

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

GROUNDWATER MONITORING STATUS REPORT MARCH 2011

FORMER CUMMINGS OIL LEASE SITE 908 NORTHWEST KERRON AVENUE WINLOCK, WASHINGTON VCP NO. SW0775

> Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

> > Farallon PN: 283-005

RECEIVED

MAY 1 5 2013

WA State Department of Ecology (SWRO)

For:

2454 Occidental Avenue South, Suite 1A Seattle, Washington

August 19, 2011

Prepared by:

Javan Ruark Staff Geologist

Reviewed by:

Jeffrey Kaspar

sed Geo

Stacy Patterson
Senior Environmental Scientist

Jeffrey Kasper, L.G., L.H.G. Senior Project Manager

TABLE OF CONTENTS

ACRO	NYMS AND ABBREVIATIONSii
1.0	INTRODUCTION1-1
2.0	MONITORING ACTIVITIES AND RESULTS
3.0	CONCLUSIONS3-1
4.0	BIBLIOGRAPHY4-1
	FIGURES
Figure	1 Site Vicinity Map
Figure	2 Groundwater Contour Map for March 22, 2011
Figure	3 Groundwater Analytical Results
	TABLES
Table 1	Summary of Groundwater Elevation Data
Table 2	2 Groundwater Analytical Results for Petroleum Hydrocarbon Constituents
Table 3	Summary of Groundwater Analytical Results for Polycyclic Aromatic Hydrocarbons
Table 4	4 Summary of Groundwater Geochemical Parameters

APPENDIX

Appendix A Laboratory Analytical Report

ACRONYMS AND ABBREVIATIONS

BNSF Railway Company

BTEX benzene, toluene, ethylbenzene, and xylenes

DRO total petroleum hydrocarbons as diesel-range organics

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Farallon Consulting, L.L.C.

GRO total petroleum hydrocarbons as gasoline-range organics

μg/l micrograms per liter
mg/l milligrams per liter

MTCA Washington State Model Toxics Control Act Cleanup Regulation

ORO total petroleum hydrocarbons as oil-range organics.

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PQL practical quantitation limit

Site Former Cummings Oil Lease Site at 908 Northwest Kerron Avenue,

Winlock, Lewis County, Washington

VCP Voluntary Cleanup Program

Work Plan Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908

Northwest Kerron Avenue, Winlock, Washington dated December 18,

2008, prepared by Farallon Consulting, L.L.C.

1.0 INTRODUCTION

This Groundwater Monitoring Status Report has been prepared on behalf of BNSF Railway Company (BNSF) to summarize the results of the groundwater monitoring and sampling event conducted on March 22, 2011 at the former Cummings Oil Lease Site at 908 Northwest Kerron Avenue in Winlock, Lewis County, Washington (herein referred to as the Site) (Figure 1). Prior site investigations and a tank removal and soil excavation cleanup action have confirmed that concentrations of total petroleum hydrocarbons as gasoline-range organics (GRO), as diesel-range organics (DRO), and as oil-range organics (ORO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) were released to the subsurface as a result of historical activities at the Site. The groundwater monitoring and sampling is being performed to: monitor concentrations of petroleum hydrocarbon constituents previously detected in groundwater above Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels; assess the effectiveness of the cleanup action; and determine whether natural attenuation of residual petroleum hydrocarbon constituents is occurring.

The cleanup action at the Site was performed under the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in accordance with MTCA, as established in Chapter 173-340 of the Washington Administrative Code, and the Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington dated December 18, 2008, prepared by Farallon Consulting, L.L.C. (Farallon) (2008) (Work Plan). The Site was entered into the Ecology VCP in 2006 and assigned VCP Identification No. SW0775 under the Ecology Toxics Cleanup Program.

The Work Plan presented the selected cleanup approach and specified the cleanup standards and associated requirements for the cleanup action. The selected cleanup action for the Site was executed in conjunction with tank closure activities conducted at the Site between March 10 and August 1, 2008. The tank closure and cleanup action included removal of two underground storage tanks and four aboveground storage tanks, excavation and off-Site disposal of soil with petroleum hydrocarbon concentrations above MTCA cleanup levels, and installation of monitoring wells to delineate the nature and extent of petroleum hydrocarbon constituents in groundwater and to assess the progress of groundwater cleanup by natural attenuation processes. The results of the tank closure and cleanup action are summarized in the *Tank Closure Report*, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington dated March 11, 2010, prepared by Farallon (2010).

2.0 MONITORING ACTIVITIES AND RESULTS

The monitoring activities conducted at the Site by Farallon on March 22, 2011 included measuring groundwater levels and collecting groundwater quality data and samples for laboratory analysis. The monitoring activities and results are summarized in the following sections.

2.1 GROUNDWATER MONITORING ACTIVITIES

The groundwater monitoring and sampling event included the following elements:

- Measuring the depth to groundwater in monitoring wells MW-1 through MW-5;
- Purging and sampling monitoring wells MW-1 through MW-5 using U.S. Environmental Protection Agency (EPA) low-flow sampling methods;
- Measuring water quality parameters during monitoring well purging to assess the
 potential for natural attenuation processes to mitigate residual petroleum hydrocarbon
 constituents present in groundwater; and
- Submitting the groundwater samples for laboratory analysis.

Farallon opened monitoring wells MW-1 through MW-5 to allow the water levels to equilibrate with atmospheric pressure for a minimum of 15 minutes prior to obtaining groundwater level measurements. Groundwater levels in the monitoring wells were measured to an accuracy of 0.01 foot using an electronic water-level meter.

Following collection of groundwater level measurements, monitoring wells MW-1 through MW-5 were purged and sampled using a peristaltic pump and polyethylene tubing. The purging was conducted at flow rates ranging from 150 to 200 milliliters per minute, with the intake tubing placed a maximum of 3 feet below the water table in each monitoring well. During purging, water quality was monitored using a Yellow Springs Instruments water-quality meter equipped with a flow-through cell. Water quality parameters monitored and recorded during purging and sampling included temperature, pH, specific conductance, dissolved oxygen, and oxidation-reduction potential (ORP). The monitoring wells were purged until the water quality parameters stabilized in accordance with EPA guidelines for low-flow sampling. groundwater samples were transferred directly from the tubing into laboratory-prepared containers. The containers from each sampling event were placed on ice in a cooler and transported to an Ecology-accredited laboratory under standard chain-of-custody protocols. The groundwater samples were analyzed for DRO and ORO by Northwest Method NWTPH-Dx; GRO by Northwest Method NWTPH-Gx; BTEX by EPA Method 5030B/8260; polycyclic aromatic hydrocarbons (PAHs), including naphthalene by EPA Method 8270 with selective ion monitoring; methane by Method RSK 175; total nitrate by EPA Method 353.2; and sulfate by EPA Method 300.0. Ferrous iron concentrations in groundwater were determined using reagent field test kits. Ferrous iron concentrations were determined using laboratory analytical Method SM 3500-FE during previous sampling events. Due to holding time considerations, ferrous iron reagent field test kits will continue to be used for future sampling events.

Purge water generated during groundwater sampling was stored in a 5-gallon drum on the Site. The purge water will be scheduled for disposal during a future groundwater monitoring and sampling event.

2.2 GROUNDWATER MONITORING RESULTS

Groundwater level measurements and elevations are summarized in Table 1. Figure 2 provides a groundwater elevation contour map illustrating the estimated groundwater flow direction and gradient for the groundwater monitoring and sampling event conducted on March 22, 2011. The March 2011 groundwater level measurements indicate a groundwater flow direction to the west, and an average hydraulic gradient at the Site of approximately 0.04 foot per foot. The groundwater flow direction during previous groundwater monitoring events has varied from northwest to southwest.

Groundwater analytical results for petroleum hydrocarbon constituents and PAHs are summarized in Tables 2 and 3. The analytical results for the groundwater samples collected on March 22, 2011 are depicted on Figure 3.

The laboratory analytical results for the March 22, 2011 groundwater monitoring and sampling event are summarized as follows:

- Concentrations of GRO were detected above the laboratory quantitation limit (PQL) but below the MTCA Method A cleanup level in the groundwater sample collected from monitoring well MW-2.
- Concentrations of DRO exceeded the MTCA Method A cleanup level of 500 micrograms per liter (μg/l) in groundwater samples collected from monitoring wells MW-1 through MW-3.
- ORO was not detected at concentrations at or above the laboratory PQL in the groundwater samples collected from monitoring wells MW-1 through MW-5.
- Concentrations of the BTEX constituents were not detected at or above the laboratory PQLs, with the exception of benzene, which exceeded the MTCA Method A cleanup level of 5 µg/l in the groundwater sample collected from monitoring well MW-2.
- With the exception of monitoring well MW-2, concentrations of carcinogenic PAHs were not detected above the laboratory PQL in the groundwater samples collected, and the calculated toxicity equivalent factor for carcinogenic PAHs did not exceed the MTCA Method A cleanup level of 0.1 µg/l in the groundwater samples collected.
- With the exception of monitoring well MW-2, naphthalene was not detected at concentrations at or above the laboratory PQL. Naphthalene was detected in monitoring well MW-2 at a concentration of 0.18 μ g/l, which is below the MTCA Method A cleanup level of 160 μ g/l.

The laboratory analytical report for the groundwater monitoring event is provided in Appendix A.

2.3 NATURAL ATTENUATION ASSESSMENT RESULTS

An assessment of the potential for natural attenuation processes to reduce concentrations of residual petroleum hydrocarbon constituents in groundwater via biodegradation was conducted during the March 22, 2011 groundwater monitoring and sampling event. The assessment included laboratory analyses and measurement of field parameters that provide data to assess whether biodegradation is occurring, and if so by what process(es). Laboratory analyses and field measurements for the assessment included the following:

- Primary electron receptors that are potential energy sources for native bacteria capable of biodegradation of petroleum compounds, and indicators of groundwater geochemistry:
 - Dissolved oxygen (O₂);
 - Nitrate (NO₃⁻); and
 - Sulfate (SO₄⁻²).
- Metabolic byproducts of biodegradation and indicators of groundwater geochemistry:
 - Ferrous iron (Fe⁺²):
 - Nitrite (NO₂); and
 - Methane (CH₄).
- Geochemical indicators of whether the subsurface environment is amenable to biodegradation of petroleum compounds:
 - ORP:
 - Temperature; and
 - pH.

Laboratory analytical results and field measurements for the natural attenuation parameters and geochemical indicators are summarized in Table 4. To assess whether natural attenuation is occurring in groundwater monitoring wells at the Site, the concentrations of primary electron receptors, the concentrations of metabolic by-products of biodegradation, and the geochemical indicators for monitoring wells MW-1 through MW-3 within the petroleum hydrocarbon plume were compared to these data for down-gradient monitoring well MW-5, which is outside the petroleum hydrocarbon plume. The results of the natural attenuation assessment for the March 22, 2011 sampling event are summarized as follows:

• Dissolved Oxygen—Measurements of less than 1 milligram per liter (mg/l) of available oxygen within the petroleum hydrocarbon plume indicate that groundwater is trending toward more anaerobic conditions. The concentrations of dissolved oxygen in groundwater at monitoring wells MW-1 through MW-3 ranged from 0.15 to 0.57 mg/l during the March 22, 2011 monitoring and sampling event. These dissolved oxygen measurements indicate that the available oxygen likely is being used as an energy source for biodegradation in areas with residual petroleum hydrocarbon constituents. Available oxygen was 6.02 mg/l in monitoring well MW-5, which indicates aerobic conditions outside the petroleum hydrocarbon plume.

