

1329 North State Street, Suite 301 | Bellingham, WA 98225 | 360 594 6262 | www.maulfoster.com

November 24, 2020 Project No. 0747.01.12

Michael R. Warfel, LG, LHG, RG Washington State Department of Ecology 3190 160th Avenue SE Bellevue, WA 98008

 Re: Monitoring Well Installation and First Quarterly Compliance Groundwater Monitoring Event
 North Cascade Ford Property, Sedro-Woolley, Washington
 VCP Number: NW3031, CSID: 12075, FSID: 58313566

Dear Mr. Warfel:

On behalf of VSF Properties, LLC, Maul Foster & Alongi, Inc. (MFA) has prepared this letter report describing monitoring well installation, development, and sampling activities conducted at the North Cascade Ford property, located at 116 W Ferry Street in Sedro-Woolley, Washington (the Property) (see Figure 1). The North Cascade Ford Site (the Site) includes the Property and a portion of the adjacent property to the north, owned by the Burlington Northern Santa Fe Railway Company (BNSF) (see Figures 1 and 2).

Activities were conducted in accordance with the groundwater compliance monitoring plan (CMP), the addendum to the groundwater CMP (MFA, 2020a,c), and requirements for Performance Monitoring per the Washington State Model Toxics Control Act (MTCA) (Washington Administrative Code 173-340-410(b)).

BACKGROUND

Previous investigations identified environmental impacts in three remaining areas of the Site, referred to as areas of concern (AOCs) 1 through 3 (see Figure 2) (MFA, 2015, 2017a,b, 2020b,c).

Chemicals of concern (COCs) in AOCs 1 through 3 include diesel-range organics (DRO), lube oil-range organics (ORO), gasoline-range organics (GRO), benzene, toluene, ethylbenzene, total xylenes (BTEX), and/or total naphthalenes.

Historical groundwater analytical results associated with monitoring wells in AOCs 1 and 2 and reconnaissance groundwater samples in AOC 3 are presented in Table 1.

In March 2020, a cleanup action was completed in AOCs 1 through 3 at the Site (MFA, 2020b). Cleanup included:

- Excavation and off-Site disposal of approximately 3,534 tons of petroleumcontaminated soil.
- Placement of clean backfill amended with an oxygen-releasing in situ bioremediation product.
- Excavation dewatering and treatment of approximately 124,200 gallons of impacted groundwater.
- Decommissioning and removal of a formerly unknown, abandoned underground storage tank (UST).
- Removal of hydraulic hoists and associated soil contamination.

Following implementation of the remedial action, the groundwater CMP and addendum to the groundwater CMP were developed in coordination with the Washington State Department of Ecology to implement performance groundwater monitoring the Site (MFA, 2020a,c). The purpose of performance monitoring per WAC 173-340(b) is to confirm that a cleanup action had attained cleanup levels.

FIELD AND ANALYTICAL METHODS

Monitoring well installation, development, and sampling activities were conducted in September and October 2020. Sample locations, sample depths, and chemical analyses are summarized in Table 2. Confirmatory soil sampling borings and compliance monitoring well locations are shown on Figure 2.

Confirmation Soil Sampling

Two soil samples were collected during the investigation: one from temporary boring GP79 and one from monitoring well MW10, as outlined in Table 2. A hand-held global positioning system device with sub-foot accuracy was used to navigate to boring and monitoring well locations on the Site. Soil borings and monitoring wells were advanced via direct-push GeoprobeTM drill rig.

Soil was screened with a photoionization detector (PID) to measure soil vapor headspace, and visual and olfactory observations were documented. Lithologic descriptions and PID screening results were recorded on boring logs (Attachment A), and sampling depths are summarized in Table 2. Soil was transferred directly into laboratory-supplied containers and submitted to Friedman & Bruya, Inc. (FBI) of Seattle, Washington, for analysis under standard chain-of-custody procedures.

Project No. 0747.01.12

Michael R. Warfel, LG, LHG, RG November 24, 2020 Page 3

Monitoring Well Installation and Development

On September 14, 2020, five monitoring wells (MW01R and MW09 through MW12) were installed via direct-push GeoprobeTM drill rig to a maximum of 20 feet below ground surface (bgs). Monitoring wells were constructed with 2-inch-diameter, polyvinyl chloride, prepacked, 0.010-inch slotted well screens and were completed with flush-mounted, traffic-grade monuments (see monitoring well completion details on boring logs, included as Attachment A).

On September 15, 2020, at least 24 hours after well installation, the monitoring wells were developed to remove sediment that may have accumulated during well installation and to improve the hydraulic connection with the water-bearing zone. Development consisted of surging and purging groundwater from the well casing until turbidity decreased and the purge water was clear (see well development forms in Attachment B).

Potentiometric Surface

On September 22, 2020, MFA measured static water levels in the compliance monitoring (see Table 3). A potentiometric surface map is provided as Figure 3. The estimated potentiometric surface contours are similar to those previously observed and indicate that shallow groundwater at the Site is hydraulically discontinuous. Excavation for the cleanup action allowed for detailed observation of subsurface conditions over a larger area of the Property. Pervasive discontinuous confining layers were observed, over relatively short distances. Groundwater contours continue to demonstrate essentially zero groundwater flux from the contaminant source areas.

Monitoring Well Sampling

MFA collected ten groundwater samples from nine compliance monitoring wells on the Property (MW01R, MW02R, MW04, MW06, MW07, and MW09 through MW12) on September 22, 2020, including a field duplicate sample from monitoring well MW11. Chemical analyses and analytical methods are detailed in Table 2.

Before the collection of groundwater samples, the water level was measured, and the well was purged at a U.S. Environmental Protection Agency-approved low-flow purge rate. A minimum of one well volume was purged and selected water quality field parameters (e.g., temperature, specific conductance, pH, turbidity) were allowed to stabilize prior to sample collection. During purging, the flow rates, water levels, and water quality parameters were recorded on field sampling data sheets (see Attachment C). Groundwater samples were submitted to FBI for analysis under standard chain-of-custody procedures.

Following consultation with Ecology, additional groundwater samples were collected from MW01R and MW10 on October 14, 2020. Samples were analyzed for GRO, DRO, ORO,

naphthalene, and extractable petroleum hydrocarbons/volatile petroleum hydrocarbons (EPH/VPH), see Table 2. Analytical data from the additional groundwater monitoring may be used to develop site-specific MTCA Method B cleanup levels (CULs) for the Site.

RESULTS

Laboratory analytical reports are provided as Attachment D, and analytical data is presented in Tables 4 through 6. MTCA Method A CUL exceedances of DRO and ORO are shown on Figure 4, and site trends for DRO and ORO concentrations are presented in Figures 5 and 6. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. Data validation memoranda summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods are included as Attachment E. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

AOC 1: Former Auto Repair Shop

On September 22, 2020, three groundwater samples were collected from monitoring wells MW01R, MW07, and MW09 (see Tables 2 and 5). GRO were detected in MW01R at 160 micrograms per liter (ug/L), well below the MTCA CUL of 1,000 ug/L.

DRO exceeded the MTCA Method A CUL (500 ug/L) in MW01R and MW09 at 1,900 ug/L and 640 ug/L, respectively. ORO were detected in MW01R and MW09 at concentrations above the MTCA Method A CUL at 610 ug/L and 620 ug/L, respectively. Xylenes were detected in MW01R at 3.7 ug/L, well below the MTCA Method A CUL of 1,000 ug/L. No other BTEX constituents were detected in the groundwater samples.

After discussing the September 22 monitoring results with Ecology, an additional groundwater sample from MW01R was collected on October 14, 2020. In addition to analyzing for GRO, DRO, ORO, and naphthalene, the sample was analyzed for EPH, and VPH. The EPH and VPH data allow for the calculation of Site-specific CULs

GRO, ORO, and naphthalene were non-detect. DRO was detected below the MTCA Method A CUL at a concentration of 200 ug/L. EPH and VPH results are presented in Table 6.

AOC 2: Former USTs

Two soil samples were collected during the investigation at temporary boring GP79 and the boring for monitoring well MW10. The samples were collected to assess previous exceedances of MTCA Method A CULs in samples taken from the base of excavations completed during the cleanup action. The follow up soil sample at GP79 was analyzed for GRO and the soil sample from the MW10 boring was analyzed for DRO and ORO. All soil samples were non-

detect for their respective analytes and confirms effective cleanup for soil in this AOC. Analytical results from soil sampling are included in Table 4.

On September 22, 2020, five groundwater samples were collected from monitoring wells MW02R, MW04, MW06, MW10, and MW12 and analyzed for GRO, DRO, ORO, and BTEX. GRO were detected in one monitoring well, MW10, at 370 ug/L, below the MTCA Method A CUL of 1,000 ug/L. DRO were detected in groundwater samples from all wells except MW06 and MW12; and detections ranged from 260 to 1,900 ug/L. DRO exceeded the MTCA Method A CUL in MW02R and MW10 at 780 ug/L and 1,900 ug/L, respectively. ORO were detected in one monitoring well, MW02R, at 450 ug/L, below the MTCA Method A CUL. No BTEX constituents were detected in the groundwater samples.

One additional groundwater sample from MW10 was collected on October 14, 2020 and analyzed for GRO, DRO, ORO, EPH, VPH, and naphthalene. GRO, DRO, ORO, and naphthalene were detected, but only DRO exceeded its respective MTCA Method A CUL at a concentration of 2,000 ug/L. EPH and VPH results are presented in Table 6.

AOC 3: Former Coal Storage Sheds/Possible Buried Object

Two groundwater samples, one primary and one field duplicate sample, were collected from MW11 and analyzed for GRO, DRO, ORO, BTEX, and total naphthalenes. Ethylbenzene, xylenes, GRO, DRO, and total naphthalenes were their respective MTCA Method A CULs. Benzene, toluene, and ORO were not detected.

SUMMARY AND DISCUSSION

Results from the soil sampling and groundwater monitoring indicate the following:

- Localized groundwater flow variations are likely influenced by variabilities of the subsurface soil and hydrogeologic conditions at the Property. Variability in the subsurface and the presence of discontinuous confining layers create hydraulic discontinuities across the property.
- AOC 1
 - DRO and ORO concentrations remain above their respective MTCA Method A CULs in groundwater at MW09.
 - DRO and ORO concentrations were below MTCA Method A CULs in groundwater at MW01R in the sample from October 14, 2020.

• AOC 2

- Soil at GP79 and MW10 were non-detect for COCs. Therefore, no detections of DRO, ORO, or GRO remain above MTCA Method A CULs in soil on the Property.
- DRO concentrations remain above the MTCA Method A CUL in groundwater at monitoring wells MW02R and MW10.
- DRO concentrations remained relatively consistent between the September 22 and October 14, 2020 monitoring events at MW10.
- AOC 3
 - No detections of COCs exceeded their respective MTCA Method A CULs.

During the March 2020 remedial action, access restrictions on BNSF property prevented the removal of all petroleum impacted soil on BNSF's property. To treat residual impacts, bioremediation-amended backfill was placed in the excavations at varying depths in each AOC based on local lithologic and hydrogeologic conditions; bioremediation-amended backfill was placed from approximately 5 to 11 feet bgs in AOC 1, 5 to 8 feet bgs in AOC 2, and 5 to 10 feet bgs in AOC 3 (see Figures 4-1 through 4-3 of the remedial completion report [MFA, 2020b]).

The average depth to groundwater during the September and October 2020 monitoring events was approximately 10.4 feet bgs and 8.7 feet bgs, respectively. The average depth to groundwater decreased across the Site; however, groundwater in MW01R decreased by 2.12 feet, while depth to groundwater in MW10 decreased by only 0.5 feet. Concentrations of DRO and ORO decreased to below MTCA Method A CULs at MW01R in AOC 1 between these events but remained relatively consistent at MW10 in AOC 2.

This suggests that due to the low water table, groundwater may not have interacted with the amended backfill in AOC 2, but may have begun interacting with the amended backfill in AOC 1. It is anticipated that in the upcoming rainy season, the water table will continue to rise, and more groundwater will interact with amended backfill, decreasing residual DRO and ORO concentrations in groundwater at the Site.

The next quarterly groundwater monitoring event is scheduled for December 2020.

If you have any questions, please feel free to contact either of us.

Sincerely,

Maul Foster & Alongi, Inc.

11-24-2020

ese

James J. Maul, LHG Principal Hydrogeologist

Carolyn R. Wise, LG Project Geologist

- Attachments: Limitations References Tables Figures A – Boring Logs B – Well Development Forms C – Water Field Sampling Data Sheets D – Laboratory Analytical Reports
 - E Data Validation Memoranda
- cc: Larry Setchell, Setchell NW Legal Services, P.S. Holly Stafford, Chmelik, Sitkin & David, P.S.

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report. MFA. 2015. Preliminary remedial investigation and feasibility study, North Cascade Ford property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Prepared by Maul Foster & Alongi, Inc., Bellingham, Washington. December 9.

MFA. 2017a. Letter (re: 2016 data gap investigation results, North Cascade Ford property, Sedro-Woolley, Washington) to L. Setchell, Helsell Fetterman LLP, from H. Good and J. Clary, Maul Foster & Alongi, Inc., Bellingham, Washington. January 24.

MFA. 2017b. Supplemental data gap investigation report, North Cascade Ford property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Prepared by Maul Foster & Alongi, Inc., Bellingham, Washington. August 18.

MFA. 2020a. Groundwater compliance monitoring plan, North Cascade Ford property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Prepared by Maul Foster & Alongi, Inc., Bellingham, Washington. July 8.

MFA. 2020b. Remedial action completion report, North Cascade Ford property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Prepared by Maul Foster & Alongi, Inc., Bellingham, Washington. July 13.

MFA. 2020c. Memorandum (re: Addendum to Groundwater Compliance Monitoring Plan, North Cascade Ford Property, 116 W. Ferry Street, Sedro-Woolley, Washington, Facility Site ID: 58313566; Cleanup Site ID: 12075) to M. Warfel, Washington State Department of Ecology, from J. Maul, Maul Foster & Alongi, Inc., Bellingham, Washington. August 10.

TABLES

AOC	Location	Sample Name	Collection Date:	Collection Depth (ft bgs) ^(a)	Benzene	Ethylbenzene	Toluene	Xylenes ^(b)	Gasoline- Range Organics	Diesel-Range Organics	Lube-Oil- Range Organics	Total Naphthalenes
		-	MTCA Meth	od A Cleanup Level:	5	700	1,000	1,000	800	500	500	160
		MW1-W-8.5	05/15/2012	5.61-13.44	0.3	0.2 U	0.2 U	0.4 U	400	1,300	240	10.53
		FIELD DUPLICATE	03/13/2012	5.01-15.44	0.3	0.2 U	0.2 U	0.4 U	380	1,200	220	11.36
		MW01-GW-20121019	10/09/2012	9.87-13.44						1,800	490	11.18
		MW01	04/10/2014	NM	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,700	870	
		MWDUP	04/10/2014	INIM	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,600	930	
		MW01-GW-140618	06/18/2014	6.09-13.45						1,400	310	
		FD-GW-140618	00/10/2014	0.07-13.43						1,700	350	
		MW01-GW-091014	09/10/2014	7.74-13.44						1,300	300	
	MW01	FD-091014	07/10/2014	7.74-10.44						1,400	390	
		MW01-GW-121014	12/10/2014	6.08-13.46						2,400	1,400	
		FD-121014	12/10/2014	0.00-10.40						1,900	1,200	
		MW01-GW-112816	11/28/2016	6.12-13.43						1,300	610 U	
		MWDUP-GW-112816	11/20/2010	0.12-13.43						1,300	590 U	
1		MW01-GW-042617	04/26/2017	5.35-13.40					100 U	620	510 J	
		MWDUP-GW-042617	04/20/2017						100 U	560	410 U	
		MW01-GW-101718	10/17/2018	9.70-13.40					500 U	900	1,500	
		MW01-GW-032819	03/28/2019	6.82-13.41					370 J	2,400	2,200	
	MW05	MW05-GW-042617	04/26/2017	5.76-10.60					490	1,300	1,100	
	101000	MW05-GW-032819	03/28/2019	6.93-10.63					600 J	1,500	460	
		MW07-GW-042617	04/26/2017	7.85-19.74					100 U	260 U	410 U	
	MW07	MW07-GW-101718	10/17/2018	9.25-19.74					100 U	250 U	400 U	
		MW07-GW-032819	03/28/2019	7.95-19.74					100 U	250 U	410 U	
		MW08-GW-042617	04/26/2017	7.38-15.80					400 U	1,000	690	
		MW08-GW-101718	10/17/2018	10.05-15.80					100 U	700	580	
	MW08	MWDUP-GW-101718	10/17/2010	10.00-10.00					500 U	780	970	
		MW08-GW-032819	03/28/2019	6.85-15.82					100 U	950	460	
		MWDUP-GW-032819	03/20/2019	0.00-10.02					100 U	1,000	510	

Table 1

Historical Groundwater Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

AOC	Location	Sample Name	Collection Date:	Collection Depth (ft bgs) ^(a)	Benzene	Ethylbenzene	Toluene	Xylenes ^(b)	Gasoline- Range Organics	Diesel-Range Organics	Lube-Oil- Range Organics	Total Naphthalenes
	MTCA Method A Cleanup Level:			5	700	1,000	1,000	800	500	500	160	
		MW2-W-9	05/16/2012	6.65-13.85	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,900	240	ND
		MW02-GW-20121019	10/09/2012	9.29-13.84						690	200 U	
	MW02 (decommissioned in	MW02	04/10/2014	6.12-13.81						11,000	1,300	
	September 2016)	MW02-GW-140618	06/18/2014	6.98-13.80						3,800	410	
2		MW02-GW-091014	09/10/2014	8.37-13.84						770	200 U	
Z		MW02-GW-121014	12/10/2014	7.11-13.85						1,300	410	
	MW02R	MW02R-GW-042617	04/26/2017	6.60-14.80						750	410 U	
	(replacement well for MW02)	MW02R-GW-101718	10/17/2018	9.90-14.80						480	450	
	101 101 2	MW02R-GW-032819	03/28/2019	7.60-14.79						680	470	
		MW04-GW-042617	04/26/2017	6.39-13.60						260	450	
	MW04	MW04-GW-101718	10/17/2018	10.23-13.60						250 U	420 U	
0		MW04-GW-032819	03/28/2019	7.40-13.58						260 U	410 U	
2		MW06-GW-042617	04/26/2017	7.66-19.74						260 U	410 U	
	MW06	MW06-GW-101718	10/17/2018	10.6-19.74					100 U	250 U	400 U	
		MW06-GW-032819	03/28/2019	5.73-13.88					100 U	260 U	410 U	
0	GP51	GP51-W-11.0	11/16/2016	8.85-12.0	15 J	480 J	6.1 J	1000 J	7400 J			
3	GP76	GP76-W-10.0	04/25/2017	6.0-15.0	5.8	230	10 U	8.4	6900	2800 J	420 U	428

NOTES:

Analytical results are shown in ug/L.

