

Remedial Investigation / Feasibility Study Report

Conducted on: Manor Market 3609 – 164th Street SW Lynnwood, Washington 98087-7017 Ecology Facility/Site ID: 77492944 Ecology VCP ID: NW2621

Prepared for: Mr. Nicholas Bahn 3609-164th Street SW Lynnwood, Washington 98087-7017

Prepared & Reviewed by:

Pls. Sh

Charles Swift, R.S.A. Project Manager

AEG Project #: 11-124 Date of Report: April 29, 2020

Scott Rose, L.H.G. Senior Hydrogeologist

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1	
1	.1 Gen	ieral Site Information	1	
1		E USE		
1	.3 Site	HISTORY	1	
2.0	FIELI	INVESTIGATIONS	3	
2		CHARACTERIZATION HISTORY		
Z	2.1.1	Site Assessment and UST Decommissioning/Remedial Action – QUEST/RFE, January 1998		
	2.1.1	Phase I Environmental Site Assessment – ENVITECH, November 2010		
	2.1.2	Phase II Environmental Site Assessment – ENVITECH, April 2011		
	2.1.3	Supplemental Site Characterization – AEG, August 2011 & March 2012		
	2.1.5	Quarterly Groundwater Monitoring Events – AEG, March 2012 to May 2013		
	2.1.6	Oxygen Release Compound (ORC) Filter Sock Installation – AEG, May 2012		
	2.1.7	Ecology Opinion Letter – 2013.		
	2.1.8	Site Investigation – AEG, May 2015	6	
	2.1.9	Site Investigation – AEG, March 2016	7	
	2.1.10	Vapor Assessment – AEG, March 2018	7	
	2.1.11	Follow Up Vapor Assessment – AEG, November 2019	7	
	2.1.12	Groundwater Monitoring Events – AEG, May 2018 and December 2019	8	
2.2 Field Methodology				
	2.2.1	Soil Sampling Procedures		
	2.2.2	Well Construction		
	2.2.3	Boring Groundwater, and Monitoring Well Groundwater Sampling Procedures		
	2.2.1	Indoor Air and Sub-Slab Vapor Sampling Procedures		
	2.2.2	Quality Controls		
2	2.2.3	Investigation-Derived Waste		
2		Seil Results		
	2.3.1 2.3.2	Soil Results Groundwater Results		
	2.3.2	Indoor Air and Sub-Slab Vapor Results		
3.0		EPTUAL SITE MODEL (CSM)		
3	-	ISTITUENTS OF CONCERN AND AFFECTED MEDIA		
		GEOLOGY AND HYDROGEOLOGY		
3		IRONMENTAL FATE OF TPH IN THE SUBSURFACE		
3		ENTIAL EXPOSURE PATHWAYS		
	3.4.1	Potential Soil Exposure Pathways		
	3.4.2	Potential Groundwater Exposure Pathways		
	3.4.3	Potential Air Exposure Pathways		
	3.4.4	Terrestrial Ecological Evaluation		
4.0	CLEA	NUP STANDARDS	17	
		ENTIALLY APPLICABLE LAWS		
4	.2 Rem	IEDIAL ACTION OBJECTIVES	17	

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u>

4	.3 CLE	ANUP STANDARDS	18		
	4.3.1	Proposed Cleanup Levels	18		
	4.3.2	Points of Compliance	19		
5.0	IDENT	IFICATION AND SCREENING OF REMEDIATION TECHNOLOGIES	20		
5	.1 Gen	ERAL RESPONSE ACTIONS	20		
5	.2 IDEN	ITIFICATION AND SCREENING OF APPLICABLE TECHNOLOGIES	20		
	5.2.1	Institutional Controls	20		
	5.2.2	Monitored Natural Attenuation	21		
	5.2.3	Containment (Capping)	22		
	5.2.4	Removal (Soil Excavation)	22		
	5.2.5	Removal (Groundwater Extraction)	22		
	5.2.6	Ex-Situ Treatment, Groundwater (Activated Carbon Adsorption)	23		
	5.2.7	Ex-Situ Treatment, Groundwater (Air Stripping)	23		
	5.2.8	In-Situ Treatment (Air/Ozone Sparging)			
	5.2.9	In-Situ Treatment (Soil Vapor Extraction)	24		
	5.2.10	In-Siu Soil Treatment (High-Vacuum Dual-Phase Extraction)	25		
	5.2.11	In-Situ Treatment (Enhanced Bioremediation)	25		
	5.2.12	In-Situ Treatment (Chemical Oxidation)			
	5.2.13	In-Situ Treatment (Thermal Desorption)	26		
6.0	DESCI	RIPTION AND SELECTION OF REMEDIAL ALTERNATIVES	27		
6	.1 MT(CA THRESHOLD REQUIREMENTS	27		
6	.2 Des	CRIPTION OF REMEDIAL ALTERNATIVES			
	6.2.1	Alternative 1 – Natural Attenuation, Containment, and Institutional Controls			
	6.2.2	Alternative 2 – High-Vacuum Dual-Phase Extraction, and Monitoring			
	6.2.3	Alternative 3 – PCS Excavation, In-Situ Treatment via BOS 200 [®] & Hydrocarbon-D	egrading		
Microbes, and Monitoring					
6	.3 Eva	LUATION OF REMEDIAL ALTERNATIVES	32		
	6.3.1	Protectiveness	33		
	6.3.2	Permanence			
	6.3.3	Effectiveness over the Long Term			
	6.3.4	Management of Short-Term Risks			
	6.3.5	Technical and Administrative Implementability			
	6.3.6	Consideration of Public Concerns			
	6.3.7	Restoration Time Frame	36		
6	.4 Ben	EFIT VALUE DETERMINATION			
	6.4.1	Estimated Alternative Costs			
		ROPORTIONATE COST ANALYSIS			
6	.6 Seli	ECTION OF PREFERRED ALTERNATIVE			
7.0	LIMIT	ATIONS	40		
8.0	REFEI	RENCES	41		

FIGURES

- Figure 1: Vicinity Map
- Figure 2: Site Map
- Figure 3: Soil Plume Map
- Figure 4: Soil Plume Map with Geologic Cross Sections A-A', B-B', and C-C'
- Figure 5: Geologic Cross Section A-A'
- Figure 6: Geologic Cross Section B-B'
- Figure 7: Geologic Cross Section C-C'
- Figure 8: Groundwater Plume Map
- Figure 9: Groundwater Elevation Contour Map 04/07/2016
- Figure 10: Groundwater Elevation Contour Map 12/13/2016
- Figure 11: Groundwater Elevation Contour Map 05/08/2018
- Figure 12: Groundwater Elevation Contour Map 12/02/2019

TABLES

- Table 1:Summary of Soil Analytical Results
- Table 2:Summary of Groundwater Analytical Results
- Table 3:
 Summary of Indoor and Outdoor Air Analytical Results
- Table 4:Summary of Sub-Slab Vapor Analytical Results
- Table 5:Summary of Groundwater Elevations
- Table 6:
 Identification and Screening of Response Actions and Remediation Technologies
- Table 7:
 Remedial Alternatives Evaluation / Disproportionate Cost Analysis
- Chart 1: Disproportionate Cost Analysis

APPENDICES

- Appendix A: Site Photographs
- Appendix B: Supporting Documents:

Boring/Well Logs Laboratory Datasheets Terrestrial Ecological Evaluation

1.0 INTRODUCTION

This report presents the findings of a Remedial Investigation and Feasibility Study (RI/FS) conducted by Associated Environmental Group, LLC (AEG) at Manor Market, located at 3609 164th St. SW, Lynnwood, Washington (Site). The purpose of this report is to document the completion of the RI and provide support for remedial actions proposed in the FS. The scope of work for this investigation was developed based on our professional judgment and experience in accordance with requirements in the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Cleanup Regulations (Chapter 173-340 WAC). The investigation was performed in general accordance with the American Society for Testing and Materials (ASTM) Standard E 1903-11, Standard Guide Environmental Site Assessments: Phase II Environmental Site Assessment Process.

1.1 General Site Information

Site Name: Manor Market Site Address: 3609 164th St. SW, Lynnwood, Washington 98087 Facility/Site ID No.: 77492944 Cleanup Site ID No.: 11939 Property Owner: Veniatony Corp Snohomish County Parcel No.: 00372900300502 (0.75 acres)

1.2 Site Use

Site improvements include a 7,000-square-foot convenience store/retail mall constructed in 1982, and a fueling station, which includes two underground storage tanks (USTs) and three pump islands under a single canopy. Other tenants on Site include a dry cleaner, teriyaki restaurant, and salon. Figure 1, *Vicinity Map*, presents the general vicinity of the Site. The Site's current layout and features are provided in Figure 2, *Site Map*.

1.3 Site History

The Site has historically been a retail gasoline station since 1982. Prior to 1982, the Site use is not known. The UST system formerly included tanks "1-P, 2-N, and 3-R", which were removed in 1998.

The existing UST system was installed in 1998, and includes one 10,000-gallon regular unleaded tank, and one dual-compartment tank containing mid-grade and premium grade gasoline. Each UST is constructed of double-wall steel, clad with corrosion resistant composite materials. The fuel lines are composed of double-lined flexible piping. UST and fuel line leak detection tests are performed by the Veeder-Root TLS-300 electric monitoring system.

The dry cleaner located at the west end of the Site building (listed with Ecology as Crystal Cleaners) was once determined to have released tetrachloroethylene (PCE) into the soil beneath the building. This separate site received a No Further Action (NFA) letter from Ecology with a Restrictive Covenant (now referred to as an Environmental Covenant) applied to the property deed to protect against direct contact exposure to the soil. No groundwater monitoring was required because it was thought that the groundwater table was greater than 100 feet below ground surface (bgs).

2.0 FIELD INVESTIGATIONS

2.1 Site Characterization History

2.1.1 Site Assessment and UST Decommissioning/Remedial Action – QUEST/RFE, January 1998

According to QUEST, RFE performed a subsurface investigation in March 1997 to assess the subsurface soil adjacent to the former tank pad and beneath the fuel dispenser area. Seven soil borings were advanced to a maximum depth of 12 feet bgs. Soil samples were collected for analyses of gasoline-range total petroleum hydrocarbons (TPH). The results were screened against MTCA Method A cleanup levels for soil. QUEST reported that there were no gasoline-range TPH constituents found in soil samples analyzed during the 1997 assessment at the Site (QUEST 1998).

The previous UST system was decommissioned on January 13, 1998 by contractor LPI. The previous UST system was installed in 1982 and consisted of three 12,000-gallon, steel, single-walled gasoline USTs. Little information about the nature and extent of the release(s) of gasoline or characterization of soil quality were published. According to QUEST, visual and olfactory indications of petroleum-contaminated soil (PCS) were documented by contractors during the decommissioning of the former UST system. Approximately 1,000 tons of PCS was excavated, and 2,800 gallons of water were removed from the excavation pit during the remedial action. Three soil samples were collected from stockpiled soils removed from the excavation pit of the USTs. Samples were analyzed for gasoline-range TPH and associated volatile organic compounds (VOCs). Laboratory analytical results indicated concentrations of benzene (5.5 to 12 milligrams per kilogram [mg/kg]), and gasoline-range TPH (340 to 1,500 mg/kg) above their respective MTCA Method A soil cleanup levels (in place at the time) of 5 mg/kg and 30 mg/kg.

According to QUEST, closure soil samples were collected in January 1998 from within the UST and dispenser areas per Washington State regulations (WAC 173-360) governing UST closure. Five samples were collected from within the UST excavation area, one from along the fuel lines, and two from under the dispenser area. Two soil samples from within the UST excavation area exhibited concentrations of benzene above the MTCA Method A cleanup level (QUEST 1998). The approximate extent of the excavation is illustrated on Figure 2, *Site Map*.

2.1.2 Phase I Environmental Site Assessment – ENVITECH, November 2010

The Phase I ESA identified concerns that centered on past operations and included gasoline spills, UST noncompliance, and UST and dry-cleaning solvent releases. ENVITECH concluded that *"Based upon the Phase I ESA, there is risk sufficient to warrant additional investigation to address"*

the Recognized Environmental Conditions and potential environmental concerns." (ENVITECH, 2010).

2.1.3 Phase II Environmental Site Assessment – ENVITECH, April 2011

The Phase II ESA was conducted at the Site by ENVITECH in April 2011 to assess the subsurface conditions in the areas of concern identified in the Phase I ESA and other previous investigations. This effort was concentrated around the UST system, specifically the UST pad and fuel dispenser islands. Five soil borings (S-1 through S-5) were advanced using a direct-push probe drill rig to depths ranging from 9 to 16 feet bgs. Drilling refusal was met at three out of the five borings at depths of 9 and 10 feet bgs. Soil samples were collected from each boring. Two of the borings, S-2 (south of the UST pad) and S-4 (north of the northeast pump island) detected benzene at 0.21 mg/kg and 0.23 mg/kg, respectively, which is above MTCA Method A cleanup level of 0.03 mg/kg (ENVITECH, 2011. Boring locations are illustrated on Figure 2, *Site Map* and analytical results are presented in the attached Table 1, *Summary of Soil Analytical Results*.

2.1.4 Supplemental Site Characterization – AEG, August 2011 & March 2012

Field work for the 2011 Supplemental Site Characterization investigation included the advancement of four soil borings (B-1 through B-4) at the Site on August 24, 2011 to assess subsurface soil and groundwater for the presence of gasoline-range TPH and VOCs due to the historical releases of gasoline at the Site. The boring locations were based on the following factors:

- The findings and laboratory analytical results from previous investigations by ENVITECH.
- QUEST's monitoring and UST decommissioning activities.
- The location of the decommissioned UST system formerly operated at the Site.

Soil samples were collected from all borings; however, only B-1 contained sufficient groundwater to collect a sample. Soil and groundwater samples were submitted for laboratory analysis for gasoline-range TPH and associated VOCs, specifically benzene, toluene, ethylbenzene, and xylene (BTEX) compounds, and halogenated VOCs associated with dry cleaning solvents (such as PCE). Based on the results, AEG concluded the following:

"Petroleum impacted soil and groundwater remain at the Site, most likely as a result of release(s) from the former UST system. It appears that previous remedial action (via excavation) had removed the bulk source of contamination. Based on laboratory analytical results and field observations, it appears that the subsurface impact is localized. In our professional opinion, shallow groundwater within the native soil subsurface is present at the Site. Previous excavation activities to depths ranging from 12 to 14 feet bgs and the

subsequent backfilling to these depths have enabled surface water to migrate through the backfill material which was observed by AEG at boring B-1. The wet well-sorted sand, logged at B-1, at depths of approximately 22 to 23 1/2 feet bgs appears to represent shallow groundwater at the Site" (AEG, 2011).

Further, AEG recommended:

"Groundwater conditions at the Site need to be evaluated to assess whether it is localized and whether the impacted groundwater at boring B-1 is representative of the residual subsurface condition. AEG recommends installation of monitoring wells at the Site to further assess the impacted groundwater subsurface condition as well as assess whether the impact is localized only to the Site".

Analytical results are presented in the attached Table 1, *Summary of Soil Analytical Results*, and Table 2, *Summary of Groundwater Analytical Results*. Well locations are illustrated on Figure 2, *Site Map*.

2.1.5 Quarterly Groundwater Monitoring Events – AEG, March 2012 to May 2013

From March 2012 to May 2013, AEG conducted four groundwater monitoring events at the Site, which included sampling three monitoring wells (MW-1 through MW-3). Concentrations of benzene, methyl tert-butyl ether (MTBE), and total lead exceeding MTCA Method A groundwater cleanup levels were found in monitoring well MW-1. Groundwater samples from MW-2 and MW-3 did not detect any Site contaminants of concern (COCs) above appropriate cleanup levels. The analytical results are presented in Table 2, *Summary of Groundwater Analytical Results*.

2.1.6 Oxygen Release Compound (ORC) Filter Sock Installation – AEG, May 2012

On May 2, 2012, AEG installed an ORC Filter Sock in MW-1 from a depth of 19 to 34 feet bgs in an effort to treat localized groundwater impacts. The ORC Filter Sock was removed from the well about a year later as it did not seem to have much of an effect on benzene concentrations in that well.

2.1.7 Ecology Opinion Letter – 2013

In June 2013, the Site was enrolled into Ecology's Voluntary Cleanup Program (VCP), and AEG submitted a work plan for review. AEG had proposed to install three additional monitoring wells (MW-4 through MW-6) to further define the extent of contamination associated with the Site, and another three (MW-7 through MW-9) to determine whether the release to soil from the on-Site dry cleaner had impacted groundwater.

Ecology issued a formal opinion letter, dated August 28, 2013, in response to the work plan. Ecology concurred that the proposed work would help further define the nature and extent of contamination at the Site. However, Ecology also offered the following comments:

- "Previously, in a boring drilled to install MW-1, benzene contamination in soil above the MTCA Method A cleanup level was found to occur just above and into the water column to a depth of 36 feet below the ground surface, the maximum depth explored. Thus, the vertical extent of contamination in soil has not been delineated at this location. Since the deepest soil samples to be collected (35 to 36.5 feet depth interval) will be used to verify the previous results, it may be necessary to go deeper in this area to determine the vertical extent of contamination.
- Figure 2 of the workplan as well as figures in previous AEG reports incorrectly labels the 'S' series of borings conducted by Envitech in 2011 as having been conducted by AEG. Future maps of the Site should correctly label the Envitech borings.
- There are two undeveloped greenbelts approximately 100 to 200 feet wide that are near the Property that may provide suitable habitat for terrestrial species. These areas need to be described and a determination made as to the size of contiguous undeveloped land within 500 feet of any part of the Site. A terrestrial ecological evaluation may need to be conducted in accordance with WAC 173-340-7490.
- Total lead was detected in ground water (MW-1 in May 2013) at a concentration of 19.9 μg/L which exceeds the MTCA Method A cleanup level of 15 μg/L. Ecology recommends ground water samples to be analyzed for metals also be filtered and analyzed for the dissolved fraction."

2.1.8 Site Investigation – AEG, May 2015

On May 26 through 28, 2015, AEG performed additional Site investigation in response to Ecology's opinion letter to define the nature and extent of contamination at the Site, and to determine whether any other potential sources from on or off the property were impacting the Site. This investigation included the advancement of six borings to a depth of 36.5 feet bgs using a full-size auger drilling rig; the borings were completed as monitoring wells MW-4 through MW-9. Wells MW-7, MW-8, and MW-9 were advanced around the westernmost tenant space where the dry-cleaner release occurred.

As part of this work, AEG requested access from the Snohomish County Public Works Department to advance borings in the 164th Street right-of-way (ROW). Snohomish County gave AEG permission to do so; however, overhead utility lines prevented advancement of borings in the sidewalk. Instead, AEG relocated monitoring wells MW-5 and MW-6 to be on the property and not in the public ROW.

On June 4, 2015, AEG returned to the Site to sample all new and existing wells. Additional quarterly monitoring was performed in September and November 2015.

Analytical results are presented in the attached Table 1, *Summary of Soil Analytical Results*, and Table 2, *Summary of Groundwater Analytical Results*. Well locations are illustrated on Figure 2, *Site Map*.

2.1.9 Site Investigation – AEG, March 2016

On March 24, 2016, following further discussions with Ecology, AEG installed two additional monitoring wells (MW-10 and MW-11) along the eastern property boundary to use as downgradient points of compliance. The wells were installed at 35 feet bgs. Analytical results of soil samples collected from the well borings are presented in the attached Table 1, *Summary of Soil Analytical Results*. The wells were sampled, along with all other wells at the Site, in April and December 2016. Analytical results of the groundwater samples are presented in Table 2, *Summary of Groundwater Analytical Results*. Well locations are illustrated on Figure 2, *Site Map*.

2.1.10 Vapor Assessment – AEG, March 2018

On March 8, 2018, AEG completed a vapor assessment at the Site in accordance with Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State*. AEG collected a sub-slab soil vapor sample from beneath the floor of the building in both the dry cleaner space (SS-1) and inside the convenience store (SS-2). The sampling event included collecting ambient air samples from both inside (Indoor-1 and Indoor-2) and outside (Outdoor) the Site building to determine the potential for vapor intrusion. Sample locations are illustrated on Figure 2, *Site Map*.

The samples were analyzed for volatile organic compounds (VOCs) via Method TO-15. Benzene was present in both indoor and outdoor samples above the MTCA Method B cleanup level for ambient air. The adjusted indoor air concentration (adjusted for background) was below cleanup levels suggesting the impacts were likely associated with background conditions.

Table 3, *Summary of Indoor and Outdoor Air Analytical Results*, presents the analytical results of the samples as compared to MTCA Method B indoor air cleanup levels. Table 4, *Summary of Sub-Slab Vapor Analytical Results*, presents the analytical results of the sub-slab vapor samples as compared to MTCA Method B sub-slab screening levels.

2.1.11 Follow Up Vapor Assessment – AEG, November 2019

On November 11, 2019, AEG returned to complete a follow up sampling of the sub-slab vapor (SS-1R and SS-2R) ambient air (Indoor-1R, Indoor-2R, and Ambeint-1R) from the same locations as the previous event. The samples were analyzed for VOCs and air-phase hydrocarbons (APH)

via Method TO-15. Benzene and naphthalene were both present above the MTCA Method B cleanup level for ambient air in all samples. The adjusted indoor air concentrations (adjusted for background) still exceeded for benzene and naphthalene. However, naphthalene was non-detect in both sub-slab vapor samples, and benzene was detected below MTCA Method B sub-slab screening levels, which suggests indoor air impacts were likely associated with background conditions and not vapor intrusion.

Table 3, *Summary of Indoor and Outdoor Air Analytical Results*, presents the analytical results of the samples as compared to MTCA Method B indoor air cleanup levels. Table 4, *Summary of Sub-Slab Vapor Analytical Results*, presents the analytical results of the sub-slab vapor samples as compared to MTCA Method B sub-slab screening levels.

2.1.12 Groundwater Monitoring Events – AEG, May 2018 and December 2019

On May 8, 2018 and December 2, 2019, AEG conducted additional groundwater monitoring events at the Site, which included sampling all monitoring wells except MW-7 through MW-9. The analytical results are presented in Table 2, *Summary of Groundwater Analytical Results*.

2.2 Field Methodology

2.2.1 Soil Sampling Procedures

Soil sampling methods for this work followed the protocols established by Ecology and the U.S. Environmental Protection Agency (EPA). To minimize VOC losses, soil sampling and field preservation methods for VOCs followed methods set forth by EPA's Method 5035A, and Ecology's guidance, "*Collecting and Preparing Soil Samples for VOC Analysis*". Soil samples were collected from the boreholes via continuous soil cores in an acetate sleeve inside the drilling rod's core barrel. Soils were observed to document soil lithology, color, moisture content, and sensory evidence of contamination. Samples were transported via laboratory-provided pre-weighed 40-milliliter (ml) volatile organic analysis (VOA) glass vials and pre-weighted 4-ounce glass jars for analysis under chain-of-custody protocols. Boring logs are provided in Appendix B, *Supporting Documents*.

2.2.2 Well Construction

Groundwater monitoring wells at the Site were constructed pursuant to Ecology's *Minimum Standards for Construction and Maintenance of Wells*, Chapter 173-160 WAC. Groundwater monitoring wells at the Site were constructed at 35 feet bgs, with 15 feet of 2-inch diameter 0.020-inch slotted PVC screen. The annular space around the well screen was filled with 10/20 Colorado sand to approximately 1.5 feet above the top of the well screen. To seal each well, bentonite chips were placed above the sand and a traffic-rated surface monument was placed over the well casing to protect it. The monitoring wells were properly developed after installation using high-flow

pumping until turbidity decreased and stabilized. Well logs are provided in Appendix B, *Supporting Documents*.

2.2.3 Boring Groundwater, and Monitoring Well Groundwater Sampling Procedures

AEG sampled the groundwater from borings where groundwater was present. For one-time borings, a temporary well screen was installed to collect a groundwater sample. The temporary well screen was placed at the interval below the vadose zone where groundwater was encountered during drilling activities. Dedicated polyethylene tubing was inserted into the retractable screen and groundwater purged via the EPA-approved low-flow purge technique. A peristaltic pump was used to purge the well until the discharge was relatively free of sediment.

Groundwater monitoring wells were sampled via the low flow-purging technique, and purged until the field parameters, including pH, temperature, specific conductivity, dissolved oxygen, and/or total dissolved solids were stabilized, and the water was relatively free of sediment.

Groundwater samples were collected in laboratory-provided 40-ml VOA vials, 250-ml polyurethane bottles, and ¹/₂-liter amber bottles. Upon collection, the samples were placed in a chilled cooler for transport to the analytical laboratory.

2.2.1 Indoor Air and Sub-Slab Vapor Sampling Procedures

Indoor air and ambient background air samples were collected in accordance with Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State*. Samples were collected using 6-liter (L) Summa canisters with 8-hour inlet flow regulators and placed within the breathing zone at about 4 to 5 feet above the ground surface. After placing the canisters at each sampling location, AEG opened the inlet valves, and returned at the end of the 8-hour event to close the canisters. Ambient background samples were placed upwind of on-Site source areas.

For sub-slab vapor samples, the concrete slab was drilled out to subgrade level to allow for sampling just below the slab (typically about 1 to 2 feet bgs). A tube was placed in the hole and sealed using a bentonite seal to the concrete. A water bath was used to check for leaks in the bentonite seal. Once no leaks were found, a 1-L Summa canister with a 10-minute regulator was opened after the tube was purged for one volume of air.

The indoor air and sub-slab vapor samples were returned to ESN and sent to Friedman & Bruya, Inc. in Seattle, WA for analysis for VOCs and APH via Method TO-15, following the accepted chain of custody procedures.

2.2.2 Quality Controls

To ensure that quality information was obtained at the Site:

- All soil and groundwater samples were collected in general accordance with industry protocols for the collection, documentation, and handling of samples.
- Descriptions of soil sampling depths were carefully logged in the field; the driller and Site geologist confirmed sample depths as soil samples were collected.
- Nitrile gloves were used in handling all sampling containers and sampling devices.
- Soil samples were tightly packed into jars to eliminate sample headspace.
- Water samples were filled carefully in the sampling bottles to prevent volatilization.
- Upon sampling, all samples were placed immediately into chilled ice chests.
- The samples were transported under a chain-of-custody to the analytical laboratory for analysis.

Analytical laboratories used for this investigation provided quality assurance/quality control (QA/QC), which included:

- Surrogate recoveries for each sample.
- Method blank results.
- Laboratory Control Samples, and Laboratory Control Duplicate Samples.
- Duplicate analyses.

2.2.3 Investigation-Derived Waste

Investigation-derived waste for this project consisted of soil cuttings from the subsurface exploration activities, purge water, and decontamination water from decontamination of the drilling core barrel and associated equipment. These wastes were placed in United States Department of Transportation (DOT)-approved 55-gallon drums. The drums were appropriately labelled and stored on Site for subsequent characterization and disposal.

2.3 Analytical Results

Soil and groundwater samples collected to date have been analyzed for one or more of the following analyses:

- Gasoline-range TPH by Method NWTPH-Gx.
- Diesel- and oil-range TPH by Method NWTPH-Dx-Extended.

- BTEX, hexane, methyl tert-butyl ether (MTBE), ethylene dibromide (EDB), 1,2-dichloroethane (EDC), and naphthalenes by EPA Method 8260.
- Total and dissolved lead by EPA Method 6020.
- Chlorinated VOCs by EPA Method 8260.

Indoor air and sub-slab vapor samples have been analyzed for the following analyses:

• VOCs and APH via Method TO-15.

All analytical results were compared to MTCA Method A cleanup levels (soil and groundwater) and Method B cleanup levels (air). Copies of the laboratory analytical results are provided in Appendix B, *Supporting Documents, Laboratory Datasheets*.

2.3.1 Soil Results

Analytical results of the soil samples collected to date have indicated one or more detections of gasoline-range TPH, benzene, ethylbenzene, xylenes, and MTBE above their respective MTCA Method A cleanup levels. Analytical results of all soil samples collected from the Site to date are summarized in Table 1, *Summary of Soil Analytical Results*. The distribution of soil concentrations in excess of MTCA Method A cleanup levels in is illustrated in plan view on Figure 3, *Soil Plume Map*, and in cross section on Figure 5, *Geologic Cross Section A-A'*, Figure 6, *Geologic Cross Section B-B'* and, Figure 7, *Geologic Cross Section C-C'*.

2.3.2 Groundwater Results

Analytical results of the groundwater samples collected to date have indicated one or more detections of gasoline- range TPH, benzene, MTBE, and total lead above their respective MTCA Method A cleanup levels. Analytical results of all groundwater samples collected from the Site to date are summarized in Table 2, *Summary of Groundwater Analytical Results*. The distribution of groundwater concentrations in excess of MTCA Method A cleanup levels in is illustrated on Figure 8, *Groundwater Plume Map*.

2.3.3 Indoor Air and Sub-Slab Vapor Results

In March 2018, benzene was present in both indoor and outdoor samples above the MTCA Method B cleanup level for ambient air. The adjusted indoor air concentration (adjusted for background) was below cleanup levels suggesting the impacts were likely associated with background conditions.

In November 2019, benzene and naphthalene were both present above the MTCA Method B cleanup level for ambient air in all samples. The adjusted indoor air concentrations (adjusted for background) still exceeded for benzene and naphthalene. However, naphthalene was non-detect in both sub-slab vapor samples, and benzene was detected below MTCA Method B sub-slab screening levels, which suggests indoor air impacts were likely associated with background conditions and not vapor intrusion.

Table 3, *Summary of Indoor and Outdoor Air Analytical Results*, presents the analytical results of the samples as compared to MTCA Method B indoor air cleanup levels. Table 4, *Summary of Sub-Slab Vapor Analytical Results*, presents the analytical results of the sub-slab vapor samples as compared to MTCA Method B sub-slab screening levels.

3.0 CONCEPTUAL SITE MODEL (CSM)

This section provides a conceptual understanding of the Site, derived from the results of the subsurface investigations performed at the Site. The CSM is dynamic and may be refined as additional information becomes available.

3.1 Constituents of Concern and Affected Media

The primary conceptual release model for the Site is a release from the former UST system detected during a tank renovation in 1982. Primary source control was achieved at that time by the removal of 777 tons of soil and 2,800 gallons of water/separate phase hydrocarbons from the UST excavation, and 159 tons of soil from the dispenser area. Remaining residual areas of contamination are localized.

COCs at the Site for soil and groundwater consist of gasoline-range TPH, BTEX compounds, and MTBE. Lead is considered a contaminant of potential concern. Total lead has exceeded MTCA cleanup levels in a couple groundwater samples collected to date. However, concentrations of total lead in groundwater samples containing gasoline-range TPH and BTEX compounds have generally been either below the PQL or would meet the definition of natural background. Further, samples with corresponding dissolved lead data were non-detect. This evidence would suggest that the couple of anomalous detections were likely due to suspended solids in the sample, and not indicative of a release.

Areas of residual contamination generally occur beyond the limits of the former excavation, either at depth presumably beyond the reach of the excavator, and just beyond the lateral limits to the south and east where further excavation was likely hindered by utilities. The distribution of soil concentrations in excess of MTCA Method A cleanup levels in is illustrated in plan view on Figure 3, *Soil Plume Map*, and in cross section on Figure 5, *Geologic Cross Section A-A'*, Figure 6, *Geologic Cross Section B-B'* and, Figure 7, *Geologic Cross Section C-C'*. The distribution of groundwater concentrations in excess of MTCA Method A cleanup levels in is illustrated on Figure 8, *Groundwater Plume Map*.

AEG believes the Site has been sufficiently characterized to be able to establish cleanup standards and select a cleanup action for the Site. Remedial alternatives presented in the accompanying FS contemplate contamination in both accessible and inaccessible areas of the Site.

3.2 Site Geology and Hydrogeology

The Site is located within the central Puget Lowlands of Western Washington State. The Puget Lowland is a north-south trough that lies from the Canadian border south to near Chehalis,

Washington, and between the Olympic Mountains to the west and the Cascade Mountains to the east. Landforms common to this region include Pacific inlets, islands, and intermountain and coastal lowlands. The topography is dominated by north-south trending valleys and low, nearly flat-topped terraces that are less than 1,000 feet in elevation. Terraces are deeply eroded by streams and rivers and are susceptible to landslides. The topographic surface of the Site and vicinity area is largely the result of deposition and erosion since the recent glacial events (Easterbrook, 1970).

According to the "Preliminary Surficial Geologic Map of the Edmonds East and Edmonds West Quadrangles, Snohomish and King Counties, Washington", the Site and vicinity are underlain by Recent Age glacial deposits (last 15,000 years before present), which are comprised of "...poorly sorted, non-stratified lodgment till (Qvt) deposited as ground moraine...including mixtures of sand, silt, clay, pebbles, cobbles, and boulders...color blue to grey and extremely compact" (Smith, 1975).

Subsurface soils encountered during AEG's investigation at the Site have consisted of dense, silty sand with fine- to medium-grained gravel to the maximum depth explored of about 36.5 feet.

Depth to groundwater at the Site has ranged from about 10 to 30 feet bgs, depending on the well location, and is likely influenced by the former excavation and fill material. Fluctuation within individual wells is typically about 1 to 3 feet.

Groundwater flow direction has been influenced by the former excavation and fill material near the current canopy island and USTs; however, the dominant flow direction is to the east. This is consistent with the local topography, which slopes steeply to the east beyond the property boundary. Groundwater gradients are illustrated on Figure 9, *Groundwater Elevation Contour Map 04/07/2016*, Figure 10, *Groundwater Elevation Contour Map 12/13/2016*, Figure 11, *Groundwater Elevation Contour Map 05/08/2018*, and Figure 12, *Groundwater Elevation Contour Map 12/02/2019*.

3.3 Environmental Fate of TPH in the Subsurface

Gasoline-range TPH and associated BTEX compounds are soluble and migrate in groundwater. These compounds have a specific gravity that is less than water and can be measured in monitoring wells as Light Non-Aqueous Phase Liquid (LNAPL). To date, no LNAPL has been measured in Site monitoring wells.

LNAPL can also exist as a residual non-mobile phase that is either sorbed to the soil or trapped in the pore spaces between the soil particles. Unless treated, residual LNAPL can act as a long-term source for groundwater contamination.

Gasoline-range TPH and BTEX compounds are readily biodegraded in the subsurface by naturally occurring aerobic and anaerobic bacteria. Aerobic biodegradation is the most efficient of the biological activities. At this Site, dilution and ongoing aerobic biodegradation are most likely reducing contaminant concentrations.

3.4 *Potential Exposure Pathways*

As defined in WAC 173-340-200, an exposure pathway describes the mechanism by which a hazardous substance takes or could take a pathway from a source or contaminated medium to an exposed receptor.

3.4.1 Potential Soil Exposure Pathways

Potentially complete soil exposure pathways at the Site include:

- <u>Contact (dermal contact, incidental ingestion) with hazardous substances in soil by visitors,</u> residents, and workers (including excavation workers). Direct ingestion of, or dermal contact with, soil containing Site COCs is considered a potential exposure pathway. Shallow soil impacts (less than 15 feet bgs, the standard point of compliance for direct contact exposure) are present in the vicinity of MW-1, MW-3, MW-6, and MW-11. These areas are currently covered by asphalt, concrete, and/or Site structures and, unless disturbed, are not available for potential direct contact or ingestion.
- <u>Groundwater Leaching Pathway</u>. The groundwater leaching pathway is considered complete at this Site.

3.4.2 Potential Groundwater Exposure Pathways

Potentially complete groundwater exposure pathways at the Site include:

- <u>Contact (dermal, incidental ingestion) with hazardous substances dissolved in groundwater</u> <u>by visitors, residents, and workers (including excavation workers)</u>. Although groundwater in the area of the Site is not used for drinking water (drinking water is provided by the City of Lynnwood), groundwater is considered an exposure pathway for direct contact and ingestion because of the potential for using groundwater, and the shallow depth of its occurrence. Depth to groundwater at the Site has ranged from about 10 to 30 feet bgs, depending on the well location.
- <u>Consumption of hazardous substances in groundwater</u>. Currently, drinking water is provided by the city water supply. For the purpose of this CSM, consumption of hazardous substances in groundwater is not considered a completed pathway.

3.4.3 Potential Air Exposure Pathways

Potentially complete air exposure pathways include:

• <u>Inhalation of hazardous substances in soil vapor by visitors, residents, and workers</u> (including excavation workers). Benzene had been detected in indoor air, which was found to be consistent with background concentrations. However, since volatile components of gasoline-range TPH are present in soil and groundwater at the Site, air quality is a potential concern at the Site. Migration of vapors through the unsaturated soil to the surface, both indoors and outdoors, is considered a potential exposure pathway at the Site. As such, the soil-to-vapor pathway for potential vapor intrusion is considered potentially complete.

3.4.4 Terrestrial Ecological Evaluation

Exclusion from further evaluation is appropriate for this Site for the following reasons:

- <u>Barriers to Exposure: WAC 173-340-7491(1)(b)</u>: All contaminated soil, is or will be, covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
- <u>Undeveloped Land: WAC 173-340-7491(1)(c)</u>: There is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

A copy of the Terrestrial Ecological Evaluation form is included in Appendix B.

4.0 CLEANUP STANDARDS

The following sections identify applicable or relevant and appropriate requirements (ARARs), remedial action objectives (RAOs), and preliminary cleanup standards for the Site, which were developed to address Ecology's requirements for cleanup. These requirements address conditions relative to potential identified impacts. Together, ARARs, RAOs, and cleanup standards provide the framework for evaluating remedial alternatives.

4.1 *Potentially Applicable Laws*

All cleanup actions conducted under MTCA shall comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements that are relevant and appropriate. Collectively, these requirements are referred to as ARARs. The primary ARAR is the MTCA regulation (WAC 173-340), especially with regard to the development of cleanup levels and procedures for development and implementation of a cleanup under MTCA. ARARs for the Site cleanup also include the following:

- Federal Safe Drinking Water Act Maximum Contaminant Levels (MCLs; 40 CFR Part 141).
- Washington Clean Air Act (Chapter 70.94 RCW).
- Northwest Clean Air Agency (NWCAA), Regulation I.
- Washington Solid and Hazardous Waste Management (RCW 70.105); Chapter 173-303 WAC; 40 CFR 241, 257; Chapter 173-350 and 173-351 WAC) and Land Disposal Restrictions (40 CFR 268; WAC 173-303-340).
- Washington Industrial Safety and Health Act (RCW 49.17) and other Federal Occupational Safety and Health Act (29 CFR 1910, 1926).

Federal MCLs are minimum requirements for drinking water. MTCA Method A cleanup levels for groundwater are set at least as low as federal MCLs. State and federal groundwater and air quality criteria are considered in the development of cleanup levels. State dangerous waste regulations may be applicable to contaminated soil removed from the Site.

4.2 *Remedial Action Objectives*

RAOs have been established for the Site to establish remedial alternatives protective of human health and the environment under the MTCA cleanup process (WAC 173-340-350). The primary RAO for this cleanup action focuses on substantially eliminating, reducing, and controlling unacceptable risks to human health and the environment posed by the COCs, to the greatest extent practicable.

RAOs are important for the evaluation of the general response actions, technologies, process options, and cleanup action alternatives. Based on the assessment of Site-specific conditions and the potentially applicable cleanup levels presented below, the RAOs for the Site have been established as follows:

• In a reasonable restoration time frame, reduce concentrations of COCs in Site soils, groundwater, and air to levels protective of human health and the environment and which are protective of groundwater quality.

4.3 Cleanup Standards

Cleanup standards include cleanup levels and points of compliance (POCs) as described in WAC 173-340-700 through WAC 173-340-760. Cleanup standards must also incorporate other state and federal regulatory requirements applicable.

4.3.1 Proposed Cleanup Levels

MTCA Method A cleanup levels for the soil and groundwater exposure pathways are appropriate for this Site. MTCA Method B cleanup levels are appropriate for the air exposure pathway, and for constituents where MTCA Method A cleanup levels are not promulgated. These cleanup levels are based on the most stringent values for each exposure pathway and are considered appropriate for the Site COCs. Proposed MTCA cleanup levels for the Site COCs that have been measured in soil, groundwater, and air at the Site include:

<u>Constituent</u>	<u>Soil</u>	Groundwater	Air
• Gasoline-range TPH:	30 mg/kg	800 µg/L	N/A
• Benzene	0.03 mg/kg	5 µg/L	$0.321 \ \mu g/m^3$
• Toluene	7 mg/kg	1,000 µg/L	$2,290 \ \mu g/m^3$
• Ethylbenzene	6 mg/kg	700 µg/L	$457 \ \mu g/m^3$
• Total Xylenes	9 mg/kg	1,000 µg/L	$45.7 \ \mu g/m^3$
• MTBE	0.1 mg/kg	20 µg/L	$9.62 \ \mu g/m^3$
• Lead	250 mg/kg	15 µg/L	N/A
• APH (EC5-8 aliphatics)	N/A	N/A	$2,700 \ \mu g/m^3$
• APH (EC9-12 aliphatics)	N/A	N/A	$140 \ \mu g/m^3$
• APH (EC9-10 aromatics)	N/A	N/A	$180 \ \mu g/m^3$

mg/kg = milligrams per kilogram

 $\mu g/L = micrograms per liter$

 $\mu g/m^3 = micrograms$ per cubic meter

N/A = Not Applicable; no cleanup level has been established for his constituent

4.3.2 Points of Compliance

For this Site, it is assumed that standard points of compliance will be used.

- <u>Soil Direct Contact</u>: For soil cleanup levels based on human exposure via direct contact, the point of compliance is throughout the Site from the ground surface to 15 feet bgs.
- <u>Soil Leaching</u>: For soil cleanup levels based on protection of groundwater, the point of compliance is throughout the Site.
- <u>Groundwater</u>: For groundwater, the point of compliance is throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.
- <u>Indoor Air/Soil Gas</u>: The point of compliance is ambient and indoor air throughout the Site.

5.0 IDENTIFICATION AND SCREENING OF REMEDIATION TECHNOLOGIES

This section identifies general response actions and screens remediation technologies for use in assembling remediation alternatives.

5.1 General Response Actions

General response actions are broad categories of remedial actions that can be combined to meet the RAOs for a site. The following are typical general response actions that are applicable to most impacted sites:

- No action
- Institutional controls
- Monitored natural attenuation
- Containment
- Removal
- Ex-situ treatment
- In-situ treatment

Potentially applicable technologies associated with these general response actions have been identified and screened based on the Site COCs and affected media and take into consideration the current and future use of the property. An overview of those technologies is provided in the following section.

5.2 Identification and Screening of Applicable Technologies

Applicable technologies associated with general response actions have been identified and screened for potential inclusion in the remediation alternatives for the Site. Each identified technology was screened based on applicability to Site conditions, overall effectiveness, implementability, and relative cost. Potentially applicable technologies considered for the Site are presented in Table 6, *Identification and Screening of Response Actions and Remediation Technologies*, which provides a summary of the screening results. Thirteen remedial technologies were retained for further consideration. Details of each technology are summarized below. The technologies determined to be most appropriate for the Site were then incorporated into three potentially applicable remediation alternatives.

5.2.1 Institutional Controls

Institutional controls considered for this RI/FS include legal restrictions on land and on groundwater use to limit potential exposure to contamination, often through an environmental covenant filed at the time of Site closure. Environmental covenants are often appropriate as a component of a remedial alternative for Sites where residual contamination is constrained within

the property at the completion of active remediation, and where a POC can be determined and monitored over time. Such controls prohibit or limit activities on a property that may interfere with the integrity of engineered controls or result in exposure to hazardous substances. Except under certain specified circumstances, such controls must be executed through an environmental covenant on the affected property. Environmental covenants are typically not appropriate for sites where residual contamination above cleanup standards extends off property at the time of closure unless agreed upon by adjacent property owners. Institutional controls alone do not fully mitigate the potential vapor migration pathway, and additional technologies would be required to address that exposure pathway, as necessary, as part of the overall cleanup.

5.2.2 Monitored Natural Attenuation

The term "natural attenuation" as used in this RI/FS refers to a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of hazardous substances in the environment (Ecology, 2005). These in-situ processes include: natural biodegradation, dispersion, dilution by recharge, sorption, volatilization, chemical or biological stabilization, transformation or destruction of hazardous substances (WAC 173-340-200).

When applied as part of a cleanup action, natural attenuation is often referred to by EPA as "monitored natural attenuation" to distinguish the action from "no action". "Monitored natural attenuation", as the term is used in EPA OSWER Directive 9200.4-17P (1999a), means the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remedial objectives within a timeframe that is reasonable compared to that offered by more active cleanup methods.

The natural attenuation processes can be classified as either physical (dispersion, dilution by recharge, and volatilization), chemical (sorption and chemical degradation), or biological (biodegradation).

Natural attenuation processes that result in the reduction of concentration or mobility of a contaminant, but not the total mass, are referred to as "non-destructive" mechanisms. Those processes include the physical dispersion and dilution processes and the chemical sorption process (ASTM, 1998). Natural attenuation processes that result in the reduction of the total contaminant mass in the system are referred to as "destructive" mechanisms. Those processes include the chemical degradation processes. For petroleum hydrocarbons in the subsurface, biological degradation is often the most important destructive mechanism because hydrocarbons can be destroyed (ASTM, 1998).

Although some natural attenuation typically occurs at most contaminated sites, the effectiveness of these processes varies depending on the types and concentrations of contaminants present at the site and the physical, chemical, and biological characteristics of the site. Natural attenuation should be evaluated as one potential remedial approach along with other cleanup action alternatives involving more active remedial technologies. Natural attenuation processes alone do not fully mitigate the potential vapor migration pathway, and additional technologies would be required to address that exposure pathway as part of the overall cleanup.

Although some natural attenuation typically occurs at most contaminated sites, the effectiveness of these processes varies depending on the types and concentrations of contaminants present at the site and the physical, chemical, and biological characteristics of the site. Natural attenuation should be evaluated as one potential remedial approach along with other cleanup action alternatives involving more active remedial technologies.

5.2.3 Containment (Capping)

This retained containment technology option for this Site would include retaining capped portions of the Site with an impervious surface, such as use of the existing asphalt, concrete, and building cover throughout the Site. Capping would prevent exposure to contamination in soil or groundwater if contamination remains above cleanup levels at the end of active remediation. Capping would be memorialized with institutional controls at the Site. Containment technologies do not fully mitigate the potential vapor migration pathway, and additional technologies would be required to address that exposure pathway, as necessary, as part of the overall cleanup.

5.2.4 Removal (Soil Excavation)

Excavation of contaminated soil at the Site may be an effective method of reducing remaining PCS on the property. Excavated PCS would be transported for disposal at an appropriate disposal facility, requiring access to the Site by transport trucks during the excavation. At this Site, excavation of PCS would be limited in certain areas due to the presence of utilities and other infrastructure around areas of contamination.

5.2.5 Removal (Groundwater Extraction)

Groundwater extraction would consist of submersible and/or aboveground pumping equipment used to remove and treat impacted groundwater from extraction wells. This technology would require installation of additional extraction wells within the contaminant plume. If implemented as a component of a remedial alternative, groundwater extraction would be combined with other technologies to treat the water. Treated water could either be discharged to the sanitary sewer or re-injected at the Site as part of an in-situ treatment component. Disposal of untreated groundwater to an off-Site facility may be cost-prohibitive.

5.2.6 Ex-Situ Treatment, Groundwater (Activated Carbon Adsorption)

Granulated activated carbon (GAC) treatment is a physical and chemical process that removes a wide variety of contaminants by adsorbing them from liquid streams onto an activated carbon filter. This treatment technology is most commonly used to separate organic contaminants from contaminated water. The contaminant adsorbs to the surface of GAC until the available surface area of the GAC is exhausted, after which the GAC can be either reactivated, regenerated, or discarded. If GAC is discarded, it may be considered a hazardous waste. Groundwater extracted from the subsurface of the Site could be treated through GAC after oil/water separation, to reduce contaminant concentrations to below remedial objectives, and be reinjected or discharged.

5.2.7 Ex-Situ Treatment, Groundwater (Air Stripping)

Air stripping is a full-scale technology in which volatile organics are partitioned from groundwater by greatly increasing the surface area of the contaminated water exposed to air. Types of aeration methods include packed towers, diffused aeration, tray aeration, and spray aeration.

Air stripping involves the mass transfer of volatile contaminants from water to air. For groundwater remediation, this process is typically conducted in a packed tower or an aeration tank. The typical packed tower air stripper includes a spray nozzle at the top of the tower to distribute contaminated water over the packing in the column, a fan to force air countercurrent to the water flow, and a sump at the bottom of the tower to collect decontaminated water. Auxiliary equipment that can be added to the basic air stripper includes an air heater to improve removal efficiencies; automated control systems with sump level switches and safety features, such as differential pressure monitors, high sump level switches, and explosion-proof components; and air emission control and treatment systems, such as activated carbon units, catalytic oxidizers, or thermal oxidizers. Packed tower air strippers are installed either as permanent installations on concrete pads or on a skid or a trailer.

Aeration tanks strip volatile compounds by bubbling air into a tank through which contaminated water flows. A forced air blower and a distribution manifold are designed to ensure air-water contact without the need for any packing materials. The baffles and multiple units ensure adequate residence time for stripping to occur. The discharge air from aeration tanks can be treated using the same technology as for packed tower air discharge treatment.

Modifying packing configurations greatly increase removal efficiency. The low-profile air stripper packs a number of trays in a very small chamber to maximize air-water contact while minimizing space. This unit offers significant vertical and horizontal space savings. Air strippers can be operated continuously or in a batch mode where the air stripper is intermittently fed from a collection tank. The batch mode ensures consistent air stripper performance and greater energy

efficiency than continuously operated units because mixing in the storage tanks eliminates any inconsistencies in feed water composition.

5.2.8 In-Situ Treatment (Air/Ozone Sparging)

Sparging consists of injecting air or generated ozone into groundwater below the water table. Volatile contaminants are transferred from the dissolved phase to the vapor phase for recovery. Air sparging has the additional benefit of increasing the dissolved oxygen content of groundwater and facilitating aerobic biological degradation of petroleum hydrocarbons and the co-metabolic biologradation of co-located chlorinated VOCs.

Implementation of sparging technology at the Site would require installation of injection wells and delivering air or generated ozone to the wells using a blower or compressor. Sparging wells can be either vertical wells or horizontal wells. Vapor recovery may also need to be implemented to capture volatilized compounds generated from the air sparging process. Air sparging systems are typically installed in conjunction with a soil vapor extraction (SVE) system. SVE wells can also be installed as either vertical or horizontal wells. The selection of vertical or horizontal wells and the spacing and construction of such wells would require system design and operation based upon the current ozone sparging system.

As with aeration and air stripping treatment technologies, fouling by iron and manganese can be problematic; therefore, testing for dissolved iron and manganese at the Site would be recommended prior to implementing this technology. A remedial pilot testing event was conducted at the Site to evaluate the effective radius of influence of injected air and determine the appropriate spacing for air sparging injection wells.

5.2.9 In-Situ Treatment (Soil Vapor Extraction)

SVE technology may be implemented alone or coupled with other technologies such as groundwater extraction or air sparging. This technology would require installation of SVE wells screened within the vadose zone where impacts are present in soil. SVE technology may also utilize appropriately constructed monitoring wells for either vapor and vacuum monitoring or for active extraction. Using vacuum blower equipment, a vacuum is applied to the SVE wells to extract volatile contaminants from the subsurface. Volatile compounds are present in soil gas either through volatilization or as the result of extraction.

Extracted vapors require treatment prior to atmospheric discharge. Vapor effluent treatment technologies include GAC, thermal oxidation (therm-ox), or catalytic oxidation (cat-ox). GAC is typically applicable to lower air effluent discharges while therm-ox and cat-ox are more applicable to higher mass loadings. If vapor concentrations are expected to be significantly elevated during

the initial phase of remediation, a therm-ox or cat-ox is often more suitable and more cost-effective than using GAC adsorption equipment for vapor treatment. However, GAC could be more practical for vapor treatment once concentrations are significantly reduced. A remedial pilot test was conducted for this technology to evaluate the effective radius of influence for extraction and determine the appropriate well spacing.

