

Memorandum

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

To: Charlotte Mitchell, PE, City of Wenatchee

From: Nick E. Rohrbach, Ryan M. Tobias and Dustin G. Wasley, PE, GeoEngineers, Inc.

Date: June 26, 2019 June 26, 2019

File: 4296-008-00

Subject: Revised Technical Memorandum for Saddle Rock Interim Remedial Action Field Sampling

Summary: April 2019

INTRODUCTION

This revised technical memorandum (memo) describes the soil sampling and analysis activities completed in support of the interim remedial action (IRA) design data gap assessment (DGA) at the Saddle Rock Natural Area (Site) in Wenatchee, Washington (Figure 1). The Site is comprised of eight areas of interest (AOIs) originally delineated by Hart Crowser (2013a and 2013b) as part of their Remedial Investigation/Feasibility Study (RI/FS). The AOIs were identified as SR01 through SR08 and are associated with historical mining activities and elevated metals concentrations in waste rock piles as shown in Site Plan – Overall, Figure 2.

SR07 is believed to be naturally occurring materials by all parties, so no samples were collected during this DGA. The source piles of SR06 may also have been the result of road work performed in 1957 (RLR 2013) and is likely not from historical mining efforts. The RI identified arsenic as the primary constituent of concern (COC) for human-health receptors across all AOIs.

This memo was revised to address the Washington State Department of Ecology's (Ecology) comments received on May 30, 2019 and a subsequent conference call with the City of Wenatchee (City) and Ecology on June 7, 2019.

PURPOSE

The purpose of this revised memo and the recently completed data gap field investigation was to:

- Determine the extent of contamination in the downslope "toe" areas of the waste rock piles as it was not previously defined; and
- Assess the suitability of the original cleanup level of 14.4 milligrams per kilogram (mg/kg) for total arsenic. Ecology previously concluded native soils in the hydrothermally altered units may have considerably higher natively occurring concentrations of total arsenic than in the adjacent formations. Thus, geological occurrence was considered in determining natural background concentrations for total arsenic and may not be associated with historical mining operations.

SUMMARY FIELD ACTIVITIES

X-ray fluorescence (XRF) field screening and laboratory soil samples were collected between April 8 and 11, 2019. The DGA incorporated upslope and downslope evaluation using XRF measurements and

confirmation sampling using analytical laboratory analyses to assist with development of source-specific background concentrations and delineation of downslope contamination. Each waste rock pile was laterally delineated in the field via XRF screening, including downslope boundaries, using temporary flagging. Soil sample locations collected for off-site laboratory analysis were marked via wood staking. Temporary flagging and wood stake locations were surveyed by a Washington Professional Land Surveyor (PLS) and those updated aerial extents are included in this document. Surficial topography data was also collected by the PLS to assist in evaluating vertical dimensions and updated volume estimates for the design report.

The following sections summarizes XRF field screening, soil sample collection methods and processing procedures for the seven AOIs in accordance with the Sampling and Analysis Plan (SAP) (GeoEngineers 2019).

XRF Field Screening

Source piles SR01, 02, 03, 04, 05, 06 and 08 were screened with the XRF typically from three depth intervals (0 to 2 inches, 2 to 4 inches and 4 to 6 inches) for total arsenic as described below;

- SR01, 6 upslope (US-01 to US-06) and 9 downslope locations (DS-01 to DS-09)
- SR02, 5 upslope (US-01 to US-05) and 5 downslope locations (DS-01 to DS-05)
- SR03, 5 upslope (US-01 to US-05) and 10 downslope locations (DS-01 to DS-10)
- SR04, 5 upslope (US-01 to US-05) and 6 downslope locations (DS-01 to DS-06)
- SR05, 6 upslope (US-01 to US-06) and 8 downslope locations (DS-01 to DS-08)
- SR06, 16 upslope (US-01 to US-16) and 15 downslope locations (DS-01 to DS-15)
- SR08, 7 upslope (US-01 to US-07) and 5 downslope locations (DS-01 to DS-05)

A total of 317 XRF samples were analyzed from upslope and downslope locations at 108 locations described above, not including duplicates. XRF concentrations ranged from below the limits of detection (LOD) to 728 parts per million (ppm), excluding duplicates. A detailed statistical analysis of the XRF results is provided below.

A summary of the XRF field screening total arsenic results are presented in Table 1. Field forms including daily field notes and XRF results are provided in Attachment A. The raw XRF data outputs are provided in Attachment B. Photos of each AOI are provided in Attachment C.

Confirmation Soil Sampling

Confirmation soil samples were submitted to the laboratory for total arsenic analysis via U.S. Environmental Protection Agency (EPA) Method 6020B. Samples were selected for laboratory analysis based on the range of XRF readings of total arsenic to confirm high, medium, and low XRF results upslope and downslope from waste rock piles. Table 2 provides the results of the laboratory analysis for soil samples collected for total arsenic.

A smaller subset of laboratory samples (approximately 20 percent) was submitted for total metals including total aluminum, barium, iron, lead, manganese, mercury, selenium and silver per EPA series 6010D/6020B/7471B. Discrete soil samples were homogenized from each depth interval in a stainless bowl and collected in laboratory-supplied containers using a decontaminated stainless-trowel. Samples were placed in a cooler with ice and submitted under chain-of-custody protocol to OnSite Environmental, Inc. in Redmond,

Washington (Onsite) for analysis. Results for the soil samples collected and analyzed for total metals are presented in Table 3.

Below is the summary of the total samples submitted from each upslope and downslope pile:

- SR01, three upslope and two downslope locations
- SR02, three upslope and two downslope locations
- SR03, two upslope and four downslope locations
- SR04, three upslope and two downslope locations
- SR05, three upslope and three downslope locations
- SR06, six upslope and six downslope locations
- SR08, two upslope and two downslope locations.

A summary of the analytical sampling results for total arsenic and total metals are provided in Tables 2 and 3. Attachment D provides laboratory analytical data reported by OnSite.

XRF and Laboratory Correlation

Comparability of the XRF data with the laboratory results were assessed using the correlation plot provided in Chart 1. The linear regression calculation identified a correlation coefficient (R²) of 0.9158, which indicates a strong linear correlation between XRF and laboratory data. In addition, Chart 2 provides a visual output of the Ordinary Least Squares (OLS) regression comparison between the laboratory and XRF arsenic data. Chart 3 shows the Mann-Kendall Trend Test and Chart 4 depicts the quantile-quantile (Q-Q plot) of the distribution of laboratory and XRF arsenic data (Attachment E). Based on discussions with Ecology, the XRF data have been demonstrated to be fully usable. Thus, XRF data are considered adequate for statistical analyses and cleanup level determination.

SITE SPECIFIC BACKGROUND EVALUATION

GeoEngineers performed an evaluation of background total arsenic associated with mapped hydrothermally altered rocks within the Swauk Formation mapped by Gresens (1983). Background soil sample locations were identified upslope from waste rock piles and screened in the field with an XRF to assess metals concentrations. A total of 91 background (upslope) soil samples from SR01, SR02, SR03, SR04, SR05 and SR08 were screened in the field by GeoEngineers.

SR06 was excluded, as it does not appear to have originated from historical mining activity and no mining features were observed.

Background Assessment of All Piles

A collective background assessment of all piles was performed to identify site-wide upslope concentrations of total arsenic Results of the XRF analysis identified a mean total arsenic concentration from all upslope samples at 45.42 mg/kg. In accordance with Washington Administrative Code (WAC) 170-340-709(3), background arsenic was assessed using lognormally distributed data sets, where background is defined as the true upper

 90^{th} percentile or four times the true 50^{th} percentile, whichever is lower. GeoEngineers used Ecology's MTCAStat97 program to calculate the 90^{th} percentile and four times the 50^{th} percentile (Ecology 1997). The results of the analysis indicated the 90^{th} percentile (94.99 mg/kg; [rounded to 95 mg/kg]) was lower than four times the 50^{th} percentile (117.55 mg/kg).

Since WAC 170-340-709(5)(c)) also allows "other methods approved by the Department", we also assessed the 95 percent upper confidence limit (UCL) on the mean. The EPA ProUCL Version 5.1 software was initially used to evaluate the appropriate Goodness-of-Fit (GOF) module for the samples. The GOF test indicated the data appeared lognormal at the 0.05 significance level. ProUCL was then used to develop a 95 percent UCL value for background arsenic. A UCL with 95 percent confidence for background total arsenic concentrations in soil represents the value that, when repeatedly calculated for randomly drawn subsets of size (n) from a population, equals or exceeds the population arithmetic mean 95 percent of the time. The calculated 95 UCL value for upslope arsenic across the site was 53.68 mg/kg.

Background Assessment of Individual Piles

A background assessment of individual piles was also performed to identify pile-specific upslope concentrations of total arsenic. Results of the XRF analysis indicated mean total arsenic concentrations varied from 33.73 mg/kg at SR02 to 73.69 mg/kg at SR08. Data exhibited a nonparametric distribution at SR01, SR03 and SR04; while lognormal data distribution were observed at SR02, SR05 and SR08. The 90th percentile, four times the true 50th percentile, and 95 UCL were calculated for each pile. General statistics for upslope total arsenic concentrations at each pile are provided below in Table 4.

Background Discussion

Due to the lognormal distribution of the data for all piles, and the range of concentrations from below the detection limit to 433 mg/kg, the 90th percentile value of 95 mg/kg is considered the most appropriate background (cleanup) level for the overall site. This proposed cleanup goal represents a concentration over six times higher than the original goal of 14.4 mg/kg calculated during the RI (Hart Crowser 2013). The EPA ProUCL outputs and MTCAStat97 calculations are provided in Attachment E. General statistics for background XRF arsenic concentrations are summarized in the table below:

TABLE 4. GENERAL STATISTICS FOR TOTAL ARSENIC BACKGROUND CONCENTRATIONS

Pile	Data Distribution (GOF Test)	n	Min	Max	Mean	Med	SD	90 th Percentile (Background)	4 x 50 th Percentile	95 UCL
SR01	Nonparametric	15	16	75	47.53	42	23.34	73.8	168	73.8
SR02	Lognormal	15	18	72	33.73	29	13.51	51.95	126.57	39.88
SR03	Nonparametric	15	6	101	19.47	12	23.62	57.8	48	39.97
SR04	Nonparametric	15	8	186	37	17	48.37	133.8	68	91.44
SR05	Lognormal	15	15	153	59.2	44	46.32	127.65	181.06	89.28
SR08	Lognormal	16	7	433	73.69	20.5	107.8	197.9	136.1	191.1
All Piles	Lognormal	91	6	433	45.42	28	56.16	95	117.55	53.68

Notes: GOF = Goodness-of-Fit; n = number of samples; Min = minimum; Max = maximum; Med = median; SD = standard deviation; UCL = upper confidence limit; MTCA = Model Toxics Control Act

Values are shown in mg/kg

Bold represents the proposed cleanup level for the site

XRF RESULTS - COMPARISON OF UPSLOPE AND DOWNSLOPE ARSENIC CONCENTRATIONS

As requested in the Ecology (2018) memorandum, total arsenic XRF results were statistically compared between upslope and downslope using EPA ProUCL software. Data were compiled to test the null hypothesis:

■ (H₀) that downslope total arsenic concentrations were less than or equal to upslope arsenic concentrations (background).

A data set comprised of surficial samples collected from the 0- to 2-, 2- to 4-, and 4- to 6-inch-depth intervals upslope from the waste rock piles was compared to the downslope data set at comparable depth intervals. The two-sample nonparametric Wilcoxon-Mann-Whitney (WMW) test was used for data sets without non-detect values to determine if the measures of central locations (mean, median) of the two data sets are significantly different. For data sets with non-detect values, the Gehan and Tarone-Ware tests were used, since these tests are better suited to perform two-sample hypothesis tests using data sets with multiple detection limits (EPA 2015).

To assess the statistical difference between upslope and downslope, we used a null hypothesis and alternative hypothesis to compare the data sets from potentially impacted areas with background data. The ProUCL output for the tests compared the probability (i.e., p-value) with the critical value (i.e., alpha) of 0.05 (set at a 95 percent confidence level). Results of the statistical output from ProUCL are presented in Attachment E.

SR01

The upslope XRF data set for SR01 contained values from five locations (n=15), while the downslope data set contained values from four locations (n=12) used for statistical analyses (Figure 3). Samples SR01-DS-03, SR01-DS-04, SR01-DS-05, SR01-DS-06, and SR01-DS-07 were ultimately considered to have been part of the waste rock pile and were omitted from the analysis. All upslope data collected from SR01 were considered valid and included in the statistical comparison.

The SR01 data set contained values above detection limits, and therefore, the WMW method was used to test the null hypothesis. The mean total arsenic concentration downslope was 29.75 mg/kg, while the mean upslope concentration was 47.53 mg/kg. The test identified a p-value of 0.949, which is greater than the alpha value of 0.05. As such, we do not reject the H₀, and it is determined the downslope total arsenic sample set is less or equal to upslope (background).

SR02

For the statistical analyses run, the upslope (n=15) and downslope (n=15) XRF data sets for SR02 each contained values from five locations (n=30) (Figure 4). All data collected from SR02 were considered valid and included in the statistical comparison.

The SR02 data set contained values above detection limits, and therefore, the WMW method was used to test the null hypothesis. The mean total arsenic concentration downslope was 24.2 mg/kg, while the mean upslope concentration was 33.73 mg/kg. The test identified a p-value of 0.992, which is above than the alpha value of 0.05. Thus, we do not reject the H₀, indicating downslope total arsenic concentrations were less than or equal to background.

SR03

The upslope data set used for statistical evaluation for SR03 included values from 5 locations (n=15), while the downslope data set contained values from 10 locations (n=21). Samples SR03-DS-01, SR03-DS-05, and SR03-DS-07 were ultimately considered to have been part of the waste rock pile and were excluded from the analysis. All upslope data collected from SR03 were considered valid and included in the statistical comparison.

The SR03 data set contained some values below detection limits. Therefore, the Gehan and Tarone-Ware methods were used to test the null hypothesis. The mean total arsenic concentration downslope was 54.62 mg/kg, while the mean upslope concentration was 23.55 mg/kg. The Gehan and Tarone-Ware tests exhibited p-values below the alpha value of 0.05. Thus, we reject the H_0 , which indicates a statistically significant difference between the two data sets.

Due to the difference between upslope and downslope arsenic concentrations, additional sampling was completed downslope to delineate the lateral extent of elevated arsenic. During the investigation, a vegetated downslope berm was delineated below the main waste rock pile. XRF screening within the berm identified elevated concentrations of arsenic (up to 138 mg/kg), suggesting potential anthropogenic impacts downslope from the pile. Additional XRF screening downslope from the berm indicated total arsenic concentrations were near or below the mean SRO3 background concentration of 23.55 mg/kg (Figure 5).

The bermed area downslope from the waste rock pile at SR03 was well-vegetated, with native bunchgrass species and western serviceberry established on the slopes. Due to the presence of this vegetation, there is no immediate exposure to the shallow soils. The presence of bunchgrass species, with extensive root systems, stabilizes the slopes below the waste rock pile and provides forage for native species. The site is also mapped within the Mission Creek Mule Deer Winter Range (WDFW 2019), and retention of the native bunchgrass community established on the berm is considered beneficial for native wildlife. Furthermore, the mean downslope total arsenic concentration of 54.62 mg/kg is below the calculated 90th percentile and proposed cleanup goal of 95 mg/kg. As such, it is recommended waste rock pile at SR03 be removed and the vegetated berm below the waste rock pile be preserved, as there is no direct exposure for human receptors and disturbance would result in potential deleterious habitat loss.

SR04

The upslope data set used for statistical evaluation for SR04 included values from five locations (n=15), and the downslope data set contained values from five locations (n=15). Sample SR04-DS-01 was ultimately considered to have been part of the waste rock pile and was excluded from the analysis. All upslope data collected from SR04 were considered valid and included in the statistical comparison.

The SR04 data set contained values above detection limits, and therefore, the WMW method was used to test the null hypothesis. The mean total arsenic concentration downslope was 61.67~mg/kg, while the mean upslope concentration was 37~mg/kg. The WMW test exhibited a p-value below the alpha value of 0.05. Thus, we reject the H_0 , which indicates a statistically significant difference between the two data sets.

Due to the difference between upslope and downslope arsenic concentrations, additional assessment was completed downslope to further delineate the lateral extent of elevated arsenic. Similar to the pile at SR03, a downslope berm was delineated below the main waste rock pile. XRF screening within the berm at SR04 also identified elevated concentrations of arsenic, indicating human-induced alteration. Additional XRF screening

downslope from the berm indicated total arsenic concentrations were below the mean SR04 background concentration of 37 mg/kg (Figure 6).

The bermed area downslope from the waste rock pile at SR04 was also well-vegetated, with native bunchgrass species established on the slopes. SR04 exhibited similar characteristics to SR03, and there is no immediate exposure to human receptors to the shallow soils. The presence of bunchgrass species, with extensive root systems, stabilizes the slopes below the waste rock pile and provides forage for native species. SR04 is also mapped within the Mission Creek Winter Range, and retention of the native bunchgrass community established on the berm is considered beneficial for native wildlife. Furthermore, the mean downslope total arsenic concentration of 61.67 mg/kg is below the calculated 90th percentile and proposed cleanup goal of 95 mg/kg. Therefore, it is recommended waste rock pile at SR04 be removed and the berm below the waste rock pile be preserved, as there is no direct exposure for human receptors and disturbance would result in possible loss of habitat.

SR05

The upslope XRF data set for SR05 used in the statistical analyses included values from five locations (n=15), while the downslope data set contained values from seven locations (n=21). The data from upslope location SR05-US-04 and downslope location SR05-DS-04 were excluded since these samples appeared to be collected directly on an eroded mineralized outcrop, which skewed the total arsenic concentrations upward (Figure 7).

The SR05 data set contained values above detection limits. As such, the WMW method was used to test the null hypothesis. The mean total arsenic concentration downslope was 57.62 mg/kg, while the mean upslope concentration was 59.2 mg/kg. The WMW test identified a p-value of 0.172, which is greater than the alpha value of 0.05. As such, we do not reject the H₀ demonstrating the two sample sets are from similar distributions and downslope total arsenic concentrations were less than or equal to background.

SR06

For statistical evaluation, the upslope XRF data set for SR06 contained values from 16 locations (n=48), while the downslope data set contained values from 15 locations (n=45). No mining features were observed at SR06 and all data were considered valid and included in the statistical comparison.

The SR06 data set contained some values below detection limits. Therefore, the Gehan and Tarone-Ware methods were used to test the null hypothesis. The mean total arsenic concentration downslope was 212 mg/kg, while the mean upslope concentration was 101.5 mg/kg. Both tests identified p-values below the alpha value of 0.05. As such, we reject the H₀, indicating the two sample sets are not from similar distributions.

Although an overall statistical difference was observed between upslope and downslope at SR06, there appeared to be a thin mineralized zone upslope from the road cut that quickly trended to lower metals concentrations (to below detection limits) with distance to the southeast. In addition, the highest XRF concentration (728 mg/kg) was identified upslope from the road cut, which may be representative of erosion of the underlying mineralized structures and naturally elevated arsenic. Moreover, the mean upslope concentration of 101.5 mg/kg exceeds the 95 UCL value and cleanup goal of 88.6 mg/kg for the site. Furthermore, elevated arsenic concentrations were identified at least 100 feet northwest (across a dry gulch) and 300 feet downslope from the road cut, well beyond presumed anthropogenic impacts (Figure 8). This suggests an extensive lateral zone of naturally elevated arsenic concentrations at SR06, upslope, cross-

gradient, and downslope from the road. Considering there is no evidence of mining activity at SR06, the mean upslope concentration of total arsenic exceeds the proposed cleanup level, and a widespread zone of naturally elevated arsenic is present in the area; removal is not considered practical or feasible. Thus, institutional and engineering controls, along with potential hiking path realignment to areas identified with lower total arsenic concentrations are recommended for SR06.

SR08

The upslope XRF data set for SR08 used for the statistical evaluation included values from six locations (n=16), while the downslope data set contained values from five locations (n=15) (Figure 5). Sample SR08-US-07 only contained one value, collected from the 0- to 2-inch interval. In addition, the data from upslope location SR08-US-04 were omitted since the samples appeared to be collected directly on an eroded mineralized outcrop, which skewed the upslope total arsenic concentrations higher.

The SR08 data set contained some values below detection limits. Therefore, the Gehan and Tarone-Ware methods were used to test the null hypothesis. The mean total arsenic concentration downslope was 19.64 mg/kg, while the mean upslope concentration was 93.58 mg/kg. The Gehan test exhibited a p-value of 0.921, while the Tarone-Ware test identified p-value of 0.844, which are above than the alpha value of 0.05. Thus, we do not reject the H₀, indicating downslope total arsenic concentrations were less than or equal to background.

Summary of Upslope and Downslope XRF Data

In general, XRF arsenic data generated from the site indicated there was no statistical difference between the downslope and upslope distributions at piles SR01, SR02, SR05 and SR08. Source piles SR03 and SR04 contained downslope berms, apparently the result of human-induced alterations. Statistical analyses from these piles indicated a significant difference between downslope and upslope data sets. However, as discussed, the berms were delineated in the field and disruption to those vegetated slopes is considered potentially detrimental to the sagebrush-steppe habitat. Pile SR06 also demonstrated a statistical difference between downslope and upslope data sets. Nonetheless, both upslope and downslope mean arsenic concentrations were above the proposed cleanup goal, and widespread elevated arsenic conditions are not likely indicative of former mining activities at SR06.

Summary statistics for the upslope and downslope comparison is provided in Table 5 below.

TABLE 5. SUMMARY STATISTICS FOR XRF UPSLOPE AND DOWNSLOPE ARSENIC CONCENTRATIONS

	Mean Downslope	Mean Upslope			Proposed Cleanup	Downslope	Upslope Mean
Source Pile	mg/	′kg	p-value	Null Hypothesis	Goal (mg/kg)	Mean Exceeds Cleanup Goal?	Exceeds Cleanup Goal?
SR01	29.75	47.53	0.949	Do Not Reject		No	No
SR02	24.2	33.73	0.992	Do Not Reject		No	No
SR03	54.62	23.55	2.3766E-5	Reject		No	No
SR04	61.67	37	0.00131	Reject	95	No	No
SR05	57.62	59.2	0.172	Do Not Reject		No	No
SR06*	212	101.5	1.564E-13	Reject		Yes	Yes
SR08	19.64	93.58	0.844	No Not Reject		No	No

^{*} SR06 did not appear to be associated with historical mining activities but is shown for comparison purposes in the table.

LABORATORY ANALYTICAL RESULTS SUMMARY

Additional detailed analysis of background, waste rock, bermed soils, and downslope areas was completed per Ecology comments, as part of this assessment. This task incorporated waste rock data compiled by Hart Crowser (2013a) with XRF data generated during the April 2019 field assessment. A summary of the results is provided in Table 6 below:

TABLE 6. SUMMARY STATISTICS FOR ARSENIC IN SOIL AND WASTE ROCK PILES

Source Pile	Sub Area	Locations	Samples (n)	Min	Max	Mean	Median	SD
	Waste Rock	11	19	53.3	212	122.2	111	50.69
SR01	Background	5	15	16	75	47.53	41.5	23.34
	Downslope	4	12	17	48	29.75	28.77	8.159
	Waste Rock	10	10	82.8	513	187	167	121.3
SR02	Background	5	15	18	72	33.73	29	13.51
	Downslope	5	15	11	44	24.2	24	9.451
	Waste Rock	14	20	49	417	113.9	93.65	80.66
SR03	Bermed Area	1	3	77	138	106.7	105	30.53
SKUS	Background	5	15	7	101	23.55	12	26.67
	Downslope	7	21	21	138	54.62	45	32.2
	Waste Rock	6	8	43	134	86.96	82	32.82
SB04	Bermed Area	2	6	28	160	76.17	65	49.81
SR04	Background	5	15	8	186	37	17	48.37
	Downslope	3	9	31	85	52	53	18.41
SR05	Waste Rock	5	5	122	1,290	508.2	216	495.6
силс	Background	5	15	15	153	59.2	44	46.32

Source Pile	Sub Area	Locations	Samples (n)	Min	Max	Mean	Median	SD
	Downslope	7	21	29	102	57.62	52	20.81
CD06*	Background	16	48	10	728	101.5	42.5	156.2
SR06*	Downslope	15	45	74	675	212	177	128
	Waste Rock	5	5	305	412	355.2	366	48.2
SR08	Background	7	16	7	433	83.14	21	112.4
	Downslope	5	15	10	38	19.64	14	7.685

Notes: n = number of samples; Min = minimum; Max = maximum; SD = standard deviation

Values are shown in mg/kg

Raw statistical output and accompanying summary statistics box and whisker plots are provided in Attachment E. The box and whisker plots are depicted in the sequence of higher to lower topography (i.e., background, waste rock, bermed area, and downslope) (Attachment E).

As presented in Tables 2 and 3, and Figures 2 through 8, certain soil sample location chemical analytical results are greater than MTCA Method A and/or B cleanup levels (especially for total arsenic). In these cases, the locations will likely not be removed because they are either an upgradient background sample, located in a lower berm area, or located in a naturally occurring mineralized area. The remaining locations will likely be removed during Phase1 IRA remediation construction or left in place because they are less than the cleanup goal (95 mg/kg) to be utilized during remedial excavation work.

Total mercury was also detected at or above the MTCA Method A CUL of 1 mg/kg in two samples from the SR-06 area. Because this area has been identified as not being generated from former mining activities, and historical mining references indicate cinnabar may occur naturally at the Site, these sample locations will not be removed during Phase 2 IRA remedial construction.

All other associated Site metals were either below laboratory detection limits or less than applicable MTCA CUL criteria during the DGA event. Because arsenic is the primary COC for the Site, other Site metals will likely be removed to less than MTCA criteria or naturally-occurring background levels during remedial excavation work.

STATISTICAL DISTRIBUTION

Graphical distribution of XRF arsenic background data and trends were compared between areas using Q-Q Plots. Distribution graphs for Phase 1 (Chart 5) and Phase 2 (Chart 6) areas are provided in Attachment E. As shown, SR08 data distribution appears to differ from SR01, SR02 and SR03, which is likely due the pronounced mineralization south and southwest of the waste rock pile. These data are consistent with field observations of low background (below limits of detection) trending quickly to elevated arsenic concentrations within a thin mineralized zone at the site.

Pile SR04 and the road cut at SR06 exhibited similar trends, with consistent distribution, except for several elevated samples, which are assumed to have been screened within a thin mineralized zone. Based on this, there is a possibility narrow mineralized areas may be encountered during remediation, and consideration of potential elevated areas of naturally occurring total arsenic will be needed during remediation.

^{*} SR06 did not appear to be associated with historical mining activities but is shown for comparison purposes in the table.

SUPPLEMENTAL SOIL SAMPLING

Sample data collected during the RI completed by Hart Crowser (2013) were submitted to Waste Management (WM) for initial disposal approval at the Greater Wenatchee Regional Landfill, a Resource Conservation and Recovery Act (RCRA) Subtitle D facility. However, correspondence with the WM Waste Approvals Manager indicated additional sampling and analysis was needed from discreet samples of waste rock prior to approval for disposal.

Based on this, supplemental soil sampling from discreet locations exhibiting the highest total aluminum, arsenic, and iron concentrations during the RI was conducted. Sample SR06-C02-Assay, which was collected for aluminum analysis, did not receive follow-up testing since this pile (SR06) was determined to not have originated from historical mining activities and no removal is anticipated.

Hazardous/Dangerous Waste Determination

Additional sampling and analysis were completed from a discreet sample of waste rock from pile SR05 for disposal approval at the Subtitle D Landfill (Table 7). Initial analysis of sample SR05-D05-TCLP identified a total arsenic concentration of 990 mg/kg. Follow-up analysis was requested using the Toxicity Characteristic Leaching Procedure (TCLP) to assess whether it exhibits the characteristic of toxicity that could define it as a hazardous waste under federal regulations (40 CFR Part 261) or a Dangerous Waste under Washington Administrative Code (WAC) 173-303. The sample was also analyzed using the Synthetic Precipitation Leaching Procedure (SPLP), since TCLP analysis can exaggerate metal mobility in mining waste.

Analysis of sample SR05-D05-TCLP via EPA Method 1311 indicated it did not contain arsenic in extract above the laboratory reporting limit of 0.025 milligrams per liter (mg/L). SPLP analysis using EPA Method 1312 identified arsenic in the extract at a concentration of 0.11 mg/L, which is well below the federal hazardous waste toxicity characteristic level and state Dangerous Waste criterion of 5.0 mg/L (40 CFR 261.24, 2001; WAC 173-303). Based on this, the sample collected from SR05, which represents a worst-case scenario for the site, would not be considered a hazardous or Dangerous Waste. As such, waste rock material with elevated total arsenic concentrations excavated during the Remedial Action should be suitable for disposal at the local Subtitle D Landfill.

Bioassay Analysis

Due to elevated total iron and aluminum concentrations at SR02 identified by Hart Crowser (2013), WM requested an additional sample be collected for bioassay analysis. The sample was identified as SR02-D09-Assay and was analyzed per Ecology Method 80-12 to assess the potential for the material to designate as a State of Washington Dangerous Waste. Results of the analysis indicated no fish mortality. Based on this, the sample collected from SR02, which represents a worst-case scenario for the site, does not designate as a Dangerous Waste. As such, waste rock material with elevated total iron concentrations excavated during the Remedial Action should be suitable for disposal at the local Subtitle D Landfill.

SAMPLING AND ANALYSIS PLAN DEVIATIONS

This section summarizes deviations from the Saddle Rock IRA SAP (GeoEngineers 2019). Deviations from the approved SAP documents resulted in a change or update to sample collection and/or processing procedures, where needed, based on sampling limitations and conditions encountered in the field.

Per the SAP, XRF screening was to utilize a 20-foot by 20-foot grid pattern downslope from the waste rock pile(s) which was not followed due to field conditions. Most AOIs had a downslope footprint that required more than 20 feet between sample locations due to irregularities in pile formation and naturally occurring gullies and berms.

Sample identification nomenclature was revised to include the start and end depth of the sample interval; i.e. SR01-US-01-0-2 (Source Pile No. 1, US = Upslope, Sample number 01, 0 to 2 inches below ground).

XRF Field Screening

No deviations occurred during XRF field screening.

Soil Sampling

Soil sampling deviations from the Saddle Rock IRA SAP (GeoEngineers 2019) are as follows:

At upslope locations with a range of XRF field screening results, three soil samples were submitted to the laboratory rather than two to provide a range of low to high concentrations to help delineate the pile extents.

No other deviations occurred during field activities.

ADITS/PHYSICAL HAZARD ASSESSMENT

Adits were assessed at waste rock piles SR01, 02, 04, 07 and 08. The field team was unable to identify an adit or exploratory hole at source piles SR03, 05 and 06. The adit portal at SR02 was covered with available on-site material during the field assessment. However, the portal should be opened and explored during the Remedial Action construction to identify the most appropriate closure mechanism (i.e., bat gate, cable/steel netting, polyurethane foam, concrete and rebar, etc.) The adits at SR04 and SR07 appeared to be shallow explorations (less than 6 feet into the formations). As such, these adits are anticipated to pose a lower risk and do not likely support bat hibernacula. Therefore, adits at SR04 and SR07 could be sealed in place to prevent access.

Adits at SR01 and 08 adits may be more extensive and could pose a higher risk to human receptors. Therefore, during the Remedial Action construction, the adits should be opened and exposed to identify potential for bat gate installation or other applicable closure method as discussed above. Photos of each adit are provided in Attachment B.

QUALITY ASSURANCE/QUALITY CONTROL

Field and laboratory quality assurance/quality control (QA/QC) objectives and procedures for the IRA Design are detailed in the Quality Assurance Project Plan (QAPP) (GeoEngineers 2019).

Data Quality Objectives

The Quality objective for technical data to collect environmental monitoring data for known acceptable, and documentable quality was met per the QAPP (GeoEngineers 2019). All data are acceptable as described in the Data Validation Report provided in Attachment F.

Field Duplicate Samples

Field QA samples required by the Saddle Rock IRA SAP include field duplicates (GeoEngineers 2019). Thirty-seven XRF field duplicates were taken with soil samples to confirm adequate homogenization of samples and precision of analysis. Results of the field duplicates are included in Table 8, and indicate that in general, field precision is adequate. The relative percent difference (RPD) for all samples was within 20 percent, with the exception of duplicate XRF samples from SR03-DS-05-0-2, SR04-US-05-2-4, SR04-DS-05-4-6 and SR08-US-01-4-6, where RPDs ranged from 25 percent to 50 percent. However, the overall average RPD was 11.24 percent for the 37 duplicate samples.

Performance Standard Evaluation

Low and high arsenic performance standards were provided by Ecology for the field assessment. Laboratory analysis of these performance standards at OnSite Environmental, Inc. identified total concentrations of 8.1 mg/kg for the low standard and 99 mg/kg for the high standard. The performance standard samples were analyzed with the XRF at the beginning and end of each day. Results are shown on Table 9 and indicate that the performance standard evaluation is adequate. The RPD for all samples was within 20 percent except for performance standard samples collected the morning of April 9, 2019 and the morning of April 11, 2019. However, the overall average RPD for the 16 performance standard samples was 10.52 percent during the course of the study.

WASTE ROCK DELINEATION

Fieldwork conducted during the DGA assessed the lateral extent of waste rock piles at the site, as well as the extent of downslope areas requiring cleanup. Waste rock piles and downslope areas were temporarily flagged until the PLS could survey the extents of each location. Site Plans, Figures 2 to 8 show updated lateral waste rock pile delineations based on field observations and XRF analysis. In general, GeoEngineers' observed the updated waste rock pile boundaries deviated from the RI (Hart Crowser 2013a). Updated waste rock pile volumes are provided separately in the IRA Design Report, based on the recently completed survey with lateral waste rock pile delineations and vertical profiles. Attachment G figures provides a comparison of GeoEngineers' waste rock pile delineations to Hart Crowser's delineations (2013a).

Berms located downslope from the waste rock piles at SR03 and SR04 were also delineated in the field based on topography and XRF screening. However, additional delineation will be conducted during the Phase 1 IRA remedial construction to further assess these berms and provide additional discussion regarding the decision to leave these in place.

REMEDIAL ACTION OBJECTIVES

The Remedial Action construction will consist of excavation and offsite disposal of waste rock. The boundary between waste rock and native soil will be identified by the City's field Geologist/Engineer through a combination of visual assessment of materials, estimated original topography, and field XRF arsenic data. A set of post-excavation remedial objectives (RAOs) for each waste rock pile location are appropriate for determining when excavation work is complete. Those criteria are presented in the section below.

Following removal of waste rock at each pile location, a grid sampling program will be used to collect confirmation soil samples for total arsenic analysis at the offsite laboratory (OnSite). The results of the confirmatory sampling will be compared with the area-specific 90th percentile background concentration (cleanup goal) of 95 mg/kg. In addition, the cumulative distribution of the confirmatory sampling results will be overlain with the cumulative distribution of the area-specific background data.

As recommended by Ecology, this proposed approach would appear to be provide the greatest confidence that remediation of anthropogenically derived materials is complete, while not driving remediation and removal of native soils.

CONCLUSIONS AND RECOMMENDATIONS

Results of this DGA identified the following conclusions:

- XRF analysis of upslope (background) total arsenic identified a mean concentration of 45.2 mg/kg. The calculated 90th percentile is 95 mg/kg for total arsenic. Therefore, a cleanup goal of 95 mg/kg will be used during Phase 1 and 2 remedial construction work to remove each waste rock pile.
- XRF arsenic data indicated there was no statistical difference between the downslope and upslope distributions at piles SR01, SR02, SR05 and SR08.
- Source piles SR03 and SR04 contained downslope berms, apparently the result of human-induced alterations. Berms located downslope from the waste rock piles at SR03 and SR04 were delineated in the field based on topography and XRF screening. Statistical analyses from XRF data at these piles indicated a significant difference between downslope and upslope data sets. However, the berms were stable, no visible waste rock was observed, and were both vegetated with native species (without vegetation coverage stress or loss), allowing minimal exposure to human receptors.
 - Additional XRF field work assessment, at the request of Ecology, of these two berm areas are scheduled to be completed during Phase 1 remedial construction activities. The intent of this additional assessment is to verify that in place arsenic concentrations are generally within the range of background concentration ranges observed by Ecology and GeoEngineers. If arsenic concentrations are confirmed to be generally within background concentrations, no additional removal of the bermed area soil is anticipated as part of remedial actions in Phase 1 or 2.
- Source pile SR06, previously delineated by Hart Crowser (2013) does not appear to be associated with historical mining activities. XRF analysis demonstrated a statistical difference between downslope and upslope data sets. Nonetheless, both upslope and downslope mean arsenic concentrations were above the proposed cleanup goal, and widespread elevated arsenic conditions are probably more indicative of eroded mineralization with naturally occurring elevated metals concentrations.
- Statistical analysis from individual piles indicate SR08 data distribution differs from SR01, SR02 and SR03, which is likely due the pronounced mineralization area south and southwest of the waste rock pile. In addition, SR04 and the road cut at SR06 exhibited similar trends, with consistent distribution, except for several elevated samples, which are assumed to have been screened within a thin mineralized zone.

- Supplemental discreet soil sampling from SR05 identified leachable arsenic at a concentration below the federal hazardous waste and state Dangerous Waste toxicity criteria of 5.0 mg/L. Discreet soil sampling from SR02 resulted in no fish mortality using bioassay analysis, indicating the material does not designate as Dangerous Waste.
- The adits at SR04 and SR07 appeared to be shallow explorations (less than 6 feet into the formations). As such, these are expected to pose a lower risk and do not likely support bat hibernacula. Adits at SR01 and SR08 may be more extensive and would require excavation to open the portals during the Remedial Action. The adit at SR02 was covered with onsite material and would need to be opened to identify the most appropriate closure mechanism.
- Laboratory QA/QC is considered acceptable and all data generated are valid. Field duplicate XRF analyses indicated RPDs for the majority of samples was within 20 percent, and the average RPD was 11.24 percent. Performance standard evaluation indicated RPDs for most of the samples was within 20 percent, and the average for all samples was 10.52 percent.
- The lateral boundaries of waste rock piles were delineated in the field via temporary flagging and wood staking, utilizing XRF field screening and visual observations. These flagging and staking areas were then surveyed by a PLS so that updated waste rock pile dimensions could be created for design report purposes. Updated waste rock pile boundaries generally deviated from the RI and are presented in Figures 3 through 8.
- The Remedial Action will consist of excavation and offsite disposal of waste rock. The boundary between waste rock and native soil will be identified by the field Geologist/Engineer through a combination of visual assessment of materials, estimated original topography, and field XRF arsenic data.

Based on the results of the DGA, the following recommendations are provided:

- The correlation of confirmatory soil sample laboratory data and the XRF screening data indicates a strong correlation in total arsenic concentrations observed, as presented in Attached E. Performance standard data also confirms the accuracy of the XRF readings. Thus, the XRF can be utilized as a primary sampling method in the field to confirm the vertical and lateral limits of waste rock piles during remediation construction.
- The 90th percentile value of 95 mg/kg for total arsenic should be used as the cleanup goal for the overall Site (Phase 1 and 2), not the previously calculated cleanup goal of 14.4 mg/kg. Based on the heterogeneous formations and elevated total arsenic concentrations at various locations, 95 mg/kg represents a more reasonable cleanup goal, and better characterizes the varied background mineralization at the Site.
- Downslope berms delineated below SR03 and SR04 with elevated total arsenic concentrations should be left in place. Although they may be the result of anthropogenic activities, they are well-vegetated with native grasses and shrubs, shown no visible waste rock, are situated within mapped mule deer winter range, and pose minimal hazards to human receptors.
- Source pile SR06 does not appear to be the result of historical mining activities and naturally occurring elevated metals concentrations are widespread at this site. Therefore, institutional and engineering

- controls, along with potential hiking path realignment to areas identified with lower arsenic concentrations are recommended during Phase 2 design and construction activities.
- There is a possibility narrow mineralized areas may be encountered during remediation construction, and these areas of total arsenic will likely be left in place, after further XRF evaluation and consultation with Ecology, during remediation construction.
- Waste rock in the Phase 1 and 2 areas do not exhibit relevant toxicity that would characterize it as hazardous or Dangerous Waste. Thus, it should be excavated, removed, and disposed at the local Greater Wenatchee Regional Subtitle D Landfill.
- Adits at SR04 and SR07 should be sealed to prevent access. This can be accomplished with concrete or polyurethane foam. Alternatively, cable/steel netting could be used to block access. Adits at SR01, SR02 and SR08 will need to be assessed when the portals are exposed during the Phase 1 IRA remediation construction to determine if bat gates are warranted.
- The DGA fieldwork completed in April 2019 do not indicate the need to complete any additional sampling work to finish final design elements. However, additional delineation will be conducted during the Phase 1 IRA remediation construction to further assess downslope berms at SR03 and SR04 and provide additional discussion regarding the decision to leave these in place.
- Per the RAO section stated above, cleanup of each waste rock pile will be verified by the City's field Engineer/Geologist based on the following criteria:
 - No visible waste rock remains.
 - The final topography is consistent with the estimated native topography.
 - Most confirmatory laboratory data are less than the area-specific 90th percentile background value of 95 mg/kg.
 - The distribution of confirmatory XRF and laboratory data is consistent with the distribution of background data.

In consultation with Ecology, the City will be notified during remedial action construction when each specific waste rock pile has obtained the above criteria.

Please do not hesitate to reach out to discussion the results presented above, and we look forward to continuing to support this project for the City.

REFERENCES

- GeoEngineers, Inc. (GeoEngineers). 2019. Sampling and Analysis Plan Interim Remedial Action Design and Remedial Action. Saddle Rock Natural Area. Wenatchee, Washington. February 20.
- Gresens, R.L. 1983. Geology of the Wenatchee and Monitor Quadrangles, Chelan and Douglas Counties, Washington. Bulletin 75. Department of Natural Resources, Olympia, Washington.
- Hart Crowser. 2013a. Remedial Investigation, Saddle Rock Park Wenatchee, Washington. Hart Crowser, Seattle, Washington.

Hart Crowser. 2013b. Feasibility Study, Saddle Rock Park Wenatchee, Washington. Hart Crowser, Seattle, Washington.

Reiss-Landreau Research. (RLR) 2013. An Archaeological Review and Inventory of the Saddle Rock Park

Development Project, Chelan County, Washington. RLR Report 2012-263-28. Prepared for City of

Wenatchee, Hart Crowser, Inc., and Chelan-Douglas Land Trust, Wenatchee, Washington.

Washington Department of Fish and Wildlife (WDFW). 2019. Priority Habitats and Species (PHS) on the web. http://apps.wdfw.wa.gov/phsontheweb/. WDFW, Olympia, Washington.

Washington State Department of Ecology (Ecology). 1997. MCTAStat 97 (Statistical Program). Washington State Department of Ecology, Toxics Cleanup Program, Lacey, Washington.

U.S. Environmental Protection Agency (EPA). 2015. ProUCL Version 5.1 User Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. Office of Research and Development, Washington, D.C.

Attachments:

Table 1. XRF Total Arsenic Concentration Summary Results

Table 2. Analytical Sampling Results for Total Arsenic

Table 3. Analytical Sampling Results for Total Metals

Table 7. Additional Waste Determination Sample Results

Table 8. Quality Assurance/Quality Control - XRF Duplicate Samples

Table 9. Quality Assurance/Quality Control - Performance Standards

Figure 1. Vicinity Map

Figures 2 through 8. Site Plan

Attachment A. Field Forms

Attachment B. Raw XRF Output Files

Attachment C. Site Photographs

Attachment D. Laboratory Reports

Attachment E. ProUCL Stats Results and Graphical Chart Presentations (Chart 1 through 6)

Attachment E-1. All Pile Background Assessment

Attachment E-2. Box and Whisker Charts

Attachment E-3. Individual Pile Background Assessment

Attachment E-4. Lab vs XRF

Attachment E-5. Statistical Distribution

Attachment E-6. XRF Upslope vs Downslope

Attachment F. Data Validation Report

Attachment G. Waste Rock Pile Comparison

XRF Total Arsenic Concentration Summary Results Saddle Rock Interim Remedial Action Wenatchee, Washington

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
SR-01						
	SR01-US-01-0-2	0-2	4/8/2019	8:38		33
SR01-US-01	SR01-US-01-2-4	2-4	4/8/2019	8:45	Background	42
	SR01-US-01-4-6	4-6	4/8/2019	8:49		70
	SR01-US-02-0-2	0-2	4/8/2019	9:42		75
SR01-US-02	SR01-US-02-2-4	2-4	4/8/2019	9:50	Background	70
	SR01-US-02-4-6	4-6	4/8/2019	9:53		65
	SR01-US-03-0-2	0-2	4/8/2019	9:59		71
SR01-US-03	SR01-US-03-2-4	2-4	4/8/2019	10:02	Background	71
	SR01-US-03-4-6	4-6	4/8/2019	10:04		73
	SR01-US-04-0-2	0-2	4/8/2019	10:10		19
SR01-US-04	SR01-US-04-2-4	2-4	4/8/2019	10:12	Background	21
	SR01-US-04-4-6	4-6	4/8/2019	10:14		16
	SR01-US-05-0-2	0-2	4/8/2019	10:20		25
SR01-US-05	SR01-US-05-2-4	2-4	4/8/2019	10:24	Background	32
	SR01-US-05-4-6	4-6	4/8/2019	10:25	1	30
	SR01-DS-01-0-2	0-2	4/8/2019	10:55		17
SR01-DS-01	SR01-DS-01-2-4	2-4	4/8/2019	10:58	Downslope	23
	SR01-DS-01-4-6	4-6	4/8/2019	11:00	1	23
	SR01-DS-02-0-2	0-2	4/8/2019	11:10		48
SR01-DS-02	SR01-DS-02-2-4	2-4	4/8/2019	11:12	Downslope	37
	SR01-DS-02-4-6	4-6	4/8/2019	11:14	1	27
	SR01-DS-03-0-2	0-2	4/8/2019	11:22		129
SR01-DS-03	SR01-DS-03-2-4	2-4	4/8/2019	11:25	Waste Rock	134
	SR01-DS-03-4-6	4-6	4/8/2019	11:28	1	199
	SR01-DS-04-0-2	0-2	4/8/2019	11:31		92
SR01-DS-04	SR01-DS-04-2-4	2-4	4/8/2019	11:33	Waste Rock	67
	SR01-DS-04-4-6	4-6	4/8/2019	11:34	1	56
SR01-DS-05	SR01-DS-05-0-2	0-2	4/8/2019	11:39	Waste Rock	110
	SR01-DS-06-0-2	0-2	4/8/2019	11:44		58
SR01-DS-06	SR01-DS-06-2-4	2-4	4/8/2019	11:48	Waste Rock	68
	SR01-DS-06-4-6	4-6	4/8/2019	11:50	1	142
	SR01-DS-07-0-2	0-2	4/8/2019	11:54		111
SR01-DS-07	SR01-DS-07-2-4	2-4	4/8/2019	12:02	Waste Rock	110
	SR01-DS-07-4-6	4-6	4/8/2019	12:05	1	118
	SR01-DS-08-0-2	0-2	4/8/2019	11:56		31
SR01-DS-08	SR01-DS-08-2-4	2-4	4/8/2019	12:15	Downslope	26
F	SR01-DS-08-4-6	4-6	4/8/2019	12:17	1	35
	SR01-DS-09-0-2	0-2	4/8/2019	12:00		26
SR01-DS-09	SR01-DS-09-2-4	2-4	4/8/2019	12:24	Downslope	35
	SR01-DS-09-4-6	4-6	4/8/2019	12:26	1	29

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
SR-02						
	SR02-US-01-0-2	0-2	4/8/2019	14:00		72
SR02-US-01	SR02-US-01-2-4	2-4	4/8/2019	14:05	Background	33
	SR02-US-01-4-6	4-6	4/8/2019	14:10		36
	SR02-US-02-0-2	0-2	4/8/2019	14:14		24
SR02-US-02	SR02-US-02-2-4	2-4	4/8/2019	14:16	Background	26
	SR02-US-02-4-6	4-6	4/8/2019	14:18	1	18
	SR02-US-03-0-2	0-2	4/8/2019	14:28		27
SR02-US-03	SR02-US-03-2-4	2-4	4/8/2019	14:32	Background	29
	SR02-US-03-4-6	4-6	4/8/2019	14:34		28
	SR02-US-04-0-2	0-2	4/8/2019	14:36		39
SR02-US-04	SR02-US-04-2-4	2-4	4/8/2019	14:39	Background	44
	SR02-US-04-4-6	4-6	4/8/2019	14:40		47
	SR02-US-05-0-2	0-2	4/8/2019	14:48		29
SR02-US-05	SR02-US-05-2-4	2-4	4/8/2019	14:50	Background	18
	SR02-US-05-4-6	4-6	4/8/2019	14:52	1	36
	SR02-DS-01-0-2	0-2	4/8/2019	15:50		23
SR02-DS-01	SR02-DS-01-2-4	2-4	4/8/2019	15:55	Downslope	37
	SR02-DS-01-4-6	4-6	4/8/2019	15:58		44
	SR02-DS-02-0-2	0-2	4/8/2019	15:59		15
SR02-DS-02	SR02-DS-02-2-4	2-4	4/8/2019	16:00	Downslope	11
	SR02-DS-02-4-6	4-6	4/8/2019	16:01		12
	SR02-DS-03-0-2	0-2	4/8/2019	16:09		25
SR02-DS-03	SR02-DS-03-2-4	2-4	4/8/2019	16:11	Downslope	26
	SR02-DS-03-4-6	4-6	4/8/2019	16:13	1	24
	SR02-DS-04-0-2	0-2	4/8/2019	16:18		24
SR02-DS-04	SR02-DS-04-2-4	2-4	4/8/2019	16:20	Downslope	24
	SR02-DS-04-4-6	4-6	4/8/2019	16:22		25
	SR02-DS-05-0-2	0-2	4/8/2019	15:42		17
SR02-DS-05	SR02-DS-05-2-4	2-4	4/8/2019	15:44	Downslope	38
	SR02-DS-05-4-6	4-6	4/8/2019	15:46		18
SR-03						
	SR03-US-01-0-2	0-2	4/9/2019	12:20		12
SR03-US-01	SR03-US-01-2-4	2-4	4/9/2019	12:23	Background	13
	SR03-US-01-4-6	4-6	4/9/2019	12:25	<u>]</u>	7
	SR03-US-02-0-2	0-2	4/9/2019	12:27		17
SR03-US-02	SR03-US-02-2-4	2-4	4/9/2019	12:30	Background	9
	SR03-US-02-4-6	4-6	4/9/2019	12:33		8
	SR03-US-03-0-2	0-2	4/9/2019	12:40		< 11
SR03-US-03	SR03-US-03-2-4	2-4	4/9/2019	12:42	Background	26
	SR03-US-03-4-6	4-6	4/9/2019	12:45		16
	SR03-US-04-0-2	0-2	4/9/2019	12:47		< 9
SR03-US-04	SR03-US-04-2-4	2-4	4/9/2019	12:49	Background	< 6
	SR03-US-04-4-6	4-6	4/9/2019	12:51]	< 7
	SR03-US-05-0-2	0-2	4/9/2019	12:56		21
SR03-US-05	SR03-US-05-2-4	2-4	4/9/2019	12:59	Background	29
	SR03-US-05-4-6	4-6	4/9/2019	13:01	1	101

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
	SR03-DS-01-0-2	0-2	4/9/2019	13:27		99
SR03-DS-01	SR03-DS-01-2-4	2-4	4/9/2019	13:30	- Waste Rock	132
	SR03-DS-01-4-6	4-6	4/9/2019	13:32		108
	SR03-DS-02-0-2	0-2	4/9/2019	13:38		43
SR03-DS-02	SR03-DS-02-2-4	2-4	4/9/2019	13:41	Downslope	40
	SR03-DS-02-4-6	4-6	4/9/2019	13:44	·	38
	SR03-DS-03-0-2	0-2	4/9/2019	13:49		45
SR03-DS-03	SR03-DS-03-2-4	2-4	4/9/2019	13:51	Downslope	46
	SR03-DS-03-4-6	4-6	4/9/2019	13:54	· ·	52
	SR03-DS-04-0-2	0-2	4/9/2019	14:00		31
SR03-DS-04	SR03-DS-04-2-4	2-4	4/9/2019	14:03	Downslope	46
	SR03-DS-04-4-6	4-6	4/9/2019	14:05	· ·	75
	SR03-DS-05-0-2	0-2	4/9/2019	14:08		75
SR03-DS-05	SR03-DS-05-2-4	2-4	4/9/2019	14:10	Waste Rock	121
	SR03-DS-05-4-6	4-6	4/9/2019	14:12	1	49
	SR03-DS-06-0-2	0-2	4/9/2019	14:10		36
SR03-DS-06	SR03-DS-06-2-4	2-4	4/9/2019	14:20	Downslope	23
	SR03-DS-06-4-6	4-6	4/9/2019	14:22	-	25
	SR03-DS-07-0-2	0-2	4/9/2019	14:33		75
SR03-DS-07	SR03-DS-07-2-4	2-4	4/9/2019	14:35	Waste Rock	59
	SR03-DS-07-4-6	4-6	4/9/2019	14:38	-	66
	SR03-DS-08-0-2	0-2	4/9/2019	14:45		76
SR03-DS-08	SR03-DS-08-2-4	2-4	4/9/2019	14:48	Waste Rock	84
ONCO DO CO	SR03-DS-08-4-6	4-6	4/9/2019	14:51	- Waste Neek	101
	SR03-DS-09-0-2	0-2	4/9/2019	14:58		105
SR03-DS-09	SR03-DS-09-2-4	2-4	4/9/2019	15:02	Bermed Area	77
- CARGO 20 00	SR03-DS-09-4-6	4-6	4/9/2019	15:05	Defined Area	138
	SR03-DS-10-0-2	0-2	4/9/2019	15:31		21
SR03-DS-10	SR03-DS-10-2-4	2-4	4/9/2019	15:34	Downslope	24
-	SR03-DS-10-4-6	4-6	4/9/2019	15:36	201111010000	21
SR-04		1	., -,		J.	
	SR04-US-01-0-2	0-2	4/11/2019	6:40		15
SR04-US-01	SR04-US-01-2-4	2-4	4/11/2019	6:42	Background	8
-	SR04-US-01-4-6	4-6	4/11/2019	6:44		12
	SR04-US-02-0-2	0-2	4/11/2019	6:45		9
SR04-US-02	SR04-US-02-2-4	2-4	4/11/2019	6:47	Background	13
01104 00 02	SR04-US-02-4-6	4-6	4/11/2019	6:49	Buonground	11
	SR04-US-03-0-2	0-2	4/11/2019	6:50		71
SR04-US-03	SR04-US-03-2-4	2-4	4/11/2019	6:52	Background	99
5.1.0 + 0.0 0.0	SR04-US-03-2-4 SR04-US-03-4-6	4-6	4/11/2019	6:54	Baonground	186
	SR04-US-04-0-2	0-2	4/11/2019	6:56		15
SR04-US-04	SR04-US-04-2-4	2-4	4/11/2019	6:58	Background	17
51.0-7 00-0-7	SR04-US-04-4-6	4-6	4/11/2019	6:59	Baonground	17
	SR04-US-05-0-2	0-2	4/11/2019	7:00		25
SR04-US-05				7:01	Background	
31104-03-03	SR04-US-05-2-4	2-4	4/11/2019		Dackground	28
	SR04-US-05-4-6	4-6	4/11/2019	7:03		29
SR04-DS-01	SR04-DS-01-0-2	0-2	4/11/2019	7:16 7:18	Waste Rock	43
つせいサーバン-バー	SR04-DS-01-2-4	2-4	4/11/2019	٥٢.١	wasie Rock	70

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
	SR04-DS-02-0-2	0-2	4/11/2019	7:26		55
SR04-DS-02	SR04-DS-02-2-4	2-4	4/11/2019	7:30	Bermed Area	75
	SR04-DS-02-4-6	4-6	4/11/2019	7:28		105
	SR04-DS-03-0-2	0-2	4/11/2019	7:35		160
SR04-DS-03	SR04-DS-03-2-4	2-4	4/11/2019	7:37	Bermed Area	28
	SR04-DS-03-4-6	4-6	4/11/2019	7:39		34
	SR04-DS-04-0-2	0-2	4/11/2019	7:39		85
SR04-DS-04	SR04-DS-04-2-4	2-4	4/11/2019	7:41	Bermed Area	72
	SR04-DS-04-4-6	4-6	4/11/2019	7:43		56
	SR04-DS-05-0-2	0-2	4/11/2019	7:45		33
SR04-DS-05	SR04-DS-05-2-4	2-4	4/11/2019	7:47	Downslope	32
	SR04-DS-05-4-6	4-6	4/11/2019	7:49	<u> </u>	31
	SR04-DS-04-0-2	0-2	4/11/2019	7:52		52
SR04-DS-06	SR04-DS-04-2-4	2-4	4/11/2019	7:54	Downslope	53
	SR04-DS-04-4-6	4-6	4/11/2019	7:56		54
5R-05			.,,		1	
	SR05-US-01-0-2	0-2	4/10/2019	12:54		56
SR05-US-01	SR05-US-01-2-4	2-4	4/10/2019	12:56	- Background	40
	SR05-US-01-4-6	4-6	4/10/2019	12:58	1	44
	SR05-US-02-0-2	0-2	4/10/2019	13:06		59
SR05-US-02	SR05-US-02-2-4	2-4	4/10/2019	13:08	Background	63
	SR05-US-02-4-6	4-6	4/10/2019	13:10	1	67
	SR05-US-03-0-2	0-2	4/10/2019	13:12		28
SR05-US-03	SR05-US-03-2-4	2-4	4/10/2019	13:14	Background	28
	SR05-US-03-4-6	4-6	4/10/2019	13:16	1	23
	SR05-US-04-0-2	0-2	4/10/2019	13:18		174
SR05-US-04	SR05-US-04-2-4	2-4	4/10/2019	13:20	- Background	204
	SR05-US-04-4-6	4-6	4/10/2019	13:22	1	699
	SR05-US-05-0-2	0-2	4/10/2019	13:28		136
SR05-US-05	SR05-US-05-2-4	2-4	4/10/2019	13:30	- Background	153
	SR05-US-05-4-6	4-6	4/10/2019	13:32	1	138
	SR05-US-06-0-2	0-2	4/10/2019	13:33		20
SR05-US-06	SR05-US-06-2-4	2-4	4/10/2019	13:35	Background	18
	SR05-US-06-4-6	4-6	4/10/2019	13:37	1	15
	SR05-DS-01-0-2	0-2	4/10/2019	18:07		49
SR05-DS-01	SR05-DS-01-2-4	2-4	4/10/2019	18:09	Downslope	29
	SR05-DS-01-4-6	4-6	4/10/2019	18:11	· ·	29
	SR05-DS-02-0-2	0-2	4/10/2019	18:20		64
SR05-DS-02	SR05-DS-02-2-4	2-4	4/10/2019	18:22	Downslope	69
 	SR05-DS-02-4-6	4-6	4/10/2019	18:24	1	55
	SR05-DS-03-0-2	0-2	4/10/2019	18:32		67
SR05-DS-03	SR05-DS-03-2-4	2-4	4/10/2019	18:34	Downslope	46
<u> </u>	SR05-DS-03-4-6	4-6	4/10/2019	18:36	-	44
	SR05-DS-04-0-2	0-2	4/10/2019	19:00		180
SR05-DS-04	SR05-DS-04-2-4	2-4	4/10/2019	19:02	Downslope	123
	SR05-DS-04-4-6	4-6	4/10/2019	19:04	25101000	162
	SR05-DS-05-0-2	0-2	4/10/2019	19:08		102
SR05-DS-05	SR05-DS-05-2-4	2-4	4/10/2019	19:10	Downslope	101
	SR05-DS-05-4-6	4-6	4/10/2019	19:14	2011/13/000	98