CUL exceedances highlighted.

Detected concentrations are compared to MTCA Method A CULs for groundwater.

-- = not analyzed.

AOC = area of concern.

CUL = cleanup level.

ft bgs = feet below ground surface.

J = Result is an estimated value.

MTCA = Model Toxics Control Act.

ND = not detected.

NM = Because of unanticipated presence of free product, water level not measured.

NV = no value.

U = Analyte not detected at or above method reporting limit.

ug/L = micrograms per liter (parts per billion).

^(a)Sample collection depths are from top of water table or top of screened interval, whichever is deeper, to bottom of screened interval.

^(b)Total xylenes are sum of m,p-xylene and o-xylene. When both results are non-detect, the higher reporting limit is used.

Table 1

Historical Groundwater Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

Table 2Sampling and Analysis SummaryVSF Properties, LLC, North Cascade Ford Property
Sedro-Woolley, Washington

100		Sample	Sample				Analytico	al Schedule		
AOC	Well ID	Matrix	Depth	Sample Date	DRO	ORO	GRO	EPH/VPH	BTEX	Naphth.
	MW01R	GW	5 - 15	9/22/2020	Х	Х	Х		Х	
1	IVIVVUTK	GW	5 - 15	10/14/2020	Х		Х	Х		Х
I	MW07	GW	5 - 20	9/22/2020	Х	Х	Х		Х	
	MW09	GW	5 - 20	9/22/2020	Х	Х	Х		Х	
	MW02R	GW	5 - 15	9/22/2020	Х	Х	Х		Х	
	MW04	GW	4 - 14	9/22/2020	Х	Х	Х		Х	
	MW06	GW	5 - 20	9/22/2020	Х	Х	Х		Х	
0		Soil	11	9/14/2020	X ^(a)					
2	MW10	GW	5 - 20	9/22/2020	Х	Х	Х		Х	
		GW	5 - 20	10/14/2020	Х		Х	Х		Х
	MW12	GW	5 - 15	9/22/2020	Х	Х	Х		Х	
	GP79	Soil	8.5	9/14/2020			X ^(b)			
3	MW11	GW	5 - 20	9/22/2020	Х	Х	Х		Х	Х
NOTES: = not anal	vzed									
AOC = area										
	ene, toluene, ethy	lbenzene, and	total xvlenes	by EPA Method 8	021.					
	I-range organics;									
	vironmental Prote									
EPH/VPH = e	extractable petrole	eum hydrocarb	ons/volatile p	etroleum hydroco	arbons; analy	ysis by NWTPH	-EPH/VPH.			
GRO = gaso	line-range organi	cs; analysis by N	WTPH-Gx me	thod.						
ID = identific	cation.									
NWTPH = No	rthwest Total Petro	oleum Hydroca	rbons.							
ORO = oil-ra	nge organics; and	alysis by NWTPH	-Dx method.							
SIM = selecte	ed ion monitoring									
Naphth. = na	aphthalenes; ana	lysis by EPA Me	thod 8270 SIN	l.						
X = yes.										
^(a) Soil sample	e collected to ass	ess elevated DI	RO concentro	tion at A2-BASE8.						

^(b)Soil sample collected to assess elevated GRO concentration at A2-ESW1.

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet)	NAPL-Corrected Depth to Water (feet) ^(a)	Groundwater Elevation (feet, NAVD 88)
		05/15/2012		5.61	NA	50.48
		10/09/2012		9.87	NA	46.22
		12/03/2012		6.96	NA	49.13
		04/10/2014	NM ^(b)	NM ^(b)	NA	NM ^(b)
		06/17/2014	NM ^(c)	6.01	NA	50.16
MW01		06/18/2014		6.09	NA	50.00
(decommissioned in	56.09	09/10/2014	NM ^(c)	7.74	NA	48.43
February 2020)		12/10/2014	0.01 ^(d)	6.09	6.08	50.09
		04/26/2017		5.35	NA	50.74
		05/31/2017		5.96	NA	50.13
		10/17/2018	0.02	9.70	9.69	46.40
		12/06/2018	NM ^(e)	NA ^(e)	NA ^(e)	NA ^(e)
		03/28/2019	NM ^(e)	NA ^(e)	NA ^(e)	NA ^(e)
MW01R	56.32	09/22/2020		9.94	NA	46.38
IVIVVUTK	J0.J2	10/14/2020		7.82	NA	48.50
		05/15/2012		6.65	NA	50.08
		10/09/2012		9.29	NA	47.44
		12/03/2012		8.45	NA	48.28
MW02	E/ 70	04/10/2014		6.12	NA	50.61
(decommissioned in September 2016)	56.73	06/17/2014		6.96	NA	49.77
		06/18/2014		6.98	NA	49.75
		09/10/2014		8.37	NA	48.36
		12/10/2014		7.11	NA	49.62

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet)	NAPL-Corrected Depth to Water (feet) ^(a)	Groundwater Elevation (feet, NAVD 88)
		04/26/2017		6.60	NA	49.99
		05/31/2017		7.07	NA	49.52
		10/17/2018		9.90	NA	46.69
MW02R	56.59	12/06/2018		8.80	NA	47.79
		03/28/2019		7.60	NA	48.99
		09/22/2020		9.28	NA	47.31
		10/14/2020		9.41	NA	47.18
		05/15/2012		5.40	NA	49.68
		10/09/2012		8.11	NA	46.97
		12/03/2012		5.28	NA	49.80
		04/10/2014		5.00	NA	50.08
		06/17/2014		5.66	NA	49.42
MW03	55.08	06/18/2014		5.87	NA	49.21
1010003		09/10/2014		6.94	NA	48.14
		12/10/2014		5.10	NA	49.98
		05/31/2017		5.75	NA	49.33
		10/17/2018		7.72	NA	47.36
		12/06/2018		5.92	NA	49.16
		03/28/2019		5.73	NA	49.35
		04/26/2017		6.39	NA	49.93
		05/31/2017		6.88	NA	49.44
MW04	56.32	10/17/2018		10.23	NA	46.09
1111104	J0.J2	12/06/2018		8.62	NA	47.70
		03/28/2019		7.40	NA	48.92
		09/22/2020		9.06	NA	47.26

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet)	NAPL-Corrected Depth to Water (feet) ^(a)	Groundwater Elevation (feet, NAVD 88)
		04/26/2017		5.76	NA	50.49
MW05		05/31/2017		6.35	NA	49.90
(decommissioned in	56.25	10/17/2018		NA ^(f)	NA ^(f)	NA ^(f)
February 2020)		12/06/2018		8.05	NA	48.20
		03/28/2019		6.93	NA	49.32
		04/26/2017		7.66	NA	48.92
		05/31/2017		8.06	NA	48.52
MW06		10/17/2018		10.60	NA	45.98
	56.58	12/06/2018		9.10	NA	47.48
		03/28/2019		5.73	NA	50.85
		09/22/2020		10.84	NA	45.74
		04/26/2017		7.85	NA	48.61
		05/31/2017		8.02	NA	48.44
A 414/07	56.46	10/17/2018		9.25	NA	47.21
MW07		12/06/2018		9.15	NA	47.31
		03/28/2019		7.95	NA	48.51
	NA ^(g)	09/22/2020		10.42 ^(g)	NA ^(g)	NA ^(g)
		04/26/2017		7.38	NA	49.10
MW08		05/31/2017		8.01	NA	48.47
(decommissioned in	56.48	10/17/2018		10.05	NA	46.43
February 2020)		12/06/2018		9.02	NA	47.46
		03/28/2019		6.85	NA	49.63
MW09	56.66	09/22/2020		9.26	NA	47.40
IVIVVUA	30.00	10/14/2020		8.46	NA	48.20
A 4) 4/1 O	E (09/22/2020		9.71	NA	46.55
MW10	56.26	10/14/2020		9.21	NA	47.05
MW11	56.2	09/22/2020		10.48	NA	45.72
MW12	56.39	09/22/2020		10.24	NA	46.15

NOTES:
= NAPL not observed.
MP = measuring point.
NA = not applicable.
NAPL = nonaqueous-phase liquid.
NAVD 88 = North American Vertical Datum of 1988.
NM = not measured.
^(a) Water level corrected for presence of NAPL, using assumed product density of 0.8 gram per cubic centimeter.
^(b) NAPL was observed, but interface probe was not available to measure NAPL thickness and water level.
^(c) NAPL was observed on probe and tubing, but measurable and extractable quantity was not present.
^(d) NAPL thickness was measured, but extractable quantity was not present.
^(e) NAPL was present, coating entire probe tip and tubing; coated probe tip prevented measurement of thickness or water level.
^(f) Water level may not be representative of groundwater elevation because screened interval was above low water table.
^(g) Well monument was compressed during implementation of the remedial action; therefore, a water level measurement was not collected. A new well monument was installed on 10/01/2020.

Table 4 Soil Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

Location	Collection Date	Collection Depth (ft bgs)	GRO	DRO	ORO				
		Units:	mg/kg	mg/kg	mg/kg				
MTCA Meth	od A, Unrestricted	100 ^(a)	2,000	2,000					
GP79	9/14/20	8.5	5 U						
MW10	9/14/20	11.0		50 U	250 U				
NOTES:	NOTES:								
Analytical results compared to screening criteria. There were no exceedances. Non-detect results ("U") were not compared with screening criteria.									
Detected results are in bold font.									
= not analyzed.	= not analyzed.								
CUL = cleanup lev	el.								
DRO = diesel-rang	e organics.								
ft bgs = feet belov	v ground surface.								
GRO = gasoline-ra	inge organics.								
mg/kg = milligram	s per kilogram (parts	s per million).							
MTCA = Model Tox	kics Control Act.								
ORO = lube oil-rar	nge organics.								
U = analyte not de	U = analyte not detected at or above method reporting limit.								
^(a) MTCA Method A CUL with no benzene present.									
REFERENCES:	REFERENCES:								
⁽¹⁾ Ecology, Cleanu	⁽¹⁾ Ecology, Cleanup Levels and Risk Calculation (CLARC) table. August 2020.								

Table 5Groundwater Analytical ResultsVSF Properties, LLC, North Cascade Ford Property
Sedro-Woolley, Washington

AOC	Location	Collection Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	GRO	DRO	ORO	Naphthalene	Total Naphthalenes ^(a)
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	MTCA Method A CUL ⁽¹⁾ :		5	700	1,000	1,000	1,000 ^(b)	500	500	160	160
	MW01R	9/22/20	1 U	1 U	1 U	3.7	160	1,900	610		
1	NIVIVUIR	10/14/20	20 U	20 U	20 U	60 U	100 U	200	260 U	20 U	20 U
I	MW07	9/22/20	1 U	1 U	1 U	3 U	100 U	130	250 U		
	MW09	9/22/20	1 U	1 U	1 U	3 U	100 U	640	620		
	MW02R	9/22/20	1 U	1 U	1 U	3 U	100 U	780	450		
	MW04	9/22/20	1 U	1 U	1 U	3 U	100 U	260	250 U		
2	MW06	9/22/20	1 U	1 U	1 U	3 U	100 U	50 U	250 U		
2	MW10	9/22/20	1 U	1 U	1 U	3 U	370	1,900	250 U		
	1010010	10/14/20	20 U	20 U	20 U	60 U	550	2,000	400	65.1	
	MW12	9/22/20	1 U	1 U	1 U	3 U	100 U	50 U	250 U		
3	3 MW11	9/22/20	1 U	30	1 U	16	390	350	300 U	14	18.8
5	7010011	9/22/20	1 U	30	1 U	17	380	200	250 U	16	21.7
MTCA A Detected = not an AOC = are CUL = clea DRO = die GRO = ga	results are in bol nalyzed. ea of concern. anup level. esel-range organi ssoline-range orga	d font. cs. anics.		creening criteria;	norraelectres				лц .		
NV = no va ORO = lub U = analyt ug/L = mic ^(a) Total na ^(b) MTCA M REFERENC	be oil-range orga te not detected a crograms per liter phthalenes are t Nethod A CUL wit	nics. at or above met (parts per billio he sum of 1-met h no detectable	n). thylnaphthalen e benzene.	e, 2-methylnaphtl		phthalene.					

Table 6

EPH/VPH Groundwater Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

Location	MW01R	MW10
Sample Date	10/14/2020	10/14/2020
Extractable Petroleum Hydrocarbons (ug/L)		
Aliphatic Hydrocarbons (C8-C10)	89.7 UJ	84.3 UJ
Aliphatic Hydrocarbons (C10-C12)	44.9 UJ	42.1 UJ
Aliphatic Hydrocarbons (C12-C16)	44.9 UJ	42.1 UJ
Aliphatic Hydrocarbons (C16-C21)	44.9 UJ	42.1 UJ
Aliphatic Hydrocarbons (C21-C34)	44.9 UJ	42.1 UJ
Aromatic Hydrocarbons (C8-C10)	89.7 UJ	84.3 UJ
Aromatic Hydrocarbons (C10-C12)	44.9 UJ	84.4 J
Aromatic Hydrocarbons (C12-C16)	44.9 UJ	105 J
Aromatic Hydrocarbons (C16-C21)	44.9 UJ	75.4 J
Aromatic Hydrocarbons (C21-C34)	44.9 UJ	42.1 UJ
Volatile Petroleum Hydrocarbons (ug/L)	-	
Aliphatic Hydrocarbons (C5-C6)	40 U	40 U
Aliphatic Hydrocarbons (C6-C8)	20 U	20 U
Aliphatic Hydrocarbons (C8-C10)	20 U	20 U
Aliphatic Hydrocarbons (C10-C12)	20 U	128
Aromatic Hydrocarbons (C8-C10)	50 U	50 U
Aromatic Hydrocarbons (C10-C12)	77.3	742
Aromatic Hydrocarbons (C12-C13)	304	450
NOTES:		
Detected results are in bold font.		
J = result is estimated.		
U = analyte not detected at or above reporting limit.		
ug/L = micrograms per liter (parts per billion).		
UJ = result is non-detect, limit reported is considered e	stimated.	

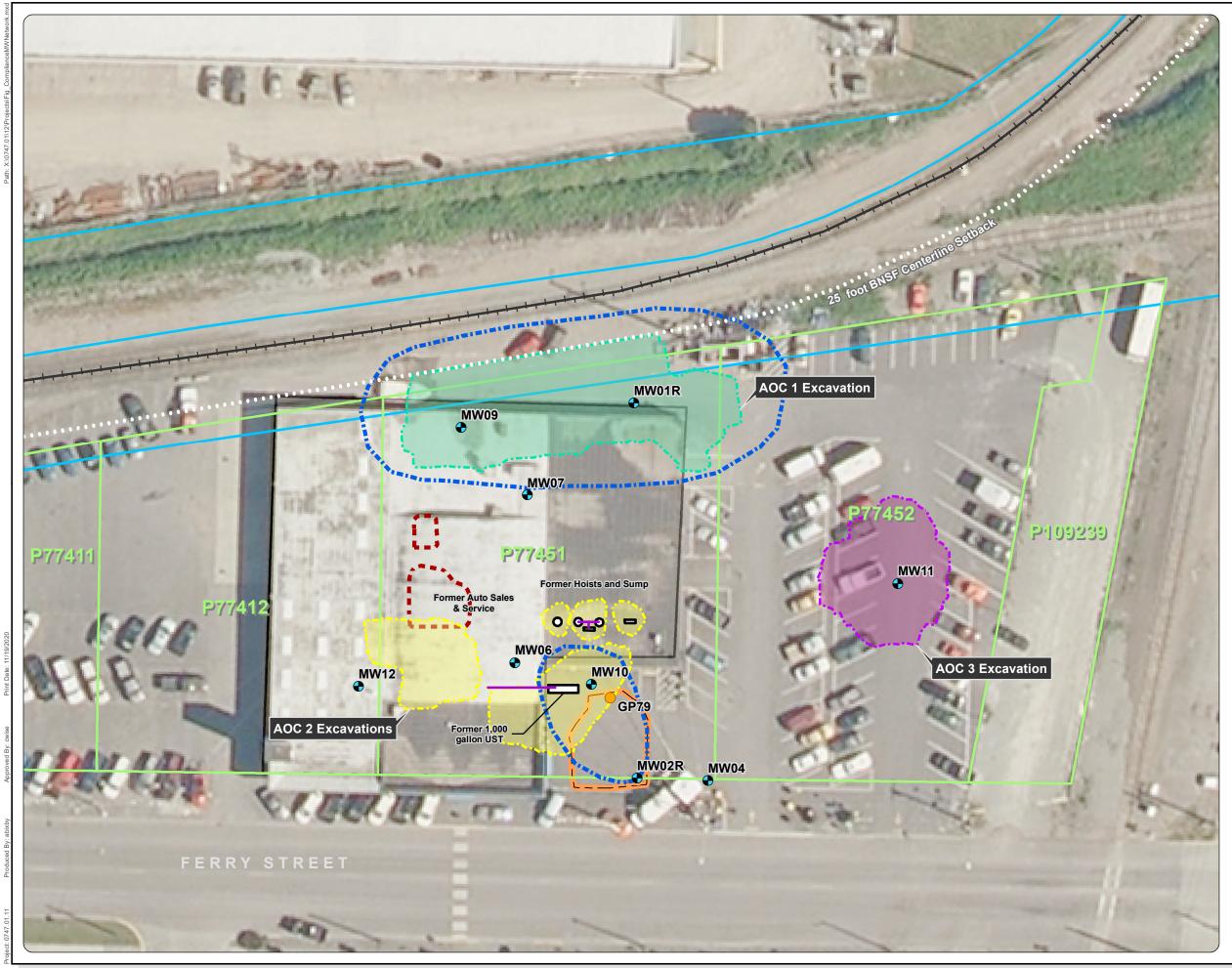

FIGURES

Figure 2 **Compliance Monitoring** Well Network

North Cascade Ford Property Sedro-Woolley, Washington

Legend

Compliance M	Ionitoring Well
--------------	-----------------

Boring

- Product Line

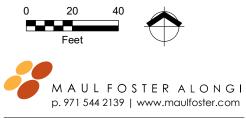
- AOC 1 Excavation (MFA, 2020)
- AOC 2 Excavation (MFA, 2020)
- AOC 3 Excavation (MFA, 2020)
- Estimated Extent of Petroleum Impacts in Groundwater
- UST Interim Action (MFA, 2016) 67

Hoist Removal Excavation (ZGA, 2017)

