

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

of Ecology Lepariment

GROUNDWATER MONITORING STATUS REPORT

FORMER CUMMINGS OIL LEASE SITE 908 NORTHWEST KERRON AVENUE WINLOCK, WASHINGTON VCP NO. SW0775

> Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

> > Farallon PN: 683-009

2454 Occidental Avenue South, Suite 1A Seattle, Washington

March 24, 2011

Prepared by:

Kristin J/Darnell

Project Environmental Scientist

Reviewed by:

Stacy Patterson

Senior Environmental Scientist

TABLE OF CONTENTS

ACR	ONY	YMS AND ABBREVIATIONS	i
1.0	IN	TRODUCTION	1-1
2.0	M	ONITORING ACTIVITIES AND RESULTS	2-1
	2.1	GROUNDWATER MONITORING ACTIVITIES	2-1
	2.2		
	2.3	NATURAL ATTENUATION RESULTS	2-2
3.0	C	ONCLUSIONS	3-1
4.0	RI	EFERENCES	4-1
		FIGURES	
Figure	e 1	Site Vicinity Map	
Figure	2	Groundwater Contour Map for October 20, 2010	
Figure	e 3	Groundwater Analytical Results for October 20, 2010	
		TABLES	
Table	1	Summary of Groundwater Elevation Data	
Table	2	Cumulative Summary of Groundwater Analytical Results for Total Pel Hydrocarbons	troleum
Table	3	Cumulative Summary of Groundwater Geochemical Parameters	
		א או אוויאן העומות א	

3

Appendix A Laboratory Analytical Report

ACRONYMS AND ABBREVIATIONS

BNSF Railway Company

BTEX benzene, toluene, ethylbenzene, and xylenes

cPAHs carcinogenic polycyclic aromatic hydrocarbons

DRO diesel-range organics

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Farallon Consulting, L.L.C.

GRO gasoline-range organics

μg/l micrograms per liter

mg/l milligrams per liter

MTCA Washington State Model Toxics Control Act Cleanup Regulation

ORO oil-range organics

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

RLs reporting limits

Site Former Cummings Oil Lease Site at 908 Northwest Kerron Avenue in

Winlock, Washington

TPH total petroleum hydrocarbons

VCP voluntary cleanup program

1.0 INTRODUCTION

This Groundwater Monitoring Status Report has been prepared on behalf of BNSF Railway Company (BNSF) to summarize the results of the groundwater monitoring and sampling event conducted on October 20, 2010 at the Former Cummings Oil Lease Site at 908 Northwest Kerron Avenue in Winlock, Lewis County, Washington (herein referred to as the Site) (Figure 1). Prior investigations and the cleanup action have confirmed that concentrations of total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO), as diesel-range organics (DRO), and as oil-range organics (ORO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) were released to the subsurface as a result of historical activities at the Site. Following the cleanup action, groundwater monitoring and sampling was implemented to monitor concentrations of TPH previously detected in groundwater above the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup level and to assess the effectiveness of the remedial action and determine whether natural attenuation is occurring.

The cleanup action at the Site was performed under the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in accordance with MTCA, as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340), and the Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington dated December 18, 2008, prepared by Farallon (Work Plan). The Site was entered into the VCP in 2006 and is listed in the Ecology Toxics Cleanup Program as Identification No. SW0775.

The Work Plan presented the selected cleanup approach and specified the cleanup standards and associated requirements for the cleanup action. The selected cleanup action for the Site was executed in conjunction with tank closure activities conducted at the Site between March 10 and August 1, 2008. The tank closure and cleanup action included removal of two underground storage tanks and four aboveground storage tanks, excavation and off-Site disposal of soil with concentrations of TPH above MTCA cleanup levels, and installation of monitoring wells to assess the nature and extent of TPH in groundwater and whether natural attenuation is occurring. The results of the tank closure and cleanup action are summarized in the *Tank Closure Report*, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington dated March 11, 2010, prepared by Farallon (2010). Additional information regarding previous activities conducted at the Site is available in the documents listed in Section 4, References.

2.0 MONITORING ACTIVITIES AND RESULTS

The groundwater monitoring and sampling activities conducted at the Site by Farallon on October 20, 2010 included measuring groundwater levels and collecting groundwater quality data and samples for laboratory analysis. The monitoring activities and results are summarized in the following sections.

2.1 GROUNDWATER MONITORING ACTIVITIES

The October 20, 2010 groundwater monitoring and sampling event included:

- Measuring the depth to groundwater in monitoring wells MW-1 through MW-5;
- Purging and sampling monitoring wells MW-1 through MW-5 using U.S. Environmental Protection Agency (EPA) low-flow sampling methods;
- Measuring water quality parameters during monitoring well purging to assess natural attenuation; and
- Submitting the groundwater samples for laboratory analysis.

Farallon opened monitoring wells MW-1 through MW-5 to allow water levels to equilibrate with atmospheric pressure for a minimum of 15 minutes prior to obtaining groundwater level measurements. Groundwater levels in the accessible monitoring wells were measured to an accuracy of 0.01 foot using an electronic water-level meter.

Following collection of groundwater level measurements, monitoring wells MW-1 through MW-5 were purged and sampled using a peristaltic pump and polyethylene tubing. The purging was conducted at flow rates ranging from 100 to 300 milliliters per minute, with the intake tubing placed at a maximum of 3 feet below the water table in each monitoring well. During purging, water quality was monitored using a Yellow Springs Instrument water-quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded during purging and sampling included temperature, pH, specific conductance, dissolved oxygen, and oxidation-reduction potential (ORP). The monitoring wells were purged until the water quality parameters stabilized in accordance with EPA guidelines for low-flow sampling. The groundwater samples were transferred directly from the tubing into laboratory-prepared containers. The containers from each sampling event were placed on ice in a cooler and transported to an Ecology-accredited laboratory under standard chain-of-custody protocols. The groundwater samples were analyzed for DRO and ORO by Northwest Method NWTPH-Dx, GRO by Northwest Method NWTPH-Gx, BTEX by EPA Method 5030B/8260, methane by Method RSK 175, nitrate and sulfate by EPA Method 300.0, and ferrous iron by SM 3500.

Purge water generated by groundwater sampling is stored in a 35-gallon drum located on the Site. The purge water will be scheduled for disposal during a future groundwater monitoring and sampling event.

2.2 GROUNDWATER MONITORING RESULTS

Groundwater level measurements and elevations are summarized in Table 1. Figure 2 provides a groundwater elevation contour map illustrating the estimated groundwater flow direction and gradient for the groundwater monitoring and sampling event conducted on October 20, 2010. The groundwater level measurements indicate an approximate groundwater flow direction to the west, and an average approximate hydraulic gradient at the Site of 0.05 foot per foot. The groundwater flow direction during previous groundwater monitoring events has varied from northwest to southwest.

The groundwater analytical results are summarized in Table 2. The analytical data for the groundwater samples collected on October 20, 2010 are illustrated on Figure 3.

The laboratory analytical results for October 20, 2010 indicated the following:

- Concentrations of GRO were not detected above the laboratory reporting limit (RL), with the exception of monitoring well MW-2, where concentrations of GRO were detected below the MTCA Method A cleanup level of 800 micrograms per liter (μg/l);
- Concentrations of DRO exceeded the MTCA Method A cleanup level of 500 μg/l in groundwater samples collected from monitoring wells MW-1, MW-2, and MW-3;
- Concentrations of ORO exceeded the MTCA Method A cleanup level of 500 μg/l in the groundwater sample collected from monitoring well MW-2; and
- Concentrations of BTEX were not detected above the RL, with the exception of benzene, which exceeded the MTCA Method A cleanup level of 5 μg/l in the groundwater sample collected from monitoring well MW-2.

The laboratory analytical report for the groundwater monitoring events is provided in Appendix A.

