1S2	Threat	B-Sens	Disjunct	Gra	СР	Columbia NWR Crab Creek SWA Hanford ERP Saddle Mountain NWR				
Astragalus kentrophyta var. douglasii thistle milkvetch	G5TX/ SX	Extirp		LocEnd	Waw	СР					

2 .	I		1		al Concern Li		24
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Astragalus microcystis least bladdery milkvetch	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Jef, Lin, Peo, Ste	CP, CR, OK, PC	Buckhorn WA Colville NF Little Pend Oreille SWA Olympic NF Roosevelt Lake NRA Spokane BLM
Astragalus misellus var. pauper pauper milkvetch	G3T3/S2	Sens	B-Sens	RegEnd	Ben, Dou, Fra, Kli, Ktt, Yak	СР	Colockum SWA LT Murray SWA Quilomene SWA Spokane BLM Yakima TC
Astragalus pulsiferae var. suksdorfii Ames' milkvetch	G4T2/S1	Endang		Disjunct	Kli	EC	Conboy Lake NWR
Astragalus riparius Piper's milkvetch	G2/S2	Threat	B-Sens	RegEnd	Aso, Gar, Wht	СР	Vale BLM
Astragalus sinuatus Whited's milkvetch	G1/S1	Endang	B-Sens	LocEnd	Che	СР	Colockum SWA Spokane BLM Upper Dry Gulch NAP
Astragalus tenellus (A. multiflorus) loose-flower milkvetch	G5/S1	Threat		Disjunct	Dou	СР	
Baccharis pilularis ssp. consanguinea coyotebush	G5TNR/ S1	Threat		Periph	Pac	PC	Cape Disappointment SP
<i>Bergia texana</i> Texas bergia	G5/SX	Extirp		Periph	Gar, Kli, Wht?	CP, EC	Columbia River Gorge NSA
Blitum spathulatum (Monolepis spathulata) prostrate povertyweed	G5/S1	Threat	B-Sens F-Sens	Periph	Oka	OK	Pearrygin Lake SP
Boechera cascadensis (Arabis microphylla var. thompsonii) littleleaf rockcress	G1Q/SH	Extirp		RegEnd	Ktt	EC	Okanogan-Wenatchee NF
<i>Bolandra oregana</i> Oregon bolandra	G3/S2	Threat	B-Sens F-Sens	RegEnd	Aso, Clk, Col, Gar, Kli, Skm	BM, EC, WC	Beacon Rock SP Chief Joseph SWA Columbia Falls NAP Columbia River Gorge NSA Gifford Pinchot NF Umatilla NF Vale BLM Wenaha-Tucannon WA
Botrychium ascendens triangular-lobed moonwort	G3/S2	Sens	B-Sens F-Sens	Sparse	Fer, Kin, Mas, Oka, Peo, Pie, Ste, Whc	CR, NC, OK, PC, WC	Colville NF Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF Olympic NF Olympic NP Pasayten WA
Botrychium hesperium western moonwort	G4/S2	Sens	B-Sens F-Sens	Sparse	Che, Fer, <u>Kin</u> , Peo, Sno, Ste	CR, EC, NC, OK	Colville NF North Cascades NP Mt. Baker-Snoqualmie NF
Botrychium lineare skinny moonwort	G2G3/S1	Endang	B-Sens F-Sens	Periph	Fer	OK	Colville NF
*Botrychium michiganense Michigan moonwort	G3/S1	Threat		Periph	Ste	CR	Colville NF

Washington Species of Special Concern List											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Botrychium paradoxum two-spiked moonwort	G3G4/S2	Threat	B-Sens F-Sens	Sparse	Che, Fer, Oka, Peo, Ste	CR, EC, OK	Chopaka Mountain NAP Colville NF Kanisku NF Loomis NRCA Okanogan-Wenatchee NF				
Botrychium pedunculosum stalked moonwort	G3/S2	Sens	B-Sens F-Sens	Sparse	Fer, Kin, Peo, Sno, Ste, Whc	CR, NC, OK	Colville NF Mt. Baker-Snoqualmie NF Ross Lake NRA				
Brodiaea rosea <u>var. rosea</u> (B. coronaria ssp. rosea) harvest brodiaea	G4G5T4 /SH	Extirp		Disjunct	Pie, Saj	PT	San Juan Islands NWR				
Calochortus longebarbatus var. longebarbatus long-bearded mariposa lily	G4T3/S3	Sens		RegEnd	Kli, Wht, Yak	CP, EC	Brooks Memorial SP Conboy Lake NWR Klickitat SWA Klickitat Canyon NRCA				
Calochortus macrocarpus var. maculosus sagebrush mariposa lily	G5T2/ S2?	Sens	B-Sens F-Sens	RegEnd	Aso, Gar, Wht	BM, CP	Chief Joseph SWA Spokane BLM Umatilla NF Vale BLM Wenaha-Tucannon WA				
Calochortus nitidus broad-fruit mariposa lily	G3/S1	Endang		RegEnd	Aso, Gar, Wht	BM, CP	Umatilla NF				
Calyptridium roseum rosy pussypaws	G5/S1	Threat	B-Sens F-Sens	Periph	Ben	СР	Hanford ERP				
*Camassia cusickii Cusick's camas	G4/S1	Sens		RegEnd	Kli	EC					
Campanula lasiocarpa Alaska harebell	G5/S2	Sens	B-Sens F-Sens	Periph	Kin, Sno	NC	Alpine Lakes WA Glacier Peak WA Morning Star NRCA Mt. Baker-Snoqualmie NF				
Carex anthoxanthea yellow-flowered sedge	G5/S1	Threat	B-Sens F-Sens	Periph	Grh	PC	Olympic NF				
Carex capillaris hair-like sedge	G5/S1	Threat	B-Sens F-Sens	Periph	<u>Che</u> ?, Oka, Peo	CR, OK	Colville NF Okanogan-Wenatchee NF Spokane BLM				
Carex capitata capitate sedge	G5/S1	Threat		Periph	Oka, Whc	NC, OK	Chopaka Mountain NAP Mt. Baker WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF Pasayten WA Spokane BLM				
Carex chordorrhiza cordroot sedge	G5/S1	Threat	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF				
Carex circinata coiled sedge	G4/S1	Threat	B-Sens F-Sens	Periph	Grh, Jef	PC	Colonel Bob WA Olympic NF Olympic NP				
Carex cordillerana cordilleran sedge	G3G4/S1	Sens	F-Sens	Sparse	Fer, Oka, Peo, Spo, Ste	CP, OK	Colville NF Okanogan-Wenatchee NF Pasayten WA Sinlahekin SWA				
Carex davyi Davy's sedge	G2/SX	Extirp		Periph	Yak	EC					
Carex densa dense sedge	G5/S2	Sens	B-Sens F-Sens	<u>Periph</u>	Clk, Lew, Thu, Yak	EC, PC, PT	Gifford Pinchot NF Lacamas Prairie NAP Mt. Adams WA				
Carex eburnea bristleleaf sedge	G5/S1	Threat	B-Sens F-Sens	Periph	Peo	CR	Colville NF Spokane BLM				

		Washii		es of Specia	al Concern Lis	st	
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Carex gynocrates yellow bog sedge	G5/S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF
Carex heteroneura (C. heterneura var. epapillosa) smooth-fruited sedge	G5/S2S3	Sens	F-Sens	Sparse	Oka, Whc, Yak	EC, NC, OK	Loomis NRCA Okanogan-Wenatchee NF Pasayten WA
Carex macrochaeta longawn sedge	G5/S1	Threat	B-Sens F-Sens	Sparse	Grh?, Pac, Pie?, Skm, Whc, Yak?	EC?, NC, PC, WC	Columbia Falls NAP Columbia River Gorge NSA Gifford Pinchot NF? Mt. Rainier NP? North Cascades NP
Carex media intermediate sedge	G5/S2	Sens	B-Sens F-Sens	Sparse	Oka	OK	Chopaka Mountain NAP Loomis NRCA Okanogan-Wenatchee NF Pasayten WA
Carex obtusata blunt sedge	G5/S2	Sens	B-Sens F-Sens	Periph	Clm, Jef, Mas	PC	Buckhorn WA Olympic NF Olympic NP
Carex pauciflora few-flowered sedge	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Jef, Kin, Ktt, Mas, Saj, Skg, Sno, Whc	EC, NC, PC, PT	Kings Lake Bog NAP Moran SP Morning Star NRCA Mt. Baker-Snoqualmie NF Olympic NF Snoqualmie Bog NAP
Carex pluriflora several-flowered sedge	G5/S2	Sens		Sparse	Clm, Sno, Whc	NC, PC, PT	Dailey Prairie NAP Morning Star NRCA Olympic NP
Carex proposita Smoky Mountain sedge	G4/S2	Sens	B-Sens F-Sens	Sparse	Che, Fer, Oka, Pie, Skm, Sno, Ste	CR, EC, NC, OK, WC	Alpine Lakes WA Colville NF Gifford Pinchot NF Glacier Peak WA Henry M. Jackson WA Mt. Rainier NP Mt. St. Helens NVM Okanogan-Wenatchee NF
Carex rostrata (sensu stricto) beaked sedge	G5/S2	Sens	B-Sens F-Sens	Sparse	Fer, Peo	CR, OK	Colville NF
Carex scirpoidea ssp. scirpoidea Canadian single-spike sedge	G5T5/S2	Sens	B-Sens F-Sens	Periph	Jef, Ktt, Mas, Oka, Whc	EC, NC, OK, PC	Chopaka Mountain NAP Mt. Baker WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF Olympic NP Pasayten WA
Carex stylosa long-styled sedge	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Jef, Kin, Skg, Sno, Whc	NC, PC	Morning Star NRCA Mt. Baker-Snoqualmie NF Olympic NP
Carex sychnocephala many-headed sedge	G4/S2	Sens	B-Sens F-Sens	Sparse	Fer, Lin, Oka, Peo	CP, CR, OK	Alta Lake SP Okanogan-Wenatchee NF Sinlahekin SWA Spokane BLM
Carex tenera var. tenera quill sedge	G5TNR/ S2	Sens	B-Sens F-Sens	Sparse	Oka, Peo	CR, OK	Colville NF Sinlahekin SWA Spokane BLM
Carex tenuiflora sparse-flowered sedge	G5/S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF
Carex vallicola valley sedge	G5/S2	Sens	B-Sens F-Sens	Periph	Gra, Oka	CP, OK	Okanogan-Wenatchee NF Sinlahekin SWA Steamboat Rock SP

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Cassiope lycopodioides clubmoss cassiope	G4/S1	Threat		Periph	Kin, <u>Sno</u>	NC	Mount Si NRCA Mt. Baker Snoqualmie NF				
Castilleja chambersii Chambers paintbrush	G1/S1	Sens		LocEnd	Pac	PC					
Castilleja cryptantha obscure paintbrush	G2G3/ S2S3	Sens	B-Sens F-Sens	LocEnd	Pie, Yak	EC, WC	Mt. Rainier NP Okanogan-Wenatchee NF William O. Douglas WA				
Castilleja levisecta golden paintbrush	G2/S2	Threat	Threat	RegEnd	Clk, Isl, Jef, Ktp, Kin, Pie, Saj, Skg, Thu	PT	Admiralty Inlet NAP Deception Pass SP Ft. Casey SP Mima Mounds NAP Rocky Prairie NAP				
Castilleja victoriae Victoria's paintbrush	G1/S1	Endang		LocEnd	Saj	PT	Iceberg Island SP				
Chaenactis thompsonii Thompson's chaenactis	G3/S3	Sens	B-Sens F-Sens	LocEnd	Che, Ktt, Pie	EC, WC	Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF				
Chrysolepis chrysophylla var. chrysophylla golden chinquapin	G5T5/S2	Sens	B-Sens F-Sens	Periph	Mas, Skm	EC, PC, PT, WC	Columbia River Gorge NSA Gifford Pinchot NF Olympic NF Trapper Creek WA				
Chrysosplenium tetrandrum northern golden-carpet	G5/S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF				
Chylismia scapoidea ssp. brachycarpa (Camissonia scapoidea) short-fruited bee-blossom	G5 <u>T4T5</u> / S1	Threat	B-Sens	Periph	Ktt, Lin	СР	Iron Horse Pioneer Trail SP Yakima TC				
Cicuta bulbifera bulb-bearing water-hemlock	G5/S2S3	Sens	B-Sens F-Sens	Sparse	Che, Isl, Peo, Ste, Thu, Whc	CR, EC, PT	Colville NF Elbow Lake SP Lake Terrell SWA Little Pend Oreille River NAP Okanogan-Wenatchee NF Pend Oreille NWR				
Cirsium remotifolium var. remotifolium weak thistle	G5TNR/ S1	Sens	F-Sens	Periph	Clk, Clm, Grh, Kin, Kli, Pie, Skm, Thu	EC, PC, PT, WC	Columbia River Gorge NSA Conboy Lake NWR Gifford Pinchot NF JB Lewis McChord Klickitat SWA Lake Sylvia SP Olympic NF Soda Springs SWA Spokane BLM? Trout Lake NAP? White Salmon NRCA?				
Claytonia multiscapa ssp. pacifica Pacific lanceleaved springbeauty	G5T3T4/ S1	Endang	F-Sens	RegEnd	Clm, Grh, Jef, Mas	PC	Colonel Bob WA Mount Skokomish WA Olympic NF Olympic NP				
Cochlearia groenlandica scurvygrass	G4?/ S1S2	Threat		Periph	Clm, Grh, Jef, Mas	PC, PT	Olympic NP Washington Islands NWR				
Collinsia sparsiflora var. sparsiflora (C. s. var. bruceae) few-flowered collinsia	G4T4/S1	Threat	B-Sens F-Sens	Periph	Clk, Kli, Skm	CP, EC, PT, WC	Columbia River Gorge NSA Gifford Pinchot NF Ridgefield NWR Spokane BLM				
Collomia macrocalyx bristle-flowered collomia	G3G4/S2	Threat		RegEnd	Ktt, Yak	СР	Spokane BLM? Yakima TC				
Comastoma tenellum (Gentianella tenella) slender gentian	G4G5/S1	Threat	B-Sens F-Sens	Disjunct	Oka	OK	Chopaka Mountain NAP Okanogan-Wenatchee NF Pasayten WA				

Washington Species of Special Concern										
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area			
Coptis aspleniifolia spleenwort-leaved goldthread	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Kin, Sno	PC, WC	Mt. Baker-Snoqualmie NF Olympic NP			
Coptis trifolia threeleaf goldthread	G5/S1	Threat	B-Sens F-Sens	Periph	Clm, Peo	CR, PC	Olympic NP			
Corispermum pallidum pale bugseed	GH/SH	Extirp		RegEnd	Gra	СР	South Columbia Basin SWA			
Corispermum villosum hairy bugseed	G4?/S2	Sens		Sparse	Gra, Kli	CP, EC	Spokane BLM			
Corydalis aquae-gelidae Clackamas corydalis	G3/S2	Threat	B-Sens F-Sens	RegEnd	Clk, Cow, Skm	WC	Gifford Pinchot NF Mt. St. Helens NVM			
Crassula connata erect pygmyweed	G5/S1	Threat		Disjunct	Saj	PT	Lime Kiln Point SP San Juan Island NHP			
Crataegus phippsii Phipps' hawthorn	G2G3/S1	Sens		RegEnd	Oka	OK				
Crepis bakeri ssp. idahoensis Idaho hawksbeard	G4T2/S1	Endang		RegEnd	Aso	BM	Asotin Creek SWA Chief Joesph SWA			
Cryptantha gracilis narrow-stem cryptantha	G5/S2	Sens	B-Sens	Sparse	Aso, Dou, Gra, Ktt, Yak	BM, CP	Chief Joseph SWA Spokane BLM Sun Lakes SP Yakima TC			
Cryptantha leucophaea gray cryptantha	G2G3/S2	Threat	B-Sens	RegEnd	Ben, Dou, Fra, Gra, Ktt, Waw, Yak	СР, <u>ЕС</u>	Colockum SWA Columbia NWR Crab Creek SWA Gingko Petrified Forest SP Hanford ERP Juniper Dunes WA North Columbia Basin SWA Saddle Mountain NWR South Columbia Basin SWA Spokane BLM Yakima TC			
Cryptantha rostellata beaked cryptantha	G4/S2	Threat	B-Sens F-Sens	RegEnd	Aso, Kli, Ktt, Waw, Wht, Yak	BM, CP, EC	Badger Gap NAP Chief Joseph SWA Columbia River Gorge NSA Spokane BLM Yakima TC			
Cryptantha scoparia desert cryptantha	G4?/S2	Sens		Sparse	Ben, <u>Dou,</u> Gra, Ktt, Yak	СР	Hanford ERP Sun Lakes SP Yakima TC			
Cryptantha spiculifera Snake River cryptantha	G4?/ S2S3	Sens	B-Sens	Sparse	Ada, Ben, Che, Fra, Gra, Kli, Lin, Oka, Yak	CP, EC, OK	Entiat Slopes NAP Hanford ERP Riverside Breaks NAP South Columbia Basin SWA Spokane BLM			
Cryptogramma stelleri Steller's rockbrake	G5/S2	Sens	B-Sens F-Sens	Periph	Che, Oka, Peo, Ste	CR, EC, OK	Chelan-Sawtooth WA Colville NF Glacier Peak WA Okanogan-Wenatchee NF Trombetta Canyon NAP			
Cuscuta denticulata desert dodder	G4G5/S1	Threat		Periph	Ben, Fra	СР	Hanford ERP South Columbia SWA			
Cusickiella douglasii Douglas' draba	G4G5/S1	Threat	B-Sens F-Sens	Periph	Kli	CP, EC	Columbia Hills NAP Columbia River Gorge NSA			