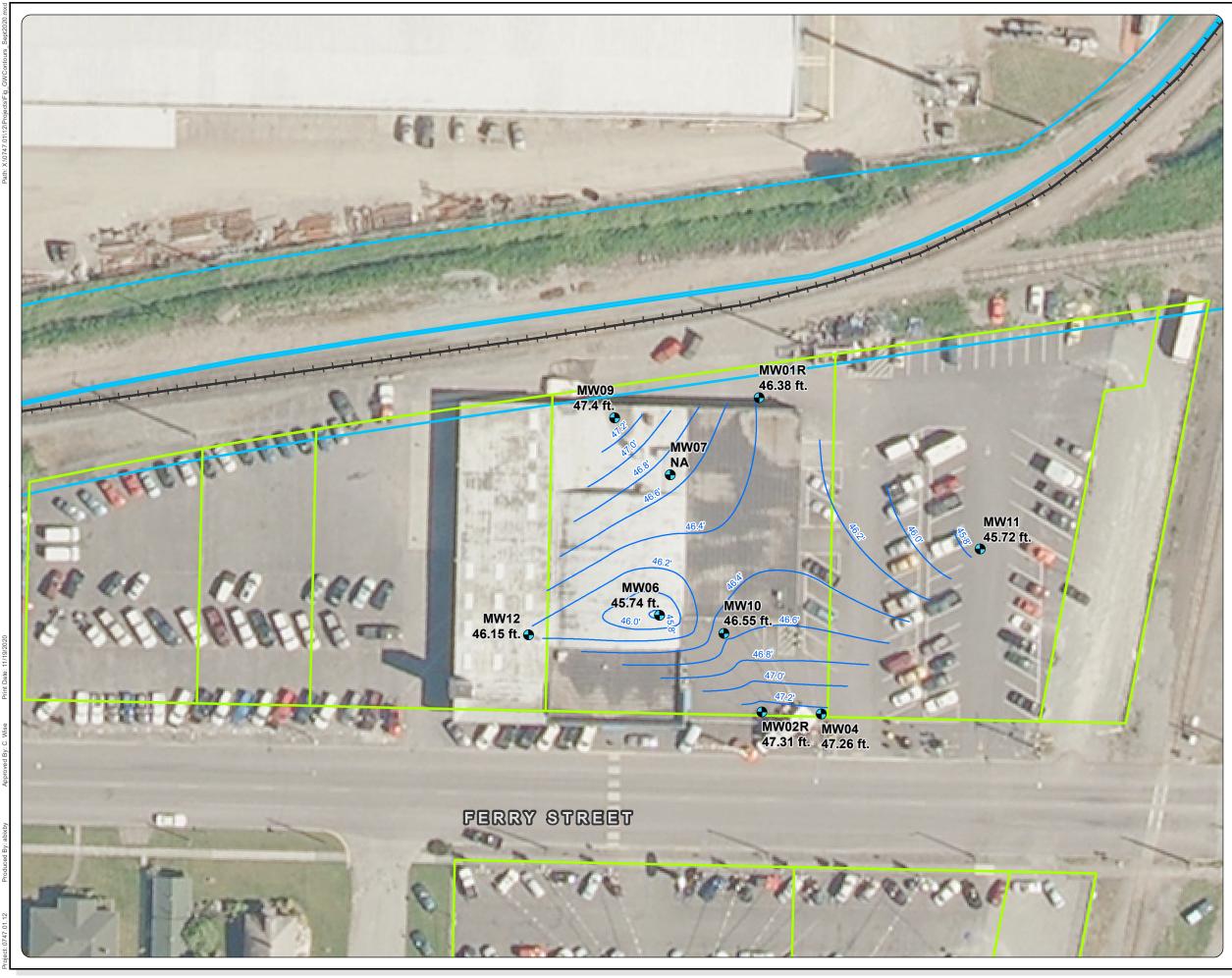
Γ		
Г		٦
Ŀ	_	

Former Building Footprint

- Property Parcel
- BNSF-Owned Parcel


Notes:

All features are approximate.


- All structures on the property were removed prior to remedial action.
- The excavations areas are set back from the BNSF railroad centerline by 25 feet.
- The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels.
- AOC = area of concern.
- BNSF = Burlington Northern Santa Fe.
- Property = North Cascade Ford Property.
- UST = underground storage tank.
- ZGA = Zipper Geo Associates.

Sources: Aerial photograph obtained from ArcGIS Online. Excavation extents surveyed by Pacific Geomatic Services, Inc. in March 2020.

- Property parcel boundaries surveyed by Wilson Engineering, LLC.
- Adjacent parcel boundaries obtained from Skagit County.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or tion sources to ascertain the usability of the infe

Figure 3 Groundwater Elevation Contours - September 2020

North Cascade Ford Property Sedro-Woolley, Washington

Legend

Compliance Monitoring Well

Groundwater Elevation Contour (feet NAVD 88; 0.2-ft. interval)

Property Parcel

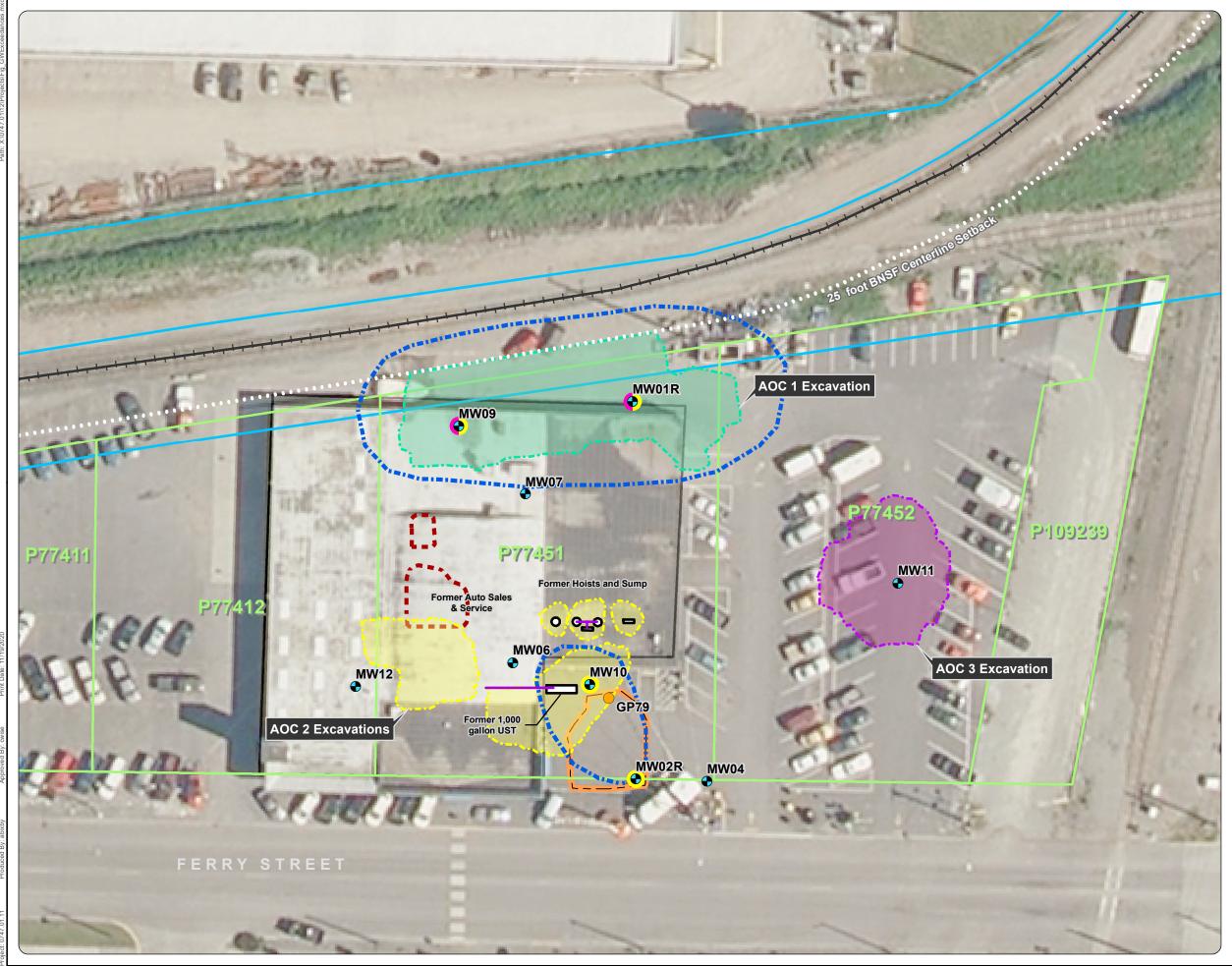
BNSF-Owned Parcel

Notes:

The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels. Water levels measured on September 22, 2020. BNSF = Burlington Northern Santa Fe Railway. ft. = feet.

NA = not available. The well monument for MW07 was compressed during implementation of the remedial action; therefore, a water level measurement was not collected for incorporation into the potentiometric surface.

NAVD 88 = North American Vertical Datum of 1988.



Sources:

Adjacent parcel boundaries obtained from Skagit County. Aerial photograph obtained from Mapbox. Property parcel boundaries surveyed by Wilson Engineering, LLC.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 4 **Groundwater Exceedances**

North Cascade Ford Property Sedro-Woolley, Washington

Legend

- Compliance Monitoring Well
- Boring
- DRO Exceedance
- ORO Exceedance

- Product Line

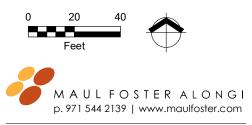
- AOC 1 Excavation (MFA, 2020)
- AOC 2 Excavation (MFA, 2020)
- AOC 3 Excavation (MFA, 2020)

Estimated Extent of Petroleum Impacts in Groundwater

- UST Interim Action (MFA, 2016) 67
- Hoist R 2017) Hoist Removal Excavation (ZGA,
- Former Building Footprint
 - **Property Parcel**
 - **BNSF-Owned Parcel**

Notes:

All features are approximate.


- All structures on the property were removed prior to remedial action.
- The excavations areas are set back from the BNSF railroad centerline by 25 feet.
- The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels.
- AOC = area of concern.
- BNSF = Burlington Northern Santa Fe.
- DRO = diesel-range organics.
- ORO = lube oil-range organics. Property = North Cascade Ford Property.
- UST = underground storage tank.
- ZGA = Zipper Geo Associates.

Sources:

Aerial photograph obtained from ArcGIS Online. Excavation extents surveyed by Pacific Geomatic Services, Inc. in March 2020.

Property parcel boundaries surveyed by Wilson Engineering, LLC.

Adjacent parcel boundaries obtained from Skagit County.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or ation sources to ascertain the usability of the info

Figure 5 Diesel-Range Organics Concentrations North Cascade Ford Property Sedro-Woolley, Washington

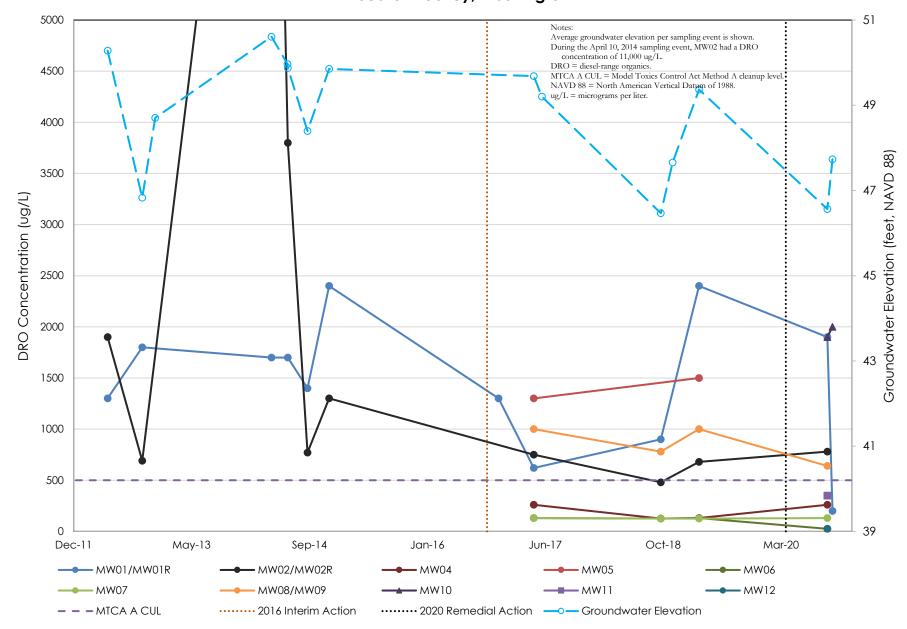
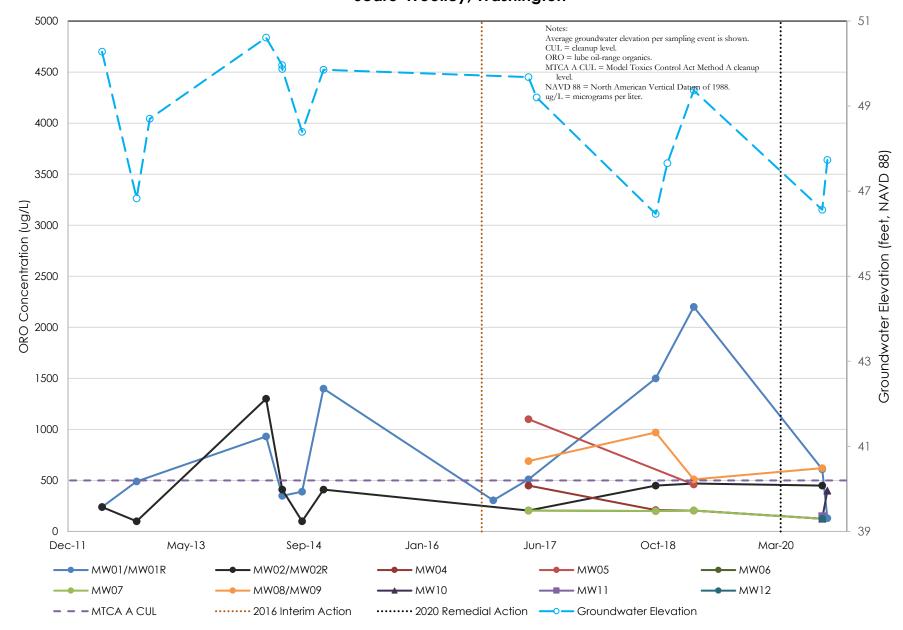
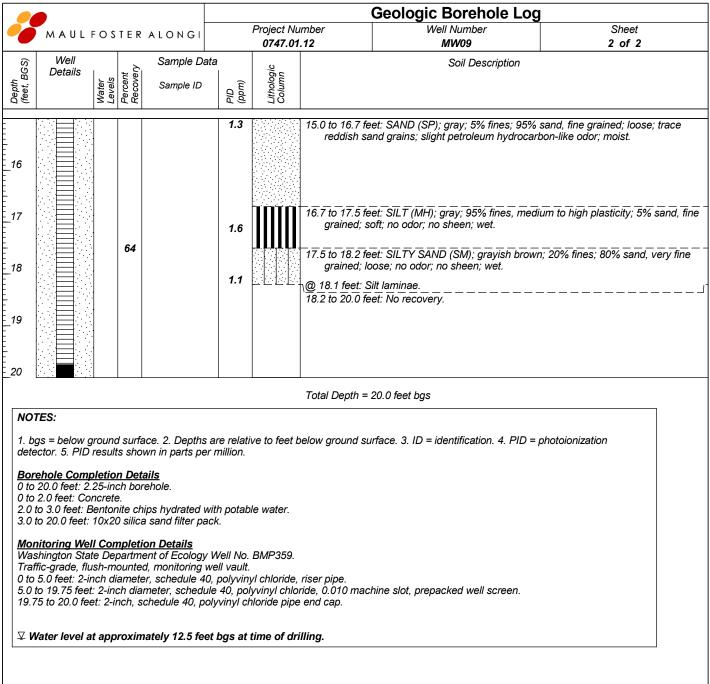
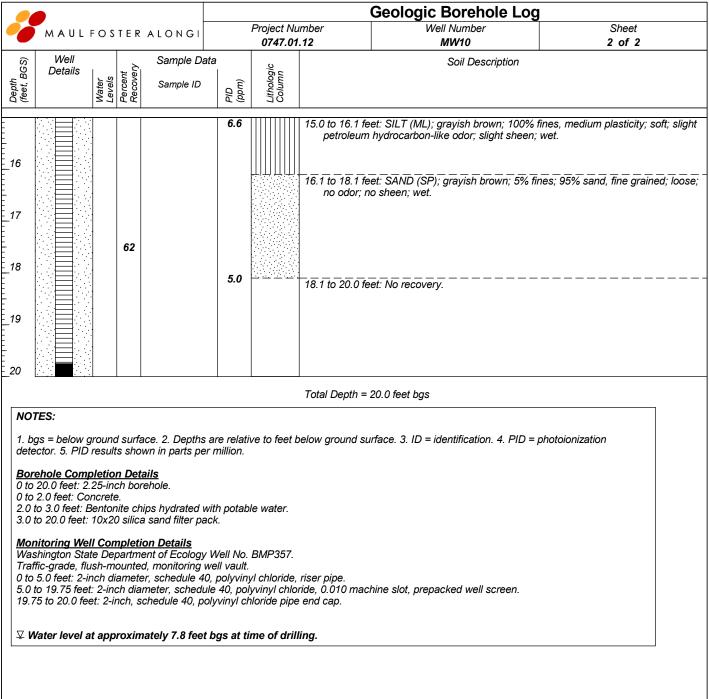



Figure 6 Lube-Oil-Range Organics Concentrations North Cascade Ford Property Sedro-Woolley, Washington


ATTACHMENT A BORING LOGS


Γ								Geologic Borehole Log
		MAULF	0 \$	TER	ALONGI		Project Nu 0747.01	mber Well Number Sheet
	Pro Sta Dril Geo	ject Name ject Location rt/End Date ler/Equipmen ologist/Engine nple Method	ot	116 9/14 Holt A. E	Properties, L W Ferry Stree /2020 to 9/14/ Services, Inc ixby ct Push	et, Sedro 2020	-Woolley,	Northing
Γ	(SE	Well		2	Sample Dat	ta	ic	Soil Description
	Depth (feet, BGS)	Details	Water Levels	Percent Recovery	Sample ID	(mqq) DID	Lithologic Column	
	1 2 3			60		0.0		 0 to 3.0 feet: GRAVELLY SAND WITH SILT (SW-SM); light gray; 10% fines; 50% sand, fine to coarse grained; 40% gravel, fine size, angular; loose; trace orange mottling; no odor; dry to moist. (FILL) @ 0.5 feet: Color changes to grayish brown.
	_ 0 _ 4 5					0.0	<u>}, , , , , , , , , , , , , , , , , , , </u>	3.0 to 5.0 feet: No recovery.
WW01R TO MW12.GPJ 9/18/20	_ 6 _ 7		V	80		0.0		 5.0 to 8.0 feet: GRAVELLY SAND WITH SILT (SW-SM); grayish brown; 10% fines; 50% sand, fine to coarse grained; 40% gravel, fine size, angular; loose; trace orange mottling; no odor; moist. (FILL) (@ 5.3 to 5.5 feet: Light gray; dry.
E MONITORING	_ 9		<u> </u>		GP79-S-8.5			8.0 to 9.0 feet: SAND (SP); gray; 100% sand, medium grained; loose; trace reddish sand grains; no odor; no sheen; wet. 9.0 to 10.0 feet: No recovery.
	_10							
01/12_(Total Depth = 10.0 feet bgs
MFA BOREHOLE W/WELL W/\GINTYGINTW/PROJECTS\0747.01/12_COMPLIANCE MONITORING\MW0-	NO 1. by dete Bor 0 to 0 to 2 M	ector. 5. PID r <u>ehole Abano</u> 10.0 feet: 2.2 10.0 feet: Be	esult Ionm 25-inc ntoni	s show e <u>ent D</u> ch bor te chij	wn in parts per P <u>etails</u>	million. Th potable	e water.	below ground surface. 3. ID = identification. 4. PID = photoionization
MFA BOREH								