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
	SR05-DS-06-0-2	0-2	4/10/2019	19:20		50
SR05-DS-06	SR05-DS-06-2-4	2-4	4/10/2019	19:22	Downslope	47
	SR05-DS-06-4-6	4-6	4/10/2019	19:24	1	49
	SR05-DS-07-0-2	0-2	4/11/2019	11:04		64
SR05-DS-07	SR05-DS-07-2-4	2-4	4/11/2019	11:07	Downslope	55
_	SR05-DS-07-4-6	4-6	4/11/2019	11:10	1	58
	SR05-DS-08-0-2	0-2	4/11/2019	11:20		52
SR05-DS-08	SR05-DS-08-2-4	2-4	4/11/2019	11:22	Downslope	40
	SR05-DS-08-4-6	4-6	4/11/2019	11:24	1	42
SR-06		1	, ,			
	SR06-US-01-0-2	0-2	4/9/2019	17:18		44
SR06-US-01	SR06-US-01-2-4	2-4	4/9/2019	17:20	Background	120
	SR06-US-01-4-6	4-6	4/9/2019	17:24	1	278
	SR06-US-01-0-2	0-2	4/9/2019	17:30		54
SR06-US-02	SR06-US-01-2-4	2-4	4/9/2019	17:35	- Background	45
_	SR06-US-01-4-6	4-6	4/9/2019	17:39		76
	SR06-US-03-0-2	0-2	4/9/2019	17:38		54
SR06-US-03	SR06-US-03-2-4	2-4	4/9/2019	17:39	Background	41
_	SR06-US-03-4-6	4-6	4/9/2019	17:42		35
	SR06-US-04-0-2	0-2	4/9/2019	17:42		16
SR06-US-04	SR06-US-04-2-4	2-4	4/9/2019	17:44	- Background	10
	SR06-US-04-4-6	4-6	4/9/2019	17:46		12
	SR06-US-05-0-2	0-2	4/9/2019	17:50		14
SR06-US-05	SR06-US-05-2-4	2-4	4/9/2019	17:52	- Background	< 10
	SR06-US-05-4-6	4-6	4/9/2019	17:54	1	< 6
	SR06-US-06-0-2	0-2	4/9/2019	17:55		26
SR06-US-06	SR06-US-06-2-4	2-4	4/9/2019	17:58	- Background	37
	SR06-US-06-4-6	4-6	4/9/2019	18:00	1	64
	SR06-US-07-0-2	0-2	4/10/2019	7:04		728
SR06-US-07	SR06-US-07-2-4	2-4	4/10/2019	7:06	Background	660
	SR06-US-07-4-6	4-6	4/10/2019	7:08	1	411
	SR06-US-08-0-2	0-2	4/10/2019	7:09		59
SR06-US-08	SR06-US-08-2-4	2-4	4/10/2019	7:11	Background	78
	SR06-US-08-4-6	4-6	4/10/2019	7:14	1	88
	SR06-US-09-0-2	0-2	4/10/2019	7:17		38
SR06-US-09	SR06-US-09-2-4	2-4	4/10/2019	7:20	Background	33
	SR06-US-09-4-6	4-6	4/10/2019	7:22	1	29
	SR06-US-10-0-2	0-2	4/10/2019	7:23		24
SR06-US-10	SR06-US-10-2-4	2-4	4/10/2019	7:24	- Background	37
	SR06-US-10-4-6	4-6	4/10/2019	7:26		32
	SR06-US-11-0-2	0-2	4/10/2019	7:27		37
SR06-US-11	SR06-US-11-2-4	2-4	4/10/2019	7:29	Background	36
<u> </u>	SR06-US-11-4-6	4-6	4/10/2019	7:31		41
	SR06-US-12-0-2	0-2	4/10/2019	7:36		31
SR06-US-12	SR06-US-12-2-4	2-4	4/10/2019	7:38	Background	21
-	SR06-US-12-4-6	4-6	4/10/2019	7:40	233	23
	SR06-US-13-0-2	0-2	4/10/2019	7:40	1	26
SR06-US-13	SR06-US-13-2-4	2-4	4/10/2019	7:44	Background	20
-	SR06-US-13-4-6	4-6	4/10/2019	7:47	Baonground	29

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
	SR06-US-14-0-2	0-2	4/10/2019	7:48		46
SR06-US-14	SR06-US-14-2-4	2-4	4/10/2019	7:50	Background	45
Ī	SR06-US-14-4-6	4-6	4/10/2019	7:52	1	81
	SR06-US-15-0-2	0-2	4/10/2019	7:55		60
SR06-US-15	SR06-US-15-2-4	2-4	4/10/2019	7:58	Background	74
	SR06-US-15-4-6	4-6	4/10/2019	8:00	1	64
	SR06-US-16-0-2	0-2	4/10/2019	8:07		301
SR06-US-16	SR06-US-16-2-4	2-4	4/10/2019	8:09	Background	296
	SR06-US-16-4-6	4-6	4/10/2019	8:11		295
	SR06-DS-01-0-2	0-2	4/10/2019	8:43		293
SR06-DS-01	SR06-DS-01-2-4	2-4	4/10/2019	8:45	Downslope	348
-	SR06-DS-01-4-6	4-6	4/10/2019	8:47		509
	SR06-DS-02-0-2	0-2	4/10/2019	9:00		212
SR06-DS-02	SR06-DS-02-2-4	2-4	4/10/2019	9:03	Downslope	127
	SR06-DS-02-4-6	4-6	4/10/2019	9:07		172
	SR06-DS-03-0-2	0-2	4/10/2019	9:12		109
SR06-DS-03	SR06-DS-03-2-4	2-4	4/10/2019	9:14	Downslope	107
-	SR06-DS-03-4-6	4-6	4/10/2019	9:17	20	102
	SR06-DS-04-0-2	0-2	4/10/2019	9:27		163
SR06-DS-04	SR06-DS-04-2-4	2-4	4/10/2019	9:29	Downslope	179
	SR06-DS-04-4-6	4-6	4/10/2019	9:31		232
	SR06-DS-05-0-2	0-2	4/10/2019	9:35		235
SR06-DS-05	SR06-DS-05-2-4	2-4	4/10/2019	9:38	Downslope	218
5.100 20 00	SR06-DS-05-4-6	4-6	4/10/2019	9:40	20111.0.000	234
	SR06-DS-06-0-2	0-2	4/10/2019	9:43		284
SR06-DS-06	SR06-DS-06-2-4	2-4	4/10/2019	9:45	Downslope	307
0.100 20 00	SR06-DS-06-4-6	4-6	4/10/2019	9:47	20111.0.000	313
	SR06-DS-07-0-2	0-2	4/10/2019	9:52		504
SR06-DS-07	SR06-DS-07-2-4	2-4	4/10/2019	9:53	Downslope	675
	SR06-DS-07-4-6	4-6	4/10/2019	9:55		544
	SR06-DS-08-0-2	0-2	4/10/2019	10:07		114
SR06-DS-08	SR06-DS-08-2-4	2-4	4/10/2019	10:10	Downslope	132
	SR06-DS-08-4-6	4-6	4/10/2019	10:12	·	121
	SR06-DS-09-0-2	0-2	4/10/2019	10:17		104
SR06-DS-09	SR06-DS-09-2-4	2-4	4/10/2019	10:19	Downslope	157
	SR06-DS-09-4-6	4-6	4/10/2019	10:22	· ·	162
	SR06-DS-10-0-2	0-2	4/10/2019	10:26		152
SR06-DS-10	SR06-DS-10-2-4	2-4	4/10/2019	10:28	Downslope	197
ļ	SR06-DS-10-4-6	4-6	4/10/2019	10:30	1	199
	SR06-DS-11-0-2	0-2	4/10/2019	10:33		126
SR06-DS-11	SR06-DS-11-2-4	2-4	4/10/2019	10:36	Downslope	157
ŀ	SR06-DS-11-4-6	4-6	4/10/2019	10:38	1	177
	SR06-DS-12-0-2	0-2	4/10/2019	10:42		181
SR06-DS-12	SR06-DS-12-2-4	2-4	4/10/2019	10:45	Downslope	130
	SR06-DS-12-4-6	4-6	4/10/2019	10:47	1	179

Sample Location	Sample ID	Depth (inches)	Date	Time	Sample Location	Arsenic Concentration (ppm)
	SR06-DS-13-0-2	0-2	4/10/2019	10:46		87
SR06-DS-13	SR06-DS-13-2-4	2-4	4/10/2019	10:48	Downslope	74
	SR06-DS-13-4-6	4-6	4/10/2019	10:50		104
	SR06-DS-14-0-2	0-2	4/10/2019	10:54		139
SR06-DS-14	SR06-DS-14-2-4	2-4	4/10/2019	10:56	Downslope	165
	SR06-DS-14-4-6	4-6	4/10/2019	10:58		203
	SR06-DS-15-0-2	0-2	4/10/2019	11:00		166
SR06-DS-15	SR06-DS-15-2-4	2-4	4/10/2019	11:02	Downslope	182
	SR06-DS-15-4-6	4-6	4/10/2019	11:04		266
SR-08						
	SR08-US-01-0-2	0-2	4/9/2019	8:04		20
SR08-US-01	SR08-US-01-2-4	2-4	4/9/2019	8:07	Background	21
	SR08-US-01-4-6	4-6	4/9/2019	8:11		14
	SR08-US-02-0-2	0-2	4/9/2019	8:20		< 7
SR08-US-02	SR08-US-02-2-4	2-4	4/9/2019	8:24	Background	< 8
	SR08-US-02-4-6	4-6	4/9/2019	8:26		7
	SR08-US-03-0-2	0-2	4/9/2019	8:32		18
SR08-US-03	SR08-US-03-2-4	2-4	4/9/2019	8:35	Background	16
	SR08-US-03-4-6	4-6	4/9/2019	8:37		14
	SR08-US-04-0-2	0-2	4/9/2019	8:43		306
SR08-US-04	SR08-US-04-2-4	2-4	4/9/2019	8:46	Background	389
	SR08-US-04-4-6	4-6	4/9/2019	8:49		489
	SR08-US-05-0-2	0-2	4/9/2019	8:59		111
SR08-US-05	SR08-US-05-2-4	2-4	4/9/2019	9:02	Background	89
	SR08-US-05-4-6	4-6	4/9/2019	9:05		89
	SR08-US-06-0-2	0-2	4/9/2019	9:10		144
SR08-US-06	SR08-US-06-2-4	2-4	4/9/2019	9:18	Background	44
	SR08-US-06-4-6	4-6	4/9/2019	9:22		433
SR08-US-07	SR08-US-07-0-2	0-2	4/9/2019	NA	Background	144
	SR08-DS-01-0-2	0-2	4/9/2019	9:53		< 7
SR08-DS-01	SR08-DS-01-2-4	2-4	4/9/2019	9:56	Downslope	< 7
	SR08-DS-01-4-6	4-6	4/9/2019	9:57		< 7
	SR08-DS-02-0-2	0-2	4/9/2019	10:00		14
SR08-DS-02	SR08-DS-02-2-4	2-4	4/9/2019	10:05	Downslope	14
	SR08-DS-02-4-6	4-6	4/9/2019	10:07		< 7
	SR08-DS-03-0-2	0-2	4/9/2019	10:15		25
SR08-DS-03	SR08-DS-03-2-4	2-4	4/9/2019	10:20	Downslope	25
	SR08-DS-03-4-6	4-6	4/9/2019	10:18		38
<u> </u>	SR08-DS-04-0-2	0-2	4/9/2019	10:22	_	14
SR08-DS-04	SR08-DS-04-2-4	2-4	4/9/2019	10:25	Downslope	20
	SR08-DS-04-4-6	4-6	4/9/2019	10:28		19
<u></u>	SR08-DS-05-0-2	0-2	4/9/2019	10:36	_	17
SR08-DS-05	SR08-DS-05-2-4	2-4	4/9/2019	10:39	Downslope	10
	SR08-DS-05-4-6	4-6	4/9/2019	10:42		20

Notes

NA - Not available ppm - parts per million

Analytical Sampling Results for Total Arsenic

Saddle Rock Interim Remedial Action Wenatchee, Washington

			Sample	Start Depth	End Depth	Total Arsenic
Location ID	Sample ID	Sample Date	Location	(in)	(in)	(mg/Kg)
		Screening leve	I: Soil, Method A,		, 0, 0,	20
	0004 110 04 0 4	 		Specific Cleanup	Level (mg/kg)	94.99
	SR01-US-01-2-4	4/8/2019	Background	2	4	65
	SR01-US-03-4-6	4/8/2019	Background	4	6	110
	SR01-US-04-4-6	4/8/2019	Background	4	6	19
SR01	SR01-DS-03-4-6	4/8/2019	Waste Rock	4	6	170
	SR01-DS-07-4-6	4/8/2019	Waste Rock	4	6	87
	SR-01-WR-1C-PS	3/26/2019	Standard Performance Sample	NA	NA	99
	SR02-US-01-0-2	4/8/2019	Background	0	2	100
	SR02-US-02-4-6	4/8/2019	Background	4	6	28
	SR02-US-05-4-6	4/8/2019	Background	4	6	24
SR02	SR02-DS-01-4-6	4/8/2019	Downslope	4	6	47
	SR02-DS-05-2-4	4/8/2019	Downslope	2	4	40
	SR-2-4C-PS	3/26/2019	Standard Performance Sample	NA	NA	8.1
	SR03-US-01-4-6	4/9/2019	Background	4	6	6.8
	SR03-US-05-4-6	4/9/2019	Background	4	6	87
SR03	SR03-DS-01-2-4	4/9/2019	Waste Rock	2	4	110
SNOS	SR03-DS-03-4-6	4/9/2019	Downslope	4	6	49
	SR03-DS-05-2-4	4/9/2019	Waste Rock	2	4	190
	SR03-DS-09-4-6	4/9/2019	Bermed Area	4	6	140
	SR04-US-01-2-4	4/11/2019	Background	2	4	17
	SR04-US-03-4-6	4/11/2019	Background	4	6	110
SR04	SR04-US-05-4-6	4/11/2019	Background	4	6	34
	SR04-DS-02-4-6	4/11/2019	Bermed Area	4	6	200
	SR04-DS-03-0-2	4/11/2019	Bermed Area	0	2	41
	SR05-US-02-0-2	4/10/2019	Background	0	2	100
	SR05-US-05-2-4	4/10/2019	Background	2	4	150
	SR05-US-06-2-4	4/10/2019	Background	2	4	18
SR05	SR05-DS-02-2-4	4/10/2019	Downslope	2	4	89
	SR05-DS-03-0-2	4/10/2019	Downslope	0	2	95
	SR05-DS-07-0-2	4/11/2019	Downslope	0	2	78
	SR05-D05-TCLP	4/11/2019		0	12	990

			Sample	Start Depth	End Depth	Total Arsenic
Location ID	Sample ID	Sample Date	Location	(in)	(in)	(mg/Kg)
	SR06-US-02-4-6	4/9/2019	Background	4	6	65
	SR06-US-06-0-2	4/9/2019	Background	0	2	31
	SR06-US-07-0-2	4/10/2019	Background	0	2	660
	SR06-US-08-4-6	4/10/2019	Background	4	6	90
	SR06-US-12-2-4	4/10/2019	Background	2	4	43
SR06	SR06-US-16-0-2	4/10/2019	Background	0	2	220
31100	SR06-DS-01-4-6	4/10/2019	Downslope	4	6	570
	SR06-DS-03-4-6	4/10/2019	Downslope	4	6	100
	SR06-DS-05-4-6	4/10/2019	Downslope	4	6	330
	SR06-DS-07-4-6	4/10/2019	Downslope	4	6	740
	SR06-DS-13-0-2	4/10/2019	Downslope	0	2	110
	SR06-DS-15-4-6	4/10/2019	Downslope	4	6	250
	SR08-US-02-0-2	4/9/2019	Background	0	2	2.8
SR08	SR08-US-05-0-2	4/9/2019	Background	0	2	170
51106	SR08-DS-03-4-6	4/9/2019	Downslope	4	6	44
	SR08-DS-04-2-4	4/9/2019	Downslope	2	4	16

Notes

Exceeds MTCA Method A Cleanup level for arsenic (20 mg/kg).

Bold indicates the concentration exceeds the proposed cleanup goal of 94.99 mg/kg

NA - Not available

ppm - parts per million

Analytical Sampling Results for Total Metals

Saddle Rock Interim Remedial Action Wenatchee, Washington

Analyte						Aluminum	Arsenic	Barium	Iron	Lead	Manganese	Mercury	Selenium	Silver
Screening Level: Soil, Method A, Unrestricted Land Use (mg/kg)						NS	20	NS	NS	250	NS	1	NS	NS
Screening Level: Soil, Method B, Non cancer (mg/kg)						80,000	24	16,000	56,000	NS	11,200	NS	400	400
Proposed Site Specific Cleanup Level (mg/kg)					NC	94.99	NC	NC	NC	NC	NC	NC	NC	
	Units						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Sample ID	Sample Date	Sample Location	Start Depth (in)	End Depth (in)	Aluminum	Arsenic	Barium	Iron	Lead	Manganese	Mercury	Selenium	Silver
SR01	SR01-DS-07-4-6	4/8/2019	Waste Rock	4	6	-	87	170	34,000	19	570	0.40	0.68	3.0
SKUI	SR01-US-04-4-6	4/8/2019	Waste Rock	4	6	-	19	150	20,000	7.1	460	0.032	0.18	0.73 U
SR02	SR02-D09-ASSAY	4/11/2019	Waste Rock	0	12	-	990	-	35,000	-	-	-	-	_
SR03	SR03-DS-09-4-6	4/9/2019	Bermed Area	4	6	-	140	86	27,000	6.9	180	0.40	1.1	6.6
SR05	SR05-DS-07-0-2	4/11/2019	Downslope	0	2	-	78	81	14,000	7.1	500	0.028 U	0.38	3.8
3803	SR05-US-02-0-2	4/10/2019	Background	0	2	-	100	210	21,000	14	420	0.13	0.25	0.79 U
	SR06-DS-07-4-6	4/10/2019	Downslope	4	6	-	740	170	22,000	8.4	260	0.80	0.36	0.76 U
SR06	SR06-US-06-0-2	4/9/2019	Background	0	2		31	220	24,000	9.9	500	1.0	0.20	0.79 U
SKUO	SR06-US-12-2-4	4/10/2019	Background	2	4	-	43	130	21,000	13	640	2.0	0.16	0.73 U
	SR06-C02-ASSAY	4/10/2019	Waste Rock	0	12	14,000	-	-		-		-		-

Notes

Bold = Detected

Equals or Exceeds MTCA Method A Cleanup level.

- = Not analyzed; NS = No Standard; NC = Not Calculated mg/kg = milligram per kilogram

U = The analyte was not detected above the reported sample quantitation limit.

Additional Waste Determination Sample Results

Saddle Rock Interim Remedial Action Wenatchee, Washington

Sample Number	Location	Depth	Environmental Testing ¹	Analytical Result (mg/kg)	Analytical Result (mg/L)	Analytical Result (percent mortality)
			SPLP Arsenic	-	0.11	
SR05-D05-TCLP	SR-05	0 - 12 inches	TCLP Arsenic		< 0.025	
			Total Arsenic	Total Arsenic 990		
		0 - 12 inches	Aquatic Bioassay			0
SR02-D09-Assay	SR-02		Total Iron	35,000	-	
			Total Aluminum	19,000	-	
SR06-C02-D-Assay	SR-06	0 - 6 inches -	Aquatic Bioassay		-	
SRUU-CUZ-D-ASSdy	3K-06		Total Aluminum	14,000	-	
Hazardous/Da	ngerous Waste	Regulatory Leve	el for Arsenic ³	NA	5	NA

Notes:

RCRA D004 = Resource Conservation and Recovery Act Hazardous Waste Number for arsenic

-- = Not analyzed; mg/kg = milligrams per kilogram; mg/L = milligrams per liter

NA - Not available

¹TCLP and SPLP Analyses were performed by OnSite Environmental, Redmond Washington. Bioassay analyses were subcontracted by Rainier Environmental Laboratory, Fife, Washington.

³TCLP analysis is intended to identify constituents that exhibit the characteristic of toxicity for disposal purposes.

Quality Assurance/Quality Control - XRF Duplicate Samples

Saddle Rock Interim Remedial Action Wenatchee, Washington

Sample Location	Sample ID	Depth (inches)	Date	Time	XRF Arsenic Concentration (ppm)	Duplicate XRF Arsenic Concentration (ppm)	Relative Percent Difference
SR01	SR01-US-05-0-2	0-2	4/8/2019	10:20	25	28	11.32%
SR01	SR01-DS-03-0-2	0-2	4/8/2019	11:22	129	127	1.56%
SR02	SR02-US-03-0-2	0-2	4/8/2019	14:28	24	29	18.87%
SR02	SR02-US-04-4-6	4-6	4/8/2019	14:40	47	42	11.24%
SR02	SR02-DS-01-2-4	2-4	4/8/2019	15:55	37	39	5.26%
SR02	SR02-DS-04-2-4	2-4	4/8/2019	16:20	24	26	8.00%
SR03	SR03-US-02-4-6	4-6	4/9/2019	12:33	8	9	11.76%
SR03	SR03-US-04-0-2	0-2	4/9/2019	12:47	< 9	9	0.00%
SR03	SR03-DS-02-0-2	0-2	4/9/2019	13:38	38	43	12.35%
SR03	SR03-DS-05-0-2	0-2	4/9/2019	14:08	75	45	50.00%
SR04	SR04-US-01-0-2	0-2	4/11/2019	6:40	15	14	6.90%
SR04	SR04-US-03-4-6	4-6	4/11/2019	6:54	186	224	18.54%
SR04	SR04-US-05-2-4	2-4	4/11/2019	7:01	28	45	46.58%
SR04	SR04-DS-03-2-4	2-4	4/11/2019	7:37	28	29	3.51%
SR04	SR04-DS-05-4-6	4-6	4/11/2019	7:49	31	40	25.35%
SR05	SR05-US-03-0-2	0-2	4/10/2019	13:12	28	31	10.17%
SR05	SR05-US-04-4-6	4-6	4/10/2019	13:22	699	743	6.10%
SR05	SR05-DS-03-0-2	0-2	4/10/2019	18:32	67	76	12.59%
SR05	SR05-DS-05-2-4	24-	4/10/2019	19:10	101	110	8.53%
SR06	SR06-US-01-0-2	0-2	4/9/2019	17:18	44	45	2.25%
SR06	SR06-US-02-0-2	0-2	4/9/2019	17:30	54	48	11.76%
SR06	SR06-US-06-4-6	4-6	4/9/2019	18:00	64	65	1.55%
SR06	SR06-US-08-4-6	4-6	4/10/2019	7:14	88	89	1.13%
SR06	SR06-US-11-0-2	0-2	4/10/2019	7:27	37	36	2.74%
SR06	SR06-US-12-2-4	2-4	4/10/2019	7:38	21	25	17.39%
SR06	SR06-US-15-0-2	0-2	4/10/2019	7:55	60	64	6.45%
SR06	SR06-DS-01-0-2	0-2	4/10/2019	8:43	293	302	3.03%
SR06	SR06-DS-03-4-6	4-6	4/10/2019	9:17	102	97	5.03%
SR06	SR06-DS-05-0-2	0-2	4/10/2019	9:35	235	228	3.02%
SR06	SR06-DS-09-4-6	4-6	4/10/2019	10:22	162	149	8.36%
SR06	SR06-DS-11-0-2	0-2	4/10/2019	10:33	126	143	12.64%
SR06	SR06-DS-13-4-6	4-6	4/10/2019	10:50	104	92	12.24%
SR06	SR06-DS-15-2-4	2-4	4/10/2019	11:02	182	164	10.40%
SR08	SR08-US-01-4-6	4-6	4/9/2019	8:11	14	10	33.33%
SR08	SR08-US-04-0-2	0-2	4/9/2019	8:43	306	296	3.32%
SR08	SR08-DS-02-0-2	0-2	4/9/2019	10:00	14	13	7.41%
SR08	SR08-DS-04-2-4	2-4	4/9/2019	10:25	20	19	5.13%
				-	Averag	e Percent Relative Difference	11.24%

Notes

mg/kg - milligram per kilogram

NA - Not available ppm - parts per million

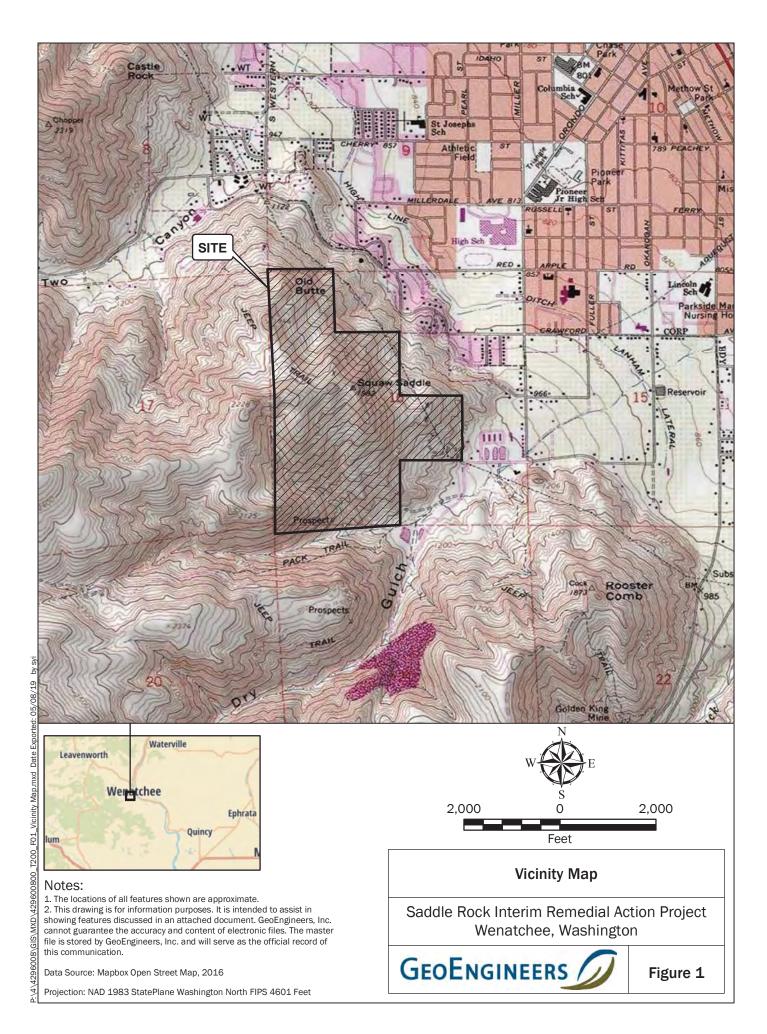
Quality Assurance/Quality Control - Performance Standards

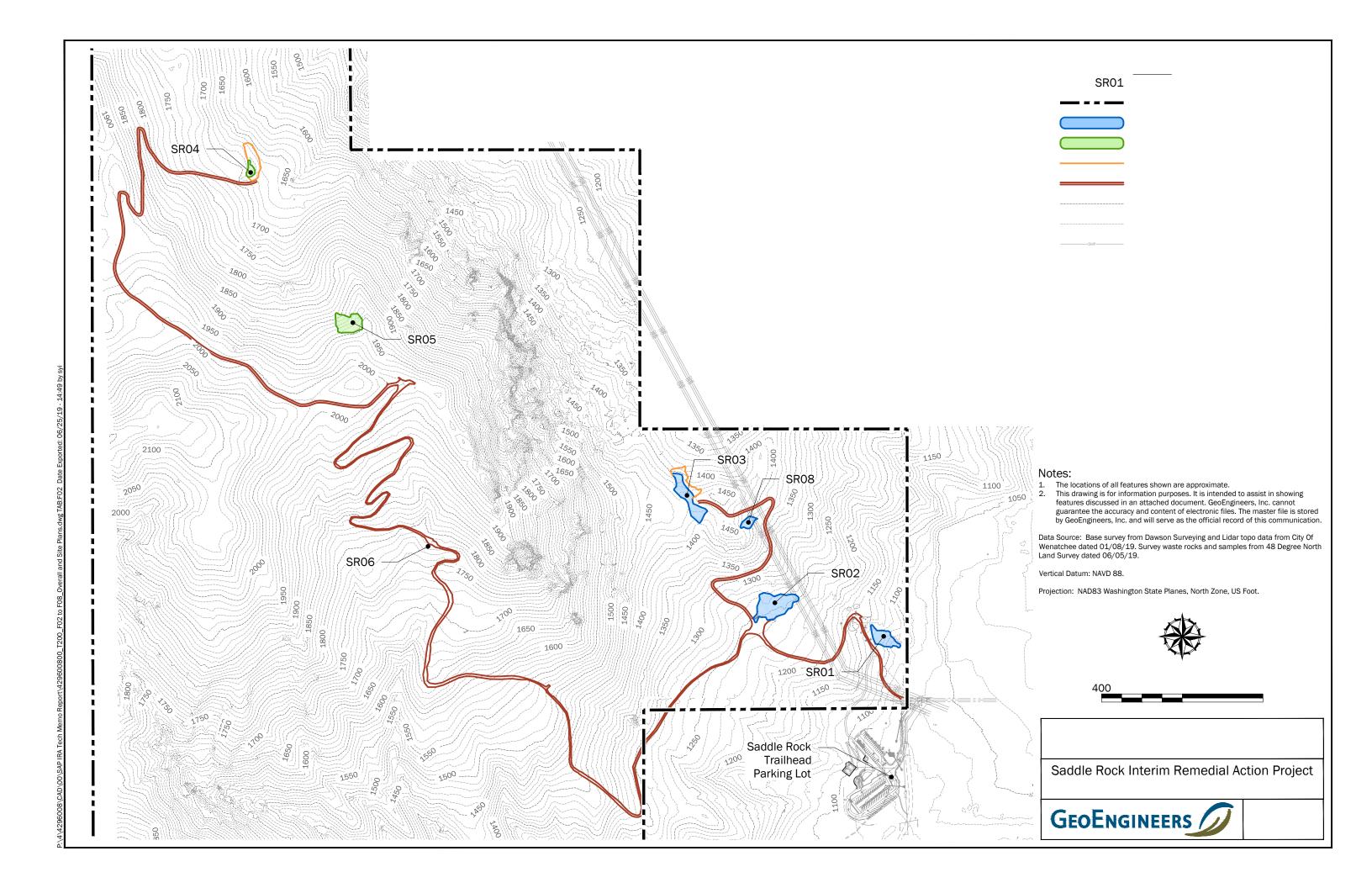
Saddle Rock Interim Remedial Action Wenatchee, Washington

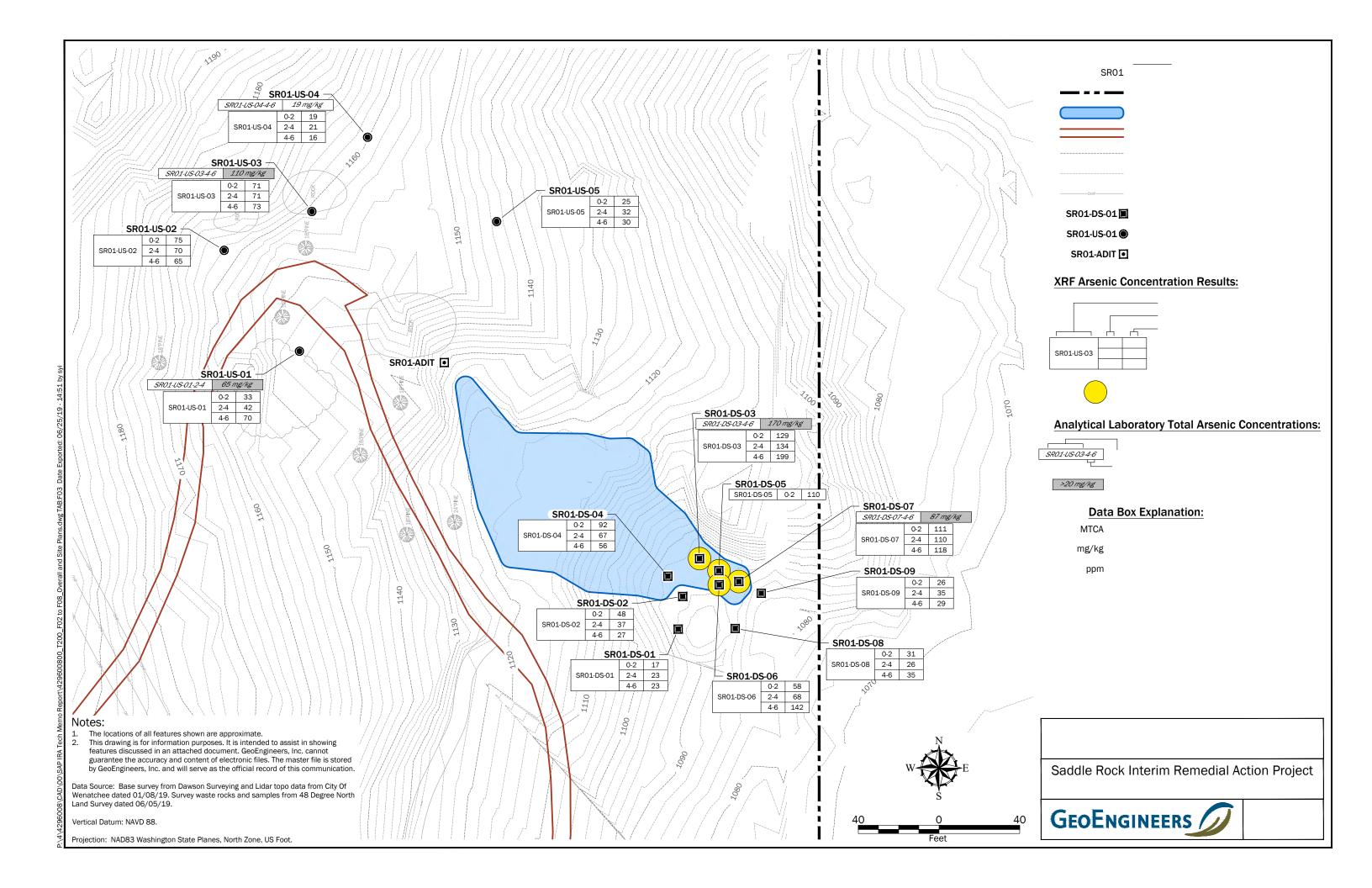
Sample Location	Sample ID	Depth (inches)	Date	Time	Performance Standard Arsenic Concentration (ppm)	XRF Arsenic Concentration (ppm)	Relative Percent
	SR-2-4C-PS	NA	4/8/2019	7:50	8.1	< 9	10.53%
	SR01-WR-1C-PS	NA	4/6/2019	1.50	99	107	7.77%
	SR-2-4C-PS	NA	4 (0 (0040	15:40	8.1	< 9	10.53%
	SR01-WR-1C-PS	NA	4/8/2019		99	113	13.21%
	SR-2-4C-PS	NA	4/9/2019	11:25	8.1	11	30.37%
F	SR01-WR-1C-PS	NA			99	105	5.88%
	SR-2-4C-PS	NA	4/9/2019	18:30	8.1	< 9	10.53%
Performance	SR01-WR-1C-PS	NA			99	90	9.52%
Standards ¹	SR-2-4C-PS	NA	4/10/2019	6:30	8.1	< 9	10.53%
	SR01-WR-1C-PS	NA			99	97	2.04%
	SR-2-4C-PS	NA	4/40/0040	17:35	8.1	9	10.53%
	SR01-WR-1C-PS	NA	4/10/2019		99	103	3.96%
	SR-2-4C-PS	NA	4/44/2040	5:42	8.1	< 10	20.99%
	SR01-WR-1C-PS	NA	4/11/2019		99	83	17.58%
	SR-2-4C-PS	NA	4 (44 (0040	13:50	8.1	< 8	1.24%
	SR01-WR-1C-PS	NA	4/11/2019		99	96	3.08%
		-			Average Per	cent Relative Difference	10.52%

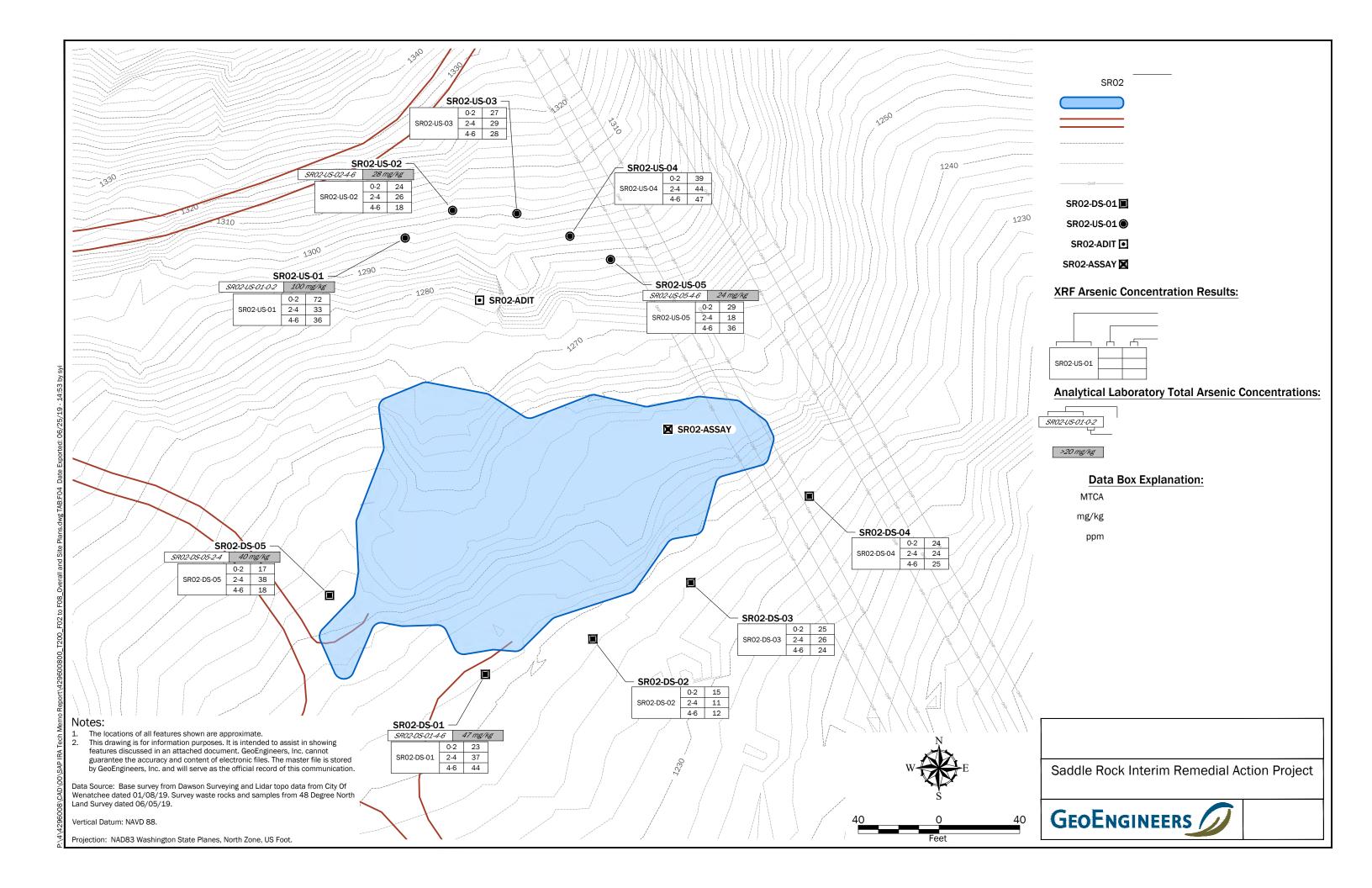
Notes

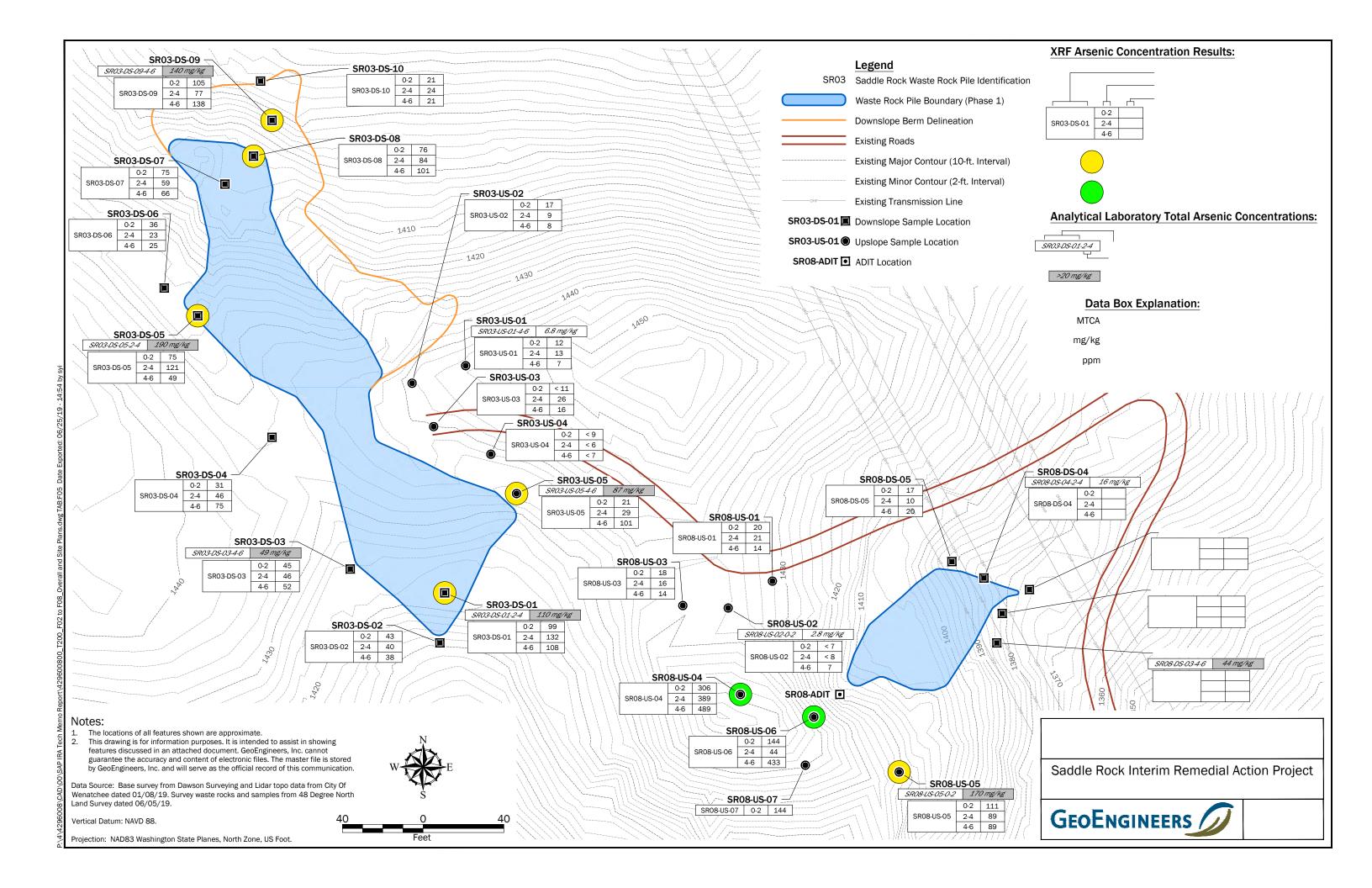
¹Performance standard samples SR-2-4C-PS and SR01-WR-1C-PS were collected by Frank Winslow (Ecology) and provided to GeoEngineers during the IRA investigation. Samples were anlayzed for total arsenic by EPA Method 6020B by OnSite Environmental, Inc. in Redmond, Washington.

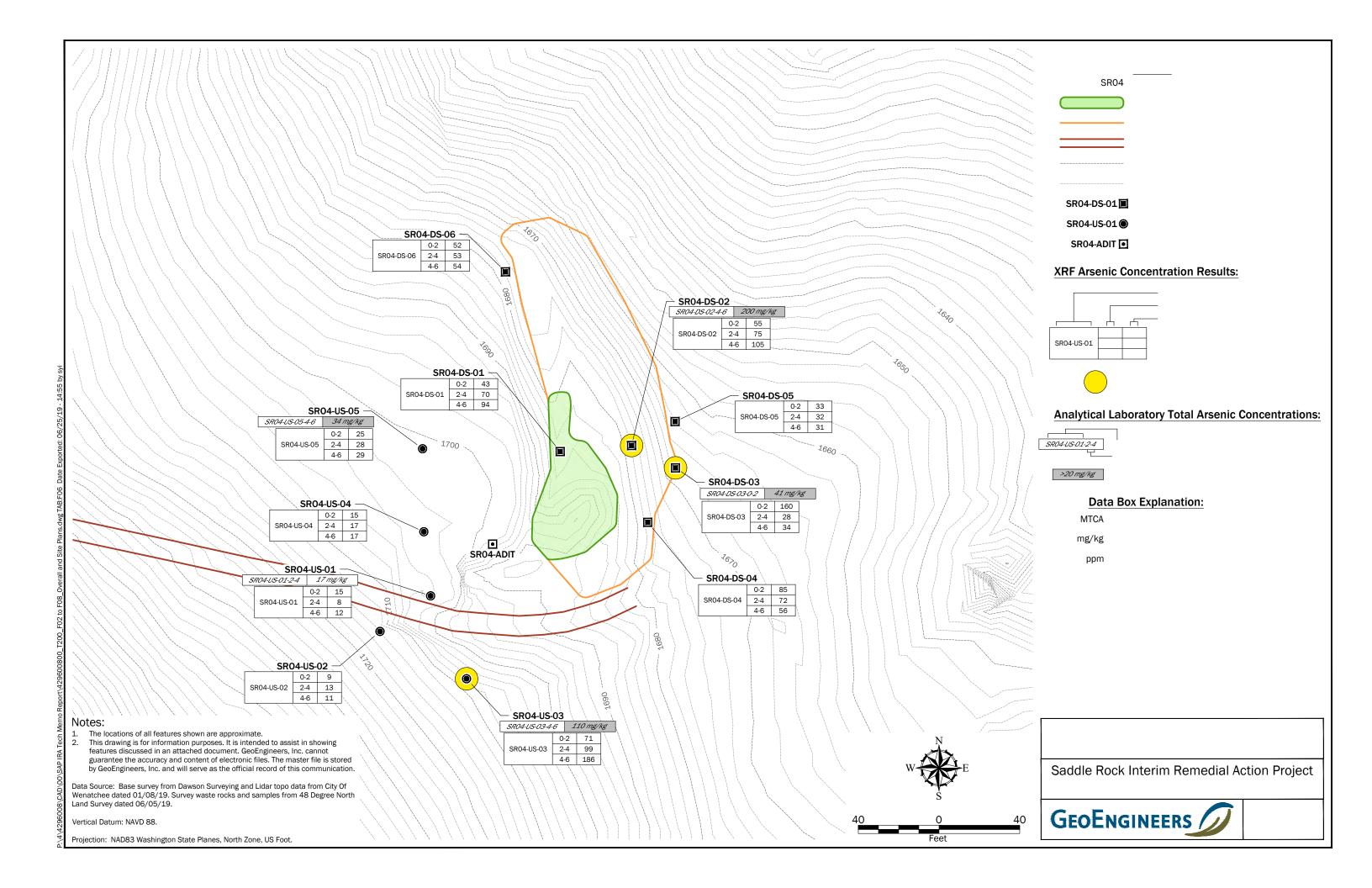

²Where arsenic was identifed below the limit of detection (LOD) the LOD value was used for comparison.

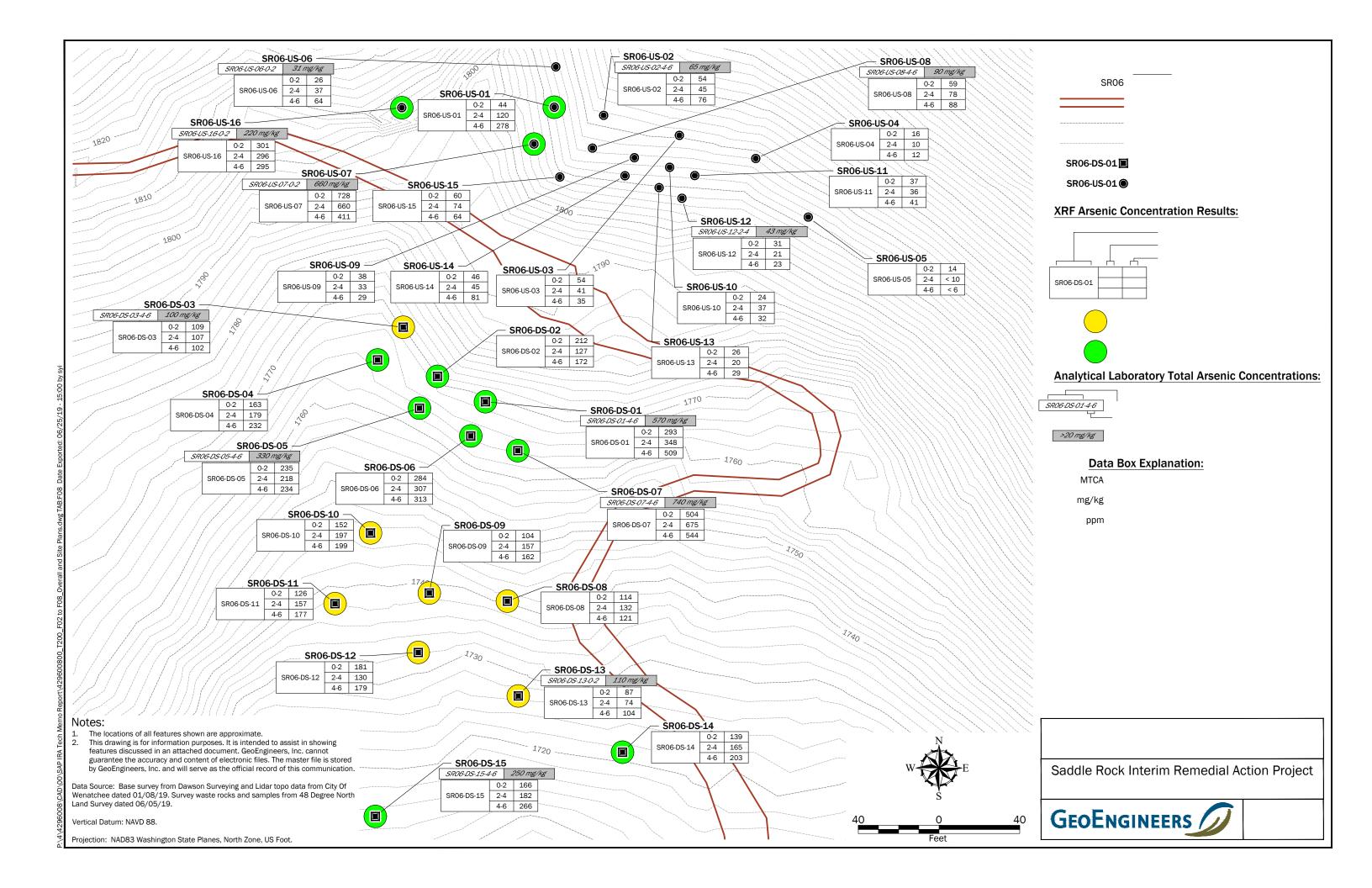

mg/kg - milligram per kilogram

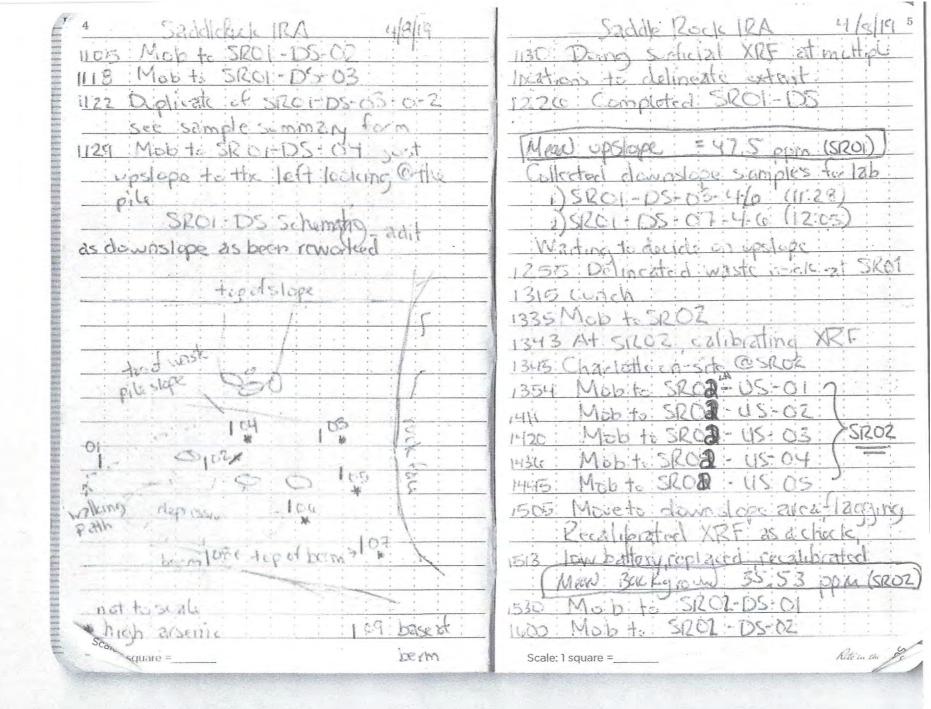

NA - Not available


ppm - parts per million









SU-CIMPLE SIDE 107 PT 15 (each 15 control of SI 15 (each 15 control of SI 16 control of SI	eliphicate XRF reading 201-US-05-0-2 cling 25 ppm As eding 35 ppm As Due eding 35 ppm As Due eding 35 ppm As Due eding 36 ppm As Due eding 200 after recomposite dung 200 ppm dung Due 28 ppm dung Due 2
Scale: 1 square = Scale: 1 square =	

Saddle Rock Hall Saddle Rock		
715 L. Hanna R. To bia (Geo) on site 1615 Mob to SROD DS OH 1510 Mob to SROD DS OS 1510 Mob to SROD DS OS 1520 Mob to SROD DS OS 1520 Mob to SROD DS OS 230 Surveyors North (Eric Wade) 735 Morning mtg v North: Geo 744 Adding red flags to SROI to delineate adit for North Surveyors 3) SROI US-03-0-2 DUP (1122) 3) SROI US-03-0-2 DUP (1128) 4) SROI US-03-0-2 DUP (1128) 5) SROI US-03-0-2 DUP (1128) 6) SROI DS-04-2-4 DUP (1555) Collected downsleps samples @ 1 SROI DS-04-2-4 DUP (1555) SROI DS-05-2-4 (1544) Wating to decide which upsteps Samples to submit Wating to decide which upsteps Samples to submit Wating down to demob for day At top of fault Substrate is gravelly.	6 Saddle Rock 4/8/19	5 addle Rock 4/9/197
1615 Mob to SROS DS-OS 15to Mob to SROS DS-OS 15to Mob to SROS DS-OS 20lecteri duplicates today 11 SROI-US-OS-O-2 DUP (1020) 21 SROI-DS-OS-O-2 DUP (1122) 23 SROI-DS-OS-O-2 DUP (1122) 23 SROI-DS-OS-O-2 DUP (1122) 24 SROZ US-OS-O-2 DUP (1423) 25 SROZ-US-O-1 - U- (2 DUP (1423)) 25 SROZ-DS-O-1 - U- (2 DUP (1423)) 26 SROZ-DS-O-1 - U- (2 DUP (1423)) 26 SROZ-DS-O-1 - U- (2 DUP (1423)) 27 SROZ-DS-O-1 - U- (2 DUP (1423)) 27 SROZ-DS-O-1 - U- (2 DUP (1423)) 28 SROZ-DS-O-1 - U- (2 DUP (1420)) 28 SROZ-DS-O-1 - U- (2 DUP (1420)) 30 SROZ-DS-O-1 - U- (2 (1555)) 30 SRO	1605 Mob to 5002-DS-03	
Collected deplicates today 1) SRCI-US-03-0-2 Dep (1020) 2) SRCI-DS-03-0-2 Dep (1122) 3) SRCI-DS-03-0-2 Dep (1122) 3) SRCI-DS-03-0-2 Dep (1122) 4) SRCI-DS-03-0-2 Dep (1122) 5) SRCI-DS-03-0-2 Dep (1122) 4) SRCI-DS-04-U-G Dep (1123) 5) SRCI-US-03-0-2 Dep (1123) 6) SRCI-US-03-0-2 Dep (1123) 6) SRCI-US-04-U-G Dep (1120) Collected downsleps Samples @ SRCI-DS-01-2-U-G (1555) 1) SRCI-DS-01-U-G (1555) 1) SRCI-DS-03-2-U-G (1555) Wating to decide which upstig: Samples to subsite to seen yet but on fault Substrate is gravelly. At top of fault very min cralized Heading down to demobile day. Added SROB-US-03 Added SROB-US-03-04	1615 Mob 45 SROZ- DS-04	
Collected deplicates today 1) SROI-US-05-0-2 DUP (1020) 2) SROI-DS-03-0-2 DUP (1122) 3) SROI-DS-03-0-2 DUP (1122) 4) SROZ-US-05-09-4-6 DUP (1226) 4) SROZ-US-05-0-2 DUP (1423) 5) SROZ-US-05-0-2 DUP (1423) 6) SROZ-DS-01-2-4 DUP (1420) Collected downslope samples @ SROZ 1) SROZ-DS-01-4-6 (1555) SROZ 1) SROZ-DS-01-4-6 (1555) 2) SROZ-DS-01-4-6 (1555) 32 Mob to SROB-US-02 832 Mob to SROB-US-03 842 Mob to SROB-US-03 842 Mob to SROB-US-03 842 Mob to SROB-US-04 As concentrations are highest seen yet but on fault. Substrate is gravelly. Samples to submit Heading down to demob for day 855 Mob to SROB-US-05 Added SROB-US-05 Added SROB-US-05	1540: Mab to SROS DS-05	
1) SRC1-US-03-0-2 DUP (1020) 2) SRC1-DS-03-0-2 DUP (1122) 3) SZC1-DS-C9-4-G DUP (1226) 4) SRC2-US-03-0-2 DUP (1423) 5) SR02-US-03-0-2 DUP (1423) 6) SR02-US-03-0-2 DUP (1423) 6) SR02-US-04-4-G DUP (1440) 6) SRC2-DS-01-2-4 DUP (1440) 6) SRC2-DS-04-2-4 DUP (1420) 6) SRC2-DS-04-2-4 DUP (1420) 6) SRC2-DS-04-2-4 DUP (1420) 6) SRC2-US-04-2-4 DUP (1420) 6) SRC2-US-05 6) SRC2-US-05-2-4 US-44-4 DUP (1420) 6) SRC2-US-05-2-4 US-04-4 DUP (1420) 6) SRC2-US-04-4 DUP (1420) 6) SRC2-US-05-2-4 US-04-4 DUP (1420) 6) SRC2-US-04-4 DUP (1420) 6)		735 Macains mta W North Goo
allineate actit for North Surveyors 3) SROI-DS-CG-4-GE DUP (1226) 4) SROZ-US-OS-C-2 DUP (1428) 5) SROZ-US-OS-C-2 DUP (1428) 6) SROZ-DS-OI-Z-4 DUP (1440) Collected downslope samples (C) SROZ 1) SROZ-DS-OI-4-GE (1555) 2) SROZ-DS-OI-4-GE (1555) 305 Mobits SROB-US-OZ 832 Mobits SROB-US-OZ 832 Mobits SROB-US-OZ 842 Mobits SROB-US-OZ As concentrations are highest seen yet but on fault Substrate is gravely. At top of fault very mineralized Heading down to demobifer day Added SROB-US-OS Added SROB-US-OS Added SROB-US-OS between OH		
3) SROI-05-09-4-G DUP (1226) 4) SROI-US-03-0-2 DUP (1423) 5) SROI-US-0-1-4-G DUP (1440) 6) SROI-US-0-1-4-G DUP (1440) 6) SROI-US-0-1-4-G DUP (1455) 6) SROI-US-0-1-2-4 DUP (1450) 6) SROI-US-0-1-2-4 DUP (1450) 6) SROI-US-0-1-4-G (1555) 7) SROI-US-0-1-4-G (1556) 7) SROI-US-0-1-4-G (1556) 7) SROI-US-0-1-4-G (1556) 7) SROI-US-0-1-4-G (1556) 7) SROI-US-0-1-4-G (1566) 7) SROI-US-0-1-4-G		
4) SROZ US-03-0-2 DUP (1428) 5) SROZ-US-04 4-6 DUP (1440) 6) SROZ-DS-01-Z-4 DUP (1555) Collected downslope samples (0) SROZ SROZ SROZ DS-01-4-6 (1558) 2) SROZ-DS-01-4-6 (1558) 2) SROZ-DS-01-4-6 (1558) 2) SROZ-DS-05-Z-4 (1544) Warting to decide which upsting samples to sample to decide which upsting to he fault. Substrate is gravelly. At top of fault von mineralized Hiading down to demobilized Added SROB-US-05 Added SROB-US-05 Added SROB-US-05 Added SROB-US-05 Added SROB-US-05		
5) S.ROZ-US-OH-4-G DUP (1440) GRS DRA 20MOJHO9 (Glename) 2) SROZ-OS-OH-2-4 DUP (1820) Collected downslope samples (B) SROZ SROZ SROZ-DS-OH-4-G (1555) 1) SROZ-DS-OH-4-G (1555) 2) SROZ-DS-OH-4-G (1555) Wating to decide which upstop: Samples to submit Hisding down to demobele day Added SROB-US-OS Added SROB-US-OS Added SROB-US-OS		
4) SROZ-DS-O1-Z-4 DUP (1555) 2) SROZ-O5-O4-Z-4 DUP (1120) Collected downslope samples (B. SROZ-US-O2 SROZ 1) SROZ-DS-O1-4-6 (1558) 2) SROZ-DS-O1-4-6 (1558) Waiting to decide which upstope Samples to content which upstope Samples to count to demob-for day Heading down to demob-for day At top of fault very min cratized At top of Fault very min cratized At top of Fault very min cratized Added SROB-US-O5 Added SROB-US-O5	5) S. Roz-US-OH - Hale Dur MUMA!	
2) SROZ Server 2-41 Dup (1120) Collected downslope samples (0) SROZ 832 Mob to SROB - US-OZ 832 Mob to SROB - US-OZ 842 Mob to SROB - US-OZ 843 Mob to SROB - US-OZ 844 Mob to SROB - US-OZ As concentrations are highest seen yet 844 top of fault very mineralized 845 Mob to SROB - US-OS Added SROB - US-OS Added SROB - US-OS		(286 12A 2019/1/1/19)
Collected downslope samples @ 819 Mab to SROB-US-OZ SROZ 11 SROZ DS-01-U-6 (1558) 842 Mob to SROB-US-OY 2) SROZ DS-05-Z-U (1544) As concentrations are highest seen yet Waiting to decide which upslip: Samples to submit Heading down to demobilized as 855 Mobits SROB-US-OS between OY Added SROB-US-OS between OY		
SROZ 1/ SROZ DS-01-4-6 (1558) 2) SROZ DS-01-4-6 (1558) 2) SROZ DS-05-2-4 (1544) Waiting to decide which upsleps Samples to submit Heading down to demob-for day At top of fault trong min cralized Heading down to demob-for day Added SROB-US-05 Added SROB-US-06		
2) SROZ-DS-01-4-6 (1558) 2) SROZ-DS-05-2-4 (1544) 3 SROZ-DS-05-2-4 (1544) 4 Scorentiations are highest seen yet Waiting to decide which upsleps Samples to submit At top of fault from mineralized Heading down to demobilized as 855 Mobits SROB-US-05 Added SROB-US-06 between 04	SOO2	
2) SROZ-DS-05-2-4 (1544) As concentrations are highest seen yet Waiting to decide which upsleps: Samples to submit Heading down to demobile day. At top of fault very mineralized 855 Mobits SROB-US-05 Added SROB-US-06		
Waiting to decide which upslope but on fault. Substrate is gravely. samples to submit At top of fault very mineralized Heading down to demobilized 855 Mobile SROB-US-05 Added SROB-US-06 between 04		
Heading down to demobilized 855 Mobits SROB-US-OS Added SROB-US-OXO between OY		
Heading down to demobile day 855 Mobits SROB-US-05 Added SROB-US-OG between 04		but on tault. Substrate is gravelly.
Added SROB-US-ON between OH		At top of tault very min cralized
Added SROB-US-OG between OG	L. Arabing down to demobile day	
	0. 7	
Performance Standards 9 05. Minimal soil on rock custorop but		
1755 SR-2-46-PS 49 #/32 found a spot directly above adit	The state of the s	
5201-WZ-16-1) 113 #134 938 Completed upslope delineation	5K-01-WK-10-17: 113: #139:	938 Completed upslope delineation
QUE Main to disconsider SPNR	1000	
1805 Tobias/Hum offsite 948 Rechark XRF calibration	1002 100,00/ Hum: offsite:	948 Recheck XRF calibration
952 Mobilo SRO8-05-01@top of slope	4	952 Mobile SRO8-DS-OI@top of slope
Scale: 1 square = Rate in the h	ale: 1 square =	Scale: 1 square = Rate in the h

E 8 Saddle Rock 4/9/19	Saddle Rock 4/9/4 9
958 Mob to SROB-DS-02	1255 Mab to SRO3-US-05
1012 Mob to SRO8-DS-03	Completed upslope SRO3
1028 Mob to SIZO8-DS-04	1315 Moved to delineate downslope
1032 Mob to 5/208 -DS-05	1330 Mob to SRD3 - DS-01
Delineating waste pile taking	1340 Mobito S1203- DS-02
GPS coordinates of DS locations	1345 Mobito S1203-DS-03
Collected downslope samples@SROB	1345 Mobile SRO3-DS-04
DSROB-DS-03-4-6 (10:18)	1354 Recalibrated XRF battery changed
2 SRO8-DS-04-2-4 (10:25)	1404 Mobito SRO3-DS-05
Mean upsluge and excluding high As	1415 Mob to S203 DS-100
samples collected in the voin (SROB-US:04	1430 Mob to SRO3-DS-O7 area
mean = 33.88 ppm / Se08 us-06	down below is moist seeing higher
1115 Stopped totalk to surveyors @ SROZ	than expedica As [] in soil not
1125 - Relean - Chelas Develo Las	waste nick is oil is vegetated on a
Trust visited at Truck behicklift.	flat bench. Went below bench on
E Performance Solandard	the slope to collect additional
50-2-4C-8S AS=11 Ppm 760	locations for delineation.
SIZ-01-WIZ-1C-PS 105 ppm #61	To Zo 2: 11: 21 1 Prite a co sintly
E 105 pp. 462	5703 Mean As Background
SP-2-46-PS: 9 pp +63	= 18:5 ppm:)
1211 Recalibrate XRF	1200 100 100 - 2200
= 1213 Mob to SR 103-US-01	5408, Mean Upshipe = 33,875 =87
1225 Mobito SRO3-US-02	411 - 124.41
1238 Mob to SRO3-US-03	A11 - 124:41
1245 Mobito SRO3-US-04	
Scale: 1 square =	Scale: 1 square = Rute in the Rain.