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Cypripedium parviflorum (includes vars. makasin & pubescens) yellow lady's slipper	G5/S2	Sens	B-Sens F-Sens	Sparse	Fer, Oka, Spo, Ste	CP, CR, OK	Colville NF Sinlahekin SWA Spokane BLM Turnbull NWR				
Dactylorhiza viridis (Coeloglossum viride var. virescens) long-bract frog orchid	G5/S1	Threat	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF				
Damasonium californicum fringed water-plantain	G4/S1	Threat	F-Sens	Periph	Kli	СР	Columbia Hills SP Columbia River Gorge NSA Gifford Pinchot NF				
Delphinium leucophaeum pale larkspur	<u>G2</u> /S1	Endang		RegEnd	Lew	PT					
Delphinium viridescens Wenatchee larkspur	G2/S2	Threat	B-Sens F-Sens	LocEnd	Che, Dou, Ktt	CP, EC	Camas Meadows NAP Okanogan-Wenatchee NF				
Dendrolycopodium dendroideum (Lycopodium dendroideum) treelike clubmoss	G5/S2	Sens	B-Sens F-Sens	Sparse	Kin, Peo, Sno, Whc	CR, NC	Colville NF Kaniksu NF Mt. Baker-Snoqualmie NF North Cascades NP Ross Lake NRA				
Diplacus cusickioides (D. cusickii misapplied, Mimulus cusickii) Cusick's monkeyflower	<u>G4G5</u> /S1	Threat	B-Sens F-Sens	Periph	Aso, Che, Kli	BM, CP, EC	Chief Jospeh SWA Columbia River Gorge NSA Okanogan-Wenatchee NF				
Dodecatheon austrofrigidum frigid shootingstar	G2/S1	Endang	B-Sens F-Sens	RegEnd	Grh, Pac	PC	Colonel Bob WA Olympic NF				
Draba aurea golden draba	G5/S1	Sens	B-Sens F-Sens	Periph	Oka, Whc	NC, OK	Chopaka Mountain NAP Okanogan-Wenatchee NF Pasayten WA				
Draba cana lance-leaved draba	G5/S1	Sens	B-Sens F-Sens	Periph	Clm, Oka	OK, PC	Buckhorn WA Okanogan-Wenatchee NF Olympic NF Pasayten WA				
<i>Draba taylori</i> Taylor's draba	<u>G1G2/S1</u>	Endang	F-Sens	LocEnd	Oka	OK	Okanogan-Wenatchee NF				
Dryas drummondii var. drummondii yellow mountain-avens	G5T5/S2	Sens	B-Sens F-Sens	Periph	Jef. Peo, Sno, Ste	CR, NC, PC	Colville NF Glacier Peak WA Mt. Baker-Snoqualmie NF Olympic NF Olympic NP Trombetta Canyon NAP				
Dryopteris cristata crested shield-fern	G5/S2	Sens	B-Sens F-Sens	Periph	Peo, Ste	CR, OK	Colville NF Kaniksu NF Little Pend Oreille NAP				
Eatonella nivea white eatonella	G4G5/S2	Threat		Periph	Gra, Ktt	СР	Hanford ERP North Columbia Basin SWA Saddle Mountain NWR Yakima TC				
Eleocharis atropurpurea purple spike-rush	G4G5/ SX	Extirp		Disjunct	Che	EC	Okanogan-Wenatchee NF?				
Eleocharis coloradoensis dwarf spike-rush	GNR/ <u>S1</u>	Sens		Sparse	Ben, Gra, Wht	СР	Columbia Park (DOD)				
Eleocharis mamillata ssp. mamillata soft-stemmed spikerush	G4?T4?/ S1	Sens		Periph	Skg	NC					

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Eleocharis rostellata beaked spike-rush	G5/S2	Sens		Sparse	Gra, Oka, Peo, Yak	CP, OK	Colville NF Sinlahekin SWA Sun Lakes SP Yakima TC				
Epilobium mirabile (E. glandulosum var. macounii) Olympic Mountain willowherb	G4Q/S1	Sens		RegEnd	Clm, Whc	NC, PC	Mt. Baker WA Mt. Baker-Snoqualmie NF Olympic NP				
Eremogone franklinii var. thompsonii (Arenaria f. var. t.) Thompson's sandwort	G4 <u>T2Q</u> / S2	Sens		RegEnd	Ben, Gra	СР	Hanford ERP South Columbia Basin SWA				
Eremothera minor (Camissonia minor) small-flower evening- primrose	G4/S2	Sens		Sparse	Ben, Gra, Kli, Ktt, Yak	CP, EC	Hanford ERP Saddle Mountain NWR				
Eremothera pygmaea (Camissonia pygmaea) dwarf evening-primrose	G3/S3	Sens	B-Sens F-Sens	RegEnd	Ben, Dou, Fra, Gra, Ktt, Yak	СР	Hanford ERP North Columbia Basin SWA Saddle Mountain NWR South Columbia Basin SWA Spokane BLM Steamboat Rock SP Sun Lakes SP Yakima TC				
Erigeron aliceae Alice's fleabane	G4/S2	Sens	B-Sens	RegEnd	Clm, Grh, Lew, Pac	PC	Colonel Bob WA Olympic NF Olympic NP Willapa Divide NAP				
Erigeron basalticus basalt daisy	G2/S2	Threat	B-Sens	LocEnd	Ktt, Yak	СР	LT Murray SWA Selah Cliffs NAP Spokane BLM Yakima TC				
Erigeron davisii (E. engelmannii var. davisii) Davis' fleabane	G3/S1	Sens	B-Sens F-Sens	RegEnd	Aso, <u>Gar</u>	BM	Vale BLM William T. Wooten SWA				
Erigeron disparipilus Snake River daisy	G5/S2	Sens		RegEnd	Aso, Col, Gar	ВМ, СР	Fields Spring SP Umatilla NF William T Wooten SWA				
Erigeron howellii Howell's daisy	G2/S2	Threat	B-Sens F-Sens	LocEnd	Ska	WC	Columbia Falls NAP Columbia River Gorge NSA Table Mt/Greenleaf Pk NRCA				
Erigeron oreganus gorge daisy	G3/S2	Threat	B-Sens F-Sens	RegEnd	Ska, Whk	PC, WC	Beacon Rock SP Columbia Falls NAP Columbia River Gorge NSA Gifford Pinchot NF				
Erigeron peregrinus var. thompsonii Thompson's wandering daisy	G5T3/S2	Threat	B-Sens F-Sens	LocEnd	Grh, Jef	PC	Olympic NF Olympic NP				
Erigeron salishii Salish fleabane	G3/S2	Sens	B-Sens F-Sens	RegEnd	Che, Sno	EC, NC	Alpine Lakes WA Chelan-Sawtooth WA Glacier Peak WA Lake Chelan NRA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF				
Eriogonum codium Umtanum desert buckwheat	G1/S1	Endang	Threat	LocEnd	Ben	СР	Hanford Reach NM				

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Eriogonum maculatum	G5/SX	Extirp		Periph	Yak	СР					
spotted buckwheat Eriophorum viridicarinatum green keeled cottongrass	G5/S2	Sens	B-Sens F-Sens	Periph	Fer, Oka, Peo, Ska, Spo	CP, CR, OK, WC	Colville NF Gifford Pinchot NF Kaniksu NF Mt. St. Helens NVM Okanogan-Wenatchee NF Pasayten WA Salmo Priest WA Spokane BLM				
Eritrichium argenteum (E. nanum var. elongatum) pale alpine fotget-me-not	G4/S1	Sens	B-Sens F-Sens	Periph	Che, Oka	EC, OK	Chelan-Sawtooth WA Okanogan-Wenatchee NF				
Eryngium articulatum jointed coyote-thistle	G5/SH	Extirp		Periph	Spo, Wht	СР					
Eryngium petiolatum Oregon coyote-thistle	G4/S2	Threat	B-Sens F-Sens	RegEnd	Clk, Kli, Lew	EC, PT	Columbia River Gorge NSA Conboy Lake NWR Klickitat SWA Lacamas Prairie NAP				
*Erythranthe ampliata Nez Perce monkeyflower	G3/SH	Threat		RegEnd	Aso	BM	Vale BLM?				
Erythranthe jungermannioides (Mimulus j.) liverwort monkeyflower	G3/SH	Extirp		RegEnd	Kli	EC	Columbia River Gorge NSA				
Erythranthe patula (Mimulus patulus) stalk-leaved monkeyflower	G3?/S2?	Threat	B-Sens F-Sens	Periph	Aso, Oka	BM, CP, OK	Asotin Creek SWA Okanogan-Wenatchee NF Vale BLM				
Erythranthe pulsiferae (Mimulus pulsiferae) Pulsifer's monkeyflower	G4?/S2	Sens	B-Sens F-Sens	Sparse	Kli, Oka, Skm, Waw, Wht, Yak	CP, EC, OK, WC	Columbia River Gorge NSA Conboy Lake NWR Gifford Pinchot NF Klickitat Canyon NRCA Okanogan-Wenatchee NF Trout Lake NAP				
Erythranthe suksdorfii (Mimulus suksdorfii) Suksdorf's monkeyflower	G4/S2S3	Sens	B-Sens F-Sens	Sparse	Ben, Che, Dou, Gra, Kli, Ktt, Oka, Yak	CP, EC, OK	Columbia River Gorge NSA Crab Creek SWA Hanford ERP Marcellus Shrub Steppe NAP Mt. Adams WA North Columbia Basin SWA Okanogan-Wenatchee NF Steamboat Rock SP Sun Lakes SP Yakima TC				
Erythranthe washingtonensis (Mimulus w.) Washington monkeyflower	G4/ <u>SH</u>	Extirp		RegEnd	Ada?, Col?, Kli, Oka?, Skm	BM?, CP?, EC, OK?, WC	Columbia River Gorge NSA Conboy Lake NWR Okanogan-Wenatchee NF? Umatilla NF? Wenaha-Tucannon WA?				
Erythronium quinaultense Quinault fawn-lily	G1G2/ S1S2	Threat	F-Sens	LocEnd	Clm, Grh, Jef	PC	Olympic NF				
Erythronium revolutum pink fawn-lily	G4G5/S3	Sens		Sparse	Clm, Cow, Grh, Jef, Lew, Pac, Skg, Thu, Whk	PC, PT	Deception Pass SP Olympic NF				

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Euonymus occidentalis var. occidentalis western wahoo	G5TNR/ S2	Sens		Periph	Clk, Cow, Lew, Pac, Thu	PC, PT, WC	Lewis & Clark SP Mt. St. Helens SWA				
Eurybia merita (Aster meritus) subalpine aster	G5/S2	Threat	F-Sens	Periph	Oka, Saj, Sno?, Ste, Whc	CR, NC, OK, PT	Colville NF Glacier Peak WA Moran SP Mt. Baker WA Mt. Baker-Snoqualmie NF				
Eutrochium maculatum var. bruneri (Eupatorium maculatus) spotted Joe-Pye weed	G5T5/ SH	Extirp		Periph	Whc	PT					
Filipendula occidentalis queen-of-the-forest	G2G3/ S2S3	Sens		RegEnd	Pac	PC					
Fritillaria camschatcensis black lily	G5/S2	Threat	B-Sens F-Sens	Periph	Isl, Kin, Skg, Skm, Sno	NC, PT, WC	Alpine Lakes WA Boulder River WA Columbia River Gorge NSA Deception Pass SP Morning Star NRCA Mt. Baker-Snoqualmie NF				
Gaultheria hispidula creeping snowberry	G5/S2	Sens	B-Sens F-Sens	Periph	Peo	CR	Colville NF Kaniksu NF Salmo Priest WA				
Gentiana douglasiana swamp gentian	G5/S2	Sens	B-Sens F-Sens	Periph	Clm, Kin, Ktt	EC, PC, WC	Okanogan-Wenatchee NF Olympic NP				
Gentiana glauca glaucous gentian	G4G5/S2	Sens	B-Sens F-Sens	Periph	Oka, Whc	NC, OK	Chopaka Mountain NAP Mt. Baker WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF Pasayten WA				
Geranium oreganum Oregon crane's-bill	G4G5/ SX	Extirp		Periph	Clk	PT	1 404/01/11/1				
Geum rivale water avens	G5/S2S3	Sens	B-Sens F-Sens	Periph	Fer, Oka, Peo, Ste	CR, OK	Colville NF Okanogan-Wenatchee NF Pasayten WA				
Geum rossii var. depressum Ross' avens	G5T1/S1	Endang	F-Sens	LocEnd	Che	EC	Alpine Lakes WA Okanogan-Wenatchee NF				
Githopsis specularioides common bluecup	G5/S2S3	Sens	B-Sens F-Sens	Sparse	Che, Kli, Lew, Mas, Pie, Skm, Thu, Wht	CP, EC, PC, PT, WC	Bald Hill NAP Chelan-Sawtooth WA Columbia River Gorge NSA Gifford Pinchot NF Hamma Hamma Balds NAP Klickitat SWA Lake Chelan NRA Okanogan-Wenatchee NF Spokane BLM				
Hackelia cinerea gray stickseed	G4?/S1	Threat	B-Sens F-Sens	Periph	Che?, Dou?, Lin, Spo, Ste	CP, EC?. OK	Riverside SP				
Hackelia diffusa var. diffusa diffuse stickseed	G4T3/S2	Threat	B-Sens F-Sens	RegEnd	Col, Kli, Yak	BM, EC	Columbia River Gorge NSA Klickitat SWA Klickitat Canyon NRCA Umatilla NF				
Hackelia hispda var. disjuncta sagebrush stickseed	G4T3/S3	Sens	B-Sens F-Sens	LocEnd	Che, Dou, Gra, Ktt	CP, EC	Okanogan-Wenatchee NF Spokane BLM Sun Lakes SP				

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Hackelia hispida var. hispida rough stickseed	G4T4/S1	Threat	B-Sens F-Sens	RegEnd	Aso	BM	Vale BLM				
Hackelia taylorii Taylor's stickseed	G2/S2	Threat	F-Sens	LocEnd	Che	EC	Alpine Lakes WA Okanogan-Wenatchee NF				
Hackelia venusta showy stickseed	G1/S1	Endang	Endang	LocEnd	Che	EC	Okanogan-Wenatchee NF				
Hedysarum occidentale western hedysarum	G5/S2	Sens	F-Sens	Sparse	Clm, Jef, Mas, Skm	PC, WC	Gifford Pinchot NF Mt. Skokomish WA Mt. St. Helens NVM Olympic NF Olympic NP				
Heterotheca oregona Oregon goldenaster	G4/S2	Sens	B-Sens F-Sens	Sparse	Kin, Ktt, Lew, Mas, Pie, Thu, Yak	CP, EC, PC, PT, WC	Federation Forest SP JB Lewis McChord Oak Creek SWA Okanogan-Wenatchee NF Olympic NF				
Howellia aquatilis water howellia	G3/S2	Threat	Threat	Sparse	Clk, <u>Mas</u> , Pie, Spo, Thu	CP, PT	Dishman Hills NRCA JB Lewis McChord Ridgefield NWR Scatter Creek SWA Spokane BLM Turnbull NWR				
Hymenophyllum wrightii Wright's filmy fern	G4?/S1	Sens		Periph	Clm, Jef	PC	Olympic NP				
Hypericum majus Canadian St. John's-wort	G5/S2	Sens		Sparse	Ben, Fra, Kin, Ktp, Peo, Skg, Spo, Thu, Whc	CP, CR, NC, PT	Colville NF Hanford ERP South Columbia Basin SWA Square Lake SP?				
Impatiens noli-tangere western jewel-weed	G4G5/S1	Threat	B-Sens F-Sens	Sparse	Skg, Spo, Whc	NC, OK, PT	Mt. Baker-Snoqualmie NF				
Isöetes minima midget quillwort	G1G2/S1	Sens	B-Sens F-Sens	RegEnd	Ktt, Oka, Spo	CP, EC, OK	Okanogan-Wenatchee NF				
Isöetes nuttallii Nuttall's quillwort	G4?/S2	Sens	B-Sens F-Sens	Sparse	Clk, Cow, Kli, Lew, Pie, Saj, Thu	EC, PT	Bald Hill NAP Cattle Point NRCA Columbia Hills Historical SP Columbia River Gorge NSA Conboy Lake NWR JB Lewis McChord				
Juncus hemiendytus var. hemiendytus dwarf rush	G5T5/S1	Threat		Periph	Kli, Spo, Yak	CP, EC	Conboy Lake NWR Klickitat Canyon NRCA Turnbull NWR				
Juncus howellii Howell's rush	G4/S1	Threat	B-Sens F-Sens	Sparse	Ktt, Skm	EC	Gifford Pinchot NF Okanogan-Wenatchee NF				
Juncus kelloggii Kellogg's rush	G3?/S1	Endang	B-Sens F-Sens	Periph	Kli, Yak	EC	Columbia River Gorge NSA Conboy Lake NWR Klickitat Canyon NRCA				
*Juncus patens spreading rush	G5/S1	Sens		Periph	Cla	PT	Lacamas Prairie NAP				
Juncus tiehmii Tiehm's rush	G4/S1	Threat	B-Sens	Disjunct	Dou	СР	Spokane BLM				
Juncus uncialis inch-high rush	G3G4/S2	Threat	B-Sens	Sparse	Ada, Dou, Gra, Kli, Lin, Spo	СР	Columbia Hills Historical SP Columbia River Gorge NSA Fairchild AFB Marcellus Shrub Steppe NAP North Columbia Basin SWA Swanson Lakes SWA				