Г								Geologic Borehole Log	
		MAULF	= O S	TER	ALONGI		Project Nu	Number Well Number Sheet	
	Pro Sta Dril Ge	ject Name ject Location rt/End Date ller/Equipmer ologist/Engin	nt	116 9/14 Holt A. B		et, Sedro /2020	o-Woolley,	ade Ford Compliance Monitoring TOC Elevation (feet) y, Washington Surface Elevation (feet) Northing	
-		mple Method		Dire					ncn
	Depth (feet, BGS)	Well Details	Water Levels	Percent Recovery	Sample Da Sample ID	(undd) Clid	Lithologic Column	Soil Description	
	_ 1 _ 2 _ 3			70		1.0		 0 to 3.5 feet: GRAVELLY SAND WITH SILT (SW-SM); dark grayish brown; 10% 75% sand, fine to coarse grained; 15% gravel, fine size, angular to subroun loose; trace brick; no odor; moist. (FILL) 	
	_ 4 5							3.5 to 5.0 feet: No recovery.	
	_ 6 _ 7 _ 8 _ 9			14		1.8		 5.0 to 5.7 feet: GRAVELLY SAND WITH SILT (SW-SM); dark grayish brown; 10 fines; 75% sand, fine to coarse grained; 15% gravel, fine size, angular to subrounded; loose; trace brick; no odor; moist. (FILL) 5.7 to 10.0 feet: No recovery; loose pea gravel.]%
R TO MW12.GPJ 9/18	_11 _12		Ţ	48		55.3 1.8 3.7		 10.0 to 11.0 feet: SANDY SILT (MH); brownish gray; 60% fines, medium to high plasticity; 40% sand, fine to medium grained; soft; trace gravel, fine, angula petroleum hydrocarbon-like odor; moist. 11.0 to 12.4 feet: SAND WITH SILT (SP-SM); brownish gray; 10% fines; 90% sa fine grained; dense; slight petroleum hydrocarbon-like odor; no sheen; wet. @ 12.2 feet: Silt laminae. 12.4 to 15.0 feet: No recovery. 	nr; slight / and,
CEMC	15								
MFA BOREHOLE WWELL WAGINTIGINTWPROJECTS\0747.01/12_COMPLIANCE MONITORING\MV01	0 to 5.0 14.7	ector. 5. PID (ehole Comp 15.0 feet: 2.2 2.0 feet: Cor to 3.0 feet: Bi to 15.0 feet: " hitoring Well shington State fic-grade, fluu 5.0 feet: 2-in to 14.75 feet: 75 to 15.0 fee	result <u>letio</u> 25-ind 25-ind entor entor 10x20 <u>I Con</u> e Dej sh-m ich di : 2-ind et: 2-ind	s shown n Deta ch born dite chi osilica silica osilica osilica noth chi amete ch diar nch, so	wn in parts pe a <u>ils</u> ehole. ips hydrated v sand filter pa on Details ent of Ecology f, schedule 40	r million. vith potab ck. Well No. vell vault. 0, polyvin le 40, po olyvinyl cl	ble water. BMP360. yl chloride, lyvinyl chlo hloride pipe	e, riser pipe. Ioride, 0.010 machine slot, prepacked well screen. pe end cap.	
MFA E	L								

							G	eologic Bo	orehole Log	
	MAUL	FOS	TER	ALONGI		Project Nu 0747.01	ımber	Well N	umber	Sheet 1 of 2
Pro Sta Drii Ge	iject Name nject Locatic nt/End Date ller/Equipme ologist/Engi mple Metho	ent ineer	116 9/14 Holt A. B	W Ferry Street 2020 to 9/14/2	, LLC - North Cascade Ford Compliance Monitoring TOC Elevation (feet) reet, Sedro-Woolley, Washington Surface Elevation (feet)					
Depth (feet, BGS)	Well Details	Water Levels	t ery	Sample Data	DID (mda)	Lithologic Column			bil Description	2.25-inch
1			50		0.9		sand, fine to	o coarse grained; e gravel; no odor; t: Increasing grav	20% gravel, fine size, dry. (FILL)	grayish brown; 10% fines; 70% angular to subrounded; loose;
4										
COMPLIANCE MONITORING/MW01R TO MW12.6PJ 9/18/20 0 6 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9			56		0.9		coarse grair (FILL)	ned; 30% gravel, i GRAVEL (GP); gra size, subangular t GRAVEL)	fine size, angular to su avish brown; 10% sand	5% fines; 65% sand, fine to brounded; loose; no odor; dry. d, medium grained; 90% trace coarse gravel; no odor;
MFA BOREHOLE WWELL W.GINTTGINTWPROJECTS/0747.01/12_COMPLIA 7111111111111111111111111111111111111		radio de la constante de La constante de la constante de	56		65.4		gravel, fine 3	size, subangular t SILT WITH SAN very fine grained; tt petroleum hydro SAND (SP); gra d grains; slight pe	o subrounded; loose; l ND (MH); grayish brow firm; trace organic ma ocarbon-like odor; moi	l, fine grained; loose; trace

		•							Geologic Be	orehole Log	
	0	MAULF	: O S	TER	ALONGI		Project Nu 0747.01	ımber	Well N	lumber V10	Sheet 1 of 2
	Proj Stai Drill Geo	iect Name iect Location t/End Date ler/Equipmer blogist/Engine nple Method	nt	116 9/14 Hol A. E	F Properties, LL W Ferry Street, 1/2020 to 9/14/20 t Services, Inc., Bixby ect Push	, Sedro 020	rth Cascad Woolley,	de Ford Compli Washington		TOC Elevation (fee Surface Elevation (Northing Easting Total Depth of Bore Outer Hole Diam	t) feet)
	a Well			nt eny	Sample Data		in In		S	oil Description	
Denth	(feet, I		Water Levels	Percent Recovery	Sample ID	DID (mdd)	Lithologic Column				
				56		0.0 0.0 0.0		sand, fine t trace oran <u>c</u>	to coarse grained; ge mottling; no odd nch wood chunk.		1); grayish brown; 10% fines; 50% e, angular to subrounded; loose; L)
2.GPJ 9/18/20	5 6 7 8		Ā	60		1.3 1592		50% sand, loose; trace	fine to coarse gra e orange mottling; SAND (SP); grayi nd grains; slight pa	ined; 40% gravel, fir no odor; dry to mois	nd, medium grained; loose; trace
MFA BOREHOLE WWELL WYGINTGINTWPROJECTS0747.01/12_COMPLIAT	1 2 3 4			30	MW10-S-11.0	34.6		fine to med sheen; mo 10.6 to 11.5 fee very fine gi sheen; wet 11.4 feet: Si	lium grained; soft; ist to wet. et: SAND WITH Si rained; medium de t.	trace organic mater	es, medium plasticity; 10% sand, ial (woody debris); no odor; no n brown; 10% fines; 90% sand, m hydrocarbon-like odor; no

ſ									Geologic Bo	orehole Log	
		MAULF	0 \$	TER	ALONGI		Project Nu 0747.01	ımber	Well No.	umber	Sheet 1 of 2
	Proj Stal Drill Geo	ject Name ject Location rt/End Date ler/Equipmer ologist/Engine nple Method	nt	116 9/14 Holt A. E	W Ferry Street /2020 to 9/14/2	LC - North Cascade Ford Compliance Monitoring TOC Elevation (feet) et, Sedro-Woolley, Washington Surface Elevation (feet) '2020 Northing c., Mike Running/Geoprobe Easting Total Depth of Borehole					t) feet)
ŀ		Well			Sample Data	1	0			bil Description	
	Depth (feet, BGS)	Details	Water Levels	Percent Recovery	Sample ID	(mqq)	Lithologic Column				
	_ 1 _ 2 _ 3			56		0.0		sand, fine t	to coarse grained; odor; dry to moist. (20% gravel, fine to	l); grayish brown; 15% fines; 65% medium size, angular to rounded;
GPJ 9/18/20	_ 4 _ 5 _ 6					0.3		65% sand, rounded; lo 5.8 to 7.8 feet:	fine to coarse gran pose; no odor; mois GRAVEL (GP); bro	ined; 20% gravel, fir st. (FILL) own; 10% sand, me	M); grayish brown; 15% fines; he to medium size, angular to dium grained; 90% gravel, fine moist. (PEA GRAVEL)
MPLIANCE MONITORING/MW01R TO MW12.GPJ	_ 7 _ 8 _ 9 _ 10			56		0.3		7.8 to 10.0 feet	No recovery.		
MFA BOREHOLE W/WELL W:\GINT\GINTWPROJECTS\0747.01\12_CON	_10 _11 _12 _12 _13 _13 _14 _14 _15		Ā	58		152.1 141.2 33.0		plasticity; 2 petroleum @ 11.4 feet: Sa @ 12.0 feet: Be	20% sand, fine grai hydrocarbon-like c and laminae, media	ined; firm; trace orga dor in upper 1.5 fee	

					Geologic Borehole Log	
MAUL	FOSTE	RALONGI		Project Nu 0747.01	Well Number Sheet MW11 2 of 2	
6 Well		Sample Dat	ta		Soil Description	•
Depth Details	Water Levels Percent	Sample ID	DID (mpm)	Lithologic Column		
	2700	r		00		
_16 _17 _18	66	5	11.5 39.4 24.9		o 18.3 feet: SILT WITH SAND (ML); brownish gray; 80% fines, med asticity; 20% sand, fine grained; firm; trace organic material (woody lor; moist. 5 feet: Black organic laminae.	
_19 _20		_	34.0	aga 7	21.7 feet: SILT WITH SAND (ML); brownish gray; 80% fines, med	lium
21			29.0		asticity; 20% sand, fine grained; firm; trace organic material (woody lor; moist. 3 feet: Sand laminae, medium grained. 6 feet: Sand laminae, medium grained. 5 25.0 feet: No recovery.	– – – – – –
23 _24	32	2				
_25	8				Depth = 25.0 feet bgs	
detector. 5. PIC Borehole Com 0 to 20.0 feet: 2 0 to 2.0 feet: Co 2.0 to 3.0 feet: 3.0 to 20.0 feet: Monitoring We Washington Sta Traffic-grade, fl 0 to 5.0 feet: 2- 5.0 to 19.75 feet	presults sh <u>pletion D</u> 25-inch b Bentonite 10x20 sill <u>ell Comple</u> ate Depart. ush-moun inch diame t: 2-inch a	nown in parts per etails orehole. chips hydrated w ica sand filter pac etion Details ment of Ecology ted, monitoring w eter, schedule 40	r million. rith potab ck. Well No. yell vault. , polyvin e 40, po	ole water. BMP361. yl chloride, lyvinyl chlo	ound surface. 3. ID = identification. 4. PID = photoionization pe. 10 machine slot, prepacked well screen.	

			Geologic Borehole Log	
STER ALONGI			Well Number MW12	Sheet 1 of 1
116 W Ferry Str 9/14/2020 to 9/1	eet, Sedro-Woolley, 4/2020	Washington	iance Monitoring TOC Elevation (fo Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam	n (feet)
, te je t	n ogi		Soil Description	
50 60 70	0.3 1.0 2.7 1.7 0.5 0.7 0.7	fine to coa odor; moi 1.2 to 2.5 feet dense; tra @ 1.6 feet: Da 2.5 to 5.0 feet \$2.5 to 5.0 feet wery fine to @ 6.0 feet: Fine (@ 7.2 feet: Sand, very (@ 7.2 feet: Sand, very 7.5 to 7.8 feet very fine to 7.8 to 10.0 feet 10.0 to 13.0 feet sand, fine @ 12.5 feet: Sand, fine (@ 12.5 feet: Sand, fine) (@ 13.5 feet: Sand, fine) (@ 1	arse grained; 15% gravel, fine size, st st. (FILL) : SILTY SAND (SM); brown; 20% fine ice orange mottling; no odor; moist. ark brown laminae. : No recovery. : SILTY SAND (SM); brown; 40% fine o medium grained; dense; no odor; n nes decrease to 30%. : SILT WITH SAND (ML); brown; 80% y fine to fine grained; soft; no odor; no and laminae. : SILTY SAND (SM); brown; 40% fine o medium grained; dense; no odor; n att No recovery. : SILTY SAND (SM); brown; 40% fine o medium grained; dense; no odor; n st: No recovery. : SILT (MH); grayish brown; 90% fi grained; soft; no odor; no sheen; we Sand laminae. : Sand laminae. : SAND (SP); grayish brown; 100% tish sand grains; slight petroleum hydo	ubangular to rounded; loose; no ss; 80% sand, very fine grained; ss, medium plasticity; 60% sand, noist. 6 fines, medium plasticity; 20% o sheen; wet. ss, medium plasticity; 60% sand, noist. 1 ines, medium to high plasticity; 10% t.
	0.7			
		Total Depth =	15.0 feet bgs	
Its shown in parts p on <u>Details</u> nch borehole. te. nite chips hydrated 20 silica sand filter p <u>mpletion Details</u> epartment of Ecolog nounted, monitoring diameter, schedule 4 nch diameter, schedule 40, p	er million. with potable water. ack. y Well No. BMP358. well vault. 40, polyvinyl chloride, lule 40, polyvinyl chlo polyvinyl chloride pipe	riser pipe. ride, 0.010 mac e end cap.		photoionization
	VSF Properties, 116 W Ferry Str 9/14/2020 to 9/1 Holt Services, IL A. Bixby Direct Push Sample D Sample ID 50 50 60 60 70 70 0 0 50 50 50 60 60 60 60 50 50 50 60 60 60 60 60 60 60 60 60 60 60 70	0747.01 0747.01 VSF Properties, LLC - North Casca 116 W Ferry Street, Sedro-Woolley, 9/14/2020 to 9/14/2020 Holt Services, Inc., Mike Running/G A. Bixby Sample Data 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 <td< th=""><th>0747.01.12 VSF Properties, LLC - North Cascade Ford Complete 116 W Ferry Street, Sedro-Woolley, Washington 9/14/2020 to 9/14/2020 Holt Services, Inc., Mike Running/Geoprobe A. Bixby Direct Push Sample Data Sample Colspan="2">Ot to 1.2 feet: Games: trae Colspan="2">Sample: Colspan="2">Ot to 5.0 feet Ot to 5.0 feet Ot to 6.8 feet</th><th>STER ALONG Project Number 0747.01.12 Well Number MW12 VSF Properties, LLC - North Cascade Ford Compliance Monitoring TOC Elevation (ff 116 W Ferry Street, Sedro-Woolley, Washington 9/4/2020 to 9/4/2020 Northing Surface Elevation 9/4/2020 to 9/4/2020 Northing Hold Services, Inc., Mike Running/Geoprobe A. Bixby Direct Push Sample Data Sample Data Sample Data Sample Data Sample ID Soil Description Sample ID Sample ID Sample Joint Sample ID Sample Joint Sample ID Sample Joint Sample Joint Sample ID Sample Joint Sample Joint Sa</th></td<>	0747.01.12 VSF Properties, LLC - North Cascade Ford Complete 116 W Ferry Street, Sedro-Woolley, Washington 9/14/2020 to 9/14/2020 Holt Services, Inc., Mike Running/Geoprobe A. Bixby Direct Push Sample Data Sample Colspan="2">Ot to 1.2 feet: Games: trae Colspan="2">Sample: Colspan="2">Ot to 5.0 feet Ot to 5.0 feet Ot to 6.8 feet	STER ALONG Project Number 0747.01.12 Well Number MW12 VSF Properties, LLC - North Cascade Ford Compliance Monitoring TOC Elevation (ff 116 W Ferry Street, Sedro-Woolley, Washington 9/4/2020 to 9/4/2020 Northing Surface Elevation 9/4/2020 to 9/4/2020 Northing Hold Services, Inc., Mike Running/Geoprobe A. Bixby Direct Push Sample Data Sample Data Sample Data Sample Data Sample ID Soil Description Sample ID Sample ID Sample Joint Sample ID Sample Joint Sample ID Sample Joint Sample Joint Sample ID Sample Joint Sample Joint Sa

ATTACHMENT B WELL DEVELOPMENT FORMS

Project No.	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	y Street, Sedi	o-Woolley, V	WA	Well:	MW01R		
Name:	North Casca	ade Ford Co	mpliance Mo	onitoring	Initial DTB:	14.77		Final DTB: 14.77
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW:	9.63		Final DTW: 14.77
Total Water	Removed:	8.4 gallons			Pore Volume:		0.84 gallons	
Water Cont	Water Contained: 55-gallon drums					ter:	2-inch	
Time	Cum. Vol. Removed	Turbidity (NTU)	рН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments
11 50	11:50 0.0							D · · · · · · · · · · · · · · · · · · ·
11:50	0.0							Begin purging with submersible pump.
11:50	1.0							Begin purging with submersible pump. Due to poor recharge, purge intermittently.

Notes:

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	y Street, Sedr	o-Woolley, V	WA	Well:	MW02R		
Name:	North Casca	ade Ford Co	mpliance Mo	onitoring	Initial DTB:	14.82		Final DTB: 14.82
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW:	9.08		Final DTW: 9.58
Total Water	Removed:	6.0 gallons			Pore Volume:		0.94 gallons	3
Water Cont	ained:	55-gallon dr	ums		Casing Diame	ter:	2-inch	
Time	Cum. Vol. Removed	Turbidity (NTU)	рН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments
9:32	0.0							Begin purging with submersible pump.
9:35	9:35 3.0							Well dry. Pause purge to allow recharge.
9:45	3.0							Resume purging with submersible pump.
9:55	6.0	12.8						Complete well development.

