PACIFIC groundwater GROUP

ANNUAL COMPLIANCE MONITORING REPORT (NOVEMBER 2019 THROUGH AUGUST 2020) TERMINAL 91 TANK FARM AFFECTED AREA SEATTLE, WASHINGTON

October 2020

ANNUAL COMPLIANCE MONITORING REPORT (NOVEMBER 2019 THROUGH AUGUST 2020) TERMINAL 91 TANK FARM AFFECTED AREA SEATTLE, WASHINGTON

Prepared for:

Port of Seattle Pier 69 2711 Alaskan Way Seattle, Washington 98121

Prepared by:

Pacific Groundwater Group 2377 Eastlake Avenue East, Suite 200 Seattle, Washington 98102 206.329.0141 www.pgwg.com

> October 30, 2020 JG1602.01 TFAA Annual Report.docx

TABLE OF CONTENTS

1.0	SUMMARY	1
1.1	INTRODUCTION AND PURPOSE	1
1.2	Key Results	2
2.0	PROJECT BACKGROUND	2
2.1	BACKGROUND INFORMATION	2
2	.1.1 Property Description and History	2
	.1.2 Subsurface Conditions	
	.1.3 Geology	
	.1.4 Hydrostratigraphy	
2.2		
	 2.1 Cleanup Action for the Tank Farm Lease Parcel 2.2 Actions for Secondary Source Areas and Potential Future Exposures 	
3.0	COMPLIANCE GROUNDWATER MONITORING ACTIVITIES	
3.1	LNAPL MONITORING	
3.2	GROUNDWATER LEVEL MONITORING	
-	2.1 Groundwater Monitoring Well Redevelopment	
3.3	GROUNDWATER SAMPLING AND ANALYSIS	6
4.0	COMPLIANCE MONITORING RESULTS	7
4.1	LNAPL MEASUREMENTS	7
4.2	GROUNDWATER ELEVATIONS AND FLOW DIRECTION	
4.3	GROUNDWATER QUALITY MONITORING	8
4	3.1 Field Parameters	
	.3.2 Petroleum Hydrocarbons	
	3.3 Monitored Natural Attenuation	
	.3.4 Data Trends	
4.4	DATA VALIDATION AND MANAGEMENT	
5.0	COMPLIANCE MONITORING PLAN DEVIATIONS	
6.0	IHS MONITORING REVIEW 1	10
6.1	CONCENTRATIONS AT CPOC WELLS	0
6.2	MANN-KENDALL ANALYSIS FOR TREND	
6.3	LNAPL TRENDS 1	1
6.4	REVIEW BY CONSTITUENT 1	
-	4.1 Total Petroleum Hydrocarbons	
0	4.2 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	
6.5	.4.3 Natural Attenuation Indicators	
	.5.1 Changes to Analytes	
	5.2 Changes to Monitoring Wells	
	5.3 Changes to LNAPL Monitoring	
7.0	REFERENCES	
/.0		. F

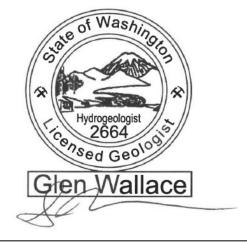
TABLES

Table 1a:	2020 LNAPL Monitoring Summary
Table 1b:	LNAPL Thickness Summary 2015-2020
Table 2a:	2020 Water Level Snapshot
Table 2b:	2016-2020 Water Level Elevations
Table 3:	2020 Groundwater Results
Table 4a:	Data Summary: Petroleum Compounds
Table 4b:	Data Summary: Natural Attenuation Indicators
Table 5:	Mann Kendall Test for Trend
Table 6:	Groundwater Summary by Constituent
T 11 7	

 Table 7:
 Recommended Monitoring Summary

FIGURES

Figure 1:	Site Map
Figure 2:	Shallow Aquifer Groundwater Elevations May 2020
Figure 3a:	AOC 11 Flowpath Time Series Plots: TPH
Figure 3b:	AOC 11 Flowpath Time Series Plots: MNA Parameters
Figure 4a:	Pier 91 Flowpath Time Series Plots: TPH
Figure 4b:	Pier 91 Flowpath Time Series Plots: MNA Parameters
Figure 5a:	Pier 90 Flowpath Time Series Plots: TPH
Figure 5b:	Pier 90 Flowpath Time Series Plots: MNA Parameters
Figure 6a:	CPOC Well Time Series Plots: TPH
Figure 6b:	CPOC Well Time Series Plots: MNA Parameters
Figure 7:	LNAPL Thickness Trends


APPENDICES

Appendix A: Field Forms / Laboratory Analytical Reports (Electronic Only)

SIGNATURE

This report, and Pacific Groundwater Group's work contributing to this report, were reviewed by the undersigned and approved for release.

۷

Glen Wallace, Ph.D., LHG Associate Hydrogeologist Washington State Hydrogeologist No. 2664

1.0 SUMMARY

1.1 INTRODUCTION AND PURPOSE

Pacific Groundwater Group (PGG) has prepared this Annual Compliance Monitoring Report to describe the groundwater compliance monitoring at the Terminal 91 (T-91) Tank Farm Affected Area (TFAA) (Figure 1). The TFAA is situated within the Port's T-91 Facility in Seattle, Washington (Figure 1).

This report has been prepared pursuant to Agreed Order No. DE-8938 (AO) between the Port of Seattle (Port) and Washington Department of Ecology (Ecology) and in accordance with the Model Toxics Control Act (MTCA) under Chapter 70.105D of the Revised Code of Washington (RCW) and Chapter 173-340 of the Washington Administrative Code (WAC).

The work summarized in this annual report was conducted from November 2019 through August 2020 in accordance with the Compliance Monitoring Plan (CMP) and Ecology-approved revisions (PES Environmental, Inc. (PES 2013b; PGG 2019). This was year five of Performance Monitoring¹ as described in the CMP (PES 2013b). The scope of work for monitoring activities documented in this report is described in the following documents:

- Compliance Monitoring Plan, Terminal 91 Tank Farm Cleanup, Port of Seattle, Seattle, Washington. (CMP) (PES et al. 2013b) and
- Operations and Maintenance Plan, Terminal 91 Tank Farm Cleanup, Port of Seattle, Seattle, Washington. (O&M Plan) (PES et al. 2013c).

Compliance Monitoring currently includes groundwater monitoring and a water level snapshot annually in May, and quarterly light non-aqueous phase liquid (LNAPL) gauging quarterly. PES conducted groundwater monitoring at the TFAA through the construction phase and the first year of Performance Monitoring ending in August 2016. PGG continued the monitoring program beginning in November 2016. The CMP requirements for the annual report include:

- An overview of the current cleanup status identifying significant results and trends (Sections 1.2, 2.2, and 4.0);
- Water level contour maps using data from all groundwater monitoring wells sampled during each event (Section 3.2; Figure 2);
- Tabulated monitoring data and water table elevation data from the previous year; and
- A narrative discussion of data validation and a description of all data qualified or rejected (Section 4.4).

¹ Performance Monitoring began with the August 2015 sampling event but was reset to begin in November 2015 to accommodate laboratory analytical issues with the August 2015 sample batch. Therefore, the annual reporting period became November through August of the following year.

The CMP includes a review of data in the fifth monitoring year with the option to recommend adjustments to the monitoring program. This review and associated recommendations are included in Section 6.

1.2 KEY RESULTS

Key results from November 2019-August 2020 (project year five) Performance Monitoring include:

- Groundwater flow directions are consistent with previous flow directions, suggesting a relatively stable groundwater flow setting along previously-identified flow pathways.
- Indicator hazardous substance² (HIS) concentrations at Conditional Point of Compliance (CPOC) wells remain below cleanup levels.
- Groundwater concentrations at non-CPOC wells are generally consistent with previous concentrations and some values exceed applicable cleanup levels.
- A qualitative review of Monitored Natural Attenuation (MNA) data and comparison to previous data indicate continued MNA in groundwater.
- The fifth-year review of monitoring data supports reduction of selected wells and analytes from the monitoring program.

2.0 PROJECT BACKGROUND

2.1 BACKGROUND INFORMATION

Section 2 summarizes the general site history, subsurface conditions, and cleanup actions conducted between 2005 and 2014. The Construction Completion report and its references provide additional detail on the background and history of the TFAA (PES 2017).

2.1.1 Property Description and History

T-91 is located at 2001 West Garfield Street, Seattle, Washington and includes approximately 216 acres (Figure 1). The TFAA occupies approximately 17 acres in the central portion of T-91. The TFAA includes the Tank Farm Lease Parcel (TFLP) identified as "Tank Farm" within the TFAA on figures. The TFLP is a contiguous parcel approximately four acres in size located immediately north of the Magnolia Bridge. The TFAA is flat and paved or covered with buildings.

The TFLP is located at the north end of the TFAA. The environmental history of the TFLP includes the bulk petroleum tank farm present from the 1920s through 2005, and the dangerous waste treatment and storage operations conducted from 1980 through 1995. The aboveground portion of the tank farm, including the tanks, containment walls, and other aboveground piping and equipment, was demolished and removed in 2005 as

² IHS include: benzene, toluene, ethylbenzene, xylenes, total petroleum hydrocarbons (TPH)-gasoline, TPH-diesel, and TPH-heavy oil.

part of an interim remedial action (Roth Consulting 2005). The final cleanup was performed in 2013-2015 and is described further in the construction completion report (PES 2017).

2.1.2 Subsurface Conditions

The geology, hydrogeology, and nature and extent of contamination are informed by investigations conducted at T-91 since 1988. The results of these investigations are detailed in the Remedial Investigation Summary Report (Roth 2007) and Final Cleanup Action Plan (Ecology 2010). The geology and hydrostratigraphy of the site is briefly summarized below.

2.1.3 Geology

Four lithologic units have been identified beneath the TFLP and adjacent areas. These four units in order of increasing depth include:

- The Shallow Sand Unit consists of fill material placed over shallow marine and tidal marsh deposits of Smith Cove during the early 1900s. It consists primarily of moderately to poorly sorted, fine- to medium-grained unconsolidated sand with laminations of silty sand and gravel lenses occurring locally. The Shallow Sand Unit extends vertically from just below the paved ground surface to between 15 and 20 feet below ground surface (ft bgs).
- The Silty Sand Unit consists of gray or olive, moderately sorted, fine- to mediumgrained silty sand with traces of coarse sand, shell debris, and wood debris. This unit is interpreted to be native marsh, intertidal, and shallow marine sediments that formed the pre-fill surface in the Smith Cove Waterway and the adjacent tidelands. Beneath the TFLP and adjacent upland areas, the Silty Sand Unit generally occurs at depths of 15 to 20 ft bgs, and varies from 20-ft thick beneath the BNSF rail yard east of the TFLP to 5-ft thick or less in the southwest corner of the TFLP. A gravel layer was found within the Silty Sand Unit in some locations and consists of moderately to poorly sorted, silty sandy gravel.
- The Deep Sand Unit directly underlies the Silty Sand Unit and consists primarily of poorly to moderately sorted, medium- to coarse-grained sand and gravelly sand, with only isolated occurrences of silt. However, beneath the northern portion of the TFLP, the Deep Sand Unit is composed of only 6 to 8 ft of sand, gravelly sand, and sandy gravel with the remaining deeper portions of the unit characterized by interbedded silty sand and sand. The depth to the top of the Deep Sand Unit varies from approximately 25 ft bgs at the center of the TFLP to as much as 45 ft beneath the north end of Pier 90.
- The Silty Clayey Sand Unit underlies the Deep Sand Unit and consists of soft to stiff fine-grained sediments, primarily silty clay and clayey silt, with lesser amounts of silt and silty clayey sand. The top of the Silty Clayey Sand Unit is shallowest beneath the eastern portion of the TFLP, where it occurs as shallow as 42 ft bgs.

2.1.4 Hydrostratigraphy

Shallow Aquifer. The Shallow Aquifer is generally present in the Shallow Sand Unit and is separated from the Deep Confined Aquifer by the Silty Sand Unit that acts as an upper

confining unit. Well water level data collected during routine monitoring show that the dominant unconfined groundwater flow direction is generally towards the south beneath the TFLP, TFAA, and piers, with flow locally to the southwest beneath Area of Concern (AOC) 11, located in the western portion of the TFAA. Water levels in the monitoring wells typically range between 3 and 10 ft bgs and generally correspond to seasonal variations in precipitation rates with the highest water levels observed during the wet season. The typical horizontal gradient beneath the TFLP is approximately 0.001 feet per foot (ft/ft).

Downward vertical gradients between the Shallow Aquifer and Deep Confined Aquifer are noted throughout the TFAA. Vertical gradients typically range from approximately 0.018 to 0.040 ft/ft, with vertical gradients decreasing to the south. Despite the presence of downward vertical gradients, significant downward movement of Shallow Aquifer groundwater under most of the TFAA is considered unlikely due to the low measured vertical permeability in the upper confining unit (Silty Sand Unit).

Tidal influence on Shallow Aquifer groundwater levels under the piers (reflected in higher tidal efficiency and lower time lag) is generally highest near the southern ends of the piers, decreasing progressively inland towards the bulkheads, that run east to west parallel to the shoreline.. Tidal efficiencies are notably higher on Pier 91 than Pier 90 and in areas without bulkheads or significant silt locally within the Shallow Aquifer. Little tidal influence is evident in Shallow Aquifer wells at the south end of the TFLP.

Deep Confined Aquifer. The deep confined aquifer is present in the Deep Sand Unit. The tidally-averaged groundwater flow direction in the Deep Confined Aquifer beneath and shoreward (i.e., south) of the TFLP is toward the south. As in the Shallow Aquifer, water levels in the Deep Confined Aquifer respond to seasonal variations in precipitation rates with the highest water levels observed during the wet season. The typical Deep Confined Aquifer horizontal gradient is relatively constant at approximately 0.003 ft/ft beneath the TFAA.

Tidal influence on Deep Aquifer groundwater levels under the piers is similar to the Shallow Aquifer, with a higher influence near the southern ends of the piers. Time lags are generally shorter in the Deep Aquifer under the piers than in the Shallow Aquifer. Tidal influence is evident in Deep Aquifer wells in most of the TFLP; the shortest time lags are along the southern boundary of the TFLP and the longest time lags are in the north.

2.2 CLEANUP ACTION SUMMARY

The TFAA cleanup actions between 2005 and 2014 consisted of the cleanup action for the TFLP, cleanup actions addressing secondary source areas and other potential future exposures, and start of compliance monitoring (PES 2017).

2.2.1 Cleanup Action for the Tank Farm Lease Parcel

The primary objectives for the TFLP cleanup action are to prevent migration of Light Non-Aqueous Phase Liquid (LNAPL) from the TFLP source area and to prevent future surface product seeps from occurring (PES 2013). Specific actions include:

- Removing existing above-ground structures and the existing asphalt paving; removing the remaining subsurface utilities, structures, and tank bases that appear to be the source of the historic surface seeps; and removing highly contaminated soil encountered during the tank base removal process;
- Constructing a subsurface cutoff wall around the perimeter of the former tank farm;
- Installing an enhanced passive LNAPL recovery system; and
- Backfilling and grading the area, constructing a new asphalt cover over the area, and constructing new stormwater drainage improvements.

2.2.2 Actions for Secondary Source Areas and Potential Future Exposures

Actions taken to address secondary source areas and potential future exposures include:

- Institutional controls, such as health and safety requirements for site workers and addressing potential exposures when future land use changes are made, including a restrictive environmental covenant filed in 2017;
- Excavating LNAPL source areas at Solid Waste Management Unit (SWMU) 30;
- Cleaning and decommissioning underground fuel pipelines remaining in the TFAA;
- Implementing an MNA groundwater sampling program to confirm that natural attenuation processes continue to degrade chemicals in groundwater (see Section 2.2.3).

3.0 COMPLIANCE GROUNDWATER MONITORING ACTIVITIES

This section describes compliance monitoring from November 2019 through August 2020 including four LNAPL gauging events and one groundwater monitoring event. The results are described in Section 4.0. Field logs are included in Appendix A.

The compliance monitoring program is designed to assess how the cleanup action is affecting groundwater quality and to evaluate if cleanup levels continue to be achieved at the CPOC wells. The CPOC wells are located at the downgradient end of three groundwater flow paths (Figure 1). Shallow aquifer CPOC wells include:

- CP-GP08 is located at the downgradient end of the Pier 90 flow path
- CP-GP09R and CP-GP10 are located at the downgradient end of the Pier 91 flow path
- CP-GP14 is the CPOC for the AOC 11 flow path

Deep aquifer CPOC wells include:

- PNO-MW-06B is located on the Pier 91 flow path
- CP-GP01B is located on the Pier 90 flow path

The groundwater performance monitoring program follows the schedule specified in the CMP. Consistent with the CMP, groundwater sampling shifted to a semi-annual schedule in 2018, and an annual schedule in 2019, with LNAPL gauging continuing on a quarterly basis. (PGG 2019; Ecology 2019).

3.1 LNAPL MONITORING

PGG collected LNAPL measurements at the east and west end of three LNAPL recovery trenches and at three monitoring wells (CP-107, CP-110, and PNO-MW104) on November 19, 2019; February 26, 2020; May 27, 2020; and August 7, 2020 (Figure 1, Table 1). The presence of LNAPL and the depth to water were measured from the surveyed top of casing (TOC) to the nearest 0.01 foot using an electronic oil-water interface probe. As specified by the CMP and Operation and Maintenance Plan (OMP) (PES et al. 2013b, c), LNAPL recovery was not performed during this annual monitoring period due to LNAPL thicknesses less than 0.25 feet. Observed LNAPL thickness ranged from sheen to 0.11 feet.

3.2 GROUNDWATER LEVEL MONITORING

PGG conducted performance groundwater level monitoring in 45 of 46 active CMP monitoring wells³ on May 26, 2020 (Table 2a, Figure 2). Monitoring well CP-122B did not have groundwater level measured because heavy equipment was parked on top of the access point. Water level elevations from 2016 to 2020 are summarized in Table 2b.

3.2.1 Groundwater Monitoring Well Redevelopment

No wells required redevelopment during this annual reporting period.

3.3 GROUNDWATER SAMPLING AND ANALYSIS

CMP groundwater sampling was conducted on May 26 through 28, 2020 (Table 3). PGG monitored the wells for temperature, pH, specific conductance, visual turbidity, dissolved oxygen (DO), oxidation-reduction potential (ORP) and collected measurements of alkalinity and ferrous iron with field test kits.

PGG collected groundwater samples using low-flow sampling methods. A peristaltic pump and dedicated tubing were used for purging and sample collection. The groundwater was purged until parameters stabilized prior to sample collection. Samples were collected directly into laboratory-provided containers. Sample containers were placed in coolers with ice and chain of custody was maintained through delivery to OnSite Environmental.

Samples were submitted to Onsite Environmental Laboratory in Redmond, Washington (an Ecology-accredited laboratory) for analysis. Samples were analyzed for gasolinerange, diesel-range, and oil-range hydrocarbons using Northwest Total Petroleum Hydrocarbons-Gasoline (NWTPH-Gx), Northwest Total Petroleum Hydrocarbons-diesel extended (NWTPH-Dx), and benzene, toluene, ethylbenzene, and xylenes (BTEX) using United States Environmental Protection Agency (U.S. EPA) Method 8260. Additional MNA parameters included total manganese by U.S. EPA Method 200.8, nitrate and sulfate by USEPA Method 300.0, and methane by U.S. EPA Method RSK-175.

³ UT-MW39-3 was previously decommissioned.

4.0 COMPLIANCE MONITORING RESULTS

This section describes the results of the annual compliance groundwater monitoring event and four quarterly LNAPL gauging events.

4.1 LNAPL MEASUREMENTS

Table 1a summarizes LNAPL measurements. As thicknesses were less than 0.25 feet, LNAPL recovery was not performed, consistent with the CMP and OMP (PES et al. 2013b, c). Key LNAPL observations include:

- LNAPL was consistently detected in Trench 5W (thickness ranged from 0.02 to 0.03 ft) and Trench 3E (thickness ranged detectable sheen to 0.05 ft).
- LNAPL was detected intermittently in other trench monitoring points.
- LNAPL was consistently detected in PNO-MW104 (thickness ranged from 0.08 to 0.11 ft).
- LNAPL was detected in CP-110 in August 2020 (0.01 ft); this was the first observation of measurable thickness post-construction, though sheen at less than the measurable thickness has been observed.
- CP-107 had measurable LNAPL thickness in August 2020 (0.09 ft); this appears to follow a seasonal trend with previous measurable thickness noted in August 2019.

4.2 GROUNDWATER ELEVATIONS AND FLOW DIRECTION

PGG conducted performance groundwater level monitoring on May 26, 2020, in all available and active CMP monitoring wells; UT-MW39-3 was previously decommissioned and CP-122B was unavailable at the snapshot date. Field water level forms are included in Appendix A.

Depth to water measurements are summarized in Table 2a. Table 2a also includes the calculated groundwater elevations, referenced to mean low-low water vertical datum (MLLW). The top-of-casing elevations in Table 2a include updated survey values from supplemental survey measurements in 2015 and 2016 at selected wells.

Shallow aquifer groundwater elevations were used to generate groundwater contours and evaluate the shallow aquifer flow direction (Figure 2 shows May 2020 contours). The shallow aquifer flow direction is to the south and is consistent with previous groundwater flow directions. No adjustments to the CMP are necessary due to changes in flow direction.

4.3 GROUNDWATER QUALITY MONITORING

4.3.1 Field Parameters

PGG monitored groundwater for temperature, pH, specific conductance, visual turbidity, dissolved oxygen, and oxidation-reduction potential and May 2020 results are shown in Table 3. Alkalinity and ferrous iron were measured using field chemistry kits in the May 2020 event. The field kits were exhausted in the course of the event and could not be replenished, so some wells are missing alkalinity and/or ferrous iron measurements.

4.3.2 Petroleum Hydrocarbons

The analytical results for total petroleum hydrocarbons and BTEX analyses are summarized in Table 3. The May 2020 laboratory analytical reports are included in Appendix A. Data trends for petroleum hydrocarbons are shown in Figures 3a through 6a.

In May 2020, cleanup levels were met at CPOC wells. The CPOC wells include shallow aquifer wells CP-GP08, CP-GP09R, CP-GP10, and CP-GP14 and deep aquifer wells PNO-MW06B and CP-GP01B. The groundwater data confirms that cleanup levels were met for total petroleum hydrocarbons at four of four shallow wells and both the deep wells during the May 2020 sampling event (Table 3).

Total petroleum hydrocarbons results exceeded cleanup levels at five non-CPOC wells in the former tank farm affected area (Figure 1). These results were generally consistent with expected site conditions. Exceedances included:

- CP-103A, located on the southwest corner of the former tank farm, exceeded cleanup levels for diesel range organics.
- CP-104A, located on the northwest corner of the former tank farm, exceeded cleanup levels for diesel range organics.
- CP-106A, located at the northeast corner of the former tank farm, exceeded cleanup levels for diesel range organics and gasoline range organics, with the qualifier that heavier fuels are present and may have impacted the gasoline result.
- CP-108A, located at the southeast corner of the former tank farm, exceeded the cleanup level for diesel range organics.
- CP-GP02, located between Pier 90 and the former tank farm, exceeded cleanup levels for diesel range organics.
- PNO-MW103, located on Pier 91, exceeded cleanup levels for gasoline- and dieselrange organics.

Benzene, toluene, and xylenes were not detected above reporting limits in most samples and did not exceed cleanup levels (Table 3). May 2020 detections included:

• CP-106A, located at the northeast corner of the former tank farm, had benzene and oxylenes greater than the reporting limits but less than the cleanup levels. • PNO-MW103, located on Pier 91, had o-xylenes greater than the reporting limit but less than the cleanup level.

Petroleum concentrations were generally consistent with previous monitoring events with concentrations qualitatively similar or decreasing within the range of data variability. These data do not indicate actions or changes to the CMP based on the current results.

4.3.3 Monitored Natural Attenuation

Monitored natural attenuation parameters are summarized in Tables 3 and 4b. Please see the 2016 Annual report for a detailed geochemical and statistical analysis of MNA at the site (PES 2016). MNA parameter trend plots are shown in Figures 3b through 6b.The 2019-2020 groundwater results indicate continued geochemical conditions conducive to natural attenuation in groundwater.

4.3.4 Data Trends

Figures 3a through 6a show data trends for gasoline-, diesel-, and oil-range hydrocarbons for each of the three groundwater flow path alignments (AOC 11, Pier 90, and Pier 91) and for CPOC wells. Tables 4a and 4b provide summary tabulations of the data from 2015 to May 2020. Data trends show generally decreasing concentrations or lack of detections at CPOC wells. None of the plotted trends showed an increasing trend in detected concentrations, though the data from some wells are noisy enough that the beginning of a trend may be hard to detect. Additional statistical analysis for trend is presented in Section 6.2.

The data trends do not indicate action or changes to the CMP based on the current results.

4.4 DATA VALIDATION AND MANAGEMENT

Data were reviewed using Stage 2 data validation consistent with *EPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data Review* (U.S. EPA 2016a, b). Data completeness, holding times, laboratory instrument calibrations, surrogate recoveries, matrix spike and matrix spike duplicates, laboratory control samples, quantitation limits, method blanks, field QC samples, and trip blanks were reviewed. No additional data qualifiers were added to data presented in this report and in the data package for Port database use. Data quality assurance review key points include:

- Samples were analyzed within applicable holding times.
- Laboratory instrument calibrations, surrogate recoveries, matrix spike and matrix spike duplicates, and laboratory control samples were within the applicable quality assurance ranges with the exception of nitrate and sulfate in the May 2020 event. Nitrate and sulfate lab duplicates had relative percent differences of 22 and 33%, which is outside of the 20% criteria; these analyses were subcontracted to AmTest.
- The relative percent differences for the field duplicates were within the recommended criteria of 20%.
- Laboratory control samples and matrix spike duplicates were within acceptable ranges.

The reviewed data are considered generally acceptable for the intended use.

5.0 COMPLIANCE MONITORING PLAN DEVIATIONS

In the last year, there were deviations from the CMP. Water levels were not measured at well CP-122B due to equipment placed over the well. Field measurements of alkalinity and ferrous iron were not completed for eleven and four wells, respectively, due to a lack of available test kits. There were no other deviations from the CMP during the May 2020 monitoring event.

6.0 IHS MONITORING REVIEW

The CMP includes a process to review monitoring data and consider revisions to the groundwater monitoring plan. According to the CMP (PES 2013b):

The FS assumed that MNA monitoring would continue for 30 years, but if after 4 years the cleanup levels continue to be met at the CPOC wells, the plume concentrations are stable or decreasing, and LNAPL monitoring shows stable to decreasing LNAPL levels, the Port may make a request to Ecology to reduce the monitoring frequency, reduce the number of parameters monitored, reduce the number of wells within the network, or request a modification to the CPOCs.

This section reviews data to assess if IHS compounds can be removed from the program, or if the number of wells included in sampling can be revised, while still achieving the goals of the monitoring program. The analysis supports revision to the monitoring program based on the findings that:

- Cleanup levels continue to be met at the CPOC wells
- Plume concentrations are stable
- LNAPL monitoring shows stable to decreasing LNAPL levels.

The evaluation is organized in the order of criteria listed in the CMP (see above). Groundwater monitoring data are compiled in Table 4, trends are analyzed in table 5, and results are summarized by constituent in Table 6.

6.1 CONCENTRATIONS AT CPOC WELLS

IHS petroleum results at CPOC wells are summarized in Table 4a. Cleanup levels have been met in every CPOC sample collected since 2017.

6.2 MANN-KENDALL ANALYSIS FOR TREND

The Mann-Kendall trend test was performed on all constituents for which there were sufficient data. The test was performed on data from 2017 forward to remove trend influences due to systematic differences in data collected before 2017 (PGG 2019). Figures 3a

through 6b present time series plots of the constituents. Consistent with Ecology guidance for use of the Mann Kendall test for trend, wells with low detection rates were excluded.

The Mann-Kendall non-parametric trend test was applied to all wells individually to evaluate whether local groundwater concentrations are increasing over time. The Mann-Kendall statistic was computed in R by examining all possible pairs of measurements in the data set and scoring each pair as follows. An earlier measurement lower in magnitude than a later one is assigned a value of ± 1 . If an earlier value is greater in magnitude than a later sample, it is scored as -1; two identical measurement values are assigned a value of 0. After scoring each pair in this way and adding up the total to get the Mann-Kendall statistic (tau), a positive value of tau implies that a majority of the differences between earlier and later measurements are positive, suggestive of an upward trend over time.

For this analysis the null hypothesis that no increasing trend exists was applied with a 0.05 level of significance (p-level) on each of the comparisons. The hypothesis was rejected when the p-level was less than 0.05 indicating that a trend is present in the data. The p-values are then corrected using the Bonferroni correction to reduce the chances of obtaining false-positive results (type I errors) when multiple-pair wise tests are performed on a single set of data. The Bonferroni corrected p values are interpreted the same way as uncorrected, values less than 0.05 signify a rejected null hypothesis.

Using the Bonferroni corrected p-values, the null hypothesis was not rejected for any of the comparisons (Table 5). These results indicate there are no statistically significant increasing or decreasing concentration trends in the dataset. Trends were indicated in uncorrected data for the following well/constituent pairs: CP-104A (diesel), CP-GP02 (diesel), and PNO-MW06A (diesel, gasoline). None of these wells are CPOC wells, and exceedances are primarily present in diesel values with one in gasoline.

The data indicate a stable plume configuration across the monitoring network.

6.3 LNAPL TRENDS

LNAPL thicknesses are summarized in Table 1b and Figure 7. LNAPL thickness has not exceeded the 0.25-foot recovery threshold since installation of the LNAPL enhanced recovery trenches with the exception of a single measurement at Trench 5W in 2015. LNAPL thicknesses are variable and appear to show a seasonal high in the August or November event across the majority of years and monitoring stations. This peak in LNAPL thickness occurs concurrent with the seasonal low water level. This correlation between water level and LNAPL thickness is consistent with typical LNAPL behavior in an unconfined aquifer with variable water levels. LNAPL trends do not qualitatively show significant trends over the period of record, 2015 through 2020.

6.4 REVIEW BY CONSTITUENT

Results from the aggregate data set are summarized by the number of analyses, number of detections, and prevalence of exceedances of cleanup levels (Table 7). The purpose of this review is to provide the basis of recommendations regarding future monitoring.

6.4.1 Total Petroleum Hydrocarbons

Gasoline, diesel, and oil-range petroleum included exceedances for all compounds with the bulk of detections occurring in the diesel range (Table 4a). The prevalence of detections and presence of exceedances indicates that these constituents should be continued in the monitoring program.

6.4.2 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

BTEX compounds are infrequently detected and have had no exceedances in the compliance monitoring program (2015 to 2020) (Table 4a). The majority of benzene, toluene and ethylbenzene detections have been at well CP-106A, and concentrations at that well appear to be stable to decreasing. Xylene detections occur at wells throughout the network, but at low concentrations. The maximum xylene detection (1 ug/L) is less than 0.1% of the CUL (1160 ug/l).

The low detection rate and lack of exceedances indicate that these constituents can be removed from the monitoring program.

6.4.3 Natural Attenuation Indicators

Methane, sulfate, nitrate, alkalinity, ferrous iron and manganese are monitored as indicators of natural attenuation processes. The MNA parameters indicate either the redox conditions conducive to biodegradation or the presence/absence of limiting nutrients for specific metabolic pathways. Decreasing redox conditions are, in order, indicated by: nitrate reduction, manganese reduction, iron reduction, sulfate reduction, and methanogenesis. Nitrate and sulfate reduction result in decreases in concentration as they are metabolically processed, while iron and manganese reduction result in increases in concentration as they are converted into more soluble valence states. Methanogenesis also results in increases in methane concentrations with methane as the final metabolic product.

Nitrate concentrations are generally near or below 1 mg/L indicating that nitrate reduction is not a significant component of natural attenuation at the site. Upgradient wells CP-114 and CP-205A/B have nitrate concentrations less than 1 mg/L. Nitrate concentrations near 7 mg/L at well CP-GP03AR are likely a local geochemical feature.