- Nitrate and Nitrite—Nitrite is formed by anaerobic microbial nitrate reduction during biodegradation of petroleum hydrocarbon constituents, referred to as de-nitrification. The anaerobic respiratory process reduces nitrate (NO₃) to nitrite (NO₂). The concentrations of nitrate and nitrite could not be compared during the March 22, 2011 monitoring and sampling event because the laboratory analyzed the samples for total nitrogen as nitrate plus nitrite.
- Ferrous Iron—Ferrous iron is formed by anaerobic microbial ferric iron reduction during the biodegradation of petroleum hydrocarbon constituents. Concentrations of ferrous iron in the groundwater samples collected from monitoring wells MW-1 through MW-3 ranged from 3.2 to 4.2 mg/l during the March 22, 2011 monitoring and sampling event at the Site. The elevated concentrations of ferrous iron indicate that ferric iron is being reduced through anaerobic microbial respiration in these monitoring wells. Ferrous iron was detected at a concentration of 0.50 mg/l in monitoring well MW-5. The elevated concentrations of ferrous iron in monitoring wells MW-1 through MW-3 relative to monitoring well MW-5 indicate that biodegradation of petroleum hydrocarbons is occurring within the residual petroleum hydrocarbon plume.
- Sulfate—Concentrations of sulfate greater than 1 mg/l indicate a favorable environment for sulfate-reducing conditions. The concentrations of sulfate in groundwater samples collected from monitoring wells MW-1 through MW-3 and MW-5 ranged from 7.0 to 34.3 mg/l. Sulfate was present at monitoring well locations both inside and outside the petroleum hydrocarbon plume, which indicates a favorable environment for sulfate-reducing conditions. However, microbial respiration via sulfate reduction is not occurring at a detectable rate in these monitoring wells based on the high concentrations of sulfate present.
- Methane—Methane is a metabolic by-product of biodegradation of petroleum hydrocarbon constituents. Concentrations of methane in the groundwater samples collected from monitoring wells MW-1 through MW-3 ranged from 22 to 1,160 µg/l during the monitoring and sampling event conducted at the Site. Methane was not detected at concentrations at or above the PQL in monitoring well MW-5. The elevated concentrations of methane at monitoring wells MW-1 through MW-3 relative to monitoring well MW-5 indicate that biodegradation of petroleum hydrocarbons is occurring within the plume area.
- ORP—The ORP measured at monitoring wells MW-1 and MW-3 during the monitoring event were -61.9 and -78.2 millivolts, respectively, which indicate an anaerobic environment. The ORP measured in monitoring wells MW-2 and MW-5 during the monitoring event were 191.6 and 47.2 millivolts, respectively, which is within a range typically considered indicative of moderately aerobic conditions. Excluding the ORP measured in monitoring well MW-2 within the plume, these results correspond with the trend in dissolved-oxygen measurements. Dissolved oxygen was present in monitoring well MW-5 outside the plume, and was degraded in monitoring wells MW-1 through MW-3 inside the plume where biodegradation of petroleum hydrocarbons is occurring.
- Temperature—The groundwater temperature measured at monitoring wells MW-1 through MW-3 and MW-5 ranged from 8.89 to 9.72 degrees Celsius during the

groundwater monitoring and sampling event. Biodegradation processes occur at these temperatures, but typically are accelerated at temperatures approaching 20 degrees Celsius or greater.

• pH—The values for pH measured at monitoring wells MW-1 through MW-3 and MW-5 ranged from 5.62 to 8.06, with 7 as a neutral value. These pH values are within a range amenable to the bacteria capable of petroleum hydrocarbon biodegradation.

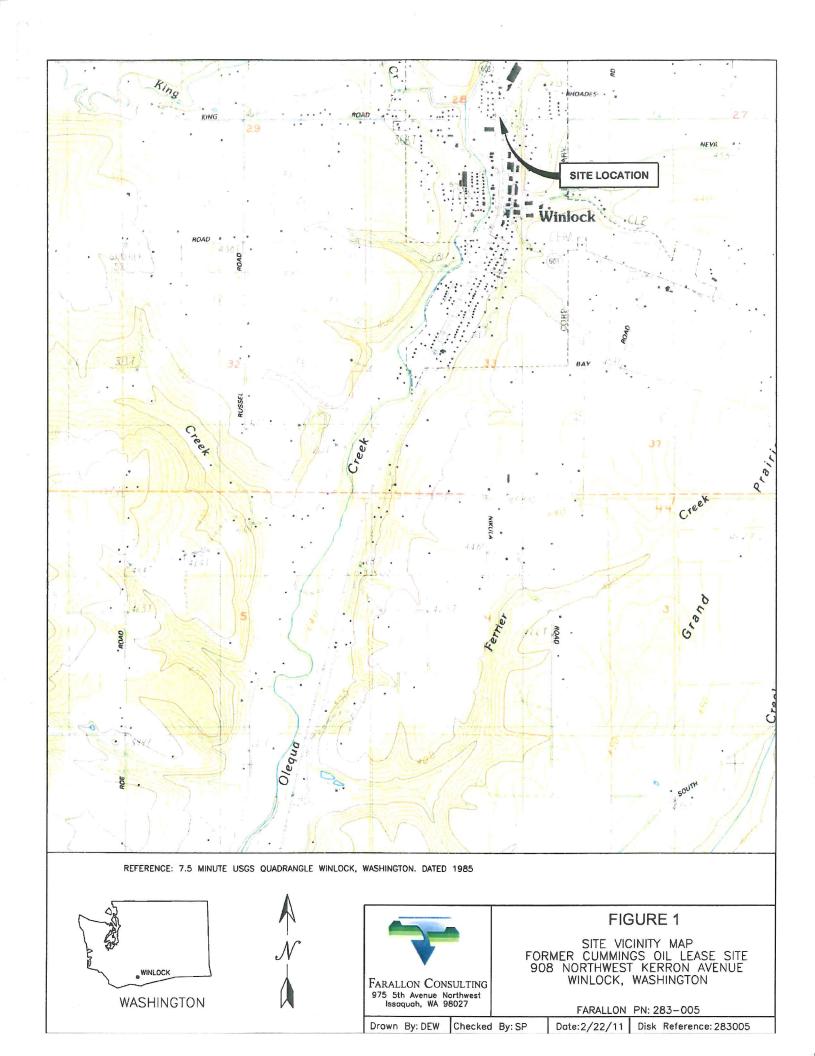
3.0 CONCLUSIONS

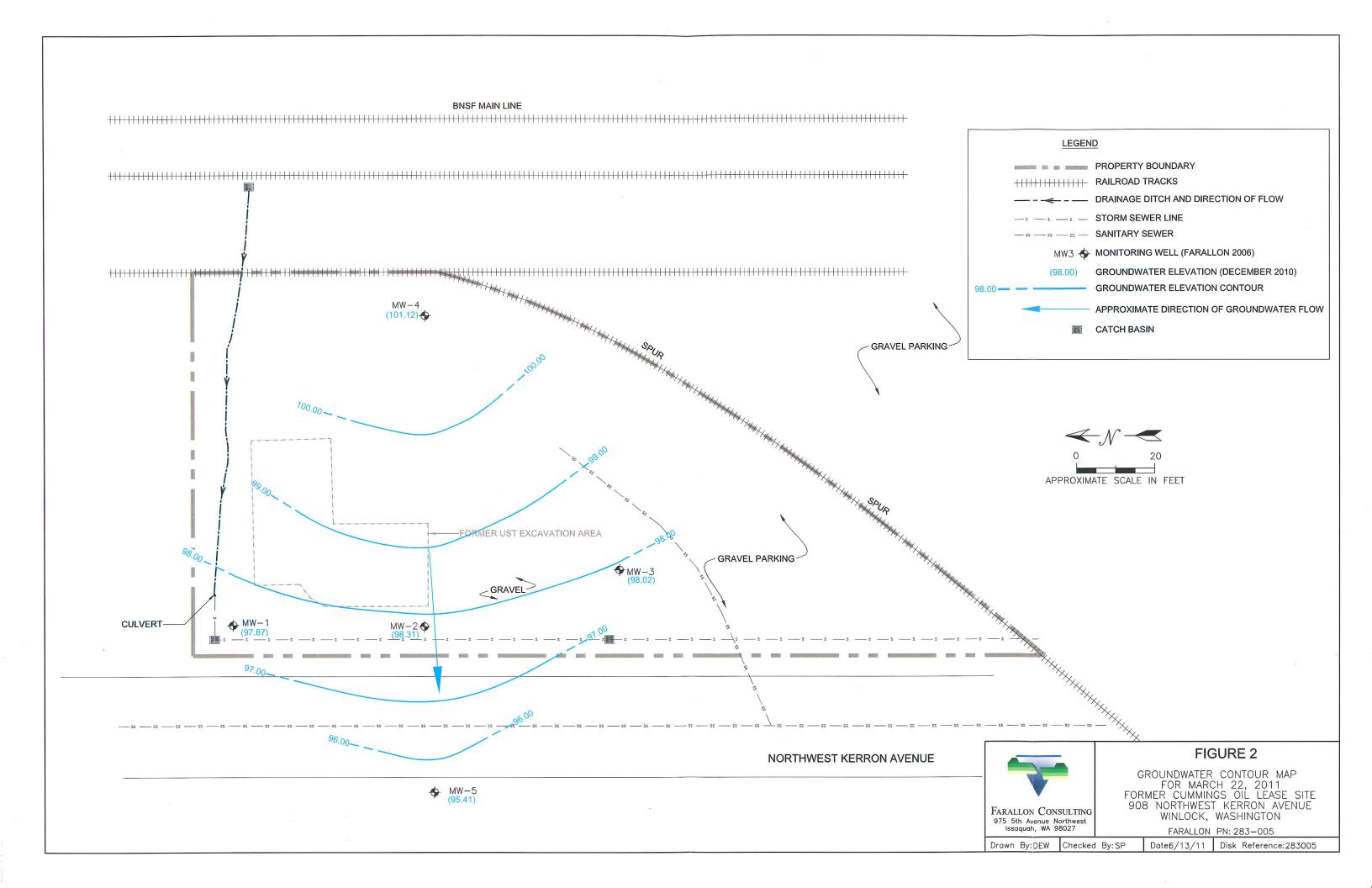
The groundwater flow direction for the March 22, 2011 groundwater monitoring event was to the west at an average estimated hydraulic gradient of approximately 0.04 foot per foot. During previous monitoring events, the groundwater flow direction has ranged from northwest to southwest.