Washington Species of Special Concern											
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Kalmia procumbens (Loiseluria procumbens) alpine azalea	G5/S1	Threat	B-Sens F-Sens	Periph	Che, Skg,	EC, NC	Glacier Peak WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF				
Lasthenia glaberrima smooth goldfields	G5/S1	Threat	B-Sens F-Sens	Periph	Clk, Kli	CP, PT	Columbia Hills Historical SP Columbia River Gorge NSA				
Lathrocasis tenerrima (Gilia tenerrima) delicate gilia	G5/S1	Threat	B-Sens F-Sens	Sparse	Che, Dou, Oka	CP, EC, OK	Okanogan-Wenatchee NF Spokane BLM				
Lathyrus holochlorus thin-leaved peavine	G2?/S1	Endang		RegEnd	Lew	PT					
Lathyrus torreyi Torrey's peavine	G5/S1	Threat		Sparse	Clk, Lew, Pie	PT, WC	JB Lewis McChord				
Lathyrus vestitus var. ochropetalus Pacific pea	G5TNR/ S1	Endang		RegEnd	Kin, Lew, Thu	PT	Lewis & Clark SP				
Lepidium oxycarpum sharpfruited peppergrass	G4/S1	Endang		Disjunct	Saj	PT	Cattle Point NRCA				
Leptosiphon bolanderi Baker's linanthus	G4G5/S2	Sens	B-Sens F-Sens	Periph	Kli	EC	Columbia River Gorge NSA Klickitat SWA Spokane BLM				
*Leptosiphon minimus (Linanthus bicolor var. m.) true babystars	GNR/ S1S2	Sens		RegEnd	Isl, Saj, Skg, Thu	PT	Anacortes CF Deception Pass SP Moran SP Scatter Creek SWA Spokane BLM				
Leymus flavescens (Elymus flavescens) yellow wildrye	G4/S1	Sens	B-Sens	RegEnd	Ada, Ben, Fra, Gar, Gra, Kli, Ktt, Skm, Waw, Wht	EC, CP	Columbia River Gorge NSA Hanford Reach NM Juniper Dunes WA Spokane BLM				
Liparis loeselii bog twayblade	G5/S1	Endang		Disjunct	Kli, Saj	EC, PT	Conboy Lake NWR Killebrew Lake NAP				
Lipocarpha aristulata awned halfchaff sedge	G5?/ S1S2	Threat	B-Sens F-Sens	Disjunct	Aso, Ben, Gar, Gra, Kli, Spo, Wht, Yak	CP, EC	Columbia River Gorge NSA Crab Creek SWA Hanford NWR Hanford Reach NM				
Lobelia dortmanna water lobelia	G4G5/S3	Sens		Sparse	Clm, Kin, Mas, Saj, Skg, Sno, Whc	NC, PC, PT	Moran SP Olympic NP				
<i>Lobelia kalmii</i> Kalm's lobelia	G5/S1	Endang		Disjunct	Yak	СР	Yakima TC				
Loeflingia squarrosa spreading pygmyleaf	G5/S1	Threat		Disjunct	Ben	СР	Hanford ERP				
Lomatium bradshawii Bradshaw's desert-parsley	G2/S1	Endang	Endang	RegEnd	Clk	PT	Lacamas Prairie NAP				
Lomatium knokei Knoke's desert-parsley	G1/S1	Threat	B-Sens F-Sens	LocEnd	Ktt	EC	Okanogan-Wenatchee NF				
Lomatium laevigatum smooth desert-parsley	G3/S2S3	Threat	B-Sens F-Sens	LocEnd	Kli	СР	Columbia Hills Historical SP Columbia River Gorge NSA Gifford Pinchot NF				
Lomatium lithosolamans (Tauschia hooveri) Hoover's tauschia	G2G3/ S2S3	Sens	B-Sens	LocEnd	Ktt, Yak	CP, EC	Fort Simcoe SP LT Murray SWA Spokane BLM				
Lomatium rollinsii Rollins' desert-parsley	G3/S2	Threat	B-Sens F-Sens	RegEnd	Aso	ВМ, СР	Chief Joseph SWA Fields Spring SP Umatilla NF Vale BLM				

					cial Concern		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
*Lomatium roneorum Leavenworth desert-parsley	G1/S1	Endang		LocEnd	Che	EC	Okanogan-Wenatchee NF
Lomatium sandbergii Sandberg's desert-parsley	G4/SH	Extirp		RegEnd	Oka, Peo	CR, OK	Kaniksu NF Okanogan-Wenatchee NF Salmo Priest WA
Lomatium serpentinum Snake Canyon desert- parsley	G4/S2	Sens	B-Sens	RegEnd	Aso, Col, Gar, Gra, Waw, Wht	ВМ, СР	Chief Joseph SWA McNary SWA Vale BLM
<i>Lomatium suksdorfii</i> Suksdorf`s desert-parsley	G3/S3	Sens	B-Sens F-Sens	LocEnd	Kli	EC	Columbia River Gorge NSA Gifford Pinchot NF Klickitat SWA Spokane BLM White Salmon Oak NRCA
Lomatium tamanitchii (L. packardiae var. t.) ribseed biscuitroot	G3?/S2	Sens	F-Sens	LocEnd	Kli	СР	Cleveland Shrub Steppe NAP? Columbia River Gorge NSA
Lomatium tenuissimum (<u>Tauschia tenuissima</u>) Leiberg's tauschia	G3/SX	Extirp		RegEnd	Spo	СР	Ţ.
Lomatium tuberosum Hoover's desert-parsley	G2G3/ S2S3	Sens	B-Sens	RegEnd	Ben, Gra, Ktt, Yak	CP, EC	Columbia NWR Crab Creek SWA Hanford ERP Oak Creek SWA Spokane BLM Yakima TC
Lupinus oreganus var. kincaidii Kincaid's sulphur lupine	G4T2/ S1	Endang	Threat	RegEnd	Lew	PT	Lozier Prairie Preserve
* <u>Lupinus pachylobus</u> Bigpod lupine	G4/S1	Sens		Disjunct	Saj	PT	Sentinel Island TNC Preserve
Lupinus sabinianus Sabin's lupine	G3/S1	Endang		LocEnd	Aso, Waw	BM, CP	
Luzula arcuata ssp. unalaschcensis curved woodrush	G5T3T5/ S1	Threat	F-Sens	Sparse	Oka, Pie, Skg, Yak	EC, NC, OK, WC	Gifford Pinchot NF Mt. Adams WA Mt. Rainier NP Okanogan-Wenatchee NF Pasayten WA
Lycopodiella inundata bog clubmoss	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Kin, Ktp, Pac, Pie, Skm, Thu, Whc	NC, PC, PT, WC	Columbia River Gorge NSA JB Lewis McChord North Cascades NP Olympic NP Ross Lake NRA Skating Lake SP
Lycopodium lagopus one-cone clubmoss	G5/S1	Sens		Disjunct	Che, <u>Kin</u> , Whc	EC, NC	Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF
Malaxis monophyllos var. brachypoda (M. brachypoda) white adder's-mouth orchid	G4G5 T4T5Q/ S1	Sens	F-Sens	Periph	Whc	NC	Mt. Baker-Snoqualmie NF
Meconella oregana white meconella	G2G3/S1	Endang	B-Sens F-Sens	RegEnd	Isl, Kin, Kli, Pie, Saj	EC, PT	Columbia River Gorge NSA Deception Pass SP Gifford Pinchot NF
Micranthes tischii (Saxifraga tischii) Tisch's saxifrage	G1G2/ S1?	Sens	F-Sens	RegEnd	Clm, Jef	PC	Buckhorn WA Olympic NF Olympic NP
Micromonolepis pusilla red poverty-weed	G5/S1	Threat	B-Sens F-Sens	Disjunct	Dou, Gra, Yak	СР	Hanford ERP

		Wash	ington Spe	cies of Spe	cial Concern	_	
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Microseris bigelovii coast microseris	G4/SX	Extirp		Periph	Saj	PT	
Microseris borealis northern microseris	G5/S2	Sens	B-Sens F-Sens	Sparse	Clm, Pie, Skm	EC, PC, WC	Gifford Pinchot NF Mt. Adams WA Mt. Rainier NP Mt. St. Helens NVM Olympic NP
Mimetanthe pilosa false monkeyflower	G5/S1	Sens		Sparse	Ben, Dou, Gra, Kli, Skm, Waw, Wht, Yak	CP, EC	Gifford Pinchot NF
Montia diffusa branching montia	G4/S1S2	Sens	B-Sens F-Sens	RegEnd	Clm, Clk, Grh, <u>Jef</u> , Kin, Kli, Lew, Pie, Skg, Skm, Sno	EC, NC, PC, PT, WC	Columbia River Gorge NSA Gifford Pinchot NF Mt. St. Helens NVM Olympic NP
Muhlenbergia glomerata marsh muhly	G5/S2	Sens	B-Sens F-Sens	Periph	Oka, Peo, Spo	CP, CR, OK	Colville NF Kaniksu NF
Myosurus alopecuroides (M. clavicaulis) foxtail mousetail	G3?/S2	Threat	B-Sens	Sparse	Ada, Ben, Kli, Lin, Spo	СР	Columbia Hills Historical SP Columbia River Gorge NSA Fairchild AFB Hanford ERP Klickitat SWA Marcellus Shrub Steppe NAP Spokane BLM Turnbull NWR
*Myosurus sessilis Vernal pool mousetail	G2/S1	Endang		Periph	Kli	CP	WA DNR?
Myriopteris gracilis (Cheilanthes feei) Fee's lip-fern	G5/S1	Threat	B-Sens	Periph	Aso, Wht	ВМ, СР	Vale BLM
*Navarretia leucocephala ssp. diffusa least pincushion-plant	G4 <u>T1</u> / S1	Threat		LocEnd	Lin, Spo	СР	Spokane BLM Swanson Lakes SWA
Navarretia tagetina marigold navarretia	G5/S1	Threat	B-Sens F-Sens	Periph	Kli	EC	Columbia River Gorge NSA Gifford Pinchot NF
Nicotiana attenuata coyote tobacco	G4/S2	Sens	B-Sens F-Sens	Sparse	Ben, Che, Dou, Fra, Gra, Kli, Ktt, <u>Wht</u> , Yak	CP, EC	Colockum SWA Columbia River Gorge NSA Gingko Petrified Forest SP Hanford ERP Oak Creek SWA Okanogan-Wenatchee NF Spokane BLM Two Steppe NAP Yakima TC
Nuttallanthus texanus (Linaria canadensis var. texana) Texas toadflax	G4G5/S1	Threat		Sparse	Isl, Kin, Pie, Skg, Thu	PT	Deception Pass SP Glacial Heritage Preserve JB Lewis McChord Scatter Creek SWA
Nymphaea tetragona pygmy water-lily	G5/SH	Extirp		Periph	Whc	PT	
Oenothera cespitosa ssp. cespitosa caespitose evening-primrose	G5T5/S2	Sens	B-Sens	Periph	Ben, Gra, Kli, Ktt, Yak	СР	Columbia NWR Hanford ERP Saddle Mountain NWR Spokane BLM Yakima TC

	_	Wash	ington Spe	cies of Spe	cial Concern		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Oenothera cespitosa ssp. marginata tufted evening-primrose	G5T3T5/ S1	Threat	B-Sens F-Sens	Periph	Aso, Kli, Wht	BM, CP, EC	Asotin Creek SWA Chief Joseph SWA Vale BLM
Oenothera flava ssp. flava long-tubed evening- primrose	G5T3T5/ SH	Extirp		Periph	Yak	СР	
Ophioglossum pusillum adder's-tongue	G5/S2	Sens	B-Sens F-Sens	Sparse	Che, Dou, Kli, Ktt, Mas, <u>Oka</u> , Peo, Saj, Ste	CP, CR, EC, <u>OK</u> , PC, PT	Colville NF Conboy Lake NWR Killebrew Lake NAP Little Pend Oreille NWR Spokane BLM
Orthocarpus bracteosus rosy owl's-clover	G3?/S2	Threat	B-Sens F-Sens	RegEnd	Kli, Saj, Skm, Whc, Yak	EC, PT	Conboy Lake NWR Gifford Pinchot NF Trout Lake NAP
Oxalis suksdorfii western yellow oxalis	G4/ <u>SH</u>	Extirp		RegEnd	Clm, Clk, Kli, Ktp	EC, PC, PT	Columbia River Gorge NSA
Oxytropis borealis var. viscida sticky crazyweed	G5T4?/ S1S2	Sens		Periph	Clm	PC	Olympic NP
Oxytropis campestris var. columbiana Columbia crazyweed	G5T2/S1	Endang		RegEnd	Fer, Oka, Ste	CR, OK	Roosevelt Lake NRA Spokane BLM
Oxytropis campestris var. gracilis (O. monticola) slender crazyweed	G5 <u>T5</u> / S2	Sens	B-Sens F-Sens	Sparse	Clm, Jef, Ktt, Oka, Pie, Saj, Whc	EC, NC, OK, PC, PT, WC	Buckhorn WA Mt. Baker WA Mt. Baker-Snoqualmie NF Mt. Rainier NP Okanogan-Wenatchee NF Olympic NF Olympic NP Pasayten WA San Juan Islands NWR
Oxytropis campestris var. wanapum Wanapum crazyweed	G5T1/S1	Endang	B-Sens	LocEnd	Gra	СР	Spokane BLM
Packera bolanderi var. harfordii (Senecio bolanderi var. h.) Harford's ragwort	G4TUQ/ S1	Sens	F-Sens	RegEnd	Che, Oka, Skm, Whk	EC, OK , PC, WC	Beacon Rock SP Columbia River Gorge NSA Gifford Pinchot NF
Packera macounii (Senecio macounii) Siskiyou Mountain ragwort	G5/S1	Threat		RegEnd	Saj, <u>Skg</u>	PT	Burrows Island SP Moran SP
Packera porteri (Senecio porteri) Porter's butterweed	G4/S1	Endang	F-Sens	Disjunct	Oka	OK	Chelan-Sawtooth WA North Cascades NP Okanogan-Wenatchee NF
Parnassia cirrata var. intermedia (P. fimbriata var. hoodiana) Cascade grass-of-Parnassus	G5T3/S1	Threat		Periph	Skm	WC	g
Parnassia kotzebuei Kotzebue's grass-of- Parnassus	G5/S1	Threat	B-Sens F-Sens	Periph	<u>Che</u> , Oka	OK	Chelan-Sawtooth WA Okanogan-Wenatchee NF
Parnassia palustris (P. p. var. neogaea, var. tenuis) northern grass-of-Parnassus	G5/S2	Sens	B-Sens F-Sens	Periph	Grh, Jef, Mas, Pac	PC	Olympic NF Olympic NP
Pedicularis pulchella mountain lousewort	G3/S1	Sens	<u>F-Sens</u>	Disjunct	Che	EC	Alpine Lakes WA Okanogan-Wenatchee NF