5.2.10 In-Siu Soil Treatment (High-Vacuum Dual-Phase Extraction)

High-Vacuum Dual-Phase Extraction (HVDPE), also known as multi-phase extraction, vacuumenhanced extraction, DPVE, or sometimes "bioslurping," is a technology that uses a high-vacuum system to remove various combinations of contaminated groundwater, separate-phase petroleum product, and hydrocarbon vapor from the subsurface. Extracted liquids and vapor are treated and collected for disposal, or re-injected to the subsurface (where permissible under applicable state laws).

In HVDPE systems for liquid/vapor treatment, a high-vacuum system is utilized to remove liquid and gas from low permeability or heterogeneous formations. The vacuum extraction well includes a screened section in the zone of contaminated soils and groundwater. It removes contaminants from above and below the water table. The system lowers the water table around the well, exposing more of the formation. Contaminants in the newly exposed vadose zone are then accessible to vapor extraction. Once above ground, the extracted vapors or liquid-phase organics and groundwater are separated and treated. HVDPE for liquid/vapor treatment is generally combined with bioremediation, air sparging, or bioventing when the target contaminants include long-chained hydrocarbons. Use of dual-phase extraction with these technologies can shorten the cleanup time at a site. It also can be used with pump-and-treat technologies to recover groundwater in higher-yielding aquifers.

5.2.11 In-Situ Treatment (Enhanced Bioremediation)

Enhanced bioremediation is a process in which indigenous or inoculated micro-organisms (e.g., fungi, bacteria, and other microbes) degrade (metabolize) organic contaminants found in soil and/or groundwater, converting them to innocuous end products. Nutrients, oxygen, or other amendments may be used to enhance bioremediation and contaminant desorption from subsurface materials. For this Site, in-situ treatment may consist of using the "Trap and Treat" process in which granulated carbon is injected in a grid-like pattern in areas of concern, which traps the contaminants and provides plume control. The plume is then treated with a matrix, which incorporates both aerobic and anaerobic biological processes, providing longer term remedial degradation.

5.2.12 In-Situ Treatment (Chemical Oxidation)

Application of chemical oxidation technology mineralizes contaminants within subsurface soil and groundwater through chemical reactions. A mixture of oxidant and buffering compounds are typically injected into impacted soil and groundwater and, upon contact with contaminants, the oxidizer(s) break down the dissolved contaminants into carbon dioxide, water, and salts.

Delivery of oxidants to the subsurface can be conducted using direct-push probes or injection wells installed across the Site. Typical chemical oxidants used for chemical oxidation of petroleum hydrocarbons include Fenton's reagent and ozone, both of which have been proven to effectively destroy petroleum hydrocarbons and chlorinated solvents. Fenton's reagent consists of hydrogen peroxide combined with an iron catalyst. The injection mixture also typically includes the addition of acid, as Fenton's reagent is more effective at acidic pH. Regardless of the oxidant that is used, the destruction efficiency of contaminants can be greatly affected by the organic content of the soil and other subsurface characteristics that can be readily oxidized. Therefore, testing should be conducted at the Site to analyze the overall soil and water oxygen demand and determine the appropriate oxidant dose to be applied.

When ozone is used for chemical oxidation, it is applied through sparging technology, discussed above. For ozone sparging, ozone is generated on site from air and then injected as a gas into the subsurface.

5.2.13 In-Situ Treatment (Thermal Desorption)

Electrical Resistance Heating (ERH) is an in-situ, thermal technology that uses commonly available electricity and applies it into the ground through electrodes. These electrodes can be installed either vertically to any depth or horizontally underneath buildings, operating facilities, and in the presence of buried utilities. The technology is equally effective in both soil and groundwater.

Electric current is passed through a targeted soil volume between subsurface electrode elements. The resistance to electrical flow that exists in the soil causes the formation of heat; resulting in an increase in temperature until the boiling point of water at depth is reached. After reaching this temperature, further energy input causes a phase change, forming steam and removing volatile contaminants. ERH is typically more cost effective when used for treating contaminant source areas. ERH is typically most effective on VOCs. Less volatile contaminants like xylene or diesel can also be remediated with ERH, but energy requirements increase as the volatility decreases.

6.0 DESCRIPTION AND SELECTION OF REMEDIAL ALTERNATIVES

Based on the requirements of WAC 173-340-360, *Selection of Cleanup Actions*, three potential remedial alternatives were developed from the general response actions and technologies screened in Table 6, *Identification and Screening of Response Actions and Remediation Technologies*, and described above.

All three alternatives directly address soil and groundwater contamination at the Site and are also intended to indirectly address ambient air quality at the Site. By reducing remaining contamination in the soil and groundwater to below cleanup levels, the source of contamination for ambient air is removed, and ambient air is expected to meet appropriate cleanup standards.

Based on preliminary screening of the general response actions identified in Section 5.2, *Identification and Screening of Remediation Technologies*, individual general response actions are not expected to individually meet MTCA threshold requirements, and therefore are not considered as stand-alone remedial alternatives.

6.1 MTCA Threshold Requirements

Potential remedial alternatives must meet the threshold requirements described in WAC 173-340-360(2)(a), which specifies that cleanup actions shall:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

MTCA [WAC 173-340-360(2)(b)] also indicates other requirements that must be met by any cleanup alternative:

- Use permanent solutions to the maximum extent practicable;
- Provide for a reasonable restoration time frame; and
- Consider public concerns.

Local Requirements

All required local permits to implement the chosen Remedial Action will be obtained according to Snohomish County requirements. These could include, but are not limited to, construction, air quality, ROW, and building permits.

6.2 Description of Remedial Alternatives

Based upon the screening evaluation, MTCA threshold and other requirements, AEG proposes three remedial alternatives for the Site. The alternatives were developed and are evaluated with the goal of achieving remedial objectives within a reasonable timeframe, with the most permanent cleanup and minimal disruption to the Site.

6.2.1 Alternative 1 – Natural Attenuation, Containment, and Institutional Controls

Alternative 1 includes:

- Eight additional groundwater monitoring events at 8 of the 11 existing Site monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-10, and MW-11), once every 18 months over 10 years, intended to monitor natural attenuation. Each monitoring event would confirm that groundwater concentrations of COCs decrease in concentration over time, and that no additional plume migration occurs.
- Institutional controls by legal restrictions on land and on groundwater use to limit potential exposure to contamination through an environmental covenant restricting removal of the asphalt cover and overburden soils (acting as a cap) in areas that exceed safe concentrations.

Alternative 1 would result in the longest timeframe to restore the Site, limitations to Site use in the future, and would be initially the least expensive option. An environmental covenant is a deed restriction filed for the Property and ROW, which would limit access to contaminated areas of the Site without prior approval of Ecology. Restricting use of the Property may affect future Property values.

Estimated time to closure: 10 to 15 years.

6.2.2 Alternative 2 – High-Vacuum Dual-Phase Extraction, and Monitoring

Alternative 2 includes the installation and operation of an in-situ HVDPE system at the Site. Specific tasks would include:

- Development of necessary work plans and permitting.
- Performance of a short-term pilot test to provide data for well spacing and extraction wells.
- Completion of the design of the remediation option and obtain applicable air discharge permit, treated groundwater discharge permit, and apply for a notice of intent to construct permits with local/state agencies.

- Drilling, soil disposal, and installation of HVDPE wells and replacement of MW-6.
- Trenching for process conveyance piping and electrical power supply to equipment compound location.
- Purchase of equipment for air injection and vacuum process, including monitoring controller.
- Operation of the HVDPE system for approximately 24 to 36 months.
- Operation of vapor treatment, condensate water, and extracted groundwater treatment under specific discharge permits.
- Performance of monthly operations and maintenance (O&M) to provide long-term performance. For the area surrounding the Site, noise abatement must be provided for 24-hour operation. The enclosures for the equipment will require cooling to remove/reduce the effects of heat on the equipment performance. This alternative would require traffic impacts, mainly during installation and decommissioning of the system, but traffic control may be required for adjustments.
- Continued regular compliance monitoring of COCs in Site monitoring wells to demonstrate reduction of COC concentrations and confirm the HVDPE system was successful in achieving MTCA cleanup standards for groundwater.
- Confirmation sampling of previously documented areas of PCS to confirm the HVDPE system was successful in achieving MTCA cleanup standards for soil.

Performance monitoring would be used to predict the duration of the operation and effectiveness. The operation of the extraction system would require vapor treatment prior to discharge to the atmosphere and must be operated under a NWCAA permit. Provisions in the NWCAA permit would require that VOC discharges not exceed the allowable thresholds for toxic air pollutants as dictated in the NWCAA Regulations. Compliance air sampling would be required, and overall removal efficiency would need to be reported to NWCAA as mandated by the permit.

Pilot tests are recommended to determine the recoverability of the TPH, the radius of influence of extraction wells, and the resulting concentrations of hydrocarbons in the aqueous and vapor streams. In addition, respiration tests can be performed to determine the rate of biodegradation of petroleum hydrocarbons in the vadose zone.

In general, HVDPE applies a high vacuum on the subsurface soil and groundwater to remove a combination of vapor-phase and liquid-phase TPH. The liquid phases consist of free-phase TPH or LNAPL, if present, and groundwater.

The pressure gradient created in the air phase results in a driving force on the LNAPL that can be significantly greater than the driving force that can be induced by pumping the LNAPL with no air flow. Also, of importance is the fact that the vacuum extraction mechanism pulls LNAPL along more permeable horizontal zones.

HVDPE recovery systems are designed to minimize environmental discharges of the extracted oil/water mixture and soil gas. Vacuum-enhanced recovery systems can be operated to control extraction of soil gas by optimizing the placement of well screen and adjusting the system vacuum. In some instances, the volatile discharge from the vacuum-enhanced recovery system can be kept below action levels without treatment. The lifting action of a vacuum-enhanced recovery system greatly reduces the volume of groundwater that must be extracted compared to conventional LNAPL recovery systems, thus significantly reducing groundwater treatment costs.

At some sites, water and vapor treatment are necessary, which is dictated by regulatory requirements and loadings of COCs in the vapor and aqueous streams. Water treatment can include a number of unit operations such as air stripping, liquid-phase GAC, hydrophobic clay media, and chemical flocculation combined with dissolved air flotation. Vapor treatment can include gas-phase GAC, thermal oxidation, or catalytic oxidation.

Different pump arrangements can be used but the most popular technology is what is referred to as a Liquid Ring Pump (LRP). The LRP uses a cylindrical chamber filled with liquid with an offset impeller to create strong vacuums. HVDPE removes three phases of TPH (free phase, dissolved phase, and vapor phase) with the liquid phases entrained in vapors. The entrainment of fluids in vapor alleviates some physical problems associated with fluid flow, including friction and head that would preclude pulling fluids past a theoretical maximum of approximately 30 feet in depth. HVDPE has been reported to be effective to depths of up to 100 feet without a booster pump.

Vapor sampling during the pilot testing would verify if concentrations of VOCs would require the initial vapor treatment as a cat-ox and replaced after a period of time with vapor-phase GAC adsorbers once concentrations decrease to appropriate levels for GAC.

The primary advantages of HVDPE over alternate remedial technologies are relative simplicity and lower cost. The equipment is readily available and easy to install with minimal disturbance to Site operations. The components can be installed during Site investigations by completing borings as sparge wells, DPE wells, or monitoring points. Additional subsurface components can be installed cost-effectively via direct-push methods, where the soil geology and required installation depth will permit their use. For TPH, HVDPE can remediate through both in-situ stripping and promoting biodegradation.

Disadvantages to HVDPE over alternate remedial technologies are primarily related to Site physical or chemical characteristics that either preclude contaminant removal or alter contaminant mobility to threaten potential receptors. Geological conditions, such as stratification, heterogeneity, and anisotropy, will prevent uniform air flow. O&M costs may increase based on the type of vacuum and treatment system selected. As such, careful consideration and design of HVDPE systems must be conducted where such risks may occur.

Estimated time to closure: 3 to 5 years.

6.2.3 Alternative 3 – PCS Excavation, In-Situ Treatment via BOS 200[®] & Hydrocarbon-Degrading Microbes, and Monitoring

Alternative 3 includes excavation of about 270 cubic yards (cy) of PCS, injection of BOS 200[®] in impacted areas not accessible to excavation, and performance monitoring. Specific tasks include:

- Excavation and disposal of about 270 cy of PCS from within the area between MW-1 and MW-6 to about 18 feet bgs. Apply an amendment (BOS 200[®]) into the excavation prior to backfill to enhance bioremediation of any residual PCS and impacted groundwater.
- Injection of BOS 200[®] in selected areas exceeding MTCA Method A cleanup levels to • depths ranging from 3 to 20 feet bgs to target the highest concentrations of PCS on Site. According to the manufacturer, "BOS 200[®] is a Trap & Treat[®] in situ remediation technology specifically designed to degrade petroleum hydrocarbons, related solvents, and oils. BOS 200[®] is a complete system effecting accelerated biodegradation of various organic compounds on an activated carbon platform that includes micro and macro nutrients, time release terminal electron acceptors, and a blend of facultative organisms designed to flourish within the aerobic to anaerobic conditions present in the pore structure of the carbon. It has been demonstrated to be effective with LNAPL, fuel oxygenates, alcohols, glycols, and cyclic ethers. No toxic byproducts such as sulfide are produced. The product is insensitive to groundwater geochemistry and is effective under aerobic and anaerobic conditions and over a broad range of pH. High salinity and TDS of 30,000 ppm are also not detrimental to performance." BOS 200[®] will be injected under pressure in a top-down approach in 2-foot intervals using a direct-push injection rod. The intervals will be staggered vertically to assure targeting of all zones. From the existing data, the injections would target areas around and beneath the former excavation area. The injection points are performed on a grid, and the number of injection points per area would assume a 5-foot radius of influence (ROI) of treatment.

- Replacement of monitoring wells MW-1 and MW-6.
- Continued regular compliance monitoring of COCs in Site monitoring wells to demonstrate reduction of COC concentrations and confirm the injections were successful in achieving MTCA cleanup standards for groundwater.
- Confirmation sampling of previously documented areas of PCS to confirm the injections were successful in achieving MTCA cleanup standards for soil.

As part of compliance monitoring, the wells would be gauged for the presence of LNAPL. If LNAPL is present, passive skimmers would be installed. Groundwater at the Site would be monitored for at least four quarters after the end of treatments to verify the decrease of contaminant concentrations at the Site, and the attainment of remedial action objectives. If MTCA Method A cleanup levels are not reached within the second quarter of groundwater monitoring, a second modified injection event would be evaluated.

The advantage of this method is less Site disturbance to implement full scale. The injection area grid patterns can be pre-determined to allow for Site development and no infrastructure is left after the injections. There is no electrical equipment (i.e. pumps, blowers, etc.) to be installed or maintained during the treatment process.

From web research, the adverse reactions include carbon particles in the nearby monitoring wells, which clears up after time and "rebound" of the contaminants seen in compliance monitoring. To reduce the risk of rebound, a thorough site characterization to target contaminant area and depth in the subsurface is required. Proper injection point placement and the correct volume of product is crucial to provide coverage based on the soil types and groundwater patterns. The levels of contamination verses the quantity of injected products must be reviewed before using this option. The site characterization should include groundwater parameters that will be used as indicators of biological activities (dissolved oxygen, nitrates, sulfates, microbial counts, pH, ORP) used as a baseline and for comparison.

Estimated time to closure: 2 to 3 years.

6.3 Evaluation of Remedial Alternatives

This section presents an evaluation and comparison of the four proposed remedial alternatives. In accordance with MTCA, the alternatives are evaluated relative to the criteria specified in WAC 173-340-360(3)(f) and WAC 173-340-360(4), which include the following:

- 1. Protectiveness;
- 2. Permanence;

- 3. Effectiveness over the long term;
- 4. Management of short-term risks;
- 5. Technical and administrative implementability;
- 6. Consideration of public concerns;
- 7. Restoration time frame; and
- 8. Cost.

Each of these criteria is evaluated below, except for cost, which is evaluated separately. A summary of the evaluation is provided in Table 7, *Remedial Alternatives Evaluation / Disproportionate Cost Analysis*. The overall evaluation is then used to determine the relative benefit of each alternative.

Each criterion was first assigned a score ranging from 5 (best) to 1 (worst), based upon AEG's experience, best professional judgement, and the application of scientific principles. Each score is based on the perceived benefit associated with the criterion and is included in Table 7, *Remedial Alternatives Evaluation / Disproportionate Cost Analysis*. Alternatives deemed equally beneficial are given the same score. Several criteria are comprised of subcriteria. In such cases, each sub criterion is scored and the average of those scores is used as the criterion score.

6.3.1 Protectiveness

Protectiveness is defined in WAC 173-340-360(3)(f)(i) as:

"Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, time required to reduce risk at the facility and attain cleanup standards, on-site and off-site risks resulting from implementing and alternative, and improvement of the overall environmental quality."

Each of the three remedial alternatives reduce risk at the Site, and each is protective of human health and the environment. Alternative 1 requires the longest restoration timeframe to reduce risks and attain cleanup standards at the Site and received the lowest score. Alternatives 2 and 3 ranked similarly for protectiveness.

6.3.2 Permanence

Permanence is defined in WAC 173-340-360(3)(f)(ii) as:

"The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous

substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and improvement of the overall environmental quality."

At the completion of remedial activities, each of the alternatives would result in a solution that is permanent. Permanence includes the subcriteria of reduction in toxicity, degree of irreversibility, and the type and character of the waste streams generated during treatment. While each of the technologies, if successfully implemented would be permanent, the degree of certainty in the success of the technology varies due to the nature of the technologies. Alternative 3 received the highest score due to its irreversibility and lack of generated waste. Alternative 2 was the next lowest score and Alternative 3 was the lowest ranked option for permanence.

6.3.3 Effectiveness over the Long Term

Effectiveness over the long term is defined in WAC 173-340-360(3)(f)(iv):

"Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on-site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes. The following types of cleanup action components may be used as a guide, in descending order, when assessing the relative degree of long-term effectiveness: Reuse or recycling; destruction or detoxification; immobilization or solidification; on-site or off-site disposal in an engineered, lined and monitored facility; on-site isolation or containment with attendant engineering controls; and institutional controls and monitoring."

Long-term effectiveness includes the subcriteria of certainty, reliability, residual risk, and utilization of preferred remedies. Each of the alternatives have the intent of meeting cleanup standards and protecting human health and the environment after completion of the remedial action. However, there are varying levels of uncertainty and reliability associated with each technology throughout the process. Alternative 1's long-term trends are not yet fully understood, as reliable trends in soil and groundwater contamination concentrations and their ability to attenuate/degrade over a longer period of time is unknown. Alternative 1 received the lowest score. Alternative 2 received the highest score as likely to destroy the contaminants in-situ, and less likely to leave any residuals behind.

6.3.4 Management of Short-Term Risks

Management of short-term risks is defined in WAC 173-340-360(3)(f)(v):

"The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks."

All of the alternatives have manageable short-term risks and effective measures for mitigating those risks. Alternative 1 received a higher score than Alternatives 2 and 3 as it is the least intrusive of the alternatives. Alternatives 2 and 3 received the similar scores as both are intrusive operations.

6.3.5 Technical and Administrative Implementability

Technical and administrative implementability is defined in WAC 173-340-360(3)(f)(vi):

"Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions."

This criterion includes the concepts of technical possibility, access, necessary resources, monitoring requirements and integration into existing facility features. The primary determining subcriterion is technical possibility. Alternative 1 is technically possible but includes long-term monitoring requirements. Alternatives 2 and 3 received a similar score based on their similar advantages and disadvantages.

6.3.6 Consideration of Public Concerns

Consideration of public concerns is defined in WAC 173-340-360(3)(f)(vii):

"Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site."

Alternatives with significant construction components, or alternatives that leave contamination in place at the end of active remedial activities are assumed to have the most concern to the public. Alternative 1 received the lowest score. Alternatives 2 and 3 ranked similarly.

6.3.7 Restoration Time Frame

Restoration Time Frame (RTF) is evaluated using the following factors described in WAC 173-340-360(4)(b)(i through ix):

- 1. Potential risks posed by the site to human health and the environment.
- 2. Practicability of achieving a shorter restoration timeframe.
- 3. Current use of the site.
- 4. Potential future use of the site.
- 5. Availability of alternative water supplies.
- 6. Likely effectiveness and reliability of institutional controls.
- 7. Ability to monitor and control migration of hazardous substances from the site.
- 8. Toxicity of hazardous substances at the site.
- 9. Natural processes that reduce concentrations of hazardous substances at the site.

Estimates of restoration time frame are necessarily subjective. Each of the alternatives is assumed to provide a reasonable restoration time frame. Actual estimates of effectiveness are premature without performance monitoring data regarding actual effectiveness. Reasonable restoration time frame was ranked based upon the general aggressiveness of each of the technologies and perceived certainty associated with the technology. Alternative 1 received the lowest score given a lack of active remediation resulting in a longer restoration time frame. Alternative 2 was the next lowest score and Alternative 3 was the highest ranked option.

6.4 Benefit Value Determination

Average criterion scores determined in Section 6.3 are multiplied by weighting. Weighting factors adapted from those established by Ecology are used to determine the total weighted scores:

Criteria	Weighting Factor
Protectiveness	30%
Permanence	25%
Long Term Effectiveness	20%
Short-Term Risk Management	5%
Implementability	5%
Public Concerns	10%
Restoration Time Frame	5%
Total	100%

Each criterion is multiplied by the weighting factor and the products summed to determine each Alternative's Benefit Value. The scoring of these values is summarized in Table 7, *Remedial Alternatives Evaluation / Disproportionate Cost Analysis*.

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u> The results show that Alternative 3 is the preferred alternative for the non-cost criteria, as it results in the highest overall benefit value. Alternative Benefit Values are compared to Estimated Alternative Costs, discussed below.

6.4.1 Estimated Alternative Costs

Cost is defined in WAC 173-340-360(f)(iii) as:

"The cost to implement the alternative, including the cost of construction, the net present value of any long-term costs, and agency oversight costs that are cost recoverable. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs, and the cost of maintaining institutional controls. Cost estimates for treatment technologies shall describe pretreatment, analytical, labor, and waste management costs. The design life of the cleanup action shall be estimated and the cost of replacement or repair of major elements shall be included in the cost estimate."

Estimated Alternative costs have been estimated for each of the remedial alternatives based on the descriptions and associated assumptions presented above. The expected accuracy range of the cost estimates is -30% to +50%. Costs are based on typical costs for Washington State, and the current knowledge of the Site. All costs are assumed to be for newly purchased equipment. Cost estimates are not based upon refurbished or used equipment. Estimated capital costs are based on current dollar values. Estimated recurring costs and periodic costs associated with system operation and maintenance, performance and compliance monitoring, and Site closure activities are adjusted to reflect the net present value. The following table summarizes estimated costs for each alternative. These costs are for comparison purposes only and actual implementation costs will vary from those provided. Estimated costs incorporate a variety of necessary assumptions and the validity of those assumptions cannot be fully known at this time.

Remedial Alternatives Cost Summary		
Alternative Number	Remedial Alternative	Estimated Alternative Costs
1	Natural Attenuation, Containment, and Institutional Controls	\$ 91,140
2	High Vacuum Dual-Phase Extraction, and Monitoring	\$513,743
3	PCS Removal, In-Situ Treatment via BOS 200 [®] & Hydrocarbon-Degrading Microbes, and Monitoring	\$366,890

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u>

6.5 Disproportionate Cost Analysis

The disproportionate cost analysis is made by comparing Alternative Benefit Values from Section 6.3, to each remedial alternative's estimated cost from Section 6.4. Based upon WAC 173-340-360(3)(e), a cleanup action shall not be considered practicable *"if the incremental cost of the alternative over that of a lower cost alternative exceeds the incremental degree of benefits achieved by the alternative over that of the other lower cost alternative."*

Disproportionate Cost Analysis			
Alternative Number	Cost	Benefit Value	Cost per Benefit Value
1	\$ 91,140	2.01	\$ 45,343
2	\$513,743	3.64	\$141,203
3	\$366,890	3.80	\$96,550

This comparison is provided below:

The results of the disproportionate cost analysis show that the cost per benefit value of Alternative 1 is least. The results also show that Alternatives 3 and 2 are each incrementally more costly per Benefit Value than Alternative 1. Based solely upon analysis of disproportionate cost, Alternative 1 is the preferred alternative. However, other practicable alternatives provide a significantly shorter time frame than Alternative 1 [WAC 173-340-360 (4)(b)(i)]. Alternatives 2 and 3 have similar, shorter projected timeframes for meeting cleanup levels and points of compliance. Of those alternatives, Alternative 1 has the least cost per benefit value and total benefit. Therefore, the results of the disproportionate cost analysis for practicable alternatives with similar reasonable restoration timeframes show that Alternative 3 is the preferred alternative. The analysis of disproportionate cost is included in the attachments graphically as *Chart 1, Disproportionate Cost Analysis*.

6.6 Selection of Preferred Alternative

Selection of the preferred alternative for the Site takes into account the following considerations:

- RAOs for the;
- Restoration Timeframe;
- Regulatory requirements;
- Disproportionate Cost Analysis; and
- The Site's continued retail operation.

Based solely on the Disproportionate Cost Analysis, Alternative 1 would be the preferred alternative, as Alternatives 3 and 2 are incrementally more costly per benefit value. While all three alternatives are assumed to meet RAOs, Alternative 1 has a restoration timeframe of between 10 and 15 years, and other practicable alternatives have significantly shorter restoration timeframes of between 2 and 5 years.

Meeting regulatory requirements is also not as certain for Alternative 1 as the other two, more active remedial alternatives. However, Alternatives 2 and 3 are likely to still leave some contamination in place either at depth and/or within the ROW thereby still requiring the need for institutional controls to achieve MTCA cleanup standards. The Cost per Benefit Value for Alternative 1 is about half of Alternative 3, and about a third of Alternative 2. Also, while Alternative 1 has a longer restoration timeframe, Alternatives 3 and 2 are incrementally more costly, with the Site likely still needing institutional controls.

The Site is currently completely capped with asphalt, concrete, buildings, and infrastructure and, unless disturbed, are not available for potential direct contact or ingestion. As such, the additional benefit gained by Alternatives 2 and 3 is disproportionate to the additional cost, particularly given the challenges associated with navigating Site utilities and infrastructure to implement each of those alternatives, likely still requiring the need for institutional controls to achieve MTCA cleanup standards.

Based on the above, it is AEG's professional opinion that Alternative 1 is the preferred alternative.

7.0 LIMITATIONS

This report summarizes the findings of the services authorized under our agreement with Mr. Nicholas Bahn. It has been prepared using generally accepted professional practices, related to the nature of the work accomplished. This report was prepared for the exclusive use of Mr. Bahn and his designated representatives for the specific application to the project purpose.

Recommendations, opinions, site history, and proposed actions contained in this report apply to conditions and information available at the time this report was completed. Since conditions and regulations beyond our control can change at any time after completion of this report, or our proposed work, we are not responsible for any impacts of any changes in conditions, standards, practices, and/or regulations subsequent to our performance of services. We cannot warrant or validate the accuracy of information supplied by others, in whole or part.

8.0 REFERENCES

American Society for Testing and Materials (ASTM) Standard E 1903-11. *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

American Society for Testing and Materials (ASTM) E 1943-98 (2015), *Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites*

Associated Environmental Group, LLC (AEG). 2011. *Supplemental Site Characterization*, dated September 14, 2011.

Associated Environmental Group, LLC (AEG). 2012. Supplemental Remedial Investigation – 2^{nd} Phase, dated April 5, 2012.

Associated Environmental Group, LLC (AEG). 2013. November 2012 Groundwater Event Report, dated February 8, 2013.

Associated Environmental Group, LLC (AEG). 2013. March 2013 Quarterly Groundwater Sampling Results, dated May 6, 2013.

Associated Environmental Group, LLC (AEG). 2015. September 2015 Quarterly Groundwater Sampling Results Report, dated October 2, 2015.

Associated Environmental Group, LLC (AEG). 2016. November 2015 Quarterly Groundwater Sampling Results Report, dated January 25, 2016.

Associated Environmental Group, LLC (AEG). 2016. *Remedial Investigation*, dated December 29, 2016.

Associated Environmental Group, LLC (AEG). 2019. *Remedial Investigation Addendum & Opinion Letter Response*, dated April 5, 2019.

Envitech, LLC 2011. Phase I Environmental Site Assessment Report, dated November 8, 2010.

Envitech, LLC 2011. Phase II Environmental Site Assessment Report, dated April 26, 2011.

Quality Environmental Services Team, Inc (QUEST). 1998. *Results of Underground Storage Tank Removal and Site Remediation Program at "Manor market", 36096 164th Street SW, Lynnwood, WA*. US EPA. 1991. Engineering Bulletin, Granular Activated Carbon Treatment, EPA/540/2-91/024, October 1991.

US EPA OSWER Directive 9200.4-17P. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites.

US EPA OSWER Publication 9200.2-154. June 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air.

Washington State Department of Ecology. 2004. *Collecting and Preparing Soil Samples for VOC Analysis*, Implementation Memorandum #5.

Washington State Department of Ecology. 2005. Guidance on Remediation of Petroleum-Contaminated Ground Water by Natural Attenuation.

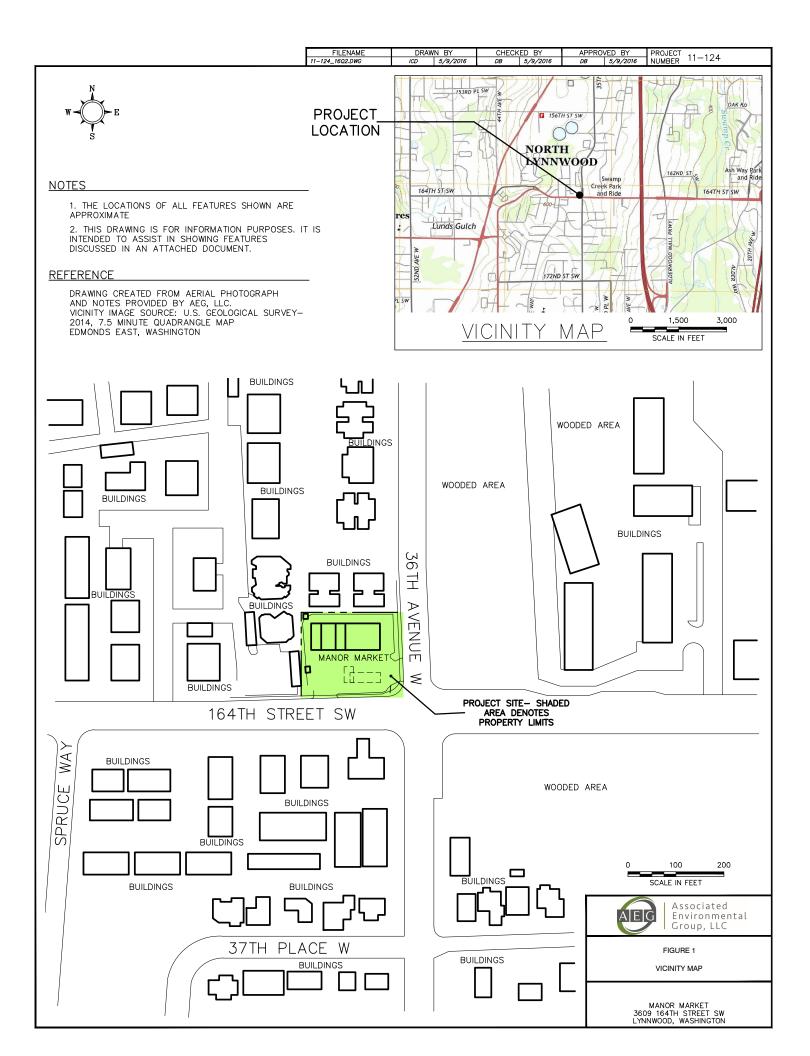
Washington State Department of Ecology. 2008. *Periodic Review, Crystal Cleaners, Facility Site ID#: 32839377.* Dated November 2008.

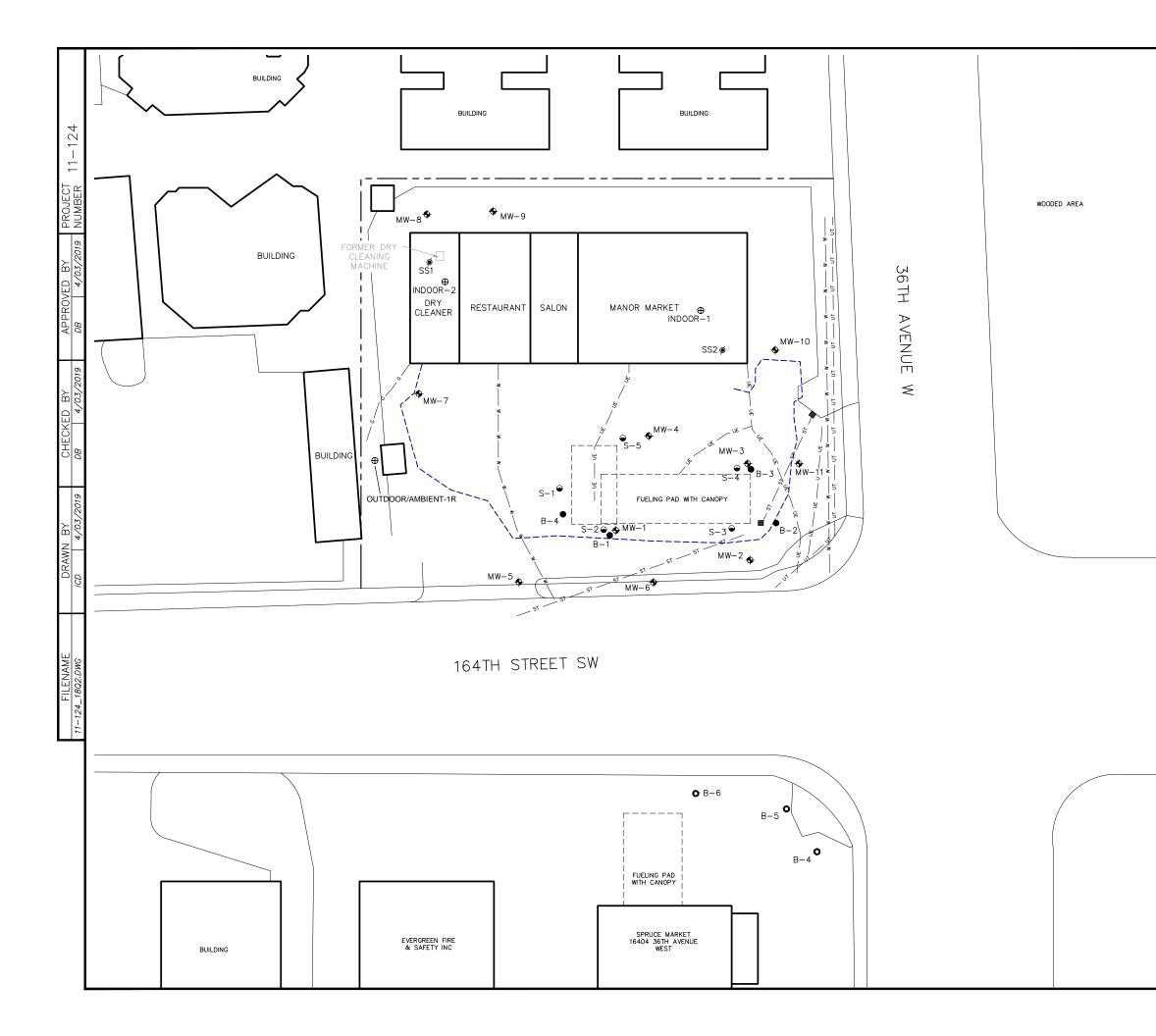
Washington State Department of Ecology. 2009. *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Publication number 09-09-047. DRAFT.

Washington State Department of Ecology. 2013. *Model Toxic Control Act Statute and Regulation* – *Chapter 173-340 WAC*, Publication number 94-06 (Revised 2013).

Washington State Department of Ecology. 2013. *Opinion on Proposed Remedial Action for Manor Market Deli*, dated August 28, 2013.

Washington State Department of Ecology. 2017. Opinion on Proposed Remedial Action for Manor Market Deli, dated July 3, 2017.


Washington State Department of Ecology. 2017. Opinion on Proposed Remedial Action for Manor Market Deli, dated December 29, 2017.


Washington State Department of Ecology. 2019. Opinion on Proposed Remedial Action for Manor Market Deli, dated September 12, 2019.

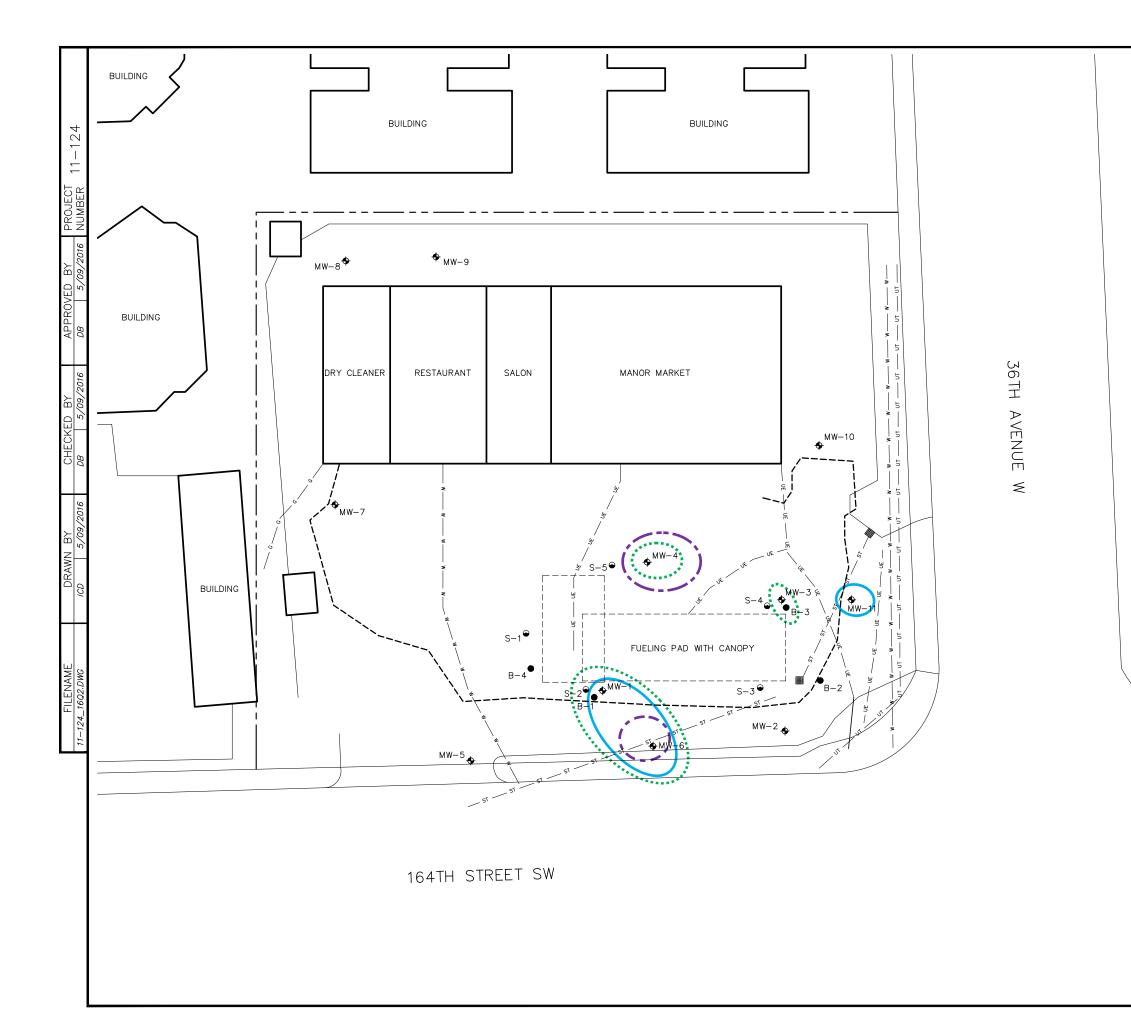
Washington State Department of Natural Resources. 2013. *The Geology of Washington State*, http://file.dnr.wa.gov/publications/ger_geol_map_washington_pagesize.pdf.

FIGURES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502-5751 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

LEGEND			
	APPROXIMATE PROPERTY LINE		
MW-1 💠	GROUNDWATER MONITORING WELL LOCATION		
B−1 ●	SOIL BORING LOCATION		
B-4 O	BORING LOCATION		
S−1 🕤	SOIL SAMPLE LOCATION		
SS1 Ø	SUB SLAB LOCATIONS		
⊕ INDOOR-1	INDOOR AIR LOCATIONS		
	CATCH BASIN		
— UE — UE —	BURIED ELECTRICAL LINE		
UT UT	BURIED TELEPHONE LINE		
w	WATER LINE		
ST ST	STORMWATER DRAIN LINE		
c c	BURIED NATURAL GAS LINE		
	EXTENT OF EXCAVATION		

NOTES


1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

<u>REFERENCE</u>

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

<u>LEGEND</u>

WOODED AREA

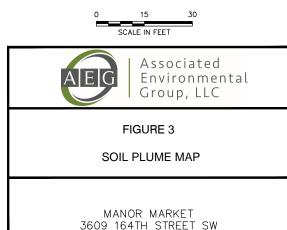
MW-1 🗣	- APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION
B−1 ●	SOIL BORING LOCATION
S-1 🕤	SOIL SAMPLE LOCATION
	CATCH BASIN
UE UE	BURED ELECTRICAL LINE
UT UT	BURED TELEPHONE LINE
ww	WATER LINE
ST ST	STORMWATER DRAIN LINE
G G	BURED NATURAL GAS LINE
	EXTENT OF EXCAVATION

