

Limited Groundwater Sampling Project

Project Location: 18420 68th Avenue S. Kent, Washington

October 1, 2003

Prepared for:

Coatings Unlimited Greg Snider 18420 68th Avenue S. #110 Kent, Washington 98032

Prepared by:

Environmental Management Services, LLC 652 8th Avenue Fox Island, Washington 98333 (253) 921-7059 www.emsgrouplic.com

Environmental Management Services, LLC

TABLE OF CONTENTS

1.0	INTRODUCTION	2
1.1	SCOPE OF SERVICES	2
2.0	TOPOGRAPHY / SURFACE HYDROLOGY	2
3.0	GEOLOGY AND GROUNDWATER HYDROLOGY	3
4.0	INVESTIGATION FIELD ACTIVITIES AND OBSERVATIONS	3
4.1	SOIL BORING AND SAMPLING	
4.2	AREA 1 – FORMER UST AREA	
4.3	AREA 2 – SOUTHERN PROPERTY LINE	4
5.0	CONCLUSIONS	5
6.0	LIMITATIONS	5

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Sample Location Map – Area 1
Figure 4	Sample Location Map – Area 2
Figure 5	Facility Aerial Photograph

PROJECT PHOTOGRAPHS

Photograph 01	Direct push drilling – Area 1
Photograph 02	Split spoon sampling - Area 1
Photograph 03	Groundwater Sampling - Area 1
Photograph 04	Area 2 sampling location
Photograph 05	Direct push drilling – Area 2
Photograph 06	Groundwater Sampling – Area 2

LIST OF TABLES

.1

Table 1	Area 1 – Former UST Area Laboratory Analytical Results
Table 2	Area 2 – Southern Property Boundary Area Laboratory Analytical Results

1

LIST OF APPENDICES

Attachment A	Laboratory Reports
Attachment B	Boring Logs

.

Environmental Management Services, LLC.

1.0 Introduction

Environmental Management Services, LLC, (EMS) is pleased to provide our report of Limited Groundwater Sampling conducted at the Coatings Unlimited site in Kent, Washington. The site is shown relative to surrounding physical features in Figure 1. Our services were performed in general accordance with our proposals dated September 10, 2003 and September 24, 2003. John Wallace of Key Bank and Greg Snider of Coatings Unlimited authorized our services.

We understand that Mr. Snider is intending to purchase the site. As a portion of the due diligence prior to purchase, Mr. Snider authorized a Phase I Environmental Site Assessment (ESA) conducted by Environmental Associates, Inc. (EA). EA concluded that the site has not received a "No Further Action" determination from the Washington State Department of Ecology (Ecology) for the underground storage tanks removed from the property in 1987 and subsequent soil remediation in the area conducted in 1991. Additionally, EA stated that the extent of ground water contamination including vinyl chloride discovered in 2000 along the southern property line has not been characterized. The locations of these two areas are depicted in Figure 2. Further, a thin layer of sandblast grit containing cadmium and lead remains beneath a portion of one of the buildings following remediation in 1991.

The Phase I ESA was subsequently reviewed by LSI Adapt, Inc. In their review dated August 25, 2003, LSI Adapt generally agreed with the conclusions presented in Environmental Associates' report dated August 8, 2003. LSI Adapt recommended evaluating existing ground water conditions in the areas of the former underground storage tanks and of the vinyl chloride discovery along the southern property line.

1.1 Scope of Services

EMS conducted the following tasks in general accordance with our proposals dated September 10, 2003 and September 24, 2003.

- 1. Review reports of previous environmental activities on the subject property.
- Complete sampling of groundwater in Area 1 (former underground storage tank location) and Area 2 (area of identified vinyl chloride concentrations in ground water on southern adjacent property).
- 3. Provide for the chemical analysis of site specific contaminates of concern on selected samples.
- 4. Complete a sampling report detailing sampling activities and laboratory findings.
- 5. Complete and submit an application for the Voluntary Cleanup Program (VCP) to Ecology for a determination of "No Further Action" for the site.

2.0 Topography / Surface Hydrology

The Site (Figure 1) is located approximately 25 feet above mean sea level. No surface water features are located within the immediate vicinity of the Site. The Green River is located approximately 1/4 mile northwest of the site across 68th Avenue S.

3.0 Geology And Groundwater Hydrology

The Site lies within the Puget Sound Lowland, a north-trending topographic and structural trough between the Cascade Range to the east and the Olympic Mountains to the west. The trough formed a natural passageway for a succession of glacial advances from British Columbia during the Pleistocene Period. The most recent glacial advance, the Vashon Stade of the Fraser Glaciation, ended between 13,000 and 15,000 years ago. he soils in the Lowland have developed from glacial drift and associated lacustrine, marine, and alluvial deposits.

The subject site is underlain by silt, silty sand and sand deposited by the Green River, located approximately ¼ mile west of the site. These deposits tend to be laterally discontinuous and grade vertically in texture.

Shallow ground water in the area of the site occurs under unconfined (water table) conditions and is likely influenced by the proximity of the Green River. Ground water was generally encountered in the borings at depths of about 12 feet below ground surface. Recharge to the borings was generally slow. The inferred direction of ground water flow is to the northwest based on topography and the position of the Green River relative to the subject site. It is likely that local ground water flow directions may differ from this inferred direction due to buried channels within the river sediments.