10 Saddle Rock 4/9/19	Saddle Rock 4/10/1911
Collected clownslape samples @	personnel Ryan Tobias Laura Hanna (Geo)
1) SRO3-DS-01-2-4 (1330)	615 Onsite
2) SRO3-DS-O3 4-6 (1354)	630 Calibrating XRF passed calibrating
3)51203-DS-05-2-4 (1410)	Loading op vehicle
4)5RO3-DS 09-4-6 (1505)	H'. Smtg
1630 Completed downstop SRO3	Performance Standard Check
SR03-08-09-10 delineation	SR-2-4c-PS 49ppm +3 SR-01-WR-1C-PS 97 +4
1700 At SROG scouting site	1645 Heading to SROG
Establishing background locations	652 AT SROG
1802 Collected SROG-US-01	255 Continuing background sampling
to SROG-US-06	Completed upslope 51206
1808 Heading back-to-demob	Submitting upslope samples
1830 Portornace Standard	1) SROG-US-D2-4-6 (1739) 4/9/19
52-2-4C-PS 49 x218	3) SROG-US-06-0-2 (1755) - 3) SROG-US-07-0-2 (7:04) 4/10/19
S12-01-W2-14-800 90 # 219	4) SROG-US-08-4-6 (7-14)
1645 Off site	5/5206-US-12-2-4 (7:38)
	:6) SROG-US-16-0-2 (8:07) -
	Delineating /GPS ing
	840 Mob to downslope
The state of the s	Downslope pile is NOT Wasterout
	1106 Completed downslope samples
Scale: 1 square =	Scale: 1 square = Rete in the Rain.

12 Saddle Rock 4/10/19	
1120 - Calibrate XPF	1500 Collected upslippe samples to
1130 - Collected Boiasgay at	analytical
SQ-06 for Al SROC-COZ-D-ASSAY	SRO1 -4/8/2019
GPS locations (11:30 :	DSROI-US-04-4-6 (10:14) 10W 4/8/19
: Collected downstope samples	2) SROI-US-01:2-4 (8:45) med]
) S206-D5-01-4-6 (847)	3/SROZ 4/8/2019
2) SRO6 DS - 03 - 4-6 (917)	15802.US-02.4.6 (1418) low 4/8/19
3) SRO6-DS-05-4-6 (940)	2) SROZ-US-05-4-6 (1452) mal
4) SROG-DS-07-4-6 (955)	5/5802-45-01-0-2 (1400) high
5) SRO6 DS-13-0-2 (1046)	5008 - 4/9/2019
SRD6-DS-15-4-6 (11:04)	1)5808-USTO-Z (8:20) low 4/9/19
Docon demob	2\SR08-US-05-0-2 (859)
1200 Heading to 5205 Locating background locations	
1345 Completed background samples	[Mean slope: 592 ppm@SR05]
@ SROS as XPF battery died	ometing highest As (US-04)
Collected SROS-US-01 to	SR03 -4/9/19
SR05-US-D6) SRO3-US-01-4-6 (1273) 4/9/19
1350 Demob to charge XRE as 2nd	2) SRO3-45-04-6 (1301) 1
battery didn't hold charge.	1) 51205-4/10/19
1415 Off site heading to hotel to	2) 51205-45-05-2-4 (1330)
organne ! select upslupe sample :	3) SROS-US-06-2-4 (1335)
locations - high modium; low	Prepping Simples for Shipping
Promeach SR to about for	COCS
Scale: 1 square =	Scale: 1 square = Rete in the Rain

14 Saddle Rock 4/10/A	Saddle Rock	1/10/19 15
1700 Mob back tosite	130 Done SROS-DS-01 to	
1740 Heading up to SROS	SRU5-D5-06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1751 A+ SROS	1935 Holding down	
Calibrating XICF	Demab	
Gully @ too of waste rock ! looks	Calibrated XRF	
Trice containing tes have washed	Performance Std Check	18.28%
down gully inot within scope of	SR-2-4C-PS	1 0001 #90
SAP to define currently. Marked	SR-01-WR-16-PS 10	3 poin :
	2000 Offsite	#24
toe of waste nock pile for	ZOOD CALSTIE	
delineation.		1 1 1 1
5205 appears to be 2 different		1 1 1
pile origins waste rock pile associated		1 1 1 1
Wan add unlocated and other		1 1 1 1
appears to have been worked		
remorted by unsure to waste node		
it has oxidized is mineralized		1 1 L 1 1 L 1 L
arcathat has been		t
revoked 80H		1 1 1
slump		1 1 1
revistopslops Production		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Astronomy Plet		Y 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
delineating downslope		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		T T E T
Scale: 1 square =	Scale: 1 square =	Rite in the Rain

16 Saddle Rock 4/11/19	collected Two additional Dourstone
5540 Onsido 12 Tobias i. L. Hanna	Samples
Ober Calibrating XRF Checking Performance Stdr	1230 - collected Telf Sample for
SR-2-4C-PS	5602 1 2 2
SR-OI-WR-1C-PS	March to SZO3. Flagged counslape with pile
Derformence Standard Chell	To refus avea
50-2-4C-PS 410 Am #4	1310 - Marcel to 6202
603 Mob up to SKOH	1330 - collected SROZ-DOY-ASSEG
633 At SROY	Decord of someway
807 Completed downslope	1400 - Pertornue Stondard 14201-42-16-75 96 gpm #240
809 Mobilo carpark	52-2-46-PS 20 #210
MUN UPSIGPE SZOY = 37 ppm)	
De-Hange SROY . w/ maer un	
with periodity to represent	
1040 project to SROS	Rete in the Rain
Scale: 1 square =	Scale: 1 square =

 Table 2

 IRA Design Upslope/Downslope Sample Location List

	As ppm	Sample Type (XRF/lab)	Assessment (Background/Downslope)	Date/Time	Depth	Location	Sample Number
totalfood	33	±7	Backgrund	4/8/19 8:38	0-2	SROI-US	SRO1-45-01
	42	48 MED	i	1 8.45	2-4		
-	70	世 0		3:49	4-6	4	
	75	10		9:42	0-2	SROI-US	SR01-45-02
	70	1		950	2-4-		
	65	12		953	4-6		
	F	13		759	0.2		SRO1-US-03
	7-1	14		10:02	2.4		
	73	15 HIGH		10:04	4-6		who who
	19	16		10:10	0-2		5201-05-04
	21	17		10.12	2-4		
	16	18 LOW		10:14	4-6		
	25	\$ 22		10.50	0-2		SRO1-45-05
	. 32	27		10.24	2-4		
	.30	28		10:26	4.6	,	<u></u>
strick ran	35 -0.3	±23		10:20	0-2	DUP	SRO1-45-05
recalibra	28	25		10:20		DUP-10th	SR01-45-05
pironeed	30 .6"	26		10:20	0-2		SRO1-45-03
	33	29					1001 00
	17	# 31	Downslope	1055	0-2	SROI-DS	6201-DS-01
	23	BO 32	7	1058	2-4		
	23	22/1/3		(100	4-6		15-1-11
	23 48	34		1110	0-2		SRO1-15-05
	37	35		1115	2-4		
	27	36		1114	4-6		- L
G' pine 1	129	37		11:22	0-3		SRO1-DS-03
	134	39		11:25	2-4		
LAB con 208 after con	199	40 LAB		11:28	4-6	J ~	
208	127	38		11:22	0-2	DUP	1000
ates con	92	41		11:31	2-4		SR01-DS-04

File No. 4296-008-00 Table 2 | February 20, 2019

Page 1 of 2

Table 2

IRA Design Upslope/Downslope Sample Location List

		Sac	dle Rock Natura	al Area, Wen	atchee, WA	XRF Shot#		7
Sample Number	Location	Depth	Date/T	lime .	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As ppm	
SRC1-DS - 04	SROI-DS	4-6	4/8/19	11:34	Downslope	¥56 43	56]
SRO1-05-05	1	0-2	1	11:39	,	44	110]
SROI-DS-06		.02		11:44		45	58	
1		2-4		11:48		46	68	
	_	4-6		11:50		47	142	
SR01-DS - 07		0-2		11:54		43	111	
SR01-05-08		0-2		1156		49	31]
SRO1-DS-09	1	0-2		1200		UN 350	26]
10		02				'		
SR01-DS-07		2-4		1202		51	110	
1		4-6		1205		52 LAB	118	L
1201-DS-98		2-4		1215		.53	26	
1		4-6		1217	(- C	54	35	
1201-DS -09		8 2-4		1224		55	35	
		9-4-6		1226		IN 5€ 57	29	
_	DUP	46	7	1226		56	37	
12-US-01	5/202-US	0-2	4/8/19	1400	BackgroundHi	GH G7 HIGH	72	
1	1	2-4		1405		68	33	
		4-60		1410		69	36	
5R02-US-02		0-2		1414		70	24	
		2-4		1416		71	26	
		4.6		1418	LOW	72, LOW	18	
SR02-US-03	7	:0-2		1424		7)	27	
	DUP	0-2		14.58		78 78	W 29	
		2-4	143	2 数据		79	29	
7		4-6		1434		80	28	
5ROZ-US-04		0-2		1436		81	39	1
		2-4		1439		82	44	1
	J	4-6		1440		83	47	
	PUP	4-6	1	1440		184	42	

No. 4296-008-00 e 2 | February 20, 2019

LAB

Page 1 of 2

 Table 2

 IRA Design Upslope/Downslope Sample Location List

	Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	AS PPM	
	SROZ-US-05	5R02-US	0-2	4/8/19 1448	Vosiope	85	29	1
		1	2.4	1 1450	1	89	18	1
_	4	1	4-6	1 1452		90 MED	36	
	SR02-D5-01	SRO2-DS	0-2	4/8/19 155	D Downslope	2102	20 23	1
			2-4	1553		108	27	1
3	<u></u>		4-6	1558		110	44	14
	SR02-105-02		0-2	159	9	111	دا ها ⁴ ،	2
			2-4	1600		112	11	1
			4-6	16:0		113	12	1
	SR02-DS-03		0.2	16.0	9	.99	25	1
- 1			2-4	16:1	1	114	26	1
	+		4-6	16:1	3	115	24	1
	SR02-DS-04		0-2	161	8	100	24	9
-			2-4	16:2	0	117	24	
-	() 10		4-6	16:	22	120	25	1
_	SLOZ-05-05		0-2	154	8	101	17	1
B			2-4	154	4	106 LAB	38	LAF
-	nde	1	4-6	154	6	107	18	
1	SRUZ-DS-01	DUP	2-4	155	5	109	39	1
-	SR02-DS-04	DUP	2-4	16		118	26	1
-	SR08-US-01	3808-US	0-2	4/9/19 80	1 Beiele Line IF	3	20	1
+	-	-	2-4	60	7	9	21	1
-		7	4-6	81		5	19	
-	-L	DOS	hd - 6	3:		B 7	20 10	
-	SR08-45-02	SRO8-US	0-2	8:3	20	8 LOW	< 7	
-		-	2-4	8:7	Ч	9	28	
-			4-6	8:-		16	MF	
-	SR09-45-03		0-2	813	2	LAH 13	18	
-			2-4	8:3		14	16	
L	+	1	4-6	8:	37	15	14	

File No. 4296-008-00 Table 2 | February 20, 2019

Table 2IRA Design Upslope/Downslope Sample Location List

Saddle Rock Natural Area, Wenatchee, WA XCF Shof ₺									
Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As ppm			
SR08-US-04	SRO8-US	0-2	49/19 8:43	Background	17	306	rocky sample		
	DUP	0-2 DUP	8:43		18	296			
	SR08-45	2-4	8:46		19	389			
+		4-6	8:49		20	M89			
SR08-US-05		0-2	8:59		24 HIGH	111			
	# / ·	2-4	9:02		25	89			
1		4-6	9:05		, 26	89			
upslope SDO7		0-2	taken to see decr	nce noar SRUB-US	05/ 22 "	144			
SROR-US-06		0-2	910	ì	99	49	rocky sample		
		2-4	918		31	433			
T	1	4-0	922		32	172			
SR08-05-01	5R08-D5	0-2	953	Downslope	34	<7			
	1 7 .	2-4	4 950		37	47			
		4-6	957		23	47			
SRU8-DS-02	4	0-2	10:00		39	14			
	IDUP	0-200	10:00		OF	13			
		2-4	10.05		7	14			
		4-6	10:07		42	47			
5R08-DS-03		0-2	10:15		44	35	surficial spillage		
		2-4	10:20		45	25			
1		4-6	10:18		46 LAB	38	LAB		
SR08-05-04		0-2	10:22		47	14	_		
1		2-4	10:25		49 LAB	20	LAB		
		4-6	10:28		5 51	12			
L	DUP	2-4	10:25		5150	HZ 19			
SR08-DS-05		0-2	1036			17			
1		2-4	10:39		53	10			
T	T	4-6	10:42	1	54	20] .		
SR03-US-01	13/5R03-US	0-2	4/9/19 1220	Background	\$ 66	12			
1	1	2-4	1 1223		67	13			
1	1	4.6	1 1225	1	68 LOW	7			

 Table 2

 IRA Design Upslope/Downslope Sample Location List

		Sac	ddle Rock Natural Area, Wei	natchee, WA	XRF Shot#		_
Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As (ppm)	
SR03-US-02	SR03-45	0-2	4/4/19 1227	Background	*69	17],
	1	2-4	1230		70	9	
	1	4-6	1233		71	\$	
1	DUP	4.6	1233		72	9	
SRD3-US-03	1	0-2	ONZI		73	411	
		2-4	1245		74	26	
L		4-6	1245		75	16	7
5203-45-04	5	0-2	1247		76	29	7
	DUP	im 0-2	91247		77	9	
	i	7-9	1249	12W	78	46	
7		4-6	1251		79	47	
51203-05-05		0-2	1256		8(7.1	1
		2-4	1254	SALICH	82	29	gravely
	1	4-6	1301		83 HIGH	101	I color change
SR03-DS-01	SRO3-DS	0-2	4/9/19 1327	Downslope	96	99	(nom brown to
	i	2-4	1 1330	LAIS	97	132	tan
		4-6	1332		98	108	
SR03-DS-02		0-2	1338		104	43	
1		2-4	1341		103	44	
		4-6	1344		106	40	
	DUP	0-2	1338		105	38	
SR03-DS-03	1	0-2	1349		108	45	
1		2-4	1351		109	46	
		4-6	1354	LAB	110	52	
5203-DS-04		0-2	1400		119	39	
		2-4	1403		120	31	
J		4-6	1405		122	46	
SR03-DS-05	1	0-2	1408		124	75	clavey solden
	PUP	0.2	1408		125	45	clayey soil, dup
	1	2-4	1410	LAB	127	121	
_	1	4-6	1412	<u>y</u>	. 126	49	1

Jalce Frontier, Trimble Support 208-595-271

Table 2
IRA Design Upslope/Downslope Sample Location List

Saddle Rock Natural Area, Wenatchee, WA XRF Shot# Assessment Sample Type As (ppm) Sample Number Location Depth Date/Time (Background/Downslope) (XRF/lab) SR03-DS-06 SRO3-DS 4/9/19 0-7 14:19 # 128 Downslope 36 2-4 14:20 23 179 4-6 25 14:22 130 5203-DS-07 moist, sticky soil 0-7 14 33 36 75 2-4 137 1435 59 4-6 1438 138 66 SR03-DS-08 445 140 76 2-4 1448 141 1451 43 4-6 101 SR02-DS-09 1458 105 7 -4 507 4-6 20 LAB 50 178 5703-DS-10 0-2 531 155 156 24 4-6 1536 57 5R06-US-01 SRUG-US SROG TUANT 1718 Upslope Backg 0-2 96 44 (479/19) QUICI 95 718 45 7-4 1720 97 170 4-60 724 98 778 SR06-US-D2 5R06-45 0-2 730 201 7-4 1735 202 4-6 1739 203 LAB DUP 0-2 1730 19 200 48 SR06-US-03 738 204 2-4 739 205 41 4-6 1742 35 206 SROG-US-04 742 207 16 7-4 1744 208 10 4-6 746 209 12 SROG-US-05 1750 0-2 210 2-4 1752 211 410 4-6 1754 212 46

File No. 4296-008-00 Table 2 | February 20, 2019

Page (

Table 2IRA Design Upslope/Downslope Sample Location List

		Sad	dle Rock Natural Area, Wen	atchee, WA	XRF Shot#	
Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As (ppm)
5206-US-06	Sizoa-US		4 9 9 1755 7555	Background	213 LA	
i	j	2-4	1 1 1 7 XX		Ziy	37
		4-6	1808		215	64
	I DUP	4-6	T 1800	1	216	65
5R06-US-07	SRO6-US	0-2	4/10/19 7:04	Background	±5 LAB	728
	1	2-4	7.06		6 1	660
		4-6	30:5		7	411
SR06-US-08		0-2	7:09		9	59
		2-4	7:11		11	78
		4-6	7:14		12 LAB	88
	DUP	4-6	7:14		11+315	89
SR06-US-09		0-2	FI:F"		1516	38
1		2-4	7.20		17	33
1		4-6	7:22		18	29
SROG-US-10		0.2	725		19	24
-		2-4	7.24		20	37
		4-6	7:26		21	32
5R06-US-11		0-2	7:27		24	37 -
1		2-4	7.29		26	37
	Dip	0.2 2-41	727 7-314		25	36
		4-6	7:31		27	41
5RD6-45-12		0-2	7:36		28 29 LAB	31
1		2-4	7:38		29 LAB	21:
		4-6	7:40		32	23
	DUP	2.446	7:33		30	25
SR06-US-13		0-2	7:42		33	26
1		2-4	7.44		35	26
1		4-6	7.47		36	29
SRO6-45-14		0-2	7.48		38	46
1		2-4	7.50		40	45
	T	4-6	7:52		41	81

 Table 2

 IRA Design Upslope/Downslope Sample Location List

		Sa	addle Rock Natural Area, Wen	atchee, WA	XRF Shot#	T.
Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As (ppm)
1206-US-15	SROG-US	0-2	4/10/19 755	Background	43	60
		2-4	758	1	45	74
		4-6	800		47	64
1	1 Dup	0-2	755	+	442 46	76 64
5ROG-US-16	500G-US	0-2	F08		49 LAB	301
	1	2-4	809		50	296
		46	311	Je.	51	295
5206-05-01	SROW-DS	0-2	4 843	Downslope	64	293
	DUD	0-2		i	65	362
	1	2-4	845 843		66	348
		4-6	847		67 LAB	504
51206-15-02	-	0-2	9900		68	212
		2-4	903		69	127
do.		4-6	907		70	172
5206-D5-03		0-2	912		971	109
		2-4	914		72	107
		4-6	90		73 LAB	102
	DUP	4-6	917		75	97
206-DS-04		0-2	927		76	163
		2-4	929		77	179
+		4-6	931		78	232
206-DS-05		0-2	935		79	235
		2-4	938		81	218
*		4-6	940		82 UB	234
	DUP	0-2	935		80	228
506-02-00		0-2	943		84	284
		2-4	945		85	307
		4-6	947			313.
ROG-DS-07		0-2	952		86 87	504
		2-4	953		88	675
7	T	4-6	953		98 LAB	544

Table 2IRA Design Upslope/Downslope Sample Location List

		Sa	addle Rock Natural Area, We	natchee, WA	XRF Shot#		7
Sample Number	Location	Depth	Date/Time	Assessment (Background/Downslope)	Sample Type (XRF/lab)	As (ppm)	
SROG-DS-08	SR06-05	0-2	4/10/19 10:07	Downslone	103	114	
1	1	2-4	10:10		105	132	
		4-6	10:12		104	121	
SROG-DS-09		0-2	1017		106	104	
		2-4	1019		107	157	
		4-4	1022		108	162	
	DUP	4-6	1022		110	149	
SROG-DS-10		0-2	1026		112	157	
		2-4	1088		113	197	
		4-6	1030		114	199	
SROG-DS-11		0-2	1033		115	126	located on other
1		2-4	1036		Ht6118	# 157	side of road
		4-6	1038		H8	+57 177	
	Dup	0-7	1033		116	143	
S1206-D5-12		0.2	1042		122	181	
		7-4	1045		123	130	
1		4-6	1047		124	179	1
5R06-DS-13		0-2	1046		125 LAB		
1		2-4	1048		126	74	
		4-6	1050		127	104	clayey
	DUP	4-6	1050		128	92	
SR06-DS-14		0-2	1054		129	139	
1		2-4	1056		130	165	
1		4-6	1058		131	203	
SRO6 - DS-15		0-2	1100		132	166	
1		2-4	11:02		133	182	
	Dup	2-4	11:02		136 137		
1	1-1	4-6	11:00		138 LAB		
((A)				
			100			1	

 Table 2

 IRA Design Upslope/Downslope Sample Location List

Saddle Rock Natural Area, Wenatchee, WA XRF Shoft

Sample Number	Location	Depth	Date,	/Time		essment nd/Downslope)	Sample Type (XRF/lab)	As (ppm)
SRO5-US-01	SROS-US	0-2	4/10/19	1254	Back	anund	143	56
j	Í	2-4	1	1256		5	144	40
		4.6		1258			145	44
SR05-45-02		0-2		1306			147	59
		2-4		1308			149	63
		4.6		1310			150	67
SROS-US-03		0-2		1312			152	28
j	DUP	0-2		1312			153	3i
		2-4		1314			156	23
		4-6		1316			157	23
SROS-US-04		0-2		1318			158	174
1	-1	2-4		1320			159	204
	T L	4-6		1322			160	699
	DUP	4-6		1322			165	743
SR05-US-US		0-2		1328			167	136
		2-4		1330			153168	153
4		4-6		1332			169	138
5R05-US-06		0-2		1333			176	20
		2-4		1335			171	18
	T	4-6	1	1337			172	15
SR05-DS-01	SROE-DS	0-2	4/10/19	1807	Down	nsige	081	49
		2-4	Î	1809	ľ	1	181	29
	1	4-6		1181			182	29
SR05-DS-02	SR	0-2		0581			193	(4
	5 - 5	2-4		1822		LAIS	194	69
		4-6		1824			195	55
SR05-DS-03		0-2		1832		LAS	19 201	67
	DUP	0-2		18 32			203 205	83 70
		2-4		18 34			204	46
-	本	46	1	1836	V		205	44

Table 2IRA Design Upslope/Downslope Sample Location List

XRFShatt Saddle Rock Natural Area, Wenatchee, WA Assessment Sample Type As (ppm) Date/Time Sample Number Location (Background/Downslope) (XRF/lab) Depth SROS-DS 4/10/19 1900 774 SR05-DS-04 180 Downslope 123 2-4 1902 226 4.6 1904 227 162 SR05-DS-05 0-7 908 02 732 7.4 1910 733 101 235 234 DIP 1910 110 7-4 19:4 236 98 4-6 1920 0-7 741 50 S205-DS-06 242 47 7-4 I 1924 49 742 4-6 07 4/11/19 W 7 15 5204-US-NI 5R04-US 640 Doslope DUP 0-2 640 18 8 2 2-4 642 AR 8 6 iN 4-6 644 17 SR04-45-02 0-7 645 10 13 2-4 647 4-6 649 12 SR04-US-03 71 0-2 15 650 99 7-4 (151 6 4-6 654 LAB 19 86 DUP 4-6 654 18 224 0.2 20 SRU4-45-04 656 22 2-4 658 4-6 659 23 SRO4-45-05 700 24 25 0-2 700 25 2-4 703 LAB 20 29 4-6 45 2-4 701 27 Dup S204-D5-01 Seo4-DS 02 716 51 43 DOWNSlope 7.0 2-4 718 ZW 4-6 719 94

Table 2
IRA Design Upslope/Downslope Sample Location List

Saddle Rock Natural Area, Wenatchee, WA XRF Shot + Assessment Sample Type As (ppm) Sample Number Location Depth Date/Time (Background/Downslope) (XRF/lab) SR04-DS-02 5R04-D5 0-2 4/11/19 776 58 55 Pownslope 2-4 730 75 59 728730 LAIS 165 SRO4-DS-03 0-2 735 62 LAB 60 2-4 737 64 4-6 739 6.6 34 5R04-DS-03 DUP 2.4 739 65 29 5R04-D5-04 739 74/4 70 7-4 7411 748 71 4-6 743 56 SR04-05-05 0-7 745 73 33 747 32 749 75 79 25 31 DUP 749 46 5R04-D5-06 0-7 75) 80 7-4 754 31 SH 53 756 83 PP 4-60 756 5205-1X-17 LAB 104 110 55 1116 SROS-1X-08 0-2 120 52 \$ 100 1122 40 10 11.24 102 75205-105 1230 222

File No. 4296-008-00 Table 2 | February 20, 2019

Page 112

ATTACHMENT BRaw XRF Output Files

Date	Time Reading	Mode	Elapsed Tir Ela	apsed Tir El	apsed Tir Ela	apsed Tir P	P +/-	S	S +/-	· Cl	Cl +/-	K	K +/-	Ca	Ca	+/- Ti	Ti -	+/- V	V +/-	-
4/8/2019	7:48:11 #1	Cal Check	14.96	•	•	14.96	·				·					-			·	
4/8/2019	7:49:19 #2	Soil	9.94	9.88	9.94	29.76 ND		ND		ND			3197	115	7119	146	9262	125	46	9
4/8/2019	7:50:26 #3	Soil	9.94	9.88	9.94	29.76 ND		ND		ND			3532	117 ND			1059	31	31	5
4/8/2019	7:54:05 #4	Soil	9.93	9.87	9.92	29.73 ND		ND		ND			6727	175 ND			1793	44	49	6
4/8/2019	7:54:51 #5	Soil	9.93	9.86	9.92	29.72 ND		ND		ND			5750	148 ND			1552	37	52	5
4/8/2019	8:29:05 #6	Cal Check	14.92			14.92														
4/8/2019	8:39:43 #7	Soil	9.93	9.85	9.94	29.73 ND		ND		ND			5831	155	3456	103	1859	42	36	5
4/8/2019	8:46:45 #8	Soil	9.92	9.83	9.94	29.69 ND		ND		ND			6693	159	4037	105	1965	41	61	5
4/8/2019	8:49:08 #9	Soil	9.92	9.84	9.94	29.7 ND		ND		ND			7160	171	2728	93	2319	47	50	6
4/8/2019	9:43:08 #10	Soil	9.92	9.84	9.94	29.69 ND			855	247 ND			6862	156	3956	100	1949	40	48	5
4/8/2019	9:48:59 #11	Soil	9.93	9.86		19.79 ND		ND		ND			7795	264	2880	140	2239	67	52	8
4/8/2019	9:51:38 #12	Soil	9.95	9.89	9.95	29.8 ND		ND		ND			2889	106	989	59	1204	32	45	5
4/8/2019	9:59:53 #13	Soil	9.93	9.87	9.96	29.76 ND		ND		ND			6299	163	3348	100	2315	47	56	6
4/8/2019	10:02:51 #14	Soil	9.93	9.86	9.96	29.74 ND		ND		ND			7318	174	4799	118	1971	43	58	6
4/8/2019	10:04:19 #15	Soil	9.92	9.85	9.95	29.72 ND		ND		ND			7779	179	4035	109	2169	45	61	6
4/8/2019	10:10:42 #16	Soil	9.95	9.9	9.96	29.8 ND		ND		ND			5323	167	5264	138	1872	47	67	6
4/8/2019	10:12:47 #17	Soil	9.93	9.86	9.95	29.74 ND		ND		ND			5624	158	5560	133	2088	46	56	6
4/8/2019	10:14:01 #18	Soil	9.93	9.86	9.95	29.74 ND		ND		ND			5838	165	5832	139	5059	84	59	8
4/8/2019	10:17:28 #19	Soil																		
4/8/2019	10:19:08 #20	Soil																		
4/8/2019	10:22:20 #21	Soil	1.95			1.95										ND)	ND		
4/8/2019	10:22:59 #22	Soil	9.94	9.88	9.94	29.76 ND		ND		ND			1297	68	1226	56	975	26	36	4
4/8/2019	10:23:55 #23	Soil	9.94	9.87	9.94	29.76 ND		ND		ND			4370	126	4394	107	1893	40	66	5
4/8/2019	10:25:31 #24	Cal Check	14.92			14.92														
4/8/2019	10:28:04 #25	Soil	9.94	9.87	9.95	29.75 ND		ND		ND			3930	119	3455	94	1489	35	48	5
4/8/2019	10:29:36 #26	Soil	9.94	9.86	9.94	29.75 ND		ND		ND			4114	124	3779	100	1597	37	51	5
4/8/2019	10:32:15 #27	Soil	9.95	9.89	9.96	29.8 ND		ND		ND			4774	149	8549	172	1579	40	49	5
4/8/2019	10:33:03 #28	Soil	9.94	9.85	9.95	29.73 ND		ND		ND			5665	149	5742	126	1707	39	58	5
4/8/2019	10:37:39 #29	Soil																		
4/8/2019	10:48:43 #30	Cal Check	14.92			14.92														
4/8/2019	10:57:20 #31	Soil	9.95	9.91	9.97	29.82 ND		ND		ND			3826	146	3959	120	1443	41	39	6
4/8/2019	10:59:26 #32	Soil	9.95	9.9	9.99	29.84 ND		ND		ND			5348	173	4231	127	1875	48	49	6
4/8/2019	11:00:45 #33	Soil	9.98	9.94	9.98	29.91 ND		ND		ND			4475	210	3894	154	1557	55	57	8
4/8/2019	11:09:32 #34	Soil	9.92	9.84	9.93	29.69 ND		ND		ND			5803	140	5252	113	1599	35	41	5
4/8/2019	11:12:29 #35	Soil	9.93	9.87	9.96	29.75 ND		ND		ND			6452	170	2862	96	1710	41	40	5
4/8/2019	11:13:23 #36	Soil	9.95	9.88	9.95	29.78 ND		ND		ND			5968	153	4237	109	1801	40	40	5
4/8/2019	11:23:31 #37	Soil	9.94	9.89	9.93	29.76 ND		ND		ND			5710	156	1245	76	1922	44	57	6
4/8/2019	11:24:22 #38	Soil	9.94	9.87	9.93	29.74 ND		ND		ND			7520	184	949	77	2136	47	58	6
4/8/2019	11:26:50 #39	Soil	9.94	9.88	9.93	29.75 ND			1267	391 ND			11305	268 ND			2701	63	61	8
4/8/2019	11:27:34 #40	Soil	9.94	9.87	9.94	29.75 ND		ND		ND			10157	228	608	80	2449	53	65	7
4/8/2019	11:31:35 #41	Soil	9.93	9.87	9.94	29.75 ND			951	289 ND			9126	205	1799	86	1879	43	62	6
4/8/2019	11:33:10 #42	Soil	9.94	9.88	9.95	29.77 ND		ND		ND			5463	156	2064	87	1425	38	28	5
4/8/2019	11:33:58 #43	Soil	9.92	9.83	9.93	29.68 ND		ND		ND			5892	144	3265	93	1879	39	44	5
4/8/2019	11:41:38 #44	Soil	9.94	9.89	9.95	29.78 ND			975	297 ND			7738	191	2170	92	1847	44	53	6
4/8/2019	11:45:53 #45	Soil	9.94	9.87	9.95	29.76 ND		ND		ND			5696	159	5929	137	1612	40	50	6
4/8/2019	11:50:04 #46	Soil	9.93	9.87	9.95	29.75 ND		ND		ND			7658	191	4005	118	2331	51	56	6
4/8/2019	11:51:03 #47	Soil	9.93	9.85		19.79 ND		ND		ND			10320	322	2185	140	2559	76	66	10
4/8/2019	11:55:36 #48	Soil	9.94	9.89	9.94	29.77 ND		ND		ND			9541	224	3082	113	2587	56	70	7

4/8/2019	11:56:54 #49	Soil	9.93	9.85	9.94	29.72 ND	ND		ND	544	6 14	45	4421	111	2147	44	58	6
4/8/2019	11:58:57 #50	Soil	9.92	9.86	9.94	29.72 ND	ND		ND	658	5 1	55	4498	108	1797	39	37	5
4/8/2019	12:02:43 #51	Soil	9.94	9.88	9.94	29.75 ND	ND		ND	959	8 22	20	3338	115	2203	50	61	7
4/8/2019	12:03:49 #52	Soil	9.95	9.89	9.95	29.78 ND	ND		ND	931	8 22	26	2371	107	2506	56	66	7
4/8/2019	12:15:37 #53	Soil	9.93	9.85	9.95	29.73 ND	ND		ND	686	5 16	54	4971	118	2148	44	53	6
4/8/2019	12:16:42 #54	Soil	9.93	9.85	9.94	29.73 ND	ND		ND	663	8 16	59	4517	119	2328	49	55	6
4/8/2019	12:23:54 #55	Soil	9.95	9.87	9.95	29.77 ND	ND		ND	775	8 19	90	6351	145	2293	49	64	6
4/8/2019	12:28:09 #56	Soil	9.93	9.86	9.94	29.73 ND	ND		ND	530	7 14	41	4175	106	1855	40	52	5
4/8/2019	12:28:56 #57	Soil	9.93	9.86	9.94	29.74 ND	ND		ND	494	2 13	34	4166	105	1859	40	53	5
4/8/2019	13:01:03 #58	Soil	9.93	9.87	9.94	29.74 ND		1817	368 ND	1423	6 28	30	1443	95	3082	61	74	7
4/8/2019	13:03:40 #59	Soil	9.93	9.87	9.93	29.74 ND		1052	313 ND	968	3 2:	13	5392	134	2562	52	65	7
4/8/2019	13:05:12 #60	Soil	9.95	9.88	9.95	29.77 ND		1523	358 ND	1106	9 24	41	4650	133	2813	58	72	7
4/8/2019	13:09:31 #61	Soil	9.96	9.91	9.96	29.83 ND	ND		ND	765	3 2:	15 ND			2056	52	54	7
4/8/2019	13:10:23 #62	Soil	9.94	9.88	9.94	29.76 ND		1867	319 ND	724	5 17	72 ND			1292	34	31	5
4/8/2019	13:45:54 #63	Cal Check	14.88			14.88												
4/8/2019	13:57:34 #64	Soil																
4/8/2019	13:57:43 #65	Soil	0.34			0.34												
4/8/2019	13:59:58 #67	Soil	9.94	9.89	9.96	29.79 ND	ND		ND	973	0 23	39	6318	159	1854	48	46	6
4/8/2019	14:04:34 #68	Soil	9.98	9.96	9.99	29.93 ND	ND		ND	531		58	5728	217	1639	65	53	9
4/8/2019	14:09:09 #69	Soil	9.95	9.89	9.96	29.79 ND	ND		ND	709		36	7122	157	1883	45	37	6
4/8/2019	14:14:19 #70	Soil	9.93	9.87	9.95	29.75 ND	ND		ND	745			5631	133	1484	38	44	5
4/8/2019	14:16:09 #71	Soil	9.96	9.92	9.97	29.85 ND	ND		ND	722		26	7076	186	1842	53	41	7
4/8/2019	14:18:31 #72	Soil	9.98	9.96	9.99	29.93 ND	ND		ND	485			5076	208	1552	65	47	9
4/8/2019	14:24:53 #73	Soil	9.96	9.92	9.97	29.86 ND	ND		ND	340		28	3286	102	1143	34	33	5
4/8/2019	14:27:48 #74	Soil	9.94	9.88	9.96	29.77 ND	ND		ND	588		58	5960	134	1846	42	63	6
4/8/2019	14:28:41 #75	Soil	9.94	9.86	9.94	29.74 ND	ND		ND	567		19	5361	122	1747	39	54	5
4/8/2019	14:28:57 #76	Soil	1.96			1.96									3525	764 ND		
4/8/2019	14:29:37 #77	Soil	9.94	9.86	9.95	29.76 ND	ND		ND	519	9 14	45	5374	124	2039	44	48	6
4/8/2019	14:31:21 #78	Soil	9.93	9.9	9.96	29.79 ND	ND		ND	472			4844	126	1591	41	49	6
4/8/2019	14:34:30 #79	Soil	9.93	9.84	9.94	29.71 ND	ND		ND	595		55	5362	124	1864	41	58	6
4/8/2019	14:35:12 #80	Soil	9.93	9.87	9.94	29.74 ND	ND		ND	600		56	5618	128	1945	43	55	6
4/8/2019	14:37:54 #81	Soil	9.93	9.86	9.95	29.75 ND	ND		ND	1233			8513	168	2354	49	58	6
	14:40:15 #82	Soil	9.93	9.85	9.96	29.74 ND	ND		ND	1047		26	6520	147	2065	46	58	6
	14:43:48 #83	Soil	9.94	9.85	9.94	29.74 ND	ND		ND	693		55	4377	110	1782	39	61	5
	14:44:51 #84	Soil	9.94	9.86	9.95	29.75 ND	ND		ND	869		95	5530	129	2054	44	66	6
	14:48:10 #85	Soil	9.93	9.87	9.95	29.76 ND	ND		ND	1010			8718	171	2365	49	57	6
	14:49:18 #86	Soil	9.95			9.95									2091	379 ND		-
	14:49:33 #87	Analysis Resu																
	14:49:41 #88	Soil	2.14			2.14								NE)	ND		
	14:49:58 #89	Soil													2544	316 ND		
	14:53:18 #90	Soil	9.95	9.89	9.96	29.79 ND	ND		ND	611	0 16	59	5180	130	1856	44	47	6
	14:59:03 #91	Soil																-
	14:59:31 #92	Cal Check	14.88			14.88												
	15:09:18 #93	Analysis Resu																
4/8/2019		Soil	9.94	9.84	9.95	29.73 ND	ND		ND	481	0 13	32	5024	114	1553	36	29	5
	15:11:51 #95	Analysis Resu		3.5	3.33		140		.,,,	101			·		_555	55	-5	•
	15:14:27 #96	Cal Check	6.94			6.94												
	15:15:03 #97	Cal Check	6.91			6.91												
	15:15:28 #98	Cal Check	14.88			14.88												
., 3, 2013		Ca. Cricci	1			1												

4/8/2019	15:17:29 #99	Soil	9.94	9.88	9.95	29.78 ND	ND		ND			6915	183	7229	160	2762	57	60	7
4/8/2019	15:20:15 #100	Soil	9.94	9.88	9.96	29.79 ND	ND		ND			4956	156	5097	132	1814	45	42	6
4/8/2019	15:24:29 #101	Soil	9.94	9.88	9.96	29.78 ND	ND		ND			5648	165	5613	138	2012	47	45	6
4/8/2019	15:26:25 #102	Soil	9.94	9.86	9.94	29.74 ND	ND		ND			750	58	1040	54	796	25	33	4
4/8/2019	15:27:50 #103	Soil	9.91	9.89	9.97	29.76 ND		1351	327 ND			11280	251	1363	86	1569	42	51	6
4/8/2019	15:28:55 #104	Soil	9.93	9.84	9.94	29.71 ND		864	268 ND			7609	172	2692	91	1893	41	39	5
4/8/2019	15:32:54 #105	Soil	9.94	9.89	9.96	29.79 ND	ND		ND			6593	180	6282	148	2289	51	52	6
4/8/2019	15:42:41 #106	Soil	9.94	9.89	9.95	29.79 ND	ND		ND			7026	180	6610	149	2395	51	51	6
4/8/2019	15:43:31 #107	Soil	9.95	9.88	9.95	29.77 ND	ND		ND			7380	188	6397	148	2246	50	59	6
4/8/2019	15:52:37 #108	Soil	9.94	9.89	9.95	29.78 ND	ND		ND			4981	155	5053	132	2077	48	53	6
4/8/2019	15:53:30 #109	Soil	9.95	9.87	9.95	29.77 ND	ND		ND			4728	145	4993	126	1858	44	58	6
4/8/2019	15:54:34 #110	Soil	9.94	9.86	9.95	29.75 ND	ND		ND			7518	184	6349	145	2510	52	61	6
4/8/2019	16:01:31 #111	Soil	9.93	9.85	9.94	29.72 ND	ND		ND			3561	115	5086	116	1681	38	52	5
4/8/2019	16:02:17 #112	Soil	9.93	9.85	9.95	29.72 ND	ND		ND			5920	166	7605	162	2318	50	54	6
4/8/2019		Soil	9.95	9.92	9.96	29.83 ND	ND		ND			5094	163	6315	152	1907	47	45	6
4/8/2019		Soil	9.94	9.87	9.94	29.75 ND	ND		ND			6904	178	7284	157	2683	54	63	7
4/8/2019		Soil	9.93	9.86	9.94	29.74 ND	ND		ND			6781	173	7000	150	2417	50	61	6
4/8/2019		Soil	9.94	9.89	9.95	29.77 ND	ND		ND			4864	139	4149	109	1695	39	46	5
4/8/2019		Soil	9.93	9.85	9.94	29.73 ND	ND		ND			5001	136	4583	110	1807	39	43	5
4/8/2019		Soil	9.94	9.87	9.95	29.75 ND	ND		ND			3758	120	4216	107	1904	41	48	5
4/8/2019		Soil	0.37			0.37									N		ND	-	
4/8/2019		Soil	9.93	9.85	9.94	29.72 ND	ND		ND			4883	132	4455	106	1814	38	52	5
4/8/2019		Soil	9.95	9.87	9.94	29.77 ND	ND		ND			1789	74	2766	75	595	20	27	3
4/8/2019		Soil	9.95	9.88	9.94	29.77 ND	ND		ND			4622	142	2450	93	1806	43	50	6
4/8/2019		Soil	9.94	9.85	9.93	29.71 ND	ND		ND			4666	117	4879	102	1314	30	37	4
4/8/2019		Soil	9.94	9.87	9.93	29.74 ND	ND		ND			2579	96	833	58	1300	32	39	5
4/8/2019		Soil	9.92	9.85	9.95	29.72 ND	ND		ND			5362	146	2787	90	650	24	22	4
4/8/2019		Soil	9.95	9.9	9.96	29.82 ND	ND		ND			8538	232	3604	129	2381	58	69	7
4/8/2019		Soil	9.94	9.88	9.97	29.79 ND	ND		ND			7726	187	1530	74	942	29	47	5
4/8/2019		Soil	9.93	9.85	9.94	29.71 ND	ND		ND			6317	168	6394	145	2472	52	42	6
4/8/2019		Soil	9.94	9.86	9.95	29.75 ND	ND		ND			8121	188	5530	130	2063	45	53	6
4/8/2019		Soil	9.94	9.89	9.95	29.78 ND	ND ND		ND ND			7754	204	9118	191	2490	- 55	54	7
	17:53:56 #131	Cal Check	14.88	5.05	5.55	14.88	ND		ND			7734	204	3110	131	2430	33	34	,
	17:54:53 #132	Soil	9.95	9.9	9.95	29.8 ND	ND		ND			2138	110	6143	147	10758	158 ND		
4/8/2019		Soil	9.93	9.86	9.94	29.73 ND	ND ND		ND			5387	149	1619	80	9915	133 ND	32	9
4/8/2019		Soil	9.94	9.86	9.93	29.73 ND	ND ND		ND	285	93	6233	159 NE		00	1641	39	40	5
4/9/2019		Cal Check	6.85	9.00	9.93	6.85	ND			203	93	0233	133 141	,		1041	39	40	3
4/9/2019		Cal Check	15.01			15.01													
4/9/2019		Soil	9.93	9.87	9.95	29.75 ND	ND		ND			5968	156	6521	139	1802	41	39	5
4/9/2019		Soil	9.93	9.84	9.95 9.95	29.73 ND 29.72 ND			ND ND			8573	199	6905	159	2280		70	
							ND ND		ND	309	07			4371			49 30		6
4/9/2019		Soil	9.92	9.85	9.94	29.72 ND	ND		ND	309	87	4188	125		108	1757	39 40	52 57	5
4/9/2019		Soil	9.94	9.87	9.95	29.76 ND	ND		ND			4145	130	4702	116	1717	40	57	6
4/9/2019		Soil	9.93	9.85	9.93	29.72 ND	ND		ND			4375	124	5019	113	1843	39	60	5
4/9/2019		Soil	9.94	9.87	9.94	29.74 ND	ND		ND			2934	104	7893	146	1786	39	59 53	5
4/9/2019		Soil	9.92	9.9	9.97	29.78 ND	ND		ND			4053	161	13801	270	1831	50	52	7
4/9/2019		Soil	9.95	9.85	9.96	29.76 ND	ND		ND			4844	160	21399	342	2045	49	49	6
4/9/2019		Soil																	
4/9/2019		Analysis Result		2 2=	2.2.	20 75 1:5	••=					00.45	222	7077	4=-	0.07			_
4/9/2019	8:33:36 #13	Soil	9.94	9.87	9.94	29.75 ND	ND		ND			8043	200	7876	170	2674	56	63	7

4/9/2019	8:35:42 #14	Soil	9.94	9.87	9.95	29.76 ND	ND		ND			7188	189	7964	171	2460	54	73	7
4/9/2019	8:36:30 #15	Soil	9.98	9.95	9.99	29.91 ND	ND		ND			3506	239	6264	236	1792	72	62	10
4/9/2019	8:40:20 #16	Soil																	
4/9/2019	8:47:40 #17	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			4725	129	1498	68	741	25	26	4
4/9/2019	8:48:36 #18	Soil	9.92	9.85	9.93	29.7 ND	ND		ND			5570	134	1529	66	801	24	25	4
4/9/2019	8:51:07 #19	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			3615	116	620	58	697	25	21	4
4/9/2019	8:52:56 #20	Soil	9.94	9.86	9.93	29.73 ND	ND		ND			4221	123	552	57	772	26	25	4
4/9/2019	8:55:25 #21	Soil																	
4/9/2019	8:58:09 #22	Soil	9.94	9.88	9.94	29.75 ND	ND		ND			6017	143	1095	60	1208	30	43	4
4/9/2019	8:59:20 #23	Soil																	
4/9/2019	8:59:59 #24	Soil	9.95	9.89	9.96	29.79 ND	ND		ND			10564	236	6362	151	2024	47	47	6
4/9/2019	9:03:17 #25	Soil	9.97	9.93	9.98	29.88 ND	ND		ND			8528	278	4695	168	1977	61	43	8
4/9/2019	9:06:15 #26	Soil	9.94	9.91	9.97	29.82 ND		1748 427	ND			9459	266	5029	159	2194	59	56	8
4/9/2019	9:07:52 #27	Soil																	
4/9/2019	9:08:35 #28	Soil	9.94	9.87	9.94	29.75 ND	ND		ND			1470	57	1210	43	302	12	16	2
4/9/2019	9:08:39 #29	Soil										-							
4/9/2019	9:11:20 #30	Soil	9.94	9.87	9.95	29.76 ND	ND			245	58	1958	73	1378	51	398	15	20	3
4/9/2019	9:15:31 #31	Soil	9.97	9.92	9.96	29.85 ND	ND		ND			4053	155	839	77	986	36	32	6
4/9/2019	9:21:24 #32	Soil	9.97	9.94	9.97	29.88 ND	ND		ND			7071	224	2656	116	1211	42	39	6
4/9/2019	9:48:55 #33	Cal Check	14.87			14.87						-							
4/9/2019	9:51:12 #34	Soil	9.94	9.88	9.95	29.76 ND	ND		ND			6867	188	12137	226	2876	60	65	7
4/9/2019	9:54:52 #35	Soil																	
4/9/2019	9:55:08 #36	Soil	9.1			9.1										2784	339 ND		
4/9/2019	9:55:53 #37	Soil	9.94	9.87	9.94	29.75 ND	ND		ND			5189	157	13727	236	3139	61	55	7
4/9/2019	9:56:38 #38	Soil	9.94	9.87	9.95	29.76 ND	ND		ND			5469	160	16464	267	2217	49	51	6
4/9/2019	10:04:27 #39	Soil	9.93	9.86	9.95	29.74 ND	ND		ND			4112	132	4577	117	1871	43	59	6
4/9/2019	10:05:10 #40	Soil	9.94	9.87	9.95	29.75 ND	ND		ND			4129	132	4726	119	1886	43	55	6
4/9/2019	10:06:33 #41	Soil	9.95	9.88	9.95	29.78 ND	ND		ND			6730	180	7470	163	2422	53	57	7
4/9/2019	10:07:59 #42	Soil	9.93	9.86	9.95	29.75 ND	ND		ND			5994	163	7845	161	2349	50	50	6
4/9/2019	10:13:26 #43	Soil	9.93	9.86	9.94	29.74 ND	ND		ND			8330	197	4990	129	2286	49	52	6
4/9/2019	10:15:07 #44	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			7533	183	7138	152	2398	50	63	6
4/9/2019	10:17:00 #45	Soil	9.94	9.87	9.95	29.76 ND	ND		ND			6564	176	6595	150	2046	47	48	6
4/9/2019	10:18:21 #46	Soil	9.93	9.85	9.94	29.73 ND	ND		ND			7388	181	6257	141	2175	47	71	6
	10:22:57 #47	Soil	9.95	9.9	9.96	29.81 ND	ND		ND			6865	199	6594	163	2064	51	52	7
	10:23:07 #48	Soil																	
4/9/2019	10:28:53 #49	Soil	9.94	9.89	9.95	29.78 ND	ND		ND			4092	138	3913	113	1776	43	37	6
4/9/2019	10:29:46 #50	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			3617	114	3999	101	1572	36	49	5
	10:31:32 #51	Soil	9.95	9.9	9.97	29.82 ND	ND		ND			5955	199	6378	172	2391	60	61	8
		Soil	9.93	9.86	9.95	29.75 ND	ND		ND			6606	166	5578	129	2041	44	43	6
		Soil	9.93	9.85	9.94	29.73 ND	ND		ND			7081	171	7624	152	2221	46	65	6
	10:41:50 #54	Soil	9.94	9.86	9.95	29.75 ND	ND		ND			8361	196	7229	154	2514	52	68	6
4/9/2019	10:47:06 #55	Soil	9.93	9.86	9.94	29.72 ND	ND		ND			1254	66	2047	67	988	26	31	4
	10:49:05 #56	Soil	9.94	9.89	9.96	29.79 ND	ND		ND			6111	185	10441	213	2126	52	45	7
	10:53:59 #57	Soil	9.94	9.96	9.98	29.88 ND	ND			666	206	10334	362	8071	263	2723	86	74	11
		Soil	9.93	9.89	9.96	29.78 ND	ND		ND			7252	200	7022	166	2424	55	66	7
	10:57:05 #59	Soil	9.96	9.91	9.97	29.84 ND		1243 345	ND			10827	267	3560	124	1120	37	48	6
		Soil	9.94	9.88	9.93	29.75 ND	ND	- · ·	ND			3262	115	7064	144	9864	130	52	9
		Soil	9.93	9.85	9.94	29.72 ND	ND		ND			6128	162	1501	82	10171	137	31	9
		Soil	9.93	9.86	9.93	29.73 ND		1293 319) ND			8197	190	2170	92	11800	155 ND		-
, -,								3-9	-										

4/9/2019	11:32:41 #63	Soil	9.94	9.88	9.94	29.75 ND	ND		ND			3729	124	8260	160	9619	130	57	9
4/9/2019	12:13:40 #64	Cal Check	14.88			14.88													
4/9/2019	12:17:02 #65	Soil																	
4/9/2019	12:20:03 #66	Soil	9.93	9.86	9.95	29.74 ND	ND		ND			5447	144	9158	163	1887	41	43	5
4/9/2019	12:23:39 #67	Soil	9.91	9.82	9.93	29.66 ND	ND		ND			6321	147	6741	130	2136	41	56	5
4/9/2019	12:24:52 #68	Soil	9.92	9.84	9.93	29.69 ND	ND		ND			2700	94	2531	77	1357	32	54	5
4/9/2019	12:28:22 #69	Soil	9.94	9.88	9.96	29.78 ND	ND		ND			6058	178	10010	201	2603	57	57	7
4/9/2019	12:30:49 #70	Soil	9.92	9.85	9.94	29.71 ND	ND		ND			5924	147	16811	242	2144	43	64	6
4/9/2019	12:35:33 #71	Soil	9.93	9.85	9.94	29.73 ND	ND		ND			3606	117	8913	161	1829	40	47	5
4/9/2019	12:36:24 #72	Soil	9.94	9.86	9.94	29.74 ND	ND		ND			3867	122	10039	175	1825	40	49	5
4/9/2019	12:39:25 #73	Soil	9.98	9.95	9.99	29.92 ND	ND		ND			5126	249	11618	318	2103	72	72	10
4/9/2019	12:41:33 #74	Soil	9.93	9.85	9.95	29.73 ND	ND		ND			5828	158	9597	178	1999	44	58	6
4/9/2019	12:42:28 #75	Soil	9.95	9.88		19.82 ND	ND		ND			5785	214	11771	274	2153	62	60	8
4/9/2019	12:49:07 #76	Soil	9.93	9.86	9.95	29.75 ND	ND		ND			3170	114	7456	148	1465	36	44	5
4/9/2019	12:49:49 #77	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			3532	116	6959	139	1633	38	52	5
4/9/2019	12:51:19 #78	Soil	9.93	9.85	9.93	29.71 ND	ND		ND			1339	67	4973	102	1100	28	45	4
4/9/2019	12:52:00 #79	Soil	9.94	9.88	9.94	29.76 ND	ND		ND			2053	85	3907	95	1231	31	45	4
4/9/2019	12:52:05 #80	Soil																	
4/9/2019	12:56:41 #81	Soil	9.93	9.9	9.96	29.8 ND	ND			360	119	5539	182	4801	141	2112	54	49	7
4/9/2019	12:58:39 #82	Soil	9.98	9.95	9.98	29.9 ND	ND		ND			8425	227	2431	101	1060	35	43	5
4/9/2019	12:59:26 #83	Soil	9.94	9.88	9.97	29.79 ND	ND		ND			11004	251	3292	114	1334	39	39	6
4/9/2019	13:10:00 #84	Soil	9.92	9.83	9.96	29.71 ND	ND		ND			6152	146	2585	78	956	26	29	4
4/9/2019	13:12:01 #85	Soil	9.94	9.88	9.96	29.78 ND	ND		ND			4593	138	3498	99	1206	33	33	5
4/9/2019	13:13:32 #86	Soil	9.93	9.86	9.95	29.74 ND	ND		ND			2674	95	2496	77	950	27	28	4
4/9/2019	13:14:42 #87	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			2228	85	2472	75	942	26	16	4
4/9/2019	13:16:18 #88	Soil	9.94	9.89	9.94	29.77 ND	ND		ND			5747	158	5582	130	1198	33	33	5
4/9/2019	13:18:03 #89	Soil	9.92	9.82	9.94	29.68 ND	ND		ND			4706	129	6861	133	1308	32	34	4
4/9/2019	13:18:53 #90	Soil	9.92	9.85	9.95	29.72 ND		1134	266 ND			7378	165	3375	95	1729	38	49	5
4/9/2019	13:19:57 #91	Soil	9.95	9.88	9.96	29.79 ND	ND		ND			6462	172	7686	160	1438	38	41	5
4/9/2019	13:21:35 #92	Soil	9.94	9.88	9.97	29.79 ND	2	918	291 ND			9184	219	5958	144	1416	38	58	6
4/9/2019	13:22:36 #93	Soil	9.93	9.86	9.97	29.76 ND		754	241 ND			13064	251	1404	75	1285	33	45	5
4/9/2019	13:23:16 #94	Cal Check	14.89	3.00	0.07	14.89		,							. •				J
	13:25:24 #95	Soil	9.94	9.9	9.97	29.81 ND	ND		ND			6407	192	2573	105	1572	44	48	6
	13:26:47 #96	Soil	9.93	9.84	9.94	29.71 ND	ND		ND			9729	196	3472	100	2074	42	50	5
4/9/2019	13:30:03 #97	Soil	9.93	9.86	9.96	29.74 ND	ND		ND			7316	182	3236	103	1689	41	37	5
		Soil	9.94	9.87	9.95	29.76 ND	113	963	299 ND			9083	208	4458	122	2408	51	60	6
	13:34:14 #99	Soil	9.93	9.85	9.93	29.71 ND	ND	303	ND			5326	136	2363	80	1488	34	44	5
	13:35:24 #100	Soil	9.95	9.9	9.96	29.81 ND	ND		ND			7630	193	3487	109	1703	42	35	5
	13:36:15 #101	Soil	9.94	9.86	9.96	29.76 ND	ND		ND			10892	227	3403	105	1714	40	61	6
	13:37:07 #102	Soil	9.93	9.86	9.97	29.76 ND	ND		ND			7204	192	4634	127	1783	44	50	6
		Soil	9.96	9.91	9.97	29.84 ND	ND		ND			6748	191	4499	128	1607	43	44	6
4/9/2019	13:41:49 #104	Soil	9.93	9.86	9.95	29.74 ND	ND		ND			5313	139	3104	89	1469	34	48	5
	13:42:30 #105	Soil	9.94	9.88	9.96	29.79 ND	ND		ND			5440	159	3772	110	1647	41	49	6
	13:43:25 #106	Soil	9.93	9.89	9.98	29.79 ND 29.8 ND	ND ND		ND ND			7745	234	3776	133	1825	52	35	7
		Soil	9.94	9.89	9.98	29.82 ND	ND ND		ND ND			7743 7892	217	5144	133 145	2121	53	55	7
	13:47:25 #108	Soil	9.94 9.94	9.88	9.96	29.82 ND 29.78 ND	ND ND		ND ND			7892 7814	188	5255	143	1989	45	55 51	6
	13:50:40 #109	Soil	9.94	9.87	9.90 9.97	29.76 ND 29.76 ND	ND ND		ND ND			3867	146	3444	112	1533	43 42	36	6
4/9/2019	13:51:39 #110	Soil	9.93 9.98	9.87	9.99	29.76 ND 29.94 ND	ND ND		ND ND			5704	270	4563	188	1666	42 64	50 59	9
		Soil	3.30	3.31	3.33	23.34 NU	ND		טוו			37U 4	210	4303	100	1000	04	33	9
4/3/2019	13.34.00 #111	3011																	