Howitage	Washington Species of Special Concern Species Heritage State Federal Dist. County Eco- Managed Area											
Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area						
G2G3/ S2S3	Sens	F-Sens	LocEnd	Lew, Pie, Yak	EC, WC	Clearwater WA Mt. Baker-Snoqualmie NF Mt. Rainier NP Okanogan-Wenatchee NF						
G4/S2	Sens	B-Sens	RegEnd	Dou, Gra, Ktt, Yak	EC, CP	Colockum SWA Gingko Petrified Forest SP LT Murray SWA North Columbia Basin SWA Quilomene SWA Spokane BLM Yakima TC						
G4G5/S2	Sens	B-Sens F-Sens	Disjunct	Che	EC	Chelan-Sawtooth WA Okanogan-Wenatchee NF						
G5/S2	Sens	F-Sens	Sparse	Che, Jef, Kin, Ktt, Mas, Ste	CR, EC, PC	Buckhorn WA Glacier Peak WA Mt Baker Snoqualmie NF Okanogan-Wenatchee NF Olympic NF Olympic NP Spokane BLM						
<u>G2G3</u> /S1	Threat		Periph	Ste	OK	Trombetta Canyon NAP						
G2/S2	Threat	B-Sens F-Sens	LocEnd	Kli, Skm	EC	Columbia River Gorge NSA Gifford Pinchot NF Klickitat SWA Spokane BLM						
G5T1T2/ S1	Threat	B-Sens F-Sens	RegEnd	Kli	СР	Columbia Hills NAP Columbia River Gorge NSA						
G4T2/S2	Threat	B-Sens F-Sens	RegEnd	Che, <u>Dou</u> , Fra, Gra, Kli, Ktt, <u>Lin</u> , Spo	CP, EC	Colockum SWA Entiat Slopes NAP Hanford ERP Okanogan-Wenatchee NF Peshastin Pinnacles SP Riverside SP Saddle Mountain NWR South Columbia Basin SWA Spokane BLM						
<u>G1</u> /S1	Endang		RegEnd	Clk	PT	Lacamas Prairie NAP						
G3/S2	Threat	F-Sens	RegEnd	Aso, Col, Gar	BM	Chief Joseph SWA Fields Spring SP Umatilla NF Wenaha Tucannon WA						
G4/S1	Threat	B-Sens F-Sens	RegEnd	Col, Gra, Oka, Skm, Spo, Wht	BM, CP, OK, WC	Columbia River Gorge NSA Gifford Pinchot NF North Columbia Basin SWA Okanogan-Wenatchee NF Trapper Creek WA Umatilla NF						
G4G5/ SH	Extirp		Periph	Skm	WC	Columbia River Gorge NSA						
G5T3T5/ S1	Endang	B-Sens	Periph	Aso	BM	Vale BLM						
	G2G3/ S2S3 G4/S2 G4/S2 G5/S2 G5/S2 G5/S2 G5/T1T2/ S1 G4T2/S2 G1/S1 G3/S2 G4/S1 G4/S1	G2G3/ S2S3 Sens G4/S2 Sens G4/S2 Sens G5/S2 Sens G5/S2 Sens G2/S2 Threat G4T2/S2 Threat G1/S1 Endang G3/S2 Threat G4/S1 Threat G4/S1 Extirp G5T3T5/ Endang	G2G3/ S2S3 Sens F-Sens G4/S2 Sens B-Sens G4/S2 Sens B-Sens G5/S2 Sens F-Sens G5/S2 Sens F-Sens G2/S2 Threat B-Sens F-Sens F-Sens G4T2/S2 Threat B-Sens F-Sens F-Sens G4/S1 Threat F-Sens G4/S1 Threat F-Sens G4/S1 Threat F-Sens G5/Sens Extirp F-Sens G5/S3/S1 Extirp F-Sens	G2G3/S2S3SensF-SensLocEndG4/S2SensB-SensRegEndG4/S2SensB-Sens F-SensDisjunct F-SensG5/S2SensF-SensSparseG2/S2ThreatB-Sens F-SensLocEndG5T1T2/S1ThreatB-Sens F-SensRegEndG4T2/S2ThreatB-Sens F-SensRegEndG3/S2ThreatB-Sens F-SensRegEndG4/S1ThreatB-Sens F-SensRegEndG4/S1ThreatB-Sens F-SensRegEndG4/S1ThreatB-Sens F-SensRegEnd	G2G3/ S2S3 Sens F-Sens LocEnd Lew, Pie, Yak G4/S2 Sens B-Sens RegEnd Dou, Gra, Ktt, Yak G4/S2 Sens B-Sens F-Sens Disjunct Che F-Sens Che, Jef, Kin, Ktt, Mas, Ste G5/S2 Sens F-Sens Sparse Che, Jef, Kin, Ktt, Mas, Ste G2/S2 Threat B-Sens F-Sens LocEnd Kli, Skm G5/S1/S2 Threat B-Sens F-Sens RegEnd Kli G4/S2 Threat B-Sens F-Sens RegEnd Che, Dou, Fra, Gra, Kli, Ktt, Lin, Spo G4/S1 Threat B-Sens F-Sens RegEnd Clk G3/S2 Threat F-Sens RegEnd Col, Gra, Chia, Skm, Spo, Wht G4/S1 Threat B-Sens F-Sens RegEnd Col, Gra, Oka, Skm, Spo, Wht G4G5/SH Extirp SH Periph Skm G5T3T5/ Endang B-Sens Periph Aso	G2G3/ S2S3 Sens F-Sens LocEnd Lew, Pie, Yak EC, WC Yak G4/S2 Sens B-Sens RegEnd Dou, Gra, Ktt, Yak EC, CP G4/S2 Sens B-Sens F-Sens Disjunct Che EC EC G5/S2 Sens F-Sens Sparse Che, Jef, Kin, Ktt, Mas, Ste CR, EC, PC G2/S2 Threat B-Sens F-Sens LocEnd Kli, Skm EC G5T1T2/S1 Threat B-Sens F-Sens RegEnd Kli CP G4T2/S2 Threat B-Sens F-Sens RegEnd Che, Dou, Fra, Gra, Kli, Ktt, Lin, Spo CP, EC G1/S1 Endang RegEnd Clk PT G3/S2 Threat B-Sens RegEnd Aso, Col, Gra, Oka, Skm, Spo, Wht BM, CP, Oka, Skm, Spo, Wht G4/S1 Threat B-Sens RegEnd Col, Gra, Oka, Skm, Spo, Wht Ok, WC G5T3T5/ Endang B-Sens Periph Aso BM						

G	TT 4		1		cial Concern	T	136
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Petrophytum cinerascens Chelan rockmat	G1G2/ S1S2	Endang	B-Sens F-Sens	LocEnd	Che, Dou	CP, EC	Colockum SWA Okanogan-Wenatchee NF Spokane BLM
Phacelia lenta sticky phacelia	G2?/S2?	Threat	B-Sens	LocEnd	Dou	СР	Spokane BLM
Phacelia minutissima least phacelia	G3/S1	Endang	B-Sens F-Sens	Disjunct	Ktt	EC	Okanogan-Wenatchee NF
Phacelia tetramera dwarf phacelia	G4/S1	Threat	B-Sens F-Sens	Sparse	Dou, Gra	СР	Spokane BLM? Sun Lakes SP
Phlox solivaga yeti phlox	G1/S1	Endang	F-Sens	LocEnd	Col, Gar, <u>Waw</u> ?	BM	Spokane BLM? Umatilla NF
Physaria didymocarpa ssp. disymocarpa common twinpod	G5T4/ SH	Extirp		Periph	Ste	OK	
Physaria douglasii ssp. tuplashensis (Lesquerella tuplashensis) White Bluffs bladderpod	G4?T1/ S1	Endang	Threat	LocEnd	Fra	СР	Hanford ERP South Columbia Basin SWA
Pilularia americana American pillwort	G5/S2	Threat	B-Sens F-Sens	Disjunct	Ada, Lin, Spo	СР	Fairchild AFB Marcellus Shrub Steppe NAP Spokane BLM Swanson Lakes SWA Turnbull NWR
Pityopus californicus pine-foot	G4G5/S1	Threat		Disjunct	Pie, Sno , Thu	NC, PT, WC	JB Lewis McChord Mt. Rainier NP
Plantago macrocarpa Alaska plantain	G4/S2	Sens		Periph	Clm, Grh, Jef	PC	Clearwater Bogs NAP Olympic NP
Platanthera chorisiana Choris' bog-orchid	G3G4/S2	Threat	B-Sens F-Sens	Periph	Kin, Sno	NC	Boulder River WA Henry M. Jackson WA Morning Star NRCA Mt. Baker-Snoqualmie NF
*Plectritis brachystemon short-spurred plectritis	G5?/S1	Sens		Sparse	Clm. Grh, Isl, Kli, Mas, Skg, Skm	EC, PC, PT	Anacortes CF Columbia River Gorge NSA Conboy Lake NWR Deception Pass SP Elwha SWA Fort Casey SP Gifford Pinchot NF Olympic NF Olympic NP Trout Lake NAP?
Poa laxiflora loose-flowered bluegrass	G3G4/ S2S3	Sens		Sparse	Clm, Cow, Jef, Lew, Pac, Whk	PC, PT	Olympic NP
Poa unilateralis ssp. pachypholis ocean-bluff bluegrass	G4TNR/ S1	Threat		RegEnd	Pac	PC	Cape Disappointment SP
Polemonium carneum great polemonium	G4/S2	Threat	B-Sens F-Sens	RegEnd	Clm, Clk, Grh, Lew, Pac, Skm, Thu	PC, PT, WC	Columbia River Gorge NSA Olympic NP
Polemonium pectinatum Washington polemonium	G2/S2	Threat	B-Sens	RegEnd	Ada, Lin, Spo, Wht	СР	Spokane BLM
Polemonium viscosum skunk polemonium	G5/S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Chelan-Sawtooth WA Okanogan-Wenatchee NF Pasayten WA
Polyctenium fremontii Fremont's combleaf	G4/S1	Threat	B-Sens	Disjunct	Gra	СР	Spokane BLM

					cial Concern	1	
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Polygonum austiniae Austin's knotweed	G4/S1	Threat		Sparse	<u>Col</u> , Gra, Spo	BM, CP	Sun Lakes SP Umatilla NF
Polygonum parryi Parry's knotweed	G4/S1	Threat		Periph	Kli	EC	Conboy Lake NWR Trout Lake NAP
Polystichum californicum California swordfern	G4/S1	Threat	B-Sens F-Sens	Sparse	Pie, Skm, Thu	WC	Bald Hill NAP Gifford Pinchot NF Mt St. Helens NVM
Potamogeton obtusifolius blunt-leaf pondweed	G5/S2	Sens		Sparse	Jef, Mas, Oka, Saj, Skg, Thu	NC, OK, PT	Sinlahekin SWA
Potentilla breweri (P. drummondii ssp. b.) Brewer's cinquefoil	G5/S1	Threat	B-Sens F-Sens	Sparse	Clm, Ktt, Lew, Yak	EC, PC, WC	Gifford Pinchot NF Goat Rocks WA Okanogan-Wenatchee NF Olympic NP
Potentilla glaucophylla var. perdissecta (P. diversifolia var. p.) diverse-leaved cinquefoil	G5T4/S1	Sens	B-Sens F-Sens	Disjunct	Che, Oka	EC, OK	Alpine Lakes WA Chopaka Mountain NAP Loomis NRCA Okanogan-Wenatchee NF
Potentilla newberryi Newberry's cinquefoil	G3G4/ SH	Extirp		Periph	Kli	EC	Columbia River Gorge NSA
Potentilla nivea snow cinquefoil	G5/S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Chelan-Swatooth WA Chopaka Mountain NAP Okanogan-Wenatchee NF Pasayten WA
Pyrrocoma hirta var. sonchifolia sticky goldenweed	G4G5T3 /S2	Threat	B-Sens F-Sens	RegEnd	Ktt	EC	Okanogan-Wenatchee NF
Pyrrocoma liatriformis smallhead goldenweed	G2/S2	Threat		RegEnd	Spo, Wht	СР	Steptoe Butte SP
Pyrrocoma scaberula Palouse goldenweed	G2/S1	Endang	B-Sens F-Sens	RegEnd	Aso	BM, CP	Chief Joseph SWA Fields Spring SP Umatilla NF Vale BLM
Ranunculus californicus California buttercup	G5/S1	Threat	B-Sens	Periph	Saj, Skg	PT	Iceberg Island SP
Ranunculus hebecarpus downy buttercup	G5/S1	Threat		Periph	Ada, Gar?, Kli, Wht	CP, EC	Columbia River Gorge NSA Spokane BLM
Ranunculus populago mountain buttercup	G4/S2	Sens	B-Sens F-Sens	Sparse	Col, Gar, Pie	BM, NC	Gifford Pinchot NF Glacier View WA Umatilla NF Wenaha-Tucannon WA
Ranunculus triternatus (R. reconditus) obscure buttercup	G2/S1S2	Endang	B-Sens F-Sens	LocEnd	Kli	CP, EC	Columbia Hills Historical SP Columbia Hills NAP Columbia River Gorge NSA Klickitat SWA Spokane BLM
Ribes cereum var. colubrinum squaw currant	G5T3/S1	Endang	B-Sens F-Sens	RegEnd	Aso	BM, CP	Asotin SWA Vale BLM
Ribes oxyacanthoides var. irriguum Idaho gooseberry	G5T4/S2	Threat	B-Sens F-Sens	RegEnd	Aso, Clk, Fer, Spo, Ste, Wht	BM, CP, OK, PT	Chief Joseph SWA Fields Spring SP Umatilla NF
Ribes wolfii Wolf's currant	G4/S2	Sens	F-Sens	Periph	Aso, Gar	BM	Umatilla NF

	Washington Species of Special Concern										
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area				
Rorippa columbiae Columbia yellowcress	G3/S1S2	Threat	B-Sens F-Sens	RegEnd	Ben, Fra, Kli, Skm	CP, EC, WC	Beacon Rock SP Columbia River Gorge NSA Hanford Reach NM McNary NWR Saddle Mountain NWR South Columbia Basin SWA				
Rotala ramosior lowland toothcup	G5/S2	Sens	B-Sens F-Sens	Sparse	Ben, Che, Fra, Gar, Kli, Spo, Whe , Wht	CP, EC,	Columbia River Gorge NSA Conboy Lake NWR Hanford ERP Hanford Reach NWR Lake Terrell SWA Okanogan-Wenatchee NF Saddle Mountain NWR Spokane BLM Turnbull NWR				
Rubus arcticus ssp. acaulis nagoonberry	G5T5/S1	Threat	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF				
Rubus nigerrimus northwest raspberry	G2/S2	Threat		LocEnd	Aso, Gar, Wht	BM, CP	Vale BLM				
Sabulina nuttallii var. fragilis (Minuartia nuttallii var. f.) Nuttall's sandwort	G5T4/S1	Threat	B-Sens	Periph	Ben, Gra, Ktt	СР	Columbia NWR Spokane BLM Yakima TC				
<u>Sabulina pusilla</u> (<u>Minuartia pusilla</u>) annual sandwort	G5/S1	Threat		Sparse	Col?, Gra, Kli, Spo, Waw, Wht	CP, EC	Columbia River Gorge NSA				
Sabulina sororia Twin Sisters sandwort	G1/S1	Endang		LocEnd	Whc	NC	Mt. Baker WA Mt. Baker-Snoqualmie NF				
<i>Salix candida</i> hoary willow	G5/S1	Threat	B-Sens F-Sens	Periph	Peo, Ste	CR	Colville NF				
Salix glauca var. villosa glaucous willow	G5T5?/ S1S2	Sens	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF Pasayten WA				
Salix maccalliana MacCalla's willow	G5/S1	Threat	B-Sens F-Sens	Periph	Oka, Peo, Ste	CR, OK	Colville NF Sinlahekin SWA				
Salix pseudomonticola false mountain willow	G5/S1	Sens	B-Sens F-Sens	Periph	Che, Peo	CR, EC	Alpine Lakes WA Colville NF Okanogan-Wenatchee NF				
Salix sessilifolia soft-leaved willow	G4/S2	Sens	B-Sens F-Sens	RegEnd	Clk, Cow, Kli, Skg, Whc, Whk	EC, PC, PT	Columbia River Gorge NSA Ridgefield NWR				
Salix vestita rock willow	G5/SH	Extirp		Periph	Che, Whc	EC, NC	Mt. Baker WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF				
Samolus parviflorus (S. valerandi ssp. p.) water pimpernel	G5/S1	Threat		Disjunct	Whk	PC					
Sandbergia perplexa puzzling rockcress	G4/S1	Endang		Disjunct	Dou	СР					
Sanguisorba menziesii Menzies' burnet	G3G4/S2	Threat		Periph	Clm, Grh	PC	Carlilsle Bog NAP Olympic NP				
Sanicula arctopoides bear's-foot sanicle	G5/S1	Endang	<u>B-Sens</u>	Sparse	Grh, Pac, Saj	PC, PT	San Juan Islands NM San Juan Islands NWR Spokane BLM Turn Island SP				
Saxifraga cernua nodding saxifrage	G5/S1	Sens	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF Pasayten WA				