4.0 Investigation Field Activities and Observations

Previous reports provided by Coatings Unlimited and Key Bank were reviewed as part of this project. These reports were titled:

- Final Report, Soil Analysis Project, 18250 68the Avenue S, Kent, Washington dated March 23, 2000 by Terra Solve.
- Phase I Environmental Site Assessment, Industrial Park, 18250 18430 68th Avenue South, Kent, Washington dated August 8, 2003 by Environmental Associates.
- Third Party Peer Review, File No. Key W-030324-1735-1, Phase I Environmental Site Assessment Report and Settlement Agreement, Industrial Park, Coatings, Inc, 18250 – 18430 – 68the Avenue South, Kent, Washington' dated August 25, 2003 by LSI Adapt Inc.

Information provided in these reports was used to develop the scope of work for our limited study of the site.

4.1 Soil Boring and Sampling

We conducted soil and ground water sampling on September 22 and 29, 2003 at the Site using StrataProbe direct push drilling and sampling techniques. StrataProbe sampling conducted on September 22 was performed by Holt Drilling. StrataProbe sampling conducted on September 29 was performed by ESN Northwest using a limited access rig. The limited access rig was utilized to access areas along the southern property boundary that could not be accessed by Holt's StrataProbe rig and to further characterize the extent of contamination in ground water onto the subject property.

4.2 Area 1 – Former Underground Storage Tank Area

Five StrataProbe borings were completed in the area of the former underground storage tank site on September 22, 2003. The approximate locations of the borings are shown in Figure 3. Soil samples recovered from the borings were screened in the field for the presence of petroleum hydrocarbons. Borings B4 & B5 encountered refusal on buried concrete at shallow depths (4 to 6 feet bgs) and were subsequently terminated. Logs of the borings are contained in Attachment A.

One soil sample (B3) and one ground water sample (B1) from Area 1 were submitted for analysis of gasoline-, diesel- and oil-range hydrocarbons using Ecology Method NWTPH-G and NWTPH-Dx, and for the presence of volatile organic compounds specifically benzene, ethylbenzene, toluene and xylenes (BETX) using EPA Method 8021B. Chemical analyses were performed by Libby Environmental, LLC of Olympia, Washington.

Analytical results for the soil and ground water samples from Area 1 did not indicate the presence of gasoline-, diesel- or oil-range hydrocarbons at concentrations exceeding the method detection limits. BETX were not detected in either of the samples. Analytical results for the samples from Area 1 are summarized in Table 1. Laboratory analytical reports are contained in Attachment B.

4.3 Area 2 – Southern Property Line

Three StrataProbe borings were advanced in the area of the southern property line near the stormwater trough collection area. The locations of the borings are shown in Figure 4. Borings B-6, B-7 and B-8 were advanced on September 22, 2003. Due to the size of Holt's StrataProbe rig, the borings were inadvertently advanced on the neighboring property to the south extending over the property line by several inches. EMS subsequently mobilized a limited access StrataProbe rig from ESN Northwest on September 29 to resample ground water along the southern property line of the subject property within the property boundary and advance additional probes to delineate the extent of detected volatile organic compounds in ground water within the subject property.

Ground water samples collected from borings B-6, B-7 and B-8 were submitted to Libby Environmental for analysis of volatile organic compounds including chlorinated solvents using EPA Method 8021B. Vinyl chloride detected in the ground water sample from B-8 at a concentration of 15 micrograms per liter (μ g/l) was the only compound detected in these three samples.

Vinyl chloride also was detected in borings B-9, B-10 and B-13 at concentrations exceeding Ecology's Model Toxics Control Act (MTCA) Method A cleanup level for vinyl chloride in ground water of 0.2 µg/l. Additionally, 1,2 dichloroethane was detected in borings B-10 and B-13 at concentrations exceeding the MTCA Method A cleanup level of $5.0 \mu g/l$. 1,2 dichloroethane either was not detected or was detected at concentrations less than $5.0 \mu g/l$ in the remaining borings. No other volatile organic compounds were detected. Analytical results for Area 2 are summarized in Table 2. Laboratory analytical reports are contained in Attachment B.

5.0 Conclusions

Based on the laboratory results from our limited study of the two areas at the site identified by EA and LSI Adapt in their reports, it appears that the area of the former underground storage tanks does not contain concentrations of petroleum hydrocarbons or BETX in soil or ground water at concentrations exceeding the respective MTCA Method A cleanup levels.

Vinyl chloride was detected in ground water samples from four borings conducted in Area 2 along the southern property line at concentrations exceeding the MTCA Method A cleanup level of 0.2 μ g/l. 1,2 dichloroethane was detected in two of the borings in Area 2 at concentrations exceeding the MTCA Method A cleanup level of 5.0 μ g/l.

Based on the distribution of the detected concentrations of vinyl chloride in the borings advanced as a part of this study, it appears that the contaminants are extending onto the subject property from the south. Additionally, it does not appear that the contaminants vinyl chloride and 1,2 dichloroethene extend more than approximately 60 feet onto the southern portion of the subject property. An approximate limit of the vinyl chloride contaminant plume is shown in Figure 4.