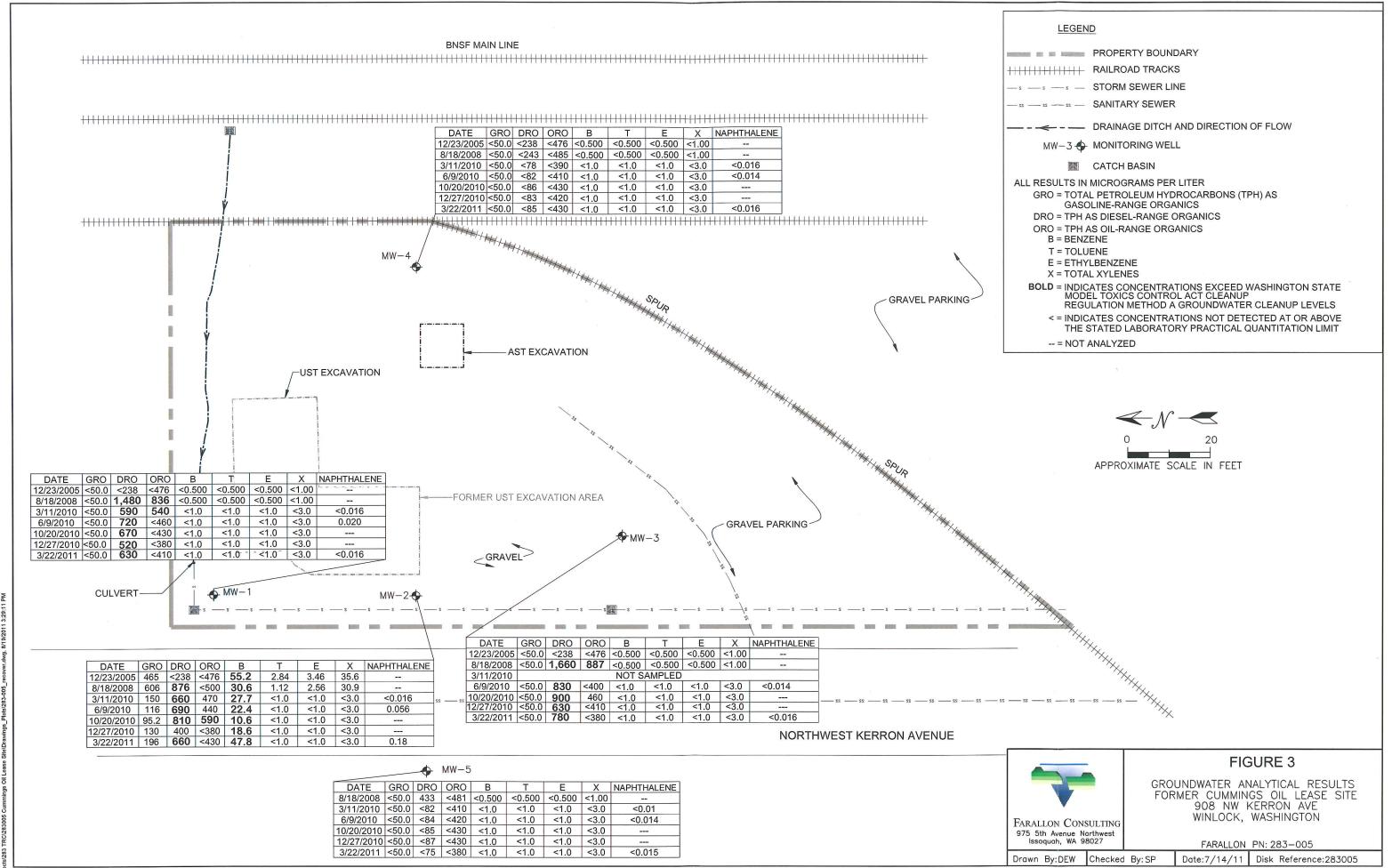
Concentrations of GRO, DRO, ORO, PAHs, naphthalene, or the BTEX constituents at or above the laboratory PQLs were not detected in groundwater samples collected from monitoring wells MW-4 and MW-5 during the March 2011 groundwater monitoring and sampling event. Concentrations of PAHs and naphthalene were detected above laboratory PQLs, but below the MTCA Method A cleanup levels in monitoring well MW-2. Concentrations of DRO and/or benzene above MTCA Method A cleanup levels were detected in samples collected from monitoring wells MW-1 through MW-3 in the area west of the former underground storage tank excavation on the western portion of the Site and the AST excavation area on the central portion of the Site.

The assessment of natural attenuation in groundwater using geochemical indicators at monitoring wells where petroleum hydrocarbon constituents are present relative to monitoring well MW-5, where no petroleum hydrocarbons are present, indicates that biodegradation of petroleum hydrocarbons is occurring under anaerobic conditions. The electron receptor dissolved oxygen appears to be depleted at monitoring wells MW-1 through MW-3, indicating that available oxygen is being used as an energy source for biodegradation. Concentrations of the metabolic by-product indicators ferrous iron and methane have been detected in groundwater at higher concentrations at monitoring wells MW-1 through MW-3 than at monitoring well MW-5, further indicating that biodegradation of petroleum hydrocarbons is occurring.

Annual groundwater monitoring for DRO, GRO, ORO, and BTEX will be conducted in August 2012 to assess the progress of natural attenuation at the Site and evaluate the need for and frequency of subsequent sampling events. Historically, the highest concentrations of petroleum hydrocarbon constituents were detected at the Site during the month of August. The August 2012 monitoring event will provide an assessment of groundwater quality at the Site during dry seasonal conditions.


4.0 BIBLIOGRAPHY


- Farallon Consulting, L.L.C. (Farallon). 2006. Supplemental Subsurface Investigation, BNSF Winlock, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. May 31.
- ——. 2008. Cleanup Action Work Plan, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. December 18.
- ——. 2010. Tank Closure Report, Former Cummings Oil Lease Site, 908 Northwest Kerron Avenue, Winlock, Washington. Prepared for BNSF Railway Company, Seattle, Washington. March 11.


FIGURES

GROUNDWATER MONITORING STATUS REPORT
MARCH 2011
Former Cummings Oil Lease Site
908 Northwest Kerron Avenue
Winlock, Washington
VCP No. SW0775

Farallon PN: 283-005

TABLES

GROUNDWATER MONITORING STATUS REPORT
MARCH 2011
Former Cummings Oil Lease Site
908 Northwest Kerron Avenue
Winlock, Washington
VCP No. SW0775

Farallon PN: 283-005

Table 1
Summary of Groundwater Elevation Data
Former Cummings Oil Lease Site
Winlock, Washington

Farallon PN: 283-005

Well Identification	Monitoring Date 12/23/2005 8/18/2008		Monitoring Well Screened Interval (feet bgs)	Wellhead Elevation ¹ (feet)	Depth to Water (feet bgs) 2.13 4.50	Groundwater Elevation (feet) 98.33 95.96
MW-1	3/11/2010 6/8/2010 10/20/2010 12/27/2010 3/22/2011	12	5-12	100.46	3.00 4.20 3.00 1.95 2.59	97.46 96.26 97.46 98.51 97.87
MW-2	12/23/2005 8/18/2008 3/11/2010 6/8/2010 10/20/2010 12/27/2010 3/22/2011	11	5-11	100.4	2.50 4.67 1.88 2.28 2.65 1.52 2.09	97.90 95.73 98.52 98.12 97.75 98.88 98.31
MW-3	12/23/2005 8/18/2008 3/11/2010 6/8/2010 10/20/2010 12/27/2010 3/22/2011	10	5-10	100.18	2.21 4.40 2.26 2.68 1.98 2.16	97.97 95.78 97.92 97.50 98.20 98.02
MW-4	12/23/2005 8/18/2008 3/11/2010 6/8/2010 10/20/2010 12/27/2010 3/22/2011	12	5-12	102.45	0.50 5.02 1.9 1.45 2.40 0.48 1.33	101.95 97.43 100.55 101.00 100.05 101.97 101.12
MW-5	8/18/2008 3/11/2010 6/8/2010 10/20/2010 12/27/2010 3/22/2011	10	5-10	99.92	5.54 3.29 4.00 5.25 3.17 4.51	94.38 96.63 95.92 94.67 96.75 95.41

NOTES:

bgs = below ground surface

¹Elevations based on survey conducted by Farallon Consulting, L.L.C. to a benchmark of 105.59.

⁻⁻ denotes depth not measured

Table 2

Groundwater Analytical Results for Petroleum Hydrocarbon Constituents

Former Cummings Oil Lease Site Winlock, Washington

Farallon PN: 283-005

	ţ)				Analytical	Results (mic	rograms per	liter)	
Sample Identification	Well Identification	Sample Date	GRO ¹	DRO ²	ORO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
MW1-122305	- Additional of the second	12/23/2005	<50.0	<238	<476	< 0.500	< 0.500	<0.500	<1.00
MW1-081808		8/18/2008	<50.0	1,480	836	< 0.500	<0.500	<0.500	<1.00
MW1-031110		3/11/2010	<50.0	590	540	<1.0	<1.0	<1.0	<6.0
MW1-060910	MW-1	6/9/2010	<50.0	720	<460	<1.0	<1.0	<1.0	<3.0
MW1-102010		10/20/2010	<50.0	670	<430	<1.0	<1.0	<1.0	<3.0
MW1-122710	a 27	12/27/2010	<50.0	520	<380	<1.0	<1.0	<1.0	<3.0
MW1-032211		3/22/2011	<50.0	630	<410	<1.0	<1.0	<1.0	<3.0
MW2-122305	22	12/23/2005	465	<238	<476	55.2	2.84	3.46	35.6
MW2-081808		8/18/2008	606	876	<500	30.6	1.12	2.56	30.9
MW2-031110		3/11/2010	150	660	470	27.7	<1.0	<1.0	<6.0
MW2-060910	MW-2	6/9/2010	116	690	440	22.4	<1.0	<1.0	<3.0
MW2-102010		10/20/2010	95.2	810	590	10.6	<1.0	<1.0	<3.0
MW2-122710		12/27/2010	130	400	<380	18.6	<1.0	<1.0	<3.0
MW2-032211	180	3/22/2011	196	660	<430	47.8	<1.0	<1.0	<3.0
MW3-122305		12/23/2005	<50.0	<238	<476	< 0.500	< 0.500	< 0.500	<1.00
MW3-081808	-	8/18/2008	<50.0	1,660	887	< 0.500	< 0.500	<0.500	<1.00
Not Sampled		3/11/2010						100	-
MW3-060910	MW-3	6/9/2010	<50.0	830	<400	<1.0	<1.0	<1.0	<3.0
MW3-102010] .	10/20/2010	<50.0	900	460	<1.0	<1.0	<1.0	<3.0
MW3-122710	У	12/27/2010	<50.0	630	<410	<1.0	<1.0	<1.0	<3.0
MW3-032211		3/22/2011	<50.0	780	<380	<1.0	<1.0	<1.0	<3.0
MW4-122305		12/23/2005	<50.0	<238	<476	< 0.500	< 0.500	< 0.500	<1.00
MW4-081808		8/18/2008	<50.0	<243	<485	< 0.500	< 0.500	< 0.500	<1.00
MW4-031110		3/11/2010	<50.0	<78	<390	<1.0	<1.0	<1.0	<6.0
MW4-060910	MW-4	6/9/2010	<50.0	<82	<410	<1.0	<1.0	<1.0	<3.0
MW4-102010		10/20/2010	<50.0	<86	<430	<1.0	<1.0	<1.0	<3.0
MW4-122710		12/27/2010	<50.0	<83	<420	<1.0	<1.0	<1.0	<3.0
MW4-032211		3/22/2011	<50.0	<85	<430	<1.0	<1.0	<1.0	<3.0
MW5-081808		8/18/2008	<50.0	433	<481	< 0.500	<0.500	<0.500	<1.00
MW5-031110		3/11/2010	<50.0	<82	<410	<1.0	<1.0	<1.0	<6.0
MW5-060910	MW-5	6/9/2010	<50.0	<84	<420	<1.0	<1.0	<1.0	<3.0
MW5-102010	W W - 5	10/20/2010	<50.0	<85	<430	<1.0	<1.0	<1.0	<3.0
MW5-122710		12/27/2010	<50.0	<87	<430	<1.0	<1.0	<1.0	<3.0
MW5-032211		3/22/2011	<50.0	<75	<380	<1.0	<1.0	<1.0	<3.0
MTCA Method A	Cleanup Levels ⁴		800	500	500	5	1,000	700	1,000

NOTES:

Results in **bold** denote concentrations above applicable cleanup levels.