2.3 NATURAL ATTENUATION RESULTS

An assessment of the potential for natural attenuation via biodegradation processes to reduce the concentrations of residual TPH and BTEX in groundwater was conducted during the October 20, 2010 groundwater monitoring and sampling event. The assessment included laboratory analyses and measurement of field parameters that provide data to assess whether, and if so by what processes, biodegradation is occurring. The laboratory analyses and field measurements for the assessment included the following:

- Primary electron receptors that are potential energy sources for native bacteria capable of biodegradation of petroleum compounds, and indicators of groundwater geochemistry:
 - Dissolved oxygen (O₂);
 - Ferric Iron (Fe⁺²);
 Nitrate (NO₃⁻); and
 - Sulfate (SO₄-2).
- Metabolic byproducts of biodegradation and indicators of groundwater geochemistry:

- Methane (CH₄).
- Geochemical indicators of whether the subsurface environment is amenable to biodegradation of petroleum compounds:
 - ORP;
 - Temperature; and
 - pH.

The laboratory analytical results and field measurements for natural attenuation parameters and geochemical indicators are summarized in Table 3. The results of the assessment for the October 20, 2010 sampling event are as follows:

- <u>Dissolved Oxygen</u>—Measurements less than 1 milligram per liter (mg/l) indicate that available oxygen is trending toward more anaerobic conditions. The concentrations of dissolved oxygen in groundwater at monitoring wells MW-1, MW-2, MW-3, and MW-4 were below 1 mg/l during the October 20, 2010 monitoring and sampling event. These dissolved oxygen measurements indicate that the available oxygen likely is being used as an energy source for biodegradation in areas with residual petroleum hydrocarbons.
- Nitrite—Nitrite is formed by anaerobic microbial nitrate reduction, referred to as de-nitrification. The anaerobic respiratory process reduces nitrate (NO₃) to nitrite (NO₂). Concentrations of nitrate or nitrite were not detected in monitoring wells MW-1 through MW-4, indicating that anaerobic microbial respiration was not occurring through de-nitrification at these wells. Concentrations of nitrate were detected at MW-5, but nitrite was not detected above the laboratory RL at this well.
- <u>Sulfate</u>—Concentrations of sulfate greater than 1 mg/l indicate a favorable environment for sulfate-reducing conditions. The concentrations of sulfate in groundwater samples collected from all five monitoring wells ranged from 6.3 to 59.1 mg/l.
- <u>Methane</u>—Concentrations of methane were detected in the groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, and MW-4. The concentrations of methane indicate that methanogenesis is occurring in these four monitoring wells.
- <u>Ferrous Iron</u>—Concentrations of ferrous iron were detected in the groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, and MW-4 during the October 2010 monitoring and sampling event conducted at the Site. The concentrations of ferrous iron indicate that organisms are using ferric iron and producing ferrous iron through respiration in these four monitoring wells.
- <u>ORP</u>—The ORP measured in monitoring wells MW-1 and MW-5 during the monitoring event ranged from 12.1 to 75.5 millivolts, which is within a range typically considered indicative of moderately aerobic conditions. The ORP measured in monitoring wells MW-2 through MW-4 during the monitoring event ranged from -33.4 to -77.8 millivolts, which indicates an anaerobic environment.
- <u>Temperature</u>—The groundwater temperature measured at monitoring wells MW-1 through MW-5 ranged from 12.96 to 17.59 degrees Celsius during the groundwater monitoring and sampling event. Although biodegradation processes occur at these

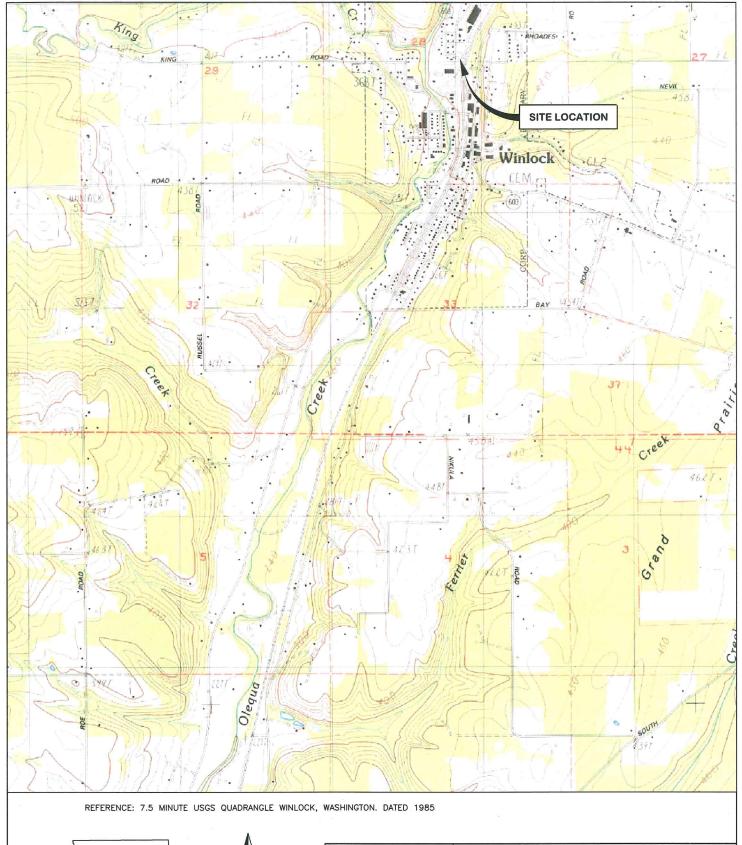
- temperatures, they typically are accelerated at higher temperatures, approaching 20 degrees Celsius or greater.
- <u>pH</u>—The values for pH measured at monitoring wells MW-1 through MW-5 ranged from 6.03 to 7.42, with 7 being a neutral value. These pH values are within a range amenable to the bacteria capable of biodegrading petroleum hydrocarbons.

3.0 CONCLUSIONS

The groundwater flow direction and hydraulic gradient estimated for the October 20, 2010 groundwater monitoring event was to the west, at an average gradient of 0.05 foot per foot. During previous monitoring events, groundwater flow direction has ranged from northwest to southwest.

GRO, DRO, ORO, or BTEX were not detected above the laboratory RL in groundwater samples collected from up-gradient monitoring well MW-4 or down-gradient monitoring well MW-5 during the October 2010 groundwater monitoring and sampling event. DRO above MTCA Method A cleanup levels was detected in samples collected from monitoring wells MW-1 and MW-2, directly west of the Former UST Excavation Area on the western portion of the Site. ORO and benzene above MTCA Method A cleanup levels were detected in monitoring well MW-2. Concentrations of DRO above the MTCA Method A cleanup levels were detected in samples collected from monitoring well MW-3, west of the Former AST Excavation Area on the western portion of the Site.

The rate of biodegradation of TPH and benzene in groundwater will be calculated after one additional quarter of sampling has been completed. However, the results of the assessment of natural attenuation and the trend toward lower concentrations of TPH and benzene in groundwater indicate that biodegradation of petroleum hydrocarbons is occurring under anaerobic conditions. Dissolved oxygen, an electron receptor, appears to be depleted in monitoring wells MW-1 through MW-4, indicating that the available oxygen is being used as an energy source for biodegradation. The concentrations of the metabolic by-product indicators sulfate, methane, and ferrous iron detected in groundwater in monitoring wells MW-1, MW-2, MW-3, and MW-4 also indicate that biodegradation of petroleum hydrocarbons is occurring.


4.0 REFERENCES

- Farallon Consulting, L.L.C. (Farallon). 2006. Supplemental Subsurface Investigation, BNSF Winlock, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. May 31.
 ——. 2008. Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908 Northwest
- ———. 2008. Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. December 18.
- ——. 2010. Tank Closure Report, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. March 11.