6.0 Limitations

The findings and conclusions documented in this report have been prepared for the specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. A potential always remains for the presence of unknown, unidentified, or unforeseen subsurface contamination. No warranty, expressed or implied, is made. This report is for the exclusive use of Coatings Unlimited and / or their representatives.

If new information is developed in future site work (which may include excavations, additional borings, or other studies), EMS should be contracted to re-evaluate the interpretations in this report, and to provide amendments as required.

We appreciate the opportunity to be of service to Key Bank and Coatings Unlimited on this project. Please contact us if you have questions regarding the results of our limited study or, if we may provide additional information.

Respectfully Submitted, Environmental Management Services, LLC.

Stephen M. Spencer Project Scientist

William E. Halbert, L.G., L.HG. Project Hydrogeologist

Direct push drilling in Area 1 - Typical. View to the northeast.

Groundwater collection from Area 1 - Typical. View to the northeast.

Direct push drilling in Area 2 - Using limited access rig - Typical. View to the northeast.

Split spoon soil sample collected from boring B3 following no groundwater recovery

Area 2 sampling location along the southern property boundary. View to the east.

Groundwater collection from Area 1 - Typical. View to the northeast.

Project Photographs Coatings Unlimited Project 18420 68th Avenue S. Kent, Washington	Project No./Name: Date: Drawn / Created By: Checked By:	Coatings Unlimited GW Sampling Event October 1, 2003 S. Spencer S. Spencer	Figure No. Photograph Sheet 01
---	--	--	--------------------------------------

TABLE 1 ANALYTICAL RESULTS Area 1 - Former Underground Storage Tank Area Coatings Unlimited Project 18420 68th Avenue S. Kent, Washington

Sample Number	Date Sampled	Location	53	Inde Dephiles	ours warphie	Bertene BO	Tourse and	(1b) engine and a	159 ma 1997	o) Diese lever phi	On the Comments
B1-092203	9/22/2003	Boring Location B9	13-15' bgs	< 100 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<200 (ND)	<400 (ND)	Water sample, 40 mill VOA
B3-092203	9/22/2003	Boring Location B10	13-15' bgs	<10 (ND)	<.02 (ND)	<.05 (ND)	<.05 (ND)	<.05 (ND)	<20 (ND)	<40 (ND)	Soil Sample, 4 Ounce Lab
	Laboratory Practical Quantitation Limit - Water 100						1.0 ug/l	1.0 ug/l	200 ug/l	400 ug/l	
	ill0 mg/kg	.02 mg/kg	.05 mg/kg	.05 mg/kg	.05 mg/kg	20 mg/kg	40 mg/kg				
MTCA Method A Cleanup Levels For Groundwater 10					5.0 ug/l	1000 ug/l	700 ug/l	1000 ug/l	500 ug/l	500 ug/l	
	MT	CA Method A Cleanup I	100*	.03 mg/kg	7.0 mg/kg	6.0 mg/kg	9.0 mg/kg	2000 mg/kg	2000 mg/kg		

Water values are reported in micrograms/liter (ug/l) and soil values reported in milligrams/kilogram (mg/kg).

< ND = analyte not detected above the analytical method practical quantitation limit cited.

Gasoline, BTEX by Method 8021-b

Diesel Extended by Method NWTPH-Dx

* Gasoline Method A Cleanup Levels for groundwater are 1000 ug/l unless detectable benzene is present then cleanup levels are reduced to 800 ug/l)

* Gasoline Method A Cleanup Levels for soil are 100 mg/kg unless detectable benzene is present then cleanup levels are reduced to 30 mg/kg)

MTCA 2001 Method A Cleanup Levels for groundwater from the Model Toxics Control Act (MTCA) amendment Table 740-1 WAC 173-340 -900 Tables.

TABLE 2ANALYTICAL RESULTSArea 2 - Southern Property Boundary AreaCoatings Unlimited18420 68th Avenue S.Kent, Washington

Sample Number	Date Sampled	Location	5%	inde Dermittee	inst chorder	Dothorosters	Board and Alight	Denocostare	Borton	a BOLIDI Take	action comments
B6-092203	9/22/2003	Boring Location B6	13-16' bgs	15.0	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B7-092203	9/22/2003	Boring Location B7	13-16' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B8-092203	9/22/2003	Boring Location B8	17-20' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B9-092903	9/29/2003	Boring Location B9	13-15' bgs	5.9	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B10-092903	9/29/2003	Boring Location B10	13-15' bgs	0.25	<1.0 (ND)	<1.0 (ND)	7.8	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B11-092903	9/29/2003	Boring Location B11	13-15' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B12-092903	9/29/2003	Boring Location B12	13-15' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B13-092903	9/29/2003	Boring Location B13	13-15' bgs	0.24	<1.0 (ND)	<1.0 (ND)	7.8	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B14-092903	9/29/2003	Boring Location B14	13-15' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	3.0	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B15-092903	9/29/2003	Boring Location B15	13-15' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	1.8	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
B16-092903	9/29/2003	Boring Location B16	13-15' bgs	<0.2 (ND)	<1.0 (ND)	<1.0 (ND)	2.3	<1.0 (ND)	<1.0 (ND)	<1.0 (ND)	Water sample, 40 mill VOA
		Laboratory [Detection Limit	0.2 ug/l	1.0 ug/l	1.0 ug/l	1.0 ug/l	1.0 ug/l	1.0 ug/l	1.0 ug/l	
	MTCA Meth	od A Cleanup Levels Fo	r Groundwate	0.2 ug/l	NA	NA	5.0 ug/l	200 ug/l	5.0 ug/l	5.0 ug/l	

BOLD/RED = analyte above MTCA 2001 Method A Cleanup levels.