4/9/2019	13:54:11 #112	Analysis Result	:S														
4/9/2019	13:56:00 #113	Soil															
4/9/2019	13:56:12 #114	Analysis Result	:S														
4/9/2019	13:56:21 #115	Analysis Result	:S														
4/9/2019	13:56:32 #116	Analysis Result	:S														
4/9/2019	13:56:40 #117	Analysis Result															
	13:59:10 #118	Cal Check	14.91			14.91											
	14:00:17 #119	Soil	9.94	9.88	9.95	29.77 ND	ND		ND	6192	163	6601	144	2107	46	50	6
	14:01:36 #120	Soil	9.94	9.88	9.96	29.78 ND	ND		ND	7245	200	6704	162	2208	52	62	7
	14:02:23 #121	Soil	9.96	9.93	9.97	29.86 ND	ND		ND	7160	215	6352	169	2155	56	59	7
	14:03:09 #122	Soil	9.94	9.89	9.96	29.78 ND	ND		ND	6695	186	7038	162	2187	51	55	6
	14:06:03 #123	Soil												_	-		
	14:11:05 #124	Soil	9.93	9.87	9.93	29.73 ND	ND		ND	1084	63	691	49	909	26	37	4
	14:11:58 #125	Soil	9.96	9.94	3.33	19.9 ND	ND		ND	2920	137	2503	105	1328	42	60	6
	14:12:47 #126	Soil	9.95	9.87	9.94	29.76 ND	ND		ND	3068	110	1986	78	1333	34	45	5
• •	14:13:45 #127	Soil	9.94	9.87	9.95	29.75 ND	115	1096	317 ND	9982	221	5577	138	2000	46	61	6
		Soil	9.95	9.89	9.96	29.8 ND	ND	1030	ND	5048	157	3890	115	1443	39	43	6
		Soil	9.96	9.92	9.97	29.84 ND	ND		ND	5626	200	6200	175	2246	60	71	8
	14:23:29 #130	Soil	9.91	9.87	9.95	29.73 ND	ND		ND	5554	166	6141	149	2383	53	61	7
	14:28:26 #131	Soil	9.92	9.85	9.94	29.71 ND	ND		ND	12741	243	3353	105	2295	47	60	6
	14:29:52 #132	Soil	9.93	9.87	9.95	29.75 ND	ND		ND	11850	252	3794	120	2009	47	53	6
	14:30:20 #133	Soil	5.55	5.67	5.55	23.73 ND	ND		ND	11050	232	3/34	120	2003	77	55	U
	14:31:03 #134	Soil	9.93	9.86	9.95	29.73 ND	ND		ND	12661	254	5063	132	2265	49	66	6
	14:31:53 #135	Soil	9.92	9.81	9.95	29.68 ND	ND	951	266 ND	9127	194	4101	108	1613	37	45	5
	14:34:06 #136	Soil	9.92	9.85	9.94	29.71 ND	ND	931	ND	14044	254	4658	120	2264	46	63	6
	14:36:46 #137	Soil	9.92	9.83	9.94	29.71 ND 29.7 ND	ND ND		ND	8651	173	4761	106	1264	30	34	4
	14:38:08 #138	Soil	9.92	9.85	9.95	29.71 ND	ND	1321	294 ND	9943	203	5232	123	1939	41	46	
	14:42:14 #139	Soil	9.93	9.86	9.96	29.71 ND 29.76 ND	ND	1321	ND	6201	203 161	5052	123	1435		33	5
	14:43:22 #140		9.93 9.94	9.83	9.93	29.70 ND 29.7 ND	ND ND		ND ND	2847		1755		782	36 21	22	ວ ວ
		Soil							ND ND		85 163		59		21	42	5 5
4/9/2019	14:45:58 #141	Soil	9.9	9.82	9.94	29.67 ND	ND		ND	7312	162	2671	85	1425	33	42	5
		Soil	9.95	0.00	0.00	9.95	ND		ND	0208	220	F0F0	120	1400	168 ND	Γ4	c
	14:47:24 #143	Soil	9.94	9.89	9.96	29.8 ND	ND	052	ND	9308	229	5059	139	1873	47	54	6
	14:51:26 #144	Soil	9.94	9.87	9.96	29.78 ND		953	298 ND	8252	204	4143	120	1649	42	43	6
	14:52:59 #145	Soil	9.92	9.84	9.95	29.71 ND	ND	719	229 ND	6940	155	3084	87	1167	29	29	4
	14:56:11 #146	Soil	9.95	9.9	9.97	29.82 ND	ND	006	ND	7989	215	4796	137	1484	42	43	6
	14:59:10 #147	Soil	9.94	9.88	9.96	29.78 ND	ND	936	294 ND	9005	209	3736	113	1746	42	38	6
	15:02:57 #148	Soil	9.92	9.85	9.95	29.72 ND	ND		ND	7548	175	4121	109	1630	38	45	5
	15:05:06 #149	Soil				20.04.115		4407	272 115	44400	076		464	1430	343 ND		
	15:05:51 #150	Soil	9.97	9.92	9.96	29.84 ND		1197	379 ND	11133	276	5837	164	2385	59	66	8
	15:08:31 #151	Soil	9.95	9.9	9.97	29.82 ND	ND		ND	8693	223	2758	107	1510	42	44	6
	15:29:22 #152	Soil	9.92	9.83	9.95	29.69 ND	ND		ND	6947	163	6158	129	1795	39	34	5
	15:30:13 #153	Soil	9.93	9.87	9.96	29.77 ND	ND		ND	6865	177	5669	133	1339	36	33	5
	15:31:08 #154	Soil	9.92	9.84	9.95	29.72 ND	ND		ND	6797	170	3354	101	1411	36	38	5
	15:32:46 #155	Soil	9.92	9.84	9.95	29.71 ND	ND		ND	5895	144	6594	129	1669	36	39	5
	15:35:03 #156	Soil	9.91	9.83	9.95	29.69 ND	ND		ND	6454	158	6238	131	1827	40	47	5
	15:35:52 #157	Soil	9.93	9.86	9.96	29.75 ND	ND		ND	7412	179	6530	142	1789	41	39	5
	15:50:35 #158	Soil	9.93	9.86	9.94	29.74 ND	ND		ND	5458	150	8271	160	2023	44	41	6
	15:51:57 #159	Soil	9.94	9.88	9.96	29.78 ND	ND		ND	8812	213	6172	147	1973	47	53	6
4/9/2019	15:52:46 #160	Soil	9.96	9.89	9.96	29.81 ND		1170	327 ND	5073	167	3728	118	1529	42	40	6

4/9/2019	15:54:12 #161	Soil	9.96	9.92	9.97	29.85 ND	ND	ND	9933	260	4710	147	2055	54	52	7
4/9/2019	15:55:09 #162	Soil	9.94	9.83	9.96	29.73 ND	ND	ND	7987	189	5482	131	1928	43	38	5
4/9/2019	15:55:49 #163	Soil	9.94			9.94							1099	269 ND		
	15:56:20 #164	Soil	9.94	3.03		12.97							1804	261 ND		
	15:57:03 #165	Soil	9.94			9.94							2291	314	695	181
	15:57:30 #166	Soil	9.47			9.47							2030	325 ND		
	15:57:57 #167	Soil	9.01			9.01							1374	322 ND		
	15:58:27 #168	Soil	7.39			7.39							1758	408 ND		
	15:58:48 #169	Soil	9.94			9.94							1269	265 ND		
	16:02:18 #170	Soil	9.94	1.96		11.9							2746	411 ND		
	16:05:18 #171	Soil	9.92	0.96		10.88							1188	362 ND		
	16:08:16 #172	Soil	9.94	3.03		12.97							1104	232 ND		
	16:09:19 #173	Soil	9.92	0.00		9.92							1610	251 ND		
4/9/2019	16:10:11 #174	Soil	8.41			8.41							1878	277 ND		
	16:11:33 #175	Soil	6.77			6.77							1953	327 ND		
	16:12:47 #176	Soil	6.28			6.28							1312	329 ND		
	16:13:24 #177	Soil	5.2			5.2							1010	327 ND		
	16:14:11 #178	Soil	4.66			4.66							1613	384 ND		
	16:16:32 #179	Soil	3.54			3.54							1387	408 ND		
	16:17:14 #180	Soil	5.23			5.23							1323	353 ND		
	16:18:06 #181	Soil	5.72			5.72							1307	298 ND		
	16:19:14 #182	Soil	7.34			7.34							1848	294 ND		
	16:19:38 #183	Soil	4.11			4.11							1820	388 ND		
		Soil	5.22			5.22							1476	377 ND		
	16:20:51 #185												1939	369 ND		
		Soil	5.22			5.22										
	16:22:26 #186	Soil	4.62			4.62							2325	430 ND		
	16:23:37 #187	Soil	6.82			6.82							2303	365 ND		
	17:11:40 #188	Soil	6.85			6.85							3909	470 ND		
	17:12:10 #189	Soil	4.65			4.65							6382	582 ND		
	17:13:09 #190	Soil	8.44			8.44							9442	541 ND		
	17:13:37 #191	Soil	9.95			9.95							2012	313 ND		
	17:14:11 #192	Soil	0.62			0.62							2446	473 ND		
	17:14:47 #193	Soil	9.63			9.63							3124	354 ND		
	17:20:43 #194	Soil	0.00			22 24 112							1787	375 ND		_
	17:21:22 #195	Soil	9.96	9.9	9.95	29.81 ND	ND	ND	5509	170	10143	203	2144	51	54	6
	17:22:18 #196	Soil	9.93	9.87	9.94	29.74 ND	ND	ND	3165	112	5550	125	1827	41	49	5
	17:23:44 #197	Soil	9.92	9.84	9.94	29.69 ND	ND	ND	6958	167	11968	199	2301	47	65	6
	17:25:30 #198	Soil	9.98			9.98							4320	738 ND		
	17:29:25 #199	Soil														
	17:32:08 #200	Soil	9.96	9.91	9.97	29.84 ND	ND	ND	4459	171	6235	168	2245	58	50	7
	17:32:51 #201	Soil	9.93	9.86	9.94	29.73 ND	ND	ND	2848	110	3763	105	1832	42	42	5
	17:34:39 #202	Soil	9.92	9.84	9.93	29.7 ND	ND	ND	2329	95	4022	103	1804	40	48	5
	17:35:24 #203	Soil	9.93	9.85	9.93	29.7 ND	ND	ND	1947	85	3583	95	1850	39	47	5
	17:40:34 #204	Soil	9.92	9.83	9.93	29.67 ND	ND	ND	2633	90	2134	71	1463	32	49	5
	17:41:42 #205	Soil	9.93	9.86	9.95	29.75 ND	ND	ND	4614	138	3800	106	1788	41	59	6
	17:42:36 #206	Soil	9.93	9.85	9.94	29.73 ND	ND	ND	3946	124	4300	109	1704	39	51	5
	17:46:05 #207	Soil	9.93	9.87	9.95	29.75 ND	ND	ND	3899	124	4374	109	1603	38	45	5
	17:46:50 #208	Soil	9.93	9.87	9.95	29.75 ND	ND	ND	4052	125	4357	109	1551	37	44	5
4/9/2019	17:47:35 #209	Soil	9.93	9.85	9.96	29.74 ND	ND	ND	3613	117	4783	112	1506	36	47	5

4/9/2019	17:51:21 #210	Soil	9.95	9.91	9.96	29.82 ND	ND	ND			2368	108	3492	104	1167	34	39	5
4/9/2019	17:52:10 #211	Soil	9.96	9.95	9.98	29.88 ND	ND	ND			1263	111	1794	89	810	34	49	6
4/9/2019	17:52:52 #212	Soil	9.94	9.87	9.95	29.75 ND	ND	ND			2589	98	3095	88	1113	30	45	5
4/9/2019	17:58:02 #213	Soil	9.93	9.87	9.93	29.73 ND	ND	ND			1855	84	5978	122	1231	31	41	5
4/9/2019	17:59:44 #214	Soil	9.92	9.83	9.92	29.68 ND	ND	ND			1158	62	3797	88	1147	28	28	4
4/9/2019	18:00:51 #215	Soil	9.95	9.88	9.95	29.77 ND	ND	ND			2317	98	10566	182	1287	34	55	5
4/9/2019	18:01:40 #216	Soil	9.91	9.86	9.95	29.72 ND	ND	ND			4441	138	17656	270	1914	43	53	6
4/9/2019	18:28:35 #217	Cal Check	14.89			14.89												
4/9/2019	18:30:26 #218	Soil	9.94	9.87	9.93	29.74 ND	ND	ND			3701	121	7645	150	10266	134	52	9
4/9/2019	18:31:22 #219	Soil	9.94	9.87	9.94	29.75 ND	ND	ND			7354	179	1892	87	10840	145	52	10
4/10/2019	6:31:06 #1	Cal Check	6.96			6.96												
4/10/2019	6:31:32 #2	Cal Check	14.89			14.89												
4/10/2019	6:33:08 #3	Soil	9.93	9.87	9.94	29.74 ND	ND	ND			3602	119	5668	126	1679	39	58	5
4/10/2019	6:34:37 #4	Soil	9.94	9.87	9.95	29.75 ND	100	6 283 ND			6380	162 N	D		1599	39	46	5
4/10/2019	7:05:39 #5	Soil	9.92	9.84	9.95	29.71 ND	ND	ND			12868	234	5022	117	2037	41	64	5
4/10/2019	7:06:19 #6	Soil	9.94	9.86	9.94	29.75 ND	152	.7 327 ND			11505	229	15784	245	1023	30	46	5
4/10/2019	7:07:25 #7	Soil	9.94	9.86	9.96	29.76 ND	ND	ND			8447	195	28030	387	1711	40	67	5
4/10/2019	7:11:58 #9	Soil	9.93	9.85	9.94	29.71 ND	ND	ND			4539	134	4121	109	2351	48	48	6
4/10/2019	7:12:30 #10	Analysis Resu	lts															
4/10/2019	7:13:08 #11	Soil	9.94	9.85	9.93	29.72 ND	ND	ND			4433	130	4709	115	2279	46	46	6
4/10/2019	7:15:05 #12	Soil	9.95	9.91	9.96	29.82 ND	ND	ND			4147	152	5040	138	1973	50	59	7
4/10/2019	7:15:21 #13	Soil													2765	405 ND		
4/10/2019	7:15:42 #14	Soil													1890	404 ND		
4/10/2019	7:16:20 #15	Soil	9.93	9.86	9.95	29.73 ND	ND	ND			5198	154	6268	144	2362	51	42	6
4/10/2019	7:20:23 #16	Soil	9.98	9.88	9.95	29.81 ND	ND	ND			2308	98	3137	93	12010	153 ND		
4/10/2019	7:21:15 #17	Soil	9.92	9.82	9.93	29.67 ND	ND	ND			3508	107	3454	91	2038	40	41	5
4/10/2019	7:21:57 #18	Soil	9.93	9.84	9.94	29.7 ND	ND	ND			3884	121	4711	113	2267	45	52	6
4/10/2019	7:24:56 #19	Soil	9.95			9.95									2921	216 ND		
4/10/2019	7:25:53 #20	Soil	9.92	9.83	9.93	29.69 ND	ND	ND			5016	137	4058	105	3006	54	67	6
4/10/2019	7:26:40 #21	Soil	9.95	9.86	3.33	19.81 ND	ND	ND			5796	194	4760	149	14114	223 ND	0,	Ü
4/10/2019	7:29:58 #22	Soil	0	5.55		0	2	2			0,00	-5 .						
4/10/2019	7:32:58 #23	Soil	· ·			Ū												
4/10/2019	7:33:46 #24	Soil	9.94	9.87	9.94	29.75 ND	ND	ND			4639	135	4652	114	2232	46	54	6
4/10/2019	7:34:05 #25	Soil	3.3 .	3.07	3.3 .	23.73 113	110	,,,,			1000	100	.032		3259	385 ND	٥.	Ü
4/10/2019	7:34:51 #26	Soil	9.94	9.87	9.94	29.75 ND	ND	ND			5631	153	5327	126	2374	49	67	6
4/10/2019	7:35:31 #27	Soil	9.94	9.86	9.95	29.74 ND	ND	ND			5074	143	4611	115	2124	45	49	6
4/10/2019	7:39:19 #28	Soil	9.94	9.88	9.94	29.77 ND	ND	ND			1315	72	1347	60	1402	33	42	5
4/10/2019	7:41:01 #29	Soil	9.94	9.87	9.94	29.74 ND	ND	ND			1273	68	1537	62	1306	31	41	4
4/10/2019	7:41:44 #30	Soil	9.95	9.89	9.97	29.82 ND	ND	ND			5961	195	5649	156	2084	54	44	7
4/10/2019	7:41:53 #31	Soil	1.45	5.05	3.37	1.45	ND	ND			3301	133	3043	N		ND	77	,
4/10/2019	7:42:41 #32	Soil	9.93	9.86	9.95	29.74 ND	ND	ND			4572	140	4550	117	2346	49	45	6
4/10/2019	7:45:45 #33	Soil	9.93	9.86	9.92	29.71 ND	ND	ND	206	61	502	44	351	37	1019	25	35	1
4/10/2019	7:45:54 #34		1.42	3.00	3.32	1.42	ND		200	01	302	77	331	37 N		ND	33	4
4/10/2019	7:46:30 #35	Soil Soil	9.95	9.89	9.94	1.42 29.78 ND	ND	ND			946	62	779	49	1328	31	40	4
4/10/2019	7:47:32 #36		9.93 9.94	9.89 9.87	9.94 9.94	29.78 ND 29.75 ND	ND ND	ND ND			2298	91	2092	49 75	1965	40	40 47	4 5
4/10/2019	7:50:42 #37	Soil	J.J4	3.07	5.54	23.73 ND	טוו	IND			2230	ЭI	2032	75	1202	40	4/	3
4/10/2019	7:50:42 #37 7:51:20 #38	Soil	9.94	9.86	9.93	29.74 ND	ND	ND			1852	86	1590	71	2076	43	56	6
4/10/2019	7:51:20 #38 7:52:14 #39	Soil Soil	9.94 9.93	9.86 9.46	5.35	29.74 ND 19.39	טוו	IND			1032	00	1330	/ 1	2358	43 155 ND	30	6
4/10/2019	7:52:50 #40	Soil	9.93 9.94	9.46 9.87	9.94	19.39 29.75 ND	ND		288	86	1174	73	1452	68	2015		51	5
4/ 10/ 2019	7.32.30 #40	3011	J.J4	5.07	5.54	23.73 NU	טוו		200	οU	11/4	/3	1432	08	2013	42	JΙ	3

4/10/2019	7:53:36 #41	Soil	9.95	9.87	9.95	29.77 ND	ND		ND			2981	112	2595	89	3272	59	60	6
4/10/2019	7:57:53 #42	Soil	9.93	9.84	9.94	29.71 ND	ND		ND			3269	109	4361	106	1783	39	46	5
4/10/2019	7:58:39 #43	Soil	9.99	9.87	9.93	29.79 ND	ND		ND			1467	72	1633	64	1164	29	42	4
4/10/2019	7:59:25 #44	Soil	9.95			9.95										2759	348 ND		
4/10/2019	8:00:09 #45	Soil	9.93	9.84	9.94	29.71 ND	ND		ND			2167	87	4418	102	1379	33	38	5
4/10/2019	8:00:52 #46	Soil	9.93	9.86	9.93	29.73 ND	ND		ND			1984	85	2964	85	1350	33	29	4
4/10/2019	8:01:34 #47	Soil	9.96	9.91	9.97	29.83 ND	ND		ND			1847	99	2798	96	1439	39	34	5
4/10/2019	8:04:48 #48	Soil	9.93	9.87	2.68	22.48 ND		3067	851 ND			7146	362	31004	852	1886	86	54	11
4/10/2019	8:09:04 #49	Soil	9.92	9.85	9.94	29.71 ND	ND		ND			3506	122	28390	384	1998	44	36	5
4/10/2019	8:09:57 #50	Soil	9.93	9.86	9.95	29.73 ND	ND		ND			3686	125	22235	319	2844	54	57	6
4/10/2019	8:10:47 #51	Soil	9.93	9.86	9.95	29.73 ND	ND		ND			1978	90	11707	192	1959	41	50	5
4/10/2019	8:14:25 #52	Cal Check	14.9			14.9													
4/10/2019	8:23:13 #53	Soil	7.35			7.35										3337	414 ND		
4/10/2019	8:23:41 #54	Soil	8.56			8.56										2376	312 ND		
4/10/2019	8:24:13 #55	Soil	9.94	5.21		15.15										3186	262 ND		
4/10/2019	8:24:39 #56	Soil	4.69			4.69										2523	528 ND		
4/10/2019	8:25:02 #57	Soil	6.29			6.29										3253	439 ND		
4/10/2019	8:25:38 #58	Soil	9.95	3.03		12.98										5551	456 ND		
4/10/2019	8:26:04 #59	Soil	9.49			9.49										6853	485 ND		
4/10/2019	8:26:37 #60	Soil	9.93			9.93										7214	459 ND		
4/10/2019	8:27:06 #61	Soil	9			9										4481	414 ND		
4/10/2019	8:27:28 #62	Soil	5.75			5.75										9649	705 ND		
4/10/2019	8:29:56 #63	Soil	9.93	5.71		15.64										3853	257 ND		
4/10/2019	8:48:15 #64	Soil	9.93	9.85	9.94	29.72 ND	ND		ND			4737	131	1201	65	2066	42	52	5
4/10/2019	8:49:38 #65	Soil	9.93	9.85	9.94	29.72 ND	ND		ND			2238	87	645	51	1359	32	47	5
4/10/2019	8:51:16 #66	Soil	9.93	9.86	9.94	29.73 ND	ND		ND			5214	141	1798	76	1451	35	50	5
4/10/2019	8:53:05 #67	Soil	9.96	9.92	9.96	29.84 ND	ND		ND			7334	213	1968	103	1968	52	67	7
4/10/2019	9:03:10 #68	Soil	9.92	9.83	9.95	29.7 ND	ND		ND			5934	158	1611	78	2056	45	56	6
4/10/2019	9:06:05 #69	Soil	9.94	9.88	9.97	29.79 ND	ND		ND			4138	145	1646	84	1810	45	67	6
4/10/2019	9:07:30 #70	Soil	9.94	9.88	9.96	29.78 ND	ND		ND			5023	162	2848	103	905	32	56	6
4/10/2019	9:15:41 #71	Soil	9.94	9.87	9.92	29.73 ND		2210	370	339	108	3637	127	2359	95	3062	59	60	7
4/10/2019	9:18:08 #72	Soil	9.93	9.86	9.91	29.7 ND		3958	479 ND			4697	151	2872	113	3444	67	58	8
4/10/2019	9:21:30 #73	Soil	9.94	9.87	9.92	29.73 ND	ND		ND			1504	84	1383	76	2911	55	54	6
4/10/2019	9:22:21 #74	Soil	9.94	9.88	9.93	29.74 ND		2312	387 ND			2389	110	2514	99	3505	66	69	7
4/10/2019	9:23:02 #75	Soil	9.94	9.86	9.92	29.73 ND		9648	676 ND			5114	162	4606	136	3960	75	50	8
4/10/2019	9:29:39 #76	Soil	9.92	9.85	9.94	29.72 ND		1281	290 ND			6328	157	2507	89	2540	49	62	6
4/10/2019	9:30:30 #77	Soil	9.96	9.9	9.97	29.82 ND	ND		ND			6259	184	2563	102	1799	46	51	6
4/10/2019	9:31:21 #78	Soil	9.94	9.87	9.95	29.75 ND	ND		ND			8131	187	3443	103	1968	43	50	6
4/10/2019	9:38:37 #79	Soil	9.93	9.86	9.95	29.75 ND	ND		ND			6654	164	3219	98	2035	43	65	6
4/10/2019	9:39:27 #80	Soil	9.94	9.85	9.94	29.73 ND	ND		ND			10695	220	4758	123	2337	48	74	6
4/10/2019	9:40:39 #81	Soil	9.93	9.84	9.94	29.71 ND	ND		ND			3241	109	1355	67	1424	35	61	5
4/10/2019	9:41:58 #82	Soil	9.93	9.84	9.94	29.7 ND	ND		ND			1896	80	917	54	1073	28	41	4
4/10/2019	9:45:13 #83	Soil	3.33	3.04	3.31	23.7 145	110		112			1030	00	317	ND		ND	14	•
4/10/2019	9:45:55 #84	Soil	9.93	9.83	9.94	29.71 ND	ND		ND			5508	146	2943	93	1350	34	58	5
4/10/2019	9:46:48 #85	Soil	9.93	9.85	9.94	29.72 ND	ND		ND			6161	153	3040	93	1787	39	65	5
4/10/2019	9:47:46 #86	Soil	9.96	9.87	9.95	29.72 ND 29.79 ND	ND ND		ND ND			6192	168	2821	93 98	1816	43	50	6
4/10/2019	9:54:27 #87	Soil	9.90	9.93	9.99	29.79 ND 29.88 ND	ND ND		ND ND			6954	244	2628	127	2019	43 61	60	8
4/10/2019	9:55:50 #88	Soil	9.92	9.93 9.84	9.99	29.67 ND	ND	826	267 ND			10421	206	2028	96	2019	44	64	6
4/10/2019	9:56:11 #89	Soil	J.JL	J.0 4	J.∃∠	23.07 ND		020	207 ND			10421	200	2370	90 ND		ND	U -T	U
4/10/2013	J.JU.11 #03	3011													NU	,	NU		

4/10/2019	9:56:38 #90	Soil														
4/10/2019	9:56:44 #91	Soil														
4/10/2019	9:57:02 #92	Soil														
4/10/2019	9:57:18 #93	Soil										ND		ND		
4/10/2019	9:57:27 #94	Soil														
4/10/2019	9:57:50 #95	Soil														
4/10/2019	9:58:02 #96	Soil										ND		ND		
4/10/2019	9:58:13 #97	Soil														
4/10/2019	9:58:54 #98	Soil	9.98	9.96	9.94	29.88 ND	ND	ND	6206	231	2006	113	3197	81	68	9
4/10/2019	10:04:29 #99	Soil	5.75			5.75							2960	417 ND		
4/10/2019	10:04:55 #100	Soil	9.92			9.92							2328	285 ND		
4/10/2019	10:05:26 #101	Soil	5.75			5.75							2804	436 ND		
4/10/2019	10:05:52 #102	Soil	7.9			7.9							2834	342 ND		
4/10/2019	10:09:44 #103	Soil	9.91	9.83	9.93	29.67 ND	ND	ND	2386	86	2178	72	1314	31	46	4
4/10/2019	10:11:17 #104	Soil	9.93	9.85	9.94	29.71 ND	ND	ND	2294	88	2216	74	1287	31	49	5
4/10/2019	10:12:19 #105	Soil	9.92	9.83	9.94	29.69 ND	ND	ND	4788	135	4601	113	1911	41	56	6
4/10/2019	10:20:03 #106	Soil	9.98	9.95	9.98	29.9 ND	ND	ND	4084	170	7882	195	1003	38	42	6
4/10/2019	10:20:24 #107	Soil										ND		ND		
4/10/2019	10:21:25 #108	Soil	9.94	9.88	9.96	29.78 ND	ND	ND	7113	187	4435	123	2107	48	68	6
4/10/2019	10:21:46 #109	Soil											2416	468 ND		
4/10/2019	10:22:28 #110	Soil	9.97	9.92	9.97	29.86 ND	ND	ND	7839	230	5337	156	1855	52	52	7
4/10/2019	10:26:02 #111	Soil	9.93	9.85		19.78 ND	ND	ND	3234	141	6463	166	894	34	40	5
4/10/2019	10:28:38 #112	Soil	9.95	9.89	9.97	29.81 ND	ND	ND	4787	150	2753	96	1423	38	46	5
4/10/2019	10:29:26 #113	Soil	9.94	9.86	9.95	29.74 ND	ND	ND	5971	151	3550	99	1866	40	44	5
4/10/2019	10:30:14 #114	Soil	9.92	9.84	9.96	29.72 ND	ND	ND	6307	159	3432	100	1750	40	42	5
4/10/2019	10:36:15 #115	Soil	9.93	9.87	9.95	29.75 ND	ND	ND	3418	122	2427	89	1535	39	55	6
4/10/2019	10:37:03 #116	Soil	9.94	9.89	9.95	29.78 ND	ND	ND	8153	201	5039	132	1989	47	46	6
4/10/2019	10:37:32 #117	Soil	8.45			8.45							1403	388 ND		
4/10/2019	10:38:10 #118	Soil	9.96	9.92	9.98	29.86 ND	ND	ND	5524	208	3923	144	1796	55	53	7
4/10/2019	10:39:30 #119	Soil	9.97	9.89	9.97	29.83 ND	ND	ND	9633	236	6535	162	2348	55	65	7
4/10/2019	10:40:22 #120	Soil	9.97	9.94	9.98	29.89 ND	ND	ND	6990	242	4429	157	1792	56	63	8
4/10/2019	10:42:19 #121	Soil	9.99	9.97	9.87	29.84 65274	14267 ND	ND	ND	NI)	ND		ND		
4/10/2019	10:44:17 #122	Soil	9.93	9.84	9.94	29.71 ND	ND	ND	5719	154	4346	115	1796	41	55	6
4/10/2019	10:45:17 #123	Soil	9.94	9.87	9.95	29.76 ND	ND	ND	4898	141	3898	107	1530	38	53	5
4/10/2019	10:46:14 #124	Soil	9.93	9.85	9.95	29.73 ND	ND	ND	6042	153	3909	104	1714	39	52	5
4/10/2019	10:50:14 #125	Soil	9.94	9.89	9.96	29.79 ND	ND	ND	5244	158	3434	108	1675	42	58	6
4/10/2019	10:51:02 #126	Soil	9.92	9.84	9.95	29.71 ND	ND	ND	2608	105	1826	76	1233	34	45	5
4/10/2019	10:52:19 #127	Soil	9.97	9.91	9.97	29.85 ND	ND	ND	4758	176	3702	127	1507	46	49	6
4/10/2019	10:53:02 #128	Soil	9.94	9.89	9.97	29.81 ND	ND	ND	6711	212	4835	149	1797	51	57	7
4/10/2019	10:57:44 #129	Soil	9.95	9.87	9.95	29.77 ND	ND	ND	6098	157	4122	108	2127	45	46	5
4/10/2019	10:58:41 #130	Soil	9.94	9.85	9.95	29.73 ND	ND	ND	6891	168	4252	111	2276	46	44	6
4/10/2019	10:59:33 #131	Soil	9.94	9.88	9.95	29.76 ND	ND	ND	4483	133	3131	95	1866	41	52	5
4/10/2019	11:03:48 #132	Soil	9.96	9.92	9.97	29.85 ND	ND	ND	7700	215	3001	113	1845	49	63	7
4/10/2019	11:04:54 #133	Soil	9.94	9.87	9.96	29.76 ND	ND	ND	8037	198	3021	103	1850	44	53	6
4/10/2019	11:05:03 #134	Soil	1.42			1.42						ND		ND		
4/10/2019	11:05:44 #135	Soil	9.94	9.89		19.83 ND	ND	ND	11554	277	4568	143	2119	54	70	7
4/10/2019	11:05:54 #136	Analysis Results	5													
4/10/2019	11:06:33 #137	Soil	9.95	9.88	9.97	29.8 ND	ND	ND	9729	240	4405	132	2039	50	58	7
4/10/2019	11:07:21 #138	Soil	9.95	9.87	9.95	29.77 ND	ND	ND	7968	191	3477	107	1974	45	57	6

4/10/2019	11:20:39 #139	Cal Check	6.95			6.95											
4/10/2019	11:21:05 #140	Cal Check	14.88			14.88											
4/10/2019	11:25:01 #141	Soil	9.93	9.87	9.96	29.76 ND	ND	ND	10222	244	3075	115	2869	62	62	7	
4/10/2019	12:58:59 #142	Analysis Resul	ts														
4/10/2019	13:03:51 #143	Soil	9.93	9.87	9.95	29.75 ND	ND	ND	5661	148	5424	122	1673	38	53	5	
4/10/2019	13:04:39 #144	Soil	9.95	9.89	9.96	29.8 ND	ND	ND	6644	178	5110	131	1779	43	55	6	
4/10/2019	13:05:23 #145	Soil	9.93	9.86	9.94	29.73 ND	856	263 ND	7178	166	4657	113	1784	39	67	5	
4/10/2019	13:08:45 #146	Soil	1.97			1.97						NE)	ND			
4/10/2019	13:09:24 #147	Soil	9.94	9.86	9.95	29.74 ND	ND	ND	6243	152	5803	124	1552	36	55	5	
4/10/2019	13:09:33 #148	Analysis Resul	ts														
4/10/2019	13:10:14 #149	Soil	9.92	9.85	9.94	29.72 ND	ND	ND	7812	175	4755	114	1844	40	60	5	
4/10/2019	13:11:03 #150	Soil	9.92	9.83	9.93	29.67 ND	ND	ND	7998	165	5876	119	1974	39	57	5	
4/10/2019	13:11:43 #151	Soil	4.67			4.67							1512	396 ND			
4/10/2019	13:14:47 #152	Soil	9.96	9.94	9.99	29.89 ND	ND	ND	5061	218	4625	167	1708	57	44	8	
4/10/2019	13:15:28 #153	Soil	9.94	9.88	9.96	29.78 ND	ND	ND	9075	220	7125	164	2080	49	58	6	
4/10/2019	13:15:41 #154	Soil										NE)	ND			
4/10/2019	13:15:47 #155	Soil															
4/10/2019	13:16:26 #156	Soil	9.95	9.9	9.95	29.81 ND	ND	ND	6394	174	5204	132	1915	45	66	6	
4/10/2019	13:17:10 #157	Soil	9.93	9.86	9.94	29.74 ND	ND	ND	7152	178	4916	126	2105	46	60	6	
4/10/2019	13:20:16 #158	Soil	9.96	9.93	9.97	29.86 ND	ND	ND	7054	225	4482	148	1889	54	53	7	
4/10/2019	13:21:04 #159	Soil	9.93	9.86	9.94	29.73 ND	ND	ND	3008	101	2305	77	1183	30	48	5	
4/10/2019	13:22:30 #160	Soil	9.96	9.91	9.97	29.84 ND	ND	ND	8598	232	3001	116	2101	53	74	7	
4/10/2019	13:22:40 #161	Analysis Resul	ts														
4/10/2019	13:23:16 #162	Soil	9.96	9.9	9.97	29.83 ND	ND	ND	9632	233	7069	166	1712	45	61	6	
4/10/2019	13:23:47 #163	Soil	9.95	9.87		19.83 ND	ND	ND	8654	362	3738	202	1771	76	64	11	
4/10/2019	13:24:28 #164	Soil	9.94	9.87	9.96	29.76 ND	ND	ND	11657	252	5067	136	2225	50	82	7	
4/10/2019	13:24:42 #165	Soil										NE)	ND			
4/10/2019	16:06:49 #166	Cal Check	14.91			14.91											
4/10/2019	16:12:34 #167	Soil	9.92	9.84	9.94	29.71 ND	ND	ND	10855	223	6316	142	2432	49	59	6	
4/10/2019	16:13:55 #168	Soil	9.94	9.86	9.95	29.75 ND	ND	ND	9986	225	7092	159	2226	50	64	6	
4/10/2019	16:15:09 #169	Soil	9.92	9.85	9.94	29.72 ND	ND	ND	10638	228	7643	162	2418	51	71	7	
4/10/2019	16:16:15 #170	Soil	9.92	9.85	9.95	29.73 ND	ND	ND	8781	211	8760	181	2346	52	80	7	
4/10/2019	16:17:13 #171	Soil	9.92	9.84	9.94	29.7 ND	ND	ND	9747	213	7894	163	2596	53	72	7	
4/10/2019	16:18:07 #172	Soil	9.92	9.85	9.91	29.69 ND	ND	ND	10533	225	8780	175	2506	52	69	7	
4/10/2019	17:55:18 #173	Cal Check	14.91			14.91											
4/10/2019	18:02:33 #174	Soil	5.6			5.6							4240	613 ND			
4/10/2019	18:04:05 #175	Soil	8.45			8.45							2210	363 ND			
4/10/2019	18:05:13 #176	Soil	9.92			9.92							1557	244 ND			
4/10/2019	18:05:34 #177	Soil	7.49			7.49							1815	360 ND			
4/10/2019	18:05:56 #178	Soil	4.65			4.65							2144	398 ND			
4/10/2019	18:06:16 #179	Soil	9.94			9.94						NE)	ND			
4/10/2019	18:10:07 #180	Soil	9.93	9.86	9.95	29.75 ND	ND	ND	6292	153	2582	84	1732	38	49	5	
4/10/2019	18:10:53 #181	Soil	9.94	9.86	9.96	29.77 ND	ND	ND	5466	152	3561	102	1906	43	45	5	
4/10/2019	18:11:47 #182	Soil	9.94	9.88	9.96	29.79 ND	ND	ND	5305	158	3272	103	1589	40	50	5	
4/10/2019	18:13:30 #183	Soil	9.94	2.49		12.43							2537	354 ND			
4/10/2019	18:14:20 #184	Soil	8.43			8.43							1052	285 ND			
4/10/2019	18:14:53 #185	Soil	9.96			9.96							2658	380 ND			
4/10/2019	18:15:26 #186	Soil	8.5			8.5							1611	360 ND			
4/10/2019	18:15:58 #187	Soil	6.8			6.8							1543	336 ND			

4/10/2019	18:16:27 #188	Soil	7.37			7.37							ND		ND		
4/10/2019	18:16:56 #189	Soil	9.94	2.48		12.42								1685	306 ND		
4/10/2019	18:17:40 #190	Soil	6.85			6.85								2444	427 ND		
4/10/2019	18:19:26 #191	Soil	9.94			9.94								1327	263 ND		
4/10/2019	18:20:24 #192	Soil	9.95	9.47		19.42								1749	181 ND		
4/10/2019	18:22:49 #193	Soil	9.96	9.91	9.97	29.84 ND	ND		ND	4700	159	1387	79	1875	47	54	6
4/10/2019	18:23:36 #194	Soil	9.94	9.87	9.95	29.76 ND	ND		ND	4615	139	1776	77	2212	47	46	6
4/10/2019	18:24:29 #195	Soil	9.94	9.88	9.96	29.78 ND	ND		ND	2768	115	1060	64	1567	40	35	5
	18:27:12 #196	Soil	9.56			9.56								1215	385 ND		
4/10/2019	18:28:07 #197	Soil	9.95	1.41		11.36								4327	822 ND		
	18:31:24 #198	Soil	4.12			4.12							ND		ND		
	18:31:46 #199	Soil	5.72			5.72							ND		ND		
4/10/2019	18:32:15 #200	Soil	9.93	2.04		11.97								943	241 ND		
		Soil	9.93	9.87	9.95	29.75 ND	ND		ND	6652	163	4094	108	1876	41	58	5
		Soil	0.86			0.86							ND		ND		
4/10/2019	18:36:42 #203	Soil	9.93	9.84		19.76 ND	ND		ND	8128	225	5341	152	2002	52	60	7
	18:37:38 #204	Soil	9.93	9.86	9.94	29.73 ND	ND		ND	4303	126	3065	90	1556	36	49	5
4/10/2019	18:38:28 #205	Soil	9.93	9.84	9.94	29.72 ND		840	261 ND	7801	175	4699	114	1960	41	50	5
4/10/2019	18:39:25 #206	Soil	9.94	9.87	9.95	29.75 ND	ND		ND	5609	154	4386	114	1911	43	64	6
4/10/2019	18:40:43 #207	Soil	5.19			5.19								1333	323 ND	0.	ŭ
4/10/2019	18:41:01 #208	Soil	3.61			3.61								1760	452 ND		
	18:41:56 #209	Soil	3.04			3.04							ND	_, _,	ND		
4/10/2019	18:42:16 #210	Soil	8.12			8.12							,,,,	1693	338 ND		
4/10/2019	18:43:39 #211	Soil	5.16			5.16								4384	650 ND		
4/10/2019	18:45:14 #212	Soil	6.28			6.28							ND	1301	ND		
4/10/2019	18:45:46 #213	Soil	7.91			7.91							ND	1515	297 ND		
4/10/2019	18:46:20 #214	Soil	5.31			5.31								2763	497 ND		
	18:47:17 #215	Soil	7.9			7.9								1602	311 ND		
4/10/2019	18:48:11 #216		7.9 5.2			5.2								2293	442 ND		
4/10/2019		Soil	7.94			7.94								1738			
4/10/2019	18:50:31 #217	Soil	7.54			7.34								984	363 ND		
4/10/2019	18:56:49 #218	Soil	9.96			9.96								1207	293 ND		
4/10/2019	18:57:33 #219	Soil												2076	327 ND		
	18:58:17 #220	Soil	7.36	C 20		7.36									347 ND		
	18:58:51 #221	Soil	9.96	6.28		16.24								1791	233 ND		
	19:01:23 #222	Soil															
	19:01:31 #223	Soil	0.00	0.00	0.04	20 72 ND		1112	200 ND	44276	226	2505	0.4	1667	20		_
	19:02:12 #224	Soil	9.93	9.86	9.94	29.73 ND		1143	288 ND	11376	226	2585	94	1667	39	50	5
	19:02:20 #225	Soil	0.07		0.07	20.07.110				6422	404	4042	00	4472			_
	19:03:02 #226	Soil	9.97	9.93	9.97	29.87 ND	ND		ND	6423	191	1813	90	1173	37	42	6
	19:03:51 #227	Soil	9.91	9.84	9.93	29.68 ND	ND		ND	2175	80	335	42	760	23	32	4
	19:07:23 #228	Soil	7.91			7.91								1945	390 ND		
	19:08:00 #229	Soil	6.83			6.83								2872	465 ND		
	19:08:25 #230	Soil	8.47			8.47								1540	398 ND		
	19:08:55 #231	Soil	5.74			5.74								2005	385 ND		
	19:11:54 #232	Soil	9.89	9.86	9.94	29.7 ND		2356	373 ND	8656	203	2625	100	1817	44	48	6
	19:12:49 #233	Soil	9.93	9.86	9.95	29.74 ND		4018	443 ND	10966	232	5394	135	2831	56	47	6
	19:13:42 #234	Soil	9.93	9.86	9.95	29.74 ND		1003	277 ND	6308	161	2492	89	1678	39	43	5
	19:14:33 #235	Soil	9.93	9.83	9.93	29.7 ND		2591	357 ND	9257	196	3600	105	2091	44	63	6
4/10/2019	19:15:22 #236	Soil	9.93	9.86	9.95	29.74 ND		1618	319 ND	7462	181	3329	103	2058	45	54	6

4/10/2019	19:16:36 #237	Soil	9			9								2597	367 ND		
4/10/2019	19:17:27 #238	Soil	5.2			5.2								2813	414 ND		
4/10/2019	19:18:24 #239	Soil	7.89			7.89								2005	316 ND		
4/10/2019	19:19:01 #240	Soil	9.5			9.5								2298	307 ND		
4/10/2019	19:21:48 #241	Soil	9.93	9.88	9.96	29.77 ND		798	257 ND	5242	149	2675	89	1696	40	35	5
4/10/2019	19:22:34 #242	Soil	9.95	9.9	9.93	29.78 ND	ND		ND	4552	152	2695	97	1909	46	43	6
4/10/2019	19:23:22 #243	Soil	9.93	9.86	9.96	29.75 ND	ND		ND	3824	122	1710	71	1423	35	34	5
4/10/2019	19:24:08 #244	Soil															
4/10/2019	19:24:39 #245	Soil	7.37			7.37								888	266 ND		
4/10/2019	19:25:05 #246	Soil	4.68			4.68								1169	358 ND		
4/10/2019	19:54:11 #247	Cal Check	15.01			15.01											
4/10/2019	19:54:59 #248	Soil	9.93	9.84	9.94	29.71 ND	ND		ND	6672	177	1872	92	11128	154	46	10
4/10/2019	19:55:36 #249	Soil	9.94	9.86	9.94	29.73 ND	ND		ND	6375	165	1999	87	10731	143 ND		
4/10/2019	19:56:50 #250	Soil	9.94	9.87	9.94	29.75 ND	ND		ND	3670	122	7848	154	10478	138	37	9
4/11/2019	5:43:11 #1	Cal Check	6.86			6.86											
4/11/2019	5:43:35 #2	Cal Check	15.01			15.01											
4/11/2019	5:44:44 #3	Soil	9.94	9.87	9.94	29.75 ND	ND		ND	5663	153	1843	83	10120	135	42	9
4/11/2019	5:46:45 #4	Soil	9.95	9.9	9.95	29.8 ND	ND		ND	2768	120	6711	153	11371	162	33	10
4/11/2019	6:39:06 #5	Soil	9.95	1.44		11.39								1311	379 ND		
4/11/2019	6:43:15 #6	Soil	9.96	9.88	9.94	29.79 ND	ND		ND	2134	91	2847	86	1100	30	41	5
4/11/2019	6:44:01 #7	Soil	9.93	9.86	9.94	29.74 ND	ND		ND	6362	167	7382	154	2191	47	55	6
4/11/2019	6:44:53 #8	Soil	9.92	9.85	9.95	29.73 ND	ND		ND	5778	159	6817	147	1845	43	54	6
4/11/2019	6:45:39 #9	Soil	9.93	9.85	9.94	29.72 ND	ND		ND	5991	156	6821	143	1999	44	55	6
4/11/2019	6:48:15 #10	Soil	9.95	9.88	9.94	29.76 ND	ND		ND	2275	89	2953	84	1149	29	44	4
4/11/2019	6:49:18 #11	Soil	9.94	9.88	9.94	29.77 ND	ND		ND	6002	153	6557	137	1858	41	47	5
4/11/2019	6:49:59 #12	Soil	9.93	9.86	9.95	29.74 ND	ND		ND	5884	156	7117	148	2293	48	56	6
4/11/2019	6:50:21 #13	Analysis Resu	ılts														
4/11/2019	6:52:19 #15	Soil	9.94	9.87	9.95	29.76 ND	ND		ND	7663	187	5675	136	2161	47	45	6
4/11/2019	6:53:06 #16	Soil	9.93	9.85	9.94	29.73 ND	ND		ND	8104	190	5347	131	2295	48	71	6
4/11/2019	6:53:20 #17	Soil	0.33			0.33											
4/11/2019	6:54:16 #18	Soil	9.92	9.87	9.94	29.74 ND	ND		ND	15710	305	4926	140	2912	60	72	7
4/11/2019	6:55:01 #19	Soil	9.96	9.9	9.96	29.82 ND	ND		ND	9996	242	3260	118	8481	134	38	10
4/11/2019	6:58:20 #20	Soil	9.95	9.88	9.95	29.77 ND	ND		ND	6712	175	7051	152	2113	47	49	6
4/11/2019	6:58:30 #21	Soil	0.87			0.87							NE)	ND		
4/11/2019	6:59:07 #22	Soil	9.93	9.85	9.95	29.72 ND	ND		ND	6018	157	6048	133	1870	42	41	5
4/11/2019	6:59:48 #23	Soil	9.95	9.88	9.95	29.78 ND	ND		ND	6757	176	6464	146	2057	46	53	6
4/11/2019	7:02:18 #24	Soil	9.94	9.88	9.95	29.77 ND	ND		ND	6666	175	5640	136	2166	48	50	6
4/11/2019	7:03:25 #25	Soil	9.93	9.86	9.95	29.74 ND	ND		ND	7140	180	6198	142	1920	44	61	6
4/11/2019	7:04:11 #26	Soil	9.94	9.86	9.95	29.75 ND	ND		ND	9297	204	7722	157	2227	47	50	6
4/11/2019	7:04:57 #27	Soil	9.93	9.88	9.95	29.76 ND	ND		ND	6191	168	6113	141	2047	46	60	6
4/11/2019	7:05:06 #28	Soil											NE)	ND		
4/11/2019	7:08:28 #29	Soil	9.64			9.64								3310	334 ND		
4/11/2019	7:09:03 #30	Soil	7.36			7.36								1284	310 ND		
4/11/2019	7:09:29 #31	Soil	5.73			5.73							NE)	ND		
4/11/2019	7:10:12 #32	Soil	6.82			6.82								1307	306 ND		
4/11/2019	7:10:35 #33	Soil	6.3			6.3							NE)	ND		
4/11/2019	7:11:20 #34	Soil	6.3			6.3								2339	377 ND		
4/11/2019	7:11:49 #35	Soil	6.83			6.83							NE)	ND		
4/11/2019	7:12:17 #36	Soil	9.94	4.63		14.57								1696	206 ND		

4/11/2019	7:12:32 #37	Soil											1803	358 ND		
4/11/2019	7:13:30 #38	Soil	9.95			9.95							2189	327 ND		
4/11/2019	7:13:50 #39	Soil	8.21			8.21							1906	294 ND		
4/11/2019	7:14:27 #40	Soil	9.92			9.92							1927	268 ND		
4/11/2019	7:14:49 #41	Soil	6.28			6.28						ND		ND		
4/11/2019	7:15:12 #42	Soil	7.38			7.38							1407	345 ND		
4/11/2019	7:15:29 #43	Soil	4.84			4.84							2528	490 ND		
4/11/2019	7:16:03 #44	Soil	4.67			4.67						ND		ND		
4/11/2019	7:16:51 #45	Soil	7.37			7.37							3014	410 ND		
4/11/2019	7:17:24 #46	Soil	7.92			7.92							1599	359 ND		
4/11/2019	7:18:10 #47	Soil	9.94			9.94							3233	354 ND		
4/11/2019	7:18:41 #48	Soil	3.59			3.59							2112	486 ND		
4/11/2019	7:19:08 #49	Soil	4.67			4.67							2845	576 ND		
4/11/2019	7:20:38 #50	Soil	4.13			4.13							1944	538 ND		
4/11/2019	7:22:07 #51	Soil	9.93	9.86	6.07	25.86 ND	ND	ND	4504	159	3417	116	1310	40	52	6
4/11/2019	7:22:52 #52	Soil	9.92	9.84	9.95	29.71 ND	ND	ND	8493	186	4301	111	1992	42	73	6
4/11/2019	7:22:59 #53	Analysis Re	esults													
4/11/2019	7:23:38 #54	Soil	9.92	9.86	9.94	29.73 ND	ND	ND	8003	188	4182	116	2223	47	73	6
4/11/2019	7:27:01 #55	Soil	5.71			5.71							3382	437 ND		
4/11/2019	7:27:30 #56	Soil	7.95			7.95							1827	407 ND		
4/11/2019	7:27:58 #57	Soil	4.67			4.67						ND		ND		
4/11/2019	7:29:56 #58	Soil	9.92	9.85	9.95	29.71 ND	ND	ND	6183	152	5571	121	8485	112	40	8
4/11/2019	7:30:47 #59	Soil	9.91	9.84	9.94	29.68 ND	ND	ND	8989	194	2014	85	1951	42	70	6
4/11/2019	7:31:35 #61	Soil	9.94	9.85	9.94	29.73 ND	ND	ND	9050	192	2942	95	1966	42	70	6
4/11/2019	7:36:26 #62	Soil	9.93	9.85	9.94	29.73 ND	ND	ND	6343	159	4492	114	1812	41	39	5
4/11/2019	7:36:50 #63	Soil											1428	368 ND		
4/11/2019	7:37:31 #64	Soil	9.97	9.93	9.97	29.87 ND	ND	ND	9063	252	6728	179	2006	54	52	7
4/11/2019	7:38:15 #65	Soil	9.97	9.88	9.96	29.81 ND	ND	ND	7057	198	5937	152	1988	50	57	7
4/11/2019	7:38:57 #66	Soil	9.97	9.89	9.95	29.81 ND	ND	ND	6962	175	5652	133	1794	42	52	6
4/11/2019	7:39:25 #67	Soil										ND		ND		
4/11/2019	7:39:36 #68	Analysis R	esults													
4/11/2019	7:40:07 #69	Soil	9.02			9.02							2279	349 ND		
4/11/2019	7:41:48 #70	Soil	9.93	9.86	9.95	29.74 ND	ND	ND	9694	209	2041	87	2004	44	53	6
4/11/2019	7:43:17 #71	Soil	9.92	9.83	9.94	29.69 ND	ND	ND	2187	85	736	51	908	26	32	4
4/11/2019	7:44:05 #72	Soil	9.94	9.89	9.96	29.79 ND	ND	ND	9843	243	2285	104	2352	55	54	7
4/11/2019	7:47:40 #73	Soil	9.91	9.84	9.95	29.7 ND	ND	ND	3449	106	2766	80	1211	30	31	4
4/11/2019	7:48:26 #74	Soil	9.93	9.84	9.95	29.71 ND	ND	ND	7368	173	5244	123	1964	42	64	6
4/11/2019	7:49:12 #75	Soil	9.96	9.89	9.97	29.82 ND	ND	ND	5180	172	3877	122	1379	41	43	6
4/11/2019	7:49:51 #76	Soil	9.96	9.88		19.84 ND	ND	ND	7404	280	5446	201	2049	70	51	9
4/11/2019	7:50:30 #77	Soil	9.92	9.83	9.94	29.7 ND	ND	ND	7136	169	4777	117	1856	41	59	6
4/11/2019	7:50:39 #78	Soil										ND		ND		
4/11/2019	7:51:27 #79	Soil	9.92			9.92							1683	218 ND		
4/11/2019	7:57:05 #80	Soil	9.93	9.86	9.95	29.74 ND	ND	ND	5435	147	2373	85	1444	36	48	5
4/11/2019	7:58:00 #81	Soil	9.94	9.85	9.94	29.73 ND	ND	ND	7453	174	3749	105	2107	44	42	5
4/11/2019	7:58:06 #82	Soil										ND		ND		
4/11/2019	7:58:44 #83	Soil	9.95	9.89	9.96	29.8 ND	ND	ND	6162	175	2908	102	1558	41	49	6
4/11/2019	7:59:58 #84	Soil	9.97	9.89	9.95	29.81 ND	ND	ND	6454	170	3788	110	1796	42	49	6
4/11/2019	8:00:31 #85	Soil														
4/11/2019	8:03:20 #86	Soil	5.78			5.78							1849	396 ND		

4/11/2019	8:03:41 #87	Soil	5.75			5.75							1381	379 ND		
4/11/2019	10:39:56 #88	Cal Check	14.91			14.91										
4/11/2019	10:56:46 #89	Soil	9.94	0.33		10.27							5310	1371 ND		
4/11/2019	10:57:21 #90	Soil	9.95	0.93		10.88							2918	628 ND		
4/11/2019	10:57:31 #91	Soil	6.29			6.29							2382	409 ND		
4/11/2019	10:58:02 #92	Soil	9.96	3.57		13.52							3343	339 ND		
4/11/2019	10:58:27 #93	Soil	8.97			8.97							3214	334 ND		
4/11/2019	10:58:46 #94	Soil	6.42			6.42							3389	423 ND		
4/11/2019	10:59:26 #95	Soil	9.95	3.03		12.98							2881	377 ND		
4/11/2019	11:00:46 #96	Soil	9.92	0.87		10.8							2900	592 ND		
4/11/2019	11:04:37 #97	Soil	9.93	9.85	9.96	29.74 ND	ND	ND	4929	138	2601	86	2151	44	51	5
4/11/2019	11:07:34 #98	Soil	9.92	9.85	9.94	29.72 ND	ND	ND	1495	72	1472	60	7865	99	34	7
4/11/2019	11:10:24 #99	Soil	9.92	9.85	9.95	29.73 ND	ND	ND	2899	104	1954	74	1871	40	39	5
4/11/2019	11:19:53 #100	Soil	9.92	9.84	9.95	29.7 ND	ND	ND	4033	120	2557	82	2026	41	46	5
4/11/2019	11:23:30 #101	Soil	9.93	9.84	9.95	29.72 ND	ND	ND	2011	84	1564	63	7398	97	30	7
4/11/2019	11:26:06 #102	Soil	9.93	9.85	9.95	29.74 ND	ND	ND	3488	114	1914	73	1651	37	51	5
	11:34:12 #103	Soil	8.42			8.42							1959	339	610	199
4/11/2019	11:34:34 #104	Soil	2.99			2.99							2443	804 ND		
	11:44:40 #105	Soil	6.83			6.83							2221	394 ND		
4/11/2019	11:45:09 #106	Soil	6.84			6.84							2659	368 ND		
4/11/2019	11:45:40 #107	Soil	6.85			6.85							1871	444 ND		
4/11/2019	11:46:01 #108	Soil	5.73			5.73							2878	415 ND		
4/11/2019	11:46:31 #109	Soil	5.74			5.74							2380	647 ND		
4/11/2019	11:49:40 #110	Soil	6.8			6.8							3370	400 ND		
4/11/2019	11:50:00 #111	Soil	9.93	5.77		15.7							3081	235	337	112
4/11/2019	11:50:27 #112	Soil	7.35			7.35							3319	395 ND		
4/11/2019	11:50:46 #113	Soil	7.53			7.53							2916	458 ND		
4/11/2019	11:51:25 #114	Soil	7.37			7.37							3316	451 ND		
4/11/2019	11:51:53 #115	Soil	6.84			6.84							3340	406 ND		
4/11/2019	11:52:17 #116	Soil	9.94			9.94							3449	335 ND		
4/11/2019	11:52:41 #117	Soil	4.64			4.64							4664	811 ND		
4/11/2019	11:54:05 #118	Soil	9.95	0.87		10.82						ND		ND		
	11:54:21 #119	Soil	4.13			4.13						ND		ND		
	11:54:35 #120	Soil	9.25			9.25							2746	389 ND		
	11:55:00 #121	Soil	6.81			6.81							1924	374 ND		
	11:55:16 #122	Soil	4.24			4.24							1724	464 ND		
		Soil	4.86			4.86						ND		ND		
	11:55:50 #124	Soil	4.81			4.81							2290	533 ND		
	11:56:00 #125	Soil	6.3			6.3							2862	464 ND		
	11:56:20 #126	Soil	2.51			2.51							2205	614 ND		
	11:56:29 #127	Soil	2.5			2.5							1956	643 ND		
	11:56:36 #128	Soil	3.29			3.29						ND	· = *	ND		
	11:56:46 #129	Soil	3.05			3.05						ND		ND		
	11:56:56 #130	Soil	4.13			4.13							3117	780 ND		
	11:57:13 #131	Soil	3.09			3.09							3941	654 ND		
	11:57:23 #132	Soil	3.03			3.03						ND	· -	ND		
	11:57:32 #133	Soil	4.19			4.19						ND		ND		
	11:57:39 #134	Soil	3.59			3.59							2709	600 ND		
	11:57:47 #135	Soil	4.18			4.18						ND		ND		
, ==, ====	- · · · · ·					_										

