VAPOR REPORT

VAPOR INTRUSION ASSESSMENT INTERIM REMEDIAL ACTIONS VAPOR INTRUSION PRIORITY WORK PLAN PRECISION ENGINEERING, INC., SITE

Prepared for DICK MORGAN December 30, 2020 Project No. 1803.01.02

Prepared by Maul Foster & Alongi, Inc. 1329 N State Street, Suite 301, Bellingham, WA 98225

VAPOR REPORT VAPOR INTRUSION ASSESSMENT INTERIM REMEDIAL ACTIONS VAPOR INTRUSION PRIORITY WORK PLAN PRECISION ENGINEERING, INC., SITE The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Heather Good, LHG Senior Hydrogeologist

Bill Beadie, CIH Principal Industrial Hygienist

Euclip Aunth

Evelyn Lundeen, EIT Staff Engineer

CONTENTS

TAB	BLES AND ILLUSTRATIONS	V
ACF	RONYMS AND ABBREVIATIONS	VI
1	INTRODUCTION 1.1 REGULATORY FRAMEWORK 1.2 PURPOSE	1 1 1
2	BACKGROUND 2.1 PROPERTY DESCRIPTION 2.2 PROPERTY HISTORY 2.3 PREVIOUS ENVIRONMENTAL INVESTIGATIONS	2 2 2 2 2
3	CONCEPTUAL SITE MODEL 3.1 POTENTIAL SOURCES AND RELEASE MECHANISMS 3.2 FATE AND TRANSPORT 3.3 POTENTIAL EXPOSURE SCENARIOS 3.4 POTENTIAL RECEPTORS	3 4 5 5 5
4	INITIAL VAPOR ASSESSMENT 4.1 FIELD AND ANALYTICAL METHODS 4.2 ANALYTICAL RESULTS 4.3 DISCUSSION	5 6 7 9
5	RESPONSE ACTIONS 5.1 BUILDING OWNER AND OCCUPANT OUTREACH 5.2 ADDITIONAL ASSESSMENTS 5.3 AIR PURIFICATION	11 11 12 14
6	INTERIM REMEDIAL ACTIONS 6.1 SEALING CONCRETE BUILDING SLAB 6.2 EVAPORATOR PIT DECOMMISSIONING 6.3 CONFIRMATION VAPOR SAMPLING	16 16 17 17
7	VAPOR INTRUSION PRIORITY WORK PLAN 7.1 SCOPE OF WORK 7.2 PROJECT MANAGEMENT PLAN 7.3 SCHEDULE	19 19 20 20
8	CONCLUSIONS AND RECOMMENDATIONS	20
LIMI	ITATIONS	

REFERENCES

TABLES

FIGURES

APPENDIX A

CONCEPTUAL SITE MODEL

CONTENTS (CONTINUED)

APPENDIX B PHOTO ARRAY

PHOIO ARRA

APPENDIX C

ATMOSPHERIC DATA

APPENDIX D

LABORATORY REPORTS

APPENDIX E

DATA VALIDATION MEMORANDUM

APPENDIX F

HVAC ASSESSMENT

APPENDIX G

AIR PURIFIER DOCUMENTATION

APPENDIX H

WASTE DISPOSAL MANIFESTS

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 4-1 EVENT SUMMARY
- 4-2 VAPOR SAMPLING AND ANALYSIS SUMMARY
- 4-3 VAPOR ANALYTES AND SCREENING LEVELS
- 4-4 SUB-SLAB SOIL GAS ANALYTICAL RESULTS
- 4-5 INDOOR AIR ANALYTICAL RESULTS
- 4-6 AMBIENT AIR ANALYTICAL RESULTS
- 4-7 PASSIVE INDOOR AIR ANALYTICAL RESULTS
- 5-1 EVAPORATOR PIT WATER ANALYTICAL RESULTS
- 5-2 AIR PURIFIER PID READINGS

FIGURES

- 1-1 PROPERTY LOCATION
- 2-1 SITE FEATURES
- 2-2 HISTORICAL SITE FEATURES
- 4-1 VAPOR SAMPLE LOCATIONS
- 4-2 PRE-AIR PURIFICATION AND -INTERIM-ACTION TCE RESULTS
- 5-1 PRE- AND POST-AIR-PURIFICATION INDOOR AIR TCE RESULTS
- 6-1 PRE- AND POST-INTERIM-ACTION INDOOR AIR TCE RESULTS

Advance Environmental, Inc.
conceptual site model
1
cleanup level
Washington State Department of Health
Washington State Department of Ecology
U.S. Environmental Protection Agency
high-efficiency particulate air
heating, ventilation, and air conditioning
interim remedial action
Kennedy/Jenks Consultants
Maul Foster & Alongi, Inc.
Model Toxics Control Act
photoionization detector
potentially liable party
Precision Engineering, Inc.
1231 S Director Street, Seattle, WA
Radiello 130 passive sampler
risk assessment
remedial investigation
Precision Engineering, Inc., site
trichloroethene
toxic organics
micrograms per liter
micrograms per cubic meter
vapor intrusion
vapor intrusion priority
volatile organic compound

Maul Foster & Alongi, Inc. (MFA) has prepared this vapor intrusion (VI) assessment and interim remedial action (IRA) report on behalf of Dick Morgan for the Precision Engineering, Inc. (Precision) site (the Site). The Site includes the property located at 1231 S Director Street in Seattle, Washington (the Property) (see Figure 1-1). The Site is defined by the extent of hazardous substance releases associated with Precision's historical operations. It includes the Property and may include portions of adjoining properties. Additional investigation will be conducted as part of the RI to further delineate the Site boundaries.

Historically, the Property was used for heavy industrial operations. CL Frazier Properties, LLC, owns the Property, where Pacific Industrial Supply, Inc., currently operates an industrial equipment supply store. MFA conducted an initial VI assessment and response actions, two IRAs, and confirmation vapor sampling to address trichloroethene (TCE) in indoor air at the Site, as described in this report. This report also provides a vapor intrusion priority (VIP) work plan for monitoring the long-term effectiveness of the IRAs.

1.1 Regulatory Framework

Site potentially liable parties (PLPs) are negotiating an agreed order with the Washington State Department of Ecology (Ecology). The VI assessments and IRAs were completed as independent actions in coordination with Ecology, but outside an agreed order. Detections of TCE in indoor air samples collected during the initial VI assessment exceeded the short-term action levels included in Ecology's Implementation Memo No. 22 (Ecology, 2019), triggering prompt response actions. IRAs conducted to mitigate VI into the building were completed as independent cleanup actions. The VIP work plan included in this report was prepared to satisfy anticipated agreed order requirements.

1.2 Purpose

The purpose of this report is to present findings from the vapor sampling activities conducted at the Site and to provide documentation of the response and IRAs. Analytical results from the VI assessment will be incorporated into a remedial investigation (RI) work plan for the Site, which is being prepared in coordination with Ecology. An RI and a VIP work plan, which is included in this report, are anticipated to be required deliverables under an agreed order for the Site.

2.1 Property Description

The Property is located in section 32, township 24 north, range 4 east of the Willamette Meridian on King County tax parcel 000160-0055 (see Figure 1-1). The approximately 3.5-acre Property is zoned for industrial use. One 62,000-square-foot building is currently located on the Property. The east side of the building was constructed in 1968, and the west part was added in 1979. The building is surrounded by an asphalt-paved parking lot (see Figure 2-1). The surrounding area is a mix of industrial and residential properties.

2.2 Property History

Precision operated an industrial manufacturing business at the Property from 1968 to 2005. The operation included manufacturing and repair of large hydraulic cylinders, large rolls used in the manufacturing of paper and sheet metal products, and other equipment. Services included grinding and polishing, honing, hard-chrome plating, milling, welding, and flame- and arc-applied metal coating. The services involved the use of chromic acid and the degreaser TCE (MFA, 2011).

From 1985 to 2003, approximately 10,000 square feet of the west side of the building was leased to Baszile Metals Service, an aluminum distributorship. Former operational areas and tanks inside the building are shown on Figure 2-1. The Property was sold on March 29, 2007, to CL Frazier Properties, LLC (MFA, 2011). The Property is currently occupied by Pacific Industrial Supply, Inc., a wire rope and marine/industrial supply distributor.

West of the Property is a business that repairs and sells refrigerators. East of the Property is a towing and limousine service business (former KASPAC/Chiyoda property) (Kennedy/Jenks Consultants [KJC], 2015). According to former Precision personnel, the property to the east was used as a paint shop in the 1970s, and before that it was a fiberglass-boat-manufacturing operation.

2.3 Previous Environmental Investigations

Extensive site characterization activities have been conducted at the Site since 1986. In 2005 and 2006, MFA conducted an RI and risk assessment (RA), which included the collection and analysis of subslab soil gas, indoor air, and ambient air (i.e., outdoor air) samples (MFA, 2008). During that investigation, MFA identified concentrations of TCE in soil, groundwater, and sub-slab soil gas samples above preliminary Model Toxics Control Act (MTCA) Method C cleanup levels (CULs) developed for protection of industrial workers. However, concentrations of TCE in indoor and ambient air samples were below preliminary CULs (MFA, 2008). MFA concluded that based on empirical air sample results, residual contamination beneath the building slab did not appear to pose a significant risk to indoor air quality and that a potential off-Property TCE vapor source may be contributing to TCE in air at the Property. In an opinion letter dated July 8, 2011, Ecology stated that the nature and extent of impacts at the Site had not been fully characterized (Ecology, 2011). Ecology contracted KJC to conduct an independent RI at the Site. As part of that RI, KJC conducted additional vapor sampling in February 2015, which included collection of one sub-slab soil gas sample, one air sample from inside the building, and one ambient air sample. Below is a summary of findings from the KJC vapor sampling (KJC, 2015):

- TCE was detected at a lower concentration in the KJC sub-slab soil gas sample than in historical sub-slab samples, indicating that concentrations of TCE beneath the slab had declined since the 2006 MFA vapor sampling.
- Benzene, carbon tetrachloride, TCE, and 1,2,4-trimethylbenzene in indoor air exceeded MTCA Method B CULs.
- TCE in sub-slab soil gas exceeded MTCA Method B CULs.
- TCE in indoor air was more than twice the concentration of TCE sub-slab soil gas, indicating a potential source of TCE other than VI.¹

MFA conducted an initial vapor assessment in February 2020 to further evaluate these conditions and to evaluate potential sources of TCE in indoor air other than VI, including potential indoor and off-Property sources (see Section 4). The results of that investigation are discussed in Section 4.3. MFA conducted a preliminary site visit prior to the initial vapor assessment (MFA, 2019). During that visit, no obvious indications of indoor sources of volatile organic compounds (VOCs) were identified.

In October 2019, Ecology published new, risk-based, short-term exposure action limits for TCE in indoor air for protection of women of childbearing age (Ecology, 2019). The concentration of TCE detected in indoor air from the 2015 KJC vapor investigation exceeded the new short-term action limit for the workplace scenario. Based on that exceedance, Ecology requested that indoor air sampling be conducted as quickly as possible to assess TCE relative to the new action limit. MFA's vapor assessment included an evaluation of TCE relative to the short-term action limit (see Section 4).

Based on the results of the initial vapor assessment (see Section 4.3), additional indoor air sampling, response actions, and IRAs were implemented. Those activities and associated sampling results are presented and discussed in Sections 5 and 6.

3 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) describes potential chemical sources, release mechanisms, environmental transport processes, exposure routes, and receptors. The primary purpose of the CSM is to describe pathways by which human and ecological receptors could be exposed to site-related chemicals. A complete exposure pathway consists of four necessary elements: (1) a source and

¹ See further discussion in Section 4.3.

R:\1803.01 Dick Morgan\Document\04_2020.12.30 Vapor Report\Rf-Vapor Report.docx

mechanism of chemical release to the environment, (2) an environmental transport medium for a released chemical, (3) a point of potential contact with the impacted medium (referred to as the exposure point), and (4) an exposure route (e.g., vapor inhalation) at the exposure point. A complete pathway refers to an exposure pathway that is currently complete based on the CSM; however, MTCA also requires protection against potential future exposures if site conditions change. Detailed CSMs are provided in the MFA RI/RA (2008) and KJC RI (2015) reports. The information provided below is excerpted from those reports as it pertains to vapor contamination at the Site, specifically TCE.

3.1 Potential Sources and Release Mechanisms

Based on previous investigations and documented historical uses, leaks and minor spills of degreasers and other solvents associated with a former TCE tank and parts-washing activities in the former chrome-plating, grinding, and cylinder shops associated with Precision operations before the mid-1980s contributed to vapor contamination at the Site (KJC, 2015; MFA, 2008).

No TCE free product has been observed at the Site. As such, TCE releases are attributed to minor leaks and spills associated with the uses described above. Surface releases of TCE may have migrated to the subsurface beneath the building slab via cracks or seams in the concrete building slab or former trenches or drains. TCE contamination has been identified in soil and groundwater on the Property, primarily beneath the building slab, as well as in sub-slab soil gas, indoor air within the building, and ambient air on the Property (KJC, 2015; MFA, 2008).

A schematic CSM diagram showing exposure pathways in all media, obtained from the KJC RI (2015), is provided in Appendix A. The CSM diagram is intended to provide a generalized representation of environmental transport pathways at the Site; an updated CSM will be developed for inclusion in the RI. The diagram illustrates potential VI pathways for VOC-impacted media present beneath the slab to enter the building. Appendix A also includes figures displaying TCE results from previous soil, groundwater, soil gas, and air investigations. These figures provide data used to characterize the subslab TCE source area and are excerpted from the VI work plan (MFA, 2019), which provided the scope for the initial vapor assessment discussed in Section 4.

A preliminary site visit was conducted prior to the initial vapor assessment (MFA, 2019). During that visit, no obvious indications of indoor sources of VOCs were identified. Minor cracking and perforations were observed in the building slab. No drains, sumps, or trenches were identified; the former trenches (see Figure 2-2) were confirmed to have been filled in and covered with concrete. Standing water observed in the former evaporator pit (see Figure 2-2) was interpreted to be groundwater seepage and a potential source of vapor in indoor air, which was later confirmed by sampling (see Section 5.2.2). The evaporator pit was decommissioned and perforations in the building slab were sealed as part of the IRAs conducted at the Site (see Section 6). No TCE sources associated with current operations were identified during the preliminary site visit (MFA, 2019) or during any of the field activities described in Sections 4 through 6 of this report. Based on these observations and previous assessment results confirming TCE contamination in sub-slab soil, groundwater, and soil gas (MFA, 2008; KJC, 2015), VI through perforations and cracks in the building slab from sub-slab TCE-containing media and volatilization from TCE-containing standing water in the former evaporator pit were identified as the primary sources of TCE in indoor air.

3.2 Fate and Transport

The primary mechanism likely to influence the fate and transport of volatile chemicals at the Site is volatilization of chemically impacted soil and/or shallow groundwater. Volatile contaminants may partition to the vapor phase, resulting in impacts to sub-slab soil gas. Soil gas may migrate via VI to air within the building and to ambient air. Vapor migration likely occurs along preferential pathways, including perforations (e.g., utility penetrations), cracks, and seams in the concrete building slab; and along utility corridors.

It is expected that once vapors have entered the building, attenuation will occur during the normal workday because of ventilation provided by multiple open bay doors (see Figure 2-1). The building's heating, ventilation, and air conditioning (HVAC) system was assessed as part of the response actions described in Section 5. HVAC system configuration and operation and their potential influence on indoor air quality are discussed in Section 5.2.4.

3.3 Potential Exposure Scenarios

Depending on the extent of impacts at the Site, the following are potentially current or future exposure pathways related to vapor:

- Inhalation of VOCs in indoor air impacted by VI from VOC-impacted soil and/or groundwater beneath the building
- Inhalation of VOCs in ambient air (i.e., outdoor air) impacted by vapors emanating from VOC-impacted soil and/or groundwater

These potential exposure pathways will be evaluated further in the RI.

3.4 Potential Receptors

The following current and future receptors who may potentially be exposed to chemicals in vapor at the Site:

- On-site occupational workers
- General public
- Construction and trench workers

An initial vapor assessment was conducted at the Site from February 1, 2020, to February 13, 2020. The assessment included collection of indoor air, ambient air, sub-slab soil gas, and passive indoor air samples (see Table 4-1). Sampling was conducted in general accordance with the VI work plan;

changes in the VI assessment scope of work were made in coordination with Ecology (MFA, 2019). Initial vapor assessment and follow-up vapor assessment, response actions, and IRA activities are summarized in Table 4-1. Table 4-2 summarizes the vapor samples collected during those activities; Table 4-3 presents vapor analytes and associated screening criteria; analytical results are presented in Tables 4-4 to 4-7.

The indoor air, sub-slab soil gas, and ambient air samples were analyzed for TCE and its breakdown products. Passive indoor air samples were analyzed for TCE. Samples were screened to MTCA Method B indoor air CULs and VI screening levels for sub-slab soil gas, as well as the TCE short-term indoor air action level for workplace exposure provided in Ecology's Implementation Memo No. 22 (Ecology, 2019).

4.1 Field and Analytical Methods

4.1.1 Sub-Slab Soil Gas

On February 1, 2020, four sub-slab soil gas samples were collected, each from one of four locations (A8 to A11) inside the building (see Figure 4-1), using the Cox-Colvin & Associates, Inc. Vapor Pin[™] system installed with a roto-hammer. To avoid air breakthrough, depressurized 1-liter Summa canisters were used in sample collection. As a quality assurance measure, to check for potential leaks in the sampling system, the sampling apparatus and vapor pin were contained in a helium shroud during sampling, and the samples were analyzed for helium. Field photographs of the sampling apparatus are provided in Appendix B. Additional sampling protocols are presented in the VI work plan (MFA, 2019). A sub-slab soil gas sample could not be collected from one of the planned sample locations in the northwest corner of Warehouse 1 because groundwater was in direct contact with the building slab.

Sub-slab soil gas samples were analyzed for helium by ASTM International Method D-1946, and for TCE and TCE breakdown products by U.S. Environmental Protection Agency (EPA) Method Toxic Organics (TO)-15. Additional sample information is presented in Table 4-2.

4.1.2 Indoor Air

Eight 24-hour indoor air samplers (i.e., 6-liter Summa canisters with 24-hour flow controllers) were deployed, each in one of eight locations (IA8 to IA15) inside the building, on February 1, 2020, and were collected on February 2, 2020 (see Figure 4-1). Field photographs of the sampling apparatus are provided in Appendix B. The Summa canisters were placed 3 to 5 feet above the floor, in the anticipated breathing zone. Twenty-four-hour indoor air samples were analyzed for TCE and TCE breakdown products by EPA Method TO-15. Additional sample information is presented in Table 4-2.

4.1.3 Ambient Air

Five 24-hour ambient air samplers (i.e., 6-liter Summa canisters with 24-hour flow controllers) were deployed, each in one of five locations (AA1 to AA5) around the perimeter of the Property, upwind

of the building, on February 1, 2020, and were collected on February 2, 2020 (see Figure 4-1). Twenty-four-hour ambient air samples were analyzed for TCE and TCE breakdown products by EPA Method TO-15. Additional sample information is presented in Table 4-2.

As discussed in the VI work plan (MFA, 2019), ambient air samples were collected to evaluate possible off-Property TCE vapor sources. To identify a potential source of TCE detected in the ambient air samples, wind speed and direction data were collected during the sampling event (see Section 4.1.5).

4.1.4 Passive Indoor Air

Three 12-day passive indoor air samplers (Radiello 130 passive samplers [RAD130s]) were deployed, each in one of three locations (RAD1 to RAD3), on February 1, 2020, and were collected on February 13, 2020 (see Figure 4-1). Field photographs of the sampling apparatus are provided in Appendix B. For comparison to the short-term TCE action level, passive samples were collected in areas where female occupational workers of childbearing age were known to work or were likely to spend time during the workday; these samples were collected in the office (RAD1), just inside the shipping and receiving bay door in Warehouse 3 (RAD2), and in Warehouse 1 near the front desk (RAD3). A trip blank sample was also collected and analyzed. Passive samples were analyzed for TCE by modified EPA Method TO-17.

RAD130s were placed 3 to 5 feet above the floor, in the anticipated breathing zone and consistent with 24-hour indoor air sample collection heights. Samplers were deployed in accordance with manufacturer instructions and sampling protocols as provided in the VI work plan (MFA, 2019).

4.1.5 Atmospheric Conditions

A Davis Instruments Vantage Pro2 weather station was placed on the roof of the building on January 31, 2020, to collect atmospheric readings during vapor sampling events (see Appendix C). Temperature, wind direction, wind speed, and barometric pressure readings were collected every 15 minutes. At times, the weather station had connectivity issues or was blown over by strong winds; during these periods, data from the nearest King County weather station supplemented weather station data.

4.2 Analytical Results

Laboratory analytical reports are provided in Appendix D. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met data quality objectives, consistent with EPA procedures for evaluating laboratory analytical data (EPA, 2014a,b). A memorandum summarizing data validation procedures, data usability, and deviations from specific field and/or laboratory methods is provided in Appendix E. All analytical results were deemed usable, with the assigned qualifiers, for their intended use.

4.2.1 Sub-Slab Soil Gas

Sub-slab soil gas analytical results are summarized in Table 4-4 and shown on Figure 4-2.

TCE was detected above the MTCA Method B screening level of 12 micrograms per cubic meter (ug/m^3) in all sub-slab soil gas samples. The highest TCE concentration, 1,100 ug/m^3 , was detected at sample location A9, near the former TCE tank (see Figures 4-2). Other detections of TCE in sub-slab soil gas samples ranged from 29 to 160 ug/m^3 .

Cis-1,2-dichlorethene was also detected in samples A9 and A10 at 21 and 40 ug/m³, respectively. No other TCE breakdown products were detected in the sub-slab soil gas samples.

4.2.2 Indoor Air

Indoor air analytical results from the initial vapor assessment are summarized in Table 4-5 and shown on Figure 4-2.

In all indoor air samples, TCE was detected above the MTCA Method B indoor air CUL of 0.33 ug/m^3 and the TCE short-term action limit of 7.5 ug/m^3 . TCE concentrations ranged from 110 to 340 ug/m^3 . All indoor air samples from sample location IA11 showed concentrations of 1,2-dichloroethane above the MTCA Method B indoor air CUL of 0.096 ug/m^3 . No other TCE breakdown products were detected in the indoor air samples.

4.2.3 Ambient Air

Ambient air analytical results are summarized in Table 4-6 and shown on Figure 4-2.

TCE was not detected in any ambient air samples. 1,2-Dichloroethane was detected in all samples at 0.065 ug/m^3 , below the MTCA Method B indoor air CUL of 0.096 ug/m^3 .

4.2.4 Passive Indoor Air

Passive indoor air analytical results from the initial vapor assessment are summarized in Table 4-7. Sample locations are shown on Figure 4-1.

All passive samples contained concentrations of TCE above the TCE short-term action limit of 7.5 ug/m^3 . TCE detections ranged from 110 to 170 ug/m^3 , which is within the range of concentrations observed in the 24-hour initial indoor air samples (see Section 4.2.2).

4.2.5 Atmospheric Conditions

Atmospheric data for all vapor sampling events are provided in Appendix C.

Atmospheric conditions were measured using the on-Property weather station during the 24-hour indoor and ambient air sampling event, as described in Section 4.1.5. Wind was predominantly from the south but varied from the northeast to the south (see the wind rose provided in Appendix C). Observed fluctuations in atmospheric conditions were up to 0.1 inches of mercury in barometric pressure, 12.1 degrees Fahrenheit in temperature, and 10 miles per hour in wind speed (see charts in Appendix C).

During indoor air sampling on May 2 and 3, barometric pressure steadily increased across the 24-hour sampling period. Generally, increases in barometric pressure may result in reduced vapor intrusion. The range of barometric pressure recorded during the sampling (29.38 to 29.81 inches of mercury) was comparable to pressure range recorded over the three-week sampling event from May 15 to June 5 (29.23 to 29.78 inches of mercury). Additionally, the passive samplers deployed over a three-week period captured fluctuations in pressure, and TCE results from passive samples were below action levels.

The on-Property weather station was not functioning properly during the 12-day passive indoor air sampling event. While it did record barometric pressure measurements, it did not record wind speed, wind direction, or temperature data. Supplemental temperature data were obtained from the King County Renton Road weather station. Observed fluctuations in atmospheric conditions were up to 0.8 inches of mercury in barometric pressure and 21.1 degrees Fahrenheit in temperature (see Appendix E).

4.3 Discussion

TCE results for sub-slab soil gas, indoor air, and ambient air samples collected during the initial vapor assessment are shown in Figure 4-2.

TCE and TCE breakdown products were not detected in ambient air samples. These data suggest that no significant sources of TCE vapors were present during the sampling period in upwind locations from the northeast to the south. While these results do not rule out potential off-Property sources, they indicate that an off-Property source was not present during the sampling period and therefore was not contributing to concentrations of TCE and TCE breakdown products detected in indoor air.

No TCE sources associated with current operations were identified during the preliminary site visit (MFA, 2019) or during any of the field activities described in Sections 4 through 6 of this report.

The ambient air results and lack of known, significant VOC sources associated with current operations on the Property, as discussed in the VI work plan (MFA, 2019), and the elevated TCE concentrations detected in sub-slab soil gas samples, suggest that soil and groundwater contamination beneath the building is the primary source of TCE vapor in indoor air.

Wind from the northwest was not measured to be blowing into the Property during the sampling period. Given the steep, approximately 30-foot-high slopes along the north and west boundaries of the Property, it is not likely that the Property typically receives wind from those directions. Therefore, the absence of wind blowing from that direction during the sampling event is not considered a data gap. If an outdoor air TCE source were present in that upwind direction, it would be considered unlikely to impact the Property as the Property is sheltered from receiving wind from that direction.

The highest TCE concentration detected in sub-slab soil gas was in sample location A9, near the former TCE tank (see Figures 4-2). This suggests that the TCE vapor source (i.e., sub-slab TCE-impacted soil and groundwater) is in that area. The extent of TCE in sub-slab soil gas, groundwater, and soil has not been fully delineated. Additional work will be proposed in the RI work plan to better characterize the release for remediation.

The highest indoor air TCE concentrations were observed not in the samples collected closest to subslab soil gas location A9, which was located in Warehouse 1, but in sample locations IA9 and IA10, which were located in Warehouse 2 (see Figure 4-2). Indoor air concentrations likely are influenced by indoor air movement and ventilation.

As discussed above, sources of TCE associated with current operations or off-Property activities were not identified during the initial vapor assessment. As noted in Section 3.1, KJC stated in their 2015 RI report that TCE in indoor air was more than twice the concentration of TCE sub-slab soil gas, indicative of a potential source of TCE other than VI. However, KJC formed this conclusion with very limited vapor data: one sub-slab soil gas sample and one indoor air sample. Both samples were collected in the north-central portion of Warehouse 1, approximately 100 feet northeast of the former TCE tank.

During MFA's initial vapor assessment, eight indoor air and four sub-slab soil gas samples were collected from locations throughout Warehouse 1 and 2. TCE was detected in MFA sub-slab soil gas sample A9, located near the former TCE tank, at a concentration of 1,100 ug/m³. This TCE detection is higher than the concentration of TCE detected in the KJC sub-slab soil gas sample at 95 ug/m³, and higher than the TCE concentrations detected in all indoor air samples collected during the initial vapor assessment.

Concentrations of TCE in indoor air exceeded sub-slab soil gas concentrations in several areas during MFA's initial vapor assessment, suggesting that sub-slab soil gas may be migrating below the slab before entering the building and/or VI may be occurring at locations with higher sub-slab soil gas concentrations and migrating in indoor air via the HVAC system and other indoor air currents. Vapor migration may have contributed to the elevated concentration of TCE in the KJC indoor air sample. It is also possible that there may have been cross-contamination between sub-slab soil gas and indoor air in KJC's sample. When indoor air and sub-slab soil vapor sample locations are co-located, sampling precautions should be taken to avoid cross-contamination. Ecology recommends installing sub-slab vapor points after indoor air sample collection or, if installed before, to allow sufficient time for indoor vapor concentrations to return to pre-installation levels (Ecology, 2018). KJC installed the co-located sub-slab vapor pin approximately two and a half hours before collection of the indoor air sample and collected their sub-slab soil gas sample approximately 30 minutes before (KJC, 2015). It is unclear if that was sufficient time for concentrations to return to pre-installation levels.

Additionally, TCE vapors volatilizing from chemically-impacted groundwater seeping into the evaporator pit may have contributed to elevated concentrations of TCE in the KJC indoor air sample. However, it is unknown if groundwater seepage was occurring in the pit during the KJC RI vapor assessment.

TCE concentrations detected in the 24-hour indoor air samples exceeded the TCE short-term action limit. As stated in Ecology's Implementation Memo No. 22, exceedances of the TCE short-term indoor air action level require prompt action to quickly reduce concentrations of TCE and protect building occupants. Based on that finding, prompt response actions were developed in coordination with Ecology to reduce TCE concentrations below the short-term indoor air action level, as discussed in Section 5. The 24-hour sampling period was conducted under "worst case" conditions, designed to promote maximum VI (i.e., doors and windows closed, outside working hours). Therefore, one of the

first response action steps was to resample TCE in indoor air during an eight-hour workday to better represent potential worker exposure. The second indoor air sampling event was conducted before the collection of the passive indoor air samples, as discussed below.

Based on the results of that event, air purification was identified as a prompt response action to reduce indoor air TCE concentrations for the protection of human health, as required by Ecology's Implementation Memo No. 22. The passive samplers, which were intended to be deployed for three weeks for comparison to the short-term action limit, which is based on an average three-week exposure duration, were collected before air purification started (12 days from their deployment). The passive air results indicate that TCE concentrations averaged over that 12-day period, which represent conditions during and outside a normal workday, were above the short-term action limit. These results suggest that average indoor air quality was adversely impacted by TCE.

VI is influenced by atmospheric conditions, most notably barometric pressure. Periods of rapidly falling barometric pressure can promote VI and, conversely, VI may be mitigated by rapidly rising barometric pressure. Whereas atmospheric conditions did fluctuate during the sampling events, the range of barometric pressures observed is consistent with typical daily fluctuations. Barometric pressure changes are often as much as 0.7 inches over a day (Electric Power Research Institute, Inc., 2005); 0.1- and 0.8-inch mercury changes in barometric pressure were observed during the 24-hour and three-week sampling periods, respectively. The atmospheric data indicate that while weather conditions did vary during the three-week sampling period, as indicated by periods of rising and falling barometric pressure, no highly variable weather patterns were observed that may have significantly impacted VI assessment results. As such, the three-week samples are considered sufficient to have captured conditions over typical weather variations and were not adversely impacted by extreme weather conditions.

5 response actions

The exceedances of the short-term TCE action limit required urgent response per Ecology's Implementation Memo No. 22 (Ecology, 2019). After receiving analytical results from the initial assessment, MFA worked with the building owner, Ecology, and the Washington State Department of Health (DOH) to implement prompt response actions to reduce indoor air concentrations of TCE to below action levels while IRAs were developed and to better understand worker exposure through additional sampling. The response actions consisted of communication with the building owners and employees working in the building, additional vapor sampling, an HVAC system assessment, and installation of mobile air-purification units.

5.1 Building Owner and Occupant Outreach

After the VI assessment, MFA met with Lee Frazier, the building and Property owner and the owner and president of Pacific Industrial Supply, Inc., to discuss the results of the VI assessment, the installation of air-purifying units, and plans for IRAs. MFA staff also facilitated a meeting with Pacific Industrial Supply staff on February 10, 2020. During that meeting the results of the initial VI assessment and next steps were explained and staff were provided with a TCE fact sheet from Ecology.

5.2 Additional Assessments

In response to TCE exceedances identified during the vapor assessment, MFA conducted additional screening for preferential pathways and TCE sources and assessed worker exposure and the former evaporator pit.

5.2.1 Site Visit and Screening

On February 11, 2020, MFA conducted a follow-up site visit to evaluate potential TCE sources and potential VI pathways and to identify sample locations for an assessment of TCE in indoor air during an eight-hour workday. The site visit included an interview of the building owner; field observations; and qualitative, real-time measurements of VOCs in indoor air, using a photoionization detector (PID).

Prior to the collection of the second round of indoor air samples, a Honeywell ppbRAE 3000 PID equipped with a 10.6-electron volt lamp was used to qualitatively screen the building for potential areas of increased VI. The PID readings are considered qualitative because the PID is not capable of measuring TCE concentrations alone but measures all VOCs present in air. The PID model and lamp combination was chosen for its ability to read low-level VOC concentrations. If only TCE were present, the PID would be capable of reading concentrations as low as 2 ug/m³, below the short-term action limit of 7.5 ug/m³.

Cracks, joints, pipes, and pins in the slab were screened with the PID and compared to ambient air readings in each room of the building. Peak readings were recorded for each general area of the three warehouses, and any sizeable spikes in readings were noted. Activities believed to be potential sources of observed VOC spikes at the time the of the PID screening include the use of gas-powered forklifts, spray painting, and chain degreasing. Locations with the highest observed PID spikes that did not appear to be attributable to work operations were selected as locations for additional indoor air sampling, as discussed in Section 5.2.3.

5.2.2 Evaporator Pit

The former evaporator pit was a 140-cubic-foot concrete pit that was left exposed after Precision ceased operations on the Site. Standing water observed in the pit was attributed to groundwater seepage, which was later confirmed by the presence of a crack in the concrete bottom of the pit observed during its decommissioning (see Section 6.1). A water sample was collected from the pit on February 11, 2020, using a disposable bailer, and was analyzed for total petroleum hydrocarbons (diesel- and residual-oil-range organics), arsenic, chromium, and TCE.

All chemicals for which analyses were conducted were detected in the grab sample from the evaporator pit. Detections included 1.4 micrograms per liter (ug/L) TCE; 3,900 ug/L diesel-range petroleum hydrocarbons; 2,500 ug/L residual-oil-range hydrocarbons; 994,000 ug/L total chromium; and 6.08

ug/L total arsenic. The analytical laboratory indicated that diesel-range hydrocarbons and oil-range hydrocarbons results had chromatographic patterns that most closely resemble a cutting oil, transformer oil, or a fuel metabolite (Erdahl, 2020). These fuel types will be further assessed in the RI. Table 5-1 shows analytical results and screening levels. The analytical lab report is included in Appendix D, and data are assessed in the data validation memorandum included as Appendix E. The results were consistent with chemical concentrations observed in previous shallow groundwater samples collected from monitoring wells on the Property, suggesting that the source of the water was groundwater seepage. Chromium concentrations in the sample qualified the water as hazardous waste for disposal purposes.

No VI screening level is available for TCE in indoor standing water. The TCE concentration was equal to, but did not exceed the VI Method B groundwater screening level. However, standing water in the evaporator pit was directly exposed to indoor air. The groundwater screening level assumes 1,000 times attenuation vapor between groundwater and indoor air. Therefore, the screening level applied, while not directly applicable to standing water in the evaporator pit, indicates the potential for TCE to volatilize to indoor air at unacceptable concentrations. Based on these results, water in the pit was identified as groundwater seepage and a source of TCE in indoor air. An interim action was conducted to remove water from the pit and to prevent future groundwater seepage (see Section 6.2). A location immediately adjacent to the pit was selected as a sample location for the additional round of eight-hour indoor air sampling to further evaluate the pit as a source of TCE in indoor air.

5.2.3 Worker Exposure Assessment

On February 11, 2020, as part of the worker exposure assessment, five indoor air samples were collected using 6-liter Summa canisters with eight-hour flow controllers. Sample canisters were deployed at the start of the workday and were collected after eight hours. During the collection period, the facility operated normally, including providing ventilation by open bay doors. No air purification took place during the sample collection.

Samples were collected in areas where women potentially of childbearing age were observed to be working (IA17 in the second-story sewing shop and IA16 in the office); near the evaporator pit (IA18); in the location where the highest sub-slab soil gas TCE concentration had been detected during the initial vapor assessment (IA19, near A9); and in the central portion of the building, in Warehouse 2 (IA20). Sample locations are shown in Figure 4-1. A sample collection summary is provided in Table 4-2. Analytical results are provided in Table 4-5. The laboratory analytical report and data validation results are provided in Appendices D and E, respectively. Time series plots for atmospheric conditions recorded during the sampling period are provided in Appendix C.

TCE concentrations exceeded MTCA Method B CULs in all five samples, and the short-term TCE action level of 7.5 ug/m³ in all but one sample (IA16, located in the office). TCE detections ranged from 2.8 to 110 ug/m³. The TCE exceedances of the short-term action limit demonstrated a need for prompt response actions to reduce indoor air concentrations. Based on these results and in consultation with Ecology, DOH, and the building owner, actions taken to reduce TCE concentrations included an evaluation of the HVAC system and air purification, as discussed in the following sections.

5.2.4 HVAC System

MFA contracted with the Welsh Commissioning Group, Inc., to assess the HVAC system to identify potential improvements that would increase building pressurization and/or ventilation to mitigate VI. A report summarizing the findings of that assessment is included as Appendix F. HVAC assessment findings relevant to the potential for mitigation of TCE in indoor air are described below.

During regular operations, the warehouse rollup doors are typically left open to increase air flow throughout the building and to provide access for forklift and truck traffic. This prevents steady pressurization of some areas of the warehouse would reduce the effectiveness if a new HVAC system were installed. The main administrative office is one of only a few areas in the building with a contained HVAC system. The assessment found that while certain components of the building's HVAC system were outdated, upgrading the system would not be the most efficient way to reduce vapor concentrations inside the building. Based on these findings, no HVAC system adjustments or modifications were recommended as response actions.

5.3 Air Purification

5.3.1 Air Purifier Installation, Operation, and Maintenance

On February 13, 2020, three HEPA-AIRE® PAS2400 air-purifying units with activated charcoal filters were installed at the Site to reduce indoor air TCE concentrations. The units were placed in areas where women potentially of childbearing age typically work for extended periods, including on the first floor of the main office and the second floor of the sewing room, as well as at the south end of the first warehouse to purify air in the space patronized by customers (see Figure 4-1). Each unit contained a prefilter to remove large dust or particulates, VL2002 high-capacity active carbon filter to remove TCE and other VOCs, and a high-efficiency particulate air (HEPA) filter for fine particulates. The internal carbon filter was delivered wrapped in plastic packaging. The packaging was removed and the filters installed on February 17, 2020. Detailed specifications and operating assumptions for the units are provided in Appendix G.