Values are reported in micrograms/liter (ug/l).

< ND = analyte not detected above the analytical method detection limit cited.

Chlorinated Solvents by Method 8021-b

MTCA 2001 Method A Cleanup Levels for groundwater from the Model Toxics Control Act (MTCA) amendment Table 740-1 WAC 173-340 -900 Tables.

1 1 1 1

Libby Environmental, LLC

4139 Libby Road N.E., Olympia, WA 98506-2518

October 6, 2003

Steve Spencer EMS 652 8th Ave Fox Island, WA 98333

Dear Mr. Spencer:

Piease find enclosed the analytical data report for the Coatings Unlimited Project located in Kent. Washington. Water samples were analyzed for Volatile Organic Compounds by EPA Method 8021b on September 29, 2003.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, LLC values the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt President Libby Environmental, LLC.

Phone (360) 352-2110 • Fax (360) 352-4154 • libbyenv@aol.com

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Water

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Recovery (%)
Method Blank	9/24/03	nd	nd	nd	nd	nd	110
LCS	9/24/03	89%	97%				108
B1	9/24/03	nd	nd	nd	nd	nd	95
B1 Dup	9/24/03	nd	nđ	nď	nd	nd	106
B1 Matrix Spike	9/24/03	93%	99%				107
Practical Quantitat	ion Linit	1	1	1	1	100	

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(ug/l)	(ug/l)	(ug/l)
Method Blank	9/24/2003	127	nd	nd	nd
B1	9/24/2003	99	nd	nd	nd
Practical Quantitation Limit			200	400	400

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample Number	Date Analyzed	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Gasoline (mg/kg)	Surrogate Recovery (%)
Method Blank	9/24/03	nd	nd	nd	nd	nd	110
				nu	110	nu	
LCS	9/24/03	89%	97%			_	108
B3	9/24/03	nd	nd	nd	nd	nd	89
B3 Matrix Spike	9/24/03	88%	92%				100
Practical Quantitat	ion Limit	0.02	0.05	0.05	0.05	10	

"nd" Indicates not detected at the listed detection limits.

....

...

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

.

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	9/24/03	105	nd	nd	nd
B3	9/24/03	93	nd	nd	nd
Practical Quantitation Limit			20	40	40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

...-

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

.

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

.

..-

Sample Description		Method	В-б	B-7	B-8
		Blank			
Date Sampled		9/22/03	9/22/03	9/22/03	9/22/03
Date Analyzed		9/24/03	9/24/03	9/24/03	9/24/03
	PQL				
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Chloromethane	1.0	nd	nd	nd	nd
Vinyl chloride *	0.2	nd	nd	nd	15
Bromomethane	1.0	nd	nd	nd	nd
Chloroethane	1.0	nd	nd	nđ	nd
Benzene	1.0	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd
Total Xylenes	1.0	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd
1,1-Dichloroethane	1,0	nd	\mathbf{nd}	nd	nd
cis -1,2-Dichloroethene	1.0	nd	nd	\mathbf{nd}	nd
Chloroform	1.0	nd	nd	nd	nd
1,1,I-Trichloroethane (TCA)	1.0	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nđ	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd
cis-1,3-Dichloropropane	1.0	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

Sample Description		Method	B-6	B-7	B-8
		Blank			
Date Sampled		9/22/03	9/22/03	9/22/03	9/22/03
Date Analyzed		9/24/03	9/24/03	9/24/03	9/24/03
	PQL				
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	-				
Dibromochloromethane	1.0	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	1.0	nđ	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd
Bromotorm	1.0	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd
Surrogate Recovery (%)		107	101	90	85

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

....

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135% ANALYSES PERFORMED BY: Sherry Chilcutt

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

		Sample I	dentification:
		Matrix Spike	
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(ug/l)	(ug/l)	(%)
Benzene	80	66	83
Toluene	80	93	116
Trichloroethene (TCE)	80	80	100
Surrogate Spike			76

QA/QC Data - EPA 8021B Analyses

	Laboratory Contr	ol Sample	
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)
	(ug)1/		(/0)
Benzene	80	87	109
Toluene	80	95	119
Trichloroethene (TCE)	80	86	108
Surrogate Spike			106

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

;