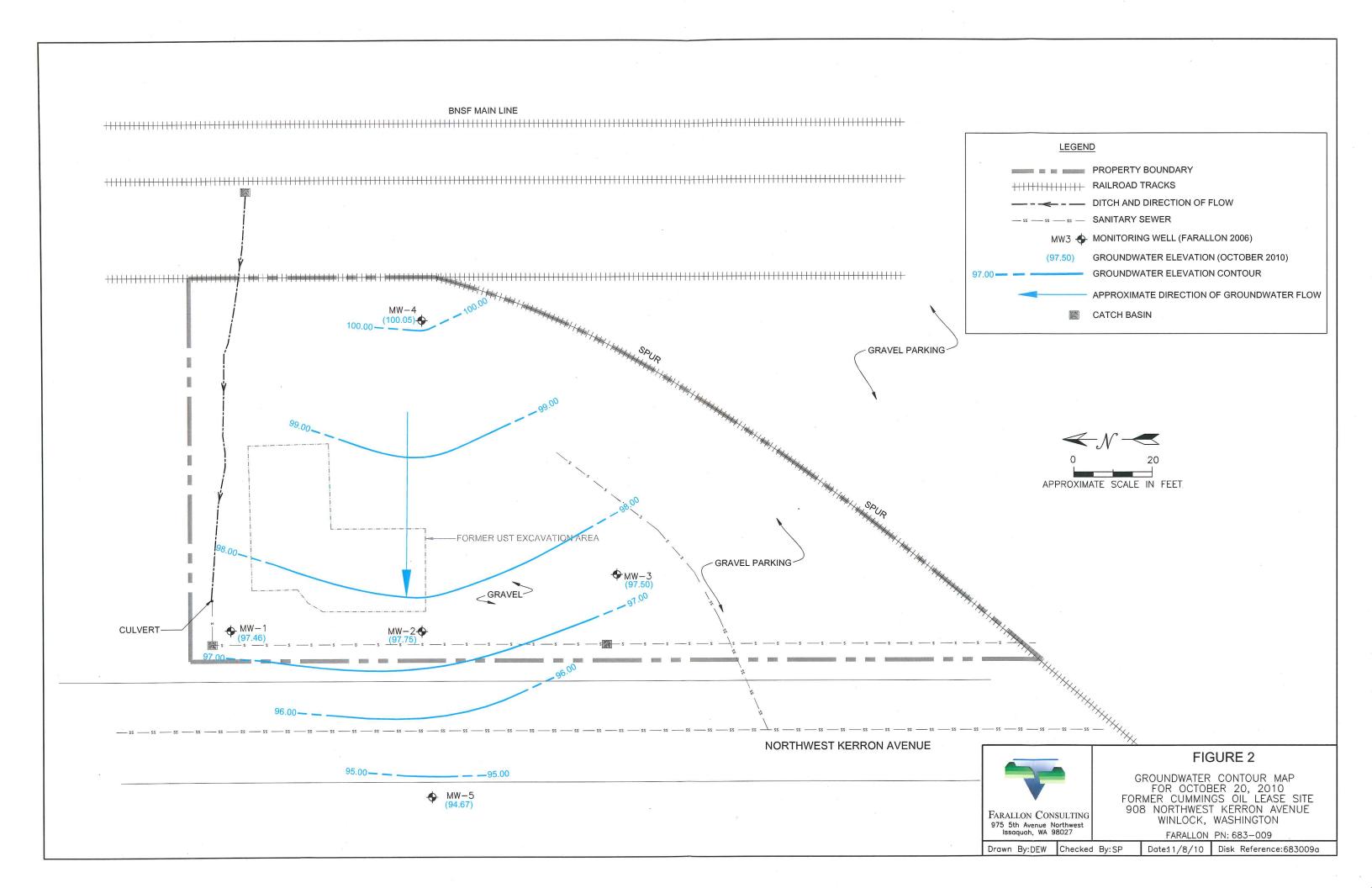
FIGURES

GROUNDWATER MONITORING STATUS REPORT
Former Cummings Oil Lease Site
908 Northwest Kerron Avenue
Winlock, Washington
VCP No. SW0775

Farallon PN: 683-009

FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027

FIGURE 1


SITE VICINITY MAP FORMER CUMMINGS OIL LEASE SITE 908 NORTHWEST KERRON AVENUE WINLOCK, WASHINGTON

FARALLON PN: 683-009

Drawn By: DEW | Checked By: SP

Date:2/25/09

Disk Reference: 683009

TABLES

GROUNDWATER MONITORING STATUS REPORT Former Cummings Oil Lease Site 908 Northwest Kerron Avenue Winlock, Washington VCP No. SW0775

Farallon PN: 683-009

Table 1 Summary of Groundwater Elevation Data Former Cummings Oil Lease Site Winlock, Washington Farallon PN: 683-009

Well Identification	Monitoring Date	Depth of Monitoring Well (feet)	Monitoring Well Screened Interval (feet bgs)	Wellhead Elevation ¹ (feet)	Depth to Water (feet bgs)	Groundwater Elevation (feet)
	12/23/2005				2.13	98.33
	8/18/2008				4.50	95.96
MW-1	3/11/2010	12	5-12	100.46	3.00	97.46
	6/8/2010	1 ' 1			4.20	96.26
	10/20/2010	-			3.00	97.46
	12/23/2005				2.50	97.90
	8/18/2008]			4.67	95.73
MW-2	3/11/2010	11	5-11	100.4	1.88	98.52
	6/8/2010] - [2.28	98.12
	10/20/2010			n n	2.65	97.75
	12/23/2005				2.21	97.97
	8/18/2008	× .			4.40	95.78
MW-3	3/11/2010	10	5-10	100.18		
	6/8/2010]			2.26	97.92
	10/20/2010	*			2.68	97.50
	12/23/2005		142 8		0.50	101.95
	8/18/2008]			5.02	97.43
MW-4	3/11/2010	12	5-12	102.45	1.90	100.55
	6/8/2010				1.45	101.00
	10/20/2010				2.40	100.05
	8/18/2008				5.54	94.38
MW-5	3/11/2010	10	5-10	99.92	3.29	96.63
171 77 - 3	6/8/2010	10	5-10	99.92	4.00	95.92
	10/20/2010	1		1	5.25	94 67

NOTES

bgs = below ground surface

-- = not measured

¹Elevations based on survey conducted by Farallon Consulting, L.L.C. to a benchmark of 105.59.

Table 2

Cumulative Summary of Groundwater Analytical Results for Total Petroleum Hydrocarbons Former Cummings Oil Lease Site

Winlock, Washington Farallon PN: 683-009

						¥I.			
					Analytica	l Results (mic	rograms per	liter)	
Sample Identification	Well Identification	Sample Date	GRO ¹	DRO ²	ORO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
MW1-122305	744711111111111111111111111111111111111	12/23/2005	<50.0	<238	<476	<0.500	< 0.500	<0.500	<1.00
MW1-081808	-	8/18/2008	<50.0	1,480	836	<0.500	<0.500	<0.500	<1.00
MW1-031110	MW-1	3/11/2010	<50.0	590	540	<1.0	<1.0	<1.0	<6.0
MW1-060910		6/9/2010	<50.0	720	<460	<1.0	<1.0	<1.0	<3.0
MW1-102010		10/20/2010	<50.0	670	<430	<1.0	<1.0	<1.0	<3.0
MW2-122305	- W	12/23/2005	465	<238	<476	55.2	2.84	3.46	35.6
MW2-081808		8/18/2008	606	876	<500	30.6	1.12	2.56	30.9
MW2-031110	MW-2	3/11/2010	150	660	470	27.7	<1.0	<1.0	<6.0
MW2-060910		6/9/2010	116	690	440	22.4	<1.0	<1.0	<3.0
MW2-102010		10/20/2010	95.2	810	590	10.6	<1.0	<1.0	<3.0
MW3-122305		12/23/2005	<50.0	<238	<476	< 0.500	< 0.500	< 0.500	<1.00
MW3-081808	Ó#	8/18/2008	< 50.0	1,660	887	< 0.500	< 0.500	< 0.500	<1.00
Not Sampled	MW-3	3/11/2010							
MW3-060910		6/9/2010	< 50.0	830	<400	<1.0	<1.0	<1.0	<3.0
MW3-102010		10/20/2010	< 50.0	900	460	<1.0	<1.0	<1.0	<3.0
MW4-122305		12/23/2005	< 50.0	<238	<476	< 0.500	< 0.500	< 0.500	<1.00
MW4-081808		8/18/2008	< 50.0	<243	<485	< 0.500	< 0.500	< 0.500	<1.00
MW4-031110	MW-4	3/11/2010	<50.0	<78	<390	<1.0	<1.0	<1.0	< 6.0
MW4-060910		6/9/2010	< 50.0	<82	<410	<1.0	<1.0	<1.0	<3.0
MW4-102010		10/20/2010	<50.0	<86	<430	<1.0	<1.0	<1.0	<3.0
MW5-081808	Si .	8/18/2008	<50.0	433	<481	< 0.500	< 0.500	< 0.500	<1.00
MW5-031110	MW-5	3/11/2010	<50.0	<82	<410	<1.0	<1.0	<1.0	<6.0
MW5-060910	3.2.1.	6/9/2010	<50.0	<84	<420	<1.0	<1.0	<1.0	<3.0
MW5-102010		10/20/2010	<50.0	<85	<430	<1.0	<1.0	<1.0	<3.0
MTCA Method A	Cleanup Levels ⁴	, 21	800	500	500	5	1,000	700	1,000

NOTES

Results in bold denote concentrations above applicable cleanup levels.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

SIM = Selective Ion Monitoring

< denotes analyte not detected at or above the reporting limit listed.