Notes:

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.	:0747.01.12				Date:	9/15/2020				
Location:		y Street, Sedr	o-Woolley, V	WA	Well:	MW04R				
Name:	North Case	ade Ford Co	mpliance Mo	onitoring	Initial DTB:	13.61		Final DTB: 13.61		
Developme	ent Method:	Mechanical;	surge and p	urge	Initial DTW:	nitial DTW: 9.91 Final DTW: 9.99				
Total Wates	r Removed:	4.0 gallons			Pore Volume	Pore Volume: 0.60 gallons				
Water Cont	tained:	55-gallon dr	ums		Casing Diame	eter:	2-inch			
Time	Cum. Vol. Removed	Turbidity (NTU)	рН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments		
10:00	0.0							Begin purging with submersible pump.		
10:02	1.0							Well dry. Pause purge to allow recharge.		
10:20	1.0							Resume purging with submersible pump.		
10:23	3.0	16.0						Well dry. Pause purge to allow recharge.		
10:20	3.0							Resume purging with submersible pump. Due to poor recharge, purge intermittently.		
10:55	4.0	13.0						Complete well development.		
Notes:	-			-				·		
Cum. = cu	imulative.									
DO = dis	solved oxygen.									
DTB = de	pth to bottom									

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.	0747.01.12				Date:	9/15/2020				
Location:	116 W Ferry	y Street, Sedr	o-Woolley, V	WA	Well:	MW06				
Name:	North Case	ade Ford Cor	mpliance Mo	nitoring	Initial DTB: 19.76			Final DTB:	19.77	
Developme	nt Method:	Mechanical;	surge and p	ırge	Initial DTW: 10.28			Final DTW:	11.85	
Total Water	Removed:	11.0 gallons			Pore Volume:		1.55 gallons	5		
Water Cont	ained:	55-gallon dr	ums		Casing Diameter: 2-inch					
Time	Cum. Vol. Removed	Turbidity (NTU)	pН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments		
10:10	0.0							Begin purging	with submersible pump.	
10:15	1.0							Due to poor recharge, purge intermitten		
10:35	11.0	8.86						Complete well	development.	
Notes:										
Cum. = cu	mulative.									
DO = diss	olved oxygen.									
DTB = de	pth to bottom									

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.:	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	y Street, Sed1	o-Woolley, V	WA	Well:	MW07		
Name:	North Casca	ade Ford Co	mpliance Mo	onitoring	Initial DTB:	19.70		Final DTB: 19.70
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW:	8.35		Final DTW: 11.33
Total Water	Removed:	13.0 gallons			Pore Volume:		1.85 gallons	
Water Conta	Water Contained: 55-gallon drums					ter:	2-inch	
Time	Cum. Vol. Removed	Turbidity (NTU)	pН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments
12:20	12:20 0.0							Begin purging with submersible pump. Due to poor recharge, purge intermittently.
12:37	7.0	183						
13:10	13.0	19.1						Complete well development.

Notes:

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.:	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	Street, Sedr	o-Woolley, V	WA	Well:	MW09		
Name:	North Casca	ade Ford Co	mpliance Mo	onitoring	Initial DTB: 19.98			Final DTB: 20.00
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW: 8.67			Final DTW: 8.65
Total Water	Removed:	10.0 gallons			Pore Volume	:	1.84 gallon	s
Water Conta	ained:	55-gallon dr	ums		Casing Diame	eter:	2-inch	
Time	Cum. Vol. Removed	Turbidity (NTU)	pН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments
11:45	0.0							Begin purging with submersible pump.
11:52	10.0	14.4						Complete well development.
Notes:					•			-
Cum. = cu	mulative.							
DO = diss	olved oxygen.							
$DTB = de_1$	oth to bottom							
DTW = d	epth to water.							

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No	.: 0747.01.12				Date:	9/15/2020)	
Location:	116 W Ferr	y Street, Sed1	o-Woolley,	WA	Well:	MW10)	
Name:	North Case	ade Ford Co	mpliance M	onitoring	Initial DTB:	19.80	5	Final DTB: 19.89
Developme	ent Method:	Mechanical;	surge and p	ourge	Initial DTW:	9.00)	Final DTW: 9.54
Total Wate	r Removed:	18.0 gallons			Pore Volume	:	1.77 gallon	15
Water Con	tained:	55-gallon dr	ums		Casing Diam	eter:	2-inch	
Time	Cum. Vol. Removed	Turbidity (NTU)	рН	Conductivity (uS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Comments
8:40	0.0							Begin purging with submersible pump.
8:44	4.0							Well dry. Pause purge to allow recharge.
8:47	4.0							Resume purging with submersible pump.
8:48	6.0							Well dry. Pause purge to allow recharge.
9:00	6.0							Resume purging with submersible pump.
9:06	9.0	189						Well dry. Pause purge to allow recharge.
9:16	9.0	130						Resume purging with submersible pump.
9:28	18.0	30.8						10 pore volumes removed. Complete well development.
Notes: Cum. = ci	1-6			•			•	
	solved oxygen.							
	epth to bottom							
	lepth to water.							
	nilligrams per l							
mV = mil								
No. = nui	nber.							
NTU = n	ephelometric ti	urbidity unit.						
ORP = or	xygen reduction	n potential.						
uS/cm =	microsiemens	per centimeter						
Vol = vol	ume							

Project No.	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	y Street, Sed1	o-Woolley, V	WA	Well:	MW11		
Name:	North Case	ade Ford Co	mpliance Mo	onitoring	Initial DTB: 19.66			Final DTB: 19.66
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW: 8.92 Final DTW:			Final DTW: 9.91
Total Water	Removed:	17.0 gallons			Pore Volume:	Pore Volume: 1.75 gallons		
Water Cont	ained:	55-gallon dr	ums		Casing Diame	ter:	2-inch	
Time	TimeCum. Vol.Turbidity (NTU)pHConductivity (uS/cm)					DO (mg/L)	ORP (mV)	Comments
8:22	0.0							Begin purging with submersible pump.
8:30	17.0	11.5						Complete well development.
Notes:							•	•
Cum. = cu	mulative.							
DO = diss	olved oxygen.							
DTB = de	pth to bottom							
D'TW = 1								

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Project No.	0747.01.12				Date:	9/15/2020		
Location:	116 W Ferry	y Street, Sedi	o-Woolley, V	WA	Well:	MW12		
Name:	North Case	ade Ford Co	mpliance Mo	onitoring	Initial DTB:	14.58		Final DTB: 14.58
Developme	nt Method:	Mechanical;	surge and p	urge	Initial DTW:	12.27		Final DTW: 13.39
Total Water	Removed:	4.0 gallons			Pore Volume:		0.38 gallons	
Water Cont	ained:	55-gallon dr	rums		Casing Diame	ter:	2-inch	
Time	TimeCum. Vol.Turbidity RemovedpHConductivit (uS/cm)				Temp (°C)	DO (mg/L)	ORP (mV)	Comments
10:55	0.0							Begin purging with submersible pump.
10:58 1.0								
10:58	1.0							Due to poor recharge, purge intermittently.

Notes:

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

mV = millivolts.

No. = number.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

ATTACHMENT C WATER FIELD SAMPLING DATA SHEETS

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW01R
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW01R-GW-092220
Sub Area		Sample Depth	12.5
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	8:16	14.76		9.94		4.82	0.79

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:20:00 PM	0.8	0.2	7.31	17.7	315.3	0.89	11.6	7.32
	1:25:00 PM	1	0.2	7.31	18	320.4	0.92	8.9	7.22
	1:30:00 PM	1.3	0.2	7.3	18.1	323.4	0.89	8.7	7.2
	1:35:00 PM	1.5	0.2	7.3	18.3	325.7	0.85	5.5	7.28
Final Field Parameters	1:38:00 PM	1.7	0.2	7.29	18.4	328.7	0.84	4.2	6.7

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; slight yell

Clear; slight yellow tint; no odor; no sheen

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:40:00 PM	VOA-Glass	3	No
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 12:50.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW02R
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date 9/22/2020	
Sampling Event	September 2020	Sample Name	MW02R-GW-092220
Sub Area		Sample Depth	12.5
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	7:45	14.81		9.28		5.53	0.9

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	9:05:00 AM	0.9	0.2	7.72	19.4	597	0.77	-21.1	5.08
	9:10:00 AM	1.1	0.2	7.73	19.4	598	0.72	-20.4	4.61
	9:15:00 AM	1.3	0.2	7.73	19.5	597	0.7	-17.1	4.4
Final Field Parameters	9:17:00 AM	1.4	0.2	7.73	19.6	597	0.68	-16.5	4.23

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:20:00 AM	VOA-Glass	3	No
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 8:30.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW04
Project #	0747.01.12	SamplerA. Bixby	
Project Name	North Cascade Ford	Sampling Date 9/22/2020	
Sampling Event	September 2020	Sample Name	MW04-GW-092220
Sub Area		Sample Depth	11.5
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	7:50	13.6		9.06		4.54	0.74

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	9:30:00 AM	1	0.2	7.54	18	564	3.29	79.1	2.09
	9:35:00 AM	1.2	0.2	7.54	18	561	3.12	89.7	1.82
	9:40:00 AM	1.4	0.2	7.54	17.9	561	3.11	97.9	1.5
	9:45:00 AM	1.7	0.2	7.54	18.1	560	3.13	102	1.59
Final Field Parameters	9:47:00 AM	1.8	0.2	7.54	18.1	561	3.12	102.2	1.53

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:50:00 AM	VOA-Glass	3	No
		1	Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 8:40.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW06
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW06-GW-092220
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	7:58	19.77		10.84		8.93	1.5

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:00:00 AM	2	0.2	7.28	17.4	250.7	0.4	-9.3	16.58
	11:05:00 AM	2.2	0.2	7.28	17.5	247.8	0.4	-11.7	16.53
	11:10:00 AM	2.5	0.2	7.29	17.7	242.3	0.4	-13.7	16.5
Final Field Parameters	11:13:00 AM	2.7	0.2	7.28	17.7	241.4	0.4	-14.5	16.47

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; orange tint; no odor; no sheen

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:20:00 AM	VOA-Glass	3	No
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 10:10.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW07
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW07-GW-092220
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	8:12	19.58		10.42		9.16	1.5

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	12:50:00 PM	1.6	0.2	7.24	18	359.1	0.27	62.7	13.71
	12:55:00 PM	1.8	0.2	7.24	18.2	360.5	0.26	63	13.8
	1:00:00 PM	2.1	0.2	7.24	17.9	361.5	0.26	61.9	13.75
Final Field Parameters	1:02:00 PM	2.3	0.2	7.24	17.9	361.1	0.26	61.6	13.71

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:05:00 PM	VOA-Glass	3	No
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 12:10.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW09
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW09-GW-092220
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	8:07	19.98		9.26		10.72	1.7

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	12:20:00 PM	1.8	0.3	7.75	19.5	505	0.93	79.1	1.72
	12:25:00 PM	2.1	0.3	7.75	19.6	508	0.89	79.8	1.71
	12:30:00 PM	2.4	0.3	7.74	19.7	511	0.88	82.4	1.97
Final Field Parameters	12:32:00 PM	2.6	0.3	7.74	19.7	510	0.88	83.4	1.84

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:35:00 PM	VOA-Glass	3	No
		B	Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 11:40.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW10
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW10-GW-092220
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	7:53	19.83		9.71		10.12	1.6

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	10:10:00 AM	1.5	0.3	7.45	18.6	355.4	0.43	-90.8	2.49
	10:15:00 AM	1.7	0.2	7.45	18.7	355.3	0.41	-92.3	2.4
	10:20:00 AM	1.9	0.2	7.44	18.8	355.1	0.41	-94.5	2.31
Final Field Parameters	10:22:00 AM	2	0.2	7.45	18.8	355.3	0.4	-96.1	2.3

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; colorless; slight petroleum hydrocarbon-like odor; no sheen

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:25:00 AM	VOA-Glass	3	No
		1	Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 9:30.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW11
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW11-GW-092220
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 9/25/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	8:22	19.66		10.48		9.18	1.5

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:25:00 PM	1.3	0.3	9.53	18.9	246.3	3.27	-38.8	26.08
	3:10:00 PM	4	0.3	10.2	20.2	243.7	4.43	-2.5	20.95
	3:15:00 PM	4.3	0.3	10.18	20.2	246	4.52	0	13.82
	3:20:00 PM	4.6	0.3	10.17	20.3	246.6	4.48	1.8	10.72
Final Field Parameters	3:22:00 PM	4.8	0.3	10.14	20.4	246.8	4.46	5.2	9.61

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:25:00 PM	VOA-Glass	3	No
· ·			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	5	

General Sampling Comments

Began purge at 13:55.

Field duplicate sample MWDUP-GW-092220 collected here.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW12
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	9/22/2020
Sampling Event	September 2020	Sample Name	MW12-GW-092220
Sub Area		Sample Depth	12.5
FSDS QA:	C. Wise 9/25/2020	Easting	Northing

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
9/22/2020	8:03	14.53		10.24		4.29	0.7

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:30:00 AM	0.6	0.1	7.21	18	369.9	2.04	91	3.77
	11:35:00 AM	0.7	0.1	7.22	18	368.8	1.42	109.5	2.83
	11:40:00 AM	0.9	0.1	7.22	18.1	369	1.31	113.3	2.86
	11:45:00 AM	1	0.1	7.22	18.3	369	1.29	118.8	2.86
Final Field Parameters	11:47:00 AM	1.1	0.1	7.22	18.5	369.3	1.27	121.9	2.71

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:50:00 AM	VOA-Glass	3	No
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	4	

General Sampling Comments

Began purge at 10:45.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW01R		
Project #	0747.01.12	Sampler A. Bixby			
Project Name	North Cascade Ford	Sampling Date	10/14/2020		
Sampling Event	October 2020	Sample Name MW01R-GW-101420			
Sub Area		Sample Depth	12.5		
FSDS QA:	C. Wise 10/15/2020	Easting	Northing TOC		

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
10/14/2020	10:00	14.77		7.82		6.95	1.1

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:25:00 AM	1.9	0.2	8.77	16.9	553.2	5.91	57.9	0.71
	11:30:00 AM	2.1	0.2	8.83	16.8	554.8	5.87	57.3	0.68
	11:35:00 AM	2.3	0.2	8.83	16.9	555.1	5.86	58.6	0.69
Final Field Parameters	11:37:00 AM	2.4	0.2	8.84	16.9	555	5.83	58.5	0.52

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Orange particulates in initial purge water, then clear; slight yellow tint; no odor; slight spotty sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:40:00 AM	VOA-Glass	6	No
		1	Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	8	

General Sampling Comments

Began purge at 10:05.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW02R		
Project #	0747.01.12	Sampler A. Bixby			
Project Name	North Cascade Ford	Sampling Date	10/14/2020		
Sampling Event	October 2020	Sample Name	MW02R-GW-101420		
Sub Area		Sample Depth	12.5		
FSDS QA:	C. Wise 10/15/2020	Easting	Northing TOC		

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
10/14/2020	7:55	14.87		9.41		5.46	0.89

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	9:15:00 AM	2.3	0.2	6.84	16.9	571.3	1.18	127.4	1.11
	9:20:00 AM	2.5	0.2	6.83	17.1	571.4	1.17	127.1	1.2
	9:25:00 AM	2.7	0.2	6.84	16.9	569	1.15	125.4	1.14
Final Field Parameters	9:27:00 AM	2.8	0.2	6.84	17	569.3	1.11	125.6	1.07

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; slight brownish yellow tint; no odor; no sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:30:00 AM	VOA-Glass	6	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	8	

General Sampling Comments

Began purge at 8:00.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW09
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	10/14/2020
Sampling Event	October 2020	Sample Name	MW09-GW-101420
Sub Area		Sample Depth 15	
FSDS QA:	C. Wise 10/15/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
10/14/2020	9:08	20		8.46		11.54	1.9

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	10:30:00 AM	2	0.2	7.21	17	550.8	1.8	39.5	0.66
	10:35:00 AM	2.2	0.2	7.23	16.8	552.6	1.82	43	0.7
	10:40:00 AM	2.4	0.2	7.22	16.9	551.5	1.77	45.2	0.63
Final Field Parameters	10:42:00 AM	2.5	0.2	7.23	16.9	552.8	1.8	47	0.59

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen
-----------------------------	-------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:45:00 AM	VOA-Glass	6	No
		1	Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	8	

General Sampling Comments

Began purge at 9:32.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW10
Project #	0747.01.12	Sampler	A. Bixby
Project Name	North Cascade Ford	Sampling Date	10/14/2020
Sampling Event	October 2020	Sample Name	MW10-GW-101420
Sub Area		Sample Depth	15
FSDS QA:	C. Wise 10/15/2020	Easting	Northing

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
10/14/2020	7:45	19.86		9.21		10.65	1.7

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	8:40:00 AM	1.5	0.3	6.55	15.9	467.2	0.78	-66	2.25
	8:45:00 AM	1.7	0.3	6.58	15.5	446	0.71	-73.1	1.29
	8:50:00 AM	2.1	0.3	6.59	15.5	447.6	0.69	-76	1.18
Final Field Parameters	8:53:00 AM	2.2	0.3	6.59	15.5	447.6	0.69	-75.9	0.79

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; slight brownish yellow tint; slight petroleum hydrocarbon-like odor; no sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:00:00 AM	VOA-Glass	6	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	8	

General Sampling Comments

Began purge at 7:48.