Manganese concentrations increase from 17 ug/L in upgradient well CP-114 to values between 300 and 500 ug/L in wells downgradient of the TFAA at CP-106A (500 ug/L), CP-103A (310 ug/L), PNO-MW-02 (310 ug/L), and PNO-MW-06A (330 ug/L). Down-gradient CPOC wells have lower concentrations, including CP-GP09R (40 ug/L), CP-GP10 (11 U ug/L), CP-GP-14 (26 ug/L), and CP-GP08 (100 ug/L). The elevated manganese concentrations in areas with high petroleum concentrations are consistent with manganese reduction and likely indicate active bacterial degradation of petroleum.

Ferrous iron concentrations show generally similar trends to total manganese, but with lower analytical resolution due to the use of field test kits that are less precise.

Sulfate concentrations are highest in nearshore wells CP-GP05 and CP-GP-03AR, consistent with localized interaction with saline waters which are enriched in sulfate relative to groundwater.

6.5 RECOMMENDATIONS FOR REVISED MONITORING

Consistent with the criteria outlined in the CMP, the monitoring data concentrations, lack of exceedances, and trends support a request to adjust the monitoring program.

The Port recommends the adjustments to the monitoring program described below beginning with the 2021 calendar monitoring year. Current and recommended groundwater monitoring and LNAPL gauging are summarized in Table 7.

6.5.1 Changes to Analytes

The Port recommends:

- Remove analysis of BTEX compounds from the sampling program. These analytes are rarely detected and do not exceed applicable cleanup levels. Existing data are sufficient to demonstrate that these compounds do not exceed cleanup levels under post-construction conditions.
- Remove analysis of MNA parameters: alkalinity, nitrate, sulfate, methane, ferrous iron, and manganese. The available data indicate persistent conditions favorable to anaerobic degradation of petroleum along the groundwater flow paths. These constituents are not IHS parameters, do not have cleanup levels, and have sufficiently demonstrated favorable conditions for natural attenuation.
- Specific analytes discussed above may be reinstated on a temporary or ongoing basis, should future petroleum results indicate a change in site conditions.

6.5.2 Changes to Monitoring Wells

A number of wells have not had recent exceedances, and many have not had recent detections of petroleum compounds. The occurrence of recent exceedances and detections is summarized by well in the header of Table 4a. The Port recommends removing wells with no recent detections or exceedances from groundwater sampling, including: CP-108B, CP-114, CP-205B, CP-GP01A, CP-GP01B, CP-GP03AR, CP-GP05, and PNO-MW101A (Tables 4a, 8).

The Port does not recommend any changes to the annual synoptic water level snapshot well list or changes to the locations of CPOC wells. Future annual reports may recommend changes in locations of CPOC wells based on monitoring results.

6.5.3 Changes to LNAPL Monitoring

The Port does not currently recommend changes to the LNAPL monitoring frequency. However, the Port does recommend continued evaluation of LNAPL thickness seasonality. LNAPL levels show seasonal variation with a peak in LNAPL thicknesses at the end of the dry season when water levels are low. Peak observed LNAPL thicknesses occur in August and November in most wells. However, there is variability and some LNAPL thickness peaks occur outside of the August and November timeframe. If a more consistent trend of seasonal LNAPL thickness peaks below recovery thresholds is observed, the Port may recommend a reduction to measurement in only peak months.

7.0 REFERENCES

- Pacific Groundwater Group [PGG], 2019. TFAA Compliance Monitoring Recommendation and Statistical Analysis, Port of Seattle – Terminal 91 Site, Agreed Order No. DE 8938. Prepared for Port of Seattle. August 20.
- PES Environmental, Inc. and Vista Consultants, LLC [PES et al.]. 2013a. *Engineering Design Report. Terminal 91 Tank Farm Cleanup, Port of Seattle, Seattle, Washington.* Prepared for Port of Seattle. July 11.
 - _____. 2013b. Compliance Monitoring Plan, Terminal 91 Tank Farm Cleanup, Port of Seattle, Seattle, Washington. Prepared for Port of Seattle. July 11.
 - . 2013c. Operation and Maintenance Plan, Terminal 91 Tank Farm Cleanup, Port of Seattle, Seattle, Washington. Prepared for Port of Seattle. July 11.
- . 2016. Annual Compliance Monitoring Report (August 2015 through August 2016), Terminal 91 Tank Farm Affected Area Cleanup Action, Seattle, Washington. October 20, 2016.
- . 2017. Construction Report, Terminal 91 Tank Farm Affected Area Cleanup Action, Seattle, Washington. October 2017.
- Roth Consulting. 2005. Independent Interim Remedial Action Report Terminal 91 Tank Farm Demolition 2005. October 18.
 - . 2007. Remedial Investigation Summary Report for the Terminal 91 Tank Farm Site in Seattle, Washington. Prepared for Port of Seattle. August.
- U.S. Environmental Protection Agency [EPA]. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-99/008. October.
 - . 2016a. National Functional Guidelines for Data Review for Inorganic Superfund Methods Data Review. OLEM 9355.0-133. EPA-540-R-2016-001. September 2016.
 - . 2016b. National Functional Guidelines for Data Review for Superfund Organic Methods Data Review. OLEM 9355.0-134. EPA-540-R-2016-002. September 2016.
- Washington Department of Ecology [Ecology]. 2019. Approval: Transition to Annual Confirmation Monitoring in the Tank Farm Affected Area. September 18.
 - ____. 2010. Final Cleanup Action Plan, Port of Seattle Terminal 91 Site, Seattle, Washington. December 15.

Table 1a. 2020 LNAPL Monitoring Summary

Terminal 91

Well or Riser	Date	Easting	Northing	Top of Casing	LNAPL Top	LNAPL Bottom	LNAPL Thickness	*Groundwater Elevation (feet)
CP-107	11/19/2019	1258549.03	235217.377	17.7	6.14	6.14	0.00	11.56
CP-107	2/26/2020	1258549.03	235217.377	17.7	5.02	5.02	0.00	12.68
CP-107	5/27/2020	1258549.03	235217.377	17.7	NM	NM	NM	NM
CP-107	8/7/2020	1258549.03	235217.377	17.7	6.2	6.22	0.02	11.50
CP-110	11/19/2019	1258545.2	235064.79	17.46	6.9	6.9	0.00	10.56
CP-110	2/26/2020	1258545.2	235064.79	17.46	6.05	6.05	0.00	11.41
CP-110	5/27/2020	1258545.2	235064.79	17.46	NM	NM	NM	NM
CP-110	8/7/2020	1258545.2	235064.79	17.46	7.01	7.02	0.01	10.45
PNO-MW104	11/19/2019	1258507.67	234985.46	17.7	7.12	7.22	0.10	10.56
PNO-MW104	2/26/2020	1258507.67	234985.46	17.7	6.47	6.55	0.08	11.21
PNO-MW104	5/27/2020	1258507.67	234985.46	17.7	NM	NM	NM	NM
PNO-MW104	8/7/2020	1258507.67	234985.46	17.7	7.26	7.37	0.11	10.42
Trench 2E	11/19/2019	1258689.24	235172.27	21.43	10.85	10.86	0.01	10.58
Trench 2E	2/26/2020	1258689.24	235172.27	21.43	NM	NM	NM	NM
Trench 2E	5/27/2020	1258689.24	235172.27	21.43	NM	NM	NM	NM
Trench 2E	8/7/2020	1258689.24	235172.27	21.43	10.62	10.63	0.01	10.81
Trench 2W	11/19/2019	1258614.92	235174.809	18.37	7.79	7.81	0.02	10.58
Trench 2W	2/26/2020	1258614.92	235174.809	18.37	NMT	6.61	NMT	11.76
Trench 2W	5/27/2020	1258614.92	235174.809	18.37	NMT	7.2	NMT	11.17
Trench 2W	8/7/2020	1258614.92	235174.809	18.37	7.58	7.58	0.00	10.79
Trench 3E	11/19/2019	1258683.13	235311.857	19.29	8.69	8.74	0.05	10.59
Trench 3E	2/26/2020	1258683.13	235311.857	19.29	7.49	7.5	0.01	11.80
Trench 3E	5/27/2020	1258683.13	235311.857	19.29	8.08	8.08	0.00	11.21
Trench 3E	8/7/2020	1258683.13	235311.857	19.29	8.48	8.52	0.04	10.80
Trench 3W	11/19/2019	1258607.59	235312.566	18.1	7.49	7.54	0.05	10.60
Trench 3W	2/26/2020	1258607.59	235312.566	18.1	NMT	6.3	NMT	11.80
Trench 3W	5/27/2020	1258607.59	235312.566	18.1	6.89	6.89	0.00	11.21
Trench 3W	8/7/2020	1258607.59	235312.566	18.1	7.29	7.31	0.02	10.81
Trench 5E	11/19/2019	1258571.45	235310.842	16.51	6.29	6.31	0.02	10.22
Trench 5E	2/26/2020	1258571.45	235310.842	16.51	NMT	3.97	NMT	12.54
Trench 5E	5/27/2020	1258571.45	235310.842	16.51	NMT	4.86	NMT	11.65
Trench 5E	8/7/2020	1258571.45	235310.842	16.51	5.3	5.31	0.01	11.21
Trench 5W	11/19/2019	1258516.23	235312.104	16.56	5.26	5.28	0.02	11.30
Trench 5W	2/26/2020	1258516.23	235312.104	16.56	3.95	3.98	0.03	12.60
Trench 5W	5/27/2020	1258516.23	235312.104	16.56	4.85	4.88	0.03	11.70
Trench 5W	8/7/2020	1258516.23	235312.104	16.56	5.3	5.33	0.03	11.25

Notes:

NMT: no measurable thickness.

LNAPL top and bottom measured as distance below top of riser pipe.

LNAPL thickness was measured twice in the field; reported values are the final measurement.

NM: not measured.

Table 2a. 2020 Water Level Snapshot

Port of Seattle Terminal 91

Location	Aquifan	Northin -	Fasting	Top of Casing	Depth to Water	Groundwater
Location	Aquifer	Northing	Easting	Elevation (ft)	(ft.)	Elevation (ft)
B1-93	Shallow	235056.49	1259053.02	17.24	6.57	10.67
CP-103A	Shallow	234972.53	1258577.49	17.21	6.36	10.85
CP-104A	Shallow	235419.92	1258578.53	17.49	5.03	12.46
CP-104B	Deep	235426.99	1258578.29	17.39	5.48	11.91
CP-106A	Shallow	235301.93	1258919.04	18.11	6.32	11.79
CP-106B	Deep	235311.62	1258908.04	18.06	6.51	11.55
CP-107	Shallow	235217.38	1258549.03	17.70	5.77	11.93
CP-108A	Shallow	234962.68	1258931.98	17.19	6.25	10.94
CP-108B	Deep	234962.46	1258927.28	17.22	9.52	7.70
CP-110	Shallow	235064.79	1258545.20	17.46	6.68	10.78
CP-111	Shallow	234994.01	1258361.25	17.74	7.25	10.49
CP-112	Shallow	235347.29	1258424.51	17.40	5.40	12.00
CP-113	Shallow	235538.49	1258574.60	17.36	4.98	12.38
CP-114	Shallow	235478.73	1258827.05	17.17	5.48	11.69
CP-115A	Shallow	235411.43	1258723.96	17.74	5.26	12.48
CP-115B	Deep	235417.48	1258737.17	17.87	5.92	11.95
CP-121	Shallow	235478.45	1258668.95	17.91	5.21	12.70
CP-122B	Deep	235241.13	1258967.84	17.07	NA	NA
CP-203B	Deep	234972.13	1258599.96	17.56	8.58	8.98
CP-205A	Shallow	235677.44	1258726.80	17.69	5.12	12.57
CP-205B	Deep	235682.02	1258725.15	17.72	5.55	12.17
CP-GP01A	Shallow	234783.17	1259137.77	17.79	8.16	9.63
CP-GP01B	Deep	234780.16	1259127.74	17.58	10.04	7.54
CP-GP02	Shallow	234870.33	1259056.83	17.52	7.38	10.14
CP-GP03AR	Shallow	234511.00	1258309.84	18.00	8.97	9.03
CP-GP03BR	Deep	234481.72	1258309.70	17.91	13.64	4.27
CP-GP04R	Shallow	234734.04	1258317.31	18.14	8.51	9.63
CP-GP05	Shallow	234925.88	1258075.23	17.75	8.13	9.62
CP-GP06	Shallow	234926.51	1257941.21	17.85	8.02	9.83
CP-GP07R	Shallow	234873.77	1258267.68	18.07	8.09	9.98
CP-GP08	Shallow	234457.14	1259008.14	17.27	8.19	9.08
CP-GP09R	Shallow	234287.95	1259000.11	17.67	8.95	8.72
CP-GP10	Shallow	234293.61	1258302.87	17.68	9.39	8.29
CP-GP11	Shallow	235153.12	1258319.95	16.98	6.25	10.73
CP-GP12	Shallow	235283.73	1258226.95	17.31	5.40	11.91
CP-GP13	Shallow	235085.87	1258020.07	16.45	7.01	9.44
CP-GP14	Shallow	234927.56	1257862.30	17.60	7.90	9.70
CP-PR-13	Shallow	235133.41	1257802.50	17.34	6.79	10.55
CP-W210	Shallow	234966.79	1258230.72	17.40	7.06	10.33
PNO-MW02	Shallow	234900.79	1258463.27	17.40	8.26	9.61
PNO-MW02 PNO-MW06A	Shallow	234813.14	1258405.27	18.21	8.20 8.57	9.64
PNO-MW06A	Deep	234764.07	1258421.89	18.17	8.37 11.89	6.28
PNO-MW101	Shallow	234/64.07 234996.10	1258421.79	17.72	7.47	10.25
						8.74
						10.60 12.01
PNO-MW103 PNO-MW104 UT-MW39-1	Shallow Shallow Shallow	234472.89 234985.46 235313.48	1258453.46 1258507.67 1258481.61	17.53 17.70 16.89	8.79 7.10 4.88	10

Notes:

NA - well not accessible at time of snap shot

Water level snapsont May 26, 2020

Table 2b. 2016-2020 Water Level Elevations

Port of Seattle Terminal 91

Date	B1-93	CP-103A	CP-104A	CP-104B	CP-106A	CP-106B	CP-107	CP-108A	CP-108B	CP-110	CP-111	CP-112	CP-113	CP-114	CP-115A	CP-115B
11/14/2016	11.85	11.71	13.80	12.77	13.16	12.52	12.85	11.97	11.03	11.63	11.12	12.68	13.55	13.09	13.70	12.91
2/13/2017		12.18	14.34	13.35	13.60	13.31	13.36	12.52	9.94	12.09	11.36	13.12	14.41	13.72	14.54	14.68
5/9/2017	12.05	11.73	13.70	12.97	12.91	12.88	13.13	11.97	7.29	11.69	10.96	12.83	13.71	13.01	13.82	12.85
8/15/2017	10.49	10.58	11.97	11.67	11.38	11.38	11.55	10.70	8.93	10.52	10.35	11.67	11.87	11.15	11.91	11.62
11/30/2017	11.60	11.56	13.34	12.54	12.82	12.47	12.61	11.72	10.82	11.49	11.34	12.54	13.30	12.69	13.42	12.72
5/9/2018	11.34	11.16	12.99	12.34	12.36	12.27	12.31	11.38	8.97	11.12	10.64	12.38	12.97	12.51	13.08	11.69
11/25/2018	10.37	10.58	11.80	11.45	11.63	11.16	11.45	10.74	9.27	10.50	10.60	11.58	11.69	11.02	11.24	11.90
5/29/2019		10.70	12.20	11.78	11.60	11.58	11.72	10.89	8.27	10.63	10.50			11.39	12.17	11.78
5/27/2020	10.67	10.85	12.46	11.91	11.79	11.55	11.93	10.94	7.70	10.78	10.49	12.00	12.38	11.69	12.48	11.95
						CP-	CP-		CP-	CP-	CP-			CP-		CP-
Date	CP-121	CP-122B	CP-203B	CP-205A	CP-205B	GP01A	GP01B	CP-GP02	GP03AR	GP03BR	GP04R	CP-GP05	CP-GP06	GP07R	CP-GP08	GP09R
11/14/2016	13.90	12.44	10.48	13.79	13.30	10.65	10.18	11.16	10.33	7.33	10.37	11.35	10.71	10.60	9.98	9.86
2/13/2017	14.76	13.10	10.10	14.75	14.53	10.82	9.68	11.56	10.22	9.47	10.59	10.87	10.93	10.00	10.34	9.74
5/9/2017	14.03	12.84	9.62	13.95	13.84	10.00	6.41	10.98	8.75	3.57	9.80	9.73	10.10	10.32	9.66	8.31
8/15/2017	12.14	11.28	9.29	11.99	11.87	9.72	8.65	9.93	9.42	7.86	9.70	9.95	10.03	9.97	8.72	8.98
11/30/2017	13.67	12.23	10.54	13.57	13.47	10.48	10.28	10.81	10.12	12.97	10.43	10.64	10.87	10.36	9.90	9.32
5/9/2018	13.28	12.18	9.65	13.17	12.79	9.80	8.43	10.47	8.99	8.37	9.70	9.61	9.92	10.10	9.20	8.54
11/25/2018	11.98	10.92	9.60	11.81	11.58	10.03		9.99	9.89	8.69	10.06	10.31	10.33	10.10	9.02	9.52
5/29/2019	12.40	11.39	9.05	12.25	12.03	9.31	6.98	10.05	8.63	6.50	9.51	9.50	9.65	9.94	8.90	8.27
5/27/2020	12.70		8.98	12.23	12.05	9.63	7.54	10.03	9.03	4.27	9.63	9.62	9.83	9.98	9.08	8.72
012112020	12.70		0.00	1210 /	1211 /	2100	/10 1	10111	,,,,,,		2100	,2	,,,,,,	,,,,,	,	0112
								PNO-	PNO-	PNO-	PNO-	PNO-	PNO-	UT-		
Date	CP-GP10	CP-GP11	CP-GP12	CP-GP13	CP-GP14	CP-PR-13	CP-W210	MW02	MW06A	MW06B	MW101	MW103	MW104	MW39-1		
11/14/2016	9.75	11.41	11.47	10.19	10.91	11.07	11.36	10.54	10.40	8.79	11.07	9.76	11.50	12.69	-	
2/13/2017	9.45	11.56	11.54	7.44	10.67	11.25	13.71	10.63	10.73	9.94	11.11	9.84	11.80	13.16		
5/9/2017		11.23	11.23	9.86	9.75	10.93	11.27	10.03	9.89	6.39	10.67	8.49	13.50	12.90		
8/15/2017	8.68	10.60	10.52	9.55	9.88	10.43	10.11	9.47	9.59	8.33	10.18	8.90	10.40	11.65		
11/30/2017	8.98	11.32	11.52	10.20	10.60	11.29	11.04	10.31	10.41	11.79	10.95	9.51	11.30	12.48		
5/9/2018	8.04	10.92	10.90	9.56	9.61	9.64	10.66	9.67	9.73	9.03	10.40	8.64	10.89	12.36		
11/25/2018	9.16	10.67	10.61	9.69	10.28	10.55	10.11	9.69	9.89	9.28	10.32	9.34	10.51	10.52		
5/29/2019	7.72	10.68	10.67	9.38	9.41	10.48	10.24	9.54	9.53	7.93	10.22	8.46	10.54	11.83		
5/27/2020	8.29	10.73	11.91	9.44	9.70	10.55	10.34	9.61	9.64	6.28	10.25	8.74	10.60	12.01	_	

Notes:

All water level elevations in feet MLLW.

Table 3. 2020 Groundwater Results

Port of Seattle Terminal 91

Constituent	Date	Units	Cleanup Level	CP-103A	CP-104A	CP-106A	CP-108A	CP-108B	CP-114	CP-203B	CP-205B	CP- GP01A	CP- GP01B	CP-GP02	CP- GP03AR	CP-GP05	CP-GP08	CP- GP09R	CP-GP10	CP-GP11	CP-GP14	PNO- MW02	PNO- MW06A	PNO- MW06B	PNO- MW101	PNO- MW103
													CPOC				СРОС	CPOC	СРОС		CPOC			CPOC		
Field Parameters																										
Temperature	5/27/2020	deg C		14.3	14.5	16.6	14	15.1	14.6	14.7	15.2	15.7	16.2	15.1	13.2	12.6	14.5	15.9	13.8	16.2	13.6	15.6	15.8	15	15.1	16.1
Specific Conductance	5/27/2020	umhos/cm		473.8	494.4	735	379.8	6011	453.5	553.5	2865	1520	4809	1244	33300	18650	868	7550	20570	3816	1967	1012	1556	2675	3711	1571
pН	5/27/2020	pH		7.18	7.29	6.74	7.37	7.77	7.57	7.4	8.21	7.09	8.43	6.85	7.55	7.27	7.16	7.24	7.59	7.31	7.22	6.49	6.73	7.09	7.51	6.69
Oxidation-Reduction Potential	5/27/2020	mV		-57.4	26.8	-92.7	-219.6	-337.4	342	-43.7	-290.1	41.4	-92.8	28.5	-306	-239.2	41.1	212.1	247	-303.3	-37.1	76.3	-103.3	-146.2	-208	-95.7
Oxygen, Dissolved	5/27/2020	mg/L		0.1	0.2	0.18	0.6	0.1	0.6	0.2	0.5	0.3	0.5	0.1	0.2	0.54	0.1	0.87	6.33	0.83	0.81	0.27	0.29	0.31	0.91	2.48
Ferrous Iron	5/27/2020	mg/L			0.5	3	0	0	0			0		2	0	0.5	2	0	0	0.5	0	3	1.5	0	0.5	3.5
Alkalinity as CaCO3	5/27/2020	mg/L				280									160	420		420	280	260	320	460	420	400	360	440
Monitored Natural Attenuation																										
Manganese, Total	5/27/2020	ug/L		310	290	500	43		17			83		290	11U	94	100	40	11U	42	26	310	330		710	720
Methane	5/27/2020	ug/L		5500	5500	13000	4400		1100			12000		11000	8.8	1200	490	100	0.55U	2800	370	7600	5000		1200	7400
Nitrate as N	5/27/2020	mg/L		0.294	0.289	0.581	0.216		1.03			0.469		0.757	10.2	5.37	0.481	0.054	0.934	1.9	0.604	0.692	0.683		0.025U	0.025U
Sulfate	5/27/2020	mg/L		0.32	0.53	0.18	1.61		14.6			0.1		6.1	1840	806	21.9	290	993D	142	77.3	9.68	3.08		31.8	0.1
Total Petroleum Hydrocarbons		-																								
NWTPH-Gasoline	5/27/2020	ug/L	800	5200	400O	900O	4800	100U	100U	3700	100U	100U	100U	440O	100U	100U	100U	100U	100U	280	100U	1900	160O	2000	100U	640O
NWTPH-Diesel	5/27/2020	mg/L	0.5	0.78	0.5	0.86	0.59	0.22U	0.21U	0.3	0.22U	0.2U	0.21U	0.97	0.2U	0.2U	0.21U	0.2U	0.2U	0.2U	0.21U	0.4	0.34	0.24	0.2U	0.86
NWTPH-Oil	5/27/2020	mg/L	0.5	0.21U	0.21U	0.2U	0.21U	0.22U	0.21U	0.21U	0.22U	0.2U	0.21U	0.21U	0.2U	0.2U	0.21U	0.2U	0.2U	0.2U	0.21U	0.2U	0.2U	0.2U	0.2U	0.2U
Volatiles		-																								
Benzene	5/27/2020	ug/L	9.7	0.2U	0.2U	3.7	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Toluene	5/27/2020	ug/L	8260	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
Ethylbenzene	5/27/2020	ug/L	2100	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
m,p-Xylenes	5/27/2020	ug/L	1160	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U
o-Xylene	5/27/2020	ug/L	1160	0.61	0.2U	0.49	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.24

Groundwater Cleanup Levels from (PES 2009) **Bold**, outlined, shaded cells indicate exceedance of cleanup level

ug/L: micrograms per liter

mg/L: milligrams per liter

U: Constituent not detected at reporting limit shown; values are gray

D: Result was obtained from the analysis of a dilution

L: Relative percent difference with duplicate out of range

M: Hydrocarbons in the gasoline range are impacting the diesel range result

X: Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.

Z: analyzed out of hold time

CPOC flag in header indicates that the well is a conditional point of compliance well

Depth to water in this table is at the time of sampling and may vary from values reported in Table 2

NWTPH: Northwest Total Petroleum Hydrocarbon analysis, with distillate range indicated (diesel-, gasoline-, and oil-range)

SG: Sample had silica gel treatment as part of the NWTPH-Dx analysis sample preparation

O: Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

Table 4a. Data Summary: Petroleum Compounds Port of Seattle Terminal 91

Port of Seattle Ter	rminal 91			CPOC Well	ls					Monitoring	v Wells															
	Exce	eedance Within L	ast 4 Events?	No	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	No	Yes	No	Yes	No	Yes
	Recent I	Detection within 5		No	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes	Yes	No	Yes
		Continue	• Monitoring?	Yes	Yes CP-	Yes	Yes	Yes CP-	Yes PNO-	Yes	Yes	Yes	Yes	No	No	Yes	No	No CP-	Yes	No	No	Yes	Yes PNO-	Yes PNO-	No PNO-	Yes PNO-
Constituent	Date	Units	CUL	CP-GP08	GP09R	CP-GP10		GP01B	MW06B	CP-103A	CP-104A	CP-106A	CP-108A	CP-108B	CP-114	CP-203B	CP-205B	GP01A	CP-GP02	CP-GP03AR	CP-GP05	CP-GP11	MW02	MW06A	MW101	MW103
NWTPH-D-SG NWTPH-D-SG	11/9/2015	mg/L	0.5	0.05 U	0.074 0.05 U	0.05 U 0.05 U	0.113 0.05 U	0.526	2.98 2.26	1.9 3.08	0.63	2.83 1.84	6.98 6.54	1.12 0.606	0.05 U 0.05 U	2.35	0.05 U 0.05 U	0.05 U	6.75 3.24	0.152 0.434	0.1 0.05 U	0.05 U	4.92 0.892	5.62	0.185 0.05 U	5.01
NWTPH-D-SG	2/8/2016 5/3/2016	mg/L mg/L	0.5 0.5	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.448	1.98	0.999	0.335	6.96	5.33	0.405	0.05 U 0.05 U	1.68 1.52	0.05 U 0.05 U	0.182 0.109	0.05 U	0.434 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.271	1.82 0.997	0.03 0	5.1 6.08
NWTPH-D-SG	8/15/2016	mg/L	0.5	0.05 U	0.157	0.05 U	0.05 U	0.414	2.12	1.83	0.404	2.37	3.96	0.166	0.05 U	1.94	0.05 U	0.05 U	7.72	0.137	0.05 U	0.05 U	3.78	3.74	0.05 U	1.5
NWTPH-D-SG NWTPH-D-SG	2/13/2017 5/10/2017	mg/L mg/L	0.5 0.5	0.26 U 0.26 U	0.26 U 0.25 U	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.58	0.38 0.41	0.7 0.66	0.26 0.42	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.31 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.25 U 0.25 U	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.26 U	0.26 U 0.25 U	0.6
NWTPH-D-SG	8/15/2017	mg/L	0.5	0.26 U	0.26 U	0.25 U	0.26 U	0.25 U	0.25 U	0.35	0.52	0.83	0.53	0.20 U	0.25 U	0.36	0.26 U	0.26 U	0.48	0.46	0.25 U	0.26 U	0.45	0.26 U	0.26 U	0.73
NWTPH-D-SG	11/30/2017	mg/L	0.5	0.26 U	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U	0.47 J	0.39 M	0.65 M	0.47	0.26 U	0.26 U	0.26M	0.26 U	0.26 U	0.63M	0.25 U	0.25 U	0.25 U	0.26 U	0.35	0.26 U	0.98
NWTPH-D-SG NWTPH-D-SG	5/16/2018 11/15/2018	mg/L mg/L	0.5 0.5	0.26 U 0.25 U	0.26 U 0.25 U	0.25 U	0.25 U 0.26 U	0.26 U 0.26 U	0.26 U 0.25 U	0.76 M 0.68	0.64 M 0.43	0.79 M 0.67	0.4 M 0.33	0.31 U 0.26 U	0.26 U 0.25 U	0.3M 0.37	0.3 U 0.26 U	0.25 U 0.26 U	0.26 U 0.43	0.25 U 0.25 U	0.26 U 0.25 U	0.26 U 0.26 U	0.26 U 0.47	0.62 0.41	0.26 U 0.25 U	0.9M 0.72
NWTPH-D-SG	5/29/2019	mg/L	0.5	0.25 U	0.26 U	0.25 U	0.25 U	0.25 U	0.25 U	0.69	0.63	0.67M	0.32	0.26 U	0.25 U	0.44	0.25 U	0.25 U	0.4	0.25 U	0.25 U	0.25 U	0.35M	0.5M	0.25 U	0.89
NWTPH-D-SG	5/27/2020	mg/L	0.5	0.21 U	0.2 U	0.2 U	0.21 U	0.21 U	0.24	0.78	0.5	0.86	0.59	0.22 U	0.21 U	0.3	0.22 U	0.2 U	0.97	0.2 U	0.2 U	0.2 U	0.4	0.34	0.2 U	0.86
NWTPH-LO NWTPH-LO	8/10/2015 11/9/2015	mg/L mg/L	0.5 0.5	0.13 0.1 U	0.858 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.65	0.659 0.1 U	0.1 U 0.1 U	0.1 U 0.76	2.66 3.83	0.1 U 0.1 U	0.151 0.104	5.58 0.1 U	0.57 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	2.44 0.1 U	2.17 0.1 U	0.196 0.1 U	0.1 U 0.1 U				
NWTPH-LO	2/8/2016	mg/L	0.5	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.16	2.28	0.104 U	0.1 U	0.146	0.1 U	0.114	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
NWTPH-LO NWTPH-LO	5/3/2016 8/15/2016	mg/L mg/I	0.5 0.5	0.1 U 0.1 U	0.1 U 0.314	0.1 U 0.1 U	0.1 U 0.1 U	0.446 0.707	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.24	6.3 4.04	0.1 U 0.1 U	0.524 0.593	0.338 0.118	0.103 U 0.1 U	0.1 U 0.1 U	0.1 U 0.15	4.21 0.1 U	0.331 0.19	0.1 U 0.1 U	0.1 U 0.1 U	1.72 0.1 U	2.32 0.1 U	0.1 U 0.144	0.1 U 1.47
NWTPH-LO	11/14/2016	mg/L mg/L	0.5	0.1 U	0.314 0.41 U	0.1 U 0.41 U	0.41 U	0.41 U	0.10	0.52	0.24	2.3	2.8		0.45	0.41 U	0.42 U	0.41 U	2.9	0.19	0.41 U	0.1 U 0.4 U	1.5	1.9	0.41 U	1.47
NWTPH-LO	2/13/2017	mg/L	0.5	0.41 U	0.41 U	0.41 U	0.41 U	0.42 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.49 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.41 U	0.42 U	0.41 U	0.41 U
NWTPH-LO NWTPH-LO	5/10/2017 8/15/2017	mg/L mg/L	0.5 0.5	0.42 U 0.41 U	0.41 U 0.41 U	0.41 U 0.4 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.42 U 0.42 U	0.41 U 0.41 U	0.41 U 0.41 U	0.42 U 0.42 U	0.41 U 0.41 U	0.41 U 0.41 U	0.4 U 0.41 U	0.41 U 0.4 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U
NWTPH-LO	11/30/2017	mg/L	0.5	0.41 U	0.4 U	0.4 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.42 U	0.41 U	0.41 U	0.4 U	0.4 U	0.41 U	0.41 U	0.41 U	0.41 U	0.47N
NWTPH-LO	5/16/2018	mg/L	0.5	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.49 U	0.41 U	0.41 U	0.49 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
NWTPH-LO NWTPH-LO	11/15/2018 5/29/2019	mg/L mg/L	0.5 0.5	0.4 U 0.41 U	0.4 U 0.41 U	0.4 U	0.41 U 0.41 U	0.41 U 0.41 U	0.4 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.4 U 0.41 U	0.41 U 0.4 U	0.41 U 0.41 U	0.41 U 0.41 U	0.41 U 0.41 U	0.4 U 0.4 U	0.4 U 0.4 U	0.41 U 0.4 U	0.41 U 0.4 U	0.41 U 0.41 U	0.4 U 0.41 U	0.4 U 0.41 U
NWTPH-LO	5/27/2020	mg/L	0.5	0.21 U	0.2 U	0.2 U	0.21 U	0.21 U	0.2 U	0.21 U	0.21 U	0.2 U	0.21 U	0.22 U	0.21 U	0.21 U	0.22 U	0.2 U	0.21 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
NWTPH-G	8/10/2015 11/9/2015	ug/L	800 800	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	50 U 50 U	235 50 U	554 50 U	703 50 U	336 50 U	50 U 50 U	50 U 50 U	171 50 U	50 U 50 U	50 U 50 U	248 50 U	50 U 50 U	50 U 50 U	255 50 U	50 U 50 U	50 U 50 U	84.1 51.8	50 U 50 U
NWTPH-G NWTPH-G	2/8/2016	ug/L ug/L	800	50 U	50 U	50 U	50 U	50 U	50 U	334	50 U	50 U	79.2	50 U	616	290	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	51.8 50 U	50 U
NWTPH-G	5/3/2016	ug/L	800	50 U	50 U	50 U	50 U	50 U	164	290	712	1730	543	50 U	50 U	296	50 U	50 U	50 U	50 U	50 U	1440	50 U	50 U	58.7	50 U
NWTPH-G NWTPH-G	8/15/2016 11/14/2016	ug/L ug/L	800 800	50 U 100 U	50 U 100 U	50 U 100 U	50 U 100 U	50 U 100 U	50 U 400 U	50 U 380	50 U 300	50 U 400 U	50 U 400 U	50 U	50 U 100 U	50 U 100 U	50 U 400 U	93.4 100 U	50 U 400 U	50 U 400 U	50 U 100 U	50 U 400 U	50 U 160	50 U 400 U	148 100 U	50 U 400 U
NWTPH-G	2/13/2017	ug/L	800	100 U	100 U	100 U	100 U	100 U	200	430	390	860	270	100 U	100 U	320	100 U	100 U	100 U	100 U	100 U	230	100 U	100 U	100 U	450
NWTPH-G	5/10/2017	ug/L	800	100 U	100 U	100 U	100 U	100 U	130	500 U	470 O	1200 O	500 U	100 U	100 U	500 U	100 U	100 U	140	100 U	100 U	360	100 U	100 U	100 U	400 U
NWTPH-G NWTPH-G	8/15/2017 11/30/2017	ug/L ug/L	800 800	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	500 U 380 O	500 U 540 O	500 U 450 O	1200 O 990 O	500 U 490 O	100 U 400 U	100 U 100 U	500 U 380 O	100 U 400 U	100 U 100 U	500 U 690 O	100 U 100 U	100 U 100 U	500 U 350	500 U 380 O	100 U 100 U	100 U 100 U	500 U 600 O
NWTPH-G	5/16/2018	ug/L	800	100 U	100 U	400 U	100 U	100 U	230	630	370	1100	430	400 U	100 U	380	400 U	100 U	250	400 U	100 U	730	150	220	100 U	710
NWTPH-G NWTPH-G	11/15/2018 5/29/2019	ug/L ug/L	800 800	100 U 100 U	100 U 100 U	 100 U	400 U 100 U	100 U 100 U	400 U 170 O	100 U 500 U	100 U 500 U	100 U 790 O	100 U 500 U	100 U 500 U	100 U 100 U	100 U 500 U	400 U 500 U	100 U 100 U	100 U 500 U	400 U 100 U	400 U 100 U	400 U 330	400 U 250 O	400 U 160 O	400 U 100 U	400 U 500 U
NWTPH-G	5/27/2020	ug/L ug/L	800	100 U	100 U	100 U	100 U	100 U	200 O	520 O	400 O	900 O	480 O	100 U	100 U	370 O	100 U	100 U	440 O	100 U	100 U	280	190 O	160 O	100 U	640 O
Benzene	8/10/2015	ug/L	9.7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.18	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Benzene Benzene	11/9/2015 2/8/2016	ug/L ug/L	9.7 9.7	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	7.07 4.09	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U						
Benzene	5/3/2016	ug/L	9.7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.17	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Benzene Benzene	8/15/2016 11/14/2016	ug/L	9.7 9.7	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	7.27 6.3	1.0 U 0.2 U	1.0 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U	1.0 U 0.2 U
Benzene	2/13/2017	ug/L ug/L	9.7	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	4.5	0.2 U	0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U						
Benzene	5/10/2017	ug/L	9.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	4.7	0.23	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Benzene Benzene	8/15/2017 11/30/2017	ug/L ug/L	9.7 9.7	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	6.6 4.7	0.2 U 0.2 U	0.4 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U					
Benzene	5/16/2018	ug/L	9.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	6.4	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U						
Benzene	11/15/2018	ug/L	9.7	0.2 U	0.2 U		0.2 U	5.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U										
Benzene Benzene	5/29/2019 5/27/2020	ug/L ug/L	9.7 9.7	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	6.2 3.7	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U						
Toluene	8/10/2015	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.63	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Toluene Toluene	11/9/2015 2/8/2016	ug/L ug/I	8260 8260	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.05 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Toluene	5/3/2016	ug/L ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	8/15/2016	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene Toluene	11/14/2016 2/13/2017	ug/L ug/L	8260 8260	1.0 U 2.7	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.8	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.3	0.2 U	1.0 U 2.1	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U	1.0 U 2.0 U
Toluene	5/10/2017	ug/L ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	8/15/2017	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	45	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Toluene	11/30/2017	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Table 4a. Data Summary: Petroleum Compounds