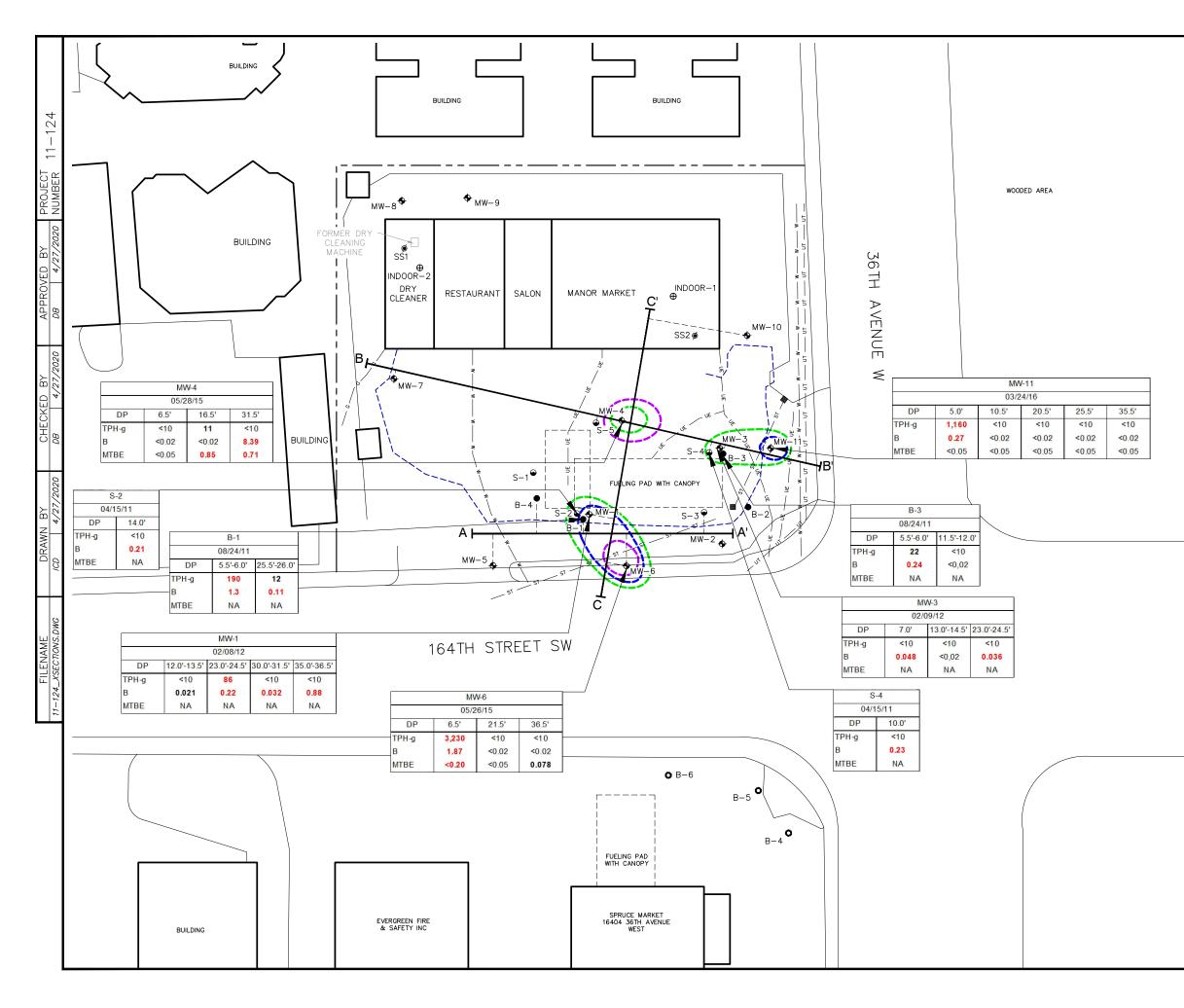
NOTES

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

<u>REFERENCE</u>


DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

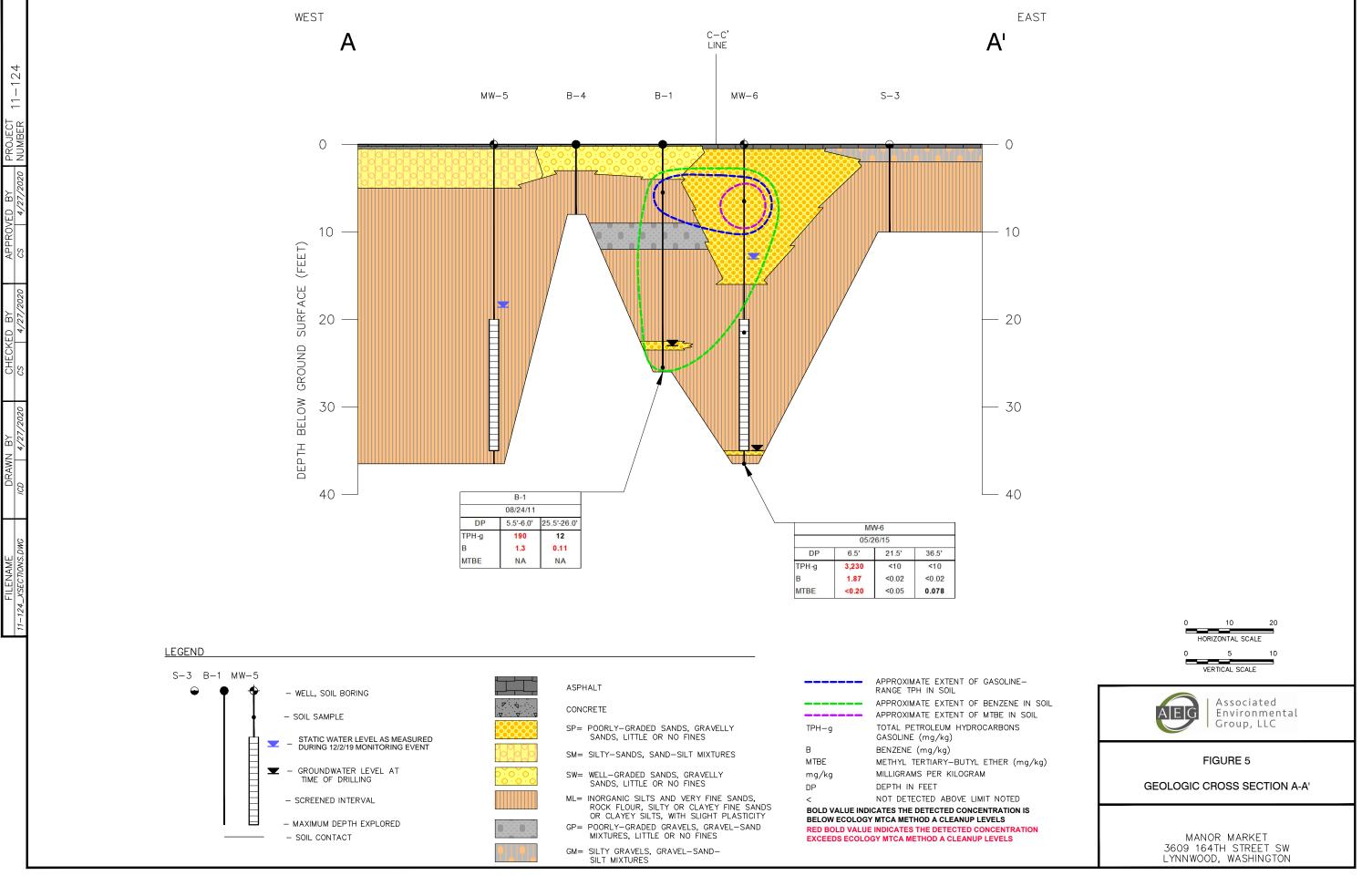

APPROXIMATE EXTENT OF GASOLINE-RANGE TPH IN SOIL

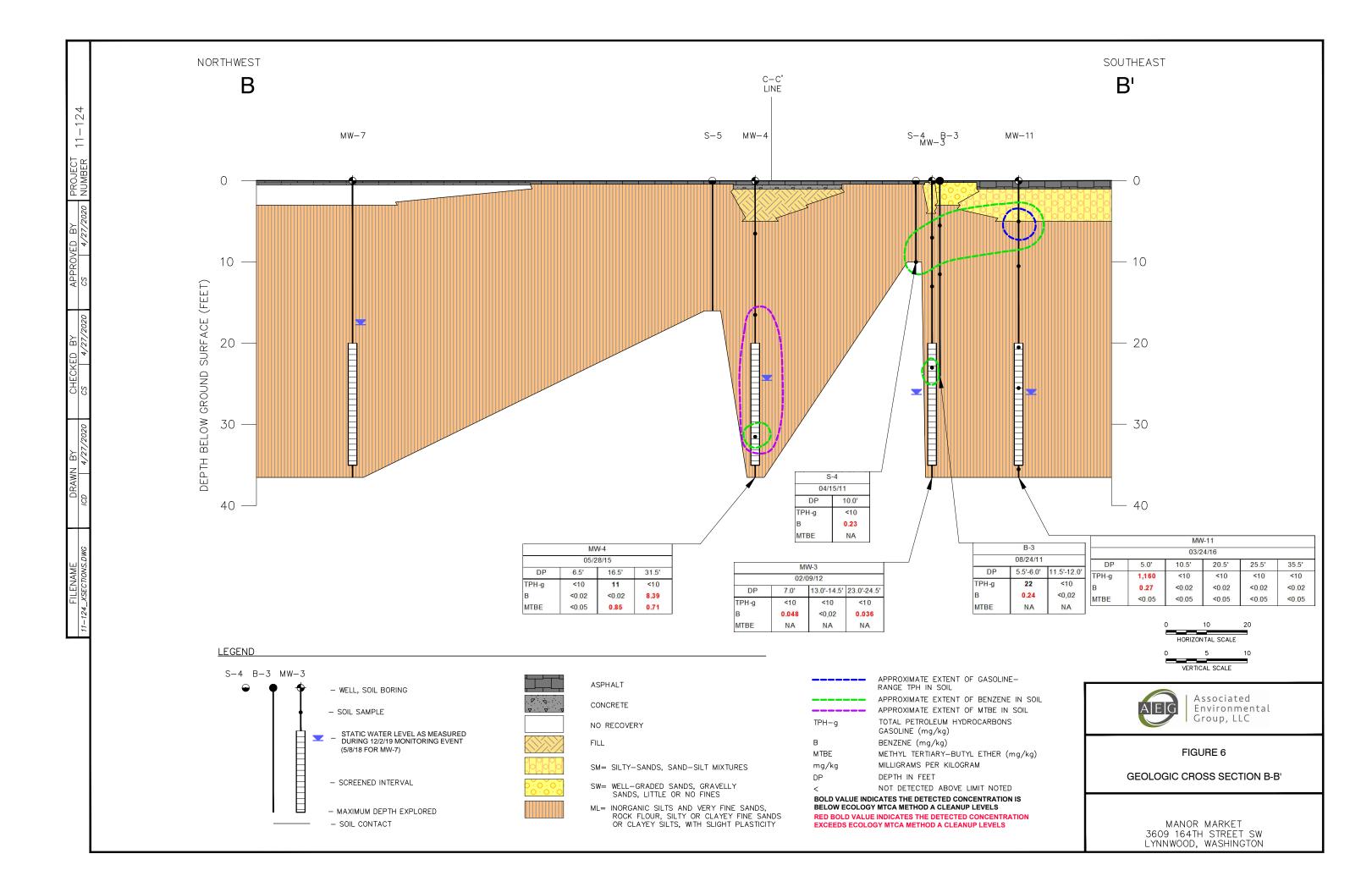
APPROXIMATE EXTENT OF BENZENE IN SOIL

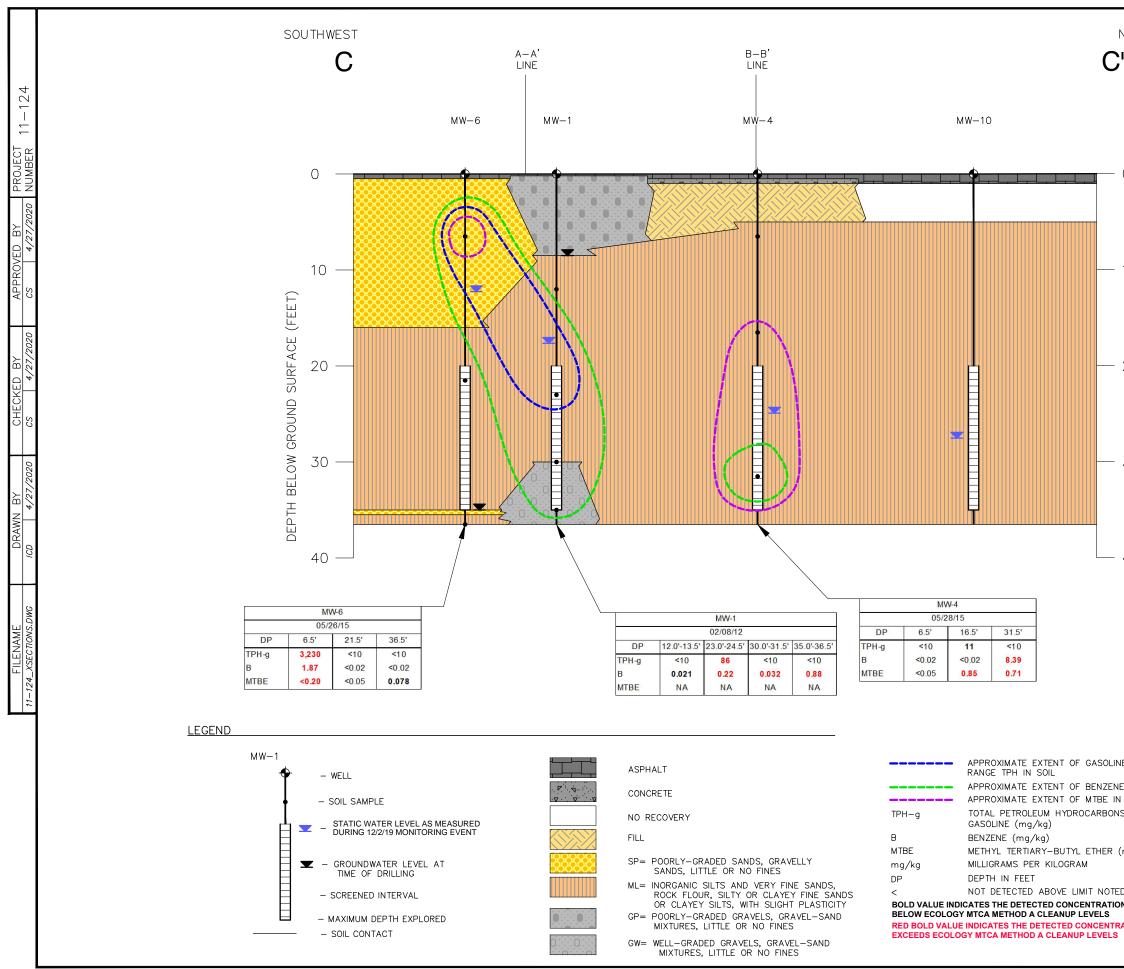
APPROXIMATE EXTENT OF MTBE IN SOIL

3609 164TH STREET SW LYNNWOOD, WASHINGTON

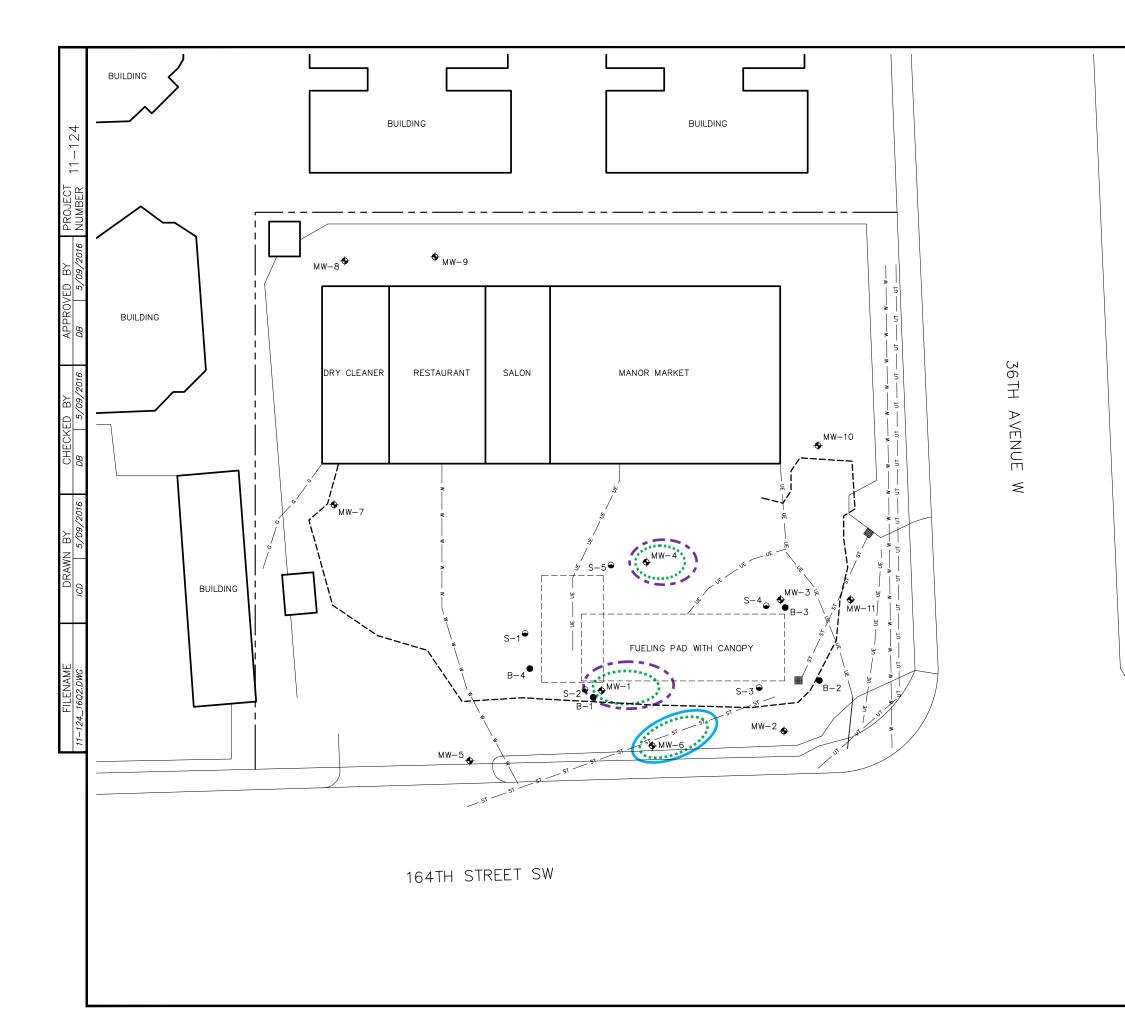
Ņ	
W - E	
\sim	
LEGEND	
	_
MW-1 + GROUNDWATER MONITORING WELL LOCATION	
B-1 • SOIL BORING LOCATION	
B-4 O BORING LOCATION	
S−1	
SS1 ♥ SUB SLAB LOCATIONS ⊕ INDOOR AIR LOCATIONS	
INDOOR-1	
CATCH BASIN — ue — ue — BURIED ELECTRICAL LINE	
- ut - UT - BURIED TELEPHONE LINE	
— st — st — STORMWATER DRAIN LINE	
Generation Survey of Extent of Excavation	
APPROXIMATE EXTENT OF GASOLINE- RANGE TPH IN SOIL	
APPROXIMATE EXTENT OF BENZENE IN S	SOIL
APPROXIMATE EXTENT OF MTBE IN SOIL	
TPH-g TOTAL PETROLEUM HYDROCARBONS GASOLINE (mg/kg)	
B BENZENE (mg/kg)	
MTBE METHYL TERTIARY-BUTYL ETHER (mg/k	g)
mg/kg MILLIGRAMS PER KILOGRAM	
DP DEPTH IN FEET	
< NOT DETECTED ABOVE LIMIT NOTED	
BOLD VALUE INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY MTCA METHOD A CLEANUP LEVELS	
RED BOLD VALUE INDICATES THE DETECTED CONCENTRATIO	N
EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS	
A H H A' LINE OF LITHOLOGIC CROSS SECTION AND PROJECTION LINE OR	
BORING/WELL	
NOTES	
NOTES	-
1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE	
2. THIS DRAWING IS FOR INFORMATION PURPOSES. I INTENDED TO ASSIST IN SHOWING FEATURES	r is
DISCUSSED IN AN ATTACHED DOCUMENT.	
REFERENCE	_
DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.	
0 20 40	
SCALE IN FEET	




Associated Environmental Group, LLC


FIGURE 4

SOIL PLUME MAP WITH GEOLOGIC CROSS SECTIONS A-A', B-B', AND C-C'


> MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON

NORTHEAST	
<i>,</i>	
0	
10	
20	
- 30	
00	
40	
	0 10 20
	HORIZONTAL SCALE
INE-	VERTICAL SCALE
NE IN SOIL IN SOIL NS	Associated Environmental Group, LLC
(mg/kg)	FIGURE 7
ED	GEOLOGIC CROSS SECTION C-C
ON IS	
S	MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON

<u>LEGEND</u>

WOODED AREA

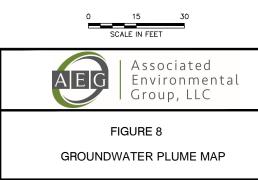
MW-1 🗣	APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION
B-1 🕈	SOIL BORING LOCATION
S−1 👄	SOIL SAMPLE LOCATION
	CATCH BASIN
UE UE	BURED ELECTRICAL LINE
UT UT	BURED TELEPHONE LINE
w	WATER LINE
ST ST	STORMWATER DRAIN LINE
	BURED NATURAL GAS LINE
	EXTENT OF EXCAVATION

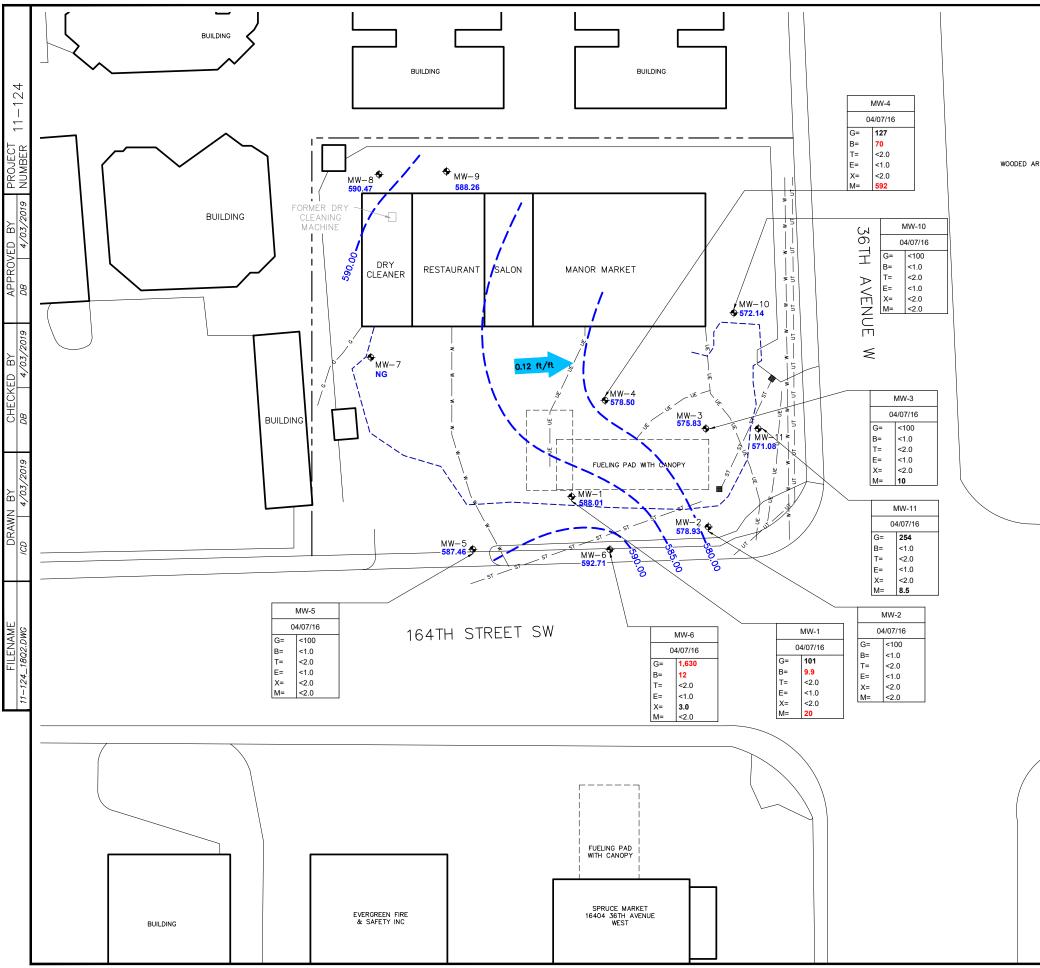
NOTES

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

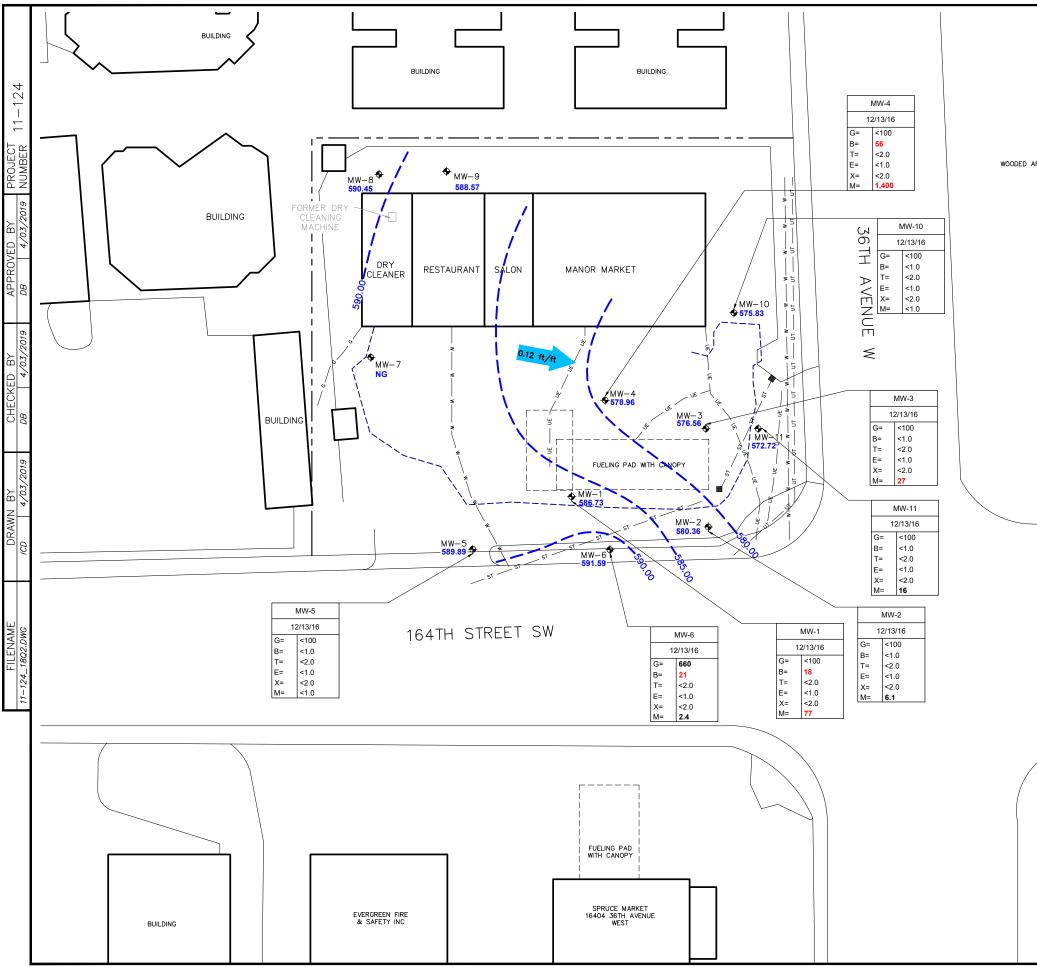
<u>REFERENCE</u>


DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC.

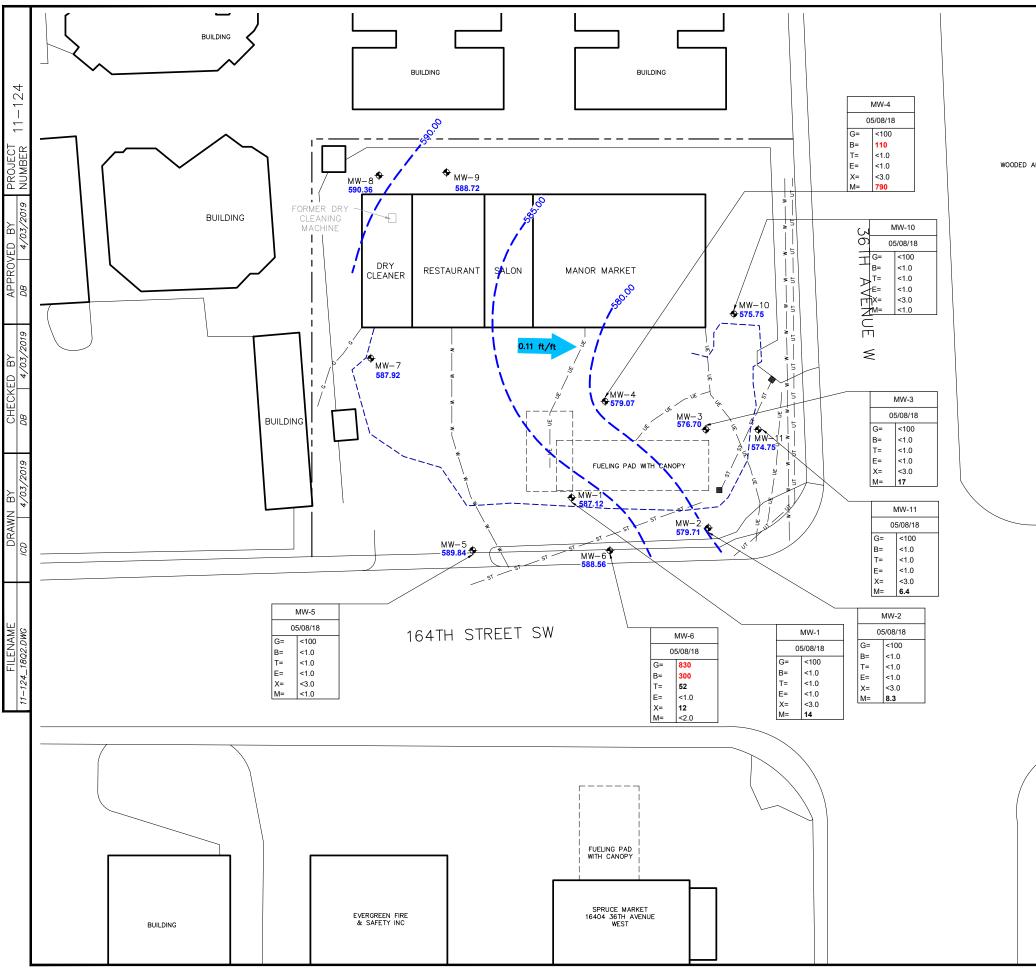

APPROXIMATE EXTENT OF GASOLINE-RANGE TPH IN GROUNDWATER

APPROXIMATE EXTENT OF BENZENE IN GROUNDWATER

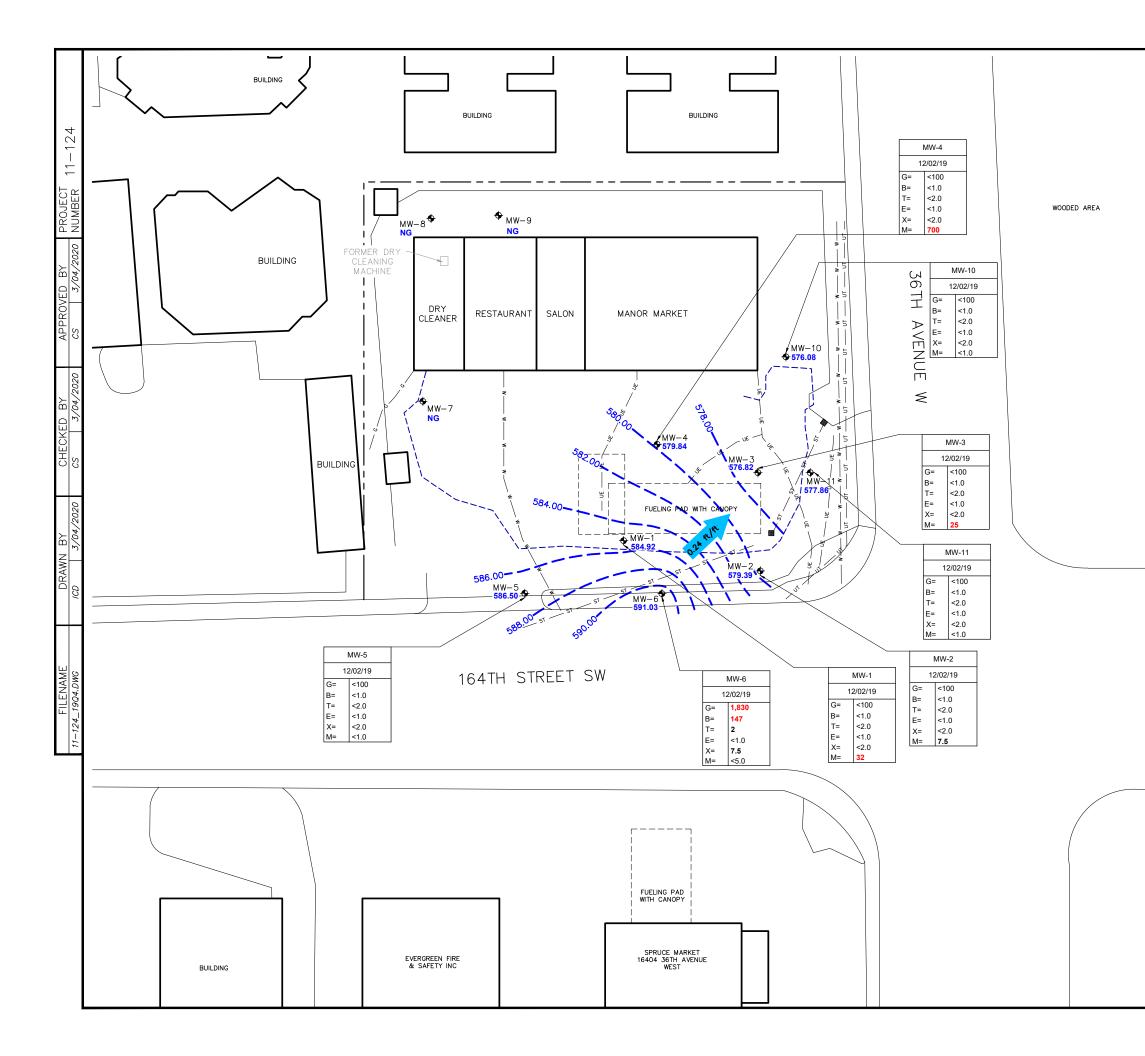
APPROXIMATE EXTENT OF MTBE IN GROUNDWATER



MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON


WOODED AREA

LEGEND	S S		
 MW-1 �	- APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION		
UE UE UE UE UT	CATCH BASIN BURIED ELECTRICAL LINE BURIED TELEPHONE LINE WATER LINE STORMWATER DRAIN LINE BURIED NATURAL GAS LINE EXTENT OF EXCAVATION GROUNDWATER ELEVATION (FEET) GROUNDWATER ELEVATION CONTOUR LINE (FEET) CONTOUR INTERVAL=5.00 FEET		
0.12 ft/ft NG G B T E X M μg/L <	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft) NOT GAUGED TOTAL PETROLEUM HYDROCARBONS AS GASOLINE (μg/L) BENZENE (μg/L) TOLUENE (μg/L) TOTAL XYLENES (μg/L) METHYL TERT-BUTYL ETHER (μg/L) MICROGRAMS PER LITER NOT DETECTED ABOVE LIMIT NOTED BOLD VALUE INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY		
NOTES	MTCA METHOD A CUL RED BOLD VALUE INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS		
APPROXIMA 2. THIS DR INTENDED	1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE 2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.		
REFERENCE DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC. 20 40 SCALE IN FEET			
Associated Environmental Group, LLC			
GROUNI	FIGURE 9 GROUNDWATER ELEVATION CONTOUR MAP 04/07/2016		
MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON			


WOODED AREA

L	EGEND		
	 MW-1 �	APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION	
	UE UE UE UT UT ST ST 576.56 580.00	CATCH BASIN BURIED ELECTRICAL LINE BURIED TELEPHONE LINE WATER LINE STORMWATER DRAIN LINE BURIED NATURAL GAS LINE EXTENT OF EXCAVATION GROUNDWATER ELEVATION (FEET) GROUNDWATER ELEVATION CONTOUR LINE (FEET) CONTOUR INTERVAL=5.00 FEET	
	0.12 ft/ft NG G B T E X	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft) NOT GAUGED TOTAL PETROLEUM HYDROCARBONS AS GASOLINE (µg/L) BENZENE (µg/L) TOLUENE (µg/L) ETHYLBENZENE (µg/L) TOTAL XYLENES (µg/L)	
	Μ μg/L < OTES	METHYL TERT-BUTYL ETHER (µg/L) MICROGRAMS PER LITER NOT DETECTED ABOVE LIMIT NOTED BOLD VALUE INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY MTCA METHOD A CUL RED BOLD VALUE INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS	
_	1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE 2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. REFERENCE DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC. 0 20 40		
	SCALE IN FEET Associated Environmental Group, LLC		
	FIGURE 10 GROUNDWATER ELEVATION CONTOUR MAP 12/13/2016		
	MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON		

WOODED AREA

	W - E		
LEGEND	Ś		
<u></u> MW-1 \$	APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION		
UEUE UTUT WW STST GG 576.70	CATCH BASIN BURIED ELECTRICAL LINE BURIED TELEPHONE LINE WATER LINE STORMWATER DRAIN LINE BURIED NATURAL GAS LINE EXTENT OF EXCAVATION GROUNDWATER ELEVATION (FEET)		
580.00	GROUNDWATER ELEVATION CONTOUR LINE (FEET) CONTOUR INTERVAL=5.00 FEET APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)		
NG G T E X M	NOT GAUGED TOTAL PETROLEUM HYDROCARBONS AS GASOLINE (μg/L) BENZENE (μg/L) TOLUENE (μg/L) ETHYLBENZENE (μg/L) TOTAL XYLENES (μg/L) METHYL TERT-BUTYL ETHER (μg/L)		
∭ µg/L _	MICROGRAMS PER LITER NOT DETECTED ABOVE LIMIT NOTED BOLD VALUE INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY MTCA METHOD A CUL RED BOLD VALUE INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS		
	ATIONS OF ALL FEATURES SHOWN ARE		
APPROXIMATE 2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.			
REFERENCE DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC. 0 20 40 SCALE IN FEET			
AEG Associated Environmental Group, LLC			
GROUNI	FIGURE 11 GROUNDWATER ELEVATION CONTOUR MAP 05/08/2018		
	MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON		

LEGEND	2	
	- APPROXIMATE PROPERTY LINE GROUNDWATER MONITORING WELL LOCATION	
UE UE UE	BURIED NATURAL GAS LINE EXTENT OF EXCAVATION GROUNDWATER ELEVATION (FEET) GROUNDWATER ELEVATION CONTOUR LINE (FEET) CONTOUR INTERVAL=2.00 FEET	
0.24 ft/ft	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft) NOT GAUGED	
G B T E X M μg/L <	TOTAL PETROLEUM HYDROCARBONS AS GASOLINE (μg/L) BENZENE (μg/L) TOLUENE (μg/L) ETHYLBENZENE (μg/L) TOTAL XYLENES (μg/L) METHYL TERT-BUTYL ETHER (μg/L) MICROGRAMS PER LITER NOT DETECTED ABOVE LIMIT NOTED BOLD VALUE INDICATES THE DETECTED CONCENTRATION IS BELOW ECOLOGY MTCA METHOD A CUL RED BOLD VALUE INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS	
REFERENCE		
DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG, LLC. 20 40		
	SCALE IN FEET	
ASSOCIATED Environmental Group, LLC		
	FIGURE 12	
GROUNE	GROUNDWATER ELEVATION CONTOUR MAP 12/02/2019	
	MANOR MARKET 3609 164TH STREET SW LYNNWOOD, WASHINGTON	

TABLES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502-5751 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Table 1 - Summary of Soil Analytical Results Manor Market (11-124) Lynnwood, WA

Comula	Date	Depth			Heerny			Select V	olatile Orga	nic Compo	unds		
Sample Number	Sampled	Sampled	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl-	Total	MTBE	PCE	TCE	Vinyl
	Ĩ	(feet)	Envirian		Source /			benzene	Xylenes Jap Provid		102	TOL	Chloride
T150@121	1/16/1000	-		imentai	Services		-	-		-	1	1	
T1FS@12' T2FS@13'	1/16/1998 1/16/1998	12 13	7 <5.0			<0.1	<0.1	<0.1	<0.3 <0.3				
								0.1					
T3FS@13'	1/16/1998	13	<5.0			0.1	<0.1	0.2	<0.3				
NW@12' SW@11'	1/16/1998 1/16/1998	12 13	8 <5.0			<0.1 0.1	0.1 <0.1	<0.1	0.5 <0.3				
DISPL@4'		4	<5.0				<0.1	<0.1	< 0.3				
DISPL@4 DISPL@7'	1/20/1998 1/20/1998	7	<5.0			<0.1 <0.1	<0.1	<0.1	<0.3				
PIPING@11'	1/20/1998	11	<5.0			<0.1	<0.1	<0.1	<0.3				
FIFING@11	1/20/1998	11	₹3.0			vivtech (2		<0.1	<0.5				
S1-9	9.0	4/15/2011	<10	<50	<100	<0.02	<0.05	< 0.05	< 0.15				
S2-14	9.0	4/15/2011	<10	<50	<100	<0.02 0.21	< 0.05	< 0.03	<0.13				
S3-10	14.0	4/15/2011	<10	<50	<100	0.21	<0.05	<0.05	<0.15				
S4-10	10.0	4/15/2011	<10	<50	<100	0.02	0.14	0.11	0.13				
S5-16	16.0	4/15/2011	<10	<50	<100	<0.02	<0.05	<0.05	<0.15				
55-10	10.0	4/13/2011					<0.03 up, LLC (2						
B1-S3-5.5/6.0	8/24/2011	5.5-6.0	190			1.3	2.0	5.0	12				
B1-S7-25.5/26.0	8/24/2011	25.5-26.0	12			0.11	<0.02	<0.05	0.11				
B1-57-25.5720.0 B2-S5-11.5/12.0	8/24/2011	11.5-12.0	<10			<0.02	<0.02	< 0.05	<0.15				
B2-S8-16.5/17.0	8/24/2011	16.5-17.0	<10			<0.02	<0.02	<0.05	<0.15				
B3-S2-5.5/6.0	8/24/2011	5.5-6.0	22			0.24	0.67	0.48	0.73		< 0.02	< 0.03	< 0.02
B3-S6-11.5/12.0	8/24/2011	11.5-12.0	<10			<0.02	<0.02	<0.05	<0.15				
B3-50-11.5/12.0 B4-S3-7.5/8.0	8/24/2011	7.5-8.0	<10			<0.02	< 0.02	< 0.05	<0.15				
MW1-S1/12-13.5	2/8/2012	12.0-13.5	<10			0.02	<0.10	<0.05	<0.15				
MW1-S1/12-13.5 MW1-S2/23-24.5	2/8/2012	23.0-24.5	86			0.021	<0.10	< 0.05	<0.15				
MW1-S3/30-31.5	2/8/2012	30.0-31.5	<10			0.032	0.11	< 0.05	<0.15				
MW1-S4/35-36.5	2/8/2012	35.0-36.5	<10			0.88	<0.10	< 0.05	<0.15				
MW2-S1/23-24.5	2/8/2012	23.0-24.5	<10			< 0.02	<0.10	< 0.05	<0.15				
MW3-S1/7	2/9/2012	7.0	<10			0.048	0.20	0.27	1.1				
MW3-S2/23-24.5	2/9/2012	23.0-24.5	<10			0.036	0.10	< 0.05	< 0.15				
MW3-S3/13-14.5	2/9/2012	13.0-14.5	<10			< 0.02	< 0.10	< 0.05	< 0.15				
MW4-6.5	5/28/2015	6.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW4-16.5	5/28/2015	16.5	11			< 0.02	< 0.03	< 0.03	< 0.03	0.85			
MW4-31.5	5/28/2015	31.5	<10			8.39	< 0.03	< 0.03	< 0.03	0.71			
MW5-6.5	5/26/2015	6.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW5-16.5	5/26/2015	16.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW5-21.5	5/26/2015	21.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW5-36.5	5/26/2015	36.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW6-6.5	5/26/2015	6.5	3,230			1.87	1.15	1.62	4.38	<0.20			
MW6-21.5	5/26/2015	21.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	< 0.05			
MW6-36.5	5/26/2015	36.5	<10			< 0.02	< 0.03	< 0.03	< 0.03	0.078			
MW7-3.0	5/27/2015	3.0									< 0.02	< 0.02	< 0.02
MW7-21.5	5/27/2015	21.5									< 0.02	< 0.02	< 0.02
MW7-31.5	5/27/2015	31.5									< 0.02	< 0.02	< 0.02
MW8-16.5	5/27/2015	16.5									< 0.02	< 0.02	< 0.02
MW8-26.5	5/27/2015	26.5									< 0.02	< 0.02	< 0.02
MW8-31.5	5/27/2015	31.5									< 0.02	< 0.02	< 0.02
MW9-6.5	5/27/2015	6.5									< 0.02	< 0.02	< 0.02
MW9-11.5	5/27/2015	11.5									< 0.02	< 0.02	< 0.02
MW9-31.5	5/27/2015	31.5									< 0.02	< 0.02	< 0.02
L					1			1	1	r			

Table 1 - Summary of Soil Analytical Results Manor Market (11-124) Lynnwood, WA

Sample	Date	Depth			Heavy			Select V	olatile Orga	nic Compo	unds		
Number	Sampled	Sampled (feet)	Gasoline	Diesel	Oil	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	PCE	TCE	Vinyl Chloride
MW10-6.5	3/24/2016	6.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW10-16.5	3/24/2016	16.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW10-21.5	3/24/2016	21.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW10-31.5	3/24/2016	31.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW10-36.5	3/24/2016	36.5	<10		-	< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW11-5.0	3/24/2016	5.0	1,160			0.27	0.95	8.2	19	< 0.05			
MW11-10.5	3/24/2016	10.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW11-20.5	3/24/2016	20.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW11-25.5	3/24/2016	25.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
MW11-35.5	3/24/2016	35.5	<10			< 0.02	< 0.10	< 0.05	< 0.15	< 0.05			
	PQL		10	50	100	0.02	0.02/0.10	0.03/0.05	0.03/0.15	0.05	0.02	0.02/0.03	0.02
MTCA Metho	od A Cleanup	Levels	30*	2,000	2,000	0.03	7	6	9	0.10	0.05	0.03	0.67**

Notes:

All values are presented in milligrams per kilogram (mg/kg)

-- = Not analyzed for this constituent

< = Not detected above laboratory limits

* TPH-Gasoline Cleanup Level with the presence of Benzene anywhere at the Site

** Method B cleanup level; Method A cleanup level not established

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

MTBE = Methyl tertiary-butyl ether PCE = Tetrachloroethylene

TCE = Trichloroethylene

Table 2 - Summary of Groundwater Analytical Results

Manor Market (11-124)

Lynnwood, WA

	~						Sele	ct Volatil	e Organic Comp	ounds							
Well Number	Date Sampled	Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDC	EDB	Total Naphthalenes	MTBE	PCE	TCE	<i>cis</i> -1,2- DCE	trans-1,2- DCE	VC	Total Lead	Dissolved Lead
	3/1/2012	<100	9.9	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	<5.0						<5.0	
-	11/20/2012 3/28/2013	<100	13	 <1.0	<1.0	<1.0	<1.0	 <0.01	<5.0	 76.0						<5.0	
Ī	5/30/2013	<100	13.2	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	76.0 111						<3.0 19.9	
	6/4/2015	<100	3.9	<2.0	<1.0	<3.0				315							
	9/2/2015	<100	5.1	<1.0	<1.0	<1.0				122						7.1	<5.0
MW-1	11/24/2015	<100	19	<1.0	<1.0	<1.0				74							
	4/7/2016	101	9.9	<2.0	<1.0	<2.0				20							
	12/13/2016	<100	18	<2.0	<1.0	<2.0				77							
-	5/8/2018	<100	<1.0 <1.0	<1.0	<1.0	<3.0				14	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				32							
	3/1/2012	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	<5.0						<5.0	
	11/20/2012	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	<5.0						<5.0	
	3/28/2013	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	<5.0						<5.0	
	5/30/2013	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	<5.0						<5.0	
	6/4/2015 9/2/2015	<100	<1.0	<2.0	<1.0	<3.0				12.3							
MW-2	9/2/2015	<100 <100	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0				<5.0 <5.0						<5.0	<5.0
	4/7/2016	<100	<1.0	<2.0	<1.0	<2.0				<2.0							
	12/13/2016	<100	<1.0	<2.0	<1.0	<2.0				6.1							
	5/8/2018	<100	<1.0	<1.0	<1.0	<3.0				8.3	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
i l	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				7.5							
┢━━━━━┫	2/1/2012	.100	.1.0	.1.0	.1.0	.1.0	.1.0	.0.01	.5.0							.5.0	
1	3/1/2012 11/20/2012	<100 <100	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<0.01	<5.0	<5.0 <5.0						<5.0 <5.0	
- T	3/28/2013	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	8.3						< 6.8	
	5/30/2013	<100	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.01	<5.0	8						<5.0	
	6/4/2015																
MW-3	9/2/2015	<100	<1.0	<1.0	<1.0	<1.0				21						17.4	<5.0
	11/24/2015	<100	<1.0	<1.0	<1.0	<1.0				24							
	4/7/2016	<100	<1.0	<2.0	<1.0	<2.0				10	<1.0	<1.0	<1.0	<1.0	<1.0		
	12/13/2016 5/8/2018	<100 <100	<1.0	<2.0 <1.0	<1.0 <1.0	<2.0 <3.0				27 17	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
-	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				25	<1.0	<1.0	<1.0	<1.0	<0.2	<2.0	<2.0
	12/2/2019																
	6/4/2015	<100	470	<1.0	<1.0	<3.0				1,740							
	9/2/2015	<100	63	<1.0	<1.0	<1.0				344						<5.0	<5.0
	11/24/2015	<100	47	<1.0	<1.0	<1.0				975							
MW-4	4/7/2016	127	70	<2.0	<1.0	<2.0				592	<1.0	<1.0	<1.0	<1.0	<1.0		
	12/13/2016 5/8/2018	<100 <100	56 110	<2.0 <1.0	<1.0 <1.0	<2.0 <3.0				1,400 790	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	2.2
	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				700							
	6/4/2015	<100	<1.0	<1.0	<1.0	<1.0				<5.0							
	9/2/2015																
	11/24/2015	<100	<1.0	<1.0	<1.0	<1.0				<5.0							
MW-5	4/7/2016 12/13/2016	<100 <100	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0				<2.0 <1.0							
	5/8/2018	<100	<1.0	<2.0	<1.0	<2.0				<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				<1.0							
	6/4/2015	1,380	54	2.5	<1.0	7.0				<5.0							
	9/2/2015	1,020	22	<1.0	<1.0	6.6				<5.0						<5.0	<5.0
	11/24/2015 4/7/2016	1,630	12	<2.0	<1.0	3.0				<2.0							
MW-6	4/7/2016	1,030 660	21	<2.0	<1.0	3.0 <2.0				<2.0 2.4							
	5/8/2018	830	300	52	<1.0	12				<2.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
	12/2/2019	1,830	147	2	<1.0	7.5				<5.0							
I																	
MW-7	6/4/2015						<1.0				<1.0	<1.0	<1.0	<1.0	< 0.2		
	6/4/2015						<1.0				<1.0	<1.0	<1.0	<1.0	< 0.2		
MW-8																	
MW-9	6/4/2015						<1.0				<1.0	<1.0	<1.0	<1.0	< 0.2		
										<2.0							
	4/7/2016	<100	<1.0	<2.0	<1.0	<2.0				N2.0							
-	4/7/2016 12/13/2016	<100 <100	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0				<1.0							
MW-10	12/13/2016 5/8/2018	<100 <100	<1.0 <1.0	<2.0 <1.0	<1.0 <1.0	<2.0 <3.0				<1.0 <1.0							
MW-10	12/13/2016	<100	<1.0	<2.0	<1.0	<2.0				<1.0							

Table 2 - Summary of Groundwater Analytical Results

Manor Market (11-124)

Lynnwood, WA

Well	Data						Sele	ct Volatil	e Organic Compo	ounds						Total	Dissolved
Number	Date Sampled	Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDC	EDB	Total Naphthalenes	MTBE	PCE	TCE	<i>cis</i> -1,2- DCE	trans- 1,2- DCE	VC	Lead	Lead
	4/7/2016	254	<1.0	<2.0	<1.0	<2.0	<1.0			8.5	<1.0	<1.0	<1.0	<1.0	< 0.2		
	12/13/2016	<100	<1.0	<2.0	<1.0	<2.0	<1.0			16							
MW-11	5/8/2018	<100	<1.0	<1.0	<1.0	<3.0	-			6.4	<1.0	<1.0	<1.0	<1.0	< 0.2	<2.0	<2.0
	12/2/2019	<100	<1.0	<2.0	<1.0	<2.0				<1.0							
Р	YQL	100	1.0	1.0/2.0	1.0	1.0/2.0/3.0	1.0	0.01	5.0	2.0/5.0	1.0	1.0	1.0	1.0	0.2	2.0/5.0	2.0
	Method A 1p Levels	800*	5	1,000	700	1,000	5	0.01	160	20	5	5	160**	16**	0.2	15	15

Notes:

All values presented in micrograms per liter (μ g/L)

* Cleanup level with presence of benzene

PQL = Practical Quantification Limit

TPH = Total Petroleum Hydrocarbons

-- = Not analyzed for constituent

< = Not detected above laboratory limits

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level **Bold** indicates the detected concentration is below Ecology MTCA Method A cleanup levels ** MTCA Method B cleanup level; Method A cleanup level not established EDC = 1,2-Dichloroethane EDB = 1,2-Dibromoethane MTBE = Methyl tertiary-butyl ether PCE = Tetrachloroethylene TCE = Trichloroethylene DCE = Dichloroethylene

VC = Vinyl Chloride

Manor Market Groundwater Results

Associated Environmental Group, LLC

Table 3 - Summary of Indoor and Outdoor Air Analytical Results

Manor Market (11-124)

Lynnwood, Washington

Sar	nple Number	Indoor 1	Indoor 2	Outdoor	Indoor -1R	Indoor-2R	Ambient-1R	Indoor 1 (Adjusted) ¹	Indoor 2 (Adjusted) ¹	Indoor-1R (Adjusted) ¹	Indoor-2R (Adjusted) ¹	Method B Indoor Air Cleanup
Da	ate Collected	5/8/2018	5/8/2018	5/8/2018	11/11/2019	11/11/2019	11/11/2019	5/8/2018	5/8/2018	11/11/2019	11/11/2019	Level
APH - Air Phase	EC5-8 Aliphatics				88	1,300 ve	<46			88	1,300 ve	2700
Hydrocarbons	EC 9-12 Aliphatics				58	170	44			14	126	140
Trydrocarbons	EC 9-10 Aromatics	-			<25	<25	<25			<25	<25	180
TO 15	Vinyl Chloride	< 0.049	< 0.054	< 0.050	< 0.26	< 0.26	< 0.26	< 0.049	< 0.054	< 0.26	<0.26	0.28*
TO-15 -	trans-1,2-Dichloroethene	< 0.76	< 0.84	< 0.78	< 0.4	< 0.4	<0.4	< 0.76	< 0.84	< 0.4	<0.4	NL
Chlorinated Volatile Organic	cis-1,2-Dichloroethene	< 0.15	< 0.17	< 0.16	< 0.4	< 0.4	<0.4	< 0.15	< 0.17	< 0.4	< 0.4	NL
Compounds	Trichloroethene (TCE)	< 0.20	< 0.23	< 0.21	< 0.27	< 0.27	< 0.27	< 0.20	< 0.23	< 0.27	< 0.27	0.37*
F	Tetrachloroethene (PCE)	< 0.26	0.92	< 0.26	<6.8	<6.8	<6.8	< 0.26	0.92	<6.8	<6.8	9.62*
	Benzene	0.64	0.69	0.44	1.9	1.4	0.97	0.20	0.25	0.93	0.43	0.321*
	Hexane	0.86	1.1	0.70	4.6	220 ve	<3.5	0.16	0.4	4.6	220 ve	320
TO 15 OI	Toluene	2.6	6.7	1.7	<19	250 ve	<19	0.9	5.0	<19	250 ve	2,290
TO-15 - Other Volatile Organic	Ethylbenzene	0.37	0.62	0.26	1.1	2.1	0.53	0.11	0.36	0.8	1.57	457
Compounds	m,p-Xylene	1.3	2.6	0.89	4.3	8.4	1.90	0.41	1.71	3.4	6.50	45.7
compounds	o-Xylene	0.50	0.95	0.30	1.7	3.1	0.79	0.20	0.65	1.4	2.31	45.7
	Methyl tert-butyl ether	0.69	0.76	0.71	<1.8	<1.8	<1.8	**	0.05	<1.8	<1.8	9.60*
	Naphthalene				0.29	0.49	0.15			0.14	0.34	0.0735*

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected above laboratory limits

-- = Not analyzed

¹Adjusted value calculated by subtracting Outdoor/Ambient concentrations from Indoor results. ** = Adjusted value is less than zero.

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method B cleanup or screening levels

Bold indicates the detected concentration is below Ecology MTCA Method B cleanup or screening levels

ve = The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

NL = Not Listed; no cleanup/screeening levels have been promulgated for these constituents

Table 4 - Summary of Sub-Slab Vapor Analytical Results

Manor Market(11-124)

Lynwood, Washington

5	Sample Number	SS1	SS2	SS-1R	SS-2R	Method B Sub-Slab
	Date Collected	5/8/2018	5/8/2018	11/11/2019	11/11/2019	Screening Level
	EC5-8 Aliphatics			440	260	90,000
APH - Air Phase Hydrocarbons	EC 9-12 Aliphatics			110	130	4700
Trydrocarbons	EC 9-10 Aromatics			<72	<70	6000
	Vinyl Chloride	<10	<10	< 0.74	< 0.72	9.33*
TO-15 - Chlorinated	trans-1,2-Dichloroethene	<10	<10	<1.1	<1.1	NL
Volatile Organic	cis-1,2-Dichloroethene	23	<10	<1.1	<1.1	NL
Compounds	Trichloroethene (TCE)	81	<10	< 0.78	< 0.75	12.3*
compounds	Tetrachloroethene (PCE)	2,500	<10	<20	<19	321*
	Benzene	<10	230	2.5	1.9	10.7*
	Hexane			79	<9.9	10,700
	Toluene	28	1,540	86	<52	76,200
TO-15 - Other	Ethylbenzene	<10	140	2.7	1.4	15,200
Volatile Organic	Total Xylenes	300	1,000			1,520
Compounds	m,p-Xylene			11	4.9	1,520
	o-Xylene			4.1	2.2	1,520
	Methyl tert-butyl ether	<10	<10	<5.2	<5	320*
	Naphthalene	<10	<10	< 0.76	<0.73	2.45*

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected above laboratory limits

-- = Not analyzed

¹Adjusted value calculated by subtracting Outdoor concentrations from Indoor results.

