DRAFT Groundwater Sampling and Analysis Report 2nd Quarter 2007

Camp Bonneville Military Reservation

23201 Northeast Pluss Road, Vancouver, WA 98682

E CAMP O

BONNEVILLE

UNITED STATES ARMY

Prepared For: Washington State Department of Ecology

Prepared By: Bonneville Conservation, Restoration & Renewal Team

August 2007

Engineering & Energy

August 31, 2007

Baker Environmental, Inc. A Unit of Michael Baker Corporation

5261 Fountain Drive Suite A Crown Point, IN 46307

219-736-0263 FAX 219-755-0233

Mr. Mike Gage Bonneville Conservation Restoration and Renewal Team, LLC (BCRRT) Camp Bonneville 23201 NE Pluss Road Vancouver, WA 98682

SUBJECT: Draft Groundwater Sampling and Analysis Report – 2nd Quarter, 2007 for the Camp Bonneville Facility located in Vancouver Washington

Dear Mr. Gage:

This letter and its attachments constitute the Draft Groundwater Sampling and Analysis Report – 2^{nd} Quarter, 2007 for submittal to the Washington Department of Ecology. Attached to this letter are:

- 1) Figures 1 and 2,
- 2) Landfill 4/Demolition Area 1 Groundwater Data,
- 3) Draft Groundwater Sampling and Analysis Report 2nd Quarter, 2007 by PBS Engineering and Environmental (PBS),
- 4) August 27, 2007 PBS Letter Report for Additional Groundwater Sampling at Monitoring Well L4MW17 for Perchlorate; and
- 5) Electronic copies of the submittal on CD.

Following your review, please forward two copies of the entire submittal to the following:

Mr. Ben Amoah-Forson, Ph.D., P.E. Washington State Department of Ecology Toxics Cleanup Program PO Box 47600 300 Desmond Drive Olympia, Washington 98504

Recent Groundwater Sampling Results at Boundary Area/Sentinel Wells

Upon review of historic groundwater data at Landfill 4/Demolition Area 1, the following appears to be occurring at the site:

- Perchlorate concentrations in wells located in close proximity to the landfill excavation (LF4-MW-2A&B) are experiencing significant fluctuations both seasonally and over time.
- Perchlorate concentrations in wells with perchlorate detections (LF4-MW-3 A&B, LF4-MW-4 A, and LF4-MW-5A) are experiencing less severe fluctuations both seasonally and over time.

Mr. Mike Gage August 31, 2007 Draft Groundwater Sampling and Analysis Report – 2nd Quarter, 2007 Camp Bonneville, Vancouver Washington Page 2

- Perchlorate concentrations (or non-detections) in the remaining wells (LF4-M2-1A&B, and LF4-MW-18) have had little change throughout the monitoring period.
- To confirm the slight detection of 1.7 part per billion Perchlorate reported in the 2nd Quarter LF4-MW-17 sample and address the potential for a non-representative/cross contaminated sample result, a replacement sample from well LF4-MW-17 was collected on August 1, 2007; the replacement sample results were non-detectable for Perchlorate.
- The increase in Perchlorate concentration observed in the 1st Quarter sample results from LF4-MW7B was not present in the 2nd Quarter when the Perchlorate concentrations returned to historical levels.
- The remaining volatile organic compound (VOC) detections have had little variation throughout the monitoring period with the exception of slight variations at well LF4-MW-2B.

Additional evaluations of the groundwater data for the Boundary Area/Sentinel wells and the Landfill 4/ Demolition Area 1 wells will be included in subsequent quarterly reports and ultimately in the Remedial Investigation/Feasibility Study (RI/FS) for RAU 2C and RAU 3 for groundwater.

Groundwater detections for VOCs are summarized in the attached tables and figures and monitoring well locations are shown on Figures 1 and 2. Completed details for the latest sampling event are included in the Attachment 3 – Draft Groundwater Sampling and Analysis Report – 2^{nd} Quarter, 2007 and Attachment 4 – August 27, 2007 PBS Letter Report for Additional Groundwater Sampling at Monitoring Well L4MW17 for Perchlorate.

If you have any questions, please contact me at (219) 736-0263.

Very truly yours,

MICHAEL BAKER JR., INC.

James D. Peyton, PG Senior Geologist

Mark J. Knight

Mark J. Knight, CHMM Assistant Vice President

JDP/amt

Mr. Mike Gage August 31, 2007 Draft Groundwater Sampling and Analysis Report – 2nd Quarter, 2007 Camp Bonneville, Vancouver Washington Page 3

Attachments

August 27, 2007

Mark Knight Michael Baker Jr. 5261 Fountain Drive, Suite A Crown Point, IN 46307

Re: Camp Bonneville - Additional Groundwater Sampling Monitoring Well L4MW17 for Perchlorate

Dear Mark,

On August 13, 2007, PBS Engineering and Environmental (PBS) collected a groundwater sample from monitoring well L4MW17 at Camp Bonneville. This monitoring well is located at the west side of Lacamas Creek at the base of the hill downslope of Landfill 4. The purpose of this additional groundwater sampling was to provide a follow-up water quality check on the detection of perchlorate in this monitoring well during the 2nd Quarter 2007 (collected June 18, 2007) groundwater sampling event. This letter report presents the details of water sample collection and the results of the laboratory analyses.

The groundwater sample was collected by Andrew Harvey and Barb Lary, senior geologists at PBS. A low-flow, minimal drawdown technique was used for groundwater purging and sampling. The monitoring well was sampled in accordance with the procedures established in the revised Groundwater Sampling and Analysis Plan (SAP). Health and safety procedures followed during site activities were in compliance with the procedures established in the Site Health and Safety Plan (HASP). Field measurements were obtained for pH, specific conductance, temperature, oxidation-reduction potential, and dissolved oxygen in groundwater samples using a YSI Model 556 water quality meter. Turbidity was measured with a separate turbidity meter. Water color was noted visually. Depth to water in the casing was measured at 11.24 feet below top of casing prior to pumping. At the time of sample collection, the following groundwater parameters were measured:

- Depth to water: 13.00 feet below top of casing
- Temperature: 19.0 degrees C
- Conductivity: 210 μS/cm
- Dissolved Oxygen: 3.52 mg/L
- pH: 7.16
- Oxidation-reduction Potential: -31.0 millivolts
- Turbidity: 6.31 NTUs
- Water color: clear

Bandon Bend Boise Eugene Portland Seattle Tri-Cities Vancouver

Mark Knight Camp Bonneville - Additional Groundwater Sampling Monitoring Well L4MW17 for Perchlorate August 27, 2007 Page 2 of 2

The groundwater sample was labeled L4MW17P, stored on ice, and shipped to Laucks Testing Laboratories in Seattle, Washington, under chain-of-custody on August 13, 2007. The sample was analyzed for perchlorate (EPA Method 314.0), total suspended solids (EPA Method E160.2) and total dissolved solids (EPA Method E160.1). Laucks Testing Laboratories has the following lab sample ID reference numbering on the sample receipt confirmation log: Sample number CAB35-001.

Results and Evaluation

Perchlorate was not detected in the groundwater sample at a level above the laboratory detection limit of 1.0 μ /L (micrograms per liter). The total dissolved solids concentration was 230 mg/L (milligrams per liter). The total suspended solids concentration was 4 mg/L.

In the June 2007 sampling event, perchlorate was detected in the groundwater sample from monitoring well L4MW17 at a concentration of 1.7 μ g/L, slightly above the laboratory detection limit of 1.0 μ g/L. With the exception of the June 2007 analysis, perchlorate has not been detected in monitoring well L4MW17 above the detection limit of 1.0 μ g/L in any quarterly sampling event since installation of the well in May 2004.

Copies of laboratory results and the chain of custody forms are attached.

Sincerely,

Archen F. Horney

Andrew Harvey Senior Geologist/Project Manager

Attachments: Laboratory Data Reports

L4-MW-1A

L4-MW-3A

L4-MW-3B

L4-MW-4A

L4-MW-5A

L4-MW-7B

940 South Harney St. Seattle, WA 98108 (206) 767-5060 FAX (206) 767-5063

FAX Co	ver Sheet	
То:	FAX Number:	
Company:	Date:	8-24-07
From:	No. of Pages (including cover page):	2
Preliminary Results for:		
Workorders(s): <u>M</u>		
SDG (s): <u>(14B35</u>		
Analysis: TSS, TDS, Perc		
Verified by: Aller	8	
Do these samples need to be re-analyzed? If yes, which samples?:	Yes	No
Reason:		
_		
The preliminary results for the re-analysis will be	e faxed on (date):	

Laucks does not certify that these results meet NELAC Standards because all NELAC required elements are not included in the facsimile. Please refer to the full report to review all NELAC required elements.

The information contained in or attached to this FAX message is intended only for the confidential use of the individual(s) named above. If you are not the named recipient, or an agent responsible for delivering it to the named recipient, you are hereby notified that you have received this document in error, and that review, dissemination, or copying of this communication is prohibited. If you have received this communication in error, please notify us immediately by telephone at 206-767-5060, and return the original documents to us by mail at the address listed above.

Laucks Testing Laboratories, Inc.

Final Results

Client: SDG Number:	PBS Engi Environm CAB35	ineering and ental		Pro	oject:		Camp B	Camp Bonneville							
Sample Number:	L4MW17F	5		Dat	te/Time	Collected	: 08/13/20	08/13/2007 12:26							
Lab Sample ID:	CAB35-00		Dat	te/Time	Received	: 08/14/20	08/14/2007 08:20								
Method:	E160.1			Uni	it:		mg/L	mg/L							
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.					
Total Dissolved Solids (TDS)		TDS	10	230		20	20	08/15/2007	08/17/2007	R020502					
Method:	E160.2			Un	it:		mg/L	mg/L							
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.					
Suspended Solids, Tota	ıl	TSS	1	4		2	2	08/20/2007	08/22/2007	R020669					
Method:	E314.0				it:		ug/L	ug/L							
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.					
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	08/21/2007	08/22/2007	R020712					

LAUCKS TESTING LABORATORIES

SAMPLE DATA PACKAGE

PBS ENGINEERING & ENVIRONMENTAL

SDG NO.: CAB30

JULY 24, 2007

LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

To: PBS Engineering & Environmental Project Name: Camp Bonneville SDG No.: CAB30 Date of Report: July 24, 2007

SAMPLE RECEIPT, IDENTIFICATION, AND GENERAL COMMENTS:

Sample Receipt and Identification:

The samples submitted under the laboratory number(s) indicated above were identified and analyzed as tabulated below. The samples were collected and received on the dates noted on the enclosed chain-of-custody copies, Attachment A.

Client Sample Identification	Laucks Sample <u>Identification</u>	Testing Analytical <u>Request</u>
TRIP BLANK	CAB30-001	VOA
15L4MW01BW	CAB30-002	VOA/ORD/PERC
15L4MW01AW	CAB30-003	VOA/ORD/PERC
15L4MW04AW	CAB30-004	VOA
15L4MW02BW	CAB30-005	VOA
15L4MW425W	CAB30-006	VOA
15L4MW04AW	CAB30-007	ORD/PERC
15L4MW02BW	CAB30-008	ORD/PERC
15L4MW425W	CAB30-009	ORD/PERC

Analytical Request Key:

VOA =	Volatile Organics by Method 8260B
ORD =	Ordnance by Method 8330
	PETN/Nitroglycerin by Method 8332
PERC =	Ammonium Perchlorate by Method 314.0

Sample Receipt Comments:

The temperature blanks measured above the control limit of 6° C.

One of the VOA trip blank vials contained an air bubble less than 1/4 inch in size.

GENERAL REMARKS ON ORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON ORGANIC ANALYSIS."

Manual Integrations:

One or more analytes may have been manually integrated on the data system quantitation reports. All manual integrations have been flagged, initialed, and dated by the analyst. A list of the manual integration flags is detailed below.

- M Manual integration due to irregular peak shape
- MS Manual integration due to split peak
- MR Manual integration due to retention time shift
- MI Manual integration of correct isomer
- MT Manual integration due to peak tailing
- MB Manual integration due to irregular baseline

Holding Time Compliance:

Volatile Organic Compounds:

The holding time is 14 days calculated from date of collection in both soil and water samples. All samples were analyzed within holding time.

Ordnance, PETN/Nitroglycerin:

The holding time to extraction is 7 days in water and 14 days in soil calculated from date of collection. The holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

Volatile Fraction (8260):

Initial Calibration

Analysis of the initial calibration yielded %RSD value for methylene chloride that exceeded 15% in the ICAL performed 06/04/2007. Using an alternative curve fit this analyte had r² values greater than 0.990 (r values greater than 0.995) and was therefore compliant. The submitted Forms 6 and 7 document the evaluation of the initial calibration and continuing calibration standards using %RSD and %difference values. Additional forms have been submitted listing the r² values and % drifts for analytes calibrated with alternative curve fits. These forms are located in the Standards Data section of the data package.

Continuing Calibration Verification (CCV):

Analysis of the CCV performed on 06/26/2007 yielded a percent difference value for dichlorodifluoromethane that exceeded 20% due to decreased response. Because sample results were reported well below the reporting limit (RL) the chance of reporting any false negatives for those compounds that recovered low at the RL was negligible.

Ordnance Fraction:

All quality control parameters were met.

PETN/Nitroglycerin Fraction:

All quality control parameters were met.

GENERAL REMARKS ON INORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON INORGANIC ANALYSES."

SPECIFIC REMARKS ON INORGANIC ANALYSES:

Holding Time Compliance:

Laucks calculates holding time compliance for inorganic determinations using the date on which reportable data were acquired.

Miscellaneous:

The following analytes do not have a Contract Laboratory Program holding time. The holding times tabulated below derive from the relevant EPA methods and are applicable when the sample was appropriately preserved and/or cooled. All samples submitted followed the preservation guidelines unless explicitly noted otherwise.

Analyte	Holding Time	<u>Violations</u>
Perchlorate	28 days	None
Miscellaneous Inorganics:		

No comments.

LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

ABBREVIATIONS

Several abbreviations can appear in our reports. The most commonly employed abbreviations are as follows:

- U The analyte of interest was not detected to the limit of detection indicated.
- SDL Sample Detection Limit. The SDL can vary from sample to sample, depending on sample size, matrix interferences, moisture content and other sample-specific conditions.
- PQL Practical Quantitation Limit. The limit is drawn from the test method and usually represents the SDL multiplied by a matrix-specific factor.
- DB Dry Basis. The value reported has been back-calculated to normalize for the moisture content of the sample.
- AR As-Received. The value has not been normalized for moisture.

ORGANIC ANALYSES:

- B When used in relation to organics fractions, the "B" flag indicates that the analyte of interest was detected in the method blank associated with the sample, as well as in the sample itself. The "B" flag is applied without regard to the relative concentrations detected in the blank and sample.
- J The analyte of interest was detected below the routine reporting limit. This value should be regarded as an estimate.
- T The flagged values represent the SUM of two co-eluting compounds. The SUM of these two values is shown as though it were a result for each of them. The two figures should not be added together.
- E The flagged value was reported from an analysis that exceeded the linear range of the instrument. See additional comments for further discussion of the circumstances. Values so flagged should be considered estimates.
- P When a dual column GC technique is employed, this flag indicates that test results from the two columns differ by more than 25%. Generally, we report the higher value.
- C The flagged analyte has been confirmed by GC/MS analysis. The value reported may be derived from either the initial of confirmatory (GC/MS) analysis. See specific report comments for details.
- Z When two or more sets of results are submitted, the Z-flagged data indicates that this is the secondary result.
- CRQL Client requested Quantitation Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Quantitation Limit.

INORGANIC ANALYSES:

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
- E The reported value is estimated because of the presence of interference. The serial dilution was not within control limits.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.
- CRDL Client Requested Detection Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Detection Limit.

RELEASE OF DATA

Laucks certifies that these results meet all requirements of the NELAC standards, except where otherwise noted.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Respectfully submitted,

Mike Baxter Project Manager

Harry Romberg Quality Assurance Officer

HOW TO CONTACT US:

All Laucks Testing Laboratories staff members can be reached at the same telephone and facsimile numbers: (206) 767-5060 by phone, (206) 767-5063 by FAX.

REQUESTS FOR DUPLICATE COPIES:

This packet has been checked for accuracy. All pages are present and in sequential order. Please see Attachment B for a detailed record.

In the event that duplicate data copies are needed, Laucks will accommodate your request at a fee of twenty-five cents (\$0.25) per copy, plus shipping. If the data are in storage, there will also be a fee for retrieval.

7

ATTACHMENT A

Chain-of-Custody Copies

	LAUCK	S TESTING L	ABORATOR	IES, INC S	SAMPLE CONF	RMATION LOG	
Sample ID (SDG-#)	VTSR	Collected On	Client ID	314.0 Perchlorate	8260B VOCs (LTL Routine)	8330 Explosives Residues	8332 Nitroglycerin & PETN
CAB30- 001	06/20/2007 08:30 AM	06/19/2007 12:00 AM	TRIP BLANK		IN		
CAB30- 002	06/20/2007 08:30 AM	06/19/2007 09:50 AM	15L4MW01BW	IN	IN	IN	IN
CAB30- 003	06/20/2007 08:30 AM	06/19/2007 10:55 AM	15L4MW01AW	IN	IN	IN	IN
CAB30- 00 4	06/20/2007 08:30 AM	06/19/2007 12:15 PM	15L4MW04AW		IN		
CAB30- 005	06/20/2007 08:30 AM	06/19/2007 04:30 PM	15L4MW02BW		IN		
CAB30- 006	06/20/2007 08:30 AM	06/19/2007 02:00 PM	15L4MW425W		IN		
CAB30- 007	06/20/2007 08:30 AM	06/19/2007 12:15 PM	15L4MW04AW	IN		IN	IN
CAB30- 008	06/20/2007 08:30 AM	06/19/2007 04:30 PM	15L4MW02BW	ĨN		IN	IN
CAB30- 009	06/20/2007 08:30 AM	06/19/2007 02:00 PM	15L4MW425W	IN		IN	IN
Approved By Notes:	: [///l				On: UMU07	~	
<u> </u>		Samo	les identified wi	th a '*' client has	s requested OC for		
	LEGEND: -:St	arted , +:Comple	eted , IN:Logged	In , P:Preparati	on , A:Analysis , X:	Cancelled, PL:Pre-lo	gged
			FO	RM LTL-PM-8.0			

Filanc		<	요 같은	1. US 2. 85	A A A									and a sumplify the second s			MB SM	JOB/P	TELEF	PROJ	PROJI	ATTEN		ADDR	COMP	10
e Chaige		Ja	REACH	E ONE LI SPECIFI	standar					u	12	674	151	2	121			0. NO.:	Hone		ECT NAV	TION.		ESS:	ANY:	NFORMA
േഷിയില		5 DC	TESTS 1	C IN TES	d turnar						Y Y	+ N	A M	4 2	44	2	S	-		TACE	ι. Γ	li	~ .	J., .		WONW
Collectio]	5	O BEPE	AMPLE. T REQUE	ound tir						84	00	wp.	0.8	WO.	t	AMPLE I	04	AF	Ţ		A A	00		R.	
ະ ໂອຍຣ ຄ			RFORME	STS	ne is as			Source of the second			6	19 K	4AW	AN	N B	AN	D / LOC/	0,1,0	5 9 9	200	14	Z	LA	1		SHUE
wy be a	- Contraction of the contraction	X	Noles G		sumed			4 Paryang Porteation	an daga se		Sandigana Sanné	~		Sh.hample		ľ	TION	000	S.	i former	. J		9	N N N		
oplied to		Ĩ			unless (na hada an					FAX:	AP		2 C C C C C C	PQ A	Ga		INCIBI
delinque		گ	- The		otherwis						S	6	196	0/9	0/10	610	, pa	~	203-	G	I E	K		BE		INC.
inf accoc		Ly is			e marke						1 44	124	144	10.712	640	107	Ē	044	148-		, C		4	17 ×		99 111 111
ints.					d.						all t	8	21/5	Ř	5		TIME	C	0		(L)		60	KAN AN		
		170	DA		B. The lab						E,	Ż	W	\sim	W	K	MAT	912	0	1 I			WOR			£
		007			oratory ma						U)	S	ιc/	3	8	R		WA IN	TER, SC	WI OD			CORDEF	•		Ř
			IIY, SIAIE	DORESS	y not be res									7	X		4	No. C	FCON	Tau	SPECIE	2	Î		ω	sus 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 A A			- ⁻ 217		ponsible fo									$\overline{\mathbb{N}}$	X		4	SET.	-05	UE	75 ~					TODY
Č V	ć		3		r missed ho						$\overline{\mathbf{X}}$	X	X	\mathbf{x}		 	F	S ER	\gtrsim	N N					- p	HEC.
	-	(m)			olding time						<u> </u>	P		/		\wedge	->	È	S.S.	OR,	Z A					0 B O
	And a sub-		EV (SIG		for samples			1			807.05 3							$\langle \langle \rangle$		Carl of the second seco						SD
			GINVIN		s received v					X										Concession of the second	and a second		y S	رمی ۱	PAGE	ດ #
			TIMES T		vith less the																				 , <	BB2
			ABO	RUS	an 50% of t																	Es l			Р	C ⁴
			ATO		he analytic:																			: K		
		66	RY AP	TO P	al hold time																					
			VOBd	H CND	remaining									A Separation of the second									vich Ave.,			J
	2	<u>NP</u>		5 	Please cor																		Yukima, W			
	TEMP				vlact the tal																		20686 V	NA 98108		
	SEAL	s (60% S	HRS. (10		poratory for									and the second of the second			NS R	OBSE					(S)/9)]]4)			2
		Ğ R	0% SUR VIR	CUEST	- further info					Add Hollinghampergrammer and holing				and the second of the second				NOIM					8-4695 EA		4	
			7	AWERS	ormation.					and a final second s				distration a statistic of			00 C	50				`,	X 452-126	X 767-5063	0	
				<i></i>	•	 	<u></u>																-			
Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB30		Taken By:	CLIENT			
Cooler:	UNLABELED		Transferred:	FEDEX			
COC #:	43104						
Project:	Camp Bonneville (PBS Engineeri	ng and Envi	ronmental)				
Date sampl	es were received at the laboratory:	6/20/2007					
Date cooler	was opened:	6/20/2007	8:30AM				
A. <u>PREL</u>	IMINARY EXAMINATION PHA	<u>ASE:</u>					
1. Did cool if YES	er come with a shipping slip (airbill, etc.) , record carrier name and airbill number:	? FEDEX 8588	63412877		YES		
2. Were cu	stody seals unbroken and intact at the dat	e and time of a	nrrival?		INTACT		
Date On	Custody Seal:	Custody Seal	s Description: T	WO ON FRONT			
 Were cu Did you Were cu 	stody papers sealed in a plastic bag and ta screen samples for radioactivity using the stody papers filled out properly (ink. sign	aped inside to e Geiger Coun	the lid?		YES NO		
6 Did you sign custody papers in the appropriate place?							
7 If requir	ed was enough cooling material present?		·····		IES VES		
8. Have de	signated person initial here to acknowled	ge receipt of c	ooler: HA		1125		
B. <u>LOG-</u>]	I <u>N PHASE:</u> Dat	e samples wer	e loggod-in:	6/20/2007 8:45AM			
Logged-in	by <u>Helen Huizenga</u> (sig	n)/	a pringers	Ga-			
9. Describe	e type of packing in cooler:		0	1			
10. Were a	Il bottles sealed in separate plastic bags?				YES		
11. Were l	abels in good condition?				YES		
12. Were a	Il bottle labels complete (ID,date,time sig	nature,preserv	vative,etc.)?		YES		
13. Did all	bottle labels agree with custody papers?				YES		
14. Were c	orrect containers used for the tests indica	ted?			YES		
15. Were t	he correct pHs observed?				YES		

16. Was a sufficient amount of sample sent for tests indicated?
YES
17. Were bubbles absent in VOA samples?
NO
18. Temperatures:
8.3

DISCREPANCIES:

ONE TRIP BLANK CONTAINS A BUBBLE <1/4". TEMPERATURE WAS HIGH.

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB30

Cooler: UNLABELED

Temperatures: 8.3

COC #: 43104

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB30-001	0001	40 ml OTWS, clear glass, HCl	N/C	< 1/4
	0002	40 ml OTWS, clear glass, HCl	N/C	None
CAB30-002	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB30-003	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB30-004	0001	40 ml OTWS, clear glass, HCl	N/C	None
	0002	40 ml OTWS, clear glass, HCl	N/C	None
	0003	40 ml OTWS, clear glass, HCl	N/C	None
CAB30-005	0001	40 ml OTWS, clear glass, HCl	N/C	None
	0002	40 ml OTWS, clear glass, HCl	N/C	None
	0003	40 ml OTWS, clear glass, HCl	N/C	None
CAB30-006	0001	40 ml OTWS, clear glass, HCl	N/C	None
	0002	40 ml OTWS, clear glass, HCl	N/C	None
	0003	40 ml OTWS, clear glass, HCl	N/C	None

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

Finance		2	ہ 25	1 US	A. A					LAB SA	PROJI PROJI TELEF JOB/P	ADDR	COMP
) Charge		N.	REACH		standan				5		ECT NAV ECT CON HONE: .0. NO.:	ESS:	NEORMA Any:
s and/or		X	TESTS I AMPLE	NE PER S IN TES	d turnar				HH	o			
Collectio		C	O BE PE	T REQUE	ound ti				00	AMPLE		A B B	
un Fees			RFORM	STS	me is at				Ии		AN 22 P	723	
may be :	and and a supply of the second	Whee	K ED		ssumec					ATION	62000	AP &	REPO
applied t		Æ		NAME	untess								BIING
o delinq		S)	Ĩ.		; otherw							EX BE	
uent acc		JE J			/ise ma				100	DATE	1420	102	S.
counts.				0	rked.				12.11	TIME	62 10	77W	HE O
		26			8, 1)				N Z		<u> </u>	<u> (')</u>	
		Foldi	DATE		e laborato					Maj	TRIX: WATER	ORK OF	NIN 62
2				ADDR	ry may not						NO. OF NO.		δ φ φ
			SIAIE, ZI	ESS	be respon				-2-	-6	CONTAINERS	*	ω Si F
					sible for mi					17	ELA EC	7	SP
λ			긢		ssed holdi						ECANG		ĒCO
			EWEDE	N-S	ng time for						"LOCATE		DR
	******		X (SIGN		' samples r		1						SDO
			AND P		eceived wi							N S	PAGE_
UTUANA.					th less that							BMIT	- AB
			ABO	SOL SOL	n 50% of 1							TED A	PF O
			ATO		he analytic								
			AA AE	TOF	al hold tim							1 140 Sout	
			PRO/		e remainin							h Harney Iwich Ave M	E D
1	~			б П	g. Please (St., Seatth - Vakinu,	
					contact the							e, WA 9890	
	IP	VYS (50%	18 HRS. (Round	 laboratory 					Ē		1 Us (206)	
		(SUR)	(100% S (80R)	FEOUE	/ for furthe					TRUCT	EN IS SO) 767-5060) 248-4693	
	Z		Un	ST	r laformati					Qes	Q PECIA PECIA	FAX 767	3
	XX			1. 77	00.							-5063	-

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB30		Taken By:	CLIENT			
Cooler:	AAD575		Transferred:	FEDEX			
COC #:	43105		× .				
Project:	Camp Bonneville (PBS Engineering	and Envi	ronmental)				
Date sampl	es were received at the laboratory:	6/20/2007					
Date cooler	was opened:	6/20/2007	8:30AM				
A. <u>PREL</u>	IMINARY EXAMINATION PHASE	<u>2:</u>					
1. Did cool	er come with a shipping slip (airbill, etc.)?			•••••	YES		
if YES	, record carrier name and airbill number: FE	DEX85886	53412877				
2. Were cu	stody seals unbroken and intact at the date an	id time of a	rrival?		INTACT		
Date On	Custody Seal: Cu	stody Seals	Description: T	WO ON FRONT			
3. Were cu	stody papers sealed in a plastic bag and tapec	l inside to t	he lid?		YES		
4. Did you	screen samples for radioactivity using the Ge	eiger Count	er?		NO		
5. Were custody papers filled out properly (ink, signed, etc.)? YE							
6. Did you sign custody papers in the appropriate place? YE							
7. If requir	ed, was enough cooling material present?				YES		
8. Have de	signated person initial here to acknowledge re-	eceipt of cc	oler: AA				
B. <u>LOG-I</u>	<u>N PHASE:</u> Date sa	mples were	logged-in:	6/20/2007 8:50AM			
Logged-in l	byHelen Huizenga(sign)	Aller	Kuiserop)			
9. Describe	type of packing in cooler:						
10. Were a	Il bottles sealed in separate plastic bags?				NO		
11. Were la	abels in good condition?				YES		
12. Were a	Il bottle labels complete (ID,date,time signati	ire,preserva	ative,etc.)?		YES		
13. Did all	bottle labels agree with custody papers?				YES		
14. Were c	orrect containers used for the tests indicated?		· · · · · · · · · · · · · · · · · · ·		YES		

15. Were the correct pHs observed?YES16. Was a sufficient amount of sample sent for tests indicated?YES17. Were bubbles absent in VOA samples?YES

18. Temperatures: **6.7**

DISCREPANCIES:

TEMPERATURE WAS HIGH

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB30

Cooler: AAD575

Temperatures: 6.7

COC #: 43105

Sample	Bottle #	Bottle Description	pН	Bubbles
CAB30-007	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL cylinder, poly	7	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

					Nel N		rival Ri	010 .10	iccounts.	delinquent s	e applied to	Fees may b	t/or Collection	 Oharges and 	Finance
									-			Sunday (1) Sunday Sunday			
2/Q7 * □5 DAYS (60% SUP)	S 42	jan mo	SUS		on N	S	4	2021	5 V	000	Mike	and as a second decourse	1 K	Wh	
* 24-48 HRS. (100% SUR)	IND IND		TMIRELOW N	WED BY (SIG	H H C			IIMU		n) A	IN AND PRIM	HEP EV (SIG	REUNOUIS	TEACH SAME	70
T	APPRO	LABORATO		*****		STATE, ZIP	CITY, S				ATTN	FORMED	TS TO BE PER	ECK OFFTES	3. CHE
SIS 10 TOTAL NO. OF CONTAINERS	RNAROUN			π	a≓ (NN AISI®N	ESS	ADDRI		Ble		NAME	\$	ER SAMPLE.	e one l'ine p	
ng. Please contact the laboratory for further information.	tcal hold time remain	tion 50% of the analyt	s received with less	g time for sample:	x missed holding	be responsible fo	oratory may not	B . The lab:	tarked.	therwise n	ed unless o	e is assum	naround tim	standard tur	A, A S
					- ¥		S X	15	- F	oteth		X	57, ML	1675	
							151		No.2	19 ho				K-44	> 24
INSTRUCTIONS					- L	P		MAT	TIME	DATE	F rank		SAMPLE ID		LAB SAH
OBSERVATIONS					KAN KAN	X PLC	NO. OF	RUX	6-02	622	G FAX: 5	000) 191-E	701-24	O. NO.:	TELEPH JOB/P.(
				A CA	X C	TAINERS	UL OR SPECIE	ļ		12E	HARVO	E F	R	ICT NAME:	PROJE
7-54. Scattle, WA 98108 (200) 767-50460 EAX 767-5063 e., Yakimu, WA 98902 (309) 248-4693 EAX 452-1266	940 South Harney 1106 Ledwich Av PERFORIN	TED AT:	SUBMI					WORK	ALK AL	K PTT	ARV	LAND -	Part	TION:	ADDRE
Laboratories, Inc.	Testing	or J J O		D SD	THECOR	JOTE Adolsn	IN OF C	CHA	EE BELOW	LING) OFTINO/BII		AMILE BE US	NEORMATION ANY:	THIS IN COMPA

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB30	Taken By:	Client	
Cooler:	AAD576	Transferred:	Fed Ex	
COC #:	43106			
Project:	Camp Bonneville (PBS Engineering	g and Environmental)		
Date sampl	es were received at the laboratory:	6/20/2007		
Date cooler	was opened:	6/20/2007 8:30AM		
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	<u>E:</u>		
L Did cool if YES	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 85	58863412877		YES
2. Were cu	stody seals unbroken and intact at the date a	nd time of arrival?		INTACT
Date On	Custody Seal: C	ustody Seals Description: O	ne in front and back	•
3. Were cu	stody papers sealed in a plastic bag and tap	ed inside to the lid?		VES
4. Did you	screen samples for radioactivity using the C	Geiger Counter?		YES
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?		YES
6. Diď you	sign custody papers in the appropriate place	?		YES
7. If requir	ed, was enough cooling material present?			YES
8. Have de	signated person initial here to acknowledge	receipt of cooler:		
В. <u>LOG-</u>	NPHASE: Date s	amples were logged-in:	6/20/2007 9:00AM	
Logged-in l	by <u>Zoriah Weith</u> (sign)	· •••		
9. Describe	type of packing in cooler:			
bubble	e wrap			
10. Were a	Il bottles sealed in separate plastic bags?			YES
11. Were la	abels in good condition?			YES
12. Were a	ll bottle labels complete (ID,date,time signa	ture,preservative,etc.)?		YES
13. Did all	bottle labels agree with custody papers?			YES
14. Were c	orrect containers used for the tests indicated	?		YES
15. Were tl	ne correct pHs observed?			YES
16. Was a s	sufficient amount of sample sent for tests in	licated?		YES
17. Were b	ubbles absent in VOA samples?			YES
18. Temper	ratures: 6.8			

ĩ

DISCREPANCIES:

Temperature was high.

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB30 Cooler: AAD576 Temperatures: 6.8 COC #: 43106

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB30-008	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	500 ml cylinder, poly	7	N/A
CAB30-009	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	500 ml cylinder, poly	7	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

LAUCKS TESTING LABORATORIES 940 S. Harney Seattle, WA 98108

ATTACHMENT B

Index

LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

PBS Engineering & Environmental

SDG No.: CAB30

- I. Narrative: 2-7
- II. Chain-of-Custody: 8-18
- III. Index: 19-20
- IV. Forms Summary: SUM- 1-119

Judy Echlund Date: 7/24/07 Completed and checked by:

FORMS SUMMARY

SDG CAB30

VOLATILES ANALYSIS

2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract: _____

Run Sequence: <u>R019020</u>

SDG No.: CAB30

Level: (LOW/MED) <u>NONE</u>

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB30-004) 15L4MW04AW	102	1.07	106	107	0
(CAB30-003) 15L4MW01AW	102	107	105	105	0
(CAB30-002) 15L4MW01BW	103	107	104	103	0
(CAB30-001) TRIP BLANK	101	104	107	108	. 0
(B062607MVOWB1) B062607MVOWB1	102	105	105	107	0
(S062607MVOWB2) S062607MVOWB2	102	103	106	106	0

SMC1	(DBF)	=	Dibromofluoromethane
SMC2	(DCA)	=	1,2-Dichloroethane-d4
SMC3	(TOL)	#	Toluene-d8
SMC4	(BFB)	=	4-Bromofluorobenzene

Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

85~115

70-120

85-120

75-120

2

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

SDG No.: CAB30

Run Sequence: <u>R019108</u>

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB30-006) 15L4MW425W	102	107	107	107	0
(CAB30-005) 15L4MW02BW	103	106	105	107	0
(B062807MVOWB1) B062807MVOWB1	100	106	107	108	0
(S062807MVOWB1) S062807MVOWB1	102	106	107	106	0

SMCl	(DBF) =	Dibromofluoromethane	85-115
SMC2	(DCA) =	1,2-Dichloroethane-d4	70-120
SMC3	(TOL) =	Toluene-d8	85-120
SMC4	(BFB) =	4-Bromofluorobenzene	75-120

Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

Lab Name: <u>Laucks Testing Labs</u>	Contract: N/A
BS Run Sequence: R019020	SDG No.: <u>CAB30</u>
BS Lab Sample ID: <u>S062607MVOWB2</u>	
Level: N/A	Units: <u>uq/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	34.91	70	30-155
Chloromethane	50.0	38.96	78	40-125
Vinyl chloride	50.0	41.69	83	50-145
Bromomethane	50.0	41.14	82	30-145
Chloroethane	50.0	40.97	82	60-135
Trichlorofluoromethane	50.0	44.6	89	60-145
1,1-Dichloroethene	50.0	54.68	109	70-130
Acetone	50.0	42.19	84	40-140
Carbon disulfide	50.0	52.84	106	35-160
Methylene chloride	50.0	46.9	94	55-140
trans-1,2-Dichloroethene	50.0	51.01	102	60-140
1,1-Dichloroethane	50.0	50.96	102	70-135
cis-1,2-Dichloroethene	50.0	49.01	98	70-125
2-Butanone	50.0	46.98	94	30-150
Chloroform	50.0	49.11	98	65-135
1,1,1-Trichloroethane	50.0	50.86	102	65-130
Carbon tetrachloride	50.0	49.55	99	65-140
Benzene	50.0	48.09	96	80-120
1,2-Dichloroethane	50.0	49.47	99	70-130
Trichloroethene	50.0	49.05	98	70-125
1,2-Dichloropropane	50.0	47.84	96	75-125
Bromodichloromethane	50.0	48.33	97	75-120
cis-1,3-Dichloropropene	50.0	55.52	111	70-130
4-Methyl-2-pentanone	50.0	46.78	94	60-135
Toluene	50.0	49.06	98	75-120
trans-1,3-Dichloropropene	50.0	44.22	88	55-140
1,1,2-Trichloroethane	50.0	47.75	96	75-125
Tetrachloroethene	50.0	49.06	98	45-150
2-Hexanone	50.0	53.54	107	55-130
Dibromochloromethane	50.0	48.93	98	60-135
Chlorobenzene	50.0	48.92	98	80-120
Ethylbenzene	50.0	48.77	98	75-125
m,p-Xylene	100	98.71	99	75-130
o-Xylene	50.0	48.19	96	80-120

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

Lab Nat	ne: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
BS Run	Sequence: <u>R019020</u>	SDG No.: <u>CAB30</u>
BS Lab	Sample ID: <u>S062607MVOWB2</u>	
Level:	N/A	Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
Styrene	50.0	46.92	94	65-135
Bromoform	50.0	42.29	85	70-130
1,1,2,2-Tetrachloroethane	50.0	48.74	97	65-130

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: 0 out of 37 outside limits

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019108</u>	SDG No.: <u>CAB30</u>
BS Lab Sample ID: <u>S062807MVOWB1</u>	

Level: N/A

Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	26.82	54	30-155
Chloromethane	50.0	34,46	69	40-125
Vinyl chloride	50.0	36	72	50-145
Bromomethane	50.0	35.79	72	30-145
Chloroethane	50.0	34.79	70	60-135
Trichlorofluoromethane	50.0	40.01	80	60-145
1,1-Dichloroethene	50.0	56.45	113	70-130
Acetone	50.0	43.56	87	40-140
Carbon disulfide	50.0	49.03	98	35-160
Methylene chloride	50.0	50.81	102	55-140
trans-1,2-Dichloroethene	50.0	53.26	107	60-140
1,1-Dichloroethane	50.0	54,17	108	70-135
cis-1,2-Dichloroethene	50.0	51.49	103	70-125
2-Butanone	50.0	47.84	96	30-150
Chloroform	50.0	51.8	104	65-135
1,1,1-Trichloroethane	50.0	52.88	106	65-130
Carbon tetrachloride	50.0	51.37	103	65-140
Benzene	50.0	50.67	101	80-120
1,2-Dichloroethane	50.0	52.85	106	70-130
Trichloroethene	50.0	50.55	101	70-125
1,2-Dichloropropane	50.0	50.54	101	75-125
Bromodichloromethane	50.0	50.7	101	75-120
cis-1,3-Dichloropropene	50.0	58.1	116	70-130
4-Methyl-2-pentanone	50.0	48.23	96	60-135
Toluene	50.0	51.48	103	75-120
trans-1,3-Dichloropropene	50.0	45.97	92	55-140
1,1,2-Trichloroethane	50.0	48.61	97	75-125
Tetrachloroethene	50.0	50.11	100	45-150
2-Hexanone	50.0	53.02	106	55-130
Dibromochloromethane	50.0	49.35	99	60-135
Chlorobenzene	50.0	51.12	102	80-120
Ethylbenzene	50.0	51.12	102	75-125
m,p-Xylene	100	102.53	103	75-130
o-Xylene	50.0	50.19	100	80-120

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
BS Run Sequence: <u>R019108</u>	SDG No.: <u>CAB30</u>
BS Lab Sample ID: <u>S062807MVOWB1</u>	
Level: <u>N/A</u>	Units: uq/L

Analyte	Spike Added	Found	% Rec #	Rec Limít
Styrene	50.0	48.75	98	65-135
Bromoform	50.0	42.36	85	70-130
1,1,2,2-Tetrachloroethane	50.0	50.65	101	65-130

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _ 0_out of _37_outside limits

4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO. B062607MVOWB1

Lab Name Laucks Testing Labs	Contract:
	CDC No. (AB30
	SDG NO.:
Lab File ID: <u>B0626022.D</u>	Lab Sample ID: <u>B062607MVOWB1</u>
Date Analyzed:06/26/2007	Time Analyzed: 18:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Heated Purge: (Y/N) N
Instrument ID: 5973B	Matrix: Water

	CLIENT	LAB	LAB	DATE	TIME	RUN
0 7	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE DOLOGOG
0 T.	SUG260/MVOWB2		BU626020.D	06/26/2007	10.47	RUI9020
02	IRIP BLANK	CAB30-001	B0626023.D	06/26/2007	10:47	R019020
0.3	15L4MW01BW	CAB30-002	B0626031.D	06/26/2007	22:10	R019020
04	15L4MW01AW	CAB30-003	B0626032.D	06/26/2007	22:35	R019020
05	15L4MW04AW	CAB30-004	B0626033.D	06/26/2007	23:00	R019020
06						
07					******	
08						
09	· · · · · · · · · · · · · · · · · · ·					
10						
11						
12						
13	· · · · · · · · · · · · · · · · · · ·					·
14						· · · · · · · · · · · · · · · · · · ·
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27				·		
28			5			***************************************
29						*****
30						

4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO. B062807MVOWB1

Lab Name Laucks Testing Labs	Contract:
	SDG No.: <u>CAB30</u>
Lab File ID: B0628011.D	Lab Sample ID: B062807MVOWB1
Date Analyzed: 06/28/2007	Time Analyzed: 13:41
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Heated Purge: (\dot{Y}/N) N

Matrix: <u>Water</u>

CLIENT LAB LAB DATE TIME RUN SAMPLE NO. SAMPLE ID FILE ID. ANALYZED ANALYZED SEQUENCE 06/28/2007 01 S062807MVOWB1 S062807MVOWB1 12:25 B0628008.D R019108 06/28/2007 18:51 B0628023.D R019108 02 15L4MW02BW CAB30-005 06/28/2007 19:16 03 15L4MW425W CAB30-006 B0628024.D R019108 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Instrument ID: 5973B

5

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFB25NG

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL948</u>	SDG No.: CAB30
Lab File ID: B0604007.D	BFB Injection Date: <u>06/04/2007</u>
Instrument ID: 5973B	BFB Injection Time: 10:14
GC Column ZB-624 20m	ID:(mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15% to 40% of mass 95	16.6
75	30% to 60% of mass 95	43.3
95	base peak. 100% relative abundance	100
96	5% to 9% of mass 95	7.6
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	97.7
175	5% to 9% of mass 17	7.4()1
176	greater than 95%. but less than 101% of mass 174	98.7()1
177	5% to 9% of mass 176	7 () 2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD001	VSTD001	B0604009.D	06/04/2007	11:23
02	VSTD005	VSTD005	B0604011.D	06/04/2007	12:30
03	VSTD010	VSTD010	B0604012.D	06/04/2007	12:55
04	VSTD050	VSTD050	B0604013.D	06/04/2007	13:20
05	VSTD075	VSTD075	B0604014.D	06/04/2007	13:45
06	VSTD100	VSTD100	B0604015.D	06/04/2007	14:10
07 [VSTD200	VSTD200	B0604016.D	06/04/2007	14:35
08 [
09 [
10					
11 [
12					
13 [
14 [· · · · · · · · · · · · · · · · · · ·	
15					
16					
17					
18					
19					
20					
21					
22					

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019020	SDG No.: CAB30
Lab File ID: <u>B0626017.D</u>	BFB Injection Date: 06/26/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 16:12
GC Column ZB-624 20m	ID:(mm)
	םזודיית ובם &

m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	17.2
75	30% to 60% of mass 95	45
95	base peak. 100% relative abundance	100
96	5% to 9% of mass 95	6.8
173	less than 2% of mass 174	``
174	greater than 50% of mass 95	104
175	5% to 9% of mass 17	7,2()1
176	greater than 95%. but less than 101% of mass 174	96.8()1
177	5% to 9% of mass 176	6.3()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 [VSTD050B6	VSTD050B6	B0626018.D	06/26/2007	16:37
02	S062607MVOWB2	5062607MVOWB2	B0626020.D	06/26/2007	17:33
03	B062607MVOWB1	B062607MVOWB1	B0626022.D	06/26/2007	18:22
04	TRIP BLANK	CAB30-001	B0626023.D	06/26/2007	18:47
05 [15L4MW01BW	CAB30-002	B0626031.D	06/26/2007	22:10
06	151,4MW01AW	CAB30-003	B0626032.D	06/26/2007	22:35
07	15L4MW04AW	CAB30-004	B0626033.D	06/26/2007	23:00
08					
09					
10					
11 [
12					
13 [
14					
15					
16 [
17					
18					
19					
20					
21					
22					

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

BROMOFLUOROBENZENE (BFB)

BFBB1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB30
Lab File ID: <u>B0628006.D</u>	BFB Injection Date: 06/28/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 11:34
GC Column ZB-624 20m	ID: (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15% to 40% of mass 95	16.3
75	30% to 60% of mass 95	43.9
95	base peak. 100% relative abundance	100
96	5% to 9% of mass 95	6.7
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	100
175	5% to 9% of mass 17	7.5()1
176	greater than 95%, but less than 101% of mass 174	98.4()1
177	5% to 9% of mass 176	6.6()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B1	VSTD050B1	B0628007.D	06/28/2007	11:58
02	S062807MVOWB1	S062807MVOWB1	B0628008.D	06/28/2007	12:25
0З 🛛	B062807MVOWB1	B062807MVOWB1	B0628011.D	06/28/2007	13:41
04	15L4MW02BW	CAB30-005	B0628023.D	06/28/2007	18:51
05 [15L4MW425W	CAB30-006	B0628024.D	06/28/2007	19:16
06					
07					
08					
09					
10	_				
11]					
12					
13 [
14					
15 [
16					
17					
18					
19					
20					
21					
22 [

8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks T	esting Labs		Contr	act:		*****	
	Run Sequence: <u>R019020</u>				SDG No.: CAB30			
	Client Sample No.(VSTD050##): <u>VSTD050B6</u>				Analyzed:	06/26/2007		
	Lab File ID (Standa	rd): <u>B0626018.</u>	D	Time .	Analyzed:	16:37	****	
	Instrument ID: 5973	В		Heate	d Purge: (Y/N) <u>N</u>		
	GC Column: ZB-624 2	Om	ID: 0.18	(mm)				
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #		IS3 (DCB) AREA #	RT #	
	12 HOUR STD	604328	6.24	451357	9.42	236928	11.73	
	UPPER LIMIT	1208656	6.74	902714	9.92	473856	12.23	
	LOWER LIMIT	302164	5.74	225678.5	8.92	118464	11.23	
	CLIENT SAMPLE NO.							
01	\$062607MVOWB2	576172	6.24	433766	9.42	229054	11.73	
02	B062607MVOWB1	600255	6.24	446298	9.42	234498	11.73	
03	TRIP BLANK	612524	6.24	447174	9.42	229795	11.73	
04	15L4MW01BW	583027	6.24	440057	9.42	246502	11.73	
05	15L4MW01AW	583739	6.24	438382	9.42	235354	11.73	
06	15L4MW04AW	580329	6.24	433498	9.42	226815	11.73	
07		1 1						
08						· ·		
09								
10								
11								
12							xxx y y y xxx y xxx y xxx y xxx y xxx y xx y x	
13		T						
14		1				1		
15								
16							·····	
17		1 1						
18								
19	· · ·	1		· ·				
20		1						
21	······································							
22								

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

FORM VIII VOA

8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Te	esting Labs		Contr	act:			
	Run Sequence: <u>R019108</u>				SDG No.: CAB30			
	Client Sample No.(VSTD050##): <u>VSTD050B1</u>				Analyzed:	06/28/2007		
	Lab File ID (Standar	rd): <u>B0628007.</u>	D	Time 2	Analyzed:	11:58		
	Instrument ID: <u>5973</u>	3		Heate	d Purge: (`	Y/N) <u>N</u>		
	GC Column: ZB-624 20	mC	ID: (mm)					
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #	
	12 HOUR STD	602968	6.24	446383	9,42	241161	11.74	
	UPPER LIMIT	1205936	6.74	892766	9,92	482322	12.24	
	LOWER LIMIT	301484	5.74	223191.5	8.92	120580.5	11.24	
]	CLIENT SAMPLE NO.							
01	S062807MVOWB1	588603	6.24	441939	9.42	237818	11.73	
02	B062807MVOWB1	592244	6.24	435738	9,42	224470	11.73	
03	15L4MW02BW	562940	6.24	423152	9.42	224927	11.73	
04	15L4MW425W	581768	6.24	429390	9.42	224158	11.73	
05								
06								
07				l				
08		1						
09								
10								
11								
12			1		***************************************			
13								
14	10000000000000000000000000000000000000			****				
15								
16	<u> </u>							
17								
18								
19								
20	Minim di li se la come de contra de contr							
21								
22						†		

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

FORM VIII VOA

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name:	Contract:
SDG No.: CAE30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAE30-001</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626023.D</u>
Level: (LOW/MED)	Date Collected:06/19/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 18:47
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ
127-18-4	Tetrachloroethene	1.0	υ
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name:	MANNANG SAN MINI SAN MANANG	Conti	ract:
SDG No.: CA	B30	Run S	Sequence: R019020
Matrix: (SO]	IL/SED/WATER) Water	Lab S	Sample ID: CAB30-001
Sample wt/vc	bl: 5.00 (g/mL) mL	Lab H	File ID: B0626023.D
Level: (LOW/	/MED)	Date	Collected:06/19/2007
<pre>% Moisture:</pre>	not dec.	Date/	Time Analyzed: 06/26/2007 18:47
GC Column: ,	ZB-624 20m ID: 0.18 (mm)	Dilut	tion Factor: 1.0
Soil Extract	: Volume:(uL)	Soil	Aliquot Volume:(uL)
Heated Purge	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q
124-48-1	Dibromochloromethane		

And the second s			
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ

Comments:

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW01BW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-002</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0626031.D</u>
Level: (LOW/MED)	Date Collected:06/19/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 22:10
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: _1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	Ū
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	υ
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	υ
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	υ
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	υ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW01BW

Lab Name:		Contract:	
SDG No.: CA	B30	Run Sequence: R019020	
Matrix: (SO	IL/SED/WATER) Water	Lab Sample ID: <u>CAB30-002</u>	
Sample wt/v	ol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626031.D</u>	<u>,, , ,, ,, ,, ,, , , , , , , , , , , ,</u>
Level: (LOW	/MED)	Date Collected:06/19/2007	
% Moisture:	not dec.	Date/Time Analyzed: 06/26/200	7 22:10
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:	*****
Soil Extract Volume:(uL)		Soil Aliquot Volume:	(uL)
Heated Purg	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ

 179601-23
 m,p-Xylene
 2.0

 95-47-6
 o-Xylene
 1.0

 100-42-5
 Styrene
 1.0

 75-25-2
 Bromoform
 1.0

 79-34-5
 1,1,2,2-Tetrachloroethane
 1.0

Comments:

U

U

U

U

VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW01AW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-003</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0626032.D
Level: (LOW/MED)	Date Collected:06/19/2007
% Moisture: not dec	Date/Time Analyzed: 06/26/2007 22:35
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	·

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	. 1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Тоluепе	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15L4MW01AW

۵

1.0

1.0

1.0

1.0

Lab Name:		Contract:	
SDG No.: <u>CA</u>	330	Run Sequence: R019020	
Matrix: (SOI	L/SED/WATER) Water	Lab Sample ID: <u>CAB30-003</u>	
Sample wt/vo	1: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626032.D</u>	
Level: (LOW/	MED)	Date Collected: _06/19/2007	
% Moisture:	not dec.	Date/Time Analyzed: 06/26/200	7 22:35
GC Column:	ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)		Soil Aliquot Volume:	(uL)
Heated Purge	: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ

79-34-5

95-47-6

100-42-5

75-25-2

o-Xylene

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

U

U

U

U

VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW04AW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-004</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0626033.D
Level: (LOW/MED)	Date Collected:06/19/2007
% Moisture: not dec	Date/Time Analyzed: 06/26/2007 23:00
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane ·	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	σ
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
591-78-6	2-Hexanone	· 5,0	U

a/ ۴

1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

15L4MW04AW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: <u>R019020</u>
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-004</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626033.D</u>
Level: (LOW/MED)	Date Collected: 06/19/2007
% Moisture: not dec.	Date/Time Analyzed:06/26/200723:00
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
	CONCENTRATION INITS.

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ŭ
179601-23	m,p-Xylene	2.0	Ų
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ų

Comments:

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW02BW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB30-005
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628023.D
Level: (LOW/MED)	Date Collected:06/19/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 18:51
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) _ug/L	Q
75-71-8	Dichlorodifluoromethane	80	
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	1,1-Dichloroethene	17	
67-64-1	Acetone	3.2	J
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	33	
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	2.0	J
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	51	
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	υ
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	Ų
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	Ų
108-10-1	4-Methyl-2-pentanone	5.0	Ų
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	0.65	J
591-78-6	2-Hexanone	5.0	Ū

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW02BW

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-005</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628023.D</u>
Level: (LOW/MED)	Date Collected: _06/19/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 18:51
GC Column: <u>ZB-624 20m</u> ID; <u>0.18</u> (mm)	Dilution Factor; <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	ប
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ū
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	Ŭ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	0.51	J

Comments:

VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW425W

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-006</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628024.D
Level: (LOW/MED)	Date Collected: 06/19/2007
% Moisture: not dec	Date/Time Analyzed: 06/28/2007 19:16
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	69	
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ū
75-35-4	1,1-Dichloroethene	15	
67-64-1	Acetone	3.1	J
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	32	
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	1.8	J
67-66-3	Chloroform	1.0	υ
71-55-6	1,1,1-Trichloroethane	50	
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	l,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	υ
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	0.64	J
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW425W

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB30-006</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628024.D</u>
Level: (LOW/MED)	Date Collected: _06/19/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 19:16
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124~48~1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.52	J

Comments:
Lab Name: <u>Lau</u>	cks	Testing L	abs				5			Contra	с н :					- H				
kun Sequence:	ROL	9020					ŧ			SDG No	•	CAB30								
Instrument ID:	597.	3B					×			Calíbr	atio	n Dates:	I	06/04/	2007		4:35			
Heated Purge:	(N/X)	N					Ŧ			Calibr	atio	n Times:	1	06/04/	2007		4:35			
GC Column: <u>ZB</u> -	624	20m				ID:		0.16 ((um)	Mean %	RSD	6.70								
Analyte	std 1	RF 1	std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std 6	RF 6	std 7	RF 7	std R 8	8 14	RF 3	srsD C	r ²	5 원
Dichlorodifluoromethane		1.010E-01	l v	1.160E-01	10	1.150E-01	3	1.470E-01	75	1.480E-01	00	1.310E-01	200	.500E-01			0.130 1	5.09		
Chloromethane	-	2.630E-01	5	2.840E-01	10	2.610E-01	50	2.829E-01	75	2.809E-01	100	2.640E-01	200 ¢	2.870E-01			0.274	4.19		A
Vinyl chloride	_	2.330E-01	~	2.490E-01	2	2.370E-01	50	2.630E-01	75	2.630E-01	100	2.389E-01	200	2.590E-01			0.249	5.23		A
Bromomethane	-	1.949E-01	5	1.680E-01	0]	1.490E-01	50	1.580E-01	75	1.680E-01	100	1.540E-01	200	1.540E-01			0.164	9.54		K
Chloroethane	-	1.750E-01	2	1.680E-01	0	1.630E-01	50	1.610E-01	75	1.640E-01	100	1.420E-01	200	1.540E-01			0.161	5.54		A
Trichlorofluoromethane	-	2.649E-01	2	2.980E-01	2	2.700E-01	3	3.199E-01	75	3.150E-01	100	2.790E-01	200	2.980E-01			0.292	7.28		A
1, I-Dichloroethene		1.570E-01	5	1.949E-01	9	1.620E-01	50	1.959E-01	75	1.930E-01	100	1.690E-01	200	.770E-01		Ĵ	0.178	9.17		A
Acetone	_	1.560E-01	5	1.320E-01	10	1.160E-01	50	1.250E-01	75	1.170E-01	100	1.140E-01	200	040E-01		•	0.123 1	3.72		A
Carbon disulfide	_	5.680E-01	5	6.579E-01	10	6.129E-01	50	7.969E-01	75	8.090E-01	100	7.160E-01	200	7.300E-01		-	0.699 1	2.94		A
Methylene chloride	_	1.001E+00	5	3.170E-01	10	2.579E-01	50	2.640E-01	75	2.720E-01	100	2.590E-01	200 [2.490E-01			0.374	1	000	0
trans-1,2-Dichloroethenc	_	2.300E-01	5	2.780E-01	10	2.410E-01	50	2.739E-01	75	2.599E-01	100	2.410E-01	200	2.420E-01		_	0.252	7.38		V
1,1-Dichloroethane		4.560E-01	5	4.900E-01	10	4.400E-01	50	4.990E-01	75	4.740E-01	100	4.480E-01	200 4	1.460E-01			0.465	5.00		A
cis-1,2-Dichloroethene		2.829E-01	5	3.059E-01	10	2.619E-01	50	2.980E-01	75	2.879E-01	100	2.669E-01	200	P.720E-01			0.282	5.75		A
2-Butanone		2.480E-01	S	1.879E-01	10	1.940E-01	50	2.169E-01	75	2.110E-01	100	2.080E-01	200	.930E-01			0.208	9.77		V
Chloroform	1	4.639E-01	5	4.819E-01	10	4.219E-01	50	4.720E-01	75	4.569E-01	100	4.280E-01	200	1.309E-01		-	0.451	5.26		4
1,1,1-Trichloroethane		3.129E-01	5	3.840E-01	10	3.300E-01	50	3.849E-01	75	3.590E-01	100	3.280E-01	200	1.290E-01			0.347	3.36		A
Carbon tetrachloride		2.579E-01	5	3.440E-01	01	2.850E-01	50	3.490E-01	75	3.240E-01	100	2.920E-01	200	969E-01			0.307 1	0.82		V
Benzene		1.070E+00	5	1.184E+00	2	1.026E+00	50	1.172E+00	75	1.113E+00	100	1.051E+00	200	1.054E+0			1.096	5.66		A
1,2-Dichloroethane	_	3.499E-01	5	3.600E-01	10	3.319E-01	50	3.600E-01	75	3.540E-01	100	3.400E-01	200	1.370E-01		-	0.347	3.29		A
Trichloroethene		2.809E-01	S.	3.240E-01	0	2.780E-01	50	3.230E-01	75	3.059E-01	100	2.850E-01	200	2.910E-01			0.298	5.51		A
1,2-Dichloropropane		2.750E-01	2	2.890E-01	01	2.590E-01	50	2.899E-01	75	2.800E-01	100	2.680E-01	200	0.649E-01			0.275	4.28		A
Bromodichloromethane	-	3.389E-01	5	3.510E-01	10	3.269E-01	50	3.670E-01	75	3.580E-01	100	3.440E-01	200	1.440E-01			0.347	3.81		A
cis-1,3-Dichloropropene		3.750E-01	5	3.880E-01	10	3.610E-01	50	4.199E-01	75	4.070E-01	100	3.919E-01	200	1.910E-01		-	0.391	1.95		V
4-Methyl-2-pentanone		5.720E-01	5	4.149E-01	0	3.930E-01	50	4.269E-01	75	4.219E-01	100	4.100E-01	200	1.939E-01			0.433	4.48		A
: י י י	f																			
Eq TY = Equation O=Quadratic, L=	r Ty Line	rpe ar, A=Av∈	srade	<i>r</i> í 1																
יי געעלא צ ד	-+		I																	

VOLATILE ORGANICS INITIAL CALIBRATION DATA 9

Page 1 of 2

#

* SPCCs

FORM VI VOA

VOLATILE ORGANICS INITIAL CALIBRATION DATA

G

Lab Name: <u>Lauc</u>	ks T	<u>esting L</u>	abs			oberen er er fersen i kultur	,			Contra	act:								
Run Sequence:	R019	020								SDG Nc	·· •	CAB30							
Instrument ID:	5973	д					÷			Calibr	ratic	nn Dates:	1	06/04/20	07	14:3	2		
Heated Purge: (1	(N/X	N			****		-			Calibr	ratic	n Times:		06/04/20	07	14:3	5		
GC Column: <u>ZB-(</u>	524 2	2 0 m			ĺ	ID:		0.1£ ((mm)	Mean 🗞	k RSI): 6.70							
Analyte	std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std	RF 6	Std 7	RF 7 St	d RF 8	 [₽]	\$RSD	r² Con	Ба
16	-	8.470E-01	5	9.840E-01	10	8.399E-01	50	9.940E-01	75	9.279E-01	100	8.790E-01	200	8.909E-01		0.909	6.83	33	
.3-Dichloropropene	-	5.899E-01	5	6.160E-01	10	5.630E-01	50	6.510E-01	75	6.309E-01	100	6.169E-01	200	6.250E-01		0.614	4.69		V
[richloroethane]	1	3.650E-01	5	3.709E-01	10	3.350E-01	50	3.700E+01	75	3.600E-01	100	3.510E-01	200	B.520E-01		0.358	3.59		<
bloroethene	1	3.980E-01	5	4.740E-01	10	3.980E-01	50	4.799E-01	75	4.410E-01	100	4.110E-01	200	4.320E-01		0.433	7.78		<
mone		3.890E-01	S	3.800E-01	10	3.610E-01	50	4.239E-01	75	4.170E-01	100	4.100E-01	200	4.000E-01		0.397	5.60		A
nochloromethane	-	3.450E-01	5	3.960E-01	10	3.540E-01	50	4.170E-01	75	4.079E-01	100	3.989E-01	200	4.030E-01		0.389	7.13		V
benzene	1	1.010E+00	5	1.066E+00	10	9.359E-01	50	1.072E+00	75	1.031E+00	100	9.940E-01	200	1.005E+0		1.016	4.55		<
ence	-	1.562E+00	5	1.779E+00	10	1.561E+00	50	1.823E+00	75	1.723E+00	100	1.644E+00	200	1.670E+0		1.680	6.03		V
/lene	2	6.169E-01	10	7.080E-01	20	6.160E-01	100	7.210E-01	150	6.850E-01	200	6.510E-01	400	6.570E-01		0.665	6.24		A
ne	1	6.280E-01	5	6.740E-01	10	6.119E-01	50	6.970E-01	75	6.679E-01	100	6.430E-01	200	6.470E-01		0.653	4.48		A
0	1	1.115E+00	5	1.186E+00	10	1.082E+00	50	1.240E+00	75	1.206E+00	100	1.164E+00	200	1.172E+0		1.167	4.57		A
form	1	3.400E-01	5	3.400E-01	10	3.089E-01	50	3.580E-01	75	3.610E-01	100	3.569E-01	200	3.660E-01		0.347	5.67		<
-Tetrachloroethane		8.930E-01	5	9.409E-01	10	8.909E-01	50	9.620E-01	75	9.639E-01	100	9.540E-01	200	9.380E-01		0.935	3.29		<
oofluoromethane	50	2.540E-01	55	2.460E-01	60	2.480E-01	65	2.389E-01	70	2.460E-01	75	2.399E-01	80	2.380E-01		0.245	2.32		A
chloroethanc-d4	50	2.640E-01	55	2.619E-01	8	2.599E-01	65	2.550E-01	70	2.619E-01	75	2.550E-01	80	2.520E-01		0.258	1.79		A
e-d8	50	1.206E+00	55	1.220E+00	60	1.201E+00	65	1.215E+00	70	1.209E+00	75	1.192E+00	80	1.195E+0		1.206	0.84		<
ofluorobenzene	50	8.450E-01	55	8.290E-01	60	8.309E-01	65	8.100E-01	70	8.290E-01	75	8.259E-01	80	8.150E-01		0.827	1.37		A

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

#

Q=Quadrat * SPCCs

SUM - 28

INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
1,1,1,2-Tetrachloroethane	A	50.00	49.24	1.52
1,1,1-Trichloroethane	A	50.00	53.79	7.58
1,1,2,2-Tetrachloroethane	A	50.00	50.09	0.18
1,1,2-Trichloroethane	A	50.00	49.57	0.86
1,1-Dichloroethane	A	50.00	54.42	8.84
1,1-Dichloroethene	A	50.00	61,74	23.48
1,1-Dichloropropene	A	50.00	56.82	13.64
1,2,3-Trichlorobenzene	A	50.00	55.01	10.02
1,2,3-Trichloropropane	A	50.00	47.73	4.54
1,2,4-Trichlorobenzene	A	50.00	54.31	8.62
1,2,4-Trimethylbenzene	A	50.00	50.47	0.94
1,2-Dibromo-3-chloropropane	A	50.00	49.81	0.38
1,2-Dibromoethane	А	50.00	50.86	1.72
1,2-Dichlorobenzene	A	50.00	51.04	2.08
1,2-Dichloroethane	A	50.00	51.85	3.70
1,2-Dichloroethane-d4	A	50.00	50.27	0.54
1,2-Dichloropropane	Α	50.00	50.72	1,44
1,3,5-Trimethylbenzene	A	50.00	49.94	0.12
1,3-Dichlorobenzene	A	50.00	50.64	1.28
1,3-Dichloropropane	A	50.00	49.61	0.78
1,4-Dichlorobenzene	Α	50.00	51.11	2.22
1-Chlorohexane	A	50.00	54.76	9.52
2,2-Dichloropropane	A	50.00	51.18	2.36
2-Butanone	A	50.00	51.05	2.10
2-Chlorotoluene	A	50.00	49.94	0.12
2-Hexanone	A	50.00	51.14	2.28
4-Bromofluorobenzene	A	50.00	49.38	1.24
4-Chlorotoluene	A	50.00	50.00	0.00
4-Isopropyltoluene	A	50.00	52.39	4.78
4-Methyl-2-pentanone	А	50.00	49.24	1.52
Acetone	А	50.00	50.13	0.26
Benzene	A	50.00	51.60	3.20
Bromobenzene	А	50.00	48.39	3.22
Bromochloromethane	A	50.00	51.68	3.36
Bromodichloromethane	A	50.00	51.67	3.34
Bromoform	A	50.00	48.24	3.52
Bromomethane	A	50.00	40.01	19.98
Carbon disulfide	A	50.00	52.03	4.06
Carbon tetrachloride	A	50.00	53.74	7.48
Chlorobenzene	A	50.00	51,66	3.32
Chloroethane	A	50.00	41.80	16.40
Chloroform	A	50.00	52.51	5.02
Chloromethane	A	50.00	42.42	15.16

INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
cis-1,2-Dichloroethene	A	50.00	53,73	7.46
cis-1,3-Dichloropropene	A	50.00	59.33	18.66
Dibromochloromethane	A	50.00	52.66	5.32
Dibromofluoromethane	A	50.00	51.50	3.00
Dibromomethane	A	50.00	51.58	3.16
Dichlorodifluoromethane	A	50.00	40.14	19.72
Ethyl-t-Butyl Ether(ETBE)	A	50.00	53.27	6.54
Ethylbenzene	A	50,00	50.70	1.40
Hexachlorobutadiene	A	50.00	54.04	8.08
Isopropyl ether	А	50,00	51.97	3.94
Isopropylbenzene	A	50.00	51.78	3.56
m,p-Xylene	А	100.00	103.37	3.37
Methyl tert-butyl ether	A	50.00	56.55	13.10
Methylene chloride	Q	50.00	52.82	5.64
n-Butylbenzene	А	50.00	51.86	3.72
n-Propylbenzene	A	50.00	51.48	2.96
Naphthalene	Α	50.00	54.73	9.46
o-Xylene	А	50.00	51.09	2.18
sec-Butylbenzene	А	50.00	53.45	6.90
Styrene	A	50.00	50.33	0.66
t-Amyl Methyl Ether(TAME)	A	50.00	52.66	5.32
t-Butyl Alcohol	А	500.00	565.69	13.14
tert-Butylbenzene	A	50.00	51.42	2.84
Tetrachloroethene	A	50.00	51.86	3.72
Toluene	A	50.00	50.75	1.50
Toluene-d8	A	50.00	51.28	2.56
trans-1,2-Dichloroethene	Α	50.00	55.58	11.16
trans-1,3-Dichloropropene	Α	50.00	45.29	9.42
Trichloroethene	A	50.00	53.18	6.36
Trichlorofluoromethane	A	50.00	42.86	14.28
Vinyl chloride	A	50.00	45.14	9.72

Q=Quadratic, L=Linear, A=Average

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: CAB30
Instrument ID: 5973B	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B6</u>	Init, Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	А	0.095	26.65*	
Chloromethane	A	0.220	19.75	
Vinyl chloride	A	0.205	17.55	
Bromomethane	A	0.132	19.77	
Chloroethane	A	0.141	12.73	
Trichlorofluoromethane	A	0.256	12.32	
1,1-Dichloroethene	A	0.165	7.55	
Acetone	A	0.110	10.83	
Carbon disulfide	A	0.567	18.85	
Methylene chloride	Q	0.255		-5.80
trans-1,2-Dichloroethene	A	0.236	6.29	
1,1-Dichloroethane	А	0.445	4.31	
cis-1,2-Dichloroethene	А	0.260	7.84	
2-Butanone	А	0.216	-3.61	
Chloroform	A	0.432	4.28	
1,1,1-Trichloroethane	A	0.328	5.58	
Carbon tetrachloride	А	0.281	8.34	
Benzene	A	1.029	6.09	
1,2-Dichloroethane	А	0.342	1.50	
Trichloroethene	А	0.281	5.56	
1,2-Dichloropropane	A	0.258	6.17	
Bromodichloromethane	A	0.324	6.58	
cis-1,3-Dichloropropene	А	0.367	6.18	
4-Methyl-2-pentanone	А	0.427	1.28	
Toluene	А	0,885	2.59	
trans-1,3-Dichloropropene	A	0.598	2.65	
1,1,2-Trichloroethane	A	0.346	3.45	
Tetrachloroethene	A	0.418	3.36	
2-Hexanone	А	0.441	-11.20	
Dibromochloromethane	A	0.363	6.70	
Chlorobenzene	A	0.961	5.45	
Ethylbenzene	A	1.638	2.47	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Page 1 of 2

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: _R019020	SDG No.: _CAB30
Instrument ID: <u>5973B</u>	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B6	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
m,p-Xylene	A	0.642	3.49	
o-Xylene	A	0.611	6.43	
Styrene	A	1.095	6.16	
Bromoform	А	0.296	14.81	
1,1,2,2-Tetrachloroethane	А	0.916	1.99	
Dibromofluoromethane	A	0.225	8.11	
1,2-Dichloroethane-d4	A	0.243	5.75	
Toluene-d8	А	1,148	4.77	
4-Bromofluorobenzene	A	0.792	4,28	

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB30
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B1</u>	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.120	7.72	
Chloromethane	A	0.244	10.98	
Vinyl chloride	A	0.218	12.47	
Bromomethane	A	0.131	19.97	
Chloroethane	A	0.145	9.70	
Trichlorofluoromethane	A	0.273	6.40	
1,1-Dichloroethene	A	0,159	10.93	
Acetone	A	0.137	-11.70	
Carbon disulfide	A	0.573	18.02	
Methylene chloride	Q	0.239		-12.04
trans-1,2-Dichloroethene	A	0.229	9.19	
1,1-Dichloroethane	A	0,443	4.79	
cis-1,2-Dichloroethene	A	0.254	10.03	
2-Butanone	A	0.230	-10.59	
Chloroform	A	0,422	6.34	
1,1,1-Trichloroethane	А	0.320	7.69	
Carbon tetrachloride	A	0.273	10.97	
Benzene	A	1.013	7.61	
1,2-Dichloroethane	A	0.337	3.01	
Trichloroethene	A	0.274	7.89	
1,2-Dichloropropane	A	0.258	6.12	
Bromodichloromethane	A	0.315	9.15	
cis-1,3-Dichloropropene	A	0.358	8.42	
4-Methyl-2-pentanone	A	0.437	-1.04	
Toluene	A	0.879	3.35	
trans-1,3-Dichloropropene	A	0.584	4.90	
1,1,2-Trichloroethane	A	0.337	5.91	
Tetrachloroethene	A	0.408	5.85	
2-Hexanone	A	0.447	-12.67	
Dibromochloromethane	A	0.345	11.20	
Chlorobenzene	A	0.947	6.82	
Ethylbenzene	A	1.623	3.42	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: _CAB30
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B1	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
m,p-Xylene	А	0.630	5.22	
o-Xylene	A	0.606	7.13	
Styrene	A	1.082	7.28	
Bromoform	A	0.280	19.33	
1,1,2,2-Tetrachloroethane	A	0.900	3.73	
Dibromofluoromethane	А	0.253	-3.37	
1,2-Dichloroethane-d4	A	0.281	-8.98	
Toluene-d8	A	1.302	-7.96	
4-Bromofluorobenzene	A	0.893	-7.93	

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: B062607MVOWB1
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626022.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 18:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0 .	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U
	•		· · · · · · · · · · · · · · · · · · ·

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062607MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626022.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed:06/26/200718:22
GC Column: <u>ZB_624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ.
95-47-6	o-Xylene	l0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	υ
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

VOLATILE ORGANICS ANALYSIS DATA SHEET

B062807MVOWB1

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062807MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628011.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 13:41
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: 1000 (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	Ū
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	Ŭ
71-43-2	Benzene	1.0	ΰ
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	υ
75-27-4	Bromodichloromethane	1.0	ΰ
10061-01-	cis-1,3-Dichloropropene	1.0	Ŭ
108-10-1	4-Methyl-2-pentanone	5.0	Ŭ
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ
127-18-4	Tétrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062807MVOWB1

Lab Name: _		Contract:	
SDG No.: CA	E30	Run Sequence: <u>R019108</u>	*****
Matrix: (SO	IL/SED/WATER) Water	Lab Sample ID: <u>B062807MVOWB1</u>	
Sample wt/v	ol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628011.D</u>	
Level: (LOW	/MED)	Date Collected:	-
% Moisture:	not dec.	Date/Time Analyzed: 06/28/2007	7 13:41
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>	
Soil Extrac	t Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000	(uL)
Heated Purg	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U

1.0

1.0

1.0

79-34-5 Comments:

100-42-5

75-25-2

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

Page 2 of 2

U

U

U

VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062607MVOWB2</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626020.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 17:33
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	35	
74-87-3	Chloromethane	39	
75-01-4	Vinyl chloride	42	
74-83-9	Bromomethane	41	
75-00-3	Chloroethane	41	
75-69-4	Trichlorofluoromethane	45	
75-35-4	1,1-Dichloroethene	55	
67-64-1	Acetone	42	
75-15-0	Carbon disulfide	53	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	51	
75-34-3	1,1-Dichloroethane	51	
156-59-2	cis-1,2-Dichloroethene	49	******
78-93-3	2-Butanone	47	
67-66-3	Chloroform	49	
71-55-6	1,1,1-Trichloroethane	51	
56-23-5	Carbon tetrachloride	50	
71-43-2	Benzene	48	
107-06-2	1,2-Dichloroethane	49	
79-01-6	Trichloroethene	49	******
78-87-5	1,2-Dichloropropane	48	*****
75-27-4	Bromodichloromethane	48	
10061-01-	cis-1,3-Dichloropropene	56	
108-10-1	4-Methyl-2-pentanone	47	
108-88-3	Toluene	49	
10061-02-	trans-1,3-Dichloropropene	44	
79-00-5	1,1,2-Trichloroethane	48	
127-18-4	Tetrachloroethene	49	
591-78-6	2-Hexanone	54	

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name:	Contract:
SDG No.: CAB30	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: S062607MVOWB2
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626020.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed:06/26/200717:33
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
	CONCENTRATION INTES.

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	49	
108-90-7	Chlorobenzene	49	
100-41-4	Ethylbenzene	49	
179601-23	m,p-Xylene	99	
95-47-6	o-Xylene	48	
100-42-5	Styrene	47	
75-25-2	Bromoform	42	
79-34-5	1,1,2,2-Tetrachloroethane	49	

Comments:

1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

D00200/01/000DT

Lab Name:	Contract:	
SDG No.: <u>CAB30</u>	Run Sequence: R019108	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062807MVOWB1</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628008.D</u>	
Level: (LOW/MED)	Date Collected:	
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 12:25	
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0	
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)	
Heated Purge: (Y/N) <u>N</u>		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	27	
74-87-3	Chloromethane	34	
75-01-4	Vinyl chloride	36	
74-83-9	Bromomethane	36	
75-00-3	Chloroethane	35	
75-69-4	Trichlorofluoromethane	40	
75-35-4	1,1-Dichloroethene	56	
67-64-1	Acetone	44	
75-15-0	Carbon disulfide	49	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	53	
75-34-3	1,1-Dichloroethane	54	***************************************
156-59-2	cis-1,2-Dichloroethene	51	
78-93-3	2-Butanone	48	
67-66-3	Chloroform	52	· · · · ·
71-55-6	1,1,1-Trichloroethane	53	
56-23-5	Carbon tetrachloride	51	
71-43-2	Benzene	51	
107-06-2	1,2-Dichloroethane	53	
79-01-6	Trichloroethene	51	
78-87-5	1,2-Dichloropropane	51	
75-27-4	Bromodichloromethane	51	
10061-01-	cis-1,3-Dichloropropene	58	· · · · · ·
108-10-1	4-Methyl-2-pentanone	48	
108-88-3	Toluene	51	
10061-02-	trans-1,3-Dichloropropene	46	
79-00-5	1,1,2-Trichloroethane	49	
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	53	

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062807MVOWB1

Lab Name:	Contract:		
SDG No.: CAB30	Run Sequence: <u>R019108</u>		
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>S062807MVOWB1</u>		
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628008.D</u>		
Level: (LOW/MED)	Date Collected:		
% Moisture: not dec.	Date/Time Analyzed: _06/28/2007 _12:25		
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:		
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)		
Heated Purge: (Y/N) <u>N</u>			
CAS NO. COMPOUND	CONCENTRATION UNITS:		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	49	
108-90-7	Chlorobenzene	51	
100-41-4	Ethylbenzene	51	
179601-23	m,p-Xylene	100	
95-47-6	o-Xylene	50	
100-42-5	Styrene	49	
75-25-2	Bromoform	42	
79-34-5	1,1,2,2-Tetrachloroethane	51	

Comments:

Forms Summary

CAB30

Ordnance by Method 8330

2

WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB30

Run Sequence: <u>R019636</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	S3 () #	S4 () #	TOT OUT
(CAB30-009) 15L4MW425W	74				0
(CAB30-008) 15L4MW02BW	99				0
(CAB30-007) 15L4MW04AW	83				0
(CAB30-009DL) 15L4MW425W-DL	. 74				0
(CAB30-008DL) 15L4MW02BW-DL	100				0
(CAB30-003) 15L4MW01AW	88				0
(CAB30-002) 15L4MW01BW	98				0
(S062607HORWLG) S062607HORWLG	119				0
(B062607HORWLG) B062607HORWLG	80				0

QC LIMITS 60-140

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

Column to be used to flag recovery values

* Values outside of contract required QC limits

ЗB WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019636</u>	SDG No.: <u>CAB30</u>
BS Lab Sample ID: <u>S062607HORWLG</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
HMX	20.0	21.0228	105	80-115
RDX	20.0	21.5036	108	50-160
1,3,5-Trinitrobenzene	20.0	17.5962	88	65-140
1,3-Dinitrobenzene	20.0	17.771	89	45-160
Nitrobenzene	20.0	17.8355	89	50-140
Tetryl	20.0	16.0464	80	20-175
2,4,6-Trinitrotoluene	20.0	18.691	93	50-145
4-Amino-2,6-dinitrotoluene	20.0	17.92	90	55-155
2-Amino-4,6-dinitrotoluene	20.0	17.8793	89	50-155
2,6-Dinitrotoluene	20.0	16.1231	81	60-135
2,4-Dinitrotoluene	20.0	16.4553	82	60-135
2-Nitrotoluene	20.0	14.9209	75	45-135
4-Nitrotoluene	20.0	15.4368	77	50-130
3-Nitrotoluene	20.0	14.7105	74	50-130

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

COMMENTS:

ORDNANCE METHOD BLANK SUMMARY

CLIENT SAMPLE NO. B062607HORWLG

Lab Name: <u>Laucks Testing Labs</u>		Con	Contract: <u>N/A</u>		
Lab Sample ID: <u>B062607HORWLG</u>		SDG	No.: <u>CAB30</u>		
Matrix: (SOIL/WATER) <u>Water</u>	······	Dat	e Prepared: _	06/26/2007	
Lab File ID (1): <u>062807.b-0</u>	6280704.D	Lab	File ID (2):	<u>F71207A.b-F7120</u>)751.D
Date Analyzed (1): 06/28/200	7	Date	e Analyzed (2):	
Time Analyzed (1): 13:19		Time	Time Analyzed (2):		
Instrument ID (1): <u>HPLC5 (Oscar)</u>			Instrument ID (2): <u>HPLC5 (Oscar)</u>		
Column(1): Allure Cl8	ID <u>: 4.60</u> (mm) Co	olumn(2): <u>Syne</u>	rgi - EtPH	ID: <u>4.60</u> (mm
THIS METHOD BLANK	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:	
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
15L4MW01BW	CAB30-002]	O6280707.D	06/28/2007 15:19	R019636
		2			
15L4MW01AW	CAB30-003	1	O6280708.D	06/28/2007 15:59	R019636
		2			
15L4MW04AW	CAB30-007	1	06280709.D	06/28/2007 16:39	R019636

2

 $\frac{1}{2}$

 $\frac{1}{2}$

1

2

1

2

1

2

CAB30-008

CAB30-009

S062607HORWLG

CAB30-008DL

CAB30-009DL

F7120754.D

O6280710.D

F7120756.D

O6280711.D

F7120758.D

O6280705.D F7120752.D

O7100742.D

F7120755.D

O7100743.D

F7120757.D

07/13/2007 19:56

06/28/2007 17:19

07/13/2007 21:12

06/28/2007 17:59

07/13/2007 22:28

06/28/2007 13:59

07/13/2007 18:40

07/11/2007 12:29

07/13/2007 20:34

07/11/2007 13:09

07/13/2007 21:50

R019636

COMMENTS:

15L4MW02BW

15L4MW425W

S062607HORWLG

15L4MW02BW-DL

15L4MW425W-DL

CLIENT SAMPLE NO.

15L4MW01BW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-002</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280707.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/19/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	υ
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	Ü

Comments:

FORM I ORD

CLIENT SAMPLE NO.

15L4MW01AW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-003</u>
Sample wt/vol: 1020.0 (g/mL) _mL	Lab File ID: _06280708.D
<pre>% Moisture: Decanted: (Y/N) _N</pre>	Date Collected:06/19/2007
Extraction: (Type) _SPE	Date Extracted: 06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: _50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.49	U
121-82-4	RDX	0.49	U
99-35-4	1,3,5-Trinitrobenzene	0.49	U
99-65-0	1,3-Dinítrobenzene	0.49	U
98-95-3	Nitrobenzene	0.49	U
479-45-8	Tetryl	0.49	υ
118-96-7	2,4,6-Trinitrotoluene	0.49	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.49	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.49	U
606-20-2	2,6-Dinitrotoluene	0.49	Π
121-14-2	2,4-Dinitrotoluene	0.49	U
88-72-2	2-Nitrotoluene	0.49	U
99-99-0	4-Nitrotoluene	0.49	U
99-08-1	3-Nítrotoluene	0.49	IJ

Comments:

,

CLIENT SAMPLE NO.

15L4MW04AW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-007</u>
Sample wt/vol: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280709.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007
Extraction: (Type) SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	Ŭ
121-82-4	RDX	1.8	
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	Ŭ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	Ŭ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	Ū

Comments:

Page 1 of 1

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

2

Client Sample ID

8.75

8.48 - 8.98

	Lab Name:	Laucks Testing I	Labs, Inc.	15	L4MW04AW	
	Lab Sample ID:	CAB30-007				
	Instrument ID:	HPLC5 (Oscar)	Run	Sequence ID:	R019636	
	Column (1):	Allure C18		Column (2):	Synergi - EtPH	
	File (1):	O62807.b-O628	0709.D	File (2):	F71207A.b-F7120	754.D
	Date Analyzed (1):	6/28/2007 4:39:0	00 PM Date	Analyzed (2):	7/13/2007 7:56:00	РМ
	ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
RDX		1	1.65291	030/	8.07	7.79 - 8.29
			1 01 501 37	1.5 1	, , , , , , , , , , , , , , , , , , , ,	9 49 9 60

1.81501 X

X = Concentration Reported

CLIENT SAMPLE NO.

15L4MW02BW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAE30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-008</u>
Sample wt/vol: 1020.0 (g/mL) _mL	Lab File ID: <u>F7120756.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/19/2007
Extraction: (Type) <u>SPE</u>	Date Extracted: 06/26/2007
Concentrated Extract Volume: _5000.0_(uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) _N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	3.9	
121-82-4	RDX	78	Е
99-35-4	1,3,5-Trinitrobenzene	0.49	υ
99-65-0	1,3-Dinitrobenzene	0.49	υ
98-95-3	Nitrobenzene	0.49	ΰ
479-45-8	Tetryl	0.49	U
118-96-7	2,4,6-Trinitrotoluene	0.49	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.49	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.49	U
606-20-2	2,6-Dinitrotoluene	0.49	υ
121-14-2	2,4-Dinitrotoluene	0.49	υ
88-72-2	2-Nitrotoluene	0.49	υ
99-99-0	4-Nitrotoluene	0.49	υ
99-08-1	3-Nitrotoluene	0.49	υ

Comments:

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: CAB30-008 Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 File (1): O62807.b-O6280710.D Date Analyzed (1): 6/28/2007 5:19:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
НМХ	1	2.96239	267%	4.58	4.33 - 4.83
	2	3.87466 X	2001 70	8.22	7.94 - 8.44
RDX	1	74.1656	51 %	8.04	7.79 - 8.29
	2	78.0675 X	5.1 70	8.75	8.48 - 8.98

X = Concentration Reported

CLIENT SAMPLE NO.

15L4MW02BW-DL

Lab Name: Laucks Testing Labs	Contract:N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-008DL</u>
Sample wt/vol: <u>1020.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>F7120755.D</u>
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007
Extraction: (Type) <u>SPE</u>	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/11/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:4.0
GPC Cleanup: (Y/N) <u>N</u> pH;	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	3.9	
121-82-4	RDX	76	
99-35-4	1,3,5-Trinitrobenzene	0.98	ΰ
99-65-0	1,3-Dinitrobenzene	0.98	U
98-95-3	Nitrobenzene	0.98	U
479-45-8	Tetryl	0.98	U
118-96-7	2,4,6-Trinitrotoluene	0.98	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.98	υ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.98	Ŭ
606-20-2	2,6-Dinitrotoluene	0.98	U
121-14-2	2,4-Dinitrotoluene	0.98	U
88-72-2	2-Nitrotoluene	0.98	U
99-99-0	4-Nitrotoluene	0.98	ΰ
99-08-1	3-Nitrotoluene	0.98	U

Comments:

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name:	Laucks Testing Labs, Inc.	
Lab Sample ID:	CAB30-008DL	
Instrument ID:	HPLC5 (Oscar)	Ru
Column (1):	Allure C18	
File (1):	O71007.b-O7100742.D	
Date Analyzed (1):	7/11/2007 12:29:00 PM	Dat

15L4MW02BW-DL

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120755.D
Date Analyzed (2):	7/13/2007 8:34:00 PM

ANALYTE	COL	CONCENTRATIO Final Units: ug/I	N ,	RPD	RT	RT Window
НМХ	1	3.05802		23.5 %	4.55	4.33 ~ 4.83
	2	3.87084	х	23.0 /0	8.20	7.94 - 8.44
RDX	1	74.1057		2.6 %	7.93	7.79 - 8.29
	2	76.028	x	2.0 78	8.74	8.48 - 8.98

X = Concentration Reported

CLIENT SAMPLE NO.

15L4MW425W

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-009</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: <u>F7120758.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/19/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH;	Sulfur Cleanup: (Y/N) _N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	2.9	
121-82-4	RDX	58	Е
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	υ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	Ŭ
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name:Laucks Testing Labs, Inc.Lab Sample ID:CAB30-009Instrument ID:HPLC5 (Oscar)Column (1):Allure C18File (1):O62807.b-O6280711.DDate Analyzed (1):6/28/2007 5:59:00 PM

15L4MW425W

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120758.D
Date Analyzed (2):	7/13/2007 10:28:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
НМХ	1	2.20163	28.8 %	4.59	4.33 - 4.83
	2	2.94125 X	2010 /6	8.21	7.94 - 8.44
RDX	1	55.0299	6.0 %	8.05	7.79 ~ 8.29
	2	58.4503 X	0.0 /0	8.74	8.48 - 8.98

X = Concentration Reported

CLIENT SAMPLE NO.

15L4MW425W-DL

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-009DL</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: <u>F7120757.D</u>
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/11/2007
Injection Volume: _50.0 _(uL)	Dilution Factor:4.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) _N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	2.9	
121-82-4	RDX	56	
99-35-4	1,3,5-Trinitrobenzene	0.95	Ü
99-65-0	1,3-Dinitrobenzene	0.95	U
98-95-3	Nitrobenzene	0.95	U
479-45-8	Tetryl	0.95	U
118-96-7	2,4,6-Trinitrotoluene	0.95	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.95	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.95	U
606-20-2	2,6-Dinitrotoluene	0.95	U
121-14-2	2,4-Dinitrotoluene	0.95	U
88-72-2	2-Nitrotoluene	0.95	U
99-99-0	4-Nitrotoluene	0.95	U
99-08-1	3-Nitrotoluene	0.95	U

Comments:

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name:Laucks Testing Labs, Inc.Lab Sample ID:CAB30-009DLInstrument ID:HPLC5 (Oscar)Column (1):Allure C18File (1):O71007.b-O7100743.DDate Analyzed (1):7/11/2007 1:09:00 PM

15L4MW425W-DL

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120757.D
Date Analyzed (2):	7/13/2007 9:50:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
HMX.	1	2.27577	24.1 %	4.55	4.33 - 4.83
	2	2.90048 X	2.07 70	8.21	7.94 - 8.44
RDX	1	54.9619	2.6 %	7.94	7.79 - 8.29
	2	56.3844 X	2.0 /0	8.75	8.48 - 8.98

X = Concentration Reported

Calibration Files: Level 1: //ceres/la		/oscar/c)scar.1/0			3	
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la	odata/hplc odata/hplc odata/hplc odata/hplc	/oscar/0 /oscar/0 /oscar/0 /oscar/0)scar.i/0))scar.i/0))scar.i/0))scar.i/0)	22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/	02270705. 02270706. 02270707. 02270707. 02270708. 02270708.		
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la	odata/hplc odata/hplc odata/hplc odata/hplc odata/hplc	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0	22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C	D2270705. D2270706. D2270707. D2270708. D2270708. D2270709. D2270709.		USA &
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound	odata/hplc odata/hplc odata/hplc odata/hplc odata/hplc ====================================	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c Level 2)scar.1/0))scar.1/0))scar.1/0))scar.1/0))scar.1/0)	22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 10.45800	02270705. 02270706. 02270707. 02270708. 02270708. 02270709. 10.29740	D D Ave CF 10.66308	\$RSD 3.2
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la Compound	odata/hplc odata/hplc odata/hplc odata/hplc 	/oscar/0 /oscar/0 /oscar/0 /oscar/0 Level 2 10.69000 9.730000)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0 Level 3 Leve	22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 10.45800	2270705. 2270706. 2270707. 2270708. 2270709. 2270709. 2270709. 10.29740 10.29740 9.491400	D D Ave CF 10-66308	\$RSD 3.6
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound 1 HMX 4 MNX 5 RDX	Juaca/ npro odata/hplc odata/hplc odata/hplc 	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c Level 2 Level 2 10.69000 9:730000)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0 10.67000 9.828000 7.730000	22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 22707.b/ 10.45800 10.45800 10.45800	10.297400 2270705. 2270707. 2270708. 2270709. 10.29740 9.491400 7.488000	D D Ave CP 10-66308 7.697800	2.5 5
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene	Duata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc l 10.36000 1 10.36000 1 13.96000 1 13.96000	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c /oscar/c io.69000 9.730000 9.730000 13.18000)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0)scar.1/0]]]]]]]]]]]]]]]]]]]	22707.b/ 2070.b/ 22707.b/ 2070.b/ 2000.b/ 22707.b/ 2000	10.2970709 10.2970709 10.2970709 10.29740 11.29740 13.27440 13.27440	D D D Ave CP 10.66308 9.787080 13.46708	2
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la Compound Compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene	Duata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 11.20000 11.36000 13.96000 15.24000	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c /oscar/c)SCAT.1/0) SCAT.1/0) SCAT.1/0) SCAT.1/0) SCAT.1/0) SCAT.1/00 I Level 3 I Level 3 I 10.57000 I 13.63800 I 13.63800 I 15.10800	22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 1.evel 4 1.evel 4 9.526000 9.526000 9.526000 1.13.28300 1.13.28300	02270705. 02270706. 02270707. 02270708. 02270709. 02270709. 02270709. 10.29740 9.491400 7.488000 13.27440 14.87580	D D Ave CP 1.65308 7.697800 1.3.46708	2.2.2.3 3 3 8 2.4.4.5 5 5 5 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la Compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl	Duata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 11.20000 13.96000 13.96000 15.24000 15.24000	/OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C Level 2 10.69000 9.730000 9.730000 7.680000 13.18000 14.54000)scar.1/0) scar.1/0) scar.1/0) scar.1/0) scar.1/00 scar.	22707.b/ 2000.000000000000000000000000000000000	02270705. 02270706. 02270707. 02270708. 02270709. 02270709. 10.29740 9.491400 9.491400 13.27440 14.87580	D D D D D D D D D D D D D D D D D D D	с с с с с с с с с с с с с с
Level 2: //ceres/la Level 4: //ceres/la Level 5: //ceres/la Compound Compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene	Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 13.96000 13.96000 13.96000 15.24000 25.24000	/OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C /05000 10.69000 9.730000 9.730000 9.730000 11.54000 114.54000 6.840000)SCAT.1/0) SCAT.1/0) SCAT.1/0) SCAT.1/0) SCAT.1/00 SCAT.	22707.b/ 20707.b/ 2000 13.591000 13.29300 13.29300 13.4580000 13.4580000 13.4580000 13.458000000000000000000000000000000000000	2270705. 2270706. 2270707. 2270708. 2270708. 2270709. 10.29740 9.491400 7.498000 13.27440 14.87580 6.877000	D D D D D D D D D D D D D D D D D D D	
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene	Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 13.96000 15.24000 15.24000 15.24000 15.24000	/oscar/c /oscar/c /oscar/c /oscar/c Level 2 10.69000 9.730000 7.680000 13.18000 14.54000 6.840000 8.280000)SCAT.1/07]SCAT.1/07]SCAT.1/07	22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 1.0.45800 9.526000 9.526000 1.3.28300 1.3.28000 1.3.28000 1.3.28000 1.3.28000 1.3.28000 1.3.28000 1.3.28000 1.3.280000 1.3.280000 1.3.2800000000000000000000000000000000000	2270705. 2270706. 2270708. 2270708. 2270709. 2270709. 2270709. 10.29740 9.491400 10.29740 13.27440 13.27440 14.87580 6.877000 8.653000	D D D D D D D D D D D D D D D D D D D	2. 2. 5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound 1 HMX 4 MNX 5 RDX 6 1,3.5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene 8 Tetryl	Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 13.96000 15.24000 15.24000 8.66000 8.66000	//OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C /OSCAT/C Level 2 10.69000 9.730000 9.730000 9.730000 13.18000 13.18000 14.54000 6.840000 8.280000)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07)SCAT.1/07] 10.67000 9.828000 7.730000 13.10800 7.116000 8.712000 8.206000	22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 10.45800 9.526000 9.526000 13.28300 13.28300 13.28300 13.28300 13.28300 13.28300 13.28300 13.28300 13.28300 1.3.283000 1.3.28300 1.3.28300 1.3.28300 1.3.2830000 1.3.2830000000000000000000000000000000000	2270705. 2270707 2270707 2270708. 2270709. 2270709. 2270709. 10.29740 9.491400 7.488000 13.27440 14.87580 6.877000 8.653000 7.962000	D D D A Ve CF 10.65308 9.787080 1.3.467080 1.3.46708 1.3.46708 1.3.46708 8.959800 8.959800	2.3
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene	Duata/npic Duata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 13.96000 15.24000 15.24000 5.940000	/OSCAT/OSCAT/OSCAT/OSCAT/OSCAT/OSCAT/O/OSCAT/O/OSCAT/O/OSCAT/O/O/OSCAT/O/O/O/OSCAT/O/O/O/O/O/O/O/O/O/O/O/O/O/O/O/O/O/O/O	DSCAT.1/07 DSCAT.1/07	22707.b/C 22707.	5 - 686400	D D D A V e a a a a a a a a a a a a a a a a a a	и и и и и и и и и и и и и и и и и и и
Level 3: //ceres/la Level 4: //ceres/la Level 5: //ceres/la compound compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene 8 Tetryl 9 Nitrobenzene 11 2,4,6-Trinitrotoluene 11 2,-Amino-2,6-Dinitrotoluene	Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc Ddata/hplc 10.36000 13.96000 15.24000 5.940000 5.940000	/oscar/c /oscar/c /oscar/c /oscar/c /oscar/c level 2 10.69000 9.730000 7.680000 13.18000 14.54000 14.54000 6.840000 8.280000 5.630000	DSCar.1/07 DSCA.1/07 DSCA.1/0	22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 22707.b/C 10.45800 9.526000 13.28300 13.28000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.283000 13.2830000 13.2830000 13.2830000 13.2830000 13.28300000000000000000000000000000000000	2270705. 2270706. 2270707. 2270708. 2270708. 2270709. 2270709. 10.29740 9.491400 9.491400 13.27440 13.27440 14.87580 6.877000 8.653000 5.686400	D D D A Ve CF 10-66308 9-787080 123-46708 123-46708 123-46708 124-89056 6-980400 14-89056 5-7756800	ч 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 ${\tt CF}$ - Calibration Factor (response divided by concentration).

RSD - Relative Standard Deviation.

02/28/2007 09:10

ICAL Linearity Summary v2.0

Page 1

SUM - 60

Compound Level 1 Level 2 Level 3 Level 4 Level 4 1 HMX 4.69 7.08 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 12.12 <th>Level 3: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D I compound Level 1 Level 2 Level 3 Level 4 I MMX 1 Level 1 Level 3 Level 4 Level 4 I HMX 1 1 Level 3 Level 4 Level 4 I MMX 1 1.09 7.09 4.69 4.69 4.69 5 1.3,5-Trinitrobenzene 12.11 12.12</th> <th>Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O22707.b/O2270709.D 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1</th> <th>End Cal Date :27-FEB-2007 15:15 Quant Method :ESTD Cal Curve Type: Average CF Integrator : HP Genie Sublist : 8330MX.sub Column : C18 Column Size : Om L - 4.60mm ID Calibration Files: : 1/022707.b/022707.b/02270705.D Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 6: 1.1 Level 1 Level 7: 1.2 Level 1 Level 1: 1/ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 1: 1/ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.D 1:0:1 1:1.1 1:0:1 1:1.1<th></th><th></th><th></th><th>linutes.</th><th>essed as m</th><th>Retention times are expre</th></th>	Level 3: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D I compound Level 1 Level 2 Level 3 Level 4 I MMX 1 Level 1 Level 3 Level 4 Level 4 I HMX 1 1 Level 3 Level 4 Level 4 I MMX 1 1.09 7.09 4.69 4.69 4.69 5 1.3,5-Trinitrobenzene 12.11 12.12	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O22707.b/O2270709.D 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	End Cal Date :27-FEB-2007 15:15 Quant Method :ESTD Cal Curve Type: Average CF Integrator : HP Genie Sublist : 8330MX.sub Column : C18 Column Size : Om L - 4.60mm ID Calibration Files: : 1/022707.b/022707.b/02270705.D Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 6: 1.1 Level 1 Level 7: 1.2 Level 1 Level 1: 1/ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 1: 1/ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.D 1:0:1 1:1.1 1:0:1 1:1.1 <th></th> <th></th> <th></th> <th>linutes.</th> <th>essed as m</th> <th>Retention times are expre</th>				linutes.	essed as m	Retention times are expre
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 3 Level 4 Level 3 Level 4 Level 4 Level 3 Level 4 <	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O2270707.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O227070.b Level 6: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 6: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 6: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/Oscar.i/Oscar.i/O227070.b Level 7: //ceres/labdata/hplc/oscar/Oscar.i/	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6:	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type : Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330F Sublist : 0m L = 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.B/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.B/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.B/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.6.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.9.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.5.0 1:1:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:						
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 4 Level 4 Level 3 Level 4 Level 4 Level 4 Level 3 Level 4	Level 3: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270709.D Level 6: 1.022707.b/02270709.D Level 7: 1/022707.b/02270709.D Level 7:	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O227070.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/oscar.i/O22707.b/O227070.b/O2270709.D Level 4 Level 1 Level 5: //ceres/labdata/hplc/oscar/oscar.i/Oscar.i/O22707.b/O227070.b/O2270709.D Level 4 NX	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTP Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330F Sublist : C18 Column Size : 0m L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D 1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	24.	×#. ↓ ↓	~ *. 07	ν 4 - Γο	40 **^	T# 7,0-DINICIOCOINGUE
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 4 ====================================	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b Level 5: //ceres/labdata/hplc/oscar/oscar.i/0227070.b Level 5: //ceres/labdata/hplc/oscar.i/0227070.b Level 5:<	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4 Level 1 Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6 Level 1 Level 7 Level 2 Level 8 Level 1 Level 9 Level 4 1 HMX Level 4 1 HMX 1.02 1 Solo 1.08 1 Solo 1.08 2 Total 1.08 3 Solo 8.35 4.69 4.69 4.69 4.69 5 RDX 15.05 8 Solo 8.35 8 Solo 15.05 9 Nitrobenzene 15.07 17.17	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330F Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.b/022						
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 4 ====================================	Level 3: //ceres/labdata/hplc/oscar.i/oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/052707.b/02270709.b Level 4: //ceres/labdata/hplc/oscar.i/052707.b/02270709.b level 4: //ceres/labdata/hplc/oscar.i/052707.b/02270709.b level 4: //ceres/labdata/hplc/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/labdata/hplc/oscar/oscar.i/05270709.b level 4: //ceres/labdata/hplc/oscar.i/05270709.b level 4: //ceres/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hplc/labdata/hp	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6: 1,3,5-Trinitrobenzene 1 HMX 1.69 4 MNX 7.09 7 1,3-Dinitrobenzene 12.11 12.12 12.12 8 Tetryl 15.02 15.05 9 Nitrobenzene 17.11 17.22 17.17 12.4.4.6-Trinitrotoluene 20.61 20.72 21.61 21.67 12.4.4.0100-2 6.Dinitrotoluene 21.54 21.72 21.61 21.67	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330F Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.5 Level 4: MNX	- 0 1			22 84		13 2-Amino-4 6-Dinitrotolnene
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 4 1 HMX ========= ======= ======= ====== ===== ===== ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== ==== === === === ==== ==== ==== === === ==== == === === === == == == == == == == == == == == == == ==	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/oscar.i/022707.b/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar.i/022707.b/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar.i/022707.b/022707.b/022707.b/02270709.D level 4: //ceres/labdata/hplc/oscar.i/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/02270709.D level 4: //ceres/labdata/hplc/oscar.i/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/022707.b/02270709.D level 4: //ceres/labdata/hplc/oscar.i/022707.b/0227070.b/0227070.b/022707.b/0227070.b/0227070.b/0227070.b/0227070.b/0227	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 7: Lev	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330F Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D 1 HMX 1.0000 1.000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.000	2	21 67	21 67	21.72	21,54	12 4-Amino-2.6-Dinitrotoluene
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 3 1 HMX ========= ======= ======= ====== ===== ===== ===== ===== === == === === === === === === == == == == == === === === ==	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 6: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D 1 HMX Level 1 Level 1 Level 2 Level 3 Level 4 Lev 1 HMX S RDX A.69 4.69 12.11 12.13 12.12 12.13 12.12 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.12 12.12 12.13 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.12 12.13 12.12 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.13 12.12 12.12 12.12 12.12 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.13 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.12 12.13 12.12 12.13 12.12 12.13 12.12 12.13 12.12 12.13 12.12 12.13 12.12 12.13 12.12 12.13 12.12 13.14 12.13 12.14 12.13 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 12.15 1	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O227070.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 6: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 6: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 7: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 8: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 9: 1 Level 1 Level 9: 1 Level 4 1: HMX 1: 4.69 4: 69 4.69 5: RbX 8:36 8:36 6: 1,3,5-frinitrobenzene 1:2.11 1:2.12 1:2.12 9: Nitrobenzene 1:5.07 1:5.07 1:5.07 1:5.07	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330F Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D 1 HMX	20.	20.69	20.65	20.72	20.61	11 2,4,6-Trinitrotoluene
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 3 1 HMX ====================================	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b //02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b //0227070.b	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 6: 1,3,5-Trinitrobenzene 1000 1	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330F] Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: J.1 Level 1 Level 2 Level 3 Level 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69	17.	17.73	17.71	17.75	17.67	9 Nitrobenzene
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 3 1 HMX IMX Image: I	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Compound Level 1 Level 2 Level 3 Level 4 Lev compound Level 1 Level 2 Level 3 Level 4 Lev served 2 Level 3 Level 4 Lev served 4 MNX 4.69	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6:	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \/ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FI Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/022707.b/02270709.D 1 HMX 1 0.08 1 0.08 1 0.08 1 0.08 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.07 1 0.08 1 0.07 1 0.07 1 0.07 1 0.07 1 0.08 1 0.07 1 0.08 1 0.07 1 0.07 1 0.08 1 0.07 1 0.07 1 0.07 1 0.07 1 0.08 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07 1 0.07	1 17.3	17.20	17.17	17.22	17.11	8 Tetryl
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 3 1 HMX IMX Image: I	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.b Compound Level 1 Level 2 Level 3 Level 4 Lev compound Level 1 Level 2 Level 3 Level 4 Lev s RDX 4 MNX 4.69	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Level 6: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 6: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D Level 7: 1.000 1: 0.000 1: 0.0000000 1: 0.0000000000	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FI Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Amount 1 HMX Level 1 Level 2 Level 3 Level 4 Level 1 HMX 1.09 7.09 7.08	1 15.0	15.07	15.05	15.08	15.02	7 1,3-Dinitrobenzene
Compound Level 1 Level 2 Level 3 Level 4 Level 4 ====================================	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.b Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.b Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 1 Level 2 Level 3 Level 4 Level 4 Level 4.69 4.69	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O22707.b/O2270709.D Level 5: //ceres/	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : 0% L - 4.60mm ID Column Size : 0% L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D A MMX 1 MMX 4.69 5.60 7.08 7.	12.1	12.12	12.12	12.13	12.11	6 1,3,5-Trinitrobenzene
Compound Level 1 Level 2 Level 3 Level 4 Level 3 Image: Second control of the second contrel of the second control of the second control of the se	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Compound Level 1 Level 2 Level 3 Level 4 Lev Compound Level 1 Level 2 Level 3 Level 4 Lev 1 HMX 4.69 4.	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O3 level 4 level 4 level 4 level 4.69 l	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FI Sublist : 0m L - 4.60mm ID Column Size : 0m L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D 1	8.3	8.35	8.35	8.36	8.36	5 RDX
Compound Level 1 Level 2 Level 3 Level 4 Le	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D compound Level 1 Level 2 Level 3 Level 4 Lev ====================================	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/Oscar.i/O22707.b/O2270709.D	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FI Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O32707.b/O2270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O32707.b/O3270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O32707.b/O3270709.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O32707.b/O3270709.D 1 HMX 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69	7.0	7.08	7.08	7.09	7.09	4 MNX
Compound Level 1 Level 2 Level 3 Level 4 Le	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.b Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FI Sublist : 8330MNX.sub Column Size : Om L = 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Hevel 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Level 5: //ceres/labdata/hplc/oscar/oscar.i/oz2707.b/02270709.D Hevel 5: //ceres/labdata/hplc/oscar/oscar.i/oz2707.b/02270709.D Compound Level 1 Level 2 Level 3 Level 4 Level 	4.6	4.69	4.69	4.69	4.69	1 HMX
	Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D	Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D	<pre>End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330Fl Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D</pre>	Level	Level 4	Level 3	Level 2	Level 1	
Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.L Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.L	Column Size : Om L - 4.60mm ID		End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330F Sublist : 8330MNX.sub						Column : C18
Column : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D	Column : C18 Column Size : Om L - 4.60mm ID	Column : C18	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \/ceres/labdata/hplc/oscar/Oscar.i/022707.b/8330F					۔ مر	Sublist : 8330MNX.su
Sublist : 8330MNX.sub Column : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D	Sublist : 8330MNX.sub Column : C18 Column Size : Om L - 4.60mm ID	Sublist : 8330MNX.sub Column : C18	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF	8330F	v22707.b\	Oscar.i\0	c\oscar\(ıbdata∖hpl	Integrator : HP Genie Method File : \\ceres\la
<pre>Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\833 Sublist : 8330MNX.sub Column : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.E Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.E</pre>	Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330 Sublist : 8330MNX.sub Column : C18 Column Size : Om L - 4.60mm ID	Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\83301 Sublist : 8330MNX.sub Column : C18	End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD					. 1	Cal Curve Type: Average CH
Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\833 Sublist : 8330MNX.sub Column Size : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D	Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\833(Sublist : 8330MNX.sub Column : C18 Column Size : 0m L - 4.60mm ID	Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\83301 Sublist : 8330MNX.sub Column : C18	End Cal Date : 27-FEB-2007 15:15						Quant Method : ESTD
Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\833 Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D	Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330 Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID	Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\83301 Sublist : 8330MNX.sub Column : C18						07 15:15	End Cal Date : 27-FEB-20(

SUM - 61

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Retention Time Summary

Sublist Method File Quant Method : Cal Curve Type: Column Size Column Integrator End Cal Date Start Cal Date: .. •• ۰. 4.6 • • 27-FEB-2007 12:35 27-FEB-2007 15:15 ESTD Average CF HP Genie C18 \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m
8330MNX.sub 0m L - 4.60mm ID

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -						
15 2,4-Dinitrotoluene	24.97	25.08	24,98	25.04	25.02	25.019
16 2-Nitrotoluene	30.36	30.41	30.32	30.37	30.38	30.367
17 4-Nitrotoluene	33.08	33.09	33.02	33.08	33.07	33.068
18 3-Nitrotoluene	35.60	35,59	35,53	35.60	35.62	35.589
10 3,4-Dinitrotoluene	18.40	18.51	18.45	18.48	18.48	18.464

Retention times are expressed as minutes.

02/28/2007 09:10 ICAL RT Summary v2.0

Page 2
Laucks Testing Labs Initial Calibration Amounts Summary

Level Level Column Sublist Method File Cal Curve Type: Start Cal Date: Column Size Integrator Quant Method End Cal Date Level Level Level Calibration Files: ഗ •• 4. ω ... 1.. .∨ •• /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D .. C18 Average CF 8330MNX.sub 27-FEB-2007 15:15 27-FEB-2007 HP Genie ESTD Om L \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m ι 4.60mm 12:35 Π

14 2,6-Dinitrotoluene	13 2-Amino-4,6-Dinitrotoluene	12 4-Amino-2,6-Dinitrotoluene	11 2,4,6-Trinitrotoluene	9 Nitrobenzene	8 Tetryl	7 1,3-Dinitrobenzene	6 1,3,5-Trinitrobenzene	5 RDX	4 MNX	1 HMX	Compound
50,00	50.00	50.00	50.00	50,00	50.00	50.00	50.00	50.00	50.00	50,00	 Level 1
100.00	100.00	100.00	100.00	100.00	100.00	100,00	100.00	100.00	100.00	100.00	Level 2
500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	Level 3
1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	Level 4
5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00	 Level 5

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page

 \vdash

Laucks Testing Labs Initial Calibration Amounts Summary

Column Size	Column	Sublist	Method File	Integrator	Cal Curve Type	Quant Method	End Cal Date	Start Cal Date
0m L - 4.60mm ID	C18	833 OMNX. sub	\\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m	HP Genie	Average CF	ESTD	27-FEB-2007 15:15	27-FEB-2007 12:35