ATTACHMENT D LABORATORY ANALTYICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 22, 2020

Carolyn Wise, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Wise:

Included are the results from the testing of material submitted on September 15, 2020 from the North Cascade Ford PO 0747.01.12, F&BI 009250 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0922R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 15, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi North Cascade Ford PO 0747.01.12, F&BI 009250 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
009250 -01	GP79-S-8.5
009250 -02	MW10-S-11.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/22/20 Date Received: 09/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009250 Date Extracted: 09/18/20 Date Analyzed: 09/18/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GP79-S-8.5 009250-01	<5	91
Method Blank 00-2006 MB2	<5	91

ENVIRONMENTAL CHEMISTS

Date of Report: 09/22/20 Date Received: 09/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009250 Date Extracted: 09/16/20 Date Analyzed: 09/16/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW10-S-11.0 009250-02	<50	<250	95
Method Blank 00-2085 MB	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: 09/22/20 Date Received: 09/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009250

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 0	09273-01 (Duplic	ate)			
		Samp	le Du	plicate	
	Reporting	Resu	lt R	esult	RPD
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: L	aboratory Contro	ol Sample	e Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	85	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/22/20 Date Received: 09/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009250

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 009250-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	92	73-135	8
Laboratory Code: Laboratory	aboratory Contr	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	88	74-139)		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			>			<u> </u>	1	r		1								-	, AF				
Ph. (206) 285-8282	Seattle, WA 98119-2029	Priedman & Bruya, Inc.	j - - -									MW10-5-11.0	GP79-5-8.5	Sample ID		Phone (360)690-5982 Email cwise @ mailfester.com	City, State, ZIP Bellinghum, WA 98225	Address 1329 N. State St, Ste 301	Company Maul Fos	Report To Carolyn Wise	009250		
Received by:	Relinquished by:	Kelinquished by:	SIC									to	01 A-E	Lab ID		mail <u>cwise@m</u>	hum, WA 98;	ate St. Ste	j Foster & Alona	W is e			
	flance	me Ric	SIGNATURE									9/14/20	9/14/20	Date Sampled		ulfester.co	225) 301	•• * •				
		-										1050	1030	Time Sampled			- REMARKS	North	PROJE	SAMPL	SAMPLE		
,	Nhan	Amand Nhan			Amanda Nhan									ഗ	G	Sample Type		Project specific RLs? -	KS	North Cascade Ford	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTC
			PRINT NAME									~	S	# of Jars		? - Ye		, No	(ure)	OF (
	Phan	Bixby	TNA				H:			<u> </u>	<u> </u>	\ge		NWTPH-Dx		Yes / No		يحح			SUC		
	ξ		ME										\bowtie	NWTPH-Gx BTEX EPA 8021			8			L/	rop		
														NWTPH-HCID		mailfester, com	INVOICE TO	0747.01.12	0	R L	DY ME		
														VOCs EPA 8260	ANAI	este	i tr OAN	7,0	۔ احب		46		
							ļ			ļ	ļ			PAHs EPA 8270	YSE		ICE BE	1.1	PO #		0		
		MFA	C		San		<u> </u>			<u> </u>				PCBs EPA 8082	S RE	Ň	OLO	2			09-15		
		A	COMPANY		lples			 	 	ļ				· · · · · · · · · · · · · · · · · · ·	QUE								
			ANY		recei									,	ANALYSES REQUESTED	D€		Ru	x		C &		
					Samples received at											efault	SA H Archiv	ısh ch	🗙 Standa H RUSH	I Pa	\bigcirc		
	19	16			11					<u> </u>						Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by	X Standard turnaround □ RUSH	Page # of TURNAROUND TIME	NS.		
	09/51	9/14/20	DATE		4 oc											oose ¿	,E DI; nples	autho	irnar(ROUN			
		-												Notes		fter .	SPOS.	rized	ound	ND TI	Ad/		
	chel	600	TIME											ى م		30 da	AL	by:		ME -	7		
			E	L					<u> </u>	<u> </u>													

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 1, 2020

Carolyn Wise, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Wise:

Included are the results from the testing of material submitted on September 23, 2020 from the North Cascade Ford PO 0747.01.12, F&BI 009424 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures MFA1001R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 23, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi North Cascade Ford PO 0747.01.12, F&BI 009424 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Mar</u>	<u>ul Foster Alongi</u>
009424 -01 MW	/02R-GW-092220
009424 -02 MW	/04-GW-092220
009424 -03 MW	/10-GW-092220
009424 -04 MW	/06-GW-092220
009424 -05 MW	/12-GW-092220
009424 -06 MW	/09-GW-092220
009424 -07 MW	/01R-GW-092220
009424 -08 MW	/07-GW-092220
009424 -09 MW	/11-GW-092220
009424 -10 MW	/Dup-GW-092220
009424 -11 Trij	o Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424 Date Extracted: 09/29/20 Date Analyzed: 09/29/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW02R-GW-092220 009424-01	<1	<1	<1	<3	<100	85
MW04-GW-092220 009424-02	<1	<1	<1	<3	<100	88
MW10-GW-092220 009424-03	<1	<1	<1	<3	370	87
MW06-GW-092220 009424-04	<1	<1	<1	<3	<100	88
MW12-GW-092220 009424-05	<1	<1	<1	<3	<100	81
MW09-GW-092220 009424-06	<1	<1	<1	<3	<100	84
MW01R-GW-092220 009424-07	<1	<1	<1	3.7	160	82
MW07-GW-092220 009424-08	<1	<1	<1	<3	<100	84
MW11-GW-092220 009424-09	<1	<1	30	16	390	86
MWDup-GW-092220 009424-10	<1	<1	30	17	380	85
Method Blank 00-2154 MB	<1	<1	<1	<3	<100	84

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424 Date Extracted: 09/29/20 Date Analyzed: 09/29/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (52-124)
Trip Blank 009424-11	<1	<1	<1	<3	82
Method Blank 00-2154 MB	<1	<1	<1	<3	84

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424 Date Extracted: 09/24/20 Date Analyzed: 09/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW02R-GW-092220 009424-01	780 x	450 x	113
MW04-GW-092220 009424-02	260 x	<250	120
MW10-GW-092220 009424-03	1,900	<250	127
MW06-GW-092220 009424-04	<50	<250	133
MW12-GW-092220 009424-05	<50	<250	128
MW09-GW-092220 009424-06	640 x	620 x	131
MW01R-GW-092220 009424-07 1/1.2	1,900	610 x	119
MW07-GW-092220 009424-08	130 x	<250	125
MW11-GW-092220 009424-09 1/1.2	350 x	<300	129
MWDup-GW-092220 009424-10	200	<250	134
Method Blank 00-2140 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW11-GW- 09/23/20 09/25/20 09/26/20 Water ug/L (ppb)	.092220	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi North Cascade Ford PO 0747.01.12 009424-09 1/2 092518.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 46 32 85 83 109 105	Lower Limit: 15 10 17 50 50 50	Upper Limit: 33 20 143 150 150 150
Compounds: Naphthalene 2-Methylnaphthale 1-Methylnaphthale		Concentration ug/L (ppb) 14 1.9 2.9		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MWDup-GV 09/23/20 09/25/20 09/26/20 Water ug/L (ppb)	W-092220	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi North Cascade Ford PO 0747.01.12 009424-10 1/2 092519.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 42 32 84 83 114 102	Lower Limit: 15 10 17 50 50 50	Upper Limit: 33 20 143 150 150 150
Compounds: Naphthalene 2-Methylnaphthale 1-Methylnaphthale		Concentration ug/L (ppb) 16 2.3 3.4		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 09/25/20 09/25/20 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi North Cascade Ford PO 0747.01.12 00-2179 mb2 092509.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recov 25 18 71 82 nol 84 97	ery: Lower 15 10 17 50 50 50	Upper Limit: 33 20 143 150 150 150
Compounds:	Concentra ug/L (p		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 009502-01 (Duplicate) Duplicate Reporting Sample RPD Units Result Result (Limit 20) Analyte Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes <3 <3 ug/L (ppb) nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	110	65-118
Toluene	ug/L (ppb)	50	94	72 - 122
Ethylbenzene	ug/L (ppb)	50	98	73-126
Xylenes	ug/L (ppb)	150	96	74 - 118
Gasoline	ug/L (ppb)	1,000	133	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	88	61-133	0

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/20 Date Received: 09/23/20 Project: North Cascade Ford PO 0747.01.12, F&BI 009424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.5

Laboratory Code: Laboratory C	ontrol Sampl	e 1/0.5				
	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Únits	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	2.5	76	81	70-130	6
2-Methylnaphthalene	ug/L (ppb)	2.5	78	84	70-130	7
1-Methylnaphthalene	ug/L (ppb)	2.5	78	84	70-130	7

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

MWDUR-GW-092220 10 A-E 9/22/20 Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282 Friedman & Bruya, Inc. MW11-GW-092220 09 A.E 9/22/20 1525 MW06-GW-092220 04 Company Maul Foster & Albugi MW09-GW-092220 06 City, State, ZIP Bellingham, WA 18225 MW12-GW-092220 05 MW10-GW-07222003 MW048-GW-072220 02 Phon (3 60) 6 40-5982 Email Cwise Quantester com Address 1329 N State St, Ste 301 MW07-GW-092220 08 MWOIR-GW-09222 07 MW02R-GW-09222401 A.D neport To Carolyn Wisc hehboo Sample ID Relinguished by: Relinquished by: Received by: Received by: -T A B SIGNATURE Lab ID my low Church 9/22/20 1305 91/2/20 1340 9/22/20 1120 9/22/20 9/22/20 9/22/20 9122/20 9122/20 Sampled Date Arra 1 1525 SAMPLE CHAIN OF CUSTODY HE 09/23/20 Bas/www 0950 0920 Sampled 1150 S 20 1235 Avalyze for BTEX Project specific RLs? - Yes / No Time +Trip Blank (2 jars) SAMPLERS (signature) North Cascade Ford PROJECT NAME Туре ٤ Sample É ٤ Amanda Bitby ٤ C ٤ ٤ ٤ É ٤ Whan Phan DRO+CRO NWTPH-Dx NWTPH-Gx S 1 PRINT NAME <u>1</u> <u>r</u> r S) Γ £ Γ Thud Hi multester.com accounting@ 0747.01.12 NWTPH-HCID UNADICE TO ANALYSES REQU VOCs EPA 8260 PAHs EPA PCBs EPA TX BH MFA COMPANY Samples received at 2-0C Total naphti EPA 8270 SW ESTED X Standard turnaround Default: Dispose after 30 days 0 Other 1 Archive samples Rush charges authorized by Page # TURNAROUND TIME SAMPLE DISPOSAL Adder 9122120 630 9/23/20 Notes ŝ Ret Marian TIME ThhI

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 4, 2020

Carolyn Wise, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Wise:

Included are the results from the testing of material submitted on October 15, 2020 from the North Cascade Ford PO 0747.01.12, F&BI 010270 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures MFA1104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 15, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi North Cascade Ford PO 0747.01.12, F&BI 010270 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
010270 -01	MW10-GW-101420
010270 -02	MW02R-GW-101420
010270 -03	MW01R-GW-101420
010270 -04	MW09-GW-101420
010270 -05	Trip Blank-GW-101420

Samples MW10-GW-101420 and MW01R-GW-101420 were sent to Fremont Analytical for EPH and VPH analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 010270 Date Extracted: 10/20/20 Date Analyzed: 10/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW10-GW-101420 010270-01	550	89
MW01R-GW-101420 010270-03	<100	92
Method Blank 00-2299 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 010270 Date Extracted: 10/19/20 Date Analyzed: 10/19/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW10-GW-101420 010270-01	2,000 x	400 x	99
MW01R-GW-101420 010270-03	200 x	<260	90
Method Blank 00-2345 MB	<50	<250	105

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 010270

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 010	234-01 (Duplica	ate)			
	Reporting	Samp	le Duj	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	:100	nm
Laboratory Code: Lab	oratory Contro	l Sample	Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	101	69-134	-

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/15/20 Project: North Cascade Ford PO 0747.01.12, F&BI 010270

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	108	63-142	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 010270 Work Order Number: 2010269

November 02, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 10/16/2020 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

CLIENT: Project: Work Order:	Friedman & Bruya 010270 2010269	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2010269-001	MW10-GW-101420	10/14/2020 9:00 AM	10/16/2020 11:06 AM
2010269-002	MW02R-GW-101420	10/14/2020 9:30 AM	10/16/2020 11:06 AM
2010269-003	MW01R-GW-101420	10/14/2020 11:40 AM	10/16/2020 11:06 AM
2010269-004	MW09-GW-101420	10/14/2020 10:45 AM	10/16/2020 11:06 AM

Case Narrative

WO#: **2010269** Date: **11/2/2020**

CLIENT:Friedman & BruyaProject:010270

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2010269** Date Reported: **11/2/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2010269

 Date Reported:
 11/2/2020

Client: Friedman & Bruya Project: 010270				Collectio	n Date: 10	0/14/2020 9:00:00 AM
Lab ID: 2010269-001				Matrix: W	/ater	
Client Sample ID: MW10-GW-101	420					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEF	<u>भ</u>		Bato	h ID: 301	11 Analyst: DW
Aliphatic Hydrocarbon (C8-C10)	ND	84.3	*	μg/L	1	10/30/2020 8:56:20 PM
Aliphatic Hydrocarbon (C10-C12)	ND	42.1	*	µg/L	1	10/30/2020 8:56:20 PM
Aliphatic Hydrocarbon (C12-C16)	ND	42.1		µg/L	1	10/30/2020 8:56:20 PM
Aliphatic Hydrocarbon (C16-C21)	ND	42.1		µg/L	1	10/30/2020 8:56:20 PM
Aliphatic Hydrocarbon (C21-C34)	ND	42.1		µg/L	1	10/30/2020 8:56:20 PM
Aromatic Hydrocarbon (C8-C10)	ND	84.3	*	µg/L	1	10/31/2020 2:32:14 AM
Aromatic Hydrocarbon (C10-C12)	84.4	42.1	*	µg/L	1	10/31/2020 2:32:14 AM
Aromatic Hydrocarbon (C12-C16)	105	42.1	*	µg/L	1	10/31/2020 2:32:14 AM
Aromatic Hydrocarbon (C16-C21)	75.4	42.1		µg/L	1	10/31/2020 2:32:14 AM
Aromatic Hydrocarbon (C21-C34)	ND	42.1		µg/L	1	10/31/2020 2:32:14 AM
Surr: 1-Chlorooctadecane	53.1	60 - 140	S	%Rec	1	10/30/2020 8:56:20 PM
Surr: o-Terphenyl	41.8	60 - 140	S	%Rec	1	10/31/2020 2:32:14 AM
NOTES:						
S - Outlying surrogate recovery(ies) obs	erved. Sample will	be re-analyzed				
* - Flagged value is not within establishe	ed control limits.					
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 3018	30 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		µg/L	1	10/28/2020 12:31:22 AM
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Aliphatic Hydrocarbon (C8-C10)	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Aliphatic Hydrocarbon (C10-C12)	128	20.0		µg/L	1	10/28/2020 12:31:22 AM
Aromatic Hydrocarbon (C8-C10)	ND	50.0		µg/L	1	10/28/2020 12:31:22 AM
Aromatic Hydrocarbon (C10-C12)	742	20.0		µg/L	1	10/28/2020 12:31:22 AM
Aromatic Hydrocarbon (C12-C13)	450	20.0		µg/L	1	10/28/2020 12:31:22 AM
Benzene	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Toluene	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Ethylbenzene	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
m,p-Xylene	ND	40.0		µg/L	1	10/28/2020 12:31:22 AM
o-Xylene	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Naphthalene	65.1	20.0		µg/L	1	10/28/2020 12:31:22 AM
Methyl tert-butyl ether (MTBE)	ND	20.0		µg/L	1	10/28/2020 12:31:22 AM
Surr: 1,4-Difluorobenzene	94.7	65 - 140		%Rec	1	10/28/2020 12:31:22 AM

95.2

65 - 140

%Rec

1

Surr: Bromofluorobenzene

10/28/2020 12:31:22 AM

Analytical Report

Work Order: 2010269 Date Reported: 11/2/2020

Client: Friedman & Bruya Project: 010270				Collectio	n Date: 1	0/14/2020 11:40:00 AM
Lab ID: 2010269-003				Matrix: W	/ater	
Client Sample ID: MW01R-GW-10	01420					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEF	<u>2H</u>		Batc	h ID: 301	11 Analyst: DW
Aliphatic Hydrocarbon (C8-C10)	ND	89.7	*	µg/L	1	10/30/2020 9:30:07 PM
Aliphatic Hydrocarbon (C10-C12)	ND	44.9	*	µg/L	1	10/30/2020 9:30:07 PM
Aliphatic Hydrocarbon (C12-C16)	ND	44.9		µg/L	1	10/30/2020 9:30:07 PM
Aliphatic Hydrocarbon (C16-C21)	ND	44.9		µg/L	1	10/30/2020 9:30:07 PM
Aliphatic Hydrocarbon (C21-C34)	ND	44.9		µg/L	1	10/30/2020 9:30:07 PM
Aromatic Hydrocarbon (C8-C10)	ND	89.7	*	µg/L	1	10/31/2020 3:06:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	44.9	*	µg/L	1	10/31/2020 3:06:00 AM
Aromatic Hydrocarbon (C12-C16)	ND	44.9	*	µg/L	1	10/31/2020 3:06:00 AM
Aromatic Hydrocarbon (C16-C21)	ND	44.9		µg/L	1	10/31/2020 3:06:00 AM
Aromatic Hydrocarbon (C21-C34)	ND	44.9		µg/L	1	10/31/2020 3:06:00 AM
Surr: 1-Chlorooctadecane	52.2	60 - 140	S	%Rec	1	10/30/2020 9:30:07 PM
Surr: o-Terphenyl	46.6	60 - 140	S	%Rec	1	10/31/2020 3:06:00 AM
* - Flagged value is not within establishe				Batc	h ID: 301	80 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		µg/L	1	10/28/2020 1:08:16 AM
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Aliphatic Hydrocarbon (C8-C10)	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Aliphatic Hydrocarbon (C10-C12)	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Aromatic Hydrocarbon (C8-C10)	ND	50.0		µg/L	1	10/28/2020 1:08:16 AM
Aromatic Hydrocarbon (C10-C12)	77.3	20.0		µg/L	1	10/28/2020 1:08:16 AM
Aromatic Hydrocarbon (C12-C13)	304	20.0		µg/L	1	10/28/2020 1:08:16 AM
Benzene	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Toluene	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Ethylbenzene	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
m,p-Xylene	ND	40.0		µg/L	1	10/28/2020 1:08:16 AM
o-Xylene	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Naphthalene	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Methyl tert-butyl ether (MTBE)	ND	20.0		µg/L	1	10/28/2020 1:08:16 AM
Surr: 1,4-Difluorobenzene	99.4	65 - 140		%Rec	1	10/28/2020 1:08:16 AM
Surr: Bromofluorobenzene	97.9	65 - 140		%Rec	1	10/28/2020 1:08:16 AM

Work Order:	2010269
CLIENT:	Friedman & Bruya
Project:	010270

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-30111	SampType: MBLK			Units: µg/L		Prep Da	te: 10/21/2	2020	RunNo: 63049			
Client ID: MBLKW	Batch ID: 30111		Analysis Date: 10/30/2020				SeqNo: 1265485					
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aliphatic Hydrocarbon (C8-C10)	ND	80.0		0	0						*	
Aliphatic Hydrocarbon (C10-C12)	ND	40.0		0	0						*	
Aliphatic Hydrocarbon (C12-C16)	ND	40.0		0	0							
Aliphatic Hydrocarbon (C16-C21)	ND	40.0		0	0							
Aliphatic Hydrocarbon (C21-C34)	ND	40.0		0	0							
Surr: 1-Chlorooctadecane	163		399.8		40.9	60	140				S	
NOTES:	100		000.0		10.0	00	110					

NOTES:

S - Outlying surrogate recovery(ies) observed.

* - Flagged value is not within established control limits.