- < denotes analyte not detected at or above the reporting limit listed.
- -- denotes sample not analyzed.
- ¹ Analyzed by Northwest Method NWTPH-Gx.
- $^{2}\,\mbox{Analyzed}$ by Northwest Method NWTPH-Dx.
- ³ Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260B.
- ⁴ Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2007.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

Summary of Groundwater Analytical Results for Polycyclic Aromatic Hydrocarbons Former Cummings Oil Lease Site Winlock, Washington283-005 Table 3

Sample Weal Sample May-1 Sampl									Analytics	Analytical Results (micrograms per liter)	grams per liter)					
Accomphithene Accompt Accomphithene Accomphithene Accompt Accomp			-				*				Carcinogenic Po	lycyclic Aromati	c Hydrocarbons	_	16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Well	Sample Date	Naphthalene	ənədidqenəəA	уссизЪрцрАјвис	Fluorene ¹	- թոշունի ւ ջոջ	Вепхо(я)ругепе	Сһгуѕепе	Dibenzo(a,h)апthrасепе	ənəvyq(b,2-£,4,1)onəbnl	эпээглійласыс	Вепхо(b)Пиогалећене	Вепхо(к)Пиогалићепе	Total cPAHs TEC ²³
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3/11/2010	<0.016	<0.016	<0.015	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW1-060910	MW-1	6/9/2010	0.020	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.0106
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW1-032511		3/25/2011	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW2-031110		3/11/2010	<0.016	0.059	<0.015	0.12	0.023	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
10.18 0.075 0.017 0.01	MW2-060910	MW-2	6/9/2010	0.056	0.074	0.019	0.26	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.0106
Not Sampled Co014 Co014	MW2-032511		3/25/2011	0.18	0.075	<0.017	0.17	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	0.0128
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW3-031110		3/11/2010							Not Sample	ps					
	MW3-060910	MW-3	6/9/2011	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.0106
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW3-032511		3/25/2011	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
	MW4-031110		3/11/2010	<0.015	<0.016	<0.015	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
	MW4-060910	MW-4	6/9/2010	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.0106
<0.016 <0.016 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014<	MW4-032511		3/25/2011	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.0121
<0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014 <0.014<	MW5-031110		3/11/2010	<0.016	<0.016	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.0113
<0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015<	MW5-060910	MW-5	6/9/2010	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	0.0106
160 ⁴ 960 ⁵ NR 160 ⁵ NR	MW5-032511		3/25/2011	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.0113
	MTCA Method A	Cleanup Levels	for Groundwater	160 4	s 096	NR	3 09I	NR								0.10

NOTES:

Chenotes analyte not detected at or above the reporting limit listed.
¹ Analyzed by U.S. Environmental Protection Agency Method 8270C.

² Irola carcinoganic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

³ For concentrations reported at less than the laboratory reporting limit, half the reporting limit was use to calculate the TEC.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons NR = not researched TEC = toxic equivalent concentration

⁵ Washington State Department of Ecology Cleanup Levels and Risk Calculations under MTCA Standard Method B Formula Values for Groundwater

^{*}Washington State Model Toxics Control Act Cleamp Regulation (MTCA.) Method A Cleamp Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-3-40 of the Washington Administrative Code, as revised November 2007.

Table 4

Summary of Groundwater Geochemical Parameters

Former Cummings Oil Lease Site

Winlock, Washington Farallon PN: 283-005

Well Identification	Sample Date		Specific Conductance (mS/cm)	pH (pH units)	Dissolved Oxygen (mg/l)	Oxidation- Reduction Potential (mV)	Sulfate ¹ (mg/l)	Nitrate ¹ (mg/l as Nitrogen)	Nitrite ¹ (mg/l)	Methane² (μg/l)	Ferrous Iron ³ (mg/l)
	8/18/2008	17.60	0.221	6.03	0.92	-7.70				_	_
v	3/11/2010	10.08	0.289	6.70	0.47	117.7	74.4	< 0.20	< 0.20	289	
	6/9/2010	14.21	0.348	6.21	0.42	11.1	59.4	< 0.050	0.012	520	9.8
MW-1	10/20/2010	16.20	0.234	6.13	0.64	12.1	59.1	< 0.20	< 0.10	388	2.3
	12/27/2010	10.65	0.28	6.16	0.29	-1.2	38.3	< 0.20	< 0.10	668	15.3
	3/22/2011	9.27	0.308	7.29	0.15	-61.9	34.3	0.080^4	_	22.0	3.2
	8/18/2008	17.65	0.316	6.64	0.99	-77.20	0.420	< 0.200	_	1,660	_
	3/11/2010	9.93	0.247	7.28	0.77	101.2	30.31	< 0.20	< 0.10	1,620	_
MW-2	6/9/2010	14.48	0.277	6.84	1.00	75.8	7.9	< 0.050	< 0.010	3,500	3.2
	10/20/2010	16.76	0.279	6.61	0.91	-50.3	11.2	< 0.20	< 0.10	6,320	1.3
	12/27/2010	10.39	0.305	6.60	0.39	-78.5	12.5	< 0.20	< 0.10	2,980	30.2
	3/22/2011	8.97	0.253	6.63	0.57	191.6	8.3	0.104	-	1,160	1.8
MW-3.	8/18/2008	17.38	0.382	6.34	1.08	-75.60				_	
	3/11/2010		_	·—	_	_		5 S 		_	_
	6/9/2010	13.87	0.387	6.36	0.50	-6.80	13.4	< 0.050	< 0.010	380	3.90
	10/20/2010	17.26	0.321	6.57	0.87	-33.4	14.6	< 0.20	< 0.10	338	1.50
	12/27/2010	11.09	0.378	6.48	0.45	-50.8	13.9	< 0.20	< 0.10	339	23.2
	3/22/2011	9.72	0.416	8.06	0.25	-78.2	17.8	0.0734	_	224	4.2
/2	8/18/2008	13.78	0.241	6.75	0.97	-74.90	16.7	< 0.200	1	22.8	_
	3/11/2010	9.59	0.255	7.92	0.57	85.60	17.6	< 0.20	< 0.20	47.6	_
MW-4	6/9/2010	12.42	0.260	7.16	0.51	85.5	12.5	< 0.050	0.011	93	1.2
	10/20/2010	12.96	0.206	7.42	0.66	-77.8	14.1	< 0.20	< 0.10	16.9	0.52
	12/27/2010	10.84	0.205	6.11	0.49	53.5	9.1	< 0.20	< 0.10	51.6	19.5
	3/22/2011	9.20	0.196	6.01	0.91	211.2	14.3	0.124	-	<10.0	2.2
	8/18/2008	17.57	0.466	6.62	1.45	-31.60	8.03	< 0.200	_	40.6	_
	3/11/2010	10.30	0.067	7.63	5.66	107.9	3.2	0.61	< 0.10	<10.0	_
MW E	6/9/2010	14.74	0.074	5.76	2.27	213.5	4.7	0.87	< 0.010	<2.3	< 0.17
MW-5	10/20/2010	17.59	0.085	6.03	1.34	75.5	6.3	0.65	< 0.10	<10.0	< 0.20
	12/27/2010	10.69	0.073	5.72	5.62	140.7	3.9	1.2	< 0.10	<10.0	< 0.20
	3/22/2011	8.89	0.072	5.62	6.02	47.2	7.0	0.484	_	<10.0	0.50

NOTES

⁻⁻⁻ not measured/analyzed

[°]C = degrees Celsius

μg/l = micrograms per liter

mg/l = milligrams per liter mS/cm = millisiemens per centimeter

mV = millivolts

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 300.0. Samples collected on 3/22/2011 were analyzed by EPA Method 353.2.

²Analyzed by Method RSK 175.

³Analyzed by SM 3500-FE B#4, Samples collected on 3/22/2011 were analyzed in the field using Ferrous iron reagent test kits.

⁴Total nitrogen

APPENDIX A LABORATORY ANALYTICAL REPORT

GROUNDWATER MONITORING STATUS REPORT
MARCH 2011
Former Cummings Oil Lease Site
908 Northwest Kerron Avenue
Winlock, Washington
VCP No. SW0775

Farallon PN: 283-005

April 06, 2011

Stacy Patterson Farallon Consulting LLC 975 5th Avenue Northwest Issaquah, WA 98027

Project: Winlock 623-009

Pace Project No.: 257037

Dear Stacy Patterson:

Enclosed are the analytical results for sample(s) received by the laboratory on March 23, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield

Anoy Brownfield

andy.brownfield@pacelabs.com Project Manager

Enclosures

nelac

Pace Analytical Services, Inc. 940 South Harney

Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project:

Winlock 623-009

Pace Project No.:

257037

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #: WN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: D3086
Louisiana Certification #: 2007029
Maryland Certification #: 322

Michigan DEQ Certification #: 9909

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nebraska Certification #: Pace Nevada Certification #: Face
Newada Certification #: MN_00064
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project:

Winlock 623-009

Pace Project No.:

257037

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
257037001	MW5-032211	RSK 175	CJR	1	PASI-M
.57 057 001	191743-002211	NWTPH-Dx	DMT	4	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	. 2	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
57037002	MW4-032211	RSK 175	CJR	1	PASI-M
0.00.00		NWTPH-Dx	DMT	. 4	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
57037003	MW1-032211	RSK 175	CJR	1	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
57037004	MW2-032211	RSK 175	CJR	1	PASI-M
		NWTPH-Dx	DMT	4	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	2	PASI-S
		EPA 300.0	CMS	. 1	PASI-S
		EPA 353.2	CMS	1	PASI-S
57037005	MW3-032211	RSK 175	CJR	1	PASI-M
	and the second s	NWTPH-Dx	DMT	4	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	2	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
57037006	TRIP BLANKS	EPA 5030B/8260	LPM	8	PASI-S
		NWTPH-Gx	LNH	2	PASI-S

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 31

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

RSK 175

Client:

Description: RSK 175 AIR Headspace BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

5 samples were analyzed for RSK 175. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

NWTPH-Dx

Client:

Description: NWTPH-Dx GCS BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

5 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

EPA 8270 by SIM

Description: 8270 MSSV Low Level PAH SIM

Client:

BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

5 samples were analyzed for EPA 8270 by SIM. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSSV/1562