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method B cleanup or screening levels

Bold indicates the detected concentration is below Ecology MTCA Method B cleanup or screening levels

NL = Not Listed; no cleanup/screeening levels have been promulgated for these constituents

Table 5 - Summary of Groundwater Elevations Manor Market (11-124) Lynnwood, WA

Well Number/			Depth to Free	Free Product	Groundwater	Change in
TOC Elevation	Date of	Depth to Water	Product	Thickness	Elevation	Elevation
(feet)	Measurement	(feet)	(feet)	(feet)	(feet)	(feet)
MW-1	3/1/2012	24.63			578.12	
602.75	11/20/2012					
	3/28/2013	21.39			581.36	3.24
	5/30/2013	19.97			582.78	1.42
	6/1/2015	18.52			584.23	1.45
	9/2/2015	16.99			585.76	1.53
	11/24/2015	17.62			585.13	-0.63
	4/7/2016	14.74			588.01	2.88
	12/13/2016	16.02			586.73	-1.28
	5/8/2018	15.63			587.12	0.39
	12/2/2019	17.83			584.92	-2.20
MW-2	3/1/2012	24.70			578.28	
602.98	11/20/2012	24.21			578.77	0.49
	3/28/2013	24.4			578.58	-0.19
	5/30/2013	25.05			577.93	-0.65
	6/4/2015	26.85			576.13	-1.80
	9/2/2015	23.15			579.83	3.70
	11/24/2015	16.38			586.60	6.77
	4/7/2016	24.05			578.93	-7.67
	12/13/2016	22.62			580.36	1.43
	5/8/2018	23.27			579.71	-0.65
	12/2/2019	23.59			579.39	-0.32
MW-3	3/1/2012	28.30			574.96	
603.26	11/20/2012	28.23			575.03	0.07
	3/28/2013	28.14			575.12	0.09
	5/30/2013	28.31			574.95	-0.17
	6/4/2015					
	9/2/2015	28.19			575.07	0.12
	11/24/2015	27.32			575.94	0.87
	4/7/2016	27.43			575.83	-0.11
	12/13/2016	26.7			576.56	0.73
	5/8/2018	26.56			576.70	0.14
	12/2/2019	26.44			576.82	0.12
MW-4	6/4/2015	26.45			577.84	
604.29	9/2/2015	26.49			577.80	-0.04
	11/24/2015	26.62			577.67	-0.13
	4/7/2016	25.79			578.50	0.83
	12/13/2016	25.33			578.96	0.46
	5/8/2018	25.22			579.07	0.11
	12/2/2019	24.45			579.84	0.77

Table 5 - Summary of Groundwater Elevations Manor Market (11-124) Lynnwood, WA

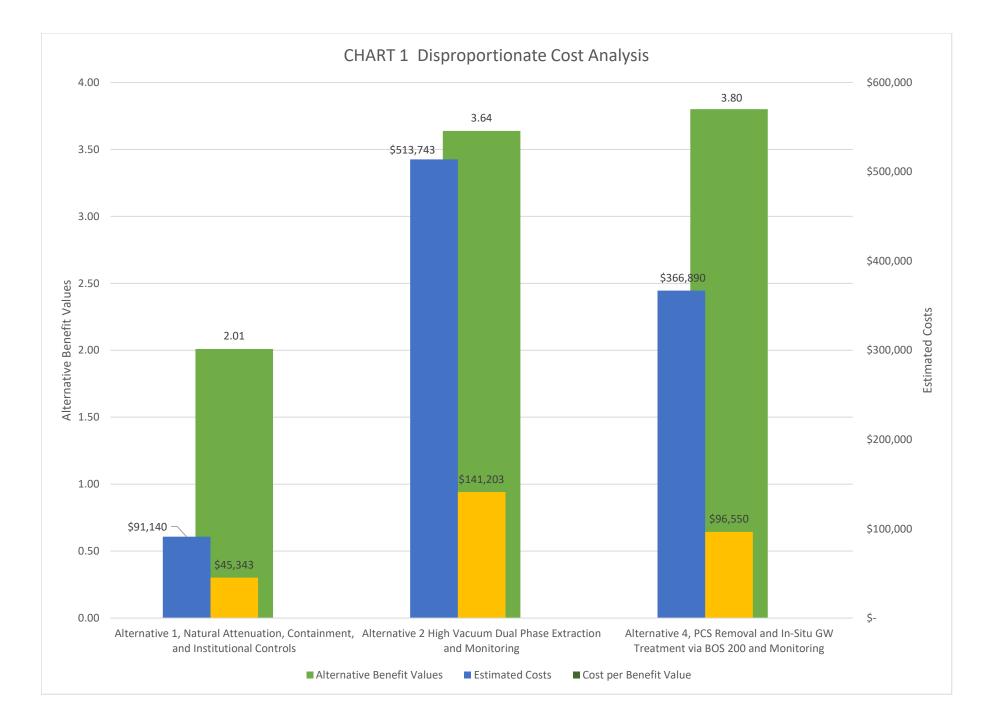
Well Number/			Depth to Free	Free Product	Groundwater	Change in
TOC Elevation	Date of	Depth to Water	Product	Thickness	Elevation	Elevation
(feet)	Measurement	(feet)	(feet)	(feet)	(feet)	(feet)
MW-5	6/4/2015	17.30			586.98	
604.28	9/2/2015	16.21			588.07	1.09
	11/24/2015	14.82			589.46	1.39
	4/7/2016	16.82			587.46	-2.00
	12/13/2016	14.39			589.89	2.43
	5/8/2018	14.44			589.84	-0.05
	12/2/2019	17.78			586.50	-3.34
MW-6	6/4/2015	9.60			593.36	
602.96	9/2/2015	10.69			592.27	-1.09
	11/24/2015					
	4/7/2016	10.25			592.71	
	12/13/2016	11.37			591.59	-1.12
	5/8/2018	14.40			588.56	-3.03
	12/2/2019	11.93			591.03	2.47
MW-7	6/4/2015	16.31			588.70	
605.01	9/2/2015	17.79			587.22	-1.48
000101	11/24/2015	15.21			589.80	2.58
	4/7/2016					
	12/13/2016					
	5/8/2018	17.09			587.92	1.88
	0,0,2010	11107			001172	1100
MW-8	6/4/2015	16.18			589.16	
605.34	9/2/2015	16.72			588.62	-0.54
	11/24/2015	14.15			591.19	2.57
	4/7/2016	14.87			590.47	-0.72
	12/13/2016	14.89			590.45	-0.02
	5/8/2018	14.98			590.36	-0.09
	5/0/2010	11.20			570.50	0.09
MW-9	6/4/2015	18.63			586.58	
605.21	9/2/2015	18.14			587.07	0.49
	11/24/2015	14.28			590.93	3.86
	4/7/2016	16.95			588.26	-2.67
	12/13/2016	16.64			588.57	0.31
	5/8/2018	16.49			588.72	0.15
	5, 6, 2010	10.17			500.12	0.10
MW-10	4/7/2016	31.30			572.14	
603.44	12/13/2016	27.61			575.83	3.69
	5/8/2018	27.69			575.75	-0.08
	12/2/2019	27.36			576.08	0.33
	12/2/2017	21.30			570.00	0.33
MW-11	4/7/2016	32.90			571.08	
603.98	12/13/2016	31.26			572.72	1.64
003.90	5/8/2018	29.23			574.75	2.03
	12/2/2018	29.23			577.86	3.11
	12/2/2019	20.12			577.80	5.11

Notes:

TOC = Top of casing elevation relative to assigned benchmark.

-- = Not measured, not available, or not applicable

Table 6 - Identification and Screening of Response Actions and Remediation Technologies, Manor Market, 3609 164th St SW, Lynnwood, Washngton 98087


General Response Action	Technology/Options	Process Description	Applicability to Site Conditions	Effectiveness	Implementability	Relative Cost	Retain for Further Consideration	Reasons for Screening Decision
No Action	None		Not applicable. Contamination exceeds MTCA Method A cleanup levels	Unable to achieve RAOs. Not effective.	Not implementable	Low	Not retained	RAOs not achievable.
Institutional Controls	Site access and use restrictions	Legal Restrictions/environmental covenant limiting exposure to contamination. Deed restrictions to control soil excavation or access to groundwater.	Possibly applicable for closure after site demonstrates no off-property impacts	Effective at limiting exposure pathways to remaining contamination above CULs on-property, where disproportionate cost analysis demonstrates additional remediation not cost-effective.	Implementable	Low, with possible future monitoring requirements.	Retained	Environmental Covenant may be appropriate as part of a remedial option.
Monitored Natural Attenuation	Long term monitoring of affected media at Site	Actively and regularly monitor ongoing natural processes acting to reduce contaminant concentrations in affected media. Enhancement of natural attenuation processes possible through injection of chemicals or microbes to increase the rate of attenuation.	May be applicable	Effective on petroleum hydrocarbons where natural conditions determined to be conducive to attenuation.	Implementable	Low, with possible future monitoring requirements.	Retained	Could be appropriate remedial solution for residual contamination.
	Vertical Barriers	Impermeable subsurface slurry wall or dike constructed to prevent migration of contamination.	Applicable	Can be effective for preventing lateral migration of contaminants. Not effective in reducing LNAPL or dissolved phase contamination.	Not implementable	High	Not retained	No LNAPL present with a number of utilities present make it impractical.
Containment	Hydraulic Containment	Groundwater pumping.	Not applicable	Not effective in Site-specific conditions.	Not implementable	High	Not retained	Low permeability soils make hydraulic containment ineffective at this site.
	Capping	Impervious concrete or asphalt surfaces over contamination, limiting exposure pathways at Site.	May be applicable	Effective at limiting exposure pathways to remaining contamination above CULs.	Implementable	Moderate	Retained	Site is currently capped with impermeable surfaces, including asphalt, concrete, and Site building and infrastructure.
	Soil Excavation	Excavation and removal of contaminated soil.	Not applicable	Effective at removing PCS where accessible.	Implementable	High	Retained	Contaminated soil excavation may provide one method for reducing contamination levels in accessible areas of the Site. Contamination appears to be under the sidewalk and in the ROW.
Removal	LNAPL Recovery	Extraction of LNAPL from groundwater table by pumping or skimming.	Not applicable	Effective at reducing LNAPL sources.	Implementable	Moderate	Not retained	LNAPL not present at Site
	Groundwater Extraction	Pumping groundwater from extraction wells to ex-situ treatment system	May be applicable	Effective at removing dissolved phase contamination from groundwater.	Implementable	High	Retained	Using holding tanks the water could be trucked off or treated, tested and then disposed of in the sanitary sewer if indicator levels are met.
Ex-Situ Treatment- Soil	Excavated soil treatment	Treatment and on-site reuse of contaminated soil.	Not applicable	Effective at reducing soil contamination levels.	Not implementable.	High, depending on methods of access and treatment.	Not retained	Not likely implementable at this Site. Possible permitting issues. Would require areas on the property to properly contain and treat contaminated soil.
	Activated Carbon Adsorption	Contaminated groundwater is passed through granular activated carbon (GAC) filters to absorb contaminants. Treated water may be discharged or reinjected.	May be applicable	Effective for reducing dissolved phase contamination in groundwater.	Implementable	Moderate	Retained	Possibly beneficial as part of an ex-situ treatment system alternative.
Ex-Situ Treatment- Groundwater	Air Stripping	Extract groundwater to volatilize through air stripper.	May be applicable	Effective for reducing dissolved phase contamination in groundwater.	Implementable	Moderate	Retained	May be possible after backfill with non-native materials. Moderate permeability soils in some locations
	Chemical Oxidation	Injection of chemical oxidants such as ozone or hydrogen peroxide into extracted groundwater.	Not applicable	Effective for reducing dissolved phase contamination in groundwater.	Not Implementable	High	Not retained	Limited site area for large treatment tanks.

General Response Action	Technology/Options	Process Description	Applicability to Site Conditions	Effectiveness	Implementability	Relative Cost	Retain for Further Consideration	Reasons for Screening Decision
	Air/Ozone Sparging	Air or ozone injection into the subsurface to volatilize contamination and provide oxygen for enhanced aerobic biodegradation.	Applicable	Effective for reducing dissolved phase contamination in groundwater.	Implementable	Moderate	Retained	Appropriate for soils at the Site and groundwater table.
	Soil Vapor Extraction	Extract volatile contaminants by applying a vacuum to subsurface. Collected gasses would require additional treatment in vapor phase- GAC filter or through thermal treatment prior to discharge.	Applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Retained	May be appropriate for soils at the Site limited by higher seasonal groundwater table.
In-Situ Treatment, Soil and Groundwater	High Vacuum Dual-Phase Extraction	Extract volatile and dissolved phase contaminants by applying a vacuum to subsurface. Collected water and soil gasses would require additional treatment in liquid and vapor phase-GAC filters .	Applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Retained	Appropriate for soils at the Site and higher seasonal groundwater table.
	In-Situ Chemical Injection	Injection of chemicals and substances promoting degradation of contamination into the subsurface.	Applicable	Effective for reducing dissolved phase contamination.	Implementable	Moderate	Retained	Appropriate for soils at the Site and groundwater table.
	Enhanced Bioremediation	Injection of hydrocarbon-degrading microbes along with other substances to provide additional biodegradation in the subsurface	Applicable	Can be effective.	Implementable	Moderate	Retained	Appropriate for groundwater and soils at the Site and deeper groundwater table.
	Electrical Resistance Heating	Heat subsurface by heated water, steam or electrical resistance to volatilize contamination.	Applicable	Effective for reducing dissolved phase contamination in groundwater.	Implementable	High	Retained	Appropriate for soils at the Site and groundwater table but the limitations of ERH for small areas makes this option very costly and the equipment needed requires a larger compound.

Table 6 - Identification and Screening of Response Actions and Remediation Technologies, Manor Market, 3609 164th St SW, Lynnwood, Washngton 98087

	Alternative 1		Alternative 2		Alternative 3	
	Alternative 1 includes completing eight additional ground	water monitoring	Alternative 2 includes remediation of any residual PCS and	d impacted	Alternative 3 includes limited excavation of PCS (~270 cy) fro	om the area
	events at 8 of the 11 existing Site monitoring wells, once		groundwater using a High-Vacuum Dual-Phase Extraction		between MW-1 and MW-6 to about 18 feet bgs, applying an	
	intended to monitor natural attenuation.	•••• , ••••••,	known as multi-phase extraction and vacuum-enhanced e		(BOS 200 [®]) into the excavation prior to backfill to enhance b	
					of any residual PCS and impacted groundwater, and in-situ t	
	Each monitoring event would confirm that groundwater c	oncentrations of	combinations of contaminated groundwater, separate-pha			ireatment via
					injection of BOS 200 [®] .	
	COCs decrease in concentration over time, and that no a	dditional plume	product, and hydrocarbon vapor from the subsurface. Extr			
	migration occurs.		vapor are treated and collected for disposal, or re-injected	to the	From the existing data, the injections would target areas sou	theast of the
			subsurface.		bank building (former excavation area) and areas within Con	nmercial
	Institutional controls by legal restrictions on land and on g				Street inaccessible for excavation. A final design would be of	
	limit potential exposure to contamination through an envi	ronmental covenant	Alternative 2 includes: pilot testing; design, installation, and	d operation of	after all site data is compiled, followed by bench scale testing	
Description of Alternative	restricting removal of asphalt containment (capping) in ar	eas that exceed	the HVDPE system; compliance air/groundwater sampling	; confirmatory	optimization testing to review results demonstrating reagent	
	safe concentrations.		soil sampling; and system/well decommissioning.		and injection performance.	alstribution
	Alternative 1 includes the sampling events, reporting, cor	firmatory sampling				
	and well abandonment.	initiatory camping,			Quarterly performance monitoring of COCs in Site monitoring	
					be performed to demonstrate reduction of COC concentratio	ins and
					extents of the contaminant plume.	
					Alternative 3 includes the quarterly sampling events, reporting	ng,
					confirmatory soil sampling, and well abandonment.	
		SCORE		SCORE		SCORE
		JOORE	Protectiveness	SCORE		SCORE
Overall protectiveness	Not as protective when complete	2	More protective when complete	4	More protective when complete	4
Reduces existing risks	Reduces risks when implemented	2	Reduces risks when implemented	4	Reduces risks when implemented	4
		1	Medium duration to reduce risks	3	Medium duration to reduce risks	3
Time required to reduce risk	Longer duration required with less certainty			-		
On-Site risks	Reduces risks with a moderate level of certainty	3	Reduces risks with a moderate level of certainty	3	Reduces risks with a moderate level of certainty	3
Off-Site risks	Reduces risks with a moderate level of certainty	3	Reduces risks with a moderate level of certainty	3	Reduces risks with a moderate level of certainty	3
Improvement in environmental quality	Lower level of improvement	2	Moderate to high level of improvement	4	Moderate to high level of improvement	4
Criterion Score	(weighting factor (average* 0.30)	0.65		1.05		1.05
			Permanence		l	
						1
Reduces toxicity, mobility, and volume	Longer term reduction	1	Reduces toxicity, mobility, and volume rapidly. May leave	4	Reduces toxicity, mobility, and volume rapidly. May leave	4
			some toxicity in place in the ROW.	-	some toxicity in place at depth and in the ROW.	
Degree of irreversibility	Can be reversed	1	Irreversible. Waste treated in-situ.	4	Irreversible. Waste treated in-situ.	4
Waste characteristics	No waste generated from action. Some waste from	4	Solid waste from monitoring and air treatment operations.	2	No waste generated from action. Some waste from	4
Waste characteristics	monitoring.	4	Solid waste nom monitoring and an treatment operations.	2	monitoring.	4
Criterion Score	k weighting factor (average* 0.25)	0.50		0.83		1.00
		Lor	g-Term Effectiveness			
			Moderately certain. May leave some toxicity in place in the	<u></u>	Moderately certain. May leave some toxicity in place at	I
Degree of Certainty	Less certain	1	ROW.	4	depth and in the ROW.	3
Reliability	Less reliable	2	Reliable and proven	5	Newer technology proven for groundwater treatment, less	4
•			,		for vadose soil treatment	
Residual Risk	High	1	Moderate to low	4	Moderate to low	4
Technology hierarchy	Low rank - ICs and monitoring	1	High rank - treats in-situ	4	High rank - off-Site disposal of PCS & treats in-situ	4
Criterion Score	<pre>weighting factor (average* 0.20)</pre>	0.25		0.85		0.75
			Term Risk Management			
		311011-			Madarata viales associated with even vating around utilities	
During construction	Low risk	5	Moderate risks associated with system installation, utilities	3	Moderate risks associated with excavating around utilities,	2
			and traffic	-	and traffic	
Effectiveness of risk management	Effective	5	Moderately effective	4	Moderately effective	4
Criterion Score	k weighting factor (average* 0.05)	0.25		0.18		0.15
			Implementability			
Technically possible	Possible, demonstrated at similar sites	5	Possible, demonstrated at similar sites. Possible issues	Δ	Possible, demonstrated at similar sites. Possible issues	3
		5	with treating residuals in the ROW.		with treating residuals at depth.	5
Access	Easily accessible	5	Moderately to Easily accessible	4	Moderately to Easily accessible	4
Availability of necessary resources	Readily available	5	Readily available	5	Readily available	5
Monitoring requirements	High	1	Moderate to high level of improvement	2	Moderate	3
Integration with existing features	No changes required	5	Moderate	3	No Changes required	5
	(weighting factor (average* 0.05)	0.21		0.18	······································	
	· ····································	0.21		0.18	l	0.20
			Public Concerns			
			Personal and an institution of the second se		Removes contamination where accessible; & treats	
	Leaves contamination in place.	1	Removes contamination where accessible; & treats	4	contamination in place. May leave residuals at depth and	4
Public Concerns			contamination in place. May leave residuals in the ROW.		in the ROW.	
Public Concerns	Louvos comanination in place.					
		0.10		0.40		0 40
	weighting factor (average* 0.10)	0.10		0.40		0.40
Criterion Score	k weighting factor (average* 0.10)		storation Time Frame	0.40		
			storation Time Frame Moderate time frame (3-5 years)	0.40 3	Shortest time frame (2-3 years)	0.40
Criterion Score Restoration Time Frame	k weighting factor (average* 0.10) Long time frame (10-15 years)	Res		3	Shortest time frame (2-3 years)	5
Criterion Score	k weighting factor (average* 0.10) Long time frame (10-15 years) k weighting factor (average* 0.05)	Res	Moderate time frame (3-5 years)			
Criterion Score Restoration Time Frame	k weighting factor (average* 0.10) Long time frame (10-15 years)	Res		3	Shortest time frame (2-3 years) 3.80	5
Criterion Score Restoration Time Frame Criterion Score	k weighting factor (average* 0.10) Long time frame (10-15 years) k weighting factor (average* 0.05)	Res	Moderate time frame (3-5 years)	3		5
Criterion Score Restoration Time Frame Criterion Score Alternative Benefit Value	k weighting factor (average* 0.10) Long time frame (10-15 years) k weighting factor (average* 0.05) 2.01	Res	Moderate time frame (3-5 years) 3.64	3	3.80	5

* Alternative Benefit Values are determined by multiplying criterion scores by weighting factors described in Section 10.4

APPENDIX A

Site Photographs

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502-5751 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Project No.: 11-124

Project Name: Manor Market, Lynnwood, WA – Supplemental Characterization

Photo View of the retail businesses and Manor Market. View to the northwest from dispenser area.

Photo View to east and the east vicinity from Site. (Note slope #3:

 Photo
 Completed re-surfacing of AEG Boring B-1. Note the proximity of AEG Boring B-1 to previous investigation location of Envitech boring S-2 in the foreground.

Photo Retail stores west of Manor Market. Note dry cleaner #2: on west end, tank pad and canopy is to the right of picture. View is to the northwest.

 Photo
 View of hollow stem auger drilling at Boring B-1, adjacent south of previous and current fuel underground storage tanks.

PhotoView of direct push probe drilling at AEG Boring B-2.#6:View is to the east.

Associated Environmental Group, LLC

SITE PHOTOGRAPHIC RECORD

Project No.: 11-124

Photo Direct push probe drilling at AEG Boring B-3, on the northeast side of the dispenser islands. View looking to the east.

Photo Wiew of decontamination set up used during investigation. All sampling tools were cleaned between sampling intervals using pressure washer.

Project Name: Manor Market, Lynnwood, WA - Supplemental Characterization

 Photo
 Direct push probe drilling at AEG Boring B-4 (note previous Envitech boring S-1 adjacent to drum). View looking to the northeast.

 Photo
 Soil profile collected from boring location B-1. Surface top right, total depth at bottom left. Profile shows the subsurface was predominantly gray, stiff, sandy silt to 22 feet bgs.

Associated Environmental Group, LLC

SITE PHOTOGRAPHIC RECORD

Project No.: 11-124

PhotoInstalling groundwater monitoring well MW-1.#11:Photo looking Northwest

Photo Setting-up drilling rig at location for monitoring #13: well MW-2. Photo looking North

Photo Drilling borehole MW-3, immediately north of the #15: eastern dispenser. Photo looking South

Project Name: Manor Market –Lynnwood, WA.

PhotoLocation of groundwater monitoring well MW-1.#12:Photo looking Northeast

Photo #14: Drilling of borehole MW-2. Photo looking North

PhotoInstalling groundwater monitoring well MW-3.#16:Photo looking South

Project No.: 11-124

Photo Location of borehole MW-3. Photo looking south-#17: southeast

Photo #19: Site looking North from 164th Street

Photo Well installation/subsurface investigation derived #21: waste contained in 55-gallon drums stored on site

Project Name: Manor Market -Lynnwood, WA.

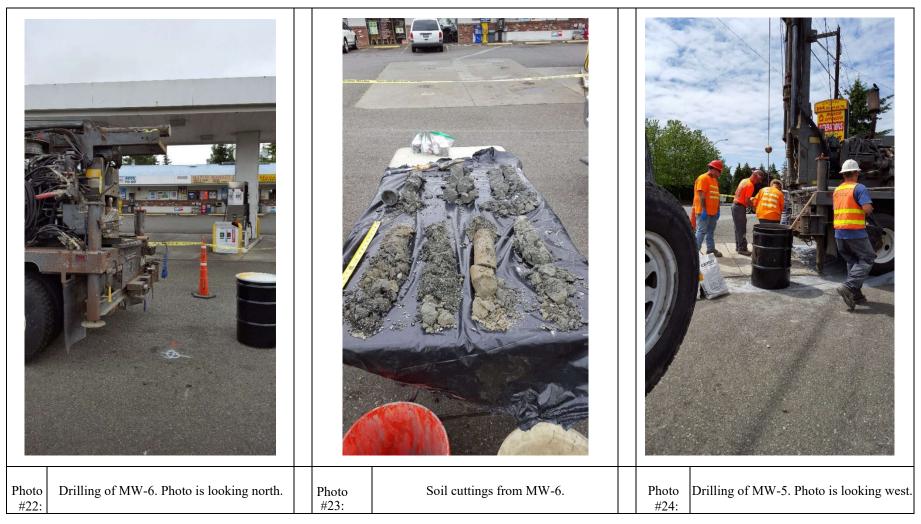
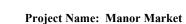
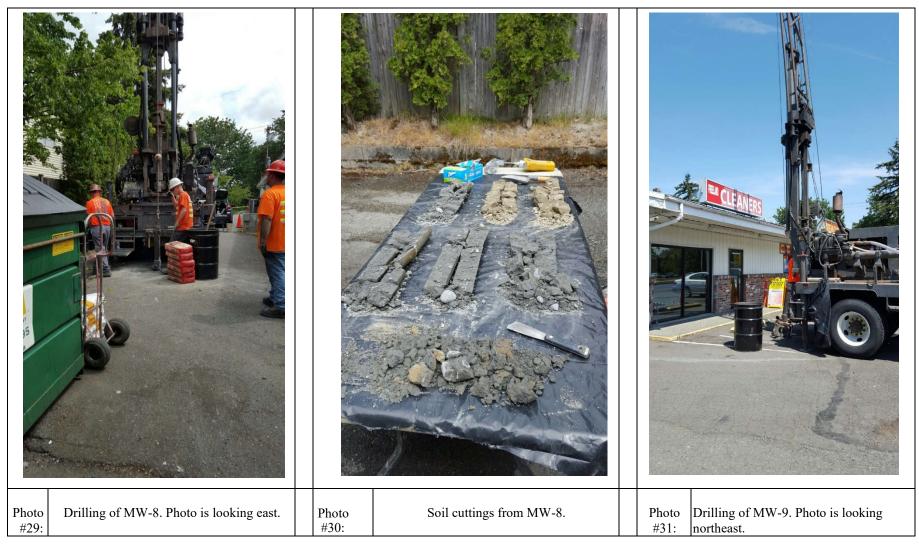

PhotoRunoff water with motor oil towards the storm#18:water drain. Photo looking Northwest

Photo #20: Site looking west from 36th Avenue

Project No.: 11-124

Project Name: Manor Market


Project No.: 11-124



Project Name: Manor Market

Project No.: 11-124

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502-5751 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Project No.: 11-124

Project Name: Manor Market

APPENDIX B

Supporting Documents Boring Logs Laboratory Datasheets Terrestrial Ecological Evaluation

ASSOCIATED ENVIRONMENTAL GROUP, LLC

PROJE	CT: Manor Market - Supplemental Site Characterization		JOB #	11-124		BORING #	B-1		PAGE 1 OF 1	
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approximate Elevation:						
	tractor/Equipment: ESN - Don Harnden / Brian Bower					Combo	Rig - Hollov	v Stem	Auger	
Date:	8/24/2011		1	Logged	By:	Y. Van	-		1	
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
	Asphalt surface, 2 inches, underlain by Gray, dry, medium dense, silty gravelly SAND; medium size gravel, coarse grained sand. (FILL)	SW				0920	NA			NA
	At 2-1/2 to 3 ft bgs: Slight petroleum fuel odor .				B1-S1-2.5/3.0	0927		14.6		
	Gray, dry, medium stiff, sandy SILT with local gravel. Moderate petroleum fuel odor. At 6 ft: 2 inch seam well sorted gravel.	ML			B1-S2-5.5/6.0	0952		9.0		
10	Gray, wet, dense, sandy GRAVEL. Backfill for previous excavation. Surface water in backfill. (FILL)	GP			B1-S3-9.5/10.0	1005		29.3	Not Observed	
15	Gray, dry, stiff, sandy SILT, minor fine size gravel, fine grained sand. Indurated silt. (Native Soil)	 ML			B1-S4-13.5/14.0	1026		1.8	Not Observed	
	At 17-1/2 ft to 18 ft: becomes stiff to very stiff SILT. No petroleum fuel odor.				B1-S5-17.5/18.0	1041		3.4	Not Observed	
20	Slow drilling - indurated silt.			\otimes	B1-S6-19.5/20.0	1058		0.0		
25	- ? - ? - ? - ? - ? - ? - ? - ? - ? - ?	₩? SP ML 5.			B1-S7-25.5/26.0	1132		2.5	Not Observed	
		Expla	nation							
	2-inch O.D. split spoon sample			onitoring						
				Clean S						
\otimes	No Recovery			Bentoni						
	Contact located approximately Groundwater level at time of drilling			Grout/C	oncrete ed Casing					
ATD	or date of measurement			Blank C	asing					

PROJE						1-124		BORING #	B-2		PAGE 1 OF 1
ocatio						nate Elevatio					
	htractor/Equipment: ESN - Don Harnden / Brian Bower				-			o Rig - Push I	Probe		
Date:	8/24/2011	I –	1	Logg	- T	sy:	Y. Var		6	1	
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample	Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
	Asphalt surface, 2 inches, underlain by Gray, dry, medium dense, silty gravelly SAND; local gravel pieces, local brick pieces (FILL)	SW					1305	NA		Not Observed	NA
	Gray, dry, medium stiff to stiff, sandy SILT, fine to medium grained sand. (Native Soil)	ML			-	B2-S1-2.5/3.0	1311		0.1		
5					-	B2-S2-5.5/6.0	1316		0.1		
	No petroleum fuel odor.				-	B2-S3-7.5/8.0	1320		0.1		
10					-	32-S4-9.5/10.0	1326		0.1		
					_ в	32-85-11.5/12.0	1332		0.2		
	At 13 ft: becomes stiff to very stiff. Color grades to dark gray.				-	B2-S6-13.0	1335		0.1		
15					_ B	2-S7-14.5/15.0	1340		2.8		
					_ B	2-S8-16.5/17.0	1346		9.8		
20					_ B	2-S9-18.5/19.0	1352		0.2		
20					_ В	2-S10-20.5/21.0	1406		0.1		
	At 23 ft: dry to moist				в:	2-S11-22.5/23.0	1413		0.1		
25	TD at 25 ft bgs. No groundwater encountered ATD. Boring backfilled with bentonite chips.				B	2-S12-24.5/25.0	1426		0.0		
		Expla		onitori	ing V	Voll					
	2-inch O.D. split spoon sample			Clear	-						
\otimes	No Recovery			Bento							
	Contact located approximately			Grout	t/Cor	ncrete					
ATD	Groundwater level at time of drilling or date of measurement			Scree Blank		Casing sing					

ASSOCIATED ENVIRONMENTAL GROUP, LLC

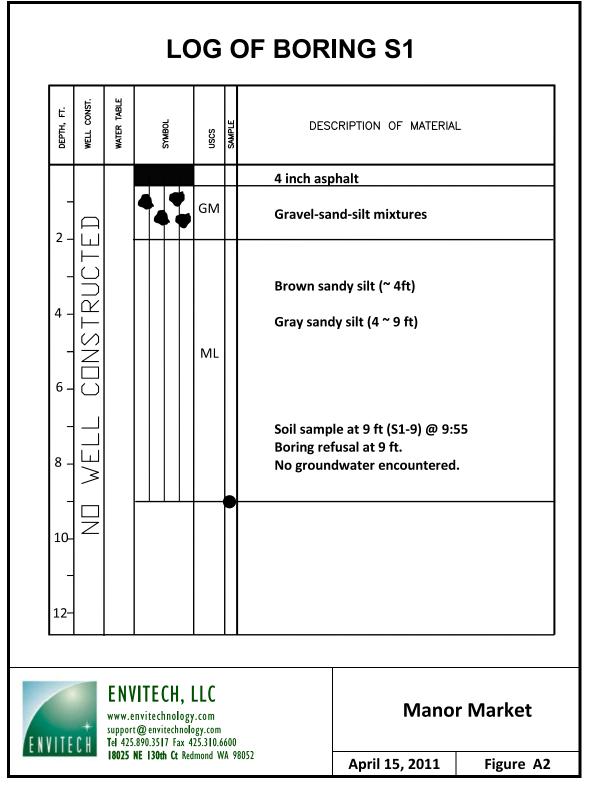
PROJE	CT: Manor Market - Supplemental Site Characterization			J	OB #	11-124		BORING #	B-3		PAGE 1 OF 1
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA		Approximate Elevation:								
Subcon	tractor/Equipment: ESN - Don Harnden / Brian Bower			D	rilling	Method:	Combo	o Rig - Push	Probe		
Date:	8/24/2011			L	ogged	By:	Y. Van	·			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Tvpe		Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
	Asphalt surface, 2 inches, underlain by Gray, dry, medium dense, silty gravelly SAND. (FILL)	SW					1442	NA		Not Observed	NA
	Gray, dry, medium stiff, sandy SILT, fine to medium grained sand. (Native Soil)	ML	 	·	+	B3-S1-2.5/3.0	1445		28.6		
5	At 4 ft to 6 ft: Strong petroleum fuel odor .			 	_	B3-S2-5.5/6.0	1451		1047		
	No petroleum fuel odor.			 ,	-	B3-S3-7.5/8.0	1457		73.6		
10	At 9 ft to 10 ft: moderate petroleum fuel odor.		<u> </u>	···· –		B3-S4-9.5/10.0	1502		4.5		
15				. _	+	B3-S5-11.5/12.0 B3-S6-13.5/14.0 B3-S7-15.0/15.5	1510		5.4 7.3 8.6		
	At 17 ft: no petroleum fuel odor.					B3-S8-17.5/18.0	1519		1.6		
20			\square		+	B3-S9-19.5/20.0	1525		2.7		
				· _	_	B3-S10-21.5/22.0	1532		2.2		
	TD at 24 ft bgs. No groundwater encountered ATD. Boring backfilled with bentonite chips.		 			B3-S11-23.5/24.0	1540		1.1		
25		<u> </u>									
\mathbb{H}_{\otimes}	2-inch O.D. split spoon sample No Recovery	Expla	1	Mon 22 C	iitoring Iean S entonii	and					
ATD	Contact located approximately Groundwater level at time of drilling or date of measurement			≡s		oncrete d Casing asing					

ASSOCIATED ENVIRONMENTAL GROUP, LLC

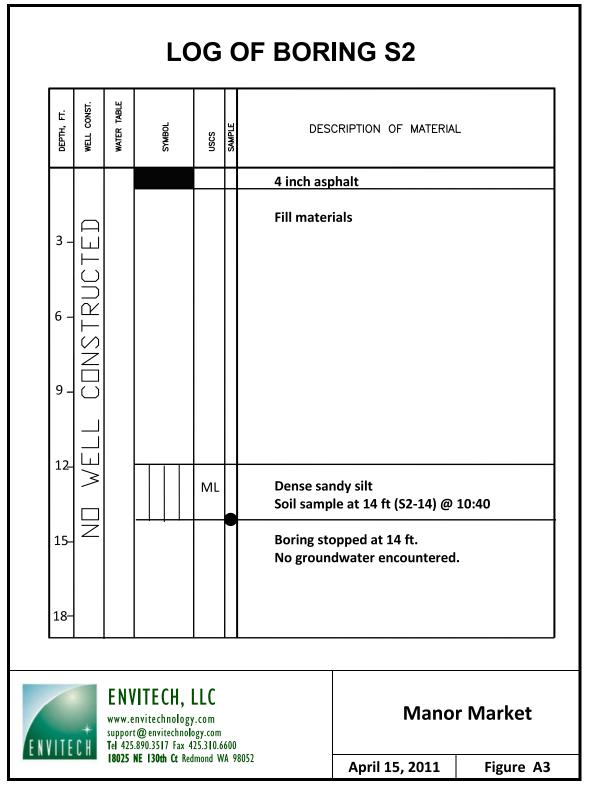
PROJE	CT: Manor Market - Supplemental Site Characterization			JOB #	11-124		BORING #	B-4		PAGE 1 OF 1
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevati	on:				
Subcon	tractor/Equipment: ESN - Don Harnden / Brian Bower			Drilling	Method:	Combo	o Rig - Push	Probe		
Date:	8/24/2011			Logged	By:	Y. Van	1			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
	Asphalt surface, 2 inches, underlain by Gray, dry, medium dense, silty gravelly SAND. (FILL)	SW			B4-S1-2.5/3.0	1545 1551	NA	0.0	Not Observed	NA
5	Gray, dry, stiff to very stiff, sandy SILT, fine to medium grained sand. (Native Soil)	ML			B4-S2-5.5/6.0	1600		0.0		
	Refusal at 8 ft.				B4-S3-7.5/8.0	1606		0.0		
10 10 15 20 20 25	TD at 8 ft bgs. No groundwater encountered ATD. Boring backfilled with bentonite chips.									
	2-inch O.D. split spoon sample	Expla	М	onitoring Clean S						
\otimes	No Recovery		8888	Bentoni	te					
ATD	Contact located approximately Groundwater level at time of drilling or date of measurement			Grout/C Screene Blank C	ed Casing					

ENVITECH

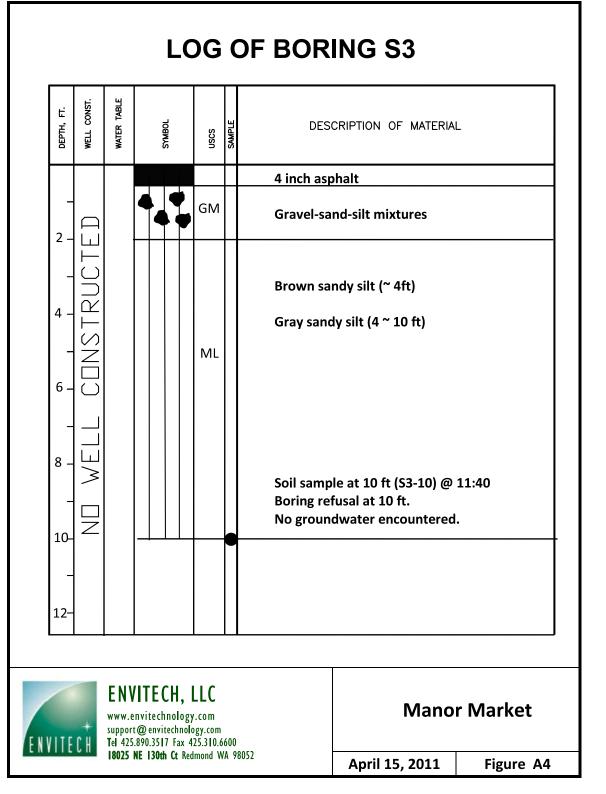
www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052


Major	Divisions	l etter	Symbo Hatching	ols	Name	21
(1)	(2)	(3)	Hatching (4)	(5)	(6)	
<u>.</u>		GW	0 0	Red	Well-graded gravels or sand mixtures, little or	r gravel- no fines
	Gravel and Gravelly	GP		R	Poorly graded gravels sand mixtures, little or	or gravel- no fines
	Soils	GM		Yellow	Silty gravels, gravel-sa mixtures	nd-silt
Coarse- Grained		GC		Y	Clayey gravels, gravel clay mixtures	-sand-
Soils		sw	00000		Well-graded sands or sands, little or no fines	gravelly
	Sand	SP	**	Red	Poorly graded sands o gravelly sands, little or	r no fines
	Sandy Soils	sм		Yellow	Silty sands, sand-silt m	nixtures
		sc		Ye	Clayey sands, sand-sil mixtures	t
	Silts and	ML			Inorganic silts and very sands, rock flour, silty fine sands or clayey sil slight plasticity	or clayey
	Clays LL < 50	CL		Green	Inorganic clays of low t plasticity, gravelly clays clays, silty clays, lean of	s, sandy
Fine- Grained Soils		OL			Organic silts and organ clays of low plasticity	
	Silts and	мн			Inorganic silts, micaceo diatomaceous fine san silty soils, elastic silts	bus or dy or
	Clays LL <u>></u> 50	сн		Blue	Inorganic clays of high plasticity, fat clays	
		он			Organic clays of mediu high plasticity, organic	im to silts
Highly	Highly Organic Soils Pt			Orange	Peat and other highly o soils	organic
			-			
ENVI	TECH, LL	.C				ified Soil
	itechnology.co envitechnology.				Classificati	-
CH Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052					(US	
April 1						Figure A

EN


ENVITECH

www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052


ENVITECH www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052

ENVITECH

www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052

ENVITECH www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052

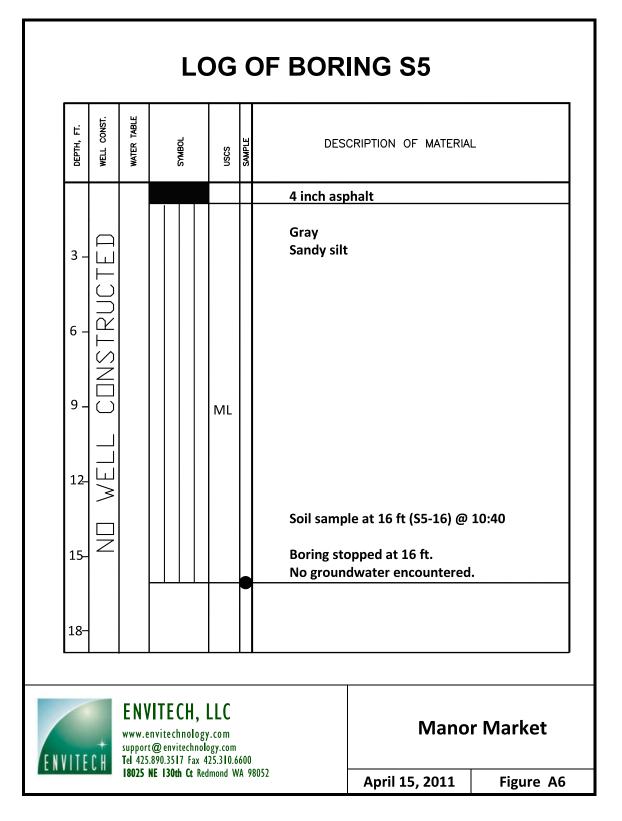
	LOG OF BORING S4													
DEPTH, FT.	WELL CONST.	water table	TOBMAS	NSCS	SAMPLE	DESCRIPTION OF MATERIAL								
						4 inch asphalt								
2 4 6 8	I WELL CONSTRUCTED			ML		Brown sandy silt Soil sample at 10 ft (S4-10) @ 12:20 Boring refusal at 10 ft.								
						No groundwater encountered.								
10	_													
<u>.</u>				-										

Manor Market

Figure A5

April 15, 2011

ENVITECH, LLC


www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600

18025 NE 130th Ct Redmond WA 98052

ENVITECH

www.envitechnology.com support@envitechnology.com Tel 425.890.3517 Fax 425.310.6600 18025 NE 130th Ct Redmond WA 98052

PROJE	CT: Manor Market - Suppl RI - 2nd Phase			JOB #	11-124		BORING #	MV	V-1	PAGE 1 OF 2
Locatio	on: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevatio	on:				
Subco	ntractor/Equipment: Western States Soil Conservation - CME 75			Drilling	Method:	Hollow	Stem Auge	r (H.S.A	.) / CM	E 75
Date:	2/8/2012			Logged	By:	L. Cha	idez			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
5	Asphalt surface, 2 inches underlain by Gray, dry, dense, sandy GRAVEL with silt. (FILL) Greenish-gray, wet, stiff, sandy SILT with clay. Greenish-gray, moist, hard, SILT with fine sand.	GP ML			MW1-S1-12.0/13.5	1030	17/25/30	1.5	Not Observed Not Observed	
25	At 23 feet: some fine sand.			Ι	MW1-S2-23.0/24.5	1128	11/15/19	0.0		
	E	Explan	ation							
⊥ ⊗	2-inch O.D. split spoon sample No Recovery			onitoring Clean S Bentonii Grout/C	and te					
•	Contact located approximately Groundwater level at time of drilling or date of measurement				ed Casing					

PROJE	CT: Manor Market - Suppl RI - 2nd Phase			JOB #	11-124		BORING #	MW-1	(cont)	PAGE 2 OF 2
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevatio	on:				
Subcon	tractor/Equipment: Western States Soil Conservation - CME 75			Drilling	Method:	Hollow	Stem Auge	r (H.S.A	.) / CME	E 75
Date:	2/8/2012			Logged	By:	L. Cha	idez			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
		ML								
30	At 30 feet: some fine to medium gravel.	GW		T	MW1-S3-30.0/31.5 MW1-S4-35.0/36.5	1152	14/21/31	0.0	Not Observed Not	
40	TD at 36-1/2 feet bgs. Groundwater encountered at approximately 8-1/2 feet bgs ATD. Completed as monitoring well MW-1. Well Schematics: 0.020 slot screen: 20 feet to 35 feet. Colorado Silica Sand 10x20: 18 feet to 35 feet. Bentonite Chips: 1 feet to 18 feet. Cement grout: 1/2 feet to 1 feet. Ecology Well Tag No. BCM 225.				MW1-54-35.0/36.5	1213	16/34/50 5*	0.0	Observed	
	E 2-inch O.D. split spoon sample No Recovery Contact located approximately Groundwater level at time of drilling or date of measurement	Explan		onitoring Clean S Bentoni Grout/C Screene Blank C	and te oncrete ed Casing					

PROJE	CT: Manor Market - Suppl RI - 2nd Phase			JOB #	11-124		BORING #	MV	V-2	PAGE 1 OF 2
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevati	on:				
Subco	ntractor/Equipment: Western States Soil Conservation - CME 75			Drilling	Method:	Hollow	Stem Auge	r (H.S.A	A.) / CM	E 75
Date:	2/8/2012			Logged	l By:	L. Cha	idez			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
5	Asphalt surface, 2 inches underlain by Brown, dry to moist, medium dense, silty SAND, fine grained sand with fine to coarse gravel. (FILL)	SM				1544		4		
10	Brown, moist, stiff, sandy SILT, fine grained sand, trace of fine gravel, trace of clay.	ML								
15	At 13 feet; light gray, trace of coarse gravel									
20	At 19 feet; some fine to medium gravel									
25	At 23 feet: trace of fine grained sand, no gravel.			\Box	MW2-S1-23.0/24.5	1631	33/38/38	0.0	Not Observed	
		xplan	ation							
	2-inch O.D. split spoon sample	•	М	onitoring Clean S						
\otimes	No Recovery		××××	Bentoni	te					
V	Contact located approximately Groundwater level at time of drilling or date of measurement			Grout/C Screene Blank C	ed Casing					

PROJEC	CT: Manor Market - Suppl RI - 2nd Phase			JOB #	11-124		BORING #	MW-2 (cor	t) PAGE 2 OF 2		
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevati	on:					
Subcon	tractor/Equipment: Western States Soil Conservation - CME 75			Drilling	Method:	Hollow	Stem Auger	r (H.S.A.) / C	A.) / CME 75		
Date:	2/8/2012			Logged	By:	L. Cha					
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading Sheen	Monitoring Well		
	Light gray, moist, stiff, sandy SILT, fine grained sand, trace	ML									
30	medium to coarse gravel.										
35											
	TD at 36-1/2 feet bgs. Groundwater not encountered ATD. Completed as monitoring well MW-2.										
40	Well Schematics: 0.020 slot screen: 20 feet to 35 feet. Colorado Silica Sand 10x20: 17 feet to 35 feet. Bentonite Chips: 1 feet to 17 feet. Cement grout: 1/2 feet to 1 feet. Ecology Well Tag No. BCM 230.										
45											
50						1					
		Explan	ation	•	-	-			•		
	2-inch O.D. split spoon sample		800	lonitoring Clean S	and						
\otimes	No Recovery		0000	Bentoni	te						
	Contact located approximately Groundwater level at time of drilling			Grout/C	oncrete ed Casing						
	or date of measurement			Blank C	asing						

PROJE				JOB #	11-124		BORING #	IVI	W-3	PAGE 1 OF
.ocatio					imate Elevation		-			
Subcor	ntractor/Equipment: Western States Soil Conservation - CME 75	5			Method:		Stem Auge	r (H.S./	A.) / CM	E 75
Date:				Logged	i By:	L. Cha		5	<u> </u>	
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
	Asphalt surface, 2 inches underlain by Brown, moist, medium dense, silty SAND, fine to coarse grained sand with fine to coarse gravel. (FILL)	SM				0957				
	Greenish-gray, moist, stiff, sandy SILT, fine sand, trace fine to medium gravel	ML								
10	At 7 feet: brown, trace of clay, hydrocarbon fuel odor in soil.				MW3-S1-7.0	1028		26.8	Not Observed	
15	At 13 feet: light brown, hard, fine gravel.			T	MW3-52- 13.0/14.5	1045	13/24/33	0.0	Not Observed	
20										
25	Greenish-gray, dry to moist, hard, SILT, trace of fine sand.	ML			MW3-S3-23.0/24.5	1113	18/35/33	0.0	Not Observed	
	I	Explan	ation							
	2-inch O.D. split spoon sample			onitoring Clean S						
\otimes	No Recovery		\times	Bentoni	te					
V	Contact located approximately Groundwater level at time of drilling or date of measurement				concrete ed Casing casing					

PROJE	CT: Manor Market - Suppl RI - 2nd Phase			JOB #	11-124		BORING #	MW-3	(cont)	PAGE 2 OF 2
Locatio	n: 3609 - 164th Street SW, Lynnwood, WA			Approx	imate Elevatio	on:				
Subcon	tractor/Equipment: Western States Soil Conservation - CME 75			Drilling	Method:	Hollow	Stem Auge	r (H.S.A	.) / CME	E 75
Date:	2/9/2012			Logged	By:	L. Cha	idez			
Depth (ft)	Soil Description	Unified Soil Symbol	Sample Type	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well
30	At 27 feet: trace of clay, trace fine to coarse gravel. At 29-1/2 feet: gray, moist, silt	ML								
35				T	MW3-S4-35.0/36.5	1153	18/28/24	0.0	Not Observed	
40	TD at 36-1/2 feet bgs. Groundwater not ATD. Completed as monitoring well MW-1. Well Schematics: 0.020 slot screen: 20 feet to 35 feet. Colorado Silica Sand 10x20: 17 feet to 35 feet. Bentonite Chips: 1 feet to 18 feet. Cement grout: 1/2 feet to 1 feet. Ecology Well Tag No. BCM 231.									
	E 2-inch O.D. split spoon sample No Recovery Contact located approximately Groundwater level at time of drilling or date of measurement	Explan		lonitoring Clean S Bentoni Grout/C Screene Blank C	and te oncrete ed Casing					

PROJ	ECT: Manor Market			JOB #	11-124	Monitor	ring Well #	MW-4		PAGE 1 OF 2
Locat	ion: 3609-164th Street, Lynnwood, Washington			Approx	ximate Ele	vation: 60	7 feet AMSL			
Subco	ontractor / Driller: Cascade/James			Equipr	ment / Drill	ing Methoo	d: Full Size /	Auger/Sp	olit Spo	oon
Date	: May 28, 2015			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Half Foot	PID Reading	Sheen	Monitoring Well Construction
	6" of asphalt underlain by 6" of concrete underlain by;			1		9:00				
5	at 3.0 feet; fill			2	MW4-4.0	9:06		212		
	Light gray, moist, very stiff, <u>SANDY SILT</u> ; fine grain sand with trace fine to medium grain gravel.	ML		6	MW4-6.5	9:08	12-16-13	4 1562		
10					MW4-11.5	9:13	12-14-15	381 308		
15	at 14.0 feet; transition to gray at 15.0 feet; hard			5 6 7	MW4-16.5	9:23	13-19-22	11.55 607		
20			2		MW4-21.5	9:30	16-19-30	469 237		
25	Fordersting		2	5				166 Ecolo		J # BJA-863
	Explanation	<u>Monito</u>	oring N	/ell Con	struction				уу тад	# DJA-003
	T Sample Advance / Recovery		Grout/	Concrete	e					
	No Recovery		3/4-inc Silica		nite chips					
	Contact located approximately	_			er blank PV0	C casing fro	om			
	Groundwater level at time of drilling		2-inch	diamete	er PVC 0.01	I slotted sci	reen			

PROJ	ECT: Manor Market			JOB #	11-124	Monitor	ring Well #	MW-4		PAGE 2 OF 2		
Locat				Approximate Elevation: 607 feet AMSL								
Subco	ontractor / Driller: Cascade/James			Equipr	nent / Drilli	ing Method	d: Full Size /	Auger/Sp	lit Spo	oon		
Date	: May 28, 2015	1		Logged By: B. Dilba								
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction		
			27		MW4-26.5	9:36	20-20-20	148				
30			28 29 30 31 32 33 33 34 35		MW4-31.5	9:49	21-16-21	213 395				
	Boring terminated at 36.5 feet; converted to MW-4 set with 15' of screen		36		MW4-36.5	10:00	50	317				
	and 20' of blank; backfilled with sand to 2' above the well screen and bentonite chips to 3 feet below ground surface.											
	<u>Explanation</u>	Monito	ring W	ell Con	struction							
	Sample Advance / Recovery		Grout/	Concret	e							
	No Recovery		3/4 inc Silica s		nite chips							
	Contact located approximately		2-inch	diamete	er PVC blan	k casing						
	Groundwater level at time of drilling or date of measurement		2-inch	diamete	er PVC 0.0 ⁻	10" slotted	casing					