The units in the warehouse and the sewing room were operated on the "low" setting. Facility staff requested that the unit in the main office be operated on the "high" setting because it reportedly ran more quietly on that setting.

A conservative carbon filter change-out schedule of once per week was selected for each air-purifying unit, based on the calculated TCE removal capacity of the carbon filters (see Appendix G). During the weekly carbon filter replacement visits, other maintenance was conducted on the units, including collecting PID readings to qualitatively assess, in real time, the air purifiers' effectiveness in removing VOCs; to perform a visual check to evaluate the potential need to replace the prefilters and HEPA filters; and to ensure that the units were functioning properly.

Before replacement of the carbon filter, PID readings were collected from the inlet and outlet of each unit. For each reading, the PID was allowed to stabilize and the peak reading was recorded. This procedure was repeated after the carbon filter was replaced. PID readings were used as a qualitative field check that air purifiers were functioning properly and reducing concentrations of VOCs in indoor air. VOC concentrations in indoor air were confirmed by post-air purification indoor air sampling. PID readings, unit maintenance activities, and observations are summarized in Table 5-2.

PID readings, although only a qualitative indicator of air purifier TCE removal, exhibited lower results at the filter outlets than at the inlets, both before and after replacement of the carbon filters (see Table 5-2); however, the difference in concentrations was generally greater in the postfilter replacement readings than in the prefilter replacement readings. These observations suggest that the carbon filters were still removing VOCs from air after approximately one week of continuous operation of the air purifiers, but that the replacement filters were more effective at removing VOCs.

Spent filters were placed in sealed 55-gallon drums awaiting waste characterization for disposal. On May 4, 2020, two composite filter samples were collected for analysis. Each sample consisted of filter fabric and the activated carbon material collected from several filters in different drums. Samples were analyzed for TCE, arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver, using the toxicity characteristic leaching procedure. Both samples were non-detect for all analytes (see lab report in Appendix H). Filters were disposed of in the on-Property dumpster, the contents of which are subsequently disposed of in a municipal subtitle D landfill.

On April 9, 2020, based on visual observations that the filters were becoming noticeably dirty, the HEPA filters were replaced in all three units and the prefilter was replaced in the unit located in the office (see Table 5-2). Photographs of the units are available in Appendix B.

The air purifiers were run continuously from February 13, 2020, until May 14, 2020, except for during a sampling event conducted from May 2, 2020 through May 3, 2020.

5.3.2 Performance Sampling

To ensure that the air-purifying units were reducing indoor air TCE concentrations to below the shortterm action limit, indoor air sampling was conducted while the units were in operation. An eight-hour indoor air sampling event and a three-week passive indoor air sampling event were conducted. Sampling activities are summarized in Tables 4-1 and 4-2. Analytical results are summarized in Tables 4-5 and 4-7. Analytical laboratory reports and data validation results are provided in Appendices D and E, respectively. Time series plots for atmospheric conditions recorded during the sampling period are provided in Appendix C.

Three indoor air samples to be analyzed for TCE were collected on February 20, 2020, using 6-liter Summa canisters with eight-hour flow controllers. Each sample was taken from the vicinity of an air purifier unit to determine the effectiveness of the response action (sample locations IA16, IA17, and IA19; see Figure 5-1). In all three samples, TCE was detected above MTCA Method B indoor air CULs, but below the short-term action limit (see Table 4-5 and Figure 5-1).

Three RAD130s were deployed on February 20, 2020, and were collected for analysis after three weeks (sample locations RAD1, RAD4, and RAD5; see Figure 5-1). The RAD130s were collocated with the Summa canister samples described above. All three passive samples were analyzed for TCE;

concentrations were above MTCA Method B indoor air CULs but below the short-term action limit (see Table 4-5 and Figure 5-1).

The performance sampling results showed TCE reductions with air purification in all locations sampled (see Figure 5-1). Pre-IRA TCE concentrations in indoor air ranged from 110 to 340 ug/m³, while post-IRA concentrations ranged from non-detect to 2.6 ug/m³. These results suggest that air purification effectively reduced TCE to below concentrations that pose a short-term health threat, but also suggested that concentrations remained unacceptable for long-term, chronic exposure.

6 INTERIM REMEDIAL ACTIONS

Air purification was identified as a temporary, short-term TCE mitigation measure. IRAs that would provide long-lasting and more reliable TCE mitigation in indoor air were identified. The following two IRAs were selected in consultation with the building owner and Ecology:

- Sealing perforations in the concrete building slab that may be acting as preferential pathways for VI
- Decommissioning the evaporator pit that had been identified as a potential source of TCE vapors in indoor air because of groundwater seepage

Photodocumentation of the IRAs is provided in Appendix B.

6.1 Sealing Concrete Building Slab

Between April 14, 2020, and April 29, 2020 Advance Environmental, Inc. (Advance) made several trips to the Site to seal perforations in the building slab, including cracks, seams, and utility penetrations. Advance worked progressively through the three warehouses to seal all accessible perforations.

The first step in the sealing process was to use a shop vacuum to remove dirt and debris. If that was not successful, a wire brush was used to loosen material before vacuuming it out. After cleaning, sealant was applied to fill up to the existing slab surface. Two kinds of sealant with similar properties were used interchangeably: Sikaflex® 1C SL and Quikrete® concrete sealant.

Some cracks in the slab were wide and penetrated the full thickness of the slab. When product was placed in these cracks, it would sink down into the crack and fail to form a seal. In these cases, dry mix concrete was placed in the crack before applying sealant and/or the sealant was applied multiple times. The sealant was left to cure for 24 hours without foot or vehicle traffic. Photos of the sealant application process are provided in Appendix B.

6.2 Evaporator Pit Decommissioning

Decommissioning of the evaporator pit was conducted to remove TCE-containing water from the pit and stop future seepage of groundwater into the pit. Water present in the pit due to groundwater seepage was identified as a source of TCE in indoor air (see Section 5.2.2). Decommissioning of the evaporator pit involved removal and disposal of standing water and debris, sealing cracks in the walls, backfilling, and capping the pit with concrete. The decommissioning was conducted on April 13, 2020. MFA contracted Advance to lead decommissioning activities. MFA contracted Stericycle to pump water out of the pit for disposal using a vacuum truck. A total of 743 gallons of water was removed for off-site disposal (Appendix H). Based on the previous water sampling results, i.e., high chromium concentrations (see Section 5.2.2), the water was characterized as regulated hazardous waste for disposal purposes. It was assumed that any debris encountered and removed from the pit would be saturated with water with hazardous levels of chromium; therefore, debris was also treated as hazardous waste for disposal.

Solid waste removed from the pit included nine wooden pallets, a small motor, and other small debris such as plastic bottles and a tape measure. The materials were placed on a layer of visqueen sheeting for staging and then broken down and packaged into 1-cubic-yard CleanPak® waste totes for disposal. The totes were stored on site until pickup and transport to a hazardous waste landfill by Cascade Environmental (see Appendix H).

After the contents of the pit had been removed, the pit was sprayed down with potable water to rinse any remaining residue from the pit walls. Rinse water was removed by the vac truck and the pit was monitored for groundwater seepage infiltrating through cracks. Water was observed to infiltrate into the pit from the bottom of the northwest corner. This fluid was once again removed with the vac truck and the pit was rinsed a final time before Advance began to fill the pit.

Approximately 800 pounds of dry-mix concrete was added in the base of the pit and used to seal up cracks. After initial placement, the pit was observed for additional infiltration. Areas where water was still entering the pit were sealed with additional concrete until the seeping stopped. After concrete placement, 5.5 loose cubic yards of gravel was placed in the pit and compacted in 6-inch lifts, using hand tamping to a final volume of 4 cubic yards. The gravel surface was then leveled and 5 inches of mixed concrete was poured to match the existing grade of the building slab. Photodocumentation of the decommissioning is provided in Appendix B.

6.3 Confirmation Vapor Sampling

The following two indoor air monitoring events were conducted after completion of the IRAs to assess their effectiveness at reducing TCE concentrations:

- An initial 24-hour event to assess TCE under "worst-case conditions," without air purification and with no workers present
- Based on favorable results from the initial test, a three-week passive air monitoring period to assess whether favorable conditions were sustained without air purification

Sampling activities are summarized in Tables 4-1 and 4-2. Analytical results are summarized in Tables 4-5 and 4-7. Analytical laboratory reports and data validation results are provided in Appendices D and E, respectively.

Air purification, which had been operating continuously since February 13, 2020, and throughout implementation of the IRAs, was paused to allow the initial round of post-interim-action indoor air monitoring. The monitoring event was conducted over a weekend when workers were not present to avoid the potential for exposure to TCE in the absence of air purification.

Four indoor air samples were collected using 6-liter Summa canisters with 24-hour flow controllers. Sample canisters were deployed on May 2, 2020, after the air purifying units had been shut off and the building closed up for approximately 22 hours. Canisters were collected after 24 hours. Conditions were controlled during the sampling period to create worst-case conditions for TCE buildup in indoor air. Business and commercial operations were shut down and doors and windows were sealed to maximize the potential for VI. Air purification was immediately resumed following sample collection and before workers returned.

Samples were collected from the three air purifier locations (IA16, IA17, and IA19) and adjacent to the former evaporator pit (IA18) (see Figure 5-2). TCE was not detected in any of the samples (see Table 4-5 and Figure 6-1). Based on these results, a determination was made in consultation with Ecology to cease air purification and proceed with passive air sampling to assess whether reduced TCE concentrations would be sustained over a three-week sampling period.

On May 15, 2020, the air purifiers were turned off and removed and three RAD130s were deployed in the air purifier locations (RAD1, RAD4, and RAD5, colocated with the 24-hour sample locations; see Figure 5-2). The RAD130s were collected for analysis after three weeks, on June 5, 2020, and the samples analyzed for TCE. TCE concentrations in all passive samples were below the short-term action limit (see Table 4-7 and Figure 5-2).

Temperature and barometric data were collected from the nearby Renton Road and Salmon Creek weather stations, respectively, during the sampling periods. Time series plots are provided in Appendix C.

The confirmation monitoring results indicate that the IRAs successfully reduced indoor air TCE concentrations. A comparison of pre- and post-interim-action TCE concentrations in indoor air is shown in Figure 5-2. In the locations that were sampled both before and after the IRAs, TCE concentrations without air purification were reduced from a high of 110 ug/m³ to non-detect in some samples. TCE concentrations in the passive air samples collected with no air purification were similar to those observed with air purification and up to two orders of magnitude below concentrations observed without air purification before the IRAs. However, the post-interim-action passive air sample results indicate that TCE concentrations in indoor air remain above MTCA Method B CULs.

7 VAPOR INTRUSION PRIORITY WORK PLAN

During the initial VI assessment, TCE was detected in indoor air samples above the short-term action levels included in Ecology's Implementation Memo No. 22 (Ecology, 2019), triggering prompt response actions for the protection of human health. The completed IRAs effectively reduced TCE concentrations in indoor air below short-term threat levels; however, the sub-slab source material remains and TCE concentrations in indoor air remain above MTCA Method B CULs. Therefore, additional IRAs will be required. Potential additional IRAs will be considered following completion of data gap sampling to be proposed in the RI work plan. In the meantime, although the completed IRAs have been proven effective, the potential exists for seals in the concrete slab to break down or for new cracks to form that could promote VI from the sub-slab contamination that remains, resulting in unfavorable air quality. Therefore, ongoing performance air monitoring and monitoring of the condition of the concrete slab are recommended until a more permanent remedy has been implemented. Ecology will require a VIP work plan in the agreed order for the Site.

7.1 Scope of Work

The proposed scope of work for VIP monitoring is as follows:

- Quarterly passive air monitoring will be conducted until a more permanent remedy is implemented.
- During each quarterly sampling event, passive air samples will be collected using RAD130s deployed for three weeks from the following three locations: RAD1, RAD4, and RAD5 (see Figure 4-1).
- Site reconnaissance will be conducted at the start of each quarterly air monitoring event to observe and record the condition of the concrete slab and slab seals, and to identify the potential formation of new cracks or perforations in the slab, or other conditions, that could promote VI.

Sampling activities will be conducted in general accordance with the procedures and methods used for the other passive air sampling events described in this report. Samples will be analyzed for TCE by modified EPA Method TO-17. A trip blank will be collected and analyzed for each event.

If TCE concentrations in any of the samples exceed the short-term action limit of 7.5 ug/m^3 , Ecology and the building owner will be notified immediately, facility staff will be informed, and air purification activities will be resumed. Air purification, if required, will be conducted in accordance with the procedures developed for the response actions (see Section 5.3) and will continue until a more permanent remedy is implemented.

Data will be shared with Ecology, which will be notified of sampling activities and any TCE action limit exceedances in accordance with finalized agreed order requirements.

7.2 Project Management Plan

The following describes the roles of key personnel on the project.

7.2.1 Key Project Personnel

Jim Maul will be the project director for MFA. Mr. Maul will provide strategic technical project support and will assist with project communications.

Heather Good will be the project manager for MFA. Ms. Good will coordinate with project task leaders and will be the primary point of contact for the PLPs and Ecology. She will be responsible for allocating the resources necessary to ensure that the objectives of the VIP work plan are met. Ms. Good will also provide technical assistance to assigned staff, assist with resolution of technical or logistical challenges that may be encountered during sampling, and write and review reports.

Amanda Bixby will lead field activities and other project tasks and will write and review reports. She will be responsible for ensuring that sampling activities are conducted in accordance with the procedures outlined in this plan.

Seth Baker will assist in developing as-needed communications for Pacific Industrial Supply, Inc., employees.

Bill Beadie will provide as-needed technical support related to human health toxicity concerns, RA, risk communication, and air treatment and testing technologies.

Evelyn Lundeen will assist with field activities and report preparation.

7.3 Schedule

Sampling will begin within 30 days of Ecology's approval of the final VIP work plan and will continue until a more permanent remedy is implemented, unless a TCE short-term action limit exceedance is detected. In that case, sampling will be terminated, and air purification will resume and will continue until a more permanent remedy is implemented. The first two sampling events will be conducted consecutively, and the following events will be conducted on a quarterly basis.

8 conclusions and recommendations

Based on the analytical results from the confirmation sampling event, the IRAs successfully reduced TCE concentrations below Ecology's short-term action level. Air purification is no longer necessary on the Site, but additional air monitoring may be necessary to ensure the IRAs' continued effectiveness as the RI is completed and more permanent remedies are implemented.

Additional assessment of the sub-slab source material, further evaluation of the nature and extent of contamination, and additional sub-surface data are needed for remedy selection. MFA is preparing an RI work plan, which will provide a basis for additional data collection. Data from the RI will be used to select and implement a permanent remedy to address the sub-slab source material.

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with the Client. This report is solely for the use and information of the Client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the Client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Ecology. 2011. Letter (re: opinion pursuant to WAC 173-340-515(5) on proposed remedial action for the following hazardous waste site: Precision Engineering, 1231 South Director Street, Seattle, WA 98108) to J. Okel, Precision Engineering, Inc., Portland, Oregon, from M. Adams, Washington State Department of Ecology Toxics Cleanup Program, Bellevue, Washington. July 8.

Ecology. 2018. Implementation memorandum no. 21: frequently asked questions regarding vapor intrusion and Ecology's draft vapor intrusion guidance. Washington State Department of Ecology, Lacey, Washington. November 15.

Ecology. 2019. Implementation memorandum no. 22: vapor intrusion investigations and short-term trichloroethene toxicity. Washington State Department of Ecology, Lacey, Washington. October 1.

Electric Power Research Institute, Inc. 2005. Reference handbook for site-specific assessment of subsurface vapor intrusion to indoor air. Palo Alto, California. March.

EPA. 2014a. EPA contract laboratory program, national functional guidelines for inorganic Superfund data review. EPA 540/R-013/001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. August.

EPA. 2014b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540/R-014/002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. August.

KJC. 2015. Remedial investigation report, former Precision Engineering property, Seattle, Washington. Prepared for Washington State Department of Ecology. Kennedy/Jenks Consultants, Federal Way, Washington. August 6.

Erdahl, M. 2020. Email (re: chromatograms for lab report 002154) to A. Bixby, Maul Foster & Alongi, Inc., Bellingham, Washington, from Mike Erdahl, Friedman & Bruya, Inc., Seattle, Washington. December 18.

MFA. 2008. Final remedial investigation and risk assessment report, former Precision Engineering, Inc., site, 1231 South Director Street, Seattle, Washington. Prepared for Stoel Rives, LLP. Maul Foster & Alongi, Inc., Vancouver, Washington. July 21.

MFA. 2011. Final feasibility study, former Precision Engineering, Inc., site, 1231 South Director Street, Seattle, Washington. Prepared for Stoel Rives, LLP. Maul Foster & Alongi, Inc., Vancouver, Washington. March 3.

MFA. 2019. Letter (re: vapor intrusion assessment work plan, Precision Engineering, Inc., Seattle, Washington) to M. Adams, Washington State Department of Ecology, Bellevue, Washington, from H. Good, Maul Foster & Alongi, Inc., Bellingham, Washington. December 20.

TABLES

Table 4-1 Event Summary Precision Engineering, Inc. Seattle, Washington

Sample Media	Start Date	End Date	Sample Locations	Event Purpose	Sampling Notes				
Initial VI Ass	essment								
SS	02/01/2020	02/01/2020	A8, A9, A10, A11						
IA	02/01/2020	02/02/2020	IA8, IA9, IA10, IA11, IA12, IA13, IA14, IA15	An initial VI assessment was conducted to evaluate the potential for short-term TCE	24-hour collection period. Sampling was conducted outside normal working hours and				
AA			AA1, AA2, AA3, AA4, AA5	TCE IN INDOOL OIL. WOLK WAS CONDUCTED IN	without air purification to evaluate "worst- case" conditions.				
RAD	02/01/2020			general accordance with MFA's December 20, 2019, VI assessment work plan, with subsequent revisions based on Ecology feedback.	RAD samplers were collected 12 days after deployment because of the upcoming, scheduled installation of the air purifier units. Sampling was conducted without air purification.				
Evaporator Pit Assessment									
w	W 02/11/2020 02/11/2020 Evap Pit		Evap Pit	Standing water in the exposed evaporator pit was sampled to evaluate it as a potential source of TCE in indoor air.	One grab sample was collected from the evaporator pit.				
Worker Expe	osure Assessme	ent							
IA			IA16, IA17, IA18, IA19, IA20	Additional indoor air sampling was triggered by TCE concentrations above Ecology's short- term action levels detected in indoor air during the initial VI assessment.	Eight-hour collection period. Sampling was conducted during normal working hours, under normal working conditions, and without air purification.				
Air Purificati	ion								
	02/13/2020 (Air-purifying units were installed in the building to reduce indoor-air concentrations of TCE, which had been detected above Ecology's short-term action levels during the initial and eight-hour vapor assessments. Air purification ended after the interim action was completed.	Three air-purifying units were installed and were operated continuously, aside from a pause for an indoor air sampling event on May 2 and 3, 2020, in the following locations: the main office, the sewing room, and warehouse 1. The units were assessed and maintained on a weekly schedule.				

Table 4-1 Event Summary Precision Engineering, Inc. Seattle, Washington

Sample Media	Start Date	End Date	Sample Locations	Event Purpose	Sampling Notes					
Air Purificat	ion Performanc	e Sampling								
IA	02/20/2020	02/20/2020	IA16, IA17, IA19	Indoor air sampling for TCE was conducted after installation of the air purifiers to evaluate their effectiveness in reducing concentrations	Eight-hour collection period. Sampling was conducted during normal working hours, under normal working conditions, and with air purification.					
RAD	02/20/2020	03/12/2020	RAD1, RAD4, RAD5	of TCE in indoor air.	Three-week collection period. Sampling was conducted with air purification.					
Interim Act	ions			•						
	04/13/2020	04/13/2020		Evaporator pit decommissioning.						
	04/14/2020	04/29/2020		Sealing concrete building slab.						
Post-Interim	n Action Confirm	nation Samplin	g							
IA	05/02/2020	05/03/2020	IA16, IA17, IA18, IA19	To evaluate whether the interim actions effectively reduced TCE concentrations in indoor air to below Ecology's short-term action	24-hour collection period. Sampling was conducted outside normal working hours and without air purification to evaluate "worst- case" conditions.					
RAD	05/15/2020	06/05/2020	RAD1, RAD4, RAD5	limit.	Three-week collection period. Sampling was conducted without air purification.					
Shading (c Prior to a During ai	olor key below) ir <mark>ir purification</mark> r purification	ndicates that the	summarized. Other events are event was conducted under th	ne following conditions:						
= none.	After implementation of the interim remedial actions, with no air purification									
AA = ambi	ent air.									
Ecology =	Washington State	Department of E	Ecology.							
IA = indoor	air.									
RAD = pass	RAD = passive indoor air sample collected with Radiello 130.									
SS = sub-slo	ab soil gas.									
TCE = trichl	oroethene.									
VI = vapor	intrusion.									
W = water.										

					Sample Collection Start		Sample Collection End			Analytical Suite ^(a)																
Media Sampled	Location ID	Sample ID	Sample Type	Collection Period	Date	Time	Initial Vacuum ("Hg)	Date	Time	Final Vacuum ("Hg)	Не	TCE	TCE Breakdown Products ^(b)													
	A8	A8				13:36	-30		13:42	-5	Х	Х	Х													
0.0	A9	A9	1-L Summa	- ·	00/01/0000	12:08	-30	00 (01 (0000	12:14	-5	Х	Х	Х													
SS	A10	A10	Canister	5 min	02/01/2020	11:28	-30	02/01/2020	11:35	-5	Х	Х	Х													
	A11	A11				13:06	-30		13:12	-5	Х	Х	Х													
	IA8	IA8-020120				15:46	-30		15:46	-6		Х	Х													
	IA9	IA9				15:51	-30		15:51	-8		Х	Х													
	IA10	IA10				15:48	-29		15:48	-8		Х	Х													
	IA11	IA11		0.4 hrs	00/01/0000	15:54	-29	00,000,00000	15:47	0		Х	Х													
	IA12	IA12		24 hr	02/01/2020	15:56	-29	02/02/2020	15:56	-6		Х	Х													
	IA13	IA13				15:57	-30		15:57	-7		Х	Х													
	IA14	IA14				15:59	-30	1	15:59	-7		Х	Х													
	IA15	IA15				16:05	-30		16:05	-9		Х	Х													
		IA16		8 hr	02/11/2020	8:51	-30	02/11/2020	16:51	-7		Х														
	IA16	IA16-022020	6-L Summa	8 hr	02/20/2020	7:55	-30	02/20/2020	15:55	-6		Х														
IA		IA16-050220	Canister	24 hr	05/02/2020	15:07	-29.5	05/03/2020	15:07	-8		Х														
		IA17	A17-022020	8 hr	02/11/2020	8:58	-30	02/11/2020	16:58	-9		Х														
	IA17	IA17-022020		8 hr	02/20/2020	8:03	-30	02/20/2020	16:03	-9		Х														
		IA17-050220		24 hr	05/02/2020	15:11	-29	05/03/2020	15:11	-6		Х														
	IA18	IA18		8 hr	02/11/2020	9:07	-30	02/11/2020	17:07	-6		Х														
	IATO	IA18-050220		24 hr	05/02/2020	15:15	-30	05/03/2020	15:15	-7		Х														
		IA19			I [l					1						8 hr	02/11/2020	9:15	-30	02/11/2020	17:10	-6		Х	
	IA19	IA19-022020		8 hr	02/20/2020	8:11	-30	02/20/2020	16:11	-6		Х														
		IA19-050220			24 hr	05/02/2020	15:19	-30	05/03/2020	15:19	-9		Х													
	IA20	IA20		8 hr	02/11/2020	9:30	-30	02/11/2020	17:30	-12		Х														
	AA1	AA1				16:30	-30		16:30	-6		Х	Х													
	AA2	AA2	61 Summa			16:41	-30	02/02/2020	16:41	-5		Х	Х													
AA	AA3	AA3	6-L Summa Canister	24 hr	02/01/2020	16:40	-30		16:40	-12		Х	Х													
	AA4	AA4				16:37	-30		16:37	-7		Х	Х													
	AA5	AA5				16:32	-30		16:32	-6		Х	Х													
		RAD1		12 day	02/01/2020	16:55		02/13/2020	13:50			Х														
	RAD1	RAD1-022020		21 day	02/20/2020	8:30		03/12/2020	12:24			Х														
	RAD1-051520		21 day	05/15/2020	15:13		06/05/2020	15:11			Х															
	RAD2	RAD2		12 day	02/01/2020	16:52		02/13/2020	14:12			Х														
Passive IA	RAD3	RAD3	RAD	12 day	02/01/2020	16:58		02/13/2020	14:16			Х														
	RAD4	RAD4		21 day	02/20/2020	8:35		03/12/2020	12:30			Х														
		RAD4-051520		21 day	05/15/2020	15:20		06/05/2020	15:15			Х														
	RAD5	RAD5		21 day	02/20/2020	8:45		03/12/2020	12:21			Х														
	KADJ	RAD5-051520		21 day	05/15/2020	15:24		06/05/2020	15:18			Х														

Table 4-2 Vapor Sampling and Analysis Summary Precision Engineering, Inc. Seattle, Washington

DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	NOTE	
Prior to air purification During air purification After implementation of the interim remedial actions, with no air purification = not analyzed. "Hog = inches of mercury. AA = ambient air. DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. m > hour. IA = indoor air. ID = identification. L = inter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.		
buring air purification the interim remedial actions, with no air purification = not analyzed. ''Hg = inches of mercury. AA = ambient air. DCE = dichloroethene. FPA = U.S. Environmental Protection Agency. He = helium. hr = hour. Ha = helium. hr = hour. L = indoor air. L = indoor air. L = liter. Min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.		ng conditions:
After implementation of the interim remedial actions, with no air purification not analyzed. "Hg = inches of mercury. AA = ambient air. DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = possive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.		
= not analyzed. "Hg = inches of mercury. AA = ambient air. DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	During air purification	
"Hg = inches of mercury. AA = ambient air. DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	After implementation of the interim remedial actions, with no air purification	
AA = ambient air. DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	= not analyzed.	
DCE = dichloroethene. EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	"Hg = inches of mercury.	
EPA = U.S. Environmental Protection Agency. He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	AA = ambient air.	
He = helium. hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	DCE = dichloroethene.	
hr = hour. IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	EPA = U.S. Environmental Protection Agency.	
IA = indoor air. ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	He = helium.	
ID = identification. L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	hr = hour.	
L = liter. min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	IA = indoor air.	
min = minute. RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	ID = identification.	
RAD = passive indoor air sample collected with Radiello 130. SS = sub-slab soil gas. TCE = trichloroethene.	L = liter.	
SS = sub-slab soil gas. TCE = trichloroethene.	min = minute.	
TCE = trichloroethene.	RAD = passive indoor air sample collected with Radiello 130.	
	SS = sub-slab soil gas.	
	TCE = trichloroethene.	
^(a) All analyses performed by EPA Method TO-15.	^(a) All analyses performed by EPA Method TO-15.	
^(b) TCE anaerobic breakdown products include cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride.	^(b) TCE anaerobic breakdown products include cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride.	

Table 4-2 Vapor Sampling and Analysis Summary Precision Engineering, Inc. Seattle, Washington

Table 4-3 Vapor Analytes and Screening Levels Precision Engineering, Inc. Seattle, Washington

Analyte	Indoor Air Cleanup Level, MTCA Method B	TCE Indoor Air Short-Term Action Level, Workplace Scenario	Sub-Slab Soil Gas Screening Level, MTCA Method B			
Modified EPA Method TO-15 SIM (ug/m³)					
TCE	0.33	7.5	11			
1,1-Dichloroethene	91	NA	3,000			
1,2-Dichloroethane	0.096	NA	3.2			
cis-1,2-Dichloroethene	NV	NA	NV			
trans-1,2-Dichloroethene	NV	NA	NV			
1,1-Dichloroethane	1.6	NA	52			
Chloroethane	4,600	NA	150,000			
Vinyl chloride	0.28	NA	9.5			
Modified EPA Method TO-17 (ug/r	n ³)					
TCE	0.33	7.5	11			
ASTM Method D-1946						
Helium	NV	NA	NV			
NOTES: Cleanup and screening levels obtained from Ecology, CLARC data tables, dated August 2020. Short-term TCE action level obtained from Ecology, Toxics Cleanup Program Implementation Memo No. 22. ASTM = ASTM International. CLARC = Cleanup Levels and Risk Calculation. Ecology = Washington State Department of Ecology. EPA = U.S. Environmental Protection Agency. MTCA = Model Toxics Control Act. NA = not applicable. NV = no value. SIM = selected ion monitoring. TCE = trichloroethene. TO = toxic organics. ug/m ³ = micrograms per cubic meter.						

MAUL FOSTER ALONGI

Table 4-4 Sub-Slab Soil Gas Analytical Results Precision Engineering, Inc. Seattle, Washington

Location:	Sub-Slab Soil Gas	A8	A9	A10	A11			
Sample Name:	Screening Level,	A8	A9	A10	A11			
Collection Date:	MTCA Method B	02/01/2020	02/01/2020	02/01/2020	02/01/2020			
VOCs (ug/m ³)								
1,1-Dichloroethane	52	3.3 U	6.5 U	18 U	14			
1,1-Dichloroethene	3,000	3.3 U	6.3 U	17 U	3.3 U			
1,2-Dichloroethane	3.2	0.33 U	0.65 U	1.8 U	0.33 U			
Chloroethane	150,000	22 U	42 U	120 U	22 U			
cis-1,2-Dichloroethene	NV	3.3 U	21	40	3.3 U			
trans-1,2-Dichloroethene	NV	3.3 U	6.3 U	17 U	3.3 U			
Trichloroethene	11	160	1100	29	82			
Vinyl chloride	9.5	2.1 U	4.1 U	11 U	2.1 U			
NOTES:								
Result shading indicates an exceedance of the sub-slab soil gas screening level, MTCA Method B; non-detects ("U") were not compared with screening criteria.								

Sample shading indicates that the sample was collected prior to air purification.

MTCA = Model Toxics Control Act.

NV = no value.

U = Result not detected at or above method reporting limit.

 ug/m^3 = micrograms per cubic meter.

VOC = volatile organic compound.

Location:	Indoor Air Classer		IA8	IA9	IA10	IA11	IA12	IA13	IA14	IA15		IA16	
Sample Name:	Cleanup Level, MTCA Method B	Action Level,	IA8-020120 ^(b)	IA9 ^(b)	IA10 ^(b)	IA11 ^(b)	IA12 ^(b)	IA13 ^(b)	IA14 ^(b)	IA14 ^(b) IA15 ^(b)		IA16-022020	IA16050220
Collection Start Date:		Workplace Scenario ^(a)	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/11/2020	02/20/2020	05/02/2020
Collection End Date:		Scendio	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/11/2020	02/20/2020	05/03/2020
VOCs (ug/m ³)													
1,1-Dichloroethane	1.6	NV	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U			
1,1-Dichloroethene	91	NV	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U			
1,2-Dichloroethane	0.096	NV	0.093	0.085	0.089	0.097	0.093	0.089	0.085	0.093			
Chloroethane	4,600	NV	0.093 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U			
cis-1,2-Dichloroethene	NV	NV	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U			
trans-1,2-Dichloroethene	NV	NV	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U			
TCE	0.33	7.5	270	330	340	170	200	210	110	170	2.8	1.9	0.27 U
Vinyl chloride	0.28	NV	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U			

Table 4-5 Indoor Air Analytical Results Precision Engineering, Inc. Seattle, Washington

Location:	Indoor Air Cleanup		IA17			IA18		IA19			IA20
Sample Name:	Level, MTCA	Action Level,	IA17 ^(c)	IA17-022020	IA17050220	IA18 ^(c)	IA18050220	IA19 ^(c)	IA19-022020	IA19050220	IA20 ^(c)
Collection Start Date:	Method B	workblace	02/11/2020	02/20/2020	05/02/2020	02/11/2020	05/02/2020	02/11/2020	02/20/2020	05/02/2020	02/11/2020
Collection End Date:		scondilo	02/11/2020	02/20/2020	05/03/2020	02/11/2020	05/03/2020	02/11/2020	02/20/2020	05/03/2020	02/11/2020
VOCs (ug/m ³)											
1,1-Dichloroethane	1.6	NV									
1,1-Dichloroethene	91	NV									
1,2-Dichloroethane	0.096	NV									
Chloroethane	4,600	NV									
cis-1,2-Dichloroethene	NV	NV									
trans-1,2-Dichloroethene	NV	NV									
TCE	0.33	7.5	93	4.5	0.27 U	45	0.27 U	110	2.3	0.27 U	73
Vinyl chloride	0.28	NV									

Table 4-5 Indoor Air Analytical Results Precision Engineering, Inc. Seattle, Washington

NOTES:

Result shading (color key below) indicates an exceedance of screening criteria; non-detects ("U") were not compared with screening criteria.

Indoor Air Cleanup Level, MTCA Method B

TCE Indoor Air Short-Term Action Level, Workplace Scenario

Sample shading (color key below) indicates that the sample was collected under the following conditions:

Prior to air purification

During air purification

After implementation of the interim remedial actions, with no air purification

-- = not analyzed.

MTCA = Model Toxics Control Act.

NV = no value.

TCE = trichloroethene.

U = Result is non-detect to method reporting limit.

 ug/m^3 = micrograms per cubic meter.

VOC = volatile organic compound.

^(a) TCE Indoor Air Action Level from Washington State Department of Ecology Implementation Memo No. 22.

^(b)Twenty-four-hour indoor air sample collected with a 6-liter Summa canister outside normal working conditions.

^(c)Eight-hour indoor air sample collected with a 6-liter Summa canister during normal working conditions.

Table 4-5 Indoor Air Analytical Results Precision Engineering, Inc. Seattle, Washington

Table 4-6 Ambient Air Analytical Results Precision Engineering, Inc. Seattle, Washington

Location:	Indoor Air	TCE Indoor Air Short-Term	AA1	AA2	AA3	AA4	AA5
Sample Name:	Cleanup Level, MTCA	Action Level,	AA1	AA2	AA3	AA4	AA5
Collection Start Date:	Method B	Workplace Scenario ^(a)	02/01/2020	02/01/2020	02/01/2020	02/01/2020	02/01/2020
Collection End Date:		3Cendio	02/02/2020	02/02/2020	02/02/2020	02/02/2020	02/02/2020
/OCs (ug/m³)	•	•					
1,1-Dichloroethane	1.6	NV	0.40 U	0.40 U	0.65 U	0.40 U	0.40 U
1,1-Dichloroethene	91	NV	0.40 U	0.40 U	0.63 U	0.40 U	0.40 U
1,2-Dichloroethane	0.096	NV	0.07	0.07	0.07	0.07	0.07
Chloroethane	4,600	NV	2.60 U	2.60 U	4.20 U	2.60 U	2.60 U
cis-1,2-Dichloroethene	NV	NV	0.40 U	0.40 U	0.63 U	0.40 U	0.40 U
trans-1,2-Dichloroethene	NV	NV	0.40 U	0.40 U	0.63 U	0.40 U	0.40 U
TCE	0.33	7.50	0.16 U	0.16 U	0.27 U	0.16 U	0.16 U
Vinyl chloride	0.28	NV	0.26 U	0.26 U	0.41 U	0.26 U	0.26 U
NOTES: Ambient air samples collected conditions.				February 1, 2020 t	to February 2, 2020) outside normal v	vorking
Sample shading indicates that		collected prior to c	air purification.				
MTCA = Model Toxics Control	Act.						
NV = no value.							
TCE = trichloroethene.	thed reporting limi	+					
U = Result is non-detect to me		1.					
$ug/m^3 = micrograms per cubic$							

VOC = volatile organic compound.

^(a) TCE Indoor Air Short-Term Action Level from Washington State Department of Ecology Implementation Memo No. 22.

Location:	Indoor Air	TCE Indoor Air Short-Term		RAD1		RAD2	RAD3	Я	AD4	Я	AD5	
Sample Name:	Cleanup Level,	Action Level,	RAD1	RAD1-022020	RAD1-051520	RAD2	RAD3	RAD4	RAD4-051520	RAD5	RAD5-051520	
Collection Start Date:	MTCA Method B	Workplace Scenario ^(a)		02/01/2020	02/20/2020	05/15/2020	02/01/2020	02/01/2020	02/20/2020	05/15/2020	02/20/2020	05/15/2020
Collection End Date:]	Scendio	02/13/2020	03/12/2020	06/05/2020	02/13/2020	02/13/2020	03/12/2020	06/05/2020	03/12/2020	06/05/2020	
VOC (ug/m³)	•				•	•					•	
TCE	0.33	7.5	110	1.3	1.4	110	170	2.6	2.6	2.3	1.7	
NOTES:												
Radiello 130 (R130) passive air	samplers were used for	all sampling events.										
Result shading (color key belo	w) indicates an exceed	ance of screening criter	ia.									
Indoor Air Cleanup Level, M	TCA Method B											
TCE Indoor Air Short-Term Ac	ction Level, Workplace S	cenario										
Sample shading (color key bel	low) indicates that the s	ample was collected ur	nder the following co	onditions:								
Prior to air purification												
During air purification												
After implementation of the	interim remedial action	s, with no air purificatior	ı									
MTCA = Model Toxics Control	Act.											
RAD = passive indoor air samp	le collected with Radiell	lo 130.										
TCE = trichloroethene.												
ug/m ³ = micrograms per cubic	c meter.											
VOC = volatile organic compo	ound.											
^(a) TCE Indoor Air Short-Term Action Level from Washington State Department of Ecology Implementation Memo No. 22.												