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

Sample Description		Method	ea B	B-10	B-10	B-11	B-12	B-13
		Bfank	92903	50626	dnrff En626	Endice	50,67.6	EU/DU/D
Date Sampled		5//25//2 EU:42/4	E0/66/6	9/79/03 CONC2/C	9/29/03 CO162/C	50/62/6	9/29/03	9/29/03
Tats subscen	POL	CD174:5						
	(uyl)	(ng/l)	(ug/l)	(ugil)	(ugʻl)	(ug/l)	(ug/l)	(u <i>gi</i> l)
Chlommethane	1.0	nd	nd	nd	nd	nd	nd	nd
Vinvl chloride *	0.2	nd	65	0.25	0.23	nd	ц	0.24
Bromomethune	1.0	nd	nd	nd	nd	nd	nd	nd
Chlorosthane	1.0	nd	nd	nd	Ъ	nd	nđ	nd
Benzena	1.0	nd	nđ	Ъ	nd	nd	nd	nd
Tolucne	1.0	nd	nd	nd	nd	nd	nd	nd
Ethylbenzent	1.0	лd	Id	лd	nd	nd	nd	. B.
Total Xylenes	1.0	nd	Ъл	ъđ	nd	nd	nd	. nd
1,1-Dichloroethene	1.0	nd	nd	pti	nd	nd	лd	nd
Methylene uhloride	1.0	nd	nd	nd	nd	rd.	đ	nd
trans-1,2-Dichloroethene	1.0	nd	nd	лд	рд	nd	nd	nd
l, l-Dichlorozthane	1.0	nd	лd	nd	ъ	nď	nd	nd
cis-1,2-Dichloroethene	1.0	nd	4.2	7.8	6.8	nd	рц	7.8
Chleroform	1.0	nd	nd	nd	nđ	ра	nd	nd
1, L. I-Trichloroethane (TCA)	1.0	nđ	nd	nd	nd	nd	nd	btr
Carbon tetrachlorida	1.0	nd	рц	nd	nd	nd	рц	nd
1,2-Dichlorosthane (EDC)	1.0	nd	nd	nd	nd	nd	nd	ъ
Trichleroethene (TCE)	1.0	nd	nd	nd	рц	nd	nd	nd
1,2-Dichloropropane	1.0	Ъл	nd	nd	nd	nd	nd	nđ
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.9	nđ	рц	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	лđ	nd	nd
1,1,2-Trichloroethaue	1.0	лd	pd	nd	nđ	nd	nd	nd
Tetrachloroathane (PCE)	1.0	nđ	nd	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	1.0	nd	nd	nd	nd	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd	, D
Bromolerm	1.0	nđ	nd	nd	nd	nd	nd	nd
						3	3	172
		251	80	102	114	90	32 22	172

.

"nd" Indicates not detected at listed detection limit. "int" Indicates that interference prevents determination. * INSTRUMENT DETECTION LIMIT ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135% ANALYSES PERFORMED BY: Sherry Chilcutt

Pagerlo≾3

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

Sample Description		B-14	B-15	B-16	Sump	
		92903	92903	92903		
Date Sampled		9/29/03	9/29/03	9/29/03	9/29/03	
Date Analyzed		9/29/03	9/29/03	9/29/03	9/29/03	
	PQL					
	(ug/l)	(ug/1)	(ug/l)	(ug/l)	(ug/l)	······
Chloromethane	1.0	nd	nd	nd	nd	
	0.2	nd	nd	nd	nd	
Vinyl chloride *		nd	nd	nd	nd	
Brontomethane	1.0	nd	nd	nd	nd	
Chleroethane	1.0			nd	nd	
Benzene	1.0	nd	nđ	nd nđ	nd	
Toluene	1.0	nd	nd nd	nd	nd	
Ethylbenzene	1.0	nd	nd		nd	
Total Xylenes	1.0	nd	nd	nd	nd nd	
1,1-Dichloroethene	1.0	nd	nd	nd		
Methylene chloride	1.0	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
I.1-Dichloreethane	1.0	nđ	nd	nd	nd	
cis -1,2-Dichloroethene	1.0	3	18	1	nd	
Chloroform	1.0	nd	nd	nd	nd	
1,1,1-Trichlororthane (TCA)	1.0	nd	nd	nd	nd	
Carbon tetrachloride	1.0	nd	nd	nd	nd	
1,2-Dichlorosthane (EDC)	1.0	nd	nd	nd	nd	
Trichlorosthene (TCE)	1.0	nd	nd	nd	nd	
1,2-Dichleropropane	1.0	nd	nd	nd	nd	
Bromodichloromethane	1.0	nd	nd	nd	nd	
cis-1.3-Dichleropropene	1.0	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	\mathbf{nd}	
1.1.2-Trichleroethane	1.0	nd	nd	nd	nd	
Tetrachloroethens (PCE)	1.0	nd	nd	nd	nd	
Dibromochloromethane	1.0	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	1.0	nd	nd	nd	nd	
Chlorobenzene	1.0	nd	nd	nd	nd	
1,1,2,2-Tetrachloroothane	1.0	nd	nd	nd	nd	
Bromotorm	1.0	nd	nd	nd	nd	
Surrogate Recovery (%)		112	120	99	88	·····

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* INSTRUMENT DETECTION LIMIT

..

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

COATINGS UNLIMITED PROJECT Kent, Washington Environmental Management Services

QA/QC Data - EPA 8021B Analyses

		Sample Id	entification:
		Matrix Spik	\$
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(ug/l)	(ug/l)	(%)
Benzene	50	44	88
Toluene	50	33	66
Trichloroethene (TCE)	50	43	86
Surrogate Spike			82

	Laboratory	Control Sam	ple
	Spiked Conc.	Measured Conc.	Spike Recovery
	(ug/l)	(ug/l)	(%)
Benzene	50	56	112
Toluene	50	48	96
Trichloroethene (TCE)	50	42	84
Surrogate Spike			126

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

.