Port of Seattle Terminal 91

	Even	edance Within La		CPOC Wel No	No	No	No	No	No	Monitoring Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	No	Yes	No	Yes	No	Yes
		Detection within 50		No	No	No	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes	Yes	No	Yes
	Recent D	Continue I		Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes	Yes	No	Yes						
		e chining i		105	CP-	1 05	105	CP-	PNO-	105	1 05	105	100	110	110	100	110	CP-	100	110	110	105	PNO-	PNO-	PNO-	PNO-
Constituent	Date	Units	CUL	CP-GP08	GP09R	CP-GP10	CP-GP14	GP01B	MW06B	CP-103A	CP-104A	CP-106A	CP-108A	CP-108B	CP-114	CP-203B	CP-205B	GP01A	CP-GP02	CP-GP03AF	R CP-GP05	CP-GP11	MW02	MW06A	MW101	MW103
Foluene	5/16/2018	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Foluene	11/15/2018	ug/L	8260	1.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Foluene	5/29/2019	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Foluene	5/27/2020	ug/L	8260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	8/10/2015	ug/L	2100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	11/9/2015	ug/L	2100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	2/8/2016	ug/L	2100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	5/3/2016	ug/L	2100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	8/15/2016	ug/L	2100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
Ethylbenzene	11/14/2016	ug/L	2100	0.2 U	0.2 U	0.25	0.2 U		0.2 U																	
Ethylbenzene	2/13/2017	ug/L	2100	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U						
Ethylbenzene	5/10/2017	ug/L	2100	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U						
Ethylbenzene	8/15/2017	ug/L	2100	0.2 U	0.2 U	0.37	0.2 U																			
Ethylbenzene	11/30/2017	ug/L	2100	0.2 U	0.2 U	0.22	0.2 U																			
Ethylbenzene	5/16/2018	ug/L	2100	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U						
Ethylbenzene	11/15/2018	ug/L	2100	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Ethylbenzene	5/29/2019	ug/L	2100	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U				
Ethylbenzene	5/27/2020	ug/L	2100	0.2 U	0.00	0.2 U	0.2 U	0.2 U	0.2 U	0.1	0.2 U	÷	0.2 U	÷	0.2 U	0.2 U		0.2 U	0.1	÷ · = =	0.2 U	0.12				
-Xylene	8/10/2015	ug/L	1160	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U						
-Xylene	11/9/2015	ug/L	1160	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U						
o-Xylene	2/8/2016 5/3/2016	ug/L	1160 1160	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U				
o-Xylene o-Xylene	8/15/2016	ug/L ug/L	1160	1.0 U	1.0 U	1.01	1.0 U																			
-Xylene	11/14/2016	ug/L ug/L	1160	0.2 U	0.55	0.21	0.73	0.2 U	1.0 0	0.2 U	0.26	0.2 U	0.2 U													
o-Xylene	2/13/2017	ug/L ug/L	1160	0.2 U	0.2 U 0.2 U	0.47	0.2 U	0.73	0.2 U	0.20 0.2 U	0.2 U 0.2 U	0.2 U														
o-Xylene	5/10/2017	ug/L	1160	0.2 U	0.31	0.2 U	0.57	0.2 U																		
o-Xylene	8/15/2017	ug/L	1160	0.2 U	0.48	0.26	0.71	0.2 U	0.27	0.22	0.22	0.2 U	0.2													
o-Xylene	11/30/2017	ug/L	1160	0.2 U	0.22	0.48	0.2 U	0.46	0.2 U	0.24	0.2 U	0.2 U														
o-Xylene	5/16/2018	ug/L	1160	0.2 U	0.61	0.23	0.58	0.2 U	0.3	0.2 U	0.25															
-Xylene	11/15/2018	ug/L	1160	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.58	0.27	0.53	0.2 U	0.27	0.35	0.2 U	0.23									
-Xylene	5/29/2019	ug/L	1160	0.2 U	0.52	0.27	0.54	0.2 U	0.23	0.2 U	0.23															
-Xylene	5/27/2020	ug/L	1160	0.2 U	0.61	0.2 U	0.49	0.2 U	0.24																	
n,p-Xylene	8/10/2015	ug/L	1160	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
n,p-Xylene	11/9/2015	ug/L	1160	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
n,p-Xylene	2/8/2016	ug/L	1160	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
n,p-Xylene	5/3/2016	ug/L	1160	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U						
n,p-Xylene	8/15/2016	ug/L	1160	1.0 U	1.0 U	4.63	1.0 U																			
n,p-Xylene	11/14/2016	ug/L	1160	0.4 U	0.4 U	6	0.4 U		0.4 U																	
n,p-Xylene	2/13/2017	ug/L	1160	0.4 U	0.4 U	1.4	0.4 U																			
n,p-Xylene	5/10/2017	ug/L	1160	0.4 U	0.4 U	0.47	0.4 U																			
n,p-Xylene	8/15/2017	ug/L	1160	0.4 U	0.4 U	0.56	0.4 U	0.52	0.4 U	0.4 U	0.4 U	0.4 U														
n,p-Xylene	11/30/2017	ug/L	1160	0.4 U	0.4 U	1.5	0.4 U																			
n,p-Xylene	5/16/2018	ug/L	1160	0.4 U	0.4 U	0.46	0.4 U																			
n,p-Xylene	11/15/2018	ug/L	1160	0.4 U	0.4 U		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
n,p-Xylene	5/29/2019	ug/L	1160	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U						
n,p-Xylene	5/27/2020	ug/L	1160	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U						

Bold, outlined, shaded cells indicate exceedance of cleanup level

U: non-detect at reporting limit shown.

J: Estimated value, result may be between reporting and method detection limits.

mg/L: milligrams per liter

ug/L: micrograms per liter

O: Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

CPOC: Conditional Point of Compliance

Table 4b. Data Summary: Natural Attenuation Indicators Port of Seattle Terminal 91

			CPOC Wel	ls					Monitoring	g Wells															
				CP-			CP-	PNO-									CP-		CP-			PNO-	PNO-	PNO-	PNO-
Constituent	Date	Units	CP-GP08	GP09R		CP-GP14	GP01B	MW06B	CP-103A	CP-104A	CP-106A	CP-108A	CP-108B	CP-114	CP-203B	CP-205B	GP01A	CP-GP02	GP03AR	CP-GP05		MW02	MW06A	MW101	MW103
Alkalinity (as CaCO3)	11/14/2016	mg/L	320	360		220				280							200	500	220	320	420	400	340	480	520
Alkalinity (as CaCO3)	5/10/2017	mg/L		225	220	220	170	420	320	200	320	160		140	320	560	380	460	160	180	340	360	360	115	520
Alkalinity (as CaCO3)	11/30/2017	mg/L	320	400	180	225	20	400	240	320	300	360	900	180	240	520	300	440	160	220	360	320	420	380	520
Alkalinity (as CaCO3)	5/16/2018	mg/L	300	260	280	300	40	360	220	140	360	220	400	180		540	260	280	180	300	300	340	260	360	240
Alkalinity (as CaCO3)	5/29/2019	mg/L	320		180	260	20			220	280	160	760	240	180	520	240	460	160	300		380	320	380	440
Alkalinity (as CaCO3)	5/27/2020	mg/L		420	280	320		400			280								160	420	260	460	420	360	440
Ferrous Iron	11/14/2016	mg/L	0.5U	0.5U		0.5U	0.5U			0.75							0.5U	3	0.5J	0.5U	0.5U	2	1.5	1.5	1.5
Ferrous Iron	5/10/2017	mg/L		0	0	0	0	0	0.25	0.75	1	0.25		0.25	0.25	0	0.5	0.5	0	0	0	0	1	0.5	2
Ferrous Iron	11/30/2017	mg/L	0.25	0	0	0	0.25	0	1.25	0.25J	1.25	0.75	0	0.75	0.5	0	0.75	3	0	0.5	0	1	2	0.5	1.5
Ferrous Iron	5/16/2018	mg/L	0	0.5	0	0	0.25	0	1	0.5	2	0.25	0	0.25	0.5	0	0	0	0	0	0	1	2	1	3
Ferrous Iron	5/29/2019	mg/L	1	0.5	0	0	0.5		2	0.5	1.5	0.5	0	0.5	0.5	0	0.5	1.5	0.5	0.5		1	2.5	0.5	1.5
Ferrous Iron	5/27/2020	mg/L	2	0	0	0		0		0.5	3	0	0	0			0	2	0	0.5	0.5	3	1.5	0.5	3.5
Manganese, Total	11/9/2015	ug/L	56.7	274	5.71J	281	12	26.1	381	298	834	156	2.0U	106	683	4.25	55.6	245	11.5	182	199	698	2060	1290	679
Manganese, Total	5/3/2016	ug/L	113	29.2	10UJ	102			297	289	465	85		11.2			69.5	106	10UJ	218	454	222	169	812	807
Manganese, Total	11/14/2016	ug/L	35	23	10U	15L			340	300L	410L	110		11L			61	10UL	10U	190L	1000	410	840	920	530
Manganese, Total	5/10/2017	ug/L	32	10U	10U	41			280	240	390	51		13			99	140	10U	250	240	270	93	360	530
Manganese, Total	11/30/2017	ug/L	11U	11U	11U	85			330	260	430	120		14			90	340	11U	260	260	290	1100	550	550
Manganese, Total	5/16/2018	ug/L	68	13	11U	26			350	280	570	51		11U			69	240	11U	110	210	340	500	490	610
Manganese, Total	5/29/2019	ug/L	99	27	11U	79			390	330	530	60		19			90	280	11U	140	100	420	340	1100	700
Manganese, Total	5/27/2020	ug/L	100	40	11U	26			310	290	500	43		17			83	290	11U	94	42	310	330	710	720
Methane	11/9/2015	ug/L	20.9	8.88	5.0U	20.5	3800	2450	2710	1440	1700	1270	3570	729	1880	2360	3210	2590	8.18	125	553	3020	5440	1560	1930
Methane	11/9/2015	ug/L	20.9	8.88	5.0U	20.5	3800	2450	2710	1440	1700	1270	3570	729	1880	2360	3210	2590	8.18	125	553	3020	5440	1560	1930
Methane	5/3/2016	ug/L	5.81	5.0U	5.0U	7.06			285	340	2170	238		39.8			1630	552	5.0U	35.4	1190	513	344	333	464
Methane	5/3/2016	ug/L	5.81	5.0U	5.0U	7.06			285	340	2170	238		39.8			1630	552	5.0U	35.4	1190	513	344	333	464
Methane	11/14/2016	ug/L	14	2.6	0.5U	15			5800	5200	7900	920		1100			12000	9000	5.6	310	2200	2900	2000Z	1000	4800Z
Methane	11/14/2016	ug/L	14	2.6	0.5U	15			5800	5200	7900	920		1100			12000	9000	5.6	310	2200	2900	2000Z	1000	4800Z
Methane	5/10/2017	ug/L	8.1	1.5	0.75	100			7500	2000	15000	4100		140			4100	2100	9	570	9900	260	750	1700	5400
Methane	5/10/2017	ug/L	8.1	1.5	0.75	100			7500	2000	15000	4100		140			4100	2100	9	570	9900	260	750	1700	5400
Methane	11/30/2017	ug/L	11	0.6	0.61	64			5000	5400	13000	2700		830			7700	8000	6.2	370	2400	1800	6200	7500	8900
Methane	11/30/2017	ug/L	11	0.6	0.61	64			5000	5400	13000	2700		830			7700	8000	6.2	370	2400	1800	6200	7500	8900
Methane	5/16/2018	ug/L	31	8.4	2.4	85			4200	2500	17000	3200		350			5200	1900	7.1	230	5800	6800	5800	1400	3300
Methane	5/16/2018	ug/L	31	8.4	2.4	85			4200	2500	17000	3200		350			5200	1900	7.1	230	5800	6800	5800	1400	3300
Methane	5/29/2019	ug/L	210	44	1.0U	120			6000	5200	15000	3800		920			13000	8300	6.6	460	800	12000	6700	610	6300
Methane	5/29/2019	ug/L	210	44	1.0U	120			6000	5200	15000	3800		920			13000	8300	6.6	460	800	12000	6700	610	6300
Methane	5/27/2020	ug/L	490	100	0.55U	370			5500	5500	13000	4400		1100			12000	11000	8.8	1200	2800	7600	5000	1200	7400
Methane	5/27/2020	ug/L	490	100	0.55U	370			5500	5500	13000	4400		1100			12000	11000	8.8	1200	2800	7600	5000	1200	7400
Nitrate as N	11/9/2015	mg/L as N	0.722	10U	2.62J	5.0U	0.67J	0.256J	1.06	0.1U	0.2U	0.124J	2.0U	0.151	0.048	1.0U	0.2U	0.5U	20U	5.0U	2.0U	0.418J	2.0U	2.0U	0.506J
Nitrate as N	5/3/2016	mg/L as N	5.0UJ	5.0UJ	10U	5.0U			0.2U	0.2U	0.5U	0.2U		0.645			0.5U	0.732	20U	10U	5.0U	0.5U	0.5U	5.0U	5.0U
Nitrate as N	11/14/2016	mg/L as N	0.67	0.05U	0.72	0.77			0.05U	0.05U	0.05U	0.28		0.48			0.089	0.18	0.05U	0.13	0.05U	0.05U	0.05U	0.05U	0.05U
Nitrate as N	5/10/2017	mg/L as N	0.516J	0.025U	1.1J	0.025U			0.21J	0.025U	0.025U	0.025U		0.124J			0.122J	0.532J	7.8J	1.9J	0.025U	0.025U	0.025U	0.025U	0.025U
Nitate as N	11/30/2017	mg/L as N	0.628	0.025U	1.03	0.204			0.025U	0.025U	0.025U	0.184		1.05			0.099	0.027	0.025U	0.578	0.301	0.025U	0.044	0.025U	0.025U
Nitrate as N	5/16/2018	mg/L as N	0.166			0.389			0.025U	0.025U	0.025U	0.025U		0.392			0.025U	1.1	7.88	1.1	0.025U	0.025U	0.025U	0.025U	0.025U
Nitrate as N	5/29/2019	mg/L as N	0.025U	0.897	0.598	0.365			0.17	0.206	0.55	0.179		0.164			0.025U	0.441	1.3	0.025U	0.791	0.763	0.114	0.592	0.099
Nitrate as N	5/27/2020	mg/L as N	0.481	0.054	0.934	0.604			0.294	0.289	0.581	0.216		1.03			0.469	0.757	10.2	5.37	1.9	0.692	0.683	0.025U	0.025U
Sulfate	11/9/2015	mg/L	53.2	1300	2010	1280	4.47J	2.6J	0.382J	3.63	6.58	51.9	7.91	14.1	0.034J	2.39J	0.592J	4.96	2210	863	432	2.09J	3.96J	50.8	3.32J
Sulfate	5/3/2016	mg/L	46.3	508	980	377			5.06	0.6U	1.5U	0.93		20.5			1.5U	38.4	1640	793	183	28.3	1.75	28.8	15U
Sulfate	11/14/2016	mg/L	51.7	1480	1320	529			0.29	2.02	4.31	19.8		21			14.3	67.8	1720	31.9	92.8	7.08	21.8	35.4	0.72
Sulfate	5/10/2017	mg/L	53.5	430	747	190			5.72	0.52	0.25	0.71		16.4			10.3	35.2	1410	910	44.4	33.5	9.12	2.51	0.4
Sulfate	11/30/2017	mg/L	57.9	882	1780	402			0.26	0.64	1.08	53.3		25.7			6.4	61.4	2300	1800	466	27.8	41.9	24.3	1.48
Sulfate	5/16/2018	mg/L	4.1			144			0.17	0.61	0.3	3.4		14			0.74	19	1740	1120	90.9	13.7	0.66	0.72	1.2
Culfata	5/29/2019	mg/L	39.7	446	1730	354			0.25	5.87	0.89	3.57		3.46			0.84	64.6	2190	928	203	9.18	0.1U	129	0.43
Sulfate Sulfate	5/27/2020	mg/L	21.9	290	993	77.3			0.32	0.53	0.18	1.61		14.6			0.1	6.1	1840	806	142	9.68	3.08	31.8	0.1

Notes:

Alkalinity and ferrous iron measured in field with test kits. U: non-detect at reporting limit shown. J: Estimated value, result may be between reporting and method detection limits.

mg/L: milligrams per liter ug/L: micrograms per liter

Table 5. Mann Kendall Test for Trend

Terminal 91

					Bonferroni-	
Well	Constituent	n	tau	р	Adjusted p	Trend
CP-103A	Diesel	9	0.42	0.14	1.00	No
CP-103A	Gasoline	9	0.13	0.73	1.00	No
CP-103A	Oil	9	1.00	1.00	1.00	No
CP-104A	Diesel	8	0.41	0.03	0.76	No
CP-104A	Gasoline	8	-0.26	0.21	1.00	No
CP-104A	Oil	8	1.00	1.00	1.00	No
CP-106A	Diesel	8	0.17	0.38	1.00	No
CP-106A	Gasoline	8	-0.33	0.07	1.00	No
CP-108A	Diesel	8	0.07	0.75	1.00	No
CP-108A	Gasoline	8	0.08	0.73	1.00	No
CP-108A	Oil	8	1.00	1.00	1.00	No
CP-203B	Diesel	8	0.59	0.06	1.00	No
CP-203B	Gasoline	8	0.04	1.00	1.00	No
CP-GP02	Diesel	8	0.40	0.04	1.00	No
CP-GP02	Gasoline	8	0.16	0.47	1.00	No
CP-GP11	Gasoline	8	-0.04	1.00	1.00	No
PNO-MW02	Diesel	8	0.40	0.23	1.00	No
PNO-MW02	Gasoline	8	0.40	0.23	1.00	No
PNO-MW06A	Diesel	8	0.47	0.02	0.40	No
PNO-MW06A	Gasoline	8	0.49	0.02	0.53	No
PNO-MW06B *	Diesel	8	0.50	0.19	1.00	No
PNO-MW103	Diesel	8	0.25	0.22	1.00	No
PNO-MW103	Gasoline	8	0.16	0.47	1.00	No

Notes:

n: number of observations; data restricted to 2017 and later (PGG 2019).

tau: Mann Kendall statistic; positive indicates upward trend.

p: significance level, applied at 0.05; p < 0.05 (**bolded**) indicates a trend.

Bonferroni-adjusted p: see discussion in text.

Trend: qualitative evaluation of p value with p < 0.05 indicating a trend.

* Conditional point of compliance well.

Wells/consituents not shown did not have adequate detections for analysis.

Table 6. Groundwater Summary by Constituent

Port of Seattle Terminal 91

Constituent	Units	Results	Detections	Minimum	Average	Maximum	CUL	Exceedances	Continue?	Basis
Total Petroleum Hydrocarbon	ıs (NWTPH	I)								
NWTPH-G	mg/L	345	81	0.05	0.4	1.73	0.8	Yes	Yes	
NWTPH-D-SG	mg/L	287	128	0.07	1.3	7.72	0.5	Yes	Yes	Exceedancees present in data set.
NWTPH-LO	mg/L	342	53	0.10	1.5	6.3	0.5	Yes	Yes	
BTEX Compounts (EPA 8260))									
Benzene	ug/L	348	19	0.2	5.2	7.5	9.7	No	No	
Toluene	ug/L	347	7	1.1	8.2	45.0	8260	No	No	
Ethylbenzene	ug/L	348	5	0.2	0.3	0.4	2100	No	No	Low detection rate, no exceedances.
Xylene Isomers, M+P	ug/L	348	11	0.4	1.6	6.0	1160	No	No	
o-Xylene	ug/L	347	44	0.2	0.4	1.0	1160	No	No	
LNAPL Monitoring										
LNAPL Thickness	feet	88	79	0	0.03	0.18	0.25*		Yes	LNAPL is present.
Natural Attenuation Indicator	rs									
Alkalinity as CaCO3, Total	mg/L	112	111	20	313.1	900			No	
Ferrous Iron	mg/L	122	112	0	0.7	3.5			No	Results document persistent
Manganese, Total	ug/L	158	138	4.25	295.8	2060			No	geochemistry favorable to natural
Sulfate	mg/L	149	144	0.034	314.9	2300			No	attenuation.
Nitrate as N	mg/L	140	66	0.027	0.7	7.88			No	מווכוועמווסוו.
Methane	ug/L	157	150	0.6	3309.6	17000			No	

Notes:

* 0.25 feet is the threshold for initiating LNAPL recovery.

LNAPL: light non-aqueous phase liquid.

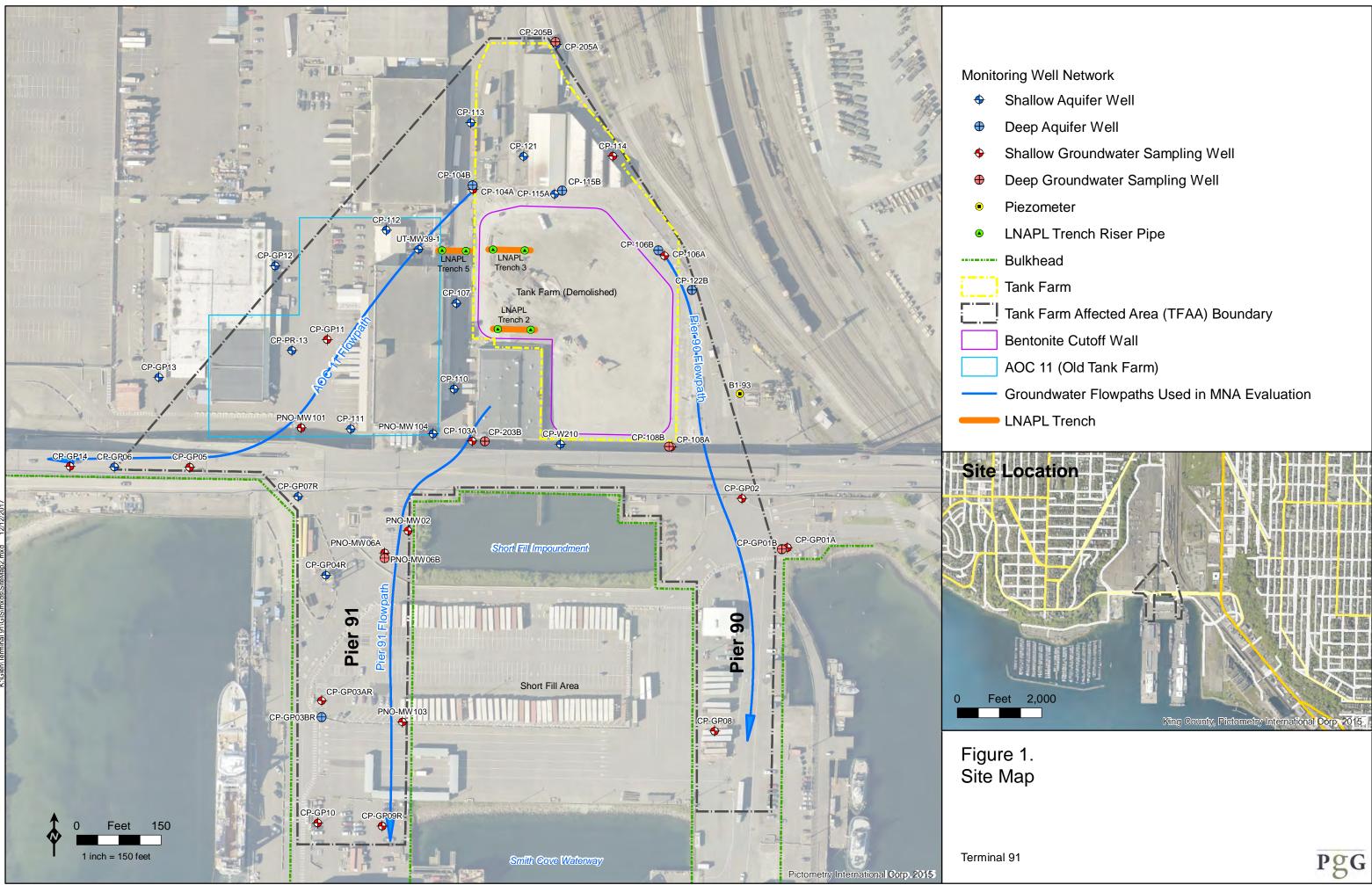
CUL: cleanup level.

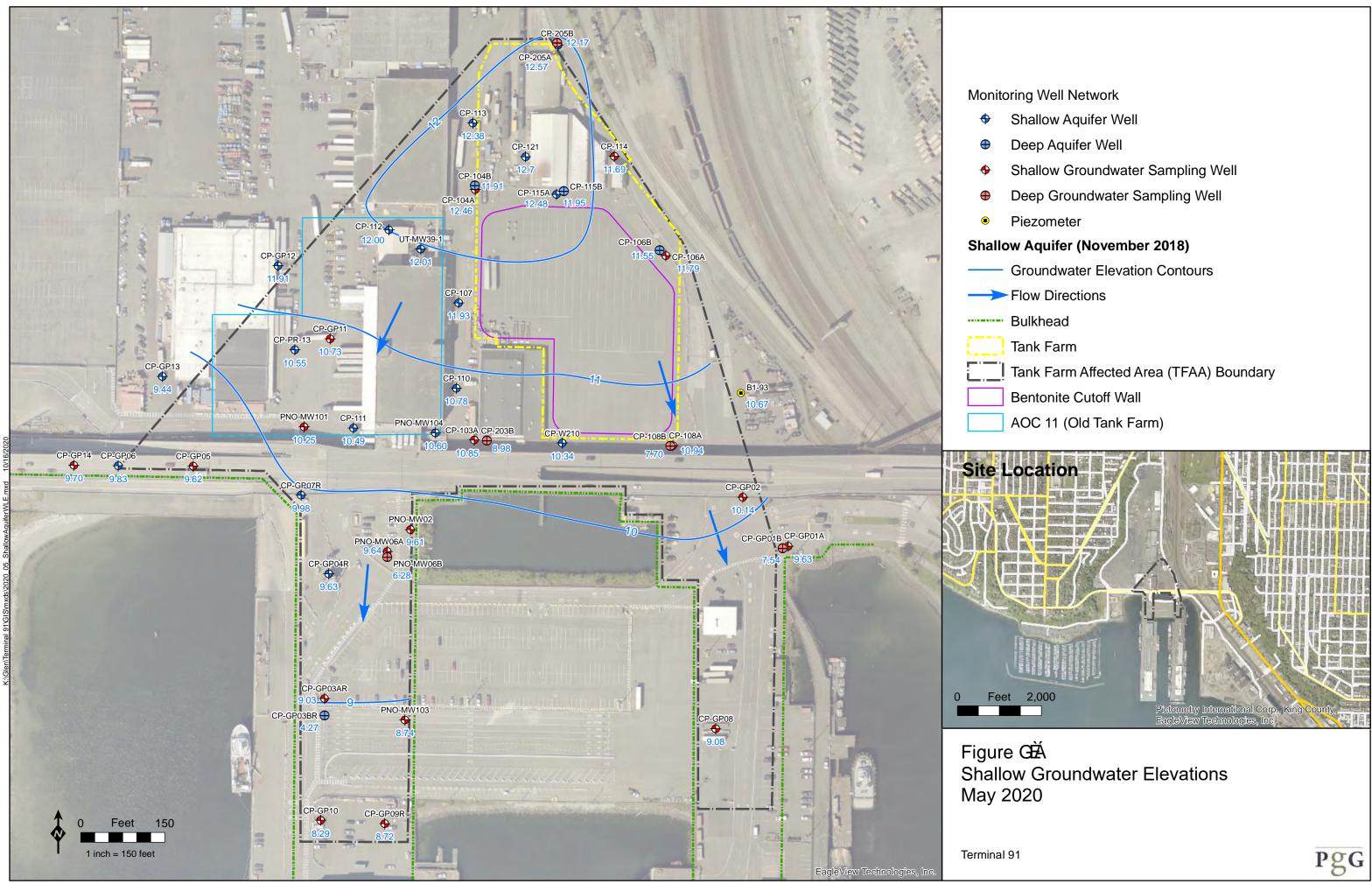
See Tables 4a,b for data summary.