Table 4-7 Passive Indoor Air Analytical Results Precision Engineering, Inc. Seattle, Washington

Table 5-1 Evaporator Pit Water Analytical Results Precision Engineering, Inc. Seattle, Washington

Location:	MTCA Method A,	MTCA Method B,	Vapor Intrusion, Groundwater	Evaporation Pit	
Sample Name:	Groundwater	Groundwater	Screening Level, MTCA Method B	EVAPPIT	
Collection Date:			MICA Melhod B	02/11/2020	
TPH (ug/L)					
Diesel-Range Organics	500	NV	NV	3,900	
Residual-Oil-Range Organics	500	NV	NV	2,500	
Diesel + Oil ^(a)	500	NV	NV	6,400	
Total Metals (ug/L)					
Arsenic	5	0.058	NV	6.1 J	
Chromium	50 ^(b)	48 ^(c)	NV	994,000	
VOCs (ug/L)					
Trichloroethene	proethene 5 0.54 1.40				
NOTES:					
Result shading (color key below) in	ndicates an excee	dance of screening	g criteria.		
MTCA Method A, Groundwater					
MTCA Method B, Groundwater					
Sample shading indicates that the	sample was colle	cted prior to air pu	rification.		
J = estimated.					
MTCA Method A = Model Toxics C					
MTCA Method B = Model Toxics Co	ontrol Act Method	B, lower of carcino	gen or noncarcinoge	n value.	
NV = no value.					
TPH = total petroleum hydrocarbo	ns.				
ug/L = micrograms per liter.					
VOC = volatile organic compound		and the state of a "			
^(a) Diesel + Oil is the sum of the dies	ei-range organics	ana resiauai-oii-rar	ige organics.		
^(b) Value is for total chromium.	n the more taxia	no cios of obremium	~		
^(c) Value is for hexavalent chromiur	n, the more toxic s	species of chromiur	11.		

			PID Re	eading	Reading	Reading	
Air Purifier Location	Collection Date	Collection Time	Air Purifier Inlet (ppb)	Air Purifier Outlet (ppb)	Collected Immediately Before Filter Replacement	Collected Immediately After Filter Placement	Comments
	02/17/2020	8:11	446	446	х		Air purifier was running, but internal carbon filter was still wrappe filter was reinstalled. Air purifier was set to low flow.
		14:30	357	146		Х	
	02/20/2020	8:16	329	200			Reading collected near time of deployment of eight-hour Sumn unit was a dark gray color. The change filter indicator light was r
		15:41	413	262			Reading collected near time of collection of eight-hour Summa
	02/24/2020	14:25	200	167	Х		Filter was changed after readings were collected; no post-repla
	03/02/2020	13:57	217	220	Х		
	03/02/2020	14:25	241	96		Х	
	03/12/2020	12:50	211	170	Х		
	03/12/2020	13:04	197	66		Х	
	03/19/2020	12:00	283	225	Х		
Warehouse 1	00/17/2020	12:18	259	73		Х	
	03/26/2020	12:36	270	165	Х		
	00/20/2020	13:01	363	140		Х	
	04/02/2020	11:50	285	232	Х		
	0 1/ 02/ 2020	12:04	309	97		Х	
	04/09/2020	11:37	254	177	Х		HEPA and carbon filters were replaced and readings subsequer
	0.,07,2020	13:03	220	70		Х	
	04/16/2020	12:01	722	613	Х		
	,,	12:16	463	159		Х	
	04/23/2020	11:33	161	181	Х		PID was restarted in a clean ambient air environment and the a were accurate.
		11:54	204	36		Х	
	04/29/2020	10:50	86	74	Х		
	07/2//2020	11:07	133	28		Х	

Table 5-2 Air Purifier PID Readings Precision Engineering, Inc. Seattle, Washington

nts
bed in plastic packaging. Packaging was removed and
nma canister indoor air sample. Prefilter for air-purifying Is not on.
na canister indoor air sample.
placement reading was recorded.
ently recorded.
air purifier was retested to ensure that measured results

			PID Re	eading	Reading	Reading	
Air Purifier Location	Collection Date	Collection Time	Air Purifier Inlet (ppb)	Air Purifier Outlet (ppb)	Collected Immediately Before Filter Replacement	Collected Immediately After Filter Placement	Comments
	02/17/2020	8:03	378	380	х		Air purifier was running, but internal carbon filter was still wrappe was removed and filter was reinstalled. Air purifier was set to low
		14:30	446	210		Х	
	02/20/2020	8:32	832	301			Reading collected near time of deployment of eight-hour Summ
	02/20/2020	16:00	404	256			Reading collected near time of collection of eight-hour Summa
	02/24/2020	14:35	9	0	Х		Filter was changed after readings were collected; no post-repla
	03/02/2020	14:02	318	170	Х		Prefilter had darkened to a gray color.
	03/02/2020	14:10	313	87		Х	
	03/12/2020	12:58	360	342	Х		Air purifier had been moved to opposite side of room because of
	00/12/2020	13:08	315	50		Х	
	03/19/2020	11:55	272	238	Х		
Sewing Room	00/17/2020	12:15	316	95		Х	
	03/26/2020	12:50	268	252	Х		
	00,20,2020	13:11	230	67		Х	
	04/02/2020	11:43	110	55	Х		
	0 1/ 02/ 2020	12:00	138	33		Х	
	04/09/2020	11:31	332	226	Х		HEPA and carbon filters were replaced and readings subsequen
	01/07/2020	12:59	162	82		Х	
	04/16/2020	11:55	272	225	Х		
	,,	12:12	276	108		Х	
	04/23/2020	11:27	103	54	Х		
		11:51	146	7		Х	
	04/29/2020	10:43	80	40	Х		
		11:03	206	44		Х	

Table 5-2 Air Purifier PID Readings Precision Engineering, Inc. Seattle, Washington

nts
bed in plastic packaging during PID reading. Packaging bw flow.
nma canister indoor air sampler.
na canister indoor air sample.
lacement reading was recorded.
e of leaking roof near unit.
ently recorded.

			PID Re	eading	Reading	Reading	
Air Purifier Location	Collection Date	Collection Time	Air Purifier Inlet (ppb)	Air Purifier Outlet (ppb)	Collected Immediately Before Filter Replacement	Collected Immediately After Filter Placement	Comme
	02/17/2020	7:40	15	10	Х		Air purifier was running, but carbon filter was still wrapped in pla removed and filter was reinstalled. At employees' request, air pu operation noise. Confirmed that air purifier position did not com
		14:30	265	135		Х	
	02/20/2020	8:22	822	297			Reading collected near time of deployment of eight-hour Summ
	02/20/2020	15:53	204	152			Reading collected near time of collection of eight-hour Summa
	02/24/2020	14:20	0	0	Х		Filter was changed after readings were collected; no post-repla
	03/02/2020	14:15	29	39	Х		
	03/02/2020	14:20	30	10		Х	
	03/12/2020	12:41	63	50	Х		
	03/12/2020	13:03	12	0		Х	
	03/19/2020	11:49	8	0	Х		
Office	03/17/2020	12:12	47	1		Х	
	03/26/2020	12:25	0	0	Х		Prefilter had darkened to a gray color.
	03/20/2020	12:58	30	3		Х	
	04/02/2020	11:38	0	0	Х		
	04/02/2020	11:57	12	0		Х	
	04/09/2020	11:25	0	0	Х		HEPA, prefilter, and carbon filters were replaced and readings s
	04/07/2020	12:56	0	0		Х	
	04/16/2020	11:51	0	0	Х		
	04/10/2020	12:09	0	0		Х	
	04/23/2020	11:23	0	0	Х		
	04/23/2020	11:48	0	0		Х	
	04/29/2020	10:37	0	0	Х		
	04/27/2020	11:01	0	0		Х	

NOTES:

A Honeywell ppbRAE 3000 PID equipped with a 10.6 electron volt lamp was used to collect ambient air readings during air-purifier operation.

Air-purifying units were HEPA-AIRE® PAS2400 portable air scrubbers equipped with a prefilter, a HEPA filter, and a VL2002 high-capacity carbon filter.

All PID readings are the observed peak value after the instrument had time to stabilize to the new location.

Shading (color key below) indicates that the event was conducted under the following conditions:

Prior to air purification

During air purification

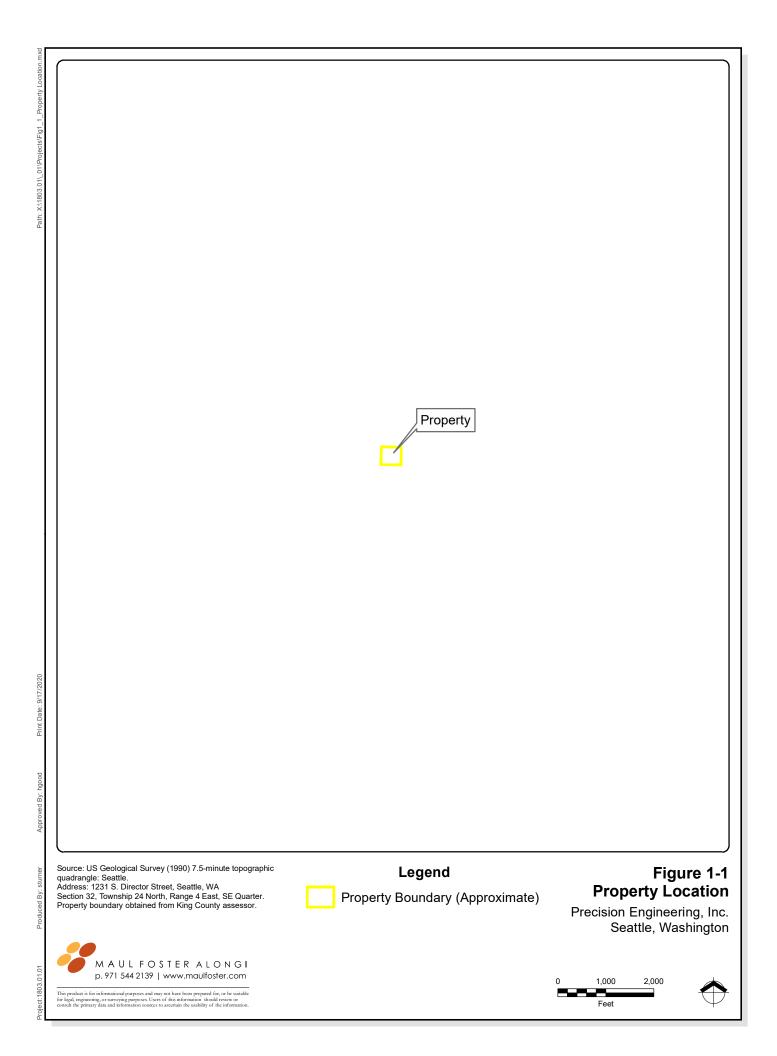
After implementation of the interim remedial actions, with no air purification

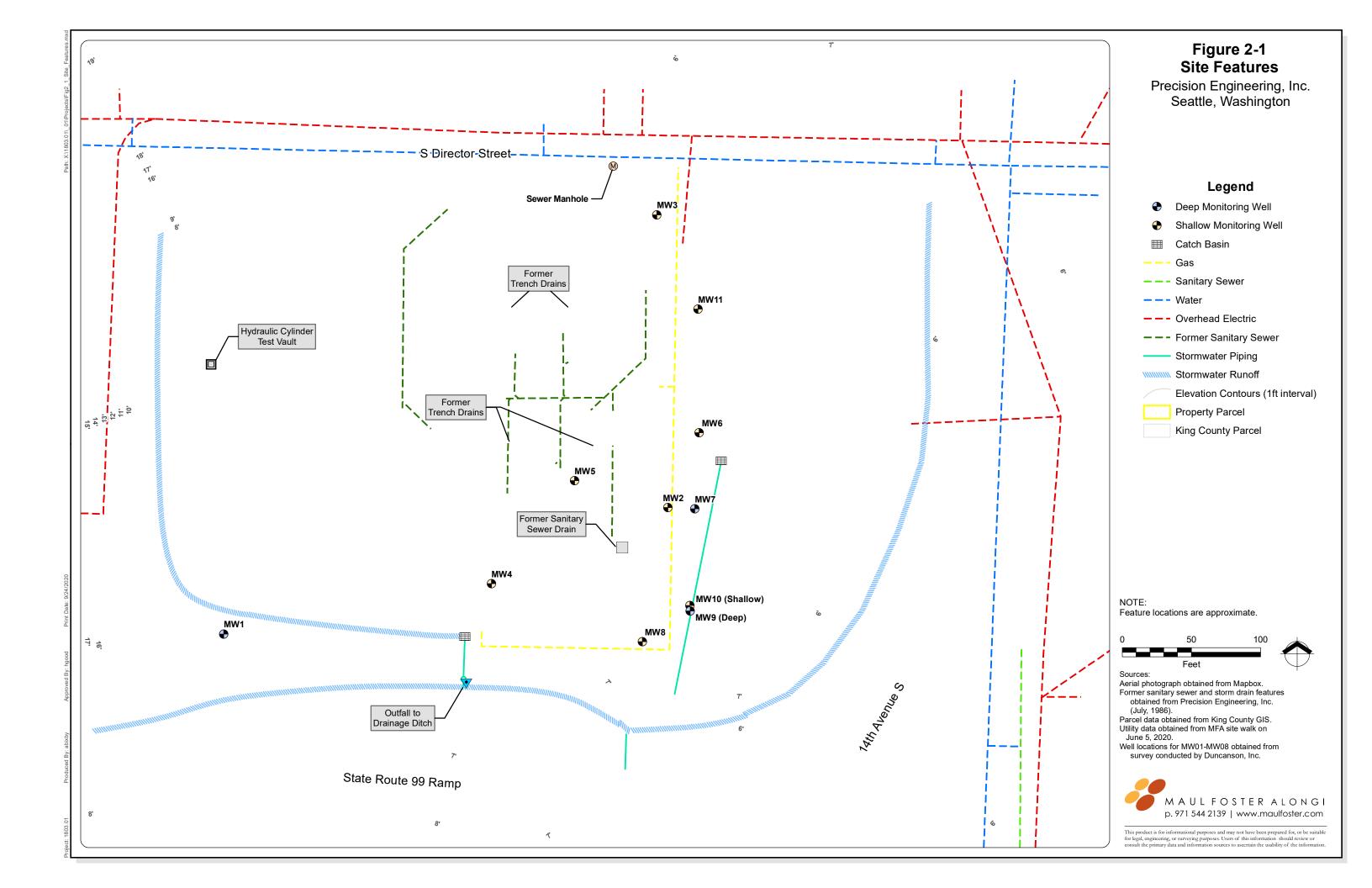
-- = no reading collected.

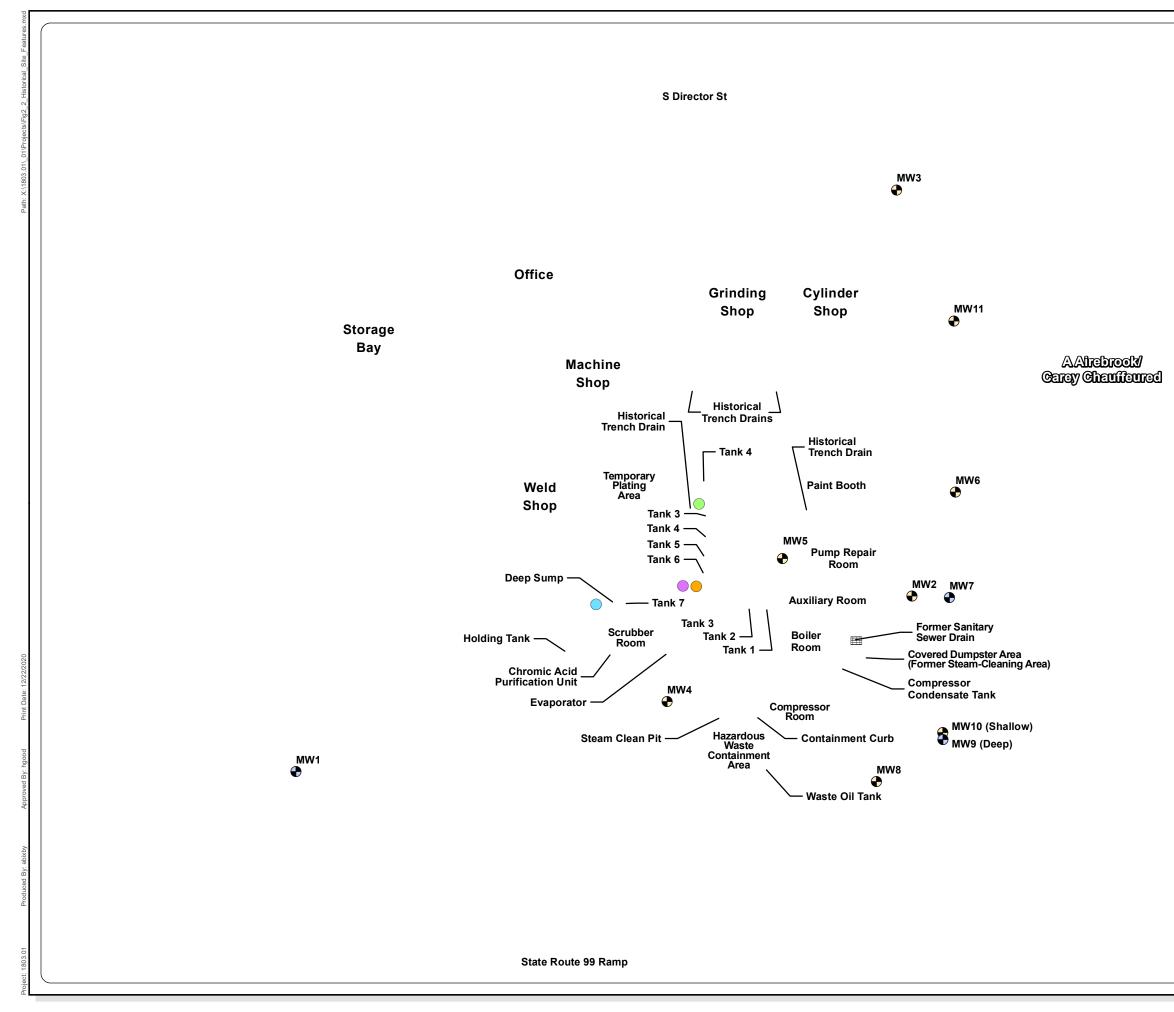
X = reading collected.

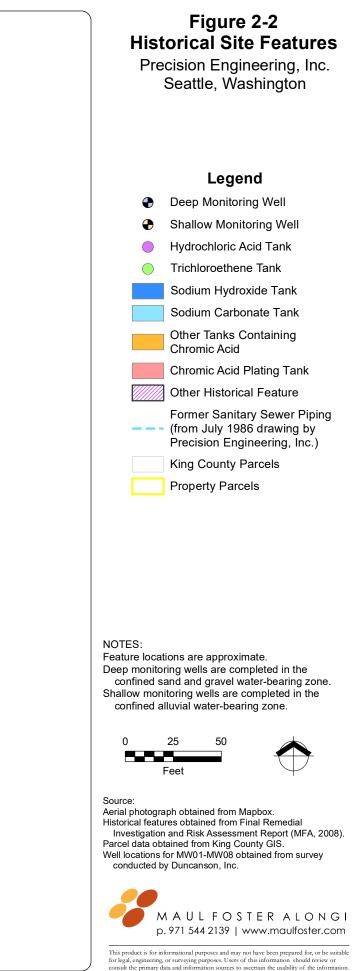
HEPA = high-efficiency particulate air.

PID = photoionization detector.


ppb = parts per billion.


Table 5-2 Air Purifier PID Readings Precision Engineering, Inc. Seattle, Washington


its
astic packaging for PID reading. Packaging was
purifier is set to high and laid on its back to reduce mpromise its operation.
nma canister indoor air sampler.
a canister indoor air sample
lacement reading was recorded.
subsequently recorded.


FIGURES

Path: X:\1803.01_02\Projects\Fig4_1_Vapor_Sample_Loc

803.01 Produced By: abixby Approved By: hgood Print Date: 12/22/2021

Figure 4-1 Vapor Sample Locations

Precision Engineering, Inc. Seattle, Washington

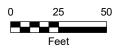
Legend

Vapor Sample Locations

- Ambient Air
- Indoor Air
- Passive Sampler
- Sub-slab Soil Gas

Historical Vapor Sample Locations

- Indoor/Ambient Air
- Sub-slab Soil Gas

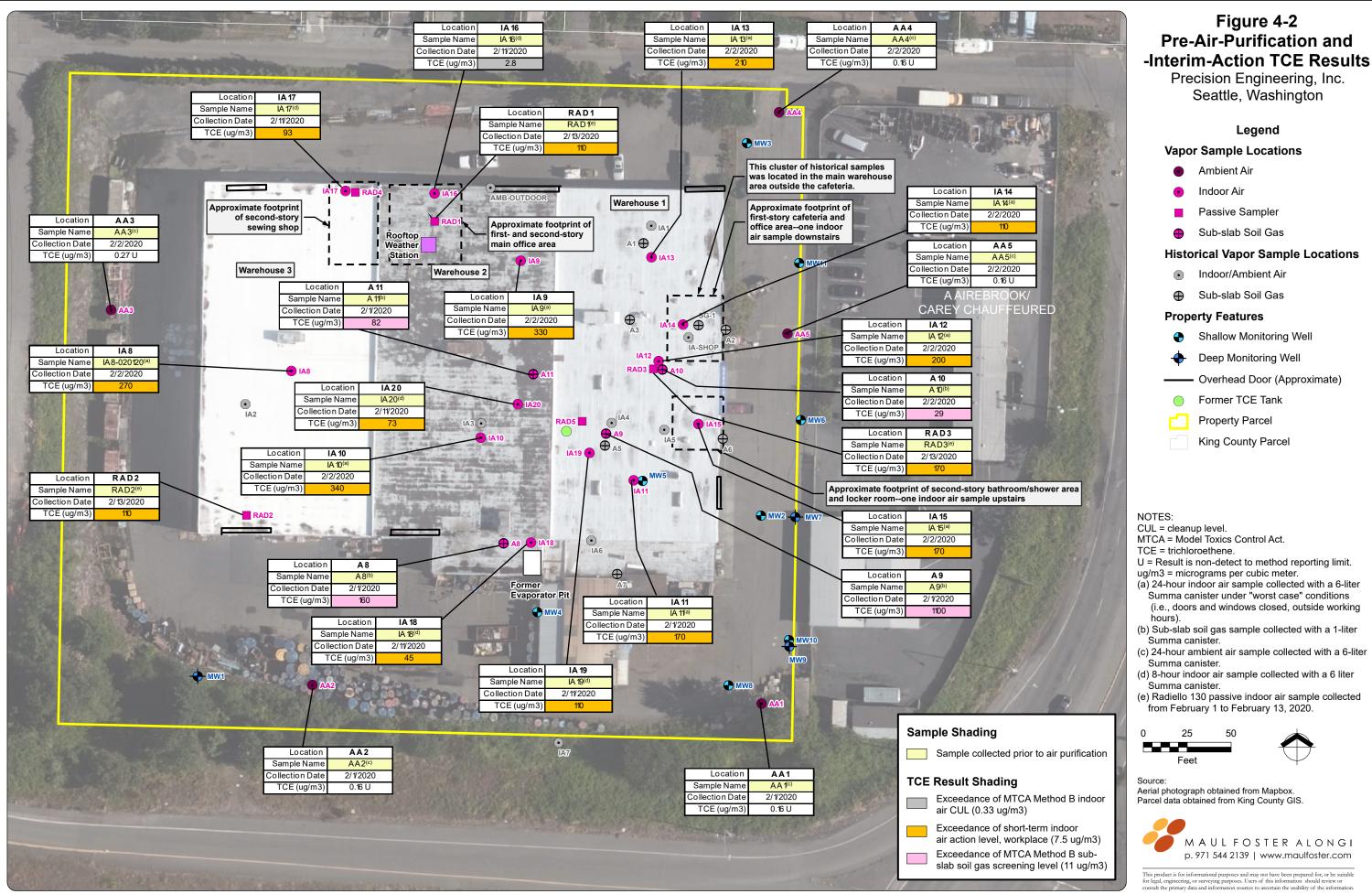

Property Features

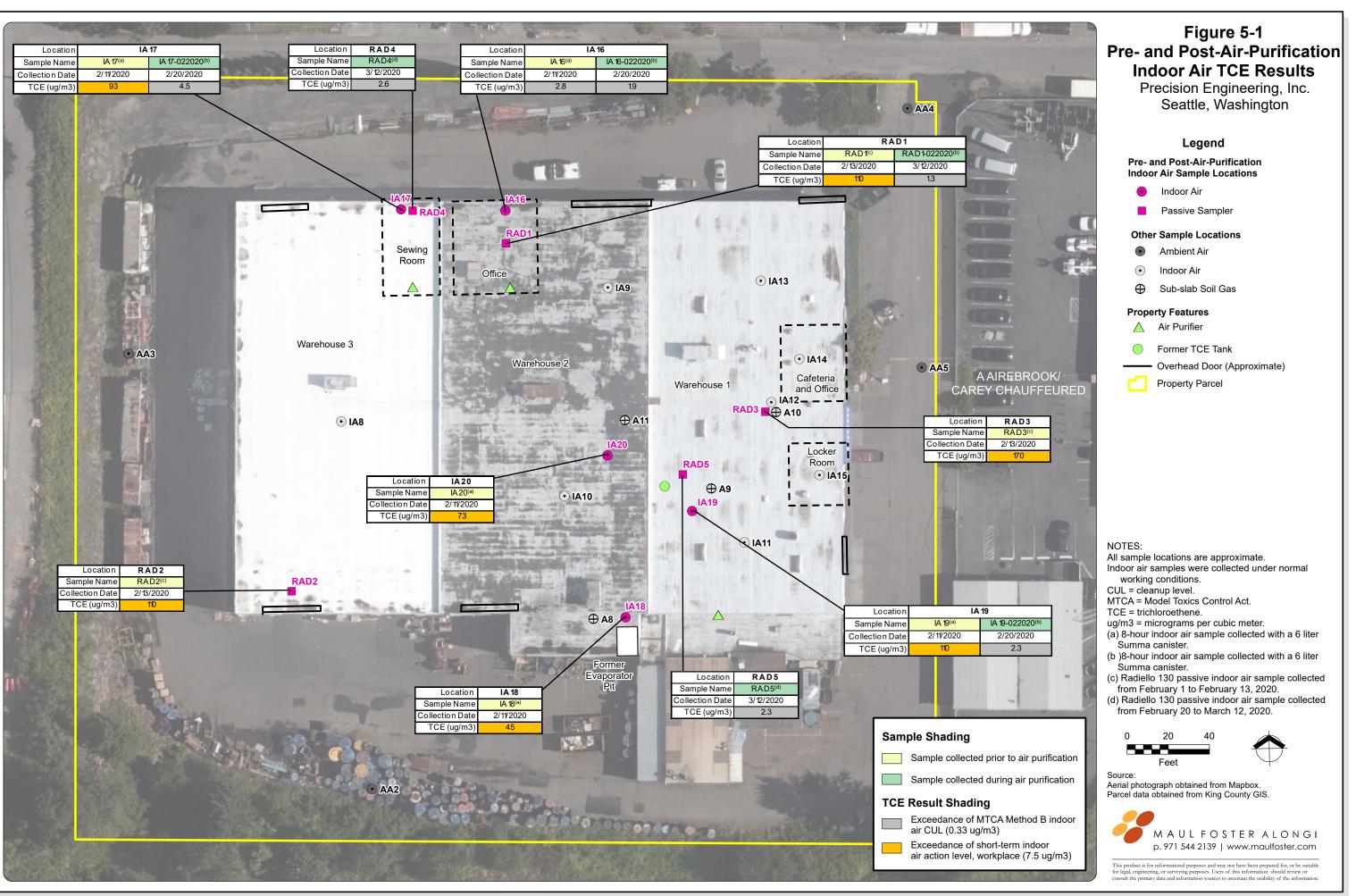
- Air Purifier
- Former Trichloroethene Tank
- Shallow Monitoring Well
- Deep Monitoring Well
- Overhead Door (Approximate)
- Property Parcel
- King County Parcel

NOTES:

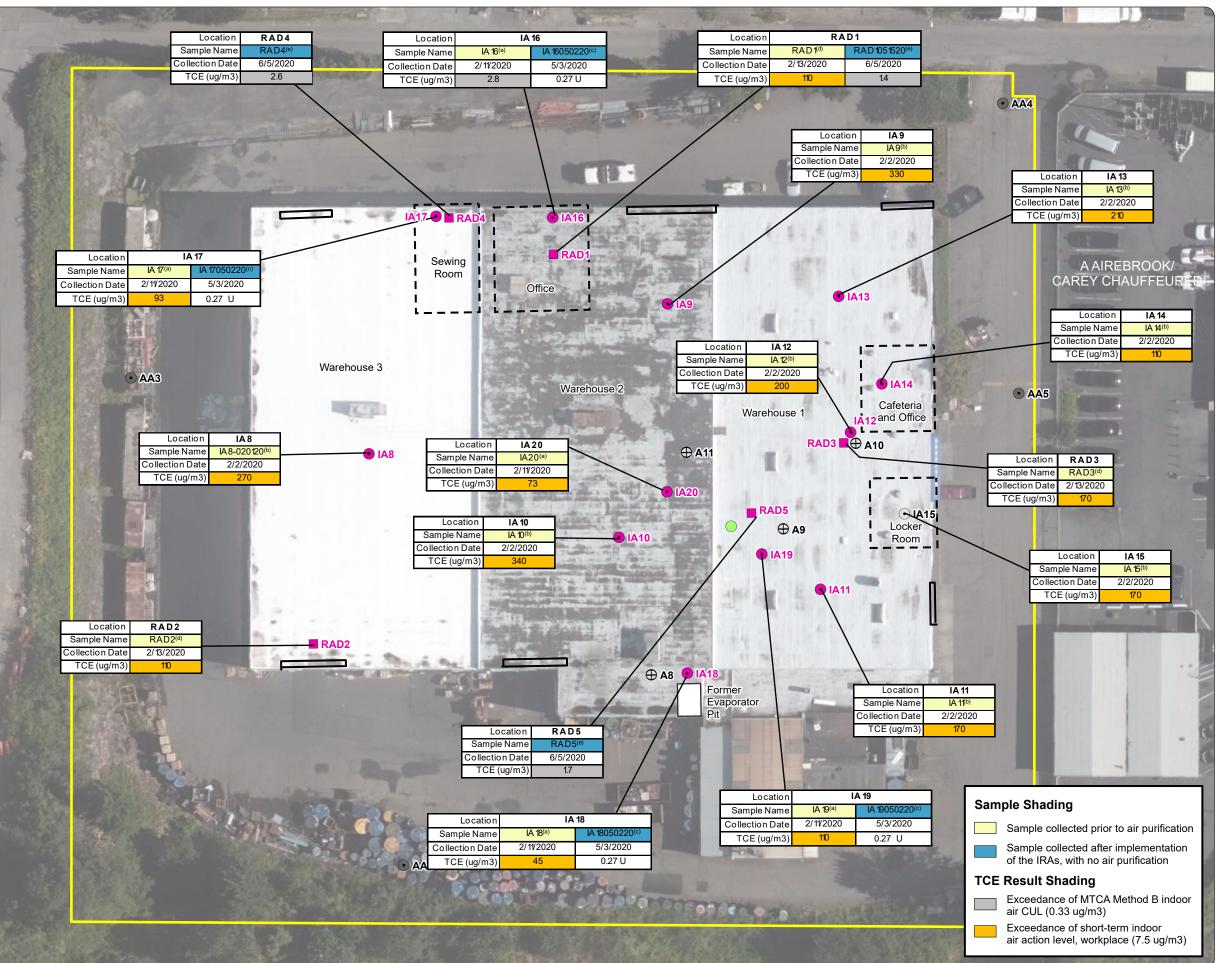
Air purifier units were installed on 2/13/2020. The air purifier located in the sewing shop was originally located near IA17, but was moved on March 12, 2020.

Well locations for MW1 to MW8 were surveyed by Duncanson, Inc. All other feature locations are approximate.




Source: Aerial photograph obtained from Mapbox. Parcel data obtained from King County GIS.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.



Produced By: abixby Approved By: hgood Print Date: 12/18/2020

Figure 6-1 **Pre- and Post-Interim-Action Indoor Air TCE Results**

Precision Engineering, Inc. Seattle, Washington

Legend

Pre- and Post-Interim-Action Indoor Air Sample Locations

- Indoor Air
- Passive Sampler

Other Sample Locations

- Ambient Air
- Indoor Air
- Sub-slab Soil Gas

Property Features

Former TCE Tank

Overhead Door (Approximate)

Property Parcel

NOTES:

- All sample locations are approximate. Non-detects ("U") were not compared to screening critieria.
- CUL = cleanup level.
- IRAs = interim remedial actions.

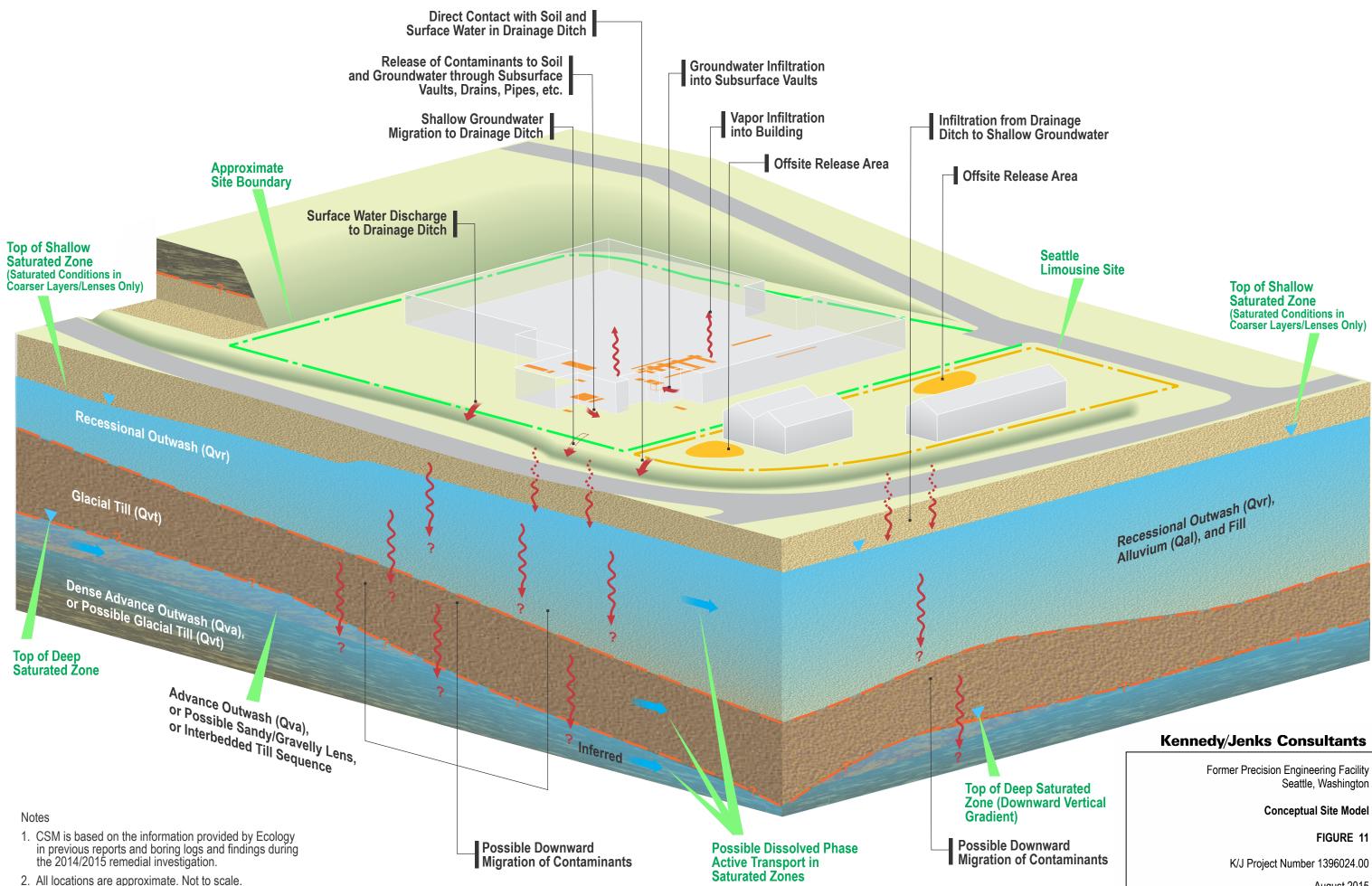
MTCA = Model Toxics Control Act.

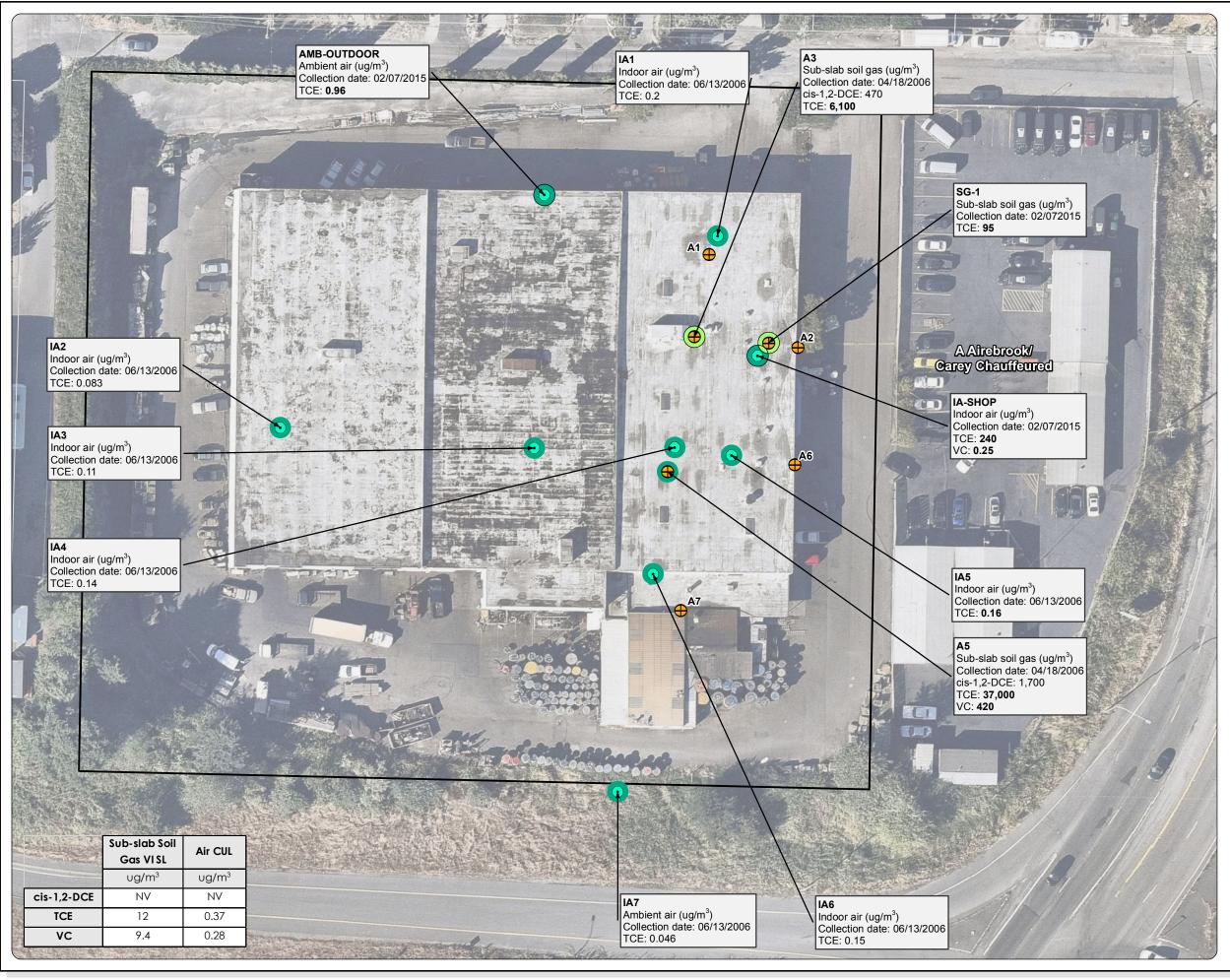
TCE = trichloroethene.