4/11/2019	11:57:59 #136	Soil	3.04	3.04	ND		ND
4/11/2019	11:58:11 #137	Soil	3.04	3.04	ND		ND
4/11/2019	11:58:18 #138	Soil	3.01	3.01	ND		ND
4/11/2019	11:58:24 #139	Soil	2.5	2.5		1860	583 ND
4/11/2019	11:58:40 #140	Soil	3.64	3.64		2329	494 ND
4/11/2019	11:59:03 #141	Soil	3.05	3.05		4361	881 ND
4/11/2019	11:59:13 #142	Soil	3.03	3.03	ND		ND
4/11/2019	11:59:28 #143	Soil	4.13	4.13		1896	488 ND
4/11/2019	11:59:47 #144	Soil	4.86	4.86		2868	499 ND
4/11/2019	11:59:58 #145	Soil	3.58	3.58	ND		ND
4/11/2019	12:00:14 #146	Soil	3.06	3.06		1893	505 ND
4/11/2019	12:00:22 #147	Soil	3.81	3.81	ND		ND
4/11/2019	12:00:34 #148	Soil	2.5	2.5	ND		ND
4/11/2019	12:00:43 #149	Soil	2.51	2.51	ND		ND
4/11/2019	12:00:56 #150	Soil	2.51	2.51	ND		ND
4/11/2019	12:01:26 #151	Soil	4.12	4.12	ND		ND
4/11/2019	12:01:45 #152	Soil	3.07	3.07	ND		ND
4/11/2019	12:02:06 #153	Soil	3.04	3.04		3463	611 ND
4/11/2019	12:02:14 #154	Soil	3.59	3.59		1761	571 ND
4/11/2019	12:02:30 #155	Soil	4.68	4.68		3560	592 ND
4/11/2019	12:02:50 #156	Soil	3.6	3.6		1806	482 ND
4/11/2019	12:03:03 #157	Soil	2.53	2.53		2615	720 ND
4/11/2019	12:03:13 #158	Soil	5.43	5.43	ND		ND
4/11/2019	12:03:28 #159	Soil	4.66	4.66		2702	489 ND
4/11/2019	12:03:37 #160	Soil	4.13	4.13		4021	699 ND
4/11/2019	12:03:46 #161	Soil	5.4	5.4		3067	528 ND
4/11/2019	12:03:55 #162	Soil	4.76	4.76		5284	690 ND
4/11/2019	12:04:25 #163	Soil	5.72	5.72		1487	415 ND
4/11/2019	12:04:32 #164	Soil	3.05	3.05		1998	527 ND
4/11/2019	12:04:44 #165	Soil	4.22	4.22	ND		ND
4/11/2019	12:05:01 #166	Soil	3.58	3.58		3133	553 ND
4/11/2019	12:05:13 #167	Soil	2.48	2.48		5134	991 ND
4/11/2019	12:05:21 #168	Soil	3.77	3.77		1991	556 ND
4/11/2019	12:05:38 #169	Soil	4.13	4.13		4202	638 ND
4/11/2019	12:05:49 #170	Soil	4.11	4.11		2978	521 ND
4/11/2019	12:06:08 #171	Soil	2.47	2.47	ND		ND
4/11/2019	12:06:14 #172	Soil	2.04	2.04		2318	709 ND
4/11/2019	12:06:21 #173	Soil	3.04	3.04		6178	994 ND
4/11/2019	12:06:39 #174	Soil	3.66	3.66		2173	493 ND
4/11/2019	12:07:06 #175	Soil				3101	396 ND
4/11/2019	12:07:15 #176	Soil	4.1	4.1		4534	616 ND
4/11/2019	12:07:38 #177	Soil	4.21	4.21		2833	520 ND
4/11/2019	12:08:35 #178	Soil	4.62	4.62		2906	505 ND
4/11/2019	12:08:47 #179	Soil	7.92	7.92		2721	368 ND
4/11/2019	12:09:02 #180	Soil	2.48	2.48		2739	693 ND
4/11/2019	12:09:17 #181	Soil	3.59	3.59	ND		ND
4/11/2019	12:11:05 #182	Soil	4.13	4.13		4786	647 ND
4/11/2019	12:11:11 #183	Soil	2.51	2.51		5735	1130 ND
4/11/2019	12:11:46 #184	Soil	4.66	4.66		3517	517 ND

4/11/2019	12:12:12 #185	Soil	2.5			2.5					241	.9 730 NE	1		
4/11/2019	12:12:22 #186	Soil	3.06			3.06					597	'5 966 NE	1		
4/11/2019	12:12:46 #187	Soil	3.58			3.58					653	9 792 NE	1		
4/11/2019	12:13:08 #188	Soil	2.49			2.49					270	848 NE	1		
4/11/2019	12:13:20 #189	Soil	2.47			2.47					444	3 838 NE	ı		
4/11/2019	12:13:30 #190	Soil	1.96			1.96					ND	NE			
4/11/2019	12:13:39 #191	Soil	4.74			4.74					445				
4/11/2019	12:14:17 #192	Soil	4.67			4.67					271				
4/11/2019	12:14:45 #193	Soil	3.03			3.03					270				
4/11/2019	12:15:02 #194	Soil	4.4			4.4					449				
		Soil	5.22			5.22					423				
		Soil	2.04			2.04					527				
4/11/2019	12:15:46 #197	Soil	3.25			3.25					594				
4/11/2019	12:16:05 #198	Soil	3.07			3.07					645				
		Soil	4.67			4.67					273				
	12:17:14 #200	Soil	3.58			3.58					175				
	12:17:14 #200	Soil	3.30			3.50					412				
	12:17:21 #201	Soil	3.8			3.8					446				
	12:17:39 #203	Soil	3.19			3.19					497				
4/11/2019	12:17:52 #204	Soil	4.66			4.66					ND	NE			
4/11/2019	12:19:25 #205	Soil	4.63			4.63					333				
4/11/2019	12:20:52 #206	Soil	7.50			7.56					978				
4/11/2019	12:21:10 #207	Soil	7.56			7.56					390				
	12:21:33 #208	Soil	3.69			3.69					423				
	12:21:40 #209	Soil	2.55			2.55					400				
		Soil	4.27			4.27					377				
	12:21:59 #211	Soil	3.56			3.56					ND	NE			
	12:22:08 #212	Soil	5.26			5.26					168				
4/11/2019	12:23:19 #213	Soil	5.75			5.75					286				
	12:23:30 #214	Soil	6.28			6.28					338				
	12:23:40 #215	Soil	4.12			4.12					549				
· · · · · ·	12:23:48 #216	Soil	3.03			3.03					179				
		Soil	4.83			4.83					124				
4/11/2019	12:24:23 #218	Soil	4.11			4.11					254	7 482 NE			
4/11/2019	12:24:34 #219	Soil	3.01			3.01					585	7 951 NE			
4/11/2019	12:24:44 #220	Soil	5.33			5.33					131	.9 386 NE			
4/11/2019	12:25:15 #221	Soil	4.14			4.14					971	.1 761 ND			
4/11/2019	12:25:53 #222	Soil	9.94	9.87	9.94	29.75 ND	1473	370 ND	12117	269 ND	348	2 70	122	9	j
4/11/2019	13:14:35 #223	Soil	9.94	4.64		14.58					173	6 233 NE			
4/11/2019	13:14:55 #224	Soil	4.1			4.1					187	'5 447 NC			
4/11/2019	13:15:11 #225	Soil	3.55			3.55					145	1 414 NE			
4/11/2019	13:15:26 #226	Soil	5.45			5.45					233	7 501 NE			
4/11/2019	13:15:39 #227	Soil	3.59			3.59					ND	NE			
4/11/2019	13:15:57 #228	Soil	6.52			6.52					313				
4/11/2019	13:16:12 #229	Soil	4.13			4.13					203				
	13:16:29 #230	Soil	4.14			4.14					132				
	13:16:47 #231	Soil	2.5			2.5					ND	NE			
	13:17:08 #232	Soil	3.57			3.57					255				
	13:17:29 #233	Soil	7.48			7.48					ND	NE			
, ,		**	· · ·			=									

4/11/2019	13:17:41 #234	Soil	5.19			5.19								3354	530 ND			
4/11/2019	13:21:36 #235	Soil	9.93	9.87	6.23	26.03 ND	ND	ND	94	59	277 ND			2509	69	63	9	
4/11/2019	13:21:44 #236	Soil	3.58			3.58								2549	641 ND			
4/11/2019	13:21:52 #237	Soil	4.95			4.95								2218	486 ND			
4/11/2019	13:22:05 #238	Soil	4.12			4.12							N)	ND			
4/11/2019	13:22:13 #239	Soil	4.85			4.85								2061	480 ND			
4/11/2019	13:22:20 #240	Soil	3.05			3.05							N)	ND			
4/11/2019	13:22:40 #241	Soil	9.23			9.23								2065	345 ND			
4/11/2019	13:55:08 #242	Cal Check	15.01			15.01												
4/11/2019	13:57:45 #243	Soil	9.94	9.87	9.93	29.74 ND	ND	ND	35	98	120	7592	150	10010	132	63	9	
4/11/2019	13:58:23 #244	Soil	9.94	9.87	9.93	29.74 ND	ND	ND	33	15	114	7566	148	9782	128	73	9	
4/11/2019	13:59:03 #245	Soil	9.94	9.87	9.93	29.75 ND	ND	ND	40	56	127	8088	155	9658	128	51	9	
4/11/2019	13:59:39 #246	Soil	9.93	9.87	9.93	29.74 ND	ND	ND	33	15	115	7689	150	10415	135	57	9	
4/11/2019	14:00:31 #247	Soil	9.94	9.87	9.94	29.75 ND	1234	321 ND	68	91	176	2251	94	11370	153	42	10	
4/11/2019	14:01:58 #248	Soil	9.94	9.88	9.93	29.76 ND	ND	ND	34	27	119	7584	151	9757	131	42	9	

Cr	Cr +/-	Mn	Mn	+/- Fe	e Fe	e +/- Co	Co +/-	Ni	Ni +/-	Cu	Cu +/-	Zn	Zn +/-	As	As +/-	Se	Se +/-	Rb	Rb +	-/- Sr	Sr	+/-
	90	8	456	13	19416	216 ND		ND			22	5	48	5 ND		ND			43	2	385	12
	33	6	302	10	19500	212 ND		ND		ND			14	3	73	4 ND			123	3	169	7
	46	8	471	14	34589	346 ND		ND			28	6	29	4	233	7 ND			104	3	209	8
	38	6	388	11	23916	245 ND		ND			15	5	20	4	107	4 ND			121	3	181	7
	22	6	287	10	16531	178 ND		ND		ND			39	4	33	3 ND			38.8	2	214	7
ND			419	11	16582	172 ND		ND		ND			47	4	42	3 ND			49	2	283	9
	28	6	384	11	16278	174 ND		ND			15	5	43	4	70	4 ND			49	2	262	8
	23	5	619	13	14744	159 ND			27	8	18	5	41	4	75 	4 ND			65	2	286	9
ND		_	640	21	19348	207 ND		ND			17	5	33	4	70	4 ND			70	3	270	9
	73	6	598	14	13599	169 ND		ND		ND			31	4	65	4 ND			53	2	219	9
	29	6	623	14	13464	163 ND		ND		ND	4.5	_	53	5	71	4 ND			81	3	264	9
	24	6	611	14	15374	170 ND			27	8	15	5	40	4	71	4 ND			53	2	322	10
	33	6	645	14	15592	176 ND		ND			17	5	36	4	73	4 ND			67	2	308	10
	38	7	391	13	16290	203 ND		ND		ND			56	5	19	3 ND			35	2	405	14
	23	6	389	12	17141	194 ND		ND		ND			49	5	21	3 ND			38	2	468	13
ND			335	12	16359	190 ND		ND		ND			46	5	16	3 ND			34	2	472	14
ND			357	117	11072	746 ND		ND			341	75	145	43 ND		ND			29	7	320	25
	58	6	287	9	10714	131 ND		ND		ND			41	4	25	3 ND			31.8	1.9	316	10
	32	6	352	11	17137	190 ND		ND		ND			57	5	35	3 ND			44	2	402	12
	33	6	323	10	14418	165 ND		ND		ND			54	5	28	3 ND			38	2	406	12
	36	6	334	10	15498	175 ND		ND			18	5	55	5	30	3 ND			41	2	451	13
	29	6	1246	23	14264	182 ND		ND		ND			51	5	32	3 ND			30	2	394	13
	26	6	484	12	15736	174 ND		ND		ND			43	4	30	3 ND			36.7	2	467	13
	53	7	335	12	12009	174 ND		ND		ND			39	5	17	3 ND			35	2	232	9
	45	7	369	13	14560	195 ND		ND		ND			42	5	23	3 ND			37	2	235	9
	56	10	377	17	15405	261 ND		ND		ND			47	7	23	4 ND			32	3	265	14
	25	5	462	11	14092	146 ND			22	7 ND		_	43	4	48	3 ND			55	2	222	7
	29	6	329	11	11892	149 ND		ND			22	5	24	4	37	3 ND			44	2	255	9
	22	6	319	10	15272	183 ND		ND		ND		_	38	4	27	3 ND			38	2	275	10
	50	7	542	14	24127	260 ND		ND	2.0		44	6	46	5	129	5 ND			106	3	249	9
ND	33	7	443	13	25158	266 ND		ND	28	9	28	6	41	5	127	5 ND			103	3	250	9
ND			511	16	38548	408 ND		ND			31	6	40	5	144	6 ND			105	3	260	10
ND	2.5	_	400	13	31881	329 ND		ND			42	6	31	4	199	6 ND			118	3	320	11
	36	7	385	12	15646	176 ND		ND			20	5	18	3	92	4 ND			96	3	183	7
	40	7	815	17	16181	184 ND		ND			19 15	5	36	4	67	4 ND			62 50	2	142	6
	25	6	405	11	19181	186 ND		ND			15 24	4	54	4	56	3 ND			59	2	230	7
	46	7	341	12	18065	205 ND		ND			21	5	35	4	110	5 ND			86	3	172	/
	34	7	422	12	17487	195 ND		ND		ND	20	-	54	5	58	4 ND			65	2	209	8
ND	40	11	468	13	19286	205 ND		ND			28	5	52	5	68	4 ND			81	3	250	9
	49	11	416	18	28028	277 ND		ND			39	6	47	5	142	5 ND			114	3	202	/
	30	8	415	13	26926	295 ND		ND			34	6	70	6	111	5 ND			100	3	262	10

	24	6	550	13	16124	173 ND	ND			21	5	50	4	31	3 ND		46	2	294	9
	35	6	372	11	17246	182 ND	ND			16	5	67	5	26	3 ND	1	0.7	2	232	8
	23	7	665	16	26326	274 ND	ND	43	9	47	6		5	110	5 ND		LO1	3	185	7
ND	23	,					ND	43	9			69 73								
ND	27		451	14	29774	317 ND	ND		ND	32	6	72	6	118	5 ND		101	3	184	7
	37	6	376	11	16828	181 ND	ND		ND		_	60	5	26	3 ND	3	7.9	2	319	10
	33	7	328	11	19845	207 ND	ND			15	5	56	5	35	3 ND		47	2	281	9
	41	7	386	12	19531	213 ND	ND			15	5	83	6	35	4 ND		46	2	332	12
	41	6	394	11	15435	171 ND	ND			19	5	64	5	36	3 ND		7.9	2	328	10
	47	6	393	11	16001	171 ND		25	8 ND			71	5	29	3 ND		9.3	1.9	337	10
ND			493	14	29156	303 ND	ND			25	6	33	4	208	6 ND	=	108	3	236	8
	30	7	416	13	23252	247 ND		29	9	37	6	62	5	68	4 ND		79	3	282	9
ND			526	15	25878	276 ND	ND			28	6	65	5	119	5 ND		98	3	251	9
	65	8	528	16	19385	247 ND	ND			22	6	23	4	68	4 ND		91	3	193	9
	38	6	171	9	20110	216 ND	ND			27	5	14	3	100	4 ND		93	3	149	6
	29	7	302	12	16191	201 ND	ND		ND			31	4	72	4 ND		66	3	229	9
	63	12	361	20	14118	280 ND	ND		ND			54	8	33	6 ND		49	4	209	13
	32	7	345	12	17183	203 ND	ND		ND			52	5	36	4 ND		50	2	220	9
	29	6	353	11	12222	151 ND	ND		ND			29	4	24	4 ND		58	2	183	7
	38	8	383	15	16078	225 ND	ND			25	7	48	6	26	4 ND		53	3	222	11
	57	12	369	20	12946	266 ND	ND		ND			31	7	18	5 ND		35	3	185	12
	56	7	329	12	10817	167 ND	ND		ND			38	5	15	4 ND		55	3	172	8
	48	7	439	12	15801	182 ND	ND		ND			47	5	37	3 ND		87	3	221	8
	74	7	439	12	14758	167 ND		33	8	17	5	42	4	27	3 ND		67	2	239	8
ND		ND			10755	692	ND		ND			393	57 ND		ND		35	7	175	16
	52	6	416	12	15180	173 ND		30	8 ND			53	5	25	3 ND		71	3	262	9
	72	7	389	12	13525	176 ND	ND		ND			37	5	29	3 ND		67	3	234	8
	48	6	381	11	15728	179 ND	ND			18	5	44	4	29	3 ND		70	3	258	9
	57	7	387	12	16453	182 ND		28	8 ND		-	37	4	28	3 ND		83	3	265	9
	34	6	429	12	15288	175 ND		26	8 ND			44	4	39	4 ND		98	3	248	9
	38	7	339	11	14465	167 ND	ND		0 110	18	5	43	4	44	3 ND		87	3	227	8
	50	6	334	11	15298	172 ND	ND		ND	10	J	40	4	47	3 ND		96	3	238	9
	43	6	348	11	14757	171 ND	ND		ND			37	4	42	3 ND		100	3	255	9
	48	7	503	13	17888	202 ND	ND		NU	20	5	46	5	29	3 ND		82	3	225	8
ND	40	,	303	66	17389	463 ND	ND		ND	20	J	61	12 ND	23	ND		70	6	226	8
ND			303	00	17303	403 ND	ND		ND			01	12 110		ND		70	U	220	0
ND			456	137	15173	1054	ND		ND		ND		ND		ND		58	10	179	18
ND			303	48	14356	397	ND ND		ND ND		ND	49	15	18	5 ND		89	5	173	7
ND	65	7	409			194 ND			ND	17	5	43	5	36			79	3	240	9
	65	,	409	13	15861	194 ND	ND			17	5	41	5	30	4 ND		79	3	240	9
	30	6	315	10	13269	145 ND	ND		ND			52	4	27	3 ND	3	8.4	1.8	243	8

	37	7	641	16	21612	242 ND		30	9 ND			83	6	25	3 ND	56	2	334	11
	21	6	1400	25	13460	170 ND	ND		ND			52	5	24	3 ND	44	2	198	8
	42	7	364	12	17365	205 ND	ND		ND			44	5	17	3 ND	40	2	273	10
	50	6	284	9	11003	130 ND	ND		ND			34	4	23	3 ND	30.7	1.8	207	7
	22	7	144	9	14362	182 ND	ND		ND			27	4	116	5 ND	101	3	154	7
	28	6	247	10	19281	194 ND	ND			42	5	49	4	103	4 ND	60	2	197	7
	44	7	356	12	15984	195 ND	ND		ND			40	5	31	3 ND	43	2	324	11
	38	7	413	13	25601	285 ND	ND			31	6	64	6	38	3 ND	50	2	337	11
	22	7	422	13	17207	201 ND	ND			20	5	47	5	18	3 ND	42	2	294	10
	44	7	395	13	22282	252 ND	ND		ND			45	5	37	3 ND	40	2	294	10
	40	7	387	12	22011	235 ND	ND			19	5	48	5	39	3 ND	46	2	318	11
	41	7	367	12	22310	235 ND	ND			17	5	47	5	44	3 ND	45	2	312	11
	40	6	394	11	18063	192 ND	ND			18	5	62	5	15	3 ND	42	2	377	11
	29	7	473	14	19657	215 ND		45	9	19	5	93	6	11	3 ND	51	2	375	11
	46	7	410	13	17451	214 ND	ND		ND			78	6	12	3 ND	42	2	306	11
	49	7	806	17	22478	243 ND	ND			17	5	74	5	26	3 ND	44	2	296	10
	39	7	637	15	19831	212 ND	ND			26	5	72	5	24	3 ND	47	2	321	10
	33	6	1279	22	15449	176 ND	ND		ND			55	5	29	3 ND	51	2	255	9
	28	6	1087	19	15106	167 ND	ND			16	5	61	5	24	3 ND	49	2	260	8
	50	6	1033	19	15470	172 ND		28	8	18	5	61	5	26	3 ND	50	2	273	9
ND		ND			12307	1755	ND		ND		ND		ND		ND	ND		238	43
	48	6	961	17	15361	167 ND		30	8	16	5	59	5	25	3 ND	56	2	274	9
	46	5	462	11	8245	106 ND	ND			13	4	48	4	42	3 ND	33.2	1.8	156	6
	31	7	335	11	25077	261 ND	ND			29	5	69	5	31	3 ND	38	2	204	8
	26	5	1037	17	11976	127 ND	ND			18	4	79	5	32	3 ND	35.8	1.7	134	5
	50	6	665	14	17447	184 ND	ND			22	5	40	4	51	3 ND	46	2	138	6
	30	6	457	12	10475	133 ND	ND		ND			35	4	30	4 ND	87	3	105	5
	45	8	344	14	21899	267 ND	ND			36	7	33	5	92	5 ND	65	3	190	9
	33	6	208	9	6264	98 ND	ND			27	5	18	4	17	3 ND	53	2	174	7
	36	7	391	12	24989	250 ND		26	8	33	5	60	5	83	4 ND	51	2	287	9
	25	6	271	10	16245	180 ND	ND			29	5	67	5	53	4 ND	61	2	230	8
	45	8	483	14	20239	233 ND	ND			24	6	61	5	31	3 ND	61	3	320	11
	78	8	407	13	14255	188 ND	ND			18	6	37	5 ND		ND	38	2	368	13
	41	7	318	11	20205	214 ND	ND			19	5	18	3	79	4 ND	102	3	175	7
	41	7	410	12	26450	265 ND	ND			26	5	23	4	113	5 ND	116	3	191	7
	25	6	420	12	15341	171 ND	ND		ND			42	4	20	3 ND	42	2	355	11
	44	7	437	13	17051	189 ND		28	8 ND			43	4	21	3 ND	86	3	305	10
	52	6	378	11	16275	177 ND	ND		ND			51	4	14	2 ND	52	2	337	10
	42	6	371	11	17475	194 ND		41	9 ND			47	4	20	3 ND	42	2	376	12
	45	6	404	11	15566	170 ND	ND		ND			42	4	10	2 ND	37.9	2	364	11
	41	6	311	10	16668	181 ND	ND		ND			36	4 ND		ND	26.9	1.8	351	11
	25	8	269	12	18365	229 ND	ND		ND			39	5 ND		ND	29	2	447	15
ND			266	11	18993	204 ND	ND		ND			46	4	7	2 ND	28	1.9	529	17
	31	7	341	12	23409	254 ND	ND		ND			40	4	18	3 ND	44	2	332	11

ND			348	12	19710	220 ND	ND		ND			50	5	16	3 ND			34	2	382	12
ND	45	12	319	20	12933	248 ND	ND ND		ND			28	6	14	4 ND			27	3	351	16
	43	12	319	20	12933	240 ND	ND		ND			20	U	14	4 110			21	3	331	10
	45	6	270	9	13621	151 ND	ND		ND			24	3	306	7	4.1	1.3	75	2	138	6
	36	5	202	8	14084	148 ND	ND			14	4	33	4	296	7	5.7	1.3	67	2	113	4
	38	6	220	9	18317	195 ND	ND		ND			18	3	389	8	8.2	1.5	67	2	123	5
	46	6	229	9	22279	226 ND	ND		NU	26	5	19	3	489	9	4.6	1.4	100	3	118	5
	40	U	223	9	22213	220 ND	ND			20	J	19	3	403	9	4.0	1.4	100	3	110	3
	54	6	152	8	11426	140 ND	ND		ND			18	3	144	5 ND			117	3	59	3
	29	7	342	12	17800	208 ND	ND		ND			34	4	111	5 ND			94	3	199	8
	48	10	306	15	16399	245 ND	ND		ND			31	5	89	5 ND			77	3	211	11
	48	9	317	14	15710	216 ND	ND		ND			35	5	89	5 ND			71	3	239	9
		-											-								
	47	4	174	6	3136	53 ND	ND		ND			25	3	33	3 ND			31.9	1.6	55	3
	55	5	224	7	3849	63 ND	ND		ND			39	4	44	3 ND			55	2	64	3
	52	8	284	12	20296	266 ND	ND		ND			31	5	433	11 ND			59	3	75	5
	37	8	284	13	13302	197 ND	ND			21	6	33	5	172	7	5.9	1.7	91	4	154	8
	0.					207 112					· ·			_,_	•	0.0		-	·		
ND			323	12	25732	274 ND	ND		ND			65	5 ND		ND			47	2	495	15
ND			342	53	23361	628	ND		ND			59	16 ND		ND			37	4	608	18
	34	7	361	12	22162	243 ND	ND		ND			50	5 ND		ND			34	2	539	16
	23	7	344	12	23224	249 ND	ND		ND			47	5 ND		ND			37	2	576	16
	39	, 7	314	11	17590	189 ND	ND		ND			44	4	14	2 ND			42	2	357	11
	31	6	302	11	17330	190 ND	ND ND		ND			45	4	13	3 ND			38	2	329	10
ND	31	U	330		23941	260 ND			ND					13 14	3 ND				2	371	
ND	21	7		12			ND					51 48	5 5 ND	14				44			13
	21	7	324	11	18687	205 ND	ND		ND	1.6	-	48	5 ND	100	ND 4 ND			40	2	384	12
	33	7	264	11	20487	223 ND	ND			16	5	33	4	106	4 ND			63	2	275	9
	28	7	335	11	19904	208 ND	ND		ND			48	4	35	3 ND			46	2	376	11
	21	7	279	11	20798	227 ND	ND		ND			50	5	25	3 ND			37	2	375	12
ND			285	11	20246	213 ND		27	8 ND			45	4	38	3 ND			48	2	355	11
	29	7	302	12	15700	201 ND	ND		ND			41	5	14	3 ND			35	2	345	12
	47	7	305	11	16600	196 ND	ND		ND			51	5	20	3 ND			37	2	333	11
	38	6	289	10	15834	171 ND	ND		ND			50	4	19	3 ND			40.2	2	326	10
ND			326	14	17268	223 ND	ND		ND			45	5	12	3 ND			36	2	379	14
ND			317	11	17934	191 ND	ND		ND			76	5	17	3 ND			37.5	1.9	280	9
	22	6	297	10	19258	201 ND	ND		ND			63	5	10	3 ND			41	2	408	12
ND			313	11	19344	202 ND	ND			17	5	48	4	20	3 ND			47	2	440	13
	54	5	284	9	13310	145 ND	ND		ND		•	46	4	42	3 ND			38.5	1.9	242	8
	24	7	272	12	21044	246 ND	ND		110	21	6	38	5	62	4 ND			39	2	271	10
	53	12	350	19	26270	429 ND	ND ND		ND	~ 1	J	36		189	9 ND			52	4	202	12
	34	7			15828	194 ND			ND	17	5	33	4	83	4 ND				3	202 250	9
	34 36	, 7	284	12 11	9307		ND ND		ND	1/	3		4					73	_	250 146	9 7
		-	210	11		147 ND	ND ND					19	•	121	5 ND			83 50	3		
	56	7	489	13	20766	226 ND	ND		ND	1.0	-	62 33	5	11	3 ND			50 100	2	385	12
	63	8	392	12	24173	246 ND	ND			16	5	22	4	105	4 ND			100	3	193	7
	41	7	356	12	23744	244 ND	ND			30	5	19	4	105	4 ND			118	3	145	6

	47	7	462	13	20968	230 ND	ND			23	5	53	5	9	3 ND		47	2	419	13
	27	6	227	9	15022	161 ND	ND		ND			48	4	12	2 ND	•	33.8	1.8	256	8
	33	6	279	9	17241	169 ND	ND	22	7	17	4	4 3	4	13	2 ND	`	42	1.9	325	9
	33	5	251	9	13684	146 ND	ND		ND	1,	•	47	4	7	2 ND	3	37.2	1.8	256	8
ND	33	3	310	12	19101	216 ND	ND		ND			52	5	, 17	3 ND	•	36	2	363	12
	32	6	252	9	17680	184 ND	2	25	8	14	5	49	4	9	2 ND		42	2	353	11
	36	6	293	10	17602	188 ND	ND		ND		•	39	4	8	2 ND	5	31.9	1.9	367	11
	28	6	262	10	16549	179 ND	ND		ND			48	4	9	2 ND		36.1	1.9	390	12
ND		-	300	18	20194	339 ND	ND		ND			43	7 ND		ND		31	3	383	19
	26	6	283	10	16601	184 ND		30	8 ND			47	4	26	3 ND		50	2	448	13
ND		-	285	14	19781	227 ND	ND		ND			51	5	16	3 ND		40	2	374	12
	35	6	310	10	13638	159 ND	ND		ND			34	4 ND		ND	2	29.9	1.9	388	11
	31	6	319	10	15608	171 ND		33	8 ND			36	4	9	2 ND		42	2	402	12
	55	6	317	9	14914	157 ND	ND		ND			46	4 ND		ND	3	31.6	1.8	377	11
	51	6	297	9	14799	165 ND	ND		ND			39	4 ND		ND		35.5	1.9	339	11
	45	8	394	14	17588	222 ND	ND		ND			39	5	21	3 ND		36	2	312	12
	40	7	154	10	13841	234 ND	ND		ND			36	6	29	4 ND		50	3	237	12
ND			174	10	12714	161 ND	ND		ND			21	4	101	5 ND		65	3	144	6
	24	5	151	7	5574	81 ND	ND		ND			11	3	36	3 ND	4	14.8	2	219	7
	32	6	228	9	9214	123 ND	ND		ND			28	4	28	3 ND		57	2	195	8
	40	5	304	9	11323	134 ND	ND		ND			41	4	26	3 ND	3	39.6	2	235	8
	45	5	283	9	11329	126 ND	ND		ND			37	4	25	3 ND	3	33.9	1.8	179	6
	31	6	262	10	11926	146 ND	ND		ND			40	4	32	3 ND		44	2	166	7
	30	5	395	11	11047	127 ND	ND		ND			21	3	157	5 ND	4	14.5	1.9	183	6
	28	6	184	8	12741	139 ND	ND		ND			24	3	132	4 ND		53	2	190	6
	41	6	294	11	11413	145 ND	ND		ND			24	4	38	3 ND		52	2	185	7
	46	7	173	9	8112	122 ND	ND		ND			24	4	37	3 ND		62	3	256	9
	31	5	106	7	5948	91 ND	ND		ND			18	3	66	4 ND		136	3	98	5
	33	7	232	11	12142	165 ND	ND		ND			21	4	80	4 ND		56	3	208	8
	29	6	311	10	17352	103 ND 177 ND	ND ND		ND ND			38	4	99	4 ND		72	2	247	8
	31	6	220	10	15896	177 ND 174 ND	ND ND		ND ND			24	4	132	5 ND		59	2	314	10
	31	7	238	10	17996	205 ND	ND ND		ND			35	4	108	5 ND		69	3	320	11
	41	6	308	10	13230	143 ND	ND		ND			37	4	83	4 ND		60	2	181	7
	34	6	317	11	12554	170 ND	ND		ND			24	4	70	4 ND		73	3	185	7
	23	6	321	11	10769	137 ND	ND		ND			29	4	58	3 ND		157	4	246	9
ND	23	Ū	287	11	11232	141 ND	No	27	8 ND			35	4	29	3 ND		73	3	219	8
ND	63	7	260	11	14493	197 ND	ND	21	ND			31	5	44	4 ND		71	3	223	10
	52	6	278	9	11288	135 ND	ND		ND			32	4	43	3 ND		77	3	232	8
	55	7	338	12	12655	159 ND	ND ND		ND			25	4	38	3 ND		70	3	220	8
ND	33	,	260	13	11099	178 ND	ND ND		ND ND			31	5	40	4 ND		91	4	153	7
	30	7	314	13	16657	211 ND	ND		ND			33	5	65	4 ND		69	3	215	8
	21	6	300	11	14165	167 ND	ND		ND			25	4	45	3 ND		63	2	187	7
	20	7	234	11	12345	160 ND	.,,	28	9	21	5	24	4	46	4 ND		54	2	208	8
	80	12	320	18	11887	244 ND	ND	_0	ND		ND		•	52	6 ND		51	4	175	11
	00		320	10	11007	277 ND	110		ND		ND			52	O ND		J-1	7	1,5	11

	44	7	460	13	16891	192 ND	ND		ND			42	4	39	3 ND	47	2	278	9
	44	8	394	13	16258	197 ND	ND		ND			31	4	31	3 ND	57	3	243	8
	48	8	351	14	18691	265 ND	ND		ND			32	5	83	5 ND	67	3	220	10
	44	7	369	13	20362	234 ND	ND			18	5	48	5	46	4 ND	56	2	278	10
		_		_									_				_		_
	68	6	305	9	14913	157 ND	ND		ND		_	24	3	75	4 ND	49	2	177	6
	67	8	340	14	11347	189 ND	ND			23	7	31	5	45	4 ND	29	2	237	9
	48	6	308	10	18255	197 ND	ND			23	5	41	4	49	3 ND	58	2	222	8
	33	7	292	11	23791	253 ND	ND			19	5	40	4	121	5 ND	75	3	229	8
	26	7	276	11	15055	186 ND	ND		ND			32	4	36	3 ND	38	2	184	7
	68	9	510	17	20950	287 ND	ND		ND			43	6	23	4 ND	37	3	416	16
ND			500	14	22054	241 ND		37	9	26	6	47	5	25	3 ND	41	2	296	10
ND			332	11	15909	173 ND	ND			14	5	39	4	110	4 ND	81	3	168	6
ND			291	11	20537	224 ND	ND			16	5	42	4	131	5 ND	77	3	182	7
																	_		_
ND			398	12	20654	215 ND	ND		ND			37	4	94	4 ND	80	3	216	7
	28	6	274	10	12461	142 ND		30	8 ND			24	4	47	3 ND	66	2	141	5
	26	6	410	12	19028	196 ND	ND		ND			44	4	75	4 ND	87	3	234	8
	22	5	229	8	12221	133 ND		24	7 ND			36	4	59	3 ND	68	2	146	5
	31	6	295	10	15543	169 ND		36	8 ND			27	4	66	3 ND	70	2	194	7
	33	6	240	10	10263	128 ND	ND		ND			19	3	197	6 ND	59	2	164	6
	32	4	357	9	9985	108 ND	ND		ND			31	3	76	3 ND	65	2	140	6
	28	5	230	9	10658	121 ND		37	8	15	4	18	3	84	4 ND	94	3	119	5
ND			179	28	13868	196 ND	ND		ND			26	4	91	5 ND	59	3	177	8
	54	8	301	12	16763	204 ND	ND		ND			34	4	101	5 ND	63	3	183	7
	36	7	228	10	12630	156 ND	ND		ND			26	4	82	4 ND	61	2	142	6
	19	5	247	9	11191	123 ND	ND			17	4	29	3	64	3 ND	59	2	142	5
	32	7	312	12	13154	176 ND	ND		ND			37	5	48	4 ND	45	2	193	9
	47	7	218	10	15145	181 ND	ND		ND			27	4	105	5 ND	63	3	205	8
	36	6	331	11	13320	149 ND	ND			16	5	33	4	77	4 ND	63	2	190	7
ND		ND			15823	527	ND		ND		ND			108	10 ND	73	6	158	8
	55	9	524	16	22483	294 ND	ND		ND			37	5	138	6 ND	65	3	183	9
	46	7	231	11	13665	181 ND	ND		ND			28	4	103	5 ND	62	3	121	6
	22	6	346	10	13996	152 ND		32	8	18	5	34	4	14	2 ND	58	2	201	7
	34	6	267	10	10483	133 ND	ND		ND			26	4	44	3 ND	57	2	184	7
	21	6	210	9	12110	144 ND		35	8	15	5	20	4	83	4 ND	66	2	145	6
	31	5	411	11	13069	142 ND	ND			13	4	53	4	21	2 ND	52	2	207	7
	33	6	405	11	13614	150 ND		40	8	15	5	44	4	24	3 ND	56	2	256	8
	26	6	367	11	13750	157 ND	ND			19	5	34	4	21	3 ND	51	2	226	8
ND			341	11	17325	192 ND	ND		ND			44	4	24	3 ND	31.5	2	399	12
	40	7	302	11	15011	183 ND	ND		ND			32	4	105	5 ND	56	2	323	11
	37	7	262	11	13674	181 ND	ND		ND			33	5	39	4 ND	44	2	271	10

	27	8	380	14	19462	267 ND	ND		ND			35	5	102	6 ND	84	3	212	10
	43	6	284	10	16398	187 ND	ND		ND			28	4	66	4 ND	68	3	240	9
ND	43	J	204	44	10622	312	ND		ND		ND	20	7	36	6 ND	63	4	307	11
ND			156	39	7174	186 ND	ND		ND		ND			62	7 ND	71	5	122	5
ND			257	47	13981	396	ND		110	114	26	50	16	57	7 ND	84	5	231	9
ND			363	56	15511	458	ND		ND	114	ND	30	10	78	8 ND	68	5	253	10
ND			158	48	12352	408	ND	118	31	213	34	93	20	32	6 ND	40	4	239	10
ND		ND	130	10	13588	532	ND	110	ND	213	ND	33	20	26	7 ND	43	5	294	14
ND		,,,,	207	42	8955	265	ND		ND		ND			55	6 ND	68	4	167	7
ND			348	69	19597	505 ND	ND		ND		ND			69	9 ND	67	6	232	9
ND			255	70	7545	301 ND	ND		ND		ND			42	9 ND	40	6	122	5
ND		ND		, •	5242	157 ND	ND		ND		ND			42	6 ND	64	4	78	4
ND			168	37	11469	292	ND		ND		ND			82	7 ND	74	4	167	6
ND			211	41	13748	362	ND		ND		ND			76	7 ND	56	4	229	8
ND			238	50	12755	398	ND		ND		ND			46	7 ND	68	5	165	7
ND			279	55	12406	423	ND		ND		ND			97	10 ND	64	5	180	9
ND			180	53	7674	300	ND		ND		ND			36	7 ND	70	6	83	6
ND			193	60	17297	625	ND		ND		ND			155	13 ND	68	6	216	11
ND		ND			14095	578	ND		ND		ND			137	13 ND	66	6	180	11
ND			178	54	9785	374	ND		ND		ND			79	9 ND	54	5	182	9
ND			189	46	11021	350	ND		ND		ND			107	9 ND	62	5	189	8
ND			222	44	13687	384	ND		ND			53	15	42	6 ND	31	3	324	11
ND		ND			16920	607	ND		ND		ND			234	16 ND	39	5	326	14
ND			309	66	19156	680	ND		ND		ND			114	12 ND	42	5	379	16
ND		ND			14782	507	ND		ND		ND			418	21 ND	25	4	301	13
ND			230	64	19720	723	ND		ND			125	24	101	11 ND	49	5	335	15
ND			265	55	20627	639	ND		ND			95	19	32	6 ND	39	4	340	13
ND		ND			25156	841	ND			157	35 ND			112	11 ND	24	4	128	7
ND		ND			13769	519	ND			173	37	83	22	163	13 ND	26	4	42	4
ND			150	44	18869	527	ND		ND		ND			48	6 ND	25	3	165	7
ND			386	55	15437	442	ND			186	29 ND			29	6 ND	28	3	201	8
ND		ND			19909	789	ND		ND		ND			644	35 ND	99	8	105	8
ND			250	49	25218	679	ND		ND			55	16	102	9 ND	25	3	228	9
ND			234	58	17981	620	ND		ND		ND			67	9 ND	34	4	194	10
	27	7	366	13	17902	219 ND	ND		ND			46	5	45	4 ND	35	2	200	8
	31	6	353	11	16835	182 ND	ND		ND			31	4	44	3 ND	36.1	1.9	185	7
	20	6	372	11	17592	181 ND		27	8 ND			41	4	120	4 ND	43.5	2	180	6
ND		ND			13383	585 ND	ND		ND		ND			278	25 ND	42	8	153	10
	41	8	410	15	21250	266 ND	ND		ND			49	5	48	4 ND	27	2	223	10
	40	7	379	12	16606	181 ND	ND		ND			42	4	54	3 ND	25	1.7	240	8
	29	6	428	12	18006	185 ND	ND			16	5	44	4	45	3 ND	26.7	1.7	239	8
	41	6	300	10	22166	216 ND	ND		ND			47	4	76	4 ND	29.5	1.7	221	7
	58	6	311	9	14561	152 ND		36	8 ND			34	4	54	3 ND	35.3	1.8	229	7
	51	7	389	12	16112	180 ND	ND			16	5	36	4	41	3 ND	37	2	263	9
	48	6	327	11	16757	181 ND	ND			21	5	39	4	35	3 ND	36.7	1.9	275	9
	49	6	388	11	13437	156 ND	ND		ND			40	4	16	3 ND	24.7	1.7	273	9
	47	6	418	12	16528	178 ND	ND		ND			57	5	10	2 ND	27.7	1.8	259	8
	50	6	393	11	15909	171 ND	ND		ND			48	4	12	2 ND	30.4	1.8	258	8

	53	7	427	13	11653	154 ND	ND		ND			31	4	14	3 ND	2	26.5	1.9	199	8
	119	9	367	15	7371	149 ND	ND		ND			16	5 ND		ND		14	2	235	9
	50	6	368	11	11154	133 ND	ND		ND			32	4 ND		ND	2	22.8	1.7	228	8
	52	6	281	9	13413	152 ND	ND		ND			36	4	26	3 ND	2	25.6	1.7	185	7
	40	5	330	9	13416	138 ND	ND		ND			43	4	37	3 ND	2	28.1	1.6	188	6
	46	6	462	12	17069	191 ND	ND		ND			39	4	64	4 ND		34	2	197	7
	19	6	393	12	17850	192 ND	ND		ND			47	4	65	3 ND	3	86.6	2	257	8
	57	7	485	13	19701	217 ND	ND			18	5	54	5 ND		ND		45	2	408	12
	50	7	323	11	22362	238 ND	ND			24	5	18	4	90	4 ND	-	115	3	173	7
	70	7	493	13	20294	222 ND	ND		ND			57	5 ND		ND		38	2	385	12
	53	7	367	12	23534	242 ND	ND			21	5	25	4	97	4 ND	=	107	3	193	7
	31	5	96	7	9368	115 ND	ND		ND			12	3	728	11 ND		96	3	131	5
	31	6	88	8	16639	181 ND	ND		ND			9	3	660	11 ND		96	3	239	8
	31	6	95	7	5842	90 ND	ND		ND		ND			411	8 ND		87	3	136	5
	23	6	438	12	20056	199 ND	ND			14	4	47	4	59	3 ND	2	29.4	1.8	252	8
	29	6	357	11	22468	218 ND		25	8 ND			40	4	78	4 ND	2	31.5	1.8	223	0
	38	8	321	12	18760	232 ND	ND	23	ND			48 41	4 5	78 88	4 ND 5 ND		24.8	2	194	8 8
ND	30	0	273		21575	703			ND ND		ND	41	3	107	10 ND			4	202	
				59			ND										34	4		10 10
ND			258	63 11	20649	735	ND		ND		ND	FO	4	105	11 ND	2	25		206	10
ND	27	c	281	11	20814	214 ND	ND		ND			50 24	4	89 38	4 ND		80.8	1.8	227	8
	37	6	269	10	13208	148 ND	ND		ND			24	3	38	3 ND		15.7	1.4	121	7
	27	5	378	10	15821	158 ND	ND		ND	4.5	_	37	4	33	3 ND		28.2	1.6	196	6
NID	34	6	512	13	17934	184 ND	ND		ND	15	5	39	4	29	3 ND		26.2	1.7	230	8
ND	22		336	35	16945	234 ND	ND	25	ND			44	5	24	4 ND		32	2	220	9
	32	6	537	13	18705	192 ND	ND	25	8 ND			48	4	37	3 ND		29.6	1.8	276	9
	42	8	344	14	18359	194 ND	ND		ND			41	4	32	3 ND	3	35.7	1.9	273	10
	39	6	394	12	17700	191 ND	ND		ND			47	4	37	3 ND		37	2	283	9
ND	33	U	505	64	20105	600	ND ND		ND		ND	7,	7	36	7 ND		37	4	306	12
ND	36	7	389	12	18545	201 ND	ND		ND		ND	55	5	37	3 ND		46	2	309	10
	43	6	340	11	16076	181 ND	ND		ND			54	5	41	3 ND		41	2	273	9
	84	6	333	10	12446	149 ND	ND		ND			25	4	31	3 ND	2	29.5	1.8	222	8
	64	6	308	9	12176	140 ND	ND		ND			34	4	21	3 ND		27.6	1.7	204	7
ND	04	J	273	12	15470	196 ND	ND		ND			31	4	25	3 ND		29	2	262	10
ND		ND	273	12	16508	1147	ND		ND		ND	31	, ND	23	ND ND		28	8	296	26
ND	36	6	318	11	16139	181 ND	ND		ND		ND	48	4	23	3 ND	3	36.5	2	265	9
	65	5	284	8	11233	125 ND	ND		ND			28	3	26	3 ND		25.3	1.6	180	6
ND	0.5	ND	204	J	10791	1125 ND	ND ND		ND			289	83 ND	20	ND	ND 2	5.5	1.0	163	24
ND	81	6	279	9	12044	144 ND	ND		ND			33	4	20	3 ND		22	1.7	161	6
	48	6	273	10	16332	176 ND	ND ND		ND ND			36	4	29	3 ND		28.5	1.8	231	8
	70	J	231	10	10332	170 ND	ND		ND			30	7	23	3 110	2	0.5	1.0	231	o
	53	6	336	11	18892	198 ND	ND		ND			29	4	46	3 ND	1	19.4	1.6	189	7
ND			104	20	16583	178 ND	ND		ND			20	3	55	3 ND	2	24.2	1.7	172	6
	61	7	234	9	15170	170 ND	ND		ND			24	4	45	3 ND	2	20.7	1.6	164	6

	F4	7	171	0	1.6721	404 ND	ND		ND			17	2	01	4 ND		24.5	4.7	127	-
	51	7	171	9	16721	184 ND	ND	2.4	ND 0 ND			17	3	81	4 ND		24.5	1.7	127	5
	24	6	400	11	18554	190 ND	ND	24	8 ND			44	4	76	4 ND		33.6	1.8	222	8
ND	57	6	363	10	14678	159 ND	ND		ND			44	4	60	3 ND		32	1.8	154	8
ND	27	C	578	70	22892	476 ND	ND		ND			58	10	100	9 ND		40	4	204	8
	37	6	403	11	15554	162 ND	ND		ND			43	4	74	4 ND		29	1.7	255	8
	43	6	371	11	15644	170 ND	ND		ND			39	4	64	3 ND		29.7	1.8	230	8
ND	72	7	322	12	17567	218 ND	ND		ND			34	5	64	4 ND		26	2	213	9
ND	2.4	_	50	14	12530	153 ND	ND		ND			13	3	164	5 ND		43	2	405	12
	34	6	122	8	19603	210 ND	ND		ND			21	4	301	7 ND		24.5	2	657	18
	24	6	90	8	17013	186 ND	ND	2.5	ND			13	3	296	7 ND		22.9	1.9	853	22
	44	6	120	8	11582	141 ND		26	8 ND			14	3	295	7 ND		26.4	1.9	696	18
ND			281	57	18930	610	ND		ND		ND			315	18 ND		41	4	233	10
ND			328	50	16483	449	ND ND		ND		ND			197	11 ND		39	3	234	9
ND			264	38	18364	292 ND	ND ND		ND		ND	40	6	195	8 ND		42	3	243	9
ND		ND	204	30	18769	830	ND ND		ND		ND	40	U	345	25 ND		43	6	195	12
ND		ND	485	72	19979	681	ND ND		ND		ND	89	21	84	10 ND		43	5	244	11
ND			298	72 57	26211	537 ND	ND ND		ND ND			38	8	69	7 ND		33	4	254	10
ND			233	51	27682	767	ND ND		ND ND			70	17	112	9 ND		33 32	3	208	8
ND			233 176	44	24876	646	ND ND		ND	101	26 ND	70	17	86	8 ND		34	3	196	8
ND		ND	170	44	18456	542	ND ND			133	20 ND 29 ND			83	8 ND		20	3	125	6
ND		ND			28820	990	ND ND		ND	133	ND			141	13 ND		25	4	136	8
ND		ND	315	27	28712	373 ND	ND ND		ND ND		ND	39	6	339	10 ND		50	3	199	7
ND	40	6	238	37 9	14671	160 ND	ND ND		ND	14	4	29	6 4	293	7 ND		51	2	135	5
	50	6	253	9	14519	157 ND	ND ND		ND	14	4	36	4	302	7 ND 7 ND		47	2	142	5
	32	6	233	9	17287	186 ND	ND ND		ND ND			41	4	348	7 ND 7 ND		55	2	162	6
				_	21247		ND ND						5	546 509	11 ND					
	34 27	8	289	13	15921	269 ND 171 ND	ND	25	ND 8 ND			45 40	4	212			49 44	3 2	158	8
		6 7	236	10			ND	25	8 ND			40 25			6 ND		44 25		232	8
	24 48	7	235	11	13215	169 ND	ND		ND			25	4 4	127	5 ND		35	2	248	9
ND	40	,	556	15 9	11488	150 ND	ND		ND			22	3	172 109	6 ND		41 23.9	2	94	5 5
ND			142	9 10	31830 43584	313 ND 408 ND	ND ND		ND			19 20	3 4	109	5 ND 4 ND			1.8 1.6	121 102	5 5
ND			112	_					ND				3		4 ND 4 ND		19			5
ND ND			132	9	32018 32541	309 ND	ND		ND			12		102			19.8	1.6	70	4
			88	9		328 ND	ND	27	ND O ND			21	4	86	4 ND		20.3	1.7	81	4
ND	28	6	31 172	9 9	39835 17425	383 ND 183 ND	ND	27	9 ND ND			15 25	4 4	97 163	4 ND 5 ND		26.7 33.4	1.8 1.8	102 142	5 5
	26 47	7		_									4							5 7
		· ·	260	11	15031	191 ND	ND ND		ND			29 40	4	179	6 ND		39 42	2	166	-
	22	6	228	10	16730	183 ND	ND		ND			40	4	232	6 ND		43	2	222	8
ND	25	6	312	10	17430	186 ND	ND		ND			40	4	235	6 ND		43	2	218	8
ND	42	C	262	10	18709	198 ND	ND		ND			45 20	4	228	6 ND		50	2	221	8
	43	6	235	9	14030	151 ND	ND		ND			38	4	218	6 ND		45.6	2	208	7
ND	56	6	290	9	13391	145 ND	ND		ND		ND	30	4	234	6 ND		42.9	1.9	208	7
ND	20	ND	252	N 10		174 ND	ND		ND		ND	F2	ND	204	ND	ND	4F 4	ND 2	226	0
	36 33	6	252	10	16689	174 ND	ND		ND			52 57	4	284	6 ND		45.4	2	236	8
	32	6	325	10	17153	180 ND	ND		ND			57 51	5	307	7 ND		51	2	213	7
	41	7	316	11	15842	185 ND	ND		ND			51	5	313	7 ND		47	2	197	9
	57 24	10	253	14	15932	241 ND	ND	25	ND 0 ND			41 25	6	504	12 ND		58 70	3	147	8
NE	34	6	257	10	17134	177 ND	NE	25	8 ND			35	4	675	10 ND		78	2	158	6
ND		ND			15030	1109	ND		ND		ND			464	49 ND		34	9	118	14

ND		ND)	ı	ND	ND	ND		ND		ND		ND		ND	ND		ND		
ND		ND)	ı	ND		ND		ND		ND		ND		ND	ND		ND		
	94	10	304	15	18566	304 ND	ND		ND			42	6	544	15 ND		67	4	133	8
ND			290	61	21231	701	ND		ND		ND		-	237	16 ND		55	5	270	12
ND			281	44	22232	530	ND		ND			44	14	172	10 ND		47	3	273	9
ND			424	72	23613	815	ND		ND		ND			194	15 ND		44	5	251	12
ND			294	51	13659	401		79	26 ND			61	17	79	9 ND		29	3	315	11
	44	6	242	9	15478	155 ND		22	7 ND			36	4	114	4 ND		34.1	1.7	240	7
	42	6	252	9	15382	163 ND		25	8 ND			35	4	121	4 ND		33.9	1.8	214	7
	18	6	277	10	16849	173 ND		25	8 ND			42	4	132	4 ND		41.2	1.9	271	8
	58	8	235	12	11148	186 ND	ND		ND			48	6	104	6 ND		27	2	153	8
ND	30	ND			15111	876	ND		.,,	284	70 ND	.0	· ·	157	22 ND		43	7	153	13
112	31	7	249	11	17389	198 ND	ND			16	5	40	4	162	5 ND		42	2	203	8
ND	31	, ND			16341	662	ND		ND	10	ND	10	•	140	14 ND		46	5	182	11
NB	35	8	317	13	15728	220 ND	ND		ND		110	42	5	149	6 ND		39	3	182	9
	25	7	230	11	10077	126 ND	ND		110	15	5	37	4	170	5 ND		43	2	202	7
	55	7	256	10	12499	158 ND	ND		ND	13	3	36	4	152	5 ND		47	2	156	, 7
	25	6	299	10	15202	166 ND	ND		ND			41	4	197	6 ND		45	2	194	, 7
	18	6	298	10	13987	154 ND	ND	26	8 ND			41	4	199	5 ND		54	2	187	6
	48	7	336	11	15564	176 ND	ND	20	ND ND			34	4	126	5 ND		36	2	245	8
	35	7	296	11	19927	224 ND	ND		ND			46	5	143	5 ND		41	2	276	9
ND	33	,	258	65	17358	646	ND		ND		ND	40	3	148	13 ND		35	4	189	10
ND	39	9	317	15	16686	238 ND	ND		ND		ND	41	5	157	7 ND		42	3	196	9
ND	39	9	290	12	20088	236 ND	ND ND		ND			51	5	147	6 ND		39	2	294	13
ND	59	10	334	15	16933	258 ND	ND ND		ND			37	6	177	7 ND		44	3	169	9
10	39	6788	85905	3248	1431853	59071 ND	ND	7623		0310	507 ND	37	ND	1//	ND ND	ND	44	ND.	109	9
ND	00436	0766	256	10	17929	187 ND	ND	7023	ND ND	7310	307 ND	48	4	181	5 ND	ND	31.2	1.8	383	11
ND	39	6	279	10	17133	189 ND	ND ND		ND			35	4	130	5 ND		34.2	2	353	11
	35	6	235	9	15224	166 ND	ND	24	8 ND			37	4	179	5 ND		48	2	218	7
	55	7	233 444	13	16707	197 ND	ND	24	ND ND			63	5	87	4 ND		33	2	183	7
	27	6	354	11	11493	138 ND	ND	30	8 ND			45	4	74	4 ND		33 37	1.9	219	7
	49	8	388	14	16066	213 ND	ND	30	ND ND			50	5	104	5 ND		33	2	168	8
ND	43	O	321	14	16226	208 ND	ND		ND			51	5	92	5 ND		40	2	194	8
ND	46	6	302	10	16242	183 ND	ND		ND	16	5	38	4	139	5 ND		48	2	253	9
	38	6	282	10	15115	166 ND	ND ND		ND	10	3	38	4	165	5 ND		43	2	239	8
		7			17613	100 ND 197 ND							4	203				2	239	
	69 30	7	281	10			ND		ND			36 20	4		6 ND		43 45			8
	39	•	269	12	13781	199 ND	ND		ND			38	5	166	7 ND		45	3	154	8
NIC	39	7	274	11	15236	173 ND	ND		ND		ND	35	4	182	5 ND	NID	50	2	193	7
ND		ND		12	13159	1542	ND		ND		ND	4.6	-	206	48 ND	ND	50	2	165	28
ND			313	13	17632	206 ND	ND		ND			46	5	221	6 ND		58	2	199	8
ND			285	12	13846	174 ND	ND		ND			37	4	164	6 ND		50	2	183	7
	40	7	298	11	19631	210 ND	ND		ND			50	5	266	7 ND		50	2	198	7

ND			323	12	22250	237 ND	ND		ND			43	4	425	9 ND		53	2	244	9
	33	6	333	10	15717	175 ND	ND		ND			34	4	56	3 ND		44	2	246	8
	40	7	301	11	16280	194 ND	ND		ND			40	4	40	3 ND		36	2	263	9
						173 ND			ND			37	4	44	3 ND	3	32.1	1.9	222	8
ND	43	6	332	10	15703		ND				ND	37	4			`				
ND		ND			15092	1281	ND		ND		ND	2.4		110	25 ND	,	46	11	204	24
	37	6	346	10	13671	149 ND	ND		ND			34	4	59	3 ND	:	38.1	1.8	222	8
	30	6	331	10	16872	176 ND	ND		ND			39	4	63	3 ND		48	2	270	8
	36	6	340	10	15762	156 ND	ND		ND			38	4	67	3 ND	3	39.3	1.8	279	8
ND			186	60	14046	547	ND		ND		ND			462	26 ND		83	7	144	9
	72	10	359	17	18183	285 ND	ND		ND			42	6	28	4 ND		33	3	367	14
ND			335	12	21521	241 ND	ND		ND			44	5	31	3 ND		39	2	419	13
ND		ND			ID		ND		ND		ND		NI		ND	ND		ND		
115		,,,,																		
	33	7	311	11	19660	226 ND	ND		ND			42	5	28	3 ND		41	2	348	12
	51	, 7	272	11	22482	233 ND	ND		ND			37	4	23	3 ND	3	33.6	2	435	13
	48	9	353	15	17085	239 ND	ND		ND			43	5	174	7 ND	`	48	3	246	11
					14932	160 ND	ND ND		ND			39	4	204	5 ND	,	16.2	2	183	7
	45	6	301	10									5	699	13 ND	•		3	147	7
	40	8	274	12	18111	235 ND	ND		ND			45	5	099	12 MD		70	3	147	,
	22	7	256	11	17580	225 ND	ND		ND			45	5	582	12 ND		62	3	138	7
	58	13	303	20	20091	223 ND	ND		ND			44	5	1012	15 ND		71	3	174	7
ND			240	11	18348	207 ND	ND		ND			55	5	568	10 ND		73	3	177	7
ND		ND			20703	1797	ND		ND		ND			743	83 ND		78	16	190	24
	20	6	393	12	20305	207 ND		46	9 ND			50	4	136	5 ND		56	2	317	10
ND			381	12	21059	223 ND	ND		ND			50	5	153	5 ND		53	2	374	12
ND			493	14	18840	203 ND	ND		ND			57	5	138	5 ND		56	2	361	11
ND			344	12	18297	203 ND	ND			19	5	44	4	20	3 ND		38	2	497	14
ND			328	11	18047	194 ND		56	9 ND			49	4	18	3 ND	3	33.6	1.9	485	14
	23	7	342	12	18679	201 ND	ND		ND			37	4	15	3 ND		36	2	503	14
	23	•	3 .2		10075	2022							-							
ND		ND			40439	1619	ND		ND		ND			753	41 ND		72	7	68	6
ND			777	79	13932	460	ND			193	33 ND			333	18 ND		38	4	80	5
ND			205	37	9844	253	ND		ND			40	13	26	5 ND		36	3	125	5
ND			278	58	8218	311	ND		ND		ND			25	7 ND		48	5	96	6
ND			257	61	12383	464	ND		ND		ND			35	7 ND		54	5	131	8
ND			187	39	14515	369	ND			89	23 ND			168	10 ND		104	5	55	3
ND	20	_	325	10	10413	129 ND	ND		ND	05	25 110	18	3	49	3 ND		12.8	2	119	5
	29	5															36.7	1.9	118	5
	37	6	311	11	10555	133 ND	ND		ND			17 24	3	29 20	3 ND	:				
	48	7	237	10	9753	133 ND	ND		ND			24	4	29	3 ND		35	2	115	6
ND			303	58	11439	307 ND	ND		ND		ND			35	7 ND		43	4	129	6
ND			167	45	10190	323	ND		ND		ND			64	7 ND		24	3	72	4
ND			328	58	12176	411	ND		ND		ND			48	8 ND		42	4	125	7
ND			665	80	8608	331	ND			107	33 ND			27	8 ND		28	4	80	6
ND			387	62	8946	323		91	30	163	32 ND			54	7 ND		38	4	83	5

