

2020 ANNUAL GROUNDWATER MONITORING REPORT

WEST SURFACE IMPOUNDMENT

Columbia Gorge Aluminum Smelter Site

85 John Day Dam Road, Goldendale WA Facility Site ID #95415874

July 10, 2020

On behalf of:

NSC Smelter LLC 3313 West Second Street The Dalles OR 97058

In Cooperation With:

Blue Mountain Environmental Consulting Inc. 125 Main Street Waitsburg WA 99361

Prepared by:

GeoPro LLC P. O. Box 26 Battle Ground WA 98604

Table of Contents

1	INT	RODUCTION	4
	1.1	SCOPE AND PURPOSE	4
	1.2	SITE DESCRIPTION	4
	1.3	HYDROGEOLOGIC SETTING	4
	1.4	PREVIOUS GROUNDWATER MONITORING	5
2	GRC	OUNDWATER INVESTIGATION	5
	2.1	MONITORING WELL LOCATIONS	5
	2.2	SAMPLING PROCEDURES	6
	2.3	SAMPLE ANALYSES	6
	2.4	MONITORING SCHEDULE	6
	2.5	DATA EVALUATION	7
3	RES	ULTS	8
	3.1	SUMMARY	8
	3.2	STATISTICAL EVALUATION	8
	3.2.2	1 Time-Series Plots	8
	3.2.2	2 Mann-Kendall Test1	0
	3.2.3	3 Upper Confidence Limits1	1
	3.3	GROUNDWATER FLOW	1
4	CON	ICLUSIONS AND RECOMMENDATIONS1	2
	4.1	CONCLUSIONS	2
	4.2	RECOMMENDATIONS1	2
5	REF	ERENCES1	3
6	LIM	ITATIONS	4

TABLES

Table 1.	Monitoring Well Construction Data	.6
Table 2.	Data Evaluation Schedule for WSI	.7
Table 3.	Groundwater Protection Standards for WSI	.7
Table 4.	Post-Closure Significant Trends Using the Mann-Kendall Test1	10
Table 5.	Upper Confidence Limits of Post-Closure Groundwater Data 1	1

FIGURES

Figure 1 - Location Map	following page 14
Figure 2 - West Surface Impoundment Groundwater Monitor Well Location Map	01 0
Figure 3 - West Surface Impoundment Groundwater Elevation Contour Map	

Table of Contents - continued

APPENDICES

Appendix A – Groundwater Analyses Appendix A1 - Analyses Summary Table Appendix A2 - Laboratory Report

Appendix B - UCL and Trends

Appendix B1 - Time-Series Graphs: Sulfate, Fluoride, Chloride, Cyanide

Appendix B2 - Mann-Kendall Trend Test Results

Appendix B3 - Mann-Kendall Test Output

Appendix B4 - UCL Calculations

Appendix B5 - DOE Groundwater UCL Output

Appendix B6 - EPA Groundwater UCL Output

Appendix B7 - Calculator Input Table

Appendix C – Groundwater Levels

Appendix C1 - Static Water Level Hydrographs Appendix C2 – Static Water Levels

1 INTRODUCTION

1.1 SCOPE AND PURPOSE

This report presents the results of the 2020 annual groundwater monitoring and evaluation following closure of the former Columbia Gorge Aluminum Smelter West Surface Impoundment (WSI). Statistical evaluation of the groundwater monitoring data was conducted to evaluate natural attenuation in the concentration of groundwater contaminates. This monitoring and statistical evaluation was conducted in accordance with the Groundwater Sampling Data Analysis and Evaluation Plan (GSDAEP) for the WSI facility (Parametrix 2004b). Groundwater sampling was performed on June 20, 2020 by GeoPro LLC, Battle Ground, Washington.

1.2 SITE DESCRIPTION

The approximately 10-acre WSI was constructed as an earthen impoundment with Hypalon liner in 1981. It was used through 2001 to dispose of various types of waste generated from plant pollution controls. A map of the location is shown in Figure 1.

The WSI contains approximately 89,000 cubic yards of sludge comprised primarily of alumina, dust, and particulates from wastewater and residual waste generated by plant emission control systems. The WSI managed waste through evaporation of wastewater and disposal of emission control sludge (DOE 2014). The WSI discontinued accepting waste and was closed in September 2004 (Parametrix 2004a). Closure of the WSI included placement of an engineered RCRA cap consisting of soil and geosynthetic materials and development of a post-closure maintenance and groundwater monitoring plan (Parametrix 2004b).

1.3 HYDROGEOLOGIC SETTING

The geologic materials present beneath the WSI consist of unconsolidated alluvial deposits of Quaternary age, underlain by a series of basalt flows and sedimentary interbeds of the Columbia River Basalt Group (CH2M Hill 1995; Golder 1989). The groundwater gradient flattens beneath the WSI; south of the WSI, groundwater flows southwestward toward the Columbia River. The following aquifer zones have been defined for the Smelter Site in the Remedial Investigation Report.

- Unconsolidated Aquifer (UA) shallow water bearing zone in the colluvium, alluvium, and fill that overlies the basalt bedrock in most areas. The unit is thicker and more laterally extensive on the western side of the Site. Groundwater occurring locally within the upper 2-3 feet of weathered and fractured basalt bedrock is part of the UA.
- Basalt Aquifer Upper zone (BAU) occurs within the basalt flow sequence commonly beneath a flow interior within a flow top.
- Basalt Aquifer Lower Zone (BAL) includes saturated zones beneath BAU near the Columbia River elevation to the bottom elevation of the John Day Dam reservoir.

1.4 PREVIOUS GROUNDWATER MONITORING

The current monitoring network at the site consists of sixteen monitoring wells, including some shallow and deep well clusters. The initial monitoring wells were installed in 1984, and another set of wells were installed in 1989. An additional monitoring well, MW-18, was installed near the downgradient property boundary, about 2,500-feet from the WSI, in October 2004.

Sampling and analysis of groundwater has been conducted since 1984, and followed a quarterly schedule between 1991 and 2004. One additional pre-closure sampling event was conducted in September 2004 for the five wells included in the post- closure monitoring plan to establish groundwater quality before the wells could be affected by subsurface disturbances from WSI closure construction. Post-closure sampling and analysis was conducted quarterly from 2005-2007, semiannually from 2008-2010, and annually beginning in 2011. Previous samples were analyzed for pH, conductivity, total organic carbon, sulfate, fluoride, chloride, sodium, iron, manganese, free cyanide, total cyanide, and total phenols. Sulfate and fluoride were determined to be representative indicator parameters for the WSI wastes, since sulfate concentrations show direct response to periods of waste discharge into the pond. Pre-closure maximum sulfate concentrations were observed in 2000 and 2001 (Parametrix 2004a).

2 GROUNDWATER INVESTIGATION

The post-closure monitoring investigation was described in the GSDAEP (Parametrix 2004b) and is summarized in this section.

2.1 MONITORING WELL LOCATIONS

The post-closure monitoring well locations include the following upgradient and downgradient wells:

- Upgradient well: MW-8A
- Downgradient wells near WSI: MW-10A, MW-12A, and MW-14A
- Downgradient wells farther from WSI: MW-3B and MW-18

The aquifer in which each well is screened will be determined as part of implementing the Remedial Investigation work plan pursuant to the Agreed Order (DOE 2014). Monitoring well construction details are shown below in Table 1. Monitor well 12A has been dry except for the March 13, 2007 sampling event. Well locations are shown on Figure 2.

Well Number	Installed	Total Well Depth (ft bgs)	Well Screen Interval (ft bgs)	PVC Casing Diameter (inches)	Ground Surface Elevation (ft)	Top of PVC Elevation (ft)	Location
MW-8A	May 1989	41	22-32	4	490	492.97	Upgradient
MW-3B	April 1984	51	46-51	4	408	410.90	Downgradient
MW- 10A	April 1989	26	13-25.5	4	425	427.95	Downgradient
MW- 12A	May 1989	55	40-54	4	439	441.38	Downgradient
MW- 14A	May 1989	30.5	8.5-29.5	4	429	431.65	Downgradient
MW-18	October 2004	51	35-50	4	346	348.40	Downgradient
Notes: bg	s = below grou	und surfa	ce; elevatio	ons from Para	ametrix (200	4b)	

Table 1. Monitoring Well Construction Data

2.2 SAMPLING PROCEDURES

Samples were collected on June 20, 2020 by GeoPro LLC using a submersible pump. Sampling collection procedures are summarized below.

- The static water level was measured prior to sampling.
- Each monitor well was purged of stagnant water in the casing and filter by slowly setting the pump within the approximate middle of the screened interval or slightly above the middle until the temperature, conductivity and pH stabilized.
- Samples were collected by setting the pump within the approximate middle of the screened interval with a low flow pumping rate.
- Water samples were placed in appropriate containers prepared by the laboratory. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C for transport to OnSite Laboratory. The samples were accompanied by a completed and signed chain-of-custody form. The samples were submitted by OnSite to AmTest laboratory for cyanide analysis.

2.3 SAMPLE ANALYSES

Laboratory reports from Onsite Environmental, Inc., Redmond, Washington for analysis of the groundwater samples were completed on June 26-30, 2020. The laboratory reports are included in Appendix A2.

2.4 MONITORING SCHEDULE

Groundwater sampling follows the schedule outlined in the post-closure plan (Parametric 2007c). Beginning in 2005, the plan specified quarterly sampling for the first two years, semiannually for years 3 through 7, and annual sampling thereafter until

concentrations drop below groundwater protection standards, or for a maximum of 30 years. One semiannual sampling event was not completed in 2011.

2.5 DATA EVALUATION

The statistical approach for evaluating the post-closure groundwater monitoring data collected at the WSI is described in the GSDAEP (Parametrix 2004b). The objectives of the post-closure data evaluation for the WSI are to demonstrate the effectiveness of the correction action, that is, evaluate whether groundwater quality is improving, deteriorating, or remaining unchanged relative to pre-closure conditions, and to determine compliance with the groundwater protection standards. The data evaluation schedule is summarized below in Table 2.

lč	ible 2. Data Evaluation Sche	aule for wSI
Frequency of Evaluation	Statistical Procedure	Purpose
Quarterly or semiannually	Time-series plots	Visually identify increasing or
Years 1-7		decreasing trends in concentrations
	Trend analyses using Mann-	Quantitatively identify increasing or
	Kendall test	decreasing trends in concentrations
Annually	Upper Confidence Limit	Compare concentrations to the
After Year 7	Evaluation	groundwater protection standards
	Time-series plots	Visually identify increasing or
		decreasing trends in concentrations

Table 2. Data Evaluation Schedule for WSI

Groundwater protection standards are MTCA¹ Method B cleanup standards and Maximum Contaminant Levels (MCLs). The groundwater protection standards for these parameters are presented in the following Table 3.

		MCL	(mg/L)
Parameter	MTCA B Cleanup Level (mg/L)	Primary	Secondary
Fluoride	0.96	4	2
Chloride	-	-	250
Sulfate	-	-	250
Total Cyanide	0.32	0.2	-

Table 3. Groundwater Protection Standards for WSI

The analysis for total cyanide is to be discontinued if not detected for four consecutive sampling events.

The GSDAEP (Parametrix 2004b) also recommended using Upper Prediction Limit (UPL) comparisons to evaluate post-closure data. However, EPA guidance (EPA 2004) does not recommend that UPL comparisons be used for sites such as WSI with pre-existing contamination.

¹ State of Washington Department of Ecology Model Toxics Control Act, Cleanup Regulations, Chapter 173-340 WAC, as revised.

Three years of quarterly data (2005-2007), three years of semiannual data (2008-2010), and ten years of annual data (2011-2020) from ground water sampling were used for analysis evaluation (see Appendix A1). The concentrations of fluoride, chloride, sulfate, and total cyanide in each well were evaluated and prepared to satisfy the quarterly and semiannual requirements. The time-series plots, Mann-Kendall test and UCL comparisons were conducted to satisfy the annual evaluation requirements. With approval from Paul Skyllingstad, DOE (personal communication, June 28, 2012) both the Washington Department of Ecology UCL calculator and the Environmental Protection Agency ProUCL calculator were used to calculate UCLs for the data.

Time-series plots were created using the Microsoft Excel graphing functions. The Mann-Kendall test was conducted using the EPA's ProUCL calculator. ProUCL did not directly create all the statistical outputs needed for the Mann-Kendall analysis. VAR(S) was computed using equation (1), Z was computed using equation (2), and probability was computed using Table A.21 (Hollander and Wolfe, 1973).

(1) Standard Deviation of S = $\sqrt{VAR(S)}$

(2)
$$Z = \frac{|S|-1}{\sqrt{VAR(S)}}$$

The Washington DOE UCL (DOE, 2012) calculator was used to calculate the 95 percent UCL for normal and lognormal datasets as well as the mean, minimum value, and maximum value for each dataset. For datasets that were neither normal nor lognormal, the UCL was calculated using the EPA's ProUCL Calculator (ProUCL, 2012). The datasets evaluated using ProUCL were sulfate in MW-8A and MW-10A, chloride in MW-10A, and cyanide in MW-10A. Raw calculations for the DOE and EPA ProUCL calculators are presented in Appendix B.

3 RESULTS

3.1 SUMMARY

Post-closure data has been collected during 12 quarterly events between February 2005 and November 2007, 6 semiannual events between May 2008 and October 2010, and 10 annual events in July 2011, April 2012, June 2013, April 2014, July 2015, August 2016, August 2017, July 2018, July 2019, and June 2020. The post-closure data are summarized in Appendix A1 and individual results that exceed the groundwater protection level are highlighted.

3.2 STATISTICAL EVALUATION

3.2.1 Time-Series Plots

During the post-closure period beginning in February 2005 groundwater samples were analyzed for sulfate, fluoride, chloride, and total cyanide. Time-series plots of data collected since 2005 are presented in Appendix B1. For the time-series non-detected data, points were plotted using one half of the laboratory practical quantitative limit.

The time-series plots indicate the following trends since closing of the WSI in 2004 and compared to the prior year concentrations.

<u>Sulfate</u>

The sulfate concentrations are relatively steady in all wells except MW-10A. The sulfate concentrations slightly increased in all wells during this sampling event with concentrations in MW-10A showing the highest increasing trend. The sulfate concentrations remain above the groundwater protection standard of 250 mg/L except in upgradient well MW-8A which remains below the standard.

<u>Fluoride</u>

Fluoride concentrations are relatively steady in all wells except MW-10A and MW-14A in which the concentrations have been slightly increasing. The fluoride concentrations remain below the groundwater protection standard of 0.96 mg/L except in wells MW-10A and MW-14A in which fluoride concentrations continue to be above the standard.

<u>Chloride</u>

Chloride concentrations are relatively steady or decreasing in all wells during this sampling event. None of the chloride concentrations in any well have exceeded the groundwater protection standard of 250 mg/L.

Total Cyanide

Total cyanide continues to be detected in downgradient well MW-14A but below the standard of 0.2 mg/L.

3.2.2 Mann-Kendall Test

The Mann-Kendall test (Gilbert, 1987; Hollander and Wolfe, 1973) was used to evaluate temporal trends in the concentrations of analytes. The nonparametric Mann-Kendall test evaluates the direction and significance of trends in the data at the 95 percent UCL. The GWSDAEP specified that Sen's slope tests were to be used to evaluate trends in the data, but have not been used because they provide similar information to the Mann-Kendall test and are less conservative, since they evaluate the significance of the data at the 90 percent UCL.

The Mann-Kendall test was conducted using the post-closure data. Results of the Mann-Kendall tests are presented in Appendix B2 and summarized in Table 4.

Table 4. F	Table 4. Post-Closure Significant Trends Using the Mann-Kendall Test											
WellSulfateFluorideChlorideTotal Cyanide												
Upgradient												
MW-8A	-	\checkmark	\bullet	-								
Downgradi	ent											
MW-3B	-	$\mathbf{+}$	\bullet	-								
MW-10A	^	+	1	\mathbf{h}								
MW-12A	n/a	n/a	n/a	n/a								
MW-14A	ł	\checkmark	\bullet	\mathbf{h}								
MW-18	-	\checkmark	\mathbf{h}	+								

Table 4 Notes:

- ↑ Significant Increasing Trend
- ✤ Significant Decreasing Trend
- Negative Trend
- + Positive Trend
- n/a Trend could not be calculated: only one data point available because the well is dry

The Mann-Kendall Trend test results indicate the following:

- Sulfate levels are significantly increasing in downgradient well MW-10A, and are significantly decreasing in downgradient well MW-14A.
- Fluoride levels are significantly decreasing in upgradient well MW-8A and downgradient wells MW-3B, MW-14A, and MW-18.
- Chloride levels are significantly increasing in downgradient well MW-10A and are significantly decreasing in upgradient well MW-8A and downgradient wells MW-3B, MW-14A, and MW-18.
- Total cyanide levels are significantly decreasing in the downgradient wells MW-10A and MW-14A.

3.2.3 Upper Confidence Limits

The primary tool cited in MTCA (WAC 173-340-720[9]) for assessing whether data exceeds established cleanup levels is by comparing data to UCLs calculated on the mean. The UCL for each parameter at each well was calculated using the post-closure data, and the calculated UCL was compared to the MTCA cleanup level and MCL for each analyte to assess whether groundwater protection standards are being met. The results of the UCL comparisons are presented in Appendix B and summarized in Table 5.

		Upper Confidence Limit (mg/L)							
	Sulfate Chloride Fluoride Total Cyani								
Lowest Groundwater Protection Standard (mg/L)	250	250	0.96	0.2					
Upgradient									
MW-8A	9.10	4.40	0.58	0.01					
Downgradient			-						
MW-3B	2205.04	106.84	2.07	0.01					
MW-10A	2278.15	68.04	3.49	0.03					
MW-12A ¹	1800	150	6.3	0.01					
MW-14A	3709.62	105.85	18.4	0.10					
MW-18	1478.15	81.22	2.54	0.01					

 Table 5. Upper Confidence Limits of Post-Closure Groundwater Data

Table 5 Notes:

¹ No UCL calculated. Well was dry during most sampling events.

Bold indicates UCL exceeds lowest groundwater protection standard.

All the sampled wells downgradient of the WSI have post-closure UCL concentrations above the groundwater protection standards for sulfate and fluoride and below the groundwater protection standard for chloride and total cyanide. Upgradient well MW-8A has a UCL below the groundwater protection standard for sulfate, chloride fluoride and total cyanide.

3.3 GROUNDWATER FLOW

Groundwater elevations were measured once during 2004, quarterly between 2005 and 2007, semiannually between 2008 and 2010, and annually during 2011 through 2020 in the five sampled wells. The groundwater elevation data and a hydrograph showing changes in groundwater elevation during post-closure are presented in Appendix C. A groundwater elevation contour map was prepared using groundwater levels measured in July 2020 and is provided in Figure 3. Groundwater flow is consistent with historical data and the overall flow direction downgradient from the WSI is toward the southwest.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The following is concluded based on the July 2020 groundwater sampling results, trends, and statistical evaluation of historic data.

- Sulfate and fluoride concentrations in two downgradient wells, based on the calculated UCLs, are above groundwater protection standards. Sulfate and fluoride in the upgradient well are below groundwater protection standards.
- Sulfate concentration is significantly increasing in downgradient well MW-10A.
- Sulfate concentration is significantly decreasing in downgradient well MW-14A.
- Fluoride concentrations are significantly decreasing in all wells except downgradient well MW-10A.
- Chloride concentrations remain below groundwater protection standards, based on calculated UCLs, since the last reporting period. A significant increasing trend in chloride concentration continues in downgradient well MW-10A. There are significant decreasing trends for chloride concentration in upgradient well MW-8A and downgradient wells MW-3B, MW-14A, and MW-18.
- Total cyanide concentrations are below groundwater protection standards, based on calculated UCLs, since the last reporting period. A significant decreasing trend continues since the last reporting period for total cyanide in downgradient wells MW-10A and MW-14A.