U = Result is non-detect to method reporting limit. ug/m3 = micrograms per cubic meter

(a) 8-hour indoor air sample collected with a 6-liter Summa canister during normal working conditions.

- (b) 24-hour indoor air sample collected with a 6-liter Summa canister outside of normal working conditions.
- (c) 24-hour indoor air, post-interim action performance sample collected with a 6-liter Summa canister outside of normal working conditions.
- (d) Radiello 130 passive indoor air sampler collected from February 1 to February 13, 2020.
- (e) Radiello 130 passive indoor air sampler collected from May 15 to June 5, 2020.


Source Aerial photograph obtained from Mapbox. Parcel data obtained from King County GIS.


This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

APPENDIX A CONCEPTUAL SITE MODEL

August 2015

Produced By: mjosef Approved By: Print Date: 12/19/2011

Figure 1 TCE and Breakdown Product Detections -Soil Gas and Air

Precision Engineering, Inc. Seattle, Washington

Legend

TCE and Breakdown Product Detections

CUL or SL Exceedance

Indoor/Ambient Air

Sub-slab Soil Gas

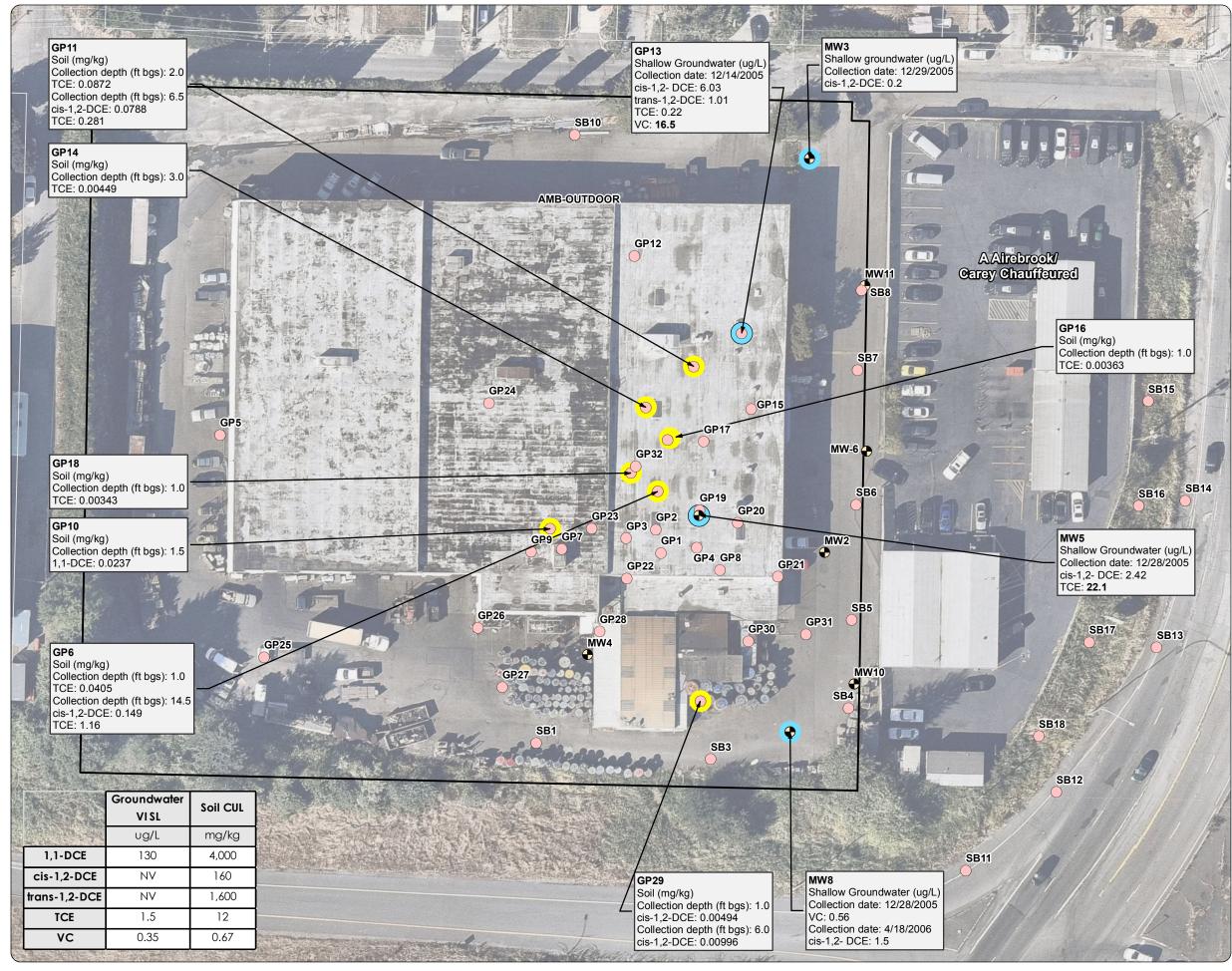
Sample Location Type

Indoor/Ambient Air

Sub-slab Soil Gas

King County Parcels

Property Parcels


Notes: Only detected concentrations are shown. Bold values indicate SL or CUL exceedances. SLs and CULs are provided only for detected compounds. CUL = cleanup level. DCE = dichloroethene. NV = no value. SL = screening level. TCE = trichloroethene. ug/m³ = micrograms per cubic meter. VC = vinyl chloride. VI = vapor intrusion.

Source: Aerial photograph obtained from Mapbox. Well locations for MW01-MW08 obtained from survey conducted by Duncanson, Inc.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Path: X:\1803.01_04\Projects\Fig_Soil_and_C

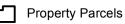
Produced By: mjosef Approved By: Print Date: 12/19/2019

Figure 4 TCE and Breakdown Product Detections -Soil and Groundwater

Precision Engineering, Inc. Seattle, Washington

Legend

TCE and Breakdown Product Detections

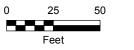

CUL or SL Exceedance

Groundwater

Soil

Sample Location Type

- Boring
- Shallow Monitoring Well
- King County Parcels



Notes:

Only detected concentrations are shown. All compounds were non-detect in groundwater during the July 2019 event. Historical detections are shown for reference.

TCE and its breakdown products have not been detected in deep monitoring wells or hand auger and surface soil samples (locations not shown). Bold values indicate SL or CUL exceedances. SLs and CULs are provided only for detected compounds.

- CUL = cleanup level. DCE = dichloroethene. ft bgs = feet below ground surface. mg/kg = milligrams per kilogram. NV = no value. SL = screening level. TCE = trichloroethene. ug/L = micrograms per liter. VC = vinyl chloride.
- VI = vapor intrusion.

Source: Aerial photograph obtained from Mapbox. Well locations for MW01-MW08 obtained from survey conducted by Duncanson, Inc.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

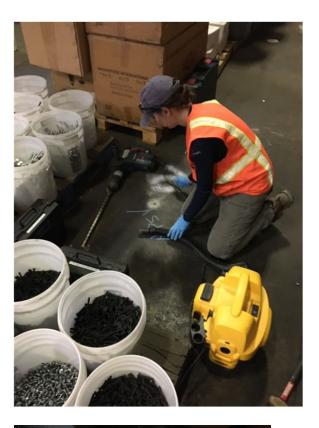


Photo No. 1.

Description Sub-slab soil gas vapor pin installation on January 31, 2020.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Description

Sub-slab soil gas sampling setup, excluding the helium shroud, on February 1, 2020.

Photo No. 3.

Description

Six-liter Summa canister deployed outside for ambient air sample collection during the initial vapor intrusion assessment on February 1, 2020.

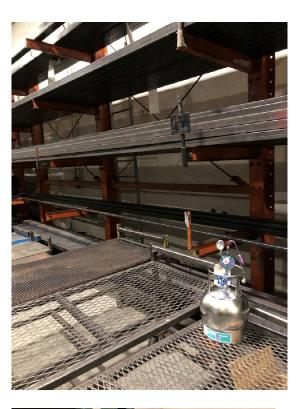
PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 4.

Description

Six-liter Summa canister deployed in Warehouse 1 during the initial vapor intrusion assessment on February 1, 2020.


Photo No. 5.

Description

Six-liter Summa canister deployed in Warehouse 2 during the initial vapor intrusion assessment on February 1, 2020.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 6.

Description

Radiello R130 passive sampler deployed in Warehouse 1 on February 1, 2020.

Photo No. 7.

Description

Davis Instruments Vantage Pro2 weather station on the roof of the building.

Photo No. 8.

Description

HEPA-AIRE® PAS2400 air purification unit in the administrative office.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 9.

Description HEPA-AIRE® PAS2400 air purification unit in the first warehouse.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

<u>Photo No. 10.</u>

Description HEPA-AIRE® PAS2400 air purification unit in the sewing room.

Photo No. 11.

Description Evaporator pit prior to decommissioning.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 12.

Description

Evaporator pit rinsed as a vacuum truck removes liquid waste from the pit.

Photo No. 13.

Description

Groundwater seeping into the evaporator pit after being rinsed out.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

<u>Photo No. 14.</u>

Description

Base of the evaporator pit, filled with dry-mix concrete.

Photo No. 15.

Description

Gravel in the base of this evaporator pit being compacted in 6-inch lifts, using hand tools.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 16.

Description

Final gravel surface in the evaporator pit, leveled and prepped for concrete.

<u>Photo No. 17.</u>

Description

Concrete being poured and leveled in the evaporator pit to match the existing slab grade.

Photo No. 18.

Description Decommissioned and filled evaporator pit.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

<u>Photo No. 19.</u>

Description

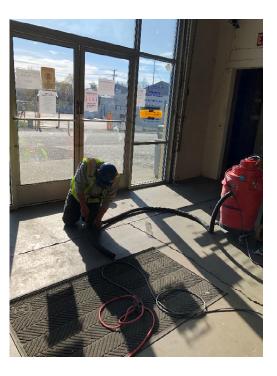
Sikaflex® 1C SL product used to seal cracks in the building slab.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Description

Quikrete® product used to seal cracks in the building slab.


<u>Photo No. 21.</u>

Description

Crack being cleaned with a vacuum prior to the application of sealant.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 22.

Description Sealant being applied to a clean crack.

Photo No. 23.

Description Sealant smoothed into a crack after application.

PHOTOGRAPHS

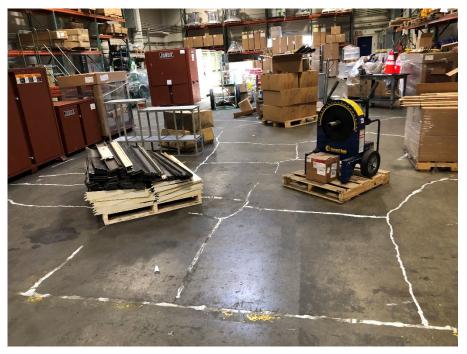

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 24.

Description

Sealed cracks in the northern portion of Warehouse 1.

Photo No. 25.

Description Sealed cracks in the southern portion of Warehouse 1.

Photo No. 26.

Description Sealed crack in the main entrance of Warehouse 1.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

<u>Photo No. 27.</u>

Description Uneven slab joint that could not be sealed.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 28.

Description Sealed cracks in Warehouse 2.

Photo No. 29.

Description Sealed hole in

Warehouse 2.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 30.

Description

Sealed cracks and joints in the wire rigging area of Warehouse 2.

<u>Photo No. 31.</u>

Description

Sealed slab joints near wire rigging "peg holes" in Warehouse 2.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 32.

Description

Sealed cracks in the shipping and receiving area of Warehouse 3.

Photo No. 33.

Description Large patch seal in Warehouse 3.

PHOTOGRAPHS

Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

Photo No. 34.

Description

Sealed cracks in the wire spool storage area of Warehouse 3.

Photo No. 35.

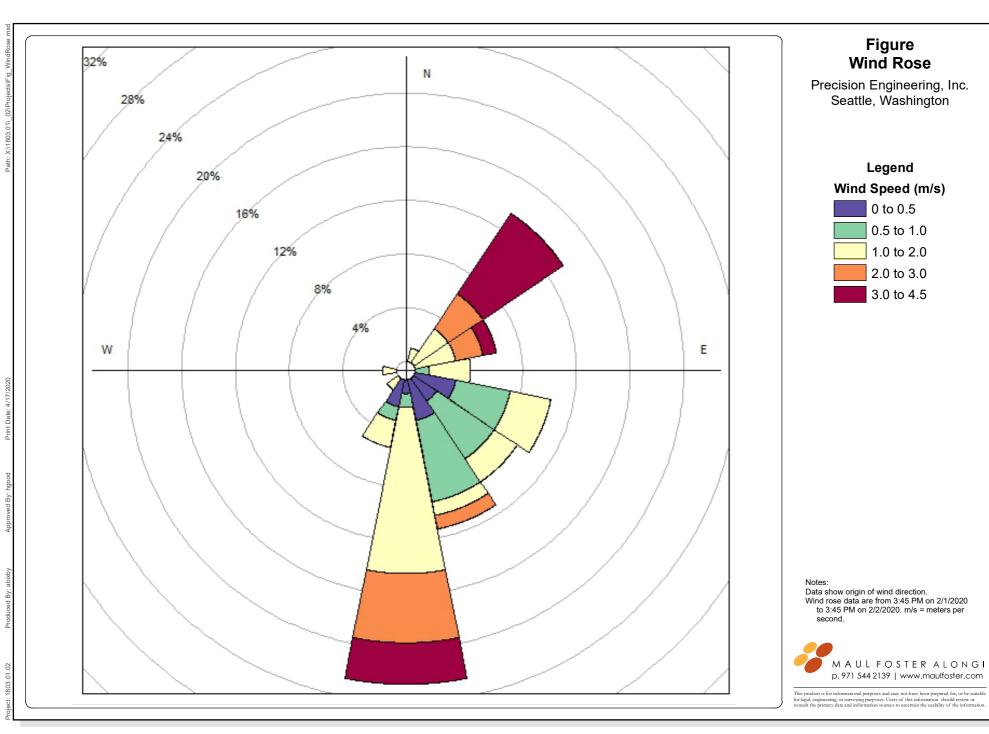
Description

Sealed cracks in the wire spool storage area of Warehouse 3.

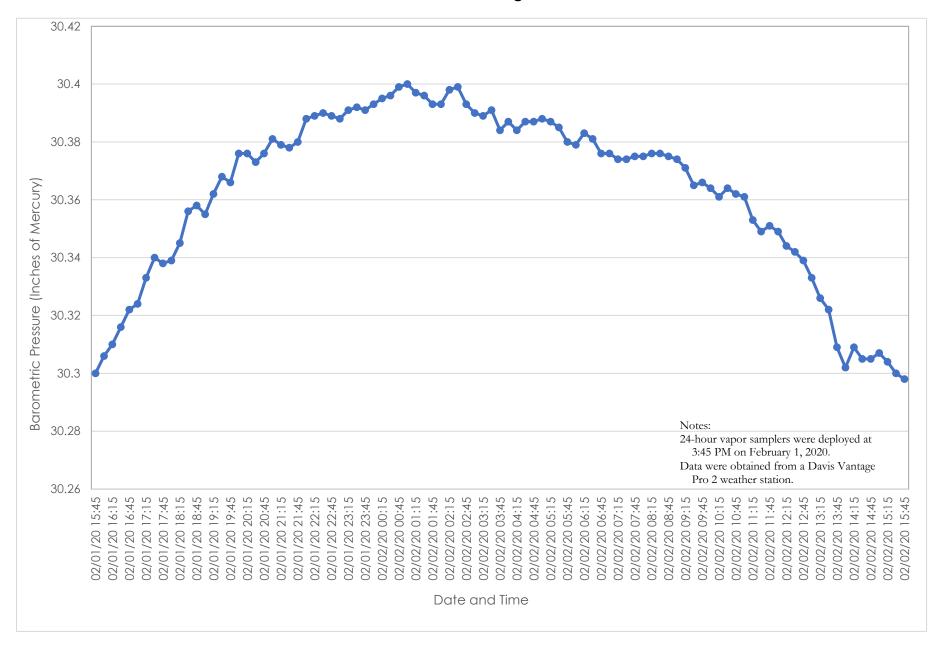
PHOTOGRAPHS

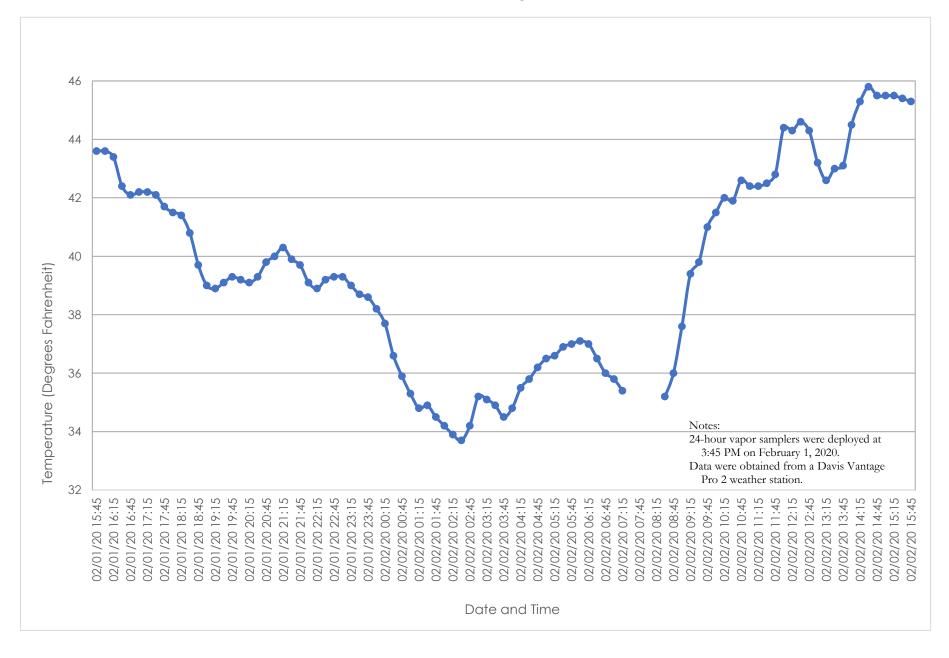
Project Name: Project Number: Location: Precision Engineering Interim Actions 1803.01.02 1231 S Director Street, Seattle, Washington

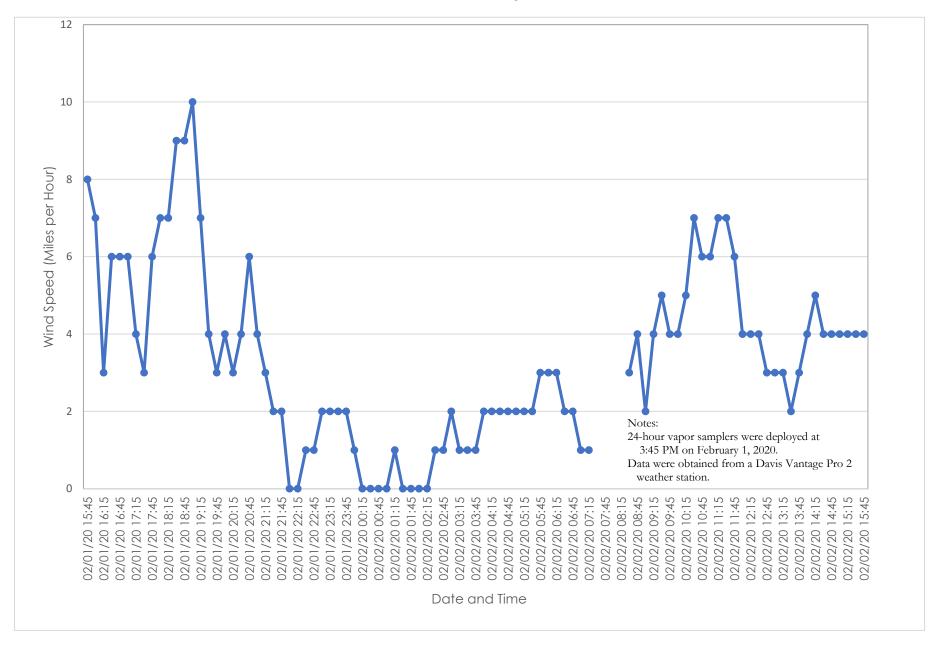
Photo No. 36.

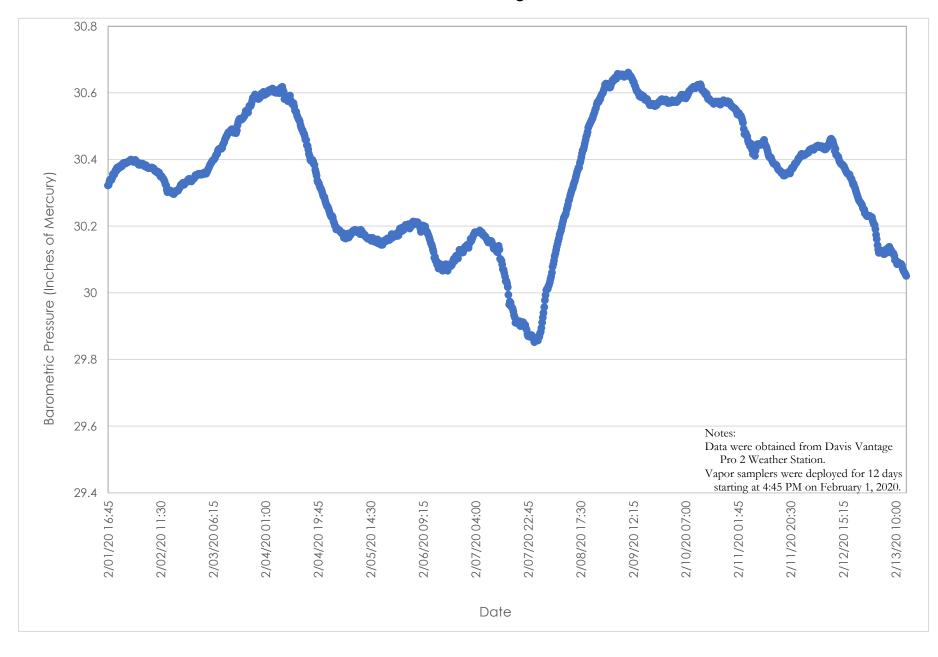

Description

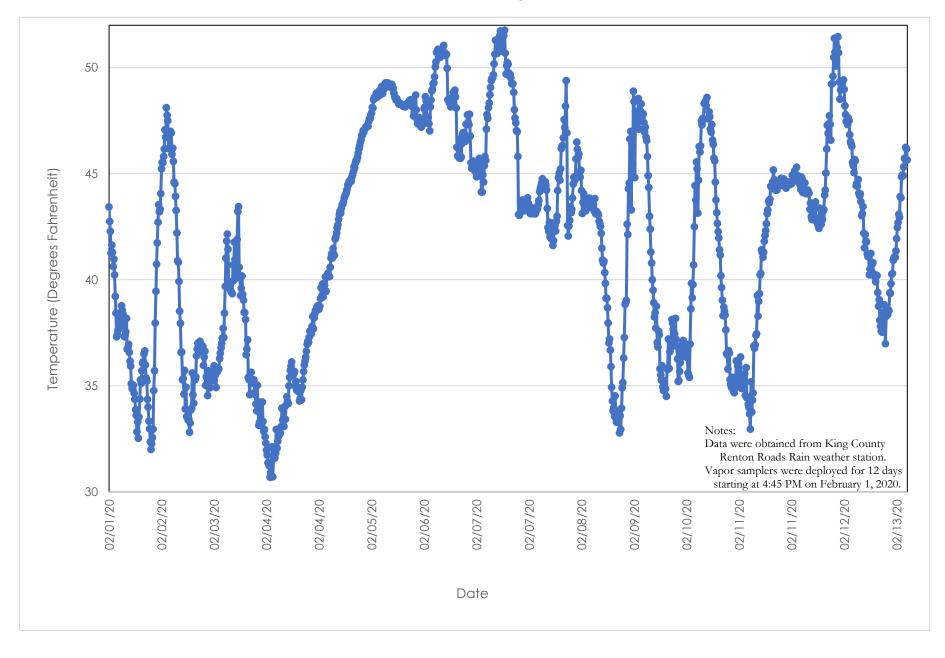
Crack prone to groundwater seepage after being sealed.

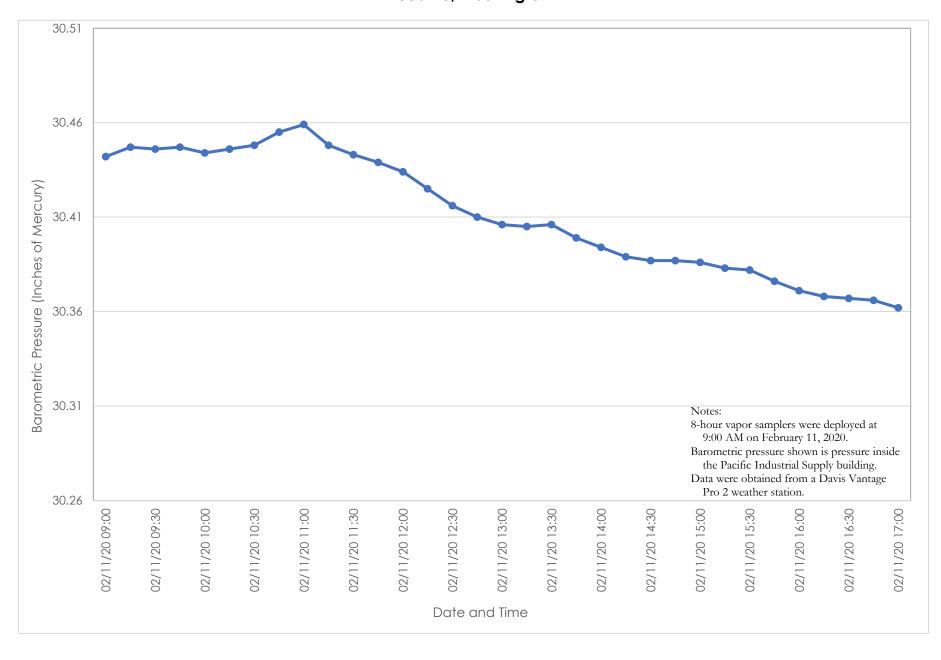


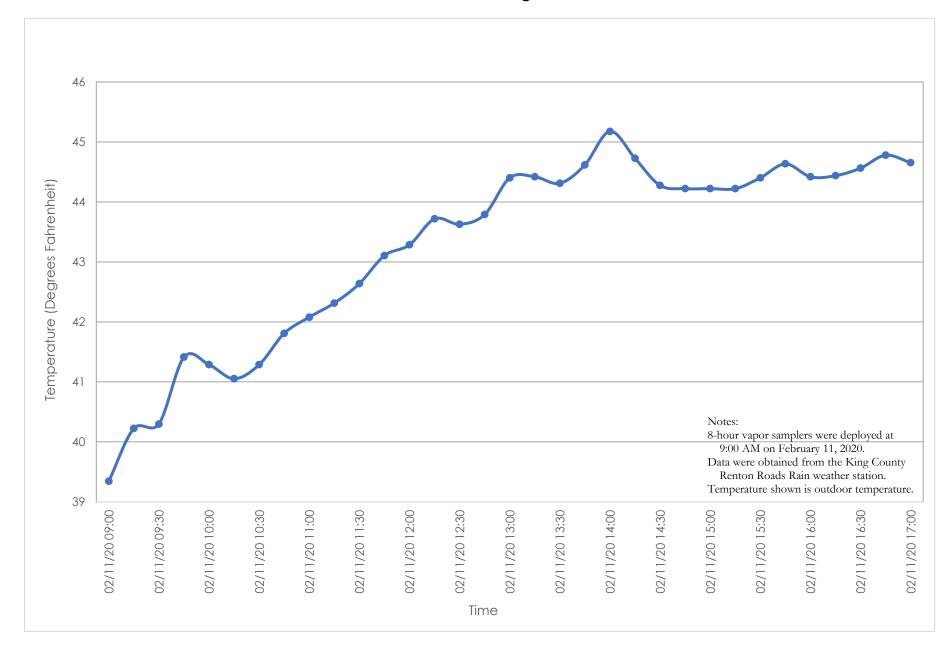


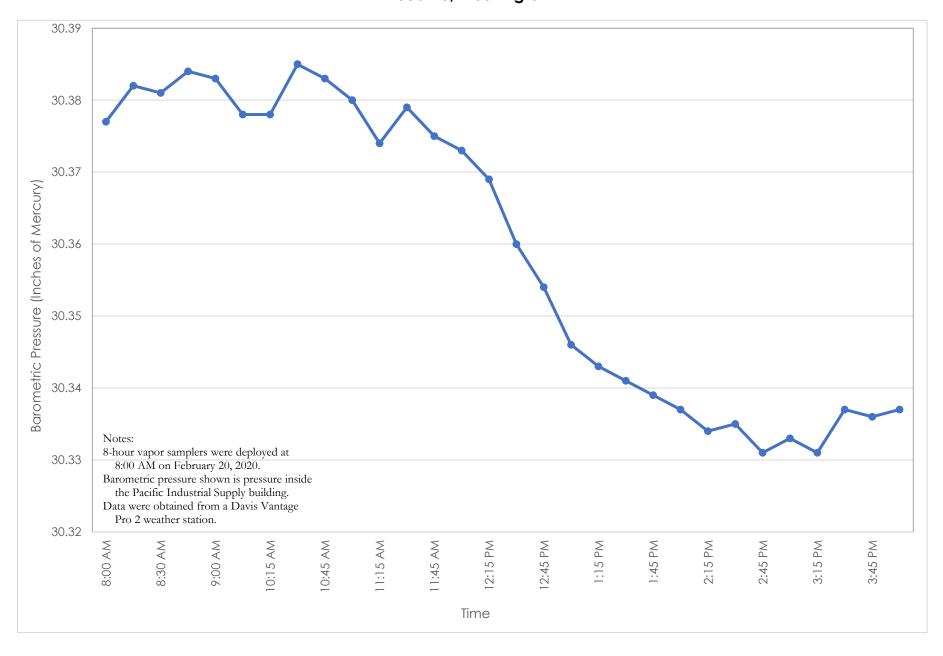

Barometric Pressure during 24-Hour Vapor Sampling February 1, 2020 to February 2, 2020 Precision Engineering, Inc. Seattle, Washington

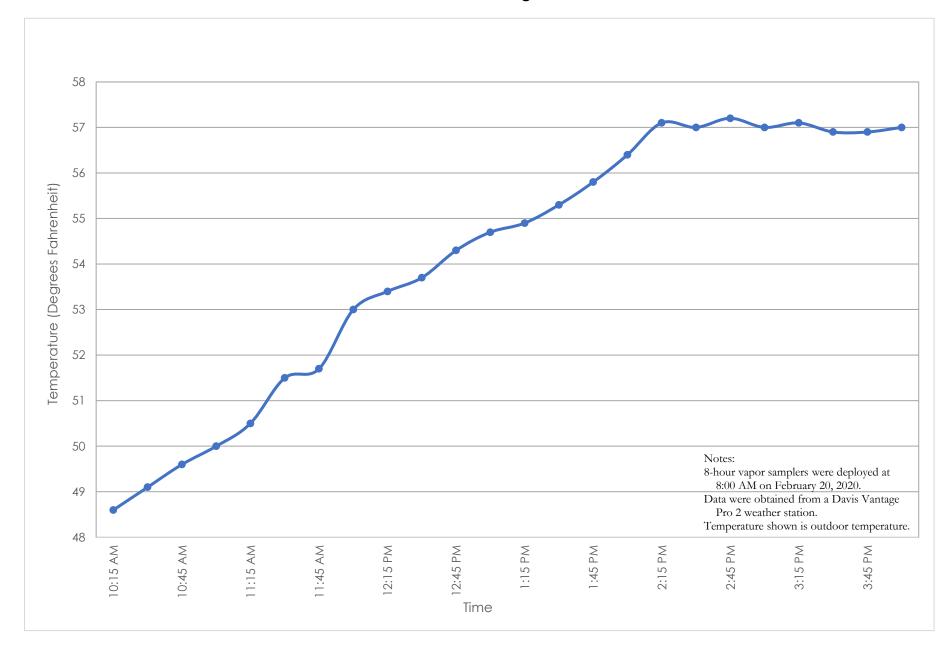

Temperature during 24-Hour Vapor Sampling February 1, 2020 to February 2, 2020 Precision Engineering, Inc. Seattle, Washington

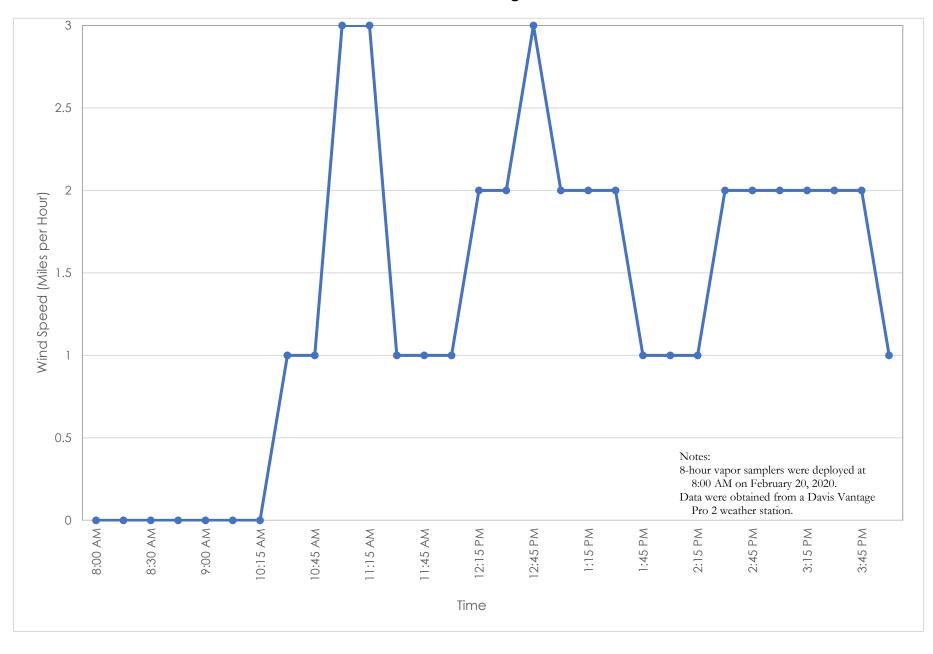

Wind Speed during 24-Hour Vapor Sampling February 1, 2020 to February 2, 2020 Precision Engineering, Inc. Seattle, Washington

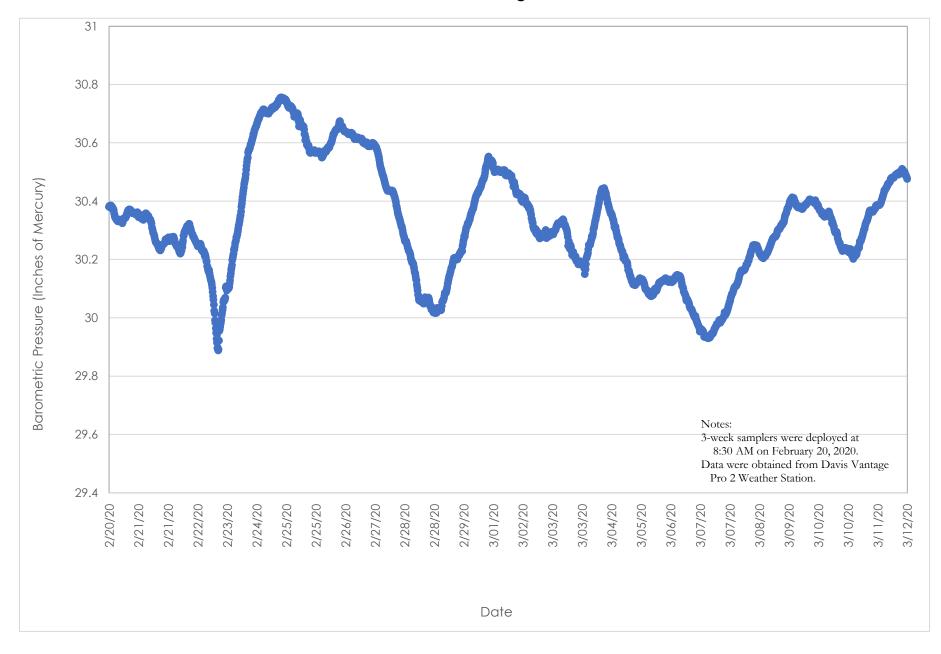

Barometric Pressure during 13-Day Vapor Sampling February 1, 2020 to February 13, 2020 Precision Engineering, Inc. Seattle, Washington