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No .:

257037

Method:

EPA 5030B/8260

Client:

Description: 8260 MSV BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

6 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

NWTPH-Gx

Description: NWTPH-Gx MSV

Client:

BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

6 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

EPA 300.0

Client:

Description: 300.0 IC Anions 28 Days BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

nelac

PROJECT NARRATIVE

Project:

Winlock 623-009

Pace Project No.:

257037

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client:

BNSF_Farallon - WA

Date:

April 06, 2011

General Information:

5 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/1947

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 257037001,257037002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 65128)
 - · Nitrogen, NO2 plus NO3
- MSD (Lab ID: 65129)
 - · Nitrogen, NO2 plus NO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW5-032211	Lab ID: 25703700	Collected: 03	/22/11 09:2	0 Received: 03	3/23/11 12:30	Matrix: Water	
Parameters	Results Ur	its Report Lir	nit DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 AIR Headspace	Analytical Method: RS	SK 175					
Methane	ND ug/L	1	0.0 1		03/29/11 05:12	74-82-8	
NWTPH-Dx GCS	Analytical Method: N	WTPH-Dx Preparation	n Method:	EPA 3510			
Diesel Range	ND mg/L	0.0	075 1	03/31/11 16:00	04/01/11 14:36	3	
Motor Oil Range	ND mg/L	C	.38 1	03/31/11 16:00	04/01/11 14:36	64742-65-0	
n-Octacosane (S)	104 %	50-	150 1	03/31/11 16:00	04/01/11 14:36	630-02-4	
p-Terphenyl (S)	100 %	50-	150 1	03/31/11 16:00	04/01/11 14:36	84-15-1	
8270 MSSV Low Level PAH SIM	Analytical Method: El	PA 8270 by SIM Prep	paration Me	ethod: EPA 3510			
1-Methylnaphthalene	ND ug/L	0.	015 1	03/24/11 11:00	03/25/11 16:33	3 90-12-0	
2-Methylnaphthalene	ND ug/L		015 1	03/24/11 11:00			
Acenaphthene	ND ug/L		015 1		03/25/11 16:33		
Acenaphthylene	ND ug/L		015 1		03/25/11 16:33		
Anthracene	ND ug/L		015 1		03/25/11 16:33		
Benzo(a)anthracene	ND ug/L		015 1		03/25/11 16:33		
Benzo(a)pyrene	ND ug/L		015 1		03/25/11 16:33		
Senzo(a)pyrene Senzo(b)fluoranthene	ND ug/L		015 1		03/25/11 16:33		
` '			015 1	and the second	03/25/11 16:33		
Benzo(g,h,i)perylene	ND ug/L						
Benzo(k)fluoranthene	ND ug/L		015 1		03/25/11 16:33		
Chrysene	ND ug/L		015 1		03/25/11 16:33		
Dibenz(a,h)anthracene	ND ug/L		015 1		03/25/11 16:33		
Fluoranthene	ND ug/L		015 1		03/25/11 16:33		
Fluorene	ND ug/L		015 1		03/25/11 16:33		
ndeno(1,2,3-cd)pyrene	ND ug/L		015 1		03/25/11 16:33		
Naphthalene	ND ug/L		015 1		03/25/11 16:33		
Phenanthrene	ND ug/L	0.	015 1		03/25/11 16:33		
Pyrene	ND ug/L	0.	015 1	03/24/11 11:00	03/25/11 16:33	3 129-00-0	
2-Fluorobiphenyl (S)	62 %	19-	118 1	03/24/11 11:00	03/25/11 16:33	3 321-60-8	
Terphenyl-d14 (S)	73 %	37-	127 1	03/24/11 11:00	03/25/11 16:3	3 1718-51-0	
8260 MSV	Analytical Method: El	PA 5030B/8260					
Benzene	ND ug/L		1.0 1		03/28/11 15:3	4 71-43-2	
Ethylbenzene	ND ug/L		1.0 1		03/28/11 15:34	4 100-41-4	
Toluene	ND ug/L		1.0 1		03/28/11 15:3	4 108-88-3	
Xylene (Total)	ND ug/L		3.0 1		03/28/11 15:3	4 1330-20-7	
4-Bromofluorobenzene (S)	102 %	80-	120 1		03/28/11 15:3		
Dibromofluoromethane (S)	92 %		122 1		03/28/11 15:3		
1,2-Dichloroethane-d4 (S)	82 %		124 1			4 17060-07-0	
Toluene-d8 (S)	100 %		123 1		03/28/11 15:3		
NWTPH-Gx MSV	Analytical Method: N						
55%			50.0 4		02/20/44 06:4	4	
Gasoline Range Organics	ND ug/L		50.0 1		03/30/11 06:4		
4-Bromofluorobenzene (S)	103 %	50-	150 1		03/30/11 06:4	4 400-00-4	
300.0 IC Anions 28 Days	Analytical Method: E	PA 300.0					
Sulfate	7.0 mg/L		1.0 1		03/25/11 17:5	6 14808-79-8	

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW5-032211

Lab ID: 257037001

Collected: 03/22/11 09:20

Received: 03/23/11 12:30

Matrix: Water

CAS No.

Parameters

Results

Units

Report Limit DF

Prepared

Analyzed

Qual

353.2 Nitrogen, NO2/NO3 pres.

Analytical Method: EPA 353.2

Nitrogen, NO2 plus NO3

0.48 mg/L

0.050

04/04/11 16:28

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW4-032211	Lab ID: 25703	7002 Co	llected: 03/22/1	1 09:36	Received: 03	3/23/11 12:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 AIR Headspace	Analytical Method	l: RSK 175						
Methane	ND ug/L		10.0	1		03/29/11 06:54	74-82-8	
NWTPH-Dx GCS	Analytical Method	: NWTPH-Dx	Preparation Me	ethod: E	PA 3510			
Diesel Range	ND mg/L		0.085	1	03/31/11 16:00	04/01/11 15:09		
Motor Oil Range	ND mg/L		0.43	1	03/31/11 16:00	04/01/11 15:09	64742-65-0	
n-Octacosane (S)	103 %		50-150	1	03/31/11 16:00	04/01/11 15:09	630-02-4	
o-Terphenyl (S)	100 %		50-150	1	03/31/11 16:00	04/01/11 15:09	84-15-1	
3270 MSSV Low Level PAH SIM	Analytical Method	d: EPA 8270 b	y SIM Preparati	ion Meth	od: EPA 3510			
1-Methylnaphthalene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 16:50	90-12-0	
2-Methylnaphthalene	ND ug/L		0.016	1		03/25/11 16:50		
Acenaphthene	ND ug/L		0.016	1		03/25/11 16:50		
Acenaphthylene	ND ug/L		0.016	1		03/25/11 16:50		
Acenaphiniyiene Anthracene	ND ug/L		0.016	1		03/25/11 16:50		
	ND ug/L		0.016	1		03/25/11 16:50		
Benzo(a)anthracene	ND ug/L		0.016	1		03/25/11 16:50		
Benzo(a)pyrene						03/25/11 16:50		
Benzo(b)fluoranthene	ND ug/L		0.016	1				
Benzo(g,h,i)perylene	ND ug/L		0.016	1		03/25/11 16:50		
Benzo(k)fluoranthene	ND ug/L		0.016	1		03/25/11 16:50		
Chrysene	ND ug/L		0.016	1		03/25/11 16:50		
Dibenz(a,h)anthracene	ND ug/L		0.016	1		03/25/11 16:50		
Fluoranthene	ND ug/L		0.016	1		03/25/11 16:50		
Fluorene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 16:50	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/L		0.016	1		03/25/11 16:50		
Naphthalene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 16:50	91-20-3	
Phenanthrene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 16:50	85-01-8	
Pyrene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 16:50	129-00-0	
2-Fluorobiphenyl (S)	62 %		19-118	1		03/25/11 16:50		
Terphenyl-d14 (S)	80 %		37-127	1		03/25/11 16:50		
8260 MSV	Analytical Method	d: EPA 5030B	/8260					
Benzene	ND ug/L		1.0	1	3	03/28/11 16:32	71-43-2	
Ethylbenzene	ND ug/L		1.0	1		03/28/11 16:32		
Toluene	ND ug/L		1.0	1		03/28/11 16:32		
Xylene (Total)	ND ug/L		3.0	1		03/28/11 16:32		
4-Bromofluorobenzene (S)	101 %		80-120	1		03/28/11 16:32		
Dibromofluoromethane (S)	94 %		80-122	1		03/28/11 16:32	and the second second second	
1,2-Dichloroethane-d4 (S)	81 %		80-124	1		03/28/11 16:32		
Toluene-d8 (S)	98 %		80-123	1		03/28/11 16:32	2037-26-5	
NWTPH-Gx MSV	Analytical Method	d: NWTPH-G>	(
Gasoline Range Organics	ND ug/L		50.0	1		03/30/11 07:23		
4-Bromofluorobenzene (S)	97 %		50-150	1		03/30/11 07:23		
300.0 IC Anions 28 Days	Analytical Method	d: EPA 300.0						
Sulfate	14.3 mg/L		1.0	1		03/25/11 18:14	14808-79-8	
per accommends								

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW4-032211

Lab ID: 257037002

Collected: 03/22/11 09:36

DF

Received: 03/23/11 12:30

Matrix: Water

CAS No.