	Compound	Level 1	Level 2	Level 3	Level 4	Level 5
	***************************************		=======================================			
	15 2,4-Dinitrotoluene	50.00	100.00	500,00	1000.00	5000.00
	16 2-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
~~~~	17 4-Nitrotoluene	50.00	100.00	500.00	1,000.00	5000.00
	18 3-Mitrotoluene	50.00	100.00	500.00	1000.00	5000.00
	10 3,4-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11

ICAL Standard Concentrations Summary v2.0

Page

N

Level 3: //ceres/labdata/ Level 4: //ceres/labdata/ Level 5: //ceres/labdata/	nplc/osca nplc/osca nplc/osca	r/Oscar. r/Oscar. r/Oscar.	1/022707 1/022707 1/022707	7.b/0227 7.b/0227 7.b/0227	0707.D 0708.D 0709.D
Compound		∪∪∪∪ 5⊻∪∟  ====≈≈±±=;			
	000001815	0000.690T	4914 ADAU	10458.000 9526.0000	51487.000
Compourid ====================================	0.00000	UUUUU 140		A070,0000	200 CUVC
Compourid 1. HMX 4. MNX 5. RDX	400.00000	973.00000 768.00000	3865.0000	7591,0000	47457.000 37440.000
Compound ====================================	400.00000	973.00000 768.00000 1318.0000	3865.0000 6819.0000	7591.0000 13283.000	47457.000 37440.000 66372.000
<pre>Compound Compound I HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene</pre>	400.00000    698.00000    762.00000	973.00000 768.00000 1318.0000 1454.0000	3865.0000 6819.0000 7554.0000	7591.0000 13283.000 14689.000	47457.000 37440.000 66372.000 74379.000
<pre>Compound ====================================</pre>	400-00000 698.00000 762.00000 357.00000	973.00000 768.00000 1318.00000 1454.00000 684.00000	3865.0000 6819.0000 7554.0000 7558.0000	7591.0000 13283.000 14689.000 14689.000	47457.000 37440.000 66372.000 74379.000 74379.000
Compound ====================================	400.00000 698.00000 762.00000 357.00000 433.00000	973.00000 768.00000 1318.00000 1454.00000 684.00000 828.00000	3865.0000 6819.0000 7554.0000 3558.0000 4356.0000	7591.0000 13283.000 14689.000 6929.0000 8494.0000	47457.000 37440.000 66372.000 74379.000 34385.000 34385.000
Compound 	400.00000 698.00000 762.00000 357.000000 433.000000 415.000000	973.00000 768.00000 1318.0000 1454.00000 684.00000 828.00000 788.00000	3865.0000 6819.0000 7554.0000 3558.0000 4356.0000 4356.0000	7591.0000 13283.000 14689.000 6929.0000 8494.0000 7946.0000	47457.000 37440.000 66372.000 74379.000 34379.000 34385.000 43265.000 43265.000
Compound       1       HMX       4       5       RDX       6       1,3,5-Trinitrobenzene       7       1,3-Dinitrobenzene       8       7etry1       9       Nitrobenzene       11       2,4,6-Trinitrotoluene       12       4.Amino-2,6-Dinitrotoluene	400.00000 698.00000 762.00000 357.00000 433.00000 415.00000 415.00000	973.00000 768.00000 1318.00000 1454.00000 684.00000 828.000000 828.000000 788.000000	3865.0000 6819.0000 7554.0000 3558.0000 4356.0000 4103.0000 4103.0000	7591.0000 13283.000 14689.000 6929.0000 8494.0000 7946.0000 7946.0000	47457.000 37440.000 66372.000 74379.000 34385.000 43265.000 43265.000 39810.000
<pre>Compound Compound HMX A MNX A MNX B 5 RDX B 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1 9 Nitrobenzene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene 13 2-Amino-4,6-Dinitrotoluene</pre>	400.00000 698.00000 762.00000 357.00000 433.000000 415.000000 415.000000 392.00000	973.00000 768.00000 1318.0000 1454.0000 684.00000 828.00000 828.00000 788.00000 563.00000 767.00000	3865.0000 6819.0000 7554.0000 3558.0000 4356.0000 4103.0000 2948.0000 2948.0000	7591.0000 13283.000 14689.000 6929.0000 8494.0000 7946.0000 5726.0000	47457.000 37440.000 66372.000 74379.000 34385.000 43265.000 43265.000 39810.000 28432.000 28432.000

02/28/2007 09:11

ICAL Responses Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Response Summary

I	Level 5	Level 4	Level 3	2	1 Level	Level		pound	Com	—
					CD	60mm :	0m L - 4.	- Z ⊕	is umnic	Ŋ
*							C18		numr	$\Omega$
						5	8330MNX.su		ublist	റ്റ
'EB2707.m	-b\8330F	\022707.	Oscar.i	.car\(	\hplc\os	bdata'	\\ceres\la	le :	ethod Fi	Me
							HP Genie	:	ntegrato	I1
							Average CF	: Туре:	al Curve	$\Omega$
							ESTD	:hod :	lant Met	õ
					л Л	7 15:	27-FEB-200	)ate :	nd Cal I	면
					ហ	7 12:0	27-FEB-200	Date:	cart Cal	ល

Laucks Testing Labs Initial Calibration Response Summary

—	_						(
10 3,4~Dinitrotoluene	18 3-Mitrotoluene	17 4-Nitrotoluene	16 2-Nitrotoluene	15 2,4-Dinitrotoluene	***===*********************************	Compound	
294.00000	165.00000	135.00000	177.00000	449,00000		Level 1	
557.00000	309.00000	259.00000	348.00000	883.00000		Level 2	
2863.0000	1,624,0000	1341.0000	1773.0000	4599.0000		Level 3	
5555.0000	3159.0000	2619.0000]	3463.0000	8947.0000		Level 4	
27891.000	15975.000	13299.000	17517.000	45077.000		Level 5	

Response is in Height units.

02/28/2007 09:11

ICAL Responses Summary v2.0

Page 2

•m •RSD 1.2 1.2 1.2 1.2 1.4
-----------------------------------------------

Amount = Response divided by CF

07/13/2007 09:56

CF - Calibration Factor ( response divided by concentration ).

RSD - Relative Standard Deviation.

ICAL Linearity Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Linearity Summary

		2 0 3				
	07/13/2007 09:56	7 ~ Calibration Factor ( respon 3D ~ Relative Standard Deviatio	·	Average RSD : Amount = Response divided	10 /etry1 17 2,4,6-TNT 12 3,4-Dinitrotoluene	Compound
		n. div		by CF		5 5 5 5
·		rided by con			5.260000 5.800000 7.320000	Level 1
	ICAL	centration ).			5.0500000   5.6100000   7.1100000	* 
·	. Linearity Su				5.240000 5.772000 7.366000	Level 3
	mmary v2.0				5.712000 7.305000	Level 4
					5.117000 5.641200 7.206600	Level 5
					5.1/1000 5.707040 7.261520	Ave CF
				سا ، ۵.		8 8 8 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8
	Page 2					

Laucks Testing Labs Initial Calibration Linearity Summary

Calibration Files: Level 1: //ceres/labdata/l Level 2: //ceres/labdata/l Level 3: //ceres/labdata/l Level 4: //ceres/labdata/l	nplc/felix nplc/felix nplc/felix nplc/felix nplc/felix	/Felix.i /Felix.i /Felix.i /Felix.i	/F71207.k /F71207.k /F71207.k /F71207.k /F71207.k /F71207.k	5/F712070 5/F712070 5/F712071 5/F712071 5/F712071	2.00 2.00 2.00 2.00 0.00 0.00 0.00	
Level 5: //ceres/labdata/h	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
Level 5: //ceres/labdata/l					8.18	8.17
Level 5: //ceres/labdata/l Compound 4 HMX	8.20	8.19	8.17	8 70		8.71
Level 5: //ceres/labdata/f	8.20	8.19	8.17	c	8.72	11.41
Level 5: //ceres/labdata/l Compound ====================================	8.20 11.44	8.19 8.73 11.43	8.17 8.70 11.40	11.39	8.72 11.42	
Level 5: //ceres/labdata/l Compound ====================================	= ====================================	8.19 8.73 11.43 14.38	8.17 8.70 11.40 14.32	11.39	8.72 11.42 14.35	14.34
Level 5: //ceres/labdata/f	= ====================================	8.19 11.43 14.38 14.83	8.17 8.70 11.40 14.32 14.78	11,39 14,30 14,76	8.72 11.42 14.35 14.81	14.3
Level 5: //ceres/labdata/l Compound ====================================	8.20 8.73 11.44 14.39 14.39 14.84 15.53	8.19 11.43 14.38 14.83 14.83 14.83 14.83 15.52	8,17 8,70 11,40 14,32 14,78 14,78 15,48	11.39 14.30 14.76 14.76 15.46	8.72 11.42 14.35 14.81 15.51	14.3
Level 5: //ceres/labdata/l Compound ====================================	= ====================================	===== 8.19 8.73 11.43 14.38 14.83 15.52 15.89	8.17 8.70 11.40 14.32 14.78 15.48 15.82	11.39 14.30 14.76 15.46 15.79	8.72 11.42 14.35 14.81 15.51	14.34 14.80 15.50
Level 5: //ceres/labdata/l Compound ====================================	= ====================================	8.19 8.73 11.43 14.38 14.83 15.52 15.89 16.46	8,17 8,70 11,40 14.32 14.78 15.48 15.48 15.82 16,39	11.39 14.30 14.76 15.46 15.79 15.79	8.72 11.42 14.35 14.81 15.51 15.86 15.86	14.34 14.80 15.50 15.81 15.42
Level 5: //ceres/labdata/l Compound ====================================	= ====================================	8.19 8.19 11.43 14.38 14.83 14.83 15.52 15.89 15.46 15.15	8,17 8,17 11,40 14,32 14,32 14,78 15,48 15,48 15,82 15,82 15,39	111.39 14.30 14.30 15.46 15.76 15.79 15.36 19.03	8.72 11.42 14.35 14.81 15.51 15.86 15.86 16.42 19.10	1 14.3 1 14.8 1 15.5 1 15.8 1 15.8 1 16.4 1 19.0
Level 5: //ceres/labdata/l Compound ====================================	= ====================================	8.19 8.19 11.43 14.38 14.83 14.83 15.52 15.89 15.89 15.46 19.13 19.13 22.13	8,17 8,17 11,40 14,32 14,32 14,32 14,32 14,32 15,48 15,48 15,48 15,82 16,39 16,39 19,05 22,03	11.39 14.30 14.30 15.46 15.79 15.79 16.36 19.03 19.03	8.72 11.42 14.35 14.81 15.51 15.86 16.42 19.10 22.10	14.3 14.8 15.5 15.8 15.8 15.8 15.8 15.8 15.8 15

07/13/2007 09:56

ICAL RT Summary v2.0

Page ı با Laucks Testing Labs Initial Calibration Retention Time Summary

07/13/2007 09:56	Retention times are expre	Compound 16 Tetryl 17 2,4,6-TNT 12 3,4-Dinitrotoluene	Start Cal Date: 12-JUL-200 End Cal Date : 12-JUL-200 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublist : 8330syn.su Column : EtPh Column Size : 0m L - 4.
ICA	ස ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප	Level 1	7 14:08 7 17:18 bdata\hp b
L RT Summ	minutes.	Level 2	lc\felix\
nary v2.0		Level 3	Felix.i/
		Level 4	F71207.b\
Pac		Level 5	\8330syn7
0 2		Ave RT	1207.m

Laucks Testing Labs Initial Calibration Retention Time Summary

Initial Calibration Amounts Summary Laucks Testing Labs

Sublist Method File Level Calibration Files: Column Cal Curve Type: Quant Method End Cal Date Start Cal Date: Level Level 1: Column Size Integrator Level 4.. ω Ν //ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120707.D //ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120709.D //ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120710.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120711.D •• EtPh 8330syn.sub Average CF ESTD 12-JUL-2007 17:18 12-JUL-2007 HP Genie 0m L - 4.60mm ID \ceres\labdata\hplc\felix\Felix.i\F71207.b\8330syn71207.m 14:08

Level ហ /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120712.D

 Compound	Level 1	IJevel 2	Level 3	Level 4	Level 5
 늆┿ <b>듚ᡒ륟ᇳ귵몡됞푶</b> 돜괟뿓뿄쀿뿛뫲쇖섌셠혂麻귫츃쳛쿝묥귫묲프ᅩᅳ그 ^ᆣ				and and we have not not the time and one	
 4 HMX	50.00	100.00	500.00	1000.00	5000.00
 5 RDX	50.00	100.00	500.00	1000.00	5000.00
 6 Nitrobenzene	50.00	100.00	500.00	1000.00	5000.00
 7 4-Amino-2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 8 2-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 9 4-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 10 2-Amino-4,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 11 1,3-Dinitrobenzene/3NT	100.00	200.00	1000.00	2000.00	10000.00
 13 2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 14 2,4-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 15 1,3,5-Trinitrobenzene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

07/13/2007 09:58 ICAL Standard Concentrations Summary v2.0 Page ⊢

			ıg/mL.	а а л	e expres	ntrations ar	Standard conce
	5000.00   5000.00	1000.00	500.00	100.00	50.00   50.00	ne	17 2,4,6-TNT 12 3,4-Dinitrotolue
	5000.00	1000.00	500.00	100.00	50.00		l6 Tetryl
	Level 5	Level 4	Level 3	Level 2	Level 1	NA 10070	Compound
					0mm ID	0m L - 4.6	Column Size :
						EtPh	Column :
						8330syn.sub	Sublist :
/n71207.m	2s0££8∖d	\F71207.]	\Felix.i	.c\felix [\]	data\hpl	//ceres/lab	Method File :
						Average CF	Cal Curve Type:
						ESTD	Quant Method :
					17:18	12-JUL-2007	End Cal Date :
					14:08	12-JUL-2007	Start Cal Date:

07/13/2007 09:58 ICAL Standard Concentrations Summary v2.0 Page

N

Laucks Testing Labs Initial Calibration Amounts Summary

	41//.UUU	0000 1 - 55 A	4201.0000	837.00000	432.00000	15 1,3,5-TTINITTODENZENE
		1 0000				
	63159.000	12797.000	6442.0000	1260.0000	643.00000	14 2,4-Dinitrotoluene
	38524.000	7812.0000	3926.0000	762.00000	386.00000	13 2,6-Dinitrotoluene
	000-88666	20264.000	10090.000	0000.0261	987.00000	11 1,3-Dinitrobenzene/3NT
	67251.000	13629.000	6871.0000	1343.0000	686,00000	10 2-Amino-4,6-Dinitrotoluene
	2275098.0	452468.00	228195.00	43549.000	22480.000	9 4-Nitrotoluene
	46038.000	9223.0000	4643.0000	888 00000	453.00000	8 2-Nitrotoluene
	50229.000	10212.000	5129.0000	1012.0000	517.00000	7 4-Amino-2,6-Dinitrotoluene
	87731.000	17580.000	8818.0000	1686.0000	865.00000	6 Nitrobenzene
	47754.000	9719.0000	4858.0000	964.00000	489.00000	5 RDX
	000-8€08E	7753.0000	3888.0000	760.00000	390.00000	4 HMX
						그 빠 걸 해 갔 있 於 於 방 방 방 바 바 바 바 바 바 바 바 만 안 안 한 안 안 안 안 안 안 안 안 안 한 다 바 바 바 바 바 바 바 바 바 만 안 한 만 한 만 한 만 한 만 한 만 한 만 한 만 한 만 한 만
	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
yn71207.m	b\8330sy b\8330sy 0707.D 0709.D 0710.D 0711.D 0711.D	\F71207. .b/F7120 .b/F7120 .b/F7120 .b/F7120 .b/F7120	\Felix.i \Felix.i i/F71207 i/F71207 i/F71207 i/F71207 i/F71207	Lc\felix <td>odata\hp] o 50mm ID 51c/felia plc/felia plc/felia</td> <td>Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublist : 8330syn.su Column Size : 0m L - 4. Column Size : 0m L - 4. Calibration Files: Level 1: //ceres/labdata/h Level 2: //ceres/labdata/h Level 4: //ceres/labdata/h</td>	odata\hp] o 50mm ID 51c/felia plc/felia plc/felia	Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublist : 8330syn.su Column Size : 0m L - 4. Column Size : 0m L - 4. Calibration Files: Level 1: //ceres/labdata/h Level 2: //ceres/labdata/h Level 4: //ceres/labdata/h
					7 14:08 7 17:18	Start Cal Date: 12-JUL-200 End Cal Date : 12-JUL-200

Response is in Height units.

07/13/2007 09:58 ICAL

ICAL Responses Summary v2.0

Page

щ

Laucks Testing Labs Initial Calibration Response Summary

Response is in Height uni	Compound ====================================	Start Cal Date: 12-JUL-200 End Cal Date : 12-JUL-200 Quant Method : ESTD Cal Curve Type: Average CH Integrator : HP Genie Method File : \\ceres\1a Sublist : 8330syn.su Column Size : 0m L - 4.
	Level 1       Level 2       Level 3       Level 4       Level 5         ====================================	)7 14:08 )7 17:18 ? abdata\hplc\felix\Felix.i\F71207.b\8330syn71207.m ab

07/13/2007 09:58

ICAL Responses Summary v2.0

Page

N

Laucks Testing Labs Initial Calibration Response Summary

## Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info	: //ceres/labdat : 28-JUN-2007 12 : STD04 1000PPB	a/hplc/oscar/Os 2:31 METHOD 8330	scar.i/062807	.b/06280703.E
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: ICV : STD04 1000PPB : Oscar.i : 8330FEB2707.m : ESTD : 1.00 : C18	Client Operato Sublist Integra Sample Column	ID : HPLC1- or : MY t : 8330 ator : HP Gen Type: CCALIB Size: 0.25m	16-8 20X ie _4 _L~ 4.60mm II
Compound HMX	RT 4.58 #	Ave RT Window 4.33 - 4.83 10.	rage ICV CF CF 66308 9.849000	%D Flag ======= 7.6

RDX	8.04 #	7.79 - 8.29	7.697800	7.344000	4.6
1,3,5-Trinitrobenzene	11.63 #	11.38 - 11.88	13.46708	13.42300	0.3
1,3-Dinitrobenzene	14.40 #	14.15 - 14.65	14.89056	14.73200	1.1
Tetryl	16.20 #	15.95 - 16.45	6.980400	6.995000	-0.2
Nitrobenzene	16.94 #	16.69 - 17.19	8.559800	8.535000	0.3
3,4-Dinitrotoluene	17.40 #	17.15 - 17.65	5.661840	6.370000	-12.5
2,4,6-Trinitrotoluene	19.66 #	19.41 - 19.91	8.058800	7.572000	6.0
4-Amino-2,6-Dinitrotoluene	20.47 #	20.17 - 20.77	5.775680	5.955000	-3.1
2-Amino-4,6-Dinitrotoluene	21.58 #	21.28 - 21.88	7.774920	7.875000	-1.3
2,6-Dinitrotoluene	22.88 #	22.59 - 23.17	5.200600	5.292000	-1.8
2,4-Dinitrotoluene	23.79 #	23.50 - 24.08	8.994080	9.090000	-1.1
2-Nitrotoluene	28.81 #	28.45 - 29.17	3.506480	3.598000	-2.6
4-Nitrotoluene	31.35 #	30.95 - 31.75	2.650160	2.743000	-3.5
3-Nitrotoluene	33.73 #	33.29 - 34.17	3.198400	3.308000	-3.4

Calibration Factor ( CF ) = Response divided by Concentration

Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

## Laucks Testing Labs Continuing Calibration Verification Summary

Data File	:	//ceres/labdata/hplc/d	oscar/Oscar.i	/062807.b/06280713.D
Injection Date	:	28-JUN-2007 19:19		
Sample Info	:	STD04 1000PPB		
Misc. Info	:	Method 8330		
Laboratory ID	;	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID

Compositional	העת	DT Window	Average	Continuing	su Elaa
					energenergenergenergenergenergenergener
НМХ	4.58	4.33 - 4.83	10.66308	9.887000	7.3
RDX	8.02	7.79 - 8.29	7.697800	7.414000	3.7
1,3,5-Trinitrobenzene	11.60	11.38 - 11.88	13.46708	13.65800	-1.4
1,3-Dinitrobenzene	14.35	14.15 - 14.65	14.89056	14.91600	-0.2
Tetryl	16.12	15.95 - 16.45	6.980400	7.088000	-1.5
Nitrobenzene	16.87	16.69 - 17.19	8.559800	8.607000	-0.6
3,4-Dinitrotoluene	17.31	17.15 - 17.65	5.661840	6.578000	-16.2
2,4,6-Trinitrotoluene	19.57	19.41 - 19.91	8.058800	7.593000	5.8
4-Amino-2,6-Dinitrotoluene	20.31	20.17 - 20.77	5.775680	6.017000	-4.2
2-Amino-4,6-Dinitrotoluene	21.41	21.28 - 21.88	7.774920	7.878000	-1.3
2,6-Dinitrotoluene	22.77	22.59 - 23.17	5.200600	5.250000	-0.9
2,4-Dinitrotoluene	23.67	23.50 - 24.08	8.994080	9.110000	-1.3
2-Nitrotoluene	28.69	28.45 - 29.17	3.506480	3.620000	-3.2
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.778000	-4.8
3-Nitrotoluene	33.56	33.29 - 34.17	3.198400	3.348000	-4.7

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

## Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ce : 10-J : STD0 : ICV : STD0 : Osca : 8330 : ESTD : 1.00 : C18	res/labo UL-2007 4 1000PP 4 1000PP r.i FEB2707.	data/hplc 11:48 PB METHOI PB m	c/osca 8330 Cli Ope Sub Int Sam Col	r/Oscar.: ent ID rator list egrator ple Type: umn Size:	: HPLC1-1 : MY : 8330 : HP Geni : CCALIB_ : 0.25m	b/07100705 .6-8 20X .e 4 L- 4.60mm	5.D ID
Compound		RT	RT Wir	ıdow	Average CF	ICV CF	%D Flag	
HMX		4.57 #	4.32 -	4.82	10.66308	9.490000	11.0	-
RDX		7.99 #	7.74 -	8.23	7.697800	7.119000	7.5	
1,3,5-Trinitrobenzen	e	11.55 #	11.30 -	11.80	13.46708	12.97900	3.6	
1,3-Dinitrobenzene	·····	14.28 #	14.04 -	14.54	14.89056	14.25600	4.3	
Tetryl		16.02 #	15.77 -	16.27	6.980400	6.757000	3.2	
Nitrobenzene		16.81 #	16.56 -	17.06	8.559800	8.269000	3.4	
3,4-Dinitrotoluene		17.22 #	16.97 -	17.47	5.661840	6.443000	-13.8	
2,4,6-Trinitrotoluen	e	19.46 #	19.21 -	19.71	8.058800	7.224000	10.4	
4-Amino-2,6-Dinitrot	oluene	20.19 #	19.89 -	20.49	5.775680	5.852000	-1.3	
2-Amino-4,6-Dinitrot	oluene	21.28 #	20.98 -	21.58	7.774920	7.575000	2.6	
2,6-Dinitrotoluene		22.66 #	22.37 -	22.95	5.200600	5.032000	3.2	
2,4-Dinitrotoluene		23.55 #	23.26 -	23.84	8.994080	8.707000	3.2	
2-Nitrotoluene		28.57 #	28.21 -	28,93	3.506480	3.463000	1.2	
4-Nitrotoluene		31.05 #	30.65 -	31.45	2.650160	2.646000	0.2	
3-Nitrotoluene		33.41 #	32.97 -	33.85	3.198400	3.178000	0.6	

Calibration Factor ( CF ) = Response divided by Concentration

Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

## Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date	:	//ceres/labdata/hplc/ 11-JUL-2007 10:29	oscar/Oscar.i	/071007.b/07100739.D
Sample Info		STD04 1000PPB METHOD	8330	
Misc. Info	:	Method 8330		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID

			Average	Continuing	
Compound	RT	RT Window	CF	CF	%D Flag
НМХ	4.56	4.32 - 4.82	10.66308	9.812000	8.0
RDX	7.97	7.74 - 8.23	7.697800	7.367000	4.3
1,3,5-Trinitrobenzene	11.54	11.30 - 11.80	13.46708	13.60800	-1.0
1,3-Dinitrobenzene	14.28	14.04 - 14.54	14.89056	14.72600	1.1
Tetryl	16.02	15.77 - 16.27	6.980400	6.780000	2.9
Nitrobenzene	16.81	16.56 - 17.06	8.559800	8.172000	4.5
3,4-Dinitrotoluene	17.23	16.97 - 17.47	5.661840	6.562000	-15.9
2,4,6-Trinitrotoluene	19.46	19.21 - 19.71	8.058800	7.456000	7.5
4-Amino-2,6-Dinitrotoluene	20.18	19.89 - 20.49	5.775680	6.125000	-6.0
2-Amino-4,6-Dinitrotoluene	21.26	20.98 - 21.58	7.774920	7.893000	-1.5
2,6-Dinitrotoluene	22.65	22.37 - 22.95	5.200600	5.229000	-0.5
2,4-Dinitrotoluene	23.53	23.26 - 23.84	8.994080	9.057000	-0.7
2-Nitrotoluene	28.53	28.21 - 28.93	3.506480	3.450000	1.6
4-Nitrotoluene	30.99	30.65 - 31.45	2.650160	2.659000	-0.3
3-Nitrotoluene	33.35	32.97 - 33.85	3.198400	3.177000	0.7

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

## Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ce : 11-J : STD0 : Meth : STD0 : Osca : 8330 : ESTD : 1.00 : C18	res/labd UL-2007 4 1000PP od 8330 4 1000PP r.i FEB2707.1	ata/hplc 16:29 B METHOD B	/osca 8330 Cli Ope Sub Int Sam Col	r/Oscar. ent ID rator list egrator ple Type umn Size	i/071007. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB : 0.25m	b/07100748 6-8 20X .e 4 L- 4.60mm	3.D ID
Compound		RT	RT Wir	ıdow	Average CF	Continuing CF	%D Flag	
HMX		4.56	4.32 -	4.82	10.66308	9.850000	7.6	-
RDX		7.94	7.74 -	8.23	7.697800	7.379000	4.1	
1,3,5-Trinitrobenzen	e	11.52	11.30 -	11.80	13.46708	13.58900	-0.9	
1,3-Dinitrobenzene		14.23	14.04 -	14.54	14.89056	14.79200	0.7	
Tetryl		15.96	15.77 -	16.27	6.980400	6.690000	4.2	
Nitrobenzene		16.78	16.56 -	17.06	8.559800	8.291000	3.1	
3,4-Dinitrotoluene		17.19	16.97 -	17.47	5.661840	6.664000	-17.7	
2,4,6-Trinitrotoluen	.e	19.43	19.21 -	19.71	8.058800	7.492000	7.0	
4-Amino-2,6-Dinitrot	oluene	20.01	19.89 -	20.49	5.775680	6.441000	-11.5	
2-Amino-4,6-Dinitrot	oluene	21.06	20.98 -	21.58	7.774920	7.968000	-2.5	
2,6-Dinitrotoluene		22.59	22.37 -	22.95	5.200600	5.222000	-0.4	
2,4-Dinitrotoluene		23.44	23.26 -	23.84	8.994080	9.064000	-0.8	
2-Nitrotoluene		28.52	28.21 -	28.93	3.506480	3.446000	1.7	
4-Nitrotoluene		30.95	30.65 -	31.45	2.650160	2.678000	-1.1	
3-Nitrotoluene		33.33	32.97 -	33.85	3.198400	3.199000	-0.0	

Calibration Factor ( CF ) = Response divided by Concentration

Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

### Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info	: : :	//ceres/labdata/hplc/ 12-JUL-2007 20:28 STD04 1000PPB METHOD8	felix/Feli 330	ix.i,	/F71207A.b/F7120717.D
Misc. Info	:	ICV			
Laboratory ID	:	STD04 1000PPB	Client II	) :	HPLC1-16-08 20X
Instrument ID	:	Felix.i	Operator	:	MY
Method	:	8330syn71207.m	Sublist	:	8330syn
Quantitation	:	ESTD	Integrate	or :	HP Genie
Dilution Factor	Ξ	1.00	Sample Ty	/pe:	CCALIB 4
Column	:	EtPh	Column Si	ize:	0.25m ⁻ L- 4.60mm ID
			Avera	ge	ICV

Compound	RT	RT Window	CF	CF	%D Flag
HMX	8.19 #	7.94 - 8.44	7.709720	7.620000	1.2
RDX	8.73 #	8.48 - 8.98	9.681160	9.523000	1.6
Nitrobenzene	11.43 #	11.18 - 11.68	17.38444	17.34300	0.2
4-Amino-2,6-Dinitrotoluene	14.37 #	14.12 - 14.62	10.19516	10.04200	1.5
2-Nitrotoluene	14.82 #	14.57 - 15.07	9.131320	9.092000	0.4
4-Nitrotoluene	15.52 #	15.27 - 15.77	449.7935	448.3420	0.3
2-Amino-4,6-Dinitrotoluene	15.87 #	15.62 - 16.12	13.59424	13.44900	1.1
1,3-Dinitrobenzene/3NT	16.44 #	16.19 - 16.69	9.957160	9.802000	1.6
3,4-Dinitrotoluene	17.66 #	17.42 - 17.92	7.261520	7.168000	1.3
2,6-Dinitrotoluene	19.11 #	18.86 - 19.36	7.741760	7.681000	0.8
2,4-Dinitrotoluene	22.09 #	21.84 - 22.34	12.75456	12.60700	1.2
1,3,5-Trinitrobenzene	25.22 #	24.95 - 25.49	8.466880	8.310000	1.9
Tetryl	29.16 #	28.72 - 29.58	5.171000	5.047000	2.4
2,4,6-TNT	32.77 #	32.33 - 33.21	5,707040	5.547000	2.8

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

## Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Miss. Info	::	//ceres/labda 13-JUL-2007 1 STD04 1000PPB Method 8330	ta/h 7:24 MET	plc HOD	/feli 8330	x/Felix.	i/F71207#	A.b/F	712075	50.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	:::::::::::::::::::::::::::::::::::::::	STD04 1000PPB Felix.i 8330syn71207.m ESTD 1.00 EtPh	m		Cli Ope Sub Int Sam Col	ent ID rator list egrator ple Type umn Size	: HPLC1-1 : MY : 8330syr : HP Geni : CCALIB : 0.25m	L6-08 n Le L- 4	20X .60mm	ID
a			DT	T.T1		Average	Continuing	4 %D	Flog	
Compound	===	RT	RT	nin ====	140W	CF ==========	CF ==========	-=======	Frag	-
НМХ		8.20	7.94	<u>1</u>	8.44	7.709720	7.834000	-1.6		
RDX		8.74	8.48	3 -	8.98	9.681160	9.753000	-0.7		

RDX	8.74	8.48 - 8.98	9.681160	9.753000	-0.7	
Nitrobenzene	11.46	11.18 - 11.68	17.38444	17.20200	1.0	
4-Amino-2,6-Dinitrotoluene	14.43	14.12 - 14.62	10.19516	10.17300	0.2	
2-Nitrotoluene	14.88	14.57 - 15.07	9.131320	9.066000	0.7	
4-Nitrotoluene	15.58	15.27 - 15.77	449.7935	453.0520	-0.7	
2-Amino-4,6-Dinitrotoluene	15.94	15.62 - 16.12	13.59424	13.63000	-0.3	
1,3-Dinitrobenzene/3NT	16.52	16.19 - 16.69	9.957160	9.799500	1.6	
3,4-Dinitrotoluene	17.74	17.42 - 17.92	7.261520	7.266000	-0.1	
2,6-Dinitrotoluene	19.20	18.86 - 19.36	7.741760	7.793000	-0.7	
2,4-Dinitrotoluene	22.20	21.84 - 22.34	12.75456	12.75600	-0.0	
1,3,5-Trinitrobenzene	25.34	24.95 - 25.49	8.466880	8.474000	-0.1	
Tetryl	29.30	28.72 - 29.58	5.171000	5.038000	2.6	
2,4,6-TNT	32.94	32.33 - 33.21	5.707040	5.608000	1.7	

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

## Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Missa Info	: //ceres/labdata : 13-JUL-2007 23 : STD04 1000PPB M	a/hplc/felix/Felix.i/F71207A.b/F7120759.D :06 METHOD8330
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: STD04 1000PPB : Felix.i : 8330syn71207.m : ESTD : 1.00 : EtPh	Client ID : HPLC1-16-08 20X Operator : MY Sublist : 8330syn Integrator : HP Genie Sample Type: CCALIB_4 Column Size: 0.25m L- 4.60mm ID
Compound	RT	Average Continuing RT Window CF CF %D Flag

Compound	RT	RT Window	CF	CF	%D Flag
HMX	8.19	7.94 - 8.44	7.709720	7.708000	0.0
RDX	8.73	8.48 - 8.98	9.681160	9.655000	0.3
Nitrobenzene	11.44	11.18 - 11.68	17.38444	17.16400	1.3
4-Amino-2,6-Dinitrotoluene	14.39	14.12 - 14.62	10.19516	10.13600	0.6
2-Nitrotoluene	14.84	14.57 - 15.07	9.131320	9.075000	0.6
4-Nitrotoluene	15.54	15.27 - 15.77	449.7935	448.0220	0.4
2-Amino-4,6-Dinitrotoluene	15.89	15.62 - 16.12	13.59424	13.62300	-0.2
1,3-Dinitrobenzene/3NT	16.46	16.19 - 16.69	9.957160	9.864000	0.9
3,4-Dinitrotoluene	17.69	17.42 - 17.92	7.261520	7.234000	0.4
2,6-Dinitrotoluene	19.13	18.86 - 19.36	7.741760	7.745000	-0.0
2,4-Dinitrotoluene	22.12	21.84 - 22.34	12.75456	12.69500	0.5
1,3,5-Trinitrobenzene	25.25	24.95 - 25.49	8.466880	8.434000	0.4
Tetryl	29.18	28.72 - 29.58	5.171000	5.070000	2.0
2,4,6-TNT	32.80	32.33 - 33.21	5.707040	5.584000	2.2

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( D ) = (Ave CF - Cont CF) divided by AveCF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280704.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	нмх	0.50	U
121-82-4	RDX	0.50	U
99-35-4	1,3,5-Trinitrobenzene	0.50	U
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	υ
479-45-8	Tetryl	0.50	Ŭ
118-96-7	2,4,6-Trinitrotoluene	0.50	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	U
606-20-2	2,6-Dinitrotoluene	0.50	Ŭ
121-14-2	2,4-Dinitrotoluene	0.50	U
88-72-2	2-Nitrotoluene	0.50	U
99-99-0	4-Nitrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	U

Comments:

FORM I ORD

CLIENT SAMPLE NO.

S062607HORWLG

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB30	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID:
% Moisture: Decanted: (Y/N) _N	Date Collected:
Extraction: (Type) <u>SPE</u>	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: _50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	21.0	
121-82-4	RDX	21.5	
99-35-4	1,3,5-Trinitrobenzene	17.6	
99-65-0	1,3-Dinitrobenzene	17.8	
98-95-3	Nitrobenzene	17.8	
479-45-8	Tetryl	16.0	
118-96-7	2,4,6-Trinitrotoluene	18.7	
19406-51-0	4-Amino-2,6-dinitrotoluene	17.9	
35572-78-2	2-Amino-4,6-dinitrotoluene	17.9	
606-20-2	2,6-Dinitrotoluene	16.1	
121-14-2	2,4-Dinitrotoluene	16.5	
88-72-2	2-Nitrotoluene	14.9	
99-99-0	4-Nítrotoluene	15.4	
99-08-1	3-Nitrotoluene	14.7	

Comments:

### CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Lab Name: Laucks Testing Labs, Inc.

**Client Sample ID** 

S062607HORWLG

#### Lab Sample ID: S062607HORWLG Instrument ID: HPLC5 (Oscar) Run Sequence ID: R019636 Column (2): Synergi - EtPH Column (1): Allure C18 File (1): 062807.b-06280705.D File (2): F71207A.b-F7120752.D Date Analyzed (1): 6/28/2007 1:59:00 PM Date Analyzed (2): 7/13/2007 6:40:00 PM CONCENTRATION ANALYTE COL RPD RT **RT** Window Final Units: ug/L HMX 1 18.8613 4.58 4.33 - 4.83 10.8 % 7.94 - 8.44 2 21.0228 X 8.23 20.4357 8.03 7.79 - 8.29 RDX 1 5.1 % 2 21.5036 X 8.77 8.48 - 8.98 1,3,5-Trinitrobenzene 1 17.5962 X 11.62 11.38 - 11.88 5.2 % 2 16.698 25.38 24.97 - 25.47 17.771 X 14.37 14.16 - 14.66 1,3-Dinitrobenzene 1 62.5 % 2 33.9163 16.19 - 16.69 16.53 17.5658 16.89 16.69 - 17.19 Nitrobenzene 1 1.5 % 2 17.8355 X 11.49 11.18 - 11.68 16.0464 Χ 16.14 15.96 - 16.46 Tetryl 1 9.7 % 14.562 29.36 28.91 - 29.41 2 17.7905 19.59 19.41 - 19.91 2,4.6-Trinitrotoluene 1 4.9 % 2 18.691 X 32.99 32.52 - 33.02 20.17 - 20.77 4-Amino-2,6-dinitrotoluen l 17.92 X 20.35 1.0 % 2 17.7427 14.44 14.07 - 14.67 2-Amino-4,6-dinitrotoluen 1 17.8793 Х 21.44 21.28 - 21.88 0.8 % 2 17.7296 15.95 15.57 - 16.17 2,6-Dinitrotoluene 1 16.1231 Х 22.79 22.59 - 23.17 1.5 % 2 15.8879 19.21 18.82 - 19.40 2,4-Dinitrotoluene 16.4553 X 23.69 23.50 - 24.08 1 2.9 % 2 15.977 22.23 21.80 - 22.38 14.9209 28.7128.45 - 29.17 2-Nitrotoluene 1 Х 0.6 %

X = Concentration Reported

14.8259

2

14.46 - 15.18

14.89

### CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

#### S062607HORWLG Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: S062607HORWLG Run Sequence ID: R019636 Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 Column (2): Synergi - EtPH File (1): 062807.b-06280705.D File (2): F71207A.b-F7120752.D Date Analyzed (1): 6/28/2007 1:59:00 PM Date Analyzed (2): 7/13/2007 6:40:00 PM 1 Τ T Τ 1

ANALYTE	COL	CONCENTRATION Final Units: ug/L	× ,	RPD	RT	RT Window	
4-Nitrotoluene	1	15.4368	x	66.94	31.22	30.95 - 31.75	
	2	14.4544		0.0 70	15.59	15.12 - 15.92	
3-Nitrotoluene	1	14.7105	х	79.0 %	33.59	33.29 - 34.17	
	2	33.9163		/ 2/2 /0	16.53	16.00 - 16.88	

X = Concentration Reported

# **Forms Summary**

CAB30

Ordnance by Method 8332

2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB30

Run Sequence: <u>R019488</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	52 () #	S3 () #	S4 () #	tot Out
(CAB30-009) 15L4MW425W	75				0
(CAB30-008) 15L4MW02BW	100				0
(CAB30-007) 15L4MW04AW	83				0
(CAB30-003) 15L4MW01AW	88				0
(CAB30-002) 15L4MW01BW	98				0
(S062607HORWLG2) S062607HORWLG2	84				0
(B062607HORWLG) B062607HORWLG	81				0

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

# Column to be used to flag recovery values

* Values outside of contract required QC limits

QC LIMITS 60-140

#### 3в WATER ORDNANCE BLANK SPIKE RECOVERY

Lat	) Nam	ne: <u>Laucks</u>	Testing Labs	Contract: <u>N/A</u>
BS	Run	Sequence:	<u>R019488</u>	SDG No.: <u>CAB30</u>
ΒS	Lab	Sample ID:	S062607HORWLG2	

Level: <u>N/A</u> Units: <u>ug/L</u>

Analyte	Spike Added	Found	%Rec #	Rec Limit
Nitroglycerin	10.0	8.7516	88	60-140
PETN	5.00	3.3839	68	60-140

 $\ensuremath{\texttt{\#}}$  Column to be used to flag recovery and RPD values with an <code>asterisk</code> * Values outside of QC limits

Spike Recovery: _0_out of _2_outside limits

COMMENTS:

ORDNANCE	METHOD	BLANK	SUMMARY
----------	--------	-------	---------

<u> </u>	LIENT	SAM	PLE	NO.
	B0626	507H	ORWI	.G

Lab Name: Laucks Testing Labs		Cont	ract: <u>N/A</u>			-
Lab Sample ID: <u>B062607HORWLG</u>		SDG	No.: <u>CAB30</u>		· · · · · · · · · · · · · · · · · · ·	
Matrix: (SOIL/WATER) <u>Water</u>	,	Date	e Prepared:	06/26/2007		
Lab File ID (1): <u>062907.b-0629</u>	90704.D	Lab	File ID (2):	www.hannersafform.anver.c.		
Date Analyzed (1): 06/29/2007		Date	e Analyzed (2	):		<u> </u>
Time Analyzed (1): 11:04		Time	e Analyzed (2	):		-
Instrument ID (1): <u>HPLC5 (Osca</u>	r)	Inst	crument ID (2	):	· · · ·	
Column(1): Varian C18	ID: 4.60 (1	nm) Co	lumn(2):		ID:	_(mm)
THIS METHOD BLANK AP	PLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:		
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE	

SAMPLE NO.	SAMPLE ID	COL		ANALYZED	SEQUENCE
15L4MW01BW	CAB30-002	1	O6290707.D	06/29/2007 12:22	R019488
15L4MW01AW	CAB30-003	1	O6290708.D	06/29/2007 12:48	R019488
15L4MW04AW	CAB30-007	1	O6290709.D	06/29/2007 13:14	R019488
15L4MW02BW	CAB30-008	1	O6290710.D	06/29/2007 13:40	R019488
15L4MW425W	CAB30-009	1	O6290711.D	06/29/2007 14:06	R019488
S062607HORWLG2	S062607HORWLG2	1	O6290705.D	06/29/2007 11:30	R019488

COMMENTS:

CLIENT SAMPLE NO.

15L4MW01BW

Lab Name: La	ucks Testing Labs	Contract:_N/A
SDG No.: <u>CAB3</u>	0	Run Sequence: <u>R019488</u>
Matrix: (SOIL,	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-002</u>
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290707.D
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected: 06/19/2007
Extraction: (	Fype) <u>SPE</u>	Date Extracted: 06/26/2007
Concentrated H	Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/29/2007
Injection Volu	ume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) _N
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L Q
55-63-0	Nitroglycerin	2.5 U
78-11-5	PETN	1.2 U

Comments:

CLIENT SAMPLE NO.

15L4MW01AW

U

Lab Name: <u>La</u>	ucks Testing Labs	Contract: N/A	
SDG No.: CAB3	30	Run Sequence: <u>R019488</u>	
Matrix: (SOIL	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-003</u>	
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290708.D	
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007	
Extraction: (	Type) <u>SPE</u>	Date Extracted: _06/26/2007	
Concentrated	Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/29/2007	
Injection Vol	ume: <u>50.0</u> (uL)	Dilution Factor:	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroalveerin	2.5	U

1,2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15L4MW04AW

Lab Name: La	ucks Testing Labs	Contract: <u>N/A</u>	
SDG No.: <u>CAB3</u>	30	Run Sequence: R019488	
Matrix: (SOIL	/WATER)Water	Lab Sample ID: <u>CAB30-007</u>	
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290709.D</u>	
% Moisture: .	Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007	
Extraction: (	Type) <u>SPE</u>	Date Extracted:06/26/2007	. <u> </u>
Concentrated	Extract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007	
Injection Vol	ume: <u>50.0 (</u> uL)	Dilution Factor:2.0	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>	<del></del>
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L	
55-63-0	Nitroglycerin	2.5 U	
78-11-5	PETN	1.2 U	

Comments:

CLIENT SAMPLE NO.

15L4MW02BW

U

Lab Name: La	aucks Testing Labs	Contract: <u>N/A</u>	
SDG No.: <u>CAB</u>	30	Run Sequence: <u>R019488</u>	
Matrix: (SOII	L/WATER) <u>Water</u>	Lab Sample ID: <u>CAB30-008</u>	
Sample wt/vol	l: <u>1000.0 (g/mL) mL</u>	Lab File ID: 06290710.D	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:06/19/2007	
Extraction:	(Type) <u>SPE</u>	Date Extracted: _06/26/2007	
Concentrated	Extract Volume:(uL)	Date Analyzed: 06/29/2007	
Injection Vol	lume: _50.0 (uL)	Dilution Factor: 2.0	
GPC Cleanup:	(Y/N) <u>N</u> pH;	Sulfur Cleanup: (Y/N)N	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	U

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15L4MW425W

Lab Name: Lauc	ks Testing Labs	Contract	:_N/A	
SDG No.: CAB30		Run Sequ	uence: <u>R019488</u>	
Matrix: (SOIL/WA	ATER) Water	Lab Samp	ple ID: <u>CAB30-009</u>	
Sample wt/vol:	<u>1000.0</u> (g/mL) <u>mL</u>	Lab File	e ID: 06290711.D	
% Moisture:	Decanted: (Y/N)	Date Col	llected:06/19/2007	
Extraction: (Typ	pe) <u>SPE</u>	Date Ext	cracted:06/26/2007	
Concentrated Ext	tract Volume: <u>5000.0</u> (uL)	Date Ana	alyzed: 06/29/2007	
Injection Volume	e: <u>50.0</u> (uL)	Dilutior	1 Factor:2.0	
GPC Cleanup: (Y,	/N) <u>N</u> pH:	Sulfur (	Cleanup: (Y/N) <u>N</u>	<del></del>
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nítroglycerin		2.5	U
78-11-5	PETN		1.2	U

Comments:

Bartt Cal Date: 10-JUL-2006 11:17         Bud Cal Date: 10-JUL-2006 11:17         Quant Method: ESTD         Cal Curve Type: Average CF         Integrate: 10 - JUL 2006 11:17         Method: 11:10         Method: 11:10         Method: 11:17         Method: 11:10         Method: 11:10         Method: 11:10         Method: 11:10         Method: 11:10         Method: 11:10         Method: 11:11         Method: 11:11         Method: 11:11         Method: 11:11         Method: 11:11         Method: 11:12         Method: 11:11         Method: 11:11
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

<b>⊢</b>	
Date:	
10-JUL-2006	Initial
11:17	Laucks Testing Labs Calibration Retention Time Summary

Start Cal Date:	10-JUL-2006 11:17
End Cal Date :	10-JUL-2006 13:05
Quant Method :	ESTD
Cal Curve Type:	Average CF
Integrator :	HP Genie
Method File :	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Sublist :	all.sub
Column :	C18
Column Size :	Om L - 4.60mm ID
Calibration File	
Level 1: //SNAP	568564B/tek4/0scar.i/071006ng.b/07100601.D
Level 2: //SNAP	568564B/tek4/Oscar.i/071006ng.b/07100602.D
Level 4 · //SNAD	TARAAL/tak//organ i/07100cmg k/07100cnd n

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
.프로프로로 "뉴슈트 구도독등 도로프로프로 유수축 방부부 - 2 2 2 2 2 2						
1 Nitroglycerin	9.46	9.44	9.45	9.45	9.44	9.449
3 PETN	17.39	17.36	17.36	17.36	17.36	17.369
2 3,4-Dinitrotoluene	10.33	10.31	10.32	10.32	10.31	10.316
		-				

Retention times are expressed as minutes.

07/24/2006 13:09

ICAL RT Summary v2.0

~

Page

ىر

SUM - 97

Laucks Testing Labs Initial Calibration Amounts Summary

2 3,4-Dinitrotoluene	3 PETN	1 Nitroglycerin	******	Compound	Start Cal Date: 10-JUL-2006 End Cal Date : 10-JUL-2006 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\SNAP56856 Sublist : all.sub Column Size : Om L - 4.6 Column Size : Om L - 4.6 Column Size : Om L - 4.6 Calibration Files: Level 1: //SNAP568564B/tek4 Level 3: //SNAP568564B/tek4 Level 4: //SNAP568564B/tek4 Level 5: //SNAP568564B/tek4
125.00	125.00	250.00		Level 1	11:17 13:05 4B\tek4 4B\tek4 /Oscar. /Oscar. /Oscar. /Oscar.
250.00	250,00	500.00		Level 2	\Oscar.i i/071006 i/071006 i/071006 i/071006 i/071006
500.00	500.00	1000.00		Level 3	\071006r ng.b/071 ng.b/071 ng.b/071 ng.b/071 ng.b/071
1250.00	1250.00	2500.00	****	Level 4	ng.b\071 100601.D 100602.D 100603.D 100603.D
2500.00	2500.00	5000.00		Level 5	DOGNG.m

Standard concentrations are expressed as ng/mL.
1 Nitroglycerin 3 PETN 2 3,4-Dinitrotoluene	Compound	ibration Files: rel 1: //SNAP568564B/tek4 rel 2: //SNAP568564B/tek4 rel 3: //SNAP568564B/tek4 rel 4: //SNAP568564B/tek4 rel 5: //SNAP568564B/tek4	<pre>art Cal Date: 10-JUL-2006 1 Cal Date : 10-JUL-2006 ant Method : ESTD Curve Type: Average CF cegrator : HP Genie hod File : \\SNAP56856 blist : all.sub umn Size : 0m L - 4.6</pre>
87086.000 48028.000 104198.00	Level 1	/Oscar. /Oscar. /Oscar. /Oscar. /Oscar.	11:17 13:05 4B\tek4 0mm ID
181182.00 107060.00 222936.00	Level 2	i/071006 i/071006 i/071006 i/071006 i/071006	\Oscar.1
357021.00 191541.00 418483.00	Level 3	ng.b/071 ng.b/071 ng.b/071 ng.b/071 ng.b/071	\071006r
946275.00 520246.00 1109248.0	Level 4	L00601.D L00602.D L00603.D L00603.D L00604.D	1g.b\0710
1869720.0 1023802.0 2199285.0	Level 5		006NG.m

Response is in Area units.

ICAL Responses Summary v2.0

Page

Ļ

07/24/2006 13:08

SUM - 99

Laucks Testing Labs Initial Calibration Response Summary

#### Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc Info	:::::::::::::::::::::::::::::::::::::::	//ceres/labd 29-JUN-2007 STD04 1000PP	lata/ 10:3 PB ME	'hplo 81 ETHOE	c/os 0 83:	car/C 32	scar.	i/062907	.b/06:	290703	B.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD04 1000PP Oscar.i 071006NG.m ESTD 1.00 C18	ΡB		Cl Op Su In Sa Co	lient perat ublis ntegr ample olumn	ID or ator Type Size	: HPLC1-1 : my : all : HP Gen: : CCALIB : 0.15m	15-15 ie _3 _L- 4	20X .60mm	ID
Compound		RT	F	RT Wir	ndow	Av	erage CF	ICV CF	۶D	Flag	
Nitroglycerin		10.30 #	10.	.05 -	10.5	5 36	4.0366	359.7260	1.2	,,	-
3,4-Dinitrotoluene		11.35 #	11.	10 -	11.6	0 86	5.8817	874.0680	-0.9		
PETN		19.64 #	19.	39 -	19.8	39 40	4.2527	385.0800	4.7		

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( D ) = (Ave CF - ICV CF ) divided by Ave CF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

#### Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc Info	::	//ceres/lab 29-JUN-2007 STD04 1000P Method 8332	dat 14 PB	ca/hplo 1:58 METHOI	c/os D 83	car/0 32	scar.	i/062907.	.b/062	290713	3.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD04 1000P Oscar.i 071006NG.m ESTD 1.00 C18	ΡB		C O S H S C	lient perato ublist ntegra ample olumn	ID or t ator Type Size	: HPLC1-1 : MY : all : HP Geni : CCALIB : 0.15m	25-15 e 3 L- 4	20X .60mm	ID
Compound		RT		RT Wi	ndow	Ave	rage CF	Continuing CF	। %D	Flag	
Nitroglycerin	= ==	10.30	===	====== 10.05 -	10.5	55 364	.0366	358.3320	1.6	*****	=
3,4-Dinitrotoluene		11.35		11.10 -	11.6	50 865	.8817	870.0720	-0.5		
PETN		19.65		19.39 -	19.8	39 404	.2527	387.5460	4.1		

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: <u>La</u>	aucks Testing Labs	Contract: <u>N/A</u>					
SDG No.: <u>CAB</u>	30	Run Sequence: <u>R019488</u>					
Matrix: (SOIJ	/WATER) Water	Lab Sample ID: <u>B062607HORWLG</u>					
Sample wt/vol	.: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290704.D</u>					
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:					
Extraction:	(Type) <u>SPE</u>	Date Extracted: 06/26/2007					
Concentrated	Extract Volume:(uL)	Date Analyzed: 06/29/2007					
Injection Vol	ume: _50.0 (uL)	Dilution Factor: 2.0					
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>					
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q				
55-63-0	Nitroglycerin	2.5	U				
78-11-5	PETN	1.2	U				

78-11-5 Comments: ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

S062607HORWLG2

Lab Name: 🔔	aucks Testing Labs	Contract: <u>N/A</u>					
SDG No.: <u>CAB</u>	330	Run Sequence: <u>R019488</u>					
Matrix: (SOI	L/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG2</u>					
Sample wt/vo	l: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290705.D					
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:					
Extraction:	(Type) <u>SPE</u>	Date Extracted:06/26/2007					
Concentrated	Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/29/2007					
Injection Vo	lume:(uL)	Dilution Factor: 2.0					
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>					
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L					
55-63-0	Nitroalvcerin	8.75					

3.38

78-11-5 Comments: PETN

# FORMS SUMMARY

## CAB30

# **Miscellaneous Inorganics**

## Final Resnlts

Client:	PBS Engineering and Environmental		Project:		Camp Bonneville	
SDG Number:	CAB30					
Sample Number:	15L4MW01BW		Date/Time	Collected:	06/19/2007 09:50	
Lab Sample ID:	CAB30-002		Date/Time	Received:	06/20/2007 08:30	
Method:	E314.0		Unit:		ug/L	
Analyte	CAS	DE Decui	+ 0	POL	MDI Proposed Analyzed	

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	1.0	U	1.0	0.14	07/03/2007	07/04/2007	R019226

## Final Results

Client:	PBS Engineering and Environmental	Project:	Camp Bonneville
SDG Number:	CAB30		
Sample Number:	15L4MW01AW	Date/Time Collected:	06/19/2007 10:55
Lab Sample ID:	CAB30-003	Date/Time Received:	06/20/2007 08:30
Method:	E314.0	Unit:	ug/L
1	1	F 1	

	Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
14797-73-0 I I.9 I.0 0.14 07/03/2007 07/04/20	Perchlorate	14797-73-0	1	1.9		- 1.0	0.14	07/03/2007	07/04/2007	R019226

FORM LTL-RSR-27.0

.

## Final Results

Client: SDG Number:	PBS Engineering and Environmental CAB30	Project:				Bonne	ville		
Sample Number:	15L4MW04AW	Date	:/Time	Collected:	06/19/2	007	12:15		
Lab Sample ID:	CAB30-007	Date	/Time	Received:	06/20/2	007 (	08:30		
Method:	E314.0	Unit	•		ug/L				
						1			1

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	40		1.0	0.14	07/03/2007	07/04/2007	R019226

## Final Results

Client: SDG Number:	PBS Engineering and Environmental CAB30	Project:	Camp Bonneville
Sample Number:	15L4MW02BWRX	Date/Time Collected:	06/19/2007 16:30
Lab Sample ID:	CAB30-008	Date/Time Received:	06/20/2007 08:30
Method:	E314.0	Unit:	ug/L
r		F F F	· · · · · · · · · · · · · · · · · · ·

				**************************************			,
Perchlorate 14797-73-0	10	290	10	1.4	07/06/2007	07/07/2007	R019277

## Final Results

10

1.4

07/06/2007 07/07/2007

R019277

Client:	PBS Engi Environm	ineering and ental			Pro	oject:		Camp B	lonneville		
SDG Number:	CAB30										
Sample Number:	15L4MW4	25WRX			Dat	e/Time	Collected	: 06/19/2	007 14:00	)	
Lab Sample ID:	CAB30-00	)9			Dat	te/Time	Received:	06/20/2	007 08:30	)	
Method:	E314.0				Uni	it:		ug/L			
Analyte		CAS	DF	Result		Q	PQL	MDL	Prepared	Analyzed	Run Seq.

10

290

14797-73-0

Perchlorate

## Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB30	Contract:
Run Sequence No.	R019226	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

		IC	V			CCVI					
		07/04/2007 18:32				07/04/07 18:	32		CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate	40.151	41.793	104.1	75-125	9.988	11.222	112.4	9.988	10.958	109.7	85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page | of 2 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or safe of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in eood faith and according to the rules of trade and science.

## Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB30	Contract:
Run Sequence No.	R019226	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

						CCV3					
					07/04/07 18:32				CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate					9.988	11.142	111.6				85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the adversing or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/oi analysis in ecod fath and according to the rules of trade and science.

Page 2 of 2

SUM - 111

## Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB30	Contract:
Run Sequence No.	R019277	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

		ICV				CCV1					
		07/07/2007 12:46				07/07/07 12:46					CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate	40.151	40.575	101.1	75-125	9.988	10.515	105.3				85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 1 of 1 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due **SUM - 112** 

#### INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB30 R019226 Contract:

Run Sequence No.:

Concentration Units: ug/L

Determination Name: 314.0 Perchlorate

	] 07/04/2	ICB 007 18	3:32	CCB1 07/04/2007	18:32	CCB2 07/04/2007	18:32	CCB3 07/04/2007	18:32	CCB
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	U	0.5	1.0	U	1.0	υ	1.0	U	0.5

* = Control limit exceeded

#### INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB30

~ Contract:

Concentration Units: ug/L

Determination Name:

Run Sequence No.:

R0192	277
314.0	Perchlorate

	l 07/07/2	CB 007-12	.:46	CCB1 07/07/2007	12:46					CCB
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	U	0.5	1.0	U					0.5

* = Control limit exceeded

FORM LTL-RSR-25.6 Page 1 of 1 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the adventising or sale of any produce or process will be granted only on contract. This company accepts no responsibility except for the di performance of inspection and/or analysis in eood faith and according to the rules of trade and science.

# Laucks Testing Labs **Blank Report**

Test:	314.0 Perchlorate	SI	DG ID:	CAB30	
		Pr	eparation Date:	7/3/2007	
Lab Sample ID:	B070307PERW02	Rı	in Sequence ID:	R019226	
		Ar	alysis Date:	07/04/2007	18:32
-		Ur	its:	ug/L	
		Ma	atrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlorate		1.0	U	0.5	
	A	Associated Samples			
	Lab Sample ID	Client Sample ID			
	CAB30-002	15L4MW01BW			
	CAB30-003	15L4MW01AW			
	CAB30-007	15L4MW04AW			
	CAB30-008	15L4MW02BW			
	CAB30-009	15L4MW425W			

* Measured blank concentration exceeded the established control limit

# Laucks Testing Labs **Blank Report**

Test:	314.0 Perchlorate	S	DG ID:	CAB30	
		Р	reparation Date:	7/6/2007	
Lab Sample ID:	B070607PERW01	R	un Sequence ID	: R019277	
		А	nalysis Date:	07/07/2007	12:46
		U	nits:	ug/L	
		N	latrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlor	ate	1.0	U	0.5	

Lab Sample ID	Client Sample ID
CAB30-008DL 10X	15L4MW02BWRX
CAB30-009DL 10X	15L4MW425WRX

* Measured blank concentration exceeded the established control limit

## Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	314.0 Perchlorate	SDG ID:	CAB30
		Preparation Date:	07/06/2007
MS Lab Sample ID:	CAB30-009MS 10X	Run Sequence ID:	R019277
MSD Lab Sample ID:	CAB30-009MSD 10X	Analysis Date:	07/07/2007
Client Sample ID:	15L4MW425W	Units:	ug/L
		Matrix:	Water

é malaite	Sample	MS	MS	MS	MSD	MSD	MSD	ממת	Limit	s
Analyte	Found	Spike	Found	Recovery	Spike	Found	Recovery	KPD -	Recovery	RPD
Perchlorate	293.8	200	491.06	99%	200	497.35	102%	3%	80-120	15

Associated Samples				
Lab Sample ID	<u>Client Sample ID</u>			
CAB30-008DL 10X	15L4MW02BWRX			
CAB30-009DL 10X	15L4MW425WRX			

* = RPD or percent recovery is outside established control limits

# = This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0

This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science SUMP - 117

# Laucks Testing Laboratories **BS/BSD** Report

Test:	314.0 Perchlorate	SDG ID:	CAB30
		Preparation Date:	07/03/2007
BS Sample ID:	\$070307	Run Sequence ID:	R019226
BSD Sample ID:	SD070307	Analysis Date:	07/04/2007 18:32
		Units:	ug/L
		Matrix	Water

	Blank Spike		Blank Spike Duplicate			DDD	Limits		
Analyte	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Perchlorate	20.0	18.301	92%	20:0	17.713	89%	3%	85-115	

A	Associated Samples			
Lab Sample ID	Client Sample ID			
CAB30-002	15L4MW01BW			
CAB30-003	15L4MW01AW			
CAB30-007	15L4MW04AW			
CAB30-008	15L4MW02BW			
CAB30-009	15L4MW425W			

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-7.0

This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the discussional or formation or benefician and/or analysis in ecod fauth and according to the rules of trade and science.

## Laucks Testing Laboratories **BS/BSD** Report

Test:	314.0 Perchlorate	SDG ID:	CAB30
		Preparation Date:	07/06/2007
BS Sample ID:	S070607	Run Sequence ID:	R019277
BSD Sample ID:	SD070607	Analysis Date:	07/07/2007 12:46
		Units:	ug/L
		Matrix	Water

	Blank Spike		Blank Spike Duplicate			חחח	Limits		
Analyte	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Perchlorate	20.0	18.407	92%	20.0	18.955	95%	3%	85-115	

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB30-008DL 10X	15L4MW02BWRX			
CAB30-009DL 10X	15L4MW425WRX			

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

# LAUCKS TESTING LABORATORIES

# SAMPLE DATA PACKAGE

# **PBS ENGINEERING & ENVIRONMENTAL**

# SDG NO.: CAB31

JULY 24, 2007

1

## LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

To: PBS Engineering & Environmental Project Name: Camp Bonneville SDG No.: CAB31 Date of Report: July 24, 2007

## SAMPLE RECEIPT, IDENTIFICATION, AND GENERAL COMMENTS:

#### Sample Receipt and Identification:

The samples submitted under the laboratory number(s) indicated above were identified and analyzed as tabulated below. The samples were collected and received on the dates noted on the enclosed chain-of-custody copies, Attachment A.

Client Sample Identification	Laucks Sample Identification	Testing Analytical <u>Request</u>
15L4MW02AW	CAB31-001	VOA/ORD/PERC
15L4MW03AW	CAB31-002	VOA/ORD/PERC
15L4MW03BW	CAB31-003	VOA/ORD/PERC
15L4MW05AW	CAB31-004	VOA/ORD/PERC
TRIP BLANK	CAB31-005	VOA
15LCMW420W	CAB31-006	VOA/SVOA/ORD/PIC/TPHD/TPHG/MET/ ALK/ANIONS/TOC/TSS/PERC
15LCMW430W	CAB31-007	МЕТ
15LCMW420W (Filt.)	CAB31-008	MET/DOC
15LCMW430W (Filt.)	CAB31-009	MET

#### Analytical Request Key:

VOA =	Volatile Organics by Method 8260B
SVOA =	Semi-Volatiles by Method 8270D
ORD =	Ordnance by Method 8330
	PETN/Nitroglycerin by Method 8332
PIC =	Picric Acid by Modified 8330
TPHD =	Total Petroleum Hydrocarbons-Diesel by NWTPH
TPHG =	Total Petroleum Hydrocarbons-Gasoline by NWTPH
MET =	Priority Pollutant Metals by Methods 6020/7470A
ALK =	Alkalinity, Carbonate and Bicarbonate by Method 310.1M
ANIONS =	Chloride, Nitrate, Nitrite, Sulfate by Method 300.0
TOC =	Total Organic Carbon by Method 415.1M*
DOC =	Dissolved Organic Carbon by Method 415.1M*
TSS =	Total Suspended Solids by Method 160.2
PERC =	Ammonium Perchlorate by Method 314.0

TOC/DOC*:

Singleton analysis was performed for this project as approved by the client. This modification is less expensive and meets project DQOs but does not meet NELAC guidelines.

#### Sample Receipt Comments:

Temperature blanks for the samples on COCs 43109 and 43108 measured above control limit of 6° C.

Two of two VOA trip blank vials contained air bubbles < 1/4" in size.

## GENERAL REMARKS ON ORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON ORGANIC ANALYSIS."

#### Manual Integrations:

One or more analytes may have been manually integrated on the data system quantitation reports. All manual integrations have been flagged, initialed, and dated by the analyst. A list of the manual integration flags is detailed below.

- M Manual integration due to irregular peak shape
- MS Manual integration due to split peak
- MR Manual integration due to retention time shift
- MI Manual integration of correct isomer
- MT Manual integration due to peak tailing
- MB Manual integration due to irregular baseline

#### Holding Time Compliance:

#### Volatile Organic Compounds:

The holding time is 14 days calculated from date of collection in both soil and water samples. All samples were analyzed within holding time.

#### Semi-Volatile Organic Compounds:

The holding time to extraction is 7 days in water and 14 days in soil calculated from the date of collection. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

#### Ordnance, PETN/Nitroglycerin, Picric Acid

The holding time to extraction is 7 days in water and 14 days in soil calculated from date of collection. The holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

#### TPH Gasoline Fraction:

The holding time for analysis is 14 days in water and soil calculated from the date of collection. All samples were analyzed within holding times.

#### TPH Diesel Fraction:

The holding time to extraction, which is calculated from the date of collection, is 7 days for water samples and 14 days for soil samples. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding times.

#### Volatile Fraction (8260):

#### Continuing Calibration Verification (CCV):

In the CCV performed on 06/26/2007 the percent difference value for dichlorodifluoromethane exceeded 20% due to decreased response. Because sample results were reported well below the reporting limit (RL), the chance of reporting any false negatives for these compounds that recovered low at the RL was negligible.

All other quality control parameters were met.

#### Semivolatiles Fraction:

#### Second Source Calibration Verification Analysis:

Analysis of the second source standard ICV071207-2 resulted in %D values for 2,4-dinitrophenol, 4,6dinitro-2-methylphenol and benzidine that exceeded 25% due to decreased response. However, because sample results are reported well below the reporting limit (RL) the chance of reporting any false negative for these compounds at the RL is negligible.

#### Continuing Calibration Verification (CCV):

Analysis of the CCV performed on 07/16/07 resulted in a %D value for benzoic acid that exceeded 20% due to decreased response. However, because sample results are reported well below the reporting limit (RL) the chance of reporting any false negative for this compound at the RL is negligible.

#### Blank Spike Analysis:

Analysis of the blank spike S062507MSVWLT yielded a slightly low recovery for 2,4,6-trichlorophenol. Because this recovery was within the marginal exceedance limits, no further action was taken.

#### Ordnance Fraction:

#### Surrogate Recovery:

Analysis of sample extract 15L4MW05AW yielded a low recovery of the surrogate. The sample was re-extracted 20 days after the holding time had expired. Analysis of the re-extracted sample yielded an acceptable surrogate result. Data from both analyses have been submitted.

All quality control parameters were met.

#### **PETN/Nitroglycerin Fraction:**

All quality control parameters were met.

#### Picric Acid Fraction:

All quality control parameters were met.

#### NWTPH Gasoline Fraction:

NWTPHG was used to quantitate the samples for gasoline. Gasoline range responses were determined by summing the responses of all components, resolved and unresolved, between toluene and naphthalene. Quantitation was based on the average calibration factor.

#### Quality Control Analyses:

As a result of batching, MS/DUP analyses were performed on a sample not in this SDG and no data are included here. All MS/DUP data and results can be found in the data package for CAB33. All recoveries were within the control limits in the blank spike analysis.

All quality control parameters were met.

#### **NWTPH Diesel Fraction:**

NWTPD-D was used to quantitate the samples for diesel and oil. Diesel range responses were determined by summing the responses of all components, resolved and unresolved, between  $C_{12}$  and  $C_{24}$  integrated to a horizontal baseline. Oil range responses were determined by summing the responses of all components, resolved and unresolved, between  $C_{24}$  and  $C_{40}$  integrated to a horizontal baseline. Quantitation was based on a linear regression.

#### Quality Control Analyses:

As a result of extraction batching, QC analyses were performed on a sample not in this SDG and no data are included here. All results can be found in the data package for CAB33. All recoveries were within the control limits in the blank spike analysis.

#### **GENERAL REMARKS ON INORGANIC ANALYSES:**

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON INORGANIC ANALYSES."

#### ICP Metals:

On the first timed and dated page of each ICP-MS run, the data to be reported or rejected will be tabulated for that run.

#### Mercury:

For Liquids:

Laucks purchases a 1000 mg/L Hg stock solution from Inorganic Ventures. The 0.5 mg/L working standard is made by diluting 100  $\mu$ L to 200 mL with 0.15% HNO₃. The calibration curve is made by placing 0, 20, 50, 100, 200, 500 and 1000  $\mu$ L of the working standard digestion vessels and diluting up to 50 mL. The standard curve is equivalent to 0, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0  $\mu$ g/L.

### SPECIFIC REMARKS ON INORGANIC ANALYSES:

#### Holding Time Compliance:

Laucks calculates holding time compliance for inorganic determinations using the date on which reportable data were acquired.

#### <u>Metals:</u>

The holding time for metals is six months from the date of collection, excepting mercury, which is 28 days. All analyses were performed within holding time.

#### Miscellaneous:

The following analytes do not have a Contract Laboratory Program holding time. The holding times tabulated below derive from the relevant EPA methods and are applicable when the sample was appropriately preserved and/or cooled. All samples submitted followed the preservation guidelines unless explicitly noted otherwise.

Analyte	Holding Time	Violations
Alkalinity	14 days	None
Chloride	28 days	None
Nitrate	48 hours	None
Nitrite	48 hours	None
Sulfate	28 days	None
Total Organic Carbon	28 days	None
Dissolved Organic Carbon	28 days	None
Total Suspended Solids	7 days	None
Perchlorate	28 days	None

Sample 15LCMW420W was analyzed one day past it's holding time for nitrate and nitrite due to sample receiving error.

#### **ICP-MS Metals:**

For the run sequence R019118, CCV2 exceeded the lower control limit for beryllium. No sample results for beryllium were associated with this CCV, therefore no corrective action was required. Data have not been flagged for this event.

For the run sequence R019118, several CCVs exceeded the upper control limit for beryllium. For the samples associated with these CCVs, only those samples containing concentrations of beryllium that were less than the CRDL have been reported. Quality control data for beryllium were reported and were within control limits. No corrective action was required. Data have not been flagged for these events.

#### Mercury:

No comments.

## Miscellaneous Inorganics:

No comments.

### LAUCKS TESTING LABORATORIES

940 S. Harney

Seattle, WA 98108

### ABBREVIATIONS

Several abbreviations can appear in our reports. The most commonly employed abbreviations are as follows:

- U The analyte of interest was not detected to the limit of detection indicated.
- SDL Sample Detection Limit. The SDL can vary from sample to sample, depending on sample size, matrix interferences, moisture content and other sample-specific conditions.
- PQL Practical Quantitation Limit. The limit is drawn from the test method and usually represents the SDL multiplied by a matrix-specific factor.
- DB Dry Basis. The value reported has been back-calculated to normalize for the moisture content of the sample.
- AR As-Received. The value has not been normalized for moisture.

ORGANIC ANALYSES:

- B When used in relation to organics fractions, the "B" flag indicates that the analyte of interest was detected in the method blank associated with the sample, as well as in the sample itself. The "B" flag is applied without regard to the relative concentrations detected in the blank and sample.
- J The analyte of interest was detected below the routine reporting limit. This value should be regarded as an estimate.
- T The flagged values represent the SUM of two co-eluting compounds. The SUM of these two values is shown as though it were a result for each of them. The two figures should not be added together.
- E The flagged value was reported from an analysis that exceeded the linear range of the instrument. See additional comments for further discussion of the circumstances. Values so flagged should be considered estimates.
- P When a dual column GC technique is employed, this flag indicates that test results from the two columns differ by more than 25%. Generally, we report the higher value.
- C The flagged analyte has been confirmed by GC/MS analysis. The value reported may be derived from either the initial of confirmatory (GC/MS) analysis. See specific report comments for details.
- Z When two or more sets of results are submitted, the Z-flagged data indicates that this is the secondary result.
- CRQL Client requested Quantitation Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Quantitation Limit.

#### **INORGANIC ANALYSES:**

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
- E The reported value is estimated because of the presence of interference. The serial dilution was not within control limits.
- N Spiked sample recovery not within control limits.
- Duplicate analysis not within control limits.
- CRDL Client Requested Detection Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Detection Limit.

### **RELEASE OF DATA**

Laucks certifies that these results meet all requirements of the NELAC standards, except where otherwise noted.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Respectfully submitted,

Mike Baxter Project Manager

Harry Romberg

Quality Assurance Officer

HOW TO CONTACT US:

All Laucks Testing Laboratories staff members can be reached at the same telephone and facsimile numbers: (206) 767-5060 by phone, (206) 767-5063 by FAX.

REQUESTS FOR DUPLICATE COPIES:

This packet has been checked for accuracy. All pages are present and in sequential order. Please see Attachment B for a detailed record.

In the event that duplicate data copies are needed, Laucks will accommodate your request at a fee of twenty-five cents (\$0.25) per copy, plus shipping. If the data are in storage, there will also be a fee for retrieval.

## ATTACHMENT A

Chain-of-Custody Copies

	SAMPLE CONF	IRMATION LOG -	CAB31																	
SAMPLE ID	VTSR	COLLECTED	CLIENT ID	160.2 TOTAL SUSPENDEI SOLIDS	300.0 NO3, NO2, CL, SO	310.187A3 M1.015 ALKALINIT	314.0 PERCHLORATI	415.1 DISSOLVED ORGANIG CARBOI	415,1 TOTAL ORGANIC	6020 DISS. PRIORIT POLLUTANT METAL	0200 ТОТАL РЯЮЯН РОСLUTANT МЕТАL	7470 DISS. MERCUR'	7470 TOTAL MERCUR	8260B VOCS (LTL ROUTINE	8270C SVOCS (LTL ROUTINE PA-S	8330 EXPLOSIVES RESIDUE		ГТС8303 РІСКІС АСІ	AWTPH DIESE	AÐ H9TWN
CAB31-001	6/21/2007 10:10	6/20/2007 10:00	15L4MW02AW	e C	ţ	بر ۱	Z	N	2	s v	s ×	4	<u> </u>	Ξ¢	(	Ξs	ΞN		-	s
CAB31-002	6/21/2007 10:10	6/20/2007 11:20	15L4MW03AW				Z							Ξ		Ī	Ī			
CAB31-003	6/21/2007 10:10	6/20/2007 13:50	15L4MW03BW				Ī							Ī		Ē	Ξ			
CAB31-004	6/21/2007 10:10	6/20/2007 15:15	15L4MW05AW				Ī							Ī		Ē	Ī			
CAB31-005	6/21/2007 10:10	6/20/2007 0:00	TRIP BLANK											Ī						
CAB31-006	6/21/2007 10:10	6/20/2007 15:50	15LCMW420W	z	Ī	Z	Ī		N		Ī		Ī	Ī	Ż	Ī	Ī	Ī	Ī	Ī
CAB31-007	6/21/2007 10:10	6/20/2007 16:00	15LCMW430W								Z		Ξ							-
CAB31-008	6/21/2007 10:10	6/20/2007 15:50	15LCMW420W (Filt.)					ĪZ		Ī		Ī				T				
CAB31-009	6/21/2007 10:10	6/20/2007 16:00	15LCMW430W (Filt.)							Ż		Ī								
LEGEND: -:SI	arted , +:Complet	ed, IN:Logged In	, P:Preparation ,													T	1		$\neg$	$\neg$
A:Analysis, X	Cancelled, PL:Pr	e-logged																		
Samples iden	tified with a '*' clie	nt has requested (	2C for																<b> </b>	
																ſ	ľ	ł		

Filtunce Oltai		R	FOREAC	2. BE SPEC 3. CHECK (		A A stand					6 73	2	AVE	3 15	2 15	-	LAB SA#	JOB/P.O. NO	TELEPHONE	PROJECT C	PROJECT N	ATTENTION	AUUHESS:	COMPANY:		TEIDINEDD
्रि 10/10118 दर्श	4		H SAMPLE. BE	HFIC IN TEST F	INF PER SA	tard hymarol					CCHW.	RIP	<u>x4M</u>	LA NU	CANO	NN AN	SAA	o.: 74	103 103	CONTACT:		ţ.	ang i ja		0	-22 -
ilection Fees :			NGUISHED B	HEQUESTS BEPERFORM		ind time is a			a de la companya de l Seguerar de la companya de la company Seguerar de la companya de la company		4201	BLAN	VO5A	0030	V03A	VORAN		)45T.0	47-7	ND AC	ALL	, AG	BATL	94 17	τ) Λ	
ಗುತ್ತು ಹಿಕಿ applie	- The second second	Mik	Y (SIGN AND		NA NA	esimed inte			and a second	in a called	R	K	S	B	3	S	ATION	Ŏ	693 FA	HAR	5	HARV	80	SNIC		
d to delinquer		ie Gol	PRINT			es ofherwise					4	1901	¥		624	06/	, pat	640	503-24	NEV VEV	NUNC	D	jon c	NC 497-TT		
rt accounts.		230			· marred.	marked					259/	40	1.5.16	13:50	00///20	10:01401	E, TIME	6	K-0123		Ē		262tl		Mobula March	
1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		05 El	DATE		MENEN N	B The laborat					W		M I	N	W		MAT	NX: WA			_ <u>'</u>	,	WORKO			
INAL REF		1		CITY, STATI	ATOM TO TO	nrv may not be re					(U)	Γ.	$\propto$ X	$\omega$	$\overline{O}$		11	NO. 0	FCON	IL OR	SPECIF	*	RDER ID#	4	А С	
VORT COV	~			, ZIP		monsible for miss							X X			XX	1 m / m		05 N		25			j j		TODY RE
×.			RECEIVED	-97 - L	V ABOVE	ed holding time to					X		*	ľ	7	Х Ц	1-20	R. K.	HZ S	N. R	5 400					CORD
	The second second second second	~	W (SIGN AND			r samples receives				k								the second		5			<u>v</u>	PAG		800 #
		No.	TUNER		*	1 with less than 50																	UBMITTE	EOF		20 20 20 20 20 20 20 20 20 20 20 20 20 2
		WAN		SUBJECT		19% of the analytics																ESTS TO PE	DAT:			
				TO PRIO	NAROUN	i hold lime remain										analized international from glassical and the second second second second second second second second second se						PEORM	940 South Harm 1106 Ledwich A	Testing		al ì
	2 2 2			r A X e	S S C	ing Please conta																	ry SL, Seattle, WA re., Yakima, WA (	Labor	E	
	TEMP:	5 DAYS (60%) OTHER	24-48 HRS (1) 72 HRS (75%	STD. 10-14 W	TOTAL NO.	nt the laboratory fr											LISNI MADO	OBSE					1 98108 (206) 7 48902 (509) 2	atories,		
		FIUS	00% SUA) SUA)	CORKING DAY	OF CONTAINE	r luther informati				a service and		And and the second s		وتعقاعها والأستريب والمالية والمرجوع والمرجو		مستعمل المكرك المكرك المستشهد معادل الكافر المحارك المح	AUCTIONS	RVATIONS,					67-5060 EAX 76; 38-4695 EAX 452	<b>I</b> 13	~	V
	S I						43) Nag								033   033						-		-1265			

# Cooler Receipt Form Laucks Testing Laboratories, Inc.

Cooler:       AAD485       Transferred:       FEDEX         COC #:       43109         Project:       Camp Bonneville (PBS Engineering and Environmental)         Date samples were received at the laboratory: $6/21/2007$ Date cooler was opened: $6/21/2007$ 10:10AM         A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number:       FEDEX 862054469015         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description:       ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers in the appropriate place?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler: $6/21/2007$ 10:20AM
COC #: 43109         Project:       Camp Bonneville (PBS Engineering and Environmental)         Date samples were received at the laboratory: $6/21/2007$ Date cooler was opened: $6/21/2007$ 10:10AM         A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number:       FEDEX 862054469015         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description:       ONE IN FRONT         3. Were custody papers scaled in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:
Project:       Camp Bonneville (PBS Engineering and Environmental)         Date samples were received at the laboratory:       6/21/2007         Date cooler was opened:       6/21/2007 10:10AM         A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number:       FEDEX 862054469015         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description:       ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       YES         8. Have designated person initial here to acknowledge receipt of cooler:       6/21/2007 10:20AM
Date samples were received at the laboratory:       6/21/2007         Date cooler was opened:       6/21/2007 10:10AM         A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number:       FEDEX 862054469015         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description:       ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers in the appropriate place?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       Material place         B. LOG-IN PHASE:       Date samples were logged-in:       6/21/2007 10:20AM
Date cooler was opened:       6/21/2007 10:10AM         A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number: FEDEX 862054469015       YES         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description: ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       YES         8. Have designated person initial here to acknowledge receipt of cooler:       6/21/2007 10:20AM
A. PRELIMINARY EXAMINATION PHASE:       YES         1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number: FEDEX 862054469015       INTACT         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description: ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:
1. Did cooler come with a shipping slip (airbill, etc.)?       YES         if YES, record carrier name and airbill number: FEDEX 862054469015       INTACT         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description: ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:
If YES, record carrier name and airbill number: FEDEX 862054469015         2. Were custody seals unbroken and intact at the date and time of arrival?       INTACT         Date On Custody Seal:       Custody Seals Description: ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       6/21/2007 10:20AM         b. LOG-IN PHASE:       Date samples were logged-in:       6/21/2007 10:20AM
2. Were custody scals unbroken and material the date and time of arrival.       INTACT         Date On Custody Seal:       Custody Seals Description: ONE IN FRONT         3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       Material         B. LOG-IN PHASE:       Date samples were logged-in:       6/21/2007 10:20AM
3. Were custody papers sealed in a plastic bag and taped inside to the lid?       YES         4. Did you screen samples for radioactivity using the Geiger Counter?       NO         5. Were custody papers filled out properly (ink, signed, etc.)?       YES         6. Did you sign custody papers in the appropriate place?       YES         7. If required, was enough cooling material present?       YES         8. Have designated person initial here to acknowledge receipt of cooler:       YES         B. LOG-IN PHASE:       Date samples were logged-in:       6/21/2007 10:20AM
<ul> <li>3. Were custody papers sealed in a plastic bag and taped inside to the lid?</li></ul>
<ul> <li>4. Did you screen samples for radioactivity using the Geiger Counter?</li></ul>
<ul> <li>5. Were custody papers filled out properly (ink, signed, etc.)? YES</li> <li>6. Did you sign custody papers in the appropriate place? YES</li> <li>7. If required, was enough cooling material present? YES</li> <li>8. Have designated person initial here to acknowledge receipt of cooler: ////////////////////////////////////</li></ul>
<ul> <li>6. Did you sign custody papers in the appropriate place? YES</li> <li>7. If required, was enough cooling material present? YES</li> <li>8. Have designated person initial here to acknowledge receipt of cooler: ////////////////////////////////////</li></ul>
<ul> <li>7: If required, was enough cooling material present?YES</li> <li>8. Have designated person initial here to acknowledge receipt of cooler://</li> <li>B. LOG-IN PHASE:Date samples were logged-in: 6/21/2007 10:20AM</li> </ul>
<ul> <li>8. Have designated person initial here to acknowledge receipt of cooler: 1////</li></ul>
B. LOG-IN PHASE: Date samples were logged-in: 6/21/2007 10:20AM
French in Less Michael Michael (1997) (1997) (1997) (1997)
Logged-in by <u>Heien Huizenga</u> (sign) <u>1/14///4/ Fov H. Mui Zewi</u>
9. Describe type of packing in cooler:
·
10. Ware all bottles assigned in concrete alectic base?
10. Were labels in good condition?
12. Were all bottle lobels complete (ID date time signature preservative ate.)?
13. Did all bottle labels agree with custody papers?

14.	Were correct containers used for the tests indicated?	YES
15.	Were the correct pHs observed?	YES
16.	Was a sufficient amount of sample sent for tests indicated?	YES
17.	Were bubbles absent in VOA samples?	YES
18.	Temperatures: 14.0	

DISCREPANCIES:

Temp blank measured above control limit of 6 deg C. Two of two VOA trip blank vials contained air bubbles < 1/4" in size.

## Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB31 Cooler: AAD485 Temperatures: 14.0 COC #: 43109

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB31-001	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB31-002	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	40 ml OTWS, clear glass, HCl	N/C	None
CAB31-003	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	40 ml OTWS, clear glass, HCl	N/C	None
CAB31-004	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB31-005	0001	40 ml OTWS, clear glass, HCl	N/C	None
	0002	40 ml OTWS, clear glass, HCl	N/C	None

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH
				/	and a start of the	KEPORT (		ounts.	tellinguent acc	bs applied to .	ollection Fæes may	พเวอร อเฟ/อะ อ	Filance C
				The a subscription by the second	44 1						14 10 100 - 100 10 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -		
	6/10	Month .	M. M.	And a state of the state of the state		No.	10/22	5	600	M (Re			2
		LABORATOR	UNIPR DIVAN	EVED BY (SIG)	REC	1, 31/16, 2/r			5	GN AND PEIN	) be performed Involvished by (S	ACH SAMPLE	3 707 707
	TO PRIOR	* RUSH TUR SUBJECT				ORESS	ADE			NAME	IMPLE. REQUESTS	NE LINE PER SA ECIFIC IN TEST	1. USE ( 2. BE SP
se contact the laborate	hold time remaining. Plea	ian 50% of the analytica	received with less the	ng time for samptes VE	for missed holdi	not be responsible	The laboratory may i	ked. 8 BIINC	therwise ma	ned unless o	und time is assur	ndard turnaro	A. A st
											*Bare (2010) 2010 (2010)		
					X			M 20. 71	E		W4301	540 M	
					X	X	N S	102.61	NV.		Macom	514 M	S V
					X	XXX	G	N W//		Z	WPLE ID / LOCATIC	SLA M SA	S IN
				155 AT	ER 944	NO. OF CONTAINERS	TRIX: WATER, SOIL OR SE	-0223	1-248- 3-248-	HARVE T	17-7695	NO.: 7	PROJECT TELEPHO JOB/P.O.
ande, WA 98108 (2), mar WA 98982 (3)	940 South Harney St., Se. 1106 Ledwich Ave., Yakii RFORM	TED AT:	SUBMIT	ACC ACC				1 730			PETLAN		ADDHES
boratorie	Tésting Lai	°F	<b>G #</b> PAGE	9D SD(	Y RECO	<b>custod</b> 43108	CHAIN OF	BELOW	UNG' (SEE	PORTINGIEL	L BE USED FOR RE		THIS INF COMPAN

## Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB31	Taken By:	CLIENT
Cooler:	AAD578	Transferred:	FEDEX
COC #:	43108		
Project:	Camp Bonneville (PBS Engineerin	ng and Environmental)	
Date samp.	les were received at the laboratory:	6/21/2007	
Date coole	r was opened:	6/21/2007 10:10AM	
A. <u>PREL</u>	IMINARY EXAMINATION PHA	SE:	
1. Did cool	er come with a shipping slip (airbill, etc.)?		YES
ifYES	, record carrier name and airbill number: 1	FEDEX 862054469015	
2. Were cu	istody seals unbroken and intact at the date	and time of arrival?	INTACI
Date On	Custody Seal:	Custody Seals Description: O	NE IN FRONT
3. Were cu	stody papers sealed in a plastic bag and ta	ped inside to the lid?	YES
4. Did you	screen samples for radioactivity using the	Geiger Counter?	NO
5. Were cu	stody papers filled out properly (ink, signed	ed, etc.)?	YES
6. Did you	sign custody papers in the appropriate pla	ce?	YES
7. If requir	ed, was enough cooling material present?	····· http://	
8. Have de	signated person initial here to acknowledg	e receipt of cooler:	
B. <u>LOG-</u>	IN PHASE: Date	samples were logged-in:	6/21/2007 10:15AM
Logged-in	by <u>Helen Huizenga</u> (sigr	1) 1/1/1/ for H.	Unizena
9. Describ	e type of packing in cooler:		
		ø	
10. Were a	Il bottles sealed in separate plastic bags?		NO
11. Were l	abels in good condition?		YES
12. Were a	Il bottle labels complete (ID,date,time sign	nature,preservative,etc.)?	YES
13. Did all	bottle labels agree with custody papers?		YES

14.	Were correct containers	s used for the tests indicated?	YES
15.	Were the correct pHs o	bserved?	YES
16.	Was a sufficient amour	t of sample sent for tests indicated?	YES
17.	Were bubbles absent in	VOA samples?	YES
18.	Temperatures:	11.0	

DISCREPANCIES:

Temp blank measured above the control limit of 6 deg C.

## Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB31 Cooler: AAD578 Temperatures: 11.0

COC #: 43108

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB31-002	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	500 ml cylinder, poly	7	N/A
CAB31-003	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	500 ml cylinder, poly	7	N/A
CAB31-007	0001	1000 mL cylinder, poly, HNO3	<2	N/A
CAB31-009	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperatur	Ĉ
------------	---

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

Fhance Charges and/or Collection Fees may be applied to deliviquent accounts.	The provided as the performed of the performance of the perf	INSTRUCTIONS     *BILLING INFORMATION JE DIFFERENT THAN ABOVE       I. USE ONE LINE PER SAMPLE     NAME       2. BE SPECIFIC IN TEST REQUESTS     NAME       ATTN:     CITY, STATE, ZIP	A. A standard turnaround time is assumed unless otherwise marked.     B. The laboratory may not be responsible for missed holding time for samples rec			CS 15-22. MW420W GOVIE, TIME & RID, WY 7 7 4 4	ATTENTION: PROJECT NAME: THUP BOWNEVILLE PROJECT CONTACT: DREW HARVEY TELEPHONE: 503-417-7693x: 503-248-0223 SOL STARS 50 STARS JOB/PO. NO.: 70489,00 T6206 RM: MATER: 0505 200 200 RM: MATER: 0505 200 RM: MATER: 0	THIS INFORMATION WILL BE USED FOR REPORTING/BILLING: SEE BELOW COMPANY: <u>A 12 SW GLACT</u> ADDRESS: <u>A 12 SW GLACT</u> MORK ORDER ID#
Whe Pustw	RECEIVED BY (SIGN AND PRINT)	NABOVE * RUSH * SUBJ	ad holding time for samples received with less than 50% of the a					CORD SDG # CAB3
USTODY SEAL DY DN DN	TORY APPROVAL * 24-48 HRS (100% SUR)	ECT TO PRIOR	nalytical hold time remaining. Please contact the laboratory for further information.			XX X X X X X X X X X X X X X X X X X X	COMMENTS SPECIAL	Pesting Laboratories, Inc.     Sul Sudi Larry Su, Saatila, WA 98102     Gu9) 245-4095     FAX 457-126     FIND Lactivich Ave, Yakima, WA 98902     GU9) 245-4095     FAX 457-126     FAX 457-126

## Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB31		Taken By:	CLIENT	
Cooler:	AAP003		Transferred:	FEDEX	
COC #:	43110				
Project:	Camp Bonneville (PBS Enginee	ring and Envi	ronmental)		
Date sampl	les were received at the laboratory:	6/21/2007			
Date cooler	r was opened:	6/21/2007	2:00AM		
A. PREL	IMINARY EXAMINATION PH	IASE:			
1. Did cool if YES	er come with a shipping slip (airbill, etc , record carrier name and airbill number	.)? : FEDEX 8620	54469015		YES
2. Were cu	istody seals unbroken and infact at the d	ate and time of a	Trival?	WO ON FRONT	INTACT
Date On	Custody Seat.	Custody Seals	Description. 1	no on mont	
3. Were cu	istody papers sealed in a plastic bag and	taped inside to t	he lid?		YES
4. Did you	screen samples for radioactivity using t	he Geiger Count	ter?		NO
5. Were cu	istody papers filled out properly (ink, sig	gned, etc.)?			YES
6. Did you	sign custody papers in the appropriate I	place?			YES
7. If requir	red, was enough cooling material presen	t?	-A		YES
8. Have de	esignated person initial here to acknowle	dge receipt of co	oler:		
B. <u>LOG-</u>	IN PHASE: D	ate samples were	e logged-in:	6/21/2007 2:20AM	
Logged-in	by <u>Helen Huizenga</u> (s	ign)	Hugen	oja	
9. Describ	e type of packing in cooler:		V		
10. Were a	all bottles sealed in separate plastic bags	?		,	YES
11. Were	labels in good condition?				YES
12. Were a	all bottle labels complete (1D,date,time s	ignature,preserv	ative,etc.)?		YES
13. Did al	l bottle labels agree with custody papers	?			YES
14. Were	correct containers used for the tests indic	cated?			YES
15. Were t	the correct pHs observed?				YES
16. Was a	sufficient amount of sample sent for tes	ts indicated?			YES

17. Were bubbles absent in VOA samples? YES

18. Temperatures: 5.8

DISCREPANCIES:

## Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB31

Cooler: AAP003

Temperatures: 5.8

COC #: 43110

Sample	Bottle #	Bottle Description	pН	Bubbles
CAB31-006	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL cylinder, poly	7	N/A
	0008	1000 mL cylinder, poly, HNO3	<2	N/A
	0010	40 ml OTWS, clear glass, HCl	N/C	None
	0011	40 ml OTWS, clear glass, HCl	N/C	None
	0012	40 ml OTWS, clear glass, HCl	N/C	None
	0013	40 ml OTWS, clear glass, HCl	N/C	None
	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0020	500 ml boston round, clear glass, HCl	<2	N/A
	0021	500 ml cylinder, poly	7	N/A
	0025	1000 mL boston round, amber glass	7	N/A
	0026	1000 mL boston round, amber glass	7	N/A
	0028	500 ml boston round, clear glass, HCl	<2	N/A
	0029	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0030	40 ml OTWS, clear glass, H3PO4	N/C	N/A
CAB31-008	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

## LAUCKS TESTING LABORATORIES 940 S. Harney Seattle, WA 98108

## ATTACHMENT B

Index

## LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

### PBS Engineering & Environmental

#### SDG No.: CAB31

- I. Narrative: 2-10
- II. Chain-of-Custody: 11-21
- III. Index: 22-23
- IV. Forms Summary: SUM- 1-254

Completed and checked by: Judy Echlund Date: 124/07

## FORMS SUMMARY

SDG CAB31

# VOLATILES ANALYSIS

2

#### WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

Run Sequence: R019020

SDG No.: CAB31

Level: (LOW/MED) <u>NONE</u>

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB31-006) 15LCMW420W	103	108	106	107	0
(CAB31-004) 15L4MW05AW	99	107	105	106	0
(CAB31-003) 15L4MW03BW	102	106	105	109	0
(CAB31-002) 15L4MW03AW	102	108	107	107	0
(CAB31-001) 15L4MW02AW	103	108	104	107	0
(CAB31-005) TRIP BLANK	101	104	108	107	0
(B062607MVOWB1) B062607MVOWB1	102	105	105	107	0
(\$062607MVOWB2) \$062607MVOWB2	102	103	106	106	0

SMCl	(DBF) =	Dibromofluoromethane	85-115
SMC2	(DCA) =	1,2-Dichloroethane-d4	70-120
SMC3	(TOL) =	Toluene-d8	85-120
SMC4	(BFB) =	4-Bromofluorobenzene	75-120

# Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

#### 3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: R019020	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062607MVOWB2</u>	

Level: N/A Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	34.91	70	30-155
Chloromethane	50.0	38.96	78	40-125
Vinyl chloride	50.0	41.69	83	50-145
Bromomethane	50.0	41.14	82	30-145
Chloroethane	50.0	40.97	82	60-135
Trichlorofluoromethane	50.0	44.6	89	60-145
1,1-Dichloroethene	50.0	54.68	109	70-130
Acetone	50.0	42.19	84	40-140
Carbon disulfide	50.0	52.84	106	35-160
Methylene chloride	50.0	46.9	94	55-140
trans-1,2-Dichloroethene	50.0	51.01	102	60-140
1,1-Dichloroethane	50.0	50.96	102	70-135
cis-1,2-Dichloroethene	50.0	49.01	98	70-125
2-Butanone	50.0	46.98	94	30-150
Chloroform	50.0	49.11	98	65-135
1,1,1-Trichloroethane	50.0	50.86	102	65-130
Carbon tetrachloride	50.0	49.55	99	65-140
Benzene	50.0	48.09	96	80-120
1,2-Dichloroethane	50.0	49.47	99	70-130
Trichloroethene	50.0	49.05	98	70-125
1,2-Dichloropropane	50.0	47.84	96	75-125
Bromodichloromethane	50.0	48.33	97	75-120
cis-1,3-Dichloropropene	50.0	55.52	111	70-130
4-Methyl-2-pentanone	50.0	46.78	94	60-135
Toluene	50.0	49.06	98	75-120
trans-1,3-Dichloropropene	50.0	44.22	88	55-140
1,1,2-Trichloroethane	50.0	47.75	96	75-125
Tetrachloroethene	50.0	49.06	98	45-150
2-Hexanone	50.0	53.54	107	55-130
Dibromochloromethane	50.0	48.93	98	60-135
Chlorobenzene	50.0	48.92	98	80-120
Ethylbenzene	50.0	48.77	98	75-125
m,p-Xylene	100	98.71	99	75-130
o-Xylene	50.0	48.19	96	80-120

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

COMMENTS:

#### 3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019020</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062607MVOWB2</u>	
Level: <u>N/A</u>	Units: _ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Styrene	50.0	46.92	94	65-135
Bromoform	50.0	42.29	85	70-130
1,1,2,2-Tetrachloroethane	50.0	48.74	97	65-130

# Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: 0 out of 37 outside limits

COMMENTS:

4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO. B062607MVOWB1

Lab Name Laucks Testing Labs	Contract		
	CAD21		
	SDG NO.: CABSI		
Lab File ID: B0626022.D	Lab Sample ID: <u>B062607MVOWB1</u>		
Date Analyzed: 06/26/2007	Time Analyzed: 18:22		
GC Column: <u>ZB-624 20m</u> ID: <u>0,18</u> (mm)	Heated Purge: (Y/N) N		
Instrument ID: 5973B	Matrix: <u>Water</u>		

	CLIENT SAMPLE NO	LAB SAMPLE ID	LAB FILE ID	DATE	TIME	RUN
01	S062607MVOWB2	S062607MVOWB2	B0626020.D	06/26/2007	17:33	R019020
02	TRIP BLANK	CAB31-005	B0626024.D	06/26/2007	19:13	R019020
03	15L4MW02AW	CAB31-001	B0626036.D	06/27/2007	00:16	R019020
04	15L4MW03AW	CAB31-002	B0626037.D	06/27/2007	00:42	R019020
05	15L4MW03BW	CAB31-003	B0626038.D	06/27/2007	01:07	R019020
06	15L4MW05AW	CAB31-004	B0626039.D	06/27/2007	01:32	R019020
07	15LCMW420W	CAB31-006	B0626040.D	06/27/2007	02:10	R019020
08						
09						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						

COMMENTS:

5

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL948</u>	SDG No.: CAB31
Lab File ID: <u>B0604007.D</u>	BFB Injection Date: 06/04/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:14
GC Column ZB-624 20m	ID: 0.18 (mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	16.6
75	30% to 60% of mass 95	43.3
9.5	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	7.6
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	97.7
175	5% to 9% of mass 17	7.4()1
176	greater than 95%. but less than 101% of mass 174	98.7()1
177	5% to 9% of mass 176	7 () 2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 [	VSTD001	VSTD001	B0604009.D	06/04/2007	11:23
02	VSTD005	VSTD005	B0604011.D	06/04/2007	12:30
0з [	VSTD010	VSTD010	B0604012.D	06/04/2007	12:55
04	VSTD050	VSTD050	B0604013.D	06/04/2007	13:20
05	VSTD075	VSTD075	B0604014.D	06/04/2007	13:45
06	VSTD100	VSTD100	B0604015.D	06/04/2007	14:10
07	VSTD200	VSTD200	B0604016.D	06/04/2007	14:35
08 [					
09					
10					
11					
12					
13				· ·	
14					
15					
16					
17					
18					
19					
20					
21					
22 [					

#### 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBB2

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019020	SDG No.: CAB31
Lab File ID: <u>B0626017.D</u>	BFB Injection Date: <u>06/26/2007</u>
Instrument ID: <u>5973B</u>	BFB Injection Time: 16:12
GC Column ZB-624 20m	ID:(mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15% to 40% of mass 95	17.2
75	30% to 60% of mass 95	4 5
95	base peak. 100% relative abundance	100
96	5% to 9% of mass 95	6.8
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	104
175	5% to 9% of mass 17	7.2()1
176	greater than 95%. but less than 101% of mass 174	96.8()1
177	5% to 9% of mass 176	6.3()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B6	VSTD050B6	B0626018.D	06/26/2007	16:37
02	S062607MVOWB2	S062607MVOWB2	B0626020.D	06/26/2007	17:33
03	B062607MVOWB1	B062607MVOWB1	B0626022.D	06/26/2007	18:22
04	TRIP BLANK	CAB31-005	B0626024.D	06/26/2007	19:13
05	15L4MW02AW	CAB31-001	B0626036.D	06/27/2007	00:16
06	15L4MW03AW	CAB31-002	B0626037.D	06/27/2007	00:42
07	15L4MW03BW	CAB31-003	B0626038.D	06/27/2007	01:07
08	15L4MW05AW	CAB31-004	B0626039.D	06/27/2007	01:32
09	15LCMW420W	CAB31-006	B0626040.D	06/27/2007	02:10
10					
11					
12					
13 [					
14					
15					
16					
17					
18					
19	· · · · · · · · · · · · · · · · · · ·				
20					
21	damaa ahaa ahaa dhaadaa ahaa ahaa ahaa a				
22					

8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Testing Labs			Contr	Contract:			
	Run Sequence: <u>R019020</u>			SDG N	SDG No.: CAB31			
	Client Sample No.(VSTD050##): VSTD050B6			Date	Analyzed:	06/26/2007		
	Lab File ID (Standar	d): <u>B0626018.</u>	D		Analyzed:	16:37		
	Instrument ID: 5973B	}		Heate	Heated Purge: (Y/N) N			
	GC Column: ZB-624 20	) m	ID: 0.18	(mm)				
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #	
	12 HOUR STD	604328	6.24	451357	9.42	236928	11.73	
	UPPER LIMIT	1208656	6.74	902714	9.92	473856	12.23	
	LOWER LIMIT	302164	5.74	225678.5	8.92	118464	11.23	
	CLIENT SAMPLE NO.							
01	S062607MVOWB2	576172	6.24	433766	9.42	229054	11.73	
02	B062607MVOWB1	600255	6.24	446298	9.42	234498	11.73	
03	TRIP BLANK	607996	6.24	447828	9.42	233346	11.73	
04	15L4MW02AW	582397	6.24	435399	9.42	230319	11.73	
05	15L4MW03AW	574057	6.24	426994	9.42	220838	11.73	
06	15L4MW03BW	565445	6.24	424195	9.42	220060	11.73	
07	15L4MW05AW	582925	6.24	438270	9.42	237261	11.73	
08	15LCMW420W	585292	6.24	432423	9.42	225768	11.73	
09								
10								
11								
12				,	******			
13								
14								
15								
16								
17								
18						***************************************	Anternation and a second s	
19				*******				
20				· · ·				
21								
22								

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

l Volatile organics analysis data sheet

15L4MW02AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-001</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626036.D</u>
Level: (LOW/MED)	Date Collected:06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 00:16
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	ΰ
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	Ũ
75-09-2	Methylene chloride	1.0	U.
156-60-5	trans-1,2-Dichloroethene	1.0	Ŭ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	υ
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW02AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-001</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626036.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 00:16
GC Column: <u>ZB~624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	· Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	σ
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15L4MW03AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-002</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626037.D</u>
Level: (LOW/MED)	Date Collected: _06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 00:42
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) _ug/L_	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	Ū
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	Ū.
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	l,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	. 1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	υ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW03AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-002</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626037.D</u>
Level: (LOW/MED)	Date Collected:06/20/2007
% Moisture: not dec.	Date/Time Analyzed:
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q
124-48-1 Dibromochloromethane	1.0 U

124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	ΰ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW03BW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB31-003
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626038.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 01:07
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW03BW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-003</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626038.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 01:07
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ū
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	ų
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW05AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB31</u>	Run Sequence: <u>R019020</u>
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-004</u>
Sample wt/vol: $5.00$ (g/mL) mL	Lab File ID: <u>B0626039.D</u>
Level: (LOW/MED)	Date Collected:06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 01:32
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	υ
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	Ū
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	Ŭ
67-66-3	Chloroform	1.0	υ
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	υ
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	υ
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	ΰ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
591-78-6	2-Hexanone	5.0	U

l VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15L4MW05AW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31~004</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626039.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec	Date/Time Analyzed:06/27/200701:32
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: _1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	c-Xylene	1.0	U
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	υ
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

TRIP BLANK

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB31-005
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626024.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec	Date/Time Analyzed:06/26/200719:13
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ŭ
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	0.79	J
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	Ŭ
75-34-3	1,1-Dichloroethane	1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
591-78-6	2-Hexanone	5.0	ט

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-005</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626024.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 19:13
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601~23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	ΰ
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW420W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626040.D</u>
Level: (LOW/MED)	Date Collected: 06/20/2007
<pre>% Moisture: not dec</pre>	Date/Time Analyzed: 06/27/2007 02:10
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) _ug/L_	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	l,l-Dichloroethene	1.0	υ
67-64-1	Acetone	2.4	J
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	5.5	
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	σ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

l VOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW420W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAE31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626040.D</u>
Level: (LOW/MED)	Date Collected:06/20/2007
% Moisture: not dec.	Date/Time Analyzed: 06/27/2007 02:10
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ŭ
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Run Sequence:	R01	9020								Contra SDG No		CAB31								
Instrument ID:	597	3B								Calibr	atic	on Dates		06/04/	2007		L4:35			
Heated Purge:	(N/X)	Ν								Calibr	atic	on Times		06/04/	2007		L4:35			
GC Column: <u>ZB</u>	-624	20m				ID:		0.1£ (	(um	Mean	RSI	): 6.70								
Analyte	Std 1	RF 1	std 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std 6	RF 6	std 7	7 7	Std 3	RF 8	RF	\$RSD	Lon 2	₽ B B
Dichlorodifluoromethane	_	1.010E-01	s.	1.160E-01	10	1.150E-01	50	1.470E-01	75	1.480E-01	100	1.310E-01	200	1.500E-01			0.130	15.09		<
Chloromethane	Ť	2.630E-01	5	2.840E-01	10	2.610E-01	50	2.829E-01	75	2.809E-01	100	2.640E-01	200	2.870E-01			0.274	4.19		V
Vinyl chloride		2.330E-01	5	2.490E-01	10	2.370E-01	50	2.630E-01	75	2.630E-01	100	2.389E-01	200	2.590E-01			0.249	5.23		<
Bromomethane	-	1.949E-01	5	1.680E-01	10	1.490E-01	50	1.580E-01	75	1.680E-01	100	1.540E-01	200	1.540E-01			0.164	9.54		A
Chloroethane		1.750E-01	Ś	1.680E-01	10	1.630E-01	50	1.610E-01	75	1.640E-01	100	1.420E+01	200	1.540E-01			0.161	6.54		V
Trichlorofluoromethane		2.649E-01	S	2.980E-01	10	2.700E-01	50	3.199E-01	75	3.150E-01	100	2.790E-01	200	2.980E-01			0.292	7.28		
1,1-Dichloroethene		1.570E-01	ŝ	1.949E-01	10	1.620E-01	50	1.959E-01	75	1.930E-01	100	1.690E-01	200	1.770E-01			0.178	9.17		<
Acetone		1.560E-01	ŝ	1.320E-01	10	1.160E-01	50	1.250E-01	75	1.170E-01	100	1.140E-01	200	1.040E-01			0.123	(3.72		V
Carbon disulfide	1	5.680E-01	5	6.579E-01	10	6.129E-01	50	7.969E-01	75	8.090E-01	100	7.160E-01	200	7.300E-01			0.699	12.94		<
Methylene chloride	ĺ	1.001E+00	5	3.170E-01	10	2.579E-01	50	2.640E-01	75	2.720E-01	100	2.590E-01	200	2.490E-01			0.374		000.	$\sim$
trans-1,2-Dichloroethene		2.300E-01	5	2.780E-01	10	2.410E-01	50	2.739E-01	75	2.599E-01	100	2.410E-01	200	2.420E-01			0.252	7.38		<
1,1-Dichloroethane		4.560E-01	5	4.900E-01	10	4.400E-01	50	4.990E-01	75	4.740E-01	100	4.480E-01	200	4.460E-01			0.465	5.00		<
cis-1,2-Dichloroethene		2.829E-01	S	3.059E-01	10	2.619E-01	50	2.980E-01	75	2.879E-01	100	2.669E-01	200	2.720E-01			0.282	5.75		A
2-Butanone	ļ	2.480E-01	5	1.879E-01	10	1.940E-01	50	2.169E-01	75	2.110E-01	100	2.080E-01	200	1.930E-01			0.208	9.77		A
Chloroform	-	4.639E-01	5	4.819E-01	10	4.219E-01	50	4.720E-01	75	4.569E-01	100	4.280E-01	200	4.309E-01			0.451	5.26		A
1,1,1-Trichloroethane	-	3.129E-01	S	3.840E-01	10	3.300E-01	50	3.849E-01	75	3.590E-01	100	3.280E-01	200	3.290E-01			0.347	8.36		V
Carbon tetrachloride	-	2.579E-01	S	3.440E-01	10	2.850E-01	50	3.490E-01	75	3.240E-01	100	2.920E-01	200	2.969E-01			0.307	10.82		A
Benzene	-	1.070E+00	ŝ	1.184E+00	10	1.026E+00	50	1.172E+00	75	1.113E+00	100	1.051E+00	200	1.054E+0			1.096	5.66		A
1,2-Dichloroethane	-	3.499E-01	ŝ	3.600E-01	10	3.319E-01	50	3.600E-01	75	3.540E-01	100	3.400E-01	200	3.370E-01			0.347	3.29		V
Trichloroethene		2.809E-01	5	3.240E-01	10	2.780E-01	50	3.230E-01	75	3.059E-01	100	2.850E-01	200	2.910E-01		_	0.298	6.51		V
1,2-Dichloropropane	-	2.750E-01	v	2.890E-01	10	2.590E-01	50	2.899E-01	75	2.800E-01	100	2.680E-01	200	2.649E-01	_		0.275	4.28		V
Bromodichloromethane	_	3.389E-01	5	3.510E-01	10	3.269E-01	50	3.670E-01	75	3.580E-01	100	3.440E-01	200	3.440E-01			0.347	3.81		A
cis-1,3-Dichloropropene	-	3.750E-01	5	3.880E-01	10	3.610E-01	50	4.199E-01	75	4.070E-01	100	3.919E-01	200	3.910E-01			0.391	4.95		V
4-Methyl-2-pentanone	_	5.720E-01	S	4.149E-01	10	3.930E-01	50	4.269E-01	75	4.219E-01	100	4.100E-01	200	3.939E-01			0.433	14.48	*******	A
SUN															•					
- Eq Ty = Equation - Output -	оп Ту - Гірс	pe ar ArAno																		
2 [']		)/0-5 / 10:	ភ្វា ថ																	
	+																			

VOLATILE ORGANICS INITIAL CALIBRATION DATA

φ

Page 1 of 2

#

* SPCCs

FORM VI VOA

				년 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V	A	۲	V	A	¥	<	A	A	V	A	<	A	V	<	A	<
				r ² COD								Γ	•						<u> </u>		
				rsp	83	69	59	78	09	13	55	03	24	48	57	67	29	32	62	84	37
	:35	ы П			09 60	14 4	58 3.	33 7.	97 5.	89 7.	16 4.	80 6.	65 6.	53 4.	67 4.	47 5.	35 3.	45 2.	58 1.	06 0.	27 1.
	14	14		¤	6.0	0.6	0.3	0.4	0.3	0.3	0.1	1.6	0.6	0.6	1.1	0.3	0.0	0.2	0.2	1.2	0.8
		ĺ		RF 9																	
	2007	2007		Std 8																	
	06/04/	06/04/		RF 7	909E-01	.250E-01	.520E-01	.320E-01	.000E-01	030E-01	.005E+0	.670E+0	570E-01	470E-01	.172E+0	.660E-01	.380E-01	.380E-01	520E-01	.195E+0	150E-01
	ļ	l		Std 7	200 8	200 6	200 3	200 4	200 4	200 4	200 1	200 1	400 6	200 6.	200 1	200 B.	200 9.	80 2	80 2	80 1	80 8
CAB31	Dates:	Times:	6.70	RF 6	790E-01	169E-01	510E-01	110E-01	100E-01	989E-01	940E-01	644E+00	510E-01	430E-01	164E+00	569E-01	540E-01	399E-01	550E-01	192E+00	259E-01
с 	tion	tion	RSD:	دط و	00 8.	00 6.	00 3.	00 4.	00 4.	00 3.	00 9.	00 1	00 6.	00 6.	00 1.	00 3.	00 9.	75 2.	75 2.	75 1.	75 8.
No.	ibra	ibra	% L	8	-01	-01 1	-01 1	-01	1 10-	-01	+00 I	+00 1	-01 2	-01 ]	+00 1	-01 1	-01	-01	-01	+00	-01
SDG	Cal	Cal	Меа	RF	9.279E	6.309E	3.600E	4.410E	4.170E	4.079E	1.031E-	1.723E	6.850E	6.679E	1.206E-	3.610E	9.639E	2.460E	2.619E	1.209E-	8.290E
			(աա)	std 5	75	75	75	75	75	75	75	75	150	75	75	75	75	70	70	70	70
			0.16	RF 4	9.940E-01	6.510E-01	3.700E-01	4.799E-01	4.239E-01	4.170E-01	I.072E+00	I.823E+00	7.210E-01	6.970E-01	1.240E+00	3.580E-01	9.620E-01	2.389E-01	2.550E-01	1.215E+00	8.100E-01
				std 4	50	50	50	50	50	50	50	50	100	50	50	50	50	65	65	65	65
	÷	1996 - Andrew State of State o	ID:	RF 3	.399E-01	.630E-01	.350E-01	.980E-01	.610E-01	.540E~01	.359E-01	.561E+00	.160E-01	.119E-01	.082E+00	.089E-01	.909E-01	480E-01	599E-01	.201E+00	309E-01
				std 3	10 8	10 5	10 3	10 3	10 3	10 3	10 9	10 1	20 6	10	10	10 3	10 8	60 2	60 2	60 1	60 8
				RF 2	840E-01	160E-01	709E-01	740E-01	800E-01	960E-01	066E+00	779E+00	080E-01	740E-01	(86E+00	400E-01	409E-01	460E-01	619E-01	220E+00	290E-01
				td 2	5 9.	5 6.	5 3.	5 4.	5 3.	5 3.	5 1.1	5 1.	10 7.	5 6.	5 1.	5 3.	5 9.	55 2.	55 2.	55 1.2	55 8.
		N		RF I	170E-01	:99E-01	50E-01	80E-01	90E-01	-50E-01	10E+00	62E+00	69E-01	80E-01	15E+00	00E-01	30E-01	40E-01	40E-01	06E+00	50E-01
1902(	73B	2	20m	קי	8.4	5.5	3.6	3.5	3.8	3,4	1.0	1.5	6,1	6.2	1.1	3.4	8.9	) 2.5	2.6	) 1.2	8.4
RO	29	√V)	3-624	3t				-		-1		-	2	•				5(	5(	5(	5(
Run Sequence:	Instrument ID.	Heated Purge:	GC Column: ZE	Analyte	Toluene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane	Tetrachloroethene	2-Hexanone	Dibromochloromethane	Chlorobenzene	Ethylbenzene	m,p-Xylene	o-Xylene	Styrene	Bromoform	1,1,2,2-Tetrachloroethane	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene

VOLATILE ORGANICS INITIAL CALIBRATION DATA

ø

Contract:

Lab Name: Laucks Testing Labs

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

SUM - 22

ŧ * SPCCs FORM VI VOA

Page 2 of 2

# INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

#### Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
1,1,1,2-Tetrachloroethane	A	50.00	49.24	1.52
1,1,1-Trichloroethane	A	50.00	53.79	7.58
1,1,2,2-Tetrachloroethane	A	50.00	50.09	0.18
1,1,2-Trichloroethane	A	50.00	49.57	0.86
1,1-Dichloroethane	A	50.00	54.42	8.84
1,1-Dichloroethene	A	50.00	61.74	23.48
1,1-Dichloropropene	A	50.00	56.82	13.64
1,2,3-Trichlorobenzene	A	50.00	55.01	10.02
1,2,3-Trichloropropane	A	50.00	47.73	4.54
1,2,4-Trichlorobenzene	А	50.00	54.31	8.62
1,2,4-Trimethylbenzene	А	50.00	50.47	0.94
1,2-Dibromo-3-chloropropane	A	50.00	49.81	0.38
1,2-Dibromoethane	A	50.00	50.86	1.72
1,2-Dichlorobenzene	A	50.00	51.04	2.08
1,2-Dichloroethane	A	50.00	51.85	3.70
1,2-Dichloroethane-d4	A	50.00	50.27	0.54
1,2-Dichloropropane	A	50.00	50.72	1.44
1,3,5-Trimethylbenzene	A	50.00	49.94	0.12
1,3-Dichlorobenzene	A	50.00	50.64	1.28
1,3-Dichloropropane	Α	50.00	49.61	0.78
I,4-Dichlorobenzene	Α	50.00	51.11	2.22
1-Chlorohexane	A	50.00	54.76	9.52
2,2-Dichloropropane	A	50.00	51.18	2.36
2-Butanone	A	50.00	51.05	2.10
2-Chlorotoluene	A	50.00	49.94	0.12
2-Hexanone	Α	50.00	51.14	2.28
4-Bromofluorobenzene	A	50.00	49.38	1.24
4-Chlorotoluene	A	50.00	50.00	0.00
4-Isopropyltolucne	A	50.00	52.39	4.78
4-Methyl-2-pentanone	A	50.00	49.24	1.52
Acetone	A	50.00	50.13	0.26
Benzene	A	50.00	51.60	3.20
Bromobenzene	A	50.00	48.39	3.22
Bromochloromethane	A	50.00	51.68	3.36
Bromodichloromethane	A	50.00	51.67	3.34
Bromoform	A	50.00	48.24	3.52
Bromomethane	A	50.00	40.01	19.98
Carbon disulfide	A	50.00	52.03	4.06
Carbon tetrachloride	A	50.00	53.74	7.48
Chlorobenzene	A	50.00	51.66	3.32
Chloroethane	A	50.00	41.80	16.40
Chloroform	A	50.00	52.51	5.02
Chloromethane	A	50.00	42,42	15.16

# INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

#### Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
cis-1,2-Dichloroethene	A	50.00	53.73	7.46
cis-1,3-Dichloropropene	A .	50.00	59.33	18.66
Dibromochloromethane	A	50.00	52.66	5.32
Dibromofluoromethane	A	50.00	51.50	3.00
Dibromomethane	А	50.00	51.58	3.16
Dichlorodifluoromethane	A	50.00	40.14	19.72
Ethyl-t-Butyl Ether(ETBE)	A	50.00	53.27	6.54
Ethylbenzene	A	50.00	50.70	1.40
Hexachlorobutadiene	A	50.00	54.04	8.08
Isopropyl ether	A	50.00	51.97	3,94
Isopropylbenzene	A	50.00	51.78	3.56
m,p-Xylene	A	100.00	103.37	3.37
Methyl tert-butyl ether	A	50.00	56,55	13.10
Methylene chloride	Q	50.00	52.82	5.64
n-Butylbenzene	A	50.00	51.86	3.72
n-Propylbenzene	A	50.00	51.48	2.96
Naphthalene	A	50.00	54,73	9.46
o-Xylene	A	50.00	51.09	2.18
sec-Butylbenzene	A	50.00	53,45	6.90
Styrene	A	50.00	50.33	0.66
t-Amyl Methyl Ether(TAME)	A	50.00	52.66	5.32
t-Butyl Alcohol	A	500.00	565.69	13.14
tert-Butylbenzene	A	50.00	51.42	2.84
Tetrachloroethene	A	50.00	51.86	3.72
Toluene	A	50.00	50.75	1.50
Toluene-d8	A	50.00	51.28	2.56
trans-1,2-Dichloroethene	A	50.00	55.58	11.16
trans-1,3-Dichloropropene	A	50.00	45.29	9.42
Trichloroethene	A	50.00	53.18	6.36
Trichlorofluoromethane	A	50.00	42.86	14.28
Vinyl chloride	A	50.00	45.14	9.72

Q=Quadratic, L=Linear, A=Average

#### VOLATILE CONTINUING CALIBRATION CHECK

7

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>R019020</u>	SDG No.: <u>CAB31</u>
Instrument ID: <u>5973B</u>	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s):06/04/2007
Client Sample No.: VSTD050B6	Init. Calib. Time(s); <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.095	26.65*	
Chloromethane	A	0.220	19.75	
Vinyl chloride	A	0.205	17.55	
Bromomethane	A	0.132	19.77	
Chloroethane	A	0.141	12.73	
Trichlorofluoromethane	А	0.256	12.32	
1,1-Dichloroethene	A	0.165	7.55	
Acetone	A	0.110	10.83	
Carbon disulfide	А	0.567	18.85	
Methylene chloride	Q	0.255		-5.80
trans-1,2-Dichloroethene	A	0.236	6.29	
1,1-Dichloroethane	A	0.445	4.31	
cis-1,2-Dichloroethene	A	0.260	7.84	
2-Butanone	A	0.216	-3.61	
Chloroform	A	0.432	4.28	
1,1,1-Trichloroethane	А	0.328	5.58	
Carbon tetrachloride	A	0.281	8.34	
Benzene	А	1.029	6.09	
1,2-Dichloroethane	A	0.342	1.50	
Trichloroethene	A	0.281	5.56	
1,2-Dichloropropane	A	0.258	6.17	
Bromodichloromethane	A	0,324	6,58	
cis-1,3-Dichloropropene	А	0.367	6.18	
4-Methyl-2-pentanone	A	0.427	1.28	
Toluene	A	0.885	2.59	
trans-1,3-Dichloropropene	A	0.598	2.65	
1,1,2-Trichloroethane	А	0.346	3.45	
Tetrachloroethene	A	0.418	3.36	
2-Hexanone	A	0.441	-11.20	
Dibromochloromethane	A	0.363	6.70	
Chlorobenzene	A	0.961	5.45	
Ethylbenzene	д	1.638	2.47	

* = %D or %Drift above limit

# = %D or %Drift limts are not configured

Page 1 of 2

#### VOLATILE CONTINUING CALIBRATION CHECK

. 7

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019020	SDG No.: CAB31
Instrument ID: 5973B	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B6</u>	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
m,p-Xylene	А	0.642	3.49	
o-Xylene	A	0.611	6.43	
Styrene	А	1.095	6.16	
Bromoform	A	0.296	14.81	
1,1,2,2-Tetrachloroethane	A	0.916	1.99	
Dibromofluoromethane	A	0.225	8.11	
1,2-Dichloroethane-d4	A	0.243	5.75	
Toluene-d8	A	1.148	4.77	
4-Bromofluorobenzene	Α	0.792	4.28	

* = %D or %Drift above limit

# = %D or %Drift limts are not configured

Page 2 of 2

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062607MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0626022.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 18:22
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	σ
71-43-2	Benzene	1.0	σ
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062607MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626022.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed:06/26/200718:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	υ
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
CLIENT SAMPLE NO.

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>S062607MVOWB2</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: B0626020.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 17:33
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	35	
74-87-3	Chloromethane	39	
75-01-4	Vinyl chloride	42	
74-83-9	Bromomethane	41	
75-00-3	Chloroethane	41	
75-69-4	Trichlorofluoromethane	45	
75-35-4	1,1-Dichloroethene	55	
67-64-1	Acetone	42	
75-15-0	Carbon disulfide	53	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	51	
75-34-3	1,1-Dichloroethane	51	
156-59-2	cis-1,2-Dichloroethene	49	
78-93-3	2-Butanone	47	
67-66-3	Chloroform	49	
71-55-6	1,1,1-Trichloroethane	51	
56-23-5	Carbon tetrachloride	50	
71-43-2	Benzene	48	
107-06-2	1,2-Dichloroethane	49	
79-01-6	Trichloroethene	49	
78-87-5	1,2-Dichloropropane	48	
75-27-4	Bromodichloromethane	48	
10061-01-	cis-1,3-Dichloropropene	56	
108-10-1	4-Methyl-2-pentanone	47	
108-88-3	Toluene	49	
10061-02-	trans-1,3-Dichloropropene	44	
79-00-5	1,1,2-Trichloroethane	48	
127-18-4	Tetrachloroethene	49	
591-78-6	2-Hexanone	54	

CLIENT SAMPLE NO.

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062607MVOWB2</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626020.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 17:33
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	49	
108-90-7	Chlorobenzene	49	
100-41-4	Ethylbenzene	49	
179601-23	m,p-Xylene	99	
95-47-6	o-Xylene	48	
100-42-5	Styrene	47	
75-25-2	Bromoform	42	
79-34-5	1,1,2,2-Tetrachloroethane	49	

Comments:

## FORMS SUMMARY

## SDG# CAB31

Semivolatiles

#### 2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: _____

SDG No.: ______

Run Sequence: R019608

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	S1 (2FP) #_	S2 (PHL) #	S3 (NBZ) #	54 (2FB) #	TOT OUT
(CAB31-006)		·			
15LCMW420W	35	57	73	65	
(\$062507MSVWLT)					
S062507MSVWLT	42	65	84	76	
(B062507MSVWLT)					
B062507MSVWLT	35	61	82	70	

 S1
 (2FP) =
 2-Fluorophenol
 20-110

 S2
 (PHL) =
 Phenol-d5
 10-115

 S3
 (NBZ) =
 Nitrobenzene-d5
 40-110

 S4
 (2FB) =
 2-Fluorobiphenyl
 50-100

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

QC LIMITS

#### 2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract:

SDG No.: CAB31

Run Sequence: R019608

Level: (LOW/MED) <u>NONE</u>

CLIENT SAMPLE NUMBER	S5 (TBP) #	S6 (DTR) #	S7 () #	58 () #	TOT OUT
(CAB31-006) 15LCMW420W	41	78			0
(S062507MSVWLT) S062507MSVWLT	58	76			O
(B062507MSVWLT) B062507MSVWLT	49	76			0

QC LIMITS

50-135

S5 (TBP)  $\approx$  2,4,6-Tribromophenol

S6 (DTR) = Terphenyl-dl4

S7 () =

S8 () =

# Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

### 3B

### WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019608</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062507MSVWLT</u>	

Level: N/A Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
3 & 4-Methylphenol	20.0	17.27	86	30-110
Bis(2-chloroisopropyl)ether	20.0	16.28	81	35-110
Phenol	20.0	13.46	67	23-98
Bis(2-Chloroethyl)ether	20.0	18.38	92	35-110
2-Chlorophenol	20.0	13.29	66	35-105
1,3-Dichlorobenzene	20.0	10.71	54	30-100
1,4-Dichlorobenzene	20.0	10.47	52	30-100
Benzyl alcohol	20.0	17.49	87	30-110
1,2-Dichlorobenzene	20.0	11.29	56	35-100
2-Methylphenol	20,0	16.13	81	40-110
N-Nitroso-di-n-propylamine	20.0	20.03	100	35-130
Hexachloroethane	20.0	9.56	48	30-95
Nitrobenzene	20.0	17.47	87	45-110
Isophorone	20.0	16.25	81	50-110
2-Nitrophenol	20.0	9.88	49	40-115
2,4-Dimethylphenol	20.0	11.4	57	30-110
Benzoic acid	20.0	8.11	41	0-125
Bis(2-chloroethoxy)methane	20.0	16.82	84	45-105
2,4-Dichlorophenol	20.0	13.16	66	50-105
1,2,4-Trichlorobenzene	20.0	11.62	58	35-105
Naphthalene	20,0	13.2	66	40-100
4-Chloroaniline	20.0	12.38	62	15-110
Hexachlorobutadiene	20.0	9.32	47	25-105
4-Chloro-3-methylphenol	20.0	15.64	78	45-110
2-Methylnaphthalene	20.0	14.2	71	45-105
Hexachlorocyclopentadiene	20.0	3.72	19	10-49
2,4,6-Trichlorophenol	20.0	9.53	48 *	50-115
2,4,5-Trichlorophenol	20.0	11.91	60	50-110
2-Chloronaphthalene	20.0	15.46	77	50-105
2-Nitroaniline	20.0	14.72	74	50-115
Dimethylphthalate	20.0	16.72	84	25-125
2,6-Dinitrotoluene	20.0	10.97	55	50-115
Acenaphthylene	20.0	16.09	80	50-105
3-Nitroaniline	20.0	13.04	65	20-125

 $\ensuremath{\texttt{\#}}$  Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: <u>1</u> out of <u>69</u> outside limits

COMMENTS :

### 3B WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019608</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062507MSVWLT</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Acenaphthene	20.0	16.28	81	45-110
2,4-Dinitrophenol	20.0	11.49	57	15-140
4-Nitrophenol	20.0	10.52	53	0-125
Dibenzofuran	20.0	16.54	83	55-105
2,4-Dinitrotoluene	20.0	12.73	64	50-120
Diethylphthalate	20.0	16.49	82	40-120
Fluorene	20.0	16.63	83	50-110
4-Chlorophenyl-phenylether	20.0	16.63	83	50-110
4-Nitroaniline	20.0	14.19	71	35-120
4,6-Dinitro-2-methylphenol	20.0	9	45	40-130
N-Nitrosodiphenylamine	20.0	13.54	68	50-110
Azobenzene	20.0	17.81	89	55-115
4-Bromophenyl-phenyl ether	20.0	16.55	83	50-115
Hexachlorobenzene	20.0	15.24	76	50-110
Pentachlorophenol	20.0	11.55	58	40-115
Phenanthrene	20.0	16.57	83	50-115
Anthracene	20.0	16.28	81	55-110
Carbazole	20.0	17.54	88	50-115
Di-n-butylphthalate	20.0	17.39	87	55-115
Fluoranthene	20.0	18.46	92	55-115
Benzídine	20.0	0	0	0-125
Pyrene	20.0	14.69	73	50-130
Butylbenzylphthalate	20.0	15.16	76	45-115
3,3'-Dichlorobenzidine	20.0	12.73	64	20-110
Benzo(a)anthracene	20.0	15.73	79	55-110
Bis(2-ethylhexyl)phthalate	20.0	15.06	75	40-125
Chrysene	20.0	16.74	84	55-110
Di-n-octylphthalate	20.0	12.85	64	35-135
Benzo(b)fluoranthene	20.0	15.34	77	45-120
Benzo(k)fluoranthene	20.0	18.09	90	45-125
Benzo(a)pyrene	20.0	15.68	78	55-110
Indeno(1,2,3-cd)pyrene	20.0	18.36	92	45-125
Dibenzo(a,h)anthracene	20.0	18.36	92	40-125
Benzo(g,h,i)perylene	20.0	18.77	94	40-125

# Column to be used to flag recovery and RPD values with an asterisk  $\star$  Values outside of QC limits

Spike Recovery: <u>1</u> out of <u>69</u> outside limits

COMMENTS:

4	CLIENT SAMPLE NO.
SEMIVOLATILE METHO	DD BLANK SUMMARY B062507MSVWLT
Lab Name Laucks Testing Labs	Contract:
	SDG No.:CAB31
Lab File ID:L0716003.D	Lab Sample ID: <u>B062507MSVWLT</u>
Date Analyzed: 07/16/2007	Time Analyzed:
GC Column: <u>RTX-5Sil MS</u> ID: 0.25 (mm)	Heated Purge: (Y/N) N
Instrument ID: 5970L	Matrix: Water

	CLIENT	LAB	LAB	DATE	TIME	RUN
0.1	SAMPLE NO.	SAMPLE ID,	FILE ID.	ANALIZED	ANALYZED	DOLOGO9
01	151 CMW4 20W	5062507M5VWD1	10716004.D	07/16/2007	18.14	RO19606
02	15LCMW420W	CAB31-008	T0/10002.D	07/10/2007	10.14	KOT2000
03						
04						
05		········				
00						· · · · ·
07			· · · · · · · · · · · · · · · · · · ·			
00 A 9	<u>}</u>	······································				
10	·····					
17		*******	[			
11 10						
33	1					
14						
15						
16	· · · · · · · · · · · · · · · · · · ·					
17	· · · · · · · · · · · · · · · · · · ·					
18						
19						
20						
21	· · · · · ·			<u> </u>	·	
22						8967.09999.07927.0997.0997.0978.0978.0978.0978.0978.097
23			······································			
24						
25						·····
26						
27						
28			·			
29						
30						

CLIENT SAMPLE NO.

5

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

DFTPP071207-1

DECAFLUOROTRIPHENY	LPHOSPHINE (DFTPP)
Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL997</u>	SDG No.: CAB31
Lab File ID: L0712001.D	DFTPP Injection Date: 07/12/2007
Instrument ID: 5970L	DFTPP Injection Time: 12:31

m/e	TON ABUNDANCE CRITERIA	* RELATIVE ABUNDANCE
51	30% to 60% of mass 198	48 5
68	less than 2% of mass 69	1.5 ()1
69	base peak, 100% relative abundance	100
70	less than 2% of mass 69	0,9 ()1
127	40% to 60% of mass 198	48.3
197	less than 1% of mass 198	Q
198	base peak, 100% relative abundance	3.00
199	5% to 9% of mass 198	7.4
275	10% to 30% of mass 198	20.9
365	greater than 1% of mass 198	2
441	present but less than mass 443	76.2
442	greater than 40% of mass 198	64.5
443	17% to 23% of mass 442	19.5 ()2

### 1 - Value is %mass 69 2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD001	SSTD001	L0712003.D	07/12/2007	13:43
02	SSTD040	SSTD040	L0712007.D	07/12/2007	16:13
03	SSTD060	SSTD060	L0712008.D	07/12/2007	16:51
04	SSTD080	SSTD080	L0712009.D	07/12/2007	17:28
05	SSTD005	SSTD005	L0712011.D	07/12/2007	18:43
06	SSTD010	SSTD010	L0712012.D	07/12/2007	19:21
07	SSTD025	SSTD025	L0712013.D	07/12/2007	19:58
80					
09					
10					
11					
12					
13					
14					
15					
16					
17	<u>10</u>				
18					
19					
20					
21					
22					

CLIENT SAMPLE NO.

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

5

DFTPP071607-1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019608	SDG No.: CAB31
Lab File ID: L0716001.D	DFTPP Injection Date: 07/16/2007
Instrument ID: 5970L	DFTPP Injection Time: 15:40

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
51	30% to 60% of mass 198	49.5
68	less than 2% of mass 69	1 ()1
69	base peak, 100% relative abundance	100
70	less than 2% of mass 69	0.6 ()1
127	40% to 60% of mass 198	46.8
197	less than 1% of mass 198	0
198	base peak, 100% relative abundance	100
199	5% to 9% of mass 198	6.9
275	10% to 30% of mass 198	21.9
365	greater than 1% of mass 198	1.8
441	present but less than mass 443	77.5
442	greater than 40% of mass 198	58,9
443	17% to 23% of mass 442	19.8 ()2

### 1 - Value is %mass 69 2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	CCV071607-1	CCV071607-1	L0716002.D	07/16/2007	16:05
02	B062507MSVWLT	B062507MSVWLT	L0716003.D	07/16/2007	17:00
03	S062507MSVWLT	S062507MSVWLT	L0716004.D	07/16/2007	17:37
04	15LCMW420W	CAB31-006	L0716005.D	07/16/2007	18:14
05					
06					
07					
·08					
09					
10					
11		[			
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

8

Lab Name: Laucks Testing Labs	Contract:	
Run Sequence: R019608	SDG No.: CAB31	<u></u>
Client Sample No.: <u>CCV071607-1</u>	Date Analyzed:	07/16/2007
Lab File ID (Standard): <u>L0716002.D</u>	Time Analyzed:	16:05
Instrument ID: 5970L	GC Column: RTX-5Sil MS	ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	15953	7.07	54716	8.73	28842	11.09
	UPPER LIMIT	31906	7.57	109432	9.23	57684	11.59
	LOWER LIMIT	7976.5	6.57	27358	8.23	14421	10,59
	CLIENT SAMPLE NO.						
01	B062507MSVWLT	15501	7.07	53957	8.73	28626	11.09
02	S062507MSVWLT	14336	7.07	49768	8.72	26283	11.09
03	15LCMW420W	15225	7.07	52602	8.72	27619	11.09
04							
05							
06							
07							
08							
09	·						
10			ŝ				
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
# Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits

8

### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Laucks Testing Labs	Contract:	
Run Sequence: R019608	SDG No.: CAB31	
Client Sample No.: <u>CCV071607-1</u>	Date Analyzed:	07/16/2007
Lab File ID (Standard): <u>L0716002.D</u>	Time Analyzed:	16:05
Instrument ID: 5970L	GC Column: RTX-5Sil MS	ID: 0.25 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	42612	13.09	25749	17.65	14139	21.32
	UPPER LIMIT	85224	13.59	51498	18.15	28278	21.82
	LOWER LIMIT	21306	12,59	12874.5	17.15	7069.5	20.82
	CLIENT SAMPLE NO.						
01	B062507MSVWLT	42140	13.09	27046	17.65	14290	21.33
02	S062507MSVWLT	38475	13.09	24878	17,65	13633	21.32
03	15LCMW420W	41191	13.09	24554	17.65	13717	21.32
04							
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16		1					
17							
18							
19							
20							
21							
22							

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
# Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: <u>I</u>	aucks Testing Labs	Contr	act:	
SDG No.: <u>CAB</u>	31	Run S	Sequence: R019608	
Matrix: (SOI	L/WATER) <u>Water</u>	Lab S	Sample ID: <u>CAB31-006</u>	
Sample wt/vc	l: <u>1040.0</u> (g/mL) <u>mL</u>	Lab I	File ID: <u>L0716005.D</u>	
Level: (LOW/	MED)	Date	Collected: 06/20/2007	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Extracted: 06/25/2007		
Concentrated	Extract Volume: <u>1000 (</u> uL)	Date	Analyzed: 07/16/2007	
Injection Vc	lume:(uL)	Dilut	tion Factor: <u>1.0</u>	n.,
GPC Cleanup:	(Y/N) <u>N</u> pH:	Extra	action: (Type) <u>CONT</u>	
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol		4.8	U
			_	

		· ·	
108-39-4/	3 & 4-Methylphenol	4.8	U
108-60-1	Bis(2-chloroisopropyl)ether	4.8	U
108-95-2	Phenol	4.8	U
111-44-4	Bis(2-Chloroethyl)ether	4.8	U
95-57-8	2-Chlorophenol	4.8	U
541-73-1	1,3-Dichlorobenzene	4.8	υ
106-46-7	1,4-Dichlorobenzene	4.8	U
100-51-6	Benzyl alcohol	4.8	Ψ
95-50-1	1,2-Dichlorobenzene	4.8	U
95-48-7	2-Methylphenol	4.8	Ŭ
621-64-7	N-Nitroso-di-n-propylamine	4.8	Ū
67-72-1	Hexachloroethane	. 4.8	U
98~95~3	Nitrobenzene	4.8	υ
78-59-1	Isophorone	4.8	U
88-75-5	2-Nitrophenol	4.8	υ
105-67-9	2,4-Dimethylphenol	4.8	U
65-85-0	Benzoic acid	9.6	U
111-91-1	Bis(2-chloroethoxy)methane	4.8	U
120-83-2	2,4-Dichlorophenol	4.8	U
120-82-1	1,2,4-Trichlorobenzene	4.8	U
91-20-3	Naphthalene	4.8	U
106-47-8	4-Chloroaniline	4.8	U
87-68-3	Hexachlorobutadiene	4.8	U
59-50-7	4-Chloro-3-methylphenol	4.8	U
91-57~6	2-Methylnaphthalene	4.8	U
77-47-4	Hexachlorocyclopentadiene	4.8	U

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019608
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: <u>1040.0</u> (g/mL) <u>mL</u>	Lab File ID: L0716005.D
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-06-2	2,4,6-Trichlorophenol	4.8	U
95-95-4	2,4,5-Trichlorophenol	4.8	U
91-58-7	2-Chloronaphthalene	4.8	U
88-74-4	2-Nitroaniline	4.8	U
131-11-3	Dimethylphthalate	4.8	U
606-20-2	2,6-Dinitrotoluene	4.8	· U
208-96-8	Acenaphthylene	4.8	U
99-09-2	3-Nitroaniline	4.8	U
83-32-9	Acenaphthene	4.8	U
51-28-5	2,4-Dinitrophenol	9.6	ΰ
100-02-7	4-Nitrophenol	4.8	U
132-64-9	Dibenzofuran	4.8	U
121-14-2	2,4-Dinitrotoluene	4.8	U
84-66-2	Diethylphthalate	4.8	U
86-73-7	Fluorene	4.8	U
7005-72-3	4-Chlorophenyl-phenylether	4.B	U
100-01-6	4-Nitroaniline	4.8	ΰ
534-52-1	4,6-Dinitro-2-methylphenol	4.8	Ŭ
86-30-6	N-Nitrosodiphenylamine	4.8	ប
122-66-7	Azobenzene	4.B	U
101-55-3	4-Bromophenyl-phenyl ether	4.8	ΰ
118-74-1	Hexachlorobenzene	4.8	U
87-86-5	Pentachlorophenol	4.8	υ
85-01-8	Phenanthrene	4.8	U
120-12-7	Anthracene	4.8	U
86-74-8	Carbazole	4.8	υ
84-74-2	Di-n-butylphthalate	4.8	U
206-44-0	Fluoranthene	4.8	U

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB31</u>	Run Sequence: <u>R019608</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAB31-006
Sample wt/vol: 1040.0 (g/mL) mL	Lab File ID: L0716005.D
Level: (LOW/MED)	Date Collected: 06/20/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.8	U
129-00-0	Pyrene	4.8	U
85-68-7	Butylbenzylphthalate	4.8	U
91-94-1	3,3'-Dichlorobenzidine	4.8	U
56-55-3	Benzo(a)anthracene	4.8	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.8	υ
218-01-9	Chrysene	4.8	U
117-84-0	Di-n-octylphthalate	4.8	U
205-99-2	Benzo(b)fluoranthene	4.8	υ
207-08-9	Benzo(k)fluoranthene	4.B	U
50-32-8	Benzo(a)pyrene	4.8	ΰ
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	ប
53-70-3	Dibenzo(a,h)anthracene	4.8	U
191-24-2	Benzo(g,h,i)perylene	4.8	υ

Comments:

					Eq	A	Y	А	A	A	A	A	Υ	А	A	А	A	A	A	A	A	0	Υ	А	Y	A	A	V	A
Without Helipperson	*****				г² COD																	0.999							
					&RSD	4.24	9.95	3.76	4.22	1.77	12.87	13.78	13.92	4.96	4.46	15.07	11.99	12.07	12.24	14.02	14.88		12.90	13.02	11.75	11.96	11.72	9.56	13.57
		21:13	21:13		RF	1.298 1	2.736	1.998 1	1.712	1.473	1.730 1	1.769 1	0.999 ]	1.633 ]	1.348	1.120 1	0.752 ]	0.513 1	0.913 1	0.152 1	0.473	0.192	0.627	0.392	0.460	1.296	0.569	0.268	0.417
		1	1		80																								
		70	2.0		d RI																								
		2/20(	2/20(		St 8		+0+	0+	0+	H0	+0	0+	-01	0+	+0		-01	-01	-01	-01	-01		-0]	-01	-01	0+0	-01	-01	-01
		07/1	1//1		RF 7		2.477E	1.872E	1.542E	1.375E	1.631E	1.653E	).020E	1.465E	1.251E		7.120E	5.099E	3.380E	I.790E	4.540E		5.730E	3.770E	4.379E	1.179E	5.320E	2.550E	3.899E
		1	I	L.	std 7		80	80	80	80	80	80	80	80	80		80	80	80 8	80	80		80	80	80	80	80	80	80
	831	ני ע נו	imes:	11.8	9	5E+00	4E+00	DE+00	2E+00	5E+00	5E+00	4E+00	9E-01	0E+00	3E+00	5E+00	0E-01	0E-01	0E-01	0E-01	0E-01	9E-01	0E-01	0E-01	0E-01	8E+00	0E-01	9E-01	0E-01
	CA	on Di	on T.	i G	RI	1.10	2.49	1.79(	1.57	1.39	1.62	1.67	9.08	1.50	1.26	1.00	7.07	5.00	8.51	1.69	4.58	2.50	5.77	3.80	4.35	1.19	5.50	2.50	4.00
act:	.: 0	rati	rati	% S	Std 6	0 80	0 60	0 60	0 60	0 60	0 60	0 60	0 60	0 60	0 60	0 80	1 60	1 60	1 60	1 60	1 60	1 80	1 60	1 60	1 60	0 60	1 60	1 60	1 60
Contr	SDG SDG	Calib	Calib	Mean	RF 5	.165E+0	:.678E+0	.966E+0	.675E+0	.480E+0	.733E+0	.763E+0	.022E+0	.613E+0	.340E+0	.001E+0	7.500E-0	5.019E-0	8.730E-0	I.739E-0	4.670E-0	2.290E-0	5.010E-0	3.910E-0	4.490E-0	239E+0	5.559E-0	2.599E-0	4.160E-0
				າກາກ (	Std 5	60	40	40 1	40	40	40	40 ]	40 ]	40 1	40	60	40	40	40	40	40	60	40	40	40	40	40	4	40
				0.2 <u></u>	RF 4	317E+00	842E+00	062E+00	797E+00	536E+00	790E+00	794E+00	054E+00	683E+00	445E+00	.103E+00	.699E-01	.320E-01	.509E-01	.450E-01	.990E-01	.200E-01	.530E-01	.100E-01	.670E-01	.318E+00	.839E-01	.730E-01	.449E-01
					3td 4	40 1.	25 2.	25 2	25 1.	25 1.	25 1	25 1.	25 1.	25 1	25 1	40 1	25 7	25 5	25 9	25 1	25 4	40 2	25   6	25 4	25 4	25 1	25 5	25 2	25 4
		We during Advance Vel reference			т	6E+00	34E+00	53E+00	57E+00	2E+00	0E+00	52E+00	(6E+00	55E+00	28E+00	50E+00	10-36C	10-36C	54E+00	50E-01	60E-01	90E-01	10E-01	49E-01	40E-01	15E+00	90E-01	90E-01	90E-01
				a I	24 17	1,41	) 2.98	) 2.26	. I.95	1.6]	1.85	1.95	1.11	1.86	) [1.52	1.2	) 8.3(	) 5.6(	1.05	1.3	) 5.2(	5 1.79	) [7.2	)   4.4/	5.0	1.42	) 6.3(	) 2.89	4.7
					u tr	90 25	00 10	00 10	00 10	00 10	00 10	00 10	01 00	01 10	00 10	00 25	1 10	)1 10	30 IC	01 10	01 10	01 25	1 10	01 10	1 10	00 10	01 10	11	1 10
					RF 2	1.598E+(	3.170E+(	2.415E+(	2.066E+(	1.719E+(	2.072E+(	2.161E+(	1.198E+(	2.009E+(	1.593E+(	1.392E+(	8.859E-0	5.899E-(	1.057E+(	1.360E-0	5.669E-(	1.600E-0	7.390E-0	4.460E-(	5.479E-(	1.557E+(	6.589E-(	3.129E-0	4.729E-(
abs					std 2	10	5	5	5	5	5	5	5	5	5	10	5	5	5	5	5	10	5	5	5	5	5	5	5
sting L	08		Z	MS	RF 1	.188E+00	0.503E+00	.619E+00	.376E+00	.189E+00	.369E+00	.388E+00	7.940E-01	.296E+00	.017E+00	9.660E-01	6.079E-01	3.939E-01	7.649E-01	1.270E-01	3.429E-01	1.110E-01	5.220E-01	2.960E-01	3.790E-01	1.133E+00	4.610E-01	2.370E-01	3.150E-01
⊕ ⊡ s	10196	970L	(N/	5Sil	Std 1	1	-	1	] ]	1	1	1	-	1	1	1	I	-		1	I	5	1	1	1	1	, I	-	-
Lab Name: <u>Lauck</u>	Run Sequence: F	Instrument ID: 5	Heated Purge: (Y	GC Column: <u>RTX-</u>	Analyte	3 & 4-Methylphenol	Bis(2-chloroisopropy1)ether	Phenol	Bis(2-Chloroethyl)ether	2-Chlorophenol	I,3-Dichlorobenzene	1,4-Dichlorobenzene	Benzyl alcohol	1,2-Dichlorobenzene	2-Methylphenol	N-Nitroso-di-n-propylamine	Hexachloroethane	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol	Benzoic acid	Bis(2-chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-methylphenol

SUM - 44

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

# * SPCCs

FORM VI SV

Lab Name: <u>Lauc</u>	¥з Т	esting L	abs				1			Contra	ict:								
Run Sequence:	R019	608					1			SDG No		CAB31							
Instrument ID:	5970	Ĺ			ve annöhtersekendöhtersek		I			Calibr	atic	m Dates:		07/12/20	10.7	21:1	(*)	*****	
Heated Purge: ()	(N/X	M		- 4000000 40 vice nov 444 spin-47-1-48			I			Calibr	atic	m Times:	l	07/12/20	107	21:10			
GC Column: <u>RTX-</u>	581]	l MS				ID:		0.25	(mm)	Mean %	RSI	): 11.8'	2						
Analyte	Std 1	RF 1	std 2	RF 2	Std 3	RF 3	Std 4	ц КF 4	Std 5	RF 5	std 6	9 KF 6	Std 7	RF 7 S	td RF 8 3	1 ²	%RSD	r ² COD	EG TV
2-Methylnaphthalene		6.840E-01	5	9.269E-01	10	8.809E-01	25	8.040E-01	40	7.400E-01	60	7.160E-01	80	7.049E-01		0.780	12.06		A
Hexachlorocyclopentadiene	5	3.970E-01	10	3.709E-01	25	3.989E-01	40	4.659E-01	60	4.589E-01	80	4.749E-01				0.428	10.27		A
2,4,6-Trichlorophenol	5	4.449E-01	10	4.540E-01	25	5.440E-01	40	5.260E-01	60	4.910E-01	80	4.970E-01				0.493	7.85		A
2,4,5-Trichlorophenol	1	3.899E-01	5	6.470E-01	10	6.179E-01	25	5.080E-01	40	5.370E-01	60	5.360E-01	80	5.510E-01		0.541	15.34		A
2-Chloronaphthalene		1.313E+00	5	1.876E+00	2	1.684E+0(	) 25	1.489E+00	40	1.480E+00	60	1.408E+00	80	1.415E+0		1.524	12.64		A
2-Nitroaniline	5	4.700E-01	10	4.889E-01	25	5.070E-01	40	4.980E-01	60	4.790E-01	80	4.910E-01				0.489	2.70		А
Dimethylphthalate	1	1.420E+00	5	2.056E+0(	01 0	2.082E+0	3 25	1.851E+00	40	1.707E+00	60	1.582E+00	80	1.579E+0		1.754	14.35		A
2,6-Dinitrotoluene	5	3.989E-01	10	4.460E-01	25	4.379E-01	40	4.210E-01	60	4.020E-01	80	4.040E-01				0.418	4.72	,	A
Acenaphthylene	1	1.997E+00	5	2.934E+0(	01 (	2.655E+0(	) 25	2.417E+00	40	2.365E+00	60	2.174E+00	80	2.229E+0		2.396	13.14		A
3-Nitroaniline	5	4.030E-01	10	4.370E-01	25	4.260E-01	40	4.040E-01	60	3.910E-01	80	3.970E-01				0.410	4.38	-	A
Acenaphthene	-	1.205E+00	5	1.819E+0(	10	1.675E+0	) 25	1.483E+00	40	1.451E+00	60	1.326E+00	80	1.351E+0		1.473	14.38		V
2,4-Dinitrophenol	1		5	4.100E-02	10	5.500E-02	25	7.000E-02	40	8.200E-02	60	7.900E-02	80	8.200E-02		0.068		0.999	) L
4-Nitrophenol	5	1.360E-01	10	1.580E-01	25	1.729E-01	1 40	1.850E-01	60	1.729E-01	80	1.760E-01				0.167	10.34		A
Dibenzofuran	1	1.704E+00	ŝ	2.539E+0(	10	2.335E+0	0 25	2.122E+00	40	2.030E+00	60	1.868E+00	80	1.868E+0		2.067	14.11		V I
2,4-Dimitrotoluene	5	3.939E-01	10	4.799E-01	25	5.099E-01	40	4.889E-01	60	4.630E-01	80	4.600E-01				0.466	8.54		A
Diethylphthalate	5	2.040E+00	10	2.066E+0(	) 25	1.844E+0	0 40	1.694E+00	60	1.534E+00	80	1.493E+00				1.779	13.87		V
Fluorene		1.415E+00	5	1.983E+0(	0 0	1.881E+0	0 25	1.620E+00	40	1.554E+00	60	1.415E+00	80	1.405E+0		1.611	14.64		A
4-Chlorophenyl-phenylether	-	6.790E-01	Ś	9.969E-01	0	9.369E-01	1 25	7.969E-01	4	7.780E-01	- 09	7.080E-01	80	7.009E-01		0.800	15.4(		A
4-Nitroaniline	5	3.820E-01	10	4.260E-01	25	4.140E-01	40	3.860E-01	60	3.590E-01	80	3.680E-01				0.389	6.72		A
4,6-Dinitro-2-methylphenol	10	5.799E-02	25	7.100E-02	40	8.200E-01	2 60	8.100E-02	80	8.600E-02						0.076	14.8(		A
N-Nitrosodiphenylamine	1	7.229E-01	5	1.082E+0(	10	9.679E-01	1 25	9.229E-01	40	8.880E-01	. 60	8.840E-01	80	9.110E-01		0.911	11.78		<
Azobenzene		1.215E+00	5	L.792E+0(	10	1.635E+0	0 25	1.534E+00	4	1.460E+00	60	1.426E+00	80	1.468E+0		1.504	11.95		A
4-Bromophenyl-phenyl ether		2.540E-01	5	3.800E-01	10	3.520E-01	1 25	3.290E-01	40	3.160E-01	60	3.010E-01	80	3.140E-01		0.321	12.34		A
Hexachlorobenzene		2.910E-01	5	4.480E-01	2	4.190E-01	1 25	3.869E-01	4	3.590E-01	60	3.319E-01	80	3.680E-01		0.372	14.1(		4

* SPCCs

ŧ

Page 2 of 4

FORM VI SV

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

		4 24 22 24								COULLE		ny man ang sa sa gang ang sa gang sa g								
	9608									SDG No		CAB31								
L-1	0L					ĺ				Calibr	atio	n Dates:	•	07/12/2	007	7	1:13			
Â	N									Calibr	atio	n Times:	1	07/12/2	2007		1:13			
5	1 MS				ID:			. 25 (1	(mit	Mean %	RSD	): 11.8	2							
l d	RF 1	St 2	d RF 2	а В Г	RF 3	st	в Ч	F 4	SEd 5	сл К К К	std 6	RF 6	Std 7	RF 7	Std. B	RF 8	RF	\$RSD	r² COD	Eq.
5	9.399E-02	6 10	0 1.060E-0	1 25	1.380E	-01 4	0 1.54	-0E-01	60	L570E-01	80	1.650E-01					0.136		1.000	$\circ$
I	1.268E+00	0 5	1.837E+0	0 10	1.670E-	F00 2	5 1.53	5E+00	40 1	.495E+00	60	1.429E+00	80	1.462E+0			1.528	1.89		A
	1.233E+0(	5	1.835E+0	0 10	1.695E ⁴	H00 2	5 1.56	1E+00	40 1	.450E+00	60	1.399E+00	80	1.416E+0			1.513	13.34		A
	1.011E+00	0 5	1.533E+0	10 10	1.452E	F00 2	5 1.38	6E+00	40 ]	.292E+00	60	1.212E+00	80	1.226E+0			1.302	13.37		Y
	1.568E+0(	0 5	1.966E+0	0 10	1.991E4	F00 2	5 1.84	2E+00	40	.635E+00	60	I.544E+00	80	1.535E+0			1.726	11.69		A
	1.071E+00	0 5	1.582E+0	10 10	1.477E4	F00 2	5 1.38	0E+00	40 1	.242E+00	60	1.175E+00	80	1.181E+0			1.301	14.13		٠Y
$\sim$	6.489E-01	Ξ	) 8.439E-0	1 25	9.639E	-01 4	0 9.49	0E-01	60	8.790E-01	80	7.960E-01				_	0.847	13.67		۲
	2.053E+00	0 5	2.884E+0	10 10	2.734EH	F00 2	5 2.58	6E+00	40 2	c.527E+00	60	2.342E+00	80	2.210E+0			2.477	11.83		A
Ļ	6.079E-01	5	8.420E-0	1 10	9.139E	-01 2	5 9.21	0E-01	40	9.030E-01	60	8.809E-01	80	9.319E-01			0.857	13.29		A
5	4.480E-01	=	0 4.359E-0	1 25	4.490E	-01 4	0 4.62	0E-01	, 09	4.639E-01	80	4.880E-01					0.458	3.91		A
-	1.332E+00	0	1.717E+0	0 10	1.720E ⁴	-00 2	5 1.60	5E+00	40	.522E+00	60	1.493E+00	80	1.535E+0			1.561	8.70		A
2	9.010E-01		) 9.309E-0	1 25	9.580E	-01 4	0 1.03	1E+00	60 1	.089E+00	80	1.194E+00					1.018	10.87		A
-	1.069E+00	5	1.633E+0	0 10	1.482E4	+00 2	5 1.41	9E+00	40 ]	.388E+00	60	1.369E+00	80	1.406E+0			1.396	12.14		A
ŝ	2.217E+00	Ĭ	) 2.285E+0	0 25	2.582E-	F00 4	0 2.71	4E+00	60 2	2.691E+00	80	2.895E+00					2.565	10.29		A
5	2.214E+0	0 1(	) 2.186E+C	0 25	2.003E+	+00 4	0 2.01	9E+00	60 ]	.801E+00	80	1.815E+00					2.007	8.77		A
2	2.122E+00	0	0 1.975E+0	0 25	1.918E-	F00 4	0 1 60	9E+00	60 1	.572E+00	80	1.668E+00					1.811	12.45		A
5	1.809E+00	0 1(	)  1.735E+C	10 25	1.673E+	H00 4	0 1.64	2E+00	60 1	.558E-H00	80	1.598E+00					1.669	5.49		A
S	1.089E+0	0	0 1.091E+0	0 25	1.380E ⁴	+00 4	0 1.41	8E+00	60 1	.434E+00	80	1.574E+00					1.331	14.86		A
5	9.060E-01	[]	0 9.490E-0	1 25	1.172E ⁴	F00 4	0 1.18	7E+00	60 1	.198E+00	80	1.329E+00					1.123	14.45		Υ
5	9.530E-01		) 9.459E-0	1 25	1.067E ⁺	H00	0 1.11	7E+00	60 1	.163E+00	80	1.253E+00					1.083	11.10		A
-	1.010E+0	0 5	1.468E+0	0 10	1.389E+	F00 2	5 1.31	5E+00	40 1	.350E+00	60	1.271E+00	80	1.281E+0			1.298	11.08		A
1	1.404E+00	0 5	2.206E+0	0 10	2.046E+	H00 2	5 1.89	3E+00	40 1	.822E+00	60	1.684E+00	80	1.715E+0			1.824	14.28		Ā
	3.829E-01	5	5.709E-0	2	5.479E	-01 2	5 4.81	9E-01	40	4.620E-01	60	4.630E-01	80	4.709E-01			0.483	12.80		Α
•	1401-100	ι	- - - - - - - - - - - - - - - - - - -	, 1 v		-														

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

#

* SPCCs

Page 3 of 4

FORM VI SV

Lab Name: Lauc	ks Te	<u>ssting L</u>	abs				ł			Contra	сt:								
Run Sequence:	R0196	508					ł			SDG No		CAB31							
Instrument ID:	<u>59701</u>						1			Calibr	atio	n Dates:	0.7	/12/20	07	21:13	******		
Heated Purge: ()	(N/)	N					ı			Calibr	atio	n Times:	0	/12/20	27	21:13			
GC Column: <u>RTX-</u>	5Si1	MS				ID;		0.25 (	យយ )	Mean. %	RSD	: 11.87							
Analyte	Std 1	RF 1	Std 2	RF 2	Stå 3	<u></u> В 3	Std 4	RF 4	Std 5	RF 5	Stå 6	RF 6	std R	F 7 St	d RF 8	124	\$RSD	г ² СОD	Еq
2,4,6-Tribromophenol	5	1.100E-01	10	].140E-01	25	1.410E~01	40	1.380E-01	60	1.500E-01	80	1.580E-01				0.135	14.22		K

4

1.483 11.67

1.217E+00 5 1.666E+00 10 1.667E+00 25 1.594E+00 40 1.503E+00 60 1.398E+00 80 1.336E+0

----

Terphenyl-d14

# * SPCCs

Q=Quadratic, L=Linear, A=Average Eq Ty = Equation Type

Page 4 of 4

FORM VI SV

### Calibration Standard Verification for Initial Calibration L8270M (07/12/07)

*** PROJECTED **	**		*** ANALY	SES ***		
	онскириски и политики ( ) · · · · · · · · · · · · · · · · · ·	Deferrence	م مربع مر م	Dorcest	<u>٩</u> ٢	
Analyte(s)	larget	Reference	Amount	Percent	んひ (.25%)	
	conc.	Solution	no/ul	or target	(<20%)	
1,4-Dioxane	5	M59-73-19	4.45	89	11	
N-nitrosodimethylamine	32	M59-73-19	27.64	86	14	
Pyridine	32	MS9-73-19	26.4	83	18	
2-Fluorophenol	64	M59-73-19	59.08	92	8	5 6
Benzaldehyde	5	M59-73-19	3.56	71	29	- not a targ
Phenol-d5	64	M59-73-19	58.92	92	8	curalinte.
Phenol	32	M59-73-19	29.88	93	7	
Aniline	32	M59-73-19	29,17	91	9	7/17/07
Bis(2-Chloroethyl)ether	32	M59-73-19	27.9	87	13	
2-Chiorophenol-d4	. 0	M59-73-19	0	NA	NA	
2-Chlorophenol	32	M59-73-19	31,56	99	1	
.,3-Dichlorobenzene	32	MS9-73-19	31.61	99	1	
,4-Dichlorobenzene	32	M59-73-19	29.9	93	7	
,2-Dichlorobenzene-d4	0	M59-73-19	0	NA	NA	
lenzyl olcohol	32	MS9-73-19	27.26	85	15	
,2-Dichlorobenzene	32	MS9-73-19	31.68	99	1	
-Methylphenol	32	MS9-73-19	29.94	94	6	
Bis(2-chloroisopropyl)ether	32	MS9-73-19	27.82	87	13	
& 4-Methylphenol ¹	64	MS9-73-19	57.96	91	9	
cetonhenone	32	M.59-73-19	33 13	104	4	
Nitroso-di-n-propylaming	32	M59-73-19	26.69	83	17	
lexachloroethane	32	M59-73-19	28 57	89	11	
litrobenzene-d5	32	M:59-73-19	28.23	88	12	
litrobenzene	32	MS9-73-19	29.89	93	7	
sankorone	32	MS9-73-19	30.49	95	5	
-Nitrophenol	32	M59-73-19	25.72	80	20	
4-Dimethylahenol	32	M59-73-19	30.09	94	6	
is(2-Chloroethoxy)methane	32	MS9-73-19	26.77	84	16	
enzaic acid	37	MS9-73-19	28.64	77	23	
A Dichlogophanol	32	M 59-73-19	30.11	94	6	
2 A. Trichlandbanzana	32	MS9-73-19	30.46	95	5	
ianhthalene	32	MS9-73-10	28 71	90	10	
-Chlanoaniline	30	M C0_73_10	25.71	80	21	
	32	M 50.73.10	20.44	07	7	
exaction of the second se	ుడ క	MC0-72-10	27,00 م 10	75 R⊿	16	
Chlore 3 methylphonel	22 22	M 59-73-19	4.10 27.95	ט <del>יו</del> גא	15	
-chioro-a-meinyphenol	32	MS0.73 10	20 11	07 Q2	r B	
Mathylinghthalana	34 N	NO7-10-17	44، دے م	7C NIA	NIA	
-meinymaphinalene	V	MCD 72 10	0 00.00	DA	INA Z	
245 Tetrechlershare	32	N(39~/3-19	27,90	74 104	D A	
, 2, 4, J-1 etrachiorobenzene	3/	M 39-/ 3-19	30.31	104	4	
4.5-3 richlorophenol	32	MS9-/3-19	29,00	17	ダっ	
,4,0-1 richiorophenol	32	MSY-/3-19	31.41	90	~	
-riuorobipnenyi	32 E	MS9-/3-19	30,75	90	4	
, L~Bipnenyi	5	MS9-/3-19	4.44	407	11	
-chioronaphthalene	32	MS9-/3-19	34,26	107	- /	*
-Nitroaniline	32	MS9-73-19	31,41	98	2	
vimethylphthalate	32	M59-73-19	28,21	88	12	
,4-Dinitrobenzene	0	MS9-73-19	0	NA	NA	
,3-Dinitrobenzene	32	MS9-73-19	24.6	77	23	
.,6-Dinitrotoluene	32	M59-73-19	28.68	90	10	
1cenaphthylene	32	M59-73-19	30.37	95	5	

مو المراجع

*** PROJECTED ***		*****	*** ANALY	SES ***	· · · ·	1	
Analyte(s)	Target Conc. ng/uL	Reference Solution	Amount Quanted ng/uL	Percent of Target	%D (<25%)		
12-Dinitrobenzene	0	MS9-73-19	- 0	NA	NA		
3-Nitroaniline	32	MS9-73-19	29,29	92	8		
Acenaphthene	32	M59-73-19	29,14	91	9		
2.4-Dinitrophenol	32	M59-73-19	23,82	74	26	-50	marry
4-Nitrophenol	32	M59-73-19	24.1	75	25	100	2 <b>- 2</b> - <b>2</b>
Dibenzofuran	32	M59-73-19	28.21	88	12		
2,4-Dinitrotoluene	32	M59-73-19	28.8	90	10		
2,3,5,6-tetrachlorophenal	0	M59-73-19	0	NA	NA		
2,3,4,6-tetrachlorophenal	32	M59-73-19	25,63	80	20		
Diethylphthalate	32	M59-73-19	26,94	84	16		
Fluorene	32	MS9-73-19	27.48	86	14		
4-Chlorophenyl-phenylether	32	MS9-73-19	27.64	86	14		
4-Nitroaniline	32	MS9-73-19	29.79	93	7		
4,6-Dinitro-2-methylphenol	32	M59-73-19	23.17	72	28	- Se	mar.
N-nitrosodiphenvlamine ²	32	MS9-73-19	29.92	94	. 6		
12-Diphenylhydrazine ³	32	MS9-73-19	29.74	93	7		á
2.4.6-Tribromonhenol	64	M.59-73-19	65.24	102	2		11719
4-Bromophenyl-phenylether	32	MS9-73-19	30.28	95	5		"AP
Hexachlorobenzene	32	MS9-73-19	32.58	102	2		, e
Atrozine	5	MS9-73-19	3.83	77	23		
Pentachlorophenal	32	M59-73-19	26.45	83	17		
Phenanthrene	32	MS9-73-19	28.73	90	10		
Anthrocene	32	M59-73-19	29.94	94	6		
Carbazole	32	M59-73-19	28.67	90	10		
Di-n-butylphtholate	32	MS9-73-19	27.28	85	15		
Fluoranthene	32	MS9-73-19	28.7	90	10		
Benzidine	32	M59-73-19	19.74	62	38	See	nan.
Pyrene	32	M59-73-19	27.17	85	15		
Terphenyl-d14	32	MS9-73-19	27	84	16		
Butylbenzylphthalate	32	MS9-73-19	26.97	84	16		
Bis(2-ethylhexyl)adipate	0	MS9-73-19	0	NA	NA		
3,3'-Dichlorobenzidine	32	MS9-73-19	28,58	89	11		
Benzolalanthracene	32	MS9-73-19	27.7	87	13		
bis(2-Ethylhexyl)phthalate	32	MS9-73-19	29.8	93	7		
Chrysene	32	MS9-73-19	28,82	90	10		
Di-n-octylphthalate	32	MS9-73-19	26,64	83	17		
Benzo[b]fluoranthene	32	MS9-73-19	27,28	85	15		
Benzo[k]fluoranthene	32	MS9-73-19	28.38	89	11		
Benzo[a]pyrene	32	MS9-73-19	28,95	90	10		
Indeno[1,2,3-cd]pyrene	32	MS9-73-19	37.36	117	17		
Dibenz[a,h]anthracene	32	M59-73-19	38,43	120	20		
Benzo[g,h,i]perylene	32	MS9-73-19	37,51	117	17		

Analyst: AP Date analyzed: 07/12/07

^{1.} 3-methylphenol and 4-methylphenol da not have sufficient chromatogrophic resolution on the analytical column to allow them to be quantitated separately. Results for 3-methylphenol ond 4-methylphenol are calculated using a single response factor.

² N-nitrosodiphenylamine (8270-listed analyte) decomposes to diphenylamine.

³ 1,2-diphenylhydrazine (8270-listed analyte) decomposes to azobenzene.

### 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: CAB31
Instrument ID: 5970L	Calibration Date: 07/16/2007 Time: 16:05
Lab File ID: L0716002.D	Init. Calib. Date(s):
Client Sample No.: CCV071607-1	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>RTX-5Sil MS</u> ID:0.25 (mm)

Compound	Equation Type	RF 716.0	%D	%Drift
3 & 4-Methylphenol	A	1.397	-7.66	
Bis(2-chloroisopropyl)ether	A	2.756	-0.72	
Phenol	A	1.986	0.58	
Bis(2-Chloroethyl)ether	A	1.758	-2.66	
2-Chlorophenol	A	1,455	1.23	
1,3-Dichlorobenzene	A	1.700	1.74	
1,4-Dichlorobenzene	A	1.766	0.18	
Benzyl alcohol	A	0.994	0.51	
1,2-Dichlorobenzene	A	1.593	2.43	
2-Methylphenol	A	1.367	-1,40	
N-Nitroso-di-n-propylamine	A	1.167	-4,17	
Hexachloroethane	A	0.750	0.25	
Nitrobenzene	A	0.527	-2.81	
Isophorone	A	0.892	2.34	
2-Nitrophenol	A	0.140	7.92	
2,4-Dimethylphenol	A	0.462	2.29	
Benzoic acid	Q	0.146		-20.42*
Bis(2-chloroethoxy)methane	A	0.623	0.63	
2,4-Dichlorophenol	A	0.374	4.68	
1,2,4-Trichlorobenzene	A	0.435	5.34	
Naphthalene	A	1.243	4.11	
4-Chloroaniline	A	0.553	2.81	
Hexachlorobutadiene	A	0.250	б.86	
4-Chloro-3-methylphenol	A	0.407	2.34	
2-Methylnaphthalene	A	0.739	5.20	
Hexachlorocyclopentadiene	A	0.442	-3.35	
2,4,6-Trichlorophenol	A	0.419	14.91	
2,4,5-Trichlorophenol	A	0.528	2.36	
2-Chloronaphthalene	A	1.486	2.46	
2-Nitroaniline	A	0.467	4.59	
Dimethylphthalate	A	1,668	4.92	
2,6-Dinitrotoluene	A	0.385	7.80	

* = %D or %Drift above limit

# = %D or %Drift limts are not configured

### 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019608	SDG No.: CAB31
Instrument ID: 5970L	Calibration Date: 07/16/2007 Time: 16:05
Lab File ID: L0716002.D	Init. Calib. Date(s):
Client Sample No.: <u>CCV071607-1</u>	Init. Calib. Time(s): 12:31
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>RTX-5Sil MS</u> ID:0.25 (mm)

Compound	Equation Type	RF 716.0	۶D	%Drift
Acenaphthylene		2.324	3.01	
3-Nitroaniline	A	0.382	6.71	1
Acenaphthene	A	1.446	1.84	
2,4-Dinitrophenol	L	0.077		3.07
4-Nitrophenol	Ą	0.168	-0.34	
Dibenzofuran	A	2.004	3.02	
2,4-Dinitrotoluene	A	0,450	3.53	
Diethylphthalate	A	1.670	6.15	
Fluorene	A	1.558	3.30	
4-Chlorophenyl-phenylether	А	0.756	5.51	
4-Nitroaniline	A	0.390	-0,17	
4,6-Dinitro-2-methylphenol	A	0.079	-3.55	
N-Nitrosodiphenylamine	A	0.868	4.73	
Azobenzene	A	1.523	-1.23	
4-Bromophenyl-phenyl ether	A	0.299	6.97	
Hexachlorobenzene	A	0.354	4.86	
Pentachlorophenol	Q	0.128		-8.41
Phenanthrene	А	1.473	3.58	
Anthracene	A	1.480	2.15	
Carbazole	A	1.297	0.42	
Di-n-butylphthalate	A	1.670	3,26	
Fluoranthene	А	1.316	-1.16	
Benzidine	A	0.870	-2.77	
Pyrene	А	2.238	9.65	
Butylbenzylphthalate	Α	0.792	7.64	
3,3'-Dichlorobenzidine	A	0.441	3.71	
Benzo(a)anthracene	A	1.467	6.01	
Bis(2-ethylhexyl)phthalate	Α	0.907	10.89	
Chrysene	A	1.393	0.24	
Di-n-octylphthalate	A	2.102	18.07	
Benzo(b)fluoranthene	A	1.928	3.92	
Benzo(k)fluoranthene	A	1.648	8.98	

* = %D or %Drift above limit

# = %D or %Drift limts are not configured

### 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019608	SDG No.: _CAB31
Instrument ID: 5970L	Calibration Date: 07/16/2007 Time: 16:05
Lab File ID: L0716002.D	Init. Calib. Date(s):
Client Sample No.: <u>CCV071607-1</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>RTX-5Sil MS</u> ID:0.25 (mm)

Compound	Equation Type	RF 716.0	ъD	%Drift
Benzo(a)pyrene	A	1.584	5.08	
Indeno(1,2,3-cd)pyrene	А	1.403	-5.38	
Díbenzo(a,h)anthracene	A	1.160	-3.28	
Benzo(g,h,i)perylene	A	1,184	-9.37	
2-Fluorophenol	A	1.313	-1.15	
Phenol-d5	А	1.842	~1.01	
Nitrobenzene-d5	A	0.528	-9.38	
2-Fluorobiphenyl	A	1.615	2.64	
2,4,6-Tribromophenol	A	0.129	4.54	
Terphenyl-d14	A	1.339	9.73	

* = %D or %Drift above limit

# = %D or %Drift limts are not configured

CLIENT SAMPLE NO.

B062507MSVWLT

		1	
Lab Name: _	Laucks Testing Labs	Contract:	
SDG No.: <u>CA</u>	B31	Run Sequence: <u>R019608</u>	
Matrix: (SO	IL/WATER)Water	Lab Sample ID: <u>B062507MSVWLT</u>	
Sample wt/v	ol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>L0716003.D</u>	
Level: (LOW	/MED)	Date Collected:	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Extracted:06/25/2007	
Concentrate	d Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/16/2007	
Injection V	olume:(uL)	Dilution Factor: 1.0	
GPC Cleanup	: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	5.0	U
108-60-1	Bis(2-chloroisopropyl)ether	5.0	U
108-95-2	Phenol	5.0	U
111-44-4	Bis(2-Chloroethyl)ether	5.0	U
95-57-8	2-Chlorophenol	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
100-51-6	Benzyl alcohol	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
95-48-7	2-Methylphenol	5.0	υ
621-64-7	N-Nitroso-di-n-propylamine	5.0	U
67-72-1	Hexachloroethane	5.0	U
98-95-3	Nitrobenzene	5.0	ΰ
78-59-1	Isophorone	5.0	υ
88-75-5	2-Nítrophenol	5.0	U

105-67-9 2,4-Dimethylphenol 5.0 U 65-85-0 Benzoic acid 10 U 111-91-1 Bis(2-chloroethoxy)methane 5.0 U 120-83-2 2,4-Dichlorophenol 5.0 υ 120-82-1 1,2,4-Trichlorobenzene 5.0 U 91-20-3 Naphthalene 5.0 Ū 106-47-8 4-Chloroaniline 5.0 U 87-68-3 Hexachlorobutadiene 5.0 U 59-50-7 4-Chloro-3-methylphenol 5.0 U 91-57-6 2-Methylnaphthalene 5.0 U 77-47-4 Hexachlorocyclopentadiene 5.0 U

FORM I SV

CLIENT SAMPLE NO.

B062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019608
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: B062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>L0716003.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted:
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-06-2	2,4,6-Trichlorophenol	5.0	U
95-95-4	2,4,5-Trichlorophenol	5.0	υ
91-58-7	2-Chloronaphthalene	5.0	U
88-74-4	2-Nitroaniline	5.0	U
131-11-3	Dimethylphthalate	5.0	U
606-20-2	2,6-Dinitrotoluene	5.0	υ
208-96-8	Acenaphthylene	5.0	U
99-09-2	3-Nitroaniline	5.0	U
83-32-9	Acenaphthene	5.0	Ŭ
51-28-5	2,4-Dinitrophenol	10	υ
100-02-7	4-Nitrophenol	5.0	υ
132-64-9	Dibenzofuran	5.0	υ
121-14-2	2,4-Dinitrotoluene	5.0	U
84-66-2	Diethylphthalate	5.0	U
86-73-7	Fluorene	5.0	υ
7005-72-3	4-Chlorophenyl-phenylether	5.0	υ
100-01-6	4-Nitroaniline	5.0	υ
534-52-1	4,6-Dinitro-2-methylphenol	5.0	U
86-30-6	N-Nitrosodiphenylamine	5.0	υ
122-66-7	Azobenzene	5.0	U
101-55-3	4-Bromophenyl-phenyl ether	5.0	υ
118-74-1	Hexachlorobenzene	5.0	U
87-86-5	Pentachlorophenol	5.0	ΰ
85-01-8	Phenanthrene	5.0	U
120-12-7	Anthracene	5.0	Ū
86~74-8	Carbazole	5.0	U
84-74-2	Di-n-butylphthalate	5.0	U
206-44-0	Fluoranthene	5.0	U

CLIENT SAMPLE NO.

B062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: <u>R019608</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062507MSVWL</u> T
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0716003.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	5.0	υ
129-00-0	Pyrene	5.0	υ
85-68-7	Butylbenzylphthalate	5.0	υ
91-94-1	3,3'-Dichlorobenzidine	5.0	υ
56-55-3	Benzo(a)anthracene	5.0	U
117-81-7	Bis(2-ethylhexyl)phthalate	5.0	U
218-01-9	Chrysene	5.0	U
117-84-0	Dí-n-octylphthalate	5.0	υ
205-99-2	Benzo(b)fluoranthene	5.0	Ŭ
207-08-9	Benzo(k)fluoranthene	5.0	U
50-32-8	Benzo(a)pyrene	5.0	U
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	U
53-70-3	Díbenzo(a,h)anthracene	5.0	U
191-24-2	Benzo(g,h,i)perylene	5.0	U

Comments:

..

CLIENT SAMPLE NO.

S062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: R019608
Matrix: (SOIL/WATER) Water	Lab Sample ID: S062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0716004.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted:
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
			£
108-39-4/	3 & 4-Methylphenol	17	
108-60-1	Bis(2-chloroisopropyl)ether	16	]
108-95-2	Phenol	13	
111-44-4	Bis(2-Chloroethyl)ether	18	
95-57-8	2-Chlorophenol	13	
541-73-1	1,3-Dichlorobenzene	11	
106-46-7	1,4-Dichlorobenzene	10	
100-51-6	Benzyl alcohol	17	
95-50-1	1,2-Dichlorobenzene	11	
95-48-7	2-Methylphenol	16	
621-64-7	N-Nitroso-di-n-propylamine	20	
67-72-1	Hexachloroethane	9.6	
98-95-3	Nitrobenzene	17	
78-59-1	Isophorone	16	
88-75-5	2-Nitrophenol	9.9	
105-67-9	2,4-Dimethylphenol	11	
65-85-0	Benzoic acid	8.1	J
111-91-1	Bis(2-chloroethoxy)methane	17	
120-83-2	2,4-Dichlorophenol	13	
120-82-1	1,2,4-Trichlorobenzene	12	
91-20-3	Naphthalene	13	
106-47-8	4-Chloroaniline	12	
87-68-3	Hexachlorobutadiene	9.3	
59-50-7	4-Chloro-3-methylphenol	16	
91-57-6	2-Methylnaphthalene	14	
77-47-4	Hexachlorocyclopentadiene	3.7	J

CLIENT SAMPLE NO.

S062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: _R019608
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: S062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0716004.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume:(uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND CONCENTRATION U (ug/L or ug/kg		Q
88-06-2	2,4,6-Trichlorophenol	9.5	
95-95-4	2,4,5-Trichlorophenol	12	
91-58-7	2-Chloronaphthalene	15	
88-74-4	2-Nitroaniline	15	
131-11-3	Dimethylphthalate	17	
606-20-2	2,6-Dinitrotoluene	] 11	
208-96-8	Acenaphthylene	16	
99-09-2	3-Nitroaniline	13	
83-32-9	Acenaphthene	16	
51-28-5	2,4-Dinitrophenol	11	
100-02-7	4-Nitrophenol	11	
132-64-9	Dibenzofuran	17	
121-14-2	2,4-Dinitrotoluene	13	
84-66-2	Diethylphthalate	16	
86-73-7	Fluorene	17	
7005-72-3	4-Chlorophenyl-phenylether	17	
100-01-6	4-Nitroaniline	14	
534-52-1	4,6-Dinitro-2-methylphenol	9.0	
86-30-6	N-Nitrosodiphenylamine	14	
122-66-7	Azobenzene	18	
101-55-3	4-Bromophenyl-phenyl ether	17	
118-74-1	Hexachlorobenzene	15	
87-86-5	Pentachlorophenol	12	
85-01-8	Phenanthrene	17	
120-12-7	Anthracene	16	
86-74-8	Carbazole	18	
84-74-2	Di-n-butylphthalate	17	
206-44-0	Fluoranthene	18	

CLIENT SAMPLE NO.

S062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB31	Run Sequence: <u>R019608</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: 5062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0716004.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	5.0	U
129-00-0	Pyrene	15	
85-68-7	Butylbenzylphthalate	15	
91-94-1	3,3'-Dichlorobenzidine	13	
56-55-3	Benzo(a) anthracene	16	
117-81-7	Bis(2-ethylhexyl)phthalate	15	
218-01-9	Chrysene	17	
117-84-0	Dí-n-octylphthalate	13	
205-99-2	Benzo(b)fluoranthene	15	
207-08-9	Benzo(k)fluoranthene	18	
50-32-8	Benzo(a)pyrene	16	
193-39-5	Indeno(1,2,3-cd)pyrene	18	
53-70-3	Dibenzo(a,h)anthracene	18	
191-24-2	Benzo(g,h,i)perylene	19	

Comments:

# **Forms Summary**

# CAB31

Ordnance by Method 8330

### 2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

SDG No.: CAB31

B062607HORWLG

S1 (DNT) =

() =

() =

# Column to be used to flag recovery values
* Values outside of contract required QC limits

S2 () = S3

S4

				***************************************			2		
(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT)	#	S2 ()	#	S3 ()	#	S4 ()	#	TOT OUT
(S071807HORWLG) S071807HORWLG	107								0
(CAB31-004RX) 15L4MW05AWRX	102								0
(B071807HORWLG) B071807HORWLG	116		An Information According to the						0
(CAB31-003) 15L4MW03BW	71								0
(CAB31-001) 15L4MW02AW	93								0
(CAB31-006) 15LCMW420W	85								0
(CAB31-004) 15L4MW05AW	59	*							1
(CAB31-002) 15L4MW03AW	92								0
(S062607HORWLG) S062607HORWLG	119								0
(B062607HORWLG)	1		1		ŀ		į		

QC LIMITS 60-140

0

Page 1 of 1

80

3,4-Dinitrotoluene

Contract: <u>N/A</u>

Run Sequence: R019636

### 3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019636</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062607HORWLG</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
НМХ	20.0	21.0228	105	80-115
RDX	20.0	21.5036	108	50-160
1,3,5-Trinitrobenzene	20.0	17.5962	88	65-140
1,3-Dinitrobenzene	20.0	17.771	89	45-160
Nitrobenzene	20.0	17.8355	89	50-140
Tetryl	20.0	16.0464	80	20-175
2,4,6-Trinitrotoluene	20.0	18.691	93	50-145
4-Amino-2,6-dinitrotoluene	20.0	17.92	90	55-155
2-Amino-4,6-dinitrotoluene	20.0	17.8793	89	50-155
2,6-Dinitrotoluene	20.0	16.1231	81	60-135
2,4-Dinitrotoluene	20.0	16.4553	82	60-135
2-Nitrotoluene	20.0	14.9209	75	45-135
4-Nitrotoluene	20.0	15.4368	77	50-130
3-Nitrotoluene	20.0	14.7105	74	50-130

# Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: _ 0_out of _14_outside limits

COMMENTS:

•

### 3в WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs Contract: N/A BS Run Sequence: R019636 SDG No.: CAB31 BS Lab Sample ID: <u>S071807HORWLG</u> Level: <u>N/A</u> Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
HMX	20.0	20.1461	101	80-115
RDX	20.0	22.5286	113	50-160
1,3,5-Trinitrobenzene	20.0	21.3974	107	65-140
1,3-Dinitrobenzene	20.0	20.9213	105	45-160
Nitrobenzene	20.0	21.6492	108	50-140
Tetryl	20.0	20.6048	103	20-175
2,4,6-Trinitrotoluene	20.0	21.6943	108	50-145
4-Amino-2,6-dinitrotoluene	20.0	19.7736	99	55-155
2-Amino-4,6-dinitrotoluene	20.0	21.0688	105	50-155
2,6-Dinitrotoluene	20.0	20.6667	103	60-135
2,4-Dinitrotoluene	20.0	20.131	101	60-135
2-Nitrotoluene	20.0	20.0758	100	45-135
4-Nitrotoluene	20.0	20.0101	100	50-130
3-Nitrotoluene	20.0	19.2628	96	50-130

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: 0 out of 14 outside limits

COMMENTS:

### ORDNANCE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

.

*

	ORDNANCE MET	HOD RI	JANK SUMMARI		B062-	607HORWLG
Lab Name: <u>Laucks Testing Lab</u>	<u>S</u>	Con	tract: <u>N/A</u>	<b>.</b>		
Lab Sample ID: <u>B062607HORWLG</u>		SDG	No.: <u>CAB31</u>			
Matrix: (SOIL/WATER) <u>Water</u>		Dat	e Prepared:	06/26/2007		
Lab File ID (1): <u>062807.b-0</u>	6280704.D	Lab	File ID (2):		-F7120	)751,D
Date Analyzed (1): 06/28/200	7	Dat	e Analyzed (2	):		
Time Analyzed (1): 13:19		Tim	e Analyzed (2	):		
Instrument ID (1): <u>HPLC5 (Os</u>	car)	Ins	trument ID (2	): <u>HPLC5 (</u>	Oscar)	
Column(1): <u>Allure Cl8</u>	ID: 4.60 (	mm) Co	lumn(2): <u>Syne</u>	rgi - EtPH		ID:4.60 (mm
THIS METHOD BLANK	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES	5:	
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/T ANALYZ	IME IED	RUN SEQUENCE
15L4MW02AW	CAB31-001	1	O6280712.D	06/28/2007	7 18:39	R019636
		2	F7120760.D	07/13/2007	23:44	R019636
15L4MW03AW	CAB31-002	1	O6280714.D	06/28/2007	/ 19:59	R019636
-		2	F7120761.D	07/14/2007	00:22	R019636
15L4MW03BW	CAB31-003	1	O6280715.D	06/28/2007	20:39	R019636
		2	F7120762.D	07/14/2007	01:00	R019636
15L4MW05AW	CAB31-004	1	O6280716.D	06/28/2007	21:19	R019636
		2	F7120763.D	07/14/2007	01:38	R019636

1

2

1

2

O6280717.D

O6280705.D

F7120752.D

06/28/2007 21:59

06/28/2007 13:59

07/13/2007 18:40

R019636

R019636

R019636

CAB31-006

S062607HORWLG

15LCMW420W

S062607HORWLG

	CLIENT SAMPLE NO.
ORDNANCE METH	B071807HORWLG
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
Lab Sample ID: <u>B071807HORWLG</u>	SDG No.: <u>CAB31</u>
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared:07/18/2007
Lab File ID (1): 071807.b-07180713.D	Lab File ID (2): <u>F71907.b-F7190706.D</u>

 $f: All ule closed in (2) \cdot Synerci - Bern and (2) \cdot (100)$ 

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES AND QC SAMPLES:

CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
15L4MW05AWRX	CAB31-004RX	1	O7180715.D	07/18/2007 19:27	R019636
		2	F7190708.D	07/19/2007 16:30	R019636
S071807HORWLG	S071807HORWLG	1	O7180714.D	07/18/2007 18:47	R019636
		2	F7190707.D	07/19/2007 15:52	R019636

COMMENTS:
#### 1 ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

.

•

15L4MW02AW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>CAB31-001</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: <u>F7120760.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/20/2007
Extraction: (Type)	Date Extracted: 06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	3.2	
121-82-4	RDX	20	
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinítrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	Ŭ
479-45-8	Tetryl	0.48	ΰ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	Ŭ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

# Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: CAB31-001 Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 File (1): 062807.b-06280712.D Date Analyzed (1): 6/28/2007 6:39:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
HMX	1	2.93402	7.3 %	4.59	4.33 - 4.83
	2	3.15743 X	7.0 70	8.22	7.94 - 8.44
RDX	1	19.4514	41 %	8.04	7.79 - 8.29
	2	20.271 X	· • • * /6	8.76	8.48 - 8.98

X = Concentration Reported

## ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15L4MW03AW

.

٠

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-002</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280714.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/20/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	U
121-82-4	RDX	9.7	
99-35-4	1,3,5-Trinitrobenzene	0.48	ΰ
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	ΰ
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	υ

Comments:

FORM I ORD

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

2

15L4MW03AW Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: CAB31-002 Run Sequence ID: R019636 Instrument ID: HPLC5 (Oscar) Column (2): Synergi - EtPH Column (1): Allure C18 Filc (2): F71207A.b-F7120761.D File (1): 062807.b-06280714.D Date Analyzed (2): 7/14/2007 12:22:00 AM Date Analyzed (1): 6/28/2007 7:59:00 PM CONCENTRATION **RT** Window ANALYTE COL RPD RТ Final Units: ug/L 7.79 - 8.29 8.04RDX 1 9.24073 5.0 %

9.71943 X

**Client Sample ID** 

8.75

8.48 - 8.98

X = Concentration Reported

#### 1 ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

.

-

.

15L4MW03BW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-003</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280715.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/20/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	υ
121-82-4	RDX	3.2	
99-35-4	1,3,5-Trinitrobenzene	0.48	υ
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	υ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	Ŭ
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	υ
99-99-0	4-Nitrotoluene	0.48	υ
99-08-1	3-Nitrotoluene	0.48	U

Comments:

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

2

**Client Sample ID** 

8.75

8.48 - 8.98

	Lab Name:	Laucks Testing Labs, Inc.			15		
1	Lab Sample ID:	CAB31-003	3				
	Instrument ID:	HPLC5 (Oscar) Run S			Sequence ID:	R019636	
	Column (1):	Allure C18			Column (2):	Synergi - EtPH	
	File (1):	O62807.b-O6280715.D			File (2):	F71207A.b-F7120	762.D
Dat	e Analyzed (1):	6/28/2007 8:39:00 PM Date /			Analyzed (2):	7/14/2007 1:00:00	AM
AN.	ALYTE	с	OL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
RDX			1	2.99406	5.9 %	8.05	7.79 - 8.29

3.17651 X

X = Concentration Reported

# ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

.

•

.

15L4MW05AW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-004</u>
Sample wt/vol: 1030.0 (g/mL) mL	Lab File ID: 06280716.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected: 06/20/2007
Extraction: (Type) SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.49	υ
121-82-4	RDX.	2.5	
99-35-4	1,3,5-Trinitrobenzene	0.49	U
99-65-0	1,3-Dinitrobenzene	0.49	U
98-95-3	Nitrobenzene	0.49	U
479-45-8	Tetryl	0.49	ΰ
118-96-7	2,4,6-Trinitrotoluene	0.49	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.49	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.49	υ
606-20-2	2,6-Dinitrotoluene	0.49	U
121-14-2	2,4-Dinitrotoluene	0.49	U
88-72-2	2-Nitrotoluene	0.49	U
99-99-0	4-Nitrotoluene	0.49	U
99-08-1	3-Nitrotoluene	0.49	Ŭ

Comments:

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

2

**Client Sample ID** 

8.76

8.48 - 8.98

Lab Nan	e: Lauck	Laucks Testing Labs, Inc.			15	L4MW05AW	
Lab Sample I	D: CAB	CAB31-004					
Instrument I	D: HPLC	HPLC5 (Oscar) Run S				R019636	
Column (	): Allura	Allure C18			Column (2):	Synergi - EtPH	
File (	): 0628	O62807.b-O6280716.D			File (2):	F71207A.b-F7120	763.D
Date Analyzed (	): 6/28/2	6/28/2007 9:19:00 PM Date A			Analyzed (2):	7/14/2007 1:38:00	AM
ANALYTE		COL	CONCENTRA Final Units:	TION ug/L	RPD	RT	RT Window
RDX		1	2.381	21	6.2 %	8.04	7.79 - 8.29

2.53419 X

X = Concentration Reported

-----

.

# ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15L4MW05AWRX

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-004RX</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 07180715.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/20/2007
Extraction; (Type) _SPE	Date Extracted:07/18/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/18/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	нмх	0.48	U
121-82-4	RDX	3.8	
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl.	0.48	υ
118-96-7	2,4,6-Trinitrotoluene	0.48	Ų
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

.

•

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

2

**Client Sample ID** 

8.76

8.48 - 8.98

•

-

	Lab Name:	Lauck	s Testing L	abs, Inc.		15L4	4MW05AWRX	
	Lab Sample ID:	CAB3	1-004RX					
	Instrument ID:	HPLC	5 (Oscar)		Run S	Sequence ID:	R019636	
	Column (1):	Allure	C18			Column (2):	Synergi - EtPH	
	File (1):	O7180	97.b-O7180	715.D		File (2):	F71907.b-F719070	)8.D
	Date Analyzed (1):	7/18/2	007 7:27:00	) PM	Date A	Analyzed (2):	7/19/2007 4:30:00	PM
	ANALYTE		COL	CONCEN Final U	TRATION nits: ug/L	RPD	RT	RT Window
RDX			1		3.52852	6.6 %	7.98	7.79 - 8.29

3.77044 X

X = Concentration Reported

#### 1 ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW420W

.

*

.

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280717.D
<pre>% Moisture: Decanted: (Y/N) _N</pre>	Date Collected: 06/20/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	Ŭ
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	ប
118-96-7	2,4,6-Trinítrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	υ
121-14-2	2,4-Dinitrotoluene	0.48	U .
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

Page 1				mmary v2.0	Linearity Su	I CAL		07/13/2007 09:56
			•••			entration ).	lvided by conce	CF - Calibration Factor ( response d RSD - Relative Standard Deviation.
							<i>ب</i> ه.	Amount « Response divided by C
	1,4	8,466880	8-355400	8.447000	8.52000	8-370000		1
	1 - O	12.75456	12.63180	12.79700	12.88400	12.60000	12.86000	14 2,4-Dinitrotoluene
	1-2	7.741760	7.704800	7.812000	7.852000	7.620000	7,720000	13 2,6-Dinitratoluene
	1.8	9.957160	008366.6	10.13200	10.09000	9.695000	9.870000	11 1,3 ~ Dinitrobenzene/3NT
	יי יי	13-59424	13.45020	13.62900	13.74200	13.43000	13,72000	10 2-Amino-4,6-Dinitrotoluene
	1.9	449.7935	455.0196	452.4680	456.3900	435.4900	449.6000	9 4-Nitrotoluene
	1.8	9.131320	9.207600	9.223000	9.286000	000088.8	000000 0	8 2-Nitrotoluene
	۰. ۲.	10,19516	10.04580	10.21200	10,25800	10.12000	10.34000	7 4-Amino-2,6-Dinitrotoluene
	1-8	17-38444	17.54620	17.58000	17.63600	16,86000	1.7 - 30000	6 Nitrobenzene
	0.9	9.681160	9.550800	9.719000	9.716000	9-640000	9.780000	5 RDX
	1.2	7.709720	7.619600	7.753000	7.776000	7.600000	7.800000	4 HMX
	*RSD	Ave CF	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
		C	71/021/	1207.075	111X.1/F/	דפידא/ גפ	ומרמ/ וועדט/	μαναι υ. //сетез/цар(
			7120711.	H/G.//DZL/	1 <b></b> . / F7	Tellx/re	lata/npic/	Level 4: //ceres/labo
			7120710.	1207.b/F	lix.i/F7	felix/Fe	lata/hplc/	Level 3: //ceres/labo
		D	7120709.	'1207.b/F	lix.i/F7	felix/Fe	lata/hplc/	Level 2: //ceres/labo
		D	7120707.	'1207.b/F	lix.i/F7	felix/Fe	lata/hplc/	Level 1: //ceres/labo
								Calibration Files:
		·				τIJ	- 4.60mm	COLUMN SIZE : UM L
						1	1	Column : Ethu
							uns 'II'	
	7.m	0syn71207	:07.b\833	.x.i\F712	lix\Feli	¦\hplc\fe	es/labdata	Method File : //cere
							110	Integrator : HP Ger
							Je CF	Cal Curve Type: Averag
								Quant Method : ESTD
						18	-2007 17:	End Cal Date : 12-JUI
						08	2007 14:	Start Cal Date: 12-JUI
		ату	ity Summ	n Linear	libratio	itial Ca	Τr	
			នៅ	sting La	aucks Te	Ţ		

SUM - 76

					ленстастон ).	n.	? - Calibration Factor ( respo D - Relative Standard Deviation
						by CF	Amount = Response divided
2.4							Average RSD :
1 1 . 4	5.707040 7.261520	5,641200 7.206600	5.712000 7.305000	5.772000 7.366000	5.610000 7.110000	5.800000   7.320000	17 2,4,6-TNT 12 3,4-Dinitrotoluene
	======================================	5.117000	5.172000	5.246000	=====================================	5.260000	16 Tetryl
*RSD	Ave CF	Level 5	Level 4	Level 3	Level 2	Level 1	Compound

Sublist Method File Start Cal Date: Column Size Column Integrator Cal Curve Type: Quant Method End Cal Date Level 2: Level 1: Level Level Level Calibration Files: Retention times are expressed Ч 13 2,6-Dinitrotoluene 14 2,4-Dinitrotoluene 11 1,3-Dinitrobenzene/3NT 10 2-Amino-4,6-Dinitrotoluene G ω 7 4-Amino-2,6-Dinitrotoluene 4 HMX 6 Nitrobenzene ហ 1,3,5-Trinitrobenzene 4-Nitrotoluene RDX 2-Nitrotoluene 4.. ω ហ Compound /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120712.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120707.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120711.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120710.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120709.D Average CF ESTD 12-JUL-2007 EtPh 8330syn.sub HP Genie 12-JUL-2007 Om L \ceres\labdata\hplc\felix\Felix.i\F71207.b\8330syn71207.m 1 4.60mm ID 14:08 17:18 Level 1 15.90 22.16 15,53 19.14 16.47 14.8414.39 25.31 11.448.73 8.20 as minutes. このに ある たたい かい Level 2 14.83 15.89 22.13 16.46 25.27 19.13 15.52 14.38 11.438.73 8.19 Level 3 16.39 14.78 15.48 11.40 25.16 19.05 14.32 22.03 15.82 8.17 8.70 Level 4 19.03 14.76 22.01 15.46 16.36 25.13 15.79 14.30 11.39 8.70 8.16 Level 15.51 25.23 22.10 15.86 14.81 14,35 19.10 16.42 11.428,72 8.18 . ران Ave RT 16.422 15.501 14.804 19.091 15.851 14.34925.221 22.084 11.4188.716 8.179 

07/13/2007 09:56

ICAL RT Summary v2.0

Page :

Initial Calibration Retention Time

Summary

Laucks Testing Labs

07/13/2007 09:56	Retention times are e			12 3,4-Dinitrotoluene	16 Tetryl	Compound	nd Cal Date : 12-JUI uant Method : ESTD al Curve Type: Averac ntegrator : HP Ger ethod File : \\cere ublist : 8330sy olumn Size : Om L
ICAI	expressed as r			17.70	29,29	Level 1	J=2007 17:18 Je CF nie es\labdata\hp] - 4.60mm ID
RT Sumn	ninutes.			17.68	29,29	Level 2	.c\felix\
nary v2.0			-	17.61	29.04	Level 3	.Felix.i/
				н 17 ло	29.04	Level 4	F71207.b\
Pac				17 25	29,18	Level 5	\8330syn7
re 2	,			32.758	29.157	Ave RT	1207.m

SUM - 79

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Amounts Summary

Sublist Start Cal Date: Level Calibration Files: Column Size Column Method File Integrator Cal Curve Type: Quant Method End Cal Date Level Level ⊢-•• ω •• N .. /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120709.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120707.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120710.D ESTD EtPh 8330syn.sub HP Genie Average CF 12-JUL-2007 17:18 12-JUL-2007 14:08 \/ceres/labdata/hplc/felix/Felix.i/F71207.b/8330syn71207.m Om L T 4.60mm H

13 2,6-Dinitrotoluene H ភេ 11 1,3-Dinitrobenzene/3NT 10 2-Amino-4,6-Dinitrotoluene 14 2,4-Dinitrotoluene 9 α 7 ጣ υ ₽ HMX 1,3,5-Trinitrobenzene 4-Nitrotoluene 2-Nitrotoluene 4-Amino-2,6-Dinitrotoluene Nitrobenzene RDX Compound Level 1 100.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 Level 2 100.00 100.00 100.00 100.00 200.00 100.00 100.00 100.00 100.00 100.00 100.00 Level 3 1000.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 1000.00 1000.00 Level 4 1000.00 00.000 1000.00 2000.00 1000.00 1000.00 1000.00 1000.00 1000.00 10000.00 Level 5 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

Level

ы Сп. Р.

/ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120711.D /ceres/labdata/hplc/felix/Felix.i/F71207.b/F7120712.D

Leve-

Standard concentrations are expressed as ng/mL.

07/13/2007 09:58 ICAL Standard Concentrations Summary v2.0 Page F

0 TONE drandard donadoutrations dimmetric in a take

Method File Sublist Column Size End Cal Date : Start Cal Date: Column Cal Curve Type: Quant Method : Integrator ••• Average CF HP Genie 12-JUL-2007 14:08 12-JUL-2007 17:18 EtPh 8330syn.sub ESTD \\ceres\labdata\hplc\felix\Felix.i\F71207.b\8330syn71207.m 0m L - 4.60mm ID

Laucks Testing Labs Initial Calibration Amounts Summary

Compound	Level 1	Level 2	Level 3	Level 4	Level 5
ᇗᄖᄵᅇᅆᄮᄟᄱᅇᄵᅭᅕᇾᇤᇗᇑᇤᇭᇯᇭᇷᇮᇮᇷᇭᇞᇮᇗᇸᆂᆣᆳᅆᇎᇔᆇ ᅭᅆᇥᅆ					
16 Tetryl	50.00	100.00	500.00	1000.00	5000.00
17 2,4,6-TNT	50.00	100.00	500.00	1000.00	5000.00
12 3,4-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

07/13/2007 09:58 ICAL Standard Concentrations Summary v2.0 Page N

		8447.0000	4261.0000	837.00000	432.00000]	15 1,3,5-Trinitrobenzene
	63159.000	12797.000	6442.0000	1250.0000	643,00000	14 2,4-Dinitrotoluene
	38524.000	7812.0000	3926.0000	762.00000	386.00000	13 2,6-Dinitrotoluene
	000'88666	20264.000	10090.000	1939.0000	00000.786	<pre>11 1,3-Dinitrobenzene/3NT</pre>
	67251.000	13629.000{	6871.0000	1343.0000	686.00000	10 2-Amino-4,6-Dinitrotoluene
	2275098.0	452468.00	228195.00	43549.000	22480.000	9 4-Nitrotoluene
	46038.000	9223.0000{	4643.0000	888.00000	453,00000	8 2-Nitrotoluene
	50229.000	10212.000	5129.0000	1012.0000	517.00000	7 4-Amino-2,6-Dinitrotoluene
	87731.000	17580.000	8818.0000	1686.0000	865.00000	6 Nitrobenzene
	47754.000	9719.0000	4858.0000	964.00000	489.00000	5 RDX
	000.80085	7753.0000	3888.0000	760.00000	00000,000	4 HMX
	*		=======================================			"""""""""""""""""""""""""""""""""""""""
	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
	711.D 712.D	.b/F7120 .b/F7120	i/F71207 i/F71207	<th><pre>uplc/felix uplc/felix</pre></th> <th><pre>_evel 4: //ceres/labdata/l _evel 5: //ceres/labdata/l</pre></th>	<pre>uplc/felix uplc/felix</pre>	<pre>_evel 4: //ceres/labdata/l _evel 5: //ceres/labdata/l</pre>
	710.D	.b/F7120	i/F71207	<td>uplc/felix</td> <td><pre>ievel 3: //ceres/labdata/l</pre></td>	uplc/felix	<pre>ievel 3: //ceres/labdata/l</pre>
	709.D	.b/F7120	1/F71207	<td>uplc/felix</td> <td><pre>.evel 2: //ceres/labdata/l</pre></td>	uplc/felix	<pre>.evel 2: //ceres/labdata/l</pre>
	707.D	.b/F7120	i/F71207	<td>uplc/felix</td> <td>evel 1: //ceres/labdata/h</td>	uplc/felix	evel 1: //ceres/labdata/h
					60mm ID	Column Size : Om L - 4.
						olumn : EtPh
1.1771	TV CUUCAVI	\ <i>F</i> / F & O / .	·/+ (++>++	F( / F( F F S		ublist : 8330syn.su
4 20012r	mmon c c a /d	1 571 207			lad / et ehd	Terhod File · //rerea/la
					. <del>Γ</del>	al Curve Type: Average Cl
						uant Method : ESTD
					8T:/T /.(	and Cal Date : 12-JUL-200

Response is in Height units.

07/13/2007 09:58 ICAI

ICAL Responses Summary v2.0

Page 1

Start Cal Date: 12-JUL-2007 14:08

Laucks Testing Labs Initial Calibration Response Summary

Response is in Height uni 07/13/2007 09:58		<pre>Compound ====================================</pre>	Start Cal Date: 12-JUL-200 End Cal Date : 12-JUL-200 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublist : 8330syn.su Column : EtPh Column Size : 0m L - 4.	Ini
ts. ICAL Responses Summary v2.0	·	Level 1       Level 2       Level 3       Level 4       Level         =========       ========       =======       =======       ======         263.00000       506.00000       2623.0000       5172.0000       25585.         290.00000       561.00000       2886.0000       5712.0000       28206.         366.00000       711.00000       3683.0000       7305.0000       36033.	7 14:08 7 17:18 bdata\hplc\felix\Felix.i\F71207.b\83; b	Laucks Testing Labs tial Calibration Response Summary
Page 2			30syn71207.m	

SUM - 83

Start Cal Date: 27-FEB-2007 12:35         End Cal Date: ESTD         Quant Method: ESTD         Cal Curve Type: Average CF         Integrator: B330MNX.sub         Column       : \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m         Sublist: S330MNX.sub         Column Size: Om L = 4.60mm ID         Cal Curve Files:         Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D         Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 4: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         1:#W       1:1.2000          2:#	Start Cal Date: 27-FEB-2007 12:35         End Cal Date: 27-FEB-2007 15:15         Quant Method: ESTD         Cal Curve Type: Average CF         Integrator: HP Genie         Method File: \\ceres\labdata\hplc\oscar\Oscar.i\Oscar.i\022707.b\8330FEB2707.m         Sublist: 8330MNX.sub         Column Size: 0m L - 4.60mm ID         Cal ibration Files:         Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.0         Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D         Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Sabx       11.2000       10.4000       10.4500       10.29700       9.55000       9.45100       9.7000       3.2         4 www       10.3000       9.30000       9.55000       10.29740       10.6538       3.2         5 sbx       10.3000       13.4000       13.4000       13.4000       13.4000       3.2         6 tatys       13.54000       13.4000       13.4000       13.4000       13.4000       14.85056       1.9		ר ר	- 00%3CC -	T 202400	000000	- n n n n n n n n n n n n n n n n n n n	00000	1 000000 1	
Start Cal Date: 27-FEB-2007 12:35         Bind Cal Date: ESTD         Cal Curve Type: Average CF         Integrator       : HP Genie         Method file       : Classer         Sublist       : 8330MNX.sub         Column       : Classer         Column Size <td: -="" 0n="" 4.60mm="" id<="" l="" td="">         Cal ibration Files:      </td:>	Start Cal Date: 27-FEB-2007 12:35         Quant Method : ESTD         Cal Curve Type: Average CF         Integrator: i/o22707.b\8330FEB2707.m         Sublist :: 8330MNX.sub         Column Size : 0m L - 4.60mm ID         Cal Live I: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.p         Level 1: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.p         Level 2: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.p         Level 3: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.p         Level 4: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 4: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.p         1 HMR       11.2000       10.4500       10.4500       10.2710         1 evel 1: //ceres/labdata/hplc/oscar/0scar.i/022707.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/02270709.p       1.1000       10.4500       10.4500       10.4500       10.4500       10.4500       10.4500       10.4500       10.4500       10.4500       10.4500       10.2710       10.4500 <t< td=""><td></td><td>ده دا</td><td>8.058800  </td><td>7.962000</td><td>7,946000</td><td>8.206000</td><td>7.880000</td><td>8.300000</td><td>11 2,4,6-Trinitrotoluene</td></t<>		ده دا	8.058800	7.962000	7,946000	8.206000	7.880000	8.300000	11 2,4,6-Trinitrotoluene
Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator       :         Wethod File:       :         Sublist       :         Sublist       :         Column       :         Column Size       :         Om L - 4.60mm ID         Calibration Files:         Level 1:       :         //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D         Level 1:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 3:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 4:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       :/ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Scare/oscar/oscar.i/oscar.i/022707.b/02270708.D         Level 5:       :.evel 1         :/secres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.5         :/secres/labdata/hplc/oscar/oscar.i/022707.b/0227070.5         :/secres/labdata/hplc/oscar/0522707.b/0227070.5         :/	Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator:       HP Genie         Vceres/labdata/hplc/oscar/Oscar.i/O22707.b/8330FEB2707.m         Sublist:       8330MNX.sub         Column Size:       0m L - 4.60mm ID         Cal ibration Files:       Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D         Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D       Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D         Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D       Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D         Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070.b/0227070		2.1	8.559800	8.653000	8.494000	8.712000	8,280000	8.660000	9 Nitrobenzene
Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator:       HP Genie         Method File:       \\ceres\labdata\hplc\oscar\Oscar.i\Oscar.i\022707.b\8330FEB2707.m         Sublist:       :       0m L - 4.60mm ID         Column Size:       0m L - 4.60mm ID         Calibration Files:	Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator:       HP Genie         Method File:       8330MNX.sub         Sublist:       :         Calibration Files:       Column Size:         Level 1:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 1:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D         Level 2:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 3:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 4:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 4:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D         Level 5:       //ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D         Level 1:       /.sevel 5:         1:1:::0000       10.6900       10.2707.b/02270708.D         Level 5:       /ceres/labdata/hplc/oscar/oscar.i/022707.b/02270708.D         ::::0000       10.6900       10.5900         :::0000       10.6900<		2.0	6-980400	6,877000	6.929000	7,116000	6,840000	7-140000	8 Tetryl
Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator:       HP Genie         Method File:       \\ceres\labdata\hplc\oscar\Oscar.i\Oscar.i\O22707.b\8330FEB2707.m         Sublist:       :       8330MNX.sub         Column Size:       :       0m L - 4.60mm ID         Calibration Files:       Level 1:       //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D         Level 1:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D       Level 3:         Level 3:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D       Level 4:         Level 4:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.b/02270706.D       Level 5:         Level 5:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D       Level 5:         Level 4:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D       Level 5:         Level 5:       //ceres/labdata/hplc/oscar/Oscar.i/022707.b/0227070.9.D	Start Cal Date:       27-FEB-2007 12:35         End Cal Date:       27-FEB-2007 15:15         Quant Method:       ESTD         Cal Curve Type:       Average CF         Integrator:       ::::::::::::::::::::::::::::::::::::		1.9	14.89056	14.87580	14.68900 {	15.10800	14.54000	15.24000	7 1,3-Dinitrobenzene
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator I HP Genie Method File : \/ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.D Second 1.20000   10.6000   10.45000   10.45000   10.7740   10.6500   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.7740   10.6500   3.2   10.774	Start Cal Date: 27-FEB-2007 12:35         End Cal Date : 27-FEB-2007 15:15         Quant Method : ESTD         Cal Curve Type: Average CF         Integrator : HP Genie         Method File : 8330MNX.sub         Column :: C18         Column Size : 0m L - 4.60mm ID         Cal ibration Files:         Level 1: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270705.D         Level 2: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270705.D         Level 3: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270705.D         Level 4: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270706.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270709.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 5: //ceres/labdata/hplc/oscar/0scar.i/022707.b/02270708.D         Level 6: //c	_	2,4	13.46708	13.27440	13.28300	13.63800	13.18000	13.96000	6 l,3,5-Trinitrobenzene
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator IP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D Compound   Level 1   Level 1   Level 2   Level 3   Level 4   Level 5   Ave CF   %82D Compound   Level 1   Level 1   Level 3   Level 4   Level 5   Ave CF   %82D Avmx   10.5000   10.67000   10.45800   10.27740   10.65308   3.2   10.45800   10.27740   10.65308   3.2   10.45800   10.27740   10.65308   3.2   10.45800   10.27740   10.65308   3.2   10.45800   3.5   3.5   10.57000   3.5   3.5   10.57000   3.5   3.5   10.57000   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : C18 Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Compound   Level 1   Level 1   Level 2   Level 3   Level 4   Level 5   Ave CF   482D Compound   Level 1   Level 1   Level 3   Level 4   Level 5   Ave CF   482D Mex   10.36000   10.67000   10.67000   10.45900   10.27440   10.65008   3.2		2-5	7.697800	7.488000	7.591000	7.730000	7.680000	8.000000	5 RDX
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : 0m L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D Compound   Level 1   Level 2   Level 4   Level 5   Ave CF   %8D Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Ave CF   %8D Compound   Level 1   Level 1   Level 3   Level 4   Level 5   Ave CF   %8D Compound   10.69000   10.69000   10.69000   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900   10.6900  </pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D 10.45800   10.45800   10.45800   10.29740   10.6598   3.2   </pre>		3,6	9.787080	9,491400	9.526000	9.828000	9.730000	10.36000	4 MNX
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Ave CF   %mD</pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\Oz2707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : 0m L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Level 5: //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D Compound   Level 1   Level 1   Level 2   Level 4   Level 5   Ave CF   %RD</pre>		3.2	I0.66308	10.29740	10.45800	10.67000	10.69000	11.20000	1 HMX
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : Om L - 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270706.D Level 3: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/O2270709.D</pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \/ceres\labdata\hplc\oscar\Oscar.i\O22707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : Om L = 4.60mm ID Calibration Files: Level 1: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270705.D Level 2: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270708.D Level 4: //ceres/labdata/hplc/oscar/Oscar.i/O22707.b/02270709.D</pre>		*RSD	Ave CF	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub Column : C18 Column Size : 0m L = 4.60mm ID</pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub Column Size : 0m L = 4.60mm ID</pre>			60000	2270705.I 2270706.I 2270707.I 2270707. 2270708.I 2270709.I	22707.b/0 22707.b/0 22707.b/0 22707.b/0 22707.b/0	scar.i/0 scar.i/0 scar.i/0 scar.i/0 scar.i/0	/oscar/0 /oscar/0 /oscar/0 /oscar/0	data/hplc data/hplc data/hplc data/hplc data/hplc data/hplc	Calibration Files: Level 1: //ceres/lab Level 2: //ceres/lab Level 3: //ceres/lab Level 4: //ceres/lab Level 5: //ceres/lab
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub Column : C18</pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub Column : C18</pre>							ΤÐ	- 4.60mm	Column Size : Om L
<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub</pre>	<pre>Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m Sublist : 8330MNX.sub</pre>									Column : C18
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \/ceres/labdata/hplc/oscar/Oscar.i/022707.b/8330FEB2707.m	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \/ceres/labdata/hplc/oscar.0scar.i/022707.b/8330FEB2707.m								NX.sub	Sublist : 8330M
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie		.m	OFEB2707.	07.b\833C	ar.i\02270	scar\Osc:	3\hplc\o;	es\labdat;	Method File : \\cer
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD Cal Curve Type: Average CF								nie	Integrator : HP Ge
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15 Quant Method : ESTD								ge CF	Cal Curve Type: Avera
Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15	Start Cal Date: 27-FEB-2007 12:35 End Cal Date : 27-FEB-2007 15:15									Quant Method : ESTD
Start Cal Date: 27-FEB-2007 12:35	Start Cal Date: 27-FEB-2007 12:35							ப் ப	B-2007 15	End Cal Date : 27-FE
								:. ហ	B-2007 12	Start Cal Date: 27-FE

13 2-Amino-4,6-Dinitrotoluene 14 2,6-Dinitrotoluene 12 4 Amino-2, 6-Dinitrotoluene ____ .____ 7.840000 5.940000 5.220000 5.630000 7.670000 ...... 5.120000 7.942000 5.310000 5.896000 _ -----7.738000 5.165000 5.726000 _ 7.684600 5.188000 5,686400 .__ ____ 7.774920 5.200600 [ 08991.1.5 1.4 ۸. U

Amount = Response divided by CF

CF - Calibration Factor ( response divided by concentration ).

RSD - Relative Standard Deviation.

02/28/2007 09:10

ICAL Linearity Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Linearity Summary

01:60 0002/82/20	:F - Calibration Factor ( respo :SD - Relative Standard Deviati			Amount = Response divided	Average RSD :	10 3,4-Dinítrotoluene	17 4 Nitrotoluene	16 2-Nitrotoluene	15 2,4-Dinitrotoluene	Compound
	nnse divided by concentration .on.			1 by CP		5.880000 5.57000	2.700000 2.59000	3.540000 3.48000	00058'8   000086'8   	Level 1   Level 2
CAL Linearity Summary v2.0	, ,		·			0   5.726000   5.555000	0   2.682000   2.619000	0   3.546000   3.463000		Level 3 Level 4
						5.578200	2.659800	3.503400	9.015400	Level 5
-	·				2.1	5.661840 2.5	2.650160 1.7	3.506480   1.0	======================================	Ave CF   %RSD
Page 2										

SUM - 85

Level Sublist Method File Cal Curve Type: End Cal Date Start Cal Date: Level Column Size Quant Method Level Calibration Files: Column Integrator Level Level Ц СJ 12 4-Amino~2,6~Dinitrotoluene 14 2,6-Dinítrotoluene 11 2,4,6-Trinitrotoluene ጣ ଡ ω -3 ហា 4 MNX 1 HMX 2-Amino-4,6-Dinitrotoluene RDX Nitrobenzene Tetryl 1,3-Dinitrobenzene 1,3,5-Trinitrobenzene ⊢--•• 4 ω .. 2 ഗ്ന •• Compound /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D Average CF C18 27-FEB-2007 8330MNX.sub HP Genie ESTD 27-FEB-2007 0m L -\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m 4.60mm 12:35 15:15 Level 1 22.67 21.54 20.61 17.67 17.11 15.02 24.04 12.11 8.36 7.09 4.69 Π 新加加加加加加加加加加加 Level 2 17.75 24.16 22.84 21.72 20.72 17.22 15.08 12.13 8.36 7.09 4.69 Level 3 17.17 21.61 20.65 17.71 22.72 15.05 24.07 12.12 8.35 7.08 4.69 Level 4 24.13 22.80 17.73 21.67 20.69 17.20 15.07 12.12 8.35 7,08 4.69Level 5 22.78 24.1121.66 17.72 12.13 20.68 17.20 15.07 7.09 8.36 4.69

Ave RT

4.690 7.089

20.670 17.715

17.180 15.057 12.125 8.358

21.640

24.10422.760

Retention times are expressed as minutes

02/28/2007 09:10

ICAL RT Summary v2.0

Page Р Initial Calibration Retention Time Summary

Laucks Testing Labs

Column Size :	Column :	Sublist :	Method File :	Integrator :	Cal Curve Type:	Quant Method :	End Cal Date :	Start Cal Date:
Om L - 4.60mm ID	C18	8330MNX.sub	\\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m	HP Genie	Average CF	ESTD	27-FEB-2007 15:15	27-FEB-2007 12:35

Laucks Testing Labs Initial Calibration Retention Time Summary

	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
11	- 22 22 22 22 22 22 22 22 22 22 22 22 22			****			
	15 2,4-Dinitrotoluene	24.97	25.08	24.98	25.04	25.02	25,019
Vocanita A	16 2-Nitrotoluene	30.36	30.41	30.32	30.37	30.38	30.367
	17 4-Nitrotoluene	33.08	33.09	33.02	33,08	33,07	33.068
	18 3-Nitrotoluene	35.60	35.59	35,53	35.60	35,62	35.589
	10 3,4-Dinitrotoluene	18.40	18.51	18.45	18.48	18.48	18.464

Retention times are expressed as minutes.

02/28/2007 09:10

ICAL RT Summary v2.0

Page 2

Laucks Testing Labs Initial Calibration Amounts Summary

Level Method File End Cal Date Level Level Level Calibration Files: Column Size Column Sublist Integrator Cal Curve Type: Quant Method : Start Cal Date: Level ເມ •• ہــــا ∙ • 2 ர ... 4 /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D •• C18 Average CF 8330MNX.sub HP Genie ESTD 27-FEB-2007 15:15 27-FEB-2007 12:35 0m L -\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m 4.60mm ID

	Compound	Level 1	Level 2	Level 3	Level 4	Level 5
·						
-	1 HMX	50.00	100.00	500.00	1000.00	5000.00
	4 MNX	50.00	100.00	500.00	1000.00	5000,00
	5 RDX	50.00	100.00	500.00	1000.00	5000.00
	6 1,3,5-Trinitrobenzene	50.00	100.00	500.00	1000.00	5000.00
	7 1,3-Dinitrobenzene	50.00	100.00	500.00	1000.00	5000.00
	8 Tetryl	50.00	100.00	500.00	1000.00	5000.00
	9 Nitrobenzene	50.00	100.00	500.00	1000.00	5000.00
	11 2,4,6-Trinitrotoluene	50.00	100,00	500.00	1000.00	5000,00
—	12 4-Amino-2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
—	13 2-Amino-4,6-Dinitrotoluene	50.00	100.00	500.00	1.000.00	5000.00
—	14 2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page <del>نا</del>ز

Laucks Testing Labs Initial Calibration Amounts Summary

Sublist Column Size Column Method File Integrator Cal Curve Type: Quant Method End Cal Date : Start Cal Date: • • • • Average CF ESTD 27-FEB-2007 12:35 27-FEB-2007 15:15 C18 \/ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m
8330MNX.sub HP Genie 0m L - 4.60mm ID

Compound	Level 1	Level 2	Level 3	Level 4	Level 5
				X = = = = = = = = =	
15 2,4-Dinitrotoluene	50,00	100.00	500.00	1000.00	5000.00
16 2-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
17 4-Nitrotoluene	50.00	100.00	500.00	1 1000.00	5000.00
18 3-Mitrotoluene	50.00	100.00	500.00	1000.00	5000.00
10 3,4 Dinitrotoluene	50.00	100.00	500.00	1.000.00	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11

ICAL Standard Concentrations Summary v2.0

Page

 $\sim$ 

Start Cal Date:	27-FEB-2007 12:35
End Cal Date :	27-FEB-2007 15:15
Quant Method :	ESTD
Cal Curve Type:	Average CF
Integrator :	HP Genie
Method File :	\\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m
Sublist :	8330MNX.sub
Column :	C18
Column Size :	0m L - 4.60mm ID ·
Calibration File	

Initial

Laucks Testing Labs Calibration Response Summary

Level Level Level н •• /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D

Level Level //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D //ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D

<u> </u>	Compound	Level 1	Level 2	Level 3	Level 4
	1. HMX	560.00000	1069.0000	5335,0000	10458.000
	4 MNX	518.00000	973.00000	4914.0000	9526.0000
	5 RDX	400.00000	768.00000	3865.0000	7591.0000
—	6 1,3,5-Trinitrobenzene	698.00000	1318.0000	6819.0000	13283.000
	7 1,3-Dinitrobenzene	762.00000	1454.0000	7554.0000	14689,000
	8 Tetryl	357.00000	684.00000	3558.0000	6929.0000
—	9 Nitrobenzene	433.00000	828.00000	4356.0000	8494.0000
—	11 2,4,6-Trinitrotoluene	415.00000	788.00000	4103.0000	7946.0000
—	12 4-Amino-2,6-Dinitrotoluene	297.00000	563.00000	2948.0000	5726.0000
—	13 2-Amino-4,6-Dinitrotoluene	392.00000	767.00000	3971.0000	7738.0000
	14 2,6-Dinitrotoluene	261.00000	512.00000	2655.0000	5165.0000

Response is in Height units.

02/28/2007 09:11

Page Р

ICAL Responses Summary v2.0

Compound       Level 1       Level 2       Level 3       Level 5         Image: Second seco	99.000 91.000 91.000	3463.0000 175 2619.0000 132 3159.0000 159 5555.0000 278	1773.0000 1341.0000 1624.0000 2863.0000	348.00000 259.00000 309.000000 557.000000	177.00000 135.00000 165.00000 294.000000 294.000000	D 0	16 2-Nitrotoluene 17 4-Nitrotoluene 18 3-Nitrotoluene 10 3,4-Dinitrotolue
		Level 4   Le ====================================	Level 3   ===================================	Level 2   ===================================	Level 1   		Compound

02/28/2007 09:11

ICAL Responses Summary v2.0

Page

N

SUM - 91

Laucks Testing Labs Initial Calibration Response Summary

TIT-21 · Ated [-7 +7+7	AL LUUC-	ר. ת					
Start Cal Date: 18-JUI End Cal Date : 18-JUI Quant Method : ESTD	-2007 16 -2007 18	8:48				·	
Cal Curve Type: Averag Integrator : HP Ger Method File : \\cere	e CF ie is∖labdat ∢o enh	a\hplc\f	elix\Fel	ix.i\F71	807.b\83	30syn7118	07MNX.m
Column Size : Om L	- 4.60mm	I ID					
Calibration Files: Level 1: //ceres/labo Level 2: //ceres/labo	rad/ sta	1	םן יו א`ין ∕ א	1 500 1			
	laca/hplo lata/hplo lata/hplo	/felix/F	elix.i/F elix.i/F	/1807.b/ 71807.b/ 71807.b/	F7180708 F7180708 F7180709		
Level 4: //ceres/labc Level 5: //ceres/labc	lata/hplo lata/hplo lata/hplo lata/hplo lata/hplo	/felix/F /felix/F /felix/F /felix/F	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/	F7180708 F7180708 F7180709 F7180710 F7180711 F7180711	.D .D .D .D .D .D	* RSD
Level 4: //ceres/labc Level 5: //ceres/labc compound	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc Level 1 Level 1 521.4400	/felix/F /felix/F /felix/F /felix/F /felix/F	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F ====================================	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/	F7180708 F7180709 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711	. D . D . D . D . D . D . D . D . D . D	==************************************
Level 4: //ceres/labc Level 5: //ceres/labc Compound 3 MNX 4 HMX	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc Level 1 	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F ====================================	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 1 Level 4 1 ===================================	F7180708 F7180709 F7180709 F7180710 F7180711 F7180711 F7180711 - Level 5 - Level 5 - Level 5 - 463.8844 - 463.8844 - 7.275600	.D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D 	==== %RS□ 6.2 4.1
Level 4: //ceres/labc Level 5: //ceres/labc compound 3 MNX 4 HMX 5 RDX	lata/hplo lata/hplo lata/hplo lata/hplo lata/hplo lata/hplo lata/hplo 10.08000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 718000000000000000000000000000000000000	F7180708 F7180709 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180710 F7180710 F7180710 F71807200	. D . D . D . D . D . D . D . D . D . D	==************************************
Level 4: //ceres/labc Level 5: //ceres/labc compound 3 MNX 4 HMX 5 RDX 6 Nitrobenzene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc sz1.4400 7.780000 10.08000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71808.0000000000000000000000000000000000	F7180708 F7180709 F7180709 F7180710 F7180711 F7180711 F7180711 - Level 5 - Level 5 - 463.8844 - 463.8844 - 7.275600 - 9.487200 - 17.26680	.D .D .D .D .D .D .D .D .D .D .D	1.5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Level 4: //ceres/labc Level 5: //ceres/labc compound 3 MNX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc s21.4400 7.780000 10.08000 10.62000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F l.evel 3 l.evel 3 l.e	/1807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 1539.0620 1539.0620 17.285000 19.508000 19.508000	F7180708 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180710 F7180700 F7180700 F7180700 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180709 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180711 F7180710 F7180711 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F718000 F7180000 F7180000 F7180000 F7180000 F71800000 F718000000 F718000000000000000000000000000000000000	.D .D .D .D .D .D .D .D .D .D .D	L
Level 4: //ceres/labc Level 5: //ceres/labc compound 3 MNX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene 8 2-Nitrotoluene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc sz1.4400 7.780000 10.08000 17.26000 10.62000 9.280000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F 1.878000 10.31600 10.31600 10.55800 8.902000	71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 1807.b/ 1539.0620 1539.0620 17.285000 19.508000 16.88800 19.764000	F7180708 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180710 F7180710 F7180710 F7180710 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F718000 F718000 F7180000 F718000 F718000 F718000 F718000 F718000 F718000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F71800000 F71800000 F718000000000 F718000000000000000000000000000000000000	.D .D .D .D .D .D .D .D .D .D	=== == == == == == == == == ==
Level 4: //ceres/labc Level 5: //ceres/labc compound compound s MNX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene 8 2-Nitrotoluene 9 4-Nitrotoluene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc s21.4400 7.780000 10.08000 17.26000 10.62000 9.280000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F 	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F 1.878000 10.31600 10.55800 8.902000	71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 1 Level 4 1====================================	F7180708 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180711 F7180710 F7180710 F7180710 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F7180700 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F7180000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F718000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F7180000 F71800000 F71800000 F71800000 F718000000000000000000000000000000000000	. D . D . D . D . D . D . D . D . D . D	
Level 4: //ceres/labc Level 5: //ceres/labc compound compound s mNX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene 8 2-Nitrotoluene 9 4-Nitrotoluene 10 2-Amino-4,6-Dinitrotoluene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc s21.4400 7.780000 10.08000 17.26000 10.62000 9.280000 13.96000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F 1.evel 3 ====================================	71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 7285000 19.508000 19.508000 19.508000 18.6300000 18.6300000 18.6300000 18.6300000 18.6300000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.2340000 18.23400000 18.2340000 18.23400000 18.23400000 18.23400000 18.23400000 18.23400000 18.23400000 18.234000000 18.23400000 18.23400000 18.234000000 18.23400000 18.234000000000000000000000000000000000000	F7180708 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180711 F7180710 F7280711 F7280710 F7280711 F7280710 F72807 F7280710 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280700 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280710 F7280700 F7280700 F7280700 F72800710 F72800 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F7280000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F728000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F7280000 F72800000 F728000000000000000000000000000000000000	.D .D .D .D .D .D .D .D .D .D	u u u u u u u u u u u u u u
Level 4: //ceres/labc Compound Compound SMNX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene 8 2-Nitrotoluene 9 4-Nitrotoluene 10 2-Amino-4,6-Dinitrotoluene 11 1,3-Dinitrobenzene/JNT	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc 10.7780000 17.780000 17.26000 17.26000 17.26000 17.26000 17.26000 17.26000 13.96000 13.96000	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Fe	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F 514.5300 7.878000 10.31600 117.42200 10.55800 8.902000 8.902000 133.97600 10.07400	71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 7.285000 1.6.888000 1.6.888000 1.6.888000 1.422.34000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.928000 1.2.9280000 1.2.928000 1.2.928000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.9280000 1.2.92800000 1.2.92800000 1.2.9280000000000000000000000000000000000	F7180708 F7180709 F7180710 F7180710 F7180711 F7180711 F7180711 F7280711 F7280711 F7280711 F72807 F72800 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.275600 F7.286580 F7.286580 F7.286580 F7.286580 F7.286580 F7.286580 F7.286580 F7.286580	.D .D .D .D .D .D .D .D .D .D .D	u u u u u u u u u u u u u u
Level 4: //ceres/labc Compound Compound 3 MMX 4 HMX 5 RDX 6 Nitrobenzene 7 4-Amino-2,6-Dinitrotoluene 8 2-Nitrotoluene 9 4-Nitrotoluene 10 2-Amino-4,6-Dinitrotoluene 11 1,3-Dinitrotoluene	lata/hplc lata/hplc lata/hplc lata/hplc lata/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/hplc ista/h	/felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/F /felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Felix/Fe	elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.ix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F elix.i/F	71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 71807.b/ 1539.0620 9.508000 9.508000 19.508000 19.764000 18.630000 12.92800 12.92800 12.92800	F7180708 F7180709 F7180710 F7180710 F7180710 F7180711 F7180711 F7180711 F7180711 F7180711 F7180710 F7180710 F7180710 F7180710 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F718070 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180710 F7180700 F71805800 F71805800 F71805800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F718558000 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F71855800 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F718558000 F7185580000 F718558000 F718558000 F718558000 F7185580000 F718558000 F718558000 F7185580000 F7185580000 F7185580000 F7185580000 F7185580000 F7185580000 F718558000000 F7185580000000000000000000000000000000000	.D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D .D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 	и и и и и и и и и и и и и и и и и и и

CF - Calibration Factor ( response divided by concentration ).

RSD - Relative Standard Deviation.

07/19/2007 10:46

ICAL Linearity Summary v2.0

190000 358200

CF - Calibration Factor ( response divided by concentration ). RSD - Relative Standard Deviation.

07/19/2007 10:46

ICAL Linearity Summary v2.0

Page 2

.

Laucks Testing Labs Initial Calibration Linearity Summary

Level Level Column Size Column Sublist Method File Integrator Cal Curve Type: Quant Method End Cal Date Start Cal Date: Level Level Calibration Files: Level 07/19/2007 10:46 Retention times are expressed as minutes. 14 11 1,3-Dinitrobenzene/3NT 10 2-Amino-4,6-Dinitrotoluene 13 2,6-Dinitrotoluene 9 4-Nitrotoluene œ 6 Nitrobenzene 5 RDX 4 HMX 3 MNX 7 4-Amino-2,6-Dinitrotoluene 2,4-Dinitrotoluene 2-Nitrotoluene ω N .. ப 4 Compound /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180711 /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180708.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180710.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180709.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180707.D .. •• Average CF ESTD 18-JUL-2007 18-JUL-2007 EtPh 8330mnx2.sub HP Genie 0m L - 4.60mm ID \ceres\labdata\hplc\felix\Felix.i\F71807.b\8330syn711807MNX.m 18:4816:16 Level 1 15.53 16.4715.89 14.84 11.4419.14 14.39 22.138.73 8.19 7.88 ICAL RT Summary v2.0 Level 2 16.49 15.92 15.56 14.86 11.45 19.17 14.41 22.188.74 8.21 7.89 **** Level 3 15.9415.57 16.51 14.87 19.19 14.4311.46 22.20 8.75 8,21 7.89 Level 4 16.48 15.91 15.55 14.85 14.4119.17 11.45 22.17 8.74 8.21 7.89 : U Level 5 16.49 15.92 15.55 19.18 14.85 14.41 11.4522.19 8.73 7.88 8.20 Page Ave RT 15.552 14.855 16.487 15.917 14.409 11,451 22.174 19.170 8.739 8.201 7.887 μ

Laucks Testing Labs Initial Calibration Retention Time Summary

Composition	Column Size :	Column :	Sublist :	Method File :	Integrator :	Cal Curve Type:	Quant Method :	End Cal Date :	Start Cal Date:	
	0m L - 4.60mm ID	EtPh	8330mnx2.sub	<pre>\/ceres/labdata/hplc/felix/Felix.i/F71807.b/8330syn711807MNX.m</pre>	HP Genie	Average CF	ESTD	18-JUL-2007 18:48	18-JUL-2007 16:16	

Laucks Testing Labs Initial Calibration Retention Time Summary

—	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
					*********		
<u> </u>	15 1,3,5-Trinitrobenzene	25.26	25.32	25,34	25.32	25.36	25.319
	16 Tetryl	29.22	29.30	29.31	29.30	29.34	29.293
	17 2,4,6-TNT	32.86	32.94	32.96	32.95	32.98	32.937
	12 3,4-Dinitrotoluene	17.69	17.72	17.74	17.71	17.72	17.718

Retention times are expressed as minutes.

07/19/2007 10:46

ICAL RT Summary v2.0

Page 2

Laucks Testing Labs Initial Calibration Amounts Summary

Leve1 Level Sublist Method File Integrator Cal Curve Type: End Cal Date Start Cal Date: Calibration Files: Column Size Column Quant Method Level Level Level ω 2: ហ ... 4. /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180711.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180708.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180710.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180709.D /ceres/labdata/hplc/felix/Felix.i/F71807.b/F7180707.D . . 18-JUL-2007 Average CF ESTD 8330mnx2.sub HP Genie 18-JUL-2007 EtPh 0m L -\ceres\labdata\hplc\felix.i\F71807.b\8330syn711807MNX.m 4.60mm ID 16:16 18:48

14 13 2,6-Dinitrotoluene 11 1,3-Dinitrobenzene/3NT 10 2-Amino-4, 6-Dinitrotoluene φ œ -1 σ СЛ 4 HMX 3 MNX RDX 2,4-Dinitrotoluene 4-Nitrotoluene 2-Nitrotoluene 4-Amino-2,6-Dinitrotoluene Nitrobenzene Compound Level 1 100.00 50.00 50.00 50.00 50.00 50.00 50.00 50,00 50.00 50.00 50.00 Level 2 100.00 100.00 100.00 100.00 100.00 100.00 200.00 100.00 100.00 100.00 100.00 Level 1000.00 500,00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 w 1000.00 1000.00 1000.00 Level 4 1000.00 2000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 111111111111 10000.00 5000.00 Level 5 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

Standard concentrations are expressed as ng/mL.

07/19/2007 10:47 ICAL Standard Concentrations Summary v2.0 Page

ш

Initial	
Calibration	Laucks Test:
Amounts	ing Labs
Summary	

: Om L - 4.60mm ID	Column Size
: EtPh	Column
: 8330mnx2.sub	Sublist
: \\ceres\labdata\hplc\felix\Felix.i\F71807.b\8330syn711807MNX.m	Method File
: HP Genie	Integrator
: Average CF	Cal Curve Type
: ESTD	Quant Method
: 18-JUL-2007 18:48	End Cal Date
: 18-JUL-2007 16:16	Start Cal Date

Compound	Level 1	Level 2	Level 3	Level 4	Level 5
15 1,3,5-Trinitrobenzene	50.00	100.00	500.00	1000.00	5000.00
16 Tetryl	50.00	100.00	500.00	1000.00	5000.00
17 2,4,6-TNT	50.00	100.00	500.00	1000.00	5000.00
12 3,4-Dinitrotoluene	50.00	100,00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

07/19/2007 10:47

ICAL Standard Concentrations Summary v2.0

Page

N

Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublist : 8330mnx2.s Column Size : 0m L - 4. Column Size : 0m L - 4. Calibration Files: Level 1: //ceres/labdata/h Level 3: //ceres/labdata/h Level 4: //ceres/labdata/h	F abdata\hplc\felix\Felix.i\F71807.b\8330syn711807MNX.m sub .60mm ID .60mm ID hplc/felix/Felix.i/F71807.b/F7180707.D hplc/felix/Felix.i/F71807.b/F7180709.D hplc/felix/Felix.i/F71807.b/F7180710.D hplc/felix/Felix.i/F71807.b/F7180711.D
Compound	
3 MNX	Level 1   Level 2   Level 3   Level 4   Level 5
4 HMX	Level 1     Level 2     Level 3     Level 4     Level 5       =     ====================================
6 Nitrobenzene	Level 1       Level 2       Level 3       Level 4       Level 5         =       ====================================
7 4-Amino-2,6-Dinitrotoluene	Level 1       Level 2       Level 3       Level 4       Level 5         =       ====================================
	Level 1       Level 2       Level 3       Level 5         =       =       =       =       =         26072.000       54386.000       257265.00       539062.00       2319422.0         389.00000       727.00000       3939.0000       7285.0000       36378.000         504.00000       946.00000       5158.0000       9508.0000       47436.000         863.00000       1685.0000       8711.0000       16888.000       86334.000         531.00000       975.00000       5279.0000       9764.0000       44190.000         464.00000       854.00000       4451.0000       8630.0000       44190.000
9 4-Nitrotoluene	Level 1       Level 2       Level 3       Level 4       Level 5         =       ========       ========       ========       =======         26072.000       54386.000       257265.00       539062.00       2319422.0         389.00000       727.00000       3939.0000       7285.0000       36378.000         504.00000       727.00000       5158.0000       7285.0000       36378.000         863.00000       1685.0000       8711.0000       16888.000       47436.000         531.00000       1685.0000       5279.0000       16888.000       86334.000         464.00000       854.00000       5279.0000       9764.0000       44302.000         23138.000       42713.000       219187.00       422340.00       2190341.0
9 4-Nitrotoluene 10 2-Amino-4,6-Dinitrotoluene 11 1,3-Dinitrobenzene/3NT	Level 1Level 2Level 3Level 4Level 5==============================26072.00054386.000257265.00539062.002319422.0389.00000727.000003939.00007285.000036378.000504.00000946.000005158.00009508.000036378.000863.000001685.00008711.000016888.00047436.000531.000001685.00008711.000016888.00086334.000464.00000854.000005279.00008630.000044190.00023138.00042713.000219187.00422340.002190341.0698.000001289.00006988.000012928.00064329.0001016.00001893.000010074.00018884.00094691.000
9 4-Nitrotoluene 10 2-Amino-4,6-Dinitrotoluene 11 1,3-Dinitrobenzene/3NT 13 2,6-Dinitrotoluene	Level 1       Level 2       Level 3       Level 4       Level 5         =       =======       =======       =======       =======         26072.000       54386.000       257265.00       539062.00       2319422.0         389.00000       727.00000       3939.0000       7285.0000       36378.000         504.00000       946.00000       8711.0000       16888.000       86334.000         863.00000       1685.0000       8711.0000       16880.000       86334.000         464.00000       854.0000       5279.0000       9764.0000       44190.000         23138.000       42713.000       219187.00       422340.00       2190341.0         698.00000       1289.0000       6988.0000       12923.000       36329.000         1016.0000       1893.0000       10074.000       18884.000       94691.000         385.00000       721.00000       3891.0000       7247.0000       36244.000

07/19/2007 10:47

ICAL Responses Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Response Summary

β	
-2007 JA	Initial
י ת	Laucks Testing Labs Calibration Response Su
	mmary

Column Size :	Column : E	Sublist : 8	Method File : \	Integrator : H	Cal Curve Type: A	Quant Method : E:	End Cal Date : 1	Start Cal Date: 1
Om L - 4.60mm ID		330mnx2.sub	\ceres\labdata\hplc\felix\Felix.i\F71807.b\8330syn711807MNX.m	P Genie	verage CF	CTD	3-JUL-2007 18:48	3-JUL-2007 16:16

12 3,4-Dinitrotoluene	17 2,4,6-TNT	16 Tetryl	15 1,3,5-Trinitrobenzene	· · · · · · · · · · · · · · · · · · ·	Compound
394.00000	332.00000	284.00000	445.00000		Level 1
740,00000	633.00000	523.00000	812.00000		Level 2
3974.0000	3331.0000	2841,0000	4386.0000	35 45 81 81 81 81 81 81 81 81 81	Level 3
7353.0000	6162.0000	5250.0000	8085.0000		Level 4
36791.000	3,0950.000	26445.000	40308.000		Level 5

Response is in Height units.

07/19/2007 10:47

ICAL Responses Summary v2.0

Page 2

## Laucks Testing Labs Initial Calibration Verification Summary

Data File	:	//ceres/labdata/hplc/d	oscar/Oscar.i	/062807.b/06280703.D
Injection Date	:	28-JUN-2007 12:31		
Sample Info	:	STD04 1000PPB METHOD 8	8330	
Misc. Info	:	ICV		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID-

			Average	ICV	0.00
Compound	RT	RT Window	CF	CF	*D Flag
HMX	4.58 #	4.33 - 4.83	10.66308	9.849000	7.6
RDX	8.04 #	7.79 - 8.29	7.697800	7.344000	4.6
1,3,5-Trinitrobenzene	11.63 #	11.38 - 11.88	13.46708	13.42300	0.3
1,3-Dinitrobenzene	14.40 #	14.15 - 14.65	14.89056	14.73200	1.1
Tetryl	16.20 #	15.95 - 16.45	6.980400	6.995000	-0.2
Nitrobenzene	16.94 #	16.69 - 17.19	8.559800	8.535000	0.3
3,4-Dinitrotoluene	17.40 #	17.15 - 17.65	5.661840	6.370000	-12.5
2,4,6-Trinitrotoluene	19.66 #	19.41 - 19.91	8.058800	7.572000	6.0
4-Amino-2,6-Dinitrotoluene	20.47 #	20.17 - 20.77	5.775680	5.955000	-3.1
2-Amino-4,6-Dinitrotoluene	21.58 #	21.28 - 21.88	7.774920	7.875000	-1.3
2,6-Dinitrotoluene	22.88 #	22.59 - 23.17	5.200600	5.292000	-1.8
2,4-Dinitrotoluene	23.79 #	23.50 - 24.08	8.994080	9.090000	-1.1
2-Nitrotoluene	28.81 #	28.45 - 29.17	3.506480	3.598000	-2.6
4-Nitrotoluene	31.35 #	30.95 - 31.75	2.650160	2.743000	-3.5
3-Nitrotoluene	33.73 #	33.29 - 34.17	3.198400	3.308000	-3.4

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

**SUM - 100**
Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //cer : 28-JU : STD04 : Metho : STD04 : Oscar : 8330H : ESTD : 1.00 : C18	res/labda N-2007 1 1000PPB od 8330 1000PPB i FEB2707.m	ta/hplc 9:19	/osca Cli Ope Sub Int Sam Col	r/Oscar.: ent ID rator list egrator ple Type umn Size	i/O62807. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB_ : 0.25m	b/062807 6-8 20X e 4 L- 4.60r	'13.D nm ID
Compound		RT	RT Win	dow	Average CF	Continuing CF	%D Flag	Э
HMX		4.58	4.33 -	4.83	10.66308	9.887000	7.3	
RDX		8.02	7.79 -	8.29	7.697800	7.414000	3.7	
1,3,5-Trinitrobenzene	B	11.60	11.38 -	11.88	13.46708	13.65800	-1.4	
1,3-Dinitrobenzene		14.35	14.15 -	14.65	14.89056	14.91600	-0.2	******
Tetryl	*****	16.12	15.95 -	16.45	6.980400	7.088000	-1.5	_
Nitrobenzene		16.87	16.69 -	17.19	8.559800	8.607000	-0.6	
3,4-Dinitrotoluene		17.31	17.15 -	17.65	5.661840	6.578000	-16.2	
2,4,6-Trinitrotoluene	2	19.57	19.41 -	19.91	8.058800	7.593000	5.8	
4-Amino-2,6-Dinitroto	oluene	20.31	20.17 -	20.77	5.775680	6.017000	-4.2	
2-Amino-4,6-Dinitroto	oluene	21.41	21.28 -	21.88	7.774920	7.878000	-1.3	_
2,6-Dinitrotoluene		22.77	22.59 -	23.17	5.200600	5.250000	-0.9	
2,4-Dinitrotoluene		23.67	23.50 -	24.08	8.994080	9.110000	-1.3	*******
2-Nitrotoluene		28.69	28.45 -	29.17	3.506480	3.620000	-3.2	
4-Nitrotoluene		31.20	30.95 -	31.75	2.650160	2.778000	-4.8	
3-Nitrotoluene		33.56	33.29 -	34.17	3.198400	3.348000	-4.7	

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //cer : 29-JU : STD04 : Metho : STD04 : Oscar : 8330F : ESTD : 1.00 : C18	res/labda IN-2007 ( 1000PPP od 8330 1000PPP r.i FEB2707.r	ata/hplo 01:19 3 B	Cli Cli Ope: Subi Inte Samj Coli	ent ID rator list egrator ple Type umn Sizes	HPLC1-1 MY 8330 HP Geni CCALIB 0.25m	b/0628072 6-8 20X e 4 L- 4.60mm	2.D ID
Compound		RT	RT Wi	ndow	Average CF	Continuing CF	%D Flag	_
HMX		4.58	4.33 -	4.83	10.66308	9.959000	6.6	
RDX		8.02	7.79 -	8.29	7.697800	7.397000	3.9	
1,3,5-Trinitrobenzene	9	11.61	11.38 -	11.88	13.46708	13.69000	-1.7	
1,3-Dínitrobenzene		14.36	14.15 -	14.65	14.89056	15.06300	-1.2	
Tetryl		16.13	15.95 -	16.45	6.980400	7.171000	-2.7	
Nitrobenzene		16.88	16.69 -	17.19	8.559800	8.615000	-0.6	
3,4-Dinitrotoluene		17.31	17.15 -	17.65	5.661840	6.628000	-17.1	
2,4,6-Trinitrotoluene	2	19.57	19.41 -	19.91	8.058800	7.690000	4.6	
4-Amino-2,6-Dinitroto	oluene	20.32	20.17 -	20.77	5.775680	6.102000	-5.6	
2-Amino-4,6-Dinitroto	oluene	21.43	21.28 -	21.88	7.774920	7.973000	-2.5	
2,6-Dinitrotoluene		22.78	22.59 -	23.17	5.200600	5.328000	-2.4	
2,4-Dinitrotoluene		23.68	23.50 -	24.08	8.994080	9.179000	-2.1	
2-Nitrotoluene		28.69	28.45 -	29.17	3.506480	3.611000	-3.0	
4-Nitrotoluene		31.20	30.95 -	31.75	2.650160	2.763000	-4.3	
3-Nitrotoluene		33.57	33.29 -	34.17	3.198400	3.318000	-3.7	

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

+										
Data File Injection Date Sample Info	: / : 1 : S	/ceres/la 8-JUL-200 TD04 1000	bda 7 1 PPE	ata/hplc 12:06 3 METHOD	/osca 8330	r/Oscar.i	/071807.	.b/071	80704	ł.D
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: S : O : 8 : E : 1 : C	CV TD04 1000 Scar.i 330FEB270 STD .00	PPE 7.n	3 n .	Cli Ope Sub Int Sam Col	ent ID : rator : list : egrator : ple Type: umn Size:	HPLC1-1 MY 8330MN2 HP Geni CCALIB 0.25m	16-82 ( 1e -4 -L-4.	0X 60mm	ID
Compound		RT		RT Wir	ndow	Average CF	ICV CF	۶D	Flag	
	====	4.55	==== #	4.30 -	4.80	10.66308	9.137000	14.3		-
MNX		6.77	#	6.52 -	7.02	9.787080	9.347000	4.5		
RDX		7.92	#	7.67 -	8.17	7.697800	6.914000	10.2		
1,3,5-Trinitrobenzen	.e	11.46	#	11.21 -	11.71	13.46708	12.57200	6.6		
1,3-Dinitrobenzene		14.16	#	13.91 -	14.41	14.89056	13.85400	7.0		
Tetryl	-	15.82	#	15.57 -	16.07	6.980400	6.515000	6.7		
Nitrobenzene		16.65	#	16.40 -	16.90	8.559800	8.100000	5.4		
3,4-Dinitrotoluene		16.99	#	16.74 -	17.24	5.661840	6.661000	-17.6		
2,4,6-Trinitrotoluen	.e	19.23	#	18.98 -	19.48	8.058800	6.955000	13.7		
4-Amino-2,6-Dinitrot	olue	ene 19.94	#	19.64 -	20.24	5.775680	5.736000	0.7		
2-Amino-4,6-Dinitrot	olue	ene 21.02	#	20.72 -	21.32	7.774920	7.340000	5.6		
2,6-Dinitrotoluene		22.38	#	22.09 -	22.67	5.200600	4.888000	6.0		
2,4-Dinitrotoluene		23.28	#	22.99 -	23.57	8.994080	8.415000	б.4		
2-Nitrotoluene		28.23	#	27.87 -	28.59	3.506480	3.383000	3.5		
4-Nitrotoluene		30.67	#	30.27 -	31.07	2.650160	2.587000	2.4		
3-Nitrotoluene		33.00	#	32.56 -	33.44	3.198400	3.110000	2.8		

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File	;	//ceres/labdata/hplc/	oscar/Oscar.i,	/071807.b/07180709.D
Injection Date	:	18-JUL-2007 15:27		
Sample Info	:	STD04 1000PPB METHOD	8330	
Misc. Info	:	Method 8330		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330MNX
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB_4
Column	:	C18	Column Size:	0.25m_L- 4.60mm ID

			Average	Continuing	ſ
Compound	RT	RT Window	CF	CF	%D Flag
HMX	4.55	4.30 - 4.80	10.66308	9.517000	10.7
MNX	6.78	6.52 - 7.02	9.787080	9.834000	-0.5
RDX	7.93	7.67 - 8.17	7.697800	7.271000	5.5
1,3,5-Trinitrobenzene	11.48	11.21 - 11.71	13.46708	13.11200	2.6
1,3-Dinitrobenzene	14.20	13.91 - 14.41	14.89056	14.45100	3.0
Tetryl	15.88	15.57 - 16.07	6.980400	6.691000	4.1
Nitrobenzene	16.70	16.40 - 16.90	8.559800	8.266000	3.4
3,4-Dinitrotoluene	17.06	16.74 - 17.24	5.661840	6.774000	-19.6
2,4,6-Trinitrotoluene	19.30	18.98 - 19.48	8.058800	7.195000	10.7
4-Amino-2,6-Dinitrotoluene	20.03	19.64 - 20.24	5.775680	5.945000	-2.9
2-Amino-4,6-Dinitrotoluene	21.12	20.72 - 21.32	7.774920	7.650000	1.6
2,6-Dinitrotoluene	22.47	22.09 - 22.67	5.200600	5.105000	1.8
2,4-Dinitrotoluene	23.36	22.99 - 23.57	8.994080	8.821000	1.9
2-Nitrotoluene	28.32	27.87 - 28.59	3.506480	3.465000	1.2
4-Nitrotoluene	30.79	30.27 - 31.07	2.650160	2.650000	0.0
3-Nitrotoluene	33.12	32.56 - 33.44	3.198400	3.197000	0.0

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

1				, ·	
Data File	:	//ceres/labdata	a/hplc/	'oscar/Oscar.i,	/071807.b/07180716.D
Injection Date	:	18-JUL-2007 20:	:07		
Sample Info	:	STD04 1000PPB M	METHOD	8330	
Misc. Info	:	Method 8330			
Laboratory ID	:	STD04 1000PPB		Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i		Operator :	MY
Method	. :	8330FEB2707.m		Sublist :	8330MNX
Quantitation	:	ESTD		Integrator :	HP Genie
Dilution Factor	:	1.00		Sample Type:	CCALIB_4
Column	:	C18		Column Size:	0.25m L- 4.60mm ID

Compound	RT	RT Window	Average CF	Continuing CF	%D Flag
HMX	4.55	4.30 - 4.80	10.66308	9.196000	13.8
MNX	6.78	6.52 - 7.02	9.787080	9.380000	4.2
RDX	7.94	7.67 - 8.17	7.697800	6.919000	10.1
1,3,5-Trinitrobenzene	11.49	11.21 - 11.71	13.46708	12.59000	6.5
1,3-Dinitrobenzene	14.22	13.91 - 14.41	14.89056	13.79400	7.4
Tetryl	15.91	15.57 - 16.07	6.980400	6.384000	8.5
Nitrobenzene	16.72	16.40 - 16.90	8.559800	7.973000	6.9
3,4-Dinitrotoluene	17.08	16.74 - 17.24	5.661840	6.516000	-15.1
2,4,6-Trinitrotoluene	19,32	18.98 - 19.48	8.058800	6.924000	14.1
4-Amino-2,6-Dinitrotoluene	20.09	19.64 - 20.24	5.775680	5.646000	2.2
2-Amino-4,6-Dinitrotoluene	21.20	20.72 - 21.32	7.774920	7.271000	6.5
2,6-Dinitrotoluene	22.52	22.09 - 22.67	5.200600	4.871000	6.3
2,4-Dinitrotoluene	23.42	22.99 - 23.57	8.994080	8.409000	6.5
2-Nitrotoluene	28.38	27.87 - 28.59	3.506480	3.353000	4.4
4-Nitrotoluene	30.84	30.27 - 31.07	2.650160	2.563000	3.3
3-Nitrotoluene	33.16	32.56 - 33.44	3.198400	3.082000	3.6

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

Data File	:	//ceres/labdata/hplc/#	felix/Felix.i	/F71207A.b/F7120717.D
Injection Date	;	12-JUL-2007 20:28		
Sample Info	;	STD04 1000PPB METHOD83	330	
Misc. Info	:	ICV		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-08 20X
Instrument ID	:	Felix.i	Operator :	MY
Method	:	8330syn71207.m	Sublist :	8330syn
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	EtPh	Column Size:	0.25m L- 4.60mm ID

			Average	ICV	
Compound	RT	RT Windów	CF	CF	%D Flag
НМХ	8.19 #	7.94 - 8.44	7.709720	7.620000	1.2
RDX	8.73 #	8.48 - 8.98	9.681160	9.523000	1.6
Nítrobenzene	11.43 #	11.18 - 11.68	17.38444	17.34300	0.2
4-Amino-2,6-Dinitrotoluene	14.37 #	14.12 - 14.62	10.19516	10.04200	1.5
2-Nitrotoluene	14.82 #	14.57 - 15.07	9.131320	9.092000	0.4
4-Nitrotoluene	15.52 #	15.27 - 15.77	449.7935	448.3420	0.3
2-Amino-4,6-Dinitrotoluene	15.8 <b>7</b> #	15.62 - 16.12	13.59424	13.44900	1.1
1,3-Dinitrobenzene/3NT	16.44 #	16.19 - 16.69	9.957160	9.802000	1.6
3,4-Dinitrotoluene	17.66 #	17.42 - 17.92	7.261520	7.168000	1.3
2,6-Dinitrotoluene	19.11 #	18.86 - 19.36	7.741760	7.681000	0.8
2,4-Dinitrotoluene	22.09 #	21.84 - 22.34	12.75456	12.60700	1.2
1,3,5-Trinitrobenzene	25.22 #	24.95 - 25.49	8.466880	8.310000	1.9
Tetryl	29.16 #	28.72 - 29.58	5.171000	5.047000	2.4
2,4,6-TNT	32.77 #	32.33 - 33.21	5.707040	5.547000	2.8

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File	:	//ceres/labdata/hplc/:	felix/Felix.	i/	F71207A.b/F7120750.D
Injection Date	:	13-JUL-2007 17:24			
Sample Info	:	STD04 1000PPB METHOD83	330		
Misc. Info	:	Method 8330			
Laboratory ID	:	STD04 1000PPB	Client ID	:	HPLC1-16-08 20X
Instrument ID	:	Felix.i	Operator	:	MY
Method	:	8330syn71207.m	Sublist	:	8330syn
Quantitation	:	ESTD	Integrator	:	HP Genie
Dilution Factor	:	1.00	Sample Type	:	CCALIB 4
Column	:	EtPh	Column Size	:	0.25m ⁻ L- 4.60mm ID

Compound	RT	RT Window	Average CF	Continuing CF	₽D	Flag
HMX .	8.20	7.94 - 8.44	7.709720	7.834000	-1.6	
RDX	8.74	8.48 - 8.98	9.681160	9.753000	-0.7	
Nitrobenzene	11.46	11.18 - 11.68	17.38444	17.20200	1.0	
4-Amino-2,6-Dinitrotoluene	14.43	14.12 - 14.62	10.19516	10.17300	0.2	
2-Nitrotoluene	14.88	14.57 - 15.07	9.131320	9.066000	0.7	
4-Nitrotoluene	15.58	15.27 - 15.77	449.7935	453.0520	-0.7	
2-Amino-4,6-Dinitrotoluene	15.94	15.62 - 16.12	13.59424	13.63000	-0.3	
1,3-Dinitrobenzene/3NT	16.52	16.19 - 16.69	9.957160	9.799500	1.6	
3,4-Dinitrotoluene	17.74	17.42 - 17.92	7.261520	7.266000	-0.1	
2,6-Dinitrotoluene	19.20	18.86 - 19.36	7.741760	7.793000	-0.7	
2,4-Dinitrotoluene	22.20	21.84 - 22.34	12.75456	12.75600	-0.0	
1,3,5-Trinitrobenzene	25.34	24.95 - 25.49	8.466880	8.474000	-0.1	
Tetryl	29.30	28.72 - 29.58	5.171000	5.038000	2.6	
2,4,6-TNT	32.94	32.33 - 33.21	5.707040	5.608000	1.7	

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

Data File	:	//ceres/labdata/hplc/:	Eelix/Felix.i	/F71207A.b/F7120759.D
Injection Date	:	13-JUL-2007 23:06		
Sample Info	:	STD04 1000PPB METHOD83	330	
Misc. Info	:	Method 8330		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-08 20X
Instrument ID	:	Felix.i	Operator :	MY
Method	:	8330syn71207.m	Sublist :	8330syn
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB_4
Column	:	EtPh	Column Size:	0.25m L- 4.60mm ID

			Average	Continuing	
Compound	RT	RT Window	CF	CF	%D Flag
HMX	8.19	7.94 - 8.44	7.709720	7.708000	0.0
RDX	8.73	8.48 - 8.98	9.681160	9.655000	0.3
Nitrobenzene	11.44	11.18 - 11.68	17.38444	17.16400	1.3
4-Amino-2,6-Dinitrotoluene	14.39	14.12 - 14.62	10.19516	10.13600	0.6
2-Nitrotoluene	14.84	14.57 - 15.07	9.131320	9.075000	0.6
4-Nitrotoluene	15.54	15.27 - 15.77	449.7935	448.0220	0.4
2-Amino-4,6-Dinitrotoluene	15.89	15.62 - 16.12	13.59424	13.62300	-0.2
1,3-Dinitrobenzene/3NT	16.46	16.19 - 16.69	9.957160	9.864000	0.9
3,4-Dinitrotoluene	17.69	17.42 - 17.92	7.261520	7.234000	0.4
2,6-Dinitrotoluene	19.13	18.86 - 19.36	7.741760	7.745000	-0.0
2,4-Dinitrotoluene	22.12	21.84 - 22.34	12.75456	12.69500	0.5
1,3,5-Trinitrobenzene	25.25	24.95 - 25.49	8.466880	8.434000	0.4
Tetryl	29.18	28.72 - 29.58	5.171000	5.070000	2.0
2,4,6-TNT	32.80	32.33 - 33.21	5.707040	5.584000	2.2

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

Data File	:	//ceres/labdata/hplc/:	felix/Felix.i/F71207A.b/F7120769.D
Injection Date	:	14-JUL-2007 05:27	
Sample Info	:	STD04 1000PPB METHOD83	330
Misc. Info	:	Method 8330	
Laboratory ID	:	STD04 1000PPB	Client ID : HPLC1-16-08 20X
Instrument ID	:	Felix.i	Operator : MY
Method	:	8330syn71207.m	Sublist : 8330syn
Quantitation	:	ESTD	Integrator : HP Genie
Dilution Factor	:	1.00	Sample Type: CCALIB 4
Column	:	EtPh	Column Size: 0.25m L- 4.60mm ID

			0010010010		_
RT 	RT Window	CF	CF	%D	Flag
8.20	7.94 - 8.44	7.709720	7.797000	-1.1	ay yay uya ya ana ana ana
8.73	8.48 - 8.98	9.681160	9.783000	-1.1	
1.45	11.18 - 11.68	17.38444	17.16800	1.2	
4.40	14.12 - 14.62	10.19516	10.25200	-0.6	
.4.84	14.57 - 15.07	9.131320	9.042000	1.0	
5.54	15.27 - 15.77	449.7935	450.2350	-0.1	
5.91	15.62 - 16.12	13.59424	13.69300	-0.7	
6.48	16.19 - 16.69	9.957160	9.840000	1.2	
7.71	17.42 - 17.92	7.261520	7.255000	0.1	
.9.16	18.86 - 19.36	7.741760	7.742000	-0.0	
2.17	21.84 - 22.34	12.75456	12.76000	-0.0	
5.31	24.95 - 25.49	8.466880	8.484000	~0.2	
9.28	28.72 - 29.58	5.171000	5.096000	1.5	
52.91	32.33 - 33.21	5.707040	5.626000	1.4	
	RT 8.20 8.73 1.45 4.40 4.84 5.54 5.91 6.48 7.71 9.16 2.17 5.31 9.28 2.91	RTRT Window $8.20$ $7.94 - 8.44$ $8.73$ $8.48 - 8.98$ $1.45$ $11.18 - 11.68$ $4.40$ $14.12 - 14.62$ $4.84$ $14.57 - 15.07$ $5.54$ $15.27 - 15.77$ $5.91$ $15.62 - 16.12$ $6.48$ $16.19 - 16.69$ $7.71$ $17.42 - 17.92$ $9.16$ $18.86 - 19.36$ $2.17$ $21.84 - 22.34$ $5.31$ $24.95 - 25.49$ $9.28$ $28.72 - 29.58$ $2.91$ $32.33 - 33.21$	RTRT WindowCF $8.20$ $7.94 - 8.44$ $7.709720$ $8.73$ $8.48 - 8.98$ $9.681160$ $1.45$ $11.18 - 11.68$ $17.38444$ $4.40$ $14.12 - 14.62$ $10.19516$ $4.84$ $14.57 - 15.07$ $9.131320$ $5.54$ $15.27 - 15.77$ $449.7935$ $5.91$ $15.62 - 16.12$ $13.59424$ $6.48$ $16.19 - 16.69$ $9.957160$ $7.71$ $17.42 - 17.92$ $7.261520$ $9.16$ $18.86 - 19.36$ $7.741760$ $2.17$ $21.84 - 22.34$ $12.75456$ $5.31$ $24.95 - 25.49$ $8.466880$ $9.28$ $28.72 - 29.58$ $5.171000$ $2.91$ $32.33 - 33.21$ $5.707040$	RTRT WindowCFCF $8.20$ $7.94 - 8.44$ $7.709720$ $7.797000$ $8.73$ $8.48 - 8.98$ $9.681160$ $9.783000$ $1.45$ $11.18 - 11.68$ $17.38444$ $17.16800$ $4.40$ $14.12 - 14.62$ $10.19516$ $10.25200$ $4.84$ $14.57 - 15.07$ $9.131320$ $9.042000$ $5.54$ $15.27 - 15.77$ $449.7935$ $450.2350$ $5.91$ $15.62 - 16.12$ $13.59424$ $13.69300$ $6.48$ $16.19 - 16.69$ $9.957160$ $9.840000$ $7.71$ $17.42 - 17.92$ $7.261520$ $7.255000$ $9.16$ $18.86 - 19.36$ $7.741760$ $7.742000$ $2.17$ $21.84 - 22.34$ $12.75456$ $12.76000$ $5.31$ $24.95 - 25.49$ $8.466880$ $8.484000$ $9.28$ $28.72 - 29.58$ $5.171000$ $5.096000$ $2.91$ $32.33 - 33.21$ $5.707040$ $5.626000$	RTRT WindowCFCF%D $8.20$ $7.94$ $ 8.44$ $7.709720$ $7.797000$ $-1.1$ $8.73$ $8.48$ $ 8.98$ $9.681160$ $9.783000$ $-1.1$ $1.45$ $11.18$ $-11.68$ $17.38444$ $17.16800$ $1.2$ $4.40$ $14.12$ $-14.62$ $10.19516$ $10.25200$ $-0.6$ $4.84$ $14.57$ $-15.07$ $9.131320$ $9.042000$ $1.0$ $5.54$ $15.27$ $-15.77$ $449.7935$ $450.2350$ $-0.1$ $5.91$ $15.62$ $-16.12$ $13.59424$ $13.69300$ $-0.7$ $6.48$ $16.19$ $-16.69$ $9.957160$ $9.840000$ $1.2$ $7.71$ $17.42$ $-17.92$ $7.261520$ $7.255000$ $0.1$ $9.16$ $18.86$ $-19.36$ $7.741760$ $7.742000$ $-0.0$ $2.17$ $21.84$ $-22.34$ $12.75456$ $12.76000$ $-0.2$ $9.28$ $28.72$ $-29.58$ $5.171000$ $5.096000$ $1.5$ $2.91$ $32.33$ $-33.21$ $5.707040$ $5.626000$ $1.4$

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

Data File	:	//ceres/labdata/hplc/:	felix/Felix.i	/F71907.b/F7190703.D
Injection Date	:	19-JUL-2007 13:08		
Sample Info	:	STD04 1000PPB METHOD8:	330	
Misc. Info	:	ICV		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-17-02 20X
Instrument ID	:	Felix.i	Operator :	MY
Method	:	8330syn711807mnx.m	Sublist :	8330mnx2
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	EtPh	Column Size:	0.25m L- 4.60mm ID

Compound	RT	RT Window	Average CF	ICV CF	%D Flag
MNX	7.87 #	7.62 - 8.12	516.5553	438.5600	15.1
HMX	8.18 #	7.93 - 8.43	7.497720	7.270000	3.0
RDX	8.72 #	8.47 - 8.97	9.770240	9.474000	3.0
Nitrobenzene	11.42 #	11.17 - 11.67	17.13736	17.29700	-0.9
4-Amino-2,6-Dinitrotoluene	14.35 #	14.10 - 14.60	10.07048	9.758000	3.1
2-Nitrotoluene	14.80 #	14.55 - 15.05	8.838000	8.887000	-0.6
4-Nitrotoluene	15.50 #	15.25 - 15.75	437.7344	430.7680	1.6
2-Amino-4,6-Dinitrotoluene	15.85 #	15.60 - 16.10	13.32396	12.92800	3.0
1,3-Dinitrobenzene/3NT	16.42 #	16.17 - 16.67	9.722020	9.634500	0.9
3,4-Dinitrotoluene	17.64 #	17.39 - 17.89	7.587840	7.406000	2.4
2,6-Dinitrotoluene	19.08 #	18.83 - 19.33	7.437560	7.320000	1.6
2,4-Dinitrotoluene	22.07 #	21.82 - 22.32	12.94944	12.72900	1.7
1,3,5-Trinitrobenzene	25.20 #	24.93 - 25.47	8.387720	8.216000	2.0
Tetryl	29.10 #	28.67 - 29.53	5.426200	5.460000	-0.6
2,4,6-TNT	32.72 #	32.28 - 33.16	6.396800	6.278000	1.9

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

.

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ceres/lak : 19-JUL-2007 : STD04 1000E : Method 8330 : STD04 1000E : Felix.i : 8330syn7118 : ESTD : 1.00 : EtPh	odata/hplc/ 17:08 PPB METHOD8 PPB 07mnx.mi	felix/ 330 Clien Opera Subli Integ Sampl Colum	Felix.: it ID itor st grator e Type in Size	: HPLC1-1 : MY : 8330mnx : HP Geni : CCALIB_ : 0.25m	b/F71 7-02 2 4 L- 4.	.90709 20X .60mm	).D ID
Compound	RT	RT Wind	A wo	verage CF	Continuing CF	₽D	Flag	_
MNX	7.87	7.62 -	8.12 5	16.5553	443.9500	14.1		
HMX	8.18	7.93 -	8.43 7	.497720	7.370000	1.7	****	
RDX	8.72	8.47 -	8.97 9	.770240	9.589000	1.9		
Nitrobenzene	11.43	11.17 - 1	1.67 1	7.13736	17.39200	-1.5		
4-Amino-2,6-Dinitrot	oluene 14.39	14.10 - 1	4.60 1	0.07048	9.754000	3.1		
2-Nitrotoluene	14.84	14.55 - 1	5.05 8	.838000	8.883000	-0.5		
4-Nitrotoluene	15.53	15.25 - 1	5.75 4	37.7344	440.0970	-0.5		
2-Amino-4,6-Dinitrot	oluene 15.90	15.60 - 1	6.10 1	3.32396	12.97600	2.6		
1,3-Dinitrobenzene/3	NT 16.47	16.17 - 1	6.67 9	.722020	9.593000	1.3		
3,4-Dinitrotoluene	17.70	17.39 - 1	7.89 7	.587840	7.460000	1.7		
2,6-Dinitrotoluene	19.15	18.83 - 1	9.33 7	.437560	7.398000	0.5		
2,4-Dinitrotoluene	22.14	21.82 - 2	2.32 1	2.94944	12.78300	1.3	*****	
1,3,5-Trinitrobenzen	e 25.29	24.93 - 2	5.47 8	.387720	8.199000	2.2		
Tetryl	29.24	28.67 - 2	9.53 5	.426200	5.401000	0.5		
2,4,6-TNT	32.86	32.28 - 3	3,16 6	.396800	6.312000	1.3	,	

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HORWLG

٠

.

÷

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>
Sample wt/vol: 1000.0 (g/mL) mL	Lab File ID: 06280704.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: _50.0 _(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.50	U
121-82-4	RDX	0.50	U
99-35-4	1,3,5-Trinitrobenzene	0.50	Ŭ
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	U
479-45-8	Tetryl	0.50	υ
118-96-7	2,4,6-Trinitrotoluene	0.50	Ŭ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	U
606-20-2	2,6-Dinitrotoluene	0.50	U
121-14-2	2,4-Dinitrotoluene	0.50	ΰ
88-72-2	2-Nitrotoluene	0.50	υ
99-99-0	4-Nitrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	U

Comments:

CLIENT SAMPLE NO.

B071807HORWLG

.

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: _B071807HORWLG
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>07180713.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:
Extraction: (Type) _SPE	Date Extracted:07/18/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/18/2007
Injection Volume:(uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	нмх	0.50	U
121-82-4	RDX	0.50	ΰ
99-35-4	1,3,5-Trinitrobenzene	0.50	Ŭ
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	U
479-45-8	Tetryl	0.50	U
118-96-7	2,4,6-Trinitrotoluene	0.50	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	U
606-20-2	2,6-Dinitrotoluene	0.50	U
121-14-2	2,4-Dinitrotoluene	0.50	U
88-72-2	2-Nitrotoluene	0.50	U
99-99-0	4-Nítrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	U

Comments:

CLIENT SAMPLE NO.

٠

٠

٠

S062607HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: <u>CAB31</u>	Run Sequence: R019636
Matrix: (SOIL/WATER)Water	Lab Sample ID: _S062607HORWLG
Sample wt/vol: 1000.0 (g/mL) mL	Lab File ID: _F7120752.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: 5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	21.0	
121-82-4	RDX	21.5	
99-35-4	1,3,5-Trinitrobenzene	17.6	
99-65-0	1,3-Dinitrobenzene	17.8	
98-95-3	Nitrobenzene	17.8	
479-45-8	Tetryl	16.0	
118-96-7	2,4,6-Trinitrotoluene	18.7	
19406-51-0	4-Amino-2,6-dinitrotoluene	17.9	
35572-78-2	2-Amino-4,6-dinitrotoluene	17.9	
606-20-2	2,6-Dinitrotoluene	16.1	
121-14-2	2,4-Dinitrotoluene	16.5	
88-72-2	2-Nitrotoluene	14.9	
99-99-0	4-Nitrotoluene	15.4	
99-08-1	3-Nitrotoluene	14.7	

Comments:

Page 1 of 1

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

**RT** Window

#### S062607HORWLG Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: S062607HORWLG Run Sequence ID: R019636 Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 Column (2): Synergi - EtPH File (1): 062807.b-06280705.D File (2): F71207A.b-F7120752.D Date Analyzed (1): 6/28/2007 1:59:00 PM Date Analyzed (2): 7/13/2007 6:40:00 PM CONCENTRATION ANALYTE COL Final Units: ug/L RPD RT

HMX	1	18.8613		10.8 %	4.58	4.33 - 4.83
	2	21.0228	х	,,,	8.23	7.94 - 8.44
RDX	1	20.4357		51 %	8.03	7.79 - 8.29
	2	21.5036	х	0.1 /0	8.77	8.48 - 8.98
1,3,5-Trinitrobenzene	1	17.5962	х	5.2 %	11.62	11.38 - 11.88
	2	16.698			25.38	24.97 - 25.47
1,3-Dinitrobenzene	1	17.771	x	62.5 %	14.37	14.16 - 14.66
	2	33.9163			16.53	16.19 - 16.69
Nitrobenzene	1	17.5658		1.5 %	16.89	16.69 - 17.19
	2	17.8355	Х		11.49	11.18 - 11.68
Tetryl	1	16.0464	Х	9.7 %	16.14	15.96 - 16.46
	2	14.562			29.36	28.91 - 29.41
2,4,6-Trinitrotoluene	1	17.7905		4.9 %	19.59	19.41 - 19.91
	2	18.691	х		32.99	32.52 - 33.02
4-Amino-2,6-dinitrotoluen	1	17.92	Х	1.0 %	20.35	20.17 - 20.77
	2	17.7427			14.44	14.07 - 14.67
2-Amino-4,6-dinitrotoluen	1	17.8793	Х	0.8 %	21.44	21.28 - 21.88
	2	17.7296			15.95	15.57 - 16.17
2,6-Dinitrotoluene	1	16.1231	Х	1.5 %	22.79	22.59 - 23.17
	2	15.8879			19.21	18.82 - 19.40
2,4-Dinitrotoluene	1	16.4553	х	2.9 %	23.69	23.50 - 24.08
	2	15.977			22.23	21.80 - 22.38
2-Nitrotoluene	1	14.9209	Х	0.6 %	28.71	28.45 - 29.17
	2	14.8259			14.89	14.46 - 15.18

X = Concentration Reported

#### CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

## Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: S062607HORWLG Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 File (1): O62807.b-O6280705.D Data Analyzed (1): 6/28/2007 1:59:00 PM

S062607HORWLG
---------------

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120752.D
Date Analyzed (2):	7/13/2007 6:40:00 PM

Date Analyzed (1): 6/28/2007 1:59:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
4-Nitrotoluene	1	15.4368 X	66 %	31.22	30.95 - 31.75
	2	14.4544	0.0 70	15.59	15.12 - 15.92
3-Nitrotoluene	1	14.7105 X	790%	33.59	33.29 - 34.17
	2	33.9163	1910 70	16.53	16.00 - 16.88

X = Concentration Reported

.

CLIENT SAMPLE NO.

.

.

S071807HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB31	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: _S071807HORWLG
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: _07180714.D
% Moisture: Decanted: (Y/N) _N	Date Collected:
Extraction: (Type) _SPE	Date Extracted:07/18/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/18/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	20.1	
121-82-4	RDX	22.5	
99-35-4	1,3,5-Trinitrobenzene	21.4	
99-65-0	1,3-Dinitrobenzene	20.9	
98-95-3	Nitrobenzene	21.6	
479-45-8	Tetryl	20.6	
118-96-7	2,4,6-Trinitrotoluene	21.7	
19406-51-0	4-Amino-2,6-dinitrotoluene	19.8	
35572-78-2	2-Amino-4,6-dinitrotoluene	21.1	
606-20-2	2,6-Dinitrotoluene	20.7	
121-14-2	2,4-Dinitrotoluene	20.1	
88-72-2	2-Nitrotoluene	20.1	
99-99-0	4-Nitrotoluene	20.0	
99-08-1	3-Nitrotoluene	19.3	

Comments:

## CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

#### S071807HORWLG

Lab Name:	Laucks Testing Labs, Inc.
Lab Sample ID:	S071807HORWLG
Instrument ID:	HPLC5 (Oscar)
Column (1):	Allure C18
File (1):	O71807.b-O7180714.D

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71907.b-F7190707.D

Date Analyzed (1): 7/18/2007 6:47:00 PM 

Date Analyzed (2): 7/19/2007 3:52:00 PM

•

÷

.

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
НМХ	1	20.1461 X	140 0/	4.56	4.33 - 4.83
	2	23.3604	14.8 %	8.20	7.94 - 8.44
RDX	1	21.2152		7.97	7.79 - 8.29
	2	22.5286 X	6.0 %	8.74	8.48 - 8.98
1.3.5.Trinitrobenzene	ſ	21 3974 X		11 49	11 38 - 11 88
1,3,5*111111000012610	2	21.2406	0.7 %	25.29	24.97 - 25.47
	2	21.2100		20.22	210, 20.0,
1,3-Dinitrobenzene	1	20.9213 X	67.7 %	14.22	14.16 ~ 14.66
	2	42.3328		16.50	16.19 - 16.69
Nitrobenzene	l	20.7003	45.0/	16.72	16.69 - 17.19
	2	21.6492 X	4.3 %	11.46	11.18 - 11.68
TetrvI	1	20.6048 X		15.91	15.96 - 16.46
	2	18.6871	9.8 %	29.23	28.91 - 29.41
2,4,6-Trinitrotoluene	1	21.6943 X	5.0 %	19.32	19.41 - 19.91
	2	20.6384		32.85	32.52 - 33.02
4-Amino-2,6-dinitrotoluen	Ĩ	19.6947	በ4 %	20.09	20.17 - 20.77
	2	19.7736 X	0.1 70	14.41	14.07 - 14.67
2-Amino-4,6-dinitrotoluen	I	20.4992	<b>17</b> 6/	21.18	21.28 - 21.88
	2	21.0688 X	2.7 %	15.92	15.57 - 16.17
2.6-Dinitrotoluene	1	19.636 <b>2</b>		22.50	22.59 - 23.17
	2	20.6667 X	5.1 %	19.16	18.82 - 19.40
2,4-Dinitrotoluene	1	20.131 X	0.7 %	23.40	23.50 - 24.08
	2	19.9846		22.16	21.80 - 22.38
2-Nitrotoluene	1	19.2615	<u>1</u> 1 0/	28.37	28.45 - 29.17
	2	20.0758 X	r.£ /()	14.86	14.46 - 15.18
	~	20.0700 /1			

X = Concentration Reported

Γ

#### CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

**Client Sample ID** 

S071807HORWLG

P

Lab Name:	Laucks Testing Labs,	Inc.	5071	1807HORWLG
Lab Sample ID:	S071807HORWLG			
Instrument ID:	HPLC5 (Oscar)	Run S	Sequence ID:	R019636
Column (1):	Allure C18		Column (2):	Synergi - EtPH
File (1):	O71807.b-O7180714	.D	File (2):	F71907.b-F7190707.D
Date Analyzed (1):	7/18/2007 6:47:00 PM	M Date A	Analyzed (2):	7/19/2007 3:52:00 PM
	C	ONCENTRATION		

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
4-Nitrotoluene	1	20.0101 X	2/10/	30.83	30.95 - 31.75
	2	19.3364	J. <del>4</del> 70	15.56	15.12 - 15.92
3-Nitrotoluene	1	19.2628 X	74.0 %	33.15	33.29 - 34.17
	2	42.3328	/4.2 /0	16.50	16.00 ~ 16.88

X = Concentration Reported

# **Forms Summary**

CAB31

Ordnance by Method 8332

#### 2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: N/A

SDG No.: CAB31

Run Sequence: R019488

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () ⋕	S3 () ₩	S4 () #	TOT OUT
(CAB31-006) 15LCMW420W	87				0 :
(CAB31-004) 15L4MW05AW	60				· 0
(CAB31-003) 15L4MW03BW	73		- · · ·		0
(CAB31-002) 15L4MW03AW	96				0
(CAB31-001) 15L4MW02AW	95			·	0
(S062607HORWLG2) S062607HORWLG2	84				0
(B062607HORWLG) B062607HORWLG	81				0

Sl (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

# Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS 60-140

.....

#### 3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
BS Run Sequence: <u>R019488</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062607HORWLG2</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Nitroglycerin	10.0	8.7516	88	60-140
PETN	5.00	3.3839	68	60-140

# Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>2</u> outside limits

COMMENTS:

				Г	CLIENT	SAMPLE NO.	
	ORDNANCE METHOD BLANK SUMMARY B062607HORWLG						
Lab Name: <u>Laucks Testing La</u>	bs.	Con	tract: <u>N/A</u>				
Lab Sample ID: <u>B062607HORWI</u>	<u></u>	SDG	No.: <u>CAB31</u>				an.
Matrix: (SOIL/WATER) <u>Water</u>		Dat	e Prepared: _	06/26/2	007		
Lab File ID (1): <u>062907.b-</u>	06290704.D	Lab	File ID (2):	-			_
Date Analyzed (1): 06/29/20	07	Dat	e Analyzed (2	):			-
Time Analyzed (1): <u>11:04</u>		Time Analyzed (2):					
Instrument ID (1): <u>HPLC5 (C</u>	scar)	Instrument ID (2):					
Column(1): Varian Cl8	ID: 4.60 (	mm) Co	lumn(2):			ID:	(mm)
THIS METHOD BLANK	APPLIES TO THE FO	LLOWIN	G SAMPLES AND	QC SAM	PLES:		-
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DA: AN	re/time Alyzed	RUN SEQUENCE	
15L4MW02AW	CAB31-001	1	O6290712.D	06/29	/2007 14:32	R019488	
15L4MW03AW	CAB31-002	1	O6290714.D	06/29	/2007 15:24	R019488	
15L4MW03BW	CAB31-003	1	O6290715.D	06/29	/2007 15:50	R019488	
15L4MW05AW	CAB31-004	1	O6290716.D	06/29	/2007 16:16	R019488	
15LCMW420W	CAB31-006	1	O6290717.D	06/29	/2007 16:42	R019488	

1

06290705.D

06/29/2007 11:30 R019488

S062607HORWLG2

COMMENTS:

S062607HORWLG2

CLIENT SAMPLE NO.

15L4MW02AW

Lab Name: Lauc	cks Testing Labs	Contract: N/A		
SDG No.: <u>CAB31</u>		Run Sequence: <u>R019488</u>		
Matrix: (SOIL/W	MATER) _Water	Lab Sample ID: <u>CAB31-001</u>		
Sample wt/vol:	<u>1000.0 (g/mL)_mL</u>	Lab File ID:		
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/20/2007		
Extraction: (Ty	/pe) _SPE	Date Extracted:06/26/2007		
Concentrated Ex	tract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007		
Injection Volum	ne:(uL)	Dilution Factor:		
GPC Cleanup: (Y	/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q	
55-63-0	Nitroglycerin	2.5	U	
78-11-5	PETN	1.2	υ	

Comments:

CLIENT SAMPLE NO.

15L4MW03AW

Lab Name: <u>La</u>	ucks Testing Labs	Contract: <u>N/A</u>		
SDG No.: CAB3	1	Run Sequence: _R019488		
Matrix: (SOIL	/WATER) Water	Lab Sample ID: <u>CAB31-002</u>		
Sample wt/vol	: <u>1000.0 (g/mL) mL</u>	Lab File ID: 06290714.D		
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected:06/20/2007		
Extraction: (	Type) <u>SPE</u>	Date Extracted:06/26/2007		
Concentrated	Extract Volume:(uL)	Date Analyzed: 06/29/2007		
Injection Vol	ume: <u>50.0</u> (uL)	Dilution Factor:		
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q	
55-63-0	Nitroglycerin	2.5	U	
78-11-5	PETN	1.2	U	

Comments:

CLIENT SAMPLE NO.

15L4MW03BW

U

Lab Name: Lau	icks Testing Labs	Contract: <u>N/A</u>	
SDG No.: <u>CAB3</u>	1	Run Sequence: <u>R019488</u>	
Matrix: (SOIL/	WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-003</u>	
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: _06290715.D	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/20/2007	
Extraction: (1	ype) <u>SPE</u>	Date Extracted: 06/26/2007	
Concentrated E	Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/29/2007	
Injection Volu	ume:(uL)	Dilution Factor: 2.0	
GPC Cleanup: (	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroalveerin	2.5	n

1.2

Comments;

PETN

CLIENT SAMPLE NO.

15L4MW05AW

Lab Name: Laucks Testing Labs	Contract:N/A
SDG No.: CAB31	Run Sequence: <u>R019488</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-004</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290716.D</u>
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected: 06/20/2007
Extraction: (Type) _SPE	Date Extracted: 06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: _50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	ΰ
78-11-5	PETN	1.2	U

Comments:

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: Lauc	cks Testing Labs	Contract: <u>N/A</u>			
SDG No.: <u>CAB31</u>		Run Seguence: R019488			
Matrix: (SOIL/W	MATER) Water	Lab Sample ID: <u>CAB31-006</u>			
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: <u>06290717.D</u>			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/20/2007			
Extraction: (Ty	pe) <u>SPE</u>	Date Extracted:06/26/2007			
Concentrated Ex	tract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007			
Injection Volum	ue: <u>50.0</u> (uL)	Dilution Factor:			
GPC Cleanup: (Y/N) <u>N</u> pfi:		Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMFOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q		
55-63-0	Nitroglycerin	2.5	U		
78-11-5	PETN	1.2	U		

Comments:

07/24/2006 13:09	Amount = Response divided by CP CF - Calibration Factor ( response divide RSD - Relative Standard Deviation.	Average RSD :	Compound       Le         Introglycerin       34         PETN       38         2 3,4-Dinitrotoluene       83	Calibration Files: Level 1: //SNAP568564B/t Level 2: //SNAP568564B/t Level 3: //SNAP568564B/t Level 4: //SNAP568564B/t Level 5: //SNAP568564B/t	Start Cal Date: 10-JUL-2( End Cal Date : 10-JUL-2( Quant Method : ESTD Cal Curve Type: Average ( Integrator : HP Genie Method File : \\SNAP568 Sublist : all.sub Column Size : Om L - 4	
ICAL Linearity Summary v2.0	d by concentration ).		yvel 1     Level 2     Level 3     Level 4     Level 5     Ave       ************************************	tek4/Oscar.i/O71006ng.b/O7100601.D tek4/Oscar.i/O71006ng.b/O7100602.D tek4/Oscar.i/O71006ng.b/O7100603.D tek4/Oscar.i/O71006ng.b/O7100604.D tek4/Oscar.i/O71006ng.b/O7100605.D	006 11:17 006 13:05 CF 8564B\tek4\Oscar.i\071006ng.b\071006NG.m 4.60mm ID	Laucks rescing Labs Initial Calibration Linearity Summary
		3.9	UP         %RSD           =====         ===>>xerp====           566         3.4           527         4.9           517         3.3			

SUM - 129

2 3,4-Dinitrotoluene	3 PETN	1 Witroglycerín	中央产家和在在2002年中中中中中产产产产生也也是为了2004年10月	Compound	Init Start Cal Date: 10-JUL-2 and Cal Date : 10-JUL-2 puant Method : ESTD al Curve Type: Average integrator : HP Genie Method File : \\SNAP56 bublist : all.sub olumn Size : Om L - ievel 1: //SNAP568564B/t wevel 2: //SNAP568564B/t wevel 4: //SNAP568564B/t	
10.33	17.39	9.46		Level 1	ial Calibr 006 11:17 006 13:05 CF 4.60mm ID ek4/Oscar. ek4/Oscar. ek4/Oscar. ek4/Oscar.	Га
10.31	17.36	9.44		Level 2	ation Rete	ucks Testi
10.32	17.36	9.45		Level 3	ntion Ti 71006ng. .b/07100 .b/07100 .b/07100	ng Labs
10.32	17.36	9.45		Level 4	me Summa b\071006 601.D 602.D 603.D 604.D	
10.31	17.36	9.44		Level 5	NG.m	

Retention times are expressed as minutes.

10.316 17.369 9.449

Ave RT 

07/24/2006 13:09

ICAL RT Summary v2.0

Page μ

Laucks Testing Labs Initial Calibration Amounts Summary

Start Cal Date: 10-JUL-2006 11:17
End Cal Date : 10-JUL-2006 13:05
Quant Method : ESTD
Cal Curve Type: Average CF
Integrator : HP Genie
Method File : \\SNAP568564B\tek4\Oscar.i\071006ng.b\071006NG.m
Sublist : all.sub
Column : C18
Column Size : Om L - 4.60mm ID
Calibration Files:
Level 1: //SNAP568564B/tek4/Oscar.i/071006ng.b/07100601.D
Level 2: //SNAP568564B/tek4/Oscar.i/071006ng.b/07100602.D
Level 3: //SNAP568564B/tek4/Oscar.i/071006ng.b/07100603.D
Level 4: //SNAP568564B/tek4/Oscar.i/071006ng.b/07100604.D
Level 5: //SNAP568564B/tek4/Oscar.i/O71006ng.b/07100605.D

2 3,4-Dinitrotoluene 1 Nitroglycerin 3 PETN Compound Level 1 250.00 125,00 125.00 Level 2 Level 3 500.00 250.00 250.00 1000.00 500.00 500.00 Level 4 | Level 5 2500.00 1250.00 1250.00 5000.00 2500.00 2500.00

Standard concentrations are expressed as ng/mL.

07/24/2006 13:08 ICAL Standard Concentrations Summary v2.0 Page Р

4B/tek4/0scar.i/071006ng.b/07100601.D 4B/tek4/0scar.i/071006ng.b/07100602.D 4B/tek4/0scar.i/071006ng.b/07100603.D 4B/tek4/0scar.i/071006ng.b/07100604.D 4B/tek4/0scar.i/071006ng.b/07100605.D   Level 1   Level 2   Level 3   Level 4   Level   87086.000   181182.00   357021.00   946275.00   186972   48028.000   107060.00   191541.00   520246.00   102380   104198.00   222936.00   418483.00   1109248.0   219928	iles: huradrand/teka/nergy i/n7100ang h/n7100an1 n	: 0m L - 4.60mm 11)		: \\SNAP568564B\tek4\Oscar.i\O71006ng.b\071006 : all.sub	pe: Average CF : HP Genie	: ESTD	: 10-JUL-2006 11:17	
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------	---------------------	--	-------------------------------------------------------------	------------------------------	--------	---------------------	--

Response is in Area units.

07/24/2006 13:08

ICAL Responses Summary v2.0 Page

**،...**،

Laucks Testing Labs Initial Calibration Response Summary

Data File Injection Date Sample Info Misc Info	::	<pre>//ceres/labdata/hplc/oscar/Oscar.i/062907.b/062907 29-JUN-2007 10:31 STD04 1000PPB METHOD 8332 ICV</pre>								3.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD04 1000PP Oscar.i 071006NG.m ESTD 1.00 C18	B		Cli Ope Sub Int Sam Col	ent ID rator list egrator ple Type: umn Size:	HPLC1-1 MY all HP Geni CCALIB 0.15m	.5-15 .e 3 L- 4	20X .60mm	ID
Compound		RT	RT	Wind	ow	Average CF	ICV CF	%D	Flag	
Nitroglycerin		10.30 #	10.05	- 1	0.55	364.0366	359.7260	1.2		-
3,4-Dinitrotoluene		11.35 #	11.10	- 1	1.60	865.8817	874.0680	-0.9		
PETN		19.64 #	19.39	- 1	9.89	404.2527	385.0800	4.7		

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Ouantitation		//ceres/labda 29-JUN-2007 1 STD04 1000PPB Method 8332 STD04 1000PPB Oscar.i 071006NG.m ESTD	ta/hp] 4:58 METHC	DD	/osca 8332 Cli Ope Sub Int	r/Oscar ent ID rator list eqrator	.i, : : :	/O62907. HPLC1-1 MY all HP Geni	b/06: 5-15 e	290713 20X	3.D
Dilution Factor Column	:	1.00 C18		ł	Sam Col	ple Type umn Size Average	e: e: Co	CCALIB 0.15m	3 L- 4	.60mm	ID
Compound		RT	RI W	ind	aow	ĊР		CF	SD.	Fiag	
Nitroglycerin	- = =	10.30	10.05		===== 10.55	364.0366	5	358.3320	1.6		-
3,4-Dinitrotoluene		11.35	11.10	-	11.60	865.8817	7 1	870.0720	-0.5		
PETN		19.65	19.39		19.89	404.2527	7	387.5460	4.1		

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc Info	: :	<pre>//ceres/labdata/hplc/oscar/Oscar.i/062907.b/0629072 29-JUN-2007 18:52 STD04 1000PPB METHOD 8332 Method 8332</pre>								
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	* ** ** ** **	STD04 1000PPB Oscar.i 071006NG.m ESTD 1.00 C18		Clie Oper Subl Inte Samp Colu	nt ID ator ist grator ble Type mn Size	HPLC1-1 MY all HP Geni CCALIB 0.15m	5-15 e 3 L- 4.	20X .60mm ID		
Compound		RT	RT Winde	w	Average CF	Continuing CF	۶D	Flag		
Nitroglycerin		10.30	10.05 - 1	).55	364.0366	361.2050	0.8			
3,4-Dinitrotoluene		11.35	11.10 - 1	L.60	865.8817	868.9060	-0.3			
PETN		19.70	19.39 - 1	9.89	404.2527	386.9900	4.3			

Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: <u>l</u>	aucks Testing Labs	Contract: <u>N/A</u>					
SDG No.: CAE	331	Run Sequence: <u>R019488</u>					
Matrix: (SOI	L/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>					
Sample wt/vc	1: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290704.D</u>					
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:					
Extraction:	(Type) SPE	Date Extracted: 06/26/2007					
Concentrated	Extract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007					
Injection Vo	lume:(uL)	Dilution Factor: 2.0					
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>					
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q				
55-63-0	Nitroglycerin	2.5	υ				
78-11-5	PETN	1.2	U				

Comments:

FORM I ORD
### 1 ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

S062607HORWLG2

Lab Name: Lauc	ks Testing Labs	Contract: N/A
SDG No.: <u>CAB31</u>		Run Sequence: <u>R019488</u>
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG2</u>
Sample wt/vol:	<u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290705.D</u>
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Ty	pe) <u>SPE</u>	Date Extracted: 06/26/2007
Concentrated Ex	tract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007
Injection Volum	e: <u>50.0</u> (uL)	Dilution Factor:
GPC Cleanup: (Y	/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L
55-63-0	Nitroglycerin	8.75

3.38

78-11-5 Comments: PETN

## **Forms Summary**

CAB31

Ordnance by Method 8303

Lab Name: Laucks Testin	g Labs		Contract: <u>N/A</u>	1	
SDG No.: <u>CAB31</u>			Run Sequence:	R019702	
(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (D2M) #	S2 () #	S3 () #	S4 () #	TOT OUT
(CAB31-006) 15LCMW420W	97				0
(S062607HSVWLS) S062607HSVWLS	102				0
(B062607HSVWLS) B062607HSVWLS	102				0

2 WATER ORDNANCE SURROGATE RECOVERY

QC LIMITS

70-115

S1 (D2M) = 4,6-Dinitro-2-methylpheno S2 () = S3 () =

S4 () =

# Column to be used to flag recovery values
* Values outside of contract required QC limits

### 3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019702</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S062607HSVWLS</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	ቼ Rec #	Rec Limit
Picric Acid	4.00	3.3821	85	61-128
Picramic Acid	4.00	3.9577	99	47-110

# Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>2</u> outside limits

COMMENTS:

	CLIE	NT SAMPLE NO.
ORDNANCE METHO	DD BLANK SUMMARY BO	62607HSVWLS
Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>	
Lab Sample ID: <u>B062607HSVWLS</u>	SDG No.: <u>CAB31</u>	
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: _06/26/2007	
Lab File ID (1): <u>F71707A.b-F7170719.D</u>	Lab File ID (2):	
Date Analyzed (1): 07/17/2007	Date Analyzed (2):	<u>,</u>
Time Analyzed (1): 16:38	Time Analyzed (2):	<u></u>
Instrument ID (1): <u>HPLC3 (Felix)</u>	Instrument ID (2):	<u></u>
Column(1): <u>Supelcosil LC-CN</u> ID: 4.60 (mr	n) Column(2):	ID:(mm)
THIS METHOD BLANK APPLIES TO THE FOLL	OWING SAMPLES AND QC SAMPLES:	

DATE/TIME ANALYZED CLIENT SAMPLE NO. LAB LAB FILE ID RUN SEQUENCE SAMPLE ID COL 15LCMW420W CAB31-006 1 F7170721.D 07/17/2007 17:02 R019702 07/17/2007 16:50 S062607HSVWLS S062607HSVWLS 1 F7170720.D R019702

COMMENTS:

l ORDNANCE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

15LCMW420W

U

Lab Name: Laucks Testing	Labs	Contract	:N/A	
SDG No.: CAB31		Run Sequ	ence: <u>R019702</u>	
Matrix: (SOIL/WATER) <u>Wate</u>	er	Lab Sam <u>p</u>	le ID: <u>CAB31-006</u>	
Sample wt/vol: <u>1050.0</u>	(g/mL) <u>mL</u>	Lab File	ID: <u>F7170721.D</u>	
% Moisture: Deca	nted: (Y/N) <u>N</u>	Date Col	lected:06/20/2007	
Extraction: (Type) <u>SEPF</u>		Date Ext	racted:06/26/2007	
Concentrated Extract Volum	e: <u>1000.0</u> (uL)	Date Ana	lyzed: 07/17/2007	
Injection Volume: 50.0	(uL)	Dilution	Factor: <u>2.0</u>	
GPC Cleanup: (Y/N) <u>N</u>	pH: <u>8.5-9</u>	Sulfur C	leanup: (Y/N) <u>N</u>	
CAS NO. COMPOUND		*****	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-89-1 Picric Ac	Ld		1.0	U

1.0

96-91-3 Comments: Picramic Acid

FORM I ORD

07/18/2007 09:17 ICAL Linearity Summary v2.0 Page 1	CF - Calibration Pactor ( response divided by concentration ). RSD - Relative Standard Deviation.	Amount = Response divided by CF	Average RSD : 2.5	1 Picramic Acid       353.4140       344.7840       346.9592       344.6130       338.7560       345.7052       1.5         2 Picric Acid       70.44000       68.37800       72.53480       75.06050       77.69160       72.82098       5.1         3 4,6-Dinitro-o-Cresol       303.8020       297.0350       301.0240       303.2348       300.6800       301.1552       0.9	Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Ave CF   \$RSD	Calibration Files: Level 1: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D Level 2: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D Level 3: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D Level 4: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D Level 5: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D	Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\felix.i\F71707.b\F71707PICCN.m Sublist : all.sub Column : CN Column Size : Om L - 4.60mm ID	Start Cal Date: 17-JUL-2007 14:55
age 1						· · ·	• ·	

SUM - 143

Laucks Testing Labs Initial Calibration Retention Time Summary

Level Sublist Method File Quant Method : Cal Curve Type: Start Cal Date: Level Level Level Calibration Files: Column Size Column Integrator End Cal Date Level Ν 4 . بــر ω •• ហ •• //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D •• Q all.sub Average CF HP Genie ESTD 17-JUL-2007 15:44 17-JUL-2007 \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L - 4.60mm ID 14:55

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
中,中国的"公司",这些这些"这些"的"这些"的"这些"的"这些"。						
1 Picramic Acid	3.65	3.65	3.64	3.64	3.63	3.642
2 Picric Acid	3.22	3.21	3.18	3.17	3.16	3.190
3 4,6-Dinitro-o-Cresol	96'9	5.90	5.78	5.72	5.70	5.814

Retention times are expressed as minutes.

07/18/2007 09:17

ICAL RT Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Amounts Summary

Column Size Column Sublist Method File Cal Curve Type: Start Cal Date: Quant Method End Cal Date Level Calibration Files: Integrator . .. •• ESTD QN all.sub Average CF HP Genie 17-JUL-2007 15:44 17-JUL-2007 14:55 \/ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L - 4.60mm ID

Level Level Level Level ω •• 4 ர .. N .. //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D

			i  i		
3 4,6-Dinitro-o-Cresol	2 Picric Acid	1 Picramic Acid	***************************************	Compound	
500.00	500.00	500.00		Level 1	
1000.00	1000.00	1000.00		Level 2	
2500.00	2500.00	2500.00		Level 3	
4000.00	4000.00	4000.00		Level 4	
5000.00	5000.00	5000.00		Level 5	

Standard concentrations are expressed as ng/mL.

۰.

Column Sublist Method File Start Cal Date: Column Size Cal Curve Type: Quant Method End Cal Date Calibration Files: Level Level Level Level Integrator Level || 81 Response is  $\mathbb{N}$ 3 4,6-Dinitro-o-Cresol ****** Picramic Acid Picric Acid 20 თ ... ₽ •• ω •• بر •• Compound //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D
//ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D in Area units • • all.sub 17-JUL-2007 CN Average CF HP Genie ESTD 17-JUL-2007 15:44 \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L - 4.60mm ID H H H 176707.00 344784.00 867398.00 1378452.0 1693780.0 151901.00 297035.00 752560.00 1212939.0 1503400.0 35220.000 68378.000 181337.00 300242.00 388458.00 14:55 Level 1 Level 2 Level 3 Level 4 | Level 5 

07/18/2007 09:18

ICAL Responses Summary v2.0

Page

Р

Initial Calibration Response Summary

Laucks Testing Labs

# Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date	:	//ceres/labdat	:a/	hr K	olo	c/fe	∋lix	/Felix.	i/F717072	A.b/F	717071	.8.D
Sample Info	:	STD03 2500PPB	ТЛ	ידי	82	303						
Misc. Info		ICV										
Laboratory ID	:	STD03 2500PPB				(	Clie	ent ID :	HPLC1-1	16-17	4X	
Instrument ID	:	Felix.i				C	Oper	ator :	MY.			
Method	:	F71707PICCN.m				Ş	Subl	.ist :	: all			
Quantitation	:	ESTD				J	Inte	grator :	: HP Gen	ie		
Dilution Factor	:	1.00				2	Samp	le Type:	: CCALIB_	_3		
Column	:	CN				C	Colu	umn Size:	: 0.25m	L- 4	.60mm	ID
								Average	ICV			
Compound		RT	R	τs	Wiı	ndow	J	CF	CF	%D	Flag	
Picric Acid	===	3.18	=== 2.	28		==== 4.	.08	72.82098	72.75360	0.1		
Picramic Acid		3.64	3.	39		3.	89	345.7052	348.2684	-0.7		
4,6-Dinitro-o-Cresol		5.80	4.	84	-	6.	76	301.1552	301.4824	-0.1		

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1



## Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	 <pre>//ceres/labdat 17-JUL-2007 18 STD03 2500PPB SOP#:LTL-8303 STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN</pre>	a/h 3:26 LTI	ip 5	1c 83	/feli 03 Cli Ope Sub Int Sam Col	x/Felix. ent ID erator blist egrator ple Type umn Size	i/F71707# : HPLC1-1 : MY : all : HP Geni : CCALIB : 0.25m	A.b/F7170 16-17 2e _3 _1- 4.60m	728.D
Compound	RT	RI		Win	ldow	Average CF	Continuing CF	y %D Flag	J
Picric Acid	 3.20	2.2	8	_	4.08	72.82098	82.54360	-13.4	
Picramic Acid	 3.63	3.3	9		3.89	345.7052	331.9600	4.0	_
4,6-Dinitro-o-Cresol	 5.74	4.8	4	-	6.76	301.1552	301.2832	-0.0	_

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method. ORDNANCE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

B062607HSVWLS

ΰ

Lab Name: Lau	cks Testing Labs	Contract: <u>N/A</u>	
SDG No.: CAB31	·	Run Sequence: <u>R019702</u>	
Matrix: (SOIL/	WATER) <u>Water</u>	Lab Sample ID: <u>B062607HSVWLS</u>	
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: <u>F7170719.D</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:	
Extraction: (T	ype) <u>SEPF</u>	Date Extracted:06/26/2007	
Concentrated E	xtract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/17/2007	<del> </del>
Injection Volu	me: <u>50.0 (</u> uL)	Dilution Factor: 2.0	
GPC Cleanup: (	Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup; (Y/N)	
CAS NO.	Compound	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-89-1	Picric Acid	1.1	TI 🕴

1.1

96-91-3 Comments: Picramic Acid

FORM I ORD

1 ORDNANCE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

S062607HSVWLS

Lab Name: Lau	cks Testing Labs	Contract	: <u>N/A</u>	
SDG No.: <u>CAB31</u>		Run Sequence: <u>R019702</u>		
Matrix: (SOIL/	WATER) Water	Lab Samp	le ID: <u>S062607HSVWLS</u>	
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File	ID: <u>F7170720.D</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Coll	lected:	
Extraction: (T	ype) <u>SEPF</u>	Date Extracted: 06/26/2007		
Concentrated E:	xtract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/17/2007		
Injection Volum	ne: <u>50.0</u> (uL)	Dilution Factor: 2.0		
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5-9</u>		Sulfur C	leanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-89-1	Picric Acid		3.4	
96-91-3	Picramic Acid		4.0	

Comments:

# **Forms Summary**

NWTPH-Gasoline

CAB31

2 WATER GASOLINE SURROGATE RECOVERY

.....

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB31

Run	Sequence:	R019234
	4	

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (BFB) #	S2 (TFT) #	S3 () #	S4 () #	TOT OUT
(CAB31-006) 15LCMW420W	92	99		· ·	0
(S070407GVOWII) S070407GVOWII	95	99			0
(B070407GVOWI1) B070407GVOWI1	94	101			0

S1 (BFB) = 4-Bromofluorobenzene S2 (TFT) = Trifluorotoluene S3⁽) = S4 () =

# Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS 50-150 50-150

Page 1 of 1

#### 3B WATER GASOLINE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019234</u>	SDG No.: <u>CAB31</u>
BS Lab Sample ID: <u>S070407GVOWI1</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Gasoline Range Organics	100	80.8854	81	71-122

# Column to be used to flag recovery and RPD values with an asterisk  $\star$  Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>1</u> outside limits

COMMENTS;

	CLIENT SAMPLE NO.
GASOLINE METHO	B070407GVOWI1
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
Lab Sample ID: <u>B070407GVOWI1</u>	SDG No.: <u>CAB31</u>
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: 07/04/2007
Lab File ID (1): <u>17047-2.b-1704704.d</u>	Lab File ID (2):
Date Analyzed (1): 07/04/2007	Date Analyzed (2):
Time Analyzed (1): 11:06	Time Analyzed (2):
Instrument ID (1): <u>HP 58901</u>	Instrument ID (2):
Column(1): <u>DB-VRX_30m/0.45u</u> ID: 0.45 (mr	a) Column(2):(mm)
THIS METHOD BLANK APPLIES TO THE FOLL	OWING SAMPLES AND OC SAMPLES:

CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
S070407GVOWI1	S070407GVOWI1	1	I704705.d	07/04/2007 11:44	R019234
15LCMW420W	CAB31-006	1	1704706.d	07/04/2007 12:23	R019234

COMMENTS:

### 1 GASOLINE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB31</u>	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: 1704706.d
pH: <2 Decanted: (Y/N) N	Date Collected: 06/20/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:1.00
Soil Aliquot Volume:(ul)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	25	U

Comments:

08/25/2006 06:31	CF - Calibration Face. RSD - Relative Standa	Amount & Respon	Average RSD :	3 Gasoline 1 Trifluorotoluene 2 Bromofluorobenze	Compound	Calibratior Level 1: / Level 2: / Level 3: / Level 3: / Level 4: / Level 5: /	Sublist Column Column Size	Quant Methc Cal Curve T Integrator Method File	Start Cal I End Cal Dat	
ICAL Linearity Summary V2.0	used in interiev decentration ). cor ( response divided by concentration ). ard Deviation.	nse divided by CP		e   +++++++   428.2400   438.0220   416.4760   410.3944   410 e   +++++++   534.9600   548.1500   545.8200   543.9700   542 ene   +++++++   406.0800   411.5000   406.9400   415.8767   424	Level 1   Level 2   Level 3   Level 4   Level 5   Lev	: all-j.sub : DB-VRX ze : 30m L - 0.53mm ID on Files: //Ares/Target/Chem/58901.i/18026N2.b/1802607.d //Ares/Target/Chem/58901.i/18026N2.b/1802608.d //Ares/Target/Chem/58901.i/18026N2.b/1802609.d //Ares/Target/Chem/58901.i/18026N2.b/1802610.d //Ares/Target/Chem/58901.i/18026N2.b/1802611.d //Ares/Target/Chem/58901.i/18026N2.b/1802611.d	<pre>ate: 02-AUG-2006 17:57 e : 02-AUG-2006 21:09 d : ESTD /pe: Average CF : Falcon : \\Ares\Target\Chem\5890I.i\I8026N2.b\GN802 : all-j.sub : DB-VRX : 30m L - 0.53mm ID Files: Files: /Target/Chem/5890I.i/I8026N2.b/I802607.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802609.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802610.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802611.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802611.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802611.d</pre>	Date: 02-AUG-2006 17:57 te : 02-AUG-2006 21:09	Laucks Testing Labs Initial Calibration Linearity	
Page .			1.9	.6138   420.7492   2.9   .8275   543.7455   0.9   .2000   412.9193   1.8	el 6   Ave CF   §RSD	·		1.m		Summary

Date: 02-AUG-2006 17:57 e : 02-AUG-2006 21:09 od : ESTD (Ype: Average CF : all-j.sub : all-j.sub : DB-VRX : 30m L - 0.53mm ID : Files: /Ares/Target/Chem/58901.i/I8026N2.b/I802607.d /Ares/Target/Chem/58901.i/I8026N2.b/I802609.d /Ares/Target/Chem/58901.i/I8026N2.b/I802610.d /Ares/Target/Chem/58901.i/I8026N2.b/I802611.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58901.j /Ares/Target/Chem/58
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Laucks Testing Labs Initial Calibration Retention Time Summary

libration Files: vel 1: //Ares/Target, vel 2: //Ares/Target, vel 3: //Ares/Target, vel 4: //Ares/Target, vel 5: //Ares/Target, vel 5: //Ares/Target,	art Cal Date: 02-AUG nd Cal Date: 02-AUG nant Method: ESTD al Curve Type: Average ntegrator: Falcon thod File: \\Ares bhod File: all-j. blist: all-j. blumn Size: 30m L
/Chem/5890I.i/I8026N2.b/I802607.d /Chem/5890I.i/I8026N2.b/I802608.d /Chem/5890I.i/I8026N2.b/I802609.d /Chem/5890I.i/I8026N2.b/I802610.d /Chem/5890I.i/I8026N2.b/I802611.d /Chem/5890I.i/I8026N2.b/I802612.d	-2006 17:57 -2006 21:09 e CF \Target\Chem\5890I.i\I8026N2.b\GN80201.m sub

	l Triflu		Cor	
	orotoluene	***************************************	ipound .	
+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +		Level 1	
11.96	6.44		Level 2	
11.96	6-44		Level 3	
11.96	6.44	*******	Level 4	
11.96	ი. 4 თ		Level 5	
11.96	6.45		Level 6	
11,958	6.445		Ave RT	

+++ - Standard level not used in linearity determination. Retention times are expressed as minutes.

08/25/2006 06:31

ICAL RT Summary v2.0

Page 1

Initial	
Calibration	Laucks Test:
Amounts	ing Labs
Summary	

2 Bromofluorobenzene	1 Trifluorotoluene	3 Gasoline	Compound	Start Cal Date: 02-AUG-200 End Cal Date : 02-AUG-200 Quant Method : ESTD Cal Curve Type: Average CF Integrator : Falcon Method File : \\Ares\Targ Sublist : all-j.sub Column Size : DB-VRX Column Size : 30m L - 0. Calibration Files: Level 1: //Ares/Target/Chen Level 2: //Ares/Target/Chen Level 4: //Ares/Target/Chen Level 5: //Ares/Target/Chen Level 5: //Ares/Target/Chen
++++++	* * * * * * *	++++++	Level 1	G 17:57 G 21:09 G 21:0
50.00	50.00	250.00	Level 2	\5890I.i ↓/I8026N i/I8026N i/I8026N i/I8026N i/I8026N i/I8026N i/I8026N
100.00	1.00 - 00	500.00	Level 3	\I8026N2 12.b/I802 12.b/I802 12.b/I802 12.b/I802 12.b/I802 12.b/I802
200.00	200.00	1000.00	Level 4	2. b\GN80 2607.d 2610.d 2610.d 2611.d
300.00	300.00	2500.00	Level 5	201.m
400.00	400.00	5000.00	Level 6	

Standard concentrations are expressed as ng. +++ - Standard Level not used in linearity determination.

08/25/2006 06:31 ICAL Standard Concentrations Summary v2.0 Page 

## Laboratory Name Initial Calibration Verification Summary

Data File Injection Date	: \\Diana\Targe : 04-JUL-2007 0	et\5890i.i\I7 )9:49	′047-2.b\	I704702.d	I	
Sample Info	: CCV_GAS_0704A	7				
Misc. Info	: ICV NWTPHGx					
Laboratory ID	: CCV_GAS_0704A	A Cli	ent ID	: 10ul VC	)A5-42-7	
Instrument ID	: 5890i.i					
Method	: GN80216.m	Sub	olist	: all-j		
Quantitation	: ESTD	Int	.egrator	: Falcon	_	
Dilution Factor	: 1.00	San	ple Type	: CCALIB_	_3	
Column	: DB-VRX	Col	umn Size	: 30.00m	L- 0.53mm	ID
			Averaqe	ICV		
Compound	RT	RT Window	CF	CF	%D Flag	
						:
Trifluorotoluene	6.57 #	6.52 - 6.62	543.7455	545.2300	0.3	
Bromofluorobenzene	12.06 #	12.01 - 12.11	412.9193	398.6550	-3.5	
Gasoline	······	8 04 - 18 53	420 7492	433 7120	3 1	

Calibration Pactor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - ICV CF ) divided by Ave CF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page l

**SUM - 161** 

## Laboratory Name Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info	::	\\Diana\Target 04-JUL-2007 14 CCV GAS_0704B	t∖! 6:9	589 52	0 i	i`	\I704	47-	2.b\	I70	)4713.	d			
Laboratory ID	:	CCV GAS 0704B				(	Clier	nt	ID	: 1	.Oul V	70A5	5-42	2 - 7	
Method Quantitation Dilution Factor Column		GN80216.m ESTD 1.00 DB-VRX					Subl: Integ Samp Colur	ist gra le mn	tor Type Size	::::::::::::::::::::::::::::::::::::::	all-j Falcor CALIE 80.00m	і 3_3 п Б-	· 0 .	.53mm	ID
Compound		RT		RT	Win	ndow	1	Aveı (	rage IF	Cor	tinuir CF	ng !	%D	Flag	
Trifluorotoluene	:===	6.57	: <b></b>	.52	-	 6.	62 5	543.	.7455	51	L7.4000	)	-4,8	3	
Bromofluorobenzene	لسارہ _م یاسی اللہ ہوت	12.05	12	.01	**	12.	11 4	412.	9193	37	75.8000	) .	-9,(	)	
Gasoline			8	.04	*	18.	53 4	120.	7492	4(	94.4290	)	-3.9	€	

Calibration Factor ( CF ) = Response divided by Concentration Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15%

# = The compound retention time is the expected retention time in the method.

CCV Summary V1.0

Page 1

#### 1 GASOLINE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

B070407GVOWI1

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: _CAB31	Run Sequence: <u>R019234</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B070407GVOWI1</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704704.d</u>
pH: Decanted: (Y/N) N	Date Collected:
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume:(ul)	
Soil Extract Volume:(ul) Soil Aliquot Volume:(ul)	Dilution Factor: 1.00

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	25	U

Comments:

## 1 GASOLINE ORGANICS ANALYSIS DATA SHEET

`

81

CLIENT SAMPLE NO.

S070407GVOWI1

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>				
SDG No.: <u>CAB31</u>	Run Sequence: <u>R019234</u>				
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID:S070407GVOWI1				
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704705.d</u>				
pH: Decanted: (Y/N) <u>N</u>	Date Collected:				
Percent Moisture:	Date Prepared: 07/04/2007				
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007				
Soil Extract Volume:(ul)	Dilution Factor: <u>1.00</u>				
Soil Aliquot Volume:(ul)					
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>ug/L</u>				

Gasoline Range Organics

Comments:

TPH-Gasoline

FORM I GRO

# **Forms Summary**

NWTHP-Diesel

## CAB31

## 2 WATER DIESEL SURROGATE RECOVERY

Lab Name: Laucks Testing Labs Contract: <u>N/A</u> _____

SDG No.: CAB31

Run Sequence: <u>R019594</u>

QC LIMITS 50-150 50-150

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (2FB) #	S2 (TER) #	\$3 () #	S4 () #	TOT OUT
(CAB31-006) 15LCMW420W	98	102			0
(S062707GSVWLS) S062707GSVWLS	95	104			0
(B062707GSVWLS) B062707GSVWLS	94	102			0

S1	(2FB)		2-Fluorobiphenyl
S2	(TER)	=	o-Terphenyl
S3	() =		
S4	() =		

# Column to be used to flag recovery values
* Values outside of contract required QC limits

### 3B WATER DIESEL BLANK SPIKE RECOVERY

Lab Na	me: <u>Laucks Testing Labs</u>		Contract: <u>N/A</u>				
BS Run	Sequence: <u>R019594</u>		SDG No.: <u>CAB3</u>	1			
BS Lab	Sample ID: <u>S062707GSVWLS</u>						
Level:	N/A		Units: <u>mg/L</u>				
[	Analyte	Spike Added	l Found	% Rec	#	Rec Limit	

1,2211

1.25

98

51-147

# Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>1</u> outside limits

COMMENTS :

Diesel Range Organics

	F	CLIENT SAMPLE NO	·····
DIESEL METHOI	D BLANK SUMMARY	B062707GSVWLS	
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>		
Lab Sample ID: <u>B062707GSVWLS</u>	SDG No.: <u>CAB31</u>		
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: 06/27/2	2007	
Lab File ID (1): <u>C7167WA.b-C716706.d</u>	Lab File ID (2):		
Date Analyzed (1): 07/16/2007	Date Analyzed (2):		
Time Analyzed (1): 09:36	Time Analyzed (2):		
Instrument ID (1): <u>HP 5890C</u>	Instrument ID (2):		
Column(1): <u>RTX-5</u> ID: 0.25 (mr	n) Column(2):	ID:	(mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES AND QC SAMPLES:

CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
15LCMW420W	CAB31-006	1	C716708.d	07/16/2007 11:12	R019594
S062707GSVWLS	S062707GSVWLS	1	C716707.d	07/16/2007 10:24	R019594

COMMENTS:

#### 1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW420W

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB31	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB31-006</u>
Sample wt/vol: <u>480.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>C716708.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/20/2007
Extraction: (Type)	Date Extracted: 06/27/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: _2.0(uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.10	U
TPH-Oil	Oil Range Organics	0.42	υ

Comments:

		Page 1			?.0	Summary v2	L Linearity	ICA			:20	/13/2007 06
										trea units. -efficient.	essed are A elation co-	sponses expr 2 = The corr
							·	ermination	nearity det	used in li	Level not	- Standard
								as Y-int	slope ) pl	divided by	( Response	Amount =
							and a second	1.0			D ::	Average RS
-30.423   0.99981   0.326   0.99993   -0.089   0.99991	7582.10000 7689.80000	15319226	974727.00	.36141.0 16143.00 15136.00	703381.0   4; ,8117.00   36 )1866.00   4	11.00   17 73.00   14 52.00   15	.00   9533( .00   745 .00   9916	579092 36149 50085	349446.00   13027.00   19778.00		phenyl 1	Diesel 2-Fluorobi 1 o-Terpheny
Y-int   R^2	Slope	Level 7	Level 6	evel 5	-evel 4   1		2   Lev(	Level	Level 1			Сотроии
					C712710 C712711 C712712 C712712 C712713 C712714 C712714 C712715 C712715	7WA.b/ 7WA.b/ 7WA.b/ 7WA.b/ 7WA.b/ 7WA.b/ 7WA.b/	1/C712 1/C712 1/C712 1/C712 1/C712 1/C712 1/C712	56666666666666666666666666666666666666	arget/ arget/ arget/ arget/ arget/ arget/	iles: iana/T iana/T iana/T iana/T iana/T iana/T	tion F 1://d 2://d 3://d 5://d 5://d 5://d 5://d	Calibra Level Level Level Level Level Level Level Level
			1.m	JX7120	7WA.b\CI	i\C712	07 56 5890c.:	07 18: 07 22: arget\	JUL-20 JUL-20 D Lear con con liana\T d.sub -5 l L - 0	e: 12- e: 12- e: Lin : Fal : all : all : 30m	al Date Date ethod ve Typ tor File Size	Start C Ind Cal Quant M Cal Cur Cal Cur Integra Method Sublist Column Column
		nary	s ty Sum	ng Lap Ineari	ation L	Laucs. Calibr	itial (	In				

Initial	
Calibration Amounts Summar	Laucks Testing Labs
$\prec$	

Level 4   Level	I LEVEL 1   LEVEL 2   LEVEL 2	mpound	00	
	/Target/5890c.i/C7127WA.b/C712716.d	//diana	7:	Level
	/Target/5890c.1/C7127WA.b/C712715.d	//diana	ი .:	Level
	/Target/5890c.i/C7127WA.b/C712714.d	//diana	ហ	Level
	/Target/5890c.i/C7127WA.b/C712713.d	//diana	4	Level
	/Target/5890c.i/C7127WA.b/C712712.d	//diana	ω ···	Level
	/Target/5890c.i/C7127WA.b/C712711.d	//diana	N	Level
	/idrger/b890c.i/C/i2/WA.b/C/i2/i0.d	//urana	H	במעמד המעמד

Compound       Level 1       Level 2       Level 3       Level 4       Level 5       Level 6       Level 7									
Compound       Level 1       Level 2       Level 3       Level 4       Level 5       Level 6       Level 7         ====================================	++++++++	100.00	20.00	20.00	00.0T	0,00		τζποτοριάτος τ	
Compound       Level 1       Level 2       Level 3       Level 4       Level 5       Level 6       Level 7		1		0			5	2 2 Pluorobinhonvi	
Compound   Level 1   Level 2   Level 4   Level 5   Level 6   Level 7    ==================================	2000.00	00.00T	00.005	200,00	100-00	00.00	- NO. OO	1 01001	
Compound Level 1 Level 2 Level 4 Level 5 Level 6 Level 7	) ) ) )						20.00	1 Diecel	
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7								11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	1
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7				~		_	-		
	Level 7	Level 6	Level 5	Level 4	Level 3	Level 2	Level 1	Compound	

+++ - Standard Level not used in linearity determination. Standard concentrations are expressed as ug/ml.

07/13/2007 06:20 ICAL Standard Concentrations Summary v2.0 Page Ч
Laucks Testing Labs Initial Calibration Amounts Summary
Start Cal Date: 15-JUL-2007 08:22
End Cal Date : 15-JUL-2007 13:08
Quant Method : ESTD
Cal Curve Type: Linear
Integrator : Falcon
Method File : \\diana\Target\5890c.i\C7127WC.b\CDX71203.m
Sublist : mo.sub
Column : RTX-5
Column Size : 30m L - 0.25mm ID
Calibration Files: Level 1: //diana/Target/5890c.i/C7127WC h/C712787 d
Level 2: //diana/Target/5890c.i/C7127WC.b/C712788.d
Level 3: //diana/Target/5890c.i/C7127WC.b/C712789.d

Level

Level

ф .....

/diana/Target/5890c.i/C7127WC.b/C712790.d /diana/Target/5890c.i/C7127WC.b/C712791.d /diana/Target/5890c.i/C7127WC.b/C712792.d

/diana/Target/5890c.i/C7127WC.b/C712793.d

Level

7:

Level 1

Level 2

Level 4 | Level 5

2500.00

+++++++

Level 6

Level 7

1000.00 2000.00

Level 3 500.00

100.00

200.00

Compound

2 Motor Oil

Level

Standard concentrations are expressed as ug/ml. +++ - Standard Level not used in linearity determination.

07/16/2007 06:47 ICAL Standard Concentrations Summary v2.0 Page μ

Instrument ID: 5890c.iOperator: CMPMethod: CDX71204.mSublist: alldQuantitation: ESTDIntegrator: FalconDilution Factor: 1.00Sample Type: CCALIB_3Column: RTX-5Column Size: 30.00m L- 0.25mm J	ID
Expected Continuing Compound RT RT Window Amount Amount %D Flag	
2-Fluorobiphenyl 12.66 12.61 - 12.71 20.000 20.137 0.7	
Diesel 9.93 - 23.98 250.00 237.32 -5.1	
o-Terphenyl 19.32 19.28 - 19.38 20.000 19.178 -4.1	

%Drift ( %D ) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 07:49

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info	:	\\diana\Ta 16-JUL-200	rget\58 7 08:00	390c.i	L\C71671	WA.b\C	716704.d	1		
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	* == == ** ** ** **	NWTPHDx / 02000PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	8015moc	l - Di	Client Operato Sublist Integra Sample Column	ID : or : t : ator : Type: Size:	MA8-31- CMP mo Falcon CCALIB 30.00m	-19 _3 _L- 0	.25mm	ID
Compound		RT	RT	Window	Exp / An	ected C ount	ontinuing Amount	₽ P	Flag	
Motor Oil	<u></u>	<b></b>	23.98	3 - 37.	48 20	00.0	1949.4	-2.	5	2

%Drift ( %D ) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 08:46

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		<pre>\\diana\Ta 16-JUL-200 D250PPM NWTPHDx / D250PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5</pre>	rget\5 7 16:4 8015moo	390 7 1	C.i Die C S I S C	C7167WA.b\ esel Client ID Operator Sublist Integrator Sample Type Column Size	C716715.d : MA8-31- : CMP : alld : Falcon : CCALIB_ : 30.00m	20 3 L- 0.25m	m ID
Compound		RT	RT	Win	ıdow	Expected Amount	Continuing Amount	%D Flag	i
2-Fluorobiphenyl	==	12.66	12.6	- L	12.7	1 20.000	19.660	-1.7	
Diesel		1999-1999 (1999) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (19	9.93	3 -	23.9	8 250.00	229.67	-8.1	
o-Terphenyl		19.32	19.20	3 -	19.3	8 20.000	18.558	-7.2	

%Drift ( %D ) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page 1

**SUM - 176** 

Data File Injection Date	:;	\\diana\Ta: 16-JUL-200	rget\58 7 17:39	390c.: 5	i\C71671	WA.b\C	716716.d			
Sampre Info Miga Trafo	:	NUTUDID	0.015ma	ч Т.	÷ 1					
Laboratory ID	:	O2000PPM	80120000	1 - D.	Client	ID :	MA8-31-3	19		
Instrument ID	;	5890c.i			Operato	or :	CMP			
Method	:	CDX71204.m			Sublis	t :	mo			
Quantitation	:	ESTD			Integra	ator :	Falcon			
Dilution Factor	:	1.00			Sample	Type:	CCALIB 3	3		
Column	:	RTX-5			Column	Size:	30,00m  1	<u>ц</u> - О	.25mm	ID
					Exp	ected C	ontinuing			
Compound		RT	RT	Window	w An	ount	Amount	۶D	Flag	
Motor Oil	= =	***	23.98	3 - 37	.48 20	00.0	1908.7	-4.0	====== 6	

%Drift ( %D ) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page 1

#### 1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

B062707GSVWLS

U

U

Lab Name: Laucks Testing Labs	me: Laucks Testing Labs Contract: N/A					
SDG No.: CAB31	Run Sequence: <u>R019594</u>					
Matrix: (SOIL/WATER)Water	Lab Sample ID: B062707GSVWLS					
Sample wt/vol: 400.0 (g/mL) mL	Lab File ID: <u>C716706.d</u>					
% Moisture: Decanted: (Y/N) _N	Date Collected:					
Extraction: (Type) _SEPF	Date Extracted:06/27/2007					
Concentrated Extract Volume:(uL)	Date Analyzed: 07/16/2007					
Injection Volume: _2.0 (uL)	Dilution Factor: <u>1.0</u>					
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>					
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) mg/L Q					

0.13

0.50

TPH-Oil Comments:

TPH-Diesel

Diesel Range Organics

Oil Range Organics

FORM I DRO

#### 1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

S062707GSVWLS

Lab Name: Lauc	ks Testing Labs	Contract: N/A				
SDG No.: CAB31		Run Sequence: <u>R019594</u>				
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Samp	le ID: <u>S062707GSVWLS</u>			
Sample wt/vol:	400.0 (g/mL) <u>mL</u>	Lab File	ID: <u>C716707.d</u>			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Col	lected:			
Extraction: (Ty	pe) <u>SEPF</u>	Date Extracted:06/27/2007				
Concentrated Ext	tract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/16/2007				
Injection Volume	e:(uL)	Dilution Factor:				
GPC Cleanup: (Y/N) <u>N</u> pH:<2		Sulfur Cleanup: (Y/N) <u>N</u>				
CAS NO.	COMPOUND		CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>mg/L</u>			
TPH-Diesel	Diesel Range Organics		1.2			

Comments:

# FORMS SUMMARY

# CAB31

**Metals Data** 

-1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.	
	15LCMW420W	
Lab Name: Laucks Laboratories	Contract:	
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB31</u>	· · ·
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB31-006</u>	
Level (low/med): LOW	Date Received: 06/21/2007	

% Solids:

<u> </u>	Concentration	Units :u	g/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq
7440-36-0	Antimony	0.260	J		М	R019118
7440-38-2	Arsenic	0.100	U		М	R019118
7440-41-7	Beryllium	0.0430	U		М	R019118
7440-43-9	Cadmium	0.143	J		М	R019118
7440-47-3	Chromium	0.991	J		M	R019118
7440-50-8	Copper	0.520	U		М	R019118
7439-92-1	Lead	0.0750	U		М	R019118
7439-97-6	Mercury	0.0180	U		CV	R019018
7440-02-0	Nickel	0.216	J		M	R01911{
7782-49-2	Selenium	0.110	U		М	R019118
7440-22-4	Silver	0.0850	U		M.	R019118
7440-28-0	Thallium	0.0440	U		М	R019118
7440-66-6	Zinc	1.80	U		М	R019116

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.	
	15LCMW430W	
Lab Name: Laucks Laboratories	Contract:	-
Lab Code:	SDG No.: <u>CAB31</u>	-
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB31-007</u>	
Level (low/med): LOW	Date Received: 06/21/2007	

% Solids: _____

	Concentration	Units :u	J/L			
CAS No.	Analyte	Concentration	с	Q ·	М	Run Seg.
7440-36-0	Antimony	0.0560	U		М	R019118
7440-38-2	Arsenic	0.100	U		М	R019118
7440-41-7	Beryllium	0.0430	U .		М	R019118
7440-43-9	Cadmium	0.372	J		М	R019118
7440-47-3	Chromium	0.453	J		М	R019118
7440-50-8	Copper	0.520	U		М	R019118
7439-92-1	Lead	0.0750	U		М	R019118
7439-97-6	Mercury	0.0180	U		CV	R019018
7440-02-0	Nickel	0.735	J		М	R019118
7782-49-2	Selenium	0.110	U		М	R019118
7440-22-4	Silver	0.0850	U		M	R019118
7440-28-0	Thallium	0,0440	U		М	R019118
7440-66-6	Zinc	1.80	U		М	R019118

Color Before: <u>Colorless</u> Clarity Before: <u>Clear</u> Texture: Color After: <u>Colorless</u> Clarity After: <u>Clear</u> Artifacts: <u>No</u> Comment

Page 1 of 1

SW-846

# SUM - 182

-1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW420W (Filt.)
Lab Name: Laucks Laboratories	Contract:
Lab Code:	SDG No.: <u>CAB31</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB31-008</u>
Level (low/med): LOW	Date Received: 06/21/2007

% Solids: ____

Concentration Units : ____ug/L

CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0560	U	-	М	R019118
7440-38-2	Arsenic	0,100	U		М	R019118
7440-41-7	Beryllium	0.0430	U		М	R019118
7440-43-9	Cadmium	0.388	J		М	R019118
7440-47-3	Chromium	0.835	J		М	R019118
7440-50-8	Copper	0.520	U		М	R019118
7439-92-1	Lead	0.0750	U		М	R019118
7439-97-6	Mercury	0.0180	U.		CV	R019018
7440-02-0	Nickel	1.13			М	R019118
7782-49-2	Selenium	0.110	U		М	R019118
7440-22-4	Silver	0.0850	U		М	R019118
7440-28-0	Thallium	0.0440	U		М	R019118
7440-66-6	Zinc	1.80	·U		М	R019118

Color After: <u>Colorless</u> Clarity After: <u>Clear</u> Artifacts: <u>No</u>	Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Comment	Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
	Comment					

SW-846

## **SUM - 183**

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	·····	SAMPLE NO.
	1510	CMW430W (Filt.)
Lab Name: <u>Laucks Laboratories</u>	Contract:	
Lab Code: LAUCKS	SDG No.: <u>CAB31</u>	
Matrix (soil/water): <u>Water</u>	Lab Sample ID:	CAB31-009
Level (low/med): LOW	Date Received:	06/21/2007

% Solids: ____

7440-22-4

7440-28-0

7440-66-6

Silver

Zinc

Thallium

ug/L Concentration Units : CAS No. Analyte Concentration С Q М Run Seq. 7440-36-0 Antimony 0.0560 U М R019118 7440-38-2 Arsenic 0.100 U М R019118 7440-41-7 Beryllium 0.0430 U М R019118 7440-43-9 Cadmium 0.609 J М R019118 7440-47-3 0.585 J М R019118 Chromium 7440-50-8 0.520 U Μ R019118 Copper 7439-92-1 0.0750 U Μ R019118 Lead CV 7439-97-6 0.0180 U R019018 Mercury Ĵ 7440-02-0 Nickel 0.138 M R019118 7782-49-2 Selenium 0.110 U М R019118

0.0850

0.0440

1.85

U

U

J

Μ

Μ

М

R019118

R019118

R019118

Color Bei	fore:	Colorless	Clarity	Before:	Clear	Texture:	
Color Aft	ter: .	Colorless	Clarity	After:	Clear	Artifacts:	No
Comment							

Page 1 of 1

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories		Contract:	
Lab Code: LAUCKS SDG No.:		Run Sequence ID: <u>R019118</u>	-
Initial Calibration Source:	ME-15-151-16		_
Continuing Calbration Source:	ME-15-161-8, ME-15	-161-9	

Concentration Units: ug/L

		Initia	l Calibratio	מכ			Continuing CC <b>V</b> 1	g Calibr	ations CCV	72	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	M
Antimony	90-110	60	60.367	100.6	90 - 110	50.000	48.582	97.2	48.547	97.1	M
Arsenic	90-110	60	58.653	97.8	90 - 110	50.000	49.541	99.1	49.892	99.8	M
Beryllium	90-110	60	59.325	98.9	90 - 110	50.000	48.929	97.9	42.853	85.7	M
Cadmium	90-110	. 60	61.303	102.2	90 - 110	50.000	50.266	100.5	48.068	96.1	М
Chromium	90-110	60	62.073	103.5	90 - 110	50.000	50.681	101.4	54.935	109.9	M
Copper	90-110	60	61.763	102.9	90 - 110	50.000	51.932	103.9	50.569	101.1	M
Lead	90-110	60	65.163	108.6	90 - 110	50.000	52.342	104.7	49.929	99.9	M
Nickel	90-110	60	60.571	101.0	90 - 110	50.000	49.099	98.2	50.276	100.6	M
Selenium	90-110	60	60.510	100.8	90 - 110	50.000	47.827	95.7	47.220	94.4	M
Silver	90-110	60	58.753	97.9	90 - 110	50.000	50.217	100.4	49.246	98.5	M
Thallium	90-110	60	64.131	106.9	90 - 110	50.000	51.596	103.2	49.214	98.4	M
Zinc	90-110	60	60.263	100.4	90 - 110	50.000	50.191	100.4	48.594	97.2	M

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Laucks Laboratorie	5	Contract:	
Lab Code:	LAUCKS SDG No	.: <u>CAB31</u>	Run Sequence ID:	R019118
Initial Ca	libration Source:			
Continuing	Calbration Source:	<u>ME-15-161-8, ME-15</u>	5-161-9	

Concentration Units: ug/L

	Initial Calibration					Continuing	Calibr	ations			
							CCV3		CCV	4	
Analyte	Límits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(l)	М
Antimony					90 - 110	50.000	49.524	99.0	50.138	100.3	М
Arsenic					90 - 110	50.000	49.391	98.8	49.713	99.4	М
Beryllium					90 - 110	50.000	47.777	95.6	51.039	102.1	М
Cadmium					90 - 110	50.000	50.619	101.2	51.724	103.4	М
Chromium					90 - 110	50.000	54.361	108.7	52.243	104.5	М
Copper					90 - 110	50.000	50.904	101.8	53.113	106.2	M
Lead					90 - 110	50.000	49.407	98.8	49.001	98.0	М
Nickel					90 - 110	50.000	49.692	99.4	48.521	97.0	М
Selenium					90 - 110	50.000	47.990	96.0	47.015	94.0	М
Silver					90 - 110	50.000	50.695	101.4	53.092	106.2	М
Thallium					90 - 110	50.000	49.463	98.9	47.977	96.0	М
Zinc					90 - 110	50.000	49.581	99.2	50.327	100.7	М

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Labora	tories	Contract:
Lab Code: <u>LAUCKS</u> S	DG No.: <u>CAB31</u>	Run Sequence ID: <u></u>
Initial Calibration Sour	ce:	
Continuing Calbration Sc	urce: ME-15-161-8, ME-	15-161-9

	Initial Calibration					Continuing	Calibr	ations	76 .		
								)		76	ļ
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	M
Antimony					90 - 110	50.000	50.714	101.4	48.956	97.9	М
Arsenic					90 - 110	50,000	48.937	97.9	49.604	99.2	M
Beryllium					90 - 110	50.000	53.136	106.3	58.490	117.0	M
Cadmium					90 - 110	50.000	53.017	106.0	52.127	104.3	М
Chromium					90 - 110	50.000	52.218	104.4	51.781	103.6	М
Copper					90 - 110	50.000	50.852	101.7	50.999	102.0	М
Lead					90 - 110	50.000	49.095	98.2	49.957	99.9	М
Nickel					90 - 110	50.000	48.317	96.6	4 <b>7</b> .967	95.9	M
Selenium					90 - 110	50.000	45.578	91.2	45.682	91.4	М
Silver					90 - 110	50.000	53.429	106.9	51.401	102.8	M
Thallium					90 - 110	50.000	48.501	97.0	49.065	98.1	М
Zinc					90 - 110	50.000	50.295	100.6	50.176	100.4	М

#### Concentration Units: ug/L

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: LAUCKS SDG No.: CAB31

Run Sequence ID: <u>R019118</u>

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initial Calibration				Continuing Calibrations						
						CCV7	,	CC/	78	}		
Analyte	Limíts	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	M	
Antimony					90 - 110	50.000	49.110	98.2	49.058	98.1	Μ	
Arsenic					90 - 110	50.000	49.690	99.4	48.655	97.3	М	
Beryllium					90 - 110	50.000	57.028	114.1	58.808	117.6	М	
Cadmium					90 - 110	50.000	49.837	. 99.7	50.884	101.8	М	
Chromium					90 - 110	50.000	52.483	105.0	51,656	103.3	М	
Copper					90 - 110	50.000	48.566	97.1	50.197	100.4	М	
Lead					90 - 110	50,000	51.800	103.6	51.628	103.3	М	
Nickel					90 - 110	50.000	47.196	94.4	48.632	97.3	М	
Selenium					90 - 110	50.000	46.767	93.5	45.469	90.9	М	
Silver					90 - 110	50.000	51.209	102.4	51.396	102.8	M	
Thallium					90 - 110	50.000	51.576	103.2	51.655	103.3	М	
Zinc					90 - 110	50.000	49.156	98.3	48.900	97.8	М	

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Laucks Laboratories		Contract:
Lab Code:	LAUCKS SDG No. :	: <u>CAB31</u>	Run Sequence ID: <u>R019118</u>
Initial Ca	libration Source:		
Continuing	Calbration Source:	ME-15-161-8, ME-15	-161-9
		Concontration Units	

		Initial Calibration					Continuing	Calibr	Calibrations		
		· · · · · · · · · · · · · · · · · · ·					CCV9		CCV	10	
Anàlyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	51.841	103.7	50.635	101.3	М
Arsenic					90 - 110	50.000	51.014	102.0	49.693	99.4	М
Beryllium					90 - 110	50.000	56.852	113.7	55.809	111.6	М
Cadmium					90 - 110	50.000	51.225	102.4	50.937	101.9	М
Chromium	· ]				90 - 110	50.000	50.931	101.9	50.976	102.0	М
Copper					90 - 110	50.000	52.065	104.1	49.019	98.0	M
Lead					90 - 110	50.000	51.423	102.8	51.157	102.3	М
Nickel					90 - 110	50.000	51.122	102.2	46.643	93.3	М
Selenium					90 - 110	50.000	47.427	94.9	45,928	91.9	М
Silver					90 - 110	50.000	52.857	105.7	51.477	103.0	М
Thallium					90 - 110	50.000	49.827	99.7	49.709	99.4	M
Zinc					90 - 110	50.000	51.550	103.1	48.691	97.4	M

Concentration Units: ug/L

2A

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	Laucks	Laboratories

Lab Code: LAUCKS SDG No.: CAB31

Run Sequence ID: <u>R019118</u>

Contract:

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

	Initial Calibration				Continuing Calibrations CC <b>V</b> 11						
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	50.232	100.5			М
Arsenic					90 - 110	50.000	47.598	95.2			М
Beryllium					90 - 110	50.000	55.917	111.8			М
Cadmium					90 - 110	50.000	49.898	99.8			M
Chromium					90 - 110	50.000	50.455	100.9			Μ
Copper					90 - 110	50.000	48.866	97.7			М
Lead					90 - 110	50.000	52.404	104.8			M
Nickel					90 - 110	50.000	47.453	94.9			М
Selenium					90 - 110	50.000	45.528	91.1			М
Silver					90 - 110	50.000	51.477	103.0			М
Thallium					90 - 110	50.000	51.435	102.9			M
Zinc				ļ	90 - 110	50.000	48.858	97.7			M

#### SW~846

2A

### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories	Contract:
Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB31</u>	Run Sequence ID: <u>R019018</u>
Initial Calibration Source: ME-15	-159-3
Continuing Calbration Source: <u>ME-15</u>	-162-1

Concentration Units: ug/L

	Initial Calibration				Continuing Calibrations						
			ICV		CCV1 CCV2					2	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	M
Mercury	90-110	4.04	4.102	101.5	80 - 120	5.000	5.116	102.3	5.115	102.3	CV

met c

Form II (part 1) ~ IN

#### 2B-IN

#### CRDL STANDARD FOR METALS

Lab	Name:	Laucks 1	Laboratori	es	Contract:	<del></del>			
Lab	Code:	LAUCKS	_SDG No.:	CAB31		Run Seq	pience	ID:	R019118
ICP	CRDL :	Standard	Source:	<u>ME-15-154-3</u>	······				

Concentration Units: ug/L

		C	RDL Sta	ndard for I	CP			
		Initial		Final				
		CRI	ĺ					
Analyte	True	Found	%R	Found	%R	Limits		
Antimony	]	0.9	90.2			······································		
Arsenic	1	1.01	100.9			-		
Beryllium	1	1.06	105.9	<u> </u>				
Cadmium	1	1.01	101					
Chromium	1	. 0.97	96.5					
Copper	2	2.18	109.2					
Lead	1	1.08	108.3					
Nickel	1	1	99.8					
Selenium	1	0.85	85.4					
Silver	1	1.02	101.7					
Thallium	1	1.08	108.5					
Zinc	10	1.0.34	103.4					

Control Limits: no limits have been established by EPA at this time



#### 2B-IN CRDL STANDARD FOR METALS

Lab Name:	Laucks Laboratories	Contract:		·
Lab Code:	LAUCKS SDG No.: CAB3	1	Run Sequence ID:	R019018
ICP CRDL S	Standard Source: <u>ME-15</u>	-162-1		

Concentration Units: ug/L

		CRDL Standard for ICP									
		Initial		Final							
		CRA									
Analyte	True	Found	%R	Found	%R.	Límits					
Mercury	0.2	0.19	94.5								

Control Limits: no limits have been established by EPA at this time



#### ЗA

#### INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks Lab</u> o	oratories		Con	trac	t:							
Lab Code: <u>LAUCKS</u>	SDG No.: CAB3	L	Run	Run Sequence ID: R019118								
Concentration Units:	ug/L		ацианал, шац у				·					
Dralyte	Inital Cali Blank	b.		Continuing Calibration Blank								
Analyte	ICB		CCB1		CCB2	CCB3						
		С	1	C	2	С	. 3	С				
Antimony	0.327	J	0.196	J	0.0730	J	0.0711					
Arsenic	0.100	U	0.100	U	0.100	U	0.100	υ				
Beryllium	0.0430	U	0.0430	U	0.0430	U	0.0430	U				
Cadmium	0.0940	U	0.0940	U	0.0940	U	0.0940	U				
Chromium	0.120	U	0.120	U	0.179	J	0.120	U				
Copper	0.520	υ	0.520	U	0.520	U	0.520	U				
Lead	0.0750	U	0.0750	U	0.0750	U	0.0750	U				
Nickel	0.110	U	0.110	U	0.110	U	0.110	U				
Selenium	0.110	U	0.110	U	0.110	U	0.110	U				
Silver	0.0850	U	0.0850	U	0.0850	υ	0.0850	U				
Thallium	0.0440	U	0.0440	U	0.0440	υ	0.0440	U				

1.80

U

1.80

U

Zinc

1.80

U

1.80

U

#### ЗA

### INITIAL AND CONTINUING CALIBRATION BLANKS

Lab	Name:	Laucks	Laboratories	
uav	nanci	Laucha	Laboratories	

Contract:

Lab Code: LAUCKS SDG No.: CAB31

Run Sequence ID: <u>R019118</u>

Concentration Units: <u>ug/L</u>

	Inital Calib. Blank	Continuing Calibration Blank					
Allatyte		CCB4		CCB5		CCB6	
	C	1	C	2	С	3	C
Antimony		0.0560	U	-0.0824	J	0.0560	U
Arsenic		0.100	U	0.100	υ	0.100	U
Beryllium		0.0430	U	0.0430	Ŭ	0.0430	U
Cadmium		0.0940	U	0.0940	U	0.0940	U
Chromium		0.120	υ	0.120	U	0.120	Ũ
Copper		0.520	U	0.520	U	0.520	υ
Lead		0.0750	U	0.0750	U	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		0.110	U	-0.167	J	-0.214	J
Silver		0.0850	U	0.0850	U	0.0850	U
Thallium		0.0440	U	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	υ

#### SW~846

### 3A

#### INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Laboratories			trac	t:			
Lab Code: <u>LAUCKS</u>	Run	Run Sequence ID: <u>R019118</u>					
Concentration Units:	ug/L						
	Inital Calib. Blank	· · · · · · · · · · · · · · · · · · ·	Continuing Calibration Blank				
Analyte	***	CCB7		CCB8		CCB9	
	Ċ	1	С	2	С	3	C
Antimony		0.0560	U	0.0560	υ	0.339	J
Arsenic		0.100	U	0.100	U	0.100	U
Beryllium	Beryllium		U	0.0430	υ	0.0430	U
Cadmium		0.0940	U-	0.0940	υ	0.0940	U
Chromium		0,120	U	0.120	U	0.120	U
Copper		0.520	U	0.520	U	0.520	U
Lead		0.0750	U	0.0750	U	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		-0.236	1	-0.146	J	0.110	υ
Silver		0.0850	U	0.0850	U	0.0850	U
Thallium		0.0440	U	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

Form III (PART 1) ~ IN

### ЗA

### INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Labo	Con	trac	t:				
Lab Code: LAUCKS SDG No.: CAB31			. Seq	uence ID: <u>R019</u>	118		
Concentration Units:							
Analyte	Inital Calib. Blank		Continuing Calibration Blank				
	~	CCB10	a	CCB11	C	5	a
Antimony		⊥ 		0,300	T		T
Arcenic		0.100	U	0.100	U		1
Beryllium		0.0430	U	0.0430	U		1
Cadmium		0.0940	U	0.0940	U		
Chromium		0.120	U	. 0.120	U		1
Copper		0.520	U	0.520	U		
Lead		0.0750	U	0.0750	U		
Nickel		0.110	U	0.110	U		
Selenium		0.110	U	0.110	U		
Silver		0.0850	U	0.0850	U		
Thallium		0.0440	U	0.0440	U		
Zinc		1.80	U	1.80	U		

Form III (PART 1) - IN

ЗA

### INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks Lab</u>	Contract:							
Lab Code: <u>LAUCKS</u>	SDG No.: CAB31	Rur	n Sequence	e ID:	R01901	8		
Concentration Units:	_ug/L							
Dec Juit c	Inital Calib. Blank		Contin	uing Bl	Calibr ank	ation		
Analyte	ICB	CCB1	C	cc	B2		2	

-0.0266

J

0.0180

Mercury

U

Form III (PART 1) - IN

SW-846

c

0.0180

U

SW-846 3B

## BLANKS

#### .

Lab	Name:	Laucks Laboratories		
Lab	Code:	LAUCKS SDG No.: CAB31		
Lab	Sample	ID: B062507ICPMSW02		
Matrix (soil/water): <u>Water</u>				
Cond	centrat:	on Units: ug/L		

Contract:
Run Sequence ID: <u>R019118</u>
Prep Batch ID: <u>P019680</u>
Date Prepared:

Analyte				
	Limits		С	М
Antimony	0.5	-0.261	J	М
Arsenic	0.5	0.100	U	М
Beryllium	0.5	0.0430	υ	М
Cadmium	0.5	0.0940	U	М
Chromium	0.5	0.120	U	M
Copper	1	0.520	U	М
Lead	0.5	0.0750	U	М
Nickel	0.5	0.110	U	М
Selenium	0.5	0.110	U	М
Silver	. 0.5	0.0850	U	М
Thallium	0.5	0.0440	Ŭ	М
Zinc	5	1.80	U	М

#### SW-846 3B BLANKS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB31	Run Sequence ID: <u>R019018</u>
Lab Sample ID: <u>B062607HGW01</u>	Prep Batch ID: <u>P019698</u>
Matrix (soil/water): <u>Water</u>	Date Prepared: 06/26/2007
Concentration Units: ug/L	

Analyte				
	Limits		С	М
Mercury	0.1	0.0180	U	CV

Form III (Part 2) - IN

#### ICP INTERFERENCE CHECK SAMPLE

 Lab Name:
 Laucks Laboratories
 Contract:

 Lab Code:
 LAUCKS
 SDG No.:
 CAB31
 Run Sequence ID:
 R019118

 ICS Source:
 ME-15-153-19, ME-15-161-8, ME-15-161-9

 ICP ID Number:
 ICPMS (PE ELAN 6100)
 Concentration Units:
 ug/L

Initial Found True Final Found Sol. Sol. Sol. Sol. Sol. Sol. А AB AB AB ₽R Limits Analyte А А %R 0 20.0 -0.0890 19.2 Antimony 95.8 0 20.0 Arsenic 0.0438 19.8 98.9 0 Beryllium 20.0 -0.00418 19.4 97.1 0 20.0 0.0254 20.8 104.2 Cadmium 0 Chromium 20.0 0.271 20.6 103.2 0 Copper 20.0 0.290 105 21.0 0 20.0 0.0203 103 Lead 20.6 Nickel 0 20.0 0.524 20.5 102.7 0 Selenium 20.0 -0.00491 19.3 96.6 Silver 0 20.0 -0.00689 100.6 20.1 0 20.0 0.00584 Thallium 20.2 101 0 Zinc 20.0 1.24 20.8 104

Interference Check Sample Recover Limits:

Form IV - IN

SW-846

SUM - 201

SW-846 5A

SAMPLE NO.

### SPIKE SAMPLE RECOVERY

15LCMW420WMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB31	Run Sequence ID:R019018
Lab Sample ID: <u>CAB31-006MS</u>	Prep Batch ID: <u>P019698</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: ug/L

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	% R	Q	М
Mercury	85 - 115	4.8693	0.0180 U	5.00	97.4		CV

Comments:

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

15LCMW420W (Filt.)MS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB31	Run Sequence ID: <u>R019018</u>
Lab Sample ID: <u>CAB31-008MS</u>	Prep Batch ID: <u>P019698</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>

-	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	€ R	Q	М
 Mercury	85 - 115	4,9873	· 0.0180 U	5.00	99.7		CV

Comments:

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

15LCMW430W (Filt.)MS

Lab	Name:	Laucks Laboratories	Contract:	
				4

Lab Code: LAUCKS SDG No.: CAB31 Run Sequence ID: R019118

Prep Batch ID: <u>P019680</u>

Level (low/med): LOW

Concentration Units: ug/L

	Control	Spiked Sample		Sample		Spike	8. D		
Analyte	Limit %R	Result (SSR)	С	Result (SR)	C	Added (SA)	6 K	Ŷ	[ [V]
Antimony	75 - 125	49.7281		0.0560	U	50.00	99.5		М
Arsenic	75 - 125	46.6452		0.1000	U	50.00	93.2		М
Beryllium	75 - 125	53.0665		0.0430	U	50.00	106.1		М
Cadmium	75 - 125	50.6449		0.6089	J	50.00	100.1		М
Chromium	75 - 125	49.0790		0.5855	J	50.00	97.0		М
Copper	75 - 125	51.1197		0.5200	U	50.00	101.7		М
Lead	75 - 125	53.7675		0.0750	U	50.00	107.4		М
Nickel	75 - 125	50.5065		-0.1379	J	50.00	100.7		М
Selenium	75 - 125	. 44.2262		0.1100	U	50.00	88.3		М
Silver	75 - 125	50.7544		0.0850	U	50.00	101.5		M
Thallium	75 - 125	51.0009		0.0440	U	50.00	102.0		М
Zinc	75 - 125	48.8360		1.8466	J	50.00	94.0		M

Comments:

Carlos .

Lab Sample ID: <u>CAB31-009MS</u>

Matrix (soil/water): Water

% Solids for Sample:

SW-846 5B

SAMPLE NO.

POST DIGEST SPIKE RECOVERY

15LCMW430W (Filt.)P

Lab Name: Laucks Laboratories	Contract:
Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB31</u>	Run Sequence ID: R019118
Lab Sample ID: <u>CAB31-009P</u>	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

Analyte	Control Limit %R	Spiked Sample Result (SSR)	C	Sample Result (SR)	С	Spike Added (SA)	% R	Q	M
Antimony		51.0336		0.0560	U	50.00	102.1		М
Arsenic		46.7307		0.1000	U	50.00	93.4		М
Beryllium		52.1059		0.0430	U	50.00	104.2		М
Cadmium		52.1446		0.6089	J	50.00	103.1		М
Chromium		50.2979		0.5855	J	50.00	99.4		М
Copper		50.2581		0.5200	U	50.00	99.9		М
Lead		53.1367		0.0750	U	-50.00	106.2		М
Nickel		49.8698		0.1379	J	50.00	99.5		М
Selenium	•	45.0842		0.1100	U	50.00	90.0		М
Silver		50.9254		0.0850	U	50.00	101.9		М
Thallium		52.2898		0.0440	U	50.00	104.6		М
Zinc		48.1158		1.8466	J	50.00	92.5		М

Comments:

SW-846 6 DUPLICATES

SAMPLE NO.

15LCMW420WD

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB31	Run Sequence ID:
Lab Sample ID: <u>CAB31-006D</u>	Prep Batch ID: <u>P019698</u>
Level (low/med): LOW	Matrix (soil/water): <u>Water</u>
% Solids for Duplicate	% Solids for Sample:
Concentration Units: <u>ug/L</u>	

Analyte	Control Limit	Sample	7 \	Duplicate (D)	С	RPD	Q	М
Mercury	0.2	0.0180 L	J	0.0180	U			CV

Form VI - IN

DUPLICATES

SAMPLE NO.

15LCMW420W (Filt.)D

•	
Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB31	Run Sequence ID: <u>R019018</u>
Lab Sample ID: <u>CAB31-008D</u>	Prep Batch ID: <u>P019698</u>
Level (low/med): LOW	Matrix (soil/water): <u>Water</u>
% Solids for Duplicate	% Solids for Sample:
Concentration Units: <u>ug/L</u>	

Analyte	Control Limit	Sample	Duplicate (D)	С	RPD	Q	М
Mercury	0.2	0.0180 U	0.0180	U			CV

Form VI - IN

DUPLICATES

SAMPLE NO.

15LCMW430W (Filt.)D

1.8000 U

Contract:

Run Sequence ID: R019118

Prep Batch ID: P019680 Matrix (soil/water): <u>Water</u>

Level (low/med): LOW

10

Lab Name: Laucks Laboratories

Lab Code: LAUCKS SDG No.: CAB31

% Soli

Antimony Arsenic Beryllium Cadmium Chromium Copper Lead

Nickel

Selenium Silver

Thallium

Zinc

Lab Sample ID: <u>CAB31-009D</u>

Concen

Solids for D	Duplicate		ł So	olids for Sample:				
ncentration	Units: <u>ug/L</u>							
Analyte	Control Limit	Sample	С	Duplicate (D)	c	RPD	Q	M
ony	1	0.0560	U	0.0560	U			М
с	1	0.1000	U	0.1000	U			М
ium	The second secon	0.0430	υ	0.0430	U			М
um	hrock	0.6089	j	0.7107	J	15.4		М
nium	1	0.5855	J	0.3360	J	54.1		М
r	2	0.5200	U	0.5200	U			М
	]	0.0750	U	0.0750	U			М
-		. 0.1379	J	0.1811	J	27.1	******	М
۵m	1	0.1100	υ	0.1100	U			М
	1	0.0850	U	0.0850	U			М
ım	1	0.0440	U	0.0440	U			М

1.8466 J

М
SW-846 7C

SAMPLE NO.

	DUPLICATE	LABORATORY	CONTROL	SAMPLE
--	-----------	------------	---------	--------

S062507ICPMSW02D

cks Labora	tories			<del></del>	Con	tra	ct:							
<u>CKS</u> SD	G No.:	CAB31			Run	Se	que	nce ID:					99995	
ID: <u>5062</u>	507ICPM	SW02			Pre	р Ва	atc	n ID: <u>P019</u>	680	)				
ID: <u>5062</u>	507ICPM	SW02D		_ Leve	el (lc	w/n	(ed	: LOW						
CS: <u>100</u>			8 5	Soliàs	for Du	ıpli	icat	e LCS: <u>10</u>	0					
ater): <u>W</u>	ater			Con	centra	atic	on l	Inits: ug/	Ъ					
Control	Limits			LCS				D	up.	licate	LCS			
%R	RPD	Results	С	Added	%R	Q	M	Results	С	Added	%R	Q	М	RPD
80 - 120	20	52.5281		50.0	105		М	50.6864		50.0	101		М	48
80 - 120	20	48.4804		50.0	97		М	47.0619		50.0	94		М	38
80 - 120	20	54.2693		50.0	109		М	53.3163		50,0	107		М	2%
80 - 120	20	54.8455		50.0	110		М	52.3579		50,0	105		М	5%
	CKS   SD     ID:   S062     ID:   S062     ID:   S062     CS:   100     ater):   W     Control   %R     80 - 120   80 - 120     80 - 120   80 - 120     80 - 120   80 - 120	CKS   SDG   No.:     ID:   S062507ICPM     ID:   S062507ICPM     ID:   S062507ICPM     CS:   100     ater):   Water     Control Limits   %R     %0 - 120   20     80 - 120   20     80 - 120   20     80 - 120   20     80 - 120   20     80 - 120   20	CKS SDG No.: CAB31   ID: S062507ICPMSW02   ID: S062507ICPMSW02D   ID: S062507ICPMSW02D   CS: 100   Control Limits   %R RPD Results   80 - 120 20 52.5281   80 - 120 20 54.2693   80 - 120 20 54.8455	Eks Laboratories   CKS SDG No.: CAB31   ID: S062507ICPMSW02   ID: S062507ICPMSW02D   SSE   SOG 2507ICPMSW02D   CS: 100   % S   ater): Water   Control Limits   %R RPD Results C   80 - 120 20 52.5281 80   80 - 120 20 48.4804 80   80 - 120 20 54.2693 80   80 - 120 20 54.8455 54.8455	Eks Laboratories   CKS SDG No.: CAB31   ID: S062507ICPMSW02   Leve   S062507ICPMSW02D   Leve   Constant   Constant   Control Limits   LCS   %R RPD Results C Added   80 - 120 20 52.5281 50.0   80 - 120 20 54.2693 50.0   80 - 120 20 54.2693 50.0	Cks Laboratories Con   CKS SDG No.: CAB31 Run   ID: S062507ICPMSW02 Preg   ID: S062507ICPMSW02D Level (lo   Con   S062507ICPMSW02D Level (lo   Control Limits LCS   %R RPD Results C Added %R   80 - 120 20 52.5281 50.0 105   80 - 120 20 54.2693 50.0 109   80 - 120 20 54.8455 50.0 110	Cks Laboratories Contration   CKS SDG No.: CAE31 Run Set   ID: S062507ICPMSW02 Prep Bailing   ID: S062507ICPMSW02D Level (low/m   CS: 100 % Solids for Duplicater): Vater   Control Limits LCS   %R RPD Results C   80 - 120 20 52.5281 50.0 105   80 - 120 20 54.2693 50.0 109   80 - 120 20 54.8455 50.0 110	Cks SDG No.: CAB31 Run Sequent   ID: S062507ICPMSW02 Prep Batch   ID: S062507ICPMSW02D Level (low/med)   CS: 100 % Solids for Duplicate   ater): Water Concentration D   Control Limits LCS   %R RPD Results C   80 - 120 20 52.5281 50.0 105 M   80 - 120 20 54.2693 50.0 109 M   80 - 120 20 54.8455 50.0 110 M	Cks Laboratories Contract:   CKS SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 % Solids for Duplicate LCS: 10   ater): Water Concentration Units: ug/   Control Limits LCS D   %R RPD Results C Added %R Q M Results   80 - 120 20 52.5281 50.0 105 M 50.6864   80 - 120 20 54.2693 50.0 109 M 53.3163   80 - 120 20 54.8455 50.0 110 M 52.3579	Cks Laboratories Contract:   CKS SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019680   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 % Solids for Duplicate LCS: 100   ater): Water Concentration Units: ug/L   Control Limits LCS Dup   %R RPD Results C Added %R Q M Results C   80 - 120 20 52.5281 50.0 105 M 50.6864 1   80 - 120 20 54.2693 50.0 109 M 53.3163 1   80 - 120 20 54.8455 50.0 110 M 52.3579 1	Cks SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019680   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 % Solids for Duplicate LCS: 100   ater): Water Control Limits LCS Duplicate   %R RPD Results C Added %R Q M Sol.68664 50.0   80 - 120 20 52.5281 50.0 105 M 50.6864 50.0   80 - 120 20 54.2693 50.0 109 M 53.3163 50.0   80 - 120 20 54.8455 50.0 110 M 52.3579 50.0	Cks Laboratories Contract:   CKS SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019680   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 * Solids for Duplicate LCS: 100   ater): Water Control Limits LCS Duplicate LCS: 0   NR RPD Results C Added %R Q M Results C Added %R   80 - 120 20 52.5281 50.0 105 M 50.6864 50.0 101   80 - 120 20 54.2693 50.0 109 M 53.3163 50.0 107   80 - 120 20 54.8455 50.0 110 M 52.3579 50.0 105	CKS SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019680   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 * Solids for Duplicate LCS: 100   ater): Water Contract: ug/L   Control Limits LCS Duplicate LCS: 4dded %R Q   80 - 120 20 52.5281 50.0 105 M 50.6864 50.0 101   80 - 120 20 54.2693 50.0 109 M 53.3163 50.0 107   80 - 120 20 54.8455 50.0 110 M 52.3579 50.0 105	Contract:   CKS SDG No.: CAB31 Run Sequence ID:   ID: S062507ICPMSW02 Prep Batch ID: P019680   ID: S062507ICPMSW02D Level (low/med): LOW   CS: 100 * Solids for Duplicate LCS: 100   ater): Water Concentration Units: ug/L Vertex   No. Solids Solids N Solids C Added %R Q M   80 - 120 20 52.5281 50.0 105 M 50.6864 50.0 101 M   80 - 120 20 54.2693 50.0 109 M 53.3163 50.0 107 M   80 - 120 20 54.8455 50.0 110 M 52.3579 50.0 105 M

Beryllium	80 - 120	20	54.2693	50.0	109	М	53.3163	 50.0	107	М	2%
Cadmium	80 - 120	20	54.8455	50.0	110	M	52.3579	 50.0	105	М	5%
Chromium	80 - 120	20	50.6407	50.0	101	M	49.4443	 50.0	99	М	28
Copper	80 - 120	20	52.2728	50.0	105	М	51.561	50.0	103	М	1%
Lead	80 - 120	20	55.812	50.0	112	М	53.3706	 50.0	107	М	4%
Nickel	80 - 120	20	51.7719	50.0	104	М	49.9248	50,0	100	М	4%
Selenium	80 - 120	20	44.876	50.0	90	M	45.4961	50.0	91	М	1%
Silver	80 - 120	20	52.0875	50.0	104	 М	50.2558	 50.0	101	М	4%
Thallium	80 - 120	20	53.5434	50.0	107	М	51.7366	50.0	103	М	38
Zínc	80 - 120	20	51.6014	50.0	103	М	50.5727	 50.0	101	М	2%

Comments:

#### 7A

#### LABORATORY CONTROL SAMPLE

Lab	Name:	Laucks Laboratories	Contract:	
Lab	Code:	LAUCKS SDG No.: CAB31		Run Sequence ID: R019018
Lab	Sample	ID: <u>S062607HGW01</u>		Prep Batch ID: <u>P019698</u>
LCS	Source	. ME-15-159-3		······································

		Concer	ntratio	on Units: ug/1	J	
Anaiyte	True	Found	C	%R Li	.mits	%R
Mercury	4.04	4.1711		85	115	103.2

SAMPLE NO.

#### 9 ICP SERIAL DILUTIONS

15LCMW430W (Filt.)L

Lab Name:	Laucks Lab	oratories		Contra	ct :		
Lab Code:	LAUCKS	SDG No.:	CAB31	. Run	Sequence	ID:	R019118
Matrix (s	oil/water):	Water		Level	(low/med:	LO.	W

Lab Sample ID: CAB31-009L

	Actua	al Results (	ug/L)	Final	Res	ults (ug/L)				
Analyte	Initial Sample(i)	Dilution Sample(S)	IDL	Initial Sample(i)	C.	Dilution Sample(S)	С	&D	Q	М
Antimony	-0.1722	-1.2586	0.0800	0.0560	Ú	0,280	U			М
Arsenic	0.0458	0.1152	0.0330	0.100	U	0.500	U	151.7		Μ
Beryllium	0.0171	0.0184	0.0200	0.0430	U	0.215	U			Μ
Cadmium	0.6089	0.6211	0.0150	0.609	J	0.621	J	2.0		Μ
Chromium	0.5855	0.9553	0.0700	0.585	J	0.955	]	63.2		М
Copper	0.2902	0.2221	0.0070	0.520	U	2.60	U	23.5		Μ
Lead	0.0532	-0.0659	0.0020	0.0750	U	0.375	U	100.0		Μ
Nickel	0.1379	0.0908	0,0320	0.138	Ĵ	0.550	U	34.1		М
Selenium	0.0914	-0.0936	0.1050	0.110	Ŭ	0.550	U			Μ
Silver	-0.0386	-0.2150	0.0250	0.0850	U	0.425	U			М
Thallium	-0.0124	-0.0536	0.0080	0.0440	υ	0.220	U			Μ
Zinc	1.8466	1.8490	0.0220	1.85	J	9.00	U	0.1		М

#### 10

#### INSTRUMENT DETECTION LIMITS (QUARTERLY)

# Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS

SDG No.: CAB31

### Instrument ID: ICPMS (PE ELAN 6100)

Date: 08/18/2004

			B	C	D	<u> </u>
Analyte	Isotope	LTL PQL (ug/L)	LTL PQL (ug/L)	MDL (uq/L)	MDL (ug/L)	M
Antimony	121	1	1	0.056	0.056	M
Arsenic	75	1	1	0.1	0.1	M
Be <del>r</del> yllium	9	1	1	0.043	0.043	M
Cadmium	111	1	1	0.094	0.094	М
Chromium	52	I	]	0.12	0.12	M
Соррег	63	2	2	0.52	0.52	М
Lead	208	1	1	0.075	0.075	M
Nickel	60	I	1	0.11	0.11	M
Selenium	82	1	1	0.11	0.11	М
Silver	107	1	1	0.085	0.085	М
Thallium	205	1	1	0.044	0.044	М
Zinc	66	10	10	1.8	1.8	М

A = Upper Estimated (J Flag) Range in Determination Units

B = Upper Estimated (J Flag) Range in Actual Units

C = Lower Estimated (J Flag) Range in Determination Units

D = Lower Estimated (J Flag) Range in Actual Units

#### 10

#### INSTRUMENT DETECTION LIMITS (QUARTERLY)

# Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS

SDG No.: CAB31

#### Instrument ID: FIMS(FIMS400)

Date: 04/11/2006

		A	В	C	D	
	<b>**</b>	LTL PQL	LTL PQL	MDL	MDL	NG
Analyte	lsotope	(ug/L)	(uq/L)	(uq/L)	(uq/L)	M
Mercury		0.2	0.2	0.018	0.018	CV

A = Upper Estimated (J Flag) Range in Determination Units B = Upper Estimated (J Flag) Range in Actual Units

C = Lower Estimated (J Flag) Range in Determination Units

D = Lower Estimated (J Flag) Range in Actual Units

#### 12

#### ICP LINEAR RANGES (QUARTERLY)

Lab Name: Laucks L	aboratories	C	ontract:	-	
Lab Code: LAUCKS				SDG No.	CAB31
ICP ID Number: <u>IC</u>	PMS (PE ELAN 6100	)) D	ate: 03/08/2007		
	Analyte	Integ. Time (Sec.)	Concentration (ug/L)	M	
	Antimony	0.002	1000.	0 M	
	Arsenic	0.001	1000.	0 M	
	Beryllium	0.002	1000.	0 M	
	Cadmium	0.001	1000.	0 <u>M</u>	
	Chromium	0.001	1000.	0 M	
	Copper	0.001	1000.	0 M	
	Lead	0.001	1000.	0 M	
	Nickel	0.001	1000.	0 M	
	Selenium	0.002	1000.	0 M	
	Silver	0.002	1000.	0 M	
	Thallium	0.001	1000.	0 M	
	Zinc	0.002	1000.	0 M	

#### 12

#### ICP LINEAR RANGES (QUARTERLY)

Lab Name: Lauc	cks Laboratories	Co	ontract:		
Lab Code: LAUC	CKS			SDG No.:	CAB31
ICP ID Number:	FIMS(FIMS400)	D	ate: 09/08/2005		
•	Analyte	Integ. Time (Sec.)	Concentration (ug/L)	М	
	Mercury		2	0.0 CV	

## 13

#### PREPARATION LOG

Lab Name: Laucks Laboratories Contract:

Lab Code: LAUCKS SDG No.: CAB31 Prep Batch ID: P019680

Method: <u>6020</u>

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B062507ICPMSW02	B062507ICPMSW02	06/25/2007	100.0 mL	100
S062507ICPMSW02	S0625071CPMSW02	06/25/2007	100.0 mL	100
S062507ICPMSW02D	S0625071CPMSW02D	06/25/2007	100.0 mL	100
15LCMW420W	CAB31-006	06/25/2007	100.0 mL	100
15LCMW430W	CAB31-007	06/25/2007	100.0 mL	100
15LCMW420W (Filt.)	CAB31-008	06/25/2007	100.0 mL	100
15LCMW430W (Filt.)	CAB31-009	06/25/2007	100.0 mL	100
15LCMW430W (Filt.)D	CAB31-009D	06/25/2007	100.0 mL	100
15LCMW430W (Filt.)MS	CAB31-009MS	06/25/2007	100.0 mL	100

#### 13

#### PREPARATION LOG

Lab Name: Laucks Laboratories

Contract: _____

Lab Code: LAUCKS SDG No.: CAB31 Prep Batch ID: P019698

Method: 7470A

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B062607HGW01	B062607HGW01	06/26/2007	50.0 mL	50
S062607HGW01	S062607HGW01	06/26/2007	50.0 mL	50
15LCMW420W	CAB31-006	06/26/2007	50.0 mL	50
15LCMW420WD	CAB31-006D	06/26/2007	50.0 mL	50
15LCMW420WMS	CAB31-006MS	06/26/2007	50.0 mL	50
15LCMW430W	CAB31-007	06/26/2007	50.0 mL	50
15LCMW420W (Filt.)	CAB31-008	06/26/2007	50.0 mL	50
15LCMW420W (Filt.)D	CAB31-008D	06/26/2007	50.0 mL	50
15LCMW420W (Filt.)MS	CAB31-008MS	06/26/2007	50.0 mL	50
15LCMW430W (Filt.)	CAB31-009	06/26/2007	50.0 mL	50

14

SW-846

ANALYSIS RUN LOG

Run Sequence ID: R019118

CAB31

SDG No.:

Lab Name: Laucks Laboratories

Lab Code: LAUCKS

Contract:

SUM - 218

Ŋ Н В υ Z NZ × × × × ×  $\asymp$ ⊳ Þ нц × ×  $\asymp$ X × × EH iH нщ ഗജ S z R019118 ഗല ×  $\approx$ × × × × 06/29/2007 X S × × × × × щ × പമ × × × × × Run Sequence ID: Х × × × zн ×  $\approx$ Method: 6020 N A Analytes End Date: Σ 0 Contract: ΣZ Συ ы нu ыы υρ × Χ X  $\approx$ × × Х υæ × × × × × υο CAB31 ICPMS (PE ELAN 6100) υA × ×  $\varkappa$ × ×  $\approx$ U∢ SDG No.: × × × × XX മജ a d Lab Name: Laucks Laboratories × A 0  $\times \times$ × ×  $\asymp$ 4 7 Start Date: 06/28/2007 Instrument ID Number: × × 40 ×  $\approx$ × × Time 14:03 14:16 14:20 14:36 14:40 15:06 15:33 15:46 15:54 16:0316:0714:44 14:49 14:53 14:58 15:02 15:20 15:24 15.2815:37 15:50 15:59 14.0714:27 15:41 14:11 14:31 Lab Code: LAUCKS D/F-------Ļ ¥****( ---------····· <del>....</del> ••••• •••••• **** •••••4 ***** *****{ ----Ļ ÷ ÷---( ī ----بسبو ,...., -----Client Sample No. zzzzz16 zzzzz19 ZZZZZ20 zzzz10 ZZZZZ]2 zzzzz13 ZZZZZ [4 ZZZZZ15 TITITI zzzzz18 ZZZZZ21 7727272 ZZZZZ23 ZZZZZZ I I zzzzz4 zzzzz 6222222 2222225 9777777 LZZZZZ CCV4 ZZZZZ4 CCV3 CCB3 CCB4 CCV5 CCB5

SW-846

Form XIV-IN

SUM - 219

SW-846

# Ίđ

ANALYSIS RUN LOG

14

ANALYSIS RUN LOG

R019118

Run Sequence ID:

CAB31

SDG No.:

i

Lab Code: LAUCKS

Lab Name: Laucks Laboratories

Contract:

Instru	nent I	D Numb€	÷	비	PMS	5 (P	E	AN	6100						Met	choč	ت	602															
Start I	Jate:	06/28/	200	L											Enc	1 Da	rte:	******	06/	29/:	2007	_											
																Anē	al yt	ດ ທ															
Client Sample No.	D/F	Time	4 U	A J	4 V	n d	цп	UA	ບ D	D C C	υp	다.다	нс	×	 Г	Συ		ZA	Z ⊢	<u>р</u> п	ഗമ	ഗല	ωz	ഗമ	E II	EI	н н н	р Р	N Z	υz	m	s ⊢	
ZZZZZZ25	, T	16:43		l 	·	-					>  	1			,	, ,	,		( 	1	1	1	;				1					+	
zzzz26	-	16:48		<b> </b>							 	ļ			<u> </u>	-		<u> </u>	<u> </u>					Ī	†	<u> </u>							
zzzzz27	1	16:52	[		ļ						ļ												1							ļ			
zzzzz28	1	16:57							ļ										ļ						<u> </u>		-	 					
ZZZZZ29	1	17:01		 		<u> </u>																		1	<u> </u>		-			L	ļ		
zzzz30	1	17:05	[	ļ		<b> </b>				-	ļ					  .									†	┢							
12222331	Ĩ	17:10	-								ļ					<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>								<u> </u>		<u> </u>		
ZZZZZ32	1	17:14	<u> </u>	ļ	ļ	ļ					ļ			ar (verdenberebr	-					<u> </u>	Ļ									ļ			-
zzzzz33	1	17:18	<u> </u>	ļ													<u> </u>													<u> </u>	<u> </u>		
ZZZZZ34		17:23																	ļ	ļ	ļ								ļ				
CCV6		17:27	X		×		X		х	X	×								X	×	×	х					X		X				daw
CCB6	1	17:31	X		X		X		×	X	×								$ \times$	×	×	×					×		×	ļ	ļ		
ZZZZZ35	1	17:35	 		ļ													ļ	 		 												•••••
zzzz36	1	17:40										ļ									<u> </u>												4
TZZZZ37	-	17:44			 	 												ļ			ļ									ļ	ļ		
ZZZZZ38	1	17:48	ļ																	ļ										ļ			•
zzzz39	I	17:53		 							 																						
zzzz40	1	17:57	<b> </b>											<u>.</u>																	ļ		
77222241	1	18:01																															
zzzzz42	1	18:06																															
22222243	1	18:10																															
22222244	I	18:14																															
zzzzz45	-	18:19	<u> </u>			 														ļ										ļ	ļ		
CCV7		18:23	X		Х		X		Х	X	×								X	Х	Х	X					×		X				
CCB7	1	18:27	X		X		X		Х	X	×								X	Х	×	х					X		X				
B062507ICPMSW02	, , , ,	18:48	×		Х		х		х	×	Х								X	×	×	х					Х		Х				
ZZZZZ46	Ť	18:52					]		$\neg$								<u> </u>			$\neg$													
											FOT	u XI	Т - Л.	N													0	M- 84	Ś				

SUM - 220

SW-846

14

SW-846

ANALYSIS RUN LOG

Contract:

Lab Name: Laucks Laboratories

SUM - 221

# 14 ANALYSIS RUN LOG

Lab Name: Laucks Laboratories

Lab Code: LAUCKS SDG No.:

CAB31

Instrument ID Number: ICPMS (PE ELAN 6100) Start Date: 06/28/2007

Method: 6020

R019118

Run Sequence ID:

Contract:

End Date: 06/29/2007

	s	н											
	m		<u> </u>	<u> </u>	<u> </u>							<u> </u>	
	υ	N											
	Ы	z	Х	X	Х	X	X	Х	X	×	×	X	Х
	Δ												
	Þ												
	H	L	X	X	Х	×	×	X	×	X	×	×	X
	F	Н										-	
	ы	Ц	ļ										
	S	Ц											
	S	Z											
	S	더	×	X	×	×	X	х	×	×	$\times$	×	×
	S	щ	X	Х	Х	X	X	X	×	×	X	X	Х
	ы	щ	×	X	Х	×	X	X	×	Х	×	×	Х
	z	н	×	×	Х	×	×	X	×	х	×	×	х
Ω.	z	Ø											
yte	Σ	0											
nal	Σ	Z											
A	Σ	U											
	ŗ	н			Į								
	X												
	H	υ											
	Ŀ	ы											
	υ	D	×	×	×	×	×	X	×	×	×	×	X
	υ	Ц	×	×	X	×	×	X	$\times$	×	×	×	×
	υ	0											
	υ	D	х	×	Х	×	X	Х	×	Х	×	×	Х
	υ	Å.											
	щ	ы	Х	×	X	×	$\times$	×	×	×	×	×	X
	д	Ø											
	4	S	Х	Х	×	X	×	X	×	×	×	X	Х
	A	Ľ											
	A	υ	х	Х	×	×	х	Х	×	X	×	X	х
		Time	20:53	20:58	21:02	21:06	21:11	21:15	21:19	21:24	21:28	21:32	21:36
		D/F	1	1	1	1	1	5	1	1	1	1	Ι
		Client Sample No.	CCB10	15LCMW420W	15LCMW430W	15LCMW420W (Filt.)	15LCMW430W (Filt.)	15LCMW430W (Filt.)L	15LCMW430W (Filt.)D	15LCMW430W (Filt.)MS	15LCMW430W (Filt.)P	ccv11	CCB11

SUM - 222

Form XIV-IN

SW~846

# FORMS SUMMARY

## CAB31

**Miscellaneous Inorganics** 

## <u>Final Results</u>

Client: SDG Number:	PBS Engineering and Environmental CAB31	Project:	Camp Bonneville
Sample Number:	15L4MW02AWRX	Date/Time Collected:	06/20/2007 10:00
Method:	E314.0	Unit:	ug/L

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	5	170		5.0	0.70	07/10/2007	07/11/2007	R019390

## Final Results

Client:	PBS Engineering and Environmental	Project:	Camp Bonneville
Sample Number:	15L4MW03AWRX	Date/Time Collected:	06/20/2007 11:20
Lab Sample ID:	CAB31-002	Date/Time Received:	06/21/2007 10:10
Method:	E314.0	Unit:	ug/L
T			

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	5	94		5.0	0.70	07/10/2007	07/11/2007	R019390

## Final Results

1.0

0.14

07/06/2007

07/07/2007

R019277

Client:	PBS Engineering ar Environmental	าd	P	roject:		Camp	Bonneville		
SDG Number:	CAB31								
Sample Number:	15L4MW03BW		Da	ate/Time	Collected:	06/20/2	2007 13:50	)	
Lab Sample ID:	CAB31-003		Da	ate/Time	Received:	06/21/2	2007 10:10	)	
Method:	E314.0		U	nit:		ug/L			
Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.

1

44

14797-73-0

Perchlorate

## Final Results

Client: PBS Engi Environm	neering and I ental	Project:	Camp Bonneville
SDG Number: CAB31			
Sample Number: 15L4MW(	95AW I	Date/Time Collected:	06/20/2007 15:15
Lab Sample ID: CAB31-00	14 I	Date/Time Received:	06/21/2007 10:10
Method: E314.0	τ	Unit:	ug/L

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	39		1.0	0.14	07/06/2007	07/07/2007	R019277

## Final Results

Client:	PBS Eng Environm	ineering and nental		Pr	oject:		Camp I	Bonneville		
SDG Number:	CAB31									
Sample Number:	15LCMW	15LCMW420W Date/Time Collected:					: 06/20/2	2007 15:50	)	
Lab Sample ID:	CAB31-0	06		Da	te/Time	Received:	06/21/2	2007 10:10	)	
Method:	E160.2			Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Tota	ıl	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			Un	uit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	1	0.20	U	0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N	***************************************	14797-65-0	1	0.10	U	0.10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	1.0	U	1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1			Un	it:		mg/L			1.1.1.1.1.1.1
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Alkalinity, Carbonate ( CaCO3)	As	3812-32-6	1	2	U	2	2	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonate CaCO3)	e (As	71-52-3	]	2	U	2	2	07/03/2007	07/03/2007	R019262
Method:	E314.0			Un	it:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/06/2007	07/07/2007	R019277
Method:	E415.1			Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Organic Carbon, Total		ТОС	1	1.0	U	1.0	0.070	06/28/2007	06/28/2007	R019123

## Final Results

U

1.0

1.0

Client:	PBS Engineering and Environmental					oject:		Camp B	Camp Bonneville			
SDG Number:	CAB31											
Sample Number:	15LCMW	15LCMW420W (Filt.)				Date/Time Collected:			06/20/2007 15:50			
Lab Sample ID:	CAB31-008				Date/Time Received:			06/21/2	06/21/2007 10:10			
Method:	E415.1		·		Uni	t:		mg/L				
Analyte		CAS	DF	Result		Q	PQL	MDL	Prepared	Analyzed		

1.0

1

Dissolved Organic Carbon

DOC

Run Seq.

06/28/2007 06/28/2007 R019123

mg/L

SDG No:	CAB31	Contract:
Run Sequence No.	R018997	Concentration Units:
Determination Name:	300.0 NO3, NO2, Cl, SO4	
Initial Calibration Source:	IC-7-22-18	
Continuing Calbration Source:	IC-7-24-12	

1CV CCV1 CCV2 06/23/2007 13:32 CCV 06/23/07 16:10 06/23/07 19:19 Analyte True Found Recovery Limits True Found Recovery True Found Recovery Limits Chloride 1.500 1.399 93.3 90-110 5.023 4.782 95.2 5.023 4.849 96.5 90-110 Nitrate - N 1.125 1.081 96.1 90-110 2.004 1,932 96.4 2.004 1.944 97 90-110 Nitrite - N 1.522 1.647 108.2 90-110 1,000 0.975 97.4 1.000 0.982 98.1 90-110 7.450 90-110 Sulfate as SO4 7.326 98.3 90-110 10.018 9.607 95.9 10.018 9.59 95.7

* = Percent recovery not within control limits

SDG No:	CAB31	Contract:
Run Sequence No.	R019277	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

	ICV				CCV1						
	07/07/2007 12:46				07/07/07 12:46			07/07/07 12:46			CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	Trúe	Found	Recovery	Limits
Perchlorate	40.151	40.575	101.1	75-125	9.988	10.515	105.3	9.988	9.541	95.5	85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

SUM^{Page}231

SDG No:	CAB31	Contract:
Run Sequence No.	R019390	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

	ICV				CCV1			CCV2			
		07/11/200	7 12:24		07/11/07 12:24			07/11/07 12:24			CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate	40.151	38.82	96.7	75-125	9.988	9.626	96.4	9.988	10.09	101	85-115

* = Percent recovery not within control limits

SDG No:	CAB31	Contract:
Run Sequence No.	R019390	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

					CCV3						
					07/11/07 12:24						CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate					9.988	9.868	98.8				85-115

* = Percent recovery not within control limits

SDG No:	CAB31	Contract:
Run Sequence No.	R019123	Concentration Units: mg/L
Determination Name:	415.1 Total Organic Carbon	
Initial Calibration Source:	TOC-4-28-2	
Continuing Calbration Source:	TOC-4-29-20	

		IC.	V		CCV01						
	06/28/2007 11:34				06/28/07 13:16			06/28/07 14:42			CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Organic Carbon, Total	10.000	9.929	99.3	90-110	5.001	4.796	95.9	5.001	4.638	92.7	90-110

* = Percent recovery not within control limits

mg/L

SDG No:	CAB31	Contract:
Run Sequence No.	R019123	Concentration Units:
Determination Name:	415.1 Total Organic Carbon	
Initial Calibration Source:	TOC-4-28-2	
Continuing Calbration Source:	TOC-4-29-20	

						CCV03					
					06/28/07 15:51						CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Organic Carbon, Total					5.001	5.065	101.3				90-110

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

SUM^{Page}235

## INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB31

Contract:

Run Sequence No.:

R018997

Concentration Units: mg/L

Determination Name:

300.0 NO3, NO2, Cl, SO4

	ICB 06/23/2007 13:48		CCB1 06/23/2007 16:26		CCB2 06/23/2007 19:35				ССВ	
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Chloride	1.0	U	0.5	1.0	U	1.0	U			0.5
Nitrate - N	0.20	U	0.1	0.20	U	0.20	υ			0.1
Nitrite - N	0.10	U	0.05	0.10	U	0.10	U			0.05
Sulfate as SO4	1.0	U	0.5	1.0	U	1.0	υ			0.5

## INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB31

Contract:

Run Sequence No.:

R019277

Concentration Units: ug/L

Determination Name: 314.0 Perchlorate

	ICB 07/07/2007 12:46			CCB1 07/07/2007 12:46		CCB2 07/07/2007 12:46				ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	U	0.5	1.0	U	1.0	U			0.5

* = Control limit exceeded

## INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

### CAB31

Contract:

Run Sequence No.:

R019390

Concentration Units: ug/L

Determination Name: 314.0 Perchlorate

	ICB 07/11/2007 12:24			CCB1 07/11/2007 12:24		CCB2 07/11/2007 12:24		CCB3 07/11/2007 12:24		ССВ
Апајуtе	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	υ	0.5	1.0	U	1.0	U	1.0	U	0.5

## INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB31

R019123

Contract:

Run Sequence No.: RC

Concentration Units:

mg/L

Determination Name: 415.1 Total Organic Carbon

	ICB 06/28/2007 11:40			CCB01 06/28/2007 13:22		CCB02 06/28/2007 14:49		CCB03 06/28/2007 15:57		ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Organic Carbon, Total	1.0	U	0.5	1.0	U	1.0	υ	1.0	U	0.5

* = Control limit exceeded

Test:	310.1M Carb./Bicarb. Alkalinity	ý	SDG ID:	CAB31	
			Preparation Date:	7/3/2007	
Lab Sample ID:	B070307ALKW01	Run Sequence ID:	R019262		
			07/03/2007	17:00	
			Units:	mg/L	
			Matrix:	Water	
	Analyte	Reported	Flag	Limit	
Alkalinity	, Bicarbonate (As CaCO3)	2	Ŭ	2	
Alkalinity	, Carbonate (As CaCO3)	2	U	2	
	······				

Associated Samples							
Lab Sample ID	<u>Client Sample ID</u>						
CAB31-006	15LCMW420W						

* Measured blank concentration exceeded the established control limit

Test: 300.0 NO3, NO2, Cl, SO4

Lab Sample ID: B062307IAIW01

SDG ID:	CAB31	
Preparation Date:	6/23/2007	
Run Sequence ID:	R018997	
Analysis Date:	06/23/2007	13:48
Units:	mg/L	
Matrix:	Water	

Analyte	Reported	Flag	Limit
Chloride	1.0	U	0.5
Nitrate - N	0.20	·U	0.1
Nitrite - N	0.10	U	0.05
Sulfate as SO4	1.0	U	0.5

Associated Samples							
Lab Sample ID Client Sample ID							
CAB31-006	15LCMW420W						

* Measured blank concentration exceeded the established control limit

Fest:	314.0 Perchlorate	4	SDG ID:	CAB31			
			J	Preparation Date:	7/6/2007		
Lab Sa	mple ID:	B070607PERW01	]	Run Sequence ID:	R019277		
			ł	Analysis Date:	07/07/2007	12:46	
			Ţ	Units:	ug/L		
		·	ſ	Matrix:	Water		
		Analyte	Reported	Flag	Limit		
	Perchlorate	·	1.0	U	0.5		
		A	Associated Samples				
		Lab Sample ID	<u>Client Sample ID</u>				
		CAB31-001	15L4MW02AW				
		CAB31-002	15L4MW03AW				
		CAB31-003	15L4MW03BW				
		CAB31-004	15L4MW05AW	ľ			
		CAB31-006	15LCMW420W				

* Measured blank concentration exceeded the established control limit

SUM - 242

Test:	314.0 Perchlorate	SI	DG ID:	CAB31	
		Pr	eparation Date:	7/10/2007	
Lab Sample ID:	B071007PERW01	R	un Sequence ID:	: R019390	
		A	nalysis Date:	07/11/2007	/ 12:24
		U	nits:	ug/L	
		М	atrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlorate		1.0	U	0.5	
1					

Associated Samples			
Contraction of the local division of the loc	<u>Lab Sample ID</u>	<u>Client Sample ID</u>	
Concession of the local division of the loca	CAB31-001DL 5X	15L4MW02AWRX	
	CAB31-002DL 5X	15L4MW03AWRX	

* Measured blank concentration exceeded the established control limit

**SUM - 243** 

Test:	415.1 Total Organic Carbon	S	DG ID:	CAB31	
		P	reparation Date:	6/28/2007	
Lab Sample ID:	B062807TOCW01	R	lun Sequence ID:	R019123	
		А	Analysis Date:		12:02
		Units: Matrix:		mg/L	
				Water	
	Analyte	Reported	Flag	Limit	
Organic Carbon, Total		1.0	U	0.5	
-	·····				

Associated Samples				
<u>Lab Sampie ID</u>	Client Sample ID			
CAB31-006	15LCMW420W			
CAB31-008	15LCMW420W (Filt.)			

* Measured blank concentration exceeded the established control limit
# Laucks Testing Labs **Blank Report**

	Associate	d Samples			
Suspended	Solids, Total	2	U	2	
	Analyte	Reported	Flag	Limit	
			Matrix:	Water	
			Units:	mg/L	
			Analysis Date:	06/27/2007	16:30
Lab Sample ID:	B062507TSSW01		Run Sequence ID:	R018986	
			Preparation Date:	6/25/2007	
Test:	160.2 Total Suspended Solids		SDG ID:	CAB31	

Associated Samples							
Lab Sample ID	Client Sample ID						
CAB31-006	15LCMW420W						

* Measured blank concentration exceeded the established control limit

FORM LTL-RSR-9.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

Test:	300.0 NO3, 1	NO2, Cl,	SO4		SDG ID:		CAB31			
					Р	reparation	Date:	06/23/2007		
MS Lab Sample ID:	CAB31-0061	MS 20X	R	un Sequen	ce ID:	R018997				
MSD Lab Sample ID:	CAB31-0061	ASD 20X	C		А	nalysis Dat	te:	06/23/20	07	
Client Sample ID:	15LCMW42	0W			U	nits:	. :	mg/L		
					Ν	latrix:		Water		
Analyta	Sample	MS	MS	MS	MSD	MSD	MSD	חסמ	Limi	ts
Analyte	Sampie Found	MS Spike	MS Found	MS Recovery	MSD Spike	MSD Found	MSD Recovery	RPD	Limit Recovery	RPD
<b>Analyte</b> Chloride	Sampie Found 0	MS Spike 40.2	MS Found 38.6468	MS Recovery 96%	MSD Spike 40.2	MSD Found 38.1958	MSD Recovery 95%	RPD	Limit Recovery 90-110	rs RPD
Analyte Chloride Nitrate - N	Sample Found 0	MS Spike 40.2 16.0	MS Found 38.6468 15.0158	MS Recovery 96% 94%	MSD Spike 40.2	MSD Found 38.1958 15.1757	MSD Recovery 95% 95%	<b>RPD</b> 1%	Limit Recovery 90-110 90-110	ts RPD 11 10
Analyte Chloride Nitrate - N Nitrite - N	Sample Found 0 0 0	MS Spike 40.2 16.0 8.00	MS Found 38.6468 15.0158 7.1945	MS Recovery 96% 94% 90%	MSD Spike 40.2 16.0 7 8.00	MSD Found 38.1958 15.1757 7.3984	MSD Recovery 95% 95% 92%	RPD           1%           3%	Limit Recovery 90-110 90-110 90-110	<b>RPD</b> 11 10 10

Associated Samples							
<u>Lab Sample ID</u>	<u>Client Sample ID</u>	f					
 CAB31-006	15LCMW420W						

* = RPD or percent recovery is outside established control limits

# = This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the roles of trade and science.

SUM - 246

Test:	415.1 Dissolved Organic Carbon	SDG ID:	CAB31
		Preparation Date:	06/28/2007
MS Lab Sample ID:	CAB31-008MS	Run Sequence ID:	R019123
MSD Lab Sample ID:	CAB31-008MSD	Analysis Date:	06/28/2007
Client Sample ID:	15LCMW420W (Filt.)	Units:	mg/L
		Matrix:	Water
		e Men Men Men	Limit

	Sample	MS	MS	MS	MSD	MSD	MSD	חתת	Limit	\$
Analyte	Found	Spike	Found	Recovery	Spike	Found	Recovery	KPD	Recovery	RPD
Dissolved Organic Carbon	0.278	10.0	10.1387	99%	10.0	10.2283	99%	1%	70-119	11

Associated Samples							
Lab Sample ID	<u>Client Sample ID</u>						
CAB31-006	15LCMW420W						
CAB31-008	15LCMW420W (Filt.)						

* = RPD or percent recovery is outside established control limits

# = This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0 SUM - 247 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

Test:	314.0 Perchlorate	SDG ID:	CAB31
		Preparation Date:	07/06/2007
MS Lab Sample ID:	CAB31-006MS 5X	Run Sequence ID:	R019277
MSD Lab Sample ID:	CAB31-006MSD 5X	Analysis Date:	07/07/2007
Client Sample ID:	15LCMW420W	Units:	ug/L
		Matrix:	Water

Analyte	Sample	MS	MS	MS	MSD	MSD	MSD	ממת	Limit	s
	Found	Spike	Fonnd	Recovery	Spike	Found	Recovery	RPD	Recovery	RPD
Perchlorate	0	99.9	96.405	97%	99.9	93.575	94%	3%	80-120	15

Å	Associated Samples							
Lab Sample ID	<u>Client Sample ID</u>							
CAB31-001	15L4MW02AW							
CAB31-002	15L4MW03AW							
CAB31-003	15L4MW03BW							
CAB31-004	15L4MW05AW							
CAB31-006	15LCMW420W							

* = RPD or percent recovery is outside established control limits

# = This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

> FORM LTL-RSR-11.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science. SUM - 248

Test:	415.1 Total O	rganic C	arbon		SDG ID:			CAB31	
					Preparation Date:				7
MS Lab Sample ID:	CAB31-006M	IS			Ra	un Sequen	ce ID:	R019123	
MSD Lab Sample ID:	CAB31-006M	CAB31-006MSD				Analysis Date:			1
Client Sample ID:	15LCMW420	15LCMW420W				nits:		mg/L	
					М	atrix:		Water	
	Sample	MS	MS	MS	MSD	MSD	MSB		Limits

A mainte	Sample	MS	MS	MS	MSD	MSD	MSD	מעם	Limit	S
Апатуte	Found	Spike	Found	Recovery	Spike	Found	Recovery	KrD	Recovery	RPD
Organic Carbon, Total	0.1079	10.0	11.324	112%	10.0	11.5208	114%	2%	70-119	11

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB31-006	15LCMW420W			
CAB31-008	15LCMW420W (Filt.)			

* = RPD or percent recovery is outside established control limits

# = This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0 SUM - 249 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

#### **Duplicate Report**

Test:	160.2 Total Suspended Solids	SDG ID:	CAB31
		Preparation Date:	6/25/2007
Lab Sample ID:	CAB31-006D	Run Sequence ID:	R018986
Client Sample ID:	15LCMW420W	Analysis Date:	06/27/2007 16:30
		Units:	mg/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Suspended Solids, Total	1	0	200%#	20

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB31-006	15LCMW420W			

# = RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.



# Laucks Testing Laboratories BS/BSD Report

Test: 300.0 NO3, NO2, Cl, SO4

BS Sample ID: S062307 BSD Sample ID: SD062307

SDG ID:	CAB31
Preparation Date:	06/23/2007
Run Sequence ID:	R018997
Analysis Date:	06/23/2007 18:47
Units:	mg/L
Matrix	Water

Analyte	Blank Spike		Blank Spike Duplicate				Limits		
	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Chloride	2.01	2.1318	106%	2.01	2.0629	103%	3%	90-110	11
Nitrate - N	0.802	0.743	93%	0.802	0.7555	94%	2%	90-110	10
Nitrite - N	0.400	0.3767	94%	0.400	0.3671	92%	3%	90-110	10
Sulfate as SO4	4.01	3.9152	98%	4.01	3.9664	99%	1%	90-110	10

Associated Samples		
Lab Sample ID	Client Sample ID	
CAB31-006	15LCMW420W	

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

## **BS/BSD** Report

SDG ID:	CAB31	
Preparation Date:	06/28/2007	
Run Sequence ID:	R019123	
Analysis Date:	06/28/2007	11:48
Units:	mg/L	
Matrix	Water	

	Blank Spike		Blank Spike Duplicate			חחח	Limits		
Analyte	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Dissolved Organic Carbon	10.0	9.7452	97%	10.0	9.5033	95%	3%	70-119	

Associated Samples				
Lab Sample ID Client Sample ID				
CAB31-006	15LCMW420W			
CAB31-008 15LCMW420W (Filt.)				

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-7.0 SUM - 2522 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

## SRM Report

Test Name:	310.1M Carb./Bicarb. Alkalinity	SDG ID:	CAB31
		Preparation Date:	07/03/2007
Lab Sample ID:	SRM-MIN QCI02712-438/439-202	Run Sequence ID:	R019262
		Analysis Date:	07/03/2007 17:00
		Units:	mg/L CaCO3
		Matrix:	Water
<b>-</b>			

Analyte	Result	True Value	Control Limits		
	ncsun	IIRC ( and c	LCL	UCL	
Alkalinity, Bicarbonate (As CaCO3)	36.0	35.6	30.3	42.2	

Associated Samples					
Lab Sample ID	Client Sample ID				
CAB31-006	15LCMW420W				

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

## SRM Report

	Analyte	I ICOUIC	TIUC VALUE	
	Analyta	Bosult	True Volue	Control Limits
		Matrix:	Water	
		Units:	mg/L	
		Analysis Date:	06/23/2007	13:32
Lab Sample ID:	SRM-IC 34-72AS-160	Run Sequence ID:	R018997	
		Preparation Date:	06/23/2007	
Test Name:	300.0 NO3, NO2, Cl, SO4	SDG ID:	CAB31	

	Resurt	if de l' proc	LCL	UCL
Chloride	28.0	30	27	33
Nitrate - N	21.6	22.5	20.2	24.8
Nitrite - N	32.9	30.4	27.4	33.5
Sulfate as SO4	147	149	134	164

Associated Samples						
Lab Sample ID	<u>Client Sample ID</u>					
CAB31-006	15LCMW420W					

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

SUM - 254

# LAUCKS TESTING LABORATORIES

# SAMPLE DATA PACKAGE

# **PBS ENGINEERING & ENVIRONMENTAL**

# SDG NO.: CAB32

**JULY 13, 2007** 

# LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

To: PBS Engineering & Environmental Project Name: Camp Bonneville SDG No.: CAB32 Date of Report: July 13, 2007

## SAMPLE RECEIPT, IDENTIFICATION, AND GENERAL COMMENTS:

#### Sample Receipt and Identification:

The samples submitted under the laboratory number(s) indicated above were identified and analyzed as tabulated below. The samples were collected and received on the dates noted on the enclosed chain-of-custody copies, Attachment A.

Client	Laucks	Testing
Sample	Sample	Analytical
Identification	<u>Identification</u>	<u>Request</u>
15L4MW17W	CAB32-001	VOA/ORD/PERC
15L4MW18W	CAB32-002	VOA/ORD/PERC
15L4MW07BW	CAB32-003	VOA
TRIP BLANK	CAB32-004	VOA
15L4MW07BW	CAB32-005	ORD/PERC

#### Analytical Request Key:

Volatile Organics by Method 8260B
Ordnance by Method 8330
PETN/Nitroglycerin by Method 8332
Ammonium Perchlorate by Method 314.0

#### Sample Receipt Comments:

The temperature blank measured above the control limit of 6 deg C.

One of the VOA trip blank vials contained an air bubble less than 1/4 inch in size.

## GENERAL REMARKS ON ORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON ORGANIC ANALYSIS."

#### Manual Integrations:

One or more analytes may have been manually integrated on the data system quantitation reports. All manual integrations have been flagged, initialed, and dated by the analyst. A list of the manual integration flags is detailed below.

М	Manual integration du	le to irregular peak shape
---	-----------------------	----------------------------

- MS Manual integration due to split peak
- MR Manual integration due to retention time shift
- MI Manual integration of correct isomer
- MT Manual integration due to peak tailing
- MB Manual integration due to irregular baseline

#### Holding Time Compliance:

#### Volatile Organic Compounds:

The holding time is 14 days calculated from date of collection in both soil and water samples. All samples were analyzed within holding time.

#### Ordnance, PETN/Nitroglycerin:

The holding time to extraction is 7 days in water and 14 days in soil calculated from date of collection. The holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

#### Volatile Fraction (8260):

#### Initial Calibration

Analysis of the initial calibration yielded %RSD value for methylene chloride that exceeded 15% in the ICAL performed 06/04/2007. Using an alternative curve fit, this analyte had r² values greater than 0.990 (r values greater than 0.995) and was therefore compliant. The submitted Forms 6 and 7 document the evaluation of the initial calibration and continuing calibration standards using %RSD and %difference values. Additional forms have been submitted listing the r² values and % drifts for analytes calibrated with alternative curve fits. These forms are located in the Standards Data section of the data package.

#### Continuing Calibration Verification (CCV):

In the CCV performed on 06/20/2007 the percent difference value for 1,2-dichloroethane exceeded 20% due to an increase in response. In the CCV performed on 06/26/2007 the percent difference value for dichlorodifluoromethane exceeded 20% due to decreased response. These analytes were not detected in any associated samples. Because sample results were reported well below the reporting limit (RL) the chance of reporting any false negatives for those compounds that recovered low at the RL was negligible.

All other quality control parameters were met.

#### Ordnance Fraction:

All quality control parameters were met.

#### **PETN/Nitroglycerin Fraction:**

All quality control parameters were met.

## **GENERAL REMARKS ON INORGANIC ANALYSES:**

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON INORGANIC ANALYSES."

## SPECIFIC REMARKS ON INORGANIC ANALYSES:

#### Holding Time Compliance:

Laucks calculates holding time compliance for inorganic determinations using the date on which reportable data were acquired.

#### Miscellaneous:

The following analytes do not have a Contract Laboratory Program holding time. The holding times tabulated below derive from the relevant EPA methods and are applicable when the sample was appropriately preserved and/or cooled. All samples submitted followed the preservation guidelines unless explicitly noted otherwise.

Analyte Holding Time Violations

Perchlorate

28 days

None

Miscellaneous Inorganics:

No comments.

## LAUCKS TESTING LABORATORIES

940 S. Harney

Seattle, WA 98108

## ABBREVIATIONS

Several abbreviations can appear in our reports. The most commonly employed abbreviations are as follows:

- U The analyte of interest was not detected to the limit of detection indicated.
- SDL Sample Detection Limit. The SDL can vary from sample to sample, depending on sample size, matrix interferences, moisture content and other sample-specific conditions.
- PQL Practical Quantitation Limit. The limit is drawn from the test method and usually represents the SDL multiplied by a matrix-specific factor.
- DB Dry Basis. The value reported has been back-calculated to normalize for the moisture content of the sample.
- AR As-Received. The value has not been normalized for moisture.

ORGANIC ANALYSES:

- B When used in relation to organics fractions, the "B" flag indicates that the analyte of interest was detected in the method blank associated with the sample, as well as in the sample itself. The "B" flag is applied without regard to the relative concentrations detected in the blank and sample.
- J The analyte of interest was detected below the routine reporting limit. This value should be regarded as an estimate.
- T The flagged values represent the SUM of two co-eluting compounds. The SUM of these two values is shown as though it were a result for each of them. The two figures should not be added together.
- E The flagged value was reported from an analysis that exceeded the linear range of the instrument. See additional comments for further discussion of the circumstances. Values so flagged should be considered estimates.
- P When a dual column GC technique is employed, this flag indicates that test results from the two columns differ by more than 25%. Generally, we report the higher value.
- C The flagged analyte has been confirmed by GC/MS analysis. The value reported may be derived from either the initial of confirmatory (GC/MS) analysis. See specific report comments for details.
- Z When two or more sets of results are submitted, the Z-flagged data indicates that this is the secondary result.
- CRQL Client requested Quantitation Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Quantitation Limit.

#### **INORGANIC ANALYSES:**

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
- E The reported value is estimated because of the presence of interference. The serial dilution was not within control limits.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.
- CRDL Client Requested Detection Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Detection Limit.

#### **RELEASE OF DATA**

Laucks certifies that these results meet all requirements of the NELAC standards, except where otherwise noted.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Respectfull vec{l} submitted,

Mike Baxter Project Manager

Harry Rombéra

Quality Assurance Officer

HOW TO CONTACT US:

All Laucks Testing Laboratories staff members can be reached at the same telephone and facsimile numbers: (206) 767-5060 by phone, (206) 767-5063 by FAX.

REQUESTS FOR DUPLICATE COPIES:

This packet has been checked for accuracy. All pages are present and in sequential order. Please see Attachment B for a detailed record.

In the event that duplicate data copies are needed, Laucks will accommodate your request at a fee of twenty-five cents (\$0.25) per copy, plus shipping. If the data are in storage, there will also be a fee for retrieval.

# ATTACHMENT A

Chain-of-Custody Copies

LAUCKS TESTING LABORATORIES, INC SAMPLE CONFIRMATION LOG									
Sample ID (SDG-#)	VTSR	Collected On	Client ID	314.0 Perchlorate	8260B VOCs (LTL Routine)	8330 Explosives Residues	8332 Nitroglycerin & PETN		
CAB32- <b>001</b>	06/19/2007 10:00 AM	06/18/2007 01:55 PM	15L4MW17W	IN	A-	P-	P-		
CAB32- <b>002</b>	06/19/2007 10:00 AM	06/18/2007 02:50 PM	15L4MW18W	IN	A-	P-	P		
CAB32- <b>003</b>	06/19/2007 10:00 AM	06/18/2007 04:00 PM	15L4MW07BW		A-				
CAB32- <b>004</b>	06/19/2007 10:00 AM	06/18/2007 12:00 AM	TRIP BLANK		A-				
CAB32- <b>005</b>	06/19/2007 10:00 AM	06/18/2007 04:00 PM	15L4MW07BW	IN		P-	Р-		
Approved By: Notes:	Approved By: MM Notes: On: 6110107								
Samples identified with a '*' client has requested OC for									
	LEGEND: -:St	arted , +:Comple	eted , IN:Logged	In , P:Preparati	on , A:Analysis , X:	Cancelled, PL:Pre-lo	gged		
			FO	RM LTL-PM-8.0					

Finence Charges and/or Collection Fees may be applied to definquent accounts.	INSTRUCTIONS     NAME       Instructions     Name	A. A standard turnaround time is assumed unless otherwise marked.	Image: Sample iD / LOCATION     DATE     TIME       1     15 L4 MW / FW     1/5/17 / 355       3     15 L4 MW/8 M     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355       1     15 L4 MW / FW     1/5/17 / 355	ATTENTION: PROJECT NAME: CLUP BONNEVILLE PROJECT CONTACT: DREIV HARVEY TELEPHONE: 503-417-7693 503-245-07 JOB/PO. NO.: 70450 000 6206	THIS INFORMATION WILL BE USED FOR REPORTING/BILLINGY (SEE BELOW ADDRESS: 4412 SW CORBETT AVE PORT LAND OR 97239
FINAL REPORT COPY	IG INFORMATION, IF DIFFERENT THAN ABOVE ADDRESS CITY, STATE, ZIP DATE TIME TIME	B. The laboratory may not be responsible for missed huiding time for samples received with i	- WXX XXX XXX XXX XXX XXX	TRUX: WATER, SOIL OR SPECIFY NO. OF CONTAINERS DET N NO. CS DET N NO.	CHAIN OF CUSTODY RECORD SDG #
* S DAYS (50% SUB)	* RUSH TURNAROUND IS SUBJECT TO PRIOR LABORATORY APPROVAL TURNAROUND REQUEST STD. 10-14 WORKING DAYS TO THE TABLE TO PRIOR SUBJECT TO PRIOR SUBJECT TO PRIOR TURNAROUND IS TURNAROUND REQUEST STD. 10-14 WORKING DAYS	ess than 50% of the analytical hold time remaining. Please contact the laboratory for further information.	INSTRUCTIONS	OURSERVATIONS	AITTED AT: HOU Ledwich Are, Yakima, WA 98902 TESTS TO PERFORM

Finance Charge			3. CHEOK OFF FOR EACH	1. USE ONE LI 2. BE SPECIFI	A. A standar				5	JOB/P.O. NO.: LAB SA#	TELEPHONE:	PROJECT NAN	ATTENTION:	ADDRESS;	THIS INFORM
s and/or Collection			TESTS TO BE PER	NE PER SAMPLE C IN TEST REQUES	d turnaround time				LYMWC	SAMPLE ID	500	TACE DE	JAC.	1441Z	ATION WILL BE USE
Fees may be applied				S.	e is assumed unle				1)7 BW	1 LOCATION	417-7692	t server	NA FAR	NO MO	D FOR REPORTIN
ed to delinquent acc				ME	ess otherwise ma				40/8/17	DAIE	503-2	to solution	NEV IT	BETT AU	G/BILLING* (SEE
bounts.		5 V 1 1 1 1 1			rked. B. The				N 54	TIMED A	18-022			N CT	BELOOW
			CITY, STA	ADDRESS	laboratory may not be n				ত্য সং	NO. C	TER, SOIL	OR SPECIA	2	irk order 10#	HAIN OF CUS
PORT COPY		-	re, zip		esponsible for missed h				X	A A A A		NERS		CA.	
					olding time for samples		7					A A		500	DRD SD
				*	received with less that									SUBMIT	4 #
			ABORATOR	RUSH TURN	1 50% of the analytical								TESTS TO PE	re Ar I	
		TIME		TO PRIOR	vold time remaining. Pic								PORM	40 South Harney St., S 106 Ledwich Ave., Yak	
		* 5 DAYS (5		TURNAROU	ease contact the laborat									<b>IUUI GIUI I</b> eattle, WA 98108 (2 inna, WA 98902 (5	C C
		75% SUR) 0% SUR)	3 (100% SUR)	ID REQUEST	lory for further informat					BSERVATIONS, IMENTS, SPECIAL VSTRUCTIONS				<b>65, 1114.</b> 06)767-5060 EAX767 09)248-4695 EAX452	
	VA				5 B									5063 1265	

# Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB32		Taken By:	CLIENT	
Cooler:	AAD571		Transferred:	FED EX	
COC #:	43107				
Project:	Camp Bonneville (PBS Engineering	g and Envi	ronmental)		
Date sample	es were received at the laboratory:	6/19/2007			
Date cooler	was opened:	6/19/2007	10:00AM		
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	<u>E:</u>			
1. Did coole if YES,	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 80	520 5652 46	77		YES
2. Were cu	stody seals unbroken and intact at the date a	and time of a	arrival?		INTACT
Date On	Custody Seal: C	ustody Seals	s Description: <b>O</b> l	NE IN FRONT ANI	) BACK
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to	the lid?		YES
4. Did you	screen samples for radioactivity using the C	Geiger Coun	ter?		NO
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?			YES
6. Did you	sign custody papers in the appropriate place	?			YES
7. If require	ed, was enough cooling material present?			and the second	YES
8. Have des	signated person initial here to acknowledge	receipt of c	ooler:		
В. <u>LOG-I</u>	<u>N PHASE:</u> Date s	amptes-per	e logged-in	6/19/2007 10:10AM	[
Logged-in t	py <u>Zoriah Weith</u> (sign)		and the second distance of the second distanc		
9. Describe	type of packing in cooler:	Transverse			
10. Were a	Il bottles sealed in separate plastic bags?				NO
11. Were la	bels in good condition?				YES
12. Were al	ll bottle labels complete (ID,date,time signa	ture,preserv	ative,etc.)?		YES
13. Did all	bottle labels agree with custody papers?				YES

 14. Were correct containers used for the tests indicated?
 YES

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 NO

 18. Temperatures:
 9.8

DISCREPANCIES:

SAMPLES RECIEVED ABOVE TEMPERATURE CONTROL. ONE OF ONE VIASE FOR SAMPLE 4 RECIEVED WITH AIR BUBBLES < 1/4".

# Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB32 Cooler: AAD571

Temperatures: 9.8

COC #: 43107

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB32-001	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass		N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB32-002	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	40 ml OTWS, clear glass, HCl	N/C	None
	0006	40 ml OTWS, clear glass, HCl	N/C	None
	0007	40 ml OTWS, clear glass, HCl	N/C	None
	0008	500 ml cylinder, poly	7	N/A
CAB32-003	0001	40 ml OTWS, clear glass, HCl	N/C	None
	0002	40 ml OTWS, clear glass, HCl	N/C	None
	0003	40 ml OTWS, clear glass, HCl	N/C	None
CAB32-004	0001	40 ml OTWS, clear glass, HCl	N/C	< 1/4

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

# Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB32	Taken By:	CLIENT
Cooler:	AAD455	Transferred:	FED EX
COC #:	43125		
Project:	Camp Bonneville (PBS Engineering	g and Environmental)	
Date sample	es were received at the laboratory:	6/19/2007	
Date cooler	was opened:	6/19/2007 10:00AM	
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	<u>E:</u>	
1. Did coole if YES,	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 86	620 5652 4677	YES
2. Were cu	stody seals unbroken and intact at the date a	nd time of arrival?	INTACT
Date On	Custody Seal: C	ustody Seals Description: Ol	NE IN FRONT AND BACK.
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to the lid?	YES
4. Did you	screen samples for radioactivity using the C	Beiger Counter?	NO
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?	YES
6. Did you	sign custody papers in the appropriate place	?	····· YES
7. If require	ed, was enough cooling material present?		YES
8. Have des	signated person initial here to acknowledge	receipt of cooler:	
B. <u>LOG-I</u>	<u>N PHASE:</u> Date s	amples were logged in?	67+972007 10:10AM
Logged-in b	y <u>Zoriah Weith</u> (sign)		
9. Describe	type of packing in cooler:		
10. Were al	Il bottles sealed in separate plastic bags?		NO

		110
11.	Were labels in good condition?	YES
12.	Were all bottle labels complete (ID,date,time signature,preservative,etc.)?	YES
13.	Did all bottle labels agree with custody papers?	YES
14.	Were correct containers used for the tests indicated?	YES
15.	Were the correct pHs observed?	YES
16.	Was a sufficient amount of sample sent for tests indicated?	YES
17.	Were bubbles absent in VOA samples?	YES
18.	Temperatures: 3.9	

DISCREPANCIES:

# Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB32 Cooler: AAD455 Temperatures: 3.9 COC #: 43125

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB32-005	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	500 ml cylinder, poly	7	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

# LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

# ATTACHMENT B

Index

## LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

## **PBS Engineering & Environmental**

#### SDG No.: CAB32

- I. Narrative: 2-7
- II. Chain-of-Custody: 8-15
- III. Index: 16-17
- IV. Forms Summary: SUM- 1-64

Completed and checked by Judy Collard Date: 1/13/07

# FORMS SUMMARY

SDG CAB32

# VOLATILES ANALYSIS

2

#### WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs Contract:

SDG No.: <u>CAB32</u> Run Sequence: <u>R018866</u>

QC LIMITS

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB32-001) 15L4MW17W	109	120	102 .	107	0
(CAB32-004) TRIP BLANK	110	120	99	106	0
(B062007MVOWB1) B062007MVOWB1	108	119	101	106	0
(S062007MVOWB1) S062007MVOWB1	110	117	102	107	0

SMC1	(DBF) =	Dibromofluoromethane	85-115
SMC2	(DCA) =	1,2-Dichloroethane-d4	70-120
SMC3	(TOL) =	Toluene-d8	85-120
SMC4	(BFB) =	4-Bromofluorobenzene	75-120

# Column to be used to flag recovery values
* Values outside of contract required QC limits

# 2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs Contract: _____

SDG No.: CAB32 Run Sequence: R019020

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB32-003) 15L4MW07BW	102	106	106	108	0
(CAB32-002) 15L4MW18W	102	107	106	105	0
(B062607MVOWB1) B062607MVOWB1	102	105	105	107	0
(S062607MVOWB2) S062607MVOWB2	102	103	106	106	0

SMC1	(DBF) =	Dibromofluoromethane	85-115
SMC2	(DCA) =	1,2-Dichloroethane-d4	70-120
SMC3	(TOL) =	Toluene-d8	85-120
SMC4	(BFB) =	4-Bromofluorobenzene	75-120

# Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

#### ЗB WATER VOLATILE BLANK SPIKE RECOVERY

Lal	o Nan	ne: <u>Laucks</u>	Testing Labs	Contract: <u>N/A</u>
BS	Run	Sequence:	R018866	SDG No.: <u>CAB32</u>
BS	Lab	Sample ID:	5062007MVOWB1	

Level: N/A Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	48.93	98	30-155
Chloromethane	50.0	56.53	113	40-125
Vinyl chloride	50.0	56.57	113	50-145
Bromomethane	50.0	47.88	96	30-145
Chloroethane	50.0	46.25	93	60-135
Trichlorofluoromethane	50.0	52.08	104	60-145
1,1-Dichloroethene	50.0	51.58	103	70-130
Acetone	50.0	60.75	122	40-140
Carbon disulfide	50.0	41.7	83	35-160
Methylene chloride	50.0	48.5	97	55-140
trans-1,2-Dichloroethene	50.0	50.17	100	60-140
1,1-Dichloroethane	50.0	55.04	110	70-135
cis-1,2-Dichloroethene	50.0	49.71	99	70-125
2-Butanone	50.0	59.23	118	30-150
Chloroform	50.0	54.93	110	65-135
1,1,1-Trichloroethane	50.0	55.24	110	65-130
Carbon tetrachloride	50.0	53.86	108	65-140
Benzene	50.0	48.54	97	80-120
1,2-Dichloroethane	50.0	56.72	113	70-130
Trichloroethene	50.0	49.33	99	70-125
1,2-Dichloropropane	50.0	50.21	100	75-125
Bromodichloromethane	50.0	54.42	109	75-120
cis-1,3-Dichloropropene	50.0	56.92	114	70-130
4-Methyl-2-pentanone	50.0	55.61	111	60-135
Toluene	50.0	45.02	90	75-120
trans-1,3-Dichloropropene	50.0	42.42	85	55-140
1,1,2-Trichloroethane	50.0	45.96	92	75-125
Tetrachloroethene	50.0	44.76	90	45-150
2-Hexanone	50.0	55.84	112	55-130
Dibromochloromethane	50.0	49.7	99	60-135
Chlorobenzene	50.0	45,82	92	80-120
Ethylbenzene	50.0	46.31	93	75-125
m,p-Xylene	100	92	92	75-130
o-Xylene	50.0	45.45	91	80-120

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: 0 out of 37 outside limits

#### 3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R018866</u>	SDG No.: <u>CAB32</u>
BS Lab Sample ID: <u>S062007MVOWB1</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Styrene	50.0	44.14	88	65-135
Bromoform	50.0	43.03	86	70-130
1,1,2,2-Tetrachloroethane	50.0	48.01	96	65-130

# Column to be used to flag recovery and RPD values with an asterisk  $\ast$  Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>37</u> outside limits

#### 3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019020</u>	SDG No.: <u>CAB32</u>
BS Lab Sample ID: <u>S062607MVOWB2</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte Spike Added Found % Rec Rec Limit # 70 30-155 Dichlorodifluoromethane 50.0 34.91 78 40-125 Chloromethane 50.0 38.96 83 50-145 Vinyl chloride 50.0 41.69 82 30-145 50.0 Bromomethane 41.14 60-135 Chloroethane 50.0 40.97 82 89 60-145 Trichlorofluoromethane 50.0 44.6 109 70-130 1,1-Dichloroethene 50.0 54.68 84 40-140 Acetone 50.0 42.19 35-160 Carbon disulfide 52.84 106 50.0 55-140 Methylene chloride 50.0 46.9 94 102 60~140 trans-1,2-Dichloroethene 50.0 51.01 102 70-135 1,1-Dichloroethane 50.0 50.96 cis-1,2-Dichloroethene 50.0 49.01 98 70-125 94 30-150 2-Butanone 46.98 50.0 65-135 98 Chloroform 50.0 49.11 102 65-130 1,1,1-Trichloroethane 50.0 50.86 99 65-140 Carbon tetrachloride 50.0 49.55 80-120 Benzene 50.0 48.09 96 99 70-130 1,2-Dichloroethane 50.0 49.47 98 70-125 Trichloroethene 49.05 50.0 1,2-Dichloropropane 50.0 47.84 96 75-125 97 Bromodichloromethane 75-120 50.0 48.33 cis-1,3-Dichloropropene 50.0 55,52 111 70-130 94 60-135 4-Methyl-2-pentanone 50.0 46.78 75-120 98 Toluene 50.0 49.06 trans-1,3-Dichloropropene 50.0 44.22 88 55-140 96 75-125 1,1,2-Trichloroethane 50.0 47.75 98 Tetrachloroethene 50.0 49.06 45~150 55-130 2-Hexanone 50.0 53.54 107 98 60-135 Dibromochloromethane 50.0 48.93 48.92 98 80-120 Chlorobenzene 50.0 98 75-125 Ethylbenzene 50.0 48.77 99 75-130 m,p-Xylene 100 98.71 50.0 96 80-120 o-Xylene 48.19

# Column to be used to flag recovery and RPD values with an asterisk  $\star$  Values outside of QC limits

Spike Recovery: 0 out of 37 outside limits

#### 3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Na	me: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run	Sequence: R019020	SDG No.: <u>CAB32</u>
BS Lab	Sample ID: <u>S062607MVOWB2</u>	
Level;	N/A	Units: ug/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Styrene	50.0	46.92	94	65-135
Bromoform	50.0	42.29	85	70-130
1,1,2,2-Tetrachloroethane	50.0	48.74	97	65-130

# Column to be used to flag recovery and RPD values with an asterisk  $\star$  Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO.

				B062007MVOWB1		
	Lab Name <u>Laucks Testing Labs</u> Lab File ID: <u>B0620007.D</u> Date Analyzed: <u>06/20/2007</u> GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)		Contract:SDG No.: _CAB32 Lab Sample ID: _B062007MVOWB1 Time Analyzed: _12:45 Heated Purge: (Y/N) _N			
	Instrument ID: 5973B		Matrix: Water			
	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
1	S062007MVOWB1	S062007MVOWB1	B0620005.D	06/20/2007	11:50	R018866
2	TRIP BLANK	CAB32-004	B0620008.D	06/20/2007	13:11	R018866
3	15L4MW17W	CAB32-001	B0620019.D	06/20/2007	17:49	R018866
4						
5	······································					
5						****
7						
8					.	
9						
D						·
L.	······································					A & & & & & & & & & & & & & & & & & & &
2						
3		······				
ł						
5						<u> </u>
5						
7						·····
3						
9						
)						
1				F1F10000000000000000000000000000000000		
2						
3						
1						
5	######################################					
6	цуму-салХиясын.Уюниунын жүн нэмэн нэмэн нэмэн нуучусалХиясын.Уюниунын нэмэн нэмэн нэмэн нэмэн		1911 A Dist Alt Alt Alt Alt Million -			
7						
8						
9						
n		-				

4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO. B062607MVOWB1

Lab Name Laucks Testing Labs	Contract:
	SDG No.: <u>CAB32</u>
Lab File ID: B0626022.D	Lab Sample ID: <u>B062607MVOWB1</u>
Date Analyzed: 06/26/2007	Time Analyzed: 18:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Heated Purge: (Y/N) <u>N</u>
Instrument ID: 5973B	Matrix: Water

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FTLE TD	DATE ANALYZED	TIME	RUN
01	S062607MVOWB2	S062607MVOWB2	B0626020.D	06/26/2007	17:33	R019020
02	15L4MW18W	CAB32-002	B0626029.D	06/26/2007	21:20	R019020
03	15L4MW07BW	CAB32-003	B0626030.D	06/26/2007	21:45	R019020
04					1	·····
05						
06						
07						
08						
09						
10						
11						
12						
13						
14						
15						
16						
17		· · · · · · · · · · · · · · · · · · ·				
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
3 O E						
### 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL948</u>	SDG No.: CAB32
Lab File ID: <u>B0604007.D</u>	BFB Injection Date: 06/04/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:14
GC Column ZB-624 20m	ID:(mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	16.6
75	30% to 60% of mass 95	43.3
95	base peak. 100% relative abundance	100
96	5% to 9% of mass 95	7.6
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	97.7
175	5% to 9% of mass 17	7.4()1
176	greater than 95%, but less than 101% of mass 174	98.7()1
177	5% to 9% of mass 176	7 () 2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD001	VSTD001	B0604009.D	06/04/2007	11:23
02	VSTD005	VSTD005	B0604011.D	06/04/2007	12:30
03	VSTD010	VSTD010	B0604012.D	06/04/2007	12:55
04	VSTD050	VSTD050	B0604013.D	06/04/2007	13:20
05	VSTD075	VSTD075	B0604014.D	06/04/2007	13:45
06	VSTD100	VSTD100	B0604015.D	06/04/2007	14:10
07	VSTD200	VSTD200	B0604016.D	06/04/2007	14:35
08				номаласкарукарыкы жанастала жүн канаттатта түйүнүнүн түйүүнүн түйүү	
09					
10					ande in the international and a first of a second state in the second second second second second second second
11					
12					
13					
14				***************************************	
15				******	
16					
17					
18				######################################	
19				99999999999999999999999999999999999999	
20					
21		***************************************			
22				ungun (999) - ontopin () - onto	

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBB1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>R018866</u>	SDG No.: CAB32
Lab File ID: <u>B0620003.D</u>	BFB Injection Date: 06/20/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:57
GC Column ZB-624 20m	ID:(mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	18.1
75	30% to 60% of mass 95	46.6
95	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	6.8
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	98.9
175	5% to 9% of mass 17	7.2()1
176	greater than 95%. but less than 101% of mass 174	98.7()1
177	5% to 9% of mass 176	6.2()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID .	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B1	VSTD050B1	B0620004.D	06/20/2007	11:24
02	S062007MVOWB1	S062007MVOWB1	B0620005.D	06/20/2007	11:50
03	B062007MVOWB1	B062007MVOWB1	B0620007.D	06/20/2007	12:45
04	TRIP BLANK	CAB32-004	B0620008.D	06/20/2007	13:11
05	15L4MW17W	CAB32-001	B0620019.D	06/20/2007	17:49
06					
07 [					
08					
09 [				***************************************	
10 [					
11					
12				**************************************	
13					
14					
15					
16					
17					
18 [					
19					
20					
21		***************************************		*****	
22					99994749999999999999999999999999999999

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

### BROMOFLUOROBENZENE (BFB)

BFBB2

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019020	SDG No.: CAB32
Lab File ID: B0626017.D	BFB Injection Date: 06/26/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 16:12
GC Column ZB-624 20m	ID: 0.18 (mm)

,		% RELATIVE
<u> </u>	I ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	17.2
75	30% to 60% of mass 95	45
95	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	6.8
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	104
175	5% to 9% of mass 17	7.2()1
176	greater than 95%. but less than 101% of mass 174	96.8()1
177	5% to 9% of mass 176	6.3()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B6	VSTD050B6	B0626018.D	06/26/2007	16:37
02	S062607MVOWB2	S062607MVOWB2	B0626020.D	06/26/2007	17:33
03	B062607MVOWB1	B062607MVOWB1	B0626022.D	06/26/2007	18:22
04	15L4MW18W	CAB32-002	B0626029.D	06/26/2007	21:20
05	15L4MW07BW	CAB32-003	B0626030.D	06/26/2007	21:45
06					
07				49999999999999999999999999999999999999	
08				99999999999999999999999999999999999999	
09	MANANGEN CONTENNESSAN DAMANAN DAMAN HAMAN DAMAN HAMAN DAMAN DAMAN DAMAN DAMAN DAMAN DAMAN DAMAN DAMAN DAMAN DA				
10	9-14/16/04/16/04/14/14/14/14/14/14/14/14/14/14/14/14/14				
11					······································
12				**************************************	
13	***************************************				
14	антала исталани и политика и антика и и политика и типанала и и политика и политика и политика и политика и пол	######################################			
15	аналан алын талаа талаа талаа тала талаа тала Талаа талаа тала	CN-WX#5492655-ConfigSed.cod.cod.cod.cod.com/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/acticle/act		MMM	
16					
17					
18	******				
19	**************************************				
20		······································			
21		**************************************		***	
22				***************************************	

8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Testing Labs			Contr	Contract:			
	Run Sequence: <u>R018866</u>			SDG N	SDG No.: CAB32			
	Client Sample No.(V	STD050##): VSI	D050B1	Date	Analyzed:	06/20/2007		
	Lab File ID (Standa:	rd): <u>B0620004.</u>	D	Time .	Analyzed:	11:24		
	Instrument ID: 5973	B	MM244-4444	Heate	d Purge: (	Y/N) <u>N</u>		
	GC Column: ZB-624 2	Om	ID; 0.18	(mm)				
		ISI (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #	
	12 HOUR STD	492820	6.24	404180	9.42	221431	11.73	
	UPPER LIMIT	985640	6.74	808360	9.92	442862	12.23	
	LOWER LIMIT	246410	5.74	202090	8.92	110715.5	11.23	
l	CLIENT SAMPLE NO.							
01	S062007MVOWB1	481681	6.24	395611	9.42	219668	11.73	
02	B062007MVOWB1	481424	6.24	396520	9.42	219405	11.73	
03	TRIP BLANK	469318	6.24	390256	9.42	214410	11.73	
04	15L4MW17W	488726	6.24	400789	9.42	216465	11.73	
05								
06								
07		l l'						
08						Ì		
09								
10	*******							
11								
12		1			*****		2000-000-000-000-000-000-000-000-000-00	
13								
14								
15								
16								
17								
18								
19								
20								
21						a		
22 [			***************************************			an the second		

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Te	esting Labs		Contr	act:		
	Run Sequence: <u>R019020</u>			SDG N	SDG No.: CAB32		
	Client Sample No.(VS	TD050##): <u>VS</u> I	D050B6	Date .	Analyzed:	06/26/2007	
	Lab File ID (Standar	d): <u>B0626018.</u>	D	Time .	Analyzed:	16:37	
	Instrument ID: 5973B			Heate	d Purge: (`	Y/N) <u>N</u>	
	GC Column: ZB-624 20	) m	ID: 0.18	(mm)			
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD	604328	6.24	451357	9.42	236928	11.73
	UPPER LIMIT	1208656	6.74	902714	9.92	473856	12.23
	LOWER LIMIT	302164	5.74	225678.5	8.92	118464	11.23
	CLIENT SAMPLE NO.				······································		
01	S062607MVOWB2	576172	6.24	433766	9.42	229054	11.73
02	B062607MVOWB1	600255	6.24	446298	9.42	234498	11.73
03	15L4MW18W	588849	6.24	439874	9.42	233794	11.73
04	15L4MW07BW	587175	6.24	436531	9.42	227440	11.73
05							
06							
07							
08							
09						1	
10							
11							
12							
13							-
14							
15							
16							
17							
18							
19							
20							
21							
22 ]							

IS1 (FB2) = Fluorobenzene IS2 (CB2) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW17W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB32-001</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0620019.D</u>
Level: (LOW/MED)	Date Collected:06/18/2007
% Moisture: not dec.	Date/Time Analyzed: 06/20/2007 17:49
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	Ū
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW17W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB32-001</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0620019.D</u>
Level: (LOW/MED)	Date Collected: 06/18/2007
% Moisture: not dec.	Date/Time Analyzed:06/20/200717:49
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: _1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW18W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB32-002</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626029.D</u>
Level: (LOW/MED)	Date Collected:06/18/2007
% Moisture: not dec.	Date/Time Analyzed:06/26/2007 21:20
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW18W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: <u>R019020</u>
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: <u>CAB32-002</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626029.D</u>
Level: (LOW/MED)	Date Collected: 06/18/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 21:20
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW07BW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB32</u>	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB32-003</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626030.D</u>
Level: (LOW/MED)	Date Collected:06/18/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 21:45
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	ΰ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	Ú
78-87-5	1,2-Dichloropropane	1.0	Ŭ
75-27-4	Bromodichloromethane	1.0	Ŭ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	Ũ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	Ŭ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15L4MW07BW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB32-003
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626030.D</u>
Level: (LOW/MED)	Date Collected:06/18/2007
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 21:45
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	I.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB32-004</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0620008.D</u>
Level: (LOW/MED)	Date Collected: _06/18/2007
% Moisture: not dec.	Date/Time Analyzed: 06/20/2007 13:11
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	Ŭ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	υ
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

Heated Purge: (Y/N) <u>N</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB32-004
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0620008.D</u>
Level: (LOW/MED)	Date Collected:06/18/2007
% Moisture: not dec.	Date/Time Analyzed:06/20/200713:11
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Lab Name: <u>La</u> l	icks.	Testing	abs			r report en el en errer en alle en even en entre histories	-			Contra	at:					e vere anna a fere de anna e ve			
Run Sequence:	ROI	9020								SDG No		CAB32							
Instrument ID:	597	3B								Calibr	atio	n Dates		06/04/200	L	14:35			
Heated Purge:	(N/X)	Ν								Calibr	atio	n Times	* 	06/04/200	<u> </u>	14:35			
GC Column: <u>ZB</u>	-624	20щ				TD:		0.16 (	( uuu	Меал %	RSD	: 6.70							
Analyte	Std 1	RF 1	std 2	RF 2	3td	RF 3	Std 4	RF 4	5 tđ 5	RF 5	std 6	RF 6	std 7	RF 7 Std 8	RF 8	RF	%RSD	r 3 Con	Eq
Dichlorodifluoromethane		1.010E-01	5	1.160E-01	10	1.150E-01	50	1.470E-01	75	1.480E-01	100	1.310E-01	200	1.500E-01		0.130	15.09		, Y
Chloromethane		2.630E-01	5	2.840E-01	10	2.610E-01	50	2.829E-01	75	2.809E-01	100	2.640E-01	200	2.870E-01		0.274	4.19		₹
Vinyl chloride	-	2.330E-01	5	2.490E-01	10	2.370E-01	50	2.630E-01	75	2.630E-01	100	2.389E-01	200	2.590E-01		0.249	5.23		A
Bromomethane	_	1.949E-01	5	1.680E-01	2	1.490E-01	50	1.580E-01	75	1.680E-01	100	1.540E-01	200	I.540E-01		0.164	9.54		V
Chloroethane	-	1.750E-01	5	1.680E-01	2	1.630E-01	50	1.610E-01	75	1.640E-01	100	1.420E-01	200	1.540E-01		0.161	6.54		<
Trichlorofluoromethane	-	2.649E-01	5	2.980E-01	10	2.700E-01	50	3.199E-01	75	3.150E-01	100	2.790E-01	200	2.980E-01		0.292	7.28		V
1,1-Dichloroethene	_	1.570E-01	5	1.949E-01	10	1.620E-01	50	1.959E-01	75	1.930E-01	100	1.690E-01	200	1.770E-01		0.178	9.17		<
Acctone		1.560E-01	5	1.320E-01	10	1.160E-01	50	1.250E-01	75	1.170E-01	100	1.140E-01	200	1.040E-01		0.123	13.72		A
Carbon dísulfide	_	5.680E-01	5	6.579E-01	10	6.129E-01	50	7.969E-01	75	8.090E-01	100	7.160E-01	200	7.300E-01		0.699	12.94		V
Methylene chloride	_	1.001E+00	5	3.170E-01	10	2.579E-01	50	2.640E-01	75	2.720E-01	100	2.590E-01	200	2.490E-01		0.374		1.000	Ø
trans-1,2-Dichloroethene		2.300E-01	5	2.780E-01	10	2.410E-01	50	2.739E-01	75	2.599E-01	100	2.410E-01	200	2.420E-01		0.252	7.38		<
1,1-Dichloroethane	_	4.560E-01	5	4.900E-01	10	4.400E-01	50	4.990E-01	75	4.740E-01	100	4.480E-01	200	4.460E-01		0.465	5.00		V
cis-1,2-Dichloroethene	_	2.829E-01	S S	3.059E-01	2	2.619E-01	50	2.980E~01	75	2.879E-01	100	2.669E-01	200	2.720E-01		0.282	5.75		A
2-Butanone	_	2.480E-01	5	1.879E-01	10	1.940E-01	50	2.169E-01	75	2.110E-01	100	2.080E-01	200	1.930E-01		0.208	9.77		<
Chloroform		4.639E-01	2 V	4.819E-01	01	4.219E-01	50	4.720E-01	75	4.569E-01	100	4.280E-01	200	4.309E-01		0.451	5.26		<
1,1,1-Trichloroethane		3.129E-01	5	3.840E-01	0	3.300E-01	50	3.849E-01	75	3.590E-01	100	3.280E-01	200	3.290E-01		0.347	8.36		А
Carbon tetrachloride	_	2.579E-01	5	3.440E-01	9	2.850E-01	50	3.490E-01	75	3.240E-01	100	2.920E-01	200	2.969E-01		0.307	10.82		V
Benzene		1.070E+00	~	1.184E+00	9	1.026E+00	50	1.172E+00	75	1.113E+00	100	1.051E+00	200	1.054E+0		1.096	5.66		A
1,2-Dichloroethane		3.499E-01	5	3.600E-01	10	3.319E-01	50	3.600E-01	75	3.540E-01	100	3.400E-01	200	3.370E-01		0.347	3.29		V
Trichloroethene		2.809E-01	s S	3.240E-01	2	2.780E-01	50	3.230E-01	75	3.059E-01	100	2.850E-01	200	2.910E-01		0.298	6.51		Y
1,2-Dichloropropane		2.750E-01	~	2.890E-01	_	2.590E-01	50	2.899E-01	75	2.800E-01	100	2.680E-01	200	2.649E-01		0.275	4.28		Y
Bromodichloromethane	-	3.389E-01	5	3.510E-01	10	3.269E-01	50	3.670E-01	75	3.580E-01	100	3.440E-01	200	3.440E-01		0.347	3.81		<
cis-1,3-Dichloropropene		3.750E-01	2	3.880E-01	2	3.610E-01	50	4.199E-01	75	4.070E-01	100	3.919E-01	200	3.910E-01		0.391	4.95		V
Miethyl-2-pentanone		5.720E-01	5	4.149E-01	2	3.930E-01	50	4.269E-01	75	4.219E-01	100	4.100E-01	200	3.939E-01		0.433	14.48	8	A
UM																			
Eq Ty = Equation	on Ty	Tpe 																	
ע=עשמדמנוכ, א <b>53</b>	апгл≖	ar, AmAv	erac	0															
	П																		

# * SPCCs

VOLATILE ORGANICS INITIAL CALIBRATION DATA b

Page I of 2

FORM VI VOA

Lab Name: <u>Lauc</u>	cks 1	<u>esting L</u>	äbs							Contrac	ц т								1	
jequence: 🗕	R015	020				Projetti ve na se				SDG No.	••	CAB32				a tha the Constant of State of				
rument ID:	5973	B				5				Calibra	atior	n Dates:		06/04/2	007	14	:35			
ed Purge: (	(N/N)	N								Calibra	ation	n Times:	ł	06/04/2	007	14	35		I	
olumn: <u>ZB-</u>	624	2 0 m				ID:		0.16 (	( uuu	Mean %	RSD	6.70								
yte	std 1	RF 1	Std 2	RF 2	Std 3	RF 3	Std 4	RF 4	std 5	RF 5	Std 6	RF 6	std 7	RF 7 5	td RF	8   22	1E		~ G	정
		8.470E-01	5	9.840E-01	2	8.399E-01	50	9.940E-01	75	9.279E-01	00]	8.790E-01	200	8.909E-01		0.9	09 6.	83		
loropropene		5.899E-01	5	6.160E-01	0.	5.630E-01	50	6.510E-01	75	6.309E-01	100	6.169E-01	200	6.250E-01		0.6	14 4.	69		A
ethane		3.650E-01	5	3.709E-01	10	3.350E-01	50	3.700E-01	75	3.600E-01	100	3.510E-01	200	3.520E-01		0.3	58 3.	59		A
ene		3.980E-01	5	4.740E-01	01	3.980E-01	50	4.799E-01	75	4.410E-01	100	4.110E-01	200	4.320E-01		0.4	33 7.	78		А
		3.890E-01	5	3.800E-01	10	3.610E-01	50	4.239E-01	75	4.170E-01	100	4.100E-01	200	4.000E-01		0.3	97 5.	60		$\checkmark$
methane	_	3.450E-01	5	3.960E-01	0	3.540E-01	50	4.170E-01	75	4.079E-01	100	3.989E-01	200	4.030E-01		0.3	89 7.	13		A
		1.010E+00	5	1.066E+00	0	9.359E-01	50	1.072E+00	75	1.031E+00	100	9.940E-01	200	1.005E+0		1.0	16 4.	55		V
		1.562E+00	5	1.779E+00	10	1.561E+00	50	1.823E+00	75	1.723E+00	100	].644E+00	200	1.670E+0		1.6	80 6.	03		V
	7	6.169E-01	10	7.080E-01	20	6.160E-01	100	7.210E-01	150	6.850E-01	200	6.510E-01	400	6.570E-01		0.6	65 6.	24		<
	y	6.280E-01	5	6.740E-01	01	6.119E-01	50	6.970E-01	75	6.679E-01	100	6.430E-01	200	6.470E-01		0.6	53 4.	48		$\triangleleft$
		1.115E+00	5	1.186E+00	10	1.082E+00	50	1.240E+00	75	1.206E+00	100	I.164E+00	200	1.172E+0		1.1	67 4.	57		<
	~~~	3.400E-01	Ś	3.400E-01	10	3.089E-01	50	3.580E-01	75	3.610E-01	100	3.569E-01	200	3.660E-01		0.3	47 5.	67		<
hloroethane	_	8.930E-01	5	9.409E-01	10	8.909E-01	50	9.620E-01	75	9.639E-01	100	9.540E-01	200	9.380E-01		0.0	35 3.	29		<
methane	50	2.540E-01	55	2.460E-01	60	2.480E-01	65	2.389E-01	70	2.460E-01	75	2.399E-01	80	2.380E-01		0.2	45 2.	32		A
hanc-d4	50	2.640E-01	55	2.619E-01	60	2.599E-01	65	2.550E-01	70	2.619E-01	75	2.550E-01	80	2.520E-01		0.2	58 1.	79		$\overline{\mathbf{v}}$
	50	1.206E+00	55	1.220E+00	60	1.201E+00	65	1.215E+00	70	1.209E+00	75	1.192E+00	80	1.195E+0		1.2	06 0.	84		<
benzene	50	8.450E-01	55	8.290E-01	60	8.309E-01	65	8.100E-01	70	8.290E-01	75	8.259E-01	80	8.150E-01		0.8	27 1.	37		<