ND		ND			5399	209	ND			152	30 ND			53	7 ND	69	5	33	3
ND		ND			6908	217 ND	ND		ND		ND			56	8 ND	105	6	26	2
ND		ND			13784	523	ND			120	36 ND			139	13 ND	94	7	54	5
ND		ND			8455	249	ND		ND		ND			124	9 ND	71	4	57	4
ND			355	35	11209	173 ND	ND		ND			25	5	99	5 ND	44	3	94	5
	55	7	374	13	11319	170 ND	ND		ND			17	4	64	4 ND	45	3	118	7
	50	6	656	15	13127	155 ND	ND		ND			16	3	69	4 ND	49	2	114	5
	57	7	271	11	10621	144 ND	ND		ND			16	4	55	4 ND	45	2	99	5
ND			525	80	13490	529	ND		ND		ND			185	16 ND	43	5	112	7
ND			867	157	147252	4091 ND	ND		ND		ND			796	41 ND	90	9	66	5
ND			254	67	9917	436		143	40	151	40	141	27	82	11 ND	33	5	190	11
ND			235	50	10994	357	ND			163	30	65	18	416	19 ND	57	4	91	5
ND			295	51	10527	260 ND	ND		ND			27	7	68	7 ND	36	4	190	6
.,,,	28	6	493	13	14110	159 ND	ND		ND			38	4	67	4 ND	38.5	1.9	252	8
ND	20	ND	133	13	14224	1532	ND		ND		ND	30	ND		ND	ND	1.5	268	37
ND		ND	557	16	15111	156 ND	ND	25	7 ND		ND	41	4	83	4 ND	43.9	1.9	269	8
ND	20	6	490		12858	146 ND	ND	23	ND				4		3 ND	32.2	1.8	261	8
	38	6		12								39 39	-	46 76					
	22	6	483	12	14801	159 ND	ND		ND			38	4 4	76	4 ND	39.5	1.9	264	8
ND	33	6	415	12	12942	152 ND	ND		ND		ND	39	4	44	3 ND	38	2	282	9
ND			286	56	11009	379	ND		ND		ND			35	6 ND	28	4	216	10
ND			418	83	15621	664	ND		ND		ND			151	16 ND	52	6	233	13
ND		ND			20145	1461	ND		ND			170	55	487	52 ND	35	9	117	15
ND			415	62	13310	439	ND		ND		ND			64	8 ND	33	4	221	10
ND			315	90	68341	2685	ND		ND		ND			866	46 ND	69	7	219	13
ND		ND			13110	461	ND			100	32 ND			165	13 ND	71	6	110	7
ND			405	56	12579	377	ND		ND			61	16	111	9 ND	49	4	264	10
ND			296	74	15908	665	ND		ND		ND			117	13 ND	61	6	221	13
ND			294	52	13992	426		97	28	94	28	65	17	90	9 ND	54	4	197	8
ND		ND			17661	679	ND			126	38 ND			151	15 ND	112	8	105	7
ND		ND			22011	711	ND		ND		ND			217	14 ND	79	6	57	4
ND		ND			18478	544	ND		ND		ND			246	14 ND	83	5	78	5
ND			161	50	14397	477	ND		ND		ND			171	13 ND	85	6	77	5
ND			163	48	17093	530	ND		ND			66	18	302	16 ND	89	6	97	6
ND			131	34	17735	301 ND	ND		ND		ND			116	7 ND	47	3	95	6
	41	6	213	9	18047	188 ND	ND			14	5	20	3	180	5 ND	93	3	104	5
	77	8	232	11	13258	198 ND	ND			22	6 ND			123	6 ND	57	3	114	7
	60	5	181	7	11800	129 ND	ND		ND			16	3	162	5 ND	72	2	72	3
ND			250	61	12759	474	ND			126	35	65	21	42	8 ND	42	5	184	10
ND			205	62	16514	635	ND		ND		ND			112	12 ND	65	6	143	9
ND		ND			25271	891	ND		ND		ND			194	15 ND	72	6	147	8
ND			191	55	13152	479	ND			122	34	62	20	85	10 ND	54	5	116	7
	39	7	160	9	18964	204 ND	ND		ND			14	3	102	4 ND	68	2	159	6
ND			164	9	18125	201 ND	ND		ND			21	4	101	4 ND	67	3	179	7
	41	6	198	9	15683	177 ND	ND		ND			17	3	83	4 ND	61	2	163	6
	23	6	176	9	20754	207 ND		29	8 ND			22	3	110	4 ND	72	2	190	7
	31	6	264	10	17924	197 ND	ND		ND			24	4	98	4 ND	62	2	152	6
				-										-		, <u>, </u>			-

																		_		_
ND			226	51	14719	468	ND		ND		ND			53	7 ND		56	5	159	8
ND			257	59	15274	534	ND		ND		ND			42	9 ND		58	5	285	13
ND			188	46	12971	388	ND		ND		ND			83	8 ND		62	4	168	7
ND		_	199	44	11254	325	ND		ND		ND	4.5		50	7 ND		65	4	176	7
	44	6	224	9	9905	132 ND	ND		ND			16	3	50	4 ND		45	2	143	6
	63	7	259	11	10177	147 ND	ND		ND			18	4	47	4 ND		44	2	150	6
	54	6	229	9	9763	124 ND	ND		ND			17	3	49	3 ND		47	2	138	6
ND			233	46	8763	276	ND			132	27	89	17	47	7 ND		47	4	92	5
ND			220	60	8726	356	ND			214	38	80	22	55	10 ND		52	5	65	5
	55	8	387	13	25123	267 ND	ND			22	5	21	4	113	5 ND		116	3	185	7
	56	7	306	11	20810	218 ND	ND			25	5	18	3	103	4 ND		102	3	180	7
	77	7	486	13	20853	226 ND	ND			15	5	69	5	9	3 ND		47	2	398	12
	39	7	328	11	21745	231 ND	ND			27	5	20	4	89	4 ND		136	3	164	7
	77	8	450	14	16443	209 ND	ND		ND			58	5 ND		ND		40	2	349	12
ND			306	75	12890	432 ND	ND		ND			35	11 ND		ND		41	6	251	9
	60	6	365	11	15848	178 ND	ND		ND			47	4	8	3 ND		42	2	285	10
	38	7	484	13	19915	216 ND		29	9	19	5	53	5	15	3 ND		48	2	342	11
	21	6	508	13	18754	201 ND		39	9 ND			63	5	14	3 ND		46	2	355	11
	39	7	474	13	20514	210 ND		31	8 ND			52	4	12	3 ND		48	2	366	11
	56	6	375	10	17029	184 ND	ND		ND			60	5	9	3 ND		43	2	290	10
	42	6	360	11	20985	219 ND	ND		ND			59	5	13	3 ND		44	2	339	11
	34	7	428	12	19919	208 ND		25	8 ND			59	5	11	3 ND		44	2	339	10
	40	7	319	11	20225	223 ND	ND			18	5	46	5	71	4 ND		66	3	426	14
	35	7	419	12	20403	215 ND	ND		ND			41	4	99	4 ND		66	2	421	12
	2.4	7	447	12	24026	254 ND	ND			10	-	F.2	F	224	CND		00	2	241	0
	24	7	417	13	24036	254 ND	ND		ND	19	5	52	5	224	6 ND		89	3	241	9
	45 38	8 7	335	13	18684	225 ND	ND ND		ND	1.0	_	34	4	186	6 ND		71	3	223	9
ND	38	•	421	13	18930	211 ND	ND ND		ND	16	5	61	5	15	3 ND		48	2	386	12
ND	27	ND	402	12	19543 16701	1679 181 ND	ND	38	ND 8	16	ND 5	F0	ND 5	17	ND 3 ND		70 54	14	372 362	39 11
	37	6 7	403	12	19842	219 ND	ND	30		16	5	59 50	5 5	17 17	3 ND		54 40	2	362 363	11
	31 46	7	395 361	12 12	19842 17442	199 ND	ND ND		ND ND			50 41) /	17 25	3 ND		49 52	2 2	288	12 10
	40	7	372	12	17905	193 ND 192 ND	ND ND		ND	18	5	50	4	23 28	3 ND		49	2	385	12
	43	7	356	11	19592	206 ND	ND ND		ND	10	J	53	5	29	3 ND		59	2	360	11
	45 35	7	417	13	20313	220 ND	ND ND		ND			52	5	45	3 ND		49	2	364	11
ND	33	, ND	417	13	1850	191	ND ND		ND	290	69	196	44 ND	43	ND	N	D 49	2	90	10
ND		ND	328	48	18506	483	ND ND		ND	290	ND	190	44 ND	85	8 ND	IN	64	4	448	13
ND		ND	320	40	17957	542			ND ND		ND	55	17	97	9 ND			5	4 4 8 479	
ND ND		טאו	167	40	13102	434	ND ND		ND ND		ND	33	1/		9 ND 8 ND		55 48	5 4	339	16 13
			167 102	49 47	13102		ND ND		ND ND					65 43	8 ND 7 ND		48 72			13 12
ND ND			193 191	47 50	12897 12464	407 503	ND ND		ND	122	ND 20	٥n	2.4	43 79	7 ND 10 ND		72 62	5 6	308 272	12 14
ND ND		ND	131	59	12464 15481	502 516	ND ND			123 132	38 32 ND	89	24	78 87	10 ND 9 ND		62 67	5	200	14 9
ND ND		טאו	281	62	12458	475	ND ND			112	32 ND 35	82	22	30	9 ND 7 ND		41	5 5	200 285	13
ND			261 144	63 31	15191	475 245 ND	ND ND		ND	112	33	82 29	5	30 77	7 ND 5 ND			3	265 358	11
טאו			144	21	13131	243 ND	טוו		טאו			23	Э	11	סוזו כ		61	5	336	11

ND		152	50	13397	461	ND		ND		ND			44	8 ND		56	5	309	13
ND		229	48	13058	394	ND			124	28	55	17	75	8 ND		58	4	326	12
ND		204	44	18801	497	ND			85	24	55	15	96	8 ND		63	4	336	11
ND		156	38	13917	351	ND			93	23	46	14	69	6 ND		47	3	445	13
ND		ND		5081	201	ND			113	29	57	18	22	6 ND		27	3	221	10
ND		ND		12382	436	ND		ND	110	ND	3,	10	47	8 ND		39	4	386	15
ND		ND		16151	680	ND		ND		ND			68	11 ND		52	6	395	19
ND		215	61	10131	451	ND ND		ND ND		ND ND			23	7 ND		30	4	239	
										ND	72	20							12
ND		243	57	20078	652	ND		ND	427	24 ND	73	20	79 66	9 ND		52	5	566	20
ND		ND	40	9907	370	ND			137	34 ND		4.6	66	8 ND		36	4	278	12
ND		273	49	18458	514	ND			82	26	52	16	71	7 ND		62	4	451	14
ND		278	76	22915	948	ND		ND		ND			117	14 ND		59	7	407	20
ND		258	82	18347	859	ND		ND		ND			188	19 ND		61	8	321	19
ND		290	87	13170	668	ND		ND		ND			93	15 ND		41	6	309	19
40) 7	249	11	11603	129 ND	ND		ND			34	4	43	3 ND		34.2	1.8	377	11
41	. 6	279	10	14577	162 ND	ND		ND			40	4	70	4 ND		52	2	603	16
27	, 7	298	11	20439	219 ND	ND		ND			48	5	94	4 ND		49	2	507	14
ND		298	61	26886	868	ND		ND		ND			308	18 ND		51	5	331	14
ND		380	72	15930	600	ND		ND		ND			68	9 ND		57	6	407	18
ND		ND		12162	516	ND		ND		ND		ND		ND		31	5	258	14
37	' 6		10	12593	142 ND	ND		ND			42	4	55	3 ND		50	2	340	10
28			11	17067	182 ND		30	8 ND			65	5	75	4 ND		78	3	373	11
39			10	18587	192 ND	ND	30	ND			59	5	105	4 ND		66	2	350	11
22			10	20666	214 ND	ND		ND			39	4	160	5 ND		59	2	289	9
										ND	33	4		7 ND			5	336	
ND	, .	306	64	15310	554	ND		ND		ND	4.4	-	23			46	_		15
37			13	16483	231 ND	ND		ND			44	5	28	4 ND		45	3	337	14
45			13	16291	219 ND	ND		ND			44	5	29	4 ND		48	3	331	15
46		0 - <i>i</i>	11	18927	217 ND	ND		ND			45	5	34	3 ND		50	2	330	14
280915	51068	103364	19120	430234	77353		2234	659	3227	793 ND		ND		ND	ND		ND		
ND		260	53	16846	515	ND		ND		ND			52	7 ND		63	5	323	12
28	3 6	5 201	9	16837	190 ND	ND		ND			24	4	85	4 ND		60	2	313	10
44	5	199	8	13532	148 ND	ND		ND			24	3	72	4 ND		57	2	362	11
49) (236	11	16018	199 ND	ND		ND			22	4	56	4 ND		70	3	430	14
40) 5	266	9	10544	121 ND	ND		ND			36	4	33	3 ND		50	2	322	9
27	' 6	341	11	15385	167 ND		30	8	17	5	47	4	32	3 ND		51	2	350	10
24	. 7	247	11	11737	158 ND	ND		ND			28	4	25	3 ND		44	2	336	12
55	10	311	17	18071	208 ND	ND		ND			45	5	48	3 ND		57	3	402	15
31	. 6	328	11	16264	173 ND		27	8 ND			39	4	40	3 ND		59	2	359	11
ND		ND		1047	190	ND		ND		ND		ND		ND	ND		ND		
ND		231	37	12413	225 ND	ND		ND		ND			31	4 ND		46	3	269	9
45	. 6		10	13478	158 ND	ND		ND			36	4	52	3 ND		55	2	384	12
32			10	17126	181 ND	ND		ND			41	4	53	3 ND		60	2	363	11
ND		, 278 ND	10	1621	121	ND ND		ND ND		ND	71	ND		ND ND	ND	50	2	69	6
	5 7		11	15685	193 ND			ND ND		ND	26	4		4 ND	IND	E <i>6</i>	2	422	
45 37						ND					36 40	•	54			56	3 3		14
37	' 6	5 284	11	18742	220 ND	ND		ND			40	5	65	4 ND		62	3	365	14
ND		193	58	16079	590	ND		ND		ND			30	7 ND		54	5	302	14

ND		ND			11319	448	ND		ND		ND			31	8 ND	46	5	290	14
ND		ND			18727	1306 ND	ND		ND		ND			128	30 ND	72	17	146	6
ND		ND			12063	537 ND	ND		ND		ND			96	15 ND	58	9	120	6
ND			225	58	12403	463	ND		ND		ND			76	10 ND	57	5	91	6
ND			320	52	15570	330 ND	ND		ND		ND			90	8 ND	45	4	136	6
ND			347	50	16784	449	ND		ND		ND			105	8 ND	50	4	146	6
ND			545	72	20136	652	ND		ND		ND			115	11 ND	56	5	154	8
ND			332	60	12560	333 ND	ND		ND		ND			64	8 ND	31	4	144	7
ND			575	116	16177	622 ND	ND		ND		ND			88	13 ND	41	7	148	6
	31	6	439	12	12369	146 ND	ND		ND			16	3	64	4 ND	45	2	158	6
	41	5	270	9	10592	124 ND	ND			14	4	19	3	55	3 ND	37	1.8	123	5
	23	5	384	11	12091	143 ND	ND		ND			25	4	58	3 ND	43	2	138	5
	30	6	336	10	12858	144 ND		27	8 ND			34	4	52	3 ND	47.1	2	124	5
	44	5	343	10	9448	115 ND	ND		ND			27	3	40	3 ND	40.9	1.9	137	5
	55	6	262	9	11953	142 ND	ND		ND			24	4	42	3 ND	45	2	142	6
ND			231	52	6884	252	ND			100	30 ND			110	10 ND	99	6	34	3
ND		ND			36674	2263	ND		ND		ND			263	32 ND	111	14	113	13
ND		ND			23581	776	ND		ND		ND			480	24 ND	101	7	90	6
ND		ND			19283	588	ND		ND		ND			506	22 ND	99	6	70	5
ND		ND			27251	1024	ND			125	40	78	24	816	40 ND	70	6	58	5
ND		ND			23463	766		97	31	108	32 ND			549	26 ND	97	7	58	5
ND		ND			18229	999	ND		ND		ND			1053	67 ND	78	9	39	6
ND			148	49	28741	841	ND		ND		ND			700	28 ND	89	6	60	4
ND			118	29	26443	345 ND	ND		ND			17	4	671	14 ND	93	4	55	3
ND		ND			26262	772	ND		ND		ND			829	31 ND	97	6	56	4
ND		ND			25112	891	ND		ND			75	22	622	31 ND	74	6	54	5
ND		ND			23800	808	ND			124	35 ND			606	29 ND	77	6	38	4
ND		ND			23839	728	ND		ND		ND			732	30 ND	84	6	53	4
ND		ND			24206	603	ND			75	24 ND	405		666	22 ND	89	5	63	4
ND		ND			98623	4511	ND		ND			105	34	1911	102 ND	104	10	94	9
ND		ND			19193	789 ND	ND		ND	220	ND	124	44	374	29 ND	60	9	36	3
ND		ND			17061	1023	ND			228	67 33	134	41	340	33 ND	63	9	46	7
ND		ND			30993	923	ND ND			166	33	77 62	19	705 504	29 ND	85 87	6	84	5
ND ND		ND ND			29340 18709	919 796	ND ND		ND	138	33 ND	62	20	594 390	27 ND 26 ND	87 89	6 8	65 55	5 6
ND		ND ND			15278	812	ND ND		ND ND		ND ND			347	20 ND 29 ND	53	7	40	6
ND		ND			19518	889	ND ND		ND		ND			277	23 ND	81	8	43	5
ND		ND			29828	1052	ND		ND	109	36 ND			959	43 ND	86	7	58	5
ND		ND			20125	1065	ND		ND	103	ND			397	33 ND	85	10	78	8
ND		ND			14549	870	ND		ND		ND			411	37 ND	66	9	110	11
ND		ND			16464	739	ND		ND		ND			383	27 ND	78	8	54	6
ND		ND			30539	1515 ND	ND		.,_	236	57	137	35	528	39 ND	73	9	46	6
ND		ND			31451	1802	ND		ND		ND			1199	82 ND	55	9	66	9
ND		ND			27045	1242	ND		ND		ND			596	39 ND	91	9	78	8
ND		ND			15459	767	ND		ND		ND			435	32 ND	76	8	54	6
ND		ND			27493	1079	ND			274	46	121	27	553	32 ND	67	7	79	7
ND		ND			19942	979	ND			187	52 ND			492	35 ND	49	7	59	7
ND		ND			10250	562	ND		ND		ND			214	21 ND	82	9	22	4

ND	ND			7906	450	ND	N	1D		ND			151	18 ND	29	5	34	5
ND	ND			15192	696	ND			215	47	143	30	299	23 ND	52	6	68	7
ND	ND			13804	647	ND			229	48	169	32	374	27 ND	63	7	53	6
ND	ND			17916	950	ND			184	55 ND			315	28 ND	82	9	60	7
ND	ND			13891	620	ND	N	1D		ND			203	18 ND	60	7	49	5
ND	ND			26472	1587	ND	N	I D		ND			665	55 ND	81	11	63	9
ND	ND			16402	777	ND			225	50	104	30	525	35 ND	76	8	40	5
ND	ND			20463	885	ND			183	46	98	28	504	32 ND	97	8	54	6
ND	ND			25637	994	ND			161	41	107	26	728	37 ND	81	7	64	6
ND	ND			35754	1620	ND			193	51	162	34	554	37 ND	75	8	41	5
ND	ND			15693	735	ND			272	51	120	30	520	34 ND	68	7	46	6
ND	ND			11860	538	ND			171	43	119	28	465	29 ND	63	7	31	4
ND	ND			13608	723	ND			165	51 ND			406	32 ND	70	8	37	6
ND	ND			23809	1451	ND			535	87	184	46	414	40 ND	40	8	29	6
ND	ND			14856	763	ND			191	51 ND			373	30 ND	60	7	45	6
ND	ND			11348	472		115 37		240	42	166	28	344	22 ND	57	6	57	5
ND	ND			23026	1076		177 51		281	54	147	33	491	34 ND	40	6	42	5
ND	ND			14648	717	ND	_		144	47 ND			454	33 ND	74	8	62	7
ND	ND			21359	1087	ND			249	58	168	37	530	39 ND	42	7	52	7
ND	ND			41448	1683	ND			193	47 ND		•	1167	58 ND	72	7	72	7
ND	ND			21469	922	ND			169	44 ND			754	42 ND	81	8	64	6
ND	ND			19019	1139	ND			258	68	147	41	693	54 ND	63	9	51	8
ND	ND			36372	1417	ND	L57 44		325	51	177	31	3249	132 ND	31	5	43	5
ND	ND ND			27538	1053	ND		ID	323	ND	1//	31	957	46 ND	70	7	80	6
ND	ND ND			30371	1461	ND		ID		ND ND			827	52 ND	70 77	9	78	8
ND	ND ND			28772	1140	ND ND	11	ID.	159	43 ND			976	48 ND	77 79	7	78 82	7
																•		
ND	ND			36403	1541	ND	170 40		139	46 ND	1 - 1	27	1068	56 ND	89	8	88	8
ND	ND	755	117	28485	1040		170 40		274	44	154	27	1045	47 ND	48	5 7	56	5
ND	ND	755	117	12711	639	ND	162 49		258	53	134	32	623	40 ND	56	,	45	6
ND	ND			152701	7411	ND			311	70 45	216	43	1829	104 ND	32	6	29	5
ND	ND			24837	1048	ND			180	45 ND	85	27	850	46 ND	62	7	73	7
ND	ND	244	00	28602	1807	ND		ID		ND			749	63 ND	105	13	89	11
ND		311	90	49844	2126	ND		ID.		ND			1471	74 ND	71	7	78	/
ND	ND			38067	1603	ND		ID.		ND			1213	62 ND	90	8	72	7
ND	ND			26167	1048	ND	N	ID		ND			933	47 ND	73	7	88	7
ND	ND			41523	2258	ND			207	63 ND			1045	71 ND	60	9	47	7
ND	ND			26540	1541	ND		ID		ND			629	51 ND	43	8	48	7
ND		395	129	58389	3193	ND	N	ID		ND			1288	86 ND	100	12	59	8
ND	ND			21406	905	ND			158	43 ND			549	33 ND	76	7	66	6
ND	ND			29654	877	ND		ID		ND			970	36 ND	74	5	80	5
ND	ND			28727	1179	ND		ID		ND			874	46 ND	91	8	79	7
ND	ND			31746	1248	ND	N	I D		ND			1174	56 ND	85	8	79	7
ND	ND			23713	937	ND			165	42 ND			669	36 ND	103	8	67	6
ND	ND			28542	817	ND			129	30	75	18	1012	36 ND	77	5	71	5
ND	ND			20480	1155	ND			329	68	132	38	645	49 ND	78	10	46	7
ND	ND			79768	3835	ND			292	65 ND			2973	156 ND	57	8	51	7
ND	ND			30576	1282	ND	N	ID		ND			1024	53 ND	88	8	91	8
ND	ND			81971	5029	ND	N	ID		ND			1605	117 ND	116	15	101	12
ND	ND			26529	1002	ND			133	39 ND			768	38 ND	77	7	76	6

ND		ND			27369	1601	ND		ND		ND			938	69 ND	88	11	85	10
ND			363	118	35870	2035	ND		ND		ND			1079	75 ND	82	11	108	12
ND		ND			41325	1824	ND		ND		ND			1183	64 ND	100	9	126	10
ND		ND			59529	3529	ND			223	73	174	47	1312	95 ND	53	9	85	11
ND		ND			34416	1894	ND		ND		ND			892	63 ND	70	10	103	11
ND		ND			33658	2184	ND		ND		ND			789	68 ND	69	11	77	11
ND		ND			39854	1560	ND		ND		ND			1138	55 ND	79	7	98	8
ND		ND			25881	935		114	36 ND		ND			810	38 ND	86	7	83	6
ND		ND			27965	1247	ND		ND		145	90	29	860	49 ND	83	8	92	8
ND		ND			64675	2819	ND		ND		ND	30	23	1162	63 ND	57	7	64	7
ND		ND			75038	3038	ND		ND	158	48 ND			1022	54 ND	66	7	60	6
ND		ND			34289	2165	ND		ND	130	ND			1040	82 ND	78	12	91	12
ND		ND			100481	4959	ND ND		ND ND		ND ND			3694	196 ND	92	10	98	10
ND		ND			76861	3897	ND ND		ND ND		ND	112	37	1533	93 ND	93	11	54	7
									ND	120	25 ND	112	37						
ND		ND			25462	890	ND		ND	128	35 ND			725	34 ND	76	6	84	6
ND		ND			34405	1476	ND		ND		ND			1019	55 ND	72	8	67	7
ND		ND			26469	1268	ND		ND		ND			1004	59 ND	72	8	103	9
ND		ND			45105	2270	ND			188	59 ND			941	61 ND	50	7	60	7
ND		ND			31266	1727	ND		ND		ND			772	57 ND	77	10	96	10
ND			276	75	21345	874		139	42	124	41	141	28	836	43 ND	73	7	68	6
ND		ND			93073	4101	ND		ND			144	34	2322	115 ND	70	8	71	7
ND		ND			25522	895	ND			129	36 ND			888	39 ND	82	6	76	6
ND		ND			28799	828	ND			120	29 ND			898	33 ND	104	6	95	5
ND		ND			28336	1166	ND		ND		ND			862	46 ND	102	9	91	7
ND		ND			28745	1438	ND		ND		ND			750	50 ND	97	10	95	9
ND		ND			28578	1079	ND		ND		ND			825	40 ND	102	8	93	7
ND		ND			19036	737	ND			129	37	92	24	592	31 ND	67	6	66	6
ND		ND			20079	673	ND			268	38	97	21	761	33 ND	64	5	86	6
ND		ND			25497	815	ND		ND		ND			776	32 ND	85	6	112	7
ND		ND			26526	802	ND			119	30	55	18	829	32 ND	82	6	93	6
ND		ND			30874	1237	ND		ND		ND			838	44 ND	85	8	99	8
ND		ND			18749	820	ND			164	44	83	26	711	40 ND	89	8	78	7
ND		ND			17681	610	ND			198	36	68	21	627	29 ND	61	5	75	5
ND		ND			24978	970	ND			140	40 ND			802	40 ND	92	8	77	6
ND		ND			75718	3907	ND		ND		ND			3756	206 ND	88	11	110	11
ND			214	62	15580	597	ND			166	38	128	25	405	25 ND	57	6	72	6
ND		ND			25321	948	ND		ND		ND			976	45 ND	88	7	80	6
	38 8	3	145	10	28647	300 ND		29	9 ND			11	4	1144	16 ND	89	3	87	5
ND		ND	-		24425	382 ND	ND		_	34	8	22	6	303	11 ND	81	4	133	6
ND		ND			22347	877	ND			264	45 ND		-	194	17 ND	75	7	193	11
ND		ND			8754	396	ND			134	39 ND			254	22 ND	116	9	58	6
ND			345	80	19501	828	ND		ND	-0.	00 .12	90	27	114	15 ND	82	8	222	13
ND		ND	3.3	55	7852	401	ND		ND	188	45	89	28	65	13 ND 11 ND	56	6	90	8
ND		ND			28098	968	ND ND		ND	100	45 ND	0,5	20	387	23 ND	98	7	158	9
ND		ND	405	103	26019	1303	ND ND		עוו	190	56	115	34	367 149	23 ND 20 ND	65	8	219	16
		ND	403	103							39 ND	113	34	175		65 77	8 7	219 127	
ND		ND	747	115	12021	498 216	ND ND			155 255		152	33 ND	1/3	18 ND		4		8 7
ND		NID	/4/	115	2971	216	ND ND		VID.	255	52 ND	153	33 ND	1.12	ND 17 ND	20 84	•	57 171	
ND		ND	CEC	70	14814	725 405	ND		ND	152	ND	70	20	142	17 ND	84	9	171	12
ND			656	78	14200	495	ND			152	34	70	20	160	14 ND	70	6	108	7

ND		275	75	36706	1380	ND		ND		ND			128	14 ND	76	7	137	9
ND		228	14	32600	325 ND	ND			66	7	40	4	122	5 ND	76	3	161	6
ND		321	101	23361	1213	ND			176	56	103	34	93	16 ND	67	9	147	12
ND	ND			26388	1057	ND		ND		ND			117	14 ND	59	6	175	11
ND	ND			13972	663	ND			166	46 ND			129	16 ND	57	7	130	10
ND		215	72	21966	904	ND			166	44 ND			245	22 ND	85	8	183	11
ND	ND			14587	882	ND		ND		ND			115	20 ND	61	9	113	12
ND		172	49	17736	543	ND			175	32 ND			200	13 ND	74	5	180	8
58	7	499	13	20995	225 ND		28	9 ND			59	5	12	3 ND	45	2	437	13
103	8	457	12	20342	220 ND	ND		ND			62	5 ND		ND	51	2	413	12
50	7	481	13	21168	230 ND		34	9	16	5	64	5	12	3 ND	49	2	448	14
102	8	464	12	20065	216 ND		32	9 ND			60	5 ND		ND	46	2	397	12
94	8	383	12	23298	246 ND	ND			20	5	27	4	96	4 ND	123	3	156	6
63	7	428	12	19088	214 ND		27	9 ND			52	5 ND		ND	43	2	404	13

Υ	Y +/-	Zr	Zr +/-	Nb	Nb +/-	Mo	Mo +/-	Ag	Ag +/-	Cd	Cd +/-	Sn	Sn +/-	Sb	Sb +/-	W	W +/-	Hg	Hg +/-	Pb	Pb +/-	
	18	2	191	8	13	2 ND		ND		ND		ND		ND		ND		ND			20	3
ND		_	117	6	8	2 ND		ND		ND		ND		ND		ND		ND		ND		
ND			185	8	13	2 ND		ND		ND		ND		ND		ND		ND			11	3
ND			139	6	8	2 ND		ND		ND		ND		ND		ND		ND			10	3
	12	2	126	6	8	2 ND		ND		ND		ND		ND		ND		ND		ND		
ND			204	7	8	2 ND		ND		ND		ND		ND		ND		ND			9	3
	9.3	2	183	7	11	2 ND		ND		ND		ND		ND		ND		ND		ND		
ND			197	7	8.6	2 ND		ND		ND		ND		ND		ND		ND			28	3
ND			192	8	8	2 ND		ND		ND		ND		ND		ND		ND		ND		
	7	2	136	7	10	3 ND		ND		ND		ND		ND		ND		ND		ND		
ND			156	7	11	2 ND		ND		ND		ND		ND		ND		ND			26	4
	8	2	197	8 ND		ND		ND		ND		ND		ND		ND		ND			11	3
	8	2	197	8	9	2 ND		ND		ND		ND		ND		ND		ND			12	3
	11	2	197	9 ND		ND		ND		ND		ND		ND		ND		ND		ND		
	7	2	247	9	7	2 ND		ND		ND		ND		ND		ND		ND		ND		
	8	2	215	9	10	2 ND		ND		ND		ND		ND		ND		ND		ND		
ND			143	17 ND		ND		ND		ND		ND		ND		ND		ND		ND		
ND			125	6 ND		ND		ND		ND		ND		ND		ND		ND			16	3
	9	2	132	7	8	2 ND		ND		ND		ND		ND		ND		ND			19	3
	8	2	141	7	7	2 ND		ND		ND		ND		ND		ND		ND			16	3
	6.4	1.9	153	7	8	2 ND		ND		ND		ND		ND		ND		ND			14	3
ND			150	8 ND		ND		ND		ND		ND		ND		ND		ND			15	3
ND			108	6	7	2 ND		ND		ND		ND		ND		ND		ND		ND		
ND			114	7 ND		ND		ND		ND		ND		ND		ND		ND		ND		
	9	2	139	7 ND		ND		ND		ND		ND		ND		ND		ND		ND		
ND			113	9 ND		ND		ND		ND		ND		ND		ND		ND		ND		
	10.8	1.9	128	5	7.1	1.8 ND		ND		ND		ND										
	9	2	135	6 ND		ND		ND		ND		ND		ND		ND		ND		ND		
	7	2	124	7	9	2 ND		ND		ND		ND		ND		ND		ND		ND		
	12	3	170	7	9	2 ND		ND		ND		ND		ND		ND		ND			14	3
	9	3	173	8	14	3 ND		ND		ND		ND		ND		ND		ND			13	3
	10	3	179	8	9	2 ND		ND		ND		ND		ND		ND		ND		ND		
	13	3	171	8	11	3 ND		ND		ND		ND		ND		ND		ND			11	3
	10	2	146	6	6	2 ND		ND		ND		ND		ND		ND		ND			12	3
	15	2	76	5 ND		ND		ND		ND		ND		ND		ND		ND			12	3
	10	2	176	7 ND		ND		ND		ND		ND		ND		ND		ND			12	3
	14	3	90	5 ND		ND		ND		ND		ND		ND		ND		ND			12	3
	12	2	104	6	7	2 ND		ND		ND		ND		ND		ND		ND			11	3
	18	3	161	7	12	3 ND		ND		ND		ND		ND		ND		ND			14	3
	15	3	117	6	10	2 ND		ND		ND		ND		ND		ND		ND			13	3
	19	3	184	8	9	3 ND		ND		ND		ND		ND		ND		ND			18	4

	8.4	2	174	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	7.6	1.9	156	7	6.1	2 ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	16	3
	25	3	82	5	9	2 ND	ND	ND ND	ND ND	ND	ND ND	ND		17	3
	18	3	111	6	16	3 ND	ND	ND ND	ND ND	ND	ND ND	ND		14	3
	8	2	158	7 ND	10	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	- T	3
	13	2	199	8 ND		ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	10	3
	10	2	209	9	9	2 ND	ND	ND	ND ND	ND	ND ND	ND ND		29	4
	15	2	189	7	8	2 ND	ND	ND	ND	ND	ND	ND		31	4
	10	2	187	8	10	2 ND	ND	ND	ND	ND	ND ND	ND		34	3
	10	3	152	7	10	2 ND	ND	ND	ND	ND	ND ND	ND	ND	34	3
	9	2	175	7	8	2 ND	ND	ND	ND	ND	ND	ND	145	15	3
	12	3	194	8	13	3 ND	ND	ND	ND	ND	ND	ND		19	3
ND	12	3	117	7 ND	13	ND ND	ND	ND	ND	ND	ND	ND	ND	13	J
ND			115	6 ND		ND	ND	ND	ND	ND	ND ND	ND	ND		
ND			113	UND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			91	6 ND		ND	:	39 10 ND	ND	ND	ND	ND		10	3
ND			97	9 ND		ND	ND	ND	ND	ND	ND	ND		40	7
ND			107	7 ND		ND	ND	ND	ND	ND	ND	ND		16	3
ND			76	5 ND		ND	ND	ND	ND	ND	ND	ND		55	4
	14	3	114	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			69	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			105	7 ND		ND	ND	ND	ND	ND	ND	ND		39	5
	10	2	152	7 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	6	2	124	6 ND		ND	ND	ND	ND	ND	ND	ND		17	3
ND			127	14 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	143	7 ND		ND	ND	ND	ND	ND	ND	ND		32	4
	13	2	137	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	151	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	15	2	174	7	11	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			171	7	8	2 ND	ND	ND	ND	ND	ND	ND		24	3
	9	2	177	7	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10	3	150	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			171	7	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	142	7	7	2 ND		34 9 ND	ND	ND	ND	ND		21	3
	8	2	156	7	12	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			112	15 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			120	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	145	7 ND		ND	ND	ND	ND	ND	ND	ND		17	3
	8.8	1.9	135	6	7	2 ND	ND	ND	ND	ND	ND	ND		20	3

	21	3	275	11	11	3 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	124	7 ND		ND	ND	ND	ND	ND	ND	ND		23	4
	6	2	153	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8.6	1.9	107	5	5.8	1.9 ND	ND	ND	ND	ND	ND	ND	ND		
ND			193	8	8	2 ND	ND	ND	ND	ND	ND	ND		13	3
	13	2	146	6 ND		ND	ND	ND	ND	ND	ND	ND		28	3
	14	2	191	8	10	2 ND	ND	ND	ND	ND	ND	ND	ND		_
	10	2	191	8	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	171	8 ND	,	ND ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	157	7	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	174	8	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
			170			2 ND							ND ND		
	11	2		8	8		ND ND	ND ND	ND	ND	ND	ND ND	ND	17	2
	13	2	179	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND	17	3
	20	3	238	9	11	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	176	8	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	25	3	240	9	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	21	3	209	8	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	152	7 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	13	2	204	8	12	2 ND	ND	ND	ND	ND	ND	ND		9	3
	17	2	203	8	7	2 ND	ND	ND	ND	ND	ND	ND		14	3
ND			169	38 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	14	2	181	7	7	2 ND	ND	ND	ND	ND	ND	ND		11	3
	6.8	1.8	91	5 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	7	2	131	7	9	2 ND	ND	ND	ND	ND	ND	ND		10	3
	7	1.7	106	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	111	5	6	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			71	4	5.9	1.9 ND	ND	ND	ND	ND	ND	ND		48	4
ND			162	9 ND		ND	ND	ND	ND	ND	ND	ND		15	4
ND			92	6 ND		ND	ND	ND	ND	ND	ND	ND		22	3
	7.9	2	203	8 ND		ND	ND	ND	ND	ND	ND	ND		14	3
	9	2	121	6	7	2 ND	ND	ND	ND	ND	ND	ND		24	3
	12	3	193	9	10	2 ND	ND	ND	ND	ND	ND	ND	ND		_
					0					2	2				
	12	2	187	9	12	3 ND	ND	ND	ND	ND	ND	ND		18	4
	10	2	115	6	10	2 ND	ND	ND	ND	ND	ND	ND		9	3
ND	10	-	131	6	10	2 ND	ND	ND	ND	ND	ND	ND		40	4
ND			131	O	10	ZIND	ND	ND	ND	ND	ND	ND		40	4
	8	2	163	7	8	2 ND	ND	ND	ND	ND	ND	ND		12	3
	12	2	183	, 7 ND	Ü	ND ND	ND	ND	ND	ND	ND	ND		14	3
	9	2	165	7 110	7	2 ND	ND	ND	ND	ND	ND	ND	ND	17	3
	11														
		2	188	8	9	2 ND	ND	ND ND	ND	ND	ND	ND ND	ND		
	10	2	201	8	6	2 ND	ND	ND	ND	ND	ND	ND	ND	4.2	-
	8.5	2	187	8	7	2 ND	ND	ND	ND	ND	ND	ND		13	3
ND			165	9 ND	-	ND	ND	ND	ND	ND	ND	ND	ND		
ND			144	8	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	170	8	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10	_	1/0	O	10	ZIND	ND	NU	ND	ND	ND	ND	טוו		

	8	2	163	8 ND		ND	ND		ND	ND	ND	ND	ND	ND		
ND	0	2	128	10	13	4 ND	ND ND		ND	ND	ND	ND	ND ND	ND ND		
ND			120	10	13	4 110	ND		ND	ND	ND	ND	ND	ND		
	7	2	72	4 ND		ND	ND		ND	ND	ND	ND	ND		20	3
	6.8	1.8	59	4 ND		ND	ND		ND	ND	ND	ND	ND		37	3
ND	0.0	1.0	51	4 ND		ND	ND	35	9 ND	ND	ND	ND	ND	ND	37	J
ND			59	4 ND		ND		33	9 ND	ND	ND	ND	ND	ND	12	3
ND			33	4 ND		ND		33	3 ND	ND	ND	ND	ND		12	3
ND			136	6 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	11	3	170	8 ND		ND	ND		ND	ND	ND	ND	ND		17	3
ND			164	10 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	9	3	148	8 ND		ND	ND		ND	ND	ND	ND	ND	ND		
ND			31	3 ND		ND	ND		ND	ND	ND	ND	ND		14	2
ND			51	3 ND		ND	ND		ND	ND	ND	ND	ND		23	3
ND			47	5 ND		ND		44	11 ND	ND	74	23 ND	ND		20	4
ND			76	6 ND		ND		34	11 ND	ND	ND	ND	ND		39	5
	10	2	237	10	14	3 ND	ND		ND	ND	ND	ND	ND		10	3
	15	3	383	14	11	3 ND	ND		ND	ND	ND	ND	ND	ND		
	8	2	274	11	9	2 ND	ND		ND	ND	ND	ND	ND	ND		
	13	2	315	11 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	11	2	159	7 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	7.1	1.9	153	7 ND		ND	ND		ND	ND	ND	ND	ND	ND		
ND	_	_	180	9 ND	_	ND	ND		ND	ND	ND	ND	ND	ND		_
	9	2	192	8	7	2 ND	ND		ND	ND	ND	ND	ND		10	3
ND	4.5		170	7	9	2 ND	ND		ND	ND	ND	ND	ND	ND		
	15	2	167	7 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	10	2	153	8 ND		ND	ND		ND	ND	ND	ND	ND	ND	10	2
	12	2	186	8 ND		ND	ND		ND	ND	ND	ND	ND	ND	10	3
	7	2	184	9 ND		ND	ND		ND	ND	ND	ND	ND	ND		
	9	2	164	8	8	2 ND	ND		ND	ND	ND	ND	ND		9	3
	6.4	1.9	164	7	8	2 ND	ND ND		ND	ND ND	ND	ND	ND ND	ND	9	3
ND	0.4	1.5	181	10	11	3 ND	ND		ND	ND	ND	ND	ND	ND		
ND	9	2	184	8 ND	11	ND ND	ND		ND	ND	ND	ND	ND	ND	9	3
	6.6	2	163	7	9	2 ND	ND		ND	ND	ND	ND	ND		19	3
	10	2	231	9	9	2 ND	ND		ND	ND	ND	ND	ND		19	3
	9	1.9	125	6	6.3	1.9 ND	ND		ND	ND	ND	ND	ND	ND	13	3
	8	2	116	7	9	2 ND	ND		ND	ND	ND	ND	ND	115	10	3
ND	Ü	-	104	9 ND	J	ND	.,,	61	16 ND	ND	ND	ND	ND	ND	10	J
.,,	8	2	159	7 ND		ND	ND	-	ND	ND	ND	ND	ND	110	11	3
ND	3	-	68	6 ND		ND	ND		ND	ND	72		ND	ND		J
	13	2	201	8	14	2 ND	ND		ND	ND	ND	ND	ND		18	3
ND	-	_	144	7	11	2 ND	ND		ND	ND	ND	ND	ND	ND	-	-
	12	3	183	7 ND	_	ND	ND		ND	ND	ND	ND	ND		12	3
		_		=		• • =			· · =		• • =	-	-		=	-

	13	2	231	9	15	3 ND	:	16	3						
ND			120	6 ND		ND	ND	ND	ND	ND	ND	ND		11	3
ND	6.8	1.8	153	6	8.7	2 ND			3						
	9.6	1.8	150	6 ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND		J
	8	2	157	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	187	8	9	2 ND	ND								
	8.2	1.9	183	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND	0.2	1.3	167	7 ND		ND	ND	ND	ND	ND	ND	ND		10	3
ND			173	12 ND		ND	ND	ND	ND	ND	ND	ND	ND		•
	8	2	209	8 ND		ND	ND	ND	ND	ND	ND	ND		11	3
ND	-		178	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7.6	1.9	143	7 ND		ND	ND	ND	ND	ND	ND	ND		9	3
ND			137	7	9	2 ND	ND								
	6.6	1.7	122	6	5.9	1.9 ND	ND	ND	ND	ND	ND	ND		10	3
ND			158	7 ND		ND	ND	ND	ND	ND	ND	ND			3
	11	2	144	8	9	3 ND	ND								
ND			112	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			78	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	5.5	1.8	139	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	118	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7.5	1.9	134	6	6.2	2 ND	ND								
	6.5	1.7	103	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			116	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.9	1.7	105	5	6.6	1.8 ND	ND	ND	ND	ND	ND	ND	ND		
	7.4	1.9	95	5 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	10	2	143	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	149	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			126	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	445	CND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	115 164	6 ND 7 ND		ND	ND	ND ND	ND	ND	ND ND	ND ND	ND .	20	2
	11 13	2 2	164 147	7 ND 7	7	ND 2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	20	3
	8	2	169	8	8	2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		10	3
	7	2	120	6 ND	0	ND ND	ND	ND	ND	ND	ND	ND ND		22	3
	10	2	126	7 ND		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	22	3
	9	3	135	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	152	7 ND		ND	ND	ND	ND	ND	ND	ND		14	3
	13	3	161	9 ND		ND	ND	ND	ND	ND	ND	ND		13	4
ND	13	3	153	7	9	2 ND		12	3						
ND	10	2	138	, 7 ND	3	ND ND	ND	ND	ND	ND	ND	ND	ND	12	5
ND	10	_	100	6	8	2 ND		14	4						
	11	3	159	8 ND	Ü	ND ND	ND	ND	ND	ND	ND	ND	ND		•
	7	2	147	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	14	2	158	7	7	2 ND	ND								
	13	4	144	, 11 ND	•	ND	ND	ND	ND	ND	ND	ND	ND		
		•	,	11 110		5	115	115			112	115	.,,,		

	13	2	158	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	178	8	9	2 ND	ND	ND	ND	ND	ND	ND		12	3
	13	3	175	10	12	3 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	186	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9.8	1.9	105	5	5.9	1.9 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	127	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	121	6	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	137	7	9	2 ND	ND	ND	ND	ND	ND	ND		12	3
	7	2	103	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	18	3	165	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	209	9	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			171	7	15	2 ND	ND	ND	ND	ND	ND	ND		10	3
ND			173	7	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	149	6	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	110	5	6.1	1.9 ND	ND	ND	ND	ND	ND	ND	ND		
ND			175	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			117	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	144	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6	2	102	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.7	2	79	5 ND		ND	ND	ND	ND	62	17 ND	ND		12	2
	17	2	127	5 ND		ND	ND	ND	ND	59	18 ND	ND	ND		
	10	3	123	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	125	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	105	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8.4	1.9	118	5 ND		ND	ND	ND	ND	ND	ND	ND		13	3
ND			112	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	127	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	130	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	3	135	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	3	114	7 ND		ND	\$	37 11 ND	ND	ND	ND	ND	ND		
ND			93	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	125	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	104	6	6	2 ND	ND	ND	ND	ND	ND	ND		18	3
	11	2	92	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	117	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	154	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	139	6	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	154	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	184	8	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	140	8	7	2 ND	ND	ND	ND	ND	ND	ND	ND		

ND			122	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	12	2	155	7	9	2 ND	ND							
ND			127	7	7	2 ND	ND							
ND			150	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	161	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	11	3	138	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	8	2	109	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			122	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			106	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	12	2	165	8	9	2 ND	ND							
	7.6	1.8	99	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	12	2	90	5 ND		ND	32	10 ND	ND	ND	ND	ND	ND	
	10	2	115	5	7.7	2 ND	ND							
	9	2	158	7	9	2 ND	ND							
	11	3	131	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	97	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	12	3	115	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	14	3	130	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	11	4	113	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	118	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	9	3	122	7	9	3 ND	ND							
	9	2	169	, 8 ND	•	ND	ND	ND	ND	ND	ND	ND	ND	
	18	3	154	10 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	10	J	171	11 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	12	3	139	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	12	3	196	12 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	8	2	181	9	11	3 ND	ND							
	24	3	215	11 ND	11	ND ND	ND	ND	ND	ND	ND	ND	ND	
	18	3	232	12	14	3 ND	ND							
	5.9	2	146	7	10	2 ND	ND ND	ND	ND	ND	ND	ND	ND	
	3.9 7	2	170	, 8 ND	10	ND ND	ND	ND	ND ND	ND	ND	ND	ND	
ND	,	۷	143	10	16	4 ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	
ND	10	2	238	10 ND	10	4 ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	
	12	3	155	9 ND		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	
	8	2	171	8 ND		ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	
	0 11	2	159	7 ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	
	10	2	173	7 ND 7 ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9	3
ND	10	2	123	10 ND		ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	3
ND			123	TO ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	167	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	18 14			7 ND		ND ND		ND ND	ND ND		ND ND			
		2	154				ND			ND		ND	ND	2
	14.3	2	167	7 ND	<i>C</i> 2	ND 2 ND	ND	ND ND	ND ND	ND	ND ND	ND	9	3
	9.6	1.9	189	7	6.3	2 ND	ND	ND ND	ND	ND	ND ND	ND	ND	
	9.9	1.8	148	6	7	1.9 ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	2
	12	2	210	8	7	2 ND	ND ND	ND	ND	ND	ND ND	ND	15	3
	9.6	2	174 126	7 C ND	9	2 ND	ND ND	ND	ND ND	ND	ND ND	ND	11	3
	11	2	126	6 ND	-	ND 2 ND	ND ND	ND	ND	ND	ND	ND	ND	
	11.7	2	148	7	7	2 ND	ND	•						
	10.8	1.9	154	7 ND		ND	ND	ND	ND	ND	ND	ND	11	3

	10	2	94	6 ND		ND	ND	ND	ND	ND	ND	ND		21	3
	11	2	118	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	114	6 ND		ND	ND	ND	ND	ND	ND	ND		11	3
	7.9	1.8	180	7	5.9	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9.2	1.7	161	6	5.9	1.8 ND									
ND			136	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	164	7	6	2 ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	211	9	9	2 ND	ND	ND	ND	ND	ND	ND		20	3
ND			137	6 ND		ND	ND	ND	ND	ND	ND	ND		11	3
	13	2	211	9	11	2 ND	ND	ND	ND	ND	ND	ND		23	3
ND			134	6	9	2 ND	ND	ND	ND	ND	ND	ND		20	3
	16	2	148	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			82	5 ND		ND	ND	ND	ND	ND	ND	ND		9	3
ND			89	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	15	2	177	7 ND		ND	ND	ND	ND	ND	ND	ND		10	3
	10	2	172	7 ND		ND	ND	ND	ND	ND	ND	ND		13	3
	14	2	157	7 ND		ND	ND	ND	ND	ND	ND	ND		10	3
	17	3	158	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	15	3	139	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	16	2	175	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	107	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	1.9	129	6	6	1.9 ND		41	3						
	19	2	192	7 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	8	2	180	8	11	3 ND	ND	ND	ND	ND	ND	ND		13	4
	9.7	1.9	189	7 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	17	3	199	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	16	2	185	8	8	2 ND	ND	ND	ND	ND	ND	ND		9	3
	13	3	172	9	9	3 ND	ND	ND	ND	ND	ND	ND	ND		
	16	2	180	8	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	187	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	177	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7.5	1.8	170	7	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	181	8	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			224	23 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	215	8	8	2 ND	ND	ND	ND	ND	ND	ND		11	3
	7.6	1.7	140	6 ND		ND	ND	ND	ND	ND	ND	ND		11	3
ND			162	26 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			126	6	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	7.4	1.9	148	7	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8.2	1.8	127	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13.3	1.9	146	6	8.2	2 ND	ND	ND	ND	ND	ND	ND	ND		
	10.6	2	140	6	6	2 ND	ND	ND	ND	ND	ND	ND	ND		

	12.4	2	163	7	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	17	2	161	7	10	2 ND	ND	ND	ND	ND	ND	ND		9	3
	10	2	95	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	17	2	154	7	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	18	2	182	7	7	2 ND	ND	ND	ND	ND	ND	ND		9	3
	14	2	153	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	123	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			145	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			144	7 ND		ND	ND	ND	ND	181	20 ND	ND	ND		
	9.5	2	152	8	17	2 ND	ND	ND	ND	63	18 ND	ND	ND		
	6.3	1.9	195	8	9	2 ND	ND	ND	ND	81	18 ND	ND	ND		
	10	3	342	14	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	241	9	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
	12	2	244	10	9	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			245	15 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	3	248	12 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	14	2	237	10 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	15	3	267	11	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
	19	3	252	9	13	3 ND	ND	ND	ND	ND	ND	ND	ND		
	15	2	207	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	15	3	254	13	12	3 ND	ND	ND	ND	ND	ND	ND	ND		
	16	2	255	9	12	2 ND	ND	ND	ND	ND	ND	ND		16	4
	8.5	2	159	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			240	8	8.3	2 ND	ND	ND	ND	ND	ND	ND		10	3
	6	2	139	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			126	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			241	8	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			70	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.3	2	62	4 ND		ND	ND	ND	ND	ND	ND	ND		13	3
	26	3	238	9	12	2 ND	ND	ND	ND	ND	ND	16	4 ND		
	18	2	191	7	10	2 ND	ND	ND	ND	90	19 ND	ND	ND		
	23	2	271	9	13	2 ND	ND	ND	ND	ND	ND	14	4 ND		
	23	3	247	9	13	3 ND	ND	ND	ND	ND	ND	ND	ND		
	33	3	319	11	12	3 ND	ND	ND	ND	ND	ND	23	5 ND		
	12	2	187	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	182	9	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	256	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	149	7	10	2 ND	ND	ND	ND	ND	ND	ND		12	3
	10	2	172	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			169	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8.9	1.9	148	6	6.2	1.9 ND	ND	ND	ND	ND	ND	ND		8	3
ND		ND)	ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	148	7 ND		ND	ND	ND	ND	ND	ND	ND		13	3
	6.8	1.9	172	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			128	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	3	124	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	167	7 ND		ND	ND	ND	ND	ND	ND	ND		12	3
ND			88	14 ND		ND	ND	ND	ND	ND	ND	ND	ND		

ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			150	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	3	174	10 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	192	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	3	257	13 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	332	12	8	2 ND	ND	ND	ND	ND	ND	ND		33	7
	6.9	1.7	171	6 ND		ND	ND	ND	ND	ND	ND	ND		9	2
	10	1.9	169	7 ND		ND	ND	ND	ND	ND	ND	ND		13	3
	8.3	1.9	181	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			100	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			123	13 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	196	8	10	2 ND	ND	ND	ND	ND	ND	ND		10	3
ND			167	11 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	3	184	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8.6	2	241	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			127	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			198	8 ND		ND	ND	ND	ND	62	18 ND	ND		16	3
ND			143	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
	6.6	1.9	148	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	180	8	6	2 ND	ND	ND	ND	ND	ND	ND	ND		
	13	3	112	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	3	132	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	3	161	10	11	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			161	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND		ND		ND			422 67 ND	ND	ND	ND	ND	ND	ND		
	8.8	1.9	130	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			141	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.6	1.9	190	7	6.1	2 ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	167	7 ND		ND	ND	ND	ND	ND	ND	ND		13	3
	13	2	164	7 ND		ND	ND	ND	ND	ND	ND	ND		11	3
	11	3	134	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6	2	159	7 ND		ND	ND	ND	ND	ND	ND	ND		12	3
ND			193	8	11	2 ND	ND	ND	ND	ND	ND	ND		11	3
	9	2	260	9	10	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	198	8	9	2 ND	ND	ND	ND	ND	ND	ND		12	3
ND			132	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	5.8	1.9	141	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			147	29 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			152	7	13	2 ND	ND	ND	ND	ND	ND	ND		13	3
	11	2	160	8	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND	11	۷	114	6	9	2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND		
ND			114	U	9	2 ND	NU	טוו	NU	ND	ואט	טוו	NU		

	6	2	218	9	8	2 ND									
	5.8	1.8	143	6	7	2 ND									
	8	2	143	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7.1	1.9	131	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			121	20 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.7	1.8	117	6 ND		ND	ND	ND	ND	ND	ND	ND		11	3
	9.4	2	177	7	7.3	2 ND									
	7.3	1.8	166	6	8.9	2 ND									
ND			127	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			159	9 ND		ND	ND	ND	ND	ND	ND	ND		14	5
ND			163	8	7	2 ND		14	3						
ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	153	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	151	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			121	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.4	1.9	124	6	6.6	2 ND									
ND			153	8	9	3 ND									
ND			155	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	7	2	148	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			155	7	8	2 ND									
ND			137	22 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13	2	189	8	8	2 ND		12	3						
	10	2	165	8 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	13	2	189	8 ND		ND	ND	ND	ND	ND	ND	ND		10	3
	10	2	151	7 ND		ND	ND	ND	ND	ND	ND	ND		10	3
	15	2	167	7	8	2 ND									
	8	2	189	8	7	2 ND									
	15	4	116	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			55	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	13.5	2	72	4 ND		ND	ND	ND	ND	ND	ND	ND		27	5
	10	3	73	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	3	106	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			54	4 ND		ND	ND	ND	ND	ND	ND	ND		27	5
ND			75	5 ND		ND	ND	ND	ND	ND	ND	ND		19	3
	6.6	1.9	89	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			79	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			107	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			35	4 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	3	139	8	9	3 ND									
	8	3	66	6 ND		ND	ND	ND	ND	ND	ND	ND		39	8
ND			90	6	9	3 ND									

ND			59	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			76	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			78	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	85	5 ND		ND	ND	ND	ND	ND	ND	ND		15	5
ND			104	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			111	7 ND		ND	ND	ND	ND	ND	ND	ND	112	11	3
ND			117	6 ND		ND	ND	ND	ND	ND	ND	ND		9	3
110	7.3	1.9	91	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	,	3
	10	3	91	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	3	82	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND	3	3	115	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			70	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND	8.2	1.7	112	5 ND		ND	ND	ND	ND	ND ND	ND	ND ND	ND ND		
ND	0.2	1.7	136	5 ND	7	2 ND		ND			ND ND		ND ND		
					,		ND		ND	ND ND		ND	ND ND		
ND	77	1.0	133	26 ND	г о	ND 1 O ND	ND	ND	ND	ND	ND	ND	ND	11	2
ND	7.7	1.9	157	7 7 ND	5.8	1.9 ND	ND	ND	ND	ND	ND	ND		11	3
ND	0.0	2	162	7 ND	7	ND	ND	ND	ND	ND	ND	ND		8	3
	9.9	2	165	7	7	2 ND	ND	ND	ND	ND	ND	ND		13	3
ND	8.2	2	164	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND	4.2		150	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	4	134	10 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			80	13 ND	4.0	ND	ND	ND	ND	ND	ND	ND	ND		
ND			157	9	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			158	12 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			112	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			88	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	15	4	214	13 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			109	7	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			208	12 ND		ND	ND	ND	ND	ND	ND	ND		27	9
ND			61	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			77	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			96	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			145	8	9	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			88	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			123	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			103	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			83	4 ND		ND	ND	ND	ND	ND	ND	ND		8	2
ND			108	8	11	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			109	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			126	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			71	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	112	6	7	2 ND	ND	ND	ND	ND	ND	ND		9	3
	12	2	144	6	8	2 ND	ND	ND	ND	ND	ND	ND	ND		
	8	2	114	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			133	6 ND		ND	ND	ND	ND	ND	ND	ND		9	3
	7	2	134	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		