Parameters

Results

Units

Report Limit

Prepared

Analyzed

Qual

353.2 Nitrogen, NO2/NO3 pres.

Analytical Method: EPA 353.2

Nitrogen, NO2 plus NO3

0.12 mg/L

0.050

04/04/11 16:32

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW1-032211	Lab ID: 257037003	Collected: 03/22/17	1 10:45	Received: 03	//23/11 12:30 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK 17	75					
Methane	22.0 ug/L	10.0	1		03/29/11 05:37	74-82-8	
NWTPH-Dx GCS	Analytical Method: NWTPI	H-Dx Preparation Me	thod: El	PA 3510			
Diesel Range	0.63 mg/L	0.082	1	03/31/11 16:00	04/01/11 15:25		
Motor Oil Range	ND mg/L	0.41	1	03/31/11 16:00	04/01/11 15:25	64742-65-0	
n-Octacosane (S)	111 %	50-150	1	03/31/11 16:00	04/01/11 15:25	630-02-4	
o-Terphenyl (S)	106 %	50-150	1	03/31/11 16:00	04/01/11 15:25	84-15-1	
8270 MSSV Low Level PAH SIM	Analytical Method: EPA 82	270 by SIM Preparation	on Meth	od: EPA 3510			
1-Methylnaphthalene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	90-12-0	
2-Methylnaphthalene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	91-57-6	
Acenaphthene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	83-32-9	
Acenaphthylene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	208-96-8	
Anthracene	ND ug/L	0.016	1		03/25/11 17:07		
Benzo(a)anthracene	ND ug/L	0.016	1		03/25/11 17:07		
Benzo(a)pyrene	ND ug/L	0.016	1		03/25/11 17:07		
Benzo(b)fluoranthene	ND ug/L	0.016	1		03/25/11 17:07		
	ND ug/L	0.016	1		03/25/11 17:07		
Benzo(g,h,i)perylene	ND ug/L	0.016	1		03/25/11 17:07		
Benzo(k)fluoranthene					03/25/11 17:07		
Chrysene	ND ug/L	0.016	1				
Dibenz(a,h)anthracene	ND ug/L	0.016	1		03/25/11 17:07		
Fluoranthene	ND ug/L	0.016	1		03/25/11 17:07		
Fluorene	ND ug/L	0.016	1		03/25/11 17:07		
Indeno(1,2,3-cd)pyrene	ND ug/L	0.016	1		03/25/11 17:07		
Naphthalene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	91-20-3	
Phenanthrene	ND ug/L	0.016	1	03/24/11 11:00	03/25/11 17:07	85-01-8	
Pyrene	ND ug/L	0.016	1		03/25/11 17:07		
2-Fluorobiphenyl (S)	48 %	19-118	1	03/24/11 11:00	03/25/11 17:07	321-60-8	
Terphenyl-d14 (S)	69 %	37-127	1	03/24/11 11:00	03/25/11 17:07	1718-51-0	
8260 MSV	Analytical Method: EPA 50	030B/8260					
Benzene	ND ug/L	1.0	1		03/28/11 16:52	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		03/28/11 16:52	100-41-4	
Toluene	ND ug/L	1.0	1		03/28/11 16:52	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		03/28/11 16:52	1330-20-7	
4-Bromofluorobenzene (S)	102 %	80-120	1		03/28/11 16:52	460-00-4	
Dibromofluoromethane (S)	94 %	80-122	1		03/28/11 16:52	1868-53-7	
1,2-Dichloroethane-d4 (S)	84 %	80-124	1		03/28/11 16:52		
Toluene-d8 (S)	96 %	80-123	1		03/28/11 16:52		
NWTPH-Gx MSV	Analytical Method: NWTP	H-Gx					
Gasoline Range Organics	ND ug/L	50.0	1		03/30/11 07:43		
4-Bromofluorobenzene (S)	99 %	50-150	1		03/30/11 07:43	460-00-4	
4-Diomondopenzene (3)	33 /0	30-130	7		00/00/11 07.43		
300.0 IC Anions 28 Days	Analytical Method: EPA 30	0.00					
Sulfate	34.3 mg/L	5.0	5		03/25/11 18:32	14808-79-8	

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW1-032211

Nitrogen, NO2 plus NO3

Lab ID: 257037003

Collected: 03/22/11 10:45

Received: 03/23/11 12:30

Matrix: Water

Parameters

Results

Units

DF Report Limit

Prepared

Analyzed

CAS No. Qual

353.2 Nitrogen, NO2/NO3 pres.

Analytical Method: EPA 353.2 0.080 mg/L

0.050

1

04/04/11 16:34

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Sample: MW2-032211	Lab ID: 257037004 Collected: 03/22/11 10:45 Received: 03/23/11					/23/11 12:30 N	/11 12:30 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
RSK 175 AIR Headspace	Analytical Metho	od: RSK 17	5						
Methane	1160 ug/	L	10.0	1		03/29/11 06:03	74-82-8		
NWTPH-Dx GCS	Analytical Meth	od: NWTPH	H-Dx Preparation Me	ethod: E	PA 3510				
Diesel Range	0.66 mg	′L	0.085	1	03/31/11 16:00	04/01/11 15:42			
Motor Oil Range	ND mg	/L	0.43	1	03/31/11 16:00	04/01/11 15:42	64742-65-0		
n-Octacosane (S)	105 %		50-150	1		04/01/11 15:42			
o-Terphenyl (S)	104 %		50-150	1	03/31/11 16:00	04/01/11 15:42	84-15-1		
8270 MSSV Low Level PAH SIM	Analytical Meth	od: EPA 82	70 by SIM Preparati	ion Metl	nod: EPA 3510				
1-Methylnaphthalene	0.77 ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	90-12-0		
2-Methylnaphthalene	0.031 ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	91-57-6		
Acenaphthene	0.075 ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	83-32-9		
Acenaphthylene	ND ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	208-96-8		
Anthracene	ND ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	120-12-7		
Benzo(a)anthracene	ND ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	56-55-3		
Benzo(a)pyrene	ND ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	50-32-8		
Benzo(b)fluoranthene	ND ug/	L	0.017	1	03/24/11 11:00	03/25/11 17:23	205-99-2		
Benzo(g,h,i)perylene	ND ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	191-24-2		
Benzo(k)fluoranthene	ND ug/		0.017	1		03/25/11 17:23			
Chrysene	ND ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	218-01-9		
Dibenz(a,h)anthracene	ND ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	53-70-3		
Fluoranthene	ND ug/		0.017	1		03/25/11 17:23			
Fluorene	0.17 ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	86-73-7		
Indeno(1,2,3-cd)pyrene	ND ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	193-39-5	¥	
Naphthalene	0.18 ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	91-20-3		
Phenanthrene	ND ug/		0.017	1	03/24/11 11:00	03/25/11 17:23	85-01-8		
Pyrene	ND ug/		0.017	1		03/25/11 17:23			
2-Fluorobiphenyl (S)	55 %		19-118	1	03/24/11 11:00	03/25/11 17:23	321-60-8		
Terphenyl-d14 (S)	72 %		37-127	1		03/25/11 17:23			
8260 MSV	Analytical Meth	od: EPA 50	30B/8260						
Benzene	47.8 ug/	L	1.0	1		03/28/11 17:12	71-43-2		
Ethylbenzene	ND ug/		1.0	1		03/28/11 17:12	100-41-4		
Toluene	ND ug/	0.0	1.0	1		03/28/11 17:12			
Xylene (Total)	ND ug/		3.0	1		03/28/11 17:12			
4-Bromofluorobenzene (S)	102 %	_	80-120	1		03/28/11 17:12			
Dibromofluoromethane (S)	95 %		80-122	1		03/28/11 17:12			
1,2-Dichloroethane-d4 (S)	86 %		80-124	1		03/28/11 17:12			
Toluene-d8 (S)	95 %		80-123	1		03/28/11 17:12			
NWTPH-Gx MSV	Analytical Meth	od: NWTPł							
	v ·			4		03/30/11 08:03			
Gasoline Range Organics 4-Bromofluorobenzene (S)	196 ug/ 103 %	L	50.0 50-150	1 1		03/30/11 08:03			
30 30 30 30 30 30 30 30 30 30 30 30 30 3		d. EDA 20				30/00/11 00:03	100 00-T		
300.0 IC Anions 28 Days	Analytical Meth	oa: EPA 30							
Sulfate	8.3 mg	/L	1.0	1		03/25/11 18:51	14808-79-8		

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW2-032211

Lab ID: 257037004

Results

Report Limit

Collected: 03/22/11 10:45

DF

Prepared

Received: 03/23/11 12:30

Matrix: Water

CAS No.

Qual

353.2 Nitrogen, NO2/NO3 pres.

Parameters

Analytical Method: EPA 353.2

Units

Nitrogen, NO2 plus NO3

0.10 mg/L

0.050

04/04/11 16:35

Analyzed

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.: 257037

Sample: MW3-032211	Lab ID: 25703	37005 C	Collected: 03/22/1	1 00:00	Received: 03	/23/11 12:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Metho	od: RSK 175						
Methane	224 ug/L	- v	10.0	1		03/29/11 06:28	74-82-8	
NWTPH-Dx GCS	Analytical Metho	od: NWTPH-D	Ox Preparation Me	ethod: E	PA 3510		2	
Diesel Range	0.78 mg/	L	0.075	1	03/31/11 16:00	04/01/11 15:58		
Motor Oil Range	ND mg/	L	0.38	1	03/31/11 16:00	04/01/11 15:58	64742-65-0	
n-Octacosane (S)	101 %		50-150	1	03/31/11 16:00	04/01/11 15:58	630-02-4	
o-Terphenyl (S)	99 %		50-150	1	03/31/11 16:00	04/01/11 15:58	84-15-1	
8270 MSSV Low Level PAH SIM	Analytical Metho	od: EPA 8270	by SIM Preparati	ion Meth	nod: EPA 3510			
1-Methylnaphthalene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 17:40	90-12-0	
2-Methylnaphthalene	ND ug/L	-	0.016	. 1	03/24/11 11:00	03/25/11 17:40	91-57-6	
Acenaphthene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 17:40	83-32-9	
Acenaphthylene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 17:40	208-96-8	
Anthracene	ND ug/L		0.016	1	03/24/11 11:00	03/25/11 17:40	120-12-7	
Benzo(a)anthracene	ND ug/L		0.016	1		03/25/11 17:40		
Benzo(a)pyrene	ND ug/L		0.016	1		03/25/11 17:40		
Benzo(b)fluoranthene	ND ug/L		0.016	1		03/25/11 17:40		
Benzo(g,h,i)perylene	ND ug/L		0.016	1		03/25/11 17:40		
Benzo(k)fluoranthene	ND ug/L		0.016	1		03/25/11 17:40		
Chrysene	ND ug/L		0.016	1		03/25/11 17:40		
Dibenz(a,h)anthracene	ND ug/L		0.016	1	03/24/11 11:00			
	ND ug/L		0.016	1		03/25/11 17:40		
Fluoranthene	-		0.016	1		03/25/11 17:40		
Fluorene	ND ug/L					03/25/11 17:40		
ndeno(1,2,3-cd)pyrene	ND ug/L		0.016	1				
Naphthalene	ND ug/L		0.016	1	03/24/11 11:00			
Phenanthrene	ND ug/L		0.016	1		03/25/11 17:40		
Pyrene	ND ug/l	_	0.016	1		03/25/11 17:40		
2-Fluorobiphenyl (S)	63 %		19-118	1	03/24/11 11:00			
Terphenyl-d14 (S)	75 %		37-127	1	03/24/11 11:00	03/25/11 17:40	1/18-51-0	
8260 MSV	Analytical Metho	od: EPA 5030)B/8260					
Benzene	ND ug/l	Ĺ,	1.0	1		03/28/11 17:32	71-43-2	
Ethylbenzene	ND ug/l	<u> </u>	1.0	1		03/28/11 17:32	100-41-4	
Toluene	ND ug/l	_	1.0	1		03/28/11 17:32	108-88-3	
Xylene (Total)	ND ug/l	_	3.0	1		03/28/11 17:32	1330-20-7	
4-Bromofluorobenzene (S)	100 %		80-120	1		03/28/11 17:32	460-00-4	
Dibromofluoromethane (S)	93 %	*	80-122	1		03/28/11 17:32	1868-53-7	
1,2-Dichloroethane-d4 (S)	83 %		80-124	. 1		03/28/11 17:32		
Toluene-d8 (S)	99 %		80-123	1		03/28/11 17:32		
NWTPH-Gx MSV	Analytical Metho	od: NWTPH-0	Gx					
Gasoline Range Organics	ND ug/l	Ĺ	50.0	1		03/30/11 08:23		
4-Bromofluorobenzene (S)	99 %	D	50-150	1		03/30/11 08:23	460-00-4	
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 300.	0					
Sulfate	17.8 mg/	'L	1.0	1		03/25/11 19:09	14808-79-8	
Cullato	11.3 1119/	_	1.0	•				

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 31

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:

257037

Sample: MW3-032211

Parameters

Lab ID: 257037005

Results

Collected: 03/22/11 00:00

Report Limit

11 00:00 DF

Received: 03/23/11 12:30

Prepared

Matrix: Water

CAS No.