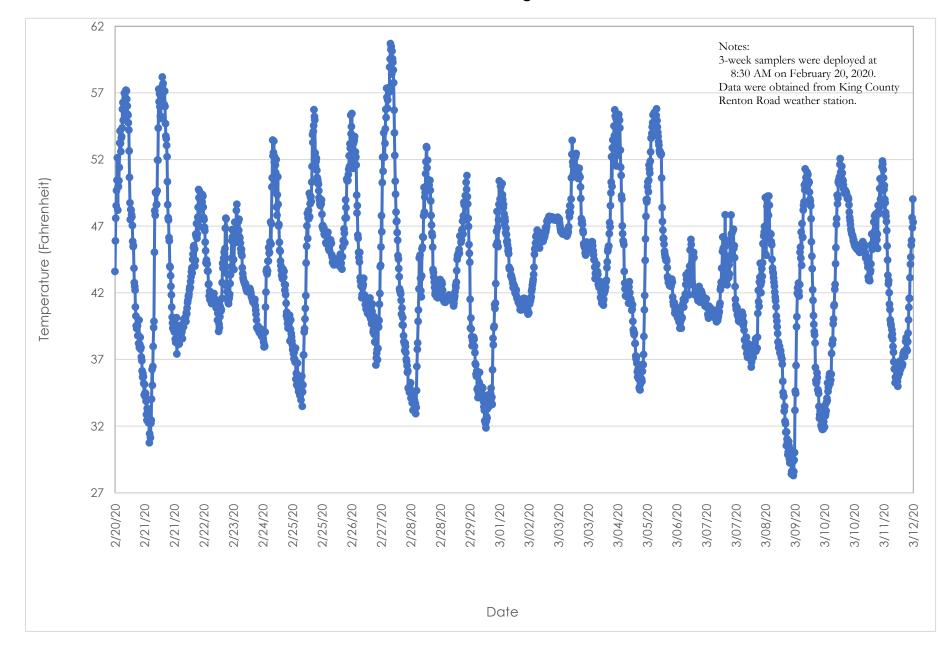

Temperature during 13-Day Vapor Sampling February 1, 2020 to February 13, 2020 Precision Engineering, Inc. Seattle, Washington

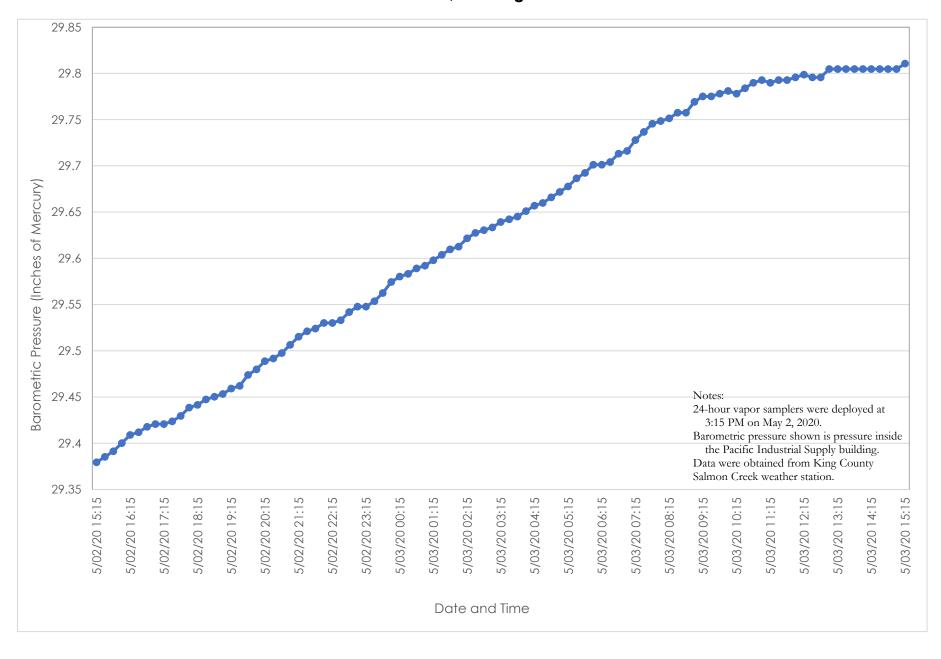

Barometric Pressure during 8-Hour Vapor Sampling February 11, 2020 Precision Engineering, Inc. Seattle, Washington

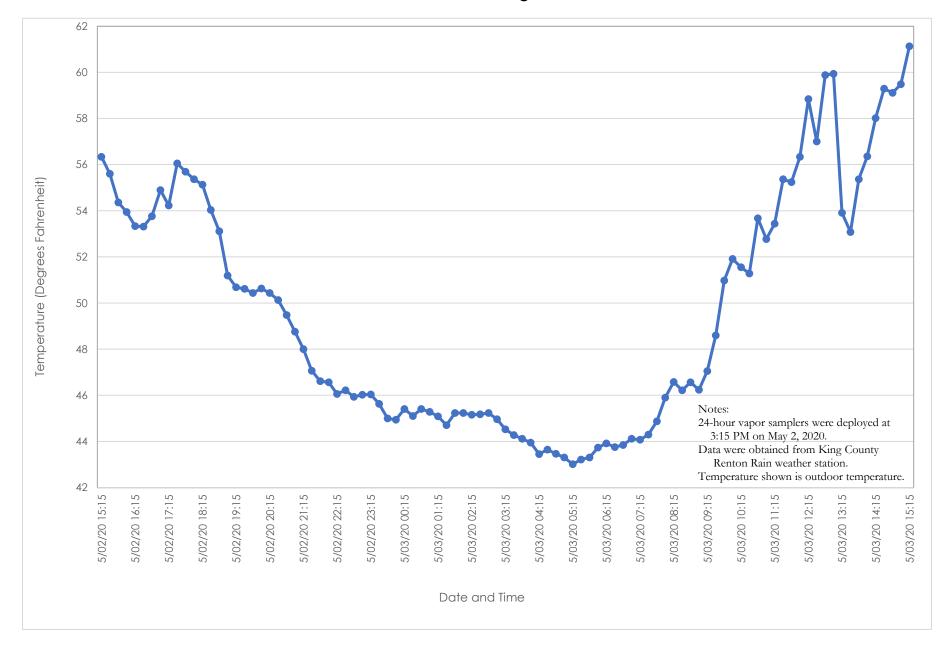

Temperature during 8-Hour Vapor Sampling February 11, 2020 Precision Engineering, Inc. Seattle, Washington

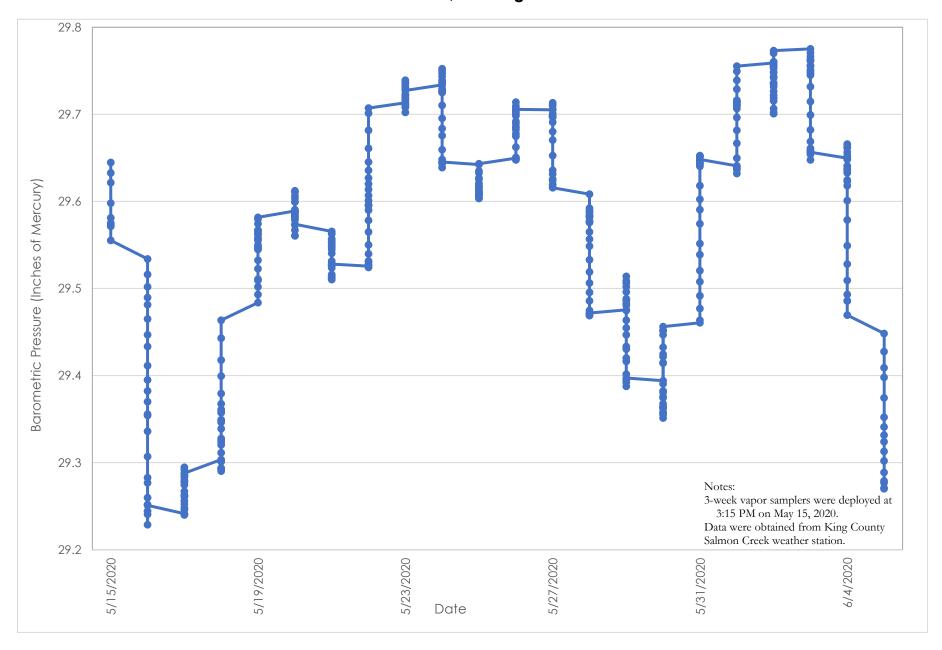

Barometric Pressure during 8-Hour Vapor Sampling February 20, 2020 Precision Engineering, Inc. Seattle, Washington

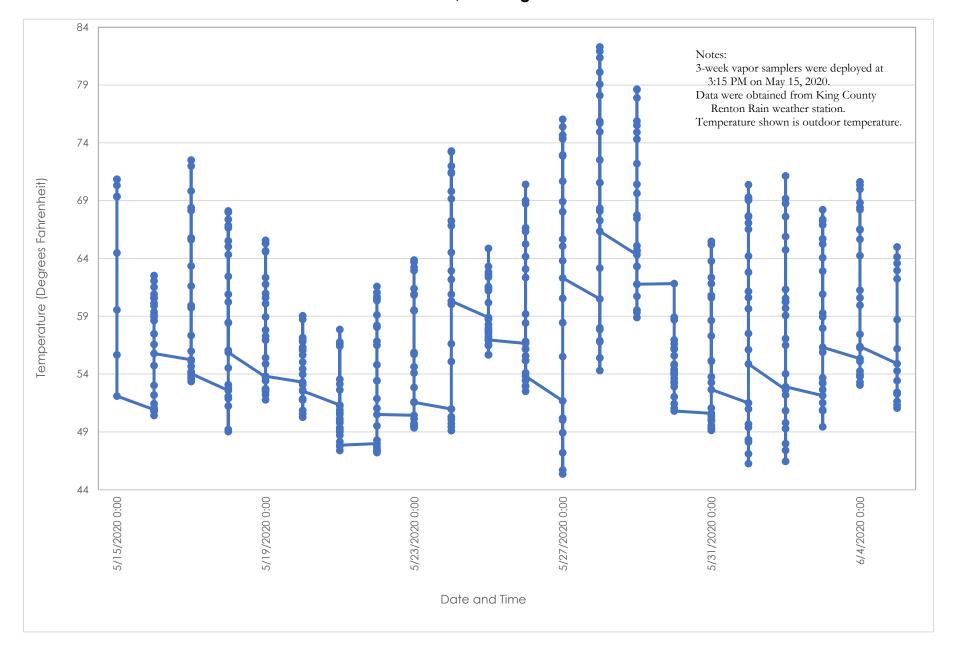

Temperature during 8-Hour Vapor Sampling February 20, 2020 Precision Engineering, Inc. Seattle, Washington


Wind Speed during 8-Hour Vapor Sampling February 20, 2020 Precision Engineering, Inc. Seattle, Washington


Barometric Pressure during 3-Week Vapor Sampling February 20, 2020 to March 12, 2020 Precision Engineering, Inc. Seattle, Washington


Temperature during 3-Week Vapor Sampling February 20, 2020 to March 12, 2020 Precision Engineering, Inc. Seattle, Washington


Barometric Pressure during 24-Hour Vapor Sampling May 2, 2020 to May 3, 2020 Precision Engineering, Inc. Seattle, Washington


Temperature during 24-Hour Vapor Sampling May 2, 2020 to May 3, 2020 Precision Engineering, Inc. Seattle, Washington

Barometric Pressure during 3-Week Vapor Sampling May 15, 2020 to June 5, 2020 Precision Engineering, Inc. Seattle, Washington

Temperature during 3-Week Vapor Sampling May 15, 2020 to June 5, 2020 Precision Engineering, Inc. Seattle, Washington

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included is the amended report from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. Per your request, sample IDs were amended.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Calu

Michael Erdahl Project Manager

Enclosures MFA0206R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. There are 23 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0206R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 2, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.02, F&BI 002001 project. Samples were logged in under the laboratory ID's listed below.

<u>Maul Foster Alongi</u>
A10
A9
A8
A11
IA8-020120
IA10
IA9
IA11
IA12
IA13
IA14
IA15
AA1
AA2
AA3
AA4
AA5

The trichloroethene concentration in samples IA8-020120, IA10, IA9, IA11, IA12, IA13, and IA15 exceeded the calibration range of the instrument. The data were flagged accordingly. The overrange samples will be diluted and reanalyzed and the results issued in a separate report.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	A10 02/02/20 02/01/20 02/04/20 Air ug/m3)	Clien Proje Lab 1 Data Instr Oper	ct: D: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-01 1/44 020337.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% Recovery: 89	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<11	<4.4		
Chloroethane		<120	<44		
1,1-Dichloroethene		<17	<4.4		
trans-1,2-Dichloroe	thene	<17	<4.4		
1,1-Dichloroethane		<18	<4.4		
cis-1,2-Dichloroethe		40	10		
1,2-Dichloroethane	(EDC)	<1.8	< 0.44		
Trichloroethene		29	5.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	A9 02/02/20 02/01/20 02/04/20 Air ug/m3	20Project:'20Lab ID:'20Data File:Instrument:		ct: D: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-02 1/16 020336.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% overy: 102	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	tration ppbv		
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane T,2-Dichloroethane Trichloroethene	ene	$\begin{array}{c} <4.1 \\ <42 \\ <6.3 \\ <6.3 \\ <6.5 \\ 21 \\ <0.65 \\ 1,100 \end{array}$	<1.6 <16 <1.6 <1.6 <1.6 5.3 <0.16 210		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	A8 02/02/20 02/01/20 02/04/20 Air ug/m3	P L D Ir	lient: roject: ab ID: ata File: astrument: perator:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-03 1/8.2 020335.D GCMS7 bat
~		% Lowe	- 1. 1	
Surrogates:	Recove	•		
4-Bromofluorobenze	ene l	07 7) 130	
Compounds:	Con ug/r	centration n3 ppb [.]	V	
Vinyl chloride	<2	2.1 <0.8	2	
Chloroethane	<	22 <8.2	2	
1,1-Dichloroethene	<:	8.3 < 0.82	2	
trans-1,2-Dichloroe	thene <:	8.3 < 0.82	2	
1,1-Dichloroethane	<:	3.3 <0.8	2	
cis-1,2-Dichloroethe	ene <	8.3 <0.8	2	
1,2-Dichloroethane	(EDC) <0.	33 <0.08	2	
Trichloroethene	1	60 29	Э	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	A11 02/02/20 02/01/20 02/04/20 Air ug/m3		Lab Dat Inst	ent: ject:) ID: :a File: trument: erator:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-04 1/8.2 020333.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	covery:	Limit:	Limit:	
4-Bromofluorobenz	ene	90	70	130	
Compounds:		Concentug/m3	tration ppbv		
Vinyl chloride		<2.1	< 0.82		
Chloroethane		<22	<8.2		
1,1-Dichloroethene		<3.3	< 0.82		
trans-1,2-Dichloroe		<3.3	< 0.82		
1,1-Dichloroethane		14	3.4		
cis-1,2-Dichloroeth	ene	<3.3	< 0.82		
1,2-Dichloroethane	(EDC)	< 0.33	< 0.082		
Trichloroethene		82	15		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA8-020120 02/02/20 02/01/20 02/03/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-05 020320.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concer ug/m3	ntration ppbv		
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Trichloroethene	ene <0.4 <0.4 <0.4	<1 <0.1 <0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA10 02/02/20 02/01/20 02/04/20 Air ug/m3	20Project:'20Lab ID:'20Data File:Instrument:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-06 020321.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	9 Recovery ene 8	: Limit:	Upper Limit: 130	
Compounds:	Conce ug/m	entration 3 ppbv		
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Trichloroethene	ethene <0.	$\begin{array}{cccc} 3 & <1 \\ 4 & <0.1 \\ 4 & <0.1 \\ 4 & <0.1 \\ 4 & <0.1 \\ 4 & <0.1 \\ 0 & 0.022 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA9 02/02/20 02/01/20 02/04/20 Air ug/m3		Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-07 020322.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% ecovery: 78	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.085	0.021		
Trichloroethene		250 ve	$47 \mathrm{ve}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA11 02/02/2 02/01/2 02/04/2 Air ug/m3	0	Instr	ect:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-08 020323.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	95	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.097	0.024		
Trichloroethene		140 ve	26 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA12 02/02/20 02/01/20 02/04/20 Air ug/m3	/20Project:/20Lab ID:/20Data File:Instrument:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-09 020324.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery ene 99	Limit:	Upper Limit: 130	
Compounds:	Conce ug/m3	ntration ppbv		
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Trichloroethene	ethene <0.4	<1 <0.1 <0.1 <0.1 <0.1 <0.1 0.023		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA13 02/02/20 02/01/20 02/04/20 Air ug/m3		Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-10 020325.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% covery: 88	Lower Limit: 70	Upper Limit: 130	
		Concent			
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth		< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.089	0.022		
Trichloroethene		180 ve	34 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA14 02/02/20 02/01/20 02/04/20 Air ug/m3	92/02/20 92/01/20 92/04/20 Air		t: ct: D: File: ument: ator:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-11 020326.D GCMS7 bat
Surrogates:	Re	% covery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenzene		91	70	130	
		Concent			
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroethene		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethene		< 0.4	< 0.1		
1,2-Dichloroethane		0.085	0.021		
Trichloroethene	. /	110	21		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA15 02/02/20 02/01/20 02/04/20 Air ug/m3	Inst	ect:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-12 020327.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery ene 102	Limit:	Upper Limit: 130	
Compounds:	Conce ug/m3	ntration ppbv		
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroeth 1,2-Dichloroethane Trichloroethene	ene <0.4	<1 <0.1 <0.1 <0.1 <0.1 0.023		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	AA1 02/02/20 02/01/20 02/04/20 Air ug/m3)	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-13 020328.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	105	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroethene		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	0.065	0.016		
Trichloroethene		< 0.16	< 0.03		

ENVIRONMENTAL CHEMISTS

0/ I amon II.	Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	
% Lower Upper		
Surrogates: Recovery: Limit: Limit:	Surrogates:	
4-Bromofluorobenzene 99 70 130	4-Bromofluorobenz	
Concentration		
Compounds: ug/m3 ppbv	Compounds:	
Vinyl chloride <0.26 <0.1	Vinyl chloride	
Chloroethane <2.6 <1	Chloroethane	
1,1-Dichloroethene <0.4 <0.1	1,1-Dichloroethene	
trans-1,2-Dichloroethene <0.4 <0.1	trans-1,2-Dichloroethene	
1,1-Dichloroethane <0.4 <0.1		
cis-1,2-Dichloroethene <0.4 <0.1	cis-1,2-Dichloroeth	
1,2-Dichloroethane (EDC) 0.065 0.016	1,2-Dichloroethane	
Trichloroethene <0.16 <0.03	· ·	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	AA3 02/02/2 02/01/2 02/04/2 Air ug/m3	0	Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-15 1/1.6 020330.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	109	70	130	
Compounds:		Concent ug/m3	cration ppbv		
Vinyl chloride		< 0.41	< 0.16		
Chloroethane		<4.2	<1.6		
1,1-Dichloroethene		< 0.63	< 0.16		
trans-1,2-Dichloroethene		< 0.63	< 0.16		
1,1-Dichloroethane		< 0.65	< 0.16		
cis-1,2-Dichloroeth	ene	< 0.63	< 0.16		
1,2-Dichloroethane	(EDC)	0.065	0.016		
Trichloroethene		< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Date Received: Date Collected: Date Analyzed: Matrix:	AA4 02/02/20 02/01/20 02/04/20 Air ug/m3	Lab Dat Inst	ent: ject: o ID: ca File: trument: erator:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-16 020331.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenzei	ne 93	70	130	
	Concer	ntration		
Compounds:	ug/m3	ppbv		
Vinyl chloride	< 0.26	< 0.1		
Chloroethane	<2.6	<1		
1,1-Dichloroethene	< 0.4	< 0.1		
trans-1,2-Dichloroetl	hene <0.4	< 0.1		
1,1-Dichloroethane	< 0.4	< 0.1		
cis-1,2-Dichloroether	ne <0.4	< 0.1		
1,2-Dichloroethane (EDC) 0.065	0.016		
Trichloroethene	< 0.16	< 0.03		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	AA5 02/02/2 02/01/2 02/04/2 Air ug/m3	0		ect: ID: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-17 020332.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	100	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroethene		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane		0.065	0.016		
Trichloroethene	` '	< 0.16	< 0.03		
Trichloroethene		<0.16	<0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not Ap			ect: ID: File: ument:	Maul Foster Alongi Precision Engineering 1803.01.02 00-0297 mb 020319.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	102	70	130	
		Concent	cration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroethene		< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
Trichloroethene		< 0.16	< 0.03		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20 Project: Precision Engineering 1803.01.02, F&BI 002001 Date Extracted: 02/05/20 Date Analyzed: 02/05/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

< 0.6

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
A10 002001-01	<0.6
A9 002001-02	<0.6
A8 002001-03	<0.6
A11 002001-04	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20 Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	tion bample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ppbv	5	80	70-130
Chloroethane	ppbv	5	83	70-130
1,1-Dichloroethene	ppbv	5	85	70-130
trans-1,2-Dichloroethene	ppbv	5	82	70-130
1,1-Dichloroethane	ppbv	5	78	70-130
cis-1,2-Dichloroethene	ppbv	5	83	70-130
1,2-Dichloroethane (EDC)	ppbv	5	80	70-130
Trichloroethene	ppbv	5	81	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20 Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 002001-04 (Duplicate)								
	Sample	Duplicate	Relative					
Analyte	Result	Result	Percent	Acceptance				
	(%)	(%)	Difference	Criteria				
Helium	<0.6	<0.6	nm	0-20				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$DD_{2}OD($ SAMITLE CHAIN OF COSTODI ME $D2 - 02 - 20$	÷ ,
Report To Heather Good SAMPLERS (signature)	of 3 ROUND TIME
CompanyMaul Foster & AlongiPROJECT NAMEPO # 1803.01.02• Standard • RUSH Rush chargesAddress1329 N. State Street, Suite 301Precision Engineering1803.01.02• RUSH 	3 DAY authorized by:
City, State, ZIP Bellingham, WA 98225 REPORTING LEVEL INVOICE TO accounting@ • Dispose after Phone (360) 594-6268 Email hgood@maulfoster.com • Indoor Air • Deep Soil Gas • Maulfoster.com • Archive Sam	
ANALYSIS REQUESTED Analysis Analysis	weived at 17 °C
A10 01 2299 12 2/1/20 -30 1128 -5 1135 X X X Subslab	
A9 02 2304 18 2/1/20 -30 1208 -5 1214 X X Subslab	
A8 073 3230 111 2/1/20 -30 1336 -5 1312 🗙 🗶 🗙 Subslab	
A12 AIL 04 2434 17 2/1/20 -30 1306 -5 1312 X X X Subslab	
	LED IASOZOIZO TB
IA10 06 20550 NA 2/1/20 -29 1548 1548 X X X Indoorair	
IA9 67 21453 NA 2/1/20 -30 1551 -8 1551 × × ボ Indoor air	/
IA11 08 20549 NA 2/1/20 -29 1554 -0 1547 XX J Indoor air in Can)	essure absenced sper of 1547

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1742
Seattle, WA 98119-2029	Received by:	FRICIARMES	FOB	2/2/20	1742
Ph. (206) 285-8282	Relinquished by:	1 - recar		1	PT
Fax (206) 283-5044	Received by:				

.

FORMS\COC\COCTO-15.DOC

002001				SAMP	LE CH	HAIN (OF CL	JSTO	DY		ME		02-02-20
Report To Heather Goo	đ			SAM	PLERS	(signatu	re)			ullulu			Rage # 2 of 3
Company Maul Foster & Address 1329 N. State	& Alongi	ite 301			JECT N. ision Er		ng		-	18	P 03.01	0 # .02	TURNAROUND TIME • Standard • RUSH3 DAY Rush charges authorized by:
City, State, ZIP <u>Bellingh</u> Phone <u>(</u> 360) 594-6268			ster.com	• Ind	ORTING oor Air Slab/So		• Deep S • SVE/			acc	INVO counti ulfosi	ing@	• Dispose after 30 days
	·····	1	1	1	T	1	1		AN	ALVS	SIS RI		ESTED
Sample Name	Lab ID	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press. (Hg)	Field Initial Time		Field Fina Time	TO-15 Modified SIM	1CE by Mod. 1U-17	TO-15 eVOCs	He by ASTM D-1946	#TCENby TOIS per HG only - per HG- Eleleno Notes
IA12	09	18564	NA	2/1/20	-29	1556	-6	1556		X	(Indoor air
IA13	10	20546	NA	2/1/20	-30	1557	-7	155	X	X		1	Indoor air
IA14	11	18571	NA	2/1/20	-30	1559	-7	1559	X	X			Indoor air
IA15	12	20545	NA	2/1/20	-30	1605	-9	1405	X	X		Ī	Indoor air
AA1	13	18569	NA	2/1/20	-30	1630	-6	1630	X	X		1	Outdoor air
AA2	14	18580	NA	2/1/20	-30	1641	-5	16H	X	X	0		Outdoor air
443	15	20552	NA	2/1/20	-30	1640		1640	X	X	1212		Outdoor air
A A4	16	18579	NA	2/1/20	-30	1637	-7	1637	X	V	3		Outdoor air

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1747
Seattle, WA 98119-2029	Received by:	ERICIA	~ `~	11	1242
Ph. (206) 285-8282	Relinquished by:		- tek	-2/2/20	1792
Fax (206) 283-5044	Received by:				
	L] [

FORMS\COC\COCTO-15.DOC

002001				OHMET	ur ur		F UU	910I	JI			лЛ С	E 02-02-20
Report To Heather Good				SAMI	PLERS (signatur	e)					<u>,,,,,,</u>	TURNAROUND TIME
Company Maul Foster & Ald	ongi	· · · ·		1	ECT NA	ME gineerin	α			180	P(3.01.		Standard RUSH 3 DAY
Address 1329 N. State Stre	et, Sui	te 301				g	9				0.01.	011	Rush charges authorized by:
City, State, ZIP Bellingham,	WA 9	8225		REPO	RTING	LEVEL					VVOI Suntir		O SAMPLE DISPOSAL • Dispose after 30 days
Phone (360) 594-6268 _{Ema}	ail_hgod	od@maulfo	ster.com		or Air Slab/Soi		Deep So • SVE/C			mau	lfoste	er.cor	
					·····	1			ANA	TARI	IS RE		STED
Sample Name	Lab	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press. (Hg)	Field Initial Time	Field Final Press. (Hg)	Field Final Time	TO-15 Modified SIM Full Scan*	TCE by Mod. TO-17	TO-15 ¢VOCs	He by ASTM D-1946	Notes
AA5	17	20547	NA	2/1/20	-30	1632	-6	1632		Ж	3	· · ·	Outdoor air
											22		
										Ę	5		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1742
Seattle, WA 98119-2029	Received by:	ERC IDUATIO	TZB	2/2/2	1702
Ph. (206) 285-8282	Relinquished by:	- Carter			
Fax (206) 283-5044	Received by:				

FORMS\COC\COCTO-15.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the additional results from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: jwetmore@maulfoster.com MFA0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 2, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.02, F&BI 002001 project. Samples were logged in under the laboratory ID's listed below.

<u>Maul Foster Alongi</u>
A10
A9
A8
A11
IA8-020120
IA10
IA9
IA11
IA12
IA13
IA14
IA15
AA1
AA2
AA3
AA4
AA5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA8-020120 02/02/20 02/01/20 02/11/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-05 1/10 021030.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 103	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	270	51		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA10 02/02/20 02/01/20 02/11/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-06 1/10 021031.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 101	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	340	62		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA9 02/02/20 02/01/20 02/11/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering 1803.01.02 002001-07 1/10 021032.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 100	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	330	61		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA11 02/02/20 02/01/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-08 1/10 021033.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concer ug/m3	tration ppbv		
Trichloroethene	170	32		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA12 02/02/20 02/01/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-09 1/10 021034.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	200	37		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA13 02/02/20 02/01/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-10 1/10 021035.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	210	39		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA15 02/02/20 02/01/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 002001-12 1/10 021036.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 87	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	170	32		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/10/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering 1803.01.02 00-0332 mb 021018.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	cration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/02/20 Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	ppbv	5	86	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$DD_{2}OD($ SAMITLE CHAIN OF COSTODI ME $D2 - 02 - 20$	÷ ,
Report To Heather Good SAMPLERS (signature)	of 3 ROUND TIME
CompanyMaul Foster & AlongiPROJECT NAMEPO # 1803.01.02• Standard • RUSH Rush chargesAddress1329 N. State Street, Suite 301Precision Engineering1803.01.02• RUSH 	3 DAY authorized by:
City, State, ZIP Bellingham, WA 98225 REPORTING LEVEL INVOICE TO accounting@ • Dispose after Phone (360) 594-6268 Email hgood@maulfoster.com • Indoor Air • Deep Soil Gas • Maulfoster.com • Archive Sam	
ANALYSIS REQUESTED Analysis Analysis	weived at 17 °C
A10 01 2299 12 2/1/20 -30 1128 -5 1135 X X X Subslab	
A9 02 2304 18 2/1/20 -30 1208 -5 1214 X X Subslab	
A8 073 3230 111 2/1/20 -30 1336 -5 1312 🗙 🗶 🗙 Subslab	
A12 AIL 04 2434 17 2/1/20 -30 1306 -5 1312 X X X Subslab	
	LED IASOZOIZO TB
IA10 06 20550 NA 2/1/20 -29 1548 1548 X X X Indoorair	
IA9 67 21453 NA 2/1/20 -30 1551 -8 1551 × × ボ Indoor air	/
IA11 08 20549 NA 2/1/20 -29 1554 -0 1547 XX J Indoor air in Can)	essure absenced sper of 1547

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1742
Seattle, WA 98119-2029	Received by:	FRICIARMES	FOB	2/2/20	1742
Ph. (206) 285-8282	Relinquished by:	1 - recar		1	PT
Fax (206) 283-5044	Received by:				

.

FORMS\COC\COCTO-15.DOC

002001				SAMP	LE CH	HAIN (OF CL	JSTO	DY		ME		02-02-20
Report To Heather Goo	đ			SAM	SAMPLERS (signature)					ullulu			Rage # 2 of 3
Company Maul Foster & Address 1329 N. State	& Alongi	ite 301			JECT N. ision Er		ng		-	18	P 03.01	0 # .02	TURNAROUND TIME • Standard • RUSH3 DAY Rush charges authorized by:
City, State, ZIP <u>Bellingh</u> Phone <u>(</u> 360) 594-6268			ster.com	• Ind	ORTING oor Air Slab/So		• Deep S • SVE/			acc	INVO counti ulfosi	ing@	• Dispose after 30 days
	·····	1	1	1	T	1	1		AN	ALVS	SIS RI		ESTED
Sample Name	Lab ID	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press.	Field Initial Time		Field Fina Time	TO-15 Modified SIM	1CE by Mod. 1U-17	TO-15 eVOCs	He by ASTM D-1946	#TCENby TOIS per HG only - per HG- Eleleno Notes
IA12	09	18564	NA	2/1/20	-29	1556	-6	1556		X	(Indoor air
IA13	10	20546	NA	2/1/20	-30	1557	-7	155	X	X		1	Indoor air
IA14	11	18571	NA	2/1/20	-30	1559	-7	1559	X	X			Indoor air
IA15	12	20545	NA	2/1/20	-30	1605	-9	1405	X	X		Ī	Indoor air
AA1	13	18569	NA	2/1/20	-30	1630	-6	1630	X	X		1	Outdoor air
AA2	14	18580	NA	2/1/20	-30	1641	-5	ĭ641	X	X	0		Outdoor air
443	15	20552	NA	2/1/20	-30	1640		1640	X	X	1212		Outdoor air
A A4	16	18579	NA	2/1/20	-30	1637	-7	1637	X	V	3		Outdoor air

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1747
Seattle, WA 98119-2029	Received by:	ERICIA	~ `~	11	1242
Ph. (206) 285-8282	Relinquished by:		- tek	-2/2/20	1792
Fax (206) 283-5044	Received by:				
	L] [

FORMS\COC\COCTO-15.DOC

002001				OHMET	ur ur		F UU	910I	JI			лЛ С	E 02-02-20
Report To Heather Good				SAMI	PLERS (signatur	e)						TURNAROUND TIME
Company Maul Foster & Ald	ongi	· · · ·		1	ECT NA	ME gineerin	α			180	P(3.01.		Standard RUSH 3 DAY
Address 1329 N. State Stre	et, Sui	te 301				g	9				0.01.	011	Rush charges authorized by:
City, State, ZIP Bellingham,	WA 9	8225		REPO	RTING	LEVEL					VVOI Suntir		O SAMPLE DISPOSAL • Dispose after 30 days
Phone (360) 594-6268 _{Ema}	ail_hgod	od@maulfo	ster.com		or Air Slab/Soi		Deep So • SVE/C			mau	lfoste	er.cor	
					·····	1			ANA	TARI	IS RE		STED
Sample Name	Lab	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press. (Hg)	Field Initial Time	Field Final Press. (Hg)	Field Final Time	TO-15 Modified SIM Full Scan*	TCE by Mod. TO-17	TO-15 ¢VOCs	He by ASTM D-1946	Notes
AA5	17	20547	NA	2/1/20	-30	1632	-6	1632		Ж	3	· · ·	Outdoor air
											22		
										Ę	5		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelyn Lundeen	MFA	2/2/20	1742
Seattle, WA 98119-2029	Received by:	ERC IDUATIO	TZB	2/2/2	1702
Ph. (206) 285-8282	Relinquished by:	- Carter			
Fax (206) 283-5044	Received by:				

FORMS\COC\COCTO-15.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 11, 2020 from the Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. There are 12 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 11, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
002154 -01	IA16
002154 -02	IA17
002154 -03	IA18
002154 -04	IA19
002154 -05	IA20
002154 -06	EvapPit-W-021120

The NWTPH-Dx and metals requested for sample EvapPit-W-021120 will be sent as an additional report.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EvapPit-W- 02/11/20 02/12/20 02/12/20 Water ug/L (ppb)	021120	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi 1803.01.02, F&BI 002154 002154-06 1/10 021218.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	57	121
Toluene-d8		96	63	127
4-Bromofluorobenz	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Trichloroethene		1.4		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/12/20 02/12/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi 1803.01.02, F&BI 002154 00-334 mb 021217.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		94	63	127
4-Bromofluorobenz	ene	92	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Trichloroethene		< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA16 02/11/20 02/11/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi 1803.01.02, F&BI 002154 002154-01 021111.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	tration ppbv			
Trichloroethene	2.8	0.52		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA17 02/11/20 02/11/20 02/11/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi 1803.01.02, F&BI 002154 002154-02 021112.D GCMS7 bat
	%	Lower	Upper	
Surrogates:Recovery:4-Bromofluorobenzene82		Limit: 70	Limit: 130	
Compounds:	tration ppbv			
Trichloroethene	93	17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA18 02/11/20 02/11/20 02/12/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Maul Foster Alongi 1803.01.02, F&BI 002154 002154-03 021113.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 79	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Trichloroethene	45	8.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA19 02/11/20 02/11/20 02/12/20 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Maul Foster Alongi 1803.01.02, F&BI 002154 002154-04 021114.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	tration ppbv			
Trichloroethene	110	21		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA20 02/11/20 02/11/20 02/12/20 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Maul Foster Alongi 1803.01.02, F&BI 002154 002154-05 1/1.4 021115.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 78	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Trichloroethene	73	14		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/11/20 02/11/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: iment:	Maul Foster Alongi 1803.01.02, F&BI 002154 00-0337 mb 021110.D GCMS7 bat
Surrogates: 4-Bromofluoroben	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Concent Compounds: ug/m3		tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/11/20 Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 002158-01 (Matrix Spike)

	(Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	\mathbf{MS}	Criteria
Trichloroethene	ug/L (ppb)	50	<1	105	66-135

Laboratory Code: Laboratory Control Sample

····· ···· ···· ···· ···· ···· ···· ····	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Trichloroethene	ug/L (ppb)	50	100	103	79-113	3

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/11/20 Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	ppbv	5	84	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		- 3 			- 1			ł				Ϋ́,			1. 1072 -	1 v 4
002154				SAMP	LE CH	IAIN C	FÇU	STOI)Y	ר			<u>IS</u>		WI/AIZ	e) zh
Report To Heather (2000			SAMI	PLERS	signatur	re)	J	11ac	<u> </u>		-	42	Page #_	$\underline{\mathcal{I}}_{of}$	2/21/2 (2)
Company Maul Fort				PROJ	ECT NA	ME			<u> </u>		PC	\ #			IAROUND TIM	
		\sim		1			ern	Ø		10.7			110	RUSH	as fast as pos	{
Address 1329 N Sta				<u></u>	sper (Engin	ert -)		1803	.07.	02	R	ush charge	es authorized by	:
City, State, ZIP_Belling ho	m 1	NA 982	25	REPO	RTING	LEVEL						CET	- 11		PLE DISPOSAL	1
Phone 360-927-1309 Em		and because in against			or Air Slab/Soi		Deep So			acca maul	nter focto	161		Dispose a Archive S	fter 30 days amples	ala in galang pang kanalan sa sa sa
	0	0			5140/50	uoas	• SVE/C	rab	l.		·····			Other		
		T		Τ	1		<u> </u>	T	ANA	LISE	<u>s re</u>	<u>QUE</u>	STED			1
									can	NN NN	Cs					÷
					Field		10.11		r0-15 Full Scan	TO-15 BTEXN	cVOCs	175				
	、 、		Flow		Initial	Field	Field Final	Field	15 F	-15]	TO-15	ŝ		÷,		
Sample Name	Lab ID	Canister ID	Contr. ID	Date Sampled	Press. (Hg)	Initial Time	Press.	Final	β	2	TO TO	10-		*, \		
IAIU	01	20552	l .	2/11/20		8:51	(Hg).	Time				X	<u>. 19 - 10 -</u>	N	otes	
IA17	02	23234	06605			8:58	-9	1658				$\frac{1}{\sqrt{2}}$				
IA18												X		-		
	03	23235		4/11/20		9:07	-6	1707				X				
IA19	04	20547	05354	2/11/20		9:15	-6	17)0				Ϋ́.				
1A20	05	18568	06606	2/11/20	X	9:30	-12	1730				$\overline{\mathbf{V}}$				
·.								- 🗸				\sim			· · · ·	
													_		10	
				· · · ·							\$	amp	les rece	ived at	<u>19_0C</u>	
- 								<u> </u>					,	÷ 1		