BI	BY			NMEN 2-2110	TA		, L	LC	2					,				C	HA	١	N	-C)F	(O			i .	CC)R	D
	EK	1632	<u>مر د م.</u>	enteil	<u> </u> /	46	194	<u>q ₹</u>	М	<u>174</u>	$f \leq$	- > <u>er</u>	Vit/	υς	D	ATE	<u>.</u>	q	- 2	2	- 6	3	, 		PA	GE			/ 	0	=	1		
ADDRESS: 65																RO	JEC	сті	NAN	٨E:			$\underline{\mathbb{C}}$	00	4	à v	na				• 			
PHONE: 253-							_																<u>`</u> ^	Ì,)	4	h	- <u>.</u>	। २न_				_
CLIENT PROJECT																															E OF	on E	22	-03
Sample Number	Oepth		Sample Type	Container Type			2/	7	75	7	Ż	7	/	13	/	7	\mathcal{T}			/	7	/	/	5	7			TES	7			<u> </u>		Laboratory Note Number
I. BI			w	40.2 UDA		Ń		Ť	ſ	XÍ		X			<u> </u>			ſ	Ĺ	ŕ	ſ	-/-	Ť	Ī	<u> </u>	<u> </u>			<u> </u>				2	
2. 63			Soil			X				χ		X										Τ											1	
3. 06			U)	40 5 jur 40. JUDA	X	×.			ľ																								2	
4. B7			ω	<u></u>	X	X																											\underline{I}	
5. BX			W	1	X	X.												<u> </u>								[_	2	l
6,																																		
7		<u> </u>		L						_			_																					ł
8.						<u> </u>		_									<u> </u>	<u> </u>								Ł		_						ĺ
9.	_			<u> </u>									L	L	L	Ĺ_								_										
10.																			1									- 						I
11.																													_				. <u></u>	
12.																<u> </u>	1_		1									_						
13.								$- \bot$																	<u> </u>									
14.		<u>}</u>				1								<u> </u>		-	<u> </u>																·	
15.						ļ								L	<u> </u>							1				1		-						
16,	·	<u> </u>			L	1										<u> </u>			-]									1
17.												<u> </u>	<u> </u>						1									-					<u> </u>	
18.			<u> </u>																															
RELINGVISHED BY (SKI	nature)	D	ATE/TIME	RECEIV	ED	BY (Signat	nia)	+	p/	TE	TIME				54	MP	ER	ECEI	IPT			_			Spec	ial In	struct	lions:	- -				
17X		9-2	5-03	L.A.E	<u>.</u>	2	\mathcal{A} .	Û.	lA	₽-	•		Ľ	TOT/	LN	MBE	ER C)F C(DNTA	NNE	RS			L.										
RELINCELISHED BY SHO	nature)		ATE/TIME								NTE/	TIME		CHAI	N OI	- CU	STO	DYE	EAL	S YI	N/N	<u>A</u>												
					,									SEAL	.S IN	TAC	<u>17 Y</u>	'NN	A			~-~-												
													-1	REC	EIVE	D GC	000	COI	ND./C	OL	D													
														NOT	ES:										<u> </u>	Turn	Arou	nd Ti	ime:	24 1	IR _	48 H	R 5	DAY

BBY ENVIRONMENTAL, LLC

CHAIN-OF-CUSTODY R CORD

••••

		····									1			·;									1
CLIENT:	<u>) ' r (</u>	<u>nm</u>	<u>e.(), (</u>	111:00	सुर १	<u>~~~~</u>	<u> </u>	<u>) C</u> .	<u>0) (((</u>	<u>.</u>		DAT	ΓË:	Í	<u> </u>	<u> </u>	<u> </u>	3	PA	AGE	OF_/	/ 	
ADDRESS:								, _ , _				PR	OJE	ECT	NAN	ΛE: .		<u>Co.</u>	<u>(11</u>	tings Un Laborsting	lini 1	54	
PHONE:												LO	CAI	rion	:		<u> K. </u>	ent	}	6ales Ling	10.1	·	
CLIENT PROJECT	#:	·····		PROJE		NAGE	ER:	55	fin	<u>(^1)</u>		co	LLE	ECTO)R:_	<u>S</u>	Spe	-1(5)	f	B Halbert	DATE OF COLLECTS	он	240
Sample Number	Depth	Time	Sample Type	Container Type	AHAL SOL		10 10 10 10 10 10 10 10 10 10 10 10 10 1	NO N			1.2. 1.0 1.2. 1.0 1.2. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				XX (\ \ \;\!\	UND CIT	500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500	APPINE IN	NOTES		Total Number of Containers	Laboratory Note Number
1 19 42403			w	40 200	X	T	11		\square		\square											2	2
2. 1310 92903			w	40 nd 104	N																	2	2
3. Bil -92903			L.N	40 41 61	X																	i	
4. 612 - 92903			ω.	40 ml un	X																	1	
5. B13. 92.903			Ŵ	40 20/ 10/	X														[1	
6. 1315 92903			ω.	ton Ud	X																		
7. BH- 42.903			L L	40200	λ]			ľ	
B. Sump			ω	40 JWA	XL																	1	
9. 1316-92903			_i~	40 100	X							_										1	
10,				<u> </u>						L.													_
11.																<u> </u>							
12.							1_																
13.	<u> </u>									ļ						<u> </u>							
14.			<u></u>	<u></u>												<u> </u>						_	
15.		. 		<u> </u>						ļ			_					_			,		
16.	·						1_			<u> </u>	<u>}</u>												
17.											_			\ _		_	$\left\{ -\right\}$						
18.				<u> </u>						L									L				
RELINQUISHED BY (Sign	ajure)	D	ATE/TIME		ED BY	(Signatu	re)		E/TIME					PLE A		<u> </u>	-	_	_	Special Instructions:			
WEHLER	99 -	9-2	9.03/0	1300 1	hay	-41	inh	从9	115 -29-0); -		, NUM		· _ · · · ·									
RELINOUISHED BY (Skin	alure)	D	ATE/TIME	RECE	VED DY	(Signatu		DAT	ETIME		~	OFC				S Y/N	UNA_						
											SEAL	S INTA	CT3	YANN	1 <u>A)</u>				-				
							<u> </u>			{	RECE	IVED	GOC	D CO		OLD		<u> </u>					
						_ 					NOTE	8:								Turn Around Time:	24 HR	48 HR	5 DAY

