

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, Oregon 97201

60410261 November 2020

Groundwater Monitoring Letter Report – September 2020

Former Fort Vancouver Plywood Site Port of Vancouver USA Vancouver, Washington

November 23, 2020

Mr. Matt Graves Environmental Manager Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Re: Groundwater Monitoring Letter Report – September 2020

Former Fort Vancouver Plywood Site Port of Vancouver USA Vancouver, Washington AECOM Job No. 60519969

Dear Mr. Graves:

AECOM has prepared this Groundwater Monitoring Letter Report on behalf of the Port of Vancouver USA (the Port). This letter report summarizes the results of the September 2020 groundwater monitoring event conducted at Cell 1 and Cell 2 of the Former Fort Vancouver Plywood (FVP) Site (herein referred to as the Site). This monitoring event is referenced as the September 2020 monitoring event.

1 Site Location and Background

The Site is located at West Eighth Street and Port Way, in an industrial-zoned area adjacent to the Columbia River, at the Port in Vancouver, Washington (Figure 1). The Site consists of approximately 13 acres of nearly level paved and unpaved land. The unpaved land exists along the shoreline of the Columbia River, and the remainder of the Site is paved. The northern portion of the Site is leased by the Great Western Malting Company, and the rest of the Site is leased by Pacific Coast Shredding, a metal recycling/processing facility (see Figure 2).

Great Western Malting Company is also located on the north adjacent property, and the former Brazier Forest Industries leasehold is located on the northeast adjacent property. The Site is bordered by Port Way to the southeast and the Columbia River to the southwest (see Figure 2).

The Site was occupied by plywood manufacturers and other lumber-related operations from the mid-1920s to the mid-1990s. FVP operated at the Site from 1955 until July 1996, when site operations terminated, and the leasehold reverted to the Port. Former facilities at the Site included a wood processing and plywood manufacturing plant, chemical storage, a boiler house, a maintenance shop, fuel storage areas, a log yard, a retail store/warehouse, an oil/water separator, diesel underground storage tanks (USTs), and an office building. In July 1997, the Port demolished all structures associated with the plywood mill and consolidated wood debris from the former log yard. In September 1997, the Port installed a riprap wall along the Site boundary to protect the shoreline from further erosion by the Columbia River (ERM, 2008a and 2008b).

From 2012 to 2014, the Port constructed the West Vancouver Freight Access Project through the Site. The locations of the rail track centerline, retaining walls, and trench structure for the West Vancouver Freight Access Project are indicated on Figure 2.

2 Site Hydrogeology

Two groundwater-bearing zones are present within the upper 65 feet of soils explored beneath the Site. These include a shallow water table unit (Shallow Zone) and a deeper, confined aquifer referred to herein as the Deeper Unconsolidated Aquifer (USGS 1993). The two saturated zones are separated by a lower-permeability confining layer that ranges in thickness from approximately 14 to 40 feet. The Unconsolidated Aquifer was encountered below the confining layer at depths ranging from 49 to 55 feet below ground surface (bgs) (Ecology, 1999 and 2000).

The general direction of the hydraulic gradient (and presumed direction of groundwater flow) in the Shallow Zone is to the south, toward the Columbia River. According to the Cleanup Action Plans (CAP), the Shallow Zone horizontal hydraulic gradient at the Site was calculated to range from approximately 0.016 to 0.019 feet per foot (ft/ft) at Cell 1 and 0.01 to 0.02 ft/ft at Cell 2 (Ecology, 1999 and 2000). The direction of the hydraulic gradient and presumed groundwater flow in the Deeper Unconsolidated Aquifer appears to be toward the west in response to groundwater pumping by the Port and the Port's tenants. A net downward vertical gradient exists between the Shallow Zone and the Deeper Unconsolidated Aquifer (Ecology, 1999).

Near-surface (upper 10 feet) soils beneath the Site consist predominantly of sand with varying amounts of silt. Considerable amounts of anthropogenic debris, including rubble (brick and concrete), wood ash, and trash, have been identified in the upper 10 feet of soil (Ecology, 1999).

3 Compliance Monitoring Plan

3.1 Agreed Orders

Presently the Site is separated into two areas designated as Cell 1 (C1) and Cell 2 (C2). Two Agreed Orders between the Port and Washington State Department of Ecology (Ecology) are in place for this Site:

- Agreed Order No. 99TC-S108 applies to C1
- Agreed Order No. 99TCPSR-93 applies to C2

In accordance with Agreed Orders, the Port completed a remedial investigation and feasibility study (RI/FS) in 1998. The RI/FS identified lead, total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs) concentrations above Ecology Model Toxics Control Act (MTCA) Method A or Method C industrial soil cleanup levels (CULs). The RI/FS also indicated that the area adjacent to the Columbia River contained buried anthropogenic debris and concentrations of soluble metals that could leach to the Columbia River. Pursuant to the conditions of the Agreed Orders, the Port completed Interim Actions at C1 from November 1998 to February 1999 and at C2 from October 2000 to December 2000 (ERM, 2008a and 2008b).

A total of 26 monitoring wells were originally located in C1 and C2. These monitoring wells (MWs) are listed below and on Table 1 along with multiple replacement wells which are discussed in Section 3.3.

- Deeper Unconsolidated Aquifer
 - o C1-MW-6B
 - C2-MW-12B and C2-MW-13B
- Shallow Zone
 - o C1-MW-1 through C1-MW-9
 - o C2-MW-1 through C2-MW-11 and C2-MW-14 through C2-MW-16

The groundwater CULs and chemicals of concern (COCs) as determined by the Agreed Orders are described in the following subsections.

3.2 Groundwater Cleanup Levels

3.2.1 Deeper Unconsolidated Aguifer

Groundwater in the Deeper Unconsolidated Aquifer is used as a potable and industrial water supply source; consequently, Ecology's MTCA Method A and B groundwater CULs are used to assess potential adverse impacts to the Unconsolidated Aquifer.

In accordance with the Agreed Orders, the conditional point of compliance (POC) for groundwater within the Unconsolidated Aquifer is throughout the Site as represented by the following wells:

- C1-MW-6B
- C2-MW-12B and C2-MW-13B

3.2.2 Shallow Zone

The Shallow Zone groundwater cannot be used for drinking water due to low yield. However, the shallow groundwater discharges to the Columbia River at the Site. Consequently, the Shallow Zone CULs are based on protection of surface water and are derived from the lowest of the following screening criteria for each analyte:

- Ecology's MTCA Method B surface water CULs in accordance with Washington Administrative Code (WAC) 173-340-730
- Ecology's acute freshwater surface water quality criteria in accordance with WAC 173-201A-240
- US Environmental Protection Agency (EPA)'s National Toxics Rule human health criteria for surface water based on 40 Code of Federal Regulations (CFR) 131.36

In addition to shallow groundwater discharges to the Columbia River, there are indications that the Shallow Zone is hydraulically connected with the Deeper Unconsolidated Aquifer. Because the deeper aquifer is a water supply source, groundwater occurring in the Shallow Zone is also compared to Ecology's MTCA Method A and B groundwater CULs.

For the Shallow Zone groundwater, the conditional POC was established as the point where the groundwater discharges to surface water. Therefore, in the Agreed Orders, the Shallow Zone conditional POC wells for the Site included the following seven shoreline wells.

- C1-MW-3, C1-MW-4, C1-MW-5, and C1-MW-8
- C2-MW-9, C2-MW-10, and C2-MW-11

3.3 Past Modifications to the Compliance Monitoring Plan

From September 2001 until March 2011, groundwater monitoring was conducted tri-annually (first, second, and fourth quarters) at each Cell in accordance with the Agreed Orders and the groundwater monitoring schedule proposed in a letter from Kennedy/Jenks Consultants to Ecology dated September 17, 2001. Mr. Alexanian approved the monitoring schedule in an email to the Port dated October 4, 2001 (ERM, 2008a and 2008b).

Since September 2001, the monitoring plan included the collection of groundwater samples from 14 of the 26 monitoring wells listed in Section 3.1 and depth to groundwater measurements at all 26 wells during each event. The 14 sampled wells included the 10 conditional POC wells and C1-MW-6, C1-MW-7, C2-MW-3, and C2-MW-7. Following approval from Ecology in 2004, conditional POC wells C1-MW-5 and C1-MW-8 were no longer required to be sampled.

The COCs for both C1 and C2 in September 2001 originally included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. Gasoline-range hydrocarbons (gasoline) and diesel- and oil-range hydrocarbons (diesel and oil) were also included as COCs for C2.

By 2007, following multiple correspondences between Ecology and the Port, monitoring of VOCs and total and dissolved metals was discontinued for both cells, and the VOC suite was reduced for a portion of the wells in C1 to benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) (ERM, 2008a and 2008b).

In April 2011, Ecology approved: a reduction in monitoring frequency from tri-annual to semi-annual (first and third quarters), the discontinuation of VOC analysis for C2-MW-3 and C2-MW-10, and the removal of the following eight monitoring wells from the groundwater monitoring plan (Kennedy/Jenks, 2011; Ecology, 2011).

- C1-MW-6
- C1-MW-6B
- C2-MW-4

A=COM

- C2-MW-5
- C2-MW-7
- C2-MW-8
- C2-MW-13B
- C2-MW-16

Ecology requested in the April 2011 letter that the monitoring of C1-MW-3 continue to determine if any contaminant migration occurs as a result of the West Vancouver Freight Access Project (Ecology, 2011).

In 2012 and 2013, monitoring wells C1-MW-6, C1-MW-6B, C2-MW-5, C2-MW-8 and C2-MW-13B were decommissioned. An attempt was made to locate and decommission monitoring wells C2-MW-4, C2-MW-7, and C2-MW-16 in September 2012; however, these monitoring wells were inadvertently paved over and not locatable.

The construction of the West Vancouver Freight Access Project required the relocation of monitoring wells C1-MW-3, C1-MW-5, and C1-MW-8. The Port submitted a request to Ecology for the relocation of the three monitoring wells, and in a letter dated April 16, 2012, Ecology approved the relocations. In 2012, the three monitoring wells were decommissioned, and C1-MW-3 and C1-MW-5 were re-installed in the same approximate configuration and depths as the original monitoring wells (with the same designations). C1-MW-8 was reinstalled in July 2014 slightly to the southwest with the same approximate configuration and depth; however, the replacement is labeled C1-MW-8(R).

Monitoring wells C2-MW-10 and C2-MW-11, installed in 1998, were both replaced with C2-MW-10(R) and C2-MW-11(R) in 2000. Subsequent replacement wells for both are summarized below:

- C2-MW-10(R) may have been inadvertently destroyed during the construction of the West Vancouver Freight Access Project or paved over, as it has not been located since March 2013. It was reinstalled in August 2015 with the same approximate configuration and depth; the replacement well is labeled C2-MW-10(R2).
- C2-MW-11(R) was abandoned in May 2014 due to construction activities at the Site. It was reinstalled in June 2014 at the same location with the same approximate configuration and depth; the replacement well is labeled C2-MW-11(R2).

3.4 Recent Modifications to the Compliance Monitoring Plan

In June 2016, Ecology approved the decommissioning of 12 monitoring wells and the reduction of the groundwater monitoring frequency from semi-annual to every 18 months (Ecology, 2016). The selected analytes for the retained monitoring wells did not change. Therefore, in November and December 2016, decommissioning activities were completed as described below and listed on Table 1 (AECOM, 2017).

- The following eight monitoring wells were successfully decommissioned.
 - o C1-MW-1
 - o C1-MW-2
 - o C1-MW-3
 - o C1-MW-5
 - o C1-MW-8(R)
 - o C1-MW-9
 - o C2-MW-6
 - o C2-MW-15
- The following four monitoring wells had been paved over and cannot be found, despite potholing and resurveying by the Port's surveyor.
 - o C2-MW-1
 - o C2-MW-4
 - o C2-MW-7

o C2-MW-16

In the March 2019 Groundwater Monitoring Letter Report, AECOM recommended decommissioning C1-MW-7 due to safety and well head integrity concerns as the monitoring well is located within a heavy equipment, high traffic area (AECOM, 2019a). Historically, only MTBE exceeded the CULs in groundwater samples from C1-MW-7; however, MTBE had not been detected above the CUL over the previous 11 events conducted between February 2012 and March 2019. The MTBE concentrations had been trending downward, and the concentrations had generally stabilized over the previous five events. Groundwater monitoring would continue every 18 months but without C1-MW-7. In September 2019, Ecology approved the decommissioning of C1-MW-7. In October 2020, decommissioning activities were completed as described in the Well Decommissioning Summary Letter (AECOM, 2019b) and listed on Table 1.

3.5 Current Compliance Monitoring Plan

Based on the Ecology June 2016 and September 2019 approval letters, the current compliance monitoring plan (Table 1) includes the collection of depth-to-groundwater measurements and groundwater samples from the following six monitoring wells every 18 months:

- C1-MW-4
- C2-MW-3
- C2-MW-9
- C2-MW-10(R2)
- C2-MW-11(R2)
- C2-MW-12B

The analyte list varies between the monitoring wells and is shown on Table 1.

4 Activities Conducted During this Monitoring Event

Groundwater monitoring activities completed during the September 2020 event were conducted in accordance with the following three documents.

- EPA guidance document titled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA, 1996)
- Ecology letter titled Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures (Ecology, 2002)
- Kennedy/Jenks Second Semi-Annual 2013 Groundwater Monitoring Report (Kennedy/Jenks, 2014)
- Ecology letter titled Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility (Ecology, 2017)

The groundwater monitoring activities completed during the September 2020 event are as follows:

- AECOM collected depth to groundwater measurements from the six monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM measured the depth to groundwater in the monitoring wells using an electronic water level meter. The depth to groundwater was measured from the northern side of top of casing (TOC) and recorded on the Groundwater Level Form (Appendix A). The depth to groundwater measurements and corresponding groundwater elevations are presented on Table 2.
- AECOM collected groundwater samples from the six monitoring wells included in the current compliance monitoring plan (see Section 3.5). AECOM collected each groundwater sample following purging and stabilization of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). A peristaltic pump was used to purge the shallow monitoring wells. The deep well, C2-MW-12B,

was purged using a bladder pump. AECOM collected groundwater samples at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing and disposable bailers were all lowered and retrieved gently and set at the center of the screen interval. Monitoring Well Sampling Field Logs for this monitoring event are included in Appendix A, and final field parameters are reported in Table 3.

- AECOM delivered the samples to Apex Laboratories of Tigard, Oregon under chain-of-custody. The samples were submitted for one or more of the analyses listed below in accordance with Table 1.
 - BTEX and MTBE by EPA Method 5030B/8260C
 - Full list of VOCs by EPA Method 8260C
 - o Diesel and oil by NWTPH-Dx
 - Gasoline by NWTPH-Gx
- The sample containers were stored in a cooler with ice from sample collection until delivery to the laboratory. The chain-of-custody form is included in Appendix B with the laboratory analytical report. A field duplicate sample, collected from monitoring well C2-MW-9, and a trip blank were also submitted for analysis.
- AECOM placed purge and decontamination water into a labeled, aboveground polyethylene tank, which
 is temporarily staged under the 26th Avenue overpass pending characterization and disposal. Disposable
 sampling equipment (including tubing and nitrile gloves) was managed as municipal solid waste.

5 Results of the September 2020 Monitoring Event

The results of groundwater level measurements are summarized in Table 2. Field parameters are provided in Table 3. The groundwater analytical results are summarized in Tables 4 through 7. A copy of the laboratory analytical report is included in Appendix B.

5.1 Groundwater Elevation Monitoring

Of the remaining monitoring wells listed on Table 1, five are constructed with screened intervals intercepting the Shallow Zone (shallower than 35 feet bgs), and one, C2-MW-12B, is constructed with the screened interval intercepting the Deeper Unconsolidated Aquifer (at 40 to 50 feet bgs). Depth-to-groundwater measurements recorded on September 8, 2020 were used to calculate groundwater elevation above mean sea level at each well. All elevations are presented in North American Vertical Datum of 1988 (NAVD88).

On September 8, 2020, the groundwater elevation in C2-MW-12B, which is screened in the Deeper Unconsolidated Aquifer, was 4.92 feet^a.

On September 8, 2020, the groundwater elevations in the Shallow Zone ranged from 4.30 feet^a (C1-MW-4) to 19.42 feet^a (C2-MW-3). The hydraulic gradient was calculated at 0.02 ft/ft to the south-southwest, consistent with previous sampling events. Groundwater elevation contours and the inferred direction of groundwater flow from September 8, 2020 are shown on Figure 3.

5.2 Groundwater Analytical Results

Groundwater analytical results are summarized in the following subsections.

5.2.1 Volatile Organic Compounds

Samples collected during the September 2020 monitoring event from wells C1-MW-4, C2-MW-9, C2-MW-11(R2), and C2-MW-12B were analyzed for full list of VOCs.

^a North American Vertical Datum of 1988

The VOC results for the groundwater sample collected from the Deeper Unconsolidated Aquifer wells are presented on Table 4, and the VOC results for Shallow Zone wells are presented on Table 5. Both Tables 4 and 5 include BTEX, MTBE, and any other VOC that has been detected at least once since February 2009. The VOC results from the September 2020 monitoring event are summarized in the next two subsections.

5.2.1.1 Deeper Unconsolidated Aquifer

Trichloroethene (TCE) was detected (at an estimated concentration) in groundwater collected from C2-MW-12B (0.250 µg/L) (Table 4). The concentration was below both the MTCA Method A and B groundwater CULs of 5.0 µg/L and 4.0 µg/L, respectively. This is the first detection of TCE in groundwater collected from C2-MW-12B.

5.2.1.2 Shallow Zone

1,1-dichloroethane, cis-1,2-dichloroethene, and vinyl chloride were detected in one or more of the samples collected from the wells screened in the Shallow Zone; these detections were compared to the Shallow Zone CULs presented in Section 3.2.2 and on Table 5.

Vinyl chloride was the only VOC detected in the groundwater samples from the Shallow Zone wells at concentrations above the CULs. Concentrations of vinyl chloride in the groundwater samples collected from C1-MW-9 (0.400 μ g/L) and C2-MW-11(R2) (0.610 μ g/L) exceeded both the MTCA Method A and B groundwater CULs of 0.20 μ g/L and 0.029 μ g/L, respectively. The concentration of vinyl chloride in the groundwater sample collected from C1-MW-4 (0.170 μ g/L) only exceeded the MTCA Method B groundwater CUL.

5.2.2 Total Petroleum Hydrocarbons

During the September 2020 monitoring event, groundwater samples from C2-MW-3, C2-MW-9, C2-MW-10(R2), C2-MW-11(R2), and C2-MW-12B were submitted for NWTPH-Dx and NWTPH-Gx analysis.

The TPH results for the groundwater sample collected from the Deeper Unconsolidated Aquifer well are presented on Table 6, and the TPH results for Shallow Zone wells are presented on Table 7. The TPH results from the September 2020 monitoring event are summarized in the next two subsections.

5.2.2.1 Deeper Unconsolidated Aquifer

Diesel, oil, and gasoline were not detected above their respective MDLs in groundwater collected from C2-MW-12B (Table 6).

5.2.2.2 Shallow Zone

Diesel was detected in the groundwater samples collected from shallow groundwater wells C2-MW-11(R2) (0.112 mg/L) and C2-MW-10(R2) (0.328 mg/L), below the MTCA Method A groundwater CUL of 0.50 mg/L.

6 Data Quality and Management

Based on a review of the laboratory report, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

Data from 2009 through September 2020 has been uploaded onto the EIM database. Under WAC 173-340-840(5), environmental sampling data for all cleanup sites must be submitted in both printed and electronic form.

7 Conclusions

Groundwater monitoring was conducted at C1 and C2 of the Site during the September 2020 event. The analytical results were generally consistent with previous monitoring events. Vinyl chloride concentrations in groundwater samples from C1-MW-4, C2-MW-9, and C2-MW-11(R2) were the only VOC detections exceeding the CULs. Gasoline, diesel, and oil concentrations in groundwater were less than the CULs in all samples.

8 Recommendations and Future Sampling Activities

Groundwater monitoring will continue every 18 months. The next monitoring event is scheduled for March 2022.

9 References

- AECOM, 2017. Well Decommissioning Summary Letter. Former Fort Vancouver Plywood Site, Port of Vancouver USA, Vancouver, Washington. February 10.
- AECOM, 2019a. *Groundwater Monitoring Letter Report March 2019.* Former Fort Vancouver Plywood Site, Port of Vancouver USA, Vancouver, Washington. July 22.
- AECOM, 2019b. Well Decommissioning Summary Letter. Former Fort Vancouver Plywood Site, Port of Vancouver USA, Vancouver, Washington. November 22.
- Ecology, 1999. Cleanup Action Plan. Former Fort Vancouver Plywood Site Cell 1. January.
- Ecology, 2000. Cleanup Action Plan. Former Fort Vancouver Plywood Site Cell 2. January.
- Ecology, 2002. Letter from the Washington State Department of Ecology to Century West Engineering Corporation. Re: Former Fort Vancouver Plywood Proposed Groundwater Sampling Procedures. November 4.
- Ecology, 2011. Letter from Washington State Department of Ecology to Kennedy/Jenks Consultants. *Ecology Response to Recommendations for Modification of the Groundwater Monitoring Program Former Fort Vancouver Plywood Site*. April 6.
- Ecology, 2016. Letter from Washington State Department of Ecology to the Port of Vancouver. Re: Approval for Reducing Groundwater Level and Groundwater Sampling Frequency at the Former Fort Vancouver Plywood Facility, Port of Vancouver, Vancouver, Washington. June 28.
- ERM, 2008a. *Cell 1 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- ERM, 2008b. *Cell 2 September 2007 Groundwater Monitoring Report and 5-Year Review.* Former Fort Vancouver Plywood, Port of Vancouver USA, Vancouver, Washington. May.
- EPA, 1996. Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2011. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Recommendation for Modification of the Groundwater Monitoring Program, Former Fort Vancouver Plywood Site, Port of Vancouver USA. March 29.
- Kennedy/Jenks, 2014. Second Semi-Annual 2013 Groundwater Monitoring Report. Port of Vancouver USA, Fort Vancouver Plywood Site. February 11.

U.S. Geological Survey (USGS), 1993. A Description of Hydrogeologic Units in the Portland Basin, Oregon and Washington. U.S. Geological Survey Water-Resources Investigations Report 90-4196. Prepared in cooperation with City of Portland Bureau of Water Works, Intergovernmental Resource Center, and Oregon Water Resources Department.

10 Limitations

AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 478-

2765 with any questions regarding this or any other referenced submittals.

Sincerely,

AECOM

Nicky Moody

Project Manager

Jeremy Haney, LG

Geologist JEREMY HANEY

ensed Geo

cc: Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology, Toxics Cleanup Program, 2108 Grand Blvd, Vancouver, WA 98661-4662

Attachments

List of Figures

Figure 1 Vicinity Map Figure 2 Site Map

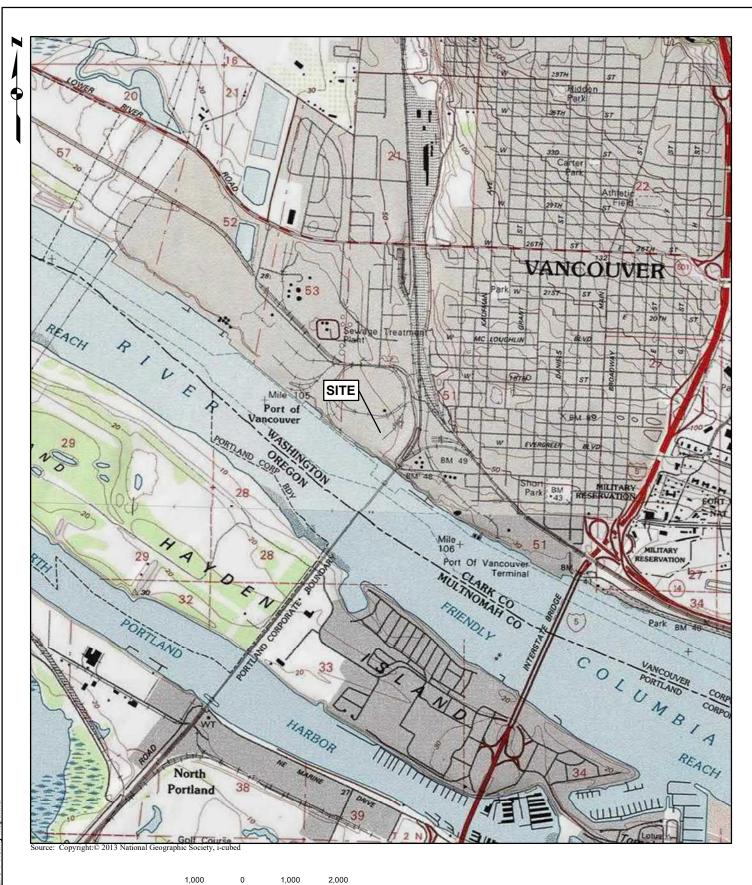
Figure 3 Groundwater Elevation, Contours, and Flow Direction – September 2020

List of Tables

Table 1	Compliance Monitoring Plan
Table 2	Groundwater Elevation Results
Table 3	Groundwater Field Parameter Measurements
Table 4	Volatile Organic Compounds in the Deeper Unconsolidated Aquifer
Table 5	Volatile Organic Compounds in the Shallow Zone
Table 6	Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer
Table 7	Total Petroleum Hydrocarbons in the Shallow Zone

List of Appendices

Appendix A Field Forms


Appendix B Laboratory Report and Chain-of-Custody Form

Appendix C Data Quality Review Report

Figures

AECOM

VICINITY MAP

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

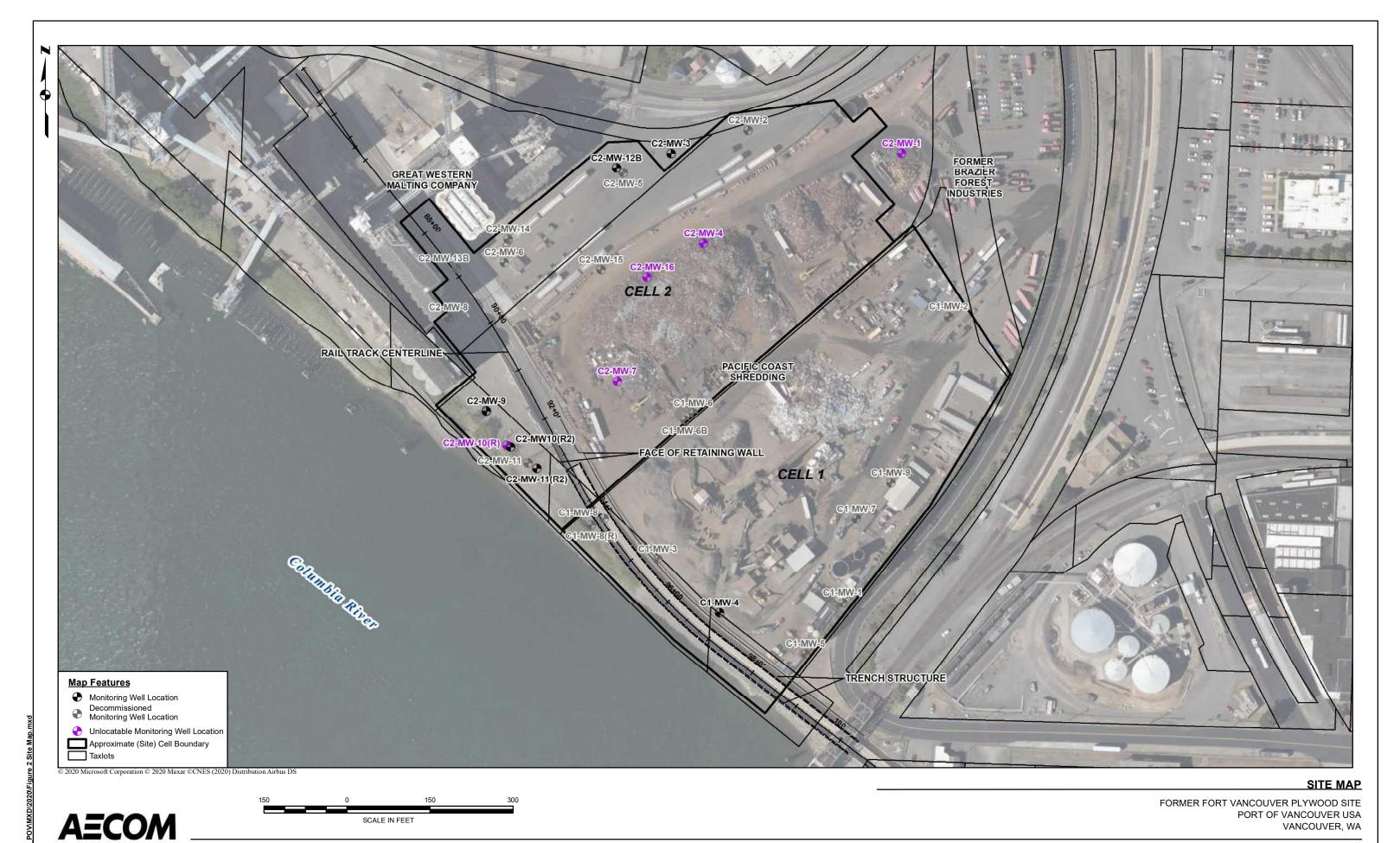
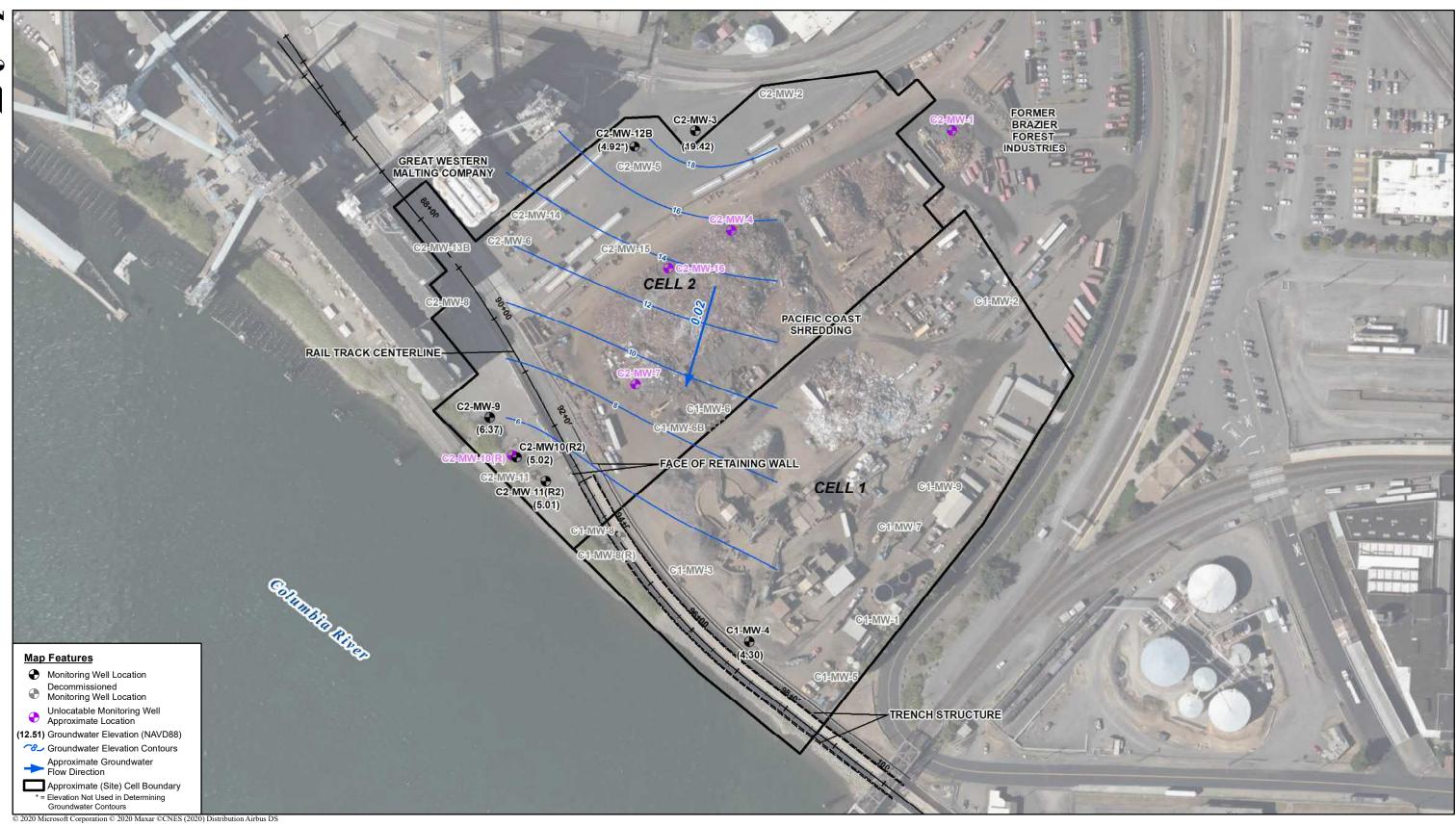



FIGURE 2

AECOM_

150 0 150 300 SCALE IN FEET

GROUNDWATER ELEVATION, CONTOURS, AND FLOW DIRECTION – SEPTEMBER 2020

FORMER FORT VANCOUVER PLYWOOD SITE PORT OF VANCOUVER USA VANCOUVER, WA

FIGURE 3

Tables

Table 1. Compliance Monitoring Plan

Former Fort Vancouver Plywood Site

				Current Compliance Monitoring Plan							
			Screen	Ground	water Moni	toring & Sa	ampling		Sampling	Plan	
Cell #	Well ID	Aquifer	Interval (feet)	Sep-17	Mar-19	Sep-20	+18 months	Sampling Method	Analytes		tainers
	C1-MW-4	Shallow	17-32	Complete	Complete	Χ	Х	PP/Bailer	VOCs	6 VOAs	-
	C1-MW-1	Shallow	18-33	Decommiss	ecommissioned in December 2016 after approval from Ecology in June 2016						
	C1-MW-2	Shallow	11-21	Decommiss	sioned in De	ecember 20	16 after ap	proval from	Ecology in June	2016	
	C1-MW-3	Shallow	15-32	Decommiss	sioned in De	ecember 20	16 after ap	proval from	Ecology in June	2016	
	C1-MW-5	Shallow	16-32	Decommiss	sioned in De	ecember 20	16 after ap	proval from	Ecology in June	2016	
Cell 1	C1-MW-6	Shallow	15-25	Decommiss	sioned in 20	13 after ap	proval from	Ecology in	2011		
	C1-MW-6B	Deeper	52.5-62.5	Decommiss	sioned in 20)13 after ap	proval from	Ecology in	2011		
	C1-MW-7	Shallow	15-30	Decommiss	sioned in O	ctober 2019	after appro	oval from E	cology in Septem	nber 2019	
	C1-MW-8	Shallow	16-31	Decommiss	sioned in 20	12 after ap	proval from	Ecology in	2011		
	C1-MW-8(R)	Shallow	15-30	Decommiss	sioned in No	ovember 20	16 after ap	proval from	Ecology in June	2016	
	C1-MW-9	Shallow	20-30	Decommiss	sioned in De	ecember 20	16 after ap	proval from	Ecology in June	2016	
	C2-MW-3	Shallow	6-16	Complete	Complete	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers
	C2-MW-9**	Shallow	25-35	Complete	Complete	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-10(R2)	Shallow	20-35	Complete	Complete	Χ	Χ	PP/Bailer	Gx, Dx	6 VOAs	2 Ambers
	C2-MW-11(R2)	Shallow	15-30	Complete	Complete	Χ	Χ	PP/Bailer	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-12B	Deeper	40-50	Complete	Complete	Χ	Χ	Bladder	VOCs, Gx, Dx	6 VOAs	2 Ambers
	C2-MW-1	Shallow	5-15	Not decom	missioned,	well cannot	be located				
	C2-MW-2	Shallow	6-16	Decommiss	sioned in Au	ugust 2010					
	C2-MW-4	Shallow	9-19	Not decom	missioned,	well cannot	be located				
	C2-MW-5	Shallow	6-16	Decommiss	sioned in 20	12 after ap	proval from	Ecology in	2011		
Cell 2	C2-MW-6	Shallow	15-20	Decommiss	sioned in No	ovember 20	16 after ap	proval from	Ecology in June	2016	
	C2-MW-7	Shallow	15-25	Not decom	missioned,	well cannot	be located				
	C2-MW-8	Shallow	6-16	Decommiss	sioned in 20	12 followin	g approval	from Ecolo	gy in 2011		
	C2-MW-10(R)	Shallow	18-33	Not decom	missioned,	well cannot	be located	; replaced i	n 2015 with C2-N	/IW-10(R2	')
	C2-MW-11	Shallow	15-30	Decommiss	sioned in 19	98; replace	ed in 2000 v	vith C2-MW	/-11(R)		
	C2-MW-11(R)	Shallow	15-30	Decommiss	sioned in 20	14 due to c	construction	activities;	replaced in 2014	with C2-N	/W-11(R2)
	C2-MW-13B	Deeper	47-57	Decommiss	Decommissioned in 2012 following approval from Ecology in 2011						
	C2-MW-14	Shallow	Unknown	Decommiss	sioned in 20	002 followin	g approval	from Ecolo	ду		
C2-MW-15 Shallow 7-22 Decommissioned in December 2016 after approval from Ecology							Ecology in June	2016			
	C2-MW-16	Shallow	5-20	Not decom	missioned,	well cannot	be located				

Sampling Schedule (18+ months)*

September 2020 March 2022 September 2023 +18 months

Notes:

= Indicates a monitoring well that was decommissioned.

= Indicates a monitoring well that was unlocatable as paved over.

X = indicates that depth to groundwater measurements will be collected.

Red = indicates active conditional Point of Compliance (POC) well in the Agreed Orders

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Dx = diesel and heavy oil range organics

Gx = gasoline range organics

MTBE = methyl tert-butyl ether

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

(R) = C1-MW-8 and C2-MW-11 were replaced in July 2014.

VOA = volatile organic analysis

VOC = volatile organic carbon

** = Collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B.

Table 1 Page 1 of 1

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater ^(b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
Designation	Date		Monitoring Wells	(ieet)	(IEEI)	(leet)
Cell 1 - Shallow Zon	ne	Active	monitoring Wens			
C1-MW-4	02/26/09	29.07	22.86	29.4	6.21	
	05/11/09	29.07	19.69	29.4	9.38	
	12/17/09	29.07	22.29	29.3	6.78	
	03/29/10	29.07	23.01	29.4	6.06	
	05/25/10	29.07	20.54	29.4	8.53	
	11/29/10	29.07	22.83	29.4	6.24	
	03/24/11	29.07	18.75	29.3	10.32	
	10/11/11	29.07	23.33	29.3	5.74	
	02/29/12	29.07	22.11	NM	6.96	
	09/20/12	29.07	23.47	NM	5.60	17-32
	03/22/13	29.07	23.75	NM	5.32	52
	09/23/13	29.07	NM	NM	NA	
	03/20/14	29.07	17.92	NM	11.15	
	09/02/14	29.07	24.36	NM	4.71	
	04/07/15	29.07	20.45	NM	8.62	
	09/28/15	29.07	24.33	NM	4.74	
	03/28/16 09/11/17	29.07 29.07	19.65 24.44	NM NM	9.42 4.63	
	03/19/19	29.07	23.81	NM	5.26	
	09/08/20	29.07	24.77	NM	4.30	
Cell 2 - Shallow Zon		29.07	24.11	INIVI	4.50	
C2-MW-3	02/26/09	32.43	12.70	15.4	19.73	
	05/11/09	32.43	13.04	15.0	19.39	
	12/17/09	32.43	13.12	15.3	19.31	
	03/29/10	32.43	12.22	15.1	20.21	
	05/25/10	32.43	12.08	15.1	20.35	
	11/29/10	32.43	12.20	15.1	20.23	
	03/24/11	32.43	11.32	15.0	21.11	
	10/11/11	32.43	12.56	15.0	19.87	
	02/29/12	32.43	11.99	15.0	20.44	
	09/20/12	32.43	12.91	15.0	19.52	6-16
	03/21/13	32.43	11.86	NM	20.57	0.10
	09/20/13	32.43	12.52	NM	19.91	
	03/20/14	32.43	11.86	NM	20.57	
	09/02/14	32.43	12.40	NM	20.03	
	04/07/15	32.43	11.82	NM	20.61	
	09/28/15	32.43	12.81	NM	19.62	
	03/28/16	32.43	11.19	NM	21.24	
	09/11/17 03/19/19	32.43 32.43	12.58 12.88	NM NM	19.85 19.55	
	03/19/19			NM	19.55	
	09/08/20	32.43	13.01	IVIVI	19.42	

Table 2 Page 1 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-9	02/26/09	33.00	NM	NM	NA	(IEEI)
02 11111 0	05/11/09	33.00	21.89	34.5	11.11	
	12/17/09	33.00	24.69	33.8	8.31	
	03/29/10	33.00	NM	NM	NA	
	05/25/10	33.00	NM	NM	NA	
	11/29/10	33.00	NM	NM	NA	
	03/24/11	33.00	NM	NM	NA	
	10/11/11	33.00	24.97	33.8	8.03	
	02/29/12	33.00	18.81	33.8	14.19	
	09/20/12	33.00	24.51	33.8	8.49	05.05
	03/22/13	33.00	24.48	NM	8.52	25-35
	09/23/13	33.00	25.50	NM	7.50	
	03/20/14	33.00	19.54	NM	13.46	
	09/02/14	32.25	24.49	NM	7.76	
	04/07/15	32.25	21.29	NM	10.96	
	09/28/15	32.25	25.68	NM	6.57	
	03/28/16	32.25	21.30	NM	10.95	
	09/11/17	32.25	25.16	NM	7.09	
	03/19/19	32.25	24.02	NM	8.23	
	09/08/20	32.25	25.88	NM	6.37	
C2-MW-10(R2)	09/28/15	33.57	28.38	35.45	5.19	
	03/28/16	33.57	24.39	NM	9.18	
	09/11/17	33.57	27.96	NM	5.61	20-35
	03/19/19	33.57	27.12	NM	6.45	
	09/08/20	33.57	28.55	NM	5.02	
C2-MW-11(R2)	09/02/14	30.80	25.23	NM	5.57	
	04/07/15	30.80	21.90	NM	8.90	
	09/28/15	30.80	25.62	NM	5.18	
	03/28/16	30.80	21.58	NM	9.22	15-30
	09/11/17	30.80	25.27	NM	5.53	
	03/19/19	30.80	24.35	NM	6.45	
	09/08/20	30.80	25.79	NM	5.01	
	onsolidated Aquifer				-	
C2-MW-12B	02/26/09	32.45	25.40	47.6	7.05	
	05/11/09	32.45	21.81	46.7	10.64	
	12/17/09	32.45	24.73	47.4	7.72	
	03/29/10	32.45	25.39	46.8	7.06	
	05/25/10	32.45	22.82	46.7	9.63	
	11/29/10	32.45	25.21	46.8	7.24	
	03/24/11	32.45	21.02	46.8	11.43	
	10/11/11	32.45	26.24	46.8	6.21	
	02/29/12	32.45	24.05	46.8	8.40	
	09/20/12	32.45	26.39	46.8	6.06	40-50
	03/21/13	32.45	25.82	NM	6.63	
	09/20/13	32.45	26.34	NM	6.11	
	03/20/14	32.45	20.12	NM	12.33	
	09/02/14 04/07/15	32.45	27.04	NM	5.41	
		32.45	23.00	NM	9.45 5.59	
	09/28/15 03/28/16	32.45 32.45	26.87	NM NM	5.58	
	03/28/16	32.45 32.45	21.97 26.57	NM NM	10.48 5.88	
	03/19/19	32.45 32.45	25.88	NM	6.57	
	09/08/20	32.45	27.53	NM	4.92	
	09/08/20	ა∠.4ე	21.53	IVIVI	4.92	

Table 2 Page 2 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened				
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval				
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)				
Abandoned or Unlocatable Monitoring Wells										
	Cell 1 - Shallow Zone									
C1-MW-1	02/26/09	30.23	NM	NM	NA					
	05/11/09	30.23	21.06	33.5	9.17					
	12/17/09	30.23	23.47	33.3	6.76					
	03/29/10	30.23	24.32	33.5	5.91					
	05/25/10	30.23	21.72	33.4	8.51					
	11/29/10	30.23	24.58	33.4	5.65					
	03/24/11	30.23	20.08	33.4	10.15					
	10/11/11	30.23	24.87	33.4	5.36					
	02/29/12	30.23	23.20	33.4	7.03	18-33				
	09/20/12	30.23	25.05	33.4	5.18					
	03/21/13	30.23	24.97	NM	5.26					
	09/23/13	30.23	25.62	NM	4.61					
	03/20/14	30.23	19.25	NM	10.98					
	09/02/14	30.23	26.02	NM	4.21					
	04/07/15	30.23	22.05	33.6	8.18					
	09/28/15	30.23	25.80	NM	4.43					
	03/28/16	30.23	21.19	NM	9.04					
C1-MW-2	02/26/09	31.03	14.53	20.8	16.50					
	05/11/09	31.03	14.26	20.3	16.77					
	12/17/09	31.03	13.29	20.4	17.74					
	03/29/10	31.03	14.05	NM	16.98					
	05/25/10	31.03	14.27	20.4	16.76					
	11/29/10	31.03	13.57	NM	17.46					
	03/24/11	31.03	13.02	20.4	18.01					
	10/11/11	31.03	14.83	20.4	16.20					
	02/29/12	31.03	13.91	20.4	17.12	11-21				
	09/20/12	31.03	15.15	20.4	15.88					
	03/21/13	31.03	14.38	NM	16.65					
	09/23/13	31.03	NM	NM	NA					
	03/20/14	31.03	14.66	NM	16.37					
	09/02/14	31.03	15.02	NM	16.01					
	04/07/15	31.03	14.26	NM	16.77					
	09/28/15	31.03	15.56	NM	15.47					
	03/28/16	31.03	13.59	NM	17.44					

Table 2 Page 3 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-3	02/26/09	29.89	23.11	32.1	6.78	
	05/11/09	29.89	20.45	31.5	9.44	
	12/17/09	29.89	22.78	31.5	7.11	
	03/29/10	29.89	23.17	31.6	6.72	
	05/25/10	29.89	21.12	31.1	8.77	
	11/29/10	29.89	NM	NM	NA	
	03/24/11	29.89	19.42	31.4	10.47	
	10/11/11	29.89	23.71	31.4	6.18	
	02/29/12	29.89	22.06	31.4	7.83	15-32
	09/20/12	29.89	24.00	31.4	5.89	
	03/22/13	29.10	23.20	NM	5.90	
	09/23/13	29.10	NM	NM	NA	
	03/20/14	29.10	17.55	NM	11.55	
	09/02/14	29.10	23.93	NM	5.17	
	04/07/15	29.10	20.52	NM	8.58	
	09/28/15	29.10	24.02	NM	5.08	
	03/28/16	29.10	19.69	NM	9.41	
C1-MW-5	02/26/09	30.71	DRY	31.2	NA	
	05/11/09	30.71	21.37	31.2	9.34	
	12/17/09	30.71	23.89	31.2	6.82	
	03/29/10	30.71	24.72	33.2	5.99	
	05/25/10	30.71	22.15	31.2	8.56	
	11/29/10	30.71	24.93	31.2	5.78	
	03/24/11	30.71	20.49	31.2	10.22	
	10/11/11	30.71	25.27	31.2	5.44	16-32
	02/29/12	30.71	23.53	31.2	7.18	
	03/21/13	29.84	24.93	NM	4.91	
	09/23/13	29.84	25.49	NM	4.35	
	03/20/14	29.84	19.16	NM	10.68	
	09/02/14	29.84	NM	NM	NA	
	04/07/15	29.84	21.96	31.0	7.88	
	09/28/15	29.84	25.71	NM	4.13	
04.1404/.0	03/28/16	29.84	21.14	NM	8.70	
C1-MW-6	02/26/09	31.66	NM 10.42	NM 07.4	NA 10.50	
	05/11/09	31.66	12.13	27.1	19.53	
	12/18/09	31.66	12.19	26.9	19.47	
	03/29/10	31.66	NM	NM	NA NA	15-25
	05/25/10	31.66	NM	NM	NA	
	11/29/10	31.66	11.29	26.7	20.37 20.91	
	03/24/11	31.66	10.75	26.6 NM		
	10/11/11	31.66	NM	NM	NA	

Table 2 Page 4 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Wall	One was deveated	Wall Canada d
Well		Elevation (a)	Groundwater ^(b)	Total Well Depth	Groundwater Elevation	Well Screened Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C1-MW-7	02/26/09	30.05	17.85	29.1	12.20	(IGGI)
OT WWW 7	05/11/09	30.05	17.74	28.5	12.31	
	12/17/09	30.05	17.87	28.5	12.18	
	03/29/10	30.05	17.41	28.5	12.64	
	05/25/10	30.05	17.41	28.5	12.64	
	11/29/10	30.05	17.56	28.5	12.49	
	03/24/11	30.05	16.92	28.5	13.13	
	10/11/11	30.05	17.59	28.5	12.46	
	02/29/12	30.05	17.48	28.5	12.57	
	09/20/12	30.05	17.57	28.5	12.48	15-30
	03/21/13	30.05	17.50	NM	12.55	
	09/23/13	30.05	17.76	NM	12.29	
	03/20/14	30.05	17.02	NM	13.03	
	09/02/14	30.05	17.53	NM	12.52	
	04/07/15	30.05	17.24	NM	12.81	
	09/28/15	29.29	17.54	NM	11.75	
	03/28/16	29.29	16.77	NM	12.52	
	09/11/17	29.29	16.91	NM	12.38	
	03/19/19	29.29	17.11	NM	12.18	
C1-MW-8	02/26/09	30.43	23.54	32.7	6.89	
	05/11/09	30.43	20.74	31.9	9.69	
	12/17/09	30.43	22.84	31.9	7.59	
	03/29/10	30.43	25.63	36.2	4.80	
	05/25/10	30.43	21.10	31.9	9.33	16-31
	11/29/10	30.43	23.91	31.9	6.52	
	03/24/11 10/11/11	30.43 30.43	19.78 23.93	31.2 31.2	10.65 6.50	
	02/29/12	30.43	23.93	31.2	8.40	
	09/20/12	30.43	24.02	31.2	6.41	
C1-MW-8(R)	09/02/14	27.58	22.72	NM	4.86	
O 1-1010 V -O(14)	04/07/15	27.58	18.85	NM	8.73	
	09/28/15	27.58	22.68	NM	4.90	15-30
	03/28/16	27.58	18.49	NM	9.09	
C1-MW-9	02/26/09	30.55	19.78	27.5	10.77	
	05/11/09	30.55	19.83	27.0	10.72	
	12/17/09	30.55	21.10	27.0	9.45	
	03/29/10	30.55	19.47	27.0	11.08	
	05/25/10	30.55	19.61	27.0	10.94	
	11/29/10	30.55	19.88	27.1	10.67	
	03/24/11	30.55	18.96	27.0	11.59	
	10/11/11	30.55	19.75	26.7	10.80	
	02/29/12	30.55	19.76	26.7	10.79	20-30
	09/20/12	30.55	19.86	26.7	10.69	
	03/21/13	30.55	18.95	NM	11.60	
	09/23/13	30.55	19.92	NM	10.63	
	03/20/14	30.55	19.37	NM	11.18	
	09/02/14	30.55	19.75	NM	10.80	
	04/07/15	30.55	19.77	NM	10.78	
	09/28/15	30.55	19.95	NM	10.60	
	03/28/16	30.55	18.80	NM	11.75	

Table 2 Page 5 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
	onsolidated Aquifer	(ICCI)	(ICCI)	(ICCI)	(ICCI)	(ICCI)
C1-MW-6B	02/26/09	30.96	NM	NM	NA	
OT WWW OB	05/11/09	30.96	21.89	65.3	9.07	
	12/17/09	30.96	24.23	64.9	6.73	
	03/29/10	30.96	24.87	64.5	6.09	
	05/25/10	30.96	NM	NM	NA	52.5-62.5
	11/29/10	30.96	NM	NM	NA	
	03/24/11	30.96	20.74	64.3	10.22	
	10/11/11	30.96	NM	NM	NA	
Cell 2 - Shallow Zor						
C2-MW-1	02/26/09	34.51	28.57	32.4	5.94	
	05/11/09	34.51	NM	NM	NA	
	12/17/09	34.51	25.40	32.5	9.11	
	03/29/10	34.51	26.37	32.3	8.14	
	05/25/10	34.51	NM	NM	NA	
	11/29/10	34.51	NM	NM	NA	
	03/24/11	34.51	22.11	32.5	12.40	E 4E
	10/11/11	34.51	27.50	32.5	7.01	5-15
	02/29/12	34.51	NM	NM	NA	
	09/23/13	34.51	NM	NM	NA	
	03/20/14	34.51	NM	NM	NA	
	09/02/14	34.51	NM	NM	NA	
	04/07/15	34.51	NM	NM	NA	
	09/28/15	NM	NM	NM	NM	
C2-MW-2	02/26/09	33.20	13.04	16.8	20.16	
	05/11/09	33.20	13.45	16.5	19.75	
	12/17/09	33.20	NM	NM	NA	6-16
	03/29/10	33.20	NM	NM	NA	0.0
	05/25/10	33.20	NM	NM	NA	
	11/29/10	33.20	NM	NM	NA	
C2-MW-4	02/26/09	34.20	NM	NM	NA	
	05/11/09	34.20	NM	NM	NA	
	12/17/09	34.20	NM	NM	NA	
	03/29/10	34.20	NM	NM	NA	9-19
	05/25/10	34.20	NM	NM	NA	
	11/29/10	34.20	NM	NM	NA	
	03/24/11	34.20	NM	NM	NA NA	
CO MAN E	10/11/11	34.20	NM 12.46	NM 16.4	NA 10.07	
C2-MW-5	02/26/09	32.43	12.46	16.4	19.97	
	05/11/09 12/17/09	32.43	12.86	14.9	19.57	
		32.43	13.22	15.2	19.21	
	03/29/10	32.43	12.00	14.8	20.43	6-16
	05/25/10 11/29/10	32.43 32.43	11.92 11.99	14.9 14.9	20.51 20.44	
	03/24/11	32.43 32.43	11.99	14.9	20.44	
	10/11/11	32.43 32.43				
	10/11/11	32.43	NM	NM	NA	

Table 2 Page 6 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-6	02/26/09	33.46	NM	NM	NA	
	05/11/09	33.46	NM	NM	NA	
	12/17/09	33.46	DRY	19.9	NA	
	03/29/10	33.46	DRY	19.7	NA	
	05/25/10	33.46	DRY	19.9	NA	
	11/29/10	33.46	NM	NM	NA	
	03/24/11	33.46	NM	NM	NA	
	10/11/11	33.46	19.48	19.9	13.98	45.00
	02/29/12	33.46	19.61	19.9	13.85	15-20
	03/21/13	33.46	18.66	NM	14.80	
	09/20/13	33.46	19.35	NM	14.11	
	03/20/14	33.46	18.19	NM	15.27	
	09/02/14	33.46	18.19	NM	15.27	
	04/07/15	33.46	14.81	NM	18.65	
	09/28/15	33.46	19.51	NM	13.95	
	03/28/16	33.46	15.39	NM	18.07	
C2-MW-7	02/26/09	34.55	NM	NM	NA	
	05/11/09	34.55	19.22	28.2	15.33	
	12/17/09	34.55	NM	NM	NA	
	03/29/10	34.55	NM	NM	NA	45.05
	05/25/10	34.55	NM	NM	NA	15-25
	11/29/10	34.55	NM	NM	NA	
	03/24/11	35.55	NM	NM	NA	
	10/11/11	35.55	NM	NM	NA	
C2-MW-8	02/26/09	31.90	NM	NM	NA	
	05/11/09	31.90	NM	NM	NA	
	12/17/09	31.90	DRY	14.9	NA	
	03/29/10	31.90	NM	NM	NA	6-16
	05/25/10	31.90	DRY	NM	NA	0-10
	11/29/10	31.90	NM	NM	NA	
	03/24/11	31.90	DRY	14.6	NA	
	10/11/11	31.90	NM	NM	NA	
C2-MW-8A		30.80				
C2-MW-10(R)	02/26/09	34.18	25.72	36.2	8.46	
	05/11/09	34.18	22.61	36.1	11.57	
	12/17/09	34.18	25.39	36.4	8.79	
	03/29/10	34.18	25.63	36.2	8.55	
	05/25/10	34.18	23.60	36.1	10.58	
	11/29/10	34.18	25.93	36.2	8.25	
	03/24/11	34.18	21.95	36.1	12.23	
	10/11/11	34.18	25.99	36.1	8.19	15-30
	02/29/12	34.18	24.29	36.1	9.89	
	09/20/12	34.18	26.00	36.1	8.18	
	03/22/13	34.18	26.20	NM	7.98	
	09/23/13	34.18	NM	NM	NA	
	03/20/14	34.18	NM	NM	NA	
	09/02/14	34.18	NM	NM	NA	
	04/07/15	34.18	NM	NM	NA	

Table 2 Page 7 of 8

Former Fort Vancouver Plywood Site

		Top of Casing	Depth to	Total Well	Groundwater	Well Screened
Well		Elevation (a)	Groundwater (b)	Depth	Elevation	Interval
Designation	Date	(feet)	(feet)	(feet)	(feet)	(feet)
C2-MW-11(R)	02/26/09	34.26	25.60	36.0	8.66	(1001)
	05/11/09	34.26	22.63	36.1	11.63	
	12/17/09	34.26	25.33	36.3	8.93	
	03/29/10	34.26	25.67	36.1	8.59	
	05/25/10	34.26	23.45	36.1	10.81	
	11/29/10	34.26	25.81	36.1	8.45	
	03/24/11	34.26	21.94	36.1	12.32	15-30
	10/11/11	34.26	25.91	36.1	8.35	
	02/29/12	34.26	24.17	36.1	10.09	
	09/20/12	34.26	25.85	36.1	8.41	
	03/22/13	34.26	25.95	NM	8.31	
	09/23/13	34.26	26.52	NM	7.74	
	03/20/14	34.26	21.15	NM	13.11	
C2-MW-15	02/26/09	33.06	21.56	24.3	11.50	
	05/11/09	33.06	20.72	23.9	12.34	
	12/17/09	33.06	21.92	23.9	11.14	
	03/29/10	33.06	NM	NM	NA	
	05/25/10	33.06	NM	NM	NA	
	11/29/10	33.06	NM	NM	NA	
	03/24/11	34.06	NM	NM	NA	
	10/11/11	34.06	NM	NM	NA	7-22
	02/29/12	34.06	NM	NM	NA	1-22
	09/20/12	34.06	21.22	NM	12.84	
	03/21/13	34.06	20.21	NM	13.85	
	09/23/13	34.06	21.08	NM	12.98	
	03/20/14	34.06	18.50	NM	15.56	
	09/02/14	34.06	NM	NM	NA	
	04/07/15	34.06	18.70	NM	15.36	
	09/28/15	NM	NM	NM	NM	
C2-MW-16	02/26/09	33.76	NM	NM	NA	
	05/11/09	33.76	19.68	23.5	14.08	
	12/17/09	33.76	NM	NM	NA	
	03/29/10	33.76	NM	NM	NA	5-20
	05/25/10	33.76	NM	NM	NA	0 _0
	11/29/10	33.76	NM	NM	NA	
	03/24/11	33.76	NM	NM	NA	
	10/11/11	33.76	NM	NM	NA	
Cell 2 - Deeper Unco						
C2-MW-13B	02/26/09	32.38	NM	NM	NA	
	05/11/09	32.38	NM	NM	NA	
	12/17/09	32.38	NM	NM	NA	
	03/29/10	32.38	NM	NM	NA	47-57
	05/25/10	32.38	NM	NM	NA	
	11/29/10	32.38	NM	NM	NA	
	03/24/11	32.38	21.35	54.98	11.03	
	10/11/11	32.38	NM	NM	NA	

Notes:

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

NM = Not measured because the well was inaccessible.

NA = Not applicable.

(a) = Elevation in feet relative to mean sea level based on ties to a local W&H Pacific Co. benchmark, vertical datum NGVD29(47).

(b) = Measured in feet below the top of the well casing.

Table 2 Page 8 of 8

Former Fort Vancouver Plywood Site

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date		(mS/cm)	(mg/l)	pН	(mV)
-			Active Monitoring	Wells	<u>.</u>	
Cell 1 - Shallow Zone						
C1-MW-4	02/27/09	15.05	1.057	0.45	8.39	-
	05/12/09	15.52	1.217	1.32	6.92	-
	12/18/09	15.32	1.294	0.50	6.35	-
	03/30/10	14.71	0.515	0.88	6.36	-
	05/26/10	15.37	1.109	1.36	6.28	-
	11/30/10	14.2	1.366	1.10	6.54	-
	03/24/11	14.85	1.577	0.63	6.24	-
	10/11/11	15.19	1.149	1.39	7.93	-
	03/01/12	14.77	1.857	0.54	6.66	-
	09/20/12	15.48	1.262	0.97	6.33	-
	03/22/13	15.1	1.798	1.12	7.38	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	15.48	1.173	1.51	6.34	-54.2
	09/03/14	18.01	1.188	0.75	6.26	-45.1
	04/07/15	15.48	1.193	6.44	6.44	-92.2
	09/29/15	16.94	1.164	0.34	6.31	-53.4
	03/29/16	15.31	1.419	1.82	6.30	-58.1
	09/11/17	20.36	1.41	1.99	6.65	-34
	03/19/19	16.33	2.61	1.05	6.41	-81 40
0.11.0.01.117	09/08/20	17.93	2.14	0.0	5.99	-40
Co MW 2	02/26/09	14.22	0.284	1.64	7.21	_
C2-MW-3	02/26/09 05/12/09	14.22	0.284	1.75	6.62	-
	12/17/09	14.92	0.404	0.53	6.39	-
	03/29/10	13.02	0.404	10.60	6.39	-
	05/29/10	14.15	0.102	1.59	6.21	-
	11/30/10	14.15	0.210	12.00	6.72	_
	03/25/11	13.58	0.236	1.04	6.56	_
	10/11/11	16.11	0.230	1.39	7.07	_
	02/29/12	12.84	0.173	2.10	6.55	_
	09/21/12	16.14	0.200	14.90	6.23	_
	03/21/12	14.04	0.257	2.92	7.49	-
	09/20/13	16.90	0.220	3.30	6.90	_
	03/21/14	14.02	0.157	2.28	6.49	80.1
	09/03/14	18.13	0.193	1.28	6.08	25.1
	04/07/15	16.26	0.190	2.33	6.36	4.0
	09/29/15	17.98	0.219	0.61	6.65	99.9
	03/29/16	12.66	0.162	3.09	6.79	67.4
	09/11/17	23.54	0.222	1.47	6.85	111
	03/19/19	13.21	0.270	2.10	6.74	109
	09/08/20	20.31	0.243	0.0	6.33	45

Table 3 Page 1 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
C2-MW-9	02/26/09	NS	NS	NS	NS	-
	05/12/09	14.24	0.974	2.18	7.05	_
	12/18/09	14.07	0.903	0.72	6.49	-
	03/30/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.71	0.879	0.37	6.61	-
	10/11/11	14.14	0.785	1.48	8.13	-
	05/22/12	12.91	0.870	0.71	8.00	-
	09/20/12	14.76	0.998	0.94	6.70	-
	03/22/13	12.52	1.239	1.41	6.84	-
	09/23/13	14.40	0.790	4.50	8.20	-
	03/21/14	14.41	0.697	1.11	6.49	-66.3
	09/03/14	16.34	0.726	0.82	6.33	-90.3
	04/07/15	14.14	0.720	0.69	6.39	-100.8
	09/28/15	17.08	0.744	0.44	6.49	-89.4
	03/28/16	14.15	0.179	4.27	6.62	-35.1
	09/11/17	18.93	0.725	1.62	6.74	-78
	03/19/19	14.46	1.010	1.64	6.61	-114
	09/09/20	18.45	0.774	0.45	6.41	-109
C2-MW-10(R2)	09/28/15	16.89	0.814	0.34	6.57	-91.1
	03/28/16	16.28	0.788	1.06	6.44	-75.1
	09/11/17	19.54	0.842	1.97	6.87	-73
	03/19/19	16.24	1.180	1.36	6.64	-104
	09/09/20	19.33	1.18	0.0	6.50	-100
C2-MW-11(R2)	09/03/14	20.03	0.760	1.59	6.10	-43.8
	04/07/15	13.87	0.709	0.42	6.70	-131.8
	09/28/15	16.61	0.723	0.43	6.60	-86.8
	3/28/2016	15.26	0.776	1.06	6.49	-126.3
	9/11/2017	18.04	0.774	2.35	6.81	-105
	3/19/2019	15.67	0.862	0.92	6.53	-78
	9/9/2020	23.02	0.770	0.0	6.51	-135
Cell 2 - Deeper Unco						
C2-MW-12B	02/26/09	14.24	0.324	1.73	8.48	-
	05/12/09	15.03	0.325	1.79	7.20	-
	12/17/09	14.46	0.395	0.68	6.97	-
	03/29/10	14.47	0.167	8.57	7.09	-
	05/26/10	15.23	0.350	4.49	6.70	-
	11/30/10	11.05	0.186	8.47	7.08	-
	03/25/11	14.55	0.310	0.86	7.13	-
	10/11/11	14.69	0.281	4.11	7.30	-
	02/29/12	13.01	0.360	1.93	6.83	-
	09/21/12	14.02	0.311	33.60	5.73	-
	03/21/13	13.25	0.380	2.04	7.32	-
	09/20/13	15.10	0.340	3.10	7.60	-
	03/21/14	14.31	0.249	3.06	6.92	150.4
	09/03/14	17.09	0.263	1.61	6.95	43.4
	04/07/15	15.36	0.237	0.62	7.10	104.3
	09/29/15	14.94	0.256	0.70	7.10	37.9
	03/29/16	14.19	0.184	3.67	7.01	39.4
	09/11/17	20.16	0.298	6.23	7.32	105
	03/19/19	13.00	0.401	3.47	7.10	104
	09/09/20	16.13	0.328	2.33	6.67	89

Table 3 Page 2 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date	(°C)	(mS/cm)	(mg/l)	рН	(mV)
	10	• ,	d or Uniocatable N		P	\ /
Cell 1 - Shallow Zone	e			- U		
C1-MW-3	02/27/09	14.38	1.057	0.34	9.12	-
	05/12/09	14.84	1.123	1.43	7.02	-
	12/18/09	14.91	1.198	0.50	6.42	-
	03/30/10	13.5	0.455	0.93	6.45	-
	05/26/10	14.67	0.994	2.32	6.27	-
	11/30/10	NS	NS	NS	NS	-
	03/24/11	13.24	1.211	0.84	6.55	-
	10/12/11	14.5	0.920	1.62	7.56	-
	03/01/12	14.21	1.991	0.49	6.79	-
	09/20/12	15.27	0.944	0.91	6.44	-
	03/22/13	14.39	1.630	2.01	8.23	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	13.83	0.774	0.28	6.61	15.8
	09/03/14	20.28	1.094	1.16	6.10	-41.1
	04/07/15	14.79	1.103	0.57	6.41	-107.4
	09/29/15	16.96	0.855	0.30	6.19	-73.3
C4 MM C	03/29/16	12.41	0.701	3.31	6.49	59.1
C1-MW-6	02/26/09	NS	NS	NS 0.05	NS 0.40	-
	05/12/09	11.17	0.402	3.35	6.40	-
	12/18/09 3/30/2010	11.80	0.540	0.61	6.65	-
		NS NS	NS NS	NS NC	NS NS	-
	05/26/10 11/30/10	NS NS	NS NS	NS NS	NS NS	-
	03/25/11	10.78	0.302	0.29	6.86	-
C1-MW-7	02/27/09	15.82	0.501	0.63	7.37	-
OT WWW 7	05/12/09	15.63	0.877	1.64	6.78	_
	12/18/09	16.16	1.025	0.54	6.26	_
	03/30/10	15.45	0.383	0.79	6.35	_
	05/26/10	15.70	0.610	3.32	6.00	_
	11/30/10	14.46	0.973	1.18	6.59	_
	03/25/11	15.05	1.048	1.26	6.44	_
	10/12/11	16.01	0.906	1.48	7.43	-
	02/29/12	14.44	0.599	1.66	6.65	-
	09/20/12	16.14	0.772	0.93	6.28	-
	03/22/13	15.17	1.331	0.91	7.80	-
	09/23/13	16.10	1.300	7.00	8.20	-
	03/21/14	15.75	1.056	0.38	6.55	-130.5
	09/04/14	17.29	1.003	4.55	6.35	-80.1
	04/07/15	17.36	1.138	0.70	6.42	-127.0
	09/29/15	19.24	1.078	0.60	6.45	-94.4
	03/29/16	16.33	1.103	2.06	6.36	32.1
	09/11/17	21.32	1.19	1.52	6.62	-91
	03/19/19	15.78	1.69	1.18	6.40	-121
Cell 1 - Deeper Unco						
C1-MW-6B	02/26/09	NS	NS	NS	NS	-
	05/12/09	13.33	0.255	2.47	6.84	-
	12/18/09	12.85	0.281	0.71	6.85	-
	03/29/10	12.43	0.116	11.22	7.1	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS To a	NS	-
	03/25/11	11.90	0.260	7.21	7.00	-

Table 3 Page 3 of 4

Former Fort Vancouver Plywood Site

				Field Parameters		
		Temperature	Conductivity	Dissolved Oxygen		ORP
Sample Location	Sample Date		(mS/cm)	(mg/l)	рН	(mV)
Cell 2 - Shallow Zone		, ,	, ,		·	Ì
C2-MW-7	02/26/09	NS	NS	NS	NS	-
	05/12/09	14.47	0.549	1.62	6.81	-
	12/17/09	NS	NS	NS	NS	-
	03/30/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	13.44	0.885	0.30	6.72	-
C2-MW-10(R)	02/27/09	15.1	1.045	0.28	9.10	-
	05/12/09	14.71	1.065	1.71	6.72	-
	12/17/09	14.98	1.298	0.79	6.44	-
	03/29/10	14.98	0.480	8.24	6.75	-
	05/25/10	15.21	1.080	2.29	6.43	-
	11/30/10	14.4	1.253	16.00	6.78	-
	03/25/11	14.12	1.217	0.36	6.63	-
	10/12/11	14.77	0.966	1.37	7.30	-
	03/01/12	13.84	1.371	0.40	7.21	-
	09/20/12	14.30	0.992	0.86	6.47	-
	03/22/13	13.50	1.204	1.59	6.42	-
	09/23/13	NS	NS	NS	NS	-
	03/21/14	NS	NS	NS	NS	-
	09/03/14	NS	NS	NS	NS	-
	04/07/15	NS	NS	NS	NS	-
C2-MW-11(R)	02/27/09	14.44	0.931	0.41	8.41	-
	05/12/09	14.18	0.401	1.80	6.88	-
	12/18/09	14.28	1.108	0.50	6.5	-
	03/29/10	14.25	0.458	7.15	6.71	-
	05/26/10	14.23	0.893	2.18	6.31	-
	11/30/10	13.83	0.990	2.39	6.79	-
	03/25/11	13.33	1.184	0.45	6.60	-
	10/12/11	14.30	0.909	1.59	7.89	-
	03/01/12	13.36	1.342	0.33	7.07	-
	09/20/12	14.57	0.932	0.77	6.42	-
	03/22/13	13.23	1.073	1.23	6.36	-
	09/23/13	14.10	0.930	8.80	8.60	-
	03/21/14	14.14	0.597	0.52	6.65	-14.8
Cell 2 - Deeper Unco						
C2-MW-13B	02/26/09	NS	NS	NS	NS	-
	05/12/09	NS	NS	NS	NS	-
	12/17/09	NS	NS	NS	NS	-
	03/29/10	NS	NS	NS	NS	-
	05/26/10	NS	NS	NS	NS	-
	11/30/10	NS	NS	NS	NS	-
	03/25/11	14.37	0.256	2.55	6.71	-

Notes:

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

mS/cm = millisiemens per centimeter.

mg/l = milligrams per liter

mv = millivolts

NS = Not sampled because well was not accessible.

ORP = oxidation reduction potential

Table 3 Page 4 of 4

^{- =} not available to AECOM for this report.

[°]C = Degrees Celsius.

Table 4. Volatile Organic Compounds in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

														Historical							
			Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Total Xylenes	Methyl Tertiary Butyl Ether	Acetone	Chloroethane	Chloromethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Isopropylbenzene (Cumene)	Naphthalene	1,2,4-Trimethylbenzene	Trichloroethene	Trichlorofluoromethane	Vinyl Chloride
Well Location	Sample ID	Date Sampled	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Ecology's MTCA Metho		•	5.0	1,000	700	1,000	1,000	1,000	20 24	NE 7 200	NE NE	NE NE	NE	NE 400	NE 16	NE 800	160 160	NE	5.0 4.0	NE	0.20 0.029
Ecology's MTCA Metho	lod B Groundwater Ci	eanup Leveis	0.795	640	800	1,600	1,600	1,600	Active Monit	7,200	NE	INE	7.68	400	16	800	160	NE	4.0	2,400	0.029
Cell 2 - Deeper Uncons	solidated Aquifer								ACTIVE MOTI	Coning Wens											
	C2-MW-12B	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-12B	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	03/29/10	1.0 U	6.8	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	11/30/10	1.0 U	1.0	1.0 U	2.0 U	1.0 U		1.0 U	5.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	02/29/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
С	C2-MW-12B	09/21/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.0 U	0.10 U	0.10 U
С	C2-MW-12B	03/21/13	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U	3.0 U	0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.0 U	0.10 U	0.10 U
С	C2-MW-12B	09/20/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.40 U	0.13 U	0.14 U
С	C2-MW-12B	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.50 U	0.20 U	0.16 U	0.13 U	0.10 U	0.11 U
С	C2-MW-12B	09/03/14	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.100 U
С	C2-MW-12B	04/07/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.200 U
С	C2-MW-12B	09/29/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.100 U
	C2-MW-12B	03/29/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.250 U
	C2-MW-12B	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	2.00 UJ	0.500 U	0.250 U	1.00 U	0.200 U
	C2-MW-12B	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.200 U	0.500 U	1.00 U	0.500 U	0.200 U	1.00 U	0.100 U
<u> </u>	C2-MW-12B	09/09/20	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.200 U	0.500 U	2.00 U	0.500 U	0.250 J	1.00 U	0.100 U
Cell 1 - Deeper Uncons	polidoted Aguifer							Abandon	ed or Unlocat	apie Monitori	ng wells										
	NS Aquiter	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS C1-MW-6B	02/27/09	1.0 U	1.0 U	1.0 U	NS 	NS 	3.0 U	1.0 U	INS	NS 	110		140	NS	140	140	110	149	140	1112
	C1-MW-6B	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-6B	03/29/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-6B	03/25/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
Cell 2 - Deeper Uncons		00,20,11	1.0 0	1.0 0	1.0 0			0.0 0	1.0 0												
	C2-MW-13B	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	0.20 U

Notes:

--- = Not analyzed

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/I = micrograms per liter

R = The sample results were rejected based on the data quality review.

Table 4 Page 1 of 2

Table 4. Volatile Organic Compounds in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

UJ = Constituent was not detected above the noted limit; the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Table 4 Page 2 of 2

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	ompounds an	d MTBE							Historical	ly Site Detec	ted VOCs (Sir	nce 2009)				
Ecology's Acute Fr	Sample ID lethod B Surface Water Cle reshwater Surface Water Q	uality Criteria	νε ΝΕ Αυσουσιαστουσιοσιαστουσιαστουσιαστουσιαστουσιαστουσιαστουσιαστουσιαστουσιαστουσ	Pg/I 18,900 NE 0.000	Ngu Sthylbenzene	N N S M,p-Xylene	N ⊟ S o-Xylene	지 저 한 Total Xylenes	지 교 를 Methyl Tertiary Butyl Ether	Acetone عاد عاد عاد الماد	コス 田 区 Chloroethane	Z Z 교 Chloromethane	ZZZ G 1,1-Dichloroethane	Ne New Section 1.1-Dichloroethene	지 저 호 cis-1,2-Dichloroethene	지 교 를 Isopropylbenzene (Cumene)	Naphthalene 3N	コロ	au المالية على المالية	Z Z 를 Trichlorofluoromethane	전 조 3.7 B B C B D S D D D D D D D D D D D D D D D D D
	kics Rule Human Health Cr lethod A Groundwater Clea		1.2 5.0	6,800 1,000	3,100 700	NE 1,000	NE 1,000	NE 1,000	NE 20	NE NE	NE NE	NE NE	NE NE	0.057 NE	NE NE	NE NE	NE 160	NE NE	5.0	NE NE	0.20
	lethod B Groundwater Clea	•	0.795	640	800	1,600	1,600	1,600	24	7.200	NE	NE	7.68	400	16	800	160	NE	4.0	2,400	0.029
Loology Clini Citi	iotiloa B Giodilanator Giot	arrap Ecvolo	0.700	0.10		1,000	1,000		Active Monito		112	112	7.00	100	10	000	100	- 112	1.0	2,100	0.020
Cell 1 - Shallow Zo	ne									Ĭ											
C1-MW-4	C1-MW-4	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.7	1.7	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	0.37
	C1-MW-4	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	2.1	1.0 U	1.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.34
	C1-MW-4	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.5	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.46
	C1-MW-4	03/30/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.6	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.44
	C1-MW-4	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.6	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.37
	C1-MW-4	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.5	1.0 U	1.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.62
	C1-MW-4	03/24/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	2.1	1.0 U	2.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0
	C1-MW-4	10/11/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C1-MW-4	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.25
	C1-MW-4 C1-MW-4	09/20/12 03/22/13	0.10 U 1.0 U	0.10 U 1.0 U	0.10 U 1.0 U	0.20 U 2.0 U	0.10 U 1.0 U	3.0 U	0.10 U	1.0 U 20 U	0.10 U 1.0 U	0.10 U 1.0 U	0.10 U 1.7	0.10 U 1.0 U	1.1 2.0	0.10 U 1.0 U	0.10 U	0.10 U 1.0 U	1.0 U 1.0 U	0.10 U 1.0 U	0.39 0.21
	NS	09/23/13	NS	NS	NS	NS	NS	3.0 U NS	1.0 U NS	NS	NS	NS	NS	NS	NS	NS	4.0 U NS	NS	NS	NS	NS
	C1-MW-4	03/21/14	0.060 U	0.11 U	0.10 U	0.25 U	0.13 U		0.18 U	5.0 U	0.17 U	1.0 U	1.5	0.63	2.8	0.50 U	0.20 U	0.16 U	0.23 J	0.10 U	0.11 U
	C1-MW-4	09/03/14	0.000 U 0.125 U	0.11 U	0.10 U	0.500 U	0.13 U 0.250 U	0.500 U	0.18 U 0.500 U	10.0 U	5.00 U	2.50 UJ	1.12	0.880 J	2.6 1.73	0.500 U	1.00 U	0.10 U	0.25 U	1.00 U	0.240
	C1-MW-4	04/08/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	1.67	0.540	2.73	0.500 U	1.00 U	0.500 U	0.290 J	1.00 U	0.450
	C1-MW-4	09/29/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.820	0.290 J	1.53	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.250 U
	C1-MW-4	03/29/16	0.125 U	0.810 J	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	1.27	0.510	2.32	0.500 U	1.00 U	0.500 U	0.350 J	1.00 U	0.490 J
	C1-MW-4	09/11/17	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 UJ	5.00 U	2.50 U	0.540	0.250 U	1.18	0.500 U	2.00 UJ	0.500 U	0.250 U	1.00 U	0.300 J
	C1-MW-4	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.554	0.200 U	1.55	0.500 U	1.00 U	0.500 U	0.200 U	1.00 U	0.216
	C1-MW-4	09/08/20	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.330 J	0.200 U	0.820	0.500 U	2.00 U	0.500 U	0.200 U	1.00 U	0.170 J
Cell 2 - Shallow Zo	ne																				
C2-MW-3	C2-MW-3	02/26/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-3	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

Table 5 Page 1 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	ompounds an	d MTBE							Historical	ly Site Detec	ted VOCs (Sin	ice 2009)				
									ner							ene					
									Eth						ae L	Ę		ne E		ane	
									utyl				<u>ə</u>	<u>o</u>	ie E	၁		nze		ig ig	
									y B			<u>a</u>	har	Per	Oei	ien Ger		lbe	e e	Ě	
					ane.	Φ.		Jes	tiar		au e	han	oet O	oet	힏	enz	9	th.	Fe	non	ide
			Φ	ø.	ınze	ene	Φ	yle.	Теп	Φ	, the	net	وَ	وَ	Dịc	e Se	<u>a</u>	<u><u>ä</u></u>	je E	ē Ē	Chlo
			zen	en	ag.	×	Jen /	Ž.	الإط	ţo	Ž	Ī	Dicl	Dicl	-, 7-	Ď.	护	Ļ.	ᅙ	ᅙ	
			3en	ᅙ	H.	ę, Ģ	ž	Ota	MetI	4ce	Ř	낽	₹	Ξ.	, s	sop	Мар	<u>7,</u>	- - -	- - -	Vinyl
Well Location	Sample ID	Date Sampled	μ g /l	μg/l	μg/l	<u>−</u> μg/l	μg/l	μg/l	<u>μ</u> g/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	_ µg/l	μg/l	μg/l	μg/l	μg/l	μg/l
~ ~	ethod B Surface Water Cle	•	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	13	NE	3.7
•	eshwater Surface Water C	· · · · · · · · · · · · · · · · · · ·	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	cics Rule Human Health Ci		1.2	6,800	3,100	NE 4 000	NE 4.000	NE 4 000	NE	NE	NE	NE	NE	0.057	NE	NE	NE 100	NE	F 0	NE	2
	ethod A Groundwater Cle ethod B Groundwater Cle	•	5.0 0.795	1,000 640	700 800	1,000 1,600	1,000 1.600	1,000 1,600	20 24	NE 7,200	NE NE	NE NE	NE 7.68	NE 400	NE 16	NE 800	160 160	NE NE	5.0 4.0	NE 2,400	0.20 0.029
C2-MW-9	C2-MW-9	02/27/09	0.795										7.00							2,400	0.029
32	C2-MW-9	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.7
	C2-MW-9	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.61
	C2-MW-9	03/29/10																			
	C2-MW-9	05/26/10																			
	C2-MW-9	11/29/10	4.011	4.0.11	4.0.11		4.0.11		4.0.11		4.0.11	4.0.11	4.0.11	4.0.11		4.0.11	4.0.11	4.0.11	4.0.11	4.0.11	4.0
	C2-MW-9 C2-MW-9	03/25/11 09/20/12	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	2.0 U 0.20 U	1.0 U 0.10 U		1.0 U 0.10 U	5.0 U 1.0 U	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	4.1 1.3	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 0.10 U	1.0 U 1.0 U	1.0 U 0.10 U	1.2 1.0
	C2-MW-9	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	1.0 U	0.83
	C2-MW-9	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	2.5	0.50 U	2.0 U	0.50 U	0.40 U	0.13 U	0.14 U
	C2-MW-9	03/21/14	0.060 U	0.11 U	0.10 U	0.25 UJ	0.13 UJ		0.18 UJ	8.3 J	0.17 UJ	1.0 UJ	0.14 UJ	0.14 UJ	0.79 J	0.50 UJ	0.20 UJ	0.16 UJ	0.13 U	0.10 UJ	1.3 J
	C2-MW-9	09/03/14	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.550
	C2-MW-9	04/08/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.930	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.410
	C2-MW-9	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	1.84	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.370
	C2-MW-9 C2-MW-9	03/28/16 09/11/17	0.125 U 0.100 U	0.500 U 0.500 U	0.250 U 0.250 U	0.500 U 0.500 U	0.200 U 0.250 U		0.500 U 0.500 U	10.0 U 20.0 UJ	5.00 U 5.00 U	2.50 U 2.50 U	0.250 U 0.250 U	0.250 U 0.250 U	0.520 0.250 U	0.500 U 0.500 U	1.00 U 2.00 UJ	0.500 U 0.500 U	0.250 U 0.250 U	1.00 U 1.00 U	0.630 0.860
	C2-MW-9	03/19/19	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	20.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.250 U 0.956	0.500 U	1.00 U	0.500 U	0.200 U	1.00 U	0.453
	C2-MW-9	09/09/20	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.810	0.500 U	2.00 U	0.500 U	0.200 U	1.00 U	0.400
C2-MW-11(R2)	C2-MW-11R	09/03/14	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U	0.500 U	0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	1.08
	C2-MW-11R	04/08/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	1.25
	C2-MW-11R	09/28/15	0.125 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 UJ	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	1.35
	C2-MW-11R	03/28/16	0.125 U	0.500 U	0.250 U	0.500 U	0.200 U		0.500 U	10.0 U	5.00 U	2.50 U	0.250 U	0.250 U	0.250 U	0.500 U	1.00 U	0.500 U	0.250 U	1.00 U	0.940
	C2-MW-11(R) C2-MW-11(R)	09/11/17 03/19/19	0.100 U 0.100 U	0.500 U 0.500 U	0.250 U 0.250 U	0.500 U 0.500 U	0.250 U 0.250 U		0.500 U 0.500 U	20.0 UJ 10.0 U	5.00 U 5.00 U	2.50 U 2.50 U	0.250 U 0.200 U	0.250 U 0.200 U	0.250 U 0.200 U	0.500 U 0.500 U	2.00 UJ 1.00 U	0.500 U 0.500 U	0.250 U 0.200 U	1.00 U 1.00 U	1.13 0.159
	C2-MW-11(R)	09/09/20	0.100 U	0.500 U	0.250 U	0.500 U	0.250 U		0.500 U	10.0 U	5.00 U	2.50 U	0.200 U	0.200 U	0.200 U	0.500 U	2.00 U	0.500 U	0.200 U	1.00 U	0.610
	, , , , , , , , , , , , , , , , , , ,	·						Abandoned		ole Monitoring											
Cell 1 - Shallow Zor																					
C1-MW-3	C1-MW-3	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U												
	C1-MW-3 C1-MW-3	05/12/09 12/18/09	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U			3.0 U 3.0 U	1.0 U 1.0 U												
	C1-MW-3	03/30/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-3	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-3	11/30/10																			
	C1-MW-3	03/24/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-3	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-3	03/01/12	1.0 U	1.0 U	1.0 U			3.0 U	1.0 U												
	C1-MW-3 C1-MW-3	09/20/12 03/22/13	0.10 U 1.0 U	0.10 U 1.0 U	0.10 U 1.0 U			0.30 U 3.0 U	0.10 U 1.0 U												
	NS	09/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C1-MW-3	03/21/14	0.060 U	0.11 U	0.10 U			0.33 U	0.18 U												
	C1-MW-3	09/03/14	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U												
	C1-MW-3	04/08/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U												
	C1-MW-3	09/29/15	0.125 U	0.500 U	0.250 U			0.750 U	0.500 U												
	C1-MW-3	03/29/16	0.100 U	0.500 U	0.250 U			0.750 U	0.500 U												

Table 5 Page 2 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone Former Fort Vancouver Plywood Site

					BTEX Co	ompounds and	MTBE							Historically	y Site Detecte	ed VOCs (Sin	nce 2009)				
Well Location	Sample ID	Date Sampled	کو Benzene	րը Toluene	हें Ethylbenzene	اگر m,p-Xylene	o-Xylene	ਨੂੰ Total Xylenes	S Methyl Tertiary Butyl Ether	ы Acetone	ր Chloroethane	ւն Chloromethane	ਨੂੰ 1,1-Dichloroethane	ភ្នំ 1,1-Dichloroethene	ਨੂੰ cis-1,2-Dichloroethene	ই Isopropylbenzene (Cumene)	ւն Naphthalene	트 1,2,4-Trimethylbenzene	চি Trichloroethene	도 Trichlorofluoromethane	हि Vinyl Chloride
Ecology's MTCA Me	thod B Surface Water Cle	eanup Levels	23	18,900	6,820	NE	NE	NE	NE	NE	NE	NE	NE	23,100	NE	NE	4,710	NE	13	NE	3.7
	shwater Surface Water Q		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
EPA's National Toxic	cs Rule Human Health Cr	riteria for Surface Water	1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE		NE	2
Ecology's MTCA Me	thod A Groundwater Clea	anup Levels	5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	5.0	NE	0.20
Ecology's MTCA Me	thod B Groundwater Cle	anup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	4.0	2,400	0.029
C1-MW-6	C1-MW-6	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	10	1.7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.2	0.20 U
	C1-MW-6	12/18/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	8.8	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	NS	05/26/10																			
	NS	11/30/10																			
	C1-MW-6	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	0.20 U
C1-MW-7	C1-MW-7	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	26.0												
	C1-MW-7	05/12/09	1.0 U	1.0 U	1.0 U			3.0 U	24.3												
	C1-MW-7	12/18/09	1.0 U	1.0 U	1.0 U			3.0 U	23.4												
	C1-MW-7	03/30/10	1.0 U	1.0 U	1.0 U			3.0 U	24.1												
	C1-MW-7	05/26/10	1.0 U	1.0 U	1.0 U			3.0 U	16.1												
	C1-MW-7	03/25/11	1.0 U	1.0 U	1.0 U			3.0 U	23.7												
	C1-MW-7	10/12/11	1.0 U	1.0 U	1.0 U			3.0 U	24.6												
	C1-MW-7	02/29/12	1.0 U	1.0 U	1.0 U			3.0 U	3.2												
	C1-MW-7	09/20/12	0.10 U	0.10 U	0.10 U			0.30 U	13												
	C1-MW-7	03/22/13	1.0 U	1.0 U	1.0 U			3.0 U	11.6												
	C1-MW-7	09/23/13	0.24 U	0.23 U	0.24 U			3.0 U	16.4												
	C1-MW-7	03/21/14	0.12 U	0.22 U	0.20 U			0.66 U	14.0												
	C1-MW-7	09/04/14	0.125 U	0.500 U	0.250 U			0.750 U	12.1												
	C1-MW-7	04/08/15	0.125 U	0.500 U	0.250 U			0.750 U	17.2												
	C1-MW-7	09/29/15	0.125 U	0.500 U	0.250 U			0.750 U	18.1												
	C1-MW-7	03/29/16	0.100 U	0.500 U	0.250 U			0.750 U	19.3												
	C1-MW-7	09/11/17	0.100 U	0.500 U	0.250 U			0.750 U	15.3												
	C1-MW-7	03/19/19	0.100 U	0.500 U	0.250 U			0.750 U	17.9												
Cell 2 - Shallow Zone		00/07/00	NO	110	NO	NO	NO	110	NO	NO.	NO	NO	NO	NO	110	NO	NO	110	NO	NO	NO
C2-MW-7	NS	02/27/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-7	12/17/09	 NO		 NO		 NO	 NO	 NO	 NO	 NO	 NO	 NO	 NO	 NO	 NO			 NO	 NO	
	NS	03/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	05/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	11/29/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	C2-MW-7	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U

Table 5 Page 3 of 4

Table 5. Volatile Organic Compounds in the Shallow Zone

Former Fort Vancouver Plywood Site

					BTEX Co	ompounds an	d MTBE							Historical	Ily Site Detect	ed VOCs (Sin	ce 2009)				
																•					
Well Location	Sample ID	Date Sampled	Бепzene	Toluene Logi	ं Ethylbenzene	் m,p-Xylene	o-Xylene	ুট Total Xylenes	ভি Methyl Tertiary Butyl Ether	Acetone	는 Chloroethane	ि Chloromethane	ं प.1-Dichloroethane	কি 1,1-Dichloroethene	ু cis-1,2-Dichloroethene	ভূ isopropylbenzene (Cumene)	न Naphthalene	돌 1,2,4-Trimethylbenzene	हैं S Trichloroethene	ু Trichlorofluoromethane	는 Vinyl Chloride
0,	ethod B Surface Water Cle eshwater Surface Water C	•	23 NE	18,900 NE	6,820 NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	23,100 NE	NE NE	NE NE	4,710 NE	NE NE	13 NE	NE NE	3.7 NE
0,	ics Rule Human Health C	•	1.2	6,800	3,100	NE	NE	NE	NE	NE	NE	NE	NE	0.057	NE	NE	NE	NE	INL	NE	2
Ecology's MTCA Me	ethod A Groundwater Cle	anup Levels	5.0	1,000	700	1,000	1,000	1,000	20	NE	NE	NE	NE	NE	NE	NE	160	NE	5.0	NE	0.20
Ecology's MTCA Me	ethod B Groundwater Cle	anup Levels	0.795	640	800	1,600	1,600	1,600	24	7,200	NE	NE	7.68	400	16	800	160	NE	4.0	2,400	0.029
C2-MW-10(R)	C2-MW-10	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	0.27
	C2-MW-10	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	12/17/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/29/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	05/25/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U
	C2-MW-10	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.94
	C2-MW-10	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.28
C2-MW-11(R)	C2-MW-11	02/27/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	12	1.0 U	1.0 U	1.0 U	1.4
	C2-MW-11	05/12/09	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.50
	C2-MW-11	12/18/09	1.0 U	1.0 U	1.6	4.0	2.0		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	101	2.7	1.0 U	1.0 U	0.74
	C2-MW-11	03/29/10	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	51.4	1.3	1.0 U	1.0 U	0.73
	C2-MW-11	05/26/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	63.8	2.3	1.0 U	1.0 U	0.57
	C2-MW-11	11/30/10	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.9	1.0 U	1.0 U	1.0 U	1.5
	C2-MW-11	03/25/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	16.2	1.0 U	1.0 U	1.0 U	1.4
	C2-MW-11	10/12/11	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6
	C2-MW-11	03/01/12	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U		1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.7	1.0 U	1.0 U	1.0 U	1.1
	C2-MW-11	09/20/12	0.10 U	0.10 U	0.10 U	0.20 U	0.10 U		0.10 U	1.0 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.0 U	0.10 U	1.8
	C2-MW-11	03/22/13	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	1.0 U	20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.1
	C2-MW-11	09/23/13	0.24 U	0.23 U	0.24 U	0.48 U	0.24 U		0.50 U	10 U	0.50 U	2.0 U	0.50 U	0.24 U	0.23 U	0.50 U	2.0 U	0.50 U	0.40 U	0.13 U	1.2
	C2-MW-11	03/21/14	0.24	0.23 J	0.61	1.5	1.2		0.18 U	5.0 U	0.17 U	1.0 U	0.14 U	0.14 U	0.16 U	0.87 J	130	4.8	0.13 U	0.10 U	0.28 J

Notes:

--- = Not analyzed

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

MTBE = methyl tertiary butyl ether

MTCA = Washington State Department of Ecology Model Toxics Control Act

NE = Not established

NS = Not sampled because well was not accessible.

μg/l = micrograms per liter

R = The sample results were rejected based on the data quality review.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

UJ = Constituent was not detected above the reporting limit (prior to 2014) or method detection limit (2014 to current); the limit is approximate.

VOCs = volatile organic compounds

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

= Indicates the analyte was not detected; however, the reported method detection limit exceeds a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

Table 6. Total Petroleum Hydrocarbons in the Deeper Unconsolidated Aquifer

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA M	ethod A Groundwater Clea	anup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA M	ethod B Groundwater Clea	anup Levels	NE	NE	NE
		Active Monito	ring Wells		
Cell 2 - Deeper Und	consolidated Aquifer				
C2-MW-12B	C2-MW-12B	02/26/09	0.091 U	0.45 U	0.025 U
	C2-MW-12B	05/12/09	0.082 U	0.41 U	0.050 U
	C2-MW-12B	12/17/09	0.13	0.42 U	0.050 U
	C2-MW-12B	03/29/10	2.3	2.6	0.050 U
	C2-MW-12B	03/29/10	1.3	1.4	0.050 U
	C2-MW-12B	05/26/10	0.10	0.44	0.050 U
	C2-MW-12B	11/30/10	4.0	6.6	0.050 U
	C2-MW-12B	03/25/11	0.55	0.66	0.050 U
	C2-MW-12B	10/11/11	1.6	2.4	0.050 U
	C2-MW-12B	02/29/12	0.077 U	0.38 U	0.050 U
	C2-MW-12B	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-12B	03/21/13	0.40 U	0.40 U	0.10 U
	C2-MW-12B	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-12B	03/21/14	0.080 J	0.18 J	0.019 U
	C2-MW-12B	09/03/14	0.0943 U	0.496	0.0500 U
	C2-MW-12B	04/07/15	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	09/29/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-12B	03/29/16	0.0980 U	0.230 J	0.0500 U
	C2-MW-12B	09/11/17	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	03/19/19	0.0952 U	0.190 U	0.0500 U
	C2-MW-12B	09/09/20	0.0943 U	0.189 U	0.0500 U
	Abar	ndoned or Unlocatal	ble Monitoring Wells		
Cell 2 - Deeper Und	onsolidated Aquifer				
C2-MW-13B	C2-MW-13B	03/25/11	0.41	0.47	0.050 U

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in bold were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
(a) = Value is for gasoline concentration when benzene is not present.

Table 6 Page 1 of 1

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
	thod B Surface Water Clea		NE	NE	NE
	shwater Surface Water Qu	•	NE	NE	NE
•	cs Rule Human Health Cri	•	NE	NE	NE
Ecology's MTCA Me	thod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
•	thod B Groundwater Clea	•	NE	NE	NE
		Active Monitor			.,
Cell 2 - Deeper Unco	nsolidated Aquifer	7.Ouro monito	ing tronc		
C2-MW-3	C2-MW-3	02/26/09	0.086 U	0.43 U	0.025 U
	C2-MW-3	02/26/09	0.089 B	0.41 U	0.025 U
	C2-MW-3	05/11/09	0.083 U	0.42 U	0.050 U
	C2-MW-3	05/11/09	0.094 U	0.47 U	0.050 U
	C2-MW-3	12/17/09	0.093	0.38 U	0.050 U
	C2-MW-3	12/17/09	0.089	0.39 U	0.050 U
	C2-MW-3	03/29/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.078 U	0.39 U	0.050 U
	C2-MW-3	05/26/10	0.076 U	0.38 U	0.050 U
	C2-MW-3	11/30/10	0.082 U	0.41 U	0.050 U
	C2-MW-3	03/25/11	0.078 U	0.39 U	0.050 U
	C2-MW-3	10/11/11	0.076 U	0.38 U	0.050 U
	C2-MW-3	02/29/12	0.076 U	0.38 U	0.050 U
	C2-MW-3	09/20/12	0.16 U	0.81 U	0.025 U
	C2-MW-3	03/21/13	0.40 U	0.40 U	NA
	C2-MW-3	09/20/13	0.011 U	0.018 U	0.10 U
	C2-MW-3	03/21/14	0.028 U	0.038 U	0.019 U
	C2-MW-3	09/03/14	0.0943 U	0.714 J	0.0500 U
	C2-MW-3	04/07/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-3	09/29/15	0.0943 U	0.269 J	0.0500 U
	C2-MW-3	03/29/16	0.0952 U	0.190 U	0.0500 U
	C2-MW-3	09/11/17	0.0935 U	0.283 J	0.0500 U
	C2-MW-3	03/19/19	0.0952 U	0.190 U	0.0500 U
	C2-MW-3	09/08/20	0.0935 U	0.187 U	0.0500 U
C2-MW-9	C2-MW-9	02/26/09	NS	NS	NS
	C2-MW-9	05/12/09	0.088 U	0.44 U	0.050 U
	C2-MW-9	12/18/09	0.17	0.40 U	0.050 U
	C2-MW-9	03/29/10	NS	NS	NS
	C2-MW-9	05/26/10	NS	NS	NS
	C2-MW-9	11/30/10	NS	NS	NS
	C2-MW-9	03/25/11	0.12	0.40 U	0.050 U
	C2-MW-9	10/11/11	0.13	0.38 U	0.050 U
	C2-MW-9	09/20/12	0.16 U	0.80 U	0.025 U
	C2-MW-9	03/22/13	0.41 U	0.41 U	0.10 U
	C2-MW-9	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-9	03/21/14	0.12	0.16 J	0.019 U
	C2-MW-9	09/03/14	0.0952 U	0.517 J	0.0500 U
	C2-MW-9	04/08/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-9	09/28/15	0.0943 U	0.189 U	0.0500 U
	C2-MW-9	03/28/16	0.0952 U	0.311 J	0.0500 U
	C2-MW-9	09/11/17	0.0935 U	0.187 U	0.0500 U
	C2-MW-9	03/19/19	0.0980 U	0.196 U	0.0500 U
	C2-MW-9	09/09/20	0.0935 U	0.187 U	0.0500 U

Page 1 of 3 Table 7

Table 7. Total Petroleum Hydrocarbons in the Shallow ZoneFormer Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Met	hod B Surface Water Cle	anup Levels	NE	NE	NE
Ecology's Acute Free	shwater Surface Water Qu	uality Criteria	NE	NE	NE
EPA's National Toxic	s Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	hod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	hod B Groundwater Clea	nup Levels	NE	NE	NE
C2-MW-11(R2)	C2-MW-11(R)	09/03/14	0.110 J	0.198 U	0.0500 U
	C2-MW-11(R)	04/08/15	0.0952 U	0.190 U	0.0500 U
	C2-MW-11(R)	09/28/15	0.0943 U	0.286 J	0.0500 U
	C2-MW-11R	03/28/16	0.0962 U	0.262 J	0.0500 U
	C2-MW-11(R)	09/11/17	0.0952 U	0.190 U	0.0500 U
	C2-MW-11(R)	03/19/19	0.0971 U	0.194 U	0.0500 U
	C2-MW-11(R)	09/09/20	0.112 J	0.189 U	0.0500 U
C2-MW-10(R2)	C2-MW-10(R)	09/29/15	0.0943 U	1.55	0.0500 U
	C2-MW-10R2	03/28/16	0.0962 U	5.25	0.385
	C2-MW-10(R2)	09/11/17	0.0952 U	0.216 J	0.0500 U
	C2-MW-10(R2)	03/19/19	0.0962 U	1.10	0.0500 U
	C2-MW-10(R2)	09/09/20	0.328	0.189 U	0.0500 U
		Abandoned or Unlocatab	ole Monitoring Wells		
Cell 2 - Deeper Unco	nsolidated Aquifer				
C2-MW-7	C2-MW-7	02/26/09	NS	NS	NS
	C2-MW-7	05/12/09	0.080 U	0.40 U	0.050 U
	C2-MW-7	12/17/09	NS	NS	NS
	C2-MW-7	03/29/10	NS	NS	NS
	C2-MW-7	05/26/10	NS	NS	NS
	C2-MW-7	11/30/10	NS	NS	NS
	C2-MW-7	03/25/11	0.19	0.84	0.050 U
C2-MW-10(R)	C2-MW-10	02/27/09	0.82 B	1.6	0.025 U
	C2-MW-10	05/12/09	1.1	0.85	0.050 U
	C2-MW-10	12/17/09	1.5	1.8	0.050 U
	C2-MW-10	03/29/10	0.82	1.0	0.050 U
	C2-MW-10	05/25/10	0.77	0.99	0.050 U
	C2-MW-10	11/30/10	1.7	1.9	0.050 U
	C2-MW-10	03/25/11	1.4	1.1	0.050 U
	C2-MW-10	10/12/11	0.70	0.90	0.050 U
	C2-MW-10	03/01/12	1.2	1.1	0.050 U
	C2-MW-10	09/20/12	1.2	0.92	0.025 U
	C2-MW-10	03/21/13	0.90	1.6	NA
	C2-MW-10	09/23/13	NS	NS	NS
	C2-MW-10	03/21/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS
	C2-MW-10	09/03/14	NS	NS	NS

Table 7 Page 2 of 3

Table 7. Total Petroleum Hydrocarbons in the Shallow Zone

Former Fort Vancouver Plywood Site

			TPH-Dx	TPH-Dx	TPH-Gx
			Diesel-Range	Oil-Range	Gasoline-Range
Well ID	Sample ID	Date Sampled	mg/l	mg/l	mg/l
Ecology's MTCA Met	hod B Surface Water Clea	anup Levels	NE	NE	NE
Ecology's Acute Fres	shwater Surface Water Qu	uality Criteria	NE	NE	NE
EPA's National Toxic	s Rule Human Health Cri	teria for Surface Water	NE	NE	NE
Ecology's MTCA Met	hod A Groundwater Clea	nup Levels	0.50	0.50	1.0 ^(a)
Ecology's MTCA Met	hod B Groundwater Clea	nup Levels	NE	NE	NE
C2-MW-11(R)	C2-MW-11	02/27/09	1.2 B	0.73	0.025 U
	C2-MW-11	05/12/09	0.085 U	0.43 U	0.050 U
	C2-MW-11	12/18/09	0.78	0.88	0.11
	C2-MW-11	03/29/10	0.56	0.61	0.050 U
	C2-MW-11	05/26/10	0.68	0.77	0.069
	C2-MW-11	11/30/10	0.27	0.39	0.050 U
	C2-MW-11	03/25/11	0.74	0.58	0.053
	C2-MW-11	10/12/11	0.19	0.38 U	0.050 U
	C2-MW-11	03/01/12	0.51	0.58	0.050 U
	C2-MW-11	09/20/12	0.27	0.80 U	0.025 U
	C2-MW-11	03/22/13	0.40 U	0.53	0.10 U
	C2-MW-11	09/23/13	0.011 U	0.018 U	0.10 U
	C2-MW-11	03/21/14	0.39	0.12 J	0.21

Notes:

B = Constituent was detected above the laboratory reporting limit in the method blank.

DUP = Duplicate sample.

J = Constituent was not positively identified; the associated value is estimated.

mg/l = milligrams per liter

MTCA = Washington State Department of Ecology Model Toxics Control Act

NA = Not analyzed

NE = Not established

NS = Not sampled because well was not accessible.

U = Constituent not detected at or above the reporting limit (prior to 2014) or method detection limit (2014 to current).

TPH = Total Petroleum Hydrocarbons

TPH-Gx = Total Petroleum Hydrocarbons gasoline-range

TPH-Dx = Total Petroleum Hydrocarbons diesel- and oil-range

Values in **bold** were detected above the laboratory method detection limit.

= Indicates a monitoring well that was either abandoned or unlocatable as paved over.

= Indicates an exceedance of a screening criterion.

Ecology's MTCA values were obtained from the Washington State Department of Ecology Cleanup Level and Risk Calculations (CLARC) web site. The lower of the carcinogen and noncarcinogen MTCA Method B value is presented. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Ecology's Acute Freshwater Surface Water Quality Criteria were obtained from the Washington State Legislature Washington Administrative Code web site. http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A-240

EPA's National Toxics Rule Human Health Criteria for Surface Water were obtained through the Washington State Department of Ecology web site for Toxics Standards and Criteria. http://www.ecy.wa.gov/programs/wq/swqs/toxics.html

(a) = Value is for gasoline concentration when benzene is not present.

Table 7 Page 3 of 3

Appendix AField Forms

Proje	ct Name:	Fort Vancou	ver Plywood				F	ald Team:	AA Aac	21.2	-	SCHER
Proje	ct Number:	60519969						Date:		120		Page 1 of
Field	Measureme	nts and Ob	servations					7 2 0	1 2	700	w	
			Depth to Water	Condition Assessment		Screen	Collect	Sampling	Samplin	g Plan		
Cell #	Well ID	Time	(feet STOC)	· Replace broken lids, bolts, gaskets, caps, & locks	Aquifer	(feet)	Sample	Method	Analytes	QC	Con	tainers
Cell 1	C1-MW-4	0959	24.77	possible. All else you	Shallow	17-32	х	PP/Baller	VOCs		3 VOAs	
	C1-MW-7			KA	Shallow	15-30	x	PP/Bailer	BTEX, MIBE		3.VOAs	
	C2-MW-3	1110	13.01	9000	Shallow	6-16	х	PP/Bailer	Gx, Dx		3 VOAs	2 Ambers
	C2-MW-9	0858	15.88	9000	Shallow	25-35	x	PP/Baller	VOCs, Gx, Dx	FD**		2 Ambers 2 Ambers
Cell 2	C2-MW-10(R2)	0738	28.55	9000	Shallow	20-35	x	PP/Bailer	Gx, Dx		3 VOAs	2 Ambers
	C2-MW-11(R)	1043	25.79	good	Shallow	15-30	×	PP/Baller	VOCs, Gx, Dx		3 VOAs	2 Ambers
	C2-MW-12B	0635	27.53	9000	Deeper	40-50	х	Bladder	VOCs, Gx, Dx		3 VOAs	2 Ambers

Definitions:

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Dx = diesel and heavy oil range organics

Gx = gasoline range organics

MTBE = methyl terl-butyl ether

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer QC = quality control samples
VOA = volatile organic analysis
VOC = volatile organic carbon

Sampling Schedule (18+ months): September 2017

March 2019

September 2020 March 2022

Sampling Notes:

FD ** = Fieldd duplicate - collect field duplicate on C2-MW-9. If not accessible, collect the field duplicate on C2-MW-11 or C2-MW-12B. Run duplicate for all analyses.

Drum purge water. Store drums under the 26th Ave Underpass until they are full enough for disposal. Trip Blank - VOCs only

Monitoring Well Sampling Field Log

Well Number: (1-MW-2)

Date: 9/8/20

Project Nam AECOM Pro	ne: Por	/ FV	P		Stick-up	o or Flush	Well Diameter (in)	Total Depth (ft btoc)	100	een Interval bgs or btoc)	
Sampling I	nformation				FLU	SH	Z	32.	17	-32	
Field Team:	TAUS	CHER	3.101		Monitoring	Information					şıX
Pump Type:	P-Pu	MP	ler/Loo	A FLOW		l DTW btoc)		ed Screen bgs or btoc)		ump Intake oth (ft btoc):	
Water Quali		-Model: H	ORIBA	W.	24.	17	ר' '	7	2	91	
		Serial Numb	per:		Sample Con		71 2004	T AN			T
Purge Wate	r Disposition:	00 3	ite tai	nk.	Number	Туре	Prese	rvative	Analytica	al Parameters	Filtered?
Comments					3	VOL	AL	Ĺ	VO	<u></u>	1
ファル	U= ZL	177					,,,				İ
		, , , ,									T
											T
								_			T
			DC								T
Well Purge	Data		Tries and		Jan San San			-45		APT-177	
Time	Volume	Purge Rate		Temp, (°C)	Conductivity			ORP	Turbidity	Clarity/Colo	r/
0959	Purged (L)	Constant	(feet btoc)	±0.1°C	(mS/cm) ± 0.01 (< 1) ± 0.02 (> 1)	(mg/L) ± 0.05 (< 1) ± 0.2 (> 1)	pH ± 0.1	(mV) ± 10 mv	(NTUs) Not Established	Remarks <= Ecology Stabiliza Criteria (3 reading	
1005	.5	200	25.11	17.58	216	0.99	6.20	-21	15.4	clear	
1010	1.5			17.54	2.14	0.05	6.11	-31	16.1	clear	
1015	2	100		17.48	-	0.0	6.04		18.Z	clea	
1020	2.5	100	25.06	17.75		0.0	5.98		21.4	clear	
1025	3.0	100		17.88		0.0	5.98		20.1	clear	
1030	3.5	100		17.92		0.0	5.99		19.8	clear	_
1035		100		17.93	2.14	0.0	5.99	-40	19.7	clea	
1040	SAME	LE									
		23					9				
			jė –								
Sampling In	formation		Designated for	or MS/MSD? (cir	rcle one) No	Yes	Collected QA	Sample? (circ	le one) No Du	plicate Rinsate Bla	ınk
1040	Start Filling C	Containers	Primary Sam	ple ID:	MW.	.4	QA Sample II	D:			
1042	Finish Filling	Containers	Primary Samp	ple Time	1040		QA Sample T	ime			

Monitoring Well Sampling Field Log

Well Number: <u>22-MW-3</u>
Date: <u>9/8/20</u>

Project Inform	nation				Well Const	ruction inform	nation			A 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
Project Name:	Pov	FVF	,		Stick-u	p or Flush	Well Diameter	Total Depth	Scr	reen Interval	
AECOM Projec	ct Number:				± =	9 01 1 10011	(in)	(ft btoc)	(ft l	bgs or btoc)	
Sampling Info	rmation				FLU	SH	2	16	6	-16	
Field Team:	TAU:	CHER			Monitoring	Information					Š.
Pump Type:	P-PU		12		Initia	l DTW	Saturate	d Screen	Pump Intake		
Purging & Sam	npling Metho	od: LÓW	FION/ D	BAILER		btoc)		bgs or btoc)		oth (ft btoc):	
Water Quality I	Meter:	Model: H			13.	01	3'		15		
		Serial Numb	er:		Sample Cor	ntainers					<u>چ</u>
Purge Water D	isposition:	sition: on sike tank Number Type Preserve		rvative	Analytica	l Parameters	Filtered?				
Comments					3	VOA	HC	L	G		
					Z	IL AMIS			D	×	
		3									
					-						
		-									
Well Purge Dat	ta								E XCRUS	M. V. A.	
	Volume Purged (L)	Purge Rate and Drawdown	(feet btoc)	Temp. (°C)	Conductivity (mS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks	7
1110	me Pump On	< 1 L/min / < 0.3 feet	13 CI	± 0.1 ° C	± 0.01 (< 1) ± 0.02 (> 1)	± 0.05 (< 1) ± 0.2 (> 1)	± 0.1	± 10 mv	Not Established	<= Ecology Stabilizat Criteria (3 readings	
1115	0.5	100	13.03	19.53	0.286	0.33	6.45	18	74.9	clear	
1120	1	100	13.04	19.68	0.256	0.0	6.24	44	51.9	clear	
1125	1.5	100	13.04				6.25	45	47.9	clear	
1130	2	100	13.05	19.15	0.249	0.0	6.26	46	42.6	clear	
1135	2.5	100	13.05	19.63	0.247	0.0	6.27	46	39.2	clear	
1140	3.0	100	13.04	19.99	0.245	0.0	6.29	46	37.8	clear	-
1145	3.5	100	13.04	20.40	0.244	0.0	6.31	45	23.1	clear	-
1150	4.0	100	1304	20.31	0.243	0.0	6.33	45	24.8	clear	
1155	SAM	PUE _									
)									
			-	7							
							i3				
Sampling Inform	mation		Designated fo	r MS/MSD? (cire	cle one) (No) Yes	Collected QA	Sample? (circ	le one) No Dui	plicate Rinsate Blan	k
1155 Sta	art Filling C	ontainers	Primary Samp	ele ID:	Z-MW		QA Sample ID			7 8	
	nish Filling (Primary Samp		155		QA Sample Ti				

Project Information

Monitoring Well Sampling Field Log

Well Number: CZ-MW-9
Date: 9/9/20

Project Nam	e: Po	V FU	1P		Stick-up	or Flush	Well Diameter	Total Depth	1	en Interval	
AECOM Pro	ject Number:	400000		MINUTED IN SEC			(in)	(ft btoc)		gs or btoc)	_
Sampling In	formation	10111			FL	USH	Z	35	20	-35	
Field Team:	TAUS	CHER			Monitoring I	nformation		TE .			N.
Pump Type:	P-PUV	UP BOX	el,			DTW otoc)		d Screen		mp Intake th (ft btoc):	
		TIV	up Lou	U PLOW			<u> </u>				_
Water Qualit	y Meter:	Model: Ho			25.8		25-	10	3	1,	_
		Serial Numb	-		Sample Con						Filtered?
Purge Water	Disposition:	UN 51	ite ta	nk.	Number	Туре		rvative		Parameters	Filte
Comments		-	74 25		3	VOA	H		VO	C, CTX	Ш
		12781			2	11 AUG	H	CL	Dy	(
Dupl	cate	collect	(ce)								Ц
3.0					3	VOA	HO	24	Voc.	Cix	Ц
					Z	1 L AME	HC	L	PX		
Well Purge I	Data	Bule El			No.		Li 1/1 fin				
T:	Volume	Purge Rate /	DTW	Temp.	Conductivity	D.O.		ORP	Turbidity	Clarity/Color	./
0858	:Time Pump On	Construction of the constr	(feet btoc)	(°C) 38 ± 0.1 °C	(mS/cm) ± 0.01 (< 1) ± 0.02 (> 1)	(mg/L) ± 0.05 (< 1) ± 0.2 (> 1)	pH ± 0.1	(mV) ± 10 mv	(NTUs) Not Established	Remarks <= Ecology Stabiliza Criteria (3 reading	
0900	_	220		20.70	0.842	,	6.63	-92	33.2	clear	\neg
0905	1	200	26.51	4 -	0.798	7.72	6.49	-100	22.9	clear	-
0910	2	200		18.46	0.773		6.43		56.3	clear	
	2.50	100	26.78			0.0	6.42		67.4	clear	_
0920	3	100		18.41	0.772		6.41	-107	35.6	clear	- 1
0925	3.5	100		18.42	0.772	0.47	641	-107	30.5	clear	
0930	H	100	26.76			0.46	6.41	-107	26.0	clear	
	4.5	100	71. 15	10 42	0 773	0.45	641		259	clear	
0940		100	76.15	18.43	0.774	A 45	6.41	-109	255	clear	
	SAM	D2 15.	20.17	10,15	01777	0.15	0.11			Cicor	
01.5	7/200	F20						+			
			-	_	-		_				
							X				
Sampling Inf	ormation		Designated for	or MS/MSD? (cir	cle one) No	Yes	Collected QA	Sample? (circ	le one) Na Du	olicate Rinsate Bla	nk
	Start Filling C	ontainers		ole ID: $\angle Z$ -			QA Sample II	-	-MW-		\neg
_	Finish Filling			ole Time	50		QA Sample T	<u> </u>	50		\exists

Well Construction Information

Monitoring Well Sampling Field Log

Well Number: 47 - MW - 10 (122)

Date: 9/9/2020

Project Information	Well Const	ruction Inform	ation			8
Project Name: POV FVP AECOM Project Number:	Stick-u	p or Flush	Well Diameter (in)	Total Depth (ft-btoc)	Screen Interval (ft bgs or btoc)	
Sampling Information	FU	15 H	2	35	20-33	
Field Team: TAUSCHER	Monitoring	Information				god
Pump Type: Blacker pump Purging & Sampling Method: Low Flow Bailer	—	al DTW btoc)		ed Screen bgs or btoc)	Pump Intake Depth (ft btoc):	
Nater Quality Meter: Model: HOR 1/3A	28.	55	6	5'	32.5'	
Serial Number:	Sample Co	ntainers				2
Purge Water Disposition: On Sile	Number	Ťỳpe	Prese	rvative	Analytical Parameters	Filterec
Comments	3	VOA	HC	L	GX	Ī
P-Pump not working - HzO too iow	72	ILAMB	HC	L	Dx	
Switched to Bladder pump for better results		- aj			l.	
7						
						_

Well Purge	Data									
Time	Volume Purged (L)	Purge Rate / Drawdown	DTW (feet btoc)	Temp. (°C)	Conductivity (mS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
0738	:Time Pump On	< 1 L/min / < 0.3 feet	18.55	± 0.1 °C	± 0.01 (< 1) ± 0.02 (> 1)	± 0.05 (< 1) ± 0.2 (> 1)	± 0.1	± 10 mv	Not Established	<= Ecology Stabilization Criteria (3 readings)
0757	1000	100	29.01	18.91	1.18	0.0	6.46	-55	47.2	cleas
0800	.5	180	29.16	18.97	1.17	0.0	6.47	-64	44.5	clear
0805		100	29.07	19.04	1.18	0.0	6.49	-94	27.4	clear
0810	1.5	100	29.06	19.00	1.18	0.0	6.49	-94	30.7	clear
0815	2.0	100	29.05	19.13	1.18	0.0	6.50	-96	29.7	clear
2800	25	100	29.05	19.26	1.18	0.0	6.50	-99	25.8	clear
0805	30	10.0	29.05	19.28	1.18	0.0	6.50	-99	2C. 8	clear
0830	3.5	100	29.05	19.33	1.18	0.0	6.50	-100	25.4	cker
0835	SAW	PLE								
					nst					
11 T		==					*(
Sampling Int	ormation		Designated for	r MS/MSD? (circ	cle one) No	Yes	Collected QA	Sample? (circ	le one) No Du	plicate Rinsate Blank
0835	Start Filling C	ontainers	Primary Samp	ole ID: LZ	- MW-10	(ez)	QA Sample II):		
0849	Finish Filling (Containers	Primary Samp		2835		QA Sample T	ime		
A oronyman:	bas≈ below ard	und audean	htoc=helow ton	-fi DT4/	=denth to water					

Project Information

Project Name:

Monitoring Well Sampling Field Log

FUP

Date

Screen Interval

AECOM Pr	oject Number:				Stick-u	p or Flush	Diameter (in)	(ft btoc)		reen Interval bgs or btoc)
Sampling I	nformation		10		FLL)SH	2	30	15	5-30
Field Team	TAU	SCHER			Monitoring			With Signi		
Pump Type	P-Pul				Initia	i DTW	Saturate	ed Screen	T Pr	ump Intake
		nod: Low	FLOW		(ft btoc) Interval (ft bgs or btoc) Depth (ft btoc):					
Water Qual		Model: Ho			Z5	.79	W	7	28	<u> </u>
		Serial Numb	oer:		Sample Cor					Note that the
Purge Wate	r Disposition:	on 5	ite ta	R	Number	Туре	Prese	rvative	Analytica	al Parameters
Comments			DEAL	Calvas 518	3	VOA	Н	4	V02	, Crx
	Vi				2	IL AM3	i -	CL	1	5
						1 - part (ps	1			
Well Purge					Offi					4
Time	Volume Purged (L)	Purge Rate / Drawdown	(feet btoc)	Temp, (⁰ C)	Conductivity (mS/cm)	D.O. (mg/L)	pН	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
1043	:Time Pump On	< 1 L/min / < 0.3 feet	25.79	± 0.1 ° C	± 0.01 (< 1) ± 0.02 (> 1)	± 0.05 (< 1) ± 0.2 (> 1)	± 0.1	± 10 mv	Not Established	<= Ecology Stabilization Criteria (3 readings)
1045		220	25.86	20.81	0.718	0.0	6.42	-117	0.0	clear
1050		200	25.85	21.90	0.762	0.0	6.45	-128	0.0	clear
055	Z	200	25.85	21.96	0.762	0.0	6.45	-129	12.2	Cleas
	2.5%	100	25.84	22.13	0.764	0.0	6.45	-130	13.0	Clear
1105	3	100	25.84	22.42	0.769	0.0	6.47	-132	14.0	clear
1110	3.5	100	25.85	22.13	0.769	0.0	6.49	-134	14.9	clear
1115	4	100		22.79	0.770	0.0	6.50	-134	15.5	clear
1120	4.5	100	25.86	22.87	0.770	0.0	6.50	-134	15.0	clear
1125	5	100	25.86	23.02	0.770	0.0	6.51	-135		clear
1130	SAM	PLE								
				-				-1*		
ampling Inf	ormation		Designated fo	or MS/MSD? (circ	cle one) (Vo	> Yes	Collected QA	Sample? (circ	le one) (No , Duj	plicate Rinsate Blank
1130	Start Filling C	ontainers	Primary Samp	ole ID: 67	- MW-	11(12)	QA Sample ID	:		
	Finish Filling	Containers	Primary Samp		1130	, , ,	QA Sample Ti	me	_	

Well Construction Information

Well

Total Depth

Acronymns: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Project Information

Monitoring Well Sampling Field Log

Well Number: CZ-MW-1213

Date: CZ-MW-1213

Project Nam	ie: Por	FV	P		Stick-ur	o or Flush	Well Diameter	Total Depth		een Interval
AECOM Pro	ject Number:				Ottok di	5	(in)	(ft-btoc)		ogs or btoc)
Sampling I	nformation				FLU	SH	Z	50	40	50
Field Team:	TAUS	CHER			Monitoring I	Information				
Pump Type:	1.5-4		FLOW / B	20.11:11		I DTW btoc)		ed Screen bgs or btoc)	1	imp Intake oth (ft btoc):
Water Quali		Model: Ho		BILEC	27.5	- 7	10	Y	43	1
Tator addin	.,	Serial Numb			Sample Con	Control of the Control	AV III SALI		Maller	1789 2 8 8
Purge Wate	r Disposition:	00 SI		1,	Number	Туре	Prese	rvative	Analytica	I Parameters
Comments		ONSI	ve tan	PANILONA	3	VOA	HCL		Crx /	VOC
	7				2	IL AMB			CXX	, ,
	-					I L MINIT	HC	, <u> </u>	L X	
				105						
Well Purge	Data				Selver Till E	y Trail			TWTH.	
Time	Volume Purged (L)	Purge Rate	DTW (feet btoc)	Temp. [®] (⁰ C)	Conductivity (mS/cm)	D.O. (mg/L)	рH	ORP (mV)	Turbidity (NTUs)	Clarity/Color/ Remarks
0635		< 1 L/min / < 0.3 feet	27.53	± 0.1 °C	± 0.01 (< 1) ± 0.02 (> 1)	± 0.05 (< 1) ± 0.2 (> 1)	± 0.1	± 10 mv	Not Established	<= Ecology Stabilization Criteria (3 readings)
0639	0.25	260	27.57		0.338	4.48	6.94	96	9.3	clear
0643	1.75	250	27.56		0.333		6.83	88	5.0	clear
0647	2.25	250	201.56		0.332	3.08	6.81	පිපි	7.1	clear
651	3.25	250	27.56		0.330		6.72	38	14.0	clear
0655	4.25	250	27.56	16.17	0.330	2.44	6.71	89	14.5	clear
0700	5.25	200	27.56	16.16	0:329		6.68	89	12.7	clear
0705	6.25	200	27.55			2.32	6.68	88	13.0	clear
0710		1		16.13				89	1Z.8	clear
	SAM									XI
		_								
				<			e e			
Sampling In	formation		Designated fo	or MS/MSD? (cir	cle one) No) Yes	Collected QA	Sample? (circ	le one) No Duj	plicate Rinsate Blank
0715	Start Filling C	containers	Primary Samp	ple ID: / 1	- mw ·	1213	QA Sample II	D:		
0727	Finish Filling	Containers	Primary Samp		0715		QA Sample T	ime		
-161					0113					

Well Construction Information

Appendix BLaboratory Report and Chain-of-Custody Form

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, September 24, 2020 Nicky Moody AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

RE: A0I0248 - POV FVP - 60519969

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0I0248, which was received by the laboratory on 9/9/2020 at 12:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

5.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

 AECOM
 Project:
 POV FVP

 111 SW Columbia St. Ste. 1500
 Project Number:
 60519969

Portland, OR 97201 Project Manager: Nicky Moody

A0I0248 - 09 24 20 1115

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C1-MW-4	A0I0248-01	Water	09/08/20 10:40	09/09/20 12:55
C2-MW-3	A0I0248-02	Water	09/08/20 11:55	09/09/20 12:55
C2-MW-9	A0I0248-03	Water	09/09/20 09:45	09/09/20 12:55
C2-MW-10(R2)	A0I0248-04	Water	09/09/20 08:35	09/09/20 12:55
C2-MW-11(R)	A0I0248-05	Water	09/09/20 11:30	09/09/20 12:55
C2-MW-12B	A0I0248-06	Water	09/09/20 07:15	09/09/20 12:55
C2-MW-9-D	A0I0248-07	Water	09/09/20 09:50	09/09/20 12:55
Trip Blank	A0I0248-08	Water	09/08/20 00:00	09/09/20 12:55

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 2 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oil	Hydrocar	bons by NWTPI	H-Dx			
	Sample	Detection	Reporting	***	P.11	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
C2-MW-3 (A0I0248-02)				Matrix: Wate	er	Batch:	0090432	
Diesel	ND	0.0935	0.187	mg/L	1	09/15/20 21:29	NWTPH-Dx	
Oil	ND	0.187	0.374	mg/L	1	09/15/20 21:29	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 85 %	Limits: 50-150 %	<i>I</i>	09/15/20 21:29	NWTPH-Dx	
C2-MW-9 (A010248-03)		Matrix: Water		Batch:	0090432			
Diesel	ND	0.0935	0.187	mg/L	1	09/15/20 21:49	NWTPH-Dx	
Oil	ND	0.187	0.374	mg/L	1	09/15/20 21:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 83 %	Limits: 50-150 %	5 1	09/15/20 21:49	NWTPH-Dx	
C2-MW-10(R2) (A0I0248-04)				Matrix: Wate	er	Batch:	0090432	
Diesel	0.328	0.0943	0.189	mg/L	1	09/15/20 22:09	NWTPH-Dx	F-11
Oil	ND	0.189	0.377	mg/L	1	09/15/20 22:09	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 87 %	Limits: 50-150 %	5 I	09/15/20 22:09	NWTPH-Dx	
C2-MW-11(R) (A0I0248-05)				Matrix: Wate	er	Batch:	0090432	
Diesel	0.112	0.0943	0.189	mg/L	1	09/15/20 22:30	NWTPH-Dx	J
Oil	ND	0.189	0.377	mg/L	1	09/15/20 22:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 81 %	Limits: 50-150 %	5 1	09/15/20 22:30	NWTPH-Dx	
C2-MW-12B (A0I0248-06)				Matrix: Wate	er	Batch:	0090432	
Diesel	ND	0.0943	0.189	mg/L	1	09/15/20 22:50	NWTPH-Dx	
Oil	ND	0.189	0.377	mg/L	1	09/15/20 22:50	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 81 %	Limits: 50-150 %	5 1	09/15/20 22:50	NWTPH-Dx	
C2-MW-9-D (A0I0248-07)				Matrix: Wate	er	Batch: 0090432		
Diesel	ND	0.0943	0.189	mg/L	1	09/15/20 23:10	NWTPH-Dx	
Oil	ND	0.189	0.377	mg/L	1	09/15/20 23:10	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 86 %	Limits: 50-150 %	<i>i I</i>	09/15/20 23:10	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 3 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
C2-MW-3 (A0I0248-02)				Matrix: Wate	ər	Batch:		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 17:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 101 %	Limits: 50-150 %	6 I	09/12/20 17:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 I	09/12/20 17:02	NWTPH-Gx (MS)	
C2-MW-9 (A0I0248-03)			Matrix: Water B			Batch	: 0090345	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 17:29	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 102 %	Limits: 50-150 %	6 I	09/12/20 17:29	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 I	09/12/20 17:29	NWTPH-Gx (MS)	
C2-MW-10(R2) (A0I0248-04)			Matrix: Water Batch: 0090345				0090345	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 17:56	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 101 %	Limits: 50-150 %	6 I	09/12/20 17:56	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 I	09/12/20 17:56	NWTPH-Gx (MS)	
C2-MW-11(R) (A0I0248-05)				Matrix: Wate	ər	Batch	: 0090345	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 18:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 103 %	Limits: 50-150 %	6 I	09/12/20 18:23	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	6 I	09/12/20 18:23	NWTPH-Gx (MS)	
C2-MW-12B (A0I0248-06)				Matrix: Wate	ər	Batch	: 0090345	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 18:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 100 %	Limits: 50-150 %	6 I	09/12/20 18:50	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	6 I	09/12/20 18:50	NWTPH-Gx (MS)	
C2-MW-9-D (A0I0248-07)				Matrix: Water Batch: 0090345			0090345	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	09/12/20 19:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	: 101 %	Limits: 50-150 %	6 I	09/12/20 19:17	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		-	108 %	50-150 %	6 I	09/12/20 19:17	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 4 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	<u>v</u>	olatile Organ	ic Compound	us by EPA 8.	עטט∠			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C1-MW-4 (A0I0248-01)				Matrix: Wa	ater	Batch:	0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 16:35	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 16:35	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 16:35	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 16:35	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 16:35	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1-Dichloroethane	0.330	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	J
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
cis-1,2-Dichloroethene	0.820	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 5 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
1-MW-4 (A0I0248-01)				Matrix: Wate	r	Batch:	0090345	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 16:35	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 16:35	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
4-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 16:35	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 16:35	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 16:35	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	09/12/20 16:35	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 16:35	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
inyl chloride	0.170	0.100	0.200	ug/L	1	09/12/20 16:35	EPA 8260D	J
n,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 16:35	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 16:35	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	5 1	09/12/20 16:35	EPA 8260D	
Toluene-d8 (Surr)		1.00010	101 %	80-120 %		09/12/20 16:35	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 6 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 8260	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C1-MW-4 (A0I0248-01)				Matrix: Water	r	Batch: 0090345		
Surrogate: 4-Bromofluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	09/12/20 16:35	EPA 8260D	
				Matrix: Water	<u>r</u>	Batch: (0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 17:29	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 17:29	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 17:29	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 17:29	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 17:29	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
cis-1,2-Dichloroethene	0.810	0.200	0.400	ug/L ug/L	1	09/12/20 17:29	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 7 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

		olatile Organi	ic Compound	ds by EPA 8.	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9 (A0I0248-03)				Matrix: Wa	ater	Batch:	0090345	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 17:29	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 17:29	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
4-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 17:29	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 17:29	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 17:29	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	09/12/20 17:29	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
Vinyl chloride	0.400	0.100	0.200	ug/L	1	09/12/20 17:29	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 17:29	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 17:29	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 8 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9 (A0I0248-03)				Matrix: Wate	r	Batch:	0090345	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80-120 %	1	09/12/20 17:29	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/12/20 17:29	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/12/20 17:29	EPA 8260D	
C2-MW-11(R) (A0I0248-05)				Matrix: Wate	r	Batch:	0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 18:23	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 18:23	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 18:23	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 18:23	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 18:23	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 9 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-11(R) (A0I0248-05)				Matrix: Wa	ater	Batch:	0090345	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 18:23	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 18:23	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
4-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 18:23	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 18:23	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 18:23	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	09/12/20 18:23	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
Vinyl chloride	0.610	0.100	0.200	ug/L	1	09/12/20 18:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 10 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-11(R) (A0I0248-05)				Matrix: Wate	er	Batch:	0090345	
m,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 18:23	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 18:23	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	09/12/20 18:23	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %		09/12/20 18:23	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/12/20 18:23	EPA 8260D	
C2-MW-12B (A0I0248-06)				Matrix: Wate	er	Batch:	0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 18:50	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 18:50	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 18:50	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 18:50	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 18:50	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 11 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-12B (A0I0248-06)				Matrix: Wa	ater	Batch:	0090345	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 18:50	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 18:50	EPA 8260D	
Sopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 18:50	EPA 8260D	
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 18:50	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 18:50	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 18:50	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 18:50	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Frichloroethene (TCE)	0.250	0.200	0.400	ug/L	1	09/12/20 18:50	EPA 8260D	J
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 18:50	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 12 of 35

ORELAP ID: OR100062

Report ID:

A0I0248 - 09 24 20 1115

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project Number: Project Manager: Nicky Moody

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-12B (A0I0248-06)				Matrix: Wate	r	Batch:	0090345	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
Vinyl chloride	ND	0.100	0.200	ug/L	1	09/12/20 18:50	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 18:50	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 18:50	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 107 %	Limits: 80-120 %	1	09/12/20 18:50	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	I	09/12/20 18:50	EPA 8260D	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	09/12/20 18:50	EPA 8260D	
C2-MW-9-D (A0I0248-07)				Matrix: Wate	r	Batch:	0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 19:17	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 19:17	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 19:17	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 19:17	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 19:17	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 13 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9-D (A0I0248-07)				Matrix: Wa	ater	Batch: 0090345		
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
cis-1,2-Dichloroethene	0.760	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 19:17	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 19:17	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 19:17	EPA 8260D	
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 19:17	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 19:17	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
Coluene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 19:17	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 19:17	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Γrichloroethene (TCE)	ND	0.200	0.400	ug/L	1	09/12/20 19:17	EPA 8260D	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 19:17	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 14 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
C2-MW-9-D (A0I0248-07)				Matrix: Wate	r	Batch: (0090345	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
Vinyl chloride	0.320	0.100	0.200	ug/L	1	09/12/20 19:17	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 19:17	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 19:17	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	106 %	Limits: 80-120 %	1	09/12/20 19:17	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/12/20 19:17	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/12/20 19:17	EPA 8260D	
Trip Blank (A0I0248-08)				Matrix: Wate	er	Batch: (0090345	
Acetone	ND	10.0	20.0	ug/L	1	09/12/20 16:08	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	09/12/20 16:08	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	09/12/20 16:08	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	09/12/20 16:08	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	09/12/20 16:08	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 15 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compound	ds by EPA 8.	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank (A0I0248-08)				Matrix: Wa	ater	Batch:	0090345	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	09/12/20 16:08	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	09/12/20 16:08	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
4-Isopropyltoluene	ND	1.00	2.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	09/12/20 16:08	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	09/12/20 16:08	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	09/12/20 16:08	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 16 of 35

Portland, OR 97201

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A0I0248-08)				Matrix: Wate	er	Batch:	0090345	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	09/12/20 16:08	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
Vinyl chloride	ND	0.100	0.200	ug/L	1	09/12/20 16:08	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	09/12/20 16:08	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	09/12/20 16:08	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	09/12/20 16:08	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	09/12/20 16:08	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/12/20 16:08	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 17 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	or Oil Hyd	rocarbon	s by NW1	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090432 - EPA 3510C (Fuels/Acid	Ext.)					Wat	er				
Blank (0090432-BLK1)			Prepared	1: 09/15/20	12:46 Ana	lyzed: 09/15	/20 20:28					
NWTPH-Dx												
Diesel	ND	0.0909	0.182	mg/L	1							
Oil	ND	0.182	0.364	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (0090432-BS1)			Prepared	1: 09/15/20	12:46 Ana	yzed: 09/15	/20 20:48					
NWTPH-Dx												
Diesel	1.01	0.100	0.200	mg/L	1	1.25		81	59-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS Dup (0090432-BSD1)			Prepared	1: 09/15/20	12:46 Ana	lyzed: 09/15	/20 21:08					Q-1
NWTPH-Dx												
Diesel	1.09	0.100	0.200	mg/L	1	1.25		87	59-115%	7	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50	-150 %	Dilı	ution: 1x					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 18 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969
Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	ydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	y NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
Blank (0090345-BLK1)			Prepared	d: 09/12/20	08:00 Ana	lyzed: 09/12	/20 10:11					
NWTPH-Gx (MS) Gasoline Range Organics	ND	0.0500	0.100	mg/L	. 1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 98 % 106 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
LCS (0090345-BS2)			Prepared	1: 09/12/20	08:00 Ana	lyzed: 09/12	/20 09:44					
NWTPH-Gx (MS) Gasoline Range Organics	0.535	0.0500	0.100	mg/L	. 1	0.500		107	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 98 % 96 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
Duplicate (0090345-DUP1)			Prepared	1: 09/12/20	10:10 Ana	lyzed: 09/12	/20 19:44					
QC Source Sample: C2-MW-9-D	(A0I0248-07	<u>n</u>										
NWTPH-Gx (MS) Gasoline Range Organics	ND	0.0500	0.100	mg/L	, 1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	ery: 100 % 107 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: Ix					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 19 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 0090345 - EPA 5030B Water Blank (0090345-BLK1) Prepared: 09/12/20 08:00 Analyzed: 09/12/20 10:11 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 1.00 2.00 ug/L 1 Acrylonitrile Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND ug/L Bromodichloromethane 0.500 1.00 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 ug/L 1 sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 ug/L Chloromethane 1 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 0.250 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Quanto la famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 20 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
Blank (0090345-BLK1)			Prepared	: 09/12/20	08:00 Anal	yzed: 09/12	/20 10:11					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	1.00	2.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.100	0.200	ug/L	1							
n,p-Xylene	ND	0.500	1.00	ug/L ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							
Surr: 1.4-Diffuorobenzene (Surr)	1,10	Recov		Limits: 80			ution: lx					

Surr: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 21 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969

Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
Blank (0090345-BLK1)			Prepared	: 09/12/20	08:00 Ana	yzed: 09/12	/20 10:11					
Surr: Toluene-d8 (Surr)		Recor	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"					
LCS (0090345-BS1)			Prepared	: 09/12/20	08:00 Ana	yzed: 09/12	/20 09:17					
EPA 8260D												
Acetone	35.4	10.0	20.0	ug/L	1	40.0		88	80-120%			
Acrylonitrile	19.0	1.00	2.00	ug/L	1	20.0		95	80-120%			
Benzene	21.0	0.100	0.200	ug/L	1	20.0		105	80-120%			
Bromobenzene	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Bromochloromethane	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
Bromodichloromethane	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromoform	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
Bromomethane	21.6	5.00	5.00	ug/L	1	20.0		108	80-120%			
-Butanone (MEK)	38.5	5.00	10.0	ug/L	1	40.0		96	80-120%			
-Butylbenzene	20.7	0.500	1.00	ug/L	1	20.0		103	80-120%			
ec-Butylbenzene	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
ert-Butylbenzene	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
Carbon disulfide	21.3	5.00	10.0	ug/L	1	20.0		107	80-120%			
Carbon tetrachloride	23.2	0.500	1.00	ug/L	1	20.0		116	80-120%			
Chlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
Chloroethane	18.1	5.00	5.00	ug/L	1	20.0		90	80-120%			
Chloroform	20.3	0.500	1.00	ug/L	1	20.0		101	80-120%			
Chloromethane	19.0	2.50	5.00	ug/L	1	20.0		95	80-120%			
-Chlorotoluene	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
-Chlorotoluene	22.2	0.500	1.00	ug/L	1	20.0		111	80-120%			
Dibromochloromethane	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
,2-Dibromo-3-chloropropane	18.8	2.50	5.00	ug/L	1	20.0		94	80-120%			
,2-Dibromoethane (EDB)	21.6	0.250	0.500	ug/L	1	20.0		108	80-120%			
Dibromomethane	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
,2-Dichlorobenzene	22.1	0.250	0.500	ug/L	1	20.0			80-120%			
,3-Dichlorobenzene	21.7	0.250	0.500	ug/L	1	20.0			80-120%			
,4-Dichlorobenzene	20.3	0.250	0.500	ug/L	1	20.0			80-120%			
Dichlorodifluoromethane	21.8	0.500	1.00	ug/L	1	20.0			80-120%			
,1-Dichloroethane	19.8	0.200	0.400	ug/L	1	20.0			80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 22 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
LCS (0090345-BS1)			Prepared	: 09/12/20	08:00 Anal	yzed: 09/12	/20 09:17					_
1,2-Dichloroethane (EDC)	20.5	0.200	0.400	ug/L	1	20.0		102	80-120%			
1,1-Dichloroethene	20.9	0.200	0.400	ug/L	1	20.0		105	80-120%			
cis-1,2-Dichloroethene	21.6	0.200	0.400	ug/L	1	20.0		108	80-120%			
trans-1,2-Dichloroethene	20.5	0.200	0.400	ug/L	1	20.0		102	80-120%			
1,2-Dichloropropane	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
1,3-Dichloropropane	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
2,2-Dichloropropane	28.6	0.500	1.00	ug/L	1	20.0		143	80-120%			Q-56
1,1-Dichloropropene	22.9	0.500	1.00	ug/L	1	20.0		114	80-120%			
cis-1,3-Dichloropropene	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
trans-1,3-Dichloropropene	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
Ethylbenzene	22.7	0.250	0.500	ug/L	1	20.0		114	80-120%			
Hexachlorobutadiene	24.4	2.50	5.00	ug/L	1	20.0		122	80-120%			Q-56
2-Hexanone	37.5	5.00	10.0	ug/L	1	40.0		94	80-120%			
Isopropylbenzene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
4-Isopropyltoluene	20.2	1.00	2.00	ug/L	1	20.0		101	80-120%			
Methylene chloride	20.6	5.00	10.0	ug/L	1	20.0		103	80-120%			
4-Methyl-2-pentanone (MiBK)	39.9	5.00	10.0	ug/L	1	40.0		100	80-120%			
Methyl tert-butyl ether (MTBE)	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
Naphthalene	16.4	2.00	4.00	ug/L	1	20.0		82	80-120%			
n-Propylbenzene	21.2	0.250	0.500	ug/L	1	20.0		106	80-120%			
Styrene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,1,1,2-Tetrachloroethane	22.6	0.200	0.400	ug/L	1	20.0		113	80-120%			
1,1,2,2-Tetrachloroethane	20.9	0.250	0.500	ug/L	1	20.0		105	80-120%			
Tetrachloroethene (PCE)	21.4	0.200	0.400	ug/L	1	20.0		107	80-120%			
Toluene	20.5	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,2,3-Trichlorobenzene	19.6	1.00	2.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trichlorobenzene	18.8	1.00	2.00	ug/L	1	20.0		94	80-120%			
1.1.1-Trichloroethane	22.5	0.200	0.400	ug/L	1	20.0		113	80-120%			
1,1,2-Trichloroethane	20.7	0.250	0.500	ug/L	1	20.0		104	80-120%			
Trichloroethene (TCE)	19.9	0.200	0.400	ug/L	1	20.0		100	80-120%			
Trichlorofluoromethane	22.3	1.00	2.00	ug/L	1	20.0		111	80-120%			
1,2,3-Trichloropropane	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,2,4-Trimethylbenzene	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
1,3,5-Trimethylbenzene	23.3	0.500	1.00	ug/L	1	20.0		116	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 23 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
LCS (0090345-BS1)			Prepared	l: 09/12/20	08:00 Anal	yzed: 09/12	/20 09:17					
Vinyl chloride	19.6	0.100	0.200	ug/L	1	20.0		98	80-120%			
n,p-Xylene	41.8	0.500	1.00	ug/L	1	40.0		104	80-120%			
o-Xylene	20.1	0.250	0.500	ug/L	1	20.0		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Duplicate (0090345-DUP1)			Prepared	l: 09/12/20	10:10 Anal	lyzed: 09/12	/20 19:44					
OC Source Sample: C2-MW-9-D	(A010248-07	7)										
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 24 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 0090345 - EPA 5030B Water **Duplicate (0090345-DUP1)** Prepared: 09/12/20 10:10 Analyzed: 09/12/20 19:44 QC Source Sample: C2-MW-9-D (A0I0248-07) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% 30% ND 0.250 0.500 1,3-Dichlorobenzene ug/L 1 ND 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% ---1,2-Dichloroethane (EDC) ND 0.200 0.400 ND 30% ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 0.200 0.400 0.760 0 30% cis-1,2-Dichloroethene 0.760 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 2,2-Dichloropropane ug/L 1 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% cis-1,3-Dichloropropene ug/L 1 0.500 trans-1,3-Dichloropropene ND 1.00 ug/L 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% 2-Hexanone ND 5.00 10.0 ND 30% 1 ug/L ND ND 30% Isopropylbenzene 0.500 1.00 ug/L 1 ND 1.00 2.00 4-Isopropyltoluene ND 30% ug/L 1 ND 5.00 ND 30% Methylene chloride 10.0 ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND 4.00 ND 30% 2.00 ug/L 1 ND 0.250 0.500 ND 30% n-Propylbenzene ug/L 1 ND 30% 0.500 1.00 1 ND Styrene ug/L 1,1,1,2-Tetrachloroethane ND 0.200 0.400 1 ND 30% ug/L ND ND 30% 1,1,2,2-Tetrachloroethane 0.250 0.500 ug/L 1 ---Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 1 ND 30% ug/L ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 1.00 2.00 ND 30% 1,2,4-Trichlorobenzene 1 ug/L

Apex Laboratories

Quant to famil

1,1,1-Trichloroethane

ND

0.200

0.400

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Darrell Auvil, Project Manager

Page 25 of 35

1

ug/L

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090345 - EPA 5030B							Wat	er				
Duplicate (0090345-DUP1)			Prepared	: 09/12/20	10:10 Ana	lyzed: 09/12/	/20 19:44					
QC Source Sample: C2-MW-9-D	(A010248-07	J.										
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	0.360	0.100	0.200	ug/L	1		0.320			12	30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 107 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
QC Source Sample: Non-SDG (A0	010220-01)											
EPA 8260D												
Acetone	49.5	10.0	20.0	ug/L	1	40.0	ND		39-160%			
Acrylonitrile	19.5	1.00	2.00	ug/L	1	20.0	ND		63-135%			
Benzene	20.9	0.100	0.200	ug/L	1	20.0	ND		79-120%			
Bromobenzene	19.6	0.250	0.500	ug/L	1	20.0	ND	98	80-120%			
Bromochloromethane	20.1	0.500	1.00	ug/L	1	20.0	ND		78-123%			
Bromodichloromethane	21.5	0.500	1.00	ug/L	1	20.0	ND		79-125%			
Bromoform	18.9	0.500	1.00	ug/L	1	20.0	ND		66-130%			
Bromomethane	22.2	5.00	5.00	ug/L	1	20.0	ND		53-141%			
2-Butanone (MEK)	42.3	5.00	10.0	ug/L	1	40.0	ND		56-143%			
n-Butylbenzene	20.6	0.500	1.00	ug/L	1	20.0	ND		75-128%			
sec-Butylbenzene	21.1	0.500	1.00	ug/L	1	20.0	ND		77-126%			
ert-Butylbenzene	22.5	0.500	1.00	ug/L	1	20.0	ND		78-124%			
Carbon disulfide	21.7	5.00	10.0	ug/L	1	20.0	ND	108	64-133%			
Carbon tetrachloride	23.6	0.500	1.00	ug/L	1	20.0	ND		72-136%			
Chlorobenzene	20.0	0.250	0.500	ug/L	1	20.0	ND	100	80-120%			
Chloroethane	18.4	5.00	5.00	ug/L	1	20.0	ND	92	60-138%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 26 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201

Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 0090345 - EPA 5030B Water Matrix Spike (0090345-MS1) Prepared: 09/12/20 10:10 Analyzed: 09/12/20 14:46 QC Source Sample: Non-SDG (A0I0220-01) Chloromethane 19.2 2.50 5.00 ug/L 1 20.0 ND 96 50-139% 21.3 0.500 1.00 20.0 ND 79-122% 2-Chlorotoluene ug/L 1 107 4-Chlorotoluene 22.2 0.500 1.00 ug/L 1 20.0 ND 111 78-122% Dibromochloromethane 20.7 0.500 1.00 ug/L 1 20.0 ND 104 74-126% 1,2-Dibromo-3-chloropropane 18.3 2.50 5.00 ug/L 1 20.0 ND 92 62-128% 20.0 108 1,2-Dibromoethane (EDB) 21.6 0.250 0.500 ND 77-121% ug/L 1 Dibromomethane 21.2 0.500 1.00 ug/L 1 20.0 ND 106 79-123% 1,2-Dichlorobenzene 21.6 0.500 20.0 ND 108 80-120% 0.250 ug/L 1 20.0 1,3-Dichlorobenzene 21.4 0.250 0.500 ug/L 1 ND 107 80-120% 1,4-Dichlorobenzene 20.0 0.250 0.500 ug/L 1 20.0 ND 100 79-120% Dichlorodifluoromethane 22.7 0.500 1.00 ug/L 1 20.0 ND 114 32-152% 0.400 20.0 99 1,1-Dichloroethane 19.7 0.200 ND 77-125% ug/L 1 20.0 ND 102 73-128% 1,2-Dichloroethane (EDC) 20.3 0.200 0.400 ug/L 1 20.0 ND 1,1-Dichloroethene 21.5 0.200 0.400 1 108 71-131% ug/L 0.200 0.400 cis-1,2-Dichloroethene 21.8 ug/L 1 20.0 ND 109 78-123% trans-1,2-Dichloroethene 20.8 0.200 0.400 ug/L 1 20.0 ND 104 75-124% 1,2-Dichloropropane 19.4 0.250 0.500 ug/L 1 20.0 ND 97 78-122% 20.9 0.500 1.00 20.0 ND 104 80-120% 1,3-Dichloropropane ug/L 1 20.0 ND 60-139% Q-54a 2,2-Dichloropropane 26.2 0.500 1.00 ug/L 1 131 0.500 1.00 20.0 ND 1,1-Dichloropropene 23.4 117 79-125% ug/L 1 0.500 1 20.0 ND 87 75-124% cis-1,3-Dichloropropene 17.4 1.00 ug/L trans-1,3-Dichloropropene 19.7 0.500 1.00 ug/L 1 20.0 ND 99 73-127% ---Ethylbenzene 22.4 0.250 0.500 ug/L 1 20.0 ND 112 79-121% Hexachlorobutadiene 23.8 5.00 20.0 ND 119 66-134% Q-54 2.50 ug/L 1 ---39.7 5.00 10.0 40.0 ND 99 57-139% 2-Hexanone ug/L 1 20.6 0.500 20.0 ND 103 72-131% 1.00 1 Isopropylbenzene ug/L 4-Isopropyltoluene 20.2 1.00 2.00 20.0 ND 101 77-127% ug/L 1 20.0 ND 98 74-124% Methylene chloride 19.6 5.00 10.0 ug/L 1 4-Methyl-2-pentanone (MiBK) 41.1 5.00 10.0 ug/L 1 40.0 ND 103 67-130% Methyl tert-butyl ether (MTBE) 21.0 0.500 1.00 1 20.0 ND 105 71-124% ug/L Naphthalene 16.9 2.00 4.00 ug/L 1 20.0 ND 84 61-128% 0.250 0.500 20.0 ND 107 76-126% n-Propylbenzene 21.4 1 ug/L Styrene 20.5 0.500 1.00 ug/L 1 20.0 ND 102 78-123%

Apex Laboratories

Quant to famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 27 of 35

Portland, OR 97201

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969

Report ID: A0I0248 - 09 24 20 1115

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Nicky Moody

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 0090345 - EPA 5030B Water Matrix Spike (0090345-MS1) Prepared: 09/12/20 10:10 Analyzed: 09/12/20 14:46 QC Source Sample: Non-SDG (A0I0220-01) 20.0 1,1,1,2-Tetrachloroethane 22.4 0.200 0.400 ug/L 1 ND 112 78-124% 21.0 0.250 0.500 20.0 ND 1,1,2,2-Tetrachloroethane ug/L 1 105 71-121% ug/L 20.0 74-129% Tetrachloroethene (PCE) 20.8 0.200 0.400 1 ND 104 Toluene 20.5 0.500 1.00 ug/L 1 20.0 ND 103 80-121% 1,2,3-Trichlorobenzene 19.8 1.00 2.00 ug/L 1 20.0 ND 99 69-129% 20.0 93 1,2,4-Trichlorobenzene 18.7 1.00 2.00 ND 69-130% ug/L 1 0.400 20.0 74-131% 1,1,1-Trichloroethane 22.6 0.200 ug/L 1 ND 113 1,1,2-Trichloroethane 20.2 0.250 0.500 20.0 ND 101 80-120% ug/L 1 19.8 20.0 99 79-123% Trichloroethene (TCE) 0.200 0.400 ug/L 1 ND Trichlorofluoromethane 22.7 1.00 2.00 ug/L 1 20.0 ND 114 65-141% 1,2,3-Trichloropropane 19.5 0.500 1.00 ug/L 1 20.0 ND 98 73-122% 20.0 1,2,4-Trimethylbenzene 21.0 0.500 1.00 ND 105 76-124% ug/L 1 1,3,5-Trimethylbenzene 0.500 20.0 ND 75-124% 23.1 1.00 ug/L 1 116 20.0 ND Vinyl chloride 20.6 0.100 0.200 103 58-137% ug/L 1 42.3 0.500 1.00 40.0 80-121% m,p-Xylene ug/L 1 ND 106 o-Xylene 20.0 0.250 0.500 ug/L 1 20.0 ND 100 78-122% ---Surr: 1,4-Difluorobenzene (Surr) 97% Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 80-120 % 98 % 4-Bromofluorobenzene (Surr) 96% 80-120 %

Apex Laboratories

Dund to finil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 28 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500 Portland, OR 97201 Project: POV FVP
Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

SAMPLE PREPARATION INFORMATION

		Diesel an	ıd/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3510C (Fu	uels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090432							
A0I0248-02	Water	NWTPH-Dx	09/08/20 11:55	09/15/20 12:46	1070mL/5mL	1000mL/5mL	0.94
A0I0248-03	Water	NWTPH-Dx	09/09/20 09:45	09/15/20 12:46	1070mL/5mL	1000mL/5mL	0.94
A0I0248-04	Water	NWTPH-Dx	09/09/20 08:35	09/15/20 12:46	1060mL/5mL	1000mL/5mL	0.94
A0I0248-05	Water	NWTPH-Dx	09/09/20 11:30	09/15/20 12:46	1060mL/5mL	1000mL/5mL	0.94
A0I0248-06	Water	NWTPH-Dx	09/09/20 07:15	09/15/20 12:46	1060mL/5mL	1000mL/5mL	0.94
A0I0248-07	Water	NWTPH-Dx	09/09/20 09:50	09/15/20 12:46	1060mL/5mL	1000mL/5mL	0.94

Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Water	NWTPH-Gx (MS)	09/08/20 11:55	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	09/09/20 09:45	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	09/09/20 08:35	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	09/09/20 11:30	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	09/09/20 07:15	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	09/09/20 09:50	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
	Matrix Water Water Water Water Water	Matrix Method Water NWTPH-Gx (MS)	Matrix Method Sampled Water NWTPH-Gx (MS) 09/08/20 11:55 Water NWTPH-Gx (MS) 09/09/20 09:45 Water NWTPH-Gx (MS) 09/09/20 08:35 Water NWTPH-Gx (MS) 09/09/20 11:30 Water NWTPH-Gx (MS) 09/09/20 07:15	Matrix Method Sampled Prepared Water NWTPH-Gx (MS) 09/08/20 11:55 09/12/20 10:10 Water NWTPH-Gx (MS) 09/09/20 09:45 09/12/20 10:10 Water NWTPH-Gx (MS) 09/09/20 08:35 09/12/20 10:10 Water NWTPH-Gx (MS) 09/09/20 11:30 09/12/20 10:10 Water NWTPH-Gx (MS) 09/09/20 07:15 09/12/20 10:10	Matrix Method Sampled Prepared Initial/Final Water NWTPH-Gx (MS) 09/08/20 11:55 09/12/20 10:10 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 09:45 09/12/20 10:10 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 08:35 09/12/20 10:10 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 11:30 09/12/20 10:10 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 07:15 09/12/20 10:10 5mL/5mL	Matrix Method Sampled Prepared Sample Initial/Final Default Initial/Final Water NWTPH-Gx (MS) 09/08/20 11:55 09/12/20 10:10 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 09:45 09/12/20 10:10 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 08:35 09/12/20 10:10 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 11:30 09/12/20 10:10 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 09/09/20 07:15 09/12/20 10:10 5mL/5mL 5mL/5mL

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090345							
A0I0248-01	Water	EPA 8260D	09/08/20 10:40	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
A0I0248-03	Water	EPA 8260D	09/09/20 09:45	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
A0I0248-05	Water	EPA 8260D	09/09/20 11:30	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
A0I0248-06	Water	EPA 8260D	09/09/20 07:15	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
A0I0248-07	Water	EPA 8260D	09/09/20 09:50	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00
A0I0248-08	Water	EPA 8260D	09/08/20 00:00	09/12/20 10:10	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Quand by buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 29 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM POV FVP Project: 111 SW Columbia St. Ste. 1500 Project Number: 60519969 Portland, OR 97201

Report ID: A010248 - 09 24 20 1115

QUALIFIER DEFINITIONS

Project Manager: Nicky Moody

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- O-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The O-54 results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +23%. The results are reported as Estimated Values.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

Dural la famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 30 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969
Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

	т 1	1		•
Apex	า ล	nors	itori	les.
LIDUA	Lu	oor	ttOI.	

Drumbly by family

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 31 of 35

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969
Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

mund by famil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV FVP
111 SW Columbia St. Ste. 1500 Project Number: 60519969
Portland, OR 97201 Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

mund by famil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 33 of 35

ORELAP ID: OR100062

AECOM 111 SW Columbia St. Ste. 1500

Portland, OR 97201

Project: Project Number: 60519969
Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

AL AL A	-					1	-	ļ		10		1					١.			,	
Company, AC-CO 1-1	-	Paper Myr: NYC KY) 	_	70007	칽	Ē	·	ame	5		7	Ş	3	$\langle $	3	Project	ON VENCOUNT FURTHERS 1: 605 19969	25.0	2_	
Address: 11 500 Colorabia	+	ار ال	300		Phone 503 222 72.00	77	72	13	Lumi	٥	밁	ŏ	2	Emili nicky, moody @ accom	7410	1018to	. 1				
Sampled by: M. TAUXHEK	N											11/2	3	LSJIIO AN COMPANY							
Site Location:										H.	١,	ļ	<u>L</u> .		.n		-			L	
્ટ ઉ				ext			s)	-	18iJ	, , ,	rt on				Cd, C Hg, 1	TC:LP					
AK ID			4 NIV.					soca					8) sis:		44 Boc. (411 gill) (48 di		(८) श्रा				
SAMPLED	# GLEAL	яwu	XBITAN	VOR COM	1-H4TWV)-Hd.LAN	9790 KUD 9790 R.LEX	otall 0528	OA 0978	IATIS OFS	imeS 072) 8082 PCBs	1803 1808	SCRA Me	M gitaota9	0, 28, 48, 7 (u.) (o.) ((u.) (o.) ((u.) (o.) (u.) (u.) (u.)	AN ANTO	LCLF Met				ovido:
C1-MW-4	5	1			7		-	5	1	1	~		τ	1	N D		r,	‡	 		
62. MW.3	200	Aleka NSS W		, Lv	×	×	H			+	+-	-	i .						+		
62-AW-9	9 2	2 545 SHA	3	10	×	*	-		×			1					\dagger	1	-		T
42-MW-10(RZ)	e. G.	9 8 2 0835 W	3	1	/ /	/ ×	+		†	+	-		1				+-		+		
62. MW-11(R)	9 42	9 H20 1130 W	3	10	×	<u>y</u>	ļ		7	ļ-	-	Ĭ					·	-			+
LZ-MW-1213	<u>ठ</u>	appoore W		1.	×	×		ļ	×		-	-	<u> </u>		3		.L [-		-
0-6-MM-27	8	alglacesow.	3 1	10	ネス	\checkmark			×	,						Ţ.,			-	<u> </u>	
		*-								<u> </u>		_					<u> </u>		_	<u> </u>	\vdash
TRIF BLANK	ı	١	3						X						Ĺi						-
3				_						Į	-,										_
Nerma. Tu	Nurma, Tum Around True (TA1) = 10 Business Days	ae (IAI)-	10 Busin	SS Days			1	T	2 2	SPECIAL INSTRUCTIONS	STR	CIIO	2								
TAT Requested (cleads)	l Day	2 Day	3 Day	λ, Y																	
	4 DAY	5 DAY		Other: Siendor	3	100	J.														
	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 30 (SYA																		
RALLANQUISHED BY:	Eme.	Superfore:	13 Q			異			RELINQUISHED BY: Signature	KOUISE *	a a	ت ا			:ae:r	1	RECEIVED BY:	CD BY:		Darc.	
.	117 [202		X		Ì	क्षामाज	3			İ											
MACK TAUSIE	Time: 1255	<u>r</u>	AMISSA CECA	3		1755 1255	15		Printed Name	Name					Ė	Sam	Pinted Name	9		10.6	
Compairs AZCOW		Cempany	And X labor	- 4		ļ			Company	: <u>8</u> ,				İ			Company			l i	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 34 of 35

ORELAP ID: OR100062

AECOM

Project:

POV FVP

111 SW Columbia St. Ste. 1500

Project Number: 60519969

Portland, OR 97201

Project Manager: Nicky Moody

Report ID: A0I0248 - 09 24 20 1115

Client: _AECC	лм	Element WO#: A0_TO 248
Project/Project #:	Port of Vancouver F	WP #60519969
Delivery Info:		
Date/time received	9970 @ 1255 By:	AVK-
		UPS Swift Senvoy SDS Other
Cooler Inspection	Date/time inspected: 9/9/20	@ 13-00 By: AKK-
Chain of Custody in	ncluded? Yes 🔀 No	Custody seals? Yes No X
Signed/dated by cli	ient? Ycs <u>×</u> No	
Signed/dated by Ap	pex? Yes 🔀 No	
	Cooler #1 Cooler #2 Coc	oler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.4	
Received on ice? (Y		
Temp. blanks? (Y/N	<u> </u>	
lce.type:.(Gel/Real/	Other) Gel & Real	
Condition:	Good	
If some coolers are	? (Y/N) Possible reason why:	als amplied to out of temperature samples? Vec No. 6
If some coolers are Out of temperature : Samples Inspection	in temp and some out, were green do	ds applied to out of temperature samples? Yes/No/N.
If some coolers are Out of temperature. Samples Inspection All samples intact?	in temp and some out, were green do samples form initiated? Yes/No/NA n: Date/time inspected: 419/20 Yes No Comments:	ds applied to out of temperature samples? Yes/No/N.
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 919100 Yes No Comments: agree? Yes No Comments	s: TB # 2400
If some coolers are Out of temperature: Samples Inspection All samples intact? Bottle labels/COCs COC/container disc	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/w Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No	s: TB # 2400
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs COC/container disc. Containers/volumes	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/w Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No	Sis applied to out of temperature samples? Yes/No/N. @ 16-30 By: FKK- s: TB # 2400 No Y Yes Y No Comments:
If some coolers are Out of temperature: Samples Inspection All samples intact? Bottle labels/COCs COC/container discr Containers/volumes Do VOA vials have Comments	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/20 Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No received appropriate for analysis? Yes visible headspace? Yes No Yes No Yes	s: TB # 2400 No Y No Manual Comments:
If some coolers are Out of temperature: Samples Inspection All samples intact? Bottle labels/COCs COC/container discr Containers/volumes Do VOA vials have Comments	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9990 Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No received appropriate for analysis? Yes	s: TB # 2400 No Y No Manual Comments:
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs COC/container disc. Containers/volumes Do VOA vials have Comments Water samples: pH of	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/20 Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No received appropriate for analysis? Yes visible headspace? Yes No Yes No Yes	Sis applied to out of temperature samples? Yes/No/No. By: FRE S: TB # 2400 No Y Yes Y No Comments: L NA ppropriate? Yes No NA
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs COC/container disc. Containers/volumes Do VOA vials have Comments Water samples: pH of	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/20 Yes Y No Comments: agree? Yes No Comments repancies form initiated? Yes No received appropriate for analysis? Yes visible headspace? Yes No Yes checked: Yes No NA PH ap	Sis applied to out of temperature samples? Yes/No/No. By: FRE S: TB # 2400 No Y Yes Y No Comments: L NA ppropriate? Yes No NA
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs COC/container disc. Containers/volumes Do VOA vials have Comments Water samples: pH of	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 9/9/20 Yes Y No Comments: agree? Yes No Comments repancies form initiated? Yes No received appropriate for analysis? Yes visible headspace? Yes No Yes checked: Yes No NA PH ap	Sis applied to out of temperature samples? Yes/No/No. By: FRE S: TB # 2400 No Y Yes Y No Comments: L NA ppropriate? Yes No NA
If some coolers are Out of temperature. Samples Inspection All samples intact? Bottle labels/COCs COC/container disc. Containers/volumes Do VOA vials have Comments Water samples: pH of	in temp and some out, were green do samples form initiated? Yes/No/NA i: Date/time inspected: 919120 Yes No Comments: agree? Yes No Comments repancies form initiated? Yes No Sereceived appropriate for analysis? Yes visible headspace? Yes No Yes Checked: Yes No NA PH agriculture in the series of the series	Sis applied to out of temperature samples? Yes/No/No. By: FRE S: TB # 2400 No Y Yes Y No Comments: L NA ppropriate? Yes No NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to brief

Appendix CData Quality Review Report

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

Data Quality Review Report

The data quality review of the six primary groundwater samples, one field duplicate groundwater sample, and one trip blank sample collected on September 8 and 9, 2020, at the Former Fort Vancouver Plywood Site in Vancouver, Washington has been completed. Samples were submitted to Apex Laboratories (Apex) of Tigard, Oregon, and were analyzed for volatile organic compounds (VOCs) by US Environmental Protection Agency [EPA] Method 8260D), gasoline-range hydrocarbons (Method NWTPH-Gx), and/or diesel-range and oil-range hydrocarbons (Method NWTPH-Dx).

This review included the analytical data presented in Apex report A0I0248. The data was reviewed based on *USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017*, and laboratory quality control criteria. Items reviewed included: chain-of-custody (COC) records and sample condition, hold times, surrogate recoveries, laboratory control and laboratory control duplicate results, laboratory duplicate results, field duplicate results, method blank results, trip blank results, and matrix spike results. Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

- COC Records Acceptable
- <u>Temperature</u> Acceptable
- Preservation Acceptable
- Holding Times Acceptable
- <u>Trip Blanks</u> Acceptable where applicable
- Method Blanks Acceptable
- Surrogates Acceptable
- <u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u> Acceptable with the following exception:
 - VOCs by EPA Method 8260D The percent recoveries for 2,2-dichloropropane (143%) and hexachlorobutadiene (122%) in the LCS associated with analytical batch 0090345 exceeded the control limits of 80-120%. 2,2-Dichloropropane and hexachlorobutadiene were not detected in the associated samples; therefore, data were not qualified based on these elevated LCS results.
- Matrix Spike Acceptable where applicable
 - VOCs by EPA Method 8260C A matrix spike was performed using a sample from a project unrelated to the Port of Vancouver Former Fort Vancouver Plywood Site. Results were acceptable.
- Laboratory Duplicate Acceptable where applicable
 - VOCs by EPA Method 8260C A laboratory duplicate was performed using C2-MW-9-D. Results were comparable.
 - <u>NWTPH-Gx</u> A laboratory duplicate was performed using C2-MW-9-D. Results were comparable.

AECOM Environment 2

- Field Duplicate Acceptable where applicable
 - Sample C2-MW-9-D (A0I0248-07) was submitted as a field duplicate of sample C2-MW-9 (A0I0248-03). Relative percent difference calculations were not performed as all sample results were less than five times the reporting limits.
- Reporting Limits Acceptable
- Laboratory Notes and Qualifiers
 - Multiple VOC results and one diesel-range TPH result were flagged 'J' by the laboratory to indicate that the sample concentrations were less than the laboratory reporting limits but above the method detection limits. As there are greater levels of uncertainty with these results, the results are considered estimated.
 - The laboratory noted that the diesel hydrocarbon pattern for C2-MW-10(R2) indicates possible weathered diesel, mineral oil, or a contribution from a related component.
 Data were not qualified based on TPH pattern identification.

Overall Assessment of Data

The completeness of the analytical report for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are considered usable. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Qualifier Definitions

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.
- DNR Do Not Report. Another result is available that is more reliable.

References

USEPA, 2017. National Functional Guidelines for Organic Superfund Methods Data Review, January 2017.

Table 1. Sample Qualification Summary

AECOM Sample ID	Laboratory Sample ID	Analyte	Qualifier	Rationale
No doto qualifiare i	vore accioned to the recults	reported in	100018 ha	sed on this data validation.

Data Quality Review Report September 2020

About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com