Qual

353.2 Nitrogen, NO2/NO3 pres.

Analytical Method: EPA 353.2

Units

Nitrogen, NO2 plus NO3

0.073 mg/L

0.050

04/04/11 16:37

Analyzed

Date: 04/06/2011 02:45 PM

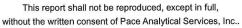
REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

Winlock 623-009

Pace Project No.:


257037

Sample: TRIP BLANKS	Lab ID: 25703700	O6 Collected: 03/19/	11 00:00	Received: 03/2	23/11 12:30	Matrix: Water	
Parameters	Results U	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: E	EPA 5030B/8260					
Benzene	ND ug/L	1.0	1	(03/28/11 14:53	3 71-43-2	
Ethylbenzene	ND ug/L	1.0	1		03/28/11 14:53	3 100-41-4	
Toluene	ND ug/L	1.0	1	(03/28/11 14:53	3 108-88-3	
Xylene (Total)	ND ug/L	3.0	1		03/28/11 14:53	3 1330-20-7	
4-Bromofluorobenzene (S)	105 %	80-120	1		03/28/11 14:53	3 460-00-4	
Dibromofluoromethane (S)	94 %	80-122	1	1	03/28/11 14:53	3 1868-53-7	
1,2-Dichloroethane-d4 (S)	81 %	80-124	1		03/28/11 14:53	3 17060-07-0	
Toluene-d8 (S)	99 %	80-123	. 1	1	03/28/11 14:53	3 2037-26-5	
NWTPH-Gx MSV	Analytical Method: N	WTPH-Gx					
Gasoline Range Organics	ND ug/L	50.0	1	10 × 1	03/30/11 05:44	4	
4-Bromofluorobenzene (S)	104 %	50-150	1	2	03/30/11 05:44	4 460-00-4	

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 31

QUALITY CONTROL DATA

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

AIR/11981

Analysis Method:

RSK 175

QC Batch Method:

RSK 175

Analysis Description:

RSK 175 AIR HEADSPACE

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

METHOD BLANK: 948699

Parameter

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

Blank Result Reporting

Limit

Analyzed

Qualifiers

Methane

ug/L

Units

ND

10.0 03/28/11 21:58

LABORATORY CONTROL SAMPL	E & LCSD: 948700		94	8701						
Deremeter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD	% Rec Limits	RPD	Max RPD	Qualifiers
Parameter	Offics	Conc.	Result	Result	10 Nec	/0 Nec	LIIIIII	INI D	NI D	Qualifiers
Methane	ug/L	60.7	58.6	50.8	97	84	70-130	14	30	

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

OEXT/3500

Analysis Method:

NWTPH-Dx

QC Batch Method:

EPA 3510

Analysis Description:

NWTPH-Dx GCS

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

METHOD BLANK: 64834

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range		ND	0.080	04/01/11 14:03	
Motor Oil Range	mg/L	ND	0.40	04/01/11 14:03	
n-Octacosane (S)	%	104	50-150	04/01/11 14:03	
o-Terphenyl (S)	%	97	50-150	04/01/11 14:03	

LABORATORY CONTROL SAMPLE:	64835					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range	mg/L		4.7	94	51-147	
Motor Oil Range	mg/L	5	4.9	97	20-160	
n-Octacosane (S)	%	*		104	50-150	
o-Terphenyl (S)	%			117	50-150	

SAMPLE DUPLICATE: 64836					
Parameter	Units	257037001 Result	Dup Result	RPD	Qualifiers
Farameter					
Diesel Range	mg/L	ND	.025J		
Motor Oil Range	mg/L	ND	.058J		
n-Octacosane (S)	%	104	108	4	
o-Terphenyl (S)	%	100	105	5	

SAMPLE DUPLICATE: 64837		I have a supplementation of the supplementati	_		
		257037005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range	mg/L	0.78	0.85	8	
Motor Oil Range	mg/L	ND	.32J		
n-Octacosane (S)	%	101	106	18	
o-Terphenyl (S)	%	99	103	17	

Date: 04/06/2011 02:45 PM

nelac

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

OEXT/3464

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3510

Analysis Description:

8270 Low Level PAH SIM

Associated Lab Samples:

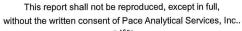
257037001, 257037002, 257037003, 257037004, 257037005

METHOD BLANK: 63818

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005


E 1	1	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	· ND	0.015	03/24/11 15:26	
2-Methylnaphthalene	ug/L	ND	0.015	03/24/11 15:26	
Acenaphthene	ug/L	ND	0.015	03/24/11 15:26	
Acenaphthylene	ug/L	ND	0.015	03/24/11 15:26	
Anthracene	ug/L	ND	0.015	03/24/11 15:26	90
Benzo(a)anthracene	ug/L	ND	0.015	03/24/11 15:26	
Benzo(a)pyrene	ug/L	ND	0.015	03/24/11 15:26	
Benzo(b)fluoranthene	ug/L	ND	0.015	03/24/11 15:26	
Benzo(g,h,i)perylene	ug/L	ND	0.015	03/24/11 15:26	
Benzo(k)fluoranthene	ug/L	ND	0.015	03/24/11 15:26	
Chrysene	ug/L	ND	0.015	03/24/11 15:26	
Dibenz(a,h)anthracene	ug/L	ND	0.015	03/24/11 15:26	
Fluoranthene	ug/L	ND	0.015	03/24/11 15:26	
Fluorene	ug/L	ND	0.015	03/24/11 15:26	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.015	03/24/11 15:26	
Naphthalene	ug/L	ND	0.015	03/24/11 15:26	
Phenanthrene	ug/L	ND	0.015	03/24/11 15:26	
Pyrene	ug/L	ND	0.015	03/24/11 15:26	
2-Fluorobiphenyl (S)	%	56	19-118	03/24/11 15:26	
Terphenyl-d14 (S)	%	78	37-127	03/24/11 15:26	

LABORATORY CONTROL SAMPLE:	63819					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/L		1.2	58	33-103	
2-Methylnaphthalene	ug/L	2	1.1	56	30-107	
Acenaphthene	ug/L	2	1.3	63	31-112	
Acenaphthylene	ug/L	2	1.3	67	25-127	
Anthracene	ug/L	2	1.4	72	27-127	
Benzo(a)anthracene	ug/L	2	1.6	79	44-128	
Benzo(a)pyrene	ug/L	2	1.7	83	37-132	
Benzo(b)fluoranthene	ug/L	2	1.5	76	47-131	
Benzo(g,h,i)perylene	ug/L	2	1.5	76	45-130	
Benzo(k)fluoranthene	ug/L	2	1.6	80	50-133	
Chrysene	ug/L	2	1.6	80	46-133	
Dibenz(a,h)anthracene	ug/L	2	1.5	74	49-132	
Fluoranthene	ug/L	2	1.5	76	43-133	
Fluorene	ug/L	2	1.5	74	29-136	
Indeno(1,2,3-cd)pyrene	ug/L	2	1.5	76	50-130	*
Naphthalene	ug/L	2	1.1	56	27-108	
Phenanthrene	ug/L	2	1.4	72	41-119	

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 31

QUALITY CONTROL DATA

Project:

Winlock 623-009

Pace Project No.:

257037


LABORATORY	CONTROL	SAMPLE.	63819
LADOIVION	CONTINUE	C/ tivil LL.	00010

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/L		1.6	80	50-127	
2-Fluorobiphenyl (S)	%			63	19-118	
Terphenyl-d14 (S)	%			82	37-127	

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 25 of 31

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

MSV/4087

Analysis Method:

EPA 5030B/8260

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005, 257037006

METHOD BLANK: 63770

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005, 257037006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	03/28/11 10:14	
Ethylbenzene	ug/L	ND	1.0	03/28/11 10:14	
Toluene	ug/L	ND	1.0	03/28/11 10:14	
Xylene (Total)	ug/L	ND	3.0	03/28/11 10:14	
1,2-Dichloroethane-d4 (S)	%	84	80-124	03/28/11 10:14	
4-Bromofluorobenzene (S)	%	101	80-120	03/28/11 10:14	
Dibromofluoromethane (S)	%	97	80-122	03/28/11 10:14	
Toluene-d8 (S)	%	96	80-123	03/28/11 10:14	

LABORATORY CONTROL SAMI	PLE: 63771					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	18.5	92	76-127	
Ethylbenzene	ug/L	20	18.0	90	72-125	
Toluene	ug/L	20	17.4	87	69-125	
Xylene (Total)	ug/L	60	54.7	91	74-124	
1,2-Dichloroethane-d4 (S)	%			82	80-124	
4-Bromofluorobenzene (S)	%			101	80-120	
Dibromofluoromethane (S)	%			97	80-122	
Toluene-d8 (S)	%			103	80-123	

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 64412			64413						
			MS	MSD				×.			
	= ,	257037003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD _	Qual
Benzene	ug/L	ND	20	20	19.5	21.9	97	110	75-124	12	
Ethylbenzene	ug/L	ND	20	20	18.3	21.0	92	105	76-124	13	
Toluene	ug/L	ND	20	20	18.1	20.4	90	102	75-124	12	
Xylene (Total)	ug/L	ND	60	60	53.9	61.3	89	102	76-123	13	
1,2-Dichloroethane-d4 (S)	%						83	83	80-124		
4-Bromofluorobenzene (S)	%						102	104	80-120		
Dibromofluoromethane (S)	%						94	96	80-122		
Toluene-d8 (S)	%						100	102	80-123		

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 31

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

MSV/4123

Analysis Method:

NWTPH-Gx

QC Batch Method:

NWTPH-Gx

Analysis Description:

NWTPH-Gx MSV Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005, 257037006

METHOD BLANK: 64562

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005, 257037006

Blank

Reporting

Parameter Gasoline Range Organics 4-Bromofluorobenzene (S)

ug/L

%

Units

Units

Units

Result ND

104

103

ND

99

Limit Analyzed Qualifiers

50.0 03/30/11 02:29 03/30/11 02:29 50-150

LABORATORY CONTROL SAMPLE:

Parameter

64563

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Gasoline Range Organics 4-Bromofluorobenzene (S)

ug/L %

%

ug/L

%

Conc. 500 496

99 99

1

3

50-163

50-150

SAMPLE DUPLICATE:

64920

Units Parameter Gasoline Range Organics ug/L

257037001 Result ND

Result 8.5J 101

Dup

Qualifiers

SAMPLE DUPLICATE: 64921

4-Bromofluorobenzene (S)

Parameter Gasoline Range Organics 4-Bromofluorobenzene (S) 257055007 Result

Dup Result 8.8J

103

RPD

RPD

Qualifiers

Date: 04/06/2011 02:45 PM

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

WETA/1929

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

METHOD BLANK: 63785

Parameter

Parameter

Parameter

Matrix: Water

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

Blank Result Reporting Limit

Analyzed

105

Qualifiers

Sulfate

mg/L

Units

Units

ND

1.0 03/25/11 12:22

LABORATORY CONTROL SAMPLE:

Spike Conc.

LCS Result

LCS % Rec % Rec

107

Sulfate

mg/L

15

15.7

Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

63787

63788

15

MSD

Result

MS

MSD

90-110

% Rec Limits

RPD

Sulfate

Units mg/L

257034001 Result 6.6

Spike Conc.