					cial Concern		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Saxifraga hyperborea pygmy saxifrage	G5/S3	Sens		Sparse	Che, Clm, Jef, Oka, Pie, Skg, Sno, Whc	EC, NC, OK, PC, WC	Buckhorn WA Chelan-Sawtooth WA Chopaka Mountain NAP Glacier Peak WA Lake Chelan NRA Mt. Baker WA Mt. Baker-Snoqualmie NF Mt. Rainier NP North Cascades NP Okanogan-Wenatchee NF Olympic NF Olympic NP Pasayten WA
Saxifragopsis fragarioides strawberry saxifrage	G3?/S2	Threat	B-Sens F-Sens	Disjunct	Che	EC	Alpine Lakes WA Okanogan-Wenatchee NF
Schizachyrium scoparium var. scoparium little bluestem	G5T5/S1	Threat	B-Sens	Disjunct	Che, Dou, Ste	CP, CR, EC	Spokane BLM
Schoenoplectus saximontanus Rocky Mountain bulrush	G5/S1	Threat		Sparse	Spo	СР	Turnbull NWR
Sclerolinon digynum northwestern yellowflax	G5/S2	Sens		Periph	Spo, Wht	СР	Fairchild AFB Turnbull NWR
Scribneria bolanderi Scribner's grass	G4/S1	Threat	B-Sens F-Sens	Periph	Kli, Pie, Skm	EC, WC	Columbia River Gorge NSA Gifford Pinchot NF Mt. Baker-Snoqualmie NF Norse Creek WA
Sericocarpus oregonensis ssp. oregonensis (Aster oreganus) Oregon white-top aster	G5TNR/ S1	Threat	B-Sens F-Sens	RegEnd	Skm	EC, WC	Columbia River Gorge NSA
Sericocarpus rigidus (Aster curtus) white-top aster	G3/S3	Sens	B-Sens F-Sens	RegEnd	Grh, Isl, Kin, Pie, Saj, Skm, Thu	EC, PC, PT	Columbia River Gorge NSA Glacial Heritage Preserve JB Lewis McChord Mima Mounds NAP Rocky Prairie NAP Scatter Creek SWA Spokane BLM
Sidalcea hirtipes bristly-stemmed checkermallow	G2/S2	Threat	B-Sens F-Sens	RegEnd	Clk, Lew, Whk	PC, PT, WC	Gifford Pinchot NF
Sidalcea nelsoniana Nelson's checkermallow	G2G3/S1	Endang	Threat	RegEnd	Cow, Lew	PT	
Sidalcea oregana var. calva Wenatchee Mountain checkermallow	G5T1/ S1?	Endang	Endang	RegEnd	Che, Ktt?	EC	Camas Meadows NAP Colockum SWA? Okanogan-Wenatchee NF
Sidalcea virgata (S. malviflora ssp. virgata) rose checkermallow	G5/S1	Threat		RegEnd	Thu	PT	Scatter Creek SWA
Silene scouleri ssp. scouleri Scouler's catchfly	G5T3T5/ S1	Sens	B-Sens F-Sens	Sparse	Che, Clm, Fer, Isl, Pie, Spo, Ste, Thu, Wht, Yak	CP, CR, EC, OK, PT	Colville NF JB Lewis McChord Okanogan-Wenatchee NF Steptoe Butte SP William O. Douglas WA
Silene seelyi Seely's catchfly	G3/S3	Sens	B-Sens F-Sens	LocEnd	Che, Ktt	EC	Alpine Lakes WA Lake Chelan NRA North Cascades NP Okanogan-Wenatchee NF

		Wash	nington Spe	ecies of Spe	cial Concern		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Silene spaldingii Spalding's catchfly	G2/S2	Threat	Threat	RegEnd	Ada, Aso, Gar, Lin, Spo, Wht	BM, CP, CR	Asotin Creek SWA Fairchild AFB Nez Perce NHP Spokane BLM Steptoe Butte SP Swanson Lakes SWA Turnbull NWR Umatilla NF
Sisyrinchium montanum var. montanum strict blue-eyed grass	G5T5/S1	Threat	B-Sens F-Sens	Periph	Dou, Peo	CP, CR	Colville NF Kaniksu NF? Spokane BLM
Sisyrinchium sarmentosum pale blue-eyed grass	G2/S2	Threat	B-Sens F-Sens	LocEnd	Kli, Skm	EC, WC	Columbia River Gorge NSA Conboy Lake NWR? Gifford Pinchot NF Trout Lake NAP
Sisyrinchium septentrionale northern blue-eyed grass	G3G4/S3	Sens		Periph	Fer, Oka, Peo, Ste	CR, OK	Colville NF Little Pend Oreille NWR Okanogan-Wenatchee NF Spokane BLM
Sparganium fluctuans water bur-reed	G5/S1	Threat		Periph	Clm	PC	Olympic NP
Spartina pectinata prairie cordgrass	G5/S2	Sens	B-Sens F-Sens	Sparse	Aso, <u>Dou</u> , Fra, Gar, <u>Gra</u> , Peo, Spo, Wht	BM, CP, CR, OK	Chief Joseph SWA Colville NF Little Pend Oreille SWA Palouse Falls SP Riverside SP Vale BLM Wells SWA
Spiranthes diluvialis Ute ladies'-tresses	G2G3/S1	Endang	Threat	Sparse	Che, <u>Dou</u> , Gra, Oka	CP, EC, OK	Chelan County PUD Colockum SWA Grant County PUD Spokane BLM
Spiranthes porrifolia western ladies'-tresses	G4/S2	Sens	B-Sens F-Sens	Sparse	Che, Clk, Kli, Ktt, Lin, Oka, Skm	CP, EC, OK, PT, WC	Chelan-Sawtooth WA Columbia Hills Historical SP Columbia River Gorge NSA Klickitat SWA Okanogan-Wenatchee NF Pasayten WA
Sporobolus compositus var. compositus composite dropseed	G5T5/S1	Sens	B-Sens	Sparse	Che, Fra, Ktt	СР	Hanford ERP Spokane BLM
Sullivantia oregana Oregon sullivantia	G2/S1	Endang	B-Sens F-Sens	LocEnd	Skm	WC	Beacon Rock SP Columbia Falls NAP Columbia River Gorge NSA
Swertia perennis swertia	G5/S1	Threat	B-Sens F-Sens	Periph	Che, Sno	EC, WC	Glacier Peak WA Henry M. Jackson WA Mt. Baker-Snoqualmie NF Okanogan-Wenatchee NF
Symphyotrichum boreale (Aster borealis) rush aster	G5/S1	Threat		Periph	Peo, Pie, Saj , <u>Ste</u>	CR, PT	Colville NF Killebrew Lake NAP
Symphyotrichum hallii (Aster hallii) Hall's aster	G4/S2	Threat		RegEnd	Clk, Thu	PT	JB Lewis McChord Scatter Creek SWA
Symphyotrichum jessicae (Aster jessicae) Jessica's aster	G2/S1S2	Endang		RegEnd	Spo, Wht	СР	Turnbull NWR

		Wash	ington Spe	ecies of Spe	cial Concern		
Species Common Name	Heritage Rank	State Status	Federal Status	Dist. Pattern	County	Eco- region	Managed Area
Synthyris lanuginosa (S.pinnatifida var. lanuginosa cut-leaf synthyris	<u>G3</u> /S3?	Sens	B-Sens F-Sens	RegEnd	Clm, Jef	PC	Buckhorn WA Olympic NF Olympic NP
*Synthyris schizantha fringed synthyris	G4/S1	Sens		RegEnd	Grh, Lew	PC, WC	Colonel Bob WA Gifford Pinchot NF Mt Baker Snoqualmie NF Olympic NF Olympic NP?
Thelypodium howellii ssp. howellii Howellii Howell's thelypody	G1T1/ SH	Extirp		RegEnd	Yak	СР	
Thelypodium sagittatum ssp. sagittatum arrow thelypody	G4T4/S1	Threat	B-Sens	Disjunct	Dou, Gra, Lin	СР	Spokane BLM
Trifolium douglasii Douglas' clover	G2/S1	Endang	B-Sens F-Sens	RegEnd	Aso, <u>Gar</u> , Wht	BM, CP	Umatilla NF
Trifolium plumosum var. plumosum plumed clover	G4T4/S1	Threat		RegEnd	Waw	BM	
Trifolium thompsonii Thompson's clover	G3/S3	Threat	B-Sens F-Sens	LocEnd	Che, Dou	CP, EC	Colockum SWA Entiat Slopes NAP Spokane BLM Okanogan-Wenatchee NF
Triglochin palustris marsh arrowgrass	G5/S1	Sens	F-Sens	Periph	Oka, Peo, Ste	CR, OK	Colville NF Okanogan-Wenatchee NF
Trillium albidum ssp. parviflorum (T. parviflorum) small-flowered trillium	G2G3/ S2S3	Sens	B-Sens F-Sens	RegEnd	Clk, Lew, Pie, Thu	PC, PT, WC	Bald Hill NAP Columbia River Gorge NSA Glacial Heritage Preserve JB Lewis McChord Lacamas Prairie NAP Ridgefield NWR Scatter Creek SWA West Rocky Prairie SWA Willapa Hills SP
Utricularia intermedia flat-leaved bladderwort	G5/S2S3	Sens	B-Sens F-Sens	Sparse	Clm, Kin, Kli, Peo, Skm, Sno	CR, EC, NC, PC, PT, WC	Conboy Lake NWR Gifford Pinchot NF Olympic NP Snoqualmie Bog NAP
Vaccinium myrtilloides velvetleaf blueberry	G5/S1	Threat	B-Sens F-Sens	Periph	Oka	OK	Okanogan-Wenatchee NF
Veratrum insolitum Siskiyou false hellebore	G3/S1	Endang		RegEnd	Kli	EC	Columbia River Gorge NSA
Whipplea modesta yerba de selva	G4/S1	Threat		Periph	Clm, Thu	PC, PT	Olympic NP
Woodwardia fimbriata giant chainfern	G5/S2	Sens		Sparse	Jef, Ktp, Mas, Pie, Thu	PC, PT	Blake Island SP Hamma Hamma Balds NAP Olympic NF
Wyethia angustifolia California compassplant	G4/S1	Sens		Periph	Clk, Kli, Lew, Thu	EC, PT	Columbia River Gorge NSA Lacamas Prairie NAP Scatter Creek SWA
Zeltnera muehlenbergii (Centaurium muehlenbergii) Monterey centaury	G5?/S1	Threat		Sparse	Kli	EC	Conboy Lake NWR?

Literature Cited

Camp, P. and J.G. Gamon, eds. 2011. Field Guide to the Rare Plants of Washington. University of Washington Press, Seattle, WA. 392 pp.

Hitchcock, C.L. and A. Cronquist. 2018. Flora of the Pacific Northwest: An Illustrated Manual, second edition. Giblin, D.E., B.S. Legler, P.F. Zika, and R.G. Olmstead, eds. University of Washington Press, Seattle, WA. 882 pp.

[ISSSSP] Interagency Special Status/Sensitive Species Program. 2019. Final OR/WA State Director's Special Status Species List, March 21, 2019. Available at: www.fs.fed.us/r6/sfpnw/issssp/agency-policy; "Federally Threatened, Endangered & Proposed Species, and the Bureau Sensitive and Strategic Species List".

[WDNR] Washington State Department of Natural Resources. 2018. 2018 State of Washington Natural Heritage Plan. Washington State Department of Natural Resources, Olympia, WA. 31 pp. Available at: https://www.dnr.wa.gov/publications/amp_nh_plan_2018.pdf?m5phzk

Acknowledgments

Thanks to the following individuals for contributing new data and recommendations on species ranks: Ed Alverson, Joe Arnett, Katy Beck, Molly Boyter, Karen Brimacombe, Paula Brooks, Keyna Bugner, Tara Callaway, Pam Camp, Florence Caplow, Kenton Chambers, Mark Darrach, Tatiana Dreisbach, Peter Dunwiddie, Richard Easterly, John Gamon, Rod Gilbert, Wendy Gibble, David Giblin, Regina Johnson, Susan Kephart, Judy Lantor, Helen Lau, Ben Legler, Larry Loftis, Lauri Malmquist, Kelli Van Norman, Emily Orling, Tynan Ramm-Granberg, Karen Reagan, James Riser, Joe Rocchio, Debra Salstrom, Mark Skinner, Rylan Sprague, Ted Thomas, David Thomsen, Andrea Thorpe, Lisa Weigel, Barry Wendling, Dave Wilderman, and Peter Zika. Jasa Holt, database specialist with the WA Natural Heritage Program assisted with data entry and quality control. Distribution pattern, county, ecoregion, and managed area data compiled by Walter Fertig, rare species botanist, WA Natural Heritage Program.

ATTACHMENT DTABLE 4.1 OF TEE GUIDANCE

Table 4.1: Priority Contaminants of Ecological Concern for Sites that Qualify for the Simplified TEEa

Priority Contaminant	Unrestricted Land Use ^b	Industrial or Commercial Property	Priority Contaminant	Unrestricted Land Use ^b	Industrial or Commercial Property
	Metals: ^c		Chlorpyrifos/chlorpyrifosmethyl	See note d	See note d
			(total)		
Antimony	See note d	See note d	DDT/DDD/DDE (total)	1 mg/kg	1 mg/kg
Arsenic III	20 mg/kg	20 mg/kg	Dieldrin	0.17 mg/kg	0.17 mg/kg
Arsenic V	95 mg/kg	260 mg/kg	Endosulfan	See note d	See note d
Barium	1,250 mg/kg	1,320 mg/kg	Endrin	0.4 mg/kg	0.4 mg/kg
Beryllium	25 mg/kg	See note d	Heptachlor/heptachlor epoxide (total)	0.6 mg/kg	0.6 mg/kg
Cadmium	25 mg/kg	36 mg/kg	Hexachlorobenzene	31 mg/kg	31 mg/kg
Chromium (total)	42 mg/kg	135 mg/kg	Parathion/methyl parathion (total)	See note d	See note d
Cobalt	See note d	See note d	Pentachlorophenol	11 mg/kg	11 mg/kg
Copper	100 mg/kg	550 mg/kg	Toxaphene	See note d	See note d
Lead	220 mg/kg	220 mg/kg	Chlorinated dibenzofurans (total)e	3E-06 mg/kg	3E-06 mg/kg
Magnesium	See note d	See note d	Chlorinated dibenzo-p-dioxins (total) ^e	5E-06 mg/kg	5E-06 mg/kg
Manganese	See note d	23,500 mg/kg	Hexachlorophene	See note d	See note d
Mercury, inorganic	9 mg/kg	9 mg/kg	PCB mixtures (total)	2 mg/kg	2 mg/kg
Mercury, organic	0.7 mg/kg	0.7 mg/kg	Pentachlorobenzene	168 mg/kg	See note d
Molybdenum	See note d	See note d	Other Non-Chlo	orinated Organics:	
Nickel	100 mg/kg	1,850 mg/kg	Acenaphthene	See note d	See note d
Selenium	0.8 mg/kg	0.8 mg/kg	Benzo(a)pyrene	30 mg/kg	300 mg/kg
Silver	See note d	See note d	Bis (2-ethylhexyl) phthalate	See note d	See note d
Tin	275 mg/kg	See note d	Di-n-butyl phthalate	200 mg/kg	See note d
Vanadium	26 mg/kg	See note d	Petr	oleum:	
Zinc	270 mg/kg	570 mg/kg	Gasoline Range Organics	200 mg/kg	12,000 mg/kg ^g
	Pesticides:		Diesel Range Organics ^f	460 mg/kg	15,000 mg/kg ^g
Aldicarb/aldicarb sulfone (total)	See note d	See note d			
Aldrin	0.17 mg/kg	0.17 mg/kg			
Benzene hexachloride (including lindane)	10 mg/kg	10/mg/kg			
Carbofuran	See note d	See note d			
Chlordane	1 mg/kg	7 mg/kg			

Footnotes:

- Caution on misusing these values. They have been developed for use at sites where a site-specific terrestrial ecological evaluation is not required. They are not intended to be protective of terrestrial ecological receptors at every site. Exceedances of the values in this table do not necessarily trigger requirements for cleanup action under this chapter. The table is not intended for purposes such as evaluating sludges or wastes. This list does not imply that sampling must be conducted for each of these chemicals at every site. Sampling should be conducted for those chemicals that might be present based on available information, such as current and past uses of chemicals at the
- Applies to any site that does not meet the definition of industrial or commercial property under WAC 173-340-200.
- For arsenic, use the valence state most likely to be appropriate for site conditions, unless laboratory information is available. Where soil conditions alternate between saturated, anaerobic and unsaturated aerobic states, resulting in the alternating presence of arsenic III and arsenic V, the arsenic III concentrations shall apply.
- Safe concentration has not yet been established. See WAC 173-340-7492(2) (c) for procedures for establishing values for these substances.
- These values represent a total toxic equivalent concentration of all furan or dioxin congeners. Use the toxicity equivalency factors in Table 749-6 to convert congener mixtures to a total toxic equivalent concentration.
- Diesel range organics includes the sum of diesel fuels and heavy oils measured using method the NWTPH-Dx method. Mineral oils are essentially non-toxic to plants and animals and do not need to comply with these values (see Compendium – Section V).
- Except that the concentration shall not exceed residual saturation.