VOLATILE ORGANICS INITIAL CALIBRATION DATA

v

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

SUM - 24

* SPCCs

#

FORM VI VOA

7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: <u>CAB32</u>
Instrument ID: 5973B	Calibration Date: 06/20/2007 Time: 11:24
Lab File ID: B0620004.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B1	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) _ N	GC Column: ZB-624 20m [D:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.105	18.92	
Chloromethane	A	0.274	0.12	
Vinyl chloride	A	0.243	2.48	
Bromomethane	A	0.146	10.96	
Chloroethane	A	0.157	2.52	
Trichlorofluoromethane	A	0.288	1.54	
1,1-Dichloroethene	A	0.205	-15.15	
Acetone	A	0.137	-11.51	
Carbon disulfide	A	0.678	2.98	
Methylene chloride	Q	0.278		3.20
trans-1,2-Dichloroethene	A	0.277	-9.80	
1,1-Dichloroethane	A	0.527	-13.32	
cis-1,2-Dichloroethene	A	0.301	-6.58	
2-Butanone	A	0.248	-19.26	AP-1477477-9-1744
Chloroform	A	0.522	-15.67	
1,1,1-Trichloroethane	A	0.396	-14.24	
Carbon tetrachloride	A	0.353	-14.95	****
Benzene	A	1.196	~9.09	
1,2-Dichloroethane	A	0.435	-25.49*	
Trichloroethene	A	0.322	-8.01	
1,2-Dichloropropane	A	0.308	-12.16	
Bromodichloromethane	A	0.401	-15.55	**************************************
cis-1,3-Dichloropropene	A	0.428	-9.36	
4-Methyl-2-pentanone	A	0.488	-12.63	****
Toluene	A	0.942	-3.62	
trans-1,3-Dichloropropene	A	0.637	-3.68	
1,1,2-Trichloroethane	A	0.369	-3.00	
Tetrachloroethene	A	0.432	0.23	******
2-Hexanone	A	0.445	-12.09	
Dibromochloromethane	A	0.398	-2.37	
Chlorobenzene	A	1.013	0.29	
Ethylbenzene	A	1.733	-3.17	

^{# = %}D or %Drift limts are not configured

7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R018866	SDG No.: _CAB32
Instrument ID: 5973B	Calibration Date: 06/20/2007 Time: 11:24
Lab File ID: B0620004.D	Init, Calib. Date(s): <u>06/04/2007</u>
Client Sample No.: VSTD050B1	Init, Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
m,p-Xylene	A	0.671	-0.85	
o-Xylene	A	0.635	2.74	
Styrene	A	1.151	1.33	
Bromoform	A	0.314	9.58	
1,1,2,2-Tetrachloroethane	A	0.942	-0.74	
Dibromofluoromethane	A	0.255	-3.92	
1,2-Dichloroethane-d4	A	0.295	-14.43	
Toluene-d8	А	1.188	1.51	
4-Bromofluorobenzene	Α	0.836	-1.09	

7

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: CAB32
Instrument ID: <u>5973B</u>	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s): _06/04/2007
Client Sample No.: VSTD050B6	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>ZB-624 20m</u> ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.095	26.65*	
Chloromethane	A	0.220	19.75	
Vinyl chloride	A	0.205	17.55	
Bromomethane	A	0.132	19.77	
Chloroethane	A	0.141	12.73	
Trichlorofluoromethane	A	0.256	12.32	
1,1-Dichloroethene	A	0.165	7.55	
Acetone	A	0.110	10.83	
Carbon disulfide	A	0.567	18.85	
Methylene chloride	Q	0.255		-5.80
trans-1,2-Dichloroethene	A	0.236	6.29	
1,1-Dichloroethane	A	0.445	4.31	
cis-1,2-Dichloroethene	A	0.260	7.84	
2-Butanone	A	0.216	-3.61	
Chloroform	A	0.432	4.28	
1,1,1-Trichloroethane	A	0.328	5,58	
Carbon tetrachloride	A	0.281	8.34	
Benzene	A	1.029	6.09	
1,2-Dichloroethane	A	0.342	1.50	
Trichloroethene	A	0.281	5.56	
1,2-Dichloropropane	A	0.258	6.17	
Bromodichloromethane	A	0.324	6.58	
cis-1,3-Dichloropropene	A	0.367	6.18	Aller WALKS Street Sectors and the sector of t
4-Methyl-2-pentanone	A	0.427	1.28	
Toluene	A	0.885	2.59	
trans-1,3-Dichloropropene	A	0.598	2.65	************
1,1,2-Trichloroethane	A	0.346	3.45	******
Tetrachloroethene	A	0.418	3.36	
2-Hexanone	A	0.441	-11.20	
Dibromochloromethane	A	0.363	6.70	
Chlorobenzene	A	0.961	5.45	
Ethylbenzene	А	1.638	2.47	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Page 1 of 2

7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019020	SDG No.: CAB32
Instrument ID: <u>5973B</u>	Calibration Date: 06/26/2007 Time: 16:37
Lab File ID: B0626018.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B6	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) _N	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
m,p-Xylene	A	0.642	3.49	
o-Xylene	A	0.611	6.43	
Styrene	A	1.095	6.16	
Bromoform	А	0.296	14.81	
1,1,2,2-Tetrachloroethane	A	0.916	1.99	
Dibromofluoromethane	A	0.225	8.11	
1,2-Dichloroethane-d4	А	0.243	5.75	
Toluene-d8	A	1.148	4.77	
4-Bromofluorobenzene	A	0.792	4.28	

VOLATILE ORGANICS ANALYSIS DATA SHEET

B062007MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: B062007MVOWB1
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0620007.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/20/2007 12:45
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	υ
79-01-6	Trichloroethene	1.0	Ŭ
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062007MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062007MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0620007.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/20/2007 12:45
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	Ų
100-41-4	Ethylbenzene	1.0	ΰ
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062607MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626022.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 18:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	υ
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	Ū
107-06-2	1,2-Dichloroethane	1.0	Ŭ
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	1.0	Ū
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	Ŭ

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R019020
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>B062607MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0626022.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 18:22
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	Ŭ
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062007MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062007MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0620005.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec	Date/Time Analyzed: 06/20/2007 11:50
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	49	
74-87-3	Chloromethane	57	
75-01-4	Vinyl chloride	57	
74-83-9	Bromomethane	48	
75-00-3	Chloroethane	46	
75-69-4	Trichlorofluoromethane	52	
75-35-4	1,1-Dichloroethene	52	
67-64-1	Acetone	61	
75-15-0	Carbon disulfide	<u>4</u> 2	
75-09-2	Methylene chloride	49	
156-60-5	trans-1,2-Dichloroethene	50	
75-34-3	1,1-Dichloroethane	55	
156~59-2	cis-1,2-Dichloroethene	50	
78-93-3	2-Butanone	59	· · ·
67-66-3	Chloroform	55	
71-55-6	1,1,1-Trichloroethane	55	
56-23-5	Carbon tetrachloride	54	
71-43-2	Benzene	49	
107-06-2	1,2-Dichloroethane	57	
79-01-6	Trichloroethene	49	
78-87-5	1,2-Dichloropropane	50	
75-27-4	Bromodichloromethane	54	
10061-01-	cis-1,3-Dichloropropene	57	
108-10-1	4-Methyl-2-pentanone	56	
108-88-3	Toluene	45	
10061-02-	trans-1,3-Dichloropropene	42	1
79-00-5	1,1,2-Trichloroethane	46	
127-18-4	Tetrachloroethene	45	
591-78-6	2-Hexanone	56	

VOLATILE ORGANICS ANALYSIS DATA SHEET

S062007MVOWB1

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: R018866
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062007MVOWB1</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0620005.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/20/2007 11:50
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	50	
108-90-7	Chlorobenzene	46	
100-41-4	Ethylbenzene	46	
179601-23	m,p-Xylene	92	
95-47-6	o-Xylene	45	
100-42-5	Styrene	44	
75-25-2	Bromoform	43	
79-34-5	1,1,2,2-Tetrachloroethane	4.8	

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB32	Run Sequence: <u>R019020</u>
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>S062607MVOWB2</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0626020.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 17:33
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	35	
74-87-3	Chloromethane	39	
75-01-4	Vinyl chloride	42	
74-83-9	Bromomethane	41	
75-00-3	Chloroethane	41	
75-69-4	Trichlorofluoromethane	45	
75-35-4	1,1-Dichloroethene	55	
67-64-1	Acetone	42	
75-15-0	Carbon disulfide	53	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	51	
75-34-3	1,1-Dichloroethane	51	
156-59-2	cis-1,2-Dichloroethene	49	
78-93-3	2-Butanone	47	
67-66-3	Chloroform	49	
71-55-6	1,1,1-Trichloroethane	51	
56-23-5	Carbon tetrachloride	50	
71-43-2	Benzene	48	
107-06-2	1,2-Dichloroethane	49	
79-01-6	Trichloroethene	49	
78-87-5	1,2-Dichloropropane	48	
75-27-4	Bromodichloromethane	48	
10061-01-	cis-1,3-Dichloropropene	56	,
108-10-1	4-Methyl-2-pentanone	47	
108-88-3	Toluene	49	
10061-02-	trans-1,3-Dichloropropene	44	
79-00-5	1,1,2-Trichloroethane	48	
127-18-4	Tetrachloroethene	49	
591-78-6	2-Hexanone	54	

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

S062607MVOWB2

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAE32	Run Sequence: <u>R019020</u>
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>S062607MVOWB2</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0626020.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/26/2007 17:33
GC Column: <u>ZB-624 20m</u> ID: <u>0,18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	49	
108-90-7	Chlorobenzene	49	
100-41-4	Ethylbenzene	49	
179601-23	m,p-Xylene	99	
95-47-6	o-Xylene	48	
100-42-5	Styrene	47	
75-25-2	Bromoform	42	
79-34-5	1,1,2,2-Tetrachloroethane	49	

Forms Summary

CAB32

Ordnance by Method 8330

		2	
WATER	ORDNANCE	SURROGATE	RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB32

Run Sequence: R019044

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	S3 () #	S4 () #	tot Out
(CAB32-005) 15L4MW07BW	83				0
(CAB32-002) 15L4MW18W	103				0
(CAB32-001) 15L4MW17W	98				0
(S061907HORWLG) S061907HORWLG	110				0
(B061907HORWLG) B061907HORWLG	94				0

QC LIMITS 60-140

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

Column to be used to flag recovery values

* Values outside of contract required QC limits

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name:	Laucks 1	Testing Labs	Contract	: <u>N/A</u>
BS Run Se	quence:	R019012	SDG No.:	CAB32
BS Lab Sa	mple ID:	S061907HORWLG		
Level: N/	/A		Units:	ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
HMX	20.0	16.9641	85	80-115
RDX	20.0	18.4559	92	50-160
1,3,5-Trinitrobenzene	20.0	15.6782	78	65-140
1,3-Dinitrobenzene	20.0	15.5454	78	45-160
Nitrobenzene	20.0	15.234	76	50-140
Tetryi	20.0	14.6166	73	20-175
2,4,6-Trinitrotoluene	20.0	15.6177	78	50-145
4-Amino-2,6-dinitrotoluene	20.0	16.3461	82	55-155
2-Amino-4,6-dinitrotoluene	20.0	15.9436	80	50-155
2,6-Dinitrotoluene	20.0	14.0388	70	60-135
2,4-Dinitrotoluene	20.0	14.3216	72	60-135
2-Nitrotoluene	20.0	12.7935	64	45-135
4-Nitrotoluene	20.0	13.2407	66	50-130
3-Nitrotoluene	20.0	12.5782	63	50-130

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: 0 out of 14 outside limits

COMMENTS:

Lab Name: Laucks Testing Labs			Contract: <u>N/A</u>			
Lab Sample ID: <u>B061907HORWLG</u>	SDG	SDG No.: <u>CAB32</u>				
Matrix: (SOIL/WATER) <u>Water</u>	Date	e Prepared:	06/19/2007			
Lab File ID (1): <u>062107.b-06</u>	5210704.D	Lab	File ID (2):			
Date Analyzed (1): 06/21/200	7	Date	e Analyzed (2):		
Time Analyzed (1): 14:31			Time Analyzed (2):			
Instrument ID (1): <u>HPLC5 (Oscar)</u>			Instrument ID (2):			
Column(1): <u>Allure C18</u> ID: 4.60 (m			lumn(2):		ID:	(mm)
THIS METHOD BLANK	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:		
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE	
S061907HORWLG	S061907HORWLG	1	O6210705.D	06/21/2007 15:11	R019012	
15L4MW17W	CAB32-001	1	O6210716.D	06/21/2007 22:31	R019044	
		2				
15L4MW18W	CAB32-002	1	O6210717.D	06/21/2007 23:11	R019044	
		2				1
15L4MW07BW	CAB32-005	1	O6210718.D	06/21/2007 23:51	R019044	

2

COMMENTS:

CLIENT SAMPLE NO.

B061907HORWLG

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB32</u>	Run Sequence: R019012
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B061907HORWLG</u>
Sample wt/vol: 1000.0 (g/mL) <u>mL</u>	Lab File ID: 06210704.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) SPE	Date Extracted:06/19/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/21/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.50	ΰ
121-82-4	RDX	0.50	U
99-35-4	1,3,5-Trinitrobenzene	0.50	υ
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	U
479-45-8	Tetryl	0.50	U
118-96-7	2,4,6-Trinitrotoluene	0.50	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	Ŭ
606-20-2	2,6-Dinitrotoluene	0.50	U
121-14-2	2,4-Dinitrotoluene	0.50	U
88-72-2	2-Nitrotoluene	0.50	Ŭ
99-99-0	4-Nitrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	Ü

Comments:

FORM I ORD

CLIENT SAMPLE NO.