	13	3	117	7 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND	13	3	208	11	9	3 ND	ND ND	N		ND ND	ND ND	ND ND	ND	26	8
ND	9	2	120	7 ND	9	ND	ND	35 10 N		ND ND	ND ND	ND ND	ND	20	0
	10	2	137	7 ND	8	2 ND	ND	35 10 N		ND ND	ND ND	ND ND	ND ND		
	8	2	114	, 6 ND	0	ND		N			ND ND	ND ND	ND	11	2
ND	0	2	87	5 ND	9	2 ND	ND	N		ND ND	ND ND	ND ND	ND	11	3
ND	7.5	2	122	6 ND	9	ND	ND ND	N		ND ND	ND ND	ND ND	ND ND		
	7.5	2	122	OND		ND	ND	IN	ט וווט	ND	ND	ND	ND		
	8	2	109	6 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	12	3	64	6 ND		ND ND	ND	N		ND ND	ND ND	ND ND	ND	26	8
	12	3	04	OND		ND	ND	IV	D IND	ND	ND	ND		20	0
ND			146	7	10	2 ND	ND	N	D ND	ND	ND	ND		13	3
ND			158	, 7 ND	10	ND ND	ND	N		ND	ND	ND	ND	13	3
ND	13	2	214	9 ND		ND	ND	N		ND	ND	ND	ND	22	3
	13	_	214	3 140		ND	ND	11	D ND	ND	ND	ND		22	3
	10	3	166	7	11	2 ND	ND	N	D ND	ND	ND	ND	ND		
	13	2	173	8	8	2 ND	ND	N		ND	ND	ND	110	23	4
ND	10	_	152	7 ND	J	ND ND	ND	N		ND	ND	ND	ND	23	·
	11	2	163	8 ND		ND	ND	N		ND	ND	ND		13	3
	12	2	214	8	8	2 ND	ND	N		ND	ND	ND		13	3
	13	2	202	8	10	2 ND	ND	N		ND	ND	ND		11	3
	12	2	187	8	9	2 ND	ND	N		ND	ND	ND		11	3
	10	2	145	7 ND	•	ND ND	ND	N		ND	ND	ND		16	3
	11	2	171	7 ND		ND	ND	N		ND	ND	ND		10	3
	8	2	187	8 ND		ND	ND	N		ND	ND	ND		10	3
	· ·	_	_0.	0.112											
	10	3	194	9 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			188	8	8	2 ND	ND	N		ND	ND	ND	ND		
	13	3	191	8	11	2 ND	ND	N	D ND	ND	ND	ND	ND		
ND			159	8	8	3 ND	ND	N		ND	ND	ND		11	3
	9	2	192	8 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			228	30 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	10	2	199	8	10	2 ND	ND	N	D ND	ND	ND	ND		9	3
	9	2	156	8	10	2 ND	ND	N	D ND	ND	ND	ND	ND		
ND			145	7	9	2 ND	ND	N	D ND	ND	ND	ND		11	3
	11	2	177	8 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	10	2	184	8 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	14	2	222	9 ND		ND	ND	N	D ND	ND	ND	ND		13	3
ND			29	7 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	7	2	195	8	8	2 ND	ND	N	D ND	ND	ND	ND	ND		
ND			195	10 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			208	10	9	3 ND	ND	N	D ND	ND	ND	ND	ND		
ND			122	7 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			103	9 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			162	9 ND		ND	ND	N	D ND	ND	ND	ND	ND		
	9	3	136	9 ND		ND	ND	N	D ND	ND	ND	ND	ND		
ND			148	7 ND		ND	ND	N	D ND	ND	ND	ND	ND		

ND			117	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			150	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	9	2	181	8 ND		ND	ND	ND	ND	ND	ND	ND		22	6
ND			130	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			56	6 ND		ND	ND		ND	ND	ND	ND	ND		
ND			102	8 ND		ND	ND		ND	ND	ND	ND	ND		
ND			167	12 ND		ND	ND		ND	ND	ND	ND	ND		
ND			68	7	10	3 ND	ND	ND	ND	ND	ND	ND	ND		
	11	3	198	11 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			131	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	176	8	11	3 ND	ND	ND	ND	ND	ND	ND	ND		
ND			170	13 ND		ND	ND		ND	ND	ND	ND	ND		
ND			200	15 ND		ND	ND		ND	ND	ND	ND	ND		
ND			135	12 ND		ND	ND		ND	ND	ND	ND	ND		
ND			103	5 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	132	7 ND		ND	ND		ND	ND	ND	ND	ND		
	7	2	136	7 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	12	3	171	10 ND		ND	ND		ND	ND	ND	ND	ND		
ND			119	9 ND		ND	ND		ND	ND	ND	ND	ND		
ND			104	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	6.6	1.9	132	6 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	193	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND		_	189	8 ND		ND	ND		ND	ND	ND	ND	115	9	3
112	7	2	168	7 ND		ND	ND		ND	ND	ND	ND		11	3
ND	•	_	162	10 ND		ND	ND		ND	ND	ND	ND	ND		J
ND			147	9	11	3 ND	ND		ND	ND	ND	ND	ND		
110	10	3	158	10 ND		ND	ND		ND	ND	ND	ND	110	12	4
ND	10	3	180	10 ND		ND	ND	ND	ND	ND	ND	ND		10	3
ND		ND	100	ND		110	118 36 ND	ND	ND	ND	ND	ND	ND	10	3
110		110		ND			30 110	110	145	ND	No	110	110		
ND			139	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			134	6 ND		ND	ND		ND	ND	ND	ND	ND		
ND			125	6	8	2 ND	ND		ND	ND	ND	ND	ND		
ND			185	9	8	2 ND	ND		ND	ND	ND	ND	ND		
ND			155	6	8.1	2 ND	ND	ND	ND	ND	ND	ND	ND		
ND			186	7 ND		ND	ND		ND	ND	ND	ND	ND		
	8	2	162	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND	_	_	165	9	8	3 ND	ND	ND	ND	ND	ND	ND	ND		
	10	2	206	8 ND	-	ND	ND		ND	ND	ND	ND		10	3
ND		- ND		ND		ND	ND		ND	ND	ND	ND	ND		
	9	2	142	7 ND		ND	ND		ND	ND	ND	ND	ND		
	7	2	157	7 ND		ND	ND		ND	ND	ND	ND		9	3
ND	•	_	165	7	9	2 ND	ND	ND	ND	ND	ND	ND		16	3
ND			25	5 ND	J	ND	ND	ND	ND	ND	ND	ND	ND		
ND			165	8 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	8	3	188	10	9	3 ND	ND		ND	ND	ND	ND	ND		
	-	-		_÷	-	- ··-	5	5			2	5	2		
ND			140	9 ND		ND	ND	ND	ND	ND	ND	ND	ND		

ND			89	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	11	3	205	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND		-	118	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	109	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND		-	127	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			150	7	8	2 ND	ND	ND	ND	ND	ND	ND	ND	
ND			128	8 ND	· ·	ND	ND	ND	ND	ND	ND	ND	ND	
ND			120	7	10	3 ND	ND	ND	ND	ND	ND	ND	ND	
.,,	7.4	1.9	118	6	7	2 ND	ND	ND	ND	ND	ND	ND	ND	
	6.2	1.9	140	6 ND	•	ND	ND	ND	ND	ND	ND	ND	9	3
ND			105	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	_
	6.3	2	163	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	6.3	1.9	113	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	7.2	1.9	121	6	8	2 ND	ND	ND	ND	ND	ND	ND	ND	
ND			136	6	6.5	2 ND	ND	ND	ND	ND	ND	ND	9) 3
	9	3	84	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	_
ND		-	99	13 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			130	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	13	3	96	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	19	4	78	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	10	3	93	6	10	3 ND	ND	ND	ND	ND	ND	ND	ND	
ND		· ·	63	9 ND	0	ND	ND	ND	ND	ND	ND	ND	ND	
	26	3	88	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	16	3	100	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	17	3	116	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	=7	· ·	77	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			68	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	12	3	104	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	11	2	117	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND		_	133	12 ND		ND	ND	ND	ND	ND	ND	ND	ND	
	8	2	97	5 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND	· ·	_	61	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			81	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			78	6 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			75	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			77	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			60	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			104	8	10	3 ND	ND	ND	ND	ND	ND	ND	ND	
ND			116	12 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			98	12 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			116	10 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			82	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			66	10 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			104	10 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			93	9 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			72	7 ND		ND	ND	ND	ND	ND	ND	ND	ND	
•	14	4	61	8 ND		ND	ND	ND	ND	ND	ND	ND	ND	
ND			106	10 ND		ND	ND	ND	ND	ND	ND	ND	ND	
							• • •							

	60	-	47	5.415	NB		ND	ND	A15			ND
	68	7	17	5 ND	ND	ND	ND	ND	ND	N		ND
ND			71	8 ND	ND	ND	ND	ND	ND	N		ND
ND			92	9 ND	ND	ND	ND	ND	ND	N		ND
ND			105	11 ND	ND	ND	ND	ND	ND	N		ND
	25	5	92	8	13 4 ND	ND	ND	ND	ND	N		ND
	25	7	91	12 ND	ND	ND	ND	ND		151 47 N		ND
ND			74	8 ND	ND	ND	ND	ND	ND	N		ND
	15	4	87	8 ND	ND	ND	ND	ND	ND	N		ND
	19	4	125	9 ND	ND	ND	ND	ND	ND	N		ND
ND			84	9 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			78	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			64	7 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			65	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			39	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			81	9 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			79	7 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			78	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
	15	5	137	11 ND	ND	ND	ND	ND	ND	N	D ND	ND
	14	4	107	11 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			78	8 ND	ND	ND	ND	ND		104 32 N	D ND	ND
ND			75	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
	18	6	87	11 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			36	5 ND	ND	ND	ND	ND	ND	N	D ND	ND
	20	4	105	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
	16	5	105	10 ND	ND	ND	ND	ND	ND	N	D ND	ND
	17	4	101	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
	22	5	129	10 ND	ND	ND	ND	ND	ND	N	D ND	ND
	9	3	65	6 ND	ND	ND	ND	ND	ND	N	D ND	ND
	15	4	73	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			65	9 ND	ND	ND	ND	ND	ND	N	D ND	ND
	14	4	92	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			119	14 ND	ND	ND	ND	ND	ND	N	D ND	ND
	15	4	74	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
	27	5	82	8 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			77	7 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			76	10 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			83	11 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			125	13 ND	ND	ND	ND	ND	ND	N	D ND	ND
ND			100	9 ND	ND	ND	ND	ND	ND	N		ND
	18	3	102	6 ND	ND	ND	ND	ND	ND	N		ND
	18	4	89	8 ND	ND	ND	ND	ND		99 30 N		ND
	15	4	82	8 ND	ND	ND	ND	ND	ND	N		ND
ND			108	8 ND	ND	ND	ND	ND	ND	N		ND
	11	3	87	6 ND	ND	ND	ND	ND	ND	N		ND
ND			89	11 ND	ND	ND	ND	ND	ND	N		ND
ND			82	10 ND	ND	ND	ND	ND	ND	N		ND
	21	5	118	10 ND	ND	ND	ND	ND	ND	N		ND
ND		•	125	16 ND	ND	ND	ND	ND	ND	N		ND
_	14	4	94	8 ND	ND	ND	ND	ND	ND	N		ND
		•		5 115			.15	.,,,		.,	145	.,,,

ND			127	14 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	26	7	145	15 ND	ND	ND	ND	121	40 ND	ND	ND	ND	
	31	6	139	11 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	24	7	96	13 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	18	6	93	11 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			133	16 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			132	10 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	14	4	93	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	16	5	110	10 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			73	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			85	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	27	7	124	15 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			130	13 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			122	12 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	12	3	95	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			79	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	17	5	109	11 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	30	6	73	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	22	6	98	12 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	15	4	85	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			82	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	14	3	91	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	21	3	133	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	23	5	94	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	21	6	119	12 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	20	4	128	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	15	4	82	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			94	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	12	3	100	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	19	3	107	7 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	25	5	110	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			84	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	13	3	84	6 ND	ND	ND	ND	ND	ND	ND	ND	ND	
	16	4	113	9 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			112	12 ND	ND	ND	ND	ND	ND	ND	ND	ND	
ND			78	7 ND	ND	ND	ND	ND	ND	ND	ND	59	9 10
110	19	4	94	8 ND	ND	ND	ND	ND	ND	ND	ND	ND	3
	14	3	121	6	7 2 ND	ND	ND	ND	ND	ND	ND	ND	
ND		J	140	7 ND	, ND	ND	ND	ND	ND	ND	ND	18	8 5
ND			136	10 ND	ND	ND	ND	ND	ND	ND	ND	ND	5
ND	22	5	312	16 ND	ND	ND	ND	ND	ND	ND	ND	80	6 13
ND	22	3	139	10 ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	4(
ND			46	7 ND	ND ND	ND	0 11						
													0
ND ND			198 197	11 ND 16 ND	ND ND	40 ND	0 9						
			197 159		ND ND				ND ND				c 13
ND			158 36	10 ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	7(
ND	10	_	36 176	6 ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	53	3 13
ND	19	5	176	13 ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	7 0
ND			87	7 ND	ND	ND	ND	ND	246	27 ND	ND	5	7 9

	17	4	148	10 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	11	2	148	7	11	2 ND		21	3						
ND			150	14 ND		ND	ND	ND	ND	ND	ND	ND	ND		
	20	4	149	11 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			122	11 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			184	12 ND		ND	ND	ND	ND	ND	ND	ND		96	15
	55	8	127	14 ND		ND	ND	ND	ND	ND	ND	ND	ND		
ND			252	11	13	3 ND		33	7						
	13	2	206	9	11	2 ND		19	3						
	14	2	215	9	12	2 ND		19	3						
	17	3	214	9	9	2 ND		18	3						
	13	2	202	8	9	2 ND		18	3						
ND			271	10	12	2 ND		13	3						
	12	2	187	8 ND		ND	ND	ND	ND	ND	ND	ND		20	3

Bi	Bi +/-	Th	Th +/-	U	U +/-	Pass/Fail	Pass/Fail G Pass/Fail N P	ass/Fail	l C Bes	t Match Best Match 2nd Matc	ch 2nd Match Liv	e Time 1Li	ve Time 2Liv	ve Time 3 Liv	ve Time Tlı	nstrument Model Tube	Anod Unit
	•		-		•	·	0	-	0	0	0	13.1			13.1	543189 Delta Prof∈Rh	%
ND		ND		ND		PASS				0	0	9.41	9	8.8	27.21	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.41	8.95	8.9	27.25	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.37	8.9	8.58	26.85	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.37	8.91	8.7	26.97	543189 Delta Prof∈Rh	PPM
							0		0	0	0	13.09			13.09	543189 Delta Prof∈Rh	%
ND		ND		ND		PASS	_		•	0	0	9.35	8.87	8.9	27.12	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.29	8.74	8.87	26.91	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.31	8.79	8.91	27	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.28	8.77	8.88	26.93	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.36	8.88	0.00	18.24	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.52	9.08	9.07	27.67	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.36	8.97	9.12	27.45	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.34	8.87	9.04	27.45	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.29	8.84	8.96	27.23	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.44	9.1	9.15	27.69	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.32	8.89	9.13	27.03	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.36	8.93	8.99	27.22	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	3.30	0.33	0.33	27.20	543189 Delta ProfeRh	PPM
										0	0					543189 Delta ProfeRh	
ND		ND		ND		PASS				0		1 06			1 06		PPM PPM
ND		ND		ND		PASS				0	0	1.86	0.00	0.01	1.86	543189 Delta ProfeRh	
ND		ND		ND		PASS				0	0	9.41	8.98	8.91	27.31	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS	2		^	0	0	9.41	8.97	8.86	27.24	543189 Delta ProfeRh	PPM
ND		ND		ND		DACC	0		0	0	0	13.07	0.05	0.04	13.07	543189 Delta ProfeRh	%
ND		ND		ND		PASS				0	0	9.38	8.95	8.94	27.27	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.37	8.92	8.89	27.19	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.43	9.09	9.16	27.68	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.36	8.85	8.96	27.17	543189 Delta ProfeRh	PPM
						PASS	_		_	0	0					543189 Delta ProfeRh	PPM
							0		0	0	0	13.08			13.08	543189 Delta ProfeRh	%
ND		ND		ND		PASS				0	0	9.49	9.17	9.28	27.94	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.49	9.13	9.24	27.86	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.6	9.4	9.48	28.48	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.27	8.74	8.82	26.83	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.34	8.94	9.16	27.44	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.47	9	8.95	27.42	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.4	8.99	8.82	27.22	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.39	8.95	8.77	27.11	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.41	8.99	8.73	27.13	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.38	8.91	8.75	27.04	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.37	8.95	8.9	27.22	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.42	9.01	9.03	27.45	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.26	8.69	8.78	26.73	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.41	9.04	8.99	27.44	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.4	8.96	9	27.35	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.37	8.87	8.91	27.15	543189 Delta ProfeRh	PPM
ND		ND		ND		PASS				0	0	9.36	8.84		18.2	543189 Delta Prof∈Rh	PPM
ND		ND		ND		PASS				0	0	9.44	9.04	8.84	27.32	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS			0	0	9.31	8.81	8.93	27.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.91	8.86	27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	8.97	8.8	27.16	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.45	9.03	8.86	27.34	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.84	8.91	27.12	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.31	8.84	8.84	26.98	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.47	8.93	9.02	27.42	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.34	8.88	8.89	27.11	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.35	8.86	8.85	27.06	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.39	8.92	8.75	27.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.93	8.8	27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.41	8.97	8.77	27.15	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.52	9.18	9.15	27.85	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	8.96	8.82	27.18	543189 Delta ProfeRh	PPM
ND	ND	ND	1733	0	0	0	0	13.02	0.50	0.02	13.02	543189 Delta ProfeRh	%
			PASS	O	U	0	0	13.02			13.02	543189 Delta ProfeRh	PPM
			PASS			0	0	0.33			0.33	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.41	9.07	9.19	27.67	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.65	9.5	9.19	28.73	543189 Delta ProfeRh	PPM
						0			9.03	9.12		543189 Delta ProfeRh	PPIVI
ND ND	ND ND	ND ND	PASS			0	0	9.46			27.6	543189 Delta ProfeRh	
ND ND	ND	ND ND	PASS			0	0	9.35	8.95	9.14	27.44		PPM
ND	ND	ND ND	PASS			0	0	9.56	9.22	9.32	28.1	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.63	9.49	9.6	28.71	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.54	9.23	9.21	27.98	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.41	8.97	9	27.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.89	8.93	27.18	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	1.85			1.85	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.92	8.98	27.26	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	9.12	9.14	27.61	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.92	8.95	27.24	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.88	8.92	27.13	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.93	8.96	27.25	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.33	8.86	9.08	27.28	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.4	8.87	8.93	27.2	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.93	8.99	27.28	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.96	8.95	27.28	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.43			9.43	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	2.03			2.03	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	66	22 ND	PASS			0	0	9.43	9.06	9.07	27.56	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta ProfeRh	PPM
				0	0	0	0	13.16			13.16	543189 Delta Prof∈Rh	%
			PASS			0	0					543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.37	8.85	8.95	27.17	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta ProfeRh	%
				0	0	0	0	6.36			6.36	543189 Delta ProfeRh	%
				0	0	0	0	6.23			6.23	543189 Delta ProfeRh	%
				0	0	0	0	13.01			13.01	543189 Delta ProfeRh	%

ND	ND	ND	PASS				0	() 9.	41 8.9	8.98	27.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	43 9.0	9.17	27.64	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	41 9.0	9.11	27.56	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	34 8.	8.99	27.24	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9	9.0	9.2	27.66	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	33 8.78	8.78	26.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	41 9.0	9.12	27.56	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	42 9.0	8.93	27.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	42	8.99	27.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	38 9.0	5 9	27.44	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(41 8.9		27.32	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	39 8.9		27.1	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(34 8.8		27.04	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	() 9.	29 8.8		27.03	543189 Delta ProfeRh	PPM
ND	84	24 ND	PASS				0	(45 9.1		27.73	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(38 8.9		27.19	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(34 8.89		27.18	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(37 8.9		27.3	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(36 8.8		27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0	(36 8.9		27.2	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0	(35		0.35	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0	(33 8.8	8.88	27.04	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0	(46 8.9		27.41	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			44 8.9		27.32	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			33 8.		26.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			38 8.9		27.09	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			28 8.8		27.21	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			9.5		27.77	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			41 9.0		27.72	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			31 8.7		26.86	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			37 8.9		27.24	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			9.0		27.45	543189 Delta Prof∈Rh	PPM
				C)	0	0				- 5.5.	12.99	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			· ·	0			46 9.1	9.08	27.68	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			36 8.89		27.05	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			39 8.9		26.95	543189 Delta Prof∈Rh	PPM
				C)	0	0			24	0.00	6.24	543189 Delta Prof∈Rh	%
				C))	0	0					13.08	543189 Delta ProfeRh	%
ND	ND	ND	PASS			· ·	0			38 8.8	8.98	27.24	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			32 8.8		27.1	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS				0			32 8.8		27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			41 8.9		27.35	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			38 8.8		27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			9.4 8.9		27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			44 9.1		27.11	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS				0			46 8.8		27.8	543189 Delta ProfeRh	PPM
110	IND	ND	PASS				0			0.0	. 5.00	27.50	543189 Delta ProfeRh	PPM
			PASS				0						543189 Delta ProfeRh	%
ND	ND	ND	PASS				0			38 8.9	8.81	27.16	543189 Delta ProfeRh	PPM
IND	טוו	ND	F A33				J	'	, 3.	0.3	, 0.01	27.10	242102 Della FIOIENII	FFIVI

ND	ND		ND	PASS			0	0	9.41	8.97	8.92	27.3	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.58	9.43	9.58	28.59	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.37	8.91	8.91	27.18	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.3	8.81	8.83	26.94	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.35	8.89	8.82	27.06	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.4	8.9	8.72	27.02	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.4	9.01	8.95	27.35	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.42	9.03	9.1	27.55	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.57	9.31	9.43	28.3	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.44	9.18	9.31	27.93	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.42	8.94	8.95	27.31	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.39	8.97	9.07	27.44	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.52	9.24	9.11	27.88	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.55	9.3	9.39	28.24	543189 Delta Prof∈Rh	PPM
					0	0	0	0	12.95			12.95	543189 Delta Prof∈Rh	%
ND	ND		ND	PASS			0	0	9.4	8.95	8.92	27.26	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	8.56			8.56	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.4	8.93	8.86	27.18	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.36	8.92	8.92	27.21	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.33	8.88	8.98	27.19	543189 Delta Prof∈Rh	PPM
	31 9 ND		ND	PASS			0	0	9.35	8.92	8.92	27.19	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.47	8.98	8.95	27.4	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.33	8.89	8.91	27.13	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.33	8.91	8.89	27.14	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.32	8.84	8.86	27.02	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.41	8.95	8.99	27.36	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.31	8.81	8.88	27	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.45	9.11	9.19	27.75	543189 Delta Prof∈Rh	PPM
				PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.41	9.04	9.04	27.49	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.35	8.87	8.89	27.12	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.5	9.14	9.24	27.88	543189 Delta Prof∈Rh	PPM
ND		75	21 ND	PASS			0	0	9.36	8.88	8.95	27.19	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.33	8.82	8.89	27.04	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.38	8.85	8.95	27.18	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.35	8.85	8.85	27.05	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.43	9.02	9.1	27.56	543189 Delta Prof∈Rh	PPM
ND	ND		ND	PASS			0	0	9.58	9.44	9.43	28.45	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.36	9.02	9.18	27.57	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.49	9.2	9.37	28.06	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.38	8.95	8.74	27.07	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.37	8.88	8.67	26.92	543189 Delta ProfeRh	PPM
ND	ND		ND	PASS			0	0	9.36	8.89	8.69	26.95	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS			0	0	9.41	8.98	8.77	27.16	543189 Delta Prof∈Rh	PPM
				0	0	0	0	13.01			13.01	543189 Delta ProfeRh	%
			PASS			0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.32	8.83	8.95	27.1	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.27	8.62	8.76	26.65	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.3	8.76	8.83	26.88	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.39	8.99	9.11	27.5	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.29	8.78	8.86	26.93	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.34	8.83	8.88	27.05	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.88	8.87	27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.63	9.45	9.5	28.59	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.32	8.84	8.98	27.14	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.42	9.01	0.50	18.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.92	9.05	27.31	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.85	8.91	27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.82	8.73	26.9	543189 Delta ProfeRh	PPM
	ND	ND ND	PASS			0	0	9.38	8.94	8.9	27.22	543189 Delta Profe Rh	PPM
ND	ND	ND				0		3.30	0.54	0.5	21.22	543189 Delta Profe Rh	
ND	ND	ND	PASS			0	0	0.47	0.14	0.16	27 77		PPM
ND	ND	ND	PASS			0	0	9.47	9.14	9.16	27.77	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.62	9.37	9.43	28.43	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.99	9.25	27.61	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.25	8.78	9.22	27.25	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.42	9.01	9.22	27.64	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.92	8.97	27.25	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.85	8.93	27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	8.99	9.13	27.52	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.27	8.75	8.95	26.97	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.3	8.8	8.89	26.99	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.41	8.98	9.19	27.59	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.42	9.05	9.31	27.77	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.33	8.9	9.33	27.55	543189 Delta Prof∈Rh	PPM
				0	0	0	0	13.01			13.01	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.4	9.09	9.22	27.71	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.3	8.77	8.82	26.9	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.83	9.07	27.26	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.4	8.95	8.97	27.33	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.35	8.77	8.84	26.96	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	9.1	9.18	27.71	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.89	9.14	27.37	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.35	8.9	9.27	27.52	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.54	9.21	9.26	28.01	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.87	9.07	27.29	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	9	9.2	27.6	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	9.12	9.42	27.9	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.42	9.11	9.25	27.79	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.92	9.08	27.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.96	9.3	27.59	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.63	9.48	9.58	28.69	543189 Delta ProfeRh	PPM
			PASS			0	0		- -			543189 Delta ProfeRh	PPM
						- J	•						

					PASS			0	0					543189 Delta Prof∈Rh	%
					PASS			0	0					543189 Delta ProfeRh	PPM
					PASS			0	0					543189 Delta ProfeRh	%
					PASS			0	0					543189 Delta ProfeRh	%
					PASS			0	0					543189 Delta ProfeRh	%
					PASS			0	0					543189 Delta ProfeRh	%
						0	0	0	0	13.09			13.09	543189 Delta ProfeRh	%
ND		ND		ND	PASS			0	0	9.38	8.97	8.93	27.29	543189 Delta ProfeRh	PPM
ND		ND		ND	PASS			0	0	9.39	9.02	9.13	27.54	543189 Delta ProfeRh	PPM
ND		ND		ND	PASS			0	0	9.53	9.27	9.23	28.03	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.39	9.01	9.06	27.45	543189 Delta Prof∈Rh	PPM
					PASS			0	0					543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.35	8.87	8.75	26.97	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.46	9.39		18.84	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.38	8.93	8.92	27.22	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.39	8.94	8.91	27.24	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.43	9.11	9.1	27.64	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.5	9.23	9.24	27.97	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.34	8.94	8.96	27.24	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.26	8.82	8.9	26.99	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.34	8.91	9.02	27.27	543189 Delta Prof∈Rh	PPM
					PASS			0	0					543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.32	8.85	8.89	27.06	543189 Delta Prof∈Rh	PPM
	30	8 ND		ND	PASS			0	0	9.27	8.75	9.02	27.05	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.3	8.8	8.79	26.88	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.29	8.76	8.9	26.96	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.28	8.8	8.9	26.98	543189 Delta ProfeRh	PPM
ND		ND		ND	PASS			0	0	9.36	8.91	9.13	27.41	543189 Delta ProfeRh	PPM
ND		ND		ND	PASS			0	0	9.37	8.7	8.73	26.79	543189 Delta ProfeRh	PPM
ND		ND		ND	PASS			0	0	9.2	8.68	8.93	26.81	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.47			9.47	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.4	9.07	9.15	27.61	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.41	8.98	9.19	27.58	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.26	8.76	8.99	27	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.5	9.15	9.28	27.93	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.42	9	9.08	27.5	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.28	8.79	8.98	27.05	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0					543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.54	9.25	9.13	27.91	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.46	9.14	9.24	27.85	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.29	8.74	8.97	27.01	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.36	8.96	9.2	27.51	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.26	8.79	9.11	27.15	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.32	8.77	8.96	27.04	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.24	8.74	8.94	26.93	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.34	8.88	9.08	27.29	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.37	8.91	8.92	27.19	543189 Delta ProfeRh	PPM
ND			71	23 ND	PASS			0	0	9.42	9.01	9.17	27.59	543189 Delta Prof∈Rh	PPM
ND		ND		ND	PASS			0	0	9.46	9.1	9.26	27.82	543189 Delta ProfeRh	PPM

ND	NE) ND	PASS	0	0	9.5	9.25	9.25	28	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.4	8.9	9.08	27.38	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.4			9.4	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.38	2.74		12.11	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.4			9.4	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	8.95			8.95	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	8.59			8.59	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	7.08			7.08	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.41			9.41	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.42	1.79		11.21	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.31	0.85		10.16	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.41	2.76		12.16	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	9.28			9.28	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	7.88			7.88	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	6.33			6.33	543189 Delta Prof∈Rh	PPM
ND	NE		PASS	0	0	5.91			5.91	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.87			4.87	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.37			4.37	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	3.31			3.31	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.92			4.92	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	5.35			5.35	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	6.87			6.87	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	3.83			3.83	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.92			4.92	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.9			4.9	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.35			4.35	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	6.41			6.41	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	6.5			6.5	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	4.41			4.41	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	7.97			7.97	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.42			9.42	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	_	3.12			3.12	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	•	9.11			9.11	543189 Delta ProfeRh	PPM
ND	NE		PASS	0		3.11			3.11	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.48	9.12	9.09	27.69	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.33	8.89	8.92	27.13	543189 Delta ProfeRh	PPM
110	27 8 NE		PASS	0	0	9.27	8.74	8.79	26.8	543189 Delta ProfeRh	PPM
ND	NE NE		PASS	0	0	9.66	0.7 -1	0.75	9.66	543189 Delta ProfeRh	PPM
,,,,		, , , , , ,	PASS	0	0	3.00			3.00	543189 Delta ProfeRh	PPM
ND	NE) ND	PASS	0	0	9.52	9.2	9.22	27.94	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.33	8.89	8.91	27.13	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.31	8.8	8.78	26.89	543189 Delta ProfeRh	PPM
ND	NE		PASS	0	0	9.3	8.79	8.7	26.8	543189 Delta ProfeRh	PPM
ND	NE		PASS		0	9.27	8.71	8.72	26.7	543189 Delta ProfeRh	PPM
ND	NE		PASS		0	9.38	8.93	8.99	27.3	543189 Delta ProfeRh	PPM
ND	NE		PASS		0	9.33	8.85	8.92	27.3	543189 Delta ProfeRh	PPM
ND	NE		PASS		0	9.36	8.93	8.99	27.1	543189 Delta ProfeRh	PPM
ND	NE		PASS		0	9.36	8.92	8.94	27.23	543189 Delta ProfeRh	PPM
ND	NE		PASS	0		9.33	8.83	8.94	27.23	543189 Delta ProfeRh	PPM
ND	INL	, ND	rass	U	U	5.33	0.03	0.34	۷/.1	2-2103 DEITO LIDIEUII	FFIVI

ND	ND	ND	PASS			0	0	9.46	9.14	9.18	27.77	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.48	9.45	9.42	28.35	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.39	8.95	8.99	27.32	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.95	8.91	27.23	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.31	8.73	8.74	26.78	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.45	9.01	8.94	27.41	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.32	8.86	8.98	27.17	543189 Delta Prof∈Rh	PPM
				0	0	0	0	13			13	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.38	8.95	8.76	27.09	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.93	8.79	27.09	543189 Delta Prof∈Rh	PPM
				0	0	0	0	6.36			6.36	543189 Delta Prof∈Rh	%
				0	0	0	0	13.35			13.35	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.37	8.93	8.78	27.08	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.38	8.91	8.76	27.06	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.3	8.8	9.05	27.15	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.41	8.91	8.92	27.24	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.94	9.23	27.54	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.35	8.79	8.82	26.97	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.37	8.78	8.71	26.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.42	9.18	9.14	27.74	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	• • • •				543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.86	8.92	27.12	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.63	8.96	8.96	27.54	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.25	8.68	8.78	26.71	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.32	8.75	8.86	26.94	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.44	00	0.00	9.44	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.3	8.76	8.78	26.84	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.46	8.88	0.70	18.34	543189 Delta ProfeRh	PPM
112	115	11.5	PASS			0	0	0	0.00		0	543189 Delta ProfeRh	PPM
			PASS			0	0	Ü			ŭ	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.89	8.92	27.17	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	3.30	0.03	0.32	2,.1,	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	8.9	8.93	27.22	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.9	8.96	27.23	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.42	9.01	8.98	27.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	8.94	8.92	27.27	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.45	9.08	9.36	27.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	1.37	3.00	3.30	1.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.91	9.01	27.29	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.89	8.79	27.04	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	1.36	0.03	0.75	1.36	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.46	9.05	8.95	27.46	543189 Delta ProfeRh	PPM
ND	ND ND	ND	PASS			0	0	9.41	8.93	8.89	27.40	543189 Delta ProfeRh	PPM
ND	IND	IND	PASS			0	0	J. ↑ 1	0.93	0.03	21.23	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			n	0	9.38	8.91	8.77	27.06	543189 Delta ProfeRh	PPM
ND	ND ND	ND ND	PASS			0	0	9.35	8.52	0.77	17.86	543189 Delta ProfeRh	PPM
		ND ND	PASS			0	0	9.39	8.96	8.89	27.24	543189 Delta ProfeRh	PPM
ND	ND	טויו	PASS			U	U	3.33	0.90	0.09	21.24	242TO2 DEITY LIGIEKIJ	PPIVI

ND	ND	ND	PASS			0	0	9.4	8.96	8.98	27.34	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.79	8.81	26.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.65	8.91	8.85	27.4	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	0.51	0.03	9.43	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.32	8.79	8.82	26.94	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.89	8.88	27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.51	9.19	9.1	27.8	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.94	2.46	20.79	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.31	8.8	8.85	26.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.84	8.92	27.08	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.3	8.86	9.05	27.21	543189 Delta ProfeRh	PPM
ND	ND	ND	1733	0	0	0	0	13.02	0.00	5.05	13.02	543189 Delta ProfeRh	%
ND	ND	ND	PASS	Ŭ	Ü	0	0	6.97			6.97	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.07			8.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	4.75		14.15	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	4.47	, 3		4.47	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	5.95			5.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	2.77		12.21	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.99	2.,,		8.99	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38			9.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.54			8.54	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	5.45			5.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	5.12		14.5	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.84	8.89	27.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.82	8.88	27.04	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.88	8.92	27.14	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.49	9.19	9.11	27.79	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.27	8.74	8.99	27.73	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	9.03	9.15	27.57	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	9.01	9.19	27.55	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	8.92	8.61	26.91	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.81	8.33	26.47	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	8.91	8.55	26.85	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	8.94	8.66	27	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.84	8.52	26.71	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.31	8.87	8.84	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.49	9.13	9.17	27.8	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.9	9.01	27.27	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.38	8.89	8.9	27.17	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.37	8.83	8.89	27.08	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.33	8.75	8.89	26.96	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.29	8.77	8.87	26.93	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.79	8.88	27.04	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.31	8.8	8.86	26.97	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.47	8.96	9.05	27.48	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.57	9.32	9.42	28.31	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.29	8.73	8.7	26.72	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0					543189 Delta Prof∈Rh	PPM

				DAGG	•	•					542400 D II D (DI	2214
				PASS	0	0					543189 Delta ProfeRh	PPM
				PASS	0	0					543189 Delta Prof∈Rh	PPM
				PASS	0	0					543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0					543189 Delta Prof∈Rh	PPM
				PASS	0	0					543189 Delta Prof∈Rh	PPM
				PASS	0	0					543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0					543189 Delta Prof∈Rh	PPM
				PASS	0	0					543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.65	9.48	9.35	28.48	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	5.42			5.42	543189 Delta ProfeRh	PPM
	28	8 ND	ND	PASS	0	0	9.28			9.28	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	5.44			5.44	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	7.41			7.41	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.28	8.72	8.68	26.68	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.3	8.81	8.85	26.97	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.3	8.72	8.85	26.87	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.62	9.43	9.39	28.43	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	5.02	55	3.33	_00	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.41	8.99	9.08	27.48	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	3.11	0.55	3.00	27.40	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.55	9.26	9.28	28.09	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.33	8.86	5.20	18.19	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.48	9.09	9.18	27.75	543189 Delta ProfeRh	PPM
ND			ND	PASS	0		9.35	9.0 <i>9</i> 8.87		27.75	543189 Delta ProfeRh	PPM
ND		ND	ND ND	PASS	0	0	9.33	8.75	8.94		543189 Delta ProfeRh	PPIVI
		ND			0	0			8.96	27.01		
ND		ND	ND	PASS	0	0	9.38	8.94	8.98	27.3	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.41	9.02	9.06	27.49	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	8.1	0.20	0.24	8.1	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.53	9.28	9.34	28.15	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.56	9.09	9.11	27.76	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.6	9.36	9.39	28.34	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.73	9.36	7.55	26.65	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.35	8.78	8.85	26.98	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.39	8.92	8.99	27.29	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.34	8.84	8.91	27.09	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.44	9.07	9.06	27.57	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.26	8.81	9.04	27.12	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.54	9.21	9.28	28.03	543189 Delta Prof∈Rh	PPM
	36	10 ND	ND	PASS	0	0	9.41	9.09	9.3	27.8	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.41	8.94	8.99	27.35	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.34	8.83	8.99	27.15	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.4	8.98	8.97	27.35	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	9.54	9.26	9.27	28.06	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.37	8.94	9.1	27.4	543189 Delta Prof∈Rh	PPM
ND		ND	ND	PASS	0	0	1.36			1.36	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.43	9.04		18.47	543189 Delta ProfeRh	PPM
				PASS	0	0					543189 Delta ProfeRh	%
ND		ND	ND	PASS	0	0	9.43	9.04	9.24	27.7	543189 Delta ProfeRh	PPM
ND		ND	ND	PASS	0	0	9.42	8.92	9.04	27.38	543189 Delta Prof∈Rh	PPM

				0	0	0	0	6.27			6.27	543189 Delta Prof∈Rh	%
				0	0	0	0	13.01			13.01	543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.36	8.89	9.09	27.34	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.34	8.92	8.98	27.25	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	9.06	9.09	27.57	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.88	8.87	27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	1.86			1.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.85	8.94	27.16	543189 Delta ProfeRh	PPM
			PASS			0	0					543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.31	8.83	8.9	27.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.27	8.66	8.72	26.66	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	4.39			4.39	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.53	9.38	9.46	28.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.4	9	9.08	27.48	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0					543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.45	9.07	9.06	27.59	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.34	8.85	8.87	27.06	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.53	9.24	9.3	28.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.84	8.85	27.02	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.49	9.19	9.22	27.9	543189 Delta ProfeRh	PPM
			PASS			0	0					543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.52	9.14	9.18	27.84	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.42	8.95		18.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.93	9.1	27.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0					543189 Delta ProfeRh	PPM
				0	0	0	0	13.03			13.03	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.29	8.75	8.88	26.92	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.38	8.88	8.96	27.22	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.33	8.83	8.91	27.07	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.32	8.84	8.99	27.15	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.27	8.74	8.85	26.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.31	8.82	8.83	26.96	543189 Delta ProfeRh	PPM
				0	0	0	0	13.06			13.06	543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	5.33			5.33	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.02			8.02	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.3			9.3	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	7.1			7.1	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	4.38			4.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	0.04	0.07	9.37	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.4	8.94	9.07	27.41	543189 Delta Profe Rh	PPM
ND ND	ND ND	ND ND	PASS			0	0	9.38	8.95	9.18	27.51	543189 Delta Profe Rh	PPM
ND ND	ND ND	ND ND	PASS			0	0	9.44	9.06	9.24	27.73	543189 Delta Profe Rh	PPM
ND ND	ND ND	ND ND	PASS PASS			0	0	9.42 7.96	2.29		11.71 7.96	543189 Delta ProfeRh 543189 Delta ProfeRh	PPM PPM
ND ND	ND ND					0	0					543189 Delta ProfeRh	
ND ND	ND ND	ND ND	PASS			0	0	9.52 8.12			9.52	543189 Delta ProfeRh	PPM
ND ND	ND ND	ND ND	PASS			0	0	8.12 6.42			8.12		PPM
ND	ND	ND	PASS			0	0	6.42			6.42	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS	0	0	7			7	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.42	2.27		11.68	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	6.54			6.54	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.43			9.43	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.49	8.81		18.3	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.54	9.24	9.28	28.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.4	8.97	9.09	27.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.38	9.05	9.24	27.67	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.19			9.19	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.44	1.27		10.71	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.92			3.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.39			5.39	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.32	1.83		11.14	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.37	8.91	9	27.28	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	0.82			0.82	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.33	8.74		18.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.33	8.88	8.98	27.19	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.34	8.81	8.95	27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.34	8.94	9.07	27.36	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	4.88			4.88	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	3.4			3.4	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	2.93			2.93	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	7.74			7.74	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.88			4.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.96			5.96	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.46			7.46	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.06			5.06	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.48			7.48	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.94			4.94	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.57			7.57	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.54			9.54	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	6.94			6.94	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.55	5.83		15.38	543189 Delta Prof∈Rh	PPM
			PASS	0	0					543189 Delta ProfeRh	PPM
			PASS	0	0					543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.36	8.86	8.89	27.11	543189 Delta ProfeRh	PPM
			PASS	0	0					543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.56	9.33	9.23	28.12	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.27	8.75	8.77	26.79	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	7.56			7.56	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	6.53			6.53	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	8.11			8.11	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.44			5.44	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.31	8.89	8.92	27.12	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.34	8.9	8.98	27.21	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.35	8.9	8.99	27.25	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.33	8.76	8.77	26.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.36	8.9	9	27.27	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS			0	0	8.57			8.57	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	4.86			4.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	7.45			7.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.98			8.98	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.39	9.02	9.21	27.62	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.48	9.17	9.27	27.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.91	9.16	27.42	543189 Delta Prof∈Rh	PPM
			PASS			0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	6.96			6.96	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	4.41			4.41	543189 Delta Prof∈Rh	PPM
				0	0	0	0	13.14			13.14	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS			0	0	9.38	8.93	8.76	27.08	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.36	8.88	8.78	27.01	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.39	8.95	8.74	27.07	543189 Delta Prof∈Rh	PPM
				0	0	0	0	6.3			6.3	543189 Delta ProfeRh	%
				0	0	0	0	13.07			13.07	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS	•	•	0	0	9.39	8.94	8.8	27.13	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.47	9.15	9.01	27.63	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.49	1.32	3.01	10.81	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.49	9.01	8.95	27.46	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.91	8.88	27.16	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.31	8.86	8.94	27.11	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.84	8.85	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.47	9	8.85	27.32	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	8.98	8.9	27.32	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	8.85	8.83	27.02	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	3.34	0.03	0.03	27.02	543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.4	8.96	8.99	27.35	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.34	8.83	8.84	27.01	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	0.33	0.03	0.04	0.33	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	_	9.32	0 07	8.88		543189 Delta ProfeRh	PPM
ND	ND ND	ND ND	PASS			0	0 0		8.87 9.09	9.12	27.07 27.7	543189 Delta ProfeRh	PPM
						•	-	9.49					
ND	ND	ND	PASS			0	0	9.42	8.97	9	27.39	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	0.82	0.02	0.00	0.82	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.31	8.83	8.93	27.07	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS			0	0	9.45	9.01	9.01	27.47	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.43	8.99	9.04	27.47	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.87	9	27.23	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.91	8.94	27.23	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.35	8.93	8.97	27.24	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0					543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	9.06			9.06	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	6.96			6.96	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	5.4			5.4	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	6.43			6.43	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	6.03			6.03	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	5.93			5.93	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	6.53			6.53	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	4.18		13.55	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS	0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.48			9.48	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.69			7.69	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.31			9.31	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.98			5.98	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.05			7.05	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	4.61			4.61	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.45			4.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	6.98			6.98	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.58			7.58	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.42			9.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.36			3.36	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.45			4.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.95			3.95	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.36	8.85	5.48	23.69	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	9.29	8.79	8.97	27.04	543189 Delta Prof∈Rh	PPM
			PASS	0	0					543189 Delta Prof∈Rh	%
ND	ND	ND	PASS	0	0	9.33	8.88	8.92	27.13	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	5.38	0.00	0.52	5.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	7.63			7.63	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.46			4.46	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.3	8.82	8.95	27.08	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.27	8.74	8.86	26.87	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.39	8.83	8.85	27.07	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.35	8.85	8.89	27.09	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.55	0.05	0.05	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.57	9.28	9.32	28.17	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.61	9.17	9.17	27.94	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.56	9.06	9.01	27.63	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.30	3.00	9.01	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0					543189 Delta ProfeRh	%
ND	ND	ND	PASS	0	0	8.59			8.59	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.36	8.93	8.96	27.25	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.29	8.76	8.88	26.93	543189 Delta ProfeRh	PPM
ND	74	24 ND	PASS	0	0	9.4	9.06	9.18	27.64	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.27	8.78	8.98	27.04	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.31	8.79	8.95	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.44	9.06	9.36	27.87	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.51	9.02	9.30	18.53	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.29	8.77	8.89	26.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.23	0.77	0.03	20.33	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	9.32			9.32	543189 Delta ProfeRh	PPM
			PASS	0	0	9.38	8.91	9.03	27.32	543189 Delta ProfeRh	PPM
ND ND	ND ND	ND ND	PASS	0	0	9.36	8.91 8.84	9.03 8.94	27.32 27.14	543189 Delta ProfeRh	
ND ND	ND ND	ND ND		0	•	3.30	0.04	0.54	27.14		PPM
ND ND	ND ND	ND ND	PASS	0	0	0.40	0.1	0.16	27 75	543189 Delta Profe Rh	PPM
ND ND	ND ND	ND ND	PASS	0	0	9.49	9.1	9.16	27.75	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS	0	0	9.56	9.07	9.05	27.68	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS	0	0	Г 40			F 40	543189 Delta Profe Rh	PPM
ND	ND	ND	PASS	U	0	5.49			5.49	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS		0	0	5.48			5.48	543189 Delta Prof∈Rh	PPM
				0 0	0	0	12.97		1	2.97	543189 Delta Prof∈Rh	%
ND	ND	ND	PASS		0	0	9.39	0.3	!	9.69	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.46	0.86	1	0.31	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	5.98			5.98	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.46	3.27	1	2.73	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	8.43			3.43	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.04			5.04	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.49	2.81	1	2.31	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.34	0.79	1	0.12	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.36	8.88	9.09 2	7.33	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.31	8.83	8.96 2	7.11	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.31	8.87	9.07 2	7.24	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.3	8.77	9.03 2	7.11	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.36	8.84	8.99 2	7.19	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.32	8.89	9.04 2	7.25	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	7.99			7.99	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	2.87			2.87	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.47			5.47	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.46			5.46	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.54			5.54	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	5.37			5.37	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	5.54			5.54	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.39			5.39	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.29	5.16	1	1.45	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.92			5.92	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	7.21			7.21	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	7			7	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.48			5.48	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.38		!	9.38	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	4.41			1.41	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.42	0.8	1	0.21	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.99			3.99	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	8.82			3.82	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	6.45			5.45	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	4.02			1.02	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	4.68			1.68	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	4.6			4.6	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	5.97			5.97	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	2.38			2.38	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	2.38			2.38	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.11			3.11	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	2.9			2.9	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.97			3.97	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.9			2.9	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.88			2.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.97			3.97	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.42			3.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.01			1.01	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS	0	0	2.89	2.89	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	2.88	2.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.86	2.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.37	2.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.43	3.43	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.92	2.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.87	2.87	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.94	3.94	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.61	4.61	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.4	3.4	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.89	2.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.64	3.64	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.38	2.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.41	2.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.38	2.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.9	3.9	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.92	2.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.88	2.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.43	3.43	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.45	4.45	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.42	3.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.42	2.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.17	5.17	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.42	4.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.96	3.96	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	5.14	5.14	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	4.52	4.52	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	5.45	5.45	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	2.9	2.9	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	4.03	4.03	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	3.38	3.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.37	2.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.58	3.58	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.92	3.92	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	3.9	3.9	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	2.36	2.36	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	1.95	1.95	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	2.89	2.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.48	3.48	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0			543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	3.89	3.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.97	3.97	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	4.37	4.37	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS	0	0	7.49	7.49	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.35	2.35	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.41	3.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	3.91	3.91	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	2.38	2.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS	0	0	4.41	4.41	543189 Delta ProfeRh	PPM
	.10	1,5		-	· ·		7.71	2.0200 2010110101011	

ND	ND	ND	PASS		0	0	2.38			2.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.92			2.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.38			3.38	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.37			2.37	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.34			2.34	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	1.87			1.87	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.49			4.49	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.41			4.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.86			2.86	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.19			4.19	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.96			4.96	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	1.93			1.93	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.06			3.06	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.92			2.92	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.4			4.4	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.39			3.39	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.63			3.63	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.05			3.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.43			4.43	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.41			4.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0					543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	7.12			7.12	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.47			3.47	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.41			2.41	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.03			4.03	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.36			3.36	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.95			4.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	5.44			5.44	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	5.91			5.91	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.89			3.89	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.85			2.85	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	4.56			4.56	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.88			3.88	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.84			2.84	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	5.06			5.06	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	3.89			3.89	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS		0	0	9.37	8.92	8.84	27.12	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	9.42	4.22		13.64	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.87			3.87	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.34			3.34	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	5.2			5.2	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.42			3.42	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	6.19			6.19	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.95			3.95	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.91			3.91	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	2.4			2.4	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	3.39			3.39	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS		0	0	7.12			7.12	543189 Delta ProfeRh	PPM

ND	ND	ND	PASS			0	0	4.93			4.93	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.33	8.88	5.44	23.65	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	3.42			3.42	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	4.71			4.71	543189 Delta Prof∈Rh	PPM
ND	ND	ND	PASS			0	0	3.93			3.93	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	4.59			4.59	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	2.91			2.91	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	8.77			8.77	543189 Delta ProfeRh	PPM
				0	0	0	0	13.08			13.08	543189 Delta ProfeRh	%
ND	ND	ND	PASS			0	0	9.37	8.94	8.73	27.03	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.36	8.93	8.72	27.01	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.94	8.72	27.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.37	8.91	8.71	26.99	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.38	8.92	8.76	27.05	543189 Delta ProfeRh	PPM
ND	ND	ND	PASS			0	0	9.41	8.98	8.79	27.17	543189 Delta ProfeRh	PPM

LBP Result LPB Concer LPB Error 3rd Match Ambient Pt PD Concen PD Error	Surface Pb Surface Pb Surface Pb Metho	d Na User Facto LO	D Sigma Au Karat					c S Collimated
982			3	36475	144	320	870 Passed	Unknown
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
980			3	35922	145	320	870 Passed	Unknown
980	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
979	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
300	Soil	Factory De	3					No
	Soil	Factory-De	3					No
981	Soil		3					
		Factory-De						No No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3	26525	4.4.4	220	070 Danad	No
981	6.11	.	3	36525	144	320	870 Passed	Unknown
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
981			3	36244	144	320	870 Passed	Unknown
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
983	Soil	Factory-De	3					No
		-						

983	Soil	Factory-De	3					No
983	Soil	Factory-De	3					No
983	Soil	Factory-De	3					No
983	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
982	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
981	Soil	Factory-De	3					No
980			3	36724	144	320	870 Passed	Unknown
300	Soil	Factory-De	3	30721		320	0,0 T assea	No
975	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil		3					No
974		Factory-De						
974	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
			3					No
974	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
974			3	33897	144	320	870 Passed	Unknown
			3					No
975	Soil	Factory-De	3					No
		•	3					No
975			3	22195	144	320	870 Failed	Unknown
975			3	27665	146	320	870 Failed	Unknown
975			3	36916	144	320	870 Passed	Unknown
			-	•		- 		

975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
975	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
974	Soil	Factory-De	3					No
973	Soil	Factory-De	3					No
979	3011	ractory De	3	37459	144	320	870 Passed	Unknown
979	Soil	Factory-De	3	37 133	± 1 1	320	070103360	No
979	Soil	Factory-De	3					No
979	Soil	Factory-De	3					No
967	3011	ructory DC	3	24590	144	320	870 Failed	Unknown
967			3	37931	144	320	870 Passed	Unknown
966	Soil	Factory-De	3	37331	144	320	670 T 833C4	No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil							No
966	Soil	Factory Do	3 3					No
966	Soil	Factory Do						
300	Soil	Factory Do	3					No No
	2011	Factory-De	3					No
066	Coil	Factory Do	3					No No
966	Soil	Factory-De	3					No

966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
966	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
969	3011	ractory-be	3	38161	144	320	870 Passed	Unknown
969	Soil	Factory Do	3	30101	144	320	670 Fasseu	No
909	Soil	Factory-De						No
060		Factory-De	3					
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
0.00	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No
980	Soil	Factory-De	3					No

980	Soil	Factory-De	3					No
967		,	3	36578	143	320	870 Passed	Unknown
	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
967	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968			3	37144	144	320	870 Passed	Unknown
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No No
969 969	Soil Soil	Factory-De	3					No No
202		Factory-De	3					No No
	Soil	Factory-De	3					No

			3					No
	Soil	Factory-De	3					No
			3					No
			3					No
			3					No
			3					No
968			3	36065	145	320	870 Passed	Unknown
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
968	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
970	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
969	Soil	Factory-De	3					No
303	3011	i actory-De	J					INO

969	Soil	Fa	ictory-De 3	3 No	2
969	Soil	Fa	ctory-De 3	3 No)
969	Soil	Fa	ctory-De 3	3 No	2
969	Soil	Fa	ctory-De 3	3 No	2
969	Soil	Fa	ctory-De 3	3 No	2
969	Soil	Fa	ctory-De 3	3 No	2
969	Soil	Fa	ctory-De 3	3 No	2
969	Soil	Fa		3 No	2
969	Soil	Fa		3 No	2
970	Soil	Fa	ctory-De 3	3 No	2
970	Soil	Fa	ctory-De 3	3 No	2
970	Soil	Fa	ctory-De 3	3 No	2
970	Soil	Fa		3 No	2
970	Soil	Fa	ctory-De 3	3 No	2
970	Soil	Fa		3 No	2
970	Soil	Fa	ctory-De 3	3 No	2
970	Soil			3 No	2
970	Soil	Fa		3 No	2
970	Soil			3 No	
970	Soil			3 No	2
970	Soil	Fa		3 No	
970	Soil			3 No	
970	Soil			3 No	
969	Soil			3 No	
969	Soil			3 No	
969	Soil			3 No	
969	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
	Soil			3 No	
957	Soil			3 No	2
	Soil			3 No	
956	Soil			3 No	
956	Soil			3 No	
956	Soil			3 No	
957	Soil			3 No	
	Soil			3 No	
956	Soil			3 No	
956	Soil		ictory-De 3		
956	Soil			3 No	
956	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
957	Soil			3 No	
	3611	. α		-	

95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
95	7	Soil	Factory-De	3					No
98	3			3	37312	143	320	870 Passed	Unknown
98	4	Soil	Factory-De	3					No
98	4	Soil	Factory-De	3					No
98	7			3	23624	144	320	870 Failed	Unknown
98	7			3	29235	144	320	870 Passed	Unknown
98	7	Soil	Factory-De	3					No
98	7	Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
			, -	3					No
96	1	Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
		Soil	Factory-De	3					No
		Soil	Factory-De	3					No
96	0	Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
50	-	Soil	Factory-De	3					No
96	1	Soil	Factory-De	3					No
50	-	Soil	Factory-De	3					No
96	1	Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De	3					No
96		Soil	Factory-De Factory-De	3					No
96		Soil							No
90	J		Factory Do	3					No
96	0	Soil	Factory Do	3 3					No No
96		Soil Soil	Factory Do						No No
			Factory Do	3					
96	U	Soil	Factory-De	3					No

ç	60	Soil	Factory-De	3					No
ç	60	Soil	Factory-De	3					No
ç	60	Soil	Factory-De	3					No
ç	60	Soil	Factory-De	3					No
ç	60	Soil	Factory-De	3					No
g	60	Soil	Factory-De	3					No
g	60	Soil	Factory-De	3					No
	60	Soil	Factory-De	3					No
	60	Soil	Factory-De	3					No
	60	Soil	Factory-De	3					No
g	61	Soil	Factory-De	3					No
	61		•	3	37207	144	320	870 Passed	Unknown
	61	Soil	Factory-De	3					No
	61	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62								
	62	Soil Soil	Factory Do	3					No No
5	UZ		Factory Do	3					
,	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
	62	Soil	Factory-De	3					No
٢	62	Soil	Factory-De	3					No
		Soil	Factory-De	3					No

	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
962	Soil	Factory-De	3	No
962	Soil	Factory-De	3	No
962	Soil	Factory-De	3	No
962	Soil	Factory-De	3	No
962	Soil	Factory-De	3	No
963	Soil	Factory-De	3	No
963	Soil	Factory-De		No
963	Soil	Factory-De	3	No
963	Soil	Factory-De	3	No
	Soil	Factory-De	3	No
963	Soil	Factory-De		No
	Soil	Factory-De	3	No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De	3	No
963	Soil	Factory-De		No
962	Soil	Factory-De		No
963	Soil	Factory-De	3	No
963	Soil	Factory-De	3	No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De	3	No
963	Soil	Factory-De	3	No
963	Soil	Factory-De	3	No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
963	Soil	Factory-De		No
				No
963	Soil	Factory-De		No
963	Soil	Factory-De	3	No

960			3	27328	144	320	870 Failed	Unknown
960			3	36981	144	320	870 Passed	Unknown
961	Soil	Factory-De	3					No
			3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
		·	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
		·	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
998			3	37086	144	320	870 Passed	Unknown
998	Soil	Factory-De	3					No
998	Soil	Factory-De	3					No
998	Soil	Factory-De	3					No
998	Soil	Factory-De	3					No
998	Soil	Factory-De	3					No
998	Soil	Factory-De	3					No
950		-	3	36604	143	320	870 Passed	Unknown
951	Soil	Factory-De	3					No
952	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
953	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
955	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
		•						

954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De		No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
954	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
953	Soil	Factory-De	3	No
	Soil	Factory-De		No
953	Soil	Factory-De	3	No
953	Soil	Factory-De		No
953	Soil	Factory-De		No
	Soil	Factory-De		No
	Soil	Factory-De		No
954	Soil	Factory-De		No
	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De		No
954	Soil	Factory-De	3	No

954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	, Factory-De	3					No
	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
954	Soil	Factory-De	3					No
984			3	36659	144	320	870 Passed	Unknown
984	Soil	Factory-De	3	00000		0_0	0701.0000	No
984	Soil	Factory-De	3					No
984	Soil	Factory-De	3					No
982	3011	ractory be	3	22416	144	320	870 Failed	Unknown
982			3	38165	144	320	870 Passed	Unknown
982	Soil	Factory-De	3	36103	144	320	670 F asseu	No
982	Soil	Factory-De						No
959	Soil		3					No
		Factory-De	3					
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
			3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
959	Soil	Factory-De	3					No
	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	Factory-De	3					No
960	Soil	, Factory-De	3					No
960	Soil	Factory-De	3					No
		•						

	Soil	Factory-De	3	No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
		,		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
300	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
500	Soil	Factory-De		No
	3011	ractory De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De Factory-De		No
960	Soil	Factory-De		No
500	Soil	Factory-De Factory-De		No
960	Soil			
		Factory Do		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
000	Soil	Factory-De		No
960	Soil	Factory-De		No
960	Soil	Factory-De		No
000	Soil	Factory-De		No
960	Soil	Factory-De	3	No

960	Soil	Factory-De	3					No
947			3	38411	144	320	870 Passed	Unknown
949	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
951	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
950	Soil	Factory-De	3					No
330	3011	. 4010. 7 DC	•					. 10

950	Soil	Fa	ctory-De 3	3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil	Fa	ctory-De 3	3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	0
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil		•	3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil		•	3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
950	Soil			3 N	
550	3011	1 0	ictory DC	- IV	5

950	Soil	Factory-De	3	No
950	Soil	Factory-De	3	No
950	Soil	Factory-De	3	No
950	Soil	Factory-De	3	No
950	Soil	Factory-De	3	No
950	Soil	Factory-De		No
950	Soil	Factory-De	3	No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De	3	No
950	Soil	Factory-De	3	No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
950	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
949	Soil	Factory-De		No
971	Soil	Factory-De		No
971	Soil	Factory-De		No
971	Soil	Factory-De		No
971	Soil	Factory-De		No
971	Soil	Factory-De		No
972	Soil	Factory-De		No
972	Soil	Factory-De		No
972	Soil	Factory-De		No
972	Soil	Factory-De		No
972	Soil	Factory-De		No
972	Soil	Factory-De		No
		. 3.000. , 20	-	

972	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
973	Soil	Factory-De	3					No	
373								• • •	
979		,	3	37781	144	320	870 Passed	Unknown	
	Soil	Factory-De		37781	144	320	870 Passed		
979			3	37781	144	320	870 Passed	Unknown	
979 979	Soil	Factory-De	3 3	37781	144	320	870 Passed	Unknown No	
979 979 979	Soil Soil	Factory-De Factory-De	3 3 3	37781	144	320	870 Passed	Unknown No No	
979 979 979 979	Soil Soil Soil	Factory-De Factory-De Factory-De	3 3 3 3	37781	144	320	870 Passed	Unknown No No No	
979 979 979 979 979	Soil Soil Soil Soil	Factory-De Factory-De Factory-De Factory-De	3 3 3 3 3	37781	144	320	870 Passed	Unknown No No No No	

Photograph 1. Portal area at SR-01

Photograph 2. View of adit at SR01

Saddle Rock Natural Area Wenatchee, Washington

Photographs 1-2

Photograph 3. Flat bench atop waste rock pile at SR01 (looking northeast)

Photograph 4. Looking downslope (southeast) toward waste rock pile at SR01

Saddle Rock Natural Area Wenatchee, Washington

Photographs 3-4

Photograph 5. View northwest from downslope sample location SR01-DS-07 . Total arsenic was identified with the XRF as high as 118 ppm at this location.