APPENDIX GPRELIMINARY COST ESTIMATES

			Cost								
Alternative ¹	Description ²	Unknowns ³	Design and Construction (\$)	O&M Years 1-5 (\$)	O&M Years 6-10 (\$)	O&M Years 11-15 (\$)	O&M Years 16-20 (\$)	O&M Years 21-25 (\$)	O&M Years 26-30 (\$)	Total	Present Worth
Alternative 1 No Action											
Alternative 2 Monitored Natural Attenuation	This alternative consists of institutional controls (IC) and long-term groundwater quality monitoring. The application of IC provide notification regarding the presence of contaminated materials, regulate the disturbance/management of these materials, and prohibit the creation of preferential pathways for contaminant migration. The principal assumption of Alternative 2 is that reductions of COCs within the shallow water bearing zone (silt unit) will occur through natural processes such as biodegradation, diffusion, dispersion, hydrolysis, and sorption.	Future distribution of contaminants in soil and groundwater. Mobility of dissolved phase COCs in shallow groundwater. Risks posed by residual contamination (e.g., future contact by earth workers, migration to CPU wellfield). Site conditions (e.g., soil permeability, degree of heterogeneity, preferential pathways) affecting contaminant mobility, plume expansion, and rate of natural attenuation. Cleanup levels and regulatory enforcement action(s).	\$0	\$447,000	\$223,000	\$223,000	\$112,000	\$112,000	\$112,000	\$1,229,000	\$882,600
Alternative 3 Hydraulic Containment	In addition to the implementation of IC and MNA, this alternative is designed to hydraulically control and contain contaminated groundwater detected beneath the Site. Gradient control would be accomplished through the installation of nineteen 35-foot-deep extraction wells throughout the defined extent of TPH in shallow groundwater in beneath the MW-5, MW-6, and MW-11 Areas. The estimate of 19 extraction wells is based on an assumed radius of influence of 25 feet while pumping from a 4-inch-diameter well at 1 gpm. Using submersible pumps, extracted groundwater would be routed to a common treatment system consisting of a coalescing plate oil-water-separator followed by GAC treatment prior to discharge to the POTW. At a total system pumping rate of 19 gpm, the system would treat and discharge up to 10,000,000 gallons of water annually. Its is assumed that cleanup goals would be met in 30 years.	rate, well depth, well locations, and the number of extraction wells needed to provide full hydraulic containment within each area of interest. During the pump test, an aboveground treatment system would be pilot tested to verify the treat train necessary to meet discharge criteria and to establish a maintenance schedule. During full-scale implementation, the following unknowns could have a significant impact on cleanup costs: (a) the amount and degree of maintenance required to keep the full-scale pump & treat system operational; (b) the need for deeper hydraulic containment; (c) the	\$926,000	\$2,129,000	\$1,906,000	\$1,906,000	\$1,794,000	\$1,794,000	\$1,255,000	\$11,710,000	\$7,966,000
Alternative 4 Plume Stabilization, Enhanced Bioremediation	In addition to the implementation of IC and MNA, this alternative includes the direct injection of micron-scale activated carbon (plume stabilization) and biostimulants (enhanced bioremediation) throughout contaminated smear zones beneath the MW-5, MW-6, and VRU Areas. This alternative assumes 10 years of MNA.	Remedial design investigations would be needed to verify: (a) the lateral and vertical extent of PCM in select areas; and (b) the effectiveness of PetroFix injections on groundwater quality and enhanced bioremediation. Other unknowns include the remedy's impact on terminal operations and regulatory UIC approval of biostimulant injections (e.g., nitrate and sulfate electron acceptors).	\$1,911,000	\$447,000	\$447,000	\$0	\$0	\$0	\$0	\$2,805,000	\$2,595,000

Please refer to footnotes at end of table.

							Cost				
Alternative ¹	Description ²	Unknowns ³	Design and Construction (\$)	O&M Years 1-5 (\$)	O&M Years 6-10 (\$)	O&M Years 11-15 (\$)	O&M Years 16-20 (\$)	O&M Years 21-25 (\$)	O&M Years 26-30 (\$)	Total	Present Worth
Alternative 5 Removal of Readily Accessible PCS, Hydraulic Containment, Enhanced Bioremediation (Active)	containment beneath the MW-5 and MW-6 Areas, this alternative includes the on-site recirculation of treated/amended water. Gradient control would be accomplished through the installation of eighteen 35-foot-deep extraction wells throughout the defined extent of TPH in shallow groundwater. The estimate of 18 extraction wells is based on an assumed radius of influence of 25 feet while pumping from a 4-inch-diameter well at 1 gpm. Using submersible pumps, extracted groundwater would be routed to a common treatment system consisting of a coalescing plate oil-water-separator followed by GAC treatment to remove COCs. Following the removal of COCs, the extracted groundwater would be amended with biostimulants and discharged into the backfilled excavations for infiltration. The continuous recirculation of oxygen/nutrient-rich water through the COC-containing silt zones is designed to actively enhance the biodegradation of residual COCs in soil and groundwater. This alternative includes the direct injection of liquid micron-scale adsorbents and biostimulants (PetroFix) throughout the impacted silt zone surrounding	extraction points; and (g) the ability to control plume migration. Other unknowns include the remedy's impact on terminal operations and regulatory approval of groundwater recirculation. As mentioned, pilot testing within both source areas would be needed to develop the final design of the recirculation system. During full-scale implementation, the following unknowns could have a significant impact on cleanup costs: (a) the amount	\$1,590,000	\$2,329,000	\$179,000	\$0	\$0	\$0	\$0	\$4,098,000	\$3,757,000
Alternative 6 Removal of All Accessible PCS, Enhanced Bioremediation (Active)	In addition to the implementation of IC and MNA, this alternative includes the removal of accessible PCM beneath the MW-5 Area and MW-6/B-18 Areas (i.e., 22 feet bgs) and backfill with hydrocarbon degradation stimulating amendments (e.g., ORC). The soil removal actions would require excavation shoring and dewatering. Following excavation, this alternative includes the direct injection of liquid micron-scale adsorbents and biostimulants throughout the contaminated smear zone surrounding MW-11 within the VRU Area. This alternative assumes MNA for a total of 5 years.	water; (c) excavation wall stability and degree of shoring required to limit settlement and damage to surrounding structures; (d) type of excavation equipment required; (e) permit requirements; (f) the effectiveness of placing	\$3,968,000	\$447,000	\$0	\$0	\$0	\$0	\$0	\$4,415,000	\$4,250,000

FOOTNOTES

 $^{^{\,1}}$ Alternative: Remedial technology deemed potentially applicable to Source Control Strategy objective.

² Description: Typical mode of action of technology.

 $^{^{\}rm 3}$ Unknowns: Factors that may heavily influence remedy design and cost.

Alternative 2 - Monitored Natural Attenuation GWM (Quarterly for 5 yrs, Semi-Annual for 10 yrs, Annual for 15 yrs)

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	30	\$220.00	\$6,600.00
Sr. Associate	Labor	90	\$187.00	\$16,830.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	0	\$154.00	\$0.00
Project	Labor	0	\$142.00	\$0.00
Sr. Staff	Labor	15	\$123.00	\$1,845.00
Staff	Labor	140	\$108.00	\$15,120.00
GIS/CAD	Labor	8	\$150.00	\$1,200.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	8	\$74.00	\$592.00
Admin Assist	Labor	12	\$68.00	\$816.00
Subtotal Labor		303		\$43,003.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Freight/Shipping	Each	4	\$250.00	\$1,000.00
Field Equipment	Estimate	1	\$4,480.00	\$4,480.00
Subtotal Cascadia Expenses				\$5,480.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Analytical	Quarterly	4	\$5,340.00	\$21,360.00
IDW Disposal	Each	4	\$1,300.00	\$5,200.00
10% markup	Misc			\$2,656.00
Subtotal Outside Expenses				\$29,216.00
Contingency (15%)				\$11,654.85
Annual Costs	_		_	\$89,353.85

GWM (Assumptions)

Assumes four quarters of groundwater quality monitoring utilizing existing 11 monitoring wells for the first 5 years; semi-annual monitoring for the next 10 years, and annual monitoring for the last 15 years. Assumes two days per event.

Alternative 2 - Monitored Natural Attenuation Estimated Cash Flow and Future Costs

Interest Rate= 3%

	Routine			
Year	Capital	O&M	Total	Frequency
-	\$0	\$0	\$0	
1	\$0	\$89,354	\$89,354	Quarterly Monitoring
2	\$0	\$89,354	\$89,354	Quarterly Monitoring
3	\$0	\$89,354	\$89,354	Quarterly Monitoring
4	\$0	\$89,354	\$89,354	Quarterly Monitoring
5	\$0	\$89,354	\$89,354	Quarterly Monitoring
6	\$0	\$44,677	\$44,677	Semiannual Monitoring
7	\$0	\$44,677	\$44,677	Semiannual Monitoring
8	\$0	\$44,677	\$44,677	Semiannual Monitoring
9	\$0	\$44,677	\$44,677	Semiannual Monitoring
10	\$0	\$44,677	\$44,677	Semiannual Monitoring
11	\$0	\$44,677	\$44,677	Semiannual Monitoring
12	\$0	\$44,677	\$44,677	Semiannual Monitoring
13	\$0	\$44,677	\$44,677	Semiannual Monitoring
14	\$0	\$44,677	\$44,677	Semiannual Monitoring
15	\$0	\$44,677	\$44,677	Semiannual Monitoring
16	\$0	\$22,338	\$22,338	Annual Monitoring
17	\$0	\$22,338	\$22,338	Annual Monitoring
18	\$0	\$22,338	\$22,338	Annual Monitoring
19	\$0	\$22,338	\$22,338	Annual Monitoring
20	\$0	\$22,338	\$22,338	Annual Monitoring
21	\$0	\$22,338	\$22,338	Annual Monitoring
22	\$0	\$22,338	\$22,338	Annual Monitoring
23	\$0	\$22,338	\$22,338	Annual Monitoring
24	\$0	\$22,338	\$22,338	Annual Monitoring
25	\$0	\$22,338	\$22,338	Annual Monitoring
26	\$0	\$22,338	\$22,338	Annual Monitoring
27	\$0	\$22,338	\$22,338	Annual Monitoring
28	\$0	\$22,338	\$22,338	Annual Monitoring
29	\$0	\$22,338	\$22,338	Annual Monitoring
30	\$0	\$22,338	\$22,338	Annual Monitoring
Present Worth	\$0	\$882,600	\$882,600	
Future Costs	\$0	\$1,228,600	\$1,228,600	
Target		\$89,400		

Alternative 3 - Hydraulic Containment Pump and Treatment System Installation

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	60	\$220.00	\$13,200.00
Sr. Associate	Labor	0	\$187.00	\$0.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	60	\$154.00	\$9,240.00
Project	Labor	40	\$142.00	\$5,680.00
Sr. Staff	Labor	120	\$123.00	\$14,760.00
Staff	Labor	200	\$108.00	\$21,600.00
GIS/CAD	Labor	40	\$150.00	\$6,000.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	8	\$74.00	\$592.00
Admin Assist	Labor	40	\$68.00	\$2,720.00
	Labor		\$00.00	
Subtotal Labor		568		\$73,792.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Pressure Transducers	Each	19 5	\$850.00	\$16,150.00
Postage/UPS/Courier Field Equipment	Cost Plus Estimate	1	\$50.00 \$7,300.00	\$250.00 \$7,300.00
Subtotal Cascadia Expenses	Estimate	1	\$7,300.00	\$7,300.00
Subtotal Cascagla Expenses Outside Expenses	Units	Quan.	Unit Cost	\$23,700.00 Total \$US
Extraction Well Installation, Pumping and Treatment (P&T) System Installation	Oilles	Quaii.	Offic Cost	10(a) 303
	-	24	¢6 500 00	¢426 500 00
Drilling Charle Courts	Day	21 19	\$6,500.00	\$136,500.00
Start Cards Blank PVC Casing	Each Each	285	\$150.00 \$4.50	\$2,850.00 \$1,282.50
Well Screens	Per Ft.	380	\$4.50	\$1,282.30
Vaults	Each	19	\$450.00	\$8,550.00
Drop Box Delivery, Pickup, Cleaning	Month	19	\$2,800.00	\$8,550.00
P&T System Install Subcontractor System Equipment/Materials	Each Per Job	2	\$25,000.00 \$211,267.50	\$50,000.00 \$211,267.50
Waste Disposal for Well Installation	Per Job	1	\$1,545.98	\$1,545.98
•	Per LF	600	\$1,545.98	\$10,800.00
Trenching and Piping to Treatment Equip and to Sewer at Fruit Valley Road			· · · · · · · · · · · · · · · · · · ·	. ,
Oil-water-separator	Each	1	\$15,000.00	\$15,000.00
Carbon Units	Each	4	\$20,000.00	\$80,000.00
Carbon to fill the Units	Per Pound	16,000	\$2.85	\$45,600.00
Construction Permits	Per Job	1	\$500.00	\$500.00
City of Vancouver Sewer Connection Survey	Each Per Job	1	\$2,000.00 \$3,500.00	\$2,000.00 \$3,500.00
Analytical	Per Job	1	\$17,415.00	\$17,415.00
Taxes on Outside Expenses	Per Job	1	\$17,413.00 8.4%	\$49,846.52
10% Markup on Subcontracted Services	Misc	•	5.470	\$64,325.75
Subtotal Outside Expenses	50			\$707,583.25
Contingency (15%)		1	1	\$120,761.29
TASK TOTAL				\$925,836.54

Shallow P&T Installation and Operation (Assumptions)

Assumes the installation of 19 pumping wells (7 pumping wells in the Well MW-5 Area, 11 pumping wells in the B-18/MW-6 Area, and 1 well in the Vapor Recovery Unit [VRU] Area) to 35 feet below ground surface (bgs), each pumping at 1 gallon per minute (gpm), 25 feet radius of influence (ROI) with water being treated by oil/water separator (OWS) and granular activated carbon (GAC) on-site prior to discharge to sanitary sewer system. Assumes pilot-scale pump test, and full-scale pumping well/treatment system installation oversight by engineer/geologist.

Alternative 3 - Hydraulic Containment P&T System Operations and Maintenance

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	40	\$220.00	\$8,800.00
Sr. Associate	Labor	0	\$187.00	\$0.00
Sr. Project	Labor	50	\$154.00	\$7,700.00
Project	Labor	20	\$142.00	\$2,840.00
Sr. Staff	Labor	80	\$123.00	\$9,840.00
Staff	Labor	180	\$108.00	\$19,440.00
GIS/CAD	Labor	0	\$150.00	\$0.00
Admin	Labor	10	\$68.00	\$680.00
6% labor markup				\$2,958.00
Subtotal Labor		380		\$52,258.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Pressure Transducer	Each	1	\$800.00	\$800.00
Postage/UPS/Courier	Cost Plus	10	\$10.00	\$100.00
Field Equipment	Per Year	1	\$3,670.00	\$3,670.00
Subtotal Cascadia Expenses				\$4,570.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Analytical	Annual	1	\$26,640.00	\$26,640.00
Monthly P&T System O&M Subcontractor	Monthly	12	\$2,500.00	\$30,000.00
Waste Disposal	Per Ton	10.4	\$215.00	\$2,239.92
Waste Transport	Each	1	\$900.00	\$900.00
Sanitary Sewer Discharge	Per CCF	13,351	\$7.02	\$93,722.63
Electricity	Per Year	1	\$15,422.86	\$15,422.86
GAC Media	Per Year	1	\$30,212.83	\$30,212.83
Taxes on Outside Expenses	Per Job	1	8.4%	\$16,727.61
10% Markup	Misc			\$19,913.82
Subtotal Outside Expenses				\$235,779.67
Contingency (15%)				\$43,891.15
Annual Costs (Yrs 1 through 28)				\$336,498.82

O&M (Assumptions)

Assumes routine site visits to check system operation, backwash adsorbers, download pressure transducer data, and permit sampling. The system operations and maintenance assumes that all extracted groundwater would pumped to a common treatment equipment enclosure (OWS and GAC) prior to discharge to the publicly owned treatment works (POTW). Two GAC media changeouts per year.