^{-- =} not analyzed

¹ Analyzed by Northwest Method NWTPH-Gx.

² Analyzed by Northwest Method NWTPH-Dx.

³ Analyzed by U.S. Environmental Protection Agency (EPA) Methods 8260B and 5030B/8260.

⁴ Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2007.

Table 3
Cumulative Summary of Groundwater Geochemical Parameters
Former Cummings Oil Lease Site
Winlock, Washington
Farallon PN: 683-009

							Geochemical Results	I Results					
			-			Oxidation-	T					Я	
			Specific		Dissolved	Reduction		Nitrate	s				
Well		Temperature	Temperature Conductance	μd	Oxygen	Potential	Sulfate	(mg/l as	Nitrite	Methane	Ethane	Ethene	Ferrous
Identification	Identification Sample Date		(mS/cm)	(pH units)	(mg/l)	(mV)	(mg/l)	Nitrogen)	(mg/l)	(μg/l)	(µg/I)	(hg/l)	Iron (mg/l)
	8/18/2008	17.60	0.221	6.03	0.92	02.7-							
1,411,1	3/11/2010	10.08	0.289	6.70	0.47	117.7	74.4	<0.20	<0.20	289	<10.0	<10.0	ı
1- w [v]	6/9/2010	14.21	0.348	6.21	0.42	11.1	59.4	<0.050	0.012	520			8.6
	10/20/2010	16.20	0.234	6.13	0.64	12.1	59.1	<0.20	<0.10	388			2.3
	8/18/2008	17.65	0.316	6.64	66.0	-77.20	0.420	<0.200		1,660	<10.0	<10.0	ı
CANA	3/11/2010	9.93	0.247	7.28	0.77	101.2	30.31	<0.20	<0.10	1,620	<10.0	<10.0	l
7- W IVI	6/9/2010	14.48	0.277	6.84	1.00	75.8	7.9	<0.050	<0.010	3,500	l		3.2
	10/20/2010	16.76	0.279	6.61	0.91	-50.3	11.2	<0.20	<0.10	6,320		I	1.3
	8/18/2008	17.38	0.382	6.34	1.08	09.27-	1	1		1	Ĵ	1	
NAW 2	3/11/2010	1		1	1		1	1	1	1	l		ı
C- W IVI	6/9/2010	13.87	0.387	6.36	0.50	-6.80	13.4	<0.050	<0.010	380	Î		3.90
	10/20/2010	17.26	0.321	6.57	0.87	-33.4	14.6	<0.20	<0.10	338	Ĩ	1	1.50
	8/18/2008	13.78	0.241	6.75	0.97	-74.90	16.7	<0.200	1	22.8	<10.0	<10.0	ĵ
MW.A	3/11/2010	9.59	0.255	7.92	0.57	85.60	17.6	<0.20	<0.20	47.6	<10.0	<10.0	
t- M IN	6/9/2010	12.42	0.260	7.16	0.51	85.5	12.5	<0.050	0.011	93		1	1.2
	10/20/2010	12.96	0.206	7.42	99.0	-77.8	14.1	<0.20	<0.10	16.9]	1	0.52
	8/18/2008	17.57	0.466	6.62	1.45	-31.60	8.03	<0.200		40.6	<10.0	<10.0	
MW. 5	3/11/2010	10.30	0.067	7.63	5.66	107.9	3.2	0.61	<0.10	<10.0	<10.0	<10.0	ĺ
C- 14 TAT	6/9/2010	14.74	0.074	5.76	2.27	213.5	4.7	0.87	<0.010	<2.3	Ī	I	<0.17
	10/20/2010	17.59	0.085	6.03	1.34	75.5	6.3	0.65	<0.10	<10.0]	1	<0.20
The second secon													

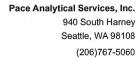
NOTES

--- = not measured/analyzed

°C = degrees Celsius

μg/l = micrograms per liter

mg/1 = milligrams per liter


mS/cm = millisiemens per centimeter

mV = millivolts

APPENDIX A LABORATORY ANALYTICAL REPORT

GROUNDWATER MONITORING STATUS REPORT
Former Cummings Oil Lease Site
908 Northwest Kerron Avenue
Winlock, Washington
VCP No. SW0775

Farallon PN: 683-009

November 03, 2010

Stacy Patterson Farallon Consulting LLC 975 5th Avenue Northwest Issaquah, WA 98027

RE: Project: Winlock

Pace Project No.: 255411

Dear Stacy Patterson:

Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ronald Boquist for Jennifer Gross jennifer.gross@pacelabs.com Project Manager

Enclosures

cc: Carla Brock, Farallon Consulting

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project:

Winlock

Pace Project No.:

255411

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Idaho Certification #: MN00064

Illinois Certification #: 200011 Iowa Certification #: 368

Kansas Certification #: E-10167 Louisiana Certification #: 03086

Louisiana Certification #: LA080009 Maine Certification #: 2007029

Maryland Certification #: 322 Michigan DEQ Certification #: 9909

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101

Montana Certification #: MT CERT0092

Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Oklahoma Certification #: D9921

Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project:

Winlock

Pace Project No.:

255411

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255411001	MW4-102010	RSK 175	SK3	1	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		SM 3500-Fe B#4	BPR	1	PASI-S
		EPA 300.0	CMS	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
55411002	MW5-102010	RSK 175	SK3	1 -	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		SM 3500-Fe B#4	BPR	1	PASI-S
		EPA 300.0	CMS	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
5411003	MW1-102010	RSK 175	SK3	. 1	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		SM 3500-Fe B#4	BPR	1	PASI-S
		EPA 300.0	CMS	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
55411004	MW2-102010	RSK 175	SK3	1	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		SM 3500-Fe B#4	BPR	1	PASI-S
		EPA 300.0	CMS	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
5411005	MW3-102010	RSK 175	SK3	1	PASI-M
	* ,	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		SM 3500-Fe B#4	BPR	1	PASI-S
		EPA 300.0	CMS	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
55411006	TRIP BLANK 1-102010	EPA 5030B/8260	LPM	8	PASI-S

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

RSK 175

Client:

Description: RSK 175 AIR Headspace Farallon Consulting LLC

Date:

November 03, 2010

General Information:

5 samples were analyzed for RSK 175. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc. 940 South Harney

Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

NWTPH-Dx

Client:

Description: NWTPH-Dx GCS Farallon Consulting LLC

Date:

November 03, 2010

General Information:

5 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Batch Comments:

A sample duplicate was not performed for this batch due to insufficient sample volume.

· QC Batch: GCSV / 2024

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

NWTPH-Gx

Client:

Description: NWTPH-Gx GCV

Chem

Farallon Consulting LLC

Date:

November 03, 2010

General Information:

5 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc. 940 South Harney

> Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

EPA 5030B/8260

Client:

Description: 8260 MSV Farallon Consulting LLC

Date:

November 03, 2010

General Information:

6 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Page 7 of 25

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

SM 3500-Fe B#4

Ol: 1

Description: Iron, Ferrous

Client:

Farallon Consulting LLC

Date:

November 03, 2010

General Information:

5 samples were analyzed for SM 3500-Fe B#4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated more than 15 minutes after sample collection.