MS

Spike Conc. 15

MSD

Result 22.7

MS

% Rec 22.0

% Rec 103 90-110

Qual

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Project:

Winlock 623-009

Pace Project No.:

257037

QC Batch:

WETA/1947

Analysis Method:

EPA 353.2

QC Batch Method:

EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, preserved

Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

Matrix: Water

METHOD BLANK: 65126 Associated Lab Samples:

257037001, 257037002, 257037003, 257037004, 257037005

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Nitrogen, NO2 plus NO3

mg/L

ND

0.050 04/04/11 16:23

LABORATORY CONTROL SAMPLE: 65127

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Spike Conc.

LCS Result LCS

% Rec

Nitrogen, NO2 plus NO3

mg/L

Units

% Rec

Limits

90-110

Qualifiers

Parameter

Parameter

65128

0.48

MSD

65129

MSD

MS

MSD

% Rec

RPD Qual

Nitrogen, NO2 plus NO3

Units mg/L

257037001 Result

Spike Conc.

MS

Spike Conc.

MS Result 1.6

1.1

Result % Rec 1.6

107

% Rec

Limits 90-110 1 M1

MATRIX SPIKE SAMPLE:

65130

Parameter Units 257037002 Result

Spike Conc.

MS Result

MS % Rec

114

% Rec Limits

Qualifiers

Nitrogen, NO2 plus NO3

mg/L

0.12

1.2

110

111

90-110

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project:

Winlock 623-009

Pace Project No.:

257037

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M

Pace Analytical Services - Minneapolis

PASI-S

Pace Analytical Services - Seattle

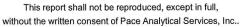
BATCH QUALIFIERS

Batch: MSSV/1562

[M5]

A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS


M1

Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

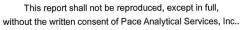
Page 30 of 31

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

Winlock 623-009

Pace Project No.:


257037

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
257037001	MW5-032211	RSK 175	AIR/11981	-1.	
257037002	MW4-032211	RSK 175	AIR/11981		
257037003	MW1-032211	RSK 175	AIR/11981		
257037004	MW2-032211	RSK 175	AIR/11981		
257037005	MW3-032211	RSK 175	AIR/11981		
257037001	MW5-032211	EPA 3510	OEXT/3500	NWTPH-Dx	GCSV/2378
257037002	MW4-032211	EPA 3510	OEXT/3500	NWTPH-Dx	GCSV/2378
257037003	MW1-032211	EPA 3510	OEXT/3500	NWTPH-Dx	GCSV/2378
257037004	MW2-032211	EPA 3510	OEXT/3500	NWTPH-Dx	GCSV/2378
257037005	MW3-032211	EPA 3510	OEXT/3500	NWTPH-Dx	GCSV/2378
257037001	MW5-032211	EPA 3510	OEXT/3464	EPA 8270 by SIM	MSSV/1562
257037002	MW4-032211	EPA 3510	OEXT/3464	EPA 8270 by SIM	MSSV/1562
257037003	MW1-032211	EPA 3510	OEXT/3464	EPA 8270 by SIM	MSSV/1562
257037004	MW2-032211	EPA 3510	OEXT/3464	EPA 8270 by SIM	MSSV/1562
257037005	MW3-032211	EPA 3510	OEXT/3464	EPA 8270 by SIM	MSSV/1562
257037001	MW5-032211	EPA 5030B/8260	MSV/4087		
257037002	MW4-032211	EPA 5030B/8260	MSV/4087		
257037003	MW1-032211	EPA 5030B/8260	MSV/4087		
257037004	MW2-032211	EPA 5030B/8260	MSV/4087		
257037005	MW3-032211	EPA 5030B/8260	MSV/4087		
257037006	TRIP BLANKS	EPA 5030B/8260	MSV/4087		
257037001	MW5-032211	NWTPH-Gx	MSV/4123		
257037002	MW4-032211	NWTPH-Gx	MSV/4123		
257037003	MW1-032211	NWTPH-Gx	MSV/4123		
257037004	MW2-032211	NWTPH-Gx	MSV/4123		
257037005	MW3-032211	NWTPH-Gx	MSV/4123		
257037006	TRIP BLANKS	NWTPH-Gx	MSV/4123	*	
257037001	MW5-032211	EPA 300.0	WETA/1929		
257037002	MW4-032211	EPA 300.0	WETA/1929		
257037003	MW1-032211	EPA 300.0	WETA/1929		
257037004	MW2-032211	EPA 300.0	WETA/1929		
257037005	MW3-032211	EPA 300.0	WETA/1929		
257037001	MW5-032211	EPA 353.2	WETA/1947		
257037002	MW4-032211	EPA 353.2	WETA/1947		
257037003	MW1-032211	EPA 353.2	WETA/1947		
257037004	MW2-032211	EPA 353.2	WETA/1947		
257037005	MW3-032211	EPA 353.2	WETA/1947		

Date: 04/06/2011 02:45 PM

REPORT OF LABORATORY ANALYSIS

Page 31 of 31

2 50

ŏ

Page:

CHAIN-UF-CUSI UDI I Allaiyiival Isequest Essellium

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C

(N/A) Pace Project No./ Lab I.D. Samples Intact DRINKING WATER F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS (N/A) OTHER Custody Sealed Cooler Z 46807 Ice (Y/N) Received on NPDES K GROUND WATER かん 53 40 Residual Chlorine (Y/N) Temp in °C wintock SA REGULATORY AGENCY RCRA TIME Requested Analysis Filtered (Y/N) 川をた DATE Site Location STATE: メメメ ms/mod UST XXX X X X X X 2000 20 SEI 2154 201 メメ Withole Thitrite 7'858 Som DATE Signed (MM/DD/YY): XXX X 300 ACCEPTED BY / AFFILIATION × HUGWIS 27.70 X X X y 7 ×0 t tesT sisylenA とする TNA Other Methanol 3 Na2S2O3 Preservatives HOBN HCI × HNO3 Invoice Information × Company Name: × FOSZH 233 00 Pace Quote Reference: Pace Project TIME Manager: Pace Profile a Unpreserved × Attention: Address: 20 0 00 # OF CONTAINERS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 2-23-11 SAMPLE TEMP AT COLLECTION DATE 3-23-11 5201 0690 25,0 1046 TIME 7 COMPOSITE 3-22-1 3-15-1 DATE COLLECTED Kerallon RELINQUISHED BY / AFFILIATION Pack TIME Putters 633-009 START W. rlour DATE Section B Required Project Information: SAMPLE TYPE 0 (G=GRAB C=COMP) Purchase Order No. MATRIX CODE Project Number (see valid codes to left) OPIGINAL Project Name: Report To: Copy To: Matrix Codes MATRIX / CODE Danking Water
Water
Waste Water
Product
Soil/Solid
Oil
Wape
Mari
Tissue
Other Spatterion Derolm wasselving 13027 グラ ADDITIONAL COMMENTS 3 1/2000-Emm (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE Mas : 03 331 mwy-03321 3 contes MW1-032211 12650-EWM 8 SAMPLE ID Required Client Information Section A Required Client Information: Company: Further Requested Due Date/TAT 78. 378-0812 Address: 1349, mot 150 Section D Email To: 7 က 2 # MBTI 9 8 Ø 10

Sample Container Count

BNSF - Farallan CLIENT:

COC PAGE of of COC 10# 14 680 3-8

Face Analytical

1 5 1

7 5 1 1 5 7	Comments												Trip Blank?
					2								
,	1												
>	5	8	0	3	3	N							
	BP2S WGFU WGKU		d						-				
	WGFU	3											
	BP2S	77)	-			7							
	BP2N												
	BP3U	-	1	_	1	1							
	BP2U			-									
	BP1U												
	BG1H												
	AG1H AG1U BG1H BP1U BP2U	8				7	=	2 1					
70	AG1H	36				7				a a			
4680	VG9H	6	6	6	80	6	3			1			·
COC ID# 1468078	Sample Line Item	-	2	m	4	ıc	9	7	ω	o	10	11	12

AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	JGFU 4oz unpreserved amber wide
AG1U 1liter unpreserved amber glass	BP2U 500mL unpreserved plastic	R terra core kit
AG2S 500mL H2SO4 amber glass	BP2Z 500mL NaOH, Zn Ac	U Summa Can
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	VG9H 40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N 250mL HNO3 plastic	VG9T 40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S 250mL H2SO4 plastic	VG9U 40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U 250mL unpreserved plastic	VG9W 40mL glass vial preweighted (EPA 5035)
BP1N 1 liter HNO3 plastic	DG9B 40mL Na Bisulfate amber vial	VSG Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H 40mL HCL amber voa vial	WGFU 40z clear soil jar
BP1U 1 liter unpreserved plastic	DG9M 40mL MeOH clear vial	WGFX 40z wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T 40mL Na Thio amber vial	ZPLC Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U 40mL unpreserved amber vial	
BP2O 500mL NaOH plastic	Il Wipe/Swab	

	Chilliple Collisi	2 5 7 0 3 7
Face Analytical Client Name	BNSF -	farallon Project #
Courier: Fed Ex UPS USPS Clier	nt Commercial	Pace Other
Custody Seal on Cooler/Box Present: Yes	No Seals	intact: Yes No
Packing Material: Bubble Wrap Bubble	Bags None	Other Temp. Blank Yes No
Thermometer Used 132013 or 101731962 or 22609		
Cooler Temperature 5,2,4,0,5-20 Temp should be above freezing ≤ 6°C	Biological Tissue	is Frozen: Yes No Date and Initials of person examining contents:
Chain of Custody Present:	₽Yes □No □N/A	1.
Chain of Custody Filled Out:	Yes OND ON/A	2.
Chain of Custody Relinquished:	Tes ONO ONIA	3.
Sampler Name & Signature on COC:	□Yes ⊇Ño □N/A	4.
Samples Arrived within Hold Time:	Yes ONO ON/A	5.
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.
Follow Up / Hold Analysis Requested:	□Yes ⊠No □N/A	8.
Sufficient Volume:	Pres DNO DNA	9. See #13.
Correct Containers Used:	EYes ONO ON/A	10.
-Pace Containers Used:	ØYes □No □N/A	
Containers Intact:	Dres DNo DNIA	11.
Filtered volume received for Dissolved tests	□Yes □No □N/A	12.
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	Dyes DNO DNIA	13. MW4 - 032211 = no methane vials received
All containers needing preservation have been checked.	Yes DNo DN/A	14
All containers needing preservation are found to be in compliance with EPA recommendation.	DYES DNO DNA	
		Initial when Lot # of added
Exceptions VOA, doliform, TOC, O&G		completed preservative
Samples checked for dechlorination:	□Yes □No □N/A	
Headspace in VOA Vials (>6mm):	□Yes □M6 □N/A	
Trip Blanks Present:	ØYes □No □N/A	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Trip Blank Custody Seals Present	□Yes □No □N/A	·
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted: avax	Date	Time: 3/23/11 1625
Comments/ Resolution:	uthan o	ials recal for mw-4. UK to
split og of lage guto	3ML Vial	s. No MSIMSD required
No. 14 August Park Control of Con	,	
Project Manager Review	lB.	Date: 3/33/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)