S061907HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB32	Run Sequence: <u>R019012</u>
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>S061907HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06210705.D
<pre>% Moisture: Decanted: (Y/N) _N</pre>	Date Collected:
Extraction: (Type) _SPE	Date Extracted: 06/19/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/21/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: { (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	17.0	
121-82-4	RDX	18.5	
99-35-4	1,3,5-Trinitrobenzene	15.7	
99-65-0	1,3-Dinitrobenzene	15.5	
98-95-3	Nitrobenzene	15.2	[·
479-45-8	Tetryl	14.6	
118-96-7	2,4,6-Trinitrotoluene	15.6	
19406-51-0	4-Amino-2,6-dinitrotoluene	16.3	
35572-78-2	2-Amino-4,6-dinitrotoluene	15.9	
606-20-2	2,6-Dinitrotoluene	14.0	
121-14-2	2,4-Dinitrotoluene	14.3	
88-72-2	2-Nitrotoluene	12.8	
99-99-0	4-Nitrotoluene	13.2	
99-08-1	3-Nitrotoluene	12.6	

CLIENT SAMPLE NO.

15L4MW17W

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB32	Run Sequence: R019044
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>CAB32-001</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: <u>06210716.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/18/2007
Extraction: (Type) _SPE	Date Extracted:06/19/2007
Concentrated Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/21/2007
Injection Volume: _50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	U
121-82-4	RDX	0.48	Ŭ
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	ΰ
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	υ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

CLIENT SAMPLE NO.

15L4MW18W

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB32	Run Sequence:
Matrix: (SOIL/WATER)Water	Lab Sample ID: CAB32-002
Sample wt/vol: 1040.0 (g/mL) mL	Lab File ID: 06210717.D
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/18/2007
Extraction: (Type) _SPE	Date Extracted:06/19/2007
Concentrated Extract Volume: 5000.0 (uL)	Date Analyzed: 06/21/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	υ
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	Ű
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	υ
99-08-1	3-Nitrotoluene	0.48	U

Comments:

FORM I ORD

CLIENT SAMPLE NO.

15L4MW07BW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB32	Run Sequence: R019044
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB32-005</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06210718.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/18/2007
Extraction: (Type) _SPE	Date Extracted:06/19/2007
Concentrated Extract Volume: 5000.0 (uL)	Date Analyzed: 06/21/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	Ū
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	Ū
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nítrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U
Forms Summary

CAB32

Ordnance by Method 8332

2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB32

Run Sequence: R019024

				-	
(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	S3 () #	S4 () #	tot Out
(CAB32-005) 15L4MW07BW	84				0
(CAB32-002) 15L4MW18W	104				0
(CAB32-001) 15L4MW17W	100				0
(S061907HORWLG2) S061907HORWLG2	81				0
(B061907HORWLG) B061907HORWLG	94				0

QC LIMITS 60-140

- S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () =
- S4 () =

Column to be used to flag recovery values

* Values outside of contract required QC limits

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019024</u>	SDG No.: <u>CAB32</u>
BS Lab Sample ID: <u>S061907HORWLG2</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Nitroglycerin	10.0	8.0913	81	60-140
PETN	5.00	3.2395	65	60-140

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>2</u> outside limits

COMMENTS:

				CLIENT	SAMPLE NO.				
	ORDNANCE METHOD BLANK SUMMARY B061								
Lab Name: Laucks Testing Labs	3	Cont	Contract: <u>N/A</u>						
Lab Sample ID: <u>B061907HORWLG</u>		SDG	No.: <u>CAB32</u>		anna a an				
Matrix: (SOIL/WATER) <u>Water</u>		Date	e Prepared:	06/19/2007					
Lab File ID (1): 062207.b-06	220706.D	Lab	File ID (2):	*******	encemenco.com/+ eron erigeneri opeintidercórene	-			
Date Analyzed (1): 06/22/2007	7	Date Analyzed (2):							
Time Analyzed (1): 13:18		Time Analyzed (2):							
Instrument ID (1): <u>HPLC5 (Osc</u>	car)	Instrument ID (2):							
Column(1): Varian C18		ID:	_(mm)						
THIS METHOD BLANK	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:					
CLIENT LAB SAMPLE NO. SAMPLE ID		COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE				
15L4MW17W	CAB32-001	1	O6220721.D	06/22/2007 19:48	R019024]			
15L4MW18W	WW18W CAB32-002 1 06220722.D 06/22/2007 20:14 F								

1

1

O6220723.D

O6220707.D

CAB32-005

S061907HORWLG2

COMMENTS:

15L4MW07BW

S061907HORWLG2

R019024

R019024

06/22/2007 20:40

06/22/2007 13:44

CLIENT SAMPLE NO.

B061907HORWLG

U

Lab Name: Laucks	Testing Labs	Contract: <u>N/A</u>				
SDG No.: <u>CAB32</u>		Run Sequ	ence: <u>R019024</u>			
Matrix: (SOIL/WATE	R) <u>Water</u>	Lab Samp	le ID: <u>B061907HORWLG</u>			
Sample wt/vol: 100	00.0 (g/mL) <u>mL</u>	Lab File	ID: 06220706.D			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Col	lected:			
Extraction: (Type)	SPE	Date Ext	racted:06/19/2007			
Concentrated Extra	ct Volume: <u>5000.0</u> (uL)	Date Ana	lyzed: 06/22/2007	492-1707-1707-1707-1707-1707-1707-1707-170		
Injection Volume:	50.0 (uL)	Dilution	Factor: <u>2.0</u>			
GPC Cleanup: (Y/N)	<u>N</u> pH:	Sulfur C	leanup: (Y/N) <u>N</u>			
CAS NO. CO	MPOUND	anna frei de Frances en Konste (met di frei de frei d	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q		
55-63-0 Ni	itroglycerin		2.5	υ		

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

S061907HORWLG2

Lab Name: Laucks Testing Lab	08	Contract: <u>N/A</u>
SDG No.: <u>CAB32</u>		Run Sequence: R019024
Matrix: (SOIL/WATER) Water		Lab Sample ID: <u>S061907HORWLG2</u>
Sample wt/vol: <u>1000.0</u> (g	/mL) <u>mL</u>	Lab File ID: 06220707.D
% Moisture: Decante	ed: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) SPE		Date Extracted:06/19/2007
Concentrated Extract Volume:	5000.0 (uL)	Date Analyzed: 06/22/2007
Injection Volume: 50.0	(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u>	рН:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND		CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L
55-63-0 Nitroglyceri	n	8.09

3.24

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15L4MW17W

Lab Name: Lauc	ks Testing Labs	Contract: N/A			
SDG No.: <u>CAB32</u>		Run Sequence: <u>R019024</u>			
Matrix: (SOIL/W	ATER)Water	Lab Sample ID: <u>CAB32-001</u>			
Sample wt/vol:	<u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06220721.D</u>			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/18/2007			
Extraction: (Ty	pe) <u>SPE</u>	Date Extracted: 06/19/2007			
Concentrated Ex	tract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/22/2007			
Injection Volum	e: <u>50.0 (</u> uL)	Dilution Factor:			
GPC Cleanup: (Y	/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q		
55-63-0	Nitroglycerin	2.4	U		
78-11-5	PETN	1.1	U		

Comments:

Page 1 of 1

CLIENT SAMPLE NO.

15L4MW18W

U

Lab Name: Lauck	s Testing Labs	Contract: N/A				
SDG No.: CAB32		Run Sequence: <u>R019024</u>				
Matrix: (SOIL/WA	TER) <u>Water</u>	Lab Sample ID: <u>CAB32-002</u>				
Sample wt/vol:	1040.0 (g/mL) <u>mL</u>	Lab File ID: 06220722.D				
<pre>% Moisture:</pre>	Decanted: (Y/N) <u>N</u>	Date Collected: 06/18/2007				
Extraction: (Typ	e) <u>SPE</u>	Date Extracted: 06/19/2007				
Concentrated Ext	ract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/22/2007				
Injection Volume	: <u>50.0</u> (uL)	Dilution Factor:				
GPC Cleanup: (Y/	N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N				
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L				
55-63-0	Nitroglycerin	2.4 U				

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15L4MW07BW

Lab Name: Laucks Testing Labs Con			Contract: N/A			
SDG No.: CAB32		Run Sequ	nence: <u>R019024</u>			
Matrix: (SOIL/WA	ATER) <u>Water</u>	Lab Samp	ole ID: <u>CAB32-005</u>			
Sample wt/vol:	1050.0 (g/mL) <u>mL</u>	Lab File	ID: 06220723.D			
% Moisture: Decanted: (Y/N) _N			Date Collected: 06/18/2007			
Extraction: (Typ	De) <u>SPE</u>	Date Extracted:06/19/2007				
Concentrated Ext	ract Volume: _5000.0 (uL)	Date Ana	Date Analyzed: 06/22/2007			
Injection Volume	e: <u>50.0</u> (uL)	Dilution Factor: 2.0				
GPC Cleanup: (Y,	/N) <u>N</u> pH:	Sulfur C	leanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND		CONCENTRATION UNITS: {ug/L or ug/kg} <u>ug/L</u>	Q		
55-63-0	Nitroglycerin		2.4	Ũ		
78-11-5	PETN		1.1	Ŭ		

Comments:

FORM I ORD

FORMS SUMMARY

CAB32

Miscellaneous Inorganics

Final Results

Client:	PBS Eng Environm	ineering and iental			Proje	ct:		Camp B	Ionneville	
SDG Number:	CAB32									
Sample Number:	15L4MW	17W			Date/I	ime	Collected:	06/18/2	007 13:55	
Lab Sample ID:	CAB32-00)1	÷		Date/T	ìme	Received:	06/19/2	007 10:00	
Method:	E314.0				Unit:			ug/L		
Analyfe		CAS	DF	Result		\cap	IOg	MDI	Dronanod An	alumed Days Ca

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	1.7		1.0	0.14	07/03/2007	07/04/2007	R019226

-

Final Results

Client: SDG Number:	PBS Engineering and Environmental CAB32	Project:	Camp Bonneville
Sample Number:	15L4MW18W	Date/Time Collected:	06/18/2007 14:50
Lab Sample ID:	CAB32-002	Date/Time Received:	06/19/2007 10:00
Method:	E314.0	Unit:	ug/L
T	· · · · · · · · · · · · · · · · · · ·		······································

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	1.0	U	1.0	0.14	07/03/2007	07/04/2007	R019226

Final Results

Client:	PBS Engi Environme	3S Engineering and vironmental				ject:		Camp	Bonneville		
SDG Number:	CAB32										
Sample Number:	15L4MW0	7BW			Date	/Time	Collected:	06/18/2	2007 16:00)	
Lab Sample ID:	CAB32-00	5			Date	/Time	Received:	06/19/2	2007 10:00	I	
Method:	E314.0				Unit	:		ug/L			
Analyte		<u>СА</u> Я	- DE	Pocult		0	POI	MDI	Bronorod	á no luna d	D

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate	14797-73-0	1	3.0		1.0	0.14	07/03/2007	07/04/2007	R019226

Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB32	Contract:
Run Sequence No.	R019226	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

		IC	v			CCVI					
		07/04/2007 18:32				07/04/07 18:	:32		CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate	40.151	41.793	104,1	75-125	9.988	11.222	112.4	9.988	10.958	109.7	85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

Page 1 of 2

SUM - 59

Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB32	Contract:
Run Sequence No.	R019226	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

						CCV3			[
					(07/04/07 18:	:32				CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate					9.988	11.142	111.6				85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science. **SUM - 60**

Page 2 of 2

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

Run Sequence No.:

CAB32 R019226 Contract:

Concentration Units: ug/L

Determination Name: 314.0 Perchlorate

	ICB 07/04/2007 18:32			CCB1 07/04/2007	18:32	CCB2 07/04/2007 18:32		CCB3 07/04/2007 18:32		ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	U	0.5	1.0	U	1.0	U	1.0	U	0.5

* = Control limit exceeded

Laucks Testing Labs **Blank Report**

Test:	314.0 Perchlorate	5	SDG ID:	CAB32	
Lab Sample ID:	B070307PERW02	l	Preparation Date: Run Sequence ID:	7/3/2007 R019226	
		I	Analysis Date:	07/04/2007	18:32
		τ	Jnits:	ug/L	
		Ν	Aatrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlorate	2	1.0	Ŭ	0.5	
		Associated Samples			
	Lab Sample ID	Client Sample ID			
	CAB32-001	15L4MW17W			
	CAB32-002	15L4MW18W			

15L4MW07BW

* Measured blank concentration exceeded the established control limit

CAB32-005

FORM LTL-RSR-9.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the duc renformance of inspection and/or analysis in good faith and according to the rules of trade and science. SUM - 62

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	314.0 Perchlorate			S	DG ID:		CAB32	
				P	reparation	Date:	07/03/200	7
MS Lab Sample ID:	CAB32-005MS 23	K		R	un Sequen	ce ID:	R019226	
MSD Lab Sample ID:	CAB32-005MSD	2X		A	nalysis Da	te:	07/04/200	7
Client Sample ID:	15L4MW07BW			U	nits:		ug/L	
				Μ	lat r ix:		Water	
d noluto	Sample MS	s ms	MS	MSD	MSD	MSD		Lim

Analyte	Sampie	IND	1415	MS	MSD	MSD	MSD	RbD	Limit	S
	Found	Spike	Found	Recovery	Spike	Found	Recovery	ND	Recovery	RPD
Perchlorate	3.011	40.0	50.96	120%	40.0	50.54	119%	1%	80~120	15
				JA)	7/12/151					

	Associated Samples
<u>Lab Sample ID</u>	Client Sample ID
CAB32-001	15L4MW17W
CAB32-002	15L4MW18W
CAB32-005	15L4MW07BW

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or safe of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science

Laucks Testing Laboratories

BS/BSD Report

Test:	314.0	Perchlorate

BS Sample ID: S070307 BSD Sample ID: SD070307

CAB32
07/03/2007
R019226
07/04/2007 18:32
ug/L
Water

Analyte		Blank Spike		Blank Spike Duplicate			nn	Limit	ts
	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Perchlorate	20.0	18.301	92%	20.0	17.713	89%	3%	85-115	

I	Associated Samples
Lab Sample ID	Client Sample ID
CAB32-001	15L4MW17W
CAB32-002	15L4MW18W
CAB32-005	15L4MW07BW

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-7.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the date performance of inspection and/or analysis in good faith and according to the rules of trade and science.

LAUCKS TESTING LABORATORIES

SAMPLE DATA PACKAGE

PBS ENGINEERING & ENVIRONMENTAL

SDG NO.: CAB33

JULY 24, 2007

To: PBS Engineering & Environmental Project Name: Camp Bonneville SDG No.: CAB33 Date of Report: July 24, 2007

SAMPLE RECEIPT, IDENTIFICATION, AND GENERAL COMMENTS:

Sample Receipt and Identification:

The samples submitted under the laboratory number(s) indicated above were identified and analyzed as tabulated below. The samples were collected and received on the dates noted on the enclosed chain-of-custody copies, Attachment A.

Client Sample Identification	Laucks Sample Identification	Testing Analytical <u>Request</u>
15LCMW01SW	CAB33-001	VOA/ABN/ORD/TPHG/TPHD/MET/
	CAB33-002	ALK/ANIONS/TOC/TSS/PERC
	04000-002	ALK/ANIONS/TOC/TSS/PERC
MS/MSD	CAB33-003	ANIONS
15LCMW02SW	CAB33-004	VOA/ABN/ORD/TPHG/TPHD/MET/
		ALK/ANIONS/TOC/TSS/PERC
15LCMW02DW	CAB33-005	VOA/ABN/ORD/TPHG/TPHD/MET/
		ALK/ANIONS/TOC/TSS/PERC
15LCMW01SW (Filt.)	CAB33-006	MET/DOC
15LCMW01DW (Filt.)	CAB33-007	MET/DOC
15LCMW02SW (Filt.)	CAB33-008	MET/DOC
15LCMW02D (Filt.)	CAB33-009	MET/DOC
TRIP BLANK	CAB33-010	VOA

Analytical Request Key:

VOA =	Volatile Organics by Method 8260B
ABN =	Semi-Volatiles by Method 8270D
ORD =	Ordnance by Method 8330
	PETN/Nitroglycerin by Method 8332
	Picric Acid by Modified 8330
TPHD =	Total Petroleum Hydrocarbons-Diesel by NWTPH
TPHG =	Total Petroleum Hydrocarbons-Gasoline by NWTPH
MET =	Priority Pollutant Metals by Methods 6020/7470A
ALK =	Alkalinity, Carbonate and Bicarbonate by Method 310.1M
ANIONS =	Chloride, Nitrate, Nitrite, Sulfate by Method 300.0
TOC =	Total Organic Carbon by Method 415.1M*
DOC =	Dissolved Organic Carbon by Method 415.1M*

LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

TSS =	Total Suspended Solids by Method 160.2
PERC =	Ammonium Perchlorate by Method 314.0

*TOC/DOC:

Singleton analysis was performed for this project as approved by the client. This modification is less expensive and meets project DQOs but does not meet NELAC guidelines.

Sample Receipt Comments:

The temperature blanks for the samples on COCs 43121 and 43123 measured above the control limit of 6 deg C.

GENERAL REMARKS ON ORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON ORGANIC ANALYSIS."

Manual Integrations:

One or more analytes may have been manually integrated on the data system quantitation reports. All manual integrations have been flagged, initialed, and dated by the analyst. A list of the manual integration flags is detailed below.

- M Manual integration due to irregular peak shape
- MS Manual integration due to split peak
- MR Manual integration due to retention time shift
- MI Manual integration of correct isomer
- MT Manual integration due to peak tailing
- MB Manual integration due to irregular baseline

Holding Time Compliance:

Volatile Organic Compounds:

The holding time is 14 days calculated from date of collection in both soil and water samples. All samples were analyzed within holding time.

Semi-Volatile Organic Compounds:

The holding time to extraction is 7 days in water and 14 days in soil calculated from the date of collection. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

Ordnance, PETN/Nitroglycerin, Picric Acid

The holding time to extraction is 7 days in water and 14 days in soil calculated from date of collection. The holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

TPH Gasoline Fraction:

The holding time for analysis is 14 days in water and soil calculated from the date of collection. All samples were analyzed within holding times.

TPH Diesel Fraction:

The holding time to extraction, which is calculated from the date of collection, is 7 days for water samples and 14 days for soil samples. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding times.

Volatile Fraction (8260):

All quality control parameters were met.

Semivolatiles Fraction:

Second Source Calibration Verification Analysis:

Analysis of the second source standard ICV071207-2 resulted in %D values for 2,4-dinitrophenol, 4,6dinitro-2-methylphenol and benzidine that exceeded 25% due to decreased response. Because sample results are reported well below the reporting limit (RL) the chance of reporting any false negatives for these compounds at the RL is negligible.

Continuing Calibration Verification (CCV):

Analysis of the CCV performed on 07/18/07 yielded a % difference value for benzoic acid that exceeded 20% due to a decrease in response. Because sample results are reported well below the reporting limit (RL) the chance of reporting any false negatives for this compound at the RL is negligible.

Surrogate Recoveries:

Analysis of MSD performed on sample extract 15LCMW01DW yielded a low surrogate recovery for 2fluorobiphenyl. Because analyses of MS and the original sample yielded all surrogate recoveries within the control limits, no further action was taken.

Blank Spike Analysis:

Analysis of the blank spike S062507MSVWLT resulted in slightly low recoveries for 2,4,6trichlorophenol and 4,6-dinitro-2-metylphenol. Because these recoveries were within the marginal exceedance limits, no further action was necessary.

MS/MSD Analyses:

MS/MSD analyses performed on sample 15LCMW01DW yielded zero recoveries for 2,4-dinitrophenol, 4-nitrophenol and 4,6-dinitro-2-methylphenol and low recoveries for a number of target analytes. In addition, RPD values exceeded the control limits for several compounds. Because most of these analytes recovered within the control limits in the associated blank spike, no further action was taken.

Ordnance Fraction:

MS/MSD Analyses:

MSD analysis performed on sample 15LCMW01DW yielded a slightly low recovery for HMX. All other recoveries and RPD values were within the control limits. All blank spike recoveries were within the control limits. No further action was taken.

PETN/Nitroglycerin Fraction:

Quality Control Analyses:

MS/MSD analyses were performed on sample 15LCMW01DW. The RPD for Nitroglycerin and recovery value of PETN fell outside of the established control limits. Because all recoveries in the associated blank spike were within the control limits, no corrective action was taken

Surrogate Recovery:

Analysis of the sample extract 15LCMW01DWMSD yielded a low surrogate recovery. All other surrogates were within the control limits. No further action was taken.

Picric Acid Fraction:

All quality control parameters were met.

NWTPH Gasoline Fraction:

NWTPHG was used to quantitate the samples for gasoline. Gasoline range responses were determined by summing the responses of all components, resolved and unresolved, between toluene and naphthalene. Quantitation was based on the average calibration factor.

Quality Control Analyses:

MS/Duplicate analyses were performed on sample 15LCMW01DW. All recoveries and relative percent differences were within the established limits.

All quality control parameters were met.

NWTPH Diesel Fraction:

NWTPD-D was used to quantitate the samples for diesel and oil. Diesel range responses were determined by summing the responses of all components, resolved and unresolved, between C_{12} and C_{24} integrated to a horizontal baseline. Oil range responses were determined by summing the responses of all components, resolved and unresolved, between C_{24} and C_{40} integrated to a horizontal baseline. Quantitation was based on a linear regression.

All quality control parameters were met.

GENERAL REMARKS ON INORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON INORGANIC ANALYSES."

ICP-MS Metals:

On the first timed and dated page of each ICP-MS run, the data to be reported or rejected will be tabulated for that run.

<u>Mercury:</u>

Laucks purchases a 1000 mg/L Hg stock solution from Inorganic Ventures. The 0.5 mg/L working standard is made by diluting 100 uL to 200 mL with 0.15% HNO3. The calibration curve is made by placing 0, 20, 50, 100, 200, 500 and 1000 uL of the working standard digestion vessels and diluting up to 50 mL. The standard curve is equivalent to 0, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 ug/L.

SPECIFIC REMARKS ON INORGANIC ANALYSES:

Holding Time Compliance:

Laucks calculates holding time compliance for inorganic determinations using the date on which reportable data were acquired.

<u>Metals:</u>

The holding time for metals is six months from the date of collection, excepting mercury, which is 28 days. All analyses were performed within holding time.

Miscellaneous:

The following analytes do not have a Contract Laboratory Program holding time. The holding times tabulated below derive from the relevant EPA methods and are applicable when the sample was appropriately preserved and/or cooled. All samples submitted followed the preservation guidelines unless explicitly noted otherwise.

Analyte	Holding Time	Violations
Alkalinity	14 days	None
Chloride	28 days	None
Nitrate	48 hours	None
Nitrite	48 hours	None
Sulfate	28 days	None
Total Organic Carbon	28 days	None
Dissolved Organic Carbon	28 days	None
Total Suspended Solids	7 days	None
Perchlorate	28 days	None

ICP Metals:

The serial dilutions for the element zinc did not agree within 10% of the original determination after correction for dilution for samples 15LCMW01DW and 15LCMW01DW (Filt.). No further corrective action was required. All relevant data have been flagged with an "E" on the applicable Forms I and IX.

For the run sequence R019216, several CCVs exceeded the upper control limit for beryllium. Those samples that were reported contained concentrations of beryllium that were less than the CRDL. Quality control data for beryllium were reported and were within control limits. No corrective action was required. Data have not been flagged for these events.

For the run sequence R019325, the third and fourth CCVs exceeded the upper control limit for beryllium. Those samples that were reported contained concentrations of beryllium that were less than the CRDL. Data have not been flagged for these events.

For the run sequence R019325, the third CCV exceeded the upper control limit for chromium. Those samples that were reported contained concentrations of chromium that were less than the CRDL. Data have not been flagged for this event.

For the run sequence R019216, antimony was present in the ICB at a level greater than 1/2 the CRDL. All samples contained concentrations of antimony that were less than the CRDL, therefore no further corrective action was required. Quality control data were reported and were within control limits. Data have not been flagged for this event.

For the run sequence R019216, the scandium internal standard percent recovery for samples 15LCMW01SW, 15LCMW01DW, 15LCMW02SW, 15LCMW02DW, and 15LCMW01DW (Filt.) fell outside of the suggested control limits of 30-120% of the intensity of scandium in the initial calibration verification sample. Beryllium and chromium are associated with this internal standard. Therefore, results for beryllium and chromium for samples were reanalyzed (see R019325) and reported from a five-fold dilution where the scandium internal standard is within the control limits.

The post spike sample percent recoveries for all elements in run sequence R019325 were approximately 200% for sample 15LCMW01DW due to the internal standard recoveries failing at approximately 50%. Since the recoveries of the matrix spike sample were within the control limits of 75-125%, no corrective action was taken. Data have not been flagged for this event.

<u>Mercury:</u>

No comments.

Miscellaneous Inorganics:

For run sequence R018984, the matrix spike and matrix spike duplicate recoveries were outside the established control limits for the sulfate analysis. All other quality control elements are within control limits for the sulfate analysis. Therefore, no further action was taken.

For run sequence R018984, the matrix spike duplicate recovery was outside the established control limits for the chloride and nitrate analyses. All other quality control elements are within control limits. Therefore, no further action was taken.

LAUCKS TESTING LABORATORIES

940 S. Harney

Seattle, WA 98108

ABBREVIATIONS

Several abbreviations can appear in our reports. The most commonly employed abbreviations are as follows:

- U The analyte of interest was not detected to the limit of detection indicated.
- SDL Sample Detection Limit. The SDL can vary from sample to sample, depending on sample size, matrix interferences, moisture content and other sample-specific conditions.
- PQL Practical Quantitation Limit. The limit is drawn from the test method and usually represents the SDL multiplied by a matrix-specific factor.
- DB Dry Basis. The value reported has been back-calculated to normalize for the moisture content of the sample.
- AR As-Received. The value has not been normalized for moisture.

ORGANIC ANALYSES:

- B When used in relation to organics fractions, the "B" flag indicates that the analyte of interest was detected in the method blank associated with the sample, as well as in the sample itself. The "B" flag is applied without regard to the relative concentrations detected in the blank and sample.
- J The analyte of interest was detected below the routine reporting limit. This value should be regarded as an estimate.
- T The flagged values represent the SUM of two co-eluting compounds. The SUM of these two values is shown as though it were a result for each of them. The two figures should not be added together.
- E The flagged value was reported from an analysis that exceeded the linear range of the instrument. See additional comments for further discussion of the circumstances. Values so flagged should be considered estimates.
- P When a dual column GC technique is employed, this flag indicates that test results from the two columns differ by more than 25%. Generally, we report the higher value.
- C The flagged analyte has been confirmed by GC/MS analysis. The value reported may be derived from either the initial of confirmatory (GC/MS) analysis. See specific report comments for details.
- Z When two or more sets of results are submitted, the Z-flagged data indicates that this is the secondary result.
- CRQL Client requested Quantitation Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Quantitation Limit.

INORGANIC ANALYSES:

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
- E The reported value is estimated because of the presence of interference. The serial dilution was not within control limits.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.
- CRDL Client Requested Detection Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Detection Limit.

RELEASE OF DATA

Laucks certifies that these results meet all requirements of the NELAC standards, except where otherwise noted.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Respectfully submitted,

Wike Baxter Project Manager

Harry Romberg Quality Assurance Officer

HOW TO CONTACT US:

All Laucks Testing Laboratories staff members can be reached at the same telephone and facsimile numbers: (206) 767-5060 by phone, (206) 767-5063 by FAX.

REQUESTS FOR DUPLICATE COPIES:

This packet has been checked for accuracy. All pages are present and in sequential order. Please see Attachment B for a detailed record.

In the event that duplicate data copies are needed, Laucks will accommodate your request at a fee of twenty-five cents (\$0.25) per copy, plus shipping. If the data are in storage, there will also be a fee for retrieval.

ATTACHMENT A

Chain-of-Custody Copies

Sample		Collected		160.2 Total	300.0 NO3,	JUCKS TEST	TING LABO	ORATOR: 415.1 Dissolved	415.1 Total	6020 Diss.	-02		LE CONFIRM 020 otal 7470	LE CONFIRMATION	LE CONFIRMATION LOG	LE CONFIRMATION LOG 020 041 7470 7470 7470 8260B 8270C 900Cc 900Cc
#) (SDG- #)	VTSR	Collected On	Client ID	Total Suspended Solids	N03, S04	310.1M Carb./Bicarb. Alkalinity	314.0 Perchlorate	Dissolved Organic Carbon	Total Drganic Carbon	Diss. Priority Pollutanti Metals	Total Priority Pollutant Metals	7 470 Diss. Vercury	3	7470 Total lercury	7470 VOCs Total (LTL lercury Routine)	7470 VOCs SVOCs Total (LTL lercury Routine) 2-pH)
CAB33- (06/22/2007 10:10 AM	06/21/2007 11:00 AM	15LCMW01SW	A-	A +	IN	IN		Ą		P+			Ą-	A- A-	A- A- P+
*CAB33-(002	06/22/20070 10:10 AM	06/21/2007 12:45 PM	15LCMW01DW	Þ-	A +	IN	N		Ą		Р +			A-	Α- Α-	A- A- P+
*CAB33-(003	06/22/2007 0 10:10 AM	06/21/2007 12:45 PM	MS/MSD		₽ +		at Usblaussaters (
CAB33- (004)6/22/2007 10:10 AM	06/21/2007 03:00 PM	15LCMW02SW	₽-	A +	IN	IN		Ą-		Р +			P-	A- A-	A- A- P+
CAB33- (005	06/22/2007 10:10 AM	06/21/2007 04:50 PM	15LCMW02DW	A-	А +	N	IN		A-	fugtor of Blackson	P+			A-	A- A-	A- A- P+
CAB33-	06/22/20070	06/21/2007 11:00 AM	15LCMW01SW (Filt.)					Ą-		P +		A-		too you'rad ataataataa d		
*CAB33-()6/22/2007(06/21/2007	15LCMW01DW					>	d worns W	-		•	- (
007	10:10 AM	12:45 PM	(Filt.)				for A feating or	Ą	e had when one can	Р +		٦		Ø1, yan 1m 1	9 .	in the second
CAB33-	06/22/20070	06/21/2007	15LCMW02SW				annaanse i naar 1995 () angelij wijele	λ		-		>			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	олимон се общинала с на полото се област на се от на селото с Малеке с област об чето полото селото се от на се Стати на селото селот
800	10:10 AM	03:00 PM	(Filt.)					Ą	Secolog	τ +		A-		Contraction Contraction		00000000000000000000000000000000000000
CAB33-)6/22/2007(0	06/21/2007	15LCMW02D					•		-			1	uqu4(1 (
600	10:10 AM	04:50 PM	(Filt.)					A-	-100.00.00 A.V.S	70 +		<u>A</u> -				
CAB33- ()6/22/20070 10:10 AM	06/21/2007 12:00 AM	TRIP BLANK					Yestillio Yestillio Yestillio			• • • • • • • • • • • • • • • • • • •			Nyangguy kai kongate	A-	A,
Approve Notes:	1 By: /	and the second										1/12 :uC	19	10.F-	and the second se	10; 1

Samples identified with a '*' client has requested QC for LEGEND: -:Started , +:Completed , IN:Logged In , P:Preparation , A:Analysis , X:Cancelled, PL:Pre-logged FORM LTL-PM-8.0

http://ilims/lib/indexed/reports/LTL-PM-8.0.asp?SDGID=14855&

AME AUDRESS
AME AUDHESS
AME AUDRESS
AME
BILLING INFORMATION IF DIFFERENT HAN
ess otherwise marked. B. The laburatory may not be responsible for missed
X C M FURD
421/2 1/2:50 W 3 P
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1 X X X 4 4 2 11 2011 101 100
DATE TIME NO / Y WY A
RIX: NO. 0. 07
T6006 / 18 / 6/ / 5
x 503-248-0223 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /
OR ST INVERI
NIC / St / S
Management A SPLD
GRILLING SEE BELOW CHAIN OF COSTODY REC
CAB32

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB33	Taken By:	CLIENT
Cooler:	AAK403	Transferred:	FED EX
COC #:	43121		
Project:	Camp Bonneville (PBS Engineerin	g and Environmental)	
Date sampl	es were received at the laboratory:	6/22/2007	
Date cooler	was opened:	6/22/2007 10:10AM	
A. <u>PREL</u>	IMINARY EXAMINATION PHA	<u>SE:</u>	
I. Did cool	er come with a shipping slip (airbill, etc.)?		YES
if YES	, record carrier name and airbill number: 8	620 5447 0225	
2. Were cu	stody seals unbroken and intact at the date	and time of arrival?	INTACT
Date On	Custody Seal: Custody Seal:	Custody Seals Description: O	NE IN FRONT AND BACK.
3 Were cu	stody namers scaled in a plastic bag and far	ed inside to the lid?	VES
4 Did you	sorroup complete for redirectivity using the	Gaigar Counter?	NO
4. Did you	stedy papers filled out properly (ink, signa	d ata)?	NC NC
c Dialacti	stody papers filled out property (link, sight	u, etc.) (YES
	sign custody papers in the appropriate place		YES
7. If requir	ed, was enough cooling material present?	and and	YES
8. Have de	signated person initial here to acknowledge	e receipt of cooler:	
В. <u>LOG-</u>	IN PHASE: Date	samples were logged-in:	<u>6/22/2007</u> 10:20AM
Logged-in l	by <u>Zoriah Weith</u> (sign)		
9. Describe	e type of packing in cooler:		The address of the second
10. Were a	Il bottles sealed in separate plastic bags?		YES
11. Were la	abels in good condition?		YES
12. Were a	Il bottle labels complete (ID,date,time sign	ature,preservative,etc.)?	YES
13. Did all	bottle labels agree with custody papers?		YES
14. Were c	orrect containers used for the tests indicate	d?	

 14. Were correct containers used for the tests indicated?
 YES

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 YES

 18. Temperatures:
 10.0

DISCREPANCIES:

SAMPLES RECIEVED OUT OF TEMPERATURE CONTROL.

Supplemental Sample Receipt Log Laucks Testing Laboratories

 SDG:
 CAB33

 Cooler:
 AAK403

 Temperatures:
 10.0

 COC #:
 43121

Sample	Bottle #	Bottle Description	рН	Bubbles
CAB33-001	0001	1000 mL cylinder, poly	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
· · · · · · · · · · · · · · · · · · ·	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0013	40 ml OTWS, clear glass, HCl	N/C	None
	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	40 ml OTWS, clear glass, HCl	N/C	None
	0017	40 ml OTWS, clear glass, HCl	N/C	None
	0018	40 ml OTWS, clear glass, HCl	N/C	None
	0019	500 ml boston round, clear glass, HCl	<2	N/A
	0020	500 ml boston round, clear glass, HCl	<2	N/A
	0021	500 ml cylinder, poly	7	N/A
CAB33-002	0002	40 ml OTWS, clear glass, HCl	N/C	None
	0003	40 ml OTWS, clear glass, HCl	N/C	None
	0004	40 ml OTWS, clear glass, HCi	N/C	None
CAB33-003	0019	40 ml OTWS, clear glass, HCl	N/C	None
	0020	40 ml OTWS, clear glass, HCl	N/C	None
	0021	40 ml OTWS, clear glass, HCl	N/C	None
CAB33-004	0021	40 ml OTWS, clear glass, HCl	N/C	None
n an	0022	40 ml OTWS, clear glass, HCl	N/C	None
	0023	40 ml OTWS, clear glass, HCl	N/C	None
CAB33-005	0019	40 ml OTWS, clear glass, HCl	N/C	None
				1

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pHpH must be less than 2Base Preserved pHpH must be greater than 12NCNot Checked for pH

Supplemental Sample Receipt Log Laucks Testing Laboratories

 SDG:
 CAB33

 Cooler:
 AAK403

 Temperatures:
 10.0

 COC #:
 43121

Bottle # Sample **Bottle Description** pН Bubbles 0020 N/C None 40 ml OTWS, clear glass, HCl 0021 40 ml OTWS, clear glass, HCl N/C None 1000 mL cylinder, poly, HNO3 Filtered <2 N/A CAB33-006 0001 40 ml OTWS, clear glass, H3PO4 N/A 0002 N/C 40 ml OTWS, clear glass, H3PO4 N/C N/A 0003 0001 40 ml OTWS, clear glass, HCl N/C None CAB33-010 0002 40 ml OTWS, clear glass, HCl N/CNone

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

TemperatureAllowable temperature range is 4+/- 2 degrees CelsiusAcid Preserved pHpH must be less than 2Base Preserved pHpH must be greater than 12NCNot Checked for pH

		AL REPORT COPY		nance Charges and/or Collection Fees may be applied to definquent accounts.	Ţ
CUSTODY SEAL: Y N N/A			10:10	ULIVIT IPOULOS I I III	
TEMP			Cores 10	the company of the company	
			1010	. MAY LOW	1
** 5 DAYS (50% SUR)				MAL MIKE GANGEU	
T [] /Z MHS, (/0% SUR)	INTE		te ultida		
			DATE	RELINOUISHED BY (SIGN AND PRINT)	
* 24-48 HBS. (100% SUR)	LABORATORY APPROVAL			FOR EACH SAMPLE.	n line
STD. 10-14 WORKING DAYS	SUBJECT O PHION	CITY STATE. ZIP		ATTN	Jac
TURNAROUND REQUEST	* RUSH TURNAROUND IS	ADDRESS		. USE ONE LINE PER SAMPLE. NAME	
$\frac{1}{2}$ contact the lateratory for number information.	than 50% of the analytical hold time remaining. Prease	Inay not be responsible for missed holding time for samples received with less HON. IF DIFFERENT THAN ABOVE	B. The laboratory	A. A standard turnaround time is assumed unless otherwise marked. INSTRUCTIONS	
					1
					1
					1
					1
					1
					1
C331213	X X X	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		15 LOW WOI DW 6/21/14/12/2	
VIJIJ K				B-CARCERS-G	
INSTRUCTIONS	N MARK	CALC CAAD	MA	SAMPLE ID / LOCATION DATE TIME	
OBSERVATIONS, COMMENTS, SPECIAL		A A C C C C C C C	TAIX: WAT	эвро. No.: <u>70/87 cap TG206</u>	ř
		NY A A A XI		ELEPHONE: 503-147-7693 FAX: 503-248-02	TE
		I C C I D D D D D D D D D D D D D D D D		ROJECT CONTACT DICUN HARVEY	פ
		SPECI IS I I I I I I I I I I I I I I I I I		POJECT NAME: L'AMP BOMMENTILE	모
			i	TTENTION: Drew Harvey	A
na, WA 98902 (SU9) 243-4695 FAX 452-1265	1106 Ledwich Ave., Yakim			Britand CR 97234	
the, WA 98108 (206) 767-5060 FAX 767-5063	TTED AT: 940 South Hamey St., Seat		- WORK ORD	DERESS: 442 Sal Corput	AL
Noratorios Inc. 7	OF	4311 PAGE		OMPANY: 289	0
		OF/CUSTODY RECORD SDG #	CHAIN	HS INFORMATION WILL BE USED FOR REPORTING/BILLING? (SEE BELOW	
		AP. ジン	\mathcal{O}	みごろ	
Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB33	Taken By:	CLIENT		
Cooler:	AAT171	Transferred:	FED EX		
COC #:	43111				
Project:	Camp Bonneville (PBS Engineering	g and Environmental)			
Date sampl	es were received at the laboratory:	6/22/2007			
Date cooler	was opened:	6/22/2007 10:10AM			
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	<u>E:</u>			
1. Did cool if YES	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 80 stody seals unbroken and intact at the date of	520 5447			
Z. Wele cu	Custody Seal:	ustody Seals Description: A	INTACT		
Date Off		ustody Seals Description. O.	NE IN FROM AND DACK.		
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to the lid?	YES		
4. Did you screen samples for radioactivity using the Geiger Counter?					
5. Were custody papers filled out properly (ink, signed, etc.)?					
6. Did you sign custody papers in the appropriate place?					
7. If required, was enough cooling material present? YES					
8. Have de	signated person initial here to acknowledge	receipt of cooler: 77	·		
B. <u>LOG-I</u>	NPHASE: Date s	amples were logged-in:	6/22/2007 10:20AM		
Logged-in t	py <u>Zoriah Weith</u> (sign)				
9. Describe	e type of packing in cooler:	~ ~			
10. Were a	Il bottles sealed in separate plastic bags?		YES		
11. Were labels in good condition? YE					
12. Were all bottle labels complete (ID,date,time signature,preservative,etc.)? YES					
13. Did all	bottle labels agree with custody papers?		YES		
14. Were c	orrect containers used for the tests indicated	?	YES		
15. Were th	ne correct pHs observed?		YES		
16. Wasas	sufficient amount of sample sent for tests in	dicated?			

17. Were bubbles absent in VOA samples?

18. Temperatures:

5.9

DISCREPANCIES:

YES

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB33 Cooler: AAT171 Temperatures: 5.9 COC #: 43111

Sample	Bottle #	Bottle Description	pН	Bubbles
CAB33-002	0001	1000 mL cylinder, poly	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL boston round, amber glass	7	N/A
	0011	1000 mL boston round, amber glass	7	N/A
	0012	1000 mL boston round, amber glass	7	N/A
	0013	1000 mL cylinder, poly, HNO3	<2	N/A
	0014	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0015	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0016	40 ml OTWS, clear glass, HCl	N/C	None
	0017	40 ml OTWS, clear glass, HCl	N/C	None
	0018	40 ml OTWS, clear glass, HCl	N/C	None
	0019	500 ml boston round, clear glass, HCl	<2	N/A
	0020	500 ml boston round, clear glass, HCl	<2	N/A
	0021	500 ml cylinder, poly	7	N/A
CAB33~007	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

Charges and/or Collection Fees may be applied to delinguen

TAL REPORT CORV

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB33	Taken By:	CLIENT				
Cooler:	AAD583	Transferred:	FED EX				
COC #:	43122						
Project:	Camp Bonneville (PBS Engineering	g and Environmental)					
Date sampl	es were received at the laboratory:	6/22/2007					
Date cooler	was opened:	6/22/2007 10:10AM					
A. PREL	IMINARY EXAMINATION PHAS	E:					
1. Did cool if YES	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 80	520 5447 0225	Y	ES			
2. Were cu	stody seals unbroken and intact at the date a	and time of arrival?		TACT			
Date On	Custody Seal: C	ustody Seals Description: O	NE IN FRONT AND B	ACK.			
3 Were cu	stody naners scaled in a plastic hag and tan	ed inside to the lid?	V	FC			
4. Did you	screen samples for radioactivity using the (Geiger Counter?		പ			
5 Were custody napers filled out properly (ink, signed, etc.)?							
6. Did vou	6 Did you sign custody papers in the appropriate place?						
7. If requir	ed, was enough cooling material present?		vi Vi	ES			
8. Have de	signated person initial here to acknowledge	receipt of cooler: TU	· · · · · · · · · · · · · · · · · · ·	00			
B. LOG-	IN PHASE: Date s	amples were logged in.	0/22/2007 10:20AM				
Logged-in	by Zoriah Weith (sign)						
9. Describe	e type of packing in cooler:						
10. Were a	Il bottles sealed in separate plastic bags?		YI	ES			
11. Were la	abels in good condition?		YI	ES			
12. Were a	Il bottle labels complete (ID,date,time signa	ture,preservative,etc.)?	YI	ES			
13. Did all	bottle labels agree with custody papers?		Y	ES			
14. Were c	orrect containers used for the tests indicated		YI	ES			
15. Were th	he correct pHs observed?		YI	ES			
16. Was a	sufficient amount of sample sent for tests in	dicated?	YI	ES			
17. Were b	ubbles absent in VOA samples?		··· ··· · · · · · · · · · · · · · · ·	≧S			

18. Temperatures:

5.8

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB33 Cooler: AAD583 Temperatures: 5.8 COC #: 43122

Sample Bottle # **Bottle Description** pН Bubbles CAB33-003 0001 N/A 1000 mL cylinder, poly 7 0002 1000 mL boston round, amber glass 7 N/A 0003 7 1000 mL boston round, amber glass N/A 0004 7 1000 mL boston round, amber glass N/A 0005 1000 mL boston round, amber glass 7 N/A 0006 7 1000 mL boston round, amber glass N/A 0007 1000 mL boston round, amber glass 7 N/A 0008 1000 mL boston round, amber glass 7 N/A 0009 7 1000 mL boston round, amber glass N/A 0010 1000 mL cylinder, poly, HNO3 <2 N/A 0011 40 ml OTWS, clear glass, H3PO4 N/C N/A 0012 40 ml OTWS, clear glass, H3PO4 N/C N/A 0013 40 ml OTWS, clear glass, HCl N/C None 0014 40 ml OTWS, clear glass, HCl N/C None 0015 40 ml OTWS, clear glass, HCl N/C None 0016 500 ml boston round, clear glass, HCl ≤ 2 N/A 0017 500 ml boston round, clear glass, HCl <2 N/A 0018 500 ml cylinder, poly 7 N/A 0001 1000 mL cylinder, poly, HNO3 Filtered N/A CAB33-011 ≤ 2 0002 40 ml OTWS, clear glass, H3PO4 N/C N/A 0003 40 ml OTWS, clear glass, H3PO4 N/C N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB33	Taken By:	CLIENT		
Cooler:	AAD419	Transferred:	FED EX		
COC #:	43123				
Project:	Camp Bonneville (PBS Engineering	g and Environmental)			
Date sample	es were received at the laboratory:	6/22/2007			
Date cooler	was opened:	6/22/2007 10:10AM			
A. PREL	IMINARY EXAMINATION PHAS	<u>E:</u>			
1. Did coole if YES,	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 80	520 5447 0225	YES		
2. Were cu	stody seals unbroken and intact at the date a	nd time of arrival?	INTACT		
Date On	Custody Seal: C	ustody Seals Description: O	NE IN FRONT AN BACK.		
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to the lid?	YES		
4. Did you	screen samples for radioactivity using the C	eiger Counter?	NO		
5. Were custody papers filled out properly (ink, signed, etc.)? YES					
6. Did you sign custody papers in the appropriate place? YES					
7. If require	7. If required, was enough cooling material present? YES				
8. Have des	signated person initial here to acknowledge	receipt of cooler:			
B. <u>LOG-I</u>	NPHASE: Date s	amples were logged-in:	6/22/2007 10:20AM		
Logged-in t	by <u>Zoriah Weith</u> (sign)		and the second		
9. Describe	type of packing in cooler:				
10 Ways at	Il battles scaled in superstanda destis base?		1000		
10, were al	bottics scaled in separate plastic bags f_{\dots}		YES		
H. Were la	iders in good contanton?	······	·····YES		

Were all bottle labels complete (ID,date,time signature,preservative,etc.)?
 YES
 Did all bottle labels agree with custody papers?
 Were correct containers used for the tests indicated?
 Were the correct pHs observed?
 Were the correct pHs observed?
 Was a sufficient amount of sample sent for tests indicated?
 Were bubbles absent in VOA samples?
 Temperatures: 8.2

DISCREPANCIES:

SAMPLES RECIEVED ABOVE TEMPERATURE CONTROL.

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB33 Cooler: AAD419 Temperatures: 8.2

COC #: 43123

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB33-004	0001	1000 mL cylinder, poly	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
·	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
······································	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	40 ml OTWS, clear glass, HCl	N/C	None
·····	0017	40 ml OTWS, clear glass, HCl	N/C	None
	0018	500 ml boston round, clear glass, HCl	<2	N/A
	0019	500 ml boston round, clear glass, HCl	<2	N/A
	0020	500 ml cylinder, poly	7	N/A
CAB33-008	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
······································	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
17777 - 781/KIISELU (dan umu - 1911)	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC

pH must be less than 2 pH must be greater than 12 Not Checked for pH

	第一人主 自自行之母王 こうじく	Finance Charges and/or Collection Fees may be applied to delinquent accounts.
CUSTODY SEAL: TY TN TNA		elle and
TEMP	() (DHCF())	A
	2131	WWW. J-WW. / WILL FOLLEN
** 5 DAYS (50% SUR)	63107	
DME * 72 HRS. (75% SUR)	TIME RECEIVED BY (SIGN AND PRINT)	RELINQUISHED BY (SIGN AND PRINT)
ABORATORY APPROVAL * 24-48 HRS. (100% SUR)		S. GRECK OFF TESTS TO BE PERFORMED
SUBJECT TO PRIOR	CITY, STATE, ZIP	2. BE SPECIFIC IN TEST REQUESTS. ATTN:
RUSH TURNAROUND IS	ADDIRESS *	1. USE ONE LINE PER SAMPLE. NAME
r 50% of the analytical hold time remaining. Pease contact the laboratory for further information.	B. The taboratory may not be responsible for missed holding time for samples received with less than 5 ING INFORMATION. IF DIFFERENT THAN ABOVE	A. A standard turnaround time is assumed unless otherwise marked. INSTRUCTIONS
		Construction Construction
		ne my dithe met 20 m W. 7 C.)
A A A A A A A A A A A A A A A A A A A		
19 19 ON OBSERVATIONS	K K K K K K K K K K K K K K K K K K K	JOB/P.O. NO .: 10489. and TG206
		TELEPHONE: 503-417-7695 FAX:503-248-0323
///// A.A. C.	MI OF TAINE	PROJECT CONTACT: UVELW IT QUVULY
	speci its / / / / /	PROJECT NAME: COMP ScinkEV/1/1
		ATTENTION: 1) Rew / tex Vey
LE TI: [] 11/6 Ledwidt Ave., Yakima, WA 98902 (509) 248-4695 FAX 452-1265		Porthand, OR 97239
ICSLEIR LAIUUT AUUT AUUT IS., III 2 FD AT. 940 South Harrey SL, Seattle, WA 98108 (206) 767-5060 FAX 767-5063		ADDRESS: LIVIZ SW Corbett
	A3224	COMPANY: 2BS
	CHAIN OF CUSTODY RECORD SDG #	THIS INFORMATION WILL BE USED FOR REPORTING BILLING (SEE BELOW)
		8775D

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB33	Taken By:	CLIENT		
Cooler:	AAD510	Transferred:	FED EX		
COC #:	43124				
Project:	Camp Bonneville (PBS Engineering	g and Environmental)			
Date sample	es were received at the laboratory:	6/22/2007			
Date cooler	was opened:	6/22/2007 10:10AM			
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	<u>E:</u>			
L Did coole if YES,	er come with a shipping slip (airbill, etc.)? record carrier name and airbill number: 86	20 5447 0225	YES		
2. Were cu:	stody seals unbroken and intact at the date a	nd time of arrival?	INTACT		
Date On (Custody Seal: Cu	ustody Seals Description: OI	VE IN FRONT AND BACK.		
3. Were cus	stody papers sealed in a plastic bag and tape	d inside to the lid?	YES		
4. Did you	4. Did you screen samples for radioactivity using the Geiger Counter?				
5. Were custody papers filled out properly (ink, signed, etc.)?					
6. Did you sign custody papers in the appropriate place?					
7. If required, was enough cooling material present? YES					
8. Have des	signated person initial here to acknowledge	receipt of cooler:			
B. <u>LOG-I</u>	NPHASE: Date sa	amples were logged-in:	5/22/2007 10:20AM		
Logged-in b	y Zoriah Weith (sign)				
9. Describe	type of packing in cooler:				
10. Were al	bottles sealed in separate plastic bags?		VES		
11. Were la	bels in good condition?		VES		
12. Were al	l bottle labels complete (ID,date,time signat	ure,preservative,etc.)?	VES		
13. Did all f	bottle labels agree with custody papers?	- · · ·	YES		
14. Were co	prrect containers used for the tests indicated	?	YES		
			- =~		

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 YES

 18. Temperatures:
 4.3

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB33 Cooler: AAD510 Temperatures: 4.3 COC #: 43124

Sample	Bottle #	Bottle Description	pН	Bubbles
CAB33-005	0001	1000 mL cylinder, poly	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0013	40 ml OTWS, clear glass, HCl	N/C	None
	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	500 ml boston round, clear glass, HCl	<2	N/A
	0017	500 ml boston round, clear glass, HCl	<2	N/A
	0018	500 ml cylinder, poly	7	N/A
CAB33-008	0004	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0005	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0006	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

LAUCKS TESTING LABORATORIES 940 S. Harney Seattle, WA 98108

ATTACHMENT B

Index

LAUCKS TESTING LABORATORIES 940 S. Harney Seattle, WA 98108

PBS Engineering & Environmental

SDG No.: CAB33

- I. Narrative: 2-10
- II. Chain-of-Custody: 11-28
- III. Index: 29-30
- IV. Forms Summary: SUM- 1-296

Completed and checked by: Ondy Echlund Date: 124/07

FORMS SUMMARY

SDG CAB33

VOLATILES ANALYSIS

2

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract:

Run Sequence: <u>R019108</u>

SDG No.; CAB33

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB33-002MSD) 15LCMW01DWMSD	103	106	109	108	0
(CAB33-002MS) 15LCMW01DWMS	104	107	107	107	0
(CAB33-005) 15LCMW02DW	103	108	103	107	0
(CAB33-004) 15LCMW02SW	102	107	105	104	0
(CAB33-002) 15LCMW01DW	101	105	104	106	0
(CAB33-001) 15LCMW01SW	102	106	106	106	0
(CAB33-010) TRIP BLANK	100	106	105	107	0
(B062807MVOWB1) B062807MVOWB1	100	106	107	108	0
(S062807MVOWB1) S062807MVOWB1	102	106	107	106	0

SMC1	(DBF)	=	Dibromofluoromethane
SMC2	(DCA)	=	1,2-Dichloroethane-d4
SMC3	(TOL)	=	Toluene-d8
SMC4	(BFB)	Ξ	4-Bromofluorobenzene

QC LIMITS 85-115

> 70-120 85-120

75-120

Column to be used to flag recovery values
* Values outside of contract required QC limits

3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019108</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062807MVOWB1</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	26.82	54	30-155
Chloromethane	50.0	34.46	69	40-125
Vinyl chloride	50.0	36	72	50-145
Bromomethane	50.0	35.79	72	30-145
Chloroethane	50.0	34.79	70	60-135
Trichlorofluoromethane	50.0	40.01	80	60-145
1,1-Dichloroethene	50.0	56.45	113	70-130
Acetone	50.0	43.56	87	40-140
Carbon disulfide	50.0	49.03	98	35-160
Methylene chloride	50.0	50.81	102	55-140
trans-1,2-Dichloroethene	50.0	53.26	107	60-140
1,1-Dichloroethane	50.0	54.17	108	70-135
cis-1,2-Dichloroethene	50.0	51.49	103	70-125
2-Butanone	50.0	47.84	96	30-150
Chloroform	50.0	51.8	104	65-135
1,1,1-Trichloroethane	50.0	52.88	106	65-130
Carbon tetrachloride	50.0	51.37	103	65-140
Benzene	50.0	50.67	101	80-120
1,2-Dichloroethane	50.0	52.85	106	70-130
Trichloroethene	50.0	50.55	101	70-125
1,2-Dichloropropane	50.0	50.54	101	75-125
Bromodichloromethane	50.0	50.7	101	75-120
cis-1,3-Dichloropropene	50.0	58.1	116	70-130
4-Methyl-2-pentanone	50.0	48.23	96	60-135
Toluene	50.0	51.48	103	75-120
trans-1,3-Dichloropropene	50.0	45.97	92	55-140
1,1,2-Trichloroethane	50.0	48.61	97	75-125
Tetrachloroethene	50.0	50.11	100	45-150
2-Hexanone	50.0	53.02	106	55-130
Dibromochloromethane	50.0	49.35	99	60-135
Chlorobenzene	50.0	51,12	102	80-120
Ethylbenzene	50.0	51.12	102	75-125
m,p-Xylene	100	102.53	103	75-130
o-Xylene	50.0	50.19	100	80-120

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>37</u> outside limits

3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019108</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062807MVOWB1</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec	#	Rec Limit
Styrene	50.0	48.75	98		65-135
Bromoform	50.0	42.36	85		70-130
1,1,2,2-Tetrachloroethane	50.0	50.65	101		65-130

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: ____ out of _____ outside limits

3

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Laucks Testing Labs Contract: <u>N/A</u> MS Run Sequence: R019108 MSD Run Sequence: R019108 SDG No.: CAB33 MS Client Sample No.: 15LCMW01DWMS MSD Client Sample No.: 15LCMW01DWMSD MS Lab Sample ID: CAB33-002MS MSD Lab Sample ID: CAB33-002MSD Level: N/A Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD	0	QC L	IMITS
COMPOUND	CONC	SPIKE ADDED	CONC	FEC #	ADDED	CONC	₹ REC #	*RPD #	RPD	REC.
Dichlorodifluorom	0	50.0	36.19	72	50.0	33.09	66	9	30	30-155
etnane						13.6		~	2.0	40 105
Chloromethane	0	50.0	44.89	90	50.0	41.6	83	8		40-125
Vinyl chloride	0	50.0	46.13	92	50.0	42.41	85	8	30	50-145
Bromomethane	0	50.0	42.35	85	50.0	39.66	79	7	30	30-145
Chloroethane	0	50.0	42.98	86	50.0	42.02	84	2	30	60-135
Trichlorofluorome thane	0	50.0	40.62	81	50.0	37.59	75	8	30	60-145
1,1-Dichloroethen e	0	50.0	53	106	50,0	49.81	100	6	30	70-130
Acetone	0	50.0	55.56	111	50.0	63.77	128	14	30	40-140
Carbon disulfide	0	50.0	46.39	93	50.0	44.62	89	4	30	35-160
Methylene chloride	0	50.0	47,24	94	50.0	44.67	89	6	30	55-140
trans-1,2-Dichlor oethene	0	50.0	51.33	103	50.0	47.98	96	7	30	60-140
1,1-Dichloroethan e	0	50.0	52.86	106	50.0	50.06	100	5	30	70-135
cis-1,2-Dichloroe thene	0	50.0	50.17	100	50.0	48.07	96	4	30	70-125
2-Butanone	0	50.0	56.34	113	50.0	59.05	118	5	30	30-150
Chloroform	Q	50.0	50.26	101	50.0	47.88	96	5	30	65-135
1,1,1-Trichloroet hane	0	50.0	50.71	101	50.0	48.95	98	4	30	65-130
Carbon tetrachloride	0	50.0	48.16	96	50.0	46.91	94	З	30	65-140
Benzene	0	50.0	48.41	97	50.0	46.57	93	4	30	80-120

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

@ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: 0 out of 37 outside limits Spike Recovery: 0 out of 74 outside limits

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

3

Lab Name: Laucks Testing Labs Contract: <u>N/A</u>_____ MS Run Sequence: R019108 MSD Run Sequence: R019108 SDG No.: CAB33 MS Client Sample No.: 15LCMW01DWMS MSD Client Sample No.: 15LCMW01DWMSD MS Lab Sample ID: CAB33-002MS MSD Lab Sample ID: CAB33-002MSD Level: N/A Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD		QC L	IMITS
COMPOUND	CONC	SPIKE ADDED	CONC	* REC #	SPIKE ADDED	CONC	% REC #	%RPD #	RPD	REC.
1,2-Dichloroethan e	0	50.0	51.94	104	50.0	50.43	101	3	30	70-130
Trichloroethene	0	50.0	48.39	97	50.0	46.29	93	4	30	70-125
1,2-Dichloropropa ne	0	50.0	48.95	98	50.0	48.1	96	2	30	75-125
Bromodichlorometh ane	0	50.0	48.8	98	50.0	47.97	96	2	30	75-120
cis-1,3-Dichlorop ropene	0	50.0	54.02	108	50.0	52.97	106	2	30	70-130
4-Methyl-2-pentan one	0	50.0	53.91	108	50.0	54.45	109	l	30	60-135
Toluene	0	50.0	49.59	99	50.0	48.6	97	2	30	75-120
trans-1,3-Dichlor opropene	0	50.0	43.14	86	50.0	42,73	85	1	30	55-140
1,1,2-Trichloroet hane	0	50.0	47.79	96	50.0	47.89	96	0	30	75-125
Tetrachloroethene	0	50.0	48.16	96	50.0	46.69	93	3	30	45-150
2-Hexanone	0	50.0	59.87	120	50.0	60.8	122	2	30	55-130
Dibromochlorometh ane	0	50.0	48.35	97	50.0	48.37	97	0	30	60-135
Chlorobenzene	0	50.0	48.99	98	50.0	47.7	95	3	30	80-120
Ethylbenzene	0	50.0	48.46	97	50.0	47.22	94	3	30	75-125
m,p-Xylene	0	100	97.23	97	100	94.43	94	3	30	75-130
o-Xylene	0	50.0	47.48	95	50.0	46,31	93	2	30	80-120
Styrene	0	50.0	46.04	92	50.0	44.73	89	3	30	65-135
Bromoform	Ö	50.0	38.48	77	50.0	39.97	80	4	30	70-130
1,1,2,2-Tetrachlo roethane	0	50.0	49.51	99	50.0	50.15	100	l	30	65-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

@ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: 0 out of 37 outside limits Spike Recovery: _____ out of _____ outside limits

4 VOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO.

ve	MATTLE METROD	BLANK SUMMART B062807MVOWB1
Lab Name Laucks Testing Labs		Contract:
		SDG No.: CAB33
Lab File ID: <u>B0628011.D</u>		Lab Sample ID: <u>B062807MVOWB1</u>
Date Analyzed: 06/28/2007		Time Analyzed:
GC Column: <u>ZB-624_20m</u> ID:	<u>0.18</u> (mm)	Heated Purge: (Y/N) N
Instrument ID: <u>5973B</u>		Matrix: <u>Water</u>

	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
01	S062807MVOWB1	5062807MVOWB1	B0628008.D	06/28/2007	12:25	R019108
02	TRIP BLANK	CAB33-010	B0628013.D	06/28/2007	14:32	R019108
03	15LCMW01SW	CAB33-001	B0628025.D	06/28/2007	19:42	R019108
04	15LCMW01DW	CAB33-002	B0628026.D	06/28/2007	20:06	R019108
05	15LCMW02SW	CAB33-004	B0628027.D	06/28/2007	20:42	R019108
06	15LCMW02DW	CAB33-005	B0628028.D	06/28/2007	21:07	R019108
07	15LCMW01DWMS	CAB33-002MS	B0628032.D	06/28/2007	22:49	R019108
08	15LCMW01DWMSD	CAB33-002MSD	B0628033.D	06/28/2007	23:30	R019108
09						
10						
11						
12						
13						
14						
15	· · · · · · · · · · · · · · · · · · ·					
1.6						
17						
18						
19						
20	······································					
21						
22						
23						
24		· · · · · · · · · · · · · · · · · · ·				
25						
26						
27	1 - L CZZUDICZZUWCZYDS/77020700000000000000000000000000000000					
28			· · · · · · · · · · · · · · · · · · ·			
29						
30						

CLIENT SAMPLE NO.

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFB25NG

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: CAL948	SDG No.: CAB33
Lab File ID: <u>B0604007.D</u>	BFB Injection Date: 06/04/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:14
GC Column ZB-624 20m	ID:(mm)

-			* RELATIVE
-	m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
Ī	50	15% to 40% of mass 95	16.6
Ī	75	30% to 60% of mass 95	43.3
ſ	95	base peak, 100% relative abundance	100
Ī	96	5% to 9% of mass 95	7.6
Î	173	less than 2% of mass 174	0()1
ĺ	174	greater than 50% of mass 95	97.7
	175	5% to 9% of mass 17	7.4()1
A sugar and a sugar s	176	greater than 95%, but less than 101% of mass 174	98.7()1
Bassing	177	5% to 9% of mass 176	7 () 2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD001	VSTD001	B0604009.D	06/04/2007	11:23
02	VSTD005	VSTD005	B0604011.D	06/04/2007	12:30
03	VSTD010	VSTD010	B0604012.D	06/04/2007	12:55
04	VSTD050	VSTD050	B0604013.D	06/04/2007	13:20
05	VSTD075	VSTD075	B0604014.D	06/04/2007	13:45
06	VSTD100	VSTD100	B0604015.D	06/04/2007	14:10
07	VSTD200	VSTD200	B0604016.D	06/04/2007	14:35
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18		C			
19					
20	***************************************	· · · · · · · · · · · · · · · · · · ·			
21					
22					

Page 1 of 1

CLIENT SAMPLE NO.

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBB1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB33
Lab File ID: <u>B0628006.D</u>	BFB Injection Date: 06/28/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 11:34
GC Column ZB-624 20m	ID:(mm)

			% RELATIVE
	m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
÷	50	15% to 40% of mass 95	16.3
-	75	30% to 60% of mass 95	43,9
Lana and	95	base peak, 100% relative abundance	100
terror and	96	5% to 9% of mass 95	6.7
-	173	less than 2% of mass 174	0()1
ļ	174	greater than 50% of mass 95	100
Î	175	5% to 9% of mass 17	7,5()1
ĺ	176	greater than 95%, but less than 101% of mass 174	98.4()1
ľ	177	5% to 9% of mass 176	6.6()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

-					
	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B1	VSTD050B1	B0628007.D	06/28/2007	11:58
02	S062807MVOWB1	S062807MVOWB1	B0628008.D	06/28/2007	12:25
03	B062807MVOWB1	B062807MVOWB1	B0628011.D	06/28/2007	13:41
04	TRIP BLANK	CAB33-010	B0628013.D	06/28/2007	14:32
05	15LCMW01SW	CAB33-001	B0628025.D	06/28/2007	19:42
06	15LCMW01DW	CAB33-002	B0628026.D	06/28/2007	20:06
07	15LCMW02SW	CAB33-004	B0628027.D	06/28/2007	20:42
08	15LCMW02DW	CAB33-005	B0628028.D	06/28/2007	21:07
09	15LCMW01DWMS	CAB33-002MS	B0628032.D	06/28/2007	22:49
10	15LCMW01DWMSD	CAB33-002MSD	B0628033.D	06/28/2007	23:30
11					
12					
13					
14					
15					
16					
17	D_2011LLAWVERVERVERVERVERVERVERVERVERVERVERVERVERV				
18					
19					
20					
21					
22					

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Te	esting Labs		Contr	act:		NYNANIA
	Run Sequence: <u>R019108</u>			SDG N	0.: <u>CAB33</u>		
	Client Sample No.(VSTD050##):VSTD050B1				Analyzed:	06/28/2007	
	Lab File ID (Standard): <u>B0628007.D</u>				Analyzed:	11:58	·····
	Instrument ID: 5973E	Heate	d Purge: (Y/N) <u>N</u>			
	GC Column: ZB-624 20m		ID: 0.18 (mm)				
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD	602968	6.24	446383	9.42	241161	11.74
	UPPER LIMIT	1205936	6.74	892766	9.92	482322	12.24
	LOWER LIMIT	301484	5.74	223191.5	8.92	120580.5	11,24
	CLIENT SAMPLE NO.						
01	S062807MVOWB1	588603	6.24	441939	9.42	237818	11.73
02	B062807MVOWB1	592244	6.24	435738	9.42	224470	11.73
03	TRIP BLANK	571893	6.24	429642	9.42	225331	11.73
04	15LCMW01SW	570976	6.24	427723	9.42	227268	11.73
05	15LCMW01DW	544322	6.24	410938	9.42	223350	11.74
06	15LCMW02SW	558810	6.24	424523	9.42	231316	11.73
07	15LCMW02DW	545492	6.24	418858	9.42	228459	11.74
08	15LCMW01DWMS	572249	6.24	421973	9.42	220519	11.73
09	15LCMW01DWMSD	591631	6.24	429935	9.42	220854	11.73
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

CLIENT SAMPLE NO.

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW01SW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-001
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628025.D
Level: (LOW/MED)	Date Collected: _06/21/2007
<pre>% Moisture: not dec</pre>	Date/Time Analyzed:06/28/200719:42
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	Ŭ
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	σ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	ŭ
79-01-6	Trichloroethene	1.0	υ
78-87-5	1,2-Dichloropropane	1.0	Ŭ
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	Ŭ
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

15LCMW01SW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-001
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628025.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec	Date/Time Analyzed:
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: $(Y/N) = N$	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	Ŭ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	υ
100-42-5	Styrene	1.0	υ
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-002
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628026.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 20:06
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	υ
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	Ŭ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	Ű
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628026.D
Level: (LOW/MED)	Date Collected: _06/21/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200720:06
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	ΰ
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-004
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628027.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec.	Date/Time Analyzed: _06/28/2007 _20:42
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	Ŭ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	Ŭ
75-15-0	Carbon disulfide	1.0	Ŭ
75-09-2	Methylene chloride	1.0	ប
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	ប
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	Ŭ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB33-004</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628027.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec	Date/Time Analyzed:
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	ΰ
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	Ų
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

15LCMW02DW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-005
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628028.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200721:07
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	υ
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	Ŭ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	Ŭ
156-59-2	cis-1,2-Dichloroethene	1.0	Ŭ
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	Ŭ
56-23-5	Carbon tetrachloride	1.0	Ŭ
71-43-2	Велzепе	1.0	ប
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	ប
75-27-4	Bromodichloromethane	1.0	Ŭ
10061-01-	cis-1,3-Dichloropropene	1.0	Ŭ
108-10-1	4-Methyl-2-pentanone	5.0	Ŭ
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

15LCMW02DW

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB33-005</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628028.D</u>
Level: (LOW/MED)	Date Collected: 06/21/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200721:07
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	ប
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

TRIP BLANK

Lab Name:	Contract:
SDG No.: CAE33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-010
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628013.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200714:32
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	1.1	J
75-15-0	Carbon disulfide	1.0	Ŭ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	ΰ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	ប
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	Ų
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

TRIP BLANK

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB33-010</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628013.D
Level: (LOW/MED)	Date Collected: 06/21/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 14:32
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ŭ

Comments:

	That trunent. ID: 592B Calibration Detes: 66/04/2 Feat cd Furge: (Y/) N Calibration Detes: 66/04/2 Feat cd Furge: (Y/) N Calibration Detes: 66/04/2 C Column: Zge: (Y/) N Calibration Detes: 66/04/2 C Column: Zge: (Y/) N N N N N C Column: Zge: (Y/) N N N N N N C Column: Zge: (Y/) N <	Run Sequence:	ROI	9108	****							SDG No	••	CAB33							
Heat of Parget: (YA) N Calibration Transition Object of YA ObjeC	Heated Parge: (Y/N) Mean % RSD: Calibration rimes: Op/Ord GC Colum: ZB=28.4 Zm TD: 0.16 (m) Mean % RSD: 6/04/2 GC Colum: ZB=28.4 Zm TD: 0.15 (m) Mean % RSD: 6/04/2 Analyte Fa Mailyte Fa Mailyte Fa % RSD: 6/04/2 2/05/2 Dishononifuncomentane 1 100/801 S 100/801 0 130/801 100 130/801 2/00/801	Instrument ID:	597.	3B	****							Calibr	atio	n Dates:		06/04/20	07	14:3	5		
GC COLUMEI: GC COLUMEI: C COLUME: C COLUME: C COLUME: C COLUME:	$ T_{1} = T_{2} = T_{$	Heated Purge:	(N/Λ)	N				and himself (hit for a state of the state of				Calibr	atio	n Times:		06/04/20	07	14:3	2		
		GC Column: <u>ZB</u>	-624	2 0 m				ID:		0.16 ((uur	Mean %	RSD	: 6.70							
	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Analyte	3td	RF 1	std 2	RF 2	stđ 3	RF 3	Std 4	RF 4	Std. 5	R ₂ 5	std 6	RF 6	std 7	RF 7 St	d RF 8	RF	\$RSD	r ² COD	йŕ
Chhomenthan:	Chloromethane 1 Z.630E-01 5 Z.800E-01 10 Z.630E-01 50 Z.870E-01 200 Z.890E-01 200 Z.800E-01	Dichlorodifluoromethane	1	1.010E-01	5	1.160E-01	10	1.150E-01	50	1.470E-01	75	1.480E-01	100	1.310E-01	200	1.500E-01		0.130	15.09		<u> </u> <
Viny chloride12.3.00E-0152.4.00E-01102.370E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01502.8.560E-01501.8.560E-01501.8.560E-01501.8.560E-01501.8.560E-01501.8.560E-01501.8.560E-01501.5.560E-01501.5.560E-01501.7.560E-01 <t< td=""><td>Winy chloride 1 2,308-01 5 2,400E-01 10 1,308E-01 20 2,308E-01 200 2,308E-01 200 2,308E-01 200 2,308E-01 200 2,308E-01 200 1,308E-01 200 1,308E-01<</td><td>Chloromethane</td><td></td><td>2.630E-01</td><td>S</td><td>2.840E-01</td><td>10</td><td>2.610E-01</td><td>50</td><td>2.829E-01</td><td>75</td><td>2.809E-01</td><td>100</td><td>2.640E-01</td><td>200</td><td>2.870E-01</td><td></td><td>0.274</td><td>4.19</td><td></td><td></td></t<>	Winy chloride 1 2,308-01 5 2,400E-01 10 1,308E-01 20 2,308E-01 200 2,308E-01 200 2,308E-01 200 2,308E-01 200 2,308E-01 200 1,308E-01 200 1,308E-01<	Chloromethane		2.630E-01	S	2.840E-01	10	2.610E-01	50	2.829E-01	75	2.809E-01	100	2.640E-01	200	2.870E-01		0.274	4.19		
	Benomethane 1 1.949E-01 5 1.680E-01 75 1.680E-01 70 1.540E-01 200 1.770E-01 200 1.740E-01 200 1.740E-01 200 1.740E-01 200 1.770E-01 200 1.770E-01 200 1.770E-01 200 1.770E-01 200 1.770E-01<	Vinyl chloride		2.330E-01	5	2,490E-01	10	2.370E-01	50	2.630E-01	75	2.630E-01	100	2.389E-01	200	2.590E-01		0.249	5.23		A
Chlorenhane111750E-0151.680E-01001.630E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.640E-01001.730E-010	Chloroethane I 1.750E-01 5 1.680E-01 50 1.630E-01 50 1.530E-01 50 1.300E-01 50 2.300E-01 20 2.300E-01 20 2	Bromomethane	_	1.949E-01	S	1.680E-01	10	1.490E-01	50	1.580E-01	75	1.680E-01	100	1.540E-01	200	1.540E-01		0.164	9.54		V
	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Chloroethane		1.750E-01	Ś	1.680E-01	10	1.630E-01	50	1.610E-01	75	1.640E-01	100	1.420E-01	200	1.540E-01		0.161	6.54		V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1-Dichloroethane 1 1.570E-01 5 1.949E-01 50 1.50E-01 50 1.70E-01 100	Trichlorofluoromethane		2.649E-01	S	2.980E-01	10	2.700E-01	50	3.199E-01	75	3.150E-01	100	2.790E-01	200	2.980E-01		0.292	7.28		A
Acetone111.500E.0151.320E.01101.1600E.01501.230E.01101.1600E.01501.200 <th< td=""><td>Acetone 1 1.560E-01 5 1.320E-01 10 1.160E-01 50 1.260E-01 50 1.260E-01 500 1.260E-01 500 1.260E-01 500 1.260E-01 200 1.260E-01</td><td>1,1-Dichloroethene</td><td></td><td>1.570E-01</td><td>5</td><td>1.949E-01</td><td>10</td><td>1.620E-01</td><td>50</td><td>1.959E-01</td><td>75</td><td>1.930E-01</td><td>100</td><td>1.690E-01</td><td>200</td><td>1.770E-01</td><td></td><td>0.178</td><td>9.17</td><td></td><td><</td></th<>	Acetone 1 1.560E-01 5 1.320E-01 10 1.160E-01 50 1.260E-01 50 1.260E-01 500 1.260E-01 500 1.260E-01 500 1.260E-01 200 1.260E-01	1,1-Dichloroethene		1.570E-01	5	1.949E-01	10	1.620E-01	50	1.959E-01	75	1.930E-01	100	1.690E-01	200	1.770E-01		0.178	9.17		<
Carbon disulfide15.680E-015 $6.579E-01$ 10 $6.129E-01$ 50 $7.969E-01$ 70 $7.160E-01$ 200 $7.300E-01$ 70 0.699 12.94 1000Methylere chloride11 $1.001E+00$ 5 $3.170E-01$ 10 $2.579E-01$ 50 $2.579E-01$ 70 $2.579E-01$ 70 $2.579E-01$ 70 $2.730E-01$ 70 $2.730E-01$ 70 $2.730E-01$ 70 $2.730E-01$ 70 $2.739E-01$ 70 $2.739E-01$ 70 $2.739E-01$ 70 $2.749E-01$ 70 $2.739E-01$ 70 $2.749E-01$ 70 $2.739E-01$ 70 2.73	Carbon disulfide 1 5.680E-01 5 6.579E-01 50 7.60E-01 70 7.160E-01 700 7.300E-01 Methylene chloride 1 1.001E+00 5 3.170E-01 10 2.579E-01 75 2.730E-01 100 2.490E-01 200 2.300E-01 200 2.300E-01 200 2.400E-01 100 2.400E-01 200 2.400E-01 200 2.400E-01 200 2.400E-01 200 2.400E	Acetone	-	1.560E-01	5	1.320E-01	2	1.160E-01	50	1.250E-01	75	1.170E-01	100	1.140E-01	200	1.040E-01		0.123	13.72		A
Methylene chloride11.001E+0053.170E-0110 $2.579E-01$ 50 $2.640E-01$ 75 $2.720E-01$ 100 $2.590E-01$ 200 $2.90E-01$ 203 7.3 1.000 trans-1.2-Dichlorechene1 $2.300E-01$ 5 $2.780E-01$ 10 $2.410E-01$ 200 $2.40E-01$ 20 $2.720E-01$ 20 $2.20E-01$ 20 $2.232E-01$ 20 $2.230E-01$ 20 <td>Methylene chloride 1 1.001E+00 5 3.170E-01 10 2.579E-01 70 2.590E-01 70 2.590E-01 70 2.400E-01 70</td> <td>Carbon disulfide</td> <td></td> <td>5.680E-01</td> <td>S</td> <td>6.579E-01</td> <td>10</td> <td>6.129E-01</td> <td>50</td> <td>7.969E-01</td> <td>75</td> <td>8.090E-01</td> <td>100</td> <td>7.160E-01</td> <td>200</td> <td>7.300E-01</td> <td></td> <td>0.699</td> <td>12.94</td> <td></td> <td>A</td>	Methylene chloride 1 1.001E+00 5 3.170E-01 10 2.579E-01 70 2.590E-01 70 2.590E-01 70 2.400E-01 70	Carbon disulfide		5.680E-01	S	6.579E-01	10	6.129E-01	50	7.969E-01	75	8.090E-01	100	7.160E-01	200	7.300E-01		0.699	12.94		A
	trans-1,2-Dichloroethene 1 2.300E-01 5 2.700E-01 10 2.410E-01 70 2.400E-01 70	Methylene chloride	-	1.001E+00	s	3.170E-01	10	2.579E-01	50	2.640E-01	75	2.720E-01	100	2.590E-01	200	2.490E-01		0.374		1.000	0
	1 1 4.500E-01 5 4.900E-01 50 4.900E-01 55 2.879E-01 100 4.800E-01 200 4.400E-01 500 4.400E-01	trans-1,2-Dichloroethene	-	2.300E-01	S	2.780E-01	10	2.410E-01	50	2.739E-01	75	2.599E-01	100	2.410E-01	200	2.420E-01		0.252	7.38		¥
cis-1,2-Dichlorochtene1 $2.829E-01$ 5 $3.059E-01$ 10 $2.018E-01$ 50 $2.970E-01$ 70 $2.669E-01$ 200 $2.70E-01$ 70 $2.2829E-01$ 70 $2.2829E-01$ 70 $2.2829E-01$ 70 $2.2829E-01$ 70 $2.2829E-01$ 70 $2.2829E-01$ 70 $2.280E-01$ 70 $2.290E-01$ 2.00 $2.290E-01$ 2.00	cis-1,2-Dichloroethene 1 2.829E-01 5 3.059E-01 10 2.649E-01 75 2.879E-01 75 2.70E-01 70 2.649E-01 70 2.049E-01 70 2.349E-01 70	1, I-Dichloroethane		4.560E-01	Ś	4.900E-01	10	4.400E-01	50	4.990E-01	75	4.740E-01	100	4.480E-01	200	4,460E-01		0.465	5.00		4
2-Butanone1 $2.480E-01$ 5 $1.879E-01$ 10 $1.940E-01$ 50 $2.169E-01$ 50 $2.169E-01$ 50 $2.06E-01$ 50 $2.3840E-01$ 50 $2.3240E-01$ 50 $2.260E-01$ 50 $2.360E-01$ 2.00 <	2-Butanone12.480E-0151.879E-0151.879E-0152.169E-01752.110E-011002.080E-012001.930E-01Chloroform14.639E-0154.819E-01104.219E-01504.720E-01754.569E-011004.280E-012002.90E-011.1.1-Trichloroethane13.129E-0153.840E-01103.300E-01753.440E-01703.280E-012002002.90E-01Carbon tetrachloride12.579E-0153.840E-01102.830E-01753.240E-01702.230E-012002.90E-01Benzene12.579E-0153.840E-01102.830E-01753.240E-01702.002.90E-01Denzene12.499E-0153.440E-01102.830E-01753.240E-01702.002.90E-01Denzene12.499E-0153.440E-01102.330E-01753.240E-01702.002.90E-01Dishloroethane12.499E-0153.240E-01102.330E-01702.326E-012.002.90E-011.2-Dichloroethane12.349E-0153.240E-01753.326E-01702.002.90E-012.001.2-Dichloroethane12.379E-0153.240E-01753.329E-01702.002.90E-012.001.2-Dichloroethane13.338E-0153.230E	cis-1,2-Dichloroethene		2.829E-01	Ś	3.059E-01	10	2.619E-01	50	2.980E-01	75	2.879E-01	100	2.669E-01	200	2.720E-01		0.282	5.75		V
Chloroform1 $4.639E-01$ 5 $4.819E-01$ 10 $4.219E-01$ 50 $4.720E-01$ 50 $4.569E-01$ 100 $4.208E-01$ 200 $4.309E-01$ 20 6.451 5.26 7 1,1.1-Trichloroethane1 $3.129E-01$ 5 $3.840E-01$ 10 $3.349E-01$ 50 $3.280E-01$ 20 $2.90E-01$ 20 0.347 8.36 1,1.1-Trichloroethane1 $2.579E-01$ 5 $3.840E-01$ 10 $3.340E-01$ 50 $3.849E-01$ 50 $3.849E-01$ 50 $3.849E-01$ 20 0.347 8.36 0.337 Carbon tetrachloride1 $2.579E-01$ 5 $3.440E-01$ 10 $2.320E-01$ 100 $2.20E-01$ 200 $2.969E-01$ 0 0.347 3.36 L/2-Dichloroethane1 $1.2.579E-01$ 5 $3.440E-01$ 10 $2.330E-01$ 75 $3.1412E+00$ 70 $1.026+01$ 0.0 $1.026+01$ 0.0 $0.340E-01$ $0.0246+01$ 0.347 3.36 L/2-Dichloroethane1 $1.2.579E-01$ 5 $3.40E-01$ 10 $2.302E-01$ 100 $2.302E-01$ 200 $2.902E-01$ 0.02 0.347 0.347 0.347 0.347 L/2-Dichloroethane1 $1.2.579E-01$ 10 $2.730E-01$ 50 $3.230E-01$ 100 $2.850E-01$ 200 $2.902E-01$ 0.02 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347 0.347	Chloroform I 4.639E-01 5 4.819E-01 50 4.720E-01 75 4.569E-01 100 4.280E-01 200 4.309E-01 200 2.300E-01 200 2.300E-01 <td>2-Butanonc</td> <td>_</td> <td>2.480E-01</td> <td>S.</td> <td>1.879E-01</td> <td>0</td> <td>1.940E-01</td> <td>50</td> <td>2.169E-01</td> <td>75</td> <td>2.110E-01</td> <td>100</td> <td>2.080E-01</td> <td>200</td> <td>1.930E-01</td> <td></td> <td>0.208</td> <td>9.77</td> <td></td> <td>V</td>	2-Butanonc	_	2.480E-01	S.	1.879E-01	0	1.940E-01	50	2.169E-01	75	2.110E-01	100	2.080E-01	200	1.930E-01		0.208	9.77		V
		Chloroform		4.639E-01	Ś	4.819E-01	10	4.219E-01	50	4.720E-01	75	4.569E-01	100	4.280E-01	200	4.309E-01		0.451	5.26		A
Carbon tetrachloride1 $2.579E-01$ 5 $3.440E-01$ 10 $2.830E-01$ 50 $3.490E-01$ 75 $3.240E-01$ 100 $2.920E-01$ 200 $2.969E-01$ 00 3.07 10.82 8.66 Benzene1 $1.070E+00$ 5 $1.184E+00$ 10 $1.026E+00$ 50 $1.172E+00$ 75 $3.113E+00$ 100 $1.054E+00$ 200 $1.066+01$ 7.66 7.66 8.651 $1,2-Dichloroethane13.499E-0153.200E-01103.540E-011003.400E-012003.370E-012003.360E-012003.360E-012003.360E-012003.360E-012003.360E-012003.360E-01200$	Carbon tetrachloride1 $2.579E-01$ 5 $3.440E-01$ 10 $2.850E-01$ 50 $3.490E-01$ 75 $3.240E-01$ 100 $2.920E-01$ 200 $2.969E-01$ Benzene1 $1.070E+00$ 5 $1.18E+00$ 10 $1.02E+00$ 50 $1.172E+00$ 75 $1.113E+00$ 100 $1.051E+00$ 200 $1.054E+0$ 1,2-Dichloroethane1 $3.499E-01$ 5 $3.600E-01$ 10 $3.319E-01$ 75 $3.540E-01$ 100 $2.850E-01$ 200 $2.910E-01$ 1,2-Dichloroethane1 $2.809E-01$ 5 $3.240E-01$ 10 $2.750E-01$ 75 $3.240E-01$ 100 $2.850E-01$ 200 $2.910E-01$ 1,2-Dichloroethane1 $2.809E-01$ 5 $3.240E-01$ 10 $2.750E-01$ 75 $3.240E-01$ 100 $2.649E-01$ 1,2-Dichloropropane1 $2.750E-01$ 5 $3.240E-01$ 10 $3.269E-01$ 75 $3.530E-01$ 100 2.00 $2.940E-01$ Bromodichloromethane1 $3.750E-01$ 5 $3.240E-01$ 10 $3.670E-01$ 75 $3.530E-01$ 200 2.09 2.09 Bromodichloromethane1 $3.750E-01$ 5 $3.880E-01$ 10 $3.670E-01$ 75 $3.670E-01$ 200 2.09 2.09 2.09 2.1.3-Dichloropropene1 $3.750E-01$ 5 $3.880E-01$ 10 $3.330E-01$ 75 $4.070E-01$ 100 2.00 2.00 2.00 2.00 2.00 2.00 2.00 <td< td=""><td>1,1,1-Trichloroethane</td><td></td><td>3.129E-01</td><td>2</td><td>3.840E-01</td><td>10</td><td>3.300E-01</td><td>50</td><td>3.849E-01</td><td>75</td><td>3.590E-01</td><td>100</td><td>3.280E-01</td><td>200</td><td>3.290E-01</td><td></td><td>0.347</td><td>8.36</td><td></td><td>A</td></td<>	1,1,1-Trichloroethane		3.129E-01	2	3.840E-01	10	3.300E-01	50	3.849E-01	75	3.590E-01	100	3.280E-01	200	3.290E-01		0.347	8.36		A
Benzene1 $1.070E+00$ 5 $1.184E+00$ 10 $1.026E+00$ 50 $1.172E+00$ 75 $1.113E+00$ 100 $1.051E+00$ 200 $1.06E+0$ 76 5.66 $1,2$ -Dichloroethane13.499E-015 $3.600E-01$ 10 $3.319E-01$ 50 $3.30E-01$ 20 $3.370E-01$ 00 $3.370E-01$ 0.347 3.29 Trichloroethane1 $2.809E-01$ 5 $3.240E-01$ 10 $2.780E-01$ 10 $2.780E-01$ 10 $2.850E-01$ 200 $2.910E-01$ 0.275 4.28 Trichloroethane1 $2.750E-01$ 5 $3.240E-01$ 10 $2.780E-01$ 10 $2.850E-01$ 200 $2.860E-01$ 200 $2.860E-01$ 200 $2.870E-01$ 200 $2.910E-01$ 200	Benzene1 $1.070E+00$ 5 $1.184E+00$ 10 $1.02E+00$ 5 $1.132+00$ 100 $1.051E+00$ 200 $1.054E+01$ 1.2 -Dichlorochane1 $3.499E-01$ 5 $3.600E-01$ 10 $3.600E-01$ 75 $3.540E-01$ 100 $3.400E-01$ 200 $3.370E-01$ Trichlorochane1 $2.809E-01$ 5 $3.240E-01$ 10 $2.400E-01$ 75 $3.540E-01$ 100 $3.400E-01$ 200Trichlorochane1 $2.750E-01$ 5 $3.240E-01$ 10 $2.780E-01$ 75 $3.560E-01$ 100 $2.400E-01$ Bromodichloropropane1 $2.750E-01$ 5 $3.240E-01$ 10 $2.850E-01$ 75 $3.059E-01$ 100Bromodichloropropane1 $2.750E-01$ 5 $3.240E-01$ 10 $2.850E-01$ 100 $2.0620E-01$ Bromodichloropropane1 $2.750E-01$ 5 $3.240E-01$ 10 $3.059E-01$ 100 $2.082E-01$ 200Bromodichloropropane1 $3.38E-01$ 10 $3.570E-01$ 75 $2.800E-01$ 100 $3.440E-01$ 200Bromodichloropropane1 $3.750E-01$ 5 $3.880E-01$ 10 $3.670E-01$ 75 $3.670E-01$ 200 $3.910E-01$ Bromodichloropropane1 $3.750E-01$ 5 $3.880E-01$ 30 $3.670E-01$ 75 $4.070E-01$ 100 2.09 Bromodichloropropane1 $3.750E-01$ 5 $4.199E-01$ 75 $4.070E-01$ 100 2.09 </td <td>Carbon tetrachloride</td> <td></td> <td>2.579E-01</td> <td>S</td> <td>3.440E-01</td> <td>9</td> <td>2.850E-01</td> <td>50</td> <td>3.490E-01</td> <td>75</td> <td>3.240E-01</td> <td>100</td> <td>2.920E-01</td> <td>200</td> <td>2.969E-01</td> <td></td> <td>0.307</td> <td>10.82</td> <td></td> <td>A </td>	Carbon tetrachloride		2.579E-01	S	3.440E-01	9	2.850E-01	50	3.490E-01	75	3.240E-01	100	2.920E-01	200	2.969E-01		0.307	10.82		A
$ \begin{array}{[c]{cccccccccccccccccccccccccccccccccc$	1,2-Dichloroethane13.499E-0153.600E-01103.319E-01753.540E-011003.400E-012003.370E-01Trichloroethane12.809E-0153.240E-01102.780E-01503.230E-01753.059E-011002.850E-012002.910E-011,2-Dichloroptane12.750E-0153.240E-01102.780E-01753.059E-011002.850E-012002.649E-011,2-Dichloroptane12.750E-0153.510E-01103.269E-01753.580E-011002.680E-012003.440E-01Bromodichloromethane13.750E-0153.510E-01103.569E-01753.580E-011003.440E-012003.440E-01eis-1,3-Dichloroptopene13.750E-0153.510E-01103.569E-01753.580E-011003.919E-014-Methyl-2-pentanone15.720E-0154.149E-01103.930E-01754.209E-01702.003.919E-01Eq TY = EquationTY = EquationTY	Benzene	-	1.070E+00	S	1.184E+00	10	1.026E+00	50	1.172E+00	75	1.113E+00	100	1.051E+00	200	1.054E+0		1.096	5.66		A
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Trichloroethene1 $2.809E-01$ 5 $3.240E-01$ 10 $2.780E-01$ 75 $3.059E-01$ 100 $2.850E-01$ 200 $2.910E-01$ $1,2$ -Dichloropropane1 $2.750E-01$ 5 $2.890E-01$ 10 $2.890E-01$ 100 $2.680E-01$ 200 $2.910E-01$ Bromodichloromethane1 $2.750E-01$ 5 $2.890E-01$ 10 $2.800E-01$ 100 $2.680E-01$ 200 $2.40E-01$ Bromodichloromethane1 $3.750E-01$ 5 $3.510E-01$ 10 $3.269E-01$ 75 $3.580E-01$ 100 $2.649E-01$ cis-1,3-Dichloropropene1 $3.750E-01$ 5 $3.880E-01$ 10 $3.440E-01$ 200 $3.440E-01$ def1 $3.750E-01$ 5 $3.880E-01$ 10 $3.670E-01$ 75 $3.580E-01$ 100 $2.00B-01$ def1 $3.750E-01$ 5 $3.880E-01$ 10 $3.919E-01$ 70 $3.919E-01$ 200 $3.910E-01$ def1 $5.720E-01$ 5 $4.149E-01$ 10 $3.930E-01$ 75 $4.209E-01$ 100 $4.100E-01$ 200 $3.919E-01$ EqTyEquationTypeTypeType 10 $3.930E-01$ 50 $4.269E-01$ 75 $4.100E-01$ 200 $3.919E-01$ defTypeTypeTypeTypeTypeTypeTypeType 100 $2.00B-01$ 200 $2.00B-01$ defTypeTypeType	1,2-Dichloroethane		3.499E-01	Ś	3.600E-01	10	3.319E-01	50	3.600E-01	75	3.540E-01	100	3.400E-01	200	3.370E-01		0.347	3.29		V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Trichloroethene	-	2.809E-01	S	3.240E-01	10	2.780E-01	50	3.230E-01	75	3.059E-01	100	2.850E-01	200	2.910E-01		0.298	6.51		V
Bromodichloromethane 1 3.389E-01 5 3.510E-01 10 3.269E-01 70 3.670E-01 70 3.440E-01 200 3.440E-01 0.347 3.81 cis-1,3-Dichloropropene 1 3.750E-01 5 3.880E-01 10 3.610E-01 75 4.199E-01 100 3.919E-01 200 3.910E-01 0.391 4.95 4-Methyl-2-pentanone 1 5.720E-01 5 4.199E-01 75 4.219E-01 100 4.910E-01 200 3.910E-01 0.391 4.95	Bromodichloromethane1 $3.389E-01$ 5 $3.510E-01$ 10 $3.670E-01$ 75 $3.580E-01$ 100 $3.440E-01$ 200 $3.440E-01$ cis-1,3-Dichloropropene1 $3.750E-01$ 5 $3.880E-01$ 10 $3.610E-01$ 75 $4.070E-01$ 100 $3.919E-01$ 200 $3.910E-01$ 4-Methyl-2-pentanone1 $5.720E-01$ 5 $4.149E-01$ 10 $3.930E-01$ 75 $4.209E-01$ 100 $3.919E-01$ 200 $3.930E-01$ Eq TY = Equation Type	1,2-Dichloropropane		2.750E-01	S	2.890E-01	01	2.590E-01	50	2.899E-01	75	2.800E-01	100	2.680E-01	200	2.649E-01		0.275	4.28		Υ
cis-1.3-Dickloropropene 1 3.750E-01 5 3.880E-01 10 3.610E-01 75 4.070E-01 100 3.919E-01 200 9.910E-01 0.391 4.95 4-Methyl-2-pentanone 1 5.720E-01 5 4.149E-01 10 3.930E-01 75 4.269E-01 75 4.219E-01 100 4.100E-01 0.433 14.48	cis-1,3-Dichloropropene 1 3.750E-01 5 3.880E-01 10 3.610E-01 75 4.070E-01 100 3.919E-01 200 3.910E-01 4-Methyl-2-pentanone 1 5.720E-01 5 4.149E-01 10 3.930E-01 75 4.269E-01 76 4.100E-01 200 3.939E-01 Eq Ty = Equation Type Ty = Equation Type	Bromodichloromethane		3.389E-01	s	3.510E-01	10	3.269E-01	50	3.670E-01	75	3.580E-01	100	3.440E-01	200	3.440E-01		0.347	3.81		Ā
4-Methyl-2-pentanone 1 5.720E-01 5 4.149E-01 10 3.930E-01 50 4.269E-01 75 4.219E-01 100 4.100E-01 200 3.939E-01 0.433 14.48	4-Methyl-2-pentanone 5.720E-01 5 4.149E-01 10 3.930E-01 50 4.269E-01 75 4.219E-01 100 4.100E-01 200 5.939E-01 Eq Ty = Equation Type	cis-1,3-Dichloropropene		3.750E-01	S	3.880E-01	10	3.610E-01	50	4.199E-01	75	4.070E-01	100	3.919E-01	200	3.910E-01		0.391	4.95		<
	Eq Ty = Equation Type	4-Methyl-2-pentanone		5.720E-01	5	4.149E-01	10	3.930E-01	50	4.269E-01	75	4.219E-01	100	4.100E-01	200	3.939E-01		0.433	14.48		4
					Л ≰)															
			ŧ																		

VOLATILE ORGANICS INITIAL CALIBRATION DATA

v

			E4 T<	<	A	A	A	А	A	<	A	۲	А	А	V	А	А	۷	A	Ą
			۲ ² CoD																	
			&RSD	6.83	4.69	3.59	7.78	5.60	7.13	4.55	6.03	6.24	4,48	4.57	5.67	3.29	2.32	1.79	0.84	1.37
14:35	14:35		R	0.909	0.614	0.358	0.433	0.397	0.389	1.016	1.680	0.665	0.653	1.167	0.347	0.935	0.245	0.258	1.206	0.827
	Calibration Times: 06/04/2007		RF 8																	
007			Std 8																	
Calibration Dates: 06/04/2			RF 7	.909E-01	.250E-01	.520E-01	.320E-01	.000E-01	.030E-01	1.005E+0	1.670E+0	.570E-01	.470E-01	1.172E+0	.660E-01	.380E-01	380E-01	:.520E-01	1.195E+0	:.150E-01
			Std 7	200 8	200 6	200 3	200 4	200 4	200 4	200	200	400 6	200 6	200	200 3	200 þ	80 2	80 p	80	80 8
		6.70	RF 6	8.790E-01	6.169E-01	3.510E-01	4.110E-01	4.100E-01	3.989E-01	9.940E-01	I.644E+00	6.510E-01	6.430E-01	1.164E+00	3.569E-01	9.540E-01	2.399E-01	2.550E-01	I.192E+00	8.259E-01
		RSD:	std 6	100	100	100	100 4	100	100	100	100	200	100	100	100	100	75	75	75	75
		Mean %	R¥ 5	.279E-01	5.309E-01	3.600E-01	1.410E-01	1.170E-01	1.079E-01	.031E+00	.723E+00	5.850E-01	6.679E-01	.206E+00	3.610E-01).639E-01	2.460E-01	2.619E-01	.209E+00	8.290E-01
		(um	std 5	75 9	75 (75	75 4	75 4	75 4	75 1	75 1	150 (75 0	75 1	75	75 9	70	70	70 1	70
		0.15 (RF 4	9.940E-01	5.510E-01	3.700E-01	4.799E-01	4.239E-01	4.170E-01	.072E+00	.823E+00	7.210E-01	5.970E-01	.240E+00	3.580E-01	9.620E-01	2.389E-01	2.550E-01	215E+00	8.100E-01
			Std 4	50 5	50 (50	50 4	50 4	50 4	50	50 1	100	50	50 1	50	50	65	65 [:	65 1	65
Instrument ID: 5973B	Heated Purge: (Y/N) N	ID:	RF 3	8.399E-01	5.630E-01	3.350E-01	3.980E-01	3.610E-01	3.540E-01	9.359E-01	1.561E+00	6.160E-01	6.119E-01	1.082E+00	3.089E-01	8.909E-01	2.480E-01	2.599E-01	1.201E+00	8.309E-01
		GC Column: <u>ZB-624 20m</u>	std 3	10	10	10	10	10	10	2	10	20	01	10	10	10	60	60	99	60
			RF 2	9.840E-01	6.160E-01	3.709E-01	4.740E-01	3.800E-01	3.960E-01	1.066E+00	1.779E+00	7.080E-01	6.740E-01	1.186E+00	3.400E-01	9.409E-01	2.460E-01	2.619E-01	I.220E+00	8.290E-01
			Std 2	5	5	5	5	S	5	5	5	10	5	S	Ś	5	55	55	55	55
			RF 1	8.470E-01	5.899E-01	3.650E-01	3.980E-01	3.890E-01	3.450E-01	1.010E+00	1.562E+00	6.169E-01	6.280E-01	1.115E+00	3.400E-01	8.930E-01	2.540E-01	2.640E-01	1.206E+00	8.450E-01
			Std 1	1	1	1	1	1	-	-	1	2		1		,	50	50	50	50
			Analyte	Toluene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane	Tetrachloroethene	2-Hexanone	Dibromochloromethane	Chlorobenzene	Ethylbenzene	m.p-Xylene	o-Xylene	Styrene	Bromoform	1,1,2,2-Tetrachloroethane	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene

6 VOLATILE ORGANICS INITIAL CALIBRATION DATA CAB33

Contract: SDG No.:

Lab Name: Laucks Testing Labs

Run Sequence: R019108

Eq TY = Equation Type Q=Quadratic, L=Linear, A=Average * SPCCs #

Page 2 of 2

FORM VI VOA

SUM - 22

INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D		
1,1,1,2-Tetrachloroethane	A	50.00	49.24	1.52		
1,1,1-Trichloroethane	А	50.00	53.79	7.58		
1,1,2,2-Tetrachloroethane	A	50.00	50.09	0.18		
I,I,2-Trichloroethane	A	50.00	49.57	0.86		
1,1-Dichloroethane	A	50.00	54.42	8.84		
1,1-Dichloroethene	A	50.00	61.74	23.48		
1,1-Dichloropropene	A	50.00	56.82	13.64		
1,2,3-Trichlorobenzene	А	50.00	55.01	10.02		
1,2,3-Trichloropropane	A	50.00	47.73	4.54		
1,2,4-Trichlorobenzene	А	50.00	54.31	8.62		
1,2,4-Trimethylbenzene	A	50.00	50.47	0.94		
1,2-Dibromo-3-chloropropane	A	50.00	49.81	0.38		
1,2-Dibromoethane	A	50.00	50.86	1.72		
1,2-Dichlorobenzene	A	50.00	51.04	2.08		
1,2-Dichloroethane	A	50.00	51.85	3.70		
1,2-Dichloroethane-d4	A	50.00	50.27	0.54		
1,2-Dichloropropane	А	50.00	50.72	1.44		
1,3,5-Trimethylbenzene	А	50.00	49.94	0.12		
1,3-Dichlorobenzene	A	50.00	50,64	1.28		
1,3-Dichloropropane	A	50.00	49.61	0.78		
1,4-Dichlorobenzene	A	50.00	51,11	2.22		
1-Chlorohexane	А	50.00	54.76	9.52		
2,2-Dichloropropane	A	50.00	51.18	2.36		
2-Butanone	A	50.00	51.05	2.10		
2-Chlorotoluene	A	50.00	49.94	0.12		
2-Hexanone	A	50,00	51.14	2.28		
4-Bromofluorobenzene	A	50.00	49.38	1.24		
4-Chlorotoluene	A	50.00	50.00	0.00		
4-Isopropyltoluene	A	50.00	52.39	4.78		
4-Methyl-2-pentanone	A	50,00	49.24	1.52		
Acetone	A	50.00	50.13	0.26		
Benzene	Α	50.00	51.60	3.20		
Broinobenzene	A	50.00	48.39	3.22		
Bromochloromethane	A	50.00	51.68	3.36		
Bromodichloromethane	A	50.00	51.67	3.34		
Bromoform	A	50.00	48.24	3.52		
Bromomethane	A	50.00	40.01	19.98		
Carbon disulfide	A	50.00	52.03	4.06		
Carbon tetrachloride	А	50.00	53.74	7.48		
Chlorobenzene	A	50.00	51.66	3.32		
Chloroethane	A	50.00	41.80	16.40		
Chloroform	A	50.00	52,51	5.02		
Chloromethane	A	50.00	42.42	15.16		
INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
cis-1,2-Dichloroethene	Α	50.00	53.73	7.46
cis-1,3-Dichloropropene	A	50.00	59.33	18.66
Dibromochloromethane	A	50.00	52.66	5.32
Dibromofluoromethane	А	50.00	51.50	3.00
Dibromomethane	A	50.00	51.58	3.16
Dichlorodifluoromethane	A	50.00	40.14	19.72
Ethyl-t-Butyl Ether(ETBE)	A	50.00	53.27	6.54
Ethylbenzene	A	50.00	50.70	1.40
Hexachlorobutadiene	A	50.00	54.04	8.08
Isopropyl ether	A	50.00	51.97	3.94
Isopropylbenzene	А	50.00	51.78	3.56
m,p-Xylene	A	100.00	103.37	3.37
Methyl tert-butyl ether	A	50.00	56.55	13.10
Methylene chloride	Q	50.00	52.82	5.64
n-Butylbenzene	A	50.00	51.86	3.72
n-Propylbenzene	A	50.00	51.48	2.96
Naphthalene	A	50.00	54.73	9.46
o-Xylene	А	50.00	51.09	2.18
sec-Butylbenzene	А	50.00	53.45	6.90
Styrene	A	50.00	50.33	0.66
t-Amyl Methyl Ether(TAME)	А	50,00	52.66	5.32
t-Butyl Alcohol	A	500.00	565.69	13.14
tert-Butylbenzene	A	50.00	51.42	2.84
Tetrachloroethene	А	50.00	51.86	3.72
Toluene	A	50,00	50.75	1.50
Toluene-d8	A	50.00	51.28	2.56
trans-1,2-Dichloroethene	A	50.00	55.58	11.16
trans-1,3-Dichloropropene	A	50.00	45.29	9.42
Trichloroethene	A	50.00	53.18	6.36
Trichlorofluoromethane	A	50.00	42.86	14.28
Vinyl chloride	A	50.00	45.14	9.72

Q=Quadratic, L=Linear, A=Average

7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB33
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B1</u>	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.120	7.72	
Chloromethane	A	0.244	10.98	
Vinyl chloride	A	0.218	12.47	
Bromomethane	A	0.131	19.97	
Chloroethane	A	0.145	9.70	
Trichlorofluoromethane	A	0.273	6,40	
1,1-Dichloroethene	A	0,159	10.93	
Acetone	A	0.137	-11.70	
Carbon disulfide	A	0.573	18.02	
Methylene chloride	Q	0.239		-12.04
trans-1,2-Dichloroethene	А	0.229	9.19	
1,1-Dichloroethane	A	0.443	4.79	
cis-1,2-Dichloroethene	A	0.254	10.03	
2-Butanone	A	0.230	-10.59	
Chloroform	A	0.422	6.34	
1,1,1-Trichloroethane	A	0.320	7.69	
Carbon tetrachloride	A	0.273	10.97	
Benzene	A	1.013	7.61	
1,2-Dichloroethane	A	0.337	3.01	
Trichloroethene	A	0.274	7.89	
1,2-Dichloropropane	A	0.258	6.12	
Bromodichloromethane	A	0.315	9.15	
cis-1,3-Dichloropropene	A	0,358	8.42	
4-Methyl-2-pentanone	A	0.437	-1.04	
Toluene	A	0.879	3.35	
trans-1,3-Dichloropropene	Α	0.584	4.90	
1,1,2-Trichloroethane	A	0.337	5.91	
Tetrachloroethene	A	0.408	5.85	
2-Hexanone	A	0.447	-12.67	
Dibromochloromethane	A	0.345	11.20	
Chlorobenzene	A	0.947	6.82	
Ethylbenzene	A	1.623	3.42	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Page 1 of 2

7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB33
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B1	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N)	GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)

Compound	Equation Type	RF 50.0	ξD	%Drift
m,p-Xylene	A	0.630	5.22	
o-Xylene	A	0.606	7.13	
Styrene	A	1.082	7.28	
Bromoform	A	0.280	19.33	
1,1,2,2-Tetrachloroethane	A	0.900	3.73	
Dibromofluoromethane	A	0.253	-3.37	
1,2-Dichloroethane-d4	A	0.281	-8.98	
Toluene-d8	A	1.302	-7.96	
4-Bromofluorobenzene	A	0.893	-7.93	

CLIENT SAMPLE NO.

B062807MVOWB1

Lab Name:		Contract:
SDG No.: CAB	33	Run Sequence: R019108
Matrix: (SOI)	L/SED/WATER) Water	Lab Sample ID: <u>B062807MVOWB1</u>
Sample wt/vol	l: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628011.D</u>
Level: (LOW/!	MED)	Date Collected:
<pre>% Moisture: 1</pre>	not dec.	Date/Time Analyzed: 06/28/2007 13:41
GC Column: Z	ID: 0.18 (mm)	Dilution Factor: <u>1.0</u>
Soil Extract	Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge	: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q
75-71-8	Dichlorodifluoromethane	1.0 U
74-87-3	Chloromethane	1.0 U

75-71-8	Dichlorodifluoromethane	1.0	Ŭ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	υ

FORM I VOA

CLIENT SAMPLE NO.

B062807MVOWB1

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: B062807MVOWB1
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628011.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 13:41
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor:
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge: (Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L

CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

S062807MVOWB1

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: S062807MVOWB1
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: B0628008.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 12:25
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge: (Y/N) <u>N</u>	
	CONCENTER TON INTER.

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	27	
74-87-3	Chloromethane	34	
75-01-4	Vinyl chloride	36	
74-83-9	Bromomethane	36	
75-00-3	Chloroethane	35	
75-69-4	Trichlorofluoromethane	40	
75-35-4	1,1-Dichloroethene	56	
67-64-1	Acetone	44	
75-15-0	Carbon disulfide	49	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	53	
75-34-3	1,1-Dichloroethane	54	
156-59-2	cis-1,2-Dichloroethene	51	
78-93-3	2-Butanone	48	
67-66-3	Chloroform	52	
71-55-6	1,1,1-Trichloroethane	53	
56-23-5	Carbon tetrachloride	51	
71-43-2	Benzene	51	
107-06-2	1,2-Dichloroethane	53	
79-01-6	Trichloroethene	51	
78-87-5	1,2-Dichloropropane	51	
75-27-4	Bromodichloromethane	51	
10061-01-	cis-1,3-Dichloropropene	58	
108-10-1	4-Methyl-2-pentanone	48	
108-88-3	Toluene	51	
10061-02-	trans-1,3-Dichloropropene	46	
79-00-5	1,1,2-Trichloroethane	49	
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	53	

CLIENT SAMPLE NO.

S062807MVOWB1

Lab Name:		Contr	act:	
SDG No.: CA	B33	Run S	Sequence: <u>R019108</u>	
Matrix: (SO)	IL/SED/WATER) Water	Lab S	ample ID: <u>S062807MVOWB1</u>	
Sample wt/vc	bl: <u>5.00</u> (g/mL) <u>mL</u>	Lab F	'ile ID: <u>B0628008.D</u>	
Level: (LOW,	/MED)	Date	Collected:	
% Moisture:	not dec.	Date/	Time Analyzed: 06/28/200	7 12:25
GC Column:	ZB-624 20m ID: 0.18 (mm)	Dilut	tion Factor: <u>1.0</u>	
Soil Extract	z Volume: <u>1000 (</u> uL)	Soil	Aliquot Volume: <u>5000</u>	(uL)
Heated Purge	≥: (Y/N) <u>N</u>			
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane		49	
108-90-7	Chlorobenzene		51	
100-41-4	Ethylbenzene		51	
179601-23	m,p-Xylene		100	
95-47-6	o-Xylene		50	
100-42-5	Styrene		49	

42

51

79-34-5 Comments:

75-25-2

Bromoform

1,1,2,2-Tetrachloroethane

CLIENT SAMPLE NO.

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW01DWMS

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB33-002MS
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628032.D</u>
Level: (LOW/MED)	Date Collected: _06/21/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 22:49
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	36	
74-87-3	Chloromethane	45	
75-01-4	Vinyl chloride	46	
74-83-9	Bromomethane	42	
75-00-3	Chloroethane	43	
75-69-4	Trichlorofluoromethane	41	
75-35-4	1,1-Dichloroethene	53	
67-64-1	Acetone	56	
75-15-0	Carbon disulfide	46	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	51	
75-34-3	1,1-Dichloroethane	53	
156-59-2	cis-1,2-Dichloroethene	50	
78-93-3	2-Butanone	56	
67-66-3	Chloroform	50	
71-55-6	1,1,1-Trichloroethane	51	
56-23-5	Carbon tetrachloride	48	
71-43-2	Benzene	48	
107-06-2	1,2-Dichloroethane	52	
79-01-6	Trichloroethene	48	
78-87-5	1,2-Dichloropropane	49	
75-27-4	Bromodichloromethane	49	
10061-01-	cis-1,3-Dichloropropene	54	
108-10-1	4-Methyl-2-pentanone	54	
108-88-3	Toluene	50	
10061-02-	trans-1,3-Dichloropropene	43	
79-00-5	1,1,2-Trichloroethane	48	
127-18-4	Tetrachloroethene	48	
591-78-6	2-Hexanone	60	

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name:	Contract:
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB33-002MS</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628032.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec	Date/Time Analyzed:06/28/200722:49
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	48	
108-90-7	Chlorobenzene	49	
100-41-4	Ethylbenzene	48	
179601-23	m,p-Xylene	97	
95-47-6	o-Xylene	47	
100-42-5	Styrene	46	
75-25-2	Bromoform	38	
79-34-5	1,1,2,2-Tetrachloroethane	50	

Comments:

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name,	Contract.
SDG No.: CAB33	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MSD</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628033.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: not dec	Date/Time Analyzed: 06/28/2007 23:30
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	33	
74-87-3	Chloromethane	42	
75-01-4	Vinyl chloride	42	
74-83-9	Bromomethane	40	
75-00-3	Chloroethane	42	
75-69-4	Trichlorofluoromethane	38	
75-35-4	1,1-Dichloroethene	50	
67-64-1	Acetone	64	
75-15-0	Carbon disulfide	45	
75-09-2	Methylene chloride	45	
156-60-5	trans-1,2-Dichloroethene	48	
75-34-3	1,1-Dichloroethane	50	
156-59-2	cis-1,2-Dichloroethene	48	
78-93-3	2-Butanone	59	
67-66-3	Chloroform	48	
71-55-6	1,1,1-Trichloroethane	49	
56-23-5	Carbon tetrachloride	47	
71-43-2	Benzene	47	
107-06-2	1,2-Dichloroethane	50	
79-01-6	Trichloroethene	46	
78-87-5	1,2-Dichloropropane	48	
75-27-4	Bromodichloromethane	48	
10061-01-	cis-1,3-Dichloropropene	53	
108-10-1	4-Methyl-2-pentanone	54	
108-88-3	Toluene	49	
10061-02-	trans-1,3-Dichloropropene	43	
79-00-5	1,1,2-Trichloroethane	48	
127-18-4	Tetrachloroethene	47	
591-78-6	2-Hexanone	61	

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name:		Contract:
SDG No.: CAE	333	Run Sequence: R019108
Matrix: (SOI	L/SED/WATER) Water	Lab Sample ID: CAB33-002MSD
Sample wt/vo	l: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628033.D
Level: (LOW/	MED)	Date Collected:06/21/2007
<pre>% Moisture:</pre>	not dec.	Date/Time Analyzed:06/28/200723:30
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract	Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge	: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q
124-48-1	Dibromochloromethane	48
108-90-7	Chlorobenzene	48
100-41-4	Ethylbenzene	47

94

46

45

40

50

79-34-5

179601-23

95-47-6

100-42-5

75-25-2

m,p-Xylene

o-Xylene

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

Comments:

FORMS SUMMARY

SDG# CAB33

Semivolatiles

2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

SDG No.: CAB33

Run Sequence: <u>R019691</u>

NONE Level: (LOW/MED)

CLIENT SAMPLE NUMBER	S1 (2FP) #	S2 (PHL) #	S3 (NBZ) #	S4 (2FB) #	TOT OUT
(CAB33-005)					
15LCMW02DW	31	56	. 78	61	
(CAB33-004)					
15LCMW02SW	-38	62	79	60	
(CAB33-002MSD)					
15LCMW01DWMSD	27	49	64	44 *	
(CAB33-002MS)					
15LCMW01DWMS	20	47	74	55	
(CAB33-002)					
15LCMW01DW	42	59	76	59	
(CAB33-001)					
15LCMW01SW	4 0	61	76	59	
(S062507MSVWLT)					
S062507MSVWLT	39	62	88	75	
(B062507MSVWLT)					
B062507MSVWLT	37	62	83	73	

S1 (2FP) = 2-Fluorophenol

S2 (PHL) = Phenol-d5

S3 (NBZ) = Nitrobenzene-d5

S4 (2FB) = 2-Fluorobiphenyl

Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate diluted out

Page 1 of 2

QC LIMITS 20-110

10-115 40-110

50-100

Contract:

2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

Run Sequence: R019691

SDG No.: CAB33

NONE Level: (LOW/MED)

CLIENT SAMPLE NUMBER	S5 (TBP) #	56 (DTR) #	S7 () #	SB () #	TOT OUT
(CAB33-005)					
15LCMW02DW	42	78			0
(CAB33-004)					
15LCMW02SW	44	74			0
(CAB33-002MSD)					
15LCMW01DWMSD	40	64			1
(CAB33-002MS)					
15LCMW01DWMS	46	75			0
(CAB33-002)					
15LCMW01DW	44	79			0
(CAB33-001)					
15LCMW01SW	51	81			0
(S062507MSVWLT)					
S062507MSVWLT	61	75			0
(B062507MSVWLT)					
B062507MSVWLT	47	72			0

QC LIMITS 40-125

50-135

S5 (TBP) = 2,4,6-Tribromophenol

S6 (DTR) =Terphenyl-d14

S7 () =

SB () =

Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate diluted out

3B WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs Contract: N/A BS Run Sequence: R019691 SDG No.: CAB33 BS Lab Sample ID: <u>S062507MSVWLT</u>

Level: N/A Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
3 & 4-Methylphenol	20.0	17.16	86	30-110
Bis(2-chloroisopropyl)ether	20.0	15.58	78	35-110
Phenol	20.0	12.66	63	23-98
Bis(2-Chloroethyl)ether	20.0	17.07	85	35-110
2-Chlorophenol	20.0	12.77	64	35-105
1,3-Dichlorobenzene	20.0	9.98	50	30-100
1,4-Dichlorobenzene	20.0	10.17	51	30-100
Benzyl alcohol	20.0	17.06	85	30-110
1,2-Dichlorobenzene	20.0	10.57	53	35-100
2-Methylphenol	20.0	15.55	78	40-110
N-Nitroso-di-n-propylamine	20.0	19.15	96	35-130
Hexachloroethane	20.0	9.12	46	30-95
Nitrobenzene	20.0	18.58	93	45-110
Isophorone	20.0	15.86	79	50-110
2-Nitrophenol	20.0	9.54	48	40-115
2,4-Dimethylphenol	20.0	11.08	55	30-110
Benzoic acid	20.0	6.86	34	0-125
Bis(2-chloroethoxy)methane	20.0	15.83	79	45-105
2,4-Dichlorophenol	20.0	13.15	66	50-105
1,2,4-Trichlorobenzene	20.0	11.15	56	35-105
Naphthalene	20.0	13	65	40-100
4-Chloroaniline	20.0	12.49	62	15-110
Hexachlorobutadiene	20.0	8.81	44	25-105
4-Chloro-3-methylphenol	20.0	16.14	81	45-110
2-Methylnaphthalene	20.0	14.42	72	45-105
Hexachlorocyclopentadiene	20.0	3.48	17	10-49
2,4,6-Trichlorophenol	20.0	9.86	49 *	50-115
2,4,5-Trichlorophenol	20.0	12.46	62	50-110
2-Chloronaphthalene	20.0	15.76	79	50-105
2-Nitroaniline	20.0	16.02	80	50-115
Dimethylphthalate	20.0	16.71	84	25-125
2,6-Dinitrotoluene	20.0	12.22	61	50-115
Acenaphthylene	20.0	15.58	78	50-105
3-Nitroaniline	20.0	13.92	70	20-125

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _ 2 out of _68 outside limits

COMMENTS :

3B WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019691</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062507MSVWLT</u>	
Level: N/A	Units: ug/L

Rec Limit % Rec Analyte Spike Added Found # 78 45-110 15.69 Acenaphthene 20.0 15-140 50 10.05 2,4-Dinitrophenol 20.0 57 0-125 11.43 20.0 4-Nitrophenol 55-105 82 Dibenzofuran 20.0 16.33 50-120 20.0 13.29 66 2,4-Dinitrotoluene 40-120 20.0 16.44 82 Diethylphthalate 84 50-110 20.0 16.86 Fluorene 50-110 83 4-Chlorophenyl-phenylether 16.68 20.0 35-120 20.0 14.35 72 4-Nitroaniline 39 40-130 4,6-Dinitro-2-methylphenol 20.0 7.79 50-110 13.21 66 20.0 N-Nitrosodiphenylamine 55-115 86 17.2 Azobenzene 20.0 77 50-115 4-Bromophenyl-phenyl ether 20.0 15.48 15.68 7850-110 20.0Hexachlorobenzene 57 40-115 20.0 11.36 Pentachlorophenol 78 50-115 Phenanthrene 20.0 15.56 76 55-110 20.0 15.15 Anthracene 81 50-115 20.0 16.18 Carbazole 76 55-115 15.13 20.0 Di-n-butylphthalate 84 55-115 16.76 Fluoranthene 20.00 0-125 Benzidine 20.0 0 73 50-130 14.62 20.0 Pyrene 55 45-115 20.0 11.08 Butylbenzylphthalate 54 20-110 10.85 3,3'-Dichlorobenzidine 20.014.23 71 55-110 20.0 Benzo(a)anthracene 60 40-125 20.0 11.96 Bis(2-ethylhexyl)phthalate 55-110 15.54 78 20.0 Chrysene 50 35-135 20.0 10.02 Di-n-octylphthalate 45-120 72 14.46 Benzo(b)fluoranthene 20.0 45-125 82 16.42 20.0 Benzo(k)fluoranthene 55-110 20.0 14.56 73 Benzo(a)pyrene 86 45-125 17.11 Indeno(1,2,3-cd)pyrene 20.0 85 40-125 17.07 20.0 Dibenzo(a,h)anthracene 40-125 86 20.0 17.28 Benzo(g,h,i)perylene

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: 2 out of 68 outside limits

COMMENTS :

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

3

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
MS Run Sequence: R019691 MSD Run Sequence	e: R019691 SDG No.: CAB33
MS Client Sample No.: <u>15LCMW01DWMS</u>	MSD Client Sample No.: <u>15LCMW01DWMSD</u>
MS Lab Sample ID: <u>CAB33-002MS</u>	MSD Lab Sample ID: <u>CAB33-002MSD</u>
Level: N/A	Units: ug/L

SAMPLE MS MSD MSD MSD MS MS QC LIMITS CONC SPIKE CONC ŝ SPIKE CONC 00 %RPD # COMPOUND REC # ADDED REC. ADDED REC # RPD 15.1132 80 18.9 13.3208 71 13 30 30-110 3 & 0 18.9 4-Methylphenol Bis(2-chloroisopr 0 18.9 12.5 18.9 10.9057 58 1430 35-110 66 opyl)ether Phenol 18.9 9.0094 48 18.9 9.0566 48 1 30 0-115 0 Bis(2-Chloroethyl 0 18.9 13.6509 72 18.9 12.2453 65 11 30 35-110)ether 18.9 9.3302 35-105 2-Chlorophenol 0 18.9 8.1132 43 49 14 3.0 1.3-Dichlorobenze 7.0189 37 24 30 30-100 0 18.9 8.9434 47 18.9 ne 1,4-Dichlorobenze 0 18.9 9.0472 4818.9 6.8774 36 27 3.0 30-100 ne Benzyl alcohol 18.9 14.6887 78 18.9 12.9151 68 13 30 30-110 0 1,2-Dichlorobenze 0 18.9 9.3396 50 18.9 7.2453 38 25 30 35-100 ne 2-Methylphenol 0 18.9 13.5094 72 18.9 12.2642 65 10 30 40-110 N-Nitroso-di-n-pr 0 18.9 16.283 86 18.9 14.1509 75 14 30 35-130 opylamine Hexachloroethane 0 18.9 8.9151 47 18.9 6.783 36 27 30 30-95 13.6792 45-110 Nitrobenzene 0 18.9 15.5943 83 18.9 72 13 30 Isophorone 0 18.9 13.4434 71 18.9 11.8113 63 13 30 50-110 3.2075 17 * 40-115 2-Nitrophenol 0 18.9 3.2453 17 * 18.9 1 30 30-110 2,4-Dimethylpheno 0 18.9 11.7453 62 18.9 11.8585 63 1 30 1 Benzoic acid 18.9 3.1132 0-125 0 3.3113 18 18.9 17 6 30 0 13.6415 72 11.5755 16 30 45-105 Bis(2-chloroethox 18.9 18.9 61 y)methane

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

@ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: <u>3</u> out of <u>68</u> outside limits Spike Recovery: <u>27</u> out of <u>136</u> outside limits

COMMENTS:

3

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 Laucks Testing Labs
 Contract: N/A

 MS Run Sequence:
 R019691
 MSD Run Sequence:
 R019691
 SDG No.: CAB33

 MS Client Sample No.:
 15LCMW01DWMS
 MSD Client Sample No.:
 15LCMW01DWMSD

 MS Lab Sample ID:
 CAB33-002MS
 MSD Lab Sample ID:
 CAB33-002MSD

 Level:
 N/A
 Units:
 ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD	0.0000 11	QC L	IMITS
COMPOUND	CONC	SPIKE ADDED	CONC	* REC #	ADDED	CONC	REC #	*RPD #	RPD	REC.
2,4-Dichloropheno	0	18.9	8.4434	45 *	18.9	8.6132	46 *	2	30	50-105
1,2,4-Trichlorobe nzene	0	18.9	8.9434	47	18.9	6.6604	35	29	30	35-105
Naphthalene	0	18.9	10.0094	53	18.9	8.0755	43	21	30	40-100
4-Chloroaniline	0	18.9	11.1981	59	18.9	10.2075	54	9	30	15-110
Hexachlorobutadie ne	0	18.9	7.9151	42	18.9	6.1321	33	25	30	25-105
4-Chloro-3-methyl phenol	0	18.9	13.5	72	18.9	11.2358	60	18	30	45-110
2-Methylnaphthale ne	0	18.9	10.066	53	18.9	7.8679	42 *	25	30	45-105
Hexachlorocyclope ntadiene	C	18.9	1.4717	8 *	18.9	0	0*	200 *	30	10-49
2,4,6-Trichloroph enol	0	18.9	6.9623	37 *	18.9	6.0472	32 *	14	30	50-115
2,4,5-Trichloroph enol	0	18.9	7.4717	40 *	18.9	5.9528	32 *	23	30	50-110
2-Chloronaphthale ne	0	18.9	10,7075	57	18.9	8.1038	43 *	28	30	50-105
2-Nitroaniline	0	18.9	12.7642	68	18.9	10.5283	56	19	30	50-115
Dimethylphthalate	0	18.9	14.0094	74	18.9	11.8679	63	17	30	25-125
2,6-Dinitrotoluen e	0	18.9	10.3491	55	18.9	8.3113	44 *	22	30	50-115
Acenaphthylene	0	18.9	12.0472	64	18.9	9.4245	50 *	24	30	50-105
3-Nitroaniline	0	18.9	12.5649	67	18.9	10.2358	54	21	30	20-125
Acenaphthene	0	18.9	12.0566	64	18.9	9.3962	50	25	30	45-110
2,4-Dinitrophenol	0	18.9	0	0 *	18.9	0	0 *	0	30	15-140

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

This RPD or percent recovery is not flagged as an exceedence because the Sample
 Found amount is five times or more than the Spike Added amount.

RPD: <u>3</u> out of <u>68</u> outside limits Spike Recovery: <u>27</u> out of <u>136</u> outside limits

COMMENTS:

3

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Laucks Testing Labs Contract: N/A MS Run Sequence: R019691 MSD Run Sequènce: R019691 SDG No.: CAB33 MS Client Sample No.: 15LCMW01DWMS MSD Client Sample No.: 15LCMW01DWMSD MS Lab Sample ID: <u>CAB33-002MS</u> MSD Lab Sample ID: <u>CAB33-002MSD</u> Level: N/A Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD	0.5.55	QC L	IMITS
COMPOUND	CONC	ADDED	CONC	% REC # -	ADDED	CONC	REC #	%RPD #	RPD	REC.
4-Nitrophenol	0	18.9	0	0	18.9	0	0	0	30	0-125
Dibenzofuran	0	18.9	13.0943	69	18.9	10.283	54 *	24	30	55-105
2,4-Dinitrotoluen e	0	18.9	9.9057	53	18.9	7.8491	42 *	23	30	50-120
Diethylphthalate	0	18.9	14.1981	75	18,9	11.6792	62	19	30	40-120
Fluorene	0	18.9	13.9623	. 74	18.9	11.4245	61	20	30	50-110
4-Chlorophenyl-ph enylether	0	18.9	13.9245	74	18.9	11.0755	59	23	30	50-110
4-Nitroaniline	0	18.9	12.5943	67	18.9	10.2453	54	21	30	35-120
4,6-Dinitro-2-met hylphenol	0	18.9	0	0 *	18.9	0	0*	0	30	40-130
N-Nitrosodiphenyl amine	0	18.9	11.1887	59	18.9	7.9906	42 *	33 *	30	50-110
Azobenzene	0	18.9	15.7264	83	18.9	11.6981	62	29	30	55-115
4-Bromophenyl-phe nyl ether	0	18.9	13.8868	74	18.9	11.1604	59	22	30.	50-115
Hexachlorobenzene	0	18.9	14.3396	76	18.9	11.6132	62	21	30	50-110
Pentachlorophenol	0	18.9	6.1698	33 *	18.9	5.3113	28 *	15	30	40-115
Phenanthrene	0	18.9	14.7642	78	18.9	12.0566	64	20	30	50-115
Anthracene	0	18.9	14.2358	75	18.9	11.3019	60	23 *	20	55-110
Carbazole	0	18.9	15.5283	82	18.9	11.9245	-63	26	30	50-115
Di-n-butylphthala te	0	18.9	13.3208	71	18.9	10.8396	57	21	30	55-115
Fluoranthene	0	18.9	15.7642	84	18.9	12.783	68	21	30	55-115
Benzidine	0	18.9	0	0	18.9	0	0	0		0-125
Pyrene	0	18.9	13.717	73	18.9	11.4245	61	18	30	50-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

@ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: _____ out of _____ 68 _outside limits Spike Recovery: <u>27</u> out of <u>136</u> outside limits

COMMENTS :

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

3

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
MS Run Sequence: R019691 MSD Run Sequence	e: <u>R019691</u> SDG No.: <u>CAB33</u>
MS Client Sample No.: <u>15LCMW01DWMS</u>	MSD Client Sample No.: 15LCMW01DWMSD
MS Lab Sample ID: <u>CAB33-002MS</u>	MSD Lab Sample ID: <u>CAB33-002MSD</u>

Level: N/A Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD		QC L	IMITS
COMPOUND	CONC	SPIKE ADDED	CONC	∛ REC #	SPIKE ADDED	CONC	% REC #	%RPD #	RPD	REC.
Butylbenzylphthal ate	C	18.9	B.3019	44 *	18.9	6.8962	37 *	18	30	45-115
3,3'-Dichlorobenz idine	0	18.9	9.1792	49	18.9	8.4151	45	9	30	20-110
Benzo(a)anthracen e	0	18.9	13.7075	73	18.9	11.4528	61	18	30	55-110
Bis(2-ethylhexyl) phthalate	0.	18.9	10.2453	54	18.9	7.7453	41	28	30	40-125
Chrysene	0	18.9	15.0189	80	18.9	12.0566	64	22	30	55-110
Di-n-octylphthala te	0	18.9	7.5283	40	18.9	5.9623	32 *	23	30	35-135
Benzo(b)fluoranth ene	0	18.9	13.3396	71	18.9	11.3208	60	16	30	45-120
Benzo(k)fluoranth ene	0	18.9	13.8113	73	18.9	11.0943	59	22	30	45-125
Benzo(a)pyrene	0	18.9	13.0849	69	18.9	10.2264	54 *	25	30	55-110
Indeno(1,2,3-cd)p yrene	0	18.9	15.6415	83	18.9	12.5755	67	22	30	45-125
Dibenzo(a,h)anthr acene	0	18,9	15.6226	83	18.9	12.3868	66	23	30	40-125
Benzo(g,h,i)peryl ene	0	18.9	16.3679	87	18.9	12.7642	68	25	30	40-125

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

@ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: <u>3</u> out of <u>68</u> outside limits Spike Recovery: <u>27</u> out of <u>136</u> outside limits

COMMENTS:

Page 4 of 4

4 SEMIVOLATILE METHOD BLANK SUMMARY CLIENT SAMPLE NO.

	B062507MSVWLT
Lab Name Laucks Testing Labs	Contract:
	SDG No.: CAB33
Lab File ID: _L0718005.D	Lab Sample ID: <u>B062507MSVWLT</u>
Date Analyzed:07/18/2007	Time Analyzed: 14:43
GC Column: <u>RTX-5Sil MS</u> ID: 0.25 (mm)	Heated Purge: (Y/N) N
Instrument ID: 5970L	Matrix: Water

	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
01	S062507MSVWLT	S062507MSVWLT	L0718006.D	07/18/2007	15:21	R019691
02	15LCMW01SW	CAB33-001	L0718007.D	07/18/2007	15:58	R019691
03	15LCMW01DW	CAB33-002	L0718008.D	07/18/2007	16:35	R019691
04	15LCMW01DWMS	CAB33-002MS	L0718009.D	07/18/2007	17:13	R019691
05	15LCMW01DWMSD	CAB33-002MSD	L0718010.D	07/18/2007	17:50	R019691
06	15LCMW02SW	CAB33-004	L0718011.D	07/18/2007	18:27	R019691
07	15LCMW02DW	CAB33-005	L0718012.D	07/18/2007	19:04	R019691
80						
09						
10		:	· · · · · · · · · · · · · · · · · · ·			NATION AND A REAL FAILS
11						
12						
13						
14						
15						
16						
17	• • • • • • • • • • • • • • • • • • •					
18						
19			******			
20						
21						
22						
23						
24		· · · · · · · · · · · · · · · · · · ·				
25						
26						
27						
28						
29						
30						

COMMENTS :

5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

CLIENT SAMPLE NO.

DFTPP071207-1

DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)					
Lab Name: Laucks Testing Labs	Contract:				
Run Sequence: <u>CAL997</u>	SDG No.: CAB33				
Lab File ID: L0712001.D	DFTPP Injection Date: 07/12/2007				
Instrument ID: 5970L	DFTPP Injection Time: 12:31				

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
51	30% to 60% of mass 198	48.5
68	less than 2% of mass 69	1.5 () 1
69	base peak, 100% relative abundance	100
70	less than 2% of mass 69	0.9 ()1
127	40% to 60% of mass 198	48.3
197	less than 1% of mass 198	0
198	base peak, 100% relative abundance	100
199	5% to 9% of mass 198	7,4
275	10% to 30% of mass 198	20.9
365	greater than 1% of mass 198	2
441	present but less than mass 443	76.2
442	greater than 40% of mass 198	64.5
443	17% to 23% of mass 442	19.5 ()2

1 - Value is %mass 69 2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD001	SSTD001	L0712003.D	07/12/2007	13:43
02	SSTD040	SSTD040	L0712007.D	07/12/2007	16:13
03	SSTD060	SSTDOGO	L0712008.D	07/12/2007	16:51
04	SSTD080	SSTD080	L0712009.D	07/12/2007	17:28
05	SSTD005	SSTD005	L0712011.D	07/12/2007	18:43
06	SSTD010	SSTD010	L0712012.D	07/12/2007	19:21
07	SSTD025	SSTD025	L0712013.D	07/12/2007	19:58
08	· · · · · · · · · · · · · · · · · · ·				
09					
10					
11					
12					
13					
14					
15	· · · · ·				
16					
17					
18					
19					
20					
21					
22					

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

5

CLIENT SAMPLE NO.

DFTPP071807-1

DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)					
Lab Name: Laucks Testing Labs	Contract:				
Run Sequence: R019691	SDG No.: CAB33				
Lab File ID: L0718001.D	DFTPP Injection Date: 07/18/2007				
Instrument ID: 5970L	DFTPP Injection Time: <u>12:03</u>				

		<pre>% RELATIVE</pre>
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
51	30% to 60% of mass 198	57.3
68	less than 2% of mass 69	0.9 ()1
69	base peak. 100% relative abundance	001
70	less than 2% of mass 69	0 ()1
127	40% to 60% of mass 198	49.6
197	less than 1% of mass 198	0
198	base peak, 100% relative abundance	100
199	5% to 9% of mass 198	7.2
275	10% to 30% of mass 198	18.3
365	greater than 1% of mass 198	2.1
	present but less than mass 443	80.5
442	greater than 40% of mass 198	64.7
443	17% to 23% of mass 442	19.2 ()2

1 - Value is %mass 69 2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	CCV071807-2	CCV071807-2	L0718003.D	07/18/2007	13:18
02	B062507MSVWLT	B062507MSVWLT	L0718005.D	07/18/2007	14:43
03	S062507MSVWLT	S062507MSVWLT	L0718006.D	07/18/2007	15:21
04	15LCMW01SW	CAB33-001	L0718007.D	07/18/2007	15:58
05	15LCMW01DW	CAB33-002	L0718008.D	07/18/2007	16:35
06	15LCMW01DWMS	CAB33-002MS	L0718009.D	07/18/2007	17:13
07	15LCMW01DWMSD	CAB33-002MSD	L0718010.D	07/18/2007	17:50
08	15LCMW02SW	CAB33-004	L0718011.D	07/18/2007	18:27
09	15LCMW02DW	CAB33-005	L0718012.D	07/18/2007	19:04
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

8

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Laucks Testing Labs	Contract:	
Run Sequence: R019691	SDG No.: CAB33	
Client Sample No.: <u>CCV071807-2</u>	Date Analyzed:	07/18/2007
Lab File ID (Standard): <u>L0718003.D</u>	Time Analyzed:	13:18
Instrument ID: 5970L	GC Column: RTX-5Sil MS	ID: 0.25 (mm)

		IS1 (DCB) AREA #	rt #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	34070	7.04	114913	8.69	59783	11.04
	UPPER LIMIT	68140	7.54	229826	9,19	119566	11.54
	LOWER LIMIT	17035	6.54	57456.5	8.19	29891,5	10.54
	CLIENT SAMPLE NO.						
01	B062507MSVWLT	23552	7.04	79688	8.69	39084	11.04
02	S062507MSVWLT	29159	7.04	98234	8.69	51429	11.04
03	15LCMW01SW	30375	7.03	107897	8.69	58254	11.04
04	15LCMW01DW	29746	7.03	104675	8.69	54807	11.04
05	15LCMW01DWMS	29121	7.03	98993	8.69	50203	11.04
06	15LCMW01DWMSD	29753	7.03	102927	8.69	54586	11.04
07	15LCMW02SW	30809	7.03	104843	8.67	54580	11.03
08	15LCMW02DW	30716	7.03	106678	8.67	54946	11.03
09							
10							
11							
12							
13							
14		[
15							
16							
17							
18							
19							
20							
21						······	· · · · ·
22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits

8

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Laucks Testing Labs	_ Contract:	······································
Run Sequence: R019691	SDG No.: CAB33	
Client Sample No.: CCV071807-2	Date Analyzed:	07/18/2007
Lab File ID (Standard): <u>L0718003.D</u>		13:18
Instrument ID: 5970L	GC Column: <u>RTX-5Sil MS</u>	ID: 0.25 (mm)

.

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	89170	13.05	52742	17.58	28043	21.22
	UPPER LIMIT	178340	13.55	105484	18.08	56086	21.72
	LOWER LIMIT	44585	12.55	26371	17.08	14021.5	20.72
	CLIENT SAMPLE NO.						
01	B062507MSVWLT	56415	13.03	37022	17.56	25700	21.21
02	S062507MSVWLT	78452	13.04	46132	17.57	25242	21.22
03	15LCMW01SW	90962	13.03	52231	17.56	27615	21.21
04	15LCMW01DW	83872	13.03	48176	17.56	26457	21.20
05	15LCMW01DWMS	75654	13.04	44485	17.56	26459	21.20
06	15LCMW01DWMSD	83984	13.04	48676	17.56	27611	21.20
07	15LCMW02SW	82780	13.03	47247	17.55	26795	21.20
08	15LCMW02DW	83765	13.04	48124	17.55	27598	21.20
09							
10							
11							
12							
13							
14							omitestatiuseesses een een een een een een een een
15							
16							
17							
18	······································						
19	·						
20							
21							
22							

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
Column used to flag values outside QC limits with an asterisk,
* Values outside of QC limits

CLIENT SAMPLE NO.

15LCMW01SW

Lab Name: 🔤	Laucks Testing Labs	Contract:	
SDG No.: CAL	333	Run Sequence: R019691	
Matrix: (SO	IL/WATER) Water	Lab Sample ID: <u>CAB33-001</u>	
Sample wt/vo	ol: 1050.0 (g/mL) mL	Lab File ID: L0718007.D	
		Dete G-13 06/21/2007	
Level: (LOW,	/MED)	Date Collected:	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Extracted: 06/25/2007	
Concentrated	i Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/18/2007	
Injection Vo	olume: 2.0 (uL)	Dilution Factor:	
GPC Cleanup	: (Y/N) <u>N</u> рН:	Extraction: (Type) <u>CONT</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	4.8	U
108-60-1	Bis(2-chloroisopropyl)ether	4.8	U
108-95-2	Phenol	4.8	U
111-44-4	Bis(2-Chloroethyl)ether	4.8	U
95-57-8	2-Chlorophenol	4.8	U
541-73-1	1,3-Dichlorobenzene	4.8	U
106-46-7	1,4-Dichlorobenzene	4.8	U
100-51-6	Benzyl alcohol	4.8	U
95-50-1	1,2-Dichlorobenzene	4.8	U
95-48-7	2-Methylphenol	4.8	U
621-64-7	N-Nitroso-di-n-propylamine	4.8	U
67-72-1	Hexachloroethane	4.8	U
98-95-3	Nitrobenzene	4.8	U
78-59-1	Isophorone	4.8	Ū
88-75-5	2-Nitrophenol	4.8	U
105-67-9	2,4-Dimethylphenol	4.8	U
65-85-0	Benzoic acid	9.5	U
111-91-1	Bis(2-chloroethoxy)methane	4.8	U
120-83-2	2,4-Dichlorophenol	4.8	υ
120-82-1	1,2,4-Trichlorobenzene	4.8	U
91-20-3	Naphthalene	4.8	U
106-47-8	4-Chloroaniline	4.8	U
87-68-3	Hexachlorobutadiene	4.8	U
59-50-7	4-Chloro-3-methylphenol	4.8	U

91-57-6

77-47-4

2-Methylnaphthalene

Hexachlorocyclopentadiene

4.8

4.8

FORM I SV

υ

U

CLIENT SAMPLE NO. 15LCMW01SW

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-001</u>
Sample wt/vol: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>L0718007.D</u>
Level: (LOW/MED)	Date Collected: _06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	4.8	U
95-95-4	2,4,5-Trichlorophenol	4.8	U
91-58-7	2-Chloronaphthalene	4.8	U
88-74-4	2-Nitroaniline	4.8	U
131-11-3	Dimethylphthalate	4.8	U
606-20-2	2,6-Dinitrotoluene	4.8	υ
208-96-8	Acenaphthylene	4.8	U
99-09-2	3-Nitroaniline	4.8	U
83-32-9	Acenaphthene	4.8	υ
51-28-5	2,4-Dinitrophenol	9.5	U
100-02-7	4-Nitrophenol	4.8	U
132-64-9	Dibenzofuran	4.8	U
121-14-2	2,4-Dinitrotoluene	4.8	U
84-66-2	Diethylphthalate	4.8	U
86-73-7	Fluorene	4.8	U
7005-72-3	4-Chlorophenyl-phenylether	4.B	υ
100-01-6	4-Nitroaniline	4.8	υ
534-52-1	4,6-Dinitro-2-methylphenol	4.8	U
86-30-6	N-Nitrosodiphenylamine	4 . B	υ
122-66-7	Azobenzene	4.8	υ
101-55-3	4-Bromophenyl-phenyl ether	4.B	U
118-74-1	Hexachlorobenzene	4.8	U
87-86-5	Pentachlorophenol	4.8	U
85-01-B	Phenanthrene	4.8	U
120-12-7	Anthracene	4.8	U
86-74-8	Carbazole	4.8	υ
84-74-2	Di-n-butylphthalate	4.8	U
206-44-0	Fluoranthene	4.8	U

FORM I SV

CLIENT SAMPLE NO.

15LCMW01SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>CAB33-001</u>
Sample wt/vol: <u>1050.0</u> (g/mL)_mL	Lab File ID: L0718007.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.8	U
129-00-0	Pyrene	4.8	υ
85-68-7	Butylbenzylphthalate	4.8	υ
91-94-1	3,3'-Dichlorobenzidine	4.8	υ
56-55-3	Benzo(a)anthracene	4.8	υ
117-81-7	Bis(2-ethylhexyl)phthalate	4.8	ΰ
218-01-9	Chrysene	4.8	υ
117-84-0	Di-n-octylphthalate	4.8	υ
205-99-2	Benzo(b)fluoranthene	4.8	υ
207-08-9	Benzo(k)fluoranthene	4.8	ប
50-32-8	Benzo(a)pyrene	4.8	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	U
53-70-3	Dibenzo(a,h)anthracene	4.8	U
191-24-2	Benzo(g,h,i)perylene	4.8	U

Comments:

CLIENT SAMPLE NO.

15LCMW01DW Lab Name: Laucks Testing Labs Contract: -Run Sequence: R019691 SDG No.: CAB33 Lab Sample ID: <u>CAB33-002</u> Matrix: (SOIL/WATER) <u>Water</u> Lab File ID: L0718008.D Sample wt/vol: <u>1060_0</u> (g/mL) <u>mL</u> Date Collected: 06/21/2007 Level: (LOW/MED) _____ Date Extracted: 06/25/2007 % Moisture: _____ Decanted: (Y/N) N Date Analyzed: 07/18/2007 Concentrated Extract Volume: 1000 (uL) Dilution Factor: 1.0 Injection Volume: 2.0 (uL) Extraction: (Type) CONT GPC Cleanup: (Y/N) <u>N</u> pH:_____

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	2.6.4.Methylphenol	4 7	TT
108-39-47	Big(2 chloroigenropyl)ather	A 7	TT
108-00-1	Dhapel	A 7	тт
111.44.4	Pic/2. Chloroothyllather	4 7	1
95-57-9	2-Chlorophenol	4 7	1
541-73-1	1 3-Dichlorobenzene	4. 7	TT
106-46-7	1 4-Dichlorobenzene	4 7	U U
100-51-6	Penzyl alcohol	4 7	ŢŢ
95-50-1	1 2-Dichlorobenzene	4 . 7	U
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	U
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	υ
65-85-0	Benzoic acid	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	4.7	Ũ
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	U
59-50-7	4-Chloro-3-methylphenol	4.7	ប
91-57-6	2-Methylnaphthalene	4.7	υ
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

15LCMW01DW

L
Contract:
Run Sequence: R019691
Lab Sample ID: <u>CAB33-002</u>
Lab File ID: <u>L0718008.D</u>
Date Collected:06/21/2007
Date Extracted:06/25/2007
) Date Analyzed: 07/18/2007
) Dilution Factor: <u>1.0</u>
Extraction: (Type) CONT
CONCENTRATION UNITS: (ug/L or ug/kg) ug/L
4.7 U
4.7 U
4,7 U
4.7 U
4.7 Ü
4.7 U
4.7 Ŭ
4.7 U
4.7 Ŭ
9.4 U
4.7 U
4.7 U
4.7 U
4.7 U

4.7 U 534-52-1 4,6-Dinitro-2-methylphenol U 86-30-6 N-Nitrosodiphenylamine 4,7 4.7 U 122-66-7 Azobenzene U 4.7 4-Bromophenyl-phenyl ether 101-55-3 118-74-1 Hexachlorobenzene 4.7 U 4.7 U 87-86-5 Pentachlorophenol U 85-01-8 Phenanthrene 4.7 120-12-7 Anthracene 4.7 U 4.7 U Carbazole 86-74-8 U B4-74-2 Di-n-butylphthalate 4.7 4.7 U 206-44-0 Fluoranthene

4.7

4.7

4.7

86-73-7

7005-72-3

100-01-6

Fluorene

4-Nitroaniline

4-Chlorophenyl-phenylether

U U

U

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718008.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	Ŭ
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo (a) anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	υ
218-01-9	Chrysene	4.7	U
117-84-0	Di-n-octylphthalate	4.7	U
205-99-2	Benzo(b)fluoranthene	4.7	Ū
207-08-9	Benzo(k)fluoranthene	4.7	Ũ
50-32-8	Benzo (a) pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	U

Comments:

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER)Water	Lab Sample ID: CAB33-004
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718011.D
Level: (LOW/MED)	Date Collected: _06/21/2007
<pre>% Moisture: Decanted: (Y/N) N</pre>	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	4.7	υ
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	σ
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	Ū
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	U.
621-64-7	N-Nitroso-di-n-propylamine	4.7	υ
67-72-1	Hexachloroethane	4.7	U
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	υ
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	υ
65-85-0	Benzoic acid	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	4.7	υ
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	Ū
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-004</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718011.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	4.7	Ŭ
95-95-4	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	U
88-74-4	2-Nitroaniline	4.7	υ
131-11-3	Dimethylphthalate	4.7	υ
606-20-2	2,6-Dinitrotoluene	. 4.7	Ū
208-96-8	Acenaphthylene	4.7	U
99-09-2	3-Nitroaniline	4.7	U
83-32-9	Acenaphthene	4.7	U
51-28-5	2,4-Dinitrophenol	9.4	U
100-02-7	4-Nitrophenol	4.7	U
132-64-9	Dibenzofuran	4.7	υ
121-14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	σ
7005-72-3	4-Chlorophenyl-phenylether	4.7	υ
100-01-6	4-Nitroaniline	4.7	U
534-52-1	4,6-Dinitro-2-methylphenol	4.7	U
86-30-6	N-Nitrosodiphenylamine	4.7	U
122-66-7	Azobenzene	4.7	U
101-55-3	4-Bromophenyl-phenyl ether	4.7	U
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	U
85-01-8	Phenanthrene	4.7	U
120-12-7	Anthracene	4.7	U
86-74-8	Carbazole	4.7	U
84-74-2	Di-n-butylphthalate	4.7	Ŭ
206-44-0	Fluoranthene	4.7	U

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER) Water	Lab Sample ID; CAB33-004
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>L0718011.D</u>
Level: (LOW/MED)	Date Collected:06/21/2007
<pre>% Moisture: Decanted: (Y/N) N</pre>	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	υ
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo(a)anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	U
218-01-9	Chrysene	4.7	υ
117-84-0	Di-n-octylphthalate	4.7	U
205-99-2	Benzo(b)fluoranthene	4.7	υ
207-08-9	Benzo(k)fluoranthene	4.7	υ
50-32-В	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h) anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	Ŭ

Comments:

CLIENT SAMPLE NO. 15LCMW02DW

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
108-39-4/	3 & 4-Methylphenol	4.7	U
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	υ
95-57-8	2-Chlorophenol	4.7	U
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	υ
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	U
65-85-0	Benzoic acid	9.4	Ũ
111-91-1	Bis(2-chloroethoxy)methane	4.7	U
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	υ
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	Ū
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

15LCMW02DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: <u>R019691</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAB33-005
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718012.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: _2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>
CAS NO. COMPOUND	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	4.7	υ
95-95-4	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	Ŭ
88-74-4	2-Nitroaniline	4.7	U
131-11-3	Dimethylphthalate	4.7	υ
606-20-2	2,6-Dinitrotoluene	4.7	U
208-96-8	Acenaphthylene	4.7	υ
99-09-2	3-Nitroaniline	4.7	U
83-32-9	Acenaphthene	4.7	υ
51-28-5	2,4-Dinitrophenol	9.4	U
100-02-7	4-Nitrophenol	4.7	ΰ
132-64-9	Dibenzofuran	4.7	U ·
121-14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	υ
7005-72-3	4-Chlorophenyl-phenylether	4.7	U
100-01-6	4-Nitroaniline	4.7	U
534-52-1	4,6-Dinitro-2-methylphenol	4.7	Ŭ
86-30-6	N-Nitrosodiphenylamine	4.7	U
122-66-7	Azobenzene	4.7	Ŭ
101-55-3	4-Bromophenyl-phenyl ether	4.7	U
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	U
85-01-8	Phenanthrene	4.7	U
120-12-7	Anthracene	4.7	υ
86-74-8	Carbazole	4.7	ប
84-74-2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	Ŭ

FORM I SV
CLIENT SAMPLE NO. 15LCMW02DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: <u>R019691</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718012.D
Level: (LOW/MED)	Date Collected: 06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: _07/18/2007
Injection Volume:(uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo(a) anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	U
218-01-9	Chrysene	4.7	U
117-84-0	Di-n-octylphthalate	4.7	U.
205-99-2	Benzo(b)fluoranthene	4.7	U
207-08-9	Benzo(k)fluoranthene	4.7	U
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	U

Lauch	ks T	esting Lé	sqt							Contra	сt:						ŀ			
	019	1691								SDG No		CAB33								
17.57	970									Calibr	atic	on Dates:		07/12/2	1007	21:1	[3	adress d. In relativ me ssards a v sterios		
	(N)	N		na ang pangang	And South Provide State	****				Calibr	atic	n Times:	,	07/12/2	007	21:1	[3		,	
	Tiso	L MS				ID:		0.25 (1	(uu	Меап %	RSI	0: 11.8	L .							
	Std 1	RF 1	std 2	С. Д.	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	Std 6	RF 6	Std 7	RF 7	std RF 8	RF	%R3	D r ² COD	ĭ ĭ	.
	-	1.188E+00	10	1.598E+00	25	1.416E+00	40	1.317E+00	60	1.165E+00	80	1.105E+00	ļ			1.298	3 14.2	4	1 <	
	1	2.503E+00	5	3.170E+00	10	2.984E+00	25	2.842E+00	40	2.678E+00	60	2.494E+00	80	2.477E+0		2.736	5 9.9		V	
		1.619E+00	S	2.415E+00	10	2.263E+00	25	2.062E+00	40	1.966E+00	60	1.790E+00	80	1.872E+0		1.998	8 13.7	9	Y	
	1	1.376E+00	5	2.066E+00	10	1.957E+00	25	1.797E+00	40	1.675E+00	60	1.572E+00	80	1.542E+0		1.712	2 14.2	2	A	٢
	-	1.189E+00	s	1.719E+00	10	1.612E+00	25	1.536E+00	40	1.480E+00	60	1.396E+00	80	1.375E+0		1.473	3 11.7	7	Y	7
	Ĩ	1.369E+00	5	2.072E+00	10	1.890E+00	25	1.790E+00	40	I.733E+00	60	1.625E+00	80	1.631E+0		1.730	0 12.8	7	A	
	1	1.388E+00	5	2.161E+00	10	1.952E+00	25	1.794E+00	40	1.763E+00	60	1.674E+00	80	1.653E+0		1.769	9 13.7	8	A	
	1	7.940E-01	5	1.198E+00	10	1.116E+00	25	1.054E+00	40	1.022E+00	60	9.089E-01	80	9.020E-01		0.995	9 13.9	2	V	
		1.296E+00	5	2.009E+00	10	1.865E+00	25	1.683E+00	40	1.613E+00	60	1.500E+00	80	1.465E+0		1.633	3 14.9	6	V	
	-	1.017E+00	S	1.593E+00	10	1.528E+00	25	1.445E+00	40	1.340E+00	60	1.263E+00	80	1.251E+0		1.348	8 14.4	6	A	
	-	9.660E-01	9	1.392E+00	25	1.250E+00	40	1.103E+00	60	1.001E+00	80	1.005E+00				1.120	0 15.0	1	A	
-	-	6.079E-01	2	8.859E-01	10	8.309E-01	25	7.699E-01	40	7.500E-01	3	7.070E-01	80	7.120E-01		0.752	2 11.9	6	<	
	_	3.939E-01	S	5.899E-01	10	5.609E-01	25	5.320E-01	40	5.019E-01	60	5.000E-01	80	5.099E-01		0.513	3 12.0	1	A	_
		7.649E-01	ŝ	1.057E+00	10	1.054E+00	25	9.509E-01	40	8.730E-01	60	8.510E-01	80	8.380E-01		0.913	3 12.2	4	A	
	_	1.270E-01	ŝ	1.360E-01	10	1.350E-01	25	1.450E-01	40	1.739E-01	60	I.690E-01	80	I.790E-01		0.152	2 14.0	12	V	
		3.429E-01	S	5.669E-01	10	5.260E-01	25	4.990E-01	40	4.670E-01	60	4.580E-01	80	4.540E-01		0.473	3 14.8	8	<	
	5	1.110E-01	10	1.600E-01	25	1.790E-01	40	2.200E-01	60	2.290E-01	80	2.509E-01				0.192	2	0.995	0	\sim
		5.220E-01	S	7.390E-01	10	7.210E-01	25	6.530E-01	40	6.010E-01	60	5.770E-01	80	5.730E-01		0.627	7 12.5	0	A	
		2.960E-01	S	4.460E-01	10	4.449E-01	25	4.100E-01	40	3.910E-01	60	3.800E-01	80	3.770E-01		0.392	2 13.(12	Υ	
	I	3.790E-01	5	5.479E-01	10	5.040E-01	25	4.670E-01	40	4.490E-01	60	4.350E-01	80	4.379E-01		0.460	0 11.7	5	A	1
	-	1.133E+00	5	1.557E+00	10	1.445E+00	25	1.318E+00	40	1.239E+00	60	1.198E+00	80	1.179E+0		1.296	6 11.9	96	A	
		4.610E-01	5	6.589E-01	10	6.390E-01	25	5.839E-01	40	5.559E-01	60	5.500E-01	80	5.320E-01		0.565	9 11.7	2	Y	
		2.370E-01	S	3.129E-01	10	2.890E-01	25	2.730E-01	40	2.599E-01	60	2.509E-01	80	2.550E-01		0.268	8 9.5	6	V	
	I	3.150E-01	5	4.729E-01	10	4.790E-01	25	4.449E-01	40	4.160E-01	60	4.000E-01	80	3.899E-01		0.417	7 13.5	2	V	

5 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Page 1 of 4

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

≇⊧

* SPCCs

SUM - 61

FORM VI SV

	Lab Name: <u>Lau</u>	<u>, ks</u>	<u>resting La</u>	abs								Contr	act:									-	
	Run Sequence:	ROIS	9691	*******								SDG N	· · 0	CAB3.	3								
	Instrument ID:	597(ΤC					ĺ				calib	rati	on Dat(20 (1)	07	/12/2	:007		21:13			
	Heated Purge: ((N/λ	N									Calib	ratí	on Time	ເ. ເນ	07	/12/2	2007		21:13			
	GC Column: <u>RTX</u>	- 5 <u>S1</u>	1 MS				CI I			0.25	(mm)	Mean	& RSJ	[]	L.87								
L	Analyte	Stā 1	RF 1	std 2	RF 2	st 3	d F	e H	std 4	RF 4	std 5	र स्र	std 6	9 23 23	ST C	R. R.	F~	std 1	8 8	R R	*RSD	۲² COD	표역 관산
l	2-Methylnaphthalene	-	6.840E-01	5	9.269E-()1 1(3.8(0-36E-01	25 8	3.040E-01	40	7.400E-01	60	7.160E-	01 8	0 7.04	9E-01			0.780	12.06		۲
لمسمع	Hexachlorocyclopentadiene	5	3.970E-01	10	3.709E-1	01 22	5 3.91	39E-01	40 4	I.659E-01	60	4.589E-01	80	4.749E-	-01					0.428	10.27		V
	2,4,6-Trichlorophenol	5	4.449E-01	10	4.540E-()] 2;	5.44	40E-01	40 5	5.260E-01	60	4.910E-01	80	4.970E-	-01					0.493	7.85		A
	2,4,5-Trichlorophenol	р.,	3.899E-01	s	6.470E-() () 6.1.	79E-01	25 5	6.080E-01	40	5.370E-01	60	5.360E-	-01 8	0 5.51	0E-01			0.541	15.34		A
l	2-Chloronaphthalene		1.313E+00	S	1.876E+	00 1() 11.66	34E+00	25 1	.489E+00	40	1.480E+00	09	1.408E4	-00	0 1.41	5E+0			1.524	12.64		A
	2-Nitroaniline	5	4.700E-01	10	4.889E-(01 2:	5.0	70E-01	40 4	1.980E-01	60	4.790E-01	80	4.910E-	-01					0.489	2.70		А
	Dimethylphthalate		1.420E+00	S	2.056E+	00 1() 2.05	R2E+00	25 1	.851E+00	40	1.707E+00	09	1.582E+	F00 8	0 1.57	19E+0			1.754	14.39		Ą
	2,6-Dinitrotoluene	S	3.989E-01	10	4.460E-(01 2.	5 4.37	79E-01	40 4	1.210E-01	60	4.020E-01	80	4.040E-	-01					0.418	4.72		A
	Acenaphthylene	-	1.997E+00	v.	2.934E+	00 1() 2.65	5E+00	25 2	.417E+00	40	2.365E+00	09	2.174E+	-00 8	0 2.22	9E+0			2.396	13.14		¥.
ليسيعها	3-Nitroaniline	5	4.030E-01	10	4.370E-()1 2:	5 4.2(50E-01	40 4	1.040E-01	60	3.910E-01	80	3.970E-	-01					0.410	4.38		Y
	Acenaphthene		1.205E+00	5	1.819E+	00) 1.67	75E+00	25 1	.483E+00	40	1.451E+00	۱ 6 0	1.326E4	F00 8	0 1.35	:1E+0			1.473	14.38		A
	2,4-Dinitrophenol	ľ		Ş	4.100E-(32 1() 5.5(0E-02	25] 7	7.000E-02	40	8.200E-02	60	7.900E-	-02 8	0 8.20	0E-02			0.068		0.999	L
	4-Nitrophenol	5	1.360E-01	10	1.580E-()1 2:	5 1.72	29E-01	40 1	.850E-01	60	1.729E-01	80	1.760E-	-01					0.167	10.34		V
	Dibenzofuran	1	1.704E+00	ŝ	2.539E+	00 1() 2.35	\$5E+00	25 2	.122E+00	40	2.030E+0(09	1.868E4	+00 8.	0 1.86	(8E+0			2.067	14,11		A
1	2,4-Dinitrotoluene	5	3.939E-01	10	4.799E-(01 22	5 5.01	99E-01	40 4	t.889E-01	60	4.630E-01	80	4.600E-	-01					0.466	8.54		Ā
1	Diethylphthalate	5	2.040E+00	10	2.066E+	00 2:	5 1.84	14E+00	40	.694E+00	60	1.534E+00	80	1.493E+	+00					1.779	13.87		A
ł	Fluorene		1.415E+00	2	1.983E+	00	1.85	31E+00	25	.620E+00	40	1.554E+0(09	1.415E+	+00 8	0 1.40	15E+0			1.611	14.64		A
I	4-Chlorophenyl-phenylether		6.790E-01	5	9.969E-I)1 E	9.3(59E-01	25 7	r.969E-01	40	7.780E-01	60	7.080E-	-01 8	0 7.00	9E-01			0.800	15.40		A
	4-Nitroaniline	S	3.820E-01	10	4.260E-I)1 2:	5 4.1	40E-01	40 3	3.860E-01	60	3.590E-01	80	3.680E-	-01					0.389	6.72		A
	4,6-Dinitro-2-methylphenol	2	5.799E-02	25	7.100E-4)2 4(0 8.2(30E-02	3 09	3.100E-02	80	8.600E-02								0.076	14.86		A
1	N-Nitrosodiphenylamine		7.229E-01	Ś	1.082E+	00 1(9.6	79E-01	25 5).229E-01	40	8.880E-01	60	8.840E-	-01 8	0 9.11	0E-01			0.911	11.78		A
1	Azobenzene		1.215E+00	s	1.792E+	00 1() 1.65	35E+00	25 1	.534E+00	40	I.460E+0(09 (1.426E4	+00 8	0 1.46	8E+0			1.504	11.95		۲
!	4-Bromophenyl-phenyl ether		2.540E-01	ъ.	3.800E-4	11 10	3.52	20E-01	25 3	3.290E-01	40	3.160E-01	60	3.010E	-01 8	0 3.14	0E-01			0.321	12.35		Α
نـ	Hexachlorobenzene	***	2.910E-01	5	4.480E-1	1 10) 4.19	90E-01	25 3	3.869E-01	40	3.590E-01	60	3.319E-	-01 8	0 3.68	0E-01			0.372	14.10		А
SU		ł						Ļ										*					
М -	¤q TY = Equatic Q=Quadratic, L=	n ry Line	rpe ⊲ar, A≕Ave	rag∈	63																		
6	* SPCCs #																						
2																							

6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Page 2 of 4

FORM VI SV

ŝ.

				r ² Eq COD Ty	1.000 Q	A	A	A	A	A	A	Α	A	A	A	A	A	A	A	V	A	A	A	A	V	<	V
				%RSD		11.89	13.34	13.37	11.69	14.13	13.67	11.83	13.29	3.91	8.70	10.87	12.14	10.29	8.77	12.45	5.49	14.86	14.45	11.10	11.08	14.28	12.80
	21:13	21:13		RF	0.136	1.528	1.513	1.302	1.726	1.301	0.847	2.477	0.857	0.458	1.561	1.018	1.396	2.565	2.007	1.811	1.669	1.331	1.123	1.083	1.298	1.824	0.483
				RF B																					00-11-10-00-00-00-00-00-00-00-00-00-00-0		
	2007	2007		Std 8																							
	07/12/	07/12/		RF 7		(.462E+0	.416E+0	(.226E+0	I.535E+0	I.181E+0		2.210E+0	.319E-01		1.535E+0		1.406E+0								1.281E+0	1.715E+0	I.709E-01
	ł		7	std 7		80	80	80	80	80		80	80 5		80		80								80	80	80
CAB33	1 Dates:	1 Times:	11.8	RF 6	1.650E-01	L429E+00	(.399E+00	1.212E+00	I.544E+00	I.175E+00	7.960E-01	2.342E+00	8.809E-01	4.880E-01	1.493E+00	I.194E+00	1.369E+00	2.895E+00	1.815E+00	1.668E+00	1.598E+00	1.574E+00	1.329E+00	1.253E+00	1.271E+00	1.684E+00	4.630E-01
	atior	atior	RSD	std 6	80	60	60	60	60	60	80	60	60	80	60	80	60	80	80	80	80	80	80	80	60	60	60
ON DOS	Calibr	Calibr	Mean %	яғ 5	.570E-01	.495E+00	.450E+00	.292E+00	.635E+00	.242E+00	3.790E-01	.527E+00	.030E-01	L.639E-01	.522E+00	.089E+00	.388E+00	.691E+00	.801E+00	.572E+00	.558E+00	.434E+00	.198E+00	.163E+00	.350E+00	.822E+00	1.620E-01
			(uu	std 5	60	40 1	40 1	40 1	40 1	40 1	60 [5	40 2	40 5	60 4	40 1	60 1	40	60 2	60 1	60 1	60 1	60 1	60 1	60 1	40	40	40
			0.25 (1	RF 4	.540E-01	.535E+00	.561E+00	.386E+00	.842E+00	.380E+00	.490E-01	.586E+00	.210E-01	L620E-01	.605E+00	.031E+00	.419E+00	.714E+00	.019E+00	.609E+00	.642E+00	.418E+00	.187E+00	.117E+00	.315E+00	.893E+00	1.819E-01
				Std 4	40	25 1	25 1	25 1	25 1	25 1	40 5	25 2	25 9	40 4	25 1	40 1	25 1	40 2	40 2	40 1	40 1	40 1	40 1	40 1	25 1	25 11	25 4
			ID:	RF 3	.380E-01	.670E+00	.695E+00	.452E+00	.991E+00	.477E+00	.639E-01	.734E+00	.139E-01	1.490E-01	.720E+00	.580E-01	.482E+00	.582E+00	003E+00	.918E+00	.673E+00	.380E+00	.172E+00	.067E+00	.389E+00	.046E+00	5.479E-01
				Std 3	25 1	10 1	10 1	10 1	10	10	25 5	10 2	10 5	25 4	10 1	25 9	10 1	25 2	25 2	25	25]	25 1	25 1	25 1	10	10	10
				RF 2	1.060E-01	.837E+00	.835E+00	.533E+00	.966E+00	.582E+00	3.439E-01	.884E+00	3.420E-01	1.359E-01	.717E+00	.309E-01	.633E+00	285E+00	186E+00	.975E+00	.735E+00	.091E+00	9.490E-01	9.459E-01	.468E+00	206E+00	5.709E-01
				Std 2	10	5	5 1	5 1	5]	5 1	10	5 2	5 8	10	5	10	5	10 2	10 2	10	10	10 1	10 5	10	5	ŝ	ŝ
91		N	MS	н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	9.399E-02	.268E+00	.233E+00	011E+00	.568E+00	.071E+00	5.489E-01	2.053E+00	5.079E-01	4.480E-01	.332E+00	9.010E-01	.069E+00	2.217E+00	2.214E+00	2.122E+00	.809E+00	.089E+00	9.060E-01	9.530E-01	.010E+00	.404E+00	3.829E-01
10196	<u>970L</u>	(N/.	5Sil	std 1	5	-	-	Ĩ	-		5 (-	-	5 4	-	5		5 2	5	5	5	5	5	5			
Run Sequence: F	Instrument ID: 🗄	Heated Purge: (Y	GC Column: <u>RTX-</u>	Analyte	entachlorophenol	henanthrene	nthracene	arbazole	'i-n-butylphthalate	luoranthene	enzidine	yrene	utylbenzylphthalate	.3-Dichlorobenzidine	enzo(a)anthracene	is(2-ethylhexyl)phthalate	hrysene	hi-n-octylphthalate	enzo(b)fluoranthene	enzo(k)fluoranthene	enzo(a)pyrene	ideno(1,2,3-cd)pyrene	hibenzo(a,h)anthracene	enzo(g,h,i)perylene	-Fluorophenol	henol-d5	litrobenzene-d5

6 SEMIVOLATILE ORGANICS INTTIAL CALIBRATION DATA

Contract:

Lab Name: Laucks Testing Labs

Page 3 of 4

FORM VI SV

SUM - 63

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

≠⊧

* SPCCs

				0)	SEMIV	OLATILE	ORGZ	NICS INI	TIAL	CALIBRA	TION	DATA								
Lab Name: <u>Lauc</u>	ks T	<u>esting </u>	abs				1			Contra	at:								ŀ	
Run Sequence:	R019	691					F			SDG No	•:	CAB33								
Instrument ID:	5970	Ţ					1			Calibr	atio	n Dates:	I	07/12/:	2007		21:13			
Heated Purge: ()	(N/X	N					1			Calibr	atio	n Times:	ļ	07/12/:	2007		21:13			
GC Column: <u>RTX</u> .	<u>-5Sil</u>	MS				I ID:		0.25 ((աա)	Mean %	RSD	: 11.8	7	***						
Analyte	std 1	RF J	Stđ 2	RF 2	Std 3	RF 3	Std 4	RF 4	Std 5	RF 5	stđ 6	RF 6	std 7	RF 7	std 8	8 B	RF	\$RSD	r² COD	P B G
2,4,6-Tribromophenol	5	I.100E-01	10	1.140E-01	25	1.410E-01	40	1.380E-01	60	1.500E-01	80	1.580E-01					0.135	14.22		<
Terphenyl-d14	1	1.217E+00	5	1.666E+00	0 10	1.667E+00	25	1.594E+00	40	1.503E+00	60	1.398E+00	80 1	.336E+0			1.483	11.67		<

≮

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

* SPCCs

Page 4 of 4

FORM VI SV

Calibration Standard Verification for Initial Calibration L8270M (07/1270	for Initial Calibration L8270M (07/12/07)	ification fo	Standard	Calibration
---	---	--------------	----------	-------------

*** PROJECTED ***		*****	*** ANALY	'SES ***	******	
Analyte(s)	Target Conc. ng/uL	Reference Solution	Amount Quanted ng/uL	Percent of Target	%D (<25%)	
14-Diayone		M 59-73-19	4 45	89	11	
N. nitrocodimathylamina	32	MO9-73-19	27.64	86	14	
Punidine	32	MS9-73-19	26.4	83	18	
2-Eluprophenal	64	M 59-73-19	59.08	92	8	
Renzeldehyde	5	MS9-73-19	3 56	71	29	-not a target analyte
Phenol-d5	64	MS9-73-19	58.92	92	с, В	
Phenol	32	M.59-73-19	29.88	93	7	719107 AT
Aniline	32	M59-73-19	29.17	91	9	, È r
Bis(2-Chloroethyl)ether	32	M.59-73-19	27.9	87	13	
2-Chlorophenol-d4	0	MS9-73-19	0	NA	NA	
2-Chlorophenol	32	M59-73-19	31,56	99	1	
1.3-Dichlorobenzene	32	M59-73-19	31,61	99	1	
1.4-Dichlorobenzene	32	M59-73-19	29.9	93	7	
1,2-Dichlorobenzene-d4	0	M59-73-19	0	NA	NA	
Benzyl alcohol	32	MS9-73-19	27,26	85	15	
1,2-Dichlorobenzene	32	M59-73-19	31.68	99	1	
2-Methylphenol	32	M59-73-19	29.94	94	6	
Bis(2-chloroisopropyl)ether	32	M59-73-19	27.82	87	13	
3 & 4-Methylphenol ¹	64	M59-73-19	57,96	91	9	
Acetophenone	32	M59-73-19	33,13	104	4	
n-Nitroso-di-n-propylamine	32	M59-73-19	26.69	83	17	
Hexachloroethane	32	MS9-73-19	28,57	89	11	
Nitrobenzene-d5	32	M59-73-19	28,23	88	12	
Nitrobenzene	32	M59-73-19	29.89	93	7	
Isophorone	32	MS9-73-19	30.49	95	5	
2-Nitrophenol	32	M59-73-19	25.72	80	20	
2,4-Dimethylphenol	32	MS9-73-19	30.09	94	6	
bis(2-Chloroethoxy)methane	32	MS9-73-19	26.77	84	16	
Benzoic acid	37	M59-73-19	28.64	77	23	
2,4-Dichlorophenol	32	M59-73-19	30.11	94	6	
1,2,4-Trichlorobenzene	32	M59-73-19	30.46	95	5	
Naphthalene	32	MS9-73-19	28,71	90	10	
4-Chloroaniline	32	MS9-73-19	25,44	80	21	
Hexachlorobutadiene	32	M59-73-19	29.68	93	7	
Caprolactam	5	M59-73-19	4.18	84	16	
4-Chloro-3-methylphenol	32	M59-73-19	27.85	87	13	
2-Methylnaphthalene	32	MS9-73-19	29.44	92	8	
1-Methylnaphtholene	0	MS9-73-19	0	NA	NA	
Hexachlorocyclopentadiene	32	MS9-73-19	29.98	94	6	
1,2,4,5-Tetrachlorobenzene	37	MS9-73-19	38.31	104	4	
2,4,6-Trichlorophenol	32	MS9-73-19	29.05	91	9	
2,4,5-Trichlorophenol	32	M59-73-19	31.41	98	2	
2-Fluorobiphenyl	32	M59-73-19	30.75	96	4	
1,1'-Biphenyl	5	M59-73-19	4,44	89	11	
2-Chioronaphthalene	32	MS9-73-19	34,26	107	7	
2-Nitroaniline	32	M59-73-19	31.41	98	2	
Dimethylphthalate	32	M59-73-19	28.21	88	12	
1,4-Dinitrobenzene	0	MS9-73-19	0	NA	NA	
1,3-Dinitrobenzene	32	M59-73-19	24,6	77	23	
2,6-Unitrotoluene	32	M59-73-19	28.68	90	10	
Acenaphthylene	32	MS9-73-19	30,37	95	5	

*** PROJECTED ***			*** ANALY	SES ***			
Analyte(s)	Target Conc.	Reference Solution	Amount Quanted	Percent of Target	%D (<25%)		
	ng/uL		ng/uc			-	
1,2-Dinitrobenzene	0	M59-73-19	0	NA	NA		
3-Nitroaniline	32	M59-73-19	29.29	92	8		
Acenaphthene	32	M59-73-19	29.14	91	9	1 2.	
2,4-Dinitrophenol	32	M59-73-19	23,82	74	26	FXL	nor.
4-Nitrophenol	32	MS9-73-19	24,1	75	25		
Dibenzofuran	32	MS9-73-19	28.21	88	12		
2,4-Dinitrotoluene	32	MS9-73-19	28.8	90	10		
2,3,5,6-tetrachlorophenol	0	MS9-73-19	0	NA	NA		
2,3,4,6-tetrachlorophenol	32	M59-73-19	25,63	80	20		
Diethylphthalate	32	M59-73-19	26.94	84	16		
Fluorene	32	M59-73-19	27.48	86	14		
4-Chlorophenyl-phenylether	32	M59-73-19	27.64	86	14		
4-Nitroaniline	32	MS9-73-19	29,79	93	7		
4,6-Dinitro-2-methylphenol	32	M59-73-19	23,17	72	28	- See	marr.
N-nitrosodiphenylamine ²	32	M59-73-19	29.92	94	6		
12-Diphenylhydrazine 3	32	M.59-73-19	2974	93	7		
2 4 6-Tribromonbenol	64	M.59-73-19	65 24	102	2	[ida
4-Bromonhenvl-nhenvlether	32	M.59-73-19	30.28	95	5		7/19/07
Hexochlorobenzene	32	MS9-73-19	32.58	102	2		AD
Atrazine	5- 5	M59-73-19	3.83	77	23		,At
Pentachlorophenol	32	M 59-73-19	26.45	83	17		
Phenonthrene	32	M 59-73-19	28.73	00 00	10		
Anthracana	32	MS9-73-19	20,75	04	6		
Carbozola	32	MS9-73-19	28.87	00	10		
Di n butubthalata	32	MC0 72 10	20.07	90 85	10	1	
Chapanthana	32	MS9-73-19	27,20	00	10	-	
Development	32	M39-73-19	20.7	90 7 1	10	500	nar.
Benziaine	32	MS9-73-19	19.74	04	30	- 22	,
Transformed d14	32	MS9-73-19	27.17	60	10		
Dut the under the late	32	M39-73-19	2/ 2/ 07	04	10		
Buryibenzyiphthalate	32	MS9-73-19	20.97	04	16		
	0	MS9-73-19	0 20 F0	INA RO	NA		
3,3 -Dichlorobenzidine	32	MS9-73-19	28.58	89	11		
Benzolajanthracene	32	MS9-73-19	27.7	87	13		
bis(2-Ethylhexyl)phthalate	32	MS9-73-19	29.8	93	7		
Chrysene	32	MS9-73-19	28.82	90	10		
Di-n-octylphthalate	32	M59-73-19	26.64	83	17		
Benzolbitluoranthene	32	M59-73-19	27.28	85	15	******	
[Benzo[k]fluoranthene	32	M59-73-19	28,38	89	11		
[Benzo[a]pyrene	32	MS9-73-19	28.95	90	10		
[Indeno[1,2,3-cd]pyrene	32	M59-73-19	37,36	117	17		
Dibenz[a,h]anthracene	32	M59-73-19	38,43	120	20		
[Benzo[g,h,i]perylene	32	MS9-73-19	37,51	117	17	L	

Analyst: AP Date analyzed: 07/12/07

^{1.} 3-methylphenol and 4-methylphenol do not have sufficient chromatographic resolution on the analytical column to allow them to be quantitated separately. Results for 3-methylphenol and 4-methylphenol are calculated using a single response factor.

² N-nitrosodiphenylamine (8270-listed analyte) decomposes to diphenylamine.

³ 1,2-diphenylhydrazine (8270-listed analyte) decomposes to azobenzene.

7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: CAB33
Instrument ID: 5970L	Calibration Date: 07/18/2007 Time: 13:18
Lab File ID:	Init. Calib. Date(s):
Client Sample No.: <u>CCV071807-2</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) N	GC Column: RTX-5Sil MS ID:0.25 (mm)

Compound	Equation Type	RF 718.0	۶D	%Drift
3 & 4-Methylphenol	A	1.402	-7.99	
Bis(2-chloroisopropyl)ether	A	2.663	2.67	
Phenol	A	2.065	-3.34	
Bis(2-Chloroethyl)ether	A	1.787	-4.38	
2-Chlorophenol	A	1.504	-2.11	
1,3-Dichlorobenzene	A	1.745	-0.8B	
1,4-Dichlorobenzene	A	1.800	-1.75	
Benzyl alcohol	A	1.005	-0.60	
1,2-Dichlorobenzene	A	1.618	0.90	
2-Methylphenol	A	1.386	-2.84	
N-Nitroso-di-n-propylamine	A	1.211	-8.14	
Hexachloroethane	A	0.747	0.73	
Nitrobenzene	A	0.578	-12.67	
Isophorone	A	0.939	-2.80	
2-Nitrophenol	A	0.144	5.40	
2,4-Dimethylphenol	A	0.477	-0.79	
Benzoic acid	Q	0.146		-20.43*
Bis(2-chloroethoxy)methane	A	0.623	0.71	
2,4-Dichlorophenol	A	0.380	3.18	
1,2,4-Trichlorobenzene	A	0.440	4.27	
Naphthalene	A	1.260	2.79	
4-Chloroaniline	А	0.569	0.05	
Hexachlorobutadiene	A	0,250	6.62	
4-Chloro-3-methylphenol	A	0.418	-0.24	
2-Methylnaphthalene	A	0.803	-2.95	
Hexachlorocyclopentadiene	A	0.418	2.26	
2,4,6-Trichlorophenol	A	0.484	1,87	
2,4,5-Trichlorophenol	A	0.513	5.18	
2-Chloronaphthalene	A	1.516	0.51	
2-Nitroaniline	A	0.535	-9.32	
Dimethylphthalate	A	1.690	3.65	
2,6-Dinitrotoluene	A	0.408	2.47	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019691	SDG No.: _CAB33
Instrument ID: 5970L	Calibration Date: 07/18/2007 Time: 13:18
Lab File ID: L0718003.D	Init. Calib. Date(s):
Client Sample No.: <u>CCV071807-2</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) N	GC Column: RTX-5Sil MS ID:0.25 (mm)

Compound	Equation Type	RF 718.0	%D	%Drift
Acenaphthylene	A	2.349	1.94	
3-Nitroaniline	A	0.413	-0.67	
Acenaphthene	A	1.444	1.98	
2,4-Dinitrophenol	L	0.069		-6.38
4-Nitrophenol	A	0.184	-10.04	
Dibenzofuran	A	2.029	1.83	
2,4-Dinitrotoluene	A	0.476	-2.20	
Diethylphthalate	A	1.680	5.59	
Fluorene	A	1.575	2.22	
4-Chlorophenyl-phenylether	A	0.774	3.26	
4-Nitroaniline	A	0.395	-1.63	
4,6-Dinitro-2-methylphenol	A	0.073	4.51	
N-Nitrosodiphenylamine	A	0.883	3.06	
Azobenzene	A	1.571	-4.44	
4-Bromophenyl-phenyl ether	A	0.301	6.25	
Hexachlorobenzene	A	0.348	6.41	
Pentachlorophenol	Q	0.138		-2.03
Phenanthrene	A	1.431	6.36	
Anthracene	A	1.425	5.79	
Carbazole	A	1.275	2.04	
Di-n-butylphthalate	A	1.588	8.00	
Fluoranthene	A	1.288	0.97	
Benzidine	A	0.685	19.13	
Pyrene	A	2.216	10.54	
Butylbenzylphthalate	A	0.725	15.37	
3,3'-Dichlorobenzidine	A	0.425	7.27	
Benzo(a) anthracene	A	1.476	5.43	
Bis(2-ethylhexyl)phthalate	A	0.897	11.91	
Chrysene	A	1.343	3.77	
Di-n-octylphthalate	A	2.287	10.83	
Benzo(b)fluoranthene	A	1.940	3.34	
Benzo(k)fluoranthene	Δ	1 800	0.60	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Page 2 of 3

7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019691	SDG No.: _CAB33
Instrument ID: 5970L	Calibration Date: 07/18/2007 Time: 13:18
Lab File ID:	Init. Calib. Date(s):
Client Sample No.: <u>CCV071807-2</u>	Init. Calib. Time(s): 12:31
Heated Purge: (Y/N) N	GC Column: RTX-5Sil MS ID:0.25 (mm)

Compound	Equation Type	RF 718.0	₹D	%Drift
Benzo(a)pyrene	A	1.619	2.98	
Indeno(1,2,3-cd)pyrene	A	1.389	-4.36	
Dibenzo(a,h)anthracene	А	1.168	-4.05	
Benzo(g,h,i)perylene	A	1.189	-9.78	
2-Fluorophenol	A	1.367	-5.35	
Phenol-d5	А	1.858	-1.88	
Nitrobenzene-d5	А	0.570	-17.93	
2-Fluorobiphenyl	A	1.646	0.81	
2,4,6-Tribromophenol	А	0.136	-0.50	
Terphenyl-d14	A	1.364	8.04	

* = %D or %Drift above limit

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B062507MSVWLT

Lab Name: <u> </u>	aucks Testing Labs	Contr	act:	
SDG No.: CAB	33	Run S	Sequence: <u>R019691</u>	
Matrix: (SOI	L/WATER) Water	Lab S	ample ID: <u>B062507MSVWLT</u>	
Sample wt/vo	l: <u>1000.0</u> (g/mL) <u>mL</u>	Lab F	ile ID: <u>L0718005.D</u>	NU LES 2000 MARINE TO THE STATE OF T
Level: (LOW/	MED)	Date	Collected:	
% Moisture:	Decanted: (Y/N) N	Date	Extracted:06/25/2007	
Concentrated	Extract Volume: <u>1000 (</u> uL)	Date	Analyzed: _07/18/2007	
Injection Vo	lume: 2.0 (uL)	Dilut	ion Factor:1.0	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Extra	ction: (Type) <u>CONT</u>	107-1-1-1-1-1-10-10-10-10-10-10-10-10-10-10
CAS NO.	COMPOUND		CONCENTRATION UNITS: {ug/L or ug/kg} <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol		5.0	σ
108-60-1	Bis(2-chloroisopropyl)ether		5.0	U
108-95-2	Phenol		5.0	σ
111-44-4	Bis(2-Chloroethyl)ether		5.0	U
95-57-8	2-Chlorophenol		5.0	Π
			F 0	* 7

			1
108-39-4/	3 & 4-Methylphenol	5.0	σ
108-60-1	Bis(2-chloroisopropyl)ether	5.0	U
108-95-2	Phenol	5.0	υ
111-44-4	Bis(2-Chloroethyl)ether	5.0	U
95-57-8	2-Chlorophenol	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
100-51-6	Benzyl alcohol	5.0	Ŭ
95-50-1	1,2-Dichlorobenzene	5.0	υ
95-48-7	2-Methylphenol	5.0	U
621-64-7	N-Nitroso-di-n-propylamine	5.0	υ
67-72-1	Hexachloroethane	5.0	U
98-95-3	Nitrobenzene	5.0	U
78-59-1	Isophorone	5.0	U
88-75-5	2-Nitrophenol	5.0	U
105-67-9	2,4-Dimethylphenol	5.0	U
65-85-0	Benzoic acid	10	U
111-91-1	Bis(2-chloroethoxy)methane	5.0	U
120-83-2	2,4-Dichlorophenol	5.0	U
120-82- 1	1,2,4-Trichlorobenzene	5.0	Ŭ
91-20-3	Naphthalene	5.0	U
106-47-8	4-Chloroaniline	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
59-50-7	4-Chloro-3-methylphenol	5.0	U
91-57-6	2-Methylnaphthalene	5,0	U
77-47-4	Hexachlorocyclopentadiene	5.0	U

FORM I SV

CLIENT SAMPLE NO. B062507MSVWLT

Lab Name: Laucks Testing Labs Contract: _____ SDG No.: CAB33 Run Sequence: R019691 Matrix: (SOIL/WATER) Water Lab Sample ID: B062507MSVWLT Lab File ID: L0718005.D Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u> Date Collected: _____ Level: (LOW/MED) Date Extracted: 06/25/2007 % Moisture: _____ Decanted: (Y/N) N Date Analyzed: 07/18/2007 Concentrated Extract Volume: 1000 (uL) Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) <u>N</u> pH:_____ Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	5.0	U
95-95-4	2,4,5-Trichlorophenol	5.0	U
91-58-7	2-Chloronaphthalene	5.0	U
88-74-4	2-Nitroaniline	5.0	U
131-11-3	Dimethylphthalate	5.0	U
606-20-2	2,6-Dinitrotoluene	5.0	υ
208-96-8	Acenaphthylene	5.0	ΰ
99-09-2	3-Nitroaniline	5.0	υ
83-32-9	Acenaphthene	5.0	U
51-28-5	2,4-Dinitrophenol	10	υ
100-02-7	4-Nitrophenol	5.0	U
132-64-9	Dibenzofuran	5.0	Ŭ
121-14-2	2,4-Dinitrotoluene	5.0	U
84-66-2	Diethylphthalate	5.0	υ
86-73-7	Fluorene	5.0	U
7005-72-3	4-Chlorophenyl-phenylether	5.0	υ
100-01-6	4-Nitroaniline	5.0	U
534-52-1	4,6-Dinitro-2-methylphenol	5.0	υ
86-30-6	N-Nitrosodiphenylamine	5.0	υ
122-66-7	Azobenzene	5.0	U
101-55-3	4-Bromophenyl-phenyl ether	5.0	υ
118-74-1	Hexachlorobenzene	5.0	U
87-86-5	Pentachlorophenol	5.0	υ
85-01-8	Phenanthrene	5.0	Ŭ
120-12-7	Anthracene	5.0	υ
86-74-8	Carbazole	5.0	U
84-74-2	Di-n-butylphthalate	5.0	U
206-44-0	Fluoranthene	5.0	U

CLIENT SAMPLE NO. B062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: <u>R019691</u>
Matrix: (SOIL/WATER)Water	Lab Sample ID: B062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718005.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	5.0	U
129-00-0	Pyrene	5.0	U
85-68-7	Butylbenzylphthalate	5.0	U
91-94-1	3,3'-Dichlorobenzidine	5.0	Ŭ
56-55-3	Benzo(a)anthracene	5.0	U
117-81-7	Bis(2-ethylhexyl)phthalate	5.0	υ
218-01-9	Chrysene	5.0	U
117-84-0	Di-n-octylphthalate	5.0	ប
205-99-2	Benzo(b)fluoranthene	5.0	U
207-08-9	Benzo(k)fluoranthene	5.0	U
50-32-8	Benzo(a)pyrene	5.0	U
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	U
53-70-3	Dibenzo(a,h)anthracene	5.0	υ
191-24-2	Benzo(g,h,i)perylene	5.0	U

CLIENT SAMPLE NO.

S062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: <u>R019691</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S062507MSVWLT</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718006.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
:		······	
108-39-4/	3 & 4-Methylphenol	17	
108-60-1	Bis(2-chloroisopropyl)ether	16	
108-95-2	Phenol	13	
111-44-4	Bis(2-Chloroethyl)ether	17	
95-57-8	2-Chlorophenol	13	
541-73-1	1,3-Dichlorobenzene	10	
106-46-7	1,4-Dichlorobenzene	10	
100-51-6	Benzyl alcohol	17	
95-50-1	1,2-Dichlorobenzene	11	
95-48-7	2-Methylphenol	16	
621-64-7	N-Nitroso-di-n-propylamine	19	
67-72-1	Hexachloroethane	9.1	
98-95-3	Nitrobenzene	19	
78-59-1	Isophorone	16	
88-75-5	2-Nitrophenol	9.5	
105-67-9	2,4-Dimethylphenol	11	
65-85-0	Benzoic acid	6.9	J
111-91-1	Bis(2-chloroethoxy)methane	16	
120-83-2	2,4-Dichlorophenol	13	
120-82-1	1,2,4-Trichlorobenzene	11	
91-20-3	Naphthalene	13	
106-47-8	4-Chloroaniline	12	
87-68-3	Hexachlorcbutadiene	8.8	
59-50-7	4-Chloro-3-methylphenol	16	
91-57-6	2-Methylnaphthalene	14	
77-47-4	Hexachlorocyclopentadiene	3.5	J

CLIENT SAMPLE NO. S062507MSVWLT

Lab Name: Laucks Testing Labs Contract: ____ Run Sequence: <u>R019691</u> SDG No.: CAB33 Matrix: (SOIL/WATER) <u>Water</u> Lab Sample ID: <u>S062507MSVWLT</u> Lab File ID: L0718006.D Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u> Date Collected: _____ Level: (LOW/MED) Date Extracted: 06/25/2007 % Moisture: _____ Decanted: (Y/N) \underline{N} Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/18/2007 Dilution Factor: _____1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N pH:_____ Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	9.9	
95-95-4	2,4,5-Trichlorophenol	12	
91-58-7	2-Chloronaphthalene	16	
88-74-4	2-Nitroaniline	16	
131-11-3	Dimethylphthalate	17	
606-20-2	2,6-Dinitrotoluene	12	
208-96-8	Acenaphthylene	16	
99-09-2	3-Nitroaniline	14	
83-32-9	Acenaphthene	16	
51-28-5	2,4-Dinitrophenol	10	
100-02-7	4-Nitrophenol	11	
132-64-9	Dibenzofuran	16	
121-14-2	2,4-Dinitrotoluene	13	
84-66-2	Diethylphthalate	16	
86-73-7	Fluorene	17	
7005-72-3	4-Chlorophenyl-phenylether	17	
100-01-6	4-Nitroaniline	14	
534-52-1	4,6-Dinitro-2-methylphenol	7.8	
86-30-6	N-Nitrosodiphenylamine	13	
122-66-7	Azobenzene	17	
101-55-3	4-Bromophenyl-phenyl ether	15	
118-74-1	Hexachlorobenzene	16	
87-86-5	Pentachlorophenol	11	
85-01-8	Phenanthrene	16	
120-12-7	Anthracene	1.5	
86-74-8	Carbazole	1.6	
84-74-2	Di-n-butylphthalate	15	#*******
206-44-0	Fluoranthene	17	

FORM I SV

CLIENT SAMPLE NO.