γ

Borehol Bl-9				Site and Job Number Cratines OMLIMILES	Date 9-27	203	<u>Time</u> 0900
Depth R BGS	ASTM Soll Class	Water Table	VVell Design	Description	Blows/6"	Sample	Additional notes (contamination)
				A GNUEL (Shub Men - PARK) (Fill)		⊗< >	SI Francis o ave Francis
			· · · ·	Acres States and the states of State			
ن زیرسن روزین	EMS,	LLC		Borehole/Well L Geologist / Scientist: Stat Sector Driller: State State Sector Drill method: PROBE Sample method: PROS State Sector			na -

...

.

Borehole/Well		2	Site and Job Number	Date		Ime
82			Caatmas Unlimited	9-22	203	10 30
Depth ft BGS ASTM Soil Class	Water Table	Well Design	Description	Blows/6"	Sampla	Additional notes (contamination)
	Ŷ		I I' CISE * I' WE STOT J NO WITTER TREOMERY Borehole/Well 1			

Geologist / Scientist: S SPEACER Driller: No 14 - MIKE Drill method: Prope Sample method: Prope Sample method: Prope

lorehol e FS				Gatings Un Im, Led	9-22	03	1 40
Depth It BGS	ASTM Soil Class	Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
う				: GANEL, SLOUD			
·				". Decidence 512, Branch			
				X SLUB , NEG TATION - MAILE			
		Á		V - Strale Collections for Not TSUT. GDV4			
				NO WATER BELIEVENCE			
				Soil Sumple collected at 13-15'	ľ.		
				Sily Stard, Morst to met.			
	-						
	1						
ų				Barehole/We	•	• • •••	
نف - العاني المعاني	ب مى كونچ س			Geologist / Scientist: Clove Crow Co Driller:			
ل من المع المع للمصل المحقق ما مناطق المحقق من	, EMS,	LLC		Drill method: Sample method:			

.. ..

_ -

- - --

· **___**___.

Borehole/ B4	/Well			Site and Job Number Cratings Univerted	<u>Date</u> 9-77	03	Time 17.16
Depth ft BGS	ASTM Soll Class	Water Table	Well Design	Description	Blowa/6"	Sample	Additional notes (contamination)
				PUSIT TO 7.0'- Refuse - concrete in socit			Time 1215 Additional notes (contamination)
ن در میں تاریخی میں مربع در م	¦∙ ∃MS,	LLC		Borehole/Well Geologist/Scientist: SSPENCER Driller: 1-014 Drill method: Probe Sample method: Processoftc Proc	<u></u>		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

•

_--

Environmental Management Services, 410

- ----

••

.
Borehole			<u></u>	Site and Job Number	Date		Time
85				Coia-maps Continuted	9-2	203	1250
Depth ft BGS	ASTM Soil Class	Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
0 6 10				Provident of the state concrete observe & in state			Time 1250
	ju Ems, I		 20170112	Borehole/Well L Geologist / Scientist: Jeneral Driller: Lolt- Mice Drill method: Projac Sample method: Projac	_og		

•

-

•

B6-99203	1-	Site and Job Number	Date C	2-3	<u>Time</u> 3
Depth fl BGS ASTM Soll Class Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
0`					
				1	120 13 14
		Woller sample is to tal your sous flow - 1 your			
		530 نهر ا			
		location is for the second			
				······································	
EMS, LLC		Borehoie/Well Geologist / Scientist: Sharry Ch Driller: Hole Drill method: Probe Sample method: Persider Part	· · · ·	÷ † ;	>= = = = = = = = = = = = = = = = = = =

١·

Borebole/We		Site and Job Number	Date		Time
ASTM ASTM	Well	Description	Blows/B [*]	Sample	Additional notes (contamination
				A	
		-2 UCA JAN 201 - 2 UCA			

Environmental Management Services, LLC

Geologist / Scientist: Skerre (Driller: Drill method: (Sample method: (

Environmental Management Services, LC

E9 Coatings (munited 9-29-03 0900 E9 Description 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	9 Coatwes (minine d) 9-29-03 0900 Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and times is and times Son times is and times is and times is and	Borehole/Well	Site and Job Number	Date		Time
Additional notes graduation Additional notes graduation Will State and the second state of the second state state state state of the second state	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E.9		9-2	9-03	0900
D V V V V V V V V V V V V V	$\frac{1}{2}$		Description	Blows/6"	Sample	notes
			Evert fost - no Eoro Shu Pla 1	×		