PRO.	ECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-5		PAGE 1 OF 2		
Loca	ion: 3609-164th Street, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL								
Subc	ontractor / Driller: Cascade/James			Equipr	nent / Drill	ing Method	I: Full Size /	Auger/Sp	olit Sp	oon		
Date	: May 26, 2015			Logged By:		B. Dilba						
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/ 1/2 Foot	PID Reading	Sheen	Monitoring Well Construction		
	3" of asphalt underlain by		1			12:05						
	6" of concrete;											
								100				
	Brown, moist, medium dense, <u>SILTY SAND</u> ; fine grain sand		3					108		***		
		SM	4									
5	at 5.0 feet; transition to light brown, moist, hard, SANDY SILT; fine		5									
	sand with trace fine to medium grain gravel	ML	6									
			7		MW5-6.5	12:11	13-16-20	264				
			8	5								
10												
10	at 10.0 feet; gray		10									
			11									
			12		MW5-11.5	12:21	20-21-20					
			13									
			14									
15			15									
					MW5-16.5	12:25	18-23-27	68.8				
			17									
			18									
			19									
20			20									
			21									
					MW5-21.5	12:29	12-15-19	42.9				
			23									
			24									
25	Explanation	Marrit	25					F	vnoloc	Tag # BJA		
	_	wonito	oring W	en Con	<u>struction</u>			L.	9 9			
	Sample Advance / Recovery		Grout/0	Concrete	e							
	No Recovery	<u> </u>	3/4-inc	h bento	nite chips							
			Silica	sand								
	 – – - Contact located approximately 		2-inch	diamete	r blank PV	C casing fro	m					
		_				I slotted scr						
	Groundwater level at time of drilling	_				5.01.04 001						

PROJE	ROJECT: Manor Market				11-124	Monitor	ring Well #	MW-5		PAGE 2 OF 2		
Locatio	n: 3609-164th Street, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL								
Subcon	tractor / Driller: Cascade/James			Equipr	nent / Drill	ing Methoo	d: Full Size A	Auger/Sp	olit Spo	oon		
Date:	May 26, 2015			Logge	d By:	B. Dilba		-				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction		
	· · · · · · · · · · · · · · · · · · ·		26		MW5-26.5	12:38	33-41-50	10.1				
30			30 31 32 33		MW5-31.5	12:46	33-31-40	89.6				
35	ring terminated at 36.5 feet; converted to MW-5 set with 15' of screen		34 35 36 37		MW5-36.5	12:50	30-30-30	4.8				
	d 20' of blank; backfilled with sand to 2' above the well screen and ntonite chips to 3 feet below ground surface.											
<u>E</u>	xplanation	<u>Monito</u>	ring W	ell Con	<u>struction</u>							
	Sample Advance / Recovery		Grout/	Concret	е							
	No Recovery		3/4 inc Silica s		nite chips							
-	Contact located approximately				er PVC blar	ık casing						
	Groundwater level at time of drilling or date of measurement		2-inch	diamete	er PVC 0.0	10" slotted	casing					

PROJ	ECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-6		PAGE 1 OF 2
Locat	ion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Ele	vation: 607	7 feet AMSL			
Subco	ontractor / Driller: Cascade/James			Equipr	nent / Drill	ing Method	I: Full Size	Auger/Sp	lit Spo	oon
Date	: May 26, 2015			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	6" of asphalt underlain by;			1		8:37				
				3				659		
5	Gray, moist, medium dense, <u>SILTY SAND</u> ; fine grain sand	SP		6	MW6-6.5	8:58	2-3-5	667		
10	Gray, moist, medium dense, <u>SAND</u> ; fine to medium grain sand	SP	1	7 8 9						
	Gray, wet, medium dense, <u>SAND;</u> fine to medium grain sand at 11.5 feet; moist	SP	1	2	MW6-11.5	9:02	1-2-3	6.2		
15			1:	3						
	Gray, moist, stiff, <u>SANDY SILT;</u> fine grain sand	ML	1	8	MW6-16.5	9:11	n/a	4.8		
20	at 21.0 feet; trace fine grain gravel		2	0 1 2 3	MW6-21.5	9:25	n/a	10.3		
25	<u>Explanation</u>	Monito	2 2 2 2	s Vell Con	struction			Ecolog	ly Tag	# BJA-858
	_		-						. 0	
	T Sample Advance / Recovery	_		Concrete						
			3/4-inc Silica		nite chips					
	 Contact located approximately 	_				C casing fro				
	Groundwater level at time of drilling at or date of measurement		2-inch	diamete	r PVC 0.0	1 slotted scr	een			

ROJECT: Manor Market					11-124	Monito	ring Well #	MW-6		PAGE 2 OF 2	
Location: 3609-164th Stree	et, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL							
Subcontractor / Driller: Casca	de/James			Equip	ment / Drill	ing Methoo	d: Full Size /	Auger/Sp	olit Spo	oon	
Date: May 26, 2015				Logge	d By:	B. Dilba					
Boring Depth (feet) Soil	Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction	
			26		MW6-26.5	9:33		3.5			
30 30 35 Gray, wet, very dense, <u>SAND</u> ;	fine grain sand	SP	29 30 31 32 33 33 34 35		MW6-31.5	9:39	30-31-30	5.4	No		
Gray, moist, hard, <u>SANDY SILT</u> sand, fine grain gravel Boring terminated at 36.5 feet; and 20' of blank; backfilled with	with trace gravel; fine grain converted to MW-6 set with 15' of screen a sand to 2' above the well screen and	ML	36		MW6-36.5	9:48	26-31-36	6.1			
bentonite chips to 3 feet below	ground duridod.										
Explanation	<u> </u>	Monito	ring W	ell Con	struction						
Sample Advance	/ Recovery		Grout/	Concret	e						
		***	3/4 inc	h bento	nite chips						
-			Silica s								
– – – – Contact located a	approximately				er PVC blar						
Groundwater leve AT or date of measu	el at time of drilling rement		2-inch	diamete	er PVC 0.0	10" slotted	casing				

PROJ	JECT:	Manor Market			JOB #	11-124	Monito	ring Well #	MW-7		PAGE 1 OF 2	
Locat	tion:	3609-164th Street, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL							
Subc	ontract	or / Driller: Cascade/James			Equip	ment / Drill	ing Methoo	d: Full Size /	Auger/Sp	olit Sp	oon	
Date):	May 27, 2015			Logge	d By:	B. Dilba					
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction	
		halt underlain by;					14:07					
	Light bro	ncrete underlain by; wn, moist, medium stiff, <u>SANDY SILT</u> with trace gravel; n sand, fine to medium grain gravel	ML	3	1 2 3 4	MW7-3.0	14:18		266			
5	at 5.0 fe	et; hard		e 	5 3 7	MW7-6.5	18:32	30-20-20	133 25.7			
10				10 10 11 12 12 13 14		MW7-11.5	14:39	21-20-20	32.0 3.0			
15	at 15.5 f	eet; transition to gray		15		MW7-16.5	14:48	19-20-28	34.0 7.2			
20	-			20 21 22 23 23 24		MW7-21.5	14:55	24-28-31	56.4 29.6			
25				25	5				4.7			
	<u>Explan</u>	ation	<u>Monito</u>	oring W	/ell Con	struction		E	cology T	ag # E	3JA-862	
	J	Sample Advance / Recovery		Grout/0	Concret	е						
		No Recovery	_		h bento	nite chips						
		- Contact located approximately	Lecticad)			er blank PV	C casing fro	m				
	AT	_Groundwater level at time of drilling or date of measurement		2-inch	diamete	er PVC 0.0	1 slotted sci	reen				

PRO	JECT: Manor Market		JOB #	11-124	Monitor	ing Well #	<i>MW-7</i>		PAGE 2 OF 2			
Loca	tion: 3609-164th Street, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL								
Subc	ontractor / Driller: Cascade/James		Equipment / Drilling Method: Full Size Auger/Split Spoon									
Date	: May 27, 2015	-		Logged By: B. Dilba								
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction		
			26		MW7-26.5	15:30	17-21-19	5.3				
30			28 29 30 31 32 33 33 33 34		MW7-31.5	15:09	17-15-14	0.4				
	Boring terminated at 36.5 feet; converted to MW-7 set with 15' of screen		36		MW7-36.5	15:20	32-21-31	3.6 3.7				
	and 20' of blank; backfilled with sand to 2' above the well screen and bentonite chips to 3 feet below ground surface.											
	Explanation	<u>Monito</u>	oring W	ell Con	struction							
	Sample Advance / Recovery		Grout/	Concre	te							
	No Recovery		3/4 inc Silica s		nite chips							
	Contact located approximately		2-inch	diamet	er PVC blar	nk casing						
	Groundwater level at time of drilling or date of measurement		2-inch	diamet	er PVC 0.0	10" slotted	casing					

PROJ	ECT: Manor Market			JOB #	11-124	Monito	ring Well #	MW-8		PAGE 1 OF 2
Locat	ion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Ele	vation: 60	7 feet AMSL			
Subco	ontractor / Driller: Cascade/James			Equip	nent / Drill	ing Methoo	d: Full Size /	Auger/Sp	olit Spo	oon
Date	: May 27, 2015			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	6" of asphalt underlain by;			1		10:56				
				2				499		
	Light brown, moist, medium stiff, <u>SANDY SILT</u> with trace gravel; fine grain sand, fine to medium grain gravel	ML		4						
5	at 5.0 feet; hard			5						
				7	MW8-6.5	11:14	15-16-15	2.9		
10				8 6 10						
				11	MW8-11.5	11:20	15-11-11	1.9		
15				13						
	at 15.0 feet; transition to gray			16	MW8-16.5	11:28	12-14-20	33.5		
20			· · · · · · · · · · · ·	19						
20	at 20.0 feet; stiff			20						
	at 22.5 feet; wet			22	MW8-21.5	11:37	24-28-30	1.6		
25				24						
	<u>Explanation</u>	Monito	oring V	Vell Con	struction			Ecolo	ogy Tag	g # BJA-861
	Sample Advance / Recovery	-	Grout/	Concret	e					
			3/4-in Silica		nite chips					
	– – – Contact located approximately		2-inch	diamete	r blank PV	C casing fro	om			
	Groundwater level at time of drilling	2-inch	diamete	r PVC 0.0	1 slotted sci	reen				

PROJ	PROJECT: Manor Market				11-124	Monitor	ing Well #	MW-8		PAGE 2 OF 2		
Locat	ion: 3609-164th Street, Lynnwood, Washington			Approximate Elevation: 607 feet AMSL								
Subc	ontractor / Driller: Cascade/James			Equipr	nent / Drill	ing Methoo	I: Full Size A	Auger/Sp	olit Spo	oon		
Date	: May 27, 2015			Logge	d By:	B. Dilba		-				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction		
	at 25.0 feet; moist		26									
			27		MW8-26.5	11:43	24-26-36	4.7				
30			29 30 31 32 33 33 34 35		MW8-31.5	11:50	16-20-20	11.5				
	Boring terminated at 36.5 feet; converted to MW-8 set with 15' of screen and 20' of blank; backfilled with sand to 2' above the well screen and		36		MW8-36.5	11:58	33-35-41	1.5		Datas Comme tatas d		
	bentonite chips to 3 feet below ground surface.											
	_	Monito			<u>struction</u>							
	Sample Advance / Recovery			Concret								
	No Recovery		3/4 inc Silica		nite chips							
	Contact located approximately				er PVC blar	ık casing						
	Groundwater level at time of drilling		2-inch	diamete	er PVC 0.0	10" slotted	casing					

PROJ	ECT: Manor Market			JOB #	11-124	Monito	ring Well #	MW-9		PAGE 1 OF 2
Locat	ion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Ele	vation: 60	7 feet AMSL			
Subco	ontractor / Driller: Cascade/James			Equip	ment / Drill	ing Metho	d: Full Size /	Auger/S	olit Spo	oon
Date	: May 27, 2015			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	6" of asphalt underlain by;					8:38				
				3						
	Light brown, moist, very stiff, <u>SANDY SILT</u> with trace gravel; fine grain sand, fine to medium grain gravel	ML		4				95		
5	at 5.0 feet; hard			6						
	at 6.5 feet; trace fine to medium grain gravel			7	MW9-6.5	8:56	15-22-29	637		
10			1	9						
	at 11.0 feet; gray		1	3	MW9-11.5	9:05	19-22-25	14.6	Slight HC odor	
15	at 17.0 feet; light brown			5 6 7 8	MW9-16.5	9:11	20-20-20	6.2		
20			2		MW9-21.5	9:23	16-17-22	32.7		
	at 21.5 feet; gray		2	3						
25	Explanation		2	5	- 4			Ecolog	v Tao #	# BJA-860
	_	wonito	ning V	ven Con	struction			9	,, "	
	old I Sample Advance / Recovery		Grout/	Concret	9					
	No Recovery		3/4-inc Silica		nite chips					
	Contact located approximately		2-inch	diamete	er blank PV	C casing fro	om			
	Groundwater level at time of drilling		2-inch	diamete	er PVC 0.07	1 slotted sci	reen			

PROJ	ECT: Manor Market			JOB #	11-124	Monitor	ing Well #	<i>MW-</i> 9		PAGE 2 OF 2
Locat	ion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Elev	vation: 60	7 feet AMSL			
Subco	ontractor / Driller: Cascade/James			Equipr	ment / Drill	ing Methoo	l: Full Size A	uger/Sp	olit Spo	oon
Date	: May 27, 2015			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
			28		MW9-26.5	9:29	25-25-26	17.8		
30			29 30 31 32 33 33 34 35		MW9-31.5	9:34	21-27-21	22.8		
	Boring terminated at 36.5 feet; converted to MW-9 set with 15' of screen		36		MW9-36.5	9:43	33-50-6	7.0		
	and 20' of blank; backfilled with sand to 2' above the well screen and bentonite chips to 3 feet below ground surface.									
	Explanation	Monito	ring W	ell Con	<u>struction</u>					
	I Sample Advance / Recovery		Grout/0	Concret	e					
		***	3/4 inc	h bento	nite chips					
	No Recovery		Silica s	and						
	Contact located approximately		2-inch	diamete	er PVC blan	ık casing				
	Groundwater level at time of drilling at or date of measurement		2-inch	diamete	er PVC 0.0	10" slotted	casing			

PRO	IECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-10		PAGE 1 OF 2
Loca	tion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Elev	vation: 607	7 feet AMSL			
Subc	ontractor / Driller: Cascade/James					ing Methoo	I: Full Size A	Auger/Sp	olit Spo	oon
Date	: March 24, 2016	1		Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Half Foot	PID Reading	Sheen	Monitoring Well Construction
	12" of asphalt underlain by;			1		0:00				
				2						
5				5						
	Brown, dry, stiff, <u>SANDY SILT;</u> fine grain sand.	ML		6	MW10-6.5	9:43	10-16-19	0		
10	Brown, dry, stiff, <u>SILT</u>		1	0						
					MW10-11.5	9:41	10-13-21	0		
15			1							
	at 15.5 feet; transition to moist, gray			5 6 7 8	MW10-16.5	10:03	15-6-15	0 607		
20			2	0						
	@ 20.0'; Interbedded super fine sand layers @20.5'; gray <u>SILT</u>		2		MW10-21.5	10:17	26-54-6	36.5		
25	<u>Explanation</u>	Marrit	2	5				Ecolo	av Tan	# BJA-863
	Image: Sample Advance / Recovery Image: No Recovery Image: Contact located approximately		Grout/ 3/4-inc Silica	Concrete h bento sand	<u>struction</u> e nite chips er blank PV0	C casing fro	m			
	Groundwater level at time of drilling AT or date of measurement		2-inch	diamete	er PVC 0.01	slotted scr	een			

PRO.	JECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-10		PAGE 2 OF 2
Loca	tion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Elev	vation: 60	7 feet AMSL			
Subc	ontractor / Driller: Cascade/James			Equipr	nent / Drilli	ing Methoo	d: Full Size A	Auger/Sp	olit Spo	oon
Date	March 24, 2016			Logge	d By:	B. Dilba		-		
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
	-		26 27 28		MW10-26.5	10:29	39-56	26.6		
30			29 30 31 32 33 33 34 34 35		MW10-31.5	10:37	30-31-30	20.4		
	trace gravel Boring terminated at 36.5 feet; converted to MW-10 set with 20' of screen		36		MW10-36.5	10:49	26-29-30	14.8		
	and 15' of blank; backfilled with sand to 2' above the well screen and bentonite chips to 3 feet below ground surface.									
	Explanation	Monito	ring W	ell Con	<u>struction</u>					
	Sample Advance / Recovery		Grout/0	Concret	e					
	No Recovery		3/4 inc Silica s		nite chips					
	Contact located approximately		2-inch	diamete	er PVC blan	k casing				
	Groundwater level at time of drilling or date of measurement		2-inch	diamete	er PVC 0.0	10" slotted	casing			

PROJ	ECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-11		PAGE 1 OF 2
Locat							7 feet AMSL			
Subc	ontractor / Driller: Cascade/James			Equipr	nent / Drill	ing Method	I: Full Size	Auger/Sp	olit Spo	oon
Date	: March 24, 2016			Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/ 1/2 Foot	PID Reading	Sheen	Monitoring Well Construction
	12" of asphalt underlain by			1		12:47				
5		SM		3				108		
	Gray, dry, siff, <u>SANDY SILT</u> ; fine interbedded sands	ML		6 7 8	MW11-5	13:08	13-16-20	264		
10	Brown, moist, stiff, <u>SILT</u>				MW11-10.5	13:14	20-21-20			
15	transition to darker gray			4 5 8 7	MW11-15.5	13:23	18-23-27	68.8		
20			21 22 22 22 22		MW11-20.5	13:42	12-15-19	42.9		
25			2	5						
	Explanation	Monito	oring V	/ell Con	<u>struction</u>			E	cology	Tag # BJA
	Sample Advance / Recovery No Recovery	_			e nite chips					
	Contact located approximately	_				C casing fro I slotted scr				
	Groundwater level at time of drilling at or date of measurement]								

PRO.	JECT: Manor Market			JOB #	11-124	Monitor	ing Well #	MW-11		PAGE 2 OF 2
Locat	tion: 3609-164th Street, Lynnwood, Washington			Appro	ximate Elev	vation: 60	7 feet AMSL			
Subc	ontractor / Driller: Cascade/James			Equipr	ment / Drilli	ing Method	d: Full Size /	Auger/Sp	lit Spo	oon
Date	: March 24, 2016	1		Logge	d By:	B. Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Monitoring Well Construction
			26		MW11-25.5	13:52	33-41-50	10.1		
30			30 30 31 32 33		MW11-30.5	13:59	33-31-40	89.6		
35	Boring terminated at 36.5 feet; converted to MW-11 set with 20' of screen		34 35 36 37		MW11-35.5	14:24	30-30-30	4.8		
	and 15' of blank; backfilled with sand to 2' above the well screen and bentonite chips to 3 feet below ground surface.									
	Explanation	<u>Monito</u>	ring W	ell Con	<u>struction</u>					
	Sample Advance / Recovery		Grout/0	Concret	e					
		XXX	3/4 inc	h bento	nite chips					
	•		Silica s							
	 – – Contact located approximately 				er PVC blan					
	Groundwater level at time of drilling or date of measurement		2-inch	diamete	er PVC 0.0 ⁻	10" slotted	casing			

CHAIN-OF-CUSTODY RECORD

									-												_						
CLIENT: AE	<u>لح</u>			i i							185	-	<i>h</i>	D	ATE		8	12	<u>e l</u>	<u>(1)</u>	<u></u>		PA	GE	_OF(
ADDRESS: 104	<u>8 c</u>	<u> </u>	pt h	SAY 5 #	2-1,	<u>, 0</u>	C7	h	<u>rl</u>					Ρ	RO.	JEC	TN	AM	E: .	1	14	-	<u>0</u> L	MARIE	<u>т рц</u>	<u>tr 6</u>	34
PHONE: 360	- 35	2-0	1835	Fa)	X:		-8	1	<u>64</u>	,														strang L	ι	-	
CLIENT PROJECT	#:	11-12	7	PROJEC	СТ МА	NA	GE	R: ⊻	1_	СИ	<u>U</u>	1	Fr'	c	OLI	-EC	то	R:			1.	VA	g-q-	(DATE OF COLLECTION	8/2	4/1
						LE?	7	ON	L.	x	6Y	Ŧ			1	si/		7	7	7	7	7		7777			- Le
		e Serie R			MAL	3/ 0/5		30)	*/	si/s		210/2	19/08	32/33	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	A STATE	AN IN A		2 .2			/				Nun	NLTO
Sample Number	Depth	Time	Sample Type	Container Type	ANAL TOTAL	36. 30 / 38 74 / 78		ð/0	5 82 8 5 82 8 5 82 8		ANNO N		10 10 39 - C		94 9 94 9 94 1	J.		States and the second		e gut O yu	Sulla			NOTES		Total Number of Containers	Laboratory Nota Numb
1. BI-53 - 5.56,0	5.5-	096	Jok	VOA74033		X	×			·														Fuel odor		3	
2 BI-57-25,5/26	2505	132	rait	WAGED		X	×																	- 14 -		3	
3. 81-4		1155	1420	VOA.		X	×	X																		2	
4. B2-55-4.5/12.0	11.5 -	1332	SOIL	VOA, 402		X	×		M																	3	\$
5.82-58-16,5/17,0	16.5-	1346	SOIL	vajer		X	×								1											3	<u>х</u>
6.3-52-57516.0	6.0	1457	SOIL	10A, 463		8	X	×																		3	
7:03-56-11,5/12,0	16.5-	1587	Soul	WAYER		X	x																		-	3	
8.04-53-7.518.0	78.	1606	SIL	10 A, 402		8	×																			3	
9.			i																								
10.																											
11.																											
12.																											
13.																											
14.																											
15.																											
16.																											
17.																											
18.																											
RELINQUISHED BY (Signa	ature)	DA	TE/TIME	RECEIV	ED BY (Signa	ture)	D/	ATE/	TIME	4			SAI	IPL	ERE	CEIP	т					ABORATORY NOTE			
	Ģ	slaeli	1 170	o	K	- 1	B-Z	,7-	4/	1,70	00	Ľ	OTA	. NU	MBE	ROF	CO	ITAI	NER	S			<u>+</u> {	analysis		lav	-
RELINQUISHED BY (Signa			TE/TIME	RECEIV	ED BY (_		ATE/		79	CHAIN	OF	CUS	TOD	Y SE	ALS	Y/N/	NA	-	ļ		analysis	FUr B	n an blad	
I V												s	SEAL	S INT	FACT	? Y/	INA										
······································	SA	MPLE	DISPOS	AL INSTRUCT	TIONS							-[F	RECE		GO	OD C	ONC) <i>./</i> CO	LD		at inseries and a				1		
	SAMPLE DISPOSAL INSTRUCTIONS											-	NOTE	S:									Т	urn Around Time:	24 HR 48	HR	DAY
Land the second se																							_				

AEG MANOR MARKET PH II ESA Client Project #11-127 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

.

Analysis of Gasoline Range Organics & BTEX in Soil by Method NWTPH-Gx/8260

Sample	Date	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Prepared	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	8/31/2011	8/31/2011	nd	nd	nd	nd	nd	91%
LCS	8/31/2011	8/31/2011	113%	91%	88%	97%	120%	89%
B1-S3-5.5/6.0	8/24/2011	8/31/2011	1.3	2.0	5.0	12	190	85%
B1-S7-25.5/26	8/24/2011	8/31/2011	0.11	nd	nd	0.11	12	93%
B2-S5-11.5/12.0	8/24/2011	8/31/2011	nd	nd	nd	nd	nd	91%
B2-S8-16.5/17.0	8/24/2011	9/1/2011	nd	nđ	nd	nd	nd	92%
B3-S2-5.5/6.0	8/24/2011	8/31/2011	0.24	0.67	0.48	0.73	22	92%
B3-S6-11.5/12.0	8/24/2011	8/31/2011	nd	nd	nd	nd	nd	101%
B4-S3-7.5/8.0	8/24/2011	8/31/2011	nd	nd	nd	nd	nd	90%
Reporting Limits			0.02	0.05	0.05	0.15	10	

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

AEG MANOR MARKET PH II ESA Client Project #11-127 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics & BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	8/26/2011	nd	nd	nd	nd	nd	87%
LCS	8/26/2011	129%	114%	111%	109%	85%	93%
B1-W	8/26/2011	170	72	100	280	2100	95%
Reporting Limits		1.0	1.0	1.0	3.0	100	

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

Analysis of Chlorinated Volatile Organic Compounds in Soil by Method 8260

AEG MANOR MARKET PH II ESA Client Project #11-127 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results 8260B Chlorinated, µg/kg MTH BLK B3-S2-5.5/6.0 LCS Matrix Soil Soil Soil 08/31/11 08/31/11 08/24/11 Date extracted Reporting Date analyzed Limits 08/31/11 08/31/11 08/31/11 Dichlorodifluoromethane 50 nd nd Chloromethane 50 nd nd Vinyl chloride 50 nd 70% nd Chloroethane 50 nd nd Trichlorofluoromethane 50 nd nd 1.1-Dichloroethene 50 74% nd nd Methylene chloride 20 nd nd trans-1,2-Dichloroethene 50 nd nd 1:1-Dichloroethane 50 nd nd cis-1,2-Dichloroethene 50 nd nd 2,2-Dichloropropane 50 nd nd Chloroform 50 nd 104% nd Bromochloromethane 50 nd nd 1,1,1-Trichloroethane 50 nd nd 1,2-Dichloroethane (EDC) 50 nd nd 1,1-Dichloropropene 50 nd nd Carbon tetrachloride 50 nd nd Trichloroethene (TCE) 106% 20 nd nd 1,2-Dichloropropane 50 nd nd Bromodichloromethane 50 nd nd cis-1,3-Dichloropropene 50 nd nd trans-1,3-Dichloropropene 50 nd nd 1,1,2-Trichloroethane 50 nd nd 1,3-Dichloropropane nd 50 nd Dibromochloromethane 50 nd nd Tetrachloroethene (PCE) 75% 20 nd nd Chlorobenzene 50 93% nd nd 1,1,1,2-Tetrachloroethane 50 nd nd 1,1,2,2-Tetrachloroethane 50 nd nd 1,2,3-Trichloropropane 50 nd nd 2-Chlorotoluene 50 nd nd 4-Chlorotoluene 50 nd nd 1,3-Dichlorobenzene 50 nd nd 1,4-Dichlorobenzene 50 nd nd 1,2-Dichlorobenzene 50 nd nd 1,2-Dibromo-3-Chloropropane 50 nd nd 1.2.4-Trichlorobenzene 50 nd nd Hexachloro-1,3-butadiene 50 nd nd 1,2,3-Trichlorobenzene 50 nd nd Surrogate recoveries Dibromofluoromethane 83% 79% 79% Toluene-d8 81% 67% 78%

91%

89%

92%

Data Qualifiers and Analytical Comments

4-Bromofluorobenzene

nd - not detected at listed reporting limits

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

AEG MANOR MARKET PH II ESA Client Project #11-127 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Chlorinated Volatile Organic Compounds in Water by Method 8260

8260B Chlorinated, µg/L		ATH BLK	LCS	B1-W
Matrix	Reporting	Water	Water	Wate
Date analyzed	Limits	08/26/11	08/26/11	08/26/1
Dichlorodifluoromethane	1.0	nd		nc
Chloromethane	1.0	nd		no
Vinyl chloride	0.2	nd	127%	no
Chloroethane	1.0	nd		no
Trichlorofluoromethane	1.0	nd		n
1,1-Dichloroethene	1.0	nd	135%	n
Methylene chloride	1.0	nd		n
trans-1,2-Dichloroethene	1.0	nd		n
1,1-Dichloroethane	1.0	nd		n
cis-1,2-Dichloroethene	1.0	nd		no
2,2-Dichloropropane	1.0	nd		n
Chloroform	1.0	nd	135%	2.3
Bromochloromethane	1.0	nd		n
1,1,1-Trichloroethane	1.0	nd		no
1,2-Dichloroethane (EDC)	1.0	nd		no
1,1-Dichloropropene	1.0	nd		nc
Carbon tetrachloride	1.0	nd		no
Trichloroethene (TCE)	1.0	nd	124%	no
1,2-Dichloropropane	1.0	nd		nc
Bromodichloromethane	1.0	nd		nc
cis-1,3-Dichloropropene	1.0	nd		nc
trans-1,3-Dichloropropene	1.0	nd		nc
1,1,2-Trichloroethane	1.0	nd		nc
1,3-Dichloropropane	1.0	nd		nc
Dibromochloromethane	1.0	nd		nc
Tetrachloroethene (PCE)	1.0	nd	95%	nd
Chlorobenzene	1.0	nd	107%	nc
1,1,1,2-Tetrachloroethane	1.0	nd	10770	nc
1,1,2,2-Tetrachloroethane	1.0	nd		nc
1,2,3-Trichloropropane	1.0	nd		nd
2-Chlorotoluene	1.0	nd		nc
4-Chlorotoluene	1.0	nd		nc
1,3-Dichlorobenzene	1.0	nd		nd
l,4-Dichlorobenzene	1.0	nd		nd
,2-Dichlorobenzene	1.0	nd		nd
,2-Dibromo-3-Chloropropane	1.0	nd		nd
1,2,4-Trichlorobenzene	1.0	nd		nd
Hexachloro-1,3-butadiene	1.0	nd		nd
,2,3-Trichlorobenzene	1.0	nd		nd
Surrogate recoveries	· · · <u>·</u> · · · · · · · · · · · · · · ·			,
Dibromofluoromethane		118%	103%	91%
Foluene-d8		81%	93%	75%
-Bromofluorobenzene		87%	93%	95%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Libby Environn	nental	, Inc.		(Chair	1 0	fCı	iste	ody	R	lec	or	d						
4139 Libby Road NE	Ph:	360-352-2	2110																
Olympia, WA 98506	Fax:	360-352-4	4154														Page:		/ of /
Client: AEG							Proje	ct Ma	anage	er: 1	Y₽	N-	Vy						
Address: 1018 CAPI	TOL h	vay .	5.				Proje	ct Na	ame:	N	1AA	JOK	2 N	MA.	pk	E7	-		
Phone: (340) 352-9							Locat	tion:	360	09	16	411	4 87	ŀ		(City: d	Ly	INNWOOD, WA.
Client Project # 11-12							Colle	ctor:	LE	70 a	CH	Ai	, De	52			Date c	of C	ollection: FEB, 8-9,2
THE RA	Depth	Time	Sample Type	Containe Type,	er JC	1000 M	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 20 20 20 20 20 20 20 20 20 20 20 20 20	TRI CONTRACTOR	CONTRACTOR	CO C		× 12 2	2 25 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 Shield	//		Field Notes
1 MWI-81/12-133	12-13	\$ 10:55	Soil			V.			3	\checkmark									3 Containers
2MW1-52/23-24.3	23-24	511:28				\checkmark				1									
3MW1-53/30-31.5	30 -31,5	11:52				V	2												
4MW1-54/35-365	35-365	12:13				V			1	$\overline{\mathbf{N}}$									
5 MWZ-51/23-24.5	24-245	4:31				V	8		1										V
6 MW.3-51/7.0'	7.0'	10:28				V				~									HEODOR
7MW3-52/13-14.5	13-14.5'	10:45				V			1										3 containers
8 MW3-53/23-24.5	23-24.5	11:13				V													
9			· · ·																
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17													1						
18								-	E.			-	1				-		
Relinquished by:	Date	/Time	(Received by					100		Time		Sam	ple	Rec	eipt:			Remarks:
Khuon	_		(Vincer	ZIV	W	man	nd	410	12	31	1Dn	1						NORMAL TAT
Relinquished by:	Date	/Time	V	Received by	0	1		7	D)ate /	Time		Good	Cond	ition?				
													Cold?	,			_	-	
Relinquished by:	Date	/ Time		Received by					C)ate /	Time		Seals	Intac	1?				
													Total	Numb	er of (Contair	ers		

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120210-2 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	2/13/12	nd	nd	nd	nd	nd	93
LCS	2/13/12	128%	104%				71
MW1-S1/12-13.5	2/13/12	0.021	nd	nd	nd	nd	85
MW1-S2/23-24.5	2/13/12	0.22	nd	nd	nd	86	86
MW1-S3/30-31.5	2/13/12	0.032	0.11	nd	nd	nd	86
MW1-S4/335-36.5	2/13/12	0.88	nd	nd	nd	nd	89
MW2-S1/23-24.5	2/13/12	nd	nd	nd	nd	nd	89
MW2-S1/23-24.5 Dup	2/13/12	nd	nd	nd	nd	nd	87
MW3-S1/7	2/13/12	0.048	0.20	0.27	1.1	nd	78
MW3-S2/23-24.5	2/13/12	0.036	0.10	nd	nd	nd	88
MW3-S3/13-14.5	2/13/12	nd	nd	nd	nd	nd	86
L120213-10 MS	2/13/12	113%	84%				88
Practical Quantitation	Limit	0.02	0.10	0.05	0.15	10	

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

Libby Environm	nental	, Inc.		Cł	nain	of (Cust	tod	y R	lec	or	d									
4139 Libby Road NE		360-352-2	2110						1	1									2	1	
Olympia, WA 98506	Fax	360-352-4	4154			Da	ite: /	03[01	11	2					Page	e:	/	(of /	
Client: #56						Pr	ite: <u> </u> oject N	/lanag	ger:	YE	EN	<u>'- </u>	14								
Address: 1018 CAR	PITOL	WA	75.	_		Pr	oject N	lame	: 1	N,	12	IOR		IA	RI	KE	=7	-			
Phone: (360) 35	z 983	5Fax:				Lo	oject N cation	: 4	yN,	Nh	re	D,	W	4		City:	2				
Client Project #						Co	llector	: 10	50	C	нл	ibi	52	<u>ب</u>		Date	e of (Collection	n: 03	3/01/	12
Sample Number	Depth	Time	Sample Type	Container Type	JOP		5 5 5 5	THE CONTRACT	S R R R	CO C	to the state	5+ 151 24	14 100 00 14 100 00 00 00	80 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CV SUPERIOR	100 ×	 2]	//	Id Note	es	
1 MW-1	-	11:27	HED	40 ml					V						1	,					
2 MW-2	-	12:04		1,		K-			$\overline{\mathbf{V}}$						~						
3 MW-3	-	12:37	×	J.		K_	_		V	_					V						
4							+			_	-		_			_	·				
5						_		_		-+										-	
6	 					_	-			\rightarrow	-										
7	-						-			-+											
8						_		┝─┤		\rightarrow											
9 10										\rightarrow				_							
11						+	+			-+			_								
12										-	-	_			_	-					
13							+		\rightarrow	-+				-							
14							+														
15	_						+														
16																					
17												1									
18																					
Relinquished by:		/Time		Received by:					Date /			Sam	elar	Rec	eipt:			Remark	S:		
1 Chuder	- 03	101/12	2	791	-		З	11.	2	3:10	Om		•		,			-	A	T-	
Relinquished by:	Date	Time		Received by:					Date /	Time	1	Good	Cond	ition?				1 / ·	A.	/	
												Cold?						1			
Relinguished by:	Date	/Time		Received by:					Date /	Time		Seals	Intact	t?				1			
												-		er of (Contai	ners					

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120301-2 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

			-		
Sample Description		Method	MW-1	MW-2	MW-3
		Blank			
Date Sampled		N/A	03/01/12	03/01/12	03/01/12
Date Analyzed		03/04/12	03/04/12	03/04/12	03/04/12
	PQL				
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Benzene	1.0	nd	9.9	nd	nd
Toluene	1.0	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd
Total Xylenes	1.0	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd
Total Naphthalenes	5.0	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd
Surrogate Recovery					
Dibromofluoromethane		67	79	77	77
1,2-Dichloroethane-d4		71	80	68	71
Toluene-d8		135	110	126	108
4-Bromofluorobenzene		114	115	111	115

Specific Halogenated and Aromatic Hydrocarbons (EPA 8260C) in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135% ANALYSES PERFORMED BY: Sherry Chilcutt

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120301-2

		Sample Iden	ntification:	L120228-1	1		
		Matrix Spike			atrix Spike I	Dup	RPD
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	
Benzene Toluene	10 10	10.7 13.4	107 134	10 10	12.1 13.1	121 131	12.3 2.3
Surrogate Recovery							
Dibromofluoromethane			71			74	
1,2-Dichloroethane-d4			69			67	
Toluene-d8			105			121	
4-Bromofluorobenzene			115			116	

QA/QC Data - EPA 8260C Analyses

	Laborator	y Control Sa	mple
	Spiked Conc.	Measured Conc.	Spike Recovery
	(ug/l)	(ug/l)	(%)
Benzene	10	10.2	102
Toluene	10	12.6	126
Surrogate Recovery			
Dibromofluoromethane			73
1,2-Dichloroethane-d4			83
Toluene-d8			128
4-Bromofluorobenzene			116
ACCEPTABLE RECOVE		S FOR MAT	FRIX SPIK
ACCEPTABLE RPD IS 3. ANALYSES PERFORME		erry Chilcutt	

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120301-2

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(ug/l)
Method Blank	3/4/12	135	nd
MW-1	3/4/12	110	nd
MW-2	3/4/12	126	nd
MW-3	3/4/12	108	nd
Practical Quantitation Limit			100

Analyses of Gasoline (NWTPH-Gx) in Water

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120301-2

Sample	Date	Lead
Number	Analyzed	(ug/l)
Method Blank	3/10/12	nd
MW-1	3/10/12	nd
MW-1 Dup	3/10/12	nd
MW-2	3/10/12	nd
MW-3	3/10/12	nd
Practical Quantitation Limit	ţ	5.0

Analyses of Total Lead in Water by EPA Method 7421

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L120301-2

Sample	Date	Lead
Number	Analyzed	(ug/l)
LCS	3/10/12	111%
MW-1 MS	3/10/12	87%
MW-1 MSD	3/10/12	90%
RPD	3/10/12	3.1
Practical Quantitation Limit		5.0

QA/QC for Lead in Water by EPA Method 7421

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Dirk Peterson

Libby Environm	ental	, Inc.		Ch	nain	of C	ust	ody	Rec	cor	d	-				www.	LibbyEnvir	onmental.com
4139 Libby Road NE		360-352-2						/.	201	117						1		/
Olympia, WA 98506	Fax:	360-352-4	1154			Date	:	11/2	01	12	-			Paç	ge:	/	of	1
Client: AEG	_		x			Proje	ect Ma	anagei	·	en	-V	y V	lan	V.	_			
Address: 605 1144	AVE	SE. Su	ite Z	01		Proje	ect Na	ame:	Ma	1.10	- 1	Ma	sk	et				
City: Olympra	5. 	State: U	JÁ Zip	9850	1	Loca	ition:	·Ly	in						, Stat	te:		
Phone: (360) 352-0	1835	Fax:		F	24	Colle	ector:	Je	æ	W	1:15	on		Dat	e of C	Collection:	11/2	0/12
Client Project # //-/						Ema	il:											-
THE BAA			Sample	Container	58 75	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 00 00 12	OULAND OF	10 CO	STRA	OT PH	100 00 00 00 00 00 00 00 00 00 00 00 00	800	AS MERS	1×Pt			9
Sample Number	Depth	Time	Туре	Type	<u> </u>	1/1	151	14	4 4	2/4	19	22	4º	19	\leftarrow	(Notes	11
1 11-11-111		17/07	Waster	VOA / Poly			-	-	-				_			De	y we	11
2 MW-ZW		13:07	4				-+	~	-				-	/			11 1	
3 MW-3W	-	13:45	V				3	~	_					~			4	-
5																	-	
6									-	1					1			i.
7																		
8																		
9										1								
10																		
11																		
12																		
13																1		
14				200														
15	11															14.		
16	7																	
17																		
Relinquished by	Date	/ Time		Received by:	-		11/2	1	te / Tim		San	nple I	Rece	eipt:	1	Remarks:		
Relinguished by:	Date	/ Time		Received by:					te / Tim		Good	l Condi	ition?			5	TV	
				•							Cold	?				1		
Relinquished by:	Date	/ Time		Received by:				Da	te / Tim	e	Seals	s Intact	?]		×
											Total	Numbe	er of C	ontainers		TAT: 2	4HR 48	HR 5-DAY

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

MANOR MARKET PROJECT AEG, LLC Lynwood, Washington Libby Project # L121121-1 Client Project # 11-124

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(µg/l)
Method Blank	11/26/12	95	nd
MW-2W	11/26/12	101	nd
MW-3W	11/26/12	100	nd
MW-3W Dup	11/26/12	95	nd
Practical Quantitation Limi			100

Analyses of Gasoline (NWTPH-Gx) in Water

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynwood, Washington Libby Project # L121121-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Specific Halogenated and Aromatic Hydrocarbons by EPA 8260C in Water

Sample Description		Method	MW-2	MW-3	MW-3	
1 1		Blank	1,1,1,1,2	11111 0	Dup	
Date Sampled		N/A	11/20/12	11/20/12	11/20/12	
Date Analyzed	PQL	11/26/12	11/26/12	11/26/12	11/26/12	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
Benzene	1.0	nd	nd	nd	nd	
Toluene	1.0	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	
Total Xylenes	1.0	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	
Total Naphthalenes	5.0	nd	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE	5.0	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		101	102	94	94	·
1,2-Dichloroethane-d4		95	81	82	83	
Toluene-d8		95	101	100	95	
4-Bromofluorobenzene		95	93	104	96	
"nd" Indicates not detected a	t listed de	tection limit	-			
"int" Indicates that interferen	nce prever	nts determina	ation			

* INSTRUMENT DETECTION LIMIT ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynwood, Washington Libby Project # L121121-1 Client Project # 11-124

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ide	ntification:				
		Matrix Spike	e	М	atrix Spike I	Dup	RPD
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	
Benzene Toluene	10 10	10.5 13.0	105 130	10 10	10.1 12.9	101 129	3.9 0.8
Surrogate Recovery							
Dibromofluoromethane			113			111	
1,2-Dichloroethane-d4			95			100	
Toluene-d8			118			119	
4-Bromofluorobenzene			98			95	

QA/QC Data - EPA 8260C Analyses

	Laboratory	y Control Sai	nple
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
Benzene Toluene	10 10	9.9 12.5	99 125
Surrogate Recovery			
Dibromofluoromethane			112
1,2-Dichloroethane-d4			100
Toluene-d8			118
4-Bromofluorobenzene			100

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

MANOR MARKET PROJECT AEG, LLC Lynwood, Washington Libby Project # L121121-1 Client Project # 11-124

Analyses of Total Lead in Water by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	11/21/12	nd
MW-2W	11/21/12	nd
MW-3W	11/21/12	nd
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Dirk Peterson

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

MANOR MARKET PROJECT AEG, LLC Lynwood, Washington Libby Project # L121121-1 Client Project # 11-124

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	11/21/12	118%
L121120-1 MS	11/21/12	103%
L121120-1 MSD	11/21/12	104%
RPD	11/21/12	0%

QA/QC for Lead in Water by EPA Method 7421

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

Libby Environm	nental	, Inc.		Ch	ain	of	Cus	toc	ly F	Rec	or	d						W	ww.Lit	obyE	nvironn	nental.com
4139 Libby Road NE	Ph:	360-352-2	2110					60	1										1		1	
Olympia, WA 98506	Fax:	360-352-4	1154			Ľ	Date: 3	/28	12	013	3]	Page) :		1	of	1	
Client: AEG			- <u>-</u>			<u>_</u>	Project	Mana	ger:	N	1ik	e	Chu	in								
Address: 605 1144	AVE SE	Suite	201			Ē	Project I	Name	e:	Ma	10	~	Ma	rk	et							
City: Olympia	1	State: V	NA Zip	98501		L	ocation	1: 7	yn	Way	1	N	1A			City,	Stat	te:				•
Phone: (360) 352-9	835	Fax:					Collecto		Tet				01			Date	of C	Collectio	on: 🚶	3/	28/	2013
Client Project # //-	124					E	Email:	4	Wil	lsor	na)se	gu	na.	co,	n						
THE REAL			Sample	Container		8021P	100 100 100 100 100 100 100 100 100 100	100 mm	Sol Children and Sol Ch	ACR CO	TPH	St IS	10 ter	000 000 00 00 00 00 00	2 me	10 10 ×	,00	 		/		
Sample Number	Depth	Time	Туре	Туре	$\sqrt{\sqrt{3}}$	<u> </u>	10/ 9	<u>%/ </u>	14	14	4	100	120	NI	/0	1		<u> </u>	eld N	otes	6	
1 MW-IW	-	13:34	Wooter	VOA/Poly				-	V		_	\square	-	_	V			P				
2 MW-2W	_	12:17						-	1		_	\square	_	_	1							
3 MW-3W	-	12:47	¥			_			¥			$\left \right $		-	¥							
4						-+																
5								+						-		-						
7								+														
8							- -															
9								1														
10								+			_											. (1) (1) (1)
11																						
12								1														
13																						
14																						1
15										1												
16																						
17																						
Relinquished by:	Date	/ Time	16:10	Received by:	~		-			/ Time			nple F	Rece	eipt:			Remar	rks:			
Jett Wils	01 3	12912	16.10	Cy is	1-	-	3	- 28			»· 10											
Relinquished by:	Date	/ Time		Received by:					Date	/ Time	•	Good	Condi	tion?								
Deliasuished by:		/ Time c		Desciond how					Dete	/ T: :		Cold?										
Relinquished by:	Date	/ Time		Received by:					Date	/ Time	;	Seals	Intact	?								0
							-					Total	Numbe	er of C	Contai	ners		TAT:	241	IR	48HR	5-DAY

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130328-4 Client Project # 11-124

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(µg/l)
Method Blank	4/3/13	104	nd
MW-1W	4/3/13	95	nd
MW-2W	4/3/13	95	nd
MW-3W	4/3/13	91	nd
Practical Quantitation Limi			100

Analyses of Gasoline (NWTPH-Gx) in Water

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130328-4 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Specific Halogenated and Aromatic Hydrocarbons by EPA 8260C in Water

Sample Description		Method	MW-1W	MW-2W	MW-3W	
		Blank				
Date Sampled		N/A	3/28/13	3/28/13	3/28/13	
Date Analyzed	PQL	4/3/13	4/3/13	4/3/13	4/3/13	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
Benzene	1.0	nd	13.0	nd	nd	
Toluene	1.0	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	
Total Xylenes	1.0	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	
Total Naphthalenes	5.0	nd	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE	5.0	nd	76.0	nd	8.3	
Surrogate Recovery						
Dibromofluoromethane		85	97	96	74	
1,2-Dichloroethane-d4		115	122	125	963	
Toluene-d8		104	95	95	91	
4-Bromofluorobenzene		99	98	103	100	
"nd" Indicates not detected a						
"int" Indicates that interferer	nce preven	ts determina	ation			

* INSTRUMENT DETECTION LIMIT ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130328-4 Client Project # 11-124

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ide	entification:	L130331-3	3	
		Matrix Spik	М	atrix Spike I	Dup	
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
Benzene	10	10.6	106	10	11.4	114
Toluene	10	8.8	88	10	9.3	93
Surrogate Recovery						
Dibromofluoromethane			122			110
1,2-Dichloroethane-d4			128			110
Toluene-d8			120			118
4-Bromofluorobenzene			109			103

QA/QC Data - EPA 8260C Analyses

	Laboratory	y Control Sa	mple
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
Benzene Toluene	10 10	11.3 10.5	113 105
Surrogate Recovery			
Dibromofluoromethane			84
1,2-Dichloroethane-d4			110
Toluene-d8			105
4-Bromofluorobenzene			101

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130328-4 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Lead in Water by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	4/3/13	nd
MW-1W	4/3/13	nd
MW-2W	4/3/13	nd
MW-3W	4/3/13	6.8
Practical Quantitation Limi		5.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130328-4 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

QA/QC for Lead in Water by EPA Method 7421

Date	Lead
Analyzed	(% Recovery)
4/3/13	110%
4/3/13	109%
4/3/13	115%
4/3/13	5%
	Analyzed 4/3/13 4/3/13 4/3/13

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

June 11, 2013

Michael Chun Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

RECEIVED JUN 1 4 2013 AEG

Dear Mr. Chun:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington. Water samples were analyzed for Gasoline by NWTPH-Gx, Total Lead by EPA Method 7421 and Specific Halogenated and Aromatic Hydrocarbons by EPA Method 8260C on June 3 & 5, 2013.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is enclosed.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Time Deyman

Jamie L. Deyman President Libby Environmental, Inc.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

www.LibbyEnvironmental.com

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130530-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/l)$
Method Blank	6/5/13	98	nd
MW-1W	6/5/13	108	nd
MW-1W Dup	6/5/13	103	nd
MW-2W	6/5/13	99	nd
MW-3W	6/5/13	101	nd
Practical Quantitation Limit			100

Analyses of Gasoline (NWTPH-Gx) in Water

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130530-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW-1W	MW-1W	MW-2W	MW-3W	
		Blank		Dup			
Date Sampled		N/A	5/30/13	5/30/13	5/30/13	5/30/13	
Date Analyzed	PQL	6/5/13	6/5/13	6/5/13	6/5/13	6/5/13	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
Benzene	1.0	nd	13.2	12.9	nd	nd	
Toluene	1.0	nd	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	nd	
Total Xylenes	1.0	nd	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	
Total Naphthalenes	5.0	nd	nd	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	nd	94.8	111	nd	8.0	
Surrogate Recovery							· · · ·
Dibromofluoromethane		92	92	85	86	82	<u> </u>
1,2-Dichloroethane-d4		87	87	93	98	96	
Toluene-d8		110	108	103	99	101	
4-Bromofluorobenzene		100	96	102	105	102	

Specific Halogenated and Aromatic Hydrocarbons by EPA 8260C in Water

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Kyle Williams

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130530-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ide	ntification:	MW-2W			
		Matrix Spik	M	RPD			
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	· · · · · · · · · · · · · · · · · · ·
Benzene Toluene	10 10	10.4 9.7	104 97	10 10	10.6 9.6	106 96	1.9 1.0
Surrogate Recovery							
Dibromofluoromethane			86			83	
1,2-Dichloroethane-d4			94			91	
Toluene-d8			102			100	
4-Bromofluorobenzene			102			101	

QA/QC Data - EPA 8260C Analyses

	Laboratory Control Sample		
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
Benzene Toluene	10 10	10.1 10.4	101.0 104.0
Surrogate Recovery			
Dibromofluoromethane			92
1,2-Dichloroethane-d4			87
Toluene-d8			110
4-Bromofluorobenzene			100

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Kyle Williams

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130530-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Lead in Water by EPA Method 7421

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	6/3/13	nd
MW-1W	6/3/13	19.9
MW-2W	6/3/13	nd
MW-3W	6/3/13	nd
Practical Quantitation Limit		5.0

"nd" Indicates not detected at the listed detection limits.