- MW1-102010 (Lab ID: 255411003)
- MW2-102010 (Lab ID: 255411004)
- MW3-102010 (Lab ID: 255411005)
- MW4-102010 (Lab ID: 255411001)
- MW5-102010 (Lab ID: 255411002)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc.

940 South Harney Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

EPA 300.0

Client:

Description: 300.0 IC Anions

Date:

Farallon Consulting LLC November 03, 2010

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

PROJECT NARRATIVE

Project:

Winlock

Pace Project No.:

255411

Method:

EPA 300.0

Client:

Description: 300.0 IC Anions 28 Days Farallon Consulting LLC

Date:

November 03, 2010

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

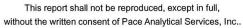
Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project:

Winlock

Pace Project No.:


255411

Sample: MW4-102010	Lab ID: 25541100	O1 Collecte	d: 10/20/1	0 11:15	Received: 10	/20/10 18:00 N	latrix: Water	
Parameters	Results L	Inits Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: F	RSK 175						
Methane	16.9 ug/L		10.0	1		10/25/10 13:27	74-82-8	
NWTPH-Dx GCS	Analytical Method: N	WTPH-Dx Prep	aration Me	ethod: E	PA 3510			
Diesel Range	ND mg/L		0.086	1	10/26/10 11:00	10/31/10 06:39		
Motor Oil Range	ND mg/L		0.43	1	10/26/10 11:00	10/31/10 06:39	64742-65-0	
n-Octacosane (S)	114 %		50-150	1	10/26/10 11:00	10/31/10 06:39	630-02-4	
o-Terphenyl (S)	93 %		50-150	1	10/26/10 11:00	10/31/10 06:39	84-15-1	
NWTPH-Gx GCV	Analytical Method: N	WTPH-Gx						
Gasoline Range Organics	ND ug/L		50.0	1		10/26/10 14:28		
a,a,a-Trifluorotoluene (S)	100 %		50-150	1		10/26/10 14:28	98-08-8	
4-Bromofluorobenzene (S)	88 %		50-150	1		10/26/10 14:28	460-00-4	
8260 MSV	Analytical Method: E	EPA 5030B/8260					* 8	
Benzene	ND ug/L		1.0	1		10/24/10 04:01	71-43-2	
Ethylbenzene	ND ug/L		1.0	1		10/24/10 04:01	100-41-4	
Toluene	ND ug/L		1.0	1		10/24/10 04:01	108-88-3	
Xylene (Total)	ND ug/L		3.0	1		10/24/10 04:01	1330-20-7	
4-Bromofluorobenzene (S)	102 %		80-120	1		10/24/10 04:01	460-00-4	
Dibromofluoromethane (S)	98 %		80-122	1		10/24/10 04:01	1868-53-7	a =1 =
1,2-Dichloroethane-d4 (S)	93 %		80-124	1		10/24/10 04:01	17060-07-0	
Toluene-d8 (S)	99 %		80-123	1		10/24/10 04:01	2037-26-5	
Iron, Ferrous	Analytical Method: §	SM 3500-Fe B#4						
Iron, Ferrous	0.52 mg/L		0.20	1		10/23/10 17:10		H6
300.0 IC Anions	Analytical Method: E	EPA 300.0						
Nitrate as N	ND mg/L		0.20	1		10/21/10 19:20	14797-55-8	
Nitrite as N	ND mg/L		0.10	1		10/21/10 19:20	14797-65-0	
300.0 IC Anions 28 Days	Analytical Method: E	EPA 300.0						
Sulfate	14.1 mg/L		1.0	1		10/21/10 19:20	14808-79-8	

Date: 11/03/2010 11:58 AM

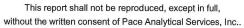
REPORT OF LABORATORY ANALYSIS

Page 11 of 25

Project:

Winlock

Pace Project No.:


255411

Sample: MW5-102010	Lab ID: 255411002	Collected: 10/20	/10 12:05	Received: 1	0/20/10 18:00	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK 175						
Methane	ND ug/L	10.0	1		10/25/10 13:52	2 74-82-8	
NWTPH-Dx GCS	Analytical Method: NWTPH-	Dx Preparation I	Лethod: Е	PA 3510			
Diesel Range	ND mg/L	0.085	1	10/26/10 11:00	10/31/10 07:29)	
Motor Oil Range	ND mg/L	0.43	1	10/26/10 11:00	10/31/10 07:29	64742-65-0	
n-Octacosane (S)	118 %	50-150	1	10/26/10 11:00	10/31/10 07:29	630-02-4	
o-Terphenyl (S)	108 %	50-150	1	10/26/10 11:00	10/31/10 07:29	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWTPH-	Gx					
Gasoline Range Organics	ND ug/L	50.0	1		10/26/10 14:51		
a,a,a-Trifluorotoluene (S)	98 %	50-150	1		10/26/10 14:51	98-08-8	
I-Bromofluorobenzene (S)	87 %	50-150	1		10/26/10 14:51	460-00-4	
260 MSV	Analytical Method: EPA 5030	DB/8260					
Benzene	ND ug/L	1.0	1		10/24/10 04:25	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		10/24/10 04:25	100-41-4	
oluene	ND ug/L	1.0	1		10/24/10 04:25	108-88-3	
(ylene (Total)	ND ug/L	3.0	1		10/24/10 04:25	1330-20-7	
-Bromofluorobenzene (S)	100 %	80-120	1		10/24/10 04:25	460-00-4	
Dibromofluoromethane (S)	102 %	80-122	1		10/24/10 04:25	1868-53-7	
,2-Dichloroethane-d4 (S)	90 %	80-124	1		10/24/10 04:25	17060-07-0	
oluene-d8 (S)	99 %	80-123	1		10/24/10 04:25	2037-26-5	
ron, Ferrous	Analytical Method: SM 3500-	Fe B#4					
ron, Ferrous	ND mg/L	0.20	1		10/23/10 17:10	!	H6
00.0 IC Anions	Analytical Method: EPA 300.	0					
litrate as N	0.65 mg/L	0.20	1		10/21/10 20:12	14797-55-8	
litrite as N	ND mg/L	0.10	1		10/21/10 20:12	14797-65-0	
00.0 IC Anions 28 Days	Analytical Method: EPA 300.	0					

Date: 11/03/2010 11:58 AM

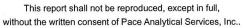
REPORT OF LABORATORY ANALYSIS

Page 12 of 25

Project:

Winlock

Pace Project No.:


255411

Sample: MW1-102010	Lab ID: 2554	11003 C	ollected: 10/20	/10 12:55	Received: 1	0/20/10 18:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Metho	od: RSK 175						
Methane	388 ug/l	<u>.</u>	10.0) 1		10/25/10 14:18	74-82-8	
NWTPH-Dx GCS	Analytical Metho	od: NWTPH-D	x Preparation	Method: E	EPA 3510			
Diesel Range	0.67 mg/	'L	0.08	5 1	10/26/10 11:00	10/31/10 07:45		
Motor Oil Range	ND mg/	'L	0.43	3 1	10/26/10 11:00	10/31/10 07:45	64742-65-0	
n-Octacosane (S)	117 %		50-150) 1	10/26/10 11:00	10/31/10 07:45	630-02-4	
o-Terphenyl (S)	110 %		50-150) 1	10/26/10 11:00	10/31/10 07:45	84-15-1	
NWTPH-Gx GCV	Analytical Metho	od: NWTPH-G	X					
Gasoline Range Organics	ND ug/l	Ĺ	50.0) 1		10/26/10 15:39		
a,a,a-Trifluorotoluene (S)	92 %		50-150) 1		10/26/10 15:39	98-08-8	
4-Bromofluorobenzene (S)	82 %		50-150) 1		10/26/10 15:39	460-00-4	
8260 MSV	Analytical Metho	od: EPA 5030E	3/8260				* _	
Benzene	ND ug/l		1.0) 1		10/24/10 04:48	71-43-2	8 5
Ethylbenzene	ND ug/l		1.0) 1		10/24/10 04:48	100-41-4	
Toluene	ND ug/l	Ĺ	1.0) 1		10/24/10 04:48	108-88-3	
Xylene (Total)	ND ug/l	L	3.0) 1		10/24/10 04:48	1330-20-7	
4-Bromofluorobenzene (S)	99 %		80-120) 1		10/24/10 04:48	460-00-4	
Dibromofluoromethane (S)	98 %		80-12	2 1		10/24/10 04:48	1868-53-7	
1,2-Dichloroethane-d4 (S)	91 %		80-12	1 . 1		10/24/10 04:48	17060-07-0	
Toluene-d8 (S)	104 %		80-12	3 1		10/24/10 04:48	2037-26-5	
Iron, Ferrous	Analytical Metho	od: SM 3500-F	e B#4					
Iron, Ferrous	2.3 mg/	/L	0.20) 1		10/23/10 17:10	,	H6
300.0 IC Anions	Analytical Metho	od: EPA 300.0					W 2	
Nitrate as N	ND mg/	/L	0.2) 1		10/21/10 20:29	14797-55-8	
Nitrite as N	ND mg/	/L	0.1) 1		10/21/10 20:29	14797-65-0	
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 300.0						
Sulfate	59.1 mg/	/L	5.	5		10/26/10 23:51	14808-79-8	