Sample ID: LCS-30111	SampType: LCS			Units: µg/L		Prep Da	te: 10/21/2020	RunNo: 63049	
Client ID: LCSW	Batch ID: 30111		Analysis Date: 10/30/2020					SeqNo: 1265490	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLi	nit Qual
Aliphatic Hydrocarbon (C8-C10)	240	79.8	996.9	0	24.0	70	130		S
Aliphatic Hydrocarbon (C10-C12)	176	39.9	498.5	0	35.3	70	130		S
Aliphatic Hydrocarbon (C12-C16)	310	39.9	498.5	0	62.1	70	130		S
Aliphatic Hydrocarbon (C16-C21)	365	39.9	498.5	0	73.2	70	130		
Aliphatic Hydrocarbon (C21-C34)	311	39.9	498.5	0	62.4	70	130		S
Surr: 1-Chlorooctadecane	269		398.8		67.5	60	140		

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (C12-C16 and C21-C34)

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID: LCSD-30111		Units: µg/L		Prep Dat	te: 10/21/2	020	RunNo: 63049						
Client ID: LCSW02	Batch ID: 30111	ID: 30111					Analysis Date: 10/30/2020				SeqNo: 1265491		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Aliphatic Hydrocarbon (C8-C10)	215	79.0	987.7	0	21.8	70	130	239.6	10.7	20	S		
Aliphatic Hydrocarbon (C10-C12)	219	39.5	493.8	0	44.3	70	130	175.9	21.7	20	RS		
Aliphatic Hydrocarbon (C12-C16)	405	39.5	493.8	0	82.0	70	130	309.7	26.7	20	R		

CLIENT:Friedman &Project:010270	Bruya					Extr	actable	Petroleum I	Hydrocarb	ons by N	IWEP
Sample ID: LCSD-30111	SampType: LCSD			Units: µg/L		Prep Da	te: 10/21/2	2020	RunNo: 630	49	
Client ID: LCSW02	Batch ID: 30111					Analysis Da	te: 10/30/2	2020	SeqNo: 126	5491	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C16-C21)	438	39.5	493.8	0	88.7	70	130	364.6	18.3	20	
Aliphatic Hydrocarbon (C21-C34)	359	39.5	493.8	0	72.8	70	130	311.1	14.4	20	
Surr: 1-Chlorooctadecane	320		395.1		80.9	60	140		0		
R - High RPD observed.	SampType: MBLK			Units: ua/L		Prep Da	te: 10/21/2	2020	RunNo: 630	49	
Sample ID: MB-30111	SampType: MBLK Batch ID: 30111			Units: µg/L		Prep Da Analysis Da			RunNo: 630 SeqNo: 126	-	
Sample ID: MB-30111 Client ID: MBLKW		RL	SPK value	Units: µg/L SPK Ref Val	%REC	Analysis Da	te: 10/30/2			-	Qual
Sample ID: MB-30111 Client ID: MBLKW Analyte	Batch ID: 30111	RL 80.0	SPK value			Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	Qual *
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10)	Batch ID: 30111 Result		SPK value	SPK Ref Val	%REC	Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12)	Batch ID: 30111 Result ND	80.0	SPK value	SPK Ref Val	%REC 0	Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16)	Batch ID: 30111 Result ND ND	80.0 40.0	SPK value	SPK Ref Val	%REC 0 0	Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C16-C21)	Batch ID: 30111 Result ND ND ND	80.0 40.0 40.0	SPK value	SPK Ref Val	%REC 0 0 0	Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C16-C21) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl	Batch ID: 30111 Result ND ND ND ND	80.0 40.0 40.0 40.0	SPK value 399.8	SPK Ref Val 0 0 0 0	%REC 0 0 0 0	Analysis Da	te: 10/30/2	2020	SeqNo: 126	5501	
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C16-C21) Aromatic Hydrocarbon (C21-C34)	Batch ID: 30111 Result ND ND ND ND ND ND	80.0 40.0 40.0 40.0		SPK Ref Val 0 0 0 0	%REC 0 0 0 0 0	Analysis Da LowLimit	te: 10/30/2 HighLimit	2020	SeqNo: 126	5501	* *
Sample ID: MB-30111 Client ID: MBLKW Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C16-C21) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl	Batch ID: 30111 Result ND ND ND ND 163	80.0 40.0 40.0 40.0		SPK Ref Val 0 0 0 0	%REC 0 0 0 0 0	Analysis Da LowLimit	te: 10/30/2 HighLimit	2020	SeqNo: 126	5501	* *

Sample ID: LCS-30111 SampType: LCS				Units: µg/L Prep Date: 10/21/2020						RunNo: 63049		
Client ID: LCSW	Batch ID: 30111				Analysis Date: 10/31/2020					SeqNo: 1265507		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aromatic Hydrocarbon (C8-C10)	244	79.8	996.9	0	24.5	70	130				S	
Aromatic Hydrocarbon (C10-C12)	197	39.9	498.5	0	39.4	70	130				S	
Aromatic Hydrocarbon (C12-C16)	171	39.9	498.5	0	34.3	70	130				S	
Aromatic Hydrocarbon (C16-C21)	303	39.9	498.5	0	60.7	70	130				S	
Aromatic Hydrocarbon (C21-C34)	278	39.9	498.5	0	55.7	70	130				S	
Surr: o-Terphenyl	197		398.8		49.4	60	140				S	

Work Order: CLIENT: Project:	2010269 Friedman & Bruya 010270						Extra	actable I	QC S Petroleum H	SUMMAF Iydrocarb		
Sample ID: LCS-3 Client ID: LCSW Analyte		: 30111	RL S	SPK value	Units: µg/L SPK Ref Val	%REC	Analysis Dat			RunNo: 630 SeqNo: 126 %RPD	-	Qual
Analyte		Result		SFR value	SFR Rei Vai	/MREC	LOWLIIIII	riignennii	RFD Rei Vai	/0RF D	KF DLIIIII	Quai

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (C16-C21 and C21-C34)

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

S - Outlying surrogate recovery(ies) observed.

Sample ID: LCSD-30111			Units: µg/L		Prep Da	te: 10/21/2	2020	RunNo: 63049				
Client ID: LCSW02	Batch ID: 30111					Analysis Da	te: 10/31/2	:020	SeqNo: 1265509			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aromatic Hydrocarbon (C8-C10)	168	79.0	987.7	0	17.0	70	130	244.2	36.9	20	S	
Aromatic Hydrocarbon (C10-C12)	204	39.5	493.8	0	41.4	70	130	196.6	3.87	20	S	
Aromatic Hydrocarbon (C12-C16)	237	39.5	493.8	0	48.1	70	130	170.9	32.6	20	RS	
Aromatic Hydrocarbon (C16-C21)	358	39.5	493.8	0	72.6	72.6 70		302.7	16.9	20		
Aromatic Hydrocarbon (C21-C34)	358	39.5	493.8	0	72.5	70	130	277.5	25.4	20	R	
Surr: o-Terphenyl	244		395.1		61.8	60	140		0			

NOTES:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Work Order:	2010269	

CLIENT: Friedman & Bruya

Project: 010270

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-30180	SampType: LCS			Units: µg/L		Prep Dat	e: 10/27/2	020	RunNo: 629		
Client ID: LCSW	Batch ID: 30180					Analysis Dat	e: 10/27/2	020	SeqNo: 126	63838	
Analyte	Result	Result RL		SPK Ref Val	%REC	CowLimit HighLimit RPD Ref		RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	663	40.0	600.0	0	110	70	130				
Aliphatic Hydrocarbon (C6-C8)	199	20.0	200.0	0	99.5	70	130				
Aliphatic Hydrocarbon (C8-C10)	194	20.0	200.0	0	96.8	70	130				
Aliphatic Hydrocarbon (C10-C12)	191	20.0	200.0	0	95.5	70	130				
Aromatic Hydrocarbon (C8-C10)	905	50.0	800.0	0	113	70	130				
Aromatic Hydrocarbon (C10-C12)	222	20.0	200.0	0	111	70	130				
Aromatic Hydrocarbon (C12-C13)	222	20.0	200.0	0	111	70	130				
Benzene	216	20.0	200.0	0	108	70	130				
Toluene	221	20.0	200.0	0	110	70	130				
Ethylbenzene	220	20.0	200.0	0	110	70	130				
m,p-Xylene	458	40.0	400.0	0	114	70	130				
o-Xylene	220	20.0	200.0	0	110	70	130				
Naphthalene	226	20.0	200.0	0	113	70	130				
Methyl tert-butyl ether (MTBE)	218	20.0	200.0	0	109	70	130				
Surr: 1,4-Difluorobenzene	53.9		50.00		108	65	140				
Surr: Bromofluorobenzene	50.4		50.00		101	65	140				

Sample ID: 2010228-015CDUP	SampType: DUP			Units: µg/L	Prep Date	: 10/27/2	2020	RunNo: 62964			
Client ID: BATCH	Batch ID: 30180					Analysis Date	: 10/27/2	2020	SeqNo: 126	3831	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		0	0			0		25	
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		0	0			0		25	
Aliphatic Hydrocarbon (C8-C10)	ND	20.0		0	0			0		25	
Aliphatic Hydrocarbon (C10-C12)	ND	20.0		0	0			0		25	
Aromatic Hydrocarbon (C8-C10)	ND	50.0		0	0			0		25	
Aromatic Hydrocarbon (C10-C12)	44.9	20.0		0	0			44.05	2.00	25	
Aromatic Hydrocarbon (C12-C13)	39.0	20.0		0	0			74.00	62.0	25	R
Benzene	ND	20.0		0	0			0		25	
Toluene	ND	20.0		0	0			0		25	

Work Order: 2010269

CLIENT: Friedman & Bruya

Project: 010270

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

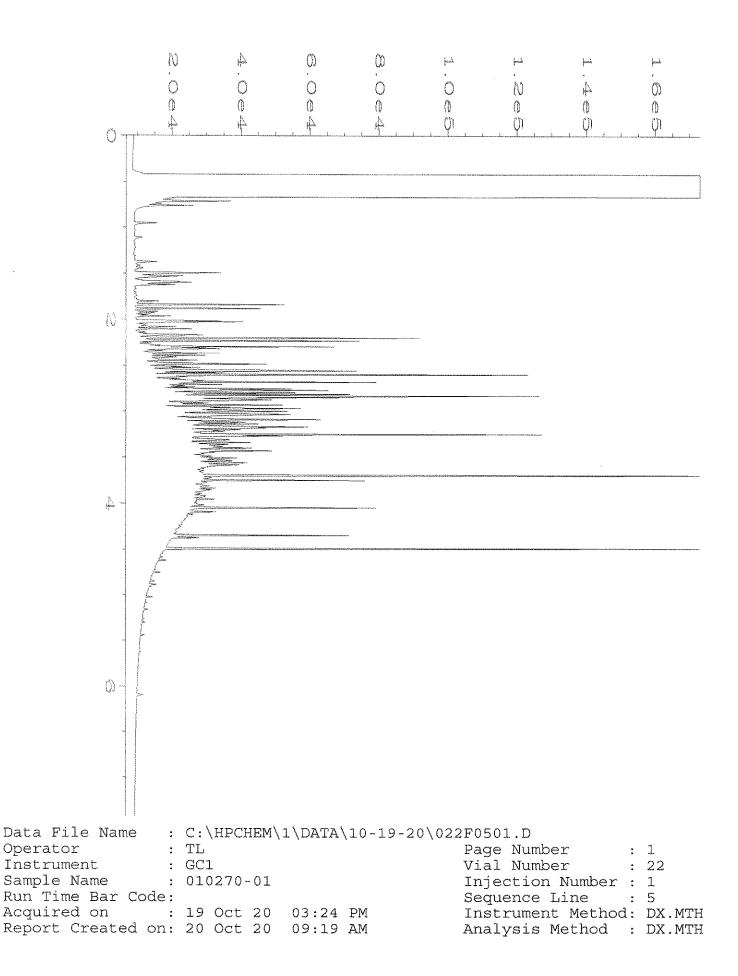
Sample ID: 2010228-015CDUP	SampType: DUP		Units: µg/L		Prep Dat	te: 10/27/2	RunNo: 62964				
Client ID: BATCH	Batch ID: 30180				Analysis Dat	te: 10/27/2	020	SeqNo: 1263831			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	ND	20.0		0	0			0		25	
m,p-Xylene	ND	40.0		0	0			0		25	
o-Xylene	ND	20.0		0	0			0		25	
Naphthalene	ND	20.0		0	0			0		25	
Methyl tert-butyl ether (MTBE)	ND	20.0		0	0			0		25	
Surr: 1,4-Difluorobenzene	47.8		50.00		95.6	65	140		0		
Surr: Bromofluorobenzene	48.9		50.00		97.9	65	140		0		

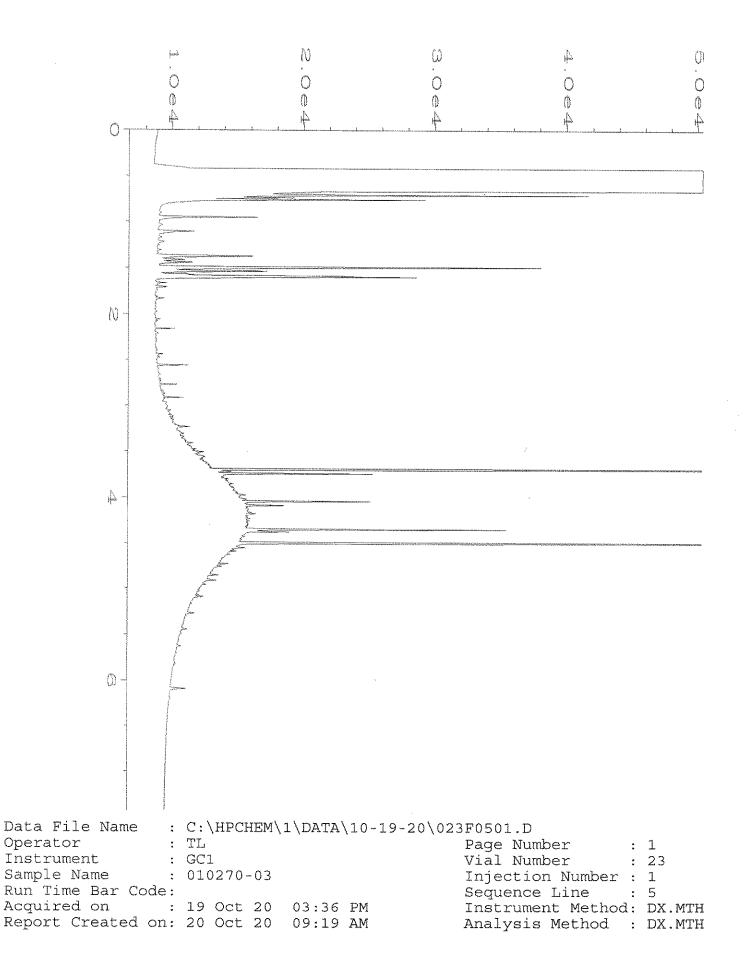
NOTES:

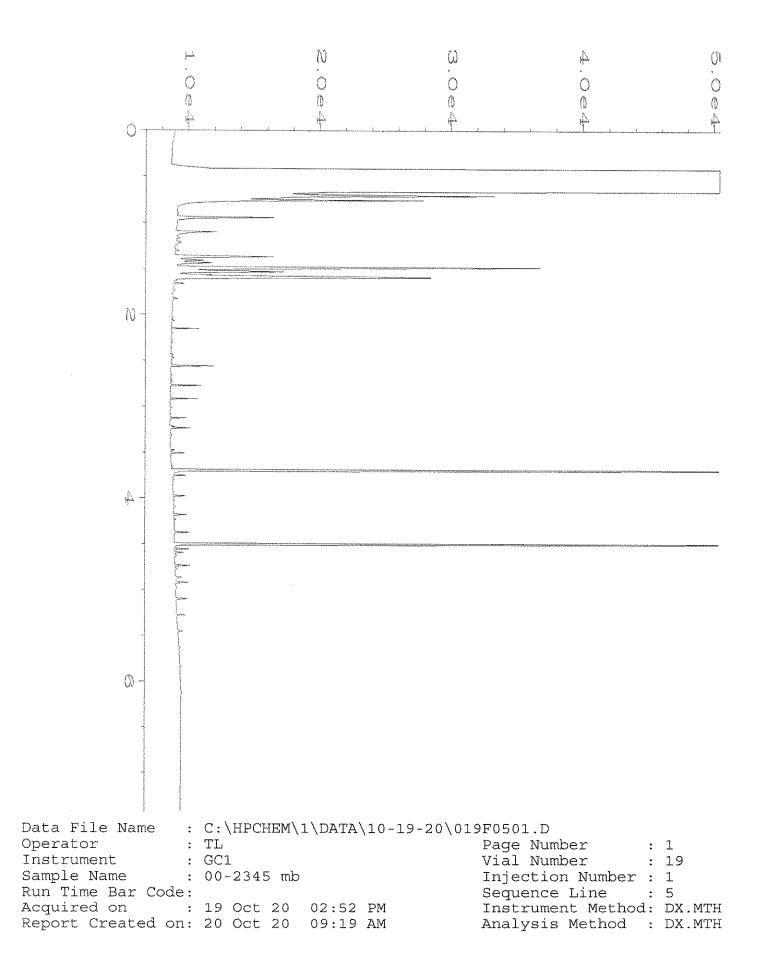
R - High RPD observed. The method is in control as indicated by the LCS.