4.2 **RECOMMENDATIONS**

Post-closure fluoride and sulfate concentrations are lower than pre-closure concentrations. However, the lack of significant reduction in their concentrations during the post-closure period may indicate that the WSI is continuing to contribute these contaminates to groundwater. Continued sampling and data evaluation will be required to determine whether the concentrations of fluoride and sulfate decrease below the lowest groundwater protection standards.

As specified in the GSDAEP, the WSI groundwater monitoring frequency is on an annual basis. Also specified, future annual reports will continue to include time-series plots, Mann-Kendall tests for trend and a comparison of the UCLs of the most recent sampling data to groundwater protection standards.

5 REFERENCES

CH2M Hill, 1995, <u>West Surface Impoundment Closure and Postclosure Plan.</u> Prepared for <u>Goldendale Aluminum</u>, February 1995.

DOE, 2012, State of Washington Department of Ecology 6/11/2012 http://www.ecy.wa.gov/programs/tcp/tools/SITE97.XLT.

DOE, 2014, Agreed Order No. DE 10483 Columbia Gorge Aluminum Smelter, Effective May 1, 2014.

GeoPro LLC, 2012, Semi-Annual Groundwater Monitoring Report, West Surface Impoundment, Former Goldendale Aluminum Smelter.

GeoPro LLC, 2013 Through 2019, Annual Groundwater Monitoring Reports, West Surface Impoundment, Former Goldendale Aluminum Smelter.

Gibbons, R.D., 1994, <u>Statistical Methods for Ground Water Monitoring</u>. John Wiley and Sons.

Gilbert, R.O., 1987, <u>Statistical Methods for Environmental Pollution Monitoring</u>. Van Nostrand Reinhold, New York.

Golder Associates, Inc., 1989, <u>Groundwater Monitoring Well Installation, West Surface</u> <u>Impoundment, Golden Northwest Aluminum, Interim Report.</u>

Hollander and Wolfe, 1973, Nonparametric Statistical Methods, John Wiley and Sons.

Parametrix, Inc., 2004a, Goldendale Aluminum West Surface Impoundment Closure.

Parametrix, Inc., 2004b, <u>Groundwater Sampling Data Analysis and Evaluation Plan for Goldendale</u> <u>Aluminum West Surface Impoundment Facility.</u>

Parametrix, Inc., 2004c, WSI Closure and Post Closure Plan.

Parametrix, Inc., 2005, <u>Groundwater Sampling Data Analysis and Evaluation Plan for Goldendale</u> <u>Aluminum West Surface Impoundment Facility, February 2005 Revision to November 2004</u> <u>Document.</u>

Parametrix, Inc., 2007, <u>Two-Year Post-Closure Groundwater Evaluation, Goldendale Aluminum</u> <u>West Surface Impoundment Facility</u>, September 2007.

Paul Skyllingstad, WA DOE, Personal Communication, June 28, 2012.

ProUCL 7/12/11 U.S. Environmental Protection Agency 6/11/2012: http://www.epa.gov/osp/hstl/tsc/setup_v41.zip

6 LIMITATIONS

This report has been prepared for use by the landowner and is not intended for use by others except the landowner(s), landowner's agents and appropriate government agencies. All others should contact GeoPro LLC before applying or interpreting any information in this report. Each project and project site is unique and the information contained in this report is not applicable to other sites. This report has been prepared pursuant to a post-closure work plan prepared by others and the work plan approved by the State of Washington Department of Ecology.

GeoPro LLC does not accept liability or responsibility for use of this report by third parties, including but not limited to, detachment, partial use, separation, or reproduction without color, if used, which may depict significant information. Such use shall be at user's sole risk.

Records, documentation, and personal communication have been relied upon in good faith; however, GeoPro LLC accepts no responsibility for errors or omissions of work by others. Services are performed in accordance with generally accepted professional practices, in the same or similar localities, related to the nature of the work accomplished, at the time services are rendered. GeoPro LLC is not responsible for references to regulatory terms, practices, numeric data, or conditions that may lead to other conclusions if such references are not in final form.

Conclusions and findings apply only to present conditions, and opinions expressed are subject to revision when additional or new information is presented and reviewed. This warranty is in lieu of all other warranties, either expressed or implied. It is possible that explorations failed to reveal the presence of hazardous materials at areas where hazardous materials were assumed, suspected or expected to exist (hazardous as used herein shall also mean contaminated and polluted). Through use of this report it is understand that failure to sample soil or water, or install groundwater monitor wells at locations through appropriate and mutually agreed-upon techniques does not guarantee that hazardous materials have, or will be, detected at such locations. Similarly, areas which in fact are unaffected by hazardous materials at the time of this report, may later, due to natural causes or human intervention, become contaminated. GeoPro LLC is not responsible for failing to locate hazardous materials which have not been discovered at the time of this report or in the future. In the event of changes in future development plans as understood at the time of this report, the conclusions and recommendations made herein shall be invalid until GeoPro LLC is given the opportunity to review and modify this report in writing. Portions of an Agreement to perform professional services may or may not be disclosed in this report.

Respectfully submitted,

Richard C. Kent, L.G.

GeoPro LLC

FIGURE 1

LOCATION MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

FIGURE 2

WEST SURFACE IMPOUNDMENT GROUNDWATER MONITOR WELLS LOCATION MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

June 2920

contour interval 20 feet contours in feet MSL

flow direction

FIGURE 3

WEST SURFACE IMPOUNDMENT GROUNDWATER CONTOUR MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

June 2020

APPENDICES

Appendix A – Groundwater Analyses

Appendix A1 Analyses Summary Table

2020 Annual Groundwater Monitoring Report

West Surface Impoundment

	Upgradient Well MW-8A					Downgradient Well MW-3B				Downgradient Well MW-10A			
	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	
Lowest Groundwater Protection Standard	250	0.96	250	0.2	250	0.96	250	0.2	250	0.96	250	0.2	
Sample Date													
2/16/2005	10	0.9	5.6	< 0.01	2300	0.6	130	< 0.01	940	1.8	29	0.04	
5/11/2005	9.8	0.3	4.6	< 0.01	2500	0.4	140	< 0.01	910	1.5	31	0.05	
8/29/2005	8.9	0.4	4.2	< 0.01	2700	0.6	120	< 0.01	670	1.2	28	0.04	
11/1/2005	9.6	0.9	4.7	<0.01	2600	0.9	130	<0.01	670	2.7	28	0.03	
2/27/2006	9.27	2.8	4.2	<0.01	2610	0.7	118	< 0.01	1570	2.3	43	0.03	
6/5/2006	9.8	0.2	4.9	<0.05	2220	0.2	113	<0.01	1650	3.2	48	0.03	
7/31/2006	9.8	0.1	4.6	< 0.01	2000	3.7	110	<0.01	860	2.3	35	0.08	
10/9/2006	9.7	<0.2	4.5	< 0.01	2500	3.8	110	< 0.01	850	1.9	30	0.03	
3/13/2007	10	<0.1	6.6	< 0.01	2500	3.8	110	<0.01	1100	3.4	45	0.04	
6/22/2007	1	<10	4.89	< 0.01	2500	<10	97	< 0.01	1100	<10	36	<0.01	
9/24/2007	10	<1	4.2	< 0.01	2200	<1	124.79	<0.01	760	1.2	30	0.04	
11/14/2007	-	-	-	< 0.01	-	-	-	< 0.01	-	-	-	0.043	
5/8/2008	10	<1	4	< 0.01	2200	<50	100	<0.01	2700	<50	100	0.05	
10/14/2008	10	0.1	4.5	< 0.01	2600	<10	100	< 0.01	860	<10	30	0.04	
5/29/2009	9	<1	3	<0.02	2200	<1	96	<0.02	2000	2	68	0.03	
10/27/2009	10	<1	5.5	<0.02	2606	<1	110	<0.02	760	<1	79	<0.02	
5/26/2010	9.3	<1	4.4	<0.02	2300	2.3	120	<0.02	2200	4.4	83	0.032	
10/6/2010	8.9	<1	3.6	<0.02	2400	<1	110	<0.02	710	1	23	0.022	
7/26/2011	7.8	<1	3.6	<0.02	2000	<1	98	<0.02	1800	3.3	62	0.028	
4/19/2012	10	0.18	3.8	<0.005	2200	0.16	90	<0.005	5800	1.9	180	0.007	
6/20/2013	9.4	0.16	4.8	<0.005	1900	0.16	91	0.006	4700	3.1	99	0.008	
4/25/2014	9.5	0.19	4.9	<0.005	2000	0.18	91	<0.006	6100	2	190	<0.005	
7/20/2015	9.5	0.16	4.2	<0.005	1900	0.14	80	<0.005	1900	2	58	<0.005	
8/2/2016	9.3	0.13	4.1	<0.005	1900	0.12	98	<0.005	3500	2.1	82	<0.005	
8/9/2017	9.6	0.15	4.1	<0.005	1700	0.15	95	0.01	2900	3.2	170	<0.005	
7/26/2018	9.5	0.15	3.2	<0.005	1800	0.16	95	<0.005	4800	4.1	71	<0.005	
7/24/2019	5.4	0.14	4.1	<0.005	1500	0.15	93	<0.005	4000	3.7	82	<0.006	
6/20/2020	11	0.16	3.9	<0.005	1700	0.14	88	<0.005	5700	4.4	77	<0.006	

Analyses Summary Table (mg/L): page 1 of 2

2020 Annual Groundwater Monitoring Report West Surface Impoundment

	Downgradient Well MW-12A					Downgradient Well MW-14A				Downgradient Well MW-18			
	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	
Lowest													
Groundwater	250	0.96	250	0.2	250	0.96	250	0.2	250	0.96	250	0.2	
Protection	200	0100		•••=		0100		0.1		0100		0.1	
Sample Date													
Sample Date	Dest	Dura	Drav	Date	4000	0.0	110	0.25	1500	0.0	96	-0.01	
2/16/2005	Dry	Dry	Dry	Dry	4000	9.6	110	0.35	1200	0.6	80	<0.01	
3/11/2005	Dry	Dry	Dry	Dry	3500	0.0 20	90	0.24	1500	0.4	91	<0.01	
8/29/2005	Dry	Dry	Dry	Dry	3000	30	71	0.27	1200	0.4	75	<0.01	
2/27/2005	Dry	Dry	Dry	Dry	2800	25	75	0.19	1500	1.8	04 02	<0.01	
2/2//2006 6/5/2006	Dry	Dry	Dry	Dry	2170	31	55	0.19	1400	0.9	01	<0.01	
7/21/2006	Dry	Dry	Dry	Dry	2200	27	05	0.2	1490	2.6	91	<0.01	
10/9/2006	Dry	Dry	Dry	Dry	3000	24	120	0.17	1600	2.0	80	<0.01	
3/13/2000	1800	63	150	<0.01	4400	16	140	0.01	1600	2.4	03	<0.01	
6/22/2007	Dry	Dry	Dry		7900	10	170	<0.12	1700	2.0	33 77	<0.01	
9/24/2007	Dry	Dry	Dry	Dry	6400	<50	200	0.01	1/00	<50	100	<0.01	
11/14/2007	Dry	Dry	Dry	Dry			-	<0.03			- 100	<0.01	
5/8/2008	Dry	Dry	Dry	Dry	5500	<50	100	0.19	1300	<50	70	<0.01	
10/14/2008	Dry	Dry	Dry	Dry	6500	20	180	0.13	1600	<50 <1	80	<0.01	
5/29/2009	Dry	Dry	Dry	Dry	7000	30	210	0.12	1500	1	81	<0.01	
10/27/2009	Drv	Drv	Dry	Drv	5900	24	160	0.044	1200	<1	70	< 0.01	
5/26/2010	Drv	Drv	Drv	Drv	5200	32	170	0.14	1500	2	100	< 0.02	
10/6/2010	, Dry	, Dry	, Dry	, Dry	4000	18	120	0.086	1600	<1	84	< 0.02	
7/26/2011	Dry	Dry	Dry	Dry	3900	23	130	0.066	1600	<1	89	<0.02	
4/19/2012	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1700	0.2	79	<0.005	
6/20/2013	Dry	Dry	Dry	Dry	2300	17	66	0.028	1500	0.13	84	<0.005	
4/25/2014	Dry	Dry	Dry	Dry	2100	18	61	0.037	1700	0.12	79	<0.005	
7/20/2015	Dry	Dry	Dry	Dry	1100	6.8	47	0.008	1300	0.11	86	<0.005	
8/2/2016	Dry	Dry	Dry	Dry	1400	3.5	61	0.019	1700	0.12	79	<0.005	
8/9/2017	Dry	Dry	Dry	Dry	1700	2.5	68	0.017	1300	0.11	59	0.086	
7/26/2018	Dry	Dry	Dry	Dry	1800	3.6	66	<0.005	1400	0.11	69	<0.005	
7/24/2019	Dry	Dry	Dry	Dry	1700	2.8	64	0.018	1200	0.12	68	<0.005	
6/20/2020	Dry	Dry	Dry	Dry	2000	7	49	0.018	1400	0.13	67	<0.005	

Analyses Summary Table (mg/L): page 2 of 2

Appendix A2 Laboratory Report

July 2, 2020

Richard Kent GeoPro, LLC 611 NW 5th Avenue Battle Ground, WA 98604

Re: Analytical Data for Project 160802 Laboratory Reference No. 2006-256

Dear Richard:

Enclosed are the analytical results and associated quality control data for samples submitted on June 23, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 2, 2020 Samples Submitted: June 23, 2020 Laboratory Reference: 2006-256 Project: 160802

Case Narrative

Samples were collected on June 20, 2020 and received by the laboratory on June 23, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

FLUORIDE

SM 4500-F C

Matrix: Water Units: mg F- /L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-8A-2020					
06-256-01					
0.16	0.020	SM 4500-F C	6-30-20	6-30-20	
MW-14A-2020					
06-256-02					
7.0	0.20	SM 4500-F C	6-30-20	6-30-20	
MW-10A-2020					
06-256-03					
4.4	0.20	SM 4500-F C	6-30-20	6-30-20	
MW-10A-D-2020					
06-256-04					
4.6	0.20	SM 4500-F C	6-30-20	6-30-20	
MW-3B-2020					
06-256-05					
0.14	0.020	SM 4500-F C	6-30-20	6-30-20	
MW-18-2020					
06-256-06					
0.13	0.020	SM 4500-F C	6-30-20	6-30-20	
	Result MW-8A-2020 06-256-01 0.16 MW-14A-2020 06-256-02 7.0 MW-10A-2020 06-256-03 4.4 MW-10A-D-2020 06-256-04 4.6 MW-3B-2020 06-256-05 0.14	Result PQL MW-8A-2020 06-256-01 0.16 0.020 MW-14A-2020 06-256-02 06-256-02 0.20 MW-10A-2020 06-256-03 06-256-03 0.20 MW-10A-2020 06-256-03 06-256-03 0.20 MW-10A-D-2020 06-256-03 06-256-04 0.20 MW-3B-2020 06-256-04 0.6-256-05 0.20 MW-3B-2020 06-256-05 0.14 0.020	Result PQL Method MW-8A-2020 06-256-01	Result PQL Method Prepared MW-8A-2020 06-256-01	Result PQL Method Prepared Analyzed MW-8A-2020 06-256-01

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SB

0.446

FLUORIDE SM 4500-F C QUALITY CONTROL

Matrix: Water Units: mg F- /L

Fluoride

					Date		Date			
Analyte	Result		PQL Method		Prepared	Analyzed		Flags		
METHOD BLANK										
Laboratory ID:		MB0630W1								
Fluoride		ND	0.020	SM 4	500-F C	6-30-20	6-30-2	20		
				Source	Percent	Recovery		RPD		
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags	
DUPLICATE										
Laboratory ID:	06-2	56-05								
	ORIG	DUP								
Fluoride	0.142	0.149	NA	NA	NA	NA	5	15		
MATRIX SPIKE										
Laboratory ID:	06-2	56-05								
	N	1S	MS		MS					
Fluoride	0.6	633	0.500	0.142	98	55-143	NA	NA		
SPIKE BLANK										
Laboratory ID:	SB06	30W1								

NA

SB

89

77-110

NA

NA

SB

0.500

SULFATE ASTM D516-11

Matrix: Water						
Units: mg/L						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8A-2020					
Laboratory ID:	06-256-01					
Sulfate	11	5.0	ASTM D516-11	6-26-20	6-26-20	
Client ID:	MW-14A-2020					
Laboratory ID:	06-256-02					
Sulfate	2000	1000	ASTM D516-11	6-26-20	6-26-20	
Client ID:	MW-10A-2020					
Laboratory ID:	06-256-03					
Sulfate	5700	2000	ASTM D516-11	6-26-20	6-26-20	
Client ID:	MW-10A-D-2020					
Laboratory ID:	06-256-04					
Sulfate	5800	2000	ASTM D516-11	6-26-20	6-26-20	
Client ID:	MW-3B-2020					
Laboratory ID:	06-256-05					
Sulfate	1700	1000	ASTM D516-11	6-26-20	6-26-20	
Client ID:	MW-18-2020					
Laboratory ID:	06-256-06					
Sulfate	1400	1000	ASTM D516-11	6-26-20	6-26-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0626W1					
Sulfate	ND	5.0	ASTM D516-11	6-26-20	6-26-20	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-25	6-01							
	ORIG	DUP							
Sulfate	10.5	10.5	NA	NA	NA	NA	0	11	
MATRIX SPIKE									
Laboratory ID:	06-25	56-01							
	Μ	S	MS		MS				
Sulfate	19	.4	10.0	10.5	89	61-148	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB062	26W1							
	S	В	SB		SB				
Sulfate	9.9	94	10.0	NA	99	86-116	NA	NA	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

CHLORIDE SM 4500-CI E

Matrix:	Water						
Units:	mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:		MW-8A-2020					•
Laborator	y ID:	06-256-01					
Chloride		3.9	2.0	SM 4500-CI E	6-29-20	6-29-20	
Client ID:	:	MW-14A-2020					
Laborator	y ID:	06-256-02					
Chloride		49	2.0	SM 4500-CI E	6-29-20	6-29-20	
Client ID:	:	MW-10A-2020					
Laborator	y ID:	06-256-03					
Chloride		77	2.0	SM 4500-CI E	6-29-20	6-29-20	
		MW/ 404 D 2020					
Laborator	N ID:	06-256-04					
Chloride	y ID.	77	2.0	SM 4500-CI E	6-29-20	6-29-20	
Client ID:	:	MW-3B-2020					
Laborator	y ID:	06-256-05					
Chloride		88	2.0	SM 4500-CI E	6-29-20	6-29-20	
Client ID:	:	MW-18-2020					
Laborator	y ID:	06-256-06					
Chloride	-	67	2.0	SM 4500-CI E	6-29-20	6-29-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

Analyte		Result	PQL	Me	ethod	Date Prepared	Date Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0629W1							
Chloride		ND	2.0	SM 4	500-CI E	6-29-20	6-29-2	20	
Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	06-25	56-01							
	ORIG	DUP							
Chloride	3.94	3.62	NA	NA	NA	NA	8	14	

MATRIX SPIKE

Laboratory ID:	06-256-01							
	MS	MS		MS				
Chloride	53.2	50.0	3.94	99	86-110	NA	NA	
SPIKE BLANK								

Laboratory ID:	SB0629W1							
	SB	SB		SB				
Chloride	48.0	50.0	NA	96	86-110	NA	NA	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

9

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jul 2 2020 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-8A-2020	Water	20-A008840	CN- Shim
MW-14A-2020	Water	20-A008841	CN- Shim
MW-10A-2020	Water	20-A008842	CN- Shim
MW-10A-D-2020	Water	20-A008843	CN- Shim
MW-3B-2020	Water	20-A008844	CN- Shim
MW-18-2020	Water	20-A008845	CN- Shim

Your samples were received on Tuesday, June 23, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron W. Young

Aaron W. Young Laboratory Manager

Project #: 160802 PO Number: 06-256

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 06/23/20 Date Reported: 7/ 2/20

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 160802 PO Number: 06-256 All results reported on an as received basis.

AMTEST Identification Number	20-A008840
Client Identification	MW-8A-2020
Sampling Date	06/20/20, 11:30

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

AMTEST Identification Number	20-A008841
Client Identification	MW-14A-2020
Sampling Date	06/20/20, 13:00

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.018	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

AMTEST Identification Number	20-A008842
Client Identification	MW-10A-2020
Sampling Date	06/20/20, 13:55

On-Site Environmental Project Name: AmTest ID: 20-A008842

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.006	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

AMTEST Identification Number	20-A008843
Client Identification	MW-10A-D-2020
Sampling Date	06/20/20, 13:55

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

AMTEST Identification Number	20-A008844
Client Identification	MW-3B-2020
Sampling Date	06/20/20, 15:15

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

AMTEST Identification Number	20-A008845
Client Identification	MW-18-2020
Sampling Date	06/20/20, 16:20

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.005	mg/l		0.005	SM 4500CN-E99	AW	06/27/20

on w V Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A008840 to 20-A008845

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
20-A008986	Total Cyanide	mg/l	< 0.005	0.22 0.20		110.00 %
20-A008986	Total Cyanide	mg/l	< 0.005	0.21	0.20	105.00 %
IVIA I RIX 3P	INE DUPLICATES					
SAMPLE #	ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike	Total Cyanide	mg/l	0.22	0.21		4.7
		_				
STANDARD	O REFERENCE MATERIAL	S				
ANALYTE		UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Cyanide		mg/l	0.10	0.10		100. %
BLANKS						
ANALYTE		UNITS	RESULT			
Total Cyanide		mg/l	< 0.005			
AVA Onsite				Page 1 of	Z	
--	------------	-------------	---------	-----------------------------------	----------	
Environmental Inc.						
14648 NE 95th Street, Redmond, WA 98052 · (426) 883-3881				Laboratory Reference #: 06-256		
Laboratory: AmTest Laboratories	Turnaro	und Request		Project Manager. David Baumeister		
Attention: Aaron Young	1 Day 2	Day 3 Day		email: dbaumeister@onsite-env.com		
13600 NE 126th PI Kirkland, WA 98034	Sta	ndard		Project Number.		
Phone Number: (425)885-1664	Other:		ļ	Project Name:	1	
Lab D Sample Identification	Sampled Sa	ine Me	‡0 #			
MW-8A-2020 XSU 0	6/20/20	1:30 W	-			
MWV-14A-2020	6/20/20	3:00 W				
MW-10A-2020 Y2	6/20/20	3:55 W	-	Oganue (Total) Cvanida (Total)	1	
MW-10A-D-2020 43	6/20/20	3:55 W	-	Cvanide (Total)	1	
MW-3B-2020 44	6/20/20	5:15 W	-	Cvanide (Total)	1	
MW-18-2020 45	6/20/20	6:20 W	-	Cyanide (Total)		
					<u> </u>	
					T	
					T	
	Compan		Date		17.	
Relinquished by: Nicli ol Children	0%5		(122 I			
Received by:	An test		6/23/10	127-7-		
Relinquished by:			`			
Received by:						
Relinquished by:						
Received by:						
P.5	Client	tecis				

AVA OnSite	Chain of Cu	istody	Page 1	of
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request La (in working days)	aboratory Number:	06-256	
Company: App And I C	(Oheck One)			
Project Number: 160802	2 Days 3 Days	(dn-ue	818 2\00758 z Arari	(
Project Name: CGA WS/	Standard (7 Days)	.a Ouly) 8260C . 3G Cle	MIR riedes 80 esticides sicides 8 ricides 8 ricide	(12)
Project Manager. Richard Kent	C C	3TEX Decid / Do Volatiles Volatiles	8270D/(5 k) PHA(s) Mol) MIS ne Pestid herals fietals fietals fietals	e To te de
sampled by: Pathick I feat	(other)	PA 801 H-Gx/E H-Cx ([verleve s270D/s 3270D/s 3270D/s 3082A nated A 1TCA M 1TCA M 1TCA M 1TCA M 1TCA M	inie Mal De Mal Mal Mal Mal Mal Mal Mal Mal Mal Mal
Lab ID Sample Identification	Date Time E	INWTPI NWTPI Volatile Haloge Haloge	Semivo (with lo Organo Organo Organo Organo Organo Organo	siow %
1 MW-84-2020	6/20/20 1/30 W 2			XXXX
2 MW-14A-2020	1300 2			
3 MW-104-2020	1355 2			
4 MW-104-D-2020	1365 2			
S MW-3B-2020	15/5 2			
6 MW-78-2020	V 1620 V 2			* * * *
Signature	Company	Date Time	Comments/Special Instructions	
Relinquished	- Georallo	6/2/20 100 .	Invoice Blue Mou	untain
Relinquished		A card We	Furition menter Cons	sultha LLC
Received				0
Relinquished				
Received			Data Package: Standard 💆 Level III 🛛 Level	
Reviewed/Date	Reviewed/Date		Chromatograms with final report 🗌 Electronic Data	a Deliverables (EDDs)

Appendix B - UCL and Trends

Appendix B1 Time-Series Graphs: Sulfate, Fluoride, Chloride, Cyanide

Appendix B2 Mann-Kendall Trend Test Results

Well ID	Analyte	n	S	variance	Z	Probability	Trend
MW-3B	Sulfate	16	-99	487.667	4.438	9.09E-06	Negative
	Fluoride	16	-78	486.667	3.490	0.000482	Significantly Negative
	Chloride	16	-69	490.333	3.071	0.00213	Significantly Negative
	Total Cyanide	10	-1	111.667	0	1	Negative
MW-8A	Sulfate	16	-19	481	0.821	0.412	Negative
	Fluoride	16	-64	477.333	2.884	0.00393	Significantly Negative
	Chloride	16	-46	488.667	2.036	0.0418	Significantly Negative
	Total Cyanide	16	-9	361	0.421	0.674	Negative
MW-10A	Sulfate	16	76	493.333	3.377	0.000734	Significantly Positive
	Fluoride	16	37	492.333	1.622	0.105	Positive
	Chloride	16	53	492.333	2.344	0.0191	Significantly Positive
	Total Cyanide	16	-68	482.667	3.050	0.00229	Significantly Negative
MW-12A	Sulfate	1	-	-	-	-	-
	Fluoride	1	-	-	-	-	-
	Chloride	1	-	-	-	-	-
	Total Cyanide	1	-	-	-	-	-
MW-14A	Sulfate	15	-54	2.626	407.333	0.00864	Significantly Negative
	Fluoride	15	-59	408.333	2.870	0.00410	Significantly Negative
	Chloride	15	-53	406.333	2.580	0.00989	Significantly Negative
	Total Cyanide	15	-66	407.333	3.221	0.00128	Significantly Negative
MW-18	Sulfate	16	-18	484	0.773	0.440	Negative
	Fluoride	16	-74	484	3.318	0.000906	Significantly Negative
	Chloride	16	-56	488.667	2.488	0.0128	Significantly Negative
	Total Cyanide	16	3	363.667	0.105	0.916	Positive

SUMMARY MANN-KENDALL TEST FOR TREND RESULTS

Notes:

n = sample size

S = Mann-Kendall test statistic; calculated based on S and the estimated variance when the sample size is greater than 10.

Variance = Standard deviation of S squared

Z = Approximate normal test statistic; calculated based on S and the estimated variance when the sample size is greater than 10.

Probability from Table A.21 [Hollander and Wolfe (1973)]

Trends significant at alpha = 0.05 or less are highlighted

Appendix B3 Mann-Kendall Test Output

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:35:25 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH3B

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	80
Maximum	140
Mean	105.8
Geometric Mean	104.9
Median	100
Standard Deviation	14.97
Coefficient of Variation	0.141
Mann-Kendall Test	
M-K Test Value (S)	-231
Critical Value (0.05)	-1 645

Critical Value (0.05)	-1.645
Standard Deviation of S	47.73
Standardized Value of S	-4.819
Approximate p-value	7.2291E-7

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:35:59 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH8A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	3
Maximum	6.6
Mean	4.396
Geometric Mean	4.338
Median	4.2
Standard Deviation	0.746
Coefficient of Variation	0.17
Mann-Kendall Test	
M-K Test Value (S)	-124
Critical Value (0.05)	-1.645
Observational Development of O	

Critical Value (0.05)	-1.645
Standard Deviation of S	47.8
Standardized Value of S	-2.573
Approximate p-value	0.00504

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:36:39 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH10A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	23
Maximum	190
Mean	68.04
Geometric Mean	56.19
Median	58
Standard Deviation	46.78
Coefficient of Variation	0.688
Mann-Kendall Test	
M-K Test Value (S)	166

Approximate p-value	2.8661E-4
Standardized Value of S	3.444
Standard Deviation of S	47.91
Critical Value (0.05)	1.645

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:37:12 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH12A

General Statistics

- Number or Reported Events Not Used 0
 - Number of Generated Events 1 Number Values Reported (n) 9
 - Number Values Missing 8
 - Number Values Used 1
 - Minimum 150
 - Maximum 150
 - Mean 150
 - Geometric Mean 150
 - Median 150
 - Standard Deviation N/A
 - Coefficient of Variation N/A

Not enough reported values (n) to provide Mann-Kendall Statistics!

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:37:46 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH14A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	26
Number Values Reported (n)	28
Number Values Missing	2
Number Values Used	26
Minimum	47
Maximum	210
Mean	105.8
Geometric Mean	95.2
Median	94
Standard Deviation	50.26
Coefficient of Variation	0.475
Mann-Kendall Test	
M-K Test Value (S)	-59

Critical Value (0.05)	-1.645	
Standard Deviation of S	45.32	
Standardized Value of S	-1.28	
Approximate p-value	0.1	

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:38:16 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CH18

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	59
Maximum	100
Mean	81.22
Geometric Mean	80.62
Median	81
Standard Deviation	9.951
Coefficient of Variation	0.123
Mann-Kendall Test	
M-K Test Value (S)	-121
Critical Value (0.05)	-1.645
Standard Deviation of S	47 83

Critical Value (0.05)	-1.040
Standard Deviation of S	47.83
Standardized Value of S	-2.509
Approximate p-value	0.00606

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:38:50 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY3B

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	28
Number Values Reported (n)	28
Minimum	0.0025
Maximum	0.01
Mean	0.00593
Geometric Mean	0.00556
Median	0.005
Standard Deviation	0.00227
Coefficient of Variation	0.383
Mann-Kendali Test	
M-K Test Value (S)	37
Critical Value (0.05)	1.645

Childal Value (0.05)	1.640
Standard Deviation of S	41.42
Standardized Value of S	0.869
Approximate p-value	0.192

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:39:17 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY8A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	28
Number Values Reported (n)	28
Minimum	0.0025
Maximum	0.025
Mean	0.00634
Geometric Mean	0.00556
Median	0.005
Standard Deviation	0.00428
Coefficient of Variation	0.674
Mann-Kendali Test	

-18
-1.645
41.53
-0.409
0.341

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:39:45 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY10A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	28
Number Values Reported (n)	28
Minimum	0.0025
Maximum	0.08
Mean	0.0257
Geometric Mean	0.0175
Median	0.03
Standard Deviation	0.0192
Coefficient of Variation	0.748

Mann-Kendall Test

M-K Test Value (S)	-200
Critical Value (0.05)	-1.645
Standard Deviation of S	50.1
Standardized Value of S	-3.972
Approximate p-value	3.5626E-5

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:40:18 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY12A

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	1
Number Values Reported (n)	9
Number Values Missing	8
Number Values Used	1
Minimum	0.005
Maximum	0.005
Mean	0.005
Geometric Mean	0.005
Median	0.005
Standard Deviation	N/A
Coefficient of Variation	N/A
Not end	ugh rep

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:40:51 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY14A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.005
Maximum	0.35
Mean	0.101
Geometric Mean	0.0509
Median	0.066
Standard Deviation	0.0967
Coefficient of Variation	0.962
Mann-Kendall Test	

M-K Test Value (S)	-196
Critical Value (0.05)	-1.645
Standard Deviation of S	47.86
Standardized Value of S	-4.074
Approximate p-value	2.3076E-5

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:41:21 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

CY18

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	28
Number Values Reported (n)	28
Minimum	0.0025
Maximum	0.086
Mean	0.00816
Geometric Mean	0.00553
Median	0.005
Standard Deviation	0.0154
Coefficient of Variation	1.883
Mann-Kendall Test	
M-K Test Value (S)	12

Critical Value (0.05)	1.645
Standard Deviation of S	38.18
Standardized Value of S	0.288
Approximate p-value	0.387

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:32:27 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F3B

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.12
Maximum	25
Mean	2.069
Geometric Mean	0.611
Median	0.5
Standard Deviation	4.848
Coefficient of Variation	2.343
Mann-Kendall Test	
M-K Test Value (S)	-161

Critical Value (0.05)	-1.645
Standard Deviation of S	47.7
Standardized Value of S	-3.354
Approximate p-value	3.9823E-4

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:32:58 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F8A

General S	statistics
-----------	------------

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.05
Maximum	5
Mean	0.584
Geometric Mean	0.298
Median	0.2
Standard Deviation	1.029
Coefficient of Variation	1.762
Mann-Kendall Test	
M-K Test Value (S)	-104

Critical Value (0.05)	-1.645
Standard Deviation of S	47.41
Standardized Value of S	-2.173
Approximate p-value	0.0149

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:33:28 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F10A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.5
Maximum	25
Mean	3.489
Geometric Mean	2.564
Median	2.3
Standard Deviation	4.469
Coefficient of Variation	1.281
Mann-Kendall Test	
M-K Test Value (S)	74
Critical Value (0.05)	1.645
Standard Deviation of S	47.87
	2012

orandara Demason or o	41.01
Standardized Value of S	1.525
Approximate p-value	0.0636

Insufficient evidence to identify a significant

trend at the specified level of significance.

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:33:55 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F12A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	1
Number Values Reported (n)	9
Number Values Missing	8
Number Values Used	1
Minimum	6.3
Maximum	6.3
Mean	6.3
Geometric Mean	6.3
Median	6.3
Standard Deviation	N/A
Coefficient of Variation	N/A
Not end	ough re

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:34:27 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F14A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	26
Number Values Reported (n)	28
Number Values Missing	2
Number Values Used	26
Minimum	2.5
Maximum	32
Mean	18.4
Geometric Mean	14.56
Median	19.5
Standard Deviation	9.843
Coefficient of Variation	0.535
Mann-Kendall Test	
M-K Test Value (S)	-137
Critical Value (0.05)	-1 645

Critical Value (0.05)	-1.645	
Standard Deviation of S	45.27	
Standardized Value of S	-3.004	
Approximate p-value	0.00133	

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:34:54 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

F18

General Statistics	

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.11
Maximum	25
Mean	2.539
Geometric Mean	0.559
Median	0.5
Standard Deviation	6.523
Coefficient of Variation	2.569
Mann-Kendall Test	
HIN Tool And a second	450

M-K Test Value (5)	-100
Critical Value (0.05)	-1.645
Standard Deviation of S	47.67
Standardized Value of S	-3.252
Approximate p-value	5.7333E-4

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendali Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:25:51 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

\$3B

Ger	nera	I Sta	atisti	cs
-			-	

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	1500
Maximum	2700
Mean	2205
Geometric Mean	2180
Median	2200
Standard Deviation	331.8
Coefficient of Variation	0.15
Mann-Kendall Test	
M-K Test Value (S)	-214
Critical Value (0.05)	-1.645
Standard Deviation of S	47.68

Standard Deviation of S	47.08
Standardized Value of S	-4.467
Approximate p-value	3.9601E-6

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:29:25 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

S8A

General	Statistics

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	0.5
Maximum	11
Mean	9.095
Geometric Mean	8.398
Median	9.6
Standard Deviation	1.978
Coefficient of Variation	0.217
Mann-Kendall Test	
M-K Test Value (S)	-27

Critical Value (0.05)	-1.645
Standard Deviation of S	47.4
Standardized Value of S	-0.549
Approximate p-value	0.292

Insufficient evidence to identify a significant

trend at the specified level of significance.

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:29:57 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

S10A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	27
Number Values Reported (n)	28
Number Values Missing	1
Number Values Used	27
Minimum	670
Maximum	6100
Mean	2278
Geometric Mean	1721
Median	1650
Standard Deviation	1777
Coefficient of Variation	0.78
Mann-Kendall Test	
M-K Test Value (S)	177
Critical Value (0.05)	1.645
Standard Deviation of S	47.93

Standard Deviation of S	47.93
Standardized Value of S	3.672
Approximate p-value	1.2021E-4

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:30:35 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

S12A

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	1
Number Values Reported (n)	9
Number Values Missing	8
Number Values Used	1
Minimum	1800
Maximum	1800
Mean	1800
Geometric Mean	1800
Median	1800
Standard Deviation	N/A
Coefficient of Variation	N/A
Not end	ough re

Not enough reported values (n) to provide Mann-Kendall Statistics!

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:31:12 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

S14A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	26
Number Values Reported (n)	28
Number Values Missing	2
Number Values Used	26
Minimum	1100
Maximum	7900
Mean	3710
Geometric Mean	3244
Median	3550
Standard Deviation	1907
Coefficient of Variation	0.514
Mann-Kendall Test	
M-K Test Value (S)	-92

-1.645
45.34
-2.007
0.0224

Former Columbia Gorge Aluminum Smelter Site

Mann-Kendali Trend Test Analysis

User Selected Options Date/Time of Computation ProUCL 5.17/8/2020 8:31:44 PM From File WSI2020.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

S18

General	Statistics

Number or Reported Events Not Used	0	
Number of Generated Events	27	
Number Values Reported (n)	28	
Number Values Missing	1	
Number Values Used	27	
Minimum	1200	
Maximum	1700	
Mean	1478	
Geometric Mean	1470	
Median	1500	
Standard Deviation	152.9	
Coefficient of Variation	0.103	
Mann-Kendall Test		
M-K Test Value (S)	2	
Oritical Value (0.05)	1.045	

1.645	
47.18	
0.0212	
0.492	

Insufficient evidence to identify a significant trend at the specified level of significance.

Appendix B4 UCL Calculations
			Sulf	ate			Fluoride					
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	27	27	27	1	26	27	27	27	27	1	26	27
Num Non-Detect	0	1	0	0	0	0	8	8	4	0	2	8
Percent Non-Detect	0	3.703703704	0	0	0	0	29.62962963	29.62962963	14.81481481	0	7.692307692	29.62962963
Min.	1500	0.5	670	1800	1100	1200	0.12	0.05	0.5	6.3	2.5	0.11
Max.	2700	11	6100	1800	7900	1700	25	5	25	6.3	32	25
Mean	2205.037037	9.095185185	2278.148148	1800	3709.615385	1478.148148	2.068888889	0.584074074	3.488888889	6.3	18.4	2.538888889
Max Conc (>50% ND)				NA						NA		
Log Normal				NA						NA		
Normal	2206.682809			NA	3711.260401	1479.794996				NA		
Non-parametric		10.79671067	3806.425217	NA			6.239011185	1.469572036	7.33319057	NA	27.02873	8.150628321
Distribution	Normal	Neither	Neither	NA	Normal	Normal	Neither	Neither	Neither	NA	Neither	Neither
	Chloride					Cyar	ide					
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	27	27	27	1	26	27	28	28	28	1	27	28
Num Non-Detect	0	0	0	0	0	0	26	28	6	1	2	27
Percent Non-Detect	0	0	0	0	0	0	92.85714286	100	21.42857143	100	7.407407407	96.42857143
Min.	80	3	23	150	47	59	0.0025	0.0025	0.0025	0.005	0.005	0.0025
Max.	140	6.6	190	150	210	100	0.01	0.025	0.08	0.005	0.35	0.086
Mean	105.8440741	4.395925926	68.03703704	150	105.8461538	81.22222222	0.005928571	0.006339286	0.025696429	0.005	0.100592593	0.008160714
Max Conc (>50% ND)				NA			0.01	0.025		0.005		0.086
Log Normal			70.36892839	NA	108.52534							
Normal	107.5095315	6.572619359		NA		82.89825899						
Non-parametric				NA					0.041928174		0.183803819	
							Non-Detect	Non-Detect		Non-Detect		Non-Detect
Distribution	Normal	Normal	Log-Normal	NA	Log-Normal	Normal	(>50%)	(>50%)	Neither	(>50%)	Neither	(>50%)

SUMMARY OF UCL CALCULATIONS

Appendix B5 DOE Groundwater UCL Output

130	CH3B	Chloride MW-3B					
140	CH3B						
120	CH3B						
130	CH3B						
118	CH3B	Number of samples	8		Uncensored values		
113	CH3B	Uncensored	2	7	Mean	105.84	
110	CH3B	Censored	Ľ.		Lognormal mean	105.87	
110	CH3B	Detection limit or PQL	3		Std. devn.	14.9658684	
110	CH3B	Method detection limit	8		Median	100	
97	CH3B	TOTAL	. 2	7	Min.	80	
124.79	CH3B				Max.	140	
100	CH3B						
100	CH3B						
96	CH3B	The second se					
110	CH3B	Lognormal distribution?		Normal dist	tribution?		
120	CH3B	r-squared is:	0.970	r-squared k	5:	0.956	
110	CH3B	Recommendations:		100			
98	CH3B	Use lognormal distribution.					
90	CH3B	-					
91	CH3B						
91	CH3B						
80	CH3B						
98	CH3B						
95	CH3B						
95	CH3B	UCL (Land's method) is 110	.9693190916	573			
93	CH3B	· · · · · · · · · · · · · · · · · · ·					
88	CH3B						
	120000						

5.6	CH8A	Chloride MW-8A					
4.6	CH8A						
4.2	CH8A						
4.7	CH8A	9.07042004 54+ 22		1000	80 22		
4.2	CH8A	Number of samples	2	Unce	nsored values		
4.9	CH8A	Uncensored	2	7	Mean	4.40	
4.6	CH8A	Censored	Ľ	LO	gnormal mean	4.40	
4.5	CH8A	Detection limit or PQL			Std. devn.	0.74574825	
6.6	CH8A	Method detection limit	6		Median	4.2	
4.89	CH8A	TOTAL	. 2	7	Min.	3	
4.2	CH8A				Max.	6.6	
4	CH8A						
4.5	CH8A						
3	CH8A	10 0000000000000000					
5.5	CH8A	Lognormal distribution?		Normal distributio	on?		
4.4	CH8A	r-squared is:	0.964	r-squared is:	6	0.935	
3.6	CH8A	Recommendations:		100			
3.6	CH8A	Use lognormal distribution.					
3.8	CH8A						
4.8	CH8A						
4.9	CH8A						
4.2	CH8A						
4.1	CH8A						
4.1	CH8A			01.855			
3.2	CH8A	UCL (Land's method) is 4.65	53232126146	78			
4.1	CH8A						
3.9	CH8A						

29	CH10A	Chloride MW-10A					
31	CH10A						
28	CH10A						
28	CH10A	3.375-1257-5 54 2.2		8325	351 2.2		
43	CH10A	Number of samples	0	Uncer	nsored values		
48	CH10A	Uncensored	2	7	Mean	68.04	
35	CH10A	Censored	Ľ	Log	gnormal mean	67.82	
30	CH10A	Detection limit or PQL			Std. devn.	46.7789248	
45	CH10A	Method detection limit	£		Median	58	
36	CH10A	TOTAL	. 2	7	Min.	23	
30	CH10A				Max.	190	
100	CH10A						
30	CH10A						
68	CH10A	1					
79	CH10A	Lognormal distribution?		Normal distributio	in?		
83	CH10A	r-squared is:	0.939	r-squared ls:	a	0.805	
23	CH10A	Recommendations:					
62	CH10A	Use lognormal distribution.					
180	CH10A						
88	CH10A						
190	CH10A						
58	CH10A						
82	CH10A						
170	CH10A			2005			
71	CH10A	UCL (Land's method) is 86.3	74905032503	97			
82	CH10A						
77	CH10A						

110	CH14A	Chloride MW-14A					
90	CH14A						
71	CH14A						
75	CH14A	3.375-32255 541 2.3					
53	CH14A	Number of samples		Uncensored	d values		
63	CH14A	Uncensored	2	6	Mean	105.85	
98	CH14A	Censored	1	Lognorm	al mean	106.22	
130	CH14A	Detection limit or PQL		St	d. devn.	50.2566949	
140	CH14A	Method detection limit	6		Median	94	
170	CH14A	TOTAL	. 2	5	Min.	47	
200	CH14A				Max.	210	
100	CH14A						
180	CH14A						
210	CH14A	No. DOMESTICS.					
160	CH14A	Lognormal distribution?		Normal distribution?			
170	CH14A	r-squared is:	0.947	r-squared is:	â	0.907	
120	CH14A	Recommendations:		702			
130	CH14A	Use lognormal distribution.					
66	CH14A						
61	CH14A						
47	CH14A						
61	CH14A						
68	CH14A						
66	CH14A			100			
64	CH14A	UCL (Land's method) is 127	.2494700766	81			1
49	CH14A						

86	CH18	Chloride MW-18					
91	CH18						
75	CH18						
84	CH18	a second state and			1011 MIL 101		
83	CH18	Number of samples			Uncensored values		
91	CH18	Uncensored	8 8	27	Mean	81.22	
89	CH18	Censored			Lognormal mean	81.26	
80	CH18	Detection limit or PQL			Std. devn.	9.9511628	
93	CH18	Method detection limit			Median	81	
77	CH18	TOTAL	1 3	27	Min.	59	
100	CH18				Max.	100	
70	CH18						
80	CH18						
81	CH18	No. Internet and the second second					
70	CH18	Lognormal distribution?		Normal di	stribution?		
100	CH18	r-squared is:	0.968	r-squared	ls:	0.980	
84	CH18	Recommendations:		100			
89	CH18	Use lognormal distribution.					
79	CH18	_					
84	CH18						
79	CH18						
86	CH18						
79	CH18						
59	CH18						
69	CH18	UCL (Land's method) is 84.7	702858156	715			
68	CH18						
67	CH18						

0.005	CY3B	Cyanide MW-3B					
0.005	CY3B						
0.005	CY3B						
0.005	CY3B	3.275-022281 24 - 22					
0.005	CY3B	Number of samples		Unc	ensored values		
0.005	CY3B	Uncensored	2	8	Mean	0.01	
0.005	CY3B	Censored	1	L	ognormal mean	0.01	
0.005	CY3B	Detection limit or PQL			Std. devn.	0.00227187	
0.005	CY3B	Method detection limit	6		Median	0.005	
0.005	CY3B	TOTAL	. 2	8	Min.	0.0025	
0.005	CY3B				Max.	0.01	
0.005	CY3B						
0.005	CY3B						
0.005	CY3B	1.0 000 000 000 000					
0.01	CY3B	Lognormal distribution?		Normal distribut	tion?		
0.01	CY3B	r-squared is:	0.718	r-squared ls:		0.677	
0.01	CY3B	Recommendations:		200			
0.01	CY3B						
0.01	CY3B	Reject BOTH lognormal and	i normal distri	butions. See Stat	tistics Guidance.		
0.0025	CY3B						
0.006	CY3B						
0.0025	CY3B						
0.005	CY3B						
0.005	CY3B						
0.01	CY3B						
0.005	CY3B						
0.005	CY3B						
0.005	CY3B		UCL (based	on Z-statistic) is (0.007		

0.005	CY8A	Cyanide MW-8A			
0.005	CY8A				
0.005	CY8A				
0.005	CY8A	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
0.005	CY8A	Number of samples	i	Uncensored values	
0.025	CY8A	Uncensored	28	3 Mean	0.01
0.005	CY8A	Censored	1	Lognormal mean	0.01
0.005	CY8A	Detection limit or PQL		Std. devn.	0.00427537
0.005	CY8A	Method detection limit	Ê	Median	0.005
0.005	CY8A	TOTAL	. 28	3 Min.	0.0025
0.005	CY8A			Max	0.025
0.005	CY8A				
0.005	CY8A				
0.005	CY8A	No. And Address of the second			
0.01	CY8A	Lognormal distribution?		Normal distribution?	
0.01	CY8A	r-squared is:	0.735	r-squared is:	0.532
0.01	CY8A	Recommendations:			
0.01	CY8A				
0.01	CY8A	Reject BOTH lognormal and	I normal distri	butions. See Statistics Guidance	h.
0.0025	CY8A				5.05
0.0025	CY8A				
0.0025	CY8A				
0.005	CY8A				
0.005	CY8A				
0.005	CY8A				1
0.005	CY8A				
0.005	CY8A				
0.005	CY8A		UCL (based	on Z-statistic) is 0.008	

mples				
mples				
mples				
mples				
a new d		Uncensored values		
isorea	28	Mean	0.03	
bored		Lognormal mean	0.03	
r PQL		Std. devn.	0.01921484	
n limit		Median	0.03	
OTAL	28	Min.	0.0025	
		Max.	0.08	
?	Normal	distribution?		
0.874	r-square	ed Is:	0.884	
	10			
al and normal d	distributions. S	See Statistics Guidance.		
UCL (ba	sed on Z-stati	istic) is 0.032		
	mpres isored isored r PQL n limit OTAL ? 0.874 al and normal o	mples isored 28 isored r PQL n limit OTAL 28 ? Normal 0.874 r-square al and normal distributions. 3 UCL (based on Z-stat	mples Uncensored values isored 28 Mean isored Lognormal mean r PQL Std. devn. n limit Median OTAL 28 Min. Max. Max. ? Normal distribution? 0.874 r-squared is: al and normal distributions. See Statistics Guidance. UCL (based on Z-statistic) is 0.032	mples Uncensored values isored 28 Mean 0.03 isored Lognormal mean 0.03 r PQL Std. devn. 0.01921484 n limit Median 0.03 OTAL 28 Min. 0.0025 Max. 0.08 ? Normal distribution? 0.874 r-squared lis: 0.884

0.35	CY14A	Cyanide MW-14A					
0.24	CY14A						
0.27	CY14A						
0.19	CY14A	3 27-4 (272-5) Silv 22			st 22		
0.19	CY14A	Number of samples		Uncensore	d values		
0.2	CY14A	Uncensored	27	7	Mean	0.10	
0.17	CY14A	Censored		Lognom	nal mean	0.13	
0.01	CY14A	Detection limit or PQL		S	td. devn.	0.09672891	
0.12	CY14A	Method detection limit			Median	0.066	
0.005	CY14A	TOTAL	27	7	Min.	0.005	
0.03	CY14A				Max.	0.35	
0.005	CY14A						
0.19	CY14A						
0.12	CY14A	10 R007021300 004					
0.14	CY14A	Lognormal distribution?		Normal distribution?			
0.044	CY14A	r-squared is:	0.930	r-squared is:	č	0.878	
0.14	CY14A	Recommendations:					
0.086	CY14A	Use lognormal distribution.					
0.066	CY14A						
0.028	CY14A						
0.037	CY14A						
0.008	CY14A						
0.019	CY14A						
0.017	CY14A						
0.005	CY14A	UCL (Land's method) is 0.28	37059807287	35			
0.018	CY14A						
0.018	CY14A						

0.005	CY18	Cyanide MW-18			
0.005	CY18				
0.005	CY18				
0.005	CY18	1		100.00 NO 22	
0.005	CY18	Number of samples	8	Uncensored value	5
0.005	CY18	Uncensored	2	8 Mea	n 0.01
0.005	CY18	Censored	Ľ	Lognormal mea	n 0.01
0.005	CY18	Detection limit or PQL	3	Std. devr	0.01536594
0.005	CY18	Method detection limit	E	Media	n 0.005
0.005	CY18	TOTAL	. 2	8 Mir	. 0.0025
0.005	CY18			Max	. 0.086
0.005	CY18				
0.005	CY18				
0.005	CY18	Tel Constant and the			
0.005	CY18	Lognormal distribution?		Normal distribution?	
0.005	CY18	r-squared is:	0.522	r-squared ls:	0.235
0.01	CY18	Recommendations:		440	
0.01	CY18				
0.01	CY18	Reject BOTH lognormal and	i normal distri	butions. See Statistics Guidance	e.
0.0025	CY18				0.0
0.0025	CY18				
0.0025	CY18				
0.005	CY18				
0.005	CY18				
0.086	CY18				
0.005	CY18				
0.005	CY18				
0.005	CY18		UCL (based	on Z-statistic) is 0.013	

0.6	F3B	Fluoride MW-3B					
0.4	F3B						
0.6	F3B						
0.9	F3B				212.94 NO. 97		
0.7	F3B	Number of samples			Uncensored values		
0.2	F3B	Uncensored		27	Mean	2.07	
3.7	F3B	Censored	1		Lognormal mean	1.72	
3.8	F3B	Detection limit or PQL			Std. devn.	4.84755952	
3.8	F3B	Method detection limit	Ê		Median	0.5	
5	F3B	TOTAL	<u>i</u> 3	27	Min.	0.12	
0.5	F3B				Max.	25	
25	F3B						
5	F3B						
0.5	F3B	1					
0.5	F3B	Lognormal distribution?		Normal dis	stribution?		
2.3	F3B	r-squared is:	0.885	r-squared	ls:	0.390	
0.5	F3B	Recommendations:		100			
0.5	F3B						
0.16	F3B	Reject BOTH lognormal and	i normal disi	tributions. Se	e Statistics Guidance		
0.16	F3B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0.18	F3B						
0.14	F3B						
0.12	F3B						
0.15	F3B						
0.16	F3B						
0.15	F3B						
0.14	F3B						
			UCL (base	d on Z-statisti	ic) lis 3.604		

0.9	F8A	Fluoride MW-8A					
0.3	F8A						
0.4	F8A						
0.9	F8A	a spectrum to a set			V.55 NO 25		
2.8	F8A	Number of samples	8		Uncensored values		
0.2	F8A	Uncensored	2	27	Mean	0.58	
0.1	F8A	Censored	l.		Lognormal mean	0.51	
0.1	F8A	Detection limit or PQL	8		Std. devn.	1.02934729	
0.05	F8A	Method detection limit	8		Median	0.2	
5	F8A	TOTAL	2	27	Min.	0.05	
0.5	F8A				Max.	5	
0.5	F8A						
0.1	F8A						
0.5	F8A						
0.5	F8A	Lognormal distribution?		Normal distri	ibution?		
0.5	F8A	r-squared is:	0.911	r-squared is:		0.457	
0.5	F8A	Recommendations:					
0.5	F8A	Use lognormal distribution.					
0.18	F8A	-					
0.16	F8A						
0.19	F8A						
0.16	F8A						
0.13	F8A						
0.15	F8A						
0.15	F8A	UCL (Land's method) is 0.85	54413580768	3238			
0.14	F8A						
0.16	F8A						

1.8	F10A	Fluoride MW-10A					
1.5	F10A						
1.2	F10A						
2.7	F10A				v 2 5 80 80		
2.3	F10A	Number of samples			Uncensored values		
3.2	F10A	Uncensored	1 3	27	Mean	3.49)
2.3	F10A	Censored	1		Lognormal mean	3.28	3
1.9	F10A	Detection limit or PQL	3		Std. devn.	4.46880928	3
3.4	F10A	Method detection limit	6		Median	2.3	1
5	F10A	TOTAL		27	Min.	0.5	5
1.2	F10A				Max.	25	5
25	F10A						
5	F10A						
2	F10A	To Design the second second					
0.5	F10A	Lognormal distribution?		Normal dis	stribution?		
4.4	F10A	r-squared is:	0.893	r-squared	l5:	0.406	
1	F10A	Recommendations:		100			
3.3	F10A						
1.9	F10A	Reject BOTH lognormal and	i normal dist	ributions. See	e Statistics Guidance.	9	
3.1	F10A						
2	F10A						
2	F10A						
2.1	F10A						
3.2	F10A						
4.1	F10A						
3.7	F10A						
4.4	F10A						
			UCL (based	d on Z-statisti	c) ls 4.904		

9.6	F14A	Fluoride MW-14A					
8.6	F14A						
30	F14A						
25	F14A			27.7 M			
31	F14A	Number of samples		Uncensored	values		
27	F14A	Uncensored	26	i	Mean	18.40	
30	F14A	Censored	1	Lognorma	al mean	20.21	
24	F14A	Detection limit or PQL		Sto	l. devn.	9.84296703	
16	F14A	Method detection limit	E		Median	19.5	
19	F14A	TOTAL	. 20	i	Min.	2.5	
25	F14A				Max.	32	
25	F14A	0.					
20	F14A						
30	F14A						
24	F14A	Lognormal distribution?		Normal distribution?			
32	F14A	r-squared is:	0.834	r-squared is:		0.929	
18	F14A	Recommendations:					
23	F14A	Use normal distribution.					
17	F14A						
18	F14A						
6.8	F14A						
3.5	F14A						
2.5	F14A						
3.6	F14A						
2.8	F14A	UCL (based on t-statistic) is	21.69706282	67736			
7	F14A						

West Surface Impoundment

				Fluoride MW-18	F18	0.6
					F18	0.4
					F18	0.4
					F18	1.8
	Uncensored values		les	Number of samples	F18	0.9
2.54	Mean	27	red	Uncensored	F18	0.2
1.81	Lognormal mean		red	Censored	F18	2.6
5.52336766	Std. devn.		QL	Detection limit or PQL	F18	2.4
0.5	Median		mit	Method detection limit	F18	2.6
0.11	Min.	27	AL	TOTAL	F18	0.5
25	Max.				F18	25
					F18	25
					F18	0.5
				No. In the second second second	F18	1
	nal distribution?	Norm		Lognormal distribution?	F18	0.5
372	uared ls: 0	r-squ	0.880	r-squared is:	F18	2
				Recommendations:	F18	0.5
					F18	0.5
	s. See Statistics Guidance.	al distributions	and normal	Reject BOTH lognormal and	F18	0.2
					F18	0.13
					F18	0.12
					F18	0.11
					F18	0.12
					F18	0.11
					F18	0.11
					F18	0.12
					F18	0.13
	tatistic) is 4.604	based on Z-s	UCL (bi			
	statistic) is 4.604	based on Z-s	UCL (bi		F18 F18	0.12 0.13

2300	S3B	Sulfate MW-3B					
2500	S3B						
2700	S3B						
2600	S3B				012.02 NO. 977		
2610	S3B	Number of samples	8		Uncensored values		
2220	S3B	Uncensored	ŝ ŝ	27	Mean	2205.04	
2000	S3B	Censored			Lognormal mean	2206.83	
2500	S3B	Detection limit or PQL			Std. devn.	331.816154	
2500	S3B	Method detection limit	2		Median	2200	
2500	S3B	TOTAL	8 - 8	27	Min.	1500	
2200	S3B				Max.	2700	
2200	S3B	31 					
2600	S3B						
2200	S3B						
2606	S3B	Lognormal distribution?		Normal di	stribution?		
2300	S3B	r-squared is:	0.942	r-squared	IS:	0.957	
2400	S3B	Recommendations:					
2000	S3B	Use lognormal distribution.					
2200	S3B	,					
1900	S3B						
2000	S3B						
1900	S3B						
1900	S3B						
1700	S3B						
1800	S3B	UCL (Land's method) is 232	7.85992749	9149			
1500	S3B	,,,,,		1000			
1700	S3B						
	000						

B2	
'ທ	
£	
I.	
8	
Ň	
÷	
đ	

10	S8A	Sulfate MW-8A					
9.8	S8A						
8.9	S8A						
9.6	S8A				20.0 M 100 M 100		
9.27	S8A	Number of samples	8		Uncensored values		
9.8	S8A	Uncensored	2	7	Mean	9.10	
9.8	S8A	Censored	E		Lognormal mean	9.92	
9.7	S8A	Detection limit or PQL			Std. devn.	1.97793865	
10	S8A	Method detection limit	E		Median	9.6	
0.5	S8A	TOTAL	2	7	Min.	0.5	
10	S8A				Max.	11	
10	S8A						
10	S8A						
9	S8A	No. In the second second					
10	S8A	Lognormal distribution?		Normal dist	ribution?		
9.3	S8A	r-squared is:	0.296	r-squared is	5:	0.507	
8.9	S8A	Recommendations:					
7.8	S8A						
10	S8A	Reject BOTH lognormal and	i normal distr	ibutions. See	Statistics Guidance.		
9.4	S8A	1					
9.5	S8A						
9.5	S8A						
9.3	S8A						
9.6	S8A						
9.5	S8A						
5.4	S8A						
11	S8A						
			UCL (based	on Z-statistic) ls 9.721		

940	S10A	Sulfate MW-10A					
910	S10A						
670	S10A						
670	S10A	1			- 10 K		
1570	S10A	Number of samples			Uncensored values		
1650	S10A	Uncensored	2	7	Mean	2278.15	
860	S10A	Censored	Ľ.		Lognormal mean	2292.28	
850	S10A	Detection limit or PQL	3		Std. devn.	1776.54599	
1100	S10A	Method detection limit	E		Median	1650	
1100	S10A	TOTAL	. 2	7	Min.	670	
760	S10A				Max.	6100	
2700	S10A						
860	S10A						
2000	S10A	1					
760	S10A	Lognormal distribution?		Normal dist	tribution?		
2200	S10A	r-squared is:	0.923	r-squared k	5:	0.834	
710	S10A	Recommendations:		100			
1800	S10A	Use lognormal distribution.					
5800	S10A						
4700	S10A						
6100	S10A						
1900	S10A						
3500	S10A						
2900	S10A						
4800	S10A	UCL (Land's method) is 317	3.046479883	373			
4000	S10A						
5700	S10A						

4000	S14A	Sulfate MW-14A					
3500	S14A						
3600	S14A						
2800	S14A						
2170	S14A	Number of samples	8	Uncensored val	ues		
2380	S14A	Uncensored	26	5 M	ean	3709.62	
3300	S14A	Censored	Ľ.	Lognormal m	ean	3755.76	
3900	S14A	Detection limit or PQL		Std. de	evn.	1906.94411	
4400	S14A	Method detection limit	6	Mer	dian	3550	
7900	S14A	TOTAL	. 26	i	Min.	1100	
6400	S14A			N	Aax.	7900	
5500	S14A	0.					
6500	S14A						
7000	S14A	Terror and the second second second					
5900	S14A	Lognormal distribution?		Normal distribution?			
5200	S14A	r-squared is:	0.976	r-squared ls:		0.943	
4000	S14A	Recommendations:					
3900	S14A	Use lognormal distribution.					
2300	S14A	-					
2100	S14A						
1100	S14A						
1400	S14A						
1700	S14A						
1800	S14A						
1700	S14A	UCL (Land's method) is 465	8.964532074	07			
2000	S14A						

1500	S18	Sulfate MW-18					
1300	S18						
1500	S18						
1300	S18	a second data and			N 15 NO 15		
1520	S18	Number of samples	e		Uncensored values		
1490	S18	Uncensored	2	7	Mean	1478.15	
1500	S18	Censored	E		Lognormal mean	1478.56	
1600	S18	Detection limit or PQL			Std. devn.	152.870912	
1600	S18	Method detection limit	8		Median	1500	
1700	S18	TOTAL	. 2	7	Min.	1200	
1400	S18				Max.	1700	
1300	S18						
1600	S18						
1500	S18	No. In the second se					
1200	S18	Lognormal distribution?		Normal dist	ribution?		
1500	S18	r-squared is:	0.935	r-squared is		0.942	
1600	S18	Recommendations:		100			
1600	S18	Use lognormal distribution.					
1700	S18						
1500	S18						
1700	S18						
1300	S18						
1700	S18						
1300	S18						
1400	S18	UCL (Land's method) is 153	1.793728071	156			
1200	S18						
1400	S18						

B	
<u>'</u> 0	
2020	
D.pc	
	

Appendix B6 EPA Groundwater UCL Output

UCL Statistics for Data Sets with Non-Detects

User Selected Options	;
Date/Time of Computation	ProUCL 5.17/8/2020 11:06:27 PM
From File	WSI2020.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

S3B

	General	Statistics	
Total Number of Observations	27	Number of Distinct Observations	14
		Number of Missing Observations	1
Minimum	1500	Mean	2205
Maximum	2700	Median	2200
SD	331.8	Std. Error of Mean	63.86
Coefficient of Variation	0.15	Skewness	-0.339
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.146	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Normal at 5% Significance Level	
Data appea	ar Normal a	t 5% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2314	95% Adjusted-CLT UCL (Chen-1995)	2306
		95% Modified-t UCL (Johnson-1978)	2313
	Gamma	GOF Test	
A-D Test Statistic	0.581	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.148	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.168	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	43.52	k star (bias corrected MLE)	38.71
Theta hat (MLE)	50.66	Theta star (bias corrected MLE)	56.96
nu hat (MLE)	2350	nu star (bias corrected)	2091
MLE Mean (bias corrected)	2205	MLE Sd (bias corrected)	354.4
		Approximate Chi Square Value (0.05)	1985
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	1979

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 2330

95% Approximate Gamma UCL (use when n>=50)) 2322

Lognormal	GOF	Test
-----------	-----	------

Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.153	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			

Lognormal Statistics

Minimum of Logged Data	7.313	Mean of logged Data	7.687
Maximum of Logged Data	7.901	SD of logged Data	0.157

Assuming Lognormal Distribution

95% H-UCL	2328	90% Chebyshev (MVUE) UCL	2407
95% Chebyshev (MVUE) UCL	2498	97.5% Chebyshev (MVUE) UCL	2624
99% Chebyshev (MVUE) UCL	2872		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2310	95% Jackknife UCL	2314
95% Standard Bootstrap UCL	2311	95% Bootstrap-t UCL	2313
95% Hall's Bootstrap UCL	2305	95% Percentile Bootstrap UCL	2312
95% BCA Bootstrap UCL	2305		
90% Chebyshev(Mean, Sd) UCL	2397	95% Chebyshev(Mean, Sd) UCL	2483
97.5% Chebyshev(Mean, Sd) UCL	2604	99% Chebyshev(Mean, Sd) UCL	2840

Suggested UCL to Use

95% Student's-t UCL 2314

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

General Statistics

Total Number of Observations	27	Number of Distinct Observations	14
		Number of Missing Observations	1
Number of Detects	26	Number of Non-Detects	1
Number of Distinct Detects	13	Number of Distinct Non-Detects	1
Minimum Detect	5.4	Minimum Non-Detect	0.5
Maximum Detect	11	Maximum Non-Detect	0.5
Variance Detects	1	Percent Non-Detects	3.704%
Mean Detects	9.426	SD Detects	1
Median Detects	9.6	CV Detects	0.106

Skewness Detects	-2 795	Kurtosis Detects	10.68	
Mean of Longed Detects	2 237	SD of Logged Detects	0 128	
	2.207		0.120	
Normal GOF Test on Detects Only				
Shapiro Wilk Test Statistic	0.704	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Leve	I	
Lilliefors Test Statistic	0.246	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.17	Detected Data Not Normal at 5% Significance Leve	I	
Detected Data	Not Normal	at 5% Significance Level		
Kaplan Majar (KM) Statistics usin	a Normal Cri	tical Values and other Nennersmatric LICLs		
		KM Standard Error of Moon	0 291	
KM Mean	9.095		0.301	
	1.941	95% KM (BCA) UCL	9.607	
95% KM (t) UCL	9.745	95% KM (Percentile Bootstrap) UCL	9.615	
95% KM (z) UCL	9.722		9.573	
90% KM Chebyshev UCL	10.24	95% KM Chebyshev UCL	10.76	
97.5% KM Chebysnev UCL	11.47	99% KM Chebyshev UCL	12.89	
Gamma GOF	Tests on Det	ected Observations Only		
A-D Test Statistic	2.941	Anderson-Darling GOF Test		
5% A-D Critical Value	0.743	Detected Data Not Gamma Distributed at 5% Significance	e Level	
K-S Test Statistic	0.267	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.171	Detected Data Not Gamma Distributed at 5% Significance	e Level	
Detected Data Not G	amma Distri	buted at 5% Significance Level		
Gamma	Statistics on	Detected Data Only		
k hat (MLE)	/2.55	k star (bias corrected MLE)	64.21	
I heta hat (MLE)	0.13	I heta star (bias corrected MLE)	0.14/	
nu hat (MLE)	3773	nu star (bias corrected)	3339	
Mean (detects)	9.426			
Gamma ROS	Statistics usi	ng Imputed Non-Detects		
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs		
GROS may not be used when kstar of detects is s	mall such as	<1.0, especially when the sample size is small (e.g., <15-20)		
For such situations, GROS n	nethod may y	ield incorrect values of UCLs and BTVs		
This is especia	ally true when	the sample size is small.		
For gamma distributed detected data, BTVs ar	nd UCLs may	be computed using gamma distribution on KM estimates		
Minimum	5.4	Mean	9.359	
Maximum	11	Median	9.6	
SD	1.04	CV	0.111	
k hat (MLE)	67.74	k star (bias corrected MLE)	60.24	
Theta hat (MLE)	0.138	Theta star (bias corrected MLE)	0.155	
nu hat (MLE)	3658	nu star (bias corrected)	3253	
Adjusted Level of Significance (β)	0.0401			
Approximate Chi Square Value (N/A, α)	3121	Adjusted Chi Square Value (N/A, β)	3113	
95% Gamma Approximate UCL (use when n>=50)	9.754	95% Gamma Adjusted UCL (use when n<50)	9.779	
	_			
Estimates of Ga	amma Param	eters using KM Estimates		
Mean (KM)	9.095	SD (KM)	1.941	
Variance (KM)	3./6/	SE of Mean (KM)	0.381	

k hat (KM)	21.96	k star (KM)	19.54
nu hat (KM)	1186	nu star (KM)	1055
theta hat (KM)	0.414	theta star (KM)	0.465
80% gamma percentile (KM)	10.77	90% gamma percentile (KM)	11.81
95% gamma percentile (KM)	12.72	99% gamma percentile (KM)	14.55
Gamm	a Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (N/A, α)	980.9	Adjusted Chi Square Value (N/A, β)	976.3
95% Gamma Approximate KM-UCL (use when n>=50)	9.785	95% Gamma Adjusted KM-UCL (use when n<50)	9.831
Lognormal GO	F Test on [Detected Observations Only	
Shapiro Wilk Test Statistic	0.612	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Lognormal at 5% Significance Lev	el
Lilliefors Test Statistic	0.277	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.17	Detected Data Not Lognormal at 5% Significance Lev	el
Detected Data N	lot Lognori	nal at 5% Significance Level	
Lognormal ROS	Statistics	Using Imputed Non-Detects	
Mean in Original Scale	9.351	Mean in Log Scale	2.228
SD in Original Scale	1.054	SD in Log Scale	0.133
95% t UCL (assumes normality of ROS data)	9.697	95% Percentile Bootstrap UCL	9.656
95% BCA Bootstrap UCL	9.611	95% Bootstrap t UCL	9.632
95% H-UCL (Log ROS)	9.795		
Statistics using KM estimates of	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	2.128	KM Geo Mean	8.398
KM SD (logged)	0.567	95% Critical H Value (KM-Log)	2.03
KM Standard Error of Mean (logged)	0.111	95% H-UCL (KM -Log)	12.36
KM SD (logged)	0.567	95% Critical H Value (KM-Log)	2.03
KM Standard Error of Mean (logged)	0.111		
	DL/2 S	Statistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.086	Mean in Log Scale	2.102
SD in Original Scale	2.02	SD in Log Scale	0.708
95% t UCL (Assumes normality)	9.749	95% H-Stat UCL	14.22
DL/2 is not a recommended me	thod, prov	ided for comparisons and historical reasons	
Nonparame	tric Distribu	ution Free UCL Statistics	
Data do not follow a Di	scernible D	istribution at 5% Significance Level	

:	Suggested UCL to Use		
95% KM (t) UCL	9.745	KM H-UCL	12.36
95% KM (BCA) UCL	9.607		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

S10A

	General S	Statistics	
Total Number of Observations	27	Number of Distinct Observations	23
		Number of Missing Observations	1
Minimum	670	Mean	2278
Maximum	6100	Median	1650
SD	1777	Std. Error of Mean	341.9
Coefficient of Variation	0.78	Skewness	1.039
	Normal G	OF Test	
	0.819		
5% Snapiro Wilk Critical Value	0.923	Data Not Normal at 5% Significance Level	
	0.192		
5% Lilliefors Critical Value	0.167 Normal at 5	Data Not Normal at 5% Significance Level % Significance Level	
As	suming Norn	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2861	95% Adjusted-CLT UCL (Chen-1995)	2914
		95% Modified-t UCL (Johnson-1978)	2873
	Gamma G	GOF Test	
A-D Test Statistic	1.078	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.757	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.187	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.171	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamn	na Distribute	d at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	1.933	k star (bias corrected MLE)	1.743
Theta hat (MLE)	1178	Theta star (bias corrected MLE)	1307
nu hat (MLE)	104.4	nu star (bias corrected)	94.14
MLE Mean (bias corrected)	2278	MLE Sd (bias corrected)	1725
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Approximate Chi Square Value (0.05)	72.76
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	71.56
		-	
ASS 95% Approximate Gamma LICL (use when n>=50))	2947	ma Distribution 95% Adjusted Gamma LICL (use when n<50)	2997
	2347		2557
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.9	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.167	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.167	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal at	5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	6.507	Mean of logged Data	7.451

SD of logged Data

0.757

Assu	ming Lognormal Distribution		
95% H-UCL	3189	90% Chebyshev (MVUE) UCL	3339
95% Chebyshev (MVUE) UCL	3827	97.5% Chebyshev (MVUE) UCL	4505
99% Chebyshev (MVUE) UCL	5835		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

8.716

Nonparametric Distribution Free UCLs

2001
2994
2865
3768
5680
2235

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 3768

Maximum of Logged Data

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

S12A

General StatisticsTotal Number of Observations1Number of Distinct Observations1Number of Missing Observations8Minimum1800Mean1800Maximum1800Median1800

Warning: This data set only has 1 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable S12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

S14A

General Statistics

Total Number of Observations 26

Minimum 1100

Number of Distinct Observations23Number of Missing Observations2

Mean 3710

Maximum	7900	Median	3550
SD	1907	Std. Error of Mean	374
Coefficient of Variation	0.514	Skewness	0.614
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.92	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.142	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.17	Data appear Normal at 5% Significance Level	
Data appea	ar Normal at	5% Significance Level	
As	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4348	95% Adjusted-CLT UCL (Chen-1995)	4373
		95% Modified-t UCL (Johnson-1978)	4356
	Gamma G	GOF Test	
A-D Test Statistic	0.339	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.123	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.172	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	3.883	k star (bias corrected MLE)	3.46
Theta hat (MLE)	955.4	Theta star (bias corrected MLE)	1072
nu hat (MLE)	201.9	nu star (bias corrected)	179.9
MLE Mean (bias corrected)	3710	MLE Sd (bias corrected)	1994
		Approximate Chi Square Value (0.05)	149.9
Adjusted Level of Significance	0.0398	Adjusted Chi Square Value	148.1
Ass	uming Gamı	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	4453	95% Adjusted Gamma UCL (use when n<50)	4507
	Lognormal	COFTact	
Shaniro Wilk Test Statistic	0.965	Shaniro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0 101	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.17	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal a	at 5% Significance Level	
		STATISTICS	0.004
Minimum of Logged Data	7.003	Mean of logged Data	8.084
Maximum of Logged Data	8.975	SD of logged Data	0.542
Assu	ming Logno	rmal Distribution	
95% H-UCL	4665	90% Chebyshev (MVUE) UCL	4978
95% Chebyshev (MVUE) UCL	5543	97.5% Chebyshev (MVUE) UCL	6327
99% Chebyshev (MVUE) UCL	7866		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4348	95% Jackknife UCL	4325	95% CLT UCL
4423	95% Bootstrap-t UCL	4328	95% Standard Bootstrap UCL
4288	95% Percentile Bootstrap UCL	4390	95% Hall's Bootstrap UCL
		4390	95% BCA Bootstrap UCL
5340	95% Chebyshev(Mean, Sd) UCL	4832	90% Chebyshev(Mean, Sd) UCL
7431	99% Chebyshev(Mean, Sd) UCL	6045	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4348

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

S18

	General	Statistics	
Total Number of Observations	27	Number of Distinct Observations	8
		Number of Missing Observations	1
Minimum	1200	Mean	1478
Maximum	1700	Median	1500
SD	152.9	Std. Error of Mean	29.42
Coefficient of Variation	0.103	Skewness	-0.231
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.161	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Normal at 5% Significance Level	
Data appea	ar Normal a	t 5% Significance Level	
۵۹۵	suming Nor	mal Distribution	
95% Normal UCI	Janning 1961	95% LICLs (Adjusted for Skewness)	
95% Student's-t UCI	1528	95% Adjusted-CLTUCL (Chen-1995)	1525
	1020	95% Modified-t UCL (Johnson-1978)	1528
		х, , , , , , , , , , , , , , , , , , ,	
	Gamma	GOF Test	
A-D Test Statistic	0.765	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.744	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.174	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.168	Data Not Gamma Distributed at 5% Significance Leve	el
Data Nat Comp	o Diotribut	ad at 5% Significance Lavel	

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	94.81	k star (bias corrected MLE)	84.3
Theta hat (MLE)	15.59	Theta star (bias corrected MLE)	17.53
nu hat (MLE)	5120	nu star (bias corrected)	4552
MLE Mean (bias corrected)	1478	MLE Sd (bias corrected)	161
		Approximate Chi Square Value (0.05)	4396
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	4387
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	1531	95% Adjusted Gamma UCL (use when n<50)	1534
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.919	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.18	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.167	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at	5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	7.09	Mean of logged Data	7.293
Maximum of Logged Data	7.438	SD of logged Data	0.105
Assu	ming Logno	rmal Distribution	
95% H-UCL	1532	90% Chebyshev (MVUE) UCL	1568
95% Chebyshev (MVUE) UCL	1609	97.5% Chebyshev (MVUE) UCL	1666
99% Chebyshev (MVUE) UCL	1777		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

1528	95% Jackknife UCL	. 15	95% CLT UCL
1529	95% Bootstrap-t UCL	. 15	95% Standard Bootstrap UCL
1524	95% Percentile Bootstrap UCL	. 15	95% Hall's Bootstrap UCL
		. 15	95% BCA Bootstrap UCL
1606	95% Chebyshev(Mean, Sd) UCL	. 15	90% Chebyshev(Mean, Sd) UCL
1771	99% Chebyshev(Mean, Sd) UCL	. 16	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 1528

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

F3B

	General Statistics		
Total Number of Observations	27	Number of Distinct Observations	16
		Number of Missing Observations	1
Number of Detects	19	Number of Non-Detects	8
Number of Distinct Detects	13	Number of Distinct Non-Detects	3
Minimum Detect	0.12	Minimum Non-Detect	0.5
Maximum Detect	3.8	Maximum Non-Detect	25
Variance Detects	1.808	Percent Non-Detects	29.63%
Mean Detects	0.966	SD Detects	1.345
Median Detects	0.2	CV Detects	1.392
Skewness Detects	1.601	Kurtosis Detects	0.995
Mean of Logged Detects	-0.856	SD of Logged Detects	1.26

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.643	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.315	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.197	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.802	KM Standard Error of Mean	0.254
KM SD	1.208	95% KM (BCA) UCL	1.223
95% KM (t) UCL	1.235	95% KM (Percentile Bootstrap) UCL	1.238
95% KM (z) UCL	1.219	95% KM Bootstrap t UCL	1.443
90% KM Chebyshev UCL	1.563	95% KM Chebyshev UCL	1.907
97.5% KM Chebyshev UCL	2.385	99% KM Chebyshev UCL	3.325

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.833	Anderson-Darling GOF Test
5% A-D Critical Value	0.781	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.268	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.206	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.731	k star (bias corrected MLE)	0.651
1.321	Theta star (bias corrected MLE)	1.485
27.79	nu star (bias corrected)	24.74
0.966		
	0.731 1.321 27.79 0.966	0.731k star (bias corrected MLE)1.321Theta star (bias corrected MLE)27.79nu star (bias corrected)0.966

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.762
Maximum	3.8	Median	0.2
SD	1.176	CV	1.544

k hat (MLE)	0.608	k star (bias corrected MLE)	0.565
Theta hat (MLE)	1.252	Theta star (bias corrected MLE)	1.347
nu hat (MLE)	32.84	nu star (bias corrected)	30.53
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (30.53, α)	18.91	Adjusted Chi Square Value (30.53, β)	18.32
95% Gamma Approximate UCL (use when n>=50)	1.23	95% Gamma Adjusted UCL (use when n<50)	1.269
Estimates of Ga	imma Param	neters using KM Estimates	
Mean (KM)	0.802	SD (KM)	1.208
Variance (KM)	1.46	SE of Mean (KM)	0.254
k hat (KM)	0.441	k star (KM)	0.417
nu hat (KM)	23.8	nu star (KM)	22.49
theta hat (KM)	1.82	theta star (KM)	1.926
80% gamma percentile (KM)	1.3	90% gamma percentile (KM)	2.249
95% gamma percentile (KM)	3.286	99% gamma percentile (KM)	5.883
Gamma	a Kaplan-Me	ier (KM) Statistics	
Approximate Chi Square Value (22.49, α)	12.71	Adjusted Chi Square Value (22.49, β)	12.24
95% Gamma Approximate KM-UCL (use when n>=50)	1.42	95% Gamma Adjusted KM-UCL (use when n<50)	1.474
Lognormal GOI	- Test on De	tected Observations Only	
Shapiro Wilk Test Statistic	0.819	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.251	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.197	Detected Data Not Lognormal at 5% Significance Leve	el
Detected Data N	lot Lognorma	al at 5% Significance Level	
Lognormal ROS	Statistics U	sing Imputed Non-Detects	
Mean in Original Scale	0.766	Mean in Log Scale	-1.019
SD in Original Scale	1.166	SD in Log Scale	1.131
95% t UCL (assumes normality of ROS data)	1.148	95% Percentile Bootstrap UCL	1.149
95% BCA Bootstrap UCL	1.241	95% Bootstrap t UCL	1.341
95% H-UCL (Log ROS)	1.244		
Statistics using KM estimates of	n Logged D	ata and Assuming Lognormal Distribution	
KM Mean (logged)	-1.048	KM Geo Mean	0.351
KM SD (logged)	1.162	95% Critical H Value (KM-Log)	2.74
KM Standard Error of Mean (logged)	0.246	95% H-UCL (KM -Log)	1.286
KM SD (logged)	1.162	95% Critical H Value (KM-Log)	2.74
KM Standard Error of Mean (logged)	0.246		
	DL/2 Sta	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.374	Mean in Log Scale	-0.697
SD in Original Scale	2.545	SD in Log Scale	1.345
95% t UCL (Assumes normality)	2.21	95% H-Stat UCL	2.716
DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1.907

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

F8A

General Statistics		
27	Number of Distinct Observations	15
	Number of Missing Observations	1
19	Number of Non-Detects	8
13	Number of Distinct Non-Detects	2
0.05	Minimum Non-Detect	0.5
2.8	Maximum Non-Detect	5
0.402	Percent Non-Detects	29.63%
0.383	SD Detects	0.634
0.16	CV Detects	1.656
3.462	Kurtosis Detects	12.96
-1.552	SD of Logged Detects	0.945
	General Statistics 27 19 13 0.05 2.8 0.402 0.383 0.16 3.462 -1.552	General Statistics27Number of Distinct Observations Number of Missing Observations19Number of Missing Observations13Number of Non-Detects0.05Minimum Non-Detect2.8Maximum Non-Detect0.402Percent Non-Detects0.383SD Detects0.16CV Detects3.462Kurtosis Detects-1.552SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.493	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.35	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.197	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.325	KM Standard Error of Mean	0.109
KM SD	0.537	95% KM (BCA) UCL	0.55
95% KM (t) UCL	0.51	95% KM (Percentile Bootstrap) UCL	0.524
95% KM (z) UCL	0.503	95% KM Bootstrap t UCL	0.845
90% KM Chebyshev UCL	0.651	95% KM Chebyshev UCL	0.799
97.5% KM Chebyshev UCL	1.004	99% KM Chebyshev UCL	1.407

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.133	Anderson-Darling GOF Test
5% A-D Critical Value	0.77	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.326	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.204	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.979	k star (bias corrected MLE)	0.859
heta hat (MLE)	0.391	Theta star (bias corrected MLE)	0.445
nu hat (MLE)	37.19	nu star (bias corrected)	32.65

Mean (detects) 0.383

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.329	Mean	0.01	Minimum
0.16	Median	2.8	Maximum
1.655	CV	0.545	SD
0.777	k star (bias corrected MLE)	0.846	k hat (MLE)
0.424	Theta star (bias corrected MLE)	0.389	Theta hat (MLE)
41.95	nu star (bias corrected)	45.7	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
27.38	Adjusted Chi Square Value (41.95, β)	28.11	Approximate Chi Square Value (41.95, α)
0.505	95% Gamma Adjusted UCL (use when n<50)	0.492	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.537	SD (KM)	0.325	Mean (KM)
0.109	SE of Mean (KM)	0.289	Variance (KM)
0.349	k star (KM)	0.365	k hat (KM)
18.83	nu star (KM)	19.69	nu hat (KM)
0.931	theta star (KM)	0.89	theta hat (KM)
0.938	90% gamma percentile (KM)	0.514	80% gamma percentile (KM)
2.626	99% gamma percentile (KM)	1.413	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (18.83, α)	9.996	Adjusted Chi Square Value (18.83, β)	9.585
95% Gamma Approximate KM-UCL (use when n>=50)	0.611	95% Gamma Adjusted KM-UCL (use when n<50)	0.638

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.856	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.261	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.197	Detected Data Not Lognormal at 5% Significance Level		
Detected Data Not Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.327	Mean in Log Scale	-1.619
SD in Original Scale	0.537	SD in Log Scale	0.849
95% t UCL (assumes normality of ROS data)	0.503	95% Percentile Bootstrap UCL	0.52
95% BCA Bootstrap UCL	0.613	95% Bootstrap t UCL	0.81
95% H-UCL (Log ROS)	0.419		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.644	KM Geo Mean	0.193
KM SD (logged)	0.835	95% Critical H Value (KM-Log)	2.316
KM Standard Error of Mean (logged)	0.178	95% H-UCL (KM -Log)	0.4
KM SD (logged)	0.835	95% Critical H Value (KM-Log)	2.316
KM Standard Error of Mean (logged) 0.178

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.427	Mean in Log Scale	-1.418		
SD in Original Scale	0.673	SD in Log Scale) 0.917		
95% t UCL (Assumes normality)	0.648	95% H-Stat UCI	0.57		
D. (0.)					

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 0.799

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

O a manal Otatiatian

F10A

	General Statistics		
Total Number of Observations	27	Number of Distinct Observations	19
		Number of Missing Observations	1
Number of Detects	23	Number of Non-Detects	4
Number of Distinct Detects	16	Number of Distinct Non-Detects	3
Minimum Detect	1	Minimum Non-Detect	0.5
Maximum Detect	4.4	Maximum Non-Detect	25
Variance Detects	1.037	Percent Non-Detects	14.81%
Mean Detects	2.552	SD Detects	1.018
Median Detects	2.3	CV Detects	0.399
Skewness Detects	0.383	Kurtosis Detects	-0.858
Mean of Logged Detects	0.856	SD of Logged Detects	0.423

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Normal at 5% Significance Level		
Lilliefors Test Statistic	0.163	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.18	Detected Data appear Normal at 5% Significance Level		
Detected Data appear Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.467	KM Standard Error of Mean	0.221
KM SD	1.058	95% KM (BCA) UCL	2.85
95% KM (t) UCL	2.843	95% KM (Percentile Bootstrap) UCL	2.821
95% KM (z) UCL	2.83	95% KM Bootstrap t UCL	2.872
90% KM Chebyshev UCL	3.129	95% KM Chebyshev UCL	3.429
97.5% KM Chebyshev UCL	3.845	99% KM Chebyshev UCL	4.663

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.378	Anderson-Darling GOF Test
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.129	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.182	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

5.518	k star (bias corrected MLE)	6.312	k hat (MLE)
0.463	Theta star (bias corrected MLE)	0.404	Theta hat (MLE)
253.8	nu star (bias corrected)	290.4	nu hat (MLE)
		2.552	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.462	Mean	0.636	Minimum
2.3	Median	4.4	Maximum
0.413	CV	1.016	SD
4.889	k star (bias corrected MLE)	5.473	k hat (MLE)
0.503	Theta star (bias corrected MLE)	0.45	Theta hat (MLE)
264	nu star (bias corrected)	295.5	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
225.2	Adjusted Chi Square Value (264.03, β)	227.4	Approximate Chi Square Value (264.03, α)
2.886	95% Gamma Adjusted UCL (use when n<50)	2.858	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.467	SD (KM)	1.058
Variance (KM)	1.119	SE of Mean (KM)	0.221
k hat (KM)	5.438	k star (KM)	4.858
nu hat (KM)	293.6	nu star (KM)	262.4
theta hat (KM)	0.454	theta star (KM)	0.508
80% gamma percentile (KM)	3.326	90% gamma percentile (KM)	3.965
95% gamma percentile (KM)	4.548	99% gamma percentile (KM)	5.782

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (262.35, α)	225.8	Adjusted Chi Square Value (262.35, β)	223.7
95% Gamma Approximate KM-UCL (use when n>=50)	2.865	95% Gamma Adjusted KM-UCL (use when n<50)	2.893

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.134	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.18	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.46	Mean in Log Scale	0.813
SD in Original Scale	1.004	SD in Log Scale	0.441
95% t UCL (assumes normality of ROS data)	2.79	95% Percentile Bootstrap UCL	2.764
95% BCA Bootstrap UCL	2.805	95% Bootstrap t UCL	2.801
95% H-UCL (Log ROS)	2.934		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.791	KM Geo Mean	2.206
KM SD (logged)	0.509	95% Critical H Value (KM-Log)	1.978
KM Standard Error of Mean (logged)	0.106	95% H-UCL (KM -Log)	3.06
KM SD (logged)	0.509	95% Critical H Value (KM-Log)	1.978
KM Standard Error of Mean (logged)	0.106		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	2.831	Mean in Log Scale	0.839	
SD in Original Scale	2.192	SD in Log Scale	0.672	
95% t UCL (Assumes normality)	3.551	95% H-Stat UCL	3.841	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.843

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

F12A

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	8
Minimum	6.3	Mean	6.3
Maximum	6.3	Median	6.3

Warning: This data set only has 1 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable F12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

F14A

	General Statistics		
Total Number of Observations	26	Number of Distinct Observations	20
		Number of Missing Observations	2
Number of Detects	24	Number of Non-Detects	2
Number of Distinct Detects	20	Number of Distinct Non-Detects	1
Minimum Detect	2.5	Minimum Non-Detect	25
Maximum Detect	32	Maximum Non-Detect	25
Variance Detects	101.2	Percent Non-Detects	7.692%
Mean Detects	17.85	SD Detects	10.06
Median Detects	18.5	CV Detects	0.564
Skewness Detects	-0.216	Kurtosis Detects	-1.341
Mean of Logged Detects	2.633	SD of Logged Detects	0.828

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.127	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Detected Data appear Normal at 5% Significance Level
Detected Data appear A	pproxima	te Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	17.49	KM Standard Error of Mean	2.01
KM SD	9.779	95% KM (BCA) UCL	20.8
95% KM (t) UCL	20.92	95% KM (Percentile Bootstrap) UCL	20.76
95% KM (z) UCL	20.79	95% KM Bootstrap t UCL	20.71
90% KM Chebyshev UCL	23.52	95% KM Chebyshev UCL	26.25
97.5% KM Chebyshev UCL	30.04	99% KM Chebyshev UCL	37.49

Gamma GOF Tests on Detected Observations Only

1.127	Anderson-Darling GOF Test
0.754	Detected Data Not Gamma Distributed at 5% Significance Level
0.196	Kolmogorov-Smirnov GOF
0.18	Detected Data Not Gamma Distributed at 5% Significance Level
	1.127 0.754 0.196 0.18

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k sta	r (bias corrected MLE) 1.91
Theta sta	r (bias corrected MLE) 9.30
n	u star (bias corrected) 92.0

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	2.5	Mean	17.46
Maximum	32	Median	18
SD	9.775	CV	0.56

k hat (MLE)	2.28	k star (bias corrected MLE)	2.043
Theta hat (MLE)	7.657	Theta star (bias corrected MLE)	8.547
nu hat (MLE)	118.6	nu star (bias corrected)	106.2
Adjusted Level of Significance (β)	0.0398		
Approximate Chi Square Value (106.21, α)	83.43	Adjusted Chi Square Value (106.21, β)	82.1
95% Gamma Approximate UCL (use when n>=50)	22.22	95% Gamma Adjusted UCL (use when n<50)	22.59
Estimates of G	mma Para	meters using KM Estimates	
Mean (KM)	17.49	SD (KM)	9.779
Variance (KM)	95.63	SE of Mean (KM)	2.01
k hat (KM)	3.198	k star (KM)	2.855
nu hat (KM)	166.3	nu star (KM)	148.4
theta hat (KM)	5.468	theta star (KM)	6.126
80% gamma percentile (KM)	25.09	90% gamma percentile (KM)	31.36
95% gamma percentile (KM)	37.23	99% gamma percentile (KM)	49.98
Gamm	a Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (148.45, α)	121.3	Adjusted Chi Square Value (148.45, β)	119.7
95% Gamma Approximate KM-UCL (use when n>=50)	21.4	95% Gamma Adjusted KM-UCL (use when n<50)	21.69
	Tost on F	latested Observations Only	
Shaniro Wilk Test Statistic	0.841	Shaniro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.916	Detected Data Not Lognormal at 5% Significance Lev	el
Lilliefors Test Statistic	0.234	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.177	Detected Data Not Lognormal at 5% Significance Lev	el
Detected Data N	lot Lognorr	nal at 5% Significance Level	
	Statistics	Using Imputed New Detecto	
Lognormal Ros Mean in Original Scale	17 27	Using imputed Non-Detects	2 609
SD in Original Scale	9 892	SD in Log Scale	2.008
95% t UCL (assumes normality of BOS data)	20.59	95% Percentile Bootstran LICI	20.4
95% BCA Bootstran LICI	20.00	95% Bootstrap t LICI	20.4
95% H-UCL (Log ROS)	26.95		20172
Statistics using KM estimates o	on Loggea I		12 50
Kin Mean (logged)	2.01		13.59
KM Sb (logged)	0.612	95% Chucai H Value (KM-Log)	2.279
KM Standard Error of Mean (logged)	0.109	95% F-UCL (KM -Log)	27.37
KM Standard Error of Mean (logged)	0.012		2.279
Kin Standard Entri of Mean (logged)	0.105		
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	_
Mean in Original Scale	17.44	Mean in Log Scale	2.625
SD in Original Scale	9.758	SD in Log Scale	0.795
95% t UCL (Assumes normality)	20.71	95% H-Stat UCL	27.09
DL/2 is not a recommended me	thod, provi	ded for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 20.92

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

F18

General Statistics

Total Number of Observations	27	Number of Distinct Observations	14
		Number of Missing Observations	1
Number of Detects	19	Number of Non-Detects	8
Number of Distinct Detects	12	Number of Distinct Non-Detects	3
Minimum Detect	0.11	Minimum Non-Detect	0.2
Maximum Detect	2.6	Maximum Non-Detect	25
Variance Detects	0.886	Percent Non-Detects	29.63%
Mean Detects	0.834	SD Detects	0.941
Median Detects	0.4	CV Detects	1.128
Skewness Detects	1.041	Kurtosis Detects	-0.555
Mean of Logged Detects	-0.898	SD of Logged Detects	1.271

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.755	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.257	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.197	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.673	KM Standard Error of Mean	0.175
KM SD	0.85	95% KM (BCA) UCL	0.971
95% KM (t) UCL	0.972	95% KM (Percentile Bootstrap) UCL	0.964
95% KM (z) UCL	0.961	95% KM Bootstrap t UCL	1.071
90% KM Chebyshev UCL	1.198	95% KM Chebyshev UCL	1.436
97.5% KM Chebyshev UCL	1.766	99% KM Chebyshev UCL	2.414

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.325	A-D Test Statistic	
Detected Data Not Gamma Distributed at 5% Significance Lev	0.776	5% A-D Critical Value	
Kolmogorov-Smirnov GOF	0.236	K-S Test Statistic	
Detected Data Not Gamma Distributed at 5% Significance Lev	0.206	5% K-S Critical Value	
Detected Data Not Gamma Distributed at 5% Significance Level			

Gamma Statistics on Detected Data Only

0.73	k star (bias corrected MLE)	0.825	k hat (MLE)
1.143	Theta star (bias corrected MLE)	1.011	Theta hat (MLE)
27.74	nu star (bias corrected)	31.36	nu hat (MLE)
		0.834	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.661	Mean	0.01	Minimum
0.2	Median	2.6	Maximum
1.274	CV	0.842	SD
0.635	k star (bias corrected MLE)	0.687	k hat (MLE)
1.04	Theta star (bias corrected MLE)	0.962	Theta hat (MLE)
34.29	nu star (bias corrected)	37.08	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
21.27	Adjusted Chi Square Value (34.29, β)	21.9	Approximate Chi Square Value (34.29, α)
1.065	95% Gamma Adjusted UCL (use when n<50)	1.035	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.673	SD (KM)	0.85
Variance (KM)	0.722	SE of Mean (KM)	0.175
k hat (KM)	0.628	k star (KM)	0.583
nu hat (KM)	33.9	nu star (KM)	31.47
theta hat (KM)	1.072	theta star (KM)	1.155
80% gamma percentile (KM)	1.11	90% gamma percentile (KM)	1.762
95% gamma percentile (KM)	2.448	99% gamma percentile (KM)	4.111

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (31.47, α)	19.65	Adjusted Chi Square Value (31.47, β)	19.05
95% Gamma Approximate KM-UCL (use when n>=50)	1.078	95% Gamma Adjusted KM-UCL (use when n<50)	1.112

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.833	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.237	Lilliefors GOF Test
5% Lilliefors Critical Value	0.197	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.66	Mean in Log Scale	-1.104
SD in Original Scale	0.834	SD in Log Scale	1.158
95% t UCL (assumes normality of ROS data)	0.933	95% Percentile Bootstrap UCL	0.934
95% BCA Bootstrap UCL	0.973	95% Bootstrap t UCL	1.021
95% H-UCL (Log ROS)	1.207		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.145	KM Geo Mean	0.318
------------------	--------	-------------	-------

KM SD (logged)	1.184	95% Critical H Value (KM-Log)	2.77
KM Standard Error of Mean (logged)	0.248	95% H-UCL (KM -Log)	1.22
KM SD (logged)	1.184	95% Critical H Value (KM-Log)	2.77
KM Standard Error of Mean (logged)	0.248		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	1.563	Mean in Log	Scale	-0.787
SD in Original Scale	3.258	SD in Log	Scale	1.459
95% t UCL (Assumes normality)	2.632	95% H-Sta	at UCL	3.276
B 1/01 · · · · · ·				

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1.436

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

СНЗВ

General Statistics

Total Number of Observations	27	Number of Distinct Observations	17
		Number of Missing Observations	1
Minimum	80	Mean	105.8
Maximum	140	Median	100
SD	14.97	Std. Error of Mean	2.88
Coefficient of Variation	0.141	Skewness	0.519

Normal GOF Test

0.953	Shapiro Wilk GOF Test
0.923	Data appear Normal at 5% Significance Level
0.17	Lilliefors GOF Test
0.167	Data Not Normal at 5% Significance Level
	0.953 0.923 0.17 0.167

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	110.8	95% Adjusted-CLT UCL (Chen-1995)	110.9
		95% Modified-t UCL (Johnson-1978)	110.8

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.495	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.743	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.161	K-S Test Statistic

5% K-S Critical Value	0.168	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appear	Gamma Di	istributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	53.37	k star (bias corrected MLE)	47.47
Theta hat (MLE)	1.983	Theta star (bias corrected MLE)	2.23
nu hat (MLE)	2882	nu star (bias corrected)	2563
MLE Mean (bias corrected)	105.8	MLE Sd (bias corrected)	15.36
		Approximate Chi Square Value (0.05)	2447
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	2439
Ass	suming Gan	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	110.9	95% Adjusted Gamma UCL (use when n<50)	111.2
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.966	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.152	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	4.382	Mean of logged Data	4.653
Maximum of Logged Data	4.942	SD of logged Data	0.139

Assuming Lognormal Distribution

95% H-UCL	111	90% Chebyshev (MVUE) UCL	114.4
95% Chebyshev (MVUE) UCL	118.2	97.5% Chebyshev (MVUE) UCL	123.6
99% Chebyshev (MVUE) UCL	134.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

110.8	95% Jackknife UCL	L 1	95% CLT UCL
110.9	95% Bootstrap-t UCL	L 1	95% Standard Bootstrap UCL
110.5	95% Percentile Bootstrap UCL	L 1	95% Hall's Bootstrap UCL
		L 1	95% BCA Bootstrap UCL
118.4	95% Chebyshev(Mean, Sd) UCL	L 1	90% Chebyshev(Mean, Sd) UCL
134.5	99% Chebyshev(Mean, Sd) UCL	L 1:	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 110.8

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CH8A

	General	Statistics	
Total Number of Observations	27	Number of Distinct Observations	18
	27	Number of Missing Observations	1
Minimum	3	Mean	4 396
Maximum	66	Median	4.2
SD	0.746	Std. Error of Mean	0.144
Coefficient of Variation	0.17	Skewness	0.836
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.138	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Normal at 5% Significance Level	
Data appea	ar Normal at	5% Significance Level	
Ass	suming Nori	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.641	95% Adjusted-CLT UCL (Chen-1995)	4.657
		95% Modified-t UCL (Johnson-1978)	4.645
	Gamma	GOF Test	
A-D Test Statistic	0.356	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significand	ce Level
K-S Test Statistic	0.121	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.168	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	37.58	k star (bias corrected MLE)	33.43
Theta hat (MLE)	0.117	Theta star (bias corrected MLE)	0.131
nu hat (MLE)	2029	nu star (bias corrected)	1805
MLE Mean (bias corrected)	4.396	MLE Sd (bias corrected)	0.76
		Approximate Chi Square Value (0.05)	1708
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	1702
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	4.647	95% Adjusted Gamma UCL (use when n<50)	4.664
	Lognorma	GOF Test	
Shapiro Wilk Test Statistic	0.975	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.12	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	

Lognormal Statistics

Minimum of Logged Data	1.099	Mean of logged Data	1.467
Maximum of Logged Data	1.887	SD of logged Data	0.166

Assuming Lognormal Distribution

95% H-UCL	4.654	90% Chebyshev (MVUE) UCL	4.818
95% Chebyshev (MVUE) UCL	5.01	97.5% Chebyshev (MVUE) UCL	5.276
99% Chebyshev (MVUE) UCL	5.798		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4.632	95% Jackknife UCL	4.641
95% Standard Bootstrap UCL	4.626	95% Bootstrap-t UCL	4.672
95% Hall's Bootstrap UCL	4.704	95% Percentile Bootstrap UCL	4.622
95% BCA Bootstrap UCL	4.647		
90% Chebyshev(Mean, Sd) UCL	4.826	95% Chebyshev(Mean, Sd) UCL	5.022
97.5% Chebyshev(Mean, Sd) UCL	5.292	99% Chebyshev(Mean, Sd) UCL	5.824

Suggested UCL to Use

95% Student's-t UCL 4.641

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CH10A

General Statistics		
27	Number of Distinct Observations	23
	Number of Missing Observations	1
23	Mean	68.04
190	Median	58
46.78	Std. Error of Mean	9.003
0.688	Skewness	1.522
	General Statistics 27 23 190 46.78 0.688	General Statistics27Number of Distinct Observations Number of Missing Observations23Mean190Median46.78Std. Error of Mean0.688Skewness

Normal GOF Test

Shapiro Wilk Test Statistic	0.8	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.189	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

83.39

95% Normal UCL

95% UCLs (Adjusted for Skewness)

95% Student's-t UCL

95% Adjusted-CLT UCL (Chen-1995) 85.66 95% Modified-t UCL (Johnson-1978) 83.83

	Gamma	GOF Test	
A-D Test Statistic	0.869	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.753	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.143	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.17	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data follow App	or. Gamma I	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	2.768	k star (bias corrected MLE)	2.485
Theta hat (MLE)	24.58	Theta star (bias corrected MLE)	27.38
nu hat (MLE)	149.5	nu star (bias corrected)	134.2
MLE Mean (bias corrected)	68.04	MLE Sd (bias corrected)	43.16
		Approximate Chi Square Value (0.05)	108.4
Adjusted Level of Significance	0.0401	Adjusted Chi Square Value	107
Ass	uming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50)	84.2	95% Adjusted Gamma UCL (use when n<50)	85.37
Chanica Will, Test Statistic	Lognorma	GOF Test	
Shapiro Wilk Test Stausuc	0.925		
5% Shapiro Wilk Critical Value	0.923	Data appear Lognormal at 5% Significance Level	
	0.130	Lillerors Lognormal GOF Test	
5% Lillefors Critical Value	0.167	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormai	at 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	3.135	Mean of logged Data	4.029
Maximum of Logged Data	5.247	SD of logged Data	0.613
Assu	ming Logno	ormal Distribution	
95% H-UCL	87.04	90% Chebyshev (MVUE) UCL	92.56
95% Chebyshev (MVUE) UCL	104	97.5% Chebyshev (MVUE) UCL	119.9
99% Chebyshev (MVUE) UCL	151.2		
Nonparama	ric Distribut	tion Free LICL Statistics	
Nonparame Data appear to follow a F)iscernible	Distribution at 5% Significance Level	
Nonpara	ametric Dist	tribution Free UCLs	
95% CLT UCL	82.85	95% Jackknife UCL	83.39
95% Standard Bootstrap UCL	82.47	95% Bootstrap-t UCL	87.95
95% Hall's Bootstrap UCL	85.98	95% Percentile Bootstrap UCL	83.04

95% Chebyshev(Mean, Sd) UCL 107.3 99% Chebyshev(Mean, Sd) UCL 157.6

Suggested UCL to Use

85.52

95.04

95% Adjusted Gamma UCL 85.37

95% BCA Bootstrap UCL

97.5% Chebyshev(Mean, Sd) UCL 124.3

90% Chebyshev(Mean, Sd) UCL

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CH12A

	General Statistics		
Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	8
Minimum	150	Mean	150
Maximum	150	Median	150

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable CH12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

CH14A

	General S	Statistics	
Total Number of Observations	26	Number of Distinct Observations	22
		Number of Missing Observations	2
Minimum	47	Mean	105.8
Maximum	210	Median	94
SD	50.26	Std. Error of Mean	9.856
Coefficient of Variation	0.475	Skewness	0.685
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.92	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.192	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.17	Data Not Normal at 5% Significance Level	
Data Not	Normal at 59	% Significance Level	
Ass	suming Norm	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	122.7	95% Adjusted-CLT UCL (Chen-1995)	123.5
		95% Modified-t UCL (Johnson-1978)	122.9
	Gamma G	OF Test	
A-D Test Statistic	0.769	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.747	Data Not Gamma Distributed at 5% Significance Leve	el

K-S Test Statistic	0.175	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.172	Data Not Gamma Distributed at 5% Significance Leve	el			
Data Not Gamm	Data Not Gamma Distributed at 5% Significance Level					
	Gamma	Statistics				
k hat (MLE)	4.876	k star (bias corrected MLE)	4.339			
Theta hat (MLE)	21.71	Theta star (bias corrected MLE)	24.39			
nu hat (MLE)	253.6	nu star (bias corrected)	225.6			
MLE Mean (bias corrected)	105.8	MLE Sd (bias corrected)	50.81			
		Approximate Chi Square Value (0.05)	191.9			
Adjusted Level of Significance	0.0398	Adjusted Chi Square Value	189.8			
Ass	uming Gam	ma Distribution				
95% Approximate Gamma UCL (use when n>=50))	124.5	95% Adjusted Gamma UCL (use when n<50)	125.8			
	Lognormal	GOF Test				
Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Lognormal GOF Test				
5% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 5% Significance Level				
Lilliefors Test Statistic	0.158	Lilliefors Lognormal GOF Test				
5% Lilliefors Critical Value	0.17	Data appear Lognormal at 5% Significance Level				
Data appear	Lognormal	at 5% Significance Level				
		L Otestasian				
Minimum of Longod Date	Lognorma	I Statistics	4 550			
Maximum of Logged Data	3.80 E 247	Mean of logged Data	4.000			
Maximum of Logged Data	0.347	SD of logged Data	0.408			
Assu	ming Logno	rmal Distribution				
95% H-UCL	127.4	90% Chebyshev (MVUE) UCL	135.9			
95% Chebyshev (MVUE) UCL	149.6	97.5% Chebyshev (MVUE) UCL	168.6			
99% Chebyshev (MVUE) UCL	205.9					
Nonparame	tric Distribut	tion Free UCL Statistics				
Data appear to follow a D	Discernible I	Distribution at 5% Significance Level				
Nonpara	ametric Dist	ribution Free UCLs				
95% CLT UCL	122.1	95% Jackknife UCL	122.7			
95% Standard Bootstrap UCL	121.7	95% Bootstrap-t UCL	124.1			
95% Hall's Bootstrap UCL	123.4	95% Percentile Bootstrap UCL	122.5			
95% BCA Bootstrap UCL	123.2					
90% Chebyshev(Mean, Sd) UCL	135.4	95% Chebyshev(Mean, Sd) UCL	148.8			
97.5% Chebyshev(Mean, Sd) UCL	167.4	99% Chebyshev(Mean, Sd) UCL	203.9			

Suggested UCL to Use

95% Student's-t UCL	122.7	or 95% Modified-t UCL
or 95% H-UCL	127.4	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

122.9

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

CH18

	General	Statistics	
Total Number of Observations	27	Number of Distinct Observations	17
		Number of Missing Observations	1
Minimum	59	Mean	81.22
Maximum	100	Median	81
SD	9.951	Std. Error of Mean	1.915
Coefficient of Variation	0.123	Skewness	-0.135
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.977	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.115	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Data appear Normal at 5% Significance Level	
Data appea	ar Normal at	5% Significance Level	
Ass	suming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	84.49	95% Adjusted-CLT UCL (Chen-1995)	84.32
		95% Modified-t UCL (Johnson-1978)	84.48

A-D Test Statistic	0.305	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.13	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.168	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

59.81	k star (bias corrected MLE)	67.26	k hat (MLE)
1.358	Theta star (bias corrected MLE)	1.208	Theta hat (MLE)
3230	nu star (bias corrected)	3632	nu hat (MLE)
10.5	MLE Sd (bias corrected)	81.22	MLE Mean (bias corrected)
3099	Approximate Chi Square Value (0.05)		
3091	Adjusted Chi Square Value	0.0401	Adjusted Level of Significance

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 84.88

95% Approximate Gamma UCL (use when n>=50)) 84.66

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test

Shapiro Wilk Test Statistic 0.968 5% Shapiro Wilk Critical Value 0.923 Data appear Lognormal at 5% Significance Level

97.5% Chebyshev (MVUE) UCL

93.53

Lilliefors Test Statistic	0.14	Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.167 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

	Lognormal Statistics		
Minimum of Logged Data	4.078	Mean of logged Data	4.39
Maximum of Logged Data	4.605	SD of logged Data	0.126
Assu	ming Lognormal Distribution		
95% H-UCL	84.78	90% Chebyshev (MVUE) UCL	87.14

95% Chebyshev (MVUE) UCL 89.81

99% Chebyshev (MVUE) UCL 100.8

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonpara	metric Distribution Free UCLs		
95% CLT UCL	84.37	95% Jackknife UCL	84.49
95% Standard Bootstrap UCL	84.4	95% Bootstrap-t UCL	84.36
95% Hall's Bootstrap UCL	84.32	95% Percentile Bootstrap UCL	84.33
95% BCA Bootstrap UCL	84.33		
90% Chebyshev(Mean, Sd) UCL	86.97	95% Chebyshev(Mean, Sd) UCL	89.57
97.5% Chebyshev(Mean, Sd) UCL	93.18	99% Chebyshev(Mean, Sd) UCL	100.3

Suggested UCL to Use

95% Student's-t UCL 84.49

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

СҮЗВ

	General Statistics		
Total Number of Observations	28	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	26
Number of Distinct Detects	2	Number of Distinct Non-Detects	3
Minimum Detect	0.006	Minimum Non-Detect	0.0025
Maximum Detect	0.01	Maximum Non-Detect	0.01
Variance Detects 8	3.0000E-6	Percent Non-Detects	92.86%
Mean Detects	0.008	SD Detects	0.00283
Median Detects	0.008	CV Detects	0.354
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-4.861	SD of Logged Detects	0.361

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.00292	KM Standard Error of Mean	4.2130E-4
KM SD	0.00154	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.00364	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.00361	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.00419	95% KM Chebyshev UCL	0.00476
97.5% KM Chebyshev UCL	0.00555	99% KM Chebyshev UCL	0.00711

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	15.66	k hat (MLE)
N/A	Theta star (bias corrected MLE)	5.1087E-4	Theta hat (MLE) §
N/A	nu star (bias corrected)	62.64	nu hat (MLE)
		0.008	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.00292	SD (KM)	0.00154
Variance (KM) 2	2.3684E-6	SE of Mean (KM)	4.2130E-4
k hat (KM)	3.603	k star (KM)	3.241
nu hat (KM)	201.8	nu star (KM)	181.5
theta hat (KM) 8	8.1074E-4	theta star (KM)	9.0136E-4
80% gamma percentile (KM)	0.00413	90% gamma percentile (KM)	0.0051
95% gamma percentile (KM)	0.006	99% gamma percentile (KM)	0.00794

Gamma Kaplan-Meier (KM) Statistics

		Adjusted Level of Significance (β)	0.0404
Approximate Chi Square Value (181.49, α)	151.3	Adjusted Chi Square Value (181.49, β)	149.6
95% Gamma Approximate KM-UCL (use when n>=50)	0.0035	95% Gamma Adjusted KM-UCL (use when n<50)	0.00354

Lognormal GOF Test on Detected Observations Only Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.00192	Mean in Log Scale	-6.631
SD in Original Scale	0.00203	SD in Log Scale	0.855
95% t UCL (assumes normality of ROS data)	0.00257	95% Percentile Bootstrap UCL	0.00259
95% BCA Bootstrap UCL	0.00286	95% Bootstrap t UCL	0.00308
95% H-UCL (Log ROS)	0.00277		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.904	KM Geo Mean	0.00273
KM SD (logged)	0.307	95% Critical H Value (KM-Log)	1.806

SD in Log Scale

95% H-Stat UCL

KM Standard Error of Mean (logged)	0.0853	95% H-UCL (KM -Log)	0.00318
KM SD (logged)	0.307	95% Critical H Value (KM-Log)	1.806
KM Standard Error of Mean (logged)	0.0853		
	DL/2 Statistics		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00325	Mean in Log Scale	-5.836

DL/2 is not a recommended method, provided for comparisons and historical reasons

0.0018

0.00383

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested	UCL	to	Use
-----------	-----	----	-----

KM H-UCL 0.00318

0.446

0.0038

95% KM (t) UCL	0.00364
95% KM (BCA) UCL	N/A

SD in Original Scale

95% t UCL (Assumes normality)

Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CY8A

General Statistics

Total Number of Observations	28	Number of Distinct Observations	4
Number of Detects	0	Number of Non-Detects	28
Number of Distinct Detects	0	Number of Distinct Non-Detects	4

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable CY8A was not processed!