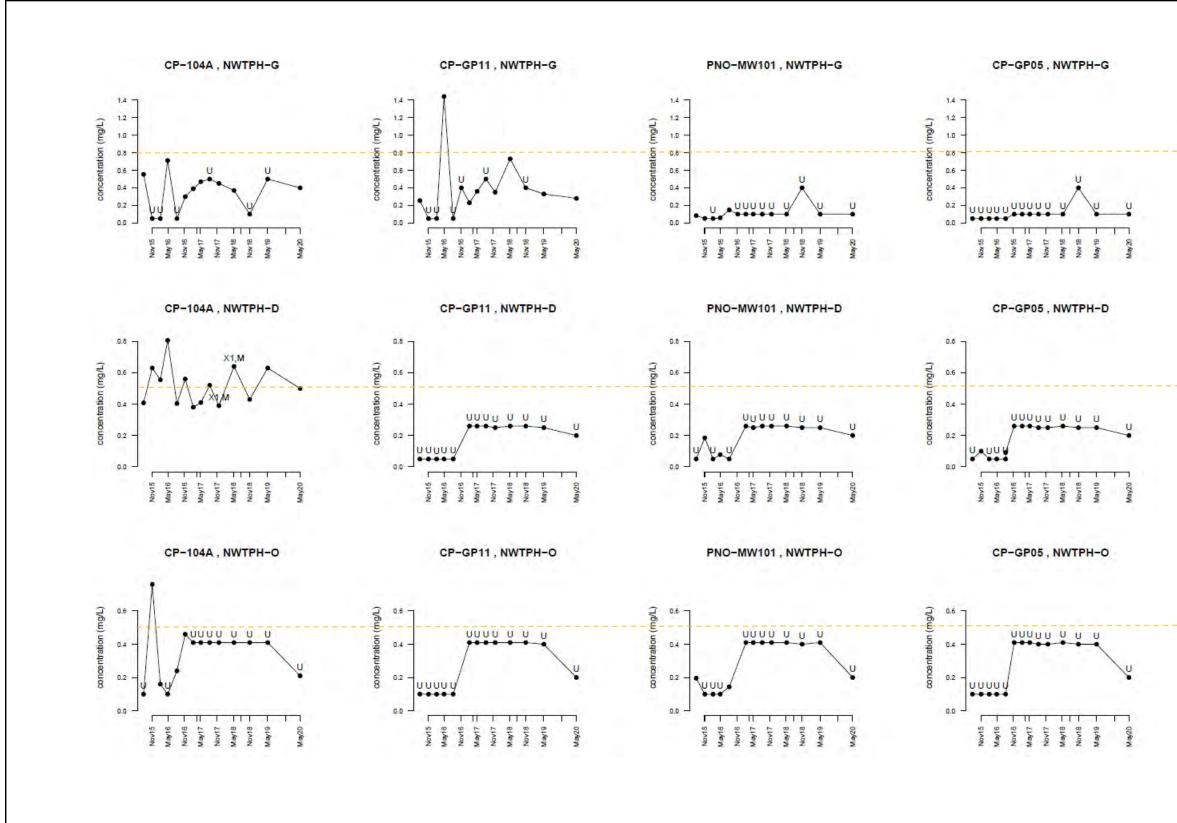
See Tables 4a and 5 for well-specific evaluations.

Table 7. Recommended Monitoring Summary

Terminal 91

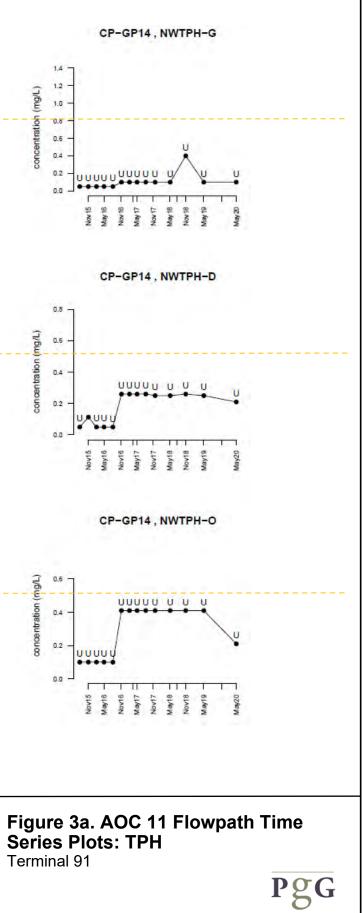

Location	Current	Recommended
CPOC Wells		
CP-GP08	TPH/BTEX/MNA	TPH
CP-GP09R	TPH/BTEX/MNA	TPH
CP-GP10	TPH/BTEX/MNA	TPH
CP-GP14	TPH/BTEX/MNA	TPH
PNO-MW06B	TPH/BTEX/MNA	TPH
Monitoring Wells		
CP-103A	TPH/BTEX/MNA	TPH
CP-104A	TPH/BTEX/MNA	TPH
CP-106A	TPH/BTEX/MNA	TPH
CP-108A	TPH/BTEX/MNA	TPH
CP-108B	TPH/BTEX/MNA	WL Only
CP-114	TPH/BTEX/MNA	WL Only
CP-203B	TPH/BTEX/MNA	TPH
CP-205B	TPH/BTEX/MNA	WL Only
CP-GP01A	TPH/BTEX/MNA	WL Only
CP-GP01B	TPH/BTEX/MNA	TPH
CP-GP02	TPH/BTEX/MNA	TPH
CP-GP03AR	TPH/BTEX/MNA	WL Only
CP-GP05	TPH/BTEX/MNA	WL Only
CP-GP11	TPH/BTEX/MNA	TPH
PNO-MW02	TPH/BTEX/MNA	TPH
PNO-MW06A	TPH/BTEX/MNA	TPH
PNO-MW101	TPH/BTEX/MNA	WL Only
PNO-MW103	TPH/BTEX/MNA	TPH
LNAPL Gauging		
CP-107	LNAPL	LNAPL*
CP-110	LNAPL	LNAPL*
PNO-MW104	LNAPL	LNAPL*
Trench 2E	LNAPL	LNAPL*
Trench 2W	LNAPL	LNAPL*
Trench 3E	LNAPL	LNAPL*
Trench 3W	LNAPL	LNAPL*
Trench 5E	LNAPL	LNAPL*
Trench 5W	LNAPL	LNAPL*

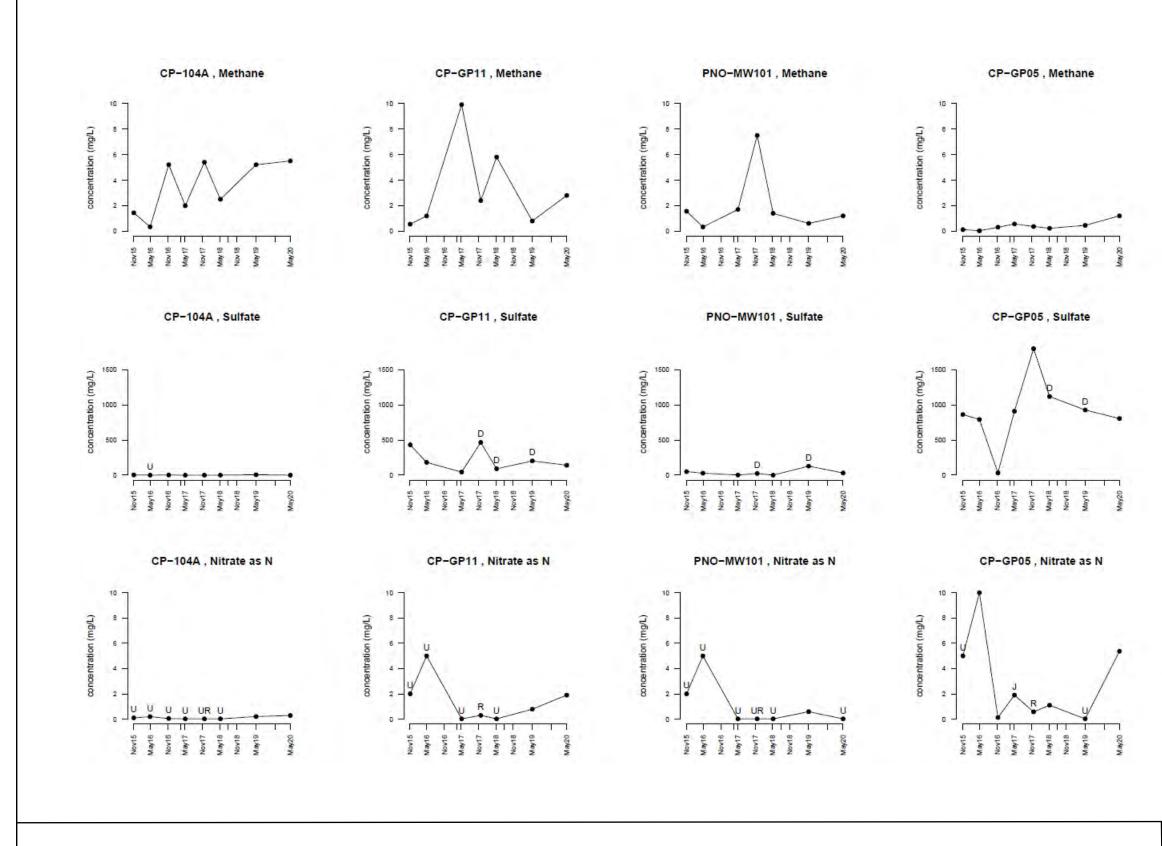

Notes:


TPH: NWTPH-G, NWTPH-Dx

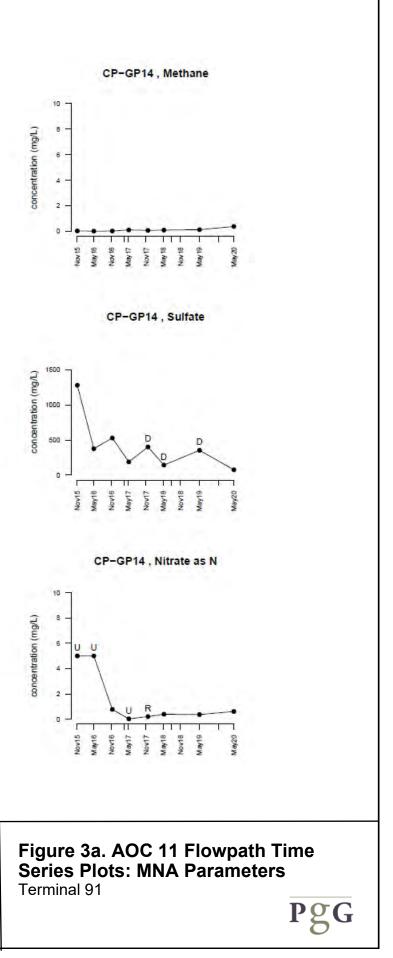
BTEX: benzene, toluene, ethylbenzene, m,p- and o-xylenes. MNA: methane, nitrate, sulfate, alkalinity, manganese, ferrous iron. Water level snapshot full well list not shown; see CMP (PES 2013a). Groundwater sampling is annual in May of each year. LNAPL: measure product thickness, recover if greater than 0.25 feet. LNAPL gauging is quarterly (February, May, August, November).

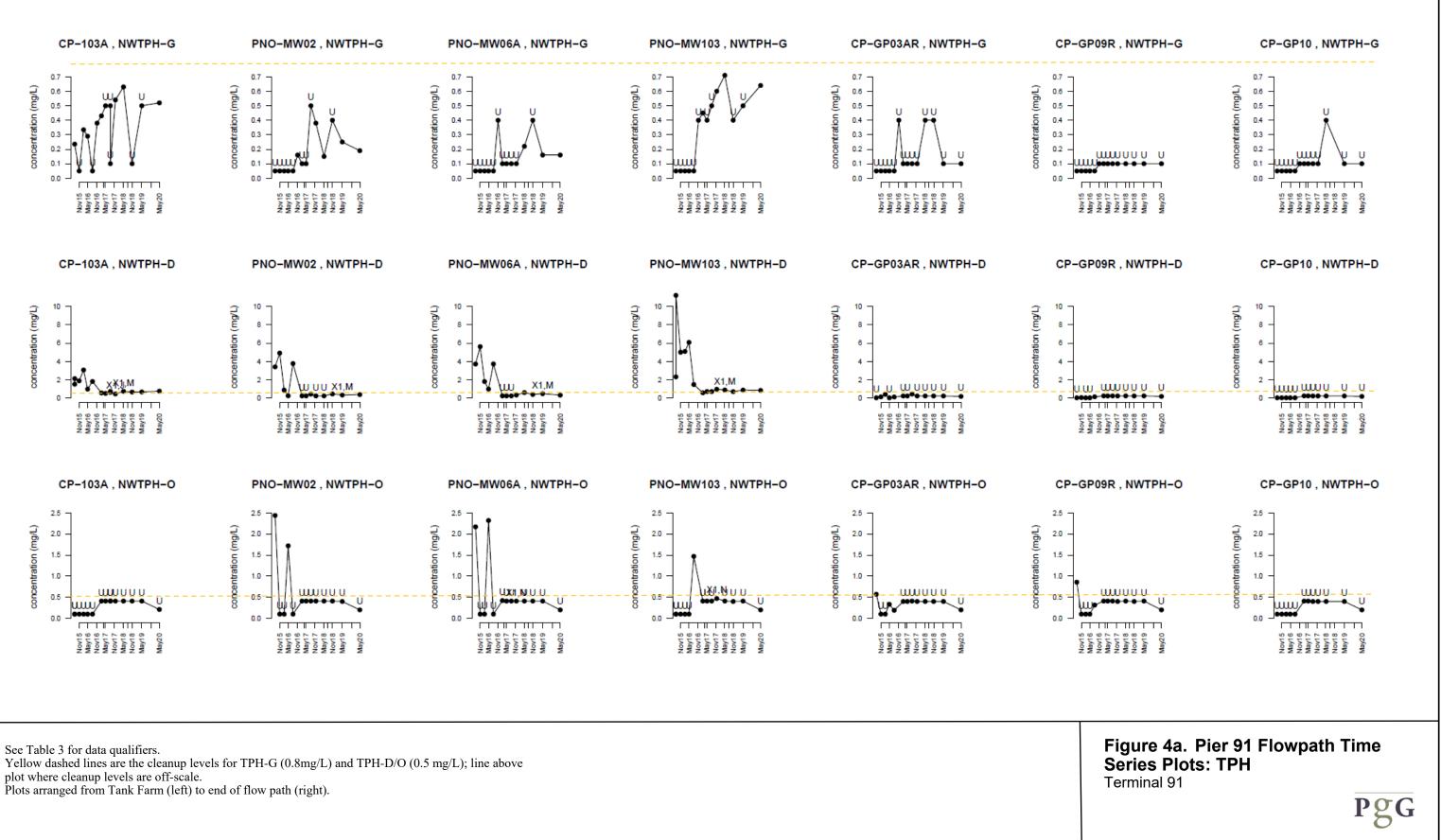
* Future gauging may shift to August and November only.

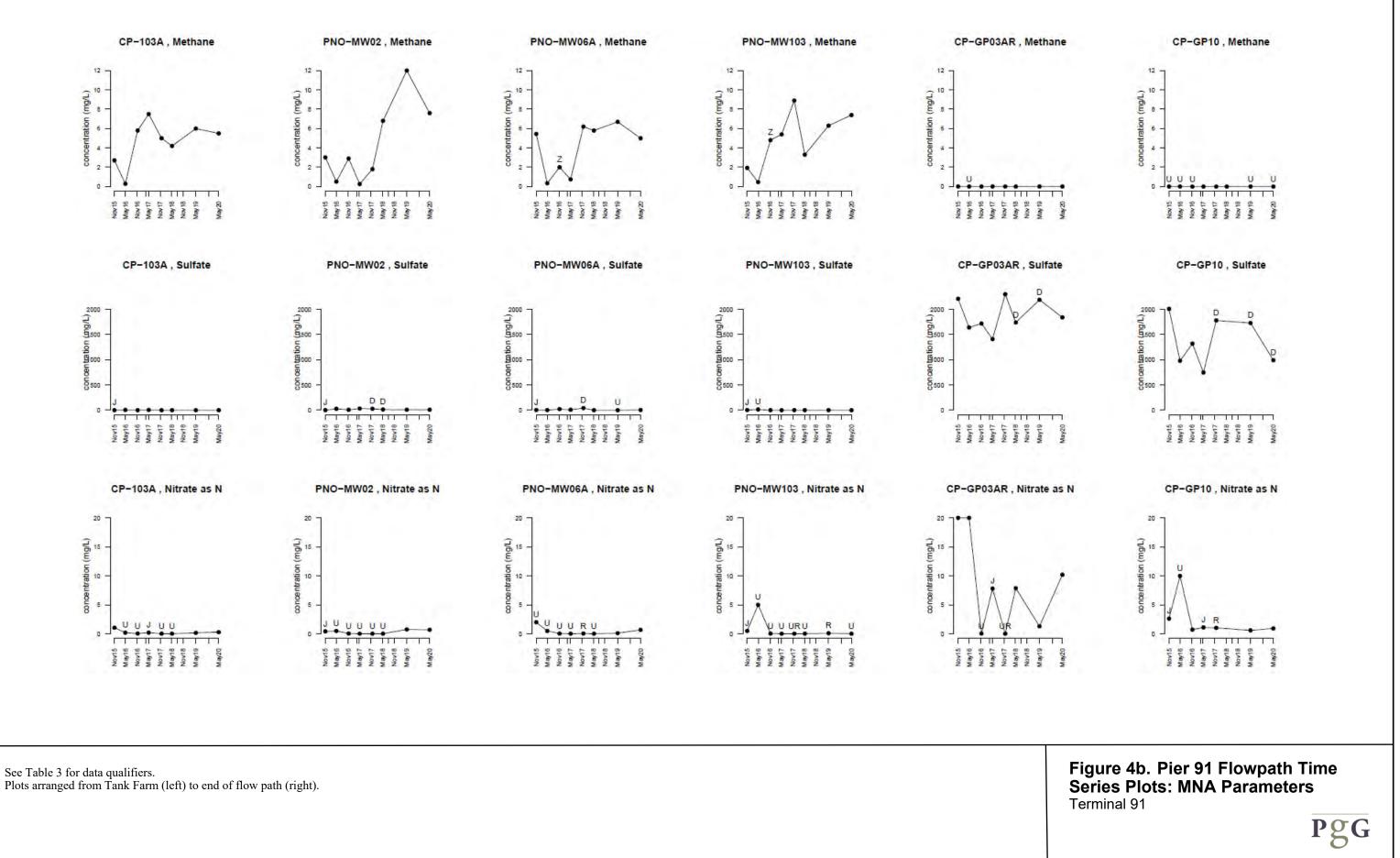


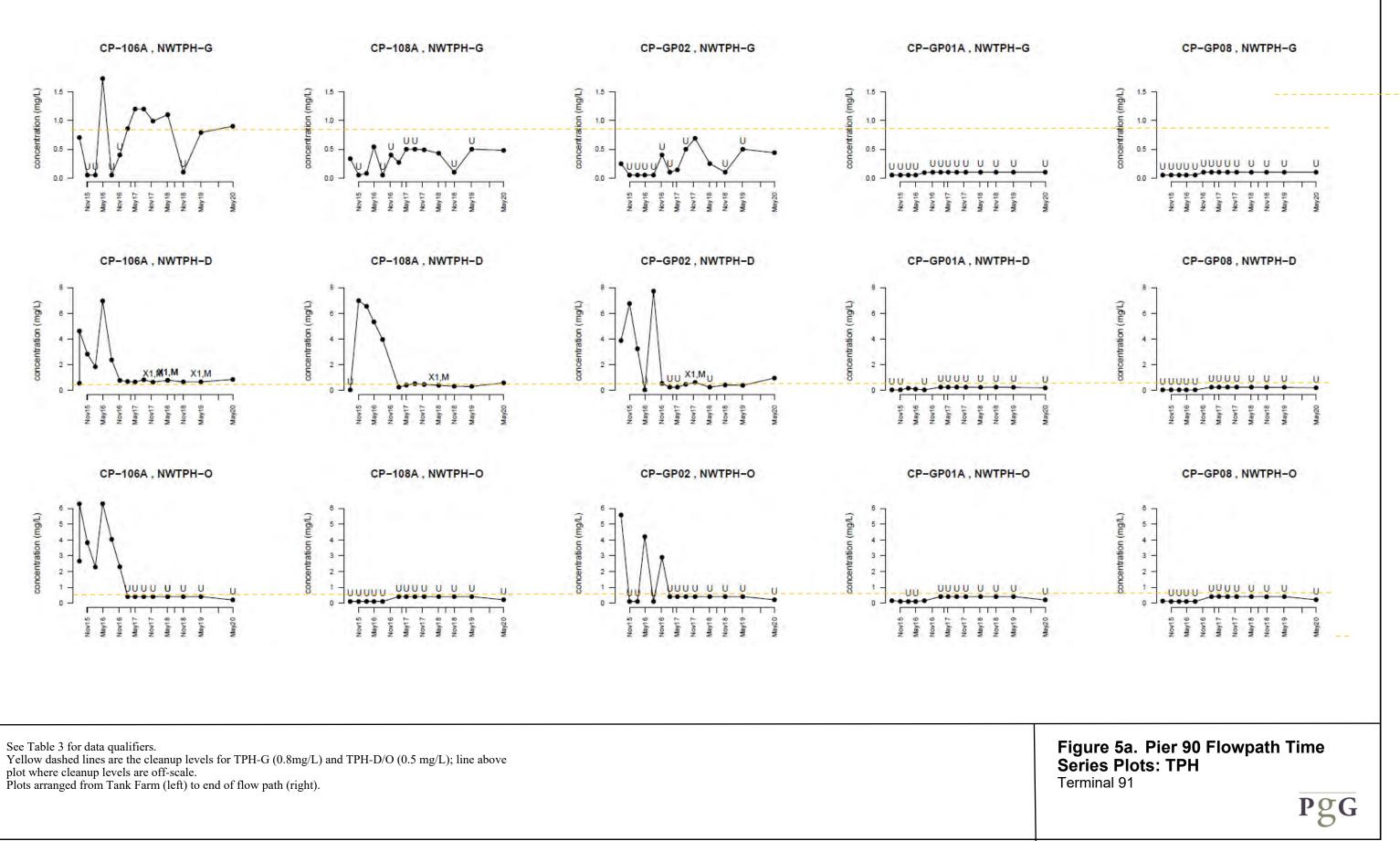


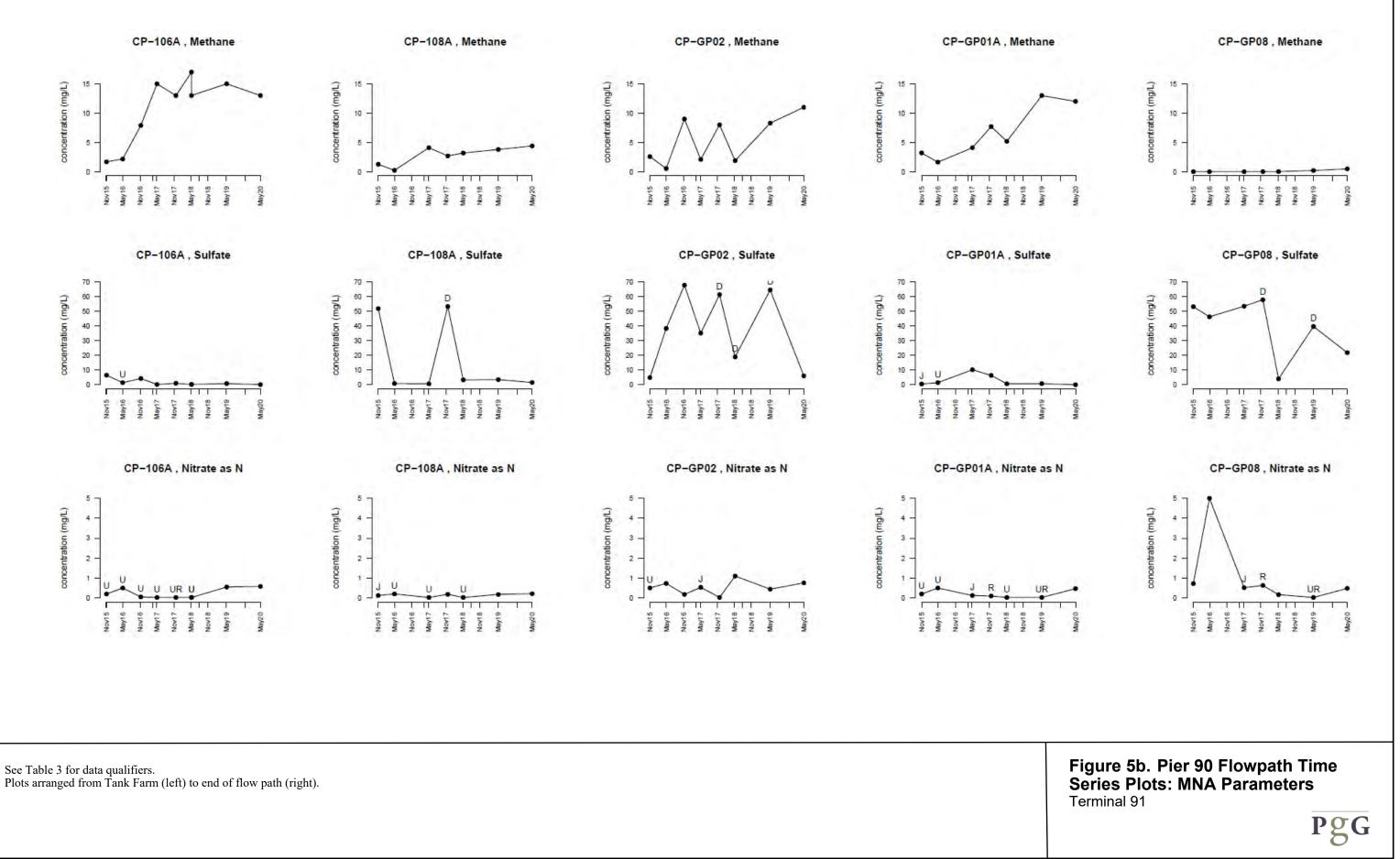
See Table 3 for data qualifiers. Yellow dashed lines are the cleanup levels for TPH-G (0.8mg/L) and TPH-D/O (0.5 mg/L); line above

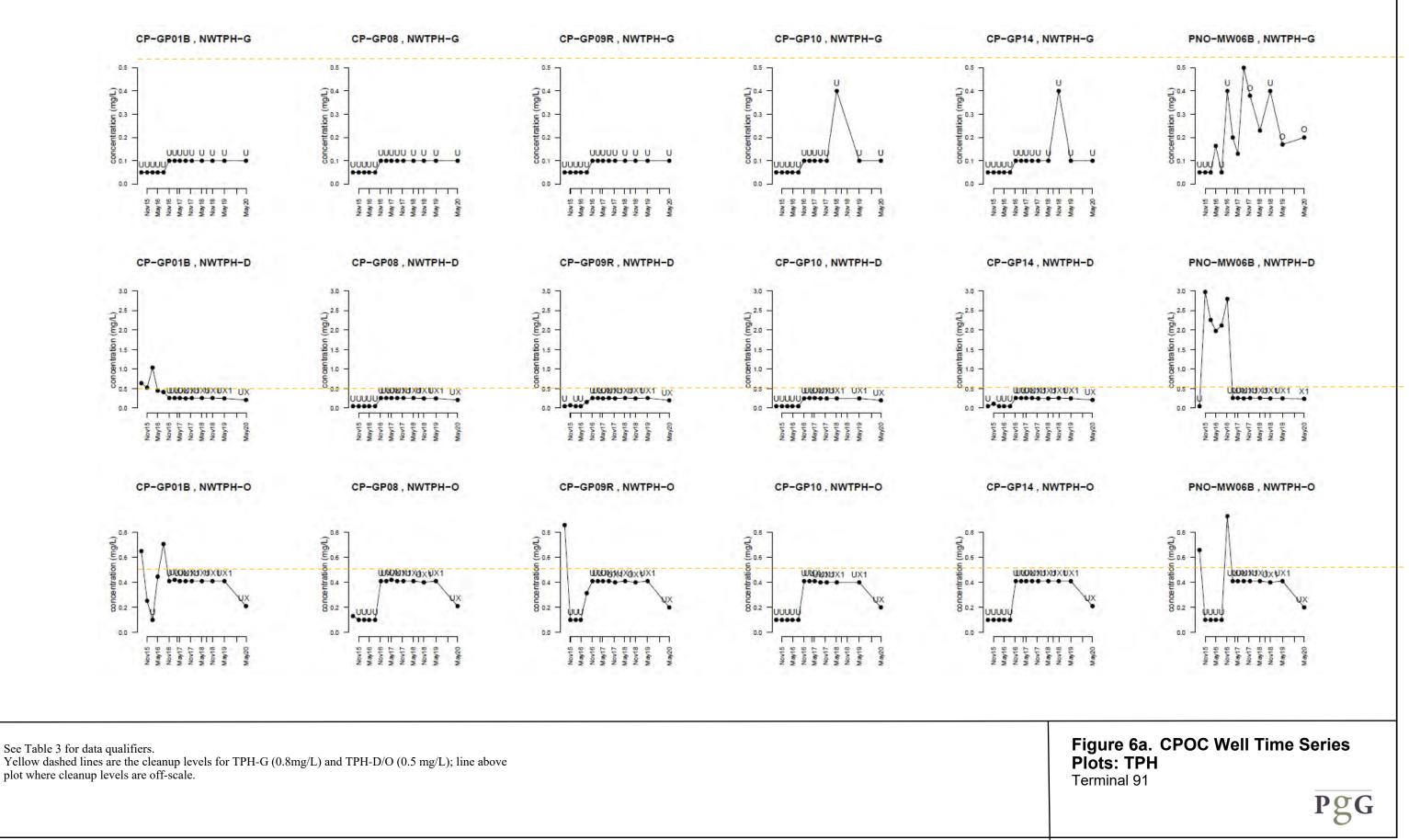

plot where cleanup levels are off-scale.