ANALYSES PERFORMED BY: Jamie Deyman

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L130530-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	6/3/13	97%
L130530-2 MS	6/3/13	106%
L130530-2 MSD	6/3/13	106%
RPD	6/3/13	0%

QA/QC for Lead in Water by EPA Method 7421

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Jamie Deyman

Libby Environm	nenta	, Inc.		Cł	nair	10	fC	us	tor	lv I	Ren	201	d					a caracter	
			2110					90		• y •	101	501	G						
Olympia, WA 98506	Ph: Fax	: 360-352-	4154				Date	<u>.</u>	L	13	7/	1-	2				De		1 . 1
Client: AEG	A CHEN						THE R. L.	1 1 1	2	1. 1. 1. 1.	1	21.21	fee .	16	1.0		Pa	je:	of
Address: 605 114	AVE	SE	suite.	201	14		Proje						1	11.11.11.00	1 Mar 1997 - 1		1	122	
Phone: (360) 352-9	835	Fax:					Loca										No. of the local sectors of th		1
Client Project # 11-17		1 4.			100												122	1 1 1	Lynnwood
		1	Contraction of the second				Colle	ector	r:	10	durken	- 6	Vit	50	2	1.4.19	Dat	e of	Collection: 5/30/13
Sample Number	Depth	Time	Sample Type	Container Type	10	A 802	10 40 M	14 40 50 X	Och you	A LOUND	REID REPART	5 R R	DT PH	14 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0000	202 10 CL	1000		
1 MW-IW		13:18	Water	VOA/POTA		~		/ 5			4		YY		14	10	1	1	Field Notes
2 MW-ZW	-1000	11:55	1	1			1			1	-		1 100	1.1.1		T (1	5	
3 MW-3W	40000000	17:42	Y	15				1.10		V			1		-	1	1	\ominus	
4										M						1	W	-	
5								ì				-	-		-		1.1.1		144
6	1. 184 194											-	-	-					
7		1										-	-	-			8		
8		1 por all															1		
9						13											30		
10		Seat The					1.00	1.				1.00				1	1		
11			Sec. 1		Celer				12.3	121	1.11		1.1.1						
12 13					al di			14			1		1.1.180	and a			there is		
		Careful Stat	1.1.5		111			17		12.0	199			15.	Net		1		
14		1919										1.00		1. 1.			1		
15		Leon Lan							Mr. C	-	14						and a		
16		T Styles					100					din e s		1923					
17 18	3 1. 35 1.2	VIC LAN		The strength		11-1	124	SN		1	- 11	1.20	100	1.24	1.18		-		
18						Re.	1. 60	20				See. S	1				wety.	1	States and the second states and
Relinquished by: Jeff Wilson	5/30/	Time 3.16:2	5	Received by:				5	30/1	Date /			Sam	ple	Rec	eipt:			Remarks:
Relinquished by:	/ Date :	Time		Received by:		X				Date /			Good		ition?				standard
Relinquished by:	Date	Time	A CONTRACTOR	Received by:	1				1	Dot-	Time		Cold?		12 miles				2/17
	Duto			Received by.						Date /	Ime		Seals	-			5- "		7. 10.
Distribution: White - Lab, Yellow - File, Pink	- Originator	14 A.						12	Sec. 1	2	Ľ+·	and a	Total	Numb	er of	Contai	ners	14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

June 12, 2015

Nicolas Pushckor Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Mr. Pushckor:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150527-1 Client Project # 11-124

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW5-6.5	MW5-16.5	MW5-	MW5-	MW6-6.5
		Blank			21.5	36.5	
Date Sampled		N/A	5/26/15	5/26/15	5/26/15	5/26/15	5/26/15
Date Analyzed	PQL	6/1/15	6/1/15	6/1/15	6/1/15	6/2/15	6/1/15
-	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	1.87
Toluene	0.03	nd	nd	nd	nd	nd	1.15
Ethylbenzene	0.03	nd	nd	nd	nd	nd	1.62
Total Xylenes	0.03	nd	nd	nd	nd	nd	4.38
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	< 0.20
Gasoline	10	nd	nd	nd	nd	nd	3230
Surrogate Recovery							
Dibromofluoromethane		98	91	95	94	103	91
1,2-Dichloroethane-d4		94	94	97	87	104	96
Toluene-d8		93	92	104	106	94	104
4-Bromofluorobenzene		102	103	105	101	103	97
"nd" Indicates not detected	at listed det	ection limi	t.				

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150527-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Soil

Sample Description		MW6-	MW6-	MW6-36.5	
		21.5	36.5	Dup	
Date Sampled		5/26/15	5/26/15	5/26/15	
Date Analyzed	PQL	6/1/15	6/1/15	6/1/15	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	0.02	nd	nd	nd	
Toluene	0.03	nd	nd	nd	
Ethylbenzene	0.03	nd	nd	nd	
Total Xylenes	0.03	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE)	0.05	nd	0.078	0.052	
Gasoline	10	nd	nd	nd	
Surrogate Recovery					
Dibromofluoromethane		94	93	96	
1,2-Dichloroethane-d4		104	96	91	
Toluene-d8		101	93	92	
4-Bromofluorobenzene		104	102	100	
"nd" Indicates not detected	at listed det	ection limit	•		
"int" Indicates that interfere	ence preven	ts determina	tion.		

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150527-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ider	ntification:	MW6-36.5			
	-	Matrix Spike	e	Matri	x Spike Dup	licate	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	
Benzene Toluene	0.5 0.5	0.46 0.45	92 90	0.5 0.5	0.48 0.47	96 94	4.3 4.3
Surrogate Recovery							
Dibromofluoromethane			93			96	
1,2-Dichloroethane-d4			81			95	
Toluene-d8			93			106	
4-Bromofluorobenzene			101			105	

QA/QC Data - EPA 8260C Analyses

	Laboratory	V Control Sa	mple
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
Benzene Toluene	0.5 0.5	0.37 0.38	74 76
Surrogate Recovery			
Dibromofluoromethane			99
1,2-Dichloroethane-d4			92
Toluene-d8			92
4-Bromofluorobenzene			101

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

	Libby Environm	nental	, Inc.		Cł	nain	of C	usto	dy F	Recor	d				www.	LibbyEnvir	onmental.com
	4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4				Dat	e: 5/2	6/3	5	124	15	Pa	age:		of	1
	Client: AEG						Pro	ject Man	ager:	N. Pro	hckar				(`
	Address: 605 11th A	Ne 55	Suck 2	01			Pro	ject Nam	ne: M	anar	MARK	Er					
	City: Olympia		State: 😡		5: 91501		Loc	ation:	3609	- Hol	64+4	74-	Ci	itv. Sta	ate: Um	wood. Un	
	Phone: (340) 35 2							lector:					Da	ate of	Collection:	4241	15
	Client Project # 11-124						-			Pan	qua c	iom					
ER 1	Sample Number	Depth	Time	Sample Type	Container Type	JOA	80218	100 00 00 00 00 00 00 00 00 00 00 00 00	and 8270	SP ST ST ST	2+ 10+ 02 2+ 10+ 02	10 808 20 85 10 20 85 10	A Sweat	530	Field	Notes	
244	1 mw5-6.5	6.5	12:11	500	402/000		T		ŤÌ			<u>í</u>	XIS	X		110100	
	2 mw5-11.5	11.5	12:21	1	/								×	-		as	Por
68.9	3 mul - 16.5	16.5	12:25										YO	2			TO
429	4 maro - 21.5	21.5	12:29										×)
101	5 MW5 - 26.5	26.5	12:38										×C	X			Kurt
47.6	6 mw5-31.5	31.5	12:46			18							X				
4.8	7 mw5-26.5	30.5	12:50										XQ	4		/	Telecom
607		6.5	08:58				_	+		_		+ +	xQ	<u>}</u>	Ode	R/	
62		21.5	09:25		<u> </u>		_					+ +	×Ų	<u>V</u>		/	
	10 mw 6 - 26-5	26.5	0933									+ +	X K	2	-/		
~ ~	11 mw6-365 12 pawte	365	0948	1120	VOAY 3/ PULY	-							\$V	2	T not incl	uded	
	13			110	1 strong									-	Tes mes		
	14												-		1		
	15																
	16																
	17																
	Relinquished by: Relinquished by:	5126	/Time	143	Received by: <u> <u> <u> </u> Received by:</u> <u> </u> </u>	ley		5-27-	15 0	7 Time ?∷⊙∂₄₁₁ 7 Time	Sample Good Cor		eipt:		Remarks: Hold (1001-3 Rer	e tues	urt n
	Relinquished by:	Date	/ Time		Received by:				Date	Time	Seals Inta	act?			Per	mo	
											Total Nun		ontaine		-	4HR 48	

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law

Distribution: White - Lab, Yellow - File, Pirk - Originator

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

June 12, 2015

Nicolas Pushckor Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Mr. Pushckor:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150605-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW9	MW8	MW7	
Sample Description			MW9	IVI W 8	IVI VV /	
Date Sampled	Reporting	Blank N/A	6/4/15	6/4/15	6/4/15	
Date Analyzed	Limits	6/5/15	6/5/15	6/5/15	6/5/15	
Date / mary Zed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
	(48/2)	(48,2)	(48/12)	(49,11)	(46, 2)	
Chloromethane	1.0	nd	nd	nd	nd	
Vinyl chloride	0.2	nd	nd	nd	nd	
Chloroethane	1.0	nd	nd	nd	nd	
1,1-Dichloroethene	1.0	nd	nd	nd	nd	
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	nd	nd	
2,2-Dichloropropane	1.0	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
Chloroform	1.0	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	
Carbon tetrachloride	1.0	nd	nd	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	
1,2-Dichloropropane	1.0	nd	nd	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	
2-Chlorotoluene	1.0	nd	nd	nd	nd	
4-Chlorotoluene	1.0	nd	nd	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		109	103	102	119	
1,2-Dichloroethane-d4		108	107	99	122	
Toluene-d8		109	104	97	96	
4-Bromofluorobenzene		114	110	113	123	

Volatile Organic Compounds by EPA Method 8260C in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

*ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150605-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ider	ntification:	MW9			
		Matrix Spike	e	Mat	rix Spike Du	plicate	RPD
	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)	
1,1-Dichloroethene Chlorobenzene Trichloroethene (TCE)	10 10 10	7.2 10.8 8.4	72 108 84	10 10 10	7.2 10.5 8.1	72 105 81	0.0 2.8 3.6
Surrogate Recovery Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene			90 98 96 101			88 96 98 102	
	Laboratory	Control Sa	mple				
	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)				
1,1-Dichloroethene Chlorobenzene Trichloroethene (TCE)	10 10 10	10.5 12.9 11.9	105 129 119				
Surrogate Recovery Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene			103 101 99 118				

QA/QC Data - EPA 8260C Analyses

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150605-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW4	MW2	MW6	MW5	MW1
		Blank					
Date Sampled		N/A	6/4/15	6/4/15	6/4/15	6/4/15	6/4/15
Date Analyzed	PQL	6/5/15	6/5/15	6/5/15	6/5/15	6/5/15	6/5/15
-	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Benzene	1.0	nd	470	nd	54	nd	3.9
Toluene	2.0	nd	nd	nd	2.5	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	3.0	nd	nd	nd	7.0	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	1740	12.3	nd	nd	315
Gasoline	100	nd	nd	nd	1380	nd	nd
Surrogate Recovery							
Dibromofluoromethane		109	90	106	97	109	107
1,2-Dichloroethane-d4		108	96	104	107	109	105
Toluene-d8		109	96	105	99	104	106
4-Bromofluorobenzene		114	107	113	110	113	113
"nd" Indicates not detected	at listed de	etection limi	t.				
"int" Indicates that interfere	ence nrevei	nts determin	ation				

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150605-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		MW1 Dup	
Date Sampled		6/4/15	
Date Analyzed	PQL	6/5/15	
	(ug/L)	(ug/L)	
Benzene	1.0	3.7	
Toluene	2.0	nd	
Ethylbenzene	1.0	nd	
Total Xylenes	3.0	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	351	
Gasoline	100	nd	
Surrogate Recovery			
Dibromofluoromethane		101	
1,2-Dichloroethane-d4		97	
Toluene-d8		103	
4-Bromofluorobenzene		113	
"nd" Indicates not detected	at listed d	etection limit.	
"int" Indicates that interfere	ence preve	nts determinati	on.

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150605-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Ider	ntification:	MW9			
		Matrix Spik	e	Matri	ix Spike Dup	olicate	RPD
	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)	
Benzene Toluene	10 10	9.2 8.4	92 84	10 10	8.0 8.1	80 81	14.0 3.6
Surrogate Recovery							
Dibromofluoromethane			90			88	
1,2-Dichloroethane-d4			98			96	
Toluene-d8			96			98	
4-Bromofluorobenzene			101			102	

QA/QC Data - EPA 8260C Analyses

	Laboratory Control Sample						
	Spiked Conc. (ug/L)	Measured Conc. (ug/L)	Spike Recovery (%)				
Benzene Toluene	10 10	12.10 12.90	121 129				
Surrogate Recovery							
Dibromofluoromethane			103				
1,2-Dichloroethane-d4			101				
Toluene-d8			99				
4-Bromofluorobenzene			118				

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Libby Environm	nental	, Inc.	. Chair			n o	f Cı	ustody Record						www.LibbyEnvironmental.com								
4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4					Date	6	14	45	(6]	5	15	•		Page	e:	1	0	f \	31
Client: APG							Proje	ect M	anag	er:												
Address: 60511tm	ALD S	EI SU	1 + 201				Proje				74	ne	r	m	An	Ke	+					
City: aympig			State: WA Zip: 98501			_												y, State: Lynnwood, way				
Phone: (3(0) 352	- Guzi			10001		-			B										Collection:			
Client Project # 11-12						_			bc												1	
THE RONNESS			Sample	Container		1080 1080	N 99 0		Orny Contraction	6270 8270 1911-1	AH.		07/07/	0, 0, 00 0, 0, 00 0, 0, 00 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	100 100 100 100 100 100 100 100 100 100	182 - 5 M	alais MILER		240		/	
Sample Number	Depth	Time	Туре	Туре	1	0/1	2/20	15	22	12	12	4/2	21/2	P 2	N'	\mathbb{Z}	NY.	\square	Field	Note	S	
1 mug	-	0949	H20	VOAX3			X															
2 MW8	-	1041	H20	VOAX3			X			_		_	_									
3 MW7	-	1139	((X															
4 mwy	-	1229				×			-	X						×						
5 MW2	-	1314	/	6	-	+				X				-		×						
6 mule	-	13554	5		-	X	$\left \right $		-+	7						x						
7 mw5	_	1442 1524)	-	1				\mathbf{x}	_		-	-								_
8 Mw 9		Duy	/	/		X-	$\left \right $	-+	\rightarrow	Хļ	_					ΙX.						
10					-		$\left \right $		\rightarrow	-+	_		–−									
11						-				-+	_											
12							$\left \right $		\rightarrow					+			·					
13					+				-				-	-						6	_	
14					-	-			-					1								-
15									-													
16																						
17								_			-			-						_		
Relinquished by:	Date	/ Time		Received by:	Uto	4			[]	Date /	Time 5 /L	ISI	Sa	mple	Rec	eipt			Remarks:			
Relinquished by:		/ Time		Received by:			_		[Date /	Time			d Cond	dition?)			1			
													Colo						1			
Relinquished by:	Date	/ Time		Received by:					[Date /	Time		Sea	s Intac	:t?				1			6
													Tota	l Numl	per of	Conta	iiners		TAT: 24	HR	48H	R 5-DAY

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

September 15, 2015

Becky Dilba Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW-2	MW-3	MW-1	MW-4	MW-6
		Blank					
Date Sampled		N/A	9/2/15	9/2/15	9/2/15	9/2/15	9/2/15
Date Analyzed	PQL	9/4/15	9/4/15	9/4/15	9/4/15	9/4/15	9/4/15
-	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Benzene	1.0	nd	nd	nd	5.1	63	22
Toluene	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	1.0	nd	nd	nd	nd	nd	6.6
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	21	122	344	nd
Gasoline	100	nd	nd	nd	nd	nd	1020
Surrogate Recovery							
Dibromofluoromethane		91	85	98	101	91	103
1,2-Dichloroethane-d4		67	70	74	78	65	72
Toluene-d8		101	97	114	116	135	98
4-Bromofluorobenzene		108	105	106	108	101	106
"nd" Indicates not detected	at listed de	etection limi	t.				
"int" Indicates that interfere	nce prever	nts determina	ation.				

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

		Sample Identification: MW-3								
		Matrix Spike			Matrix Spike Dup					
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)				
Benzene Toluene	10 10	9.8 13.3	98 133	10 10	10.6 11.2	106 112	7.8 17.1			
Surrogate Recovery										
Dibromofluoromethane			99			79				
1,2-Dichloroethane-d4		73 73								
Toluene-d8			110			97				
4-Bromofluorobenzene			105		92					

QA/QC Data - EPA 8260C Analyses

	Laboratory Control Sample							
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)					
Benzene Toluene	10 10	10.6 11.8	106.0 118.0					
Surrogate Recovery								
Dibromofluoromethane			105					
1,2-Dichloroethane-d4			75					
Toluene-d8			103					
4-Bromofluorobenzene			99					

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	9/7/15	nd
MW-2	9/7/15	nd
MW-3	9/7/15	17.4
MW-1	9/7/15	7.1
MW-4	9/7/15	nd
MW-6	9/7/15	nd
Practical Quantitation Limit		5.0

Analyses of Total Lead in Water by EPA 7010 Series

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124

QA/QC for Total Lead in Water by EPA 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)
LCS	9/7/15	112%
MW-6 MS	9/7/15	103%
MW-6 MSD	9/7/15	106%
RPD	9/7/15	3%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124

Sample	Date	Lead
Number	Analyzed	μg/L
Method Blank	9/7/15	nd
MW-2	9/7/15	nd
MW-3	9/7/15	nd
MW-1	9/7/15	nd
MW-4	9/7/15	nd
MW-6	9/7/15	nd
MW-6 Dup	9/7/15	nd
Practical Quantitation Limit		5.0
"nd" Indicates not detected a	t the listed detection limits.	

Analyses of Dissolved Lead in Water by EPA 7010 Series

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L150903-7 Client Project # 11-124

QA/QC for Dissolved Lead in Water by EPA 7010 Series

Sample Number	Date Analyzed	Lead (% Recovery)
LCS	9/7/15	112%
MW-6 MS	9/7/15	103%
MW-6 MSD	9/7/15	106%
RPD	9/7/15	3%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

Libby Environmental, Inc.	. Cha	ain o	f Cu	stod	y R	ecord	ł			www	.LibbyEn	vironmental.com
4139 Libby Road NE Ph: 360-35 Olympia, WA 98506 Fax: 360-35				9/:				Pag	ie:	(of	1
Client: AFG			Proje	ct Manag	ger:	B. 7	Dilba					
Address: 605 11th Alle SE	Sufe 201		Project Name: Manerz Market									
City: Olympia State: WA Zip: 98501				Location: 3609-164th St Sus City, State: Lypn Wood, WA								
Phone: 360 - 35 2 - 9835 Fax:				ctor: B	, D	nbc		Date	e of C	ollection:	9/2	110
Client Project # 11-124							acqui		-	0-	,	13
Sample Number Depth Time		JOC 838	/		//		T = T	17	//	end land	Field No	otes
1 meu-2 - 1036	2 H20 Von / P1250	X	X					XX	X			
2 mw-3 - 115		(\langle					$\left(\right) $	C			
3 mw-1 - 125	3											
4 mw-4 - 135												
5 mw-le - 145	1 / /								/			
6			ſ									
7												
8												
9						÷						
10												
11												
12												
13												
14		/									ж	
15												
16												
17												
Relinquished by: Plate / Time	Received by:	1		Gla	Date /	Time	Sample	Receipt	t	Remarks	:	
	Enz	F		4/3		1440	Good Condition?	> Y	Ν			
Relinquished by: Date / Time	Received by:				Date /	Time	Temp.	V M	°C			
Relinquished by: Date / Time	Received by:				Date /	Time	Seals Intact? Total Number of Containers		N/A	TAT: 2	24HR 4	18HR 5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Orginator

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

December 4, 2015

Becky Dilba Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Illw

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L151125-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW-5	MW-2	MW-3	MW-4	MW-1
		Blank					
Date Sampled		N/A	11/24/15	11/24/15	11/24/15	11/24/15	11/24/15
Date Analyzed	PQL	12/1/15	12/1/15	12/1/15	12/1/15	12/1/15	12/1/15
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Benzene	1.0	nd	nd	nd	nd	47	19
Toluene	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	1.0	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	24	975	63
Gasoline	100	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		98	97	100	95	98	98
1,2-Dichloroethane-d4		86	81	87	84	87	81
Toluene-d8		87	87	87	87	86	81
4-Bromofluorobenzene		80	82	83	80	74	83
"nd" Indicates not detected at	t listed dete	ction limit.					

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Water

nd indicates not detected at fisted detection fiffit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L151125-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		MW-1	
		Dup	
Date Sampled		11/24/15	
Date Analyzed	PQL	12/1/15	
	(µg/l)	(µg/l)	
Benzene	1.0	19	
Toluene	1.0	nd	
Ethylbenzene	1.0	nd	
Total Xylenes	1.0	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	74	
Gasoline	100	nd	
Surrogate Recovery			
Dibromofluoromethane		98	
1,2-Dichloroethane-d4		82	
Toluene-d8		74	
4-Bromofluorobenzene		79	
"nd" Indicates not detected at	listed dete	ction limit.	
"int" Indicates that interferen			1.

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L151125-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Identification: MW-2											
		Matrix Spik	e	М	Matrix Spike Dup						
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)					
Benzene Toluene	10 10	8.9 6.7	89 67	10 10	8.6 6.6	86 66	3.4 1.5				
Surrogate Recovery											
Dibromofluoromethane			96			98					
1,2-Dichloroethane-d4			82			81					
Toluene-d8			78			73					
4-Bromofluorobenzene			85			96					

QA/QC Data - EPA 8260C Analyses

	Laboratory	Laboratory Control Sample									
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)								
Benzene Toluene	10 10	9.7 8.7	97 87								
Surrogate Recovery											
Dibromofluoromethane			98								
1,2-Dichloroethane-d4			84								
Toluene-d8			87								
4-Bromofluorobenzene			82								

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

Libby Environm	nental	, Inc.		Cł	nair	10	fCι	usto	ody	y R	eco	rd						www.L	ibbyE	invironm	ental.com
4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4					Date	. <i>\\</i>	25	15					P	age:		۱.	01	F \	
Client: AEG							Proje	ct Ma	anag	er:	Bece	YI	Dilba								
Address: 605 11th A	the sE	Suite 2	01			Project Name: Manon MARLET															
City: 614mpa				: 98501		-					Lyn				C	City, S	State	e: Lynni	Na	wh	
Phone: (360) 352-		Fax:				-					be							ollection:			
Client Project # 11 - 2	-	i un		,		-	-				٢									115	
					1	-		1	7	1	7	7		-7	7	7	7	11	7	7	
THE REAL			Sample	Container		0A802	10 10 10 10 10 10 10 10 10 10 10 10 10 1	THE CONTRACT	OULA	8210 STPHING	RH-C+	RIDT R	27 12 12 12 12 12 12 12 12 12 12 12 12 12	193 K	52 Sheel	*	///////////////////////////////////////				
Sample Number	Depth	Time	Туре	Type	Y^{1}		$\overline{}$	<u>/ 57</u>	1	<u> </u>		47	$\frac{\sqrt{2}}{\sqrt{2}}$	12	$\langle \gamma \rangle$	-		Field I	Notes	<u> </u>	
1 mw -5	-	1035	420	VUTX 3	-	X			-	X	_	+			1		+		100	unter dataren	
2 Mw-2 3 mw-3	~		$\left \right $		+	$\left(- \right)$	$\left \right $	\rightarrow		(+	+		(-	
4 mw-4	-	1225							-											(against the	
5 mw-1	-	1423	\rightarrow			1)								Odn			
6				6	t	1									/				-		
7				5.c.																ő.	
8																					
9																					
10																					
11																					
12																					
13																					
14 15																					
15																					
16																					
17		X			1	1															
Relinquished by: 1125 2	Date	/ Time	X	Received by:	V	\lfloor	11/2	die	-	Date / 1		Sa	mple	Rec	eipt:			Remarks:			
Relinquished by:		/ Time	/0	Received by:	1		11/2	113	[Date / 1	Time	Go	od Cond	lition?			y				
												Co				- y	/				
Relinquished by:	Date	/ Time	-	Received by:					l	Date / 1	Time	_	als Intac	t?		Ť	7				$\langle \frown \rangle$
												_			Containe	ers /	5-	TAT: 24	HR	48HR	5-DAY

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

April 6, 2016

Becky Dilba Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160328-2 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Mathad	MW10-	MW10-	MW10-	MW10-	MW10-
Sample Description		Method					
		Blank	6.5	16.5	21.5	31.5	36.5
Date Sampled		N/A	3/24/16	3/24/16	3/24/16	3/24/16	3/24/16
Date Analyzed	PQL	3/28/16	3/28/16	3/28/16	3/28/16	3/28/16	3/28/16
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
Gasoline	10.00	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		97	95	101	93	90	93
1,2-Dichloroethane-d4		91	104	115	100	93	93
Toluene-d8		104	108	109	106	103	104
4-Bromofluorobenzene		94	100	75	71	85	86
"nd" Indicates not detected	at listed de	tection limi	t				

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160328-2 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		MW11-5	MW11-5	MW11-	MW11-	MW11-	MW11-
			Dup	10.5	20.5	25.5	35.5
Date Sampled		3/24/16	3/24/16	3/24/16	3/24/16	3/24/16	3/24/16
Date Analyzed	PQL	3/28/16	3/28/16	3/28/16	3/28/16	3/28/16	3/28/16
	(mg/kg)						
Benzene	0.02	0.19	0.27	nd	nd	nd	nd
Toluene	0.10	0.55	0.95	nd	nd	nd	nd
Ethylbenzene	0.05	5.1	8.2	nd	nd	nd	nd
Total Xylenes	0.15	11.8	19	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
Gasoline	10.00	1070	1160 E	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		78	76	88	91	84	92
1,2-Dichloroethane-d4		106	120	89	84	92	91
Toluene-d8		95	93	105	101	71	107
4-Bromofluorobenzene		86	95	93	82	93	65

Gasoline by NWTPH-Gx and Aromatic Hydrocarbons by EPA 8260C in Soil

"E" Indicates reported result is an estimate because it exceeds the calibration range.

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160328-2 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Identification: MW11-10.5											
	-	Matrix Spik	e				RPD				
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)					
Benzene Toluene	0.5 0.5	0.51 0.48	102 96	0.5 0.5	0.51 0.56	102 112	0.0 15.4				
Surrogate Recovery											
Dibromofluoromethane			94			86					
1,2-Dichloroethane-d4			94			90					
Toluene-d8			92			102					
4-Bromofluorobenzene			107			94					

QA/QC Data - EPA 8260C Analyses

	Laboratory	Laboratory Control Sample									
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)								
Benzene	0.5	0.49	98								
Toluene	0.5	0.54	108								
Surrogate Recovery											
Dibromofluoromethane			93								
1,2-Dichloroethane-d4			81								
Toluene-d8			103								
4-Bromofluorobenzene			90								
ACCEPTABLE RECOVE ACCEPTABLE RPD IS 3		FOR MAT	FRIX SPIKE	ES: 65%-1.							

Libby Environm	ental	, Inc.		Ch	nain	of	Cu	iste	ody	y R	ec	ord	d							www.L	ibbyEn	vironme	ental.com
4139 Libby Road NE Olympia, WA 98506		360-352-2 : 360-352-4				1	Date:	3	28	11	la						Page	Э:		t	of	١	
Client: FFG												Di	1ba	'n									
Address: 60511+1 A	ue sui	4 201	otyme	14 TA		_							ma		t								1.1
City: OVMAG		State: L	un Zip	: 93501									<i>i</i> hs				City,	State	e: (1 hn	Wood	. un	7
Phone (360) 352-	9835	Fax:		,							1						Date	of C	ollec	tion: E	3/24/	16	
Client Project # 11-12							Emai	1: b	di	1ba	. (PC	aeg	wa	· Ce								
Sample Number	Depth	Time	Sample Type	Container Type	105	8260		7	/		_	_			/		2000	NT DE		F	Field No	otes	
1 mw10-6.5	6.5	0943	Soil	VOA /jun		×	X										Х						
2 mer 10-165	16.5	1003	(1		$\left(\right)$											(
3 mw10-21.5	21.5	1017															\backslash						
4 mw10-31.5	31.5	1037																					
5 mw10-36.5	36.5	1049																					
6 mw11-5	13084	7 5															(
7 mw11-10.5	13144	7/0.5															\setminus						
8 mul1-20.5	13424	7 20.5																					
9 mw11-25.5	13524	7 25.5															(
10 MWII - 35.5	14245	7 355)																				
11 mw 10-11.5	Q.5	0951																		H	514		
12 ML10- 35-26.5	265	1029																		Ho	N		
13 MW11 - 15.5	15.5	1323																		11	V.		
14 mw11 - 30-5	30.5	1354																		10	11		
15																							
16																							
17																							
Relinquished by:	2/ Date	/ Time 09	58	Received by:	01.					Date /				San	nple	Rec	eipt			narks:			
	3/28	6			ily	-	¥	2811		09			Good	Cond	ition?	(-	Ν	世	Hate	The		
Relinquished by:	Date	/ Time		Received by:						Date /	lime	9	Temp			8		°C					
Relinquished by:	Date	/ Time		Received by:						Date /	Time	<u>,</u>		Numb			N	N/A					G
	Dato									20107				ontaine		4	2		TA	T: 24	HR 4	48HR	5-DAY

Distribution: White - Lab, Yellow - File, Pink - Originator

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

April 25, 2016

Becky Dilba Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	MW-4	MW-11	MW-11	MW3	
		Blank			Dup		
Date Sampled	Reporting	N/A	4/7/16	4/7/16	4/7/16	4/7/16	
Date Analyzed	Limits	4/12/16	4/12/16	4/12/16	4/12/16	4/12/16	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
Chloromethane	2.0	nd	nd	nd	nd	nd	
Vinyl chloride	0.2	nd	nd	nd	nd	nd	
Chloroethane	2.0	nd	nd	nd	nd	nd	
1,1-Dichloroethene	2.0	nd	nd	nd	nd	nd	
<i>trans</i> -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	
<i>cis</i> -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Chloroform	1.0	nd	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	nd	
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		100	92	100	96	93	
1,2-Dichloroethane-d4		105	101	104	101	97	
Toluene-d8		100	95	95	99	98	
4-Bromofluorobenzene		79	82	90	86	77	

Volatile Aromatic Compounds by EPA Method 8260C in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124

Sample Identification: MW-1											
		Matrix Spike		Mat	rix Spike Dup	licate	RPD				
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)					
1,1-Dichloroethene	10	6.1	61	10	6.7	67	8.8				
Chlorobenzene	10	10.6	106	10	10.4	104	1.8				
Trichloroethene (TCE)	10	7.7	77	10	8.7	87	12.6				
Surrogate Recovery											
Dibromofluoromethane			87			93					
1,2-Dichloroethane-d4			94			104					
Toluene-d8			72			101					
4-Bromofluorobenzene			76			78					

QA/QC Data - EPA 8260C Analyses

	Laboratory	control Sample	C
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
1,1-Dichloroethene	10	9.0	90
Chlorobenzene	10	11.6	116
Trichloroethene (TCE)	10	10.4	104
Surrogate Recovery			
Dibromofluoromethane			95
1,2-Dichloroethane-d4			98
Toluene-d8			100
4-Bromofluorobenzene			77

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Recovery (%)
Method Blank	4/12/16	nd	nd	nd	nd	nd	100
LCS	4/12/16	nd	nd	nd	nd	nd	100
MW-2	4/12/16	nd	nd	nd	nd	nd	100
MW-6	4/12/16	12	nd	nd	3.0	1630	90
MW-5	4/12/16	nd	nd	nd	nd	nd	99
MW-4	4/12/16	70	nd	nd	nd	127	95
MW-11	4/12/16	nd	nd	nd	nd	219	95
MW-11 Dup	4/12/16	nd	nd	nd	nd	254	99
MW-10	4/12/16	nd	nd	nd	nd	nd	99
MW-3	4/12/16	nd	nd	nd	nd	nd	98
MW-1	4/12/16	9.9	2.0	nd	nd	101	79
MW-1 MS	4/12/16	107%	94%				72
MW-1 MSD	4/12/16	113%	121%				101
Practical Quantitation Li	mit	1	2	1	2	100	

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Water

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Methyl tert-Butyl Ether (MTBE) by EPA Method 8260C in Water

Sample Description		Method	MW-2	MW-6	MW-5	MW-4	MW-11
		Blank					
Date Sampled	Reporting	N/A	4/7/16	4/7/16	4/7/16	4/7/16	4/7/16
Date Analyzed	Limits	4/12/16	4/12/16	4/12/16	4/12/16	4/12/16	4/12/16
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
Methyl <i>tert</i> -butyl ether (MTBE)	2.0	nd	nd	nd	nd	592	8.5
Surrogate Recovery							
Dibromofluoromethane		100	94	83	91	92	100
1,2-Dichloroethane-d4		105	100	103	103	102	104
Toluene-d8		100	100	90	99	80	95
4-Bromofluorobenzene		79	78	87	66	82	90

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Methyl tert-Butyl Ether (MTBE) by EPA Method 8260C in Water

Sample Description		MW-11	MW-10	MW-3	MW-1	
		Dup				
Date Sampled	Reporting	4/7/16	4/7/16	4/7/16	4/7/16	
Date Analyzed	Limits	4/12/16	4/12/16	4/12/16	4/12/16	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
Methyl tert -butyl ether (MTBE)	2.0	7.8	nd	10	20	
Surrogate Recovery						
Dibromofluoromethane		96	92	93	84	
1,2-Dichloroethane-d4		101	93	97	81	
Toluene-d8		99	99	98	79	
4-Bromofluorobenzene		86	74	77	79	
"nd" Indicates not detected at listed	l detection limit.					

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L160408-1 Client Project # 11-124

	Sample Identification: MW-1											
		Matrix Spike			rix Spike Dup	licate	RPD					
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)						
1,1-Dichloroethene	10	6.1	61	10	6.7	67	8.8					
Chlorobenzene	10	10.6	106	10	10.4	104	1.8					
Trichloroethene (TCE)	10	7.7	77	10	8.7	87	12.6					
Surrogate Recovery												
Dibromofluoromethane			87			93						
1,2-Dichloroethane-d4			94			104						
Toluene-d8			72			101						
4-Bromofluorobenzene			76			78						

QA/QC Data - EPA 8260C Analyses

	Laboratory (Control Sampl	e
	Spiked Conc. (µg/l)	Measured Conc. (µg/l)	Spike Recovery (%)
1,1-Dichloroethene Chlorobenzene Trichloroethene (TCE)	10 10 10	9.0 11.6 10.4	90 116 104
Surrogate Recovery			
Dibromofluoromethane			95
1,2-Dichloroethane-d4			98
Toluene-d8			100
4-Bromofluorobenzene			77

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

Libby Environm	ental,	Inc.		Ch	air	1 0	f C	ust	ody	R R	ec	ord								www.	LibbyE	nvironm	nental.com
4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4					Date	e: 4/	8 1	4							Pag	e:		1	of	1	
Client: AEG						_	Proj	ect M	anag	er:	BS	Di/V	sa										
Address: 605 11th AU	ye se	, suit	e 201			_	Proj	ect N	ame:	N	han	07	hu	tere	et								
City: 014 mpg Phone: (360) 352-		State: U	UA Zip	98501										5+			City	, Stat	te: (-ynna	bel,	WP	L
Phone: (360) 352-	9835	Fax:				-	Coll	ector:	B	Di	12						Date	e of C	Collec	ction:	4/	7/14	0
Client Project # \I-I24														L. CO									
Sample Number	Depth	Time	Sample Type	Container Type	J	C 828	Contraction of the second	3 80 10	LIPH'	J.D. C.	\$* 12 C	24H04	10 NH 8210	2.5 min 2.5	10 8082	5 me	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Metals NTBE			Field N	lotes	
1 mw-2	-	0944	420	VOAX 3		X	×										(
2 mw-96	-	1031	C			1																4	
3 mw-105	-	1058				$ \rangle$			2											05	es		
4 MW-4	~	1204			×		\square													00	lor		
5 mc.1	-	1251			X																		
6 mw10	-	+385																				1	
7 MW3	-	1304			X		$\left \right\rangle$													od	LOR		
8 mwl	_	1354		l		1	1									×							
9																				4-1	9-16	0	
10																				Nam	ne cl	nange	per
11																				Ber	Ky .	via	email.
12																							
13																							
14		-																					
15									1											÷.			
16	4			Λ					?														
17																							
Relinquished by:	Date 04/	/ Time		Received by:	-	1	1				/ Time			Sam	ple	Rec	eipt	:	Ren	narks:			
-		114		Mara	F	un	h	icf		4/8	/////		Good	Condit	ion?		Y	Ν					
Relinquished by:	Date	/ Time		Received by:						Date /	/ Time	9	Temp	and the state of the state of				°C	-				
Relinquished by:	Date	/ Time		Received by:						Date	/ Time	<u>,</u>	and the second second	Intact? Numbe	Statements in case of	Y		N/A					6
	2410													ontainer		2	4		TA	T: 2	4HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

May 30, 2018

Becky Dilba Associated Environmental Group, Inc. 605 11th Ave. SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project in Lynnwood, Washington. Probe services were conducted on May 8, 2018. Water samples were analyzed for Gasoline by NWTPH-Gx, VOC's by Method 8260, Total and Dissolved Pb by Method 6020, and soil vapor for VOC's by Method 8260 and Method TO-15 on May 9 - 16, 2018.

The results of the analyses are summarized in the attached table. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to Associated Environmental Group, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Korave

Michael A. Korosec President

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics, MTBE & BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	5/9/2018	nd	nd	nd	nd	nd	nd	110
LCS	5/9/2018	125%	100%	98%	109%	120%	113%	114
LCSD	5/9/2018	86%	101%	95%	114%	122%		112
MW-3	5/9/2018	17	nd	nd	nd	nd	nd	108
MW-4	5/9/2018	790	110	nd	nd	nd	nd	108
MW-1	5/15/2018	14	nd	nd	nd	nd	nd	108
MW-2	5/15/2018	8.3	nd	nd	nd	nd	nd	109
MW-10	5/9/2018	nd	nd	nd	nd	nd	nd	114
MW-6	5/15/2018	nd	300	52	nd	12	830	119
MW-5	5/15/2018	nd	nd	nd	nd	nd	nd	108
MW-5 Duplicate	5/15/2018	nd	nd	nd	nd	nd	nd	104
Reporting Limits		1.0	1.0	1.0	1.0	3.0	100	

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	RL	MB	LCS	LCSD	MW-3	MW-4	MW-1	MW-2
Date analyzed	(ug/L)	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18	05/15/18	05/15/18
Vinyl chloride	0.2	nd	117%	116%	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	91%	93%	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	89%	94%	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	86%	90%	nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		110%	97%	95%	113%	117%	115%	115%
Toluene-d8		108%	98%	97%	109%	112%	106%	107%
4-Bromofluorobenzene		110%	114%	112%	108%	108%	108%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	Analysis	or volatile	Organic C	ompounds	in water by Meth
Analytical Results	•		0	-	-
	RL	MW-10	MW-6	MW-5	MW-5 Duplicate
Date analyzed	(ug/L)	05/09/18	05/15/18	05/15/18	05/15/18
Vinyl chloride	0.2	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd
Surrogate recoveries					
Dibromofluoromethane		107%	105%	120%	123%
Toluene-d8		108%	109%	108%	109%
4-Bromofluorobenzene		114%	119%	108%	104%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)
Number	Analyzed	(ug/L)
Method Blank	5/16/2018	nd
MW-3	5/16/2018	nd
MW-4	5/16/2018	nd
MW-1	5/16/2018	nd
MW-2	5/16/2018	nd
MW-10	5/16/2018	nd
MW-10 Duplicate	5/16/2018	nd
MW-6	5/16/2018	nd
MW-5	5/16/2018	nd
Reporting Limits		2.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Total Metals EPA-6020

	Labo	ratory Control	Sample	Laboratory C	RPD		
	Spiked	Measured	Spike	Spiked	Measured	Spike	
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)
Lead	40.0	42.3	106	40.0	46.6	117	9.63

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Dissolved Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)
Number	Analyzed	(ug/L)
Method Blank	5/16/2018	nd
MW-3	5/16/2018	nd
MW-4	5/16/2018	2.2
MW-1	5/16/2018	nd
MW-1 Duplicate	5/16/2018	nd
MW-2	5/16/2018	nd
MW-10	5/16/2018	nd
MW-6	5/16/2018	nd
MW-5	5/16/2018	nd
Reporting Limits		2.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Dissolved Metals EPA-6020

	Labo	Laboratory Control Sample			Laboratory Control Sample Duplicate					
	Spiked	Measured	Spike	Spiked	Measured	Spike				
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery				
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)			
Lead	40.0	42.3	106	40.0	46.6	117	9.63			

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analyses of Volatile Organic Componds in Air by Method 826	0
--	---

Sample ID	Molecular	Reporting	MB	LCS	LCSD	SS1	SS2
Date Sampled	Weight	Limits	05/09/18	05/09/18	05/09/18	05/08/18	05/08/18
Date Analyzed	g	ug/m3	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18
Dichlorodifluoromethane	120.9	10	nd			nd	nd
Chloromethane	50.49	10	nd			nd	nd
Vinyl chloride	62.50	10	nd	117%	116%	nd	nd
Bromomethane	94.95	10	nd			nd	nd
Chloroethane	64.52	10	nd			nd	nd
Trichlorofluoromethane	137.4	10	nd			nd	nd
1,1-Dichloroethene	96.95	10	nd			nd	nd
Methylene chloride	84.93	10	nd			nd	nd
Methyl-t-butyl ether (MTBE)	88.15	10	nd			nd	nd
trans-1,2-Dichloroethene	96.95	10	nd			nd	nd
1,1-Dichloroethane	98.96	10	nd			nd	nd
cis-1,2-Dichloroethene	96.95	10	nd			23	nd
2,2-Dichloropropane	113.0	10	nd			nd	nd
Chloroform	119.4	10	nd	98%	104%	nd	nd
Bromochloromethane	129.4	10	nd			nd	nd
1,1,1-Trichloroethane	133.4	10	nd			91	nd
1,2-Dichloroethane (EDC)	98.96	10	nd			nd	nd
1,1-Dichloropropene	111.0	10	nd			nd	nd
Carbon tetrachloride	153.2	10	nd			nd	nd
Benzene	78.11	10	nd	100%	101%	nd	230
Trichloroethene	131.4	10	nd	89%	94%	81	nd
1,2-Dichloropropane	113.0	10	nd	95%	99%	nd	nd
Dibromomethane	173.8	10	nd			nd	nd
Bromodichloromethane	163.8	10	nd			nd	nd
cis-1,3-Dichloropropene	111.0	10	nd			nd	nd
Toluene	92.13	10	nd	98%	95%	28	1,540
trans-1,3-Dichloropropene	111.0	10	nd			nd	nd
1,1,2-Trichloroethane	133.4	10	nd			nd	nd
1,3-Dichloropropane	113.0	10	nd			nd	nd
Dibromochloromethane	208.3	10	nd			nd	nd
Tetrachloroethene	165.8	10	nd	86%	90%	2,500	nd
1,2-Dibromoethane (EDB)	187.9	10	nd			nd	nd
Chlorobenzene	112.6	10	nd	93%	98%	nd	nd
1,1,1,2-Tetrachloroethane	167.9	10	nd			nd	nd
Ethylbenzene	106.2	10	nd	109%	114%	nd	140
Xylenes	106.2	10	nd	120%	122%	300	1,000
Styrene	104.2	10	nd			nd	nd
Bromoform	252.8	10	nd			nd	nd
1,1,2,2-Tetrachloroethane	167.9	10	nd			nd	nd
Isopropylbenzene	120.2	10	nd			nd	nd
1,2,3-Trichloropropane	147.4	10	nd			nd	nd
Bromobenzene	157.0	10	nd			nd	nd

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analyses of Volatile Organic Componds in Air by Method 8260)
---	---

Sample ID	Molecular	Reporting	MB	LCS	LCSD	SS1	SS2
Date Sampled	Weight	Limits	05/09/18	05/09/18	05/09/18	05/08/18	05/08/18
Date Analyzed	g	ug/m3	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18
n-Propylbenzene	120.2	10	nd			nd	16
2-Chlorotoluene	126.6	10	nd			nd	nd
4-Chlorotoluene	126.6	10	nd			nd	nd
1,3,5-Trimethylbenzene	120.2	10	nd			nd	20
tert-Butylbenzene	134.2	10	nd			nd	nd
1,2,4-Trimethylbenzene	120.2	10	nd			nd	110
sec-Butylbenzene	134.2	10	nd			nd	nd
1,3-Dichlorobenzene	147.0	10	nd			nd	nd
1,4-Dichlorobenzene	147.0	10	nd			nd	nd
Isopropyltoluene	134.2	10	nd			nd	nd
1,2-Dichlorobenzene	147.0	10	nd			nd	nd
n-Butylbenzene	134.2	10	nd			nd	nd
1,2-Dibromo-3-Chloropropane	236.3	10	nd			nd	nd
1,2,4-Trichlorobenzene	181.5	10	nd			nd	nd
Naphthalene	128.2	10	nd			nd	nd
Hexachloro-1,3-butadiene	260.8	10	nd			nd	nd
1,2,3-Trichlorobenzene	181.5	10	nd			nd	nd
Surrogate recoveries							
Dibromofluoromethane			110%	97%	95%	106%	117%
Toluene-d8			108%	98%	97%	110%	115%
4-Bromofluorobenzene			110%	114%	112%	107%	106%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

WORK ORDER #: 1805182

Work Order Summary

CLIENT:	Ms. Jennifer Arnold ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501	BILL TO:	Ms. Jennifer Arnold ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501
PHONE:	360-459-4670	P.O. #	11-124
FAX:	360-4595-3432	PROJECT #	Manor Market
DATE RECEIVED:	05/10/2018	CONTACT:	Sarah Westerman
DATE COMPLETED:	05/22/2018	continen	Sarah Westerman

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	Indoor 1	Modified TO-15	9.0 "Hg	5 psi
01B	Indoor 1	Modified TO-15	9.0 "Hg	5 psi
02A	Indoor 2	Modified TO-15	11.0 "Hg	5 psi
02B	Indoor 2	Modified TO-15	11.0 "Hg	5 psi
03A	Outdoor	Modified TO-15	9.5 "Hg	5 psi
03B	Outdoor	Modified TO-15	9.5 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

layes Terd

05/22/18 DATE:

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> > Page 2 of 27

🛟 eurofins

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM ESN Northwest Workorder# 1805182

Three 6 Liter Summa Canister (SIM Certified) samples were received on May 10, 2018. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD
		For SIM: Project specific; default criteria is =30% RSD with<br 10% of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to<br =40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

The Chain of Custody (COC) information for sample Outdoor did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

The Chain of Custody (COC) was not relinquished properly. A signature, date, and time were not provided by the field sampler.