S062507MSVWLT

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: S062507MSVWLT
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718006.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	5.0	Ŭ
129-00-0	Pyrene	15	
85-68-7	Butylbenzylphthalate	11	
91-94-1	3,3'-Dichlorobenzidine	11	
56-55-3	Benzo(a)anthracene	14	
117-81-7	Bis(2-ethylhexyl)phthalate	12	
218-01-9	Chrysene	16	
117-84-0	Di-n-octylphthalate	10	
205-99-2	Benzo(b)fluoranthene	14	
207-08-9	Benzo(k)fluoranthene	16	
50-32-8	Benzo(a)pyrene	15	
193-39-5	Indeno(1,2,3-cd)pyrene	17	
53-70-3	Dibenzo(a,h)anthracene	17	
191-24-2	Benzo(g,h,i)perylene	17	

CLIENT SAMPLE NO. 15LCMW01DWMS

Lab Name: Laucks Testing Labs Contract: ____ Run Sequence: R019691 SDG No.: CAB33 Matrix: (SOIL/WATER) <u>Water</u> Lab Sample ID: CAB33-002MS Lab File ID: <u>L0718009.D</u> Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u> Level: (LOW/MED) Date Collected: 06/21/2007 % Moisture: _____ Decanted: (Y/N) N____ Date Extracted: 06/25/2007 Date Analyzed: 07/18/2007 Concentrated Extract Volume: 1000 (uL) Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) <u>N</u> pH:_____ Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	15	
108-60-1	Bis(2-chloroisopropyl)ether	13	
108-95-2	Phenol	9.0	
111-44-4	Bis(2-Chloroethyl)ether	14	
95-57-8	2-Chlorophenol	8.1	
541-73-1	1,3-Dichlorobenzene	8.9	
106-46-7	1,4-Dichlorobenzene	9.0	
100-51-6	Benzyl alcohol	15	
95-50-1	1,2-Dichlorobenzene	9.3	
95-48-7	2-Methylphenol	1.4	
621-64-7	N-Nitroso-di-n-propylamine	16	
67-72-1	Hexachloroethane	8.9	
98-95-3	Nitrobenzene	16	
78-59-1	Isophorone	13	
88-75-5	2-Nitrophenol	3.2	J
105-67-9	2,4-Dimethylphenol	12	
65-85-0	Benzoic acid	3.3	J
111-91-1	Bis(2-chloroethoxy)methane	14	
120-83-2	2,4-Dichlorophenol	8.4	
120-82-1	1,2,4-Trichlorobenzene	8.9	
91-20-3	Naphthalene	10	
106-47-8	4-Chloroaniline	11	
87-68-3	Hexachlorobutadiene	7.9	
59-50-7	4-Chloro-3-methylphenol	14	
91-57-6	2-Methylnaphthalene	10	
77-47-4	Hexachlorocyclopentadiene	1.5	J

FORM I SV

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Testing Labs		Contract:		
SDG No.: CAB33		Run Sequence:		
Matrix: (SO	DIL/WATER) Water	Lab Sample ID: <u>CAB33-002MS</u>		
Sample wt/v	ol: <u>1060.0</u> (g/mL) <u>nul</u>	Lab File ID: <u>B0710000.D</u>		
Level: (LOW	/MED)	Date Collected: 06/21/2007		
% Moisture:	Decanted: (Y/N) N	Date Extracted:06/25/2007		
Concentrate	d Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007		
Injection V	olume:(uL)	Dilution Factor: <u>1.0</u>		
GPC Cleanup	p: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q	
88-06-2	2,4,6-Trichlorophenol	7.0		
95-95-4	2,4,5-Trichlorophenol	7.5		
91-58-7	2-Chloronaphthalene 11			
88-74-4	2-Nitroaniline	13		
131-11-3	Dimethylphthalate	14		
606-20-2	2,6-Dinitrotoluene	10		
208-96-8	Acenaphthylene	12		
99-09-2	3-Nitroaniline	13		
83-32-9	Acenaphthene	12		
51-28-5	2,4-Dinitrophenol	9.4	Ü	
100-02-7	4-Nitrophenol	4.7	U	
132-64-9	Dibenzofuran	13		
121-14-2	2,4-Dinitrotoluene	9.9		
84-66-2	Diethylphthalate	14		
86-73-7	Fluorene	14		
7005-72-3	4-Chlorophenyl-phenylether	14		
100-01-6	4-Nitroaniline	13		
534-52-1	4,6-Dinitro-2-methylphenol	4.7	U	
86-30-6	N-Nitrosodiphenylamine	11		
122-66-7	Azobenzene	16		
101-55-3	4-Bromophenyl-phenyl ether	14		
118-74-1	Hexachlorobenzene	14		
87-86-5	Pentachlorophenol	6.2		
85-01-8	Phenanthrene	15		
120-12-7	Anthracene	14		

86-74-8

84-74-2

206-44-0

Carbazole

Fluoranthene

Di-n-butylphthalate

16

13

16

CLIENT SAMPLE NO. 15LCMW01DWMS

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>CAB33-002MS</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718009.D
Level: (LOW/MED)	Date Collected: 06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	14	
85-68-7	Butylbenzylphthalate	8.3	
91-94-1	3,3'-Dichlorobenzidine	9.2	
56-55-3	Benzo(a) anthracene	14	
117-81-7	Bis(2-ethylhexyl)phthalate	10	
218-01-9	Chrysene	15	
117-84-0	Di-n-octylphthalate	7.5	
205-99-2	Benzo(b)fluoranthene	13	
207-08-9	Benzo(k)fluoranthene	14	
50-32-8	Benzo(a)pyrene	13	
193-39-5	Indeno(1,2,3-cd)pyrene	16	
53-70-3	Dibenzo(a,h)anthracene	16	
191-24-2	Benzo(g,h,i)perylene	16	

CLIENT SAMPLE NO. 15LCMW01DWMSD

Lab Name: Laucks Testing Labs Contract: -SDG No.: CAB33 Run Sequence: <u>R019691</u> Matrix: (SOIL/WATER) <u>Water</u> Lab Sample ID: CAB33-002MSD Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u> Lab File ID: L0718010.D Level: (LOW/MED) Date Collected: _____06/21/2007 _____ Date Extracted: 06/25/2007 % Moisture: _____ Decanted: (Y/N) <u>N</u>____ Date Analyzed: 07/18/2007 Concentrated Extract Volume: <u>1000</u> (uL) Injection Volume: 2.0 (uL) Dilution Factor: _____1.0 GPC Cleanup: (Y/N) <u>N</u> pH:_____ Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND CONCENTRATION UNITS: (ug/L or ug/kg) ug/		Q
300 20 4/		1.5	
108-39-4/	Biz (2. shlavaj several) shhar		
108-60-1	Bis(2-cntoroisopropy1)etner		· · · · · · · · · · · · · · · · · · ·
108-95-2	Phenol	9.1	
111-44-4	Bis(2-Chloroethyl)ether	12	
95-57-8	2-Chlorophenol	9.3	
541-73-1	1,3-Dichlorobenzene	7.0	
106-46-7	1,4-Dichlorobenzene	6.9	
100-51-6	Benzyl alcohol	13	
95-50-1	1,2-Dichlorobenzene	7.2	
95-48-7	2-Methylphenol	12	
621-64-7	N-Nitroso-di-n-propylamine	14	
67-72-1	Hexachloroethane	6.8	
98-95-3	Nitrobenzene	14	
78-59-1	Isophorone	12	
88-75-5	2-Nitrophenol	3.2	J.
105-67-9	2,4-Dimethylphenol	12	
65-85-0	Benzoic acid	3.1	J
111-91-1	Bis(2-chloroethoxy)methane	12	
120-83-2	2,4-Dichlorophenol	8.6	
120-82-1	1,2,4-Trichlorobenzene	6.7	
91-20-3	Naphthalene	8.1	
106-47-8	4-Chloroaniline	10	
87~68-3	Hexachlorobutadiene	6.1	
59-50-7	4-Chloro-3-methylphenol	11	l
91-57-6	2-Methylnaphthalene	7.9	
77-47-4	Hexachlorocyclopentadiene	4.7	υ

CLIENT SAMPLE NO. 15LCMW01DWMSD

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: <u>R019691</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MSD</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718010.D
Level: (LOW/MED)	Date Collected:06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	6.0	
95-95-4	2,4,5-Trichlorophenol	6.0	
91-58-7	2-Chloronaphthalene	8.1	
88-74-4	2-Nitroaniline	11	
131-11-3	Dimethylphthalate	12	
606-20-2	2,6-Dinitrotoluene	8.3	
208-96-8	Acenaphthylene	9.4	
99-09-2	3-Nitroaniline	10	
83-32-9	Acenaphthene	9.4	
51-28-5	2,4-Dinitrophenol	9.4	Ŭ
100-02-7	4-Nitrophenol	4.7	U
132-64-9	Dibenzofuran	10	
121-14-2	2,4-Dinitrotoluene	7.8	
84-66-2	Diethylphthalate	12	
86-73-7	Fluorene	11	
7005-72-3	4-Chlorophenyl-phenylether	11	
100-01-6	4-Nitroaniline	10	
534-52-1	4,6-Dinitro-2-methylphenol	4.7	U
86-30-6	N-Nitrosodiphenylamine	8.0	
122-66-7	Azobenzene	12	
101-55-3	4-Bromophenyl-phenyl ether	11	
118-74-1	Hexachlorobenzene	12	
87-86-5	Pentachlorophenol	5.3	
85-01-8	Phenanthrene	12	
120-12-7	Anthracene	11	
86-74-8	Carbazole	12	
8.4 - 74 - 2	Di-n-butylphthalate	11	
206-44-0	Fluoranthene	13	

.

FORM I SV

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB33	Run Sequence: R019691
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAB33-002MSD
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0718010.D
Level: (LOW/MED)	Date Collected: 06/21/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/25/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/18/2007
Injection Volume: 2.0 (uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	11	
85-68-7	Butylbenzylphthalate	6.9	
91-94-1	3,3'-Dichlorobenzidine	8.4	
56-55-3	Benzo(a)anthracene	11	
117-81-7	Bis(2-ethylhexyl)phthalate	7.7	
218-01-9	Chrysene	12	
117-84-0	Di-n-octylphthalate	6.0	
205-99-2	Benzo(b)fluoranthene	11	·
207-08-9	Benzo(k)fluoranthene	11	
50-32-8	Benzo(a)pyrene	10	
193-39-5	Indeno(1,2,3-cd)pyrene	13	
53-70-3	Dibenzo(a,h)anthracene	12	
191-24-2	Benzo(g,h,i)perylene	13	

Forms Summary

CAB33

Ordnance by Method 8330

2

WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB33

Run Sequence: R019636

		-	•		
(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	S3 () #	S4 () #	TOT OU T
(CAB33-005) 15LCMW02DW	79				0
(CAB33-004) 15LCMW02SW	94				0
(CAB33-002MSD) 15LCMW01DWMSD	103				0
(CAB33-002MS) 15LCMW01DWMS	100				0
(CAB33-002) 15LCMW01DW	102				0
(CAB33-001) 15LCMW01SW	78				0
(S062607HORWLG) S062607HORWLG	119				0
(B062607HORWLG) B062607HORWLG	80				0

QC LIMITS 60-140

Sl (DNT) = 3,4-Dinitrotoluene S2() =S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019636</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062607HORWLG</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
НМХ	20.0	21.0228	105	80-115
RDX	20.0	21.5036	108	50-160
1,3,5-Trinitrobenzene	20.0	17.5962	88	65-140
1,3-Dinitrobenzene	20.0	17.771	89	45-160
Nitrobenzene	20.0	17.8355	89	50-140
Tetryl	20.0	16.0464	80	20-175
2,4,6-Trinitrotoluene	20.0	18.691	93	50-145
4-Amino-2,6-dinitrotoluene	20.0	17.92	90	55-155
2-Amino-4,6-dinitrotoluene	20.0	17.8793	89	50-155
2,6-Dinitrololuene	20.0	16.1231	81	60-135
2,4-Dinitrotoluene	20.0	16.4553	82	60-135
2-Nitrotoluene	20.0	14.9209	75	45-135
4-Nitrotoluene	20.0	15.4368	77	50-130
3-Nitrotoluene	20.0	14.7105	74	50-130

Column to be used to flag recovery and RPD values with an asterisk \ast Values outside of QC limits

Spike Recovery: _ 0_ out of _ 14_ outside limits

COMMENTS:

3

WATER ORDNANCE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
MS Run Sequence: <u>R019636</u> MSD Run Sequenc	e: R019636 SDG No.: CAB33
MS Client Sample No.: <u>15LCMW01DWMS</u>	MSD Client Sample No.: <u>15LCMW01DWMSD</u>
MS Lab Sample ID:CAB33-002MS	MSD Lab Sample ID: <u>CAB33-002MSD</u>
Level: N/A	Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD		QC L	IMITS
COMPOUND	CONC	SPIKE ADDED	CONC	% REC #	SPIKE ADDED	CONC	% REC #	%RPD #	RPD	REC.
HMX	C	19.0	15.5043	81	19.0	14.8934	78 *	4	30	80-115
RDX	0	19.0	16.7654	88	19.0	15.9934	84	5	30	50-160
1,3,5-Trinitroben zene	0	19.0	14.3878	76	19.0	13.4953	71	6	30	65-140
1,3-Dinitrobenzen e	0	19.0	14.5276	76	19.0	13.5394	71	7	30	45-160
Nitrobenzene	0	19.0	14.2693	75	19.0	13.1979	69	8	30	50-140
Tetryl	0	19.0	12,8332	67	19.0	12.0228	63	7	30	20-175
2,4,6-Trinitrotol uene	0	19.0	14.354	75	19.0	13.4878	71	6	30	50-145
4-Amino-2,6-dinit rotoluene	0	19.0	14.5157	76	19.0	13.711	72	6	30	55-155
2-Amino-4,6-dinit rotoluene	0	19.0	14.54	76	19.0	13.7193	72	6	30	50-155
2,6-Dinitrotoluen e	0	19.0	13.0407	68	19.0	12.2477	64	6	30	60-135
2,4-Dinitrotoluen e	0	19.0	13.285	70	19.0	12.4452	65	7	30	60-135
2-Nitrotoluene	0	19.0	12.024	63	19.0	11.1032	58	8	30	45-135
4-Nitrotoluene	0	19.0	12.4413	65	19.0	11.4674	60	8	30	50-130
3-Nitrotoluene	0	19.0	11.8511	62	19.0	10.8953	57	8	30	50-130

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits @ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: 0 out of 14 outside limits Spike Recovery: 1 out of 28 outside limits

COMMENTS:

ORDNANCE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Lab	Contract: <u>N/A</u>						
Lab Sample ID: <u>B062607HORWLG</u>			SDG No.: <u>CAB33</u>				
Matrix: (SOIL/WATER) <u>Water</u>	Dat	Date Prepared: 06/26/2007					
Lab File ID (1): <u>062807.b-06280704.D</u>			Lab File ID (2): <u>F71207A,b-F7120751.D</u>				
Date Analyzed (1): 06/28/200)7	Dat	e Analyzed (2):			
Time Analyzed (1): <u>13:19</u>		Tim	e Analyzed (2):			
Instrument ID (1): HPLC5 (Os	scar)	Ins	trument ID (2): <u>HPLC5 (Oscar)</u>			
Column(1): Allure C18	ID <u>: 4.60 (</u>	(mm) Co	lumn(2): <u>Syne</u>	ergi - EtPH	ID: <u>4.60</u> (mm		
THIS METHOD BLANK	APPLIES TO THE FO	LLOWIN	G SAMPLES AND	QC SAMPLES:			
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE		
15LCMW01SW	CAB33-001	1	O6280718.D	06/28/2007 22:39	R019636		
		2					
15LCMW01DW	CAB33-002	1	O6280719.D	06/28/2007 23:19	R019636		
		2					
15LCMW02SW	CAB33-004	1	O6280723.D	06/29/2007 01:59	R019636		
		2					
15LCMW02DW	CAB33-005	1	O6280724.D	06/29/2007 02:39	R019636		
-		2					
15LCMW01DWMS	CAB33-002MS]	O6280720.D	06/28/2007 23:59	R019636		
		2					
15LCMW01DWMSD	CAB33-002MSD	1	O6280721.D	06/29/2007 00:39	R019636		

2

1

O6280705.D

F7120752.D

S062607HORWLG

S062607HORWLG

R019636

R019636

06/28/2007 13:59

07/13/2007 18:40

CLIENT SAMPLE NO.

15LCMW01SW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019636</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-001</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280718.D
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/21/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: 5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume: _50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	υ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280719.D
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/21/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	σ
99-35-4	1,3,5-Trinitrobenzene	0.48	ΰ
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nítrobenzene	0.48	υ
479-45-8	Tetryl	0.48	υ
118-96-7	2,4,6-Trinitrotoluene	0.48	Ū
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	Ŭ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	ប
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	Ŭ
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-004</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280723.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

CLIENT SAMPLE NO.

15LCMW02DW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: <u>CAB33</u>	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAB33-005
Sample wt/vol: 1030.0 (g/mL) mL	Lab File ID: 06280724.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: _50.0(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.49	U
121-82-4	RDX	0.49	U
99-35-4	1,3,5-Trinitrobenzene	0.49	U
99-65-0	1,3-Dinitrobenzene	0.49	ប
98-95-3	Nitrobenzene	0.49	U
479-45-8	Tetryl	0.49	U
118-96-7	2,4,6-Trinitrotoluene	0.49	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.49	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.49	U
606-20-2	2,6-Dinitrotoluene	0.49	U
121-14-2	2,4-Dinitrotoluene	0.49	U
88-72-2	2-Nitrotoluene	0.49	ប
99-99-0	4-Nitrotoluene	0.49	Ü
99-08-1	3-Nitrotoluene	0.49	U

Comments:

FORM I ORD

RSD - Relative Standard Deviation.

 ${\tt CF}$ - Calibration Factor (response divided by concentration).

02/28/2007 09:10

Page 1

ICAL Linearity Summary v2.0

Compound I mevil 1 Level 2 Level 3 Level 4 Level 5 Anne C7 Association 12 2.4 Diritrocolume 8 390000 8 800000 9 100000 9 100000 9 000	Compound Lavel 1 Lavel 2 Level 3 Lavel 4 Javel 5 Nus Cr Nus Cr <thn< th=""><th>Compound Longl 1 1.0001 2 1.0001 3 1.0001 4 1.0001 4 1.0001 5 2.000 0 3.0000 1 3.0000 1 3.0000 0 </th><th>Page 2</th><th></th><th></th><th></th><th>IY V2.0</th><th>Linearity Summa</th><th>ICAL</th><th></th><th>128/2007 02:10</th><th>02</th></thn<>	Compound Longl 1 1.0001 2 1.0001 3 1.0001 4 1.0001 4 1.0001 5 2.000 0 3.0000 1 3.0000 1 3.0000 0	Page 2				IY V2.0	Linearity Summa	ICAL		128/2007 02:10	02
Compound Favol 1 Level 2 Havel 3 Lavel 4 Lutel 5 Xou CF Name 12.4.FUNITECOLUENE 1 9.00000 0.00000 0.130000 9.130000 0.00000 <td0< td=""><td>Compound Lavel 1 Lavel 2 Lavel 3 Lavel 4 Lavel 5 Ave CV 4880 12 2.4 -Elutrocolume 0.900000 0.90000 0.90000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.90000 0.9</td><td>Compound Levol 1 Lawl 2 Level 3 Livel 4 Lawl 5 Acr scsp 113 2.4 Duttroclume 1.5.0000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 1.5.0000</td><td></td><td>·</td><td></td><td></td><td></td><td></td><td>entration).</td><td>divided by conce</td><td>Calibration Factor (response - Relative Standard Deviation.</td><td>CF - RSD</td></td0<>	Compound Lavel 1 Lavel 2 Lavel 3 Lavel 4 Lavel 5 Ave CV 4880 12 2.4 -Elutrocolume 0.900000 0.90000 0.90000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.90000 0.9	Compound Levol 1 Lawl 2 Level 3 Livel 4 Lawl 5 Acr scsp 113 2.4 Duttroclume 1.5.0000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 1.5.0000		·					entration).	divided by conce	Calibration Factor (response - Relative Standard Deviation.	CF - RSD
Compound Level 1 Jevel 2 Javel 3 Lavel 4 Lovel 5 Ave CF 453 15 2.4-Dintrocoluene 1 3.50000 1.320000 9.128000 19.447000 19.0114 1.011 1.011 15 2.4-Dintrocoluene 1 3.50000 1.320000 1.48000 19.443000 19.014000 19.014000 19.014000 19.014400	Compound [Level 1 Jevel 2 [Level 3 [Level 4 [Level 5 [Ave CF	Compound [Level 1] Level 2 Level 4 Level 4 Level 5 Ave CF Asso 12 2.4 Dintroclume 1 5.0000 1.4000 1.54000 1.5400 1.59000 1.59100 2.51100 1.59100 2.51100 1.59100 1.59100 2.51100 1.59100 2.51100 <td></td>										
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF 4RD 15 2.4-Dintrocoluene 0.50000 0.630000 0.51000 0.51000 0.51000 0.55000 0.51500 0.	Compound I Level 1 I Level 2 I Level 3 I Level 6 I Level 5 Ave CF 4 R3D 15 2.4 -Dinitrocoluene 1 3.50000 3.830000 3.940000 3.040000 1.59000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 1.590000 <	Compound Level 1 Lavel 2 Lavel 3 Level 4 Level 5 No. CF Asp 15 2.4-Dinitroclueme 1 0.960000 1 1.96000 1 1.96000 1.96000 1.96000 1.96000 1.97000 </td <td></td>										
Compound Level 1 Level 2 Level 3 Level 4 Level 4 Level 5 Ave CF ARSD 15 2.4-Dinitrocluene ====================================	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CP 4R5D 15 2.4 Dinitrotoluene 8.990000 8.930000 9.198000 8.947000 9.015400 8.994080 1.5 16 2.4 Dinitrotoluene 2.50000 3.480000 3.159000 3.50400 3.50400 1.5 13 3.41trotoluene 3.00000 3.260000 3.459000 3.50400 3.50440 1.5 13 3.41trotoluene 3.00000 5.570000 5.55000 5.578200 3.56440 1.7 14 3.401trotoluene 5.880000 5.726000 5.578200 5.61840 2.5 10 3.4-Dinitrotoluene 5.880000 5.726000	Compound [Level 1 Level 2] Level 3 Level 4 Lavel 5 Ne CF 4550 15 2.4-Dinitrotoluene 0.980000 8.830000 9.198000 8.447000 9.015400 8.594000 1.5 15 2.4-Dinitrotoluene 0.300000 2.59000 2.650000 2.659000 2.659000 2.659400 1.5 16 3.4-Dinitrotoluene 0.300000 2.59000 3.246000 3.453000 3.59400 2.59400 1.5 16 3.4-Dinitrotoluene 0.30000 3.59000 3.269000 3.195000 3.59400 2.5 16 3.4-Dinitrotoluene 0.30000 3.59000 3.246000 3.195000 3.195000 3.195000 3.19500 2.5 10 3.4-Dinitrotoluene 0.56000 5.57000 5.776000 5.573200 5.651340 2.5 Average RSD : 2.1 Average RSD : 2.1										
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF 4RSD 15 2.4-Dinitrotoluene 0.960000 0.980000 9.198000 0.947000 9.015400 0.940800 1.5 16 2-Mitrotoluene 0.960000 0.948000 0.946000 0.950400 0.950400 0.950400 1.5 10 2-Mitrotoluene 0.90000 2.590000 0.948000 0.950400 0.950400 1.5 10 3-Mitrotoluene 5.880000 5.770000 5.726000 5.578200 5.661840 2.5 Average RSD : 5.880000 5.770000 5.726000 5.578200 5.661840 2.5	Compound I Level 1 J Level 2 I Level 3 J Level 4 I Level 5 Ave CF KSD ************************************	Laucks Testing Labs Initial Calibration Linearity Summary Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CP 4RSD 15 2.4-Dinitrocoluene 0.990000 0.910000 0.910000 0.910000 0.910000 0.91000 0.90000 0.91000 0.90000 0.91000 <td></td>										
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF &RSD 15 2.4-Dinitrotoluene ####################################	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Laucks Testing Labs Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF %RSD 15 2.4-Dinitrotoluene 8.830000 9.198000 8.947000 9.015400 8.994000 1.5 16 2.4-Dinitrotoluene 3.540000 3.2480000 3.248000 3.503400 3.503400 1.5 18 3.40100 3.090000 3.248000 3.195000 3.195000 3.198400 2.5 10 3.4-Dinitrotoluene 5.880000 5.726000 5.578200 5.661840 2.5 10 3.4-Dinitrotoluene 5.880000 5.726000 5.578200 5.661840 2.5								CT	Amount = Response divided by	
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD ####################################	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF %RSD ####################################	Laucks Testing Labs Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF &ssp 15 2.4-Dinitrotoluene 8.980000 8.830000 9.198000 8.947000 9.015400 8.994080 1.5 16 2-Nitrotoluene 3.540000 3.480000 3.546000 3.546000 3.546000 3.564800 1.5 18 3-Mitrotoluene 3.300000 3.530000 3.159000 3.159000 3.198400 2.5 10 3.4-Dinitrotoluene 5.880000 5.726000 5.578200 5.65840 2.5		2.1		5 A 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					Average RSD :	
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD ####################################	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD ####################################	Laucks Testing Labs Initial Calibration Linearity Summary Compound Level 2 Level 3 Level 5 Ave CF %RSD IS 2.4-Dinitrotoluene 8.980000 9.198000 8.947000 9.015400 8.994080 1.5 16 2-Nitrotoluene 8.960000 3.480000 3.482000 3.503400 3.506480 1.0 17 4-Nitrotoluene 2.700000 2.590000 2.682000 2.659800 2.650160 1.7 18 3-Nitrotoluene 3.000000 3.248000 3.159000 3.159000 3.199400 2.650160 1.7 18 3-Nitrotoluene 3.300000 3.090000 3.159000 3.159000 3.199400 3.199400 3.94400			5.661840	5.578200	5.555000 5	5.726000 9	5.570000	5.880000	0 3,4-Dinitrotoluene	10
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF %RSD ====================================	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF &RSD ====================================	Laucks Testing Labs Initial Calibration Linearity Summary Compound Level 1 Level 2 Level 3 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 Level 4 Level 5 Ave CF %RSD S 2,4-Dinitrotoluene 8.980000 3.540000 3.540000 3.540000 3.540000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000 3.540000 3.546000		2 I.7	2.650160 3.198400	195000 195000	3.129000 3	3-248000	3.000000	3,300000	8 3-Mitrotoluene	J.
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD ####################################	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD ####################################	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF %RSD 15 2,4-Dinitrotoluene 8.9980000 8.830000 9.198000 8.947000 9.015400 8.994080 1.5		1.0	3,506480	3.503400	3.463000 3	3.546000 .	3.4800000	3.540000	6 Z-Nitrotoluene 7 4-Nitrotoluene	L L
Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF &RSD	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF \$RSD	Laucks Testing Labs Initial Calibration Linearity Summary Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CF &RSD			080766-8	9.015400	8.947000 9	9.198000	8,830000	8.980000	5 2,4-Dinitrotoluene	نىر : مى
		Laucks Testing Labs Initial Calibration Linearity Summary		RSD	Ave CF		Level 4 (I	Level 3	Level 2	Level 1	Compound	
					rv	Summa	Linearit	libration	nitial Ca	H		

SUM - 92

Level 4: //ceres/labdata/l Level 5: //ceres/labdata/l	nplc/oscar nplc/oscar nplc/oscar	/oscar.i /oscar.i /oscar.i /oscar.i /oscar.i	/022707.1 /022707.1 /022707.1 /022707.1 /022707.1	5/0227070 5/0227070 5/0227070 5/0227070 5/0227070	98.00 .00 .00	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
	* *****					4.690
	4.69	4,69	4.69	4.07	4.69	
I HMX 4 MNX	4.69		4.69 7.08	7.08	4.69	7,089
1 HMX 4 MNX 5 RDX	4.69 7.09 8.36	4.69 7.09 8.36	4.69 7.08	8.35	4.69 7.09 8.36	7,089
1 HMX 4 MNX 5 RDX 6 l,3,5-Trinitrobenzene	4.69 7.09 8.36 1.2.11	4.69 7.09 8.36 12.13	4.69 7.08 8.35 12.12	+.07 7.08 12.12	4.69 7.09 8.36 12.13	7.089 8.358 12.125
<pre> I HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene</pre>	4.69 7.09 8.36 12.11 15.02	4.69 7.09 8.36 12.13 15.08	4.69 7.08 8.35 12.12	7.08 9.35 12.12 15.07	4.69 7.09 8.36 12.13 15.07	7,089 8.358 12.125 15.057
<pre> 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1</pre>	4.69 7.09 8.36 12.11 15.02 17.11	4.69 7.09 8.36 12.13 15.08 17.22	4.69 7.08 8.35 12.12 15.05 17.17	7.08 7.08 12.12 15.07 17.20	4.69 7.09 8.36 12.13 15.07 17.20	7.089 8.358 12.125 15.057 17.180
<pre> 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1 9 Nitrobenzene</pre>	4.69 7.09 8.36 12.11 15.02 17.11 17.67	4.69 7.09 8.36 12.13 15.08 17.22 17.75	4.69 7.08 8.35 12.12 15.05 17.17 17.71	7.08 9.35 12.12 15.07 17.20 17.73	4.69 7.09 8.36 12.13 15.07 17.20	7.089 8.358 12.125 15.057 17.180 17.715
<pre>1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1 9 Nitrobenzene 11 2,4,6-Trinitrotoluene</pre>	4.69 7.09 8.36 1.2.11 1.2.11 1.5.02 1.7.11 1.7.67 20.61	4.69 7.09 8.36 12.13 15.08 17.22 17.75 17.75 20.72	4.69 7.08 8.35 12.12 15.05 17.17 17.17 17.71	7.08 7.08 12.12 15.07 17.20 17.73 17.73	4.69 7.09 8.36 12.13 15.07 17.20 17.20 17.72	7.089 8.358 12.125 15.057 17.180 17.715 17.715
<pre>1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1 9 Mitrobenzene 11 2,4,6-Trinitrotoluene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene</pre>	4.69 7.09 8.36 12.11 12.11 15.02 1.7.11 17.67 1.7.67 20.61 21.54	4.69 7.09 8.36 12.13 15.08 17.22 17.75 17.75 20.72 21.72	4.69 7.08 8.35 12.12 15.05 17.17 17.17 17.71 17.71 20.65	7.08 7.08 12.12 12.12 15.07 17.20 17.73 17.73 17.73 20.69	4.69 7.09 8.36 12.13 15.07 17.20 17.72 20.68 21.66	7.089 8.358 12.125 15.057 17.180 17.715 17.715 20.670 21.640
<pre> I HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetry1 9 Mitrobenzene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene 13 2-Amino-4,6-Dinitrotoluene</pre>	4.69 7.09 8.36 1.2.1.1 1.2.1.1 1.2.1.1 1.5.02 1.7.11 1.7.67 1.7.67 20.61 2.2.54 2.2.67	4.69 7.09 8.36 12.13 15.08 17.22 17.75 20.72 21.72 21.72 22.84	4.69 7.08 8.35 12.12 15.05 17.17 17.17 17.71 20.65 21.61	7.08 7.08 12.12 15.07 17.73 17.73 20.69 21.67 21.67 22.80	4.69 7.09 8.36 12.13 15.07 17.20 17.72 20.68 21.66 21.66	7.089 8.358 12.125 15.057 17.180 17.715 17.715 20.670 21.640 22.760

Retention times are expressed as minutes.

02/28/2007 09:10

ICAL RT Summary v2.0

Page لبر

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Retention Time Summary

Sublist Column Size Column Method File Cal Curve Type: Quant Method : End Cal Date : Start Cal Date: Integrator •• •• .. •• • • 27-FEB-2007 12:35 27-FEB-2007 15:15 Average CF C18 \/ceres/labdata/hplc/oscar/Oscar.i/O22707.b/8330FEB2707.m
8330MNX.sub ESTD HP Genie 0m L - 4.60mm ID

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Ave RT
ᅶᅆᅭᅭᅭᄵᇮᇾᇾᇾᇾᇾᇾᇾᇾᇾᇾᇾᇾᇗᇗᇿᅳᆣᅆᅸᇉᇾᇾᇭᇗᇗᅭᇗᇗ				*******	*****	
15 2,4-Dinitrotoluene	24.97	25.08	24.98	25.04	25.02	25.019
16 2-Mitrotoluene	30.36	30.41	30.32	30.37	30.38	30.36
17 4-Witrotoluene	33.08	33.09	33.02	33.08	33.07	33.06
18 3-Nitrotoluene	35.60	35.59	30-53	35,60	35.62	35.589
10 3,4-Dinitrotoluene	18.40	18.51	18.45	18.48	18.48	18.46

Retention times are expressed as minutes.

02/28/2007 09:10

ICAL RT Summary v2.0

Page 2

Sublist Start Cal Date: Level Calibration Files: Column Size Column Method File Quant Method End Cal Date Level Level Level Integrator Cal Curve Type: Level 12 4-Amino-2,6-Dinitrotoluene 14 2,6-Dinitrotoluene 13 2-Amino-4,6-Dinitrotoluene 11 2,4,6-Trinitrotoluene G ω $\overline{\gamma}$ σ ப ÷ μ . HMX Nitrobenzene RDX MNX Tetryl 1,3-Dinitrobenzene 1,3,5-Trinitrobenzene ω 2: ⊢۔۔' • • • 4÷ ហ •• Compound /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D 8T0 Average CF HP Genie 27-FEB-2007 27-FEB-2007 8330MNX.sub ESTD 0m L - 4.60mm ID \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m 15:15 12:35 Level 1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 Level 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Level 3 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 Level 4 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 5000.00 5000.00 Level 5 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page ц

Initial Calibration Amounts

Summary

Laucks Testing Labs
Initial	
Calik	Lauch
oratio	s Tes
on Ame	sting
stunc	Labs
Summary	

Start Cal Date: End Cal Date :	27-FEB-2007 12:35 27-FEB-2007 15:15
Quant Method :	ESTD
Cal Curve Type:	Average CF
Integrator :	HP Genie
Method File :	<pre>\/ceres/labdata/hplc/oscar/Oscar.i/022707.b/8330FEB2707.</pre>
Sublist :	8330MNX.sub
Column :	C18
Column Size :	0m L - 4.60mm ID
Column Size :	0m L - 4.60mm 1D

Compound	Level 1	Level 2	Level 3	Level 4	Level 5
알 잘 하는 것 못 많 못 수 눈을 다 있다. 또 한 다 다 자 자 다 드 드 산 밖 있 봐 해 봐 봐 두 뒤 다 다 그 그			****		
15 2,4-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
16 2-Nitrotoluene	50.00	1.00.00	500.00	1000.00	5000.00
17 4-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
18 3-Nitrotoluene	50.00	100.00	500.00	1000.00	5000.00
10 3,4~Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page N

vevel 1: //ceres/labdata/ vevel 2: //ceres/labdata/ vevel 3: //ceres/labdata/ vevel 4: //ceres/labdata/	hplc/oscar/0 hplc/oscar/0 hplc/oscar/0 hplc/oscar/0	scar.i/0 scar.i/0 scar.i/0 scar.i/0	22707.b/c 22707.b/c 22707.b/c 22707.b/c 22707.b/c)2270705.D)2270706.D)2270707.D)2270707.D)2270708.D
	Level 1 Le	evel 2 Le	vel 3 Leve	el 4 Level 1
Compound			====== 5.0000 10458	
Compound	560.00000 106	9.0000 533	4 NNNN 9535	.000 51487.00
Compound 1 HMX 4 MNX	560.00000 106 518.00000 973	9.0000 533 .00000 491	H·0000 (JUA0-	0000 47457.00
Compound 1 HMX 4 MNX 5 RDX	518.00000 106 518.00000 973 400.00000 768	9.0000 533 .00000 491 .00000 386	5.0000 7591.	.000 51487.00 0000 47457.00 0000 37440.00
Compound 1 HMX 4 MNX 5 RDX 6 l, 3, 5-Trinitrobenzene	560.00000 106 518.00000 973 400.00000 768 698.00000 131	(9.0000 533 1.00000 491 1.00000 386 1.00000 681	5.0000 7591. 9.0000 13283	000 51487.00 0000 47457.00 0000 37440.00 000 66372.00
Compound 1 HMX 4 MNX 5 RDX 6 l,3,5-Trinitrobenzene 7 l,3-Dinitrobenzene	518.00000 106 518.00000 973 400.00000 768 698.00000 131 762.00000 1445	9.0000 533 00000 491 00000 386 00000 681 .8.0000 681 .4.0000 755	5.0000 7591. 9.0000 13283 4.0000 14689	000 \$1487.00 0000 47457.00 0000 37440.00 000 66372.00 000 74379.01
Compound 1 HMX 4 MNX 5 RDX 6 l,3,5-Trinitrobenzene 7 l,3-Dinitrobenzene 8 Tetryl	518.00000 106 518.00000 973 400.00000 768 698.00000 131 762.00000 145 357.00000 684	9.0000 533 1.00000 491 1.00000 386 8.0000 681 8.0000 755 14.00000 355	5.0000 7591. 9.0000 13283 4.0000 14689 8.0000 6929.	.000 51487.00 0000 47457.00 0000 37440.00 .000 66372.00 .000 74379.00 0000 34385.00
Compound 1 HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene	560.00000 106 518.00000 973 400.00000 768 698.00000 131 762.00000 145 357.00000 684 433.00000 828	9.0000 533 .00000 491 .00000 386 .00000 681 8.0000 681 .00000 755 .00000 355	5.0000 7591. 9.0000 7591. 4.0000 13283 4.0000 14689 8.0000 6929. 6.0000 8494.	000 51487.00 0000 47457.00 0000 37440.00 000 66372.00 000 74379.00 0000 34385.00 0000 43265.00
Compound HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene 11 2,4,6-Trinitrotoluene	560.00000 106 518.00000 973 400.00000 768 698.00000 131 762.00000 145 357.000000 684 433.00000 6828 415.00000 788	9.0000 533 .00000 491 .00000 386 .8.0000 681 .4.00000 755 .00000 355 .00000 435	5.0000 7591. 9.0000 7591. 4.0000 13283 4.0000 14689 8.0000 6929. 6.0000 8494. 3.0000 7946.	000 51487.00 0000 47457.00 0000 37440.00 000 66372.00 000 66372.00 0000 74379.00 0000 34385.00 0000 43265.00
Compound I HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Nitrobenzene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene	560.00000 106 518.00000 973 698.00000 768 762.00000 131 357.00000 145 433.00000 684 433.00000 684 415.00000 788	9.0000 533 .00000 491 .00000 386 .0000 681 .4.0000 755 .00000 355 .00000 435 .00000 435 .00000 435	5.0000 7591. 9.0000 7591. 4.0000 13283 4.0000 6929. 6.0000 8494. 3.0000 8494. 3.0000 7946. 8.0000 5726.	
Compound HMX 4 MNX 5 RDX 6 1,3,5-Trinitrobenzene 7 1,3-Dinitrobenzene 8 Tetryl 9 Witrobenzene 11 2,4,6-Trinitrotoluene 12 4-Amino-2,6-Dinitrotoluene 13 2-Amino-4,6-Dinitrotoluene	560.00000 106 518.00000 973 698.00000 768 762.00000 131 762.00000 145 357.00000 684 433.00000 684 435.00000 788 415.00000 767 392.00000 767	9.0000 533 .00000 491 .00000 386 .0000 681 .8.0000 755 .00000 355 .00000 435 .00000 415 .00000 410 .00000 397	5.0000 7591. 9.0000 7591. 4.0000 1.3283 4.0000 1.4689 8.0000 6929. 6.0000 8494. 3.0000 7946. 8.0000 7946. 1.0000 7738.	

Response is in Height units.

02/28/2007 09:11 ICAL Responses Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Response Summary

02/28/2007 09:11	Response is in Height un:	 <pre>15 2,4-Dinitrotoluene 16 2-Nitrotoluene 17 4-Nitrotoluene 18 3-Nitrotoluene 10 3,4-Dinitrotoluene</pre>	Compound	Start Cal Date: 27-FEB-20 End Cal Date : 27-FEB-20 Quant Method : ESTD Cal Curve Type: Average C Integrator : HP Genie Method File : \\ceres\L Sublist : 8330MNX.sn Column Size : 0m L - 4
ICAL Responses Summary v2.0		449.00000 883.00000 4599.0000 8947.0000 45077. 177.00000 348.00000 1773.0000 3463.0000 17517. 135.00000 259.00000 1341.0000 2619.0000 13299. 165.00000 309.00000 1624.0000 3159.0000 15975. 294.00000 557.00000 2863.0000 555.0000 27891.	Level 1 Level 2 Level 3 Level 4 Level	07 12:35 07 15:15 F abdata\hplc\oscar\Oscar.i\022707.b\83: ub
Page 2				30FEB2707.m

anna an marain is datastinas an sa

Laucks Testing Labs Initial Calibration Response Summary

Laucks Testing Laboratories, Inc.

*** PROJECTED **	**	*** ANALYSES ***				
Analyte(s)	Target	Reference	Amount	Percent	%D	
	Conc.	Solution	Quanted	of Target		
	ng/mL		ng/mL		·	
НМХ	2000	HPLC11512/11510	2002.8	100	0	
MNX	2000	EX10-82-6	2008,8	100	0	
RDX	2000	HPLC11512/11510	2016.2	101	1	
1,3,5-Trinitrobenzene	2000	HPLC11512/11510	2075,0	104	4	
1,3-Dinitrobenzehe	2000	HPLC11512/11510	1993,1	100	0	
Tetryl	2000	HPLC11512/11510	2159,2	108	8	
Nitrobenzene	2000	HPLC11512/11510	1956.9	98	2	
2,4,6-Trinitrotoluene	2000	HPLC11512/11510	2131.2	107	7	
4-Amino-2,6-dinitrotoluene	2000	HPLC11512/11510	2018.8	101	1	
2-Amino-4,6-dinitrotoluene	2000	HPLC11512/11510	1966.3	98	2	
2,6-Dinitrotoluene	2000	HPLC11512/11510	2041,9	102	2	
2,4-Dinitrotoluene	2000	HPLC11512/11510	2001,6	100	0	
2-Nitrotoluene	2000	HPLC11512/11510	1991.7	100	0	
4-Nitrotoluene	2000	HPLC11512/11510	2023.3	101	1	
3-Nitrotoluene	2000	HPLC11512/11510	2002,6	100	0	

Calibration Standard Verification for Initial Calibration 8330 02/27/07)

Initial: Date analyzed: MY 2/27/07

o:\mssv\ORDICV,xls

SUM - 99 Page 1 of 1

Data File	;	//ceres/labdata/hplc/	oscar/Oscar.i,	/062807.b/06280703.D
Injection Date	:	28-JUN-2007 12:31		
Sample Info	:	STD04 1000PPB METHOD	8330	
Misc. Info	:	ICV		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID

			Average	ICV	
Compound	RT	RT Window	CF	CF	%D Flag
НМХ	4.58 #	4.33 - 4.83	10.66308	9.849000	7.6
RDX	8.04 #	7.79 - 8.29	7.697800	7.344000	4.6
1,3,5-Trinitrobenzene	11.63 #	11.38 - 11.88	13.46708	13.42300	0.3
1,3-Dinitrobenzene	14.40 #	14.15 - 14.65	14.89056	14.73200	1.1
Tetryl	16.20 #	15.95 - 16 .45	6.980400	6.995000	-0.2
Nitrobenzene	16.94 #	16.69 - 17.19	8.559800	8.535000	0.3
3,4-Dinitrotoluene	17.40 #	17.15 - 17.65	5.661840	6.370000	-12.5
2,4,6-Trinitrotoluene	19.66 #	19.41 - 19.91	8.058800	7.572000	6.0
4-Amino-2,6-Dinitrotoluene	20.47 #	20.17 - 20.77	5.775680	5.955000	-3.1
2-Amino-4,6-Dinitrotoluene	21.58 #	21.28 - 21.88	7.774920	7.875000	-1.3
2,6-Dinitrotoluene	22.88 #	22.59 - 23.17	5.200600	5.292000	-1.8
2,4-Dinitrotoluene	23.79 #	23.50 - 24.08	8.994080	9.090000	-1.1
2-Nitrotoluene	28.81 #	28.45 - 29.17	3.506480	3.598000	-2.6
4-Nitrotoluene	31.35 #	30.95 - 31.75	2.650160	2.743000	-3.5
3-Nitrotoluene	33.73 #	33.29 - 34.17	3.198400	3.308000	-3.4

Calibration Factor (CF) = Response divided by Concentration

Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ceres/lak : 28-JUN-2007 : STD04 1000F : Method 8330 : STD04 1000F : Oscar.i : 8330FEB2707 : ESTD : 1.00 : C18	odata/hplc/o 7 19:19 PPB PPB 7.m	scar/Oscar. Dient ID Derator Sublist Integrator Sample Type Column Size	.i/062807. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB : 0.25m	b/0628071. 16-8 20X Le L- 4.60mm	3.D
Compound	RT	RT Window	Average 7 CF	Continuing CF) %D Flag	_
HMX	4.58	4.33 - 4	83 10.66308	9.887000	7.3	=
RDX	8.02	7.79 - 8.	29 7.697800	7.414000	3.7	
1,3,5-Trinitrobenzene	e 11.60	11.38 - 11.	88 13.46708	13.65800	-1.4	
1,3-Dinitrobenzene	14.35	14.15 - 14.	65 14.89056	14.91600	-0.2	
Tetryl	16.12	15.95 - 16.	45 6.980400	7.088000	-1.5	
Nitrobenzene	16.87	16.69 - 17.	19 8.559800	8.607000	-0.6	
3,4-Dinitrotoluene	17.31	17,15 - 17.	65 5.661840	6.578000	-16.2	
2,4,6-Trinitrotoluene	e 19.57	19.41 - 19.	91 8.058800	7.593000	5.8	
4-Amino-2,6-Dinitroto	oluene 20.31	20.17 - 20.	77 5.775680	6.017000	-4.2	
2-Amino-4,6-Dinitroto	oluene 21.41	21.28 - 21.	88 7.774920	7.878000	-1.3	
2,6-Dinítrotoluene	22.77	22.59 - 23.	17 5.200600	5.250000	-0.9	
2,4-Dinitrotoluene	23.67	23.50 - 24.	08 8.994080	9.110000	-1.3	
2-Nitrotoluene	28.69	28.45 - 29.	17 3.506480	3.620000	-3.2	
4-Nitrotoluene	31.20	30.95 - 31.	75 2.650160	2.778000	-4.8	
3-Nitrotoluene	33.56	33.29 - 34.	17 3.198400	3.348000	-4.7	

Calibration Factor (CF) = Response divided by Concentration

Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

Data File	:	//ceres/labdata/hplc/d	oscar/Oscar.i	/062807.b/06280722.D
Injection Date	:	29-JUN-2007 01:19		
Sample Info	:	STD04 1000PPB		
Misc. Info	:	Method 8330		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID

_			Average	Continuing	
Compound	RT	RT Window	CF.	CF	%D Flag
НМХ	4.58	4.33 - 4.83	10.66308	9.959000	6.6
RDX	8.02	7.79 - 8.29	7.697800	7.397000	3.9
1,3,5-Trinitrobenzene	11.61	11.38 - 11.88	13.46708	13.69000	-1.7
1,3-Dinitrobenzene	14.36	14.15 - 14.65	14.89056	15.06300	-1.2
Tetryl	16.13	15.95 - 16.45	6.980400	7.171000	-2.7
Nitrobenzene	16.88	16.69 - 17.19	8.559800	8.615000	-0.6
3,4-Dinitrotoluene	17.31	17.15 - 17.65	5.661840	6.628000	-17.1
2,4,6-Trinitrotoluene	19.57	19.41 - 19.91	8.058800	7.690000	4.6
4-Amino-2,6-Dinitrotoluene	20.32	20.17 - 20.77	5.775680	6.102000	-5.6
2-Amino-4,6-Dinitrotoluene	21.43	21.28 - 21.88	7,774920	7.973000	-2.5
2,6-Dinitrotoluene	22.78	22.59 - 23.17	5.200600	5.328000	-2.4
2,4-Dinitrotoluene	23.68	23.50 - 24.08	8,994080	9.179000	-2.1
2-Nitrotoluene	28.69	28.45 - 29.17	3.506480	3.611000	-3.0
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.763000	-4.3
3-Nitrotoluene	33.57	33.29 - 34.17	3.198400	3.318000	-3.7

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ceres/labda : 29-JUN-2007 (: STD04 1000PPI : Method 8330 : STD04 1000PPI : Oscar.i : 8330FEB2707.t : ESTD : 1.00 : C18	ata/hplc/osca 06:39 B Cli m Sub Int Sam Col	r/Oscar. ent ID rator list egrator ple Type umn Size	i/062807. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB_ : 0.25m	b/062 .6-8 2 .e 4 .L- 4.	80730.D 0X 60mm ID
Compound	RT	RT Window	Average CF	Continuing CF	₽D	Flag
HMX	4.58	4.33 - 4.83	10.66308	10.00600	===== 6.2	
RDX	8.02	7.79 - 8.29	7.697800	7.580000	1.5	
1,3,5-Trinitrobenzene	11.60	11.38 - 11.88	13.46708	13.92700	-3.4	
1,3-Dinitrobenzene	14.36	14.15 - 14.65	14.89056	15.23900	-2.3	
Tetryl	16.13	15.95 - 16.45	6.980400	7.204000	-3.2	
Nitrobenzene	16.88	16.69 - 17.19	8.559800	8.597000	-0.4	
3,4-Dinitrotoluene	17.32	17.15 - 17.65	5.661840	6.675000	-17.9	
2,4,6-Trinitrotoluene	19.58	19.41 - 19.91	8.058800	7.785000	3.4	
4-Amino-2,6-Dinitroto	luene 20.34	20.17 - 20.77	5.775680	6.186000	-7.1	
2-Amino-4,6-Dinitroto	luene 21.45	21.28 - 21.88	7.774920	8.082000	-3.9	
2,6-Dinitrotoluene	22.79	22.59 - 23.17	5.200600	5.406000	-3.9	
2,4-Dinitrotoluene	23.69	23.50 - 24.08	8.994080	9.316000	-3.6	·····
2-Nitrotoluene	28.70	28.45 - 29.17	3.506480	3.624000	-3.4	
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.802000	-5.7	
3-Nitrotoluene	33.56	33.29 - 34.17	3.198400	3.356000	-4.9	******

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280704.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.50	U
121-82-4	RDX	0.50	IJ
99-35-4	1,3,5-Trinitrobenzene	0.50	U
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	U
479-45-8	Tetryl	0.50	U
118-96-7	2,4,6-Trinitrotoluene	0.50	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	U
606-20-2	2,6-Dinitrotoluene	0.50	U
121-14-2	2,4-Dinitrotoluene	0.50	U
88-72-2	2-Nitrotoluene	0.50	U
99-99-0	4-Nitrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	U

CLIENT SAMPLE NO.

S062607HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>F7120752.D</u>
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	21.0	
121-82-4	RDX	21.5	
99-35-4	1,3,5-Trinitrobenzene	17.6	
99-65-0	1,3-Dinitrobenzene	17.8	
98-95-3	Nitrobenzene	17.8	
479-45-8	Tetryl	16.0	
118-96-7	2,4,6-Trinitrotoluene	18.7	
19406-51-0	4-Amino-2,6-dinitrotoluene	17.9	
35572-78-2	2-Amino-4,6-dinitrotoluene	17.9	
606-20-2	2,6-Dinitrotoluene	16.1	
121-14-2	2,4-Dinitrotoluene	16.5	
88-72-2	2-Nitrotoluene	14.9	
99-99-0	4-Nitrotoluene	15.4	
99-08-1	3-Nitrotoluene	14.7	

Comments:

Page 1 of 1

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

S062607HORWLG Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: S062607HORWLG Run Sequence ID: R019636 Instrument ID: HPLC5 (Oscar) Column (2): Synergi - EtPH Column (1): Allure C18 File (2): F71207A.b-F7120752.D File (1): 062807.b-06280705.D Date Analyzed (1): 6/28/2007 1:59:00 PM Date Analyzed (2): 7/13/2007 6:40:00 PM 1 1 1

ANALYTE	COL	CONCENTRATION Final Units: ug/L		RPD	RT	RT Window
HMX	1	18.8613		10.9 0/	4.58	4.33 - 4.83
	2	21.0228	X	10.8 %	8.23	7.94 - 8.44
RDX	1	20.4357		5.1 %	8.03	7.79 - 8.29
	2	21.5036	Х		8.77	8.48 - 8.98
1,3,5-Trinitrobenzene	1	17.5962	х	5.2 %	11.62	11.38 - 11.88
	2	16.698			25.38	24.97 - 25.47
1,3-Dinitrobenzene	1	17.771	х	62.5 %	14.37	14.16 - 14.66
	2	33.9163			16.53	16.19 - 16.69
Nitrobenzene	1	17.5658		1.5 %	16.89	16.69 - 17.19
	2	17.8355	х		11.49	11.18 - 11.68
Tetryl	1	16.0464	х	9.7 %	16.14	15.96 - 16.46
	2	14.562			29.36	28.91 - 29.41
2,4,6-Trinitrotoluene	1	17.7905		4.9 %	19.59	19.41 - 19.91
	2	18.691	Х		32.99	32.52 - 33.02
4-Amino-2,6-dinitrotoluen	1	17. 92	Х	1.0 %	20.35	20.17 - 20.77
	2	17.7427			14.44	14.07 - 14.67
2-Amino-4,6-dinitrotoluen	1	17.8793	х	0.8 %	21.44	21.28 - 21.88
	2	17.7296			15.95	15.57 - 16.17
2,6-Dinitrotoluene	1	16.1231	x	1.5 %	22.79	22.59 - 23.17
	2	15.8879		, ,	19.21	18.82 - 19.40
2,4-Dinitrotoluene	1	16.4553	х	2.9 %	23.69	23.50 - 24.08
	2	15.977			22.23	21.80 - 22.38
2-Nitrotoluene	1	14.9209	х	0.6 %	28.71	28.45 - 29.17
	2	14.8259		/V	14.89	14.46 - 15.18

X = Concentration Reported

٦

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name:Laucks Testing Labs, Inc.Lab Sample ID:S062607HORWLGInstrument ID:HPLC5 (Oscar)Column (1):Allure C18File (1):O62807.b-O6280705.DDate Analyzed (1):6/28/2007 1:59:00 PMDate

S062607HORWLG

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120752.D
Date Analyzed (2):	7/13/2007 6:40:00 PM

ANALYTE	ANALYTE COL Fina		RPD	RT	RT Window
4-Nitrotoluene	ł	15.4368 X	66 %	31.22	30.95 - 31.75
	2	14.4544	0,0 /0	15.59	15.12 - 15.92
3-Nitrotoluene	1	14.7105 X	790%	33.59	33.29 - 34.17
	2	33.9163		16.53	16.00 - 16.88

X = Concentration Reported

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MS</u>
Sample wt/vol: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280720.D
% Moisture: Decanted: (Y/N)N	Date Collected:06/21/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	15.5	
121-82-4	RDX	16.8	
99-35-4	1,3,5-Trinitrobenzene	14,4	
99-65-0	1,3-Dinitrobenzene	14.5	
98-95-3	Nitrobenzene	14.3	
479-45-8	Tetryl	12.8	
118-96-7	2,4,6-Trinitrotoluene	14.4	
19406-51-0	4-Amino-2,6-dinitrotoluene	14.5	
35572-78-2	2-Amíno-4,6-dinitrotoluene	14.5	
606-20-2	2,6-Dinitrotoluene	13.0	
121-14-2	2,4-Dinitrotoluene	13.3	
88-72-2	2-Nitrotoluene	12.0	
99-99-0	4-Nitrotoluene	12.4	
99-08-1	3-Nitrotoluene	11.9	

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB33</u>	Run Sequence: R019636
Matrix: (SOTL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MSD</u>
Sample wt/vol: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280721.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type)	Date Extracted: 06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	14.9	
121-82-4	RDX	16.0	
99-35-4	1,3,5-Trinitrobenzene	13.5	
99-65-0	1,3-Dinitrobenzene	13.5	
98-95-3	Nitrobenzene	13.2	
479-45-8	Tetryl	12.0	
118-96-7	2,4,6-Trinitrotoluene	13.5	
19406-51-0	4-Amino-2,6-dinitrotoluene	13.7	
35572-78-2	2-Amino-4,6-dinitrotoluene	13.7	
606-20-2	2,6-Dinitrotoluene	12.2	
121-14-2	2,4-Dinitrotoluene	12.4	
88-72-2	2-Nitrotoluene	11.1	
99-99-0	4-Nitrotoluene	11.5	
99-08-1	3-Nitrotoluene	10.9	

Forms Summary

CAB33

Ordnance by Method 8332

2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: ____Laucks Testing Labs____

Contract: <u>N/A</u>

SDG No.: CAB33

Run Sequence: R019488

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT)	#	S2 ()	#	S3 ()	# #	S4 ()	#	TOT OUT
(CAB33-005) 15LCMW02DW	81								0
(CAB33-004) 15LCMW02SW	98								0
(CAB33-002MSD) 15LCMW01DWMSD	53	×							1
(CAB33-002MS) 15LCMW01DWMS	88								0
(CAB33-002) 15LCMW01DW	104								0
(CAB33-001) 15LCMW01SW	81								0
(S062607HORWLG2) S062607HORWLG2	84								0
(B062607HORWLG) B062607HORWLG	81								0

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

Page 1 of 1

QC LIMITS

60-140

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Nam	ne: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
BS Run	Sequence: R019488	SDG No.: <u>CAB33</u>
BS Lab	Sample ID: <u>S062607HORWLG2</u>	
Level:	N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Nitroglycerin	10.0	8.7516	88	60-140
PETN	5.00	3.3839	68	60-140

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: _____out of _____outside limits

COMMENTS:

3 WATER ORDNANCE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
MS Run Sequence: R019488 MSD Run Sequence	e: <u>R019488</u> SDG No.: <u>CAB33</u>
MS Client Sample No.: <u>15LCMW01DWMS</u>	MSD Client Sample No.: 15LCMW01DWMSD
MS Lab Sample ID: <u>CAB33-002MS</u>	MSD Lab Sample ID: <u>CAB33-002MSD</u>
Level: N/A	Units: ug/L

	SAMPLE	MS	MS	MS	MSD	MSD	MSD		QC L	IMITS
COMPOUND	CONC	SPIKE	CONC	8	SPIKE	CONC	8	%RPD #		
		ADDED		REC #	ADDED	ļ	REC #		RPD	REC.
Nitroglycerin	0	10.0	8.852	89	10.0	6.1214	61	36 *	30	60-140
PETN	0	5.00	3.4542	69	5.00	2.9145	58 *	17	30	60-140

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits @ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: 1 out of 2 outside limits
Spike Recovery: 1 out of 4 outside limits

COMMENTS:

ORDNANCE METHOD BLANK SUMMARY	ORDNANCE	METHOD	BLANK	SUMMARY
-------------------------------	----------	--------	-------	---------

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Labs		Contract: <u>N/A</u>		
Lab Sample ID: <u>B062607HORWLG</u>		SDG No.: <u>CAB33</u>		
Matrix: (SOIL/WATER) <u>Water</u>		Date Prepared: 06/26/2007		
Lab File ID (1): <u>062907.b-062</u>	90704.D	Lab File ID (2):		
Date Analyzed (1): 06/29/2007		Date Analyzed (2):		
Time Analyzed (1): <u>11:04</u>		Time Analyzed (2):		
Instrument ID (1): HPLC5 (Osc.	ar)	Instrument ID (2):		
Column(1): Varian C18	ID: 4.60 (mm) Column(2):	ID:	(mm)
THIS METHOD BLANK A	PPLIES TO THE FOI	LLOWING SAMPLES AND QC SAMPLES:		
CLIENT	LAB	LAB FILE ID DATE/TIME	RUN	

CLIENT SAMPLE NO.	SAMPLE ID	COL	LAB FILE ID	ANALYZED	RUN SEQUENCE
15LCMW01SW	CAB33-001	1	O6290718.D	06/29/2007 17:08	R019488
15LCMW01DW	CAB33-002	1	O6290719.D	06/29/2007 17:34	R019488
15LCMW02SW	CAB33-004	1	O6290723.D	06/29/2007 19:18	R019488
15LCMW02DW	CAB33-005	1	O6290724.D	06/29/2007 19:44	R019488
15LCMW01DWMS	CAB33-002MS	1	O6290720.D	06/29/2007 18:00	R019488
15LCMW01DWMSD	CAB33-002MSD	1	O6290721.D	06/29/2007 18:26	R019488
S062607HORWLG2	S062607HORWLG2	1	O6290705.D	06/29/2007 11:30	R019488

COMMENT'S:

CLIENT SAMPLE NO.

15LCMW01SW

Lab Name: Lauc	ks Testing Labs	Contract	. <u>N/A</u>	n.m.,
SDG No.: CAB33		Run Sequ	ence: <u>R019488</u>	
Matrix: (SOIL/WA	ATER) Water	Lab Samp	Dle ID: <u>CAB33-001</u>	
Sample wt/vol:	<u>1000.0</u> (g/mL) <u>mL</u>	Lab File	ID: 06290718.D	· · ·
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Col	lected:06/21/2007	
Extraction: (Typ	De) <u>SPE</u>	Date Ext	racted:06/26/2007	
Concentrated Ext	tract Volume: <u>5000.0 (</u> uL)	Date Ana	lyzed: <u>06/29/2007</u>	
Injection Volume	e:(uL)	Dilution	Factor:	
GPC Cleanup: (Y,	/N) <u>N</u> pH:	Sulfur C	leanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin		2.5	U
78-11-5	PETN		1.2	U

CLIENT SAMPLE NO.

15LCMW01DW

U

Lab Name: La	ucks Testing Labs	Contract: <u>N/A</u>	
SDG No.: CABS	33	Run Sequence: <u>R019488</u>	
Matrix: (SOIL	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>	
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290719.D	
% Moisture: .	Decanted: (Y/N) <u>N</u>	Date Collected:06/21/2007	
Extraction: (Type) <u>SPE</u>	Date Extracted:06/26/2007	
Concentrated	Extract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007	
Injection Vol	ume: <u>50.0</u> (uL)	Dilution Factor: 2.0	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	U

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Lau	cks Testing Labs	Contract: <u>N/A</u>	
SDG No.: CAB33		Run Sequence: <u>R019488</u>	
Matrix: (SOIL/	WATER) Water	Lab Sample ID: <u>CAB33-004</u>	
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: <u>06290723.D</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007	
Extraction: (T	ype) <u>SPE</u>	Date Extracted:06/26/2007	
Concentrated E.	xtract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007	
Injection Volu	me:(uL)	Dilution Factor: 2.0	
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	
55-63-0	Nitroglycerin	2.5 U	
78-11-5	PETN	1.2 U	

CLIENT SAMPLE NO.

15LCMW02DW

U

Lab Name: Lauc	ks Testing Labs	Contract: <u>N/A</u>	
SDG No.: CAB33		Run Sequence: <u>R019488</u>	
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>	
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: <u>06290724.D</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:06/21/2007	
Extraction: (Ty	pe) <u>SPE</u>	Date Extracted: 06/26/2007	
Concentrated Ex	tract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007	
Injection Volum	e:(uL)	Dilution Factor:	
GPC Cleanup: (Y	/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>	·····
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	U

1.2

78-11-5 Comments: PETN

page 1	07/24/2006 13:09 ICAL Linearity Summary v2.0	
	CF - Calibration Factor (response divided by concentration). RSD - Relative Standard Deviation.	
	Amount = Response divided by CP	
	Average RSD : 3.9	
	1 Nitroglycerin 348.3440 362.3640 357.0210 378.5100 373.9440 364.0366 3.4 3 PETN 384.2240 428.2400 383.0820 416.1968 409.5208 404.2527 4.9 2 3,4-Dinitrotoluene 833.5840 891.7440 836.9660 887.3984 879.7140 865.8817 3.3	
	- Compound Level 1 Level 2 Level 3 Level 5 Ave CF &RSD	
	Calibration Files: Level 1: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100601.D Level 2: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100602.D Level 3: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100603.D Level 4: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100604.D Level 5: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100605.D	
	Integrator : HP Genie Method File : \\SNAP568564B\tek4\Oscar.i\071006ng.b\071006NG.m Sublist : all.sub Column : C18 Column Size : Om L - 4.60mm ID	
	Start Cal Date: 10-JUL-2006 11:17 End Cal Date : 10-JUL-2006 13:05 Quant Method : ESTD Cal Curve Type: Average CF	
	Laucks Testing Labs Initial Calibration Linearity Summary	

SUM - 119

1 Nitroglyceri 3 PETN 2 3,4-Dinitrot	Compound	Calibration I Level 1: //Sh Level 2: //Sh Level 3: //Sh Level 4: //Sh Level 5: //Sh	Start Cal Date 2nd Cal Date 2uant Method 2al Curve Typ Integrator Method File 3ublist 20lumn 20lumn Size
n oluene		riles: NAP568564B/te NAP568564B/te NAP568564B/te NAP568564B/te NAP568564B/te	<pre>ce: 10-JUL-20 : 10-JUL-20 : ESTD : ESTD : Average C : HP Genie : \\SNAP568 : all.sub : C18 : 0m L ~ 4</pre>
		k4/0 k4/0 k4/0 k4/0	06 1 06 1 F 564 B .60m
9.46 17.39 10.33	evel 1)scar.i)scar.i)scar.i)scar.i)scar.i	1:17 3:05 1/tek4/
9.44 17.36 10.31	Level 2	/071006ng /071006ng /071006ng /071006ng	Oscar.i/0
9.45 17.36 10.32	Level 3	J.b/0710¢ J.b/0710¢ J.b/0710¢ J.b/0710¢ J.b/0710¢ J.b/0710¢	071006ng.
9.45 17.36 10.32	Level 4	601.D 603.D 604.D	b\071006
9.44 17.36 10.31	Level 5		NG . m
9.449 17.369 10.316	Ave RT		

Retention times are expressed as minutes.

07/24/2006 13:09

ICAL RT Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Amounts Summary

Column Sublist Method File Cal Curve Type: Start Cal Date: Lievel Level Level Calibration Files: Column Size Integrator Quant Method : End Cal Date Level 1: 4. •• ω •• N .. /SNAP568564B/tek4/Oscar.i/071006ng.b/07100604.D /SNAP568564B/tek4/Oscar.i/071006ng.b/07100602.D /SNAP568564B/tek4/Oscar.i/071006ng.b/07100603.D /SNAP568564B/tek4/Oscar.i/071006ng.b/07100601.D •• C1 8 all.sub HP Genie Average CF ESTD 10-JUL-2006 13:05 10-JUL-2006 \\SNAP568564B\tek4\Oscar.i\071006ng.b\071006NG.m 0m L - 4.60mm ID 11:17

2 3,4-Dinitrotoluene	3 PETN	1 Nitroglycerin		Compound
125.00	125.00	250.00		Level 1
250.00	250.00	500.00		Level 2
500.00	500.00	1000.00	я 	Level 3
1250.00	1250.00	2500.00		Level 4
2500.00	2500.00	5000.00		Level 5

Level

ហ

//SNAP568564B/tek4/Oscar.i/071006ng.b/07100605.D

Standard concentrations are expressed as ng/mL.

07/24/2006 13:08 ICAL Standard Concentrations Summary v2.0 Page P

07/24/2006 13:08 ICAL Responses Summary v2.0 Page	Response is in Area units.	Compound Level 1 Level 2 Level 3 Level 4 Level 5 ************************************	Calibration Files: Level 1: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100601.D Level 2: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100602.D Level 3: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100603.D Level 4: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100604.D Level 5: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O7100605.D	<pre>Start Cal Date: 10-JUL-2006 11:17 End Cal Date : 10-JUL-2006 13:05 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\SNAP568564B\tek4\Oscar.i\O71006ng.b\071006NG.m Sublist : all.sub Column Size : Om L - 4.60mm ID</pre>	Laucks Testing Labs Initial Calibration Response Summary
Page 1		5.0 2.0 0		Э	

SUM - 122

Data File Injection Date Sample Info Misc. Info	:::::::::::::::::::::::::::::::::::::::	//ceres/labdat 29-JUN-2007 10 STD04 1000PPB	ta/hplc/d 0:31 METHOD &	sca: 3332	r/Oscar.i	/062907.	b/062	290703	.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	• • • • • •	STD04 1000PPB Oscar.i 071006NG.m ESTD 1.00 C18		Cli Ope: Sub Int Samj Colu	ent ID : rator : list : egrator : ple Type: umn Size:	HPLC1-1 MY all HP Geni CCALIB 0.15m	5-15 e 3 L- 4.	20X .60mm :	ID
Compound		RT	RT Windo	W	Average CF	ICV CF	۶D	Flag	
Nitroglycerin		10.30 #	10.05 - 10	.55	364.0366	359.7260	1.2		
3,4-Dinitrotoluene		11.35 #	11.10 - 11	60	865.8817	874.0680	-0.9		
PETN		19.64 #	19.39 - 19	0.89	404.2527	385.0800	4.7		

Calibration Factor (CF) = Response divided by Concentration

Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method		//ceres/labda 29-JUN-2007 1 STD04 1000PPB Method 8332 STD04 1000PPB Oscar.i 071006NG.m	ta/hplc/ 4:58 METHOD	oscan 8332 Clie Open Subl	ent ID rator List	i/062907. : HPLC1-1 : MY : all	b/062 5-15	20713 20X	3.D
Quantitation Dilution Factor Column	::;	ESTD 1.00 C18		Inte Sam <u>r</u> Colu	egrator ple Type imn Size Average	: HP Geni : CCALIB_ : 0.15m Continuing	e 3 L- 4	.60mm	ID
Compound		RT	RT Wind	low	CF	CF	%D	Flag	_
Nitroglycerin	:==	10.30	10.05 - 1	0.55	364.0366	358.3320	1.6		-
3,4-Dinitrotoluene		11.35	11.10 - 1	.1.60	865.8817	870.0720	-0.5		
PETN		19.65	19.39 - 1	9.89	404.2527	387.5460	4.1		

Data File Injection Date Sample Info Misc Info	: : .	//ceres/labda 29-JUN-2007 1 STD04 1000PPB Method 8332	ta/hplc/ 8:52 METHOD	osca: 8332	r/Oscar.:	i/062907.	b/062	290722.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	• • • • • • • •	STD04 1000PPB Oscar.i 071006NG.m ESTD 1.00 C18	;	Clie Ope: Sub: Inte Samp Colu	ent ID rator list egrator ple Type umn Size	: HPLC1-1 : MY : all : HP Geni : CCALIB : 0.15m	5-15 e 3 L- 4.	20X .60mm ID
Compound		RT	RT Wind	WC	Average CF	Continuing CF	۶D	Flag
Nitroglycerin	==	10.30	10.05 - 1	===== 0.55	364.0366	361.2050	0.8	=====
3,4-Dinitrotoluene		11.35	11.10 - 1	1.60	865.8817	868.9060	-0.3	
PETN		19.70	19.39 - 1	9.89	404.2527	386.9900	4.3	

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ceres/labda : 29-JUN-2007 2 : STD04 1000PPE : Method 8332 : STD04 1000PPE : Oscar.i : 071006NG.m : ESTD : 1.00 : C18	ata/hplc/osca 22:20 3 METHOD 8332 3 Cli Ope Sub Int Sam Col	ent ID erator elist egrator ple Type umn Size	i/062907. : HPLC1-1 : MY : all : HP Geni : CCALIB_ : 0.15m	b/06290 5-15 20 e 3 L- 4.60	OT30.D OX Omm ID
Compound	RT	RT Window	Average CF	Continuing CF	%D F1	ag
Nitroglycerin	10.30	10.05 - 10.55	364.0366	359.9460	1.1	
3,4-Dinitrotoluene	11.36	11.10 - 11.60	865.8817	869.4440	-0.4	(970)-reference
PETN	19.72	19.39 - 19.89	404.2527	385.2300	4.7	

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Labs			Contract: N/A			
SDG No.: <u>CAB33</u>		Run Sequ	uence: <u>R019488</u>			
Matríx: (SOIL/W	ATER) Water	Lab Samp	ple ID: <u>B062607HORWLG</u>			
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File	Lab File ID: 06290704.D			
% Moisture:	Decanted: (Y/N)N	Date Col	llected:			
Extraction: (Ty	pe) <u>SPE</u>	Date Extracted:06/26/2007				
Concentrated Ex	tract Volume: <u>5000.0</u> (uL)	Date Ana	Date Analyzed: 06/29/2007			
Injection Volum	e: <u>50.0 (u</u> L)	Dilution Factor:				
GPC Cleanup: (Y/N) <u>N</u> pH:		Sulfur Cleanup: (Y/N) <u>N</u>				
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q		
55-63-0	Nitroglycerin		2.5 V			
78-11-5	PETN		1.2	υ		

CLIENT SAMPLE NO.

S062607HORWLG2

Lab Name: L	aucks Testing Labs	Contract: N/A			
SDG No.: <u>CAB</u>	33	Run Sequence: R019488			
Matrix: (SOI)	L/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG2</u>			
Sample wt/vo	l: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290705.D</u>			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:			
Extraction:	(Type) _SPE	Date Extracted: 06/26/2007			
Concentrated	Extract Volume:(uL)	Date Analyzed: 06/29/2007			
Injection Vo	lume: <u>50.0 (</u> uL)	Dilution Factor: 2.0			
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	Compound	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L			
55-63-0	Nitroglycerin	8.75			

3.38

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name: La	ucks Testing Labs	Contract: <u>N/A</u>			
SDG No.: CABS	33	Run Sequence: <u>R019488</u>			
Matrix: (SOIL	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MS</u>			
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290720.D</u>			
% Moisture: .	Decanted: (Y/N) <u>N</u>	Date Collected:06/21/2007			
Extraction: (Type) <u>SPE</u>	Date Extracted:06/26/2007			
Concentrated	Extract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007			
Injection Vol	ume: <u>50.0</u> (uL)	Dilution Factor:2.0			
GPC Cleanup: (Y/N) <u>N</u> pH:		Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q			
55-63-0	Nitroglycerín	8.85			
78-11-5	PETN	3.45			

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name: Lau	cks Testing Labs	Contract:N/A			
SDG No.: CAB33	3	Run Sequence: R019488			
Matrix: (SOIL/	WATER) Water	Lab Sample ID: <u>CAB33-002MSD</u>			
Sample wt/vol:	<u>1000.0 (g/mL) mL</u>	Lab File ID: 06290721.D			
% Moisture: _	Decanted: (Y/N)N	Date Collected:06/21/2007			
Extraction: (T	ype) <u>SPE</u>	Date Extracted: 06/26/2007			
Concentrated E	xtract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007			
Injection Volu	me: <u>50.0</u> (uL)	Dilution Factor:			
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q			
55-63-0	Nitroglycerin	6.12			
78-11-5	PETN	2.91			

Forms Summary

CAB33

Ordnance by Method 8303
		2	
WATER	ORDNANCE	SURROGATE	RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB33

Run Sequence: <u>R019702</u>

(LAB SAMPLE ID)	S1	S2	53	54	TOT
CLIENT SAMPLE NUMBER	(D2M) #	() #	() #	() #	001
(CAB33-005) 15LCMW02DW	104				0
(CAB33-004) 15LCMW02SW	100				0
(CAB33-002MSD) 15LCMW01DWMSD	103				0
(CAB33-002MS) 15LCMW01DWMS	107				0
(CAB33-002) 15LCMW01DW	103				0
(CAB33-001) 15LCMW01SW	105				0
(S062607HSVWLS) S062607HSVWLS	102				0
(B062607HSVWLS) B062607HSVWLS	102				0

QC LIMITS

70-115

S1 (D2M) = 4,6-Dinitro-2-methylpheno S2 () = S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019702</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062607HSVWLS</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Picric Acid	4.00	3.3821	85	61-128
Picramic Acid	4.00	3.9577	99	47-110

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _____ out of ____ outside limits

COMMENTS:

٠

WATER ORDNANCE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

3

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
MS Run Sequence: R019702 MSD Run Sequence	e: <u>R019702</u> SDG No.: <u>CAB33</u>
MS Client Sample No.: <u>15LCMW01DWMS</u>	MSD Client Sample No.: <u>15LCMW01DWMSD</u>
MS Lab Sample ID: <u>CAB33-002MS</u>	MSD Lab Sample ID: <u>CAB33-002MSD</u>
Level: <u>N/A</u>	Units: ug/L

		SAMPLE	MS	MS	MS	MSD	MSD	MSD		QC L:	IMITS
	COMPOUND	CONC	SPIKE	CONC	8	SPIKE	CONC	ş	%RPD #		l
			ADDED		REC #	ADDED		REC #		RPD	REC.
P	icric Acid	0	3.77	2,5369	67	3.77	2,8379	75	11	50	55-113
P	icramic Acid	0	3.77	4.0878	108	3.77	3.7976	101	7	50	59-112

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits @ This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

RPD: <u>0</u> out of <u>2</u> outside limits Spike Recovery: <u>0</u> out of <u>4</u> outside limits

COMMENTS:

		CLIENT	CLIENT SAMPLE NO.			
	ORDNANCE METHOD BLANK SUMMARY					
Lab Name: Laucks Testing Lab	Contract: <u>N/A</u>					
Lab Sample ID: <u>B062607HSVWLS</u>		SDG	No.: <u>CAB33</u>			
Matrix: (SOIL/WATER) <u>Water</u>		Date	e Prepared: _	06/26/2007		
Lab File ID (1): <u>_F71707A.b-F</u>	7170719.D	Lab	File ID (2):	NINGAMMUMINIHINA		
Date Analyzed (1): 07/17/2007	7	Date Analyzed (2):				
Time Analyzed (1): 16:38		Time Analyzed (2):				
Instrument ID (1): HPLC3 (Fel	lix)	Instrument ID (2):				
Column(1): <u>Supelcosil LC-CN</u>	ID <u>: 4.60</u> ()	mm) Cc	lumn(2):		ID:	(mm)
THIS METHOD BLANK .	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:		
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE	
15LCMW01SW CAB33-001			F7170722.D	07/17/2007 17:14	R019702	1
15LCMW01DW	CAB33-002	1	F7170723.D	07/17/2007 17:26	R019702]
15LCMW01DWMS CAB33-002MS			F7170724.D	07/17/2007 17:38	R019702	

1

1

1

1

F7170725.D

F7170726.D

F7170727.D

F7170720.D

07/17/2007 17:50

07/17/2007 18:02

07/17/2007 18:14

07/17/2007 16:50

R019702

R019702

R019702

R019702

CAB33-002MSD

S062607HSVWLS

CAB33-004

CAB33-005

COMMENTS:

15LCMW01DWMSD

15LCMW02SW

15LCMW02DW

S062607HSVWLS

CLIENT SAMPLE NO.

U

U

15LCMW01SW

Lab Name: <u>La</u>	ucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB3</u>	3	Run Sequence: <u>R019702</u>
Matrix: (SOIL	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-001</u>
Sample wt/vol	: <u>1050.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>F7170722.D</u>
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected:06/21/2007
Extraction: (Type) <u>SEPF</u>	Date Extracted: 06/26/2007
Concentrated	Extract Volume: _1000.0_(uL)	Date Analyzed: 07/17/2007
Injection Volu	ume:(uL)	Dilution Factor: 2.0
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L

1.0

1.0

96-91-3 Comments:

88-89-1

Picric Acid

Picramic Acid

.

CLIENT SAMPLE NO.

15LCMW01DW

U

U

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence: R019702
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>F7170723.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type) <u>SEPF</u>	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/17/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L

1.0

1.0

96-91-3 Comments:

88-89-1

Picric Acid

Picramic Acid

FORM I ORD

.

CLIENT SAMPLE NO.

U

*

15LCMW02SW

Lab Name: Lav	acks Testing Labs	Contract: <u>N/A</u>	
SDG No.: <u>CAB3</u>	3	Run Sequence: <u>R019702</u>	
Matrix: (SOIL/	(WATER) Water	Lab Sample ID: <u>CAB33-004</u>	
Sample wt/vol:	<u>1060.0 (g/mL)_mL</u>	Lab File ID: <u>F7170726.D</u>	
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected:06/21/2007	
Extraction: (1	ype) _SEPF	Date Extracted:06/26/2007	
Concentrated E	Xtract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/17/2007	
Injection Volu	ume:(uL)	Dilution Factor:2.0	
GPC Cleanup: ((Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-89-1	Picric Acid	1.0	U

1.0

06-91-3 Comments: Picramic Acid

CLIENT SAMPLE NO.

15LCMW02DW

U

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence: <u>R019702</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>
Sample wt/vol: 1040.0 (g/mL) mL	Lab File ID: F7170727.D
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N)
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>ug/L</u>
88-89-1 Picric Acid	1.1 U

1.1

96-91-3 Comments: Picramic Acid

٠

ī.

SUM - 140

Initial Calibration Retention Time Summary Laucks Testing Labs

Column Size Sublist Method File Quant Method Start Cal Date: Level Level 1: Calibration Files: Column Integrator Cal Curve Type: End Cal Date ហ /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D • • CN ESTD 17-JUL-2007 14:55 17-JUL-2007 15:44 all.sub Average CF HP Genie \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L_i - 4.60mm ID

Level 4: Level 3: Level 2:

Alson and the second	3 4,6-Dinitro-o-Cresol	2 Picric Acid	1 Picramic Acid	★## ㅋ 박태 당표 800 위 등 다 20 번 번 번 번 번 등 번 한 한 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Compound
~	5.96	3.22	3.65		Level 1
	5.90	3.21	3.65		Level 2
	5.78	3.18	3.64		Level 3
	5.72	3.17	3.64		Level 4
	5.70	3.16	3,63		Level 5
	5.814	3.190	3.642		Ave RT

Retention times are expressed as minutes.

07/18/2007 09:17

ICAL RT Summary v2.0 Page

<u>н</u>-1

Sublist Method File End Cal Date Start Cal Date: Level 3: Calibration Files: Column Size Column Integrator Cal Curve Type: Quant Method Level Level Level 1: Level 2222公司和前方自己有名名名名名之之子并并有有有的学者并有 3 4,6-Dinitro-o-Cresol 2 Picric Acid μ Picramic Acid N .. 4 ហ •• Compound /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D ٠. all.sub Average CF 02 ESTD 17-JUL-2007 15:44 17-JUL-2007 HP Genie \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L - 4.60mm ID _____ 14:55 Level 1 500.00 500.00 500.00 Level 2 1000.00 1000.00 1000.00 2500.00 2500.00 Level 3 2500.00 ____________ Level 4 4000,00 4000.00 4000.00 ~~~~~~~~~~~~ Level 5 5000.00 5000.00 5000.00

Standard concentrations are expressed as ng/mL.

07/18/2007 09:18

ICAL Standard

Concentrations Summary v2.0

Page

Р

•

SUM - 142

Inicial

Calibration Amounts Summary

Laucks Testing Labs

0714.D 0715.D Level 5 1693780.0	7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(1378452.0	i/F71707 i/F71707 i/F71707 i/F71707 i/F71707 i/F71707	x/Felix. x/Felix. x/Felix. x/Felix. x/Felix. x/Felix. Level 2	plc/feli plc/feli plc/feli plc/feli plc/feli 	ibration Files: el 1: //ceres/labdata/h el 2: //ceres/labdata/h el 3: //ceres/labdata/h el 4: //ceres/labdata/h el 5: //ceres/labdata/h el 5: //ceres/labdata/h
0714.D 0715.D Level 5	7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(1B.b/F717(i/F71707 i/F71707 i/F71707 i/F71707 i/F71707 i/F71707	x/Felix. x/Felix. x/Felix. x/Felix. x/Felix. x/Felix.	plc/feli plc/feli plc/feli plc/feli plc/feli	ibration Files: el 1: //ceres/labdata/h el 2: //ceres/labdata/h el 3: //ceres/labdata/h el 4: //ceres/labdata/h el 5: //ceres/labdata/h
0714.D 0715.D	7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(1/F71707 1/F71707 1/F71707 1/F71707 1/F71707	x/Felix. x/Felix. x/Felix. x/Felix. x/Felix.	plc/feli plc/feli plc/feli plc/feli	ibration Files: el 1: //ceres/labdata/h el 2: //ceres/labdata/h el 3: //ceres/labdata/h el 4: //ceres/labdata/h el 5: //ceres/labdata/h
く~ F L・ L	7B.b/F717(7B.b/F717(7B.b/F717(7B.b/F717(1/F71707 1/F71707 1/F71707	x/Felix. x/Felix. x/Felix.	plc/feli plc/feli	ibration Files: el 1: //ceres/labdata/h el 2: //ceres/labdata/h el 3: //ceres/labdata/h
0712.D 0713 n	7B.b/F717(1/F71707	x/Felix.	plc/feli	ibration Files: el 1: //ceres/labdata/h
0711.D					
				ADmm TD	undi : CN unn cize : Am I, - 4
					list : all.sub
b\F71707PICCN	\F71707.}	<td>lc/feli;</td> <td>bdata\hp</td> <td>egrator : нР Genie hod File : \\ceres\la</td>	lc/feli;	bdata\hp	egrator : нР Genie hod File : \\ceres\la
					Curve Type: Average CF
					nt Method : ESTD
				7 15:44	Cal Date : 17-JUL-200
				7 14:55	rt Cal Date: 17-JUL-200

Response is in Area units.

07/18/2007 09:18

ICAL Responses Summary v2.0

Page

⊣

SUM - 143

Laucks Testing Labs Initial Calibration Response Summary

Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc Info		//ceres/labdat 17-JUL-2007 16 STD03 2500PPB	:a/ 5:2 LT	/h] 26 [L	21 8	.c/ 30	feli 3	ix/Felix.:	i/F717072	A.b/F	717071	.8.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN					Cli Ope Suk Int Sam Col	ient ID erator olist cegrator mple Type lumn Size	HPLC1-: MY all HP Gen: CCALIB 0.25m	16-17 ie _3 L- 4	4X .60mm	ID
Compound		RT	F	۲r	W:	ind	.ow	Average CF	ICV CF	۶D	Flag	
Picric Acid	==	3.18	2.	.28	3	_	4.08	72.82098	72.75360	0.1		
Picramic Acid		3.64	3.	.39	. (3.89	345.7052	348.2684	-0.7		
4,6-Dinitro-o-Cresol		5.80	4.	. 84	<u> </u>	-	6.76	301.1552	301.4824	-0.1		

Calibration Factor (CF) = Response divided by Concentration

Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100

* = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc Info	::	//ceres/labdat 17-JUL-2007 18 STD03 2500PPB SOP#:LTL-8303	:a/ 8:2 L]	/hj 26 [L	pl 8	.c/ 30	feli 3	.x/F€	elix.:	i/F71707#	A.b/F7	170728.]	D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN					Cli Ope Sub Int Sam Col	ent erato list egra ple umn	ID or tor Type Size	: HPLC1-1 : MY : all : HP Geni : CCALIB : 0.25m	16-17 ie _3 _L- 4.	60mm ID	
Compound		RT	I	RΤ	W:	ind	ow	Ave	rage CF	Continuing CF	3 %D	Flag	
Picric Acid		3.20	2	.28		-	4.08	72.	====== 82098	82.54360	-13.4		
Picramic Acid		3.63	3	. 3 9	. E		3.89	345	.7052	331.9600	4.0		
4,6-Dinitro-o-Cresol		5.74	4	. 84	1 .	-	6.76	301	.1552	301.2832	-0.0		

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HSVWLS

U

.

Lab Name: Lau	cks Testing Labs	Contract:N/A
SDG No.: CAB33		Run Sequence: _R019702
Matrix: (SOIL/W	NATER) Water	Lab Sample ID: <u>B062607HSVWLS</u>
Sample wt/vol:	1000.0 (g/mL) mL	Lab File ID: <u>F7170719.D</u>
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Ty	/pe) <u>SEPF</u>	Date Extracted:06/26/2007
Concentrated Ex	stract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/17/2007
Injection Volum	ne: _50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: ()	(/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L
88-89-1	Picric Acid	1.1 U

1.1

96-91-3 Comments: Picramic Acid

FORM I ORD

SUM - 146

Page 1 of 1

CLIENT SAMPLE NO.

.

•

.

S062607HSVWLS

Lab Name: La	ucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB3</u>	3	Run Sequence: <u>R019702</u>
Matrix: (SOIL	/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HSVWLS</u>
Sample wt/vol	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>F7170720.D</u>
% Moisture: .	Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) <u>SEPF</u>	Date Extracted: 06/26/2007
Concentrated	Extract Volume: _1000.0 (uL)	Date Analyzed: 07/17/2007
Injection Vol	ume:(uL)	Dilution Factor: 2.0
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	Compound	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L
98_99_1	Pierie Beid	3.4

4.0

96-91-3 Comments: Picramic Acid

CLIENT SAMPLE NO.

15LCMW01DWMS

.

Lab Name: Lau	icks Testing Labs	Contract:_N/A
SDG No.: CAB3	3	Run Sequence: <u>R019702</u>
Matrix: (SOIL/	WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MS</u>
Sample wt/vol:	<u>1060.0 (g/mL)_mL</u>	Lab File ID: <u>F7170724.D</u>
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007
Extraction: (1	'ype) <u>SEPF</u>	Date Extracted:06/26/2007
Concentrated E	xtract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/17/2007
Injection Volu	me: <u>50.0</u> (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>ug/L</u> Q
88-89-1	Picric Acid	2.5
96-91-3	Picramic Acid	4.1

Comments:

CLIENT SAMPLE NO.

15LCMW01DWMSD

Lab Name: Laucks Test	ing Labs	Contract	.: <u>N/A</u>	
SDG No.: CAB33		Run Sequ	ence: <u>R019702</u>	
Matrix: (SOIL/WATER) _	Water	Lab Samp	le ID: <u>CAB33-002MSD</u>	
Sample wt/vol: <u>1060.0</u>	(g/mL) <u>mL</u>	Lab File	ID; <u>F7170725.D</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Col	lected:06/21/2007	
Extraction: (Type) <u>SE</u>	PF	Date Ext	racted:06/26/2007	
Concentrated Extract V	Volume: <u>1000.0 (</u> uL)	Date Ana	lyzed: 07/17/2007	
Injection Volume: 50.	<u>0</u> (uរីរ)	Dilution	Factor:	
GPC Cleanup: (Y/N) <u>N</u>	рн: <mark>8.5-9</mark>	Sulfur C	leanup: (Y/N) <u>N</u>	
CAS NO. COMPOU	IND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-89-1 Picrie	c.Acid		2.8	

3.8

96-91-3 Comments: Picramic Acid

FORM I ORD

•

Forms Summary

NWTPH-Gasoline

CAB33

2 WATER GASOLINE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

FORM II GRO

SDG No.: CAB33

Run Sequence: <u>R019234</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (BFB) #	S2 (TFT) #	s3 () .#	S4 () #	tot Out
(CAB33-005) 15LCMW02DW	90	97			. 0
(CAB33-004) 15LCMW02SW	90	97			0
(CAB33-002MS) 15LCMW01DWMS	91	95			0
(CAB33-002DUP) 15LCMW01DWD	91	98			0
(CAB33-002) 15LCMW01DW	91	98			0
(CAB33-001) 15LCMW01SW	92	100			0
(S070407GVOW11) S070407GVOW11	95	99			0
(B070407GVOWII) B070407GVOWII	94	101			0

S1 (BFB) = 4-Bromofluorobenzene S2 (TFT) =Trifluorotoluene S3 () = S4 () =

Column to be used to flag recovery values

* Values outside of contract required QC limits

QC LIMITS 50-150 50-150

Contract: <u>N/A</u>

3B WATER GASOLINE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019234</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S070407GVOWI1</u>	
Level: <u>N/A</u>	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Gasoline Range Organics	100	80.8854	81	71-122

Column to be used to flag recovery and RPD values with an asterisk
 * Values outside of QC limits

Spike Recovery: _____ out of ____ outside limits

COMMENTS:

Laucks Testing Laboratories

Duplicate Report

Test:	NWTPH Gas	SDG ID:	CAB33
		Preparation Date:	7/4/2007
Lab Sample ID:	CAB33-002DUP	Run Sequence ID:	R019234
Client Sample ID:	15LCMW01DW	Analysis Date:	07/04/2007 14:18
		Units:	ug/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Gasoline Range Organics	0	0	0%	30

Associated Samples		
Lab Sample ID	Client Sample ID	
CAB33-001	15LCMW01SW	
CAB33-002	15LCMW01DW	
CAB33-004	15LCMW02SW	
CAB33-005	15LCMW02DW	

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-20.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

Laucks Testing Laboratories Matrix Spike Report

NWTPH Gas Test:

Lab Sample ID: CAB33-002MS Client Sample ID: 15LCMW01DWMS

SDG ID:	CAB33
Preparation Date:	07/04/2007
Run Sequence ID:	R019234
Analysis Date:	7/4/2007 2:56:00PM
Units:	ug/L
Matrix:	Water

Analyte	Sample Found	Spike Added	MS Found	Recovery	Limit
Gasoline Range Organics	0	100	77.8649	78%	67-125

Associated Samples		
Lab Sample ID	Client Sample ID	
CAB33-001	15LCMW01SW	
CAB33-002	15LCMW01DW	
CAB33-004	15LCMW02SW	
CAB33-005	15LCMW02DW	

= This Recovery is not flagged an an exceedence because the Sample Found amount is five times or more than the Spike added amount

* = RPD or percent recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-21.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the distance of the name of this performance of inspection and/or analysis in good faith and according to the rules of trade and science.

GASOLINE METHOD BLANK SUMMARY

GASOLINE METH	OD BLANK SUMMARY	B070407GVOWI1	
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>		
Lab Sample ID: <u>B070407GVOWI1</u>	SDG No.: <u>CAB33</u>		
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: 07/04/2	2007	
Lab File ID (1): <u>17047-2.b-1704704.d</u>	Lab File ID (2):		
Date Analyzed (1): 07/04/2007	Date Analyzed (2):		
Time Analyzed (1): 11:06	Time Analyzed (2):		
Instrument ID (1): <u>HP 58901</u>	Instrument ID (2):		
Column(1): <u>DB-VRX 30m/0.45u</u> ID: 0.45 (m	m) Column(2):	ID:	(mm)
THIS METHOD BLANK APPLIES TO THE FOLI	LOWING SAMPLES AND QC SAM	MPLES:	

CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
S070407GVOWI1	S070407GVOW11	1	I704705.d	07/04/2007 11:44	R019234
15LCMW01SW	CAB33-001	1	1704707.d	07/04/2007 13:01	R019234
15LCMW01DW	CAB33-002]	I704708.d	07/04/2007 13:39	R019234
15LCMW02SW	CAB33-004	I	1704711.d	07/04/2007 15:35	R019234
15LCMW02DW	CAB33-005	l	1704712.d	07/04/2007 16:13	R019234
15LCMW01DWD	CAB33-002DUP	1	1704709.d	07/04/2007 14:18	R019234
15LCMW01DWMS	CAB33-002MS	J	I704710.d	07/04/2007 14:56	R019234

CLIENT SAMPLE NO,

CLIENT SAMPLE NO.

15LCMW01SW

υ

Lab Namé: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-001</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704707.d</u>
pH: <u><2</u> Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS; Q (ug/L or ug/kg) <u>ug/L</u>

25

Gasoline Range Organics

Comments:

TPH-Gasoline

FORM I GRO

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence: <u>R019234</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704708.d</u>
pH: <u><2</u> Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor: <u>1.00</u>
Soil Aliquot Volume:(ul)	
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	25	U

Comments:

CLIENT SAMPLE NO.

15LCMW02SW

υ

Lab Name; <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.; CAB33	Run Sequence: <u>R019234</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-004</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: 1704711.d
pH: <2 Decanted: (Y/N) N	Date Collected: 06/21/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: Q

Gasoline Range Organics

25

Comments:

TPH-Gasoline

FORM I GRO

CLIENT SAMPLE NO.

15LCMW02DW

U

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019234</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704712.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: 06/21/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) _ug/L Q

Gasoline Range Organics

25

TPH-Gasoline Comments:

FORM I GRO

Amount = Response di - Standard Level not Calibration Factor (- Relative Standard De '25/2006 06:31	Compound Gasoline Trifluorocoluene Bromofluorobenzene Average RSD :	Calibration F Level 1: //A Level 2: //A Level 3: //A Level 3: //A Level 4: //A Level 5: //A Level 5: //A	Start Cal Date Ind Cal Date Duant Method Cal Curve Typ Integrator Method File Sublist Column Column Size
livided by CF . used in linearity determination. (response divided by concentration). eviation. ICAL Linearity Summary v2.0	Level 1 Level 2 Level 3 Level 4 Level 5 Level 5 Image: Ima	⁷ iles: Ares/Target/Chem/58901.i/18026N2.b/1802607.d Ares/Target/Chem/58901.i/18026N2.b/1802608.d Ares/Target/Chem/58901.i/18026N2.b/1802609.d Ares/Target/Chem/58901.i/18026N2.b/1802610.d Ares/Target/Chem/58901.i/18026N2.b/1802611.d Ares/Target/Chem/58901.i/18026N2.b/1802612.d	<pre>ce: 02-AUG-2006 17:57 02-AUG-2006 21:09 ESTD ce: Average CF Falcon \\Ares\Target\Chem\5890I.i\I8026N2.b\GN8020; all-j.sub DB-VRX 30m L - 0.53mm ID</pre>
Page 1	rel 6 Ave CF %RSD ====================================		μ

) † 1. ц ... Column Size

••

30m L

I

0.53mm ID

Calibrati	lon Files:
Level 1:	//Ares/Target/Chem/58901.i/18026N2.b/1802607.d
Level 2:	//Ares/Target/Chem/58901.i/18026N2.b/1802608.d
Level 3:	//Ares/Target/Chem/58901.i/I8026N2.b/I802609.d
Level 4:	//Ares/Target/Chem/58901.i/18026N2.b/1802610.d
Level 5:	//Ares/Target/Chem/58901.i/18026N2.b/1802611.d
Level 6:	//Ares/Target/Chem/58901.i/I8026N2.b/I802612.d

2 Bromofluorobenzene +++	1 Trifluorotoluene +++	3 Gasoline +++	Compound Levi	
++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	 rel 1	
20304.000	26748.000	107060.00	Level 2	
41150.000	54815.000	219011.00	Level 3	
81388.000	109164.00	416476.00	Level 4	
124763.00	163191.00	1025986.0	 Level 5	
169680.00	218331.00	2053069.0	 Level 6	

+++ - Standard Level not used in linearity determination. Response is in Area units.

08/25/2006 06:31

ICAL Responses Summary v2.0

Page ⊢⊸

	Laucks Testing Labs Initial Calibration Retention Time Summary
Start Cal Date:	02-AUG-2006 17:57
End Cal Date :	02-AUG-2006 21:09
Quant Method :	ESTD
Cal Curve Type:	Average CF
Integrator :	Falcon
Method File :	\\Ares\Target\Chem\5890I.i\I8026N2.b\GN80201.m
Sublist :	all-j.sub
Column :	DB - VRX
Column Size :	30m L - 0.53mm ID
Lid woittendiled	
Calibration Fil	0

Level /Ares/Target/Chem/58901.i/I8026N2.b/I802607.d /Ares/Target/Chem/58901.i/I8026N2.b/I802608.d /Ares/Target/Chem/58901.i/I8026N2.b/I802609.d /Ares/Target/Chem/58901.i/I8026N2.b/I802610.d /Ares/Target/Chem/58901.i/I8026N2.b/I802611.d /Ares/Target/Chem/58901.i/I8026N2.b/I802612.d

Level

Level

Level ы

Level

Level თ ••

	U 91	 	
2 Bromofluorobenzene	1 Trifluorotoluene	Compound	
*****	++++++	Level 1	
11.96	6.44	Level 2	
11.96	6.44	Level 3	
11.96	6.44	 Level 4	A REAL PROPERTY AND A REAL PROPERTY OF A REAL PROPE
11.96	6.45	 Level 5	
11.96	6.45	 Level 6	
11.958	6.445	Ave RT	

Retention times are expressed as minutes. Standard level not used in linearity determination.

08/25/2006 06:31

ICAL RT Summary v2.0

Page Р

Column Sublist Method File Cal Curve Type: Quant Method End Cal Date Start Cal Date: Level Calibration Files: Column Size Integrator Level Level Level Level Level Standard concentrations are expressed as +++ Ν μ., ω. Bromofluorobenzene Trifluorotoluene Gasoline 日日和新鮮新聞的民族的作品 4 2 თ .. თ ... ω Standard Level not used in linearity determination. Compound /Ares/Target/Chem/5890I.i/I8026N2.b/I802612.d /Ares/Target/Chem/58901.i/I8026N2.b/I802611.d /Ares/Target/Chem/58901.i/I8026N2.b/I802610.d /Ares/Target/Chem/5890I.i/I8026N2.b/I802609.d /Ares/Target/Chem/58901.i/I8026N2.b/I802608.d /Ares/Target/Chem/58901.i/18026N2.b/1802607.d •• •• 02-AUG-2006 02-AUG-2006 30m L - 0.53mm ID DB-VRX all-j.sub Average CF Falcon ESTD \\Ares\Target\Chem\58901.i\I8026N2.b\GN80201.m 第2回時回時回回 Initial Calibration Amounts 21:09 17:57 +++++++ +++++++ +++++++ Level 1 Level 2 250.00 50.00 50.00 K R H N H N ng. Level 3 100.00 100.00 500,00 1000.00 Level 4 Summary 200.00 200.00 Level 5 2500.00 300.00 300.00 5000.00 400.00 400.00

08/25/2006 06:31

ICAL Standard Concentrations Summary v2.0

Page

کر ا

Level 6

SUM - 163

Laucks Testing Labs

Laboratory Name Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID	: \\Diana\Targe : 04-JUL-2007 0 : CCV_GAS_0704A : ICV_NWTPHGx : CCV_GAS_0704A : 5890i i	t\5890i.i\I7 9:49 Cli	047-2.b\: ent ID	1704702.d : 10ul VO	A5-42-7	
Method Quantitation Dilution Factor Column	: GN80216.m : ESTD : 1.00 : DB-VRX	Sub Int Sam Col	list egrator ple Type umn Size	all-j Falcon CCALIB_ 30.00m	3 L- 0.53mm	ID
Compound	RT	RT Window	Average CF	ICV CF	%D Flag	
Trifluorotoluene	6.57 #	6.52 - 6.62	543.7455	545.2300	0.3	
Bromofluorobenzene	12.06 #	12.01 - 12.11	412.9193	398.6550	-3.5	
Gasoline		8.04 - 18.53	420.7492	433.7120	3.1	

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

SUM - 164

Laboratory Name Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc Info	: : .	\\Diana\Targe 04-JUL-2007 1 CCV_GAS_0704B NWTPHGx	t\5 6:5	89 2	0i	.,i\I	7047.	-2.b\	1704713.d			
Laboratory ID	:	CCV_GAS_0704B				Cl	ient	ID	: 10ul VO	A5-42	2-7	
Method Quantitation Dilution Factor Column		GN80216.m ESTD 1.00 DB-VRX				Su Ir Sa Co	iblist itegra ample olumn	t ator Type Size	: all-j : Falcon e: CCALIB_ e: 30.00m	3 L- 0.	53mm	ID
Compound		RT	R	τV	∛ír	ndow	Ave	rage CF	Continuing CF	₹D	Flag	
Trifluorotoluene		6.57	 6.	52	-	6.6	2 543	.7455	517.4000	-4.8		
Bromofluorobenzene		12.05	12.	01	-	12.1	1 412	.9193	375.8000	-9.0		
Gasoline			8.	04		18.5	3 420	.7492	404.4290	-3.9)	

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
= The compound retention time is the expected retention time in the method.

90 - 1 19

CCV Summary V1.0

Page 1

CLIENT SAMPLE NO.

B070407GVOWI1

U

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.: <u>CAB33</u>	Run Sequence: <u>R019234</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B070407GVOWI1</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704704.d</u>
pH: Decanted: (Y/N) N	Date Collected:
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q

Gasoline Range Organics

25

Comments:

TPH-Gasoline

FORM I GRO

CLIENT SAMPLE NO.

S070407GVOWI1

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence: R019234
Matrix: (SOIL/WATER)Water	Lab Sample ID:
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704705.d</u>
pH: Decanted: (Y/N) N	Date Collected:
Percent Moisture:	Date Prépared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS; (ug/L or ug/kg) <u>ug/L</u>	Ω
TPH-Gasoline	Gasoline Range Organics	81	

Comments:

FORM I GRO
l GASOLINE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW01DWD

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB33</u>	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002DUP</u>
Sample wt/vol: 10 (g/mL) <u>mL</u>	Lab File ID: 1704709.d
pH: <u><2</u> Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume:(ul)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	25	U

Comments:

FORM I GRO

1 GASOLINE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB33	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002MS</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1704710.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: <u>06/21/2007</u>
Percent Moisture:	Date Prepared: 07/04/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/04/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	78	

Comments:

FORM I GRO

Forms Summary

NWTHP-Diesel

CAB33

2 WATER DIESEL SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB33

Run Sequence: <u>R019594</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (2FB) #	S2 (TER) #	S3 () #	S4 () #	TOT OUT
(CAB33-005) 15LCMW02DW	55	62			0
(CAB33-004) 15LCMW02SW	87	99			0
(CAB33-002MS) 15LCMW01DWMS	96	100			0
(CAB33-002D) 15LCMW01DWD	93	102			0
(CAB33-002) 15LCMW01DW	96	106			0
(CAB33-001) 15LCMW01SW	97	101			0
(S062707GSVWLS) S062707GSVWLS	95	104			0
(B062707GSVWLS) B062707GSVWLS	94	102			0

S1 (2FB) = 2-Fluorobiphenyl S2 (TER) = o-Terphenyl S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

50-150 50-150

Page 1 of 1

3B WATER DIESEL BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: N/A
BS Run Sequence: <u>R019594</u>	SDG No.: <u>CAB33</u>
BS Lab Sample ID: <u>S062707GSVWLS</u>	
Level: <u>N/A</u>	Units: mg/L

Analyte	Spike Added	Found	%Rec #	Rec Limit
Diesel Range Organics	1.25	1.2211	98	51-147

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _____ out of ____ outside limits

COMMENTS :

Laucks Testing Laboratories

Duplicate Report

Test;	NWTPH Diesel	SDG ID:	CAB33
		Preparation Date:	6/27/2007
Lab Sample ID:	CAB33-002D	Run Sequence ID:	R019594
Client Sample ID:	15LCMW01DW	Analysis Date:	07/16/2007 13:35
		Units:	mg/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Diesel Range Organics	0	0	0%	50
Oil Range Organics	0	0	0%	50

Associated Samples		
Lab Sample ID Client Sample ID		
CAB33-001	15LCMW01SW	
CAB33-002	15LCMW01DW	
CAB33-004	15LCMW02SW	
CAB33-005	I5LCMW02DW	

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-20.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science. **SUM - 173**

Laucks Testing Laboratories Matrix Spike Report

Test:	NWTPH Diesel			SDG ID:	CAB33	
				Preparation Date:	06/27/2003	7
Lab Sample ID:	CAB33-002MS			Run Sequence ID:	R019594	
Client Sample ID:	15LCMW01DW	VMS		Analysis Date:	7/16/2007	2:23:00PM
				Units:	mg/L	
				Matrix:	Water	
Anal	yte	Sample Found	Spike Added	MS Found	Recovery	Limit
Diesel Range Organic	S	0	1.00	0.9403	94%	50-150

Associated Samples		
Lab Sample ID	Client Sample ID	
CAB33-001	15LCMW01SW	
CAB33-002	15LCMW01DW	
CAB33-004	15LCMW02SW	
CAB33-005	15LCMW02DW	

= This Recovery is not flagged an an exceedence because the Sample Found amount is five times or more than the Spike added amount

* = RPD or percent recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-21.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

DIESEL METHOD BLANK SUMMARY

CLIENT	SAMPLE	NO
B0627	07GSVWI	s

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
Lab Sample ID: <u>B062707GSVWLS</u>	SDG No.: CAB33
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: _06/27/2007
Lab File ID (1): <u>C7167WA.b-C716706.d</u>	Lab File ID (2):
Date Analyzed (1): 07/16/2007	Date Analyzed (2):
Time Analyzed (1): 09:36	Time Analyzed (2):
Instrument ID (1): <u>HP 5890C</u>	Instrument ID (2):
Column(1): <u>RTX-5</u> ID: 0.25 (mr	n) Column(2):(mm)
THIS METHOD BLANK APPLIES TO THE FOLL	OWING SAMPLES AND OC SAMPLES.

LAB DATE/TIME RUN SEQUENCE CLIENT LAB FILE ID SAMPLE NO. SAMPLE ID COL ANALYZED R019594 15LCMW01SW CAB33-001 1 C716709.d 07/16/2007 11:59 R019594 C716710.d 07/16/2007 12:47 15LCMW01DW CAB33-002 1 15LCMW01DWD CAB33-002D 1 C716711.d 07/16/2007 13:35 R019594 R019594 15LCMW01DWMS CAB33-002MS C716712.d 07/16/2007 14:23 j 15LCMW02SW CAB33-004 C716713.d 07/16/2007 15:11 R019594 ĺ 15LCMW02DW CAB33-005 1 C716718.d 07/16/2007 19:11 R019594 S062707GSVWLS S062707GSVWLS 1 C716707.d 07/16/2007 10:24 R019594

COMMENTS:

CLIENT SAMPLE NO.

15LCMW01SW

U

Lab Name: Lauc	ks Testing Labs	Contract:_	N/A	
SDG No.: CAB33		Run Sequer	nce: <u>R019594</u>	· · ·····
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Sample	e ID: <u>CAB33-001</u>	
Sample wt/vol:	500.0 (g/mL) <u>mL</u>	Lab File I	ID: <u>C716709.d</u>	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Colle	ected:	
Extraction: (Ty	pe) <u>SEPF</u>	Date Extra	acted: 06/27/2007	
Concentrated Ex	tract Volume: <u>1000.0</u> (uL)	Date Analy	yzed: 07/16/2007	
Injection Volum	e:(uL)	Dilution F	Factor:	
GPC Cleanup: (Y	/N) <u>N</u> pH:<2	Sulfur Cle	eanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	C	ONCENTRATION UNITS: (ug/L or ug/kg) mg/L	Q
TPH-Diesel	Diesel Range Organics	0	0.10	U

0.40

TPH-Oil Comments: Oil Range Organics

CLIENT SAMPLE NO.

15LCMW01DW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Sample wt/vol: <u>490.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>C716710.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N)N
CAS NO. COMPOUND	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) mg/L	Q
TPH-Diesel	Diesel Range Organics	0.10	U
TPH-Oil	Oil Range Organics	0.41	υ

Comments:

CLIENT SAMPLE NO.

15LCMW02SW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-004</u>
Sample wt/vol: 500.0 (g/mL) mL	Lab File ID: <u>C716713.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/21/2007
Extraction: (Type) _SEPF	Date Extracted:06/27/2007
Concentrated Extract Volume:1000.0 (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) mg/L Q
TPH-Diesel Diesel Range Organics	0.10 U
TPH-Oil Oil Range Organics	0.40 U

TPH-Oil Comments:

FORM I DRO

CLIENT SAMPLE NO.

15LCMW02DW

Lab Name: Laucks Testing Labs	Contract:_N/A
SDG No.: CAB33	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>
Sample wt/vol: 500.0 (g/mL) <u>mL</u>	Lab File ID: <u>C716718.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/21/2007
Extraction: (Type)	Date Extracted: 06/27/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
	CONCENTED TON INTER.

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.10	U
TPH-Oil	Oil Range Organics	0.40	U

Comments:

FORM I DRO

Page 1 of 1

07/13/2007 06:20 ICAL Linearity Summary V2.0	Responses expressed are Area units. R^2 = The correlation co-efficient.	+++ - Standard Level not used in linearity determination.	Amount = (Response divided by Slope) plus Y-int	Average RSD : 1.0	1 Diesel 349446.00 579052.00 953341.00 1703 3 2-Fluorobiphenyl 13027.00 36149.00 74573.00 1481 4 o-Terphenyl 19778.00 50085.00 99162.00 1918	Compound Level 1 Level 2 Level 3 Lev
Page 1					181.0 4136141.0 7917017.0 15319226 7582.10000 -30.423 0.99981 17.00 386143.00 764970.00 ++++++ 7689.80000 0.326 0.99993 16.00 495136.00 974727.00 ++++++ 9762.20000 -0.089 0.99991	14 Level 5 Level 6 Level 7 Slope Y-int R^2

Laucks Testing Labs Initial Calibration Amounts Summary

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7
→~~×××××××××××××××××××××××××××××××××××	11 81 81 81 81 81 81 81 81 81 81 81 81 8			*****			
1 Diesel	20.00	50.00	100.00	200.00	500.00	1000.00	2000.00
3 2-Fluorobiphenyl	2.00	5.00	10.00	20.00	50.00	100.00	+ + + + +
4 o-Terphenyl	2.00	5.00	10.00	20.00	50.00	100.00	+++++++++++++++++++++++++++++++++++++++

+++ - Standard Level not used in linearity determination. Standard concentrations are expressed as ug/ml.

07/13/2007 06:20 ICAL Standard Concentrations Summary v2.0 Page μ

07/16/2007 06:47	Responses expressed are Area units. R^2 = The correlation co-efficient.	+++ ~ Standard Level not used in linearity determinati	Amount = (Response divided by Slope) plus Y-int	Average RSD :	Compound Level 1 Lev ====================================	Calibration Files: Level 1: //diana/Target/5890c Level 2: //diana/Target/5890c Level 3: //diana/Target/5890c Level 4: //diana/Target/5890c Level 5: //diana/Target/5890c Level 6: //diana/Target/5890c Level 7: //diana/Target/5890c	Start Cal Date: 15-JUL-2007 08 End Cal Date : 15-JUL-2007 13 Quant Method : ESTD Cal Curve Type: Linear Integrator : Falcon Method File : \\diana\Target Sublist : mo.sub Column Size : 30m L - 0.25mm	μ
CAL Linearity Summary v2.0		on.		1.0	el 2 Level 3 Level 4 Level 5 Level 6 ====================================	. i/C7127WC.b/C712787.d . i/C7127WC.b/C712788.d . i/C7127WC.b/C712789.d . i/C7127WC.b/C712790.d . i/C7127WC.b/C712791.d . i/C7127WC.b/C712791.d . i/C7127WC.b/C712793.d	3:22 3:08 1:\5890c.i\C7127WC.b\CDX71203.m	Laucks Testing Labs Initial Calibration Linearity Sum
Page 1					Level 7 Slope Y-inc R^2 === ================================			nmary

Laucks Testing Labs Initial Calibration Amounts Summary

Calibration Files:
Column Size : 30m L - 0.25mm ID
Column : RTX-5
Sublist : mo.sub
Method File : \\diana\Target\5890c.i\C7127WC.b\CDX71203.m
Integrator : Falcon
Cal Curve Type: Linear
Quant Method : ESTD
End Cal Date : 15-JUL-2007 13:08
Start Cal Date: 15-JUL-2007 08:22

Standard concentrations are expressed as ug/ml. +++ - Standard Level not used in linearity determination. 500.00 | 1000.00 | 2000.00 | 2500.00 |

Level 7

Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6

Compound

2 Motor Oil

100.00

200.00

07/16/2007 06:47 ICAL Standard Concentrations Summary v2.0 Page Р

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: \\diana\Tai : 16-JUL-200 : D250PPM : NWTPHDx / 8 : D250PPM : 5890c.i : CDX71204.m : ESTD : 1.00 : RTX-5	rget\5890c.i\C 7 07:13 3015mod - Diese Cl: Ope Sul Int Sar Co.	7167WA.b\d el ient ID erator olist cegrator nple Type Lumn Size	C716703.d : MA8-31- : CMP : alld : Falcon : CCALIB_ : 30.00m	20 3 L- 0.25mm	ID
Compound	RT	RT Window	Expected Amount	Continuing Amount	%D Flag	
2-Fluorobiphenyl	12.66	12.61 - 12.71	20.000	20.137	0.7	;
Diesel		9.93 - 23.98	250.00	237.32	-5.1	
o-Terphenyl	19.32	19.28 - 19.38	20.000	19.178	-4.1	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 07:49

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info	:	\\diana\Ta 16-JUL-200 02000PPM	rget\58 7 08:00	390ç.i	L\C7167	WA.b\C	716704.0	E		
Misc. Info Laboratory ID Instrument ID	::	NWTPHDx / 02000PPM 5890c.i	8015moc	I - Di	lesel Client Operat	ID : or :	MA8-31- CMP	-19		
Method Quantitation Dilution Factor Column	••••••	CDX71204.m ESTD 1.00 RTX-5			Sublis Integr Sample Column	t : ator : Type: Size:	mo Falcon CCALIB_ 30.00m	_3 _L- 0	.25mm	ID
Compound		RT	RT	Window	Exj v Ar	pected C nount	ontinuing Amount	₹ ₽D	Flag	
Motor Oil	==		23.98	- 37.	48 20	00.0	1949.4	-2;	5	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 08:46

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	** ** ** ** ** ** ** ** **	\\diana\Ta 16-JUL-200 D250PPM NWTPHDx / D250PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	1rget` 97 16 8015r	\58 :47 nod	900	Die 0 0	C71 Clie Dper Subl Inte Samp Colu	67WA.b nt ID ator ist grator le Type mn Size	、C7 ::::::::	MA8-31- CMP alld Falcon CCALIB_ 30.00m	3 -20 -3 -L-	Ο.	.25mm	ID
Compound		RT	:	RT '	Wind	dow]	Expected Amount	. Co	ontinuing Amount	olo D	D	Flag	
2-Fluorobiphenyl	==	12.66	12	.61	- 1	12.7	·==== /1	20.000	===	19.660	-	1.7	7	;
Diesel			9	. 93	- 2	23.9	8	250.00		229.67		8.1	L	
o-Terphenyl		19.32	19	.28	- 1	19.3	8	20.000		18.558		7.2	2	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page 1

Data File Injection Date	:	\\diana\Ta 16-JUL-200	rget\58 7 17:35	390c.i	\C7167	WA.b\C	716716.0	ł		
Sample Info	:	02000PPM								
Misc. Info	:	NWTPHDx /	8015moc	l – Di	esel					
Laboratory ID	:	02000PPM			Client	ID :	MA8-31-	-19		
Instrument ID	:	5890c.i			Operat	or :	CMP			
Method	:	CDX71204.m			Sublis	t :	mo			
Quantitation	:	ESTD			Integr	ator :	Falcon			
Dilution Factor	:	1.00			Sample	Type:	CCALIB_	_3		
Column	:	RTX-5			Column	Size:	30.00m	L- 0.	25mm	ID
					Exp	ected (Continuing	3		
Compound		RT	RT	Window	n An	ount	Amount	۶D	Flag	_
Motor Oil			23.98	- 37.	48 20	00.0	1908.7	-4.6		

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: \\diana\Tar : 17-JUL-2007 : D250PPM : NWTPHDx / 8 : D250PPM : 5890c.i : CDX71204.m : ESTD : 1.00 : RTX-5	rget\5890c.i\C7 00:47 015mod - Diese Cli Ope Suk Int San Col	el ent ID erator egrator ist egrator iple Type umn Size	MA8-31- CMP alld Falcon CCALIB 30.00m	20 3 L- 0.25mm	ID
Compound	RT	RT Window	Expected Amount	Continuing Amount	%D Flag	
2-Fluorobiphenyl	12.66	12.61 - 12.71	20.000	19.762	-1.2	=
Diesel		9.93 - 23.98	250.00	233.59	-6.6	
o-Terphenyl	19.32	19.28 - 19.38	20.000	18,716	-6.4	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:23

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	 \\diana\Ta: 17-JUL-200' 02000PPM NWTPHDx / 8 02000PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	rget\5890c. 7 01:35 3015mod - I	i\C7167 Diesel Client Operato Sublis Integra Sample Column	WA.b\C or : t : ator : Type: Size:	MA8-31- CMP mo Falcon CCALIB 30.00m	19 3 L- 0.25mm	ID
Compound	RT	RT Windo	Exp w An	ected Co Nount	ontinuing Amount	%D Flag	
Motor Oil	 : = = = = = = = = = = = = ;	23.98 - 37	.48 20	00.0	1961.5	-1.9	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:23

CCV Summary V1.0

Page 1

CLIENT SAMPLE NO.

B062707GSVWLS

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>B062707GSVWLS</u>
Sample wt/vol: 400.0 (g/mL) <u>mL</u>	Lab File ID: <u>C716706.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:
Extraction: (Type) _SEPF	Date Extracted: 06/27/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: _2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.13	υ
TPH-Oil	Oil Range Organics	0.50	υ

Comments:

FORM I DRO

CLIENT SAMPLE NO.

S062707GSVWLS

Lab Name: Lauc	ks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB33</u>		Run Sequence: <u>R019594</u>
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Sample ID: S062707GSVWLS
Sample wt/vol:	400.0 (g/mL) <u>mL</u>	Lab File ID: <u>C716707.d</u>
% Moisture:	Decanted: (Y/N) _N	Date Collected:
Extraction: (Ty	pe) <u>SEPF</u>	Date Extracted:
Concentrated Ex	tract Volume: <u>1000.0 (</u> uL)	Date Analyzed: 07/16/2007
Injection Volum	e:(uL)	Dilution Factor:1.0
GPC Cleanup: (Y	/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) mg/L Q
TPH-Diesel	Diesel Range Organics	1.2

Comments:

CLIENT SAMPLE NO.

15LCMW01DWD

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB33	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB33-002D</u>
Sample wt/vol: 490.0 (g/mL) mL	Lab File ID: <u>C716711.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/21/2007
Extraction: (Type)	Date Extracted: 06/27/2007
Concentrated Extract Volume: _1000.0 (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH: ≤ 2	Sulfur Cleanup: (Y/N) _N
CAS NO. COMPOUND	CONCENTRATION UNITS:

CAS NO. COMPOUND	(ug/L or ug/kg) mg/L	Q
TPH-Diesel Diesel Range Organics	0.10	U
TPH-Oil Oil Range Organics	0.41	υ

Comments:

CLIENT SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Testing Labs		Contract: N/A			
SDG No.: <u>CAB33</u>		Run Sequence: <u>R019594</u>			
Matrix: (SOIL/W	ATER) Water	Lab Sample ID: <u>CAB33-002MS</u>			
Sample wt/vol:	500.0 (g/mL) <u>mL</u>	Lab File ID: <u>C716712.d</u>			
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected: 06/21/2007			
Extraction: (Type) _SEPF		Date Extracted: 06/27/2007			
Concentrated Ex	tract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007			
Injection Volume: 2.0 (uL)		Dilution Factor: <u>1.0</u>			
GPC Cleanup: (Y	/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) mg/L Q			
TPH-Diesel	Diesel Range Organics	0.94			

Comments;

FORMS SUMMARY

in a star in the second

CAB33

Metals Data

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

INORGANIC ANALISE	SAMPLE NO.
	15LCMW01SW
Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS	SDG No.: <u>CAB33</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-001</u>
Level (low/med): LOW	Date Received: 06/22/2007
% Solids:	
Concentration Units :	ug/L

CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.188	J		M	R019216
7440-38-2	Arsenic	0.231	J		M	R019216
7440-41-7	Beryllium	0.215	U		M	R019325
7440-43-9	Cadmium	0.0940	U		M	R019216
7440-47-3	Chromium	3.87	J		М	R019325
7440-50-8	Copper	0.520	U		M	R019216
7439-92-1	Lead	0.0750	U		M	R019216
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	2.40			М	R019216
7782-49-2	Selenium	0.264	J		М	R019216
7440-22-4	Silver	0.0850	U		М	R019216
7440-28-0	Thallium	0.0440	Ŭ		М	R019216
7440-66-6	Zinc	2.83	Ĵ	Е	М	R019216

Comment _	e e conservation e conservation de la conservat				
Color After:	: <u>Coloriess</u>	Clarity After:	Clear	Artifacts:	No
Color Before	e: <u>Colorless</u>	Clarity Before:	Clear	Texture:	

Page 1 of 1

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW01DW
Lab Name: Laucks Laboratories	Contract:
Lab Code:	SDG No.: <u>CAB33</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-002</u>
Level (low/med): LOW	Date Received: 06/22/2007
% Solids:	

	Concentration	Units : uo	g/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0964	l		М	R019216
7440-38-2	Arsenic	0.386	J		M	R019216
7440-41-7	Beryllium	0.215	U		M	R019325
7440-43-9	Cadmium	0.131	J		M	R019216
7440-47-3	Chromium	1.01	J		М	R019325
7440-50-8	Copper	0.520	U		М	R019216
7439-92-1	Lead	0.0750	U		м	R019216
7439-97-6	Mercury	0.0180	Ų		CV	R019069
7440-02-0	Nickel	1.16			М	R019216
7782-49-2	Selenium	0.110	U		М	R019216
7440-22-4	Silver	0.0850	U		M	R019216
7440-28-0	Thallium	0.0440	U		М	R019216
7440-66-6	Zinc	3.19	J	E	М	R019216

Color	Before:	Colorless	Clarity Before	e: <u>Clear</u>	Texture:	-
Color .	After:	Colorless	Clarity After:	Clear	Artifacts:	No
Commen	t					
			, .			

SW-846 --1--

INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	SAMPLE NO.
	15LCMW02SW
Lab Name:Laucks Laboratories	Contract:
Lab Code:	SDG No.: <u>CAB33</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-004</u>
Level (low/med): LOW	Date Received: 06/22/2007

% Solids: _____

	Concentrat	ion Units : u	g/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.247	J		М	R019216
7440-38-2	Arsenic	0.431	J		M	R019216
7440-41-7	Beryllium	0.215	U		M	R019325
7440-43-9	Cadmium	0.0940	U		М	R019216
7440-47-3	Chromium	0.600	U		М	R019325
7440-50-8	Copper	0.520	U		M	R019216
7439-92-1	Lead	0.0750	U		М	R019216
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	0.616	J		М	R019216
7782-49-2	Selenium	0.184	J		M	R019216
7440-22-4	Silver	0.0850	U		M	R019216
7440-28-0	Thallium	0.0440	U		М	R019216
7440-66-6	Zinc	1.80	U	E	M	R019216

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					

SW-846 -1-INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.	
	1.5LCMW02DW	
Lab Name: Laucks Laboratories	Contract:	
Lab Code:	SDG No.: CAB33	
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-005</u>	
Level (low/med): LOW	Date Received: 06/22/2007	

% Solids: _____

% Solids:						
	Concentrat	ion Units :u	g/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0769	J		M	R019216
7440-38-2	Arsenic	0.570	J		М	R019216
7440-41-7	Beryllium	0.215	U		. M	R019325
7440-43-9	Cadmium	0.104	J		·M	R019216
7440-47-3	Chromium	0.769	J		М	R019325
7440-50-8	Copper	0.520	U		М	R019216
7439-92-1	Lead	0.0750	U		М	R019216
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	0.961	J		М	R019216
7782-49-2	Selenium	0.122	J		М	R019216
7440-22-4	Silver	0.0850	U		М	R019216
7440-28-0	Thallium	0.0440	U		М	R019216
7440-66-6	Zine	2.50	J	E	М	R019216

Color Before:	Colorless	Clarity Before:	Clear	Texture;	<u></u>
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment			·····		

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	15LCMW01SW (Filt.)		
Lab Name: Laucks Laboratories	Contract:		
Lab Code:	SDG No.: <u>CAB33</u>		
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-006</u>		
Level (low/med): LOW	Date Received: 06/22/2007		

r

ug/L Concentration Units : С Q М Run Seq. CAS No. Analyte Concentration 7440-36-0 Antimony 0.0560 U М R019216 R019216 7440-38-2 Arsenic 0.160 J М 0.0430 U Μ R019216 7440-41-7 Beryllium 7440-43-9 Cadmium 0.0956 J Μ R019216 1.18 R019216 7440-47-3 Chromium М 7440-50-8 Copper 0.520 U Μ R019216 7439-92-1 Lead 0.0750 U М R019216 7439-97-6 Mercury 0.0180 U CV R019069 7440-02-0 1.31 R019216 Nickel М R019216 7782-49-2 0.110 U М Selenium 0.0850 Ų R019216 М 7440-22-4 Silver 7440-28-0 Thallium 0.0440 U Μ R019216 Zinc 2.27 Ĵ E М R019216 7440-66-6

Color Befor	e: <u>Cold</u>	orless	Clarity B	Before:	Clear	Texture:	····
Color After	: <u>Colc</u>	orless	Clarity A	After:	Clear	Artifacts:	No
Comment _	·						
-							
					######################################		·····

Page 1 of 1

% Solids: _

SW-846 -1-INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW01DW (Filt.)
Lab Name: Laucks Laboratories	Contract:
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB33</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-007</u>
Level (low/med): LOW	Date Received: 06/22/2007

% Solids:

	Concentratio	on Units :	g/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq
7440-36-0	Antimony	0.0560	U		М	R019216
7440-38-2	Arsenic	0.382	J		М	R019216
7440-41-7	Beryllium	0.215	U		М	R019325
7440-43-9	Cadmium	0.0940	U		M	R019216
7440-47-3	Chromium	0.756	J		М	R019325
7440-50-8	Copper	0.520	U		M	R01921€
7439-92-1	Lead	0.0750	U		М	R01921€
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	1.33			М	R019216
7782-49-2	Selenium	0.110	U		М	R019216
7440-22-4	Silver	0.0850	U		М	R019216
7440-28-0	Thallium	0.0440	U		M	R019216
7440-66-6	Zinc	1.99	J	E	М	R019216

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	15LCMW02SW (Filt.)		
Lab Name: <u>Laucks Laboratories</u>	Contract:		
Lab Code: LAUCKS	SDG No.: <u>CAB33</u>		
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-008</u>		
Level (low/med): LOW	Date Received: 06/22/2007		

% Solids: _____

	Concentration Units : ug/L					
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.303	J		M	R019216
7440-38-2	Arsenic	0.443	J	·	М	R019216
7440-41-7	Beryllium	0.0430	U		M	R019216
7440-43-9	Cadmium	0.0994	J		М	R019216
7440-47-3	Chromium	0.632	J		М	R019216
7440-50-8	Copper	0.520	U		М	R019216
7439-92-1	Lead	0.0750	U		М	R019216
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	1.09			M	R019216
7782-49-2	Selenium	0.110	U		M	R019216
7440-22-4	Silver	0.0850	U		M	R019216
7440-28-0	Thallium	0.0440	U		M	R019216
7440-66-6	Zine	1.80	U	E	М	R019216

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	NO
Comment					

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW02D (Filt.)
Lab Name: <u>Laucks Laboratories</u>	Contract:
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB33</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB33-009</u>
Level (low/med): LOW	Date Received: 06/22/2007

% Solids: _____

	Concentration Units : <u>ug/L</u>					
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0873	J		. M	R019216
7440-38-2	Arsenic	0.487	J		М	R019216
7440-41-7	Beryllium	0.0430	·U		М	R019216
7440-43-9	Cadmium	0.0940	U		М	R019216
7440-47-3	Chromium	0.273	J		M	R019216
7440-50-8	Copper	0.520	U		M	R019216
7439-92-1	Lead	0.0750	U		M	R019216
7439-97-6	Mercury	0.0180	U		CV	R019069
7440-02-0	Nickel	0.601	J		М	R019216
7782-49-2	Selenium	0.110	U		М	R019216
7440-22-4	Silver	0.0850	U		M	R019216
7440-28-0	Thallium	0.0440	U		М	R019216
7440-66-6	Zinc	2.37	j	E	М	R019216

Color Before:	Colorless	Clarity Before:	<u>Clear</u>	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					

SW-846

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories		Contract:			
Lab Code: <u>LAUCKS</u> SDG No.:	CAB33	Run Sequence ID: <u>R019216</u>			
Initial Calibration Source:	ME-15-151-16	· · · · · · · · · · · · · · · · · · ·			
Continuing Calbration Source:	ME-15-161-8, ME-15-161-9				

Concentration Units: ug/L

	Initial Calibration			Continuing Calibrations							
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	2 %R(1)	M
Antimony	90-110	60	61.975	103.3	90 - 110	50.000	49.150	98.3	48.647	97.3	М
Arsenic	90-110	60	61.281	102.1	90 - 110	50.000	49.712	99.4	51.720	103.4	M
Beryllium	90-110	60	59.781	99.6	90 - 110	50.000	48.448	96.9	58.971	117.9	М
Cadmium	90-110	60	61.917	103.2	90 - 110	50.000	51.478	103.0	49.292	98.6	М
Chromium	90-110	60	62.902	104.8	90 - 110	50.000	51.880	103.8	54.278	108.6	М
Copper	90-110	60	62.625	104.4	90 - 110	50.000	51.067	102.1	50.897	101.8	М
Lead	90-110	60	58.964	98.3	90 - 110	50.000	50.935	101.9	49.478	99.0	M
Nickel	90-110	60	62.793	104.7	90 - 110	50.000	52.463	104.9	51.659	103.3	M
Selenium	90-110	60	63.430	105.7	90 - 110	. 50.000	51.477	103.0	49.580	99.2	М
Silver	90-110	60	60.240	100.4	90 - 110	50.000	52.871	105.7	49.683	99.4	M
Thallium	90-110	60	60.486	100.8	90 - 110	50.000	50.464	100.9	49.958	99.9	M
Zine	90-110	60	61.904	103.2	90 - 110	50.000	51.053	102.1	51.116	102.2	М
2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

	Lab	Name:	Laucks	Laboratories	
--	-----	-------	--------	--------------	--

Lab Code: LAUCKS SDG No.: CAB33

Contract:

Run Sequence ID: <u>R019216</u>

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initial Calibration			Initial Calibration Continuing CCV3					Calibr	Calibrations CCV4		
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М		
Antimony					90 - 110	50.000	48.003	96.0	49.027	98.1	Μ		
Arsenic					90 - 110	50.000	49.989	100.0	50.077	100.2	M		
Beryllium					90 - 110	50.000	55.705	111.4	51.374	102.7	М		
Cadmium					90 - 110	50.000	49.250	98.5	50.503	101.0	М		
Chromium					90 - 110	50.000	54.461	108.9	52.875	105.7	М		
Copper		Ī			90 - 110	50.000	52.416	104.8	52.969	105.9	Μ		
Lead					90 - 110	50.000	49.615	99.2	49.322	98.6	М		
Nickel					90 - 110	50.000	51.874	103.7	51.785	103.6	М		
Selenium					90 - 110	50.000	49.464	98.9	49.758	99.5	М		
Silver					90 - 110	50.000	50.721	101.4	51.717	103.4	М		
Thallium					90 - 110	50.000	51.004	102.0	50.654	101.3	Μ		
Zinc					90 - 110	50.000	50.625	101.2	50.595	101.2	М		

SW-846

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Lauc	ks Laboratories	Contract:
Lab Code: <u>LAUC</u>	KSSDG No.: <u>CAB33</u>	Run Sequence ID: <u>R019216</u>
Initial Calibra	tion Source:	
Continuing Calb	pration Source: <u>ME-15-161-8,</u>	ME-15-161-9

Concentration Units: ug/L

		Initial	l Calibrati	on			Continuing	Calibr	ations		
						CCV5		CCI	76		
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	49.528	99.1	47.348	94.7	М
Arsenic					90 - 110	50.000	51.014	102.0	50.085	100.2	M
Beryllium					90 - 110	50.000	49.222	98.4	48.408	96.8	Μ
Cadmium					90 - 110	50.000	50.728	101.5	49.935	99.9	М
Chromium					90 - 110	50.000	52,473	104.9	53.752	107.5	M
Copper					90 - 110	50.000	52.530	105.1	52.194	104.4	M
Lead					90 - 110	50.000	48.632	97.3	49.025	98.0	Μ
Nickel					90 - 110	50.000	52.158	104.3	51.165	102.3	M
Selenium					90 - 110	50.000	50.746	101.5	51.863	103.7	М
Silver					90 - 110	50.000	51.790	103.6	51.248	102.5	M
Thallium					90 - 110	50.000	49.507	99.0	49.368	98.7	Μ
Zinc					90 - 110	50.000	51.225	102.4	50.364	100.7	Μ

SW-846

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories

Lab Code: LAUCKS____ SDG No.: CAB33_____

Run Sequence ID: R019216

Contract: _____

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

.....

Initial Calibration Continuing Calibrations CCV7 CCV8 Analyte Μ Limits %R(1) Limits True Found True Found %R(1) Found %R(1) 90 - 110 95.2 97.8 М Antimony 50.000 47.617 48.892 90 - 110 50.000 51.482 103.0 50.309 100.6 Arsenic М 50.000 53,986 108.0 120.9 Beryllium 90 - 110 60.452 Μ 49.379 98.7 Cadmium 90 - 110 50.000 98.8 49.352 М 90 - 110 50.000 54.144 108.3 54.539 109.1 М Chromium 50.000 Copper 90 - 110 52.172 104.3 52.932 105.9 М Lead 90 - 110 50.000 47.956 95.9 50.623 101.2 М Nickel 90 - 110 50.000 53.342 106.750.545 101.1 Μ Selenium 90 - 110 50.000 52.457 104.9 50.637 101.3 М Silver 90 - 110 50.000 50.426 100.9 51.095 102.2 М Thallium 90 - 110 50.000 49.806 99.6 51.065 102.1 Μ Zinc 90 - 110 50.000 52.227 104.5 51.517 103.0 M

Concentration Units: ug/L

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Laucks Laboratories	······································	Contract:	
Lab Code:	LAUCKS SDG No.:	CAB33	Run Sequence ID	: <u>R019216</u>
Initial Ca	libration Source:			
Continuing	Calbration Source:	ME-15-161-8, ME-15-	-161-9	

		Initia	l Calibrati	on			Continuing CCV9	Calibr	ations	·	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	48.006	96.0			M
Arsenic					90 - 110	50.000	49.387	98.8			М
Beryllium					90 - 110	50.000	55.353	110.7			Μ
Cadmium					90 - 110	50.000	48.220	96.4			Μ
Chromium					90 - 110	50.000	55.166	110.3			Μ
Copper					90 - 110	50.000	49.835	99.7			Μ
Lead					90 - 110	50.000	50.837	101.7			Μ
Nickel					90 - 110	50.000	50.867	101.7			M
Selenium					90 - 110	50.000	49.053	98.1			М
Silver					90 - 110	50.000	50.249	100.5			M
Thallium					90 - 110	50.000	51.518	103.0			М
Zinc					90 - 110	50.000	49,608	99.2			М

Concentration Units: ug/L

SW-846

SW-846 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Lauc	ks Laboratories	Contract:
Lab Code: <u>LAUC</u>	KSSDG No.: <u>_CAB3</u>	3 Run Sequence ID: <u>R019325</u>
Initial Calibra	tion Source: ME-1	5-151-16
Continuing Calb	ration Source: <u>ME-1</u>	5-161-8, ME-15-161-9

Concentration Units: ug/L

		Initia	l Calibratio	on			Continuing	Calibra	ations		
		ICV					CCV1		CCV	2	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	м
Beryllium	90-110	60	61.020	101.7	90 - 110	50.000	50,557	101,1	55.019	110.0	Μ
Chromium	90-110	60	64.578	107.6	90 - 110	50.000	53.168	106.3	54.008	108.0	Μ

Form II (part 1) - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Laucks Lab	oratories	Contract:	
Lab Code:	LAUCKS	SDG No.: <u>CAB33</u>	Run Sequence ID:	R019325
Initíal Ca	libration So	ource:		

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

	Initial Calibration						Continuing	Calibra	ations		
							CCV3		CCV	4	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	м
Beryllium					90 - 110	50.000	57.568	115.1	58.312	116.6	М
Chromium					90 - 110	50.000	55.444	110.9	54.308	108.6	М

SW-846 2a

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories		Contract:	
Lab Code: <u>LAUCKS</u> SDG No.:	CAB33	Run Sequence ID:	R019069
Initial Calibration Source:	ME-15-159-3		
Continuing Calbration Source:	ME-15-162-1		

Concentration Units: ug/L

	Initial Calibration Continuing						Calibr	Calibrations			
	ICV				CCV1 CCV2				2		
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Mercury	90-110	4.04	4.088	101.2	80 - 120	5.000	5.030	100.6	5.022	100.4	CV

•

Form II (part 1) - IN

.

2B-IN CRDL STANDARD FOR METALS

Lab Name:	Laucks Laborator	Les Con	ntract: _			·	
Lab Code:	LAUCKS SDG No.:	CAB33	I	Run Sequence	ID:	R019216	
ICP CRDL S	Standard Source:	ME-15-154-3	. <u></u>				

Concentration Units: ug/L

		CRDL Standard for ICP									
		Initial		Final							
		CRI									
Analyte	True	Found	%R	Found	%R	Limits					
Antimony	1	1.04	103.5								
Arsenic	1	0.96	96.2								
Beryllium	1	1.1	110.3								
Cadmium	1	0.98	97.9								
Chromium	1	1.17	116.7								
Copper	2	2.18	108.8								
Lead	· 1	1.03	103								
Nickel	1	1.06	106.5								
Selenium	1	1.24	123.9								
Silver	1	0.91	90.7								
Thallium	1	1.08	108.4								
Zinc	10	10.76	107.6		I						

Control Limits: no limits have been established by EPA at this time

2B-IN CRDL STANDARD FOR METALS

Lab Name:	Laucks Laborator	ies (Contract:		
Lab Code:	LAUCKS SDG No.:	CAB33		Run Sequence ID:	R019325
ICP CRDL S	tandard Source:	ME-15-154-3			

Concentration Units: ug/L

<u></u>		CRDL Standard for ICP									
		Initial		Final							
		CRI									
Analyte	True	Found	۶R	Found	%R	Limits					
Beryllium]	1.06	106.3								
Chromium]	1.14	113.8								

Control Limits: no limits have been established by EPA at this time

2B-IN CRDL STANDARD FOR METALS

•

,

.

Lab Name:	Laucks Laborator:	ies	Contract:		
Lab Code:	LAUCKS SDG No. :	CAB33		Run Sequence ID;	R019069
TCP CRDL S	Standard Source:	<u>ME-15-162-1</u>			

Concentration Units: ug/L

		CRDL Standard for ICP									
		Initial		Final							
		CRA									
Analyte	True	Found	%R	Found	۶R	Límits					
Mercury	0.2	0.19	93.8								

Control Limits: no limits have been established by EPA at this time

3A

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks Lab</u>	oratories		Con	tract					
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB33</u>		Run	Run Sequence ID: <u>R019216</u>					
Concentration Units:	ug/L								
	Inital Cali Blank		Continuing Calibration Blank						
Analyte	ICB	CCB1 1	С	CCB2 2	CCB2				
Antimony	0.613	J	0.390	J	0.256	J	0.137		
Arsenic	0.100	U	0.100	U	0.100	U	0.100		
Beryllium 0.0430 U		0.0430	U	0.0430	U	0.0430			

0.0940

0.120

0.520

0.0750

0.110

0.110

0.0850

0.0440

1.80

U

U

U

U

U

U

U

 \mathbf{U}

U

0.0940

0.120

0.520

0.0750

0.110

0.110

0.0850

0.0454

1.80

 \mathbf{U}

U

U

U

U

U

U

Ĵ

U

Cadmium

Chromium

Copper

Lead

Nickel

Silver

Zinc

Selenium

Thallium

SW-846

С

]

U

U

U

U

U

U

U

J

U

U

U

0.0940

0.120

0.520

0.0750

0.110

-0.134

0.0850

0.0440

1.80

0.0940

0.120

0.520

0.0750

0.110

0.110

0.0850

0.0440

1.80

U

U

U

U

U

U

U

U

U

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name:	Laucks	Laboratories

Contract:

Lab Code: LAUCKS SDG No.: CAB33

Run Sequence ID: <u>R019216</u>

Concentration Units: <u>ug/L</u>

Doc lute	Inital Calib. Blank	andriana di Anno andriana di Anno andre a Contra d'Unita di Contra di Contra di Contra di Contra di Contra di C	Ç	ontinuing Cali Blank	brat	ion	
Anaryte		CCB4		CCB5		CCB6	
	C	1	. C	2	C	3	С
Antimony		0.148	J	0.199	J	0.183	J
Arsenic		0.100	U	0.100	U	0.100	U
Beryllium		0.0430	U	0.0430	U	0.0430	U
Cadmium		0.0940	U	0.0940	U	0.0940	Ŭ
Chromium		0.120	U	0.120	U	0.183	J
Copper		. 0.520	U	0.520	U	0.520	U
Lead		0.0750	U	0.0750	U	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		0.110	U	0.112	J	-0.123	J
Silver		0.0850	U	0.0850	U	0.0850	U
Thallium	·	0.0440	U	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

SW-846 3A

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks Labo</u>	pratories	Con	trac	t:		·····			
Lab Code: <u>LAUCKS</u>	SDG No.: CAB3	3	Run	Run Sequence ID: <u>R019216</u>					
Concentration Units:									
2	Inital Cali Blank	b.		Continuing Calibration Blank					
Analyte	С		CCB7		CCB8		CCB9		
			1	С	2	С	3	C	
Antimony			0.240	J	0.239	J	0.309	J	
Arsenic			0.100	U	0.100	U	0.100	U	
Beryllium			0.0430	U	0.0430	U	0.0430	U	
Cadmium			0.0940	U	0.0940	U	0.0940	U	
Chromium			0.129	J	0.120	U	0.120	U	
Copper			0.520	U	0.520	U	0.520	U	
Lead			0.0750	U	0.0750	U	0.0750	U	
Nickel			0.110	U	0.110	U	0.110	U	
Selenium			0.110	U	0.110	U	0.184	J	
Silver			0.0850	U	0.0850	U	0.0850	Ŭ	
Thallium			0.0440	U	0.0440	U	0.0440	U	
Zine			1.80	U	1.80	U	1.80	U	

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks Labo</u>		Contract:										
Lab Code: <u>LAUCKS</u>	LAUCKS SDG No.: CAB33				Run Sequence ID: R019325							
Concentration Units:	ug/L											
	Inital Cali Blank	b.			Co	ontinuing Calil Blank	brat:	ion				
Analyte	ICB	С		CCB1 1	С	CCB2 2	С	ССВЗ З	с			
Beryllium	0.0430	U		0.0430	U	0.0430	U	0.0430	U			
Chromíum	0.120	U		0.120	U	0.120	U	0.120	U			

Form III (PART 1) - IN

3A

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: <u>Laucks La</u>	boratories	Con	Contract:						
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB33</u>	Run	Seque	ence ID: F	019325		-		
Concentration Units:	ug/L								
Analyte	Inital Calib. Blank		Cor	tinuing C Blank	alibration c	a			
initia y co	С	CCB4 1	С	2	С	3	С		
Beryllium		0.0430	U						

Chromium

0.120

U

Form III (PART 1) - IN

SW-846 3a

.

INITIAL AND CONTINUING CALIBRATION BLANKS

Gab Name: Laucks Labo	pratories	Co	Contract:					
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB33</u>	Ru	n Sequen	ce ID: <u>RO</u>	19069			
Concentration Units:	ug/L	*************						
an airte	Inital Calib. Blank		Cont	inuing Ca Blank	libration	1		
Andryce	ICB	CCB1 1	C	CCB2 2	C	ż	C	

0.0180

U

Mercary

0.0180

•

٠

U

0.0180

U

Form III (PART 1) - IN

SW-846 3B BLANKS

Lab Name: <u>Laucks Laboratories</u>	Cont
Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB33</u>	Run
Lab Sample ID: <u>B062607ICPMSW06</u>	Preț
Matrix (soil/water): <u>Water</u>	Date
Concentration Units: ug/L	

Contract:
Run Sequence ID: <u>R019216</u>
Prep Batch ID: <u>P019723</u>
Date Prenared: 06/26/2007

Analyte				
	Limits		С	М
Antimony	0.5	0.0560	U	М
Arsenic	0.5	0.100	U	М
Beryllium	0.5	0.0430	U .	М
Cadmium	0.5	0.0940	U	М
Chromium	0.5	0.199	J	М
Copper	1	0.520	U	М
Lead	0.5	0.0750	U	М
Nickel	0.5	0.110	U	М
Selenium	0.5	0.110	U.	М
Silver	0.5	0.0850	U	M
Thallium	0.5	0.0440	U	М
Zinc	5	2.21	J	M

SW-846

SW-846 3B BLANKS

Leib	Name:	Laucks Laboratories
(i)	Code :	LAUCKS SDG No.: CAB33
Lab	Sample	ID: <u>B062707HGW01</u>
Mota	rix (soi	l/water): <u>Water</u>

Concentration Units: ug/L

Contract: Run Sequence ID: <u>R019069</u> Prep Batch ID: <u>P019757</u> Date Prepared: <u>06/27/2007</u>

Analyte				
	Límits		С	М
Mercury	1.0	0.0180	U	CV

.

.

•

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Laucks Laboratories Contract: Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB33</u> Run Sequence ID: <u>R019216</u> ICS Source: ME-15-153-19, ME-15-161-8, ME-15-161-9

ICP ID Number: ICPMS (PE ELAN 6100) Concentration Units: ug/L

	True		Initial Found			Final Found					
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	%R	Limits		
Antimony	0	20.0	0.0876	19.2	96.2						
Arsenic	0	20.0	0.0138	20.2	101.2				Į		
Beryllium	0	20.0	0.00361	19.5	97.6						
Cadmium	0	20.0	0.00472	19.5	97.4						
Chromium	0	20.0	0.312	21.0	105.1						
Copper	0	20.0	0.307	21.6	108.1						
Lead	0	20.0	0.0175	20.3	101.5						
Nickel	0	20.0	0.539	21.5	107.6						
Selenium	0	20.0	0.0996	20.6	102.8						
Silver	0	20.0	0.00624	20.3	101.7						
Thallium	0	20.0	0.00523	20.5	102.3						
Zinc	0	20.0	0.856	21.2	105.9						

Interference Check Sample Recover Limits:

80 - 120

Form IV - IN

SUM - 222

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Laucks Laboratories Contract: Lab Code: LAUCKS SDG No.: CAB33 Run Sequence ID: R019325 ICS Source: ME-15-153-19, ME-15-161-8, ME-15-161-9 ICP ID Number: ICPMS (PE ELAN 6100) Concentration Units: ug/L

	Tr	ue	Initial Found			Final Found				
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	%R	Limits	
Beryllium	0	20.0	0.0175	19.1	95.6					
Chromium	0	20.0	0.320	20.8	104					

Interference Check Sample Recover Limits : 80 - 120

SUM - 223

SW-846 5A SPIKE SAMPLE RECOVERY

SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: <u>R019216</u>
Lab Sample ID: <u>CAB33-002MS</u>	Prep Batch ID: <u>P019723</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
<pre>% Solids for Sample:</pre>	Concentration Units: <u>ug/L</u>

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	% R	Q	м
Antimony	75 - 125	48.1882		0.0964	Ĵ	50.00	96.2		М
Arsenic	75 - 125	47.9273		0.3857	J	50.00	95.1		М
Cadmium	75 - 125	48.9882		0.1312	J	50.00	97.7		М
Copper	75 - 125	51.9870		0.5200	U	50.00	103.4		М
Lead	75 - 125	52.4444		0.0750	U	50.00	104.8		М
Nickel	75 - 125	54.7082		1.1610		50.00	107.1		М
Selenium	75 - 125	47.9393		0.1100	U	50.00	95.7		М
Silver	75 - 125	51.2867		0.0850	U	50.00	102.6		М
Thallium	75 - 125	51.9348		0.0440	U	50.00	103.9		М
Zinc	75 - 125	49.5013		3.1870	Ĵ	50.00	92.6		М

SW-846 5A SPIKE SAMPLE RECOVERY

SAMPLE NO.

15LCMW01DWMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: <u>R019325</u>
Lab Sample ID: <u>CAB33-002MS</u>	Prep Batch ID: <u>P019723</u>
Matrix (soil/water): Water	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>
Control Spiked Sample	Sample Spike

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	% R	Q	М
Beryllium	75 - 125	45.7038	0.2150 U	50.00	91.4		М
Chromium	75 - 125	45.1462	1.0146 J	50.00	88.3		М

Comments:

Form V (PART 1) - IN

sw-846 SUM - 225

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

15LCMW01DWMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019069
Lab Sample ID: <u>CAB33-002MS</u>	Prep Batch ID: <u>P019757</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: ug/L

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	% R	Q	М
Mercury	85 - 115	4.8176	0.0180 U	5.00	96.4		CV

•

•

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

15LCMW01DW (Filt.)MS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: <u>R019216</u>
Lab Sample ID: <u>CAB33-007MS</u>	Prep Batch ID: <u>P019723</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
✤ Solids for Sample:	Concentration Units: <u>ug/L</u>

Analyte	Control Limit %R	Spiked Sample Result (SSR)	C	Sample Result (SR)	C	Spike Added (SA)	₹ R	Q	М
Antimony	75 - 125	50.9842		0.0560	U	50.00	101.9		М
Arsenic	75 - 125	50.4674		0.3817	J	50.00	100.2		М
Cadmium	75 - 125	52.2440		0.0940	U	50.00	104.3		М
Copper	75 - 125	53.8272		0.5200	υ	50.00	107.2		М
Lead	75 - 125	56.0821		0.0750	U	50.00	112.2		М
Nickel	75 - 125	54.2671		1.3251		50.00	105.9		М
Selenium	75 - 125	48.5807		0.1100	U	50.00	97.2		М
Silver	75 - 125	52.9158		0.0850	U	50.00	105.8		М
Thallium	75 - 125	54.3642		0.0440	U	50.00	108.7		М
Zinc	75 - 125	53.1147		1.9916	J	50.00	102.2		М

SW-846 5A SPIKE SAMPLE RECOVERY

SAMPLE NO.

15LCMW01DW (Filt.)MS

Lab Name:	Laucks Labor	atories	Contract:
Lab Code:	LAUCKS	SDG No.: CAB33	Run Sequence ID: <u>R019325</u>
Lab Sample	ID: <u>CAB33-</u>	-007MS	Prep Batch ID: <u>P019723</u>
Matrix (so:	il/water): M	Jater	Level (low/med): LOW
% Solids fo	or Sample: _		Concentration Units: <u>ug/L</u>
	Control	Sniked Sample	Samale Snike

	Control	Spiked Sample	Sample		Spike			
Analyte	Limit %R	Result (SSR)	C Result (SR)	С	Added (SA)	% R	Q	М
Beryllium	75 - 125	62.5480	0.2150	U	50.00	125.0		М
Chromium	75 - 125	58.4050	0.7560	J	50.00	115.3		М

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

15LCMW01DW (Filt,)MS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019069
Lab Sample ID: <u>CAB33-007MS</u>	Prep Batch ID: <u>P019757</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	% R	Q	М
Mercury	85 - 115	4.8450	0.0180 U	5,00	96.9		CV

٠

•

SW-846 5B

SAMPLE NO.

POST DIGEST SPIKE RECOVERY

15LCMW01DWP

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019216
Lab Sample ID: <u>CAB33-002P</u>	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	% R	Q	М
Antimony		41.2884	*****	0.0964	J	50.00	82.4		M
Arsenic		39.0236		0.3857	J	50.00	77.3		М
Cadmium		39.7507		0.1312	J	50.00	79.2		М
Copper		42.9630		0.5200	U	50.00	85.3		М
Lead		42.8916		0.0750	U	50.00	85.7		М
Nickel		42.6273		1.1610		50.00	82.9		М
Selenium		38.8865		0.1100	U	50.00	77.6		М
Silver		40.7200		0.0850	U	50.00	81.4		М
Thallium		43.3677		0.0440	U	50.00	86.7		М
Zinc		41.2657		3.1870	J	50.00	76.2		М

Comments:

÷....

SW-846 5B POST DIGEST SPIKE RECOVERY

SAMPLE NO.

15LCMW01DWP

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: <u>R019325</u>
Lab Sample ID: CAB33-002P 5X 3RA 7/13/07	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

_	Control	Spiked Sample		Sample		Spike		_	
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	%R	Q	М
Beryllium		110.1690		0.0430	U	50.00	220.3		М
Chromium		112.4170		0.2029	J	50.00	224.4		М

SW-846 5B

SAMPLE NO.

POST DIGEST SPIKE RECOVERY

15LCMW01DW (Filt.)P

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019216
Lab Sample ID: <u>CAB33-007P</u>	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: ug/L

Analyte	Control	Spiked Sample	a	Sample Result (SR)	a	Spike	% R	Q	м
Antimony		40.7074	C	0.0560		50.00	81.4		M
Arsenic		39.0483		0.3817	1	50.00	77.3		M
Cadmium		39.7846		0.0940	U	50.00	79.4		М
Copper		41.0865		0.5200	U	50.00	81.7		М
Lead		40.3787		0.0750	U	50.00	80.8		М
Nickel		43.2110		1.3251		50.00	83.8		М
Selenium		39.1267		0.1100	U	50.00	78.3		М
Silver		39.4472		0.0850	U	50.00	78.9		М
Thallium		41.5041		0.0440	U	50.00	83.0		М
Zinc		42.8267		1.9916	J	50.00	81.7		М

SW-846 5B POST DIGEST SPIKE RECOVERY

SAMPLE NO.

15LCMW01DW (Filt.)P

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019325
Lab Sample ID: <u>CAB33-007P 5* JRA 7/13/0</u> 7	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

	Control	Spiked Sample		Sample		Spike		_	
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	8 R	Q	M
Beryllium		48.9342		0.0430	Ü	50.00	97.8		М
Chromium		48.7417		0.1512	J	50.00	97.2		М

DUPLICATES

SAMPLE NO.

15LCMW01DWD

Lab Name: Laucks Laboratories Contract: Lab Code: LAUCKS SDG No.: CAB33 Run Sequence ID: <u>R019216</u> Lab Sample ID: <u>CAB33-002D</u> Prep Batch ID: P019723 Level (low/med): LOW Matrix (soil/water): <u>Water</u> % Solids for Duplicate _____ % Solids for Sample: Concentration Units: <u>ug/L</u>

Analyte	Control Limit	Sample	С	Duplicate (D)	С	RPD	Q	М
Antimony	1	0.0964	J	0.0560	U			М
Arsenic	1	0.3857	J	0.4158	J	7.5		М
Cadmium	1	0.1312	J	0.1140	J	14.0		М
Соррег	2	0.5200	U	0.5200	U			М
Lead	1	0.0750	U	0.0750	U			М
Nickel	1	1.1610		1.1523		0.7		М
Selenium	j	0.1100	U	0.1100	U			М
Silver	1	0.0850	U	0.0850	U			М
Thallium	1	0.0440	U	0.0440	U			М
Zinc	10	3.1870	J	2.7154	J	16.0		М

Form VI - IN

SW-846

SW-846 6 DUPLICATES

SAMPLE NO.

15LCMW01DWD

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID:
Lab Sample ID: <u>CAB33-002D</u>	Prep Batch ID: _P019723
Level (low/med): LOW	Matrix (soil/water): <u>Water</u>
% Solids for Duplicate	% Solids for Sample:
Concentration Units: ug/L	

Analyte	Control Limit	Sample		Duplicate (D)	C	RPD	Q	м
Beryllium	5	0.2150	U	0.2150	U			М
Chromium	5	1.0146	J	1.2698	J	22.3		М

	SW-846		
	6		SAMPLE NO.
	DUPLICATES		15LCMW01DWD
Lab Name: Laucks Laboratories		Contract:	
Lab Code: LAUCKS SDG No.: CAB3	31	Run Sequence ID: _	R019069
Lab Sample ID: <u>CAB33-002D</u>		Prep Batch ID: <u>P0</u>	19757
Level (low/med): LOW	Matı	rix (soil/water):	Water
% Solids for Duplicate	% Sc	olids for Sample:	
Concentration Units: <u>ug/L</u>			
Control	Sample	Duplicate (D)	

Ç

.

•

0.0180 U

Analyte

Mercury

Limit

0.2

.

RPD

С

0.0180 U

Q

M

CV

SW-846 6 DUPLICATES

SAMPLE NO.

15LCMW01DW (Filt.)D

Lab Name:	Laucks Laboratories
Lab Code:	LAUCKS SDG No.: CAB33
Lab Sample	ID: <u>CAB33-007D</u>
Level (low,	/med): LOW
% Solids fo	or Duplicate

Concentration Units: <u>ug/L</u>

	Contract:	
24	Run Sequence ID:	
	Prep Batch ID: P019723	
	Matrix (soil/water): Water	
	Matrix (soil/water): water	

% Solids for Sample:

Analyte	Control Limit	Sample	С	Duplicate (D)	С	RPD	Q	М
Antimony	1	0.0560	U	0.0970	J	139.1		М
Arsenic	1	0.3817	J	0.3596	J	6.0		М
Cadmium	1	0.0940	U	0.1119	J	17.8		М
Copper	2	0.5200	U	0.5200	U			М
Lead	1	0.0750	U	0.0750	U			М
Nickel	1	1.3251		1.3282		0.2		М
Selenium	1	0.1100	U	0.1100	U			М
Silver	1	0.0850	U	0.0850	U			М
Thallium	1	0.0440	U	0.0440	U			М
Zinc	10	1.9916	J	2.2295	J	11.3		М

Form VI - IN

SW-846 6 DUPLICATES

SAMPLE NO.

15LCMW01DW (Filt.)D

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID: R019325
Lab Sample ID: <u>CAB33-007D</u>	Prep Batch ID: <u>P019723</u>
Level (low/med): LOW	Matrix (soil/water): <u>Water</u>
% Solids for Duplicate	<pre>% Solids for Sample:</pre>
Concentration Units: <u>ug/L</u>	

Analyte	Control Limit	Sample	С	Duplicate (D)	с	RPD	Q	М
Beryllium	5	0.2150	U	0.2150	U			М
Chromium	5	0.7560	J	0.6230	J	19.3		М

	SW-846 6	SAMPLE NO.				
	DUPLICATES	15LCMW01DW (Filt.)D				
Lab Name: Laucks Laboratories	Contra					
Lab Code: LAUCKS SDG No.: CAB33	Run Sequence ID:R019069					
Lab Sample ID: <u>CAB33-007D</u>	Prep B	Batch ID: P019757				
Level (low/med): LOW	Matrix (s	oil/water): <u>Water</u>				
% Solids for Duplicate	* Solids	for Sample:				
Concentration Units: <u>ug/L</u>						

Analyte	Control Limit	Sample	7 1	Duplicate (D)		C	RPD	Q	М
Mercury	0.2	0.0180 U)	0.0	0180	U			CV

.

SUM - 239

SW-846

•
SW-846 7C

SAMPLE NO.

DUPLICATE LABORATORY CONTROL SAMPLE

S062607ICPMSW06D

Lab Name: Lat	Lab Name: Laucks Laboratories													_	
Lab Code: LA	<u>ucks</u> SD	G No.:_	CAB33		-	Run	Se	que	nce ID:						
LCS Lab Sampl	e ID: <u>5062</u>	6071CPM	ISW06			Prep Batch ID: <u>P019723</u>									
Duplicate LCS	Leve	el (lo	ow∕n	ned)	: LOW										
% Solids for :	LCS: <u>100</u>			€ ⊆	Solids	for Di	upli	ica	te LCS: 10	0				_	
Matrix (soil/	water): <u>W</u>	ater			Con	centra	atio	on l	Jnits: ug/	L					
Apolyto	Control	Limits	its LCS Duplicate LC						LCS						
Analyte	%R	RPD	Results	С	Added	₹R	Q	М	Results	С	Added	۶R	Q	М	RPD
Antimony	80 - 120	20	50.9361		50.0	102		М	49.8515		50.0	100		м	28
Arsenic	80 - 120	20	49.7903		50.0	100		М	49.5737		50.0	99		м	0%
Beryllium	80 - 120	20	49.9924		50.0	100		М	49.6119		50.0	99		М	1%
1	1		1	1		i		1			1			1	1

Arsenic	80 - 120	20	49.7903	10.0	1 TOO		M	49.5757	1	50.0	22	171	00
Beryllium	80 - 120	20	49.9924	50.0	100		М	49.6119		50.0	99	м	18
Cadmium	80 - 120	20	49.385	50.0	99		М	48.6889		50.0	97	м	1%
Chromium	80 - 120	20	52.7479	50.0	105		М	53.6497		50.0	107	м	28
Copper	80 - 120	20	53.4855	50.0	107		м	54.456		50.0	109	М	2 문
Lead	80 - 120	20	49.7132	50.0	99		м	49.0729		50.0	98	М	18
Nickel	80 ~ 120	20	55.4905	50.0	111		М	54.5173		50.0	109	М	2%
Selenium	BO - 120	20	48.7129	50.0	97	Ι	М	47.8462		50.0	96	М	28
Silver	80 - 120	20	53.0971	50.0	106		м	52.0766		50.0	104	М	2%
Thallium	80 - 120	20	49.4733	50.0	99		М	49.9532		50.0	100	М	18
Zinc	80 - 120	20	52.8656	50.0	106]	М	51,972		50.0	104	М	2*

Comments:

7A LABORATORY CONTROL SAMPLE

Lab Name:	Laucks Laboratories	Contract:		
hab Code:	LAUCKS SDG No.: CAB33		Run Sequence ID:	R019069
hab Sampl	e ID: <u>S062707HGW01</u>		Prep Batch ID: P	019757
LCS Sourc	e: <u>ME-15-159-3</u>			

Analyta		Concentration Units: ug/L									
Analyte	True	Found	С	%R	Limits	%R					
Mercury	4.04	3.9521		85	115	97.8					

.

.

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW01DWL

Lab Name:	Laucks Laboratories	Contract:
Lab Code:	LAUCKS SDG No.: CAB33	Run Sequence ID: R019216
Matrix (so	pil/water): <u>Water</u>	Level (low/med: LOW
Lab Sample	2 ID: CAB33-002L	

Actual Results (ug/L) Final Results (ug/L) Initial Dilution Initial Dilution ۶D Q М Analyte IDLC С Sample(S) Sample(i) Sample(S) Sample(i) Antimony 0.0964 -0.1990 0.0800 0.0964 J 0.280 U 100.0 М 0.500 U 20.2 Μ 0.3857 0.3079 0.0330 0.386 J Arsenic 0.470 М 0.1312 0.1970 0.0150 0.131 J U 50.2 Cadmium 0.2915 0.2020 0.0070 0.520 U 2.60 υ 30.7 Μ Copper 0.0308 -0.0605 0.0020 0.0750 U 0.375 U 100.0 М Lead Nickel 1.1610 1.0808 0.0320 1.16 1.08 Ĵ 6.9 Μ 0.1000 -0.4778 0.1050 0.110 U 0.550 U Μ Selenium 0.0250 U 0.425 U М -0.0175 -0.1315 0.0850 Silver 0.0440 0.220 -0.0103 0.0080 U U Μ Thallium -0.0010 4.0440 0.0220 3.19 J 9.00 U Μ 3.1870 26.9 Е Zinc

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW01DWL

Lab	Name:	Laucks Lab	orat ories		Contra	ct:	
Lab	Code :	LAUCKS	SDG No.:	<u>CAB33</u>	Run	Sequence	ID: R019325
Matr	ix (so	il/water):	Water		Level	(low/med:	LOW

Lab Sample ID: <u>CAB33-002L</u>

	Actual Results (ug/L)			Final						
Analyte	Initial Sample(i)	Dilution Sample(S)	IDL	Initial Sample(i)	С	Dilution Sample(S)	С	ቶD	Q	м
Beryllium	-0.0037	0.0410	0.0200	0.215	U	1.08	U	100.0		М
Chromium	0.2029	0.7860	0.0700	1.01	J	3.93	ļ	287.3		М

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW01DW (Filt.)L

Lab	Name	: Laucks Lab	oratories		Contra	.ct:	
Lab	Code	: LAUCKS	SDG No.:	CAB33	Run	Sequence	ID: <u>R019216</u>
Matr	ix (soil/water):	Water		Level	(low/med:	LOW

Lab Sample ID: <u>CAB33-007L</u>

	Actua	al Results (ug/L)	Final Results (ug/L)						
Analyte	Initial Sample(i)	Dilution Sample(S)	IDL	Initial Sample(i)	С	Dilution Sample(S)	С	γ₽D	Q	М
Antimony	0.0174	0.2122	0.0800	0.0560	U	0.280	U	100.0		М
Arsenic	0.3817	0.1340	0.0330	0.382	J	0.500	U	64.9		М
Cadmium	0.0935	0.2382	0.0150	0.0940	U	0.470	U	154.7		М
Copper	0.2348	0.2555	0.0070	0.520	U	2.60	U	8.8		Μ
Lead	-0.0085	-0.1138	0.0020	0.0750	U	0.375	U			М
Nickel	1.3251	1.4462	0.0320	1.33		1.45	J	9.1		М
Selenium	-0.0541	-0.3927	0.1050	0.110	U	0.550	U			М
Silver	-0.0257	-0.1395	0.0250	0.0850	Ŭ	0.425	U			М
Thallium	0.0030	-0.0169	0.0080	0.0440	U	0.220	U			М
Zinc	1.9916	8.1029	0.0220	1.99	Ĵ	9.00	U	306.9	Е	М

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW01DW (Filt.)L

Lab Name:	Laucks Lab	orat ories		Contra	act:		*****
Lab Code:	LAUCKS	SDG No.:	<u>CAB33</u>	Run	Sequence	ID: 1	R019325
Matrix (sc	il/water):	Water	. <u></u>	Level	(low/med:	LÓW	

Lab Sample ID: CAB33-007L

	Actual Results (ug/L)			Final						
Analyte	Initial Sample(i)	Dilution Sample(S)	IDL	Initial Sample(i)	с	Dilution Sample(S)	с	۶D	Q	м
Beryllium	0.0103	0.0780	0.0200	0.215	U	1.08	U	100.0		Μ
Chromium	0.1512	0.7099	0.0700	0.756	J	3.55	J	369.5		Μ

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS

SDG No.: CAB33

Instrument ID: ICPMS (PE ELAN 6100)

Date: 08/18/2004

		A	. В	C	D	
		LTL PQL	LTL PQL	MDL	MDL	
Analyte	Isotope	(uq/L)	(uq/L)	(uq/L)	(uq/L)	M
Antimony	121	1	1	0.056	0.056	М
Arsenic	75	1	1	0.1	0.1	М
Beryllium	9	1	1	0.043	0.043	М
Cadmium	111	1	1	0.094	0.094	М
Chromium	52	1	1	0.12	0.12	М
Copper	63	2	2	0.52	0.52	М
Lead	208	1	1	0.075	0.075	М
Nickel	60	1	1	0.11	0.11	M
Selenium	82	1	1	0.11	0.11	М
Silver	107	1	1	0.085	0.085	М
Thallium	205	1	1	0.044	0.044	М
Zinc	66	10	10	1.8	1.8	М

.

A = Upper Estimated (J Flag) Range in Determination Units

B = Upper Estimated (J Flag) Range in Actual Units

C = Lower Estimated (J Flag) Range in Determination Units

D = Lower Estimated (J Flag) Range in Actual Units

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

bab Name: Laucks Laboratories

Contract:

0.2

٠

bab Code: LAUCKS

Mercury

Instrument ID: FIMS(FIMS400)

SDG No.: <u>CAB33</u> Date: 04/11/2006

0.2

0.018

		Ą	2	C	D	ſ
1	T	LTL PQL ·	LTL PQL	MDL	MDL	
Analyte	isotope	(uq/L)	(uq/L)	(uq/L)	(uq/L)	

A = Upper Estimated (J Flag) Range in Determination Units

8 = Upper Estimated (J Flag) Range in Actual Units

 \mathbb{C} = Lower Estimated (J Flag) Range in Determination Units

0 = Lower Estimated (J Flag) Range in Actual Units

М

CV

0.018

•

12

ICP LINEAR RANGES (QUARTERLY)

Lab Name: Laucks Laboratories

Lab Code: LAUCKS

Contract:

SDG No.: CAB33

ICP ID Number: <u>ICPMS (PE ELAN 6100)</u> Date: <u>03/08/2007</u>

······ _____

 	-		<i>.</i>	 	 	

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Antimony	0.002	1000.0	М
Arsenic	0.001	1000.0	М
Beryllium	0.002	1000.0	М
Cadmium	0.001	1000.0	М
Chromium	0.001	1000.0	М
Copper	0.001	1000.0	М
Lead	0.001	1000.0	М
Nickel	0.001	1000.0	М
Selenium	0.002	1000.0	Μ
Silver	0.002	1000.0	M
Thallium	0.001	1000.0	М
Zinc	0.002	1000.0	М

12 ICP LINEAR RANGES (QUARTERLY)

Sab Name: Laucks Laboratories Contract:

mab Code: LAUCKS

SDG No.: <u>CAB33</u>

ICP ID Number: FIMS(FIMS400) Date: 09/08/2005

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	M
Mercury		20.0	CV

•

.

13 PREPARATION LOG

 Lab Name:
 Laucks Laboratories
 Contract:

 Lab Code:
 LAUCKS
 SDG No.:
 CAB33
 Prep Batch ID:
 P019723

 Lab Name: Laucks Laboratories

.

Method: 6020

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B062607ICPMSW06	B062607ICPMSW06	06/26/2007	100.0 mL	100
S0626071CPMSW06	S062607ICPMSW06	06/26/2007	100.0 mL	100
S062607ICPMSW06D	S062607ICPMSW06D	06/26/2007	100.0 mL	100
15LCMW01SW	CAB33-001	06/26/2007	100.0 mL	100
15LCMW01DW	CAB33-002	06/26/2007	100.0 mL	100
15LCMW01DWD	CAB33-002D	06/26/2007	100.0 mL	100
15LCMW01DWMS	CAB33-002MS	06/26/2007	100.0 mL	100
15LCMW02SW	CAB33-004	06/26/2007	100.0 mL	100
15LCMW02DW	CAB33-005	06/26/2007	100.0 mL	100
15LCMW01SW (Filt.)	CAB33-006	06/26/2007	100.0 mL	100
15LCMW01DW (Filt.)	CAB33-007	06/26/2007	100.0 mL	100
15LCMW01DW (Filt.)D	CAB33-007D	06/26/2007	100.0 mL	100
15LCMW01DW (Filt.)MS	CAB33-007MS	06/26/2007	100.0 mL	100
15LCMW02SW (Filt.)	CAB33-008	06/26/2007	100.0 mL	100
15LCMW02D (Filt.)	CAB33-009	06/26/2007	100.0 mL	100

13 PREPARATION LOG

Lab Name: Laucks Laboratories Contract: Lab Code: LAUCKS SDG No.: CAB33 Prep Batch ID: P019757 .

Method: <u>7470A</u>

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B062707HGW01	B062707HGW01	06/27/2007	50.0 mL	50
S062707HGW01	S062707HGW01	06/27/2007	50.0 mL	50
15LCMW01SW	CAB33-001	06/27/2007	50.0 mL	50
15LCMW01DW	CAB33-002	06/27/2007	50.0 mL	50
15LCMW01DWD	CAB33-002D	06/27/2007	50.0 mL	50
ISLCMW01DWMS	CAB33-002MS	06/27/2007	50.0 mL	50
15LCMW02SW	CAB33-004	06/27/2007	50.0 mL	50
ISLCMW02DW	CAB33-005	06/27/2007	50.0 mL	50
15LCMW01SW (Filt.)	CAB33-006	06/27/2007	50.0 mL	50
ISLCMW01DW (Filt.)	CAB33-007	06/27/2007	50.0 mL	50
15LCMW01DW (Filt.)D	CAB33-007D	06/27/2007	50,0 mL	50
15LCMW01DW (Filt.)MS	CAB33-007MS	06/27/2007	50.0 mL	50
15LCMW02SW (Filt.)	CAB33-008	06/27/2007	50.0 mL	50
ISLCMW02D (Filt,)	CAB33-009	06/27/2007	50.0 mL	50

.

.

ZZZZZZ	ZZZZZZ	TITI	ZZZZZZ	CCB2	CCV2	272222	ZZZZZ	27.2.2.2.2	272272	222222	2177.77.2	22222	CCB1	CCV1	Z2ZZZZ.	ICSAB	ICSA	CRI	ICB	ICV	Standard 5	Standard 4	Standard 3	Standard 2	Standard I	Blank	Client Sample No.		
125	25	50	25	1	1	10	10	10	10	10	 	10		1	1	1					1						D/F		
10:22	10:18	10:13	10:09	10:05	10:00	09:56	09:52	09:47	09:43	09:39	09:34	09:30	09:26	09:21	09:17	09:14	09:10	09:07	09:02	08:59	08:54	08:48	08:43	08:38	08:33	08:28	Time		
				Х	X								×	X		Х	Х	X	Х	X	Х	Х	X	Х	×	X	ភ	A	
																											Ŀ	A	
				Х	X								X	Х		Х	Х	×	Х	Х	Х	Х	Х	Х	×	х	w	A	
		ļ	ļ			ļ		 					ļ														Þ	в	
			ļ	X	×					_			\times	Х		X	Х	X	Х	Х	Х	Х	Х	X	Х	×	전	в	
	bard-mine					<u> </u>		. 		<u> </u>												: 					A	0	
				X	×					 			$ \times $	X		X	X	\sim	X	X	X	X	×	X	×	×	0	0	
				X	×								×	X		X	X	×	X	X	X	X	X	X	X	×	с w	0	
				X	×								×	X		X	X	×	X	X	X	X	X	X	X	×	d	<u>а</u>	
								<u> </u>																			ट्रा	آ ا	
																											۵	н	
							-																					Ŕ	
																											н	Ţ	
			ļ					L	ļ				ļ														ଜ	Ξ	A
			L			ļ		ļ			L																z	Ζ	naly
								L					ļ														0	M	tes
									 																		A	Z	
				XZ	X			 					X	X V		ζ X	X	X	X X	X X	χ γ	ΧĮ	X	X X	X V	X)	Z	
				X	$\frac{1}{2}$					<u> </u>				$\frac{1}{2}$		X >	X D		$\frac{1}{\lambda}$	× X	X J	Χ	× ×	X J	$\frac{1}{x}$	х х	nu Tu	0 0	
				X	X					 				XX		X	X	X	X	X	X	X	X	X	X	X	ся гл	0. 0	
		-																							-		z	S	
						 		<u> </u>																			'n	S	
			 										İ														Н	Ţ	
													İ														lI	F	
				×	×								×	Х		Х	Х	×	Х	Х	Х	Х	х	х	Х	×	اس ا	Ч	
																												đ	
									ļ						ļ													<	
				×	×	<u> </u>		<u> </u>	 				\times	×		Х	Х	×	X	X	X	X	×	Х	Х	×	Z	N	
				ļ				ļ		<u> </u>	<u> </u>				L												z	Ω	
\square								L	 									L										ш	
																											} ⊷4	S	

ANALYSIS RUN LOG 14

Start Date: 07/02/2007 Instrument ID Number:

ICPMS (PE ELAN 6100) SDG No.:

End Date: 07/02/2007

Method: 6020 Run Sequence ID:

R019216

Contract:

CAB33

Lab Code: LAUCKS

Lab Name: Laucks Laboratories

SUM - 252

Form XIV-IN

SW-846

ZZZZZ	S062607ICPMSW06D	S0626071CPMSW06	222222	ZZZ2,2,2	2727.7.24	ZZZZZZ3	B062607ICPMSW06	ZZZZZ	CCB4	CCV4	ZZZZZ	272722	ZZZZZZ	222222	ZZZZZ	722222	ZZZZZ	722.222	CCB3	CCV3	ZZZZZ	ZZZZZZ	732272	ZZZZZ	ZZZZZ	ZZZZZ	Client Sample No. D	
	·	-		<u> </u>				-			50	50	50	50	50	5	25	25	, i	, <u> </u>	25	50	25	25	25	25)/F	
12:23	12:18	12:14	12:06	12:02	11:57	11:53	11:49	11:44	11:40	11:36	11:31	11:27	11:23	11:18	11:14	11:10	11:05	11:01	10:57	10:52	10:48	10:44	10:39	10:35	10:31	10:26	T'ime	
	Х	X					×		×	х									×	Х							G A	
				ļ					ļ			ļ				ļ	 										LA	
L	×	\times	ļ	ļ	ļ		\times		$ \times$	×		ļ	ļ		ļ				×	×							v ⊳	
L		ļ	ļ		ļ	ļ	ļ	ļ	 					ļ													2 13	
ļ	×	×	ļ		ļ		X		×	Х		ļ		ļ	 				X	Х								
												ļ		<u> </u>													A U	-
	X	×			ļ		$ \times$		×	×									X	Х							<u>م</u> 0	
												<u> </u>																$\left \right $
	Ň				ļ				1×	x J									X Z	X)							מ מ ת	
	$\hat{}$	Ľ^					<u> </u>		ŕ	\sim									^	Ň								
		-																									o r	
																											47 H F	
<u> </u>												i																
									<u> </u>																		0 Z	
-																								_			n n	Ana
							*																				0 Z	lyt
							<u> </u>																				n d	0 0
	Х	×					×		×	X									X	Х							нz	1
	Х	×					X		×	х									Х	Х							ט מ	
	X	Х					Х		X	X									Х	×							സ യ	
	Х	Х					X		Х	X									Х	×							លកា	
																											് ഗ	
																											n u	
																											нц	
																											ᆔᇧ	
	X	х					Х		Х	Х									Х	×							нч	
																											C	
ļ																											V	
	×	Х					Х		×	×									×	×							Z N	
																											Z O	
																											b	
																											in v	

к 1

SW-846

14 1ALVSTS RIN L

ANALYSIS RUN LOG

R019216

Run Sequence ID: RU1 Method: 6020

Contract:

End Date: 07/02/2007

Instrument ID Number: . Start Date: 07/02/2007 Lab Code: LAUCKS

SDG No.:

CAB33

Lab Name: Laucks Laboratories

SUM - 253

Form XIV-IN

	15LCMW01DWMS	15LCMW01DWD	15LCMW01DWL	15LCMW01DW	15LCMW01SW	CCB7	CCV7	ZZZZZ	272727	ZZZZZ	ZZZZZ	IIIIII	727277	2722.77	222,222	CCB6	CCV6	ZZZZZ	777777	177211	1717.7.7.7	777777	2222228	222222	CCB5	CCV5	777222	Client Sample No.		
	-		σ	1	1	-	1	1		-	s	<u>, 1</u>	1	1	1	1	1	,	1	50	50	100	1	Ţ	1	1	1	D/F		
	14:21	14:16	14:12	14:07	14:03	13:58	13:54	13:50	13:46	13:41	13:37	13:33	13:28	13:24	13:20	13:16	13:11	13:07	13:03	12:58	12:54	12:50	12:45	12:40	12:36	12:32	12:27	Tíme		
	×	×	×	\times	X	×	×									Х	Х								Х	Х		ഹ	A	
													-															ţi	A	
	×	×	×	×	Х	×	X									Х	Х								Х	Х		ល	A	
	L			L	ļ	ļ	ļ				ļ																	Þ	в	
	ļ					×	×	[X	Х								Х	Х		团	Β	
	<u> </u>																											₽	<u>_</u>	
	×	\times	×	\times	×	$ \times$	×									X	X								×	×			<u>_</u>	
		<u> </u>		[×	×									X	X								X	X			$\frac{1}{2}$	
For	×	×	X	×	X	×	X									X	X								X	X		a		
m X																												[1]		
IV-1																												ភ	Ξ	
ΓN																													X	
																												H	ы	
																												G	З	AI
			L											ile.iteisilee									*****					z	Ξ	1aly
																												0	Ξ	rtes
	<u> </u>	ļ																								_		Þ	z	
	X	X	X	X	ΣX	X V	X X									ζX	X								X	X		H		
	$\frac{1}{2}$		X	X	X J	× X	x I y				_					× ×	$\frac{1}{2}$				_				$\frac{2}{2}$	$\frac{2}{2}$		ω π		
	X	X	X J	X	X	X	X									X	X				_				л Х	$\frac{1}{2}$		्र म	ری در	
						_							_															z	со N	
																												ų	S	
								-													_							<u>لت</u>	Ξ	
																												H	Ŧ	
	Х	X	Х	×	Х	х	Х									×	×								×	×		Н	H	
SM-																													a	
846																													\triangleleft	
	×	X	Х	×	×	×	Х									×	\times								×	×		Z	2	
1																												z		
																													ш	
																								- 1		1		HI	S I	

ANALYSIS RUN LOG 14

Contract:

Lab Name: Laucks Laboratories SDG No.: CAB33 Run Sequence ID:

ICPMS (PE ELAN 6100)

Method: 6020

R019216

End Date: 07/02/2007

Start Date: 07/02/2007 Instrument ID Number: Lab Code: LAUCKS

14

ANALYSIS RUN LOG

Start Date: 07/02/2007

End Date: 07/02/2007

Run Sequence ID: Method: <u>6020</u>

R019216

Contract:

Instrument ID Number: ICPMS (PE ELAN 6100)

Lab Code: LAUCKS

SDG No.: CAB33

Lab Name: Laucks Laboratories

Client Sample No. D/F Time A I5LCMW0IDWP 1 14:25 X I5LCMW02SW 1 14:29 X I5LCMW02DW 1 14:29 X I5LCMW02DW 1 14:29 X I5LCMW01DW (Filt.) 1 14:34 X I5LCMW01DW (Filt.) 1 14:42 X CCV8 1 14:42 X CCV8 1 14:45 X CCB8 1 14:51 X I5LCMW01DW (Filt.)L 5 14:55 X I5LCMW01DW (Filt.)D 1 14:59 X I5LCMW01DW (Filt.)MS 1 15:04 X I5LCMW01DW (Filt.)P 1 15:04 X I5LCMW02SW (Filt.) 1 15:12 X I5LCMW02D (Filt.) 1 15:17 X I5LCMW02D (Filt.) 1 15:21 X												Ă	nal	Уtе	S														
Client Sample No. D/F Time G ISLCMW0IDWP 1 14:25 X ISLCMW02SW 1 14:29 X ISLCMW02BW 1 14:24 X ISLCMW01DW (Filt.) 1 14:34 X ISLCMW01DW (Filt.) 1 14:34 X ISLCMW01DW (Filt.) 1 14:42 X CCV8 1 14:45 X CCB8 1 14:51 X ISLCMW01DW (Filt.)L 5 14:55 X ISLCMW01DW (Filt.)D 1 14:59 X ISLCMW01DW (Filt.)D 1 14:59 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW02SW (Filt.) 1 15:12 X ISLCMW02D (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:21 X		A	A A	а <u>в</u>	3 C	0	n n	0	ΓŢ	ш Ж	Ŀ	ß	Ζ	Ζ	z	z	Р ,	S	s N	S	പ	÷	ij	н	\triangleleft	ы	0	υ	S
ISLCMW0IDWP 1 14:25 X 15LCMW02SW 1 14:29 X ISLCMW02DW 1 14:34 X ISLCMW01SW (Filt.) 1 14:38 X ISLCMW01DW (Filt.) 1 14:43 X ISLCMW01DW (Filt.) 1 14:46 X CCV8 1 14:45 X CCB8 1 14:51 X ISLCMW01DW (Filt.)L 5 14:55 X ISLCMW01DW (Filt.)D 1 14:59 X ISLCMW01DW (Filt.)D 1 14:59 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW02SW (Filt.) 1 15:12 X ISLCMW02DW (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:21 X	7 Time	۵ ۵	ല ഗ	Þ	A	0	77	G	त	(4)	├~~{	ഹ	z	0	Þ	н	Ψ	ω	۲J	z	Þ) L	н	F.		Z	z		н
15LCMW02SW 1 14.29 X 15LCMW02DW 1 14.34 X 15LCMW01SW (Filt.) 1 14.38 X 15LCMW01SW (Filt.) 1 14.42 X 15LCMW01DW (Filt.) 1 14.45 X CCV8 1 14.45 X CCB8 1 14.51 X ISLCMW01DW (Filt.)L 5 14.55 X ISLCMW01DW (Filt.)D 1 14.59 X ISLCMW01DW (Filt.)MS 1 15.04 X ISLCMW01DW (Filt.)P 1 15.04 X ISLCMW01DW (Filt.)P 1 15.12 X ISLCMW02SW (Filt.) 1 15.12 X ISLCMW02D (Filt.) 1 15.17 X ISLCMW02D (Filt.) 1 15.21 X ISLCMW02D (Filt.) 1 15.21 X	14:25	X	X			X		×		-						×	×	×	×					×	 	×			
ISLCMW02DW 1 14.34 X ISLCMW01SW (Filt.) 1 14.38 X ISLCMW01DW (Filt.) 1 14.42 X CCV8 1 14.45 X CCB8 1 14.51 X ISLCMW01DW (Filt.)L 5 14.55 X ISLCMW01DW (Filt.)D 1 14.59 X ISLCMW01DW (Filt.)D 1 15.04 X ISLCMW01DW (Filt.)MS 1 15.04 X ISLCMW01DW (Filt.)P 1 15.04 X ISLCMW02SW (Filt.) 1 15.12 X ISLCMW02D (Filt.) 1 15.17 X ISLCMW02D (Filt.) 1 15.17 X ISLCMW02D (Filt.) 1 15.21 X	14:29	X	X			X		Х								×	X	\times	\times					×		\times			
ISLCMW01SW (Filt.) 1 14:38 X ISLCMW01DW (Filt.) 1 14:42 X CCV8 1 14:42 X CCB8 1 14:45 X ISLCMW01DW (Filt.)L 5 14:51 X ISLCMW01DW (Filt.)D 1 14:59 X ISLCMW01DW (Filt.)MS 1 15:04 X ISLCMW01DW (Filt.)MS 1 15:04 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW01DW (Filt.)P 1 15:04 X ISLCMW02SW (Filt.) 1 15:12 X ISLCMW02D (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:21 X	14:34	Х	X			х		х								×	×	×	×					\times		×			
Islccmwoldw (Filt.) 1 14:42 X CCV8 1 14:46 X CCB8 1 14:51 X IslccMW01DW (Filt.)L 5 14:55 X IslcCMW01DW (Filt.)D 1 14:59 X IslcCMW01DW (Filt.)D 1 14:59 X IslcCMW01DW (Filt.)P 1 15:04 X IslcCMW01DW (Filt.)P 1 15:08 X IslcCMW02DW (Filt.) 1 15:12 X IslcCMW02DW (Filt.) 1 15:17 X IslcCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	14:38	X	X	۲ ۲	$\langle \rangle$	X	Х	Х		_						×	X	×	×					\times		×			
CCV8 1 14:46 X CCB8 1 14:51 X ISLCMW0IDW (Filt.)L 5 14:55 X ISLCMW0IDW (Filt.)D 1 14:59 X ISLCMW0IDW (Filt.)MS 1 15:04 X ISLCMW0IDW (Filt.)MS 1 15:04 X ISLCMW0IDW (Filt.)P 1 15:08 X ISLCMW02SW (Filt.) 1 15:12 X ISLCMW02D (Filt.) 1 15:17 X ISLCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	14:42	X	×			×		Х								Х	X	X	X					Х		×			
CCB8 1 14:51 X I5LCMW01DW (Filt.)L 5 14:55 X I5LCMW01DW (Filt.)D 1 14:59 X I5LCMW01DW (Filt.)MS 1 15:04 X I5LCMW01DW (Filt.)MS 1 15:04 X I5LCMW01DW (Filt.)P 1 15:08 X I5LCMW02DW (Filt.) 1 15:12 X I5LCMW02SW (Filt.) 1 15:17 X I5LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	14:46	X	X		$\hat{}$	×	Х	Х		—						Х	Х	Х	Х					X		×			
I5LCMW01DW (Filt.)L 5 14:55 X 15LCMW01DW (Filt.)D 1 14:59 X 15LCMW01DW (Filt.)MS 1 15:04 X 15LCMW01DW (Filt.)MS 1 15:08 X 15LCMW01DW (Filt.)P 1 15:08 X 15LCMW01DW (Filt.) 1 15:12 X 15LCMW02SW (Filt.) 1 15:17 X 15LCMW02D (Filt.) 1 15:17 X 15LCMW02D (Filt.) 1 15:17 X 15LCMW02D (Filt.) 1 15:17 X	14:51	X	X		$\hat{}$	×	Х	Х								Х	Х	Х	X					Х	 	×			
I5LCMW01DW (Filt.)D 1 I4:59 X 15LCMW01DW (Filt.)MS 1 15:04 X 15LCMW01DW (Filt.)P 1 15:08 X 15LCMW02DW (Filt.)P 1 15:12 X 15LCMW02SW (Filt.) 1 15:12 X 15LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	14:55	X	×			×		х								X	X	Х	Х					Х		×			
15LCMW01DW (Filt.)MS 1 15:04 X 15LCMW01DW (Filt.)P 1 15:08 X 15LCMW02DW (Filt.) 1 15:12 X 15LCMW02D (Filt.) 1 15:17 X 15LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	14:59	X	X			X		Х								Х	Х	Х	Х					Х		×			
15LCMW01DW (Filt.)P 1 15:08 X 15LCMW02SW (Filt.) 1 15:12 X 15LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	15:04	X	X			×		×			i					X	X	X	X					Х		×			
15LCMW02SW (Filt.) 1 15:12 X 15LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	15:08	Х	X			×		×								Х	Х	Х	Х					Х		Х			
15LCMW02D (Filt.) 1 15:17 X CCV9 1 15:21 X	15:12	Х	X			×	Х	×								×	X	X	×					Х		X			
CCV9 1 15:21 X	15:17	X	X	<u> </u>	\sim	X	X	X				-				X	Х	Х	Х					Х		×			
	15:21	Х	X	7	ζ.	Х	Х	Х								Х	Х	Х	X					Х		×			
CCB9 1 15:25 X	15:25	X	×			×	X	X	<u> </u>	-	<u> </u>					×	X	×	×	L			ļ	X		X			

Form XIV-IN

SW-84

14 ANALYSIS RUN LOG

Lab Code: LAUCKS

SDG No.:

CAB33

Run Sequence ID: Method: <u>6020</u>

R019325

Contract:

Lab Name: Laucks Laboratories

Instrument ID Number:

CCB4	CCV4	15LCMW01DW (Filt.)P	15LCMW01DW (Filt.)MS	15LCMW01DW (Filt.)D	15LCMW01DW (Filt.)L	15LCMW01DW (Filt.)	15LCMW02DW	15LCMW02SW	15LCMW01DWP	15LCMW01DWMS	CCB3	CCV3	15LCMW01DWD	15LCMW01DWL	15LCMW01DW	15LCMW01SW	277722	222.7.2.2.	22222	ZZZZZ	Client Sample No.		Start D
-	1	Ur.	Un	5	25	γ	s	5	5	ა	<u>, </u>	1	5	25	5	5		100	100	100	D/F		a te ::
12:35	12:31	12:26	12:22	12:18	12:13	12:09	12:05	11:58	11:52	11:47	11:43	11:39	11:35	11:30	11:26	11:22	11:17	11:13	11:09	11:04	Time		07/03/
			 			┢──	 											 	 		GA		200
				[1	1															Ε		7
																					a ک		
																					B		
×	×	×	×	×	X	Х	\times	×	×	X	Х	×	X	X	X	Х					ष्य म		
ļ						ļ	ļ		ļ								ļ		<u> </u>		AC	-	
-																					00		
	-															5							
Ê	^	~	~	Ľ.	<u> </u>	Ê	Ļ^	ŕ		<u>^</u>	$\hat{}$	Ļ,	X	Ê	Ľ.	Ś							
⊢			-		<u> </u>	<u> </u>																	
-																					GΞ	1	
-						 																	
_				 	 																нμ	1	ы
		[a ک	⊳	nd
																					NM]nal	Dat
																					οд]yte	
							ļ														A	S	0
						[ļ														Η̈́Ζ		7/0;
		ļ	ļ	ļ	ļ	ļ	 	 	ļ										_		ש ש		3/20
			ļ	ļ	ļ		ļ								ļ						លយ		70(
				ļ	 																		1
					┣				L												z o		
				 	┣																		
┝				<u> </u>			<u> </u>													····			
-			-	<u> </u>	-	_									<u> </u>						н н		
			ļ					 															
			┢──			<u>†</u>	 			-		-			-						. V	1	
			\vdash				t														N Z		
					<u> </u>	Γ															z o	1	
															_						α		
																					н v		

SUM - 256

ZZZZZZ	722722	CCB2	CCV2	TTTTT	ZLZZZZ	<i>111.721.</i>	111111	7.7.7.7.7.Z	ZZZZZ	222222	ZIIZZI	ZZZZZ	CCB1	CCV1	7777777	ICSAB	ICSA	CRI	ICB	ICV	Standard 5	Standard 4	Standard 3	Standard 2	Standard 1	Blank	Client Sample No.		
500	100		1-1			1	l	1	1	-	1	1	1	1	1	1	1		1	1	ļ	1	I	ļ	1	1	D/F		
11:00	10:56	10:51	10:47	10:43	10:38	10:34	10:30	10:25	10:21	10:17	10:13	10:08	10:04	10:00	09:55	09:52	09:48	09:45	09:41	09:37	09:32	09:27	09:21	09:16	09:11	<u> 09:06</u>	Time		
					İ		Ī	Ē						İ					İ –								G	A	
					<u> </u>			<u> </u>						[Ŀ	A	
							1	1					[ĺ								a barlanta ka					S	¥	
					ĺ																						A	в	
		X	Х										×	Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	[T]	в	
																											₽	Ω	
										L			ļ	<u> </u>		L		<u> </u>									U	C	
												ļ				_		ļ	ļ		ļ						े	Ω	
ļ		×	×									ļ	$ \times $	×		\times	Х	×	×	×	×	×	х	×	Х	Х	Ħ	C	
ļ	ļ	ļ	 		<u> </u>	<u> </u>		Ļ_		ļ		ļ		ļ		ļ			 					L_			a	C	
ļ	ļ	ļ			 		<u> </u>	<u> </u>					L	ļ	· .	L			ļ								t=1	μų	
ļ	 																		ļ								ភ	Н	
												<u> </u>		 														K	
								ļ		 		—				<u> </u>		<u> </u>	┝										
										ļ			-							ļ									Ana
-		<u> </u>											<u> </u>														2	V V	ìlyt
-		<u> </u>						┢		 			<u> </u>					}										I I	e s
-													<u> </u>					┣—	┣—		┡								
-					┢──			<u> </u>					<u> </u>			 			┢──						<u> </u>		500		
-					$\left \right $								-	<u> </u>					<u> </u>		<u> </u>	-					w	S	
-					┟──			 						┢──					 				 				tri	S	
$\left \right $		[┢──			 	-		 		 	-				z	S	
\vdash							-												İ	İ	İ		İ				F	S	
				_	┢							1						 	┢	İ	┢──	F	 	-	 		m	н	
							Ī	1	 										Ĺ	 					 		н	н	
							Γ	Γ									<u> </u>		Í	[1					Ī	Г	H	
																												G	
																												<	
																											z	N.	
																											z	Ω	
								Ļ								L											Ļ	μ	
																											н	S	

14

ANALYSIS RUN LOG

Start Date: 07/03/2007

Instrument ID Number:

SDG No.: CAB33 ICPMS (PE ELAN 6100)

End Date: 07/03/2007

Run Sequence ID: Method: <u>6020</u>

R019325

Contract:

Lab Code: LAUCKS

Lab Name: Laucks Laboratories

SUM - 257

Form XIV-IN

SW-846

S
Σ
I.
∞
ιÞ
m

14

ANALYSIS RUN LOG

Start Date: 06/27/2007

End Date: 06/27/2007

Run Sequence ID: Method: <u>7470A</u>

R019069

Contract:

Instrument ID Number: FIMS(FIMS400)

Lab Name: Laucks Laboratories

Lab Code: LAUCKS

SDG No.:

CAB33

Form XIV-IN

SW-846

•

SUM - 258

14 ANALYSIS RUN LOG

Start Date: 06/27/2007	Instrument ID Number: FIMS(FIMS400)	Lab Code: LAUCKS SDG No.: CAB33	Lab Name: Laucks Laboratories
End Date: 06/27/2007	Method: 7470A	Run Sequence ID: R019069	Contract:

CCB2	CCV2	Client Sample No.		
	,	D/F		
13:14	13:10	Time		
		۵	;⊳	
		E1	⊳	ĺ
		م م	,]>	
		A	ω	
		ন্য	B	
		;	Ω	1
		U	Ω	
		0	Ω	
		R	Ω	1
		a	Ω	1
*****		ম	Ч	
×	×	ଜ	Ħ	
			$^{ m m m m m m m m m m m m m $	
		Ţ	Ľ	Ì
		۵	Ζ	
		z	Ζ	Leu
		0	Μ	Yte
		A	Z	ល័
		н	N	
		ш	ы	
		ម	S	
		(با	S	
		z	S	
		R	S	
		н	н	
		Ï	ij	
		Ľ	Н	
			G	
			4	
		z	N	
		N	Ω	
			ω	
		н	S	
	CCB2 1 13:14 X	CCV2 1 13:10 X X </th <th>Client Sample No. D/F Time G L S A E A D O R U E G I B B E N R H I L N N I CCV2 1 13:10 I</th> <th>Client Sample No. D/F Time G L A A B B C C C F H K L M M N P S S S T T U V Z C B S C</th>	Client Sample No. D/F Time G L S A E A D O R U E G I B B E N R H I L N N I CCV2 1 13:10 I	Client Sample No. D/F Time G L A A B B C C C F H K L M M N P S S S T T U V Z C B S C

.