Friedman & Bruya, Inc. 3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282
Fax (206) 283-5044
FORMS\COC\COCTO-15.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Erelyn undern	MEA	2/11/20	
	B= Bisleng TAPBE	FBI	-11/10	1000
Relinquished by: L	E (Plan C Pris-			*
Received by:			**	
· · · · · · · · · · · · · · · · · · ·				

002154		,	CAMDT D	CULAIN		TTC		111	r				۰. ۲				6	1 3/	1 20
II b	· ·				E CHAIN OF CUSTODY ERS (signatyre) ME 02/			2/	11/2					age #	X2 of	2/12	20		
Report To Heather	600d	•	1 1	daytin				-	- 11120						$\frac{(Np)^{2}}{12/20}$ $\frac{\chi^{2}_{of} 2}{TURNAROUND TIME VW}$				
Common Maul Fas	ter Alana	N	PROJE	PROJECT NAME			PO #					111	$ \cup$ Standard turnaround $$						
Company Maul Foster Alongi Address 1329 N State St. #301			Precis	sion eng	meer	3		180	03.	01.	02	,			XRUSH <u>Sec Adrs by</u> Rush charges authorized by:				12
City, State, ZIP_Belline			REMAR	KS				0,0		NVO			-1		SAMPLE DISPOSAL				
	/							ace	,00M	ingl	9 W V	2440	stu.i] Oth		ampies		
Phone <u>360-927-1309</u> En	hall hydrod ar high	witosta con	Project s	<u>specific RL</u>	<u>s? - Ye</u>	es /	No								Defau	lt: D	ispose after	<u>: 30 days</u>	
	" ·								A	NAI	LYSE	ES RI	EQU	ESTE	ED]
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	TCE EPAS260D	total chromiun EPA 60208	, avsenic EPA 1020 B		Not		
EVAP PIT-W -021120) 06A-E	2/11/2020	1015	W	5	Х							\times	$\left \right\rangle$	Х	TCE analysis is needed on the			
		,				·											fastest +		
				1													- CUVSONIC,	total	
· · · · · · · · · · · · · · · · · · ·					4										,		Chromium NWTPH-C	and >> vesult	
· · · · · · · · · · · · · · · · · · ·								╞──┟──┟──┟──┟			<u> </u>	Can be an standard							
																1	travour	đ	
			-	-														×	
																		·····	
												Sam	กไคร	rec	eive	d at	<u>3</u> °C		
										-				3 •					
																,			
· · · · · · · · · · · · · · · · · · ·		I								l									
		INATURE			PRIN	TN	AMI	E				C	COM	PAN	Y		DATE	TIME	
Friedman & Bruya, Inc.	Relinquished by:	$\sim \mathcal{Z}$		Even	An L	JUN	de	En	,		٨	JF					2/11/20	1808	
3012 16th Avenue West	Received by:	357	2	BISRAT TADESSE				FBI					J.	\downarrow					
Seattle, WA 98119-2029 Relinquished by:			TELEVIT INVESSE 7				نا					· · · · · · · · · · · · · · · · · · ·	- T						
Ph. (206) 285-8282	Received by:	•														*			

·

¥.,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 19, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the additional results from the testing of material submitted on February 11, 2020 from the Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0219R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 11, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
002154 -01	IA16
002154 -02	IA17
002154 -03	IA18
002154 -04	IA19
002154 -05	IA20
002154 -06	EvapPit-W-021120

The arsenic concentration in sample EvapPit-W-021120 was reported between the method detection limit and the standard reporting limit. The sample could not be analyzed at a greater concentration due to matrix interferences.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20 Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 Date Extracted: 02/12/20 Date Analyzed: 02/12/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
EvapPit-W-021120 002154-06	3,900 x	2,500 x	68
Method Blank 00-365 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	EvapPit-W-021120	Client:	Maul Foster Alongi
Date Received:	02/11/20	Project:	1803.01.02, F&BI 002154
Date Extracted:	02/18/20	Lab ID:	002154-06 x40
Date Analyzed:	02/18/20	Data File:	002154-06 x40.052
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) 6.08 j		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	EvapPit-W-021120	Client:	Maul Foster Alongi
Date Received:	02/11/20	Project:	1803.01.02, F&BI 002154
Date Extracted:	02/18/20	Lab ID:	002154-06 x2000
Date Analyzed:	02/18/20	Data File:	002154-06 x2000.049
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) 994,000		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 02/18/20 02/18/20 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi 1803.01.02, F&BI 002154 I0-097 mb I0-097 mb.033 ICPMS2 SP
Analyte:	Co	ncentration 1g/L (ppb)		
Arsenic Chromium		<0.12 j <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20 Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	96	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20 Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Co	de: 002219-01 ((Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic Chromium	ug/L (ppb) ug/L (ppb)	$\begin{array}{c} 10\\ 20 \end{array}$	1.60 <1	94 99	93 98	75-125 75-125	1 1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Chromium	ug/L (ppb)	20	101	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		- 3 			- 1			ł				Ϋ́,			1. 1072 -	1 v 4
002154				SAMP	LE CH	IAIN C	FÇU	STOI)Y	ר			<u>IS</u>		WI/AIZ	e) zh
Report To Heather (2000			SAMI	PLERS	signatur	re)	J	11ac	<u> </u>		-	42	Page #_	$\underline{\mathcal{I}}_{of}$	2/21/2 (2)
Company Maul Fort				PROJ	ECT NA	ME			<u> </u>		PC	\ #			IAROUND TIM	
		\sim		1			ern	Ø		10.7			110	RUSH	as fast as pos	{
Address 1329 N Sta				<u></u>	sper (Engin	ert -)		1803	.07.	02	R	ush charge	es authorized by	:
City, State, ZIP_Belling ho	m 1	NA 982	25	REPO	RTING	LEVEL						CET	- 11		PLE DISPOSAL	1
Phone 360-927-1309 Em		and because in against			or Air Slab/Soi		Deep So			acca maul	nter focto	161		Dispose a Archive S	fter 30 days amples	ala in galang pang kanalan sang
	0	0			5140/50	uoas	• SVE/C	rab	l.		·····			Other		
		T		Τ	1		<u> </u>	T	ANA	LISE	<u>s re</u>	<u>QUE</u>	STED			1
									can	NN NN	Cs					÷
					Field		10.11		r0-15 Full Scan	TO-15 BTEXN	cVOCs	175				
	、 、		Flow		Initial	Field	Field Final	Field	15 F	-15]	TO-15	ŝ		÷,		
Sample Name	Lab ID	Canister ID	Contr. ID	Date Sampled	Press. (Hg)	Initial Time	Press.	Final	β	2	TO TO	10-		*, \		
IAIU	01	20552	l .	2/11/20		8:51	(Hg).	Time				X	<u>. 19 - 10 -</u>	N	otes	
IA17	02	23234	06605			8:58	-9	1658				$\frac{1}{\sqrt{2}}$				
IA18												X		-		
	03	23235		4/11/20		9:07	-6	1707				X				
IA19	04	20547	05354	2/11/20		9:15	-6	17)0				Ϋ́.				
1A20	05	18568	06606	2/11/20	X	9:30	-12	1730				$\overline{\mathbf{V}}$				
·.								- 🗸				\sim			· · · ·	
													_		10	
				· · · ·							\$	amp	les rece	ived at	<u>19_0C</u>	
- 								<u> </u>					,	÷ 1		

Friedman & Bruya, Inc. 3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282
Fax (206) 283-5044
FORMS\COC\COCTO-15.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Erelyn undern	MEA	2/11/20	
	B= Bisleng TAPBE	FBI	-11/10	1000
Relinquished by: L	E (Plan C Pris-			*
Received by:			**	
· · · · · · · · · · · · · · · · · · ·				

002154		,	CAMDT D	CULAIN		TTC		111	r				۰. ۲				6	1 3/	1 20	
II b	· ·		SAMPLE SAMPL	ERS (signo			510	Mt Mt	50	2/	11/2					age #		2/12	20	
Report To Heather	600d	•	1 1		An	\sim		-		- (·	10				NP 2/12/20 Page# 12 of 2 TURNAROUND TIME VW/					
Common Maul Faster Alarci		PROJE	CT NAME		·		PO #				111	U Standard turnaround								
Company Maul Foster Alongi Address 1329 N State St. #301			Precis	sion eng	meer	3		180	D3·	01.	02	,			XRUSH <u>Sec notes below</u> A5-2 Rush charges authorized by:				12	
City, State, ZIP_Belline			REMAR	KS				0,0		NVO			-1		SAMPLE DISPOSAL					
	/							ace	,00M	ingl	9 W V	2440	stu.i		□ Other					
Phone <u>360-927-1309</u> En	hall hydrod ar high	witosta con	Project s	<u>specific RL</u>	<u>s? - Ye</u>	es /	No								Defau	lt: D	ispose after	<u>: 30 days</u>		
	" ·								A	NAI	LYSE	ES RI	EQU	ESTE	ED]	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	TCE EPAS260D	total chromiun EPA 60208	, avsenic EPA 1020 B		Not			
EVAP PIT-W -021120) 06A-E	2/11/2020	1015	W	5	Х							\times	$\left \right\rangle$	Х	, ,	TCE analy needed on	sis is		
		,				·											fastest +			
				1													- CUVSONIC,	total		
· · · · · · · · · · · · · · · · · · ·					4										,		Chromium NWTPH-C	and >> vesult		
· · · · · · · · · · · · · · · · · · ·														<u> </u>			Can be do	Standar L		
																1	travour	đ		
			-	-														×		
																		·····		
												Sam	กไคร	rec	eive	d at	<u>3</u> °C			
										-				3 •						
																,				
· · · · · · · · · · · · · · · · · · ·		I								l										
		INATURE			PRIN	TN	AMI	E				C	OM	PAN	Y		DATE	TIME		
Friedman & Bruya, Inc.	Relinquished by:	$\sim \mathcal{Z}$		Even	An L	JUN	de	En	,		٨	JF					2/11/20	1808		
3012 16th Avenue West Received by:		BISRAT TADESSE				FBI				J.	\downarrow									
Seattle, WA 98119-2029	Relinquished by:	t			- / 1	L	<u>. v</u>					ل					· · · · · · · · · · · · · · · · · · ·	- T		
Ph. (206) 285-8282	Received by:	•														*				

·

¥.,

2/19/2020 Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham WA 98225

Project Name: Precision Engineering Project #: 1803.01.02-03 Workorder #: 2002351

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 2/14/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 2002351

Work Order Summary

CLIENT:	Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham, WA 98225	BILL TO:	Accounts Payable Maul Foster and Alongi Inc. 400 E. Mill Plain Blvd Suite 400 Vancouver, WA 98660
DHONE			Valicouver, WA 98000
PHONE:	360-594-6262	P.O. #	
FAX:	360-594-6270	PROJECT #	1803.01.02-03 Precision Engineering
DATE RECEIVED:	02/14/2020	CONTACT:	Kelly Buettner
DATE COMPLETED:	02/19/2020		

FRACTION #	NAME	<u>TEST</u>
01A	RAD1	Passive S.E. RAD130/SKC
02A	RAD2	Passive S.E. RAD130/SKC
03A	RAD3	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

CERTIFIED BY:

Rayes Terd 1 6

Technical Director

DATE: <u>02/19/20</u>

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

🛟 eurofins

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2002351

Four Radiello 130 (Solvent) samples were received on February 14, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 17120 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- C Estimated concentration due to calculated sampling rate
- CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD1

0.40		(ug)	(ug/m3)
0.10	0.085	130	110
Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
0.10	0.085	130	110
Rpt. Limit	Rpt. Limit	Amount	Amount (ug/m3)
0.10	0.085	200	170
	(ug) 0.10 Rpt. Limit (ug)	(ug) (ug/m3) 0.10 0.085 Rpt. Limit Rpt. Limit (ug) (ug/m3)	(ug)(ug/m3)(ug)0.100.085130Rpt. LimitRpt. LimitRpt. Limit(ug)(ug/m3)(ug)

Client Sample ID: Trip Blank

Lab ID#: 2002351-04A

No Detections Were Found.

Air Toxics

Client Sample ID: RAD1 Lab ID#: 2002351-01A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18021722sim 1.00	Date of Collection: 2/13/20 1:50:00 P Date of Analysis: 2/17/20 04:43 PM Date of Extraction: 2/17/20				
				7/20		
Compound	Rpt. Limit Rpt. Limit (ug) (ug/m3)		Amount (ug)	Amount (ug/m3)		
Trichloroethene	0.10	0.085	130	110		

Т

Temperature = 77.0F , duration time = 17095 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Recovery	Method Limits
Toluene-d8	83	70-130

Air Toxics

Client Sample ID: RAD2 Lab ID#: 2002351-02A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18021723sim 1.00	Date of Collection: 2/13/20 2:12:00 I Date of Analysis: 2/17/20 05:08 PM Date of Extraction: 2/17/20		
				7/20
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.085	130	110

Т

Temperature = 77.0F , duration time = 17120 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	. ,	%Recovery	Method Limits
Toluene-d8		83	70-130

Air Toxics

Client Sample ID: RAD3 Lab ID#: 2002351-03A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18021724sim 1.00	Date of Analysis: 2/17/20 05:33 Date of Extraction: 2/17/20		
	Rpt. Limit			7/20 Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	200	170

٦

Temperature = 77.0F , duration time = 17118 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Recovery	Method Limits
Toluene-d8	81	70-130

Air Toxics

Client Sample ID: Trip Blank Lab ID#: 2002351-04A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	18021725sim 1.00	Date of Collection: 2/13/20 Date of Analysis: 2/17/20 05:58 PM		
Compound	Rpt. Limit (ug)	Date of Extraction: 2/17/20 Rpt. Limit Amount Amo (ug/m3) (ug) (ug/r		
Trichloroethene	0.10	0.085	Not Detected	Not Detected

Т

Temperature = 77.0F , duration time = 17120 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	. ,	%Recovery	Method Limits
Toluene-d8		84	70-130

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2002351-05A VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	18021705sim	Date of Collection: NA						
Dil. Factor:	1.00	Date of Analysis: 2/17/20 09:32 AM						
		Date of Extraction: 2/17/20						
Compound	Rpt. Limit	Rpt. Limit	Amount	Amount				
	(ug)	(ug/m3)	(ug)	(ug/m3)				
Trichloroethene	0.10	0.085	Not Detected	Not Detected				

Т

Temperature = 77.0F , duration time = 17120 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	· · ·	%Recovery	Method Limits
Toluene-d8		83	70-130

Client Sample ID: LCS Lab ID#: 2002351-06A VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18021703sim 1.00	Date of Collection: NA Date of Analysis: 2/17/20 08:39 AM Date of Extraction: 2/17/20			
Compound		%Recovery	Method Limits		
Trichloroethene		95	70-130		
Container Type: Radiell	o 130 (Solvent)				
Surrogates		%Recovery	Method Limits		
Toluene-d8		85	70-130		

Air Toxics

Client Sample ID: LCSD Lab ID#: 2002351-06AA VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	18021704sim 1.00	Date of Collection: NA Date of Analysis: 2/17/20 09:07 AM Date of Extraction: 2/17/20				
Compound		%Recovery	Method Limits			
Trichloroethene		94	70-130			
Container Type: Radiel	lo 130 (Solvent)					
Surrogates		%Recovery	Method Limits			
Toluene-d8		84	70-130			

🔹 eurofins

Air Toxics

Passive Sorbent Chain of Custody

Page /_of_/

Case Seal #:

2002351

WO#:

Comr	Company: Maul Fostor Alengi Project #: 1803,01,02-03P.0.# Sample Matrix (check Reporting Units (circle) Turn Around Time:											
	- unit	STON ALONGI	FI0Ject #	02,01,02-0	9.0.#			on I I	e)		(circle)	Turn Around Time:
Projec	t Manager: <u>Heat</u>	ner Good	Project Name	: <u>treci</u>	ision En	gineering	۲.		torin		ppbv (ug/m3)	Normal
Conta	ct phone/email: 360	594.6268		Heath	er Goal/m	Schnel Tarbert	door		Moni		ppmv mg/m3	Rush 3 Day
Lab	Sample	Sampler ID	Date of Deployment	Time of Deployment	Date of	Time of	A M	as	lace		ug ng	Specify I
ID	Identification		(mm/dd/yy)	(hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indooryoutdoor	Soil Gas	Workplace Monitoring	Other(Analysis Requested	Sample Comments:
OIA	RAD1	X683H	62/01/20		02/13/20	13:50	Х				10-17	\bigcirc
OZA	RAD2	<u>X684H</u>	02/01/20	16:52	0a/13/20	14:12	X				10-17	(MW TOF
03A	RAD3	X685H	02/01/20		02/13/20	14:16	X				TO-17	
04A	Trip Blank		02/01/20		02/13/20		\mathbf{X}				TO-17	
			,				2 4					
										T		
Relinqu	ished by:	1	Date	Time	Received by:	••••••••••••••••••••••••••••••••••••••		Date		1	Time	Notes to Lab:
Polinau	hael Tarber ished by:	T	2/13/20	3:70pm	Emily Hend	rickson		2/1	3/2	0	3:40 pm	MRLneeded
Em.	isnea by: ily Hendrickso	n	Date 2/13/20	lime I				Date	s da	Ī	Time	MRL needed = 0.37 ug/m3</td
Michael Tarbert 2/13/20 3:40pm Emily Hendrickson 2/13/20 3:40pm March Ma												
Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.												
Lab Use Only												
Air bill #	1 -0-	H	Custody Seals Ir		-	None	Sam	ole Co	nditior	Upo	on Receipt:	Good
			Temperature (°C		NA				(circ	e)		Good SDR
	Eurofins Air Toxics, Inc. 180 Blue Ravine Rd. Suite B Folsom, CA 95630 (916) 985-1000 Fax: (916) 351-8279											

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 21, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 20, 2020 from the Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0221R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 20, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
002298 -01	IA16-022020
002298 -02	IA17-022020
002298 -03	IA19-022020

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA16-022020 02/20/20 02/20/20 02/21/20 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Maul Foster Alongi Precision Engineering Indoor Air 1803.01.02 002298-01 022021.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	cration ppbv		
Trichloroethene	1.9	0.35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA17-022020 02/20/20 02/20/20 02/21/20 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Maul Foster Alongi Precision Engineering Indoor Air 1803.01.02 002298-02 022022.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 106	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Trichloroethene	4.5	0.83		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA19-022020 02/20/20 02/20/20 02/21/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering Indoor Air 1803.01.02 002298-03 022023.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: ene 87	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	ration ppbv		
Trichloroethene	2.3	0.42		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/20/20 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ument:	Maul Foster Alongi Precision Engineering Indoor Air 1803.01.02 00-0419 mb 022014.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery:	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	cration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/21/20 Date Received: 02/20/20 Project: Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory con	or or sumple		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	ug/m3	73	85	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Heather	(-0)	2			SAMP	LERS (sign	iature)				YE					Page		of	
					PROJE	CT NAME	T & AT	DDECC	·····	1								UND TIMI	ŝ
Company Maul Fost		U		-					001		PC)#		5	RU	ndar SH <u> </u>	busic	tay (100	XI a Mi
Address 1329 N Sto					ov sa	ien engi mpling		J		1903	5,01	i. 0:	2	R	lush Hce	char thu	ges aut r 0000	thorized by	:
City, State, ZIP BCILIA	ghav	n, WA a	18775		NOTES	S:						CET	0		_	SAM	APLE I	DISPOSAL	1
City, State, ZIP <u>BC</u>	U mail <u>h</u>	100d Qm	autost	v.com		· · · · · ·				accour mavif								after 3 day ay apply)	78
SAMPLE INFORMATION	(0		L							AN/	ALYS	IS R		IF S7	- TED			
										17. A.	[126.51	1310	I	·····	
				n							Scan	BTEXN	SCs		_	TOIS			
***				_	orting vel:							BTE	TO15 cVOCs	APH	Helium	1			
***	Lab	Canistan	Flow		loor Air	1	Initial	1	Final	Field	TO15 Full	T015	015	V	He	hd :	1	,	
Sample Name	ID	Canister ID	Cont. ID		oil Gas e One)	Date Sampled	Vac. ("Hg)	Initial Time	Vac. ("Hg)	Final Time	ЪС	Ē	E4		۰.	706		Notes	
1A16-022020	01	18568	07854		' SG	02/20/20		755	1, 1				19	<u>~</u>		$\dot{\overline{\lambda}}$		140465	
1/A17-022020	02	1	06601	\sim	' SG		-30	803		1603						X			
1A19-022020	03	23234	07847	(IA) /	SG	V	-30	811		1611		ŀ			÷	X			
				IA /	SG		 ;												
		÷		IA /	SG		·		·										······································
				IA /	SG														
				IA /	80						 								

Friedman & Bruya, Inc. 3012 16th Avenue West	SIGNATURE Relinquished by:	PRINT NAME	COMPANY	DATE	
	ma	Evelyn Lundeen	MFA	2/20	16
Seattle, WA 98119-2029	Received by:	Helena Aravmin	FAR	2/20	1
Ph. (206) 285-8282	Relinquished by:			- ej ce	w
Fax (206) 283-5044	Received by:	· · · · · · · · · · · · · · · · · · ·	Samples received	lat 20 °C	
FORMS\COC\COCTO-15.DOC	L				

3/18/2020 Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham WA 98225

Project Name: Precision Engineering Project #: 1803.01.02 Workorder #: 2003371

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 3/13/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 2003371

Work Order Summary

CLIENT:	Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham, WA 98225	BILL TO:	Accounts Payable Maul Foster and Alongi Inc. 400 E. Mill Plain Blvd Suite 400 Vancouver, WA 98660
PHONE:	360-594-6262	P.O. #	
FAX:	360-594-6270	PROJECT #	1803.01.02 Precision Engineering
DATE RECEIVED:	03/13/2020	CONTACT:	Kelly Buettner
DATE COMPLETED:	03/18/2020		Reny Bucklier

FRACTION #	NAME	<u>TEST</u>
01A	RAD5	Passive S.E. RAD130/SKC
02A	RAD1-022020	Passive S.E. RAD130/SKC
03A	RAD4	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

CERTIFIED BY:

Rayes Terd 1 6

Technical Director

DATE: <u>03/18/20</u>

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

🛟 eurofins

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2003371

Four Radiello 130 (Solvent) samples were received on March 13, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 30475 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- C Estimated concentration due to calculated sampling rate
- CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD5

Lab ID#: 2003371-01A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	4.9	2.3
Client Sample ID: RAD1-022020				
Lab ID#: 2003371-02A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	2.8	1.3
Client Sample ID: RAD4				
Lab ID#: 2003371-03A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	5.4	2.6

Client Sample ID: Trip Blank

Lab ID#: 2003371-04A

No Detections Were Found.

Air Toxics

Client Sample ID: RAD5 Lab ID#: 2003371-01A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:			Date of Collection: 3/12/20 12:21:00 PM Date of Analysis: 3/17/20 11:11 AM Date of Extraction: 3/17/20						
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)					
Trichloroethene	0.10	0.048	4.9	2.3					

Т

Temperature = 77.0F , duration time = 30456 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	81	70-130

Air Toxics

Client Sample ID: RAD1-022020 Lab ID#: 2003371-02A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c031707sim 1.00	Date	Date of Collection: 3/12/20 12:24:00 PM Date of Analysis: 3/17/20 11:36 AM Date of Extraction: 3/17/20					
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)				
Trichloroethene	0.10	0.048	2.8	1.3				

Т

Temperature = 77.0F , duration time = 30474 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Recovery	Method Limits
Toluene-d8	80	70-130

Air Toxics

Client Sample ID: RAD4 Lab ID#: 2003371-03A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c031708sim 1.00	Date of Collection: 3/12 Date of Analysis: 3/17/2 Date of Extraction: 3/17		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	5.4	2.6

T

Temperature = 77.0F , duration time = 30475 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Recovery	Method Limits
Toluene-d8	80	70-130

Air Toxics

Client Sample ID: Trip Blank Lab ID#: 2003371-04A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c031709sim 1.00	Date of Collection: 3/12/2 Date of Analysis: 3/17/20 Date of Extraction: 3/17/2		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	Not Detected	Not Detected

Т

Temperature = 77.0F , duration time = 30475 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Rec	overy Limits	
Toluene-d8	8	70-130	

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2003371-05A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c031705sim 1.00	Dat	Date of Collection: NA Date of Analysis: 3/17/20 10:27 AM Date of Extraction: 3/17/20				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)			
Trichloroethene	0.10	0.048	Not Detected	Not Detected			

Т

Temperature = 77.0F , duration time = 30475 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	 %Recovery	Method Limits
Toluene-d8	80	70-130

Client Sample ID: LCS Lab ID#: 2003371-06A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c031703sim 1.00	Date of Collection: NA Date of Analysis: 3/17/20 09:31 A Date of Extraction: 3/17/20			
Compound		%Recovery	Method Limits		
Trichloroethene		100	70-130		
Container Type: NA - No	t Applicable				
Surrogates		%Recovery	Method Limits		
Toluene-d8		82	70-130		

Т

Air Toxics

Client Sample ID: LCSD Lab ID#: 2003371-06AA VOCS BY PASSIVE SAMPLER - GC/MS

Т

File Name: Dil. Factor:	c031704sim 1.00	Date of Collect Date of Analys Date of Extrac	is: 3/17/20 09:57 AM
Compound		%Recovery	Method Limits
Trichloroethene		94	70-130
Container Type: NA - No	ot Applicable		
Surrogates		%Recovery	Method Limits
Toluene-d8		80	70-130

🖏 eurofins

Air Toxics

Passive Sorbent Chain of Custody

Page ____of ____

WO#: [

- weeks which

						Case	e Seal #:				WO#:	2003371
Com		ster of Alongi	_ Project #: <u> </u>	03.01.02	P.O.#		Samp	le Matri on	•	neck	Reporting Units (circle)	Turn Around Time:
Proje	ct Manager: Heathe	1 (100d	_Project Name	Precisi	on Engine	erna	lir		oring		ppbv (ug/m3)	Normal
Conta	ct Manager: <u>Heathe</u> act phone/email: ^{Ngood}	Dinautoster 6	Collected by:	Evelyn 1	undeen		oor A		Monit		ppmv mg/m3	Rush 3- Day
Lab	Sample		Date of	Time of	Date of	Time of	Dutd	s	ace I		ug ng	Specify
ID	Identification	Sampler ID	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indoor Dutdoor Air	Soil Gas	Workplace Monitoring	Other(Analysis Requested	Sample Comments:
OLA	RAD5	X951 N	2/20/20	845	03/12/20	1221	X				T()~17	
OZA	RAD1-022020	X953N	2/20/20	830	03/12/20	1224	Х				T0-17	1 only
024	RADH	X952 N	02/20/20	835	03/12/20	1230	Х				T0-17	THE
oya	Trip Blank	None *	02/2010	*mastiv *	03/12/20		X				TO-17	J
	-											
		······										
		······································										
	M											
	uished by:	~	Date	Time	Received by:	Dan		Date	1.		Time	Notes to Lab:
	elyn Lundeer Juished by:	\	3/12/20 Date	15 / 3 / 3 Time	Received by:	5 GAG		3/1 Date	<u>7</u> 4	2	0405	extra label stider
	Evelyn Lundeen 3/12/20 18/5/5 GAG 3/12/20 0905 K did not have Relinquished by: Date Time Received by: Date Time Time For trip blank											
Relinq	Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.											
				-	Lab Use Only	$\overline{\mathbf{A}}$				(1999) (1999)		
Shipp Air bil	er Name: Fed(ĹX	Custody Seals I Temperature (°C		es No	None	Sam	ple Co	onditio (circ		on Receipt:	Good SDR

Eurofins Air Toxics, Inc. 180 Blue Ravine Rd. Suite B Folsom, CA 95630 (916) 985-1000 Fax: (916) 351-8279

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on May 4, 2020 from the Precision Engineering 1803.01.03, F&BI 005024 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Calu

Michael Erdahl Project Manager

Enclosures MFA0506R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 4, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.03, F&BI 005024 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
005024 -01	IA16050220
005024 -02	IA17050220
005024 -03	IA18050220
005024 -04	IA19050220

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA16050220 05/04/20 05/02/20 05/04/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering 1803.01.03 005024-01 050416.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 101	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA17050220 05/04/20 05/02/20 05/04/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Maul Foster Alongi Precision Engineering 1803.01.03 005024-02 050413.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA18050220 05/04/20 05/02/20 05/04/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: iment:	Maul Foster Alongi Precision Engineering 1803.01.03 005024-03 050414.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	IA19050220 05/04/20 05/02/20 05/04/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: .ment:	Maul Foster Alongi Precision Engineering 1803.01.03 005024-04 050415.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable O5/04/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: iment:	Maul Foster Alongi Precision Engineering 1803.01.03 00-0991 mb 050411.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 108	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concent ug/m3	tration ppbv		
Trichloroethene	< 0.27	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 05/04/20 Project: Precision Engineering 1803.01.03, F&BI 005024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	onition campio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	ug/m3	73	80	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

00502	4			SAMP	LE CHAI	N OF	CUST	ODY	ME	- 4	95	10	41	20	7	
		3		SAM	PLERS (sign	ature)	D	/		_	_			-	age #	¢ of
Report To Heather	600	d			dr	6	$\lambda \sim$	1						,	FURI	NAROUND TIME
Company Naul Fost	$e_r +$	Alongi		PRO	JECT NAME	2 & AĎ	DRESS			PO	#				ndard	
1329 Address North Sta			21	- Pre	cision Eng	wen	~7		1803	5.01	. 03	3	🎇	I RU:	SH <u>)</u> charo	business day
Address North oth	me c	\mathcal{T} , \mathcal{T}	51	123	S Directu	r 8t.,	Seattle,	WA 98	ide							Good
City, State, ZIP Bellin	ahana	. WA 99	37.75	NOT	'ES:				IN	VOIC			1 [•		IPLE DISPOSAL
									accou	win	g&n	all				Clean after 3 days
Phone BWO 92 1000 m 360 - 929 - 1309	nail h	good (e) m	autostu	s.Com					foste	r.con	n			Arc	nive (Fee may apply)
SAMPLE INFORMATION										ANA	LYS	IS R		IEST	ED	······································
				·····				[
										Scan	Z	ŝ			5	
				Reporting						I S	TO15 BTEXN	TO15 cVOCs	Ŧ	B	tois	
				Level:	, 				٠	Full	ĥ	2 c/	APH	Helium	4	
			$\operatorname{Flo}\mathbf{w}$	IA=Indoor A		Initial		Final	Field	T015	015	01	Ŧ	Ĥ	B	
	Lab	Canister	Cont.	SG=Soil Ga		Vac.	Initial	Vac.	Final	2 2	Ĕ	Ē			3	
Sample Name	ID	ID	ID	(Circle One	<u> </u>			("Hg)	Timẹ							Notes
1416050220	01	35338	0535 i	IA / SG	512420	-Z¢1,5	1507	-8	1507			``			\times	• 、
1A17050220	02	26554	07870	(IA) / SG	5/2/20	-29	1511	-6	1511						Х	
1A18050220	83	20544	00603	(I / SG	512/20	-30	1515	-7	1575						X	
1219050220	Oy	18563	05547	(IA) / SG	SARO	-30	1519	-9	1519.		'				Х	
				IA / SG				• <i>4</i> ,								
х				IA / SG												
• •				IA / SG									Com	1.	0 70	ceived at 16 °C
				IA / SG									əun	.b. e	5 FC	

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Evelun Landeen	MFA	514	903
Seattle, WA 98119-2029	Recentingd Inf	Fric (Duralt - '	ER	\$4	903
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC		·L		**	_I

6/12/2020 Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham WA 98225

Project Name: Precision Engineering Project #: 1803.01.02 Workorder #: 2006201

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 6/9/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Alexandra Winslow at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Alexandra Winslow Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com

WORK ORDER #: 2006201

Work Order Summary

CLIENT:	Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301 Bellingham, WA 98225	BILL TO:	Accounts Payable Maul Foster and Alongi Inc. 400 E. Mill Plain Blvd Suite 400 Vancouver, WA 98660
PHONE:	360-594-6262	P.O. #	
FAX:	360-594-6270	PROJECT #	1803.01.02 Precision Engineering
DATE RECEIVED:	06/09/2020	CONTACT:	Alexandra Winslow
DATE COMPLETED:	06/12/2020	001111011	novandra winstow

FRACTION #	NAME	<u>TEST</u>
01A	RAD1-051520	Passive S.E. RAD130/SKC
02A	RAD4-051520	Passive S.E. RAD130/SKC
03A	RAD5-051520	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

CERTIFIED BY:

layes

DATE: 06/12/20

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209219, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-19-14, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-013, Effective date: 10/18/2019, Expiration date: 10/17/2020. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

🛟 eurofins

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2006201

Four Radiello 130 (Solvent) samples were received on June 09, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

A revised Chain of Custody (COC) was provided by the client on 06/09/20.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 30238 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- C Estimated concentration due to calculated sampling rate
- CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD1-051520

Lab ID#: 2006201-01A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	2.8	1.4
Client Sample ID: RAD4-051520				
Lab ID#: 2006201-02A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	5.5	2.6
Client Sample ID: RAD5-051520				
Lab ID#: 2006201-03A				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	3.6	1.7

Client Sample ID: Trip Blank

Lab ID#: 2006201-04A

No Detections Were Found.

Air Toxics

Client Sample ID: RAD1-051520 Lab ID#: 2006201-01A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061010sim 1.00	Date of Collection: 6/5/20 3:11:00 PM Date of Analysis: 6/10/20 11:01 AM Date of Extraction: 6/10/20 Rpt. Limit Amount Amount		
	Rpt. Limit			
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	2.8	1.4

T

Temperature = 77.0F , duration time = 30238 minutes. Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	79	70-130

Air Toxics

Client Sample ID: RAD4-051520 Lab ID#: 2006201-02A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061011sim 1.00	Date of Collection: 6/5/20 3:15:00 PM Date of Analysis: 6/10/20 11:28 AM Date of Extraction: 6/10/20		
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	5.5	2.6

T

Temperature = 77.0F , duration time = 30235 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	%Recovery	Method Limits
Toluene-d8	80	70-130

Air Toxics

Client Sample ID: RAD5-051520 Lab ID#: 2006201-03A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061012sim 1.00	Date	ate of Collection: 6/5/20 3:18:00 PM ate of Analysis: 6/10/20 11:55 AM ate of Extraction: 6/10/20				
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)			
Trichloroethene	0.10	0.048	3.6	1.7			

٦

Temperature = 77.0F , duration time = 30234 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	. ,	%Recovery	Method Limits
Toluene-d8		77	70-130

Air Toxics

Client Sample ID: Trip Blank Lab ID#: 2006201-04A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061013sim 1.00			
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
Trichloroethene	0.10	0.048	Not Detected	Not Detected

Т

Temperature = 77.0F , duration time = 30238 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	 %Recovery	Method Limits
Toluene-d8	80	70-130

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2006201-05A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061005sim 1.00	Date of Collection: NA Date of Analysis: 6/10/20 08:4 Date of Extraction: 6/10/20			
Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.048	Not Detected	Not Detected	

Т

Temperature = 77.0F , duration time = 30238 minutes. Container Type: Radiello 130 (Solvent)

Surrogates	 %Recovery	Method Limits
Toluene-d8	79	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2006201-06A VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061003sim 1.00	Date of Collec Date of Analys Date of Extrac	sis: 6/10/20 07:54 AM	
			Method	
Compound		%Recovery	Limits	
Trichloroethene		98	70-130	
Container Type: NA - No	t Applicable			
			Method	
Surrogates		%Recovery	Limits	
Toluene-d8		80	70-130	

Air Toxics

Client Sample ID: LCSD Lab ID#: 2006201-06AA VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor:	c061004sim 1.00				
Compound		%Recovery	Method Limits		
Trichloroethene		94	70-130		
Container Type: NA - No	ot Applicable				
Surrogates		%Recovery	Method Limits		
Toluene-d8		79	70-130		

🔅 eurofins 👔

Air Toxics

REMISED COC 6/09/20 Page 1 of 1 Passive Sorbent Chain of Custody

Case Seal #:

WO#: 2006201

							Same	ole Matr	ix (check	Reporting U	nite		—
Com	pany: Maul Fo	ster & Alongi	_Project #: <u>18</u>	03.01.02	_P.O <u>.#</u>		Canit,	on On		Sincut	(circle)		Turn Around Time:	
Proje	ct Manager: Heathe	er Good 14.6268	_Project Name	: Precisio	on Engineering		Air		toring		ppbv ug	3/m3	Normal	
Conta	act phone/emailhgood	@maulfoster.com	Collected by:	Evelyr	n Lundeen		loor		Moni		ppmv mg	g/m3	X Rush 3-day TAT	
Lab	Sample		Date of	Time of	Date of	Time of	Į į	se	ace		ug I	ng	Specify	_
ID	Identification	Sampler ID	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indoor/Outdoor Air	Soil Gas	Workplace Monitoring	Other(Analysis Requeste		Sample Comments:	
OIA	RAD1-051520	Y714B	05/15/20	15:13	06/05/20	15:11	x				TO-17 TCE C	ONLY		,
07A	RAD4-051520	X907U	05/15/20	15:20	06/05/20	15:15	×				TO-17 TCE C	ONLY		
63A	RAD5-051520	Y712B	05/15/20	15:24	06/05/20	15:18	×				TO-17 TCE C	ONLY		
CUP	Trip Blank	Y713B	N/A	N/A	N/A	N/A					TO-17 TCE C	ONLY		
	······································													
														_
											····			
							Ι							
	uished by: /n Lundeen		Date 06/08/20	Time 13:40	Received by: FedEx			Date			Time		Notes to Lab: MRL needed	
Relinc	uished by:	- memilies - L - L -	Date	Time	Received by:			Date			Time		= 0.37 ug/m3</td <td></td>	
Relinq	uishing signature on this docum agreement	ent indicates that sample to hold harmless, defend	s are shipped in comp and indemnify Eurofi	liance with all applic ns Air Toxics agains	cable local, State, Fed any claim, demand,	eral, and internati or action, of any k	ional law kind, rela	s, regul ated to th	ations, ne colle	and on ection, I	dinances of any ki nandling, or shipp	ind. Reli ing of sa	nquishing signature also indicat mples.	es
	A1.				Lab Use Only	en al an state	politication of	19920-0030			an an thuấn độn độn tr	9. (S. 168)		
	er Name:		Custody Seals		es No	None	San	nple C			oon Receipt:		Good SDR	-
Air bill		ofine Air Toxice I	Temperature (°C			<u>04.05000</u>	(040			ircle}	(040) 054			_

🔹 eurofins

Air Toxics

Passive Sorbent Chain of Custody

Page ____of___

Case Seal #:

WO#: 2006201

Com	pany: Maulti	Ster & Alongi	Project #: 19	03.01,02	P.O.#		Samp	le Matr on		heck	Reporting Units (circle)	Turn Around Time:
Proje	ect Manager: Heat New act phone/email:	-6000	Project Name.	Precisa	sin Engin	renng	Air		itoring		ppbv ug/m3	Normal
Cont	act phone/email	594 6268	Collected by:	Evelyn Li	indicen	<u> </u>	door		Mon		ppmv mg/m3	Rush 3 day
Lab	Sample		Date of	Time of	Date of	Time of	/Outc	Gas	lace		ug ng	Specify
D	Identification	Sampler ID	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indoor/Outdoor Air	Soil G	Workplace Monitoring	Other(Analysis Requested	Sample Comments:
	2, AD1-051520	Y7148	05/15/20	1573	06/04/20	15:11	X				TO-17	D
	RAD4-051520	X9070	05/15/20	15:20	06104/20	1545	X				T0-17	L Colu
	RADS-CEISLO	Y712B	05/15/20	15:24	0610120	15-18	X				T0-17	1-12
	Trip Blank	17138	NA	NA	NA	NA				1	T0-17	J
	_											
										}		
Relin	uished by:	· · · · · · · · · · · · · · · · · · ·	Date	Time	Received by:			Date			Time	Notes to Lab:
E	uished by:	n	61812020	1340	S-			de	5/2		1:400	MRL needed
Relin	uished by:	······································	Date	Time	Received by:			Date	/	,	Time	$\frac{MRL}{L} = 0.37$
						SEA	TL	6	109	124) (03E	ag/m3
Relino	Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.											
China	Lab Use Only Shipper Name: Device Custody Seals Intact? Yes No None Low to a tract the second											
Snipp Air bil	HECH.		Custody Seals I			None	Sam	ple C			on Receipt:	Good SDR
1	Image: Instant Superature (°C) Image: I											

APPENDIX E DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.02 | JULY 1, 2020 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for sub-slab, indoor air, outdoor air, and groundwater samples collected at the Precision Engineering, Inc., site located at 1231 S Director Street in Seattle, Washington. The samples were collected from February to June 2020.