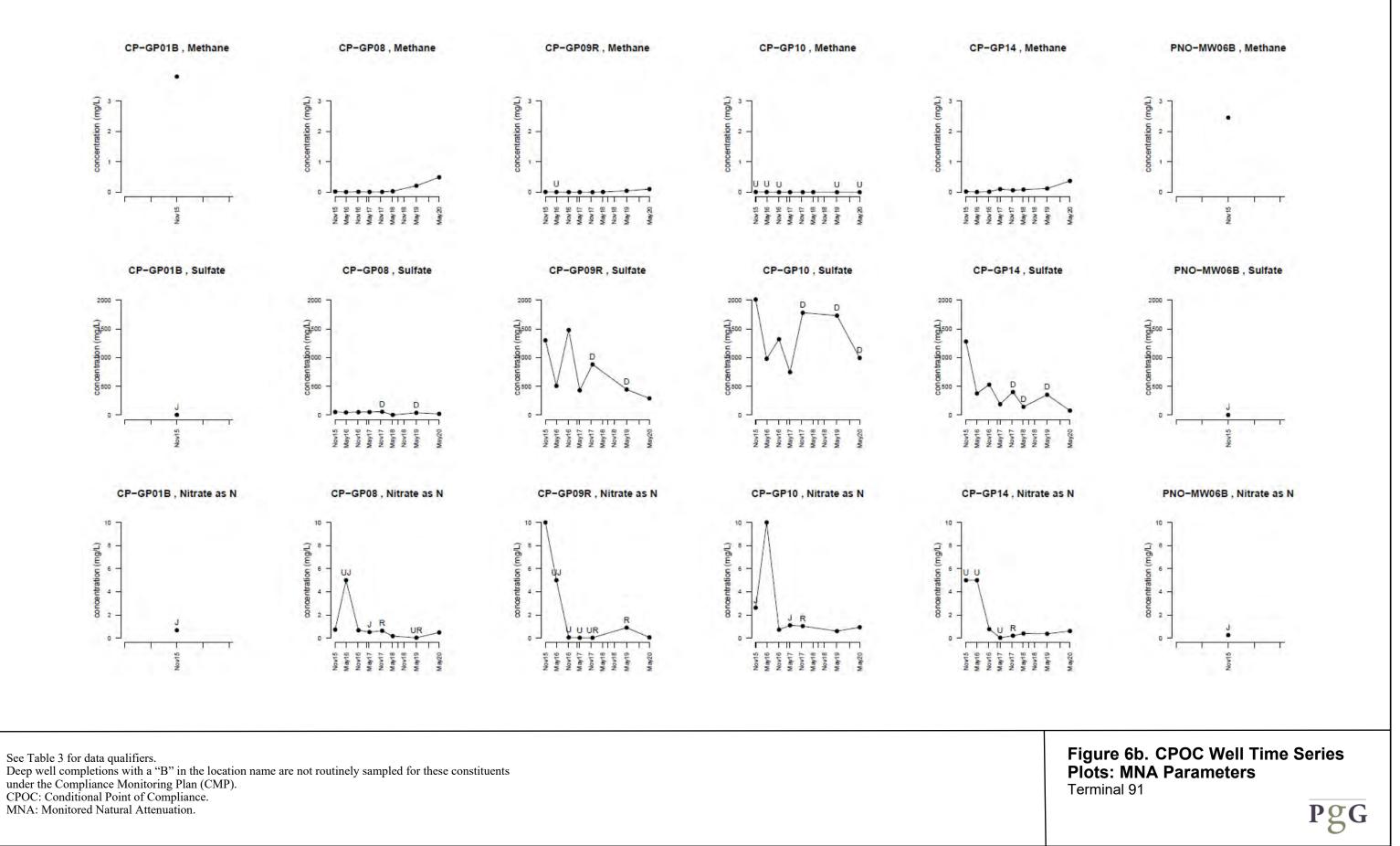

Plots arranged from Tank Farm (left) to end of flow path (right).

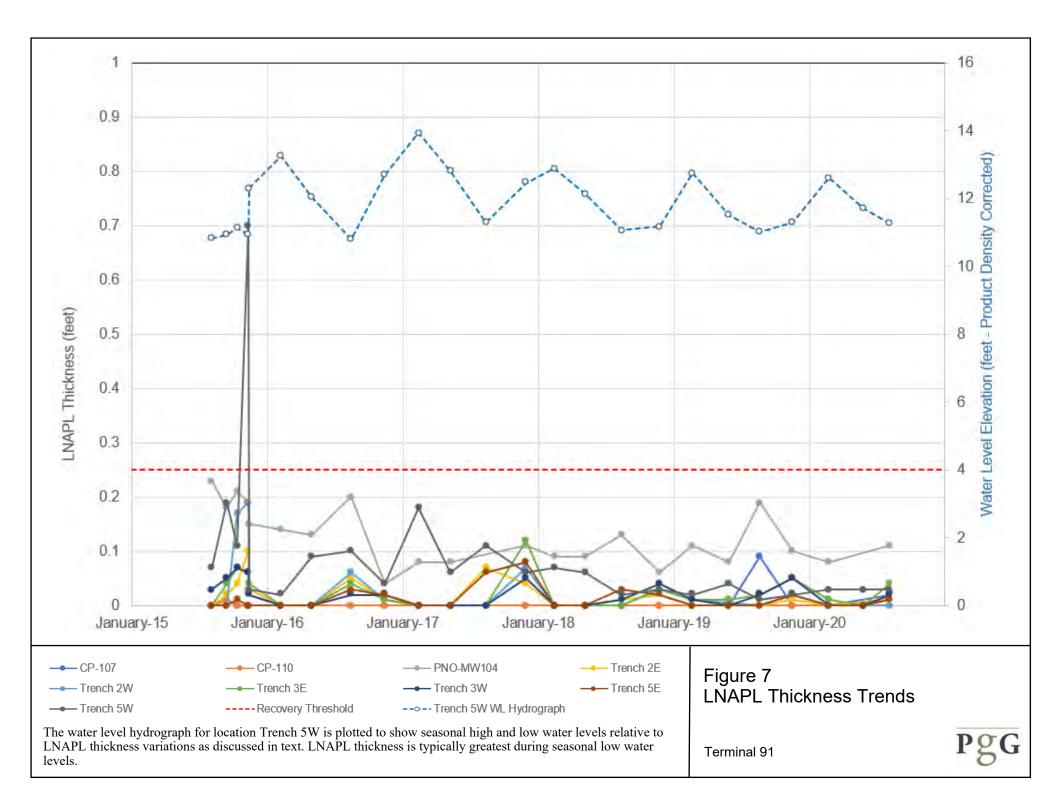





See Table 3 for data qualifiers. Plots arranged from Tank Farm (left) to end of flow path (right).







See Table 3 for data qualifiers.

plot where cleanup levels are off-scale.

APPENDIX A FIELD FORMS / LABORATORY ANALYTICAL REPORTS (ELECTRONIC ONLY)

June 24, 2020

Glen Wallace Pacific Groundwater Group 2377 Eastlake Avenue E, Suite 200 Seattle, WA 98102

Re: Analytical Data for Project JG1601 Laboratory Reference No. 2005-222

Dear Glen:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2020.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

Blair Goodrow Project Manager

Enclosures

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
CP-203B	05-222-01	Water	5-28-20	5-29-20	
CP-205B	05-222-02	Water	5-28-20	5-29-20	
CP-108A	05-222-03	Water	5-28-20	5-29-20	
CP-108B	05-222-04	Water	5-28-20	5-29-20	
CP-114	05-222-05	Water	5-27-20	5-29-20	
CP-GP08	05-222-06	Water	5-27-20	5-29-20	
CP-103A	05-222-07	Water	5-28-20	5-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Case Narrative

Samples were collected on May 27 and 28, 2020 and received by the laboratory on May 29, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C. Please see Sample/Cooler Receipt form at the end of the report.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

ormo: dg/2 (ppo)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-203B					
Laboratory ID:	05-222-01					
Gasoline	370	100	NWTPH-Gx	6-3-20	6-3-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	65-120				
Client ID:	CP-205B					
Laboratory ID:	05-222-02					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	65-120				
Client ID:	CP-108A					
Laboratory ID:	05-222-03					
Gasoline	480	100	NWTPH-Gx	6-3-20	6-3-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	74	65-120				
Client ID:	CP-108B					
Laboratory ID:	05-222-04					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	74	65-120				
Client ID:	CP-114					
Laboratory ID:	05-222-05					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	65-120				
Client ID:	CP-GP08					
Laboratory ID:	05-222-06					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	65-120				
Client ID:	CP-103A					
Laboratory ID:	05-222-07					
Gasoline	520	100	NWTPH-Gx	6-3-20	6-3-20	0
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0603W2					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	65-120				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-22	22-01								
	ORIG	DUP								
Gasoline	365	354	NA	NA		NA	NA	3	30	
Surrogate:										
Fluorobenzene						79 80	65-120			

4

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-203B					
Laboratory ID:	05-222-01					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-205B					
Laboratory ID:	05-222-02					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	97	78-125				

6

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-108A					
Laboratory ID:	05-222-03					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	93	78-125				

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-108B					
Laboratory ID:	05-222-04					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	97	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-114					
Laboratory ID:	05-222-05					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	83	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	92	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP08					
Laboratory ID:	05-222-06					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	90	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-103A					
Laboratory ID:	05-222-07					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	0.61	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	77	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	87	78-125				

BTEX by EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

Ũ				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0530W2					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	99	78-125				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-22	21-02									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	9.72	9.99	10.0	10.0	ND	97	100	68-122	3	15	
Benzene	9.39	9.69	10.0	10.0	ND	94	97	70-121	3	16	
Trichloroethene	10.9	10.9	10.0	10.0	ND	109	109	80-121	0	17	
Toluene	10.7	11.1	10.0	10.0	ND	107	111	78-117	4	19	
Chlorobenzene	9.64	10.3	10.0	10.0	ND	96	103	80-120	7	16	
Surrogate:											
Dibromofluoromethane						86	80	75-127			
Toluene-d8						103	99	80-127			
4-Bromofluorobenzene						106	107	78-125			
SPIKE BLANK											
Laboratory ID:	SB05	30W1									
1,1-Dichloroethene	9.	78	1(0.0		(98	65-126			
Benzene	9.	57	1(0.0		ę	96	71-119			
Trichloroethene	11	.2	1(0.0		1	12	82-123			
Toluene	11	.5	1(0.0		1	15	77-119			
Chlorobenzene	10).1	1(0.0		1	01	80-120			
Surrogate:											
Dibromofluoromethane						ä	81	75-127			
Toluene-d8						1	00	80-127			
4-Bromofluorobenzene						1	07	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CP-203B				-	
_aboratory ID:	05-222-01					
Diesel Range Organics	0.30	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
ube Oil Range Organics	ND	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	113	50-150				
Client ID:	CP-205B					
aboratory ID:	05-222-02					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-3-20	6-3-20	X1
ube Oil Range Organics	ND	0.22	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	97	50-150				
Client ID:	CP-108A					
_aboratory ID:	05-222-03					
Diesel Range Organics	0.59	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
ube Oil Range Organics	ND	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:	Percent Recovery	Control Limits		0020	0020	7.1
p-Terphenyl	135	50-150				
Client ID:	CP-108B					
aboratory ID:	05-222-04					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-3-20	6-3-20	X1
ube Oil Range Organics	ND	0.22	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:		• • • • • •				
	Percent Recovery	Control Limits				
o- i erpnenyi	Percent Recovery 119	Control Limits 50-150				
Client ID: aboratory ID:	119					
Client ID: aboratory ID: Diesel Range Organics	119 CP-114 05-222-05 ND	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
Client ID: aboratory ID: Diesel Range Organics	119 CP-114 05-222-05 ND ND	50-150	NWTPH-Dx NWTPH-Dx	6-3-20 6-3-20	6-3-20 6-3-20	X1 X1
Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate:	119 CP-114 05-222-05 ND ND Percent Recovery	50-150 0.21 0.21 Control Limits				
Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate:	119 CP-114 05-222-05 ND ND	0.21 0.21				
Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate: D-Terphenyl	119 CP-114 05-222-05 ND ND Percent Recovery	50-150 0.21 0.21 Control Limits				
Client ID: aboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID:	119 CP-114 05-222-05 ND ND Percent Recovery 117 CP-GP08	50-150 0.21 0.21 Control Limits				
Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate: -Terphenyl Client ID: aboratory ID:	119 CP-114 05-222-05 ND ND Percent Recovery 117	50-150 0.21 0.21 Control Limits				
Client ID: aboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	119 CP-114 05-222-05 ND ND Percent Recovery 117 CP-GP08 05-222-06	50-150 0.21 0.21 Control Limits 50-150	NWTPH-Dx	6-3-20	6-3-20	<u>X1</u>
D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: D-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: Surrogate:	119 CP-114 05-222-05 ND ND Percent Recovery 117 CP-GP08 05-222-06 ND	50-150 0.21 0.21 Control Limits 50-150 0.21	NWTPH-Dx	6-3-20 6-3-20	<u>6-3-20</u> 6-3-20	X1 X1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-103A					
Laboratory ID:	05-222-07					
Diesel Range Organics	0.78	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0603W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-3-20	6-3-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-3-20	6-3-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-2	22-01								
	ORIG	DUP								
Diesel Range Organics	0.303	0.271	NA	NA		NA	NA	11	NA	X1
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Surrogate:										
o-Terphenyl						113 102	50-150			
SPIKE BLANK										
Laboratory ID:	SB0603	W1 ACU								
Diesel Fuel #2	0.4	498	0.5	500	NA	100	57-129	NA	NA	X1
Surrogate:										
o-Terphenyl						131	50-150			

DISSOLVED METHANE RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-108A					
Laboratory ID:	05-222-03					
Methane	4400	28	RSK 175	6-4-20	6-4-20	
Client ID:	CP-114					
Laboratory ID:	05-222-05					
Methane	1100	8.3	RSK 175	6-4-20	6-4-20	
Client ID:	CP-GP08					
Laboratory ID:	05-222-06					
Methane	490	2.8	RSK 175	6-4-20	6-4-20	
Client ID:	CP-103A					
Laboratory ID:	05-222-07					
Methane	5500	42	RSK 175	6-4-20	6-4-20	

DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604W1					
Methane	ND	0.55	RSK 175	6-4-20	6-4-20	
			Percent	Recovery	RPD	
Analyte	Result	Spike Level	Recovery	Limits	RPD Limi	t Flags

SPIKE BLANK										
Laboratory ID:	SB06	604W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	21.6	22.0	22.1	22.1	98	100	75-125	2	25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MANGANESE EPA 6010D

Matrix: Water Units: ug/L (ppb)

01113. ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-108A					
Laboratory ID:	05-222-03					
Manganese	43	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-114					
Laboratory ID:	05-222-05					
Manganese	17	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP08					
Laboratory ID:	05-222-06					
Manganese	100	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-103A					
Laboratory ID:	05-222-07					
Manganese	310	11	EPA 6010D	6-4-20	6-4-20	

18

TOTAL MANGANESE EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte		Result		PQL	М	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK											
Laboratory ID:	Ν	/IB0604WM1									
Manganese		ND		11	EPA	6010	D	6-4-20	6-4-2	0	
					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-22	21-02									
	ORIG	DUP									
Manganese	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	05-22	21-02									
	MS	MSD	MS	MSD		MS	MSD)			
Manganese	492	503	556	556	ND	89	91	75-125	2	20	
SPIKE BLANK											
Laboratory ID:	SB060	4WM1									
Manganese	58	36	5	56	N/A		105	80-120			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260D, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Ζ-

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	S		7 CP-103A	4 CP-6P0	5 CP-114	4 CP- 108 B	3 CP-108 A	2 CP-205B	1 (p-203 B	Lab ID Sam	Daliphen by. NBW/7	Glen	T 71	J61	Project Number:		Analytical Labora 14648 NE 95th	Enviro
			MANEUR LASER	Alaar	Awar	AF	Signature			00						Sample Identification	·K	Wallace		601		Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
			W		2		C		5/28	5/27	5/27	5/28	82/58	82/58	5/28	Date Sampled	[Stan	2 Days	Same Day		Tur (i	
Reviewed/Date			SO	. 7	A	Parla	Company		1724	(452)	1629	1029	1202	4141	1628	Time Sampled	(other)		Standard (7 Days)	ys [_	(Check One)	(in working days)	Cha
Ö			m	LPH	HH				E	3	5	К	5	E	٤	Matrix				3 Days] 1 Day		rest (S)	vin o
				×	T				Ξ	=	1)	4	1	4	4	NWTP		Contain	ers			П		fC
			57.	AC	R	5/29	Date		×	×	×	×	×	×	\times	NWTP	'H-Gx/		oy q	826	0		Laboratory	Chain of Custody
	-		B	601	20	20	1 1		×	×	×	×	×	×	×		H-Dx	Acid	/ SG C	lean-uj	p)			dy
			22	030	250	9:50	Time											Volatile					Number:	
ç	Do		Μ	0	a		C	-	-	-				-		Semiv	olatiles	11 (Wate	/SIM	/)		_	ň	
Chromatograms with final report	Data Package:						Comments/Special Instructions									PAHs	8270D	el PAHs /SIM (lo)			50	
grams							s/Spec									PCBs		ine Pest	icidas (081B			N	
with f	Standard						ial Ins	-	-	-			-		-						0D/SIM	_	22	
inal re	ard 🗌						tructio									Chlori	nated	Acid He	rbicides	8151/	A	-		
port [Level						SUI									Total F	RCRA	Vletals		-				
	=																	Vletals						Page
stronic													_			TCLP			10044			1		ge _
Electronic Data Deliverables (EDDs)	Level IV								X		×		V	-				grease			1.			
elivera									X	××	X		X	-	-	Tat	ate	Mar	1 74	nec	te	-		of
bles (E									×	×	X		X			Pis	solu	red.	Me	150	ine			1
DDs)																								
1																% Moi	sture	_						

Sample/Cooler Receipt and Acceptance Checklist

Client Project Name/Number: 3G/60/		Initiated by:_	KL	1	-
OnSite Project Number: U5 - Z ZZ		Date Initiated	1: 5/29	190	-
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	Yes	NO	N/A	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	(NXA)	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	ALA	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	Yes	No		1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature:	614 3	<u></u>
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	(N/A)		1 1	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
2.0 Chain of Custody Verification		\smile			
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	Yes	No		1234	
2.3 Have samples been relinguished and accepted by each custodian?	Tes	No		1234	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Ges	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	NO		1234	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	NO		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	(Yes)	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Kes (Es	No	N/A	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Tes	No	N/A	1234	
3.6 Is there sufficient sample submitted to perform requested analyses?	Tes	No		1234	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yes	No	NIA	1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#		(N/A)	1 2 3 4	

Explain any discrepancies:

· · · · · · · · · · · · · · · · · · ·		

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

June 10, 2020

Glen Wallace Pacific Groundwater Group 2377 Eastlake Avenue E, Suite 200 Seattle, WA 98102

Re: Analytical Data for Project JG1601 Laboratory Reference No. 2005-221

Dear Glen:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2020.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

Blair Goodrow Project Manager

Enclosures

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
PN0-MW103	05-221-01	Water	5-28-20	5-29-20	
CP-GP03AR	05-221-02	Water	5-28-20	5-29-20	
PN0-MW101	05-221-03	Water	5-28-20	5-29-20	
CP-GP11	05-221-04	Water	5-28-20	5-29-20	
CP-GP05	05-221-05	Water	5-27-20	5-29-20	
CP-GP14	05-221-06	Water	5-27-20	5-29-20	
CP-106A	05-221-07	Water	5-28-20	5-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Case Narrative

Samples were collected on May 27 and 28, 2020 and received by the laboratory on May 29, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C. Please see Sample/Cooler Receipt form at the end of the report.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

Analyta	Decult	PQL	Mothod	Date	Date	Flores
Analyte Client ID:	Result PN0-MW103	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	05-221-01	400		0.0.00	0.0.00	0
Gasoline	640	100	NWTPH-Gx	6-3-20	6-3-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	73	65-120				
Client ID:	CP-GP03AR					
Laboratory ID:	05-221-02					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	65-120				
Client ID:	PN0-MW101					
Laboratory ID:	05-221-03					
Gasoline	ND	100	NWTPH-Gx	6-5-20	6-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	65-120				
Client ID:	CP-GP11					
Laboratory ID:	05-221-04					
Gasoline	280	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	65-120				
Client ID:	CP-GP05					
Laboratory ID:	05-221-05					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits		0020	0020	
Fluorobenzene	77	65-120				
		00 /20				
Client ID:	CP-GP14					
Laboratory ID:	05-221-06					
Gasoline	ND	100	NWTPH-Gx	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	65-120				
Client ID:	CP-106A					
Laboratory ID:	05-221-07					
Gasoline	900	100	NWTPH-Gx	6-3-20	6-3-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	65-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte		Result	PQL	Me	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK										
Laboratory ID:		MB0603W1								
Gasoline		ND	100	NW	TPH-Gx	(6-3-20	6-3-2	0	
Surrogate:	Per	rcent Recovery	Control L	imits						
Fluorobenzene		77	65-12	0						
Laboratory ID:		MB0605W1								
Gasoline		ND	100	NW	TPH-Gx	(6-5-20	6-5-2	0	
Surrogate:	Per	rcent Recovery	Control L	imits						
Fluorobenzene		104	65-12	0						
				Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike Leve	l Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-22	21-02								
	ORIG	DUP								
Gasoline	ND	ND	NA NA		N	A	NA	NA	30	
Surrogate:										
Fluorobenzene					77	75	65-120			

4

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PN0-MW103					
Laboratory ID:	05-221-01					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	0.24	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	96	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP03AR					
Laboratory ID:	05-221-02					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	84	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	114	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PN0-MW101					
Laboratory ID:	05-221-03					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	100	78-125				

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP11					
Laboratory ID:	05-221-04					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	105	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP05					
Laboratory ID:	05-221-05					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	95	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP14					
Laboratory ID:	05-221-06					
Benzene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
Toluene	ND	1.0	EPA 8260D	6-3-20	6-3-20	
Ethylbenzene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
m,p-Xylene	ND	0.40	EPA 8260D	6-3-20	6-3-20	
o-Xylene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	101	78-125				

10

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-106A					
Laboratory ID:	05-221-07					
Benzene	3.7	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	0.49	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	91	78-125				

BTEX by EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	nooun		momou	Topulou	/ lialy_ou	riugo
Laboratory ID:	MB0530W2					
Benzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Toluene	ND	1.0	EPA 8260D	5-30-20	5-30-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-30-20	5-30-20	
o-Xylene	ND	0.20	EPA 8260D	5-30-20	5-30-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	99	78-125				
Laboratory ID:	MB0603W1					
Benzene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
Toluene	ND	1.0	EPA 8260D	6-3-20	6-3-20	
Ethylbenzene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
m,p-Xylene	ND	0.40	EPA 8260D	6-3-20	6-3-20	
o-Xylene	ND	0.20	EPA 8260D	6-3-20	6-3-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	101	78-125				

BTEX by EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Source		cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-22	21-02									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	9.72	9.99	10.0	10.0	ND	97	100	68-122	3	15	
Benzene	9.39	9.69	10.0	10.0	ND	94	97	70-121	3	16	
Trichloroethene	10.9	10.9	10.0	10.0	ND	109	109	80-121	0	17	
Toluene	10.7	11.1	10.0	10.0	ND	107	111	78-117	4	19	
Chlorobenzene	9.64	10.3	10.0	10.0	ND	96	103	80-120	7	16	
Surrogate:											
Dibromofluoromethane						86	80	75-127			
Toluene-d8						103	99	80-127			
4-Bromofluorobenzene						106	107	78-125			
SPIKE BLANK											
Laboratory ID:	SB05	30\//1									
	3005	50001									
1,1-Dichloroethene	9.7	78	10).0		g	8	65-126			
Benzene	9.5	57	10	0.0		g	96	71-119			
Trichloroethene	11	.2	10	0.0		1	12	82-123			
Toluene	11	.5	10	0.0		1	15	77-119			
Chlorobenzene	10	.1	10	0.0		1(01	80-120			
Surrogate:											
Dibromofluoromethane						8	31	75-127			
Toluene-d8						1	00	80-127			
4-Bromofluorobenzene						1	07	78-125			
SPIKE BLANKS											
Laboratory ID:	SB060	03W1									
,	SB	SBD	SB	SBD		SB	SBD				
1,1-Dichloroethene	9.15	9.23	10.0	10.0		92	92	65-126	1	19	
Benzene	8.83	8.81	10.0	10.0		88	88	71-119	0	16	
Trichloroethene	10.3	9.94	10.0	10.0		103	99	82-123	4	18	
Toluene	9.44	9.10	10.0	10.0		94	91	77-119	4	18	
Chlorobenzene	9.79	9.50	10.0	10.0		98	95	80-120	3	17	
Surrogate:											
Dibromofluoromethane						94	95	75-127			
Toluene-d8						102	99	80-127			
						-					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	PN0-MW103			•		Ŭ
Laboratory ID:	05-221-01					
Diesel Range Organics	0.86	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	CP-GP03AR					
Laboratory ID:	05-221-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	122	50-150				
Client ID:	PN0-MW101					
Laboratory ID:	05-221-03					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	CP-GP11					
Laboratory ID:	05-221-04					
Diesel Range Organics	<u>ND</u>	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
		0.20			0120	~ ~ ~
u		0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20 Control Limits	NWTPH-Dx	6-1-20	6-1-20	X1
u		0.20 Control Limits 50-150	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate:	ND Percent Recovery	Control Limits	NWTPH-Dx	6-1-20	6-1-20	<u>X1</u>
Lube Oil Range Organics Surrogate:	ND Percent Recovery	Control Limits	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID:	ND Percent Recovery 119	Control Limits	NWTPH-Dx	6-1-20	6-1-20	<u>X1</u>
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	ND Percent Recovery 119 CP-GP05	Control Limits 50-150 0.20	NWTPH-Dx NWTPH-Dx	6-1-20 6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl	ND Percent Recovery 119 CP-GP05 05-221-05	Control Limits 50-150				
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	ND Percent Recovery 119 CP-GP05 05-221-05 ND	Control Limits 50-150 0.20 0.20 Control Limits	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND ND	Control Limits 50-150 0.20 0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND Percent Recovery 127	Control Limits 50-150 0.20 0.20 Control Limits	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND Percent Recovery 127 CP-GP14	Control Limits 50-150 0.20 0.20 Control Limits	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND Percent Recovery 127	Control Limits 50-150 0.20 0.20 Control Limits	NWTPH-Dx NWTPH-Dx	6-1-20 6-1-20	6-1-20 6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND Percent Recovery 127 CP-GP14 05-221-06	Control Limits 50-150 0.20 0.20 Control Limits 50-150	NWTPH-Dx	6-1-20 6-1-20 6-1-20	6-1-20	X1 X1 X1
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	ND Percent Recovery 119 CP-GP05 05-221-05 ND ND Percent Recovery 127 CP-GP14 05-221-06 ND	Control Limits 50-150 0.20 0.20 Control Limits 50-150 0.21	NWTPH-Dx NWTPH-Dx NWTPH-Dx	6-1-20 6-1-20	6-1-20 6-1-20 6-1-20	X1 X1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

14

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-106A					
Laboratory ID:	05-221-07					
Diesel Range Organics	0.86	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	123	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0601W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-22	21-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Surrogate:										
o-Terphenyl						122 117	50-150			
SPIKE BLANK										
Laboratory ID:	SB0601	W1 ACU								
Diesel Fuel #2	0.4	77	0.5	500	NA	95	57-129	NA	NA	X1
Surrogate:										
o-Terphenyl						109	50-150			

DISSOLVED METHANE RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PN0-MW103					
Laboratory ID:	05-221-01					
Methane	7400	42	RSK 175	6-5-20	6-5-20	
Client ID:	CP-GP03AR					
Laboratory ID:	05-221-02					
Methane	8.8	0.55	RSK 175	6-5-20	6-5-20	
Client ID:	PN0-MW101					
Laboratory ID:	05-221-03					
Methane	1200	8.3	RSK 175	6-5-20	6-5-20	
Client ID:	CP-GP11					
Laboratory ID:	05-221-04					
Methane	2800	17	RSK 175	6-5-20	6-5-20	
Client ID:	CP-GP05					
Laboratory ID:	05-221-05					
Methane	1200	8.3	RSK 175	6-5-20	6-5-20	
Client ID:	CP-GP14					
Laboratory ID:	05-221-06					
Methane	370	2.8	RSK 175	6-5-20	6-5-20	
Client ID:	CP-106A					
Laboratory ID:	05-221-07					
Methane	13000	83	RSK 175	6-5-20	6-5-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

to the samples analyzed in accordance with the chain of custody

17

DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0605W1					
Methane	ND	0.55	RSK 175	6-5-20	6-5-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-2	21-02									
	MS	MSD	MS	MSD		MS	MSD				
Methane	26.7	25.6	22.1	22.1	8.76	81	76	75-125	4	25	
SPIKE BLANK											
Laboratory ID:	SB06	05W1									
	SB	SBD	SB	SBD		SB	SBD				
Methane	22.5	21.3	22.1	22.1		102	96	75-125	5	25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MANGANESE EPA 6010D

Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PN0-MW103					
Laboratory ID:	05-221-01					
Manganese	720	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP03AR					
Laboratory ID:	05-221-02					
Manganese	ND	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	PN0-MW101					
Laboratory ID:	05-221-03					
Manganese	710	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP11					
Laboratory ID:	05-221-04					
Manganese	42	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP05					
Laboratory ID:	05-221-05					
Manganese	94	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP14					
Laboratory ID:	05-221-06					
Manganese	26	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-106A					
Laboratory ID:	05-221-07					
Manganese	500	11	EPA 6010D	6-4-20	6-4-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

19

TOTAL MANGANESE EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte		Result		PQL	Me	ethod	Date Prepared	Date Analyz		Flags
METHOD BLANK										
Laboratory ID:	Ν	/B0604WM	11							
Manganese		ND		11	EPA	6010D	6-4-20	6-4-2	0	
Analyte	Re	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	05-22	21-02								
	ORIG	DUP								
Manganese	ND	ND	NA	NA		NA	NA	NA	20	

MATRIX SPIKES

Laboratory ID:	05-2	21-02									
	MS	MSD	MS	MSD		MS	MSD				
Manganese	492	503	556	556	ND	89	91	75-125	2	20	
SPIKE BLANK											
Laboratory ID:	SB060	04WM1									
Manganese	5	86	5	56	N/A	1	05	80-120			

Data Qualifiers

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260D, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Ζ-

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 9 2020 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
PNO-MW103	Water	20-A007316	NUT, MIN
CP-GP03AR	Water	20-A007317	NUT, MIN
PNO-MW101	Water	20-A007318	NUT, MIN
CP-GP11	Water	20-A007319	NUT, MIN
CP-GP05	Water	20-A007320	NUT, MIN
CP-GP14	Water	20-A007321	NUT, MIN
CP-106A	Water	20-A007322	NUT, MIN
CP-108A	Water	20-A007323	NUT, MIN
CP-114	Water	20-A007324	NUT, MIN
CP-GP08	Water	20-A007325	NUT, MIN
CP-103A	Water	20-A007326	NUT, MIN

Your samples were received on Friday, May 29, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron W. Young

Aaron W. Young Laboratory Manager

PO Number: 05-221

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 05/29/20 Date Reported: 6/ 9/20

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister PO Number: 05-221 All results reported on an as received basis.