.

FORMS SUMMARY

CAB33

Miscellaneous Inorganics

Client:	ineering and nental		P	roject:		Camp	Bonneville					
SDG Number:	CAB33											
Sample Number:	15LCMW	'01SW		Da	1te/Time	Collected	: 06/21/2	06/21/2007 11:00				
Lab Sample ID:	CAB33-00	01		Da	ate/Time	Received:	06/22/2	06/22/2007 10:10				
Method:	E160.2	. ,		Ur	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Suspended Solids, Tot	al	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986		
Method:	E300.0			Uı	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Nitrate - N	·	14797-55-8	1	0.20	U	0.20	0.055	06/22/2007	06/23/2007	R018984		
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/22/2007	06/23/2007	R018984		
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/22/2007	06/23/2007	R018984		
Chloride		16887-00-6	1	1.3		1.0	0.076	06/22/2007	06/23/2007	R018984		
Method:	E310.1			Ur	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Alkalinity, Carbonate (CaCO3)	(As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262		
Alkalinity, Bicarbonate CaCO3)	e (As	71-52-3	2	42		4	4	07/03/2007	07/03/2007	R019262		
Method:	E314.0			Ur	it:		ug/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/10/2007	07/11/2007	R019390		
Method:	E415.1			Un	it:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Organic Carbon, Total		TOC	1	1.0	U	1.0	0.070	06/28/2007	06/28/2007	R019123		

Client:	ineering and nental		Ρ	roject:		Camp	Bonneville					
SDG Number:	CAB33											
Sample Number:	15LCMW	01DW		Date/Time Collected:				06/21/2007 12:45				
Lab Sample ID:	CAB33-00	02		D	ate/Time	Received:	06/22/2	06/22/2007 10:10				
Method:	E160.2			U	nit:		mg/L	mg/L				
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Suspended Solids, Tot	al	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986		
Method:	E300.0			U	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Nitrate - N		14797-55-8	1	0.20	U	0.20	0.055	06/22/2007	06/23/2007	R018984		
Nitrite - N		14797-65-0]	0.10	U	0.10	0.017	06/22/2007	06/23/2007	R018984		
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/22/2007	06/23/2007	R018984		
Chloride		16887-00-6	1	1.5		1.0	0.076	06/22/2007	06/23/2007	R018984		
Method:	E310.1			U	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seg.		
Alkalinity, Carbonate (CaCO3)	As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262		
Alkalinity, Bicarbonate CaCO3)	: (As	71-52-3	2	44		4	4	07/03/2007	07/03/2007	R019262		
Method:	E314.0			U	nit:		ug/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/10/2007	07/11/2007	R019390		
Method:	E415.1			U	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Organic Carbon, Total		ТОС	1	1.0	U	1.0	0.070	06/28/2007	06/28/2007	R019123		

Client:	PBS Eng Environn	ineering and nental			Project:		Camp Bonneville				
SDG Number:	CAB33										
Sample Number:	MS/MSD			j	Date/Time	e Collected:	06/21/2007 12:45				
Lab Sample ID:	CAB33-0	03]	Date/Time	e Received:	06/22/2007 10:10					
Method:	E300.0			I	Unit:		mg/L				
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.	
Nitrate - N		14797-55-8	I.	0.20	U	0.20	0.055	06/22/2007	06/23/2007	R018984	
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/22/2007	06/23/2007	R018984	
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/22/2007	06/23/2007	R018984	
Chloride		16887-00-6	1	1.5		1.0	0.076	06/22/2007	06/23/2007	R018984	

Client:	jineering and nental		Р	roject:		Camp	Bonneville					
SDG Number:	CAB33											
Sample Nnmber:	15LCMW	/02SW		D	ate/Time	Collected	: 06/21/	06/21/2007 15:00				
Lab Sample ID:	CAB33-0	04		D	ate/Time	Received:	06/22/	06/22/2007 10:10				
Method:	E160.2			\mathbf{U}_{1}	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Suspended Solids, Tot	al	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986		
Method:	E300.0			U	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Nitrate - N		14797-55-8	1	0.20	U	0.20	0.055	06/22/2007	06/23/2007	R018984		
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/22/2007	06/23/2007	R018984		
Sulfate as SO4		14808-79-8]	1.0	U	1.0	0.17	06/22/2007	06/23/2007	R018984		
Chloride		16887-00-6	1	1.6		1.0	0.076	06/22/2007	06/23/2007	R018984		
Method:	E310.1			U	ait:		mg/L			1 - 100		
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Alkalinity, Carbonate (CaCO3)	(As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262		
Alkalinity, Bicarbonate CaCO3)	e (As	71-52-3	2	42		4	4	07/03/2007	07/03/2007	R019262		
Method:	E314.0			Uı	ıit:		ug/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/10/2007	07/11/2007	R019390		
Method:	E415.1			Ur	ıit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Organic Carbon, Total		ТОС	1	1.0	U	1.0	0.070	06/28/2007	06/28/2007	R019123		

Client:	ineering and nental		Pr	roject:		Camp	Bonneville					
SDG Number:	CAB33											
Sample Number:	15LCMW	/02DW		Da	ıte/Time	Collected	06/21/2	06/21/2007 16:50				
Lab Sample ID:	CAB33-0	05		Da	ite/Time	Received:	06/22/:	06/22/2007 10:10				
Method:	E160.2			Ur	nit:		mg/L	mg/L				
Analyte	CONTRACTOR DATABASE AND A CONTRACT AND A CONTRACT AND A	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Suspended Solids, Tota	al	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986		
Method:	E300.0			Ur	nit:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Nitrate - N		14797-55-8	1	0.23		0.20	0.055	06/22/2007	06/23/2007	R018984		
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/22/2007	06/23/2007	R018984		
Sulfate as SO4		14808-79-8	1	1.0		1.0	0.17	06/22/2007	06/23/2007	R018984		
Chloride		16887-00-6	1	2.1		1.0	0.076	06/22/2007	06/23/2007	R018984		
Method:	E310.1			Un	it:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Alkalinity, Carbonate (CaCO3)	As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262		
Alkalinity, Bicarbonate CaCO3)	e (As	71-52-3	2	44		4	4	07/03/2007	07/03/2007	R019262		
Method:	E314.0			Un	it:		ug/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/10/2007	07/11/2007	R019390		
Method:	E415.1			Un	it:		mg/L					
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.		
Organic Carbon, Total		TOC	1	1.0	υ	1.0	0.070	06/28/2007	06/28/2007	R019123		

Client:	PBS Engineering and Environmental CAB33	Project:	Camp Bonneville
Sample Number:	15LCMW01SW (Filt.)	Date/Time Collected:	06/21/2007 11:00
Lab Sample 1D:	CAB33-006	Date/Time Received:	06/22/2007 10:10
Method:	E415.1	Unit:	mg/L

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Carbon	DOC	1	1.0	U	1.0	1.0	06/28/2007	06/28/2007	R019123

<u>Final Results</u>

Client:	PBS Eng Environm	ineering and lental			Pro	oject:		Camp E	Camp Bonneville				
Sample Number:	15LCMW	01DW (Filt.)			Dat	te/Time	Collected	: 06/21/2	007 12:	45			
Lab Sample ID:	CAB33-00)7	Date/Time Rec				Received	: 06/22/2	007 10:	10			
Method:	E415.1				Un	it:		mg/L					
		<u>a.c</u>	DD				BOI	MDI	n			-	

	Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Carbon DOC 1 1.0 U 1.0 1.0 06/28/2007 0	Dissolved Organic Carbon	DOC	1	1.0	U	1.0	1.0	06/28/2007	06/28/2007	R019123

Final Results

Client:	PBS Engineering and Environmental	Project:	Camp Bonneville
SDG Number:	CAB33		
Sample Number:	15LCMW02SW (Filt.)	Date/Time Collected:	06/21/2007 15:00
Lab Sample ID:	CAB33-008	Date/Time Received:	06/22/2007 10:10
Method:	E415.1	Unit:	mg/L

Analyte	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Carbon	DOC	1	1.0	U	1.0	1.0	06/28/2007	06/28/2007	R019123

4.

Client:	PBS Engineering and Environmental		F	roject:		Camp E	Camp Bonneville				
SDG Number:	CAB33										
Sample Number:	15LCMW02D (Filt.)		D	ate/Time	Collected	: 06/21/2	007 16:50				
Lab Sample ID:	CAB33-009		Date/Time Received:			: 06/22/2	06/22/2007 10:10				
Method: E415.1			U	nit:		mg/L					
[nor	X X X X					

Analyte	CAS	DF	Result	. Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Carbon	DOC	1	1.0	U	1.0	1.0	06/28/2007	06/28/2007	R019123

SDG No:	CAB33	Contract:
Run Sequence No.	R018984	Concentration Units: mg/L
Determination Name:	300.0 NO3, NO2, Cl, SO4	
Initial Calibration Source:	IC-7-22-18	
Continuing Calbration Source:	IC-7-24-12	

		ICV				CCV1			CCV2			
		06/22/2007 12:56			06/22/07 15:31				CCV			
Analyte	Тгие	Found	Recovery	Limits	Тпе	Found	Recovery	True	Found	Recovery	Limits	
Chloride	1.500	1.415	94,4	90-110	5.023	5.391	107.3	5.023	5.397	107.5	90-110	
Nitrate - N	1.125	1.106	98.3	90-110	2.004	2.182	108.9	2.004	2.148	107.2	90-110	
Nitrite - N	1.522	1.667	109.5	90-110	1.000	1.062	106.1	1.000	1.069	106.8	90-110	
Sulfate as SO4	7.450	7.47	100.3	90-110	10.018	10.711	106.9	10.018	10.852	108.3	90-110	

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 1 of 4 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in ecod faith and according to the rules of trade and science.

SDG No:	CAB33	Contract:	
Run Sequence No.	R018984	Concentration Units:	mg/L
Determination Name:	300.0 NO3, NO2, Cl, SO4		
Initial Calibration Source:	IC-7-22-18		
Continuing Calbration Source:	IC-7-24-12		

						CCV3			CCV4		
			· ·		()6/22/07 20	:16		06/22/07 23	:25	CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	Тгие	Found	Recovery	Limits
Chloride					5.023	5.455	108.6	5.023	5.119	101.9	90-110
Nitrate - N					2.004	2.198	109.7	2.004	2.036	101.6	90-110
Nitrite - N					1.000	1.076	107.6	1.000	1.031	103	90-110
Sulfate as SO4					10.018	10.902	108.8	10.018	10.34	103.2	90-110

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 2 of 4
This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any
of its staff in connection with the advertising or sale of any product of process will be granted only on contract. This company accepts no responsibility except for the date
performance of inspection and/or analysis in eood fault and according to the roles of trade and science
SUM - 271

SDG No:	CAB33	Contract:
Run Sequence No.	R018984	Concentration Units: mg/L
Determination Name:	300.0 NO3, NO2, Cl, SO4	
Initial Calibration Source:	IC-7-22-18	
Continuing Calbration Source:	IC-7-24-12	

					(CCV5)6/23/07 02	::34		CCV6 06/23/07 05	:44	CCV
Analyte	Тгие	Found	Recovery	Limits	Тгие	Found	Recovery	True	Found	Recovery	Limits
Chloride					5.023	5.421	107.9	5.023	5.448	108.5	90-110
Nitrate - N					2.004	2.182	108.9	2.004	2.19	109.3	90-110
Nitrite - N					1.000	1.083	108.3	1.000	1.091	109.1	90-110
Sulfate as SO4					10.018	10.909	108.9	10.018	10.987	109.7	90-110

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the adventising or sale of any product or process will be granted only on commet. This company accepts no responsibility except for the due performance of inspection and/or analysis in wood faith and according to the rules of trade and science

Page 3 of 4

SUM - 272

SDG No:	CAB33	Contract:
Run Sequence No.	R018984	Concentration Units: mg/L
Determination Name:	300.0 NO3, NO2, Cl, SO4	
Initial Calibration Source:	IC-7-22-18	
Continuing Calbration Source:	IC-7-24-12	

				CCV7 06/23/07 08:53			CCV8 06/23/07 11:31			ссу	
Analyte	Тгие	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Chloride					5.023	5.487	109.2	1.500	1.403	93.5	90-110
Nitrate - N					2.004	2.198	109.7	1.125	1.107	98.4	90-110
Nitrite - N	r.				1.000	1.099	109.9	1.522	1.648	108.2	90-110
Sulfate as SO4					10.018	10.964	109.4	7.450	7.517	100.9	90-110

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 4 of 4 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

SDG No:	CAB33	Contract:
Run Sequence No.	R019390	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

	ICV				CCV1						
	07/11/2007 12:24				07/11/07 12:24			07/11/07 12:24			CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate	40.151	38.82	96.7	75-125	9.988	9.626	96.4	9.988	10.09	101	85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequem use of the name of this company or any of its staff in connection with the advertising or safe of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in wood faith and according to the rules of trade and science. SI

Page 1 of 2

SUM - 274

SDG No:	CAB33	Contract:
Run Sequence No.	R019390	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

						CCV3					
					07/11/07 12:24						CCV
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate					9.988	9.868	98.8				85-115

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 2 of 2
This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any
of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due
SUMM - 275
SUMM - 275
Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB33	Contract:	
Run Sequence No.	R019123	Concentration Units:	mg/L
Determination Name:	415.1 Total Organic Carbon		
Initial Calibration Source:	TOC-4-28-2		
Continuing Calbration Source:	TOC-4-29-20		
	···· · · · · · · · · · · · · · · · · ·		

		IC	V			CCV01					
		06/28/2007 11:34				06/28/07 13:	16		CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Organic Carbon, Total	10.000	9.929	99.3	90-110	5.001	4.796	95.9	5.001	4.638	92.7	90-110

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 Page 1 of 2 This report is submined for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due oefformance of inspection and/or analysis in eood faith and according to the rules of irade and science.

Laucks Testing Laboratories, Inc. INITIAL AND CONTINUING CALIBRATION VERIFICATION

SDG No:	CAB33	Contract:
Run Sequence No.	R019123	Concentration Units: mg/L
Determination Name:	415.1 Total Organic Carbon	
Initial Calibration Source:	ТОС-4-28-2	
Continuing Calbration Source:	TOC-4-29-20	

						CCV03						
						06/28/07 15:51						
Analyte	Тгие	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits	
Organic Carbon, Total					5.001	5.065	101.3				90-110	

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the partnership or comporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in wood faith and according to the rules of trade and science

Page 2 of 2

SUM - 277

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

CAB33

Contract:

Concentration Units: mg/L

Run Sequence No.: Determination Name: R018984 300.0 NO3, NO2, Cl, SO4

	ICB 06/22/2007 13:12		CCB1 06/22/2007	15:47	CCB2 06/22/2007 17:22		CCB3 06/22/2007 20:31		ССВ	
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Chloride	1.0	U	0.5	1,0	U	1.0	U	1.0	U	0.5
Nitrate - N	0.20	U	0.1	0.20	U	0.20	U	0.20	U	0.1
Nitrite - N	0.10	U	0.05	0.10	U	0.10	U	0,10	U	0.05
Sulfate as SO4	1.0	U	0.5	1.0	U	1.0	U	1.0	U	0.5

* = Control limit exceeded

FORM LTL-RSR-25.0 Page 1 of 3
This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the di
SUM - 278
SUM - 278

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

Run Sequence No.:

CAB33 R018984 Contract:

Concentration Units: mg/L

Determination Name: 300.0 NO3, NO2, Cl, SO4

				CCB4 06/22/2007	23:41	CCB5 06/23/2007	02:50	CCB6 06/23/2007	06:00	ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Chloride	· · ·			1.0	U	1.0	U	1.0	U	0.5
Nitrate - N				0.20	U	0.20	U	0.20	U	0.1
Nitrite - N				0.10	U	0.10	U	0.10	U	0.05
Sulfate as SO4				1.0	υ	1.0	υ	1.0	U	0.5

* = Control limit exceeded

FORM LTL-RSR-25.0 Page 2 of 3 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the di SUM - 279

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No: Run Sequence No.: CAB33 R018984 Contract:

Concentration Units: mg/L

Determination Name:

300.0 NO3, NO2, Cl, SO4

				CCB7 06/23/2007	09:09	CCB8 06/23/2007	11:47			ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Chloride				1.0	U	1.0	U			0.5
Nitrate - N				0.20	U	0.20	ប			0.1
Nitrite - N				0.10	U	0.10	U			0.05
Sulfate as SO4				1.0	U	1.0	υ			0.5

* = Control limit exceeded

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

Run Sequence No.:

CAB33 R019390 Contract:

Concentration Units: ug/L

Determination Name: 314.0 Perchlorate

	ICB 07/11/2007 12:24		CCB1 07/11/2007 12:24		CCB2 07/11/2007 12:24		CCB3 07/11/2007 12:24		ССВ	
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Perchlorate	1.0	U	0.5	1.0	U	1.0	U	1.0	U	0.5

* = Control limit exceeded

FORM LTL-RSR-25.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the di performance of inspection and/or analysis in good faith and according to the rules of trade and science. SUM - 281

Page 1 of 1

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No:

Run Sequence No.:

CAB33 R019123 Contract:

Concentration Units: mg/L

Determination Name: 415.1 Total Organic Carbon

	ICB 06/28/2007 11:40			CCB01 06/28/2007	CCB01 CCB0 3/2007 13:22 -06/28/2007		2 CCB0 14:49 06/28/2007		15:57	ССВ
Analyte	Found	С	Limit	Found	С	Found	С	Found	С	Limit
Organic Carbon, Total	1.0	U	0.5	1.0	U	1.0	U	1.0	U	0.5

* = Control limit exceeded

Page 1 of 1

	Lab Sample ID	Client Sample ID			
	As	sociated Samples			
Alkalinity.	, Carbonate (As CaCO3)	2	U	2	
Alkalinity,	Bicarbonate (As CaCO3)	2	U	2	
	Analyte	Reported	Flag	Limit	
		L N	Jnits: Aatrix:	mg/L Water	
		<i>.</i> ک	Analysis Date:	07/03/2007	17:00
Lab Sample ID:	B070307ALKW01	- ٦	Run Sequence ID	: R019262	
		F	Preparation Date:	7/3/2007	
fest:	310.1M Carb./Bicarb. Alkali	nity S	SDG ID:	CAB33	

			4
	Lab Sample ID	Client Sample ID	
Ì	CAB33-001	15LCMW01SW	
	CAB33-002	15LCMW01DW	
	CAB33-004	15LCMW02SW	
	CAB33-005	15LCMW02DW	

* Measured blank concentration exceeded the established control limit

Test:	300.0 NO3, NO2, Cl, SO4	S	DG ID:	CAB33	
		Р	reparation Date:	6/22/2007	
Lab Sample ID	D: B062207IAIW02	R	un Sequence ID:	R018984	
		А	nalysis Date:	06/23/2007	11:47
		U	nits:	mg/L	
		Μ	latrix:	Water	
	Analyte	Reported	Flag	Limit	
Chlorid	le	1.0	U	0.5	
Nitrate	- N	. 0.20	U	0.1	
Nitrite	- N	0.10	U	0.05	
Sulfate	as SO4	1.0	U	0.5	
	A	Associated Samples			
	Lab Sample ID	Client Sample ID			
	CAB33-001	15LCMW01SW			
	CAB33-002	15LCMW01DW			
	CAB33-003	MS/MSD			
	CAB33-004	15LCMW028W	Ì		
	CAB33-005	15LCMW02DW			

* Measured blank concentration exceeded the established control limit

Test:	314.0 Perchlorate	S	SDG ID:	CAB33	
		F	Preparation Date:	7/10/2007	
Lab Sample ID:	B071007PERW01	F	Run Sequence ID:	R019390	
		A	nalysis Date:	07/11/2007	/ 12:24
		Ĺ	Inits:	ug/L	
		Ν	fatrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlorat	2	1.0	U	0.5	
	As	sociated Samples			
	Lab Sample ID CAB33-001	Client Sample ID 15LCMW01SW			

15LCMW01DW

15LCMW02SW

15LCMW02DW

* Measured blank concentration exceeded the established control limit

CAB33-002

CAB33-004

CAB33-005

Test:	Fest: 415.1 Total Organic Carbon		SDG ID:		
			Preparation Date:	: 6/28/2007	
Lab Sample ID:	B062807TOCW02		Run Sequence ID:	R019123	
			Analysis Date:	06/28/2007	13:55
			Units:	mg/L	
			Matrix:	Water	
	Analyte	Reported	Flag	Limit	
Organic Ca	arbon, Total	1.0	U	0.5	
	Associ	ated Samples			
	Lab Sample ID	Client Sample II	2		
	CAB33-001	15LCMW01SW			
	CAB33-002	15LCMW01DW			
	CAB33-004	15LCMW02SW			
CAB33-005		15LCMW02DW			
	CAB33-006	15LCMW01SW	(Filt.)		
	CAB33-007	15LCMW01DW	(Filt.)		
	CAB33-008	15LCMW02SW	(Filt.)		
	CAB33-009	15LCMW02D (F	ilt.)		

* Measured blank concentration exceeded the established control limit

Test:	160.2 Total Suspended Solid	SDG ID:	CAB33		
			Preparation Date:	6/25/2007	
Lab Sample ID:	B062507TSSW01		Run Sequence ID:	R018986	
			Analysis Date:	06/27/2007	16:30
			Units:	mg/L	
			Matrix:	Water	
	Analyte	Reported	Flag	Limit	
Suspended	l Solids, Total	2	U	2	
	A	ssociated Samples			
Lab Sample ID		Client Sample ID			
	CAB33-001	15LCMW01SW			
	CAB33-002	15LCMW01DW			
	CAB33-004	15LCMW02SW			

15LCMW02DW

* Measured blank concentration exceeded the established control limit

CAB33-005

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	300.0 NO3, NO2, Cl, SO4	SDG ID:	CAB33
		Preparation Date:	06/22/2007
MS Lab Sample ID:	CAB33-003MS 20X	Run Sequence ID:	R018984
MSD Lab Sample ID:	CAB33-003MSD 20X	Analysis Date:	06/23/2007
Client Sample ID:	MS/MSD	Units:	mg/L
		Matrix:	Water

A pobuto	Sample	MS	MS	MS	MSD	MSD	MSD	מספ	Limit	s
Analyte	Found	Spike	Found	Recovery	Spike	Found	Recovery		Recovery	RPD
Chloride	1.548	40.2	45.4156	109%	40.2	46.1958	111%*	2%	90-110	11
Nitrate - N	0.1144	16.0	17.2651	107%	16.0	18.2663	113%*	6%	90-110	10
Nitrite - N	0	8.00	8.4072	105%	8.00	8.7935	110%	4%	90-110	10
Sulfate as SO4	0.9194	80.1	91.8858	114%*	80.1	93.525	116%*	2%	90-110	10

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB33-001	15LCMW01SW			
CAB33-002	15LCMW01DW			
CAB33-003	MS/MSD			
CAB33-004	15LCMW02SW			
CAB33-005	15LCMW02DW			

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	314.0 Perchlorate	SDG ID:	CAB33
		Preparation Date:	07/10/2007
MS Lab Sample ID:	CAB33-002MS 5X	Run Sequence ID:	R019390
MSD Lab Sample ID:	CAB33-002MSD 5X	Analysis Date:	07/11/2007
Client Sample ID:	15LCMW01DW	Units:	ug/L
		Matrix:	Water

A palvte	Sample	MS	MS	MS	MSD	MSD	MSD	199D	Limit	s
Anatyc	Found	Spike	Found	Recovery	Spike	Found	Recovery		Recovery	RPD
Perchlorate	0	99.9	116.1	116%	99.9	108.165	108%	7%	80-120	15

Associated Samples					
Lab Sample ID	Client Sample ID				
CAB33-001	15LCMW01SW				
CAB33-002	15LCMW01DW				
CAB33-004	15LCMW02SW				
CAB33-005	15LCMW02DW				

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0

This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due SUM - 289

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	415.1 Total Organic Carbon	SDG ID:	CAB33
		Preparation Date:	06/28/2007
MS Lab Sample ID:	CAB33-002MS	Run Sequence ID:	R019123
MSD Lab Sample ID:	CAB33-002MSD	Analysis Date:	06/28/2007
Client Sample ID:	15LCMW01DW	Units:	mg/L
		Matrix:	Water

Analuta	Sample	MS	MS	MS	MSD	MSD	MSD	DDD	Limit	s
Апатусе	Found	Spike	Found	Recovery	Spike	Found	Recovery	KI D	Recovery	RPD
Organic Carbon, Total	0.1872	10.0	10.0596	99%	10.0	10.206	100%	1%	70-119	11

Associated Samples				
Lab Sample ID	<u>Client Sample ID</u>			
CAB33-001	15LCMW01SW			
CAB33-002	15LCMW01DW			
CAB33-004	15LCMW02SW			
CAB33-005	15LCMW02DW			
CAB33-006	15LCMW01SW (Filt.)			
CAB33-007	15LCMW01DW (Filt.)			
CAB33-008	15LCMW02SW (Filt.)			
CAB33-009	15LCMW02D (Filt.)			

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-11.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of any product or process will be granted only on contract. This company accepts no responsibility except for the durent of the advertising of safe of advertising of safe of advertising of safe of advertising of safe of the durent of the advertising of the advertising of the advertising of the durent of the advertising of the a

Duplicate Report

Test:	310.1M Carb./Bicarb. Alkalinity	SDG ID:	CAB33
		Preparation Date:	7/3/2007
Lab Sample ID:	CAB33-002Dup	Run Sequence ID:	R019262
Client Sample ID:	15LCMW01DW	Analysis Date:	07/03/2007 17:00
		Units:	mg/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Alkalinity, Bicarbonate (As CaCO3)	44	44	0%	10
Alkalinity, Carbonate (As CaCO3)	0	0	0%	10

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB33-001	15LCMW018W			
CAB33-002	15LCMW01DW			
CAB33-004	15LCMW02SW			
CAB33-005	15LCMW02DW			

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-20.0

This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only or contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in rood fauth and according to the rules of trade and science.

Duplicate Report

Test:	160.2 Total Suspended Solids	SDG ID:	CAB33
		Preparation Date:	6/25/2007
Lab Sample ID:	CAB33-002D	Run Sequence ID:	R018986
Client Sample ID:	15LCMW01DW	Analysis Date:	06/27/2007 16:30
		Units:	mg/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Suspended Solids, Total	I	1	0%	20

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB33-001	15LCMW01SW			
CAB33-002	15LCMW01DW	ł		
CAB33-004	15LCMW02SW			
CAB33-005	15LCMW02DW			

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-20.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the adventising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the du performance of inspection and/or analysis in good faith and according to the rules of trade and science. This company accepts no responsibility except for the du SUM - 292

BS/BSD Report

Test: 415.1 Total Organic Carbon

BS Sample ID: S062807TOCW02 BSD Sample ID: S062807TOCW02D

SDG ID:	CAB33
Preparation Date:	06/28/2007
Run Sequence ID:	R019123
Analysis Date:	06/28/2007 13:41
Units:	mg/L
Matrix	Water

Analyte	Blank Spike			Blan	k Spike Dupl	nnn	Limits		
	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Organic Carbon, Total	10.0	10.4498	104%	10.0	9.7755	98%	7%	90-110	

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB33-001	15LCMW01SW			
CAB33-002	15LCMW01DW			
CAB33-004	15LCMW02SW			
CAB33-005	15LCMW02DW			
CAB33-006	15LCMW01SW (Filt.)			
CAB33-007	15LCMW01DW (Filt.)			
CAB33-008	15LCMW02SW (Filt.)			
CAB33-009	15LCMW02D (Filt.)			

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-7.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in atood faith and according to the rules of trade and science.

Laucks Testing Laboratories **Blank Spike Report**

Test:	314	.0 Perchlorate				SDG ID:	CAB33	
						Preparation Date:	07/10/2007	
Lab Sample ID:	S07	1007				Run Sequence ID:	R019390	
						Analysis Date:	07/11/2007	12:24
						Matrix	Water	
						Units:	ug/L	
	An	lalyte	Spike Add	ed F	ound	% Recovery	Limit	٦
Perchlorate	-		20.0]	8.18	91%	85-115	
	ſ		Associat	ed Samples				
		Lab Sample ID		<u>Client Sa</u>	mple ID	<u> </u>		
		CAB33-001		15LCMW	01SW			
		CAB33-002		15LCMW	'01DW			

15LCMW02SW

15LCMW02DW

CAB33-004

CAB33-005

* = Recovery exceeded the established control limit

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-6.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

SRM Report

310.1M Carb./Bicarb. Alkalinity	SDG ID:	CAB33
	Preparation Date:	07/03/2007
SRM-MIN QC102712-438/439-202	Run Sequence ID:	R019262
	Analysis Date:	07/03/2007 17:00
	Units:	mg/L CaCO3
	Matrix:	Water
	310.1M Carb./Bicarb. Alkalinity SRM-MIN QC102712-438/439-202	310.1M Carb./Bicarb. AlkalinitySDG ID: Preparation Date:SRM-MIN QCI02712-438/439-202Run Sequence ID: Analysis Date: Units:

Analyte	Result	True Value	Control Limits		
	nosan		LCL	UCL	
Alkalinity, Bicarbonate (As CaCO3)	36.0	35.6	30.3	42.2	

Associated Samples							
Lab Sample ID	Client Sample ID						
CAB33-001	15LCMW01SW						
CAB33-002	15LCMW01DW						
CAB33-004	15LCMW02SW						
CAB33-005	15LCMW02DW						

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-19.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in wood faith and according to the rules of trade and science.

SRM Report

	2 K 82 4 K 4 Y K 10	116.9611	1100 14100	i	
	Angluta	Result	True Value	Co	
		Matrix:	Water		
		Units:	mg/L		
		Analysis Date:	06/23/2007	11:31	
Lab Sample ID:	SRM-IC 34-72AS-159	Run Sequence ID:	R018984		
		Preparation Date:	06/22/2007		
Test Name:	300.0 NO3, NO2, Cl, SO4	SDG ID:	CAB33		

Anglyte	Result	True Value	Control Limits		
			LCL	UCL	
Chloride	28.1	30	27	33	
Nitrate - N	22.1	22.5	20.2	24.8	
Nitrite - N	33.0	30.4	27.4	33.5	
Sulfate as SO4	150	149	134	164	

Associated Samples							
Lab Sample ID	Client Sample ID						
CAB33-001	15LCMW01SW						
CAB33-002	15LCMW01DW						
CAB33-003	MS/MSD						
CAB33-004	15LCMW02SW						
CAB33-005	15LCMW02DW						

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

٦

SAMPLE DATA PACKAGE

PBS ENGINEERING & ENVIRONMENTAL

SDG NO.: CAB34

JULY 24, 2007

940 S. Harney Seattle, WA 98108

To: PBS Engineering & Environmental Project Name: Camp Bonneville SDG No.: CAB34 Date of Report: July 24, 2007

SAMPLE RECEIPT, IDENTIFICATION, AND GENERAL COMMENTS:

Sample Receipt and Identification:

The samples submitted under the laboratory number(s) indicated above were identified and analyzed as tabulated below. The samples were collected and received on the dates noted on the enclosed chain-of-custody copies, Attachment A.

Client Sample <u>Identification</u>	Laucks Sample Identification	Testing Analytical Request
15LCMW03SW	CAB34-001	VOA/ABN/ORD/TPHG/TPHD/MET/ALK/ ANIONS/TOC/TSS/PERC
15LCMW03SW (Filt.)	CAB34-002	MET/DOC
15LCW415W	CAB34-003	VOA/ABN/ORD/TPHG/TPHD/MET/ALK/ ANIONS/TOC/TSS/PERC
15LCW415W (Filt.)	CAB34-004	MET/DOC
15LCMW03DW	CAB34-005	VOA/ABN/ORD/TPHG/TPHD/MET/ALK/ ANIONS/TOC/TSS/PERC
15LCMW03DW (Filt.)	CAB34-006	MET/DOC
15LCMW04DW	CAB34-007	VOA/ABN/ORD/TPHG/TPHD/MET/ALK/ ANIONS/TOC/TSS/PERC
15LCMW04DW (Filt.)	CAB34-008	MET/DOC
15LCMW04SW	CAB34-009	VOA/ABN/ORD/TPHG/TPHD/MET/ALK/ ANIONS/TOC/TSS/PERC
15LCMW04SW (Filt.) TRIP BLANK	CAB34-010 CAB34-011	MET/DOC VOA

Analytical Request Key:

Volatile Organics by Method 8260B
Semi-Volatiles by Method 8270D
Ordnance by Method 8330
PETN/Nitroglycerin by Method 8332
Picric Acid by Modified 8330
Total Petroleum Hydrocarbons-Diesel by NWTPH
Total Petroleum Hydrocarbons-Gasoline by NWTPH
Priority Pollutant Metals by Methods 6020/7470A
Alkalinity, Carbonate and Bicarbonate by Method 310.1M
Chloride, Nitrate, Nitrite, Sulfate by Method 300.0

940 S. Harney Seattle, WA 98108

TOC =	Total Organic Carbon by Method 415.1M*
DOC =	Dissolved Organic Carbon by Method 415.1M*
TSS =	Total Suspended Solids by Method 160.2
PERC =	Ammonium Perchlorate by Method 314.0

*TOC/DOC:

Singleton analysis was performed for this project as approved by the client. This modification is less expensive and meets project DQOs but does not meet NELAC guidelines.

Sample Receipt Comments:

There were no discrepancies noted upon receipt of the samples.

GENERAL REMARKS ON ORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON ORGANIC ANALYSIS."

Manual Integrations:

One or more analytes may have been manually integrated on the data system quantitation reports. All manual integrations have been flagged, initialed, and dated by the analyst. A list of the manual integration flags is detailed below.

- M Manual integration due to irregular peak shape
- MS Manual integration due to split peak
- MR Manual integration due to retention time shift
- MI Manual integration of correct isomer
- MT Manual integration due to peak tailing
- MB Manual integration due to irregular baseline

Holding Time Compliance:

Volatile Organic Compounds:

The holding time is 14 days calculated from date of collection in both soil and water samples. All samples were analyzed within holding time.

Semi-Volatile Organic Compounds:

The holding time to extraction is 7 days in water and 14 days in soil calculated from the date of collection. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

Ordnance, PETN/Nitroglycerin, Picric Acid

The holding time to extraction is 7 days in water and 14 days in soil calculated from date of collection. The holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

TPH Gasoline Fraction:

The holding time for analysis is 14 days in water and soil calculated from the date of collection. All samples were analyzed within holding times.

TPH Diesel Fraction:

The holding time to extraction, which is calculated from the date of collection, is 7 days for water samples and 14 days for soil samples. In either case, the holding time from extraction to analysis is 40 days. All samples were extracted and analyzed within holding time.

Volatile Fraction (8260):

All quality control parameters were met.

Semivolatiles Fraction:

Second Source Calibration Verification Analysis:

Analysis of the second source standard ICV071207-2 yielded %D values for 2,4-dinitrophenol, 4,6dinitro-2-methylphenol and benzidine that exceeded 25% due to decreased response. These analytes are slightly unstable. Because all other analyte recoveries were in control, no further action was taken.

Continuing Calibration Verification (CCV):

Analysis of the CCV performed on 07/17/07 yielded %D values for benzoic acid, 2,4-dinitrophenol and benzidine that exceeded 20% due to decreased response. However, because sample results are reported well below the reporting limit (RL) the chance of reporting any false negative for these compounds at the RL is negligible. In addition, this CCV also yielded a %D value for benzo(g,h,i)perylene that exceeded 20% due to increased response. Because this analyte was not detected in any of the associated samples, no further action was taken.

Ordnance Fraction:

All control parameters were met.

PETN/Nitroglycerin Fraction:

All quality control parameters were met.

Picric Acid Fraction:

All quality control parameters were met.

NWTPH Gasoline Fraction:

NWTPHG was used to quantitate the samples for gasoline. Gasoline range responses were determined by summing the responses of all components, resolved and unresolved, between toluene and naphthalene. Quantitation was based on the average calibration factor.

Quality Control Analyses:

MS/Duplicate analyses were performed on sample 15LCMW03SW. All spike recoveries and relative percent differences were within the established limits.

All quality control parameters were met.

NWTPH Diesel Fraction:

NWTPD-D was used to quantitate the samples for diesel and oil. Diesel range responses were determined by summing the responses of all components, resolved and unresolved, between C_{12} and C_{24} integrated to a horizontal baseline. Oil range responses were determined by summing the responses of all components, resolved and unresolved, between C_{24} and C_{40} integrated to a horizontal baseline. Quantitation was based on a linear regression.

Quality Control Analyses:

As a result of extraction batching, QC analyses were performed on a sample not in this SDG and no data are included here. All results can be found in the data package for CAB33. All recoveries were within the control limits in the blank spike analysis.

GENERAL REMARKS ON INORGANIC ANALYSES:

The following comments describe general analysis conditions. For remarks specific to the samples reported in this case, see "SPECIFIC REMARKS ON INORGANIC ANALYSES."

ICP-MS Metals:

On the first timed and dated page of each ICP-MS run, the data to be reported or rejected will be tabulated for that run.

Mercury:

Laucks purchases a 1000 mg/L Hg stock solution from Inorganic Ventures. The 0.5 mg/L working standard is made by diluting 100 uL to 200 mL with 0.15% HNO3. The calibration curve is made by placing 0, 20, 50, 100, 200, 500 and 1000 uL of the working standard digestion vessels and diluting up to 50 mL. The standard curve is equivalent to 0, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 ug/L.

SPECIFIC REMARKS ON INORGANIC ANALYSES:

Holding Time Compliance:

Laucks calculates holding time compliance for inorganic determinations using the date on which reportable data were acquired.

Metals:

The holding time for metals is six months from the date of collection, excepting mercury, which is 28 days. All analyses were performed within holding time.

Miscellaneous:

The following analytes do not have a Contract Laboratory Program holding time. The holding times tabulated below derive from the relevant EPA methods and are applicable when the sample was appropriately preserved and/or cooled. All samples submitted followed the preservation guidelines unless explicitly noted otherwise.

Analyte	Holding Time	<u>Violations</u>
Alkalinity	14 days	None
Chloride	28 days	None
Nitrate	48 hours	None
Nitrite	48 hours	None
Sulfate	28 days	None
Total Organic Carbon	28 days	None
Dissolved Organic Carbon	28 days	None
Total Suspended Solids	7 days	None
Perchlorate	28 days	None

ICP-MS Metals:

For the run sequence R019494, several CCVs exceeded the upper control limit for beryllium. All the samples contained concentrations of beryllium that were less than the CRDL. Quality control data for beryllium were reported and were within control limits. No corrective action was required. Data have not been flagged for these events.

For the run sequence R019494, CCV14 and CCV16 exceeded the upper control limit for lead. All the samples contained concentrations of lead that were less than the CRDL. Quality control data for lead were reported and were within control limits. No corrective action was required. Data have not been flagged for these events.

For the run sequence R019494, CCV16 exceeded the upper control limit for thallium. All the samples contained concentrations of thallium that were less than the CRDL. Quality control data for thallium were reported and were within control limits. No corrective action was required. Data have not been flagged for this event.

For the run sequence R019494, CCV5 exceeded the upper control limit for copper. No sample results for copper were associated with this CCV; therefore no corrective action was required. Data have not been flagged for this event.

<u>Mercury:</u>

For the run sequence R019215, CCV2 and CCV3 exceeded the upper control limit for mercury. All the samples contained concentrations of mercury that were less than the CRDL. Quality control data for mercury were reported and were within control limits. No corrective action was required. Data have not been flagged for these events.

Miscellaneous Inorganics:

No comments.

CAB34nar.doc

7

940 S. Harney

Seattle, WA 98108

ABBREVIATIONS

Several abbreviations can appear in our reports. The most commonly employed abbreviations are as follows:

- U The analyte of interest was not detected to the limit of detection indicated.
- SDL Sample Detection Limit. The SDL can vary from sample to sample, depending on sample size, matrix interferences, moisture content and other sample-specific conditions.
- PQL Practical Quantitation Limit. The limit is drawn from the test method and usually represents the SDL multiplied by a matrix-specific factor.
- DB Dry Basis. The value reported has been back-calculated to normalize for the moisture content of the sample.
- AR As-Received. The value has not been normalized for moisture.

ORGANIC ANALYSES:

- B When used in relation to organics fractions, the "B" flag indicates that the analyte of interest was detected in the method blank associated with the sample, as well as in the sample itself. The "B" flag is applied without regard to the relative concentrations detected in the blank and sample.
- J The analyte of interest was detected below the routine reporting limit. This value should be regarded as an estimate.
- T The flagged values represent the SUM of two co-eluting compounds. The SUM of these two values is shown as though it were a result for each of them. The two figures should not be added together.
- E The flagged value was reported from an analysis that exceeded the linear range of the instrument. See additional comments for further discussion of the circumstances. Values so flagged should be considered estimates.
- P When a dual column GC technique is employed, this flag indicates that test results from the two columns differ by more than 25%. Generally, we report the higher value.
- C The flagged analyte has been confirmed by GC/MS analysis. The value reported may be derived from either the initial of confirmatory (GC/MS) analysis. See specific report comments for details.
- Z When two or more sets of results are submitted, the Z-flagged data indicates that this is the secondary result.
- CRQL Client requested Quantitation Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Quantitation Limit.

8

INORGANIC ANALYSES:

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" shall be entered.
- E The reported value is estimated because of the presence of interference. The serial dilution was not within control limits.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.
- CRDL Client Requested Detection Limit, usually the limit of detection specified at your request. Might also be referred to as Contract Required Detection Limit.

RELEASE OF DATA

Laucks certifies that these results meet all requirements of the NELAC standards, except where otherwise noted.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Respectfully submitted,

Mike Bakter Project Manager

Harry Romberd Quality Assurance Officer

HOW TO CONTACT US:

All Laucks Testing Laboratories staff members can be reached at the same telephone and facsimile numbers: (206) 767-5060 by phone, (206) 767-5063 by FAX.

REQUESTS FOR DUPLICATE COPIES:

This packet has been checked for accuracy. All pages are present and in sequential order. Please see Attachment B for a detailed record.

In the event that duplicate data copies are needed, Laucks will accommodate your request at a fee of twenty-five cents (\$0.25) per copy, plus shipping. If the data are in storage, there will also be a fee for retrieval.

ATTACHMENT A

Chain-of-Custody Copies

Samples identified with a '* client has requested QC for	A:Analysis , X:Cancelled, PL:Pre-logged	I FGEND: - Started + Completed IN I oncert in D Dreparation	CAB34-011 6/23/2007 9:15 6/22/2007 0:00 TRIP BLANK	CAB34-010 6/23/2007 9:15 6/22/2007 16:15 15LCMW04SW (Filt.)	CAB34-009 6/23/2007 9:15 6/22/2007 16:15 15LCMW04SW A-	CAB34-008 6/23/2007 9:15 6/22/2007 15:00 15LCMW04DW (Filt.)	CAB34-007 6/23/2007 9:15 6/22/2007 15:00 15LCMW04DW A-	CAB34-006 6/23/2007 9:15 6/22/2007 10:45 15LCMW03DW (Filt.)	CAB34-005 6/23/2007 9:15 6/22/2007 10:45 15LCMW03DW A-	CAB34-004 6/23/2007 9:15 6/22/2007 9:00 15LCW415W (Filt.)	CAB34-003 6/23/2007 9:15 6/22/2007 9:00 15LCW415W A-	CAB34-002 6/23/2007 9:15 6/22/2007 12:55 15LCMW03SW (Filt.)	CAB34-001 6/23/2007 9:15 6/22/2007 12:55 15LCMW03SW A-	SAMPLE ID VTSR COLLECTED CLIENT ID SGITOS	SAMPLE CONFIRMATION LOG - CAB34
with a '*' clien	celled, PL:Pre	+ + · Complete	2007 9:15 6	2007 9:15 6/2	2007 9:15 6/2	2007 9:15 6/2	2007 9:15 6/2	2007 9:15 6/2	2007 9:15 6/2	2007 9:15 6	2007 9:15 6	2007 9:15 6/2	2007 9:15 6/2	VTSR	IPLE CONFIR
t has requeste	-logged	d IN-I named I	/22/2007 0:00	22/2007 16:15	22/2007 16:15	22/2007 15:00	22/2007 15:00	22/2007 10:45	22/2007 10:45	/22/2007 9:00	/22/2007 9:00	22/2007 12:55	22/2007 12:55	COLLECTED	MATION LOG
d QC for	,	n D Prenaration	TRIP BLANK	15LCMW04SW (Filt.)	15LCMW04SW	15LCMW04DW (Filt.)	15LCMW04DW	15LCMW03DW (Filt.)	15LCMW03DW	15LCW415W (Filt.)	15LCW415W	15LCMW03SW (Filt.)	15LCMW03SW	CLIENT ID	- CAB34
					Ą-		Ą-		Ą-		Ą-		Ą-	160.2 TOTAL SUSPENDED SOLIDS	
					A+		A+		A+		A+		A+	300'0 NO3' NO5' CF' 80¢	
					ÏZ		N		N		Z		N	310.118 (1997) 8742 Mf.015 ALKALINITY	
					Z		Z		N		Z		N	314.0 PERCHLORATE	
				N		N		Z		N		Z		ORGENIC DISSOLVED ORGENIC ORGENIC	
			_		N		N		Z		Z		N	ОПАРУО ТАТОТ 1.814 ОГАРОЧ 1.814 ИОВЯАО	
				Z		N		N		N		N			
					Z		z		N		N		N	ҮТІЯОІЯЧ ЈАТОТ 0203 21АТЭМ ТИАТUЛОЧ	
		_		Z		Z		Z		z		Z		7470 DISS. MERCURY	
		-			Z		Z		Z		N		N	7470 TOTAL MERCURY	
		_	Z		Z		Z		Z		Z		N	8260B VOCS (LTL ROUTINE)	
					0		ŗ		,		Ÿ		ŗ	אסכא (בדר פטעדואב) 8270C (בדר פטעדואב) (אסט אסט אין אפן)	
		_	_		ס		γ		ק		ק		ק	8330 EXPLOSIVES RESIDUES	
			_		<u>م</u>		ק		q		q		'n	8332 NITROGLYCERIN & PETN	
					'o		प		9		<u>ק</u>		<u>,</u>	LTL8303 PICRIC ACID	
Ц		1			ק		믿		-D		-T0		7	NWTPH DIESEL	
					Z		Z		Z		Ź		Ż	SAÐ H9TWN	

Finance Charges and/or Collection Frees may be applied to delinque	Vin Michael / Mike Gout	3 CHECK OFF TESTS TO BE PERFORMED ATTN: FOR EACH SAMPLE: RELINQUISHED BY (SIGN AND PRINT)	1. USE ONE LINE PER SAMPLE. NAME	A. A standard turnaround time is assumed unless otherwis		The second	TRIP OLANY	10 Wall ISLEM W BOYSW 402	13-1154CMW 475W 62	The ISUCMWOS OW the	TELEPHONE $503 - 417 - 7693 = 7.503 - 3.$ JOB/PO. NO.: 70489 , $505 - 7.6206$	PROJECT NAME: CAMP BOMACY INC	ADDRESS: 4412 JW WY BUX	THIS INFORMATION WILL BE USED FOR REPORTING/BILLING
accounts.	R R			marked.				1015	9 D:55	7-10-45				SEE BELOW
EINAI DEDADT CARV	612167	CITY, STATE, ZIP	ADDRESS	B. The laboratory may not be responsible for missed holding time f incomparison of the second sec			2 - 2 			A A A A A A A A	MATRIX: MATER SOIL	OR SPECIFY		CHAIN OF CUSTODY RECORD
		LABORATOR BY (SIGN AND PRINT)	* RUSH TURN SUBJECT	or samples received with less than 50% of the analytical						<u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u>		A A A A		PAGE OF
	* 5 DAYS (50% SUR)	Y APPROVAL * 24-48 HRS (100% SUR)	TO PRIOR	hold time remaining. Please contact the laboratory for further information.					XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	COJE AN NO	OBSERVATIONS COMMENTS, SPECIAL INSTRUCTIONS		40 South Harney St, Seattle, WA 98108 (206) 767-5060 FAX 77-5063 106 Ledwich Ave., Yakima, WA 98902 (309) 248-4695 FAX 452-1265 RFOEM	Laucks Testing Laboratories, Inc. 3

rarges and/or Collection Fees may be applied to delinquent accoun

FINAL REPORT COPY

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB34		Taken By:	CLIENT	
Cooler:	AAD392		Transferred:	FED EX	
COC #:	43119				
Project:	Camp Bonneville (PBS Engineering	g and Envi	ironmental)		
Date sampl	es were received at the laboratory:	6/23/2007			
Date cooler	was opened:	6/23/2007	9:15AM		
A. PREL	IMINARY EXAMINATION PHAS	<u>E:</u>			
1. Did coole if YES,	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 86	20 5652 17	81		YES
2. Were cu	stody seals unbroken and intact at the date a	nd time of a	arrival?		INTACT
Date On	Custody Seal: C	ustody Seals	s Description: O	NE IN FRONT.	
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to t	the lid?	·	YES
4. Did you	screen samples for radioactivity using the C	leiger Coun	ter?		NO
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?			YES
6. Did you	sign custody papers in the appropriate place	?			YES
7. If require	ed, was enough cooling material present?			•••••••••••••••••••••••••••••••••••••••	YES
8. Have des	signated person initial here to acknowledge	receipt of co	ooler: AU		
B. <u>LOG-I</u>	N PHASE: Date s	amples were	e logged-in:	6/23/2007 9:25AM	
Logged-in b	y <u>Zoriah Weith</u> (sign)		<u> </u>		
9. Describe	type of packing in cooler:				
10. Were al	l bottles sealed in separate plastic bags?				YES

11.Were labels in good condition?YES12.Were all bottle labels complete (ID,date,time signature,preservative,etc.)?YES13.Did all bottle labels agree with custody papers?YES14.Were correct containers used for the tests indicated?YES15.Were the correct pHs observed?YES16.Was a sufficient amount of sample sent for tests indicated?YES17.Were bubbles absent in VOA samples?YES18.Temperatures:2.1

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB34

Cooler: AAD392

Temperatures: 2.1

COC #: 43119

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB34-001	0019	40 ml OTWS, clear glass, HCl	N/C	None
	0020	40 ml OTWS, clear glass, HCl	N/C	None
	0021	40 ml OTWS, clear glass, HCl	N/C	None
CAB34-003	0019	40 ml OTWS, clear glass, HCl	N/C	None
	0020	40 ml OTWS, clear glass, HCl	N/C	None
	0021	40 ml OTWS, clear glass, HCl	N/C	None
CAB34-005	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL cylinder, poly	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
······································	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0013	40 ml OTWS, clear glass, HCl	N/C	None
	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	500 ml boston round, clear glass, HCl	<2	N/A
	0017	500 ml boston round, clear glass, HCl	<2	N/A
	0018	500 ml cylinder, poly	7	N/A
	0019	40 ml OTWS, clear glass, HCl	N/C	None
····	0020	40 ml OTWS, clear glass, HCl	N/C	None
	0021	40 ml OTWS, clear glass, HCl	N/C	None
CAB34-006	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A
CAB34-007	0001	40 ml OTWS, clear glass, HCl	N/C	None

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pHpH must be less than 2Base Preserved pHpH must be greater than 12NCNot Checked for pH
Finance Charges and/or Collection Fees may be applied to delinquent accounts.	A. A standard turnaround time is assumed unless otherwise marked. B.I. INSTRUCTIONS INSTRUCTIONS I. USE ONE LINE PER SAMPLE. NAME 2. BE SPECIFIC IN TEST REQUESTS. NAME 3. CHECK OFF TESTS TO BE PERFORMED ATTN: FOR EACH SAMPLE. ATTN:		TELEPHONE: SUSTITE FW: W: U JOB/PO.NO: JOU 89.000 TG 06 MARK SAMPLE ID / LOCATION DATE TGL C M W 0305 Gaptor 19:55 JOU 151 C M W 0305 Gaptor 19:55	THIS INFORMATION WILL BE USED FOR REPORTING/BILLING (SEE BELOW) COMPANY: PS Flighworks ADDRESS: 44/2 SW Workert ATTENTION: 44/2 SW Workert PROJECT NAME: WWW Harvey PROJECT CONTACT: Drew Harvey
HATE AND REPORT COPY	The laboratory may not be responsible for missed holding time for samples received with In INFORMATION, IF DIFFERENT THAN ABOVE ADDRESS CITY, STATE, ZIP DATE		MATRIX: MATER,	CHAIN OF CUSTODY RECORD SDG #
* 72 HPS: (75% SUP) * 5 DAYS (60% SUP) OTHER TEMP CUSTODY SEAL: Y N NA	A RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND IS * RUSH TURNAROUND FEQUEST SUBJECT TO PRIOR LABORATORY APPROVAL * 24-48 HRS. (100% SUR)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A A A A A A A A A A A A A A A A A	Internet int

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB34		Taken By:	CLIENT	
Cooler:	AAK677		Transferred:	FED EX	
COC #:	43118				
Project:	Camp Bonneville (PBS Engineering	g and Envi	ronmental)		
Date sample	es were received at the laboratory:	6/23/2007			
Date cooler	was opened:	6/23/2007	9:15AM		
 A. <u>PREL</u> 1. Did coole if YES, 2. Were cut 	IMINARY EXAMINATION PHAS er come with a shipping slip (airbill, etc.)? record carrier name and airbill number: 86 stody seals unbroken and intact at the date a	E:	81 arrival?		YES INTACT
Date On	Custody Seal: C	ustody Seals	s Description: O	NE IN FRONT.	
 Were cu: Did you Were cu: Did you If require Have des B. LOG-I Logged-in b Describe 	stody papers sealed in a plastic bag and tape screen samples for radioactivity using the C stody papers filled out properly (ink, signed sign custody papers in the appropriate place ed, was enough cooling material present? signated person initial bere to acknowledge N PHASE: Date s by Zoriah Weith (sign)	ed inside to 1 Feiger Count , etc.)? ? receipt of co amples were	the lid? ter? coler: e logged-in:	<u>6/23/2007—9</u> :25AM	YES NO YES YES YES
 10. Were a 11. Were la 12. Were a 	Il bottles sealed in separate plastic bags? abels in good condition? Il bottle labels complete (ID,date,time signa	.ture,preserv	rative,etc.)?		YES YES YES

 12. Were all bottle labels complete (ID,date,time signature,preservative,etc.)?
 YES

 13. Did all bottle labels agree with custody papers?
 YES

 14. Were correct containers used for the tests indicated?
 YES

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 YES

 18. Temperatures:
 3.0

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB34 Cooler: AAK677 Temperatures: 3.0 COC #: 43118

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB34-001	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	7	N/A	
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL cylinder, poly	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0013	40 ml OTWS, clear glass, HCl	N/C	None
······································	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	500 ml boston round, clear glass, HCl	<2	N/A
	0017	500 ml boston round, clear glass, HCl	<2	N/A
	0018	500 ml cylinder, poly	7	N/A
CAB34-002	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH g Base Preserved pH g NC h

pH must be less than 2 pH must be greater than 12 Not Checked for pH

Finance Charges and or Collection Fees may be applied to delinquent acco	Pallitication	Muly JUL / MKE GOURD	1. DSE ONE DNE PER SAMPLE: 2. BE SPECIFIC IN TEST REQUESTS: 3. CHECK OFF TESTS TO BE PERFORMED FOR EACH SAMPLE PELINQUISHED BY (SIGN AND PRINT)	A. A standard turnaround time is assumed unless otherwise mar.				WISCIMU TION	ABSAM SAMPLE ID / LOCATION DATE	PROJECT NAME: LOMMA BOMALVITIE PROJECT CONTACT. DREW HANVEY TELEPHONE: 503-477-7693 FAX: 503-248-06 JOB/PO. NO.: JOHNEY ODD TGDOG	ADDRESS: 4412 SW Corbett ATTENTION: Drw Hand OK 97239	THIS INFORMATION WILL BE USED FOR REPORTING BILLING. (SEE
ounts. Final REPORT COPY	12130 DKE19	- 17107 1745	CITY, STATE, ZIP	Red. B. The laboratory may not be responsible for missed holding to BILLING INFORMATION, IF DIFFERENT THAN ABOVE ADDRESS						ATTIN: WATER, SOIL OR SUPEC		CHAIN OF CUSTODY RECORD 43120
			ED BY (SIGN AND PRINT)	me for samples received with less train 50% of the analytical float time remain * RUSH TURNAROUN				() 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		CARLENCE SALAN	SUBMITTED AT: Closed South Harm	SDG # CABBY
		* 5 DAYS (50% SUR)	TURNAROUND REQUEST	$\frac{10}{10} \frac{1}{10} $				ANTELED	B/ INSTRUCTIONS	OUSERVATIONS, SPECIAL	Ry Lauvoi auvi KS, Airc. 1 ny St. Seatle, WA 98108 (206) 707-3060 FAX 767-5063 twe. Yakima WA 98902 (309) 248-4695 FAX 452-1265	9

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB34		Taken By:	CLIENT	
Cooler:	AAD418		Transferred:	FED EX	
COC #:	43120				
Project:	Camp Bonneville (PBS Engineering	g and Envi	ronmental)		
Date sampl	es were received at the laboratory:	6/23/2007			
Date cooler	was opened:	6/23/2007	9:15AM		
A. <u>PREL</u>	IMINARY EXAMINATION PHAS	E:			
1. Did cool if YES	er come with a shipping slip (airbill, etc.)? , record carrier name and airbill number: 80	520 5652 17	81		YES
2. Were cu	stody seals unbroken and intact at the date a	ind time of a	arrival?		INTACT
Date On	Custody Seal: C	ustody Seals	s Description: O	NE IN FRONT.	
3. Were cu	stody papers sealed in a plastic bag and tape	d inside to t	the lid?		YES
4. Did you	screen samples for radioactivity using the C	Geiger Coun	ter?		NO
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?			YES
6. Did you	sign custody papers in the appropriate place	?			YES
7. If require	ed, was enough cooling material present?	••••••			YES
8. Have des	signated person initial here to acknowledge	receipt of co	ooler:		
B. <u>LOG-I</u>	N PHASE: Date s	amples were	Jogged-in:	6/23/2007 9:25AM	
Logged-in t	pyZoriah Weith(sign)	and the second s	and the second s	and the second state of the second state and the second state and the second state and the second state and the	
9. Describe	type of packing in cooler:	an en	Construction of the second second second second second second second second second second second second second		
10. Were al	Il bottles sealed in separate plastic bags?		•••••••••••••••••••••••••••••••••••••••		YES
11. Were la	ibels in good condition?				YES

11. Were labels in good condition?YES12. Were all bottle labels complete (ID,date,time signature,preservative,etc.)?YES13. Did all bottle labels agree with custody papers?YES14. Were correct containers used for the tests indicated?YES15. Were the correct pHs observed?YES16. Was a sufficient amount of sample sent for tests indicated?YES17. Were bubbles absent in VOA samples?YES18. Temperatures:2.3

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB34

Cooler: AAD418

Temperatures: 2.3

COC #: 43120

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB34-003	0001	1000 mL boston round, amber glass	7	N/A
	0002	1000 mL boston round, amber glass	7	N/A
	0003	1000 mL boston round, amber glass	7	N/A
	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL cylinder, poly	7	N/A
	0010	1000 mL cylinder, poly, HNO3	<2	N/A
	0011	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0012	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0013	40 ml OTWS, clear glass, HCl	N/C	None
	0014	40 ml OTWS, clear glass, HCl	N/C	None
	0015	40 ml OTWS, clear glass, HCl	N/C	None
	0016	500 ml boston round, clear glass, HCl	<2	N/A
	0017	500 ml boston round, clear glass, HCl	<2	N/A
	0018	500 ml cylinder, poly	7	N/A
CAB34-004	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pHpH must be less than 2Base Preserved pHpH must be greater than 12NCNot Checked for pH

FORM LTL-PM-16.0

•••	2	ş
12	-	10
٠	3	g.
8	•••	~
è		es,
2		Ĩ
er.	ĩ	1
ľ	2	ì
"1	Ľ	20
2	<u></u>)
دد. اور	Ċ,	į.
~~	• •	-Yey-i-
Č,	ين ب	ĥ
ť,	1	ķ
1	Ç	ģ
<i></i>	ſ,	•

Finance Charges and/or Collection Fees may be applied to delinquent accounts.

	5	3. CHE FOR	N R S	- 101	A.As						28	THIS IN COMPA ADDRE ATTENT PROJEC PROJEC PROJEC PROJEC TELEPP JOB/PC
	X	EACH S	PEOIFIC	UNE I IA	tandard						5	FORMA NY: SS: SS: NON: DI NONE: D. NO.:
	J.	AMPLE TESTS T	IN 1E51		turnar						NUN	
VV	\bigcap	O BE PE	REQUE	a rown	ound ti						N.S.	MPLE
Ŵ		RFORM	STS.	ÿ	me is a						240	BID SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN
		See B			ssume				- MCLAR (1927 - 17-11)		~	ATION
\$	MIK	5	1	NAN	d unles						a a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a f	TAX CITY R
Dial I	<i>Ri</i>	, the second sec		TÊ .	is other							625 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10
E.	604				rwise n						0/20/0	DATE
Cp T	でと				narked.						215	
	1			N RE I S							8	
020	1945	DAN		IOENNE	3. The lab							MATRIX.
NX	t j			AMANIO A	oratory ma						2	WATER, SOIL OF ORDER
		אוין, טוא	YTTY STA	DDRESS	iy nơi bê r						3	NO OF COM
		Ľ, Ľ			esponsibl						8	PECS HONGAS
					e for miss						6	PERSON ON
		RECE		UABOV	êd helding						X	S C R
				m	time for s		_	_			X	Pice TE
and the second distance of the second distanc	State of the state				samples p			(]_			\sim	TSARAD BO
	:	AND P			eceived w			Y	스킬		X	TOTAL SU PAGE #
					rith less th						$\overline{\bigcirc}$	* Dis METHS MIT
		LABO	ş	Ř	ian 50% c						X	AWTO AND S TO B
		PAT	۳ ۳	Ŷ	t the anal						X	NUT DA DA TO
		ABC	CT TO	JRNA	ytical hold						N N	
		Enddy Haddy	PR	R C C	time rem							The south Har
			O R	B	aining. Pi							Avec, Yal
i i i i i i i i i i i i i i i i i i i				[]	ease cont							abor wa
TENP		24-48 72 HR	ANAL A	101	act the fai						¥.	A Status C
SEAL	بر %0% S	HRS (1	DUND F	й No	boratory fi					5)	The second	
	SU3	00% SI	TEQUES	05-00	or further					Here	0	
N		ה נ		WIME	informativ					R		TANK AND AND AND AND AND AND AND AND AND AND
X					GR,							-12663

· · · · · · · · · · · · ·

6.....

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB34		Taken By:	CLIENT	
Cooler:	AAD587		Transferred:	FED EX	
COC #:	43116				
Project:	Camp Bonneville (PBS Engineerin	ng and Envi	ronmental)		
Date samp	les were received at the laboratory:	6/23/2007			
Date coole	r was opened:	6/23/2007	9:15AM		
A. <u>PREL</u>	IMINARY EXAMINATION PHA	<u>SE:</u>			
1. Did coo	er come with a shipping slip (airbill, etc.)?				YES
if YES	, record carrier name and airbill number: 4	8620 5652 17	81		
2. Were cu	istody seals unbroken and intact at the date	and time of a	urrival?		INTACT
Date On	Custody Seal:	Custody Seals	Description: O	NE IN FRONT.	
3. Were ci	stody papers sealed in a plastic bag and ta	oed inside to t	he lid?		VES
4. Did you	screen samples for radioactivity using the	Geiger Count	ter?		NO
5. Were cu	istody papers filled out properly (ink, signe	ed, etc.)?			YES
6. Did you	sign custody papers in the appropriate pla	ce?			YES
7. If requir	ed, was enough cooling material present?				YES
8. Have de	signated person initial here to acknowledg	e receipt of co	ooler: ZU	/	
B. <u>LOG-</u>	IN PHASE: Date	samples were	logged	6/23/2007_9:25AM	
Logged-in	by <u>Zoriah Weith</u> (sign)_	Sandar and a state of the state	All Contraction of Contractions		
9. Describ	e type of packing in cooler:			The second second second second second second second second second second second second second second second s	
10. Were a	Il bottles sealed in separate plastic bags?				YES
11. Were I	abels in good condition?				YES
12. Were a	Il bottle labels complete (ID,date,time sign	ature,preserva	ative,etc.)?		YES
13. Did all	bottle labels agree with custody papers?				YES
14. Were d	correct containers used for the tests indicate	d?			VEC

 14. Were correct containers used for the tests indicated?
 YES

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 YES

 18. Temperatures:
 2.7

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB34 Cooler: AAD587 Temperatures: 2.7

COC #: 43116

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB34-007	0004	1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL boston round, amber glass	7	N/A
	0011	1000 mL boston round, amber glass	7	N/A
	0012	1000 mL cylinder, poly	7	N/A
	0013	1000 mL cylinder, poły, HNO3	<2	N/A
	0014	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0015	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0016	40 ml OTWS, clear glass, HCl	N/C	None
	0017	40 ml OTWS, clear glass, HCl	N/C	None
	0018	40 ml OTWS, clear glass, HCl	N/C	None
	0019	500 ml boston round, clear glass, HCl	<2	N/A
	0020	500 ml boston round, clear glass, HCl	<2	N/A
	0021	500 ml cylinder, poly	7	N/A
CAB34-008	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A.
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pHpH must be less than 2Base Preserved pHpH must be greater than 12NCNot Checked for pH

Finance Churges		No.	FOR EACH S	2. BE SPECIFIC 3. CHECK OFF	1. USE ONE LI	A. A standard				910 15	LAB SAT	PROJECT CON PROJECT CON TELEPHONE: JOB/P.O. NO.:	ATTENTION:	COMPANY: ADDRESS:	THIS INFORMA
and of Collection Fees that the sp			AMPLE. RELINQUISHED BY (SIGN A	TESTS TO BE PERFORMED	NEPER SAMPLE	d turnaround time is assumed u		Sanoo waraa aada		LC M WOYS	SAMPLE ID / LOCATION	= <u>Sump</u> Bonny not <u>Diew Harts</u> <u>303-417-7693</u> 70487.000 T	Partiend DK	MUR SW (m)	TION WILL BE USED FOR REPOR
olied to deli	No.	66	(UNIBA DIV	ATTN:	NAME	inless othe						Factor And	ALA NIV		NG/BITIN
nquent acco	E E	NOC V				irwise mar				Stader 1	DATE	3-248		5	G SEE
ounts.					Altralia &	ked,				ි: ර	TIME	660-			BELOW
	08219 1 20	ISH O PILO	DATE		ICHINISOEN	B, The labora				3	MATR	TIX: WAY		WORK O	CHAI
in tra	AN			CITY, ST	ADDRES	tory may not be					, t	NO. OF C	242	記 の が の で う	OFC
a ta ta ta ta ta ta ta ta ta ta ta ta ta				ATE, ZIP	SS SS	e responsible fr				Z	N R	* PLONTAINERS		2 کے ج	STODY
1000 C			BEC		IIHAN ABO	or missed holdi								-98	RECO
	****		EWED BY(VE	ng time for san			-						B
	and the second second second second second second second second second second second second second second second	the second second	SIGN AND I			iples received					(J) (C)			PAGE	Ŭ 6 #
			1987 1987 1997		*	with less than				<u>لا</u> ح	*Q				
			ABORAL	SUBJE	RUSH T	50% of the and				X	No. Contraction of the second	SP Aux			an
					URNAR	ilytical hold tir					A V	Dee Ex			
			DATE	ROIN		ve remaining. F					P V		IM awarawe		D
	Clark C				s 	lease contact							akura, iya si		\$
	MP DY SEAL:	DAYS (50%) THER	1-48 HRS. (1 2 HRS. (75%	TD. 10-14 W	IOIAT NO	the laboratory f				× ×	INIS MOO	OBBS	(400) - 70K		Š.
		SUR	100% SUR) (SUR)	VORKING D	OF CONT	for further info				RE	RUCTIONS SPE	ERWATIONS	FALL COOL-662	, HC	74
	□ \$			NAS	INERS	mation.				Ø	JIAL		6971-76 1 V	25	

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB34	r	Taken By:	CLIENT	
Cooler:	AAD588	Ţ	Fransferred:	FED EX	
COC #:	43117				
Project:	Camp Bonneville (PBS Engineering	g and Envir	onmental)		
Date sample	es were received at the laboratory:	6/23/2007			
Date cooler	was opened:	6/23/2007	9:15AM		
A. PREL	MINARY EXAMINATION PHAS	<u>E:</u>			
1. Did coole if YES,	er come with a shipping slip (airbill, etc.)? record carrier name and airbill number: 86	620 5652 178	1		YES
2. Were cu	stody seals unbroken and intact at the date a	nd time of ar	rival?		INTACT
Date On	Custody Seal: C	ustody Seals	Description: Ol	N EIN FRONT.	
3. Were cu	stody papers sealed in a plastic bag and tape	ed inside to th	ne lid?		YES
4. Did you	screen samples for radioactivity using the C	eiger Counte	er?		NO
5. Were cu	stody papers filled out properly (ink, signed	, etc.)?			YES
6. Did you	sign custody papers in the appropriate place	?			YES
7. If require	ed, was enough cooling material present?				YES
8. Have des	signated person initial here to acknowledge	receipt of coo	oler:		
B. <u>LOG-I</u>	<u>N PHASE:</u> Date s	amples were	logged-in:	6/23/2007 9:25AM	
Logged-in b	yZoriah Weith(sign)				
9. Describe	type of packing in cooler:				
10. were al	halo in coord condition?				YES
12 Ware a	li bottle labele complete (ID data time sizes)		timo oto \0		YES
12. were a	hottle labels complete (1D, date, time signa	ure,preserva	uve,etc.)/		YES

 13. Did all bottle labels agree with custody papers?
 YES

 14. Were correct containers used for the tests indicated?
 YES

 15. Were the correct pHs observed?
 YES

 16. Was a sufficient amount of sample sent for tests indicated?
 YES

 17. Were bubbles absent in VOA samples?
 YES

 18. Temperatures:
 2.8

DISCREPANCIES:

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB34 Cooler: AAD588 Temperatures: 2.8

COC #: 43117

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB34-009 0004 10		1000 mL boston round, amber glass	7	N/A
	0005	1000 mL boston round, amber glass	7	N/A
	0006	1000 mL boston round, amber glass	7	N/A
	0007	1000 mL boston round, amber glass	7	N/A
	0008	1000 mL boston round, amber glass	7	N/A
	. 0009	1000 mL boston round, amber glass	7	N/A
	0010	1000 mL boston round, amber glass	7	N/A
	0011	1000 mL boston round, amber glass	7	N/A
	0012	1000 mL cylinder, poly	7	N/A
	0013	1000 mL cylinder, poly, HNO3	<2	N/A
	0014	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0015	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0016	40 ml OTWS, clear glass, HCl	N/C	None
	0017	40 ml OTWS, clear glass, HCl	N/C	None
	0018	40 ml OTWS, clear glass, HCl	N/C	None
	0019	500 ml boston round, clear glass, HCl	<2	N/A
	0020	500 ml boston round, clear glass, HCl	<2	N/A
	0021	500 ml cylinder, poly	7	N/A
CAB34-010	0001	1000 mL cylinder, poly, HNO3 Filtered	<2	N/A
	0002	40 ml OTWS, clear glass, H3PO4	N/C	N/A
	0003	40 ml OTWS, clear glass, H3PO4	N/C	N/A

Allowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)

Temperature

Allowable temperature range is 4+/- 2 degrees Celsius

Acid Preserved pH Base Preserved pH NC pH must be less than 2 pH must be greater than 12 Not Checked for pH

LAUCKS TESTING LABORATORIES 940 S. Harney Seattle, WA 98108

ATTACHMENT B

Index

LAUCKS TESTING LABORATORIES

940 S. Harney Seattle, WA 98108

PBS Engineering & Environmental

SDG No.: CAB34

- I. Narrative: 2-10
- II. Chain-of-Custody: 11-27
- III. Index: 28-29
- IV. Forms Summary: SUM- 1-280

Completed and checked by: Judy Echlund Date: ______

FORMS SUMMARY

SDG CAB34

VOLATILES ANALYSIS

2

2

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

SDG No.: CAB34

Run Sequence: <u>R019108</u>

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	tot out
(CAB34-005) 15LCMW03DW	101	107	106	108	0
(CAB34-003) 15LCW415W	102	108	106	108	0
(CAB34-001) 15LCMW03SW	103	108	104	107	0
(CAB34-011) TRIP BLANK	102	108	104	106	0
(B062807MVOWB1) B062807MVOWB1	100	106	107	108	0
(S062807MVOWB1) S062807MVOWB1	102	106	107	106	0

QC	L	Ι	Μ	Ι	Τ	S	
ΨC		-	1.1	4	+	υ.	

SMC1	(DBF) =	Dibromofluoromethane	85-115
SMC2	(DCA) =	1,2-Dichloroethane-d4	70-120
SMC3	(TOL) =	Toluene-d8	85-120
SMC4	(BFB) =	4-Bromofluorobenzene	75-120

Column to be used to flag recovery values
* Values outside of contract required QC limits

2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

Run Sequence: <u>R019141</u>

SDG No.: CAB34

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	SMC1 (DBF) #	SMC2 (DCA) #	SMC3 (TOL) #	SMC4 (BFB) #	TOT OUT
(CAB34-009) 15LCMW04SW	102	109	107	108	0
(CAB34-007) 15LCMW04DW	104	109	106	108	0
(B062907MVOWB1) B062907MVOWB1	103	109	105	106	0
(S062907MVOWB1) S062907MVOWB1	104	107	106	107	0

SMCl	(DBF)	===	Dibromofluoromethane	85-115
SMC2	(DCA)	=	1,2-Dichloroethane-d4	70-120
SMC3	(TOL)	=	Toluene-d8	85-120
SMC4	(BFB)	=	4-Bromofluorobenzene	75-120

Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS

3B

WATER VOLATILE BLANK SPIKE RECOVERY

Lab Na	ame: <u>Laucks</u>	Testing Labs	Contract: <u>N/A</u>
BS Ru	n Sequence:	R019108	SDG No.: <u>CAB34</u>

BS Lab Sample ID: S062807MVOWB1

Level: <u>N/A</u> Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50,0	26.82	54	30-155
Chloromethane	50.0	34.46	69	40-125
Vinyl chloride	50.0	36	72	50-145
Bromomethane	50.0	35.79	72	30-145
Chloroethane	50.0	34,79	70	60-135
Trichlorofluoromethane	50.0	40.01	80	60-145
1,1-Dichloroethene	50.0	56.45	113	70-130
Acetone	50.0	43.56	87	40-140
Carbon disulfide	50.0	49.03	98	35-160
Methylene chloride	50,0	50.81	102	55-140
trans-1,2-Dichloroethene	50.0	53,26	107	60-140
1,1-Dichloroethane	50.0	54.17	108	70-135
cis-1,2-Dichloroethene	50.0	51.49	103	70-125
2-Butanone	50.0	47.84	96	30-150
Chloroform	50.0	51.8	104	65-135
1.1.1-Trichloroethane	50.0	52.88	106	65-130
Carbon tetrachloride	50.0	51.37	103	65-140
Benzene	50.0	50.67	101	80-120
1,2-Dichloroethane	50,0	52.85	106	70+130
Trichloroethene	50.0	50,55	101	70-125
1,2-Dichloropropane	50.0	50.54	101	75-125
Bromodichloromethane	50.0	50.7	101	75-120
cis-1,3-Dichloropropene	50.0	58.1	116	70-130
4-Methyl-2-pentanone	50.0	48.23	96	60-135
Toluene	50.0	51.48	103	75-120
trans-1,3-Dichloropropene	50.0	45.97	92	55-140
1,1,2-Trichloroethane	50,0	48.61	97	75-125
Tetrachloroethene	50.0	50.11	100	45-150
2-Hexanone	50.0	53.02	106	55-130
Dibromochloromethane	50.0	49.35	99	60-135
Chlorobenzene	50.0	51.12	102	80-120
Ethylbenzene	50.0	51.12	102	75-125
m,p-Xylene	100	102.53	103	75-130
o-Xvlene	50.0	50.19	100	80-120

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: R019108	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S062807MVOWB1</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Styrene	50.0	48.75	98	65-135
Bromoform	50.0	42.36	85	70-130
1,1,2,2-Tetrachloroethane	50.0	50.65	101	65-130

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs Contract: N/A

BS Run Sequence: <u>R019141</u> SDG No.: <u>CAB34</u>

BS Lab Sample ID: <u>S062907MVOWB1</u>

Level: <u>N/A</u> Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
Dichlorodifluoromethane	50.0	30.06	60	30-155
Chloromethane	50.0	42.02	84	40-125
Vinyl chloride	50.0	43.76	88	50-145
Bromomethane	50.0	40.51	81	30-145
Chloroethane	50.0	46.41	93	60-135
Trichlorofluoromethane	50.0	45.16	90	60-145
1,1-Dichloroethene	50.0	50.95	102	70-130
Acetone	50.0	53.29	107	40-140
Carbon disulfide	50.0	32.32	65	35-160
Methylene chloride	50.0	47.33	95	55-140
trans-1,2-Dichloroethene	50.0	48.64	97	60-140
1,1-Dichloroethane	50.0	51.08	102	70-135
cis-1,2-Dichloroethene	50.0	48	96	70-125
2-Butanone	50.0	56.52	113	30-150
Chloroform	50.0	48.76	98	65-135
1,1,1-Trichloroethane	50.0	49.37	99	65-130
Carbon tetrachloride	50.0	47.59	95	65-140
Benzene	50.0	46.61	93	80-120
1,2-Dichloroethane	50.0	51.07	102	70-130
Trichloroethene	50.0	47.09	94	70-125
1,2-Dichloropropane	50.0	47.45	95	75-125
Bromodichloromethane	50.0	48.49	97	75-120
cis-1,3-Dichloropropene	50.0	54.79	110	70-130
4-Methyl-2-pentanone	50.0	52.42	105	60-135
Toluene	50.0	47.62	95	75-120
trans-1,3-Dichloropropene	50.0	43.69	87	55-140
1,1,2-Trichloroethane	50.0	46.44	93	75-125
Tetrachloroethene	50.0	46.31	93	45-150
2-Hexanone	50.0	57.3	115	55-130
Dibromochloromethane	50.0	49.39	99	60-135
Chlorobenzene	50.0	47.51	95	80-120
Ethylbenzene	50,0	47.16	94	75-125
m,p-Xylene	100	94.43	94	75-130
o-Xylene	50.0	45.95	92	80-120

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

3B WATER VOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: R019141	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S062907MVOWB1</u>	
Level: N/A	Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
Styrene	50.0	45.25	91	65-135
Bromoform	50.0	42.82	86	70-130
1,1,2,2-Tetrachloroethane	50.0	48.36	97	65-130

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: 0 out of 37 outside limits

4 VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

VOLATILE MET	BO62807MVOWB1	
Lab Name Laucks Testing Labs	Contract:	
	SDG No.: _CAB34	
Lab File ID: <u>B0628011.D</u>	Lab Sample ID: <u>B062807MVOWB1</u>	
Date Analyzed: 06/28/2007		
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm) Heated Purge: (Y/N) <u>N</u>	
Instrument ID: <u>5973B</u>	Matrix: Water	

	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
01	S062807MVOWB1	S062807MVOWB1	B0628008.D	06/28/2007	12:25	R019108
02	TRIP BLANK	CAB34-011	B0628014.D	06/28/2007	14:58	R019108
03	15LCMW03SW	CAB34-001	B0628029.D	06/28/2007	21:32	R019108
04	15LCW415W	CAB34-003	B0628030.D	06/28/2007	21:58	R019108
05	15LCMW03DW	CAB34-005	B0628031.D	06/28/2007	22:24	R019108
06						
07						
08						
09						
10	······································					
11						
12						
13		· · · · · · · · · · · · · · · · · · ·				
14						
15		······································				
16		· · · · · · · · · · · · · · · · · · ·			1	
17						
18						
19		· · · · · · · · · · · · · · · · · · ·				
20						
21						
22						
22						
24						
25						
25						
20						
27 20	· · · · · · · · · · · · · · · · · · ·					
∠∂ ഗര						
29		1				
211	1	1	1	1	1	

4 VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

VOIRTING WEINOD	BO62907MVOWB1
Lab Name Laucks Testing Labs	Contract:
	SDG No.: CAB34
Lab File ID: <u>B0629008.D</u>	Lab Sample ID: <u>B062907MVOWB1</u>
Date Analyzed: 06/29/2007	Time Analyzed: 12:49
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Heated Purge: (Y/N) N
Instrument ID: <u>5973B</u>	Matrix: Water

	Resident and a second					
	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
01	S062907MVOWB1	S062907MVOWB1	B0629006.D	06/29/2007	12:00	R019141
02	15LCMW04DW	CAB34-007	B0629013.D	06/29/2007	15:07	R019141
03	15LCMW04SW	CAB34-009	B0629014.D	06/29/2007	15:33	R019141
04						
05						
06						
07						
08	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
09						
10						
11		and the second second second second second second second second second second second second second second second				
12						
13	·····					
14						
15						
16						
17						
18						
19						
20						
21						
22		-				
23						
24						
25		· · · · · · · · · · · · · · · · · · ·				
26		· · · · · · · · · · · · · · · · · · ·				
27	· · · · · · · · · · · · · · · · · · ·					
28						
29		· · · · · · · · · · · · · · · · · · ·				
30						

CLIENT SAMPLE NO.

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFB25NG

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL948</u>	SDG No.: CAB34
Lab File ID: <u>B0604007.D</u>	BFB Injection Date: <u>06/04/2007</u>
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:14
GC Column ZB-624 20m	ID:(mm)

		<pre>% RELATIVE</pre>
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	16,6
.75	30% to 60% of mass 95	43.3
95	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	7.6
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	97,7
175	5% to 9% of mass 17	7.4()1
176	greater than 95%, but less than 101% of mass 174	98.7()1
177	5% to 9% of mass 176	7 () 2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD001	VSTD001	B0604009.D	06/04/2007	11:23
02	VSTD005	VSTD005	B0604011.D	06/04/2007	12:30
03	VSTD010	VSTD010	B0604012.D	06/04/2007	12:55
04	VSTD050	VSTD050	B0604013.D	06/04/2007	13:20
05	VSTD075	VSTD075	E0604014.D	06/04/2007	13:45
06	VSTD100	VSTD100	B0604015.D	06/04/2007	14:10
07	VSTD200	VSTD200	B0604016.D	06/04/2007	14:35
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

5

CLIENT SAMPLE NO.

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBB1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAE34
Lab File ID: <u>B0628006.D</u>	BFB Injection Date: 06/28/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 11:34
GC Column ZE-624 20m	ID: 0.18 (mm)

1		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	16.3
75	30% to 60% of mass 95	43.9
95	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	6.7
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	100
175	5% to 9% of mass 17	7.5()1
176	greater than 95%, but less than 101% of mass 174	98.4()1
177	5% to 9% of mass 176	6.6()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		• • • • • • • • • • • • • • • • • • •			······································
ſ	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B1	VSTD050B1	B0628007.D	06/28/2007	11:58
02	S062807MVOWB1	S062807MVOWB1	B0628008.D	06/28/2007	12:25
03	B062807MVOWB1	B062807MVOWB1	B0628011.D	06/28/2007	13:41
04	TRIP BLANK	CAB34-011	B0628014.D	06/28/2007	14:58
05	15LCMW03SW	CAB34-001	B0628029.D	06/28/2007	21:32
06	15LCW415W	CAB34-003	B0628030.D	06/28/2007	21:58
07	15LCMW03DW	CAB34-005	B0628031.D	06/28/2007	22:24
08					
09					
10					
11	<u></u>				
12					
13					
14					
15					
16					
17					
18					
19					
20					
21	······································				
22					

CLIENT SAMPLE NO.

5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBB1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019141	SDG No.: CAB34
Lab File ID: <u>B0629003.D</u>	BFB Injection Date: 06/29/2007
Instrument ID: <u>5973B</u>	BFB Injection Time: 10:38
GC Column ZB-624 20m	ID: 0.18 (mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15% to 40% of mass 95	17,9
75	30% to 60% of mass 95	45.8
95	base peak, 100% relative abundance	100
96	5% to 9% of mass 95	6.9
173	less than 2% of mass 174	0()1
174	greater than 50% of mass 95	101.3
175	5% to 9% of mass 17	6.8()1
176	greater than 95%, but less than 101% of mass 174	97.8()1
177	5% to 9% of mass 176	6.3()2

1 - Value is %mass 174 2 - Value is %mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD050B2	VSTD050B2	B0629005.D	06/29/2007	11:34
02	S062907MVOWB1	S062907MVOWB1	B0629006.D	06/29/2007	12:00
03	B062907MVOWB1	B062907MVOWB1	B0629008.D	06/29/2007	12:49
04	15LCMW04DW	CAB34~007	B0629013.D	06/29/2007	15:07
05	15LCMW04SW	CAB34-009	B0629014.D	06/29/2007	15:33
06		· · · · · · · · · · · · · · · · · · ·			
07					
08					
09					
10					
11					
12					
13					
14					
15	······				
16					
17					
18					
19					
20					
21					
22	1,				

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks Te	esting Labs		Contr	act:		
	Run Sequence: <u>R0191</u>	LOB		SDG N	o.: <u>CAB34</u>		
	Client Sample No.(VS	TD050##): <u>VST</u>	D050B1	Date .	Analyzed:	06/28/2007	
	Lab File ID (Standar	d): <u>B0628007.1</u>	D	Time .	Analyzed:	11:58	
	Instrument ID: 5973E	3		Heate	d Purge: (y/n) <u>n</u>	
	GC Column: ZB-624 20	Im	ID: 0.18	(mm)			
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	rt #
	12 HOUR STD	602968	6,24	446383	9,42	241161	11.74
	UPPER LIMIT	1205936	6.74	892766	9.92	482322	12,24
	LOWER LIMIT	301484	5.74	223191.5	8.92	120580.5	11.24
	CLIENT SAMPLE NO.						
01	S062807MVOWB1	588603	6.24	441939	9.42	237818	11.73
02	B062807MVOWB1	592244	6.24	435738	9.42	224470	11.73
03	TRIP BLANK	555627	6.24	417312	9.42	223794	11.73
04	15LCMW03SW	544777	6.24	416640	9.42	223944	11.73
05	15LCW415W	569740	6.24	425808	9.42	222201	11.73
06	15LCMW03DW	561173	6.24	416491	9.42	217638	11.73
07	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
08							
09							
10							
11							
12							
13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
14							
15							
16							
17							
18							
19							
20							
21							
22							

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT # Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name: Laucks T	esting Labs		Contra	act:			
	Run Sequence: <u>R019141</u>				o.: <u>CAB34</u>			
	Client Sample No.(VS	STD050##): <u>VS</u> I	D050B2	Date 1	Analyzed:	06/29/2007		
	Lab File ID (Standa:	rd): <u>B0629005.</u>	D	Time J	Analyzed:	11:34		
Instrument ID: 5973B				Heate	Heated Purge: (Y/N) N			
	GC Column: ZB-624 2	Om	ID: 0.18	(mm)				
		IS1 (FBZ) AREA #	RT #	IS2 (CBZ) AREA #	RT #	IS3 (DCB) AREA #	RT #	
-	12 HOUR STD	560080	6,24	414836	9.42	216573	11.74	
	UPPER LIMIT	1120160	6.74	829672	9.92	433146	12.24	
	LOWER LIMIT	280040	5.74	207418	8.92	108286.5	11.24	
	CLIENT SAMPLE NO.							
01	S062907MVOWB1	561031	6.24	421394	9.42	221650	11.73	
02	B062907MVOWB1	541003	6.24	405400	9.42	217355	11.73	
03	15LCMW04DW	543792	6.24	403629	9.42	212288	11.73	
04	15LCMW04SW	562516	6.24	415220	9.42	215428	11.73	
05								
06								
07								
08			·					
09								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								

IS1 (FBZ) = Fluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3 (DCB) = 1,4-Dichlorobenzene-d4 AREA UPPER LIMIT = + 100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT $\ensuremath{\texttt{\#}}$ Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits

CLIENT SAMPLE NO.

15LCMW03SW

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB34-001</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628029.D</u>
Level: (LOW/MED)	Date Collected: _06/22/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200721:32
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	Ũ
108-10-1	4-Methyl-2-pentanone	5.0	Ŭ
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

FORM I VOA

CLIENT SAMPLE NO.

15LCMW03SW

Lab Name:		Contract:	
SDG No.: CA	B34	Run Sequence: R019108	
Matrix: (SO)	IL/SED/WATER) Water	Lab Sample ID: CAB34-001	
Sample wt/vo	bl: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628029.D</u>	
Level: (LOW,	/MED)	Date Collected: _06/22/2007	
<pre>% Moisture:</pre>	not dec.	Date/Time Analyzed: 06/28/2007	21:32
GC Column:	ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract	Volume:(uL)	Soil Aliquot Volume:	_(uL)
Heated Purge	≥: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	υ
	Chlaushangang	2.0	тт

124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ŭ

Comments:

CLIENT SAMPLE NO.

15LCW415W

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: B0628030.D
Level: (LOW/MED)	Date Collected: _06/22/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200721:58
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) _N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	ប
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	ប
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
591-78-6	2-Hexanone	5.0	U

FORM I VOA

CLIENT SAMPLE NO.

15LCW415W

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB34-003
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628030.D
Level: (LOW/MED)	Date Collected:06/22/2007
% Moisture: not dec.	Date/Time Analyzed:06/28/200721:58
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
[······	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

CLIENT SAMPLE NO.

15LCMW03DW

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB34~005</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: B0628031.D
Level: (LOW/MED)	Date Collected: _06/22/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 22:24
GC Column: ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	ΰ
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	Ŭ
107-06-2	1,2-Dichloroethane	1.0	ΰ
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	ប
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	υ

FORM I VOA

CLIENT SAMPLE NO.

15LCMW03DW

Lab Name:		Contract:	····
SDG No.: CAN	334	Run Sequence: R019108	<u></u>
Matrix: (SOI	L/SED/WATER) Water	Lab Sample ID: <u>CAB34-005</u>	
Sample wt/vc	ol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0628031.D</u>	
Level: (LOW/	(MED)	Date Collected: _06/22/2007	
% Moisture:	not dec.	Date/Time Analyzed: 06/28/200	22:24
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>	In the second second second second second second second second second second second second second second second
Soil Extract	Volume:(uL)	Soil Aliquot Volume:	(uL)
Heated Purge	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U

1.0

1.0

1.0

79-34-5 Comments:

100-42-5

75-25-2

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

U

U

U

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019141
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB34-007
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0629013.D
Level: (LOW/MED)	Date Collected:06/22/2007
% Moisture: not dec.	Date/Time Analyzed:06/29/200715:07
GC Column: <u>ZB-624 20m</u> ID; <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

Heated Purge: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1,0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	Ū
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	Ŭ
78-87-5	1,2-Dichloropropane	1.0	Ŭ
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

Page 1 of 2

FORM I VOA

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name:		Contract:	
SDG No.: CAL	B34	Run Sequence: <u>R019141</u>	
Matrix: (SO)	(L/SED/WATER) Water	Lab Sample ID: <u>CAB34-007</u>	
Sample wt/vo	bl: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0629013.D</u>	
Level: (LOW/	/MED)	Date Collected: 06/22/2007	<u></u>
% Moisture:	not dec.	Date/Time Analyzed:06/29/2007	15:07
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:	
Soil Extract	: Volume:(uL)	Soil Aliquot Volume:	_(uL)
Heated Purge	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> (5
124-48-1	Dibromochloromethane	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	υ
95-47-6	o-Xylene	1.0	U
1.00-42-5	Styrene	1.0	U

1.0

1.0

79-34-5 Comments:

75-25-2

Bromoform

1,1,2,2-Tetrachloroethane

FORM I VOA

U U
CLIENT SAMPLE NO.

15LCMW04SW

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019141
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB34~009</u>
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: B0629014.D
Level: (LOW/MED)	Date Collected: _06/22/2007
% Moisture: not dec.	Date/Time Analyzed:
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	υ
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
67-64-1	Acetone	5.0	υ
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	υ
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	Ŭ
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	υ

FORM I VOA

CLIENT SAMPLE NO.

15LCMW04SW

Lab Name:		Contract:	
SDG No.: CA	B34	Run Sequence: R019141	
Matrix: (SO	IL/SED/WATER) Water	Lab Sample ID: <u>CAB34-009</u>	
Sample wt/vo	ol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0629014.D</u>	
Level: (LOW,	/MED)	Date Collected:06/22/2007	
% Moisture:	not dec.	Date/Time Analyzed: 06/29/200	7 15:33
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>	
Soil Extract	t Volume:(uL)	Soil Aliquot Volume:	(uL)
Heated Purge	e: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U

1.0

1.0

1.0

1.0

79-34-5 Comments:

95-47-6

100-42-5

75-25-2

o-Xylene

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

Page 2 of 2

U U

U

U

CLIENT SAMPLE NO.

TRIP BLANK

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: CAB34-011
Sample wt/vol: 5.00 (g/mL) <u>mL</u>	Lab File ID: <u>B0628014.D</u>
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 14:58
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	ΰ
75-15-0	Carbon disulfide	1.0	ប
75-09-2	Methylene chloride	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	ប
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	υ
10061-01-	cis-1,3-Dichloropropene	1.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-	trans-1,3-Dichloropropene	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

Heated Purge: (Y/N) <u>N</u>

CLIENT SAMPLE NO.

TRIP BLANK

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>CAB34-011</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628014.D</u>
Level: (LOW/MED)	Date Collected:06/22/2007
% Moisture: not dec.	Date/Time Analyzed: 06/28/2007 14:58
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L

CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	U
95-47-6	o-Xylene	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

Just under 1D: 2703 (6/14/2017 14:15 Just under 1D: 2703 (6/14/2017 14:15 Just under 1D: 2703 S (6/14/2017 14:15 Just under 1D: 2703 S <th <="" colspa="6" s<="" th=""><th></th><th>LaD Name: <u>JauCK</u> Run Sequence: <u>R</u></th><th>6101 1 5</th><th>LOS</th><th>aps</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>CONEY SDG N(</th><th>act: o.:</th><th>CAB34</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th>LaD Name: <u>JauCK</u> Run Sequence: <u>R</u></th> <th>6101 1 5</th> <th>LOS</th> <th>aps</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>CONEY SDG N(</th> <th>act: o.:</th> <th>CAB34</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		LaD Name: <u>JauCK</u> Run Sequence: <u>R</u>	6101 1 5	LOS	aps								CONEY SDG N(act: o.:	CAB34									
Heat ed. Puryer (Y/N) N Calibration Tines: D6/04/2007 13:35 CC Column: 26.52.4.2m 10 <th></th> <th>Instrument ID: 5</th> <th>;973</th> <th>В</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Calib</th> <th>ratic</th> <th>on Dates</th> <th></th> <th>06/04/</th> <th>,2007</th> <th></th> <th>14:35</th> <th></th> <th></th> <th></th> <th></th>		Instrument ID: 5	;973	В									Calib	ratic	on Dates		06/04/	,2007		14:35					
Hasteric purspare (V/k) Material Order/alphane <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>4 5 5 6</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>														4 5 5 6											
		Heated Purge: (Y,	(N/.	N									Calib	ratic	an Timea		06/04/	2007		14:35					
		GC Column: <u>ZB-6</u> 2	24 2	2 0 m	*****				TD:		0.16	(mm)	Меал	% RSI	0: 6.7	0									
	I	Analyte	Std 1	RF 1	Std 2	R	5	itd 3	е ан	std 4	RF 4	std 5	RF 5	std 6	RF 6	std 7	RF 7	Std 8	RF 8	RF	%RSD	τ CoD CoD	E T V		
Chloemethate 1 2.530E-01 5 2.800E-01 10 2.800E-01 100 2.800E-01	ıi	Dichlorodifluoromethane		1.010E-01	5	1.160E	10-3	10	.150E-01	50	1.470E-01	75	1.480E-01	100	1.310E-0	1 200	1.500E-01			0.130	15.09		<	T	
Viny oblicitie 1 2 330E-01 5 2 400E-01 50 6 530E-01 70 2 530E-01 70 6 230 70 70 70 Memomentue 1 1 1 370E-01 5 1 680E-01 1 1 400E-01 5 1 680E-01 1 1 400E-01 5 1 680E-01 5 1 580E-01 1 1 560E-01		Chloromethane	1	2.630E-01	5	2.840E	3-01	10 2	610E-01	50	2.829E-01	75	2.809E-01	100	2.640E-0	1 200	þ.870E-01			0.274	4.19		V	1	
Chronomethane 1 1.949E-01 5 1.680E-01 10 1.900E-01 50 1.680E-01 10 1.900E-01 201 1.540E-01 201 2.240E-01 201 1.540E-01 201 1.540E-01 201 2.240E-01 201 1.540E-01 201 1.540E-01 201 1.540E-01 201 1.240E-01	1	Vinyl chloride	-	2.330E-01	Ś	2.490I	5	10 2	1.370E-01	50	2.630E-01	75	2.630E-01	100	2.389E-0.	1 200	þ.590E-01			0.249	5.23				
Chlomerthame 1 1.730E-01 5 1.640E-01 75 1.540E-01 10 1.230E-01 20 1.530E-01 20 1.530E-01 20 1.530E-01 20 1.530E-01 20 1.530E-01 10 1.230E-01 10 1.230E-01 10 1.530E-01 10 1		Bromomethane	1	1.949E-01	5	1.680E	:-01	10 1	.490E-01	50	1.580E-01	75	1.680E-01	100	1.540E-0.	1 200	1.540E-01			0.164	9.54		V	-	
Trichloredhene 1 2.649E-01 5 2.390E-01 50 3.199E-01 50 1.399E-01 50 1.399E-01 50 1.300E-01 50 1.326E-01 50 1.366E-01 50 <t< th=""><th></th><td>Chloroethane</td><td>1</td><td>1.750E-01</td><td>s</td><td>1.680E</td><td>-01</td><td>10 1</td><td>.630E-01</td><td>50</td><td>1.610E-01</td><td>75</td><td>1.640E-01</td><td>100</td><td>1.420E-0.</td><td>1 200</td><td>ll.540E-01</td><td></td><td></td><td>0.161</td><td>6.54</td><td></td><td>A</td><td></td></t<>		Chloroethane	1	1.750E-01	s	1.680E	-01	10 1	.630E-01	50	1.610E-01	75	1.640E-01	100	1.420E-0.	1 200	ll.540E-01			0.161	6.54		A		
		Trichlorofluoromethane	-	2.649E-01	s	2.980E	-01	10 2	1.700E-01	50	3.199E-01	75	3.150E-01	100	2.790E-0	1 200	p.980E-01			0.292	7.28		×	T	
Actone 1 1.500:01 5 1.2300:01 0 1.160E:01 0 1.2300:01 0 0.013 13.72 > > Carbon disulfide 1 5.600:01 0 1.2300:01 0 1.2300:01 0 2.390E:01 0 2.490E:01 0 <th></th> <td>1,1-Dichloroethene</td> <td>-</td> <td>1.570E-01</td> <td>5</td> <td>1.949I</td> <td>-01</td> <td>10</td> <td>1.620E-01</td> <td>50</td> <td>1.959E-01</td> <td>75</td> <td>1.930E-01</td> <td>100</td> <td>1.690E-0</td> <td>1 200</td> <td>1.770E-0</td> <td></td> <td></td> <td>0.178</td> <td>9.17</td> <td></td> <td>A</td> <td></td>		1,1-Dichloroethene	-	1.570E-01	5	1.949I	-01	10	1.620E-01	50	1.959E-01	75	1.930E-01	100	1.690E-0	1 200	1.770E-0			0.178	9.17		A		
Carbon disulfide 1 $5.680E.01$ 5 $5.779E.01$ 7 $8.090E.01$ 10 $1.1001E+00$ 5 $3.170E-01$ 10 $1.001E+00$ 5 $3.170E-01$ 10 $2.379E-01$ 10		Acetone	1	1.560E-01	5	1.3201	3-01	10 1	160E-01	50	1.250E-01	75	1.170E-01	100	1.140E-0	1 200	1.040E-0			0.123	13.72		A		
Methylene chloride 1 1001E+00 5 3.170E-01 10 2.579E-01 75 2.720E-01 100 2.390E-01 70 2.390E-01 70 2.390E-01 70 2.379E-01 70 2.329E-01 70 2.379E-01 70 2.379E-01 70 2.379E-01 70 2.379E-01 70 2.379E-01 70 2.379E-01 70 2.329E-01 70 2.379E-01 70 2.329E-01 70		Carbon disulfide		5.680E-01	5	6.5791	3-01	10 6	5.129E-01	50	7.969E-01	75	8.090E-01	100	7.160E-0	1 200	7.300E-0)			0.699	12.94		<	T	
		Methylene chloride	1	1.001E+00	5	3.1701	-01	10 2	2.579E-01	50	2.640E-01	75	2.720E-01	100	2.590E-0	1 200	2.490E-0]			0.374		1.000		1	
1.1-Dichlororethane 1 $4.560E-01$ 5 $4.900E-01$ 50 $4.900E-01$ 50 $4.900E-01$ 50 $4.900E-01$ 50 $4.460E-01$ 50 $4.60E-01$ 50 $4.60E-01$ 50 $4.60E-01$ 50 5.75 57 75 <th></th> <td>trans-1,2-Dichloroethene</td> <td>1</td> <td>2.300E-01</td> <td>5</td> <td>2.780ł</td> <td>3-01</td> <td>10 2</td> <td>2.410E-01</td> <td>50</td> <td>2.739E-01</td> <td>75</td> <td>2.599E-01</td> <td>100</td> <td>2.410E-0</td> <td>1 200</td> <td>2.420E-01</td> <td></td> <td></td> <td>0.252</td> <td>7.38</td> <td></td> <td>A</td> <td></td>		trans-1,2-Dichloroethene	1	2.300E-01	5	2.780ł	3-01	10 2	2.410E-01	50	2.739E-01	75	2.599E-01	100	2.410E-0	1 200	2.420E-01			0.252	7.38		A		
cis-1,2-Dichloroethene 1 $2.829E-01$ 5 $3.059E-01$ 10 $2.619E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.480E-01$ 50 $2.480E-01$ 50 $2.802E-01$ 50 $2.802E-01$ 50 $2.380E-01$ 50 $2.380E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.380E-01$ 50 $2.380E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.340E-01$ 50 $2.320E-01$ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 $2.$		1,1-Dichloroethane		4.560E-01	5	4.9001	-01	10 4	1.400E-01	50	4.990E-01	75	4.740E-01	100	4.480E-0	1 200	4.460E-0)			0.465	5.00		A		
2-Butanone 1 2.480E-01 5 1.879E-01 10 1.940E-01 50 2.169E-01 70 2.80E-01 70 2.900E-01 70 2.90		cis-1,2-Dichloroethene	1	2.829E-01	5	3.0591	:-01	10 2	2.619E-01	50	2.980E-01	75	2.879E-01	100	2.669E-0	1 200	2.720E-0]			0.282	5.75		×		
Chloroform 1 4.639E-01 5 4.819E-01 10 4.219E-01 75 4.569E-01 100 4.280E-01 200 4.309E-01 0 6.451 5.26 7 1,1,1-Trichloroethane 1 3.129E-01 5 3.840E-01 10 3.300E-01 75 3.590E-01 100 3.280E-01 70 3.280E-01 70 3.280E-01 100 3.306E-01 100 3.280E-01 100 3.280E-01 100 3.280E-01 100 3.280E-01 100 3.280E-01 100 2.280E-01 100 2.280E-01 100 2.860E-01		2-Butanone	-	2.480E-01	5	1.8791	-01	10 1	0.940E-01	50	2.169E-01	75	2.110E-01	100	2.080E-0	1 200	1.930E-01			0.208	9.77		<	[`	
11.1-Trichloroethane 1 3.129E-01 5 3.840E-01 10 3.369E-01 75 3.590E-01 100 3.230E-01 00 3.249E-01 76 3.249E-01 76 3.240E-01 10 3.230E-01 70 10.82 7 10.82 Carbon tetrachloride 1 2.779E-01 5 3.440E-01 10 2.850E-01 75 3.240E-01 100 2.920E-01 200 1.037 10.82 76 7 <t< th=""><th>I</th><td>Chloroform</td><td>1</td><td>4.639E-01</td><td>S</td><td>4.8191</td><td>3-01</td><td>10 4</td><td>1.219E-01</td><td>50</td><td>4.720E-01</td><td>75</td><td>4.569E-01</td><td>100</td><td>4.280E-0</td><td>1 200</td><td>4.309E-01</td><td></td><td></td><td>0.451</td><td>5.26</td><td></td><td><</td><td></td></t<>	I	Chloroform	1	4.639E-01	S	4.8191	3-01	10 4	1.219E-01	50	4.720E-01	75	4.569E-01	100	4.280E-0	1 200	4.309E-01			0.451	5.26		<		
Carbon tetrachloride 1 $2.579E-01$ 5 $3.440E-01$ 10 $2.870E-01$ 70 $2.920E-01$ 700 $2.969E-01$ 700 $1.03E+00$ 700 1.0	i	1,1,1-Trichloroethane	-	3.129E-01	S	3.840I	10-5	10	1.300E-01	50	3.849E-01	75	3.590E-01	100	3.280E-0	1 200	β.290E-0.			0.347	8.36		V		
Benzene 1 1.070E+00 5 1.184E+00 10 1.02EE+00 75 1.113E+00 100 1.054E+0 70 1.036 5.66 76 1.1 1,2-Dichloroethane 1 3.499E-01 5 3.500E-01 10 3.500E-01 75 3.500E-01 75 3.500E-01 75 3.500E-01 75 3.500E-01 75 3.500E-01 70 3.600E-01 100 3.600E-01 200 1.00 1.0051E+00 200 1.0347 3.29 7 7 7 7 7 7 7 7 7 3.600E-01 10 2.780E-01 75 3.530E-01 75 3.530E-01 75 3.530E-01 75 3.530E-01 70 2.630E-01 200 2.03 2.00 2.040E-01 0 2.530E-01 75 3.530E-01 75 3.230E-01 75 3.230E-01 70 2.60 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 <t< th=""><th>1</th><td>Carbon tetrachloride</td><td>-</td><td>2.579E-01</td><td>5</td><td>3.4401</td><td>-01</td><td>10 2</td><td>2.850E-01</td><td>50</td><td>3.490E-01</td><td>75</td><td>3.240E-01</td><td>100</td><td>2.920E-0</td><td>1 200</td><td>p.969E-0</td><td></td><td></td><td>0.307</td><td>10.82</td><td></td><td>A</td><td></td></t<>	1	Carbon tetrachloride	-	2.579E-01	5	3.4401	-01	10 2	2.850E-01	50	3.490E-01	75	3.240E-01	100	2.920E-0	1 200	p.969E-0			0.307	10.82		A		
1,2-Dichloroethane 1 3.499E-01 5 3.500E-01 10 3.3.50E-01 75 3.5.40E-01 100 3.400E-01 200 3.3.70E-01 0 3.3.40E-01 0 3.400E-01 0 3.400E-01 0 3.400E-01 0 3.400E-01 0 3.400E-01 0 3.400E-01 0 0.3.40E-01 0 0.3.40 0.3.40E-01 0 0.3.40 0.3.40 0.3.40 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40 0 0.3.40<	1	Benzene	-	1.070E+00	5	1.184E	-100 	10	.026E+00	50	1.172E+00	75	1.113E+00	100	1.051E+0	0 200	1.054E+C			1.096	5.66		V		
Trichloroethene 1 2.809E-01 5 3.240E-01 10 2.780E-01 75 3.059E-01 100 2.850E-01 200 2.910E-01 0 2.93 6.51 A 1.2-Dichloropropane 1 2.750E-01 5 2.890E-01 10 2.800E-01 100 2.680E-01 200 2.649E-01 0 2.75 4.28 A A Bromodichloropropane 1 3.389E-01 5 3.510E-01 50 3.670E-01 75 3.580E-01 100 2.680E-01 200 2.440E-01 0 0.347 3.81 A A Bromodichloromethane 1 3.750E-01 5 3.510E-01 50 3.610E-01 75 3.580E-01 100 2.680E-01 200 2.440E-01 0.347 3.81 A A Bromodichloromethane 1 3.750E-01 5 3.810E-01 50 3.610E-01 75 4.907E-01 00 0.347 3.81 A A Hotthyl-2-pentanone 1 3.750E-01 5 3.910E-01 75 4.20F-01 1	1	1,2-Dichloroethane		3.499E-01	S	3.6001	5	10	3.319E-01	50	3.600E-01	75	3.540E-01	10	3.400E-0	1 200	B.370E-0.			0.347	3.29		A		
1.2-Dickloropropane 1 2.750E-01 5 2.890E-01 10 2.580E-01 100 2.680E-01 200 2.649E-01 0 2.75 4.28 <th>l</th> <td>Trichloroethene</td> <td></td> <td>2.809E-01</td> <td>5</td> <td>3.2401</td> <td>-01</td> <td>10 2</td> <td>2.780E-01</td> <td>50</td> <td>3.230E-01</td> <td>75</td> <td>3.059E-01</td> <td>100</td> <td>2.850E-0</td> <td>1 200</td> <td>2.910E-0.</td> <td>1</td> <td></td> <td>0.298</td> <td>6.51</td> <td></td> <td>Y</td> <td></td>	l	Trichloroethene		2.809E-01	5	3.2401	-01	10 2	2.780E-01	50	3.230E-01	75	3.059E-01	100	2.850E-0	1 200	2.910E-0.	1		0.298	6.51		Y		
Bromodichloromethane 1 3.389E-01 5 3.510E-01 10 3.269E-01 75 3.580E-01 100 3.440E-01 200 3.440E-01 0 3.47 3.81 A cis-1.3-Dichloropropene 1 3.750E-01 5 3.610E-01 50 3.610E-01 100 3.440E-01 200 3.440E-01 0.391 4.95 A cis-1.3-Dichloropropene 1 3.750E-01 5 3.610E-01 50 4.199E-01 100 3.919E-01 200 3.910E-01 0.391 4.95 A A-Methyl-2-pentanone 1 5.720E-01 5 4.149E-01 10 3.930E-01 75 4.209E-01 70 4.100E-01 200 3.930E-01 7.5	t	1,2-Dichloropropane	-	2.750E-01	5	2.8901	-10-	10	2.590E-01	50	2.899E-01	75	2.800E-01	100	2.680E-0	1 200	2.649E-0.			0.275	4.28		Y		
Matchilder 1 3.750E-01 5 3.880E-01 10 3.610E-01 75 4.070E-01 100 3.919E-01 200 3.910E-01 0 3.919E-01 100 3.919E-01 200 3.910E-01 0 3.919E-01 100 3.919E-01 200 3.910E-01 0.391 4.95 14.48 1 A A-Methyl-2-pentanone 1 5.720E-01 5 4.149E-01 10 3.930E-01 100 4.100E-01 200 9.939E-01 0.433 14.48 A		Bromodichloromethane	-	3.389E-01	2	3.5101		10	3.269E-01	50	3.670E-01	75	3.580E-01	100	3.440E-0	1 200	B.440E-0.	1		0.347	3.81		V		
A Check of the state of the sta	i	cis-1,3-Dichloropropene	-	3.750E-01	Ś	3.8801	10 -0	10	3.610E-01	50	4.199E-01	75	4.070E-01	100	3.919E-0	1 200	3.910E-0			0.391	4.95		Α	· · · · ·	
	S	4-Methyl-2-pentanone	-	5.720E-01	S	4.1491	-01	10	3.930E-01	50	4.269E-01	75	4.219E-01	8	4.100E-0	1 200	B 939E-0.			0.433	14.48		<	i	
	- 2	Q=Quadratic, L=L.	ine	ar, A=Av(erag	ē																			
L Q=Quadratic, L=Linear, A=Average	27	* SPCCs #																							

VOLATILE ORGANICS INITIAL CALIBRATION DATA

φ

Page 1 of 2

Run Sequence: _	R019	9108		-						SDG No.	••	CAB34							
Instrument ID:	5973	3B								Calibra	atio	n Dates:	i	06/04/2007	-	14:35			
Heated Purge:	(N/X)	N				****				Calibra	atio	n Times:	I	06/04/200		14:35			
GC Column: <u>ZB</u> -	624	20m				ID:		0.16	(um	Mean %	RSD	. 6.70							
Analyte	Std 1	RF 1	Std 2	RF 2	Std 3	RF 3	std 4	RF 4	Std 5	RF 5	std 6	RF 6	Std 7	RF 7 Std 8	RF 8	۲. ۲	\$RSD	r ² COD	μä
Toluene	1	8.470E-01	5	9.840E-01	10	8.399E-01	50	9.940E-01	75	9.279E-01	100	8.790E-01	200	3.909E-01		0.909	6.83		<
trans-1,3-Dichloropropene	1	5.899E-01	5	6.160E-01	10	5.630E-01	50	6.510E-01	75	6.309E-01	100	6.169E-01	200	5.250E-01		0.614	4.69		<
1,1,2-Trichloroethane	1	3.650E-01	5	3.709E-01	10	3.350E-01	50	3.700E-01	75	3.600E-01	100	3.510E-01	200	3.520E-01		0.358	3.59		V
Tetrachloroethene	1	3.980E-01	5	4.740E-01	10	3.980E-01	50	4.799E-01	75	4.410E-01	100	4.110E-01	200	4.320E-01		0.433	7.78		A
2-Hexanone	P***4	3.890E-01	5	3.800E-01	10	3.610E-01	50	4.239E-01	75	4.170E-01	100	4.100E-01	200	1.000E-01		0.397	5.60		A
Dibromochloromethane		3.450E-01	5	3.960E-01	10	3.540E-01	50	4.170E-01	75	4.079E-01	100	3.989E-01	200	4.030E-01		0.389	7.13		A
Chlorobenzene	1	1.010E+00	ŝ	1.066E+00	10	9.359E-01	50	1.072E+00	75	1.031E+00	100	9.940E-01	200	1.005E+0		1.016	4.55		V
Ethylbenzene	1	1.562E+00	s	1.779E+00	10	1.561E+00	50	1.823E+00	75	1.723E+00	100	1.644E+00	200	1.670E+0		1.680	6.03		V
m,p-Xylene	2	6.169E-01	10	7.080E-01	20	6.160E-01	100	7.210E-01	150	6.850E-01	200	6.510E-01	400	6.570E-01		0.665	6.24		×
o-Xylene	1	6.280E-01	S	6.740E-01	10	6.119E-01	50	6.970E-01	75	6.679E-01	100	6.430E-01	200	5.470E-01		0.653	4.48		V
Styrene	-	1.115E+00	ŝ	1.186E+00	10 10	1.082E+00	50	1.240E+00	75	1.206E+00	100	1.164E+00	200	1.172E+0		1.167	4.57		¥
Bromoform	1	3.400E-01	s	3.400E-01	10	3.089E-01	50	3.580E-01	75	3.610E-01	100	3.569E-01	200	3.660E-01		0.347	5.67		A
1,1,2,2-Tetrachloroethane	y4	8.930E-01	5	9.409E-01	01	8.909E-01	50	9.620E-01	75	9.639E-01	100	9.540E-01	200	9.380E-01		0.935	3.29		A
Dibromofluoromethane	50	2.540E-01	55	2.460E-01	60	2.480E-01	65	2.389E-01	70	2.460E-01	75	2.399E-01	80	2.380E-01		0.245	2.32		A
1,2-Dichloroethane-d4	50	2.640E-01	55	2.619E-01	ŝ	2.599E-01	65	2.550E-01	70	2.619E-01	75	2.550E-01	80	2.520E-01		0.258	1.79		A
Toluene-d8	50	1.206E+00	55	1.220E+00	60	1.201E+00	65	1.215E+00	70	1.209E+00	75	1.192E+00	80	1.195E+0		1.206	0.84		A
4-Bromofluorobenzene	50	8.450E-01	55	8.290E-01	99	8.309E-01	65	8.100E-01	70	8.290E-01	75	8.259E-01	80	8.150E-01		0.827	1.37		A

6 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Contract:

Lab Name: Laucks Testing Labs

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

* SPCCs #

Page 2 of 2

FORM VI VOA

SUM - 28

INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
1,1,1,2-Tetrachloroethane	A	50.00	49.24	1.52
1,1,1-Trichloroethane	A	50.00	53.79	7.58
1,1,2,2-Tetrachloroethane	A	50.00	50.09	0.18
1,1,2-Trichloroethane	A	50.00	49.57	0.86
I,1-Dichloroethane	А	50.00	54.42	8.84
1,1-Dichloroethene	A	50.00	61.74	23.48
1,1-Dichloropropene	A	50.00	56.82	13.64
1,2,3-Trichlorobenzene	A	50,00	55.01	10.02
1,2,3-Trichloropropane	A	50.00	47.73	4.54
1,2,4-Trichlorobenzene	A	50.00	54.31	8.62
1,2,4-Trimethylbenzene	A	50.00	50.47	0.94
1,2-Dibromo-3-chloropropane	A	50.00	49.81	0.38
1,2-Dibromoethane	A	50.00	50.86	1.72
1,2-Dichlorobenzene	A	50.00	51.04	2.08
1,2-Dichloroethane	A	50.00	51.85	3.70
1,2-Dichloroethane-d4	A	50.00	50.27	0.54
1,2-Dichloropropane	A	50.00	50.72	1,44
1,3,5-Trimethylbenzene	A	50.00	49.94	0.12
1,3-Dichlorobenzene	A	50.00	50.64	1.28
1,3-Dichloropropane	A	50.00	49.61	0.78
1,4-Dichlorobenzene	A	50.00	51.11	2,22
l-Chlorohexane	A	50.00	54.76	9.52
2,2-Dichloropropane	A	50.00	51.18	2.36
2-Butanone	A	50.00	51.05	2.10
2-Chlorotoluene	A	50.00	49,94	0.12
2-Hexanone	A	50.00	51.14	2.28
4-Bromofluorobenzene	A	50.00	49.38	1,24
4-Chlorotoluene	A	50.00	50.00	0.00
4-Isopropyltoluene	A	50.00	52.39	4.78
4-Methyl-2-pentanone	A	50.00	49.24	1.52
Acetone	A	50.00	50.13	0.26
Benzene	A	50.00	51.60	3.20
Bromobenzene	A	50.00	48.39	3.22
Bromochloromethane	A	50,00	51.68	3.36
Bromodichloromethane	A	50.00	51.67	3.34
Bromoform	A	50.00	48.24	3.52
Bromomethane	A	50,00	40.01	19.98
Carbon disulfide	A	50,00	52.03	4.06
Carbon tetrachloride	A	50.00	53.74	7.48
Chlorobenzene	A	50,00	51.66	3.32
Chloroethane	A	50.00	41.80	16.40
Chloroform	A	50.00	52.51	5.02
Chloromethane	A	50.00	42.42	15.16

INITIAL SECOND SOURCE CALIBRATION VERIFICATION

Lab Name: Laucks Testing Laboratories, Inc.

Initial Calibration ID: B8260W-060407

Concentration Units: ug/L

Instrument ID: 5973B

2nd Source ID: ICV060607MVOB1

Analyte	Equation Type	Expected	Found	%D
cis-1,2-Dichloroethene	Α	50.00	53.73	7.46
cis-1,3-Dichloropropene	Α	50.00	59.33	18.66
Dibromochloromethane	A	50.00	52.66	5.32
Dibromofluoromethane	A	50.00	51.50	3.00
Dibromomethane	A	50.00	51.58	3.16
Dichlorodifluoromethane	A	50.00	40.14	19.72
Ethyl-t-Butyl Ether(ETBE)	Α	50.00	53.27	6.54
Ethylbenzene	А	50.00	50.70	1.40
Hexachlorobutadiene	A	50.00	54.04	8.08
Isopropyl ether	A	50.00	51.97	3.94
Isopropylbenzene	A	50.00	51.78	3.56
m,p-Xylene	A	100.00	103.37	3.37
Methyl tert-butyl ether	A	50.00	56.55	13.10
Methylene chloride	Q	50.00	52.82	5.64
n-Butylbenzene	A	50.00	51.86	3.72
n-Propylbenzene	A	50.00	51.48	2.96
Naphthalene	A	50.00	54.73	9.46
o-Xylene	A	50.00	51.09	2.18
sec-Butylbenzene	Α	50.00	53.45	6.90
Styrene	Α	50.00	50.33	0.66
t-Amyl Methyl Ether(TAME)	Α	50.00	52.66	5.32
t-Butyl Alcohol	Α	500.00	565.69	13,14
tert-Butylbenzene	Λ	50.00	51.42	2.84
Tetrachloroethene	Α	50.00	51.86	3.72
Toluene	A	50.00	50.75	1.50
Toluene-d8	A	50.00	51.28	2.56
trans-1,2-Dichloroethene	A	50.00	55.58	11.16
trans-1,3-Dichloropropene	A	50.00	45.29	9.42
Trichloroethene	A	50.00	53.18	6.36
Trichlorofluoromethane	A	50.00	42.86	14.28
Vinyl chloride	A	50.00	45.14	9.72

Q=Quadratic, L=Linear, A=Average

.

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB34
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B1	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) N	GC Column: <u>ZB-624 20m</u> ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.120	7.72	
Chloromethane	A	0.244	10.98	
Vinyl chloride	A	0,218	12.47	
Bromomethane	A	0.131	19.97	
Chloroethane	A	0.145	9.70	
Trichlorofluoromethane	A	0.273	6.40	
1,1-Dichloroethene	A	0.159	10.93	
Acetone	A	0.137	-11,70	
Carbon disulfide	A	0.573	18.02	
Methylene chloride	Q	0.239		-12.04
trans-1,2-Dichloroethene	A	0.229	9.19	
1,1-Dichloroethane	A	0.443	4.79	
cis-1,2-Dichloroethene	A	0.254	10.03	
2-Butanone	A	0.230	-10.59	
Chloroform	A	0.422	6,34	
1,1,1-Trichloroethane	A	0.320	7.69	
Carbon tetrachloride	A	0.273	10.97	
Benzene	A	1.013	7.61	
1,2-Dichloroethane	A	0.337	3.01	
Trichloroethene	A	0.274	7.89	
1,2-Dichloropropane	A	0.258	6.12	
Bromodichloromethane	A	0.315	9.15	
cis-1,3-Dichloropropene	A	0.358	8.42	
4-Methyl-2-pentanone	A	0.437	-1.04	
Toluene	A	0.879	3.35	
trans-1,3-Dichloropropene	A	0.584	4,90	
1,1,2-Trichloroethane	A	0.337	5.91	
Tetrachloroethene	A	0.408	5,85	
2-Hexanone	A	0.447	-12.67	
Dibromochloromethane	A	0.345	11.20	
Chlorobenzene	A	0.947	6.82	
Ethylbenzene	A	1,623	3.42	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Page 1 of 2

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019108	SDG No.: CAB34
Instrument ID: 5973B	Calibration Date: 06/28/2007 Time: 11:58
Lab File ID: B0628007.D	Init. Calib. Date(s):
Client Sample No.: VSTD050B1	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	۶D	%Drift
m,p-Xylene	· A	0.630	5.22	
o-Xylene	А	0.606	7.13	
Styrene	A	1.082	7.28	
Bromoform	А	0.280	19.33	
1,1,2,2-Tetrachloroethane	А	0.900	3.73	
Dibromofluoromethane	А	0.253	-3.37	
1,2-Dichloroethane-d4	A	0.281	-8.98	
Toluene-d8	А	1.302	-7.96	
4-Bromofluorobenzene	A	0.893	-7.93	

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019141	SDG No.: _CAB34
Instrument ID: 5973B	Calibration Date: 06/29/2007 Time: 11:34
Lab File ID: B0629005.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B2</u>	Init. Calib. Time(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	%D	%Drift
Dichlorodifluoromethane	A	0.108	16.74	
Chloromethane	A	0.241	11.90	
Vinyl chloride	A	0.229	8.18	
Bromomethane	A	0.146	11.25	
Chloroethane	А	0.143	11.23	
Trichlorofluoromethane	A	0.249	14,56	
1,1-Dichloroethene	A	0.162	9.00	
Acetone	A	0.128	-4.07	
Carbon disulfide	A	0.582	16.69	
Methylene chloride	Q	0.231		-14.86
trans-1,2-Dichloroethene	A	0,236	6.49	
1,1-Dichloroethane	A	0.447	3.88	
cis-1,2-Dichloroethene	А	0.263	6.73	
2-Butanone	A	0.222	-6.67	
Chloroform	A	0.430	4,56	
1,1,1-Trichloroethane	А	0.338	2.57	
Carbon tetrachloride	А	0.296	3.68	
Benzene	А	1.031	5.89	
1,2-Dichloroethane	А	0.341	1.79	
Trichloroethene	A	0,281	5,64	
1,2-Dichloropropane	A	0.261	5.14	
Bromodichloromethane	A	0.330	5.01	
cis-1,3-Dichloropropene	Å	0,361	7.69	
4-Methyl-2-pentanone	A	0.430	0.77	
Toluene	A	0,892	1,87	
trans-1,3-Dichloropropene	A	0.588	4.19	
1,1,2-Trichloroethane	A	0.334	6.73	
Tetrachloroethene	A	0.415	4.15	
2-Hexanone	A	0.446	-12.26	
Dibromochloromethane	A	0.365	6.17	
Chlorobenzene	A	0.946	6.92	
Ethylbenzene	A	1.629	3.01	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019141	SDG No.: _CAB34
Instrument ID: 5973B	Calibration Date: 06/29/2007 Time: 11:34
Lab File ID: B0629005.D	Init. Calib. Date(s):
Client Sample No.: <u>VSTD050B2</u>	Init. Calib. Tíme(s): <u>10:14</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: ZB-624 20m ID:0.18 (mm)

Compound	Equation Type	RF 50.0	°₹D	%Drift
m,p-Xylene	А	0.631	5.05	
o-Xylene	A	0.594	9.11	
Styrene	A	1.067	8.59	
Bromoform	А	0.289	16.71	
1,1,2,2-Tetrachloroethane	A	0.879	5.97	
Dibromofluoromethane	A	0.255	~4.21	
1,2-Dichloroethane-d4	A	0,283	-9.78	
Toluene-d8	А	1.308	~8,45	
4-Bromofluorobenzene	A	0.899	-8.69	

CLIENT SAMPLE NO.

1 VOLATILE ORGANICS ANALYSIS DATA SHEET

B062807MVOWB1

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: B062807MVOWB1
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: <u>B0628011.D</u>
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed:06/28/200713:41
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge: (Y/N) <u>N</u>	
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	υ
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ū
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	Ŭ
156-60-5	trans-1,2-Dichloroethene	1.0	ប
75-34-3	1,1-Dichloroethane	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	υ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
71-43-2	Benzene	1.0	υ
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	Ũ
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	Ŭ
10061-02-	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	Ŭ
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U

CLIENT SAMPLE NO.

Ŭ

U

Ŭ

U

U

U

B062807MVOWB1

Lab Name:		Contr	ract:	
SDG No.: CAE	34	Run S	Sequence: R019108	
Matrix: (SOI	L/SED/WATER) Water	Lab S	Sample ID: <u>B062807MVOWB1</u>	
Sample wt/vo	1: <u>5.00</u> (g/mL) <u>mL</u>	Lab F	Tile ID: <u>B0628011.D</u>	
Level: (LOW/	MED)	Date	Collected:	
<pre>% Moisture:</pre>	not dec	Date/	Time Analyzed: 06/28/20	07 13:41
GC Column: 2	ZB-624 20m ID: 0.18 (mm)	Dilut	ion Factor: <u>1.0</u>	
Soil Extract	Volume: <u>1000</u> (uL)	Soil	Aliquot Volume: <u>5000</u>	(uL)
Heated Purge	: (Y/N) <u>N</u>			
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
124-48-1	Dibromochloromethane		1.0	U
108-90-7	Chlorobenzene		1.0	U

1.0

2.0

1.0

1.0

1.0

79-34-5 Comments:

100-41-4

179601-23

95-47-6

100-42-5

75-25-2

Ethylbenzene

m,p-Xylene

o-Xylene

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

Page 2 of 2

CLIENT SAMPLE NO.

B062907MVOWB1

Lab Name: _		Contract:	
SDG No.: <u>C</u>	AB34	Run Sequence: R019141	
Matrix: (SC	DIL/SED/WATER) Water	Lab Sample ID: <u>B062907MVOWB1</u>	
Sample wt/v	vol: 5.00 (g/mL) mL	Lab File ID: B0629008.D	
Level: (LOW	N/MED)	Date Collected:	
% Moisture	not dec.	Date/Time Analyzed:	12:49
GC Column:	ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extrac	st Volume:(uL)	Soil Aliquot Volume:	(uL)
Heated Purg	ge: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	1.0	υ
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
78-93-3	2-Butanone	5.0	Ŭ
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	υ
71-43-2	Benzene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	υ

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Tetrachloroethene

2-Hexanone

10061-02-

79-00-5

127-18-4

591-78-6

1.0

1.0

1.0

5.0

υ

U

U

U

CLIENT SAMPLE NO.

B062907MVOWB1

Lab Name:		Contract:	
SDG No.: CAN	334	Run Sequence: R019141	`
Matrix: (SOI	L/SED/WATER) Water	Lab Sample ID: B062907MVOWB1	
Sample wt/vc	1: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0629008.D</u>	
Level: (LOW/	MED)	Date Collected:	<u> </u>
<pre>% Moisture:</pre>	not dec.	Date/Time Analyzed: 06/29/2007 12:	49
GC Column:	ZB-624 20m ID: 0.18 (mm)	Dilution Factor: 1.0	0
Soil Extract	Volume:(uL)	Soil Aliquot Volume:(u	L)
Heated Purge	:: (Y/N) <u>N</u>		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q	
124-48-1	Dibromochloromethane	1.0 U	
		1 0 17	

124-48-1	Dibromochloromethane	1.0	0
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23	m,p-Xylene	2.0	Ŭ
95-47-6	o-Xylene	1.0	Ŭ
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U

Comments:

FORM I VOA

CLIENT SAMPLE NO.

S062807MVOWB1

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019108
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>5062807MVOWB1</u>
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: B0628008.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed:06/28/200712:25
GC Column: <u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: <u>1000</u> (uL)	Soil Aliquot Volume: 5000 (uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	27	
74-87-3	Chloromethane	34	
75-01-4	Vinyl chloride	36	
74-83-9	Bromomethane	36	
75-00-3	Chloroethane	35	
75-69-4	Trichlorofluoromethane	40	
75-35-4	1,1-Dichloroethene	56	
67-64-1	Acetone	44	
75-15-0	Carbon disulfide	49	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	53	
75-34-3	1,1-Dichloroethane	54	
156-59-2	cis-1,2-Dichloroethene	51	
78-93-3	2-Butanone	48	
67-66-3	Chloroform	52	
71-55-6	1,1,1-Trichloroethane	53	
56-23-5	Carbon tetrachloride	51	
71-43-2	Benzene	51	
107-06-2	1,2-Dichloroethane	53	
79-01-6	Trichloroethene	51	
78-87-5	1,2-Dichloropropane	51	
75-27-4	Bromodichloromethane	51	
10061-01-	cis-1,3-Dichloropropene	58	
108-10-1	4-Methyl-2-pentanone	48	
108-88-3	Toluene	51	
10061-02-	trans-1,3-Dichloropropene	46	
79-00-5	1,1,2-Trichloroethane	49	
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	53	

CLIENT SAMPLE NO.

S062807MVOWB1

Lab Name:		Contract
	~~ 1	
SDG No.: CAL	334	Run Sequence: R019108
Matrix: (SOI	L/SED/WATER) Water	Lab Sample ID: <u>S062807MVOWB1</u>
Sample wt/vc	ol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0628008.D
Level: (LOW/	(MED)	Date Collected:
<pre>% Moisture:</pre>	not dec	Date/Time Analyzed: 06/28/2007 12:25
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:
Soil Extract	Volume: <u>1000</u> (uL)	Soil Aliquot Volume: <u>5000 (</u> uL)
Heated Purge	e: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L
124-48-1	Dibromochloromethane	49
108-90-7	Chlorobenzene	51
100-41-4	Ethylbenzene	51
179601-23	m,p-Xylene	100
95-47-6	o-Xylene	50
100-42-5	Styrene	49

42

51

79-34-5 Comments:

75-25-2

Bromoform

1,1,2,2-Tetrachloroethane

CLIENT SAMPLE NO.

S062907MVOWB1

Lab Name:	Contract:
SDG No.: CAB34	Run Sequence: R019141
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: S062907MVOWB1
Sample wt/vol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: B0629006.D
Level: (LOW/MED)	Date Collected:
% Moisture: not dec.	Date/Time Analyzed: 06/29/2007 12:00
GC Column: <u>ZB-624_20m</u> ID: <u>0.18</u> (mm)	Dilution Factor: <u>1.0</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Heated Purge: (Y/N) <u>N</u>	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	30	
74-87-3	Chloromethane	42	
75-01-4	Vinyl chloride	44	
74-83-9	Bromomethane	41	
75-00-3	Chloroethane	46	
75-69-4	Trichlorofluoromethane	45	
75-35-4	1,1-Dichloroethene	51	
67-64-1	Acetone	53	
75-15-0	Carbon disulfide	32	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	49	[
75-34-3	1,1-Dichloroethane	51	
156-59-2	cis-1,2-Dichloroethene	48	
78-93-3	2-Butanone	57	
67-66-3	Chloroform	49	
71-55-6	1,1,1-Trichloroethane	49	
56-23-5	Carbon tetrachloride	48	
71-43-2	Benzene	47	
107-06-2	1,2-Dichloroethane	51	
79-01-6	Trichloroethene	47	
78-87-5	1,2-Dichloropropane	47	
75-27-4	Bromodichloromethane	48	
10061-01-	cis-1,3-Dichloropropene	55	
108-10-1	4-Methyl-2-pentanone	52	
108-88-3	Toluene	48	
10061-02-	trans-1,3-Dichloropropene	44	
79-00-5	1,1,2-Trichloroethane	46	
127-18-4	Tetrachloroethene	46	
591-78-6	2-Hexanone	57	

CLIENT SAMPLE NO.

S062907MVOWB1

Lab Name:		Contract:		
SDG No.: CAB34		Run Sequence: R019141		
Matrix: (SOIL/SED/WATER) Water Lab		Lab Sample ID: <u>S062907MVOWB1</u>		
Sample wt/vo	ol: <u>5.00</u> (g/mL) <u>mL</u>	Lab File ID: <u>B0629006.D</u>		
Level: (LOW/	/MED)	Date Collected:		
<pre>% Moisture:</pre>	not dec.	Date/Time Analyzed:06/29/200712:00		
GC Column:	<u>ZB-624 20m</u> ID: <u>0.18</u> (mm)	Dilution Factor:		
Soil Extract	Volume:(uL)	Soil Aliquot Volume:(uL)		
Heated Purge	e: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q		
124-48-1	Dibromochloromethane	49		
108-90-7	Chlorobenzene	48		
100-41-4 Ethylbenzene		47		
179601-23	m.p-Xvlene	94		

46

45

43

48

79-34-5 Comments:

95-47-6

100-42-5

75-25-2

o-Xylene

Styrene

Bromoform

1,1,2,2-Tetrachloroethane

FORMS SUMMARY

SDG# CAB34

Semivolatiles

2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

SDG No.: CAB34

Run Sequence: R019645

Level: (LOW/MED) NONE

CLIENT SAMPLE NUMBER	S1. (2FP) #	S2 (PHL) #	S3 (NBZ) #	S4 (2FB) #	TOT OUT
(CAB34-009) 15LCMW04SW	63	68	81	72	
(CAB34-007) 15LCMW04DW	39	60	77 .	68	
(CAB34-005) 15LCMW03DW	43	65	75	67	
(CAB34-003) 15LCMW415W	51	67	79	. 67	
(CAB34-001) 15LCMW03SW	44	66 .	85	74	
(S062607MSVWLS) S062607MSVWLS	53	67	87	77.	
(B062607MSVWLS) B062607MSVWLS	48	69	87	76	

				QC LIMITS
S1	(2FP)	=	2-Fluorophenol	20-110
S2	(PHL)	=	Phenol-d5	10-115
S3	(NBZ)	=	Nitrobenzene-d5	40-110
S4	(2FB)	Ξ	2-Fluorobiphenyl	50~100

Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogate diluted out

2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: ____

SDG No.: <u>CAB34</u>

Run Sequence: R019645

NONE Level: (LOW/MED)

CLIENT SAMPLE NUMBER	S5 (TBP) #	S6 (DTR) #	S7 () #	S8 () #	TOT OUT
(CAB34-009)		BC			Ċ.
15LCMW04SW	49	/5	<u>_</u>		0
15LCMW04DW	48	73			0
(CAB34-005) 15LCMW03DW	46	70			0
(CAB34-003) 15LCMW415W	50	7 B			0
(CAB34-001) 15LCMW03SW	54	78			0
(S062607MSVWLS) S062607MSVWLS	70	77			0
(B062607MSVWLS) B062607MSVWLS	61	81			0

S5 (TBP) = 2,4,6-Tribromophenol

S6 (DTR) = Terphenyl-d14

S7 () =

S8 () ==

Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogate diluted out

QC LIMITS 40-125 50-135

3B WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019645</u>	SDG No.: CAB34
BS Lab Sample ID: <u>S062607MSVWLS</u>	
Level: <u>N/A</u>	Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec #	Rec Limit
3 & 4-Methylphenol	20.0	16.71	84	30-110
Bis(2-chloroisopropyl)ether	20.0	16.15	81	35-110
Phenol	20.0	13.83	69	23-98
Bis(2-Chloroethyl)ether	20.0	17.87	89	35-110
2-Chlorophenol	20.0	14.29	71	35-105
1,3-Dichlorobenzene	20.0	11.41	57	30-100
1,4-Dichlorobenzene	20.0	11.58	58	30-100
Benzyl alcohol	20.0	16.93	85	30-110
1,2-Dichlorobenzene	20.0	11.99	60	35-100
2-Methylphenol	20.0	15.07	75	40-110
N-Nitroso-di-n-propylamine	20.0	18.92	95	35-130
Hexachloroethane	20.0	10.55	53	30-95
Nitrobenzene	20.0	18.39	92	45-110
Isophorone	20.0	16	80	50-110
2-Nitrophenol	20.0	11.35	57	40-115
2,4-Dimethylphenol	20.0	9.9	50	30-110
Benzoic acid	20.0	3.3	17	0-125
Bis(2-chloroethoxy)methane	20.0	16.27	81	45-105
2,4-Dichlorophenol	20.0	13.93	70	50-105
1,2,4-Trichlorobenzene	20.0	13.39	67	35-105
Naphthalene	20.0	14.49	72	40-100
4-Chloroaniline	20.0	13.07	65	15-110
Hexachlorobutadiene	20.0	11.44	57	25-105
4-Chloro-3-methylphenol	20.0	15.81	79	45-110
2-Methylnaphthalene	20.0	15.75	79	45-105
Hexachlorocyclopentadiene	20.0	3.86	19	10-49
2,4,6-Trichlorophenol	20.0	11.66	58	50-115
2,4,5-Trichlorophenol	20.0	12.51	63	50-110
2-Chloronaphthalene	20.0	16.81	84	50-105
2-Nitroaniline	20.0	15.55	78	50-115
Dimethylphthalate	20.0	16.96	85	25-125
2,6-Dinitrotoluene	20.0	11.72	59	50-115
Acenaphthylene	20.0	16.63	83	50-105
3-Nitroaniline	20.0	13.82	69	20-125

Column to be used to flag recovery and RPD values with an asterisk \ast Values outside of QC limits

Spike Recovery: _____ out of __68_ outside limits

COMMENTS :

ЗB

WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019645</u>	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S062607MSVWLS</u>	
Level: N/A	Units: ug/L

Analyte Spike Added Found % Rec Rec Limit # 45-110 20.016.44 82 Acenaphthene 20.0 6.48 32 15-140 2,4-Dinitrophenol 62 0-125 20.0 12.3 4-Nitrophenol 85 55-105 20.0 17.02 Dibenzofuran 63 50-120 2,4-Dinitrotoluene 20.0 12.5 20.016.67 83 40-120 Diethylphthalate 85 50-110 20.0 16.95 Fluorene 50-110 86 20.0 17.16 4-Chlorophenyl-phenylether 71 35-120 4-Nitroaniline 20.0 14.19 42 40-130 4,6-Dinitro-2-methylphenol 20.0 8.33 20.0 69 50-110 N-Nitrosodiphenylamine 13.77 20.0 95 55-115 Azobenzene 19.03 82 50-115 20.0 4-Bromophenyl-phenyl ether 16.34 20.0 85 50-110 Hexachlorobenzene 17 65 40-115 Pentachlorophenol 20.013.06 20.0 16.6 83 50-115 Phenanthrene 20.0 82 55-110 Anthracene 16.34 84 20.0 50-115 Carbazole 16.86 79 55-115 20.015.84 Di-n-butylphthalate 89 55-115 Fluoranthene 20.017.82 0 0-125 Benzidine 20.00 Pyrene 20.015.09 75 50-130 62 45-115 20.0 Butylbenzylphthalate 12.42 62 20-110 20,0 3,3'-Dichlorobenzidine 12.49 20.0 79 55-110 Benzo(a)anthracene 15.74 40-125 20.013.55 68 Bis(2-ethylhexyl)phthalate 84 55-110 20.0 16.74 Chrysene 57 35-135 Di-n-octylphthalate 20.0 11.44 76 45-120 Benzo(b)fluoranthene 20.015.29 Benzo(k)fluoranthene 20.0 16.92 85 45-125 20.0 79 55-110 15.88 Benzo(a)pyrene 93 45-125 20.0 18.65 Indeno(1,2,3-cd)pyrene 40-125 96 Dibenzo(a,h)anthracene 20.0 19.19 Benzo(g,h,i)perylene 20.0 19.75 99 40-125

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

4 SEMIVOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO. B062607MSVWLS

Lab Name Laucks Testing Labs	Contract:
	SDG No.: CAB34
Lab File ID: _10717006.D	Lab Sample ID: <u>B062607MSVWLS</u>
Date Analyzed:07/17/2007	Time Analyzed: 13:29
GC Column: <u>RTX-5Sil MS</u> ID: <u>0.25</u> (mm)	Heated Purge: (Y/N) _N
Instrument ID: 5970L	Matrix: Water

	CLIENT	LAB	LAB	DATE	TIME	RUN
	SAMPLE NO.	SAMPLE ID.	FILE ID.	ANALYZED	ANALYZED	SEQUENCE
01	S062607MSVWLS	S062607MSVWLS	L0717007.D	07/17/2007	14:06	R019645
02	15LCMW03SW	CAB34-001	L0717008.D	07/17/2007	14:44	R019645
03	15LCMW415W	CAB34-003	L0717009.D	07/17/2007	15:21	R019645
04	15LCMW03DW	CAB34-005	L0717010.D	07/17/2007	15:59	R019645
05	15LCMW04DW	CAB34-007	L0717011.D	07/17/2007	16:37	R019645
06	15LCMW04SW	CAB34-009	L0717012.D	07/17/2007	17:14	R019645
07						
80						
09						
10						
11				[
12						
13						
14						
15	· · · · · · · · · · · · · · · · · · ·					
16						
17						
18						
19		······				
20						
21						
22						
23						
24						
25						
26						
27	······································					
28						
29				······································		
30						

COMMENTS:

CLIENT SAMPLE NO.

5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

DFTPP071207-1

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: <u>CAL997</u>	SDG No.: CAB34
Lab File ID: L0712001.D	DFTPP Injection Date: 07/12/2007
Instrument ID: 5970L	DFTPP Injection Time: 12:31

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
51	30% to 60% of mass 198	48.5
. 68 .	less than 2% of mass 69	1.5 () 1
69	base peak. 100% relative abundance	100
70	less than 2% of mass 69	0,9()1
127	40% to 60% of mass 198	48.3
197	less than 1% of mass 198	0
198	base peak, 100% relative abundance	100
199	5% to 9% of mass 198	7.4
275	10% to 30% of mass 198	20.9
365	greater than 1% of mass 198	2
441	present but less than mass 443	76.2
442	greater than 40% of mass 198	64.5
443	17% to 23% of mass 442	19.5 ()2

1 - Value is %mass 69 2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD001	SSTD001	L0712003.D	07/12/2007	13:43
02	SSTD040	SSTD040	L0712007.D	07/12/2007	16:13
03	SSTD060	SSTD060	L0712008.D	07/12/2007	16:51
04	SSTD080	SSTD080	L0712009.D	07/12/2007	17:28
05	SSTD005	SSTD005	L0712011.D	07/12/2007	18:43
06	SSTD010	SSTD010	L0712012.D	07/12/2007	19:21
07	SSTD025	SSTD025	L0712013.D	07/12/2007	19:58
08					
09					
10					
11	·				
12					
13					
14	·				
15					
16	· · · · · · · · · · · · · · · · · · ·				
17					
18					
19		· · · · · · · · · · · · · · · · · · ·			
20					
21					
22					

CLIENT SAMPLE NO.

5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

DFTPP071707-1

DECAFLUOROTRIPHENYLPHOSPHINE	(DFTPP)
------------------------------	---------

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019645	SDG No.: CAB34
Lab File ID: L0717003.D	DFTPP Injection Date: 07/17/2007
Instrument ID: 5970L	DFTPP Injection Time: 11:29

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
51	30% to 60% of mass 198	57_8
68	less than 2% of mass 69	1.4 ()1
69	base peak, 100% relative abundance	100
70	less than 2% of mass 69	0.4 ()]
127	40% to 60% of mass 198	49.4
197	less than 1% of mass 198	0
198	base peak, 100% relative abundance	100
199	5% to 9% of mass 198	<u>'7</u>
275	10% to 30% of mass 198	20.3
365	greater than 1% of mass 198	2.1
441	present but less than mass 443	83.1
442	greater than 40% of mass 198	64.1
443	17% to 23% of mass 442	18,1 ()2

1 - Value is %mass 69 2 - Va

2 - Value is% mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILĖ ID	DATE ANALYZED	TIME ANALYZED
01	CCV071707-2	CCV071707-2	L0717004.D	07/17/2007	11:53
02	B062607MSVWLS	B062607MSVWLS	L0717006.D	07/17/2007	13:29
03	S062607MSVWLS	S062607MSVWLS	L0717007.D	07/17/2007	14:06
04	15LCMW03SW	CAB34-001	L0717008.D	07/17/2007	14:44
05	15LCMW415W	CAB34-003	L0717009.D	07/17/2007	15:21
06	15LCMW03DW	CAB34-005	L0717010.D	07/17/2007	15:59
07	15LCMW04DW	CAB34-007	L0717011.D	07/17/2007	16:37
08	15LCMW04SW	CAB34-009	L0717012.D	07/17/2007	17:14
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

8

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Laucks Testing Labs	Contract:	
Run Sequence: R019645	SDG No.: CAB34	
Client Sample No.: <u>CCV071707-2</u>	Date Analyzed:	07/17/2007
Lab File ID (Standard): <u>L0717004.D</u>	Time Analyzed:	11:53
Instrument ID: 5970L	GC Column: RTX-5Sil MS	ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	15197	7.04	49287	8,69	25407	11.04
	UPPER LIMIT	30394	7.54	98574	9,19	50814	11.54
	LOWER LIMIT	7598.5	6.54	24643.5	8,19	12703.5	10.54
	CLIENT SAMPLE NO.						
01	B062607MSVWLS	14238	7.04	49561	8.69	24884	11.04
02	S062607MSVWLS	13789	7.04	45616	8.69	22874	11,04
03	15LCMW03SW	13626	7.04	47509	8.69	23028	11.04
04	15LCMW415W	13607	7.04	47610	8.69	23392	11.04
05	15LCMW03DW	13721	7.03	48113	8.69	23534	11.04
06	15LCMW04DW	13982	7.04	49285	8.69	23393	11.04
07	15LCMW04SW	14256	7.04	49511	8.69	24212	11.04
08							
09							
10							
11							
12	·	E.					
13							
14							
15							
16							
17							
18	· · · · · · · · · · · · · · · · · · ·						
19							
20							
21							
22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits

8

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Laucks Testing Labs	Contract:	
Run Sequence: R019645	SDG No.: CAB34	
Client Sample No.: <u>CCV071707-2</u>	Date Analyzed:	07/17/2007
Lab File ID (Standard): <u>L0717004.D</u>	Time Analyzed:	11:53
Instrument ID: 5970L	GC Column: RTX-5Sil MS	ID: 0.25 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	36467	13.05	21923	17.58	13705	21.23
	UPPER LIMIT	72934	13.55	43846	18.08	27410	21.73
	LOWER LIMIT	18233.5	12.55	10961.5	17.08	6852,5	20.73
	CLIENT SAMPLE NO.						
01	B062607MSVWLS	36597	13.05	21726	17.57	12255	21.23
02	S062607MSVWLS	33536	13.05	20097	17.58	12086	21.23
03	15LCMW03SW	32828	13.05	19702	17.57	12022	21.21
04	15LCMW415W	33497	13.05	20117	17.56	12131	21,21
05	15LCMW03DW	34483	13.05	20213	17.56	12423	21.21
06	15LCMW04DW	34260	13.05	20767	17.56	12568	21.21
07	15LCMW04SW	34973	13.05	20619	17.56	12702	21.21
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22 [

IS4 (PHN) = Phenanthrene-dl0
IS5 (CRY) = Chrysene-dl2
IS6 (PRY) = Perylene-dl2
AREA UPPER LIMIT = + 100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT
Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits

CLIENT SAMPLE NO.

15LCMW03SW

			······································	
Lab Name: _	Laucks Testing Labs	Conti	ract:	
SDG No.: CA	B34	Run Sequence: <u>R019645</u>		
Matrix: (SO)	IL/WATER) Water	Lab Sample ID: CAB34-001		
Garan I.a. sate (as	-1 1000 0 (σ/r^{2}) m^{1}	терт		
Sample wt/vo	от: <u>товото (</u> душ <u>ь) ще </u>	цар і	ATE ID: <u>H0/1/000.D</u>	
Level: (LOW	/MED)	Date	Collected: 06/22/2007	
% Moisture:	Decanted: (Y/N) N	Date	Extracted: 06/26/2007	·
Concentrate	d Extract Volume: <u>1000 (</u> uL)	Date	Analyzed: 07/17/2007	
Injection V	olume:(uL)	Dilut	ion Factor: <u>1.0</u>	
GPC Cleanup	: (Y/N) <u>N</u> pH:	Extra	action: (Type) <u>CONT</u>	
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol		4.7	U
108-60-1	Bis(2-chloroisopropyl)ether		4.7	U
108-95-2	Phenol		4.7	Ŭ
111-44-4	Bis(2-Chloroethyl)ether		4.7	Ū
95-57-в	2-Chlorophenol	× 11.0 101 01# 1001-1010	4.7	U
541-73-1	1,3-Dichlorobenzene		4.7	U
106-46-7	1,4-Dichlorobenzene		4.7	U
100-51-6	Benzyl alcohol		4.7	U
95-50-1	1,2-Dichlorobenzene		4.7	υ
95-48-7	2-Methylphenol		4.7	υ
621-64-7	N-Nitroso-di-n-propylamine		4.7	U
67-72-1	Hexachloroethane		4.7	υ
98-95-3	Nitrobenzene		4.7	U
78-59-1	Isophorone		4.7	U
88-75-5	2-Nitrophenol		4.7	U
105-67-9	2,4-Dimethylphenol		4.7	U
65-85-0	Benzoic acid		9.4	U
111-91-1	Bis(2-chloroethoxy)methane		4.7	Ũ
120-83-2	2,4-Dichlorophenol		4.7	U
120-82-1	1,2,4-Trichlorobenzene		4.7	U

91-20-3

106-47-8

87-68-3

59-50-7

91-57-6

77-47-4

Naphthalene

4-Chloroaniline

Hexachlorobutadiene

2-Methylnaphthalene

4-Chloro-3-methylphenol

Hexachlorocyclopentadiene

4.7

4.7

4.7

4.7

4.7

4.7

U

U

U

U

U

U

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW03SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>CAB34-001</u>
Sample wt/vol: <u>1060.0</u> (g/mi) <u>ни</u>	Lab File ID: <u>H0717008.D</u>
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Γ.Q
88-06-2	2,4,6-Trichlorophenol	4.7	U
95-95-4 .	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	υ
88-74-4	2-Nitroaniline	4.7	U
131-11-3	Dimethylphthalate	4.7	υ.
606-20-2	2,6-Dinitrotoluene	4.7	υ
208-96-8	Acenaphthylene	4.7	Ŭ
99-09-2	3-Nitroaniline	4.7	U
83-32-9	Acenaphthene	4.7	U
51-28-5	2,4-Dinitrophenol	9.4	υ
100-02-7	4-Nitrophenol	4.7	υ
132-64-9	Díbenzofuran	4.7	υ
121-14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	U
7005-72-3	4-Chlorophenyl-phenylether	4.7	U
100-01-6	4-Nitroaniline	4.7	U
534-52-1	4,6-Dinitro-2-methylphenol	4.7	Ū
86-30-6	N-Nitrosodiphenylamine	4.7	U
122-66-7	Azobenzene	4.7	υ
101-55-3	4-Bromophenyl-phenyl ether	4.7	υ
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	U
85-01-8	Phenanthrene	4.7	U
120-12-7	Anthracene	4.7	U
86-74-8	Carbazole	4.7	U
84-74-2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	U

CLIENT SAMPLE NO.

15LCMW03SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: R019645
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-601</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717008.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	υ
91-94-1	3,3'-Dichlorobenzidine	4.7	ΰ
56-55-3	Benzo(a)anthracene	4.7	ប
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	υ
218-01-9	Chrysene	4.7	U
117-84-0	Di-n-octylphthalate	4.7	U
205-99-2	Benzo(b)fluoranthene	4.7	U
207-08-9	Benzo(k)fluoranthene	4.7	υ
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	Ū
53-70-3	Dibenzo(a,h)anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	Ŭ

Comments:

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW415W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717009.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	4.7	U
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	Ŭ
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	U
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	υ
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	U
65-85-0	Benzoic acid	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	4.7	ΰ
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91~20-3	Naphthalene	4.7	U
106-47-B	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	U
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

15LCMW415W

Lab Name: <u>I</u>	aucks Testing Labs	Contr	act:	
SDG No.: <u>CAB</u>	34	Run S	equence: <u>R019645</u>	
Matrix: (SOI	L/WATER)Water	Lab S	ample ID: <u>CAB34-003</u>	
Sample wt/vo	1: <u>1060.0 (g/mL) mL</u>	Lab F	'ile ID: <u>L0717009.D</u>	
Level: (LOW/	MED)	Date	Collected: _06/22/2007	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date	Extracted: 06/26/2007	
Concentrated	Extract Volume: <u>1000 (</u> uL)	Date	Analyzed: 07/17/2007	
Injection Vo	lume:(uL)	Dilut	ion Factor: <u>1.0</u>	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Extra	ction: (Type) <u>CONT</u>	
	• · · · · · · · · · · · · · · · · · · ·		1	p
CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol		4.7	U
95-95-4	2,4,5-Trichlorophenol		4.7	U
91-58-7	2-Chloronaphthalene		4.7	U
88-74-4	2-Nitroaniline		4.7	U
131-11-3	Dimethylphthalate		4.7	υ
606-20-2	2,6-Dinitrotoluene		4.7	Ū
208-96-8	Acenaphthylene		4.7	U
99-09-2	3-Nitroaniline		4.7	υ

	· · · · · · · · · · · · · · · · · · ·		
88-74-4	2-Nitroaniline	4.7	U .
131-11-3	Dimethylphthalate	4.7	υ
606-20-2	2,6-Dinitrotoluene	4.7	υ
208-96-8	Acenaphthylene	4.7	U
99-09-2	3-Nitroaniline	4.7	U
83-32-9	Acenaphthene	4.7	υ
51-28-5	2,4-Dinitrophenol	9.4	υ
100-02-7	4-Nitrophenol	4.7	U
132~64-9	Dibenzofuran	4.7	U
121-14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	U
7005-72-3	4-Chlorophenyl-phenylether	4.7	U
100-01-6	4-Nitroaniline	4.7	U
534-52-1	4,6-Dinitro-2-methylphenol	4.7	U
86-30-6	N-Nitrosodiphenylamine	4.7	U
122-66-7	Azobenzene	4.7	U
101-55-3	4-Bromophenyl-phenyl ether	4.7	U
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	U
85-01-8	Phenanthrene	4.7	U
120-12-7	Anthracene	4.7	U
86-74-8	Carbazole	4.7	U
84-74-2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	U

CLIENT SAMPLE NO.

1. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW415W

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 1060.0 (g/mL)mL	Lab File ID: L0717009.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo(a)anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4. "7	U
218-01-9	Chrysene	4.7	ប
117-84-0	Di-n-octylphthalate	4.7	U
205-99-2	Benzo(b)fluoranthene	4.7	U
207-08-9	Benzo(k)fluoranthene	4.7	U
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4 , 7	U
191-24-2	Benzo(g,h,i)perylene	4.7	U

Comments:
CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW03DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAE34-005</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717010.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>
	CONCENTRATION INTEG.

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
108-39-4/	3 & 4-Methylphenol	4.7	υ
108-60-1	Bis(2-chloroisopropyl)ether	. 4.7	U
108-95-2	Phenol	4.7	U
1.1.1 - 4.4 - 4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	U
541-73-1	l,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	υ
67-72-1	Hexachloroethane	4.7	ប
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	Ŭ
105-67-9	2,4-Dimethylphenol	4.7	U
65-85-0	Benzoic acid	9.4	υ
111-91-1	Bis(2-chloroethoxy)methane	4.7	Ŭ
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	υ
87-68-3	Hexachlorobutadiene	4.7	υ
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	υ
77-47-4	Hexachlorocyclopentadiene	4.7	υ

CLIENT SAMPLE NO.

......

.

15LCMW03DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: R019645
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAB34-005
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717010.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	4.7	U
95-95-4	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	U
88-74-4	2-Nitroaniline	4.7	U
131-11-3	Dimethylphthalate	4.7	U
606-20-2	2,6-Dinitrotoluene	4.7	U
208-96-8	Acenaphthylene	4.7	υ
99-09-2	3-Nitroaniline	4.7	υ
83-32-9	Acenaphthene	4.7	U
51-28-5	2,4-Dinitrophenol	9.4	Ū
100-02-7	4-Nitrophenol	4.7	υ
132-64-9	Dibenzofuran	4.7	U
121-14-2	2,4-Dinitrotoluene	4.7	υ
84-66-2	Diethylphthalate	4.7	υ
86-73-7	Fluorene	4.7	υ
7005-72-3	4-Chlorophenyl-phenylether	4.7	U
100-01-6	4-Nitroaniline	4.7	υ
534-52-1	4,6-Dinitro-2-methylphenol	4.7	υ
86-30-6	N-Nitrosodiphenylamine	4.7	U
122-66-7	Azobenzene	4.7	U
101-55-3	4-Bromophenyl-phenyl ether	4.7	υ
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	U
85-01-8	Phenanthrene	4.7	U
120-12-7	Anthracene	4.7	υ
86-74-8	Carbazole	4.7	U
84-74-2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	U

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW03DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717010.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	Ŭ
129-00-0	Pyrene	4.7	Ŭ
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	υ
56-55-3	Benzo(a)anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	U
218-01-9	Chrysene	4.7	Ŭ
117-84-0	Di-n-octylphthalate	4.7	υ
205-99-2	Benzo(b)fluoranthene	4.7	U_
207-08-9	Benzo(k)fluoranthene	4.7	U
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	U

Comments:

CLIENT SAMPLE NO. 15LCMW04DW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequènce: <u>R019645</u>
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717011.D
Level: (LOW/MED)	Date Collected;06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
108-39-4/	3 & 4-Methylphenol	4.7	υ
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	U
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	. n
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	U
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	υ
65-85-0	Benzoic acid	9.4	υ
111-91-1	Bis(2-chloroethoxy)methane	4.7	υ
120-83-2	2,4-Dichlorophenol	4.7	υ
120-82-1	1,2,4-Trichlorobenzene	4.7	υ
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	U
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name: _	Laucks Testing Labs	Contract:
SDG No.: CAL	B34	Run Sequence: <u>R019645</u>
Matrix: (SO)	IL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vo	ol: <u>1060.0 (g/mL) mL</u>	Lab File ID: L0717011.D
Level: (LOW,	/MED)	Date Collected: 06/22/2007
% Moisture:	Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated	d Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Vo	olume:(uL)	Dilution Factor:1.0
GPC Cleanup	: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q
88-06-2	2,4,6-Trichlorophenol	4.7 U
05-95-4	2.4.5-Trichlorophenol	4 7 IT

88-06-2	2,4,6-Trichlorophenol	4.7	U
95-95-4	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	ΰ
88-74-4	2-Nitroaniline	4.7	U
131-11-3	Dimethylphthalate	4.7	U
606-20-2	2,6-Dinitrotoluene	4.7	U
208-96-8	Acenaphthylene	4.7	U
99-09-2	3-Nítroaniline	4.7	U
83-32-9	Acenaphthene	4.7	υ
51-28-5	2,4-Dinitrophenol	9.4	U
100-02-7	4-Nitrophenol	4.7	U
132-64-9	Dibenzofuran	4.7	U
121-14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	υ
7005-72-3	4-Chlorophenyl-phenylether	4.7	Ŭ
1.00-01-6	4-Nitroaniline	4.7	υ
534-52~1	4,6-Dinitro-2-methylphenol	4.7	U
86-30-6	N-Nitrosodiphenylamine	4.7	ΰ
122-66-7	Azobenzene	4.7	U
101-55-3	4-Bromophenyl-phenyl ether	4.7	υ
118-74-1	Hexachlorobenzene	4.7	υ
87-86-5	Pentachlorophenol	4.7	υ
85-01-8	Phenanthrene	4.7	Ŭ
120-12-7	Anthracene	4.7	Ŭ
86-74-8	Carbazole	4.7	Ŭ
84-74-2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	U

FORM I SV

CLIENT SAMPLE NO. 15LCMW04DW

Lab Name: Laucks Testing Labs Contract: ---Run Sequence: <u>R019645</u> SDG No.: CAB34 Matrix: (SOIL/WATER) <u>Water</u> Lab Sample ID: <u>CAB34-007</u> Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u> Lab File ID: L0717011.D Date Collected: 06/22/2007 Level: (LOW/MED) % Moisture: _____ Decanted: (Y/N) <u>N</u>____ Date Extracted: 06/26/2007 Concentrated Extract Volume: <u>1000</u>(uL) Date Analyzed: _07/17/2007 Dilution Factor: 1.0 Injection Volume: _____(uL) GPC Cleanup: (Y/N) <u>N</u> pH:_____ Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo(a)anthracene	4.7	U
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	υ
218-01-9	Chrysene	4.7	U
117-84-0	Di-n-octylphthalate	4.7	υ
205-99-2	Benzo(b)fluoranthene	4.7	υ
207-08-9	Benzo(k)fluoranthene	4.7	U
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4.7	υ
191-24-2	Benzo(g,h,i)perylene	4.7	U

Comments:

CLIENT SAMPLE NO.

15LCMW04SW

Lab Name: <u> </u>	Laucks Testing Labs	Contract:	
SDG No.: CAE	334	Run Sequence: <u>R019645</u>	
Matrix: (SOI	IL/WATER) Water	Lab Sample ID: <u>CAB34-009</u>	
Sample wt/vo	bl: <u>1060.0 (g/mL) mL</u>	Lab File ID: <u>L0717012.D</u>	
Level: (LOW/	/MED)	Date Collected: 06/22/2007	
<pre>% Moisture:</pre>	Decanted: (Y/N) <u>N</u>	Date Extracted:06/26/2007	
Concentrated	l Extract Volume: <u>1000 (</u> uL)	Date Analyzed: 07/17/2007	
Injection Vo	olume:(uL)	Dilution Factor: <u>1.0</u>	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	4.7	U
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	U
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
	······································		

111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	U
541-73-1	1,3-Dìchlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	U
95-48-7	2-Methylphenol	4.7	υ
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	U
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	U
65-85-0	Benzoic acid	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	4.7	U
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	U
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	U

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW04SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>CAE34-009</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717012.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: _07/17/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
		(ug/L or ug/kg) <u>ug/L</u>	
108-39-4/	3 & 4-Methylphenol	4.7	U
108-60-1	Bis(2-chloroisopropyl)ether	4.7	U
108-95-2	Phenol	4.7	U
111-44-4	Bis(2-Chloroethyl)ether	4.7	U
95-57-8	2-Chlorophenol	4.7	U
541-73-1	1,3-Dichlorobenzene	4.7	U
106-46-7	1,4-Dichlorobenzene	4.7	U
100-51-6	Benzyl alcohol	4.7	U
95-50-1	1,2-Dichlorobenzene	4.7	υ
95-48-7	2-Methylphenol	4.7	U
621-64-7	N-Nitroso-di-n-propylamine	4.7	U
67-72-1	Hexachloroethane	4.7	υ
98-95-3	Nitrobenzene	4.7	U
78-59-1	Isophorone	4.7	U
88-75-5	2-Nitrophenol	4.7	U
105-67-9	2,4-Dimethylphenol	4.7	U
65-85-0	Benzoic acid	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	4.7	U
120-83-2	2,4-Dichlorophenol	4.7	U
120-82-1	1,2,4-Trichlorobenzene	4.7	U
91-20-3	Naphthalene	4.7	U
106-47-8	4-Chloroaniline	4.7	U
87-68-3	Hexachlorobutadiene	4.7	ប
59-50-7	4-Chloro-3-methylphenol	4.7	U
91-57-6	2-Methylnaphthalene	4.7	U
77-47-4	Hexachlorocyclopentadiene	4.7	Ŭ

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

15LCMW04SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: CAE34-009
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717012.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-06-2	2,4,6-Trichlorophenol	4.7	υ
95-95-4	2,4,5-Trichlorophenol	4.7	U
91-58-7	2-Chloronaphthalene	4.7	Ŭ
88-74-4	2-Nitroaniline	4.7	U
131-11-3	Dimethylphthalate	4.7	U
606-20-2	2,6-Dinitrotoluene	4.7	U
208-96-8	Acenaphthylene	4.7	U
99-09-2	3-Nitroaniline	4.7	U
83-32-9	Acenaphthene	4.7	U
51-28-5	2,4-Dinitrophenol	9.4	U
100-02-7	4-Nitrophenol	4.7	U
132-64-9	Dibenzofuran	4.7	U
121~14-2	2,4-Dinitrotoluene	4.7	U
84-66-2	Diethylphthalate	4.7	U
86-73-7	Fluorene	4.7	U
7005-72-3	4-Chlorophenyl-phenylether	4.7	υ
100-01-6	4-Nitroaniline	4.7	Ŭ
534-52-1	4,6-Dinitro-2-methylphenol	4.7	U
86-30-6	N-Nítrosodíphenylamine	4.7	U
122-66-7	Azobenzene	4.7	U
101-55-3	4-Bromophenyl-phenyl ether	4.7	U
118-74-1	Hexachlorobenzene	4.7	U
87-86-5	Pentachlorophenol	4.7	υ
85-01-8	Phenanthrene	4.7	υ
120-12-7	Anthracene	4.7	U
86-74-B	Carbazole	4.7	U
84 - 74 - 2	Di-n-butylphthalate	4.7	U
206-44-0	Fluoranthene	4.7	U

CLIENT SAMPLE NO.

15LCMW04SW

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: R019645
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717012.D
Level: (LOW/MED)	Date Collected: 06/22/2007
% Moisture: Decanted: (Y/N) N	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	4.7	U
129-00-0	Pyrene	4.7	U
85-68-7	Butylbenzylphthalate	4.7	U
91-94-1	3,3'-Dichlorobenzidine	4.7	U
56-55-3	Benzo (a) anthracene	4.7	υ
117-81-7	Bis(2-ethylhexyl)phthalate	4.7	U
218-01-9	Chrysene	4.7	U
117-84-0	Di-n-octylphthalate	4.7	ប
205-99-2	Benzo(b)fluoranthene	4.7	U
207-08-9	Benzo(k)fluoranthene	4.7	U
50-32-8	Benzo(a)pyrene	4.7	U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U
53-70-3	Dibenzo(a,h)anthracene	4.7	U
191-24-2	Benzo(g,h,i)perylene	4.7	U

Comments:

01	: Testing L	abs							Contra	 Ц									
2019645					والمحافظة والمحافظ				SDG NO		CAB34								
Э70L									Calibra	atio	n Dates:	i	07/12/2	. 200	2	1:13			
N) N			1						Calibra	atio.	n Times:	1	07/12/2	007	2	1:13		ļ	
5Síl MS							0.25 (1	(۳m)	Mean %	RSD	11.8	4							
Std RF I Std RF 2 S 1 2 2 2 3	Std RF 2 S	RF 2	ത	td 3	RF 3	Std 4	RF 4	std 5	RF 5	std 6	RF 6	Std 7	RF 7 5	td RF		L EA	RSD :	r ² OD	E E
1 1.188E+00 10 1.598E+00	10 1.598E+00	1.598E+00	· 1	25	1.416E+00	40	1.317E+00	60	1.165E+00	80	1.105E+00					298]	4.24		$ \leq$
1 2.503E+00 5 3.170E+00	5 3.170E+00	3.170E+00		2	2.984E+00	25	2.842E+00	40	2.678E+00	60	2.494E+00	80	2.477E+0		2	.736	9.95		A
1 1.619E+00 5 2.415E+00	5 2.415E+00	2.415E+00		2	2.263E+00	25	2.062E+00	40	1.966E+00	60	1.790E+00	80	I.872E+0			998	3.76		\triangleleft
1 1.376E+00 5 2.066E+00	5 2.066E+00	2.066E+00		<u>_</u>	1.957E+00	25	1.797E+00	40	1.675E+00	99	1.572E+00	80	1.542E+0		1	712	4.22		<.
1 1.189E+00 5 1.719E+00 1	5 1.719E+00 1	1.719E+00 1	-	ЪŢ	1.612E+00	25	1.536E+00	40	1.480E+00	60	1.396E+00	80	1.375E+0		-	473	1.77		· · ·
1 1.369E+00 5 2.072E+00 10	5 2.072E+00 10	2.072E+00 10	2	_1	1.890E+00	25	1.790E+00	40	1.733E+00	60	1.625E+00	80	1.631E+0		-	730]	2.87		~
1 1.388E+00 5 2.161E+00 10	5 2.161E+00 10	2.161E+00 10	2	1	1.952E+00	25	1.794E+00	40	1.763E+00	3	1.674E+00	80	1.653E+0		-	769	3.78		
1 7.940E-01 5 1.198E+00 10	5 1.198E+00 10	1.198E+00 10	<u></u>		1.116E+00	25	1.054E+00	40	1.022E+00	60	9.089E-01	80	9.020E-01		0	999]	3.92		
1 1.296E+00 5 2.009E+00 10	5 2.009E+00 10	2.009E+00 10	2		1.865E+00	25	1.683E+00	4	1.613E+00	99	1.500E+00	80	1.465E+0		-	633]	4.96		
1 1.01/E+00 3 1.593E+00 10 1 9.660E_01 10 1.307E+00 25	10 1 303E+00 10	1 3075+00 10	2 2	1	1.2285+00	219	1.445E+00	909	1.340E+00	30	1.263E+00	8	1.251E+0	_		348 1	4.46		~
1 6.079E-01 5 8.859E-01 10	5 8.859E-01 10	8.859E-01 10	10	1	8.309E-01	25	7.699E-01	40	7.500E-01	09	7.070E-01	80	7.120E-01			752	06-T		- <
1 3.939E-01 5 5.899E-01 10	5 5.899E-01 10	5.899E-01 10	Ξ		5.609E-01	25	5.320E-01	40	5.019E-01	60	5.000E-01	80	5.099E-01		0	513]	12.07		1
1 7.649E-01 5 1.057E+00 10	5 1.057E+00 10	1.057E+00 10	2	T	1.054E+00	25	9.509E-01	40	8.730E-01	60	8.510E-01	80	8.380E-01		0	913 1	2.24		7
1 1.270E-01 5 1.360E-01 10	5 1.360E-01 10	1.360E-01 10	1		1.350E-01	25	1.450E-01	40	1.739E-01	60	1.690E-01	80	1.790E-01		0	.152 1	4.02		<
1 3.429E-01 5 5.669E-01 10	5 5.669E-01 1(5.669E-01 1(Ξ	T	5.260E-01	25	4.990E-01	40	4.670E-01	60	4.580E-01	80	4.540E-01		0	473	4.88		<
5 1.110E-01 10 1.600E-01 25	10 1.600E-01 25	1.600E-01 25	5	T	1.790E-01	40	2.200E-01	60	2.290E-01	80	2.509E-01				0	192	0	999.	\circ
I 5.220E-01 5 7.390E-01 10	5 7.390E-01 10	7.390E-01 10	2		7.210E-01	25	6.530E-01	40	6.010E-01	60	5.770E-01	80	5.730E-01		0	627 1	2.90		₹,
1 2.960E-01 5 4.460E-01 10	5 4.460E-01 10	4.460E-01 10	10		4.449E-01	25	4.100E-01	40	3.910E-01	60	3.800E-01	80	3.770E-01		0	392]]	3.02		A
1 3.790E-01 5 5.479E-01 10	5 5.479E-01 10	5.479E-01 10	=		5.040E-01	25	4.670E-01	40	4.490E-01	9	4.350E-01	80	4.379E-01		0	460 1	1.75		\leq
1 1.133E+00 5 1.557E+00 10	5 1.557E+00 10	1.557E+00 10	2	_	1.445E+00	25	1.318E+00	40	1.239E+00	60	1.198E+00	80	1.179E+0			296 1	1.96		₹
1 4.610E-01 5 6.589E-01 10	5 6.589E-01 10	6.589E-01 10	Ξ.	J	6.390E-01	25	5.839E-01	40	5.559E-01	60	5.500E-01	80	5.320E-01		0	569 1	1.72		\leq
1 2.370E-01 5 3.129E-01 10	5 3.129E-01 10	3.129E-01 10	2	T	2.890E-01	25	2.730E-01	40	2.599E-01	99	2.509E-01	80	2.550E-01		0	268	9.56		<
1 3.150E-01 5 4.729E-01 10	5 4.729E-01 10	4.729E-01 10	10		4.790E-01	25	4.449E-01	40	4.160E-01	60	4.000E-01	80	3.899E-01		0	417	3.57		\leq

6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Eq Ty = Equation Type

Q=Quadratic, L=Linear, A=Average

#

Page 1 of 4

FORM VI SV

* SPCCs

					Eq	K	A	А	A	A	А	A	А	A	<	K	Ľ	A	A	<	Α	Ą	¥	V	Y	Α	Α	A	Å		
					r ² COD										Ĭ		0.999														
					ŝRSD	2.06	0.27	7.85	5.34	2.64	2.70	4.39	4.72	3.14	1.38	4.38		0.34	4.11	3.54	3.87	4.64	5.40	5.72	4.86	1.78	1.95	2.35	4.10		
		1:13	1:13		RF	780 1	428 1	493	541 1	524 1	489 2	754 1	418 4	396 1	410 4	473 1	068	167 1	067 1	466 8	779 1	611 1	800 1	389 (076 1	911 1	504 1	321 1	372 1		
	Ċ	5	2			0	Ó	Ö	0	I.	0	1.	0	2	Ó		0		5	0	1		Ó	0	Ó	0	1	0	0		
					RF 8																										
		/2007	/2007		std 8					((2						-					Ĭ			
		7/12/	7/12,		RF 7	049E-0			510E-0	415E+(579E+(229E+(351E+(200E-00		868E+(405E+(0-3600			10E-0	468E+C	(40E-0	80E-0		
		0			std 7	80 7.(80 b.4	80 1.4		80 1.		80 2.		80 1.	80 8.2		80 1.3			80 I.4	80 7.0			80 9.1	80 1.4	80 3.1	80 3.6		
76	-	tes:	mes:	11.87	9	E-01	E-01	E-01	E-01	E+00	E-01	E+00	E-01	E+00	E-01	E+00	E-02	E-01	E+00	E-01	E+00	E+00	E-01	E-01		E-01	6+00	E-01	E-01		
		on Da	m Ti	ି । ଅ	RF	7.160	4.749	4.970	5.360	1.408]	4.910	1.582]	4.040	2.174]	3.970	1.326	7.900	1.760	1.868]	4.600	1.493]	1.4151	7.080	3.680		8.840	1.426	3.010	3.319		
act:	· ·	ratio	ratic	NSI W	Std 6	60	80	80	. 6	09	80	99	80	09 (0	80) 60	60	80	09 (80	80) 60	60	80		60	60	99	60		
Contr Sha M		Calib	Calib	Mean	RF 5	7.400E-01	4.589E-01	4.910E-01	5.370E-01	1.480E+00	4.790E-01	(.707E+00	4.020E-01	2.365E+00	3.910E-01	1.451E+00	8.200E-02	1.729E-01	2.030E+00	4.630E-01	I.534E+00	.554E+00	7.780E-01	3.590E-01	8,600E-02	8.880E-01	.460E+00	3.160E-01	3.590E-01		
				(um)	Stà 5	40	60	60	40	40	60	40	60	40	60	40	40	60	40	60	60	40	40	60	80	40	40	40	40		
				0.25 (RF 4	3.040E-01	I.659E-01	5.260E-01	5.080E-01	.489E+00	1.980E-01	.851E+00	I.210E-01	.417E+00	1.040E-01	.483E+00	7.000E-02	.850E-01	.122E+00	889E-01	.694E+00	.620E+00	'.969E-01	.860E-01	.100E-02	.229E-01	.534E+00	.290E-01	.869E-01		
					Std 4	25 8	40 4	40	25	25 1	40	25 1	40 4	25 2	40 4	25 1	25	40	25 2	40 4	40]	25 1	25 7	40	60	25 5	25 1	25 3	25 3		
		****		i ė	RF 3	.809E-01	.989E-01	,440E-01	.179E-01	.684E+00	.070E-01	082E+00	.379E-01	655E+00	.260E-01	675E+00	.500E-02	.729E-01	335E+00	.099E-01	844E+00	881E+00	.369E-01	.140E-01	.200E-02	.679E-01	635E+00	520E-01	.190E-01		
					Std 3	10 8	25 3	25 5	10 6	10	25 5	10 2	25 4	10 2	25 4	10	10 5	25 1	10 2	25 5	25 1.	1- 	10 9	25 4	40 8	10 9	10 1.	10	10 4		
							RF 2	269E-01	709E-01	540E-01	470E-01	876E+00	889E-01	D56E+00	460E-01	334E+00	370E-01	319E+00	100E-02	580E-01	539E+00	799E-01)66E+00	983E+00	969E-01	260E-01	100E-02)82E+00	792E+00	800E-01	480E-01
S					td 2	5 9.	10 3.	10 4.	5 6.	5 1.8	10 4.	5 2.(10 4.	5 2.9	10 4.	5 1.8	5 4.	10 1.	5 2	10 4.	10 2.(5	5 9.	10 4	25 7.	5 1.(5 1.7	5 3.	5 4.		
ng Lab			N		-1	0E-01	DE-01	9E-01	9E-01	3E+00	0E-01)E+00	9E-01	7E+00	0E-01	5E+00)E-01	tE+00	ЭЕ-01)E+00	5E+00)E-01	0E-01	9E-02)E-01	5E+00	DE-01	JE-01		
lesti 9645		71	ł	I MS	RF	6.84(3.97(4 44	3.89	1.313	4.700	1.42(3.98	1.997	4.03(1.205		1.36	1.704	3.939	2.040	1.415	6.79(3.82(5.799	7.22	1.215	2.54(2.91(
cks] R019		26.7((N/Λ)		std 1		5	5			S	,	2		5	-		S.		5	5	-	-	2	2						
Lab Name: <u>Lau</u> Run Semience:		Instrument ID:	Heated Furge:	GC Column: <u>RTX</u>	Analyte	Methylnaphthalene	exachlorocyclopentadiene	4,6-Trichlorophenol	4,5-Trichlorophenol	Chloronaphthalene	Nitroaniline	unethylphthalate	5-Dinitrotoluene	senaphthylene	Nitroaniline	cenaphthene	4-Dinitrophenol	Nitrophenol	benzofuran	4-Dinitrotoluene	ethylphthalate	uorene	Chlorophenyl-phenylether	Nitroaniline	5-Dinitro-2-methylphenol	Nitrosodiphenylamine	robenzene	Bromophenyl-phenyl ether	xachlorobenzene		

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

₩ * SPCCs

Page 2 of 4

FORM VI SV

SUM - 70

6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

р Д Ϋ́L \circ < < < ≮ < \triangleleft ¢ K ¢ < ≺ < ∢ ≮ < \triangleleft < < ≺ К, < ∢ 1.000 COD ₽ F 13.67 12.45 11.10 %RSD 11.89 14.13 11.83 13.29 11.08 1.824 14.28 0.483 12.80 13.34 13.37 11.69 1.018 10.87 1.396 12.14 10.29 1.331 14.86 1.123 14.45 8.70 5.49 8.77 3.91 21:13 1.083 21:13 1.726 1.301 0.847 0.857 0.458 2.565 2.007 1.811 1.298 1.513 1.302 2.477 1.561 1.669 1.528 0.136 $\mathbb{R}_{\mathbb{F}}$ ω RF 07/12/2007 07/12/2007 SEd ω 1.462E+0 1.416E+0 1.181E+0 1.406E+0 1.715E+0 4.709E-01 1.226E+0 1.535E+0 2.210E+0 9.319E-01 80 1.535E+0 1.281E+0 Ŀ RF std 80 80 80 80 80 80 80 80 80 80 80 r 11.87 Calibration Times: Calibration Dates: 1.493E+00 1.369E+00 1.271E+00 1.684E+00 1.399E+00 1.175E+00 2.342E+00 1.212E+00 1.544E+008.809E-01 1.429E+00 1.194E+00 2.895E+00 1.815E+00 1.598E+00 1.574E+00 1.329E+00 4.630E-01 4.880E-01 1.668E+00 L.253E+00 1.650E-01 7.960E-01 CAB34 ω RF Mean % RSD: 60 SEd 60 60 60 60 80 80 60 80 8 60 60. 80 60 80 60 80 80 80 80 80 60 80 Contract: SDG No.: 2.527E+00 1.522E+00 1.558E+00 1.434E+00 1.198E+00 1.350E+00 1.822E+00 1.450E+00 1.635E+00 1.242E+00 1.089E+00 1.388E+00 2.691E+00 1.801E+00 1.572E+00 1.163E+00 40 4.620E-01 1.495E+00 1.292E+00 8.790E-01 9.030E-01 4.639E-01 1.570E-01 ŋ Rч 60 40 60 60 40 40 40 40 60 40 60 40 60 60 60 60 60 40 (mm) std 3 40 40 40 1.380E+00 1.842E+00 2.586E+00 1.031E+00 1.419E+00 2.714E+00 2.019E+00 1.561E+00 9.490E-01 1.609E+00 1.642E+00 1.418E+00 1.187E+00 1.315E+00 1.535E+00 1.386E+00 9.210E-01 4.620E-01 1.605E+00 1.117E+00 1.893E+00 4.819E-01 0.25 1.540E-01 4 RF 25 25 std 40 25 40 25 40 40 40 4 25 25 40 25 25 40 40 40 25 25 25 40 25 1.695E+00 I.452E+00 1.477E+00 2.734E+00 1.720E+00 2.003E+00 I.991E+00 9.139E-01 1.482E+00 2.582E+00 1.673E+00 1.380E+00 I.172E+00 1.067E+00 1.389E+00 2.046E+00 1.670E+00 9.639E-01 9.580E-01 1.918E+00 5.479E-01 4.490E-01 1.380E-01 ęn, RF : DI 10 10 10 25 01 01 Stđ 25 10 25 10 10 10 0 25 25 25 10 10 25 25 25 25 25 e 1.975E+00 1.735E+00 1.835E+00 1.966E+00 1.717E+00 9.309E-01 1.633E+00 2.285E+00 2.186E+00 1.091E+00 1.468E+00 1.060E-01 1.837E+00 I.533E+00 1.582E+00 8.439E-01 2.884E+00 8.420E-01 4.359E-01 9.490E-01 9.459E-01 2.206E+00 5.709E-01 N БЪ 10 10 10 10 10 10 01 0 0 Std 9 10 ŝ ŝ ŝ ŝ ŝ ŝ ŝ Ś ŝ ŝ ŝ ŝ Laucks Testing Labs ¢ 1.233E+00 1.568E+00 1.268E+00 1.011E+00 1.332E+00 1.069E+00 2.214E+00 2.122E+00 1.809E+00 1.089E+001.010E+00 1.071E+00 6.489E-01 6.079E-01 2.217E+00 9.399E-02 2.053E+00 4.480E-01 1.404E+00 3.829E-01 9.010E-01 9.060E-01 9.530E-01 н z нЧ RTX-5Sil MS R019645 Instrument ID: 5970L Heated Purge: (Y/N)SEd ŝ ŝ ŝ ŝ ŝ Ś m ŝ Ś ŝ ŝ Run Sequence: Bis(2-ethylhexyl)phthalate GC Column: Indeno(1,2,3-cd)pyrene Lab Name: Dibenzo(a,h)anthracene 3,3'-Dichlorobenzidine Benzo(k)fluoranthene Butylbenzylphthalate Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(a)anthracene Di-n-butylphthalate Di-n-octylphthalate Analyte Pentachlorophenol Nitrobenzene-d5 Benzo(a)pyrene 2-Fluorophenol Phenanthrene Fluoranthene Anthracene Carbazole Benzidine Phenol-d5 Chrysene Pyrene

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

v

Eq Ty = Equation Type

Q=Quadratic, L=Linear, A=Average

SPCCs #

Page 3 of 4

FORM VI SV

∢

1.659 11.00

1.985E+00 10 1.814E+00 25 1.641E+00 40 1.623E+00 60 1.534E+00 80 1.570E+0

ŝ

1.449E+00

2-Fluorobiphenyl

6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

					·
1	1	1	1		Ба
*******					а Н
		~			%RSD
		21:13	21:13		RF
					RF 8
		2007	2007		Stđ
		07/12/	07/12/		RF 7
		I		2	Stď
	AB34	Dates:	Tímes:	11.8	RF 6
;t: 	с] 	ttion]	ttion'	RSD:	Std
ontrac	JG No.	alibra	alibra	% ភូមិ	
Ŭ	SI	Ü	ů) Me	d RI
				шш)	3 t
				0.25	RF 4
		,			Std
	dala era beker era era era era era era era era era e			: C	RF 3
				I	Std
					RF 2
3					tđ
<u>a Lab</u>					1
estine	545		N	MS	RF .
ks Te	R019(59701	(N/λ	-5811	Std
Lauc	e 	ID:	:e:	RTX-	
me:	duenc	ment	Purg	: נושח	. n
ab Nai	un Se(astru	sated	C Coli	nalyte
Ľ	ਸ਼	ũ	Ή	Ŭ	A

Eq Ty = Equation Type Q=Quadratic, L=Linear, A=Average

#

Page 4 of 4

FORM VI SV

Calibration Standar	d Verification	for I	nitial Calibra [.]	tion L8270A	A (07/12/07)
---------------------	----------------	-------	-----------------------------	-------------	--------------

*** PROJECTED ***			*** ANALY	SES ***			
Analyte(s)	Target	Reference	Amount	Percent	%D	-	
	Conc. ng/uL	Solution	Quanted ng/uL	of larget	(<25%)		
14-Dioxana	5	MS0-73-10	4 45	80	11	_	
N pitzasadimathulamina	32	MS9-73-19	27.64	86	1/		
Punidina	32	MS9-73-19	26.4	83	19		
2-Eluorophenol	64	M59-73-19	59.08	92	±0 R		
Benzaldehyde	5	MS9-73-19	3 56	71	29	-not a target	
Phenol-d5	64	M59-73-19	58.92	92	8	analyte	
Phenol	32	M59-73-19	29.88	93	7	annyie	
Aniline	32	M59-73-19	29.17	91	9	7/18/07	Ą٢
Bis(2-Chloroethvi)ether	32	M59-73-19	27.9	87	13	- U U	
2-Chlorophenol-d4	0	M59-73-19	0	NA	NA		
2-Chlorophenol	32	M59-73-19	31,56	99	1		
1,3-Dichlorobenzene	32	MS9-73-19	31.61	99	1		
1,4-Dichlorobenzene	32	MS9-73-19	29.9	93	7		
1,2-Dichlorobenzene-d4	0	M59-73-19	0	NA	NA		
Benzyl alcohol	32	M59-73-19	27,26	85	15		
1,2-Dichlorobenzene	32	M59-73-19	31,68	99	1		
2-Methylphenol	32	M59-73-19	29,94	94	6		
Bis(2-chloroisopropyl)ether	32	M59-73-19	27,82	87	13		
3 & 4-Methylphenol ¹	64	MS9-73-19	57.96	91	9		
Acetophenone	32	M59-73-19	33,13	104	4		
n-Nitroso-di-n-propylamine	32	M59-73-19	26.69	83	17		
Hexachloroethone	32	M59-73-19	28.57	89	11		
Nitrobenzene-d5	32	MS9-73-19	28,23	88	12		
Nitrobenzene	32	MS9-73-19	29.89	93	7		
Isophorone	32	M59-73-19	30.49	95	5		
2-Nitrophenol	32	M59-73-19	25,72	80	20		
2,4-Dimethylphenol	32	MS9-73-19	30,09	94	6		
bis(2-Chloroethoxy)methone	32	MS9-73-19	26.77	84	16		
Benzoic acid	37	MS9-73-19	28.64	77	23		
2,4-Dichlorophenol	32	M59-73-19	30,11	94	6		
1,2,4-Trichlorobenzene	32	MS9-73-19	30.46	95	5		
Naphtholene	32	MS9-73-19	28.71	90	10		
4-Chloroaniline	32	MS9-73-19	25.44	80	21		
Hexachlorobutadiene	32	MS9-73-19	29.68	93	7		
Caprolactam	5	MS9-73-19	4.18	84	16		
4-Chloro-3-methylphenol	32	MS9-73-19	27.85	87	13		
2-Methylnaphthalene	32	MS9-73-19	29.44	92	8		
1-Methylnaphthalene	0	MS9-73-19	0	NA	NA		
Hexachlorocyclopentadiene	32	M59-73-19	29.98	94	6		
1,2,4,5-Tetrachlorobenzene	37	M59-73-19	38.31	104	4		
2,4,6-Trichlorophenol	32	MS9-73-19	29.05	91	9		
2,4,5-Trichlorophenol	32	MS9-73-19	31.41	98	2		
2-Fluorobiphenyl	32	M59-73-19	30.75	96	4		
1,1'-Biphenyl	5	M59-73-19	4.44	89	11		
2-Chloronaphthalene	32	M59-73-19	34,26	107	7		
2-Nitroaniline	32	M59-73-19	31.41	98	2		
Dimethylphthalate	32	M59-73-19	28.21	88	12		
1,4-Dinitrobenzene	0	M59-73-19	0	NA 	NA		
11,3-Dinitroberizene	32	M59-73-19	24.6	77	23		
2,0-Dinitrotoluene	32	M59-73-19	28.68	90	10		
[Acenaphthylene	32	M59-73-19	30.37	95	5		

SUM 1-of 723

*** PROJECTED ***	*** ANALYSES ***						
Analyte(s)	Target Conc.	Reference Solution	Amount Quanted	Percent of Target	%D (<25%)		
	ng/uL		ng/uL			-	
1,2-Dinitrobenzene	0	MS9-73-19	0	NA	NA		
3-Nitroaniline	32	MS9-73-19	29,29	92	8		
Acenaphthene	32	MS9-73-19	29.14	91	9		
2,4-Dinitrophenol	32	MS9-73-19	23,82	74	26	- See	. nam
4-Nitrophenol	32	M59-73-19	24.1	75	25		
Dibenzofuran	32	MS9-73-19	28,21	88	12		
2,4-Dinitrotoluene	32	MS9-73-19	28,8	90	10		
2,3,5,6-tetrachlorophenol	0	M59-73-19	0	NA	NA		
2,3,4,6-tetrachlorophenol	32	MS9-73-19	25.63	80	20		
Diethylphthalate	32	MS9-73-19	26.94	84	16		
Fluorene	32	M59-73-19	27,48	86	14	1	
4-Chlorophenyl-phenylether	32	MS9-73-19	27.64	86	14		
4-Nitroaniline	32	M59-73-19	29,79	93	7		
4 6-Dinitro-2-methylphenol	32	M59-73-19	23.17	72	28	- see	nam.
N-nitrosodinhenvlamine ²	32	M 59-73-10	29.92	94	6		• -
1.2. Dinhow/hydrazing ³	32	M CO 73 10	20.74	07	7		
12.4.6 Tribremetherel	22	MG9-73-19	45.24	102	2		
12,4,0- Inbromophenol	22	M39-73-19	20.24	102	۲ ۲		\$
14-Bromophenyi-phenyiether	32	MS9-73-19	30.28	90	5		1.8157
Hexachiorobenzene	32	MS9-73-19	32.98	102	2		TI A
Afrazine	5	MS9-73-19	3,83	//	23		
Pentachlorophenol	32	MS9-73-19	26.45	83	1/		
Phenanthrene	32	MS9-73-19	28,73	90	10		
Anthracene	32	MS9-73-19	29.94	94	6		
Carbazole	32	MS9-73-19	28.87	90	iO		
Di-n-butylphthalate	32	MS9-73-19	27,28	85	15		
Fluoranthene	32	M59-73-19	28.7	90	10	<u> </u>	0000
Benzidine	32	M59-73-19	19.74	62	38	- 26	FILLY.
Pyrene	32	M59-73-19	27,17	85	15		
Terphenyl-d14	32	MS9-73-19	27	84	16		
Butylbenzylphthalate	32	MS9-73-19	26.97	84	16		
Bis(2-ethylhexyl)adipate	0	MS9-73-19	0	NA	NA		
3,3'-Dichlorobenzidine	32	MS9-73-19	28,58	89	11		
Benzo[a]anthracene	32	MS9-73-19	27.7	87	13		
bis(2-Ethylhexyl)phthalate	32	M59-73-19	29.8	93	7		
Chrysene	32	MS9-73-19	28.82	90	10		
Di-n-octylphthalate	32	MS9-73-19	26.64	83	17		
Benzo[b]fluoranthene	32	MS9-73-19	27.28	85	15		
Benzo[k]fluoranthene	32	MS9-73-19	28.38	89	11		
Benzo[a]pyrene	32	MS9-73-19	28.95	90	10		
Indeno[1,2,3-cd]pyrene	32	MS9-73-19	37.36	117	17		
Dibenz[a,h]anthracene	32	MS9-73-19	38.43	120	20		
Benzo[g,h,i]perylene	32	M59-73-19	37,51	117	17		

Analyst: AP Date analyzed: 07/12/07

^{1.} 3-methylphenol and 4-methylphenol do not have sufficient chromatographic resolution on the analytical column to allow them to be quantitated separately. Results for 3-methylphenol and 4-methylphenol are calculated using a single response factor.