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 25

Project:

Winlock

Pace Project No.:

255411

Sample: MW2-102010	Lab ID: 255411004 Col	lected: 10/20/1	0 13:45	Received: 10)/20/10 18:00 N	/latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK 175						
Methane	6320 ug/L	10.0	1	(6)	10/25/10 14:43	74-82-8	
WTPH-Dx GCS	Analytical Method: NWTPH-Dx	Preparation Me	ethod: E	PA 3510			
Diesel Range	0.81 mg/L	0.076	1	10/26/10 11:00	10/31/10 08:02		
Notor Oil Range	0.59 mg/L	0.38	1	10/26/10 11:00	10/31/10 08:02	64742-65-0	
n-Octacosane (S)	112 %	50-150	1	10/26/10 11:00	10/31/10 08:02	630-02-4	
-Terphenyl (S)	107 %	50-150	1	10/26/10 11:00	10/31/10 08:02	84-15-1	
WTPH-Gx GCV	Analytical Method: NWTPH-Gx						
Sasoline Range Organics	95.2 ug/L	50.0	1		10/26/10 16:03		
,a,a-Trifluorotoluene (S)	97 %	50-150	1		10/26/10 16:03	98-08-8	
-Bromofluorobenzene (S)	86 %	50-150	1		10/26/10 16:03	460-00-4	
260 MSV	Analytical Method: EPA 5030B/8	3260					
Benzene	10.6 ug/L	1.0	1		10/24/10 05:12	71-43-2	
thylbenzene	ND ug/L	1.0	1		10/24/10 05:12	100-41-4	
oluene	ND ug/L	1.0	1		10/24/10 05:12	108-88-3	
(ylene (Total)	ND ug/L	3.0	1		10/24/10 05:12	1330-20-7	
-Bromofluorobenzene (S)	100 %	80-120	1		10/24/10 05:12	460-00-4	
Dibromofluoromethane (S)	98 %	80-122	1		10/24/10 05:12		
,2-Dichloroethane-d4 (S)	91 %	80-124	1		10/24/10 05:12	17060-07-0	
oluene-d8 (S)	103 %	80-123	1		10/24/10 05:12	2037-26-5	
on, Ferrous	Analytical Method: SM 3500-Fe	B#4					
on, Ferrous	1.3 mg/L	0.20	1		10/23/10 17:10		H6
00.0 IC Anions	Analytical Method: EPA 300.0						
litrate as N	ND mg/L	0.20	1		10/21/10 20:46	14797-55-8	
litrite as N	ND mg/L	0.10	1		10/21/10 20:46	14797-65-0	
00.0 IC Anions 28 Days	Analytical Method: EPA 300.0						

Date: 11/03/2010 11:58 AM

Project:

Winlock

Pace Project No.:

255411

Sample: MW3-102010	Lab ID: 255411005 C	ollected: 10/20/1	0 14:45	Received: 10	0/20/10 18:00 I	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK 175						
Methane	338 ug/L	10.0	1		10/25/10 15:09	74-82-8	
NWTPH-Dx GCS	Analytical Method: NWTPH-D	x Preparation Me	ethod: E	PA 3510			
Diesel Range	0.90 mg/L	0.085	1	10/26/10 11:00	10/31/10 08:18	3	
Motor Oil Range	0.46 mg/L	0.43	1	10/26/10 11:00	10/31/10 08:18	64742-65-0	
n-Octacosane (S)	114 %	50-150	1	10/26/10 11:00	10/31/10 08:18	8 630-02-4	
o-Terphenyl (S)	108 %	50-150	1	10/26/10 11:00	10/31/10 08:18	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWTPH-G	Sx					
Gasoline Range Organics	ND ug/L	50.0	1		10/26/10 16:27	,	
a,a,a-Trifluorotoluene (S)	95 %	50-150	1		10/26/10 16:27	98-08-8	
4-Bromofluorobenzene (S)	85 %	50-150	1		10/26/10 16:27	460-00-4	
8260 MSV	Analytical Method: EPA 50308	B/8260					
Benzene	ND ug/L	1.0	1		10/24/10 05:36	3 71-43-2	
Ethylbenzene	ND ug/L	1.0	1		10/24/10 05:36	100-41-4	
Toluene	ND ug/L	1.0	1		10/24/10 05:36	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		10/24/10 05:36	1330-20-7	
4-Bromofluorobenzene (S)	99 %	80-120	1		10/24/10 05:36	6 460-00-4	
Dibromofluoromethane (S)	.98 %	80-122	1		10/24/10 05:36	1868-53-7	
1,2-Dichloroethane-d4 (S)	91 %	80-124	1		10/24/10 05:36	17060-07-0	
Toluene-d8 (S)	105 %	80-123	1		10/24/10 05:36	2037-26-5	
Iron, Ferrous	Analytical Method: SM 3500-F	Fe B#4					
Iron, Ferrous	1.5 mg/L	0.20	1	*	10/23/10 17:10)	H6
300.0 IC Anions	Analytical Method: EPA 300.0						
Nitrate as N	ND mg/L	0.20	1		10/21/10 21:04	14797-55-8	
Nitrite as N	ND mg/L	0.10	1		10/21/10 21:04	1 14797-65-0	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0)					
Sulfate	14.6 mg/L	1.0	1		10/21/10 21:04	14808-79-8	

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 25

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

Winlock

Pace Project No.:

255411

Sample: TRIP BLANK 1-102010	Lab ID: 25541	1006	Collected: 10/20	/10 15:00	Received:	10/20/10 18:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method	d: EPA 5030	B/8260					
Benzene	ND ug/L		1.0	1		10/24/10 03:14	71-43-2	
Ethylbenzene	ND ug/L		1.0	1		10/24/10 03:14	100-41-4	
Toluene	ND ug/L		1.0	1		10/24/10 03:14	108-88-3	
Xylene (Total)	ND ug/L		3.0	1		10/24/10 03:14	1330-20-7	
4-Bromofluorobenzene (S)	105 %		80-120	1		10/24/10 03:14	460-00-4	
Dibromofluoromethane (S)	96 %		80-122	1		10/24/10 03:14	1868-53-7	
1,2-Dichloroethane-d4 (S)	91 %		80-124	1		10/24/10 03:14	17060-07-0	
Toluene-d8 (S)	100 %		80-123	1	9	10/24/10 03:14	2037-26-5	

Date: 11/03/2010 11:58 AM

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

QUALITY CONTROL DATA

Project:

Winlock

Pace Project No.:

255411

QC Batch:

AIR/11131

Analysis Method:

RSK 175

QC Batch Method:

RSK 175

Analysis Description:

RSK 175 AIR HEADSPACE

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK: 878217

Parameter

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

Blank

Result

Reporting Limit

Analyzed

Qualifiers

Methane

ug/L

Units

ND

10.0 10/25/10 10:16

LABORATORY CONTROL SAMPLE & LCSD: 878219 878218 Spike LCS LCSD LCS LCSD % Rec Max % Rec % Rec Parameter Units Conc. Result Result Limits **RPD RPD** Qualifiers 21 30 Methane ug/L 60.7 50.1 61.7 83 102 70-130

Project:

Winlock

Pace Project No.:

255411

QC Batch:

OEXT/2861

Analysis Method:

NWTPH-Dx

QC Batch Method:

EPA 3510

Analysis Description:

NWTPH-Dx GCS

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK: 46807

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

	*	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range	mg/L	ND	0.080	10/31/10 05:49	
Motor Oil Range	mg/L	ND	0.40	10/31/10 05:49	
n-Octacosane (S)	%	111	50-150	10/31/10 05:49	
o-Terphenyl (S)	%	103	50-150	10/31/10 05:49	

LABORATORY CONTROL SAM	MPLE & LCSD: 46808		46	809						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Diesel Range	mg/L	5	4.9	4.8	99	96	51-147	3	30	
Motor Oil Range	mg/L	5	5.7	5.5	113	109	20-160	4	30	
n-Octacosane (S)	%				116	110	50-150			
o-Terphenyl (S)	%				132	125	50-150			

Project:

Winlock

Pace Project No.:

255411

QC Batch:

GCV/1975

Analysis Method:

NWTPH-Gx

QC Batch Method:

NWTPH-Gx

Analysis Description:

NWTPH-Gx GCV Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK: 46762

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

Parameter		Units		Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	ug/L		-	ND .	50.0	10/26/10 13:09	
4-Bromofluorobenzene (S)	%			83	50-150	10/26/10 13:09	
a,a,a-Trifluorotoluene (S)	%			92	50-150	10/26/10 13:09	

LABORATORY CONTROL SAMPLE:	46763				26		
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Gasoline Range Organics	ug/L	250	230	92	50-163	8	
4-Bromofluorobenzene (S)	%			89	50-150		
a,a,a-Trifluorotoluene (S)	%			99	50-150		£ 11 0 1

SAMPLE DUPLICATE: 47257					
Parameter	Units	255411002 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	ug/L	ND	ND		7 V
4-Bromofluorobenzene (S)	%	87	101	16	
a,a,a-Trifluorotoluene (S)	%	98	115	16	191

SAMPLE DUPLICATE: 47258			_			
Parameter	Units	255419002 Result	Dup Result	RPD	Qualifiers	
Gasoline Range Organics	ug/L	79.0	67.3	16		
4-Bromofluorobenzene (S)	%	87	82	6		
a,a,a-Trifluorotoluene (S)	%	97	90	8		

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

Winlock

Pace Project No.:

255411

QC Batch:

MSV/3318

Analysis Method:

EPA 5030B/8260

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005, 255411006

METHOD BLANK: 46764

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005, 255411006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	10/24/10 02:50	
Ethylbenzene	ug/L	ND	1.0	10/24/10 02:50	
Toluene	ug/L	ND	1.0	10/24/10 02:50	
Xylene (Total)	ug/L	ND	3.0	10/24/10 02:50	
1,2-Dichloroethane-d4 (S)	%	92	80-124	10/24/10 02:50	
4-Bromofluorobenzene (S)	%	105	80-120	10/24/10 02:50	
Dibromofluoromethane (S)	%	98	80-122	10/24/10 02:50	
Toluene-d8 (S)	%	101	80-123	10/24/10 02:50	3

LABORATORY CONTROL SAM	PLE & LCSD: 46765		46	3766						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	19.8	19.3	99	96	76-127	3	30	
Ethylbenzene	ug/L	20	18.2	17.6	91	88	72-125	4	30	
Toluene	ug/L	20	18.1	17.3	90	86	69-125	4	30	
Xylene (Total)	ug/L	60	54.1	52.3	90	87	74-124	3	30	
1,2-Dichloroethane-d4 (S)	%				88	89	80-124			
4-Bromofluorobenzene (S)	%				108	108	80-120			
Dibromofluoromethane (S)	%				100	100	80-122			
Toluene-d8 (S)	%				102	100	80-123			

Date: 11/03/2010 11:58 AM

Project:

Winlock

Pace Project No.:

255411

QC Batch:

WET/2360

Analysis Method:

SM 3500-Fe B#4

QC Batch Method:

SM 3500-Fe B#4

Analysis Description:

Iron, Ferrous

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK: 46539

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

Reporting Limit

Analyzed

Qualifiers

Iron, Ferrous

mg/L

Units

Units

ND

0.20 10/23/10 17:10

LABORATORY CONTROL SAMPLE:

Parameter

46540

Spike

LCS

LCS

% Rec

80-120 H6

Parameter Iron, Ferrous

mg/L

Conc.

.8

Blank

Result

Result

% Rec

Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

46542

0.82

MS

MSD

MSD

102

MS MSD % Rec Limits

RPD

Parameter

Iron, Ferrous

Units Result mg/L

255411001

0.52

Spike Conc.

Spike Conc. 8. .8

MS Result 1.3

Result 1.4 % Rec 100 % Rec 104

50-150

Qual

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

Winlock

Pace Project No.:

255411

QC Batch:

WETA/1747

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

Blank

Reporting

Analyzed

Nitrate as N

Units

Result

Limit

10/21/10 19:03

Qualifiers

Nitrite as N

mg/L mg/L

ND ND 0.20 0.10 10/21/10 19:03

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

46510

Units

Spike Conc.

LCS Result

LCS % Rec

% Rec Limits

Qualifiers

Nitrate as N Nitrite as N

Nitrate as N

Nitrite as N

mg/L mg/L

Units

mg/L

mg/L

2.5 2.5

MS

Spike

Conc.

2.5

2.5

2.6 2.6 103 105 90-110 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

255411001

Result

ND

ND

46512

MSD Spike

Conc.

2.5

2.5

MS Result

2.6

2.6

2.6

2.5

MS

% Rec

101

103

MSD

Result

MSD

% Rec

99

99

% Rec

90-110

RPD

Limits Qual 90-110 2

3

Date: 11/03/2010 11:58 AM

Pace Analytical Services, Inc. 940 South Harney

> Seattle, WA 98108 (206)767-5060

QUALITY CONTROL DATA

Project:

Winlock

Pace Project No.:

255411

QC Batch:

WETA/1755

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

METHOD BLANK: 47002

Associated Lab Samples:

255411001, 255411002, 255411003, 255411004, 255411005

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Sulfate

mg/L

ND

1.0 10/21/10 19:03

LABORATORY CONTROL SAMPLE: 47003

Parameter

Parameter

Spike

LCS

LCS

% Rec

Sulfate

Conc.

Result

% Rec

Limits

Qualifiers

mg/L

15

15.5

47005

103

90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

47004

MSD

MSD

MS

MSD % Rec

103

% Rec

Sulfate

Units mg/L

255411001 Result

14.1

Units

MS Spike Conc.

Spike Conc. 15

MS Result 15 29.7

Result 29.5 % Rec 104 Limits 90-110 **RPD** Qual

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

QUALIFIERS

Project:

Winlock

Pace Project No .:

255411

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M

Pace Analytical Services - Minneapolis

PASI-S

Pace Analytical Services - Seattle

BATCH QUALIFIERS

Batch: GCSV/2024

A sample duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

H6

[1]

Analysis initiated more than 15 minutes after sample collection.