AMTEST Identification Number	20-A007316
Client Identification	PNO-MW103
Sampling Date	05/28/20, 10:00

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	0.10	mg/l		0.1	EPA 300.0	AW	05/29/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	< 0.025	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007317
Client Identification	CP-GP03AR
Sampling Date	05/28/20, 11:45

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	1840	mg/l		0.1	EPA 300.0	AY	06/02/20

Nutrients							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	10.2	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007318
Client Identification	PNO-MW101
Sampling Date	05/28/20, 13:10

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	31.8	mg/l		0.1	EPA 300.0	AY	06/04/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	< 0.025	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Num Client Identification Sampling Date	C	20-A007319 CP-GP11 05/28/20, 14:45					
Minerals							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	142.	mg/l		0.1	EPA 300.0	AY	06/02/20
Nutrients							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	1.90	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007320
Client Identification	CP-GP05
Sampling Date	05/28/20, 17:30

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	806.	mg/l		0.1	EPA 300.0	AY	06/02/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	5.37	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number Client Identification Sampling Date		20-A007321 CP-GP14 05/28/20, 15					
Minerals							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	77.3	mg/l		0.1	EPA 300.0	AY	06/02/20
Nutrients							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.604	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007322
Client Identification	CP-106A
Sampling Date	05/28/20, 16:10

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	0.18	mg/l		0.1	EPA 300.0	AW	05/29/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.581	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number20-A007323Client IdentificationCP-108ASampling Date05/28/20, 12:02			02				
Minerals							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	1.61	mg/l		0.1	EPA 300.0	AW	05/29/20
Nutrients							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.216	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007324
Client Identification	CP-114
Sampling Date	05/27/20, 16:29

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	14.6	mg/l		0.1	EPA 300.0	AY	06/02/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	1.03	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Nu Client Identification Sampling Date	(20-A007325 CP-GP08 05/27/20, 14					
Minerals							
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	21.9	mg/l		0.1	EPA 300.0	AY	06/02/20
Nutrients							
DADAMETED	DEALUT	LINUTO			METHOD	ANALYOT	DATE

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.481	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007326
Client Identification	CP-103A
Sampling Date	05/28/20, 17:24

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	0.32	mg/l		0.1	EPA 300.0	AW	05/29/20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.294	mg/l		0.025	EPA 300.0	AW	05/29/20

ron W V Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A007316 to 20-A007326

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
20-A007308	Nitrate	mg/l	1.36	1.31	3.7
20-A007312	Nitrate	mg/l	0.296	0.283	4.5
20-A007360	Nitrate	mg/l	1.07	1.07	0.00
20-A007315	Sulfate	mg/l	< 0.1	< 0.1	
20-A007553	Sulfate	mg/l	0.97	0.99	2.0

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
20-A007308	Nitrate	mg/l	1.36	3.97	2.00	130.50 %
20-A007312	Nitrate	mg/l	0.296	2.36	2.00	103.20 %
20-A007360	Nitrate	mg/l	1.07	3.09	2.00	101.00 %
20-A007315	Sulfate	mg/l	< 0.1	2.07	2.00	103.50 %
20-A007553	Sulfate	mg/l	0.97	3.05	2.00	104.00 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Nitrate	mg/l	2.00	2.12	106. %
Nitrate	mg/l	2.00	2.14	107. %
Nitrate	mg/l	2.00	2.07	104. %
Sulfate	mg/l	2.00	2.00	100. %
Sulfate	mg/l	2.00	2.03	102. %
Sulfate	mg/l	2.00	2.05	102. %
Sulfate	mg/l	2.00	2.03	102. %
Sulfate	mg/l	2.00	2.04	102. %
Sulfate	mg/l	2.00	2.04	102. %

BLANKS

ANALYTE	UNITS	RESULT
Nitrate	mg/l	< 0.025
Nitrate	mg/l	< 0.025
Nitrate	mg/l	< 0.025
Sulfate	mg/l	< 0.1

	101) *T				
						ed by:	Received by:
						Relinquished by:	Reling
						ed by:	Received by:
EDDs - excel and POS formats	-					Relinquished by:	Reling
C Reporting Limits for both - 100 ppb	14/2-11	2	イ	Anates	Kee	ad by:	Received by:
1110	29/2 11	it.	5 A	36.40	V m	Relinguished by:	Reling
Time Comments/Special Instructions	Date		any	Company	Signature		
Nitrate, Sulfate EPA 300.0		Water	17:24	5/28/20	S.	CP-103A	14
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	14:52	5/27/20	. 25	CP-GP08	13
Nitrate, Sulfate EPA 300.0		Water	16:29	5/27/20	24	CP-114	12
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	12:02	5/28/20	22	CP-108A	10
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	16:10	5/28/20	22	CP-106A	7
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	15:45	5/27/20	2	CP-GP14	6
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	17:30	5/27/20	8	CP-GP05	ъ
Nitrate, Sulfate EPA 300.0	<u>ح</u>	Water	14:45	5/28/20	2	CP-GP11	4
Nitrate, Sulfate EPA 300.0	<u> </u>	Water	13:10	5/28/20	8	PNO-MW101	ω
Nitrate, Sulfate EPA 300.0 (QC THIS SAMPLE)		Water	11:45	5/28/20		CP-GP03AR	2
Nitrate, Sulfate EPA 300.0		Water	10:00	5/28/20	736	PNO-MW103	-
Requested Analyses	# er Cont	Matrix	Sampled	Sampled	Sample Identification		Lab ID

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: AmTest Laboratories

Attention: Aaron Young

13600 NE 126th PI Kirkland, WA 98034

Phone Number: (425) 885-1664

Other:

Turnaround Request 1 Day 2 Day 3 Day Standard

Laboratory Reference # 05-221 Project Manager: Blair Goodrow

email: bgoodrow@onsite-env.com
Project Number: JG1601

Project Name: Terminal 91

Page 1 of 1

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished		7 CP-10	V CP-G	5 CP - G	CP-	3 PNO -	2 CP-G	1 PND-1	Lab ID	Sampled by:	Project Name: Termina	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1 July 1 1 1	Envin On
		March March	INTI V TOWN	A. Trance	Alloaco	zla	Signature	106A	GPIH	r P 0 5	GPII	MW 101	GPD3AR (MSMSD	-MW 103	Sample Identification	Twhe	191		Groundwater Group	ninaytical Lavoratory resting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
		100-	Iw	15	Lew			81/18	+2/5	2/24	5/28	5/28	31/2	82/s	Date Sampled		Xsta	2 Days	Sar		+
Reviewed/Date		200	NCE	HE	ALR	PGG	Company	16:10 0	1 s:4s (17:30 6	ZH S		TALI:45	the a		(other)	Standard (7 Days)	ays	Same Day	(in working days) (Check One)	Chain
				ALA	IA,			GW I)	G~ 11	GW II	Grw 11	Gw 11	Gen 17	Gw 11	Matrix	er of Containe	ers	3 Days	1 Day)	n of
		5/10/0	1 2 2	5/0/	9/22/2	5/20/2	Date	7	7	*	×	×	*	X	NWTP	H-Gx		360		Laboratory	Custody
			7 722	2103	09:50	9150	Time	×	Y	7	×	×	×	*	Volatil Haloge	H-Dx (KAcid es 8260C enated Volatiles PA 8011 (Wate	s 8260C)	ry Number:	У
Data Package: Standard Level III	2				annulu 10 Carlier	ed moms	Comments/Special Instructions								Semiv (with la PAHs i PCBs Organ Organ Chlorin Total F	olatiles 8270D/ ow-level PAHs) 8270D/SIM (lov 8082A ochlorine Pesti ophosphorus F nated Acid Her RCRA Metals	'SIM v-level) cides 80 Pesticide)81B s 8270		r: 05-221	
					- CT- GPOSAK	vol		XXX	XXX	XXX	XXX	XXX	XXX	XXX	TCLP HEM (Metals oil and grease)	1664A	ian es	ese fat	e	Page 1 of 1
					1			 							% Moi	sturo					

Sample/Cooler Receipt and Acceptance Checklist

client: PGG					
Client Project Name/Number: <u>JG1601</u>		Initiated by:_	KC	1	
OnSite Project Number: 05-221		Date Initiated	1: 5/29/	30	_
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	NA	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	NHA	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	les	No		1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature:	3,5	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	NA			
1,7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
		\bigcirc			
2.0 Chain of Custody Verification					
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	Yes	No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No		1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Tes	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	Nø		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	(es	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Mes	No	N/A	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?		No	N/A	1234	
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yes	No	NA	1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	-0440	(NIA)	1 2 3 4	

Explain any discrepancies:

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

//SERVER\OSE\Administration\forms\cooler_checklist.xls

4 - Sample cannot be analyzed or client does not wish to proceed

June 10, 2020

Glen Wallace Pacific Groundwater Group 2377 Eastlake Avenue E, Suite 200 Seattle, WA 98102

Re: Analytical Data for Project JG1601 Laboratory Reference No. 2005-194

Dear Glen:

Enclosed are the analytical results and associated quality control data for samples submitted on May 27, 2020.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

Blair Goodrow Project Manager

Enclosures

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
CP-GP10	05-194-01	Water	5-26-20	5-27-20	
CP-GP09R	05-194-02	Water	5-26-20	5-27-20	
PNO-MW02	05-194-03	Water	5-27-20	5-27-20	
PNO-MW06B	05-194-04	Water	5-27-20	5-27-20	
PNO-MW06A	05-194-05	Water	5-27-20	5-27-20	
CP-GP01B	05-194-07	Water	5-26-20	5-27-20	
CP-104A	05-194-08	Water	5-27-20	5-27-20	
CP-GP01A	05-194-09	Water	5-27-20	5-27-20	
CP-GP02	05-194-10	Water	5-27-20	5-27-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Case Narrative

Samples were collected on May 26 and 27, 2020 and received by the laboratory on May 27, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C. Please see Sample/Cooler Receipt form at the end of the report.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP10					
Laboratory ID:	05-194-01					
Gasoline	ND	100	NWTPH-Gx	6-1-20	6-1-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	65-120				
Client ID:	CP-GP09R					
Laboratory ID:	05-194-02					
Gasoline	ND	100	NWTPH-Gx	6-1-20	6-1-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	65-120				
Client ID:	PNO-MW02					
Laboratory ID:	05-194-03					
Gasoline	190	100	NWTPH-Gx	6-1-20	6-1-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				
Client ID:	PNO-MW06B					
Laboratory ID:	05-194-04					
Gasoline	200	100	NWTPH-Gx	6-1-20	6-1-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	65-120				
Client ID:	PNO-MW06A					
Laboratory ID:	05-194-05					
Gasoline	160	100	NWTPH-Gx	6-1-20	6-1-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	70	65-120				
Client ID:	CP-GP01B					
Laboratory ID:	05-194-07					
Gasoline	ND	100	NWTPH-Gx	6-1-20	6-1-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	65-120				
Client ID:	CP-104A					
Laboratory ID:	05-194-08					
Gasoline	400	100	NWTPH-Gx	6-1-20	6-1-20	0
				-	-	-
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP01A					
Laboratory ID:	05-194-09					
Gasoline	ND	100	NWTPH-Gx	6-1-20	6-1-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	65-120				
Client ID:	CP-GP02					
Laboratory ID:	05-194-10					
Gasoline	440	100	NWTPH-Gx	6-1-20	6-1-20	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	65-120				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Floor
1	Result	FUL	Method	Frepareu	Analyzeu	Flags
METHOD BLANK						
Laboratory ID:	MB0601W1					
Gasoline	ND	100	NWTPH-Gx	6-1-20	6-1-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-120				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-19	94-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						81 80	65-120			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP10					
Laboratory ID:	05-194-01					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	100	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP09R					
Laboratory ID:	05-194-02					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	96	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PNO-MW02					
Laboratory ID:	05-194-03					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	95	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PNO-MW06B					
Laboratory ID:	05-194-04					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	96	78-125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PNO-MW06A					
Laboratory ID:	05-194-05					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP01B					
Laboratory ID:	05-194-07					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	97	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-104A					
Laboratory ID:	05-194-08					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	98	78-125				

12

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP01A					
Laboratory ID:	05-194-09					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	95	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP02					
Laboratory ID:	05-194-10					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	105	80-127				
4-Bromofluorobenzene	99	78-125				

BTEX by EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

ormo: dg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0529W1					
Benzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Toluene	ND	1.0	EPA 8260D	5-29-20	5-29-20	
Ethylbenzene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
m,p-Xylene	ND	0.40	EPA 8260D	5-29-20	5-29-20	
o-Xylene	ND	0.20	EPA 8260D	5-29-20	5-29-20	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	100	78-125				

BTEX by EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-19	94-10									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	9.97	10.4	10.0	10.0	ND	100	104	68-122	4	15	
Benzene	9.79	10.1	10.0	10.0	ND	98	101	70-121	3	16	
Trichloroethene	11.3	11.7	10.0	10.0	ND	113	117	80-121	3	17	
Toluene	10.6	10.8	10.0	10.0	ND	106	108	78-117	2	19	
Chlorobenzene	10.6	10.8	10.0	10.0	ND	106	108	80-120	2	16	
Surrogate:											
Dibromofluoromethane						94	96	75-127			
Toluene-d8						106	106	80-127			
4-Bromofluorobenzene						100	99	78-125			
SPIKE BLANK											
Laboratory ID:	SB05	29W1									
1,1-Dichloroethene	10).0	1(0.0		1	00	65-126			
Benzene	9.	74	1(0.0		ç	97	71-119			
Trichloroethene	11	.4	1(0.0		1	14	82-123			
Toluene	10).6	1(0.0		1	06	77-119			
Chlorobenzene	10).7	1(0.0		1	07	80-120			
Surrogate:											
Dibromofluoromethane						g	99	75-127			
Toluene-d8						1	04	80-127			
4-Bromofluorobenzene						1	03	78-125			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CP-GP10			•	•	
Laboratory ID:	05-194-01					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	CP-GP09R					
Laboratory ID:	05-194-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	PNO-MW02					
Laboratory ID:	05-194-03					
Diesel Range Organics	0.40	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	127	50-150				
Client ID:	PNO-MW06B					
Laboratory ID:	05-194-04					
Diesel Range Organics	0.24	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits	HITTER BA	0 1 20	0 1 20	7.1
o-Terphenyl	115	50-150				
Client ID:	PNO-MW06A					
Laboratory ID:	05-194-05					
Diesel Range Organics	0.34	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits		0 1-20	01-20	
o-Terphenyl	109	50-150				
Client ID:	CP-GP01B					
Laboratory ID:	05-194-07					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
		0.01				
<u> </u>	ND	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics Surrogate: o-Terphenyl		0.21 Control Limits 50-150	NWTPH-Dx	6-1-20	6-1-20	X1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

onits. http:/// (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-104A			•		
Laboratory ID:	05-194-08					
Diesel Range Organics	0.50	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	CP-GP01A					
Laboratory ID:	05-194-09					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	CP-GP02					
Laboratory ID:	05-194-10					
Diesel Range Organics	0.97	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	135	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0601W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-1-20	6-1-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				

				Source	Percent	Recovery		RPD	
Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
SB06	01W1								
ORIG	DUP								
0.477	0.421	NA	NA		NA	NA	12	NA	X1
ND	ND	NA	NA		NA	NA	NA	NA	X1
					109 104	50-150			
SB0601	W1 ACU								
0.4	77	0.5	500	NA	95	57-129	NA	NA	X1
					109	50-150			
	SB060 ORIG 0.477 ND SB0601	0.477 0.421	SB0601W1 ORIG DUP 0.477 0.421 NA ND ND NA	SB0601W1 ORIG DUP 0.477 0.421 NA NA ND ND NA NA SB0601W1 ACU SB0601W1 ACU SB0601W1 ACU SB0601W1 ACU	Result Spike Level Result SB0601W1 ORIG DUP 0.477 0.421 NA NA ND ND NA NA SB0601W1 ACU	Result Spike Level Result Recovery SB0601W1	Result Spike Level Result Recovery Limits SB0601W1	Result Spike Level Result Recovery Limits RPD SB0601W1	Result Spike Level Result Recovery Limits RPD Limit SB0601W1

DISSOLVED METHANE RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP10					
Laboratory ID:	05-194-01					
Methane	ND	0.55	RSK 175	6-3-20	6-3-20	
Client ID:	CP-GP09R					
Laboratory ID:	05-194-02					
Methane	100	0.55	RSK 175	6-3-20	6-3-20	
Client ID:	PNO-MW02					
Laboratory ID:	05-194-03					
Methane	7600	55	RSK 175	6-3-20	6-3-20	
Client ID:	PNO-MW06A					
Laboratory ID:	05-194-05					
Methane	5000	28	RSK 175	6-3-20	6-3-20	
Client ID:	CP-104A					
Laboratory ID:	05-194-08					
Methane	5500	55	RSK 175	6-3-20	6-3-20	
Client ID:	CP-GP01A					
Laboratory ID:	05-194-09					
Methane	12000	83	RSK 175	6-3-20	6-3-20	
Client ID:	CP-GP02					
Laboratory ID:	05-194-10					
Methane	11000	83	RSK 175	6-3-20	6-3-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Flags
1B0603W1					
ND	0.55	RSK 175	6-3-20	6-3-20	
1					

Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB06	03W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	23.6	23.3	22.1	22.1	107	105	75-125	1	25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MANGANESE EPA 6010D

Matrix: Water Units: ug/L (ppb)

Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CP-GP10					
Laboratory ID:	05-194-01					
Manganese	ND	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP09R					
Laboratory ID:	05-194-02					
Manganese	40	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	PNO-MW02					
Laboratory ID:	05-194-03					
Manganese	310	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	PNO-MW06A					
Laboratory ID:	05-194-05					
Manganese	330	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-104A					
Laboratory ID:	05-194-08					
Manganese	290	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP01A					
Laboratory ID:	05-194-09					
Manganese	83	11	EPA 6010D	6-4-20	6-4-20	
Client ID:	CP-GP02					
Laboratory ID:	05-194-10					
Manganese	290	11	EPA 6010D	6-4-20	6-4-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MANGANESE EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte		Result		PQL	М	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK											
Laboratory ID:	Ν	/IB0604WM1									
Manganese		ND		11	EPA	6010	D	6-4-20	6-4-2	0	
					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-22	21-02									
	ORIG	DUP									
Manganese	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	05-22	21-02									
	MS	MSD	MS	MSD		MS	MSD)			
Manganese	492	503	556	556	ND	89	91	75-125	2	20	
SPIKE BLANK											
Laboratory ID:	SB060	4WM1									
Manganese	58	36	5	56	N/A		105	80-120			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260D, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Ζ-

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 9 2020 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your JG1601 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
CP-GP10	Water	20-A007235	NUT, MIN
CP-GP09R	Water	20-A007236	NUT, MIN
PN0-MW02	Water	20-A007237	NUT, MIN
PN0-MW06A	Water	20-A007238	NUT, MIN
CP-104A	Water	20-A007239	NUT, MIN
CP-GP01A	Water	20-A007240	NUT, MIN
CP-GP02	Water	20-A007241	NUT, MIN

Your samples were received on Thursday, May 28, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron W. Young

Aaron W. Young Laboratory Manager

PO Number: 05-194

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 05/28/20 Date Reported: 6/ 9/20

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: JG1601 PO Number: 05-194 All results reported on an as received basis.

AMTEST Identification Number	20-A007235
Client Identification	CP-GP10
Sampling Date	05/26/20, 15:15

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	993.	mg/l	D	20	EPA 300.0	AY	06/01/20

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.934	mg/l		0.025	EPA 300.0	AY	05/28/20

AMTEST Identification Num Client Identification Sampling Date Minerals	C	20-A007236 CP-GP09R 05/26/20, 17:0	00				
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	290.	mg/l		0.1	EPA 300.0	AY	06/01/20
Nutrients	1	1		1			
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.054	mg/l		0.025	EPA 300.0	AW	05/29/20

AMTEST Identification Number	20-A007237
Client Identification	PN0-MW02
Sampling Date	05/27/20, 09:45

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	9.68	mg/l		0.1	EPA 300.0	AY	06/01/20

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.692	mg/l		0.025	EPA 300.0	AY	05/28/20

AMTEST Identification Number Client Identification Sampling Date			A				20-A007238 PN0-MW06A 05/27/20, 12:45									
Minerals																
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE									
Sulfate	3.08	mg/l		0.1	EPA 300.0	AY	05/28/20									
Nutrients																
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE									
Nitrate	0.683	mg/l		0.025	EPA 300.0	AY	05/28/20									

AMTEST Identification Number	20-A007239
Client Identification	CP-104A
Sampling Date	05/27/20, 13:39

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	0.53	mg/l		0.1	EPA 300.0	AY	05/28/20

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate	0.289	mg/l		0.025	EPA 300.0	AY	05/28/20

AMTEST Identification Number	20-A007240
Client Identification	CP-GP01A
Sampling Date	05/27/20, 10:32

Minerals

PARAMETER	RESULT		Q	D.L.	METHOD	ANALYST	DATE
Sulfate	0.10	mg/l		0.1	EPA 300.0	AY	05/28/20

Nutrients									
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE		
Nitrate	0.469	mg/l		0.025	EPA 300.0	AY	05/28/20		

AMTEST Identification Number	20-A007241
Client Identification	CP-GP02
Sampling Date	05/27/20, 12:17

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Sulfate	6.10	mg/l		0.1	EPA 300.0	AY	05/28/20

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Nitrate 0).757	mg/l		0.025	EPA 300.0	AY	05/28/20

D = The reported value is from a dilution.

aron W Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A007235 to 20-A007241

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
20-A007241	Nitrate	mg/l	0.757	0.759	0.26
20-A007308	Nitrate	mg/l	1.36	1.31	3.7
20-A007312	Nitrate	mg/l	0.296	0.283	4.5
20-A007360	Nitrate	mg/l	1.07	1.07	0.00
20-A007241	Sulfate	mg/l	6.10	6.09	0.16
20-A007225	Sulfate	mg/l	27.7	27.5	0.72

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
20-A007241	Nitrate	mg/l	0.757	2.68	2.00	96.15 %
20-A007308	Nitrate	mg/l	1.36	3.97	2.00	130.50 %
20-A007312	Nitrate	mg/l	0.296	2.36	2.00	103.20 %
20-A007360	Nitrate	mg/l	1.07	3.09	2.00	101.00 %
20-A007241	Sulfate	mg/l	6.10	8.25	2.00	107.50 %
20-A007225	Sulfate	mg/l	27.7	47.3	20.0	98.00 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Nitrate	mg/l	2.00	2.34	117. %
Nitrate	mg/l	2.00	2.12	106. %
Nitrate	mg/l	2.00	2.14	107. %
Nitrate	mg/l	2.00	2.07	104. %
Sulfate	mg/l	2.00	2.06	103. %

BLANKS

ANALYTE	UNITS	RESULT
Nitrate	mg/l	< 0.025
Sulfate	mg/l	< 0.1

Monthematical Inc. 14648 NE 55th Street, Redmond, WA 98052 · (425) 885-3861 14648 NE 95th Street, Redmond, WA 98052 · (425) 885-3861 13600 NE 126th PI Kirkland, WA 98034 Taboratory: 13600 NE 126th PI Kirkland, WA 98034 Phone Number: (425) 885-1664 Orber: (426) 277250 PNO-MW06A 28 512720 PNO-MW06A 28 512720 PNO-MW06A 28 512720 104 114 115	Turmaround Request ray 2 Day 3 D standard Standard ::		∑ Date ∑ Date	Page 1 or 1 Laboratory Reference #: 05-194 Project Manager: David Baumeister email: Project Manager: David Baumeister email: Project Number: JG1601 Project Name: Initrate, Sulfate EPA 300 Nitrate, Sulfate EPA 300 Nitrate, Sulfate EPA 300
Received by: Relinquished by: Received by: Relinquished by: Received by: V.		2	5/28/20 915	RL for both - 100 ppb EDDs

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received A. JAMORA	Relinquished	Signature	10 CP- GP02	9 CP-GPOIA	8 CP-104A	CP-GP01B	6 Trip Blanks	S PNO- MWOGA	4 PNO-MWOBB	3 PNO-MW02	2 CP-GPOQR	CP-GPID	Lab ID Sample Identification	ZBWETWK	Glen Wallace	Term. nal q1	JG IGOI	Project Number:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date			HO H	1 ALPHA	~ HARTH	PGG Cr nutor	Company	121/20 17:17 GW A	1/27/2010:32 CANS 11	5/27/20 13:39 Gr w 11	5/20/20/16:42 GW 6	L	2/24/20 12:45 G w 10	States HILO CAN 9	5/27/20 9:45 Gtw 11	5/26/20 17:00 Grul 11	5/26/20 15:15 GW 11	Time Sampled Matrix	(other)	ontain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	n of
		-	527 a 1555	5/20/25/55	SH H1 09/10/	Ship1014:42	Date Time	XX	*	XX	××		XX	××	×	× ×	× ×	NWTP NWTP NWTP Volatile Haloge	H-Gx H-Dx (es 8260 enated	Acid	3260 / SG Cl s 82600 ers Only	lean-up D		Laboratory Number:	Custody
Chromatograms with final report	Data Package: Standard Level III Level IV						Comments/Special Instructions	XXX		XXX			XXX		× × ×	×××	×××	(with k PAHs a PCBs Organ Organ Chlorin Total F Total N TCLP HEM (8082A ochlori ophosp nated A ARCRA N Metals oil and H ra- H al SSo)	el PAHs SIM (lo he Pest horus acid He letals letals grease) w-level) icides 8 Pesticid rbicides	081B es 827 8151A		05 - 194 EPA 300	Page of

Sample/Cooler Receipt and Acceptance Checklist

Client Project Name/Number: 06/60/ OnSite Project Number: 05-194		Initiated by Date Initiat	5/22/22
1.0 Cooler Verification			
1.1 Were there custody seals on the outside of the cooler?	Yes	(No)	N/A 1 2 3 4
1.2 Were the custody seals intact?	Yes	No	NA 1234
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	1234
1.4 Were the samples delivered on ice or blue ice?	Yes	No	N/A 1 2 3 4
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	N/A Temperature: 4
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	NIA	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx OSE Pickup Other
	0		
2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples?	Area	NI-	
2.2 Was the COC legible and written in permanent ink?	Cres	No	1 2 3 4
2.3 Have samples been relinquished and accepted by each custodian?	res	No	1 2 3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	(les)	No	1 2 3 4
2.5 Were all of the samples listed on the COC submitted?	Yes	No	1 2 3 4
2.6 Were any of the samples issue on the COC submitted ?	Yes	No	1 2 3 4
	163		1 2 3 4
3.0 Sample Verification			
	Yes	(Ng	1 2 3 4
3.1 Were any sample containers broken or compromised?	Yes	(Fe)(B)	1 2 3 4 1 2 3 4
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible?			
3.1 Were any sample containers broken or compromised?3.2 Were any sample labels missing or illegible?3.3 Have the correct containers been used for each analysis requested?	Yes	No	1 2 3 4
 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 	Yes	No	1 2 3 4 1 2 3 4
 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 	Yes	No	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 	Yes	No No No	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
 3.0 Sample Verification 3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested? 3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm? 3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 3.8 Was method 5035A used? 		No No No	1 2 3 4 1 2 3 4

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

LNAPL MEASUREMENT AND RECOVERY FIELD DATA SHEET

Sampling Event: Nov 2019

Project Nam Project Adda	nber: JG1601 ne: Terminal S ress: 2001 W a: Port of Sea	Garfield St.			Location: T. Measured By	1-120 ank Fa : IN /2 pool: Kech		no Aven
Location	Time	MP	LNAPL	Depth Set 1 Water	Thickness	LNAPL	Depth Set 2 Water	Thickness
Trench 2E Trench 2W Trench 3E Trench 3W Trench 5E Trench 5W PNO-104 CP-107 CP-110	12:01 12:04 12:10 12:15 12:23 12:23 12:50 12:40 12:50	TOCN TOCN TOCN TOCN TOCN TOCN TOCN TOCN	10.85 7.80 8.69 7.49 6.79 5.26 7.12 6.13 6.13 6.90	$ \frac{10.86}{7.81} \\ \overline{7.81} \\ \overline{9.74} \\ \overline{7.54} \\ \overline{6.31} \\ \overline{5.28} \\ \overline{7.22} \\ \overline{6.14} \\ \overline{6.90} \\ \overline{100} \\ \overline$	$ \begin{array}{c} 0.0\\ 0.01\\ 0.05\\ 0.05\\ 0.02\\ 0.02\\ 0.10\\ 0.00\\$	10.85 7.79 8.69 7.49 6.29 5.26 7.12 6.14 6.90	$ \begin{array}{r} 10.86 \\ \overline{7.81} \\ 8.74 \\ \overline{7.54} \\ 6.31 \\ \overline{5.28} \\ \overline{7.22} \\ 6.14 \\ 6.90 \\ \hline \end{array} $	001 0.02 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07
LNAPL Recc O&M Plan sa Location		thickness > 0.25	5 ft. Use perist. End Time	altic to pump int Quantity	o safe containe Notes:	r.		

Signature:

Page____of___ PgG

LNAPL MEASUREMENT AND RECOVERY FIELD DATA SHEET Sampling Event: Q | 2020

Client Name	: Port of Sea	ttle			Measuring T	ool: Inter	face prob	e
Location	Time	MP	LNAPL	Depth Set 1 Water	Thickness	LNAPL	Depth Set 2 Water	Thicknes
CP-107	1032		ND	5.03	0	ND	5.02	0
CP-110	1020	7	ND	6.06	0	ND	6.05	0
PNO-104	1026		6.47	6.54	0.07	6.47	6.55	0.08
French 2E	1045	Inaccesa	de: Tr.	miler park	red on	access	Panel.	
French 2W	1038		ND	6.61	0*	ND	6.61	0*
French 3E	40 151	The last	12-16	teret	and the state of t	Aries		Wrote o
French 3W	1052		NO	6.31	0*	ND	6.30	0.*
French 5W	1104		<u>NO</u> 3.97	3.98	0.02	ND	3.97	0*
	1101		2.17	2,15	U.U.d	3.98	3.95	0.03
lench 3E	1049		7.50	7.52	0.02	7.49	7.50	0.01
s.								
	very Notes ys recover if Date	thickness > 0.25 Start Time	ft. Use perista End Time	altic to pump in Quantity	to safe containe Notes:	r.		
					6 a			_

Date	Tine	site	P	τp 2	3	(I	D T W Z	3		
5/27	1740	2 E	Not	ac	Kes	sible	: Tra	ilar	1alke d	here
5/27	1735	2W	ND	NO	NO	720	720	,	720	
5/27	1705	3E	8.08	8.08	8.09	8.08	8.0	7	8.08	
5/27	1718	3W	ND	ND	6.89	6.89	6.88	8	1-1ke - R 7.20 808 6.89 86 88	
5/27	Kap 1723	5E	ND	ND	ND	4.86	4.87	4	86	
5/27	1728	5W	4.85	4.8 ¥ ¥	.85	4-68	4.89	4.	88	

4

12

* LNAPL detected, but very thin layer

Sampler: Nick Waldo

1

		d.	
- 12	a	5	r
-4	0	r	
~	7		

NBW

-

Date: Well	There	DTW1	6/20 DTW2	DTW 3	Ares	Sounder		Eleve	Depth	Comments
	Time	DIW1	DIW2	DIWS	Area			Elev.		D NI
JT-MW39-3	11121	9.86	1.89	9.98 #	?	X	Shallow	17.33	14.00	Agens Seens anter from rennent enteres
CP-GP01	1130	8.15	6.14	8.16		+'	Shallow	17.68	64.50	Neger Parts 1 and 1 and 1 and 1 and 1
CP-GP01# A		7.37		7.38	P-90	-	Deep	17.60		
				8.19=	P-90	+'	Shallow	17.39	20.10	
CP-GP08	SDE INN	8.10	8.17	8,11-		-	Shallow	17.37	18.00	
CP-GP03AR	+		++	<u> </u>	P-91	-	Shallow	17.77	19.85	
CP-GP03BR	+'		+	<u> </u>	P-91	+	Deep	17.74	64.50	11
CP-GP04R	+		+	 	P-91	+	Shallow	17.90	19.83	
CP-GP07R			+		P-91		Shallow	18.08	19.85	
CP-GP09R		<u> </u>	+	<u> </u>	P-91	-	Shallow	17.45	18.00	
CP-GP10	+		+	 	P-91		Shallow	17.92	17.85	1
PNO-MW02	-	-	+'	t	P-91	-	Shallow	17.71	17.00	
NO-MW06A			+		P-91		Shallow	18.05	17.50	
NO-MW06B	+		+		P-91		Deep	17.98	55.40	
PNO-MW103	Soci	151	6.57	163	P-91	-	Shallow	17.48	17.00	
B1-93	1208	6.56	0.11	6.57			Shallow	17.24	30.00	
CP-103A	1206	5.01	5.03	5.03	TF-90		Shallow	17.11	15.00	
CP-104A	1306	5.48			TF-90	-	Shallow	17.13	15.00	+
CP-104B	1229	_	6.33	5.48			Deep	16.86	50.00	TT NI a surle cadarine F
CP-106A	120	0.31	Bivs	6.12	TF-90		Shallow	18.00	15.00	
CP-106B	1147	6.25	120	6.25	TF-90		Deep	17.91	41.50	
CP-108A	1152	9.51	9.52	9.52	TF-90	-	Shallow	1.0.000	15.00	
CP-108B	1332	4.98		4.98			Deep	16.77	60.00	
CP-113	1241	5.48	5.49	5.48	-		Shallow		17.00	
CP-114		-	5.26	5.26	TF-90	201	Shallow		14.00	1.445
CP-115A	1249	5.25	5.92	5.92			Shallow		21.00	
CP-115B	1259	5.20		-			Shallow		42.50	ACE
CP-121	1321	3120	5.21	1	TF-90	1.5	Shallow		21.00	tal a l travel and said fall of a
CP-122B	1233			-	TF-90	_	Deep	16.90	42.50	
CP-203B	1348	Cla 14	1512	5.12	TF-90	-	Deep	16.99	1 1 1 1 1 1 1 1	No. of the second se
CP-205A	1348	_	5.12	5.55	TF-90		Shallow			
CP-205B	1311	5.62	5.00	5.10	TF-90		Deep	17.73		
CP-W210	11156	5.77		5.77	TF-90		Shallow			PTPINOne
CP-107	1426					-	Shallow			
CP-110	1417	6,68	6.68	6.68	TF-9					
CP-111			+	+	TF-9		Shallow			
CP-112			+		TF-9		Shallow		10.00	
CP-GP05			+		TF-9		Shallow			
CP-GP06		+			TF-9		Shallow			0
CP-GP11				+	TF-9		Shallow	1.000	1	
CP-GP12				4	TF-9		Shallow			
CP-GP13					TF-9		Shallow	-		
CP-GP14					TF-9		Shallow			
CP-PR-13					TF-9	11	Shallow	w 17.31	12.90	٥
PNO-MW101	19.00				TF-9		Shallow	w 17.74	16.30	0
PNO-MW104	17-37-	- 7.10	7.10	7.01	TF-9	91 X	Shallow	w 17.43	3 17.40	DTP: 7.01, 7.00, 7.00
UT-MW39-1		1		and the second second	TF-9		Shallow	w 16.65	5 17.50	

LNAPL = Light non-aqueous phase liquid, well with historic LNAPL presence T-90 and TF-91 are arbitrary divisions that refer to portions of the TFAA on the Pier 90/91 side of the alley.