² N-nitrosodiphenylamine (8270-listed analyte) decomposes to diphenylamine.

³ 1,2-diphenylhydrazine (8270-listed analyte) decomposes to ozobenzene.

7. SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence:	SDG No.: CAB34
Instrument ID: 5970L	Calibration Date: 07/17/2007 Time: 11:53
Lab File ID: L0717004.D	Init. Calib. Date(s):
Client Sample No.: <u>CCV071707-2</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) <u>N</u>	GC Column: <u>RTX-5Sil MS</u> ID:0.25 (mm)

Compound	Equation Type	RF 717.0	γD	%Drift
3 & 4-Methylphenol	A	1.366	-5.24	
Bis(2-chloroisopropyl)ether	A	2.701	1.29	
Phenol	А	2.023	-1.27	··· ·
Bis(2-Chloroethyl)ether	A	1.750	-2.22	
2-Chlorophenol	. A	1.395	5.32	
1,3-Dichlorobenzene	A	1.722	0.46	
1,4-Dichlorobenzene	А	1.720	2.74	
Benzyl alcohol	A	0.967	3.16	
1,2-Dichlorobenzene	А	1.564	4.22	
2-Methylphenol	А	1.385	-2.75	
N-Nitroso-di-n-propylamine	A	1.174	~4.87	
Hexachloroethane	A	0.759	-0.87	
Nitrobenzene	A	0.580	-13.13	
Isophorone	A	0,942	-3.13	
2-Nitrophenol	A	0.144	5.34	
2,4-Dimethylphenol	A	0.479	-1.31	
Benzoic acid	Q	0.112		~36.04*
Bis(2-chloroethoxy)methane	A	0.649	-3.47	
2,4-Dichlorophenol	A	0.375	4.30	
1,2,4-Trichlorobenzene	A	0.445	3.31	
Naphthalene	A	1.281	1.16	
4-Chloroaniline	A	0.563	1.11	
Hexachlorobutadiene	A	0.253	5.61	
4-Chloro-3-methylphenol	A	0.407	2.37	
2-Methylnaphthalene	А	0.739	5.25	
Hexachlorocyclopentadiene	A	0.429	-0.29	
2,4,6-Trichlorophenol	A	0.441	10.48	
2,4,5-Trichlorophenol	A	0.499	7.73	
2-Chloronaphthalene	A	1.508	1.03	
2-Nitroaniline	A	0.489	-0.01	
Dimethylphthalate	A	1.613	8.02	
2,6-Dinitrotoluene	<u>А</u>	0.366	12.41	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Seguence:	SDG No.: _CAB34
Instrument ID: 5970L	Calibration Date: 07/17/2007 Time: 11:53
Lab File ID: L0717004.D	Init. Calib. Date(s):
Client Sample No.: <u>CCV071707-2</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) N	GC Column: RTX-5Sil MS ID:0.25 (mm)

Compound	Equation Type	RF 717.0	%D	%Drift
Acenaphthylene	A	2.303	3.90	
3-Nitroaniline	A	0.380	7.24	
Acenaphthene	A	1.442	2.11	
2,4-Dinitrophenol	L	0.052		-25.34*
4-Nitrophenol	A	0.146	12.70	
Dibenzofuran	A	1.950	5.67	
2,4-Dinitrotoluene	A	0.416	10.66	
Diethylphthalate	A	1.570	11.73	
Fluorene	A	1.554	3.54	
4-Chlorophenyl-phenylether	A	0.735	8.13	
4-Nitroaniline	A	0.355	8.69	
4,6-Dinitro-2-methylphenol	A	0.062	18.25	
N-Nitrosodiphenylamine	A	0.846	7.14	
Azobenzene	A	1.597	-6.21	
4-Bromophenyl-phenyl ether	A	0.300	6.43	
Hexachlorobenzene	A	0.347	6.75	
Pentachlorophenol	Q	0.114		-16.60
Phenanthrene	A	1.482	3.04	·····
Anthracene	A	1.403	7.24	-
Carbazole	A	1.216	6.59	
Di-n-butylphthalate	A	1.532	11.25	
Fluoranthene	A	1.235	5.09	
Benzidine	A	0.672	20.65*	
Pyrene	A	2.145	13.41	
Butylbenzylphthalate	A	0.715	16.55	
3,3'-Dichlorobenzidine	A	0.442	3.43	
Benzo(a)anthracene	A	1.426	8.65	
Bis(2-ethylhexyl)phthalate	A	0.923	9.35	
Chrysene	A	1.387	0.66	
Di-n-octylphthalate	A	2.125	17.14	
Benzo(b)fluoranthene	A	1.887	5.99	
Benzo(k)fluoranthene	A	1.680	7.23	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Laucks Testing Labs	Contract:
Run Sequence: R019645	SDG No.: CAB34
Instrument ID: 5970L	Calibration Date: 07/17/2007 Time: 11:53
Lab File ID: L0717004.D	Init. Calib. Date(s): 07/12/2007
Client Sample No.: <u>CCV071707-2</u>	Init. Calib. Time(s): <u>12:31</u>
Heated Purge: (Y/N) N	GC Column: RTX-5Sil MS ID:0.25 (mm)

Compound	Equation Type	RF 717.0	۶D	%Drift
Benzo(a)pyrene	A	1.593	4.53	
Indeno(1,2,3-cd)pyrene	А	1.419	-6.63	
Dibenzo(a,h)anthracene	A	1.194	-6.29	
Benzo(g,h,i)perylene	А	1.319	-21.75*	
2-Fluorophenol	А	1.325	-2.07	
Phenol-d5	A	1.838	-0.74	
Nitrobenzene-d5	А	0.578	-19.67	
2-Fluorobiphenyl	А	1.608	3.06	
2,4,6-Tribromophenol	А	0.124	7.89	
Terphenyl-d14	A	1.274	14.12	

* = %D or %Drift above limit

= %D or %Drift limts are not configured

CLIENT SAMPLE NO.

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

B062607MSVWLS

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: B062607MSVWLS
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717006.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor:1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
108-39-4/	3 & 4-Methylphenol	5.0	υ
108-60-1	Bis(2-chloroisopropyl)ether	5.0	U
108-95-2	Phenol	5.0	υ
111-44-4	Bis(2-Chloroethyl)ether	5.0	U
95-57-8	2-Chlorophenol	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	υ
106-46-7	1,4-Dichloroben ze ne	5.0	U
100-51-6	Benzyl alcohol	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	ប
95-48-7	2-Methylphenol	5.0	U
621-64-7	N-Nitroso-di-n-propylamine	5.0	U
67-72-1	Hexachloroethane	5.0	U
98-95-3	Nitrobenzene	5.0	U
78-59-1	Isophorone	5.0	υ
88~75-5	2-Nitrophenol	5.0	υ
105-67-9	2,4-Dimethylphenol	5.0	υ
65-85-0	Benzoic acid	10	υ
111-91-1	Bis(2-chloroethoxy)methane	5.0	υ
120-83-2	2,4-Dichlorophenol	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	ΰ
106-47-8	4-Chloroaniline	5.0	ΰ
87-68-3	Hexachlorobutadiene	5.0	U
59~50-7	4-Chloro-3-methylphenol	5.0	U
91-57-6	2-Methylnaphthalene	5.0	U
77-47-4	Hexachlorocyclopentadiene	5.0	U

FORM I SV

CLIENT SAMPLE NO. B062607MSVWLS

Lab Name: Laucks Testing Labs	Contract:			
SDG No.: CAB34	Run Sequence: <u>R019645</u>			
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062607MSVWLS</u>			
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717006.D			
Level: (LOW/MED)	Date Collected:			
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007			
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007			
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>			
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) <u>CONT</u>			
CAS NO COMPOLIND	CONCENTRATION UNITS: 0			

CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
88-06-2	2,4,6-Trichlarophenol	5.0	U
95-95-4	2,4,5-Trichlorophenol	5.0	U
91-58-7	2-Chloronaphthalene	5.0	U
88-74-4	2-Nitroaniline	5.0	U
131-11-3	Dimethylphthalate	5.0	U
606-20-2	2,6-Dinitrotoluene	5.0	U
208-96-8	Acenaphthylene	5.0	υ
99-09-2	3-Nitroaniline	5.0	υ
83-32-9	Acenaphthene	5.0	U
51-28-5	2,4-Dinitrophenol	10	U
100-02-7	4-Nitrophenol	5.0	υ
132-64-9	Dibenzofuran	5.0	Ψ
121-14-2	2,4-Dinitrotoluene	5.0	υ
84-66-2	Diethylphthalate	5.0	U
86-73-7	Fluorene	5.0	υ
7005-72-3	4-Chlorophenyl-phenylether	5.0	U
100-01-6	4-Nitroaniline	5.0	υ
534-52-1	4,6-Dinitro-2-methylphenol	5.0	υ
86-30-6	N-Nitrosodiphenylamine	5.0	υ
122-66-7	Azobenzene	5.0	U
101-55-3	4-Bromophenyl-phenyl ether	5.0	υ
118-74-1	Hexachlorobenzene	5.0	U
87-86-5	Pentachlorophenol	5.0	Ū
85-01-8	Phenanthrene	5.0	υ
120-12-7	Anthracene	5.0	U
86-74-8	Carbazole	5.0	U
84-74-2	Di-n-butylphthalate	5.0	U
206-44-0	Fluoranthene	5.0	U

FORM I SV

CLIENT SAMPLE NO.

B062607MSVWLS

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: <u>R019645</u>
Matrix: (SOIL/WATER) Water	Lab Sample ID: B062607MSVWLS
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717006.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
92-87-5	Benzidine	5.0	Ŭ
129-00-0	Pyrene	5.0	U
85-68-7	Butylbenzylphthalate	5.0	U
91-94-1	3,3'-Dichlorobenzidíne	5.0	Ŭ
56-55-3	Benzo(a)anthracene	5.0	U
117-81-7	Bis(2-ethylhexyl)phthalate	5.0	Ũ
218-01-9	Chrysene	5.0	Ŭ
117-84-0	Dí-n-octylphthalate	5.0	υ
205-99-2	Benzo(b)fluoranthene	5.0	ប
207-08-9	Benzo(k)fluoranthene	5.0	Ŭ
50-32-8	Benzo(a)pyrene	5.0	U
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	υ
53-70-3	Dibenzo(a,h)anthracene	5.0	U
191-24-2	Benzo(g,h,i)perylene	5.0	Ŭ

Comments:

CLIENT SAMPLE NO.

S062607MSVWLS

Lab Name: Laucks Testing Labs	Contract:		
SDG No.: CAB34	Run Sequence: <u>R019645</u>		
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S062607MSVWLS</u>		
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717007.D		
Level: (LOW/MED)	Date Collected:		
% Moisture: Decanted: (Y/N) <u>N</u>	Date Extracted: 06/26/2007		
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed: 07/17/2007		
Injection Volume: 2.0 (uL)	L) Dilution Factor: <u>1.0</u>		
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT		
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q		
108-39-4/ 3 & 4-Methylphenol	17		

108-39-4/	3 & 4-Methylphenol	17	
108-60-1	Bis(2-chloroisopropyl)ether	16	
108-95-2	Phenol	14	
111-44-4	Bis(2-Chloroethyl)ether	16	
95-57-8	2-Chlorophenol	14	
541-73-1	1,3-Dichlorobenzene	11	
106-46-7	1,4-Dichlorobenzene	12	
100-51-6	Benzyl alcohol	17	
95-50-1	1,2-Dichlorobenzene	12	
95-48-7	2-Methylphenol	15	
621-64-7	N-Nitroso-di-n-propylamine	19	
67-72-1	Hexachloroethane	11	
98-95-3	Nitrobenzene	18	
78-59-1	Isophorone	16	
88-75-5	2-Nitrophenol	11	
105-67-9	2,4-Dimethylphenol	9.9	
65-85-0	Benzoic acid	3.3	J
111-91-1	Bis(2-chloroethoxy)methane	16	
120-83-2	2,4-Dichlorophenol	14	
120-82-1	1,2,4-Trichlorobenzene	13	
91-20-3	Naphthalene	14	
106-47-8	4-Chloroaniline	13	
87-68-3	Hexachlorobutadiene	11	
59~50~7	4-Chloro-3-methylphenol	16	
91-57-6	2-Methylnaphthalene	16	
77-47-4	Hexachlorocyclopentadiene	3.9	J

CLIENT SAMPLE NO.

S062607MSVWLS

	1			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEE?

Lab Name: Laucks Testing Labs	Contract:
SDG No.: CAB34	Run Sequence: _R019645
Matrix: (SOIL/WATER) Water	Lab Sample ID: <u>5062607MSVWLS</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: L0717007.D
Level: (LOW/MED)	Date Collected:
% Moisture: Decanted: (Y/N) N	Date Extracted: 06/26/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: _07/17/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Extraction: (Type) CONT

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
88-06-2	2,4,6-Trichlorophenol	12	
95-95-4	2,4,5-Trichlorophenol	13	
91-58-7	2-Chloronaphthalene	17	
88-74-4	2-Nitroanìline	16	
131-11-3	Dimethylphthalate	17	
606-20-2	2,6-Dinitrotoluene	12	
208-96-8	Acenaphthylene	17	
99-09-2	3-Nitroaniline	14	
83-32-9	Acenaphthene	16	
51-28-5	2,4-Dinitrophenol	6.5	J
100-02-7	4-Nitrophenol	12	
132-64-9	Dibenzofuran	17	
121-14-2	2,4-Dinitrotoluene	13	
84-66-2	Diethylphthalate	17	
86-73-7	Fluorene	17	
7005-72-3	4-Chlorophenyl-phenylether	17	
100-01-6	4-Nitroaniline	14	
534-52-1	4,6-Dinitro-2-methylphenol	8.3	
86-30-6	N-Nitrosodiphenylamine	14	
122-66-7	Azobenzene	19	
101-55-3	4-Bromophenyl-phenyl ether	16	
118-74-1	Hexachlorobenzene	17	
87-86-5	Pentachlorophenol	13	
85-01-8	Phenanthrene	17	
120-12-7	Anthracene	16	
86-74-8	Carbazole	17	
B4-74-2	Di-n-butylphthalate	16	
206-44-0	Fluoranthene	18	

.

CLIENT SAMPLE NO.

S062607MSVWLS

Contract:
Run Sequence: <u>R019645</u>
•
Lab Sample ID: S062607MSVWLS
Lab File ID: L0717007.D
Date Collected:
0.5 / 0.6 / 0.0 01
Date Extracted: 06/26/2007
Date Analyzed: 07/17/2007
\mathbf{r} is the second s
Dilution Factor:
Extraction. (Type) CONT
Exclaction: (1906)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
92-87-5	Benzidine	5.0	υ
129-00-0	Pyrene	15	
85-68-7	Butylbenzylphthalate	12	
91-94-1	3,3'-Dichlorobenzidine	12	
56-55-3	Benzo(a)anthracene	16	
117~81-7	Bis(2-ethylhexyl)phthalate	14	
218-01-9	Chrysene	17	
117-84-0	Di-n-octylphthalate	11	
205-99-2	Benzo(b)fluoranthene	15	
207-08-9	Benzo(k)fluoranthene	17	
50-32-8	Benzo(a)pyrene	16	
193-39-5	Indeno(1,2,3-cd)pyrene	19	
53-70-3	Dibenzo(a,h)anthracene	19	
191-24-2	Benzo(g,h,i)perylene	20	

Comments:

Forms Summary

CAB34

Ordnance by Method 8330

2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs _____

SDG No.: CAB34

Run Sequence: R019636

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	53 () #	S4 () #	tot Out
(CAB34-009) 15LCMW04SW	93				0
(CAB34-007) 15LCMW04DW	103				0
(CAB34-005) 15LCMW03DW	91				0
(CAB34-003) 15LCMW415W	88				0
(CAB34-001) 15LCMW03SW	88				0
(S062607HORWLG) S062607HORWLG	119				0
(B062607HORWLG) B062607HORWLG	80				0

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

QC LIMITS 60-140

Contract: N/A

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019636</u>	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S062607HORWLG</u>	
Level: N/A	Units: ug/L

Found

21.0228

14.7105

% Rec

105

#

Spike Added

20.0

20.0

108 50-160 RDX 20.0 21.5036 65-140 1,3,5-Trinitrobenzene 20.0 17.5962 88 89 45-160 20.0 17.771 1,3-Dinitrobenzene 89 50-140 20.0 17.8355 Nitrobenzene 80 20-175 20.0 16.0464 Tetryl 93 50-145 20.0 18.691 2,4,6-Trinitrotoluene 90 55-155 4-Amino-2,6-dinitrotoluene 20.0 17.9250-155 89 20.017.8793 2-Amino-4,6-dinitrotoluene 60-135 20.0 16.1231 81 2,6-Dinitrotoluene 82 60-135 2,4-Dinitrotoluene 20.016.4553 20.0 14.9209 75 45-135 2-Nitrotoluene 77 50-130 20.015.4368 4-Nitrotoluene 74 50-130

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _ 0_out of _14_outside limits

Analyte

HMX

3-Nitrotoluene

COMMENT'S:

Rec Limit

80-115

OUDWINGS NEITHOD DEFINIT DOUTWINT	ORDNANCE	METHOD	BLANK	SUMMARY
-----------------------------------	----------	--------	-------	---------

CLIENT SAMPLE NO.

07/13/2007 18:40

R019636

	ORDNANCE MEY	THOD BI	LANK SUMMARY	B062	607HORWLG	
Lab Name: <u>Laucks Testing Labs</u>		Con	tract: <u>N/A</u>	·		_
Lab Sample ID: <u>B062607HOBWL</u>	G	SDG	SDG No.: <u>CAB34</u>			
Matrix: (SOIL/WATER) <u>Water</u>		Date Prepared:06/26/2007				
Lab File ID (1): <u>062807.b-06280704.D</u>			Lab File ID (2): <u>F71207A.b-F7120751.D</u>			
Date Analyzed (1): <u>06/28/20</u>	07	Dat	Date Analyzed (2):			
Time Analyzed (1): <u>13:19</u>		Tim	Time Analyzed (2):			
Instrument ID (1): <u>HPLC5 (O</u>	scar)	Ins	trument ID (2)): <u>HPLC5 (Oscar)</u>		
Column(1): <u>Allure C18</u>	ID: 4.60	(mm) Co	lumn(2): <u>Syne</u>	rgi - EtPH	ID: <u>4.60</u>	(mm)
THIS METHOD BLANK	APPLIES TO THE FO	LLOWIN	G SAMPLES AND	QC SAMPLES:		
CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE	
15LCMW03SW	CAB34-001	1	O6280725.D	06/29/2007 03:19	R019636	
		2				
15LCMW415W	CAB34-003	1	O6280726.D	06/29/2007 03:59	R019636	
		2				
15LCMW03DW	CAB34-005	1	O6280727.D	06/29/2007 04:39	R019636	
		2				
15LCMW04DW	CAB34-007	1	O6280728.D	06/29/2007 05:19	R019636	
		2				
15LCMW04SW	CAB34-009	1	O6280729.D	06/29/2007 05:59	R019636	
		2				
S062607HORWLG	S062607HORWLG	1	O6280705.D	06/28/2007 13:59	R019636	

2

F7120752.D

CLIENT SAMPLE NO.

15LCMW03SW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280725.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	Ŭ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

CLIENT SAMPLE NO.

15LCMW415W

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280726.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007
Injection Volume: 50.0 (uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	НМХ	0.48	υ
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	Ū
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	Ŭ
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	υ

Comments:

FORM I ORD

CLIENT SAMPLE NO.

15LCMW03DW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280727.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N)N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	Ŭ
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99-65-0	1,3-Dinitrobenzene	0.48	Ŭ
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	υ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	υ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	Ŭ
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	Ŭ

Comments:

FORM I ORD

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vol: 1050.0 (g/mL) mL	Lab File ID: 06280728.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Type)	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	Ŭ
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	υ
99-65-0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	U
118-96-7	2,4,6-Trinitrotoluene	0.48	U
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	U
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	Ŭ
99-99-0	4-Nitrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

Page 1 of 1

CLIENT SAMPLE NO.

15LCMW04SW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: <u>R019636</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: <u>1040.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280729.D
<pre>% Moisture: Decanted: (Y/N) _N</pre>	Date Collected:06/22/2007
Extraction: (Type) SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: 5000.0 (uL)	Date Analyzed: 06/29/2007
Injection Volume: <u>50.0 (</u> uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	0.48	U
121-82-4	RDX	0.48	U
99-35-4	1,3,5-Trinitrobenzene	0.48	U
99~65~0	1,3-Dinitrobenzene	0.48	U
98-95-3	Nitrobenzene	0.48	U
479-45-8	Tetryl	0.48	Ŭ
118-96-7	2,4,6-Trinitrotoluene	0.48	Ŭ
19406-51-0	4-Amino-2,6-dinitrotoluene	0.48	Ŭ
35572-78-2	2-Amino-4,6-dinitrotoluene	0.48	U
606-20-2	2,6-Dinitrotoluene	0.48	Ũ
121-14-2	2,4-Dinitrotoluene	0.48	U
88-72-2	2-Nitrotoluene	0.48	U
99-99-0	4-Nítrotoluene	0.48	U
99-08-1	3-Nitrotoluene	0.48	U

Comments:

02/28/2007 09:10

22/20/2	F - Cal. SD - Re				Ап	Ave	10 3,4	18 3-N	17 4-1	16 2-N	
	ibration Factor (resp lative Standard Deviat				ount = Response divid	rage RSD :	-Dinitrotoluene	fitrotoluene	fitrotoluene	itrotoluene	
	oonse divided by co ion.		·		ed by CF		5.880000	3 - 300000	2.700000	3.540000	
	ncentration).						5.570000	3.090000	2.590000	3.480000	
							5,726000	3.248000	2.682000	3.546000	
							5,555000	3.159000	2.619000	3.463000	
							5.578200	3.195000	2,659800	9.015400 3.503400	Level 5
							5,661840	3.198400	2.550160	8.994080 3.506480	Ave CF
	·					2.1	N ທ	2.5	1.7	р. р.	%RSD

Laucks Testing Labs Initial Calibration Linearity Summary
Sublist Method File Level Level Level Level 2: Level 1: Calibration Files: Column Size Column Integrator Cal Curve Type: Quant Method End Cal Date Start Cal Date: Retention times are expressed |1 |1 12 4-Amino-2,6-Dinitrotoluene 14 2,6-Dinitrotoluene 13 2-Amino-4,6-Dinitrotoluene 11 2,4,6-Trinitrotoluene ΰ œ 1 σ ហ 4 щ RDX MNX HMX Nitrobenzene 1,3,5-Trinitrobenzene Tetryl 1,3-Dinitrobenzene பு •• 4.. ω •• Compound /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D C1.8 Average CF 8330MNX.sub 27-FEB-2007 27-FEB-2007 HP Genie ESTD 0m L - 4.60mm ID \/ceres/labdata/hplc/oscar/Oscar.i/022707.b/8330FEB2707.m 11 12:35 15:15 Level 1 21.54 20.61 17.67 17.11 15.02 12.11 24.04 22.67 8.36 7.09 4.69 as minutes. Level 2 21.72 22.84 20.72 17.75 17.22 15.08 12.13 24.16 8.36 7.09 4.69 Level 3 22.72 21.61 20.65 17.71 17,17 15,05 12.12 24.07 8.35 7,08 4.69 Level 4 1111111111111 21.67 20.69 17.73 15.07 17.20 24.13 22.80 12.128.35 7.08 4.69 Level 5 17.20 17.72 15.07 24.11 22.78 21.66 20.68 12.13 8.36 7.09 4,69 Ave RT 20.670 17.715 17.180 15.057 24.10422.760 21.640 12.125 8.358 4.690 7.089

02/28/2007 09:10

ICAL RT Summary v2.0

Page 1

Initial Calibration Retention Time Summary

Laucks Testing Labs

10 3,4-Dinítrotoluene	18 3-Nitrotoluene	17 4-Nitrotoluene	16 2-Nitrotoluene	15 2,4-Dinitrotoluene	Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labd Sublist : 8330MNX.sub Column Size : 0m L - 4.60	
18,40	35.60	33.08	30,36	24.97	ata\hpl mm ID	ド し・⊥ し
18.51	35.59	33.09 .	30.41	25.08	C\OSCar\ Level 2	
18,45	35.53	33.02	30.32	24.98	Oscar.i\	
18.48	35.60	80,EE	30.37	25.04	022707.b	
11 (0 (4 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	35,62	33.07	30.38	25.02	\8330FEB:	
18.464	35.589	33.068	30.367	25.019	2707.m	

02/28/2007 09:10

ICAL RT Summary v2.0

Page 2

SUM - 96

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Amounts Summary

Start Cal Date:

27-FEB-2007

12:35

Level Level Calibration Files: Column Size Sublist Cal Curve Type: Level Level Level Column Method File Integrator Quant Method End Cal Date N .. ហ •• 4 ω ⊢ .. /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270709.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270706.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270707.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D /ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270708.D ESTD C18 HP Genie Average CF 8330MNX.sub 27-FEB-2007 15:15 Om L \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m į 4.60mm ΤD

 Compound	Level 1	Level 2	Level 3	Level 4	Level 5
 					<u> </u>
 1. HMX	50,00	100.00	500.00	1000.00	5000.00
 4 MNX	50.00	100.00	500.00	1000.00	5000.00
 5 RDX	50.00	100.00	500.00	1000.00	5000.00
 6 1,3,5-Trinitrobenzene	50.00	100.00	500.00	1000.00	5000.00
 7 1,3-Dinitrobenzene	50,00	100.00	500.00	1000.00	5000.00
 8 Tetryl	50.00	100.00	500.00	1000.00	5000.00
 9 Nitrobenzene	50.00	100.00	500.00	1000.00	5000.00
 11 2,4,6-Trinitrotoluene	50.00	100.00	500.00	1000.00	5000,00
 12 4-Amino-2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00
 13 2-Amino-4,6-Dinitrotoluene	5.0.00	100.00	500.00	1000.00	5000.00
 14 2,6-Dinitrotoluene	50.00	100.00	500.00	1000.00	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page

÷

Laucks Testing Labs Initial Calibration Amounts Summary

Integrator Method File Column Size Column Sublist Cal Curve Type: Quant Method Start Cal Date: End Cal Date .. • • Average CF ESTD C18 8330MNX.sub HP Genie 27-FEB-2007 27-FEB-2007 12:35 \\ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m 0m L - 4.60mm ID 15:15

Compound		Level 1	Level 2	Level 3	Level 4	Level 5
븮븮뼺쑵 <u>벾</u> 냬냬넊슻츐딦젨릚륳둲딦쥖빝됕쑵뭆뭆						***
15 2,4-Dinitrotoluen		50.00	100.00	500.00	1000.00	5000.00
16 2-Nitrotoluene	-	50,00	100.00	500.00	1000.00	5000.00
17 4-Nitrotoluene		50.00	100.00	500.00	1000.00	5000.00
18 3-Nitrotoluene		50.00	100.00	500.00	1000.00	5000.00
10 3,4-Dinitrotoluene		50.00	100.00	500.00	1000.001	5000.00

Standard concentrations are expressed as ng/mL.

02/28/2007 09:11 ICAL Standard Concentrations Summary v2.0 Page N

02/28/2007 09:11

ICAL Responses Summary v2.0

Page

μ

Response is in Height units.

Compound	Level 1	·Level 2	Level 3	Level 4	Level 5
				<u> </u>	
1 HMX	560.00000	1069.0000	5335.0000	10458.000	51487.000
4 MNX	518.00000	973.00000	4914.0000	9526.0000	47457.000
5 RDX	400.00000	768,00000	3865.0000	7591.0000	37440.000
6 1,3,5-Trinitrobenzene	00000.869	1318.0000	0000.0183	13283.000	66372.000
7 1,3-Dinitrobenzene	762.00000	1454.0000	7554.0000	14689.000	74379.000
8 Tetryl	357.00000	684.00000	3558.0000	6929.0000	34385.000
9 Nitrobenzene	433.00000	828.00000	4356.0000	8494.0000	43265,000
11 2,4,6-Trinitrotoluene	415.00000	788.00000	4103.0000	7946.0000]	39810.000
12 4-Amíno-2,6-Dinitrotoluene	297.00000	563.00000	2948,0000	5726.0000	28432.000
	00000.292	767.00000	3971.0000	7738.0000	38423.000
15 Z~AMILINO~4,6~DIMILLOCOINGNE					

Initial Calibration Response Laucks Testing Labs Summary

Start Cal Date: Cal Curve Type: Quant Method ••• • • C18 Average CF 8330MNX.sub HP Genie. ESTD 27-FEB-2007 15:15 27-FEB-2007 0m L - 4.60mm ID \ceres\labdata\hplc\oscar\Oscar.i\022707.b\8330FEB2707.m 12:35

Column Sublist Method File

Integrator

End Cal Date

Column Size

Level

. 1. ,

//ceres/labdata/hplc/oscar/Oscar.i/022707.b/02270705.D

Calibration Files:

Ini	Laucks Testing Labs tial Calibration Response Summary	
Start Cal Date: 27-FEB-200 End Cal Date : 27-FEB-200 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\la Sublict :	7 12:35 7 15:15 bdata\hplc\oscar\Oscar.i\022707.b\833	0FEB2707.m
Column : Cl8 Column Size : Om L - 4.	60mm ID	
Compound	Level 1 Level 2 Level 3 Level 4 Level	
<pre>15 2,4-Dinitrotoluene 16 2-Nitrotoluene 17 4-Nitrotoluene 18 3-Nitrotoluene 10 3,4-Dinitrotoluene</pre>	449.00000 883.00000 4599.0000 8947.0000 45077.0 177.00000 348.00000 1773.0000 3463.0000 17517.0 135.00000 259.00000 1341.0000 2619.0000 13299.0 165.00000 309.00000 1624.0000 3159.0000 15975.0 294.00000 557.00000 2863.0000 5555.0000 27891.0	00 00 00 00 00 00 00 00 00 00 00 00 00
Response is in Height uni	ω	
02/28/2007 09:11	ICAL Responses Summary v2.0	Page 2

SUM - 100

Laucks Testing Laboratories, Inc.

*** PROJECTED **	**	, te	** ANALYSE	S ***	
Analyte(s)	Target	Reference	Amount	Percent	%D
	Conc.	Solution	Quanted	of Target	
	ng/mL		ng/mL		,
HMX	2000	HPLC11512/11510	2002.8	100	Û
MNX	2000	EX10-82-6	2008.8	100	0
RDX	2000	HPLC11512/11510	2016.2	101	1
1,3,5-Trinitrobenzene	2000	HPLC11512/11510	2075.0	104	4
1,3-Dinitrobenzene	2000	HPLC11512/11510	1993,1	100	, n
Tetryl	2000	HPLC11512/11510	2159.2	108	7 8
Nitrobenzene	2000	HPLC11512/11510	1956,9	98	2
2,4,6-Trinitrotoluene	2000	HPLC11512/11510	2131.2	107	7
1-Amino-2,6-dinitrotoluene	2000	HPLC11512/11510	2018,8	101	1
2-Amino-4,6-dinitrotoluene	2000	HPLC11512/11510	1966,3	98	2
2,6-Dinitrotoluene	2000	HPLC11512/11510	2041.9	102	2
2,4-Dinitrotoluene	2000	HPLC11512/11510	2001,6	100	0
-Nitrotoluene	2000	HPLC11512/11510	1991,7	100	0
I-Nitrotoluene	2000	HPLC11512/11510	2023,3	101	- 1
3-Nitrotoluene	2000	HPLC11512/11510	2002.6	100	0

SUM - 101

Page 1 of 1

Calibration Standard Verification for Initial Calibration 8330 02/27/07)

Initial: Date analyzed: МУ 2/27/07 8330

Data File Injection Date	: //ce : 28-J	res/labda UN-2007	ata/hplc 12:31 B METHOD	/osca	r/Oscar.	L/062807.	b/06280'	703.D
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: ICV : STD0 : Osca : 8330 : ESTD : 1.00 : C18	4 1000PP r.i FEB2707.1	B MAINOD N	Cli Ope Sub Int Sam Col	ent ID rator list egrator ple Type umn Size	: HPLC1-1 : MY : 8330 : HP Geni : CCALIB : 0.25m	.6-8 20X .e 4 L- 4.60	nm ID
Compound		RT	RT Wir	ldow	Average CF	ICV CF	%D Fla	q
							=========	_ ===
HMX		4.58 #	4.33 -	4.83	10.66308	9.849000	7.6	
RDX		8.04 #	7.79 -	8.29	7.697800	7.344000	4.6	
1,3,5-Trinitrobenzer	le	11.63 #	11.38 -	11,88	13.46708	13.42300	0.3	
1,3-Dinitrobenzene		14.40 #	14.15 -	14.65	14.89056	14.73200	1.1	
Tetryl		16.20 #	15.95 -	16.45	6.980400	6.995000	-0.2	
Nitrobenzene		16.94 #	16.69 -	17.19	8.559800	8.535000	0.3	
3,4-Dinitrotoluene		17.40 #	17.15 -	17.65	5.661840	6.370000	-12.5	
2,4,6-Trinitrotoluer	ie	19.66 #	19.41 -	19.91	8.058800	7.572000	6.0	
4-Amino-2,6-Dinitrot	oluene	20.47 #	20.17 -	20.77	5.775680	5.955000	-3.1	
2-Amino-4,6-Dinitrot	oluene	21.58 #	21.28 -	21.88	7.774920	7.875000	-1.3	
2,6-Dinitrotoluene		22.88 #	22.59 -	23.17	5.200600	5.292000	-1.8	
2,4-Dinitrotoluene		23.79 #	23.50 -	24.08	8.994080	9.090000	-1.1	
2-Nitrotoluene		28.81 #	28.45 -	29.17	3.506480	3.598000	-2.6	
4-Nitrotoluene		31.35 #	30.95 -	31.75	2.650160	2.743000	-3.5	<u>.</u>
3-Nítrotoluene		33.73 #	33.29 -	34.17	3.198400	3.308000	-3.4	

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
= The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Data File	:	//ceres/labdata/hplc/	oscar/Oscar.i	/062807.b/06280713.D
Injection Date	:	28-JUN-2007 19:19		
Sample Info	:	STD04 1000PPB		
Misc. Info	:	Method 8330		
Laboratory ID	:	STD04 1000PPB	Client ID :	HPLC1-16-8 20X
Instrument ID	:	Oscar.i	Operator :	MY
Method	:	8330FEB2707.m	Sublist :	8330
Quantitation	:	ESTD	Integrator :	HP Genie
Dilution Factor	:	1.00	Sample Type:	CCALIB 4
Column	:	C18	Column Size:	0.25m L- 4.60mm ID

ı.

			Average	Continuing	
Compound	RT	RT Window	CF	CF	%D Flag
НМХ	4.58	4.33 - 4.83	10.66308	9.887000	7.3
RDX	8.02	7.79 - 8.29	7.697800	7.414000	3.7
1,3,5-Trinitrobenzene	11.60	11.38 - 11.88	13.46708	13.65800	-1.4
1,3-Dinitrobenzene	14.35	14.15 - 14.65	14.89056	14.91600	-0.2
Tetryl	16.12	15.95 - 16.45	6.980400	7.088000	-1.5
Nitrobenzene	16.87	16.69 - 17.19	8.559800	8.607000	-0.6
3,4-Dinítrotoluene	17.31	17.15 - 17.65	5.661840	6.578000	-16.2
2,4,6-Trinitrotoluene	19.57	19.41 - 19.91	8.058800	7.593000	5.8
4-Amino-2,6-Dinitrotoluene	20.31	20.17 - 20.77	5.775680	6.017000	-4.2
2-Amino-4,6-Dinitrotoluene	21.41	21.28 - 21.88	7.774920	7.878000	-1.3
2,6-Dinitrotoluene	22.77	22.59 - 23.17	5.200600	5.250000	-0.9
2,4-Dinitrotoluene	23.67	23.50 - 24.08	8.994080	9.110000	-1.3
2-Nitrotoluene	28.69	28.45 - 29.17	3.506480	3.620000	-3.2
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.778000	-4.8
3-Nitrotoluene	33.56	33.29 - 34.17	3.198400	3.348000	-4.7

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

Data File : Injection Date : Sample Info : Misc. Info : Laboratory ID : Instrument ID : Method : Quantitation : Dilution Factor : Column :	//ceres/labda 29-JUN-2007 (STD04 1000PPE Method 8330 STD04 1000PPE Oscar.i 8330FEB2707.m ESTD 1.00 C18	ata/hplc/osca)1:19 3 6 Cl: Ope n Sub Int Sar Col	ar/Oscar. ient ID erator olist tegrator nple Type lumn Size	i/062807. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB : 0.25m	b/0628072 .6-8 20X .e 4 L- 4.60mr	2.D 1
Compound	RT	RT Window	Average CF	Continuing CF	%D Flag	
HMX	4.58	4.33 - 4.83	10.66308	9.959000	6.6	
RDX	8.02	7.79 - 8.29	7.697800	7.397000	3.9	-
1,3,5-Trinitrobenzene	11.61	11.38 - 11.88	13.46708	13.69000	-1.7	•••
1,3-Dinitrobenzene	14.36	14.15 - 14.65	14.89056	15.06300	-1.2	-
Tetryl	16.13	15.95 - 16.45	6.980400	7.171000	-2.7	-
Nitrobenzene	16.88	16.69 - 17.19	8.559800	8.615000	-0.6	-
3,4-Dinitrotoluene	17.31	17.15 - 17.65	5.661840	6.628000	-17.1	
2,4,6-Trinitrotoluene	19.57	19.41 - 19.91	8.058800	7.690000	4.б	-
4-Amino-2,6-DinitrotoJ	luene 20.32	20.17 - 20.77	5.775680	6.102000	-5.6	••••
2-Amino-4,6-Dinitroto	luene 21.43	21.28 - 21.88	7.774920	7.973000	-2.5	-
2,6-Dinitrotoluene	22.78	22.59 - 23.17	5.200600	5.328000	-2.4	-
2,4-Dinitrotoluene	23.68	23.50 - 24.08	8.994080	9.179000	-2.1	-
2-Nitrotoluene	28.69	28.45 - 29.17	3.506480	3.611000	-3.0	-
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.763000	-4.3	-
3-Nitrotoluene	33.57	33.29 - 34.17	3.198400	3.318000	-3.7	-

Calibration Factor (CF) = Response divided by Concentration

Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100

 \star = Percent Difference is outside the acceptance limits of +/-15%

= The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: //ceres/labd : 29-JUN-2007 : STD04 1000PP : Method 8330 : STD04 1000PP : Oscar.i : 8330FEB2707.1 : ESTD : 1.00 : C18	ata/hplc/osca 06:39 B Cli m Sub Int Sam Col	ent ID erator olist egrator uple Type umn Size	i/062807. : HPLC1-1 : MY : 8330 : HP Geni : CCALIB : 0.25m	b/0628073 6-8 20X e 4 L- 4.60mm	:0.D n ID
Compound	RT	RT Window	Average CF	Continuing CF	¶ ∦D Flag	
HMX	4.58	4.33 - 4.83	10.66308	10.00600	6.2	
RDX	8.02	7.79 - 8.29	7.697800	7.580000	1.5	-
1,3,5-Trinitrobenzene	: 11.60	11.38 - 11.88	13.46708	13.92700	-3.4	-
1,3-Dinitrobenzene	14.36	14.15 - 14.65	14.89056	15.23900	-2.3	-
Tetryl	16.13	15.95 - 16.45	6.980400	7.204000	-3.2	-
Nitrobenzene	16.88	16.69 - 17.19	8.559800	8.597000	-0.4	-
3,4-Dinitrotoluene	17.32	17.15 - 17.65	5.661840	6.675000	-17.9	-
2,4,6-Trinitrotoluene	: 19.58	19.41 - 19.91	8.058800	7.785000	3.4	-
4-Amino-2,6-Dinitroto	luene 20.34	20.17 - 20.77	5.775680	6.186000	-7.1	-
2-Amino-4,6-Dinitroto	luene 21.45	21.28 - 21.88	7.774920	8.082000	-3.9	-
2,6-Dinitrotoluene	22.79	22.59 - 23.17	5.200600	5.406000	-3.9	-
2,4-Dinitrotoluene	23.69	23.50 - 24.08	8.994080	9.316000	-3.6	-
2-Nítrotoluene	28.70	28.45 - 29.17	3.506480	3.624000	-3.4	-
4-Nitrotoluene	31.20	30.95 - 31.75	2.650160	2.802000	-5.7	-
3-Nitrotoluene	33.56	33.29 - 34.17	3.198400	3.356000	-4.9	-

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
= The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HORWLG

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06280704.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/28/2007
Injection Volume:(uL)	Dilution Factor:2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) _N

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	нмх	0.50	U
121-82-4	RDX	0.50	U
99-35-4	1,3,5-Trinitrobenzene	0.50	U
99-65-0	1,3-Dinitrobenzene	0.50	U
98-95-3	Nitrobenzene	0.50	Ŭ
479-45-8	Tetryl	0.50	ΰ
118-96-7	2,4,6-Trinitrotoluene	0.50	U
19406-51-0	4-Amino-2,6-dinítrotoluene	0.50	U
35572-78-2	2-Amino-4,6-dinitrotoluene	0.50	U
606-20-2	2,6-Dinitrotoluene	0.50	υ
121-14-2	2,4-Dinitrotoluene	0.50	υ
88-72-2	2-Nitrotoluene	0.50	U
99-99-0	4-Nitrotoluene	0.50	U
99-08-1	3-Nitrotoluene	0.50	U

Comments:

Page 1 of 1

CLIENT SAMPLE NO.

S062607HORWLG

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: R019636
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: _S062607HORWLG
Sample wt/vol: 1000.0 (g/mL) mL	Lab File ID: <u>F7120752.D</u>
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:
Extraction: (Type) SPE	Date Extracted:06/26/2007
Concentrated Extract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/28/2007
Injection Volume: _50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
2691-41-0	HMX	21.0	
121-82-4	RDX	21.5	
99-35-4	1,3,5-Trinitrobenzene	17.6	
99-65-0	1,3-Dinitrobenzene	17.8	
98-95-3	Nitrobenzene	17.8	
479-45-8	Tetryl	16.0	
118-96-7	2,4,6-Trinitrotoluene	18.7	
19406-51-0	4-Amino-2,6-dinitrotoluene	17.9	
35572-78-2	2-Amino-4,6-dinitrotoluene	17.9	
606-20-2	2,6-Dinitrotoluene	16.1	
121-14-2	2,4-Dinitrotoluene	16.5	
88-72-2	2-Nitrotoluene	14.9	
99-99-0	4-Nitrotoluene	15.4	
99-08-1	3-Nitrotoluene	14.7	

Comments:

FORM I ORD

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

S062607HORWLG

Lab Name: Laucks Testing Labs, Inc. Lab Sample ID: S062607HORWLG Instrument ID: HPLC5 (Oscar) Column (1): Allure C18 File (1): 062807.b-06280705.D

Sequence ID:	R019636
Column (2):	Synergi - EtPH

Run

File (2): F71207A.b-F7120752.D

Date Analyzed (1): 6/28/2007 1:59:00 PM 1

Date Analyzed (2): 7/13/2007 6:40:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	4	RPD	RT	RT Window
НМХ	1	18.8613		10.2 0/	4.58	4.33 - 4.83
	2	21.0228	Х	10.8 %	8.23	7.94 - 8.44
RDX	1	20.4357		51.0/	8.03	7.79 - 8.29
	2	21.5036	Х	J.1 70	8.77	8.48 - 8.98
1,3,5-Trinitrobenzene	l	17.5962	х	52 %	11.62	11.38 - 11.88
	2	16.698		5.2 70	25.38	24.97 - 25.47
1,3-Dinitrobenzene	an an an an an an an an an an an an an a	17.771	х	67.5 %	14.37	14.16 - 14.66
	2	33.9163		02.0 /0	16.53	16.19 - 16.69
Nitrobenzene	1	17.5658		15 %	16.89	16.69 - 17.19
	2	17.8355	Х	1.2 70	11.49	11.18 - 11.68
Tetryl	1	16.0464	Х	9.7 %	16.14	15.96 - 16.46
	2	14.562		211 70	29.36	28.91 - 29.41
2,4,6-Trinitrotoluene	1	17.7905		4.9 %	19.59	19.41 - 19.91
	2	18.691	Х	112 70	32.99	32.52 - 33.02
4-Amino-2,6-dinitrotoluen	1	17.92	х	1.0 %	20.35	20.17 - 20.77
	2	17.7427		/0	14.44	14.07 - 14.67
2-Amino-4,6-dinitrotoluen	1	17.8793	х	0.8 %	21.44	21.28 - 21.88
	2	17.7296			15.95	15.57 - 16.17
2,6-Dinitrotoluene	*****	16.1231	х	1.5 %	22.79	22.59 - 23.17
	2	15.8879			19.21	18.82 - 19.40
2,4-Dinitrotoluene	1	16.4553	Х	2.9 %	23.69	23.50 - 24.08
	2	15.977			22.23	21.80 - 22.38
2-Nitrotoluene	1	14.9209	Х	0.6 %	28.71	28.45 - 29.17
	2	14.8259			14.89	14.46 - 15.18

X = Concentration Reported

CONFIRMATION SUMMRY WORKSHEET FOR SINGLE COMPONENT ANALYTES

Client Sample ID

Lab Name:Laucks Testing Labs, Inc.Lab Sample ID:S062607HORWLGInstrument ID:HPLC5 (Oscar)Column (1):Allure C18File (1):O62807.b-O6280705.DDate Analyzed (1):6/28/2007 1:59:00 PMDate A

S062607HORWLG

Run Sequence ID:	R019636
Column (2):	Synergi - EtPH
File (2):	F71207A.b-F7120752.D
Date Analyzed (2):	7/13/2007 6:40:00 PM

Date Analyzed (1): 6/28/2007 1:59:00 PM

ANALYTE	COL	CONCENTRATION Final Units: ug/L	RPD	RT	RT Window
4-Nitrotoluene	1	15.4368 X	6.6 %	31.22	30.95 - 31.75
	2	14.4544	0.0 /0	15.59	15.12 - 15.92
3-Nitrotoluene	1	14.7105 X	79.0 %	33.59	33.29 - 34.17
	2	33.9163	///0 /6	16.53	16.00 - 16.88

X = Concentration Reported

Forms Summary

CAB34

Ordnance by Method 8332

2 WATER ORDNANCE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB34

Run Sequence: R019488

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (DNT) #	S2 () #	S3 () #	S4 () #	TOT OUT
(CAB34-009) 15LCMW04SW	96				0
(CAB34-007) 15LCMW04DW	106				0
(CAB34-005) 15LCMW03DW	95				0
(CAB34-003) 15LCMW415W	91				0
(CAB34-001) 15LCMW03SW	91				0
(S062607HORWLG2) S062607HORWLG2	84				0
(B062607HORWLG) B062607HORWLG	81				0

QC LIMITS

60-140

S1 (DNT) = 3,4-Dinitrotoluene S2 () = S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab	Nam	ne: <u>Laucks</u>	Testing Labs	Contract: <u>N/A</u>
BS	Run	Sequence:	R019488	SDG No.: <u>CAB34</u>
BS	Lab	Sample ID	S062607HORWLG2	

Level: <u>N/A</u> Units: <u>ug/L</u>

Analyte	Spike Added	Found	%Rec #	Rec Limit
Nitroglycerin	10.0	8.7516	88	60-140
PETN	5.00	3.3839	68	60-140

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: _____out of ____outside limits

COMMENTS:

ORDNANCE	METHOD	BLANK	SUMMARY

	OTOTANOD INDI	1100 01	Inter Golimate	B062	607HORWLG	
Lab Name: Laucks Testing Labs			Contract: N/A			
Lab Sample ID: <u>B062607HORWLG</u>			SDG No.: <u>CAB34</u>			
Matrix: (SOIL/WATER) <u>Water</u>			e Prepared: _	06/26/2007		
Lab File ID (1): <u>062907.b-06290704.D</u>			Lab File ID (2):			
Date Analyzed (1): <u>06/29/2007</u>			Date Analyzed (2):			
Time Analyzed (1): 11:04			Time Analyzed (2):			
Instrument ID (1): HPLC5 (Os	car)	Inst	trument ID (2):		_
Column(1): Varian Cl8	ID: 4.60 (n	mm) Cc	lumn(2):	·····	ID:	(mm)
THIS METHOD BLANK	APPLIES TO THE FOI	LOWIN	G SAMPLES AND	QC SAMPLES:		
CLIENT LAB SAMPLE NO. SAMPLE ID			LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE	
15LCMW03SW	CAB34-001	1	O6290725.D	06/29/2007 20:10	R019488]
15LCMW415W	CAB34-003	1	O6290726.D	06/29/2007 20:36	R019488	7

I

1

1

1

O6290727.D

O6290728.D

O6290729.D

O6290705.D

CAB34-005

CAB34-007

CAB34-009

S062607HORWLG2

COMMENTS:

15LCMW03DW

15LCMW04DW

15LCMW04SW

S062607HORWLG2

CLIENT SAMPLE NO.

R019488

R019488

R019488

R019488

06/29/2007 21:02

06/29/2007 21:28

06/29/2007 21:54

06/29/2007 11:30

ſ

CLIENT SAMPLE NO.

15LCMW03SW

Ü

Lab Name: Laucks Testing Labs		Contract: <u>N/A</u>			
SDG No.: CAB34		Run Sequence: <u>R019488</u>			
Matrix: (SOIL/W.	ATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>			
Sample wt/vol:	<u>1000.0 (g/mL)_mL</u>	Lab File ID: 06290725.D			
% Moisture: Decanted: (Y/N)		Date Collected: 06/22/2007			
Extraction: (Type)		Date Extracted: 06/26/2007			
Concentrated Ex	tract Volume: <u>5000.0 (</u> uL)	Date Analyzed: 06/29/2007			
Injection Volum	e: <u>50.0</u> (uL)	Dilution Factor: 2.0			
GPC Cleanup: (Y.	/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q		
55-63-0	Nitroglycerin	2.5	U		

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

15LCMW415W

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: <u>R019488</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 1000.0 (g/mL) <u>mL</u>	Lab File ID: <u>06290726.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/22/2007
Extraction: (Type) _SPE	Date Extracted: 06/26/2007
Concentrated Extract Volume: <u>5000.0</u> (uL)	Date Analyzed: 06/29/2007
Injection Volume:(uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	U
78-11-5	PETN	1.2	U

Comments:

N

CLIENT SAMPLE NO.

15LCMW03DW

U

U

Lab Name: Laucks Testing Labs	Contract: N/A		
SDG No.: CAB34	Run Sequence: <u>R019488</u>		
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>		
Sample wt/vol: 1000.0 (g/mL) mL	Lab File ID: 06290727.D		
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected: 06/22/2007		
Extraction: (Type)	Date Extracted:06/26/2007		
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007		
Injection Volume: <u>50.0</u> (uL)	Dilution Factor:2.0		
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>		
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L Q		

2.5

1.2

78-11-5 Comments:

55-63-0

Nitroglycerin

PETN

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: <u>R019488</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290728.D
% Moisture: Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Type) _SPE	Date Extracted:06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 06/29/2007
Injection Volume: 50.0 (uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
55-63-0	Nitroglycerin	2.5	U
78-11-5	PETN	1.2	U
	C 17 2 19		<u> </u>

Comments:

CLIENT SAMPLE NO.

1 ORDNANCE ORGANICS ANALYSIS DATA SHEET

15LCMW04SW

U

Ų

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019488</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: 06290729.D
% Moisture: Decanted: (Y/N) _N	Date Collected: 06/22/2007
Extraction: (Type) SPE	Date Extracted: 06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007
Injection Volume:(uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) ug/L

2.5

1.2

	78	- 1	1-	-5	
0		me	ni	r a	

.

55-63-0

Nitroglycerin

PETN

Page 1 of 1

Amount = Response divided by CF CF - Calibration Factor (response divided by concentration)	1 Nitroglycerin 348.3440 362.3640 357.0210 378.51 3 PETN 384.2240 428.2400 383.0820 416.19 2 3.4-Dinitrotoluene 833.5840 891.7440 836.9660 887.39 Average RSD : 3 357.0210 378.51 383.5840 891.7440 836.9660 887.39	Compound Level 1 Level 2 Level 3 Level	Calibration Files: Level 1: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O710 Level 2: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O710 Level 3: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O710 Level 4: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O710 Level 5: //SNAP568564B/tek4/Oscar.i/O71006ng.b/O710	<pre>Start Cal Date: 10-JUL-2006 11:17 End Cal Date : 10-JUL-2006 13:05 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\SNAP568564B\tek4\Oscar.i\071006ng. Sublist : all.sub Column Size : 0m L - 4.60mm ID</pre>
	-=====================================	evel 1 Level 5 Ave CP %RSD	07100601.D 07100602.D 07100603.D 07100603.D 07100604.D 07100605.D	5ng.b\071006NG.m

07/24/2006 13:09

ICAL Linearity Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Linearity Summary

Retention times ar 07/24/2006 13:09	Compound ====================================	Calibration Files: Level 1: //SNAP5685 Level 2: //SNAP5685 Level 3: //SNAP5685 Level 4: //SNAP5685 Level 5: //SNAP5685	Start Cal Date: 10- End Cal Date: 10- Quant Method: EST Cal Curve Type: Ave Integrator: HP Method File: \\S Sublist: all Column: Size: 0m
expressed as minutes. ICAL RT Summary	Level 1 Level 2 Lev 	4B/tek4/Oscar.i/071006ng.b/ 4B/tek4/Oscar.i/071006ng.b/ 4B/tek4/Oscar.i/071006ng.b/ 4B/tek4/Oscar.i/071006ng.b/ 4B/tek4/Oscar.i/071006ng.b/	UL-2006 11:17 UL-2006 13:05 age CF enie AP568564B\tek4\Oscar.i\0710 sub
₹2.0 ₽	vel 3 Level 4 Level 5 ======= ============================	/07100601.D /07100602.D /07100603.D /07100604.D /07100605.D	06ng.b\071006NG.m
age L	5 Ave RT , === ================================		· · · · · · · · · · · · · · · · · · ·

SUM - 120

Laucks Testing Labs Initial Calibration Retention Time Summary

Laucks Testing Labs Initial Calibration Amounts Summary

Compound	Calibration File Level 1: //SNAP9 Level 2: //SNAP9 Level 3: //SNAP9 Level 4: //SNAP9 Level 4: //SNAP9	Start Cal Date: End Cal Date : Quant Method : Cal Curve Type: Integrator : Method File : Sublist : Column Size :
Level 1 Level 2 Level 3 Level 4 Level 5	es: 568564B/tek4/Oscar.i/071006ng.b/07100601.D 568564B/tek4/Oscar.i/071006ng.b/07100602.D 568564B/tek4/Oscar.i/071006ng.b/07100603.D 568564B/tek4/Oscar.i/071006ng.b/07100604.D 568564B/tek4/Oscar.i/071006ng.b/07100605.D	10-JUL-2006 11:17 10-JUL-2006 13:05 ESTD Average CF HP Genie \\SNAP568564B\tek4\Oscar.i\071006ng.b\071006NG.m all.sub C18 0m L - 4.60mm ID

	2 3,4-Dinitrotoluene	3 PETN	1 Nitroglycerin	\$	Compound
	125.00	125.00	250.00		Level 1
-	250.00	250.00	500.00		Level 2
	500,00	500.00	1000.00		Level 3
	1250.00	1250.00	2500.00		Level 4
Province Address of the second se	2500.00	2500.00	5000.00		Level 5

Standard concentrations are expressed as ng/mL.

07/24/2006 13:08 ICAL Standard Concentrations Summary v2.0 Page Ľ

2 3,4-Dinitrotoluene	1 Nitroglycerin 3 pern		Calibration Files: Level 1: //SNAP568564B/tek Level 2: //SNAP568564B/tek Level 3: //SNAP568564B/tek Level 4: //SNAP568564B/tek Level 5: //SNAP568564B/tek	Start Cal Date: 10-JUL-200 End Cal Date : 10-JUL-200 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\SNAP5685 Sublist : all.sub Column Size : 0m L - 4.
104198.00	87086.000	Level 1	4/Oscar. 4/Oscar. 4/Oscar. 4/Oscar. 4/Oscar.	6 11:17 6 13:05 64B\tek4 60mm ID
222936.00	181182.00 107060.00	Level 2	1/071006 1/071006 1/071006 1/071006	/Oscar.1
418483.00	357021.00 191541.00	Level 3	ng.b/071 ng.b/071 ng.b/071 ng.b/071 ng.b/071 ng.b/071	\071006r
1109248.0	946275.00	Level 4	00601.D 00602.D 00603.D 00604.D 00605.D	1g,b\071(
2199285.0	1869720.0	Level 5	·)06NG.m

Response is in Area units.

07/24/2006 13:08

ICAL Responses Summary v2.0

Page

<u>|--</u>1

Laucks Testing Labs Initial Calibration Response Summary

Data File Injection Date Sample Info Misc Info	: 2	//cere 29-JUN STD04 ICV	es/la I-200 1000	ibda 97 1 PPB	ta/h] 0:31 MET1	plc HOE	c/os 0 83	scar/ 32	'Osca	ar.i	/062:	907.	b/06:	290703	3.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: 2 : () : () : 1 : ()	STD04 Dscar. 071006 ESTD 1.00 C18	1000 i NG.m	PPB 1			C S I S C	lier Dera Subli Integ Sampl Colum	nt II stor grato e Ty n St	or: ype: ze:	HPL(MY all HP (CCA) 0.1	Cl-1 Geni LIB 15m	5-15 e 3 L- 4	20X .60mm	ID
Compound			RT		RT	Wiı	ndow	A	veraç CF	ge	ICV CF	r '	۶D	Flag	
Nitroglycerin			.0.30	==== #	10.05	; -	10.	55 3	64.0	366	359.7	260	1.2	= = = = = = = =	±.
3,4-Dinitrotoluene		1	.1.35	#	11.1()	11.	60 8	65.88	317	874.0	680	-0.9		
PETN		1	9.64	#	19.39)	19.	89 4	04.2	527	385.0	800	4.7		

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
= The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

SUM - 123

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor		<pre>//ceres/labda 29-JUN-2007 1 STD04 1000PPE Method 8332 STD04 1000PPE Oscar.i 071006NG.m ESTD 1.00 C10</pre>	4: M	/hp 58 IETH	NOD	osca 8332 Cli Ope Sub Int San	ent erato list aple	ID or tor Type	i/ ::::::::::::::::::::::::::::::::::::	O62907. HPLC1-1 MY all HP Geni CCALIB	b/06 5-15 e	290713 20X	3.D
Column	:	C18				COL	unin	Size	:	U.ISM	⊥ 4	• 6 UIIIII	цт
Compound		RT		RT	Wind	dow	Ave	rage CF	Co	ontinuing CF	۶ ۳D	Flag	-
Nitroglycerin		10.30	10	0.05		10.55	364	.0366	2	358.3320	1.6		-
3,4-Dinitrotoluene		11.35	11	L.10		11.60	865	.8817	{	370.0720	-0.5		
PETN		19.65	19	9.39		19.89	404	.2527	3	387.5460	4.1		
					·····								

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc Info	: : : .	//ceres/labdat 29-JUN-2007 12 STD04 1000PPB Method 8332	ta/hp 8:52 METH	lc OD	/osca 8332	r/Oscar.	i/062907.	b/062	290722.E)
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	• • • • • •	STD04 1000PPB Oscar.i 071006NG.m ESTD 1.00 C18		Client ID : HPLC1-15-15 20 Operator : MY Sublist : all Integrator : HP Genie Sample Type: CCALIB_3 Column Size: 0.15m L- 4.60)
Compound		ΨG	ת ידים	α-i −-	udow	Average CF	Continuing	۲ ۲۶	Flag	
				•				======		
Nitroglycerin		10.30	10.05	-	10.55	364.0366	361.2050	0.8		
3,4-Dinitrotoluene		11.35	11.10	-	11.60	865.8817	868.9060	-0.3		
PETN		19.70	19.39		19.89	404.2527	386.9900	4.3		

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
= The compound retention time is the expected retention time in the method.

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		//ceres/labda 29-JUN-2007 2 STD04 1000PPB Method 8332 STD04 1000PPB Oscar.i 071006NG.m ESTD 1.00 C18	ta/hpl。 2:20 METHOI		Samp Clie Sub: Inte Samp Colu	r/Oscar ent ID rator list egrator ole Typ umn Siz	.i, : : e: e:	/062907. HPLC1-1 MY all HP Geni CCALIB_ 0.15m	b/06: 5-15 e 3 L- 4	290730 20X .60mm	ID.
Compound		RT	RT Wi	ndo	WC	Average CF	С	ontinuing CF	%D	Flag	
Nitroglycerin	:==	10.30	10.05 -	==:	0.55	364.036	===	======= 359.9460	1,1		:
3,4-Dinitrotoluene		11.36	11.10 -	1	1.60	865.881	7	869.4440	-0.4		
PETN		19.72	19.39 -	1	9.89	404.252	7	385.2300	4.7		

```
Calibration Factor ( CF ) = Response divided by Concentration
Percent Difference ( %D ) = (Ave CF - Cont CF) divided by AveCF times 100
* = Percent Difference is outside the acceptance limits of +/-15%
# = The compound retention time is the expected retention time in the method.
```

CLIENT SAMPLE NO.

B062607HORWLG

Ű

Lab Name: La	ucks Testing Labs	Contract: <u>N/A</u>	
SDG No.: <u>CAB3</u>	4	Run Sequence: _R019488	
Matrix: (SOIL,	/WATER) <u>Water</u>	Lab Sample ID: <u>B062607HORWLG</u>	·····
Sample wt/vol:	: <u>1000.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>06290704.D</u>	
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected:	
Extraction: (1	Type) _SPE	Date Extracted:06/26/2007	
Concentrated f	Extract Volume: _5000.0_(uL)	Date Analyzed: 06/29/2007	
Injection Volu	ume: _50.0 (uL)	Dilution Factor:	
GPC Cleanup:	(Y/N) <u>N</u> PH:	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
55-63-0	Nitroglycerin	2.5	U

1.2

78-11-5 Comments: PETN

CLIENT SAMPLE NO.

S062607HORWLG2

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019488</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S062607HORWLG2</u>
Sample wt/vol: 1000.0 (g/mL) mL	Lab File ID: 06290705.D
% Moisture: Decanted: (Y/N)	Date Collected:
Extraction: (Type) <u>SPE</u>	Date Extracted:06/26/2007
Concentrated Extract Volume: _5000.0 (uL)	Date Analyzed: 06/29/2007
Injection Volume: <u>50.0</u> (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS:

		(ug/L or ug/kg) <u>ug/L</u>	
55-63-0	Nitroglycerin	8.75	
78-11-5	PETN	3.38	

Comments:

Forms Summary

CAB34

Ordnance by Method 8303

		2	
WATER	ORDNANCE	SURROGATE	RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB34

Run Sequence: R019702

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (D2M) #	S2 () #	s3 () #	S4 () #	TOT OUT
(CAB34-009) 15LCMW04SW	108				0
(CAB34-007) 15LCMW04DW	104				0
(CAB34-005) 15LCMW03DW	107				0
(CAB34-003) 15LCMW415W	101				0
(CAB34-001) 15LCMW03SW	109				0
(S062607HSVWLS) S062607HSVWLS	102				0
(B062607HSVWLS) B062607HSVWLS	102				0

S1 (D2M) = 4,6-Dinitro-2-methylpheno
S2 () =
S3 () =
S4 () =

Column to be used to flag recovery values

* Values outside of contract required QC limits

•

QC LIMI**T**S 70-115
3B WATER ORDNANCE BLANK SPIKE RECOVERY

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
BS Run Sequence: <u>R019702</u>	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S062607HSVWLS</u>	
Level: N/A	Units: <u>ug/L</u>

Analyte	Spike Added	Found	% Rec	#	Rec Limit
Pieric Acid	4.00	3.3821	85		61-128
Picramic Acid	4.00	3.9577	99		47-110

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>2</u> outside limits

COMMENTS:

•

.

.

ORDNAI	NCE METHOD BLANK SUMMARY	CLIENT SAMPLE NO. B062607HSVWLS
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>	
Lab Sample ID: <u>B062607HSVWLS</u>	SDG No.: <u>CAB34</u>	
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared:06/2	26/2007
Lab File ID (1):	Lab File ID (2):	
Date Analyzed (1): 07/17/2007	Date Analyzed (2):	
Time Analyzed (1): 16:38	Time Analyzed (2):	
Instrument ID (1): <u>HPLC3 (Felix)</u>	Instrument ID (2):	
Column(1): <u>Supelcosil LC-CN</u> ID:	4.60 (mm) Column(2):	ID:(mm)
THIS METHOD BLANK APPLIES TO	THE FOLLOWING SAMPLES AND QC	SAMPLES:
CLIENT LAB	LAB FILE TO	DATE/TIME BUN

SAMPLE NO.	SAMPLE ID	COL	LAB FILE ID	ANALYZED	RUN SEQUENCE
15LCMW03SW	CAB34-001	1	F7170729.D	07/17/2007 18:38	R019702
15LCMW415W	CAB34-003	1	F7170730.D	07/17/2007 18:51	R019702
15LCMW03DW	CAB34-005	1	F7170731.D	07/17/2007 19:03	R019702
15LCMW04DW	CAB34-007	1	F7170732.D	07/17/2007 19:15	R019702
15LCMW04SW	CAB34-009	1	F7170733.D	07/17/2007 19:27	R019702
S062607HSVWLS	S062607HSVWLS	1	F7170720.D	07/17/2007 16:50	R019702

COMMENTS:

•

.

÷

CLIENT SAMPLE NO.

15LCMW03SW

Lab Name: Lai	ucks Testing Labs	Contract:_N/A	
SDG No.: <u>CAB3</u>	4	Run Sequence: <u>R019702</u>	
Matrix: (SOIL,	/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>	
Sample wt/vol:	<u>1020.0</u> (g/mL) <u>mL</u>	Lab File ID: F7170729.D	
% Moisture: _	Decanted: (Y/N) <u>N</u>	Date Collected: 06/22/2007	
Extraction: (1	fype) <u>SEPF</u>	Date Extracted: 06/26/2007	
Concentrated I	Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/17/2007	
Injection Volu	ume: _50.0(uL)	Dilution Factor: 2.0	
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q	
88-89-1	Picric Acid	1.1 U	
96-91-3	Picramic Acid	1.1 U	

Comments:

FORM I ORD

CLIENT SAMPLE NO.

15LCMW415W

U

.

.

Lab Name: Lauc	ks Testing Labs	Contract	: <u>N/A</u>	
SDG No.: <u>CAB34</u>		Run Sequ	ence: <u>R019702</u>	
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Samp	ble ID: CAB34-003	
Sample wt/vol:	1060.0 (g/mL) mL	Lab File	e ID: <u>F7170730.D</u>	
% Moisture:	Decanted: (Y/N)N	Date Col	lected:06/22/2007	
Extraction: (Ty	pe) <u>SEPF</u>	Date Ext	racted:06/26/2007	
Concentrated Ex	tract Volume: <u>1000.0 (</u> uL)	Date Ana	lyzed: 07/17/2007	
Injection Volume	⊜: <u>50.0</u> (uL)	Dilution	Factor: <u>2.0</u>	
GPC Cleanup: (Y,	/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur C	Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND		CONCENTRATION UNITS: {ug/L or ug/kg} <u>ug/L</u>	Q
88-89-1	Picric Acíd		1.0	U

1,0

96-91-3 Comments: Picramic Acid

FORM I ORD

CLIENT SAMPLE NO.

15LCMW03DW

U

Lab Name: Laucks Testing Labs	S	Contract: N/A	
SDG No.: CAB34		Run Sequence: <u>R019702</u>	
Matrix: (SOIL/WATER) <u>Water</u>		Lab Sample ID: <u>CAB34-00</u>	5
Sample wt/vol: <u>1060.0</u> (g/m	mL) <u>mL</u>	Lab File ID: <u>F7170731.D</u>	
% Moisture: Decanted	l: (Y/N) <u>N</u>	Date Collected:06/22/3	2007
Extraction: (Type) SEPF		Date Extracted:06/26/3	2007
Concentrated Extract Volume:	1000.0 (uL)	Date Analyzed: 07/17/2	07
Injection Volume: 50.0	(uL)	Dilution Factor:	
GPC Cleanup: (Y/N) <u>N</u> pP	H: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) _	N
CAS NO. COMPOUND		CONCENTRATION U (ug/L or ug/kg	NITS: Q
88-89-1 Picric Acid		1.0	U

1.0

96-91-3 Comments: Picramic Acid

FORM I ORD

•

.

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name: La	ucks Testing Labs	Contract:_N/A	
SDG No.: CABS	}4	Run Sequence: <u>R019702</u>	
Matrix: (SOIL	/WATER) Water	Lab Sample ID: <u>CAB34-007</u>	
Sample wt/vol	: <u>1060.0</u> (g/mL) <u>mL</u>	Lab File ID: F7170732.D	
% Moisture: .	Decanted: (Y/N) _N	Date Collected: 06/22/2007	
Extraction: (Type) <u>SEPF</u>	Date Extracted:06/26/2007	
Concentrated	Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/17/2007	
Injection Vol	ume: <u>50.0 (</u> uL)	Dilution Factor: 2.0	
GPC Cleanup:	(Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	
88-89-1	Picric Acid	1.0 U	
96-91-3	Picramic Acid	1.0 U	

CLIENT SAMPLE NO.

15LCMW04SW

U

U

.

•

•

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: <u>R019702</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: 1060.0 (g/mL) mL	Lab File ID: <u>F7170733.D</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/22/2007
Extraction: (Type) _SEPF	Date Extracted: 06/26/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/17/2007
Injection Volume: 50.0 (uL)	Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: Q

1.0

1.0

96-91-3 Comments:

88-89-1

Picric Acid

Picramic Acid

FORM I ORD

CF - Calibration Factor (response divided by concentration). RSD - Relative Standard Deviation. 07/18/2007 09:17 ICAL Linearity Summary v2.0	Amount = Response divided by CF	Compound Level 1 Level 2 Level 3 Level 4 Level 5 Ave CP %RSD ====================================	Calibration Files: Level 1: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D Level 2: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D Level 3: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D Level 4: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D Level 5: //ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D	<pre>Start Cal Date: 17-JUL-2007 14:55 End Cal Date : 17-JUL-2007 15:44 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m Sublist : all.sub Column Size : Om L - 4.60mm ID</pre>	Laucks Testing Labs Initial Calibration Linearity Summary
àge . 1		· .		· · ·	

Laucks Testing Labs Initial Calibration Retention Time Summary

Level 3: Level 4: Sublist Method File Integrator Level 2: Calibration Files: Column Size Column Cal Curve Type: Quant Method : End Cal Date Start Cal Date: Level 5: Level 1: /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170711.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170712.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170713.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170714.D /ceres/labdata/hplc/felix/Felix.i/F71707B.b/F7170715.D •• Average CF 0N N all.sub HP Genie ESTD 17-JUL-2007 15:44 17-JUL-2007 14:55 \\ceres\labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m 0m L - 4.60mm ID

	3 4,6-Dinitro-o-Cresol	2 Picric Acid	1 Picramic Acid	》》 다 가 있 것 가 가 가 한 번 다 다 다 다 만 한 번 한 번 한 번 한 번 한 번 한 번 한 번 한 번 한 번 한	Compound
1	5.96	3.22	3.65	3) 8) 8) 8) 8) 8) 8) 8) 8) 8) 8) 8) 8) 8)	Level 1
	5.90	3.21	3.65		Level 2
	5.78	3.18	3.64		Level 3
	5.72	3.17	3.64		Level 4
	5.70	3.16	3.63		Level 5
	5.814	3,190	3.642		Ave RT

Retention times are expressed as minutes.

07/18/2007 09:17

ICAL RT Summary v2.0

Page 1

Laucks Testing Labs Initial Calibration Amounts Summary

Level 1 Level 2 Level 3 Level 4 Level 5	Compound Level 1 I
nplc/felix/Felix.i/F71707B.b/F7170711.D nplc/felix/Felix.i/F71707B.b/F7170712.D nplc/felix/Felix.i/F71707B.b/F7170713.D nplc/felix/Felix.i/F71707B.b/F7170714.D nplc/felix/Felix.i/F71707B.b/F7170715.D	Calibration Files: Level 1: //ceres/labdata/hplc/felix/ Level 2: //ceres/labdata/hplc/felix/ Level 3: //ceres/labdata/hplc/felix/ Level 4: //ceres/labdata/hplc/felix/ Level 5: //ceres/labdata/hplc/felix/
97 14:55 97 15:44 ? abdata\hplc\felix.i\F71707.b\F71707PICCN.m .60mm ID	Start Cal Date: 17-JUL-2007 14:55 End Cal Date : 17-JUL-2007 15:44 Quant Method : ESTD Cal Curve Type: Average CF Integrator : HP Genie Method File : \\ceres\labdata\hplc Sublist : all.sub Column Size : Om L - 4.60mm ID

Compound	Level 1	Level 2	Level 3	Level 4	Level
<u></u>					
l Picramic Acid	500.00	1000.00	2500.00	4000.00	500
2 Picric Acid	500.00	1000.00	2500.00	4000.00	500
3 4,6-Dinitro-o-Cresol	500.00	1000.00	2500,00	4000.00	500

Standard concentrations are expressed as $\mbox{ng/mL}.$

07/18/2007 09:18 ICAL Standard Concentrations Summary v2.0 Page μ

14.

Start Cal Date: 17-JUL-2 and Cal Date : 17-JUL-2 Quant Method : ESTD Dal Curve Type: Average Integrator : HP Genie Method File : \\ceres\ Bublist : all.sub Column Size : Om L - Column Size : Om L - Calibration Files: Level 1: //ceres/labdata	Laucks Testing Labs Initial Calibration Response Summary 2007 14:55 2007 15:44 CF Labdata\hplc\felix\Felix.i\F71707.b\F71707PICCN.m Labdata\hplc\felix.felix.i/F71707B.b/F7170711.D h/hplc/felix/Felix.i/F71707B.b/F7170712.D
Calibration Files: .evel 1: //ceres/labdata .evel 2: //ceres/labdata .evel 3: //ceres/labdata .evel 4: //ceres/labdata	/hplc/felix/Felix.i/F71707B.b/F7170711.D i/hplc/felix/Felix.i/F71707B.b/F7170712.D i/hplc/felix/Felix.i/F71707B.b/F7170713.D i/hplc/felix/Felix.i/F71707B.b/F7170714.D i/hplc/felix/Felix.i/F71707B.b/F7170715.D
Compound	Level 1 Level 2 Level 3 Level 4 Level 5
1 Picramic Acid 2 Picric Acid 3 4,6-Dínitro-o-Cresol	<pre>**** ********************************</pre>
Response is in Area uni	

SUM - 141

Laucks Testing Labs Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor		<pre>//ceres/labdat 17-JUL-2007 16 STD03 2500PPB ICV STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN</pre>	ca/hpl 5:26 LTL 8	.c/ 330	feli: 3 Cli Ope Sub Int Sam	x/Felix.i ent ID rator list egrator : ple Type:	HPLC1-1 MY all CCALIB	b/F' .6-17 .e	4X	.8.D
Compound	:	RT	RT W	ind	.ow	Average CF	ICV CF	₽ ₽ ₽	Flag	ΥĽ
Picric Acid	= =	3.18	2.28	= aa aa 	4.08	72.82098	72.75360	0.1		=
Picramic Acid		3.64	3.39	-	3.89	345.7052	348.2684	-0.7		
4,6-Dinitro-o-Cresol		5.80	4.84		6.76	301.1552	301.4824	-0.1		

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info	: : :	//ceres/labdat 17-JUL-2007 18 STD03 2500PPB SOP#:LTL-8303	:a/h 3:26 LTL	plo 8:	c/f∈ 303	eli:	x/Felix.:	i/F71707A	.b/F71707	28.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN				Sub Sub Int Samj	ent ID rator list egrator ple Type umn Size	: HPLC1-1 : MY : all : HP Geni : CCALIB_ : 0.25m	6-17 e 3 L- 4.60mm	ID
Compound		RT	RT	Wi	ndow		Average CF	Continuing CF	%D Flag	
Picric Acid	==	3.20	2.2	8 -	4.	=== 08	72.82098	82.54360	-13.4	
Picramic Acid		3.63	3.3	9 -	3.	89	345.7052	331,9600	4.0	
4,6-Dinitro-o-Cresol		5.74	4.8	4 -	6.	76	301.1552	301.2832	-0.0	

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

Laucks Testing Labs Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info	::	//ceres/labdat 17-JUL-2007 19 STD03 2500PPB SOP#:LTL-8303	:a/h 9:51 LTL	p.	1c, 83)	/feli 03	x/Felix.:	i/F71707A	.b/F71707:	35.D
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		STD03 2500PPB Felix.i F71707PICCN.m ESTD 1.00 CN				Cli Ope Sub Int Sam Col	ent ID rator list egrator ple Type umn Size	: HPLC1-1 : MY : all : HP Geni : CCALIB_ : 0.25m	.6-17 .e 3 L- 4.60mm	ID
Compound		RT	RT	W	lin	dow	Average CF	Continuing CF	%D Flag	
Picric Acid	==	3.21	2.2	== 8	-	4.08	72.82098	82.06800	-12.7	=
Picramic Acid		3.63	3.3	9	-	3.89	345.7052	346.3196	-0.2	
4,6-Dinitro-o-Cresol		5.71	4.8	4		6.76	301.1552	312.3448	-3.7	

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

CLIENT SAMPLE NO.

B062607HSVWLS

U

.

Lab Name: Lauc	s Testing Labs	Contract: N/A	
SDG No.: CAB34		Run Sequence: <u>R019702</u>	
Matrix: (SOIL/W	MTER) Water	Lab Sample ID: <u>B062607HSVWLS</u>	
Sample wt/vol:	1000.0 (g/mL) <u>mL</u>	Lab File ID: F7170719.D	
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:	
Extraction: (Typ	De) <u>SEPF</u>	Date Extracted: 06/26/2007	
Concentrated Ext	ract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/17/2007	
Injection Volume	e:(uL)	Dilution Factor:2.0	
GPC Cleanup: (Y/	(N) <u>N</u> pH: <u>8.5-9</u>	Sulfur Cleanup: (Y/N) <u>N</u>	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
88-89-1	Picric Acid	1.1	U

1.1

96-91-3 Comments: Picramic Acid

FORM I ORD

LTL8303PP

CLIENT SAMPLE NO.

S062607HSVWLS

,

•

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: R019702
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: _S062607HSVWLS
Sample wt/vol: 1000.0 (g/mL)	L Lab File ID: <u>F7170720.D</u>
% Moisture: Decanted: (Y/	/N) <u>N</u> Date Collected:
Extraction: (Type) <u>SEPF</u>	Date Extracted:06/26/2007
Concentrated Extract Volume: 1000	.0 (uL) Date Analyzed: 07/17/2007
Injection Volume: 50.0	(uL) Dilution Factor: 2.0
GPC Cleanup: (Y/N) <u>N</u> pH: <u>8.5</u>	-9 Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q
88-89-1 Picric Acid	3.4

4.0

96-91-3 Comments: Picramic Acid

Forms Summary

NWTPH-Gasoline

CAB34

2 WATER GASOLINE SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

Contract: <u>N/A</u>

SDG No.: CAB34

Run Sequence: <u>R019583</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (BFB) #	S2 (TFT) #	S3 () #	S4 () #	tot Out
(CAB34-009) 15LCMW04SW	. 84	89			0
(CAB34-007) 15LCMW04DW	86	92			0
(CAB34-005) 15LCMW03DW	85	92			0
(CAB34-003) 15LCMW415W	86	92			0
(CAB34-001MS) 15LCMW03SWMS	86	89			0
(CAB34-001Dup) 15LCMW03SWD	87	93			0
(CAB34-001) 15LCMW03SW	86	93			0
(\$070507GVOW11) \$070507GVOW11	88	91			0
(B070507GVOWI1) B070507GVOWI1	86	92			0

QC LIMITS 50-150

50-150

S1 (BFB) = 4-Bromofluorobenzene S2 (TFT) = Trifluorotoluene S3 () = S4 () =

Column to be used to flag recovery values
* Values outside of contract required QC limits

3B WATER GASOLINE BLANK SPIKE RECOVERY

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run Sequence: <u>R019583</u>	SDG No.: <u>CAB34</u>
BS Lab Sample ID: <u>S070507GVOWI1</u>	
Level: N/A	Units: ug/L

Analyte	Spike Added	Found	% Rec #	Rec Limit
Gasoline Range Organics	100	77.3867	77	71-122

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

Spike Recovery: _____ out of _____ outside limits

COMMENTS:

Laucks Testing Laboratories

Duplicate Report

Test:	NWTPH Gas	SDG ID:	CAB34
		Preparation Date:	7/5/2007
Lab Sample ID:	CAB34-001Dup	Run Sequence ID:	R019583
Client Sample ID:	15LCMW03SW	Analysis Date:	07/05/2007 22:30
		Units:	ug/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit
Gasoline Range Organics	5.3112	4.6868	12%	30

A	Associated Samples
Lab Sample ID	Client Sample ID
CAB34-001	15LCMW03SW
CAB34-003	15LCMW415W
CAB34-005	15LCMW03DW
CAB34-007	15LCMW04DW
CAB34-009	15LCMW04SW

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-20.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertusing or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faitb and according to the rules of trade and science. SUMD - 150

Laucks Testing Laboratories Matrix Spike Report

Analy	yte	Sample Found	Spike Added	MS Found	Recovery	Limit
				Matrix:	Water	
				Units:	ug/L	
Client Sample ID:	15LCMW03SW	MS		Analysis Date:	7/5/2007	11:08:00PM
Lab Sample ID:	CAB34-001MS			Run Sequence ID:	R019583	
•				Preparation Date:	07/05/200	17
Test:	NWTPH Gas			SDG ID:	CAB34	

5.3112

A	ssociated Samples	
Lab Sample ID	Client Sample ID	
CAB34-001	15LCMW03SW	
CAB34-003	15LCMW415W	
CAB34-005	15LCMW03DW	
CAB34-007	15LCMW04DW	
CAB34-009	15LCMW04SW	

100

77.1006

72%

67-125

= This Recovery is not flagged an an exceedence because the Sample Found amount is five times or more than the Spike added amount

* = RPD or percent recovery is outside the established control limits

Gasoline Range Organics

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

FORM LTL-RSR-21.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is uddressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science. SUM - 151

		CLIENT SAMPLE NO.
GASOLINE METH	HOD BLANK SUMMARY	B070507GVOWI1
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>	
Lab Sample ID: <u>B070507GVOWI1</u>	SDG No.: <u>CAB34</u>	mmentalistikasi kutan kana kana kana kana kana kana kana k
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: 07/05/2007	
Lab File ID (1): <u>17057-2.b-1705704.d</u>	Lab File ID (2):	
Date Analyzed (1): 07/05/2007	Date Analyzed (2):	
Time Analyzed (1): 20:35	Time Analyzed (2):	Notes a second second second second second second second second second second second second second second second
Instrument ID (1): <u>HF 58901</u>	Instrument ID (2):	
Column(1): <u>DB-VRX 30m/0.45u</u> ID: 0.45 (m	nm) Column(2):	ID:(mm)
THIS METHOD BLANK APPLIES TO THE FOL	LOWING SAMPLES AND QC SAMPLE	<u>is :</u>
CLIENT LAB	LAB FILE TO DATE /	TIME RUN

CLIENT SAMPLE NO.	LAB SAMPLE ID	COL	LAB FILE ID	DATE/TIME ANALYZED	RUN SEQUENCE
15LCMW03SW	CAB34-001	1	I705706.d	07/05/2007 21:52	R019583
15LCMW415W	CAB34-003	1	1705709.d	07/05/2007 23:47	R019583
15LCMW03DW	CAB34-005	1	I705710.d	07/06/2007 00:25	R019583
15LCMW04DW	CAB34-007	1	1705711.d	07/06/2007 01:03	R019583
15LCMW04SW	CAB34-009	3	1705712.d	07/06/2007 01:42	R019583
S070507GVOWI1	S070507GVOWI1	1	I705705.d	07/05/2007 21:13	R019583
15LCMW03SWMS	CAB34-001MS	1	1705708.d	07/05/2007 23:08	R019583
15LCMW03SWD	CAB34-001Dup	1	1705707.d	07/05/2007 22:30	R019583

COMMENTS:

CLIENT SAMPLE NO.

15LCMW03SW

U

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: <u>R019583</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1705706.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/05/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q

25

Comments:

TPH-Gasoline

Gasoline Range Organics

CLIENT SAMPLE NO.

15LCMW415W

U

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence: R019583
Matrix: (SOIL/WATER)Water	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 10 (g/mL) mL	Lab File ID:
pH: <2 Decanted: (Y/N) N	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type)	Date Analyzed: 07/05/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L Q

25

Gasoline Range Organics

TPH-Gasoline Comments:

FORM I GRO

CLIENT SAMPLE NO.

15LCMW03DW

U

Lab Name; <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.: CAB34	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1705710.d</u>
pH: <2 Decanted: (Y/N) <u>N</u>	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type) <u>PURGETRAP</u>	Date Analyzed: 07/06/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume: (ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>ug/L</u> Q

25

Comments:

TPH-Gasoline

Gasoline Range Organics

CLIENT SAMPLE NO.

15LCMW04DW

U

(ug/L or ug/kg) ug/L

25

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.: _CAB34	Run Sequence: <u>R019583</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>1705711.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type) _ PURGETRAP	Date Analyzed: 07/06/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume: (ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS:

Comments:

TPH-Gasoline

Gasoline Range Organics

Page 1 of 1

FORM I GRO

CLIENT SAMPLE NO.

15LCMW04SW

U

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: 10 (g/mL) mL	Lab File ID: <u>1705712.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/06/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume:(ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) <u>ug/L</u>

25

Comments:

TPH-Gasoline Gasoline Range Organics

FORM I GRO

· · · ·	ation.	
	sponse divided by concentration).	CF - Calibration Pactor (ren RSD - Relative Standard Devia
	ed in linearity determination.	+++ - Standard Level not us
	ded by CF	Amount = Response divid
1.9		Average RSD :
======================================		<pre>####################################</pre>
26N2.b/1802607.d 26N2.b/1802608.d 26N2.b/1802609.d 26N2.b/1802610.d 26N2.b/1802611.d 26N2.b/1802611.d 26N2.b/1802612.d	es/Target/Chem/58901.i/I802 es/Target/Chem/58901.i/I802 es/Target/Chem/58901.i/I802 es/Target/Chem/58901.i/I802 es/Target/Chem/58901.i/I802 es/Target/Chem/58901.i/I802	Level 1: //Are Level 2: //Are Level 3: //Are Level 4: //Are Level 5: //Are Level 6: //Are
.i\I8026N2.b\GN80201.m	: 02-AUG-2006 17:57 : 02-AUG-2006 21:09 : ESTD : Average CF : Falcon : \\Ares\Target\Chem\5890I. : all-j.sub : DB-VRX : 30m L - 0.53mm ID	Start Cal Date End Cal Date Quant Method Cal Curve Type Integrator Method File Sublist Column Column Size

Laucks Testing Labs Initial Calibration Retention Time Summary

Calibration Files: Level 1: //Ares/Target/Chem/5890I.i/I8026N2.b/I802607.d Level 2: //Ares/Target/Chem/5890I.i/I8026N2.b/I802608.d
--

2 Bromofluo	1 Trifluoro		Compou
robenzene	toluene	1997年1997年1999年1999年1999年1997年1997年1997	nd
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		Level 1
11.96	6.44		Level 2
11.96	6.44		Level 3
11.96	6.44		Level 4
11.96	6.45		Level 5
11.96	6.45	* * * * * * * * * *	Level 6
11.958	6.445		Ave RT

+++ - Standard level not used in linearity determination. Retention times are expressed as minutes.

08/25/2006 06:31

ICAL RT Summary v2.0

Page 1

3 Gasoline ++ 1 Trifluorotoluene ++ 2 Bromofluorobenzene ++	Compound Le	Calibration Files: Level 1: //Ares/Target/Chem/5 Level 2: //Ares/Target/Chem/5 Level 3: //Ares/Target/Chem/5 Level 4: //Ares/Target/Chem/5 Level 5: //Ares/Target/Chem/5 Level 6: //Ares/Target/Chem/5	Start Cal Date: 02-AUG-2006 1 End Cal Date : 02-AUG-2006 2 Quant Method : ESTD Cal Curve Type: Average CF Integrator : Falcon Method File : \\Ares\Target Sublist : all-j.sub Column Size : 30m L - 0.53m	Initi
$\begin{array}{c} & & & \\ + & + & + \\ + & + & + \\ + & + &$	evel 1	i. 1068 1068 1068 1068 1068 1068 1068 1068	7:57 1:09 \Chem\	al Caj
250.00 50.00 50.00	Level 2	/18026N2 /18026N2 /18026N2 /18026N2 /18026N2	\5890I.i\	libration
500.00 100.00 100.00	Level 3	2.b/1802 2.b/1802 2.b/1802 2.b/1802 2.b/1802 2.b/1802 2.b/1802	18026N2	1 Amount
1000.00 200.00 200.00	Level 4	607.d 608.d 610.d 611.d 611.d 612.d	.b\GN802	s Summai
2500.00 300.00 300.00	Level 5		201.m	τŢ

5000.00

400.00 400.00 Level 6

Standard concentrations are expressed as ng. +++ - Standard Level not used in linearity determination.

08/25/2006 06:31 ICAL Standard Concentrations Summary v2.0 Page Щ

Laucks Testing Labs

Laboratory Name Initial Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	** ** ** ** ** ** ** ** **	//diana/targ 05-JUL-2007 CCV A GAS ICV NWTPHGX CCV A GAS 58901.i GN80217.m ESTD 1.00 DB-VRX	ge 1	t/5890 9:18	i	.i/I7 Cli Sub Int Sam Col	057 ent list egra ple umn	ID ID Type Size	I70 : 1 : a : F : C : 3	5702.d Oul VC 11-j alcon CALIB 0.00m	3 	-42 0.	2-6 .53mm	ID
Compound		RT		RT Wi	in	ndow	Ave	rage CF		ICV CF	olo	D	Flag	
Trifluorotoluene	= =	======================================		6.52 -	:=	6.62	543	.7455	50	====== 3.9000	-	=== 7.3	=======================================	:
Bromofluorobenzene		12.06 #		12.01 -		12.11	412	.9193	36	7.9100	-1	0.9)	
Gasoline				8.04 -		18.53	420	.7492	42	0.9390		0.0)	

Calibration Factor (CF) = Response divided by Concentration
Percent Difference (%D) = (Ave CF - ICV CF) divided by Ave CF times 100
 * = Percent Difference is outside the acceptance limits of +/-15%
 # = The compound retention time is the expected retention time in the method.

ICV Summary V1.0

Page 1

SUM - 162

Laboratory Name Continuing Calibration Verification Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor	: //diana/targ : 06-JUL-2007 : CCV B GAS : NWTPHGx : CCV B GAS : 58901.i : GN80217.m : ESTD 1 00	get/5890i.i/I7 02:20 Cli Sub Int Sam	057-2.b/ ent ID list egrator	1705713.d : 10ul VC : all-j : Falcon	A A 5-42-6	
Column	: DB-VRX	Col	umn Size	: 30.00m	 _L- 0.53mm	ID
Compound	RT	RT Window	Average CF	Continuing CF	%D Flag	
Trifluorotoluene	6.57	6.52 - 6.62	543.7455	497.3150	~8.5	
Bromofluorobenzene	12.05	12.01 - 12.11	412.9193	366.3450	-11.3	
Gasoline		8.04 - 18.53	420.7492	393.1740	-6.6	

Calibration Factor (CF) = Response divided by Concentration Percent Difference (%D) = (Ave CF - Cont CF) divided by AveCF times 100 * = Percent Difference is outside the acceptance limits of +/-15% # = The compound retention time is the expected retention time in the method.

CCV Summary V1.0

Page 1

CLIENT SAMPLE NO.

B070507GVOWI1

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.:CAE34	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID:B070507GVOWI1
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: 1705704.d
pH: Decanted: (Y/N) <u>N</u>	Date Collected:
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/05/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume:(ul)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
TPH-Gasoline	Gasoline Range Organics	25	U

CLIENT SAMPLE NO.

S070507GVOWI1

Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>				
SDG No.:CAB34	Run Sequence:				
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>S070507GVOWI1</u>				
Sample wt/vol: 10 (g/mL) mL	Lab File ID: <u>1705705.d</u>				
pH: Decanted: (Y/N) <u>N</u>	Date Collected:				
Percent Moisture:	Date Prepared: 07/05/2007				
Extraction: (Type)PURGETRAP	Date Analyzed: 07/05/2007				
Soil Extract Volume:(ul)	Dilution Factor: 1.00				
Soil Aliquot Volume:(ul)					
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u> Q				
TPH-Gasoline Gasoline Range Organics	77				

CLIENT SAMPLE NO.

15LCMW03SWD

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.:CAB34	Run Sequence:
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001Dup</u>
Sample wt/vol: 10 (g/mL) mL	Lab File ID: <u>1705707.d</u>
pH: <2 Decanted: (Y/N) N	Date Collected: 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type) <u>PURGETRAP</u>	Date Analyzed: 07/05/2007
Soil Extract Volume:(ul)	Dilution Factor: 1.00
Soil Aliquot Volume: (ul)	

 CAS NO.
 COMPOUND
 CONCENTRATION UNITS: (ug/L or ug/kg) ug/L
 Q

 TPH-Gasoline
 Gasoline Range Organics
 25
 U
GASOLINE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW03SWMS

(ug/L or ug/kg) ug/L

77

Lab Name: <u>Laucks Testing Labs</u>	Contract: <u>N/A</u>
SDG No.: _CAB34	Run Sequence: <u>R019583</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001MS</u>
Sample wt/vol: <u>10</u> (g/mL) <u>mL</u>	Lab File ID: <u>I705708.d</u>
pH: ≤ 2 Decanted: (Y/N) N	Date Collected; 06/22/2007
Percent Moisture:	Date Prepared: 07/05/2007
Extraction: (Type)PURGETRAP	Date Analyzed: 07/05/2007
Soil Extract Volume:(ul)	Dilution Factor:
Soil Aliquot Volume: (ul)	
CAS NO. COMPOUND	CONCENTRATION UNITS:

Comments:

TPH-Gasoline

Gasoline Range Organics

Page 1 of 1

Forms Summary

NWTHP-Diesel

CAB34

2 WATER DIESEL SURROGATE RECOVERY

Lab Name: Laucks Testing Labs

SDG No.: CAB34

Contract: N/A

Run Sequence: <u>R019594</u>

(LAB SAMPLE ID) CLIENT SAMPLE NUMBER	S1 (2FB) #	S2 (TER) #	s3 () #	S4 () #	TOT OUT
(CAB34-009) ISLCMW04SW	84	96			0
(CAB34-007) 15LCMW04DW	85	94			0
(CAB34-005) ISLCMW03DW	95	103			0
(CAB34-003) 15LCMW415W	75	91			0
(CAB34-001) 15LCMW03SW	80	95			0
(S062707GSVWLS) S062707GSVWLS	95	104			0
(B062707GSVWLS) B062707GSVWLS	94	102			0

S1 (2FB) = 2-Fluorobiphenyl S2 (TER) = o-Terphenyl S3 () = S4() =

QC LIMITS 50-150 50-150

Column to be used to flag recovery values

* Values outside of contract required QC limits

3B WATER DIESEL BLANK SPIKE RECOVERY

Lab Na	me: Laucks Testing Labs	Contract: <u>N/A</u>
BS Run	Sequence: <u>R019594</u>	SDG No.: CAB34
BS Lab	Sample ID: <u>S062707GSVWLS</u>	
Level:	N/A	Units: <u>mg/L</u>
r		

Analyte	Spike Added	Found	%Rec #	Rec Limit
Diesel Range Organics	1.25	1.2211	98	51-147

Column to be used to flag recovery and RPD values with an asterisk \star Values outside of QC limits

Spike Recovery: _____ out of ____ outside limits

COMMENTS :

DIESEL METHOL	BLANK SUMMARY B062707GSVWLS
Lab Name: Laucks Testing Labs	Contract: <u>N/A</u>
Lab Sample ID: <u>B062707GSVWLS</u>	SDG No.: <u>CAB34</u>
Matrix: (SOIL/WATER) <u>Water</u>	Date Prepared: 06/27/2007
Lab File ID (1): <u>C7167WA.b-C716706.d</u>	Lab File ID (2):
Date Analyzed (1): 07/16/2007	Date Analyzed (2):
Time Analyzed (1): 09:36	Time Analyzed (2):
Instrument ID (1): HP 5890C	Instrument ID (2):
Column(1): <u>RTX-5</u> ID: 0.25 (mm	a) Column(2):(mm
THIS METHOD BLANK APPLIES TO THE FOLL	OWING SAMPLES AND QC SAMPLES:

RUN SEQUENCE CLIENT LAB DATE/TIME LAB FILE ID SAMPLE NO. SAMPLE ID COL ANALYZED 15LCMW03SW CAB34-001 1 C716719.d 07/16/2007 19:59 R019594 15LCMW415W CAB34-003 C716720.d 07/16/2007 20:47 R019594 1 15LCMW03DW CAB34-005 1 C716721.d 07/16/2007 21:35 R019594 15LCMW04DW CAB34-007 1 C716722.d 07/16/2007 22:23 R019594 15LCMW04SW CAB34-009 i C716723.d 07/16/2007 23:11 R019594 S062707GSVWLS S062707GSVWLS 1 C716707.d 07/16/2007 10:24 R019594

COMMENTS:

1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW03SW

U

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: R019594
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>
Sample wt/vol: <u>490.0</u> (g/mL)	mL Lab File ID: <u>C716719.d</u>
<pre>% Moisture: Decanted: (</pre>	Y/N) <u>N</u> Date Collected: <u>06/22/2007</u>
Extraction: (Type) <u>SEPF</u>	Date Extracted:06/27/2007
Concentrated Extract Volume: 100	0.0 (uL) Date Analyzed: 07/16/2007
Injection Volume: 2.0	(uL) Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: Q (ug/L or ug/kg) mg/L
TPH-Diesel Diesel Range Orga	nics 0.10 U

0.41

TPH-Oil Comments: Oil Range Organics

1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW415W

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Sample wt/vol: 500.0 (g/mL) mL	Lab File ID: <u>C716720.d</u>
% Moisture: Decanted: (Y/N)	Date Collected: 06/22/2007
Extraction: (Type)	Date Extracted: 06/27/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.10	U
TPH-Oil	Oil Range Organics	0.40	U

Comments:

L DIESEL ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

15LCMW03DW

U

Lab Name: Lauc	ks Testing Labs	Contract: N/A
SDG No.: <u>CAB34</u>		Run Sequence: R019594
Matrix: (SOIL/W	ATER) <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>
Sample wt/vol:	490.0 (g/mL) <u>mL</u>	Lab File ID: <u>C716721.d</u>
% Moisture:	Decanted: (Y/N) <u>N</u>	Date Collected:06/22/2007
Extraction: (Ty)	pe) <u>SEPF</u>	Date Extracted:06/27/2007
Concentrated Ex	tract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volum	e:(uL)	Dilution Factor:1.0
GPC Cleanup: (Y	/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO.	Compound	CONCENTRATION UNITS: Q (ug/L or ug/kg) mg/L
TPH-Diesel	Diesel Range Organics	0.10 V

0.41

TPH-Oil Comments: Oil Range Organics

FORM I DRO

1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

15LCMW04DW

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: CAB34	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Sample wt/vol: 470.0 (g/mL) mL	Lab File ID: <u>C716722.d</u>
% Moisture: Decanted: (Y/N) _N	Date Collected:06/22/2007
Extraction: (Type)	Date Extracted:06/27/2007
Concentrated Extract Volume:(uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor:
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N)N
· · · · · · · · · · · · · · · · · · ·	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.11	τ
TPH-Oil	Oil Range Organics	0.43	Ŭ

Comments:

l DIESEL ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

15LCMW04SW

U

U

Lab Name: Laucks Testing Labs	Contract: N/A
SDG No.: <u>CAB34</u>	Run Sequence: <u>R019594</u>
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>
Sample wt/vol: <u>490.0</u> (g/mL) <u>mL</u>	Lab File ID: <u>C716723.d</u>
% Moisture: Decanted: (Y/N)	Date Collected: 06/22/2007
Extraction: (Type)	Date Extracted: 06/27/2007
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) mg/L

0.10

0.41

TPH-Oil Comments:

.

TPH-Diesel

Diesel Range Organics

Oil Range Organics

07	Res Res	+ + +			 تر ی ج	11 15 15 15 15 15		ООИХНООНО	
/13/2007 06:20	ponses expressed are = The correlation co	- Standard Level not	Amount ≖ (Response	Average RSD :	Diesel 2-Fluorobiphenyl o-Terphenyl	Compound	<pre>halibration 1 Level 1: //o Level 2: //o Level 3: //o Level 4: //o Level 5: //o Level 6: //o Level 7: //o</pre>	itart Cal Date Ind Cal Date Quant Method Ial Curve Typ Integrator Iethod File Sublist Column Size	
ICAL Linearity Summary v2.0 Page 1	are Area units. n co-efficient.	l not used in linearity determination.	ponse divided by Slope) plus Y-int	1.0	349446.00 579092.00 953341.00 1703381.0 4136141.0 7917017.0 15319226 7582.10000 -30.423 13027.00 36149.00 74573.00 148117.00 386143.00 764970.00 ++++++ 7689.80000 0.326 19778.00 50085.00 99162.00 191866.00 495136.00 974727.00 ++++++ 9762.20000 -0.089	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Slope Y-int	n Files: //diana/Target/5890c.i/C7127WA.b/C712710.d //diana/Target/5890c.i/C7127WA.b/C712711.d //diana/Target/5890c.i/C7127WA.b/C712712.d //diana/Target/5890c.i/C7127WA.b/C712713.d //diana/Target/5890c.i/C7127WA.b/C712714.d //diana/Target/5890c.i/C7127WA.b/C712715.d	Date: 12-JUL-2007 18:07 te : 12-JUL-2007 22:56 od : ESTD Type: Linear : Falcon e : \\diana\Target\5890c.i\C7127WA.b\CDX71201.m : alld.sub : RTX-5 e : 30m L - 0.25mm ID	Laucks Testing Labs Initial Calibration Linearity Summary
					16666°	π. 			

Initial	
Calibration Amounts	Laucks Testing Labs
Summary	

Start Cal Date:	12-JUL-2007 18:07
End Cal Date :	12-JUL-2007 22:56
Quant Method :	ESTD
Cal Curve Type:	Linear
Integrator :	Falcon
Method File :	\\diana\Target\5890c.i\C7127WA.b\CDX71201.m
Sublist :	alld.sub
Column :	RTX-5
Column Size :	30m L - 0.25mm ID
Calibration Fil	es: a/Target/5890c.i/C7127WA.b/C712710.d
Level 1: //dian Level 2: //dian	a/Target/5890c.i/C7127WA.b/C712710.d a/Target/5890c.i/C7127WA.b/C712711.d
Level 3: //dian	a/Target/5890c.i/C7127WA.b/C712712.d
Level 5: //dian	a/Target/5890c.i/C7127WA.b/C712714.d
Level 6: //dian Level 7: //dian	a/Target/5890c.i/C7127WA.b/C712715.d
тотото то торовати изволя и али извол нак. I часть на полити изволютити изволяти изволять и к	
Compound	I PUAL 1 I LOVAL 2 I LOVAL 3 I LOVAL A I LOVA

Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7
####\$#################################					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
1 Diesel	20.00	50.00	100.00	200.00	500.00	1000.00	2000.00
3 2-Fluorobiphenyl	2.00	5.00	10.00	20.00	50.00	100.00	+ + + + + + + + + + + + +
4 o-Terphenyl	2.00	5.00	· 10.00	20.00	50.00	100.00	+ + + + + + + + + + + + + + + + + + +

+++ - Standard Level not used in linearity determination. Standard concentrations are expressed as ug/ml.

07/13/2007 06:20 ICAL Standard Concentrations Summary v2.0 Page Ч

07/16/2007 06:47	Responses expressed are Area un R^2 = The correlation co-efficit	+++ - Standard Level not used in	Amount = (Response divide	Average RSD :	2 Motor Oil	Compound	Calibration Files Level 1: //diana Level 2: //diana Level 3: //diana Level 4: //diana Level 5: //diana Level 6: //diana Level 7: //diana	Start Cal Date: 1 End Cal Date : 1 Quant Method : E Cal Curve Type: L Integrator : F Method File : \ Sublist : R Column Size : 3	
ICAL Linearity Summary v2.0	mits. Ment.	in linearity determination.	led by Slope) plus Y-int	1.0	-=====================================	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7	s: a/Target/5890c.i/C7127WC.b/C712787.d a/Target/5890c.i/C7127WC.b/C712788.d a/Target/5890c.i/C7127WC.b/C712789.d a/Target/5890c.i/C7127WC.b/C712790.d a/Target/5890c.i/C7127WC.b/C712791.d a/Target/5890c.i/C7127WC.b/C712792.d a/Target/5890c.i/C7127WC.b/C712793.d	Initial Calibration Linearity Summary 15-JUL-2007 08:22 15-JUL-2007 13:08 ESTD Linear Falcon \\diana\Target\5890c.i\C7127WC.b\CDX71203.m mo.sub RTX-5 30m L - 0.25mm ID	Laucks Testing Labs
					======================================	Slope Y-int R^2			

nut the second of the second	Calibration Files: Level 1: //diana/Taj Level 2: //diana/Taj Level 3: //diana/Taj Level 4: //diana/Taj Level 5: //diana/Taj Level 6: //diana/Taj Level 7: //diana/Taj	Start Cal Date: 15 End Cal Date : 15 Quant Method : ESTI Cal Curve Type: Line Integrator : Falc Method File : \\di Sublist : mo.s Column Size : 30m
TEATTER	rget/5890c.i/C7127WC.b/C712787.d rget/5890c.i/C7127WC.b/C712788.d rget/5890c.i/C7127WC.b/C712789.d rget/5890c.i/C7127WC.b/C712790.d rget/5890c.i/C7127WC.b/C712791.d rget/5890c.i/C7127WC.b/C712792.d rget/5890c.i/C7127WC.b/C712793.d	JUL-2007 08:22 JUL-2007 13:08 D ear con con iana\Target\5890c.i\C7127WC.b\CDX sub -5 L - 0.25mm ID
⊿evel 4 Level 5		K71203.m
Level 6		
Level 7		

Standard concentrations are expressed as ug/ml. +++ - Standard Level not used in linearity determination.

2 Motor Oil

100.00

200.00 | 500.00 | 1000.00 | 2000.00 | 2500.00 | ++++++ |

07/16/2007 06:47 ICAL Standard Concentrations Summary v2.0 Page щ

Laucks Testing Labs Initial Calibration Amounts Summary

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: \\diana\Tan : 16-JUL-2007 : D250PPM : NWTPHDx / 8 : D250PPM : 5890c.i : CDX71204.m : ESTD : 1.00 : RTX-5	rget\5890c.i\C7 7 07:13 3015mod - Diese Cli Ope Sub Int Sam Col	2167WA.b\(ent ID erator olist egrator ple Type umn Size	C716703.d : MA8-31- : CMP : alld : Falcon : CCALIB_ : 30.00m	20 3 L- 0.25mm	ID
Compound	RT	RT Window	Expected Amount	Continuing Amount	%D Flag	
2-Fluorobiphenyl	12.66		20.000	20.137		=
Diesel		9.93 - 23.98	250.00	237.32	-5.1	
o-Terphenyl	19.32	19.28 - 19.38	20.000	19.178	-4.1	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 07:49

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info	:	\\diana\Ta 16-JUL-200 02000PPM	rget\58 7 08:00	390c.i	L\C716	7WA.b\C	716704.0	d		
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		NWTPHDx / O2000PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	8015moc	1 - Di	lesel Clien Opera Subli Integ Sample Colum	t ID : tor : st : rator : e Type: n Size:	MA8-31- CMP mo Falcon CCALIB 30.00m	-19 _3 _L- 0	.25mm	ID
Compound		RT	RT	Window	E>	pected C Mount	Continuing Amount	₽ %D	Flag	
Motor Oil		*********	23.98	- 37.	48 2	2000.0	1949.4	-2.5	5	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/16/2007 08:46

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: \\diana\Tar : 16-JUL-2007 : D250PPM : NWTPHDx / 8 : D250PPM : 5890c.i : CDX71204.m : ESTD : 1.00 : RTX-5	get\5890c.i\C7 16:47 015mod - Diese Cli Ope Sub Int Sam Col	167WA.b\(ent ID rator list egrator uple Type: umn Size:	MA8-31- CMP alld Falcon CCALIB_ 30.00m	20 3 L- 0.25mm	ID
Compound	RT	RT Window	Expected Amount	Continuing Amount	%D Flag	
2-Fluorobiphenyl	12.66	12.61 ~ 12.71	20.000	19.660	-1.7	
Diesel		9.93 - 23.98	250.00	229.67	-8.1	
o-Terphenyl	19.32	19.28 ~ 19.38	20.000	18,558	~7.2	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info	:	\\diana\Ta: 16-JUL-200	rget\5890c. 7 17:35	i\C7167	WA.b\C	716716.d		
Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	• • • • • •	NWTPHDx / 02000PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	8015mod - D	Client Client Operate Sublis Integra Sample Column	ID : or : t : ator : Type: Size:	MA8-31- CMP mo Falcon CCALIB 30.00m	19 3 L- 0.25m	m ID
Compound	==	RT	RT Windo	Exp w An	ected C Nount	ontinuing Amount	%D Flag	
Motor Oil			23.98 - 37	.48 20	00.0	1908.7	-4.6	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:13

CCV Summary V1.0

Page l

Data File Injection Date	: `	\\diana\Ta L7-JUL-200	rget\58 7 00:47	390c	i\C7167	WA.b\C	716725.d	l	
Sample Info Misc. Info	: 1 : 1	J250PPM JWTPHDx /	8015mod	ים - ו	iesel				
Laboratory ID Instrument ID Method Quantitation Dilution Factor Column	: I : C : F : I : F	0250PPM 5890c.i CDX71204.m STD .00 RTX-5		~	Client Operat Sublis Integr Sample Columr	ID : cor : st : rator : Type: Size:	MA8-31- CMP alld Falcon CCALIB_ 30.00m	20 3 L- 0.25mm	ID
					Ex	pected (Continuing		
Compound		RT	RT	Window	v A	mount	Amount	%D Flag	
2-Fluorobiphenyl		12.66	12.61	- 12	71 2	0.000	19.762	-1.2	=
Diesel			9.93	- 23	98 2	50.00	233.59	-6.6	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:23

CCV Summary V1.0

Page 1

Data File Injection Date Sample Info Misc. Info Laboratory ID Instrument ID Method Quantitation Dilution Factor Column		\\diana\Ta: 17-JUL-200 O2000PPM NWTPHDx / O2000PPM 5890c.i CDX71204.m ESTD 1.00 RTX-5	rget\58 7 01:35 3015mod	90c.i - Di	i\C7167 Client Operato Sublist Integra Sample Column	NA.b\C ID : pr : t : ator : Type: Size:	MA8-31- CMP mo Falcon CCALIB 30.00m	-19 -3 L- 0.25mm	ID
Compound	==	RT	RT V	Vindow	Exp v An	ected Colount	ontinuing Amount	%D Flag	
Motor Oil			23.98	- 37.	.48 20	00.0	1961.5	-1.9	

%Drift (%D) = Continuing Amount - Expected Amount divided by Expected Amount times 100

07/17/2007 05:23

CCV Summary V1.0

Page 1

1 DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

B062707GSVWLS

Lab Name: Laucks Testing Labs	Contract: N/A		
SDG No.: CAB34	Run Sequence; <u>R019594</u>		
Matrix: (SOIL/WATER) <u>Water</u>	Lab Sample ID: <u>B062707GSVWLS</u>		
Sample wt/vol: 400.0 (g/mL) mL	Lab File ID: <u>C716706.d</u>		
<pre>% Moisture: Decanted: (Y/N)</pre>	Date Collected:		
Extraction: (Type)	Date Extracted:06/27/2007		
Concentrated Extract Volume: <u>1000.0</u> (uL)	Date Analyzed: 07/16/2007		
Injection Volume: _2.0 (uL)	Dilution Factor:1.0		
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>		
	CONCENTRATION UNITS:		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>mg/L</u>	Q
TPH-Diesel	Diesel Range Organics	0.13	U
TPH-Oil	Oil Range Organics	0.50	υ

Comments:

FORM I DRO

NWTPH-D

l DIESEL ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

S062707GSVWLS

Lab Name: Laucks Testing Labs Contract: N/A				
SDG No.: CAB34	Run Sequence: <u>R019594</u>			
Matrix: (SOIL/WATER) <u>Water</u> Lab Sample ID: <u>S062707GSVWLS</u>				
Sample wt/vol: <u>400.0</u> (g/mL) <u>mL</u> Lab File ID: <u>C716707.d</u>				
<pre>% Moisture: Decanted: (Y/N) N Date Collected:</pre>				
Extraction: (Type) _SEPF	Date Extracted:06/27/2007			
Concentrated Extract Volume:(uL)	Date Analyzed: 07/16/2007			
Injection Volume: 2.0 (uL)	Dilution Factor:1.0			
GPC Cleanup: (Y/N) <u>N</u> pH:<2	Sulfur Cleanup: (Y/N) <u>N</u>			
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) mg/L Q			
TPH-Diesel Diesel Range Organics	1.2			

Comments:

FORMS SUMMARY

CAB34

Metals Data

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW03SW
Lab Name: <u>Laucks Laboratories</u>	Contract:
Lab Code: LAUCKS	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-001</u>
Level (low/med): LOW	Date Received:06/23/2007

% Solids: ____

	Concentrati	on Units : ua	g/L			
CAS No.	Analyte	Concentration	C	Q	М	Run Seq.
7440-36-0	Antimony	0.0560	U		М	R019494
7440-38-2	Arsenic	0.544	J		M	R019494
7440-41-7	Beryllium	0.0430	U		M	R019494
7440-43-9	Cadmium	0.0940	U		М	R019494
7440-47-3	Chromium	0.206	J		М	R019494
7440-50-8	Copper	0.520	U		M	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	0.531	J		М	R019494
7782-49-2	Selenium	0.145	J		М	R019494
7440-22-4	Silver	0.0850	U		М	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zinc	1.80	U		M	R019494

Color Before:	Colorless	Clarity Before:	<u>Clear</u>	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					

Page 1 of 1

SW-846 -1-INORGANIC ANALYSES DATA SHEET

	SAMPLE NO. 15LCMW03SW (Filt.)				
Lab Name:Laucks Laboratories	Contract:				
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB34</u>				
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-002</u>				
Level (low/med): LOW	Date Received: 06/23/2007				

% Solids:

-	Concentration	Units: uc	9/L			
CAS No.	Analyte	Concentration	С	Q	M	Run Seq.
7440-36-0	Antimony	0.205	J		М	R019494
7440-38-2	Arsenic	0.499	J		М	R019494
7440-41-7	Beryllium	0.0430	U		M	R019494
7440-43-9	Cadmium	0.0940	U		М	R019494
7440-47-3	Chromium	0.356	J		М	R019494
7440-50-8	Copper	0.520	U		М	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	0.781	J		М	R019494
7782-49-2	Selenium	0.110	U		М	R019494
7440-22-4	Silver	0.0850	U		М	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zinc	1.80	U		М	R019494

Color Befor	e: <u>Colorless</u>	Clarity Before	: <u>Clear</u>	Texture:	*****
Color After	: <u>Colorless</u>	Clarity After:	Clear	Artifacts:	No
Comment _			,,		

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

GAMDI	E.	NO	
OHULT	16	TAO	٠

	15LCMW415W
Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-003</u>
Level (low/med): LOW	Date Received: 06/23/2007

% Solids: ___

	Concentration	Units: uo	9/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.181	J		M	R019494
7440-38-2	Arsenic	0.778	J		М	R019494
7440-41-7	Beryllium	0.0430	U		М	R019494
7440-43-9	Cadmium	0.0940	U		М	R019494
7440-47-3	Chromium	0.304	J		М	R019494
7440-50-8	Copper	0.520	U		М	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	0.607	J		М	R019494
7782-49-2	Selenium	0.188	J		М	R019494
7440-22-4	Silver	0.0850	U		M	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zine	1.80	U		М	R019494

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment				**************************************	
	······································				

Page 1 of 1

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCW415W (Filt.)
Lab Name: Laucks Laboratories	Contract:
Lab Code:	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-004</u>
Level (low/med): LOW	Date Received:06/23/2007

% Solids:

	Concentration Units : <u>ug/L</u>							
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.		
7440-36-0	Antimony	0.0560	U		M	R019494		
7440-38-2	Arsenic	0.787	J		M	R019494		
7440-41-7	Beryllium	0.0430	U		М	R019494		
7440-43-9	Cadmium	0.0940	U		M	R019494		
7440-47-3	Chromium	0.349	J		М	R019494		
7440-50-8	Copper	0.520	U		M	R019494		
7439-92-1	Lead	0.0750	U		M	R019494		
7439-97-6	Mercury	0.0180	U		CV	R019215		
7440-02-0	Nickel	1.41			М	R019494		
7782-49-2	Selenium	0.110	U		М	R019494		
7440-22-4	Silver	0.0850	U		М	R019494		
7440-28-0	Thallium	0.0440	U		М	R019494		
7440-66-6	Zinc	1.80	U		M	R019494		

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment			<u> </u>	*****	

SW-846 -1-INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	15LCMW03DW
Lab Name: Laucks Laboratories	Contract:
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-005</u>
Level (low/med): LOW	Date Received: 06/23/2007

% Solids: ____

e ^{, 151}	Concentration	Units :u	J∕L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0560	U		М	R019494
7440-38-2	Arsenic	0.797	J		М	R019494
7440-41-7	Beryllium	0.0430	Ų		М	R019494
7440-43-9	Cadmium	0.0940	U		М	R019494
7440-47-3	Chromium	0.312	J		М	R019494
7440-50-8	Copper	0.520	U		М	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	0.624	J		М	R019494
7782-49-2	Selenium	0.110	U		М	R019494
7440-22-4	Silver	0.0850	U		М	R019494´
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zine	2.17	J		М	R019494

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment	1711/11/11/11/11/11/11/11/11/11/11/11/11				

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW03DW (Filt.)
Lab Name: <u>Laucks Laboratories</u>	Contract:
Lab Code:	SDG No.; <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-006</u>
Level (low/med): LOW	Date Received: 06/23/2007

% Solids:

	Concentration Units : <u>ug/L</u>					
CAS No.	Analyte	Concentration	С	Q	M	Run Seq.
7440-36-0	Antimony	0.0560	U		M	R019494
7440-38-2	Arsenic	0.745	J		М	R019494
7440-41-7	Beryllium	0.0430	U		М	R019494
7440-43-9	Cadmium	0.0940	U		M	R019494
7440-47-3	Chromium	0.596	Ĵ		M	R019494
7440-50-8	Copper	0.520	U		M	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	1.60			M	R019494
7782-49-2	Selenium	0.110	U		М	R019494
7440-22-4	Silver	0.0850	U .:		М	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zinc	1.80	U		М	R019494

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	Ňo
Comment					

Page 1 of 1

SW-846

-1-INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	15LCMW04DW
Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-007</u>
Level (low/med): LOW	Date Received: 06/23/2007

% Solids:

	Concentration	Units :	3/L			
CAS No.	Analyte	Concentration	С	Q	М	Run Seq.
7440-36-0	Antimony	0.0560	U		М	R019494
7440-38-2	Arsenic	1.10			М	R019494
7440-41-7	Beryllium	0.0430	Ū		М	R019494
7440-43-9	Cadmium	0.0940	U		M	R019494
7440-47-3	Chromium	0.589	J		М	R019494
7440-50-8	Copper	0.520	U		М	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	0.761	J		М	R019494
7782-49-2	Selenium	0.110	U		М	R019494
7440-22-4	Silver	0.0850	U		М	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zinc	2.82	J		М	R019494

Color Before:	Colorless	Clarity Before:	<u>Clear</u>	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment					
	······································				······································

Page 1 of 1

SW-846 -1-INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW04DW (Filt.)
Lab Name: <u>Laucks Laboratories</u>	Contract:
Lab Code:	SDG No.: <u>CAB34</u>
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-008</u>
Level (low/med): LOW	Date Received: 06/23/2007

% Solids: _____

	Concentration	Units: <u>u</u> u	7/L			
CAS No.	Analyte	Concentration	C	Q	М	Run Seq.
7440-36-0	Antimony	0.0560	U		М	R019494
7440-38-2	Arsenic	1.16			М	R019494
7440-41-7	Beryllium	0.0430	U		М	R019494
7440-43-9	Cadmium	0.0940	υ		M	R019494
7440-47-3	Chromium	0.481	J		М	R019494
7440-50-8	Copper	0.520	U		M	R019494
7439-92-1	Lead	0.0750	U		M	R019494
7439-97-6	Mercury	0.0180	U		CV	R019215
7440-02-0	Nickel	1.07			М	R019494
7782-49-2	Selenium	0.381	J		M	R019494
7440-22-4	Silver	0.0850	U		M	R019494
7440-28-0	Thallium	0.0440	U		M	R019494
7440-66-6	Zinc	2.89	J		М	- R019494

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	<u>Clear</u>	Artifacts:	No
Comment					
					
· · ·					

Page 1 of 1

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

SAMPLE NO.

	15LCMW04SW					
Lab Name: <u>Laucks Laboratories</u>	Contract:					
Lab Code: LAUCKS	SDG No.: <u>CAB34</u>					
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-009</u>					
Level (low/med): LOW	Date Received: 06/23/2007					

% Solids:

Concentration Units : <u>ug/L</u>									
CAS No.	Analyte	Concentration	С	Q	м	Run Seg.			
7440-36-0	Antimony	0.0560	U		М	R019494			
7440-38-2	Arsenic	0.145	J		М	R019494			
7440-41-7	Beryllium	0.0430	U		М	R019494			
7440-43-9	Cadmium	0.0940	U		М	R019494			
7440-47-3	Chromium	0.621	J		М	R019494			
7440-50-8	Copper	0.520	U		М	R019494			
7439-92-1	Lead	0.0750	U		М	R019494			
7439-97-6	Mercury	0.0180	U		CV	R019215			
7440-02-0	Nickel	0.767	J		М	R019494			
7782-49-2	Selenium	0.110	U		М	R019494			
7440-22-4	Silver	0.0850	U		М	R019494			
7440-28-0	Thallium	0.0440	U		M	R019494			
7440-66-6	Zinc	1.80	U		М	R019494			

Color Befor	e: <u>Colorle</u>	clarit	ty Before:	Clear	Texture:	
Color After	: <u>Colorle</u>	<u>ss</u> Clarit	y After:	Clear	Artifacts:	No
Comment _	<u></u>				· · · · · · · · · · · · · · · · · · ·	
-						

Page 1 of 1

S₩-846 -1-

INORGANIC ANALYSES DATA SHEET

	SAMPLE NO.
	15LCMW04SW (Filt.)
Lab Name: <u>Laucks Laboratories</u>	Contract:
Lab Code:	SDG No.: CAB34
Matrix (soil/water): <u>Water</u>	Lab Sample ID: <u>CAB34-010</u>
Level (low/med): LOW	Date Received: 06/23/2007

	Concentration	Units: <u>u</u>	g/L			
CAS No.	Analyte	Concentration	С	Q	M	Run Seq.
7440-36-0	Antimony	0.0560	U		М	R019494
7440-38-2	Arsenic	0.110	J		М	R019494
7440-41-7	Beryllium	0.0430	U		М	R019494
7440-43-9	Cadmium	0.0940	U		M	R019494
7440-47-3	Chromium	0.585	J		М	R019494
7440-50-8	Copper	0.520	U		М	R019494
7439-92-1	Lead	0.0750	U		М	R019494
7439-97-6	Mercury	0.0180	υ		CV	R019215
7440-02-0	Nickel	0.846	J		М	R019494
7782-49-2	Selenium	0.110	U		М	R019494
7440-22-4	Silver	0.0850	U		M	R019494
7440-28-0	Thallium	0.0440	U		М	R019494
7440-66-6	Zinc	2.11	J		М	R019494

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Colorless	Clarity After:	Clear	Artifacts:	No
Comment		WWW.RM. Film and the state of the second second second second second second second second second second second			

Page 1 of 1

% Solids:

Form I - IN

SW~846

SW-846 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Laucks Laboratories		Contract:	
Lab Code:	LAUCKS SDG No.:	CAB34	Run Sequence ID:	<u>R019494</u>
Initial Ca	libration Source:	ME-15-161-12		
Continuing	Calbration Source:	ME-15-161-8, ME-15-	161-9	

Concentration Units: ug/L

	Initial Calibration					Continuing	Calibr	ations			
			ICV				CCV1		CC/	/2	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(l)	Found	%R(1)	М
Antimony	90-110	60	60.523	100.9	90 - 110	50.000	49.160	98.3	48.102	96.2	М
Arsenic	90-110	60	60.339	100,6	90 - 110	50.000	49.602	99.2	50.196	100.4	М
Beryllium	90-110	60	60.025	100.0	90 - 110	50.000	49.999	100.0	52.527	105.1	М
Cadmium	90-110	60	60.026	100.0	90 - 110	50.000	49.498	99.0	49.979	100.0	М
Chromium	90-110	60	64.243	107.1	90 - 110	50.000	52.860	105.7	52.949	105.9	М
Copper	90-110	60	62.057	103.4	90 - 110	50.000	51.388	102.8	52.394	104.8	М
Lead	90-110	60	62.003	103.3	90 - 110	50.000	52.821	105.6	52.312	104.6	М
Nickel	90-110	60	62.686	104.5	90 - 110	50.000	49.119	98.2	49.387	98.8	М
Selenium	90-110	60	63.125	105.2	90 - 110	50,000	49.639	99.3	50.593	101.2	М
Silver	90-110	60	59.508	99.2	90 - 110	50.000	52.281	104.6	52.335	104.7	M
Thallium	90-110	60	62.579	104.3	90 - 110	50.000	53.019	106.0	52.397	104.8	M
Zinc	90-110	60	62.712	104.5	90 - 110	50.000	50.118	100.2	50.747	101.5	М

SW-846

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories

Contract:

Run Sequence ID: <u>R019494</u>

Lab Code: LAUCKS SDG No.: CAB34

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9 Concentration Units: ug/L

	Initial Calibration				Continuing Calibrations						
					CCV3			CCV4			
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	48.392	96.8	46.179	92.4	М
Arsenic					90 - 110	50.000	49.984	100.0	47.923	95.8	M
Beryllium					90 - 110	50.000	54.390	108.8	52.239	104.5	М
Cadmium					90 - 110	50.000	50.287	100.6	49.795	99.6	M
Chromium			······		90 - 110	50.000	51.241	102.5	51.547	103.1	M
Copper					90 - 110	50.000	52.453	-104.9	53.304	106.6	М
Lead					90 - 110	50.000	53.358	106.7	53.645	107.3	Μ
Nickel					90 - 110	50.000	52.003	104.0	52.534	105.1	Μ
Selenium					90 - 110	50.000	51.470	102.9	50.024	100.0	М
Silver					90 - 110	50.000	52.971	105.9	52.494	105.0	М
Thallium					90 - 110	50.000	53.166	106.3	53.945	107.9	М
Zinc					90 - 110	50.000	52.100	104.2	51.171	102.3	М

SW-846

2 A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories

Lab Code: LAUCKS SDG No.: CAB34

Initial Calibration Source:

Continuing Calbration Source: <u>ME-15-161-8</u>, <u>ME-15-161-9</u>

Concentration Units: ug/L

	Initial Calibration				Continuing Calibrations						
					CCV5			CCV6			
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	M
Antimony					90 - 110	50.000	47.940	95.9	46.549	93.1	M
Arsenic					90 - 110	50.000	52.167	104.3	49.285	98.6	Μ
Beryllium					90 - 110	50.000	57.300	114.6	60.494	121.0	M
Cadmium					90 - 110	50.000	48.955	. 97.9	48.493	97.0	М
Chromium					90 - 110	50.000	51.230	102.5	53.150	106.3	M
Copper					90 - 110	50.000	56.009	112.0	53.398	106.8	Μ
Lead					90 - 110	50.000	53.307	106.6	54.490	109.0	M
Nickel					90 - 110	50.000	52.118	104.2	51.528	103.1	M
Selenium					90 - 110	50.000	52.334	104.7	50.482	101.0	М
Silver					90 - 110	50.000	52.146	104.3	51.882	103.8	M
Thallium					90 - 110	50.000	52.652	105.3	54.416	108.8	M
Zinc				1	90 - 110	50.000	53.007	106.0	53.133	106.3	M

Contract:

Run Sequence ID: <u>R019494</u>
2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories Lab Code: LAUCKS SDG No.: CAB34

Run Sequence ID: <u>R019494</u>

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initia	l Calibrati	on			Continuing CCV7	Calibr	ations CCV	8		·····
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	м	
Antimony					90 - 110	50.000	47.178	94.4	47.587	95.2	М	
Arsenic				1	90 - 110	50.000	50.691	101.4	50.301	100.6	М	ĺ
Beryllium					90 - 110	50.000	58.261	116.5	57.454	114.9	M	ĺ
Cadmium					90 - 110	50.000	48.844	97.7	49.182	98.4	М	
Chromium					90 - 110	50.000	52.967	105.9	52.927	105.9	М	ĺ
Copper					90 - 110	50.000	52.888	105.8	53.877	107.8	Μ	
Lead					90 - 110	50.000	54.492	109.0	53.305	106.6	Μ	
Nickel					90 - 110	50.000	50.057	100.1	51.918	103.8	Μ	ĺ
Selenium					90 - 110	50.000	52.768	105.5	51.151	102.3	М	
Silver			**************************************		90 - 110	50.000	51.039	102.1	52.029	104.1	М	ĺ
Thallium					90 - 110	50.000	53.238	106.5	52.763	105.5	Μ	ĺ
Zinc				T	90 - 110	50.000	52.828	105.7	51.730	103.5	M	

SUM - 203

Contract:

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:

Run Sequence ID: <u>R019494</u>

Lab Name: Laucks Laboratories

Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u>

Initial Calibration Source:

Continuing Calbration Source: <u>ME-15-161-8</u>, <u>ME-15-161-9</u>

Concentration Units: ug/L

		Initia	l Calibrati	on			Continuing	Calibr	ations		
							CCVS	}	CCV	10	
Analyte	Limits	True	Found	%R(l)	Limits	True	Found	%R(1)	Found	%R(1)	M
Antimony					90 - 110	50.000	47.132	94.3	47.498	95.0	М
Arsenic					90 - 110	50.000	50.045	100.1	50.664	101.3	M
Beryllium					90 - 110	50.000	56.465	112.9	58.660	117.3	М
Cadmium					90 - 110	50.000	48.238	96.5	48.089	96.2	M
Chromium				Τ	90 - 110	50.000	53.705	107.4	52,075	104.2	M
Copper					90 - 110	50.000	52.303	104.6	52.028	104.I	M
Lead					90 - 110	50.000	53.062	106.1	52.651	105.3	M
Nickel					90 - 110	50.000	48.825	97.7	50.272	100.5	М
Selenium					90 - 110	50.000	48.723	97.4	50.227	100.5	M
Silver				1	90 - 110	50.000	50.147	100,3	50.652	101.3	M
Thallium				1	90 - 110	50.000	52,359	104.7	53.000	106.0	М
Zinc		Í	······································	Ī	90 - 110	50.000	52.488	105.0	52.819	105.6	M

SW~846

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u>

Contract:

Run Sequence ID: <u>R019494</u>

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initial	Í Calibrati	on			Continuing	Calibr	ations		
							CCV1	1	CCV	12	
Analyte	Limits	True	Found	%R(1)	Limíts	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	48.544	97.1	48.497	97.0	M
Arsenic		1			90 - 110	50.000	50.789	101.6	49.683	99.4	M
Beryllium			acecentry,		90 - 110	50.000	55.861	111.7	62.188	124.4	M
Cadmium					90 - 110	50.000	49.945	99.9	48.761	97.5	M
Chromium					90 - 110	50.000	50.175	100.3	52.498	105.0	М
Copper		1			90 - 110	50.000	54.591	109.2	50.493	101.0	М
Lead		1			90 - 110	50.000	55.073	110.1	51.404	102.8	М
Nickel		1			90 - 110	50.000	52.208	104.4	49.617	99.2	М
Selenium					90 - 110	50.000	51.516	103.0	49.977	100.0	М
Silver					90 - 110	50.000	52.079	104.2	50.507	101.0	M
Thallium					90 - 110	50.000	54.404	108.8	52.705	105.4	M
Zinc					90 - 110	50.000	53.081	106.2	51.722	103.4	М

SW~846

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: LAUCKS SDG No.: CAB34

Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initia	l Cálibrati	.on			Continuing	Calibr	ations		
							CCV1	3	CCV	14	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	М
Antimony					90 - 110	50.000	49.907	99.8	48.406	96.8	М
Arsenic					90 - 110	50.000	50.284	100.6	50.842	101.7	М
Beryllium					90 - 110	50.000	61.705	123.4	72.299	144.6	Μ
Cadmium					90 - 110	50.000	48.351	96.7	49.397	98.8	M
Chromium					90 - 110	50.000	52.383	104.8	51.273	102.5	М
Copper					90 - 110	50.000	52.591	105.2	52,490	105.0	М
Lead					90 - 110	50.000	52.379	104.8	55.376	110.8	M
Nickel				1	90 - 110	50.000	50.118	100.2	50.089	100.2	M
Selenium					90 - 110	50.000	48.351	96.7	49.455	98.9	M
Silver					90 - 110	50.000	51.583	103.2	50.124	100.2	M
Thallium					90 - 110	50.000	52.178	104.4	54.949	109.9	M
Zinc					90 - 110	50.000	52.998	106.0	55.039	110.1	M

Contract: Run Sequence ID: <u>R019494</u>

2A

Lab Name: Laucks Laboratories

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Laucks Laboratories Contract: Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u> Run Sequence ID: <u>R019494</u> Initial Calibration Source:

Continuing Calbration Source: ME-15-161-8, ME-15-161-9

Concentration Units: ug/L

		Initial Calibration					Continuing	Calibr 5	ations	16	
Analyte	Limits	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	м
Antimony					90 - 110	50.000	49.522	99.0	48.382	96.8	М
Arsenic					90 - 110	50.000	50.727	101.5	49.775	99.6	M
Beryllium		Í			90 - 110	50.000	73.049	146.1	64.021	128.0	М
Cadmium					90 - 110	50.000	49.256	98.5	50.295	100.6	М
Chromium					90 - 110	50.000	52.501	105.0	51.635	103.3	M
Copper					90 - 110	50.000	52.723	105.4	51.935	103.9	М
Lead					90 - 110	50,000	54.317	108.6	55.948	111.9	М
Nickel					90 - 110	50.000	49.658	99.3	50.443	100.9	M
Selenium		l			90 - 110	50.000	49.698	99.4	50.013	100.0	M
Silver		Í			90 - 110	50.000	51.793	103.6	51,428	102.9	M
Thallium					90 - 110	50,000	55.011	110.0	56.613	113.2	М
Zinc					90 - 110	50.000	55.004	110.0	54.359	108.7	M

SW-846 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

 Lab Name:
 Laucks Laboratories
 Contract:

 Lab Code:
 LAUCKS
 SDG No.:
 CAB34
 Run Sequence ID:
 R019215

 Initial Calibration Source:
 ME-15-159-3
 Continuing Calbration Source:
 ME-15-162-1

Concentration Units: ug/L

		Initial	l Calibratio	n			Continuing	Calibr	ations		
			ICV				CCV1		CCV	72	
Analyte	Limits	True	Found	%R(1)	Limits	True	F'ound	%R(1)	Found	%R(1)] м
Mercury	90-110	4.04	3.875	95.9	80 - 120	5.000	4.858	97.2	6.024	120.5	CV

Form II (part 1) - IN

SUM - 208

SW-846 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Lau	cks Laboratories	Contract:
Gab Code: <u>LAU</u>	CKS SDG No.: CAB34	Run Sequence ID: <u>R019215</u>
Initial Calibra	ation Source:	
Continuing Cal	pration Source: ME-15-162-1	

Concentration Units: ug/L

		Initía	l Calibrati	on			Continuing	Calibr	ations		
							CCV3				
 Analyte	Limíts	True	Found	%R(1)	Limits	True	Found	%R(1)	Found	%R(1)	м
 Mercury					80 - 120	5.000	6.075	121.5			CV

Form II (part 1) - IN

2B-IN CRDL STANDARD FOR METALS

Lab	Name:	Laucks Laboratori	.es	Contract:			
Lab	Code :	LAUCKS SDG No.:	CAB34		Run Sequence	ID:	R019494
ICP	CRDL S	tandard Source:	<u>ME-15-154-3</u>				

Concentration Units: ug/L

		С	andard for IC	CP		
		Initial			Final	
		CRI				
Analyte	True	Found	%R	Found	₹R	Limits
Antimony	1	0.9	89.7			
Arsenic	1	1.05	105.2			
Beryllium	1	1	100.4			
Cadmium	yan .	1.01	100.8			
Chromium	1	1.09	109.2			
Copper	2	2.23	111.5			
Lead	1	1.12	111.7			
Nickel	1	1.07	106.5			
Selenium	1	0.92	92.5			
Silver	1	1.04	103.9			
Thallium	1	1.14	113.6		ļ	
Zinc	10	10.82	108.2			

Control Limits : no limits have been established by EPA at this time

2B-IN CRDL STANDARD FOR METALS

ab	Name:	Laucks Laboratori	.es Co	ontract: .			****
Lab	Code :	LAUCKS SDG No.:	CAB34		Run Sequence I	D:	R019215
ICÉ	CRDL S	tandard Source:	<u>ME-15-162-1</u>				

Concentration Units: ug/L

		CRDL Standard for ICP										
		Initial Final										
		CRA										
Analyte	True	Found	%R	Found	%R	Limits						
Mercury	0.2 0.21 104.5											

.

Control Limits: no limits have been established by EPA at this time

.

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS SDG No.: CAB34

Run Sequence ID: <u>R019494</u>

Concentration Units: <u>ug/L</u>

2 mailute a	Inital Cali Blank	b.		Co	ontinuing Cali Blank	brat	ion	
Analyte	ICB		CCB1		CCB2		CCB3	
		. C	1	С	2	C	3	C
Antimony	0.376	J	0.170	J	0.0560	U	0.0560	U
Arsenic	0.112	J	0.130	J	0.100	U	0.100	U
Beryllium	0.0430	U	0.0430	U	0.0430	υ	0.0430	U
Cadmium	0.0940	U	0.0940	U	0.0940	U	0.0940	U
Chromium	0.120	U	0.120	U	0.120	U	0.120	U
Copper	0.520	U	0.520	U	0.520	U	0.520	U
Lead	0.0750	U	0.0750	U	0.0750	U	0.0750	U
Nickel	0.110	U	0.110	U	0.110	U	0.110	υ
Selenium	0.110	U	0.110	U	0.110	U	0.110	υ
Silver	0.0850	U	0.0850	U	0.0850	U.	0.0850	U
Thallium	0.0440	U	0.0440	U	0.0440	U	0.0440	υ
Zinc	1.80	U	1.80	υ	1.80	U	1.80	U

SW~846

3A

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name:	Laucks Lab	oratories	Cont
Lab Code:	LAUCKS	SDG No.: <u>CAB34</u>	Run

Contract:

Run Sequence ID: <u>R019494</u>

Concentration Units: _ug/L

	Inital Calib. Blank		Co	ontinuing Cali Blank	brati	ion	
Analyte		CCB4		CCB5		CCB6	
	С	1	С	2	С	3	C
Antimony		0.0560	U	-0.162	J	-0.164	J
Arsenic		0.100	U	0.100	U	0.105	J
Beryllium		0.0430	U	0.0430	υ	0.0430	υ
Cadmium		0.0940	U	0.0940	U	0.0940	υ
Chromium		0.120	U	0.120	U	0.120	U
Copper		0.520	U	0.520	U	0.520	U
Lead	-	0.0750	U	0.0750	υ	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		0.110	U	0.110	U	0.110	υ
Silver		0.0850	U	0.0850	U	0.0850	U
Thallium		0.0440	U	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

. . . .

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Laboratories

Contract:

Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u>

Run Sequence ID: <u>R019494</u>

Concentration Units: _ug/L_____

	Inital Calib. Blank		Co	ontinuing Cali Blank	brat:	ion	
Analyte		CCB7		CCB8		CCB9	
	C	1	C	2	C	3	С
Antimony		-0.0780	J	-0.113	J	-0.0838	J
Arsenic		0.100	U	0.141	J	0.100	U
Beryllium		0.0430	U	0.0430	U	0.0430	U
Cadmium		0.0940	U	0.0940	Ŭ	0.0940	U
Chromium		0.120	U	0.120	U	0.120	U
Copper		0.520	U	0.520	U	0.520	U
Lead		0.0750	U	0.0750	U	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		0.193	J	0.176	J	-0.122	J
Silver		0.0850	U	0.0850	U	0.0850	U
Thallium		0.0440	υ	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Laboratories Lab Code: LAUCKS SDG No.: CAB34

Contract:

Run Sequence ID: R019494

Concentration Units: ug/L

	Inital Calib. Blank	ANANA MARAMAMATAN MANANETETA ANG ATANA METETETA ANG ATANA MATANG TETATAN MATANG TETATAN MATANG TETATAN MATANG T	Co	ontinuing Cali Blank	brati	lon	*****
Analyte		CCB10		CCB11		CCB12	
	С	1.	С	2 .	С	3	С
Antimony		0.0560	U.	0.0560	U	0.0560	U
Arsenic		0.142	J	0.109	J	0.185	j
Beryllium		0.0430	U	0.0430	U	0.0430	U
Cadmium		0.0940	U	0.0940	U	0.0940	U
Chromium		0.120	U	0.120	U	0.120	U
Copper		0.520	U	0.520	υ	0.520	U
Lead		0.0750	υ	0.0750	U	0.0750	U
Nickel		0.110	υ	0.110	U	0.110	U
Selenium		0.152	J	0.155	J	0.140	J
Silver		0.0850	U	0.0850	υ	0.0850	υ
Thallium		0.0440	U	0.0440	υ	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks Laboratories

Contract:

Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u>

Run Sequence ID: R019494

Concentration Units: ug/L

	Inital Calib. Blank		Ċ	ontinuing Cali Blank	brat:	lon	
Analyte		CCB13		CCB14		CCB15	
	С	1	С	2	С	3	С
Antimony		0.0657	J	0.0712	J	0,127	Ĭ.
Arsenic		0.100	U	0.181	J	0.100	U
Beryllium		0.0430	U	0.0430	U	0.0430	U
Cadmium		0.0940	U	0.0940	U	0.0940	U
Chromium		0.120	U	-0.127	J	0.120	U
Copper		0.520	U	0.520	U	0.520	U
Lead		0.0750	U	0.0750	U	0.0750	U
Nickel		0.110	U	0.110	U	0.110	U
Selenium		-0.141	J	0.110	U	-0.121	J
Silver		0.0850	U.	0.0850	υ	0.0850	U
Thallium		0.0440	U	0.0440	U	0.0440	U
Zinc		1.80	U	1.80	U	1.80	U

SW-846 ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Laucks L	aboratories	Contract:	
Lab Code: <u>LAUCKS</u>	SDG No.: <u>CAB34</u>	Run Sequence ID:	R019494
Concentration Units	: ug/L		
		A () .	

	Inital Cali Blank	b.		C	ontinuing Cal Blank	ibrat:	ion	
Analyte			CCB16					
		С	ļ.	С	2	C	3	C
Antimony			0.209	J				
Arsenic			0.145	J				
Beryllium			0.0430	U				
Cadmium			0.0940	U				
Chromium			0.120	U				
Copper			0.520	U				
Lead			0.0750	U				
Nickel			0.110	U				
Selenium			0.152	J				
Silver			0.0850	U				
Thallium			0.0440	U				
Zinc			1.80	U				

SW-846

٦

SW-846 · 3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name:	Laucks Lab	oratories	Contract:
Lab Code:	LAÜCKS	SDG No.: <u>CAB34</u>	Run Sequence ID: <u>R019215</u>

Concentration Units: <u>ug/L</u>

.

Analute	Inital Cali Blank	.b.		Co	ontinuing Cali Blank	brat	ion	
MIGLYLC	ICB		CCB1		CCB2		CCB3	
		C	1	С	2	С	3	C
Mercury	0.0180	U	0.0331	j	0.0322	J	0.0270],

.

٠

Form III (PART 1) - IN

SW-846 3B BLANKS

Contract:

Run Sequence ID: <u>R019494</u>

Lab Name: Laucks Laboratories Lab Code: LAUCKS SDG No.: CAB34 Lab Sample ID: B070207ICPMSW01 Matrix (soil/water): Water

ICPMSW01	Prep	Batch ID:	P019882
Water	Date	Prepared:	07/02/2007

Concentration Units: ug/L

Analyte				
mary cc	Límits	С	М	
Antimony	0.5	-0.333	J	М
Arsenic	0.5	0.100	υ	М
Beryllium	0.5	0.0430	υ	М
Cadmium	0.5	0.0940	U	М
Chromium	0.5	0.132	Ţ	М
Copper	1	0.520	U	M
Lead	0.5	0.0750	U	М
Nickel	0.5	0.110	U	М
Selenium	0.5	0.110	U	М
Silver	0.5	0.0850	U	М
Thallium	0.5	0.0440	U	M
Zinc	5	1.80	υ	М

SW-846 3B BLANKS

Liab	Name:	Laucks Laboratories
1 t>	Code:	LAUCKS SDG No.: CAB34
L.:b	Sample	ID: <u>B070307HGW01</u>
M. Rg	iix (soi	.1/water): <u>Water</u>

Concentration Units: ug/L

Contract: Run Sequence ID: <u>R019215</u> Prep Batch ID: <u>P019912</u> Date Prepared: <u>07/03/2007</u>

Analyte		Prepara . Blan)	tion (
	Limits		С	М
Mercury	0.1	0.0180	U	CV

Form III (Part 2) - IN

.

SUM - 220

SW~846

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Laucks Laboratories				Con	Contract:					
Lab Cod	de:	LAUCKS	SDG No.: CAB34	Run	Sequence ID:	R019494	hinaan kana ka ka ka ka ka ka ka ka ka ka ka ka ka			
ICS Sou	urce:	<u>ME-15-153-</u>	-19, ME-15-161-8, M	ME-15-161-9						
ICP ID	Numb	per: <u>ICPMS (B</u>	PE ELAN 6100)		_ Concentration	Units:	ug/L			

	Tr	ue	Initial Found			Final Found					
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	۶R	Limits		
Antimony	0	20.0	-0.129	19.6	97.8			-			
Arsenic	0	20.0	0.113	20.6	102.8						
Beryllium	0	20.0	-0.0117	20.3	101.5						
Cadmium	0	20.0	0.0460	19.4	97				_		
Chromium	0	20.0	0.274	21.5	107.3						
Copper	0	20.0	0.702	21.3	106.5						
Lead	0	20.0	0.0315	20.8	104				L		
Nickel	0	20.0	0.622	21.4	107.1						
Selenium	0	20.0	-0.122	20.6	102.8						
Silver	0	20.0	-0.00310	20.0	99.9						
Thallium	0	20.0	0.0135	21.2	105.9						
Zinc	0	20,0	1.31	21.9	109.3						

Interference Check Sample Recover Limits : 80 - 120

SUM - 221

SW-846 5A SPIKE SAMPLE RECOVERY

SAMPLE NO.

15LCMW03SWMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB3	4 Run Sequence ID: R019494
Lab Sample ID: <u>CAB34-001MS</u>	Prep Batch ID: <u>P019882</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>

n 7:	Control	Spiked Sample		Sample		Spike	, e p		
Analyte	Limit &R	Result (SSR)	С	Result (SR)	С	Added (SA)	6 K	Q	[V]
Antimony	75 - 125	50.2697		0.0560	U	50.00	100.5		М
Arsenic	75 - 125	49.5049		0.5438	J	50.0Ó	97.9		М
Beryllium	75 - 125	58.1681		0.0430	U	50.00	116.3		М
Cadmium	75 - 125	49.7301		0.0940	U	50.00	99.4		М
Chromium	75 - 125	44.9283		0.2061	J	50.00	89.4		М
Copper	75 - 125	52.2065		0.5200	U	50.00	104.2		М
Lead	75 - 125	57.5811		0.0750	U	50.00	115.1		М
Nickel	75 - 125	49.9748		0.5314	J	50.00	98.9		М
Selenium	75 - 125	47.9177		0.1449	J	50.00	95.5		М
Silver	75 - 125	51.1964		0.0850	U	50.00	102.4		М
Thallium	75 - 125	56.4392		0.0440	U	50.00	112.9		М
Zinc	75 - 125	53.4238		1.8000	U	50.00	103.3		М

SW-846 . 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

I5LCMW03SWMS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB34	Run Sequence ID: <u>R019215</u>
Lab Sample ID: <u>CAB34-001MS</u>	Prep Batch ID: <u>P019912</u>
Matrix (soil/water): Water	Level (low/med): LOW
% Solids for Sample:	Concentration Units: ug/L

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) C	Added (SA)	% R	Q	Μ
Mercury	85 - 115	4.8705	0.0180 U	5.00	97.4		CV

SW-846 5A SPIKE SAMPLE RECOVERY

SAMPLE NO.

15LCMW03SW (Filt.)MS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB34	Run Sequence ID: <u>R019494</u>
Lab Sample ID: <u>CAB34-002MS</u>	Prep Batch ID: <u>P019882</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>

	Control	Spiked Sample		Sample		Spike			
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	°∂ R	Q	М
Antimony	75 - 125	51.4975		0.2046	J	50.00	102.6		M
Arsenic	75 - 125	51.5479		0.4990	J	50.00	102.1		М
Beryllium	75 - 125	60.1829		0.0430	U	50.00	120.4		М
Cadmium	75 - 125	50.2203		0.0940	U	50.00	100.4		М
Chromium	75 - 125	46.9600		0.3559	J	50.00	93.2		М
Copper	75 - 125	54.0519		0.5200	U	50.00	107.6		М
Lead	75 - 125	56.3522		0.0750	U	50.00	112.7		М
Nickel	75 - 125	52.2269		0.7815	J	50.00	102.9		М
Selenium	75 - 125	48.4603		0.1100	U	50.00	96.9		М
Silver	75 - 125	51,7628		0.0850	U	50.00	103.5		М
Thallium	75 - 125	54.6377		0.0440	U	50,00	109.3		М
Zinc	75 - 125	57.3192		1.8000	U	50.00	111.6		М

SW-846 5A

SAMPLE NO.

SPIKE SAMPLE RECOVERY

ISLCMW03SW (Filt.)MS

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB34	Run Sequence ID: <u>R019215</u>
Lab Sample ID: <u>CAB34-002MS</u>	Prep Batch ID: <u>P019912</u>
Matrix (soil/water): <u>Water</u>	Level (low/med): LOW
% Solids for Sample:	Concentration Units: <u>ug/L</u>

	Control	Spiked Sample	Sample	Spike			
Analyte	Limit %R	Result (SSR) C	Result (SR) _C	Added (SA)	% R	Q	М
Mercury	85 - 115	4.7548	0.0180 U	5.00	95.0		CV

Comments:

.

SW-846 5B

SAMPLE NO.

POST DIGEST SPIKE RECOVERY

15LCMW03SWP

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB34	Run Sequence ID: R019494
Lab Sample ID: <u>CAB34-001P</u>	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

Analyte	Control Límit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	% R	Q	М
Antimony		51.6537		0.0560	U	50.00	103.3		М
Arsenic		46.8914		0.5438	J	50.00	92.7		М
Beryllium		58.9433		0.0430	U	50.00	117.9		М
Cadmium		48.1487		0.0940	U	50.00	96.2		М
Chromium		43.8071		0.2061	J	50.00	87.2	:	М
Copper		52.1877		0.5200	U	50.00	104.1		М
Lead		53.9393		0.0750	U	50.00	107.8		М
Nickel		49.9287		0.5314	J	· 50.00	98.8		М
Selenium		46.8933		0,1449	J	50.00	93.5		М
Silver		49.4190		0.0850	U	50.00	98.8		М
Thallium		53.9765		0.0440	U	50.00	108.0		М
Zinc		51.9110		1.8000	U	50.00	100.2		М

SW-846 5B

SAMPLE NO.

POST DIGEST SPIKE RECOVERY

15LCMW03SW (Filt.)P

Lab Name: Laucks Laboratories	Contract:
Lab Code: LAUCKS SDG No.: CAB34	Run Sequence ID: R019494
Lab Sample ID: <u>CAB34-002P</u>	Matrix (soil/water): <u>Water</u>
Level (low/med): LOW	Concentration Units: <u>ug/L</u>

Apolyto	Control	rol Spiked Sample t %R Result (SSR) C		Sample		Spike	% R		м
Analyte	Limit %R			Result (SR)	<u>. C</u>	Added (SA)	0 1.0	×	12
Antimony		52.0110		0.2046	J	50.00	103.6		М
Arsenic		48.5048		0.4990	J	50.00	96.0		М
Beryllium		58,5422		0.0430	U	50.00	117.1		М
Cadmium		48.2915		0.0940	U	50.00	96.6		М
Chromium		45.2420		0.3559	J	50.00	89.8		М
Copper		53.0571		0.5200	U	50.00	105.6		М
Lead		55.5674		0.0750	U	50.00	111.1		М
Nickel		50.1287		0.7815	J	50.00	98.7		М
Selenium		45.8858		0.1100	U	50.00	91.8		М
Silver		49.3878		0.0850	U	50.00	98.8		М
Thallium		55.5245		0.0440	U	50.00	111.0		М
Zinc		52.5356		1.8000	U	50.00	102.0		М

Comments:

. .

DUPLICATES

SAMPLE NO.

15LCMW03SWD

Contract: Lab Name: Laucks Laboratories Run Sequence ID: <u>R019494</u> Lab Code: LAUCKS SDG No.: CAB34 Lab Sample ID: <u>CAB34-001D</u> Prep Batch ID: P019882 Level (low/med): LOW Matrix (soil/water): <u>Water</u> % Solids for Duplicate % Solids for Sample:

Concentration Units: <u>ug/L</u>

Analyte	Control Limit	Sample	с	Duplicate (D)	С	RPD	Q	м
Antimony	1	0.0560	Ū	0.0560	U			М
Arsenic	1	0.5438	J	0.4740	J	13.7		M
Beryllium	1	0.0430	U	0.0430	U			М
Cadmium	1	0.0940	U	0.0940	U			М
Chromium	1	0,2061	J	0.1637	J	22.9		М
Copper	2	0.5200	U	0.5200	υ			М
Lead	1	0.0750	U	0.0750	U			М
Nickel	1	0.5314	Ј	0.5026	J	5.6		М
Selenium	1	0,1449	J	0.1100	U			М
Silver	I	0.0850	U	0.0850	U			M
Thallium	1	0.0440	U	0.0440	U			М
Zinc	10	1.8000	υ	3.0135	J	50.7		М

	SW-846	
	6.	SAMPLE NO.
	DUPLICATES	15I.CMW03SWD
Lab Name: Laucks Laboratories	Contra	act:
Lab Codé: LAUCKS SDG No.: CAB34	Run Se	equence ID: <u>R019215</u>
Lab Sample ID: <u>CAB34-001D</u>	Prep 1	Batch ID: <u>P019912</u>
Level (low/med): LOW	Matrix (s	soil/water): <u>Water</u>
3 Solids for Duplicate	% Solids	for Sample:
Concentration Units: ug/L		

Analyte	Control Limit	Sample	Duplicate (D)	C RPD	Q	М
idercury	0.2	0.0180 U	0.0180	υ		CV

٠

٠

SW-846

SUM - 229

SW-846 б

SAMPLE NO.

DUPLICATES

15LCMW03SW (Filt.)D

.....

Lab Name: Laucks Laboratories Contract: Lab Code: LAUCKS SDG No.: CAB34 Lab Sample ID: <u>CAB34-002D</u> Level (low/med): LOW % Solids for Duplicate

Concentration Units: <u>ug/L</u>

 Run Sequence ID: R019494	
Prep Batch ID: P019882	
Matrix (soil/water): <u>Water</u>	
% Solids for Sample:	

Analyte	Control Limit	Sample	С	Duplicate (D)	С	RPD	Q.	м
Antimony	1	0.2046	J	0.0560	U			М
Arsenic	1	0.4990	J	0.5264	J	5.3		М
Beryllium	1	0.0430	U	0.0430	U			М
Cadmium	1	0.0940	U	0.0940	U			М
Chromium	1	0,3559	J	0.3853	J	7.9		М
Copper	2	0.5200	U	0.5200	U			М
Lead	1	0.0750	U	0.0750	U			М
Nickel	1	0.7815	J	0.7664	J	1.9		М
Selenium	1	0.1100	U	0.2040	J	200.0		М
Silver	1	0.0850	U	0.0850	υ			М
Thallium	1	0.0440	U	0.0440	U			М
Zinc	10	1.8000	U	1.8358	J	17.4		М

	SW-846 6	SAMPLE NO.
	DUPLICATES	15LCMW03SW (Filt.)D
Gab Name: Laucks Laboratories	Contra	act:
Lab Code: LAUCKS SDG No.: CAB34	Run Se	equence ID:
Lab Sample ID: <u>CAB34-002D</u>	Prep 1	Batch ID:
Level (low/med): LOW		soil/water): <u>Water</u>
% Solids for Duplicate	* Solids	for Sample:
Concentration Units: ug/L		

 Analyte	Control	Sample		Duplicate (D)		RPD	0	м
·			C		C		<u> </u>	
 Mercury	0.2	0.0180	U	0.0180	U			CV

.

7A LABORATORY CONTROL SAMPLE

Fab	Name:	Laucks Laboratories	, Contract:	
·	Code :	LAUCKS SDG No.: CAB34		Run Sequence ID: <u>R019215</u>
·	Sample	ID: <u>S070307HGW01</u>		Prep Batch ID: P019912
: 113	Source	. <u>ME-15-159-3</u>		

	Concentration Units: ug/L								
Analyte	True	Found	С	۶R	Limits	%R			
Mercury	4.04	4.0431	•	85	115	100.1			

.

SW-846 7C

SAMPLE NO.

DUPLICATE LABORATORY CONTROL SAMPLE

S070207ICPMSW01D

RPD

Lab Name: Lau	cks Laborat	ories				Con	trad	ct:	••••••••••••••••••••••••••••••••••••••		danalara ini asaranga sangan			10000
Lab Code: <u>LAU</u>	i <u>cks</u> sd	G No.:	CAB34			Run	Sec	quei	nce ID:					
LCS Lab Sample	ID: <u>5070</u>	207ICPM	SW01		-	Prej	p Ba	itcl	n ID:019	882	2			
Duplicate LCS	ID: <u>5070</u>	207ICPM	SW01D		_ Leve	el (lo	w/m	ed)	: LOW					
% Solids for L	CS: <u>100</u>			8 5	olids	for Di	ıpli	.cat	e LCS: 10)0	····			
Matrix (soil/w	ater): <u>W</u>	ater			Con	centra	tio	n l	Jnits: ug/	'L				
Analyte	Control 1	Limits			LCS				Ĩ	Dup:	licate	LCS		
Anaryce	۶R	RPD	Results	С	Added	%R	Q	М	Results	С	Added	%R	Q	М
imony	80 - 120	20	49.6977		50.0	99 .		М	52.1799		50.0	104		M

Antimony	80 - 120	20	49.6977	50.0	99 .	М	52.1799	50.0	104	М	5%
Arsenic	80 - 120	20	49.4074	50.0	99	М	49.9517	50.0	100	М	18
Beryllium	80 - 120	20	57.8308	50.0	116	М	57.7028	50.0	115	М	0%
Cadmium	80 - 120	20	49.4484	50.0	99	М	50.4053	50.0	101	М	2%
Chromium	80 - 120	20	53.6887	50.0	107	M	52.8728	50.0	106	М	2%
Copper	80 - 120	20	55.8803	50.0	112	М	55.3439	50.0	1.11	М	1%
Lead	80 - 120	20	57.5365	50.0	115	М	55.1289	50.0	110	М	48
Nickel	80 - 120	20	53,9114	50.0	108	М	53.6851	50.0	107	М	0%
Selenium	80 - 120	20	50.4292	50.0	101	М	50.1868	50.0	100	М	0%
Silver	80 - 120	20	53.4952	50.0	107	М	53.7736	50.0	108	М	18
Thallium	80 - 120	20	55.9689	50.0	112	М	54.2713	50.0	109	M	3%
Zinc	80 - 120	20	53.2364	50.0	106	М	55.5077	50.0	111	М	48

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW03SWL

Lab	Name:	Laucks Lab	oratories		Contra	ct:	
Lab	Code :	LAUCKS	SDG No.:	CAB34	Run	Sequence	ID: R019494
Matr	ix (so:	il/water):	Water		Level	(low/med:	LOW

Lab Sample ID: <u>CAB34-001L</u>

	Actua	al Results (ug/L)	Final						
Analyte	Initial Sample(i)	Dilution Sample(S)	IDL	Initial Sample(i)	с	Dilution Sample(S)	С	%D	Q	м
Antimony	-0.3208	-1.8481	0.0800	0.0560	U	0.280	U			М
Arsenic	0.5438	1.3129	0.0330	0.544	J	1,31	J	141.4		М
Beryllium	-0.0061	-0.0236	0.0200	0.0430	U	0.215	U			М
Cadmium	0.0256	0.0293	0.0150	0.0940	U	0.470	U	14.4		М
Chromium	0.2061	-0.2057	0.0700	0.206	J	0.600	U	100.0		М
Copper	0.1237	-0.2504	0.0070	0.520	U	2.60	U	100.0		М
Lead	0.0172	-0.0997	0.0020	0.0750	U	0.375	U	100.0		М
Nickel	0.5314	0.4522	0.0320	0.531	J	0.550	U	14.9		М
Selenium	0.1449	-0.4998	0.1050	0.145	Ţ	0.550	U	100.0		М
Silver	-0.0313	-0.1984	0.0250	0.0850	U	0.425	U			М
Thallium	-0.0044	-0.0281	0,0080	0.0440	U	0.220	U			M
Zinc	1.7952	7.7938	0.0220	1.80	U	9.00	U	334.1		М

SAMPLE NO.

9 ICP SERIAL DILUTIONS

15LCMW03SW (Filt.)L

Lab Name:	Laucks Laboratorie	S	Contract:	
Lab Code:	LAUCKS SDG No.	CAB34	Run Sequence	ID: R019494
Matrix (so	il/water): <u>Water</u>		Level (low/med:	LOW
Lab Sample	ID: CAB34-002L			

Actual Results (ug/L) Final Results (ug/L) Initial Dilution Initial Dilution ۶D Q Analyte М IDL С С <u>Sample(i)</u> Sample(S) Sample(i) Sample(S) 0.2046 -1.2799 0.0800 0.205 J 0.280 U 100.0 Μ Antimony 0.0330 0.499 214.2 0.4990 1.5677 J 1.57 J Μ Arsenic Beryllium 0.0037 -0.1234 0.0200 0.0430 U 0.215 U М 0.0148 0.0150 0.0940 U 0.470 Μ Cadmium 0.0048 U U М Chromium 0.3559 0.0124 0.0700 0.356 J 0.600 100.00.2673 -0.0365 0.0070 0.520 U 2.60 U 100.0 М Copper Lead 0.0090 -0.0802 0.0020 0.0750 U 0.375 U 100.0 М Nickel 0.7815 0.8463 0.0320 0.781 J 0.846 J 8.3 М 0.558 Selenium -0.02770.5579 0.1050 0.110 U J 100.0 М Silver -0.0204 -0.1926 0.0250 0.0850 U 0.425 Ŭ М Thallium -0.0020 0.0440 U 0.220 U M -0.0331 0.0080Zinc 1.5413 0.0220 1.80 U. 9.00 U 32.9 М 2.0478

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS

Instrument ID: ICPMS (PE ELAN 6100)

Date: 08/18/2004

SDG No.: CAB34

	I	д	R	<u> </u>	a	
a 4	+	LTL POL	LTL PQL	MDL	MDL	14
Analyce	Izocobe	(uq/L)	(ug/L)	(uq/L)	(uq/L)	[v]
Antimony	121	1]	0.056	0.056	М
Arsenic	75	1	1	0.1	0.1	М
Beryllium	9]	. 1	0.043	0.043	М
Cadmium	111	1	1	0.094	0.094	М
Chromium	52	1	1	0.12	0.12	Μ
Copper	63	2	2	0.52	0.52	М
Lead	208	I	1	0.075	0.075	М
Nickel	60	. 1	1	0.11	0.11	М
Selenium	82	1	1	0.11	0.11	М
Silver	107	1	1	0.085	0:085	М
Thallium	205	1]	0.044	0.044	М
Zinc	66	10	10	1.8	1.8	М

A = Upper Estimated (J Flag) Range in Determination Units

B = Upper Estimated (J Flag) Range in Actual Units

C = Lower Estimated (J Flag) Range in Determination Units

D = Lower Estimated (J Flag) Range in Actual Units

SUM -236

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS

.

SDG No.: CAB34

Instrument ID: FIMS(FIMS400)

Date: <u>04/11/2006</u>

		Ā	В	C	D	
Duo I como	Toototo	LTL PQL	LTL PQL	MDL	MDL	
Analyce	Isocope	(uq/L)	(uq/ጌ)	. (uq/L)	(ug/L)	IVI
Mercury		0.2	0.2	0.018	0.018	CV

 ${\tt A}$ = Upper Estimated (J Flag) Range in Determination Units .

B = Upper Estimated (J Flag) Range in Actual Units

 $\ensuremath{\mathbb{C}}$ = Lower Estimated (J Flag) Range in Determination Units

D = Lower Estimated (J Flag) Range in Actual Units

.

12

Date: 03/08/2007

ICP LINEAR RANGES (QUARTERLY)

Lab Name: Laucks Laboratories Contract:

Lab Code: LAUCKS

ICP ID Number: ICPMS (PE ELAN 6100)

SDG No.: <u>CAB34</u>

	Integ. Time	Concentration	
Analyte	(Sec.)	(ug/L)	М
Antimony	0.002	1000.0	M
Arsenie	0.001	1000.0	M
Beryllium	0.002	1000.0	М
Cadmium	0.001	1000.0	M
Chromium	0.001	1000.0	М
Copper	0.001	1000.0	М
Lead	0.001	1000.0	М
Nickel	0.001	1000.0	M
Selenium	0.002	1000.0	М
Silver	0.002	1000.0	М
Thallium	0.001	1000.0	M
Zinc	0.002	1000.0	M
12 ICP LINEAR RANGES (QUARTERLY)

•

Laucks Laboratories Contract:

Lab Code: LAUCKS

SDG No.: <u>CAB34</u>

CCP ID Number: FIMS(FIMS400) Date: 09/08/2005

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Mercury		20.0	CV

13 PREPARATION LOG

Lab Name: Laucks Laboratories

Contract:

Lab Code: LAUCKS SDG No.: CAB34 Prep Batch ID: P019882

Method: 6020

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B070207ICPMSW01	B070207ICPMSW01	07/02/2007	100.0mL	100
S070207ICPMSW01	S070207ICPMSW01	07/02/2007	100.0 mL	100
S070207ICPMSW01D	S070207ICPMSW01D	07/02/2007	100.0 mL	100
15LCMW03SW	CAB34-001	07/02/2007	100.0mL	100
15LCMW03SWD	CAB34-001D	07/02/2007	100.0 mL	1.00
15LCMW03SWMS	CAB34-001MS	07/02/2007	100.0 mL	100
15LCMW03SW (Filt.)	CAB34-002	07/02/2007	100.0 mL	100
15LCMW03SW (Filt.)D	CAB34-002D	07/02/2007	100.0 mL	100
15LCMW03SW (Filt.)MS	CAB34-002MS	07/02/2007	100.0 mL	100
15LCMW415W	CAB34-003	07/02/2007	100.0 mL	100
15LCW415W (Filt.)	CAB34-004	07/02/2007	100.0 mL	100
15LCMW03DW	CAB34-005	07/02/2007	100.0 mL	100
15LCMW03DW (Filt.)	CAB34-006	07/02/2007	100.0 mL	100
15LCMW04DW	CAB34-007	07/02/2007	100.0 mL	100
15LCMW04DW (Filt.)	CAB34-008	07/02/2007	100.0 mL	100
15LCMW04SW	CAB34-009	07/02/2007	100.0 mL	100
15LCMW04SW (Filt.)	CAB34-010	07/02/2007	100.0 mL	100

•

13

PREPARATION LOG

Lab Name:	Laucks Laboratories	Contract:
hab Code:	LAUCKS SDG No.: CAB34	Prep Batch ID: _P019912

Method: 7470A

Client Sample No.	Lab Sample ID	Preparation Date	Initial Volume	Volume (mL)
B070307HGW01	B070307HGW01	07/03/2007	50.0 mL	50
S070307HGW01	S070307HGW01	07/03/2007	50.0 mL	50
ISLCMW03SW	CAB34-001	07/03/2007	50.0 mL	50
ISLCMW03SWD	CAB34-001D	07/03/2007	50.0 mL	50
L5LCMW03SWMS	CAB34-001MS	07/03/2007	50.0 mL	50
15LCMW03SW (Filt.)	CAB34-002	07/03/2007	50.0 mL	50
ISLCMW03SW (Filt.)D	CAB34-002D	07/03/2007	50.0 mL	50
I5LCMW03SW (Filt.)MS	CAB34-002MS	07/03/2007	50.0 mL	50
15LCW415W	CAB34-003	• 07/03/2007	50.0 mL	50
15LCW415W (Filt.)	CAB34-004	07/03/2007	50.0 mL	50
ISLCMW03DW	CAB34-005	07/03/2007	50.0 mL	50
15LCMW03DW (Filt.)	CAB34-006	07/03/2007	50.0 mL	50
15LCMW04DW	CAB34-007	07/03/2007	50.0 mL	50
15LCMW04DW (Filt.)	CAB34-008	07/03/2007	50.0 mL	50
15LCMW04SW	CAB34-009	07/03/2007	50.0 mL	50
15LCMW04SW (Fift.)	CAB34-010	07/03/2007	50.0 mL	50

.