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

Page 24 of 25

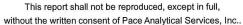
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Winlock

Pace Project No.:


255411

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255411001	MW4-102010	RSK 175	AIR/11131		* * * * * * * * * * * * * * * * * * * *
255411002	MW5-102010	RSK 175	AIR/11131		
255411003	MW1-102010	RSK 175	AIR/11131		
255411004	MW2-102010	RSK 175	AIR/11131		
255411005	MW3-102010	RSK 175	AIR/11131		
255411001	MW4-102010	EPA 3510	OEXT/2861	NWTPH-Dx	GCSV/2024
255411002	MW5-102010	EPA 3510	OEXT/2861	NWTPH-Dx	GCSV/2024
255411003	MW1-102010	EPA 3510	OEXT/2861	NWTPH-Dx	GCSV/2024
255411004	MW2-102010	EPA 3510	OEXT/2861	NWTPH-Dx	GCSV/2024
255411005	MW3-102010	EPA 3510	OEXT/2861	NWTPH-Dx	GCSV/2024
255411001	MW4-102010	NWTPH-Gx	GCV/1975		
255411002	MW5-102010	NWTPH-Gx	GCV/1975		
255411003	MW1-102010	NWTPH-Gx	GCV/1975		
55411004	MW2-102010	NWTPH-Gx	GCV/1975		
255411005	MW3-102010	NWTPH-Gx	GCV/1975		
55411001	MW4-102010	EPA 5030B/8260	MSV/3318		
55411002	MW5-102010	EPA 5030B/8260	MSV/3318		
55411003	MW1-102010	EPA 5030B/8260	MSV/3318		
55411004	MW2-102010	EPA 5030B/8260	MSV/3318		
55411005	MW3-102010	EPA 5030B/8260	MSV/3318		
255411006	TRIP BLANK 1-102010	EPA 5030B/8260	MSV/3318		
255411001	MW4-102010	SM 3500-Fe B#4	WET/2360		
255411002	MW5-102010	SM 3500-Fe B#4	WET/2360		
55411003	MW1-102010	SM 3500-Fe B#4	WET/2360		
255411004	MW2-102010	SM 3500-Fe B#4	WET/2360		
55411005	MW3-102010	SM 3500-Fe B#4	WET/2360		
55411001	MW4-102010	EPA 300.0	WETA/1747		
55411002	MW5-102010	EPA 300.0	WETA/1747		
255411003	MW1-102010	EPA 300.0	WETA/1747		
55411004	MW2-102010	EPA 300.0	WETA/1747		
255411005	MW3-102010	EPA 300.0	WETA/1747		
255411001	MW4-102010	EPA 300.0	WETA/1755		
55411002	MW5-102010	EPA 300.0	WETA/1755		
55411003	MW1-102010	EPA 300.0	WETA/1755		
255411004	MW2-102010	EPA 300.0	WETA/1755		
255411005	MW3-102010	EPA 300.0	WETA/1755		

Date: 11/03/2010 11:58 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 25

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				12	3	6	ဖ	œ	7	၈	CI	4	ω	N		ITEM#			Requ	Phor	Email To:	24	Address:	Com	Sec	"
0			ADDITIONAL COMMENTS) [1	TPH Nam 111-102010	Mw3-10200	275		MADS-102010	Mety-102010	Waste Water Product Product Soil/Solid Oil (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE Tissue Other	ient Information Dri	Section D	Requested Due Date/TAT: STO TAT	er Fax	Herione Farellin	Issac uah. L	T 45 566	Company: Farolly Consolling	Section A Required Client Information:	Face Analytical* www.pacelabs.com
ORIGINAL SAMPLI		Lade Faylon	RELINQUISHED BY / AFFILIATION		(Ţ,	13th 6	W 6 1	WT 6	276	2	6	UT 6 Holeston	ARR OT SAMPLE TYPE (G=GRAB START TME	odes to left	4		Project Name: 6771	Purchase Order No.: 683-009	27	Copy To:	Report To: Starpy Attension	Section B Required Project Information:	
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:		m lospo	TION DATE		_		<i>.</i>	, , ,	15.51	1.000	1745	245	1255	1	Idadia IIIS	ENDIGENAB ENDIGENAB TIME	COLLECTED							Non		The Chain-of-Custody i
RE Jaja		1200 (J	TIME					(U	[S]	XXXVII	XXX 1	NXX 5	XXX	XXX 11	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃			Pace Profile #: 6	Pace Project Manager:	Pace Quote Reference:	Address: 975	Company Name	Attention: 5/6	Section C	s a LEGAL DOCUME
Ru an/h		Ship Migher	ACCEPTED BY / AFFILIATION							X	X	X	X	X	X	HCI NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Test	Preservatives >		83-007	7	009	July of		a. Artherson	··	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
DATE Signed /		/PACE 102610	FILIATION DATE					7		X.	XXXXXX	XXXXXXX	IXIXI XIXIVIX	XXXXXXX	AMMAM	Named-612 82-0 RTEX 6NA 300.0 Sul 7NA 300 0 Nitrolle RSK 175 Ferroux TROA	lafe Mila	Requested Analysis Filtered	STATE:	Con fr Gas Site Location	٦	100				t be completed accurately
		1800	E TIME											<u> </u>				iltered (Y/N)	1 624		٦	S GROUN	REGULATORY AGENCY		Page:	
Temp in °C Received on Ice (Y/N)		7	SAMPL		1	+		1	02	/ /	N/	10	1	N	(/)	Residual Chlorine (Y/N)					7	GROUND WATER		139	-	2554
Custody ealed Cooler (Y/N) amples Intact (Y/N)		7 7	SAMPLE CONDITIONS													Pace Project No./ Lab l.D.		*		0 2 2	OTHER	DRINKING WATER		1074	of	

*important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to tale charges of 1.5% per month for any indices not paid within 30 days.

8.0 6, 5,8 6, 5.10

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

		2)	- 11		_`	12			,		Y		2 02	•		
Comments	-	VS:633	SSSN SSSN	WGKU	WGFU	BP2S	BP2N	BP3U	BP2U	BP1U	BG1H	AG1U	VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N BP2S WGFU WGKU 😘 🔊		Sample Line Item	
					3							10 m		of	COC PAGE	
Pace Analytical"			•		1	-		h	. 100	2. 9	3	allo	Far		CLIENT:	

				1.6						5.7			
	12	±	10	ဖ	œ	7	ග •	CJ CJ	4	ယ	2		ltem
				2		ii.	,					6	VG9H
				2 2 2				4				2 4	AG1H
						.5	-		×				AG1U
						8 V A						ſγ	AG1U BG1H BP1U BP2U BP3U
						3	ğ			-			BP1U
	•			ja.				4-			_	_	BP2U
						*				•			BP3U
													BP2N
								4			_	1 12	BP2S
									ı			ì	WGFU
													BP2S WGFU WGKU BY3N
				ı				4				- 12	253N
						19		4_			_	200	V200
5													
	Trip Blank?												
8								×					Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I] Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thic. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

1

Sample Condition Upon Receipt Project # 255411 Client Name: Farallon ace Analytical" Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: Yes Yes Custody Seal on Cooler/Box Present: ☐ No Seals intact: ☐ No Packing Material: | Bubble Wrap. Bubble Bags □ None Other Temp. Blank Yes Samples on ice, cooling process has begun Thermometer Used 132013 or 101731962 or 226099) Type of Ice: (Wet,) Blue None Date and Initials of person examining contents: 102010 CW Biological Tissue is Frozen: Yes No 8,04,382,516 Cooler Temperature Comments: Temp should be above freezing ≤ 6 °C Yes DNo DN/A 1 Chain of Custody Present: Yes DNo DNA 2 Chain of Custody Filled Out: Yes ONo □N/A Chain of Custody Relinquished: Yes DNo □N/A Sampler Name & Signature on COC: XYes □No □N/A Samples Arrived within Hold Time: Nitrate, Nitrette XYes □No □N/A 6. Short Hold Time Analysis (<72hr): □Yes XNo □N/A 7 Rush Turn Around Time Requested: 11 Yes DNo □N/A Sufficient Volume: YZYes □No □N/A Correct Containers Used: Yes □No □N/A -Pace Containers Used: Yes No □N/A 10. Containers Intact: ☐Yes ☐No TON/A Filtered volume received for Dissolved tests Yes DNo □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. Yes DNo □N/A 13. All containers needing preservation are found to be in Yes No □N/A compliance with EPA recommendation. Lot # of added Initial when preservative completed Exceptions: VOA, coliform, TOC, O&G AVA □Yes □No Samples checked for dechlorination: □N/A Headspace in VOA Vials (>6mm): □N/A 16. Trip Blanks Present: □N/A Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (I.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review: