DRAFT Groundwater Sampling and Analysis Report 2nd Quarter 2008

Camp Bonneville Military Reservation

23201 Northeast Pluss Road, Vancouver, WA 98682

> Prepared For: Washington State Department of Ecology

Prepared By:
Bonneville Conservation,
Restoration & Renewal Team

July 2008

Engineering & Energy

July 30, 2008

Michael Baker Jr., Inc. A Unit of Michael Baker Corporation

5261 Fountain Drive Suite A Crown Point, IN 46307

219-736-0263 FAX 219-755-0233

Mr. Mike Gage Bonneville Conservation Restoration and Renewal Team, LLC (BCRRT) Camp Bonneville 23201 NE Pluss Road Vancouver, WA 98682

SUBJECT: Draft Groundwater Sampling and Analysis Report – 2nd Quarter, 2008 for the former Camp Bonneville Military Reserve located in Vancouver Washington

Dear Mr. Gage:

This letter and its attachments constitute the Draft Groundwater Sampling and Analysis Report -2^{nd} Quarter, 2008 for submittal to the Washington Department of Ecology (WDOE). Attached to this letter are:

- 1) Figures 1, 2, 6 and 7
- 2) Landfill 4/Demolition Area 1 Groundwater Data,
- 3) Draft Groundwater Sampling and Analysis Report 2nd Quarter, 2008 by PBS Engineering and Environmental (PBS), and
- 4) Electronic copies of the submittal on CD.

Following your review, please forward two copies of the entire submittal to:

Mr. Ben Amoah-Forson, Ph.D., P.E. Washington State Department of Ecology Toxics Cleanup Program PO Box 47600 300 Desmond Drive Olympia, Washington 98504

Recent Groundwater Sampling Results at Boundary Area/Sentinel Wells

- With the use of dedicated pumps and low flow purging/sampling techniques (which obtain water samples with lower turbidity), the total and dissolved metals concentrations have decreased significantly. As a result, many of the metals content of these samples either below detection limits or a fraction of their historic levels. All of the total and dissolved metals detections in groundwater from these wells were below MTCA Method A regulatory screening levels in the Boundary/Sentinel well results.
- Petroleum hydrocarbons have not been detected in any of the Boundary Area/Sentinel Wells throughout the monitoring period, except for an isolated detection of diesel range petroleum hydrocarbons in LCMW02DW at 0.15 mg/L in January 2006.
- Perchlorate and Explosive constituents were not detected at any of the Boundary/Sentinel Wells.

Mr. Mike Gage July 30, 2008 Draft Groundwater Sampling and Analysis Report – 2^{nd} Quarter, 2008 Camp Bonneville, Vancouver Washington Page 2

Recent Groundwater Sampling Results at Landfill 4/Demolition Area 1 Wells

Upon review of historic groundwater data at Landfill 4/Demolition Area 1, the following appears to be occurring at the site:

- HMX and RDX concentrations in groundwater have been relatively stabile in both concentration and distribution throughout all of the 23 LF4/DA1 groundwater sampling events (2001 to 2008).
- Well LF-MW-1A perchlorate concentrations has been stable at 2 to 6 parts per billion (ppb) during the last 16 LF4/DA1 groundwater sampling events (with the exception of 17 ppb in the 4th quarter 2005); this well is located upgradient of the LF4/DA1.
- Well LF-MW-1B although an estimated (above the MDL but below the MRL) perchlorate detection (0.59 ppb) was reported in this sampling event, this result may not be representative of onsite conditions. Since this well is located upgradient of the LF4/DA1 and since shallow well LF-MW-1A has an established history of low perchlorate concentrations, neither the detection nor absence of perchlorate at this well effects the monitoring program.
- Well LF-MW-2A perchlorate concentrations appear to have reached a degree of equilibrium during
 the last nine quarterly sampling events (2006 to 2008) with perchlorate concentration/groundwater
 level patterns that are almost identical. The seasonal variation appears to be inversely correlated with
 increased precipitation/groundwater elevations:
 - o The lowest perchlorate concentrations/highest groundwater level occur in the 1st quarter events (~140 ppb and ~ 495 mean sea level [MSL]), versus,
 - o The highest perchlorate concentrations/lowest groundwater level occur in the 3^{rd} quarter events (~280 ppb and ~ 490 MSL).
- Well LF-MW-2B the perchlorate levels have been generally decreasing over the last 7 quarters from a peak concentration (530 ppb) in the 3rd quarter 2006 (when seasonal effects are taken into consideration). The perchlorate concentration patterns observed in LF-MW-2A are not repeated in the LF-MW-2B data. While there has been little historical connection between perchlorate concentrations and precipitation/groundwater elevations at this well, the perchlorate concentrations from the last three quarters sampling events have been increasing/decreasing with groundwater elevations.

LF-MW-2B concentrations of 1,1-Dichloroethene and 1,1-Dichloroethane have been relatively stable, Tetrachloroethene results are just above the detection level, and the concentrations of Dichlorodifluoromethane and 1,1,1-Trichloroethane have been steadily decreasing. Measured concentrations of all of these detections in 2nd Quarter 2008 samples were below MTCA Method A or B regulatory screening levels.

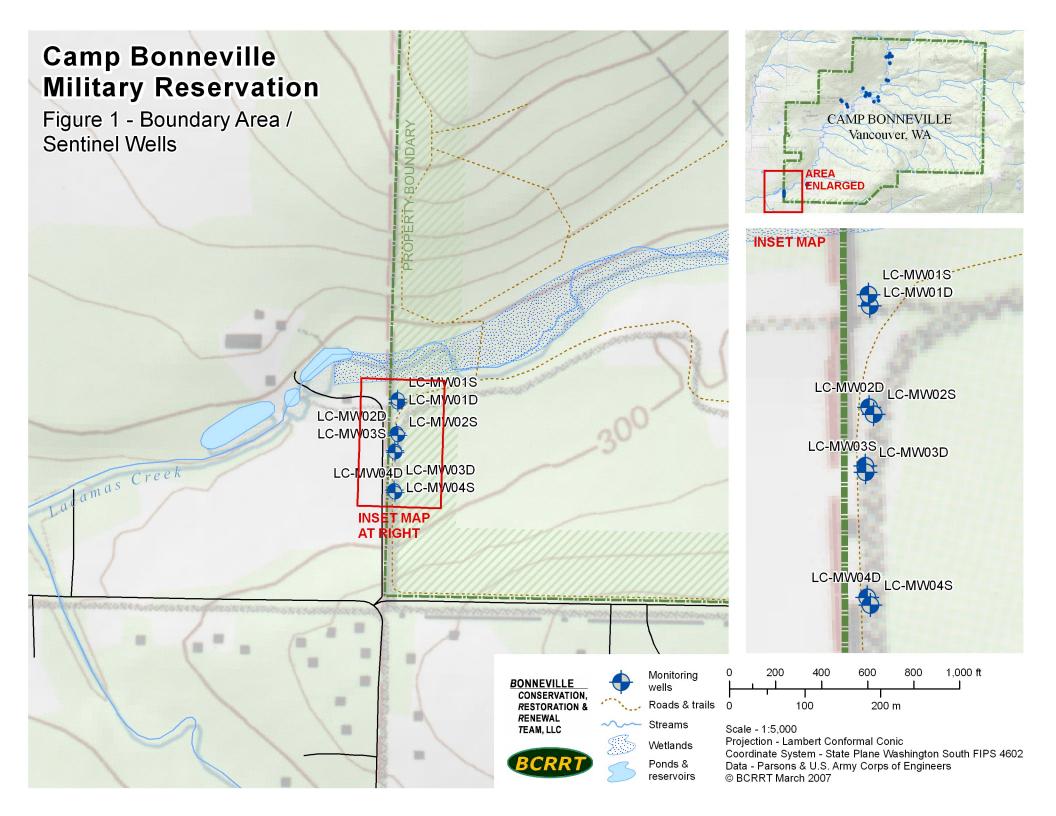
While concentrations of five new compounds (common laboratory contaminates -Isopropylbenzene, Methylene Chloride, n-Propylbenzene, and Trichlorofluoromethane, and Trichloroethene) were reported in the LF-MW-2B groundwater sample, the concentrations of these compounds were predominantly estimated (above the MDL but below the MRL) and are not considered representative of site conditions. Please note that all of these detections were below MTCA Method A or B regulatory screening levels:

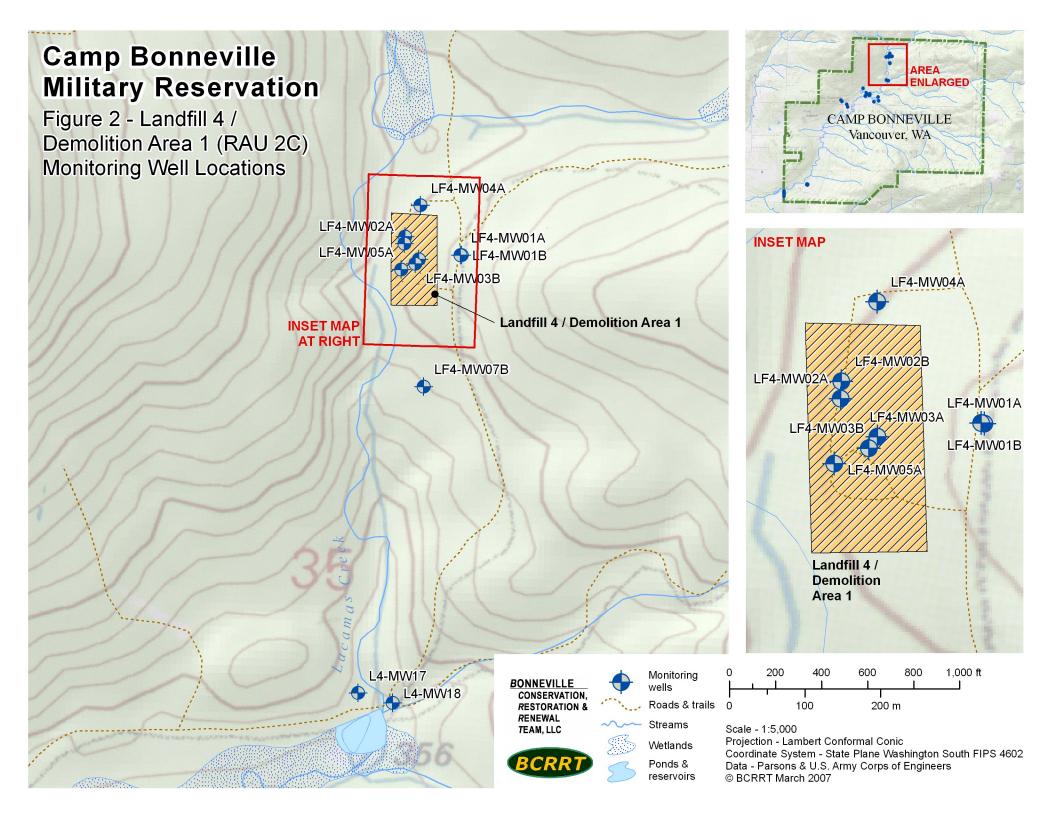
Mr. Mike Gage July 30, 2008 Draft Groundwater Sampling and Analysis Report – 2nd Quarter, 2008 Camp Bonneville, Vancouver Washington Page 3

- Well LF-MW-3A perchlorate concentrations have been gradually decreasing from a peak concentration (120 ppb) observed in the 3rd quarter 2006 sampling event.
- Well LF-MW-3B perchlorate concentrations have been gradually decreasing from a peak concentration (55 ppb) observed in the 4th quarter 2006 sampling event. An estimated (above the MDL but below the MRL) Picric Acid detection (0.14 ppb) was reported in this quarter.
- Well LF-MW-4A perchlorate concentrations increased to a peak concentration (40 ppb) observed in the 4th quarter 2006 sampling event and have now been very consistent at about 29 ppb during the last four quarters. A common laboratory contaminant, Methylene Chloride (0.14 ppb), was reported in this quarter but was below MTCA Method A or B regulatory screening levels.
- Well LF-MW-5A perchlorate concentrations have been generally decreasing from a peak of 64 ppb in the initnial sampling event in the 3rd quarter 2001to less than 40 ppb during the last 6 quarters. The trace detections of Tetrachloroethene have been generally stable at <1 ppb; below MTCA Method A or B regulatory screening levels.
- Well LF-MW-7B perchlorate concentrations have been generally stable at 2 to 3 ppb for the last 19 quarterly sampling events; with the exception of an apparent field cross contamination issue during the 1st quarter 2006 event (field staff were retrained to address this issue).
- Well LF-MW-17 estimated (above the MDL but below the MRL) concentrations of 1,2,4-Trimethylbenzene and Naphthalene were detected at 0.12 and 0.35 ppb, respectively; both detections were below MTCA Method A or B regulatory screening levels.

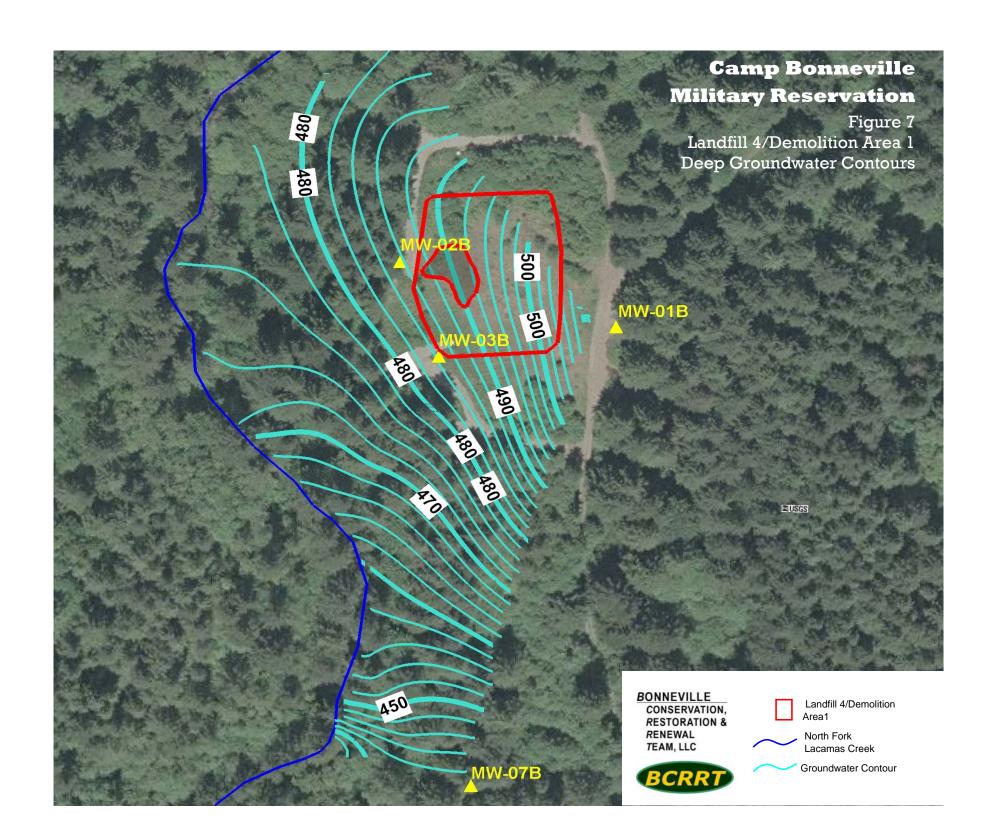
Groundwater detections for VOCs are summarized in the attached tables and figures and monitoring well locations are shown on Attachment 1 - Figures 1 and 2; and Attachment 2 - Landfill 4/Demolition Area 1 Groundwater Data. Completed details for the latest sampling event are included in the Attachment 3 – Draft Groundwater Sampling and Analysis Report – 2nd Quarter 2008. The Electronic Data Deliverable (EDD) was uploaded to the Camp Bonneville website for access by WDOE on July 21, 2008.

If you have any questions, please contact me at (219) 736-0263.

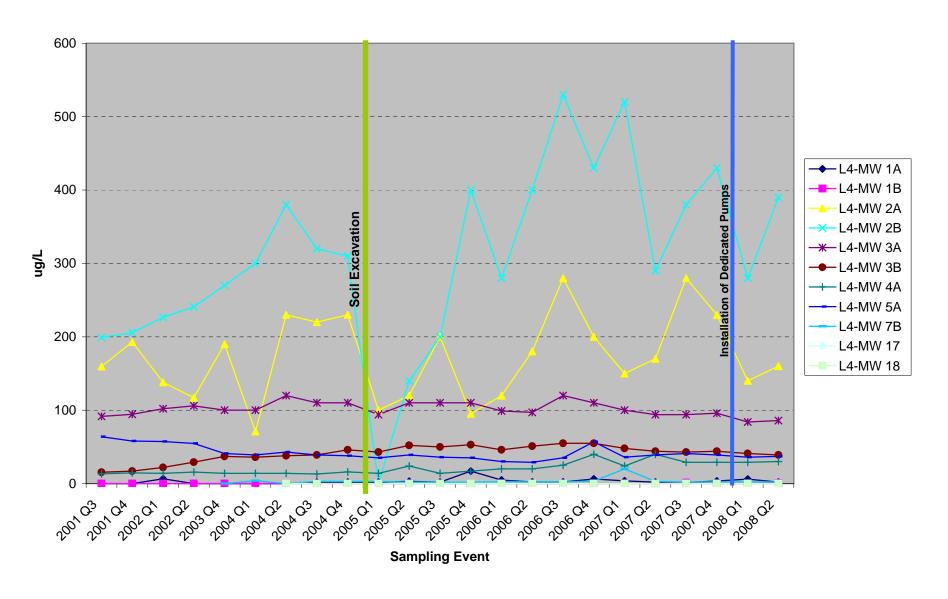

Very truly yours,

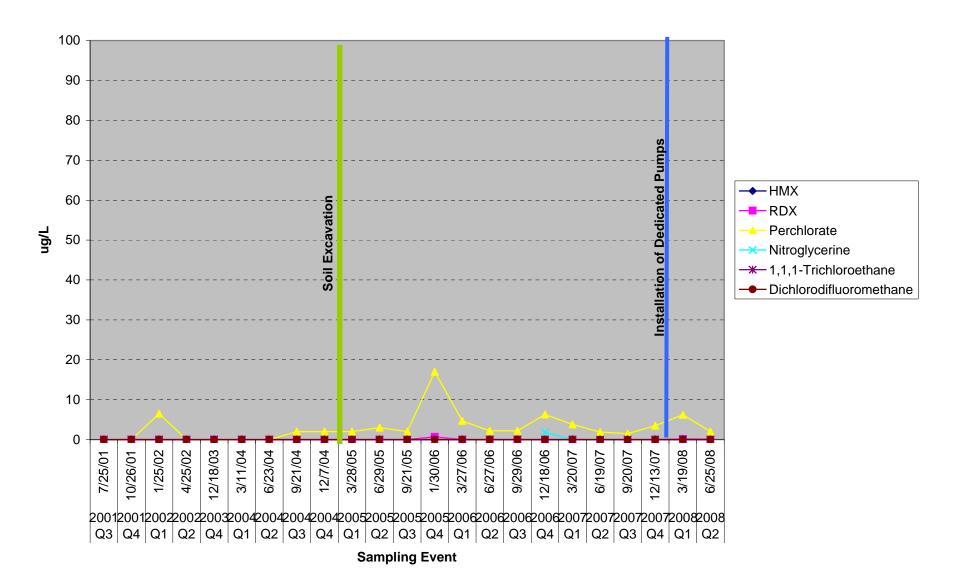

MICHAEL BAKER JR., INC.

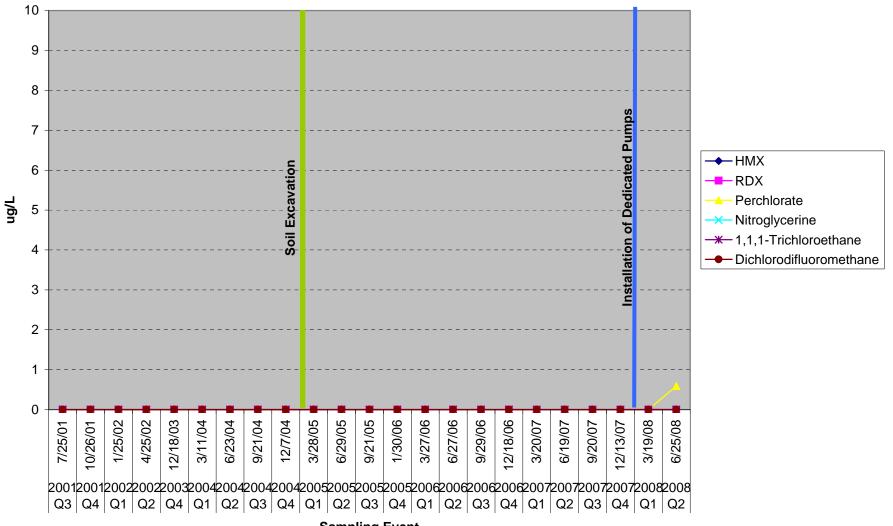
James D. Peyton Senior Geologist


MJK/JDP/amt Attachments Mark J. Knight, CHMM

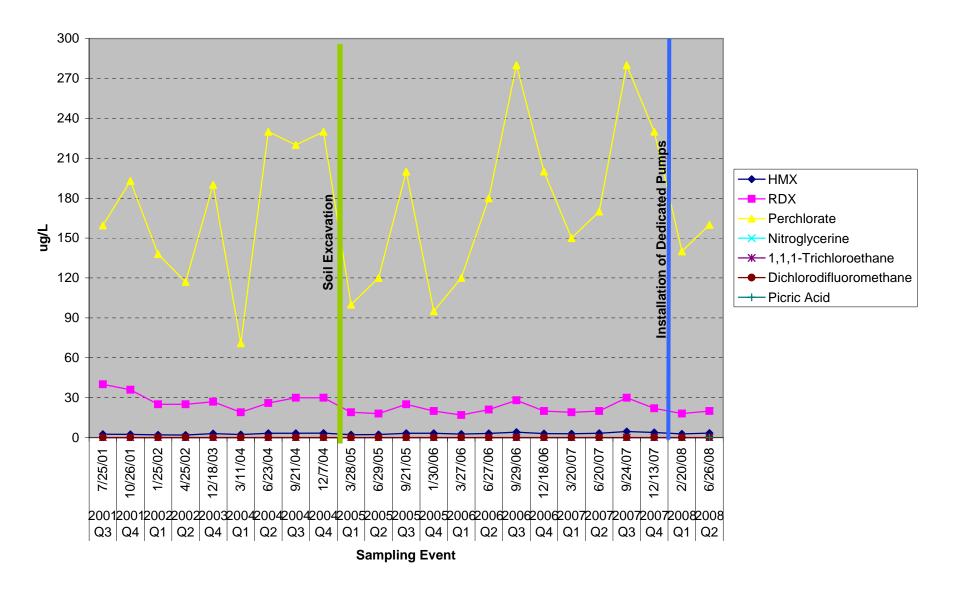
Project Manager



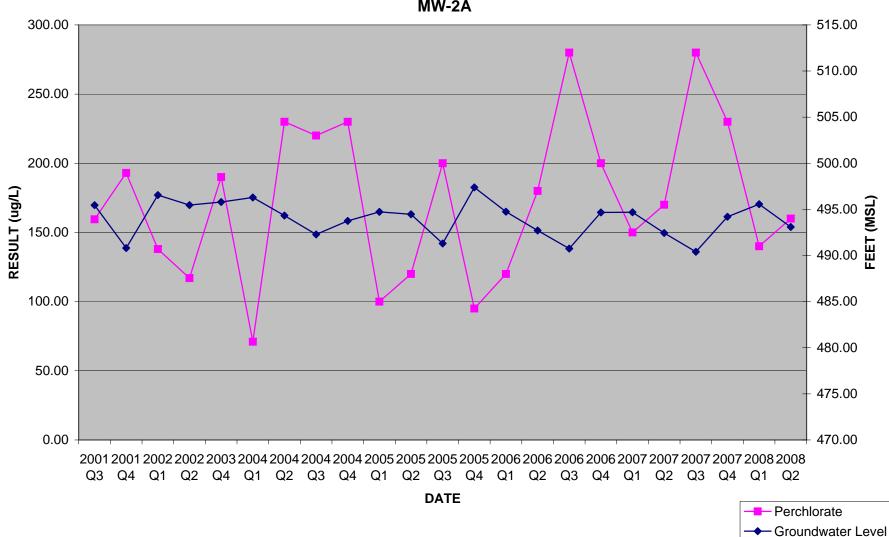



Landfill 4 Perchlorate Results

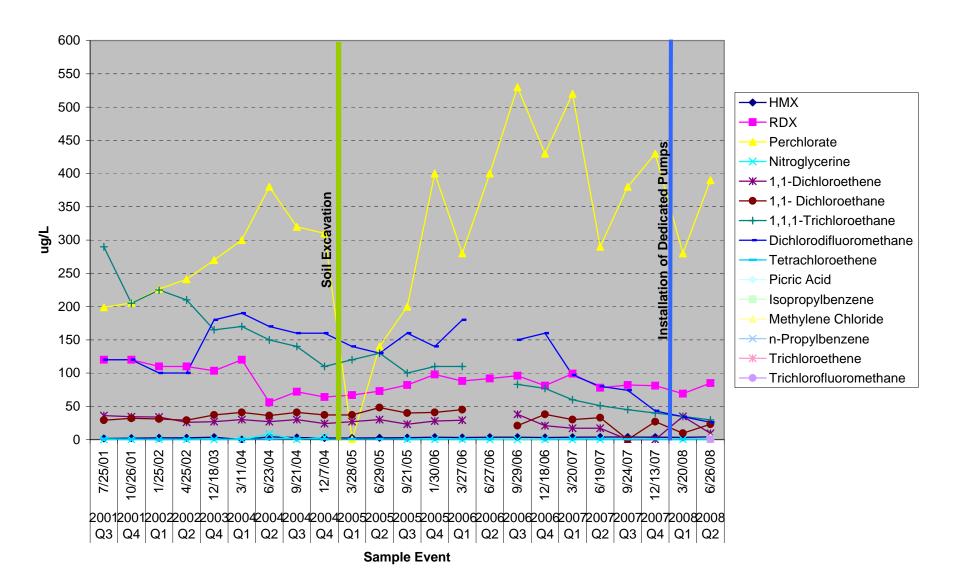
L4-MW-1A

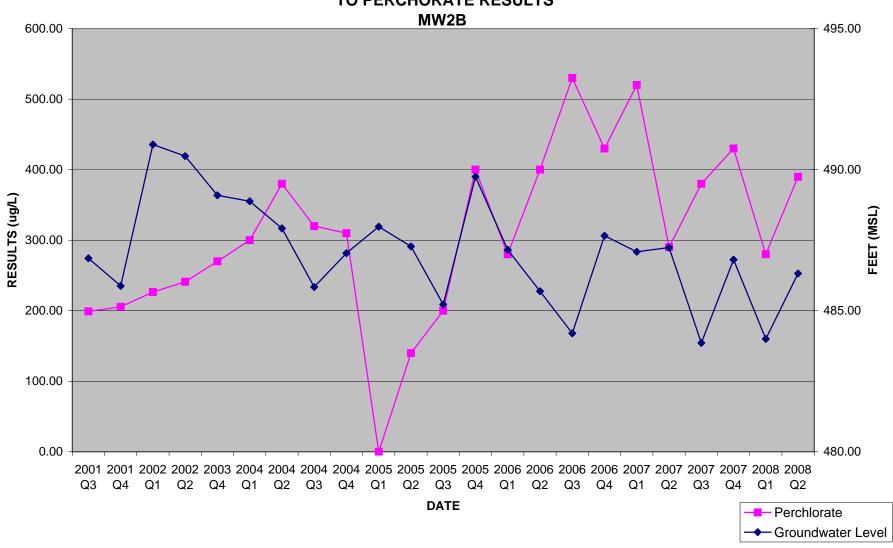


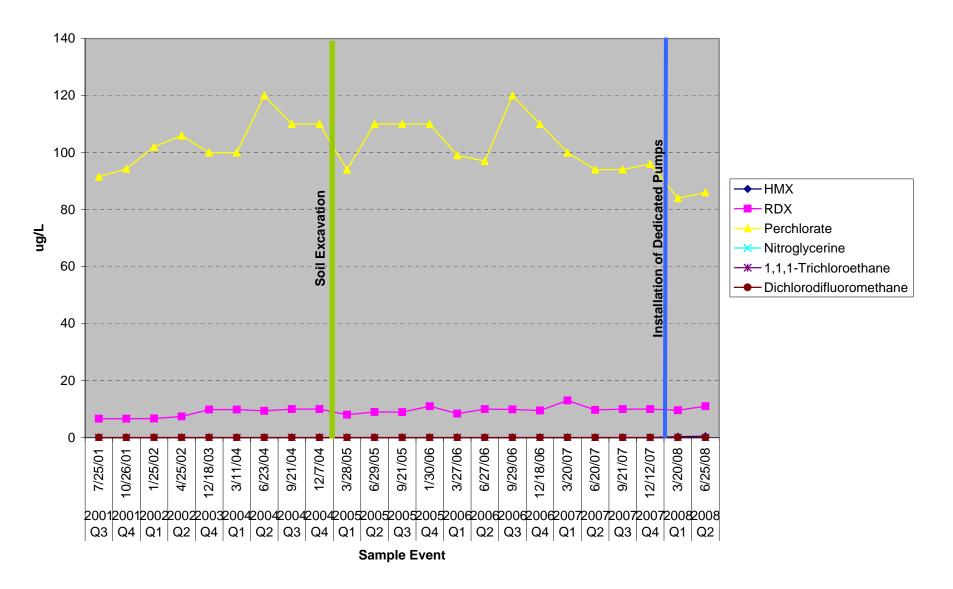
L4-MW-1B

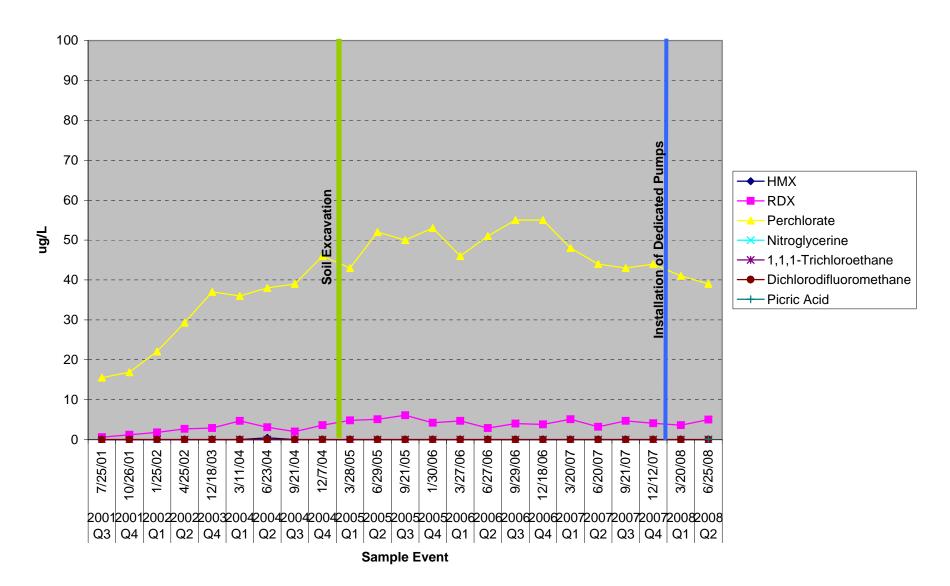


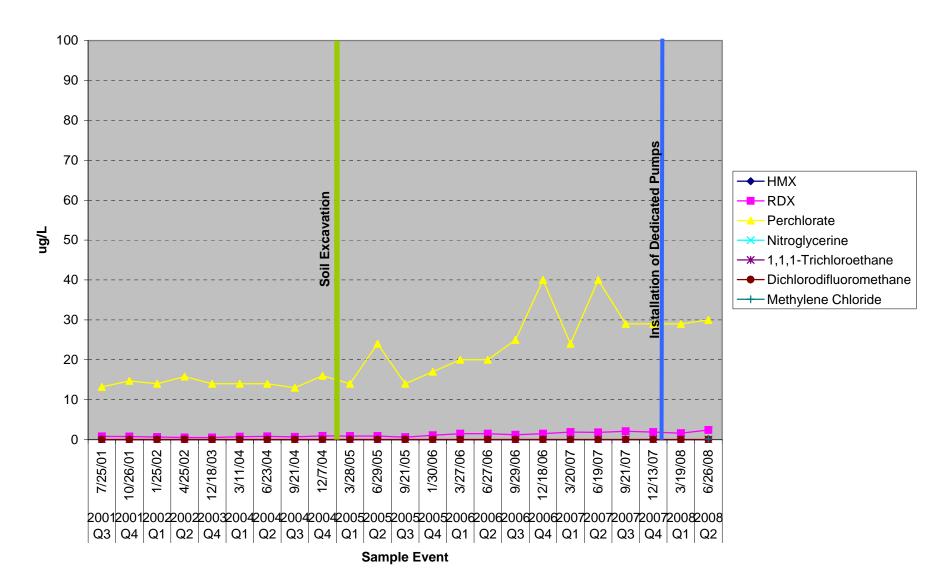
Sampling Event

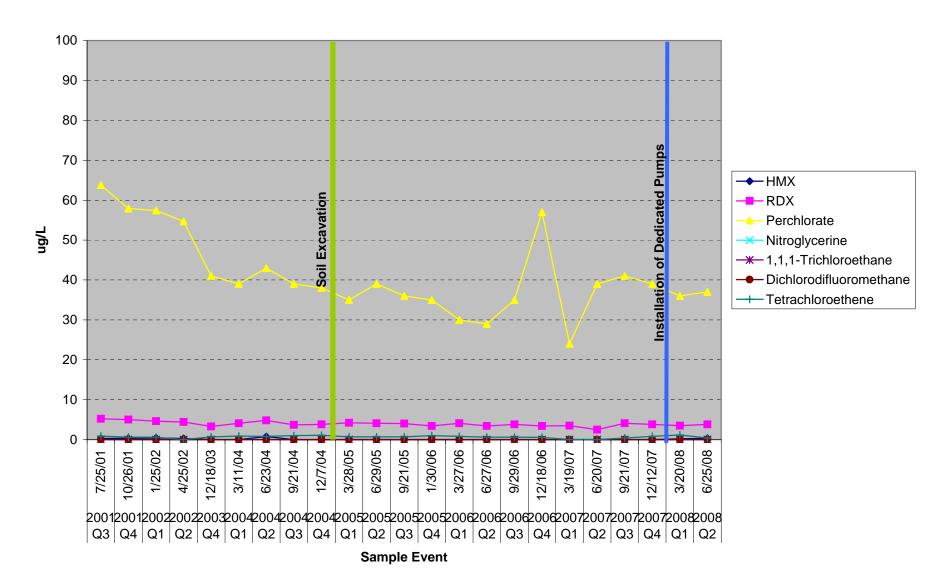

L4-MW-2A

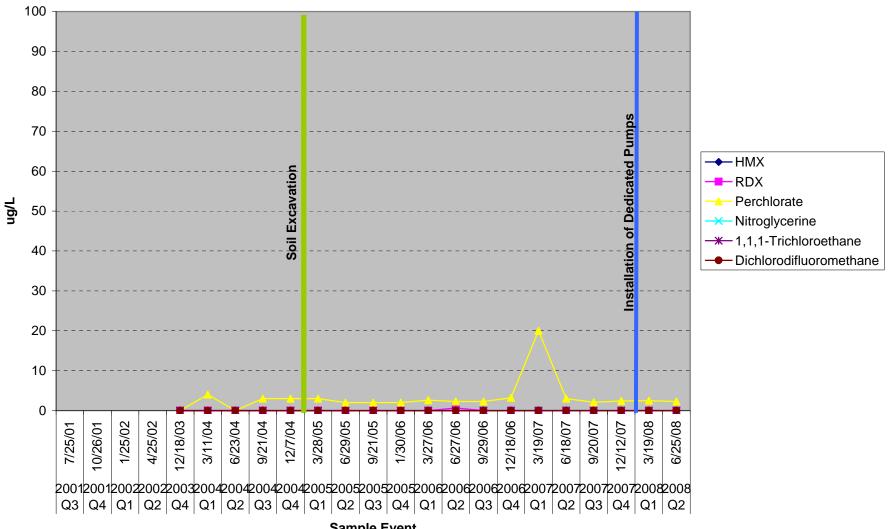

COMPARISON OF GROUNDWATER LEVELS TO PERCHLORATE RESULTS MW-2A


L4-MW-2B

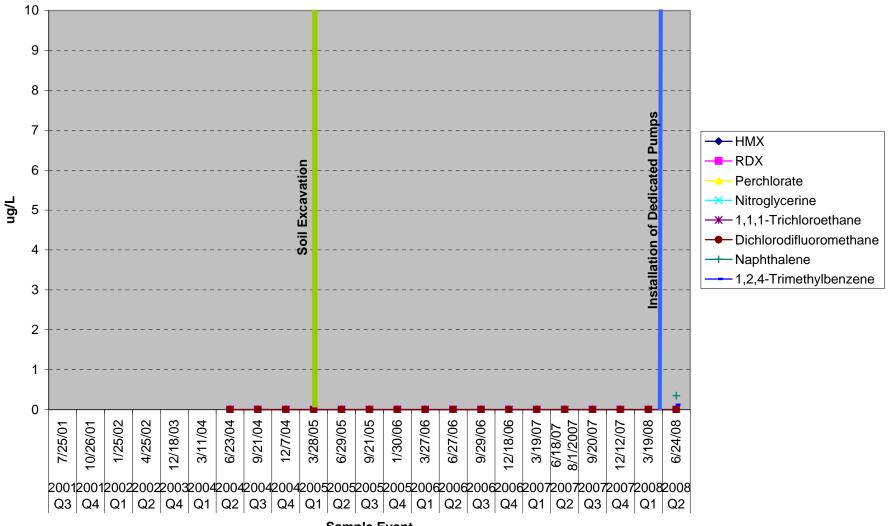

COMPARISON OF GROUNDWATER LEVELS TO PERCHORATE RESULTS


L4-MW-3A

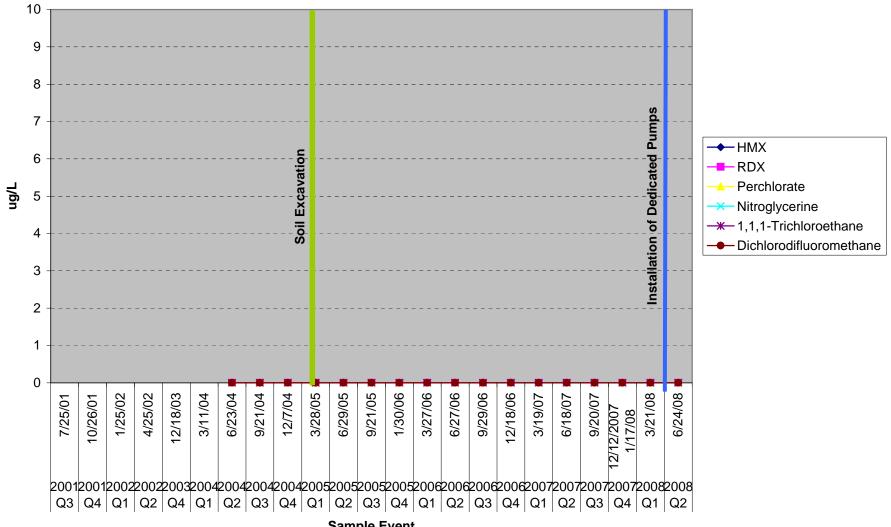

L4-MW-3B


L4-MW-4A

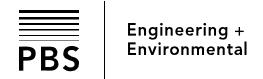
L4-MW-5A



L4-MW-7B


Sample Event

L4-MW-17



Sample Event

L4-MW-18

Sample Event

Groundwater Sampling & Analysis Report

2nd Quarter 2008

Camp Bonneville Vancouver, Washington

Prepared for:

Washington State Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600

> July 29, 2008 PBS Project No. 70489.000, Task 6213

GROUNDWATER SAMPLING & ANALYSIS REPORT

2nd Quarter 2008

CAMP BONNEVILLE VANCOUVER, WASHINGTON

Prepared for:

Washington State Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600

July 29, 2008

Prepared by:

PBS Engineering + Environmental Portland, Oregon

APPROVALS & CONCURRENCES:

Andrew F. Harvey, L.G.	Archen F. Horney	7/29/08
PBS Project Manager	Signature	Date
Barbara E. Lary, L.G.	Barbara C. Lary Signature	7/29/08
PBS QA/QC Officer	Signature	Date
Jim Peyton		
Michael Baker Jr. Project Manager	Signature	Date

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.	1 Project Objectives	1
1.	2 Scope of Work	2
1.	3 Report Organization	2
2.0	SITE BACKGROUND	3
2.	1 Site History	3
2.	2 Previous Investigations	4
2.	3 Monitoring Well Numbering	5
2.	4 Groundwater Monitoring Locations	5
2.	5 Chemicals of Potential Concern	6
3.0	GROUNDWATER SAMPLING	8
3.	1 Well Depth and Static Water Level Measurement	9
3.	2 Low-Flow Purging	9
3.	3 Sample Collection	10
3.	4 Decontamination Procedures	10
3.	5 Investigation-Derived Waste	10
3.		11
	,	11
4.0	ANALYTICAL METHODS	.11
5.0	DATA MANAGEMENT AND REVIEW	.12
6.0		.12
6.	1 Base Boundary at Lacamas Creek	12
	2 Landfill 4/Demolition Area 1	13
7.0	RECENT TRENDS IN WATER QUALITY DATA	.15
8.0	DATA QUALITY OBJECTIVES	.15
8.	1 Field Data Quality Assessment	16
8.	2 Quality Control Sample Assessment	16
8.	3 Laboratory Analysis Chemical Data Quality	16
8.	4 Deviations to Standard Procedures	17
9.0	REFERENCES	.18

SUPPORTING DATA

LIST OF FIGURES

Figure 1	Camp Bonneville Site Location Map
Figure 2	Investigation Areas within Camp Bonneville Boundary
Figure 3	Monitoring Well Locations at the Base Boundary at Lacamas Creek
Figure 4	Monitoring Well Locations at Landfill 4/Demolition Area 1

LIST OF TABLES Table 1

l able 1	Chemicals of Potential Concern
Table 2	Analytes and Analytical Methods
Table 3	Sample Analytical Methods, Containers, Preservation, and Holding Times
Table 4	Constituents Detected in Groundwater
Table 5	Dissolved Metals
Table 6	Volatile Organic Compounds Detected in Groundwater
Table 7	Field Parameters for Groundwater Samples
Table 8	Well Number and Construction Details

LIST OF APPENDICES

	
Appendix A	Field Parameters and Laboratory Analysis Data Tables
Appendix B	TestAmerica, Analytical Reports (Electronic files on enclosed CD)
Appendix C	Monitoring Well Boring Logs (Included on enclosed CD)
Appendix D	Previous Quarterly Groundwater Monitoring Report Tables by
	PBS Engineering + Environmental. (Included on enclosed CD)

LIST OF ACRONYMS AND ABBREVIATIONS

Army U.S. Army

bgs Below Ground Surface

BRAC Base Realignment and Closure

CHPPM U.S. Army Center for Health Promotion and Preventative Medicine

COC Chain-of-Custody

COPC Chemical of Potential Concern

CWM Clear Wide Mouth
DI Deionized Water

DNR State of Washington Department of Natural Resources

DOC Dissolved Organic Carbon
DQO Data Quality Objectives
EDF Electronic Data Format
EO Exploded Ordnance

EOD Explosive Ordnance Disposal

EPA U.S. Environmental Protection Agency

FBI Federal Bureau of Investigation

FSP Field Sampling Plan HASP Health and Safety Plan

HE High Explosive

HMX octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

IC Ion chromatography

ICP Inductively coupled plasma
IDW Investigative Derived Waste
LCS Laboratory Control Sample

LIMS Laboratory Information Management System

LQMP Laboratory Quality Management Plan

μg/L micrograms per liter (approximately equal ppb)
mg/L milligrams per liter (approximately equal ppm)

MDL Method Detection Limit MRL Method Reporting Limit

MS/MSD Matrix Spike / Matrix Spike Duplicate

MTCA Washington Model Toxics Control Act (Chapter 173-340 WAC)

NG nitroglycerine

OE ordnance and explosives

PA picric acid

PCBs polychlorinated biphenyls PETN pentaerythitol tetranitrate

ppb parts per billion ppm parts per million

PQL practical quantitation limit for laboratory test instrument

QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control
RAU Remedial Action Unit

RDX hexahydro-1,3,5-trinitro-1,3,5-triazine (Cyclonite)

RI Remedial Investigation
RPD Relative Percent Difference
SAP Sampling and Analysis Plan

SDS Sample Data Sheets
SI Site Investigation
SOW Statement of Work

SVOC Semivolatile Organic Compound

TBD To Be Determined

TIC Tentatively Identified Compound

TNT 2,4,6-trinitrotoluene TOC Total Organic Carbon

TPH Total Petroleum Hydrocarbons
TSD Treatment, Storage, and Disposal

TSS Total Suspended Solids

USACE United States Army Corps of Engineers

US United States

USEPA United States Environmental Protection Agency

UXO Unexploded Ordnance
VOC Volatile Organic Compound

WDOE State of Washington Department of Ecology

1.0 INTRODUCTION

This report documents the results of groundwater sampling and analysis at two locations of monitoring well installations at Camp Bonneville. The sampling and analysis was conducted for the 2nd Quarter 2008. This work was performed by PBS Engineering + Environmental (PBS), Portland, Oregon, under contract to Michael Baker, Jr., Inc. (Baker). The work was performed at the Camp Bonneville Military Reservation (Camp Bonneville) northeast of Vancouver, Washington (see Figure 1). Camp Bonneville is a former United States government military facility that was selected for closure under the Base Realignment and Closure (BRAC) authorization.

As part of the early transfer process for Camp Bonneville Military Reservation (CBMR), the U.S. Department of the Army (Army) and Clark County, Washington (Clark County, "County"), along with the Bonneville Conservation, Restoration, and Renewal Trust, LLC (BCRRT), negotiated an Environmental Services Cooperative Agreement (ESCA). The groundwater monitoring program is a component of the remedial-action services performed in support of the Conservation, Restoration, and Renewal Program (CRRP) associated with the facility. The CRRP includes those activities necessary to obtain Notice(s) of Completion, Site Closeout(s), and CERCLA Warranty(ies) for reconveyance of the CBMR from the BCRRT to Clark County. These additional remedial actions address requirements contained in agreements between the BCRRT and the Washington State Department of Ecology (WDOE).

The groundwater monitoring work was performed in general accordance with the Sampling and Analysis Plan (SAP) revised on September 5, 2007, the Health and Safety Plan (HASP) revised on August 24, 2007, and the Quality Assurance Project Plan (QAPP) dated November 3, 2006. Laboratory analytical services were provided by TestAmerica, Portland, Oregon, and Denver, Colorado, under contract to Baker.

1.1 Project Objectives

The overall objectives of site investigations at Camp Bonneville, which have been previously conducted as part of the U.S. Army BRAC process, have been to identify contaminated areas and determine the next appropriate steps toward restoration of those sites. This quarterly monitoring report describes the results of ongoing environmental monitoring of groundwater parameters at two areas in Camp Bonneville. Monitoring wells have been installed in these areas to monitor shallow and deeper groundwater to maximum depths of approximately 75-feet below the ground surface (bgs).

The sites that were monitored include one old landfill/demolition area (Landfill 4/Demo Area 1) and the Camp Bonneville base boundary at Lacamas Creek. Two other demolition areas (Demolition Areas 2 and 3) were previously monitored, but were deleted from the monitoring program per agreement with WDOE in 2006. The attached Figure 2 shows locations of these monitoring sites.

Investigation activities included groundwater sampling at the old landfill/demolition area and the area where Lacamas Creek exits the southwest side of the base. These investigations were conducted in general accordance with the SAP, with adjustments made in the field to accommodate site conditions. The analytical results obtained from groundwater samples collected at the various monitoring well locations were compared with screening levels established for the site to determine if the groundwater potentially poses an unacceptable environmental risk. Cleanup levels established by WDOE under

1

the Model Toxics Control Act (MTCA) have been used as screening criteria to evaluate the levels of contaminants detected at Camp Bonneville.

1.2 Scope of Work

PBS conducted a round of groundwater sampling at 19 existing monitoring wells for the 2nd Quarter 2008 sampling event. Sampling for this quarter was performed from June 23 through 26, 2008. The wells were purged and sampled utilizing low-flow, minimal-drawdown procedures, as described in this report and based on procedures described in detail in the SAP (which referenced the USACE standard operating procedure, *Low-Flow Groundwater Purging and Sampling*). On March 11 through 12, 2008, dedicated bladder pumps were installed into each of the wells. The bladder pumps are activated using air regulated through a control box with a small air compressor as the air source.

Previous sampling events through the 2nd Quarter of 2006 sampled a total of 27 wells in the areas listed below, with their associated Remedial Action Unit (RAU) designations. The Lacamas Creek area contains four sets of paired shallow and deep wells (eight total wells) in a north-south alignment along the base boundary (see Figure 3). Demolition Area 3 contains four shallow wells and one deep well located around the perimeter of a pond within a former blast pit. Demolition Area 2 has three wells located near the access road, a creek, and a pond. Landfill 4/Demo Area 1 has five shallow and three deep wells around the perimeter of the landfill, one deep well along North Fork Lacamas Creek downstream of the landfill, and two wells along the creek at the base of the drainage ravine (see Figure 4).

- Landfill 4/Open Burning/Demolition Area 1 (RAU 2C)
- Open Burning/Open Demolition Area 2 (RAU 2B)
- Open Burning/Open Demolition Area 3 (RAB 2B)
- Base Boundary at Lacamas Creek (Site-wide Groundwater)

Starting in the 3rd Quarter 2006 sampling event (September 2006), the monitoring wells at Demolition Area 2 and Demolition Area 3 were deleted from the sampling program. The WDOE authorized deletion of these monitoring wells on the basis of the previous quarters of sampling results showing no detections exceeding the MTCA cleanup levels for the contaminants of concern. The monitoring wells sampled since the 4th Quarter 2006 include those at Landfill 4/Demo Area 1 and the Base Boundary at Lacamas Creek, a total of 19 wells.

1.3 Report Organization

This report is organized into eight sections, with four appendices containing supporting information. A brief description of each section follows.

- **Section 1 Introduction.** An introduction to the project, a description of the work scope and a review of the report organization is provided.
- Section 2 Site Background. A description of the facility and a summary of its
 history are provided. The groundwater investigation reports are referenced. The
 groundwater sampling locations discussed in this report are presented, along with
 the chemicals of potential concern in groundwater.

- Section 3 Groundwater Sampling. Descriptions of the field investigation, sampling techniques, and sample handling methods are provided.
- **Section 4 Analytical Methods.** The field and laboratory analytical testing methods are presented.
- Section 5 Data Management and Review. The data quality control procedures and Washington MTCA cleanup program information are presented.
- Section 6 Groundwater Monitoring Results. A description of sample-collection activities performed at each site, along with a summary of the results from these activities, is provided. Contaminants detected at each site are identified and compared with screening levels.
- Section 7 Recent Trends in Groundwater Quality. Analysis of the change in certain analytical results.
- Section 8 Data Quality Objectives. Chemical data quality and laboratory narratives of test procedures are discussed.
- Section 9 References. A list of documents used in preparation of this report is provided.
- Appendix A Field Parameters and Laboratory Analysis Data Tables. Summary tables of field and laboratory analysis data, including MTCA Cleanup Levels.
- Appendix B TestAmerica Laboratories, Analytical Reports. Copies of the laboratory reports are provided on CD, organized by laboratory data package.
- Appendix C Monitoring Well Boring Logs. Copies of the boring logs for the groundwater monitoring wells are provided on CD.
- Appendix D Previous Quarterly Groundwater Monitoring Report Tables.
 Previous groundwater monitoring report tables by PBS are included on the enclosed CD.

2.0 SITE BACKGROUND

2.1 Site History

Camp Bonneville comprises approximately 3,820 acres and is located in southwestern Washington, approximately 10 miles northeast of Vancouver, Washington. The Department of the Army used Camp Bonneville for live fire of small arms, assault weapons, artillery, and field and air defense artillery between 1910 and 1995. Since 1947, Camp Bonneville has also provided training for a variety of military and nonmilitary units, including National Guard, Army Reserves, and U.S. Air Force and federal, state, and local law enforcement agencies. Camp Bonneville includes approximately 820 acres of land leased from the State of Washington Department of Natural Resources (DNR). The Federal Bureau of Investigation (FBI) used one firing range on the site for training until late 2006. The Camp Bonneville site location is shown on Figure 1. The general areas of groundwater investigation are shown on Figure 2.

In July of 1995, Camp Bonneville was selected for closure under the 1995 Base Realignment and Closure (BRAC) process. The Camp Bonneville Reuse Plan (Otak, September 1998; updated 2003) called for the majority of Camp Bonneville to be transferred to Clark County for the public benefit – education, law enforcement, and parks, with no financial gain to Clark County. The 840 acres currently leased from the Washington DNR would either be returned to the State, the lease renewed, or the property purchased and transferred to Clark County. Transfer of the site to The Trust for Public Lands and subsequently to Clark County, began in 2006. The facility was transferred from the Army to Clark County and from the County to the Bonneville Conservation Restoration and Renewal Team (BCRRT) on October 3, 2006. BCRRT and Clark County entered into a Prospective Purchaser Consent Decree with the Washington Department of Ecology (WDOE) that requires investigating and remediating the site. Clark County intends to use the site as a Regional Park and Wildlife Refuge.

Through the years, several ordnance and explosive (OE) items have been found within Camp Bonneville's boundaries. Recent OE characterization, sampling, and removal efforts performed at Camp Bonneville confirmed the presence of OE at the site. Some of these OE items were determined to be unexploded ordnance (UXO).

2.2 Previous Investigations

During previous investigations (Shannon & Wilson, 1999), shallow monitoring wells were installed at Camp Bonneville at four sites: Landfill 2, Landfill 3, the Pesticide Mixing/Storage Building, and the Former Sewage Pond. Additional shallow and deep wells were installed at Landfill 4, Demolition Area 2, Demolition Area 3, and the Base Boundary at Lacamas Creek. The groundwater monitoring wells are located in areas of documented disposal of unexploded ordnance (UXO). However, the areas of the wells were cleared of UXO prior to well installation. Groundwater sampling activities were conducted only in the immediate area of the wells and did not occur in areas that have not been previously checked and cleared of UXO.

Groundwater sampling and analysis was previously conducted by consultants other than PBS on a quarterly schedule basis in 2001 and 2002 at the following sites within Camp Bonneville:

- Landfill 4/Open Burning/Demolition Area 1
- Open Burning/Open Demolition Area 2
- Open Burning/Open Demolition Area 3
- Base Boundary at Lacamas Creek

Quarterly sampling from shallow and deep monitoring wells at Landfill 4 was conducted in July and October 2001 and January and April 2002. Previous chemical analysis of groundwater samples has included explosives, perchlorate, metals, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and fuel residues (gasoline and diesel range petroleum hydrocarbons).

Groundwater sampling was conducted by PBS, under contract to the U.S. Army BRAC Division, for the 4th Quarter 2003, 1st Quarter 2004, 2nd Quarter 2004, 3rd Quarter 2004, 4th Quarter 2005, 2nd Quarter 2005, 3rd Quarter 2005, 4th Quarter 2005, 1st Quarter 2006, 2nd Quarter 2006, and 3rd Quarter 2006. A total of 25 monitoring wells were sampled during the 4th Quarter 2003 and 1st Quarter 2004 events at Landfill

4/Demolition Area 1, Demolition Area 2, Demolition Area 3, and the Base Boundary at Lacamas Creek. Two additional monitoring wells near Landfill 4/Demolition Area 1 were installed in May 2004 and added to the sampling set for subsequent quarterly monitoring events (starting in the 2nd Quarter 2004). Laboratory analyses included TPH-Gx (gasoline), TPH-Dx (diesel), VOCs, SVOCs, explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, priority pollutant metals (total and dissolved), TOC, DOC, TSS, alkalinity, and inorganic ions.

In May 2004, PBS supervised installation of two additional groundwater monitoring wells along North Fork Lacamas Creek below Landfill 4 (PBS, 2004b). The monitoring well completed in bedrock (Monitoring Well L4-MW17) was located at the west side of North Fork Lacamas Creek, at a point where the creek exits the ravine below Landfill 4. The monitoring well completed in alluvium (Monitoring Well L4-MW18) was located at the east side of North Fork Lacamas Creek near the bottom of the ravine and above the junction of an east-trending tributary stream to Lacamas Creek.

PBS' final Groundwater Sampling and Analysis Reports, completed under the Army BRAC contract and listed in the References section of this report, present the results of each of the quarterly sampling events from the 4th Quarter 2003 through the 3rd Quarter 2006 sampling and analysis events. The last sampling event performed under the Army BRAC contract was for the 3rd Quarter 2006. PBS began groundwater sampling and analysis under contract to Michael Baker Jr., Inc., starting with the 4th Quarter 2006. Groundwater reports through the 1st Quarter of 2008 are listed in the references.

2.3 Monitoring Well Numbering

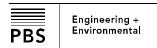

Different numbers have been assigned, over time, to monitoring wells at the Base Boundary at Lacamas Creek, Demolition Area 2, and Demolition Area 3. Well numbers used by PBS in monitoring reports for the 4th Quarter 2003, 1st Quarter 2004, and 2nd Quarter 2004 were based on proposed well locations and well identifiers, as presented in the PBS-Army BRAC Contract documents. The actual well numbers were assigned by the U.S. Army Center for Health Promotion and Preventative Medicine (CHPPM) when the wells were installed. The CHPPM well identifiers are the numbers on the well caps. Remedial Investigation (RI) reports previous to PBS' reports have used the well numbers assigned by CHPPM. Washington State Department of Ecology well tag numbers are consistent across both numbering systems.

Table 8 (Appendix A) shows the monitoring well numbers used by PBS (per the PBS-Army BRAC Contract document), Washington State Department of Ecology well tag numbers, well locations, total depth, screened interval and CHPPM well identification numbers used in former RI reports for Camp Bonneville.

The laboratory analysis results (Tables 4, 5, and 6 in Appendix A) included in this monitoring report for the 2nd Quarter 2008 are referenced to the monitoring well numbers assigned by CHPPM. The well numbers used in the PBS quarterly reports are cross-referenced to the CHPPM numbers and the WDOE well tag numbers in Table 8 (Appendix A).

2.4 Groundwater Monitoring Locations

For the 2nd Quarter 2008, PBS conducted groundwater sampling and analysis for monitoring wells at the Landfill 4 area and the Base Boundary at Lacamas Creek. The locations of monitoring wells at these sites are shown on Figure 3 (Base Boundary at

Lacamas Creek) and Figure 4 (Landfill 4/Demo Area 1). The monitoring wells at the sites are listed below (S = shallow well; D = deep well) according to the CHPPM numbers:

- Base Boundary at Lacamas Creek
 - Paired Monitoring Wells: LC-MW01S and LC-MW01D
 - Paired Monitoring Wells: LC-MW02S and LC-MW02D
 - Paired Monitoring Wells: LC-MW03S and LC-MW03D
 - Paired Monitoring Wells: LC-MW04S and LC-MW04D
- Landfill 4/Demo Area 1
 - Paired Monitoring Wells: L4-MW01A (shallow) and L4-MW01B (deep)
 - Paired Monitoring Wells: L4-MW02A (shallow) and L4-MW02B (deep)
 - Paired Monitoring Wells: L4-MW03A (shallow) and L4-MW03B (deep)
 - Monitoring Well L4-MW04A (shallow)
 - Monitoring Well L4-MW05A (shallow)
 - Monitoring Well L4-MW07B (deep)
 - Monitoring Well L4-MW17 (in bedrock)
 - Monitoring Well L4-MW18 (in alluvium)

2.5 Chemicals of Potential Concern

Previous site studies have determined that the up-gradient areas of Camp Bonneville may contain exploded ordnance (EO) and unexploded ordnance (UXO). The historical uses of the up-gradient areas include firing ranges, a landfill, open burning locations, open detonation locations, and general maintenance facilities. Chemicals of potential concern in groundwater include artillery propellants, high explosives residue, missile/rocket propellants, petroleum hydrocarbons, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), and metals.

A summary of chemicals of potential concern (COPC) is presented in Table 1. Specific analytes and laboratory analysis methods are presented in Table 2. Sample container types, preservation techniques, and holding times for the chemical analyses are presented in Table 3.

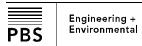
Table 1. Chemicals of Potential Concern

Sampling Areas	Munitions Compound Classes	High Explosives and Organic Compounds	Artillery Propellants	Other
Landfill 4 Demolition Areas Base Boundary	 Artillery Propellants HE Missile/ Rocket Propellants 	TNTRDXPETNPAHMXNG	 Black Powder (nitrate) Plasticizers Stabilizers AP 	 Priority Pollutant Metals TPH SVOCs VOCs

Notes:

AP = ammonium perchlorate

Black powder is a mixture of potassium or sodium nitrate, charcoal, and sulfur


Plasticizers = dibutylphthalate; diethylphthalate

Stabilizers = diphenylamine; N-nitrosodiphenylamine

HE = high explosives; 2,4 DNT, 2,6 DNT

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

NG = nitroglycerine

PA = picric acid

PETN = pentaerythritol tetranitrate RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine (Cyclonite)

TNT = 2,4,6-trinitrotoluene

TPH = total petroleum hydrocarbons VOCs = volatile organic compounds

SVOCs = semivolatile organic compounds

Table 2. Analytes and Analytical Methods

Parameter	Method
Total Priority Pollutant Metals	EPA Method 6000/7000 series
Total Priority Pollutant Metals (field filtered)	EPA Method 6000/7000 series
Total and dissolved mercury	EPA Method 7470A
VOCs plus TICs	EPA Method 8260B
SVOCs plus TICs	EPA Method 8270C
TPH Gasoline Range	NWTPH-Gx
TPH Diesel Range	NWTPH-Dx
Total Suspended Solids	EPA Method 160.2
Carbonate and Bicarbonate	SM 2320B
Inorganic Ions (Sulfate, Nitrite + Nitrate, Chloride)	EPA Method 300.0. 353.2
Total Organic Carbon (TOC)	EPA Method 415.1
Dissolved Organic Carbon (field filtered)	EPA Method 415.1
Ordnance Compounds	Method
Explosive Residues (HMX, RDX)	SW846 8330
PETN/Picric Acid/Nitroglycerine	SW846 8330
Ammonium Perchlorate	EPA-DW1 314.0

Notes:

NWTPH = Northwest Total Petroleum Hydrocarbon

PETN = Pentaerythritol tetranitrate SVOC = Semivolatile organic compound

TPH = Total petroleum hydrocarbon TICs = Tentatively identified compounds

Table 3. Sample Analytical Methods, Containers, Preservation, and Holding Times

Measurement	Minimum Sample Volume	Container	Preservative cool to 4° C, plus	Holding Time
Mercury (total and dissolved)	100 ml	Included with 1 L. HDPE container	Filtered for	
Metals (total and dissolved)	200 ml	(2) 1 L. HDPE	HNO ₃ to pH <2 Filtered for dissolved	6 months
Total Suspended Solids	500 ml	1 L. HDPE	No additional	7 days
VOCs plus TICs	(6) 40 ml	40 ml VOA vial (6)	HCI pH<2	14 days
SVOCs plus TICs	(2) 1,000 ml	1L. AG (2)	No additional	7 days to extraction 40 days to analysis
TPH Gasoline Range	(3) 40 ml	40 ml VOA vial (3)	HCl pH<2	14 days
TPH Diesel Range	1,000 ml	1L Amber glass	HCI pH<2	14 days
Total Organic Carbon and Nitrate	500ml	500 ml Amber glass	H2SO ₄ pH<2	28 days for TOC, 48 hours for Nitrate
Dissolved Organic Carbon	250 ml	250 mL Amber	H2SO₄ pH<2 -Filtered	28 days
Carbonate & Bicarbonate	100 ml	1 L. HDPE	No additional	14 days
Inorganic Ions	50 ml	1 L. HDPE	No additional	48-hr for nitrite; 28 days for others
Picric Acid		1L Amber glass	No additional	
Perchlorate	500 ml	500 ml HDPE	No additional	14 days
Explosives Notes:	500 ml	(2) 1L Amber glass	No additional	7 days to extraction, 40 days after extraction

HDPE = High Density Polyethylene Bottles with Teflon lined screw cap

AG = Amber glass bottle with Teflon lined screw cap

VOA vial = Vial with a screw cap with a hole in the center sealed with a TFE-faced silicone septum ml = milliliters

3.0 **GROUNDWATER SAMPLING**

PBS conducted groundwater sampling for the 2nd Quarter 2008 event at 19 existing monitoring wells at two locations within Camp Bonneville. Monitoring wells were sampled during the period of June 23 through 26, 2008. The monitoring wells were sampled in accordance with the procedures established in the Draft Groundwater Sampling and Analysis Plan (SAP), dated October 31, 2006, and revised September 5, 2007. The SAP was prepared by PBS and Michael Baker, Jr., and submitted to WDOE. Health and safety procedures followed during site activities

were in compliance with the procedures established in the Site Health and Safety Plan (HASP), dated October 30, 2006, and revised August 14, 2007. The HASP was prepared by Michael Baker, Jr., and approved by WDOE.

Changes made from the SAP included installation of dedicated bladder pumps in each of the wells on March 11 and 12, 2008. This was done as outlined in a letter from Baker to WDOE dated February 13, 2008.

3.1 Well Depth and Static Water Level Measurement

The static groundwater level was measured in each monitoring well using an electronic water-level indicator prior to purging and sampling activities. During purging and groundwater sample collection, the water level in the well was monitored to determine drawdown conditions. Initial groundwater level measurements are presented in Table 7 (Appendix A).

Water level depths were measured to the reference mark on the rim of the PVC monitoring well casings. The measurement was recorded on the Groundwater Sampling Field Form to the nearest 0.01 foot.

3.2 Low-Flow Purging

A low-flow, minimal-drawdown technique was used for groundwater purging and sampling. This technique is described below and in the SAP. Low-flow sampling minimizes disturbance to the aquifer and is designed to ensure that samples collected from the wells are representative of groundwater. A low pumping rate is chosen to match the laminar flow in the immediate vicinity of the sampling pump intake; thus, drawing groundwater directly from the aquifer, horizontally through the well screen, and into the pump.

Purging and sampling were performed using dedicated Solinst bladder pumps constructed out of PVC body and a Teflon bladder. The pumps are approximately 2-feet long and 1.5 inches in diameter. These pumps were set approximately in the middle of the wetted screen. On wells with low water levels in the summer, the pumps were set approximately 2 feet from the bottom of the well. LDPE hosing is attached to the top of the pump and the underside of a well cap, placed at the top of the PVC well casing. Fittings on the well cap allow an air source to be connected, sample tubing to extend to the flow cell or sample bottle, and an opening to place a depth-to-water meter probe. A small air compressor, powered by a car battery, was used through a QED MP10 control box to regulate the amount of air and to set the charge and recharge cycles of the pump. Air is pushed through the tubing and compresses the bladder for a period of time, pushing water up the sample tubing. When the air pressure is released, water enters the pump and refills the tubing. The length of cycles of pushing air through, water out, and then waiting for water to re-enter the pump can be adjusted, as needed. Each monitoring well was purged immediately before sample collection, at a rate that minimizes drawdown, so that the groundwater sample represented formation water rather than stagnant water that had accumulated in the well casing.

Groundwater was purged through a YSI Model 556 water quality meter installed in a flow-through cell to measure specific conductance, temperature, pH, oxidation-reduction potential (ORP), and dissolved oxygen during purging. Once parameters and water level had stabilized, a groundwater sample was collected. The purge water was transported

back to an on-site central drum storage area and transferred to 55-gallon drums at the end of each day.

Water quality measurements made during purging were recorded on a Groundwater Sampling Field Form at intervals ranging from 1 to 5 minutes. Purging was stopped, and groundwater samples collected, when readings stabilized over at least three consecutive measurements and a minimum of 3 gallons were pumped from the well. Stabilization was considered reached when three consecutive readings were within ± 0.3 for pH, $\pm 1^{\circ}$ C for temperature, ± 10 percent for specific conductance, ± 10 mV for ORP, and ± 0.5 mg/L for DO.

3.3 Sample Collection

Samples that did not require filtering were collected into the laboratory-supplied sample containers directly from the end of the dedicated discharge hose. Groundwater samples requiring preservatives were collected in sample bottles supplied by the contract laboratory and contained the appropriate amounts of preservative solution. Sample containers for VOCs and TPH were filled completely to the top of the container, and the container cap screwed on to prevent any air remaining in the headspace of the container. Sample container types, preservation techniques, and holding times for the chemical analyses are presented in Table 3.

Samples collected for dissolved metals' analysis and dissolved oxygen content (DOC) were field-filtered. An in-line, nitrocellulose, 0.45-micron cartridge filter was attached to the sample-discharge line. Groundwater was rinsed through the filter prior to filling the sample bottle. The sample bottle was then filled directly from the discharge outlet on the filter.

3.4 Decontamination Procedures

The objective of dedicated pumps is to eliminate the need for decontamination procedures and reduce the chance of cross-contamination. Sample jars in factory-sealed containers do not require decontamination.

Non-dedicated sampling equipment (water level meter) was decontaminated between sample locations by rinsing with organic-free deionized water. Decontamination wash water was placed in 55-gallon drums for later disposal in accordance with the SAP.

Water quality parameter meter sensors were rinsed with deionized water. These sensors do not typically contact sample water or enter wells; therefore, decontamination is primarily for protecting the meter and for obtaining accurate measurements.

3.5 Investigation-Derived Waste

Investigation-derived waste (IDW) generated during well purging and sampling includes purged groundwater which has the potential to be contaminated with low levels of COPC. The purge water IDW was placed in 55-gallon drums on-site pending laboratory results of groundwater samples. Solid IDW (filters, plastic, and paper) was disposed in trash bins on-site.

3.6 Sample Numbering, Handling, and Documentation

Each sample collected was assigned a unique sample identification number, referenced to the monitoring well location. As an example, 19LCMW01SW represents a sample taken during the nineteenth quarterly sampling event (19) performed by PBS (samples collected in June 2008) from Monitoring Well LC-MW01S at Lacamas Creek, which was a groundwater sample (W). The QC field duplicate sample was identified with fictitious location numbers related to the primary sample number and recorded in the field logbook and field sheet. No indication that a sample is a duplicate was provided on the sample label or chain-of-custody form. The sample to be used for matrix spike/matrix spike duplicate (MS/MSD) was specified in the comments section of the chain-of-custody. Field notes pertaining to sample collection were recorded in a permanently bound field logbook and groundwater field sheets, both on waterproof paper.

Groundwater samples were collected in the appropriate sample containers and placed in a cooler immediately upon sample collection. The cooler contained ice to maintain the approximate temperature of 4° C. Along with samples and ice, a temperature blank provided by the laboratory was placed in each cooler. Each day, one cooler contained a trip blank and all VOC samples. The samples collected each day were left at PBS' Vancouver office and picked up the following day by TestAmerica.

Sample labels on the sample containers included the following information:

- PBS project number
- Sample identification number
- Date and time of sampling
- Initials of sampling personnel
- Analyses to be performed
- Type of preservative added

3.7 Quality Assurance/Quality Control Samples

Duplicate samples were collected at a frequency of 1 per 10 monitoring well samples. Matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a frequency of 1 per 20 monitoring well samples. Trip blanks were submitted with shipments containing groundwater samples for VOC analyses. Dedicated pumps in all the wells eliminate the need for equipment blanks.

4.0 ANALYTICAL METHODS

Field measurements were obtained for pH, specific conductance, temperature, ORP, and dissolved oxygen in groundwater samples using a YSI Model 556 water quality meter. Turbidity was measured during sampling using an HF Scientific MicroTPW turbidity meter. During purging, color and turbidity were visually observed and noted. Analytical data were obtained by TestAmerica using standard, documented procedures in order to provide defensible data on contaminant characterization and contamination levels relative to appropriate regulatory and risk-based criteria. Specific laboratory analysis methods are presented in Table 2.

The specific analytical methodologies, along with the associated project-specified method detection limits (MDL), are presented in the QAPP. The MDLs are based on minimum detection levels that can be expected to be achieved reliably by the project analytical laboratories using the methodologies specified. As discussed in the QAPP, some of the analytical methodologies cannot achieve risk-based or cleanup goals for all analytes. Therefore, the analytical

methodologies were selected to attain detection or quantitation limits that approach or achieve the risk-based goals for chemicals most likely to be present, with a secondary emphasis on approaching or achieving these goals for the maximum number of other possible contaminants. Analytical results falling between the method detection limit and the project-specified reporting limit have been reported and flagged as estimated values (J-flagged) on laboratory analysis data tables (Appendix A) and the laboratory report sheets (Appendix B).

5.0 DATA MANAGEMENT AND REVIEW

The laboratory data quality was evaluated before use according to the procedures described in the QAPP. The analytical results for total priority pollutant metals, SVOCs, TPH-Gx (gasoline), TPH-Dx (diesel), explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, TOC, DOC, TSS, alkalinity, and inorganic ions are presented in Table 4 (Appendix A). Analytical results for dissolved metals from field filtered groundwater samples are presented in Table 5 (Appendix A). Specific VOCs and SVOCs detected above the laboratory MDLs are presented in Table 6 (Appendix A).

The analytical tables include the State of Washington MTCA levels for comparison with regulatory and risk-based criteria. MTCA Method A cleanup level values for groundwater were obtained from the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC) (WDOE, 2001). These cleanup levels are not site specific and are applicable to sites undergoing routine cleanup actions, as defined in MTCA. MTCA Method B risk-based concentrations for groundwater were obtained from the MTCA Method B levels presented in the *Volume 1, Multi-Sites Investigation Report for Camp Bonneville* (Shannon & Wilson, 1999). The MTCA Method B values are based on a Risk Calculations (CLARC) II database (based on a 10⁻⁶ cancer risk or a hazard quotient of 1) (WDOE, 1996; WDOE, 2001) and are derived from formula values obtained from the February 1996 CLARC II Update (WDOE, 1996).

6.0 GROUNDWATER MONITORING RESULTS

6.1 Base Boundary at Lacamas Creek

Groundwater samples were collected from the four monitoring well pairs located at the Base Boundary at Lacamas Creek (Figure 3) on June 23 and 24, 2008. Paired shallow (S) and deep (D) monitoring well samples consisted of Monitoring Wells LCMW01SW and LCMW01DW; LCMW02SW and LCMW02DW; LCMW03SW and LCMW03DW; and LCMW04SW and LCMW04DW. A field duplicate sample (labeled LCMW460W) was collected from Monitoring Well LCMW03S on June 24, 2008. Extra volume of groundwater was collected from Monitoring Well LCMW04S for the purpose of supplying extra water for laboratory MS/MSD samples.

Water level depths in the wells ranged from 5.38 to 6.67-feet below the top of the PVC well casings. These represent water elevations in the wells ranging from 284.64 to 286.04 feet mean sea level (MSL).

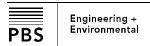
All samples were analyzed for TPH-Gx (gasoline), TPH-Dx (diesel), VOCs, SVOCs, explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, priority pollutant metals (total and dissolved), TOC, DOC, TSS, alkalinity, and inorganic ions. The laboratory analytical results are presented in Tables 4, 5, and 6. Groundwater field parameters (i.e., pH, temperature, conductivity, ORP, dissolved oxygen, and turbidity) recorded at the time of sampling are presented in Table 7.

The VOCs were not detected in any of the Base Boundary wells. The laboratory inadvertently omitted the analysis of the trip blanks submitted for the first two days of sampling. The VOC samples results from these two days were all non-detect and did not require qualification for potential contamination introduced during transport; therefore, this omission does not affect either the quality or use of this data.

No diesel, oil, or gasoline range petroleum hydrocarbons were detected in any of the Base Boundary groundwater samples. Explosive compounds, nitroglycerine, PETN, and picric acid were not detected in any of the groundwater samples. Perchlorate was not detected above the laboratory detection limit of 1 μ g/L in any of the groundwater samples from the Base Boundary monitoring wells.

Total Organic Carbon and DOC concentrations were below laboratory reporting limit (MRL) of 1.0 mg/L in all monitoring well groundwater samples. Total Suspended Solids were below the MRL of 1 mg/L in all samples except for Monitoring Well LCMW-04D where it was 1 mg/L. Bicarbonate alkalinity in the groundwater samples ranged from 41.8 to 52 mg/L. Inorganic ions consisting of chloride (1.26 to 2.66 mg/L), sulfate (0.38 to 1.7 mg/L), and nitrate (0.101 to 1.1 mg/L) were detected. Nitrites were not detected in any of the groundwater samples.

Arsenic, chromium, copper, nickel, and zinc all were detected in one or more of the unfiltered (total metals) groundwater samples from the Lacamas Creek – Base Boundary monitoring wells (Table 4). Most of the concentrations are estimated—except the copper concentration at Monitoring Well LCMW04D (1.13 μ g/L). The rest are below the MRL but above the MDL, therefore, these are estimated concentrations. This is a decrease from previous sampling events in the number of total metals detected.


Arsenic, cadmium, copper, nickel, and zinc were detected in one or more of the filtered (dissolved metals) groundwater samples from the Lacamas Creek – Base Boundary monitoring wells (Table 5). All of the concentrations reported are estimated (since they were below the MRL but detected above the MDL). No total or dissolved metals were detected at concentrations above MTCA Method A regulatory screening levels in samples from the Base Boundary monitoring wells.

Laboratory analysis results for duplicate sample LCMW460W were consistent with the concentrations in the original sample LCMW03SW, with the exception of dissolved cadmium and dissolved nickel detected in the duplicate sample but not in the original sample. Since the concentration reported for the duplicate was estimated (below the MRL), it is excluded for relative percent difference (RDP) comparisons.

6.2 Landfill 4/Demolition Area 1

Groundwater samples were collected from monitoring wells at Landfill 4/Demolition Area 1 (Figure 4) on June 24 through 26, 2008. Sample shallow (A) and deep (B) well pair numbers consisted of: L4MW01AW and L4MW01BW; L4MW02AW and L4MW02BW; L4MW03AW and L4MW03BW. Samples from individual monitoring wells consisted of: L4MW04AW, L4MW05AW, L4MW07BW, L4MW17W, and L4MW18W. A field duplicate sample (labeled L4MW465W) was collected from Monitoring Well L4MW03A on June 25, 2008.

Water level depths in the wells around the perimeter of the landfill ranged from 13.33 to 32.14-feet below the top of the PVC well casings. These represent water elevations in

the wells ranging from 484.06 to 516.24-feet MSL. The water level in the monitoring well located downstream of the landfill (Monitoring Well L4MW07B) was 39.67-feet below the top of the PVC well casing (441.13 feet MSL). Monitoring wells along North Fork Lacamas Creek at the base of the stream ravine, downstream of Landfill 4, had water levels below the top of the PVC casing at 10.63 feet in Monitoring Well L4MW17 and 12.66 feet in Monitoring Well L4MW18 (350.85 feet and 350.18 feet MSL, respectively).

All samples were analyzed for VOCs, explosive compounds (including HMX, RDX, NG, and PETN), and perchlorate. The laboratory analytical results are presented in Tables 4 and 6 (Appendix A). Groundwater field parameters (i.e., pH, temperature, conductivity, ORP, dissolved oxygen, and turbidity) recorded at the time of sampling are presented in Table 7 (Appendix A).

PETN and nitroglycerin were not detected in any of the groundwater samples from shallow or deep monitoring wells. No explosive compounds (HMX and RDX) were detected in Monitoring Wells L4MW01B, L4MW07B, L4MW17, and L4MW18. HMX was detected in Monitoring Wells L4MW02A (3.4 μ g/L), L4MW02B (4.1 μ g/L), and L4MW03AW (0.47 μ g/L); HMX was detected in one other monitoring well (L4MW05AW) but only at estimated concentrations. RDX was detected in Monitoring Wells L4MW01A (0.12 J μ g/L), L4MW02A (20 μ g/L), L4MW02B (85 μ g/L), L4MW03A (11 μ g/L), L4MW03B (5 μ g/L), L4MW04A (2.4 μ g/L), and L4MW05A (3.8 μ g/L); other wells did not have detectable RDX.

Perchlorate was detected in groundwater samples from Monitoring Wells L4MW01A (2 μ g/L), L4MW02A (160 μ g/L), L4MW02B (390 μ g/L), L4MW03A (86 μ g/L), L4MW03B (39 μ g/L), L4MW04A (30 μ g/L), L4MW05A (37 μ g/L), and L4MW07B (2.3 μ g/L). No perchlorate was detected above the laboratory detection limit of 1 μ g/L in groundwater from Monitoring Wells L4MW01B, L4MW17, and L4MW18. The highest levels of HMX, RDX, and perchlorate were found in the groundwater samples from the paired Monitoring Wells L4MW02A and L4MW02B.

VOCs were detected at very low levels in Landfill 4 Monitoring Wells MW-02B, MW-04A, and MW-05A. The concentrations were predominantly estimated (above the MDL but below the MRL). Two VOC compounds were detected at Monitoring Well MW-17, but both were estimated values. At Monitoring Well MW-02B, concentrations of 1,1-dichloroethane, 1,1-dichloroethene, 1,1,1-trichloroethane, and dichlorodifluoromethane were all detected, although below applicable MTCA Method A regulatory screening values. A tentatively identified compound was also identified at Monitoring Well MW-02B as Freon 113 at 59.1 $\mu g/L$.

Total and dissolved metals and SVOCs were removed from the LF4/DA1 monitoring parameters per the WDOE in 2006.

Laboratory analysis results for duplicate sample L4MW465W were consistent with the concentrations in the original sample L4MW03AW. There were no differences that exceeded and RPD of 20 percent between the two samples.

7.0 RECENT TRENDS IN WATER QUALITY DATA

The laboratory results for the groundwater parameters were compared for the 2nd Quarter 2008 event and the six previous quarterly sampling events. These sampling quarters covered sampling periods of December 2006, March 2007, June 2006, September 2007, December 2007, and March 2008 and encompass the range of seasonal climatic (rainfall and temperature) and groundwater level conditions at the monitoring well sites. Groundwater parameter data which show significant (at least one order of magnitude) difference over these sampling events are listed below.

Metals; Lacamas Creek/Boundary (metals are not included in the Landfill 4/Demolition Area 1 sampling)

• The number of total and dissolved metals detected and concentrations have decreased, most to below detection limits. All of the dissolved concentrations detected are below the MRL. Only one total metal (copper at MW02S) was detected above the MRL. These results are attributable to the installation of dedicated pumps, low-flow purging, and sampling techniques. The dedicated bladder pumps are able to obtain much less turbid samples which decreased the total and dissolved metal concentrations.

Petroleum Hydrocarbons

 Diesel range petroleum hydrocarbons were detected in the Lacamas Creek Monitoring Well LCMW02DW at 0.15 mg/L in January 2006 but have not been detected during subsequent sampling events.

Perchlorate

- Perchlorate increased in Landfill 4/Demolition Area 1 Monitoring Wells L4MW02A and L4MW02B, while it decreased slightly at Monitoring Well L4MW01A.
- Perchlorate remained about the same concentration at Monitoring Wells L4MW03A, L4MW03B, L4MW04A, L4MW05A, and L4MW07B.
- Perchlorate was not detected in Landfill 4/Demolition Area 1 Monitoring Wells L4MW01A, L4MW17, and L4MW18 above the MRL of 1μg /L.

Explosives

 HMX and RDX concentrations are relatively consistent through the recent sampling events.

8.0 DATA QUALITY OBJECTIVES

The overall data quality objective is to provide data of known and sufficient quality to evaluate the physical extent and concentration ranges of chemicals of potential concern from analysis of groundwater samples and to assure compliance with environmental and health-related agencies. Data quality objectives for laboratory analysis are presented in the QAPP. Laboratory analytical data were evaluated with respect to quality assurance objectives for precision, accuracy, representativeness, comparability, and completeness parameters. The project specifications were met for all of these analytes, indicating that the sampling and analysis procedures were reproducible. The laboratory report narratives (TestAmerica) state that all quality control parameters that affect sample analysis were met.

8.1 Field Data Quality Assessment

There are no specific data quality objectives for the measurement of field parameters (such as temperature, pH, ORP, conductivity, dissolved oxygen, and turbidity). Specific conductance, temperature, ORP, dissolved oxygen, and pH was measured during purging. Turbidity is measured during sample collection. Stabilization was considered reached when three consecutive readings were within ± 0.3 for pH, $\pm 1^{\circ}$ C for temperature, ± 10 percent for specific conductance, ± 10 mV for ORP, and ± 0.5 mg/L for DO.

8.2 Quality Control Sample Assessment

Trip blanks accompanied the groundwater samples for VOC analysis that were consolidated daily into one cooler and shipped to the laboratory. Trip blanks were shipped on June 23, 24, 25, and 26, 2008. The laboratory did not analyze the trip blanks for June 23 and 24, 2008. The trip blanks for June 25 and 26, 2008, were analyzed for VOCs. Only the trip blank for June 25, 2008, had a detectable VOC compound. Methylene chloride had an estimated concentration of 0.18 ug/L. The groundwater samples associated with this trip blank did not have any detectable concentrations of methylene chloride. However, there were estimated concentrations of methylene chloride in two samples (Monitoring Wells MW-02B and MW-04A) collected on June 26, 2008. Methylene chloride is a common laboratory contaminant and has not been previously reported at the site.

One duplicate sample was collected from each of the study areas. The duplicate samples were analyzed for the same constituents as the source sample. The RPD was calculated as the difference between the values divided by the average of the values. For samples with results greater than five times the practical quantification limit (PQL), an RPD of less than 20 percent is considered good duplication. For samples with results less than five times the PQL for analysis, the above difference between the sample and its duplicate must be less than the PQL in order to meet the quality assurance acceptance criteria. A significant difference between duplicate values for a few parameters indicates potential problems with the precision of specific analyses. A significant difference for many parameters indicates potential problems with the sample-collection procedures.

The duplicate sample LCMW460W (Lacamas Creek Base Boundary area) and the source LCMW-03S show good duplication for all analytes. Total chromium was detected in the duplicate at a concentration below the PQL (MRL) of 2.00 mg/L. Since the absolute difference is below the PQL, it is not used in the calculation of a RPD. Dissolved cadmium was detected in the duplicate sample at an estimated concentration below the PQL but not in the source sample. In the case of the dissolved metals, the absolute differences are less than the PQL or MRL for the analyte and, therefore, acceptable.

Duplicate sample 18L4MW465W (Landfill 4/Demolition Area 1) and the source sample L4MW03A had no differences in analytical results—except in the HMX results which had an RPD of 16 percent. Since this is below the 20 percent criteria, this is acceptable.

8.3 Laboratory Analysis Chemical Data Quality

The analytical data quality evaluations performed by TestAmerica are presented in Appendix B with the analysis summary reports for the specific tests. Case narratives

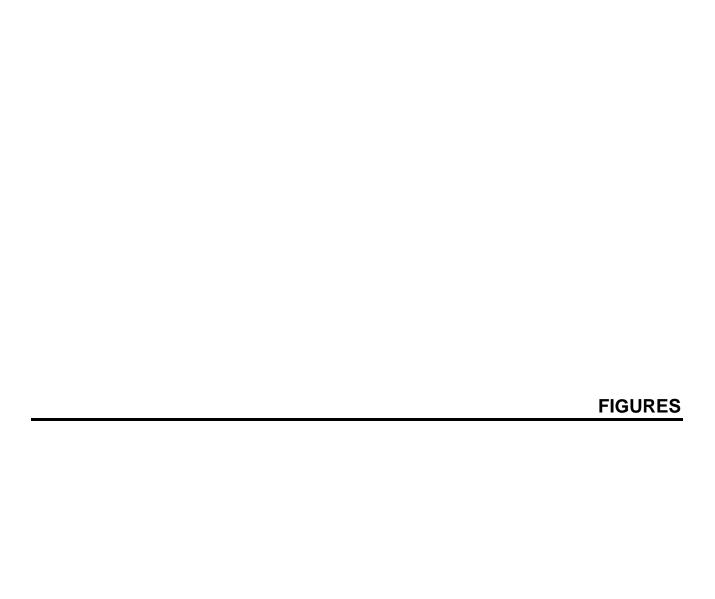
describing sample receipt, identification, and general comments by laboratory personnel are included in Appendix B preceding the copies of the chain-of-custody forms.

No sample analytical laboratory results were rejected. The case narratives and analysis summary reports indicate that most analytical results are acceptable for use without qualification. Some individual sample results were qualified as estimated values that were low-level detections below the laboratory instrument practical quantification limits (PQL), and flagged with "J" on the laboratory summary reports.

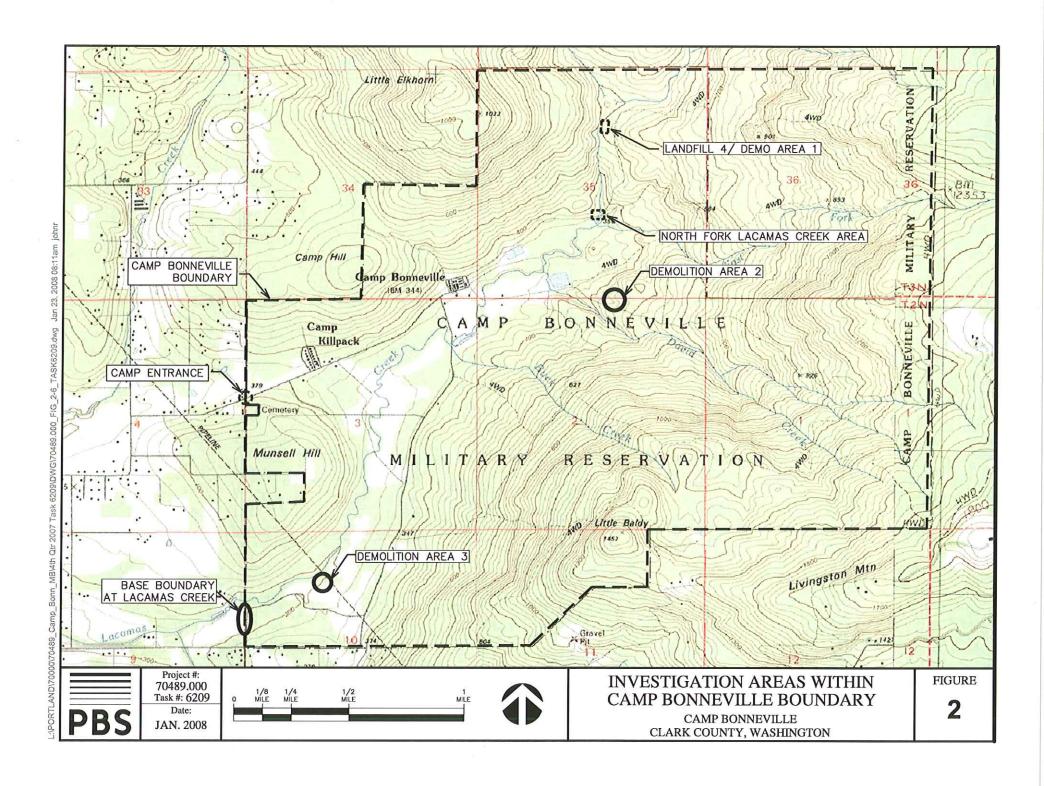
MS/MSD duplicate analyses were performed on sample LCMW04S. All samples were received within the holding times for transport from the collection site to the laboratory. Exceptions to the collection and analysis criteria are listed below and noted in the laboratory case narrative documentation in Appendix B.

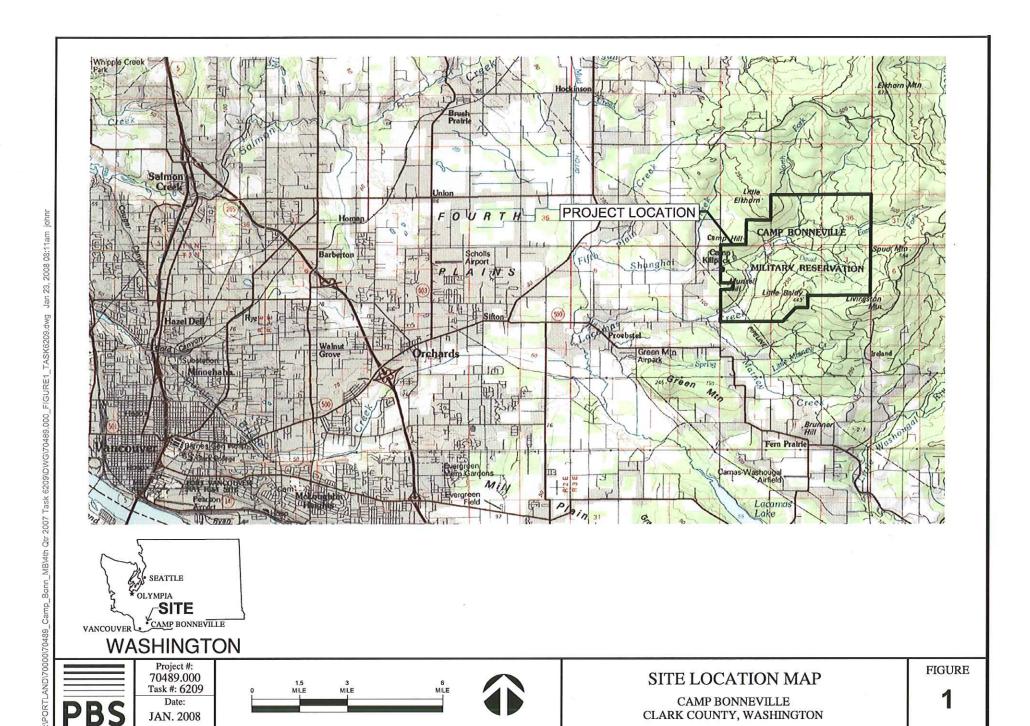
- The total metals' analyses had a lead detection in the laboratory blank. Since there was no detection of total lead in any of the project samples, this does not appear to affect the data. Also, total antimony and total selenium were outside the limits on the laboratory duplicate; but since other laboratory QC samples indicate that the equipment was operating within specifications, and neither analyte was detected in the project samples, this does not impact the data. Total beryllium did not meet the recovery specifications in the matrix spike duplicate. Since this analyte was not detected in any of the project samples, this does not appear to affect the data.
- For the explosives testing (SW846 8330), HMX and 2,6-Dinotrotoluene were just above the recovery limits for the Matrix Spike. Since other QC tests indicate that the method and instrumentation was performed within limits, this discrepancy does not appear to affect the project data.
- VOC laboratory blank (8070229-BLK1) had estimated detections of methylene chloride, naphthalene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene. This laboratory blank is associated with PRF0965 where none of the samples had detections of any VOC compounds. The trip blank for this batch had an estimated detection of methylene chloride. This does not impact the analytical project results.

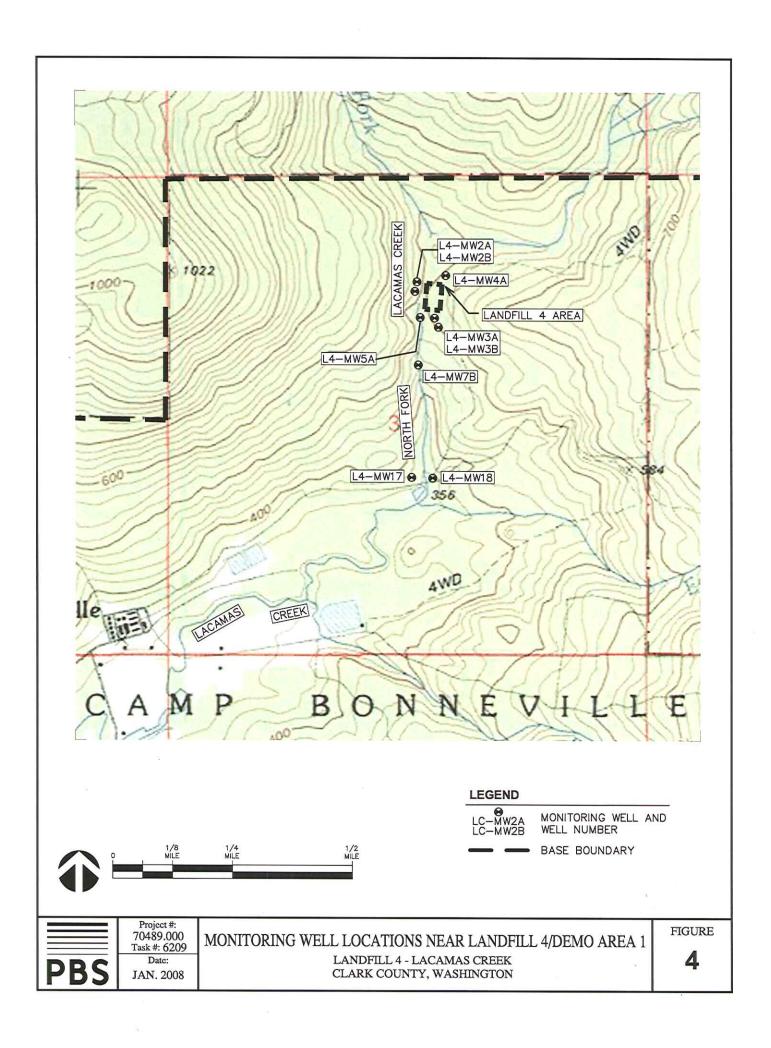
8.4 Deviations to Standard Procedures


During the groundwater sampling event for the 2nd Quarter 2008, the deviations from standard procedures of the SAP included the use of dedicated pumps in each of the wells and eliminating the equipment blank. These procedures are described above in Section 3.0.

9.0 REFERENCES


- Michael Baker Jr., Inc. (2006a). Site Health and Safety Plan, Groundwater Sampling and Analysis: Camp Bonneville, Vancouver, Washington. Final: October 30, 2006. Revised August 14, 2007.
- Michael Baker, Jr., Inc., and PBS (PBS Engineering + Environmental). (2006b). *Quality Assurance Project Plan, Groundwater Sampling and Analysis: Camp Bonneville, Vancouver, Washington*. Final: 2006.
- Michael Baker, Jr., Inc., and PBS (PBS Engineering + Environmental). (2006a). *Groundwater Sampling and Analysis Plan, Camp Bonneville, Vancouver, Washington*. Draft: October 31, 2006. Revised: September 5, 2007.
- Otak, Inc. (1998; updated 2003). Camp Bonneville Reuse Plan. Prepared for The Camp Bonneville Local Redevelopment Authority (LRA). September.
- PBS (PBS Engineering + Environmental). (2004a). *Groundwater Sampling and Analysis Report,* 4th Quarter 2003: Camp Bonneville, Vancouver, Washington. May 24, 2004.
- PBS (PBS Engineering + Environmental). (2004b). Monitoring Well Installation Report, Landfill 4/Lacamas Creek: Camp Bonneville, Vancouver, Washington. August 16, 2004.
- PBS (PBS Engineering + Environmental). (2005a). *Groundwater Sampling and Analysis Report,* 1st Quarter 2004: Camp Bonneville, Vancouver, Washington. January 3, 2005.
- PBS (PBS Engineering + Environmental). (2005b). *Groundwater Sampling and Analysis Report,* 2nd Quarter 2004: Camp Bonneville, Vancouver, Washington. January 10, 2005.
- PBS (PBS Engineering + Environmental). (2005c). *Groundwater Sampling and Analysis Report,* 3rd Quarter 2004: Camp Bonneville, Vancouver, Washington. January 17, 2005.
- PBS (PBS Engineering + Environmental). (2005d). *Groundwater Sampling and Analysis Report,* 4th Quarter 2004: Camp Bonneville, Vancouver, Washington. July 20, 2005.
- PBS (PBS Engineering + Environmental). (2005e). *Groundwater Sampling and Analysis Report,* 1st Quarter 2005: Camp Bonneville, Vancouver, Washington. July 27, 2005.
- PBS (PBS Engineering + Environmental). (2005f). *Groundwater Sampling and Analysis Report,* 2nd Quarter 2005: Camp Bonneville, Vancouver, Washington. December 19, 2005.
- PBS (PBS Engineering + Environmental). (2005g). *Groundwater Sampling and Analysis Report,* 3rd Quarter 2005: Camp Bonneville, Vancouver, Washington. December 23, 2005.
- PBS (PBS Engineering + Environmental). (2006a). *Groundwater Sampling and Analysis Report,* 4th Quarter 2005: Camp Bonneville, Vancouver, Washington. August 14, 2006.
- PBS (PBS Engineering + Environmental). (2006b). *Groundwater Sampling and Analysis Report,* 1st Quarter 2006: Camp Bonneville, Vancouver, Washington. August 18, 2006.


18


- PBS (PBS Engineering + Environmental). (2006c). *Groundwater Sampling and Analysis Report,* 2nd Quarter 2006: Camp Bonneville, Vancouver, Washington. October 23, 2006.
- PBS (PBS Engineering + Environmental. (2007a). *Groundwater Sampling and Analysis Report,* 3rd Quarter 2006: Camp Bonneville, Vancouver, Washington. January 3, 2007.
- PBS (PBS Engineering + Environmental). (2007b). *Draft Groundwater Sampling and Analysis Report, 4th Quarter 2006: Camp Bonneville, Vancouver, Washington.* March 28, 2007.
- PBS (PBS Engineering + Environmental). (2007c). *Draft Groundwater Sampling and Analysis Report, 1st Quarter 2007: Camp Bonneville, Vancouver, Washington.* June 1, 2007.
- PBS (PBS Engineering + Environmental). (2007d). *Draft Groundwater Sampling and Analysis Report, 2nd Quarter 2007: Camp Bonneville, Vancouver, Washington.* August 16, 2007.
- PBS (PBS Engineering + Environmental). (2007e). *Draft Groundwater Sampling and Analysis Report, 3rd Quarter 2007: Camp Bonneville, Vancouver, Washington.* November 20, 2007.
- PBS (PBS Engineering + Environmental). (2008a). *Groundwater Sampling and Analysis Report,* 4th Quarter 2007: Camp Bonneville, Vancouver, Washington. January 29, 2008.
- PBS (PBS Engineering + Environmental). (2008b). *Groundwater Sampling and Analysis Report,* 1st Quarter 2008: Camp Bonneville, Vancouver, Washington. April 21, 2008.
- Shannon & Wilson. (1999). *Multi-Sites Investigation Report, Camp Bonneville, Vancouver, Washington (vol. 1)*. Contract No. DACA67-94-D-1014.
- WDOE (Washington State Department of Ecology). (1996). *Model Toxics Control Act Cleanup Levels and Risk Calculation (CLARC II) Update: Olympia, Washington*. WDOE Publication No. 94-145, February.
- WDOE (Washington State Department of Ecology), Toxics Cleanup Program. (2001). The Model Toxics Control Act Cleanup (MTCA) Regulation. Chapter 173-340 WAC: Olympia, Washington, WDOE Publication No. 94-06. Amended February 12, 2001.

L:NPORTLANDI70000170489_Camp_Bonn_MBMth Qtr 2007 Task 6209\DWG\70489.000_FIG_2-6_TASK6209.dwg Jan 23, 2008 08:11am johnr

APPENDIX A

Field Parameters and Laboratory Analysis Data Tables

Table 4. Constituents Detected in Groundwater Samples
Table 5. Dissolved Metals and Dissolved Organic Carbon
Table 6. Volatile and Semi-Volatile Organic Compounds
Table 7. Field Parameters for Groundwater Samples
Table 8. Well Number and Construction Details

Table 4 Constituents Detected in Groundwater 2nd Quarter 2008

Camp Bonneville, Vancouver, Washington

				-	TPH (mg/L))			Explosives (u	g/L)			G	eneral Chemi	stry	
				Gasoline	Diesel							Total Organic		Total	Alkalinity, Bicarbonate	Alkalinity,
			Perchlorate	Range	Range	Oil Range	HMX	RDX	Nitroglycerin	PETN	Picric Acid		Organic Carbon		(As CaCO3)	Carbonate (As
Sample ID	Sample Date	Location	(ug/L)	Organics	Organics	Organics	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	Solids (mg/L)	mg/L	CaCO3) mg/L
19L4MW01AW	06/25/2008		2	NT	NT	NT	< 0.4	0.12		< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW01BW	06/25/2008	Landfill 4	0.59 J	NT	NT	NT	< 0.4		< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW02AW	06/25/2008		160	NT	NT	NT	3.4		< 3	< 2	0.13		NT	NT	NT	NT
19L4MW02BW	06/26/2008		390	NT	NT	NT	4.1		< 15	< 10	2.9		NT	NT	NT	NT
19L4MW03AW	06/25/2008	Landfill 4	86	NT	NT	NT	0.47	11	< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW465W																
Duplicate for																
L4MW03A	06/25/2008	Landfill 4	86	NT	NT	NT	0.4		< 3	< 2	< 0.4	NT	NT	NT	NT	NT
RPD for duplicate			0%				16.09195	0%		• • • • • • • • • • • • • • • • • • • •						
19L4MW03BW	06/25/2008		39	NT	NT	NT	< 0.4		< 3	< 2	0.14		NT	NT	NT	NT
19L4MW04AW	06/26/2008		30	NT	NT	NT	< 0.4		< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW05AW	06/25/2008	Landfill 4	37	NT	NT	NT	0.32 J	3.8	< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW07BW	06/25/2008	Landfill 4	2.3	NT	NT	NT	< 0.4	< 0.2	< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW17W	06/24/2008		< 1	NT	NT	NT	< 0.4	< 0.2	< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19L4MW18W	06/24/2008		< 1	NT	NT	NT	< 0.4	< 0.2	< 3	< 2	< 0.4	NT	NT	NT	NT	NT
19LCMW01SW		Lacamas Creek		< 80.0	< 0.0769	< 0.481	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0		< 1.00		< 5.00
19LCMW01DW		Lacamas Creek		< 80.0	< 0.0769	< 0.481	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0	_	< 1.00	47.7	
19LCMW02SW	06/23/2008	Lacamas Creek	< 1	< 80.0	< 0.0762	< 0.476	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0	-	< 1.00		< 5.00
19LCMW02DW		Lacamas Creek		< 80.0	< 0.0769	< 0.481	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0		< 1.00		< 5.00
19LCMW03SW	06/24/2008	Lacamas Creek	< 1	< 80.0	< 0.0762	< 0.476	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0	< 1.0	< 1.00	44.6	< 5.00
19LCMW460W																
duplicate of LCMW-																
3S	06/24/2008	Lacamas Creek		< 80.0	< 0.0762	< 0.476	< 0.4		< 3	< 2	< 0.4	< 1.0		< 1.00		< 5.00
RPD for duplicate			0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	0.00%
19LCMW03DW		Lacamas Creek		< 80.0	< 0.0762	< 0.476	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0		< 1.00		< 5.00
19LCMW04SW		Lacamas Creek		< 80.0	< 0.0777	< 0.485	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0	-	< 1.00		< 5.00
19LCMW04DW	06/24/2008	Lacamas Creek	< 1	< 80.0	< 0.0762	< 0.476	< 0.4	< 0.2	< 3	< 2	< 0.4	< 1.0	< 1.0	1	52	< 5.00
WA MTCA Method A	<u> </u>		n/a	1,000	500	500	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
WA MTCA Method B	Levels															

Table 4 Constituents Detected in Groundwater 2nd Quarter 2008

Camp Bonneville, Vancouver, Washington

				Anions/C	ations							M	ETALS (mg	ı/L)					
Sample ID	Sample Date	Location	Sulfate (mg/L)	Chloride (mg/L)	Nitrite (mg/L)	Nitrate (mg/L)	Antimony	Arsenic	3eryllium	Cadmium	Chromium	Copper	-ead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
19L4MW01AW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW01BW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW02AW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW02BW	06/26/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW03AW	06/25/2008	Landfill 4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW465W Duplicate for L4MW03A	06/25/2008	Landfill 4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
RPD for duplicate																			
19L4MW03BW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW04AW	06/26/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW05AW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW07BW	06/25/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW17W	06/24/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19L4MW18W	06/24/2008		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
19LCMW01SW		Lacamas Creek			< 0.0100		< 1.00	0.24 J	< 0.500	< 0.500	< 2.00	1.26 J	< 1.00	< 0.200	< 1.00	< 0.500	< 1.00	< 1.00	1.37 J
19LCMW01DW		Lacamas Creek	0.9		< 0.0100		< 1.00	0.4 J	< 0.500	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.17J	< 0.500	< 1.00	< 1.00	0.87 J
19LCMW02SW		Lacamas Creek	1.7		< 0.0100		< 1.00	0.47 J	< 0.500	< 0.500	< 2.00	5.01		< 0.200	0.2 J		< 1.00	< 1.00	2.35 J
19LCMW02DW	06/23/2008		0.92		< 0.0100		< 1.00	0.49 J	< 0.500	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.27 J		< 1.00	< 1.00	0.71 J
19LCMW03SW	06/24/2008	Lacamas Creek	0.45	1.34	< 0.0100	0.271	< 1.00	< 1.00	< 0.500	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	< 1.00	< 0.500	< 1.00	< 1.00	1.03 J
19LCMW460W duplicate of LCMW- 3S	06/24/2008	Lacamas Creek	0.42	1 36	< 0.0100	0 298	< 1.00	< 1.00	< 0.500	< 0.500	0.42 J	< 2.00	< 1.00	< 0.200	< 1.00	< 0.500	< 1.00	< 1.00	1.04 J
RPD for duplicate	00/24/2000	Labamas Orcek	6.90%	1.48%	0.00%	9.49%	0.00%		0.00%	0.00%	0.00%			0.00%		0.00%		0.00%	
19LCMW03DW	06/23/2008	Lacamas Creek			< 0.0100		< 1.00	0.71 J	< 0.500	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.15 J	< 0.500	< 1.00	< 1.00	< 5.00
19LCMW04SW		Lacamas Creek			< 0.0100		< 1.00	< 1.00	< 5.00	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	< 1.00		< 1.00	< 1.00	1.06 J
19LCMW04DW		Lacamas Creek	1.35		< 0.0100		< 1.00	0.533 J	< 0.500	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.163 J		< 1.00	< 1.00	1.41 J
WA MTCA Method A	Cleanup Levels		n/a	n/a	n/a	n/a	n/a	5	n/a	5	50	n/a	15	2	n/a	n/a	n/a	n/a	n/a
WA MTCA Method B							1.4 - 8		0.02			592		4,800	320	80	80	1.1	4,800

NOTES: J = estimated. Values reported are above the method detection limit but below the method reporting limit.

NT = not tested

n/a = not applicable

< 5.00 = not detected above the indicated method detection limit.

mg/L = milligrams per liter ug/L = micrograms per liter

RPD = relative percent different

WA MTCA Method B Levels from "Multi-Sites Investigation Report" from Shannon & Wilson, 1999.

Table 5 Dissolved Metals 2nd Quarter 2008

Camp Bonneville, Vancouver, Washington

		Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Sample ID	Sample Date	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
19LCMW01SW	06/23/2008	<1.0	<1.0	<0.5	0.18 J	< 2.00	< 2.00	< 1.00	< 0.200	0.263 J	< 0.500	< 1.00	< 1.00	4.04 J
19LCMW01DW	06/23/2008	<1.0	<1.0	<0.5	0.065 J	< 2.00	< 2.00	< 1.00	< 0.200	0.18 J	< 0.500	< 1.00	< 1.00	1.5 J
19LCMW02SW	06/23/2008	<1.0	0.189 J	<0.5	0.099 J	< 2.00	0.668 J	< 1.00	< 0.200	0.46 J	< 0.500	< 1.00	< 1.00	9.7 J
19LCMW02DW	06/23/2008	<1.0	<1.0	<0.5	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.219 J	< 0.500	< 1.00	< 1.00	1.43 J
19LCMW03SW	06/24/2008	<1.0	<1.0	<0.5	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	< 1.00	< 0.500	< 1.00	< 1.00	0.947 J
19LCMW460W														
duplicate of														
LCMW03S	06/24/2008	<1.0	<1.0	<0.5	0.239 J	< 2.00	< 2.00	< 1.00	< 0.200	0.478 J	< 0.500	< 1.00	< 1.00	1.26 J
RPD														
19LCMW03DW	06/23/2008	<1.0	0.394 J	<0.5	0.11 J	< 2.00	< 2.00	< 1.00	< 0.200	0.535 J	< 0.500	< 1.00	< 1.00	1.09 J
19LCMW04SW	06/24/2008	<1.0	<1.0	<0.5	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	0.447 J	< 0.500	< 1.00	< 1.00	0.904 J
19LCMW04DW	06/24/2008	<1.0	0.628 J	<0.5	< 0.500	< 2.00	< 2.00	< 1.00	< 0.200	< 1.00	< 0.500	< 1.00	< 1.00	1.57 J
WA MTCA Method A	Cleanup Levels	n/a	5	n/a	5	50	n/a	15	2	n/a	n/a	n/a	n/a	n/a
WA MTCA Method E	_	1.4 - 8	n/a	0.02	n/a	n/a	592	n/a	4,800	320	80	80	1.1	4,800

NOTES:

n/a = not applicable

<0.5 = not detected above the method detection limit indicated.

ug/L = microgram per liter

J = estimated. Values reported are above the method detection limit but below the method reporting limit.

Table 6
Volatile Organic Compounds Detected in Groundwater
2nd Quarter 2008

Camp Bonneville, Vancouver, Washington

							VOC	s (ug/L)						
Sample ID	Sample Date	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	Dichlorodifluoromethane	Isopropylbenzene	Methylene Chloride	Naphthalene	n-Propylbenzene	[etrachloroethene	richloroethene	richlorofluoromethane	Freon 113*
19L4MW02BW	06/26/2008	29.7	23.2	9.36	<2.00	26.1	0.2 J	2.58 J	<4.00	0.2 J	0.46 J	0.26 J	0.22 J	59.1
19L4MW04AW	06/26/2008	<1.00	<1.00	<1.00	<1.00	<5.00	<2.00	0.17 J	<2.00	<1.00	<1.00	<1.00	<1.00	ND
19L4MW05AW	06/25/2008	<1.00	<1.00	<1.00	<1.00	<5.00	<2.00	<5.00	<2.00	<1.00	0.39 J	<1.00	<1.00	ND
19L4MW17W	06/24/2008	<1.00	<1.00	<1.00	0.12 J	<5.0	<2.00	<5.00	0.35 J	<1.00	<1.00	<1.00	<1.00	ND
TB229_062508	06/25/2008	<1.00	<1.00	<1.00	<1.00	<5.00	<2.00	0.18 J	<2.00	<1.00	<1.00	<1.00	<1.00	ND
TB229_062608	06/26/2008	<1.00	<1.00	<1.00	<1.00	<5.00	<2.00	<5.00	<2.00	<1.00	<1.00	<1.00	<1.00	ND
MTCA Method A C	Cleanup Levels	200	n/a	n/a	n/a	1600	n/a	5	160	n/a	5	5	n/a	n/a
MTCA Method B S	Standard Values		800	400	n/a	1600	n/a			n/a			2400	n/a

^{*} detected as a tentatively identified compound.

ND = not detected

n/a = not available

Limited to VOC compounds that were detected. Review laboratory reports for complete results. No SVOCs detected in any samples.

<1.00 = not detected above the method reporting limit indicated.

J = result is estimated. Value falls above the method detection limit but below the method reporting limit.

Table 7 Field Parameters for Groundwater Samples 2nd Quarter 2008

Camp Bonneville, Vancouver, Washington

Sample ID	Date	Depth to Water	Water Elevation Feet amsl	Temperature ° C	Specific Conductivity uS/cm	Oxydation Reduction Potential Millivolts	pH S.U.	Dissolved Oxygen	Turbidity NTU
19L4MW01AW	06/25/2008	16.58	514.82	10.21	35	61.5	5.34	mg/l 8.05	0
19L4MW01BW	06/25/2008	13.33	516.24	10.15	27	64.4	5.43		0
19L4MW02AW	06/25/2008	26.84	493.09	10.97	46	76.7	4.97	8.8	0
19L4MW02BW	06/26/2008	32.14	486.32	11.12	63	-5.6	5.9	1.03	0
19L4MW03AW	06/25/2008	30.00	484.85	11.66	23	69.3	4.38	8.28	3.3
19L4MW03BW	06/25/2008	27.06	484.41	13.07	51	33.7	5.84	7.13	5.31
19L4MW04AW	06/26/2008	27.73	484.06	10.98	19	108	4.99	7.69	13.55
19L4MW05AW	06/25/2008	24.18	485.73	10.14	29	41.8	5.5	7.26	0
19L4MW07BW	06/25/2008	39.67	441.13	9.71	35	63.9	5.49	7.38	0
19L4MW17W	06/24/2008	10.63	350.85	11.67	264	-25.4	7.59	3.46	0.67
19L4MW18W	06/24/2008	12.66	350.18	10.46	146	14.4	6.53	8.64	0.06
19LCMW01SW	06/23/2008	5.38	284.78	10.51	87	-3.8	6.84	7.24	0
19LCMW01DW	06/23/2008	5.61	284.64	11.15	91	-5.9	6.98	7.72	0
19LCMW02SW	06/23/2008	6.23	284.96	10.42	87	-2.5	6.67	8.17	0
19LCMW02DW	06/23/2008	6.67	284.92	11.05	93	-9.2	6.93	8.05	0.01
19LCMW03SW	06/24/2008	5.70	285.21	10.45	101	-7.3	6.87	8.28	0
19LCMW03DW	06/23/2008	5.96	285.02	10.88	96	17	6.46	8.03	0.22
19LCMW04SW	06/24/2008	5.59	286.04	10.7	106	7.4	6.51	4.18	0
19LCMW04DW	06/24/2008	6.31	285.48	12.34	120	20.9	6.58	7.83	0.28

^{*} depth in feet measured from top fo well PVC casing.

^{**} water level in feet above mean sea level, relative to top of PVC casing elevation survey Field parameters were measured using a YSI 556 and a flow through cell, with the exception of turbidity, which was measured using a HF Scientific TPW Meter.

Table 8
Well Number and Construction Details

Camp Bonneville, Vancouver, Washington

Well Number in PBS Work Contract	WADOE Well Tag Number	Well Location	Measured Total Depth (ft)*	Well Log Total Depth (ft)**	Screened Interval (ft)***	Top of PVC Casing Elevation (feet above mean sea level)	Well Number on Steel Casings/Caps (CHPPM No.)
LC-MW01S	AHA-359	Lacamas Cr.	22.71	23.00	10-20	290.16	LC-MW01S
LC-MW06D	AHA-358	Lacamas Cr.	42.21	42.50	29.5-39.5	290.25	LC-MW01D
LC-MW02S	AHA-364	Lacamas Cr.	17.46	17.70	10-15	291.19	LC-MW02S
LC-MW07D	AHA-357	Lacamas Cr.	37.83	38.10	25-35	291.59	LC-MW02D
LC-MW03S	AHA-363	Lacamas Cr.	20.09	20.35	13-18	290.91	LC-MW03S
LC-MW08D	AHA-362	Lacamas Cr.	39.36	39.48	27-37	290.98	LC-MW03D
LC-MW04S	AHA-375	Lacamas Cr.	16.49	16.80	9-14	291.63	LC-MW04S
LC-MW09D	AHA-361	Lacamas Cr.	37.03	37.13	24.5-34.5	291.79	LC-MW04D
L4-MW01A	N/A	Landfill 4	30.17	30.40	N/A	531.40	L4-MW01A
L4-MW01B	AGL-482	Landfill 4	55.54	56.00	43-53	529.57	L4-MW01B
L4-MW02A	N/A	Landfill 4	40.21	40.20	N/A	519.93	L4-MW02A
L4-MW02B	AGL-483	Landfill 4	74.97	75.00	62-72	518.46	L4-MW02B
L4-MW03A	AGL-466	Landfill 4	48.71	49.00	41-46	514.85	L4-MW03A
L4-MW03B	AGL-484	Landfill 4	61.85	63.00	50-60	511.47	L4-MW03B
L4-MW04A	AGL-465	Landfill 4	46.44	46.00	33-43	511.79	L4-MW04A
L4-MW05A	AGL-467	Landfill 4	36.63	36.00	28-33	509.91	L4-MW05A
L4-MW07B	N/A	Landfill 4	58.86	58.90	46-56	480.80	L4-MW07B
L4-MW17	ALB-252	Landfill 4	17.17	17.67	5-15	361.48	L4-MW17
L4-MW18	ALB-251	Landfill 4	22.60	22.01	10-20	362.84	L4-MW18

Notos:

N/A = not available

^{* =} depth in feet measured from top of well PVC casing in December 2007. Sediment present at bottom of some casings.

^{** =} casing depth in feet recorded on well log; measured from top of PVC casing

^{*** =} screened interval reported on well completion logs; feet below ground surface

APPENDIX B TestAmerica, Analytical Reports (Separate electronic files on CD)

THE ELEMBERT IN ENTINOMINENT TEO

PORTLAND, OR 9405 S.W. NIMBUS AVENUE

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 14, 2008

Andrew Harvey PBS Engineering 4412 SW Corbett Ave. Portland, OR 97239

Amended Report

RE: Camp Bonneville, WA

Enclosed are the results of analyses for samples received by the laboratory on 06/24/08 09:30. The following list is a summary of the Work Orders contained in this report, generated on 07/14/08 14:32.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PRF0842	Camp Bonneville, WA	Camp Bonneville, WA

TestAmerica Portland

ALDE C

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
19LC MW01DW	PRF0842-02	Water	06/23/08 10:50	06/24/08 09:30
19LC MW01SW	PRF0842-03	Water	06/23/08 12:30	06/24/08 09:30
19LC MW02DW	PRF0842-04	Water	06/23/08 14:15	06/24/08 09:30
19LC MW02SW	PRF0842-05	Water	06/23/08 15:15	06/24/08 09:30
19LC MW03DW	PRF0842-06	Water	06/23/08 16:45	06/24/08 09:30

TestAmerica Portland

ALL DES

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created: Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Analytical Case Narrative

TestAmerica - Portland, OR

PRF0842

The first sample was identified as "TB" with a single VOA vial provided. The analyst, not realizing that there was only a single vial, used the vial for screening purposes. Therefore there is no useful volatiles data for the travel blank.

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Project Number:
Portland, OR 97239 Project Manager:

Camp Bonneville, WA Andrew Harvey Report Created: 07/14/08 14:32

Gasoline Hydrocarbons per NW TPH-Gx Method

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW011	DW)		Wa	ter		Samp	led: 06/23/	/08 10:50		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060901	06/24/08 11:47	06/25/08 00:49	U
Surrogate(s): 4-BFB				86.4%		50 - 150 %	"			"
PRF0842-03 (19LC MW018	SW)		Wa	ter		Samp	led: 06/23/	/08 12:30		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060901	06/24/08 11:47	06/25/08 01:16	U
Surrogate(s): 4-BFB				86.2%		50 - 150 %	"			"
PRF0842-04 (19LC MW02)	DW)		Wa	ter		Samp	led: 06/23/	/08 14:15		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060901	06/24/08 11:47	06/25/08 03:33	U
Surrogate(s): 4-BFB				84.0%		50 - 150 %	"			"
PRF0842-05 (19LC MW029	SW)		Wa	ter		Samp	led: 06/23/	/08 15:15		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060901	06/24/08 11:47	06/25/08 04:01	U
Surrogate(s): 4-BFB				81.9%		50 - 150 %	"			"
PRF0842-06 (19LC MW03)	DW)		Wa	ter		Samp	led: 06/23/	/08 16:45		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060901	06/24/08 11:47	06/25/08 04:28	U
Surrogate(s): 4-BFB				84.6%		50 - 150 %	"			"

TestAmerica Portland

ALL DES

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01I		110,001		ater			led: 06/23/	••••	11111,204	11000
Diesel Range Organics	NWTPH-Dx	ND	0.0394	0.0769	mg/l	1x	8060939	06/25/08 12:00	06/26/08 11:49	U
Heavy Oil Range Hydrocarbons	"	ND	0.275	0.481	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			86.7%		50 - 150 %	"			"
PRF0842-03 (19LC MW018	SW)		W	ater		Samp	led: 06/23/	08 12:30		
Diesel Range Organics	NWTPH-Dx	ND	0.0394	0.0769	mg/l	1x	8060939	06/25/08 12:00	06/26/08 12:07	U
Heavy Oil Range Hydrocarbons	"	ND	0.275	0.481	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			93.4%		50 - 150 %	"			"
PRF0842-04 (19LC MW02I	OW)		W	ater		Samp	led: 06/23/	08 14:15		
Diesel Range Organics	NWTPH-Dx	ND	0.0394	0.0769	mg/l	1x	8060939	06/25/08 12:00	06/26/08 12:25	U
Heavy Oil Range Hydrocarbons	"	ND	0.275	0.481	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			87.4%		50 - 150 %	"			"
PRF0842-05 (19LC MW028	SW)		W	ater		Samp	led: 06/23/	08 15:15		
Diesel Range Organics	NWTPH-Dx	ND	0.0390	0.0762	mg/l	1x	8060939	06/25/08 12:00	06/26/08 12:42	U
Heavy Oil Range Hydrocarbons	"	ND	0.273	0.476	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			90.5%		50 - 150 %	"			"
PRF0842-06 (19LC MW03I	OW)		W	ater		Samp	led: 06/23/	08 16:45		
Diesel Range Organics	NWTPH-Dx	ND	0.0390	0.0762	mg/l	1x	8060939	06/25/08 12:00	06/26/08 13:00	U
Heavy Oil Range Hydrocarbons	"	ND	0.273	0.476	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			77.9%		50 - 150 %	"			"

TestAmerica Portland

THE PORT

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Total Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW)		W	ater		Samp	pled: 06/23/	08 10:50		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 17:27	U
Arsenic	"	0.000400	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025	0.000500		"	"	"	06/25/08 22:28	U
Cadmium	n	ND	0 0.000065 0	0.000500	"	"	"	"	06/25/08 17:27	U
Chromium	"	ND	0.000350	0.00200		"	"	"	"	U
Copper	n	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	n	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	0.000170	0.000150	0.00100	"	"	"	"	"	J
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND	0.000050	0.00100	"	"	"	"	"	U
Zinc	"	0.000870	0 0.000700	0.00500	"	"	"	"	"	J
PRF0842-03	(19LC MW01SW)		W	ater		Samj	pled: 06/23/	08 12:30		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 17:32	U
Arsenic	n	0.000240	0.000180	0.00100	"	"	"	"	"	J
Beryllium	п	ND	0.000025 0	0.000500	"	"	"	"	"	U
Cadmium	n	ND	0.000065	0.000500	"	"	"	"	"	U
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	0.00126	0.000270	0.00200	"	"	"	"	"	J
Lead	"	ND	0.000220	0.00100		"	"	"	"	U
Nickel	"	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100		"	"	"	"	U
Thallium	"	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	п	0.00137		0.00500	"	"	"	"	"	J
PRF0842-04	(19LC MW02DW)		W	ater		Samj	pled: 06/23/	08 14:15		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 17:38	U
Arsenic	"	0.000490	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Total Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04	(19LC MW02DW)		W	/ater		San	pled: 06/23/	08 14:15		
Cadmium	EPA 6020	ND	0.000065 0	0.000500	mg/l	1x	8060931	06/25/08 08:01	06/25/08 17:38	U
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	п	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	0.000270	0.000150	0.00100	"	"	"	"	"	J
Selenium	n	ND	0.000075 0	0.000500	"	"	"	"	**	U
Silver	п	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND	0.000050	0.00100	"	"	"	"	"	U
Zinc	"	0.000710	0 0.000700	0.00500	"	"	"	"	"	J
PRF0842-05	(19LC MW02SW)		W	/ater		San	npled: 06/23/	08 15:15		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 17:43	U
Arsenic	"	0.000470	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025	0.000500	"	"	"	"	"	U
Cadmium	п	ND	0 0.000065 0	0.000500	"	"	"	"	"	U
Chromium	n	ND	0.000350	0.00200		"	"	"	"	U
Copper	n	0.00501	0.000270	0.00200		"	"	"	"	
Lead	"	ND	0.000220	0.00100			"	"	"	U
Nickel	"	0.000200	0.000150	0.00100	"		"	"	"	J
Selenium	п	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	n .	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	n	0.00235		0.00500	"	"	"	"	"	J
PRF0842-06	(19LC MW03DW)		W	/ater		San	npled: 06/23/	08 16:45		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 18:11	U
Arsenic	"	0.000710		0.00100	"		"	"	"	J
Beryllium	n	ND	0.000025	0.000500	"	"	"	"	"	U
Cadmium	n	ND	0 0.000065 0	0.000500	"	"	"	"	"	U
Chromium	"	ND	0.000350	0.00200	"		"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Total Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result 1	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06	(19LC MW03DW)	Water			Sa	mpled: 06/23/	08 16:45			
Nickel	EPA 6020	0.000150 0.	0.000150	0.00100	mg/l	1x	8060931	06/25/08 08:01	06/25/08 18:11	J
Selenium	п	ND 0.	0.000075	0.000500	"	"	"	"	"	U
Silver	n	ND 0.	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND 0.	0.000050	0.00100	"	"	"	"	"	U
Zinc	"	ND θ .	.000700	0.00500	"	"	"	"	"	U

TestAmerica Portland

THE PORT

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Dissolved Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW)	Water				Samp	pled: 06/23/			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:07	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	"	ND	0.000025	0.000500	"	"	"	"	06/28/08 01:46	U
Cadmium	"	0.0000650	0 0.000065 0	0.000500	"	"	"	"	06/27/08 16:07	J
Chromium	n	ND	0.000350	0.00200		"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"		"	U
Lead	"	ND	0.000220	0.00100	"	"	"		"	U
Nickel	"	0.000180	0.000150	0.00100	"	"	"	"	"	J
Selenium	n.	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND	0.000050	0.00100	"	"	"	"	"	U
Zinc	"	0.00150	0 0.000700	0.00500	"	"	"	"	"	J
PRF0842-03	(19LC MW01SW)	W	ater		Samj	pled: 06/23/	08 12:30			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:12	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	n	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 01:54	U
Cadmium	"	0.000180	0.0000065 0	0.000500	"	"	"	"	06/27/08 16:12	J
Chromium	"	ND	0.000350	0.00200	"	"	"	•	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	•	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	n .	0.000263	0.000150	0.00100	"	"	"		"	J
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	n	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	n	0.00404	0.000700	0.00500	"	"	"	"	"	J
PRF0842-04	(19LC MW02DW) Water				Samj	pled: 06/23/				
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:18	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	п	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 02:02	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Dissolved Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04	(19LC MW02DW)	Water			Sam	pled: 06/23/				
Cadmium	EPA 6020	ND		0.000500	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:18	U
Chromium	"	ND	0.000350	0.00200	"	,,	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	n n	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	0.000219	0.000150	0.00100	"	"	"	"	"	J
Selenium	n	ND	0.000075 0	0.000500	"	"	"	"	n	U
Silver	n	ND	0.000200	0.00100	"	"	"	"	"	U
Γhallium	"	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	n	0.00143	0.000700	0.00500	"	"	"	"	"	J
PRF0842-05	RF0842-05 (19LC MW02SW)			Water			pled: 06/23/			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:23	U
Arsenic	"	0.000189	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 02:11	U
Cadmium	"	0.0000990		0.000500	"	"	"	"	06/27/08 16:23	J
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	n n	0.000668	0.000270	0.00200	"	"	"	"	"	J
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	0.000460	0.000150	0.00100	"	"	"	"	"	J
Selenium	"	ND	0.000075	0.000500	"	"	"	"	"	U
Silver	n	ND	0.000200	0.00100	"	"	"	"	"	U
Γhallium	п	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	n	0.00970	0.000700	0.00500	"	"	"	"	"	
PRF0842-06	(19LC MW03DW)		V	ater		Sam	pled: 06/23/	08 16:45		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:28	U
Arsenic	"	0.000394	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 02:19	U
Cadmium	"	0.000110		0.000500	"	"	"	"	06/27/08 16:28	J
Chromium	n	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	n n	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"		"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Dissolved Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result M	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06	(19LC MW03DW)	Water			Sampl	led: 06/23/08				
Nickel	EPA 6020	0.000535 0.0	000150 0.0	00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:28	J
Selenium	п	ND $\theta.\theta$	0.00	00500	"	"	"	"	"	U
Silver	n .	ND 0.0	000200 0.0	00100	"	"	"	"	"	U
Thallium	"	ND 0.0	000050 0.0	00100	"	"	"	"	"	U
Zinc	"	0.00109 0.0	0 000700 0.0	00500	"	"	"	"	"	J

TestAmerica Portland

ALL DES

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name:

Camp Bonneville, WA 4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey

Report Created: 07/14/08 14:32

Dissolved Mercury per EPA Method 7470A

TestAmerica Portland

Analyte	Method	Result MDL* MRL Units	Dil Batch Prepared Analyzed Notes	
PRF0842-02	(19LC MW01DW)	Water	Sampled: 06/23/08 10:50	
Mercury	EPA 7470A	ND 0.000063 0.000200 mg/l	1x 8060912 06/24/08 14:14 06/25/08 09:24 U	
PRF0842-03	(19LC MW01SW)	Water	Sampled: 06/23/08 12:30	
Mercury	EPA 7470A	ND 0.000063 0.000200 mg/l	1x 8060912 06/24/08 14:14 06/25/08 09:26 U	
PRF0842-04	(19LC MW02DW)	Water	Sampled: 06/23/08 14:15	
Mercury	EPA 7470A	ND 0.000063 0.000200 mg/l	1x 8060912 06/24/08 14:14 06/25/08 09:29 U	
PRF0842-05	(19LC MW02SW)	Water	Sampled: 06/23/08 15:15	
Mercury	EPA 7470A	ND 0.000063 0.000200 mg/l	1x 8060912 06/24/08 14:14 06/25/08 09:31 U	
PRF0842-06	(19LC MW03DW)	Water	Sampled: 06/23/08 16:45	
Mercury	EPA 7470A	ND 0.000063 0.000200 mg/l	1x 8060912 06/24/08 14:14 06/25/08 09:39 U	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Total Mercury per EPA Method 7470A

TestAmerica Portland

Analyte	Method	Result MDL* MRL Units	Dil Batch Prepared Analyzed Notes
PRF0842-02	(19LC MW01DW)	Water	Sampled: 06/23/08 10:50
Mercury	EPA 7470A	ND 0.000067 0.000200 mg/l	1x 8060911 06/24/08 14:13 06/25/08 08:42 U
PRF0842-03	(19LC MW01SW)	Water	Sampled: 06/23/08 12:30
Mercury	EPA 7470A	ND 0.000067 0.000200 mg/l	1x 8060911 06/24/08 14:13 06/25/08 08:44 U
PRF0842-04	(19LC MW02DW)	Water	Sampled: 06/23/08 14:15
Mercury	EPA 7470A	ND 0.000067 0.000200 mg/l	1x 8060911 06/24/08 14:13 06/25/08 08:46 U
PRF0842-05	(19LC MW02SW)	Water	Sampled: 06/23/08 15:15
Mercury	EPA 7470A	ND 0.000067 0.000200 mg/l	1x 8060911 06/24/08 14:13 06/25/08 08:49 U
PRF0842-06	(19LC MW03DW)	Water	Sampled: 06/23/08 16:45
Mercury	EPA 7470A	ND 0.000067 0.000200 mg/l	1x 8060911 06/24/08 14:13 06/25/08 08:57 U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01	DW)		Wa	ter		Sam	pled: 06/23/	08 10:50		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070104	07/03/08 06:36	07/03/08 11:11	U
Benzene	"	ND	0.0900	1.00	"	"	"		"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"		"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"		"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"		"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"		"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	**	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U
• •		1,12								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW))		W	ater		Samp	led: 06/23/	/08 10:50		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 11:11	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl etl	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				96.8%		80 - 120 %	"			"
	1,2-DCA-d4				108%		80 - 120 %	"			"
	Dibromofluorometh	ane			105%		80 - 120 %	"			"
	Toluene-d8				105%		80 - 120 %	"			**

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-03 (19LC MW01	SW)		W	ater		Samı	oled: 06/23/	08 12:30		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	lx	8070104	07/03/08 06:36	07/03/08 11:38	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-03	(19LC MW01SW)		W	ater		Samp	led: 06/23/	08 12:30		
cis-1,3-Dichloropro	pene EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 11:38	U
trans-1,3-Dichlorop	ropene "	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	ne "	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone	"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene	"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene	"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	ne "	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her "	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride	"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene	"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Styrene	"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane "	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane "	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene	"	ND	0.110	1.00	"	"	"	"	"	U
Toluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene "	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene "	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne "	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne "	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene	n n	ND	0.0800	1.00	"	"	"	"	**	U
Trichlorofluorometh	nane "	ND	0.0600	1.00	"	"	"	"	**	U
1,2,3-Trichloroprop	ane "	ND	0.130	1.00	"	"	"	"	**	U
1,2,4-Trimethylbenz	zene "	ND	0.0800	1.00	"	"	"	"	**	U
1,3,5-Trimethylbenz	zene "	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride	"	ND	0.100	1.00		"	"	"	"	U
o-Xylene	"	ND	0.0700	1.00		"	"	"	"	U
m,p-Xylene	"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB			97.2%		80 - 120 %	"			n
	1,2-DCA-d4			106%		80 - 120 %	"			"
	Dibromofluoromethane			103%		80 - 120 %	"			"
	Toluene-d8			104%		80 - 120 %	"			"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04 (19LC MW02	PDW)		Wa	ater		Samj	pled: 06/23/	08 14:15		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:05	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	•	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U
• •		1,12								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte Method		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04	(19LC MW02DW)			W	ater		Sampl	led: 06/23/	/08 14:15		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:05	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	rene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	rene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				94.9%		80 - 120 %	"			"
	1,2-DCA-d4				110%		80 - 120 %	"			"
	Dibromofluorometh	ane			106%		80 - 120 %	"			"
	Toluene-d8				106%		80 - 120 %				**

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-05 (19LC MW02	2SW)		Wa	ater		Samj	pled: 06/23/	08 15:15		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:32	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U
,		ND								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

Report Created: 4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-05	(19LC MW02SW)		W	ater		Samp	led: 06/23/	08 15:15		
cis-1,3-Dichloropro	pene EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:32	U
trans-1,3-Dichlorop	ropene "	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	ie "	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone	"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene	"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene	"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	ne "	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her "	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride	"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene	"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Styrene	"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane "	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane "	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene	"	ND	0.110	1.00	"	"	"	"	"	U
Toluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene "	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene "	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne "	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne "	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene	"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane "	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane "	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene "	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene "	ND	0.0700	1.00	"	"	"	"	**	U
Vinyl chloride	"	ND	0.100	1.00		"	"	"	"	U
o-Xylene	"	ND	0.0700	1.00	"	"	"	"	**	U
m,p-Xylene	"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB			94.4%		80 - 120 %	"			n
	1,2-DCA-d4			108%		80 - 120 %	"			"
	Dibromofluoromethane			104%		80 - 120 %	"			"
	Toluene-d8			105%		80 - 120 %	"			"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

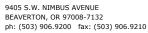
Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06 (19LC MW03	BDW)		Wa	ater		Samj	pled: 06/23/	08 16:45		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:58	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U
,		ND								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

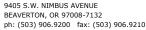
Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06	(19LC MW03DW)			W	ater		Samp	led: 06/23/	08 16:45		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:58	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				92.4%		80 - 120 %	"			"
	1,2-DCA-d4				107%		80 - 120 %	"			"
	Dibromofluorometh	ane			104%		80 - 120 %	"			"
	Toluene-d8				105%		80 - 120 %	"			**

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

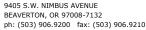
Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01	1DW)		Wa	iter		Sam	pled: 06/23/	08 10:50		
Acenaphthene	EPA 8270C	ND	2.91	4.85	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:16	U
Acenaphthylene	"	ND	2.91	4.85	"	"	"	"	"	U
Anthracene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	2.91	4.85		"	"	"	"	U
Benzo (a) pyrene	"	ND	2.91	4.85		"	"	"	"	U
Benzo (b) fluoranthene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (ghi) perylene	"	ND	2.91	4.85		"	"	"	"	U
Benzo (k) fluoranthene	"	ND	2.91	4.85		"	"	"	"	U
Benzoic Acid	"	ND	48.5	48.5		"	"	"	"	U
Benzyl alcohol	"	ND	4.85	9.71	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	2.91	4.85	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chloroaniline	"	ND	9.71	19.4	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	4.85	9.71	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	2.91	4.85	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	4.85	9.71	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Chlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	2.91	4.85	"	"	"	"	"	U
Chrysene	"	ND	2.91	4.85	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	2.91	4.85	"	"	"	"	"	U
Dibenzofuran	"	ND	2.91	4.85	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	2.91	4.85	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
Diethyl phthalate	"	ND	2.91	4.85		"	"	"	"	U
2,4-Dimethylphenol	"	ND	4.85	9.71		"	"	"	"	U
Dimethyl phthalate	"	ND	2.91	4.85		"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	4.85	9.71		"	"	"	"	U
2,4-Dinitrophenol	"	ND	14.6	24.3		"	"	"	"	U
2,4-Dinitrotoluene	"	ND	2.91	4.85		"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

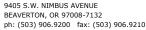
Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC	MW01DW)		W	ater		Samp	led: 06/23/	08 10:50		
2,6-Dinitrotoluene	EPA 8270C	ND	2.91	4.85	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:16	U
Bis(2-ethylhexyl)phthalate	"	ND	9.71	9.71	"	"	"	"	"	U
Fluoranthene	"	ND	2.91	4.85	"	"	"	"	"	U
Fluorene	"	ND	2.91	4.85	"	"	"	"	"	U
Hexachlorobenzene	"	ND	2.91	4.85	"	"	"	"	"	U
Hexachlorobutadiene	"	ND	4.85	9.71	"	"	"	"	"	U
Hexachlorocyclopentadiene	"	ND	4.85	9.71	"	"	"	"	"	U
Hexachloroethane	"	ND	4.85	9.71	"	"	"	"	"	U
Indeno (1,2,3-cd) pyrene	"	ND	2.91	4.85	"	"	"	"	"	U
Isophorone	"	ND	2.91	4.85	"	"	"	"	"	U
2-Methylnaphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Methylphenol	"	ND	4.85	9.71	"	"	"	"	"	U
3-,4-Methylphenol	"	ND	2.91	4.85	"	"	"	"	"	U
Naphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Nitroaniline	"	ND	2.91	4.85	"	"	"	"	"	U
3-Nitroaniline	"	ND	4.85	9.71	"	"	"	"	"	U
4-Nitroaniline	"	ND	4.85	9.71	"	"	"	"	"	U
Nitrobenzene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Nitrophenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Nitrophenol	"	ND	9.71	24.3	"	"	"	"	"	U
N-Nitrosodi-n-propylamine	"	ND	4.85	9.71	"	"	"	"	"	U
N-Nitrosodiphenylamine	"	ND	2.91	4.85	"	"	"	"	"	U
Pentachlorophenol	"	ND	4.85	9.71	"	"	"	"	"	U
Phenanthrene	"	ND	2.91	4.85	"	"	"	"	"	U
Phenol	"	ND	2.91	4.85	"	"	"	"	"	U
Pyrene	"	ND	2.91	4.85	"	"	"	"	"	U
1,2,4-Trichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
2,4,5-Trichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
2,4,6-Trichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
Surrogate(s): 2-Fluo	probiphenyl			71.4%		22 - 120 %	"			"
	prophenol			74.8%		5 - 120 %	"			"
	enzene-d5			87.3%		26 - 127 %	"			
Pheno				76.6% 97.3%		4 - 121 % 37 - 130 %	"			"
	henyl-d14 Tribromophenol			97.3% 91.9%		37 - 130 % 21 - 129 %	,,			,,

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Propose	Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
Actinaphyllene	PRF0842-03 (19LC MW01	ISW)		Wa	ter		Sam	pled: 06/23/	08 12:30		
Actinatione	Acenaphthene	EPA 8270C	ND	2.86	4.76	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:38	U
Remox (a) pyrene ND 264 476 1 2 2 2 2 2 2 2 2 2	Acenaphthylene	"	ND	2.86	4.76	"	"	"	"	"	U
Bernay (a) privene ND 286 476 1 2 2 2 2 2 2 2 2 2	Anthracene	"	ND	2.86	4.76	"	"	"	"	"	U
Berno (ph) unamathene ND 2.66 4.76 " " " " " " " U Berno (phi) perylene ND 2.66 4.76 " " " " " " U Berno (phi) perylene ND 2.66 4.76 " " " " " " U U U U	Benzo (a) anthracene	"	ND	2.86	4.76	"	"	"	"	"	U
Benzo (ghir) perylene ND	Benzo (a) pyrene	"	ND	2.86	4.76	"	"	"	"	"	U
Berno (a) Moramhene No 2.66 4.76 1.00 1.0	Benzo (b) fluoranthene	"	ND	2.86	4.76	"	"	"	"	"	U
Benzoic Acid Benzoi Acid Benz	Benzo (ghi) perylene	"	ND	2.86	4.76	"	"	"	"	"	U
No. 1	Benzo (k) fluoranthene	"	ND	2.86	4.76	"	"	"	"	"	U
A-Bromphenyl phenyl ether	Benzoic Acid	"	ND	47.6	47.6	"	"	"	"	"	U
No	Benzyl alcohol	"	ND	4.76	9.52	"	"	"	"	"	U
Surf probability of the probab	4-Bromophenyl phenyl ether	"	ND	2.86	4.76	"	"	"	"	"	U
A-Chlorosinite Sp Sp Sp Sp Sp Sp Sp S	Butyl benzyl phthalate	"	ND	2.86	4.76	"	"	"	"	"	U
Securior of the Norm	4-Chloro-3-methylphenol	"	ND	2.86	4.76	"	"	"	"	"	U
No	4-Chloroaniline	"	ND	9.52	19.0	"	"	"	"	"	U
Signature Sign	Bis(2-chloroethoxy)methane	"	ND	4.76	9.52	"	"	"	"	"	U
2-Chloronaphthalene "ND 2.86 4.76 "ND 2.86 4	Bis(2-chloroethyl)ether	"	ND	2.86	4.76	"	"	"	"	"	U
2-Chlorophenol "ND 2.86 4.76 "" "ND 2.86 1.76 "" "ND 2.86	Bis(2-chloroisopropyl)ether	"	ND	4.76	9.52	"	"	"	"	"	U
2-Chirophenol ND 2-86 4.76 ". " " " " " " " " " " " U Chrysene "ND 2-86 4.76 " " " " " " " " " " " " " " U Di-n-bulyl phthalate "ND 2-86 4.76 " " " " " " " " " " " " " " " " " " "	2-Chloronaphthalene	"	ND	2.86	4.76	"	"	"	"	"	U
Chrysene	2-Chlorophenol	"	ND	2.86	4.76	"	"	"	"	"	U
Di-n-butyl phthalate "ND 2.86 4.76 "ND 1.00 "ND 1.00 ND 1.00 N	4-Chlorophenyl phenyl ether	"	ND	2.86	4.76	"	"	"	"	"	U
Di-n-octyl phthalate Di-n-octy	Chrysene	"	ND	2.86	4.76	"	"	"	"	"	U
Dibenzo (a,h) anthracene " ND 2.86 4.76 " " " " " " " " " " " " " " U Dibenzo (a,h) anthracene " ND 2.86 4.76 " " " " " " " " " " " " " " " U 1,2-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " " " " " " " U 1,3-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " " " " " " " U 1,4-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " " " " " " " U 1,4-Dichlorobenzene " " ND 4.76 4.76 " " " " " " " " " " " " " " " " " " U 2,4-Dichlorobenzidine " ND 2.86 4.76 " " " " " " " " " " " " " " " " " U 2,4-Dichlorophenol " ND 2.86 4.76 " " " " " " " " " " " " " " " " " " U 2,4-Dimethylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	Di-n-butyl phthalate	"	ND	2.86	4.76	"	"	"	"	"	U
Dibenzofuran "ND 2.86 4.76 "" " " " " " " " " " U 1,2-Dichlorobenzene "ND 4.76 4.76 "" " " " " " " " " " " U 1,3-Dichlorobenzene "ND 4.76 4.76 "" " " " " " " " " " " U 1,4-Dichlorobenzene "ND 4.76 4.76 "" " " " " " " " " " " U 1,4-Dichlorobenzene "ND 4.76 4.76 "" " " " " " " " " " " " U 1,4-Dichlorobenzene "ND 4.76 4.76 "" " " " " " " " " " " " U 3,3'-Dichlorobenzidine "ND 2.86 4.76 "" " " " " " " " " " " " " U 2,4-Dichlorophenol "ND 2.86 4.76 "" " " " " " " " " " " " U 2,4-Dimethyl phthalate "ND 4.76 9.52 "" " " " " " " " " " " " U Dimethyl phthalate "ND 4.76 9.52 "" " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 "" " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 "" " " " " " " " " " " " " " " " " "	Di-n-octyl phthalate	"	ND	2.86	4.76	"	"	"	"	"	U
1,2-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " U 1,3-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " U 1,4-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " " U 1,4-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " " " U 2,4-Dichlorobenzidine " ND 2.86 4.76 " " " " " " " " " " " " U 2,4-Dichlorophenol " ND 2.86 4.76 " " " " " " " " " " " U 2,4-Dimethyl phthalate " ND 2.86 4.76 " " " " " " " " " " " U 2,4-Dimethyl phthalate " ND 2.86 4.76 " " " " " " " " " " " U 2,4-Dimethyl phthalate " ND 4.76 9.52 " " " " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	Dibenzo (a,h) anthracene	"	ND	2.86	4.76	"	"	"	"	"	U
1,3-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " U 1,4-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " " U 2,4-Dichlorobenzidine " ND 2.86 4.76 " " " " " " " " " " U 2,4-Dimethylphenol " ND 2.86 4.76 " " " " " " " " " U 2,4-Dimethylphenol " ND 2.86 4.76 " " " " " " " " " U 2,4-Dimethylphenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	Dibenzofuran	"	ND	2.86	4.76	"	"	"	"	"	U
1,4-Dichlorobenzene " ND 4.76 4.76 " " " " " " " " " U 3,3'-Dichlorobenzidine " ND 2.86 4.76 " " " " " " " " " " U 2,4-Dichlorophenol " ND 2.86 4.76 " " " " " " " " " U 2,4-Dimethyl phthalate " ND 2.86 4.76 " " " " " " " " " U 2,4-Dimethyl phthalate " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	1,2-Dichlorobenzene	"	ND	4.76	4.76	"	"	"	"	"	U
3,3'-Dichlorobenzidine "ND 2.86 4.76 """"""""""""""""""""""""""""""""""""	1,3-Dichlorobenzene	"	ND	4.76	4.76	"	"	"	"	"	U
2,4-Dichlorophenol "ND 2.86 4.76 """" """" """ "U Diethyl phthalate "ND 2.86 4.76 """ """ """ "" "" "" 2,4-Dimethylphenol "ND 4.76 9.52 "" "" "" "" "" "" " 4,6-Dinitro-2-methylphenol "ND 4.76 9.52 "" "" "" "" "" "" "" "" "" "" "" "" ""	1,4-Dichlorobenzene	"	ND	4.76	4.76	"	"	"	"	"	U
Diethyl phthalate " ND 2.86 4.76 " " " " " " " " U 2,4-Dimethyl phthalate " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methyl phenol " ND 4.76 9.52 " " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " U 4,6-Dinitrophenol " ND 4.76 9.52 " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " U 4,6-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " " " " " U 4,6-Dinitrophenol " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	3,3'-Dichlorobenzidine	"	ND	2.86	4.76	"	"	"	"	"	U
2,4-Dimethylphenol " ND 4.76 9.52 " " " " " " " " U Dimethyl phthalate " ND 2.86 4.76 " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " U 2,4-Dinitrophenol " ND 4.76 9.52 " " " " " " " " U 4,6-Dinitrophenol " ND 4.76 9.52 " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " " ND 4.76 9.52 " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " " ND 4.76 9.52 " " " " " " " " " " " " " " " U 4,6-Dinitro-2-methylphenol " " ND 4.76 9.52 " " " " " " " " " " " " " " " " " " "	2,4-Dichlorophenol	"	ND	2.86	4.76	"	"	"	"	"	U
Dimethyl phthalate " ND 2.86 4.76 " " " " " " U 4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " " " U 2,4-Dinitrophenol " ND 14.3 23.8 " " " " " " " U	Diethyl phthalate	"	ND	2.86	4.76	"	"	"	"	"	U
4,6-Dinitro-2-methylphenol " ND 4.76 9.52 " " " " " U U 2,4-Dinitrophenol " ND 14.3 23.8 " " " " U U	2,4-Dimethylphenol	"	ND	4.76	9.52	"	"	"	"	"	U
2,4-Dinitrophenol " ND 14.3 23.8 " " " " U	Dimethyl phthalate	"	ND	2.86	4.76	"	"	"	"	"	U
Z,4-Dinitropnenoi ND 14.3 23.8	4,6-Dinitro-2-methylphenol	"	ND	4.76	9.52	"	"	"	"	"	U
2,4-Dinitrotoluene " ND 2.86 4.76 " " " U	2,4-Dinitrophenol	"	ND	14.3	23.8	"	"	"	"	"	U
	2,4-Dinitrotoluene	"	ND	2.86	4.76	"	"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-03 ((19LC MW01SW)			W	ater		Samp	oled: 06/23/	08 12:30		
2,6-Dinitrotoluene	Е	PA 8270C	ND	2.86	4.76	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:38	U
Bis(2-ethylhexyl)ph	thalate	"	ND	9.52	9.52	"	"	"	"	"	U
Fluoranthene		"	ND	2.86	4.76	"	"	"	"	"	U
Fluorene		"	ND	2.86	4.76	"	"	"	"	"	U
Hexachlorobenzene		"	ND	2.86	4.76	"	"	"	"	"	U
Hexachlorobutadien	e	"	ND	4.76	9.52	"	"	"	"	"	U
Hexachlorocycloper	ntadiene	"	ND	4.76	9.52	"	"	"	"	"	U
Hexachloroethane		"	ND	4.76	9.52	"	"	"	"	"	U
Indeno (1,2,3-cd) py	rene	"	ND	2.86	4.76	"	"	"	"	"	U
Isophorone		"	ND	2.86	4.76	"	"	"	"	"	U
2-Methylnaphthalen	e	"	ND	2.86	4.76	"	"	"	"	"	U
2-Methylphenol		"	ND	4.76	9.52	"	"	"	"	"	U
3-,4-Methylphenol		"	ND	2.86	4.76	"	"	"	"	"	U
Naphthalene		"	ND	2.86	4.76	"	"	"	"	"	U
2-Nitroaniline		"	ND	2.86	4.76	"	"	"	"	"	U
3-Nitroaniline		"	ND	4.76	9.52		"	"	"	"	U
4-Nitroaniline		"	ND	4.76	9.52		"	"	"	"	U
Nitrobenzene		"	ND	2.86	4.76		"	"	"	"	U
2-Nitrophenol		"	ND	2.86	4.76		"	"	"	"	U
4-Nitrophenol		"	ND	9.52	23.8	"	"	"	"	"	U
N-Nitrosodi-n-propy	ylamine	"	ND	4.76	9.52		"	"	"	"	U
N-Nitrosodiphenyla	mine	"	ND	2.86	4.76		"	"	"	"	U
Pentachlorophenol		"	ND	4.76	9.52		"	"	"	"	U
Phenanthrene		"	ND	2.86	4.76		"	"	"	"	U
Phenol		"	ND	2.86	4.76		"	"	"	"	U
Pyrene		"	ND	2.86	4.76	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	4.76	4.76	"	"	"	"	"	U
2,4,5-Trichlorophen	ol	"	ND	2.86	4.76		"	"	"	"	U
2,4,6-Trichlorophen	ol	"	ND	2.86	4.76	"	"	"	"	"	U
Surrogate(s):	2-Fluorobiphenyl				74.5%		22 - 120 %	"			"
2 ()	2-Fluorophenol				81.6%		5 - 120 %	"			"
	Nitrobenzene-d5				90.5%		26 - 127 %	"			"
	Phenol-d6				86.6%		4 - 121 %	"			"
	p-Terphenyl-d14				99.8%		37 - 130 %	"			"
	2,4,6-Tribromopheno	l			97.7%		21 - 129 %	"			"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04 (19LC MW02	2DW)		Wa	ter		Sam	pled: 06/23/	08 14:15		
Acenaphthene	EPA 8270C	ND	2.91	4.85	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:00	U
Acenaphthylene	"	ND	2.91	4.85	"	"	"	"	"	U
Anthracene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (a) pyrene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (b) fluoranthene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (ghi) perylene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzo (k) fluoranthene	"	ND	2.91	4.85	"	"	"	"	"	U
Benzoic Acid	"	ND	48.5	48.5	"	"	"	"	"	U
Benzyl alcohol	"	ND	4.85	9.71	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	2.91	4.85	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chloroaniline	"	ND	9.71	19.4	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	4.85	9.71	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	2.91	4.85	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	4.85	9.71	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Chlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	2.91	4.85	"	"	"	"	"	U
Chrysene	"	ND	2.91	4.85	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	2.91	4.85	"	"	"	"	"	U
Dibenzofuran	"	ND	2.91	4.85	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	2.91	4.85	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
Diethyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	4.85	9.71	"	"	"	"	"	U
Dimethyl phthalate	"	ND	2.91	4.85	"	"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	4.85	9.71	"	"	"	"	"	U
2,4-Dinitrophenol	"	ND	14.6	24.3	"	"	"	"	"	U
2,4-Dinitrotoluene	"	ND	2.91	4.85	"	"	"	"	"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-04 (19I	LC MW02DW)		W	ater		Samp	led: 06/23/	08 14:15		
2,6-Dinitrotoluene	EPA 8270C	ND	2.91	4.85	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:00	U
Bis(2-ethylhexyl)phthala	ate "	ND	9.71	9.71	"	"	"	"	"	U
Fluoranthene	"	ND	2.91	4.85	"	"	"	"	"	U
Fluorene	"	ND	2.91	4.85	"	"	"	"	"	U
Hexachlorobenzene	"	ND	2.91	4.85	"	"	"	"	"	U
Hexachlorobutadiene	"	ND	4.85	9.71	"	"	"	"	"	U
Hexachlorocyclopentadi	ene "	ND	4.85	9.71	"	"	"	"	"	U
Hexachloroethane	"	ND	4.85	9.71	"	"	"	"	"	U
Indeno (1,2,3-cd) pyrene	e "	ND	2.91	4.85	"	"	"	"	"	U
Isophorone	"	ND	2.91	4.85	"	"	"	"	"	U
2-Methylnaphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Methylphenol	"	ND	4.85	9.71	"	"	"	"	"	U
3-,4-Methylphenol	"	ND	2.91	4.85	"	"	"	"	"	U
Naphthalene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Nitroaniline	"	ND	2.91	4.85	"	"	"	"	"	U
3-Nitroaniline	"	ND	4.85	9.71	"	"	"	"	"	U
4-Nitroaniline	"	ND	4.85	9.71	"	"	"	"	"	U
Nitrobenzene	"	ND	2.91	4.85	"	"	"	"	"	U
2-Nitrophenol	"	ND	2.91	4.85	"	"	"	"	"	U
4-Nitrophenol	"	ND	9.71	24.3	"	"	"	"	"	U
N-Nitrosodi-n-propylam	nine "	ND	4.85	9.71	"	"	"	"	"	U
N-Nitrosodiphenylamine	e "	ND	2.91	4.85	"	"	"	"	"	U
Pentachlorophenol	"	ND	4.85	9.71	"	"	"	"	"	U
Phenanthrene	"	ND	2.91	4.85	"	"	"	"	"	U
Phenol	"	ND	2.91	4.85	"	"	"	"	"	U
Pyrene	"	ND	2.91	4.85	"	"	"	"	"	U
1,2,4-Trichlorobenzene	"	ND	4.85	4.85	"	"	"	"	"	U
2,4,5-Trichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
2,4,6-Trichlorophenol	"	ND	2.91	4.85	"	"	"	"	"	U
Surrogate(s): 2-1	Fluorobiphenyl			60.3%		22 - 120 %	"			"
	Fluorophenol			66.9%		5 - 120 %	"			"
	trobenzene-d5			70.8%		26 - 127 %	"			"
	nenol-d6			73.1%		4 - 121 %	"			"
	Terphenyl-d14 4,6-Tribromophenol			97.9% 78.8%		37 - 130 % 21 - 129 %	"			n

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-05 (19LC MW02	2SW)		Wa	ter		Sam	pled: 06/23/	08 15:15		
Acenaphthene	EPA 8270C	ND	2.88	4.81	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:22	U
Acenaphthylene	"	ND	2.88	4.81	"	"	"	"	"	U
Anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (a) pyrene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (b) fluoranthene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (ghi) perylene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (k) fluoranthene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzoic Acid	"	ND	48.1	48.1	"	"	"	"	"	U
Benzyl alcohol	"	ND	4.81	9.62	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	2.88	4.81	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chloroaniline	"	ND	9.62	19.2	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	4.81	9.62	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	2.88	4.81	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	4.81	9.62	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	2.88	4.81	"	"	"	"	"	U
2-Chlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	2.88	4.81	"	"	"	"	"	U
Chrysene	"	ND	2.88	4.81	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Dibenzofuran	"	ND	2.88	4.81	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	2.88	4.81	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
Diethyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	4.81	9.62	"	"	"	"	"	U
Dimethyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	4.81	9.62	"	"	"	"	"	U
2,4-Dinitrophenol	"	ND	14.4	24.0	"	"	"	"	"	U
2,4-Dinitrotoluene	"	ND	2.88	4.81	"	"	"	"	"	U
		-								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

ND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

PRF0842-05 (19LC MW02SW) 2,6-Dinitrotoluene E Bis(2-ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	PA 8270C	ND ND ND	2.88 9.62	ter 4.81	ug/l	Samp	led: 06/23/	08 15:15		
Bis(2-ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	PA 8270C	ND ND		4.81	ug/l	•				
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	" "	ND	9.62			1x	8060908	06/24/08 15:45	06/27/08 23:22	U
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	"			9.62	"	"	"	"	"	U
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	"		2.88	4.81	"	"	"	"	"	U
Hexachlorobutadiene Hexachlorocyclopentadiene	"	ND	2.88	4.81	"	"	"	"	"	U
Hexachlorocyclopentadiene		ND	2.88	4.81	"	"	"	"	"	U
· ·	"	ND	4.81	9.62	"	"	"	"	"	U
Hexachloroethane	"	ND	4.81	9.62	"	"	"	"	"	U
	"	ND	4.81	9.62	"	"	"	"	"	U
Indeno (1,2,3-cd) pyrene	"	ND	2.88	4.81	"	"	"	"	"	U
Isophorone	"	ND	2.88	4.81	"	"	"	"	"	U
2-Methylnaphthalene	"	ND	2.88	4.81	"	"	"	"	"	U
2-Methylphenol	"	ND	4.81	9.62	"	"	"	"	"	U
3-,4-Methylphenol	"	ND	2.88	4.81	"	"	"	"	"	U
Naphthalene	"	ND	2.88	4.81	"	"	"	"	"	U
2-Nitroaniline	"	ND	2.88	4.81	"	"	"	"	"	U
3-Nitroaniline	"	ND	4.81	9.62	"	"	"	"	"	U
4-Nitroaniline	"	ND	4.81	9.62	"	"	"	"	"	U
Nitrobenzene	"	ND	2.88	4.81	"	"	"	"	"	U
2-Nitrophenol	"	ND	2.88	4.81	"	"	"	"	"	U
4-Nitrophenol	"	ND	9.62	24.0	"	"	"	"	"	U
N-Nitrosodi-n-propylamine	"	ND	4.81	9.62	"	"	"	"	"	U
N-Nitrosodiphenylamine	"	ND	2.88	4.81	"	"	"	"	"	U
Pentachlorophenol	"	ND	4.81	9.62	"	"	"	"	"	U
Phenanthrene	"	ND	2.88	4.81	"	"	"	"	"	U
Phenol	"	ND	2.88	4.81	"	"	"	"	"	U
Pyrene	"	ND	2.88	4.81	"	"	"	"	"	U
1,2,4-Trichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
2,4,5-Trichlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
2,4,6-Trichlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
Surrogate(s): 2-Fluorobiphenyl				63.9%		22 - 120 %	"			"
2-Fluorophenol				64.8%		5 - 120 %	"			"
Nitrobenzene-d5				76.7%		26 - 127 %	"			"
Phenol-d6				67.4%		4 - 121 %	"			"
p-Terphenyl-d14 2,4,6-Tribromophenoi	,			93.0% 76.1%		37 - 130 % 21 - 129 %	"			"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06 (19LC MW03	BDW)		Wa	ter		Sam	pled: 06/23/	08 16:45		
Acenaphthene	EPA 8270C	ND	2.88	4.81	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:43	U
Acenaphthylene	"	ND	2.88	4.81	"	"	"	"	"	U
Anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (a) pyrene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (b) fluoranthene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (ghi) perylene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzo (k) fluoranthene	"	ND	2.88	4.81	"	"	"	"	"	U
Benzoic Acid	"	ND	48.1	48.1	"	"	"	"	"	U
Benzyl alcohol	"	ND	4.81	9.62	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	2.88	4.81	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chloroaniline	"	ND	9.62	19.2	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	4.81	9.62	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	2.88	4.81	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	4.81	9.62	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	2.88	4.81	"	"	"	"	"	U
2-Chlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	2.88	4.81	"	"	"	"	"	U
Chrysene	"	ND	2.88	4.81	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	2.88	4.81	"	"	"	"	"	U
Dibenzofuran	"	ND	2.88	4.81	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	4.81	4.81	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	2.88	4.81	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	2.88	4.81	"	"	"	"	"	U
Diethyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	4.81	9.62	"	"	"	"	"	U
Dimethyl phthalate	"	ND	2.88	4.81	"	"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	4.81	9.62	"	"	"	"	"	U
2,4-Dinitrophenol	"	ND	14.4	24.0	"	"	"	"	"	U
2,4-Dinitrotoluene	"	ND	2.88	4.81	"	"	"	"	"	U
		110								

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	N	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-06 (19LC MW03DW)			W	ater		Samp	led: 06/23/	08 16:45		
2,6-Dinitrotoluene	E	PA 8270C	ND	2.88	4.81	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:43	U
Bis(2-ethylhexyl)pht	thalate	"	ND	9.62	9.62	"	"	"	"	"	U
Fluoranthene		"	ND	2.88	4.81	"	"	"	"	"	U
Fluorene		"	ND	2.88	4.81	"	"	"	"	"	U
Hexachlorobenzene		"	ND	2.88	4.81	"	"	"	"	"	U
Hexachlorobutadien	e	"	ND	4.81	9.62	"	"	"	"	"	U
Hexachlorocyclopen	itadiene	"	ND	4.81	9.62	"	"	"	"	"	U
Hexachloroethane		"	ND	4.81	9.62	"	"	"	"	"	U
Indeno (1,2,3-cd) py	rene	"	ND	2.88	4.81	"	"	"	"	"	U
Isophorone		"	ND	2.88	4.81	"	"	"	"	"	U
2-Methylnaphthalen	e	"	ND	2.88	4.81	"	"	"	"	"	U
2-Methylphenol		"	ND	4.81	9.62	"	"	"	"	"	U
3-,4-Methylphenol		"	ND	2.88	4.81	"	"	"	"	"	U
Naphthalene		"	ND	2.88	4.81	"	"	"	"	"	U
2-Nitroaniline		"	ND	2.88	4.81	"	"	"	"	"	U
3-Nitroaniline		"	ND	4.81	9.62		"	"	"	"	U
4-Nitroaniline		"	ND	4.81	9.62		"	"	"	"	U
Nitrobenzene		"	ND	2.88	4.81		"	"	"	"	U
2-Nitrophenol		"	ND	2.88	4.81		"	"	"	"	U
4-Nitrophenol		"	ND	9.62	24.0		"	"	"	"	U
N-Nitrosodi-n-propy	lamine	"	ND	4.81	9.62		"	"	"	"	U
N-Nitrosodiphenylar	mine	"	ND	2.88	4.81		"	"	"	"	U
Pentachlorophenol		"	ND	4.81	9.62		"	"	"	"	U
Phenanthrene		"	ND	2.88	4.81		"	"	"	"	U
Phenol		"	ND	2.88	4.81	"	"	"	"	"	U
Pyrene		"	ND	2.88	4.81	"	"	"	"	"	U
1,2,4-Trichlorobenze	ene	"	ND	4.81	4.81	"	"	"	"	"	U
2,4,5-Trichlorophen	ol	"	ND	2.88	4.81	"	"	"	"	"	U
2,4,6-Trichlorophene	ol	"	ND	2.88	4.81	"	"	"	"	"	U
Surrogate(s):	2-Fluorobiphenyl				62.6%		22 - 120 %	"			"
3 (7)	2-Fluorophenol				62.2%		5 - 120 %	"			"
	Nitrobenzene-d5				72.7%		26 - 127 %	"			"
	Phenol-d6				64.8%		4 - 121 %	"			"
	p-Terphenyl-d14				96.7%		37 - 130 %	"			"
	2,4,6-Tribromopheno	l			77.2%		21 - 129 %	"			"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering4412 SW Corbett Ave.

Project Name:

Camp Bonneville, WA

Project Number:

Camp Bonneville, WA

Report Created:

Portland, OR 97239

Project Manager: Andrew Harvey

07/14/08 14:32

Tentatively Identified Compounds per Volatile GC/MS (Est. Conc.)

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DV	V)		Water	r		Sam	pled: 06/23/	08 10:50		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 11:11	U
PRF0842-03	(19LC MW01SW	v)		Water	r		Samj	pled: 06/23/	08 12:30		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 11:38	U
PRF0842-04	(19LC MW02DV	V)		Water	r		Sam	pled: 06/23/	08 14:15		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:05	U
PRF0842-05	(19LC MW02SW	<i>V</i>)		Water	r		Sam	pled: 06/23/	08 15:15		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:32	U
PRF0842-06		Water	r		Sam	pled: 06/23/	08 16:45				
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070104	07/03/08 06:36	07/03/08 12:58	U

TestAmerica Portland

THE DES

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

4412 SW Corbett Ave.

Portland, OR 97239

Project Name:

Camp Bonneville, WA

Project Number: Project Manager: Camp Bonneville, WA Andrew Harvey Report Created: 07/14/08 14:32

Tentatively Identified Compounds per Semivolatile GC/MS (Est. Conc.)

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01	DW)		Wat	er		Samı	pled: 06/23/	08 10:50		
No TICS identified	EPA 8270C	ND	9.71	9.71	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:16	U
PRF0842-03 (19LC MW01	SW)		Wat	er		Samı	pled: 06/23/	08 12:30		
No TICS identified	EPA 8270C	ND	9.52	9.52	ug/l	1x	8060908	06/24/08 15:45	06/27/08 22:38	U
PRF0842-04 (19LC MW02	DW)		Wat	er		Samp	pled: 06/23/	08 14:15		
No TICS identified	EPA 8270C	ND	9.71	9.71	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:00	U
PRF0842-05 (19LC MW02	SW)		Wat	er		Samı	pled: 06/23/	08 15:15		
No TICS identified	EPA 8270C	ND	9.62	9.62	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:22	U
PRF0842-06 (19LC MW03		Wat	er		Samı	pled: 06/23/	08 16:45			
No TICS identified	EPA 8270C	ND	9.62	9.62	ug/l	1x	8060908	06/24/08 15:45	06/27/08 23:43	U

TestAmerica Portland

THE PORT

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

Project Number:

Camp Bonneville, WA

Report Created: 07/14/08 14:32

4412 SW Corbett Ave. Portland, OR 97239

Project Manager: Andrew Harvey

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW	V)		Wa	iter		Samj	pled: 06/23/	08 10:50		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.138	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pH		EPA 150.1	6.36			pH Units	1x	8060891	06/24/08 10:11	06/24/08 10:25	
PRF0842-03	(19LC MW01SW	7)		Wa	iter		Samj	pled: 06/23/	08 12:30		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.101	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pH		EPA 150.1	6.47			pH Units	1x	8060891	06/24/08 10:11	06/24/08 10:25	
PRF0842-04	(19LC MW02DW	V)		Wa	iter		Sam	pled: 06/23/	08 14:15		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.488	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pH		EPA 150.1	6.53			pH Units	1x	8060891	06/24/08 10:11	06/24/08 10:25	
PRF0842-05	(19LC MW02SW	7)		Wa	iter		Samj	pled: 06/23/	08 15:15		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.345	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pH		EPA 150.1	6.56			pH Units	1x	8060891	06/24/08 10:11	06/24/08 10:25	
PRF0842-06	(19LC MW03DW	V)		Wa	iter		Sam	pled: 06/23/	08 16:45		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.339	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pН		EPA 150.1	6.52			pH Units	1x	8060891	06/24/08 10:11	06/24/08 10:25	

TestAmerica Portland

AL DE

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/14/08 14:32 Andrew Harvey

Conventional Chemistry Parameters per Standard Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW0	01DW)		Wa	ter		Sam	pled: 06/23/	08 10:50		
Bicarbonate Alkalinity	SM 2320B	47.7	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/27/08 10:32	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	47.7	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0842-03 (19LC MW)	01SW)		Wa	ter		Sam	pled: 06/23/	08 12:30		
Bicarbonate Alkalinity	SM 2320B	46.1	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/27/08 10:32	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	46.1	0.320	5.00	"	"	"	"	**	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0842-04 (19LC MW)	02DW)		Wa	ter		Sam	pled: 06/23/	08 14:15		
Bicarbonate Alkalinity	SM 2320B	47.0	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	47.0	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0842-05 (19LC MW)	02SW)		Wa	ter		Sam	pled: 06/23/	08 15:15		
Bicarbonate Alkalinity	SM 2320B	44.7	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	44.7	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0842-06 (19LC MW)	03DW)		Wa	ter		Sam	pled: 06/23/	08 16:45		
Bicarbonate Alkalinity	SM 2320B	48.9	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	48.9	0.320	5.00	"	"	"	"	**	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Conventional Chemistry Parameters per Standard Methods

TestAmerica Portland

Analyte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Notes

TestAmerica Portland

ELPORT

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Project Number:
Portland, OR 97239 Project Manager:

Camp Bonneville, WA Report Created:
Andrew Harvey 07/14/08 14:32

Anions per EPA Method 300.0

TestAmerica Portland

Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
(19LC MW01DW)		Wa	iter		Samj	pled: 06/23/	08 10:50		
EPA 300.0	1.37	0.0270	0.500	mg/l	1x	8060887	06/24/08 10:20	06/24/08 10:33	
"	0.900	0.198	1.00	"	"	"	"	"	J
(19LC MW01SW)		Wa	iter		Sam	pled: 06/23/	08 12:30		
EPA 300.0	1.26	0.0270	0.500	mg/l	1x	8060887	06/24/08 10:20	06/24/08 10:47	
"	0.560	0.198	1.00	"	"	"	"	"	J
(19LC MW02DW)		Wa	iter		Sam	pled: 06/23/	08 14:15		
EPA 300.0	1.88	0.0270	0.500	mg/l	1x	8060887	06/24/08 10:20	06/24/08 11:01	
"	0.920	0.198	1.00	"	"	"	"	"	J
(19LC MW02SW)		Wa	iter		Sam	pled: 06/23/	08 15:15		
EPA 300.0	1.43	0.0270	0.500	mg/l	1x	8060887	06/24/08 10:20	06/24/08 11:15	
"	1.70	0.198	1.00	"	"	"	"	"	
(19LC MW03DW)		Wa	iter		Samı	pled: 06/23/	08 16:45		
EPA 300.0	1.50	0.0270	0.500	mg/l	1x	8060887	06/24/08 10:20	06/24/08 12:11	
"	ND	0.198	1.00	"	"	"	"	"	U
	(19LC MW01DW) EPA 300.0 " (19LC MW01SW) EPA 300.0 " (19LC MW02DW) EPA 300.0 " (19LC MW02SW) EPA 300.0 " (19LC MW03DW)	(19LC MW01DW) EPA 300.0 1.37 " 0.900 (19LC MW01SW) EPA 300.0 1.26 " 0.560 (19LC MW02DW) EPA 300.0 1.88 " 0.920 (19LC MW02SW) EPA 300.0 1.43 " 1.70 (19LC MW03DW)	(19LC MW01DW) Was EPA 300.0 1.37 0.0270 " 0.900 0.198 (19LC MW01SW) Was EPA 300.0 1.26 0.0270 " 0.560 0.198 (19LC MW02DW) Was EPA 300.0 1.88 0.0270 " 0.920 0.198 (19LC MW02SW) Was EPA 300.0 1.43 0.0270 " 1.70 0.198 (19LC MW03DW) Was	Table Tab	The state of the late of the	Company Feat Feat	Company Com	Samplet: 06/23/08 10:50 SPA 300.0 1.37 0.0270 0.500 mg/l 1x 8060887 06/24/08 10:20 " 0.900 0.198 1.00 " " " " " Samplet: 06/23/08 12:30 " Samplet: 06/23/08 10:20 " " " " " " " " " " " " " "	Company Comp

TestAmerica Portland

THE DAY

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Portland, OR 97239

Project Number: Camp Bonneville, WA
Project Manager: Andrew Harvey

Report Created:

Amarew Harvey

07/14/08 14:32

Conventional Chemistry Parameters by APHA/EPA Methods

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW)		Wa	iter		Sam	pled: 06/23/	08 10:50		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26022	06/25/08 09:52	06/25/08 10:06	C
PRF0842-03	(19LC MW01SW)		Wa	ıter		Sam	pled: 06/23/	08 12:30		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26022	06/25/08 09:52	06/25/08 10:06	C
PRF0842-04	(19LC MW02DW)		Wa	ıter		Sam	pled: 06/23/	08 14:15		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26022	06/25/08 09:52	06/25/08 10:06	C
PRF0842-05	(19LC MW02SW)		Wa	ıter		Sam	pled: 06/23/	08 15:15		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26022	06/25/08 09:52	06/25/08 10:06	C
PRF0842-06	(19LC MW03DW)		Wa	iter		Sam	pled: 06/23/	08 16:45		_
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26022	06/25/08 09:52	06/25/08 10:06	C

TestAmerica Portland

THE PORT

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

Project Number:

Camp Bonneville, WA

Report Created:

4412 SW Corbett Ave. Portland, OR 97239

Project Manager: And

Andrew Harvey

07/14/08 14:32

Total Organic Carbon, Combustion or Oxidation

TestAmerica Tacoma

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01DW	V)		Wat	er		Samı	oled: 06/23	/08 10:50		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0842-03 (19LC MW01SW	7)		Wate	er		Samı	oled: 06/23	/08 12:30		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0842-04 (19LC MW02DW	V)		Wate	er		Samı	pled: 06/23	/08 14:15		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0842-05 (19LC MW02SW	7)		Wate	er		Samı	pled: 06/23	/08 15:15		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0842-06 (19LC MW03DW	V)		Wat	er		Samı	oled: 06/23	/08 16:45		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	

TestAmerica Portland

May Del

Richard D. Reid, Project Manager

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created: Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Total Organic Carbon, Combustion or Oxidation Diss

TestAmerica Tacoma

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW01D)	W)		Wat	ter		Samj	pled: 06/23	/08 10:50		
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0842-03 (19LC MW01SV	W)		Wat	ter		Samj	pled: 06/23	/08 12:30		
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0842-04 (19LC MW02D	W)		Wat	ter		Samj	pled: 06/23	/08 14:15		
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0842-05 (19LC MW02S)	W)		Wat	ter		Samj	pled: 06/23	/08 15:15		
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0842-06 (19LC MW03D	W)		Wat	ter		Samj	pled: 06/23	/08 16:45		
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	

TestAmerica Portland

/DAI

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

4412 SW Corbett Ave. Portland, OR 97239

Project Name: Camp Bonneville, WA

Project Number: Camp Bonneville, WA
Project Manager: Andrew Harvey

Report Created: 07/14/08 14:32

EPA-DW1 314.0

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02	(19LC MW01DW)		Wat	er		Sam	pled: 06/23/	/08 10:50		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 17:29	
PRF0842-03	(19LC MW01SW)		Wat	er		Samj	pled: 06/23/	08 12:30		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 17:50	
PRF0842-04	(19LC MW02DW)		Wat	er		Sam	pled: 06/23/	08 14:15		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 18:11	
PRF0842-05	(19LC MW02SW)		Wat	er		Samj	pled: 06/23/	08 15:15		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 18:32	
PRF0842-06	(19LC MW03DW)		Wat	er		Samj	pled: 06/23/	08 16:45		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 18:53	

TestAmerica Portland

ALDE!

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-02 (19LC MW0	01DW)		Wa	iter		Sam	pled: 06/23/	08 10:50		
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8177628	06/25/08 18:30	06/28/08 08:29	
Picric Acid	"	ND		0.4	"	"	"	"	"	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4		"	"	"	"	
Nitroglycerin	"	ND		3		"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	

Surrogate(s): 1,2-Dinitrobenzene

100%

75 - 118 %

PRF0842-03 (19LC MW)	01SW)		Wa	ter		Sam	pled: 06/23/	08 12:30	
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8177628	06/25/08 18:30	06/28/08 08:50
Picric Acid	"	ND		0.4	"	"	"	"	"
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
Tetryl	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"

TestAmerica Portland

ALL DES

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Batch

Prepared

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Analyzed

Notes

Method

Analyte

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

Result MDL*

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/14/08 14:32 Andrew Harvey

SW846 8330

TestAmerica Denver

Units

MRL

PRF0842-03 (19LC MW0	1SW)		Wa	iter		Sam	pled: 06/23/	08 12:30		
PETN	SW846 8330	ND		2	ug/L	1x	8177628	06/25/08 18:30	06/28/08 08:50	
Surrogate(s): 1,2-Dinitrob	enzene			104%		75 - 118 %	ó "			"
PRF0842-04 (19LC MW0	2DW)		Wa	iter		Sam	pled: 06/23/	08 14:15		
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8177628	06/25/08 18:30	06/28/08 09:11	
Picric Acid	"	ND		0.4	"	"	"	"	"	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	

109% 75 - 118 % Surrogate(s): 1,2-Dinitrobenzene

PRF0842-05 (19LC MW	02SW)		Wa	ter		Sam	pled: 06/23/	08 15:15	
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8177628	06/25/08 18:30	06/28/08 09:32
Picric Acid	"	ND		0.4	"	"	"	"	"
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
Tetryl	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Project Number:
Portland, OR 97239 Project Manager:

Camp Bonneville, WA

Report Created:

ger: Andrew Harvey

07/14/08 14:32

SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0842-05	(19LC MW02SW)		Wa	ter		Samp	oled: 06/23/	08 15:15		
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	

 Surrogate(s):
 1,2-Dinitrobenzene
 113%
 75 - 118 %

PRF0842-06 (19LC MW	/03DW)		Wa	ter		Sam	pled: 06/23/	08 16:45	
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8177628	06/25/08 18:30	06/28/08 09:53
Picric Acid	"	ND		0.4	"	"	"	"	"
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
Tetryl	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"
PETN	"	ND		2	"	"	"	"	"

75 - 118 %

118%

TestAmerica Portland

E/DAI

Surrogate(s): 1,2-Dinitrobenzene

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Project Number:
Portland, OR 97239 Project Manager:

NW TPH-Gx

2390

Recovery:

327

103%

Camp Bonneville, WA Report Created:
Andrew Harvey 07/14/08 14:32

Extracted: 06/24/08 11:47

0.917% (35)

06/24/08 20:15

06/24/08 20:15

Gasoline Hydrocarbons per NW TPH-Gx Method - Laboratory Quality Control Results TestAmerica Portland														
QC Batch: 8060901	Water Preparation Method: EPA 5030B													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (8060901-BLK1)								Exti	racted:	06/24/08 1	1:47			
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x							06/24/08 18:24	U
Surrogate(s): 4-BFB		Recovery:	85.9%	Lin	nits: 50-150%	"							06/24/08 18:24	
LCS (8060901-BS1)								Exti	racted:	06/24/08 1	1:47			
Gasoline Range Hydrocarbons	NW TPH-Gx	492	32.7	80.0	ug/l	1x		500	98.3%	(70-130)			06/24/08 17:29	
Surrogate(s): 4-BFB		Recovery:	98.5%	Lin	nits: 50-150%	"							06/24/08 17:29	
LCS Dup (8060901-BSD1)								Exti	racted:	06/24/08 1	1:47			
Gasoline Range Hydrocarbons	NW TPH-Gx	499	32.7	80.0	ug/l	1x		500	99.9%	(70-130)	1.58%	6 (35)	06/24/08 17:57	
Surrogate(s): 4-BFB		Recovery:	100%	Lin	nits: 50-150%	"							06/24/08 17:57	
Duplicate (8060901-DUP1)				QC Source:	PRF0791-04	ļ		Exti	racted:	06/24/08 1	1:47			
Gasoline Range Hydrocarbons	NW TPH-Gx	3720	327	800	ug/l	10x	3700				0.455	% (35)	06/24/08 19:20	D
Surrogate(s): 4-BFB		Recovery:	101%	Lin	nits: 50-150%	1x							06/24/08 19:20	

QC Source: PRF0791-05

ug/l

Limits: 50-150% 1x

2410

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

Duplicate (8060901-DUP2)

Gasoline Range Hydrocarbons

Surrogate(s): 4-BFB

Camp Bonneville, WA

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name:

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method - Laboratory Quality Control Results TestAmerica Portland QC Batch: 8060939 Water Preparation Method: EPA 3510 Fuels REC (Limits) Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Blank (8060939-BLK1) Extracted: 06/25/08 12:00 NWTPH-Dx ND 0.0410 0.0800 06/26/08 10:34 U Diesel Range Organics 1x __ mg/l Heavy Oil Range Hydrocarbons ND 0.286 0.500 U Surrogate(s): 1-Chlorooctadecane Recovery: Limits: 50-150% 06/26/08 10:34 LCS (8060939-BS1) Extracted: 06/25/08 12:00 Diesel Range Organics NWTPH-Dx 1.04 0.0410 0.0800 mg/l 1x 1.25 83.1% 06/26/08 10:53 " 0.772 0.286 " Heavy Oil Range Hydrocarbons 0.750 103% 06/26/08 10:53 Surrogate(s): 1-Chlorooctadecane Recovery: 89.6% Limits: 50-150% LCS Dup (8060939-BSD1) Extracted: 06/25/08 12:00 NWTPH-Dx 0.887 0.0410 0.0800 06/26/08 11:11 Diesel Range Organics 1x 1.25 71.0% (50-150)15.7% (50) mg/l Heavy Oil Range Hydrocarbons 0.743 0.286 0.500 0.750 99.1% 3.80% 06/26/08 11:11 Limits: 50-150% Surrogate(s): 1-Chlorooctadecane Recovery: 81.7% **Duplicate** (8060939-DUP1) QC Source: PRF0882-07 Extracted: 06/25/08 15:00 NWTPH-Dx 0.0387 U Diesel Range Organics ND 0.0755 1xND NR (50)06/26/08 11:31 mg/l Heavy Oil Range Hydrocarbons ND 0.270 0.472 ND NR U

Limits: 50-150%

99.2%

Recovery:

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

Surrogate(s): 1-Chlorooctadecane

06/26/08 11:31

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/14/08 14:32 Andrew Harvey

Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8060931	Water 1	Preparation	Method: E	PA 200/30	005									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (8060931-BLK1)								Extr	acted:	06/25/08 08	01			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x							06/25/08 15:48	Ţ
Arsenic	"	ND	0.000180	0.00100	"	"							"	Ţ
Beryllium	"	ND	0.0000250	0.000500	"	"							"	J
Cadmium	"	ND	0.0000650	0.000500	"	"							"	J
Chromium	"	ND	0.000350	0.00200	"	"							"	Ţ
Copper	"	ND	0.000270	0.00200	"	"							"	J
Lead	"	ND	0.000220	0.00100	"	"							"	J
Nickel	"	ND	0.000150	0.00100	"	"							"	Ţ
Selenium	"	ND	0.0000750	0.000500	"	"							"	U
Silver	"	ND	0.000200	0.00100	"	"							"	U
Thallium	"	ND	0.0000500	0.00100	"	"							"	Ţ
Zinc	"	0.00122	0.000700	0.00500	"	"							"	
LCS (8060931-BS1)								Extr	acted:	06/25/08 08	01			
Antimony	EPA 6020	0.0490	0.000150	0.00100	mg/l	1x		0.0500	98.1%	(80-120)			06/25/08 15:54	
Arsenic	"	0.0985	0.000180	0.00100	"	"		0.100	98.5%	"			"	
Beryllium	"	0.0937	0.0000250	0.000500	"	"		"	93.7%	"			"	
Cadmium	"	0.0913	0.0000650	0.000500	"	"		"	91.3%	"			"	
Chromium	"	0.0992	0.000350	0.00200	"	"		"	99.2%	"			"	
Copper	"	0.0968	0.000270	0.00200	"	"		"	96.8%	"			"	
Lead	"	0.0998	0.000220	0.00100	"	"		"	99.8%	"			"	
Nickel	"	0.0943	0.000150	0.00100	"	"		"	94.3%	"			"	
Selenium	"	0.0914	0.0000750	0.000500	"	"		"	91.4%	"			"	
Silver	"	0.0504	0.000200	0.00100	"	"		0.0500	101%	"			"	
Thallium	"	0.100	0.0000500	0.00100	"	"		0.100	100%	"			"	
Zinc	"	0.0941	0.000700	0.00500	"	"		"	94.1%	"			"	
Duplicate (8060931-DUP1)				QC Source:	PRF0814-0	1		Extr	acted:	06/25/08 08	01			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	ND				NR	(20)	06/25/08 16:08	τ
Arsenic	"	ND	0.000180	0.00100	"	"	ND				NR	"	"	ι
Beryllium	"	0.000610	0.0000250	0.000500	"	"	0.000620				1.63%	"	"	
Cadmium	"	0.000710	0.0000650	0.000500	"	"	0.000730				2.78%		"	
Chromium	"	ND	0.000350	0.00200	"	"	ND				NR	"	"	Ţ
Copper	"	0.00685	0.000270	0.00200	"	"	0.00633				7.89%	"	"	
Lead	"	ND	0.000220	0.00100	"	"	ND				NR	"	"	Į.
Nickel	"	0.000940	0.000150	0.00100	"	"	0.000680				32.1%	"	"	R4, .
Selenium	,,	0.000150	0.0000750	0.000500	"		0.000140				6.90%		"	104,
Silver	"	ND	0.000200	0.00100	,,	,,	ND				NR	,,		U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

0.0896

0.0490

0.0971

0.0895

0.0000750

0.000200

0.0000500

0.000700

0.000500

0.00100

0.00100

0.00500

ND

ND

ND

0.00235

89.6%

87.2%

0.0500 98.0%

0.100 97.1%

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Cor	trol Results
--	--------------

TestAmerica Portland

				estAmeric	a Portland									
QC Batch: 8060931	Water F	Preparation	Method: E	CPA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Duplicate (8060931-DUP1)				QC Source:	PRF0814-0	l		Extr	acted:	06/25/08 08	:01			
Zinc	EPA 6020	0.00820	0.000700	0.00500	mg/l	1x	0.00761				7.46%	(20)	06/25/08 16:08	
Matrix Spike (8060931-MS1)				QC Source:	PRF0814-0	l		Extr	acted:	06/25/08 08	:01			
Antimony	EPA 6020	0.0511	0.000150	0.00100	mg/l	1x	ND	0.0500	102%	(75-125)			06/25/08 16:32	
Arsenic	"	0.0987	0.000180	0.00100	"	"	ND	0.100	98.7%	"			"	
Beryllium	"	0.0906	0.0000250	0.000500	"	"	0.000620	"	90.0%	"			"	
Cadmium	"	0.0928	0.0000650	0.000500	"	"	0.000730	"	92.1%	"			"	
Chromium	"	0.0969	0.000350	0.00200	"	"	ND	"	96.9%	"			"	
Copper	"	0.0952	0.000270	0.00200	"	"	0.00633	"	88.8%	"			"	
Lead	"	0.0932	0.000220	0.00100	"	"	ND	"	93.2%	"			"	
Nickel	"	0.0889	0.000150	0.00100	"	"	0.000680	"	88.2%	"			"	
Selenium	"	0.0932	0.0000750	0.000500	"	"	0.000140	"	93.1%	"			"	
Silver	"	0.0487	0.000200	0.00100	"	"	ND	0.0500	97.3%	"			"	
Thallium	"	0.0943	0.0000500	0.00100	"	"	ND	0.100	94.3%	"			"	
Zinc	"	0.0961	0.000700	0.00500	"	"	0.00761	"	88.5%	"			"	
Matrix Spike (8060931-MS2)				QC Source:	PRF0842-0	5		Extr	acted:	06/25/08 08	:01			
Antimony	EPA 6020	0.0508	0.000150	0.00100	mg/l	1x	ND	0.0500	102%	(75-125)			06/25/08 18:02	
Arsenic	"	0.0948	0.000180	0.00100	"	"	0.000470	0.100	94.3%	"			"	
Beryllium	"	0.0841	0.0000250	0.000500	"	"	ND	"	84.1%	"			"	
Cadmium	"	0.0927	0.0000650	0.000500	"	"	ND	"	92.7%	"			"	
Chromium	"	0.0923	0.000350	0.00200	"	"	ND	"	92.3%	"			"	
Copper	"	0.0893	0.000270	0.00200	"	"	0.00501	"	84.3%	"			"	
Lead	"	0.0971	0.000220	0.00100	"	"	ND	"	97.1%	"			"	
Nickel	"	0.0885	0.000150	0.00100	"		0.000200	"	88.3%				"	

TestAmerica Portland

Selenium

Thallium

Silver

Zinc

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Dissolved Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8060990	water P	герагацоп	Method: E	1 A 200/30	DISS									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060990-BLK1)								Extr	acted:	06/26/08 11	:04			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x							06/27/08 15:46	
Arsenic	"	ND	0.000180	0.00100	"	"							"	
Beryllium	"	ND	0.0000250	0.000500	"	"							06/28/08 01:30	
Cadmium	"	ND	0.0000650	0.000500	"	"							06/27/08 15:46	
Chromium	"	ND	0.000350	0.00200	"	"							"	
Copper	"	ND	0.000270	0.00200	"	"							"	
Lead	"	ND	0.000220	0.00100	"	"							"	
Nickel	"	ND	0.000150	0.00100	"	"							"	
Selenium	"	ND	0.0000750	0.000500	"	"							"	
Silver	"	ND	0.000200	0.00100	"	"							"	
Thallium	"	ND	0.0000500	0.00100	"	"							"	
Zinc	"	ND	0.000700	0.00500	"	"							"	
LCS (8060990-BS1)								Extr	acted:	06/26/08 11	:04			
Antimony	EPA 6020	0.0406	0.000150	0.00100	mg/l	1x		0.0500	81.1%	(80-120)			06/27/08 15:51	
Arsenic	"	0.0944	0.000180	0.00100	"	"		0.100	94.4%				"	
Beryllium	"	0.0843	0.0000250	0.000500	"	"		"	84.3%				06/28/08 01:38	
Cadmium	"	0.0914	0.0000650	0.000500	"	"		"	91.4%				06/27/08 15:51	
Chromium	"	0.0957	0.000350	0.00200	"			"	95.7%	,,			"	
Copper	"	0.0941	0.000270	0.00200	"			"	94.1%	,,			"	
Lead	"	0.0908	0.000220	0.00100	"	,,		"	90.8%				,,	
Nickel	"	0.0933	0.000150	0.00100	"	,,		,,	93.3%				,,	
Selenium	"	0.0917	0.0000750	0.000500	"	,,		,,	91.7%				,,	
Silver	"	0.0426	0.000200	0.00100	"	,,		0.0500	85.2%				,,	
Thallium	"	0.0892	0.000200	0.00100	,,	,,		0.100	89.2%	,,			,,	
Zinc	"	0.0951	0.000700	0.00500	"			"	95.1%	"			"	
Matrix Spike (8060990-MS1)				QC Source:	PRF0882-0	17		Extr	acted:	06/26/08 11	.04			
Antimony	EPA 6020	0.0438	0.000150	0.00100	mg/l	1x	ND			(75-125)			06/27/08 17:05	
Arsenic	"	0.101	0.000180	0.00100	"	,,	ND	0.100	101%	"			"	
Beryllium	"	0.0940	0.0000250	0.000500	"		ND	"	94.0%				06/28/08 03:23	
Cadmium	"	0.100	0.0000250	0.000500	"		ND	,,	100%				06/27/08 17:05	
Chromium	"	0.100	0.000350	0.00200	"	,,	ND	,,	102%				"	
Copper	"	0.102	0.000330	0.00200	,,	,,	ND	,,	102%	,,			,	
Lead	"	0.100	0.000270	0.00200	"		ND	,,	96.0%	,,			"	
Lead Nickel	"	0.0980	0.000220	0.00100	,,	,,	0.000447	,,	98.6%				,,	
	,,				,,			,,					,,	
Selenium		0.101	0.0000750	0.000500			ND		101%					
Silver		0.0453	0.000200	0.00100			ND	0.0500	90.7%					
Thallium	"	0.0945	0.0000500	0.00100	"	"	ND	0.100	94.5%	"			"	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

0.000904

-0.000223

106%

105%

Extracted: 06/26/08 11:04

(75-125)

0.941%

06/27/08 17:16

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

0.107

0.105

EPA 6020

0.000700

0.00500

QC Source: PRF0882-07

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Dissolved Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica Portland QC Batch: 8060990 Water Preparation Method: EPA 200/3005 Diss Source Spike (Limits) RPD Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes REC Result Amt Matrix Spike (8060990-MS1) QC Source: PRF0882-07 Extracted: 06/26/08 11:04 EPA 6020 06/27/08 17:05 Zinc 0.106 0.000700 0.00500 1x 0.000904 0.100 105% (75-125)mg/l OC Source: PRF0882-07 Extracted: 06/26/08 11:04 Matrix Spike Dup (8060990-MSD1) EPA 6020 0.0450 0.000150 0.00100 ND 0.0500 90.0% 06/27/08 17:10 1x(75-125)2.66% (20) Antimony mg/l 0.100 1.18% 0.000180 0.00100 ND 102% Arsenic 0.102 Beryllium 0.0917 0.00002500.000500ND 91.7% 2.48% 06/28/08 03:32 0.000500 ND 103% 2.17% 06/27/08 17:10 Cadmium 0.103 0.00006500.00200 ND 103% 0.103 0.000350 1.56% Chromium 101% 0.00200 ND 0.598% Copper 0.101 0.000270 Lead 0.0976 0.0002200.00100 ND 97.6% 1.67% 0.00100 0.000447 99.8% Nickel 0.100 0.000150 1.16% 0.0000750 0.000500 ND 102% 1.28% Selenium 0.102 Silver 0.0461 0.000200 0.00100 ND 0.0500 92.2% 1.68% Thallium 0.0961 0.0000500 0.00100 ND 1.64%

TestAmerica Portland

Zinc

Arsenic

Post Spike (8060990-PS1)

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

	Dissolved	Mercury	per EPA M	ethod 747			ory Qual	ity Control	Results				
QC Batch: 8060912	Water P	reparation	Method: E	CPA 7470A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REG	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060912-BLK1)								Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	ND	0.0000630	0.000200	mg/l	1x						06/25/08 09:06	U
LCS (8060912-BS1)								Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	0.00512	0.0000630	0.000200	mg/l	1x		0.00500 1029	(85-115)			06/25/08 09:08	
LCS Dup (8060912-BSD1)								Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	0.00511	0.0000630	0.000200	mg/l	1x		0.00500 1029	(85-115)	0.201	% (20)	06/25/08 09:12	
Duplicate (8060912-DUP1)				QC Source:	PRF0842-	02		Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	ND	0.0000630	0.000200	mg/l	1x	ND			NR	(20)	06/25/08 09:15	U
Matrix Spike (8060912-MS1)				QC Source:	PRF0842-0	02		Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	0.00519	0.0000630	0.000200	mg/l	1x	ND	0.00500 1049	(75-125)			06/25/08 09:17	
Matrix Spike Dup (8060912-MS	D1)			QC Source:	PRF0842-0	02		Extracted	06/24/08 1	4:14			
Mercury	EPA 7470A	0.00538	0.0000630	0.000200	mg/l	1x	ND	0.00500 1089	6 (75-125)	3.69%	(20)	06/25/08 09:21	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

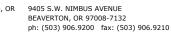
PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/14/08 14:32 Andrew Harvey


	Total M	lercury pe	r EPA Met	hod 7470 A ΓestAmeric		atory	Quality	Control 1	Res	ults				
QC Batch: 8060911	Water P	reparation	Method: E	EPA 7470A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% EC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060911-BLK1)								Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	ND	0.0000673	0.000200	mg/l	1x			-		-		06/25/08 08:24	U
LCS (8060911-BS1)								Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	0.00514	0.0000673	0.000200	mg/l	1x		0.00500 10	3%	(85-115)			06/25/08 08:27	
LCS Dup (8060911-BSD1)								Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	0.00518	0.0000673	0.000200	mg/l	1x		0.00500 10	4%	(85-115)	0.759	% (20)	06/25/08 08:30	
Duplicate (8060911-DUP1)				QC Source:	PRF0842-02			Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	ND	0.0000673	0.000200	mg/l	1x	ND		-		NR	(20)	06/25/08 08:33	U
Matrix Spike (8060911-MS1)				QC Source:	PRF0842-02			Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	0.00512	0.0000673	0.000200	mg/l	1x	ND	0.00500 10	2%	(75-125)			06/25/08 08:35	
Matrix Spike Dup (8060911-MS	D1)			QC Source:	PRF0842-02			Extracte	ed: (06/24/08 14	:13			
Mercury	EPA 7470A	0.00522	0.0000673	0.000200	mg/l	1x	ND	0.00500 10	4%	(75-125)	1.82%	6 (20)	06/25/08 08:39	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

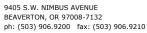
Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland


QC Batch: 8070104	Water P	reparation N	Method: EP	A 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8070104-BLK1)								Extr	acted:	07/03/08 06	:36			
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x						(07/03/08 08:24	1
Benzene	"	ND	0.0900	1.00	"	"							"	
Bromobenzene	"	ND	0.100	1.00	"	"							"	1
Bromochloromethane	"	ND	0.180	1.00	"	"							"	1
Bromodichloromethane	"	ND	0.110	1.00	"	"							"	1
Bromoform	"	ND	0.100	1.00	"	"							"	
Bromomethane	"	ND	0.170	5.00	"	"							"	ī
2-Butanone (MEK)	"	ND	3.50	10.0	"	"							"	1
n-Butylbenzene	"	ND	0.0600	5.00	"	"							"	1
sec-Butylbenzene	"	ND	0.0800	1.00	"	"							"	1
tert-Butylbenzene	"	ND	0.0600	1.00	"	"							"	1
Carbon disulfide	"	ND	0.140	10.0	"	"							"	1
Carbon tetrachloride	"	ND	0.0600	1.00	"	"							"	1
Chlorobenzene	"	ND	0.0500	1.00	"	"							"	
Chloroethane	"	ND	0.110	1.00	"	"							"	
Chloroform	"	ND	0.0900	1.00	"	"							"	1
Chloromethane	"	ND	0.0800	5.00	"	"							"	1
2-Chlorotoluene	"	ND	0.0700	1.00	"	"							"	1
4-Chlorotoluene	"	ND	0.110	1.00	"	"							"	1
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"							"	1
Dibromochloromethane	"	ND	0.0700	1.00	"	"							"	1
1,2-Dibromoethane	"	ND	0.110	1.00	"	"							"	τ
Dibromomethane	"	ND	0.100	1.00	"	"							"	1
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"							"	ī
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"							"	ī
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"							"	ī
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"							"	1
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"							"	1
1,2-Dichloroethane	"	ND	0.100	1.00	"	"							"	1
1,1-Dichloroethene	"	ND	0.120	1.00	"	"							"	1
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"							"	1
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"							"	1
1,2-Dichloropropane	"	ND	0.110	1.00	"	"							"	1
1,3-Dichloropropane	"	ND	0.140	1.00	"	"							"	1
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"							"	1
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"							"	1
cis-1,3-Dichloropropene	"	ND	0.0900	1.00	"	"							"	1
trans-1,3-Dichloropropene	"	ND	0.100	1.00	"	"							"	τ
Ethylbenzene	"	ND	0.0600	1.00	"	"							"	Ţ

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

Report Created:

Portland, OR 97239

Project Manager: Andrew Harvey

07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batch:	: 8070104	Water F	reparation	Method: I	EPA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8070104	4-BLK1)								Extr	acted:	07/03/08 06	:36			
Hexachlorobutadiene		EPA 8260B	0.210	0.210	4.00	ug/l	1x							07/03/08 08:24	
2-Hexanone		"	ND	3.62	10.0	"	"							"	τ
Isopropylbenzene		"	ND	0.0700	2.00	"	"							"	τ
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"							"	τ
4-Methyl-2-pentanone	;	"	ND	0.290	5.00	"	"							"	Ţ
Methyl tert-butyl ether	r	"	ND	0.0900	1.00	"	"							"	Ţ
Methylene chloride		"	ND	0.160	5.00	"	"							"	Ţ
Naphthalene		"	ND	0.0900	2.00	"	"							"	J
n-Propylbenzene		"	ND	0.100	1.00	"	"							"	J
Styrene		"	ND	0.0400	1.00	"	"							"	J
1,1,1,2-Tetrachloroeth	ane	"	ND	0.0900	1.00	"	"							"	J
1,1,2,2-Tetrachloroeth	ane	"	ND	0.0800	1.00	"	"							"	J
Tetrachloroethene		"	ND	0.110	1.00	"	"							"	J
Toluene		"	ND	0.110	1.00	"	"							"	J
1,2,3-Trichlorobenzen	e	"	0.100	0.100	1.00	"	"							"	
1,2,4-Trichlorobenzen	e	•	ND	0.110	1.00	"	"								Ţ
1,1,1-Trichloroethane		•	ND	0.120	1.00	"	"								Ţ
1,1,2-Trichloroethane		•	ND	0.130	1.00	"	"								Ţ
Trichloroethene		•	ND	0.0800	1.00	"	"								Ţ
Trichlorofluoromethan	ne	•	ND	0.0600	1.00	"	"								Ţ
1,2,3-Trichloropropan	e	•	ND	0.130	1.00	"	"								Ţ
1,2,4-Trimethylbenzen	ne	•	ND	0.0800	1.00	"	"								Ţ
1,3,5-Trimethylbenzen	ne	"	ND	0.0700	1.00	"	"							"	Ţ
Vinyl chloride		"	ND	0.100	1.00	"	"							"	Ţ
o-Xylene		"	ND	0.0700	1.00	"	"							"	Ţ
m,p-Xylene		"	ND	0.210	2.00	"	"							"	Ţ
Surrogate(s):	4-BFB		Recovery:	97.8%	Lin	nits: 80-120%	"							07/03/08 08:24	!
0 17	1,2-DCA-d4		,	99.7%		80-120%	"							"	
	Dibromofluoromethane			94.6%		80-120%	"							"	
	Toluene-d8			99.4%		80-120%	"							"	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Portland, OR 97239

Toluene-d8

Project Number: Camp Bonneville, WA
Project Manager: Andrew Harvey

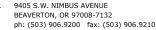
Report Created: 07/14/08 14:32

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batc	h: 8070104	Water I	Preparation	Method: EI	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
LCS (8070104	I-BS1)								Ext	racted:	07/03/08 06	:36			
Benzene		EPA 8260B	19.7	0.0900	1.00	ug/l	1x		20.0	98.6%	(80-120)			07/03/08 06:58	
Chlorobenzene		"	20.6	0.0500	1.00	"	"		"	103%	(80-124)			"	
1,1-Dichloroethene		"	19.5	0.120	1.00	"	"		"	97.6%	(78-120)			"	
Toluene		"	20.1	0.110	1.00	"	"		"	101%	(80-124)			"	
Trichloroethene		"	20.1	0.0800	1.00	"	"		"	100%	(80-132)			"	
Surrogate(s):	4-BFB		Recovery:	100%	Lin	nits: 80-120%	"							07/03/08 06:58	
	1,2-DCA-d4			99.2%		80-120%	"							"	
	Dibromofluoromethane			99.2%		80-120%	"							"	
	Toluene-d8			104%		80-120%	"							"	
LCS Dup (80'	70104-BSD1)								Ext	racted:	07/03/08 06	:36			
Benzene		EPA 8260B	20.5	0.0900	1.00	ug/l	1x		20.0	103%	(80-120)	3.98%	(25)	07/03/08 07:31	
Chlorobenzene		"	21.5	0.0500	1.00	"	"		"	108%	(80-124)	4.27%	, "	"	
1,1-Dichloroethene		"	20.5	0.120	1.00	"	"		"	103%	(78-120)	5.09%	ó "	"	
Toluene		"	20.9	0.110	1.00	"	"		"	105%	(80-124)	3.94%	ó "	"	
Trichloroethene		"	20.8	0.0800	1.00	"	"		"	104%	(80-132)	3.47%	, "	"	
Surrogate(s):	4-BFB		Recovery:	99.0%	Lin	nits: 80-120%	"							07/03/08 07:31	
	1,2-DCA-d4			102%		80-120%	"							"	
	Dibromofluoromethane			103%		80-120%	"							"	

80-120% "


106%

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8060908	Water P	reparation M	lethod: 35	20B Liq-l	Liq									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060908-BLK1)								Extr	acted:	06/24/08 15	:45			
Acenaphthene	EPA 8270C	ND	3.00	5.00	ug/l	1x						(06/27/08 20:03	U
Acenaphthylene	"	ND	3.00	5.00	"	"							"	U
Anthracene	"	ND	3.00	5.00	"	"							"	U
Benzo (a) anthracene	"	ND	3.00	5.00	"	"							"	U
Benzo (a) pyrene	"	ND	3.00	5.00	"	"							"	U
Benzo (b) fluoranthene	"	ND	3.00	5.00	"	"							"	U
Benzo (ghi) perylene	"	ND	3.00	5.00	"	"							"	U
Benzo (k) fluoranthene	"	ND	3.00	5.00	"	"							"	U
Benzoic Acid	"	ND	50.0	50.0	"	"							"	U
Benzyl alcohol	"	ND	5.00	10.0	"	"							"	U
4-Bromophenyl phenyl ether	"	ND	3.00	5.00	"								"	U
Butyl benzyl phthalate	"	ND	3.00	5.00	"	"							"	U
4-Chloro-3-methylphenol	"	ND	3.00	5.00	"	"							"	U
4-Chloroaniline	"	ND	10.0	20.0	"	"							"	U
Bis(2-chloroethoxy)methane	"	ND	5.00	10.0	"								"	U
Bis(2-chloroethyl)ether	"	ND	3.00	5.00	"	"							"	U
Bis(2-chloroisopropyl)ether	"	ND	5.00	10.0	"								"	U
2-Chloronaphthalene	"	ND	3.00	5.00	"								"	U
2-Chlorophenol	"	ND	3.00	5.00	"	"							"	U
4-Chlorophenyl phenyl ether	"	ND	3.00	5.00	"	"							"	U
Chrysene	"	ND	3.00	5.00	"	"							"	U
Di-n-butyl phthalate	"	ND	3.00	5.00	"	,,							"	U
Di-n-octyl phthalate	"	ND	3.00	5.00	"	,,							"	U
Dibenzo (a,h) anthracene	"	ND	3.00	5.00	,,		_			_		_	"	U
Dibenzofuran	"	ND	3.00	5.00	,,	,,	_			_		_	"	U
1,2-Dichlorobenzene	"	ND	5.00	5.00	,,	,,	_			_		_	"	U
1,3-Dichlorobenzene	"	ND	5.00	5.00	,,	,,			_	_		_	,,	U
1,4-Dichlorobenzene	"	ND	5.00	5.00	,,								,,	U
3,3'-Dichlorobenzidine	"	ND	3.00	5.00	,,	,,	_		_	_		_	,,	U
2,4-Dichlorophenol	"	ND	3.00	5.00	,,	,,	_		_	_		_	,,	U
-	,,	ND	3.00	5.00	,,	,,							,,	U
Diethyl phthalate	"	ND ND	5.00	10.0	,,	,,				-		-	"	U
2,4-Dimethylphenol	,,	ND ND	3.00	5.00	,,								,,	U
Dimethyl phthalate	,,	ND ND		10.0	,,								,,	
4,6-Dinitro-2-methylphenol			5.00		,,			-						U
2,4-Dinitrophenol		ND	15.0	25.0		,,								U
2,4-Dinitrotoluene		ND	3.00	5.00		.,				-		-	"	U
2,6-Dinitrotoluene		ND	3.00	5.00						-		-		U
Bis(2-ethylhexyl)phthalate	"	ND	10.0	10.0	"	"					-		"	U
Fluoranthene	"	ND	3.00	5.00	"	"							"	U

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

QC Batc	h: 8060908	Water 1	Preparation	Method: 35	20B Liq-l	Liq									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (806090	08-BLK1)								Extr	acted:	06/24/08 15	:45			
Fluorene		EPA 8270C	ND	3.00	5.00	ug/l	1x							06/27/08 20:03	Ţ
Hexachlorobenzene		"	ND	3.00	5.00	"	"							"	Ţ
Hexachlorobutadien	e	"	ND	5.00	10.0	"	"							"	U
Hexachlorocyclopen	tadiene	"	ND	5.00	10.0	"	"							"	U
Hexachloroethane		"	ND	5.00	10.0	"	"							"	U
Indeno (1,2,3-cd) py	rene	"	ND	3.00	5.00	"	"							"	U
Isophorone		"	ND	3.00	5.00	"	"							"	U
2-Methylnaphthalen	e	"	ND	3.00	5.00	"	"							"	U
2-Methylphenol		"	ND	5.00	10.0	"	"							"	U
3-,4-Methylphenol		"	ND	3.00	5.00	"	"							"	U
Naphthalene		"	ND	3.00	5.00	"	"							"	U
2-Nitroaniline		"	ND	3.00	5.00	"	"							"	U
3-Nitroaniline		"	ND	5.00	10.0	"	"							"	U
4-Nitroaniline		"	ND	5.00	10.0	"	"							"	U
Nitrobenzene		"	ND	3.00	5.00	"	"							"	U
2-Nitrophenol		"	ND	3.00	5.00	"	"							"	U
4-Nitrophenol		"	ND	10.0	25.0	"	"							"	U
N-Nitrosodi-n-propy	lamine	"	ND	5.00	10.0	"	"							"	U
N-Nitrosodiphenylar	mine	"	ND	3.00	5.00	"	"							"	U
Pentachlorophenol		"	ND	5.00	10.0	"	"							"	U
Phenanthrene		"	ND	3.00	5.00	"	"							"	U
Phenol		"	ND	3.00	5.00	"	"							"	U
Pyrene		"	ND	3.00	5.00	"	"							"	U
1,2,4-Trichlorobenze	ene	"	ND	5.00	5.00	"	"							"	U
2,4,5-Trichlorophen	ol	"	ND	3.00	5.00	"	"							"	U
2,4,6-Trichlorophen	ol	"	ND	3.00	5.00	"	"							"	U
Surrogate(s):	2-Fluorobiphenyl		Recovery:	79.5%	Lin	nits: 22-120%	"							06/27/08 20:03	
	2-Fluorophenol			94.5%		5-120%	"							"	
	Nitrobenzene-d5			98.3%		26-127%	"							"	
	Phenol-d6			104%		4-121%								"	
	p-Terphenyl-d14			109%		37-130%								"	
	2,4,6-Tribromophenol			106%		21-129%	"							"	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

OC D-4-1- 90(0000

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

2520D I :- I :-

QC Batcl	h: 8060908	Water I	Preparation	Method: 3	3520B Liq-	Liq									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (8060908	3-BS1)								Extr	acted:	06/24/08 15	:45			
Acenaphthene		EPA 8270C	64.0	6.00	10.0	ug/l	2x		75.0	85.3%	(56-120)			06/28/08 00:05	1
4-Chloro-3-methylph	henol	"	69.9	6.00	10.0	"	"		"	93.2%	(37-131)			"	1
2-Chlorophenol		"	64.3	6.00	10.0	"	"		"	85.8%	(31-130)			"	1
1,4-Dichlorobenzene	e	"	58.4	10.0	10.0	"	"		"	77.9%	(8-124)			"	1
2,4-Dinitrotoluene		"	60.4	6.00	10.0	"	"		"	80.5%	(50-127)			"	j
4-Nitrophenol		"	49.6	20.0	50.0	"	"		"	66.1%	(1-157)			"	J, 1
N-Nitrosodi-n-propy	lamine	"	58.7	10.0	20.0	"	"		"	78.3%	(44-129)			"	1
Pentachlorophenol		•	61.7	10.0	20.0	"			"	82.2%	(23-149)			"	I
Phenol		"	49.0	6.00	10.0	"	"		"	65.3%	(1-145)			"	I
Pyrene		"	67.1	6.00	10.0	"			"	89.4%	(56-125)			"	I
1,2,4-Trichlorobenze	ene	"	61.6	10.0	10.0	"			"	82.2%	(33-116)			"	I
Surrogate(s):	2-Fluorobiphenyl		Recovery:	75.5%	Li	mits: 22-1209	% "							06/28/08 00:05	
Surroguie(s).	2-Fluorophenol		Recovery.	74.6%	Lii	5-120								"	
	Nitrobenzene-d5			88.1%		26-127								"	
	Phenol-d6			71.3%		4-121								"	
	p-Terphenyl-d14			92.3%		37-130								"	
	2,4,6-Tribromophenol			92.8%		21-129	% "							"	
LCS Dup (806	(0908-RSD1)								Extr	acted:	06/24/08 15	:45			
Acenaphthene	30700 B S D 1)	EPA 8270C	61.2	3.00	5.00	ug/l	1x		75.0	81.6%	(56-120)		(50)	06/27/08 20:25	
4-Chloro-3-methylph	henol	"	69.4	3.00	5.00	"	,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	92.5%	(37-131)	0.7049		"	
2-Chlorophenol	nenor	"	65.8	3.00	5.00	"	,,		,,	87.8%	(31-130)	2.34%		,,	
1,4-Dichlorobenzene	,	,,	57.1	5.00	5.00	"			,,	76.1%	(8-124)	2.27%		,,	
2,4-Dinitrotoluene	•	,,	64.2	3.00	5.00	"			,,	85.6%	(50-127)	6.12%		,,	
4-Nitrophenol		,,	63.2	10.0	25.0	"			,,	84.3%	(1-157)	24.1%		,,	
N-Nitrosodi-n-propy	damina	,,	63.6	5.00	10.0	,,	.,		,,	84.8%	(44-129)	7.95%		,,	
	Tallinie	,,				,,			,,					,,	
Pentachlorophenol			66.4	5.00	10.0				,,	88.5%	(23-149)	7.30%			
Phenol			58.0	3.00	5.00					77.4%	(1-145)	16.9%			
Pyrene			66.5	3.00	5.00				"	88.7%	(56-125)	0.8549			
1,2,4-Trichlorobenze	ene	"	61.7	5.00	5.00	"	"		"	82.3%	(33-116)	0.0973	% "	"	
Surrogate(s):	2-Fluorobiphenyl		Recovery:	72.9%	Lin	mits: 22-1209								06/27/08 20:25	
	2-Fluorophenol			79.9%		5-120								"	
	Nitrobenzene-d5			89.6%		26-127	% "							"	
	Phenol-d6			81.0%		4-121	% "							"	
	p-Terphenyl-d14			96.8%		37-130								"	
	2,4,6-Tribromophenol			102%		21-129	% "							"	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Tenta	ntively Identified	Compound	-	ile GC/NestAmeric			- Labo	ratory Qu	ality Con	trol R	esults			
QC Batch: 8070104 Water Preparation Method: EPA 5030B														
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RI) % RPD	(Limits	s) Analyzed	Notes	
Blank (8070104-BLK1)								Extracte	d: 07/03/08	06:36				
No TICS identified	EPA 8260B	ND		2.00	ug/l	1x						07/03/08 08:24	U	

ug/l

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Tentativ	ely Identified Co	ompounds j		atile GC	`		c.) - Lal	boratory Quality Control Results						
QC Batch: 8060908 Water Preparation Method: 3520B Liq-Liq														
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Notes						
Blank (8060908-BLK1)								Extracted: 06/24/08 15:45						
No TICS identified	EPA 8270C	ND	10.0	10.0	ug/l	1x		06/27/08 20:03						

TestAmerica Portland

The Del

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering

Project Name:

Camp Bonneville, WA

4412 SW Corbett Ave. Portland, OR 97239 Project Number: Camp Bonneville, WA
Project Manager: Andrew Harvey

Report Created: 07/14/08 14:32

Conventional Chemistry Parameters per APHA/EPA Methods - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8060891 Water Preparation Method: General Preparation

Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Analyzed Notes

 Duplicate
 (8060891-DUP1)
 QC Source:
 PRF0842-02
 Extracted:
 06/24/08 10:11

pH EPA 150.1 6.36 pH Units 1x 6.36 -- -- 0.00% (25) 06/24/08 10:25

QC Batch: 8070053	Water P	reparation N	Method: (General Pro	eparation	1								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8070053-BLK1)								Extra	cted:	07/02/08 06:	38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	ND	0.00270	0.00500	mg/l	1x							07/07/08 17:59	U
LCS (8070053-BS1)								Extra	cted:	07/02/08 06:	38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.106	0.00270	0.00500	mg/l	1x		0.100	106%	(85-115)			07/07/08 17:59	
Duplicate (8070053-DUP1)				QC Source:	PRF1016-	-01		Extra	cted:	07/02/08 06:	38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	ND	0.00270	0.00500	mg/l	1x	ND				NR	(20)	07/07/08 17:59	U
Matrix Spike (8070053-MS1)				QC Source:	PRF1016-	-01		Extra	cted:	07/02/08 06:	38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.102	0.00270	0.00500	mg/l	1x	ND	0.100	102%	(75-125)			07/07/08 17:59	
Matrix Spike Dup (8070053-MS	SD1)			QC Source:	PRF1016-	-01		Extra	cted:	07/02/08 06:	38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.102	0.00270	0.00500	mg/l	1x	ND	0.100	102%	(75-125)	0.489%	6 (20)	07/07/08 17:59	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Сог	nventional Che	mistry Para	_		rd Metho ca Portland	ds - I	aborato	ry Qua	lity C	Control l	Result	S		
QC Batch: 8060978	Water I	reparation M	Iethod: (General Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060978-BLK1)								Extr	acted:	06/26/08 08	:56			
Bicarbonate Alkalinity	SM 2320B	ND	0.320	5.00	mg/L as CaCO3	1x							06/27/08 10:32	τ
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"							"	τ
Carbonate Alkalinity	"	ND	0.320	5.00	"	"							"	τ
Total Alkalinity	"	ND	0.320	5.00	"	"							"	τ
LCS (8060978-BS1)								Extr	acted:	06/26/08 08	:56			
Total Alkalinity	SM 2320B	197	0.320	5.00	mg/L as	1x		200	98.6%	(90-110)			06/27/08 10:32	
Bicarbonate Alkalinity	"	92.2	0.320	5.00	CaCO3			100	92.2%				"	
Carbonate Alkalinity	"	105	0.320	5.00	"	"		"	105%	"			"	
Duplicate (8060978-DUP1)				QC Source	: PRF0882-0	7		Extr	acted:	06/26/08 08	:56			
Bicarbonate Alkalinity	SM 2320B	40.7	0.320	5.00	mg/L as CaCO3	1x	41.8		-		2.57%	(20)	06/27/08 10:32	
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	ND				NR	"	"	ι
Total Alkalinity	"	40.7	0.320	5.00	"	"	41.8				2.57%	. "	"	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	ND		-		NR	"	"	Ţ
QC Batch: 8060986	Water F	reparation M	lethod: (General Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060986-BLK1)								Extr	acted:	06/26/08 10	:51			
Total Suspended Solids	SM 2540D	ND	3.10	10.0	mg/l	1x							06/26/08 17:28	τ
LCS (8060986-BS1)								Extr	acted:	06/26/08 10	:51			
Total Suspended Solids	SM 2540D	60.0	3.10	10.0	mg/l	1x		50.0	120%	(80-120)			06/26/08 17:28	
Duplicate (8060986-DUP1)				QC Source	: PRF0904-0	1		Extr	acted:	06/26/08 10	:51			
Total Suspended Solids	SM 2540D	16.0	1.24	4.00	mg/l	1x	16.0				0.009/	(20)	06/26/08 17:28	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Anions per EPA Method 300.0 - Laboratory Quality Control Results

TestAmerica Portland

			Т	estAmeric	a Portland	1								
QC Batch: 8060887	Water P	reparation N	Method: W	et Chem										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% REC	(Limits)	RPD (Limits	s) Analyzed	Notes
Blank (8060887-BLK1)								Extrac	ted:	06/24/08 10:	:20			
Sulfate	EPA 300.0	ND	0.198	1.00	mg/l	1x							06/24/08 12:26	U
Chloride	"	0.0500	0.0270	0.500	"	"							"	J
LCS (8060887-BS1)								Extrac	ted:	06/24/08 10:	:20			
Chloride	EPA 300.0	10.2	0.0270	0.500	mg/l	1x		10.0 1	102%	(90-110)			06/24/08 12:40	
Sulfate	"	31.7	0.198	1.00	"	"		30.0	106%	"			"	
Duplicate (8060887-DUP1)				QC Source:	PRF0842-	06		Extrac	ted:	06/24/08 10:	:20			
Chloride	EPA 300.0	1.49	0.0270	0.500	mg/l	1x	1.50				0.669%	(20)	06/24/08 11:29	
Sulfate	"	0.750	0.198	1.00	"	"	ND					"	"	J
Matrix Spike (8060887-MS1)				QC Source:	PRF0842-	06		Extrac	ted:	06/24/08 10:	:20			
Sulfate	EPA 300.0	5.26	0.220	1.11	mg/l	1x	ND	4.44 1	118%	(80-120)			06/24/08 11:43	
Chloride	"	3.70	0.0300	0.556	"	"	1.50	2.22 9	9.0%	"			"	
Matrix Spike Dup (8060887-MS	SD1)			QC Source:	PRF0842-	06		Extrac	ted:	06/24/08 10:	:20			
Chloride	EPA 300.0	3.70	0.0300	0.556	mg/l	1x	1.50	2.22 9	9.0%	(80-120)	0.00%	(20)	06/24/08 11:57	
Sulfate	"	5.28	0.220	1.11	"		ND	4.44 1	19%	"	0.422%	"	"	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Conv	ventional Cher	nistry Paran	neters by .	APHA/I	EPA Meth	ods -	Laborate	ory Quality	Control R	esults		
				ГestAmer	rica Seattle							
QC Batch: 8F26022	Water P	reparation M	lethod: G	eneral P	reparation							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits) F	% (Lii	mits) Analyzed	Notes
Blank (8F26022-BLK1)								Extracted	06/25/08 09:5	2		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x					06/25/08 10:06	С
LCS (8F26022-BS1)								Extracted	06/25/08 09:5	2		
Nitrite-Nitrogen	EPA 353.2	1.09		0.0100	mg/l as N	1x		1.00 109%	(90-110)		06/25/08 10:06	C8
Duplicate (8F26022-DUP1)				QC Source	e: PRF0842-0)3		Extracted	06/25/08 09:5	2		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	ND			(20	0) 06/25/08 10:06	С
Matrix Spike (8F26022-MS1)				QC Source	e: PRF0842-0)3		Extracted	06/25/08 09:5	2		
Nitrite-Nitrogen	EPA 353.2	1.13		0.0100	mg/l as N	1x	ND	1.00 113%	6 (75-125)		06/25/08 10:06	C8

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

	Total Organ	ic Carbon, C		n or Oxic			atory Qu	ıality Contı	ol Result	ts			
QC Batch: 33844	Water I	Preparation M	ethod: NA	4									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (580-33844-1)				QC Source:				Extracted:	07/08/08 13	3:40			
Total Organic Carbon	415.1	ND		1.0	mg/L	1x						07/08/08 13:40	
LCS (580-33844-2)				QC Source:				Extracted:	07/08/08 13	3:40			
Total Organic Carbon	415.1	13.9		1.0	mg/L	1x		15.0 93%	(80-120)			07/08/08 13:40	
Duplicate (580-33844-7)				QC Source:	580-33844	-6		Extracted:	07/08/08 13	3:40			
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	ND			NC%	(20)	07/08/08 13:40	
Matrix Spike (580-33844-8)				QC Source:	580-33844	-6		Extracted:	07/08/08 13	3:40			
Total Organic Carbon	415.1	10.3		1.0	mg/L	1x	ND	10.0 103%	(49-142)			07/08/08 13:40	
Matrix Spike Dup (580-33844-9)				QC Source:	580-33844	-6		Extracted:	07/08/08 13	3:40			
Total Organic Carbon	415.1	10.6		1.0	mg/L	1x	ND	10.0 106%	(49-142)	3%	(13)	07/08/08 13:40	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

Total Organic Carbon, Combustion or Oxidation Diss - Laboratory Quality Control Results

TestAmerica Tacoma

QC Batch: 33933	Water P	reparation M	ethod: N	A				· · · · · · · · · · · · · · · · · · ·				<u> </u>	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (580-33933-1)				QC Source:				Extracted:	07/09/08 15:	41			
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	lx						07/09/08 15:41	
LCS (580-33933-2)				QC Source:				Extracted:	07/09/08 15:	41			
Total Organic Carbon	415.1 Dissolved	16.4		1.0	mg/L	lx		15.0 109%	(80-120)			07/09/08 15:41	
Duplicate (580-33933-7)				QC Source:	580-33933	-6		Extracted:	07/09/08 15:	41			
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	lx	ND			NC%	(20)	07/09/08 15:41	
Matrix Spike (580-33933-8)				QC Source:	580-33933	-6		Extracted:	07/09/08 15:	41			
Total Organic Carbon	415.1 Dissolved	11.3		1.0	mg/L	1x	ND	10.0 113%	(49-142)			07/09/08 15:41	
Matrix Spike Dup (580-33933-9)				QC Source:	580-33933	-6		Extracted:	07/09/08 15:	41			
Total Organic Carbon	415.1 Dissolved	11.5		1.0	mg/L	1x	ND	10.0 115%	(49-142)	2%	(13)	07/09/08 15:41	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

EPA-DW1 314.0 - Laboratory Quality Control Results

TestAmerica Denver

				1 estAmenc	a Deliver								
QC Batch: 8191165	WATEI	R Preparation M	lethod:	314									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		% RPD	(Limits)	Analyzed	Notes
Matrix Spike Dup (D8F26032400	06D)			QC Source:	D8F26032	4006		Extracted	: 07/08/08 1	6:26			
Perchlorate	EPA-DW1 314.0	9.94		1	ug/L	1x	ND	10 99%	(80-120)	0.33%	(15)	07/08/08 22:24	
Matrix Spike (D8F260324006S)				QC Source:	D8F26032	4006		Extracted	: 07/08/08 1	6:26			
Perchlorate	EPA-DW1 314.0	9.9		1	ug/L	1x	ND	10 99%	(80-120)		0	07/08/08 22:03	
Blank (D8G090000165B)				QC Source:				Extracted	: 07/08/08 1	6:26			
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x					0	07/08/08 17:08	
LCS (D8G090000165C)				QC Source:				Extracted	: 07/08/08 1	6:26			
Perchlorate	EPA-DW1 314.0	9.43		1	ug/L	1x		10 94%	(85-115)		0	07/08/08 16:26	
LCS Dup (D8G090000165L)				QC Source:				Extracted	: 07/08/08 1	6:26			
Perchlorate	EPA-DW1 314.0	9.51		1	ug/L	1x		10 95%	(85-115)	0.82%	(15)	07/08/08 16:47	

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/14/08 14:32

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8177628	WATER	R Preparation	Method:	3535										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (D8F250000628B)				QC Source:				Extr	acted:	06/25/08 18	:30			
2,4,6-Trinitrotoluene	SW846 8330	ND		0.4	ug/L	1x						(06/28/08 07:26	
Picric Acid	"	ND		0.4	"	"							"	
RDX	"	ND		0.2	"	"							"	
1,3,5-Trinitrobenzene	"	ND		1	"	"							"	
2,4-Dinitrotoluene	"	ND		0.4	"	"							"	
2,6-Dinitrotoluene	"	ND		0.2	"	"							"	
1,3-Dinitrobenzene	"	ND		0.4	"	"							"	
Tetryl	"	ND		0.2	"	"							"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"							"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"							"	
2-Nitrotoluene	"	ND		0.4	"	"							"	
4-Nitrotoluene	"	ND		1	"	"							"	
3-Nitrotoluene	"	ND		0.4	"	"							"	
HMX	"	ND		0.4	"	"							"	
Nitrobenzene	"	ND		0.4	"	"							"	
Nitroglycerin	"	ND		3	"	"							"	
PETN	"	ND		2	"	"							"	

Surrogate(s): 1,2-Dinitrobenzene Recovery: 101% Limits: 75-118% " 06/28/08 07:26

LCS (D8F250000628C)			QC Source:			Ext	racted:	06/25/08 18:3	30	
Picric Acid	SW846 8330	1.72	 0.4	ug/L	1x	 2	86%	(50-150)		 06/28/08 07:47
2,4,6-Trinitrotoluene	"	1.98	 0.4	"	"	 "	99%	(73-116)		 "
1,3,5-Trinitrobenzene	"	1.88	 1	"	"	 "	94%	(73-122)		 "
RDX	"	2.05	 0.2	"	"	 "	102%	(69-118)		 "
2,4-Dinitrotoluene	"	1.94	 0.4	"	"	 "	97%	(75-115)		 "
2,6-Dinitrotoluene	"	1.96	 0.2	"	"	 "	98%	(77-115)		 "
1,3-Dinitrobenzene	"	2.03	 0.4	"	"	 "	101%	(78-115)		 "
Tetryl	"	2.18	 0.2	"	"	 "	109%	(69-127)		 "
2-Amino-4,6-dinitrotoluene	"	1.85	 0.2	"	"	 "	92%	(75-115)		 "
4-Amino-2,6-dinitrotoluene	"	1.81	 0.2	"	"	 "	90%	(57-115)		 "
4-Nitrotoluene	"	1.36	 1	"	"	 "	68%	(40-115)		 "
2-Nitrotoluene	"	1.01	 0.4	"	"	 "	50%	(35-115)		 "
HMX	"	2.04	 0.4	"	"	 "	102%	(78-115)		 "
3-Nitrotoluene	"	1.44	 0.4	"	"	 "	72%	(30-115)		 "
Nitrobenzene	"	1.16	 0.4	"	"	 "	58%	(51-115)		 "
Nitroglycerin	"	19.3	 3	"	"	 20	96%	(71-126)		 "
PETN	"	17.7	 2	"	"	 "	88%	(67-107)		 "

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 100%
 Limits: 75-118%
 "
 06/28/08 07:47

TestAmerica Portland

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

56%

99%

90%

20

(51-115)

(71-126)

(67-107)

(32)

4 2%

3% (21)

1.8% (30)

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

1 12

199

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8177628 **WATER Preparation Method:** 3535 Spike Source Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes RPD REC Amt LCS Dup (D8F250000628L) QC Source: Extracted: 06/25/08 18:30 SW846 8330 1 54 2 0.4 77% (30) 06/28/08 08:08 Picric Acid ug/L 1x(50-150)12% 2,4,6-Trinitrotoluene 2.06 0.4 103% (73-116) 3.8% (19) RDX 0.2 108% 2.16 (69-118) 5.4% (37) 99% 1.98 0.4 (75-115)2.4-Dinitrotoluene 2.4% (21) 1 97% 1,3,5-Trinitrobenzene 1.93 (73-122)2.9% 2,6-Dinitrotoluene 2.06 0.2 103% (77-115) 4.5% (20) 0.2 Tetryl 2.25 112% (69-127) 2.9% (24) 0.4 1,3-Dinitrobenzene 2.13 106% (78-115)4.9% (19)4-Amino-2,6-dinitrotoluene 1.87 0.2 94% (57-115)3.6% (22)2-Amino-4,6-dinitrotoluene 1.93 0.2 97% (75-115)4.4% (18)4-Nitrotoluene 1.24 1 62% (40-115)9.5% (44)2-Nitrotoluene 0.842 0.4 42% (35-115)18% (43) HMX2.14 0.4 107% (78-115)4.6% (26)3-Nitrotoluene 1.3 0.4 65% (30-115)10% (74)

Surrogate(s): 1,2-Dinitrobenzene Recovery: 103% Limits: 75-118% " 06/28/08 08:08

0.4

3

2

TestAmerica Portland

Nitrobenzene

Nitroglycerin

PETN

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Amended Report

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created: Portland, OR 97239 Project Manager: Andrew Harvey 07/14/08 14:32

Notes and Definitions

Report Specific Notes:

Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.

C8 - Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated.

D - Data reported from a preparation or analytical dilution.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

U - Analyte included in the analysis but not detected.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

 $\begin{tabular}{ll} MRL & - & METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. \\ \end{tabular}$

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Limits

Amended Report

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (425) 420-9200 FAX 420-9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 906-9200 FAX 906-9210

2000 West International Airport Road, Suite A10, Anchorage, AK 99502-1119 (907) 563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

Work Order #:

PRF084Z

CLIENT: PBS/ Baker							INV	DICE T	Ю;	Baker		1800 CONTRACTOR OF THE PARTY OF					TURN	AROUNI	REQUEST in Business D	Javs *
REPORT TO: andrew_harvey@pbsen	v.com	& christin	a_johnson@	pbsen	v.com														& Inorganic Analyses	
and appropriate personnel at Baker																	10 7	5	4 3 2 1	< 1
ADDRESS: Portland, Oregon																	STD.	Petrol	eum Hydrocarbon Analyses	
PHONE: (503)-417-7693			FAX:				P.O	. NUI	ивен	₹:							5	4	3 2 1 <	
PROJECT NAME: Camp Bonnev	rille GV	V Sampl	ing				1	RE	QUES	TED /	NAL'	YSES	γ	,	,		STD	·		_
PROJECT NUMBER: 70489 Ta	sk 621	2		+ Hg	ls, Hg	<u>~</u>	þý			Explosives, NG, PETN by 8330	Picric Acid 8303	314.1	∞ ~	5.1	Choride, nitrite, sulfate, pH		ОТІ	HER	Specify:	
SAMPLED BY: Barb Lary		*****		stals	Meta	CSF	TICs	Š	<u>ဇို</u>	es, y 83	βġ			4	Alkali trite,		* Turnaro	und Requests	less than standard may incur Rush (harges.
CLIENT SAMPLE		SAMPL	ING	Total Metals	Dissolved Metals,	VOCs + TICS by 8260B	SVOCs + TICs by 8270	NWTPH-Dx	NWTPH-Gx	losiv d N	ic Ac	Perchlorate by	TOC 415.1 nitrate 353	b b	TSS.		MATRIX	# OF		NCA WO
INDENTIFICATION		DATE/T	'IME	Tota	Disso	VOC 8260	SVO 8270	≩	Ž	A I	Pic	Perc	TOC #	200	P. Spirit		(W, S, O)	CONT.	COMMENTS/SAMPLER'S INTUAL	ID
1TB 229	6/23	8/08	9:30	-		X									1, 3 =		W	1	Committee and a second	
2 19LC MWOID W		<u> </u>	10:50	X	X	X	X	X	X	X	X	X	X	X	X		W	22		
3 19 LCMWOISW			12:30	+	4	+	X	X	7	7	7	7	7	X	+		W	22		
419LCHWOZDW			14:15	X	X	X	X	ょ	メ	X	X	¥	X	¥	X		W	22		
5 19 LCMWO2SW			15:15	X	λ	λ	k	X	X	X	×	V	X	¥	Y		N	22		
6 19 LC MW 03 DW			16:45	X	X	x	¥	+	+	+	4	1	لا	L	+		W	22		
7								•		-1	•	7								
8																				
9		"				_														
10		7				-														
11						17.00							_			+				
12							-									1				
13	(0	_		-			,		/										
RELINQUISHED BY: DANDAU	2.0	Fer	W				DATE:	6/2	3/0	X	RECEI	VED BV	1		20			i	DATE	06 24-68
PRINT NAME: BARBARA	1	LAN	MIRM:	PE	35		TIME:	08	345			NAME:	- C	ant s	of nate		FIRM:	12		0845
RELINQUISHED BY:	— ,	V	′ /	1 2			DATE:	06-2	H-08			VED BY		1/1/-	V 190	7	1 110.41.	1 1	DATE	[
PRINT NAME: Inlas	_		FIRM: +	AP			TIME:					NAME:					FIRM:		TIME	
ADDITIONAL REMARKS: 6	/מת	ER	5/ T	0		1/-							. /	1				0	TEMP:	
OC Rev 9, 3.99			∕			~V(كر	2 1	414		40		(N	1	-co	ce	TE W/	7		1 OF I
							_										,	•	1.7 (1.	4

	rest	America Sample R	eceipt Che	eckiist ,	1 00	. Goek	or lest or
Received by:	Unpacked by:	Logged-in by:		Work Order No.	1KF08L	12	
(section A)	*(section B)			Client:	2		
Date: 4124 (0)	Date: V Zul C	Date: 1/24/12	i. Lug	Project AVN	0 600	nevii	
Time: <u>0950</u>	Initials: 🗘 😉	Initials: W		T	emperature out of	range	, ,
Initials:		1 /		<u>ر</u>	\$1	Not er	nough Ice
***ECI Clicate (<u> </u>			1	中。4年	No lo	e
***ESI Clients (see Section C)			250	a l		4 Hours
Cooler Temperature (IR):	°C plastic	glass NA (oil/air OR ES	SI client) Te	emperature Blank: 1/2 (3)	C DIG	#1	#2
A <u>Custody Seals:</u> (#)			В	<u>Sample</u>			
Signature: Y N Dated:			1	(If N circled,	see NOD)		
None	 Receive	d from:	<u>Ge</u>	neral:			
/None	`	TA Courier	 	Intact?	\mathcal{M}	N	
Container Type:		Senvoy	i 1	# Containers Match COC?	Y	N	none given
5 4 #Cooler(s)		UPS		IDs Match COC?	\ _Y /	N	
#Box(s)	1011	Fed Ex	I For	Analyses Requested:	V		
None (#	Other:)	Client	<u> </u>	Cyanide checked?	Υ	N	$\widehat{\overline{NA}}$
Coolant Type:		TDP	! {	Correct Type & Preservation	1? A	N	
Gel/ Blue Ic	e	USPS	! 				
Loose Ice		SDS	f 1	Adequate Volume?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	
None		Mid-Valley	<u> </u>	Within Hold Time?	\bigvee	N	
		GS/TA	<u>Vol</u>	atiles/ Oil Quality:			
Packing Material:		GS/Senvoy	! \	/OAs/ Syringes free of Headsp	ace?	Ν	NA
Bubble Bag	s	Other:		TB on COC? not provide	$d \left(\begin{array}{c} Y \end{array} \right)$	Ν	NA
Styrofoam 0	Cubbies		Met	tal <u>s</u> :			
Peanuts		•		—- HNO3 Preserved?	M	Ν	NA
None (Other:)			Dissolved Metals Filtered?	(Y)	N	NA
C ***ESI Clients Only:				DC: Man the treation are	an leanable?	VEC	NO.
ESI CHERIES OTHY.			FED EX/ UF	PS: Was the tracking paper	ег кеераые?	YES	NO
Temperature Blank:	°C not provide	d DIGI #1 #2	If circled	NO, what is the Tracking num	ber?		
All preserved bottl All preserved acco		NA (voas/soils/all unp.)	FED EX	Goldstreak UPS	DHL	Othe	er:
All preserved acco	rungry: I iv (see /vo	OD) NA (voas/soils/all unp.)					
1/2000	Numa fac	Project	Managers:				
Comments: NO QC VI	olume tor.	y waysis					
	F	PM Reviewed:		(Initial/Date)			

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 18, 2008

Barb Lary PBS Engineering - Vancouver 1310 Main Street Vancouver, WA 98660

RE: Camp Bonneville, WA

Enclosed are the results of analyses for samples received by the laboratory on 06/26/08 17:45. The following list is a summary of the Work Orders contained in this report, generated on 07/17/08 14:39.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PRF0965	Camp Bonneville, WA	Camp Bonneville, WA

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: 07/17/08 14:39 Barb Lary

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB229	PRF0965-01	Water	06/25/08 09:30	06/26/08 17:45
19L4MW01AW	PRF0965-02	Water	06/25/08 09:45	06/26/08 17:45
19L4MW01BW	PRF0965-03	Water	06/25/08 10:55	06/26/08 17:45
19L4MW05AW	PRF0965-04	Water	06/25/08 12:00	06/26/08 17:45
19L4MW03BW	PRF0965-05	Water	06/25/08 13:40	06/26/08 17:45
19L4MW03AW	PRF0965-06	Water	06/25/08 14:55	06/26/08 17:45
19L4MW465W	PRF0965-07	Water	06/25/08 15:10	06/26/08 17:45
19L4MW07BW	PRF0965-08	Water	06/25/08 16:10	06/26/08 17:45

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
PRF0965-01 (TB229)			W	ater		Samp	Sampled: 06/25/08 09:30					
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 16:10	U		
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U		
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U		
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U		
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U		
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U		
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U		
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U		
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U		
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U		
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U		
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U		
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U		
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U		
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U		
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U		
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U		
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U		
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U		
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U		
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U		
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U		
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U		
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U		
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U		
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U		
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U		
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U		
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U		
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U		
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U		
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U		
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U		
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U		
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U		
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U		
A 1877 7		110										

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Metl	hod Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-01 (TB229)		V	Vater		Samp	led: 06/25/	/08 09:30		
cis-1,3-Dichloroprop	pene EPA 8	3260B ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 16:10	U
trans-1,3-Dichloropr	opene "	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	e "	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone	"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene	"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene	"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentanoi	ne "	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl eth	er "	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride	"	0.180	0.160	5.00	"	"	"	"	"	J
Naphthalene	"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Styrene	"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	thane "	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	thane "	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene	"	ND	0.110	1.00	"	"	"	"	"	U
Toluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenze	ene "	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenze	ene "	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	e "	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	e "	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene	"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	ane "	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloropropa	ine "	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	ene "	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	ene "	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride	"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene	"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene	"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB			100%		80 - 120 %	"			"
	1,2-DCA-d4			104%		80 - 120 %	"			"
	Dibromofluoromethane			101%		80 - 120 %	"			"
	Toluene-d8			104%		80 - 120 %	"			"

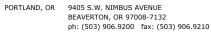
TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39


Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-02 (19L4MW01A	AW)		Wa	iter		Sam	pled: 06/25/	08 09:45		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 17:06	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00		"	"	"	"	U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-02	(19L4MW01AW)			W	ater		Samp	led: 06/25/	/08 09:45		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 17:06	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben	zene	"	ND	0.0800	1.00		"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				100%		80 - 120 %	"			"
	1,2-DCA-d4				105%		80 - 120 %	"			"
	Dibromofluorometha	ine			102%		80 - 120 %	"			"
	Toluene-d8				105%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-03 (19L4MW011	BW)		Wa	ter		Sam	pled: 06/25/	08 10:55		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:02	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane		ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane		ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)		ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene		ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene		ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene		ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00		"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00		"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00		"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00		"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00		"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00		"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00		"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00		"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00		"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00		"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00		"	"	"	"	U
1,2-Dichloroethane	•	ND	0.100	1.00	"	"	"	,,	"	U
1,1-Dichloroethene	•	ND	0.120	1.00	"	"	"	,,	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00		"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	,,	,,	,,	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

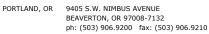
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-03	(19L4MW01BW)			W	ater		Samp	led: 06/25/	/08 10:55		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:02	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00		"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00		"	"	"	"	U
1,2,4-Trimethylben		"	ND	0.0800	1.00		"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00		"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				99.2%		80 - 120 %	"			"
	1,2-DCA-d4				105%		80 - 120 %	"			"
	Dibromofluorometr	hane			101%		80 - 120 %	"			"
	Toluene-d8				105%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

THE LEADER IN ENVIRONMENTAL TESTING

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-04 (19L4MW05A	AW)		W	ater		Samı	oled: 06/25/	08 12:00		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:29	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	N	1ethod	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-04	(19L4MW05AW)			W	ater		Samp	led: 06/25/	08 12:00		
cis-1,3-Dichloropro	pene EI	PA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:29	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00		"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00		"	"		"	U
Hexachlorobutadien	ie	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	ne	"	ND	0.290	5.00		"	"	"	"	U
Methyl tert-butyl etl	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	0.390	0.110	1.00	"	"	"	"	"	J
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				97.3%		80 - 120 %	"			"
	1,2-DCA-d4				102%		80 - 120 %	"			"
	Dibromofluoromethan	ie			99.8%		80 - 120 %	"			"
	Toluene-d8				103%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-05 (19L4MW031	BW)		Wa	iter		Sam	pled: 06/25/	08 13:40		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:57	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00		"	"	"	"	U
Chloroethane	"	ND	0.110	1.00		"	"	"	"	U
Chloroform	"	ND	0.0900	1.00		"	"	"	"	U
Chloromethane	,	ND	0.0800	5.00	"	"	"	,,	"	U
2-Chlorotoluene	"	ND	0.0700	1.00		"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00		"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00		"	"	"	"	U
Dibromochloromethane	,	ND	0.0700	1.00	"	"	"	,,	"	U
1,2-Dibromoethane	"	ND	0.110	1.00		"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichlorobenzene	,	ND	0.0700	1.00	"	"	"	,,	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00		"	"	"	"	U
1,4-Dichlorobenzene	,	ND	0.120	1.00	"	"	"	,,	"	U
Dichlorodifluoromethane	,	ND	0.110	5.00	"	"	"	,,	"	U
1,1-Dichloroethane	,	ND	0.0800	1.00	"	"	"	,,	"	U
1,2-Dichloroethane	,	ND	0.100	1.00	"	"	"	,,	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	,,	ND	0.0800	1.00	,,	,,	"	"	,,	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-05	(19L4MW03BW)			W	ater		Samp	led: 06/25/	/08 13:40		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:57	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ie	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloro	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloro	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluoromet	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben		"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				94.6%		80 - 120 %	"			"
	1,2-DCA-d4				103%		80 - 120 %	"			"
	Dibromofluorometh	ane			97.9%		80 - 120 %	"			"
	Toluene-d8				101%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

1310 Main Street Project Number: Camp Bonneville, WA Report Created:
Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-06 (19L4MW03A	AW)		W	ater		Samı	oled: 06/25/	08 14:55		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	lx	8070229	07/08/08 12:44	07/08/08 19:25	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-06	(19L4MW03AW)		W	ater		Sampl	led: 06/25/	08 14:55		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 19:25	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"		"	U
Styrene		"	ND	0.0400	1.00	"	"	"		"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"		"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"		"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"		"	U
Toluene		"	ND	0.110	1.00	"	"	"		"	U
1,2,3-Trichlorobenz	rene	"	ND	0.100	1.00	"	"	"		"	U
1,2,4-Trichlorobenz	rene	"	ND	0.110	1.00	"	"	"		"	U
1,1,1-Trichloroethai	ne	"	ND	0.120	1.00	"	"	"		"	U
1,1,2-Trichloroethai	ne	"	ND	0.130	1.00	"	"	"		"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"		"	U
Trichlorofluorometh	hane	"	ND	0.0600	1.00	"	"	"		"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				95.1%		80 - 120 %	"			"
	1,2-DCA-d4				100%		80 - 120 %	"			"
	Dibromofluorome	rthane			97.7%		80 - 120 %	"			"
	Toluene-d8				101%		80 - 120 %	"			"

TestAmerica Portland

/take/Delice

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-07 (19L4MW465	W)		W	ater		Samı	oled: 06/25/	08 15:10		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	lx	8070229	07/08/08 12:44	07/08/08 19:52	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B

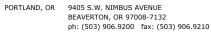
TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-07	(19L4MW465W)			W	ater		Samp	led: 06/25/	/08 15:10		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 19:52	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ie	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	ne	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00		"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00		"	"	"	"	U
1,2,4-Trimethylben		"	ND	0.0800	1.00		"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00		"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				98.0%		80 - 120 %	"			"
	1,2-DCA-d4				105%		80 - 120 %	"			"
	Dibromofluorometh	hane			102%		80 - 120 %	"			"
	Toluene-d8				103%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39


Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-08 (19L4MW07B	BW)		W	ater		Samı	oled: 06/25/	08 16:10		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:20	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

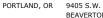
TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B


TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-08	(19L4MW07BW)			W	ater		Samp	led: 06/25/	/08 16:10		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:20	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0		"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00		"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00		"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00		"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00		"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00		"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				96.6%		80 - 120 %	"			"
	1,2-DCA-d4				105%		80 - 120 %	"			n
	Dibromofluorome	hane			101%		80 - 120 %	"			"
	Toluene-d8				103%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

Camp Bonneville, WA

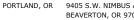
9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering - Vancouver Project Name:

1310 Main Street Report Created: Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:39

Tentatively Identified Compounds per Volatile GC/MS (Est. Conc.)


TestAmerica Portland

Analyte		Method	Result N	MDL* N	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-01	(TB229)			Water			Samp	oled: 06/25/	08 09:30		
No TICS identifie	ed	EPA 8260B	ND	:	2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 16:10	U
PRF0965-02	(19L4MW01AW))		Water			Samı	oled: 06/25/	08 09:45		
No TICS identifie	ed	EPA 8260B	ND	:	2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 17:06	U
PRF0965-03	(19L4MW01BW))		Water			Samp	oled: 06/25/	08 10:55		
No TICS identifie	ed	EPA 8260B	ND	:	2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:02	U
PRF0965-04	(19L4MW05AW))		Water			Samı	oled: 06/25/	08 12:00		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:29	U
PRF0965-05	(19L4MW03BW))		Water			Samı	oled: 06/25/	08 13:40		
No TICS identifie	ed	EPA 8260B	ND	:	2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 18:57	U
PRF0965-06	(19L4MW03AW))		Water			Samı	oled: 06/25/	08 14:55		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 19:25	U
PRF0965-07	(19L4MW465W)	ı		Water			Samı	pled: 06/25/0	08 15:10		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 19:52	U
PRF0965-08	(19L4MW07BW))		Water			Samı	pled: 06/25/0	08 16:10		
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:20	U

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

EPA-DW1 314.0

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-02	(19L4MW01AW)		Wat	er		Sam	pled: 06/25/	08 09:45		
Perchlorate	EPA-DW1 314.0	2		1	ug/L	1x	8192393	07/09/08 15:54	07/09/08 18:23	
PRF0965-03	(19L4MW01BW)		Wat	er		Sam	pled: 06/25/	08 10:55		
Perchlorate	EPA-DW1 314.0	0.59		1	ug/L	1x	8192393	07/09/08 15:54	07/09/08 18:44	В
PRF0965-04	(19L4MW05AW)		Wat	er		Sam	pled: 06/25/	08 12:00		
Perchlorate	EPA-DW1 314.0	37		1	ug/L	1x	8192393	07/09/08 15:54	07/09/08 19:05	
PRF0965-05	(19L4MW03BW)		Wat	er		Sam	pled: 06/25/	08 13:40		
Perchlorate	EPA-DW1 314.0	39		1	ug/L	lx	8192393	07/09/08 15:54	07/09/08 19:26	
PRF0965-06	(19L4MW03AW)		Wat	er		Sam	pled: 06/25/	08 14:55		
Perchlorate	EPA-DW1 314.0	86		5	ug/L	5x	8192393	07/09/08 15:54	07/10/08 08:05	D
PRF0965-07	(19L4MW465W)		Wat	er		Sam	pled: 06/25/	08 15:10		
Perchlorate	EPA-DW1 314.0	86		5	ug/L	5x	8192393	07/09/08 15:54	07/10/08 08:26	D
PRF0965-08	(19L4MW07BW)		Wat	er		Sam	pled: 06/25/	08 16:10		
Perchlorate	EPA-DW1 314.0	2.3		1	ug/L	1x	8192393	07/09/08 15:54	07/09/08 21:11	

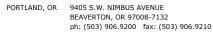
TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

SW846 8330

TestAmerica Denver


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-02 (19L4MW01	1AW)		Wa	iter		Samp	oled: 06/25/	08 09:45		
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 17:25	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
RDX	"	0.12		0.2	"	"	"	"	"	J
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	Ħ	

Surrogate(s): 1,2-Dinitrobenzene 104% 75 - 118 % "

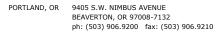
PRF0965-03 (19L4MW01	BW)		Wa	ter		Sam	pled: 06/25/	08 10:55	
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 17:49
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"
Picric Acid	"	ND		0.4	"	"	"	"	"
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	n
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	n
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	n
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	n
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	n
2-Nitrotoluene	"	ND		0.4	"	"	"	"	n
3-Nitrotoluene	"	ND		0.4	"	"	"	"	n
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	n
4-Nitrotoluene	"	ND		1	"	"	"	"	n
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

SW846 8330


TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-03 (19L4MW01BV	V)		Wa	iter		Samp	led: 06/25/	08 10:55		
Tetryl	SW846 8330	ND		0.2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 17:49	
Surrogate(s): 1,2-Dinitrobenze	ene			104%		75 - 118 %	"			"
PRF0965-04 (19L4MW05AV	W)		Wa	iter		Samp	led: 06/25/	08 12:00		
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 18:13	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
RDX	"	3.8		0.2	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	0.32		0.4	"	"	"	"	"	J
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	
Surrogate(s): 1,2-Dinitrobenze	ene			100%		75 - 118 %	"			"

PRF0965-05 (19L4MW03	3BW)		Wa	iter		Sam	pled: 06/25/	08 13:40		
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 18:37	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	
Picric Acid	"	0.14		0.4	"	"	"	"	"	J, COL
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
RDX	"	5		0.2	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2		"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2		"	"	"	"	
2-Nitrotoluene	"	ND		0.4		"	"	"	"	
3-Nitrotoluene	"	ND		0.4		"	"	"	"	

TestAmerica Portland

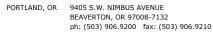
Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Project Number: Report Created: 1310 Main Street Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

SW846 8330

				TestAm	nerica De	enver				
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-05 (19L4MW03	BW)		Wa	ter		Samp	led: 06/25/	08 13:40		
4-Amino-2,6-dinitrotoluene	SW846 8330	ND		0.2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 18:37	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	
Surrogate(s): 1,2-Dinitrobo	enzene			131%		75 - 118 %	"			"
PRF0965-06 (19L4MW03	AW)		Wa	ter		Samp	led: 06/25/	08 14:55		
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 19:01	
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	"	


PETN	SW846 8330	ND	 2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 19:01	
1,3,5-Trinitrobenzene	"	ND	 1	"	"	"	"	"	
Picric Acid	"	ND	 0.4	"	"	"	"	"	
1,3-Dinitrobenzene	"	ND	 0.4	"	"	"	"	"	
RDX	"	11	 0.2	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND	 0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND	 0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND	 0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND	 0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND	 0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND	 0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND	 0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND	 1	"	"	"	"	"	
HMX	"	0.47	 0.4	"	"	"	"	"	
Nitrobenzene	"	ND	 0.4	"	"	"	"	"	
Nitroglycerin	"	ND	 3	"	"	"	"	"	
Tetryl	"	ND	 0.2	"	"	"	"	"	

110% 75 - 118 % Surrogate(s): 1,2-Dinitrobenzene

PRF0965-07 (19L	4MW465W)		Wa	iter		Sam	pled: 06/25/	08 15:10	
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 19:25
1,3,5-Trinitrobenzene	n	ND		1	"	"	"	"	"
Picric Acid	n	ND		0.4	"	"	"	"	"
1,3-Dinitrobenzene	n	ND		0.4	"	"	"	"	"
RDX	"	11		0.2	"	"	"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

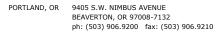
1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0965-07 (19L4MW465W	V)		Wa	iter		Samj	pled: 06/25/	08 15:10		
2,4-Dinitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8182428	06/30/08 18:00	07/03/08 19:25	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	0.4		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	

Surrogate(s): 1,2-Dinitrobenzene 103% 75 - 118 % "


PRF0965-08 (19L4MW07	BW)		Wa	ter		Sam	pled: 06/25/	08 16:10	
PETN	SW846 8330	ND		2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 19:49
1,3,5-Trinitrobenzene	"	ND		1	"	"	"	"	Ħ
Picric Acid	"	ND		0.4	"	"	"	"	Ħ
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"
Tetryl	"	ND		0.2	"	"	"	"	"

 Surrogate(s):
 1,2-Dinitrobenzene
 110%
 75 - 118 %
 "

TestAmerica Portland

The Del

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8070229	Water P	reparation I	Method: EP	A 5030B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RI		% RPD	(Limits)	Analyzed	Notes
Blank (8070229-BLK1)								Extracte	d: 07/08/08 1	2:44			
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x					(07/08/08 15:15	U
Benzene	"	ND	0.0900	1.00	"	"						"	U
Bromobenzene	"	ND	0.100	1.00	"	"						"	U
Bromochloromethane	"	ND	0.180	1.00	"	"						"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"						"	U
Bromoform	"	ND	0.100	1.00	"	"						"	U
Bromomethane	"	ND	0.170	5.00	"	"						"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"						"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"						"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"						"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"						"	U
Carbon disulfide	"	ND	0.140	10.0	"	"						"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"						"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"						"	U
Chloroethane	"	ND	0.110	1.00	"	"						"	U
Chloroform	"	ND	0.0900	1.00	"	"						"	U
Chloromethane	"	ND	0.0800	5.00	"	"						"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"						"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"						"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"						"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"						"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"						"	U
Dibromomethane	"	ND	0.100	1.00	"	"						"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"						"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"						"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"						"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"						"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"						"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"						"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"						"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"						"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"						"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"						"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"						"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"						"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"						"	U
cis-1,3-Dichloropropene	"	ND	0.0900	1.00	"	"						"	U
trans-1,3-Dichloropropene	"	ND	0.100	1.00	"	"						"	U
Ethylbenzene	•	ND	0.0600	1.00	"	"						"	U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batc	h: 8070229	Water I	Preparation	Method: EF	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (807022	29-BLK1)								Extr	acted:	07/08/08 12	:44			
Hexachlorobutadien	e	EPA 8260B	ND	0.210	4.00	ug/l	1x							07/08/08 15:15	Ţ
2-Hexanone		"	ND	3.62	10.0	"	"							"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"							"	Ţ
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"							"	U
4-Methyl-2-pentano	ne	"	ND	0.290	5.00	"	"							"	U
Methyl tert-butyl eth	ner	"	ND	0.0900	1.00	"	"							"	U
Methylene chloride		"	0.180	0.160	5.00	"	"							"	J
Naphthalene		"	0.220	0.0900	2.00	"	"							"	J
n-Propylbenzene		"	ND	0.100	1.00	"	"							"	U
Styrene		"	ND	0.0400	1.00	"	"							"	U
1,1,1,2-Tetrachloroe	thane	"	ND	0.0900	1.00	"	"							"	U
1,1,2,2-Tetrachloroe	thane	"	ND	0.0800	1.00	"	"							"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"							"	U
Toluene		"	ND	0.110	1.00	"	"							"	U
1,2,3-Trichlorobenze	ene	"	0.230	0.100	1.00	"	"							"	J
1,2,4-Trichlorobenze	ene	"	0.110	0.110	1.00	"	"							"	J
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"							"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"							"	U
Trichloroethene		"	ND	0.0800	1.00	"	"							"	U
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"							"	U
1,2,3-Trichloropropa	ane	"	ND	0.130	1.00	"	"							"	U
1,2,4-Trimethylbenz	rene	"	ND	0.0800	1.00	"	"							"	U
1,3,5-Trimethylbenz	rene	"	ND	0.0700	1.00	"	"							"	U
Vinyl chloride		"	ND	0.100	1.00	"	"							"	U
o-Xylene		"	ND	0.0700	1.00	"	"							"	U
m,p-Xylene		"	ND	0.210	2.00	"	"							"	U
Surrogate(s):	4-BFB		Recovery:	100%	Lin	nits: 80-120%	"							07/08/08 15:15	
3 (7	1,2-DCA-d4		,	103%		80-120%	"							"	
	Dibromofluoromethane			100%		80-120%	"							"	
	Toluene-d8			103%		80-120%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

	Volatile Organic Compounds per	EPA Method 8260B - Laboratory Quality Control Results	
		TestAmerica Portland	
229	Water Preparation Method:	EPA 5030B	

QC Batc	h: 8070229	Water I	reparation	Method: E	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (8070229	P-BS1)								Ext	racted:	07/08/08 12:	:44			
Benzene		EPA 8260B	19.2	0.0900	1.00	ug/l	1x		20.0	96.2%	(80-120)			07/08/08 13:18	
Chlorobenzene		"	19.3	0.0500	1.00	"	"		"	96.4%	(80-124)			"	
1,1-Dichloroethene		"	18.7	0.120	1.00	"	"		"	93.4%	(78-120)			"	
Toluene		"	19.3	0.110	1.00	"	"		"	96.5%	(80-124)			"	
Trichloroethene		"	18.6	0.0800	1.00	"	"		"	92.8%	(80-132)			"	
Surrogate(s):	4-BFB		Recovery:	106%	Lim	its: 80-120%	"							07/08/08 13:18	
	1,2-DCA-d4			101%		80-120%	"							"	
	Dibromofluoromethane			101%		80-120%	"							"	
	Toluene-d8			104%		80-120%	"							"	
Matrix Spike	(8070229-MS1)				QC Source:	PRF0965-02			Ext	racted:	07/08/08 12:	:44			
Benzene		EPA 8260B	18.5	0.0900	1.00	ug/l	1x	ND	20.0	92.4%	(80-124)			07/08/08 13:50	
Chlorobenzene		"	18.7	0.0500	1.00	"	"	ND	"	93.6%	(72.9-134)			"	
1,1-Dichloroethene		"	17.5	0.120	1.00	"		ND	"	87.4%	(79.3-127)			"	
Toluene		"	18.3	0.110	1.00	"		ND	"	91.4%	(79.7-131)			"	
Trichloroethene		"	17.9	0.0800	1.00	"	"	ND	"	89.5%	(68.4-130)			"	
Surrogate(s):	4-BFB		Recovery:	103%	Lim	its: 80-120%	"							07/08/08 13:50	
	1,2-DCA-d4			98.2%		80-120%	"							"	
	Dibromofluoromethane			101%		80-120%	"							"	
	Toluene-d8			102%		80-120%	"							"	
Matrix Spike I	oup (8070229-MSD	01)			QC Source:	PRF0965-02			Ext	racted:	07/08/08 12:	:44			
Benzene		EPA 8260B	17.6	0.0900	1.00	ug/l	1x	ND	20.0	87.8%	(80-124)	5.05%	(25)	07/08/08 14:19	
Chlorobenzene		*	17.7	0.0500	1.00	"		ND	"	88.6%	(72.9-134)	5.44%	"	"	
1,1-Dichloroethene		"	17.0	0.120	1.00	"		ND	"	85.1%	(79.3-127)	2.61%	· "	"	
Toluene		"	17.4	0.110	1.00	"	"	ND	"	87.2%	(79.7-131)	4.70%	"		
Trichloroethene		"	16.9	0.0800	1.00	"	"	ND	"	84.4%	(68.4-130)	5.92%	5 "	"	
Surrogate(s):	4-BFB		Recovery:	105%	Lim	its: 80-120%	"							07/08/08 14:19	
	1,2-DCA-d4			101%		80-120%	"							"	
	Dibrom of luoromethane			103%		80-120%	"							"	
	Toluene-d8			103%		80-120%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

07/08/08 15:15

EPA 8260B

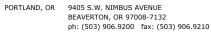
PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

ND

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

Tenta	tively Identified	l Compound	•	ile GC/NestAmerica	`	,	- Labor	ratory Quality Control Results	
QC Batch: 8070229	Water l	Preparation M	lethod: EP	A 5030B					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Amt REC	Notes
Blank (8070229-BLK1)								Extracted: 07/08/08 12:44	

ug/l


1x

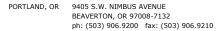
2.00

TestAmerica Portland

No TICS identified

Richard D. Reid, Project Manager

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39


EPA-DW1 314.0 - Laboratory Quality Control Results

TestAmerica Denver

				TestAmenc	a Denver									
QC Batch: 8192393	WATEI	R Preparation N	Method:	314										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike ^o Amt R	EC (Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike Dup (D8F28018800	02D)			QC Source:	D8F28018	8002		Extracte	ed: 07	7/09/08 1:	5:54			
Perchlorate	EPA-DW1 314.0	278		1	ug/L	1x	160	100 11	3%	(80-120)	7.3%	(15)	07/09/08 18:02	
Matrix Spike (D8F280188002S)				QC Source:	D8F28018	8002		Extracte	ed: 07	7/09/08 1:	5:54			
Perchlorate	EPA-DW1 314.0	258		1	ug/L	1x	160	100 94	4%	(80-120)			07/09/08 17:41	
Blank (D8G100000393B)				QC Source:				Extracte	ed: 07	7/09/08 1	5:54			
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x							07/09/08 16:36	
LCS (D8G100000393C)				QC Source:				Extracte	ed: 07	7/09/08 1:	5:54			
Perchlorate	EPA-DW1 314.0	9.77		1	ug/L	1x		10 98	8%	(85-115)			07/09/08 15:54	
LCS Dup (D8G100000393L)				QC Source:				Extracte	ed: 07	7/09/08 1:	5:54			
Perchlorate	EPA-DW1 314.0	9.76		1	ug/L	1x		10 98	8%	(85-115)	0.09%	(15)	07/09/08 16:15	

TestAmerica Portland

Richard D. Reid, Project Manager

QC Batch: 8182428

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: 07/17/08 14:39 Barb Lary

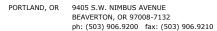
SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

3535

WATER Preparation Method: MDL* MRL Source Analyte Method Result Units Dil

						Result	Amit	REC					
Matrix Spike Dup (D8F2603	324006D)		QC Source:	D8F2603	24006		Ext	racted:	06/30/08 18:	:00			
PETN	SW846 8330	21.3	 2	ug/L	1x	ND	20.1	106%	(67-107)	1.7%	(30)	07/03/08 15:28	
1,3,5-Trinitrobenzene	"	2.09	 1	"	"	ND	2.01	104%	(73-122)	2.7%	(21)	"	
Picric Acid	"	1.87	 0.4	"	"	ND	"	93%	(50-150)	8.5%	(30)	"	
1,3-Dinitrobenzene	"	2.08	 0.4	"	"	ND	"	104%	(78-115)	1.9%	(19)	"	
RDX	"	2.2	 0.2	"	"	ND	"	109%	(69-118)	3.2%	(37)	"	
2,4,6-Trinitrotoluene	"	2.2	 0.4	"	"	ND	"	110%	(73-116)	2.6%	(19)	"	
2,4-Dinitrotoluene	"	2.17	 0.4	"	"	ND	"	108%	(75-115)	1.5%	(21)	"	
2,6-Dinitrotoluene	"	2.21	 0.2	"	"	ND	"	110%	(77-115)	3.7%	(20)	"	
2-Amino-4,6-dinitrotoluene	"	2.05	 0.2	"	"	ND	"	102%	(75-115)	2.1%	(18)	"	
2-Nitrotoluene	"	1.45	 0.4	"	"	ND	"	72%	(35-115)	17%	(43)	"	
3-Nitrotoluene	"	1.74	 0.4	"	"	ND	"	87%	(30-115)	5.3%	(74)	"	
4-Amino-2,6-dinitrotoluene	"	1.94	 0.2	"	"	ND	"	97%	(57-115)	3.7%	(22)	"	
4-Nitrotoluene	"	1.74	 1	"	"	ND	"	87%	(40-115)	7.9%	(44)	"	
HMX	"	2.26	 0.4	"	"	ND	"	112%	(78-115)	3.9%	(26)	"	
Nitrobenzene	"	1.52	 0.4	"	"	ND	"	75%	(51-115)	3.8%	(32)	"	
Nitroglycerin	"	22.6	 3	"	"	ND	20.1	113%	(71-126)	2.2%	(21)	"	
Tetryl	"	2.4	 0.2	"	"	ND	2.01	120%	(69-127)	1.9%	(24)	"	


Surrogate(s): 1,2-Dinitrobenzene Recovery: 107% Limits: 75-118% 07/03/08 15:28

Matrix Spike (D8F260324006	(S)		QC Source:	D8F2603	24006		Ext	racted:	06/30/08 18:0	00		
PETN	SW846 8330	20.9	 2	ug/L	1x	ND	19.7	106%	(67-107)		 07/03/08 15:04	
1,3,5-Trinitrobenzene	"	2.15	 1	"	"	ND	1.97	109%	(73-122)		 "	
Picric Acid	"	1.72	 0.4	"	"	ND	"	87%	(50-150)		 "	
RDX	"	2.27	 0.2	"	"	ND	"	115%	(69-118)		 "	
1,3-Dinitrobenzene	"	2.12	 0.4	"	"	ND	"	108%	(78-115)		 "	
2,4,6-Trinitrotoluene	"	2.26	 0.4	"	"	ND	"	115%	(73-116)		 "	
2,4-Dinitrotoluene	"	2.2	 0.4	"	"	ND	"	112%	(75-115)		 "	
2,6-Dinitrotoluene	"	2.29	 0.2	"	"	ND	"	117%	(77-115)		 "	a
2-Amino-4,6-dinitrotoluene	"	2.09	 0.2	"	"	ND	"	106%	(75-115)		 "	
2-Nitrotoluene	"	1.23	 0.4	"	"	ND	"	62%	(35-115)		 "	
3-Nitrotoluene	"	1.66	 0.4	"	"	ND	"	84%	(30-115)		 "	
4-Amino-2,6-dinitrotoluene	"	2.02	 0.2	"	"	ND	"	102%	(57-115)		 "	
4-Nitrotoluene	"	1.61	 1	"	"	ND	"	82%	(40-115)		 "	
HMX	"	2.35	 0.4	"	"	ND	"	119%	(78-115)		 "	a
Nitrobenzene	"	1.46	 0.4	"	"	ND	"	74%	(51-115)		 "	
Nitroglycerin	"	23.1	 3	"	"	ND	19.7	118%	(71-126)		 "	
Tetryl	"	2.45	 0.2	"	"	ND	1.97	125%	(69-127)		 "	

07/03/08 15:04 Recovery: 111% Limits: 75-118% Surrogate(s): 1,2-Dinitrobenzene

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:39

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8182428 **WATER Preparation Method:** 3535 REC (Limits) Spike Source % RPD Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Amt Blank (D8F300000428B) QC Source: Extracted: 06/30/08 18:00 SW846 8330 2 07/03/08 11:39 PETN ND ug/L 1xPicric Acid ND 0.4 ND 1,3,5-Trinitrobenzene ND RDX 0.2 0.4 1,3-Dinitrobenzene ND 2,4,6-Trinitrotoluene ND 0.4 2,4-Dinitrotoluene ND 0.4 0.2 2,6-Dinitrotoluene ND 2-Amino-4,6-dinitrotoluene ND 0.2 0.4 2-Nitrotoluene ND 3-Nitrotoluene 0.4 ND 4-Amino-2,6-dinitrotoluene ND 0.2 4-Nitrotoluene ND HMX ND 0.4 ND 0.4 Nitrobenzene Nitroglycerin ND 3 ND 0.2 Tetryl

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 106%
 Limits:
 75-118%
 "
 07/03/08 11:39

LCS (D8F300000428C)			QC Source:			Ext	racted:	06/30/08 18:0	00	
PETN	SW846 8330	20.6	 2	ug/L	1x	 20	103%	(67-107)		 07/03/08 12:03
1,3,5-Trinitrobenzene	"	2.07	 1	"	"	 2	103%	(73-122)		 "
Picric Acid	"	1.82	 0.4	"	"	 "	91%	(50-150)		 "
1,3-Dinitrobenzene	"	2.05	 0.4	"	"	 "	103%	(78-115)		 "
RDX	"	2.17	 0.2	"	"	 "	109%	(69-118)		 "
2,4,6-Trinitrotoluene	"	2.14	 0.4	"	"	 "	107%	(73-116)		 "
2,4-Dinitrotoluene	"	2.1	 0.4	"	"	 "	105%	(75-115)		 "
2,6-Dinitrotoluene	"	2.17	 0.2	"	"	 "	109%	(77-115)		 "
2-Amino-4,6-dinitrotoluene	"	2	 0.2	"	"	 "	100%	(75-115)		 "
2-Nitrotoluene	"	1.18	 0.4	"	"	 "	59%	(35-115)		 "
3-Nitrotoluene	"	1.57	 0.4	"	"	 "	78%	(30-115)		 "
4-Amino-2,6-dinitrotoluene	"	1.96	 0.2	"	"	 "	98%	(57-115)		 "
4-Nitrotoluene	"	1.56	 1	"	"	 "	78%	(40-115)		 "
HMX	"	2.21	 0.4	"	"	 "	110%	(78-115)		 "
Nitrobenzene	"	1.32	 0.4	"	"	 "	66%	(51-115)		 "
Nitroglycerin	"	21.9	 3	"	"	 20	109%	(71-126)		 "
Tetryl	"	2.36	 0.2	"	"	 2	118%	(69-127)		 "

Surrogate(s): 1,2-Dinitrobenzene Recovery: 106% Limits: 75-118% " 07/03/08 12:03

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:39

Notes and Definitions

Report Specific Notes:

- Surrogate recovery is outside stated control limits
- Spiked analyte recovery is outside stated control limits. a
- Estimated result. Result is less than RL and greater than or equal to the IDL.
- COL More than 40% RPD between primary and confirmation detector results. The lower of the two results is reported.
- D One or more quality control criteria failed
- Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Estimated result. Result is less than RL.
- U Analyte included in the analysis but not detected.

Laboratory Reporting Conventions:

- Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry
- Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis.
- RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (425) 420-9200 FAX 420-9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 906-9200 FAX 906-9210

2000 West International Airport Road, Suite A10, Anchorage, AK 99502-1119 (907) 563-9200 FAX 563-9210

X	
4 %	

	Cł	HAIN	OF	r Cl	J S ′	ΤΟ	DY	RI	E P ()R	Γ		V	Vork	Or	der #:	PR	F0965	ddddddddanning
CLIENT: PBS/ Baker REPORT TO: andrew_harvey@pbser and appropriate personnel at Baker ADDRESS: Portland, Oregon	nv.com & christin	a_johnson@)pbsen	v.com		INV	MCE I	°O:	Baker								Organi	D REQUEST in Business c & Inorganic Analyses 4 3 2	1 < 1
PHONE: (503)-417-7693		FAX:		10.55		P.O.	. NUN	ИВЕI	R:							5	7		
PROJECT NAME: Camp Bonney	ville GW Sampl	ing	(D)	 -		1	RE	QUES	STED A	T T	YSES	т		1 2		STL	<u>). </u>		
PROJECT NUMBER: 70489 Ta SAMPLED BY: Barb Lary	ask 6212		ıls + Hg	etals, Hg	S by	s by	×	×	Explosives, NG, PETN by 8330	Picric Acid 8303	314 1	1 & Z	415.1	ADSC TSS, Alkalinity, chloride, nitrite, sulfate pH			HER Banasa	Specify: s less than standard may incur Rush	
			Meta	M De	TICS by) <u>+</u>	H.	Ť	sives by 8	Acid	4	115. 353	\ \frac{\frac{1}{2}}{4}	S, Alk		1 mmare	nina requests	s tess train standard may incur raisi	(narges.
CLIENT SAMPLE INDENTIFICATION	SAMPI. DATE/I		Total Metals	Dissolved Metals,	VOCs + 8260B	SVOCs + TICs by 8270	NWTPH-Dx	NWTPH-Gx	Explos	Picric,	Perchlorate by 314	TOC 415.1 & nitrate 353.2	DOC by	chloride,	į	MATRIX (W, S, O)	# OF CONT.	COMMENTS/SAMPLER'S INTITAL	NCA WO
1 TB229	6/25/08		***		X						_			1, 32		W	J	COMMUNITARIS INTITAL	
21914MW01Aa)		945			X				X		X					W	9		
3/9 L4 MW O1 BW		10:55			X			+ • ;	X		X								
4/9 L4 MW 05 AW		12:00	_		X				X		X								
5/9 L4 MW 03BW 6 19 L4 MW 03AW		13:40			X				X		X								
		14:55			X				X		X								
71914 MW 465W		15:10			X				X		X								
8/9L4MW07BW		16:10			L				X		X					V	V		
9								ı											
10																			
11																***			
12																			
13 B	61	,					//												
RELINQUISHED BY BASSAGE		Ly 1	PE	25		DATE:	6/2	5/6		RECEIV		1 4	<u>ې</u>	OP)		101	DAT	62608
PRINT NAME: BARBARA (RELINQUISHED BY: M 27	=. LAR	/	-			TIME: DATE:	6 /7 i.	[x	;	PRINT		9	en	robi	nev Z	FIRM:	Afre		14:56
PRINT NAME: M. Stick		FIRM:	PE	χ		TIME:		25	-	RECEIV PRINT			Pok.	F	- /	FIRM:	TAP	DAT _ TIM:	17:25
ADDITIONAL REMARKS	DOLER	S		1	(/	181	~_	Λ		. / A	1	1	45	1-	B		, - , -	TEMP: 65 5	4,56
BOSE COC Rev 9, 3 99	TIR		<u> </u>	$\overline{}$	<u> </u>	50	<u>/ン</u> ・・	7.	118	- 7	fee	44/	مر	The second	1-	2700	WIZU	PAGI	E1 OF1
	17	<u>C</u>	7/ ~	6/0	フジ	<	- {	/ -	45	1	cepe	242	1,09	44 C-C	1	101	- 17	45	

TestAmerica Sample Receipt Checklist Cooler (Drs): Received by: Unpacked by: Logged-in by: Work Order No. Client: 185 Engineering-Vancouver '(section B) "(section A) Project: Camp Bonneville, WA initiais. F-Temperature out of range: Initials: -Not enough ice ***ESI Clients (see Section C) Cooler Temperature (IR): Cooler Temperature (IR): Cooler Temperature Blank: Sample Status: Custody Seals: (#) (If N circled, see NOD) Signature: Y N Dated: Received from: General: Intact? Ν TA Courier Container Type: Senvoy # Containers Match COC? none given لس#Cooler(s) UPS IDs Match COC? Ν #Box(s) Fed Ex For Analyses Requested: None (#Other: Client Cyanide checked? NA TDP Coolant Type: Correct Type & Preservation? USPS Gel/ Blue Ice Adequate Volume? SDS Loose Ice Mid-Valley Within Hold Time? None GS/TA Volatiles/ Oil Quality: Packing Material: GS/Senvoy VOAs/ Syringes free of Headspace? NA Bubble Bags Other: TB on COC? not provided NA Styrofoam Cubbies Metals: Péanuts HNO3 Preserved? Υ NA None (Other: Dissolved Metals Filtered? NA *ESI Clients Only: ✓_{NO} FED EX/ UPS: Was the tracking paper keepable? Temperature Blank: °C not provided DIGI #1 #2 If circled NO, what is the Tracking number? All preserved bottles checked NA (voas/soils/all unp.) FED EX Goldstreak **UPS** DHL Other: All preserved accordingly? Y N (see NOD) NA (voas/soils/all unp.) **Project Managers:** Comments:

(Initial/Date)

PM Reviewed:

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 18, 2008

Barb Lary PBS Engineering - Vancouver 1310 Main Street Vancouver, WA 98660

RE: Camp Bonneville, WA

Enclosed are the results of analyses for samples received by the laboratory on 06/26/08 17:45. The following list is a summary of the Work Orders contained in this report, generated on 07/17/08 14:37.

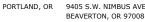
If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PRF0964	Camp Bonneville, WA	Camp Bonneville, WA

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:


Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: 07/17/08 14:37 Barb Lary

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB229	PRF0964-01	Water	06/26/08 10:00	06/26/08 17:45
19L4MW02BW	PRF0964-02	Water	06/26/08 10:35	06/26/08 17:45
19L4MW02AW	PRF0964-03	Water	06/26/08 12:10	06/26/08 17:45
19L4MW04AW	PRF0964-04	Water	06/26/08 14:00	06/26/08 17:45

TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-01 (TB229)			W	ater		Samı	oled: 06/26/	08 10:00		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 15:42	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00		"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00		"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00		"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00		"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00		"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00		"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-01	(TB229)			W	ater	_	Samp	led: 06/26/	08 10:00		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 15:42	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloro	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloro	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluoromet	hane	"	ND	0.0600	1.00		"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00		"	"	"	"	U
1,2,4-Trimethylben		"	ND	0.0800	1.00		"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				101%		80 - 120 %	"			"
	1,2-DCA-d4				103%		80 - 120 %	"			"
	Dibromofluoro	methane			100%		80 - 120 %	"			"
	Toluene-d8				103%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-02 (19L4MW02I	BW)		W	ater		Samj	pled: 06/26/	08 10:35		RL7
Acetone	EPA 8260B	ND	15.5	50.0	ug/l	2x	8070229	07/08/08 12:44	07/08/08 22:39	U, D
Benzene	"	ND	0.180	2.00	"	"	"	"	"	U, D
Bromobenzene	"	ND	0.200	2.00	"	"	"	"	"	U, D
Bromochloromethane	"	ND	0.360	2.00	"	"	"	"	"	U, D
Bromodichloromethane	"	ND	0.220	2.00	"	"	"	"	"	U, D
Bromoform	"	ND	0.200	2.00	"	"	"	"	"	U, D
Bromomethane	"	ND	0.340	10.0	"	"	"	"	"	U, D
2-Butanone (MEK)	"	ND	7.00	20.0	"	"	"	"	"	U, D
n-Butylbenzene	"	ND	0.120	10.0	"	"	"	"	"	U, D
sec-Butylbenzene	"	ND	0.160	2.00	"	"	"	"	"	U, D
tert-Butylbenzene	"	ND	0.120	2.00	"	"	"	"	"	U, D
Carbon disulfide	"	ND	0.280	20.0	"	"	"	"	"	U, D
Carbon tetrachloride	"	ND	0.120	2.00	"	"	"	"	"	U, D
Chlorobenzene	"	ND	0.100	2.00	"	"	"	"	"	U, D
Chloroethane	"	ND	0.220	2.00	"	"	"	"	"	U, D
Chloroform	"	ND	0.180	2.00	"	"	"	"	"	U, D
Chloromethane	"	ND	0.160	10.0	"	"	"	"	"	U, D
2-Chlorotoluene	"	ND	0.140	2.00	"	"	"	"	"	U, D
4-Chlorotoluene	"	ND	0.220	2.00	"	"	"	"	"	U, D
1,2-Dibromo-3-chloropropane	"	ND	4.70	10.0	"	"	"	"	"	U, D
Dibromochloromethane	"	ND	0.140	2.00	"	"	"	"	"	U, D
1,2-Dibromoethane	"	ND	0.220	2.00	"	"	"	"	"	U, D
Dibromomethane	"	ND	0.200	2.00	"	"	"	"	"	U, D
1,2-Dichlorobenzene	"	ND	0.140	2.00	"	"	"	"	"	U, D
1,3-Dichlorobenzene	"	ND	0.120	2.00	"	"	"	"	"	U, D
1,4-Dichlorobenzene	"	ND	0.240	2.00	"	"	"	"	"	U, D
Dichlorodifluoromethane	"	26.1	0.220	10.0	"	"	"	"	"	D
1,1-Dichloroethane	"	23.2	0.160	2.00	"	"	"	"	"	D
1,2-Dichloroethane	"	ND	0.200	2.00	"	"	"	"	"	U, D
1,1-Dichloroethene	"	9.36	0.240	2.00	"	"	"	"	"	D
cis-1,2-Dichloroethene	"	ND	0.180	2.00	"	"	"	"	"	U, D
trans-1,2-Dichloroethene	"	ND	0.200	2.00	"		"	"	"	U, D
1,2-Dichloropropane	"	ND	0.220	2.00			"	"	"	U, D
1,3-Dichloropropane	"	ND	0.280	2.00			"	"	"	U, D
2,2-Dichloropropane	"	ND	0.180	2.00	"	"	"	"	"	U, D
1,1-Dichloropropene	"	ND	0.160	2.00	"	"	"	"	"	U, D
• •										

TestAmerica Portland

THE PORT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

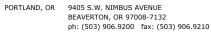
PBS Engineering - Vancouver

Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Barb Lary Vancouver, WA 98660 Project Manager: 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-02	(19L4MW02BW)			W	ater		Samp	led: 06/26/	08 10:35		RL7
cis-1,3-Dichloropro	pene E	PA 8260B	ND	0.180	2.00	ug/l	2x	8070229	07/08/08 12:44	07/08/08 22:39	U, D
trans-1,3-Dichlorop	ropene	"	ND	0.200	2.00	"	"	"	"	"	U, D
Ethylbenzene		"	ND	0.120	2.00	"	"	"	"	"	U, D
Hexachlorobutadier	ne	"	ND	0.420	8.00	"	"	"	"	"	U, D
2-Hexanone		"	ND	7.24	20.0	"	"	"	"	"	U, D
Isopropylbenzene		"	0.200	0.140	4.00	"	"	"	"	"	Ja, D
p-Isopropyltoluene		"	ND	0.120	4.00	"	"	"	"	"	U, D
4-Methyl-2-pentano	one	"	ND	0.580	10.0	"	"	"	"	"	U, D
Methyl tert-butyl et	her	"	ND	0.180	2.00	"	"	"	"	"	U, D
Methylene chloride	e	"	2.58	0.320	10.0	"	"	"	"	"	Ja, D
Naphthalene		"	ND	0.180	4.00	"	"	"	"	"	U, D
n-Propylbenzene		"	0.200	0.200	2.00	"	"	"	"	"	Ja, D
Styrene		"	ND	0.0800	2.00	"	"	"	"	"	U, D
1,1,1,2-Tetrachloroe	ethane	"	ND	0.180	2.00	"	"	"	"	"	U, D
1,1,2,2-Tetrachloroe	ethane	"	ND	0.160	2.00	"	"	"	"	"	U, D
Tetrachloroethene		"	0.460	0.220	2.00	"	"	"	"	"	Ja, D
Toluene		"	ND	0.220	2.00	"	"	"	"	"	U, D
1,2,3-Trichlorobenz	ene	"	ND	0.200	2.00	"	"	"	"	"	U, D
1,2,4-Trichlorobenz	ene	"	ND	0.220	2.00	"	"	"	"	"	U, D
1,1,1-Trichloroetha	nne	"	29.7	0.240	2.00	"	"	"	"	"	D
1,1,2-Trichloroetha	ne	"	ND	0.260	2.00	"	"	"	"	"	U, D
Trichloroethene		"	0.260	0.160	2.00	"	"	"	"	"	Ja, D
Trichlorofluorome	thane	"	0.220	0.120	2.00	"	"	"	"	"	Ja, D
1,2,3-Trichloroprop	ane	"	ND	0.260	2.00	"	"	"	"	"	U, D
1,2,4-Trimethylben	zene	"	ND	0.160	2.00		"	"	"	"	U, D
1,3,5-Trimethylben	zene	"	ND	0.140	2.00	"	"	"	"	"	U, D
Vinyl chloride		"	ND	0.200	2.00	"	"	"	"	"	U, D
o-Xylene		"	ND	0.140	2.00	"	"	"	"	"	U, D
m,p-Xylene		"	ND	0.420	4.00	"	"	"	"	"	U, D
Surrogate(s):	4-BFB				101%		80 - 120 %	1x			"
2 ()	1,2-DCA-d4				103%		80 - 120 %	"			"
	Dibromofluorometha	ne			103%		80 - 120 %	"			"
	Toluene-d8				105%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-03 (19L4MW02A	AW)		Wa	ter		Sam	pled: 06/26/			
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:48	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00		"	"	"	"	U
Chloroethane	"	ND	0.110	1.00		"	"	"	"	U
Chloroform	"	ND	0.0900	1.00		"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00		"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00		"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00		"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00		"	"	"	"	U
Dibromochloromethane	,	ND	0.0700	1.00	"	"	"	,,	"	U
1,2-Dibromoethane	"	ND	0.110	1.00		"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichlorobenzene	,	ND	0.0700	1.00	"	"	"	,,	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00		"	"	"	"	U
1,4-Dichlorobenzene	,	ND	0.120	1.00	"	"	"	,,	"	U
Dichlorodifluoromethane	,	ND	0.110	5.00	"	"	"	,,	"	U
1,1-Dichloroethane	,	ND	0.0800	1.00	"	"	"	,,	"	U
1,2-Dichloroethane	,	ND	0.100	1.00	"	"	"	,,	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	,,	ND	0.0800	1.00	,,	,,	"	"	,,	U

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	I	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
PRF0964-03	0964-03 (19L4MW02AW) Water								Sampled: 06/26/08 12:10				
cis-1,3-Dichloropro	pene I	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:48	U		
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U		
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U		
Hexachlorobutadien	e	"	ND	0.210	4.00	"	"	"	"	"	U		
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U		
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U		
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U		
4-Methyl-2-pentano	ne	"	ND	0.290	5.00	"	"	"	"	"	U		
Methyl tert-butyl et	ner	"	ND	0.0900	1.00	"	"	"	"	"	U		
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U		
Naphthalene		"	ND	0.0900	2.00	"	"	"		"	U		
n-Propylbenzene		"	ND	0.100	1.00	"	"	"		"	U		
Styrene		"	ND	0.0400	1.00	"	"	"		"	U		
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"		"	U		
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"		"	U		
Tetrachloroethene		"	ND	0.110	1.00	"	"	"		"	U		
Toluene		"	ND	0.110	1.00	"	"	"		"	U		
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"		"	U		
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"		"	U		
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"		"	U		
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"		"	U		
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U		
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"	"	"	"	U		
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U		
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U		
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00	"	"	"	"	"	U		
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U		
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U		
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U		
Surrogate(s):	4-BFB				96.0%		80 - 120 %	"			"		
,	1,2-DCA-d4				106%		80 - 120 %	"			"		
	Dibromofluorometha	ne			102%		80 - 120 %	"			"		
	Toluene-d8				104%		80 - 120 %	"			"		

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-04 (19L4MW04A	AW)		W	ater		Samı	oled: 06/26/	08 14:00		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	lx	8070229	07/08/08 12:44	07/08/08 21:16	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Jak Dal

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering - Vancouver

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:37

Project Name:

Camp Bonneville, WA

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Me	ethod Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-04 ((19L4MW04AW)		V	Vater		Samp	led: 06/26/			
cis-1,3-Dichloroprop	pene EPA	A 8260B ND	0.0900	1.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 21:16	U
trans-1,3-Dichloropi	ropene	" ND	0.100	1.00		"	"	"	"	U
Ethylbenzene	,	" ND	0.0600	1.00		"	"	"	"	U
Hexachlorobutadien	e	" ND	0.210	4.00		"	"	"	"	U
2-Hexanone	,	" ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene	,	" ND	0.0700	2.00		"	"	"	"	U
p-Isopropyltoluene	•	" ND	0.0600	2.00		"	"	"	"	U
4-Methyl-2-pentano	ne	" ND	0.290	5.00		"	"	"	"	U
Methyl tert-butyl eth	ner	" ND	0.0900	1.00		"	"	"	"	U
Methylene chloride	,	" 0.170	0.160	5.00	"	"	"	"	"	Ja
Naphthalene	,	" ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene	,	" ND	0.100	1.00	"	"	"	"	"	U
Styrene	,	" ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	thane	" ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	thane	" ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene	•	" ND	0.110	1.00		"	"	"	"	U
Toluene	•	" ND	0.110	1.00		"	"	"	"	U
1,2,3-Trichlorobenz	ene	" ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	" ND	0.110	1.00		"	"	"	"	U
1,1,1-Trichloroethar	ne	" ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethar	ne	" ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene	,	" ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane	" ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloropropa	ane	" ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	rene	" ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	rene	" ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride	,	" ND	0.100	1.00	"	"	"	"	"	U
o-Xylene	,	" ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene	,	" ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB			97.4%		80 - 120 %	"			"
	1,2-DCA-d4			105%		80 - 120 %	"			"
	Dibromofluoromethane			101%		80 - 120 %	"			"
	Toluene-d8			104%		80 - 120 %	"			"

TestAmerica Portland

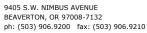
Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main Street Project Number: Camp Bonneville, WA Report Created:
Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Tentatively Identified Compounds per Volatile GC/MS (Est. Conc.)


TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PRF0964-01	(TB229)			Water			Samj	pled: 06/26/				
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 15:42	U	
PRF0964-02	(19L4MW02BW))		Water			Samj	pled: 06/26/	08 10:35			RL7
Freon 113		EPA 8260B	59.1		4.00	ug/l	2x	8070229	07/08/08 12:44	07/08/08 22:39	D	
PRF0964-03	(19L4MW02AW)	MW02AW) Water					Sam	pled: 06/26/				
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 20:48	U	
PRF0964-04 (19L4MW04AW)							Samj	pled: 06/26/	08 14:00			
No TICS identifie	ed	EPA 8260B	ND		2.00	ug/l	1x	8070229	07/08/08 12:44	07/08/08 21:16	U	

TestAmerica Portland

Richard D. Reid, Project Manager

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

EPA-DW1 314.0

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-02	(19L4MW02BW)		Water				pled: 06/26/			
Perchlorate	EPA-DW1 314.0	390		20	ug/L	20x	8192393	07/09/08 15:54	07/09/08 16:57	D
PRF0964-03	(19L4MW02AW)		Water			Samj	pled: 06/26/	08 12:10		
Perchlorate	EPA-DW1 314.0	160		10	ug/L	10x	8192393	07/09/08 15:54	07/09/08 17:18	D
PRF0964-04	(19L4MW04AW)		Water			Sampled: 06/26/08 14:00				
Perchlorate	EPA-DW1 314.0	30		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 23:27	

TestAmerica Portland

Richard D. Reid, Project Manager

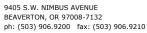
PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main Street Project Number: Camp Bonneville, WA Report Created:
Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-02 (19L4MW02	BW)		Wa	ter		Samp	oled: 06/26/	08 10:35		
1,3,5-Trinitrobenzene	SW846 8330	ND		5	ug/L	5x	8182428	06/30/08 18:00	07/07/08 19:04	
1,3-Dinitrobenzene	"	ND		2	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		2	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		2	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		1	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		1	"	"	"	"	"	
2-Nitrotoluene	"	ND		2	"	"	"	"	"	
3-Nitrotoluene	"	ND		2	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		1	"	"	"	"	"	
4-Nitrotoluene	"	ND		5	"	"	"	"	"	
HMX	"	4.1		2	"	"	"	"	"	
Nitrobenzene	"	ND		2	"	"	"	"	"	
Nitroglycerin	"	ND		15	"	"	"	"	"	
PETN	"	ND		10	"	"	"	"	"	
Picric Acid	"	2.9		2	"	"	"	"	"	
RDX	"	85		1	"	"	"	"	"	
Tetryl	"	ND		1	"	"	"	"	"	


Surrogate(s): 1,2-Dinitrobenzene NR 75-118% " NC, DIL

PRF0964-03 (19L4MW0	2AW)		Wa	iter		Sam	pled: 06/26/	08 12:10		
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 16:37	
1,3-Dinitrobenzene	"	ND		0.4	"		"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"		"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"		"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"		"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"		"	"	"	
2-Nitrotoluene	"	ND		0.4	"		"	"	"	
3-Nitrotoluene	"	ND		0.4	"		"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	3.4		0.4	"		"	"	"	
Nitrobenzene	"	ND		0.4	"		"	"	"	
Nitroglycerin	"	ND		3	"		"	"	"	
PETN	"	ND		2	"		"	"	"	
Picric Acid	"	0.13		0.4	"	"	"	"	"	
RDX	"	20		0.2	"	"	"	"	"	

TestAmerica Portland

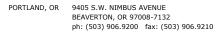
Richard D. Reid, Project Manager

PBS Engineering - Vancouver

Project Name:

Camp Bonneville, WA

1310 Main Street Project Number: Vancouver, WA 98660 Project Manager: Camp Bonneville, WA Barb Lary Report Created: 07/17/08 14:37


SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0964-03 (19L4MW02.	AW)		Wa	ater		Samp	led: 06/26/	08 12:10		
Tetryl	SW846 8330	ND		0.2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 16:37	
Surrogate(s): 1,2-Dinitrobe	enzene			103%		75 - 118 %	"			"
PRF0964-04 (19L4MW04.	AW)		Wa	ater		Samp	led: 06/26/	08 14:00		
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 17:01	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
RDX	"	2.4		0.2	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	
Surrogate(s): 1,2-Dinitrobe	enzene			108%		75 - 118 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Project Number: Report Created: 1310 Main Street Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8070229	Water P	reparation I	Method: EP	A 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8070229-BLK1)								Extr	acted:	07/08/08 12	:44			
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x						(07/08/08 15:15	U
Benzene	"	ND	0.0900	1.00	"	"							"	U
Bromobenzene	"	ND	0.100	1.00	"	"							"	U
Bromochloromethane	"	ND	0.180	1.00	"	"							"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"							"	U
Bromoform	"	ND	0.100	1.00	"	"							"	U
Bromomethane	"	ND	0.170	5.00	"	"							"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"								"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"							"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"							"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"								"	U
Carbon disulfide	"	ND	0.140	10.0	"								"	U
Carbon tetrachloride	,,	ND	0.0600	1.00	"								"	U
Chlorobenzene	"	ND	0.0500	1.00	"								"	U
Chloroethane	"	ND	0.110	1.00	"							_	"	U
Chloroform	,,	ND	0.0900	1.00	,,				_			_	"	U
Chloromethane	,,	ND	0.0800	5.00	,,	,,							,,	U
		ND ND		1.00	,,	,,		-	-		-		,,	U
2-Chlorotoluene			0.0700										,,	
4-Chlorotoluene		ND	0.110	1.00										U
1,2-Dibromo-3-chloropropane		ND	2.35	5.00				-	-		-			U
Dibromochloromethane		ND	0.0700	1.00				-			-			U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"							"	U
Dibromomethane	"	ND	0.100	1.00	"	"							"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"							"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"							"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"							"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"							"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"							"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"							"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"							"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"							"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"							"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"							"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"							"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"							"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"							"	U
cis-1,3-Dichloropropene	"	ND	0.0900	1.00	"	"							"	U
trans-1,3-Dichloropropene	"	ND	0.100	1.00	"	"							"	U
Ethylbenzene	,,	ND	0.0600	1.00	,,									U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batcl	h: 8070229	Water P	reparation	Method: EP	A 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (807022	29-BLK1)								Extr	acted:	07/08/08 12	:44			
Hexachlorobutadiene	e	EPA 8260B	ND	0.210	4.00	ug/l	1x							07/08/08 15:15	Ţ
2-Hexanone		"	ND	3.62	10.0	"	"						-	"	τ
Isopropylbenzene		"	ND	0.0700	2.00	"	"						-	"	τ
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"						-	"	τ
4-Methyl-2-pentanon	ne	"	ND	0.290	5.00	"	"						-	"	Ţ
Methyl tert-butyl eth-	er	"	ND	0.0900	1.00	"	"						-	"	J
Methylene chloride		"	0.180	0.160	5.00	"	"						-	"	Ja
Naphthalene		"	0.220	0.0900	2.00	"	"							"	J
n-Propylbenzene		"	ND	0.100	1.00	"	"						-	"	Ţ
Styrene		"	ND	0.0400	1.00	"	"						-	"	Ţ
1,1,1,2-Tetrachloroet	thane	"	ND	0.0900	1.00	"	"							"	Ţ
1,1,2,2-Tetrachloroet	thane	"	ND	0.0800	1.00	"	"						-	"	Ţ
Tetrachloroethene		"	ND	0.110	1.00	"	"						-	"	Ţ
Toluene		"	ND	0.110	1.00	"	"						-	"	Ţ
1,2,3-Trichlorobenze	ene	"	0.230	0.100	1.00	"	"						-	"	Ja
1,2,4-Trichlorobenze	ene	"	0.110	0.110	1.00	"	"							"	Ja
1,1,1-Trichloroethan	e	"	ND	0.120	1.00	"	"						-	"	Ţ
1,1,2-Trichloroethane	e	"	ND	0.130	1.00	"	"							"	Ţ
Trichloroethene		"	ND	0.0800	1.00	"	"							"	Ţ
Trichlorofluorometha	ane	"	ND	0.0600	1.00	"	"							"	Ţ
1,2,3-Trichloropropa	ine	"	ND	0.130	1.00	"	"							"	Ţ
1,2,4-Trimethylbenze	ene	"	ND	0.0800	1.00	"	"						-	"	J
1,3,5-Trimethylbenze	ene	"	ND	0.0700	1.00	"	"							"	J
Vinyl chloride		"	ND	0.100	1.00	"	"							"	Ţ
o-Xylene		"	ND	0.0700	1.00	"	"							"	Ţ
m,p-Xylene		"	ND	0.210	2.00	"	"							"	J
Surrogate(s):	4-BFB		Recovery:	100%	Lim	nits: 80-120%	"							07/08/08 15:15	
	1,2-DCA-d4			103%		80-120%	"							"	
	Dibrom of luoromethane			100%		80-120%	"							"	
	Toluene-d8			103%		80-120%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Project Number: Report Created: 1310 Main Street Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results	
TestAmerica Portland	

QC Batc	h: 8070229	Water I	Preparation	Method: E	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (8070229	D-BS1)								Ext	racted:	07/08/08 12	:44			
Benzene		EPA 8260B	19.2	0.0900	1.00	ug/l	1x		20.0	96.2%	(80-120)			07/08/08 13:18	
Chlorobenzene		"	19.3	0.0500	1.00	"	"		"	96.4%	(80-124)			"	
1,1-Dichloroethene		"	18.7	0.120	1.00	"	"		"	93.4%	(78-120)			"	
Toluene		"	19.3	0.110	1.00	"	"		"	96.5%	(80-124)			"	
Trichloroethene		"	18.6	0.0800	1.00	"	"		"	92.8%	(80-132)				
Surrogate(s):	4-BFB		Recovery:	106%	Lin	nits: 80-120%	"							07/08/08 13:18	
	1,2-DCA-d4			101%		80-120%	"							"	
	Dibromofluoromethane			101%		80-120%	"							"	
	Toluene-d8			104%		80-120%	"							"	
Matrix Spike	(8070229-MS1)				QC Source:	PRF0965-02			Ext	racted:	07/08/08 12	:44			
Benzene		EPA 8260B	18.5	0.0900	1.00	ug/l	1x	ND	20.0	92.4%	(80-124)			07/08/08 13:50	
Chlorobenzene		"	18.7	0.0500	1.00	"	"	ND	"	93.6%	(72.9-134)			"	
1,1-Dichloroethene		"	17.5	0.120	1.00	"	"	ND	"	87.4%	(79.3-127)			"	
Toluene		"	18.3	0.110	1.00	"	"	ND	"	91.4%	(79.7-131)			"	
Trichloroethene		"	17.9	0.0800	1.00	"	"	ND	"	89.5%	(68.4-130)			"	
Surrogate(s):	4-BFB		Recovery:	103%	Lin	nits: 80-120%	"							07/08/08 13:50	
	1,2-DCA-d4			98.2%		80-120%	"							"	
	Dibromofluoromethane			101%		80-120%	"							"	
	Toluene-d8			102%		80-120%	"							"	
Matrix Spike I	Oup (8070229-MSD	01)			QC Source:	PRF0965-02			Ext	racted:	07/08/08 12	:44			
Benzene		EPA 8260B	17.6	0.0900	1.00	ug/l	1x	ND	20.0	87.8%	(80-124)	5.05%	(25)	07/08/08 14:19	
Chlorobenzene		"	17.7	0.0500	1.00	"	"	ND	"	88.6%	(72.9-134)	5.44%	. "	"	
1,1-Dichloroethene		"	17.0	0.120	1.00	"	"	ND	"	85.1%	(79.3-127)	2.61%	, "		
Toluene		"	17.4	0.110	1.00	"	"	ND	"	87.2%	(79.7-131)	4.70%	, "	"	
Trichloroethene		"	16.9	0.0800	1.00	"	"	ND	"	84.4%	(68.4-130)	5.92%	, "	"	
Surrogate(s):	4-BFB		Recovery:	105%	Lin	nits: 80-120%	"							07/08/08 14:19	
	1,2-DCA-d4			101%		80-120%	"							"	
	Dibromofluoromethane			103%		80-120%	"							"	

80-120% "

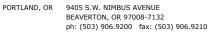
TestAmerica Portland

Richard D. Reid, Project Manager

Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

103%


PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

1310 Main Street Project Number: Camp Bonneville, WA Report Created: Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Tenta	ntively Identified	Compound	-	tile GC/N			- Labor	ratory Quality Control Results
QC Batch: 8070229	Water P	reparation M	lethod: EP	PA 5030B				
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Notes
Blank (8070229-BLK1)								Extracted: 07/08/08 12:44
No TICS identified	EPA 8260B	ND	•	2.00	110/1	1v		07/08/08 15:15 U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

1310 Main StreetProject Number:Camp Bonneville, WAReport Created:Vancouver, WA 98660Project Manager:Barb Lary07/17/08 14:37

QC Batch: 8191165	WATEI	R Preparation	Method:	314										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike Dup (D8F26032400	06D)			QC Source:	D8F26032	1006		Extra	acted:	07/08/08 16	:26			
Perchlorate	EPA-DW1 314.0	9.94		1	ug/L	1x	ND	10	99%	(80-120)	0.33%	(15)	07/08/08 22:24	
Matrix Spike (D8F260324006S)				QC Source:	D8F26032	1006		Extra	acted:	07/08/08 16	:26			
Perchlorate	EPA-DW1 314.0	9.9		1	ug/L	1x	ND	10	99%	(80-120)			07/08/08 22:03	
Blank (D8G090000165B)				QC Source:				Extra	ected:	07/08/08 16	:26			
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x							07/08/08 17:08	
LCS (D8G090000165C)				QC Source:				Extra	acted:	07/08/08 16	:26			
Perchlorate	EPA-DW1 314.0	9.43		1	ug/L	1x		10	94%	(85-115)		-	07/08/08 16:26	
LCS Dup (D8G090000165L)				QC Source:				Extra	ected:	07/08/08 16	:26			
Perchlorate	EPA-DW1 314.0	9.51		1	ug/L	1x		10	95%	(85-115)	0.82%	(15)	07/08/08 16:47	
QC Batch: 8192393	WATEI	R Preparation	Method:	314										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike Dup (D8F28018800	02D)			QC Source:	PRF0964-0	13		Extra	acted:	07/09/08 15	:54			
		270		1	ug/L	1x	160	100	113%	(80-120)	7.3%	(15)	07/09/08 18:02	
Perchlorate	EPA-DW1 314.0	278		1										
		2/8		QC Source:	PRF0964-)3		Extra	acted:	07/09/08 15	:54			
Matrix Spike (D8F280188002S)		258			PRF0964-0	1x	160	Extra 100	94%	07/09/08 15 (80-120)	:54		07/09/08 17:41	
Matrix Spike (D8F280188002S) Perchlorate	314.0 EPA-DW1			QC Source:			160	100	94%				07/09/08 17:41	
Perchlorate Matrix Spike (D8F280188002S) Perchlorate Blank (D8G100000393B) Perchlorate	314.0 EPA-DW1			QC Source:			160	100	94%	(80-120)			07/09/08 17:41 07/09/08 16:36	
Matrix Spike (D8F280188002S) Perchlorate Blank (D8G100000393B) Perchlorate	314.0 EPA-DW1 314.0	258		QC Source: QC Source:	ug/L	1x		100 Extra	94% acted: 	(80-120)	:54			
Matrix Spike (D8F280188002S) Perchlorate Blank (D8G100000393B)	314.0 EPA-DW1 314.0	258		QC Source: 1 QC Source:	ug/L	1x		100 Extra	94% acted: 	(80-120) 07/09/08 15 07/09/08 15	:54			
Matrix Spike (D8F280188002S) Perchlorate Blank (D8G100000393B) Perchlorate LCS (D8G100000393C)	314.0 EPA-DW1 314.0 EPA-DW1 314.0	258 ND		QC Source: 1 QC Source: 1 QC Source:	ug/L	1x		Extr: Extr:	94% acted: acted: 98%	(80-120) 07/09/08 15 07/09/08 15	:54		07/09/08 16:36	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Project Name: Camp Bonneville, WA

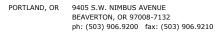
1310 Main Street Project Number: Camp Bonneville, WA Report Created:

Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8182428 **WATER Preparation Method:** 3535 Spike Source Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes RPD REC Amt Matrix Spike Dup (D8F260324006D) QC Source: D8F260324006 Extracted: 06/30/08 18:00 SW846 8330 104% 07/03/08 15:28 1,3,5-Trinitrobenzene 2.09 ND 2.01 2.7% (21) ug/L (73-122)1,3-Dinitrobenzene 2.08 0.4 ND 104% (78-115) 1.9% (19) 2.2 ND 2,4,6-Trinitrotoluene 0.4 110% (73-116) 2.6% 2.17 0.4 ND 108% (75-115)1.5% 2.4-Dinitrotoluene (21) 0.2 ND 2.6-Dinitrotoluene 2.21 110% (77-115)3.7% (20)2-Amino-4,6-dinitrotoluene 2.05 0.2 ND 102% (75-115) ND 2-Nitrotoluene 1.45 0.4 72% (35-115) 17% (43) 0.4 ND 3-Nitrotoluene 1 74 87% (30-115)5.3% (74)4-Amino-2,6-dinitrotoluene 1.94 0.2 ND 97% (57-115)3.7% (22)4-Nitrotoluene 1.74 ND (40-115)7.9% (44)HMX 0.4 ND 2.26 112% (78-115)3.9% (26)Nitrobenzene 1.52 0.4 ND 75% (51-115)3.8% (32) Nitroglycerin 22.6 3 ND 20.1 113% (71-126)(21)PETN 21.3 2 ND 106% (67-107)1.7% (30)Pierie Acid 1.87 0.4 ND 2.01 93% (50-150)8.5% RDX 22 0.2 ND 109% (69-118) 3.2% (37) 2.4 0.2 ND 120% (69-127) 1.9% Tetryl (24)


 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 107%
 Limits:
 75-118%
 "
 07/03/08 15:28

Matrix Spike (D8F260324000	6S)		QC Source:	D8F26032	24006		Ext	racted:	06/30/08 18:0	00		
1,3,5-Trinitrobenzene	SW846 8330	2.15	 1	ug/L	1x	ND	1.97	109%	(73-122)		 07/03/08 15:04	
1,3-Dinitrobenzene	"	2.12	 0.4	"	"	ND	"	108%	(78-115)		 "	
2,4,6-Trinitrotoluene	"	2.26	 0.4	"	"	ND	"	115%	(73-116)		 "	
2,4-Dinitrotoluene	"	2.2	 0.4	"	"	ND	"	112%	(75-115)		 "	
2,6-Dinitrotoluene	"	2.29	 0.2	"	"	ND	"	117%	(77-115)		 "	a
2-Amino-4,6-dinitrotoluene	"	2.09	 0.2	"	"	ND	"	106%	(75-115)		 "	
2-Nitrotoluene	"	1.23	 0.4	"	"	ND	"	62%	(35-115)		 "	
3-Nitrotoluene	"	1.66	 0.4	"	"	ND	"	84%	(30-115)		 "	
4-Amino-2,6-dinitrotoluene	"	2.02	 0.2	"	"	ND	"	102%	(57-115)		 "	
4-Nitrotoluene	"	1.61	 1	"	"	ND	"	82%	(40-115)		 "	
HMX	"	2.35	 0.4	"	"	ND	"	119%	(78-115)		 "	a
Nitrobenzene	"	1.46	 0.4	"	"	ND	"	74%	(51-115)		 "	
Nitroglycerin	"	23.1	 3	"	"	ND	19.7	118%	(71-126)		 "	
PETN	"	20.9	 2	"	"	ND	"	106%	(67-107)		 "	
Pieric Acid	"	1.72	 0.4	"	"	ND	1.97	87%	(50-150)		 "	
RDX	"	2.27	 0.2	"	"	ND	"	115%	(69-118)		 "	
Tetryl	"	2.45	 0.2	"	"	ND	"	125%	(69-127)		 "	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

OC D-4-L . 0102420

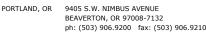
PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Project Number: Report Created: 1310 Main Street Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8182428	WATER	R Preparation	Method:	3535										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (D8F300000428B)				QC Source:				Extr	acted:	06/30/08 18	:00			
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x						(07/03/08 11:39	
1,3-Dinitrobenzene	"	ND		0.4	**	"							"	
2,4,6-Trinitrotoluene	"	ND		0.4	**	"							"	
2,4-Dinitrotoluene	"	ND		0.4	**	"							"	
2,6-Dinitrotoluene	"	ND		0.2	**	"							"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	**	"							"	
2-Nitrotoluene	"	ND		0.4	**	"							"	
3-Nitrotoluene	"	ND		0.4	"	"							"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	**	"							"	
4-Nitrotoluene	"	ND		1	**	"							"	
HMX	"	ND		0.4	**	"							"	
Nitrobenzene	"	ND		0.4	**	"							"	
Nitroglycerin	"	ND		3	**	"							"	
PETN	"	ND		2	**	"							"	
Picric Acid	"	ND		0.4	"	"							"	
RDX	"	ND		0.2	"	"							"	
Tetryl	"	ND		0.2	"	"							"	


Surrogate(s): 1,2-Dinitrobenzene Recovery: 106% Limits: 75-118% 07/03/08 11:39

LCS (D8F300000428C)			QC Source:	:		Ext	racted:	06/30/08 18:0	00	
1,3,5-Trinitrobenzene	SW846 8330	2.07	 1	ug/L	1x	 2	103%	(73-122)		 07/03/08 12:03
1,3-Dinitrobenzene	"	2.05	 0.4	"	"	 "	103%	(78-115)		 "
2,4,6-Trinitrotoluene	"	2.14	 0.4	"	"	 "	107%	(73-116)		 "
2,4-Dinitrotoluene	"	2.1	 0.4	"	"	 "	105%	(75-115)		 "
2,6-Dinitrotoluene	"	2.17	 0.2	"	"	 "	109%	(77-115)		 "
2-Amino-4,6-dinitrotoluene	"	2	 0.2	"	"	 "	100%	(75-115)		 "
2-Nitrotoluene	"	1.18	 0.4	"	"	 "	59%	(35-115)		 "
3-Nitrotoluene	"	1.57	 0.4	"	"	 "	78%	(30-115)		 "
4-Amino-2,6-dinitrotoluene	"	1.96	 0.2	"	"	 "	98%	(57-115)		 "
4-Nitrotoluene	"	1.56	 1	"	"	 "	78%	(40-115)		 "
HMX	"	2.21	 0.4	"	"	 "	110%	(78-115)		 "
Nitrobenzene	"	1.32	 0.4	"	"	 "	66%	(51-115)		 "
Nitroglycerin	"	21.9	 3	"	"	 20	109%	(71-126)		 "
PETN	"	20.6	 2	"	"	 "	103%	(67-107)		 "
Picric Acid	"	1.82	 0.4	"	"	 2	91%	(50-150)		 "
RDX	"	2.17	 0.2	"	"	 "	109%	(69-118)		 "
Tetryl	"	2.36	 0.2	"	"	 "	118%	(69-127)		 "

Surrogate(s): 1,2-Dinitrobenzene Limits: 75-118% 07/03/08 12:03 Recovery: 106%

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering - Vancouver Camp Bonneville, WA Project Name:

Report Created: 1310 Main Street Project Number: Camp Bonneville, WA Vancouver, WA 98660 Project Manager: Barb Lary 07/17/08 14:37

Notes and Definitions

Report Specific Notes:

a Spiked analyte recovery is outside stated control limits.

COL More than 40% RPD between primary and confirmation detector results. The lower of the two results is reported.

One or more quality control criteria failed

D Data reported from a preparation or analytical dilution.

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

J Estimated result. Result is less than RL.

Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

NC The recovery and/or RPD were not calculated.

Sample required dilution due to high concentrations of target analyte. RL7

U Analyte included in the analysis but not detected.

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution Dil

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

Limits percent solids, where applicable.

- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Richard D. Reid, Project Manager

CY87 80 8 138

_	_	. 11		•
4	001	- // 7	MAN	100
1			ner	
J				
		ANALYTICA	L TESTING CO	PORATION

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (425) 420-9200 FAX 420-9210 East 11115 Montgomery, Suite B. Spokaire, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Ninbus Avenue. Beaverton, OR 97008-7132 (503) 906-9200 FAX 906-9210 PAX 906-9210 FAX 906-9210 FAX

06/26/2008 THU 15:57

FAX 3602130439

例001/001

ANALYTICAL TESTING CORPORATION									20	00 West	Intera	ational A	Airpoit l	Road, S	bite A10, A	nchara	age, AK 99502	2-1119 (90	07) 563-9200 FAX 563-92	!10
,			IAIN	OF	CI	USI	roi	ΟY	RE	CPO	RT							.)	-0964	
<u> </u>	WINGH!	#1 141 HYL	(111/16/16/19/	11111		(CLLUE)				<u> </u>	HILEIRY	M X M I I I E	128 8221	* 11.114)	THE PARTY OF THE	T	7.1 (1.1)	CDOUND.	REQUEST in Business U	lave 5
CLIENT: PBS/ Baker							INVO	ICE T	O:	Baker							LURNA		& Inorganic Analyses	",*
REPORT TO: andrew_harvey@pbser	v.com &	christina	_johnson@	pbsen	m o o.v												10 7	5	4 3 2 1	< i
end appropriate personnel at Baker																-	STD.		eum Hydrocarbon Analyses	
ADDRESS: Portland, Oregon									4D DD								510.	4	3 2 1 <	
PHONE: (503)-417-7693			FAX:				P.O.	NUN		C: TED A	NAIN	76.DC				\dashv	STD.	الله	<u> </u>	_
PROJECT NAME: Camp Bonney	rille GVV	Sampli	ng I	Нg		Γ	827	KE.		$\overline{}$		-			ate.	\neg	ОТН	ER	Specify:	
PROJECT NUMBER: 70489 Ta	sk 6212	!		+	als. Hg	<u>څ</u>	5 by 9	×	×	Explosives, NG, PETN by 3330	Picric Acid 8303	y 314	∞ ∾	DOC by 415.1	chloride, nitrite, suffate,		Ļ.,		less than standard map incur livels	Changes.
SAMPLED BY: Barb Lary	-			etal	Me	Si	Ü	Δ.	ΰ	ives by 9	Çiq	3.6 0	353	∑- 4	oltrite	-				
CLIENT SAMPLE		SAMPL	ING	Total Metals	Dissolved Metals.	VCCs + TICS by 8260B	SVOCs + TICs by	NWTPH-Dx	NWTPH-Gx	Sold N	ric 🗸	Perchlorate by	TOC 415 1 nitrate 353.2	oc p	oride.		MATRIX	# OF		NCA WO
INDENTIFICATION	1,,[DATE/T	IME	To To	ä	VQ(Š	Ž	Ž	9 교	ă	ă ă	는 를	ă	₹₹		(W, S, O)	CONT.	COMPLEMENTS AUGUSTS INITIAL	ID
17B229	1/06	6/08	1000			X											W	1		
2 19L4 MWOZBW		1	10:35			X				X	看	X						9		
319L4 MWOZAW			12:10			X				X		X						9		1
41924 MWO4AW		V	1400			X				X		X					4	9		
				_	<u> </u>					<u> </u>]]
5					 	╁					-	<u> </u>			1 1					
6					<u> </u>	<u> </u>	ļ					ļ			 			ļ		-
7																				
8							ļ					<u> </u>								_
9 .	1	************																		
10			ļ ———																	
11	+		 	 -	 	 	1							1	1 1					
12	1-		1	├	-	<u> </u>		ļ	-	 			 							
13	Va.		L	<u> </u>		L	<u> </u>	61.	1	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>		l	<u> </u>	DAT	
RELINQUISHED BY:	ow			D	35		DATE		26/) }		IVED B	7/	306	2 /		/ EIPY	TA	P TIM	
PRINT NAME: BARB	LAKE	9	FIRM	! _ !	<u>ر ر</u>		TIME		50		1	TNAME	17	·(ر			1/3	DAT	T-1 /
RELINQUISHED BY:		'					DATE				l .	IVED B	1.5	gry.	1	H)	To Trions	+/	H TIM	ار المحاكب أو المحا
PRINT NAME:			FIRM:				TIME				TRIN	TNAME			<u>, , , , , , , , , , , , , , , , , , , </u>	-	1 Principal:		<u> </u>	= + + = 14
ADDITIONAL REMARKS:	2001	1	2																TEMP:	EI OF

TestAmerica Sample Receipt Checklist Logged-in by: Received by: Unpacked by: Work Order No. Engineering - Vancouver *isection 4) Project: Cump Bonneville, WA Temperature out of range: Initials: Not enough Ice No Ice ice Melted ***ESI Clients (see Section C) W/in 4 Hours C plastic glass NA (oil/air OR ESI client) Temperature Blank: Cooler Temperature (IR): Sample Status: В Custody Seals: (# (If N circled, see NOD) Signature: Y N Dated: Received from: General: None Intact? Ν ▼A Courier Container Type: # Containers Match COC? Senvoy Ν none given #Cooler(s) **UPS** IDs Match COC? Ν #Box(s) Fed Ex For Analyses Requested: None (#Other: Client Cyanide checked? Ν TDP Correct Type & Preservation? Coolant Type: Ν **USPS** Gel/ Blue Ice Adequate Volume? Ν SDS Loose Ice Mid-Valley Within Hold Time? Ν None GS/TA Volatiles/ Oil Quality: GS/Senvoy Packing Material: VOAs/ Syringes free of Headspace? Ν NA Other: **Bubble Bags** TB on COC? not provided Ν NA Styrofoam Cubbies Metals: Peanuts HNO3 Preserved? Ν Other: Dissolved Metals Filtered? NA *ESI Clients Only: FED EX/ UPS: Was the tracking paper keepable? NO Temperature Blank: °C not provided DIGI #1 #2 If circled NO, what is the Tracking number? All preserved bottles checked NA (voas/soils/all unp.) FED EX Goldstreak **UPS** DHL Other: All preserved accordingly? Y N (see NOD) NA (voas/soils/all unp.) **Project Managers:** Comments:

(Initial/Date)

PM Reviewed:

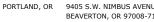
PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 15, 2008

Andrew Harvey **PBS** Engineering 4412 SW Corbett Ave. Portland, OR 97239

RE: Camp Bonneville, WA


Enclosed are the results of analyses for samples received by the laboratory on 06/25/08 09:45. The following list is a summary of the Work Orders contained in this report, generated on 07/15/08 14:26.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PRF0882	Camp Bonneville, WA	Camp Bonneville, WA

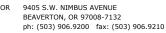
TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/15/08 14:26 Andrew Harvey


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
19L4MW17W	PRF0882-02	Water	06/24/08 10:10	06/25/08 09:45
19L4MW18W	PRF0882-03	Water	06/24/08 11:10	06/25/08 09:45
19LC MW03SW	PRF0882-04	Water	06/24/08 12:30	06/25/08 09:45
19LC MW460W	PRF0882-05	Water	06/24/08 12:45	06/25/08 09:45
19LC MW04DW	PRF0882-06	Water	06/24/08 14:40	06/25/08 09:45
19LC MW04SW	PRF0882-07	Water	06/24/08 16:15	06/25/08 09:45

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: 07/15/08 14:26 Andrew Harvey

Gasoline Hydrocarbons per NW TPH-Gx Method

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW03	SSW)		Wa	iter		Samp	led: 06/24/	/08 12:30		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060980	06/26/08 09:19	06/27/08 21:11	U
Surrogate(s): 4-BFB				86.8%		50 - 150 %	"			"
PRF0882-05 (19LC MW46		Wa	iter		Samp	led: 06/24/	/08 12:45			
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060980	06/26/08 09:19	06/27/08 21:39	U
Surrogate(s): 4-BFB				85.1%		50 - 150 %	"			"
PRF0882-06 (19LC MW04	DW)		Wa	iter		Samp	led: 06/24/	/08 14:40		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060980	06/26/08 09:19	06/27/08 22:07	U
Surrogate(s): 4-BFB				81.8%		50 - 150 %	"			"
PRF0882-07 (19LC MW04	SW)		Wa	iter		Samp	led: 06/24/	/08 16:15		
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x	8060980	06/26/08 09:19	06/27/08 23:29	U
Surrogate(s): 4-BFB				81.1%		50 - 150 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

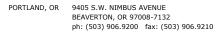
4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26


Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method

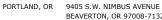
TestAmerica Portland

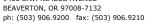
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW038	SW)		W	ater		Sampl	led: 06/24/	08 12:30		
Diesel Range Organics	NWTPH-Dx	ND	0.0390	0.0762	mg/l	1x	8060939	06/25/08 15:00	06/26/08 13:17	U
Heavy Oil Range Hydrocarbons	"	ND	0.273	0.476	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			98.8%		50 - 150 %	"			"
PRF0882-05 (19LC MW460	0W)		W	ater		Sampl	led: 06/24/	08 12:45		
Diesel Range Organics	NWTPH-Dx	ND	0.0390	0.0762	mg/l	1x	8060939	06/25/08 15:00	06/26/08 14:11	U
Heavy Oil Range Hydrocarbons	"	ND	0.273	0.476	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			97.1%		50 - 150 %	"			n .
PRF0882-06 (19LC MW041	DW)		W	ater		Sampl	led: 06/24/	08 14:40		
Diesel Range Organics	NWTPH-Dx	ND	0.0390	0.0762	mg/l	1x	8060939	06/25/08 15:00	06/26/08 14:29	U
Heavy Oil Range Hydrocarbons	"	ND	0.273	0.476	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			103%		50 - 150 %	"			"
PRF0882-07 (19LC MW048	SW)		W	ater		Sampl	led: 06/24/	08 16:15		
Diesel Range Organics	NWTPH-Dx	ND	0.0398	0.0777	mg/l	1x	8060939	06/25/08 15:00	06/26/08 14:46	U
Heavy Oil Range Hydrocarbons	"	ND	0.278	0.485	"	"	"	"	"	U
Surrogate(s): 1-Chlorooctade	ecane			85.5%		50 - 150 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Total Metals per EPA 6000/7000 Series Methods


TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		V	Vater		Sam	pled: 06/24/	08 12:30		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060987	06/26/08 10:59	06/27/08 00:39	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	"	ND	0.000025	0.000500	"	"	"	"	"	U
Cadmium		ND	0 0.000065 0	0.000500	"		"	"	"	U
Chromium	n	ND	0.000350	0.00200	"	"	"	"	06/27/08 19:40	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	06/27/08 00:39	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	B, U
Nickel	"	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	06/28/08 10:58	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	06/27/08 00:39	U
Thallium	"	ND	0.000050	0.00100	"	"	"	"	"	U
Zinc	"	0.00103	0 0.000700	0.00500	"	"	"	"	n	J
PRF0882-05	(19LC MW460W)		V	Vater		Sam	pled: 06/24/	08 12:45		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060987	06/26/08 10:59	06/27/08 00:44	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	n	ND	0.000025 0	0.000500	"	"	"	"	"	U
Cadmium	n	ND	0.000065 0	0.000500	"	"	"	"	"	U
Chromium	"	0.000420	0.000350	0.00200	"	"	"	"	06/27/08 19:45	J
Copper	"	ND	0.000270	0.00200	"	"	"	"	06/27/08 00:44	U
Lead	п	ND	0.000220	0.00100	"	"	"	"	"	В, U
Nickel	"	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	06/28/08 11:03	U
Silver	n n	ND	0.000200	0.00100	"	"	"	"	06/27/08 00:44	U
Thallium	"	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	п	0.00104		0.00500	"	"	"	"	"	J
PRF0882-06	(19LC MW04DW)		V	Vater		Sam	pled: 06/24/	08 14:40		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060987	06/26/08 10:59	06/27/08 00:49	U
Arsenic	"	0.000533	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	"	U

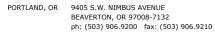
TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Total Metals per EPA 6000/7000 Series Methods

TestAmerica Portland


Analyte	Method R	esult	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06	(19LC MW04DW)		W	/ater		Samı	oled: 06/24/	08 14:40		
Cadmium	EPA 6020	ND	0.000065 0	0.000500	mg/l	1x	8060987	06/26/08 10:59	06/27/08 00:49	U
Chromium	"	ND	0.000350	0.00200	"	"	"	"	06/27/08 19:50	U
Copper	n	ND	0.000270	0.00200	"	"	"	"	06/27/08 00:49	U
Lead	n	ND	0.000220	0.00100	"	"	"	"	"	В, U
Nickel	" 0.00	0163	0.000150	0.00100	"	"	"	"	"	J
Selenium	•	ND	0.000075 0	0.000500	"	"	"	"	06/28/08 11:08	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	06/27/08 00:49	U
Thallium	n .	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	" 0.0	0141	0.000700	0.00500	"	"	"	"	"	J
PRF0882-07	(19LC MW04SW)		W	/ater		Samp	oled: 06/24/	08 16:15		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060987	06/26/08 10:59	06/27/08 17:47	U
Arsenic	n	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	n	ND	0.000250	0.00500	"	10x	"	"	06/28/08 13:49	RL1, U, D
Cadmium	"	ND	0.000065 0	0.000500	"	1x	"	"	06/27/08 17:47	U
Chromium	n	ND	0.000350	0.00200	"	"	"	"	06/27/08 19:56	U
Copper	n	ND	0.000270	0.00200	"	"	"	"	06/27/08 17:47	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	B, U
Nickel	n	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	n	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	n	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	•	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	" 0.0	0106	0.000700	0.00500	"	"	"	"	"	J

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

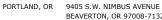
4412 SW Corbett Ave.

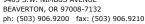
Project Number: Camp Bonneville, WA

Report Created:
Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26


Dissolved Metals per EPA 6000/7000 Series Methods


TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		W	ater		Samj	oled: 06/24/	08 12:30		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:34	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 02:43	U
Cadmium	n	ND	0.000065	0.000500	"	"	"	"	06/27/08 16:34	U
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	n .	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	п	0.000947	0.000700	0.00500	"	"	"	"	"	J
PRF0882-05	(19LC MW460W)		W	ater		Samj	oled: 06/24/	08 12:45		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:39	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 02:51	U
Cadmium	"	0.000239	0.000065 0	0.000500	"	"	"	"	06/27/08 16:39	J
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	"	0.000478	0.000150	0.00100	"	"	"	"	"	J
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	п	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	n	0.00126		0.00500	"	"	"	"	"	J
PRF0882-06	(19LC MW04DW)		W	ater		Samj	oled: 06/24/	08 14:40		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:44	U
Arsenic	"	0.000628	0.000180	0.00100	"	"	"	"	"	J
Beryllium	"	ND	0.000025	0.000500	"		"	"	06/28/08 02:59	U

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:

Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Dissolved Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method Ro	esult	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06	(19LC MW04DW)		W	/ater		Samp	oled: 06/24/	08 14:40		
Cadmium	EPA 6020	ND	0.000065 0	0.000500	mg/l	1x	8060990	06/26/08 11:04	06/27/08 16:44	U
Chromium	"	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	n	ND	0.000150	0.00100	"	"	"	"	"	U
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	n .	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	"	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	" 0.00	0157	0.000700	0.00500	"	"	"	"	"	J
PRF0882-07	(19LC MW04SW)		W	/ater		Samp	oled: 06/24/	08 16:15		
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x	8060990	06/26/08 11:04	06/27/08 17:00	U
Arsenic	"	ND	0.000180	0.00100	"	"	"	"	"	U
Beryllium	"	ND	0.000025 0	0.000500	"	"	"	"	06/28/08 03:07	U
Cadmium	"	ND	0.000065 0	0.000500	"	"	"	"	06/27/08 17:00	U
Chromium	n .	ND	0.000350	0.00200	"	"	"	"	"	U
Copper	"	ND	0.000270	0.00200	"	"	"	"	"	U
Lead	"	ND	0.000220	0.00100	"	"	"	"	"	U
Nickel	" 0.000	0447	0.000150	0.00100	"	"	"	"	"	J
Selenium	"	ND	0.000075 0	0.000500	"	"	"	"	"	U
Silver	"	ND	0.000200	0.00100	"	"	"	"	"	U
Thallium	n	ND	0.000050 0	0.00100	"	"	"	"	"	U
Zinc	" 0.000	0904	0.000700	0.00500	"	"	"	"	"	J

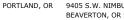
TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Dissolved Mercury per EPA Method 7470A

TestAmerica Portland

Analyte	Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)	Wa	ater		Samı	oled: 06/24/			
Mercury	EPA 7470A	ND 0.000063 0	0.000200	mg/l	1x	8070079	07/02/08 13:36	07/02/08 16:18	U
PRF0882-05	(19LC MW460W)	Wa	ater		Samı	oled: 06/24/	08 12:45		
Mercury	EPA 7470A	ND 0.000063 0	0.000200	mg/l	1x	8070079	07/02/08 13:36	07/02/08 16:20	U
PRF0882-06	(19LC MW04DW)	Wa	ater		Samı	oled: 06/24/	08 14:40		
Mercury	EPA 7470A	ND 0.000063 0	0.000200	mg/l	1x	8070079	07/02/08 13:36	07/02/08 16:22	U
PRF0882-07	(19LC MW04SW)	Wa	ater		Samp	oled: 06/24/	08 16:15		
Mercury	EPA 7470A	ND 0.000063 0	0.000200	mg/l	1x	8070079	07/02/08 13:36	07/02/08 16:24	U

TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created: Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Total Mercury per EPA Method 7470A

TestAmerica Portland

Analyte	Method	Result MDL*	MRL Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)	Water		Samj	pled: 06/24/	08 12:30		
Mercury	EPA 7470A	ND 0.000067 0.00	00200 mg/l	1x	8070080	07/02/08 13:37	07/02/08 16:52	U
PRF0882-05	(19LC MW460W)	Water		Samj	pled: 06/24/	08 12:45		
Mercury	EPA 7470A	ND 0.000067 0.00	00200 mg/l	1x	8070080	07/02/08 13:37	07/02/08 16:54	U
PRF0882-06	(19LC MW04DW)	Water		Samj	pled: 06/24/	08 14:40		
Mercury	EPA 7470A	ND 0.000067 0.00	00200 mg/l	lx	8070080	07/02/08 13:37	07/02/08 16:57	U
PRF0882-07	(19LC MW04SW)	Water		Samj	pled: 06/24/	08 16:15		
Mercury	EPA 7470A	ND 0.000067 0.00	00200 mg/l	1x	8070080	07/02/08 13:37	07/02/08 16:59	U

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

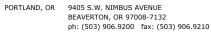
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-02 (19L4MW17V	W)		Wa	iter		Sam	pled: 06/24/	08 10:10		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:11	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

/42/DAS

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26


Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-02	(19L4MW17W)			W	ater		Samp	led: 06/24/	08 10:10		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:11	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	0.350	0.0900	2.00	"	"	"	"	"	J
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloro	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloro	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	rene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	rene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluoromet	hane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00		"	"	"	"	U
1,2,4-Trimethylber	ızene	"	0.120	0.0800	1.00		"	"	"	"	J
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00		"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00		"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00		"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				100%		80 - 120 %	"			"
,	1,2-DCA-d4				101%		80 - 120 %	"			"
	Dibromofluorom	ethane			99.7%		80 - 120 %	"			"
	Toluene-d8				102%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-03 (19L4MW18V	W)		Wa	iter		Sam	pled: 06/24/	08 11:10		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:39	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

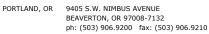
TestAmerica Portland

THE DAY

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-03	(19L4MW18W)			W	ater		Sampl	led: 06/24/	08 11:10		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:39	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	•	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"		"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"		"	U
Styrene		"	ND	0.0400	1.00	"	"	"		"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"		"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"		"	U
1,2,3-Trichlorobenz	rene	"	ND	0.100	1.00	"	"	"		"	U
1,2,4-Trichlorobenz	rene	"	ND	0.110	1.00	"	"	"		"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"		"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	hane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				97.5%		80 - 120 %	"			"
- ''	1,2-DCA-d4				101%		80 - 120 %	"			"
	Dibromofluorome	ethane			97.9%		80 - 120 %	"			"
	Toluene-d8				99.8%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW03	SSW)		Wa	ter		Sam	pled: 06/24/	08 12:30		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070143	07/06/08 16:00	07/07/08 00:06	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00		"	"	"	"	U
Chloroform	"	ND	0.0900	1.00		"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00		"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00		"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00		"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00		"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00		"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00		"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00		"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00		"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00		"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00		"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"		"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00		"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	,,	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		W	ater		Samp	led: 06/24/	08 12:30		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 00:06	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00		"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00		"	"	"	"	U
Hexachlorobutadien	ne	"	ND	0.210	4.00		"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0		"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00		"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00		"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00		"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00		"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				105%		80 - 120 %	"			"
	1,2-DCA-d4				106%		80 - 120 %	"			"
	Dibromofluoromet	hane			103%		80 - 120 %	"			"
	Toluene-d8				106%		80 - 120 %	"			"

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-05 (19LC MW46	(0W)		Wa	ter		Sam	pled: 06/24/	08 12:45		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070143	07/06/08 16:00	07/07/08 00:35	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	,,	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	,,	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	,,	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"		"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	,,		"	"	"	U

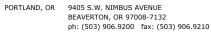
TestAmerica Portland

Richard D. Reid, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-05	(19LC MW460W)		W	ater	_	Samp	led: 06/24/	08 12:45		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	lx	8070143	07/06/08 16:00	07/07/08 00:35	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadier	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroetha	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroetha	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometl	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylben		"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylben	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00		"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00		"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				98.4%		80 - 120 %	"			"
	1,2-DCA-d4				102%		80 - 120 %	"			"
	Dibromofluoromet	hane			101%		80 - 120 %	"			"
	Toluene-d8				102%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06 (19LC MW04	IDW)		W	ater		Samı	oled: 06/24/	08 14:40		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	lx	8070143	07/06/08 16:00	07/07/08 01:02	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06	(19LC MW04DW)		W	ater		Samp	led: 06/24/	08 14:40		
cis-1,3-Dichloropro	pene EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 01:02	U
trans-1,3-Dichlorop	ropene "	ND	0.100	1.00		"	"	"	"	U
Ethylbenzene	"	ND	0.0600	1.00		"	"	"	"	U
Hexachlorobutadien	e "	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone	"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene	"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene	"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	ne "	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl etl	her "	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride	"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene	"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Styrene	"	ND	0.0400	1.00		"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane "	ND	0.0900	1.00		"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane "	ND	0.0800	1.00		"	"	"	"	U
Tetrachloroethene	"	ND	0.110	1.00		"	"	"	"	U
Toluene	"	ND	0.110	1.00		"	"	"	"	U
1,2,3-Trichlorobenz	ene "	ND	0.100	1.00		"	"	"	"	U
1,2,4-Trichlorobenz	ene "	ND	0.110	1.00		"	"	"	"	U
1,1,1-Trichloroethan	ne "	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne "	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene	"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane "	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane "	ND	0.130	1.00	"	"	"	"	**	U
1,2,4-Trimethylbenz	zene "	ND	0.0800	1.00	"	"	"	"	**	U
1,3,5-Trimethylbenz	zene "	ND	0.0700	1.00	"	"	"	"	**	U
Vinyl chloride	"	ND	0.100	1.00	"	"	"	"	**	U
o-Xylene	"	ND	0.0700	1.00	"	"	"	"	**	U
m,p-Xylene	"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB			98.1%		80 - 120 %	"			n
	1,2-DCA-d4			103%		80 - 120 %	"			"
	Dibromofluoromethane			100%		80 - 120 %	"			"
	Toluene-d8			102%		80 - 120 %	"			"

TestAmerica Portland

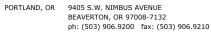
Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-07 (19LC MW04	ISW)		Wa	iter		Sam	pled: 06/24/	08 16:15		
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x	8070143	07/06/08 16:00	07/07/08 01:30	U
Benzene	"	ND	0.0900	1.00	"	"	"	"	"	U
Bromobenzene	"	ND	0.100	1.00	"	"	"	"	"	U
Bromochloromethane	"	ND	0.180	1.00	"	"	"	"	"	U
Bromodichloromethane	"	ND	0.110	1.00	"	"	"	"	"	U
Bromoform	"	ND	0.100	1.00	"	"	"	"	"	U
Bromomethane	"	ND	0.170	5.00	"	"	"	"	"	U
2-Butanone (MEK)	"	ND	3.50	10.0	"	"	"	"	"	U
n-Butylbenzene	"	ND	0.0600	5.00	"	"	"	"	"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"	"	"	"	U
tert-Butylbenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
Carbon disulfide	"	ND	0.140	10.0	"	"	"	"	"	U
Carbon tetrachloride	"	ND	0.0600	1.00	"	"	"	"	"	U
Chlorobenzene	"	ND	0.0500	1.00	"	"	"	"	"	U
Chloroethane	"	ND	0.110	1.00	"	"	"	"	"	U
Chloroform	"	ND	0.0900	1.00	"	"	"	"	"	U
Chloromethane	"	ND	0.0800	5.00	"	"	"	"	"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"	"	"	"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"	"	"	"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"	"	"	"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"	"	"	"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"	"	"	"	U
Dibromomethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"	"	"	"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"	"	"	"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"	"	"	"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"	"	"	"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"	"	"	"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"	"	"	"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"	"	"	"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"	"	"	"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"	"	"	"	U

TestAmerica Portland

Jack Dall

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

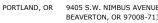
Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B

TestAmerica Portland


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-07	(19LC MW04SW)			W	ater		Samp	led: 06/24/	08 16:15		
cis-1,3-Dichloropro	pene	EPA 8260B	ND	0.0900	1.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 01:30	U
trans-1,3-Dichlorop	ropene	"	ND	0.100	1.00	"	"	"	"	"	U
Ethylbenzene		"	ND	0.0600	1.00	"	"	"	"	"	U
Hexachlorobutadien	ne	"	ND	0.210	4.00	"	"	"	"	"	U
2-Hexanone		"	ND	3.62	10.0	"	"	"	"	"	U
Isopropylbenzene		"	ND	0.0700	2.00	"	"	"	"	"	U
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"	"	"	"	U
4-Methyl-2-pentano	one	"	ND	0.290	5.00	"	"	"	"	"	U
Methyl tert-butyl et	her	"	ND	0.0900	1.00	"	"	"	"	"	U
Methylene chloride		"	ND	0.160	5.00	"	"	"	"	"	U
Naphthalene		"	ND	0.0900	2.00	"	"	"	"	"	U
n-Propylbenzene		"	ND	0.100	1.00	"	"	"	"	"	U
Styrene		"	ND	0.0400	1.00	"	"	"	"	"	U
1,1,1,2-Tetrachloroe	ethane	"	ND	0.0900	1.00	"	"	"	"	"	U
1,1,2,2-Tetrachloroe	ethane	"	ND	0.0800	1.00	"	"	"	"	"	U
Tetrachloroethene		"	ND	0.110	1.00	"	"	"	"	"	U
Toluene		"	ND	0.110	1.00	"	"	"	"	"	U
1,2,3-Trichlorobenz	ene	"	ND	0.100	1.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	0.110	1.00	"	"	"	"	"	U
1,1,1-Trichloroethan	ne	"	ND	0.120	1.00	"	"	"	"	"	U
1,1,2-Trichloroethan	ne	"	ND	0.130	1.00	"	"	"	"	"	U
Trichloroethene		"	ND	0.0800	1.00	"	"	"	"	"	U
Trichlorofluorometh	nane	"	ND	0.0600	1.00	"	"	"	"	"	U
1,2,3-Trichloroprop	ane	"	ND	0.130	1.00	"	"	"	"	"	U
1,2,4-Trimethylbenz	zene	"	ND	0.0800	1.00	"	"	"	"	"	U
1,3,5-Trimethylbenz	zene	"	ND	0.0700	1.00	"	"	"	"	"	U
Vinyl chloride		"	ND	0.100	1.00	"	"	"	"	"	U
o-Xylene		"	ND	0.0700	1.00	"	"	"	"	"	U
m,p-Xylene		"	ND	0.210	2.00	"	"	"	"	"	U
Surrogate(s):	4-BFB				97.2%		80 - 120 %	"			"
,	1,2-DCA-d4				103%		80 - 120 %	"			"
	Dibromofluorometh	ane			100%		80 - 120 %	"			"
	Toluene-d8				102%		80 - 120 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

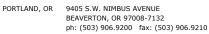
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW03		Water				oled: 06/24/				
Acenaphthene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 18:53	U
Acenaphthylene	"	ND	3.00	5.00	"	"	"	"	"	U
Anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (a) pyrene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (b) fluoranthene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (ghi) perylene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (k) fluoranthene	"	ND	3.00	5.00		"	"	"	"	U
Benzoic Acid	"	ND	50.0	50.0		"	"	"	"	U
Benzyl alcohol	"	ND	5.00	10.0		"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloroaniline	"	ND	10.0	20.0	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	5.00	10.0	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	3.00	5.00	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	5.00	10.0	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Chlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Chrysene	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzofuran	"	ND	3.00	5.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Diethyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
Dimethyl phthalate	"	ND	3.00	5.00	"	"	"	"	**	U
4,6-Dinitro-2-methylphenol	"	ND	5.00	10.0		"	"	"	"	U
2,4-Dinitrophenol	"	ND	15.0	25.0	"	"	"	"	**	U
2,4-Dinitrotoluene	"	ND	3.00	5.00		"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26


Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW03S	Water				Samp	led: 06/24/				
2,6-Dinitrotoluene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 18:53	U
Bis(2-ethylhexyl)phthalate	"	ND	10.0	10.0		"	"	"	"	U
Fluoranthene	"	ND	3.00	5.00		"	"	"	"	U
Fluorene	"	ND	3.00	5.00		"	"	"	"	U
Hexachlorobenzene	"	ND	3.00	5.00		"	"	"	"	U
Hexachlorobutadiene	"	ND	5.00	10.0		"	"	"	"	U
Hexachlorocyclopentadiene	"	ND	5.00	10.0		"	"	"	"	U
Hexachloroethane	"	ND	5.00	10.0		"	"	"	"	U
Indeno (1,2,3-cd) pyrene	"	ND	3.00	5.00		"	"	"	"	U
Isophorone	"	ND	3.00	5.00		"	"	"	"	U
2-Methylnaphthalene	"	ND	3.00	5.00		"	"	"	"	U
2-Methylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
3-,4-Methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
Naphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitroaniline	"	ND	3.00	5.00	"	"	"	"	"	U
3-Nitroaniline	"	ND	5.00	10.0	"	"	"	"	"	U
4-Nitroaniline	"	ND	5.00	10.0	"	"	"	"	"	U
Nitrobenzene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitrophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Nitrophenol	"	ND	10.0	25.0	"	"	"	"	"	U
N-Nitrosodi-n-propylamine	"	ND	5.00	10.0	"	"	"	"	"	U
N-Nitrosodiphenylamine	"	ND	3.00	5.00	"	"	"	"	"	U
Pentachlorophenol	"	ND	5.00	10.0	"	"	"	"	**	U
Phenanthrene	"	ND	3.00	5.00	"	"	"	"	**	U
Phenol	"	ND	3.00	5.00	"	"	"	"	"	U
Pyrene	"	ND	3.00	5.00	"	"	"	"	**	U
1,2,4-Trichlorobenzene	"	ND	5.00	5.00	"	"	"	"	**	U
2,4,5-Trichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
2,4,6-Trichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Surrogate(s): 2-Fluorobiphen	yl			52.6%		22 - 120 %	"			"
2-Fluorophenol				57.0%		5 - 120 %	"			"
Nitrobenzene-d.	5			63.1%		26 - 127 %	"			"
Phenol-d6				62.7%		4 - 121 %	"			"
p-Terphenyl-d1	4 phenol			110% 84.5%		37 - 130 % 21 - 129 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

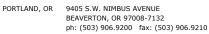
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-05 (19LC MW4	60W)		Wa	iter		Sam	pled: 06/24/	08 12:45		
Acenaphthene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:16	U
Acenaphthylene	"	ND	3.00	5.00	"	"	"	"	"	U
Anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) pyrene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (b) fluoranthene	"	ND	3.00	5.00	•	"	"	"	"	U
Benzo (ghi) perylene	"	ND	3.00	5.00	•	"	"	"	"	U
Benzo (k) fluoranthene	"	ND	3.00	5.00	•	"	"	"	"	U
Benzoic Acid	"	ND	50.0	50.0	"	"	"	"	"	U
Benzyl alcohol	"	ND	5.00	10.0	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloroaniline	"	ND	10.0	20.0	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	5.00	10.0	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	3.00	5.00	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	5.00	10.0	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Chlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Chrysene	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzofuran	"	ND	3.00	5.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Diethyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
Dimethyl phthalate	"	ND	3.00	5.00	•	"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	5.00	10.0	•	"	"	"	"	U
2,4-Dinitrophenol	"	ND	15.0	25.0		"	"	"	"	U
2,4-Dinitrotoluene	"	ND	3.00	5.00	,,	,,	"	"	"	U

TestAmerica Portland

THE PRINT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26


Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-05 (19LC MW4	60W)		Wa	iter		Samp	led: 06/24/	08 12:45		
2,6-Dinitrotoluene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:16	U
Bis(2-ethylhexyl)phthalate	"	ND	10.0	10.0	"	"	"	"	"	U
Fluoranthene	"	ND	3.00	5.00	"	"	"	"	"	U
Fluorene	"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobenzene	"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobutadiene	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachlorocyclopentadiene	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachloroethane	"	ND	5.00	10.0	"	"	"	"	"	U
Indeno (1,2,3-cd) pyrene	"	ND	3.00	5.00	"	"	"	"	"	U
Isophorone	"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylnaphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
3-,4-Methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
Naphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitroaniline	"	ND	3.00	5.00	"	"	"	"	"	U
3-Nitroaniline	"	ND	5.00	10.0	"	"	"	"	"	U
4-Nitroaniline	"	ND	5.00	10.0	"	"	"	"	"	U
Nitrobenzene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitrophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Nitrophenol	"	ND	10.0	25.0	"	"	"	"	"	U
N-Nitrosodi-n-propylamine	"	ND	5.00	10.0	"	"	"	"	"	U
N-Nitrosodiphenylamine	"	ND	3.00	5.00	"	"	"	"	"	U
Pentachlorophenol	"	ND	5.00	10.0	"	"	"	"	"	U
Phenanthrene	"	ND	3.00	5.00	"	"	"	"	"	U
Phenol	"	ND	3.00	5.00	"	"	"	"	"	U
Pyrene	"	ND	3.00	5.00	"	"	"	"	"	U
1,2,4-Trichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
2,4,5-Trichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
2,4,6-Trichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Surrogate(s): 2-Fluorobiph	henyl			77.1%		22 - 120 %	"			"
2-Fluorophe				77.1%		5 - 120 %	"			"
Nitrobenzene	e-d5			85.6%		26 - 127 %	"			"
Phenol-d6				82.7%		4 - 121 %	"			"
p-Terphenyl-	d14 mophenol			104% 92.0%		37 - 130 % 21 - 129 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C

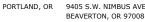
TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06 (19LC MW0	4DW)		Wa	ter		Samj	pled: 06/24/	08 14:40		
Acenaphthene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:38	U
Acenaphthylene	"	ND	3.00	5.00	"	"	"	"	"	U
Anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (a) pyrene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (b) fluoranthene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (ghi) perylene	"	ND	3.00	5.00		"	"	"	"	U
Benzo (k) fluoranthene	"	ND	3.00	5.00		"	"	"	"	U
Benzoic Acid	"	ND	50.0	50.0		"	"	"	"	U
Benzyl alcohol	"	ND	5.00	10.0		"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloroaniline	"	ND	10.0	20.0	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	5.00	10.0	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	3.00	5.00	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	5.00	10.0	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Chlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	3.00	5.00		"	"	"	"	U
Chrysene	"	ND	3.00	5.00		"	"	"	"	U
Di-n-butyl phthalate	"	ND	3.00	5.00		"	"	"	"	U
Di-n-octyl phthalate	"	ND	3.00	5.00		"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	3.00	5.00		"	"	"	"	U
Dibenzofuran	"	ND	3.00	5.00		"	"	"	"	U
1,2-Dichlorobenzene	"	ND	5.00	5.00		"	"	"	"	U
1,3-Dichlorobenzene	"	ND	5.00	5.00		"	"	"	"	U
1,4-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Diethyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
Dimethyl phthalate	"	ND	3.00	5.00		"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	5.00	10.0		"	"	"	"	U
2,4-Dinitrophenol	"	ND	15.0	25.0		"	"	"	"	U
2,4-Dinitrotoluene	"	ND	3.00	5.00		"	"	"	"	U

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26


Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-06	(19LC MW04DW)		W	ater		Samp	led: 06/24/	08 14:40		
2,6-Dinitrotoluene		EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:38	U
Bis(2-ethylhexyl)ph	thalate	"	ND	10.0	10.0	"	"	"	"	"	U
Fluoranthene		"	ND	3.00	5.00	"	"	"	"	"	U
Fluorene		"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobenzene		"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobutadien	ie	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachlorocycloper	ntadiene	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachloroethane		"	ND	5.00	10.0	"	"	"	"	"	U
Indeno (1,2,3-cd) py	/rene	"	ND	3.00	5.00	"	"	"	"	"	U
Isophorone		"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylnaphthalen	ie	"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylphenol		"	ND	5.00	10.0	"	"	"	"	"	U
3-,4-Methylphenol		"	ND	3.00	5.00	"	"	"	"	"	U
Naphthalene		"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitroaniline		"	ND	3.00	5.00	"	"	"	"	"	U
3-Nitroaniline		"	ND	5.00	10.0	"	"	"	"	"	U
4-Nitroaniline		"	ND	5.00	10.0	"	"	"	"	"	U
Nitrobenzene		"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitrophenol		"	ND	3.00	5.00	"	"	"	"	"	U
4-Nitrophenol		"	ND	10.0	25.0	"	"	"	"	"	U
N-Nitrosodi-n-prop	ylamine	"	ND	5.00	10.0	"	"	"	"	"	U
N-Nitrosodiphenyla	mine	"	ND	3.00	5.00	"	"	"	"	"	U
Pentachlorophenol		"	ND	5.00	10.0	"	"	"	"	"	U
Phenanthrene		"	ND	3.00	5.00	"	"	"	"	"	U
Phenol		"	ND	3.00	5.00	"	"	"	"	"	U
Pyrene		"	ND	3.00	5.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	5.00	5.00		"	"	,,	"	U
2,4,5-Trichlorophen	ol	"	ND	3.00	5.00		"	"	,,	"	U
2,4,6-Trichlorophen	ol	"	ND	3.00	5.00	"	"	"	"	**	U
Surrogate(s):	2-Fluorobiphenyl				68.4%		22 - 120 %	"			n .
,	2-Fluorophenol				71.5%		5 - 120 %	"			"
	Nitrobenzene-d5				76.1%		26 - 127 %	"			"
	Phenol-d6				77.8%		4 - 121 %	"			"
	p-Terphenyl-d14	mal.			107% 94.3%		37 - 130 % 21 - 129 %	"			 "
	2,4,6-Tribromophe	noi			74.370		21 - 129 %				

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-07 (19LC MW04	4SW)		Wa	ter		Sam	pled: 06/24/	08 16:15		
Acenaphthene	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 20:00	U
Acenaphthylene	"	ND	3.00	5.00	"	"	"	"	"	U
Anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (a) pyrene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (b) fluoranthene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (ghi) perylene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzo (k) fluoranthene	"	ND	3.00	5.00	"	"	"	"	"	U
Benzoic Acid	"	ND	50.0	50.0	"	"	"	"	"	U
Benzyl alcohol	"	ND	5.00	10.0	"	"	"	"	"	U
4-Bromophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Butyl benzyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloro-3-methylphenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chloroaniline	"	ND	10.0	20.0	"	"	"	"	"	U
Bis(2-chloroethoxy)methane	"	ND	5.00	10.0	"	"	"	"	"	U
Bis(2-chloroethyl)ether	"	ND	3.00	5.00	"	"	"	"	"	U
Bis(2-chloroisopropyl)ether	"	ND	5.00	10.0	"	"	"	"	"	U
2-Chloronaphthalene	"	ND	3.00	5.00	"	"	"	"	"	U
2-Chlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
4-Chlorophenyl phenyl ether	"	ND	3.00	5.00	"	"	"	"	"	U
Chrysene	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-butyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Di-n-octyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzo (a,h) anthracene	"	ND	3.00	5.00	"	"	"	"	"	U
Dibenzofuran	"	ND	3.00	5.00	"	"	"	"	"	U
1,2-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,3-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
1,4-Dichlorobenzene	"	ND	5.00	5.00	"	"	"	"	"	U
3,3'-Dichlorobenzidine	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dichlorophenol	"	ND	3.00	5.00	"	"	"	"	"	U
Diethyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
2,4-Dimethylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
Dimethyl phthalate	"	ND	3.00	5.00	"	"	"	"	"	U
4,6-Dinitro-2-methylphenol	"	ND	5.00	10.0	"	"	"	"	"	U
2,4-Dinitrophenol	"	ND	15.0	25.0	"	"	"	"	"	U
2,4-Dinitrotoluene	"	ND	3.00	5.00	"	"	"	"	"	U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C


TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-07	(19LC MW04SW)			W	ater		Samp	led: 06/24/	08 16:15		
2,6-Dinitrotoluene	1	EPA 8270C	ND	3.00	5.00	ug/l	1x	8060964	06/25/08 17:30	07/01/08 20:00	U
Bis(2-ethylhexyl)ph	thalate	"	ND	10.0	10.0	"	"	"	"	"	U
Fluoranthene		"	ND	3.00	5.00	"	"	"	"	"	U
Fluorene		"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobenzene		"	ND	3.00	5.00	"	"	"	"	"	U
Hexachlorobutadien	e	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachlorocycloper	ntadiene	"	ND	5.00	10.0	"	"	"	"	"	U
Hexachloroethane		"	ND	5.00	10.0	"	"	"	"	"	U
Indeno (1,2,3-cd) py	rene	"	ND	3.00	5.00	"	"	"	"	"	U
Isophorone		"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylnaphthalen	e	"	ND	3.00	5.00	"	"	"	"	"	U
2-Methylphenol		"	ND	5.00	10.0	"	"	"	"	"	U
3-,4-Methylphenol		"	ND	3.00	5.00	"	"	"	"	"	U
Naphthalene		"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitroaniline		"	ND	3.00	5.00	"	"	"	"	"	U
3-Nitroaniline		"	ND	5.00	10.0	"	"	"	"	"	U
4-Nitroaniline		"	ND	5.00	10.0	"	"	"	"	"	U
Nitrobenzene		"	ND	3.00	5.00	"	"	"	"	"	U
2-Nitrophenol		"	ND	3.00	5.00	"	"	"	"	"	U
4-Nitrophenol		"	ND	10.0	25.0	"	"	"	"	"	U
N-Nitrosodi-n-propy	ylamine	"	ND	5.00	10.0	"	"	"	"	"	U
N-Nitrosodiphenyla	mine	"	ND	3.00	5.00	"	"	"	"	"	U
Pentachlorophenol		"	ND	5.00	10.0	"	"	"	"	"	U
Phenanthrene		"	ND	3.00	5.00	"	"	"	"	"	U
Phenol		"	ND	3.00	5.00	"	"	"	"	"	U
Pyrene		"	ND	3.00	5.00	"	"	"	"	"	U
1,2,4-Trichlorobenz	ene	"	ND	5.00	5.00	"	"	"	"	"	U
2,4,5-Trichlorophen	ol	"	ND	3.00	5.00	"	"	"	"	"	U
2,4,6-Trichlorophen	ol	"	ND	3.00	5.00	"	"	"	"	"	U
Surrogate(s):	2-Fluorobiphenyl				86.5%		22 - 120 %	"			"
	2-Fluorophenol				88.9%		5 - 120 %	"			n .
	Nitrobenzene-d5				93.1%		26 - 127 %	"			"
	Phenol-d6				96.1%		4 - 121 %	"			"
	p-Terphenyl-d14 2,4,6-Tribromopheno	ol			108% 101%		37 - 130 % 21 - 129 %	"			"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Tentatively Identified Compounds per Volatile GC/MS (Est. Conc.)

TestAmerica Portland

Analyte		Method	Result MD	L* MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-02	(19L4MW17W)			Water		Samı	oled: 06/24/	08 10:10		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:11	U
PRF0882-03	(19L4MW18W)			Water		Samp	oled: 06/24/	08 11:10		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/06/08 23:39	U
PRF0882-04	(19LC MW03SW	7)		Water		Samı	oled: 06/24/	08 12:30		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 00:06	U
PRF0882-05	(19LC MW460W	7)		Water		Samp	oled: 06/24/	08 12:45		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 00:35	U
PRF0882-06	(19LC MW04DW	V)		Water		Samı	oled: 06/24/	08 14:40		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 01:02	U
PRF0882-07	(19LC MW04SW	7)		Water		Samı	oled: 06/24/	08 16:15		
No TICS identifie	d	EPA 8260B	ND	2.00	ug/l	1x	8070143	07/06/08 16:00	07/07/08 01:30	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26

Tentatively Identified Compounds per Semivolatile GC/MS (Est. Conc.)

TestAmerica Portland

Analyte	N	Method R	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)			Water	•		Samp	led: 06/24/0	8 12:30		
No TICS identified	d E	PA 8270C	ND	10.0	10.0	ug/l	1x	8060964	06/25/08 17:30	07/01/08 18:53	U
PRF0882-05	(19LC MW460W)			Water	•		Samp	led: 06/24/0	8 12:45		
No TICS identified	d E	PA 8270C	ND	10.0	10.0	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:16	U
PRF0882-06	(19LC MW04DW)			Water	•		Samp	led: 06/24/0	8 14:40		
No TICS identified	d E	PA 8270C	ND	10.0	10.0	ug/l	1x	8060964	06/25/08 17:30	07/01/08 19:38	U
PRF0882-07	(19LC MW04SW)			Water	•		Samp	led: 06/24/0	8 16:15		
No TICS identified	d E	PA 8270C	ND	10.0	10.0	ug/l	1x	8060964	06/25/08 17:30	07/01/08 20:00	U

TestAmerica Portland

Richard D. Reid, Project Manager

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Conventional Chemistry Parameters per APHA/EPA Methods

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SV	V)		Wa	iter		Sam	pled: 06/24/	08 12:30		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.271	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pН		EPA 150.1	6.59			pH Units	1x	8060957	06/25/08 12:33	06/25/08 12:38	
PRF0882-05	(19LC MW460V	V)		Wa	iter		Sam	pled: 06/24/	08 12:45		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.298	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pН		EPA 150.1	6.56			pH Units	1x	8060957	06/25/08 12:33	06/25/08 12:38	
PRF0882-06	(19LC MW04DV	W)		Wa	iter		Sam	pled: 06/24/	08 14:40		
Nitrate/Nitrite-N	itrogen	EPA 353.2	0.190	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pH		EPA 150.1	6.59			pH Units	1x	8060957	06/25/08 12:33	06/25/08 12:38	
PRF0882-07	(19LC MW04SV	V)		Wa	ıter		Sam	pled: 06/24/	08 16:15		
Nitrate/Nitrite-N	itrogen	EPA 353.2	1.10	0.0270	0.0500	mg/l	10x	8070053	07/02/08 06:38	07/07/08 17:59	D
pН		EPA 150.1	6.49			pH Units	1x	8060957	06/25/08 12:33	06/25/08 12:38	

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26

Conventional Chemistry Parameters per Standard Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW0	3SW)		Wa	ter		Sam	pled: 06/24/	08 12:30		
Bicarbonate Alkalinity	SM 2320B	44.6	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	44.6	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0882-05 (19LC MW4	60W)		Wa	ter		Sam	pled: 06/24/	08 12:45		
Bicarbonate Alkalinity	SM 2320B	44.6	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	44.6	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U
PRF0882-06 (19LC MW0	4DW)		Wa	ter		Sam	pled: 06/24/	08 14:40		
Bicarbonate Alkalinity	SM 2320B	52.0	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	52.0	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	1.00	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	
PRF0882-07 (19LC MW0	4SW)		Wa	ter		Sam	pled: 06/24/	08 16:15		
Bicarbonate Alkalinity	SM 2320B	41.8	0.320	5.00	mg/L as CaCO3	1x	8060978	06/26/08 08:56	06/26/08 13:36	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Hydroxide Alkalinity	"	ND	0.320	5.00	"	"	"	"	"	U
Total Alkalinity	"	41.8	0.320	5.00	"	"	"	"	"	
Total Suspended Solids	SM 2540D	ND	0.310	1.00	mg/l	"	8060986	06/26/08 10:51	06/26/08 17:28	U

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Anions per EPA Method 300.0

TestAmerica Portland

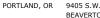
Analyte	Method	d Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		Wa	iter		Sam	pled: 06/24/	08 12:30		
Chloride	EPA 300	0.0 1.34	0.0270	0.500	mg/l	1x	8060946	06/25/08 10:56	06/25/08 12:56	
Sulfate	"	0.450	0.198	1.00	"	"	"	"	"	J
PRF0882-05	(19LC MW460W)		Wa	ıter		Sam	pled: 06/24/	08 12:45		
Chloride	EPA 300	0.0 1.36	0.0270	0.500	mg/l	1x	8060946	06/25/08 10:56	06/25/08 13:10	
Sulfate	n	0.420	0.198	1.00	"	"	"	"	"	J
PRF0882-06	(19LC MW04DW)		Wa	iter		Sam	pled: 06/24/	08 14:40		
Chloride	EPA 300	0.0 2.00	0.0270	0.500	mg/l	1x	8060946	06/25/08 10:56	06/25/08 13:24	
Sulfate	"	1.35	0.198	1.00	"	"	"	"	"	
PRF0882-07	(19LC MW04SW)		Wa	iter		Sam	pled: 06/24/	08 16:15		
Chloride	EPA 300	2.66	0.0270	0.500	mg/l	1x	8060946	06/25/08 10:56	06/25/08 13:38	
Sulfate	"	0.380	0.198	1.00	"	"	"	"	"	J

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Conventional Chemistry Parameters by APHA/EPA Methods

TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		Wa	ter		Sam	pled: 06/24/	08 12:30		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26025	06/26/08 10:30	06/26/08 10:53	
PRF0882-05	(19LC MW460W)		Wa	ter		Sam	pled: 06/24/	08 12:45		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26025	06/26/08 10:30	06/26/08 10:53	
PRF0882-06	(19LC MW04DW)		Wa	ter		Sam	pled: 06/24/	08 14:40		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26025	06/26/08 10:30	06/26/08 10:53	
PRF0882-07	(19LC MW04SW)		Wa	ter		Sam	pled: 06/24/	08 16:15		
Nitrite-Nitrogen	EPA 353.2	ND		0.0100	mg/l as N	1x	8F26025	06/26/08 10:30	06/26/08 10:53	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created: Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Total Organic Carbon, Combustion or Oxidation

TestAmerica Tacoma

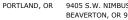
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04 (19LC MW03SW)		Wa	ter		Samp	oled: 06/24	/08 12:30		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0882-05 (19LC MW460W)		Wa	ter		Samp	pled: 06/24	/08 12:45		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0882-06 (19LC MW04DW	/)		Wa	ter		Samı	oled: 06/24	/08 14:40		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	
PRF0882-07 (19LC MW04SW	<u>)</u>		War	ter		Samı	oled: 06/24	/08 16:15		
Total Organic Carbon	415.1	ND		1.0	mg/L	1x	33844	07/08/08 13:40	07/08/08 13:40	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Andrew Harvey Portland, OR 97239 Project Manager: 07/15/08 14:26


Total Organic Carbon, Combustion or Oxidation Diss

TestAmerica Tacoma

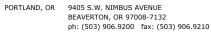
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-04	(19LC MW03SW)		Wat	er		Samp	oled: 06/24	/08 12:30		
Total Organic Car	rbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0882-05	(19LC MW460W))		Wat	er		Samp	oled: 06/24	/08 12:45		
Total Organic Car	rbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0882-06	(19LC MW04DW	7)		Wat	er		Samp	oled: 06/24	/08 14:40		
Total Organic Car	rbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	
PRF0882-07	(19LC MW04SW)		Wat	er		Samı	oled: 06/24	/08 16:15		
Total Organic Car	rbon	415.1 Dissolved	ND		1.0	mg/L	1x	33933	07/09/08 15:41	07/09/08 15:41	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26


EPA-DW1 314.0

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-02	(19L4MW17W)		Wate	er		Sam	pled: 06/24/	08 10:10		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 19:14	
PRF0882-03	(19L4MW18W)		Wate	er		Sam	pled: 06/24/	08 11:10		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 19:35	
PRF0882-04	(19LC MW03SW)		Wate	er		Sam	pled: 06/24/	08 12:30		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 19:56	
PRF0882-05	(19LC MW460W)		Wate	er		Sam	pled: 06/24/	08 12:45		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 20:17	
PRF0882-06	(19LC MW04DW)		Wate	er		Sam	pled: 06/24/	08 14:40		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 20:38	
PRF0882-07	(19LC MW04SW)		Wate	er		Sam	pled: 06/24/	08 16:15		
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x	8191165	07/08/08 16:26	07/08/08 21:42	

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

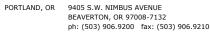
Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26

SW846 8330

TestAmerica Denver


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-02 (19L4MW17W))		Wa	ıter		Samj	pled: 06/24/	08 10:10		
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 12:40	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	

Surrogate(s): 1,2-Dinitrobenzene 103% 75 - 118 % "

PRF0882-03 (19L4MW1	8W)		Wa	iter		Sam	pled: 06/24/	08 11:10	
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 13:04
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"
PETN	"	ND		2	"	"	"	"	"
Picric Acid	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"

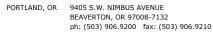
TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

SW846 8330

TestAmerica Denver


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-03 (19L4MW18W))		Wa	iter		Sam	pled: 06/24/	08 11:10		
Tetryl	SW846 8330	ND		0.2	ug/L	1x	8182428	06/30/08 18:00	07/03/08 13:04	
Surrogate(s): 1,2-Dinitrobenze	ene			105%		75 - 118 %	"			"
PRF0882-04 (19LC MW03S)	W)		Wa	ater		Sam	pled: 06/24/	08 12:30		
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 13:28	
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"	
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
Tetryl	"	ND		0.2	"	"	"	"	"	

109% 75 - 118 % Surrogate(s): 1,2-Dinitrobenzene

PRF0882-05 (19LC MW	460W)		Wa	ter		Sam	pled: 06/24/	08 12:45	
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 13:52
1,3-Dinitrobenzene	"	ND		0.4	"		"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"		"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"		"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"		"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

Report Created:
Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26

SW846 8330

TestAmerica Denver

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-05	(19LC MW460W)		Wa	ter		Samp	oled: 06/24/	08 12:45		
Nitroglycerin	II .	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
Tetryl	n	ND		0.2	"	"	"	"	"	

Surrogate(s): 1,2-Dinitrobenzene 106% 75 - 118%

PRF0882-06 (19LC MW	704DW)		Wa	ter		Sam	pled: 06/24/	08 14:40	
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 14:16
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"
3-Nitrotoluene	"	ND		0.4	"	"	"	"	"
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
4-Nitrotoluene	"	ND		1	"	"	"	"	"
HMX	"	ND		0.4	"	"	"	"	"
Nitrobenzene	"	ND		0.4	"	"	"	"	"
Nitroglycerin	"	ND		3	"	"	"	"	"
PETN	"	ND		2	"	"	"	"	"
Picric Acid	"	ND		0.4	"	"	"	"	"
RDX	"	ND		0.2	"	"	"	"	"
Γetryl	"	ND		0.2	"	"	"	"	"

Surrogate(s): 1,2-Dinitrobenzene 98% 75 - 118 % " "

PRF0882-07 (19LC MW04SW) Water Sampled: 06/24/08 16:15

PRF0882-07 (19LC MW	V04SW)		Wa	iter		Sam	piea: 06/24/	08 16:15	
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x	8182428	06/30/08 18:00	07/03/08 14:40
1,3-Dinitrobenzene	"	ND		0.4	"	"	"	"	"
2,4,6-Trinitrotoluene	"	ND		0.4	"	"	"	"	"
2,4-Dinitrotoluene	"	ND		0.4	"	"	"	"	"
2,6-Dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"
2-Nitrotoluene	"	ND		0.4	"	"	"	"	"

TestAmerica Portland

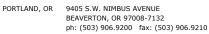
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

SW846 8330

TestAmerica Denver


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0882-07 (19LC M	W04SW)		Wa	iter		Sam	pled: 06/24/	08 16:15		
3-Nitrotoluene	SW846 8330	ND		0.4	ug/L	1x	8182428	06/30/08 18:00	07/03/08 14:40	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"	"	"	"	
4-Nitrotoluene	"	ND		1	"	"	"	"	"	
HMX	"	ND		0.4	"	"	"	"	"	
Nitrobenzene	"	ND		0.4	"	"	"	"	"	
Nitroglycerin	"	ND		3	"	"	"	"	"	
PETN	"	ND		2	"	"	"	"	"	
Picric Acid	"	ND		0.4	"	"	"	"	"	
RDX	"	ND		0.2	"	"	"	"	"	
Tetryl	n	ND		0.2	"	"	"	"	"	

75 - 118 %

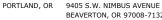
Surrogate(s): 1,2-Dinitrobenzene 115%

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26


Project Name:

	Gasoline Hy	drocarbor	s per NW	TPH-Gx M TestAmerica		Labo	ratory Q	uality (Contr	ol Resul	lts			
QC Batch: 8060980	Water I	Preparation	Method:	EPA 5030B										
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (8060980-BLK1)								Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	ND	32.7	80.0	ug/l	1x							06/27/08 07:38	Ţ
Surrogate(s): 4-BFB		Recovery:	88.8%	Lin	nits: 50-150%	"							06/27/08 07:38	
LCS (8060980-BS2)								Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	458	32.7	80.0	ug/l	1x		500	91.6%	(70-130)			06/27/08 06:43	
Surrogate(s): 4-BFB		Recovery:	102%	Lin	nits: 50-150%	"							06/27/08 06:43	
LCS Dup (8060980-BSD2)								Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	477	32.7	80.0	ug/l	1x		500	95.3%	(70-130)	3.97%	6 (35)	06/27/08 07:10	
Surrogate(s): 4-BFB		Recovery:	101%	Lin	nits: 50-150%	"							06/27/08 07:10	
Duplicate (8060980-DUP1)				QC Source:	PRF0875-01			Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	4630	327	800	ug/l	10x	4660				0.6689	% (35)	06/27/08 08:32	Ι
Surrogate(s): 4-BFB		Recovery:	135%	Lin	nits: 50-150%	1x							06/27/08 08:32	
Duplicate (8060980-DUP2)				QC Source:	PRF0875-07			Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	7620	327	800	ug/l	10x	8100				6.12%	6 (35)	06/27/08 17:27	I
Surrogate(s): 4-BFB		Recovery:	168%	Lin	uits: 50-150%	1x							06/27/08 17:27	Z
Matrix Spike (8060980-MS2)				QC Source:	PRF0882-07			Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	442	32.7	80.0	ug/l	1x	ND	500	88.3%	(70-130)			06/27/08 23:57	
Surrogate(s): 4-BFB		Recovery:	97.8%	Lin	uits: 50-150%	"							06/27/08 23:57	
Matrix Spike Dup (8060980-MS	SD2)			QC Source:	PRF0882-07			Extr	acted:	06/26/08 09	9:19			
Gasoline Range Hydrocarbons	NW TPH-Gx	464	32.7	80.0	ug/l	1x	ND	500	92.8%	(70-130)	4.92%	(30)	06/28/08 00:24	
Surrogate(s): 4-BFB		Recovery:	96.5%	Lin	nits: 50-150%	"							06/28/08 00:24	

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

ND

Recovery:

0.270

0.472

Limits: 50-150%

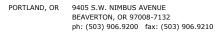
ND

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Diesel	and Heavy R	ange Hydi	•	er NWTI TestAmeri			- Labora	itory (Quality	y Contro	ol Res	ults		
QC Batch: 8060939	Water 1	Preparation	Method:	EPA 3510	Fuels									
Analyte	Method	Result	MDL [*]	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8060939-BLK1)								Exti	racted:	06/25/08 12	:00			
Diesel Range Organics	NWTPH-Dx	ND	0.0410	0.0800	mg/l	1x							06/26/08 10:34	U
Heavy Oil Range Hydrocarbons	"	ND	0.286	0.500	"	"							"	Ţ
Surrogate(s): 1-Chlorooctadecane		Recovery:	80.6%	Li	mits: 50-150%	6 "							06/26/08 10:34	
LCS (8060939-BS1)								Exti	acted:	06/25/08 12	:00			
Diesel Range Organics	NWTPH-Dx	1.04	0.0410	0.0800	mg/l	1x		1.25	83.1%	(50-150)			06/26/08 10:53	
Heavy Oil Range Hydrocarbons	"	0.772	0.286	0.500	"	"		0.750	103%	"			"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	89.6%	Li	mits: 50-150%	6 "							06/26/08 10:53	
LCS Dup (8060939-BSD1)								Exti	racted:	06/25/08 12	:00			
Diesel Range Organics	NWTPH-Dx	0.887	0.0410	0.0800	mg/l	1x		1.25	71.0%	(50-150)	15.7%	6 (50)	06/26/08 11:11	
Heavy Oil Range Hydrocarbons	"	0.743	0.286	0.500	"	"		0.750	99.1%	"	3.80%	ó "	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	81.7%	Li	mits: 50-150%	6 "							06/26/08 11:11	
Duplicate (8060939-DUP1)				QC Source	: PRF0882-0)7		Exti	racted:	06/25/08 15	:00			
Diesel Range Organics	NWTPH-Dx	ND	0.0387	0.0755	mg/l	1x	ND				NR	(50)	06/26/08 11:31	Ţ

TestAmerica Portland

Heavy Oil Range Hydrocarbons


Surrogate(s): 1-Chlorooctadecane

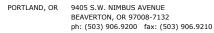
Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

NR

06/26/08 11:31

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica Portland

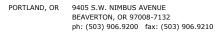
OC P-4-1 00 00007	**7 4 7	D		TestAmeric										
QC Batch: 8060987	Water I	Preparation Result	Method: I	EPA 200/30 MRL	Units	Dil	Source	Spike		(Limits)	0/ _A	(Limits)	Analyzed	Notes
							Result	Amt	REC	06/26/08 10	RPD			
Blank (8060987-BLK1)	EPA 6020	ND	0.000150	0.00100	mg/l	1x		EXU	acteu:	00/20/08 10			06/26/08 23:30	ī
Antimony Arsenic	EFA 0020	ND ND	0.000130	0.00100	mg/i	ıx "		-	-		-	-	"	,
Beryllium	,,	ND	0.000180	0.00100	,,	.,						-	,,	, I
Cadmium	,,	ND	0.0000230	0.000500	,,	,,							,	, I
Chromium	,,	ND	0.000350	0.000300	,,	,,							06/27/08 18:28	, I
Copper	,,	ND	0.000330	0.00200	,,	,,							06/26/08 23:30	, I
Lead	,,	0.000851	0.000270	0.00200	,,	,,							06/27/08 01:37	B4,
	,,				,,			-	-		-			,
Nickel		ND	0.000150	0.00100									06/26/08 23:30	J
Selenium		ND	0.0000750	0.000500										Į
Silver		ND	0.000200	0.00100				-				-		Į
Thallium	"	ND	0.0000500	0.00100	"									Ţ
Zinc	"	0.000859	0.000700	0.00500	"	"							"	
LCS (8060987-BS1)								Extr	acted:	06/26/08 10	:59			
Antimony	EPA 6020	0.0465	0.000150	0.00100	mg/l	1x		0.0500	93.0%	(80-120)			06/26/08 23:36	
Arsenic	"	0.0960	0.000180	0.00100	"	"		0.100	96.0%	"			"	
Beryllium	"	0.0941	0.0000250	0.000500	"	"		"	94.1%	"			"	
Cadmium	"	0.0965	0.0000650	0.000500	"	"		"	96.5%	"			"	
Chromium	"	0.102	0.000350	0.00200	"	"		"	102%				06/27/08 18:34	
Copper	"	0.0982	0.000270	0.00200	"	"		"	98.2%				06/26/08 23:36	
Lead	"	0.0968	0.000220	0.00100	"	"		"	96.8%				"	I
Nickel	"	0.0978	0.000150	0.00100	"			"	97.8%	"			"	
Selenium	"	0.0940	0.0000750	0.000500	"			"	94.0%	"			"	
Silver	"	0.0457	0.000200	0.00100	"			0.0500	91.3%	"			"	
Thallium	"	0.0952	0.0000500	0.00100	"			0.100	95.2%	"			"	
Zinc	"	0.0956	0.000700	0.00500	"	"		"	95.6%	"			"	
Duplicate (8060987-DUP1)				QC Source:	PRF0779-0	1RE1		Extr	acted:	06/26/08 10	:59			
Antimony	EPA 6020	0.000163	0.000150	0.00100	mg/l	1x	0.000256				44.4%	(20)	06/26/08 23:46	R4,
Arsenic	"	0.000767	0.000180	0.00100	"	"	0.000760				0.917%		"	
Beryllium	"	ND	0.0000250	0.000500	"	"	0.0000380					"	"	J
Cadmium	"	ND	0.0000650	0.000500	"	"	ND				NR	"	"	J
Chromium	"	0.000360	0.000350	0.00200	"	"	0.000390				8.00%	"	06/27/08 18:48	
Copper	"	0.00110	0.000270	0.00200	"	"	0.00114				3.31%	"	06/26/08 23:46	
Lead	"	ND	0.000220	0.00100	"	"	0.000236					"	"	Ţ
Nickel	"	0.000478	0.000150	0.00100	"	"	0.000538				11.8%	"	"	
Selenium	"	0.000366	0.0000750	0.000500	"	"	0.000101				113%	"	"	R4,
Silver	"	ND	0.000200	0.00100	"	"	ND				NR	"	"	U
Thallium	"	ND	0.0000500	0.00100	"		0.0000590					"	"	U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

4412 SW Corbett Ave. Report Created: Project Number: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results


				TestAmeric	a Portland	ł								
QC Batch: 8060987	Water F	Preparation	Method:	EPA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Duplicate (8060987-DUP1)				QC Source:	PRF0779-	01RE1		Extr	acted:	06/26/08 10	:59			
Zinc	EPA 6020	0.00254	0.000700	0.00500	mg/l	1x	0.00309				19.6%	(20)	06/26/08 23:46	
Matrix Spike (8060987-MS1)				QC Source:	PRF0882-	07		Extr	acted:	06/26/08 10	:59			
Antimony	EPA 6020	0.0479	0.000150	0.00100	mg/l	1x	ND	0.0500	95.8%	(75-125)			06/27/08 17:52	
Arsenic	"	0.0989	0.000180	0.00100	"	"	ND	0.100	98.9%	"			"	
Beryllium	"	0.0800	0.000250	0.00500	"	10x	ND	"	80.0%	"			06/28/08 13:54	
Cadmium	"	0.101	0.0000650	0.000500	"	1x	ND	"	101%	"			06/27/08 17:52	
Chromium	"	0.102	0.000350	0.00200	"	"	ND	"	102%	"			06/27/08 20:01	
Copper	"	0.0977	0.000270	0.00200	"	"	ND	"	97.7%	"			06/27/08 17:52	
Lead	"	0.0975	0.000220	0.00100	"	"	ND	"	97.5%	"			"	
Nickel	"	0.0961	0.000150	0.00100	"	"	ND	"	96.1%	"			"	
Selenium	"	0.0966	0.0000750	0.000500	"	"	ND	"	96.6%	"			"	
Silver	"	0.0464	0.000200	0.00100	"	"	ND	0.0500	92.7%	"			"	
Гhallium	"	0.0956	0.0000500	0.00100	"	"	ND	0.100	95.6%	"			"	
Zinc	"	0.0996	0.000700	0.00500	"	"	0.00106	"	98.5%	"			"	
Matrix Spike Dup (8060987-MS	SD1)			QC Source:	PRF0882-	07		Extr	acted:	06/26/08 10	:59			
Antimony	EPA 6020	0.0434	0.000150	0.00100	mg/l	1x	ND	0.0500	86.8%	(75-125)	9.90%	(20)	06/27/08 17:57	
Arsenic	"	0.0900	0.000180	0.00100	"	"	ND	0.100	90.0%	"	9.41%	5 "	"	
Beryllium	"	0.0692	0.000250	0.00500	"	10x	ND	"	69.2%	"	14.5%	, "	06/28/08 14:13	M8,
Cadmium	"	0.0914	0.0000650	0.000500	"	1x	ND	"	91.4%	"	10.0%	5 "	06/27/08 17:57	
Chromium	"	0.0926	0.000350	0.00200	"	"	ND	"	92.6%	"	9.72%	, "	06/27/08 20:19	
Copper	"	0.0892	0.000270	0.00200	"	"	ND	"	89.2%	"	9.07%	· "	06/27/08 17:57	
Lead	"	0.0877	0.000220	0.00100	"	"	ND	"	87.7%	"	10.6%	, "	"	
Nickel	"	0.0873	0.000150	0.00100	"	"	ND	"	87.3%	"	9.65%	, "	"	
Selenium	"	0.0887	0.0000750	0.000500	"	"	ND	"	88.7%	"	8.55%	· "	"	
Silver	"	0.0421	0.000200	0.00100	"	"	ND	0.0500	84.2%	"	9.68%	· "	"	
Thallium	"	0.0861	0.0000500	0.00100	"	"	ND	0.100	86.1%	"	10.5%	, "	"	
Zinc	"	0.0909	0.000700	0.00500	"	"	0.00106	"	89.9%	"	9.11%	5 "	"	

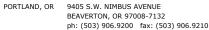
TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Dissolved Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060990-BLK1)								Extr	acted:	06/26/08 11	:04			
Antimony	EPA 6020	ND	0.000150	0.00100	mg/l	1x							06/27/08 15:46	
Arsenic	"	ND	0.000180	0.00100	"	"							"	
Beryllium	"	ND	0.0000250	0.000500	"	"							06/28/08 01:30	
Cadmium	"	ND	0.0000650	0.000500	"	"							06/27/08 15:46	
Chromium	"	ND	0.000350	0.00200	"	"							"	
Copper	"	ND	0.000270	0.00200	"	"							"	
Lead	"	ND	0.000220	0.00100	"	"							"	
Nickel	"	ND	0.000150	0.00100	"	"							"	
Selenium	•	ND	0.0000750	0.000500	"	"							"	
Silver	•	ND	0.000200	0.00100	"	"							"	
Гhallium	"	ND	0.0000500	0.00100	"	"								
Zinc	"	ND	0.000700	0.00500	"	"							"	
LCS (8060990-BS1)								Extr	acted:	06/26/08 11	:04			
Antimony	EPA 6020	0.0406	0.000150	0.00100	mg/l	1x		0.0500	81.1%	(80-120)			06/27/08 15:51	
Arsenic	"	0.0944	0.000180	0.00100	"	"		0.100	94.4%	"			"	
Beryllium	"	0.0843	0.0000250	0.000500	"	"		"	84.3%	"			06/28/08 01:38	
Cadmium	"	0.0914	0.0000650	0.000500	"	"		"	91.4%				06/27/08 15:51	
Chromium	"	0.0957	0.000350	0.00200	"	"		"	95.7%				"	
Copper	"	0.0941	0.000270	0.00200	"	"		,,	94.1%					
Lead	"	0.0908	0.000220	0.00100	"	"		"	90.8%				"	
Nickel	"	0.0933	0.000150	0.00100	"	"		"	93.3%				"	
Selenium	"	0.0917	0.0000750	0.000500	"	"		"	91.7%				"	
Silver	"	0.0426	0.000200	0.00100	"	"		0.0500	85.2%	,,			"	
Гhallium	"	0.0892	0.0000500	0.00100	"	"		0.100	89.2%	,,			"	
Zinc	"	0.0951	0.000700	0.00500	"	"		"	95.1%	"			"	
Matrix Spike (8060990-MS1)				QC Source:	PRF0882-0	7		Extr	acted:	06/26/08 11	:04			
Antimony	EPA 6020	0.0438	0.000150	0.00100	mg/l	1x	ND	0.0500	87.6%	(75-125)			06/27/08 17:05	
Arsenic	"	0.101	0.000180	0.00100	"	"	ND	0.100	101%	"			"	
Beryllium	"	0.0940	0.0000250	0.000500	"	"	ND	"	94.0%	"			06/28/08 03:23	
Cadmium	"	0.100	0.0000650	0.000500	"	"	ND	"	100%				06/27/08 17:05	
Chromium	"	0.102	0.000350	0.00200	"	"	ND	"	102%				"	
Copper	"	0.100	0.000270	0.00200	"	"	ND	"	100%				"	
ead	"	0.0960	0.000220	0.00100	"	"	ND	"	96.0%				,,	
vickel	"	0.0990	0.000150	0.00100	"		0.000447	"	98.6%	,,			"	
Selenium	**	0.101	0.0000750	0.000500	"		ND	,,	101%	,,			"	
Silver	"	0.0453	0.000200	0.00100	"		ND	0.0500	90.7%				,,	
Fhallium		0.0433	0.000200	0.00100		,,	ND	0.100	94.5%					

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Camp Bonneville, WA **PBS** Engineering Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Dissolved Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica Portland QC Batch: 8060990 Water Preparation Method: EPA 200/3005 Diss Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes RPD REC Amt Matrix Spike (8060990-MS1) QC Source: PRF0882-07 Extracted: 06/26/08 11:04 EPA 6020 0.106 0.000700 0.000904 06/27/08 17:05 Zinc 0.00500 1x0.100 105% (75-125)mg/l OC Source: PRF0882-07 Extracted: 06/26/08 11:04 Matrix Spike Dup (8060990-MSD1) EPA 6020 0.0450 0.000150 0.00100 ND 0.0500 90.0% 2.66% (20) 06/27/08 17:10 1x(75-125)Antimony mg/l 0.100 1.18% 0.000180 0.00100 ND 102% Arsenic 0.102 Beryllium 0.0917 0.00002500.000500ND 91.7% 2.48% 06/28/08 03:32 0.000500 ND 103% 2.17% 06/27/08 17:10 Cadmium 0.103 0.00006500.000350 0.00200 ND 103% 0.103 1.56% Chromium 101% 0.000270 0.00200 ND 0.598% Copper 0.101 Lead 0.0976 0.0002200.00100 ND 97.6% 1.67% 0.00100 0.000447 99.8% Nickel 0.100 0.000150 1.16% 0.0000750 0.000500 ND 102% 1.28% Selenium 0.102 Silver 0.0461 0.000200 0.00100 ND 0.0500 92.2% 1.68% Thallium 0.0961 0.0000500 0.00100 ND 1.64% Zinc 0.107 0.000700 0.00500 0.000904 106% 0.941% QC Source: PRF0882-07 Extracted: 06/26/08 11:04

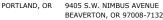
-0.000223

105%

TestAmerica Portland

Richard D. Reid, Project Manager

Post Spike (8060990-PS1)


EPA 6020

0.105

Arsenic

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

06/27/08 17:16

EPA 7470A

0.00502

0.0000630

0.000200

mg/l

1x

ND

ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

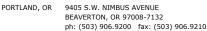
4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Dissolved Mercury per EPA Method 7470A - Laboratory Quality Control Results TestAmerica Portland QC Batch: 8070079 Water Preparation Method: EPA 7470A REC (Limits) RPD Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Blank (8070079-BLK1) Extracted: 07/02/08 13:36 EPA 7470A ND 0.0000630 0.000200 1x 07/02/08 16:00 U Mercury mg/l LCS (8070079-BS1) Extracted: 07/02/08 13:36 Mercury EPA 7470A 0.00501 0.0000630 0.000200 1x 0.00500 100% (85-115) 07/02/08 16:02 mg/l LCS Dup (8070079-BSD1) Extracted: 07/02/08 13:36 Mercury EPA 7470A 0.004890.00006300.000200 mg/l 1x 0.00500 97.8% (85-115) 2.36% (20) 07/02/08 16:06 **Duplicate** (8070079-DUP1) QC Source: PRF0882-07 Extracted: 07/02/08 13:36 EPA 7470A 0.0000630 0.000200 1x ND (20) 07/02/08 16:09 U Mercury ND mg/l NR QC Source: PRF0882-07 Matrix Spike (8070079-MS1) Extracted: 07/02/08 13:36 EPA 7470A 0.00519 0.0000630 0.000200 ND 0.00500 104% (75-125) 07/02/08 16:11 mg/l QC Source: PRF0882-07 Extracted: 07/02/08 13:36 Matrix Spike Dup (8070079-MSD1)

TestAmerica Portland

Mercury

Richard D. Reid, Project Manager


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

(75-125)

0.00500 100%

3.34% (20)

07/02/08 16:14

0.00500 99.5% (75-125)

1.75% (20)

07/02/08 16:49

EPA 7470A

0.00497

0.0000673

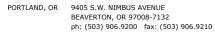
0.000200

mg/l

1x

ND

PBS Engineering Project Name: Camp Bonneville, WA


4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

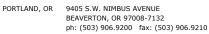
Total Mercury per EPA Method 7470A - Laboratory Quality Control Results TestAmerica Portland QC Batch: 8070080 Water Preparation Method: EPA 7470A REC (Limits) RPD Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Blank (8070080-BLK1) Extracted: 07/02/08 13:37 EPA 7470A ND 0.0000673 0.000200 1x 07/02/08 16:35 U Mercury mg/l LCS (8070080-BS1) Extracted: 07/02/08 13:37 Mercury EPA 7470A 0.00493 0.0000673 0.000200 1x 0.00500 98.6% (85-115) 07/02/08 16:37 mg/l LCS Dup (8070080-BSD1) Extracted: 07/02/08 13:37 Mercury EPA 7470A 0.005020.0000673 0.000200 mg/l 1x 0.00500 100% (85-115) 1.76% (20) 07/02/08 16:40 **Duplicate** (8070080-DUP1) QC Source: PRF0882-07 Extracted: 07/02/08 13:37 EPA 7470A 0.0000673 0.000200 1x ND (20) 07/02/08 16:44 U Mercury ND mg/l NR QC Source: PRF0882-07 Matrix Spike (8070080-MS1) Extracted: 07/02/08 13:37 EPA 7470A 0.00506 0.0000673 0.000200 ND 0.00500 101% (75-125) 07/02/08 16:46 mg/l QC Source: PRF0882-07 Extracted: 07/02/08 13:37 Matrix Spike Dup (8070080-MSD1)

TestAmerica Portland

Mercury

Richard D. Reid, Project Manager

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8070143	Water P	reparation I	Method: EP	A 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8070143-BLK1)								Extr	acted:	07/06/08 16	:00			
Acetone	EPA 8260B	ND	7.76	25.0	ug/l	1x						(07/06/08 18:23	Ţ
Benzene	"	ND	0.0900	1.00	"	"							"	Ţ
Bromobenzene	"	ND	0.100	1.00	"	"							"	Ţ
Bromochloromethane	"	ND	0.180	1.00	"	"							"	Ţ
Bromodichloromethane	"	ND	0.110	1.00	"	"							"	J
Bromoform	"	ND	0.100	1.00	"	"							"	Ţ
Bromomethane	"	ND	0.170	5.00	"	"							"	Ţ
2-Butanone (MEK)	"	ND	3.50	10.0	"	"							"	Ţ
n-Butylbenzene	"	ND	0.0600	5.00	"	"							"	U
sec-Butylbenzene	"	ND	0.0800	1.00	"	"							"	Ţ
tert-Butylbenzene	"	ND	0.0600	1.00	"	"							"	Ţ
Carbon disulfide	"	ND	0.140	10.0	"	"							"	Ţ
Carbon tetrachloride	"	ND	0.0600	1.00	"	"							"	Ţ
Chlorobenzene	"	ND	0.0500	1.00	"	"							"	Ţ
Chloroethane	"	ND	0.110	1.00	"	"							"	Ţ
Chloroform	"	ND	0.0900	1.00	"	"							"	U
Chloromethane	"	ND	0.0800	5.00	"	"							"	U
2-Chlorotoluene	"	ND	0.0700	1.00	"	"							"	U
4-Chlorotoluene	"	ND	0.110	1.00	"	"							"	U
1,2-Dibromo-3-chloropropane	"	ND	2.35	5.00	"	"							"	U
Dibromochloromethane	"	ND	0.0700	1.00	"	"							"	U
1,2-Dibromoethane	"	ND	0.110	1.00	"	"							"	U
Dibromomethane	"	ND	0.100	1.00	"	"							"	U
1,2-Dichlorobenzene	"	ND	0.0700	1.00	"	"							"	U
1,3-Dichlorobenzene	"	ND	0.0600	1.00	"	"							"	U
1,4-Dichlorobenzene	"	ND	0.120	1.00	"	"							"	U
Dichlorodifluoromethane	"	ND	0.110	5.00	"	"							"	U
1,1-Dichloroethane	"	ND	0.0800	1.00	"	"							"	U
1,2-Dichloroethane	"	ND	0.100	1.00	"	"							"	U
1,1-Dichloroethene	"	ND	0.120	1.00	"	"							"	U
cis-1,2-Dichloroethene	"	ND	0.0900	1.00	"	"							"	U
trans-1,2-Dichloroethene	"	ND	0.100	1.00	"	"							"	U
1,2-Dichloropropane	"	ND	0.110	1.00	"	"							"	U
1,3-Dichloropropane	"	ND	0.140	1.00	"	"							"	U
2,2-Dichloropropane	"	ND	0.0900	1.00	"	"							"	U
1,1-Dichloropropene	"	ND	0.0800	1.00	"	"							"	Ţ
cis-1,3-Dichloropropene	"	ND	0.0900	1.00	"	"							"	U
trans-1,3-Dichloropropene	"	ND	0.100	1.00	"	"							"	U
Ethylbenzene	"	ND	0.0600	1.00	"									U

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

QC Batcl	h: 8070143	Water F	Preparation	Method: EI	PA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (807014	13-BLK1)								Extr	acted:	07/06/08 16	:00			
Hexachlorobutadiene	e	EPA 8260B	ND	0.210	4.00	ug/l	1x							07/06/08 18:23	Ţ
2-Hexanone		"	ND	3.62	10.0	"	"							"	τ
Isopropylbenzene		"	ND	0.0700	2.00	"	"							"	τ
p-Isopropyltoluene		"	ND	0.0600	2.00	"	"							"	Ţ
4-Methyl-2-pentanor	ne	"	ND	0.290	5.00	"	"							"	Ţ
Methyl tert-butyl eth	er	"	ND	0.0900	1.00	"	"							"	J
Methylene chloride		"	ND	0.160	5.00	"	"							"	Ţ
Naphthalene		"	ND	0.0900	2.00	"	"							"	Ţ
n-Propylbenzene		"	ND	0.100	1.00	"	"							"	Ţ
Styrene		"	ND	0.0400	1.00	"	"							"	Ţ
1,1,1,2-Tetrachloroet	thane	"	ND	0.0900	1.00	"	"							"	Ţ
1,1,2,2-Tetrachloroet	thane	"	ND	0.0800	1.00	"	"							"	J
Tetrachloroethene		"	ND	0.110	1.00	"	"							"	Ţ
Toluene		"	ND	0.110	1.00	"	"							"	Ţ
1,2,3-Trichlorobenze	ene	"	0.200	0.100	1.00	"	"							"	
1,2,4-Trichlorobenze	ene	"	ND	0.110	1.00	"	"							"	J
1,1,1-Trichloroethan	e	"	ND	0.120	1.00	"	"							"	Ţ
1,1,2-Trichloroethan	e	"	ND	0.130	1.00	"	"							"	Ţ
Trichloroethene		"	ND	0.0800	1.00	"	"							"	Ţ
Trichlorofluorometha	ane	"	ND	0.0600	1.00	"	"							"	Ţ
1,2,3-Trichloropropa	ine	"	ND	0.130	1.00	"	"							"	Ţ
1,2,4-Trimethylbenze	ene	"	ND	0.0800	1.00	"	"							"	Į
1,3,5-Trimethylbenze	ene	"	ND	0.0700	1.00	"	"							"	Ţ
Vinyl chloride		"	ND	0.100	1.00	"	"							"	Ţ
o-Xylene		"	ND	0.0700	1.00	"	"							"	Ţ
m,p-Xylene		"	ND	0.210	2.00	"	"							"	Ţ
Surrogate(s):	4-BFB		Recovery:	95.0%	Lin	nits: 80-120%	"							07/06/08 18:23	
3 (9)	1,2-DCA-d4			99.9%		80-120%	"							"	
	Dibromofluoromethane			99.9%		80-120%	"							"	
	Toluene-d8			99.9%		80-120%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

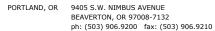
4412 SW Corbett Ave.

Project Number: Camp Bonneville, WA

Portland, OR 97239

Project Manager: Andrew Harvey

07/15/08 14:26


Volatile Organic Compounds per EPA Method 8260B - Laboratory Quality Control Results

TestAmerica Portland

					i estAmerica	a i Ortiana									
QC Batcl	h: 8070143	Water I	Preparation	Method: I	EPA 5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (8070143	-BS1)								Extr	acted:	07/06/08 16	:00			
Benzene		EPA 8260B	20.0	0.0900	1.00	ug/l	1x		20.0	99.8%	(80-120)			07/06/08 17:28	
Chlorobenzene		"	20.1	0.0500	1.00	"	"		"	100%	(80-124)			"	
1,1-Dichloroethene		"	19.9	0.120	1.00	"	"		"	99.4%	(78-120)			"	
Toluene		"	20.0	0.110	1.00	"	"		"	100%	(80-124)			"	
Trichloroethene		"	19.4	0.0800	1.00	"	"		"	97.0%	(80-132)			"	
Surrogate(s):	4-BFB		Recovery:	105%	Lim	its: 80-120%	"							07/06/08 17:28	
	1,2-DCA-d4			100%		80-120%	"							"	
	Dibromofluoromethane			103%		80-120%	"							"	
	Toluene-d8			103%		80-120%	"							"	
Matrix Spike	(8070143-MS1)				QC Source:	PRF0882-07			Extr	acted:	07/06/08 16	:00			
Benzene		EPA 8260B	19.9	0.0900	1.00	ug/l	1x	ND	20.0	99.5%	(80-124)			07/07/08 01:58	
Chlorobenzene		"	19.8	0.0500	1.00	"	"	ND	"	99.0%	(72.9-134)			"	
1,1-Dichloroethene		"	19.3	0.120	1.00	"	"	ND	"	96.4%	(79.3-127)			"	
Toluene		"	19.6	0.110	1.00	"	"	ND	"	97.8%	(79.7-131)				
Trichloroethene		"	19.1	0.0800	1.00	"	"	ND	"	95.5%	(68.4-130)			"	
Surrogate(s):	4-BFB		Recovery:	102%	Lim	nits: 80-120%	"							07/07/08 01:58	
	1,2-DCA-d4			99.0%		80-120%	"							"	
	Dibrom of luoromethane			101%		80-120%	"							"	
	Toluene-d8			101%		80-120%	"							"	
Matrix Spike D	oup (8070143-MSD	1)			QC Source:	PRF0882-07			Extr	acted:	07/06/08 16	:00			
Benzene		EPA 8260B	20.8	0.0900	1.00	ug/l	1x	ND	20.0	104%	(80-124)	4.23%	6 (25)	07/07/08 02:25	
Chlorobenzene		"	20.2	0.0500	1.00	"	"	ND	"	101%	(72.9-134)	1.95%	ó "		
1,1-Dichloroethene		"	20.2	0.120	1.00	"	"	ND	"	101%	(79.3-127)	4.86%	ó "		
Toluene		"	20.4	0.110	1.00	"	"	ND	"	102%	(79.7-131)	4.40%	ó "	"	
Trichloroethene		"	20.0	0.0800	1.00	"	"	ND	"	100%	(68.4-130)	4.80%	ó "	"	
Surrogate(s):	4-BFB		Recovery:	102%	Lim	nits: 80-120%	"							07/07/08 02:25	
- ''	1,2-DCA-d4		,	101%		80-120%	"							"	
	Dibromofluoromethane			103%		80-120%	"							"	
	Toluene-d8			102%		80-120%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:

Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8060964 Water Preparation Method: 3520B Liq-Liq Source Spike Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) RPD REC Result Amt Blank (8060964-BLK1) Extracted: 06/25/08 17:30 EPA 8270C 3.00 H ND 5.00 07/01/08 17:03 Acenaphthene ug/l 1xAcenaphthylene ND 3.00 5.00 U ND 3.00 5.00 U Anthracene ND U 3.00 5.00 Benzo (a) anthracene Benzo (a) pyrene ND 3.00 5.00 H ND 3.00 5.00 U Benzo (b) fluoranthene ND 3.00 5.00 U Benzo (ghi) perylene Benzo (k) fluoranthene ND 3.00 5.00 U Benzoic Acid ND 50.0 50.0 U Benzyl alcohol ND 5.00 10.0 U 4-Bromophenyl phenyl ether ND 3.00 5.00 U Butyl benzyl phthalate ND 3.00 5.00 U 4-Chloro-3-methylphenol ND 3.00 5.00 U 4-Chloroaniline ND 10.0 20.0 U ND 5.00 10.0 U Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether ND 3.00 5.00 U Bis(2-chloroisopropyl)ether ND 10.0 2-Chloronaphthalene ND 5.00 U 3.00 2-Chlorophenol ND 3.00 5.00 H 4-Chlorophenyl phenyl ether ND 3.00 5.00 U Chrysene ND 3.00 5.00 U ND U Di-n-butyl phthalate 3.00 5.00 Di-n-octyl phthalate ND 3.00 5.00 U Dibenzo (a,h) anthracene ND 3.00 5.00 U Dibenzofuran ND 3.00 5.00 1,2-Dichlorobenzene ND 5.00 5.00 U 1,3-Dichlorobenzene ND 5.00 5.00 U 1,4-Dichlorobenzene ND 5.00 5.00 ND U 3,3'-Dichlorobenzidine 3.00 5.00 2,4-Dichlorophenol ND 3.00 5.00 U Diethyl phthalate ND 5.00 U 2.4-Dimethylphenol ND 5.00 10.0 U ND H Dimethyl phthalate 3.00 5.00 4,6-Dinitro-2-methylphenol ND 5.00 10.0 U ND 15.0 25.0 U 2,4-Dinitrophenol ND U 2.4-Dinitrotoluene 3.00 5.00 Ħ 2.6-Dinitrotoluene ND 3.00 5.00 Bis(2-ethylhexyl)phthalate ND 10.0 U 10.0 U Fluoranthene ND 3.00 5.00

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

OC D-4-b. 9000004

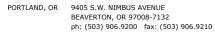
PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

2520D I :- I :-


QC Batc	h: 8060964	Water I	Preparation	Method: 35	20B Liq-I										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (806096	64-BLK1)								Extr	acted:	06/25/08 17	:30			
Fluorene		EPA 8270C	ND	3.00	5.00	ug/l	1x						(07/01/08 17:03	Ţ
Hexachlorobenzene		"	ND	3.00	5.00	"	"							"	J
Hexachlorobutadiene	e	"	ND	5.00	10.0	"	"							"	Ţ
Hexachlorocyclopen	tadiene	"	ND	5.00	10.0	"	"							"	Ţ
Hexachloroethane		"	ND	5.00	10.0	"	"							"	Ţ
Indeno (1,2,3-cd) py	rene	"	ND	3.00	5.00	"								"	J
Isophorone		"	ND	3.00	5.00	"								"	Ţ
2-Methylnaphthalene	2	"	ND	3.00	5.00	"	"							"	Ţ
2-Methylphenol		"	ND	5.00	10.0	"	"							"	Ţ
3-,4-Methylphenol		"	ND	3.00	5.00	"	"							"	Ţ
Naphthalene		"	ND	3.00	5.00	"	"							"	Ţ
2-Nitroaniline		"	ND	3.00	5.00	"	"							"	Ţ
3-Nitroaniline		"	ND	5.00	10.0	"	"							"	Ţ
1-Nitroaniline		"	ND	5.00	10.0	"	"							"	Ţ
Nitrobenzene		"	ND	3.00	5.00	"	"							"	Ţ
2-Nitrophenol		"	ND	3.00	5.00	"								"	Ţ
4-Nitrophenol		"	ND	10.0	25.0	"								"	Ţ
N-Nitrosodi-n-propy	lamine	"	ND	5.00	10.0	"								"	Ţ
N-Nitrosodiphenylar		"	ND	3.00	5.00	"								"	Į
Pentachlorophenol		"	ND	5.00	10.0	"								"	Į
Phenanthrene		"	ND	3.00	5.00	"								"	Ţ
Phenol		"	ND	3.00	5.00	"								"	Ţ
Pyrene		"	ND	3.00	5.00	"								"	Ţ
1,2,4-Trichlorobenze	ene	"	ND	5.00	5.00	"								"	Ţ
2,4,5-Trichloropheno	ol	"	ND	3.00	5.00	"								"	Ţ
2,4,6-Trichloropheno		"	ND	3.00	5.00	"	"							"	Ţ
Surrogate(s):	2-Fluorobiphenyl		Recovery:	60.9%	Lim	its: 22-120%	,,							07/01/08 17:03	
Surroguic(s).	2-Fluorophenol		necorety.	70.7%	2	5-120%	"							"	
	Nitrobenzene-d5			76.0%		26-127%								"	
	Phenol-d6			73.7%		4-121%	"							"	
	p-Terphenyl-d14			105%		37-130%								"	
	2,4,6-Tribromophenol			77.0%		21-129%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	« REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8060964	1 DC1)							Result			06/25/08 17				
Acenaphthene	 - D 31)	EPA 8270C	44.3	3.00	5.00	ug/l	1x		50.0	88.6%	(56-120)			07/01/08 17:25	
4-Chloro-3-methylp	henol	H 6270C	46.5	3.00	5.00	ug/i	"		"	93.0%	(37-131)			"	
2-Chlorophenol	nenoi	,,	42.3	3.00	5.00	,,	,		,,	84.6%	(31-130)			,,	
1,4-Dichlorobenzen	e	"	23.0	5.00	5.00	,,	,,		,,	46.0%	(8-124)			,,	
2,4-Dinitrotoluene	C	"	43.5	3.00	5.00	,,	,,		,,	86.9%	(50-127)			,,	
4-Nitrophenol		,,	46.7	10.0	25.0	,,	,		,,	93.4%	(1-157)			,,	
N-Nitrosodi-n-prop	vlamine	,,	35.4	5.00	10.0	,,	,		,,	70.9%	(44-129)			,,	
Pentachlorophenol	ylaninic	,,	49.4	5.00	10.0	,,	,		,,	98.7%	(23-149)			,,	
Phenol		,,	42.8	3.00	5.00	,,			,,	85.5%	(1-145)				
		,,	53.1	3.00	5.00	,,	,		,,			-			
Pyrene	ana.	,,	29.9	5.00	5.00	,,	,		,,	106% 59.9%	(56-125) (33-116)	-			
1,2,4-Trichlorobenz										39.970	(33-110)				
Surrogate(s):			Recovery:	78.0%	Lin	nits: 22-120%	"							07/01/08 17:25	
	2-Fluorophenol			80.5%		5-120% 26-127%								,,	
	Nitrobenzene-d5 Phenol-d6			87.5% 80.9%		26-12/% 4-121%	,,							"	
	p-Terphenyl-d14			105%		37-130%	"							"	
	2,4,6-Tribromophenol			105%		21-129%	"							"	
N	(00,000,01,3,501)				000	DDE0003 07			T		06/25/00 15	. 20			
•	(8060964-MS1)	ED 1 0050 G	41.0			PRF0882-07					06/25/08 17			05/01/00 15 45	
Acenaphthene		EPA 8270C	41.8	6.00	10.0	ug/l	2x	ND	50.0	83.6%	(20-150)			07/01/08 17:47	
4-Chloro-3-methylp	henol		41.8	6.00	10.0	"	"	ND		83.6%	(10-150)		-		
2-Chlorophenol		"	36.7	6.00	10.0	"		ND	"	73.3%	"			"	
1,4-Dichlorobenzen	e	"	22.4	10.0	10.0	"	"	ND	"	44.8%	(1-150)			"	
2,4-Dinitrotoluene		"	42.2	6.00	10.0	"	"	ND	"	84.4%	(10-150)			"	
4-Nitrophenol		"	41.4	20.0	50.0	"	"	ND	"	82.8%	(1-200)			"	J,
N-Nitrosodi-n-prop	ylamine	"	31.9	10.0	20.0	"	"	ND	"	63.9%	"			"	
Pentachlorophenol		"	42.9	10.0	20.0	"	"	ND	"	85.8%	"			"	
Phenol		"	32.5	6.00	10.0	"	"	ND	"	65.0%	"			"	
Pyrene		"	53.2	6.00	10.0	"	"	ND	"	106%	(20-135)			"	
1,2,4-Trichlorobenz	ene	"	29.2	10.0	10.0	"	"	ND	"	58.3%	(1-150)			"	
Surrogate(s):	2-Fluorobiphenyl		Recovery:	69.9%	Lin	nits: 22-120%	"							07/01/08 17:47	
	2-Fluorophenol			71.2%		5-120%	"							"	
	Nitrobenzene-d5			76.4%		26-127%	"							"	
	Phenol-d6			72.1%		4-121%	"							"	
	p-Terphenyl-d14			102%		37-130%	"							"	
	2,4,6-Tribromophenol			98.1%		21-129%	"							"	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Semivolatile Organic Compounds per EPA Method 8270C - Laboratory Quality Control Results

TestAmerica Portland

QC Bate	h: 8060964	Water I	Preparation	Method: 35	520B Liq-l	Liq									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike I	Oup (8060964-MS)	D1)			QC Source:	PRF0882-07			Exti	racted:	06/25/08 17	7:30			
Acenaphthene		EPA 8270C	47.3	6.00	10.0	ug/l	2x	ND	50.0	94.5%	(20-150)	12.3%	(50)	07/01/08 18:09	Γ
4-Chloro-3-methylp	henol	"	48.4	6.00	10.0	"	"	ND	"	96.8%	(10-150)	14.7%	, "	"	Ι
2-Chlorophenol		"	43.7	6.00	10.0	"	"	ND	"	87.5%	"	17.6%	, "	"	Ι
1,4-Dichlorobenzene	e	"	26.7	10.0	10.0	"	"	ND	"	53.3%	(1-150)	17.4%	, "	"	Γ
2,4-Dinitrotoluene		"	45.6	6.00	10.0	"	"	ND	"	91.2%	(10-150)	7.79%	, "	"	Γ
4-Nitrophenol		"	45.9	20.0	50.0	"	"	ND	"	91.9%	(1-200)	10.4%	, "	"	J, I
N-Nitrosodi-n-propy	lamine	"	36.7	10.0	20.0	"	"	ND	"	73.4%	"	13.9%	, "	"	Γ
Pentachlorophenol		"	46.9	10.0	20.0	"	"	ND	"	93.8%		9.00%	, "	"	Ε
Phenol		"	40.5	6.00	10.0	"	"	ND	"	80.9%		21.8%	, "	"	Е
Pyrene		"	55.1	6.00	10.0	"	"	ND	"	110%	(20-135)	3.51%	, "	"	Б
1,2,4-Trichlorobenze	ene	"	34.9	10.0	10.0	"	"	ND	"	69.9%	(1-150)	18.0%	, "	"	D
Surrogate(s):	2-Fluorobiphenyl		Recovery:	82.2%	Lin	nits: 22-120%	"							07/01/08 18:09	
	2-Fluorophenol			81.9%		5-120%	"							"	
	Nitrobenzene-d5			88.0%		26-127%	"							"	
	Phenol-d6			85.0%		4-121%	"							"	
	p-Terphenyl-d14			104%		37-130%	"							"	
	2 4 6-Tribromonhenol			105%		21-129%	"							"	

TestAmerica Portland

Richard D. Reid, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

PBS Engineering Project Name: Camp Bonneville, WA

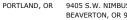
4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:

Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Tentatively Identified Compounds per Volatile GC/MS (Est. Conc.) - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 8070143 Water Preparation Method: EPA 5030B


Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Analyzed Notes

Blank (8070143-BLK1) Extracted: 07/06/08 16:00

No TICS identified EPA 8260B ND 2.00 ug/l 1x -- -- -- 07/06/08 18:23 U

TestAmerica Portland

Richard D. Reid, Project Manager

07/01/08 17:03

EPA 8270C

PBS Engineering Camp Bonneville, WA Project Name:

ND

10.0

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Tentati	vely Identified (Compounds p			C/MS (Es a Portland		c.) - Lat	oratory Quality Control Results	
QC Batch: 8060964	Water l	Preparation M	lethod: 352	20B Liq-l	Liq				
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) % (Limits) Analyzed Amt REC	Notes
Blank (8060964-BLK1)								Extracted: 06/25/08 17:30	

ug/l

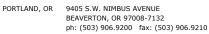
10.0

TestAmerica Portland

No TICS identified

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA


4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

C	onventional Chem	nistry Paran	•		PA Metha a Portland	ods -	Laborat	tory Qualit	y Contro	l Result	S		
QC Batch: 8060957	Water P	reparation N	Iethod: Ge	neral Pro	eparation								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	(Limits)	RPD (Limits)	Analyzed	Notes
Duplicate (8060957-DUP1)			(QC Source:	PRF0882-04	ļ		Extracted	: 06/25/08 1	2:33			
pH	EPA 150.1	6.58			pH Units	1x	6.59			0.152%	(25) 06/	/25/08 12:38	

QC Batch: 8070053	Water P	reparation l	Method: G	eneral Pro	eparation	1								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8070053-BLK1)								Extrac	ted:	07/02/08 06	:38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	ND	0.00270	0.00500	mg/l	1x							07/07/08 17:59	U
LCS (8070053-BS1)								Extrac	ted:	07/02/08 06	:38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.106	0.00270	0.00500	mg/l	1x		0.100 1	106%	(85-115)			07/07/08 17:59	
Duplicate (8070053-DUP1)				QC Source:	PRF1016	-01		Extrac	ted:	07/02/08 06	:38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	ND	0.00270	0.00500	mg/l	1x	ND				NR	(20)	07/07/08 17:59	U
Matrix Spike (8070053-MS1)				QC Source:	PRF1016	-01		Extrac	ted:	07/02/08 06	:38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.102	0.00270	0.00500	mg/l	lx	ND	0.100 1	102%	(75-125)			07/07/08 17:59	
Matrix Spike Dup (8070053-MS	SD1)			QC Source:	PRF1016	-01		Extrac	ted:	07/02/08 06	:38			
Nitrate/Nitrite-Nitrogen	EPA 353.2	0.102	0.00270	0.00500	mg/l	1x	ND	0.100 1	102%	(75-125)	0.489%	6 (20)	07/07/08 17:59	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Col	nventional Che	mistry Para	-		rd Metho ca Portland	ds - I	aborato	ry Qua	lity C	Control I	Results	S		
QC Batch: 8060978	Water P	reparation M	lethod: G	General Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060978-BLK1)								Extr	acted:	06/26/08 08	3:56			
Hydroxide Alkalinity	SM 2320B	ND	0.320	5.00	mg/L as	1x				-		(06/27/08 10:32	Ţ
Bicarbonate Alkalinity	"	ND	0.320	5.00	CaCO3	"							,,	Ţ
Total Alkalinity	•	ND	0.320	5.00	"	"							"	Ū
Carbonate Alkalinity	"	ND	0.320	5.00	"	"							"	U
LCS (8060978-BS1)								Extr	acted:	06/26/08 08	3:56			
Bicarbonate Alkalinity	SM 2320B	92.2	0.320	5.00	mg/L as CaCO3	1x		100	92.2%	(90-110)		(06/27/08 10:32	
Total Alkalinity	"	197	0.320	5.00	"	"		200	98.6%	"			"	
Carbonate Alkalinity	"	105	0.320	5.00	"	"		100	105%	"			"	
Duplicate (8060978-DUP1)				QC Source	: PRF0882-0	7		Extr	acted:	06/26/08 08	3:56			
Hydroxide Alkalinity	SM 2320B	ND	0.320	5.00	mg/L as CaCO3	1x	ND				NR	(20)	06/27/08 10:32	U
Total Alkalinity	"	40.7	0.320	5.00	"	"	41.8				2.57%	"	"	
Bicarbonate Alkalinity	"	40.7	0.320	5.00	"	"	41.8				2.57%	"	"	
Carbonate Alkalinity	"	ND	0.320	5.00	"	"	ND				NR	"	"	Ţ
QC Batch: 8060986	Water P	reparation M	1ethod: G	General Pr	eparation									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8060986-BLK1)								Extr	acted:	06/26/08 10):51			
Total Suspended Solids	SM 2540D	ND	3.10	10.0	mg/l	1x						(06/26/08 17:28	U
LCS (8060986-BS1)								Extr	acted:	06/26/08 10):51			
Total Suspended Solids	SM 2540D	60.0	3.10	10.0	mg/l	1x		50.0	120%	(80-120)		(06/26/08 17:28	
Duplicate (8060986-DUP1)				QC Source	: PRF0904-0	1		Extr	acted:	06/26/08 10):51			
Total Suspended Solids	SM 2540D	16.0	1.24	4.00	mg/l	1x	16.0	_	_		0.00%	(20)	06/26/08 17:28	

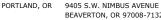
TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26


			Т	estAmeric	a Portlan	d								
QC Batch: 8060946	Water P	Preparation I	Method: V	Vet Chem										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8060946-BLK1)								Extr	acted:	06/25/08 10	:56			
Chloride	EPA 300.0	ND	0.0270	0.500	mg/l	1x							06/25/08 11:46	U
Sulfate	"	ND	0.198	1.00	"	"							"	U
LCS (8060946-BS1)								Extr	acted:	06/25/08 10	:56			
Chloride	EPA 300.0	10.2	0.0270	0.500	mg/l	1x		10.0	102%	(90-110)			06/25/08 12:00	
Sulfate	"	31.6	0.198	1.00	"	"		30.0	105%	"			"	
Duplicate (8060946-DUP1)				QC Source:	PRF0882	-04		Extr	acted:	06/25/08 10	:56			
Sulfate	EPA 300.0	0.420	0.198	1.00	mg/l	1x	0.450				6.90%	(20)	06/25/08 12:14	J
Chloride	"	1.33	0.0270	0.500	"	"	1.34				0.749%	6 "	"	
Matrix Spike (8060946-MS1)				QC Source:	PRF0882	-04		Extr	acted:	06/25/08 10	:56			
Chloride	EPA 300.0	3.52	0.0300	0.556	mg/l	1x	1.34	2.22	98.2%	(80-120)			06/25/08 12:28	
Sulfate	"	4.89	0.220	1.11	"	"	0.450	4.44	99.9%	"			"	
Matrix Spike (8060946-MS2)				QC Source:	PRF0891	-04		Extr	acted:	06/25/08 10	:56			
Sulfate	EPA 300.0	4.88	0.220	1.11	mg/l	1x	0.380	4.44	101%	(80-120)			06/25/08 17:23	
Chloride	"	2.98	0.0300	0.556	"	"	0.820	2.22	97.1%	"			"	
Matrix Spike Dup (8060946-MS	SD1)			QC Source:	PRF0882	-04		Extr	acted:	06/25/08 10	:56			
Chloride	EPA 300.0	3.52	0.0300	0.556	mg/l	1x	1.34	2.22	98.2%	(80-120)	0.00%	(20)	06/25/08 12:42	
Sulfate	"	4.92	0.220	1.11	"	"	0.450	4.44	101%	"	0.680%	6 "	"	

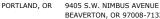
TestAmerica Portland

Richard D. Reid, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

 $without \ the \ written \ approval \ of \ the \ laboratory.$

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210


PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Conventional Chemistry Parameters by APHA/EPA Methods - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8F26025 Water Preparation Method: **General Preparation** Spike % (Limits) % RPD MDL* Source Analyte Method Result MRL Units Dil (Limits) Analyzed Notes Blank (8F26025-BLK1) Extracted: 06/26/08 10:30 Nitrite-Nitrogen EPA 353.2 ND 0.0100 1x 06/26/08 10:53 mg/l as N LCS (8F26025-BS1) Extracted: 06/26/08 10:30 Nitrite-Nitrogen EPA 353.2 1.09 0.0100 mg/l as N 1x 1.00 109% (90-110) 06/26/08 10:53 QC Source: PRF0882-04 Extracted: 06/26/08 10:30 Duplicate (8F26025-DUP1) Nitrite-Nitrogen EPA 353.2 ${\rm ND}$ 0.0100 mg/l as N ND (20) 06/26/08 10:53 Matrix Spike (8F26025-MS1) QC Source: PRF0882-04 Extracted: 06/26/08 10:30 EPA 353.2 1.08 0.0100 ND 1.00 108% 06/26/08 10:53 Nitrite-Nitrogen mg/l as N 1x (75-125)

TestAmerica Portland

Richard D. Reid, Project Manager

93%

(80-120)

07/08/08 13:40

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

415.1

13.9

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26

Total Organic Carbon, Combustion or Oxidation - Laboratory Quality Control Results TestAmerica Tacoma QC Batch: 33844 Water Preparation Method: NA Spike % (Limits) % RPD MDL* MRL Source Analyte Method Result Units Dil (Limits) Analyzed Notes Result QC Source: PRF0882-07 Matrix Spike Dup (104914D) Extracted: 07/08/08 13:40 Total Organic Carbon 415.1 10.6 1.0 mg/L ND 10.0 106% 3% (13) 07/08/08 13:40 1x (49-142) OC Source: PRF0882-07 Extracted: 07/08/08 13:40 Matrix Spike (104914S) Total Organic Carbon 415.1 10.3 1.0 mg/L 1x 10.0 103% (49-142) 07/08/08 13:40 QC Source: PRF0882-07 Extracted: 07/08/08 13:40 Duplicate (104914X) Total Organic Carbon 415.1 ND 1.0 1x ND NC% (20) 07/08/08 13:40 Blank (580-33844-1) QC Source: Extracted: 07/08/08 13:40 Total Organic Carbon 415.1 ND 1.0 1x 07/08/08 13:40 --mg/L LCS (580-33844-2) QC Source: Extracted: 07/08/08 13:40

1.0

mg/L

1x

TestAmerica Portland

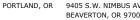
Total Organic Carbon

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave.Project Number:Camp Bonneville, WAReport Created:Portland, OR 97239Project Manager:Andrew Harvey07/15/08 14:26


Total Organic Carbon, Combustion or Oxidation Diss - Laboratory Quality Control Results

TestAmerica Tacoma

QC Batch: 33933	Water P	Preparation M	lethod: N	I A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Matrix Spike Dup (104914D)				QC Source:	PRF0882-	-07		Extr	acted:	07/09/08 15	:41			
Total Organic Carbon	415.1 Dissolved	11.5		1.0	mg/L	1x	ND	10.0	115%	(49-142)	2%	(13)	07/09/08 15:41	
Matrix Spike (104914S)				QC Source:	PRF0882-	-07		Extr	acted:	07/09/08 15	:41			
Total Organic Carbon	415.1 Dissolved	11.3		1.0	mg/L	1x	ND	10.0	113%	(49-142)			07/09/08 15:41	
Duplicate (104914X)				QC Source:	PRF0882-	-07		Extr	acted:	07/09/08 15	:41			
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x	ND				NC%	(20)	07/09/08 15:41	
Blank (580-33933-1)				QC Source:				Extr	acted:	07/09/08 15	:41			
Total Organic Carbon	415.1 Dissolved	ND		1.0	mg/L	1x							07/09/08 15:41	
LCS (580-33933-2)				QC Source:				Extr	acted:	07/09/08 15	:41			
Total Organic Carbon	415.1 Dissolved	16.4		1.0	mg/L	1x		15.0	109%	(80-120)			07/09/08 15:41	

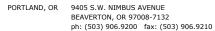
TestAmerica Portland

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Camp Bonneville, WA Project Name:

4412 SW Corbett Ave. Project Number: Report Created: Camp Bonneville, WA Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26


EPA-DW1 314.0 - Laboratory Quality Control Results

TestAmerica Denver

				1 estAmenc	a Deliver									
QC Batch: 8191165	WATEI	R Preparation	Method:	314										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike Dup (D8F26032400	06D)			QC Source:	PRF0882-	07		Extra	acted:	07/08/08 10	5:26			
Perchlorate	EPA-DW1 314.0	9.94		1	ug/L	1x	ND	10	99%	(80-120)	0.33%	(15)	07/08/08 22:24	
Matrix Spike (D8F260324006S)				QC Source:	PRF0882-	07		Extra	acted:	07/08/08 10	5:26			
Perchlorate	EPA-DW1 314.0	9.9		1	ug/L	1x	ND	10	99%	(80-120)	-		07/08/08 22:03	
Blank (D8G090000165B)				QC Source:				Extra	acted:	07/08/08 10	5:26			
Perchlorate	EPA-DW1 314.0	ND		1	ug/L	1x							07/08/08 17:08	
LCS (D8G090000165C)				QC Source:				Extra	acted:	07/08/08 10	5:26			
Perchlorate	EPA-DW1 314.0	9.43		1	ug/L	1x		10	94%	(85-115)			07/08/08 16:26	
LCS Dup (D8G090000165L)				QC Source:				Extra	acted:	07/08/08 10	5:26			
Perchlorate	EPA-DW1 314.0	9.51		1	ug/L	1x		10	95%	(85-115)	0.82%	(15)	07/08/08 16:47	

TestAmerica Portland

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:

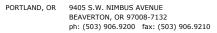
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8182428 **WATER Preparation Method:** 3535 Spike Source Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed RPD REC Amt Matrix Spike Dup (D8F260324006D) QC Source: PRF0882-07 Extracted: 06/30/08 18:00 SW846 8330 104% 07/03/08 15:28 1,3,5-Trinitrobenzene 2.09 ND 2.01 2.7% (21) ug/L 1x(73-122)1,3-Dinitrobenzene 2.08 0.4 ND 104% (78-115) 1.9% (19) 2.2 ND 2,4,6-Trinitrotoluene 0.4 110% (73-116) 2.6% 2.17 0.4 ND 108% (75-115)1.5% 2.4-Dinitrotoluene (21) 0.2 ND 2.6-Dinitrotoluene 2.21 110% (77-115)3.7% (20)2-Amino-4,6-dinitrotoluene 2.05 0.2 ND 102% (75-115) ND 2-Nitrotoluene 1.45 0.4 72% (35-115) 17% (43) 0.4 3-Nitrotoluene 1 74 ND 87% (30-115)5.3% (74)4-Amino-2,6-dinitrotoluene 1.94 0.2 ND 97% (57-115)3.7% (22)4-Nitrotoluene 1.74 ND (40-115)7.9% (44)HMX 0.4 ND 2.26 112% (78-115)3.9% (26)Nitrobenzene 1.52 0.4 ND 75% (51-115)3.8% (32) Nitroglycerin 22.6 3 ND 20.1 113% (71-126)(21)PETN 21.3 2 ND 106% (67-107)1.7% (30)Pierie Acid 1.87 0.4 ND 2.01 93% (50-150)8.5% RDX 22 0.2 ND 109% (69-118) 3.2% (37) 2.4 0.2 ND 120% (69-127) 1.9% Tetryl (24)

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 107%
 Limits:
 75-118%
 "
 07/03/08 15:28


Matrix Spike (D8F260324006S)			QC Source:	PRF0882	-07		Ext	racted:	06/30/08 18:0	00		
1,3,5-Trinitrobenzene	SW846 8330	2.15	 1	ug/L	1x	ND	1.97	109%	(73-122)		 07/03/08 15:04	
1,3-Dinitrobenzene	"	2.12	 0.4	"	"	ND	"	108%	(78-115)		 "	
2,4,6-Trinitrotoluene	"	2.26	 0.4	"	"	ND	"	115%	(73-116)		 "	
2,4-Dinitrotoluene	"	2.2	 0.4	"	"	ND	"	112%	(75-115)		 "	
2,6-Dinitrotoluene	"	2.29	 0.2	"	"	ND	"	117%	(77-115)		 "	a
2-Amino-4,6-dinitrotoluene	"	2.09	 0.2	"	"	ND	"	106%	(75-115)		 "	
2-Nitrotoluene	"	1.23	 0.4	"	"	ND	"	62%	(35-115)		 "	
3-Nitrotoluene	"	1.66	 0.4	"	"	ND	"	84%	(30-115)		 "	
4-Amino-2,6-dinitrotoluene	"	2.02	 0.2	"	"	ND	"	102%	(57-115)		 "	
4-Nitrotoluene	"	1.61	 1	"	"	ND	"	82%	(40-115)		 "	
HMX	"	2.35	 0.4	"	"	ND	"	119%	(78-115)		 "	a
Nitrobenzene	"	1.46	 0.4	"	"	ND	"	74%	(51-115)		 "	
Nitroglycerin	"	23.1	 3	"	"	ND	19.7	118%	(71-126)		 "	
PETN	"	20.9	 2	"	"	ND	"	106%	(67-107)		 "	
Picric Acid	"	1.72	 0.4	"	"	ND	1.97	87%	(50-150)		 "	
RDX	"	2.27	 0.2	"	"	ND	"	115%	(69-118)		 "	
Tetryl	"	2.45	 0.2	"	"	ND	"	125%	(69-127)		 "	

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 111%
 Limits: 75-118%
 "
 07/03/08 15:04

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

SW846 8330 - Laboratory Quality Control Results

TestAmerica Denver

QC Batch: 8182428	WATER	R Preparation	Method:	3535										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (D8F300000428B)				QC Source:				Extr	acted:	06/30/08 18	:00			
1,3,5-Trinitrobenzene	SW846 8330	ND		1	ug/L	1x						(07/03/08 11:39	
1,3-Dinitrobenzene	"	ND		0.4	"	"							"	
2,4,6-Trinitrotoluene	"	ND		0.4	"	"							"	
2,4-Dinitrotoluene	"	ND		0.4	"	"							"	
2,6-Dinitrotoluene	"	ND		0.2	"	"							"	
2-Amino-4,6-dinitrotoluene	"	ND		0.2	"	"							"	
2-Nitrotoluene	"	ND		0.4	"	"							"	
3-Nitrotoluene	"	ND		0.4	"	"							"	
4-Amino-2,6-dinitrotoluene	"	ND		0.2	"	"							"	
4-Nitrotoluene	"	ND		1	"	"							"	
HMX	"	ND		0.4	"	"							"	
Nitrobenzene	"	ND		0.4	"	"							"	
Nitroglycerin	"	ND		3	"	"							"	
PETN	"	ND		2	"	"							"	
Picric Acid	"	ND		0.4	"	"							"	
RDX	"	ND		0.2	"	"							"	
Tetryl	"	ND		0.2	"	"							"	

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 106%
 Limits:
 75-118%
 "
 07/03/08 11:39


LCS (D8F300000428C)			QC Source:	:		Ext	racted:	06/30/08 18:0	0	
1,3,5-Trinitrobenzene	SW846 8330	2.07	 1	ug/L	1x	 2	103%	(73-122)		 07/03/08 12:03
1,3-Dinitrobenzene	"	2.05	 0.4	"	"	 "	103%	(78-115)		 "
2,4,6-Trinitrotoluene	"	2.14	 0.4	"	"	 "	107%	(73-116)		 "
2,4-Dinitrotoluene	"	2.1	 0.4	"	"	 "	105%	(75-115)		 "
2,6-Dinitrotoluene	"	2.17	 0.2	"	"	 "	109%	(77-115)		 "
2-Amino-4,6-dinitrotoluene	"	2	 0.2	"	"	 "	100%	(75-115)		 "
2-Nitrotoluene	"	1.18	 0.4	"	"	 "	59%	(35-115)		 "
3-Nitrotoluene	"	1.57	 0.4	"	"	 "	78%	(30-115)		 "
4-Amino-2,6-dinitrotoluene	"	1.96	 0.2	"	"	 "	98%	(57-115)		 "
4-Nitrotoluene	"	1.56	 1	"	"	 "	78%	(40-115)		 "
HMX	"	2.21	 0.4	"	"	 "	110%	(78-115)		 "
Nitrobenzene	"	1.32	 0.4	"	"	 "	66%	(51-115)		 "
Nitroglycerin	"	21.9	 3	"	"	 20	109%	(71-126)		 "
PETN	"	20.6	 2	"	"	 "	103%	(67-107)		 "
Picric Acid	"	1.82	 0.4	"	"	 2	91%	(50-150)		 "
RDX	"	2.17	 0.2	"	"	 "	109%	(69-118)		 "
Tetryl	"	2.36	 0.2	**	"	 "	118%	(69-127)		 "

 Surrogate(s):
 1,2-Dinitrobenzene
 Recovery:
 106%
 Limits: 75-118%
 "
 07/03/08 12:03

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Richard D. Reid, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

PBS Engineering Project Name: Camp Bonneville, WA

4412 SW Corbett Ave. Project Number: Camp Bonneville, WA Report Created:
Portland, OR 97239 Project Manager: Andrew Harvey 07/15/08 14:26

Notes and Definitions

Report Specific Notes:

a

Spiked analyte recovery is outside stated control limits.

B - Analyte was detected in the associated Method Blank.

B4 - Target analyte detected in blank at/above method acceptance criteria.

D - Data reported from a preparation or analytical dilution.

H - Sample analysis performed past method-specified holding time.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M8 - The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

RL1 - Reporting limit raised due to sample matrix effects.

U - Analyte included in the analysis but not detected.

ZX - Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

 Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Limits

Electronic

Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Richard D. Reid, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (425) 420-9200 FAX 420-9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 906-9200 FAX 906-9210

2000 West International Airport Road, Suite A10, Anchorage, AK 99502-1119 (907) 563-9200 FAX 563-9210

Work Order #: PRF0882

																			1000	
CLIENT: PBS/ Baker							INVO	ICE T	O:	Baker							TURN	AROUND	REQUEST in Busines	Days *
REPORT TO: andrew_harvey@pbsen	v.com 8	& christina	a_johnson@)pbsen	v.com													Organic	& Inorganic Analyses	
and appropriate personnel at Baker																	10 7	5	4 3 2	1 < 1
ADDRESS: Portland, Oregon																	STD.	Petrol	eum Hydrocarbon Analy	ses
PHONE: (503)-417-7693			FAX:				P.O.	NUN	ABER	<u>:</u>							_ 5	4	3 2 1	< 1
PROJECT NAME: Camp Bonnev	ille GV	V Sampl	ing			,		RE	QUES	TED A		YSES			ai I		STD			
PROJECT NUMBER: 70489 Ta	sk 621	2		+ Hg	, Hg		ý			, S	303	14.1		7.	iity. ulfate		ОТІ	IER	Specify:	
SAMPLED BY: Barb Lary				tals -	Metals	CS by	TICs b	XQ-	Š.	′es, ौ y 833	id 8	e by 3	5.1 & 53.2	415.1	Alkalir itrite, s		* Turnaro	und Requests	less than standard may incur Ru	h Charges.
CLIENT SAMPLE		SAMPL	ING	Total Metals	Dissolved Metals,	VOCs + TICS by 8260B	SVOCs + TICs by 8270	NWTPH-Dx	NWTPH-Gx	Explosives, NG, PETN by 8330	Picric Acid 8303	Perchlorate by 314	TOC 415.1 nitrate 353.	DOC by	chloride, nitrite, sulfate, pH		MATRIX	# OF		NCA WO
INDENTIFICATION		DATE/I	IME	Tot	Diss	VOC 8260	SVC 8270	×	ž	EXF.	Pic	Perc	오늘	00	Shor Fq		(W, S, O)	CONT.	COMMENTS/SAMPLER'S INTE	ΛΙ. ID
17B229	6/24	1/08	9:30			X									,		W	}		
21924MW17W		/	10:10			X				X		X					W	9		
3 19 L4 MW 18 W		***	11:10			X				X		X					W	9		
4 19 LCMW 035W			1Z:30	X	X	X	X	X	X	X	*	~	乂	X	×		W	22		
5 19 LCMW 460W			12:45	I	X	γ	, X	'	X	X	X	Ý	X	X	X	-	W	22		
6 19 LC MW 0 4 DW			14:40		X	×	X	×	ン	X	ント	X	X	X	X		W	22	-	
	+ 1	7	7.7		,				,	1	-	1	1/	/ `				24	EXTEN FO	e LAB
7,91CMW043W	y	<i>y</i>	16:15	X	X	X	X	+	X	*	X	X	<u>X</u>	*	X		W	74	MS/MSD	
8																	\			
9	_																			
10																	10-77-78			
11 .																				
12																	i			
13	(7						,	/						- 3					
RELINQUISHED BY: / OWO WILL	16.	Ma	NI TO	00	_		DATE:	6/2	5/0	8	RECE	VED B							Da	NTE: 06-25-08
PRINT NAME: BARBARA E		LAU	FIRM:	PB	5		TIME:		820	2		NAME:		anj	Spange	in	FIRM:	Tap	Т	ME: 0820
RELINQUISHED BY:	*		-/				DATE:	06.2	5-08		RECE	VED BY		7	7			. //	Da	ATE:
PRINT NAME: Thab			FIRM:	TAP			TIME:	00	145	·	PRINT	NAME:					FIRM:		T	ME:
ADDITIONAL REMARKS: 5	900	ER	e -	TA 7	ール			Ni 1	. (100	٠,	145	1	0	OOLE	γ_{l}	w/~1	2	TEMP: 0.76	Z.C
COC Rev 9, 3 99	NO L	ER	0	107	117			411		VUC	5	(N	لمص		oce	K-	W/TE	<i>)</i> ,	2 4 (P/	GE 1 OF 1

CHAIN OF CUSTODY REPORT

TestAmerica Sample Receipt Checklist Work Order No. Logged-in by: Received by: Unpacked by: Client: "isection B) "isection A) Date. 16 25 08 Project: Time: _ = 44 F Lemperature out of range: Initials: 43 Not enough Ice ***ESI Clients (see Section C) Cooler Temperature (IR): 0.7,24,05,12, °C plastic glass NA (oil/air OR ESI client) Temperature Blank: _____ °C DIGI Sample Status: В Custody Seals: (#___) (If N circled, see NOD) Signature: Y N Dated: Received from: General: × None Intact? Ν XTA Courier Container Type: # Containers Match COC? none given Senvoy UPS IDs Match COC? #Box(s) Fed Ex For Analyses Requested: None (#Other: Client NA) Cyanide checked? TUP Correct Type & Preservation? Coolant Type: Gel/ Blue Ice Adequate Volume? SDS X Loose Ice Mid-Valley Within Hold Time? None GS/TA Volatiles/ Oil Quality: GS/Senvoy VOAs/ Syringes free of Headspace? NA Packing Material: Other: **Bubble Bags** TB on COC? not provided Ν NA Styrofoam Cubbies Metals: Peanuts HNO3 Preserved? NA Dissolved Metals Filtered? Ν NA ***ESI Clients Only: NO Was the tracking paper keepable? FED EX/ UPS: Temperature Blank: _____°C If circled NO, what is the Tracking number? not provided DIGI #1 All preserved bottles checked **UPS** DHL Other: NA (voas/soils/all unp.) FED EX Goldstreak All preserved accordingly? Y N (see NOD) NA (voas/soils/all unp.) **Project Managers:** Comments:

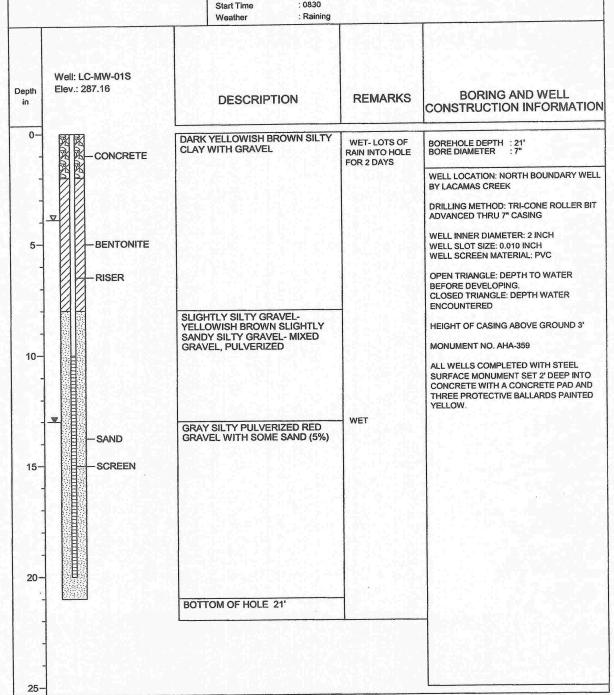
(Initial/Date)

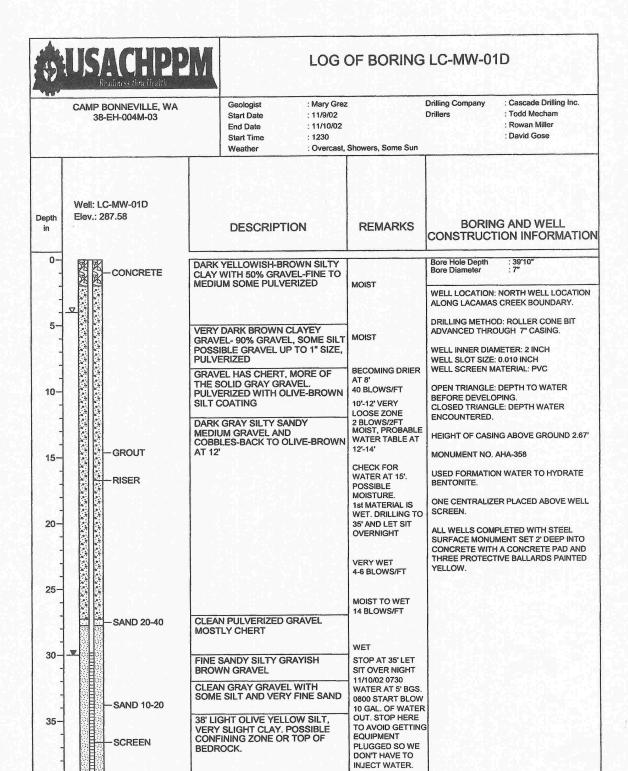
PM Reviewed:

APPENDIX C

Monitoring Well Boring Logs (on enclosed CD)

LOG OF BORING LC-MW-01S


(Page 1 of 1)


CAMP BONNEVILLE, WA. 38-EH-004M-03

Geologist Start Date End Date : Mary Grez : 11/12/02

: 11/12/02 : 11/12/02 : 0830 Drilling Company Drillers : Cascade Drilling, Inc : Todd Mecham

: Rowan Miller

BOTTOM OF HOLE 39.83'

40

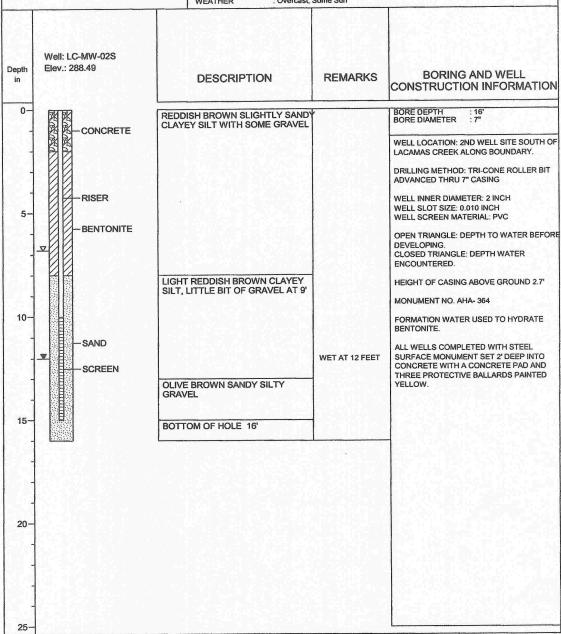
LOG OF BORING LC-MW-02S

(Page 1 of 1)

CAMP BONNEVILLE, WA. 38-EH-004M-03

GEOLOGIST START DATE END DATE

: 11/12/02 : 11/12/02 START TIME : 1640


: Mary Grez

: Overcast, Some Sun WEATHER

DRILLING COMPANY: Cascade Drilling Inc.

DRILLERS

: Todd Mecham : Rowan Miller : Andre Bedrik

LOG OF BORING LC-MW-02D

(Page 1 of 1)

CAMP BONNEVILLE, WA. 38-EH-004M-03

Geologist Start Date **End Date**

Start Time

Weather

: Mary Grez : 11/12/02 : 11/12/02

: 1300 : Overcast, Raining **Drilling Company** Drillers

: Cascade Drilling Inc. : Todd Mecham

: Rowan Miller : David Gose

Well: LC-MW-02D Elev.: 288.49 Depth **BORING AND WELL** DESCRIPTION REMARKS CONSTRUCTION INFORMATION 0-Bore Hole Depth REDDISH-BROWN SLIGHTLY SILTY Bore Diameter CONCRETE SAND, SOME GRAVEL WELL LOCATION: 2ND WELL LOCATION PUMPING WATER SOUTH OF LACAMAS CREEK ALONG INTO HOLE AT 3' BOUNDARY. DRILLING METHOD: TRI-CONE BIT ADVANCED THROUGH 7" CASING WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH 10 BLOWS/FT DONE PUMPING WELL SCREEN MATERIAL: PVC 10 WATER USED GROUT OPEN TRIANGLE: DEPTH TO WATER ABOUT 40 GAL. BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER

RISER **GRAVELLY REDDISH-BROWN** SANDY SILTY GRAVEL. (PULVERIZED GRAY GRAVEL) GRADUALLY LESS SILT AND SAND CLEANER GRAVEL OLIVE-BROWN SLIGHTLY SANDY SILTY GRAVEL, (ROUNDED PEBBLES AND PULVERIZED ROCK)

BENTONITE

SAND 20-40

SAND 10-20

SCREEN

WATER BLEW OUT OF HOLE. PRODUTIVE ZONE. ROCK). SOME VERY CLEAN GRAVEL LAYERS INTERSPERSED

WET

HEIGHT OF CASING ABOVE GROUND 3.1' MONUMENT NO. AHA-357 HOLE HAND-AUGERED TO 6', NO WATER IN 6' BOREHOLE.

ENCOUNTERED.

NO CENTRALIZERS USED.

SCREENED 25' TO 35' BECAUSE IT'S A PRODUCTIVE ZONE.

USED FORMATION WATER TO HYDRATE BENTONITE

ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED

WATER COMING U OUT OF HOLE.

35

40

15

20

25

BOTTOM OF HOLE 36'

OLIVE-BROWN SLIGHTLY SILTY

WITH SILT, SAND, AND GRAVEL

GRAVEL.(PULVERIZED GRAY

LOG OF BORING LC-MW-03S

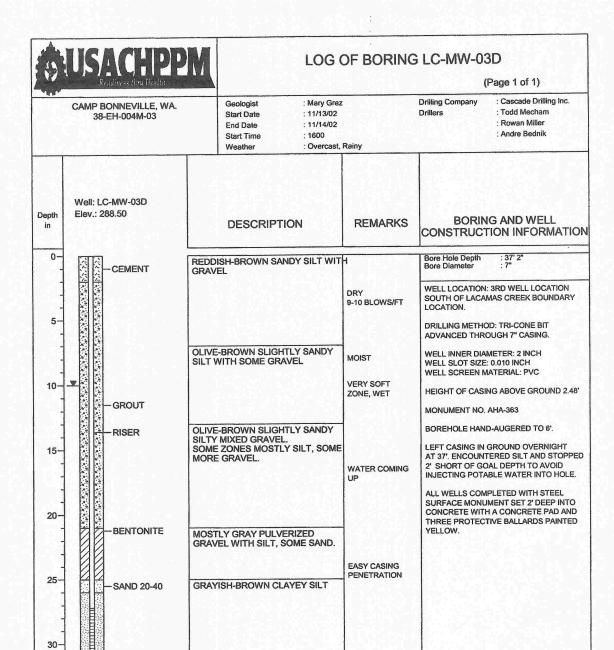
(Page 1 of 1)

CAMP BONNEVILLE, WA. 38-EH-004M-03

Geologist Start Date End Date : Mary Grez : 11/13/02 : 11/13/02 1400

Drilling Company Drillers

: Cascade Drilling Inc. : Todd Mecham

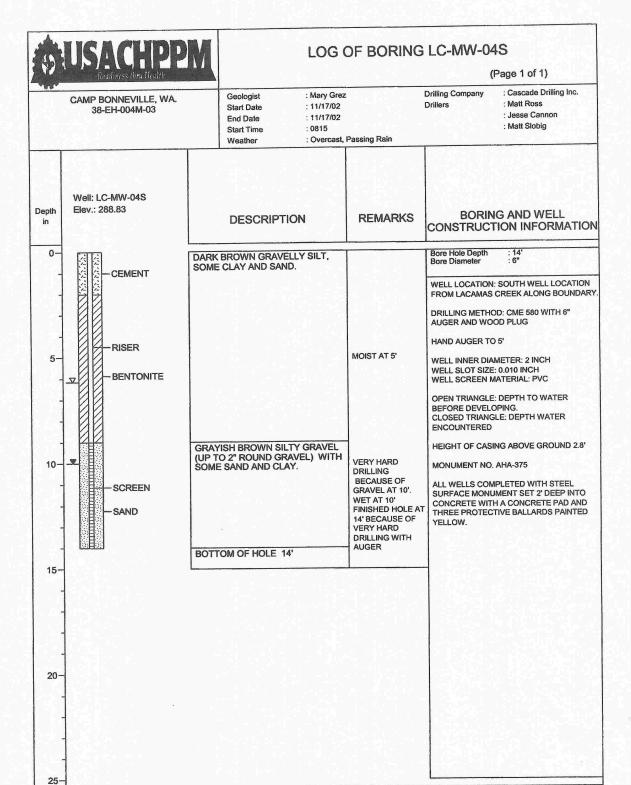

: Rowan Miller

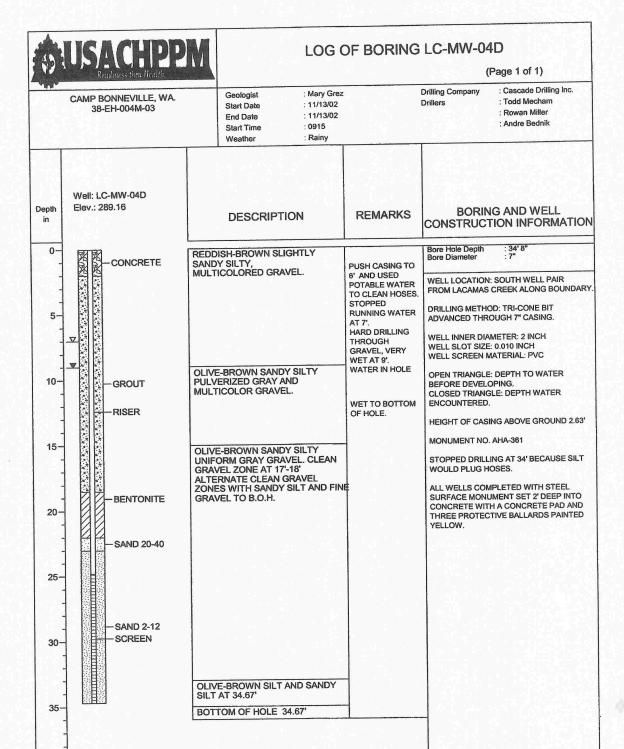
Start Time

: Rainy, Overcast Weather

: Andre Bedrik

Well: LC-MW-03S Elev.: 288.56 Depth **BORING AND WELL** REMARKS DESCRIPTION CONSTRUCTION INFORMATION Bore Hole Depth Bore Diameter 0-REDDISH BROWN SLIGHTLY SANDY SILT WITH GRAVEL. UP TO 80% GRAVEL AND SMALL AMOUNT OF CLAY CONCRETE WELL LOCATION: 3RD WELL LOCATION SOUTH OF LACAMAS CREEK ALONG BOUNDARY DRILLING METHOD: TRI-CONE ROLLER BIT ADVANCED THRU 7" CASING WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH BENTONITE WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATER RISER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER VERY MOIST AT ENCOUNTERED. REDDISH BROWN SANDY CLAYEY SILT, VERY LITTLE GRAVEL. HEIGHT OF CASING ABOVE GROUND 2.35' MONUMENT NO. AHA -362 10-ALL WELLS COMPLETED WITH STEEL WET GRAVEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW. REDDISH BROWN, SANDY SILT, GRAY PULVERIZED GRAVEL SAND SCREEN WATER IN HOLE BOTTOM OF HOLE 19' 20-25


-SAND 10-20


BOTTOM OF HOLE 37.17'

SCREEN

35

40

LOG OF BORING LC-MW-05S

(Page 1 of 1)

CAMP BONNEVILLE, WA. 38-EH-004M-03

Geologist Start Date End Date : Mary Grez : 11/15/02 : 11/15/02 : 1140

Drillers

Drilling Company

: Cascade Drilling Inc. : Matt Ross

: Jesse Cannon : Matt Slobig

Start Time : Sunny, Slightly Cloudy Weather Well: LC-MW-05S Elev.: 306.40 Depth **BORING AND WELL** REMARKS DESCRIPTION CONSTRUCTION INFORMATION Bore Hole Depth Bore Diameter 0-VERY MOIST SLIGHTLY SANDY LC-MW-05S-10 CONCRETE LC-MW-05S-0 REDDISH BROWN SLIGHTLY 1140 WELL LOCATION: EAST SIDE OF CRATER AT SANDY SILT, BIT OF CLAY AND 10 BLOWS/ 6" DA-3 PAIRED WITH LC-MW-05D FINE GRAVEL MOIST AT 3' LC-MW-05-2 5-DRILLING METHOD: CME 580 WITH HOLLOW DARK RED BROWN SILT WITH 1200 STEM AUGER AND 140 LBS HAMMER. MOTTLES OF GRAY, VEINS OF RED, GRAY, AND PURPLE IN LC-MW-05S-5 SAMPLES TAKEN WITH SPLIT SPOON SPLITSPOON SAMPLED AT 0', 2', 5', 15' DEPTHS SAMPLED FOR EXPLOSIVES, PETN, 16 BLOWS/ 6" PERCHLORATE, AND TOTAL METALS. 10-GROUT HAMMER USED TO COLLECT SAMPLES. **DUPLICATE LC-MW-05S-10 COLLECTED** GETTING VERY RISER FROM LC-MW-05S-0. MOIST AT 13'-14' WELL INNER DIAMETER: 2 INCH 15-BRIGHT BLUE-GRAY STIFF SILT WELL SLOT SIZE: 0.010 INCH LC-MW-05S-15 WELL SCREEN MATERIAL: PVC 1230 OPEN TRIANGLE: DEPTH TO WATER YELLOWISH-BROWN SLIGHTLY CLAYEY SILT WITH VARIABLE AMOUNTS OF GRAVEL AND STILL MOIST, NOT BEFORE DEVELOPING. SAND 20-40 WET CLOSED TRIANGLE: DEPTH WATER 20 **ENCOUNTERED** INCREASING CLAY WITH DEPTH HEIGHT OF CASING ABOVE GROUND 3.7' MONUMENT NO. AHA-374 25 PULLED UP 5' AT 25' AND LET SIT FOR 1 CLAYEY SILT HOUR, NO WATER IN HOLE. **WET AT 27'** GREG JOHNSON, WA. DEPT. OF ECOLOGY SAND 10-20 SAID TO COMPLETE HOLE AT 37' TO BE 15' ABOVE LC-MW-05D. 30 TREMIED BENTONITE GROUT FROM TOP OF 20-40 SAND TO 2' BGS. SCREEN ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED 35 YELLOW. **BOTTOM OF HOLE 37'** 40 45

LOG OF BORING LC-MW-05D

- 10 H	CAMP BONNEVILLE, WA 38-EH-004M-03	Start Date : End Date : Start Time :	Mary Grez 11/7/02 11/8/02 1030 Overcast, Rainy	Drilling Company : Cascade Drilling Inc. Drillers : Todd Mecham : Rowan Miller : David Gose
Depth in	Well: LC-MW-05D Elev.: 306.34	DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
0-	型	BROWN SLIGHTLY SANDY WITH FINE GRAVEL.	DRY	Bore Hole Depth : 63.5' Bore Diameter : 7"
5-	CONCRETE	DARK BROWN SILT WITH 5 GRAVEL.	5% FINE SOMEWHAT MOIST	WELL LOCATION: EAST SIDE OF DA-3 CRATER. WELL PAIR WITH LC-MW-05S DRILLING METHOD: AIR HAMMER DRIVEN THROUGH 7" CASING. WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC
10-		DARK REDDISH-BROWN S CLAY WITH 25% FINE GRA ANGULAR AND 2% ROUND 1/2"-1" GRAVEL.	VEL,	OPEN TRIANGLE: DEPTH TO WATER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER ENCOUNTERED. HEIGHT OF CASING ABOVE GROUND N/A MONUMENT NO. AHA-360
15-	RISER	DARK REDDISH-BROWN S CLAYEY GRAVEL. FINE TO GRAVEL. ANGULAR TO RC COARSENING WITH DEPTI DARK YELLOWISH-BROWN SLIGHTLY SILTY CLAY WIT GRAVEL.) 1/4" JUNDED. H.	USE POTABLE WATER AT 20' BECAUSE HOSES ARE PLUGGING WITH SILT. USED ABOUT 20 GALLONS WITH GOOD RECOVERY. POTABLE WATER SOURCE: CITY OF PORTLAND.
20-	- GROUT	GRAYISH-BROWN SILT AN SLIGHTLY CLAYEY SILT, B ANY GRAVEL.	ID SARELY 14 BLOWS/FT AT 20'.	PVC CASING EXTENDED ON 2/11/03 AND NEW TOP OF CASING MARKED FOR SURVEYING. ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW.
25-		GRAYISH-BROWN SILTY F MEDIUM GRAVEL FINE GRAVELY GRAYISH BROWN SILT	CHECK FOR GROUND WATER AT 24'. LET SIT FO 20 MINUTES. NO WATER.	

LOG OF BORING LC-MW-05D

(Page 1 of 1)

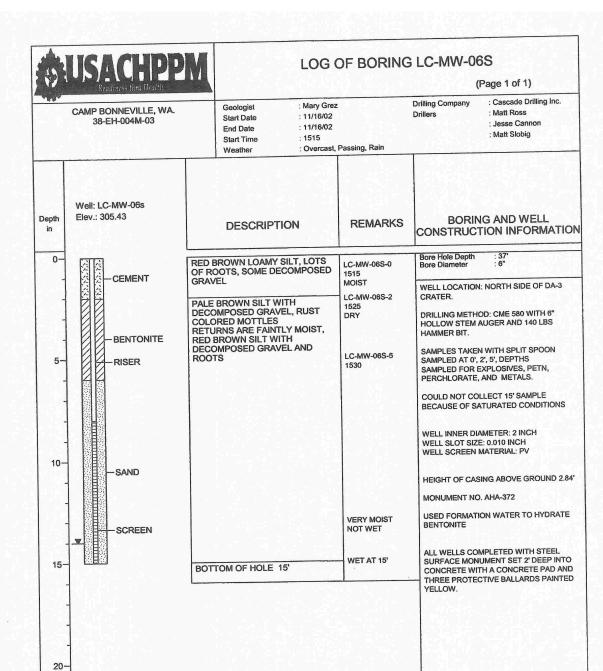
CAMP BONNEVILLE, WA. 38-EH-004M-03

65-

Geologist Start Date End Date Start Time

Weather

: Mary Grez : 11/7/02

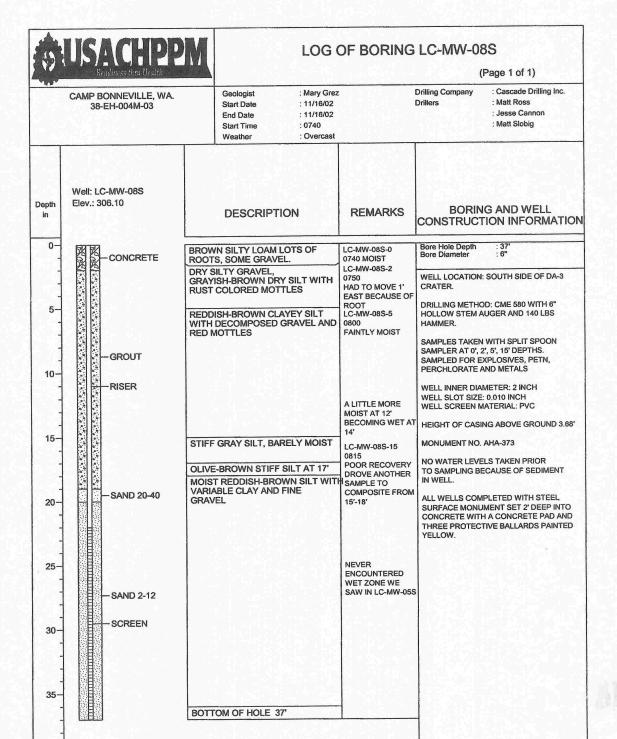

: 11/8/02 : 1030

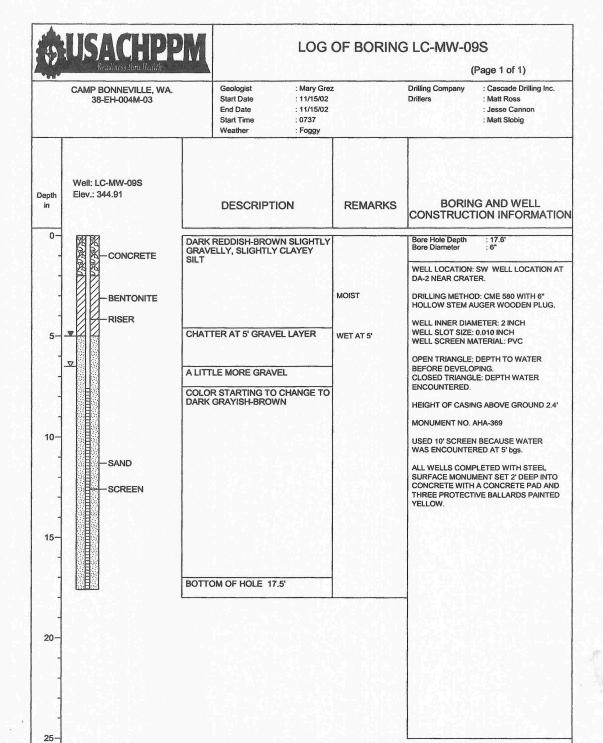
: Overcast, Rainy

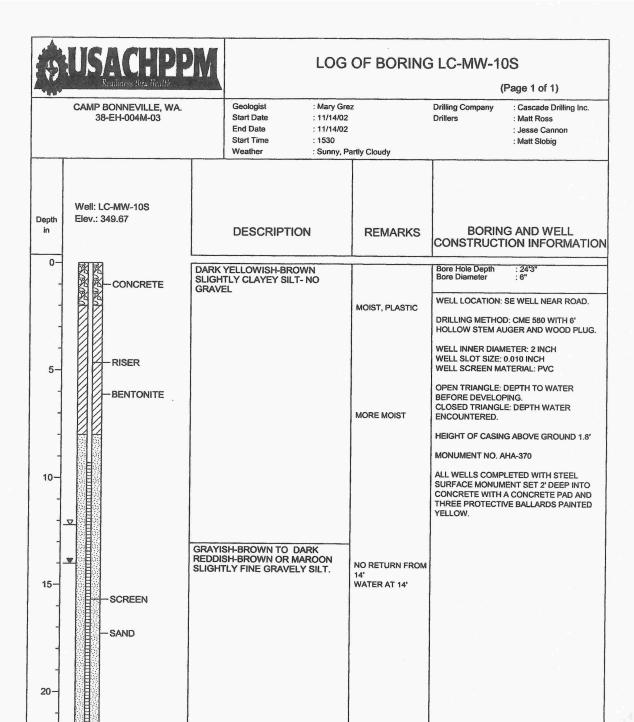
Drilling Company Drillers : Cascade Drilling Inc. : Todd Mecham

: Rowan Miller : David Gose

Well: LC-MW-05D Elev.: 306.34 Depth **BORING AND WELL** DESCRIPTION REMARKS in CONSTRUCTION INFORMATION : 63.5' : 7" Bore Hole Depth Bore Diameter 30-DARK YELLOWISH-BROWN SILTY CLAY AND CLAYEY SILT. VERY TIGHT. 40 BLOWS/ FT NO LONGER RUNNING WATER. SOIL IS MOIST. SAME WITH SOME FINE TO MEDIUM GRAVEL ANGULAR TO ROUNDED UP TO 1/2" NO GRAVEL, SAME OTHERWISE. 35 33 BLOWS/FT GROUT UP TO 60 BLOWS/ BROWN SLIGHTLY CLAYEY SILT. 40 RISER THIN DARKER BROWN LAYER. **FAINTLY MOIST** 45 FINE TO MEDIUM GRAVELLY BROWN SILT. FINE TO MEDIUM GRAVELLY BROWN SILT, GRADING TO OLIVE BROWN SILTY FINE TO MEDIUM BENTONITE PULVERIZED GRAVEL. POSSIBLE TOP OF TROUTDALE. SAND 20-40 CASING PULLED 50 DARK GRAYISH-BROWN SILTY GRAVEL/GRAVELLY SILT. GRAVEL TO 49' WAIT OVERNIGHT. 11/8/02 0745 IS PULVERIZED. START DRILLING. WATER AT 52'. 55-DARK GRAYISH-BROWN TO GRAY -SAND 10-20 PULVERIZED GRAVEL. SCREEN 60-RED CLAY ON BOTTOM OF BIT **BOTTOM OF HOLE 63.5'**




25



LOG OF BORING LC-MW-07S

	Well: LC-MW-07S Elev.: 305.12	Geologist : Mary Gre Start Date : 11/16/02 End Date : 11/16/02 Start Time : 1100 Weather : Overcast DESCRIPTION PLATY RED-BROWN DRY SILT WIT SOME FINE GRAVEL DRY PALE YELLOWISH-BROWN SILT, A BIT OF FINE GRAVEL-DECOMPOSED ROCK. RED-BROWN SILT, BARELY ANY GRAVEL	Passing Rains REMARKS	Drilling Company Drillers : Cascade Drilling Inc. : Matt Ross : Jesse Cannon : Matt Slobig BORING AND WELL CONSTRUCTION INFORMATIO Bore Hole Depth : 37" Bore Diameter : 6" WELL LOCATION: WEST SIDE OF DA-3 CRATER. DRILLING METHOD: CME 580 WITH 6"
0- 5- 10-	Elev.: 305.12	PLATY RED-BROWN DRY SILT WIT SOME FINE GRAVEL DRY PALE YELLOWISH-BROWN SILT, A BIT OF FINE GRAVEL-DECOMPOSED ROCK. RED-BROWN SILT, BARELY ANY	HLC-MW-07S-0 1110 + DUPLICATE LC-MW-07S-10 1140 LC-MW-07S-2 1125 LC-MW-07S-5	CONSTRUCTION INFORMATIO Bore Hole Depth : 37' Bore Diameter : 6" WELL LOCATION: WEST SIDE OF DA-3 CRATER. DRILLING METHOD: CME 580 WITH 6"
5-	CONCRETE	SOME FINE GRAVEL DRY PALE YELLOWISH-BROWN SILT, A BIT OF FINE GRAVEL-DECOMPOSED ROCK. RED-BROWN SILT, BARELY ANY	1110 + DUPLICATE LC-MW-07S-10 1140 LC-MW-07S-2 1125 LC-MW-07S-5	Bore Diameter : 6" WELL LOCATION: WEST SIDE OF DA-3 CRATER. DRILLING METHOD: CME 580 WITH 6"
10-		SILT, A BIT OF FINE GRAVEL-DECOMPOSED ROCK. RED-BROWN SILT, BARELY ANY	1140 LC-MW-07S-2 1125 - LC-MW-07S-5	CRATER. DRILLING METHOD: CME 580 WITH 6"
		T .	GETTING MOIST	HOLLOW STEM AUGER AND 140 LBS HAMMER.
1	GROUT Z RISER		MOIST	SAMPLES TAKEN WITH SPLIT SPOON SAMPLER AT 0', 2', 5', 15' DEPTHS. SAMPLED FOR EXPLOSIVES, PETN, PERCHLORATE, AND METALS. LC-MW-07S-10 IS A DUPLICATE OF LC-MW-07S-0
15-		GRAY STIFF SILT, LIGHT GRAYISH BROWN SILT CUTTINGS	MOIST ZONE LC-MW-07S-15 1210	WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER
20-	BENTONITE	OLIVE BROWN SILT. SOME CLAY AND GRAVEL	- MOIST	ENCOUNTERED. HEIGHT OF CASING ABOVE GROUND 3.8* MONUMENT NO. AHA-371
25			VERY MOIST TO WET	COULDN'T RETRACT THE HAMMER BECAUSE THE CABLE BROKE. DRILLED TO 37' AND PULLED AUGER AND HAMME THEN INSTALLED WELL SUCCESSFULLY IN OPEN BOREHOLE.
30-	SAND	YELLOWISH-BROWN GRAVELLY SILT		USED FORMATION WATER TO HYDRATE BENTONITE. ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTEL YELLOW.
35-				
1	HHI-HH	BOTTOM OF HOLE 37'	1	

BOTTOM OF HOLE 24.25°

25

LOG OF BORING LC-MW-11S

Drillers

(Page 1 of 1)

CAMP BONNEVILLE, WA 38-EH-004M-03 Geologist Start Date End Date : Mary Grez : 11/14/02

: 11/14/02

Start Time : 1430 Weather : Sunny, Partly Cloudy Drilling Company : Cascade D

: Cascade Drilling Inc. : Matt Ross

: Matt Slobig : Jesse Cannon

-		. Sullity, Fa	arity Cloddy	
Depth in	Well: LC-MW-11S Elev.: 342.72	DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
5-	- SAND - SCREEN	DARK YELLOWISH-BROWN SILT, SOME GRAVEL, POSSIBLE FILL MATERIAL GRAYISH-BROWN SLIGHTLY FINE SANDY SILT CAN HEAR SOME GRAVEL IN HOLE	WATER AT GROUND SURFACE	Bore Hole Depth : 17' Bore Diameter : 6" WELL LOCATION: NORTH WELL AT DA-2 NE OF POND. DRILLING METHOD: CME 580 WITH 6" HOLLOW STEM AUGER AND WOOD PLUG. WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC WATER IS AT GROUND SURFACE IN UXO AUGER HOLE. HEIGHT OF CASING ABOVE GROUND 3.0' MONUMENT NO. AHA-368 USED 10' SCREEN BECAUSE OF SHALLOW WATER TABLE. USED FORMATION WATER TO HYDRATE BENTONITE. ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW.
	器	BOTTOM OF HOLE 17'	WATER IN BOTTOM OF HOLE	
20-				

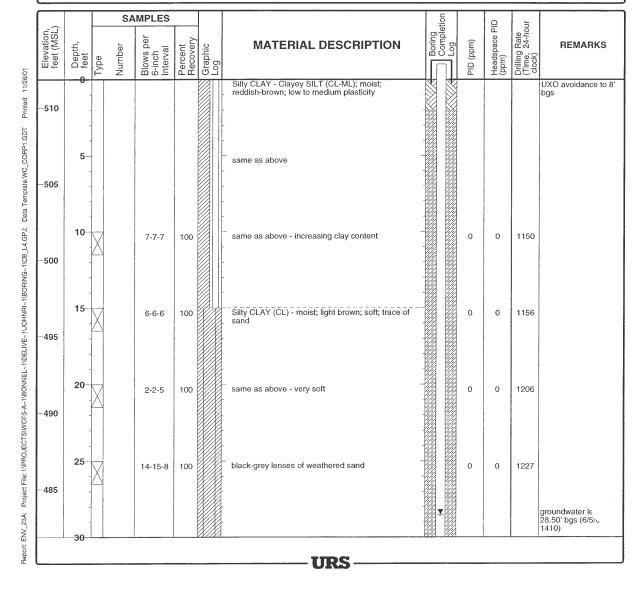
Project Number: 53-F0072323.00

Key to Log of Borings

Sheet 1 of 1

Pioj	ectr	umbe	1. 55	-0072		0.00					
		S	AMPLES							PID	
Elevation feet	Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery	Grapnic Log	MATERIAL DESCRIPTION	Well Completion	Log	PID (ppm)	Headspace (ppm)	REMARKS
						CLAY (CL)		S	Cemen	t surface	seal
	split spoon sample		12-15-18	100%		Silty CLAY - Clayey SILT (CL-ML)				ng in gr	
	S AND PARTY.					Silty CLAY (CL)			centraliz	er	
						Sandy silty CLAY (CL)			_		entonite seal idwater level
						Sandy gravelly CLAY (CL)			well cas	ing in fil	ter pack sand
						Clayey gravelly SAND (SP)					r level during drilling vell screen
	rock	***************************************		50%		Gravelly silty SAND (SP)				sing end	
	core					Andesite (Bedrock)				ite in boi	
1	2	3 4	5	6	7	8	9		10	11	12
	OF LIK	או מבכ	CRIPTIO	NS							
-		-		<u></u> 0		Elevation (in feet) with respect to mean sea level	or ass	sun	ned dat	um.	
	2	Eleva Depti				Vertical distance (in feet) below ground surface.					
	3		ole Type:			Type of soil sample collected at depth interval de	picted	; s	ymbols	explain	ed above.
	4		ole Numbe	er:		Sample identification number.					
	5		s per 6 inc			Number of blows required to advance driven sam	pler e	acl	h 6-inch	n drive i	nterval.
	6		ent Recov			ercentage of sample recovered for given sample					
	7		hic Log:			Graphic depiction of subsurface material encount					
	8	Mate	rial Descri	ption:		Description of subsurface material encountered, i	includ	ing	USCS	soil des	signation.
	9	=	Completic			Graphic depiction of well subsurface material.					
	10	=	ppm):			Photoionization detector readings in parts per mil	lion (p	pn	n) of sta	andard (gas.
	11	Head		readir	igs:	PID readings taken of enclosed portion of soil sai	mple a	at r	ecorde	d depth.	
	12	=				Comments or observations pertinent to drilling/sa					

GENERAL NOTES


- Soil classifications are based on the Unified Soil Classification System (USCS) and include consistency/relative density (where standard blow count correlation is possible), moisture, and color. Field descriptions may have been modified to reflect results of laboratory tests.
- Descriptions on these boring logs apply only at the specific boring locations and at the time the borings were advanced.
 They are not warranted to be representative of subsurface conditions at other locations or times.

Project Number: 53-F0072323.00

Log of Boring L4-MW03A

Sheet 1 of 2

ollow Stem Auger	Drilling Contractor Cas	scade Drilling Inc.	Total Depth	40 5				
		-	Drilled (feet)	46.5				
ME-75	Sampler Type 18"	Split Spoon	Surface Elevation	511.9 NGVD				
.50 feet bgs 6/5/01 1410	Hammer Weight and Drop	30" 140 lb	Top of PVC Elevation	514.9 NGVD				
8.75 Diameter of Well (inches) 2	Type of Well Casing	Pre-packed V wire mesh	Screen Perforation	0.010"				
/40, 10/20 Silica	Type and Depth of Seal(s)	filter sand (38'-46' bgs); bent	onite (2'-38' bgs); cement (0'-2')					
<i>\\</i>	B.75 Diameter of Well (inches) 2 40, 10/20 Silica	50 feet bgs 6/5/01 1410 Hammer Weight and Drop B.75 Diameter of Well (inches) Type of Well Casing 40, 10/20 Silica Type and Depth of Seal(s)	50 feet bgs 6/5/01 1410 Hammer Weight and Drop 8.75 Diameter of Well (inches) 2 Type of Well Casing Pre-packed V wire mesh Type and Depth (ilter cond (28) 46) host boots	50 feet bgs 6/5/01 1410 Hammer Weight and Drop B.75 Diameter of Well (inches) Top of PVC Elevation Type of Well (casing Pre-packed V wire mesh Screen Perforation Type and Depth of Seal(s) Type and Depth of Seal(s) filter sand (38'-46' bgs); bentonite (2'-38' bgs)				

Project: Landfill 4/Demolition Area 1

Project Location: Camp Bonneville, WA Project Number: 53-F0072323.00

Log of Boring L4-MW03A

Sheet 2 of 2

			SA	MPLES				_			PID	onr	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion	Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-480	- 30	X		4-3-4	100		Clay (CL) - very moist; soft; light brown			0	0	1250	
-475	35	X		5-5-5	100		same as above - very soft; highly weathered sand grains; white; black; yellow-orange			0	0	1300	
Printed: 11/26/01	40-	X		3-3-4	100		Sandy silty CLAY (CL) - wet; weathered sand grains; mottled pink-white-black			0	0	1310	
e:WC_CORP1.GDT	45	X		11-30-42	100		▽ same as above - wet; low plasticity; hard			0	0	1324	groundwater encountered at approx. 43' bgs (6/5/01 1320)
-465							Boring terminated at approximately 46.5' bgs on 6/5/01 at 1330	-			and the second s		
BORING~1/CB_L4.GPJ;	50						-						
120HNRI~170HNRI~270HNR	55-	_					-						
PROJECTSWCFS.A-1BONNEL-110ELIVE-1JUOHNRI-1BORING-1/0B_L4.6PJ;	60-			And the second s									
Project File: I:/PROJECT	65-												
Report: EN'	70						URS						

Project Number: 53-F0072323.00

Log of Boring L4-MW04A

Sheet 1 of 2

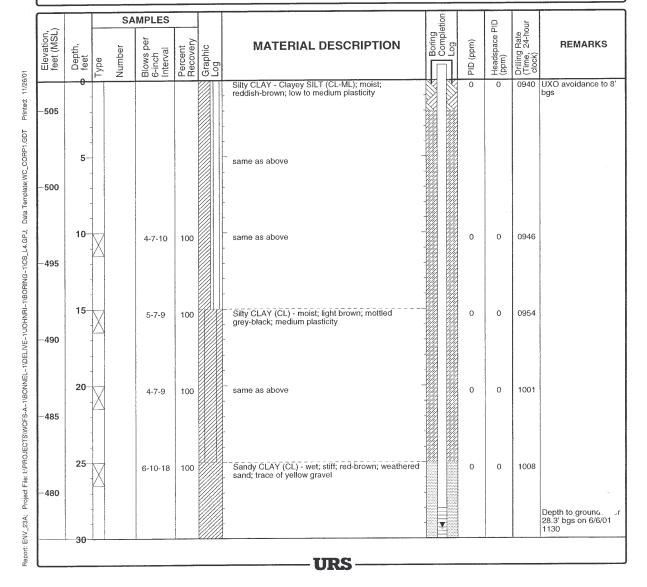
Diameter of Hole (inches)	8.75 Diameter of Well (inches) 2	Type of Well Casing Pre-packed V wire mesh	Screen Perforation	0.010"
Level Level	35 feet bgs 6/5/01 0730	Hammer Weight and Drop 30" 140 lb	Top of PVC Elevation	511.8 NGVD
Drill Rig Type Groundwater	CME-75	Sampler Type 18" Split Spoon	Surface Elevation	508.8 NGVD
Drilling Method	Hollow Stem Auger	Drilling Contractor Cascade Drilling Inc.	Total Depth Drilled (feet)	54.0
Date(s) Drilled	6/4/2001	Logged J.Rapp	Checked By	S. Wolfe

			SAME	PLES				ţi			۵	1	
Elevation, feet (MSL)	Depth, feet	Type	Number Blows per	6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Boring	$\ $	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
	-						Silty CLAY - Clayey SILT (CL-ML); moist; reddish-brown; low to medium plasticity			0	0	0815	UXO avoidance to using a backhoe
505	5-						same as above						
-500	10						same as above - very soft clay			0	0	0820	
495	15-						Silty CLAY (CL) - moist; light brown; soft; mottled grey-black	-		Trans.			
490	20-						same as above - weathered sand grains; mottled orange with black lenses			0	0	0830	Rig down for repai 0900 - 1130
485	25	X	25	-20-6	100		same as above - medium stiff; trace of yellow gravel			0	0	1155	
480	30		110000000000000000000000000000000000000										

Project Number: 53-F0072323.00

Log of Boring L4-MW04A

Sheet 2 of 2


ſ				SA	MPLES						Q	our	
	Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
		- 30	X		6-5-6 20-13-16	100		Sandy silty CLAY (CL) - very moist; highly weathered sand grains; yellow; red; black	<u> </u>	0	0	1220	Depth to groundwater
	-475	35-			6-6-7	100		same as above - highly weathered sand grains; white; black; yellow-orange; very soft		0	0	1228	Depth to groundwater approx. 33' bgs on 6/4/01 1345
Printed: 11/26/01	-470	40-			9-14-20	100		same as above - wet; weathered sand grains; mottled white-black		0	0	1300	Groundwater encountered at approx. 41' bgs on
			M		14-30-33	100		-		0	0	1313	6/4/01 1313
.WC_CORP1.GDT	-465	45-	X		14-56/6"	50		-		0	0		
		45			20-50/4"	25		weathered andesite fragments, hard	-	0	0		
3~1\CB_L4.GPJ; Da	-460	50-						same as above					
1\JOHNRI~1\BORIN	-455	55						Boring terminated at approximately 54 feet bgs on _ 6/4/01 1500	-				
Project File: I:PPROJECTSIWGFS-A1/BONNEL1/DELIVE1/JOHNRI1/BORING1/CB_L4.GPU; Data T	-450	60											
CTS\WCFS-A~1\		00							And the second s				
ile: !:\PROJE(-445	65											
Project F									-				
Report: ENV.	-440	70	-						-				
Repo		70						URS					

Project Number: 53-F0072323.00

Log of Boring L4-MW05A

Sheet 1 of 2

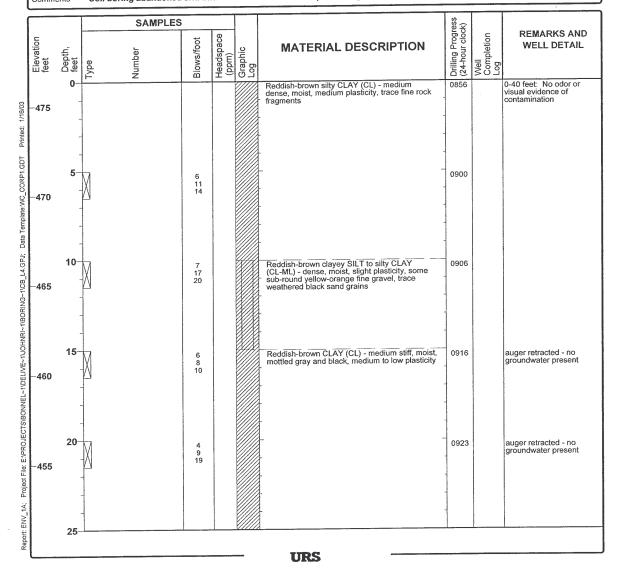
Date(s) Drilled	6/6/2001		Logged J.	Rapp	Checked By	S. Wolfe					
Drilling Method	Hollow S	tem Auger	Drilling Contractor	ascade Drilling Inc.	Total Depth Drilled (feet)	36.5					
Drill Rig Type	CME-75		Sampler Type 18	3" Split Spoon	Surface Elevation	506.9 NGVD					
Groundwater Level	29.30 fee	t bgs 6/6/01 1130	Hammer Weight and Drop	30" 140 lb	Top of PVC Elevation	509.9 NGVD					
Diameter of Hole (inches)	8.75	Diameter of Well (inches)	Type of Well Casing	Pre-packed V wire mesh	Screen Perforation	0.010"					
Type of Sand Pack	20/40, 10	/20 Silica	Type and Depth of Seal(s)	bentonite (2'-25', 34'-36' bgs	' bgs); filter sand (25'-34' bgs); cement (0'-2')						
Sand Pack Comments		ng well coordinates: E									

Log of Boring L4-MW05A

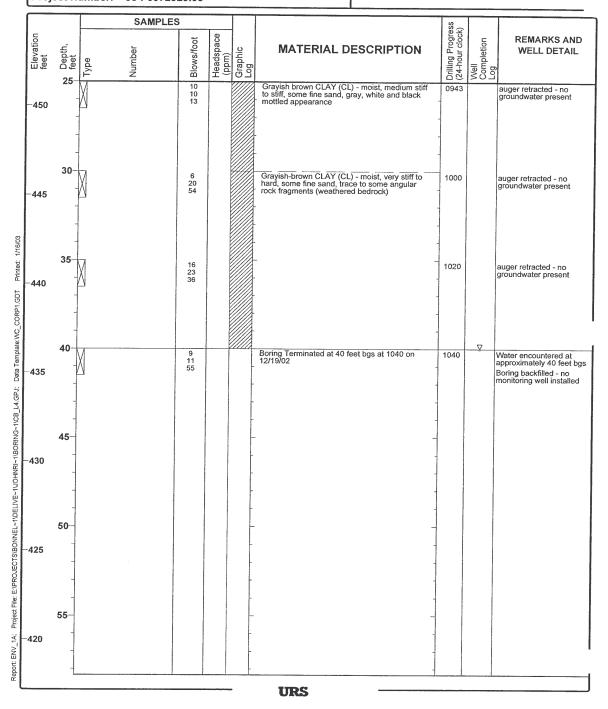
				SA	MPLES							e	our	
	Elevation, feet (MSL)	Depth, feet	Туре	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well	Completion	PID (ppm)		Drilling Rate (Time, 24-hour clock)	REMARKS
	-475	- 30	X		4-5-7	100		same as above - decreasing stiffness	7		0	0	1016	Groundwater encountered at approx. 31' bgs 6/6/01 1110
		35-	M		5-7-10	100		same as above - wet; medium stiff; red-brown; some gravel			0	0	1023	
Printed: 11/26/01	-470	40-				- A Line Control of the Control of t		Boring terminated at approximately 36.5' bgs on 6/6/01 1136						
	-465									The second secon				
s:wc_corp1.gpT		45-							-					
Data	-460								1					
30RING~1\CB_L4.GPJ;	–455	50-						-						
NDELIVE~1\JOHNRI~1\	-450	55-							1					
SWCFS-A~1/BONNEL~	-445	60-												
Project File: I:APROJECTSIWCFS-A-1/BONNEL-1/DELIVE~1/JOHNRI-/1BORING-1/0B_L4.GPJ;	-440	65-							Therese I		Management of the Control of the Con			
Report: EN		70						URS						
S.A.								O.L.						

Project Number: 53-F0072323.00

Log of Boring L4-MW06A

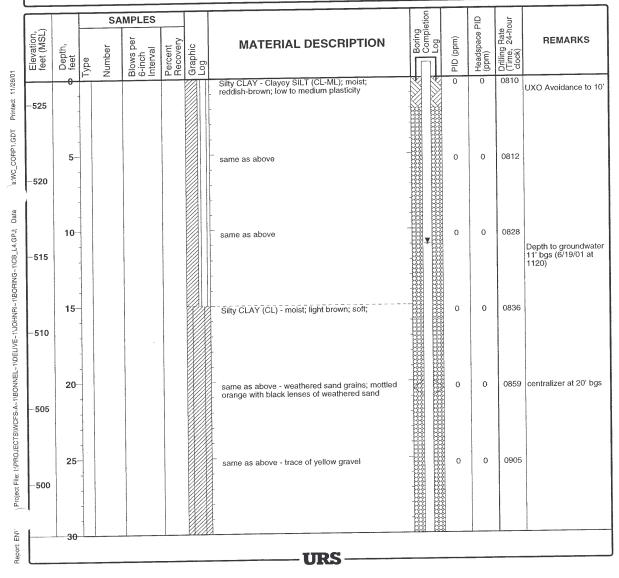

Date(s) Drilled	9/9/02		Logged By	I. Rapp	Checked By	S. Wolfe
Drilling Method	Hand A	uger	Drilling Contractor	Cascade Drilling Inc.	Total Depth Drilled (FT BGS)	6.0
Drill Rig Type	NA		Sampler Type 1	8" Split Spoon	Surface Elevation	
Groundwater Level	6 feet b	gs	Drill Bit Size/Type	4" OD hand auger	Top of PVC Elevation	
Diameter of Hole (inches)	4	Diameter of Well (inches) 0.75	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010"
Type of Sand Pack	10/20 S	ilica	Type and Dept of Seal(s)	h bentonite (0-4'); filter sar	nd (4-6')	
Comments	Monito	ring well coordinates: Ea	sting: Northing:			

			SA	MPLES					0		90	gs	
Elevation, feet (MSL)	Depth, feet	Type	Number	Time 24-hr clock	Dye test	Graphic Log	MATERIAL DESCRIPTION	Well	Log	Water/Soil Sheen Test	Soil - UV Fluorescence	PID Readings (ppm)	REMARKS
	0 1 -						Surface vegetation Brown silty CLAY (CL-ML) - dense, moist, some to trace yellow sub-rounded to rounded gravel, gravel size is 0.125" median diameter						No odor or evidence contamination
	2 -			0930			Same as above with trace black, weathered,						
	4 -						angular bedrock (andesite) fragments						
	5-						Same as above 30% black sub-angular to angular bedrock in silty clay matrix						
	6 -					\$ <i>\$\/\$</i> \$/	Soil boring terminated at 6 feet bgs (due to refusal) on 9/9/02 at 0930						
	7 -							and the second second second					
	8 -												
	9 -						-						
	10												


Project Number: 53-F0072323.00

Log of Boring L4-SB07A

Date(s) Drilled	12/16/02			Logged By	J. Rapp	Checked By	S. Wolfe
Drilling Method	Hollow St	tem Auger		Drill Bit Size/Type	8.75" OD auger	Total Depth Drilled (feet)	40.0
Drill Rig Type	CME-150			Drilling Contractor	Cascade Drilling Inc.	Top of PVC Elevation (feet)	NA
Groundwater Level (feet)	40 feet bg	s on 12/16/02		Hammer W Drop (lbs/in	/eight/ 30" 140 lb	Approx. Surface Elevation (feet)	476.35 NGVD
Diameter of Hole (inches)	8	Diameter of Well (inches)	NA.	Type of Well Casing	NA NA	Screen Perforation	NA
Type of Sand Pack	NA	1		Type/Thicki of Seal(s)	ness NA		
Comments	Soil borin	ng abandoned an	d backfill	ed with ben	tonite chips. Boring coordina	tes: Northing: 140745.21	Easting: 1154417


Log of Boring L4-SB07A

Project Number: 53-F0072323.00

Log of Boring L4-MW01B

Date(s)	6/14/2001	I to 6/18/2001	Logged J.R	app	Checked By	S. Wolfe
Drilled Drilling	Air Rotar	y Tubex		scade Drilling Inc.	Total Depth Drilled (feet)	76.0
Method Drill Rig	IR T3W I	ngersoll Rand	Sampler NA		Surface Elevation	526.6 NGVD
Type Groundwater		gs 6/19/01 1120	Hammer Weight and Drop	NA	Top of PVC Elevation	529.6 NGVD
Diameter of	10	Diameter of 2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010"
Hole (inches) Type of Sand Pack	20/40 Sil		Type and Depth of Seal(s)	bentonite (35'-38', 58'-76 cement (0'-2')	'); filter sand (38'-58'); cement grout (2'-35');
Comments	Monitori	ng well coordinates: Ea	sting 1,154,600.01 N	orthing 141,304.73		

Project: Landfill 4/Demolition Area 1

Project Location: Camp Bonneville, WA
Project Number: 53-F0072323.00

Log of Boring L4-MW01B

Sheet 2 of 3

_			SA	MPLES						۵	5	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion	PID (ppm)	Headspace PID (ppm)	Orilling Rate (Time, 24-hour clock)	REMARKS
-495	30						Sandy silty CLAY (CL) - moist; red-brown; medium stiff; trace of gravel		0	0	0942	
-490	35						same as above		0	0	0945	
-485	40						Sandy CLAY (CL) - moist; mottled; yellow; black; weathered sand grains; weathered bedrock; trace yellow gravel		0	0	0959	centralizer at 40' bg
-480	45-				TO A CONTRACT OF THE CONTRACT		same as above		0	0	1003	bentonite seal 45'-4 bgs
-475	50						Sandy gravelly CLAY (CL) - wet; black; white; green; weathered bedrock; angular		0	0	1041	water encountered a approx. 50' bgs (6/14/01 1140) advance 7" steel casing fromn 49' bg
470	55 <u>-</u>						same as above - calcite nodules, weathered bedrock		0	0	1240	
-470	60-						Gravelly SAND (SP-GP) - wet, black, angular fragments of andesite		0	0	1301	air rotary drilling through weathered bedrock zone, no coring
-465	65						-		0	0		bentonite seal place at 65' bgs rock coring started c 6/15/01 0737
-460	70	R	lun #1		92%		top of apparent competent bedrock Phaneritic Andesite - unweathered bedrock; porphyritic; hornblende; olivine; hard horizontal fracture (8 degrees); crystalline-carbonate infilling fracture (5 degrees) vesicles		0	0		6/15/01 0737 advance rock core b from 66' bgs a RPM

URS-

Project Number: 53-F0072323.00

Log of Boring L4-MW01B

Sheet 3 of 3

			SAI	MPLES						PID	onr	
Elevation, feet (MSL)	Depth, feet	Туре	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-45 5	- 70 - - - 75		Run #2		46%		vesicles horizontal fracture vesicles horizontal fracture horizontal fracture fracture (15 degrees)		0	0		Run #1 66' - 71' bgs; 92% recovery; 86% RQD 73.2' bgs bottom of recovered rock core
-450	-					<i>///</i> >	Boring terminated at approx. 76' bgs (6/18/01 @ 1052); bottom 2.8' of core not recovered					Run #2 71' -76' bgs; 46% recovery; 100% RQD
-445	80-	The second secon										
-440	85-						- 			and the second s		
–435	90-							-				
-435 -430 -425	95-						-					
-425	100-											
-420	105									The state of the s		
	110	-					URS					

Log of Boring L4-MW02B

Date(s) Drilled	6/19/2001 to 6/22/2	001	Logged By	J.Rapp	Checked By	S. Wolfe
Drilling Method	Air Rotary Tubex		Drilling Contractor	Cascade Drilling Inc.	Total Depth Drilled (feet)	85.0
Drill Rig Type	IR T3W Ingersoll R	and	Sampler Type	NA	Surface Elevation	515.5 NGVD
Groundwater Level	32.8 feet bgs 6/25/6	01 1133	Hammer Weig and Drop	ht NA	Top of PVC Elevation	518.5 NGVD
Diameter of Hole (inches)	10 Diamete Well (inc		Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010"
Type of Sand Pack	20/40 Silica		Type and Dep of Seal(s)	th bentonite (35'-38', 72'-85 cement (0'-2')); filter sand (57'-72'	'); cement grout (2'-35');
Comments	Monitoring well co	ordinates: F	asting 1.154.354.3	0 Northing 141,385,97		

Elevation, feet (MSL)	Depth, feet		Blows per 6-inch Interval	Percent Recovery Graphic Log	MATERIAL DESCRIPTION	Boring	Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-515	0	P Z	1 0 B	2	Gravelly silty SAND (SP) - dry; light brown; possible imported fill		XI	0	9 9	占Eで 1440	UXO Avoidance to 8
	-			2000 X 2000 V	possible imported iii						bgs advance 9.75" steel casing
-510	5-			100 T		-		0	0	1443	-
	10-										rock obstruction
-505	-				Rock - aphanitic; mica, homeblend, crystalline carbonate, possible boulder			0	0		casing pushed off center. Use 14" hammer to open ho past rock obstructio
-500	15-				Silty CLAY - Clayey SILT (CL-ML); moist; reddish-brown; low to medium plasticity			0	0		approximate bottom rock obstruction
	-				-			0	0		resume drilling 6/20, centralizer at 19' bg.
-495	20-				same as above			0	0		
490	25-				same as above - trace of yellow gravel			0	0		
	30				:			0	0	1654	

Project Number: 53-F0072323.00

Log of Boring L4-MW02B

				SA	MPLES							۵	<u>_</u>	
	Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well	Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
	-485	- 30						same as above - mottled yellow orange						
	-480	35-						same as above	Ţ		0	0	1706	static water level recorded on 6/25/01 1133
GDT Printed: 11/26/01	-475	40-						Sandy CLAY (CL) - moist; mottled; yellow; black; weathered sand grains; weathered bedrock; trace yellow gravel; low plasticity			Ü	0		centralizer at 39' bgs water encountered at 41.6' on 6/21/01 0843
. WC_CORP1,GDT	-470	45–						same as above			0	0	1732	
NG~1\CB_L4.GPJ; Data	-465	50-						same as above			0	0	1745	resume drilling 6/21/01
Project File: IAPROJECTSWCFS-A-1/BONNEL-1/DELIVE~1/JOHNRI1/BORING-1/CB_L4.GPJ; Data	-460	55						same as above			0	0	0815	
CTS\WCFS-A~1\BONNE	-455	60-						same as above				Ü	ŀ	centralizer at 59' bgs
Project File: I:\PROJE	-450	65						same as above - wet; hard; stiff			0	0	0857	
Report: EN\		70									0	0	0921	
I (_					URS		-				

Project: Landfill 4/Demolition Area 1

Project Location: Camp Bonneville, WA

Project Number: 53-F0072323.00

Log of Boring L4-MW02B

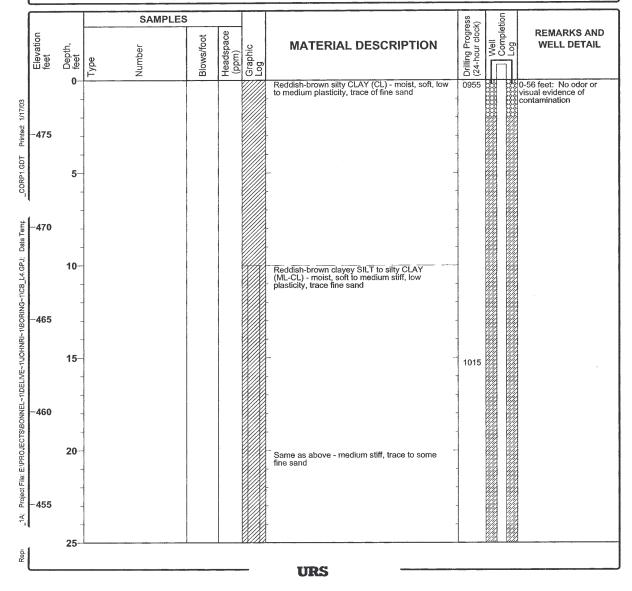
Sheet 3 of 3

			SA	MPLES						₽	5	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-445	70					- 1/	Clayey gravelly SAND (SW) - wet; black; white; green; weathered andesite; angular					
				-					0	0	0938	
-44 0	75-		Run #1		40%		top of apparent competent bedrock Phaneritic Andesite - unweathered bedrock; porphyritic; hornblende; olivine; hard vesicles horizontal fracture horizontal fracture		0	0	1240	bentonite seal; begin rock coring at 75' bgs
-435	80-		Run #2		0%				0	0	1320	end of core Run #1; 40% recovery; 100% RQD
-430	85-	Ш				77.	Boring terminated at 85' bgs on 6/21/01 1500		0	0	1446	end of core Run #0- 0% recovery
		1										
-425	90-											
				Abidable () de minima				-				
-420	95-						-					
							-	-				
-415	100-											
								+				
		-					-					Long to the control of the control o
-410	105-		- DAAMIN AT									
		1				A de la constante de la consta						
	110	1										
							URS					

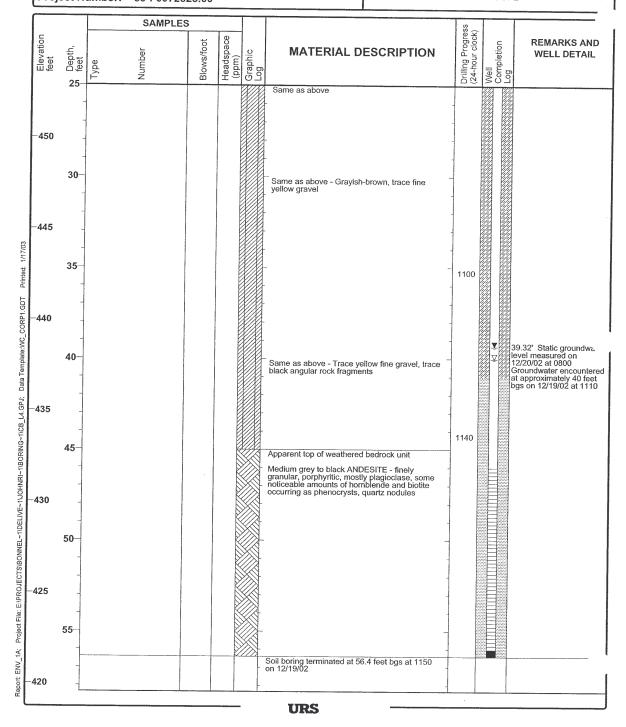
Log of Boring L4-MW03B

Date(s) Drilled	6/25/200	1 to 6/27/2001	Logged By J.F	Rapp	Checked By	S. Wolfe
Drilling Method	Air Rota	y Tubex	Drilling Contractor Ca	scade Drilling Inc.	Total Depth Drilled (feet)	70.0
Drill Rig Type	IR T3W I	ngersoll Rand	Sampler Type NA		Surface Elevation	508.5 NGVD
Groundwater Level	27 feet b	gs 6/26/01 0755	Hammer Weight and Drop	NA	Top of PVC Elevation	511.5 NGVD
Diameter of Hole (inches)	10	Diameter of Well (inches) 2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010"
Type of Sand Pack	20/40 Sili	ca	Type and Depth of Seal(s)	bentonite (42'-45', 60'-70 (0'-2')	'); filter sand (45'-60'); cement (2'-42'); cement
Comments	Monitoria	ng well coordinates: E	asting 1,154,398.22	Northing 141,268.17		

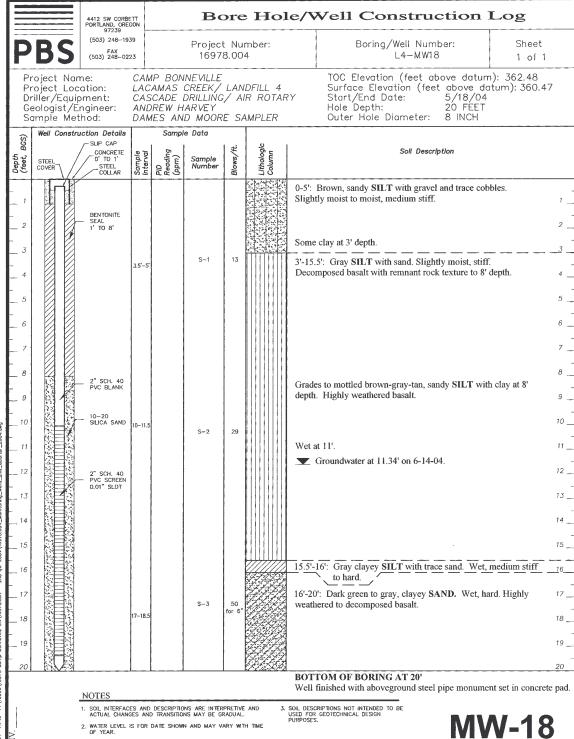
	5/	MPLES							Ω	5	
Elevation, feet (MSL) Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Boring	Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-505					Silty CLAY - Clayey SILT (CL-ML) - moist; red-brown; some sand; trace gravel; low to medium plasticity			0	0	1330	UXO Avoidance to 8' bgs advance 9.75" steel casing
5-					same as above			0	0	1334	centralizer at 7' bgs
-500 10-					same as above						
-495 15-		,			same as above			0	0	1355	
-490 20-					same as above			0	0	1400	
-485 25-					same as above - medium stiff; trace of yellow gravel	_					
-480 30—					same as above - some sand, some gravel			0	0	1450	Depth to groundwater 27' bgs 6/26/01 0755 centralizer at 27' bgs
-475 35											


Log of Boring L4-MW03B

Sheet 2 of 2


			SAI	MPLES							9	'n	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Well Completion	Fog	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-470	40-						same as above Sandy CLAY (CL) - mottled; weathered sand grains; some yellow gravel			0	0	1457	
-465	45				A. Man & Adoption and Adoption		same as above - some gravel to 1"; weathered andesite fragments						centralizer at 47' bgs
-460	50-						same as above - weathered andesite, altered sand grains, quartz nodules			0	0	1550	groundwater encountered at approx. 50 feet bgs 6/25/01 1600
-455	55-						same as above - weathered andesite			0	0	1605	
-450	60-		Run #1		93%		Phaneritic Andesite - unweathered bedrock; porphyritic; hornblende; olivine; hard horizontal fracture fracture 30 - 35 degrees			0	0		9.75" casing on top of competent bedrock; bentonite seal set prio to rock coring
-445	65-		Run #2		100%		vesicles horizontal fracture fracture 2 degrees			0	0		Bottom of Run #1; 93% Recovery; 100% RQD
-440	70-						heated fracture; crystalline carbonate infilling						Bottom of Run #2; 100% Recovery; 100%
-435	75-						Boring terminated at 70' bgs on 6/26/01 at 1416						RQD
-430	80-												
							URS						

Log of Boring L4-MW07B


Date(s) Drilled	12/19/02			Logged By	J. Rapp	Checked By	S. Wolfe	
Drilling Method	Air Rotary	1		Drill Bit Size/Type	Tricone	Total Depth Drilled (feet)	56.4	
Drill Rig Type	IR T3W In	gersoll Rand		Drilling Contractor	Cascade Drilling Inc.	Top of PVC Elevation (feet)	480.80	
Groundwater Level (feet)	39.32 feet	bgs on 12/20/02	0800	Hammer We Drop (lbs/in.	eight/ NA)	Approx. Surface Elevation (feet)	477.89 NGVD	
Diameter of Hole (inches)	10	Diameter of Well (inches) 2	2	Type of Well Casing	Schedule 40 PVC V-wrap	Screen Perforation	0.010"	
Type of Sand Pack	20/40, 10/2	20 Silica		Type/Thickn of Seal(s)	ness bentonite (2'-43' bgs); filter san interval (46-56')	d (41'-56' bgs); cem	ent (0'-2'); screen	
Comments	Monitorin	g well coordinate	es: Eastii	ng: 1154434	.64 Northing: 140735.34			

Log of Boring L4-MW07B

	4412 SW CORBET PORTLAND, OREGO 97239	TT DN	В	ore	Hol	e/V	Vell Construct	ion I	og
PBS	(503) 248–1939 FAX (503) 248–0223	3	Project 1697				Boring/Well Number L4-MW17	:	Sheet 1 of 1
Project No Project Lo Driller/Equ Geologist/ Sample Me	cation: l ipment: (Engineer: /	CAMP BON LACAMAS CASCADE I ANDREW H DAMES AN	CREEK/ DRILLING 'ARVEY	/ AI	IR ROTAR	Ϋ́Υ	Hole Depth: 15		
Well Const	SLIP CAP CONCRETE 0' TO 1' STEEL COLLAR	Sample Interval PID Reading S (ppm)	e Data Sample Number	Blows/ft.	Lithologic Column		Soil Description	ר	
- 1	BENTONITE SEAL 1' TO 4' 2" SCH. 40 PVC BLANK 10-20 SILICA SAND 2" SCH. 40 PVC SCREEN 0.01" SLOT					Slightl 5'-15': hard. Becom	Gray BASALT. Moderately to sli Gray BASALT. Moderately to sli description of the state of the	ightly weath	2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
20	NOTES 1. SOIL INTERFACES ACTUAL CHANGE	S AND DESCRIPTIONS AND TRANSITION	NS ARE INTER NS MAY BE GR	PRETIVE RADUAL.		SOIL DESCR USED FOR (PURPOSES.	PTIONS NOT INTENDED TO BE SEOTECHNICAL DESIGN		/-17

/5/04 11:49 P:\1

APPENDIX D	Α	P	PE	NE	XIC	D
------------	---	---	----	----	-----	---

Previous Quarterly Groundwater Monitoring Report Tables by PBS Engineering + Environmental (on enclosed CD)