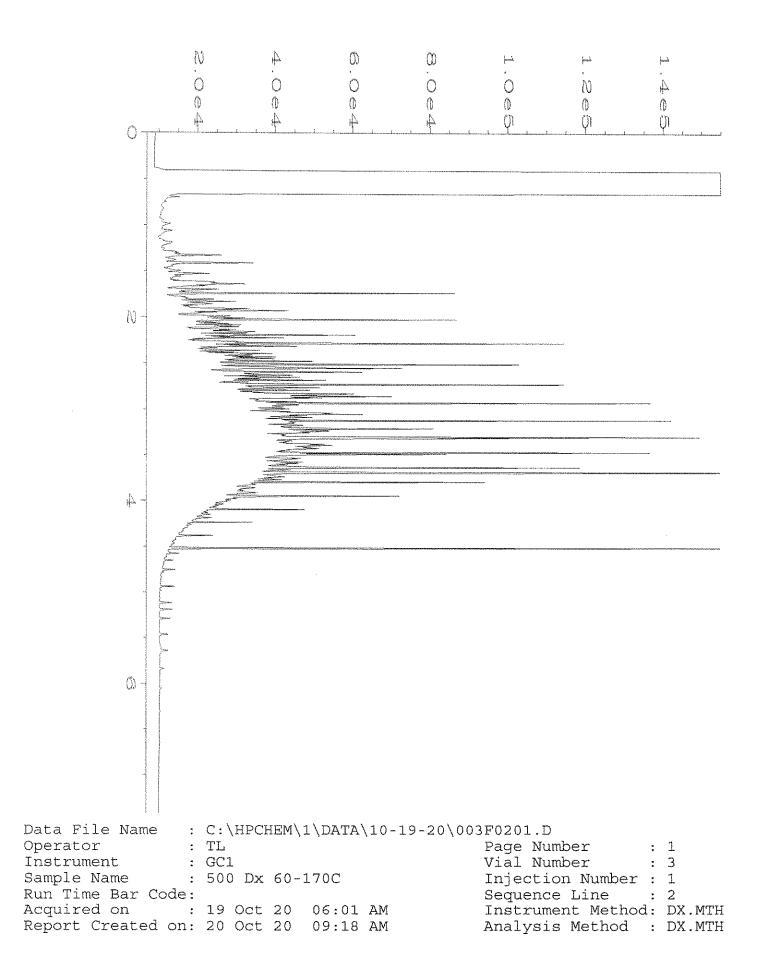
Sample ID: MB-30180	SampType: MBLK	IBLK Units: µg/L				Prep Da	te: 10/27/2	2020	RunNo: 62964				
Client ID: MBLKW	Batch ID: 30180					Analysis Da	te: 10/28/2	2020	SeqNo: 126	3836			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		0	0								
Aliphatic Hydrocarbon (C6-C8)	ND	20.0		0	0								
Aliphatic Hydrocarbon (C8-C10)	ND	20.0		0	0								
Aliphatic Hydrocarbon (C10-C12)	ND	20.0		0	0								
Aromatic Hydrocarbon (C8-C10)	ND	50.0		0	0								
Aromatic Hydrocarbon (C10-C12)	ND	20.0		0	0								
Aromatic Hydrocarbon (C12-C13)	ND	20.0		0	0								
Benzene	ND	20.0		0	0								
Toluene	ND	20.0		0	0								
Ethylbenzene	ND	20.0		0	0								
m,p-Xylene	ND	40.0		0	0								
o-Xylene	ND	20.0		0	0								
Naphthalene	ND	20.0		0	0								
Methyl tert-butyl ether (MTBE)	ND	20.0		0	0								
Surr: 1,4-Difluorobenzene	57.0		50.00		114	65	140						
Surr: Bromofluorobenzene	57.7		50.00		115	65	140						

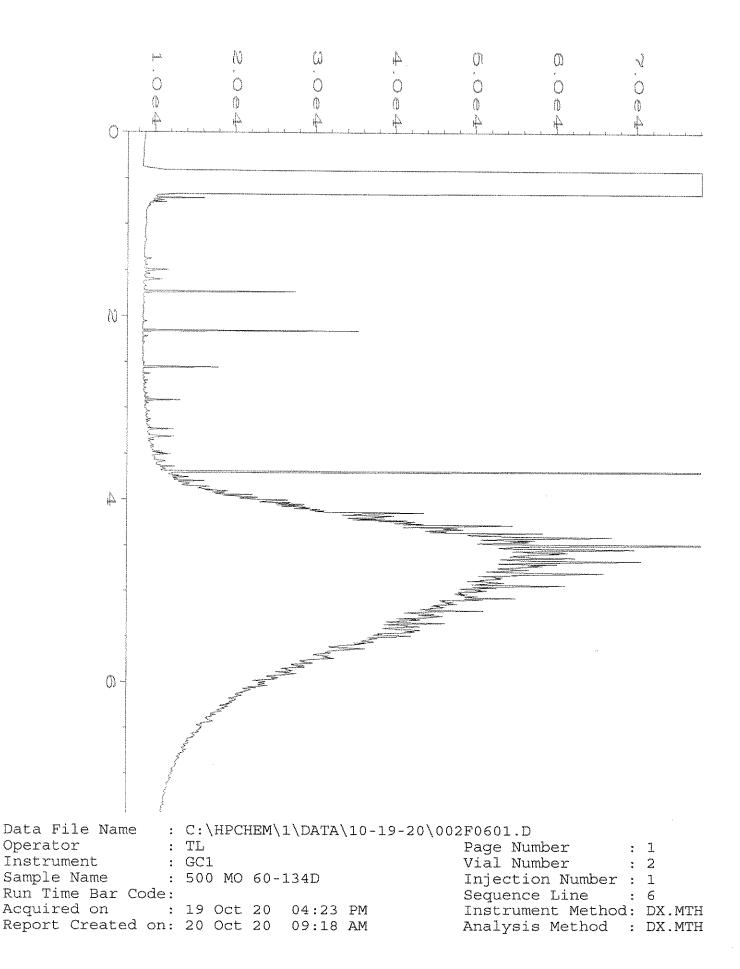
Sample Log-In Check List


Client Name: FB		per: 2010269	
Logged by: Gabrielle Coeuille	Date Received:	10/16/202	0 11:06:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
Log In			
3. Coolers are present?	Yes 🖌	No 🗌	NA 🗌
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present 🗹
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
7. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🔽	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🔽	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Are samples properly preserved?	Yes 🗹	No 🗌	
11. Was preservative added to bottles?	Yes 🖌	No 🗌	NA 🗌 HCL
12. Is there headspace in the VOA vials?	Yes	No 🗌	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Date	e:		
By Whom: Via:	eMail Pho	one 🗌 Fax	In Person
Regarding:			
Client Instructions:			


Item Information


Item #	Temp °C
Sample 1	1.6


* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C


			SUBCO	ONTR	AC'	T SAM	PLE	CH	AIN	OF C	UST	OD	Y		20	10	2109	72	
Send Report <u>To</u>	Michae	l Erdahl				BCONT			Frem	ont						Page		of TIME	
CompanyF	'riedm:	an and Bruya	, Inc.		PR	PROJECT NAME/NO. PO #								Sta		TAT			
Address3	012 16	th Ave W				010270 A.434							Rush charges authorized by:						
City, State, ZIP <u>S</u> Phone # <u>(206) 285</u>	<u>eattle,</u>	WA 98119	edmanandbruy	/a.com	RE	MARKS Ple		mail l	Result	s E	QUI	54	1		🗆 Ret	pose a urn sa	IPLE DISPC fter 30 days umples with instruct		
										ANA	LYSE	S RE	QUES	STED)		1		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix		rix # of jars Dioxins/Furans		EPH	HdV								N	otes	
MWID-GW-101420		10/14/20	0900	water		4		¥	*								Analyse	5	
MW02R-6W-101420		10/14/20	0930	1		4		×	+								- Hold		
MW01R-6W-101420		10/12/20	1140			4		×	7								- Analyse		
MWU9 - GW-101420		10/14/20	(04S	+		4		*	*								-Hdď I	44 10/16/20	
	J						-									-			
Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relingence Signal		1	9	PRINT NAME CO Michael Erdahl Friedman							OMP/			DATE	TIME				
Seattle, WA 98119-2	2029	Received by:	TH	1	Center Johnson FAT									10/10/20	0838AM				
Ph. (206) 285-8282		Relinquished b	y:htt	\sim		Cerr	tur	2) MNS	non		F	11				10/14/20	1106	
Fax (206) 283-5044		Received by:										-							

010270 Report To Carolyn Wise Company Macil Foster & Along;			PROJECT NAME				PO#			TURNAROUND TIME Standard turnaround RUSH							
Address 1329 N State St, Ste 301				North Cascade Ford				0747.01.12			Rush charges authorized by:						
City, State, ZIP Bellinghom, WA 98225						INVOICE TO accounting @			SAMPLE DISPOSAL								
Phone (360) 670-5782	Email_	<u>ewise@n</u>	withesturic	Project	specific RI	<u>.s? - Y</u>	es /	No	lina.	۰. ۲۰ ۰۰۰۰ ۲۰۰۰ ۰۰۰		11 L L		De	fault:	Dispose afte	r 30 days
· · · · · · · · · · · · · · · · · · ·					1	1	5	Ĺ	H		and the second se	and an address of the state of the	EQUE	STEL)	· · · ·	
Sample ID		Lab ID	Date Såmpled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	WWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOUS EPA 8260 PAHs EPA 8270	PCBs EPA 808	EPH/VPH by	•	are of a work of the second	No	tes
MWIO-GW-101	120	01 A-K	10/14/20	0900	W	8	Х	X					X				
MWOZR-GW-10	1420	02	10/114/20	0930	W	8	\mathbb{X}	凶	•				X			-HALES	HAPH
MWOIR-GW-1	21420	13	10/14/20	1140	W.	.8	X	Х			_		\mathbf{X}				
MWO9-GW-10	1420	04	10/14/20	1045	W.	8	X	겍	-				쑤			HIL EM	WPH-
Trip blank		95 A.B		- 	· · ·	2							· · ·	-		added	YB10/
¹ .; J	, R	***															
1	finite Winkstoren der fenst Arman Stenation	nendera at distant and a second		nderen had i deren dad date ei Historic in med al and fil faste	akarlasti annak professora anacerativa	1107 of order below had the Part Solution			•	ahampirata da myida, aj						Henn Versland, mit verschich in Ale ander in Landel Verschiner	مانان است. و زمان می و در با از است
4		······							Ì			N. 11			ÿ		
The day on P Day of T	Ralima	· SI(uished by:	GNATURE			PRIN	IT N	AMI	;			C	OMP			DATE	TIME
Friedman & Bruya, Inc. 3012 16 th Avenue West	×	red by:		Ritz	1	-ande			4		_	4	MF			10/14/20	
Soll 10- Avenue West Seattle, WA 98119-2029		uished by:	M	<i></i>	Kh	$\alpha_i \rightarrow$	loor	ng				F	BE			10/15/20	15:9
Ph. (206) 285-8282	Receiv	red by:				*	•		·····,			0				<u>4 °c</u>	

ATTACHMENT E DATA VALIDATION MEMORANDA

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0747.01.12 | OCTOBER 12, 2020 | VSF PROPERTIES, LLC

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater and soil samples collected at the North Cascade Ford site in September 2020.

Friedman & Bruya, Inc. (FBI) of Seattle, Washington performed the analyses. FBI report numbers 009250 and 009424 were reviewed. The analyses performed and samples analyzed are listed below. Samples submitted to FBI on hold are also indicated.

Analysis	Reference
BTEX	EPA 8021B
Diesel- and Motor Oil-Range Hydrocarbons	NWTPH-Dx
Gasoline-Range Hydrocarbons	NWTPH-Gx
Naphthalenes	EPA 8270E
NOTES: BTEX = benzene, toluene, ethylbenzene, and xylenes. EPA = U.S. Environmental Protection Agency. NWTPH = Northwest Total Petroleum Hydrocarbons.	

Samples Analyzed						
Report 009250	Report 009424					
GP79-S-8.5	MW02R-GW-092220					
MW10-S-11.0	MW04-GW-092220					
	MW10-GW-092220					
	MW06-GW-092220					
	MW12-GW-092220					
	MW09-GW-092220					
	MW01R-GW-092220					
	MW07-GW-092220					
	MW11-GW-092220					
	MWDup-GW-092220					
	Trip Blank					

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (EPA, 1986; FBI, 2019).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., Northwest Total Petroleum Hydrocarbons [NWTPH]-Dx).

According to report 009424, FBI indicated that the NWTPH-Dx diesel-range hydrocarbon detected results for samples MW02R-GW-092220, MW04-GW-092220, MW09-GW-092220, MW07-GW-092220, and MW11-GW-092220; as well as all detected motor oil-range hydrocarbon results had chromatographic patterns that did not resemble the diesel fuel standard used for quantitation. The results were reported as diesel-range hydrocarbons; thus, qualification was not required.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Method blank results are used to demonstrate a lack of contamination from laboratory processes. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blank results were non-detect.

Trip Blanks

A trip blank sample was submitted for EPA Method 8021B analysis with samples submitted for report 009424. The trip blank was non-detect to method reporting limits (MRLs) for all target analytes.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

All MS/MSD results were within acceptance limits for percent recovery and relative percent differences (RPDs).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

All LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis with report 009424 (MW11-GW-092220/MWDup-GW-092220). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. According to report 009424, the field duplicate NWTPH-Dx diesel-range hydrocarbon RPD was 54.6 percent. The field sample result was greater than five times the MRL of 50 micrograms per liter (ug/L), at 350 ug/L, and the field duplicate sample was less than five times the MRL, at 200 ug/L. Because the exceedance was minor and the field duplicate sample result was less than five times the MRL, the results were not qualified by the reviewer.

All field duplicate RPD results were within the acceptance criteria.

R:\0747.01 Vern Sims Family\Report\12_2020.11.24 Q1 Groundwater Monitoring Report\E - DVM\Lf_DVM 2020.10.docx

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. FBI did not report CCV results.

REPORTING LIMITS

FBI used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

According to report 009424, the trip blank sample was submitted to FBI by MFA but was not recorded on the chain of custody (COC) by the sampler. The trip blank and EPA Method 8021B analysis request was recorded on the COC by the laboratory.

No additional issues were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. USEPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FBI. 2019. Quality assurance manual. Rev. 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0747.01.12 | NOVEMBER 9, 2020 | VSF PROPERTIES, LLC

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the North Cascade Ford site on October 14, 2020.

Friedman & Bruya, Inc. (FBI) and Fremont Analytical (FA) of Seattle, Washington performed the analyses. FBI report number 010270 was reviewed. Samples MW10-GW-101420 and MW01R-GW-101420 were sent to FA for extractable petroleum hydrocarbons and volatile petroleum hydrocarbons analysis and the report is amended to the end of the FBI report. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Diesel- and Motor Oil-Range Hydrocarbons	NWTPH-Dx
Extractable Petroleum Hydrocarbons	NWEPH
Gasoline-Range Hydrocarbons	NWTPH-Gx
Volatile Petroleum Hydrocarbons	NWVPH

NOTES:

NWEPH = Northwest Extractable Petroleum Hydrocarbons.

NWTPH = Northwest Total Petroleum Hydrocarbons.

NWVPH = Northwest Volatile Petroleum Hydrocarbons.

Samples Analyzed						
Report 010270						
MW10-GW-101420						
MW02R-GW-101420 (HOLD)						
MW01R-GW-101420						
MW09-GW-101420 (HOLD)						
Trip Blank-GW-101420 (HOLD)						

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (EPA, 1986; FA; 2019; FBI, 2019).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

According to report 010270, FBI indicated that the NWTPH-Dx diesel-range hydrocarbon and/or oil-range hydrocarbon detected results for samples MW10-GW-101420 and MW01R-GW-101420 had chromatographic patterns that did not resemble the fuel standard used for quantitation. The results were reported as diesel and oil-range hydrocarbons; thus, qualification was not required.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Method blank results are used to demonstrate a lack of contamination from laboratory processes. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blank results were non-detect.

Trip Blanks

A trip blank sample was submitted on hold and after initial COC relinquishment (added October 16, 2020) with samples submitted for report 010270.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

The reviewer took no action based on minor surrogate outliers or surrogate percent recoveries that were outside of acceptance limits due to dilutions necessary to quantify high

concentrations of target analytes present in the samples. The laboratory appropriately documented and qualified surrogate outliers. Associated batch quality assurance/quality control for samples with surrogate outliers was within acceptance limits.

In report 010270, the NWEPH batch 30111 surrogate compounds, 1-chlorooctadecane and o-terphenyl, recoveries for samples MW10-GW-101420 and MW01R-GW-101420 were below the lower acceptance criteria of 60 percent, at 53.1 percent and 41.8 percent and 52.2 percent and 46.6 percent, respectively. The validator confirmed with the laboratory that the samples were re-analyzed, and the surrogate recoveries were low in the reanalysis. The associated NWEPH results have been qualified in the table below.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
010270		Aliphatic Hydrocarbon (C8-C10)	84.3 U	84.3 UJ
	MW10-GW- 101420	Aliphatic Hydrocarbon (C10-C12)	42.1 U	42.1 UJ
		Aliphatic Hydrocarbon (C12-C16)	42.1 U	42.1 UJ
		Aliphatic Hydrocarbon (C16-C21)	42.1 U	42.1 UJ
		Aliphatic Hydrocarbon (C21-C34)	42.1 U	42.1 UJ
		Aromatic Hydrocarbon (C8-C10)	84.3 U	84.3 UJ
		Aromatic Hydrocarbon (C10-C12)	84.4	84.4 J
		Aromatic Hydrocarbon (C12-C16)	105	105 J
		Aromatic Hydrocarbon (C16-C21)	75.4	75.4 J
		Aromatic Hydrocarbon (C21-C34)	42.1 U	42.1 UJ
	MW01R-GW- 101420	Aliphatic Hydrocarbon (C8-C10)	89.7 U	89.7 UJ
		Aliphatic Hydrocarbon (C10-C12)	44.9 U	44.9 UJ
		Aliphatic Hydrocarbon (C12-C16)	44.9 U	44.9 UJ
		Aliphatic Hydrocarbon (C16-C21)	44.9 U	44.9 UJ
		Aliphatic Hydrocarbon (C21-C34)	44.9 U	44.9 UJ
		Aromatic Hydrocarbon (C8-C10)	89.7 U	89.7 UJ
		Aromatic Hydrocarbon (C10-C12)	44.9 U	44.9 UJ
		Aromatic Hydrocarbon (C12-C16)	44.9 U	44.9 UJ
		Aromatic Hydrocarbon (C16-C21)	44.9 U	44.9 UJ
		Aromatic Hydrocarbon (C21-C34)	44.9 U	44.9 UJ

NOTES:

J = result is estimated.

U = result is non-detect.

ug/L = micrograms per liter.

UJ = result is non-detect, limit reported is considered an estimate.

All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. Report 010270 included the analysis of laboratory control samples

(LCS) and laboratory control sample duplicates (LCSD) in lieu of MS/MSDs. No actions were required by the reviewer.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the method reporting limit were not evaluated for precision. All laboratory duplicate relative percent differences (RPDs) were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In report 010270, the NWEPH batch 30111 LCS and LCSD had multiple aliphatic hydrocarbon recoveries below the lower acceptance limit of 70 percent, ranging from 24.0 percent to 62.4 percent; and RPD exceedances of the 20 percent limit, at 21.7 percent and 26.7 percent. The associated sample results have previously been qualified in the surrogate section; thus, no additional qualifications were necessary.

In report 010270, the NWEPH batch 30111 LCS and LCSD had multiple aromatic hydrocarbon recoveries below the lower acceptance limit of 70 percent, ranging from 17.0 percent to 61.8 percent; and RPD exceedances of the 20 percent limit, at 32.6 percent and 25.4 percent. The associated sample results have previously been qualified in the surrogate section; thus, no additional qualifications were necessary.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicate samples were submitted with this laboratory report.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. FBI and FA did not report CCV results.

REPORTING LIMITS

FBI and FA used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

No issues were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FA. Quality assurance and quality control programs. Revision 3.2. Fremont Analytical, Inc. Seattle, Washington. April 18.

FBI. 2019. Quality assurance manual. Rev. 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.