The Chain of Custody was missing method information. EATL proceeded with the analysis as per the Page 3 of 27

original contract or verbal agreement.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- CN See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: Indoor 1

Lab ID#: 1805182-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.19	0.24	1.1	1.3
Ethanol	0.96	29	1.8	54
Acetone	0.96	4.9	2.3	12
2-Propanol	0.96	3.9	2.3	9.6
Hexane	0.19	0.24	0.67	0.86
Heptane	0.19	0.20	0.78	0.84

Client Sample ID: Indoor 1

Lab ID#: 1805182-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.038	0.47	0.19	2.3
Carbon Tetrachloride	0.038	0.076	0.24	0.48
Benzene	0.096	0.20	0.30	0.64
Toluene	0.038	0.70	0.14	2.6
Ethyl Benzene	0.038	0.086	0.16	0.37
m,p-Xylene	0.076	0.30	0.33	1.3
o-Xylene	0.038	0.12	0.16	0.50

Client Sample ID: Indoor 2

Lab ID#: 1805182-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.21	0.21	1.2	1.2
Ethanol	1.1	36	2.0	68
Acetone	1.1	10	2.5	24
2-Propanol	1.1	1.5	2.6	3.6
Methylene Chloride	0.42	0.61	1.5	2.1
Hexane	0.21	0.31	0.75	1.1
2-Butanone (Methyl Ethyl Ketone)	1.1	1.3	3.1	3.9
Heptane	0.21	0.26	0.87	1.1

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: Indoor 2

Lab ID#: 1805182-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.042	0.43	0.21	2.1
Chloroform	0.042	0.046	0.21	0.23
Carbon Tetrachloride	0.042	0.067	0.27	0.42
Benzene	0.11	0.22	0.34	0.69
Toluene	0.042	1.8	0.16	6.7
Tetrachloroethene	0.042	0.14	0.29	0.92
Ethyl Benzene	0.042	0.14	0.18	0.62
m,p-Xylene	0.085	0.60	0.37	2.6
o-Xylene	0.042	0.22	0.18	0.95

Client Sample ID: Outdoor

Lab ID#: 1805182-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.20	0.23	1.1	1.3
Ethanol	0.98	3.4	1.8	6.4
Acetone	0.98	4.9	2.3	12
Hexane	0.20	0.20	0.69	0.70

Client Sample ID: Outdoor

Lab ID#: 1805182-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.039	0.45	0.19	2.2
Carbon Tetrachloride	0.039	0.070	0.25	0.44
Benzene	0.098	0.14	0.31	0.44
Toluene	0.039	0.44	0.15	1.7
Ethyl Benzene	0.039	0.059	0.17	0.26
m,p-Xylene	0.078	0.20	0.34	0.89
o-Xylene	0.039	0.070	0.17	0.30

Client Sample ID: Indoor 1 Lab ID#: 1805182-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051117 1.91		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.19	Not Detected	0.42	Not Detected
Bromomethane	0.96	Not Detected	3.7	Not Detected
Freon 11	0.19	0.24	1.1	1.3
Ethanol	0.96	29	1.8	54
Freon 113	0.19	Not Detected	1.5	Not Detected
Acetone	0.96	4.9	2.3	12
2-Propanol	0.96	3.9	2.3	9.6
Carbon Disulfide	0.96	Not Detected	3.0	Not Detected
3-Chloropropene	0.96	Not Detected	3.0	Not Detected
Methylene Chloride	0.38	Not Detected	1.3	Not Detected
Hexane	0.19	0.24	0.67	0.86
2-Butanone (Methyl Ethyl Ketone)	0.96	Not Detected	2.8	Not Detected
Tetrahydrofuran	0.96	Not Detected	2.8	Not Detected
Cyclohexane	0.19	Not Detected	0.66	Not Detected
2,2,4-Trimethylpentane	0.96	Not Detected	4.5	Not Detected
Heptane	0.19	0.20	0.78	0.84
1,2-Dichloropropane	0.19	Not Detected	0.88	Not Detected
1,4-Dioxane	0.19	Not Detected	0.69	Not Detected
Bromodichloromethane	0.19	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.87	Not Detected
4-Methyl-2-pentanone	0.19	Not Detected	0.78	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.87	Not Detected
2-Hexanone	0.96	Not Detected	3.9	Not Detected
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
Chlorobenzene	0.19	Not Detected	0.88	Not Detected
Styrene	0.19	Not Detected	0.81	Not Detected
Bromoform	0.19	Not Detected	2.0	Not Detected
Cumene	0.19	Not Detected	0.94	Not Detected
Propylbenzene	0.19	Not Detected	0.94	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.94	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.94	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.94	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.99	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.96	Not Detected	7.1	Not Detected
Hexachlorobutadiene	0.96	Not Detected	10	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	111	70-130

Client Sample ID: Indoor 1 Lab ID#: 1805182-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051117		tion: 5/8/18 2:16:00 PM	
Dil. Factor:	1.91		sis: 5/11/18 06:48 PM	
Surrogates	%Recovery		Method Limits	
Toluene-d8		105	70-130	
4-Bromofluorobenzene		108	70-130	

1

Client Sample ID: Indoor 1 Lab ID#: 1805182-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051117sim 1.91		Date of Collection: 5/8/18 2:16:00 PM Date of Analysis: 5/11/18 06:48 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.038	0.47	0.19	2.3	
Freon 114	0.038	Not Detected	0.27	Not Detected	
Chloromethane	0.96	Not Detected	2.0	Not Detected	
Vinyl Chloride	0.019	Not Detected	0.049	Not Detected	
Chloroethane	0.096	Not Detected	0.25	Not Detected	
1,1-Dichloroethene	0.019	Not Detected	0.076	Not Detected	
trans-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected	
Methyl tert-butyl ether	0.19	Not Detected	0.69	Not Detected	
1,1-Dichloroethane	0.038	Not Detected	0.15	Not Detected	
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected	
Chloroform	0.038	Not Detected	0.19	Not Detected	
1,1,1-Trichloroethane	0.038	Not Detected	0.21	Not Detected	
Carbon Tetrachloride	0.038	0.076	0.24	0.48	
Benzene	0.096	0.20	0.30	0.64	
1,2-Dichloroethane	0.038	Not Detected	0.15	Not Detected	
Trichloroethene	0.038	Not Detected	0.20	Not Detected	
Toluene	0.038	0.70	0.14	2.6	
1,1,2-Trichloroethane	0.038	Not Detected	0.21	Not Detected	
Tetrachloroethene	0.038	Not Detected	0.26	Not Detected	
1,2-Dibromoethane (EDB)	0.038	Not Detected	0.29	Not Detected	
Ethyl Benzene	0.038	0.086	0.16	0.37	
m,p-Xylene	0.076	0.30	0.33	1.3	
o-Xylene	0.038	0.12	0.16	0.50	
1,1,2,2-Tetrachloroethane	0.038	Not Detected	0.26	Not Detected	
1,4-Dichlorobenzene	0.038	Not Detected	0.23	Not Detected	

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Indoor 2 Lab ID#: 1805182-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051120 2.12		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.21	Not Detected	0.47	Not Detected
Bromomethane	1.1	Not Detected	4.1	Not Detected
Freon 11	0.21	0.21	1.2	1.2
Ethanol	1.1	36	2.0	68
Freon 113	0.21	Not Detected	1.6	Not Detected
Acetone	1.1	10	2.5	24
2-Propanol	1.1	1.5	2.6	3.6
Carbon Disulfide	1.1	Not Detected	3.3	Not Detected
3-Chloropropene	1.1	Not Detected	3.3	Not Detected
Methylene Chloride	0.42	0.61	1.5	2.1
Hexane	0.21	0.31	0.75	1.1
2-Butanone (Methyl Ethyl Ketone)	1.1	1.3	3.1	3.9
Tetrahydrofuran	1.1	Not Detected	3.1	Not Detected
Cyclohexane	0.21	Not Detected	0.73	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.0	Not Detected
Heptane	0.21	0.26	0.87	1.1
1,2-Dichloropropane	0.21	Not Detected	0.98	Not Detected
1.4-Dioxane	0.21	Not Detected	0.76	Not Detected
Bromodichloromethane	0.21	Not Detected	1.4	Not Detected
cis-1,3-Dichloropropene	0.21	Not Detected	0.96	Not Detected
4-Methyl-2-pentanone	0.21	Not Detected	0.87	Not Detected
trans-1,3-Dichloropropene	0.21	Not Detected	0.96	Not Detected
2-Hexanone	1.1	Not Detected	4.3	Not Detected
Dibromochloromethane	0.21	Not Detected	1.8	Not Detected
Chlorobenzene	0.21	Not Detected	0.98	Not Detected
Styrene	0.21	Not Detected	0.90	Not Detected
Bromoform	0.21	Not Detected	2.2	Not Detected
Cumene	0.21	Not Detected	1.0	Not Detected
Propylbenzene	0.21	Not Detected	1.0	Not Detected
4-Ethyltoluene	0.21	Not Detected	1.0	Not Detected
1,3,5-Trimethylbenzene	0.21	Not Detected	1.0	Not Detected
1,2,4-Trimethylbenzene	0.21	Not Detected	1.0	Not Detected
1,3-Dichlorobenzene	0.21	Not Detected	1.0	Not Detected
alpha-Chlorotoluene	0.21	Not Detected	1.5	Not Detected
1,2-Dichlorobenzene	0.21	Not Detected	1.1	Not Detected
	1.1	Not Detected	7.9	Not Detected
1,2,4-Trichlorobenzene				
Hexachlorobutadiene	1.1	Not Detected	11	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130

Client Sample ID: Indoor 2 Lab ID#: 1805182-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051120		tion: 5/8/18 3:05:00 PM
Dil. Factor:	2.12		sis: 5/11/18 09:15 PM
Surrogates	%Recovery		Method Limits
Toluene-d8		98	70-130
4-Bromofluorobenzene		102	70-130

٦

Client Sample ID: Indoor 2 Lab ID#: 1805182-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051120sim 2.12			/18 3:05:00 PM /18 09:15 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.042	0.43	0.21	2.1
Freon 114	0.042	Not Detected	0.30	Not Detected
Chloromethane	1.1	Not Detected	2.2	Not Detected
Vinyl Chloride	0.021	Not Detected	0.054	Not Detected
Chloroethane	0.11	Not Detected	0.28	Not Detected
1,1-Dichloroethene	0.021	Not Detected	0.084	Not Detected
trans-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected
Methyl tert-butyl ether	0.21	Not Detected	0.76	Not Detected
1,1-Dichloroethane	0.042	Not Detected	0.17	Not Detected
cis-1,2-Dichloroethene	0.042	Not Detected	0.17	Not Detected
Chloroform	0.042	0.046	0.21	0.23
1,1,1-Trichloroethane	0.042	Not Detected	0.23	Not Detected
Carbon Tetrachloride	0.042	0.067	0.27	0.42
Benzene	0.11	0.22	0.34	0.69
1,2-Dichloroethane	0.042	Not Detected	0.17	Not Detected
Trichloroethene	0.042	Not Detected	0.23	Not Detected
Toluene	0.042	1.8	0.16	6.7
1,1,2-Trichloroethane	0.042	Not Detected	0.23	Not Detected
Tetrachloroethene	0.042	0.14	0.29	0.92
1,2-Dibromoethane (EDB)	0.042	Not Detected	0.32	Not Detected
Ethyl Benzene	0.042	0.14	0.18	0.62
m,p-Xylene	0.085	0.60	0.37	2.6
o-Xylene	0.042	0.22	0.18	0.95
1,1,2,2-Tetrachloroethane	0.042	Not Detected	0.29	Not Detected
1,4-Dichlorobenzene	0.042	Not Detected	0.25	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: Outdoor Lab ID#: 1805182-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051118 1.96		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.20	Not Detected	0.43	Not Detected
Bromomethane	0.98	Not Detected	3.8	Not Detected
Freon 11	0.20	0.23	1.1	1.3
Ethanol	0.98	3.4	1.8	6.4
Freon 113	0.20	Not Detected	1.5	Not Detected
Acetone	0.98	4.9	2.3	12
2-Propanol	0.98	Not Detected	2.4	Not Detected
Carbon Disulfide	0.98	Not Detected	3.0	Not Detected
3-Chloropropene	0.98	Not Detected	3.1	Not Detected
Methylene Chloride	0.39	Not Detected	1.4	Not Detected
Hexane	0.20	0.20	0.69	0.70
2-Butanone (Methyl Ethyl Ketone)	0.98	Not Detected	2.9	Not Detected
Tetrahydrofuran	0.98	Not Detected	2.9	Not Detected
Cyclohexane	0.20	Not Detected	0.67	Not Detected
2,2,4-Trimethylpentane	0.98	Not Detected	4.6	Not Detected
Heptane	0.20	Not Detected	0.80	Not Detected
1,2-Dichloropropane	0.20	Not Detected	0.90	Not Detected
1,4-Dioxane	0.20	Not Detected	0.71	Not Detected
Bromodichloromethane	0.20	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.20	Not Detected	0.89	Not Detected
4-Methyl-2-pentanone	0.20	Not Detected	0.80	Not Detected
trans-1,3-Dichloropropene	0.20	Not Detected	0.89	Not Detected
2-Hexanone	0.98	Not Detected	4.0	Not Detected
Dibromochloromethane	0.20	Not Detected	1.7	Not Detected
Chlorobenzene	0.20	Not Detected	0.90	Not Detected
Styrene	0.20	Not Detected	0.83	Not Detected
Bromoform	0.20	Not Detected	2.0	Not Detected
Cumene	0.20	Not Detected	0.96	Not Detected
Propylbenzene	0.20	Not Detected	0.96	Not Detected
4-Ethyltoluene	0.20	Not Detected	0.96	Not Detected
1,3,5-Trimethylbenzene	0.20	Not Detected	0.96	Not Detected
· · · · ·	0.20	Not Detected	0.96	Not Detected
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
	0.20	Not Detected	1.2	Not Detected
alpha-Chlorotoluene 1,2-Dichlorobenzene	0.20	Not Detected	1.0	Not Detected
·	0.98		7.3	
1,2,4-Trichlorobenzene		Not Detected		Not Detected
Hexachlorobutadiene	0.98	Not Detected	10	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130

Client Sample ID: Outdoor Lab ID#: 1805182-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051118		tion: 5/8/18 3:22:00 PM
Dil. Factor:	1.96		sis: 5/11/18 07:23 PM
Surrogates		%Recovery	Method Limits
Toluene-d8		99	70-130
4-Bromofluorobenzene		109	70-130

٦

Client Sample ID: Outdoor Lab ID#: 1805182-03B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051118sim 1.96		of Collection: 5/8 of Analysis: 5/11	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.039	0.45	0.19	2.2
Freon 114	0.039	Not Detected	0.27	Not Detected
Chloromethane	0.98	Not Detected	2.0	Not Detected
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected
Chloroethane	0.098	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.078	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.78	Not Detected
Methyl tert-butyl ether	0.20	Not Detected	0.71	Not Detected
1,1-Dichloroethane	0.039	Not Detected	0.16	Not Detected
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
Chloroform	0.039	Not Detected	0.19	Not Detected
1,1,1-Trichloroethane	0.039	Not Detected	0.21	Not Detected
Carbon Tetrachloride	0.039	0.070	0.25	0.44
Benzene	0.098	0.14	0.31	0.44
1,2-Dichloroethane	0.039	Not Detected	0.16	Not Detected
Trichloroethene	0.039	Not Detected	0.21	Not Detected
Toluene	0.039	0.44	0.15	1.7
1,1,2-Trichloroethane	0.039	Not Detected	0.21	Not Detected
Tetrachloroethene	0.039	Not Detected	0.26	Not Detected
1,2-Dibromoethane (EDB)	0.039	Not Detected	0.30	Not Detected
Ethyl Benzene	0.039	0.059	0.17	0.26
m,p-Xylene	0.078	0.20	0.34	0.89
o-Xylene	0.039	0.070	0.17	0.30
1,1,2,2-Tetrachloroethane	0.039	Not Detected	0.27	Not Detected
1,4-Dichlorobenzene	0.039	Not Detected	0.24	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1805182-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	v051106		of Collection: NA	
Dil. Factor:	1.00	Date	of Analysis: 5/11	′18 11:09 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	0.50	Not Detected	1.6	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Hexane	0.10	Not Detected	0.35	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Cyclohexane	0.10	Not Detected	0.34	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Heptane	0.10	Not Detected	0.41	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
2-Hexanone	0.50	Not Detected	2.0	Not Detected
Dibromochloromethane	0.10	Not Detected	0.85	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Styrene	0.10	Not Detected	0.42	Not Detected
Bromoform	0.10	Not Detected	1.0	Not Detected
Cumene	0.10	Not Detected	0.49	Not Detected
Propylbenzene	0.10	Not Detected	0.49	Not Detected
4-Ethyltoluene	0.10	Not Detected	0.49	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130

Client Sample ID: Lab Blank Lab ID#: 1805182-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051106	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 5/11/18 11:09 AM
Surrogates		%Recovery	Method Limits
Toluene-d8		100	70-130
4-Bromofluorobenzene		104	70-130

٦

Client Sample ID: Lab Blank Lab ID#: 1805182-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051106sim 1.00		of Collection: NA of Analysis: 5/11/	/18 11:09 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.020	Not Detected	0.099	Not Detected
Freon 114	0.020	Not Detected	0.14	Not Detected
Chloromethane	0.50	Not Detected	1.0	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Chloroethane	0.050	Not Detected	0.13	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
1,2-Dibromoethane (EDB)	0.020	Not Detected	0.15	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
1,4-Dichlorobenzene	0.020	Not Detected	0.12	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: CCV Lab ID#: 1805182-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	v051102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/11/18 08:45 AM
Compound		%Recovery
1,3-Butadiene		96
Bromomethane		114
Freon 11		100
Ethanol		114
Freon 113		93
Acetone		98
2-Propanol		109
Carbon Disulfide		101
3-Chloropropene		113
Methylene Chloride		91
Hexane		95
2-Butanone (Methyl Ethyl Ketone)		110
Tetrahydrofuran		101
Cyclohexane		93
2,2,4-Trimethylpentane		96
Heptane		96
1,2-Dichloropropane		93
1,4-Dioxane		95
Bromodichloromethane		93
cis-1,3-Dichloropropene		101
4-Methyl-2-pentanone		108
trans-1,3-Dichloropropene		96
2-Hexanone		100
Dibromochloromethane		92
Chlorobenzene		90
Styrene		88
Bromoform		95
Cumene		84
Propylbenzene		83
4-Ethyltoluene		85
1,3,5-Trimethylbenzene		85
1,2,4-Trimethylbenzene		87
1,3-Dichlorobenzene		83
alpha-Chlorotoluene		88
1,2-Dichlorobenzene		83
1,2,4-Trichlorobenzene		107
		107

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	108	70-130

Client Sample ID: CCV Lab ID#: 1805182-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051102	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 5/11/18 08:45 AM
Surrogates		%Recovery	Method Limits
Toluene-d8		100	70-130
4-Bromofluorobenzene		91	70-130

٦

Client Sample ID: CCV Lab ID#: 1805182-05B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	v051102sim 1.00	Date of Collection: NA Date of Analysis: 5/11/18 08:45 AM	
Compound	%Recovery		
Freon 12		90	
Freon 114		88	
Chloromethane		85	
Vinyl Chloride		86	
Chloroethane		94	
1,1-Dichloroethene		88	
trans-1,2-Dichloroethene		88	
Methyl tert-butyl ether		91	
1,1-Dichloroethane		91	
cis-1,2-Dichloroethene		90	
Chloroform		91	
1,1,1-Trichloroethane		91	
Carbon Tetrachloride		99	
Benzene		85	
1,2-Dichloroethane		97	
Trichloroethene		84	
Toluene		88	
1,1,2-Trichloroethane		86	
Tetrachloroethene		84	
1,2-Dibromoethane (EDB)		90	
Ethyl Benzene		86	
m,p-Xylene		81	
o-Xylene		82	
1,1,2,2-Tetrachloroethane		84	
1,4-Dichlorobenzene		74	

Container Type: NA - Not Applicable

Surrogatos	%Recovery	Method Limits	
Surrogates	%Recovery	LIIIIIIS	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: LCS Lab ID#: 1805182-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:		Collection: NA Analysis: 5/11/18 09:21 AM
		Method
Compound	%Recovery	Limits
1,3-Butadiene	91	70-130
Bromomethane	116	70-130
Freon 11	96	70-130
Ethanol	115	70-130
Freon 113	90	70-130
Acetone	96	70-130
2-Propanol	107	70-130
Carbon Disulfide	100	70-130
3-Chloropropene	113	70-130
Methylene Chloride	87	70-130
Hexane	94	70-130
2-Butanone (Methyl Ethyl Ketone)	109	70-130
Tetrahydrofuran	102	70-130
Cyclohexane	91	70-130
2,2,4-Trimethylpentane	92	70-130
Heptane	102	70-130
1,2-Dichloropropane	96	70-130
1,4-Dioxane	97	70-130
Bromodichloromethane	99	70-130
cis-1,3-Dichloropropene	111	70-130
4-Methyl-2-pentanone	114	70-130
trans-1,3-Dichloropropene	102	70-130
2-Hexanone	110	70-130
Dibromochloromethane	101	70-130
Chlorobenzene	97	70-130
Styrene	92	70-130
Bromoform	108	70-130
Cumene	90	70-130
Propylbenzene	90	70-130
4-Ethyltoluene	91	70-130
1,3,5-Trimethylbenzene	90	70-130
1,2,4-Trimethylbenzene	94	70-130
1,3-Dichlorobenzene	86	70-130
alpha-Chlorotoluene	106	70-130
1,2-Dichlorobenzene	85	70-130
1,2,4-Trichlorobenzene	104	70-130
Hexachlorobutadiene	91	70-130

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	

Client Sample ID: LCS Lab ID#: 1805182-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor: Surrogates	v051103 1.00	Date of Collec Date of Analys	tion: NA sis: 5/11/18 09:21 AM
		%Recovery	Method Limits
Toluene-d8 4-Bromofluorobenzene		99 98	70-130 70-130

Client Sample ID: LCSD Lab ID#: 1805182-06AA MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v051104 1.00	Date of Collection: NA Date of Analysis: 5/11/18 09:58	
			Method
Compound		%Recovery	Limits
1,3-Butadiene		97	70-130
Bromomethane		125	70-130
Freon 11		101	70-130
Ethanol		126	70-130
Freon 113		95	70-130
Acetone		101	70-130
2-Propanol		122	70-130
Carbon Disulfide		109	70-130
3-Chloropropene		115	70-130
Methylene Chloride		92	70-130
Hexane		100	70-130
2-Butanone (Methyl Ethyl Ketone)		116	70-130
Tetrahydrofuran		106	70-130
Cyclohexane		98	70-130
2,2,4-Trimethylpentane		96	70-130
Heptane		104	70-130
1,2-Dichloropropane		94	70-130
1,4-Dioxane		100	70-130
Bromodichloromethane		101	70-130
cis-1,3-Dichloropropene		112	70-130
4-Methyl-2-pentanone		115	70-130
trans-1,3-Dichloropropene		102	70-130
2-Hexanone		113	70-130
Dibromochloromethane		102	70-130
Chlorobenzene		99	70-130
Styrene		99	70-130
Bromoform		109	70-130
Cumene		91	70-130
Propylbenzene		93	70-130
4-Ethyltoluene		95	70-130
1,3,5-Trimethylbenzene		91	70-130
1,2,4-Trimethylbenzene		92	70-130
1,3-Dichlorobenzene		91	70-130
alpha-Chlorotoluene		110	70-130
1,2-Dichlorobenzene		91	70-130
1,2,4-Trichlorobenzene		104	70-130
Hexachlorobutadiene		91	70-130

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	

Client Sample ID: LCSD Lab ID#: 1805182-06AA MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor: Surrogates	v051104 1.00	Date of Collection: NA Date of Analysis: 5/11/18 09:58	
		%Recovery	Method Limits
Toluene-d8 4-Bromofluorobenzene		98 98	70-130 70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 1805182-06B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051103sim 1.00	Date of Collec Date of Analy	ction: NA sis: 5/11/18 09:21 AM
Compound		%Recovery	Method Limits
Freon 12		94	70-130
Freon 114		92	70-130
Chloromethane		91	70-130
Vinyl Chloride		93	70-130
Chloroethane		100	70-130
1,1-Dichloroethene		90	70-130
trans-1,2-Dichloroethene		100	70-130
Methyl tert-butyl ether		94	70-130
1,1-Dichloroethane		94	70-130
cis-1,2-Dichloroethene		86	70-130
Chloroform		93	70-130
1,1,1-Trichloroethane		94	70-130
Carbon Tetrachloride		111	60-140
Benzene		88	70-130
1,2-Dichloroethane		99	70-130
Trichloroethene		89	70-130
Toluene		92	70-130
1,1,2-Trichloroethane		92	70-130
Tetrachloroethene		88	70-130
1,2-Dibromoethane (EDB)		96	70-130
Ethyl Benzene		92	70-130
m,p-Xylene		86	70-130
o-Xylene		88	70-130
1,1,2,2-Tetrachloroethane		89	70-130
1,4-Dichlorobenzene		78	70-130

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 1805182-06BB MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051104sim 1.00	Date of Collec Date of Analy	ction: NA sis: 5/11/18 09:58 AM
Compound		%Recovery	Method Limits
Freon 12		94	70-130
Freon 114		92	70-130
Chloromethane		91	70-130
Vinyl Chloride		93	70-130
Chloroethane		103	70-130
1,1-Dichloroethene		90	70-130
trans-1,2-Dichloroethene		100	70-130
Methyl tert-butyl ether		95	70-130
1,1-Dichloroethane		94	70-130
cis-1,2-Dichloroethene		86	70-130
Chloroform		94	70-130
1,1,1-Trichloroethane		94	70-130
Carbon Tetrachloride		112	60-140
Benzene		89	70-130
1,2-Dichloroethane		100	70-130
Trichloroethene		90	70-130
Toluene		94	70-130
1,1,2-Trichloroethane		90	70-130
Tetrachloroethene		87	70-130
1,2-Dibromoethane (EDB)		95	70-130
Ethyl Benzene		92	70-130
m,p-Xylene		89	70-130
o-Xylene		92	70-130
1,1,2,2-Tetrachloroethane		87	70-130
1,4-Dichlorobenzene		81	70-130

Container Type: NA - Not Applicable

Surregates	% Baseven	Method Limits
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	96	70-130

CLIENT:	es Netw	ork											6					CUSTO				
									-		_							PAGE		1		
ADDRESS: 405	3 111	n A	r se	- Sule	201	G	0	102				PROJECT NAME: Manon Manicet										
PHONE: 300 3	52.4	183	5	FAX:								LOCATION: 3609 164th St SW Unnuber										
CLIENT PROJECT #				PROJEC			2	.0	100		-	LUCA	HON			1 0			DATE OF	10		
CLIENT PROJECT #				T					100		_	COLL	ECTO	R: <u>*</u>	Di Di	124	A	· sinal +2	COLLECTION:	5/8	1	
Sample Number	Depth	Time	Sample Type	Container Type	ANALYSES ANALYSES	Diesel	Sasolin Sasolin	2 VOC 9765	sci senin	019270 019270	10 80°	22-21-10-20 22-51-10-20 22-51-10-20 22-51-10-20 20-20-20-20 20-20-20-20-20 20-20-20-20-20-20-20-20-20-20-20-20-20-2	ARE ALS ME	Aspest	Print 91 M	Suite suit	a sale	ALL REAL		Total Number	aboratory	
I. SSI	-	0955	5 Vap	Tezian											ÍÍ	Í		48 he			1	
2. 552	-	1055		Tedian														48 m	_		\uparrow	
3. Mar 11.	-	1237	H20	word edy																	+	
4. MW-3	-	1155	(1		xy	•						X			X					+	
5. Mert 4 5. Mer-1	1	1340				X	A						X			X				-	+	
5. Meu-1	-	1440				XY	4						¥			¥			The second second		+	
. mw-2	-	1440				XX	:						×			X					+	
3. mw-6	-	1135				*>	0						×			×	X				┢	
1. mw-b	-	1340				VY							X			X	-			-	+	
10. mw-5	-	1240				xx							x			X					+	
11.						ŕ															+	
L 2 .										1						-					+	
L3.																-					+	
L4.											-					-					+	
15.											-										+	
16.											-				+-+	-				_	+	
17.										1	-				┼╌┼╴	-					+	
18.											-				+-+	-					┾	
RELINQUISHED BY (Signatu	ure)	DAT	TE/TIME	RECE	IVED BY (Si	ignatu	e)		DATE/TI	ME	-	L	SAI	VIPLE F	ECEIPT		L	LABORATORY	NOTES			
R 5/9/18	3			1	annad	10	115	-0	5-9-	-18		AL NUME	ER OF C	ONTA	NERS				NOTES.			
RELINQUISHED BY (Signati	ure)	DAT	TE/TIME	RECE	IVED BY (SI	gnatu		a	DATE /T	NAF					//N/NA	_						
			,	IYECE		griatul	e)		DATE/TI	IVIE		LS INTACT						_		4	$ \leq $	
											NOT	the state of the s		ND./CO			L	_		K		
1210 Eastside Street SE, Su	ite 200	100					171	Pho	ne: 360-	459-4	_							Turn Around T	Website: wv		5 DA	

3322 South Bay Road NE • Olympia, WA 98506-2957

December 10, 2019

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the Manor Market Project located in Lynnwood, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Aby Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L191203-1 Client Project # 11-124

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-4	MW-5
		Blank					
Date Sampled		N/A	12/2/19	12/2/19	12/2/19	12/2/19	12/2/19
Date Analyzed	PQL	12/4/19	12/4/19	12/4/19	12/4/19	12/4/19	12/4/19
	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)
Benzene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	32	7.5	25	700	nd
Surrogate Recovery							
Dibromofluoromethane		117	101	115	112	105	109
1,2-Dichloroethane-d4		134	100	123	117	105	109
Toluene-d8		94	95	93	93	95	94
4-Bromofluorobenzene		104	93	98	93	96	98

Volatile Organic Compounds by EPA Method 8260D in Water

tes not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L191203-1 Client Project # 11-124 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW-5	MW-6	MW-10	MW-11	
		Dup				
Date Sampled		12/2/19	12/2/19	12/2/19	12/2/19	
Date Analyzed	PQL	12/4/19	12/4/19	12/4/19	12/4/19	
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	
Benzene	1.0	nd	147	nd	nd	
Toluene	1.0	nd	2.0	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	
Total Xylenes	2.0	nd	7.5	nd	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		106	93	101	107	
1,2-Dichloroethane-d4		103	105	94	108	
Toluene-d8		93	97	96	96	
4-Bromofluorobenzene		94	97	95	95	
"nd" Indicates not detect	ed at listed	detection li	mit.			

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L191203-1 Client Project # 11-124 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

M	atrix Spike	Sample Ider	ntification:	MW-5				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	$(\mu g/L)$	(%)	(%)	(%)	(%)	
Methyl tert-Butyl Ether (MTBE)	5.0	5.0	6.0	100	120	18.2	65-135	
Benzene	5.0	5.0	5.0	100	100	0.0	65-135	
Toluene	5.0	5.2	5.2	104	104	0.0	65-135	
Ethylbenzene	5.0	4.8	4.7	96	94	2.1	65-135	
Total Xylenes	15.0	13.9	13.9	93	93	0.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				129	132		65-135	
1,2-Dichloroethane-d4				125	127		65-135	
Toluene-d8				117	118		65-135	
4-Bromofluorobenzene				99	104		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Methyl tert-Butyl Ether (MTBE)	5.0	5.2	104	80-120	
Benzene	5.0	5.2	104	80-120	
Toluene	5.0	5.4	108	80-120	
Ethylbenzene	5.0	4.9	98	80-120	
Total Xylenes	15.0	15.1	101	80-120	
Surrogate Recovery					
Dibromofluoromethane			127	65-135	
1,2-Dichloroethane-d4			127	65-135	
Toluene-d8			114	65-135	
4-Bromofluorobenzene			104	65-135	

MANOR MARKET PROJECT AEG, LLC Lynnwood, Washington Libby Project # L191203-1 Client Project # 11-124 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Gasoline							
Number	Analyzed	Recovery (%)	$(\mu g/L)$							
Method Blank	12/4/19	94%	nd							
MW-1	12/4/19	95%	nd							
MW-2	12/4/19	93%	nd							
MW-3	12/4/19	93%	nd							
MW-4	12/4/19	95%	nd							
MW-5	12/4/19	94%	nd							
MW-5 Dup	12/4/19	93%	nd							
MW-6	12/4/19	97%	1830							
MW-10	12/4/19	78%	nd							
MW-11	12/4/19	77%	nd							
Practical Quantitation Limit			100							
"nd" Indicates not detected at the l	isted detection li	mits.								
"int" Indicates that interference prevents determination.										
ACCEPTABLE RECOVERY LIMITS F	FOR SURROGATE	(Toluene-d8): 65% TO 135	%							

Analyses of Gasoline (NWTPH-Gx) in Water

MANOR MARKET PROJECT AEG, LLC Libby Project # L191203-1 Date Received 12/3/2019 Time Received 10:40 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.0	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	0.0	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No No	N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:		Dat	e:
By Whom:		Vi	a:
Regarding:			
19. Comments.			

Libby Environm	ental,	Inc.		Cł	nair	0	f Ci	ust	ody	Re	cord	d						www	LibbyEn	vironme	ntal.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4					Date	: '	12/2	/19	1				F	age:		1	of	1	
Client: AEG					-		Proje	ect M	anager	:	50	TT	Ros	E							
Address: ZG33 PARK	MONT L	ANE S	N , SU	TTE A			Proje	ect Na	ame:	M	ANDIZ										
City: OLYMPIA				98502			Loca	tion:	30		1647				C	city, S	tate:	LYN	www	, W	4
Phone: (36) 352-9	835		(360) 35				Colle	ector:			rk							ection:		12/1	9
Client Project # 11-124							Ema	il:	SROS	EQ										'	
Sample Number	Depth	Time	Sample Type	Container Type	15	282 826	ALL AN	5+ 880 - 11	100/	HOT PHILIP	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 pH 8270	S. NOR	5270 88082	A Sheld	A S Mete	\$		Field No	otes	
1 MW-1		1119	GW	VOA		X	Х		_	_	-					_	_				
2-MW-2		1029	6W	VOA		X	X,	_			_				_	-	-				
3 MW-3		1305	6W	VOA		X	X		_	-						_		-			
4 MW-4	· · · · ·	1200	GW	VOA		X	X		_	_	_				_	_					
5 MW-5		0953	GW	VOA	-	X	X			_	_					_					
6 MW-6		1099	GW	VOA	-	X	X		-								_				
7 MW-10		1412	GW	VOA		X	X		·	-							_				
8 MW-11		1338	GW	VOA		X	X														
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
Relinquished M:	Date	/ Time		Received by:						te / Tir			_	-	Rece	ipt	Re	marks	:		
Some matte			19 1500	X	19	-	6	2			150	Good	Cond	ition?	١	1.4					
Relinquished by:	Date	/ Time	-	Received by:	9				1	te / Tir			er Tem			°C	-				
2 2 m	Data		19 1040	MD-	1				121	3/19 te / Tir	1011	Samp				°C	1				~
Relinquished by:	Date	/ Time		Received by:					Da		ine .		Numb				T	AT: 2	4HR 4	48HR	5 DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reesonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

November 26, 2019

Becky Dilba Associated Environmental Group, Inc. 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project in Lynnwood, Washington. Soil vapor samples were analyzed for TO-15 & APH on November 18 - 19, 2019.

The results of the analyses are summarized in the attached table. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to Associated Environmental Group, Inc. for this project. If you have any further questions about the data report, please give us a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michaela Kororec

Michael A. Korosec *President*`

1210 Eastside Street SE, Suite 200 ■ Olympia, Washington 98501 ■ 360.459.4670 ■ FAX 360.459.3432 Web Site: www.esnnw.com

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 14, 2019 by Friedman & Bruya, Inc. from the ESN NW Manor Market, F&BI 911208 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	ESN NW
911208 -01	Indoor-1R
911208 -02	Indoor-2R
911208 -03	Ambient-1R
911208 -04	SS-1R
911208 -05	SS-2R

Several concentrations exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor-1R 11/14/19 11/11/19 11/19/19 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 911208 911208-01 111819.D GCMS7 MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 114	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 58			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor-2R 11/14/19 11/11/19 11/19/19 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	ESN NW Manor Market, F&BI 911208 911208-02 111820.D GCMS7 MS
Surrogates: 4-Bromofluoroben:	% Recovery: zene 109	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 170			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Ambient-1R 11/14/19 11/11/19 11/19/19 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	ESN NW Manor Market, F&BI 911208 911208-03 111821.D GCMS7 MS
Surrogates: 4-Bromofluoroben:	% Recovery: zene 112	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 44			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SS-1R 11/14/19 11/11/19 11/19/19 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 911208 911208-04 1/2.9 111822.D GCMS7 MS
Surrogates: 4-Bromofluorobenz	% Recovery: zene 101	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 110			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SS-2R 11/14/19 11/11/19 11/19/19 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	ESN NW Manor Market, F&BI 911208 911208-05 1/2.8 111823.D GCMS7 MS
Surrogates: 4-Bromofluoroben:	% Recovery: zene 100	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	natics 130			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not Applicable Not Applicable 11/18/19 Air	Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 911208 09-2770 mb 111811.D GCMS7 MS
Units:	ug/m3 %	Lower	Upper	MD
Surrogates: 4-Bromofluoroben:	Recovery:	Limit: 70	Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	natics <35			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor-1R 11/14/19 11/11/19 11/19/19 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 911208-01 111819.D GCMS7 MS	911208	
		%	Lower	Upper			
Surrogates:	Re	covery:	Limit:	Limit:			
4-Bromofluorobenz		109	70	130			
		0				0	
Compounda		Concen ²		Comp	anda	Concent	
Compounds:		ug/m3	ppbv	Compo	Junas:	ug/m3	ppbv
Propene		< 0.69	< 0.4	1,2-Di	chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	1.4	0.29	1,4-Di		< 0.36	< 0.1
Chloromethane		<2.1	<1	2,2,4-7	Frimethylpentane	<4.7	<1
F-114		< 0.7	< 0.1	Methy	l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		< 0.022	< 0.01	-	odichloromethane	< 0.067	< 0.01
Butane		12	5.0	Trichl	oroethene	< 0.27	< 0.05
Bromomethane		<1.6	< 0.4	cis-1,3	-Dichloropropene	< 0.45	< 0.1
Chloroethane		<2.6	<1		hyl-2-pentanone	<4.1	<1
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		130 ve	70 ve	Toluer		<19	<5
Acrolein		< 0.92	< 0.4	1, 1, 2-7	Frichloroethane	< 0.11	< 0.02
Pentane		3.1	1.1	2-Hex		<4.1	<1
Trichlorofluoromet	hane	<2.2	< 0.4		hloroethene	<6.8	<1
Acetone		28	12		nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5		bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroe		< 0.4	< 0.1		oenzene	1.1	0.26
Methylene chloride		120 ve	33 ve		2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB		<12	<4	Nonar		< 5.2	<1
3-Chloropropene	,	<1.3	< 0.4	Isopro	pylbenzene	<2.5	< 0.5
CFC-113		< 0.77	< 0.1		orotoluene	< 5.2	<1
Carbon disulfide		< 6.2	<2	Propy	lbenzene	<2.5	< 0.5
Methyl t-butyl ethe	er (MTBE)	<1.8	< 0.5		vltoluene	<2.5	< 0.5
Vinyl acetate		<7	<2	m,p-X	ylene	4.3	0.98
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		1.7	0.38
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1	Styrer	ne	< 0.85	< 0.2
Hexane		4.6	1.3	Brome	oform	<2.1	< 0.2
Chloroform		0.20	0.041	Benzy	l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2	1,3,5-7	Frimethylbenzene	<2.5	< 0.5
Tetrahydrofuran		< 0.29	< 0.1	1,2,4-7	Frimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)		<2.9	<1	1,3-Di	chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane	(EDC)	0.12	0.030	1,4-Di	chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroetha	ne	< 0.55	< 0.1	1,2-Di	chlorobenzene	<0.6	< 0.1
Carbon tetrachlorid	de	< 0.63	< 0.1	1,2,4-7	Frichlorobenzene	< 0.74	< 0.1
Benzene		1.9	0.59	Napht	halene	0.29	0.055
Cyclohexane		<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Indoor-2R 11/14/19 11/11/19 11/19/19 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ament:	ESN NW Manor Market, F&BI 911208-02 111820.D GCMS7 MS	911208	
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenz	ene 102	70	130			
	Concen	tration			Concent	tration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
compounds.	ugino	Pbo.	comp	and.	ug, mo	6621
Propene	< 0.69	< 0.4	1,2-Di	chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane 2.0	0.40	1,4-Di	oxane	< 0.36	< 0.1
Chloromethane	<2.1	<1	2,2,4-7	Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methy	l methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Hepta		54	13
1,3-Butadiene	< 0.022	< 0.01		dichloromethane	< 0.067	< 0.01
Butane	23	9.6		oroethene	< 0.27	< 0.05
Bromomethane	<1.6	< 0.4		-Dichloropropene	< 0.45	< 0.1
Chloroethane	<2.6	<1		nyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluer		250 ve	66 ve
Acrolein	< 0.92	< 0.4		richloroethane	< 0.11	< 0.02
Pentane	5.0	1.7	2-Hexa		<4.1	<1
Trichlorofluoromet		< 0.4		hloroethene	<6.8	<1
Acetone	190 ve	80 ve		nochloromethane	< 0.085	< 0.01
2-Propanol	22	9.1		bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroe		< 0.1	-	enzene	2.1	0.48
Methylene chloride		<25		-Tetrachloroethane	<0.14	< 0.02
t-Butyl alcohol (TB		<4	Nonan		7.5	1.4
3-Chloropropene	<1.3	< 0.4		pylbenzene	<2.5	< 0.5
CFC-113 Carbon disulfide	<0.77 <6.2	<0.1 <2		rotoluene	<5.2 <2.5	<1
Methyl t-butyl ethe		<0.5		benzene vltoluene	<2.3 <2.5	< 0.5 < 0.5
Vinyl acetate	er (MTDE) <1.8 <7	<0.3 <2	m,p-X		<2.3 8.4	$< 0.5 \\ 1.9$
1,1-Dichloroethane		<0.1	o-Xyle		3.4	0.71
cis-1,2-Dichloroethe		<0.1	Styren		<0.85	<0.2
Hexane	220 ve	<0.1 63 ve	Brome		<0.03	<0.2
Chloroform	0.55	0.11		l chloride	< 0.052	< 0.01
Ethyl acetate	9.3	2.6		Trimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	<0.29	< 0.1		rimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)		92 ve		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane		0.021		chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroetha	, ,	< 0.1		chlorobenzene	1.3	0.22
Carbon tetrachlorio		< 0.1		Trichlorobenzene	< 0.74	< 0.1
Benzene	1.4	0.44		halene	0.49	0.093
Cyclohexane	22	6.4		hlorobutadiene	< 0.21	< 0.02
-						

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Ambient-1R 11/14/19 11/11/19 11/19/19 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&B 911208-03 111821.D GCMS7 MS	I 911208	
		%	Lower	Upper			
Surrogates:	Recov		Limit:	Limit:			
4-Bromofluorobenz		106	70	130			
	G		, , .			C	, , .
Commune las			tration	0		Concen	
Compounds:	ug	/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	<(0.69	< 0.4	1,2-Di	chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	2.3	0.46	1,4-Di		< 0.36	< 0.1
Chloromethane	<	$<\!2.1$	<1	2,2,4-7	Frimethylpentane	<4.7	<1
F-114	<	<0.7	< 0.1		l methacrylate	<4.1	<1
Vinyl chloride	<(0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene	<0.	022	< 0.01	Bromo	dichloromethane	< 0.067	< 0.01
Butane		7.6	3.2	Trichle	oroethene	< 0.27	< 0.05
Bromomethane	<	<1.6	< 0.4	cis-1,3	-Dichloropropene	< 0.45	< 0.1
Chloroethane	<	$<\!2.6$	<1	4-Met	nyl-2-pentanone	<4.1	<1
Vinyl bromide	<().44	< 0.1	trans-	1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		21	11	Toluer	ne	<19	<5
Acrolein	<(0.92	< 0.4	1, 1, 2-7	Trichloroethane	< 0.11	< 0.02
Pentane		<3	<1	2-Hexa	anone	<4.1	<1
Trichlorofluoromet	hane <	$<\!2.2$	< 0.4	Tetrac	hloroethene	<6.8	<1
Acetone		14	5.8	Dibror	nochloromethane	< 0.085	< 0.01
2-Propanol	<	<8.6	<3.5	1,2-Di	bromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	<	< 0.4	< 0.1	Chloro	benzene	< 0.46	< 0.1
trans-1,2-Dichloroe	thene <	< 0.4	< 0.1	Ethylk	oenzene	0.53	0.12
Methylene chloride		$<\!\!87$	<25	1, 1, 2, 2	-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12	<4	Nonar	ie	<5.2	<1
3-Chloropropene	<	<1.3	< 0.4	Isopro	pylbenzene	<2.5	< 0.5
CFC-113).77	< 0.1		rotoluene	<5.2	<1
Carbon disulfide		< 6.2	<2		benzene	<2.5	< 0.5
Methyl t-butyl ethe	er (MTBE) <	<1.8	< 0.5	v	vltoluene	<2.5	< 0.5
Vinyl acetate		<7	<2	m,p-X		1.9	0.44
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		0.79	0.18
cis-1,2-Dichloroethe		< 0.4	< 0.1	Styrer		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		0.13	0.026	-	l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		Frimethylbenzene	<2.5	< 0.5
Tetrahydrofuran).29	< 0.1		Frimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)		<2.9	<1		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane	, ,	069	0.017		chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroetha		0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachloric		0.63	< 0.1		Frichlorobenzene	< 0.74	< 0.1
Benzene).97	0.30		halene	0.15	0.029
Cyclohexane	<	<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Client Sample ID:SS-1RDate Received:11/14/1Date Collected:11/11/1Date Analyzed:11/19/1Matrix:AirUnits:ug/m3	9	Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 9 911208-04 1/2.9 111822.D GCMS7 MS	911208	
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene	99	70	130			
~	Concen		~			itration
Compounds:	ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
Decement	~9	<1.0	100	-1.1	<0.07	<0.14
Propene Dichlorodifluoromethane	<2 2.3	<1.2 0.46		chloropropane	<0.67 <1	<0.14 <0.29
Chloromethane	2.5 <6	0.46 <2.9	1,4-Di		<14	<0.29 <2.9
F-114	<0 <2	<0.29		Frimethylpentane d methacrylate	<14 <12	<2.9 <2.9
Vinyl chloride	< 0.74	<0.29 <0.29	Hepta		$^{<12}$ 12	$^{2.9}_{3.0}$
1,3-Butadiene	<0.74 <0.064	< 0.29		odichloromethane	< 0.19	< 0.029
Butane	<0.004 18	< 0.029 7.5		oroethene	<0.13 <0.78	<0.029 <0.14
Bromomethane	<4.5	<1.2		B-Dichloropropene	<0.78	<0.14 <0.29
Chloroethane	<7.7	<2.9		hyl-2-pentanone	<1.3 <12	<0.23
Vinyl bromide	<1.1	<0.29		1,3-Dichloropropene	<1.3	<0.29
Ethanol	23	<0.25 12	Toluer		<1.5 86	<0.23 23
Acrolein	<2.7	<1.2		Frichloroethane	< 0.32	< 0.058
Pentane	8.6	2.9	2-Hex		<12	<2.9
Trichlorofluoromethane	<6.5	<1.2		chloroethene	<20	<2.9
Acetone	87	37		mochloromethane	< 0.25	< 0.029
2-Propanol	<25	<10		bromoethane (EDB)	<0.22	< 0.029
1,1-Dichloroethene	<1.1	< 0.29		obenzene	<1.3	<0.29
trans-1,2-Dichloroethene	<1.1	< 0.29		oenzene	2.7	0.63
Methylene chloride	<250	<72		2-Tetrachloroethane	< 0.4	< 0.058
t-Butyl alcohol (TBA)	<35	<12	Nonar		<15	<2.9
3-Chloropropene	<3.6	<1.2	Isopro	pylbenzene	<7.1	<1.4
CFC-113	<2.2	< 0.29		protoluene	<15	<2.9
Carbon disulfide	<18	<5.8	Propy	lbenzene	<7.1	<1.4
Methyl t-butyl ether (MTBI	E) < 5.2	<1.4	4-Ethy	yltoluene	<7.1	<1.4
Vinyl acetate	<20	<5.8	m,p-X	ylene	11	2.6
1,1-Dichloroethane	<1.2	< 0.29	o-Xyle		4.1	0.94
cis-1,2-Dichloroethene	<1.1	< 0.29	Styrer	ne	$<\!\!2.5$	< 0.58
Hexane	79	22	Bromo		<6	< 0.58
Chloroform	0.35	0.072	-	l chloride	< 0.15	< 0.029
Ethyl acetate	<21	<5.8		Frimethylbenzene	<7.1	<1.4
Tetrahydrofuran	< 0.86	< 0.29		Frimethylbenzene	<7.1	<1.4
2-Butanone (MEK)	73	25		chlorobenzene	<1.7	< 0.29
1,2-Dichloroethane (EDC)	< 0.12	< 0.029		chlorobenzene	< 0.7	< 0.12
1,1,1-Trichloroethane	<1.6	< 0.29		chlorobenzene	<1.7	< 0.29
Carbon tetrachloride	<1.8	<0.29		Frichlorobenzene	<2.2	< 0.29
Benzene	2.5	0.79		halene	< 0.76	< 0.14
Cyclohexane	<20	<5.8	Hexac	hlorobutadiene	< 0.62	< 0.058

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SS-2R 11/14/19 11/11/19 11/19/19 Air ug/m3		Client: Project: Lab ID: Data File: Instrument: Operator:		ESN NW Manor Market, F&BI 9 911208-05 1/2.8 111823.D GCMS7 MS	911208	
		%	Lower	Upper			
Surrogates:	Rec	covery:	Limit:	Limit:			
4-Bromofluorobenz	ene	98	70	130			
		G				a	
C 1		Concen		0			itration
Compounds:		ug/m3	ppbv	Compo	Junas:	ug/m3	ppbv
Propene		<1.9	<1.1	1.2-Die	chloropropane	< 0.65	< 0.14
Dichlorodifluorome	thane	2.1	0.42	1,4-Die		<1	< 0.28
Chloromethane		<5.8	<2.8		rimethylpentane	<13	<2.8
F-114		<2	< 0.28		l methacrylate	<11	<2.8
Vinyl chloride		< 0.72	< 0.28	Hepta		<11	<2.8
1,3-Butadiene		< 0.062	< 0.028	Bromo	dichloromethane	< 0.19	< 0.028
Butane		12	5.1		proethene	< 0.75	< 0.14
Bromomethane		<4.3	<1.1	cis-1,3	-Dichloropropene	<1.3	< 0.28
Chloroethane		<7.4	<2.8	4-Meth	nyl-2-pentanone	<11	<2.8
Vinyl bromide		<1.2	< 0.28	trans-	1,3-Dichloropropene	<1.3	< 0.28
Ethanol		78	41	Toluer	ie	<52	<14
Acrolein		<2.6	<1.1	1,1,2-7	Trichloroethane	< 0.31	< 0.056
Pentane		<8.3	<2.8	2-Hexa	anone	<11	<2.8
Trichlorofluoromet	hane	<6.3	<1.1	Tetrac	hloroethene	<19	<2.8
Acetone		94	39	Dibror	nochloromethane	< 0.24	< 0.028
2-Propanol		<24	<9.8	1,2-Dil	bromoethane (EDB)	< 0.22	< 0.028
1,1-Dichloroethene		<1.1	< 0.28	Chloro	benzene	<1.3	< 0.28
trans-1,2-Dichloroe	ethene	<1.1	< 0.28	Ethylb	oenzene	1.4	0.31
Methylene chloride		<240	<70	1,1,2,2	-Tetrachloroethane	< 0.38	< 0.056
t-Butyl alcohol (TB	A)	<34	<11	Nonan		<15	<2.8
3-Chloropropene		<3.5	<1.1		pylbenzene	<6.9	<1.4
CFC-113		<2.1	< 0.28		rotoluene	<14	<2.8
Carbon disulfide		<17	<5.6		benzene	< 6.9	<1.4
Methyl t-butyl ethe	er (MTBE)	<5	<1.4	•	ltoluene	<6.9	<1.4
Vinyl acetate		<20	<5.6	m,p-Xy		4.9	1.1
1,1-Dichloroethane		<1.1	< 0.28	o-Xyle		2.2	0.50
cis-1,2-Dichloroeth	ene	<1.1	< 0.28	Styren		<2.4	< 0.56
Hexane		<9.9	<2.8	Bromo		<5.8	< 0.56
Chloroform		0.22	0.045	•	l chloride	< 0.14	< 0.028
Ethyl acetate		<20	< 5.6		'rimethylbenzene	<6.9	<1.4
Tetrahydrofuran		49 24	17		rimethylbenzene	<6.9	<1.4
2-Butanone (MEK)		34	11		chlorobenzene	<1.7	<0.28
1,2-Dichloroethane	. ,	<0.11	< 0.028	,	chlorobenzene	< 0.67	< 0.11
1,1,1-Trichloroetha Carbon tetrachlorid		<1.5	<0.28 <0.28		chlorobenzene	<1.7 <2.1	<0.28
	le	<1.8	<0.28 0.60		l'richlorobenzene	<2.1 <0.73	<0.28
Benzene Cyclohexane		1.9 <19	0.60 < 5.6		halene hlorobutadiene	<0.73 <0.6	<0.14 <0.056
Oycionexane		~19	~0.0	ilexac.	moroputatiene	~0.0	~0.000

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl: Not Appl: 11/18/19 Air ug/m3	icable	Client Projec Lab II Data Instru Opera	et: D: File: ament:	ESN NW Manor Market, F&B 09-2770 mb 111811.D GCMS7 MS	I 911208	
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		102	70	130			
~ .		Concent		~			ntration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
Duonono		< 0.69	< 0.4	19D;	ablarannanana	< 0.23	< 0.05
Propene Dichlorodifluorome	thana	<0.69 <0.49	<0.4 <0.1	1,2-DI 1,4-Di	chloropropane	<0.25	<0.05
Chloromethane	unane	<0.49 <2.1	<0.1 <1		Grimethylpentane	<0.56	<0.1 <1
F-114		<2.1 <0.7	<0.1		• •	<4.7 <4.1	<1 <1
Vinyl chloride		<0.7	<0.1 <0.1	Hepta	rl methacrylate	<4.1 <4.1	<1 <1
1,3-Butadiene		<0.28	<0.1	-	odichloromethane	<0.067	<0.01
Butane		<0.022 <2.4	<0.01		oroethene	<0.067 <0.27	< 0.01 < 0.05
Bromomethane		<2.4 <1.6	<0.4		B-Dichloropropene	<0.27	<0.05
Chloroethane		<1.0 <2.6	<0.4 <1		hyl-2-pentanone	<0.45	<0.1 <1
Vinyl bromide		<0.44	<0.1		1,3-Dichloropropene	<0.45	<0.1
Ethanol		< 0.44 < 7.5	<0.1 <4	Toluei		<0.45	<0.1 <5
Acrolein		<0.92	<0.4		Frichloroethane	<0.11	<0.02
Pentane		<0.92 <3	<0.4 <1	1,1,2- 2-Hex		<0.11	<0.02 <1
Trichlorofluoromet	hana	<2.2	<0.4		chloroethene	<6.8	<1
Acetone	nane	<2.2 <4.8	<0.4 <2		mochloromethane	<0.085	<0.01
		<4.8 <8.6	<3.5		bromoethane (EDB)	<0.085	<0.01 <0.01
2-Propanol 1,1-Dichloroethene		<0.0 <0.4	<0.1		bromoethane (EDB)	< 0.46	<0.01 <0.1
trans-1,2-Dichloroe	thone	<0.4 <0.4	<0.1 <0.1		Denzene	< 0.48	<0.1 <0.1
Methylene chloride		<0.4 <87	<0.1 <25		2-Tetrachloroethane	<0.43	<0.1
t-Butyl alcohol (TB		<07 <12	<23 <4	1,1,2,2 Nonar		<0.14 <5.2	<0.02 <1
3-Chloropropene	A)	<1.3	<0.4		pylbenzene	<0.2 <2.5	<0.5
CFC-113		<0.77	<0.4 <0.1		protoluene	< <u>5.2</u>	<0.5 <1
Carbon disulfide		<6.2	<0.1		lbenzene	<2.5	<0.5
Methyl t-butyl ethe	r (MTBE)	<1.8	< 0.5		yltoluene	<2.5	<0.5
Vinyl acetate		<7	<2	m,p-X		<0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle	-	<0.43	< 0.1
cis-1,2-Dichloroeth		< 0.4	< 0.1	Styrer		<0.85	< 0.2
Hexane	one	<3.5	<1	Brome		<2.1	< 0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2	-	Frimethylbenzene	<2.5	< 0.5
Tetrahydrofuran		< 0.29	< 0.1		Frimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)		<2.9	<1		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane		< 0.04	< 0.01		chlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorio		< 0.63	< 0.1		Frichlorobenzene	< 0.74	< 0.1
Benzene		< 0.32	< 0.1		halene	<0.079 j	<0.015 j
Cyclohexane		<6.9	<2		hlorobutadiene	< 0.21	< 0.02
<u>.</u>							

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/19 Date Received: 11/14/19 Project: Manor Market, F&BI 911208

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 911208-05 1/2.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	260	250	4
APH EC9-12 aliphatics	ug/m3	130	120	8
APH EC9-10 aromatics	ug/m3	<70	<70	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	tion bampic		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	23	76	70-130
APH EC9-12 aliphatics	ug/m3	23	115	70-130
APH EC9-10 aromatics	ug/m3	23	114	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/19 Date Received: 11/14/19 Project: Manor Market, F&BI 911208

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sample		Percent	
	Departing	Spike	Recovery	Accontance
Analyte	Reporting Units	Level	LCS	Acceptance Criteria
Propene		5	87	70-130
Dichlorodifluoromethane	ppbv	5 5	87 98	70-130
Chloromethane	ppbv	5 5	98 113	70-130
F-114	ppbv	5 5	93	70-130
	ppbv	5 5	93 90	
Vinyl chloride	ppbv			70-130
1,3-Butadiene	ppbv	5	89 87	70-130
Butane	ppbv	5	87	70-130
Bromomethane	ppbv	5	94	70-130
Chloroethane	ppbv	5	91 90	70-130
Ethanol	ppbv	5	89 84	70-130
Acrolein	ppbv	5	84	70-130
Pentane	ppbv	5	86	70-130
Trichlorofluoromethane	ppbv	5	97	70-130
Acetone	ppbv	5	92	70-130
2-Propanol	ppbv	5	84	70-130
1,1-Dichloroethene	ppbv	5	93	70-130
trans-1,2-Dichloroethene	ppbv	5	90	70-130
Methylene chloride	ppbv	5	94	70-130
t-Butyl alcohol (TBA)	ppbv	5	88	70-130
3-Chloropropene	ppbv	5	85	70-130
CFC-113	ppbv	5	95	70-130
Carbon disulfide	ppbv	5	86	70-130
Methyl t-butyl ether (MTBE)	ppbv	5	89	70-130
Vinyl acetate	ppbv	5	91	70-130
1,1-Dichloroethane	ppbv	5	88	70-130
cis-1,2-Dichloroethene	ppbv	5	90	70-130
Hexane	ppbv	5	86	70-130
Chloroform	ppbv	5	91	70-130
Ethyl acetate	ppbv	5	84	70-130
Tetrahydrofuran	ppbv	5	84	70-130
2-Butanone (MEK)	ppbv	5	94	70-130
1,2-Dichloroethane (EDC)	ppbv	5	93	70-130
1,1,1-Trichloroethane	ppbv	5	92	70-130
Carbon tetrachloride	ppbv	5	97	70-130
Benzene	ppbv	5	85	70-130
Cyclohexane	ppbv	5	88	70-130
1,2-Dichloropropane	ppbv	5	87	70-130
1,4-Dioxane	ppbv	5	92	70-130
2,2,4-Trimethylpentane	ppbv	5	88	70-130
Methyl methacrylate	ppbv	$\overline{5}$	89	70-130
J	L. L	-		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/19 Date Received: 11/14/19 Project: Manor Market, F&BI 911208

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Col	infoi Sample		Percent	
	Reporting	Spike	Recovery	Accontance
Analyta	Units	Level	LCS	Acceptance Criteria
Analyte				
Heptane	ppbv	5	91 01	70-130
Bromodichloromethane	ppbv	5	91 00	70-130
Trichloroethene	ppbv	5	90	70-130
cis-1,3-Dichloropropene	ppbv	5	94	70-130
4-Methyl-2-pentanone	ppbv	5	98	70-130
trans-1,3-Dichloropropene	ppbv	5	99	70-130
Toluene	ppbv	5	93	70-130
1,1,2-Trichloroethane	ppbv	5	96	70-130
2-Hexanone	ppbv	5	98	70-130
Tetrachloroethene	ppbv	5	93	70 - 130
Dibromochloromethane	ppbv	5	95	70-130
1,2-Dibromoethane (EDB)	ppbv	5	95	70-130
Chlorobenzene	ppbv	5	82	70-130
Ethylbenzene	ppbv	5	80	70-130
1,1,2,2-Tetrachloroethane	ppbv	5	71	70-130
Nonane	ppbv	5	75	70-130
Isopropylbenzene	ppbv	5	83	70-130
2-Chlorotoluene	ppbv	5	93	70-130
Propylbenzene	ppbv	5	81	70-130
4-Ethyltoluene	ppbv	5	90	70-130
m,p-Xylene	ppbv	10	82	70-130
o-Xylene	ppbv	5	81	70-130
Styrene	ppbv	5	85	70-130
Bromoform	ppbv	5	85	70-130
Benzyl chloride	ppbv	5	91	70-130
1,3,5-Trimethylbenzene	ppbv	5	82	70-130
1,2,4-Trimethylbenzene	ppbv	5	86	70-130
1,3-Dichlorobenzene	ppbv	5	89	70-130
1,4-Dichlorobenzene	ppbv	5	88	70-130
1,2-Dichlorobenzene	ppbv	5	87	70-130
1,2,4-Trichlorobenzene	ppbv	$\overline{5}$	75	70-130
Naphthalene	ppbv	$\ddot{5}$	74	70-130
Hexachlorobutadiene	ppbv	5	88	70-130
110matiliti of availation	PP~,	0	00	10 100

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

9112	08			SA	MPLI	E CH	AIN	I OF	CUST	ODY	Μ	E	11-	-14	-	19			/
Report To ESN				[SAMPL	ERS (signa	iture)			-					- F	age #	of of	E
Company				-	PROJE							PO	#			(Star RUS	ndard SH	1	
Address				_	Mar	VR	MA	ricet								_		es authorized by	
City, State, ZIP				NOTES: INVOICE TO SAMP					IPLE DISPOSAL Samples										
Phone	_Email			- L			-							_					
SAMPLE INFORMATIO	N					1	- 1			-		ANA	LYS	IS R	EQU	JEST	ED		
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Lev LA=Ind SG=So	orting vel: loor Air oil Gas e One)	Dat Samp	te pled	Vac. ("Hg)	Initial Time	Vac. ("Hg)		TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	Helium		Notes	
Indour-12	01	20541		Q1	/ SG	11/11	19	- 30	0805	+10	1432	×			X				
Interr-12 Interr-2R	02	12561		R	/ SG						1441	X			X				
Amaent - 1R	03	13564		QR /	/ SG			-30	0810	-11	1432	X			X				
55-1R	04	12		IA /	1 50			-30		0	0901	×			x				
55-22	65	13		IA	/ \$G)	1	F	-30		D	0233	¥			8				
				IA	/ SG														
				IA	/ SG										San	ple	s re	ceived at	_•C
				IA	/ SG														

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by	Beccy publi	MEG	11/12/19	\$750
Seattle, WA 98119-2029	Peceled hy.	Sennifer Arnold	FSN	1/12/19	752
Ph. (206) 285-8282	Refinquished by 2D. MK.	Liz Webber-Bn	F?BI	11/14/19	1100
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC					1

May 30, 2018

Becky Dilba Associated Environmental Group, Inc. 605 11th Ave. SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Manor Market Project in Lynnwood, Washington. Probe services were conducted on May 8, 2018. Water samples were analyzed for Gasoline by NWTPH-Gx, VOC's by Method 8260, Total and Dissolved Pb by Method 6020, and soil vapor for VOC's by Method 8260 and Method TO-15 on May 9 - 16, 2018.