SW--846

14 ANALYSIS RUN LOG

CAB34 Instrument ID Number: ICPMS (PE ELAN 6100) SDG No.: Lab Name: Laucks Laboratories Start Date: 07/05/2007 Lab Code: LAUCKS

Run Sequence ID: R019494 End Date: 07/05/2007 Method: 6020 Contract:

															A	lal	Vte	6														
			R	A	A		C C	C	0			H ·	X	<u>با</u>	M	M	, E	Z	Z	d	s						n		2			Irc
Client Sample No.	D/F	Time	U	Г	s.	A F	R	Ω	0	R	ы Ш	0		l ⊩-1	0	Z	0	. 4	: н	, <u>п</u>	рд) 121) 121) щ 	< = ~~	<н 		>	,) Z) z	- 	<u>, ц</u>
Blank	1	08:36	Х		Х	X		X	- 1	X	2								×	Х	X	~	<u> </u>	 		×	ļ		×			
Standard 1	Ц	08:41	X		Х	X		×		X X	2								×	×	X		<u> </u>			\times	ļ		×		-	[
Standard 2	Ļ	08:46	X		Х	X		х	· · ·	X X	2								×	×	X					\times	ļ		×		-	
Standard 3	-	08:51	×		Х	×		Х		X	7								×	X	X					\times	ļ		×			
Standard 4	1	08:57	X		Х	×		Х		X Y									×	X	×				ļ	×			×		-	Į.
Standard 5		09:02	Х		Х	X		×	, 1	×	2		L						\times	×	X					\times	Ļ		×		┢─	
ICV	-	09:07	×		Х	X		Х		Х									×	X	X					\times			×			
ICB	1	01:60	×		Х	×		Х		X X									×	×	X					\times			\times	İ		ł
CRI	1	09:15	Х		Х	X		Х		х	2								×	×	X	×				\times	ļ		\times	†		
ICSA	1	09:22	X		Х	X		×		×	2			 	ļ				×	×	X			<u> </u>		\times	Ļ		×			1
ICSAB	1	09:26	×		×			×		×					ļ				×	×	X			<u> </u>	ļ	$ \times$	Ļ		×			
CCVI -	Ĭ	09:31	×		Х	\sim		×		X	2								×	X	X	×			ļ	×			\times		-	
CCB1	-	09:35	×		×	×		×	<u> </u>	X	2								×	×	X		<u> </u>		<u> </u>	×	-		×		\vdash	[
[ZZZZZZ]	Ĩ	09:39					ļ							ļ	ļ			[<u> </u>				ļ	ļ					-	
2227222	-	09:44									-			ļ			1					┢	-			ļ					┢─	
2222223		09:48	<u> </u>								-			ļ	ļ		Ι				<u> </u>	-		-			ļ				<u> </u>	
2222224		09:52	 								 			ļ										<u> </u>	ļ							ľ.
2221225		09:57												ļ							ļ		 		<u> </u>							
2222226		10:01																			-				ļ		ļ			1		
[27.22.7.Z		10:05									 			ļ	<u> </u>											ļ	ļ					
222228	·I	10:10											 	ļ									<u> </u>	<u> </u>								
6777777	1	10:14										<u> </u>								<u> </u>												
CCV2	ł	10:18	×		Х	×		Х	-	X	7								×	×	X					\times			×			
CCB2	1	10:23	×		×	×		×		x x	~				 				×	×	X					×	ļ		×		<u> </u>	1
zzzzz10	1	10:27									ļ												 			ļ						
2222211	-	10:31																								 	<u> </u>					
ZZZZZ122	_	10:36																														
										Fol	۲ س	-VE	ŊŢ														1015	278				

SUM - 242

SW-846

SW--846

14

ANALYSIS RUN LOG

Lab Name: Laucks Laboratories

Contract: ____

Run Sequence ID: F	Method: 6020	End Date: 07/05/2		Analytes	C C F H K L M M M N N P R U E G I G N O A I B								x x x x x x	X X X X											X X X X X	X X X X						
SDG No.: CAB34	ICPMS (PE ELAN 6100)	07			A A B B C C C C C C C L S A E A D O								X X X X	X X X X											X X X X	X X X X						
e: LAUCKS	ent ID Number:	ate: 07/05/200	- - - - -		D/F Time G	1 10:40	1 10:44	1 10:49	1 10:53	1 10:57	1 11:02	1 11:06	I 11:10 X	1 11:15 X	1 11:19	1 11:23	1 11:28	1 11:32	1 11:36	1 11:41	1 11:45	1 11:49	1 11:54	1 11:58	1 12:03 X	1 12:07 X	1 12.12	1 12:16	1 12:20	1 12:25	1 12:29	1 12:33
Lab Code	Instrume	Start Da			ient Sample No.	zz13	2214	2215	zz16	zz17	2218	zz19	/3	33	2220	12221	2222	12223	12224	22225	2226	7227	.2228	2229	/4	34	zz30	2231	2232	zz33	zz34	12235

SUM - 243

SW--846

14 ANALYSIS RUN LOG

Lab Name: <u>Laucks Laboratories</u> Lab Code: <u>LAUCKS</u> SDG No.: <u>CAB34</u> Instrument ID Number: <u>ICPMS (PE ELAN 6100)</u> Start Date: <u>07/05/2007</u>

Contract: Run Sequence ID: <u>R019494</u> Method: <u>6020</u> End Date: <u>07/05/2007</u>

				A	A	E E						L.		K		An	M	Mtes					s				Ę.,			2		E E	
Client Sample No.	D/F	Time	U	L,	S	R	ĽĽ	A		24		(E)	: ប	:	i m	: ២	z	0		, <u>1</u>	, щ) 더) N	, ч Ч	Ξ	+ H	; ,7	>	•	ı Z) z	3	<u> </u>
zzzzz36	1	12:38																											 	<u> </u>			
7222237	1	12.42																															<u> </u>
72222238	1	12:46														┢──			<u> </u>			 											T
22722239		12:51																				 			ļ							┢─	Τ
CCV5	I	12:55	×	L	×		X			×	×						 		Ľ,	$\frac{2}{2}$	X	X	<u> </u>		ļ		×			×	<u> </u>		Ι
CCB5	1	13:00	×		×		X		×	X	×					h				$\frac{2}{2}$	X	X			ļ		×			×			1
22222240	1	13:04																				-			[-	1
2222224 [13:08	<u> </u>							[<u> </u>			ļ								T
2222242	1	13:12		<u> </u>					. 	 	ļ					-	 						ļ	ļ		ļ				1			1
CCV6	i	13:17	\times	<u> </u>	\times	ļ	×	Ê		×	×									$\frac{1}{2}$	X	$ \times$	ļ	<u> </u>	<u> </u>		×			×			Ī
CCB6		13:21	$ \times$		×		×		×	×	×						[X			ļ		×			×			1
727727.	5	13:25														-														<u> </u>		<u> </u>	Ϊ.
777777	Ś	13:30		<u> </u>		ļ			ļ													<u> </u>	 		ļ								1
B070207ICPMSW01	1	13:34	\times		\times		×	<u> </u>	×	\times	×									ک ا		X		<u> </u>	ļ		×			×			T
2222243	•	13:38			L											┢		<u> </u>					ļ		ļ							┢	Γ
2727.22	5	13:43	L	<u> </u>																		<u> </u>		ļ	ļ	<u> </u>							
22222	5	13:47			ļ	ļ				<u> </u>														ļ						<u> </u>			
ZZZZZ	5	13:51		ļ							<u> </u>					·															1		1
ZTZZZ	5	13:56			L					<u> </u>														.	ļ				1			<u> </u>	Ι
S070207ICPMSW01	-	14:00	×		×		Х		×	Х	Х									х Х	X	X					X			×			
S070207ICPMSW01D	Ţ	14:04	×		×		×			X	X									$\frac{2}{2}$	N N	X					×			×			
CCV7		14:09	×		×		x		X	×	×									$\frac{\gamma}{\chi}$	X	$ \times $			<u>.</u>		×			×	<u> </u>		Γ
CCB7	••••	14:13	\times	<u> </u>	×		×		×	×	Х									X	X	$ \times$				ļ	×			×			T
7.2.2.2.2.44		14:17	<u> </u>						ļ.,								 					ļ	ļ	ļ		<u> </u>			1			<u> </u>	T
2222245	1	14:21	ļ																			<u> </u>				<u> </u>						-	1
772772	25	14:26																															
7722712	25	14:30																															
											For	IX U	I 1	ΓN														SW-	846				

SUM - 244

ANALYSIS RUN LOG 14

Run Sequence ID: R019494

CAB34

SDG No.:

Lab Name: Laucks Laboratories

Lab Code: LAUCKS

Contract:

Instru	nent II	o Numbe	* • 5-1							1					Met	hod		602	0			ł										
Start [ate:	07/05/2	2007							1					Enc	I Da	те: Те	I	07/1	05/:	2007											
	;	:																														
																An∂	lyt	es														
			đ	4	¢	щ	۲D)	υ υ	0 10	U	U	£т.	ж	Х	Г	4	2	z	z	പ	S	Ŋ	Ŋ	50 V	E۲	с Е-		J (Ζ	υ	щ	Ŋ
Client Sample No.	D/F	Time	σ	П	N	4	<u>س</u>	4	0	м		ы	υ	╈	Щ Н			R	ы	m	m	[.7]	z	с	=	÷ H			z	z		
222222	C7	14:34					1		_	_	_		-	_	+	┽	-	_	_					\uparrow	t	╉		_				T
777777	25	14:39							_	_	_							_		_				_			_		_	_		
727272	25	14:43																														
211212	25	14:47																														
ZILLIZ	25	14:52																														
ZILLEL	25	14:56																														
CCV8	1	15:00	×		×		×			\times	×								\times	×	×	×					<u>×</u>		×			
CCB8	Ĩ	15:05	\times		×		×			\times	X								×	\times	×	X				~	×		×			
777777	25	15:10																									<u> </u>					
2722271	25	15:14																														-
222222	125	15:18																									<u> </u>					
727277	25	15:23																									-					
222222	25	15:27																			· ·											
777777	25	15:31													<u> </u>			[
777777	25	15:35																														
777777	25	15:40																														
777777	25	15:44																			L											
ZZZZZZ	25	15:48							ļ	ļ	<u> </u>																					
CCV9	1	15:53	×		×		X	Ê	7	\times	\times								X	×	×	×				F	X		X			
CCB9	I	15:57	×		×		Х	-	2	Х	X								X	Х	X	Х					×		X			
2122212	25	16:01																														
777772	25	16:06																														
777772	25	16:10																														
777777	25	16:14																														
TTTTTT	25	16:19																									_					
7.777.77	25	16:23																														
222222	5	16:27																														
											For	IX u	I-V	z													S	й — 8 4	Q			

SUM - 245

14 ANALYSIS RUN LOG

. Laucks Laboratories	: LAUCKS SDG No.: CAB34	it ID Number:	te: 07/05/2007
Laucks	LAUCKS	ID NC	/10 :
Name:	Code:	rument	t Date
Lab	Lab	Inst	Star

Run Seguence ID: R019494

Contract:

End Date: 07/05/2007

Method: 6020

A B C																		nal	vte	s															
Sample No. D/F Time G L A D D R D C D C D <thd< th=""> D D <</thd<>				Å	A	A	ш	m	0		F.			H	X	Fi -	Σ	M	ĮΣ	z	Z	۵	S	S	S	S	F	L L	E						1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E Sample No.	D/F	Time	υ	ц	S	Å	되	A	0 Q	E E E E E E		ы	U		I	U	N	0	Å	ы	В	മ	ы	z	ц	H	i⊶i	Ц			- N	7	H.	· ·
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	16:32																																
5 16:40 X		5	16:36																																
1 1644 X		5	16:40														ļ																		
		I	16:44	X		Х		Х		X	×	X									\times	Х	×	×	 				×						1
		1	16:49	X		Х		X		×	×	X				ļ					$ \times$	X	×	×					×						T
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	16:53																						İ	┢──								ļ	
5 17:02 1 <td></td> <td>5</td> <td>16:57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td>		5	16:57																																l
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:02								 .		ļ																			ļ	<u> </u>		I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:06																														-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:10												 								F												1
25 $[7,19]$ $ $		5	17:15										ļ		ļ					L	<u> </u>								<u> </u>						I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		25	17:19																																
5 17.28 1 <th1< th=""> 1 1 1<td></td><td>5</td><td>17.23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>		5	17.23														_																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:28																																[
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:32																																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	17:36	X		х		×		X	X	X									\times	Х	×	×					×			~		<u> </u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	17:40	\times		Х		Х		Х	X	X									\times	Х	Х	х					X		r.	×			I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		S	17:45																																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:49																																l
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:53																										_						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	17:58				_																												
5 18:06 - <td></td> <td>5</td> <td>18:02</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		5	18:02																																
5 18:11 5 18:15 6 18:15 7 18:16 8 18:19 9 18:19 18:19 18 18:10 18 18:12 18 18:13 18 18:14 18		5	18:06																																
5 18:15 5 18:19 5 18:19 7 1		5	18:11																																
5 18:19 5 18:24		5	18:15																											_					
5 18:24		5	18:19							_																									
		5	18:24																									•							

SUM - 246

SW-846

Form XIV-IN

14 ANALYSIS RUN LOG

)

. Laucks Laboratories	: IAUCKS SDG No.: CAB34	ent ID Number:	te: 07/05/2007
Name:	Code:	trument	ırt Dat€
Lab	Lab	Ins	Sta

Contract: Run Sequence ID: <u>R019494</u> Method: <u>6020</u>	End Date: U//U5/ZUU/

																An	alv	t est							ŀ								
			A	A	A	m	H III				U	н	H	М	П	Σ	Σ	Ξ	F				S	0			L.			Z	υ		U.
Client Sample No.	D/F	Time	υ	F.	S	A	E i	L F	0	R	U	ы	U		Н	U	N	0	d,	H H	н ЭЭ	ш ~	Z	<u>к</u>	H	н	Ţ			Z	Z		i H
222222	25	18:28																															
CCV12	1	18:32	Х		×		X	×		×	Х								ļ	X		$ \times$		ļ			\times	ļ	<u> </u>	\times		ſ	
CCB12	I	18:37	Х		×		X	Ň		X	X							-	<u> </u>							<u> </u>	\times	ļ	ļ	×			
27.2222	25	18:41																			<u> </u>	<u> </u>					ļ	ļ					[
727772	25	18:45																<u> </u>						<u> </u>	ļ	 	ļ						
27/27/2	25	18:50												 						 				 	<u> </u>	 	ļ				1		
222222	125	18:54																			 	<u> </u>			. 		ļ					1	
277277	25	18.58																	<u> </u>			<u> </u>		<u> </u>		 	L			Ì	Ī		
272222	25	19:03												 				<u> </u>	-	\vdash		<u> </u>	 	<u> </u>			ļ	<u> </u>				\square	
777777	25	19:07				\square				ļ												<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ				ŀ	T	
727772	25	19:31								<u> </u>					<u></u> ⊦	-	<u> </u>					-	<u> </u>			<u> </u>	L	ļ			1	1	
222222	5	19:16								ļ				 			†						<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	ļ				1	
777772	5	19:20																				ļ	<u> </u>			ļ		ļ			1		
CCV13	1	19:24	\times		Х		X	X		×	×			 						\		X	<u> </u>	 			\times	[×			
CCB13	-	19:29	\times		Х		Х	X		×	Х								<u> </u>	X	× ×	X	<u> </u>				\times			\times	1	ŀ	
777777	5	19:33																				<u> </u>	<u> </u>			 	ļ						
22222	5	19:37																				 		ļ	-		ļ	ļ				1	
272772	25	19:42																					ļ					ļ	<u> </u>				
777777	5	19:46																				ļ			ļ	ļ	[ļ	ļ				
222222	5	19:50																									 		<u> </u>				
727227	5	19:54																				L											
7.7.7.7.7	5	19:59																															
15LCMW03SW	1	20:03	\times		×		×	×		×	×				_					χ	< X	X					×			×			
15LCMW03SWL	S	20:08	×		×			×		×	×									л Х	N X	X					×			×	[
15LCMW03SWD	Т	20:12	×		\times		X	×		×	\times								· `	X	< X	X					×			Х			
CCV14	-	20:16	×		\times			\times		\times	×						÷		· '	х Х	X V	X					х			\times		 	
CCB14	-	20.21	×		×		X	X		×	X								_	X	X	X					×			\times			

SUM - 247

SW-846

Form XIV-IN

14

ANALYSIS RUN LOG

Contract:

Lab Name: Laucks Laboratories

			1		S >			_																		
					<u></u>		<u> </u>													<u> </u>						
						2																<u> </u>			<u> </u>	
					2 2	-1×	\times	×	\times	X	$ \times$	\times	X	×	\times	×	\times	×	×	$ \times $	×	$ \times$			\times	×
					>			<u> </u>																		
					D -																					
					[X	$ \times $	×	×	Х	×	Х	X	X	Х	×	\times	Х	X	×	X	\times			×	X
					F4 F																					
					E ,		<u> </u>				ļ											<u> </u>				
											<u> </u>		-													
94					20 F	4 1																				
940		L($ \times$	×		X	X	X	X	X	X	\sim		X	X		X	X			X	X
R01		200			0) L		\sim	X	×	X	\sim	× .	X	X	×	× 	×	×	×	×	×					X
.:		057					X	×	×	X	X	X	X	X	X	X	×	X	X		X	X			X	X
H	0	/10					×	<u> </u>	~	~	×	×	×	×	~	~	~	~		<u> </u>	Ň				\sim	Ň
nce	602	ſ		6 N				<u> </u>			ļ											ļ			ļ	
due		te	1	lyt	2 (_						
ŝ	hod	Da		Ana	2 2																				ļ	
Run	Met	End			2. (1																				
						1																				
					ры, гтч г																					
					ц с		-																			
							~		~	Ż	~	N	Ż			~					<pre></pre>	$\overline{\sim}$				ζ.
							$\overline{\mathbf{x}}$	$\overline{}$	$\frac{1}{2}$	~	$\frac{1}{2}$	\sim	ζÌ	$\langle \rangle$	\sim	N N		\sim	r V		₹ 2	$\frac{1}{2}$			r V	<
		l				$\frac{1}{1}$	~	\sim	$\hat{}$	$\hat{}$	\sim	\sim	Ŷ	$\hat{}$	$\hat{}$	\sim	Ê	\sim	\sim		ζ	\sim				\sim
AB3.	100						~	\sim		X	\sim	Ϋ́	×	$\overline{\mathbf{v}}$	V			\sim	~	~	X					×
9	N 6				() s			_	· ·	_																
	ΞLΡ				 			×	X	×	×	X	X	X	×	×	2	X	×	×	8	×			~	\sim
ž	Ъд				<u>ന്</u> ന് പ്രം			<i>,</i> ,	-		-		5							-						7 1
SDC	S (Ĩ	******				×	X	X	X	X	X	X	X	X	X	×	X	Х	X	X	X			Х	X
1	CPW				ج -	2																				
	н.	01			A (×	X	X	×	X	×	X	×	×	Х	Х	×	X	Х	Х	Х			X	X
ß	umber:	/05/20	-	1	0	0:25	0.29	0:34	0:38	0.42	0:47	0:51	0:55	0:59	1:04	1:08	1:12	1:17	1:21	1:25	1:30	1:34	1:38	1:43	1.47	1:51
AUCK	ID NI	/10	-		ع ب	5	2(2(2(2(2(2(2(2(2.	2.	2	2	5	2	2.	2	2	2	2	2
de: I	ment	Date:	-		2	- 1	1	T	5		1	1			1			1	1	ł	Π	1		-		-
Lab Co	Instru	Start			Client Sample No	5LCMW03SWMS	5LCMW03SWP	5LCMW03SW (Filt.)	5LCMW03SW (Filt.)L	5LCMW03SW (Filt.)D	5LCMW03SW (Fült.)MS	5LCMW03SW (Filt.)P	5LCMW415W	5LCW415W (Filt.)	5LCMW03DW	CV15	CB15	5LCMW03DW (Filt.)	5LCMW04DW	5LCMW04DW (Filt.)	5LCMW04SW	5LCMW04SW (Filt.)	21172	22222	CV16	JCB16

Form XIV-IN

14 ANALYSIS RUN LOG

Contract:

Lab Name: Laucks Laboratories

SUM - 249

SW-846

× . .

14 ANALYSIS RUN LOG

R019215

Run Sequence ID:

CAB34

SDG No.:

Lab Name: Laucks Laboratories

Lab Code: LAUCKS

Contract:

		1			÷				+			<u>+</u>			+	÷
			υ	Z						:						
			N	Z												
			Δ	·												
			D													
			Ē	Ę												
			[4													
			E-1	щ												
			Ŋ	Ц				İ								
			S	z												
ł			S	ы												
	007		S	р												
	3/2		ų	Ю												
<u>ح</u> ا	0/2		N	h-H					-							
170	0	0	z	đ												
Ľ.	 (1)	yte	Σ	0												
: pq	oa ce	nal;	Σ	N												
etho	Ц	AI	Z	U											-	
5	면		ы	ы												
			×													
			E	υ	×		*****	1	×	×					×	\times
			.r.,	되												
			υ	D												
1	ł		υ	щ												
			υ	0												
	ľ		υ	D												
			υ	R												
4 0 C			щ	[13												
SWI.			щ	đ,												
S (F			ø	ល												
ZI G			ø	Γ												
	003		đ	U												
Number	/03/2			Time	14:39	14.42	14:45	14:49	14:52	14:55	14:58	15:02	15:05	15:08	15:11	15:15
Ê	0															
ment	Date:			D/F		1	Ţ			Ĩ		1	1			I
Instru	Start I			Client Sample No.	15LCMW04SW (Filt.)	777777	77777	177777	CCV2	CCB2	2/27222	222277	272222	222222	15LCMW03DW	CCV3

က H μŋ

SUM - 250

SW-846

,

×

15:18 15:21

ZZZZZZ CCB3

. . **,**,,,, •----(

FORMS SUMMARY

CAB34

Miscellaneous Inorganics

Client:	PBS Eng Environm	ineering and iental		Р	roject:		Camp	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	03SW		\mathbf{D}	ate/Time	Collected:	06/22/2	2007 12:55	i	
Lab Sample ID:	CAB34-00	01		D	ate/Time	Received:	06/23/2	2007 09:15	,	
Method:	E160.2			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Total		TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	1	0.25		0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	1.5		1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Alkalinity, Carbonate (A CaCO3)	As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonate CaCO3)	(As	71-52-3	2	42		4	4	07/03/2007	07/03/2007	R019262
Method:	E314.0			Uı	nit:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/11/2007	0 7 /12/2007	R019436
Method:	E415.1			Ur	1it:		mg/L		***************************************	
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Organic Carbon, Total		ТОС	1	1.0	U	1.0	0.070	06/29/2007	06/29/2007	R019150

Final Results

U

1.0

1.0

06/29/2007 06/29/2007 R019150

Client:	PBS Engi Environm	neering and ental			Project:		Camp E	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	03SW (Filt.)]	Date/Time	Collected	: 06/22/2	2007 12:55	i	
Lab Sample ID:	CAB34-00	2)	Date/Time	Received	: 06/23/2	007 09:15	i	
Method:	E415.1			ו	Unit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.

1.0

1

Dissolved Organic Carbon

DOC

SUM - 253

Client:	PBS Eng Environm	ineering and ental		P	roject:		Camp I	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	415W		D	ate/Time	Collected:	06/22/2	2007 09:00	Ι.	
Lab Sample ID:	CAB34-00)3		D	ate/Time	Received:	06/23/2	2007 09:15		
Method:	E160.2			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Tota	I	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	J	0.29		0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	1.7		1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Alkalinity, Carbonate (A CaCO3)	As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonate CaCO3)	(As	71-52-3	2 *	44		4	4	07/03/2007	07/03/2007	R019262
Method:	E314.0			U	nit:		u <u>g</u> /L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seg.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/11/2007	07/12/2007	R019436
Method:	E415.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seg.
Organic Carbon, Total		TOC	1	1.0	U	1.0	0.070	06/29/2007	06/29/2007	R019150

Client: SDG Number:	PBS Engi Environm CAB34	ineering and ental			Project:		Camp B	onneville		
Sample Number:	15LCW41	5W (Filt.)		•	Date/Time	Collected	1: 06/22/20	007 09:00	I	
Lab Sample ID:	CAB34-00)4			Date/Time	Received	: 06/23/2	007 09:15		
Method:	E415.1				Unit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Anałyzed	Run Seq.
Dissolved Organic Carl	bon	DOC	1	1.0	U	1.0	1.0	06/29/2007	06/29/2007	R019150

Client:	PBS Eng Environm	ineering and liental		P	roject:		Camp !	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	03DW		D	ate/Time	Collected:	06/22/2	2007 10:45		
Lab Sample ID:	CAB34-00)5		D	ate/Time	Received:	06/23/2	2007 09:15		
Method:	E160.2			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Total	Į	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	1	0.33		0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N		14797-65-0]	0.10	U	0,10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8]	1.0	U	1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	1.7		1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seg.
Alkalinity, Carbonate (A CaCO3)	As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonate CaCO3)	(As	71-52-3	2	44		4	4	07/03/2007	07/03/2007	R019262
Method:	E314.0			Ü	nit:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1,0	0.14	07/11/2007	07/12/2007	R019436
Method:	E415.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Organic Carbon, Total		TOC	1	1.0	U	1.0	0.070	06/29/2007	06/29/2007	R019150

Client: SDG Number:	PBS Engi Environm CAB34	neering and ental			Project:		Camp B	onneville		
Sample Number:	15LCMW)3DW (Filt.)			Date/Tim	e Collected	06/22/2	007 10:45		
Lab Sample ID:	CAB34-00	6			Date/Tim	e Received:	06/23/2	007 09:15		
Method:	E415.1				Uuit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Cart	oon	DOC	1	1.0	U	1.0	1.0	06/29/2007	06/29/2007	R019150

Final Results

Client:	PBS Eng Environm	ineering and tental		Pr	oject:		Camp E	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	04DW		Da	te/Time	Collected:	06/22/2	007 15:00		
Lab Sample ID:	CAB34-00	07		Da	te/Time	Received:	06/23/2	007 09:15		
Method:	E160.2			Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Tota	ai	TSS	1	2	U	2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	1	0.20	U	0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8	1	1.7		1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	1.9		1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1		·	Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Alkalinity, Carbonate (CaCO3)	(As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonate CaCO3)	e (As	71-52-3	2	49		4	4	07/03/2007	07/03/2007	R019262
Method:	E314.0			Un	it:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/11/2007	07/12/2007	R019436
Method:	E415.1			Un	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Organic Carbon, Total		ТОС	1	1.0	U	1.0	0.070	06/29/2007	06/29/2007	R019150

. ••• •

Client: SDG Number:	PBS Engi Environm CAB34	ineering and ental]	Project:		Camp E	Bonneville		
Sample Number:	15LCMW	04DW (Filt.)		1	Date/Time	Collected	: 06/22/2	007 15:00)	
Lab Sample ID:	CAB34-00)8]	Date/Time	Received	: 06/23/2	007 09:15	i	
Method:	E415.1			I	U nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Dissolved Organic Car	bon	DOC	1	1.0	U	1.0	1.0	06/29/2007	06/29/2007	R019150

Client:	PBS Eng Environr	jineering and nental		P	roject:		Camp I	Bonneville		
SDG Number:	CAB34									
Sample Number:	15LCMW	/04SW		D:	ate/Time	Collected:	06/22/2			
Lab Sample ID:	CAB34-0	109		D	ate/Time	Received:	06/23/2	2007 09:15		
Method:	E160.2			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Tot	al	TSS	1	3		2	2	06/25/2007	06/27/2007	R018986
Method:	E300.0			U	nit:		mg/L	**************************************		
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Nitrate - N		14797-55-8	1	1.1		0.20	0.055	06/23/2007	06/23/2007	R018997
Nitrite - N		14797-65-0	1	0.10	U	0.10	0.017	06/23/2007	06/23/2007	R018997
Sulfate as SO4		14808-79-8	1	1.0	U	1.0	0.17	06/23/2007	06/23/2007	R018997
Chloride		16887-00-6	1	2.7		1.0	0.076	06/23/2007	06/23/2007	R018997
Method:	E310.1			U	nit:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Alkalinity, Carbonate (CaCO3)	(As	3812-32-6	2	4	U	4	4	07/03/2007	07/03/2007	R019262
Alkalinity, Bicarbonata CaCO3)	e (As	71-52-3	2	38		4	4	07/03/2007	07/03/2007	R019262
Method:	E314.0			U	nit:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	07/11/2007	07/12/2007	R019436
Method:	E415.1			U	nit:		mg/L			
Analyte	***************************************	CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Organic Carbon, Total		TOC	1	1.0	U	1.0	0.070	06/29/2007	06/29/2007	R019150

Final Results

Client: SDG Number:		Pr	oject:		Camp B	onneville					
Sample Number: 15LCMW04SW (Filt.)				Da	te/Time	Collected	: 06/22/20	06/22/2007 16:15			
Lab Sample ID:	CAB34-01	0		Da	te/Time	Received	: 06/23/20	007 09:15			
Method:	E415.1			Un	iit:		mg/L				
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.	
Dissolved Organic Carbon DOC			1	1.0	U	1.0	1.0	06/29/2007	06/29/2007	R019150	

۰.

SDG No:	CAB34	Contract:	
Run Sequence No.	R018997	Concentration Units: mg	g/L
Determination Name:	300.0 NO3, NO2, Cl, SO4		
Initial Calibration Source:	IC-7-22-18		
Continuing Calbration Source:	IC-7-24-12		

		ICV				CCV1			CCV2			
		06/23/2007 13:32			06/23/07 16:10				06/23/07 19	:19	ccv	
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	Тгие	Found	Recovery	Limits	
Chloride	1.500	1.399	93.3	90-110	5,023	4.782	95.2	5.023	4.849	96.5	90-110	
Nitrate - N	1.125	1.081	96.1	90-110	2.004	1.932	96.4	2.004	1.944	97	90-110	
Nitrite - N	1.522	1.64 7	108.2	90-110	1,000	0.975	97.4	1.000	0.982	98.1	90-110	
Sulfate as SO4	7.450	7,326	98.3	90-110	10.018	9.607	95.9	10.018	9.59	95.7	90-110	

* = Percent recovery not within control limits

SDG No:	CAB34	Contract:
Run Sequence No.	R019436	Concentration Units: ug/L
Determination Name:	314.0 Perchlorate	
Initial Calibration Source:	IC-7-24-15	
Continuing Calbration Source:	IC-7-24-17	

	ICV				CCV1						
	07/12/2007 14:25				07/12/07 14:25				CCV		
Analyte	Тгие	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate 40.151 40.811 101.6 75-125			9.988	9.358	93.7	9.988	8.904	89.2	85-115		

* = Percent recovery not within control limits

FORM LTL-RSR-23.0 This report is submitted for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

Page 1 of 2 **SUM - 263**

SDG No:	CAB34	Contract:	
Run Sequence No.	R019436	Concentration Units: up	g/L
Determination Name:	314.0 Perchlorate		
Initial Calibration Source:	IC-7-24-15		
Continuing Calbration Source:	IC-7-24-17		

				-		CCV3					
					07/12/07 14:25				CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Perchlorate					9.988	9.033	90.4				85-115

* = Percent recovery not within control limits

SDG No:	CAB34	Contract:
Run Sequence No.	R019150	Concentration Units: mg/L
Determination Name:	415.1 Total Organic Carbon	
Initial Calibration Source:	TOC-4-28-2	
Continuing Calbration Source:	TOC-4-29-20	

	ICV				CCV01						
	06/29/2007 12:22				06/29/07 13:45				CCV		
Analyte	True	Found	Recovery	Limits	True	Found	Recovery	True	Found	Recovery	Limits
Organic Carbon, Total 10.000 9.406 94.1 90-110		5.001	4.782	95.6	5.001	4.712	94.2	90-110			

* = Percent recovery not within control limits

INITIAL AND CONTINUING CALIBRATION BLANKS

SDG No: CAB34

Contract:

Run	Determination	Sample	Analyzed	Analyte	Result	Unit	Limit
R018997	300.0 NO3, NO2, Cl, SO4	ICB	06/23/2007	Chloride	1.0 U	mg/L	0.500000
	300.0 NO3, NO2, Cl, SO4	CCB1	06/23/2007	Chloride	1.0 U	mg/L	0.500000
	300.0 NO3, NO2, CI, SO4	CCB2	06/23/2007	Chloride	1.0 U	mg/L	0.500000
	300.0 NO3, NO2, CI, SO4	ICB	06/23/2007	Nitrate - N	0.20 U	mg/L	0.100000
	300.0 NO3, NO2, Cl, SO4	CCB1	06/23/2007	Nitrate - N	0.20 U	mg/L	0.100000
	300.0 NO3, NO2, Cl, SO4	CCB2	06/23/2007	Nitrate - N	0.20 U	mg/L	0.100000
	300.0 NO3, NO2, Cl, SO4	ICB	06/23/2007	Nitrite - N	0.10 U	mg/L	0.050000
	300.0 NO3, NO2, Cl, SO4	CCB1	06/23/2007	Nitrite - N	0.10 U	mg/L	0.050000
	300.0 NO3, NO2, Cl, SO4	CCB2	06/23/2007	Nitrite - N	0.10 U	mg/L	0.050000
	300.0 NO3, NO2, Cl, SO4	ICB	06/23/2007	Sulfate as SO4	1.0 U	tmg/L	0.500000
	300.0 NO3, NO2, Cl, SO4	CCB1	06/23/2007	Sulfate as SO4	1.0 U	mg/L	0.500000
	300.0 NO3, NO2, Cl, SO4	CCB2	06/23/2007	Sulfate as SO4	1.0 U	mg/L	0.500000
R019150	415.1 Dissolved Organic Carbon	ICB	06/29/2007	Dissolved Organic Carbon	1.0 U	mg/L	0.500000
	415.1 Dissolved Organic Carbon	CCB01	06/29/2007	Dissolved Organic Carbon	1.0 U	mg/L	0.500000
	415.1 Dissolved Organic Carbon	CCB02	06/29/2007	Dissolved Organic Carbon	1.0 U	mg/L	0.500000
	415.1 Total Organic Carbon	ICB	06/29/2007	Organic Carbon, Total	1.0 U	mg/L	0.500000
	415.1 Total Organic Carbon	CCB01	06/29/2007	Organic Carbon, Total	1.0 U	mg/L	0.500000
	415.1 Total Organic Carbon	CCB02	06/29/2007	Organic Carbon, Total	1.0 U	mg/L	0.500000
R019436	314.0 Perchlorate	1CB	07/12/2007	Perchlorate	1.0 U	ug/L	0.500000
	314.0 Perchlorate	CCB1	07/12/2007	Perchlorate	1.0 U	ug/L	0.500000
	314.0 Perchlorate	CCB2	07/12/2007	Perchiorate	1.0 U	ug/L	0.500000
	314.0 Perchlorate	ССВ3	07/12/2007	Perchlorate	1.0 U	ug/L	0.500000

* = Control limit exceeded

FORMLTL-RSR-59.0 Page 1 of J This report is submined for the exclusive use of the person, partnership or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of trade and science.

	Analyte	Reported	Flag	Limit	
		M	atrix	Water	
		Ur	nits:	mg/L	
		Ar	alysis Date:	07/03/2007	17:00
Lab Sample ID:	B070307ALKW01	Rı	in Sequence ID:	R019262	
		Pr	eparation Date:	7/3/2007	
Test:	310.1M Carb./Bicarb. Alkalinity	SI	DG ID:	CAB34	

Alkalinity, Carbonate (As CaCO3)		2	U	
	A	Associated Samples		
	Lab Sample ID	<u>Client Sample ID</u>		
	CAB34-001	15LCMW03SW	4	
	CAB34-003	15LCMW415W		
	CAB34-005	15LCMW03DW		
	CAB34-007	15LCMW04DW		

2

15LCMW04SW

U

2

2

* Measured blank concentration exceeded the established control limit

Alkalinity, Bicarbonate (As CaCO3)

CAB34-009

Test: 300.0 NO3, NO2, Cl, SO4

Lab Sample ID: B062307IAIW01

SDG ID:	CAB34	
Preparation Date:	6/23/2007	
Run Sequence ID:	R018997	
Analysis Date:	06/23/2007	13:48
Units:	mg/L	
Matrix:	Water	

Analyte	Reported	Flag	Limit
Chloride	1.0	U	0.5
Nitrate - N	0.20	U	0.1
Nitrite - N	0.10	U	0.05
Sulfate as SO4	1.0	U	0.5

Associated Samples				
Lab Sample ID	<u>Client Sample ID</u>			
CAB34-001	15LCMW03SW			
CAB34-003	15LCMW415W			
CAB34-005	15LCMW03DW			
CAB34-007	15LCMW04DW			
CAB34-009	15LCMW04SW			

Test:	314.0 Perchlorate	SI	DG ID:	CAB34	
		Pr	Preparation Date:		
Lab Sample ID:	B071107PERW01	R	un Sequence ID:	R019436	
		A	nalysis Date:	07/12/2007	14:25
		Ú	nits:	ug/L	
		М	atrix:	Water	
	Analyte	Reported	Flag	Limit	
Perchlorat	te	1,0	U	0.5	
	A	ssociated Samples			
	Lab Sample ID	<u>Client Sample ID</u>			
	CAB34-001	15LCMW03SW			
	CAB34-003	15LCMW415W			
	CAB34-005	15LCMW03DW			
	CAB34-007	15LCMW04DW			
	CAB34-009	15LCMW04SW			

Test:	415.1 Total Organic Carbon

Lab Sample ID: B062907TOCW01

Flag	Timia	
Matrix:	Water	
Mandalan	XX7-4	
Units:	mg/L	
Analysis Date:	06/29/2007	12:49
Kun Sequence ID:	R019150	
Des Construct ID.	D010150	
Preparation Date:	6/29/2007	
SDG ID:	CAB34	

	Analyte	Reported	Flag	Lim
Organic Carbon, Total		1.0	U	0.5
	1	Associated Samples		
	Lab Sample ID	Client Sample ID		
	CAB34-001	15LCMW03SW		
	CAB34-002	15LCMW03SW (Filt	i.)	
	CAB34-003	15LCMW415W	·	
	CAB34-004	15LCW415W (Filt.)		
	CAB34-005	15LCMW03DW		
	CAB34-006	15LCMW03DW (Fil	t.)	
	CAB34-007	15LCMW04DW		
	CAB34-008	15LCMW04DW (Fil	t.)	
	CAB34-009	15LCMW04SW		
	CAB34-010	15LCMW04SW (Filt	t.)	

Test:	160.2 Total Suspended Solids	SI	DG ID:	CAB34	
		Pr	eparation Date:	6/25/2007	
Lab Sample ID:	B062507TSSW01	Ri	un Sequence ID:	R018986	
		Ar	nalysis Date:	06/27/2007	16:30
		Ur	nits:	mg/L	
		M	atrix:	Water	
	Analyte	Reported	Flag	Limit	
Suspended :	Solids, Total	2	Ŭ	2	
	Asso	iated Samples			
	Lab Sample ID	Client Sample ID			
	CAB34-001	15LCMW03SW			
	CAB34-003	15LCMW415W			
	CAB34-005	15LCMW03DW			
	CAB34-007	15LCMW04DW			
	CAB34-009	15LCMW04SW			

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	300.0 NO3, NO2, Cl, SO4	SDG ID:	CAB34
		Preparation Date:	06/23/2007
MS Lab Sample ID:	CAB34-001MS 20X	Run Sequence ID:	R018997
MSD Lab Sample ID:	CAB34-001MSD 20X	Analysis Date:	06/23/2007
Client Sample ID:	15LCMW03SW	Units:	mg/L
		Matrix:	Water

Analyte	Sample MS	MS	1S MS	MS Recovery	MSD Spike	MSD Found R	MSD	ממ	Limits	
	Found	Found Spike Found	Found				Recovery	Kru	Recovery	RPD
Chloride	1.522	40.2	39.9854	96%	40.2	41.3004	99%	3%	90-110	11
Nitrate - N	0.2468	16.0	15.8667	97%	16.0	15.6588	96%	1%	90-110	10
Nitrite - N	0	8.00	7.73	97%	8.00	7.4153	93%	4%	90-110	10
Sulfate as SO4	0.3683	80.1	78.079	97%	80.1	77.9312	97%	0%	90-110	10

Associated Samples				
Lab Sample ID	Client Sample ID			
CAB34-001	15LCMW03SW			
CAB34-003	15LCMW415W			
CAB34-005	15LCMW03DW			
CAB34-007	15LCMW04DW			
CAB34-009	15LCMW04SW			

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	314.0 Perchlorate	SDG ID:	CAB34
		Preparation Date:	07/11/2007
MS Lab Sample ID:	CAB34-009MS 5X	Run Sequence ID:	R019436
MSD Lab Sample ID:	CAB34-009MSD 5X	Analysis Date:	07/12/2007
Client Sample ID:	15LCMW04SW	Units:	ug/L
		Matrix:	Water

Analyte	Sample Found	MS Spike	MS Found	MS Recovery	MSD Spike	MSD Found	MSD Recovery	RPD	Limits	
									Recovery	RPD
Perchlorate	0	99.9	96.11	96%	99.9	91.96	92%	4%	80-120	15

Associated Samples					
Lab Sample ID	Client Sample ID				
CAB34-001	15LCMW03SW				
CAB34-003	15LCMW415W				
CAB34-005	15LCMW03DW				
CAB34-007	15LCMW04DW				
CAB34-009	15LCMW04SW				

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	415.1 Total Organic Carbon	SDG ID:	CAB34
		Preparation Date:	06/29/2007
MS Lab Sample ID:	CAB34-001MS	Run Sequence ID:	R019150
MSD Lab Sample ID:	CAB34-001MSD	Analysis Date:	06/29/2007
Client Sample ID:	15LCMW03SW	Units:	mg/L
		Matrix:	Water

Analyte	Sample	MS	MS	MS	MSD	MSD	MSD	DBD	Limits	
	Found	Spike	Found	Recovery	Spike	Found	Recovery	KI D	Recovery	RPD
Organic Carbon, Total	0.0892	10.0	9.6649	96%	10.0	9.8764	98%	2%	70-119	11

Associated Samples					
Lab Sample ID	Client Sample ID				
CAB34-001	15LCMW03SW				
CAB34-002	15LCMW03SW (Filt.)				
CAB34-003	15LCMW415W				
CAB34-004	15LCW415W (Filt.)				
CAB34-005	15LCMW03DW				
CAB34-006	15LCMW03DW (Filt.)				
CAB34-007	15LCMW04DW				
CAB34-008	15LCMW04DW (Filt.)				
CAB34-009	15LCMW04SW				
CAB34-010	15LCMW04SW (Filt.)				

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.
Laucks Testing Laboratories Matrix Spike/Matrix Spike Duplicate Report

Test:	415.1 Dissolved Organic Carbon	SDG ID:	CAB34
		Preparation Date:	06/29/2007
MS Lab Sample ID:	CAB34-002MS	Run Sequence ID:	R019150
MSD Lab Sample ID:	CAB34-002MSD	Analysis Date:	06/29/2007
Client Sample ID:	15LCMW03SW (Filt.)	Units:	mg/L
		Matrix:	Water

Analyte	Sample	MS	MS	MS MSD		MSD	MSD	DBD	Limits	
	Found	Spike	Found	Recovery	Spike	Found	Recovery		Recovery	RPD
Dissolved Organic Carbon	0.2645	10.0	10.0694	98%	10.0	9.9593	97%	1%	70-119	11

Associated Samples						
Lab Sample ID	Client Sample ID					
CAB34-001	15LCMW03SW					
CAB34-002	15LCMW03SW (Filt.)					
CAB34-003	15LCMW415W					
CAB34-004	15LCW415W (Filt.)					
CAB34-005	15LCMW03DW					
CAB34-006	15LCMW03DW (Filt.)					
CAB34-007	15LCMW04DW					
CAB34-008	15LCMW04DW (Filt.)					
CAB34-009	15LCMW04SW					
CAB34-010	15LCMW04SW (Filt.)					

* = RPD or percent recovery is outside established control limits

= This RPD or percent recovery is not flagged as an exceedence because the Sample Found amount is five times or more than the Spike Added amount.

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories

Duplicate Report

Test:	160.2 Total Suspended Solids	SDG ID:	CAB34
		Preparation Date:	6/25/2007
Lab Sample ID:	CAB34-009D	Run Sequence ID:	R018986
Client Sample ID:	15LCMW04SW	Analysis Date:	06/27/2007 16:30
		Units:	mg/L
		Matrix	Water

Analyte	Parent Found	Duplicate Found	RPD	Limit	
Suspended Solids, Total	3	3	0%	20	

Associated Samples					
Lab Sample ID	Client Sample ID				
CAB34-001	15LCMW03SW				
CAB34-003	15LCMW415W				
CAB34-005	15LCMW03DW				
CAB34-007	15LCMW04DW				
CAB34-009	15LCMW04SW				

= RPD Value is not flagged as an outlier because either the parent found amount or duplicate found amount or both are less than five times the reporting limit

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories **BS/BSD** Report

Test: 300.0 NO3, NO2, Cl, SO4

BS Sample ID: BSD Sample ID:

S062307 SD062307

CAB34	
. 06/23/2007	
R018997	
06/23/2007	18:47
mg/L	
Water	
	CAB34 06/23/2007 R018997 06/23/2007 mg/L Water

Analyte	Blank Spike			Blank Spike Duplicate			[Limits	
	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Chloride	2.01	2.1318	106%	2.01	2.0629	103%	3%	90-110	11
Nitrate - N	0.802	0.743	93%	0.802	0.7555	94%	2%	90-110	10
Nitrite - N	0.400	0.3767	94%	0.400	0.3671	92%	3%	90-110	10
Sulfate as SO4	4.01	3.9152	98%	4.01	3.9664	99%	1%	90-110	10

A	Associated Samples					
Lab Sample ID	Client Sample ID					
CAB34-001	15LCMW03SW					
CAB34-003	15LCMW415W					
CAB34-005	15LCMW03DW					
CAB34-007	15LCMW04DW					
CAB34-009	15LCMW04SW					

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories

BS/BSD Report

Test:	415.1 Total Organic Carbon
BS Sample ID:	S062907TOCW01
BSD Sample ID:	S062907TOCW01D

CAB34	
06/29/2007	
R019150	
06/29/2007	12:36
mg/L	
Water	
	CAB34 06/29/2007 R019150 06/29/2007 mg/L Water

Апаlyte	Blank Spike			Blan	k Spike Dup	DDD	Limits		
	Added	Found	Recovery	Added	Found	Recovery	RPD	Recovery	RPD
Organic Carbon, Total	10.0	9.1318	91%	10.0	9.2292	92%	1%	90-110	

Associated Samples	
Lab Sample ID	Client Sample ID
CAB34-001	15LCMW03SW
CAB34-002	15LCMW03SW (Filt.)
CAB34-003	15LCMW415W
CAB34-004	15LCW415W (Filt.)
CAB34-005	15LCMW03DW
CAB34-006	15LCMW03DW (Filt.)
CAB34-007	15LCMW04DW
CAB34-008	15LCMW04DW (Filt.)
CAB34-009	15LCMW04SW
CAB34-010	15LCMW04SW (Filt.)

* = RPD or recovery is outside the established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories SRM Report

Test Name:	310.1M Carb./Bicarb. Alkalinity	SDG ID:	CAB34
		Preparation Date:	07/03/2007
Lab Sample ID:	SRM-MIN QCI02712-438/439-202	Run Sequence ID:	R019262
		Analysis Date:	07/03/2007 17:00
		Units:	mg/L CaCO3
		Matrix:	Water

Analyte Result	True Value	Control Limits		
	rtosun		LCL	UCL
Alkalinity, Bicarbonate (As CaCO3)	36.0	35.6	30.3	42.2

Associated Samples		
Lab Sample ID	<u>Client Sample ID</u>	
CAB34-001	15LCMW03SW	
CAB34-003	15LCMW415W	
CAB34-005	15LCMW03DW	
CAB34-007	15LCMW04DW	
CAB34-009	15LCMW04SW	

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

Laucks Testing Laboratories SRM Report

	Analyte	Result	True Value	
		Matrix:	Water	
		Units:	mg/L	
		Analysis Date:	06/23/2007 1	3:32
Lab Sample ID:	SRM-IC 34-72AS-160	Run Sequence ID:	R018997	
		Preparation Date:	06/23/2007	
Test Name:	300.0 NO3, NO2, Cl, SO4	SDG ID:	CAB34	

Anglyte	Result	True Value	Control Limits	
			LCL	UCL
Chloride	28.0	30	27	33
Nitrate - N	21.6	22.5	20.2	24.8
Nitrite - N	32.9	30.4	27.4	33,5
Sulfate as SO4	147	149	134	164

Associated Samples		
Lab Sample ID	Client Sample ID	
CAB34-001	15LCMW03SW	
CAB34-003	15LCMW415W	
CAB34-005	15LCMW03DW	
CAB34-007	15LCMW04DW	
CAB34-009	15LCMW04SW	

* = Value exceeded established control limits

The concentration values on this report may have non-significant digits tabulated. These are the same values used to compute the recovery and/or RPD values listed and are available during data review to verify our calculations.

DRAFT GROUNDWATER SAMPLING AND ANALYSIS REPORT

2nd QUARTER 2007

CAMP BONNEVILLE VANCOUVER, WASHINGTON

prepared for:

Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600

DRAFT – August 20, 2007

ENGINEERING AND ENVIRONMENTAL	www.pbsenv.com
PBS Project # 70489	888.248.1939 TOLLFREE
	503.248.1939 MAIN 503.248.0223 FAX
	Portland, OR 97239
	4412 SW Corbett

DRAFT GROUNDWATER SAMPLING AND ANALYSIS REPORT

2nd QUARTER 2007

CAMP BONNEVILLE VANCOUVER, WASHINGTON

prepared for:

Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600

DRAFT-August 20, 2007

prepared by:

PBS Engineering and Environmental

Portland, Oregon

APPROVALS & CONCURRENCES:

Andrew Harvey		
Contractor Project Manager	Signature	Date
Dulcy Berri		
PBS QA/QC Officer	Signature	Date
Mike Baxter, Laucks Laboratory		
Analytical Chemistry Task Manager	Signature	Date
	Signature	Date
	Signature	Date

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.	1 Project Objectives	1
1.2	2 Scope of Work	2
1.	3 Report Organization	2
2.0	SITE BACKGROUND	3
2.	1 Site History	3
2.2	2 Previous Investigations	3
2.	3 Monitoring Well Numbering	4
2.4	4 Groundwater Monitoring Locations	5
2.:	5 Chemicals of Potential Concern	5
3.0	GROUNDWATER SAMPLING	9
3.	1 Well Depth and Static Water Level Measurement	9
3.2	2 Low-Flow Purging	9
3.	3 Sample Collection	10
3.4	4 Decontamination Procedures	10
3.4	4.1 Sampling Equipment	10
3.4	4.2 Pump and Discharge Hose	10
3.:	5 Investigation-Derived Waste	11
3.	5 Sample Numbering, Handling, and Documentation	11
3.'	7 Quality Assurance/Quality Control Samples	12
4.0	ANALYTICAL METHODS	.12
5.0	DATA MANAGEMENT AND REVIEW	12
6.0	GROUNDWATER MONITORING RESULTS	13
6.	Base Boundary at Lacamas Creek	13
6.2	2 Landfill 4 / Demolition Area 1	14
7.0	RECENT TRENDS IN WATER QUALITY DATA	15
8.0	DATA QUALITY OBJECTIVES	15
8.	I Field Data Quality Assessment	16
8.	1.2 Quality Control Sample Assessment	16
8.	2 Laboratory Analysis Chemical Data Quality	17
ð	DEVELOPS TO Standard Procedures	1/
9.0	KEFEKENCED	17

LIST OF FIGURES

Figure 1. Camp Bonneville Site Location Map

- Figure 2. Investigation Areas Within Camp Bonneville Boundary
- Figure 3. Monitoring Well Locations at the Base Boundary at Lacamas Creek
- Figure 4. Monitoring Well Locations at Landfill 4 / Demolition Area 1

LIST OF TABLES

- Table 1. Chemicals Of Potential Concern
- Table 2. Analytes And Analytical Methods
- Table 3. Sample Analytical Methods, Containers, Preservation, And Holding Times
- Table 4. Constituents Detected in Groundwater Samples
- Table 5. Dissolved Metals and Dissolved Organic Carbon
- Table 6. Volatile and Semi-Volatile Organic Compounds
- Table 7. Field Parameters for Groundwater Samples
- Table 8. Well Number and Construction Details

LIST OF APPENDICES

Appendix A. Field Parameters and Laboratory Analysis Data Tables

- Appendix B. Laucks Testing Laboratories, Analytical Reports (Electronic files on enclosed CD disc)
 - CAB30.pdf
 - CAB31.pdf
 - CAB32.pdf
 - CAB33.pdf
 - CAB34.pdf
- Appendix C. Monitoring Well Boring Logs
- Appendix D. Previous Quarterly Groundwater Monitoring Report Tables by PBS Engineering and Environmental. Included on enclosed CD disk.

LIST OF ACRONYMS AND ABBREVIATIONS

Army	U.S. Army
bgs	Below Ground Surface
BRAC	Base Realignment and Closure
CHPPM	U.S. Army Center for Health Promotion and Preventative
	Medicine
COC	Chain-of-Custody
COPC	Chemical of Potential Concern
CWM	Clear Wide Mouth
DI	Deionized Water
DNR	State of Washington Department of Natural Resources
DOC	Dissolved Organic Carbon
DQO	Data Quality Objectives
EDF	Electronic Data Format
EO	Exploded Ordnance
EOD	Explosive Ordnance Disposal
EPA	U.S. Environmental Protection Agency
FBI	Federal Bureau of Investigation
FSP	Field Sampling Plan
HASP	Health and Safety Plan
HE	High Explosive
HMX	octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
IC	Ion chromatography
ICP	Inductively coupled plasma
IDW	Investigative Derived Waste
LCS	Laboratory Control Sample
LIMS	Laboratory Information Management System
LQMP	Laboratory Quality Management Plan
μg/L	micrograms per liter (approximately equal ppb)
mg/L	milligrams per liter (approximately equal ppm)
MDL	Method Detection Limit
MRL	Method Reporting Limit
MS/MSD	Matrix Spike / Matrix Spike Duplicate
MTCA	Washington Model Toxics Control Act (Chapter 173-340 WAC)
NG	nitroglycerine
OE	ordnance and explosives
PA	picric acid
PCBs	polychlorinated biphenyls
PETN	pentaerythitol tetranitrate
ppb	parts per billion
ppm	parts per million
PQL	practical quantitation limit for laboratory test instrument
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
RAU	Remedial Action Unit
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine (Cyclonite)
RI	Remedial Investigation

RPD	Relative Percent Difference
SAP	Sampling and Analysis Plan
SDS	Sample Data Sheets
SI	Site Investigation
SOW	Statement of Work
SVOC	Semivolatile Organic Compound
TBD	To Be Determined
TIC	Tentatively Identified Compound
TNT	2,4,6-trinitrotoluene
TOC	Total Organic Carbon
TPH	Total Petroleum Hydrocarbons
TSD	Treatment, Storage, and Disposal
TSS	Total Suspended Solids
USACE	United States Army Corps of Engineers
US	United States
USEPA	United States Environmental Protection Agency
UXO	Unexploded Ordnance
VOC	Volatile Organic Compound
WDOE	State of Washington Department of Ecology

1.0 INTRODUCTION

This report documents the results of groundwater sampling and analysis at two locations of monitoring well installations at Camp Bonneville. The sampling and analysis was conducted for the 2nd quarter of 2007. This work was performed by PBS Engineering and Environmental (PBS), Portland, Oregon, under contract to Michael Baker, Jr., Inc. (Baker). The work was performed at the Camp Bonneville Military Reservation (Camp Bonneville) northeast of Vancouver, Washington (Figure 1). Camp Bonneville is a former United States government military facility that was selected for closure under the Base Realignment and Closure (BRAC) authorization.

As part of the early transfer process for Camp Bonneville Military Reservation (CBMR), the U.S. Department of the Army (Army) and Clark County, Washington (Clark County), along with the Bonneville Conservation, Restoration, and Renewal Trust LLC (BCRRT), negotiated an Environmental Services Cooperative Agreement (ESCA). The groundwater monitoring program is a component of the remedial action services performed in support of the Conservation, Restoration and Renewal Program (CRRP) associated with the facility. The CRRP includes those activities necessary to obtain Notice(s) of Completion, Site Closeout(s), and CERCLA Warranty(ies) for reconveyance of the CBMR from the BCRRT to Clark County. These additional remedial actions address requirements contained in agreements between the BCRRT and the Washington State Department of Ecology (WDOE).

The groundwater monitoring work was performed in general accordance with the Sampling and Analysis Plan (SAP) dated October 31, 2006, the Health and Safety Plan (HASP) dated October 2006, and the Quality Assurance Project Plan (QAPP) dated November 3, 2006. Laboratory analytical services were provided by Laucks Testing Laboratories, Seattle, Washington, under contract to PBS.

1.1 Project Objectives

The overall objectives of site investigations at Camp Bonneville, which have been previously conducted as part of the U.S. Army BRAC process, have been to identify contaminated areas and determine the next appropriate steps toward restoration of those sites. This quarterly monitoring report describes the results of ongoing environmental monitoring of groundwater parameters at two areas at Camp Bonneville. Monitoring wells have been installed in these areas to monitor shallow and deeper groundwater to maximum depths of approximately 75 feet below the ground surface.

The sites that were monitored include one old landfill/demolition area (Landfill 4/Demo Area 1) and the Camp Bonneville base boundary at Lacamas Creek. Two other demolition areas (Demolition Areas 2 and 3) were previously monitored, but were deleted from the monitoring program per agreement with WDOE in 2006. Investigation activities included groundwater sampling at the old landfill and demolition area, and the area where Lacamas Creek exits the southwest side of the base. These investigations were conducted in general accordance with the SAP, with adjustments made in the field to accommodate site conditions. The analytical results obtained from groundwater samples collected at the various monitoring wells locations were compared with screening levels established for the site to determine if the groundwater potentially poses an unacceptable environmental risk. Cleanup levels established by WDOE under the Model Toxics Control Act (MTCA) have been used as screening criteria to evaluate the levels of contaminants detected at Camp Bonneville.

1.2 Scope of Work

PBS conducted a round of groundwater sampling at 19 existing monitoring wells for the 2nd Quarter 2007 sampling event (June 2007). Sampling for this quarter was performed from June 18 to 22, 2007. The wells were purged and sampled utilizing low-flow, minimal drawdown procedures described in this report and based on procedures described in detail in the SAP which referenced the USACE standard operating procedure, "Low-Flow Groundwater Purging and Sampling".

Previous sampling events through the 2nd quarter of 2006 sampled a total of 27 wells in the areas listed below, with their associated Remedial Action Unit (RAU) designations. The Lacamas Creek area contains four sets of paired shallow and deep wells (8 total wells) in a north-south alignment along the base boundary (Figure 3). Demolition Area 3 contains four shallow wells and one deep well located around the perimeter of a pond within a former blast pit. Demolition Area 2 has three wells located near the access road, a creek, and a pond. Landfill 4/Demo Area 1 has five shallow and three deep wells around the perimeter of the landfill, one deep well along North Fork Lacamas Creek downstream of the landfill, and two wells along the creek at the base of the drainage ravine (Figure 4).

- Landfill 4 / Open Burning/Demolition Area 1 (RAU 2C)
- Open Burning / Open Demolition Area 2 (RAU 2B)
- Open Burning / Open Demolition Area 3 (RAB 2B)
- Base Boundary at Lacamas Creek (Site-wide Groundwater)

Starting in the 3rd Quarter 2006 sampling event (September 2006), the monitoring wells at Demolition Area 2 and Demolition Area 3 were deleted from the sampling program. The WDOE authorized deletion of these monitoring wells on the basis of the previous quarters of sampling results showing no detections exceeding the MTCA cleanup levels for the contaminants of concern. The monitoring wells at Landfill 4/Demo Area 1 and the Base Boundary at Lacamas Creek, a total of 19 wells, were also sampled in the 4th Quarter 2006.

1.3 Report Organization

This report is organized into eight sections, with four appendices containing supporting information. A brief description of each section follows.

- Section 1 Introduction. An introduction to the project, a description of the work scope, and a review of the report organization is provided.
- Section 2 Site Background. A description of the facility and a summary of its history are provided. The groundwater investigation reports are referenced. The groundwater sampling locations discussed in this report are presented, along with the chemicals of potential concern in groundwater.
- Section 3 Groundwater Sampling. Descriptions of the field investigation, sampling techniques, and sample handling methods are provided.
- Section 4 Analytical Methods. The field and laboratory analytical testing methods are presented.
- Section 5 Data Management and Review. The data quality control procedures and Washington MTCA cleanup program information are presented.
- Section 6 Groundwater Monitoring Results. A description of sample collection activities performed at each site, along with a summary of the results from these activities, is provided. Contaminants detected at each site are identified and compared with screening levels.
- Section 7 Recent Trends in Groundwater Quality. Presents an analysis of the change in certain analytical results.

- Section 8 Data Quality Objectives. Chemical data quality and laboratory narratives of test procedures are discussed.
- Section 9 References. A list of documents used in preparation of this report is provided.
- Appendix A Field Parameters and Laboratory Analysis Data Tables. Summary tables of field and laboratory analysis data, including MTCA Cleanup Levels.
- Appendix B Laucks Testing Laboratories, Analytical Reports. Copies of the laboratory reports are provided on CD disk, organized by laboratory data package.
- Appendix C Monitoring Well Boring Logs. Copies of the boring logs for the groundwater monitoring wells are included.
- Appendix D Previous Quarterly Groundwater Monitoring Report Tables. Previous groundwater monitoring report tables by PBS are included on the enclosed CD disk.

2.0 SITE BACKGROUND

2.1 Site History

Camp Bonneville comprises approximately 3,820 acres and is located in southwestern Washington, approximately 10 miles northeast of Vancouver, Washington. The Department of the Army used Camp Bonneville for live fire of small arms, assault weapons, artillery, and field and air defense artillery between 1910 and 1995. Since 1947, Camp Bonneville has also provided training for a variety of military and nonmilitary units, including National Guard, Army Reserves, and U.S. Air Force, and federal, state, and local law enforcement agencies. Camp Bonneville includes approximately 820 acres of land leased from the State of Washington Department of Natural Resources (DNR). The Federal Bureau of Investigation (FBI) used one firing range on the site for training until late 2006. The Camp Bonneville site location is shown in Figure 1. The general areas of groundwater investigation are shown in Figure 2.

In July of 1995, Camp Bonneville was selected for closure under the 1995 Base Realignment and Closure (BRAC) process. The Camp Bonneville Draft Reuse Plan (Otak, September 1998; updated 2003) called for the majority of Camp Bonneville to be transferred to Clark County for the public benefit – education, law enforcement, and parks, with no financial gain to Clark County. The 840 acres currently leased from the Washington DNR would either be returned to the State, the lease renewed, or the property purchased and transferred to Clark County. Transfer of the site to The Trust for Public Lands, and subsequently to Clark County, began in 2006. The facility was transferred from the Army to Clark County and from the County to the Bonneville Conservation Restoration and Renewal Team (BCRRT) on October 3, 2006. BCRRT and Clark County entered into a Prospective Purchaser Consent Decree with the Washington Department of Ecology (WDOE) that requires investigating and remediating the site. Clark County intends to use the site as a Regional Park and Wildlife Refuge.

Through the years, several ordnance and explosive (OE) items have been found within Camp Bonneville's boundaries. Recent OE characterization, sampling, and removal efforts performed at Camp Bonneville confirmed the presence of OE at the site. Some of these OE items were determined to be unexploded ordnance (UXO).

2.2 Previous Investigations

During previous investigations (Shannon & Wilson, 1999), shallow monitoring wells were installed at Camp Bonneville at four sites: Landfill 2, Landfill 3, the Pesticide Mixing/Storage Building, and the Former Sewage Pond. Additional shallow and deep wells were installed at Landfill 4, Demolition Area 2, Demolition Area 3, and the Base Boundary at Lacamas Creek. The groundwater monitoring wells are located in areas of documented disposal of unexploded ordnance (UXO). However, the areas of the wells

were cleared of UXO prior to well installation. Groundwater sampling activities were conducted only in the immediate area of the wells, and did not occur in areas that have not been previously checked and cleared of UXO.

Groundwater sampling and analysis was previously conducted by consultants other than PBS on a quarterly schedule basis in 2001 and 2002 at the following sites within Camp Bonneville:

- Landfill 4 / Open Burning / Demolition Area 1
- Open Burning / Open Demolition Area 2
- Open Burning / Open Demolition Area 3
- Base Boundary at Lacamas Creek

Quarterly sampling from shallow and deep monitoring wells at Landfill 4 was conducted in July and October 2001, and January and April 2002. Previous chemical analysis of groundwater samples has included explosives, perchlorate, metals, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and fuel residues (gasoline and diesel range petroleum hydrocarbons).

Groundwater sampling was conducted by PBS, under contract to the U.S. Army BRAC Division, for the 4th Quarter 2003, 1st Quarter 2004, 2nd Quarter 2004, 3rd Quarter 2004, 4th Quarter 2004, 1st Quarter 2005, 2nd Quarter 2005, 3rd Quarter 2005, 4th Quarter 2005, 1st Quarter 2006, 2nd Quarter 2006, and 3rd Quarter 2006. A total of twenty-five monitoring wells were sampled during the 4th Quarter 2003 and 1st Quarter 2004 events at Landfill 4/Demolition Area 1, Demolition Area 2, Demolition Area 3, and the Base Boundary at Lacamas Creek. Two additional monitoring wells near Landfill 4/Demolition Area 1 were installed in May 2004, and added to the sampling set for subsequent quarterly monitoring events (starting in the 2nd Quarter 2004). Laboratory analyses included TPH-Gx (gasoline), TPH-Dx (diesel), VOCs, SVOCs, explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, priority pollutant metals (total and dissolved), TOC, DOC, TSS, alkalinity, and inorganic ions.

In May 2004, PBS supervised installation of two additional groundwater monitoring wells along North Fork Lacamas Creek below Landfill 4 (PBS, 2004b). The monitoring well completed in bedrock (well number L4-MW17) was located at the west side of North Fork Lacamas Creek, at a point where the creek exits the ravine below Landfill 4. The monitoring well completed in alluvium (well number L4-MW18) was located at the east side of North Fork Lacamas Creek near the bottom of the ravine and above the junction of an east-trending tributary stream to Lacamas Creek.

PBS's final Groundwater Sampling and Analysis Reports, completed under the Army BRAC contract and listed in the References section of this report, present the results of each of the quarterly sampling events from the 4th Quarter 2003 through the 3rd Quarter 2006 sampling and analysis events. The last sampling event performed under the Army BRAC contract was for the 3rd Quarter 2006. PBS began groundwater sampling and analysis under contract to Michael Baker Jr., Inc. starting with the 4th quarter 2006. The results of the 4th Quarter 2006 sampling and analyses were presented in PBS's draft report, "Groundwater Sampling and Analysis Report, 4th Quarter 2006, Camp Bonneville, Vancouver, Washington", dated March 28, 2007 (PBS, 2007b). The results of the 1st Quarter 2007 sampling and analyses were presented in PBS's draft report, "Groundwater Sampling and Analysis Report, 1st Quarter 2007, Camp Bonneville, Vancouver, Washington", dated June 1, 2007 (PBS, 2007c).

2.3 Monitoring Well Numbering

Different numbers have been assigned over time to monitoring wells at the Base Boundary at Lacamas Creek, Demolition Area 2, and Demolition Area 3. Well numbers used by PBS in monitoring reports for

the 4th Quarter 2003, the 1st Quarter 2004, and the 2nd Quarter 2004 were based on proposed well locations and well identifiers, as presented in the PBS-Army BRAC Contract documents. The actual well numbers were assigned by the U.S. Army Center for Health Promotion and Preventative Medicine (CHPPM) when the wells were installed. The CHPPM well identifiers are the numbers on the well caps. Remedial Investigation (RI) reports previous to PBS' reports have used the well numbers assigned by CHPPM. Washington State Department of Ecology well tag numbers are consistent across both numbering systems.

Table 8 shows the monitoring well numbers used by PBS (per the PBS-Army BRAC Contract document), Washington State Department of Ecology well tag numbers, well locations, total depth, screened interval, and CHPPM well identification numbers used in former RI reports for Camp Bonneville.

The laboratory analysis results (Appendix A) included in this monitoring report for the 2nd Quarter 2007 are referenced to the monitoring well numbers assigned by CHPPM. The well numbers used in the PBS quarterly reports are cross-referenced to the CHPPM numbers and the WDOE well tag numbers in Table 8.

2.4 Groundwater Monitoring Locations

For the 2^{nd} Quarter 2007, PBS conducted groundwater sampling and analysis for monitoring wells at the Landfill 4 area and the Base Boundary at Lacamas Creek. The locations of monitoring wells at these sites are shown on Figure 3 (Base Boundary at Lacamas Creek) and Figure 4 (Landfill 4/Demo Area 1). The monitoring wells at the sites are listed below (S = shallow well; D = deep well) according to the CHPPM numbers :

- Base Boundary at Lacamas Creek
 - Paired wells: LC-MW01S and LC-MW01D
 - Paired wells: LC-MW02S and LC-MW02D
 - Paired wells: LC-MW03S and LC-MW03D
 - Paired wells: LC-MW04S and LC-MW04D
- Landfill 4 / Demo Area 1
 - Paired wells: L4-MW01A (shallow) and L4-MW01B (deep)
 - Paired wells: L4-MW02A (shallow) and L4-MW02B (deep)
 - Paired wells: L4-MW03A (shallow) and L4-MW03B (deep)
 - L4-MW04A (shallow)
 - L4-MW05A (shallow)
 - L4-MW07B (deep)
 - L4-MW17 (in bedrock)
 - L4-MW18 (in alluvium)

2.5 Chemicals of Potential Concern

Previous site studies have determined that the upgradient areas of Camp Bonneville may contain exploded ordnance (EO) and unexploded ordnance (UXO). The historical uses of the upgradient areas include firing ranges, a landfill, open burning locations, open detonation locations, and general maintenance facilities. Chemicals of potential concern in groundwater include artillery propellants, high explosives residue, missile/rocket propellants, petroleum hydrocarbons, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), and metals.

A summary of chemicals of potential concern (COPC) is presented in Table 1. Specific analytes and laboratory analysis methods are presented in Table 2. Sample container types, preservation techniques, and holding times for the chemical analyses are presented in Table 3.

Sampling Areas	Munition Compound Classes	High Explosives and Organic Compounds	Artillery Propellants	Other
Landfill 4 Demolition Areas Base Boundary	 Artillery Propellants HE Missile/ Rocket Propellants 	 TNT RDX PETN PA HMX NG 	 Black Powder (nitrate) Plasticizers Stabilizers AP 	 Priority Pollutant Metals TPH SVOCs VOCs

TABLE 1. CHEMICALS OF POTENTIAL CONCERN

Notes:

AP = ammonium perchlorate

Black powder is a mixture of potassium or sodium nitrate, charcoal, and sulfur.

Plasticizers = dibutylphthalate; diethylphthalate

Stabilizers = diphenylamine; N-nitrosodiphenylamine

HE = high explosives; 2,4 DNT, 2,6 DNT

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

NG = nitroglycerine

PA = picric acid

PETN = pentaerythritol tetranitrate

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine (Cyclonite)

TNT = 2,4,6-trinitrotoluene

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds

SVOCs = semivolatile organic compounds

PARAMETER	METHOD		
Total Priority Pollutant Metals	SW-846 6020/7000 series		
Total Priority Pollutant Metals (field filtered)	SW-846 6020/7000 series		
VOCs plus TICs	SW-846 8260B		
SVOCs plus TICs	SW-846 8270C		
TPH Gasoline Range (TPH-gasoline)	NWTPH-Gx		
TPH Diesel Range (TPH-diesel)	NWTPH-Dx		
Total Suspended Solids	EPA Method 160.2		
Carbonate and Bicarbonate	SM 2320		
Inorganic Ions (Sulfate, Nitrite + Nitrate, Chloride)	EPA Method 300.0		
Total Organic Carbon	EPA Method 415.1		
Dissolved Organic Carbon (field filtered)	EPA Method 415.1		
ORDNANCE COMPOUNDS			
Explosive Residues (HMX, RDX)	8330 modified		
PETN/Picric Acid/Nitroglycerine	8330 modified		
Ammonium Perchlorate	EPA Method 314		

TABLE 2. ANALYTES AND ANALYTICAL METHODS

Notes:

NWTPH = Northwest Total Petroleum Hydrocarbon

PETN = Pentaerythritol tetranitrate

SVOC = Semivolatile organic compound

TPH = Total petroleum hydrocarbon

TICs = Tentatively identified compounds

TABLE 3. SAMPLE ANALYTICAL METHODS, CONTAINERS, PRESERVATION, AND
HOLDING TIMES

MEASUREMENT	EPA METHOD	MINIMUM SAMPLE VOLUME	CONTAINER	PRESERVATIVE cool to 4°C, plus	HOLDING TIME
Mercury (total & dissolved)	7470A cold vapor AA	100 mls	Included with 1 L. HDPE container	HNO ₃ to pH <2 Filtered for dissolved	28 days
Metals (total and dissolved)	6020/7000	200 mls	1 L. HDPE	HNO ₃ to pH <2 Filtered for dissolved	6 months
Total Suspended Solids	160.2	500 mls	20 ml HDPE	No additional	14 days
VOCs plus TICs	8260B	(2) 40 mls	40 ml VOA vial	HCl pH<2	14 days
SVOCs plus TICs	8270B	1000 mls	1L. AG	No additional	7 days to extraction 40 days to analysis
TPH Gasoline Range	NWTPH- Gx	(2) 40 mls	40 ml VOA vial	HCl pH<2	14 days
TPH Diesel Range	NWTPH- Dx	1000 mls	1 L. AG	HCl pH<2	14 days
Total Organic Carbon	415.1	25 mls	1 L. AG	H ₃ PO ₄ pH<2	28 days
Dissolved Organic Carbon	415.1	25 mls	1 L. AG	H ₃ PO ₄ pH<2 -Filtered	28 days
Carbonate & Bicarbonate	SM 2320	100 mls	20 ml HDPE	No additional	14 days
Inorganic Ions	300.0	50 mls	20 ml HDPE	No additional	28 days
Ammonium Perchlorate	314	500 mls	500 ml HPDE	No additional	14 days
Explosives	8330 Modified HPCL	500 mls	1 L. AG	No additional	7 days to extraction, 40 days after extraction

Notes:

HDPE = High Density Polyethylene Bottles with Teflon lined screw cap

AG = Amber glass bottle with Teflon lined screw cap

CWM = Clear Wide Mouth with Teflon lined screw cap

VOA vial = vial with a screw cap with a hole in the center sealed with a TFE-faced silicone septum ml = milliliters

3.0 GROUNDWATER SAMPLING

PBS conducted groundwater sampling for the 2nd Quarter 2007 event at 19 existing monitoring wells at two locations within Camp Bonneville. Monitoring wells were sampled during the period of June 18 to 22, 2007. The monitoring wells were sampled in accordance with the procedures established in the Draft Groundwater Sampling and Analysis Plan (SAP), dated October 31, 2006, prepared by PBS and Michael Baker Jr., and submitted to WDOE. Health and safety procedures followed during site activities were in compliance with the procedures established in the Site Health and Safety Plan (HASP) prepared by Michael Baker Jr. and approved by WDOE.

3.1 Well Depth and Static Water Level Measurement

The static groundwater level was measured in each monitoring well using an electronic water level indicator. Water level measurements for all of the monitoring wells were obtained on June 18, 2007. In addition, the water level in each monitoring well was measured immediately before collection of groundwater samples. Prior to sampling at each of the sampling areas, well caps for all monitoring wells were removed and refitted loosely so that the water level would equilibrate with atmospheric pressure by the time of purging and sampling. During groundwater sample collection, the water level in the well was monitored to determine drawdown conditions. Groundwater level measurements are presented in Table 7.

Water level depths were measured to the reference mark on the rim of the PVC monitoring well casings. The measurement was recorded in the field logbook to a precision of 0.01 foot.

3.2 Low-Flow Purging

A low-flow, minimal drawdown technique was used for groundwater purging and sampling. This technique is described below and in the SAP. Low-flow sampling minimizes disturbance to the aquifer and is designed to ensure that samples collected from the wells are representative of groundwater. The low pumping rate induces laminar flow in the immediate vicinity of the sampling pump intake, thus drawing groundwater directly from the aquifer, horizontally through the well screen, and into the sampling device.

Purging and sampling were performed with a Grundfos Redi-Flo 1.75-inch-diameter, stainless steel, electric submersible impeller pump, suspended in the well with a stainless steel safety cable. A polyethylene discharge hose dedicated to the specific monitoring well was attached to the pump and extended to the ground surface for sample collection. Each monitoring well was purged immediately before sample collection so that the sample represented fresh formation water rather than stagnant water that had accumulated in the well casing. Well purging equipment was positioned so that any potential volatile organic sources, such as vehicles, gasoline-driven generators, and fuel tanks, were downwind of the well. This reduced the potential for contamination caused by entrainment of volatile air contaminants in the sample.

The pump intake was positioned at a level adjacent to or slightly above the midpoint of the saturated screened interval. Care was taken to gently insert the pump to minimize disturbance of any sediment that may have accumulated in the monitoring well. Purging was accomplished by pumping groundwater from the monitoring well at a rate of approximately 0.2 to 0.5 liters per minute. Groundwater was purged into a 5-gallon container and a YSI Model 556 water quality meter installed in a flow-through cell was used to measure specific conductance, temperature, pH, oxidation-reduction potential, and dissolved oxygen during purging. Purged water was stored in a 5-gallon container with sealable lid at each monitoring well

site. Purged water was later transferred to 55-gallon drums with sealable lids located at an onsite central drum storage area.

Water quality measurements made during purging were recorded in a field notebook at intervals ranging from 1 to 5 minutes. Purging was stopped, and groundwater samples collected, when readings stabilized over at least three consecutive measurements and a minimum of 3 gallons were pumped from the well. Stabilization was considered reached when three consecutive readings were within ± 0.2 for pH, $\pm 1^{\circ}$ C for temperature, and ± 10 percent for specific conductance.

3.3 Sample Collection

Groundwater samples were collected after water quality parameters stabilized during purging. Samples that did not require filtering were collected into the sample container directly from the end of the dedicated discharge hose. Groundwater samples requiring preservatives were collected in sample bottles supplied by the contract laboratory and contained the appropriate amounts of preservative solution. Sample container types, preservation techniques, and holding times for the chemical analyses are presented in Table 3.

Samples collected for dissolved metals analysis were field-filtered. An in-line, nitrocellulose, 0.45-micron cartridge filter was attached to the sample discharge line. Groundwater was rinsed through the filter for approximately 1 minute prior to filling the sample bottle. The sample bottle was then filled directly from the discharge outlet on the filter. Sample containers for VOCs and TPH were filled completely to the top of the container and the container cap screwed on to prevent any air remaining in the headspace of the container.

3.4 Decontamination Procedures

The objective of decontamination is to prevent cross-contamination of samples and wells by sampling equipment. Sampling equipment includes all devices that are used to collect or contain a sample prior to placement into a laboratory-provided sample container. Before initial use, sampling equipment that may contribute to the contamination of a sample must be thoroughly decontaminated, unless specific documentation exists to show that the sampling equipment has already been decontaminated. Pre-cleaned equipment and sample jars in factory-sealed containers do not require decontamination.

3.4.1 Sampling Equipment

Non-dedicated sampling equipment (water level meter) was decontaminated between sample locations by rinsing with organic-free deionized water. Decontaminated equipment was placed in clean pails to prevent recontamination. Decontamination wash water was placed in 55-gallon drums for later disposal in accordance with the SAP.

Water quality parameter meter sensors were thoroughly rinsed with deionized water. These sensors do not typically contact sample water or enter wells; therefore, decontamination is primarily for protecting the meter and for obtaining accurate measurements.

3.4.2 Pump and Discharge Hose

The sampling submersible pump was decontaminated as follows: 1) The pump and discharge hose/power cable assembly was placed into a 4-inch PVC tube that is 3 feet long and capped at the bottom. The tube was filled with a solution of potable water and liquinox (phosphate-free detergent). The pump was then

activated for a sufficient time to allow approximately two gallons of soapy water to pass through the entire discharge hose. 2) The pump intake was then placed into a second PVC tube. Approximately two gallons of deionized water was added to the PVC tube and pumped through the discharge hose. 3) The pump was stopped and removed from the PVC tube, and the water in the tube discarded into the 55-gallon drums. The pump body was then placed into a plastic bag and inserted into the holder on the pump reel until used at the next well.

A separate piece of new pump discharge polyethylene tubing was dedicated to each well. After use and decontamination procedures, the dedicated piece of tubing was stored in a clean, labeled plastic bag. The tubing was preserved in this manner throughout all of the groundwater monitoring rounds.

Prior to sampling groundwater during the 2nd quarter 2007 event, the sampling pump was cleaned and thoroughly rinsed with deionized water. The internal lubrication water in the Grundfos pump was also drained and replaced prior to obtaining samples. The internal pump water was also drained and replaced after sampling the Landfill 4 wells, prior to sampling the Base Boundary wells.

3.5 Investigation-Derived Waste

Investigation-derived waste (IDW) generated during well purging and sampling includes groundwater and decontamination rinse water which has the potential to be contaminated with low levels of COPC. The purge water and decontamination rinse water IDW was examined for odors and visual evidence of contamination and placed in 55-gallon drums on site pending laboratory results of groundwater samples. Solid IDW (filters, plastic, and paper) was disposed in trash bins on site.

3.6 Sample Numbering, Handling, and Documentation

Each sample collected was assigned a unique sample identification number, referenced to the monitoring well location. As an example, 15LC-MW01SW represents a sample taken during the fifteenth quarterly sampling event (15) performed by PBS (samples collected in June 2007) from monitoring well LC-MW01S at Lacamas Creek, which was a groundwater sample (W). The QC field duplicate sample and field/rinsate blank sample were identified with fictitious location numbers related to the primary sample number, and recorded in the field logbook. No indication that a sample is a duplicate was provided on the sample label or chain-of-custody form. The sample to be used for matrix spike/matrix spike duplicate (MS/MSD) was specified in the comments section of the chain-of-custody. Field notes pertaining to sample collection were recorded in a permanently bound field logbook with waterproof paper.

Groundwater samples were collected in the appropriate sample containers and placed in the shipping cooler immediately upon sample collection. Each bottle was individually wrapped with bubble wrap. Sample jars were packaged with additional bubble wrap to minimize shifting of samples and prevent breakage of samples during shipment. Ice packaged in plastic ziplock storage bags was placed in each cooler to maintain the temperature in the shipping containers at 4° C +/- 2° C. Along with samples and ice, a temperature blank provided by the laboratory was placed in each cooler. A chain-of-custody form was filled out for each cooler shipped, placed in a ziplock bag, and placed on top of the sample bottles inside the cooler. Field sampling personnel affixed two signed and dated custody seals to each cooler. The samples collected each day were shipped by Federal Express (FedEx) from Portland, Oregon, to Laucks Testing Laboratories in Seattle, Washington, by overnight delivery service.

Sample labels on the sample containers included the following information:

- PBS project number
- Sample identification number

- Date and time of sampling
- Initials of sampling personnel
- Analyses to be performed
- Type of preservative added

3.7 Quality Assurance/Quality Control Samples

Duplicate samples were collected at a frequency of 1 per 10 monitoring well samples. Matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a frequency of 1 per 20 monitoring well samples. Trip blanks were submitted with shipments containing groundwater samples for VOC analyses. One field blank/rinsate sample was collected during sampling of the groundwater monitoring wells. The field blank/rinsate sample was collected by pumping deionized water through the sampling equipment and collecting the water in prepared containers.

One blank sample of the deionized (DI) water was collected for analysis of total and dissolved metals as QA/QC check on the decontamination rinse water. This sample was collected directly from the 5-gallon DI water container on June 20, 2007.

4.0 ANALYTICAL METHODS

Field measurements were obtained for pH, specific conductance, temperature, oxidation-reduction potential, and dissolved oxygen in groundwater samples using a YSI Model 556 water quality meter. Water color and turbidity were noted visually. Analytical data were obtained by Laucks Testing Laboratories using standard, documented procedures to provide defensible data on contaminant characterization and contamination levels relative to appropriate regulatory and risk-based criteria. Specific laboratory analysis methods are presented in Table 2.

The specific analytical methodologies, along with the associated project-specified method detection limits (MDL), are presented in the QAPP. The MDLs are based on minimum detection levels that can be expected to be achieved reliably by the project analytical laboratories using the methodologies specified. As discussed in the QAPP, some of the analytical methodologies cannot achieve risk-based or cleanup goals for all analytes. Therefore, the analytical methodologies were selected to attain detection or quantitation limits that approach or achieve the risk-based goals for chemicals most likely to be present, with a secondary emphasis on approaching or achieving these goals for the maximum number of other possible contaminants. Analytical results falling between the method detection limit and the project-specified reporting limit have been reported and flagged as estimated values (J-flagged) on laboratory analysis data tables (Appendix A) and the laboratory report sheets (Appendix B).

5.0 DATA MANAGEMENT AND REVIEW

The laboratory data quality was evaluated before use according to the procedures described in the QAPP. The analytical results for total priority pollutant metals, SVOCs, TPH-Gx (gasoline), TPH-Dx (diesel), explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, TOC, DOC, TSS, alkalinity, and inorganic ions are presented in Table 4. Analytical results for dissolved metals from field filtered groundwater samples are presented in Table 5. Specific VOCs and SVOCs detected above the laboratory MDLs are presented in Table 6.

The analytical tables include the State of Washington MTCA levels for comparison with regulatory and risk-based criteria. MTCA Method A cleanup level values for groundwater were obtained from the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC) (WDOE,

2001). These cleanup levels are not site specific and are applicable to sites undergoing routine cleanup actions as defined in MTCA. MTCA Method B risk-based concentrations for groundwater were obtained from the MTCA Method B levels presented in the Volume 1, Multi-Sites Investigation Report for Camp Bonneville (Shannon & Wilson, 1999). The MTCA Method B values are based on a Risk Calculations (CLARC) II database (based on a 10⁻⁶ cancer risk or a hazard quotient of 1) (WDOE 1996; WDOE 2001) and are derived from formula values obtained from the February 1996 CLARC II Update (WDOE, 1996).

6.0 GROUNDWATER MONITORING RESULTS

6.1 Base Boundary at Lacamas Creek

Groundwater samples were collected from the 4 monitoring well pairs located at the Base Boundary at Lacamas Creek (Figure 3) on June 21 and 22, 2007. Paired shallow (S) and deep (D) monitoring wells consisted of sample numbers: 15LCMW01SW and 15LCMW01DW; 15LCMW02SW and 15LCMW02DW; 15LCMW03SW and 15LCMW03DW; and 15LCMW04SW and 15LCMW04DW. A field duplicate sample (labeled 15LCMW415W) was collected from monitoring well LC-MW03D on June 22, 2007. A MS/MSD field duplicate sample (labeled 15LCMW01DWMS/MSD) was collected from monitoring well LC-MW01D on June 21, 2007.

Water level depths in the wells ranged from 5.21 to 6.82 feet below the top of the PVC well casings. These represent water elevations in the wells ranging from 285.04 to 284.37 feet above mean sea level.

All samples were analyzed for TPH-Gx (gasoline), TPH-Dx (diesel), VOCs, SVOCs, explosive compounds (including HMX, RDX, NG, and PETN), picric acid, perchlorate, priority pollutant metals (total and dissolved), TOC, DOC, TSS, alkalinity, and inorganic ions. The laboratory analytical results are presented in Tables 4, 5, and 6. Groundwater field parameters (pH, temperature, conductivity, visual turbidity, and color) recorded at the time of sampling are presented in Table 7.

Groundwater from the Base Boundary monitoring wells had no detection of VOCs or SVOCs.

No diesel, oil, or gasoline range petroleum hydrocarbons were detected in any of the Base Boundary groundwater samples. Explosive compounds, nitroglycerine (NG), pentaerythitol tetranitrate (PETN), picric acid, and perchlorate were not detected in any of the groundwater samples.

TOC and DOC concentrations were below laboratory detection limit of 1.0 mg/L in all monitoring well groundwater samples. TSS was found above the laboratory detection limit of 2 mg/L in one of the eight monitoring wells; LCMW04S at 3 mg/L. Alkalinity in the groundwater samples ranged from 38 to 49 mg/L. Inorganic ions consisting of chloride (1.3 to 2.7 mg/L), sulfate (1.0 to 1.7 mg/L), and nitrate (0.23 to 1.1 mg/L) were detected slightly above laboratory MDLs in the monitoring wells.

Antimony, arsenic, cadmium, chromium, nickel, selenium, and zinc all were detected in one or more of the unfiltered (total metals) groundwater samples from the Lacamas Creek – Base Boundary monitoring wells (Table 4). Antimony, arsenic, cadmium, chromium, nickel, and zinc all were detected in one or more of the filtered (dissolved metals) groundwater samples from the Lacamas Creek – Base Boundary monitoring wells (Table 5). No total or dissolved metals were detected at concentrations above MTCA Method A regulatory screening levels in samples from the Base Boundary monitoring wells.

Laboratory analysis results for duplicate sample 15LCMW415W were consistent with the concentrations in the original sample 15LCMW03DW. Laboratory analysis results for MS/MSD duplicate sample

MS/MSD were consistent with the concentrations in the original sample 15LCMW01DW. Differences in the sample results are discussed in Section 8.1.2 of this report.

6.2 Landfill 4 / Demolition Area 1

Groundwater samples were collected from monitoring wells at Landfill 4 / Demolition Area 1 (Figure 4) on June 18, 19, and 20, 2007. Sample shallow (A) and deep (B) well pair numbers consisted of: 15L4MW01AW and 15L4MW01BW; 15L4MW02AW and 15L4MW02BW; 15L4MW03AW and 15L4MW03BW. Samples from individual monitoring wells consisted of sample numbers: 15L4MW04AW, 15L4MW05AW, 15L4MW07BW, 15L4MW17W, and 15L4MW18W. A field duplicate sample (labeled 15L4MW425W) was collected from monitoring well L4-MW02B on June 19, 2007.

Water level depths in the wells around the perimeter of the landfill ranged from 13.42 to 31.22 feet below the top of the PVC well casings. These represent water elevations in the wells ranging from 516.18 to 487.24 feet above mean sea level. The water level in the monitoring well located downstream of the landfill (L4-MW07B) was 39.91 feet below the top of the PVC well casing; equaling elevation 440.51 feet above mean sea level. Monitoring wells along North Fork Lacamas Creek at the base of the stream ravine, downstream of Landfill 4, had water levels below top of PVC casing of 10.69 feet in L4-MW17 and 11.78 feet in L4-MW18; equaling 350.79 feet and 351.06 feet above mean sea level, respectively.

All samples were analyzed for VOCs, explosive compounds (including HMX, RDX, NG, and PETN), and perchlorate. The laboratory analytical results are presented in Tables 4, 5, and 6. Groundwater field parameters (pH, temperature, conductivity, visual turbidity, and color) recorded at the time of sampling are presented in Table 7.

PETN and NG were not detected in any of the groundwater samples from shallow or deep monitoring wells. No explosive compounds (HMX and RDX) were detected in monitoring wells L4-MW01A, L4-MW01B, L4-MW07B, L4-MW17, and L4-MW18. HMX was detected in paired monitoring wells L4-MW02A ($3.2 \mu g/L$) and L4-MW02B ($3.9 \mu g/L$); other wells did not have detectable HMX. RDX was detected in monitoring wells L4-MW02A ($20 \mu g/L$), L4-MW02B ($78 \mu g/L$, estimated), L4-MW03A ($9.7 \mu g/L$), L4-MW03B ($3.2 \mu g/L$), L4-MW04A ($1.8 \mu g/L$), and L4-MW05A ($2.5 \mu g/L$).; other wells did not have detectable RDX.

Perchlorate was detected in groundwater samples from monitoring wells L4-MW01A (1.9 μ g/L), L4-MW02A (170 μ g/L), L4-MW02B (290 μ g/L), L4-MW03A (94 μ g/L), L4-MW03B (44 μ g/L), L4-MW04A (40 μ g/L), L4-MW05A (39 μ g/L), L4-MW07B (3.0 μ g/L), and L4-MW17 (1.7 μ g/L). No perchlorate was found above the laboratory detection limit of 1 μ g/L in groundwater from monitoring wells L4-MW01B and L4-MW18. The highest levels of HMX, RDX, and perchlorate were found in the groundwater sample from the paired monitoring well L4-MW02B.

Groundwater from two of the monitoring wells contained detectable VOCs: L4-MW02B contained acetone (3.2 μ /L), 2-Butanone (2.0 μ /L), 1,1-Dichloroethane (33 μ g/L), 1,1-Dichloroethane (17 μ g/L), Dichlorodifluoromethane (80 μ g/L), Tetrachloroethane (0.65 μ g/L, estimated), 1,1,1-Trichloroethane (51 μ g/L), and 1,1,2,2,- Tetrachloroethane (0.65 μ /L); L4-MW05A contained Tetrachloroethane (0.48 μ g/L, estimated) and 1,1,2,2,- Tetrachloroethane (0.48 μ /L). No detected VOCs exceeded the MTCA Method A regulatory screening levels.

Total and dissolved metals were not analyzed for groundwater samples from the Landfill 4 / Demolition Area 1 monitoring wells during the 2^{nd} quarter 2007.

Laboratory analysis results for duplicate sample 15L4MW425W were consistent with the concentrations in the original sample 15L4MW02BW. Differences in the sample results are discussed in Section 8.1.2 of this report.

7.0 RECENT TRENDS IN WATER QUALITY DATA

The laboratory results for the groundwater parameters were compared for the four previous quarterly sampling events and the 2^{nd} Quarter 2007 event. These sampling quarters covered sampling periods of September 2006, December 2006, March 2007, and June 2007, and encompass the range of seasonal climatic (rainfall and temperature) and groundwater level conditions at the monitoring well sites. Groundwater parameter data which show significant (at least one order of magnitude) difference over these sampling events are listed below.

Metals; Lacamas Creek/Boundary (metals are not included in the Landfill 4/Demolition Area 1 sampling)

- All of the metal concentrations have been relatively stable during the last five quarters of sampling.
- Fluctuations of chromium, copper, nickel, and zinc concentrations were observed in about half of the total metals samples (LCMW01SW, LCMW01DW, LC-MW-02D, LC-MW-04SW, and LC-MW-04DW).

Petroleum Hydrocarbons

• Diesel range petroleum hydrocarbons were detected in the Lacamas Creek monitoring well LCMW02DW at 0.15 mg/L in January 2006, but have not been detected during subsequent sampling events.

Perchlorate

- Perchlorate decreased in Landfill 4/DemoArea 1 wells L4MW01A, L4MW02B and L4MW07B, and slightly decreased in wells L4MW03A, L4MW03B, L4MW04A, and L4MW05A.
- Perchlorate slightly increased in Landfill 4/Demolition Area 1 wells L4MW02A, L4MW04A, and L4MW05A.
- Perchlorate concentrations are relatively consistent with the exception of wells L4MW01A and L4MW02B which display a pattern of significant variation.
- The 1.7 µg/L Perchlorate detection in L4MW017 deviates from historic non-detections and will be resampled prior to the 3rd Quarter 2007 Sampling Event to evaluate for potentially non-representive sample collection/cross contamination sources for this deviation.

8.0 DATA QUALITY OBJECTIVES

The overall data quality objective is to provide data of known and sufficient quality to evaluate the physical extent and concentration ranges of chemicals of potential concern from analysis of groundwater samples, and to assure compliance with environmental and health-related agencies. Data quality objectives for laboratory analysis are presented in the QAPP. Laboratory analytical data were evaluated with respect to quality assurance objectives for precision, accuracy, representativeness, comparability, and completeness parameters. The project specifications were met for all of these analytes, indicating that the sampling and analysis procedures were reproducible. The laboratory report narratives (Laucks Testing Laboratories data set CAB29) state that all quality control parameters that affect sample analysis were met.

8.1 Field Data Quality Assessment

There are no specific data quality objectives for the measurement of field parameters, such as temperature, pH, conductivity, and turbidity. Specific conductance, temperature, total dissolved solids, and pH were measured during purging. Turbidity and water color were visually observed. Stabilization for groundwater sampling was reached when three successive readings were within ± 0.2 for pH, $\pm 1^{\circ}$ C for temperature, and ± 10 percent for specific conductance.

The criteria for field parameter measurements described in the SAP were met. Field parameter readings for groundwater samples collected from June 18 - 22, 2007 were measured using a calibrated YSI Model 556 water quality meter installed in a flow-through cell, which also allowed measurement of oxidation-reduction potential and dissolved oxygen.

8.1.2 Quality Control Sample Assessment

A field equipment rinsate blank water sample (labeled 15LCMW420W) was collected on June 20, 2007. The rinsate sample consisted of deionized water run through the decontaminated pump and a new section of tubing. The rinsate sample was analyzed for the full suite of analytes described in this report.

The deionized water field equipment rinsate sample collected on June 20, 2007 (sample 15LCMW420W) had a detection of acetone (2.4 μ /L). The acetone detection is most likely due to a laboratory equipment contaminant. The unfiltered deionized water field rinsate sample contained detectable low levels of antimony (0.26 μ g/L), cadmium (0.143 μ g/L, estimated), chromium (0.991 μ g/L, estimated), and nickel (0.216 μ g/L, estimated). The filtered deionized water field rinsate sample contained detectable low levels of cadmium (0.388 μ g/L, estimated), chromium (0.835 μ g/L, estimated), and nickel (1.13 μ g/L, estimated). Compared to the results for the 1st Quarter 2007, the field rinsate sample total metals results for the 2nd Quarter 2007 are slightly higher for antimony, cadmium, chromium, and zinc. The dissolved metals results are slightly higher for cadmium, mercury, and nickel.

A sample of deionized water (15LCMW430W) was collected on June 20, 2007, directly from the supply source without passing it through the pump and hose equipment. This blank water sample was used to evaluate the levels of metals in the deionized water source. The unfiltered deionized water blank sample contained detectable low levels of cadmium (0.372 μ g/L, estimated), chromium (0.456 μ g/L, estimated), and nickel (0.735 μ g/L, estimated). The filtered deionized water blank sample contained detectable low levels of cadmium (0.585 μ g/L, estimated), nickel (0.138 μ g/L, estimated), and zinc (1.85 μ g/L, estimated).

Trip Blanks 1 and 2 that were packed with the samples during the 2nd Quarter 2007 sampling event had no laboratory detections of VOCs. Trip Blanks 3 and 4 had laboratory detections of acetone. Trip Blank 5 had a laboratory detection of methylene chloride. These trip blanks accompanied the VOC samples consolidated into one cooler and the coolers containing the remaining sample containers shipped to the laboratory.

One duplicate sample was collected from each of the study areas. The duplicate samples were analyzed for the same constituents as the source sample. Relative percent differences (RPD) were calculated for each duplicate and source sample where both results were detected above laboratory detection levels. Laboratory results for the duplicate sample 15LCMW415W (Lacamas Creek Base Boundary area) were mutually detected with the source sample 15LCMW03DW for total and dissolved metals and alkalinity. The resultant RPD values are presented on Tables 4 and 5. The total metals RPD values ranged from 1% to 3% for 3 analytes. None of the RPD values exceeded the generally accepted RPD goal of 50%.The

dissolved metals RPD values ranged form 5% to 52% for 3 analytes. Only one result for dissolved metals (chromium) exceeded the 50% RPD goal. The alkalinity RPD was 0%.

Duplicate sample 15L4MW425W (Landfill 4/Demolition Area 1) and the source sample, 15L4MW02BW, had mutually detected values for RDX, perchlorate and 8 VOCs. The RDX and perchlorate RPDs are 29% and 29%, respectively (Table 4). The RPD values for VOCs ranged from 2% to 15% (Table 6). The RPD values for these samples meet the RPD goal of 50%.

8.2 Laboratory Analysis Chemical Data Quality

The analytical data quality evaluations performed by Laucks Testing Laboratories are presented in Appendix B with the analysis summary reports for the specific tests. Case narratives describing sample receipt, identification, and general comments by laboratory personnel are included in Appendix B preceding the copies of the chain-of-custody forms.

No sample analytical laboratory results were rejected. The case narratives and analysis summary reports indicate that most analytical results are acceptable for use without qualification. Some individual sample results were qualified as estimated values that were low-level detections below the laboratory instrument practical quantification limits (PQL), and flagged with "J" on the laboratory summary reports.

MS/MSD duplicate analyses were performed on sample 15LCMW01DW. All recoveries and relative percentage differences were within the acceptance levels.

All samples were received within the holding times for transport from the collection site to the laboratory. Exceptions to the collection and analysis criteria are listed below and noted in the laboratory case narrative documentation in Appendix B.

- Air bubbles of less than ¹/₄-inch were present in several of the vials for VOCs for these samples upon receipt at the laboratory: 15L4MW17W, 15L4MW07B, 15L4MW02AW, 15LWMW01BW, 15LCMW01SW, 15LCMW02SW, Trip Blank 1 (6/18/07), and 15LCMW400W. These conditions did not affect analyses.
- Temperature blanks packed with the samples were measured at the laboratory above the control limit of 6° C in several of the coolers shipped on 6/18/07, 6/19/07, 6/20/07, and 6/21/07.
- Ordnance surrogate recovery values for sample 15L4MW05AW yielded a low recovery for the surrogate. The samples were re-extracted 20 days after the holding time had expired and was reanalyzed. The re-extracted sample yielded an acceptable surrogate recovery result. Both the initial run and the reanalysis results are presented in the laboratory report package.
- Acetone and methylene chloride were detected in analysis of several of the trip blanks, the field equipment rinsate sample, and groundwater sample 15L4MW02BW (see Table 6). Detection of these chemicals in groundwater sample analysis results appears to be a result of its presence in laboratory equipment, not in the groundwater sample.

8.3 Deviations to Standard Procedures

During the groundwater sampling event for the 2^{nd} Quarter 2007, deviations from the standard procedures of the SAP included the following.

• The total depth of the monitoring well was not measured. The total depths of the casings measured during previous quarterly monitoring events were used to determine water volumes in

the well casing. Total depths of wells will be measured during the future quarterly sampling events.

<u>Corrective Measure</u>: Replacement procedures have been submitted to WDOE for approval as part of the revised SAP.

9.0 REFERENCES

Michael Baker Jr., Inc., 2006a, Site Health and Safety Plan, Groundwater Sampling and Analysis, Camp Bonneville, Vancouver, Final – October 30, 2006.

Michael Baker Jr., Inc. and PBS Engineering and Environmental (PBS), 2006b, Quality Assurance Project Plan, Groundwater Sampling and Analysis, Camp Bonneville, Vancouver, Final - 2006

Michael Baker Jr., Inc. and PBS Engineering and Environmental (PBS), 2006a, Groundwater Sampling and Analysis Plan, Camp Bonneville, Vancouver, Draft – October 31, 2006.

Otak, Inc. 1998 (updated 2003), Camp Bonneville Reuse Plan. Prepared for The Camp Bonneville Local Redevelopment Authority (LRA). September.

PBS Engineering and Environmental (PBS), 2004a, Groundwater Sampling and Analysis Report, 4th Quarter 2003, Camp Bonneville, Vancouver, Washington", dated May 24, 2004.

PBS Engineering and Environmental (PBS), 2004b, Monitoring Well Installation Report, Landfill 4 / Lacamas Creek, Camp Bonneville, Vancouver, Washington", dated August 16, 2004.

PBS Engineering and Environmental (PBS), 2005a, Groundwater Sampling and Analysis Report, 1st Quarter 2004, Camp Bonneville, Vancouver, Washington", dated January 3, 2005.

PBS Engineering and Environmental (PBS), 2005b, Groundwater Sampling and Analysis Report, 2nd Quarter 2004, Camp Bonneville, Vancouver, Washington", dated January 10, 2005.

PBS Engineering and Environmental (PBS), 2005c, Groundwater Sampling and Analysis Report, 3rd Quarter 2004, Camp Bonneville, Vancouver, Washington'', dated January 17, 2005.

PBS Engineering and Environmental (PBS), 2005d, Groundwater Sampling and Analysis Report, 4th Quarter 2004, Camp Bonneville, Vancouver, Washington, dated July 20, 2005.

PBS Engineering and Environmental (PBS), 2005e, Groundwater Sampling and Analysis Report, 1st Quarter 2005, Camp Bonneville, Vancouver, Washington, dated July 27, 2005.

PBS Engineering and Environmental (PBS), 2005f, "Groundwater Sampling and Analysis Report, 2nd Quarter 2005, Camp Bonneville, Vancouver, Washington", dated December 19, 2005.

PBS Engineering and Environmental (PBS), 2005g, "Groundwater Sampling and Analysis Report, 3rd Quarter 2005, Camp Bonneville, Vancouver, Washington", dated December 23, 2005.

PBS Engineering and Environmental (PBS), 2006a, "Groundwater Sampling and Analysis Report, 4th Quarter 2005, Camp Bonneville, Vancouver, Washington", dated August 14, 2006.

PBS Engineering and Environmental (PBS), 2006b, "Groundwater Sampling and Analysis Report, 1st Quarter 2006, Camp Bonneville, Vancouver, Washington", dated August 18, 2006.

PBS Engineering and Environmental (PBS), 2006c, "Groundwater Sampling and Analysis Report, 2nd Quarter 2006, Camp Bonneville, Vancouver, Washington", dated October 23, 2006.

PBS Engineering and Environmental (PBS), 2007a, "Groundwater Sampling and Analysis Report, 3rd Quarter 2006, Camp Bonneville, Vancouver, Washington", dated January 3, 2007.

PBS Engineering and Environmental (PBS), 2007b, "Draft Groundwater Sampling and Analysis Report, 4th Quarter 2006, Camp Bonneville, Vancouver, Washington", dated March 28, 2007.

PBS Engineering and Environmental (PBS), 2007c, "Draft Groundwater Sampling and Analysis Report, 1st Quarter 2007, Camp Bonneville, Vancouver, Washington", dated June 1, 2007.

Shannon & Wilson, 1999, Volume 1, Multi-Sites Investigation Report, Camp Bonneville, Vancouver, Washington, Contract No. DACA67-94-D-1014.

Washington State Department of Ecology (WDOE), 1996, Model Toxics Control Act Cleanup Levels and Risk Calculation (CLARC II) Update: Olympia, Washington, WDOE Publication No. 94-145, February.

Washington State Department of Ecology (WDOE), Toxics Cleanup Program, 2001, The Model Toxics Control Act Cleanup (MTCA) Regulation, Chapter 173-340 WAC: Olympia, Washington, WDOE Publication No. 94-06, Amended February 12, 2001.

FIGURES

APPENDIX A Field Parameters and Laboratory Analysis Data Tables

APPENDIX B

Laucks Testing Laboratories, Analytical Reports (Separate electronic files on CD disk)

APPENDIX C

Monitoring Well Boring Logs
APPENDIX D

Previous Quarterly Groundwater Monitoring Report Tables by PBS Engineering and Environmental, on enclosed CD disk

	CAMP E 38	adhuss thu liaith BONNEVILLE, WA. -EH-004M-03		Geologist : Mary Gri Start Date : 11/12/02 End Date : 11/12/02 Start Time : 0830 Weather : Raining	az	(Page 1 of 1) Drilling Company : Cascade Drilling, Inc Drillers : Todd Mecham : Rowan Miller
Depth in	Well: L Elev.: 2	C-MW-01S 287.16		DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
0- - 5-	認識派社 「 「 」	- Concrete - Bentonite - Riser	DARK Y CLAY W	ELLOWISH BROWN SILTY ITH GRAVEL	WET-LOTS OF RAIN INTO HOLE FOR 2 DAYS	BOREHOLE DEPTH : 21' BORE DIAMETER : 7" WELL LOCATION: NORTH BOUNDARY WELL BY LACAMAS CREEK DRILLING METHOD: TRI-CONE ROLLER BIT ADVANCED THRU 7" CASING WELL INNER DIAMETER: 2 INCH WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER ENCOLUMEDED
10-			SLIGHT YELLOV SANDY GRAVE	LY SILTY GRAVEL- VISH BROWN SLIGHTLY SILTY GRAVEL- MIXED L, PULVERIZED	WET	HEIGHT OF CASING ABOVE GROUND 3' MONUMENT NO. AHA-359 ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW.
15-		-SAND SCREEN	GRAVE	WITH SOME SAND (5%)		
20-			BOTTO	M OF HOLE 21'		

3	UP)	Readiness thru Health		100	OF BOILING		
CAMP BONNEVILLE, WA 38-EH-004M-03				Geologist : Mary Gre Start Date : 11/9/02 End Date : 11/10/02 Start Time : 1230 Weather : Overcast	Drilling Company : Cascade Drillin Drillers : Todd Mecham : Rowan Miller : David Gose		
Depth in	Well: LC-MW-01D Elev.: 287.58			DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORM	
0-	RR	CONCRETE	DARK	YELLOWISH-BROWN SILTY WITH 50% GRAVEL-FINE TO	MOIST	Bore Hole Depth : 39'10" Bore Diameter : 7"	
-	V		MEON	SOME FOLVERIZED	MOIST	WELL LOCATION: NORTH WELL LC ALONG LACAMAS CREEK BOUND/	
5-			VERY GRAV POSS	DARK BROWN CLAYEY EL- 90% GRAVEL, SOME SILT IBLE GRAVEL UP TO 1" SIZE,	MOIST	DRILLING METHOD: ROLLER CON ADVANCED THROUGH 7" CASING WELL INNER DIAMETER: 2 INCH	
10-			GRAV THE S PULV SILT	ERIZED TEL HAS CHERT, MORE OF SOLID GRAY GRAVEL. ERIZED WITH OLIVE-BROWN SOATING	BECOMING DRIER AT 8' 40 BLOWS/FT 10'-12' VERY	WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATE BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATE	
		GROUT	DARK MEDI COBE	GRAY SILTY SANDY JM GRAVEL AND LES-BACK TO OLIVE-BROWN	LOOSE ZONE 2 BLOWS/2FT MOIST, PROBABLE WATER TABLE AT 12'-14'	ENCOUNTERED. HEIGHT OF CASING ABOVE GROU	
15-		RISER			CHECK FOR WATER AT 15'. POSSIBLE	USED FORMATION WATER TO HY BENTONITE.	
20-					1st MATERIAL IS WET. DRILLING TO 35' AND LET SIT OVERNIGHT	ONE CENTRALIZER PLACED ABOY SCREEN. ALL WELLS COMPLETED WITH ST SURFACE MONUMENT SET 2' DEE	
25					VERY WET 4-6 BLOWS/FT	CONCRETE WITH A CONCRETE P THREE PROTECTIVE BALLARDS P YELLOW.	
		- SAND 20-40	CLEA	N PULVERIZED GRAVEL	MOIST TO WET 14 BLOWS/FT		
30-	y		FINE	SANDY SILTY GRAYISH	WET STOP AT 35' LET		
		0.000	CLEA	VN GRAVEL N GRAY GRAVEL WITH E SILT AND VERY FINE SAND	SIT OVER NIGHT 11/10/02 0730 WATER AT 5' BGS. 0800 START BLOW		
35-		SCREEN	38' LI VERY CONF BEDF	GHT OLIVE YELLOW SILT, SLIGHT CLAY, POSSIBLE INING ZONE OR TOP OF OCK.	10 GAL. OF WATER OUT. STOP HERE TO AVOID GETTING EQUIPMENT PLUGGED SO WE DON'T HAVE TO INJECT WATER.		
			BOTT	OM OF HOLE 39.83'			

	Readbass thru Health CAMP BONNEVILLE, WA. 38-EH-004M-03	GEOLOGIST : Mary Gre START DATE : 11/12/02 END DATE : 11/12/02 START TIME : 1640 WEATHER : Overcasi	z . Some Sun	(Page 1 of 1) DRILLING COMPANY : Cascade Drilling Inc. DRILLERS : Todd Mecham : Rowan Miller : Andre Bedrik
Depth in	Well: LC-MW-02S Elev.: 288.49	DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
0	-SAND -SCREEN	REDDISH BROWN SLIGHTLY SAND CLAYEY SILT WITH SOME GRAVEL LIGHT REDDISH BROWN CLAYEY SILT, LITTLE BIT OF GRAVEL AT 9' OLIVE BROWN SANDY SILTY GRAVEL BOTTOM OF HOLE 16'	WET AT 12 FEET	BORE DEPTH : 16' BORE DIAMETER : 7' WELL LOCATION: 2ND WELL SITE SOUTH C LACAMAS CREEK ALONG BOUNDARY. DRILLING METHOD: TRI-CONE ROLLER BIT ADVANCED THU 7' CASING WELL INNER DIAMETER: 2 INCH WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATER BEFOI DEVELOPING. CLOSED TRIANGLE: DEPTH WATER ENCOUNTERED. HEIGHT OF CASING ABOVE GROUND 2.7' MONUMENT NO. AHA- 364 FORMATION WATER USED TO HYDRATE BENTONITE. ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW.
- 20-				

CAMP BONNEVILLE, WA. 38-EH-004M-03			Geologist : Mary Grez Start Date : 11/12/02 End Date : 11/12/02 Start Time : 1300 Weather : Overcast, Raining			Drilling Company : Cascade Drilling Inc. Drillers : Todd Mecham : Rowan Miller : David Gose		
Depth in	Well: L Elev.: :	.C-MW-02D 288.49		DESCRIPT	ION	REMARKS	BORIN CONSTRUCT	g and well Ion Informati
		- CONCRETE - GROUT - RISER - BENTONITE - SAND 20-40 - SAND 10-20 - SCREEN	GRAVI SAND, GRAVI SAND, (PULV GRAD CLEAN OLIVE SILTY PEBBI OLIVE GRAVI ROCK GRAVI WITH LAYEF	SH-BROWN SL SOME GRAVE SOME GRAVE SOME GRAVE SUPPORT SILTY GRAVE ERIZED GRAV UALLY LESS SI JER GRAVEL, (ROU ES AND PULVI BROWN SLIGI EL, (PULVERIZ) SIGNE VERIZ SILT, SAND, AN SS	BROWN L BROWN L GRAVEL) LT AND SAND, ITLY SANDY INDED ERIZED ROCK) HTLY SILTY ED GRAY CLEAN ERSPERSED ID GRAVEL	PUMPING WATER INTO HOLE AT 3' 10 BLOWS/FT DONE PUMPING WATER USED ABOUT 40 GAL. WET WATER BLEW OUT OF HOLE. PRODUTIVE ZONE. WATER COMING UF OUT OF HOLE.	Bore Hole Depth Bore Diameter WELL LOCATION: SOUTH OF LACAN BOUNDARY. DRILLING METHO ADVANCED THRO ADVANCED THRO WELL SLOT SIZE: WELL SCREEN M OPEN TRIANGLE: BEFORE DEVELO CLOSED TRIANGLE: BEFORE DEVELO CLOSED TRIANGLE: BEFORE DEVELO CLOSED TRIANGLE: NO CENTRALIZEN MONUMENT NO. HOLE HAND-AUG IN 6' BOREHOLE. NO CENTRALIZEN SCREENED 25' TO PRODUCTIVE ZO USED FORMATIO BENTONITE. ALL WELLS COMI SURFACE MONU CONCRETE WITT THREE PROTECT YELLOW.	38° 7° 2ND WELL LOCATION MAS CREEK ALONG D: TRI-CONE BIT JUGH 7° CASING METER: 2 INCH 0.010 INCH ATERIAL: PVC DEPTH TO WATER PING. .E: DEPTH WATER NG ABOVE GROUND 3. AHA-357 ERED TO 6°, NO WATE RS USED. D 35° BECAUSE IT'S A NE. N WATER TO HYDRAT PLETED WITH STEEL MENT SET 2' DEEP INT A CONCRETE PAD AN TVE BALLARDS PAINTI
35-	B		BOTT	OM OF HOLE 3	6'			

	CAMP BON	INEVILLE, WA.		Geologist Start Date	: Mary Gre : 11/13/02	z	(Drilling Company Drillers	Page 1 of 1) : Cascade Drilling Inc. : Todd Mecham
_	30-En		1	End Date Start Time Weather	: 11/13/02 : 1400 : Rainy, O	vercast		: Rowan Miller : Andre Bedrik
Depth in	Well: LC-N Elev.: 288.	IW-03S 56		DESCRIPTIO	ло	REMARKS		IG AND WELL FION INFORMATIC
0		CONCRETE BENTONITE RISER	REDD SAND TO 80 AMOU AMOU REDD CLAYI GRAV	ISH BROWN SLIG % GRAVEL AND S INT OF CLAY ISH BROWN SAN EY SILT, VERY LI EL.	DY TTLE	VERY MOIST AT 7-8' WET GRAVEL WATER IN HOLE	Bore Hole Depth Bore Diameter WELL LOCATION SOUTH OF LACA BOUNDARY DRILLING METHO ADVANCED THRI WELL SLOT SIZE WELL SCOTE TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CLOSED TRIANGLE BEFORE DEVELO CONCRETE WITI THREE PROTEC YELLOW.	: 19' : 7' : 3RD WELL LOCATION MAS CREEK ALONG DD: TRI-CONE ROLLER BIT U 7' CASING METER: 2 INCH : 0.010 INCH IATERIAL: PVC : DEPTH TO WATER DPING, LE: DEPTH WATER NG ABOVE GROUND 2.35' AHA -362 IPLETED WITH STEEL IMENT SET 2' DEEP INTO H A CONCRETE PAD AND TIVE BALLARDS PAINTED
20-			BOTT	OM OF HOLE 19]		

B-6

N.	7 - 1-	Readiness thru Health					(Page 1 of 1)	
	CAMF	P BONNEVILLE, WA. 38-EH-004M-03		Geologist : Mary Grez Start Date : 11/13/02 End Date : 11/14/02 Start Time : 1600 Weather : Overcast, Rainy			Drilling Company Drillers	: Cascade Drilling Inc. : Todd Mecham : Rowan Miller : Andre Bednik	
Depth in	Well: LC-MW-03D Elev.: 288.50			DESCRIPTION REM			MARKS BORING AND WELL		
0-	1	CEMENT	REDDI	SH-BROWN SA	NDY SILT WIT	4	Bore Hole Depth Bore Diameter	: 37' 2" : 7"	
5	91000000000000000000000000000000000000					DRY 9-10 BLOWS/FT	WELL LOCATION: SOUTH OF LACAN LOCATION. DRILLING METHO ADVANCED THRO	3RD WELL LOCATION MAS CREEK BOUNDARY D: TRI-CONE BIT DUGH 7" CASING.	
10-		GROUT	OLIVE SILT W	BROWN SLIGI /ITH SOME GR	HTLY SANDY AVEL	MOIST VERY SOFT ZONE, WET	WELL INNER DIA WELL SLOT SIZE: WELL SCREEN M HEIGHT OF CASH	METER: 2 INCH 0.010 INCH ATERIAL: PVC NG ABOVE GROUND 2.48' AHA-363	
15-		RISER	OLIVE SILTY SOME MORE	BROWN SLIGI MIXED GRAVE ZONES MOST GRAVEL.	HTLY SANDY L. LY SILT, SOME	WATER COMING	BOREHOLE HAND LEFT CASING IN AT 37', ENCOUNT 2' SHORT OF GO INJECTING POTA	D-AUGERED TO 6'. GROUND OVERNIGHT ERED SILT AND STOPPED AL DEPTH TO AVOID BLE WATER INTO HOLE.	
20-		BENTONITE	MOST	LY GRAY PULV EL WITH SILT,	VERIZED SOME SAND.		ALL WELLS COM SURFACE MONU CONCRETE WITH THREE PROTECT YELLOW.	PLETED WITH STEEL MENT SET 2' DEEP INTO I A CONCRETE PAD AND IVE BALLARDS PAINTED	
- 25-						EASY CASING PENETRATION			
		SANU 20-40	GRAY	ISH-BROWN C					
30-		-SAND 10-20							
35-		SCREEN							
-			BOTT	OM OF HOLE 3	37.17'				
1			Listin						

12	4 • J• J R	eadiness thru Health					(1	Page 1 of 1)
	CAMP E 38	30NNEVILLE, WA. -EH-004M-03		Geologist Start Date End Date Start Time Weather	Geologist : Mary Grez D Start Date : 11/17/02 D End Date : 11/17/02 Start Time : 0815 Weather : Overcast, Passing Rain			: Cascade Drilling Inc. : Matt Ross : Jesse Cannon : Matt Slobig
Depth in	Well: L Elev.: 2	C-MW-04S 288.83		DESCRIPT	ION	REMARKS	BORIN	G AND WELL ION INFORMATIO
0		- CEMENT - RISER - BENTONITE - SCREEN - SAND	GRAY (UP T SOME	TSH BROWN SIL 22 CLAY AND SAN 24 ROUND GR 27 ROUND GR 28 SAND AND CLA	TY GRAVEL AVEL) WITH Y.	MOIST AT 5' VERY HARD DRILLING BECAUSE OF GRAVEL AT 10' WET AT 10' FINISHED HOLE AT 14' BECAUSE OF VERY HARD DRILLING WITH AUGER	Bore Hole Depth Bore Diameter WELL LOCATION: FROM LACAMAS DRILLING METHC AUGER AND WOO HAND AUGER TO WELL INNER DIAI WELL SLOT SIZE WELL SCREEN M OPEN TRIANGLE BEFORE DEVELC CLOSED TRIANG ENCOUNTERED HEIGHT OF CASII MONUMENT NO. ALL WELLS COM SURFACE MONU CONCRETE WITH THREE PROTECT YELLOW.	14' 5' SOUTH WELL LOCATION CREEK ALONG BOUNDAR 02: CME 580 WITH 6" 020 PLUG 5' METER: 2 INCH :0.010 INCH ATERIAL: PVC :: DEPTH TO WATER IDEPTH TO WATER IDEPTH TO WATER NG ABOVE GROUND 2.8' AHA-375 PLETED WITH STEEL MENT SET 2' DEEP INTO 1 A CONCRETE PAD AND TIVE BALLARDS PAINTED

N.	["]"]	Seudiness thru Health					(Page 1 of 1)
	CAMP 1 38	BONNEVILLE, WA. 3-EH-004M-03		Geologist Start Date End Date Start Time Weather	: Mary Grez : 11/13/02 : 11/13/02 : 0915 : Rainy		Drilling Company Drillers	: Cascade Drilling Inc. : Todd Mecham : Rowan Miller : Andre Bednik
Depth in	well: LC-MW-04D pth Elev.: 289.16 n			DESCRIPTION		REMARKS	BORING AND WELL CONSTRUCTION INFORMA	
0-	國際		REDD	SH-BROWN SL	IGHTLY	in the second	Bore Hole Depth Bore Diameter	: 34' 8" : 7"
5	NAL NAL	-CONCRETE	MULT	Y SILTY, ICOLORED GR4	WEL.	PUSH CASING TO 6' AND USED POTABLE WATER TO CLEAN HOSES. STOPPED RUNNING WATER AT 7'. HARD DRILLING THROUGH GRAVEL, VERY WET AT 6'	WELL LOCATION FROM LACAMAS DRILLING METHIC ADVANCED THR WELL INNER DIA WELL SLOT SIZE WELL SCREEN M	: SOUTH WELL PAIR CREEK ALONG BOUNDAR DD: TRI-CONE BIT DUGH 7* CASING. METER: 2 INCH : 0.010 INCH IATERIAL. PVC
10-		GROUT	OLIVE PULV MULT	E-BROWN SAND ERIZED GRAY A ICOLOR GRAVE	y silty ND EL	WET TO BOTTOM OF HOLE.	OPEN TRIANGLE BEFORE DEVELO CLOSED TRIANG ENCOUNTERED. HEIGHT OF CASI	E DEPTH TO WATER OPING. SLE: DEPTH WATER NG ABOVE GROUND 2.63
15- -				E-BROWN SAND ORM GRAY GRA /EL ZONE AT 17 RNATE CLEAN	VY SILTY VEL. CLEAN '-18' GRAVEL		MONUMENT NO. STOPPED DRILL WOULD PLUG H	AHA-361 ING AT 34' BECAUSE SILT OSES.
20-		BENTONITE	GRAV	ES WITH SANDY /EL TO B.O.H.	SILT AND FIN	-	ALL WELLS COM SURFACE MONU CONCRETE WIT THREE PROTEC YELLOW.	INTERED WITH STEEL IMENT SET 2' DEEP INTO H A CONCRETE PAD AND TIVE BALLARDS PAINTED
25-		: - SAND 20-40						
30-		- SAND 2-12 SCREEN						
			OLIV	E-BROWN SILT AT 34.67'	AND SANDY			
35-	Earth		BOT	TOM OF HOLE	34.67'	1	_	

CAI	MP BONNEVILLE, WA. 38-EH-004M-03	Geologist : Mary Gre Start Date : 11/15/02 End Date : 11/15/02 Start Time : 1140 Weather : Sunny, S	z lightly Cloudy	Drilling Company : Cascade Drilling Inc. Drillers : Matt Ross : Jesse Cannon : Matt Slobig
Depth Ele in	ell: LC-MW-05S ev.: 306.40	DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
0-	CONCRETE	VERY MOIST SLIGHTLY SANDY SILT.	LC-MW-05S-10 LC-MW-05S-0	Bore Hole Depth : 37" Bore Diameter : 6"
		SANDY SILT, BIT OF CLAY AND FINE GRAVEL	1140 10 BLOWS/ 6" MOIST AT 3'	WELL LOCATION: EAST SIDE OF CRATER AT DA-3 PAIRED WITH LC-MW-05D
5-		DARK RED BROWN SILT WITH MOTTLES OF GRAY, VEINS OF DED GRAY, AND PURPLE IN	LC-MW-05-2 1200	DRILLING METHOD: CME 580 WITH HOLLOW STEM AUGER AND 140 LBS HAMMER.
		SPLITSPOON	1210 16 BLOWS/ 6"	SAMPLES TAKEN WITH SPLIT SPOON SAMPLED AT 0', 2', 5', 15' DEPTHS SAMPLED FOR EXPLOSIVES, PETN, DESCRIPTION OPATE AND TOTAL METALS
2	GROUT			HAMMER USED TO COLLECT SAMPLES.
16	RISER		GETTING VERY MOIST AT 13'-14'	FROM LC-MW-05S-0. WELL INNER DIAMETER: 2 INCH
19		BRIGHT BLUE-GRAY STIFF SILT	LC-MW-05S-15 1230	WELL SLOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC
20-	- SAND 20-40	YELLOWISH-BROWN SLIGHTLY CLAYEY SILT WITH VARIABLE AMOUNTS OF GRAVEL AND INCREASING CLAY WITH DEPTH	STILL MOIST, NOT WET	OPEN TRIANGLE: DEPTH TO WATER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER ENCOUNTERED. HEIGHT OF CASING ABOVE GROUND 3.7'
-				MONUMENT NO. AHA-374
20		CLAYEY SILT	WET AT 27'	PULLED UP 5' AT 25' AND LET SIT FOR 1 HOUR, NO WATER IN HOLE.
30-	- SAND 10-20		1	SAID TO COMPLETE HOLE AT 37' TO BE 15' ABOVE LC-MW-05D.
-	SCREEN		1	TREMIED BENTONITE GROUT FROM TOP OF 20-40 SAND TO 2' BGS.
35-				ALL WELLS COMPLETED WITH STEEL SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND
]		BOTTOM OF HOLE 37'	-	YELLOW.
40-				
-				

Mar.	CAMP BONNEVILLE, WA. 38-EH-004M-03			Geologist : Mary Grez D Start Date : 11/7/02 D End Date : 11/8/02 Start Time : 1030 Weather : Overcast, Rainy				: Cascade Drilling Inc. : Todd Mecham : Rowan Miller : David Gose
Depth in	Well: L Elev.: 3	C-MW-05D 306.34	DESC	CRIPTION		REMARKS	BORIN	G AND WELL TON INFORMATION
0-	教育学の学校の学校	-CONCRETE	BROWN SLIGH WITH FINE GR DARK BROWN GRAVEL.	ITLY SANDY SIL AVEL. SILT WITH 5%	FINE	DRY SOMEWHAT MOIST	Bore Hole Depth Bore Diameter WELL LOCATION: CRATER. WELL P DRILLING METHO THROUGH 7" CAS	: 63.5' : 7" : EAST SIDE OF DA-3 : AIR WITH LC-MW-05S DD: AIR HAMMER DRIVEN SING.
5-			DARK REDDIS CLAY WITH 25	H-BROWN SILT	Y L,		WELL INNER DIA WELL SLOT SIZE WELL SCREEN M OPEN TRIANGLE BEFORE DEVELO CLOSED TRIANG ENCOUNTERED.	METER: 2 INCH : 0.010 INCH IATERIAL: PVC : DEPTH TO WATER DPING, LE: DEPTH WATER
10-			ANGULAR ANI 1/2"-1" GRAVE DARK REDDIS CLAYEY GRAV GRAVEL. ANG COARSENING	L. H-BROWN SILT /EL. FINE TO 1/- ULAR TO ROUM WITH DEPTH.	Y 4" NDED.	MOIST (10')	HEIGHT OF CASI MONUMENT NO. USE POTABLE W HOSES ARE PLU USED ABOUT 20	NG ABOVE GROUND N/A AHA-380 (ATER AT 20' BECAUSE GGING WITH SILT. GALLONS WITH GOOD
15-		- RISER - GROUT	GRAYISH-BRC	TY CLAY WITH	FINE		POTABLE WATEL PORTLAND. PVC CASING EX NEW TOP OF CA SURVEYING.	R SOURCE: CITY OF TENDED ON 2/11/03 AND ISING MARKED FOR
20-			SLIGHTLY CL ANY GRAVEL	AYEY SILT, BAR	EIO	14 BLOWS/ FT AT 20'.	ALL WELLS COM SURFACE MONU CONCRETE WITI THREE PROTEC YELLOW.	IPLETED WITH STEEL IMENT SET 2' DEEP INTO H A CONCRETE PAD AND TIVE BALLARDS PAINTED
25-		有一方方方。 一方方方方, 一方方方, 一方方方, 一方方, 一方方, 一方方,	FINE GRAVEL BROWN SILT	Y GRAYISH		CHECK FOR GROUND WATER AT 24'. LET SIT FOF 20 MINUTES. NO WATER.	2	

- ---

12	uk	Readiness thru Health					(F	Page 1 of 1)
Marte -	CAMP BONNEVILLE, WA. 38-EH-004M-03			Geologist : Mary Grez Start Date : 11/7/02 End Date : 11/8/02 Start Time : 1030 Weather : Overcast, Rainy			Drilling Company Drillers	: Cascade Drilling Inc. : Todd Mecham : Rowan Miller : David Gose
Depth in	Well: Elev.	: LC-MW-05D : 306.34		DESCRIPTI	ON	REMARKS	BORIN CONSTRUCT	g and well Ion informatio
30-	101010		DARK	YELLOWISH-BR AND CLAYEY SI TIGHT.	OWN SILTY LT.	40 BLOWS/ FT NO LONGER RUNNING WATER. SOIL IS MOIST.	Bore Hole Depth Bore Diameter	: 63.5' : 7"
35-			SAME MEDI ROUI NO G	E WITH SOME FIN UM GRAVEL AND NDED UP TO 1/2" RAVEL, SAME O	NE TO SULAR TO THERWISE.			
	200000	GROUT				33 BLOWS/FT		
40-		RISER	BRO	WN SLIGHTLY CL	AYEY SILT.	UP TO 60 BLOWS/ FT.		
			THIN	DARKER BROW	N LAYER.	FAINTLY MOIST		
45-			FINE	TO MEDIUM GR. WN SILT.	AVELLY			
-		-BENTONITE	FINE BRO BRO PULY TOP	TO MEDIUM GR. WN SILT, GRADI WN SILTY FINE T VERIZED GRAVE OF TROUTDALE	AVELLY NG TO OLIVE TO MEDIUM L. POSSIBLE	CASING PULLED	-	
50-	•		DAR GRA IS PI	k grayish-bro Vel/gravelly \$ Jlverized.	WN SILTY SILT. GRAVEL	TO 49' WAIT OVERNIGHT. 11/8/02 0745 START DRILLING. WATER AT 52'.		
55-		- SAND 10-20	DAR	K GRAYISH-BRO VERIZED GRAVE	WN TO GRAY L.	-		
60-			RED	CLAY ON BOTT	DM OF BIT	-		
	- 12		BOT	TOM OF HOLE	3.5'			

R_17

	CAMP BONNEVILLE, WA. 38-EH-004M-03	Geo Sta Enc Sta We	Geologist : Mary Grez Start Date : 11/16/02 End Date : 11/16/02 Start Time : 1515 Weather : Overcast, Passing, Rain			Drilling Company : Cascade Drilling Inc. Drillers : Matt Ross : Jesse Cannon : Matt Slobig	
Depth in	Well: LC-MW-06s Elev.: 305.43	D	ESCRIPT	ION	REMARKS	BORIN	IG AND WELL TION INFORMATION
0- - - - - - - - - - - - - - - - - - -	-SAND	RED BROV OF ROOTS GRAVEL PALE BRO DECOMPC COLORED RETURNS RED BROV DECOMPC ROOTS BOTTOM	D BROWN LOAMY SILT, LOTS ROOTS, SOME DECOMPOSED AVEL LE BROWN SILT WITH COMPOSED GRAVEL, RUST NORED MOTTLES TURNS ARE FAINTLY MOIST, D BROWN SILT WITH COMPOSED GRAVEL AND DOTS		LC-MW-06S-0 1515 MOIST LC-MW-06S-2 1525 DRY LC-MW-08S-5 1530 VERY MOIST NOT WET WET AT 15'	Bore Hole Depth Bore Diameter WELL LOCATION CRATER. DRILLING METHO HOLLOW STEM A HAMMER BIT. SAMPLES TAKEN SAMPLED AT 0', I S	37' 6' NORTH SIDE OF DA-3 DD: CME 580 WITH 6' AUGER AND 140 LBS I WITH SPLIT SPOON 2', 5', DEPTHS XPLOSIVES, PETN, AND METALS. LLECT 15' SAMPLE TURATED CONDITIONS METER: 2 INCH 2', 0,010 INCH MATERIAL: PV ING ABOVE GROUND 2.84' AHA-372 DN WATER TO HYDRATE MPLETED WITH STEEL JMENT SET 2' DEEP INTO TH A CONCRETE PAD AND CTIVE BALLARDS PAINTED
						YELLOW.	

-		Realiness they Health					(F	Page 1 of 1)			
	CAM	P BONNEVILLE, WA. 38-EH-004M-03		Geologist Start Date End Date Start Time Weather	: Mary Grez : 11/16/02 : 11/16/02 : 1100 : Overcast,	Passing Rains	Drilling Company Drillers	: Cascade Drilling Inc. : Matt Ross : Jesse Cannon : Matt Slobig			
Depth in	Well Elev	I: LC-MW-07S .: 305.12		DESCRIPT	ION	REMARKS	BORIN	g and well Ion information			
0-	変え	CONCRETE	PLAT	RED-BROWN	DRY SILT WITH	ILC-MW-07S-0 1110 + DUPLICATE	Bore Hole Depth : 37' Bore Diameter : 6"				
-	5-		DRY F SILT, A GRAV	PALE YELLOWIS A BIT OF FINE EL-DECOMPOS	ED ROCK.	LC-MW-07S-10 1140 LC-MW-07S-2 1125	WELL LOCATION: CRATER.	WEST SIDE OF DA-3			
5-	5-		RED-E GRAV	BROWN SILT, BA	ARELY ANY	LC-MW-07S-5 1145 GETTING MOIST	HOLLOW STEM AUGER AND 140 LBS HAMMER.				
		GROUT				MOIST	SAMPLES TAKEN SAMPLER AT 0', 2' SAMPLED FOR EX PERCHLORATE, A	WITH SPLIT SPOON ', 5', 15' DEPTHS. (PLOSIVES, PETN, AND METALS.			
	RISER	RISER			MOIST ZONE		LC-MW-07S-10 IS OF LC-MW-07S-0	A DUPLICATE			
15-			GRAY	STIFF SILT, LIC VN SILT CUTTIN	GHT GRAYISH IGS	LC-MW-07S-15	WELL INNER DIAM WELL SLOT SIZE: WELL SCREEN M	METER: 2 INCH 0.010 INCH ATERIAL: PVC			
		BENTONITE					OPEN TRIANGLE: BEFORE DEVELO CLOSED TRIANGI ENCOUNTERED.	DEPTH TO WATER PING. LE: DEPTH WATER			
20-			OLIVE AND O	BROWN SILT,	SOME CLAY	MOIST	HEIGHT OF CASIN	NG ABOVE GROUND 3.8' AHA-371			
25-						VERY MOIST TO	COULDN'T RETRA BECAUSE THE CA TO 37' AND PULLI THEN INSTALLED IN OPEN BOREHO	ACT THE HAMMER ABLE BROKE. DRILLED ED AUGER AND HAMMER WELL SUCCESSFULLY DLE.			
		-SAND	YELLO	OWISH-BROWN	GRAVELLY		USED FORMATIO BENTONITE.	N WATER TO HYDRATE			
30-		SCREEN					SURFACE MONUL CONCRETE WITH THREE PROTECT YELLOW.	MENT SET 2' DEEP INTO I A CONCRETE PAD AND IVE BALLARDS PAINTED			
35-											
-			BOTT	OM OF HOLE 3	37'						

-		Readiness thru Health		Geologist	· Mary Grez		(Drilling Company	Cascade Drilling Inc.
	CAMP	BONNEVILLE, WA. 38-EH-004M-03		Start Date End Date Start Time Weather	: 11/16/02 : 11/16/02 : 0740 : Overcast		Drillers	: Matt Ross : Jesse Cannon : Matt Slobig
Depth in	Well: Elev.:	LC-MW-08S : 306.10		DESCRIPT	ION	REMARKS	BORIN CONSTRUCT	G AND WELL ION INFORMATIC
0-		CONCRETE	BROW	N SILTY LOAM	LOTS OF	LC-MW-08S-0 0740 MOIST	Bore Hole Depth Bore Diameter	: 37' : 6"
-			DRY S GRAY RUST	SILTY GRAVEL, ISH-BROWN DR COLORED MOT	Y SILT WITH	LC-MW-08S-2 0750 HAD TO MOVE 1'	WELL LOCATION: CRATER.	SOUTH SIDE OF DA-3
5-			REDD	REDDISH-BROWN CLAYEY SILT WITH DECOMPOSED GRAVEL AND RED MOTTLES		EAST BECAUSE OF ROOT LC-MW-08S-5 0800 FAINTLY MOIST	DRILLING METHO HOLLOW STEM A HAMMER.	d: CME 580 WITH 6" UGER AND 140 LBS
-		-GROUT	RED MOTTLES				SAMPLES TAKEN SAMPLER AT 0', 2 SAMPLED FOR E	WITH SPLIT SPOON 2', 5', 15' DEPTHS. XPLOSIVES, PETN,
10-		RISER					WELL INNER DIA	ND METALS
	Sec.					A LITTLE MORE MOIST AT 12'	WELL SLOT SIZE WELL SCREEN M	aterial: PVC
15-	1000		STIFF			BECOMING WET AT	HEIGHT OF CASI	NG ABOVE GROUND 3.6 AHA-373
	1948		OLIVE	-BROWN STIFF	SILT AT 17'	0815 POOR RECOVERY	NO WATER LEVE	LS TAKEN PRIOR
20-			MOIS VARI/ GRAV	T REDDISH-BRO ABLE CLAY AND EL	OWN SILT WITH FINE	SAMPLE TO COMPOSITE FROM 15'-18'	IN WELL. ALL WELLS COM SURFACE MONU CONCRETE WITH THREE PROTEC' YELLOW.	PLETED WITH STEEL MENT SET 2' DEEP INTO 4 A CONCRETE PAD ANI TIVE BALLARDS PAINTE
25-		- SAND 2-12				NEVER ENCOUNTERED WET ZONE WE SAW IN LC-MW-055	5	
30-		SCREEN						
- 35			BOTT	OM OF HOLE 3	7'			
								_

411P	CAMP 3	BONNEVILLE, WA. 8-EH-004M-03		Geologist : Mary Gre Start Date : 11/15/02 End Date : 11/15/02 Start Time : 0737	z	(Page 1 of 1) Drilling Company : Cascade Drilling Inc. Drillers : Matt Ross : Jesse Cannon : Matt Slobig
bepth in	Well: I Elev.:	LC-MW-09S 344.91		Weather : Foggy DESCRIPTION	REMARKS	BORING AND WELL CONSTRUCTION INFORMATION
0		-CONCRETE BENTONITE RISER	DARK GRAV SILT CHAT A LITT COLO DARK	REDDISH-BROWN SLIGHTLY ELLY, SLIGHTLY CLAYEY TER AT 5' GRAVEL LAYER LE MORE GRAVEL R STARTING TO CHANGE TO GRAYISH-BROWN	MOIST WET AT 5'	Bore Hole Depth : 17.6' Bore Diameter : 6" WELL LOCATION: SW WELL LOCATION AT DA-2 NEAR CRATER. DRILLING METHOD: CME 590 WITH 6" HOLLOW STEM AUGER WOODEN PLUG. WELL SINER DIAMETER: 2 INCH WELL SCOT SIZE: 0.010 INCH WELL SCREEN MATERIAL: PVC OPEN TRIANGLE: DEPTH TO WATER BEFORE DEVELOPING. CLOSED TRIANGLE: DEPTH WATER ENCOUNTERED. HEIGHT OF CASING ABOVE GROUND 2.4' MONUMENT NO. AHA-369 USED 10' SCREEN BECAUSE WATER WAS ENCOUNTERED AT 5' bgs. ALL WELLS COMPLETED WITH STEEL
15-		SCREEN	BOTTO	DM OF HOLE 17.5'		SURFACE MONUMENT SET 2' DEEP INTO CONCRETE WITH A CONCRETE PAD AND THREE PROTECTIVE BALLARDS PAINTED YELLOW.
20-						
- 25-						

n 1¢

		Readiness thru the U					(Page 1 of 1)
	CAMP 3	BONNEVILLE, WA 8-EH-004M-03		Geologist Start Date End Date Start Time Weather	: Mary G : 11/14/0 : 11/14/0 : 1530 : Sunny,	rez 2 2 Partly Cloudy	Drilling Company Drillers	: Cascade Drilling Inc. : Matt Ross : Jesse Cannon : Matt Slobig
Depth in	Well: Elev.:	LC-MW-10S 349.67		DESCRIPTION	ON	REMARKS	BORIN	g and well Ion informatio
0-		CONCRETE	DARK	YELLOWISH-BRO	OWN F- NO		Bore Hole Depth Bore Diameter	: 24'3" : 6"
		CONCRETE	GRAVE	EL		MOIST, PLASTIC	WELL LOCATION: DRILLING METHO	SE WELL NEAR ROAD.
5-		-RISER -BENTONITE				MORE MOIST	WELL INNER DIAN WELL SLOT SIZE: WELL SCREEN M/ OPEN TRIANGLE: BEFORE DEVELOI CLOSED TRIANGL ENCOUNTERED.	IETER: 2 INCH 0.010 INCH NTERIAL: PVC DEPTH TO WATER PING. E: DEPTH WATER
10-	<u>×</u>						MONUMENT NO. A ALL WELLS COMP SURFACE MONUN CONCRETE WITH. THREE PROTECTI YELLOW.	HA-370 LETED WITH STEEL IENT SET 2' DEEP INTO A CONCRETE PAD AND VE BALLARDS PAINTED
15-		- SCREEN	GRAYIS REDDIS SLIGHT	SH-BROWN TO I SH-BROWN OR N FLY FINE GRAVE	DARK IAROON LY SILT.	NO RETURN FROM 14' WATER AT 14'		
20-								
-			DOTTO	N 05 1121 5 31				

n 17

1017	CAMP 3	BONNEVILLE, WA 8-EH-004M-03		Geologist : Mary Gre Start Date : 11/14/02 End Date : 11/14/02 Start Time : 1430 Weather : Sunny, Pi	z artly Cloudy	(Drilling Company Drillers	Page 1 of 1) : Cascade Drilling Inc. : Matt Ross : Matt Slobig : Jesse Cannon
Depth in	Well: I Elev.:	LC-MW-11S 342.72		DESCRIPTION	REMARKS	BORIN	G AND WELL ION INFORMATIC
0	D- 	DARK SOME MATE GRAY SAND CAN H	YELLOWISH-BROWN SILT, GRAVEL, POSSIBLE FILL RIAL ISH-BROWN SLIGHTLY FINE Y SILT IEAR SOME GRAVEL IN HOLE	WATER AT GROUND SURFACE	Bore Hole Depth Bore Diameter WELL LOCATION: OF POND. DRILLING METHOI HOLLOW STEM AI WELL SLOT SIZE: WELL SCREEN M/ WATER IS AT GRC AUGER HOLE. HEIGHT OF CASIN MONUMENT NO. A USED 10' SCREEN WATER TABLE. USED FORMATION BENTONITE. ALL WELLS COMP SURFACE MONUN CONCRETE WITH. HREE PROTECTT YELLOW.	: 17' : 6" NORTH WELL AT DA-2 N D: CME 580 WITH 6" JGER AND WOOD PLUG. METER: 2 INCH 0.010 INCH ATERIAL: PVC DUND SURFACE IN UXO G ABOVE GROUND 3.0' HA-368 BECAUSE OF SHALLOW WATER TO HYDRATE LETED WITH STEEL LETED WITH STEEL LETED WITH STEEL LETED WITH STEEL MATER TO HYDRATE	
20-			вотто	DM OF HOLE 17'	WATER IN BOTTOM OF HOLE		

1/26/01; Template: WELL_KEY; CB_L4.GPJ

URS

Drilled Drilling Method Drill Rig Type Groundwa Level Diameter		6/5/2001	1						1 00010	<u></u>		
Method Drill Rig Type Groundwa Level Diameter						By J.Rapp	-		By Total C	enth	S. W	olfe
Type Groundwa Level Diameter		Hollow	Stem Aug	er		Contractor Cascade Drilling	Inc.		Drilled	(feet)	46.5	
Level Diameter	ater	CME-/5	at here G/F	101 14	10	Type 18" Split Spoon Hammer Weight 20" 140 lb	<u> </u>		Elevati Top of	on PVC	511.	
	rof	20.50 Te	Diamet	er of	2	and Drop Type of Bre-packed	V wire mesh		Elevati Screen	on	0.0	5 NGVD
Hole (inc Type of	hes)	20/40_1	Well (ir	nches)	-	Type and Depth filter sand (3	38'-46' bas): b	entoni	Perfora	ation 38' bas): cem	ent (0'-2')
Commen	nts	Monitor	ing well c	oordin	ates:	Easting 1,154,413.64 Northing 141,2	287.41					
								ç		1	1	[
Elevation, feet (MSL)	Depth, feet	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIP		Completio Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-510	-0-					Silty CLAY - Clayey SILT (CL-ML); moi reddish-brown; low to medium plasticity	st;					UXO avoidance to bgs
-505	5—	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				same as above	-					
500	10		7-7-7	100		same as above - increasing clay conter	ıt		0	0	1150	
-495	15		6-6-6	100		Sifty CLAY (CL) - moist; light brown; so sand	ft; trace of		0	0	1156	
-490	20-		2-2-5	100		same as above - very soft			0	0	1206	
485	25		14-15-8	100		black-grey lenses of weathered sand			0	0	1227	

Proj	ect Ni	umber:	53-F00)7232	3.00	ie, wa			Sł	neet 1	of 2	
Date(Drilled	s) t	6/4/2001				Logged J.Rapp			Check By	∋d	S. W	/olfe
Drillin Metho	g od	Hollow	Stem Aug	er		Drilling Contractor Cascade Drilling	Inc.		Total Drilled	epth (feet)	54.0	
Drill R Type	ig	CME-75				Sampler Type 18" Split Spoon			Surfac Elevati	e on	508.	8 NGVD
Groun Level	dwater	35 feet b	gs 6/5/01	0730		Hammer Weight 30" 140 lb and Drop			Top of Elevati	PVC on	511.	8 NGVD
Diame Hole (eter of inches)	8.75	Diamet Well (ir	er of hches)	2	Type of Pre-packed Well Casing	V wire mesh		Screen Perfora	ition	0.0	10"
Type o Sand	of Pack	20/40, 10)/20 Silica	1		Type and Depth of Seal(s) bentonite (2	'-30', 43'-54'); filt	er s	and (3	0'-43')	; ceme	nt (0'-2')
Comm	nents	Monitori	ng well c	oordin	ates:	Easting 1,154,420.93 Northing 141,5	21.95					
		SA	MPLES				20,00	5		0	L.	
Elevation, feet (MSL)	Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIPT			PID (ppm)	Headspace PII (ppm)	Drilling Rate (Time, 24-hou clock)	REMARKS
	-0					Silty CLAY - Clayey SILT (CL-ML); mois reddish-brown; low to medium plasticity	st;		0	0	0815	
505	5-					same as above						using a backhoe
500	10					same as above - very soft clay			0	0	0820	
495	15-					Silty CLAY (CL) - moist; light brown; soft grey-black	; mottled					
490	20					same as above - weathered sand grains orange with black lenses	; mottled		0	0	0830	Rig down for repai 0900 - 1130
485	25		25-20-6	100		same as above - medium stiff; trace of y graveł	ellow		0	0	1155	
180	-30						-					

Proj Proj	ect Lo ect No	ocat umt	tion: ber:	Camp 53-F00	Boni 7232	nevil 3.00	le, WA			Sh	eet 2	of 2	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 5-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIP	TION	Well Completion Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REN
-475	- 30-			6-5-6 20-13-16 6-6-7	100		Sandy silty CLAY (CL) - very moist; hig weathered sand grains; yellow; red; bla same as above - highly weathered san	jhly ack nd grains;	- - -	0	0	1207 1220 1228	Depth to g approx. 33 6/4/01 134
470	40-			9-14-20	100		same as above - wet; weathered sand motiled white-black	I grains;		0	0	1300	Groundwa encounter approx. 41 6/4/01 131
-465	45-			14-30-33 14-56/6" 20-50/4"	100 50 25		weathered andesite fragments, hard			0 0	0	1313	
-460	50-						same as above						-
-455	55-						Boring terminated at approximately 54 6/4/01 1500	I feet bgs on					
-450	60-								-				
-445	65												
-440		-					-		-				

Proje	ect Nu	mber:	53-F00	72323.00	,				Sh	eet 1	of 2	
Date(s)	6/6/2001				Logged J.Rapp		(E	Checke 3y	d	S. W	olfe
Drilling	1	Hollow	Stem Aug	ər		Drilling Contractor Cascade Drilling	Inc.	1	Fotal D Drilled	epth (feet)	36.5	
Drill Ri	g	CME-75				Sampler 18" Split Spoon		E	Surface	e en	506.	NGVD
Ground	lwater	29.30 fe	et bgs 6/6/	01 1130		Hammer Weight 30" 140 lb and Drop		I	Fop of Elevation	PVC on	509.) NGVD
Diame Hole (i	ter of nches)	8.75	Diamet	er of 2 ches) 2		Type of Pre-packed Well Casing	/ wire mesh	F	Screen Perfora	tion	0.01	0"
Type o Sand F	of Pack	20/40, 10	0/20 Silica			Type and Depth of Seal(s) bentonite (2'	-25', 34'-36' bgs); filt	ter sar	nd (25'-	34' bg	s); cement (0'-2')
Comm	ents	Monitor	ing well co	oordinates:	Eastii	ng 1,154,337.25 Northing 141,2	243.45					
		SA	MPLES					5				
Elevation, feet (MSL)	Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery Graphic Log		MATERIAL DESCRIPT			PID (ppm)	Headspace PII (ppm)	Drilling Rate (Time, 24-hou clock)	REMARKS
-505					Silty redo	CLAY - Clayey SILT (CL-ML); mois ish-brown; low to medium plasticity	t;		0	0	0940	UXO avoidance to bgs
-500	5				sam	e as above						
-495	10-	X	4-7-10	100	sam	e as above			0	0	0946	
490	15	X	5-7-9	100	Silty grey	CLAY (CL) - moist; light brown; mc -black; medium plasticity	ttled		0	0	0954	
485	20	X	4-7-9	100	sam	e as above			0	0	1001	
-480	25	X	6-10-18	100	San	dy CLAY (CL) - wet; stiff; red-browr ;; trace of yellow gravel	; weathered		0	0	1008	
	30											Depth to ground. 28.3' bgs on 6/6/0 1130

Project: Landfill 4/Demolition Area 1 Log of Boring L4-MW06A Project Location: Camp Bonneville, WA Sheet 1 of 1 Project Number: 53-F0072323.00 Checked By Logged By Date(s) Drilled S. Wolfe J. Rapp 9/9/02 Total Depth Drilled (FT BGS) 6.0 Drilling Contractor Drilling Method Cascade Drilling Inc. Hand Auger Drill Rig Type Sampler Type Surface Elevation NA 18" Split Spoon Top of PVC Elevation Drill Bit Size/Type Groundwater Level 4" OD hand auger 6 feet bgs Diameter of Hole (inches) Diameter of Well (inches) Type of Well Casing Screen Perforation 0.010" Schedule 40 PVC 4 0.75 Type and Depth of Seal(s) Type of Sand Pack bentonite (0-4'); filter sand (4-6') 10/20 Silica Monitoring well coordinates: Easting: Northing: Comments Well Completion Log SAMPLES PID Readings (ppm) Soil - UV Fluorescence Elevation, feet (MSL) Water/Soil Sheen Test clock REMARKS MATERIAL DESCRIPTION Dye test Depth, feet Graphic Log Number Time 24-hr (Type ſſ 0 Surface vegetation No odor or evidence of contamination Brown silty CLAY (CL-ML) - dense, moist, some to trace yellow sub-rounded to rounded gravel, gravel size is 0.125" median diameter 10/30/02 1 2 3 Same as above with trace black, weathered, angular bedrock (andesite) fragments 0930 4 5 Same as above 30% black sub-angular to angular bedrock in silty clay matrix Soil boring terminated at 6 feet bgs (due to refusal) on 9/9/02 at 0930 6 7 8 9 10-

Printed: Data Template:WC_CORP1.GDT Project File: E:\PROJECTS\BONNEL~1\DELIVE~1\JOHNRI~1\BORING~1\CB_L4.GPJ; Report: ENV_23A;

URS

URS

Floje	CT NU	mb	ber:	53-F00	2323	.00				L Ch	ookos	4		
Date(s) Drilled		6/1	4/200	l to 6/18/2	001			Logged J.Rapp		By	tal De	pth	S. Wo	olfe
Drilling Method	I	Air	r Rotai	y Tubex				Contractor Cascade Drilling	Inc.	Dri	lled (1	eet)	76.0	
Drill Rig Type	9	IR	T3W I	ngersoll F	land			Type NA		Ele	vatio	n VC	520.0	NGVD
Ground Level	water	11	feet b	gs 6/19/01	1120			and Drop NA		Ele	vatio	n	529.0	NGVD
Diamet Hole (in	er of hches)		10	Uiamete Well (in	er of ches)	2		Well Casing Schedule 4	0 PVC	Pe er sa	rforat	ion 38'-58''	0.01	nt grout (
Type o Sand F	f Pack	20	/40 Sil	ica				of Seal(s) cement (0'-	2')					
Comm	ents	Mo	onitori	ng well co	ordina	ates: I	Eastin	g 1,154,600.01 Northing 141,3	04.73					
evation, et (MSL)	epth, et	0	SA	vs per ch rval	cent overy	phic		MATERIAL DESCRIP	Boring Completion	J Log	(bpm)	adspace PID m)	ling Rate ne, 24-hour ock)	REM
fee	6 fee	Type	Num	Blow 6-inc Inter	Perc	Log Log	Silty	CLAY - Clayey SILT (CL-ML); mo	oist;	Į.	o PID	0 (pp	변분 0810	
-525	5						- san	ie as above			0	0	0812	
-515	10-						san	ne as above			0	0	0828	Depth to (11' bgs (6 1120)
-510	15-						- Silt	y CLAY (CL) - moist; light brown; s	soft;		0	0	0836	
-505	20-						sar ora	ne as above - weathered sand gra nge with black lenses of weathere	ins; mottled d sand		0	0	0859	centralize
500	25-						sai	ne as above - trace of yellow grav	el -		0	0	0905	

Proj Proj	ect Lo ect N	oca um	tion:	Camp 53-F00	Bon	nevil 23.00	le, WA	Logo	SI	neet 2	of 3	
····,			SA	MPLES					1			1
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIP	Well Completion Loa	PiD (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REM
-495	- 30 -						Sandy silty CLAY (CL) - moist; red-brov stiff; trace of gravel	vn; medium	0	0	0942	
-490	35-						same as above		0	0	0945	
-485	40 -						Sandy CLAY (CL) - moist; mottled; yello weathered sand grains; weathered bed yellow gravel	ow; black; rock; trace	0	0	0959	centralizer
-480	45-						same as above		0	0	1003	bentonite s bgs
-475	50						Sandy gravelly CLAY (CL) - wet; black; green; weathered bedrock; angular	white;	0	0	1041	water enco approx. 50 (6/14/01 11 advance 7' casing fron
-470	- 55— -						same as above - calcite nodules, weath bedrock	ered	0	0	1240	air roton d
-465	- 60- - -						Gravelly SAND (SP-GP) - wet, black, ar fragments of andesite	ıgular	0	0	1301	through we bedrock zoi coring
-460	65		Run #1		92%		top of apparent competent bedrock Phaneritic Andesite - unweathered bedr porphyritic; hornblende; olivine; hard horizontal fracture (8 degrees); crystalline-carbonate infilling fracture (5 degrees)	ock;	0	0		bentonite se at 65' bgs rock coring 6/15/01 073 advance ro from 66' bg RPM

			SA	MPLES							DIA	our	
Elevation, feet (MSL)	Depth, feet	Type	Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRI	PTION	Well Completior Log	PID (ppm)	Headspace (ppm)	Drilling Rate (Time, 24-h clock)	REM
-455	70-70-		Run #2		46%		vesicles horizontal fracture horizontal fracture horizontal fracture fracture (15 degrees)			0	0		Run #1 66' 92% recove RQD 73.2' bgs b recovered r
-450		-					Boring terminated at approx. 76' bgs 1052); bottom 2.8' of core not recove	(6/18/01 @ red	-				Run #2 71' 46% recov RQD
-445	80-	1 1 1						-	1 1				
440	85-						-						
-435	90	-							-				
-430	95						-						
-429	100												
Project File: I:\PROJE	105												
aport: ENV	110								_				

1000 1000 1000 1000 1000 1000 1000 100	Pro Pro Pro	o ject: oject L oject N	ect: Landfill 4/Demolition Area 1 ect Location: Camp Bonneville, WA ect Number: 53-F0072323.00						Log of Boring L4-MW02B Sheet 2 of 3						
00 0. 0. 0. 0. 0. 0. 0. 1.00	Elevation, eet (MSL)	Depth, eet	be	SA Imper	ows per nch erval	ercent scovery aphic q	MATERIAL DESCRIP	ΓΙΟΝ	ell ompletion		(mqq) C	adspace PID om)	lling Rate me, 24-hour ock)	REMARKS	
U001 35- Image: same as above Image: same asabove Image: same as above Image	-485	- 30	TY	N N	LT 0. BI	2 G Gr R P	same as above - mottled yellow orange		ŠŬ	۹ 3	III	9 H Q	2E2		
981 -475 40- - Sandy CLAY (Cl) - moist; motiled; yellow; black, mae water encounter 41.6° on 62100 -470 45- 0 0 1732 -470 45- 0 0 1745 -465 50- - - - 0 0 1745 -460 55- - - - - 0 0 0815 -455 60- - - - - 0 0 0815 -450 65- - - - - 0 0 0815 -450 65- - - - - 0 0 0815 -450 65- - - - - 0 0 0815 -450 65- - - - - - 0 0 0857	-480	35-					same as above		₹		0	0	1706	static water level recorded on 6/25/01 1133	
ueter der der der der der der der der der d	-475	40-					Sandy CLAY (CL) - moist; mottled; yello weathered sand grains; weathered bed	ow; black; ock; trace						centralizer at 39' bgs	
actor 45 45 0 0 1732 actor actor 0 0 1732 actor actor 0 0 1745 actor actor actor 0 0 1745 actor actor actor actor 0 0 1745 actor <	,GDT Prir		-				yellow gravel; low plasticity	₽ -						water encountered at 41.6' on 6/21/01 0843	
-465 50- -465 50- - - - - 0 0 1745 resume drilling i -460 55- -	470 -470	45-					same as above				0	0	1732		
$\begin{bmatrix} -460 \\ -460 \\ -460 \\ -455 \\ -455 \\ -450 \\ -450 \\ -450 \end{bmatrix}$	DRING1/CB_L4.GPJ; Data .	50-					- same as above				0	0	1745	resume drilling 6/21/01	
-455 60- -455 60- -450 65- -450 65- - 450 65- - 450 65- - 450 65- - 450 65- - 450 65- - 450 65- - 450 65- - 450	0811-110ELIVE-110011-110011-110011-110011-110011-110011-110011-110011-110011-110011-110011-110011-110011-11001	55-					same as above				0	0	0815		
ASD 000000000000000000000000000000000000	AVCES-A-422	60-					same as above	-		X				centralizer at 59' bgs	
	Project File: I:/PROJECTS/V	65					same as above - wet; hard; stiff				0	0	0857		
	port: ENV	70									0	0	0921		

Project: Landfill 4/Demolition Area 1 Project Location: Camp Bonneville, WA Project Number: 53-F0072323.00							Log of Boring L4-MW02B Sheet 3 of 3					
Elevation, feet (MSL)	Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIP	TION	Well Completion Log	PID (ppm)	Headspace PID (ppm)	Drilling Rate (Time, 24-hour clock)	REMARKS
-445	-70					Clayey gravelly SAND (SW) - wet; blac green; weathered andesite; angular	k; white;		0	0	0938	
-440	75	Run #1		40%		top of apparent competent bedrock Phaneritic Andesite - unweathered bed porphyritic; hornblende; olivine; hard vesicles horizontal fracture horizontal fracture	rock;		0	0	1240	bentonite seal; begin rock coring at 75' bgs
-435	80-	Run #2		0%		-	-		0	0	1320	end of core Run #1; 40% recovery; 100% RQD
-430	85-					Boring terminated at 85' bgs on 6/21/0	1 1500	-	0	0	1446	end of core Run #0- 0% recovery
-425	90-					-						
-420	95-							adamente de la construcción de la construcción de la construcción de la construcción de la construcción de la c				
-415	100-					-						
-410	105-							-				
-	110			<u> </u>		TIRS			I	1	1	

Project Location: Camp Bonn Project Number: 53-F007232						e, WA		Sheet 2 of 2						
		S/	MPLES			<u></u>		_		0	bur			
Elevation, feet (MSL)	Depth, feet	Type Number	Blows per 6-inch Interval	Percent Recovery	Graphic Log	MATERIAL DESCRIP	TION	Well Completion Log	PID (ppm)	Headspace F (ppm)	Drilling Rate (Time, 24-ho clock)	REMARKS		
-470	- 35 					same as above	sand		0	0	1457			
-465	45					grains; some yellow gravel	athorod		Ū					
-460						same as above - some gravel to 1°; we andesite fragments	amered ¥					centralizer at 47' bgs		
-455	50					same as above - weathered andesite, grains, quartz nodules	altered sand		0	0	1550	groundwater encountered at approx. 50 feet bgs 6/25/01 1600		
-450	55					same as above - weathered andesite	-		0	0	1605			
-445	60—	Run #1		93%		Phaneritic Andesite - unweathered bec porphyritic; hornblende; olivine; hard horizontal fracture fracture 30 - 35 degrees vesicles horizontal fracture	Irock;		0	0		9.75" casing on top competent bedrock; bentonite seal set pr to rock coring		
	65–	Run #2	2	100%		fracture 2 degrees	-		0	0		Bottom of Run #1; 93% Recovery; 100 RQD		
-440	70-					Boring terminated at 70' bgs on 6/26/0	1 at 1416					Bottom of Run #2; 100% Recovery; 100 RQD		
-435	75													
-430							-	1						

......
Pro	ject Nu	imber: 53-F007232	23.00	_,,	-			Shee	t 1 of 2	2
Date	(s) ed	12/19/02			Logge	ed J. Rapp		Checke By	d	S. Wolfe
Drilli Meth	ng lod	Air Rotary			Drill E Size/	Bit Tricone		Total De Drilled (epth feet)	56.4
Drill Type	Rig	IR T3W Ingersoll Rand			Drillin Contr	g Cascade Drilling	Inc.	Top of F Elevation	PVC n (feet)	480.80
Grou	Indwater	39.32 feet bgs on 12/20	/02 080	0	Hamr Drop	ner Weight/ NA (lbs/in.)		Approx. Elevatio	Surface n (feet)	477.89 NGVD
Dian Hole	neter of (inches)	10 Diameter of Well (inches)	2		Type Well	of Schedule 40	PVC V-wrap	Screen Perforat	ion	0.010"
Type	of Pack	20/40, 10/20 Silica			Type/ of Se	Thickness bentonite (2'- eal(s) interval (46-5	43' bgs); filter sand (4 6')	1'-56' bg	js); cem	ent (0'-2'); screen
Com	ments	Monitoring well coordi	nates:	Eastir	ng: 11	54434.64 Northing: 140	735.34			
	-	SAMPLES						SS	uo	
Elevation feet	Depth, feet	Type Number	Blows/foot	Headspace (ppm)	Graphic Log	MATERIAL D	ESCRIPTION	Drilling Progre (24-hour clock	Complet Log	REMARKS AND WELL DETAIL
475	0- - - 5- - - -	Υ <u></u>	Ш			Reddish-brown silty CLA to medium plasticity, trac	Y (CL) - moist, soft, low e of fine sand			0-56 feet: No odor or visual evidence of contamination
47(46) - - - - - - -					Reddish-brown clayey Sl (ML-CL) - moist, soft to n plasticity, trace fine sand	LT to silty CLAY			
-46(15							- 1015 - -		
-45	20					Same as above - medium fine sand	n stiff, trace to some	-		

P	rojec rojec	t: Land Locatio	fill 4/Demoliti on: Camp Boi	on Are nnevill	ea 1 e, W/	Ą		Log of	Boring	L4-MW07B
له د	rojec	Numbe	r: 53-F00723	23.00					Sheet 2	of 2
Elevation	feet	Type	SAMPLE:	Blows/foot	Headspace (ppm)	Graphic Log	MATERIAL D	ESCRIPTION	Drilling Progress (24-hour clock) Well Combletion	REMARKS AND WELL DETAIL
-4	50	0-					Same as above Same as above - Grayish yellow gravel	-brown, trace fine		
0RP1.GDT Printed: 1/17/03	45 3 40	5					• • •		1100	
.cB_L4.GPJ; Data Template:WC_C	4	- 0					Same as above - Trace ye black angular rock fragmer	llow fine gravel, trace ts		39.32" Static groundwa level measured on 12/20/02 at 0800 Groundwater encountered at approximately 40 feet bgs on 12/19/02 at 1110
-43	4! 0 50	5- - - -					Apparent top of weathered Medium grey to black AND granular, porphyritic, mosti noticeable amounts of horr occurring as phenocrysts, o	bedrock unit ESITE - finely y plagioclase, some blende and biotite guartz nodules		
-42	5							-		
-421	0						Soil boring terminated at 56 on 12/19/02	.4 feet bgs at 1150		

Ρ	BS	(503) 248-02 (503) 248-02	39 23		Project 1697	t Nu 8.00	mber: 4		Boring/Well Number: Sheet L4-MW17 1 of 1
Pr Pr Dr Ge Sc	oject Nar oject Loc iller/Equi eologist/E ample Me	me: cation: pment: ingineer: thod:	CAN LAC CAS AND DAN	IP BON AMAS SCADE I DREW H IES AN	NEVILLE CREEK/ DRILLING ARVEY D MOOR	LAN S/ A E S/	IDFILL 4 IR ROTAR AMPLER	Y	TOC Elevation (feet above datum): 361.48 Surface Elevation (feet above datum): 358.81 Start/End Date: 5/17/04 Hole Depth: 15 FEET Outer Hole Diameter: 8 INCH
Depth (feet, BGS)	STEEL COVER	SLIP CAP CONCRETE O' TO 1' STEEL COLLAR	Sample Interval	PID Reading (ppm)	e Data Sample Number	Blows/ft.	Lithologic Column		Soil Description
2 3 4 5 6 7 7 7 7 7 7 7 10 11 12 11 12 13 14 15 14 15 11 12 11 12 11 		 BENTONITE SEAL 1' TO 4' 2" SCH. 40 PVC BLANK 10-20 SILICA SAND 2" SCH. 40 - PVC SCREEN 0.01" SLOT 						Becon ■ C Bott Bott Well f concre	Gray BASALT. Moderately to slightly weathered. Gray BASALT. Moderately to slightly weathered. nes unweathered at 9 feet. Groundwater at 10.06' on 6-14-04. Groundwater at 10.06' on 6-14-04.
- 18 - 19									

PBS	(503) 248-19 (503) 248-02	39 23		Projec 1697	t Nu 8.00	mber: 4	Boring/Well Number: Shee L4-MW18 1 of	t 1
Project No Project Lo Driller/Equ Geologist/ Sample Mo	ame: ocation: ipment: Engineer: othod:	CAM LAC. CAS AND DAM	IP BON AMAS CADE L REW H IES AN	INEVILLE CREEK/ DRILLING ARVEY D MOOR	LAN G/ AI RE SA	IDFILL 4 IR ROTARY AMPLER	TOC Elevation (feet above datum): 362.48 Surface Elevation (feet above datum): 360 Start/End Date: 5/18/04 Hole Depth: 20 FEET Outer Hole Diameter: 8 INCH	.47
(S) Well Const treet STEEL_ COVER	SLIP CAP CONCRETE 0' TO 1' STEEL COLLAR	Sample Interval	PID Reading (ppm)	e Data Sample Number	Blows/ft.	Lithologic Column	Soil Description	
	BENTONITE SEAL 1' TO 8' - 2" SCH. 40 PVC BLANK - 10-20 SUICA SAND - 2" SCH. 40 PVC SCREEN 0.01" SLOT	3.5'-5'		S-1	29	0-5': Sligh 3'-15 Deco Grad depth Wet a	Brown, sandy SILT with gravel and trace cobbles. dy moist to moist, medium stiff. clay at 3' depth. 5': Gray SILT with sand. Slightly moist, stiff. mposed basalt with remnant rock texture to 8' depth. es to mottled brown-gray-tan, sandy SILT with clay at 8' . Highly weathered basalt. t 11'. Groundwater at 11.34' on 6-14-04.	
- 14 		17–18.5		S–3	50 for 6"	15.5'- 16'-2(weat	 16': Gray clayey SILT with trace sand. Wet, medium stiff to hard. ': Dark green to gray, clayey SAND. Wet, hard. Highly ered to decomposed basalt. 	

TABLE 4. CONSTITUENTS DETECTED IN GROUNDWATER SAMPLES - 2nd QUARTER 2007

									Total Met	als (µg/L)						VOCs (µg/L)	SVOCs (µg/L)	Petrole	um Hydro (mg/L)	carbons	Ordnance Compour	Explosives nds (µg/L)	NG (µg/L)	PETN (µg/L)	Picric Acio (µg/L)	Perchlorate (μg/L)	TOC (mg/L)	DOC (mg/L)	TSS (mg/L)	Alkalinity (HCO3)	Alkalinity (CO3)	lons (results above detection limits shown
Sample No.	Sample Date	Sample Location	Antimony	Arsenic	Beryllium	Cadmium	Chromium (total)	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc			имтрн-dx	Oil Range	NWTPH-Gx	ХМН	RDX								(mg/L)	(mg/L)	
5LCMW01SW	6/21/2007	Lacamas Cr.	0.188(J)	0.231(J)	ND	ND	3.87(J) ND	ND	ND	2.40	0.264(J)	ND	ND	2.83(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	42	< 4.0	chloride 1.3 mg/L
5LCMW01DW	6/21/2007	Lacamas Cr.	0.096(J)	0.386(J)	ND	0.131(J) 1.01(J) ND	ND	ND	1.16	ND	ND	ND	3.19(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	44	< 4.0	chloride 1.5 mg/L
5LCMW02SW	6/21/2007	Lacamas Cr.	0.247(J)	0.431(J)	ND	ND	ND	ND	ND	ND	0.616(J)	0.184(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	42	< 4.0	chloride 1.6 mg/L nitrate as N 0.23 mg/L; sulfa
5LCMW02DW	6/21/2007	Lacamas Cr.	0.077(J)	0.570(J)	ND	0.104(J	0.769(1) ND	ND	ND	0.961(J)	0.122(J)	ND	ND	2.50(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	44	< 4.0	as SO ₄ 1.0 mg/L; chloride 2. mg/L
5LCMW03SW	6/22/2007	Lacamas Cr.	ND	0.544(J)	ND	ND	0.206()) ND	ND	ND	0.534(J)	0.145(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	42	< 4.0	nitrate as N 0.25 mg/L; chlor 1.5 mg/L
5LCMW03DW	6/22/2007	Lacamas Cr.	ND	0.797(J)	ND	ND	0.312() ND	ND	ND	0.624(J)	ND	ND	ND	2.17(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	44	< 4.0	nitrate as N 0.33 mg/L; chlori 1.7 mg/L nitrate as N 1.1 mg/L; chlori
5LCMW04SW	6/22/2007	Lacamas Cr.	ND	0.145(J)	ND	ND	0.621(.) ND	ND	ND	0.767(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	3	38	< 4.0	2.7 mg/L sulfate as SO ₄ 1.7 mg/L;
5LCMW04DW	6/22/2007	Lacamas Cr.	ND	1.10	ND	ND	0.589(.) ND	ND	ND	0.761(J)	ND	ND	ND	2.82(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	< 2	49	< 4.0	chloride 1.9 mg/L
5L4MW01AW	6/19/2007	Landfill 4	nt	nt nt	nt nt	nt nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND ND	nt	nt	nt	nt	ND ND	ND ND	ND ND	ND ND	nt	1.9 ND	nt	nt	nt nt	nt nt	nt	nt
5L4MW01DW 5L4MW02AW	6/19/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	3.2	20	ND	ND	nt	170	nt	nt	nt	nt	nt	nt
5L4MW02BW	6/19/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	Detect: see VOC table	nt	nt	nt	nt	3.9	78(E)	ND	ND	nt	290	nt	nt	nt	nt	nt	nt
5L4MW03AW	6/20/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	ND	3.2	ND	ND	nt	94 44	nt	nt	nt	nt	nt	nt
5L4MW04AW	6/19/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	ND	1.8	ND	ND	nt	40	nt	nt	nt	nt	nt	nt
5L4MW05AW	6/20/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	ND	2.5	ND	ND	nt	39	nt	nt	nt	nt	nt	nt
5L4MW17W	6/18/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	ND	ND	ND	ND	nt	1.7	nt	nt	nt	nt	nt	nt
5L4MW18W	6/18/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	ND	ND	ND	ND	nt	ND	nt	nt	nt	nt	nt	nt
5L4MW425W field duplicate of 5L4MW02BW)	6/19/2007	Landfill 4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	Detect: see VOC table	nt	nt	nt	nt	2.9	58(E)	ND	ND	nt	290	nt	nt	nt	nt	nt	nt
PD for duplicate 5L4MW02BW																					29%	29%				0%						
AS/MSD (field uplicate of 51 CMW01DW)	6/21/2007	Lacamas Cr	0.096(1)	0.386(1)	ND	0 131(1	1.0150) ND	ND	ND	1 161	ND	ND	ND	3 187(1)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	nt	<1	44	0	chloride 1.5 mg/L
5LCMW415W field duplicate of 5LCMW03DW)	6/22/2007	Lacamas Cr	0.181(1)	0.788(1)	ND	ND	0.304(ND	ND	0.607(1)	0.188(1)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<10		-2		< 4.0	nitrate as N 0.29 mg/L; chlor
PD for duplicate 5LCMW03DW	0/22/2001	Eactimus Cr.	0.101(3)	1%	ND .	ND	3%			ILD.	3%	0.100(3)			T(D)	- HD	THE .			HD.	nb	THD .		THE .			< 1.0	< 1.0	~~2	0%	× 4.0	1.7 mg/L
5LCMW420W field equipment insate)	6/20/2007	Lacamas Cr.	0.26(J)	ND	ND	0.143(J	0.991(1) ND	ND	ND	0.216(J)	ND	ND	ND	ND	Detect: see VOC table	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 1.0	< 1.0	<2	< 2	< 2.0	none above detection limit
5LCMW430W metals blank; eionized water)	6/20/2007		ND	ND	ND	0.372(J	0.456(1) ND	ND	ND	0.735(J)	ND	ND	ND	ND	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
rip Blank 1	6/18/2007		nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ND	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
пр втапк 2	6/19/2007		nı	nı	nı	nı	nı	nı	nı	nı	nı	nı	nı	nı	nı	Detect: see	nı	nı	nı	nt	nı	nı	nı	nı	nı	nı	nı	nt	nı	nı	nı	n
rip Blank 3	6/20/2007		nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	VOC table Detect: see	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
rip Blank 4	6/21/2007		nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	VOC table Detect: see	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ab detection limit	0/2/2007		nt 0.08	nt 0.03	nt 0.02	nt 0.02	0.04	0.08	0.002	0.02	nt 0.04	nt 0.01	nt 0.02	nt 0.01	nt 0.02	voc table	nt varies	nt 0.10 mg/L	nt 0.40 mg/L	nt 0.025 mg/L	nt 0.48-0.60 µg/L	nt 0.48-0.60 µg/I	nt 2.4 μg/L	nt 1.1 μg/L	nt 0.94-1 μg/L	nt 1.0 μg/L	nt 1.0 mg/L	nt 1.0 mg/L	nt 2.0 mg/L	nt 4 mg/L	nt 2 - 4 mg/L	nt see lab data report for limit
VA MTCA Math - 1	A Classin I	avals (uc/L)	n la	5	nla	5	50	2/2	15	1.2	r la	<i>n/a</i>	nlo	n/o	n la	Varias	Varias	500	500	1 000	n/s	n/o	r la	n/2	n/o		nla	nla	nla	nla		
VA MTCA Method	B Levels (119	ν/L)	14-8	5	0.02	5	50	592	15	4.800	320	80	80	1.1	4,800	varies	varies	500	500	1,000	ii/a	11/ 4	11/a	11/ a	11/ a	11/4	11/ a	11/ a	11/4	n/a	11/ a	11/4

Only detected analytes are shown; see laboratory reports for complete in t - Sample not tested $\mu g/L$ - micrograms per liter mg/L - milligrams per liter ND - Not detected to the limit of laboratory detection indicated n/a - Not applicable. MTCA Method A Cleanup Level not provided. Detect - VOC compound detected; see separate VOC table J or E = value estimated RPD = relative percent difference between sample versus duplicate wn; see laboratory reports for complete listing of compounds tes

RPD = relative percent difference between sample versus duplicate WA MTCA Method B Levels from "Multi-Sites Investigation Report", Shannon & Wilson, 1999.

PBS Engineering and Environmental August 15, 2007

Camp Bonneville Vancouver, Washington

DRAFT	TABLE 5. SUMMARY CAMP BO	DISSOLVEI Y OF GROU NNEVILLE,	D META NDWAT , VANCC	LS ANI [ER LA])UVER,) DOC BORAT WASH	- 2nd QU YORY AN INGTON	ARTER 2 JALYSIS J	2007								
							Dis	solved Me	≥tals - field fi	iltered (µ	g/L)					DOC (mg/L)
Sample No.	Sample Date	Sample Location	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc	
15LCMW01SW	6/21/2007	Lacamas Cr.	ND	0.160(J)	ND	0.096(J)	1.18	ND	ND	ND	1.31	ND	ND	ND	2.27(J)	< 1.0
15LCMW01DW	6/21/2007	Lacamas Cr.	ND	0.382(J)	ND	ND	0.756(J)	ND	ND	ND	1.33	ND	ND	ND	1.99(J)	< 1.0
15LCMW02SW	6/21/2007	Lacamas Cr.	0.303(J)	0.443(J)	ND	0.099(J)	0.632(J)	ND	ND	ND	1.09	ND	ND	ND	ND	< 1.0
15LCMW02DW	6/21/2007	Lacamas Cr.	0.087(J)	0.487(J)	ND	ND	0.273(J)	ND	ND	ND	0.601(J)	ND	ND	ND	2.37(J)	< 1.0
15LCMW03SW	6/22/2007	Lacamas Cr.	0.205(J)	0.499(J)	ND	ND	0.356(J)	ND	ND	ND	0.781(J)	ND	ND	ND	ND	< 1.0
15LCMW03DW	6/22/2007	Lacamas Cr.	ND	0.745(J)	ND	ND	0.596(J)	ND	ND	ND	1.60	ND	ND	ND	ND	< 1.0
15LCMW04SW	6/22/2007	Lacamas Cr.	ND	0.110(J)	ND	ND	0.585(J)	ND	ND	ND	.0846(J)	ND	ND	ND	2.11(J)	< 1.0
15LCMW04DW	6/22/2007	Lacamas Cr.	ND	1.16	ND	ND	0.481(J)	ND	ND	ND	1.07	ND	ND	ND	2.89	< 1.0
MS/MSD (field duplicate of 15LCMW01DW)	6/21/2007	Landfill 4	ND	0.382(J)	ND	ND	0.756(J)	ND	ND	ND	1.33	ND	ND	ND	1.99(J)	< 1.0
15LCMW415W (field duplicate of 15LCMW03DW)	6/22/2007	Lacamas Cr.	ND	0.787(J)	ND	ND	0.349(J)	ND	ND	ND	1.41	ND	ND	ND	ND	ND
RPD for duplicate 15LCMW03DW			1	5%			52%				13%					
15LCMW420W (field equipment rinsate)	6/20/2007	Lacamas Cr.	ND	ND	ND	0.388(J)	0.835(J)	ND	ND	ND	1.13	ND	ND	ND	ND	< 1.0
15LCMW430W (metals blank; deionized water)	6/20/2007		ND	ND	ND	0.609(J)	0.585(J)	ND	ND	ND	0.138(J)	ND	ND	ND	1.85(J)	nt
Lab detection limit			0.08	0.03	0.02	0.02	0.04	0.08	0.002	0.013	0.04	0.01	0.02	0.01	0.02	1.0
WA MTCA Method	d A Cleanup Le	evels (µg/L)	n/a	5	n/a	5	50	n/a	15	2	n/a	n/a	n/a	n/a	n/a	n/a
WA MTCA Method	d B Levels (µg/	L)	1.4 - 8		0.02			592	-	4,800	320	80	80	1.1	4,800	
BOLD print indicate Only detected analy	OLD print indicates concentration exceeding WA MTCA Method A Cleanup Level nly detected analytes are shown; see laboratory reports for complete listing of compounds tested															

nt - Sample not tested ug/L - micrograms per liter J or E = value estimated

ND - Not detected to the limit of laboratory detection indicated n/a - Not applicable. MTCA Method A Cleanup Level not provided. RPD = relative percent difference between sample versus duplicate

WA MTCA Method B Levels from "Multi-Sites Investigation Report", Shannon & Wilson, 1999.

DRAFT	TABLE 6. 2nd QUAR SUMMAR CAMP BO	VOLATILI TER 2007 Y OF GRO NNEVILLE	E AND SE UNDWAT E, VANCO	EMI-VOL FER LAB DUVER, V	ATILE O ORATOF WASHING	DRGANIC RY ANAI GTON	C COMPC	DUNDS						
								,	VOCs (µg/l	I)			SVOC	s (μg/l)
Sample No.	Sample Date	Sample Location	Acetone	2-Butanone	Chloroform	1,1-Dichloroethane	1,1-Dichloroethene	Dichlorodifluoromethane	Methylene Chloride	1,1,1-Trichloroethane	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Benzoic Acid	bis(2-Ethylhexyl)phthalate
15L4MW02BW	6/19/2007	Landfill 4	3.2(J)	2.0(J)	ND	33	17	80	ND	51	0.65(J)	0.51(J)	nt	nt
15LCMW420W (field equipment rinsate)	6/20/2007	Lacamas Cr.	2.4(J)	ND	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
15LCMW430W (metals blank; deionized water)	6/20/2007		nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
15L4MW425W (field duplicate of 15L4MW02BW)	6/19/2007	Landfill 4	3.1(J)	1.8(J)	ND	32	15	69	ND	50	0.64(J)	0.52(J)	nt	nt
RPD for duplicate 15L4MW02BW			3%	11%		3%	13%	15%		2%	2%	2%		
Trip Blank 3	6/20/2007	Lacamas Cr.	0.79(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	nt	nt
Trip Blank 4	6/21/2007	Lacamas Cr.	1.1(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	nt	nt
Trip Blank 5	6/22/2007	Lacamas Cr.	ND 5.0	ND 5.0	ND 1.0	ND 1.0	ND 1.0	ND 1.0	1.0	ND 1.0	ND 1.0	ND 1.0	nt	nt
WA MTCA Method	A Cleanun Leve	els (ug/L)	5.0 n/a	5.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	1.0 n/a	3.3 n/a	1./
WA MTCA Method A Cleanup Levels (µg/L) n/a n/a					11/a	11/a	11/a	11/a	11/a	11/a	11/a	11/a	11/a	11/a

Note:

Only analytes detected in at least one sample are shown; see lab reports for complete listing of compounds tested.

ND - Not detected to the limit of laboratory detection indicated

µg/L - micrograms per liter

J = value estimated

B = also detected in the method blank associated with the sample

n/a - Not applicable. MTCA Method A Cleanup Level not provided.

RPD = relative percent difference between sample versus duplicate

nt - Sample not tested

						TARL	F 7					· · · · · ·
							₽/ Атер самрі	TE Ind O	тартг	D 3007		ļ
			FIELD P	AKAMEI	EKS FUK	JRUUNDWA	ALEK SAMPL	LES - 2na Q	UAKIE	R 2007		ļ
				CAM	P BONNEV	ILLE, VANC	COUVER, WA	ISHINGTO	N			
						Fie	eld Parameter	s at Time of	i Samplir	ng		
Sample No.	Date	Time	Depth to Water in Feet*	Water Elevation in Feet amsl **	Temp. (degrees C)	Conductivity (µS/cm)	Oxidation Reduction Potential (millivolts)	Turbidity (NTUs)	рН	Dissolved Oxygen (mg/L)	Color and Cloudiness	Notes
15LCMW01SW	6/21/2007	1100	5.85	284.31	12.0	91	129.9	1.02	6.44	6.99	clear	
					,							collected MS/MSD
15LCMW01DW	6/21/2007	1245	5.21	285.04	13.1	98	93.1	2.33	6.47	7.36	clear	duplicate
15LCMW02SW	6/21/2007	1500	6.82	284.37	13.2	92	129.5	0.93	5.84	8.62	clear	
15LCMW02DW	6/21/2007	1650	6.60	284.99	12.7	97	133.5	1.74	6.94	7.36	clear	
15LCMW03SW	6/22/2007	1255	6.46	284.45	11.3	91	135.3	0.63	6.28	8.19	clear	
15LCMW03DW	6/22/2007	1045	6.34	284.64	11.3	100	152.0	nr	6.27	7.19	clear	collected duplicate
15LCMW04SW	6/22/2007	1615	6.44	285.19	12.6	94	154.9	3.99	5.82	5.82	clear	
15LCMW04DW	6/22/2007	1500	5.96	285.83	11.9	110	111.6	0.93	6.51	6.99	clear	
15L4MW01AW	6/19/2006	1055	16.21	515.19	12.2	36	228.7	32	5.04	10.28	clear	
15L4MW01BW	6/19/2006	0950	13.42	516.18	10.4	26	205.7	4.72	5.18	7.89	clear	
15L4MW02AW	6/20/2007	1000	27.49	492.44	14.6	41	238.6	nr	4.86	7.89	clear	
15L4MW02BW	6/19/2006	1630	31.22	487.24	15.0	69	-25.6	nr	5.6	2.08	clear	collected duplicate
15L4MW03AW	6/20/2007	1120	29.60	485.25	15.9	22	210.7	8.47	4.93	6.57	clear	
15L4MW03BW	6/20/2007	1350	26.80	484.67	14.6	49	136.3	nr	5.51	5.91	clear	
15L4MW04AW	6/19/2006	1215	27.32	484.47	14.8	18	199.0	6.15	5.19	7.99	clear	
15L4MW05AW	6/20/2007	1515	23.88	486.03	13.2	28	216.2	4.67	5.11	6.80	clear	
15L4MW07BW	6/18/2007	1600	39.91	440.51	12.1	34	191.0	10.89	5.29	9.36	clear	
15L4MW17W	6/18/2007	1355	10.69	350.79	14.0	232	-36.4	11.81	7.11	6.09	clear	
15L4MW18W	6/18/2007	1450	11.78	351.06	12.6	130	90.7	46.7	6.20	11.10	clear	
	·											
Notes:	$* = depth in f_{\ell}$	eet measure	d from top of	i well PVC ci	asing.	-	-					
1	** = water lev	vel in feet al	bove mean se	a level, relati	ve to top of cas	ing elevation surv	vey (see elevations	s, Table 8)				
	nr = value not	i recorded		-	-	0						
	Field parameters of temperature, conductivity, oxidation-reduction potential, dissolved oxygen, and pH measured with a YSI Model 556 meter.											

	CAMP BONNEVILLE, VANCOUVER, WASHINGTON										
Well Number in PBS Work Contract	WADOE Well Tag Number	Well Location	Total Depth (ft)*	Screened Interval (ft)**	Top of PVC Casing Elevation (feet above mean sea level)	Well Number on Steel Casings/Caps (CHPPM No.)					
LC-MW01S	AHA-359	Lacamas Cr.	22.73	15-20	290.16	LC-MW01S					
LC-MW06D	AHA-358	Lacamas Cr.	42.20	30-40	290.25	LC-MW01D					
LC-MW02S	AHA-364	Lacamas Cr.	17.50	12.5-17.5	291.19	LC-MW02S					
LC-MW07D	AHA-357	Lacamas Cr.	37.85	25-35	291.59	LC-MW02D					
LC-MW03S	AHA-363	Lacamas Cr.	20.10	13-18	290.91	LC-MW03S					
LC-MW08D	AHA-362	Lacamas Cr.	39.40	27-37	290.98	LC-MW03D					
LC-MW04S	AHA-375	Lacamas Cr.	16.54	7-17	291.63	LC-MW04S					
LC-MW09D	AHA-361	Lacamas Cr.	37.00	25-35	291.79	LC-MW04D					
L4-MW01A	N/A	Landfill 4	30.40	N/A	531.40	L4-MW01A					
L4-MW01B	AGL-482	Landfill 4	55.40	43-53	529.57	L4-MW01B					
L4-MW02A	N/A	Landfill 4	40.20	N/A	519.93	L4-MW02A					
L4-MW02B	AGL-483	Landfill 4	74.60	62-72	518.46	L4-MW02B					
L4-MW03A	AGL-466	Landfill 4	48.90	41-46	514.85	L4-MW03A					
L4-MW03B	AGL-484	Landfill 4	62.90	49-59	511.47	L4-MW03B					
L4-MW04A	AGL-465	Landfill 4	43.40	33-43	511.79	L4-MW04A					
L4-MW05A	AGL-467	Landfill 4	36.60	30-35	509.91	L4-MW05A					
L4-MW07B	N/A	Landfill 4	58.60	46-56	480.42	L4-MW07B					
L4-MW17	ALB-252	Landfill 4	15.00	5-15	361.48	L4-MW17					
L4-MW18	ALB-251	Landfill 4	20.00	10-20	362.84	L4-MW18					

TABLE 8

Notes:

* = depth in feet measured from top of well PVC casing ** = screened interval reported on well completion logs

N/A = not available

940 South Harney St. Seattle, WA 98108 (206) 767-5060 FAX (206) 767-5063

FAX Co	ver Sheet	
То:	FAX Number:	
Company:	Date:	8-24-07
From:	No. of Pages (including cover page):	2
Preliminary Results for:		
Workorders(s): <u>MA</u>		
SDG (s): (VAB35		
Analysis: TSS, TDS, Perc		7777 2017 2017 2017 2017 2017 2017 2017
Verified by: Aller		
Do these samples need to be re-analyzed? If yes, which samples?:	Yes	No
Reason:		
-		
The preliminary results for the re-analysis will be	e faxed on (date):	

Laucks does not certify that these results meet NELAC Standards because all NELAC required elements are not included in the facsimile. Please refer to the full report to review all NELAC required elements.

The information contained in or attached to this FAX message is intended only for the confidential use of the individual(s) named above. If you are not the named recipient, or an agent responsible for delivering it to the named recipient, you are hereby notified that you have received this document in error, and that review, dissemination, or copying of this communication is prohibited. If you have received this communication in error, please notify us immediately by telephone at 206-767-5060, and return the original documents to us by mail at the address listed above.

Laucks Testing Laboratories, Inc.

Final Results

Client: SDG Number:	PBS Engi Environm CAB35	ineering and ental		Pro	oject:		Camp B	onneville		
Sample Number:	L4MW17F	5		Dat	te/Time	Collected	: 08/13/20	07 12:26		
Lab Sample ID:	CAB35-00)1		Dat	te/Time	Received	: 08/14/20	07 08:20		
Method:	E160.1			Uni	it:		mg/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Total Dissolved Solids	(TDS)	TDS	10	230		20	20	08/15/2007	08/17/2007	R020502
Method:	E160.2			Un	it:		mg/L		· · · ·	
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Suspended Solids, Tota	ıl	TSS	1	4		2	2	08/20/2007	08/22/2007	R020669
Method:	E314.0			Un	it:		ug/L			
Analyte		CAS	DF	Result	Q	PQL	MDL	Prepared	Analyzed	Run Seq.
Perchlorate		14797-73-0	1	1.0	U	1.0	0.14	08/21/2007	08/22/2007	R020712

LAUCKS TESTING LABORATORIES, INC. SDG Closure for CAB35

Client: PBS Engineering and Environmental Office Due: 9/4/2007 Client Due: 9/11/2007

PM: Kara Godineaux Fax Due: 8/28/2007

	Required SDG Attributes							
Attribute	Value							
Bound or Unbound Package	n/a							
Data Package Recipients	Andrew Harvey							
Data Package Type	Level III							
EDD Recipients	Andrew Harvey							
EDD TAT	28 days							
EDD Type	TerraBase							
Forms Summary	Yes							
Hard Copy Data Package	No							
Invoice Recipient	Accounts Payable							
Number of Data Packages	1							
PDF	Yes							
Penalties	Yes							
Preliminary Data Recipients	Andrew Harvey							
ProjectID	Camp Bonneville							
ProjNumber	Task 6206							
Sample Receipt Confirmation	lyes							
Ship Package w/o EDD	NO							

* = Attribute is not present or not defined.

	Defined Addresses	
Address Type	Address	
	Required Addresses	
Report Address	4412 SW Corbett Portland, OR 97239	
Invoice Address	n an an an an an an an an an an an an an	
EDD Address	Not Defined	
Validator Address	Not Defined	
	Additional Addresses	
No Additional Addresses		

Contact Type	Contact	Phone
	Required Contact	S
Report Contact	Andrew Harvey	503-417-7693 (Office) 503-248-1939 (FAX - Office) 503-880-2923 (Mobile)
Invoice Contact	Accounts Payable	
EDD (Technical) Contact	Not Defined	
Validator Contact	Not defined	
	Additional Contac	t_S
No Additional Contacts		

		Assigned Tests	
Method Number	# of Samples	Matrix	SDG Packet
160.2	1	Water	Conventionals

	Page	2	of	2
--	------	---	----	---

314.0	I	Water	Conventionals	Y			
[!] = Packet has not been imported.							

FORM LTL-PM-52.0

LAUC	KS TESTING LA	<u>BORATORIES, I</u>	<u>INC SA</u>	MPLE CONFIRMATION	I LOG			
Sample ID (SDG- #)	VTSR	Collected On	Client ID	160.2 Total Suspended Solids	314.0 Perchlorate			
CAB35- 001	08/14/2007 08:20 AM	08/13/2007 12:26 PM	L4MW17P	IW17P A-				
Approved By: Notes:	Mara	Jodn	Wan	on: V 8/14/6	2007			
	Sample	s identified with a '*'	client has r	equested QC for				
LEGEND: -:	Started , +:Complete	d , IN:Logged In , P:	Preparation	, A:Analysis , X:Cancelled, PL	:Pre-logged			
		FORM LTI	PM-8.0					

Finance Charges and/or Collection Fees may be applied to delincuent accounts.	RELINCUISTED BY (SIGN AND PRINT)	FOR EACH SAMPLE.	2. BE SPECIFIC IN TEST REQUESTS.	1. USE ONE LINE PER SAMPLE. NAME	A. A standard turnaround time is assumed unless otherwise marked.				Second Second			Territore Blank 8/17/07	1 L.YMW 1712 \$1/13/01 1226	AR SAM SAMPLE (D / LOCATION DATE TIME	JOBPO. NO .: 78459,000, TO.SK 6206	TELEPHONE: 585-417-7643FAX505-248-022	PROJECT CONTACT. Andrew Harvey	PROJECT NAME: COMP BONNEVILLE GV	ATTENTION: Andrew Hurry	Cottand, OR 97239	ADDRESS: 4412 Sw Short Ave.	COMPANY: PBS ENGINEEVINA & ENVIRONMENT	THIS INFORMATION WILL BE USED FOR REPORTING/BILLING' (SEE BELOW)
and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set	1305 Myal In J. RECEIVED BY SIGN AND PRIM		OITY, STATE, ZIP	ING INFORMATION, IF DIFFERENT THAN ABOVE ADDRESS	B. The laboratory may not be responsible for missed holding time for samples received with les								3	MATRI CON	x. war of No. 1 2 2 1	5 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1	a or s	ise of the second secon		WORK ORDER ID#SUBM		A3112 PAGE	CHAIN OF CUSTODY RECORD SDG # CA
	11 G \$1 Day 67 14 10 72 HRS. (75% SUR)		SUBJECT TO PRIOR	* RUSH TURNAROUND IS TOTAL NO. OF CONTAINERS	s than 50% of the analytical hold time remaining. Please contact the laboratory for further information.						1 temp 6/0x/	Instests on		COMMENTS, SPECIAL INSTRUCTIONS					TESTS TO PERFORM	TTED AT: 1106 Ledwich Ave., Yakima, WA 98902 (309) 248-4095 FAX 452-1265	I CSUNG LADORAIOTICS, INC.		

ice Charges and/or Collection Fees may be applied to delinquent ac

Cooler Receipt Form Laucks Testing Laboratories, Inc.

SDG:	CAB35		Taken By:	CLIENT	
Cooler:	AAD731	r	Transferred:	FEDEX	
COC #:	43112				
Project:	Camp Bonneville (PBS Engineeri	ng and Envi	ronmental)		
Date samp	les were received at the laboratory:	8/14/2007			
Date coole	r was opened:	8/14/2007	8:20AM		
A. PREI	IMINARY EXAMINATION PHA	SE:			
1. Did coo if YE	ler come with a shipping slip (airbill, etc.)? S, record carrier name and airbill number:	? 862054469059)		YES
2. Were c	ustody seals unbroken and intact at the date	e and time of a	rrival?	· · · · · · · · · · · · · · · · · · ·	ABSENT
Date Or	n Custody Seal:	Custody Seals	Description:		
3 Were c	ustody papers sealed in a plastic bag and ta	aped inside to t	he lid?		YES
4. Did yo	u screen samples for radioactivity using the	e Geiger Count	er?		NO
5. Were c	ustody papers filled out properly (ink, sign	ed, etc.)?			YES
6. Did yo	u sign custody papers in the appropriate pla	ace?			YES
7. If requi	red, was enough cooling material present?				YES
8. Have d	esignated person initial here to acknowledg	ge receipt of co	ooler: <u>FG</u>		
B. <u>LOG</u>	-IN PHASE: Date	e sampleş were	logged-in:	8/14/2007 8:30AN	I
Logged-in	byElizabeth Golden(si	gn) Gliyal	with D	den	
9. Descrit	be type of packing in cooler:				
WAT	ER				
10. Were	all bottles sealed in separate plastic bags?				NU
II. Were	labels in good condition?	··· · · · · ·			YES
12. Were	all bottle labels complete (1D, date, time sig	nature, preserv	auve,etc.)		I LO VEC
13, Did a.	in bottle labels agree with custody papers?	 6 d 0			YES
14. Were	correct containers used for the tests indical				YES
15. Were	the correct pHs observed?	indiantad?			YES Vec
16. Was a	a sufficient amount of sample sent for tests	malcated?	,		I E O
17. Were	bubbles absent in VOA samples?				YES
18. Temp	eratures: 4.6				
DISCREP	ANCIES:				

Supplemental Sample Receipt Log Laucks Testing Laboratories

SDG: CAB35 Cooler: AAD731 Temperatures: 4.6 COC #: 43112

Sample	Bottle #	Bottle Description	pH	Bubbles
CAB35-001	0001	Unknown	7	N/A
	0002	Unknown	7	N/A
	0003	Unknown	7	N/A

 $\land llowable temperature and pH ranges (neutral pH defined as a value between 5 and 9)$

Temperature	Allowable temperature range is 4+/- 2 degrees Celsius
Acid Preserved pH	pH must be less than 2
Base Preserved pH	pH must be greater than 12
NC	Not Checked for pH