Alternative 3 - Hydraulic Containment Groundwater Monitoring

Direct Labor	Units	Hours	Rate	Total \$US	
Principal	Labor	30	\$220.00	\$6,600.00	
Sr. Associate	Labor	90	\$187.00	\$16,830.00	
Associate	Labor	0	\$170.00	\$0.00	
Sr. Project	Labor	0	\$154.00	\$0.00	
Project	Labor	0	\$142.00	\$0.00	
Sr. Staff	Labor	15	\$123.00	\$1,845.00	
Staff	Labor	140	\$108.00	\$15,120.00	
GIS/CAD	Labor	8	\$150.00	\$1,200.00	
Tech	Labor	0	\$79.00	\$0.00	
Drafter	Labor	0	\$82.00	\$0.00	
Tech Editor	Labor	8	\$74.00	\$592.00	
Admin Assist	Labor	12	\$68.00	\$816.00	
Subtotal Labor		303		\$43,003.00	
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US	
Freight/Shipping	Each	4	\$250.00	\$1,000.00	
Field Equipment	Estimate	1	\$4,480.00	\$4,480.00	
Subtotal Cascadia Expenses				\$5,480.00	
Outside Expenses	Units	Quan.	Unit Cost	Total \$US	
Analytical	Quarterly	4	\$5,340.00	\$21,360.00	
IDW Disposal	Each	4	\$1,300.00	\$5,200.00	
10% markup	Misc			\$2,656.00	
Subtotal Outside Expenses				\$29,216.00	
Contingency (15%)				\$11,654.85	
Annual Costs \$89,353.85					

GWM (Assumptions)

Assumes four quarters of groundwater quality monitoring utilizing existing 11 monitoring wells for the first 5 years, semi-annual monitoring for the next 10 years, and annual monitoring for the next 13 years, and quarterly for the final 2 years.

Alternative 3 - Hydraulic Containment Estimated Cash Flow and Future Costs

Interest Rate= 3%

	3/0	Routine	
Year	Capital	O&M/GWM	Total
	,		
-	\$925,837	\$0	\$925,837
1	\$0	\$425,853	\$425,853
2	\$0	\$425,853	\$425,853
3	\$0	\$425,853	\$425,853
4	\$0	\$425,853	\$425,853
5	\$0	\$425,853	\$425,853
6	\$0	\$381,176	\$381,176
7	\$0	\$381,176	\$381,176
8	\$0	\$381,176	\$381,176
9	\$0	\$381,176	\$381,176
10	\$0	\$381,176	\$381,176
11	\$0	\$381,176	\$381,176
12	\$0	\$381,176	\$381,176
13	\$0	\$381,176	\$381,176
14	\$0	\$381,176	\$381,176
15	\$0	\$381,176	\$381,176
16	\$0	\$358,837	\$358,837
17	\$0	\$358,837	\$358,837
18	\$0	\$358,837	\$358,837
19	\$0	\$358,837	\$358,837
20	\$0	\$358,837	\$358,837
21	\$0	\$358,837	\$358,837
22	\$0	\$358,837	\$358,837
23	\$0	\$358,837	\$358,837
24	\$0	\$358,837	\$358,837
25	\$0	\$358,837	\$358,837
26	\$0	\$358,837	\$358,837
27	\$0	\$358,837	\$358,837
28	\$0	\$358,837	\$358,837
29	\$0	\$89,354	\$89,354
30	\$0	\$89,354	\$89,354
Present Worth	\$898,870	\$7,067,256	\$7,966,126
Future Costs	\$925,837	\$10,784,613	\$11,710,450

Alternative 4 - Plume Stabilization and Enhanced Bioremediation Injection of PetroFix

Direct Labor	Units	Hours	Rate	Total \$US			
Principal	Labor	80	\$220.00	\$17,600.00			
Sr. Associate	Labor	100	\$187.00	\$18,700.00			
Associate	Labor	0	\$170.00	\$0.00			
Sr. Project	Labor	100	\$154.00	\$15,400.00			
Project	Labor	100	\$142.00	\$14,200.00			
Sr. Staff	Labor	647	\$123.00	\$79,565.63			
Staff	Labor	647	\$108.00	\$69,862.50			
GIS/CAD	Labor	5	\$150.00	\$750.00			
Tech	Labor	0	\$79.00	\$0.00			
Drafter	Labor	0	\$82.00	\$0.00			
Tech Editor	Labor	0	\$74.00	\$0.00			
Admin Assist	Labor	20	\$68.00	\$1,360.00			
Subtotal Labor		1699	,	\$217,438.13			
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US			
Regenesis Freight	Estimate	1	12.0%	\$48,767.02			
Field Equipment	Estimate	1	\$16,520.00	\$16,520.00			
Subtotal Cascadia Expenses				\$65,287.02			
Outside Expenses	Units	Quan.	Unit Cost	Total \$US			
(Points spaced approximately 5 feet apart). Drilling Mob/Demob	Day	65	\$500.00	\$32,343.75			
Drilling Injection Rig/Equipment	Day	65	\$8,500.00	\$549,843.75			
WA Required NOI/Decon Logs by Driller	Each	939	\$95.00	\$89,205.00			
Hand Clearing Injection Locations	Estimate	1	\$20,000.00	\$20,000.00			
Backfill Injection Points	Estimate	-	\$20,000.00	\$20,000.00			
VRU Area Direct Injections	Each	19	\$15.00	\$285.00			
B-6 Area Direct Injections	Each	280	\$15.00	\$4,200.00			
B-18 Area Direct Injections	Each	640	\$15.00	\$9,600.00			
Drums	Each	47	\$75.00	\$3,521.25			
IDW Disposal	Estimate	1	\$36,000.00	\$36,000.00			
Biostimulant Material (Initial Injections)							
VRU Area Direct Injections	Per Pound	3,591	\$3.35	\$12,029.85			
B-6 Area Direct Injections	Per Pound	42,840	\$3.35	\$143,514.00			
B-18 Area Direct Injections	Per Pound	74,880	\$3.35	\$250,848.00			
Analytical	Per Job	1	\$5,000.00	\$5,000.00			
Taxes on Outside Expenses	Per Job	1	8.4%	\$97,136.81			
10% Markup on Subcontracted Services	Misc			\$125,352.74			
Subtotal Outside Expenses	Subtotal Outside Expenses \$1,378,880.15						
Contingency (15%)	Contingency (15%) \$249,240.79						
TASK TOTAL		ASK TOTAL \$1,910,846.09					

Direct Injections

Direct injections of plume stabilizer and biostimulant (PetroFix) via direct-push drilling techniques with boring spaced approximately 6 feet apart. Injections will be completed between 15 and 25 feet bgs. Assume that water for mixing reagents will be provided by the Terminal.

Alternative 4 - Plume Stabilization and Enhanced Bioremediation Groundwater Monitoring

Direct Labor	Units	Hours	Rate	Total \$US	
Principal	Labor	30	\$220.00	\$6,600.00	
Sr. Associate	Labor	90	\$187.00	\$16,830.00	
Associate	Labor	0	\$170.00	\$0.00	
Sr. Project	Labor	0	\$154.00	\$0.00	
Project	Labor	0	\$142.00	\$0.00	
Sr. Staff	Labor	15	\$123.00	\$1,845.00	
Staff	Labor	140	\$108.00	\$15,120.00	
GIS/CAD	Labor	8	\$150.00	\$1,200.00	
Tech	Labor	0	\$79.00	\$0.00	
Drafter	Labor	0	\$82.00	\$0.00	
Tech Editor	Labor	8	\$74.00	\$592.00	
Admin Assist	Labor	12	\$68.00	\$816.00	
Subtotal Labor		303		\$43,003.00	
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US	
Freight/Shipping	Each	4	\$250.00	\$1,000.00	
Field Equipment	Estimate	1	\$4,480.00	\$4,480.00	
Subtotal Cascadia Expenses				\$5,480.00	
Outside Expenses	Units	Quan.	Unit Cost	Total \$US	
Analytical	Quarterly	4	\$5,340.00	\$21,360.00	
IDW Disposal	Each	4	\$1,300.00	\$5,200.00	
10% markup	Misc			\$2,656.00	
Subtotal Outside Expenses				\$29,216.00	
Contingency (15%)	Contingency (15%) \$11,654.85				
\$89,353.85					

GWM (Assumptions)

Assumes four quarters of groundwater quality monitoring utilizing existing 11 monitoring wells for 10 years.

Alternative 4 - Plume Stabilization and Enhanced Bioremediation Estimated Cash Flow and Future Costs

Interest Rate= 3%

		Routine	
Year	Capital	GWM	Total
-	\$1,910,846	\$0	\$1,910,846
1	\$0	\$89,354	\$89,354
2	\$0	\$89,354	\$89,354
3	\$0	\$89,354	\$89,354
4	\$0	\$89,354	\$89,354
5	\$0	\$89,354	\$89,354
6	\$0	\$89,354	\$89,354
7	\$0	\$89,354	\$89,354
8	\$0	\$89,354	\$89,354
9	\$0	\$89,354	\$89,354
10	\$0	\$89,354	\$89,354
11	\$0	\$0	\$0
12	\$0	\$0	\$0
13	\$0	\$0	\$0
14	\$0	\$0	\$0
15	\$0	\$0	\$0
16	\$0	\$0	\$0
17	\$0	\$0	\$0
18	\$0	\$0	\$0
19	\$0	\$0	\$0
20	\$0	\$0	\$0
21	\$0	\$0	\$0
22	\$0	\$0	\$0
23	\$0	\$0	\$0
24	\$0	\$0	\$0
25	\$0	\$0	\$0
26	\$0	\$0	\$0
27	\$0	\$0	\$0
28	\$0	\$0	\$0
29	\$0	\$0	\$0
30	\$0	\$0	\$0
Present Worth	\$1,855,190	\$740,006	\$2,595,197
Future Costs	\$1,910,846	\$893,539	\$2,804,385

Alternative 5 - Groundwater Recirculation Removal of Readily Accessible PCS

Direct Labor	Units	Hours	Rate	Total \$US				
Principal	Labor	80	\$220.00	\$17,600.00				
Sr. Associate	Labor	80	\$187.00	\$14,960.00				
Associate	Labor	0	\$170.00	\$0.00				
Sr. Project	Labor	80	\$154.00	\$12,320.00				
Project	Labor	30	\$142.00	\$4,260.00				
Sr. Staff	Labor	200	\$123.00	\$24,600.00				
Staff	Labor	30	\$108.00	\$3,240.00				
GIS/CAD	Labor	20	\$150.00	\$3,000.00				
Tech	Labor	0	\$79.00	\$0.00				
Drafter	Labor	0	\$82.00	\$0.00				
Tech Editor	Labor	8	\$74.00	\$592.00				
Admin Assist	Labor	10	\$68.00	\$680.00				
	Laboi		\$00.00	· · · · · · · · · · · · · · · · · · ·				
Subtotal Labor		538		\$81,252.00				
Cascadia Equipment	Units	Quan.	Unit Cost	Total \$US				
Field Vehicle	Week	3	\$480.00	\$1,440.00				
Mileage (30 Miles Round Trip)	Per Mile	60	\$0.60	\$36.00				
Hand Auger	Week	3	\$100.00	\$300.00				
PID	Week	3	\$300.00	\$900.00				
GPS Unit	Day	3	\$150.00	\$450.00				
4-gas Meter	Week	3	\$300.00	\$900.00				
Subtotal Cascadia Expenses		_		\$4,026.00				
Outside Expenses	Units	Quan.	Unit Cost	Total \$US				
Remedial Excavation Contractor								
Mob/Demob	Per Job	1	\$8,000.00	\$8,000.00				
Building demo and move transmix tank	Per Job	1	\$15,000.00	\$15,000.00				
Utility/Locates - Air knife to expose piping	Per Job	1	\$5,000.00	\$5,000.00				
Erosion and sediment control	Per Job	1	\$2,500.00	\$2,500.00				
Excavation and direct load into trucks	CY	3,100	\$13.00	\$40,300.00				
Biostimulant amendment during backfill	Per Pound	0	\$4.25	\$0.00				
Freight and Taxes for PetroFix	Estimate	0	\$8,000.00	\$0.00				
Infiltration Gallery for Recirculation System	Per LF	150	\$25.00	\$3,750.00				
Import, placement, and compaction of fill	CY	3,100	\$35.00	\$108,500.00				
Offsite Transport and Disposal	Ton	4,700	\$75.00	\$352,500.00				
Analytical Testing								
NWTPH-Gx	Sample	25	\$55.00	\$1,375.00				
NWTPH-Dx	Sample	25	\$70.00	\$1,750.00				
VOCs by EPA 8260B	Sample	10	\$160.00	\$1,600.00				
PAH by EPA 8270 SIM	Sample	10	\$160.00	\$1,600.00				
Taxes on Outside Expenses	Per Job	1	8.4%	\$43,585.50				
10% markup on Subcontracted Services	Misc			\$54,187.50				
Subtotal Outside Expenses \$639,648.00								
Contingency (15%) \$108,738.90								
TASK TOTAL								

Remedial Excavation Assumptions

Assumes the remedial excavation of approximately 2,100 tons of petroleum contaminated soil (PCS) within the MW-5 Area and 2,600 tons of PCS within the MW-6 Area. Assumes remedial excavation and backfill oversight by engineer/geologist, 3-week field duration. PSC disposal at Hillsboro Landfill. No permits, shoring or dewatering required.

Alternative 5 - Groundwater Recirculation Recirculation Pump and Treatment System Installation (with Active Bioremediation)

Direct Labor	Units	Hours	Rate	Total \$US	
Principal	Labor	60	\$220.00	\$13,200.00	
Sr. Associate	Labor	0	\$187.00	\$0.00	
Associate	Labor	0	\$170.00	\$0.00	
Sr. Project	Labor	60	\$154.00	\$9,240.00	
Project	Labor	40	\$142.00	\$5,680.00	
Sr. Staff	Labor	120	\$123.00	\$14,760.00	
Staff	Labor	200	\$108.00	\$21,600.00	
GIS/CAD	Labor	40	\$150.00	\$6,000.00	
· · · · · · · · · · · · · · · · · · ·	Labor	0	\$79.00		
Tech Drafter		0	\$82.00	\$0.00 \$0.00	
	Labor	-	,		
Tech Editor	Labor	8	\$74.00	\$592.00	
Admin Assist	Labor	40	\$68.00	\$2,720.00	
Subtotal Labor		568		\$73,792.00	
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US	
Pressure Transducers	Each	19	\$850.00	\$16,150.00	
Postage/UPS/Courier	Cost Plus	5	\$50.00	\$250.00	
Field Equipment	Estimate	1	\$7,300.00	\$7,300.00	
Subtotal Cascadia Expenses				\$23,700.00	
Outside Expenses	Units	Quan.	Unit Cost	Total \$US	
Extraction and Monitoring Well Installation, Pumpin	g and Treatmen	t (P&T) System I	nstallation		
Drilling	Day	20	\$6,500.00	\$130,000.00	
Start Cards	Each	18	\$150.00	\$2,700.00	
Blank PVC Casing	Each	270	\$4.50	\$1,215.00	
Well Screens	Per Ft.	360	\$10.00	\$3,600.00	
Vaults	Each	18	\$450.00	\$8,100.00	
Drop Box Delivery, Pickup, Cleaning	Month	1	\$2,800.00	\$2,800.00	
Drilling and P&T System Install Mob/Demob	Each	2	\$5,000.00	\$10,000.00	
System Equipment/Materials	Per Job	0	\$198,790.00	\$0.00	
Waste Disposal for Well Installation	Per Job	1	\$1,464.61	\$1,464.61	
Trenching and Piping to Treatment Equip	Per LF	600	\$18.00	\$10,800.00	
Oil-water-separator	Each	1	\$15,000.00	\$15,000.00	
Carbon Units	Each	4	\$20,000.00	\$80,000.00	
Carbon to fill the Units	Per Pound	16,000	\$2.85	\$45,600.00	
ETEC Systems				, ,,,,,,,,	
MOB/DEMOB	Each	2	\$2,084.00	\$4,168.00	
Treatment Unit (2 Units)	Each	2	\$4,000.00	\$8,000.00	
Setup/Training	Each	2	\$12,000.00	\$24,000.00	
PetroBac Amendment	Each	2	\$12,000.00	\$24,000.00	
System Pan and Pump Rental	Each	2	\$500.00	\$1,000.00	
UIC Permit	Each	1	\$1,200.00	\$1,200.00	
Construction Permits	Per Job	2	\$2,000.00	\$4,000.00	
Survey	Per Job	1	\$3,500.00	\$3,500.00	
Analytical	Per Job	1	\$17,010.00	\$17,010.00	
Taxes	Per Job	1	8.4%	\$33,445.24	
10% Markup on Subcontracted Services	Misc			\$39,815.76	
Subtotal Outside Expenses \$471,418.61					
Contingency (15%)				\$85,336.59	
TASK TOTAL				\$654,247.20	

Shallow P&T Installation and Operation (Assumptions)

Assumes the installation of 19 pumping wells (7 pumping wells in the Well MW-5 Area and 11 pumping wells in the B-18/MW-6 Area) to 35 feet below ground surface (bgs), each pumping at 1.0 gallon per minute (gpm),

25 feet radius of influence (ROI) with water being treated by oil/water separator (OWS) and granular activated carbon (GAC) on-site prior to discharge to sanitary sewer system. Assumes pilot-scale pump test, and full-scale pumping well/treatment system installation oversight by engineer/geologist.