Friedman & Bruya, Inc. (FBI) and Eurofins Air Toxics (Eurofins) performed the analyses. FBI report 002001-amended, 002154, 002298, and 005024 and Eurofins report numbers 2002351, 2003371, and 2006201 were reviewed. Additional FBI reports were issued based on follow-up analyses requested by the MFA project manager (reports 002001-additional and 002154-additional). The analyses performed and samples analyzed are listed in the tables below.

Analysis	Reference
DRO and ORO	NWTPH-Dx
Helium	ASTM D1946
Total Metals	USEPA 6020B
VOCs—Summa Canister	USEPA TO-15
VOCs—Radiello 130	USEPA TO-17 Modified
VOCs-Groundwater	USEPA 8260D

NOTES:

ASTM = ASTM International.

DRO = diesel-range organics.

NWTPH = Northwest Total Petroleum Hydrocarbons.

ORO = oil-range organics.

USEPA = U.S. Environmental Protection Agency.

VOCs = volatile organic compounds.

Samples Analyzed									
Report 00200 002001-a		Report 002154/ 002154-additional	Report 002298	Report 005024					
A8	IA13	IA16	IA16-022020	IA16050220					
A9	IA14	IA17	IA17-022020	IA17050220					
A10	IA15	IA18	IA19-022020	IA18050220					
A11	AA1	IA19		IA19050220					
IA8-020120	AA2	IA20							
IA9	AA3	EvapPit-W-021120							
IA10	AA4								
IA11	AA5								
IA12									
Report 2002351	Report 2003371	Report 2006201							
RAD1	RAD5	RAD1-051520							
RAD2	RAD1-022020	RAD4-051520							
RAD3	RAD4	RAD5-051520							
Trip Blank	Trip Blank	Trip Blank							

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (USEPA) procedures (USEPA, 2017) and appropriate laboratory and method-specific guidelines (Eurofins, 2019; FBI, 2019; USEPA, 1986).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the USEPA procedures (e.g., NWTPH-Dx).

In report 002001-amended, the USEPA Method TO-15 trichloroethene (TCE) results from samples IA8-020120, IA10, IA9, IA11, IA12, IA13, and IA15 were flagged by FBI as exceeding the upper limit of the instrument calibration range. The TCE results were reanalyzed at a ten-fold dilution. Reanalyzed results were reported in the 002001-additional laboratory report; the record of results is shown in the table below.

Report	Sample	Component	Original Result (ug/m³)	Record of Result (ug/m ³)
	IA8-020120		210	270
	IA10		260	340
002001-amended/ 002001-additional	IA9	Trichloroethene	250	330
	IA11		140	170
	IA12		160	200

Report	Sample	Component	Original Result (ug/m ³)	Record of Result (ug/m ³)
	IA13		180	210
	IA15		150	170

NOTES:

J = result is estimated.

ug/m³ = micrograms per cubic meter.

In report 002154, FBI indicated that NWTPH-Dx diesel-range hydrocarbon and motor oilrange hydrocarbon results for sample EvapPit-W-021120 had chromatographic patterns that did not resemble the diesel fuel or motor oil fuel standards used for quantitation. FBI indicated that the results most closely resemble a cutting oil, transformer oil, or a fuel metabolite (Erdahl, 2020). The results were reported as diesel-range hydrocarbons and oil-range hydrocarbons; thus, qualification based on chromatographic pattern-matching was not required.

Sub-slab samples submitted for reports 002001-amended and 002001-additional were collected under a helium shroud to detect leaks in the collection system. Helium was not detected in the associated samples.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

According to report 2002351, the method laboratory blank and trip blank were analyzed for 17120 minutes, based on the longest amount of time collected of the submitted samples.

According to report 2003371, the method laboratory blank and trip blank were analyzed for 30475 minutes, based on the longest amount of time collected of the submitted samples.

In report 002154-additional, the USEPA Method 6020B method blank arsenic result was flagged by the laboratory as being estimated and reported below the lowest calibration standard. The validator confirmed with the laboratory that the method blank and associated sample arsenic results were evaluated to the method detection limit. No additional action was required.

All laboratory method blanks were non-detect.

Trip Blanks

Trip blanks are required for 8260D analyses but were not submitted with reports 002001 and 002154. Trip blanks were submitted with reports 2002351, 2003371, and 2006301 for Radiello 130 TO-17-Modified analysis. All trip blank results were non-detect.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. MS/MSD samples were extracted and analyzed at the required frequency. Where MS/MSD samples were not included, analytical batch precision and accuracy were evaluated with laboratory control sample (LCS) and LCS duplicate (LCSD) results. All MS/MSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the reporting limit were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS and LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were submitted.

REPORTING LIMITS

FBI used routine reporting limits for non-detect results—except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences. Eurofins used routine reporting limits for non-detect results. Some results were reported to method detection limits and were appropriately flagged by the laboratory.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

Report 002001 was issued as "002001-amended," due to sample name corrections that the MFA project manager requested. The 002001-additional report was issued to report reanalyzed USEPA TO-15 TCE results.

Report 002154 was delivered in two reports, 002154 and 002154-additional, due to the different reporting deadlines requested by the MFA project manager.

According to report 2006201, the chain of custody (COC) was not relinquished properly. The reviewer confirmed that the COC was correctly relinquished by the MFA sampler and correctly recorded for receipt by Eurofins; however, it was incorrectly signed for receipt by the commercial shipper, FedEx, before the shipping container and COC were sealed for shipment by the MFA sampler. Commercial shipments are typically documented on the COC or laboratory receipt forms by recording the shipper company name and waybill number. Custody signatures are not required from commercial shippers. The missing signature, date, and time discussed in the case narrative are not required because they are associated with an incorrect receipt recorded by FedEx. The reviewer also noted that custody seals were not used, and a FedEx waybill number was not noted on the COC. Sample custody protocols were reviewed with the MFA sampler and the laboratory. No additional action was required.

According to report 2006201, a revised COC was provided by MFA on June 9, 2020, and included in the final report as a supplement to the original COC. The reviewer confirmed that the COC was revised to indicate that sample retrieval dates were corrected from June 4, 2020, to June 5, 2020.

No additional issues were found.

Erdahl, M. 2020. Email (re: chromatograms for lab report 002154) to A. Bixby, Maul Foster & Alongi, Inc., Bellingham, Washington, from Mike Erdahl, Friedman & Bruya, Inc., Seattle, Washington. December 18.

Eurofins. 2019. Laboratory quality assurance manual. Revision 13. Eurofins Air Toxics. Folsom, California. September 9.

FBI. 2019. Quality systems manual. Revision 169. Friedman & Bruya, Inc., Seattle, Washington. October 2.

USEPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

USEPA. 2017. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

Welsh Commissioning Group, Inc.

Commissioning Site Assessment

February 13, 2020

Maul Foster Alongi, Inc. (Pacific Industrial site)

Attendees:

Byron Holmstead Heather Good Lee Frazier WCG, Commissioning Authority Maul Foster Alongi, Inc. Pacific Industrial

Time: 10:30 AM Weather: Cloudy, Windy 44°F

Welsh Commissioning Group Inc. (WCG) was hired under contract with Maul Foster & Alongi Inc. to provide an independent assessment of the HVAC system and specifically the ventilation system at the Pacific Industrial Supply Co. building as follows:

- 1. Evaluate the existing HVAC system and determine if there are reasonable steps we can take to increase ventilation and pressurization of the building (or occupied spaces).
- 2. Give us some general guidance on the potential to install carbon treatment in the HVAC system.

The project manager for Maul Foster Alongi is Heather Good, LHG. The assessment was led by Commissioning Project Manager Byron Holmstead and Bryan Welsh served as Managing Principal. Present part of the time was the building owner Lee Frazier to give access and a tour through the building. The Building Commissioning Association (BCA) has developed a process of commissioning existing buildings. WCG used this existing building commissioning (EBCx) approach for the assessment. The assessment included an observation of the existing HVAC operation. Building Description:

- Warehouse building built originally around 1968, slab-on-grade, concrete un-insulated walls and wood insulated roof joists and deck with combination asphalt and rubber roof deck at approximately 62,000 square feet. Some attached out buildings for storage not included in assessment.
- Warehouse with three bays each approximately 100' x 200' with partial walls within and between each bay and an open corridor connecting all three bays. The warehouses were built at different times going from East to West. However, HVAC system seems consistent with the last addition or remodel.
- There are three separately enclosed areas within the warehouse that are 2-stories. The main offices in the center warehouse of approximately

2,000 square feet. Breakroom and locker room / storage above in the east bay, Shipping and receiving offices in the west bay.

- The east bay is primarily the industrial tools store, warehouse staff break room and locker and storage above. The center and west bays are for storage, fabrication, shipping and receiving.
- The east bay is the only warehouse portion of the warehouse that is currently heated.
- The main office is heated and cooled by a packaged Trane rooftop unit.
- Several bay doors around the building perimeter are commonly left open during normal business operations.
- The outside air temperature at the time of observation was around 44°F, the east bay was in the upper 60s, the center and west bays were in the upper 50s and the main office space was for the most part at setpoint in most spaces of 75°F. There was one office with the thermostat setpoint set at 60°F and the room was close to that temperature with a supply air temperature of 59°F.
- There were two large overhead doors mostly open on the south side of the center and west bays and one open on the north side center bay. The wind blows through the warehouse and plastic strip curtains are installed at the doors to help minimize the wind.

HVAC systems:

- The building was purchased around 2008 with little knowledge of the existing HVAC system shared by the previous owner.
- Heating for the east warehouse bay is provided by an antiquated hydronic hot water system with the smaller of the two gas water boilers in a small outbuilding attached to the south of the warehouse. The heating water system consists of two different sized boilers with primary boiler pumps and a secondary loop pump. The system is set to operate at 160°F supply water. There are several hot water unit heaters that blow air down from the ceiling. The hot water continuously pumped through the coils and the fans cycle with a thermostat. There is an inline ducted unit heater that is not running but looks capable of operation that serves the break room and storage / locker rooms above.
- There are three abandoned natural gas direct fired make up air units on the roof, one in the center of each bay. The discharge of the rooftop makeup air units are a centralized custom built ducted diffuser system. There are relief wall louvers with gravity back draft dampers serving the center and west bays distribute around the buildings about 6 feet above the floor. These louvers are about 18"x18" in dimensions. Four are installed in the west bay and six in the center bay (three at north and threes at south) and none in the east bay. Although there are two roof hood vents in the roof but seem to be sealed from allowing air to vent out. There are also four mushroom roof exhaust fans on the east bay roof that are abandoned. The belts are removed but did not investigate to see if there was still power to these fans.

- The main offices are served by a 10 ton rooftop packaged electric heating and cooling unit. The unit is a Trane model that is obsolete. The unit supplies pre-conditioned air to thermostatic zoned spaces which are then heated by electric terminal heating coils. There are eight thermostats (zones) serving nine spaces. The upstairs conference room temperature is controlled by the upstairs Southeast open office thermostat. The supply air from the rooftop unit is controlled to a discharge air for the zone with the lowest setpoint. The supply air is ducted in the ceiling spaces in a drop ceiling with transfer grilles and ducts at each space to main ceiling return grilles back to the rooftop unit.
- There is a small industrial type rooftop blower that is being used for the main office restroom exhaust. There is a large rooftop mushroom exhaust fan on the east bay roof that is not running and appears to serve the restrooms, lockers and break room.
- There is an industrial blower on the roof of the east bay that has been abandoned with the ductwork disconnected.

Observations

- The make-up air units on the roof have been somewhat abandoned. The power and gas connections are still in place and the owner stated that he has heard the fans operate. However, an experienced mechanical technician would be needed to put these units back into operation. There is no legible name plate data on any of the make-up air units to analyze the capacity and the units have extensive rust that has developed over the years. There is no telling if there is any life left in these units. The unit on the east bay roof has some missing parts in the control panel. It is estimated that these units are 20,000 to 30,000 CFM in range. The controls are antiquated and in disrepair, but it appears that they could be operable with some servicing. (Note: One item noticed was that the shut off valve to the center bay make-up air unit was open and a noticeable gas smell was leaking from the regulator. The valve was shut off during the assessment and the smell went away. It is advisable to check all the gas valves on the abandoned units and make sure the valves are closed.)
- There is currently no heating or cooling in the central and west warehouse bays. Apparently, there is enough heat generated from the east bay that the building stays warm enough to keep from freezing and bursting fire sprinkler pipes. However, with the shipping and receiving doors open all the time the center and west bays space temperature is closer to outside temperatures.
- The main office rooftop unit when assessed, it was discovered that the doors to the filter access and compressors were open and laying on the roof next to the unit. The unit being open assures plenty of outside ventilation air. There is no control on how much outside air is delivered in this situation. However, no noticeable outside operational dampers were observed on the unit, which may indicate why the doors were off the unit to allow outside air to get to the unit and into the space. One of the problems with this condition is that the filters are located such that the outside air is not filtered, and the cooling coils can become clogged with dust and debris from outdoor conditions. It appears that the unit is pulling some return air from the building and the unit is capable of supplying adequate heating to meet the discharge set point. The unit appears to be slightly

oversized for the application. There appears to be a master thermostat for the rooftop unit with a 5-hour after hour override timer on the wall next to it. A time clock for the rooftop unit was not located or observed. The space pressure was measured at the doors between the main offices and the warehouse and outside. The pressure between the warehouse and the offices was slightly negative. This allows for any odors in the warehouses to leak into the offices. The pressure between the offices and outside was slightly positive. This could be from the south wind causing a pressure differential from the south to the north sides of the building. It is difficult to precisely analyze space pressures with doors open and wind blowing.

- The thermostats are all electric stand-alone units specific to each type of equipment.
- The roof insulation is falling from the underside of the roof deck above the main office area.
- The restroom exhaust fan serving the main office area is running at a very low speed. The east bay restroom and locker room exhaust fan does not appear to be functioning.
- This question arises as to why the doors are open so much and is it to introduce more ventilation into the warehouse?
- All of the HVAC equipment appears to be beyond their life expectancy per the ASHRAE (American Society of Heating and Refrigeration Engineers) chart. (Shown Below).
- There were some window AC units on the shipping and receiving offices. These appear to be functional but have no bearing on ventilation to the space it serves other than heat is added to the warehouse space and is inconsequential.

Recommendations

- The main office rooftop unit is old and appears to be older than the standard life expectancy per ASHRAE chart of 15 years. It is recommended that a technician put the doors back on the unit and fix the outside air dampers temporarily while a new unit is budgeted for replacement. A new unit will be much more efficient, and a payback could possibly be just a few years. Also, a new unit with properly operating economizer (outside free cooling) would provide proper ventilation. A correctly-sized unit like a 7.5-ton unit could adequately perform the job. Also, a programable thermostat for the main controller could be used to add the night set back feature to conserve energy.
- It is not recommended that any of the make-up air units on the roof be re-used for heating. The main reason for this is that these units are direct-fired. In other words, the gas furnace products of combustion are directly in the air stream when firing. These products of combustion can be an irritant to people inside the building and could possibly cause reaction to the tools and materials stored inside. Products of combustion also has a high relative humidity. A recommendation is to replace one or more of these units with an indirect fired unit that is high efficiency. The added benefit is that this unit will pressurize the building and the whole building will be more comfortable for most all occupants. With this feature the heating in the east bay may not turn on and not be needed. A new make-up air unit cost is in the neighborhood of \$20,000 and the install could be double that. The vents on the roof will need to be refurbished or relief louvers or roof hoods be added. The center and west bays already have relief louvers. On the other hand, the overhead doors at the north and south are often

open and the wind blows right through, so a better possible heating application would be sealed combustion gas radiant heaters strategically placed where workers are located. An option could be to reuse the fan unit and replace the direct furnace section with an indirect furnace or electric strip heater, but full replacement of the unit may be better life cycle cost decision. Another option for a make-up air unit would be to install a make-up air unit on the south side of the center warehouse near the gas meter on the ground and blow the air in from the side wall. Although the air from the roof might be a better location for better chance of cleaner ventilation air from weather breezes.

- Carbon filters in the air handlers are an option but the cost keep these replaced can be 1.5 to 2 times more the price than regular air filters. Or just using an indoor air filter unit to recycle the air will not be as productive of removing odors as a make-up air unit unless the outside air is not tolerable. From my observation it appears that the outside air seems quite adequate to use for ventilation. One added benefit to a filter unit is the savings from not needing to heat or cool the outside ventilation air.
- The restroom exhaust fans for all restrooms should be looked at by a technician for maintenance or refurbishment and put the east bay exhaust back in service to get proper ventilation.
- Re-install the roof insulation in the attic space of the main offices to improve efficiency and prevent any condensation and moisture in the attic.

ASHRAE Equipment Life Expectancy chart

ASHRAE is the industry organization that sets the standards and guidelines for most all HVAC-R equipment. For additional info about ASHRAE the website is <u>www.ashrae.org</u>.

Equipment Item	Median Years	E
Air conditioners		A
Window unit Residential single or Split	10	
Package	15	
Commercial through-the wall Water-cooled package	15 15	A
Heat Pumps		D
Residential air-to-air	15	_
Commercial air-to-air	15	D
Commercial water-to-air	19	F
Roof-top air conditioners		
Single-zone	15	
Multi-zone	15	
Boilers, hot water (steam)		~
Steel water-tube	24 (30)	С
Steel fire-tube	25 (25)	
Cast iron	35 (30)	
Electric	15	н
Burners	21	1
Furnaces		R
Gas- or oil-fired	18	
Unit heaters		P
Gas or electric	13	
Hot water or steam	20	
Radiant Heaters		С
Electric	10	
Hot water or steam	25	

Equipment Item	Median Years			
Air terminals				
Diffusers, grilles, and register Induction and fan coil units VAV and double-duct boxes	s 27 20 20			
Air washers	17			
Ductwork	30			
Dampers	20			
Fans				
Centrifugal Axial Propeller Ventilating roof-mounted	25 20 15 20			
Coils				
DX, water, or steam Electric	20 15			
Heat Exchangers				
Shell-and-tube	24			
Reciprocating compressors	20			
Packaged chillers				
Reciprocating Centrifugal Absorption	20 23 23			
Cooling towers				
Galvanized metal Wood Ceramic	20 20 34			

Equipment Item	Mediar Years
Air-cooled condensers	20
Evaporative condensers	20
Insulation	
Molded Blanket	20 24
Pumps	2.
Base-mounted Pipe-mounted Sump and well Condensate 15	20 10 10
Reciprocating engines	20
Steam turbines	30
Electric motors	18
Motor starters	17
Electric transformers	30
Controls	
Pneumatic Electric Electronic	20 16 15
Valve actuators	
Hydraulic Pneumatic Self-contained	15 20 10

Filter Replacement Calculations Precision Engineering, Inc. Seattle, Washington

Parameters	Value	Notes
Air purifier model	HEPA-Aire PAS2400	
Air purifier airflow, max.—high setting (CFM)	2100	(1)
Carbon filter type	VL2002 high-capacity carbon, 2 inch	(1)
Filter carbon weight (grams)	767	(2)
Carbon filter TCE removal capacity (percent by weight)	20	(3)
TCE concentration, indoor air, max. (ug/m ³)	170	(4)
Calculations	Value	Notes
Filter TCE removal capacity, total weight TCE (micrograms)	1.53E+08	(a)
Filter TCE removal capacity, total air volume (cubic feet)	3.19E+07	(b)
Filter TCE removal capacity, treatment time—high setting (days)	11	(C)

NOTES:

Carbon filter TCE removal capacity, anticipated maximum TCE concentrations in indoor air, and air purifier airflow rates were used to calculate how long filters would be effective at both high and low air purifier airflow settings. A weekly filter changeout schedule was selected based on these calculations and as a conservative measure to allow for the possibility that other volatiles present in indoor air might occupy carbon filter activation sites.

CFM = cubic feet per minute.

max. = maximum.

TCE = trichloroethene.

 $ug/m^3 = micrograms per cubic meter.$

- ^(a) Filter TCE removal capacity, total weight TCE (micrograms) = (carbon filter TCE removal capacity [percent by weight] / 100) x (filter carbon weight [grams]) x (10E+06 micrograms / gram).
- ^(b) Filter TCE removal capacity, total air volume (cubic feet) = (filter TCE removal capacity, total weight TCE [micrograms]) / (TCE concentration, indoor air, max. [ug/m³]) x (35.315 cubic feet / cubic meter).
- ^(c) Filter TCE removal capacity, treatment time high setting (days) = (filter TCE removal capacity, total air volume [cubic feet]) / (air purifier airflow, max. high setting [CFM]) / (60 minutes x 24 hours).

REFERENCES:

⁽¹⁾ Abatement Technologies, Inc. HEPA-Aire portable air scrubber (PAS2400) specification sheet, 2019.

⁽²⁾ D-Mark, Inc. Abatement filters specification sheet. January 24, 2019.

⁽³⁾ D-Mark, Inc. Carbon filter pollutant capacity index chart, 2008.

(4) Maximum, pretreatment and pre-interim-action, three-week average TCE concentration measured in indoor air using Radiello passive samplers.

APPENDIX G

HEPA-AIRE® PORTABLE AIR SCRUBBER The Most Portable 2,000 CFM System

The Ultimate Combination of Power and Portability

Exceptional performance and a full array of user-friendly features have made the PAS2400 Portable Air Scrubber a popular choice for capturing airborne particles during facility construction and renovation.

FEATURES & BENEFITS

- The upright, two-module design with built-in transport dolly enhances the mobility and maneuverability of the PAS2400 and its ability to operate in tight spaces
- The custom-designed, high-speed motor and blower allow the PAS2400 to produce up to 60% more vacuum power than other 120 VAC systems
- True 99.97%-certified HEPA filter retains its original 99.97%+ efficiency, even after hundreds of hours of operation
- A unique cabinet design and a true high-capacity, IEST-compliant HEPA filter help ensure that the PAS2400 exhausts 99.97%+ efficiency air out of the work area, job after job, month after month
- Hinged, "no tools" prefilter access
- The PAS2400 has been independently tested and certified in accordance with applicable UL and CSA safety requirements

TECHNICAL SPECIFICATIONS

DESCRIPTION	UNIT	PAS2400
Net Weight	lbs. (kg)	170 (77.11)
Dimensions (L x W x H)	in. (cm)	31.5 x 25.25 x 49.75 (80 x 64.135 x 126.37)
Electrical Rating	V, Hz, A	120 VAC, 60 Hz, 15 A
Airflow, max. with clean filters	CFM	2100 on High, 700 on Low
Normal Operating Amps	amps	12 or less
Motor		1.5 HP, auto reset, 60 Hz, single phase
Sound Level @ 5 Feet	dBA	71-83 on high speed
HEPA Filter Efficiency	-	99.97% @ 0.3 microns
Cabinet Material	-	20 gauge stainless steel
Prefilter Access	-	Hinged "no tools" access door
First Stage Prefilter	1 ea.	F1821, 1″ deep coarse particulate
Second Stage Prefilter	1 ea.	H1902, 2″ deep pleated particulate
Optional Second or Third Stage	1 ea.	VL2002, 2″ deep high capacity carbon
HEPA Filter	1 ea.	H2418-99

Specifications and details are subject to change without prior notice.

Note: Airflow ratings estimates are based on factory and independent testing @ 120 VAC with an air straightener and a traverse of readings taken with a computing vane-anemometer. Actual results may vary for various reasons, including motor and blower and HEPA filter tolerances. Factors such as filter loading, reduced voltage to the motor, and inlet and outlet ducting will reduce airflow. Use these ratings as a general guideline only.

EABATEMENT LEADERS IN CLEAN AIR

CA: 1 800 827 6443 Abatement.ca Iaqinfo@abatement.ca

© 2019, Abatement Technologies Inc. All Rights Reserved. No reproduction of any portion of this advertisement is permitted without the express written permission of Abatement Technologies Limited. All illustrations and specifications contained in this advertisement are based on the latest product information available at the time of printing. Abatement Technologies reserves the right to (1) make changes at any time, without notice, to product designs, specifications, materials and colors, (2) to introduce new models to the marketplace and, (3) discontinue products as it sees fit. pas2400 1.2019 ns

US: 1 800 634 9091

ABATEMENT.COM

IAQINFO@ABATEMENT.COM

Filter Replacement Calculations Precision Engineering, Inc. Seattle, Washington

Parameters	Value	Notes
Air purifier model	HEPA-Aire PAS2400	
Air purifier airflow, max.—high setting (CFM)	2100	(1)
Carbon filter type	VL2002 high-capacity carbon, 2 inch	(1)
Filter carbon weight (grams)	767	(2)
Carbon filter TCE removal capacity (percent by weight)	20	(3)
TCE concentration, indoor air, max. (ug/m ³)	170	(4)
Calculations	Value	Notes
Filter TCE removal capacity, total weight TCE (micrograms)	1.53E+08	(a)
Filter TCE removal capacity, total air volume (cubic feet)	3.19E+07	(b)
Filter TCE removal capacity, treatment time—high setting (days)	11	(c)

NOTES:

Carbon filter TCE removal capacity, anticipated maximum TCE concentrations in indoor air, and air purifier airflow rates were used to calculate how long filters would be effective at both high and low air purifier airflow settings. A weekly filter changeout schedule was selected based on these calculations and as a conservative measure to allow for the possibility that other volatiles present in indoor air might occupy carbon filter activation sites.

CFM = cubic feet per minute.

max. = maximum.

TCE = trichloroethene.

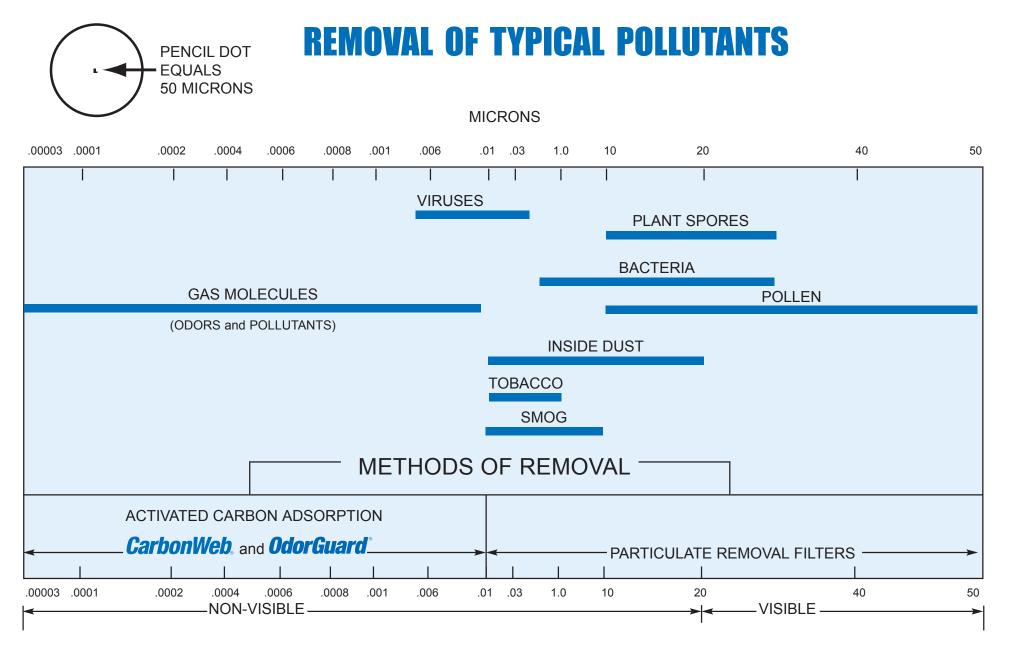
ug/m³ = micrograms per cubic meter.

- ^(a) Filter TCE removal capacity, total weight TCE (micrograms) = (carbon filter TCE removal capacity [percent by weight] / 100) x (filter carbon weight [grams]) x (10E+06 micrograms / gram).
- ^(b) Filter TCE removal capacity, total air volume (cubic feet) = (filter TCE removal capacity, total weight TCE [micrograms]) / (TCE concentration, indoor air, max. [ug/m³]) x (35.315 cubic feet / cubic meter).
- ^(c) Filter TCE removal capacity, treatment time high setting (days) = (filter TCE removal capacity, total air volume [cubic feet]) / (air purifier airflow, max. high setting [CFM]) / (60 minutes x 24 hours).

REFERENCES:

⁽¹⁾ Abatement Technologies, Inc. HEPA-Aire portable air scrubber (PAS2400) specification sheet, 2019.

⁽²⁾ D-Mark, Inc. Abatement filters specification sheet. January 24, 2019.


- ⁽³⁾ D-Mark, Inc. Carbon filter pollutant capacity index chart, 2008.
- (4) Maximum, pretreatment and pre-interim-action, three-week average TCE concentration measured in indoor air using Radiello passive samplers.

D-Mark, Inc.

Abatement Part	Size	Description	Carbon Weight in Grams	Carbon Weight in Pounds	
VL1002	15-7/8 x 15-3/8 x 2	Carbon Pleat	453	0.99	
VL2024	24 x 24 x 2	Carbon Pleat	986	2.1	
VL2002	18 x 24 x 2	Carbon Pleat	767	1.7	
VL602	15-7/8 x 15-3/8 x 2	Carbon Pleat	151	0.33	
		Carbon Pleat Carbon & Potassium			
VLB1616	15-7/8 x 15-3/8 x 2	Permanganate	415	0.91	
		Carbon Pleat Carbon & Potassium			
VLB2418	18 x 24 x 2	Permanganate	702	1.5	
		Carbon Pleat Carbon & Potassium			
VLB2424	24 x 24 x 2	Permanganate	704	1.9	
		Carbon Pleat Carbon & Potassium			
VLB1818	18 x 17-1/2 x 2	Permanganate	534	1.1	
		Carbon Pleat Carbon & Potassium			
H605CPZ	15-7/8 x 15-3/8 x 2	Permanganate, Zeolite	420	0.92	
HC1802CF	17 1/2 × 17 1/2 × 2	Carbon Diast	582	1.2	
TLIOUZLF	17-1/2 x 17-1/2 x 2	Carbon Pleat	202	1.2	
HC618CF	18 x 18 x 2	Carbon Pleat	630	1.3	

130 N. Groesbeck Hwy. Mt. Clemens, MI 48043 www.dmarkinc.com

CarbonWeb® and OdorGuard® Odor and Pollutant Capacity Index Chart

SUBSTANCE	INDEX	SUBSTANCE	INDEX	SUBSTANCE	INDEX	SUBSTANCE	INDEX	SUBSTANCE	INDEX	SUBSTANCE	INDEX
Acetaldehyde	2	Carbon Tetrachloride	4	Ethyl Acrylate	4	lodine	4	Nitro Benzene	4	Resins	4
Acetic Acid	4	Cellosolve	4	Ethyl Alcohol	4	lodoform	4	Nitroethane	4	Reodorants	4
Acetic Anhydride	4	Cellosolve Acetate	4	Ethyl Amine	3	Irritants	4	Nitrogen Dioxide	2	Ripening Fruits	4
Acetone	3	Charred Materials	4	Ethyl Benzene	4	Isophorone	4	Nitroglycerine	4	Rubber	4
Acetylene	1	Cheese	4	Ethyl Bromide	3	Isoprene	3	Nitromethane	4	Sauerkraut	4
Acids	3	Chemicals	3	Ethyl Chloride	3	Isopropyl Acetate	4	Nitropropane	4	Sewer Odors	4
Acrolein	1	Chlorine	3	Ethyl Ether	3	Isopropyl Alcohol	4	Nitrotoluene	4	Skatole	4
Acryaldehyde	3	Chlorobenzene	4	Ethyl Formate	3	Isopropyl Ether	4	Nonane	4	Slaughtering Odors	3
Acrylic Acid	4	Chlorobutadiene	4	Ethyl Mercaptan	4	Kerosene	4	Noxious Gases	3	Smog	4
Acrylonitrile	4	Chloroform	4	Ethyl Silicate	4	Kitchen Odors	4	Octylene	4	Smoke	4
Adhesives	4	Chloro Nitropropane	4	Ethylene	1	Lactic Acid	4	Octane	4	Soaps	4
Aged Manuscripts	4	Chloropicrin	4	Ethylene Chlorhydrin	4	Lingering Odors	4	Odors	4	Solvents	3
Air Wick	4	Cigarette Smoke	4	Ethylene Dichloride	4	Liquid Fuels	4	Odorants	4	Sour Milk	3
Alcohol	4	Citrus and other fruits		Ethylene Oxide	3	Liquor Odors	4	Onions	4	Spilled Beverages	4
Alcoholic Beverages	-	Cleaning Compounds		Essential Oils	3 4	Lubricating Oils and	4	Organic Chemicals	4	Spoiled Food Stuffs	4
	4 2	Cleaning Compounds Coal Smoke	4 3	Eucalyptole	4	Greases	4	Organic Chemicais Ozone	4	Stale Odors	4
Amines				<i>,</i> ,	4		4		•		4 4
Ammonia	2 4	Combustion Odors	3	Exhaust Fumes	-	Lysol	4	Packing House Odors		Stoddard Solvent Stuffiness	4 4
Amyl Acetate		Cooking Odors	4	Fabric Finishes	3	Masking Agents	-	Paint and Redecoration	5		-
Amyl Alcohol	4	Corrosive Gases	3	Fecal Odors	4	Medicinal Odors	4	Odors	4	Styrene Monomer	4
Amyl Ether	4	Creosote	4		_	Melons	4	Palmitic Acid	4	Sulfur Compounds	3
Animal Odors	3	Cresol	4	Fertilizer	4	Menthol	4	Paper Deteriorations	4	Sulfur Dioxide	2
Anesthetics	3	Crotonaldehyde	4	Film Processing Odor		Mercaptans	4	Paradichlorbenzene	4	Sulfur Trioxide	3
Aniline	4	Cyclohexane	4	Fish Odors	4	Mesityl Oxide	4	Paste and Glue	4	Sulfuric Acid	4
Antiseptics	4	Cyclohexanol	4	Floral Scents	4	Methane	1	Pentane	3	Tar	4
Asphalt Fumes	4	Cyclohexanone	4	Fluorotrichloromethan		Methyl Acetate	3	Pentanone	4	Tarnishing Gases	3
Automobile Exhaust		Cyclohexene	4	Food Aromas	4	Methyl Acrylate	4	Pentylene	3	Tetrachloroethane	4
Bacteria	3	Dead Animals	4	Formaldehyde	2	Methyl Alcohol	3	Pentyne	3	Tetrachloroethylene	4
Bathroom Smells	4	Decane	4	Formic Acid	3	Methyl Bromide	3	Perchloroethylene	4	Tetrahydrofuran	3
Benzene	4	Decaying Substances	4	Freon	3	Methyl Butyl Ketone	4	Perfumes, Cosmetics	4	Theatrical Makeup	
Bleaching Solutions		Decomposition Odors		Fuel Gases	2	Methyl Cellosolve	4	Perspiration	4	Odors	4
Body Odors	4	Deodorants	4	Fumes	3	Methyl Cellosolve Aceta		Persistent Odors	4	Tobacco Smoke	4
Bromine	4	Detergents	4	Gangrene	4	Methyl Chloride	3	Pet Odors	4	Toilet Odors	4
Burned Flesh	4	Dibromethane	4	Garlic	4	Methyl Chloroform	4	Phenol	4	Toluene	4
Burned Food	4	Dichlorobenzene	4	Gasoline	4	Methyl Ether	3	Phosgene	4	Toluidine	4
Burning Fat	4	Dichlorodifluorometha	ne 3	Heptane	4	Methyl Ethyl Ketone	4	Pitch	4	Trichlorethylene	4
Butadiene	3	Dichloroethane	4	Heptylene	4	Methyl Formate	3	Plastics	4	Turpentine	4
Butane	2	Dichloroethylene	4	Hexane	3	Methyl Isobutyl Ketone	e 4	Poison Gases	3	Urea	4
Butanone	4	Dichloroethyl Ether	4	Hexylene	3	Methyl Mercaptan	4	Popcorn and Candy	4	Uric Acid	4
Butyl Acetate	4	Dichloromonofluormetha	ane 3	Hexyne	3	Methylal	3	Poultry Odors	4	Valeric Acid	4
Butyl Alcohol	4	Dichloro-Nitroethane	4	Hospital Odors	4	Methylcyclohexane	4	Propane	2	Valeric Aldehyde	4
Butyl Cellosolve	4	Dichloropropane	4	Household Smells	4	Methylcycohexanol	4	Propionaldehyde	3	Vapors	4
Butyl Choloride	4	Dichlorotetrafluoroetha	ane 3	Hydrogen	1	Methylcyclohexanone	4	Propionic Acid	4	Varnish Fumes	4
Butyl Ether	4	Diesel Fumes	3	Hydrogen Bromide	2	Methylene Chloride	4	Propyl Acetate	4	Vinegar	4
Butylene	2	Diethyl Amine	3	Hydrogen Chloride	2	Mildew	3	Propyl Alcohol	4	Vinvl Chloride	3
Butyne	2	Diethyl Ketone	4	Hydrogen Cyanide	3	Mixed Odors	4	Propyl Chloride	4	Viruses	3
Butyraldehyde	3	Dimethylaniline	4	Hydrogen Fluoride	2	Mold	3	Propyl Ether	4	Volatile Materials	3
Butyric Acid	4	Dimethylsulfate	4	Hydrogen lodide	3	Monochlorobenzene	4	Propyl Mercaptan	4	Waste Products	4
Camphor	4	Dioxane	4	Hydrogen Selenide	2	Monofluorotrichlorometh	ane 3	Propylene	2	Waterproofing	-
Cancer Odor	4	Dipropyl Ketone	4	Hydrogen Sulfide	3	Moth Balls	4	Propyne	2	Compounds	4
Caprylic Acid	4	Disinfectants	4	Incense	4	Naphtha (Coal tar)	4	Putrefying Substance	-	Wood Alcohol	3
Carbolic Acid	4	Embalming Odors	4	Indole	4	Naphtha (Petroleum)	-	Putrescine	4	Xylene	4
Carbon Bisulfide	3	Ethane	1	Inorganic Chemicals	3	Naphthalene	4	Pvridine	4	Ayiche	т
Carbon Dioxide	1	Ether	3	Incomplete Combustio		Nicotine	4	Radiation Products	2		
Carbon Monoxide	1	Ethyl Acetate	3 4	Industrial Wastes	3	Nitric Acid	3	Rancid Oils	4		
Carbon Monoxide	I	Ethy Acetate		muustiidi Wastes	3		د		-		

Some of the contaminants listed in the table are specific chemical compounds. Some represent classes of compounds and others are mixtures and of variable composition. Activated carbons capacity for odor varies somewhat with the concentration in the air, with humidity and temperature. The numbers given represent typical or average conditions and might vary in specific instances.