Well #: CP-103 A

Sampling Event:May 2020	Sample #:
Project Number: JG1601 Project Name: Terminal 91 (T91) Project Address: 2001 W Garfield St. Client Name: Port of Seattle Laboratory: OnSite Environmental, Redmond, WA Chain-of-Custody (<u>ves</u> /no): <u>yes</u> Shipment Method:	Date: 05/2@/2020
Depth to Water (feet): 6.37 Depth of Well (feet): 5	Purge Volume Measurement Method: <u>Graduated Buck</u> e Purge Date/Time: 5/28/2020 1652
Reference Point: top of casing, N side if no notch Sampling Equipment: YSI 556 (Field Env.)	Purging Equipment:Peristaltic Pump Water Level Probe Used: Waterline
Casing Volume Constants (CVC): 2-inch = 0.16 gpf; 4-inch Purge Volume = ft of water 9 x CVC 16 x C	

OTW 6.64 6.66 6.66 6.66 6.67 6.67 6.67

TIME (2400 hr) 1655	CUMULATIVE VOLUME (gal)	pH (units) 7.28	EC (umhos/cm 25 c) 4 98.7-	Temp. (C) 4.9	Diss O ₂ (mg/L)	ORP (mV) -73.0	TURBIDITY (visual) Clear
1701	12	7.13	494.9	14.4	0.4	-64,2	clear
1704		710					
1104	d	711	494.4	14.3	0.4	-62.3	Clear
17099	3	7.21	491.9	14.3	0.3	-58.8	clear
1714	<u> </u>	7.18	4001	143	0.2	-57.4	
1717	<u> </u>	7.18	485-1	1 / 2			
1720	5	7.17	477.1	19.3	0.1	-58.1	
1722	51/2	7.18	473,8	14.3	0.1		clear
1	1/2	1110	915,0	14.5	0.1	- 57.4	cicar
Well Integrity: No #1 /C	test -	vailable	Alkalinity Re			-	as CaCO3
	test -	vailable	Alkalinity Re Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit,	al (Bromcresol- Gre	en Methyl Red) , add dro N g/L	pwise SO4 Acid	as CaCO3
NO AIK	test -		Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit,	al (Bromcresol- Gre n 25mL Sample, Fe I	en Methyl Red) , add dro N g/L	pwise SO4 Acid , Outdoor Color Wheel:	
NO AIK			Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit, Day/T	al (Bromcresol- Gre n 25mL Sample, Fe In Time Sample	en Methyl Red) , add dro 1g/L ron Reagant, Swirl, 3 min	pwise SO4 Acid , Outdoor Color Wheel:	
No AIK	ry (check applica	ble rows)	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit, Day/T	al (Bromcresol- Gre n 25mL Sample, Fe In Time Sample	en Methyl Red) , add dro 1g/L ron Reagant, Swirl, 3 min ed: 5/ <u>28</u> /20	pwise SO4 Acid , Outdoor Color Wheel:	
No AIK	ry (check applica	ble rows)	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit, Day/T	al (Bromcresol- Gre n 25ml. Sample, Fe Ir ime Sample	en Methyl Red) , add dro 1g/L ron Reagant, Swirl, 3 min ed: 5/ <u>28</u> /20	pwise SO4 Acid , Outdoor Color Wheel:	
No #1 k Bottle Inventor Quantity: All Wells 2 5	ry (check applica Container: 500 mL AG 40mL VOA	ble rows) Preservatives: HCI HCI	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25ml. Sample, Fe In Time Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks:	pwise SO4 Acid , Outdoor Color Wheel: 020 <u>172 4</u>	
No #1 k Bottle Invento Quantity: All Wells 2 5	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (ble rows) Preservatives: HCI HCI Shallow Wells C	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25mL Sample, Fe II Time Sample	en Methyl Red), add dro 1g/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B	pwise SO4 Acid , Outdoor Color Wheel: 020 <u>1724</u> TEX (8260C)	
No #1 k Bottle Invento Quantity: All Wells 2 5	ry (check applica Container: 500 mL AG 40mL VOA	ble rows) Preservatives: HCI HCI Shallow Wells (HCI	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25ml. Sample, Fe li ïime Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-C / B Dissolved Gase	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>1724</u> TEX (8260C) es (Methane)	
No #1 k Bottle Invento Quantity: All Wells 2 5 Natural Attenu	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells (HCI Unpreserved	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25mL Sample, Fe In Time Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Sul	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172</u> TEX (8260C) es (Methane) Ifate	
No #1 k Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA	ble rows) Preservatives: HCI HCI Shallow Wells (HCI	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25mL Sample, Fe In Time Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-C / B Dissolved Gase	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172</u> TEX (8260C) es (Methane) Ifate	
No #1 k Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells C HCI Unpreserved Nitric Acid	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25mL Sample, Fe Ir ime Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B [*] Dissolved Gass Nitrate and Sul Total Mangane	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172 ¥</u> TEX (8260C) es (Methane) Ifate ese	
No #1 k Bottle Invento Quantity: All Wells Vatural Attenu 2 1 1	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly 1/250 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells C HCI Unpreserved Nitric Acid HCI	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre n 25mL Sample, Fe Ir ime Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gass Nitrate and Sul	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172 ¥</u> TEX (8260C) es (Methane) Ifate ese	
No #1 k Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1 1 MS/MSD Samp	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells C HCI Unpreserved Nitric Acid	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre II 25mL Sample, Fe Ir Time Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B [*] Dissolved Gass Nitrate and Sul Total Mangane	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172 V</u> TEX (8260C) es (Methane) ifate ise TEX	
No #1 k Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1 1 MS/MSD Samp 3	ry (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly 1/250 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells C HCI Unpreserved Nitric Acid HCI	Fill plastic tube, add to via Fe(II) Result HACH (Fe(II)) Test Kit. Day/T Filtered (type):	al (Bromcresol- Gre II 25mL Sample, Fe Ir Time Sample	en Methyl Red), add dro ng/L ron Reagant, Swirl, 3 min ed: <u>5/28/20</u> Remarks: NWTPH-Dx NWTPH-G / B' Dissolved Gass Nitrate and Sul Total Mangane NWTPH-G / B'	pwise SO4 Acid , Outdoor Color Wheel: D20 <u>172 V</u> TEX (8260C) es (Methane) ifate ise TEX	

Signature: 1 UK

Page_1_of_1_PgG

CONINIDATED CAMPING FIELD BATT CITET

GROUNDWATER SAMPLING FIELD DATA SHEET

Well #: _ (P104 A

Sample #: May 2020 Sampling Event: 05/27/2020 Date: Project Number: JG1601 Location: Project Name: Terminal 91 (T91) Sampled By: NBW/TK Project Address: 2001 W Garfield St. Purged By: NBW/TK Client Name: Port of Seattle Date Sent to Lab: 05/ 27/2020 Laboratory: OnSite Environmental, Redmond, WA Chain-of-Custody (yes/no): yes Field CC Sample Number: NA Shipment Method: Sample Split: NA Purge Volume Measurement Method: Graduated Bucket Depth to Water (feet): 5,03 5/27/2020 Depth of Well (feet): 15 1301 Purge Date/Time: Reference Point: top of casing, N side if no notch Purging Equipment: Peristaltic Pump Waterline Sampling Equipment: YSI 556 (Field Env.) Water Level Probe Used: Casing Volume Constants (CVC): 2-inch = 0.16 gpf; 4-inch = 0.656 gpf; 6-inch = 1.47 gpf PV=(π r² h) (7.48 gal/ft³) 4.8 gallons Purge Volume = ft of water 10 1/3 x CVC .16 = x Casing Volumes TIME CUMULATIVE ORP TURBIDITY pH EC Temp. Diss O₂ (2400 hr) VOLUME (gal) (units) (umhos/cm 25 c) (visual) (C) (mg/L)(mV)1304 14.9 0.5 7.42 506.2 0.6 Clear 14.6 clear 7.35 18.4 1307 495.1 14.7 0.4 491.6 14.7 1312 7.33 6.3 22.3 Clear 25.6 1327 4 729 495 5 14 L Clear 0.2 496.8 14 7.29 0.7 26.07 132 6 28 33 3 7 1942 4 5 0.2 Clead 27.0 7.29 414. 4 5 0.2 26.8 4 3 3 clea. Well Integrity: Alkalinity Result: _____ drops x 20 _____ mg/L as CaCO3

No Alk kit available

Fill plastic tube, add to vial (Bromcresol- Green Methyl Red), add dropwise SO4 Acid

Fe(II) Result 0.5 mg/L

HACH (Fe(II)) Test Kit , 25mL Sample, Fe Iron Reagant, Swirl, 3 min, Outdoor Color Wheel:

Bottle Inventor	y (check applica	ble rows)	Day/Time Sample	ed: 5/27/2020 1339
Quantity:	Container:	Preservatives:	Filtered (type):	Remarks:
All Wells				
V 2	500 mL AG	HCI		NWTPH-Dx
V 5	40mL VOA	HCI		NWTPH-G / BTEX (8260C)
Natural Attenua	ation Samples	Shallow Wells Or	nly)	
V/2	40mL VOA	HCI		Dissolved Gases (Methane)
1	500 mL Poly	Unpreserved		Nitrate and Sulfate
1	250 mL Poly	Nitric Acid		Total Manganese
MS/MSD Samp	lles			
3	40mL VOA	HCI		NWTPH-G / BTEX
2	40mL VOA	HCI		Dissolved Gases (Methane)
	1			

Signature:

DTW

5.06

5.08

5.08

5.09

5.07

5.07

5.08

1) With

Page____of___

PgG

Well #: CP-GPOLA

Well #: 6P-108A **GROUNDWATER SAMPLING FIELD DATA SHEET** Sample #: Sampling Event: May 2020 05/28/2020 Project Number: JG1601 Date: Project Name: Terminal 91 (T91) Location: Sampled By: NBW/TK Project Address: 2001 W Garfield St. Purged By: NBW/TK Client Name: Port of Seattle Date Sent to Lab: 05/ /2020Laboratory: OnSite Environmental, Redmond, WA Chain-of-Custody (yes/no): yes NA Field CC Sample Number: NA Shipment Method: Sample Split: Depth to Water (feet): 6, 2 4 Purge Volume Measurement Method: Graduated Bucket Purge Date/Time: 5/28/2020 1104 Depth of Well (feet): 15 Reference Point: top of casing, N side if no notch Purging Equipment: Peristaltic Pump Water Level Probe Used: Waterline Sampling Equipment: YSI 556 (Field Env.) Casing Volume Constants (CVC): 2-inch = 0.16 gpf; 4-inch = 0.656 gpf; 6-inch = 1.47 gpf PV=(π r² h) (7.48 gal/ft³) 4.5 gallons Purge Volume = ft of water _____ x CVC ____ K Casing Volumes // 3 = 1.5 TIME CUMULATIVE ORP TURBIDITY EC pH Temp. Diss O₂ (2400 hr) VOLUME (gal) (umhos/cm 25 c) (units) (C) (mg/L)(mV)(visual) 14.0 7.33 3765 -115.2 clear 1106 1/4 1.0 7.00% 359.6 111 >/u 6.97 07 -195.7 14.1 7.06* 1121 2/4 Clear 7.10 380.4 14. 0.4 -209.3 6.98 1129 7.22 385.8 14.1 -2167 0.3 clear 6.98 cloud 11 4 3 1/2 7.34 370.4 14.0 0.2 -2231 6.99 -221.3 375.0 7.37 0. clear 11 56 14.1 379.8 clear 7.37 0.6 -219.6 203 4.0 1 Well Integrity: Alkalinity Result: _____ drops x 20 _____ mg/L as CaCO3 * turned down promping rate Fill plastic tube, add to vial (Bromcresol- Green Methyl Red) , add dropwise SO4 Acid k.t available AIK Fe(II) Result 0.0 mg/L NA HACH (Fe(II)) Test Kit , 25mL Sample, Fe Iron Reagant, Swirl, 3 min, Outdoor Color Wheel: Bottle Inventory (check applicable rows) Day/Time Sampled: 5/28 /2020 1202 Preservatives: Filtered (type): Remarks: Container: Quantity: All Welks NWTPH-Dx 500 mL AG HCI 2 V NWTPH-G / BTEX (8260C) 40mL VOA HCI 5 Natural Attenuation Samples (Shallow Wells Only) **Dissolved Gases (Methane)** 40mL VOA HCI V 2 500 mL Poly Unpreserved Nitrate and Sulfate 1 11 1 250 mL Poly Nitric Acid Total Manganese **MS/MSD** Samplles 40mL VOA HCI NWTPH-G / BTEX 2 40mL VOA HCI **Dissolved Gases (Methane)**

Signature:

nut

DTW

Page____of___

PgG

Well #: (P-108B

	May 2020			Sample #:				
Project Number:	JG1601			Date:05/28/2020				
Project Name:	Terminal 91 (T				# CP-108	B		
	: 2001 W Garfiel	d St.		Sampled By:	NBW/IK			
Client Name: Laboratory:	Port of Seattle		1474	Purged By: 1		/2020		
	OnSite Environ dy (<u>ves</u> /no): <u>ve</u>		ond, WA	Date Sent to Lab: 05/ /2020 Field CC Sample Number: NA				
Shipment Metho	od:ye	5		Sample Split				
Depth to Water	(feet): 7.77			Purge Volum	e Measureme	ent Method: Gr		
Depth of Well (fe	eet): 60			Purge Date/1	Fime: 5/2 8	/2020 92	9	
Reference Point	t: top of casing, N	side if no note	ch	Purging Equi	ipment:Perista	altic Pump		
Sampling Equip	ment: YSI 556 (F	ield Env.)		Water Level	Probe Used:_	Waterline		
Casing Volume	Constants (CVC)	: 2-inch = 0.16	gpf ; 4-inch = 0.6				n) (7.48 gal/ft3	
			.16 x Casir			~		
						gu		
TIME	CUMULATIVE	pH	EC	Temp.	Diss O ₂	ORP	TURBIDITY	
	VOLUME (gal)	(units)	(umhos/cm 25 c)		(mg/L)	(mV)	(visual)	
930	0.2	8.05	3198	16.0	0.9	-82.8	Darkolong	
	Viz							
942	2	8.08	3198	153	0.2	-108.0	Reddish bi	
955	_ 4	7.79	5607	15.3	0.1	-189.4	Yellow/6	
1008	6	7.77	4942	15.2	0.1	-340.3	brown	
1021	8	7.77	6032	\$ 15.1	0.1	-337.5	brown	
				and the second se			1	
1027	4	777	6011	15.1	0.1	- 337.4	brown	
				100				
Well Integrity:								
	in the Ari	available	Alkalinity R	Result:	drops x 20 _	mg/L	as CaCO3	
		de different	Cill - Louis to be added					
ro Al	ik k.ts		Fui plastic tube, and to	vial (Bromcresol- Gree		opwise SO4 Acid		
ro Al Strong	Sulfar Si	nell from	Fui plastic tube, and to			opwise SO4 Acid		
ro Al Strong	Sulfar Si & Purge	nell from	Fe(II) Resul	lt <u>0.0</u> m	ng/L	in, Outdoor Color Wheel:		
ro Al Strong Well Bottle Invento	Sulfar Sr & Party	vater ble rows)	Fe(II) Resul	It <u>O.O</u> m it . 25mL Sample, Fe Ir /Time Sample	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/28</u> /2	in, Outdoor Color Wheel:	9	
Fo Al Strong Well Bottle Invento Quantity:	Sulfar Si & Purge	water	Fe(II) Resul	It <u>O.O</u> m it . 25mL Sample, Fe Ir /Time Sample	ng/L ron Reagant. Swirl, 3 mi	in, Outdoor Color Wheel:	9	
ro Al Strong Well Bottle Invento	Sul fur Sr & Purge Dry (check applica Container:	water vater ble rows) Preservatives	Fe(II) Resul	It m ht.25mL Sample, Fe Ir Time Sample h):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks:	in, Outdoor Color Wheel:	9	
Fo Al Strong Well Bottle Invento Quantity:	Sul fur Sr & Purge Ory (check applica Container: 500 mL AG	ble rows) Preservatives	Fe(II) Resul	It <u>0.0</u> m it . 25mL Sample, Fe Ir Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks: NWTPH-Dx	in, Outdoor Color Wheel: 2020 02	9	
Bottle Invento Quantity: All Wells 2 5	Sul fur Sr & Purge Ory (check applica Container: 500 mL AG 40mL VOA	water ble rows) Preservatives HCI HCI	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks:	in, Outdoor Color Wheel: 2020 02	9	
Fo Al Strong well Bottle Invento Quantity: All Wells 2 5 Natural Attenu	Sul fue Se Rege Container: 500 mL AG 40mL VOA	HCI Kater Ble rows) Preservatives HCI Kallow Wells	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/2 & /2</u> Remarks: <u>NWTPH-Dx</u> NWTPH-G / E	in, Outdoor Color Wheel: 2020 102 3TEX (8260C)	9	
Bottle Invento Quantity: All Wells 2 5	Sul fue So 2 Pue So 2	HCI Shallow Wells	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/2 & /2</u> Remarks: <u>NWTPH-Dx</u> NWTPH-G / E	an, Outdoor Color Wheel: 2020 102 BTEX (8260C) ses (Methane)	9	
Fo All Strong well Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2	Sul fue Se Rege Container: 500 mL AG 40mL VOA	HCI Shallow Wells	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/2 & /2</u> Remarks: NWTPH-Dx NWTPH-G / E Dissolved Ga	ain, Outdoor Color Wheel: 2020 102 BTEX (8260C) ses (Methane) ulfate	9	
Fo All Strong well Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2	Sul fue So Received Solution Container: 500 mL AG 40mL VOA 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly	HCI Khallow Wells HCI Unpreserved Nitric Acid	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z g/2</u> Remarks: NWTPH-Dx NWTPH-G / E Dissolved Ga Nitrate and Si Total Mangan	an, Outdoor Color Wheel: 2020 102 BTEX (8260C) ses (Methane) ulfate nese	9	
Fo Al Strong well Bottle Invento Quantity: All Wells 2 5 Natural Attenue 2 1 1 MS/MSD Samp 3	Sul for So Received application Container: 500 mL AG 40mL VOA 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly plles 40mL VOA	HCI HCI Unpreserved Nitric Acid HCI	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks: NWTPH-Dx NWTPH-G / E Dissolved Ga Nitrate and Si Total Mangan NWTPH-G / E	an, Outdoor Color Wheel: 2020 0 2 BTEX (8260C) ses (Methane) ulfate nese BTEX	9	
Bottle Invento Quantity: All Wells 2 5 Natural Attenu 1 MS/MSD Samp	Sul fue So Received Solution Container: 500 mL AG 40mL VOA 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly	HCI Khallow Wells HCI Unpreserved Nitric Acid	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks: NWTPH-Dx NWTPH-G / E Dissolved Ga Nitrate and Si Total Mangan NWTPH-G / E	an, Outdoor Color Wheel: 2020 102 BTEX (8260C) ses (Methane) ulfate nese	9	
Fo Al Strong well Bottle Invento Quantity: All Wells 2 5 Natural Attenue 2 1 1 MS/MSD Samp 3	Sul for So Received application Container: 500 mL AG 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly plles 40mL VOA	HCI HCI Unpreserved Nitric Acid HCI	Fa pase (tobe, and to Fe(II) Resul HACH (Fe(II)) Test K Day, Filtered (type	It <u>0.0</u> m it . 25mL Sample, Fe Ir /Time Sample):	ng/L ron Reagant, Swirl, 3 mi ed: <u>5/Z & /2</u> Remarks: NWTPH-Dx NWTPH-G / E Dissolved Ga Nitrate and Si Total Mangan NWTPH-G / E	an, Outdoor Color Wheel: 2020 0 2 BTEX (8260C) ses (Methane) ulfate nese BTEX	9	

DTW

7.80

Signature: 1 hh

Page____of___ PgG

Well #: _ CP-114

Client Name: Laboratory: Chain-of-Cust Shipment Met	: Terminal 91 (T ss: 2001 W Garfiel Port of Seattle OnSite Environ tody (<u>ves</u> /no): <u>ve</u>	ld St. imental, Redmo	nd, WA	Purged By:_ Date Sent to	Lab: 05/ mple Number:_	/2020 NA	
Depth of Well Reference Po	int: top of casing, N		h	Purge Date/ Purging Equ	ipment:Peristal	2020 🏾 🌮 I tic Pump	aduated Buc 559
Casing Volum	uipment: YSI 556 (F ne Constants (CVC) e = ft of water	: 2-inch = 0.16	gpf ; 4-inch = 0.6	56 gpf ; 6-ir	Probe Used:	P,V=(π r ²	h) (7.48 gal/ft ³ Ions
TIME (2400 hr)	CUMULATIVE VOLUME (gal)	pH (units)	EC (umhos/cm 25 c)	Temp. (C)	Diss O ₂ (mg/L)	ORP (mV)	TURBIDITY (visual)
1557	0.2	8.03	466.3	14.9	0.6	14.3	Grecks
1601	3/4	7.75	438.4	142	06	15.1	clear
1607	13/4	7.63	451.4	145	05	27.8	clear
1613	23/4	7.56	456.3	14.5	0.6	32.9	clear
1620	4 1/4	7.57	456.4	14.5	0.7	34.0	
1626	5	7.57	453.5	146	0.6	342	clear
Well Integrity	r: Alle test	avalable	Fill plastic tube, add to Fe(II) Resu	vial (Bromcresol-Gr	drops x 20 _ reen Methyl Red) , add dro ng/L Iron Reagant, Swirl, 3 mir	pwise SO4 Acid	
	tory (check applica				led: 5/27/2	020 162	29
Quantity: All Wells	Container: 2 500 mL AG	Preservatives	: Filtered (type	e):	Remarks: NWTPH-Dx		
V	5 40mL VOA	HCI	0-14		NWTPH-G / B	TEX (8260C)	
	2 40mL VOA	HCI			Dissolved Gas	es (Methane)	
	1 500 mL Poly	Unpreserved			Nitrate and Su	lfate	
V	1 250 mL Poly	Nitric Acid	_		Total Mangan	ese	
V		LUCI			NWTPH-G / E	TEX	
V	3 40mL VOA	HCI			Dissaluad Ca	/ / · · · · · · · · · · · · · · · · · ·	
V		HCI	-		Dissolved Gas	ses (Methane)	
V	3 40mL VOA					ses (Methane)	

Well #: (P-203B

	May 2020					Sample #:		
Client Name: Laboratory:	Terminal 91 (1 2001 W Garfie Port of Seattle OnSite Enviror dy (<u>ves</u> /no): <u>ve</u>	ld St. mental, Redm	ond, WA	Date: 05/28/2020				
	(feet): 8.43			Purge Volume Measurement Method: Graduated B				
Depth of Well (fe		-			/Time: 5/28/		7	
	top of casing, N		ch	Purging Eq	uipment:Perista	Itic Pump Waterline		
	ment: YSI 556 (F				el Probe Used:		. /7 40	
			gpf; 4-inch = 0.6			$\frac{PV=(\pi r^2)}{8/24}$ gall		
Purge volume =	nt of water	x cvc_	X Casin	ig volumes	<u> </u>	gain	ons	
						0.00	-	
	CUMULATIVE VOLUME (gal)	pH (units)	EC (umhos/cm 25 c)	Temp. (C)	Diss O ₂ (mg/L)	ORP (mV)	TURBID (visua	
1449	VULUNE (gal)	7.49	591.1	14.5	0.8	-97.2	clear	
1456							clea	
	13/4	7.30	547.9	14.3	0.3	-83.7		
1508	4	7.35	551.7	14.5	0.8	-79.6	clear	
1522	_6	7.89	554.0	14.6	0.8	- 78.8	cleof	
1530	71/2	7.37	556.7	14.6	0.5	-77.3	clear	
1540	9	7.39	553.6	14,6	0.3	-64.0	clear	
1548	101/2	738	552.9	14.7	0.3	-55.9	clear	
	12	7.39	559.4	14.7	0.2	-50.7	clear	
1556	14					-117 7	Clear	
1556		7.40	553 5	(47	0.2	-45 7		
1611	14	7.40	553.5	(4.7	0.2	-43.7	Crear	
Vell Integrity:	14	-	-	esult:				
1611	14	· ·	Alkalinity R			mg/L		
Vell Integrity:	14	-	Alkalinity R	ial (Bromcresol- Gr	drops x 20 _	mg/L		
Vell Integrity:	14	-	Alkalinity R Fill plastic tube, add to v Fe(II) Result	ial (Bromcresol- Gr t T	drops x 20 _	mg/L :		
<u>ILII</u> Well Integrity: AIK	14 Kit ni	ot availa	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit	ial (Bromcresol- Gr t I , 25mL Sample, Fe	drops x 20 _ een Methyl Red) . add dro ng/L Iron Reagant, Swirl, 3 min	mg/L ; pwise SO4 Acid , Outdoor Color Wheel:		
Vell Integrity:	14	ot availa	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit	t r , 25mL Sample, Fe	drops x 20 _ een Methyl Red) . add dro ng/L	mg/L ; pwise SO4 Acid , Outdoor Color Wheel:		
Vell Integrity: A Ik Bottle Inventor Quantity: All Wells	y (check applicat Container:	of availation of availation of availation of availation of the second se	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: <u>5/26 /20</u> Remarks:	mg/L ; pwise SO4 Acid , Outdoor Color Wheel:		
Uell Integrity: A Ik Bottle Inventor Quantity: All Wells 2	y (check applicat Container: 500 mL AG	of availation of availation of availation of availation of the second se	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: <u>5/26/20</u> Remarks: NWTPH-Dx	mg/L pwise SO4 Acid , Outdoor Color Wheel: D20 1628		
Uell Integrity: A Ik Bottle Inventor Quantity: All Wells 5	y (check applicat Container: 500 mL AG 40mL VOA	ble rows) Preservatives: HCI HCI Shallow Wells	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kin Day/ Filtered (type)	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: 5/28 /20 Remarks: NWTPH-Dx NWTPH-DX	mg/L pwise SO4 Acid Outdoor Color Wheel: D20 1628 TEX (8260C)		
Use Integrity: A Ik Bottle Inventor Quantity: All Wells 5 Natural Attenua 2	y (check applicat Container: 500 mL AG 40mL VOA tion Samples (S 40mL VOA	De rows) Preservatives: HCI HCI Shallow Wells of HCI	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kin Day/ Filtered (type)	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: 5/28/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas	mg/L pwise SO4 Acid . Outdoor Color Wheel: D20 1628 TEX (8260C) es (Methane)		
I 6 11 Well Integrity: A 1k Bottle Inventor Quantity: All Wells 2 5 Natural Attenua 2 1	y (check applicat Container: 500 mL AG 40mL VOA tion Samples (S 40mL VOA 500 mL Poly	De rows) Preservatives: HCI HCI HCI Unpreserved	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kin Day/ Filtered (type)	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl, 3 min ed: 5/28/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	mg/L pwise SO4 Acid Outdoor Color Wheel: D20 1628 TEX (8260C) es (Methane) Ifate		
I G I I Well Integrity: A Ik Bottle Inventor Quantity: All Wells 2 5 Natural Attenua 2 1	y (check applicat Container: 500 mL AG 40mL VOA tion Samples (S 40mL VOA 500 mL Poly 250 mL Poly	De rows) Preservatives: HCI HCI Shallow Wells of HCI	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kin Day/ Filtered (type)	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: 5/28/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas	mg/L pwise SO4 Acid Outdoor Color Wheel: D20 1628 TEX (8260C) es (Methane) Ifate		
Use Integrity: A Ik Bottle Inventor Quantity: All Wells 2 5 Natural Attenua 2 1	y (check applicat Container: 500 mL AG 40mL VOA tion Samples (S 40mL VOA 500 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly	De rows) Preservatives: HCI HCI HCI Unpreserved	Alkalinity R Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kin Day/ Filtered (type)	t r , 25mL Sample, Fe	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl, 3 min ed: 5/28/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	mg/L pwise SO4 Acid . Outdoor Color Wheel: D20 1628 TEX (8260C) lfate sse TEX		