CY10A

General Statistics

14	Number of Distinct Observations	28	Total Number of Observations
6	Number of Non-Detects	22	Number of Detects
3	Number of Distinct Non-Detects	12	Number of Distinct Detects
0.0025	Minimum Non-Detect	0.005	Minimum Detect
0.01	Maximum Non-Detect	0.08	Maximum Detect
21.43%	Percent Non-Detects	3.2371E-4	Variance Detects
0.018	SD Detects	0.0312	Mean Detects
0.576	CV Detects	0.03	Median Detects
1.288	Kurtosis Detects	0.508	Skewness Detects

Mean of Logged Detects	-3.702	SD of Logged Detects	0.803
Norma	al GOF Te	st on Detects Only	
Shapiro Wilk Test Statistic	0.906	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.156	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.184	Detected Data appear Normal at 5% Significance Leve	el
Detected Data appear	Approxima	te Normal at 5% Significance Level	
Kaplan-Meier (KM) Statistics usin	g Normal (Critical Values and other Nonparametric UCLs	
KM Mean	0.0251	KM Standard Error of Mean	0.00377
KM SD	0.0195	95% KM (BCA) UCL	0.0316
95% KM (t) UCL	0.0316	95% KM (Percentile Bootstrap) UCL	0.0314
95% KM (z) UCL	0.0313	95% KM Bootstrap t UCL	0.0318
90% KM Chebyshev UCL	0.0364	95% KM Chebyshev UCL	0.0416
97.5% KM Chebyshev UCL	0.0487	99% KM Chebyshev UCL	0.0626
Gamma GOF	Fests on D	etected Observations Only	
A-D Test Statistic	1.441	Anderson-Darling GOF Test	
5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.252	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.188	Detected Data Not Gamma Distributed at 5% Significance	Level
Detected Data Not G	amma Dis	tributed at 5% Significance Level	
Gamma S	Statistics o	n Detected Data Only	
k hat (MLE)	2.275	k star (bias corrected MLE)	1.995
Theta hat (MLE)	0.0137	Theta star (bias corrected MLE)	0.0157
nu hat (MLE)	100.1	nu star (bias corrected)	87.78
Mean (detects)	0.0312		
Gamma ROS :	Statistics u	using Imputed Non-Detects	
GROS may not be used when data se	t has > 50'	% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such a	as <1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS m	nethod may	y vield incorrect values of UCLs and BTVs	

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.005	Mean	0.0267
Maximum	0.08	Median	0.03
SD	0.0182	CV	0.681
k hat (MLE)	1.991	k star (bias corrected MLE)	1.801
Theta hat (MLE)	0.0134	Theta star (bias corrected MLE)	0.0148
nu hat (MLE)	111.5	nu star (bias corrected)	100.9
Adjusted Level of Significance (β)	0.0404		
Approximate Chi Square Value (100.87, α)	78.7	Adjusted Chi Square Value (100.87, β)	77.49
95% Gamma Approximate UCL (use when n>=50)	0.0342	95% Gamma Adjusted UCL (use when n<50)	0.0347

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.0	251	SD (KM)	0.0195
Variance (KM) 3.788	7E-4	SE of Mean (KM)	0.00377
k hat (KM) 1.6	568	k star (KM)	1.513

nu hat (KM)	93.43	nu star (KM)	84.75
theta hat (KM)	0.0151	theta star (KM)	0.0166
80% gamma percentile (KM)	0.0389	90% gamma percentile (KM)	0.0523
95% gamma percentile (KM)	0.0653	99% gamma percentile (KM)	0.0947
Gamma	Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (84.75, α)	64.53	Adjusted Chi Square Value (84.75, β)	63.44
95% Gamma Approximate KM-UCL (use when n>=50)	0.033	95% Gamma Adjusted KM-UCL (use when n<50)	0.0336
Lognormal GOP			
	0.011	Snapiro Wilk GOF Test	.1
5% Shapiro Wilk Chucal Value	0.911	Detected Data Not Lognormal at 5% Significance Leve	31
Elliptors Test Statistic	0.29	Lillefors GOF Test	
5% Lineiors Chucal Value	U. 104	el et E% Significance Level	-
Lognormal ROS	Statistics L	Ising Imputed Non-Detects	
Mean in Original Scale	0.0257	Mean in Log Scale	-4.042
SD in Original Scale	0.0192	SD in Log Scale	0.98
95% t UCL (assumes normality of ROS data)	0.0319	95% Percentile Bootstrap UCL	0.0318
95% BCA Bootstrap UCL	0.0316	95% Bootstrap t UCL	0.0326
95% H-UCL (Log ROS)	0.0449		
Statistics using KM estimates o	n Logged D	pata and Assuming Lognormal Distribution	
KM Mean (logged)	-4.176	KM Geo Mean	0.0154
KM SD (logged)	1.15	95% Critical H Value (KM-Log)	2.645
KM Standard Error of Mean (logged)	0.223	95% H-UCL (KM -Log)	0.0534
KM SD (logged)	1.15	95% Critical H Value (KM-Log)	2.645
KM Standard Error of Mean (logged)	0.223		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0251	Mean in Log Scale	-4.193
SD in Original Scale	0.0199	SD in Log Scale	1.205
95% t UCL (Assumes normality)	0.0315	95% H-Stat UCL	0.0587
DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	
Nonnaramat	ric Distribut	ion Free UCL Statistics	
Detected Data appear Appro	ximate Norr	nal Distributed at 5% Significance Level	
:	Suggested	UCL to Use	

95% KM (t) UCL 0.0316

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CY12A

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	8
Number of Detects	0	Number of Non-Detects	1
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable CY12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

CY14A

	General Statistics		
Total Number of Observations	27	Number of Distinct Observations	20
		Number of Missing Observations	1
Number of Detects	25	Number of Non-Detects	2
Number of Distinct Detects	20	Number of Distinct Non-Detects	1
Minimum Detect	0.005	Minimum Non-Detect	0.005
Maximum Detect	0.35	Maximum Non-Detect	0.005
Variance Detects	0.00931	Percent Non-Detects	7.407%
Mean Detects	0.108	SD Detects	0.0965
Median Detects	0.086	CV Detects	0.892
Skewness Detects	0.789	Kurtosis Detects	-0.131
Mean of Logged Detects	-2.792	SD of Logged Detects	1.241

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.889	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data Not Normal at 5% Significance Level
Detected Data I	Not Normal a	t 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.101	KM Standard Error of Mean	0.0186
KM SD	0.0949	95% KM (BCA) UCL	0.133
95% KM (t) UCL	0.132	95% KM (Percentile Bootstrap) UCL	0.131
95% KM (z) UCL	0.131	95% KM Bootstrap t UCL	0.137
90% KM Chebyshev UCL	0.157	95% KM Chebyshev UCL	0.182
97.5% KM Chebyshev UCL	0.217	99% KM Chebyshev UCL	0.286

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.642	Anderson-Darling GOF Test
5% A-D Critical Value	0.773	Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic	0.149	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.18	Detected data appear Gamma Distributed at 5% Significanc	e Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	1.013	k star (bias corrected MLE)	0.919
Theta hat (MLE)	0.107	Theta star (bias corrected MLE)	0.118
nu hat (MLE)	50.67	nu star (bias corrected)	45.93
Mean (detects)	0.108		
Gamma ROS	Statistics us	ing Imputed Non-Detects	
GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is s	mall such as	<1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, GROS m	nethod may	vield incorrect values of UCLs and BTVs	
This is especia	ally true wher	n the sample size is small.	
For gamma distributed detected data, BTVs ar	nd UCLs may	/ be computed using gamma distribution on KM estimates	
Minimum	0.005	Mean	0.101
Maximum	0.35	Median	0.066
SD	0.0964	CV	0.954
k hat (MLE)	0.92	k star (bias corrected MLE)	0.843
Theta hat (MLE)	0.11	Theta star (bias corrected MLE)	0.12
nu hat (MLE)	49.71	nu star (bias corrected)	45.52
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (45.52, α)	31.04	Adjusted Chi Square Value (45.52, β)	30.27
95% Gamma Approximate UCL (use when n>=50)	0.148	95% Gamma Adjusted UCL (use when n<50)	0.152
Estimates of Ga	amma Paran	neters using KM Estimates	
Mean (KM)	0.101	SD (KM)	0.0949
Variance (KM)	0.00901	SE of Mean (KM)	0.0186
k hat (KM)	1.123	k star (KM)	1.023
nu hat (KM)	60.65	nu star (KM)	55.24
theta hat (KM)	0.0896	theta star (KM)	0.0983
80% gamma percentile (KM)	0.162	90% gamma percentile (KM)	0.23
95% gamma percentile (KM)	0.299	99% gamma percentile (KM)	0.458
Gamma	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (55.24, α)	39.16	Adjusted Chi Square Value (55.24, β)	38.3
95% Gamma Approximate KM-UCL (use when n>=50)	0.142	95% Gamma Adjusted KM-UCL (use when n<50)	0.145
Lognormal GOI	F Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.918	Detected Data appear Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.186	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.173	Detected Data Not Lognormal at 5% Significance Leve	el
Detected Data appear Ap	pproximate I	ognormal at 5% Significance Level	
Lognormal ROS	Statistics L	Ising Imputed Non-Detects	
Mean in Original Scale	0.1	Mean in Log Scale	-3.005
SD in Original Scale	0.0968	SD in Log Scale	1.419

95% BCA Bootstrap UCL	0.135	95% Bootstrap t UCL	0.136
95% H-UCL (Log ROS)	0.323		
Statistics using KM estimates of	n Logged Data and .	Assuming Lognormal Distribution	
KM Mean (logged)	-2.978	KM Geo Mean	0.0509
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.998
KM Standard Error of Mean (logged)	0.264	95% H-UCL (KM -Log)	0.276
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.998
KM Standard Error of Mean (logged)	0.264		
	DL/2 Statistics		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.1	Mean in Log Scale	-3.029
SD in Original Scale	0.0969	SD in Log Scale	1.467
95% t UCL (Assumes normality)	0.132	95% H-Stat UCL	0.355
DL/2 is not a recommended met	hod, provided for co	mparisons and historical reasons	
Nonnaramet	ric Distribution Free	UCL Statistics	

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.145

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

CY18

General Statistics

28

1

1

Total Number of Observations

- Number of Detects
- Number of Distinct Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable CY18 was not processed!

4

27

3

Number of Distinct Observations

Number of Distinct Non-Detects

Number of Non-Detects

Appendix B7 Calculator Input Table

Date	S3B	D_S3B se A	D_S8A	S10A	D_S10A	D_S12A	S14A	D_S14A	S18	D_S18	F3B	D_F3B	F8A	D_F8A	F10A	D_F10A	D_F12A	F14A	D_F14A	F18	D_F18	CH3B D CH3B	CH8A	D_CH8A	CH10A	D_CH10A	CH12A	D_CH14A CH14A	D_CH14A	CH18	D_CI10	CY3B	D_CY3B	CY8A	D_CY8A	CY10A	D_CY10A	CY12A	D_CY12A	CY14A	D_CY14A	CY18	D CV18
2/16/2005	2300	1 1	0 1	940	1		4000	1 1	500	1	0.6	1	0.9	1 1	.8	1		9.6	1	0.6	1	130 1	1 5.0	6 1	29	1		110	1	86	1 0	.005	0	0.005	0	0.04	1			0.35	1	0.005	(
5/11/2005	2500	1 9.	8 1	910	1		3500	1 1	300	1	0.4	1	0.3	1 1	.5	1		8.6	1	0.4	1	140 1	1 4.0	6 1	31	1		90	1	91	1 0	.005	0	0.005	0	0.05	1			0.24	1	0.005	(
8/29/2005	2700	1 8.	9 1	670	1		3600	1 1	500	1	0.6	1	0.4	1 1	.2	1		30	1	0.4	1	120 1	1 4.2	2 1	28	1		71	1	75	1 0	.005	0	0.005	0	0.04	1			0.27	1	0.005	(
11/1/2005	2600	1 9.	6 1	670	1		2800	1 1	300	1	0.9	1	0.9	1 2	2.7	1		25	1	1.8	1	130 1	1 4.3	7 1	28	1		75	1	84	1 0	.005	0	0.005	0	0.03	1			0.19	1 (0.005	(
2/27/2006	2610	1 9.2	7 1	1570	1		2170	1 1	520	1	0.7	1	2.8	1 2	2.3	1		31	1	0.9	1	118 1	1 4.2	2 1	43	1		53	1	83	1 0	.005	0	0.005	0	0.03	1			0.19	1 (0.005	(
6/5/2006	2220	1 9.	8 1	1650	1		2380	1 1	490	1	0.2	1	0.2	1 3	5.2	1		27	1	0.2	0	113 1	1 4.9	9 1	48	1		63	1	91	1 0	.005	0	0.025	0	0.03	1			0.2	1	0.005	(
7/31/2006	2000	1 9.	8 1	860	1		3300	1 1	500	1	3.7	1	0.1	1 2	2.3	1		30	1	2.6	1	110 1	1 4.0	6 1	35	1		98	1	89	1 0	.005	0	0.005	0	0.08	1			0.17	1	0.005	(
10/9/2006	2500	1 9.	7 1	850	1		3900	1 1	600	1	3.8	1	0.1	1 1	.9	1		24	1	2.4	1	110 1	1 4.5	5 1	30	1		130	1	80	1 0	.005	0	0.005	0	0.03	1		_	0.01	1	0.005	(
3/13/2007	2500	1 1	0 1	1100	1 180	0 1	4400	1 1	600	1	3.8	1 ().05	1 3	.4	1 6.	3 1	16	1	2.6	1	110 1	1 6.0	6 1	45	1 1	150	1 140	1	93	1 0	.005	0	0.005	0	0.04	1 (0.005	0	0.12	1	0.005	(
6/22/2007	2500	1 0.	5 0	1100	1		7900	1 1	700	1	5	0	5	0	5	0		19	1	0.5	0	97 1	1 4.89	9 1	36	1		170	1	77	1 0	.005	0	0.005	0	0.005	1		1	0.005	0	0.005	(
9/24/2007	2200	1 1	0 1	760	1		6400	1 1	400	1	0.5	0	0.5	0 1	.2	1		25	0	25	0	124.79 1	1 4.2	2 1	30	1		200	1	100	1 0	.005	0	0.005	0	0.04	1			0.03	1	0.005	(
11/14/2007																															0	.005	0	0.005	0	0.043	1		1	0.005	1	0.005	(
5/8/2008	2200	1 1	0 1	2700	1		5500	1 1	300	1	25	0	0.5	0	25	0		25	0	25	0	100 1	1 4	4 1	100	1		100	1	70	1 0	.005	0	0.005	0	0.05	1		_	0.19	1 (0.005	(
10/14/2008	2600	1 1	0 1	860	1		6500	1 1	600	1	5	0	0.1	1	5	0		20	1	0.5	0	100 1	1 4.5	5 1	30	1		180	1	80	1 0	.005	0	0.005	0	0.04	1			0.12	1 (0.005	(
5/29/2009	2200	1	9 1	2000	1		7000	1 1	500	1	0.5	0	0.5	0	2	1		30	1	1	1	96 1	1 3	3 1	68	1		210	1	81	1	0.01	0	0.01	0	0.03	1			0.14	1	0.005	(
10/27/2009	2606	1 1	0 1	760	1		5900	1 1	200	1	0.5	0	0.5	0 0).5	0		24	1	0.5	0	110 1	1 5.5	5 1	79	1		160	1	70	1	0.01	0	0.01	0	0.01	0		1	0.044	1	0.005	(
5/26/2010	2300	1 9.	3 1	2200	1		5200	1 1	500	1	2.3	1	0.5	0 4	.4	1		32	1	2	1	120 1	1 4.4	4 1	83	1		170	1	100	1	0.01	0	0.01	0	0.032	1			0.14	1	0.01	(
10/6/2010	2400	1 8.	9 1	710	1		4000	1 1	600	1	0.5	0	0.5	0	1	1		18	1	0.5	0	110 1	1 3.0	6 1	23	1		120	1	84	1	0.01	0	0.01	0	0.022	1			0.086	1	0.01	(
7/26/2011	2000	1 7.	8 1	1800	1		3900	1 1	600	1	0.5	0	0.5	0 3	.3	1		23	1	0.5	0	98 1	1 3.0	6 1	62	1		130	1	89	1	0.01	0	0.01	0	0.028	1		(0.066	1	0.01	(
4/19/2012	2200	1 1	0 1	5800	1			1	700	1 0	0.16	1 (0.18	1 1	.9	1				0.2	1	90 1	1 3.8	8 1	180	1				79	1 0.0	025	0 0	0.0025	0	0.007	1				0	.0025	(
6/20/2013	1900	1 9.	4 1	4700	1		2300	1 1	500	1 0	0.16	1 ().16	1 3	5.1	1		17	1	0.13	1	91 1	1 4.8	8 1	99	1		66	1	84	1 0	.006	1 (0.0025	0	0.008	1		1	0.028	1 0	.0025	(
4/25/2014	2000	1 9.	5 1	6100	1		2100	1 1	700	1 0).18	1 ().19	1	2	1		18	1	0.12	1	91 1	1 4.9	9 1	190	1		61	1	79	1 0.0	025	0 (0.0025	0 (0.0025	0			0.037	1 0	.0025	(
7/20/2015	1900	1 9.	5 1	1900	1		1100	1 1	300	1 0).14	1 ().16	1	2	1		6.8	1	0.11	1	80 1	1 4.2	2 1	58	1		47	1	86	1 0	.005	0	0.005	0	0.005	0		1	0.008	1	0.005	(
8/2/2016	1900	1 9.	3 1	3500	1		1400	1 1	700	1 0	0.12	1 ().13	1 2	2.1	1		3.5	1	0.12	1	98 1	1 4.	1 1	82	1		61	1	79	1 0	.005	0	0.005	0	0.005	0			0.019	1	0.005	(
8/9/2017	1700	1 9.	6 1	2900	1		1700	1 1	300	1 0	0.15	1 ().15	1 3	.2	1		2.5	1	0.11	1	95 1	1 4.	1 1	170	1		68	1	59	1	0.01	1	0.005	0	0.005	0			0.017	1	0.086	
7/26/2018	1800	1 9.	5 1	4800	1		1800	1 1	400	1 0	0.16	1 ().15	1 4	.1	1		3.6	1	0.11	1	95 1	1 3.2	2 1	71	1		66	1	69	1 0	.005	0	0.005	0	0.005	0			0.005	0	0.005	(
7/24/2019	1500	1 5.	4 1	4000	1		1700	1 1	200	1 0).15	1 ().14	1 3	.7	1		2.8	1	0.12	1	93 1	1 4.	1 1	82	1		64	1	68	1 0	.005	0	0.005	0	0.006	1			0.018	1	0.005	(
6/30/2020	1700	1 1	1 1	5700	1		2000	1 1	400	1 0).14	1 ().16	1 4	.4	1		7	1	0.13	1	88 1	1 3.9	9 1	77	1		49	1	67	1 0	.005	0	0.005	0	0.006	1	1		0.018	1	0.005	(

Appendix C – Groundwater Levels

Appendix C1 Monitoring Wells Hydrographs

Appendix C2 Static Water Levels

			Well ID												
		MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18								
u															
atic t.)	Ground	408	490	425	439	429	346								
Elev (f	PVC	410.97	492.97	427.95	441.38	431.65	348.40								
	09/08/04	378.1	463.7	406.6	390.2	413.2	NA ^a								
	02/16/05	377.8	463.7	407.1	389.9	414.6	322.9								
	05/11/05	377.6	463.7	406.3	389.3	413.7	322.0								
	08/29/05	377.2	463.0	405.2	389.0	411.2	321.8								
	11/01/05	377.0	463.1	405.1	388.9	411.6	321.6								
	02/27/06	377.7	463.1	407.0	389.4	414.4	325.3								
	06/05/06	378.5	463.1	407.3	390.1	414.2	323.6								
	07/31/06	378.2	463.2	406.4	385.2	412.7	323.1								
	10/09/06	377.6	463.0	405.6	384.9	411.5	322.5								
t.)	03/13/07	378.1	463.0	406.6	389.9	413.8	324.2								
c (f	06/22/07	378.3	463.0	406.7	390.3	414.6	323.3								
PV	09/24/07	377.4	463.1	405.4	394.4	411.4	322.5								
from	11/14/07	381.9	463.0	NA ^b	389.2	NA ^b	322.6								
on t	05/08/08	378.7	463.2	406.8	384.9	419.2	323.5								
vati	10/14/08	377.4	463.1	405.5	384.8	412.0	323.3								
Ele	05/28/09	378.3	463.3	406.8	395.4	414.5	323.4								
ivel	10/27/09	377.5	463.3	405.4	389.9	412.5	322.8								
r Le	05/26/10	378.3	462.7	406.9	390.2	414.4	323.3								
'ate	10/06/10	377.5	463.2	405.4	381.9	412.2	322.8								
3	07/06/11	379.0	463.1	407.2	390.4	419.5	323.0								
	04/17/12	378.7	462.1	407.9	391.3	415.5	324.6								
	6/20/2013	378.27	464.02	407	dry	413.85	324.18								
	4/25/2014	377.8	464.1	407.0	dry	414.2	323.9								
	7/20/2015	376.9	464.1	405.5	dry	411.4	324.1								
	8/2/2016	376.12	464.00	405.68	390.04	411.25	324.40								
	8/8/2017	378.17	463.97	406.55	391.05	412.50	324.96								
	7/26/2018	378.16	464.00	406.10	dry	412.72	324.85								
	7/24/2019	378.68	464.05	407.5	dry	413.93	325.5								
	6/20/2020	378.46	463.97	407.56	dry	414.35	324.98								
Notes: ^a missing	Well was not in for 5/8/2008.	operation a	t this time.	^b Field sheets	for MW-10A	and MW-14A	are								

GROUNDWATER STATIC WATER LEVEL ELEVATIONS