The capacity index has the following meaning-

4. High capacity for all materials in this category. One pound takes up about 20% to 50% of its own weight - average about 1/3 (3301/3%). This category includes most of the odor causing substances.

3. Satisfactory capacity for all items in this category. These constitute good applications but the capacity is not as high as for category 4. Adsorbs about 10% to 25% of its weight - average about 1/6 (16.67%).

2. Includes substances which are not highly absorbed but which might be take up sufficiently to give good service under the particular conditions of operation. These require individual checking.

1. Adsorption capacity is low for these materials. Activated Carbon cannot be satisfactorily used to remove them under ordinary circumstances.

* For the asterisked compounds, impregnated carbon or activated alumina with KMnO₄ will greatly increase the adsorption ability.

APPENDIX H WASTE DISPOSAL MANIFESTS

Ple	ase pri	172290-2	0						4 10	3 9288 For	43 n Approved.	OMB No.	2050-0039
	UNIF	FORM HAZARDOUS	1. Generator ID Number	157175	2. Page 1 of 1		gency Response		4. Manifest	Tracking N			
	5. Ge PA(12:	enerator's Name and Mailir CIFIC INDUSTRIAL 31 S DIRECTOR ST	ng Address SUPPLY DIRE CTOR S	T	-I <u>-</u>	Generato PACIFI 1231 5	n's Site Address C INDUSTRI DIRECTOR E VA 99109	(if different that RL SUPPLY	n mailing addre	ss)			
		ansporter 1 Company Nam							U.S. EPA ID	Number		stanget selection	
	S.	tericycle S ansporter 2 Company Nam	pecialty Waste	Solutions Ir	nc				U.S. EPA ID		24		
	7. 11d	ansporter z Company Nan								umber			
	8. De	signated Facility Name an	nd Site Address						U.S. EPA ID	Number			
			MENTAL, LLC. KENT F	ACILITY			•						
		245 77th Avenue	500TN 98032 (253) 872-803	8					WAD9	91281	767		
	9a.	T	ion (including Proper Shipping N		, "		10. Contair		11. Total	12. Unit	Τ	Waste Code	s
	НМ		OUS WASTE, LIQUID,	NOS (CHRONTUM) 9	PGTTT		No.	Туре	Quantity	Wt./Vol.	D007		
GENERATOR	X	THE WE HELLEND	ove more; ereoray	ine and the second s			1	TT	743	G			
ERA											<u> </u>		
GEN	30	Ζ										•	
	Se									2			5
	4	3.											
		4.											
									•				à
	14. S	pecial Handling Instruction	ns and Additional Information					LI					
		(1) 1641479-00 -	- ERG(171) HAZARDOUS	WASTE LIQU									
	15.	GENERATOR'S/OFFERO	OR'S CERTIFICATION: I hereby	v declare that the contents of th	is consignment	t are fully a	nd accurately de	scribed above I	by the proper sl	nipping nam	e, and are cla	ssified, pack	aged,
		Exporter, I certify that the	rded, and are in all respects in p contents of this consignment co nimization statement identified ir	nform to the terms of the attach	ed EPA Acknow	wledgment	of Consent.			. If export s	nipment and I	am the Prim	ary
	Gene	ule Satter M	mile (On Behn			gnature	Sett				Mo	nth Day 4 13	Year
INT'L		Firnational Shipments	Import to U.S.		Export from	U.S.	Port of en						
_	17. Tr	sporter signature (for exporter ansporter Acknowledgmer	nt of Receipt of Materials	, <i>4</i>			Date leavi	ng 0.0					
TRANSPORTER	Trans	porter 1 Printed/Typed Na			Si	gnature	il.	2			Mor	nth Day	Year
NSP(Trans	sporter 2 Printed/Typed Na	me		Si	gnature	utter -		-		Mo	nth Day	Year
TRA				* *									
1		liscrepancy											
	18a. l	Discrepancy Indication Sp	ace Quantity	Туре		L	Residue		Partial Re	jection		Full Rej	ection
						Ma	nifest Reference	Number:				,	
E	18b. /	Alternate Facility (or Gene	rator)					-	U.S. EPA ID	Number			
FAC	Facili	ty's Phone:				2			1				
日日		Signature of Alternate Fac	ility (or Generator)								Mo	onth Day	/ Year
GNA				and a factor data washe too		-1 1							
DESIGNATED FACILITY	19. H 1.		lanagement Method Codes (i.e. 2.	codes for nazardous waste tre	arment, dispos	al, and rec	yoing systems)		4.				
		H135											
		esignated Facility Owner o	or Operator: Certification of rece	ipt of hazardous materials cove		nifest excep ignature	ot as noted in Iten	n 18a	~		Mc	nth Day	Year
		Chance	Guiberson			C	Le.		2		14		
EPA	Form		Previous editions are obso	lete.	l		DES		FACILITY	TOED	I		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 12, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on May 4, 2020 from the Precision Engineering 1803.01.02, F&BI 005023 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures MFA0512R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 4, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.02, F&BI 005023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
005023 -01	Filter-1
005023 -02	Filter-2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Filter-1 05/04/20 05/07/20 05/09/20 TCLP Extra ug/L (ppb)	ıct	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Precision Engineering 1803.01.02 005023-01 1/200 050895.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		101	63	127
4-Bromofluorobenz	ene	101	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Trichloroethene		<200		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Filter-2 05/04/20 05/07/20 05/09/20 TCLP Extra ug/L (ppb)	ct	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Precision Engineering 1803.01.02 005023-02 1/200 050896.D GCMS4 MS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	57	121
Toluene-d8		102	63	127
4-Bromofluorobenz	ene	100	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Trichloroethene		<200		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank		Client:	Maul Foster Alongi				
Date Received:	Not Applica	ble	Project:	Precision Engineering 1803.01.02				
Date Extracted:	05/08/20		Lab ID:	00-1000 mb 1/200				
Date Analyzed:	05/09/20		Data File:	050887.D				
Matrix:	TCLP Extra	act	Instrument:	GCMS4				
Units:	ug/L (ppb)		Operator:	MS				
			Lower	Upper				
Surrogates:		% Recovery:	Limit:	Limit:				
1,2-Dichloroethane	-d4	100	57	121				
Toluene-d8		100	63	127				
4-Bromofluorobenz	ene	100	60	133				
		Concentration						
Compounds:		ug/L (ppb)						
Trichloroethene		<200						

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Filter-1 05/04/20 05/06/20 05/07/20 Soil/Solid mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Precision Engineering 1803.01.02 005023-01 005023-01.041 ICPMS2 SP
Analyte:	Concentration mg/L (ppm)	TCLP Lim	nit
Arsenic	<1	5.0	
Barium	<1	100	
Cadmium	<1	1.0	
Chromium	<1	5.0	
Lead	<1	5.0	
Mercury	< 0.1	0.2	
Selenium	<1	1.0	
Silver	<1	5.0	

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Filter-2 05/04/20 05/06/20 05/07/20 Soil/Solid mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Precision Engineering 1803.01.02 005023-02 005023-02.042 ICPMS2 SP
Analyte:	Concentratio mg/L (ppm)		it
Arsenic	<1	5.0	
Barium	<1	100	
Cadmium	<1	1.0	
Chromium	<1	5.0	
Lead	<1	5.0	
Mercury	< 0.1	0.2	
Selenium	<1	1.0	
Silver	<1	5.0	

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/06/20 05/07/20 Soil/Solid mg/L (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Precision Engineering 1803.01.02 I0-260 mb I0-260 mb.032 ICPMS2 SP
Analyte:	Concentration mg/L (ppm)	TCLP Lim	nit
Arsenic	<1	5.0	
Barium	<1	100	
Cadmium	<1	1.0	
Chromium	<1	5.0	
Lead	<1	5.0	
Mercury	< 0.1	0.2	
Selenium	<1	1.0	
Silver	<1	5.0	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/20 Date Received: 05/04/20 Project: Precision Engineering 1803.01.02, F&BI 005023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF TCLP EXTRACTS FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 005071-01 (Matrix Spike)

	······································			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Trichloroethene	ug/L (ppb)	50	<1	69	66-135

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Trichloroethene	ug/L (ppb)	50	104	107	67-133	3

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/20 Date Received: 05/04/20 Project: Precision Engineering 1803.01.02, F&BI 005023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/SOLID SAMPLES FOR TCLP METALS USING EPA METHODS 6020B AND 1311

Laboratory Code: 004357-07 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/L (ppm)	1.0	<1	100	100	75 - 125	0
Barium	mg/L (ppm)	5.0	<1	99	99	75 - 125	0
Cadmium	mg/L (ppm)	0.5	<1	100	99	75 - 125	1
Chromium	mg/L (ppm)	2.0	<1	99	94	75 - 125	5
Lead	mg/L (ppm)	1.0	<1	94	91	75 - 125	3
Mercury	mg/L (ppm)	1.0	< 0.1	95	93	75 - 125	2
Selenium	mg/L (ppm)	0.5	<1	106	101	75 - 125	5
Silver	mg/L (ppm)	0.5	<1	99	88	75 - 125	12

Laboratory Code: Laboratory Control Sample

Laboratory could			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/L (ppm)	1.0	101	80-120
Barium	mg/L (ppm)	5.0	98	80-120
Cadmium	mg/L (ppm)	0.5	100	80-120
Chromium	mg/L (ppm)	2.0	98	80-120
Lead	mg/L (ppm)	1.0	90	80-120
Mercury	mg/L (ppm)	1.0	92	80-120
Selenium	mg/L (ppm)	0.5	110	80-120
Silver	mg/L (ppm)	0.5	95	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

005023			SAMPLE	E CHAIN	OF	CUS	бто	DDY	· /	1 <i>E</i> -	01	5709	1/2	0			AI	'
Report To Heather	- (-00d		SAMPL	ERS (signe	ature),		Ì	/	, 	. <u>32</u> . (5	a salar sa ku					age # URN	o AROUND '	f ГІМЕ
Company Maul Fos		a.	PROJE	CT NAME	0	<u> </u>					O #				Í Stan I RUS	dard H	turnaround	ł
Address 1329 N Sto			- Y120	sion en	jineer	(ne	j	18	03	Ci	. C	Ĺ					es authorize	ed by:
			REMAR	RKS						NVO							PLE DISPO amples	SAL
City, State, ZIP <u>Belling</u> Phone <u>200 - 127-1304</u> E	num, WA 10.		-					0.0	Cour Sor	ting	ŋ ®) me	וט	- E.	Othe	er		
Phone 200 - 127-1304E	mail <u>process</u>	norteser.c	≚ [Project :	specific RL	<u>s? - Ye</u>	es /	No	<u></u> τ					TOT			It: D	ispose afte	<u>r 30 days</u>
			T]	ſ			12					SQU	*			:	
Sample ID	Lab ID	. Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	AHs EPA 82'	PCBs EPA 8082	TUP TEE	TCLP RCRAB			No	tes
			15.40	filter Media				B		>	<u>д</u>	<u>ц</u>	<u>۲</u> ۷	F				
FILTER-1	0/	05/03/20	1										<u>X</u>	Ι <u>Χ</u>				
FILTER-2	02	05/03/20	1630	filter media									χ_	$ \Delta $			1000	
,																	+ RCRA	ď Z
											-						As, Br, C Pb, Hg	d, Cr,
					f ,						-						Ag	
							Ņ											
							T											
							÷	·• :										
												San	nple	s re	ceive	d a	<u>4</u> °C	ļ
· · · · · · · · · · · · · · · · · · ·	SI	GNATURE			PRIN	JT N	AMI	E				0	COM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	nh	<u></u>	Evely	m l	aur	de	er)			M	FA				514	903
3012 16 th Avenue West	Received by			FRIC DUND RAB				3			5/4	953						
Seattle, WA 98119-2029	Relinquished by:											·						
Ph. (206) 285-8282	Received by:																	

(

3. 4. 14. Special Handling Instructions and Additional Information (1) 1652136-00 - ERG(17) HAZAROOUS WASTE DEBR 15. GEREANDRY SCRETERORIS CERTIFICATION IN The project condition to the special according to applicable informational and relativist generativity and accurately described above by the proper shipping name, and are dessified, packaged, Elevent (1) 1652136-00 - ERG(17) HAZAROOUS WASTE DEBR 15. GEREANDRY SCRETERORIS CERTIFICATION IN Interview condition to the special according to applicable informational and relativist generativity and societarial regulations. If seport abipment and I am the Primary Loadly that the societaria of this consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Elevent (1) 1652136-00 - ERG(17) HAZAROOUS WASTE DEBR 15. GEREANDRY SCRETERORIS CERTIFICATION IN Interview condition to transport according to applicable interminificational and registrational regulations. If seport abipment area is a transport according to applicable interminification and regulations. If seport adjuncts regulations is the conserved of the conserved is the conserved in the special material advances developed according to applicable interminification and accurately described above by the proper shipping name, and are dessified, packaged, Export (1) 1000 Figure 2000 Figure 2		640.06								JUN 2	2 5 '20 PM	10:4	2
UNDER MAZABODE Colorand Dubliced 2 Page 14 3 Endiget Reports Priva 1 Address Tracking Report December Namme all Marg Johnson Colorand Dubliced 2071 (STT-000 Starket Stark			1.0	1 .						For	m Approved.	OMB No	2050-003
Contract Standard St	WASTE	MANIFEST			57475	2. Page 1 of			4. Manifest	Tracking I	Number		
1315 SURFECTOR ST 1315 SURFECTOR ST 132 SURFECTOR ST 1231 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 124 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 124 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 123 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 123 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 125 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 125 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR ST 136 SURFECTOR ST 124 SURFECTOR ST 124 SURFECTOR SURFECTOR ST 124 SURFECTOR SURFECTOR ST <t< td=""><td>5. Generator</td><td>'s Name and Mailin</td><td>g Address</td><td>10111 10000</td><td></td><td></td><td>Generator's Site Add</td><td>ress (if differen</td><td>t than mailing addre</td><td>ess)</td><td></td><td></td><td></td></t<>	5. Generator	's Name and Mailin	g Address	10111 10000			Generator's Site Add	ress (if differen	t than mailing addre	ess)			
Barredown (Dawney Him 1231 S DRECTOR ST Barredown (Dawney Him SEATTLY AB Droke US END Names Chargedown (Dawney Him Value Colored				Y DIRE CTOP	t ST		PACIFIC IN	IDÜSTRIA	L SUPPLY DI	RE CTO	R CT		
							1231 S DIR	ECTOR ST		r 'r bann Gad' I Sonal			
Case and an experiment of the second and a second an	6. Transporte	er 1 Company Name	9							Mumber			
Longingen Products Bulker Links and Marker Links BURLINGTON ENVERONMENTAL, LLC. TACOMA PLINT TOT East Available Links and Products BURLINGTON ENVERONMENTAL, LLC. TACOMA PLINT TOT East Available Links and Products Bulker Links Bulker Links and Products Bulker Links Bulker Links Bulker Links and Products Bulker Links B	CAS	CADE ORILLI	HO Sta	icude <	DecialL	wal	Soli bon	37	IMNS	000 11	0924		
BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus Burlington (2000) Burlington (20	7. Transporte	er 2 Company Name	;	6	1			7 Enci	U.S. EPA ID	Number			
BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus BURLINGTON ENVIRONMENTAL, LLC. TACIOMA PLANT TOT Est Alexander Aretnus Burlington (2000) Burlington (20	8 Designate	t Facility Name and	Site Address	Hone ine			1.10010.70.20190012012012012012010000				E 50.1 Million au		
Events For East Alexander Alexander Service For East Alexander Alexander Service									U.S. EPA ID	Number	IVII V GUUC	11052	ų.
Index / Proc TAD CHA. MAX 5021 (202) (277-7598 WAD 000257345 ost, Nil 50 007 Decode Stripting Inducting Proce Stripting Name, Hacad Case, D Namber. No. Type 11. Total 12. Unit 33. White Codes x Na Data Stripting Inducting Comp (K any). No. Type CP / 0.0001 11. Total 12. Unit 13. White Codes x Na Data Stripting Inductions and Address II. No. Type CP / 0.001 10.001 <td< td=""><td></td><td>1701 Eas</td><td>t Alexander /</td><td>VOIANCIALXE, Wenue</td><td>LLL. TACUMA</td><td>PLANT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		1701 Eas	t Alexander /	VOIANCIALXE, Wenue	LLL. TACUMA	PLANT							
Bu U.S.DOT Deveryties (rotating Proper Steping News, Hauser Glass, D. Number, 10. Containers 11. Total 12. Unit U.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, SOLID, N.O.S. (CHR DMIUM) 9. PG(II S CF 10.00.7 HAZARDOUS WASTE, DEBR 4. Hadding Instructions and Addoual Idemation (1) 15521 35-00 - ERG(1711) HAZARDOUS WASTE DEBR 5. GENERATOR'S CERTIFICATION: Interdy dedare flat the contents of the consegment are fully and accurately descreded alone by the proper steplaing news, and are desated, podaged, more and todoubly flaxardous, and are it all respect in proper coldition for the podage steplaing news, and are desated, podaged, more and todoubly flaxardous and are it all respect in proper coldition for the consegment are fully and accurately descreded alone by the proper steplaing news, and are desated, podaged, more and todoubly flaxardous and are its all respect in the consegment are fully and accurately descreded alone by the proper steplaing news, and are desated, podaged, more and todoubly flaxardous and are its all respect in the consegment are fully descreded alone by the proper steplaing news, and are desated, podaged, more and the descreded alone by the proper steplaing news, and are desated, podaged, more and todoubly flaxardous and an its all respect in the consegment are fully descreded alone by the proper steplaing news, and are its all respect in the SIZ (0) (Finit an allogo consegment are fully descreded alone by the proper steplaing respect on the SIZ (0) (Finit alone) todo	Facility's Pho								1		W/A0020	25794	5
HA Min Proving Group (a with) No. Type Countily Wr.No. Its Weeke Codes I HA3077 HAZARDOUS WASTE . SOLD . N.O.S. (CHROMEUM) S.P.GH C.P. / 0.8 C P. 2007	9a. 9b. L	J.S. DOT Description	n (including Prope	Contraction of the local day in the second		Γ,	10. Co	ntainers	11 Total	12 11-3	1		
CP CCP CP CPP CP	HM and I	Packing Group (if ar	iy))		W70.1900.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		and the second sec	1		1	13. Wa	aste Code	es
CP CCP CP CPP CP	S ¹ NA	3077 HAZARI	OUS WAST	E, SOLID, N.I	D.S. (CHROMIU	M) 9 PGIII	2			DO			
3 4 4. 4 14. Sponial Handling Instructions and Addiscruit Information (1) 1552138-00 - ER G(1/1) HAZARDOUS WASTE DEER 15. GENERATOR SOFFEROR'S CERTIFICATION: I hareby declare that the contents of the scontegingenerit and the contents of the contents of the scontegingenerit and the level of the state of the scontegingenerit and the content of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the scontegingenerit and the level of the state of the scontegingenerit and the sco	X					,	5	CF	1000	1	D007		
3 4 4. 4 14. Sponial Handling Instructions and Addiscruit Information (1) 1552138-00 - ER G(1/1) HAZARDOUS WASTE DEER 15. GENERATOR SOFFEROR'S CERTIFICATION: I hareby declare that the contents of the scontegingenerit and the contents of the contents of the scontegingenerit and the level of the state of the scontegingenerit and the content of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the level of the state of the scontegingenerit and the scontegingenerit and the level of the state of the scontegingenerit and the sco	2.			and a state of the s									
14. Special Funding Instructions and Additional Information 15. GEREATOR SOFFERORS CERTIFICATION: Interby declars that the contents of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are lawable of Advaccose displants of the consignment are lawable of Advaccose displants of a lawable of Advaccose displants of the consignment are lawable of Advaccose displants of the advaccose displants of the consignment are lawable of Advaccose displants of the advaccose displant of the advaccose displants	5												
14. Special Funding Instructions and Additional Information 15. GEREATOR SOFFERORS CERTIFICATION: Interby declars that the contents of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are fully and accurately described above by the proper shipping name, and are dessified, packaged, Exocote Locatly for the content of the consignment are lawable of Advaccose displants of the consignment are lawable of Advaccose displants of a lawable of Advaccose displants of the consignment are lawable of Advaccose displants of the advaccose displants of the consignment are lawable of Advaccose displants of the advaccose displant of the advaccose displants												Kall And Statistic Sector Adve	
14. Special Handling Instructions and Additional Information (1) 1552136-00 - ER.G(171) HAZARDOUS WASTE DEER 16. GENERATOR'SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consegnment are fully and accurately described above by the proper shipping name, and are classified, packaged. Experimental and babled/placated, and are in all respects in proper condition for transport according to applicable international and radioul governmental regulations. If export shipping name, and are classified, packaged. Expert of the the vester maintaking statement identified in 40 CFR 26227(a) (f1 am a large quarkity generation and Handboard placemental regulations. If export shipping name, and are classified, packaged. Experiments and in the Primary is real classified. The vester maintaking statement identified in 40 CFR 26227(a) (f1 am a large quarkity generation ac (A) 444mms, small quarkity generator) is true. Constrained on Supports Primed/Typed Name Signiful and the avester maintaking is the mai	3.					a di data da na sena se tanàn ini dia mangkan							
14. Special Handling Instructions and Additional Information (1) 1552136-00 - ER.G(171) HAZARDOUS WASTE DEER 16. GENERATOR'SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consegnment are fully and accurately described above by the proper shipping name, and are classified, packaged. Experimental and babled/placated, and are in all respects in proper condition for transport according to applicable international and radioul governmental regulations. If export shipping name, and are classified, packaged. Expert of the the vester maintaking statement identified in 40 CFR 26227(a) (f1 am a large quarkity generation and Handboard placemental regulations. If export shipping name, and are classified, packaged. Experiments and in the Primary is real classified. The vester maintaking statement identified in 40 CFR 26227(a) (f1 am a large quarkity generation ac (A) 444mms, small quarkity generator) is true. Constrained on Supports Primed/Typed Name Signiful and the avester maintaking is the mai													
14. Special Handling Instructions and Additional Information (1) 1552135-00 - ER.G(171) HAZARDOUS WASTE DEER 15. GENERATOR'SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consegment are fully and accurately described above by the proper shipping name, and are classified, peckaged, Export from the twester maintacion statement identified in 40 CFR 25227(a) (f1 am a large quantity periorating or 40447555, and a maintacional and radional governmental regulations. If export is from the twester maintacion statement identified in 40 CFR 25227(a) (f1 am a large quantity periorating or 40447555, and a maintacional and radional governmental regulations. If export is from the twester maintacion attement is destined in 40 CFR 25227(a) (f1 am a large quantity periorating or 40447555, and a maintacional governmental regulations. If export is true. Comparise/OUNDERSTOR STRING Type Name North Day Year Generglade/OUNDERSTOR information Import to U.S. Transporter signature (f1 period Name) Signature Month Day Year G P2 10. Bioexpanny Signature 11. Transporter Advocwidgement of Receipt of Materials Signature Transporter Spring Type Name Signature Month Day Year Bioexpanny 18. Discorpanny Isonary Control Spring Type 18. Discorpanny Isonary Control Spring Type 18. Discorpanny Month Day Year 18. Discorpanny Signature <t< td=""><td>4</td><td>ana ang ang ang ang ang ang ang ang ang</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4	ana ang ang ang ang ang ang ang ang ang											
(1) 1552135-00 - ERG(171) HAZARDOUS WASTE DEBR 16. GENERATOR SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper stipping name, and are deasified, packaged. Territed and labeled/placatedd, and are in all respects in proper condition for transport according to applicable international and antibiand generating generating generating accurately described above by the proper stipping name, and are deasified, packaged. Territed and labeled/placatedd, and are in all respects in proper condition for transport according to applicable international and antibiand properties of the science from the feature discound of the science from the feature generating or applicable international and antibiand properties and an the Primary Torify that the content confirm to the territor of the attached feature of consent. Consentiation of the uses of information advectories of the accord propert stipping name, and are deasified, packaged. Consent to the uses of information advectories of the accord propert stipping name, and are deasified, packaged. Consent to the uses of information advectories of the accord propert of the uses of information advectories of the uses of the use of the uses of the uses of the use													
(1) 1552135-00 - ERG(171) HAZARDOUS WASTE DEBR 16. GENERATOR SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper stipping name, and are deasified, packaged. Territed and labeled/placatedd, and are in all respects in proper condition for transport according to applicable international and antibiand generating generating generating accurately described above by the proper stipping name, and are deasified, packaged. Territed and labeled/placatedd, and are in all respects in proper condition for transport according to applicable international and antibiand properties of the science from the feature discound of the science from the feature generating or applicable international and antibiand properties and an the Primary Torify that the content confirm to the territor of the attached feature of consent. Consentiation of the uses of information advectories of the accord propert stipping name, and are deasified, packaged. Consent to the uses of information advectories of the accord propert stipping name, and are deasified, packaged. Consent to the uses of information advectories of the accord propert of the uses of information advectories of the uses of the use of the uses of the uses of the use													
15. GENERATOR'SIGFEROR'S CERTIFICATION: I hereby dedare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are dassified, packaged, marked and labeled/placated, and are in all respects in proper condition for transport according to applicable international method governmental regulations. If export shipping name, and are dassified, packaged, located the waste international baleled/placed the waste international actional governmental regulations. If export shipping name, and are dassified, packaged, located the waste frequent control to the transform of the	14. Special Ha	andling Instructions	and Additional Info	ormation					1				
15. GENERATOR'SIGFEROR'S CERTIFICATION: I hereby dedare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are dassified, packaged, marked and labeled/placated, and are in all respects in proper condition for transport according to applicable international method governmental regulations. If export shipping name, and are dassified, packaged, located the waste international baleled/placed the waste international actional governmental regulations. If export shipping name, and are dassified, packaged, located the waste frequent control to the transform of the	(1) 1652	2136-00 - ERG	(171) HAZAF	COUS WAST	EDERR								
Exporter. Leartify that the contents of this consignment conform to the terms of the attached EPA Activocular and national governmental regulations. If export shipment and I am the Primary Leartify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantify generated) is thus. Genergiosa/Offeor's Printed/Typed Name Signature 16. Informational Shipments International Shipments Inapport to U.S. Transporter 1 Printed/Typed Name Signature Month Day Learning Signature Month Day Vear B. Bioreparter 2 Printed/Typed Name Signature Month Day Vear B. Bioreparter 2 Printed/Typed Name Signature Month Day Year 18. Discrepancy 18. Discrepancy 18. Discrepancy 18. Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposel, and recycling systems) 1 4. 20. Designation Facility (or Generator) Month 21. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous malerials covered by the manifest e			2 · · · · · · · · · · · · · · · · · · ·		and the second second								
Exporter. Leartify that the contents of this consignment conform to the terms of the attached EPA Activocular and national governmental regulations. If export shipment and I am the Primary Leartify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantify generated) is thus. Genergiosa/Offeor's Printed/Typed Name Signature 16. Informational Shipments International Shipments Inapport to U.S. Transporter 1 Printed/Typed Name Signature Month Day Learning Signature Month Day Vear B. Bioreparter 2 Printed/Typed Name Signature Month Day Vear B. Bioreparter 2 Printed/Typed Name Signature Month Day Year 18. Discrepancy 18. Discrepancy 18. Discrepancy 18. Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposel, and recycling systems) 1 4. 20. Designation Facility (or Generator) Month 21. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous malerials covered by the manifest e	15 CENEDA	TOP'S/OFFEDOR	C CEDTIFICATIO	N 11 1 1 1	*****								
Loertify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantify equantify encention of 20 cFR/HTems_small quantify generator) is true. Month Day Year Generation/Officer's Printed/Typed Name Month Day Year Image: Consent. Signature Month Day Year Image: Consent. If International Shipments Image: Consent. Month Day Year If International Shipments Image: Consent. Image: Consent. It I and statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity generator) and the statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity and the statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity and the statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity and the statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represented to a statement identified in 40 CFR 262 27(a) (if I am a large quantify equancity is represente								described abov	e by the proper shi	pping name	, and are classifi	ed, packa	aged,
Signature Month Day Year 16. International Shipments Import to U.S. Export from U.S. Port of entrylexit. Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Date leaving U.S. Transporter 2 Printed/Typed Name Signature Month Day Year 18. Discrepancy Indication Space Quantity Discrepancy Month Day Year 18. Discrepancy Indication Space Quantity Transporter Acknowledgment of Receipt of Materials Fruit Rejection Fruit Rejection 18. Discrepancy Indication Space Quantity Transporter Acknowledgment of Conservency Fruit Rejection 18. Discrepancy Indication Space Quantity Transporter Acknowledgment of Action Action Space Indication Space Partial Rejection 18. Discrepancy Indication Space Quantity Transporter Active Action Act	Exporter,	I certify that the cor nat the waste minim	tents of this consi zation statement	ignment conform to identified in 40 CER	the terms of the attache	d EPA Acknowle	dgment of Consent.	autorial govorni	normal regulatoria.	n export Shi		uie Prima	ary
16. International Shipments Import to U.S. Transporter signature (for exports only): Date leaving U.S.: 17. Transporter 1 Printed/Typed Name Month 18. Discrepancy Month 18. Discrepancy Item is the international second seco	Generator's/Of	feror's Printed/Type	d Name			Signa	Alon or (o) (II rain a s	mail quantity ge	nerator) is true.		Month	Dav	
In the methanolis singlifiends Transporter signature (for exports only): Transporter ignature (for exports only): Transporter i Printed/Typed Name Signature Month Day Year Bignature Month Day Year Bignature Month Day Year 1 Month Day Year 1 Month Day Year 1 Month Day Year 1<	20	insim	mosn	S			\sim						
Transporter signature (or exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Primed/Typed Name Signature Month Day Year 18. Discrepancy Month 18. Discrepancy Quantity OF Hondee Transporter Acknowledgment of Receipt of Materials 18. Discrepancy Month 18. Discrepancy Month 18. Discrepancy Internate Facility (or Generator) 18. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: Internate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) Internate facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except asforded in Item 18a Printed/Typed Name Month Day Year Month Day Year Ver Signature Month 10. Lossignature of Alternate Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except asforded in Item 18a Month 18. Discrepanced Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except asforded in Item 18a Month	16. Internationa	al Shipments	Import to			Export from	Port of					100	1000
Transporter 1 Primed/Typed Name Month Day Year 18. Discrepancy Month Day Year 18. Discrepancy Item and the second	A REAL PROPERTY OF THE PARTY OF	COLOR DE LA COL	only):						$-\Lambda$				
Signature Month Day Year Transporter 2 Printed/Typed Name Signature Month Day Year 18. Discrepancy Item and the second	17. Iransporter			als	1945-05-00 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		\bigcirc		1/				
Transporter 2 Printed/Typed Name Signature Month Day Year 18. Discrepancy Idea Discrepancy Idea Discrepancy Partial Rejection Full Rejection 18. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection 18. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection 18. Alternate Facility (or Generator) U.S. EPA ID Number U.S. EPA ID Number 18. Signature of Alternate Facility (or Generator) U.S. EPA ID Number U.S. EPA ID Number 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 10. Lesignated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 188 Month Day Year Printed/Typed Name Action of receipt of hazardous materials covered by the manifest except as noted in Item 188 Month Day Year				Lans		Signa	ture X b	~IK	X			Day	
18. Discrepancy 18. Discrepancy Indication Space Quantity OK to note Quantity 18. Discrepancy Indication Space Quantity OK to note Changes to line issection 12 per Nex Amon't 926120 18. Alternate Facility (or Generator) Manifest Reference Number: 18. Signature of Alternate Facility (or Generator) U.S. EPA ID Number 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 1. 2. 3. 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as hoted in Item 18e Month Day Printed/Typed Name Signature Month Day Year	Transporter 2 P			0		Signa		4			0	a	2020
18a. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection 18b. Alternate Facility (or Generator) Iscorepancy Indication Space Manifest Reference Number: U.S. EPAID Number 18b. Alternate Facility (or Generator) U.S. EPAID Number U.S. EPAID Number 18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 1. 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Month Day Year Printed/Typed Name Alternate Signature Month Day Year						Signa I	luie				Month	Day	Year
OK to note Changes to line Isection 12 Per Alex Amont 4/24/20 Manifest Reference Number: Partial Rejection 18b. Alternate Facility (or Generator) Isection 12 Per Alex Amont 4/24/20 Manifest Reference Number: U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) U.S. EPA ID Number 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. 1. 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except ashoted in Item 18a Month Day Year Printed/Typed Name Amonth Day Year Month Day Year	Contrast of the Parce for Decision of the Decision of the Parce of the	1			and the second								
18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 1 18b. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 1. 2. 3. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except ashoted in Item 18a 4. Printed/Typed Name Signature Month Day Year Month Day Year Nonth Day Year	18a. Discrepand	cy Indication Space	Ouent	it.	Π.					and an oral data constant of		-	
18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 1 18b. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 4. 1. 2. 3. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except ashoted in Item 18a 4. Printed/Typed Name Signature Month Day Year Month Day Year Nonth Day Year	oktor	ide cha	res to	line 150	ection 12	per A	ex Amor	16/71	Partial Reject	tion		Full Rejec	ction
	Contraction of the local data and the local data an					`	Manifest Referen	e Number:	A	R			
18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1 1. 2. 3. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as hoted in Item 18a 4. Month Day Year Month Day Year Month Day Year Month Day Year	TOD. Alternate F	acility (or Generator)						U.S. EPA ID Nu	mber	9		
18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1 1. 2. 3. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as hoted in Item 18a 4. Month Day Year Month Day Year Month Day Year Month Day Year	Facility's Phone												
19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1<			or Generator)	an a		and une of the second second second							
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as hoted in Item 18a Printed/Typed Name Action of Printed/Typed Name Nonth Day Year			/								Month	Day	Year
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as hoted in Item 18a Printed/Typed Name Action of Printed/Typed Name Nonth Day Year	19. Hazardous V	Vaste Report Manag	gement Method C	odes (i.e., codes for	hazardous waste treatr	nent disposal a	d recycling sustant		a and a new second s				
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Active Signature Month Day Year	1. [.]	1111	2	2		3.	recycling systems)		4				
Ashley Ahre Signature Month Day Year	H	14/						\sim	7.				
Ashley Ahre Signature Month Day Year	20. Designated F	acility Owner or Op	erator: Certificatio	on of receipt of haza	rdous materials covered	by the manifest	except as noted in Ite	m 18a			M. M. M. S.		
MARCI CILLER 100	ranted/Typed Na	ame Acl	IPM	ALO	. 0			V			Month	Day	Year
	Form 8700.22	(Pov 12 17) D	1101	HWY	<u>Marian</u>		$\langle \rangle \rangle$				6	25	1201

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM

Ht980