Borehole/Well			<u>Site and Job Number</u>	<u>Date</u>		Time
BIO	T		Cantings Onlimited	9-2	9-03	<u>945</u>
Depth ft BGS ASTM Soil Class	Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
2 10 2	$\overline{\lambda}$.	1	34" 10" SCREEN WAREN SIMPLE WORKLE AND A WAY SON SLEW RICHARGE SIMPLY ADD A SY OHLA SLEWARDER SILLES		50	Time 945 Additional notes (contamination)

Borehole/Well Log

Geologist / Scientist: Connect Driller: ESA) Drill method: Franz Sample method: Franz

Borehole/Well			Site and Job Number	<u>Date</u>		<u>Time</u>
Depth R BGS ASTM Soll Class	Vkater Table	Weil	Description	Blows/6"	Sample	Additional notes (contamination)
	₹.		Site and Job Number Description - Screen - 5/4" '0' - Wb-et Stuple Collecter of H.O Feet I'm Net T South Encreance			

EMS, LLC Environmental Management Services, LC

. ...

Geologist / Scientist: Constant Call Driller: ECA) Drill method: Proble Sample method: Proble

Borehole/Well Log

Borehole/ B12_	Well			Site and Job Number Coal-NGS ON MERC		<u>, 2.24.</u> 2	<u>Time</u> 11 30	
Depth # BGS	ASTM Soil Class	Water Table	Vdell Design	Description	Blowa/6"	Sample	Additional notes (contamination)	
0								
6				SEREEN - 3/4" 10'				
			11111	E(CED) - 74 'U				
		Ĩ						
Ś			· · · i	- A CETTER OFFIC DIGUES AND BOTALD - BO		\otimes		
	1			SAN F.F.				
 (73.557.671)	<35.7 si	I	L					
بي ب من مدر من مين از مدين من ر				Geologist / Scientist: S. Spencer Driller: ESN				
ي سنگ س	EMS,	LLC		Drill method: PRARE Sample method: PARARO -C				

Borehole SIS				CORTINGS JWIMITED	<u>Date</u> 9-2	9	<u>Time</u> 12.02
Depth ft BGS	ASTM Soil Class	Måter Table	Well	Description	Blows/6"	Sample	Additional notes (contamination)
0			······································				
5			—			ĺ	
			<u> </u>	SCREEN 3/4" - 10'			
ن: ا	Ā		-				
5				WAREL ON ANT OF AT A AT MO TO ISLUI SHOLL TRAY THOM FROM FOR			
]	
	1						
<u></u>		' / .A [*]		Borehole/Weil			. 1. 2017 - 1. 1. 1. 1994
۲ ب	- 			Geologist / Scientist: Statements Driller: SCA			
ن منت من Monmental Ma	EMS,			Drill method: Plane			

.____

. –

. . _____

Borehold E14			<u></u>	Site and Job Number COATINGE UNCIMITED	Date Ct-Z		<u>Time</u>) 30
Depth ft BGS	ASTM Soil Class	Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
0 5 12 15 15 15 15 15 15 15 15 15 15 15 15 15			┝────	- WARTE 2 - MARTIN CAL		12:14	
يو الاستاني آسين الحي ا	EMS,		- <u>-</u>	Borehole/Well L Geologist / Scientist: B. HALZOLT Driller: ESD Drill method: PROSE Sample method: Prosector			u maari edi in aa Müllin või elünin seri

••

- ---

Borehole/V	Vell	<u>.</u>	Site and Job Number	Date		<u>Time</u>
<u>U</u> E			COMMON MORNIAR		7.2 	232
Depth 11 BGS	Soil Class Water Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)
			screen - 247 - D			
	·	-				
			WATER CAMPLET WILLIAM			
						-
		 	landar an	<u>}</u>		
ب ب میں رابع مان کی بی میں ان محق میں ان ان	ÿ		Borehole/Well Geologist / Scientist: B. HAUSELT Driller: ESA	Log		
EN ن مونک منتی Environmental Manage			Drill method: PWORE Sample method: Paractor-c			

- -

Borehole/M	<u>ell</u>		Site and Job Number	<u>Date</u> 9-2	0	<u>Time</u> 3 ⁽²⁾	
<u>Elb</u>	<u> </u>	<u> </u>	Commus uniters	1-1-6			
Depth BGS ASTM	Soll Class Mater Table	Well Design	Description	Blows/6"	Sample	Additional notes (contamination)	
0							
	1						
БЩ		-++	- sceen 3/4"-10'				
	Ī	111			}		
			SAMPLE CONFECTED AT 14.0 BGS. VELY SIGN OF CHARLE		BIE		
·:			ISON VELY SIGN OF COL	Ì			
	i.						
		ļ					
New York Ber		Nev 1 - 2	Borehole/Wel		YAN Y	ninin (h. 2013). A	
میں میں ایک معلق ان ایک معلق ان	J		Geologist / Scientist: B. HALBELT	-			
	MS, LLC		Driller: EST Drill method: (2008) Sample method: (20)(27-5) C				