The results of the analyses are summarized in the attached table. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to Associated Environmental Group, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Korave

Michael A. Korosec President

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics, MTBE & BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	5/9/2018	nd	nd	nd	nd	nd	nd	110
LCS	5/9/2018	125%	100%	98%	109%	120%	113%	114
LCSD	5/9/2018	86%	101%	95%	114%	122%		112
MW-3	5/9/2018	17	nd	nd	nd	nd	nd	108
MW-4	5/9/2018	790	110	nd	nd	nd	nd	108
MW-1	5/15/2018	14	nd	nd	nd	nd	nd	108
MW-2	5/15/2018	8.3	nd	nd	nd	nd	nd	109
MW-10	5/9/2018	nd	nd	nd	nd	nd	nd	114
MW-6	5/15/2018	nd	300	52	nd	12	830	119
MW-5	5/15/2018	nd	nd	nd	nd	nd	nd	108
MW-5 Duplicate	5/15/2018	nd	nd	nd	nd	nd	nd	104
Reporting Limits		1.0	1.0	1.0	1.0	3.0	100	

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	RL	MB	LCS	LCSD	MW-3	MW-4	MW-1	MW-2
Date analyzed	(ug/L)	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18	05/15/18	05/15/18
Vinyl chloride	0.2	nd	117%	116%	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	91%	93%	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	89%	94%	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	86%	90%	nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		110%	97%	95%	113%	117%	115%	115%
Toluene-d8		108%	98%	97%	109%	112%	106%	107%
4-Bromofluorobenzene		110%	114%	112%	108%	108%	108%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	Analysis	or volatile	Organic C	ompounds	in water by Meth
Analytical Results	•		0	-	-
	RL	MW-10	MW-6	MW-5	MW-5 Duplicate
Date analyzed	(ug/L)	05/09/18	05/15/18	05/15/18	05/15/18
Vinyl chloride	0.2	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd
Surrogate recoveries					
Dibromofluoromethane		107%	105%	120%	123%
Toluene-d8		108%	109%	108%	109%
4-Bromofluorobenzene		114%	119%	108%	104%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)
Number	Analyzed	(ug/L)
Method Blank	5/16/2018	nd
MW-3	5/16/2018	nd
MW-4	5/16/2018	nd
MW-1	5/16/2018	nd
MW-2	5/16/2018	nd
MW-10	5/16/2018	nd
MW-10 Duplicate	5/16/2018	nd
MW-6	5/16/2018	nd
MW-5	5/16/2018	nd
Reporting Limits		2.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Total Metals EPA-6020

	Labo	ratory Control	Sample	Laboratory C	RPD		
	Spiked	Measured	Spike	Spiked	Measured	Spike	
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)
Lead	40.0	42.3	106	40.0	46.6	117	9.63

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Dissolved Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)	
Number	Analyzed	(ug/L)	
Method Blank	5/16/2018	nd	
MW-3	5/16/2018	nd	
MW-4	5/16/2018	2.2	
MW-1	5/16/2018	nd	
MW-1 Duplicate	5/16/2018	nd	
MW-2	5/16/2018	nd	
MW-10	5/16/2018	nd	
MW-6	5/16/2018	nd	
MW-5	5/16/2018	nd	
Reporting Limits		2.0	

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Dissolved Metals EPA-6020

	Laboratory Control Sample		Laboratory Control Sample Duplicate			RPD	
	Spiked	Measured	Spike	Spiked	Measured	Spike	
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)
Lead	40.0	42.3	106	40.0	46.6	117	9.63

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analyses of Volatile Organic Componds in Air by Method 826	0
--	---

Sample ID	Molecular	Reporting	MB	LCS	LCSD	SS1	SS2
Date Sampled	Weight	Limits	05/09/18	05/09/18	05/09/18	05/08/18	05/08/18
Date Analyzed	g	ug/m3	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18
Dichlorodifluoromethane	120.9	10	nd			nd	nd
Chloromethane	50.49	10	nd			nd	nd
Vinyl chloride	62.50	10	nd	117%	116%	nd	nd
Bromomethane	94.95	10	nd			nd	nd
Chloroethane	64.52	10	nd			nd	nd
Trichlorofluoromethane	137.4	10	nd			nd	nd
1,1-Dichloroethene	96.95	10	nd			nd	nd
Methylene chloride	84.93	10	nd			nd	nd
Methyl-t-butyl ether (MTBE)	88.15	10	nd			nd	nd
trans-1,2-Dichloroethene	96.95	10	nd			nd	nd
1,1-Dichloroethane	98.96	10	nd			nd	nd
cis-1,2-Dichloroethene	96.95	10	nd			23	nd
2,2-Dichloropropane	113.0	10	nd			nd	nd
Chloroform	119.4	10	nd	98%	104%	nd	nd
Bromochloromethane	129.4	10	nd			nd	nd
1,1,1-Trichloroethane	133.4	10	nd			91	nd
1,2-Dichloroethane (EDC)	98.96	10	nd			nd	nd
1,1-Dichloropropene	111.0	10	nd			nd	nd
Carbon tetrachloride	153.2	10	nd			nd	nd
Benzene	78.11	10	nd	100%	101%	nd	230
Trichloroethene	131.4	10	nd	89%	94%	81	nd
1,2-Dichloropropane	113.0	10	nd	95%	99%	nd	nd
Dibromomethane	173.8	10	nd			nd	nd
Bromodichloromethane	163.8	10	nd			nd	nd
cis-1,3-Dichloropropene	111.0	10	nd			nd	nd
Toluene	92.13	10	nd	98%	95%	28	1,540
trans-1,3-Dichloropropene	111.0	10	nd			nd	nd
1,1,2-Trichloroethane	133.4	10	nd			nd	nd
1,3-Dichloropropane	113.0	10	nd			nd	nd
Dibromochloromethane	208.3	10	nd			nd	nd
Tetrachloroethene	165.8	10	nd	86%	90%	2,500	nd
1,2-Dibromoethane (EDB)	187.9	10	nd			nd	nd
Chlorobenzene	112.6	10	nd	93%	98%	nd	nd
1,1,1,2-Tetrachloroethane	167.9	10	nd			nd	nd
Ethylbenzene	106.2	10	nd	109%	114%	nd	140
Xylenes	106.2	10	nd	120%	122%	300	1,000
Styrene	104.2	10	nd			nd	nd
Bromoform	252.8	10	nd			nd	nd
1,1,2,2-Tetrachloroethane	167.9	10	nd			nd	nd
Isopropylbenzene	120.2	10	nd			nd	nd
1,2,3-Trichloropropane	147.4	10	nd			nd	nd
Bromobenzene	157.0	10	nd			nd	nd

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analyses of Volatile Organic Componds in Air by Method 8260)
---	---

Sample ID	Molecular	Reporting	MB	LCS	LCSD	SS1	SS2
Date Sampled	Weight	Limits	05/09/18	05/09/18	05/09/18	05/08/18	05/08/18
Date Analyzed	g	ug/m3	05/09/18	05/09/18	05/09/18	05/09/18	05/09/18
n-Propylbenzene	120.2	10	nd			nd	16
2-Chlorotoluene	126.6	10	nd			nd	nd
4-Chlorotoluene	126.6	10	nd			nd	nd
1,3,5-Trimethylbenzene	120.2	10	nd			nd	20
tert-Butylbenzene	134.2	10	nd			nd	nd
1,2,4-Trimethylbenzene	120.2	10	nd			nd	110
sec-Butylbenzene	134.2	10	nd			nd	nd
1,3-Dichlorobenzene	147.0	10	nd			nd	nd
1,4-Dichlorobenzene	147.0	10	nd			nd	nd
Isopropyltoluene	134.2	10	nd			nd	nd
1,2-Dichlorobenzene	147.0	10	nd			nd	nd
n-Butylbenzene	134.2	10	nd			nd	nd
1,2-Dibromo-3-Chloropropane	236.3	10	nd			nd	nd
1,2,4-Trichlorobenzene	181.5	10	nd			nd	nd
Naphthalene	128.2	10	nd			nd	nd
Hexachloro-1,3-butadiene	260.8	10	nd			nd	nd
1,2,3-Trichlorobenzene	181.5	10	nd			nd	nd
Surrogate recoveries							
Dibromofluoromethane			110%	97%	95%	106%	117%
Toluene-d8			108%	98%	97%	110%	115%
4-Bromofluorobenzene			110%	114%	112%	107%	106%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

WORK ORDER #: 1805182

Work Order Summary

CLIENT:	Ms. Jennifer Arnold ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501	BILL TO:	Ms. Jennifer Arnold ESN Northwest 1210 Eastside St SE Suite 200 Olympia, WA 98501
PHONE:	360-459-4670	P.O. #	11-124
FAX:	360-4595-3432	PROJECT #	Manor Market
DATE RECEIVED:	05/10/2018	CONTACT:	Sarah Westerman
DATE COMPLETED:	05/22/2018	continen	Sarah Westerman

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	Indoor 1	Modified TO-15	9.0 "Hg	5 psi
01B	Indoor 1	Modified TO-15	9.0 "Hg	5 psi
02A	Indoor 2	Modified TO-15	11.0 "Hg	5 psi
02B	Indoor 2	Modified TO-15	11.0 "Hg	5 psi
03A	Outdoor	Modified TO-15	9.5 "Hg	5 psi
03B	Outdoor	Modified TO-15	9.5 "Hg	5 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

layes Terd

05/22/18 DATE:

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> > Page 2 of 27

🛟 eurofins

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM ESN Northwest Workorder# 1805182

Three 6 Liter Summa Canister (SIM Certified) samples were received on May 10, 2018. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD
		For SIM: Project specific; default criteria is =30% RSD with<br 10% of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to<br =40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

The Chain of Custody (COC) information for sample Outdoor did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

The Chain of Custody (COC) was not relinquished properly. A signature, date, and time were not provided by the field sampler.

The Chain of Custody was missing method information. EATL proceeded with the analysis as per the Page 3 of 27

original contract or verbal agreement.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- CN See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: Indoor 1

Lab ID#: 1805182-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.19	0.24	1.1	1.3
Ethanol	0.96	29	1.8	54
Acetone	0.96	4.9	2.3	12
2-Propanol	0.96	3.9	2.3	9.6
Hexane	0.19	0.24	0.67	0.86
Heptane	0.19	0.20	0.78	0.84

Client Sample ID: Indoor 1

Lab ID#: 1805182-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.038	0.47	0.19	2.3
Carbon Tetrachloride	0.038	0.076	0.24	0.48
Benzene	0.096	0.20	0.30	0.64
Toluene	0.038	0.70	0.14	2.6
Ethyl Benzene	0.038	0.086	0.16	0.37
m,p-Xylene	0.076	0.30	0.33	1.3
o-Xylene	0.038	0.12	0.16	0.50

Client Sample ID: Indoor 2

Lab ID#: 1805182-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.21	0.21	1.2	1.2
Ethanol	1.1	36	2.0	68
Acetone	1.1	10	2.5	24
2-Propanol	1.1	1.5	2.6	3.6
Methylene Chloride	0.42	0.61	1.5	2.1
Hexane	0.21	0.31	0.75	1.1
2-Butanone (Methyl Ethyl Ketone)	1.1	1.3	3.1	3.9
Heptane	0.21	0.26	0.87	1.1

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: Indoor 2

Lab ID#: 1805182-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.042	0.43	0.21	2.1
Chloroform	0.042	0.046	0.21	0.23
Carbon Tetrachloride	0.042	0.067	0.27	0.42
Benzene	0.11	0.22	0.34	0.69
Toluene	0.042	1.8	0.16	6.7
Tetrachloroethene	0.042	0.14	0.29	0.92
Ethyl Benzene	0.042	0.14	0.18	0.62
m,p-Xylene	0.085	0.60	0.37	2.6
o-Xylene	0.042	0.22	0.18	0.95

Client Sample ID: Outdoor

Lab ID#: 1805182-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.20	0.23	1.1	1.3
Ethanol	0.98	3.4	1.8	6.4
Acetone	0.98	4.9	2.3	12
Hexane	0.20	0.20	0.69	0.70

Client Sample ID: Outdoor

Lab ID#: 1805182-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.039	0.45	0.19	2.2
Carbon Tetrachloride	0.039	0.070	0.25	0.44
Benzene	0.098	0.14	0.31	0.44
Toluene	0.039	0.44	0.15	1.7
Ethyl Benzene	0.039	0.059	0.17	0.26
m,p-Xylene	0.078	0.20	0.34	0.89
o-Xylene	0.039	0.070	0.17	0.30

Client Sample ID: Indoor 1 Lab ID#: 1805182-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051117 1.91		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.19	Not Detected	0.42	Not Detected
Bromomethane	0.96	Not Detected	3.7	Not Detected
Freon 11	0.19	0.24	1.1	1.3
Ethanol	0.96	29	1.8	54
Freon 113	0.19	Not Detected	1.5	Not Detected
Acetone	0.96	4.9	2.3	12
2-Propanol	0.96	3.9	2.3	9.6
Carbon Disulfide	0.96	Not Detected	3.0	Not Detected
3-Chloropropene	0.96	Not Detected	3.0	Not Detected
Methylene Chloride	0.38	Not Detected	1.3	Not Detected
Hexane	0.19	0.24	0.67	0.86
2-Butanone (Methyl Ethyl Ketone)	0.96	Not Detected	2.8	Not Detected
Tetrahydrofuran	0.96	Not Detected	2.8	Not Detected
Cyclohexane	0.19	Not Detected	0.66	Not Detected
2,2,4-Trimethylpentane	0.96	Not Detected	4.5	Not Detected
Heptane	0.19	0.20	0.78	0.84
1,2-Dichloropropane	0.19	Not Detected	0.88	Not Detected
1,4-Dioxane	0.19	Not Detected	0.69	Not Detected
Bromodichloromethane	0.19	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.87	Not Detected
4-Methyl-2-pentanone	0.19	Not Detected	0.78	Not Detected
trans-1,3-Dichloropropene	0.19	Not Detected	0.87	Not Detected
2-Hexanone	0.96	Not Detected	3.9	Not Detected
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
Chlorobenzene	0.19	Not Detected	0.88	Not Detected
Styrene	0.19	Not Detected	0.81	Not Detected
Bromoform	0.19	Not Detected	2.0	Not Detected
Cumene	0.19	Not Detected	0.94	Not Detected
Propylbenzene	0.19	Not Detected	0.94	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.94	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.94	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.94	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.99	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.96	Not Detected	7.1	Not Detected
Hexachlorobutadiene	0.96	Not Detected	10	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	111	70-130

Client Sample ID: Indoor 1 Lab ID#: 1805182-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051117		tion: 5/8/18 2:16:00 PM
Dil. Factor:	1.91		sis: 5/11/18 06:48 PM
Surrogates		%Recovery	
Toluene-d8		105	70-130
4-Bromofluorobenzene		108	70-130

1

Client Sample ID: Indoor 1 Lab ID#: 1805182-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051117sim 1.91		of Collection: 5/8 of Analysis: 5/11/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.038	0.47	0.19	2.3
Freon 114	0.038	Not Detected	0.27	Not Detected
Chloromethane	0.96	Not Detected	2.0	Not Detected
Vinyl Chloride	0.019	Not Detected	0.049	Not Detected
Chloroethane	0.096	Not Detected	0.25	Not Detected
1,1-Dichloroethene	0.019	Not Detected	0.076	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected
Methyl tert-butyl ether	0.19	Not Detected	0.69	Not Detected
1,1-Dichloroethane	0.038	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
Chloroform	0.038	Not Detected	0.19	Not Detected
1,1,1-Trichloroethane	0.038	Not Detected	0.21	Not Detected
Carbon Tetrachloride	0.038	0.076	0.24	0.48
Benzene	0.096	0.20	0.30	0.64
1,2-Dichloroethane	0.038	Not Detected	0.15	Not Detected
Trichloroethene	0.038	Not Detected	0.20	Not Detected
Toluene	0.038	0.70	0.14	2.6
1,1,2-Trichloroethane	0.038	Not Detected	0.21	Not Detected
Tetrachloroethene	0.038	Not Detected	0.26	Not Detected
1,2-Dibromoethane (EDB)	0.038	Not Detected	0.29	Not Detected
Ethyl Benzene	0.038	0.086	0.16	0.37
m,p-Xylene	0.076	0.30	0.33	1.3
o-Xylene	0.038	0.12	0.16	0.50
1,1,2,2-Tetrachloroethane	0.038	Not Detected	0.26	Not Detected
1,4-Dichlorobenzene	0.038	Not Detected	0.23	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: Indoor 2 Lab ID#: 1805182-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051120 2.12		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.21	Not Detected	0.47	Not Detected
Bromomethane	1.1	Not Detected	4.1	Not Detected
Freon 11	0.21	0.21	1.2	1.2
Ethanol	1.1	36	2.0	68
Freon 113	0.21	Not Detected	1.6	Not Detected
Acetone	1.1	10	2.5	24
2-Propanol	1.1	1.5	2.6	3.6
Carbon Disulfide	1.1	Not Detected	3.3	Not Detected
3-Chloropropene	1.1	Not Detected	3.3	Not Detected
Methylene Chloride	0.42	0.61	1.5	2.1
Hexane	0.21	0.31	0.75	1.1
2-Butanone (Methyl Ethyl Ketone)	1.1	1.3	3.1	3.9
Tetrahydrofuran	1.1	Not Detected	3.1	Not Detected
Cyclohexane	0.21	Not Detected	0.73	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.0	Not Detected
Heptane	0.21	0.26	0.87	1.1
1,2-Dichloropropane	0.21	Not Detected	0.98	Not Detected
1.4-Dioxane	0.21	Not Detected	0.76	Not Detected
Bromodichloromethane	0.21	Not Detected	1.4	Not Detected
cis-1,3-Dichloropropene	0.21	Not Detected	0.96	Not Detected
4-Methyl-2-pentanone	0.21	Not Detected	0.87	Not Detected
trans-1,3-Dichloropropene	0.21	Not Detected	0.96	Not Detected
2-Hexanone	1.1	Not Detected	4.3	Not Detected
Dibromochloromethane	0.21	Not Detected	1.8	Not Detected
Chlorobenzene	0.21	Not Detected	0.98	Not Detected
Styrene	0.21	Not Detected	0.90	Not Detected
Bromoform	0.21	Not Detected	2.2	Not Detected
Cumene	0.21	Not Detected	1.0	Not Detected
Propylbenzene	0.21	Not Detected	1.0	Not Detected
4-Ethyltoluene	0.21	Not Detected	1.0	Not Detected
1,3,5-Trimethylbenzene	0.21	Not Detected	1.0	Not Detected
1,2,4-Trimethylbenzene	0.21	Not Detected	1.0	Not Detected
1,3-Dichlorobenzene	0.21	Not Detected	1.0	Not Detected
alpha-Chlorotoluene	0.21	Not Detected	1.5	Not Detected
1,2-Dichlorobenzene	0.21	Not Detected	1.1	Not Detected
	1.1	Not Detected	7.9	Not Detected
1,2,4-Trichlorobenzene				
Hexachlorobutadiene	1.1	Not Detected	11	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130

Client Sample ID: Indoor 2 Lab ID#: 1805182-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051120		tion: 5/8/18 3:05:00 PM
Dil. Factor:	2.12		sis: 5/11/18 09:15 PM
Surrogates		%Recovery	
Toluene-d8		98	70-130
4-Bromofluorobenzene		102	70-130

٦

Client Sample ID: Indoor 2 Lab ID#: 1805182-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051120sim 2.12		of Collection: 5/8 of Analysis: 5/11/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.042	0.43	0.21	2.1
Freon 114	0.042	Not Detected	0.30	Not Detected
Chloromethane	1.1	Not Detected	2.2	Not Detected
Vinyl Chloride	0.021	Not Detected	0.054	Not Detected
Chloroethane	0.11	Not Detected	0.28	Not Detected
1,1-Dichloroethene	0.021	Not Detected	0.084	Not Detected
trans-1,2-Dichloroethene	0.21	Not Detected	0.84	Not Detected
Methyl tert-butyl ether	0.21	Not Detected	0.76	Not Detected
1,1-Dichloroethane	0.042	Not Detected	0.17	Not Detected
cis-1,2-Dichloroethene	0.042	Not Detected	0.17	Not Detected
Chloroform	0.042	0.046	0.21	0.23
1,1,1-Trichloroethane	0.042	Not Detected	0.23	Not Detected
Carbon Tetrachloride	0.042	0.067	0.27	0.42
Benzene	0.11	0.22	0.34	0.69
1,2-Dichloroethane	0.042	Not Detected	0.17	Not Detected
Trichloroethene	0.042	Not Detected	0.23	Not Detected
Toluene	0.042	1.8	0.16	6.7
1,1,2-Trichloroethane	0.042	Not Detected	0.23	Not Detected
Tetrachloroethene	0.042	0.14	0.29	0.92
1,2-Dibromoethane (EDB)	0.042	Not Detected	0.32	Not Detected
Ethyl Benzene	0.042	0.14	0.18	0.62
m,p-Xylene	0.085	0.60	0.37	2.6
o-Xylene	0.042	0.22	0.18	0.95
1,1,2,2-Tetrachloroethane	0.042	Not Detected	0.29	Not Detected
1,4-Dichlorobenzene	0.042	Not Detected	0.25	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: Outdoor Lab ID#: 1805182-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051118 1.96		of Collection: 5/8 of Analysis: 5/11	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.20	Not Detected	0.43	Not Detected
Bromomethane	0.98	Not Detected	3.8	Not Detected
Freon 11	0.20	0.23	1.1	1.3
Ethanol	0.98	3.4	1.8	6.4
Freon 113	0.20	Not Detected	1.5	Not Detected
Acetone	0.98	4.9	2.3	12
2-Propanol	0.98	Not Detected	2.4	Not Detected
Carbon Disulfide	0.98	Not Detected	3.0	Not Detected
3-Chloropropene	0.98	Not Detected	3.1	Not Detected
Methylene Chloride	0.39	Not Detected	1.4	Not Detected
Hexane	0.20	0.20	0.69	0.70
2-Butanone (Methyl Ethyl Ketone)	0.98	Not Detected	2.9	Not Detected
Tetrahydrofuran	0.98	Not Detected	2.9	Not Detected
Cyclohexane	0.20	Not Detected	0.67	Not Detected
2,2,4-Trimethylpentane	0.98	Not Detected	4.6	Not Detected
Heptane	0.20	Not Detected	0.80	Not Detected
1,2-Dichloropropane	0.20	Not Detected	0.90	Not Detected
1,4-Dioxane	0.20	Not Detected	0.71	Not Detected
Bromodichloromethane	0.20	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.20	Not Detected	0.89	Not Detected
4-Methyl-2-pentanone	0.20	Not Detected	0.80	Not Detected
trans-1,3-Dichloropropene	0.20	Not Detected	0.89	Not Detected
2-Hexanone	0.98	Not Detected	4.0	Not Detected
Dibromochloromethane	0.20	Not Detected	1.7	Not Detected
Chlorobenzene	0.20	Not Detected	0.90	Not Detected
Styrene	0.20	Not Detected	0.83	Not Detected
Bromoform	0.20	Not Detected	2.0	Not Detected
Cumene	0.20	Not Detected	0.96	Not Detected
Propylbenzene	0.20	Not Detected	0.96	Not Detected
4-Ethyltoluene	0.20	Not Detected	0.96	Not Detected
1,3,5-Trimethylbenzene	0.20	Not Detected	0.96	Not Detected
· · · · ·	0.20	Not Detected	0.96	Not Detected
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
	0.20	Not Detected	1.2	Not Detected
alpha-Chlorotoluene 1,2-Dichlorobenzene	0.20	Not Detected	1.0	Not Detected
·	0.98		7.3	
1,2,4-Trichlorobenzene		Not Detected		Not Detected
Hexachlorobutadiene	0.98	Not Detected	10	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130

Client Sample ID: Outdoor Lab ID#: 1805182-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:					
Surrogates		%Recovery			
Toluene-d8 4-Bromofluorobenzene		99 109	70-130 70-130		

٦

Client Sample ID: Outdoor Lab ID#: 1805182-03B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051118sim 1.96		of Collection: 5/8 of Analysis: 5/11	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.039	0.45	0.19	2.2
Freon 114	0.039	Not Detected	0.27	Not Detected
Chloromethane	0.98	Not Detected	2.0	Not Detected
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected
Chloroethane	0.098	Not Detected	0.26	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.078	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.78	Not Detected
Methyl tert-butyl ether	0.20	Not Detected	0.71	Not Detected
1,1-Dichloroethane	0.039	Not Detected	0.16	Not Detected
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
Chloroform	0.039	Not Detected	0.19	Not Detected
1,1,1-Trichloroethane	0.039	Not Detected	0.21	Not Detected
Carbon Tetrachloride	0.039	0.070	0.25	0.44
Benzene	0.098	0.14	0.31	0.44
1,2-Dichloroethane	0.039	Not Detected	0.16	Not Detected
Trichloroethene	0.039	Not Detected	0.21	Not Detected
Toluene	0.039	0.44	0.15	1.7
1,1,2-Trichloroethane	0.039	Not Detected	0.21	Not Detected
Tetrachloroethene	0.039	Not Detected	0.26	Not Detected
1,2-Dibromoethane (EDB)	0.039	Not Detected	0.30	Not Detected
Ethyl Benzene	0.039	0.059	0.17	0.26
m,p-Xylene	0.078	0.20	0.34	0.89
o-Xylene	0.039	0.070	0.17	0.30
1,1,2,2-Tetrachloroethane	0.039	Not Detected	0.27	Not Detected
1,4-Dichlorobenzene	0.039	Not Detected	0.24	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1805182-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	v051106		of Collection: NA	
Dil. Factor:	1.00 Date of Ana		of Analysis: 5/11	′18 11:09 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,3-Butadiene	0.10	Not Detected	0.22	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	0.50	Not Detected	1.6	Not Detected
Methylene Chloride	0.20	Not Detected	0.69	Not Detected
Hexane	0.10	Not Detected	0.35	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Cyclohexane	0.10	Not Detected	0.34	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Heptane	0.10	Not Detected	0.41	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
1,4-Dioxane	0.10	Not Detected	0.36	Not Detected
Bromodichloromethane	0.10	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
4-Methyl-2-pentanone	0.10	Not Detected	0.41	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
2-Hexanone	0.50	Not Detected	2.0	Not Detected
Dibromochloromethane	0.10	Not Detected	0.85	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Styrene	0.10	Not Detected	0.42	Not Detected
Bromoform	0.10	Not Detected	1.0	Not Detected
Cumene	0.10	Not Detected	0.49	Not Detected
Propylbenzene	0.10	Not Detected	0.49	Not Detected
4-Ethyltoluene	0.10	Not Detected	0.49	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected	3.7	Not Detected
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130

Client Sample ID: Lab Blank Lab ID#: 1805182-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051106	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 5/11/18 11:09 AM
Surrogates		%Recovery	Method Limits
Toluene-d8		100	70-130
4-Bromofluorobenzene		104	70-130

٦

Client Sample ID: Lab Blank Lab ID#: 1805182-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051106sim 1.00		of Collection: NA of Analysis: 5/11/	/18 11:09 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.020	Not Detected	0.099	Not Detected
Freon 114	0.020	Not Detected	0.14	Not Detected
Chloromethane	0.50	Not Detected	1.0	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Chloroethane	0.050	Not Detected	0.13	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Carbon Tetrachloride	0.020	Not Detected	0.12	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
1,2-Dichloroethane	0.020	Not Detected	0.081	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
1,1,2-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
1,2-Dibromoethane (EDB)	0.020	Not Detected	0.15	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
1,1,2,2-Tetrachloroethane	0.020	Not Detected	0.14	Not Detected
1,4-Dichlorobenzene	0.020	Not Detected	0.12	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: CCV Lab ID#: 1805182-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	v051102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/11/18 08:45 AM
Compound		%Recovery
1,3-Butadiene		96
Bromomethane		114
Freon 11		100
Ethanol		114
Freon 113		93
Acetone		98
2-Propanol		109
Carbon Disulfide		101
3-Chloropropene		113
Methylene Chloride		91
Hexane		95
2-Butanone (Methyl Ethyl Ketone)		110
Tetrahydrofuran		101
Cyclohexane		93
2,2,4-Trimethylpentane		96
Heptane		96
1,2-Dichloropropane		93
1,4-Dioxane		95
Bromodichloromethane		93
cis-1,3-Dichloropropene		101
4-Methyl-2-pentanone		108
trans-1,3-Dichloropropene		96
2-Hexanone		100
Dibromochloromethane		92
Chlorobenzene		90
Styrene		88
Bromoform		95
Cumene		84
Propylbenzene		83
4-Ethyltoluene		85
1,3,5-Trimethylbenzene		85
1,2,4-Trimethylbenzene		87
1,3-Dichlorobenzene		83
alpha-Chlorotoluene		88
1,2-Dichlorobenzene		83
1,2,4-Trichlorobenzene		107
		107

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	108	70-130

Client Sample ID: CCV Lab ID#: 1805182-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051102	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 5/11/18 08:45 AM
Surrogates	%Recovery		Method Limits
Toluene-d8		100	70-130
4-Bromofluorobenzene		91	70-130

٦

Client Sample ID: CCV Lab ID#: 1805182-05B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	v051102sim 1.00	Date of Collection: NA Date of Analysis: 5/11/18 08:45 AM
Compound		%Recovery
Freon 12		90
Freon 114		88
Chloromethane		85
Vinyl Chloride		86
Chloroethane		94
1,1-Dichloroethene		88
trans-1,2-Dichloroethene		88
Methyl tert-butyl ether		91
1,1-Dichloroethane		91
cis-1,2-Dichloroethene		90
Chloroform		91
1,1,1-Trichloroethane		91
Carbon Tetrachloride		99
Benzene		85
1,2-Dichloroethane		97
Trichloroethene		84
Toluene		88
1,1,2-Trichloroethane		86
Tetrachloroethene		84
1,2-Dibromoethane (EDB)		90
Ethyl Benzene		86
m,p-Xylene		81
o-Xylene		82
1,1,2,2-Tetrachloroethane		84
1,4-Dichlorobenzene		74

Surrogatos	%Recovery	Method Limits
Surrogates	%Recovery	Lillins
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: LCS Lab ID#: 1805182-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:		Date of Collection: NA Date of Analysis: 5/11/18 09:21 AM				
		Method				
Compound	%Recovery	Limits				
1,3-Butadiene	91	70-130				
Bromomethane	116	70-130				
Freon 11	96	70-130				
Ethanol	115	70-130				
Freon 113	90	70-130				
Acetone	96	70-130				
2-Propanol	107	70-130				
Carbon Disulfide	100	70-130				
3-Chloropropene	113	70-130				
Methylene Chloride	87	70-130				
Hexane	94	70-130				
2-Butanone (Methyl Ethyl Ketone)	109	70-130				
Tetrahydrofuran	102	70-130				
Cyclohexane	91	70-130				
2,2,4-Trimethylpentane	92	70-130				
Heptane	102	70-130				
1,2-Dichloropropane	96	70-130				
1,4-Dioxane	97	70-130				
Bromodichloromethane	99	70-130				
cis-1,3-Dichloropropene	111	70-130				
4-Methyl-2-pentanone	114	70-130				
trans-1,3-Dichloropropene	102	70-130				
2-Hexanone	110	70-130				
Dibromochloromethane	101	70-130				
Chlorobenzene	97	70-130				
Styrene	92	70-130				
Bromoform	108	70-130				
Cumene	90	70-130				
Propylbenzene	90	70-130				
4-Ethyltoluene	91	70-130				
1,3,5-Trimethylbenzene	90	70-130				
1,2,4-Trimethylbenzene	94	70-130				
1,3-Dichlorobenzene	86	70-130				
alpha-Chlorotoluene	106	70-130				
1,2-Dichlorobenzene	85	70-130				
1,2,4-Trichlorobenzene	104	70-130				
Hexachlorobutadiene	91	70-130				

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130

Client Sample ID: LCS Lab ID#: 1805182-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v051103 1.00	Date of Collection: NA Date of Analysis: 5/11/18 09:21 /				
Surrogates		%Recovery	Method Limits			
Toluene-d8 4-Bromofluorobenzene		99 98	70-130 70-130			

Client Sample ID: LCSD Lab ID#: 1805182-06AA MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v051104 1.00	Date of Collec Date of Analys	tion: NA sis: 5/11/18 09:58 AM		
			Method		
Compound		%Recovery	Limits		
1,3-Butadiene		97	70-130		
Bromomethane		125	70-130		
Freon 11		101	70-130		
Ethanol		126	70-130		
Freon 113		95	70-130		
Acetone		101	70-130		
2-Propanol		122	70-130		
Carbon Disulfide		109	70-130		
3-Chloropropene		115	70-130		
Methylene Chloride		92	70-130		
Hexane		100	70-130		
2-Butanone (Methyl Ethyl Ketone)		116	70-130		
Tetrahydrofuran		106	70-130		
Cyclohexane		98	70-130		
2,2,4-Trimethylpentane		96	70-130		
Heptane		104	70-130		
1,2-Dichloropropane		94	70-130		
1,4-Dioxane		100	70-130		
Bromodichloromethane		101	70-130		
cis-1,3-Dichloropropene		112	70-130		
4-Methyl-2-pentanone		115	70-130		
trans-1,3-Dichloropropene		102	70-130		
2-Hexanone		113	70-130		
Dibromochloromethane		102	70-130		
Chlorobenzene		99	70-130		
Styrene		99	70-130		
Bromoform		109	70-130		
Cumene		91	70-130		
Propylbenzene		93	70-130		
4-Ethyltoluene		95	70-130		
1,3,5-Trimethylbenzene		91	70-130		
1,2,4-Trimethylbenzene		92	70-130		
1,3-Dichlorobenzene		91	70-130		
alpha-Chlorotoluene		110	70-130		
1,2-Dichlorobenzene		91	70-130		
1,2,4-Trichlorobenzene		104	70-130		
Hexachlorobutadiene		91	70-130		

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130

Client Sample ID: LCSD Lab ID#: 1805182-06AA MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v051104	Date of Collection: NA				
Dil. Factor:	1.00	Date of Analysis: 5/11/18 09:58				
Surrogates		%Recovery	Method Limits			
Toluene-d8		98	70-130			
4-Bromofluorobenzene		98	70-130			

Client Sample ID: LCS Lab ID#: 1805182-06B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051103sim 1.00	Date of Collection: NA Date of Analysis: 5/11/18 09:21 AM				
Compound		%Recovery	Method Limits			
Freon 12		94	70-130			
Freon 114		92	70-130			
Chloromethane		91	70-130			
Vinyl Chloride		93	70-130			
Chloroethane		100	70-130			
1,1-Dichloroethene		90	70-130			
trans-1,2-Dichloroethene		100	70-130			
Methyl tert-butyl ether		94	70-130			
1,1-Dichloroethane		94	70-130			
cis-1,2-Dichloroethene		86	70-130			
Chloroform		93	70-130			
1,1,1-Trichloroethane		94	70-130			
Carbon Tetrachloride		111	60-140			
Benzene		88	70-130			
1,2-Dichloroethane		99	70-130			
Trichloroethene		89	70-130			
Toluene		92	70-130			
1,1,2-Trichloroethane		92	70-130			
Tetrachloroethene		88	70-130			
1,2-Dibromoethane (EDB)		96	70-130			
Ethyl Benzene		92	70-130			
m,p-Xylene		86	70-130			
o-Xylene		88	70-130			
1,1,2,2-Tetrachloroethane		89	70-130			
1,4-Dichlorobenzene		78	70-130			

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: LCSD Lab ID#: 1805182-06BB MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	v051104sim 1.00	Date of Collection: NA Date of Analysis: 5/11/18 09:58 AM				
Compound		%Recovery	Method Limits			
Freon 12		94	70-130			
Freon 114		92	70-130			
Chloromethane		91	70-130			
Vinyl Chloride		93	70-130			
Chloroethane		103	70-130			
1,1-Dichloroethene		90	70-130			
trans-1,2-Dichloroethene		100	70-130			
Methyl tert-butyl ether		95	70-130			
1,1-Dichloroethane		94	70-130			
cis-1,2-Dichloroethene		86	70-130			
Chloroform		94	70-130			
1,1,1-Trichloroethane		94	70-130			
Carbon Tetrachloride		112	60-140			
Benzene		89	70-130			
1,2-Dichloroethane		100	70-130			
Trichloroethene		90	70-130			
Toluene		94	70-130			
1,1,2-Trichloroethane		90	70-130			
Tetrachloroethene		87	70-130			
1,2-Dibromoethane (EDB)		95	70-130			
Ethyl Benzene		92	70-130			
m,p-Xylene		89	70-130			
o-Xylene		92	70-130			
1,1,2,2-Tetrachloroethane		87	70-130			
1,4-Dichlorobenzene		81	70-130			

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	96	70-130

CLIENT:	es Netw	ork											6					CUSTO			
									-		_							PAGE		1	
ADDRESS: 405	3 111	n A	r se	- Sule	201	G	0	102				PROJ	ECT N	AME	: V	Na.	non	MARIE	cet		
PHONE: 300 3	52.4	183	5	FAX:														th st sc	the second se	nue	Lo.
CLIENT PROJECT #				PROJEC			2	0	100		-	LUCA	HON			1 0			DATE OF	10	
CLIENT PROJECT #				T					100		_	COLL	ECTO	R: <u>*</u>	Di Di	124	A	· sinal +2	COLLECTION:	5/8	K
Sample Number	Depth	Time	Sample Type	Container Type	ANALYSES ANALYSES	Diesel	Sasolin Sasolin	2 VOC 9765	sci senin	019210 019210	10 80°	22-21-10-20 22-51-10-20 22-51-10-20 22-51-10-20 20-20-20-20 20-20-20-20-20 20-20-20-20-20-20-20-20-20-20-20-20-20-2	ARE ALS ME	Aspest	Print 91 M	Suite suit	a sale	ALL REAL		Total Number	aboratory
I. SSI	-	0955	5 Vap	Tezian											ÍÍ	Í		48 he			1
2. 552	-	1055		Tedian														48 m	_		\uparrow
3. Mar 11.	-	1237	H20	word edy																	+
4. MW-3	-	1155	(1		xy	•						X			X					+
5. Mert 4 5. Mer-1	1	1340				X	A						X			X				-	+
5. Meu-1	-	1440				XY	4						¥			¥			The second second		+
. mw-2	-	1440				XX	:						×			X					+
3. mw-6	-	1135				*>	0						×			×	X				┢
1. mw-b	-	1340				VY							X			X	-			-	+
10. mw-5	-	1240				xx							x			X					+
11.						ŕ															+
L 2 .										1						-					+
L3.																-					+
L4.											-				++	-					+
15.											-										+
16.											-				+-+	-				_	+
17.											-				┼╌┼╴	-				_	+
18.											-				+-+	-					┾
RELINQUISHED BY (Signatu	ure)	DAT	TE/TIME	RECE	IVED BY (Si	ignatu	e)		DATE/TI	ME	-	L	SAP	VIPLE F	ECEIPT		L	LABORATORY	NOTES		
R 5/9/15	3			1	annad	10	115	-0	5-9-	-18		AL NUME	ER OF C	ONTA	NERS				NOTES.		
RELINQUISHED BY (Signati	ure)	DAT	TE/TIME	RECE	IVED BY (SI	gnatu		a	DATE /T	NAF					//N/NA	_					
			,	IYECE		griatul	e)		DATE/TI	IVIE		LS INTACT						_		4	$ \leq $
											NOT	the state of the s		ND./CO			L	_		K	
1210 Eastside Street SE, Su	ite 200	100					171	Pho	ne: 360-	459-4	_							Turn Around T	Website: wv		5 DA

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

A sealest and D assolts	Analysis of	volatile Ol	game Com	pounds in v	valer by h
Analytical Results	RL	MB	LCS	LCSD	MW-11
Date analyzed	(ug/L)	05/09/18	05/09/18	05/09/18	05/09/18
Vinyl chloride	0.2	nd	117%	116%	nd
1,1-Dichloroethene	0.2	nd	91%	93%	nd
Trichloroethene (TCE)	1.0	nd	89%	94%	nd
Tetrachloroethene (PCE)	1.0	nd	86%	90%	nd
Surrogate recoveries					
Dibromofluoromethane		110%	97%	95%	110%
Toluene-d8		108%	98%	97%	108%
4-Bromofluorobenzene		110%	114%	112%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT MANOR MARKET PROJECT #11-124 Lynnwood, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics, MTBE & BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	5/9/2018	nd	nd	nd	nd	nd	nd	110
LCS	5/9/2018	125%	100%	98%	109%	120%	113%	114
LCSD	5/9/2018	86%	101%	95%	114%	122%		112
MW-11	5/9/2018	6.4	nd	nd	nd	nd	nd	109
Reporting Limits		1.0	1.0	1.0	1.0	3.0	100	

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Manor Market

Facility/Site Address: 3609 164th Street SW, Lynnwood, WA

Facility/Site No: 77492944

VCP Project No.: N/A

Title: Senior Project Manager

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name [.]	Charles	Swift
name.	Unanco	Own

Organization: Associated Environmental Group

Mailing address: 2633 Parkmont Lane SW

City: Olympia		Sta	te: WA	Zip code: 98502
Phone: (360) 352-9835	Fax: (360) 352-8164		E-mail: cswiff	@aegwa.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS						
A. Exclusion	from further evaluation.					
1. Does the Site qualify for an exclusion from further evaluation?						
🖂 Y	es If you answered " YES ," then answer Question 2 .					
□ N Unkr	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.					
2. What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.					
Point of Co	ompliance: WAC 173-340-7491(1)(a)					
	All soil contamination is, or will be,* at least 15 feet below the surface.					
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.					
Barriers to	Exposure: WAC 173-340-7491(1)(b)					
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.					
Undevelop	ped Land: WAC 173-340-7491(1)(c)					
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.					
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.					
Background Concentrations: WAC 173-340-7491(1)(d)						
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.					
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife. 						

B	3. Simplified evaluation.					
1.	1. Does the Site qualify for a simplified evaluation?					
	🗌 Ye	es If you answered "YES," then answer Question 2 below.				
	🗌 No Unkno	o or wn If you answered " NO " or " UNKNOWN ," then skip to Step 3C of this form.				
2.	Did you cor	nduct a simplified evaluation?				
	🗌 Ye	es If you answered "YES," then answer Question 3 below.				
	🗌 No	If you answered " NO ," then skip to Step 3C of this form.				
3.	Was further	r evaluation necessary?				
	🗌 Ye	es If you answered "YES," then answer Question 4 below.				
	🗌 No	If you answered " NO, " then answer Question 5 below.				
4.	lf further ev	aluation was necessary, what did you do?				
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.				
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.				
5.	If no further to Step 4 of	r evaluation was necessary, what was the reason? Check all that apply. Then skip this form.				
	Exposure A	nalysis: WAC 173-340-7492(2)(a)				
		Area of soil contamination at the Site is not more than 350 square feet.				
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.				
	Pathway Analysis: WAC 173-340-7492(2)(b)					
		No potential exposure pathways from soil contamination to ecological receptors.				
	Contaminar	nt Analysis: WAC 173-340-7492(2)(c)				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.				

C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). I. Was there a problem? See WAC 173-340-7493(2). I. Was there a problem? See WAC 173-340-7493(2). No if you answered "NO," then identify the reason here and then skip to Question 5 below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Uiterature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: No	_					
Yes If you answered "YES," then answer Question 2 below. Invo If you answered "NO," then identify the reason here and then skip to Question 5 below: Invo No issues were identified during the problem formulation step. Invo While issues were identified during the problem formulation step. Invo While issues were identified during the problem formulation step. Invo: While issues were identified during the problem formulation step. Invo: While issues were identified during the problem formulation step. Invo: While issues were identified during the problem formulation step. Invo: While issues were identified during the problem formulation step. Invo: Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Invo: Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Itterature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If	C.	the problem, and (2) selecting the methods for addressing the identified problem. Both steps				
Image: No If you answered "NO," then identify the reason here and then skip to Question 5 below: Image: No No issues were identified during the problem formulation step. Image: No While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	1.	Was there a problem? See WAC 173-340-7493(2).				
 No below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Yes If you answered "YES," then answer Question 2 below.				
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:						
cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		No issues were identified during the problem formulation step.				
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		-				
Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:	2.	What did you do to resolve the problem? See WAC 173-340-7493(3).				
 address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 						
Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: Vhat was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. S. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:						
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	3.					
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Literature surveys.				
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Soil bioassays.				
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Wildlife exposure model.				
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Biomarkers.				
 Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Site-specific field studies.				
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Weight of evidence.				
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Other methods approved by Ecology. If so, please specify:				
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 	4.	What was the result of those evaluations?				
 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps: 		Confirmed there was no problem.				
problem resolution steps? Yes If so, please identify the Ecology staff who approved those steps:		Confirmed there was a problem and established site-specific cleanup levels.				
	5.					
□ No		Yes If so, please identify the Ecology staff who approved those steps:				
		□ No				

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.