Signature:_

1

DTW

8.50 8.53 8.57 8.62 8.64

Walt

Page____of____

PgG

Well #: <u>CP-205 B</u>

Client Name: Laboratory:	Terminal 91 (T s: 2001 W Garfiel Port of Seattle OnSite Environ ody (yes /no): ye	d St. mental, Redmor	nd, WA	Date: 05/28/2020 Location:			
Depth to Water Depth of Well ((feet): 5.40 (feet): 50			Purge Volu Purge Date		nt Method: <u>Gra</u> 2020 2.5	aduated Bi 3
	nt: top of casing, N pment: YSI 556 (F			Purging Eq Water Leve	uipment:Perista el Probe Used:_	altic Pump Waterline	
Casing Volume Purge Volume	= Constants (CVC) = ft of water $\underline{\Psi}$		pf; 4-inch = 0.6 $\frac{1}{6}$ x Casir	56 gpf ; 6-i	nch = 1.47 gpf	PV=(π r² h) (7.48 gal/ ons
TIME (2400 hr) <u>1255</u> <u>1363</u> <u>1326</u> <u>1340</u> <u>1407</u> <u>1407</u> <u>1407</u> <u>Well Integrity:</u> <i>No Alk</i>	CUMULATIVE VOLUME (gal) <u>14</u> <u>31/2</u> <u>5</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	8.06 8.06 8.17 8.15 8.21 8.21		vial (Bromcresol- G	reen Methyl Red) , add dro	ORP (mV) -282.6 -291.9 -290.5 -290.5 -290.1 -290.1	TURBIDIT (visual) Brown 6 104 1 6 104 1 7 1 6 104 1 7
# Think				A COMPANY OF T	0	n, Outdoor Color Wheel:	
	ory (check applica Container:	Preservatives:		Time Samp	led: <u>5/28/2</u> Remarks:	020 1414	k
Bottle Invento Quantity: All Wells 2	Container: 500 mL AG	Preservatives:	Day/	Time Samp	led: 5/28/2 Remarks: NWTPH-Dx		h
Bottle Invento Quantity: All Wells 2 5	Container: 500 mL AG 40mL VOA	Preservatives: HCI HCI	Day/ Filtered (type	Time Samp	led: <u>5/28/2</u> Remarks:		<u></u>
Bottle Invento Quantity: All Wells 2 5 Natural Attent	Container: 500 mL AG 40mL VOA uation Samples (Preservatives: HCI HCI Shallow Wells O	Day/ Filtered (type	Time Samp	led: <u>5/28/2</u> Remarks: NWTPH-Dx NWTPH-G / B	TEX (8260C)	le
Bottle Invento Quantity: All Wells 2 5 Natural Attento 2	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA	Preservatives: HCI HCI Shallow Wells O HCI	Day/ Filtered (type	Time Samp	led: <u>5/28/2</u> Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas	TEX (8260C) ses (Methane)	le
Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly	Preservatives: HCI HCI Shallow Wells O HCI Unpreserved	Day/ Filtered (type	Time Samp	led: 5/28/2 Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	TEX (8260C) ses (Methane) ulfate	le
Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1 1	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly 250 mL Poly	Preservatives: HCI HCI Shallow Wells O HCI	Day/ Filtered (type	Time Samp	led: <u>5/28/2</u> Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas	TEX (8260C) ses (Methane) ulfate	le
Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1 1 MS/MSD Sam	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly 250 mL Poly plles	Preservatives: HCI HCI Shallow Wells O HCI Unpreserved Nitric Acid	Day/ Filtered (type	Time Samp	led: 5/28/2 Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan	TEX (8260C) ses (Methane) ilfate ese	
Bottle Invento Quantity: All Wells 2 5 Natural Attenu 2 1 1	Container: 500 mL AG 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly plles 40mL VOA	Preservatives: HCI HCI Shallow Wells O HCI Unpreserved	Day/ Filtered (type	Time Samp	led: 5/28/2 Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan NWTPH-G / E	TEX (8260C) ses (Methane) ilfate ese	ke

Signature:

Munk

_of___ Page_

PgG

Well #: CP- GPOIA

	Sampling Event	May 2020					Sample #:			
	Project Number	JG1601			Date:	05/27/2020				
	Project Name:	Terminal 91 (T	91)		Location:					
- 1		: 2001 W Garfiel	d St.		Sampled By:	NBW/TK				
	Client Name:	Port of Seattle			Purged By:]	NBW/TK	data sector			
- 1	Laboratory:	OnSite Environ		ond, WA	Date Sent to	Lab: 05/#2	8/2020			
	Chain-of-Custo	dy (yes/no): yes	5			mple Number:_	NA			
Ļ	Shipment Metho				Sample Split: NA					
	Depth to Water	(feet): 8.04					t Method: Gr	aduated Bucke		
	Depth of Well (1				Purge Date/			20		
- 1		t: top of casing, N		ch	Purging Equ	ipment:Perista	Itic Pump			
	Sampling Equip	oment: YSI 556 (Fi	ield Env.)		Water Level	Probe Used:	waternne			
	Casing Volume	Constants (CVC)	: 2-inch = 0.16	gpf ; 4-inch = 0.6	56 gpf ; 6-in	ch = 1.47 gpf	PV=(π r2	h) (7.48 gal/ft3)		
	Purge Volume :	= ft of water1	x CVC	16 x Casin	g Volumes	3 =	5. Je gall	ons		
					-					
,	TIME	CUMULATIVE	pН	EC	Temp.	Diss O ₂	ORP	TURBIDITY		
	(2400 hr)	VOLUME (gal)	(units)	(umhos/cm 25 c)	(C)	(mg/L)	(mV)	(visual)		
_			(chine)		(-)	(()	110-1 4-1		
	921	0.125						white filling		
1	924	0.5	-		-			clear		
34	433		7.14	1544	15.7	1.2	20.2	clear w/Fil		
36	938	1 1/2	7.12	1540	15.7	1.0	24.2	Clear		
39										
	946	2 1/4	7.10	1540	15.7	0.8	29.1	Clerr		
40	9585	2 3/4	7.11	1537	15.7	0.7	32.4	Clear		
43	1003	3 1/2	7.13	1536	15.8	0.5	34.9	Clear		
18	1011	41/2	7.13	1534	15.7	0.3	38.6	clear		
	-	F				0.3				
.52	1020		7.10	1527	15.7	0.5	42.7	clear		
ſ	Well Integrity:		· ·	Allcolinity D	acult.	drome v 20		aa CaCO2		
	Tide diop	ping, well is	1.1.1.1			drops x 20 _	e	as Cacos		
		1	tidaly			een Methyl Red) , add dro	opwise SO4 Acid			
	i a formence.	d		Fe(II) Resul	tn	ng/L				
				HACH (Fe(II)) Test K	t , 25mL Sample, Fel	ron Reagant, Swirl, 3 min	n, Outdoor Color Wheel			
				that (re(ii)) reach						
	Bottle Invento	ory (check applica	ble rows)		Time Sampl	ed: 5/ /2	020			
	Bottle Invento Quantity:	ory (check applica Container:	ble rows) Preservatives	Day	Time Sampl	ed: 5/ /2 Remarks:	020			
				Day	Time Sampl		020			
	Quantity:	Container: 500 mL AG	Preservatives HCI	Day	Time Sampl	Remarks: NWTPH-Dx				
ļ	Quantity: All Wells 2 5	Container: 500 mL AG 40mL VOA	Preservatives HCI HCI	Day, Filtered (type	Time Sampl	Remarks:				
	Quantity: All Wells 2 5	Container: 500 mL AG 40mL VOA wation Samples (Preservatives HCI HCI Shallow Wells	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B	TEX (8260C)			
ļ	Quantity: All Wells 2 5	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA	Preservatives HCI HCI Shallow Wells HCI	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas	TEX (8260C) ses (Methane)			
	Quantity: All Wells 2 5 Natural Attent	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly	Preservatives HCI HCI Shallow Wells HCI Unpreserved	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	TEX (8260C) ses (Methane) Ilfate			
ļ	Quantity: All Wells 2 5 Natural Attend 2 1 1	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly 250 mL Poly	Preservatives HCI HCI Shallow Wells HCI	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas	TEX (8260C) ses (Methane) Ilfate			
	Quantity: All Wells 2 5 Natural Attenue 2 1 MS/MSD Sam	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly 250 mL Poly plles	Preservatives HCI HCI Shallow Wells HCI Unpreserved Nitric Acid	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan	TEX (8260C) ses (Methane) ilfate ese			
	Quantity: All Wells 2 5 Natural Attenue 2 1 MS/MSD Sam 3	Container: 500 mL AG 40mL VOA 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly plles 40mL VOA	Preservatives HCI HCI Shallow Wells HCI Unpreserved Nitric Acid HCI	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan NWTPH-G / E	TEX (8260C) ses (Methane) ulfate ese BTEX			
	Quantity: All Wells 2 5 Natural Attenue 2 1 MS/MSD Sam	Container: 500 mL AG 40mL VOA uation Samples (40mL VOA 500 mL Poly 250 mL Poly plles	Preservatives HCI HCI Shallow Wells HCI Unpreserved Nitric Acid	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan NWTPH-G / E	TEX (8260C) ses (Methane) ilfate ese			
	Quantity: All Wells 2 5 Natural Attenue 2 1 MS/MSD Sam 3	Container: 500 mL AG 40mL VOA 40mL VOA 40mL VOA 500 mL Poly 250 mL Poly plles 40mL VOA	Preservatives HCI HCI Shallow Wells HCI Unpreserved Nitric Acid HCI	Day, Filtered (type	Time Sampl	Remarks: NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su Total Mangan NWTPH-G / E	TEX (8260C) ses (Methane) ulfate ese BTEX			

- Decicas punp inte

Signature: M W

Page_l_of_2_PgG

Well #: CP-6Pol A

Project Number	- IG1601			Date:	05/27/2020			
Project Name:	Terminal 91 (T91)		Location:				
	: 2001 W Garfie			Sampled B	: NBW/TK			
Client Name:	Port of Seattle				NBW/TK			
Laboratory:	OnSite Environ	nmental, Redm	ond, WA	Date Sent t	o Lab: 05/	/2020		
Chain-of-Custor	dy (ves/no): ye	es		Field CC Sample Number: NA				
Shipment Metho	od:ibc			Sample Spl	lit: NA			
Depth to Water				_ Purge Volu	me Measureme	nt Method: G		
Depth of Well (f	feet): 11,2			_ Purge Date	/Time: 5/27/	2020 92	0	
Reference Point	t: top of casing,	N side if no note	ch	Purging Eq	uipment:Perista	Itic Pump		
Sampling Equip	ment: YSI 556 (F	ield Env.)		Water Leve	Probe Used:	Waterline	_	
Casing Volume	Constants (CVC): 2-inch = 0.16	gpf ; 4-inch = 0				h) (7.48 g	
			x Cas					
r urge volume			^ 000	ing volumes.		gu		
TIME	CUMULATIVE	pН	EC	Temp.	Diss O ₂	ORP	TURBIC	
	VOLUME (gal)	•	(umhos/cm 25 d		(mg/L)	(mV)	(visua	
							(1)500	
1028			1520	15.7	03	41.4	_	
1032	SAMPL	ETIN	ME					
							-	
							17 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	
				1 m				
				<u></u>				
			_	_				
	_		\equiv		_			
			=		=			
					_			
					=			
Well Integrity:		A1K Kits	Alkalinity		 drops x 20	mg/L	as CaCO	
Well Integrity:	out of	A1K Kits,	Alkalinity I		drops x 20	•	as CaCO	
Well Integrity: Ran cont & c	out of	Alk kits, Mole.	Alkalinity J Fill plastic tube, add to Fee(II) Resu	o vial (Bromcresol- Gre	en Methyl Red) , add drop	owise SO4 Acid	as CaCO	
Well Integrity: Ran cont k	out of	Alk kits, Mole.		o vial (Bromcresol- Gre llt n	en Methyl Red) , add drop ng/L	owise SO4 Acid		
Ranconter			HACH (Fe(II)) Test]	o vial (Bromcresol- Gre llt n Kit , 25mL Sample, Fe 1	een Methyl Red) , add drop ng/L ron Reagant, Swirl, 3 min,	owise SO4 Acid Outdoor Color Wheel:		
Ran cont & r	y (check applica	ble rows)	HACH (Fe(II)) Test)	o vial (Bromcresol- Gre lt n Kit , 25mL Sample, Fe I //Time Sample	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: _5/27/200	owise SO4 Acid Outdoor Color Wheel:		
Ran cont & r Bottle Inventor Quantity:			HACH (Fe(II)) Test)	o vial (Bromcresol- Gre lt n Kit , 25mL Sample, Fe I //Time Sample	een Methyl Red) , add drop ng/L ron Reagant, Swirl, 3 min,	owise SO4 Acid Outdoor Color Wheel:		
Ran cont & c Bottle Inventor Quantity: All Wells	y (check applica Container:	ble rows) Preservatives:	HACH (Fe(II)) Test)	o vial (Bromcresol- Gre lt n Kit , 25mL Sample, Fe 1 //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2 ₹/20</u> Remarks:	owise SO4 Acid Outdoor Color Wheel:		
Ran cont & cont & cont Bottle Inventor Quantity: All Wells 2	y (check applica Container: 500 mL AG	ble rows) Preservatives: HCl	HACH (Fe(II)) Test)	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe 1 //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2₹/20</u> Remarks: NWTPH-Dx	Outdoor Color Wheel:		
Ran cont & cont & cont & cont & cont & cont & cont Bottle Inventor Quantity: All Wells 2 1/5	y (check applica Container: 500 mL AG 40mL VOA	ble rows) Preservatives: HCI HCI	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe 1 //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2 ₹/20</u> Remarks:	Outdoor Color Wheel:		
Ran cont & cont	y (check applica Container: 500 mL AG 40mL VOA ation Samples (ble rows) Preservatives: HCI HCI Shallow Wells (HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre lt n Kit , 25mL Sample, Fe I //Time Sample e):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2₹/20</u> Remarks: NWTPH-Dx NWTPH-G / BT	Outdoor Color Wheel: 020 1032 EX (8260C)		
Ran cont & cont & cont & cont & cont & cont & cont Quantity: All Wells 2 1/5 Natural Attenua 2	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA	ble rows) Preservatives: HCI HCI Shallow Wells (HCI	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe I V/Time Sample e):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2デ/20</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane)		
Ran cont & cont	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells (HCI Unpreserved	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe 1 //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2₹/200</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase Nitrate and Sult	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane) fate		
Ran cont & cont & cont & cont & cont & cont & cont Quantity: All Wells 2 1/5 Natural Attenua 2 2 1/5 Natural Attenua 2 1/1 1	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly	ble rows) Preservatives: HCI HCI Shallow Wells (HCI	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe 1 //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2デ/20</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane) fate		
Ran cont & cont	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly Iles	ble rows) Preservatives: HCI HCI Shallow Wells (HCI Unpreserved Nitric Acid	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe I //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2₹/20</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase Nitrate and Sult Total Manganes	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane) fate se		
Ran cont & cont	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly Iles 40mL VOA	ble rows) Preservatives: HCI HCI Shallow Wells (HCI Unpreserved Nitric Acid HCI	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe I //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2 ₹/200</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase Nitrate and Sulf Total Mangane	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane) fate se		
Ran cont & cont	y (check applica Container: 500 mL AG 40mL VOA ation Samples (40mL VOA 500 mL Poly 250 mL Poly Iles	ble rows) Preservatives: HCI HCI Shallow Wells (HCI Unpreserved Nitric Acid	HACH (Fe(II)) Test I Day Filtered (type	o vial (Bromcresol- Gre Ilt n Kit , 25mL Sample, Fe I //Time Sample a):	ren Methyl Red), add drop ng/L ron Reagant, Swirl, 3 min, ed: <u>5/2₹/20</u> Remarks: NWTPH-Dx NWTPH-G / BT Dissolved Gase Nitrate and Sult Total Manganes	Outdoor Color Wheel: 020 1032 EX (8260C) es (Methane) fate se		

Signature: 1 MM

DIW

Page_2_of_2_PgG

Well #: CP-6P01B

Sampling Event:_	May 2020			Sample #:				
Project Number:	JG1601			Date:	05/26/2020			
Project Name:	Terminal 91 (T	91)	- Da	Location: C	P-GPOIB			
Project Address:				Sampled By: NBW/TK				
Client Name:	Port of Seattle			Purged By: NBW/TK Date Sent to Lab: 05/27 /2020				
Laboratory:	OnSite Environ		nd, WA	Date Sent to	Lab: 05/27	/2020		
Chain-of-Custody	(yes/no): yes				ple Number:_	NA		
Shipment Method				Sample Split				
Depth to Water (f	eet): 12.38					t Method: Gr	aduated Bu	
Depth of Well (fee				Purge Date/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Street and a street of the	07	
Reference Point:			h	Purging Equi	pment:Peristal	tic Pump		
Sampling Equipm	nent: YSI 556 (Fi	eld Env.)		Water Level	Probe Used:	waterline		
Casing Volume C	constants (CVC)	2-inch = 0.16	gpf ; 4-inch = 0.6	56 gpf ; 6-in	ch = 1.47 gpf	Py=(π r² h	n) (7.48 gal/ft	
Purge Volume =	ft of water 5	2_xcvc_	. 16 x Casin	g Volumes _	3/1 =	25/8.3 gall	ons	
	CUMULATIVE	pH	EC	Temp.	Diss O ₂	ORP	TURBIDITY	
(2400 hr)	/OLUME (gal)	(units)	(umhos/cm 25 c)	(C)	(mg/L)	(mV)	(visual)	
1509	0.125	-	-	_	~		black fl	
1514	0.5	6.26	221,6	16.3	0.5	28.0	clear	
1519		6.21	208.1	16.0	-		Clear	
	1.0				0.4	23.1	-	
1540	3.0	7.79	303.8	16.0	0.2	-9,2	Slight Ye	
1549	4.0	8.03	385.2	16.0	0.2	-1.0	Sligst Yel	
1601	5.0	8.03	3929	16.0	0.2	7.9	clear	
1619	Z	8.33	4807	15.7	0.1	6.5	clear	
1630	8	8.35	4729	15.8	0.1	-9.9	clear	
	198.5				0.1		clear	
16900 36	10.9	8.37	4815	15.8		-34.5		
Well Integrity: I	548 9.5	8.37	4813 Alkalinity F	15.7 esult:	0.2 drops x 20	-57.0 mg/L	Clear as Cacoa	
					en Methyl Red), add dro	0	as Cacos	
			Fe(II) Resu		and the second	Turne out them		
						n, Outdoor Color Wheel		
Dettic laws	v /ohook applier	blo rowo)						
Bottle Inventor Quantity:	y (cneck applica Container:	Preservatives			ed: <u>5/26/2</u> Remarks:	020		
All Wells					omano.			
2	500 mL AG	нсі			NWTPH-Dx			
V 5	40mL VOA	HCI			NWTPH-G / B	TEX (8260C)		
Natural Attenua	ation Samples		Only)					
2	40mL VOA	HCI				ses (Methane)		
2	500 mL Poly	Unpreserved			Nitrate and Su			
1	250 mL Poly	Nitric Acid			Total Mangan	ese		
1						TEV		
1 1 MS/MSD Samp		1.101		NWTPH-G / BTEX				
1 1 MS/MSD Samp 3	40mL VOA	HCI						
1 1 MS/MSD Samp		HCI HCI				ses (Methane)	5	
1 1 MS/MSD Samp 3	40mL VOA						5	

Signature: 1 WA

Page of 2 PgG

Well #: (P-6101B

				Sample #:				
Project Num	ber: JG1601			Date:05/26/2020				
Project Nam		F91)	1	Location:				
	ess: 2001 W Garfie			Location: Sampled By: NBW/TK				
Client Name				Purged By: NBVV/IK				
Laboratory:		mental, Redmo	ond, WA	Date Sent to Lab: 05/27/2020				
Chain-of-Cus	stody (ves/no): ve	S			ample Number:	NA		
Shipment Me				Sample Spl				
	ter (feet):			Purge Volu	me Measureme	nt Method: Gi	raduated B	
	ell (feet):	the second se			/Time: 5/26/			
	oint: top of casing, I uipment: YSI 556 (F		h	Purging Eq Water Leve	uipment:Perista Probe Used:	ltic Pump Waterline		
Casing Volu	me Constants (CVC)	- 2-inch = 0 16					h) (7.48 gal/	
Fulge volum	ne = ft of water	xcvc	x casin	g volumes		gai	IONS	
TIME	CUMULATIVE	pН	EC	Temp.	Diss O ₂	ORP	TURBIDIT	
(2400 hr)	VOLUME (gal)		(umhos/cm 25 c)	(C)	(mg/L)	(mV)	(visual)	
1650							clear	
	10		4719		0.2		Cic qr	
1705	11	8.43	4809	16.2	0,5	-92.8		
				•	-			
1/ 42		the second second				-		
1642	nominal	sande tim	re					
1642	nominal	bande tim	ne					
1642	nomiaal	bande tim						
1642	nominal	cande tim			=			
1642	nominal	bande tim	ne;			_		
1642	n <u>ominal</u>	bande tim	ne;					
Vell Integrit							·	
			Alkalinity Re		drops x 20 _	mg/L	·	
	ty: only che	nged -	Alkalinity Re Fill plastic tube, add to v	esult: //	drops x 20	mg/L	·	
	ty: only che top parts	nged twie lue	Alkalinity Re Fill plastic tube, add to v	esult: //	drops x 20 _	mg/L	·	
	ty: only che top parts	nged -	Alkalinity Re Fill plastic tube, add to v Fe(II) Result	esult: [ial (Bromcresol- Gr	drops x 20	mg/L	as CaCO3	
Well Integrit	ty: only che top parts	twoed twoeduce int Galt	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit	esult: //ial (Bromcresol- Gr t f , 25mL Sample, Fe	drops x 20 _ een Methyl Red) . add dro ng/L	mg/L pwise SO4 Acid	as CaCO3	
Well Integrit	ty: fop part, vroudat to	twoed twoeduce int Galt	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit Day/	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant, Swirl, 3 min	mg/L pwise SO4 Acid	as CaCO3	
Well Integrit	ty: Only che fel part, wentant fo ntory (check applica	alged twoeduc int alt able rows) Preservatives:	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit Day/	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl, 3 min ed: 5/2 6 /20 Remarks:	mg/L pwise SO4 Acid	as CaCO3	
Well Integrit Bottle Inver Quantity:	ty: fop part, wouldn't for part, wouldn't for ntory (check applica Container: 2 500 mL AG	HCI	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(II)) Test Kit Day/	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant, Swirl, 3 min ed: 5/2 6 /20 Remarks: NWTPH-Dx	mg/L pwise SO4 Acid 0. Outdoor Color Wheel: 020 1642	as CaCO3	
Well Integrit	ty: for parts would at to ntory (check applica Container: 2 500 mL AG 5 40mL VOA	HCI	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl, 3 min ed: 5/2 6 /20 Remarks:	mg/L pwise SO4 Acid 0. Outdoor Color Wheel: 020 1642	as CaCO3	
Well Integrit	ty: for part, would at for ntory (check applica Container: 2 500 mL AG 5 40mL VOA enuation Samples	Aged twee twoe twoe twoe twee twee twee twee twee twee twee twee twee twee twee	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L lron Reagant. Swirl, 3 min ed: 5/26/20 Remarks: NWTPH-Dx NWTPH-DX	mg/L pwise SO4 Acid , Outdoor Color Wheel: 020 1642 TEX (8260C)	as CaCO3	
Well Integrit	ty: for parts would at for ntory (check applica Container: 2 500 mL AG 5 40mL VOA enuation Samples 2 40mL VOA	HCI HCI HCI	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl, 3 min ed: 5/2 6 /20 Remarks: NWTPH-Dx NWTPH-DX NWTPH-G / B Dissolved Gas	mg/L pwise SO4 Acid b, Outdoor Color Wheel: 020 6 7 2 TEX (8260C) es (Methane)	as CaCO3	
Well Integrit Bottle Inver Quantity: All Well's	ty: for parts for parts would be for ntory (check applica Container: 2 500 mL AG 5 40mL VOA enuation Samples 2 40mL VOA 1 500 mL Poly	HCI HCI Shallow Wells C HCI Unpreserved	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: 5/26/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	mg/L pwise SO4 Acid a, Outdoor Color Wheel: 020 16 42 TEX (8260C) es (Methane) Ifate	as CaCO3	
Well Integrit Bottle Inver Quantity: All Wells Natural Atte	ty:	HCI HCI HCI	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L lron Reagant. Swirl, 3 min ed: 5/2 6 /20 Remarks: NWTPH-Dx NWTPH-DX NWTPH-G / B Dissolved Gas	mg/L pwise SO4 Acid a, Outdoor Color Wheel: 020 16 42 TEX (8260C) es (Methane) Ifate	as CaCO3	
Well Integrit	ty:	HCI HCI Shallow Wells C HCI Unpreserved	Alkalinity Re Fill plastic tube, add to v Fe(II) Result HACH (Fe(III) Test Kit Day/ Filtered (type)	esult: //ial (Bromcresol- Gr tr , 25mL Sample, Fe Time Sampl	drops x 20 een Methyl Red) . add dro ng/L Iron Reagant. Swirl. 3 min ed: 5/26/20 Remarks: NWTPH-Dx NWTPH-Dx NWTPH-G / B Dissolved Gas Nitrate and Su	mg/L pwise SO4 Acid b, Outdoor Color Wheel: 020 1672 TEX (8260C) es (Methane) Ifate ese	as CaCO3	

Signature: MM

1

Page_2_of_2_PgG

Well #: ______ PO2____

Client Name: Laboratory:	Terminal 91 (s: 2001 W Garfie Port of Seattle OnSite Environ ody (<u>yes</u> /no): <u>ye</u>	eld St. nmental, Redmo	ond, WA	Date: 05/2 ₹/2020 Location:				
	(feet): 7.37 (feet): 20.0			Purge Volume Measurement Method: <u>Graduated Buc</u> Purge Date/Time: <u>5/2</u> ₽/2020 \///6				
	nt: top of casing, pment: YSI 556 (F		ch	Purging Ed Water Lev	quipment:Perista	altic Pump Waterline		
	e Constants (CVC = ft of water		gpf ; 4-inch = 0.6	56 gpf ; 6	inch =, 1.47 gpf	PV=(π r ²	h) (7.48 gal/ft llons	
TIME	CUMULATIVE	pН	EC	Temp.	Diss O ₂	ORP	TURBIDIT	
(2400 hr)	VOLUME (gal)		(umhos/cm 25 c)		(mg/L)	(mV)	(visual)	
1118	.25	6.96	1506	15.8	0.6	41.1	51.95+1× cl	
1121	1/2	6.99	1526	15.0	0.5	36.7	11 1	
1128	1	6.87	1466	15.0	0.3	26.9	11 11	
1133	1/2		1418			25.0	Clear	
		6.87		14.9	0.2			
11 46	21/2	6.86	1355	14.9	0.2	25.4	dear	
1147	31/2	6.87	1316	14.9	0.2	26.1	Clear	
1157	41/2	6.85	1287	15.1	0.1	26,2	\$ 51:961 70	
1205	51/2	685	1259	15.1	0.1	27.0	N 102	
1215	61/2	6.85	1244	15.1	0.1	28.5	51.95+ Ten	
Well Integrity: N₂ A	IK Kit ava	able	Fe(II) Resul	t 2.0	Green Methyl Red) , add dr	opwise SO4 Acid	as CaCO3	
Bottle Invento Quantity:	ory (check applica Container:	able rows) Preservatives:			Died: 5/27 /2 Remarks:	020 [2]	7	
All Wells								
· V 2		HCI			NWTPH-Dx	TEV (00000)		
Natural Atten		HCI (Shallow Wells)	Only)		NWTPH-G / B	TEX (8260C)		
V 2		HCI			Dissolved Gas	ses (Methane)		
V 1	500 mL Poly				Nitrate and Su			
1	250 mL Poly	Nitric Acid			Total Mangan	ese		
MS/MSD Sam		нсі			NWTPH-G / B	TEX		
2		НСІ			Dissolved Gas			
					1			
-								

Page_l_of_l_PgG

Well #: CA6808

Sampling Event: May 2020			Sample #:				
Project Number: JG1601 Project Name: Terminal 91 (T Project Address: 2001 W Garfie Client Name: Port of Seattle Laboratory: OnSite Environ Chain-of-Custody (<u>yes</u> /no): ye	ld St. mental, Redmond, V	NA	Date: 05/27/2020 Location: CP-6P08 Sampled By: NBW/TK Purged By: NBW/TK Date Sent to Lab: 05/ /2020 Field CC Sample Number: NA Sample Split: NA				
	4-inch = 0.6	Purge Volume Measurement Method: <u>Graduated Buc</u> Purge Date/Time: <u>$5/17/2020$ 1428</u> Purging Equipment:Peristaltic Pump Water Level Probe Used: <u>Waterline</u> 0.656 gpf; 6-inch = 1.47 gpf $PV=(\pi r^2 h) (7.48 \text{ gal/ft}^3)$ sing Volumes <u>$1/3$</u> = <u>$1.6/48$</u> gallons					
$\begin{array}{c} \text{TIME} \\ (2400 \text{ hr}) \\ 1429 \\ \hline 1431 \\ \hline 1439 \\ \hline 1439 \\ \hline 2 \\ \hline 1439 \\ \hline 1451 \\ \hline 451 \\ \hline 4 \\ \hline 1457 \\ \hline 5 \\ \hline \end{array}$	pH (units) (umt 7.25 7.13 7.16 7.16 7.16 7.18 7.16 7.16	EC 105/cm 25 c) 896 873 871 871 869 870 869	Temp. (C) 15.9 14.8 14.8 14.4 14.5 14.5	Diss O_2 (mg/L) 0.6 0.1 0.5 0.5 0.4 0.1	ORP (mV) 35.7 38.4 40.6 42.1 39.7 41.1	TURBIDITY (visual) * Party (lear Clear Clear Clear	
Well Integrity: No Alk task Bottle Inventory (check applica Quantity: Container:	Full Full Full Full Full Full Full Full	plastic tube, add to vi e(II) Result	al (Bromcresol- Green 2-D m , 25mL Sample, Fe Iro Fime Sample	n Methyl Red) , add droj g/L	, Outdoor Color Wheel:		
All Wells 2 500 mL AG 5 40mL VOA Natural Attenuation Samples (2 40mL VOA	HCI HCI Shallow Wells Only)		1	WTPH-Dx WTPH-G / B			
I 500 mL Poly 1 250 mL Poly MS/MSD Samplles 3 3 40mL VOA 2 40mL VOA	Unpreserved Nitric Acid HCI HCI		1 - 1	Nitrate and Sul Fotal Mangane NWTPH-G / B Dissolved Gas	fate se TEX		

Signature: AM

DTW

8.75

8.75 8.76 8.76

Page____of____

PgG

LNAPL MEASUREMENT AND RECOVERY FIELD DATA SHEET Sampling Event: August 2020

Project Number: JG1601 Project Name: Terminal 91 (T91) Project Address: 2001 W Garfield St. Client Name: Port of Seattle			Trench positions X (5W) X (5E)	X (3W) X (3W) X (2W) X (2E)	Date: 8/7/2020 Location: TFAA Measured By: Travis K. Measuring Tool: Geotech interface PV				
Location	Time	MP	LNAPL	Depth Set 1 Water	Thickness	LNAPL	Depth Set 2 Water	Thickness	
CP-107 CP-110 PNO-104 Trench 2E Trench 2W Trench 3E Trench 3W Trench 5E Trench 5W	9:36 10:20 10:20 10:17 10:17 10:06 10:01 9:54 9:54 9:41 9:46	TOC TOC TOC TOC TOC TOC	6.20 7.01 7.26 10.62 7.58 8.48 7.29 5.30 5.30	$ \begin{array}{r} 6.23 \\ \overline{7.02} \\ \overline{7.37} \\ \overline{10.63} \\ \overline{7.58} \\ \overline{8.52} \\ \overline{7.31} \\ \overline{5.31} \\ \overline{5.33} \\ \end{array} $	0.03 0.01 0.11 0.01 0.00 0.00 0.04 0.07 0.01	6.20 7.01 7.26 10.62 8.48 7.29 5.30	6.22 7.02 7.37 10.63 4.58 8.52 7.31 5.31	$ \begin{array}{r} \hline 0.02 \\ \hline 0.01 \\ \hline 0.11 \\ \hline 0.01 \\ \hline 0.00 \\ \hline 0.04 \\ \hline 0.02 \\ \hline 0.01 \\ \end{array} $	
LNAPL Reco O&M Plan sa Location	overy Notes hys recover if Date		25 ft. Üse perist End Time	altic to pump int Quantity	o safe containe Notes:	er.	<u>5.33</u>	<u>003</u>	
			_	_					

Signature:

Page____of___ PgG

P 206.329.0141 | F 206.329.6968 2377 Eastlake Avenue East | Seattle, WA 98102

P 360.570.8244 | **F** 360.570.0064 1627 Linwood Avenue SW | Tumwater, WA 98512

www.pgwg.com