Alternative 5 - Groundwater Recirculation VRU Area Plume Stabilization

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	40	\$220.00	\$8,800.00
Sr. Associate	Labor	40	\$187.00	\$7,480.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	40	\$154.00	\$6,160.00
Project	Labor	0	\$142.00	\$0.00
Sr. Staff	Labor	100	\$123.00	\$12,300.00
Staff	Labor	0	\$108.00	\$0.00
GIS/CAD	Labor	5	\$150.00	\$750.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	0	\$74.00	\$0.00
Admin Assist	Labor	5	\$68.00	\$340.00
Subtotal Labor		230	·	\$35,830.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Regenesis Freight + Sales Tax	Estimate	1	\$4,100.00	\$4,100.00
Field Equipment	Estimate	1	\$2,100.00	\$2,100.00
Subtotal Cascadia Expenses				\$6,200.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Biostimulant direct injections in VRU area (20 poir	nts spaced approximate	ly 6 feet apart)		
Drilling Mob/Demob	Day	4	\$250.00	\$1,000.00
Drilling Injection Rig/Equipment	Day	4	\$4,250.00	\$17,000.00
WA Required NOI/Decon Logs by Driller	Each	20	\$95.00	\$1,900.00
Hand Clearing Injection Locations	Estimate	1	\$4,000.00	\$4,000.00
Backfill Injection Points	Each	20	\$15.00	\$300.00
Drums	Each	2	\$75.00	\$150.00
IDW Disposal	Estimate	1	\$2,000.00	\$2,000.00
Biostimulant Material	Per Pound	3,780	\$4.25	\$16,065.00
Analytical	Per Job			\$0.00
10% Markup on Subcontracted Services	Misc			\$4,141.50
Subtotal Outside Expenses				\$46,556.50
Contingency (15%)				\$13,287.98
				\$101,874.48

VRU Direct Injections

Direct injections of biostimulant (PetroFix) at 20 locations spaced approximately 6 feet apart. Injections will be completed between 15 and 25 feet bgs. Assume that water for mixing biostimulant will be provided by the Terminal.

Alternative 5 - Groundwater Recirculation P&T System Operations and Maintenance

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	40	\$220.00	\$8,800.00
Sr. Associate	Labor	0	\$187.00	\$0.00
Sr. Project	Labor	50	\$154.00	\$7,700.00
Project	Labor	20	\$142.00	\$2,840.00
Sr. Staff	Labor	80	\$123.00	\$9,840.00
Staff	Labor	220	\$108.00	\$23,760.00
GIS/CAD	Labor	0	\$150.00	\$0.00
Admin	Labor	10	\$68.00	\$680.00
6% labor markup			·	\$3,217.20
Subtotal Labor		420		\$56,837.20
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Pressure Transducer	Each	1	\$800.00	\$800.00
Postage/UPS/Courier	Cost Plus	10	\$10.00	\$100.00
Field Equipment	Per Year	1	\$3,670.00	\$3,670.00
Subtotal Cascadia Expenses				\$4,570.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Analytical	Annual	1	\$26,640.00	\$26,640.00
Monthly P&T System O&M Subcontractor	Monthly	0	\$2,500.00	\$0.00
ETEC Systems				
Treatment Unit Rental (2 Units)	Monthly	12	\$8,000.00	\$96,000.00
PetroBac Amendment	Monthly	12	\$5,000.00	\$60,000.00
System Panel and Pump Rental	Monthly	12	\$1,000.00	\$12,000.00
Waste Disposal	Per Ton	10	\$215.00	\$2,122.03
Waste Transport	Each	1	\$900.00	\$900.00
Electricity	Per Year	1	\$15,422.86	\$15,422.86
GAC Media	Per Year	1	\$28,622.68	\$28,622.68
10% Markup	Misc			\$24,170.76
Subtotal Outside Expenses				\$265,878.32
Contingency (15%)				\$49,092.83
Annual Costs (Yrs 1 through 5) \$376,378.35				

O&M (Assumptions)

Assumes monthly site visits to check system operation, backwash adsorbers, download pressure transducer data, and maintenance of two ETEC systems. Assumes that there will be two separate systems with a common treatment train (OWS and GAC) prior to discharge to separate infiltration galleries. Assumes two GAC media changeouts per year.

Alternative 5 - Groundwater Recirculation Groundwater Monitoring

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	30	\$220.00	\$6,600.00
Sr. Associate	Labor	90	\$187.00	\$16,830.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	0	\$154.00	\$0.00
Project	Labor	0	\$142.00	\$0.00
Sr. Staff	Labor	15	\$123.00	\$1,845.00
Staff	Labor	140	\$108.00	\$15,120.00
GIS/CAD	Labor	8	\$150.00	\$1,200.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	8	\$74.00	\$592.00
Admin Assist	Labor	12	\$68.00	\$816.00
Subtotal Labor		303		\$43,003.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Freight/Shipping	Each	4	\$250.00	\$1,000.00
Field Equipment	Estimate	1	\$4,480.00	\$4,480.00
Subtotal Cascadia Expenses				\$5,480.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Analytical	Quarterly	4	\$5,340.00	\$21,360.00
IDW Disposal	Each	4	\$1,300.00	\$5,200.00
10% markup	Misc			\$2,656.00
Subtotal Outside Expenses				\$29,216.00
Contingency (15%)				\$11,654.85
Annual Costs				\$89,353.85

GWM (Assumptions)

Assumes four quarters of groundwater quality monitoring utilizing existing 11 monitoring wells for 7 years.

Alternative 5 - Groundwater Recirculation Estimated Cash Flow and Future Costs

Interest Rate= 3%

miterest nate-		Routine	
Year	Capital	O&M	Total
	4	1-	4
-	\$1,589,787	\$0	\$1,589,787
1	\$0	\$465,732	\$465,732
2	\$0	\$465,732	\$465,732
3	\$0	\$465,732	\$465,732
4	\$0	\$465,732	\$465,732
5	\$0	\$465,732	\$465,732
6	\$0	\$89,354	\$89,354
7	\$0	\$89,354	\$89,354
8	\$0	\$0	\$0
9	\$0	\$0	\$0
10	\$0	\$0	\$0
11	\$0	\$0	\$0
12	\$0	\$0	\$0
13	\$0	\$0	\$0
14	\$0	\$0	\$0
15	\$0	\$0	\$0
16	\$0	\$0	\$0
17	\$0	\$0	\$0
18	\$0	\$0	\$0
19	\$0	\$0	\$0
20	\$0	\$0	\$0
21	\$0	\$0	\$0
22	\$0	\$0	\$0
23	\$0	\$0	\$0
24	\$0	\$0	\$0
25	\$0	\$0	\$0
26	\$0	\$0	\$0
27	\$0	\$0	\$0
28	\$0	\$0	\$0
29	\$0	\$0	\$0
30	\$0	\$0	\$0
Present Worth	\$1,543,482	\$2,213,983	\$3,757,465
Future Costs	\$1,589,787	\$2,507,369	\$4,097,155

Alternative 6 - Removal of All Accessible Soil; Enhanced Bioremediation (Active) Remedial Excavation

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	80	\$220.00	\$17,600.00
Sr. Associate	Labor	80	\$187.00	\$14,960.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	80	\$154.00	\$12,320.00
Project	Labor	30	\$142.00	\$4,260.00
Sr. Staff	Labor	300	\$123.00	\$36,900.00
Staff	Labor	60	\$108.00	\$6,480.00
	Labor	30	\$150.00	\$4,500.00
GIS/CAD				
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	8	\$74.00	\$592.00
Admin Assist	Labor	10	\$68.00	\$680.00
Subtotal Labor		678		\$98,292.00
Cascadia Equipment	Units	Quan.	Unit Cost	Total \$US
Field Vehicle	Week	5	\$480.00	\$2,400.00
Mileage (30 Miles Round Trip)	Per Mile	100	\$0.60	\$60.00
Hand Auger	Week	4	\$100.00	\$400.00
PID	Week	3	\$300.00	\$900.00
GPS Unit	Day	3	\$150.00	\$450.00
4-gas Meter	Week	3	\$300.00	\$900.00
Subtotal Cascadia Expenses				\$5,110.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Remedial Excavation Contractor				
Mob/Demob	Per Job	1	\$8,000.00	\$8,000.00
Shed Demolition	Per Job	1	\$15,000.00	\$15,000.00
Utility/Locates - Air knife to expose piping	Per Job	1	\$5,000.00	\$5,000.00
Erosion and sediment control	Per Job	1	\$2,500.00	\$2,500.00
Sheetpile Shoring for Deep Excavation	Per LF	1,120	\$22.00	\$24,640.00
Excavation Dewatering and Treatment	Per Job	1	\$63,547.70	\$63,547.70
Excavation and direct load into trucks	CY	16,700	\$13.00	\$217,100.00
Biostimulant amendment during backfill	Per Pound	12,000	\$3.75	\$45,000.00
Freight and Taxes for PetroFix	Estimate	1	\$8,000.00	\$8,000.00
Import, placement, and compaction of fill	CY	16,700	\$25.00	\$417,500.00
Offsite Transport and Disposal of soil	Ton	25,100	\$75.00	\$1,882,500.00
Analytical Testing				
NWTPH-Gx	Sample	25	\$55.00	\$1,375.00
NWTPH-Dx	Sample	25	\$70.00	\$1,750.00
VOCs by EPA 8260B	Sample	10	\$160.00	\$1,600.00
PAH by EPA 8270 SIM	Sample	10	\$160.00	\$1,600.00
Taxes on Outside Expenses	Per Job	1	8.4%	\$226,389.47
10% markup on Subcontracted Services	Misc			\$292,150.22
Subtotal Outside Expenses \$3,213,652.38				
Contingency (15%) \$497,558.16				
ASK TOTAL \$3,814,612.54				

Remedial Excavation Assumptions

Assumes the remedial excavation of approximately 9,800 tons of petroleum contaminated soil (PCS) within the MW-5 Area and 15,300 tons of PCS within the MW-6/B-18 Areas. Assumes excavation in both containment areas will extend to 22 feet bgs. Assumes remedial excavation and backfill oversight by engineer/geologist, 5-week field duration. PSC disposal at Hillsboro Landfill. Shoring and dewatering required. No permit recuired

Alternative 6 - Removal of All Accessible Soil; Enhanced Bioremediation (Active) VRU Area Plume Stabilization

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	40	\$220.00	\$8,800.00
Sr. Associate	Labor	40	\$187.00	\$7,480.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	40	\$154.00	\$6,160.00
Project	Labor	0	\$142.00	\$0.00
Sr. Staff	Labor	100	\$123.00	\$12,300.00
Staff	Labor	0	\$108.00	\$0.00
GIS/CAD	Labor	5	\$150.00	\$750.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	0	\$74.00	\$0.00
			· ·	
Admin Assist	Labor	5	\$68.00	\$340.00
Subtotal Labor		230		\$35,830.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Regenesis Freight	Estimate	1	\$4,100.00	\$4,100.00
Field Equipment	Estimate	1	\$2,100.00	\$2,100.00
Subtotal Cascadia Expenses				\$6,200.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Biostimulant direct injections in VRU area (36 poin	ts spaced approximate	ly 5 feet apart).		
Drilling Mob/Demob	Day	7	\$250.00	\$1,800.00
Drilling Injection Rig/Equipment	Day	7	\$4,250.00	\$30,600.00
WA Required NOI/Decon Logs by Driller	Each	36	\$95.00	\$3,420.00
Hand Clearing Injection Locations	Estimate	1	\$7,000.00	\$7,000.00
Backfill Injection Points				
VRU Area Direct Injections	Each	36	\$15.00	\$540.00
B-6 Area Direct Injections	Each	0	\$15.00	\$0.00
B-18 Area Direct Injections	Each	0	\$15.00	\$0.00
Drums	Each	6	\$75.00	\$450.00
IDW Disposal	Estimate	1	\$4,000.00	\$4,000.00
Biostimulant Material (Initial Injections)				
VRU Area Direct Injections	Per Pound	6,800	\$4.25	\$28,900.00
B-6 Area Direct Injections	Per Pound	0	\$3.75	\$0.00
B-18 Area Direct Injections	Per Pound	0	\$3.75	\$0.00
Analytical	Per Job			\$0.00
Taxes on Outside Expenses	Per Job	1	8.4%	\$6,443.64
10% Markup on Subcontracted Services	Misc			\$8,135.36
Subtotal Outside Expenses				\$91,289.00
Contingency (15%)				\$19,997.85
TASK TOTAL				\$153,316.85

VRU Direct Injections

Direct injections of biostimulant (PetroFix) at 36 locations spaced approximately 5 feet apart. Injections will be completed between 15 and 25 feet bgs. Assume that water for mixing biostimulant will be provided by the Terminal.

Alternative 6 - Removal of All Accessible Soil; Enhanced Bioremediation (Active) Groundwater Monitoring

Direct Labor	Units	Hours	Rate	Total \$US
Principal	Labor	30	\$220.00	\$6,600.00
Sr. Associate	Labor	90	\$187.00	\$16,830.00
Associate	Labor	0	\$170.00	\$0.00
Sr. Project	Labor	0	\$154.00	\$0.00
Project	Labor	0	\$142.00	\$0.00
Sr. Staff	Labor	15	\$123.00	\$1,845.00
Staff	Labor	140	\$108.00	\$15,120.00
GIS/CAD	Labor	8	\$150.00	\$1,200.00
Tech	Labor	0	\$79.00	\$0.00
Drafter	Labor	0	\$82.00	\$0.00
Tech Editor	Labor	8	\$74.00	\$592.00
Admin Assist	Labor	12	\$68.00	\$816.00
Subtotal Labor		303		\$43,003.00
Cascadia Expenses	Units	Quan.	Unit Cost	Total \$US
Freight/Shipping	Each	4	\$250.00	\$1,000.00
Field Equipment	Estimate	1	\$4,480.00	\$4,480.00
Subtotal Cascadia Expenses				\$5,480.00
Outside Expenses	Units	Quan.	Unit Cost	Total \$US
Analytical	Quarterly	4	\$5,340.00	\$21,360.00
IDW Disposal	Each	4	\$1,300.00	\$5,200.00
10% markup	Misc			\$2,656.00
Subtotal Outside Expenses				\$29,216.00
Contingency (15%)		_		\$11,654.85
Annual Costs				\$89,353.85

GWM (Assumptions)

Assumes four quarters of groundwater quality monitoring of the existing 11 monitoring wells for 5 years.

Alternative 6 - Removal of All Accessible Soil; Enhanced Bioremediation (Active) Estimated Cash Flow and Future Costs

Interest Rate= 3%

		Routine	
Year	Capital	GWM	Total
_	\$3,967,929	\$0	\$3,967,929
1	\$0	\$89,354	\$89,354
2	\$0	\$89,354	\$89,354
3	\$0	\$89,354	\$89,354
4	\$0	\$89,354	\$89,354
5	\$0	\$89,354	\$89,354
6	\$0	\$0	\$0
7	\$0	\$0	\$0
8	\$0	\$0	\$0
9	\$0	\$0	\$0
10	\$0	\$0	\$0
11	\$0	\$0	\$0
12	\$0	\$0	\$0
13	\$0	\$0	\$0
14	\$0	\$0	\$0
15	\$0	\$0	\$0
16	\$0	\$0	\$0
17	\$0	\$0	\$0
18	\$0	\$0	\$0
19	\$0	\$0	\$0
20	\$0	\$0	\$0
21	\$0	\$0	\$0
22	\$0	\$0	\$0
23	\$0	\$0	\$0
24	\$0	\$0	\$0
25	\$0	\$0	\$0
26	\$0	\$0	\$0
27	\$0	\$0	\$0
28	\$0	\$0	\$0
29	\$0	\$0	\$0
30	\$0	\$0	\$0
Present Worth	\$3,852,359	\$397,296	\$4,249,654
Future Costs	\$3,967,929	\$446,769	\$4,414,699