Photograph 6. Upslope sample location SR01-US-03. Total arsenic ranged from $\,71-73$ ppm at this location with the XRF.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 5-6

Photograph 7. View northeast toward sealed adit at SR02

Photograph 8. Upslope sample location SR02-US-02 (view south). Total arsenic was between 18-26 ppm at this location.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 7-8

Photograph 9. Looking south toward waste rock pile at SR02

Photograph 10. Downslope sample location SR02-DS-03 (view northwest). Total arsenic ranged from 24-26 ppm at this location.

Site Photographs

Saddle Rock Natural Area Wenatchee, Washington

Photographs 9-10

Photograph 11. Looking south toward waste rock pile at SR03

Photograph 12. Upslope sample location SR03-US-05 (view west). Total arsenic ranged from 21-101 ppm at this location.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 11-12

Photograph 13. Downslope sample location SR03-DS-06 (looking southeast). Total arsenic was between 23-26 ppm at this location.

Photograph 14. Base of the waste rock pile (northern edge) at SR03-DS-08. Total arsenic was identified as high as 101 ppm with the XRF at this location.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 13-14

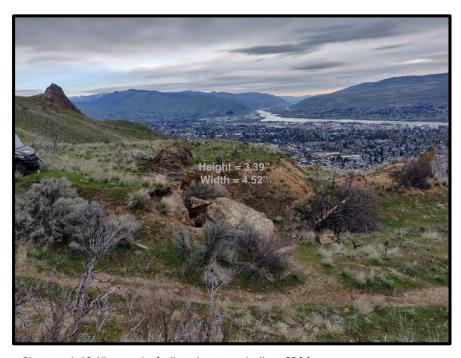
Photograph 15. Downslope berm vegetated with bunchgrass and western serviceberry below waste rock pile at SR03 (looking south). Total arsenic was identified with the XRF up to 138 ppm in the berm.

Photograph 16. Downslope berm vegetated with bunchgrass below waste rock pile at SR03 (looking west) $\,$

Saddle Rock Natural Area Wenatchee, Washington

Photographs 15-16

Photograph 17. Shallow adit/exploratory hole at SR04



Photograph 18. View inside adit at SR04. The depth did not likely exceed 6 feet

Saddle Rock Natural Area Wenatchee, Washington

Photographs 17-18

Photograph 19. View south of adit and waste rock pile at SR04

Photograph 20. Waste rock at SR04

Saddle Rock Natural Area Wenatchee, Washington

Photographs 19-20

Photograph 21. Downslope sample location SR04-DS-01 (view south) Total arsenic was identified with the XRF up to 94 ppm at this location

Photograph 22. View downslope (looking north) from waste rock pile at SR04 $\,$

Saddle Rock Natural Area Wenatchee, Washington

Photographs 21-22

Photograph 23. Downslope berm at SR04 vegetated with bunchgrass (view north). Total arsenic was measured with the XRF as high as $160 \ \text{ppm}$ in the berm.

Photograph 24. Waste rock pile at SR05 (view northeast)

Saddle Rock Natural Area Wenatchee, Washington

Photographs 23-24

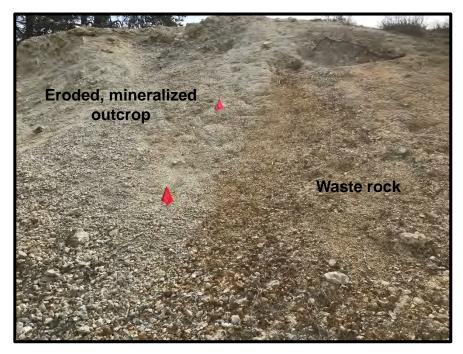
Photograph 25. Downslope toe of the waste rock pile at SR05 (view south)

Photograph 26. Looking downslope (north) from the waste rock pile at SR05 $\,$

Saddle Rock Natural Area Wenatchee, Washington

Photographs 25-26

Photograph 27. Downslope sample location SR05-DS-02. Total arsenic ranged from 55-69 ppm with the XRF


Photograph 28. Upslope sample location SR05-US-04. Total arsenic measured between 174-699 ppm. Data were omitted from statistical analysis due to apparent mineralization.

Site Photographs

Saddle Rock Natural Area Wenatchee, Washington

Photographs 27-28

Photograph 29. Waste rock delineation at SR05. The waste pile limits were determined from observations and XRF confirmation. Eroded mineralized material to the left was not considered waste rock.

Photograph 30. Looking east toward eroded, mineralized outcrop (not included in the waste rock delineation) near SR05 $\,$

Saddle Rock Natural Area Wenatchee, Washington

Photographs 29-30

Photograph 31. Road cut at SR06 (view northeast)

Photograph 32. View north toward upslope sample location SR06-US-07. Note the eroded surficial material. XRF readings in the location were as high as 728 ppm for total arsenic.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 31-32

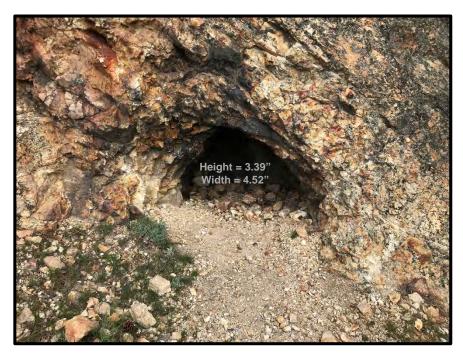
Photograph 33. Looking north toward upslope sample location SR06-US-16. Note the eroded surficial material. XRF readings identified total arsenic as high as 301 ppm.

Photograph 34. View north toward upslope sample location SR06-US-12. This location was situated to the southeast of the apparent mineralized area and contained total arsenic ranging from 21-31 ppm.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 33-34

Photograph 35. View northeast toward downslope sample location SR06-DS-07. Note the eroded surficial material. XRF readings identified total arsenic as high as 675 ppm.

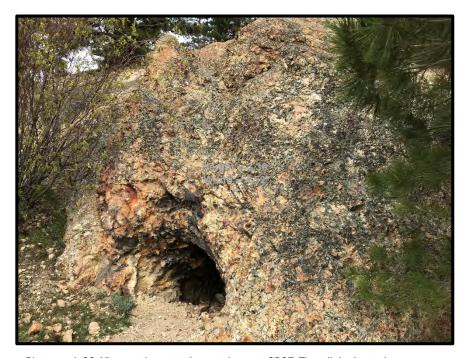


Photograph 36. Downslope sample location SR06-DS-15 was situated well outside any apparent anthropogenic impacts. This location contained total arsenic as high as 266 ppm.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 35-36

Photograph 37. Shallow adit/exploration at SR07



Photograph 38. View inside shallow adit at SR07

Saddle Rock Natural Area Wenatchee, Washington

Photographs 37-38

Photograph 39. View southwest at the portal area at SR07. The adit is situated on a mineralized outcrop. Total arsenic was identified with the XRF as high as 489 ppm just upslope from this location.

Photograph 40. Adit at SR08

Saddle Rock Natural Area Wenatchee, Washington

Photographs 39-40

Photograph 41. View east (downslope) toward waste rock at SR08

Photograph 42. Upslope sample location SR08-US-01 (view south). Total arsenic ranged from 14-21 ppm at this location.

Saddle Rock Natural Area Wenatchee, Washington

Photographs 41-42

Photograph 43. Downslope delineation of waste rock pile at SR08 (view southeast)

Photograph 44. Downslope sample locations below the toe of the waste rock pile at SR08 (view west)

Saddle Rock Natural Area Wenatchee, Washington

Photographs 43-44

ATTACHMENT D Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 24, 2019

Nick Rohrbach GeoEngineers, Inc. 1101 Fawcett Avenue South, Suite 200 Tacoma, WA 98402

Re: Analytical Data for Project 004296-008-00 Laboratory Reference No. 1904-158

Dear Nick:

Enclosed are the analytical results and associated quality control data for samples submitted on April 13, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 004296-008-00

Case Narrative

Samples were collected on April 8, 9, and 10, 2019 and received by the laboratory on April 13, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010D/6020B/7471B Analysis

Due to the high concentration of Iron and Manganese in the QC sample, the amount spiked was insufficient for meaningful MS/MSD recovery data. The Spike Blank recovery for Iron was 103 %. The Spike Blank recovery for Manganese was 112 %.

The Matrix Spike/ Matrix Spike Duplicate recoveries for Mercury are outside control limits due to matrix inhomogeneity. The samples were re-extracted and re-analyzed with similar results. The Spike Blank recovery was 104%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 004296-008-00

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
SR06-US-02-4-6	04-158-01	Soil	4-9-19	4-13-19	
SR06-US-06-0-2	04-158-02	Soil	4-9-19	4-13-19	
SR06-US-07-0-2	04-158-03	Soil	4-10-19	4-13-19	
SR06-US-08-4-6	04-158-04	Soil	4-10-19	4-13-19	
SR06-US-12-2-4	04-158-05	Soil	4-10-19	4-13-19	
SR06-US-16-0-2	04-158-06	Soil	4-10-19	4-13-19	
SR06-DS-01-4-6	04-158-07	Soil	4-10-19	4-13-19	
SR06-DS-03-4-6	04-158-08	Soil	4-10-19	4-13-19	
SR06-DS-05-4-6	04-158-09	Soil	4-10-19	4-13-19	
SR06-DS-07-4-6	04-158-10	Soil	4-10-19	4-13-19	
SR06-DS-13-0-2	04-158-11	Soil	4-10-19	4-13-19	
SR06-DS-15-4-6	04-158-12	Soil	4-10-19	4-13-19	
SR01-US-04-4-6	04-158-13	Soil	4-8-19	4-13-19	
SR01-US-01-2-4	04-158-14	Soil	4-8-19	4-13-19	
SR01-US-03-4-6	04-158-15	Soil	4-8-19	4-13-19	
SR02-US-01-0-2	04-158-16	Soil	4-8-19	4-13-19	
SR02-US-02-4-6	04-158-17	Soil	4-8-19	4-13-19	
SR02-US-05-4-6	04-158-18	Soil	4-8-19	4-13-19	
SR08-US-02-0-2	04-158-19	Soil	4-9-19	4-13-19	
SR08-US-05-0-2	04-158-20	Soil	4-9-19	4-13-19	
SR03-US-01-4-6	04-158-21	Soil	4-9-19	4-13-19	
SR03-US-05-4-6	04-158-22	Soil	4-9-19	4-13-19	
SR05-US-02-0-2	04-158-23	Soil	4-10-19	4-13-19	
SR05-US-05-2-4	04-158-24	Soil	4-10-19	4-13-19	
SR05-US-06-2-4	04-158-25	Soil	4-10-19	4-13-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)

Units: mg/Kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR06-US-02-4-6					
Laboratory ID:	04-158-01					
Arsenic	65	0.62	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-US-06-0-2					
Laboratory ID:	04-158-02					
Arsenic	31	1.6	EPA 6020B	4-19-19	4-23-19	
Barium	220	3.1	EPA 6020B	4-19-19	4-23-19	
Iron	24000	250	EPA 6010D	4-19-19	4-22-19	
Lead	9.9	1.6	EPA 6020B	4-19-19	4-23-19	
Manganese	500	13	EPA 6010D	4-19-19	4-22-19	
Mercury	1.0	0.063	EPA 7471B	4-19-19	4-22-19	
Selenium	0.20	0.16	EPA 6020B	4-19-19	4-23-19	
Silver	ND	0.79	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR06-US-07-0-2					
Laboratory ID:	04-158-03					
Arsenic	660	5.7	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-US-08-4-6					
Laboratory ID:	04-158-04					
Arsenic	90	0.63	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-US-12-2-4					
Laboratory ID:	04-158-05					
Arsenic	43	1.5	EPA 6020B	4-19-19	4-23-19	
Barium	130	1.5	EPA 6020B	4-19-19	4-23-19	
Iron	21000	240	EPA 6010D	4-19-19	4-22-19	
Lead	13	1.5	EPA 6020B	4-19-19	4-23-19	
Manganese	640	12	EPA 6010D	4-19-19	4-22-19	
Mercury	2.0	0.15	EPA 7471B	4-19-19	4-22-19	
Selenium	0.16	0.15	EPA 6020B	4-19-19	4-23-19	
Silver	ND	0.73	EPA 6020B	4-19-19	4-24-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)

Offits. Hig/Kg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR06-US-16-0-2					
Laboratory ID:	04-158-06					
Arsenic	220	1.5	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-DS-01-4-6					
Laboratory ID:	04-158-07					
Arsenic	570	6.1	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-DS-03-4-6					
Laboratory ID:	04-158-08					
Arsenic	100	0.61	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-DS-05-4-6					
Laboratory ID:	04-158-09					
Arsenic	330	3.0	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR06-DS-07-4-6					
Laboratory ID:	04-158-10					
Arsenic	740	6.0	EPA 6020B	4-19-19	4-23-19	
Barium	170	1.5	EPA 6020B	4-19-19	4-23-19	
Iron	22000	240	EPA 6010D	4-19-19	4-22-19	
Lead	8.4	1.5	EPA 6020B	4-19-19	4-23-19	
Manganese	260	12	EPA 6010D	4-19-19	4-22-19	
Mercury	0.80	0.030	EPA 7471B	4-19-19	4-22-19	
Selenium	0.36	0.15	EPA 6020B	4-19-19	4-23-19	
Silver	ND	0.76	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR06-DS-13-0-2					
Laboratory ID:	04-158-11					
Arsenic	110	0.62	EPA 6020B	4-22-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR06-DS-15-4-6					
Laboratory ID:	04-158-12					
Arsenic	250	1.5	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR01-US-04-4-6					
Laboratory ID:	04-158-13					
Arsenic	19	1.5	EPA 6020B	4-19-19	4-23-19	
Barium	150	1.5	EPA 6020B	4-19-19	4-23-19	
Iron	20000	230	EPA 6010D	4-19-19	4-22-19	
Lead	7.1	1.5	EPA 6020B	4-19-19	4-23-19	
Manganese	460	12	EPA 6010D	4-19-19	4-22-19	
Mercury	0.032	0.029	EPA 7471B	4-23-19	4-23-19	
Selenium	0.18	0.15	EPA 6020B	4-19-19	4-23-19	
Silver	ND	0.73	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR01-US-01-2-4					
Laboratory ID:	04-158-14	0.00	EDA COSOD	4.00.40	4.00.40	
Arsenic	65	0.66	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR01-US-03-4-6					
Laboratory ID:	04-158-15					
Arsenic	110	0.58	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR02-US-01-0-2					
Laboratory ID:	04-158-16					
Arsenic	100	0.55	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR02-US-02-4-6					
Laboratory ID:	04-158-17					
Arsenic	28	0.28	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR02-US-05-4-6					
Laboratory ID:	04-158-18					
Laboratory ID.	U T -130-10					

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR08-US-02-0-2					
Laboratory ID:	04-158-19					
Arsenic	2.8	0.30	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR08-US-05-0-2					
Laboratory ID:	04-158-20					
Arsenic	170	0.61	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR03-US-01-4-6					
Laboratory ID:	04-158-21					
Arsenic	6.8	0.30	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR03-US-05-4-6					
Laboratory ID:	04-158-22					
Arsenic	87	0.57	EPA 6020B	4-22-19	4-22-19	•

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR05-US-02-0-2					
Laboratory ID:	04-158-23					
Arsenic	100	1.6	EPA 6020B	4-19-19	4-23-19	
Barium	210	1.6	EPA 6020B	4-19-19	4-23-19	
Iron	21000	63	EPA 6010D	4-19-19	4-22-19	
Lead	14	1.6	EPA 6020B	4-19-19	4-23-19	
Manganese	420	13	EPA 6010D	4-19-19	4-22-19	
Mercury	0.13	0.032	EPA 7471B	4-23-19	4-23-19	
Selenium	0.25	0.16	EPA 6020B	4-19-19	4-23-19	
Silver	ND	0.79	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR05-US-05-2-4					
Laboratory ID:	04-158-24					
Arsenic	150	1.5	EPA 6020B	4-22-19	4-22-19	
Client ID:	SR05-US-06-2-4					
Laboratory ID:	04-158-25					
Arsenic	18	0.30	EPA 6020B	4-22-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0419SH1					
Iron	ND	10	EPA 6010D	4-19-19	4-22-19	
Manganese	ND	0.50	EPA 6010D	4-19-19	4-22-19	
Laboratory ID:	MB0419SH1					
Silver	ND	0.63	EPA 6020B	4-19-19	4-24-19	
Laboratory ID:	MB0419SM2					
Arsenic	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Barium	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Lead	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Selenium	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Laboratory ID:	MB0423S2					
Mercury	ND	0.025	EPA 7471B	4-23-19	4-23-19	
Laboratory ID:	MB0422SM1					
Arsenic	ND	0.25	EPA 6020B	4-22-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B QUALITY CONTROL

Matrix: Soil

Omis. mg/rtg (ppm	,				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-1	58-02									
	ORIG	DUP									
Iron	18900	19100	NA	NA		N	IA	NA	1	20	
Manganese	395	395	NA	NA		N	IA	NA	0	20	
Laboratory ID:	04-1	58-02									
Silver	ND	ND	NA	NA		١	IA	NA	NA	20	
Laboratory ID:	04-1	58-02									
Arsenic	24.3	24.4	NA	NA		N	IA	NA	0	20	
Barium	177	160	NA	NA			IA	NA	10	20	
Lead	7.90	7.23	NA	NA			IA	NA	9	20	
Selenium	0.160	0.145	NA	NA			IA	NA	10	20	
Coloriidiii	0.100	01140	10/1	147.				10.0	10		
Laboratory ID:		58-02									
Mercury	0.826	0.858	NA	NA		N	IA	NA	4	20	
Laboratory ID:	04-1	58-18									
Arsenic	21.6	19.4	NA	NA		Ν	ΙA	NA	11	20	
MATRIX SPIKES	04.41	E9 02									
Laboratory ID:		58-02		1400			1100				
	MS	MSD	MS	MSD		MS	MSD				
Iron	20800	20600	1000	1000	18900	190	170	75-125	1	20	A
Manganese	441	437	25.0	25.0	395	184	168	75-125	1	20	A
Laboratory ID:	04-1	58-02									
Silver	19.9	19.9	25.0	25.0	ND	80	80	75-125	0	20	
Laboratory ID:	04-1	58-02									
Arsenic	117	116	100	100	24.3	93	92	75-125	1	20	
Barium	275	267	100	100	177	98	91	75-125	3	20	
Lead	236	237	250	250	7.90	91	92	75-125	1	20	
Selenium	95.0	95.3	100	100	0.160	95	95	75-125	0	20	
Laboratory ID:	04-1	58-02									
Mercury	1.42	1.48	0.500	0.500	0.826	118	130	80-120	4	20	V
Laboratory ID:	04.44	EO 10									
Laboratory ID:		58-18	100	100	24.6	07	02	75 105	A	20	
Arsenic	109	113	100	100	21.6	87	92	75-125	4	20	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Aluminum	ICV042219P	1.00	0.908	9.2	+/- 10%
Arsenic	ICV042319X	0.0500	0.0485	3.0	+/- 10%
Barium	ICV042319X	0.0500	0.0487	2.6	+/- 10%
Iron	ICV042219P	1.00	0.953	4.7	+/- 10%
Lead	ICV042319X	0.050	0.0501	-0.20	+/- 10%
Manganese	ICV042219P	1.00	0.962	3.8	+/- 10%
Mercury	ICV042319Y	0.00500	0.00497	0.60	+/- 10%
Selenium	ICV042319X	0.0500	0.0514	-2.8	+/- 10%
Silver	ICV042419X	0.0500	0.0523	-4.6	+/- 10%
Aluminum	LLV042219P	0.100	0.110	-10	+/- 20%
Arsenic	LLV042319X	0.000500	0.000436	13	+/- 20%
Barium	LLV042319X	0.000500	0.000506	-1.2	+/- 20%
Iron	LLV042219P	0.0500	0.0466	6.8	+/- 20%
Lead	LLV042319X	0.000500	0.000479	4.2	+/- 20%
Manganese	LLV042319X LLV042219P	0.0100	0.000479	-15	+/- 20%
Selenium			0.000431	-13 14	+/- 20%
Silver	LLV042319X ICV042419X	0.000500		7 7	
Silvei	10 00424 197	0.000500	0.000524	-4.8	+/- 20%
Aluminum	CCV1042219P	10.0	10.2	-2.0	+/- 10%
Arsenic	CCV1042319X	0.0400	0.0387	3.3	+/- 10%
Barium	CCV1042319X	0.0400	0.0400	0	+/- 10%
Iron	CCV1042219P	5.00	5.50	-10	+/- 10%
Lead	CCV1042319X	0.0400	0.0397	0.75	+/- 10%
Manganese	CCV1042219P	1.00	1.03	-3.0	+/- 10%
Mercury	CCV1042319Y	0.00500	0.00491	1.8	+/- 20%
Selenium	CCV1042319P	0.0400	0.0422	-5.5	+/- 10%
Silver	CCV1042419P	0.0400	0.0408	-2.0	+/- 10%
C C.		0.0.00	0.0.00	0	1, 10,0
Aluminum	CCV2042219P	10.0	10.1	-1.0	+/- 10%
Arsenic	CCV2042319X	0.0400	0.0391	2.3	+/- 10%
Barium	CCV2042319X	0.0400	0.0400	0	+/- 10%
Iron	CCV2042219P	5.00	5.14	-2.8	+/- 10%
Lead	CCV2042319X	0.0400	0.0396	1.0	+/- 10%
Manganese	CCV2042219P	1.00	1.00	0	+/- 10%
Mercury	CCV2042319Y	0.00500	0.00520	-4.0	+/- 20%
Selenium	CCV2042319P	0.0400	0.0392	2.0	+/- 10%
Silver	CCV2042419P	0.0400	0.0408	-2.0	+/- 10%
	· · · ·			<u>-</u>	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
		 ,			
Aluminum	CCV3042219P	10.0	9.90	1.0	+/- 10%
Arsenic	CCV3042319X	0.0400	0.0394	1.5	+/- 10%
Barium	CCV3042319X	0.0400	0.0404	-1.0	+/- 10%
Iron	CCV3042219P	5.00	5.16	-3.2	+/- 10%
Lead	CCV3042319X	0.0400	0.0398	0.50	+/- 10%
Manganese	CCV3042219P	1.00	0.992	0.80	+/- 10%
Mercury	CCV3042319Y	0.00500	0.00518	-3.6	+/- 20%
Selenium	CCV3042319P	0.0400	0.0407	-1.8	+/- 10%
Silver	CCV3042419P	0.0400	0.0433	-8.2	+/- 10%
Aluminum	CCV4042219P	10.0	10.1	-1.0	+/- 10%
Arsenic	CCV4042319X	0.0400	0.0399	0.25	+/- 10%
Barium	CCV4042319X	0.0400	0.0399	0.25	+/- 10%
Iron	CCV4042219P	5.00	5.12	-2.4	+/- 10%
Lead	CCV4042319X	0.0400	0.0395	1.3	+/- 10%
Manganese	CCV4042219P	1.00	1.01	-1.0	+/- 10%
· ·					
Aluminum	CCV5042219P	10.0	10.1	-1.0	+/- 10%
Iron	CCV5042219P	5.00	5.13	-2.6	+/- 10%
Manganese	CCV5042219P	1.00	1.02	-2.0	+/- 10%
J					
Iron	CCV6042219P	5.00	5.28	-5.6	+/- 10%

Project: 004296-008-00

TOTAL METALS EPA 6020B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Arsenic	ICV042219X	0.0500	0.0494	1.2	+/- 10%
Arsenic	LLV042219X	0.000500	0.000521	-4.2	+/- 20%
Arsenic	CCV1042219X	0.0400	0.0410	-2.5	+/- 10%
Arsenic	CCV2042219X	0.0400	0.0405	-1.3	+/- 10%
Arsenic	CCV3042219X	0.0400	0.0412	-3.0	+/- 10%
Arsenic	CCV4042219X	0.0400	0.0406	-1.5	+/- 10%
Arsenic	CCV5042219X	0.0400	0.0416	-4.0	+/- 10%
Arsenic	CCV6042219X	0.0400	0.0407	-1.8	+/- 10%
Arsenic	CCV7042219X	0.0400	0.0415	-3.8	+/- 10%
Arsenic	CCV8042219X	0.0400	0.0410	-2.5	+/- 10%
Arsenic	CCV9042219X	0.0400	0.0411	-2.7	+/- 10%
Arsenic	CCV10042219X	0.0400	0.0415	-3.8	+/- 10%
Arsenic	CCV11042219X	0.0400	0.0421	-5.2	+/- 10%
Arsenic	CCV12042219X	0.0400	0.0411	-2.7	+/- 10%
Arsenic	CCV13042219X	0.0400	0.0402	-0.5	+/- 10%

Project: 004296-008-00

% MOISTURE

Date Analyzed: 4-19-19

Client ID	Lab ID	% Moisture
SR06-US-02-4-6	04-158-01	20
SR06-US-06-0-2	04-158-02	21
SR06-US-07-0-2	04-158-03	12
SR06-US-08-4-6	04-158-04	20
SR06-US-12-2-4	04-158-05	15
SR06-US-16-0-2	04-158-06	14
SR06-DS-01-4-6	04-158-07	18
SR06-DS-03-4-6	04-158-08	17
SR06-DS-05-4-6	04-158-09	18
SR06-DS-07-4-6	04-158-10	17
SR06-DS-13-0-2	04-158-11	19
SR06-DS-15-4-6	04-158-12	17
SR01-US-04-4-6	04-158-13	14
SR01-US-01-2-4	04-158-14	24
SR01-US-03-4-6	04-158-15	13
SR02-US-01-0-2	04-158-16	9
SR02-US-02-4-6	04-158-17	10
SR02-US-05-4-6	04-158-18	8
SR08-US-02-0-2	04-158-19	17
SR08-US-05-0-2	04-158-20	18
SR03-US-01-4-6	04-158-21	17
SR03-US-05-4-6	04-158-22	12
SR05-US-02-0-2	04-158-23	21
SR05-US-05-2-4	04-158-24	16
SR05-US-06-2-4	04-158-25	17

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody vironmental Inc. **Turnaround Request Laboratory Number:** (in working days) (Check One) Company: GeoEngineers Same Day Organophosphorus Pesticides 8270D/SIM fotal RCRA / MTCA Metals (circle one) Project Number: 004296-008-00 Hg 2 Days 3 Days Organochlorine Pesticides 8081A Pb, Mn, AHs 8270D/SIM (low-level) Saddle Rock IRA IEM (oil and grease) 1664 Standard (7 Days) **Number of Containers** (TPH analysis 5 Days) Project Manager: Nick Rohrbach Ba, Fe, WYTPH-GX/BTEX olatiles 8260B Total As, I Total Se, Ryantobas Maura Hanna % Moisture IWTPH-Dx CBs 8082 Date Time Sampled Sampled Matrix Sample Identification Lab ID X 4919 SROT-US-01 SROG-US-02-4-6 1739 X SPO1 45-02 SROG-US -06-0-2 SS 1755 X 4/10/19 8R01-03-01 SROG-US-07-0-2 7:04 X SRO1-DS-02 SROG-US-08-4-6 714 SROT DO 03 SROG - US - 12-3-4-4 7:38 X SROT-DOOR SROW - US -16-0-2 8:07 X 8:47 55 SROG-DS-01-4-6 X 9:17 SS 5RO6-05 - 03-4-6 X 9:40 SS SROG-DS - 05-4-6 X 9:55 SROG-DS - 07-4-6 10 **Comments/Special Instructions** Signature 1700 Relinquished Received Relinquished Received Relinquished

Data Package: Level III ☐ Level IV ■ Electronic Data Deliverables (EDDs) ☐ ____

Chromatograms with final report

Reviewed/Date

Received

Reviewed/Date

OnSite Environmental Inc.

Chain of Custody

	Environmental Inc. 14848 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		naround Req n working da			L	.abo	orat	ory	Nı	ıml	oer:						0	4 -	- 1	5	8					
Compa	GeoEngineers	☐ ☐ San	(Check One) ne Day	☐ 1 Day		-						T				SIM		ne)									
1 10,00	Number: 004296-008-00	☐ 2 D	ays	3 Days											31A	1270D/	151A	ircle o				, Hg,					
Projec	Saddle Rock IRA		ndard (7 Days		25						8260B	IM	-level)		ides 808	ficides 8	icides 8	etals (c		1664		Pb, Mn, Hg,					
Projec	Nick Rohrbach		H analysis 5 [Jays)	ntaine		LEX				olatiles	PAHs)	IM (low		e Pestic	orus Pes	id Herbi	ITCA M		rease)							
Sampl	ed by: R. Tobias/L. Hanno		(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	XQ-	Volatiles 8260B	Halogenated Volatiles	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	3082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	fotal RCRA / MTCA Metals (circle one)	Aetals	HEM (oil and grease) 1664	As	Total As, Ba, Fe,	Se, Ag				sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs 8082	Organo	Organo	Chlorin	Total R	TCLP Metals	HEM (c	Total As	Total	Total				% Moisture
11	SR03-US-01 S1206-DS-13-0-2	uholia	10:46	SS	1																Х						X
12	SPAR HOAD SROG-DS-15-4-6	1	11:04	ss	1																х				V		1
13	SROJ-00-01 SROJ-US-04-4-6	4/8/19	10:14	ss																	Х	X	X	×			
14	SR03-D8-02 SR01-US-US-U-Z-H		8:45	ss																	Х						
15	SRO1-45-03-4-6	T	16:04	ss																	X						
16	SR00-00-04 SR02-US-O1-0-Z	4/8/19	1400	ss																	X						
17	SROZ-US-02-4-6	1	1418	1																	X						
18	SR02-US-05-4-6		1452																		X						
19	SR68 -US-02-0-2	4	8:20																		X						
20	5R08-45-05-0-2	T	8:59	7	,																1	,				1	V
	Signature		ompany				Date	1		Time			Con	nmen	ts/Sp	ecial	Instru	iction	IS								
Relin	quished	(200 Eng	inees)			_	/W		_	70	9															
Rece	M) (052	He !	T	-	4/	13/	A	11	13	0															
Relin	quished																										
Rece	ved																										
Relin	quished																										
Rece	ved																										
Revie	wed/Date		Reviewed/Da	ite									Chro	mato	grams	with f	final re	port									

M	OnSite Environmental Inc.
	14648 NE 95th Street • Redmond, WA 98052

Page _______ of _______

	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		naround Req working da	iys)		L	_ab	orat	ory	/ Nu	uml	oer:						() 4		1	5 8	}		
Project	GeoEngineers 004296-008-00	San		1 Day 3 Days											1A	MIS/Q0Z	51A	rcle one)				Hg,			T
Projec	Saddle Rock IRA Manager: Nick Rohrbach		ndard (7 Days H analysis 5 I (other)	Days)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	4-Gx	H-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	1082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	/letals	HEM (oil and grease) 1664	As	Total As, Ba, Fe, Pb, Mn, Hg,	Se, Ag		ture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs 8082	Organo	Organo	Chlorin	Total R	TCLP Metals	HEM (o	Total As	Total	Total		% Moisture
21	SR01-US-01- SR03-US-01-4-6	4)वीव	1225	SS	1																х				X
22	SR03-45-05-4-6	1	1301	SS	1																Х				1
23	SPORT SRUG C#2-DASSAY SPORT DE 02 SIROS-US-02-0-2	4/10/19	11:30	SS	1																X	1	*		V
24	9R04_D3 05 SR05-U5-U5-2-4	i	1330	SS	1																X	X		+	1
25	SR05-US-06-2-4	L	1335	SS	J																X				V
	Signature		ompany				Date			Time			Con	nmen	ts/Sp	ecial	Instru	uction	s						
Relin	quished	(neokry	hees	-		4	131	19		70														
	quished	14	707	COP	V		70	171	$\overline{}$	-	13	0													
Rece	ved																								
Relin	quished																								
Rece	ved																								
Revie	wed/Date		Reviewed/Da	ite									Chro	matog	grams	with f	inal re	port [

Sample/Cooler Receipt and Acceptance Checklist

Yes Yes	Initiated by: Date Initiated: No No	N/A N/A	1 2 3 4	
Yes	No	N/A	1 2 3 4	-1
Yes				
Yes				
	No	N/A	Visit Control of the	
res,			1 2 3 4	
-	No	N/A	1 2 3 4	
Yes	No		1 2 3 4	
res)	No	Temperature:	3°C	
res	N/A			
lient	Courier	UPS/FedEx	OSE Pickup	Other
res	No		1 2 3 4	
es	No		1 2 3 4	
res)	No			
es	No			
(es	No			
	_			
/es	40		1 2 3 4	
/es	No		1 2 3 4	
es	No		1 2 3 4	
/es	No	N/A	1 2 3 4	
	No	WA	1 2 3 4	
es	No		1 2 3 4	
res .	No		1 2 3 4	
/es	No	N/A	1 2 3 4	
#		N/A)	1 2 3 4	
アンドライン	Yes Ves Ves Ves Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Yes No	Yes No	Yes N/A UPS/FedEx OSE Pickup Yes No 1 2 3 4 Yes No 1 2 3 4

- 1 Discuss issue in Case Narrative
- 2 Process Sample As-is

- 3 Client contacted to discuss problem
- 4 Sample cannot be analyzed or client does not wish to proceed

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 24, 2019

Nick Rohrbach GeoEngineers, Inc. 1101 Fawcett Avenue South, Suite 200 Tacoma, WA 98402

Re: Analytical Data for Project 004296-008-00 Laboratory Reference No. 1904-160

Dear Nick:

Enclosed are the analytical results and associated quality control data for samples submitted on April 13, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 004296-008-00

Case Narrative

Samples were collected on April 8, 9, 10, and 11, 2019 and received by the laboratory on April 13, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010D/6020B/7471B Analysis

Due to the high concentration of Aluminum, Iron, and Manganese in the QC sample, the amount spiked was insufficient for meaningful MS/MSD recovery data. The Spike Blank recovery for Aluminum was 103 %. The Spike Blank recovery for Iron was 103 %. The Spike Blank recovery for Manganese was 112 %.

The Matrix Spike/ Matrix Spike Duplicate recoveries for Mercury are outside control limits due to matrix inhomogeneity. The samples were re-extracted and re-analyzed with similar results. The Spike Blank recovery was 104%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 004296-008-00

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
SR03-DS-01-2-4	04-160-01	Soil	4-9-19	4-13-19	
SR08-DS-03-4-6	04-160-02	Soil	4-9-19	4-13-19	
SR01-DS-07-4-6	04-160-03	Soil	4-8-19	4-13-19	
SR01-DS-03-4-6	04-160-04	Soil	4-8-19	4-13-19	
SR08-DS-04-2-4	04-160-05	Soil	4-9-19	4-13-19	
SR03-DS-05-2-4	04-160-06	Soil	4-9-19	4-13-19	
SR02-DS-05-2-4	04-160-07	Soil	4-8-19	4-13-19	
SR02-DS-01-4-6	04-160-08	Soil	4-8-19	4-13-19	
SR03-DS-03-4-6	04-160-09	Soil	4-9-19	4-13-19	
SR03-DS-09-4-6	04-160-10	Soil	4-9-19	4-13-19	
SR05-DS-02-2-4	04-160-11	Soil	4-10-19	4-13-19	
SR05-DS-03-0-2	04-160-12	Soil	4-10-19	4-13-19	
SR05-DS-07-0-2	04-160-13	Soil	4-11-19	4-13-19	
SR04-US-03-4-6	04-160-14	Soil	4-11-19	4-13-19	
SR04-US-01-2-4	04-160-15	Soil	4-11-19	4-13-19	
SR04-US-05-4-6	04-160-16	Soil	4-11-19	4-13-19	
SR04-DS-02-4-6	04-160-17	Soil	4-11-19	4-13-19	
SR04-DS-03-0-2	04-160-18	Soil	4-11-19	4-13-19	
SR05-D05-TCLP	04-160-19	Soil	4-11-19	4-13-19	
SR02-D09-Assay	04-160-20	Soil	4-11-19	4-13-19	
SR06-C02-Assay	04-160-21	Soil	4-10-19	4-13-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR03-DS-01-2-4					
_aboratory ID:	04-160-01					
Arsenic	110	0.60	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR08-DS-03-4-6					
Laboratory ID:	04-160-02					
Arsenic	44	0.30	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR01-DS-07-4-6					
Laboratory ID:	04-160-03					
Arsenic	87	1.8	EPA 6020B	4-19-19	4-23-19	
Barium	170	1.8	EPA 6020B	4-19-19	4-23-19	
Iron	34000	280	EPA 6010D	4-19-19	4-22-19	
Lead	19	1.8	EPA 6020B	4-19-19	4-23-19	
Manganese	570	14	EPA 6010D	4-19-19	4-22-19	
Mercury	0.40	0.035	EPA 7471B	4-23-19	4-23-19	
Selenium	0.68	0.18	EPA 6020B	4-19-19	4-23-19	
Silver	3.0	0.88	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR01-DS-03-4-6					
Laboratory ID:	04-160-04					
Arsenic	170	1.3	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR08-DS-04-2-4					
Laboratory ID:	04-160-05					
Arsenic	16	0.30	EPA 6020B	4-19-19	4-22-19	
, woonie		0.00	217100200	1 10 10	122 10	
Client ID:	SR03-DS-05-2-4					
Laboratory ID:	04-160-06					
Arsenic	190	1.5	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR02-DS-05-2-4					
	·					
Laboratory ID:	04-160-07					

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

д, т.д (рр)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR02-DS-01-4-6					
Laboratory ID:	04-160-08					
Arsenic	47	0.30	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR03-DS-03-4-6					
Laboratory ID:	04-160-09					
Arsenic	49	0.58	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR03-DS-09-4-6					
Laboratory ID:	04-160-10					
Arsenic	140	1.5	EPA 6020B	4-19-19	4-23-19	
Barium	86	1.5	EPA 6020B	4-19-19	4-23-19	
Iron	27000	240	EPA 6010D	4-19-19	4-22-19	
Lead	6.9	1.5	EPA 6020B	4-19-19	4-23-19	
Manganese	180	12	EPA 6010D	4-19-19	4-22-19	
Mercury	0.40	0.030	EPA 7471B	4-23-19	4-23-19	
Selenium	1.1	0.15	EPA 6020B	4-19-19	4-23-19	
Silver	6.6	0.75	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR05-DS-02-2-4					
Laboratory ID:	04-160-11					
Arsenic	89	0.56	EPA 6020B	4-19-19	4-22-19	
Client ID:	CD05 DC 02 0 C					
Client ID:	SR05-DS-03-0-2					
Laboratory ID:	04-160-12					
Arsenic	95	0.64	EPA 6020B	4-19-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR05-DS-07-0-2					
Laboratory ID:	04-160-13					
Arsenic	78	1.4	EPA 6020B	4-19-19	4-23-19	
Barium	81	1.4	EPA 6020B	4-19-19	4-23-19	
Iron	14000	220	EPA 6010D	4-19-19	4-22-19	
Lead	7.1	1.4	EPA 6020B	4-19-19	4-23-19	
Manganese	500	11	EPA 6010D	4-19-19	4-22-19	
Mercury	ND	0.028	EPA 7471B	4-23-19	4-23-19	
Selenium	0.38	0.14	EPA 6020B	4-19-19	4-23-19	
Silver	3.8	0.69	EPA 6020B	4-19-19	4-24-19	
Client ID:	SR04-US-03-4-6					
Laboratory ID:	04-160-14					
Arsenic	110	0.59	EPA 6020B	4-19-19	4-22-19	
Alsenic	110	0.59	LFA 0020B	4-19-19	4-22-19	
Client ID:	SR04-US-01-2-4					
Laboratory ID:	04-160-15					
Arsenic	17	0.30	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR04-US-05-4-6					
Laboratory ID:	04-160-16			4.40.40	4.00.40	
Arsenic	34	0.30	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR04-DS-02-4-6					
Laboratory ID:	04-160-17					
Arsenic	200	1.5	EPA 6020B	4-19-19	4-22-19	
Client ID:	SR04-DS-03-0-2					
Laboratory ID:	04-160-18					
Arsenic	41	0.30	EPA 6020B	4-19-19	4-22-19	
0 11 1 5						
Client ID:	SR05-D05-TCLP					
Laboratory ID:	04-160-19					
Arsenic	990	5.9	EPA 6020B	4-19-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR02-D09-Assay					
Laboratory ID:	04-160-20					
Iron	35000	610	EPA 6010D	4-19-19	4-22-19	
Client ID:	SR06-C02-Assay					
Laboratory ID:	04-160-21					
Aluminum	14000	110	EPA 6010D	4-19-19	4-22-19	•

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0419SH1					
Aluminum	ND	5.0	EPA 6010D	4-19-19	4-22-19	
Iron	ND	10	EPA 6010D	4-19-19	4-22-19	
Manganese	ND	0.50	EPA 6010D	4-19-19	4-22-19	
Laboratory ID:	MB0419SH1					
Silver	ND	0.63	EPA 6020B	4-19-19	4-24-19	
Laboratory ID:	MB0419SM2					
Arsenic	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Barium	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Lead	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Selenium	ND	0.13	EPA 6020B	4-19-19	4-23-19	
Laboratory ID:	MB0423S2					
Mercury	ND	0.025	EPA 7471B	4-23-19	4-23-19	
Laboratory ID:	MB0419SM3					
Arsenic	ND	0.25	EPA 6020B	4-19-19	4-22-19	

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B DUPLICATE QUALITY CONTROL

Matrix: Soil

Analyte	´ Re:	sult	Spike	Level	Source Result		cent overy	Recovery Limits	RPD	RPD Limit	Flags				
DUPLICATE															
Laboratory ID:	04-1	58-02													
	ORIG	DUP													
Aluminum	16200	16200	NA	NA		Ν	IA	NA	0	20					
Iron	18900	19100	NA	NA		N	IΑ	NA	1	20					
Manganese	395	395	NA	NA		N	IA	NA	0	20					
Laboratory ID:	04-1	58-02													
Silver	ND	ND	NA	NA			IA	NA	NA	20					
Ciivoi	110	112	14/1	1471			., .	10/1	147 (
Laboratory ID:	04-1	58-02													
Arsenic	24.3	24.4	NA	NA		N	IΑ	NA	0	20					
Barium	177	160	NA	NA		N	IΑ	NA	10	20					
Lead	7.90	7.23	NA	NA			IA	NA	9	20					
Selenium	0.160	0.145	NA	NA		N	IA	NA	10	20					
Laboratory ID:	04-1	58-02													
Mercury	0.826	0.858	NA	NA		Ν	IA	NA	4	20					
Laboratory ID:	04-16	60-05													
Arsenic	13.8	16.5	NA	NA		NA		NA	18	20					
Algerile	13.0	10.5	INA	INA		- 1	1/1	INA	10	20					
MATRIX SPIKES															
Laboratory ID:	04-1	58-02													
<u> </u>	MS	MSD	MS	MSD		MS	MSD								
Aluminum	19200	20700	1000	1000	16200	300	450	75-125	8	20	Α				
Iron	20800	20600	1000	1000	18900	190	170	75-125	1	20	Α				
Manganese	441	437	25.0	25.0	395	184	168	75-125	1	20	Α				
Laboratory ID:	04.14	58-02													
Silver	19.9	19.9	25.0	25.0	ND	80	80	75-125	0	20					
Silvei	13.3	13.3	25.0	25.0	IND	00	80	75-125	0	20					
Laboratory ID:	04-1	58-02													
Arsenic	117	116	100	100	24.3	93	92	75-125	1	20					
Barium	275	267	100	100	177	98	91	75-125	3	20					
Lead	236	237	250	250	7.90	91	92	75-125	1	20					
Selenium	95.0	95.3	100	100	0.160	95	95	75-125	0	20					
Laboratory ID:	04-1	58-02													
Mercury	1.42	1.48	0.500	0.500	0.826	118 130		118 130		118 130		80-120	4	20	V
Laboratory ID:	04-16	60-05													
Arsenic	104	106	100	100	13.8	90	92	75-125	2	20					
7.1301110	107	100	100	100	10.0	J U	72	10 120		20					

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Aluminum	ICV042219P	1.00	0.908	9.2	+/- 10%
Arsenic	ICV042319X	0.0500	0.0485	3.0	+/- 10%
Barium	ICV042319X	0.0500	0.0487	2.6	+/- 10%
Iron	ICV042219P	1.00	0.953	4.7	+/- 10%
Lead	ICV042319X	0.050	0.0501	-0.20	+/- 10%
Manganese	ICV042219P	1.00	0.962	3.8	+/- 10%
Mercury	ICV042319Y	0.00500	0.00497	0.60	+/- 10%
Selenium	ICV042319X	0.0500	0.0514	-2.8	+/- 10%
Silver	ICV042419X	0.0500	0.0523	-4.6	+/- 10%
Aluminum	LLV042219P	0.100	0.110	-10	+/- 20%
Arsenic	LLV042319X	0.000500	0.000436	13	+/- 20%
Barium	LLV042319X	0.000500	0.000506	-1.2	+/- 20%
Iron	LLV042219P	0.0500	0.0466	6.8	+/- 20%
Lead	LLV042319X	0.000500	0.000479	4.2	+/- 20%
Manganese	LLV042219P	0.0100	0.0115	-15	+/- 20%
Selenium	LLV042319X	0.000500	0.000431	14	+/- 20%
Silver	LLV042419X	0.000500	0.000524	-4.8	+/- 20%
Aluminum	CCV1042219P	10.0	10.2	-2.0	+/- 10%
Arsenic	CCV1042319X	0.0400	0.0387	3.3	+/- 10%
Barium	CCV1042319X	0.0400	0.0400	0	+/- 10%
Iron	CCV1042219P	5.00	5.50	-10	+/- 10%
Lead	CCV1042319X	0.0400	0.0397	0.75	+/- 10%
Manganese	CCV1042219P	1.00	1.03	-3.0	+/- 10%
Mercury	CCV1042319Y	0.00500	0.00491	1.8	+/- 20%
Selenium	CCV1042319P	0.0400	0.0422	-5.5	+/- 10%
Silver	CCV1042419P	0.0400	0.0408	-2.0	+/- 10%
Aluminum	CCV2042219P	10.0	10.1	-1.0	+/- 10%
Arsenic	CCV2042319X	0.0400	0.0391	2.3	+/- 10%
Barium	CCV2042319X	0.0400	0.0400	0	+/- 10%
Iron	CCV2042219P	5.00	5.14	-2.8	+/- 10%
Lead	CCV2042319X	0.0400	0.0396	1.0	+/- 10%
Manganese	CCV2042219P	1.00	1.00	0	+/- 10%
Mercury	CCV2042319Y	0.00500	0.00520	-4.0	+/- 20%
Selenium	CCV2042319P	0.0400	0.0392	2.0	+/- 10%
Silver	CCV2042419P	0.0400	0.0408	-2.0	+/- 10%

Project: 004296-008-00

TOTAL METALS EPA 6010D/6020B/7471B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Aluminum	CCV3042219P	10.0	9.90	1.0	+/- 10%
Arsenic	CCV3042319X	0.0400	0.0394	1.5	+/- 10%
Barium	CCV3042319X	0.0400	0.0404	-1.0	+/- 10%
Iron	CCV3042219P	5.00	5.16	-3.2	+/- 10%
Lead	CCV3042319X	0.0400	0.0398	0.50	+/- 10%
Manganese	CCV3042219P	1.00	0.992	0.80	+/- 10%
Mercury	CCV3042319Y	0.00500	0.00518	-3.6	+/- 20%
Selenium	CCV3042319P	0.0400	0.0407	-1.8	+/- 10%
Silver	CCV3042419P	0.0400	0.0433	-8.2	+/- 10%
Aluminum	CCV4042219P	10.0	10.1	-1.0	+/- 10%
Arsenic	CCV4042319X	0.0400	0.0399	0.25	+/- 10%
Barium	CCV4042319X	0.0400	0.0399	0.25	+/- 10%
Iron	CCV4042219P	5.00	5.12	-2.4	+/- 10%
Lead	CCV4042319X	0.0400	0.0395	1.3	+/- 10%
Manganese	CCV4042219P	1.00	1.01	-1.0	+/- 10%
Ü					
Aluminum	CCV5042219P	10.0	10.1	-1.0	+/- 10%
Iron	CCV5042219P	5.00	5.13	-2.6	+/- 10%
Manganese	CCV5042219P	1.00	1.02	-2.0	+/- 10%
Iron	CCV6042219P	5.00	5.28	-5.6	+/- 10%
					.,,
Iron	CCV7042219P	5.00	5.22	-4.4	+/- 10%
	33770122101	0.00	0.22		17 1070

Project: 004296-008-00

% MOISTURE

Date Analyzed: 4-19-19

Client ID	Lab ID	% Moisture
SR03-DS-01-2-4	04-160-01	16
SR08-DS-03-4-6	04-160-02	18
SR01-DS-07-4-6	04-160-03	29
SR01-DS-03-4-6	04-160-04	7
SR08-DS-04-2-4	04-160-05	16
SR03-DS-05-2-4	04-160-06	16
SR02-DS-05-2-4	04-160-07	17
SR02-DS-01-4-6	04-160-08	16
SR03-DS-03-4-6	04-160-09	13
SR03-DS-09-4-6	04-160-10	16
SR05-DS-02-2-4	04-160-11	10
SR05-DS-03-0-2	04-160-12	22
SR05-DS-07-0-2	04-160-13	10
SR04-US-03-4-6	04-160-14	15
SR04-US-01-2-4	04-160-15	17
SR04-US-05-4-6	04-160-16	15
SR04-DS-02-4-6	04-160-17	16
SR04-DS-03-0-2	04-160-18	16
SR05-D05-TCLP	04-160-19	16
SR02-D09-Assay	04-160-20	18
SR06-C02-Assay	04-160-21	11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

The	.OnSite
-	Environmental Inc.
	14648 NE 95th Street • Redmond, WA 98052

Page 1 of 3

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turnar (in w	Turnaround Request (in working days) Laboratory Number:							Nu	ımb	oer: 04-160														
GeoEngineers Project Number: 004296-008-00	C (C Same I] 1 Day											1A	Organophosphorus Pesticides 8270D/SIM	51A	rcle one)				Hg, #				
Project Name: Saddle Rock IRA		ird (7 Days) inalysis 5 Da	vs)	STS						\$ 8260B	SIM	v-level)		Organochlorine Pesticides 8081A	sticides 82	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)		1664		Pb, Mn, Hg,				
Project Manager: Nick Rohrbach Sampled by:				Number of Containers	QI	BTEX			30B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)		ine Pesti	ohorus Pe	Acid Her	/ MTCA	S	HEM (oil and grease) 1664		Ba, Fe,	Ag			
Tobices/Hanna	Date	(other)		ber of	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	genated	ivolatile low-lev	s 8270C	PCBs 8082	anochlor	soydou	rinated	RCRA	TCLP Metals	l (oil and	Total As	Total As,	Se,			% Moisture
Lab ID Sample Identification		Sampled	Matrix	Nun	WN	NZ.	MN	MN	Vola	Halo	Sem (with	PAH	PCB	Orga	Orga	Chlo	Tota	TCL	TEN	Tot	Tot	Total	4		× %
5/203-05-01-2-4	4/9/19 1	330	SS	(1			Х					X
2 5208-DS-03-4-6	4/9/19 1	1018	SS	1																Х					
3 SPOT DS-07-4-6	4/8/19	1205	SS																	X	X	X			
4 SROS-DO-02-SRO1-DS-03-4-6	4/8/19	1128	SS														3			X					
5 SROS DS-03 5/208-DS-04-2-4	4/9/19 1	025	SS																	X					
6 SROS-DE-04-5/207-DS-05-2-4	4/9/19	MO	SS																	X					
7 5/202-05-05-2-4	4/9/19 1	544																		X					
8 4202-05-01-4-6	4/8/19	1558																		X					
9 5,203-05-03-4-6	4419 1	354																		X					
10 5/203-05-09-4-6	4/4/19	505	V	U																X	X	X			T
Signature	Com	1				Date	1/	14	Time			Con	nmen	ts/Spe	ecial	Instru	iction	IS							
Relinquished	(5)	eoki	reginer)	_		9	/(1)	/19		70															
Received	0	Eli	tie F	U		4	1131	(7	1	13	2														
Relinquished						_		_																	
Received				_		-																			
Relinquished				_	-																				
Received		1															_							_	_
Reviewed/Date	ata Package: Lev	eviewed/Date		lectron	nic Da	ita Deli	iversh	las /E	DDe\f	7		Chro	matog	rams	with f	inal re	port								

	OnSite	
	Environmental Inc.	

Page 2 of 3

14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Tu (i	rnaround Rec in working da	quest ays)		L	abo	orat	ory	/ Nu	ıml	ber:						0	4	-	16	0				
14648 NE 95th Street • Redmond, WA 98052	Sa 2 D	in working da (Check One) me Day Days andard (7 Days PH analysis 5 (other) Time Sampled 1832	1 Day 3 Days Days)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	xG-HdLMN	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	el)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total BCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	1 6 x x x x x x x x x x x x x x x x x x	Total As, Ba, Fe, Pb, Mn, Hg,	Total Se, Ag		% Moisture	<
17 SROY-DS-02-4-6 18 SIZOY-DS-03-20-2	4119	728	55 55																, and the second	X					
Signature Relinquished	Co	ompany 200 Em	y ine ex	,			119	1	Time	70	8	Com	ments	s/Spec	cial Ir	nstruo	etions	3							-
Received Relinquished		Di	te i	u		41	13/	લ	11	3	0														
Received Relinquished								+																	
Received																									
Reviewed/Date		Reviewed/Dat	te									Chron	natogr	ams w	ith fin	al rep	ort []							

M	OnSite
	Environmental Inc.

 $_{\text{Page}}$ 3 of 3

Project Name: Saddle Rock IRA Project Manager: No. 1 Project Manage	Sam 2 Da Stan	100	1 Day 3 Days									1	+		-										
NICK RONTDACH Sampled by GG / Hanna Lab ID Sample Identification S 19 SR05-D05-TCLP 20 SR02-D09-Assay	Date Sampled MM9 MM9 Wio/M9	(other) Time sampled 1330 1230		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles B270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level)	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	X Total As	TCLP/SPLP As	Bioassay Fe (Method 80-12)	X		X Total Al	% Moisture
Signature Received Received Received Relinquished Received Relinquished Received Relinquished Received) (3	mpany O Pro				Date 4/	3/0		TTime)	Z TO	LP to	Sipecial Control of the Control of t	T - T	ani es	uls uls	1 3 3 3 5 5	holioass	J +	For	Pen	Jan	9	

Client: GET Client Project Name/Number: 004296-008-00 OnSite Project Number: 04-160		Initiated by:	BGM 4/131	W 19	
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	N/A	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	N/A	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	(Yes)	No		1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature	4ºC	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	N/A			
1.7 How were the samples delivered?	Client	Courier	UPS/FedE	OSE Pickup	Other
2.0 Chain of Custody Verification					
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 2 4	
2.2 Was the COC legible and written in permanent ink?	Vas	No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?				1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	(res) (res) (res) (res)	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?		No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	No No		1 2 3 4	
The state of the s	163	(NO)		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	Yes	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Yes	No	(N/A)	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	NA	1 2 3 4	
8.6 Is there sufficient sample submitted to perform requested analyses?	(Yes)	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
8.8 Was method 5035A used?	Yes	No	N/A	1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#		N/A	1 2 3 4	
				0 - 1	
xplain any discrepancies:					

^{1 -} Discuss issue in Case Narrative

^{2 -} Process Sample As-is

^{3 -} Client contacted to discuss problem

^{4 -} Sample cannot be analyzed or client does not wish to proceed

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 7, 2019

Nick Rohrbach GeoEngineers, Inc. 1101 Fawcett Avenue South, Suite 200 Tacoma, WA 98402

Re: Analytical Data for Project 004296-008-00 Laboratory Reference No. 1904-160B

Dear Nick:

Enclosed are the analytical results and associated quality control data for samples submitted on April 13, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 004296-008-00

Case Narrative

Samples were collected on April 8, 9, 10, and 11, 2019 and received by the laboratory on April 13, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B Project: 004296-008-00

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
SR05-D05-TCLP	04-160-19	Soil	4-11-19	4-13-19	
SR02-D09-Assay	04-160-20	Soil	4-11-19	4-13-19	

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B Project: 004296-008-00

TCLP ARSENIC EPA 1311/6020B

TCLP Extract Matrix: Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR05-D05-TCLP					
Laboratory ID:	04-160-19					
Arsenic	ND	0.025	EPA 6020B	5-3-19	5-6-19	

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B Project: 004296-008-00

SPLP ARSENIC EPA 1312/6020B

SPLP Extract Matrix: Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SR05-D05-TCLP					
Laboratory ID:	04-160-19					
Arsenic	0.11	0.025	EPA 6020B	5-6-19	5-6-19	_

Project: 004296-008-00

TCLP ARSENIC EPA 1311/6020B QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0503TM1					
Arsenic	ND	0.025	EPA 6020B	5-3-19	5-6-19	

Analyte	Res	sult	Spike	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	04-16	60-19									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		l	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	04-16	60-19									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.71	3.85	4.00	4.00	ND	93	96	75-125	4	20	•

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B Project: 004296-008-00

TCLP ARSENIC EPA 1311/6020B **CONTINUING CALIBRATION SUMMARY**

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Arsenic	ICV050619X	0.0500	0.0505	-1.0	+/- 10%
Arsenic	LLV050619X	0.000500	0.000509	-1.8	+/- 20%
Arsenic	CCV1050619X	0.0400	0.0411	-2.7	+/- 10%
Arsenic	CCV2050619X	0.0400	0.0420	-5.0	+/- 10%
Arsenic	CCV3050619X	0.0400	0.0420	-5.0	+/- 10%

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B

Project: 004296-008-00

SPLP ARSENIC EPA 1312/6020B QUALITY CONTROL

Matrix: SPLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0506SPM1					
Arsenic	ND	0.025	EPA 6020B	5-6-19	5-6-19	

Analyte	Re	sult	Spike	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	04-1	60-19									
	ORIG	DUP									
Arsenic	0.111	0.134	NA	NA		l	NA	NA	19	20	
MATRIX SPIKES											
Laboratory ID:	04-160-19										
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	4.15	4.04	4.00	4.00	0.111	101	98	75-125	3	20	

Date of Report: May 7, 2019 Samples Submitted: April 13, 2019 Laboratory Reference: 1904-160B Project: 004296-008-00

SPLP ARSENIC EPA 1312/6020B **CONTINUING CALIBRATION SUMMARY**

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Arsenic	ICV050619X	0.0500	0.0505	-1.0	+/- 10%
Arsenic	LLV050619X	0.000500	0.000509	-1.8	+/- 20%
Arsenic	CCV1050619X	0.0400	0.0411	-2.7	+/- 10%
Arsenic	CCV2050619X	0.0400	0.0420	-5.0	+/- 10%

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Dangerous Waste Characterization

Sample ID: SR02-D09-Assay

Report date: May 7, 2019

Submitted to:

OnSite Environmental 14648 NE 95th Street Redmond, WA 98052

Rainier Environmental 5013 Pacific Hwy East Suite 20 Tacoma, WA 98424

1.0 INTRODUCTION

A dangerous waste characterization using the test organism *Oncorhynchus mykiss* (rainbow trout) was conducted on one sample submitted by OnSite Environmental to Rainier Environmental. Testing was conducted following the Washington State Department of Ecology Publication 80-12.

2.0 METHODS

The sample SR02-D09-Assay, was received in the laboratory on April 26, 2019. Upon arrival at the laboratory the sample was inspected and contents verified against information provided on the chain-of-custody form. The sample was stored at 4°C in the dark until use. The test procedure is outlined in Table 1.

Table 1. Summary of Dangerous Waste Characterization Test Conditions

Parameter	Standard Fish Toxicity Test	115
Test number	1905-002	
Sample ID	SR02-D09-Assay	
Test initiation date; time	5/2/2019; 0945h	
Test termination date; time	5/6/2019; 1025h	
Endpoint	Mortality at 96-hours	
Test chamber	7.5 L Plastic tank	
Test temperature	12 ± 1℃	
Dilution water	Moderately hard synthetic water	
Test solution volume	6 L	
Test concentrations (mg/L)	100, 10, 0	
Number of organisms/ chamber	10	
Number of replicates	3	
Test organism	Oncorhynchus mykiss (rainbow trout)	
Feeding	No feeding during test	
Photoperiod	16 hours light/ 8 hours dark	
Extraction	Rotary agitation (30 +/- 2 rpm) for 18 hours	
Reference Toxicant	Copper sulfate	
Deviations	None	en e

The test organisms used in the test are outlined in Table 2. The sample was tested using fish received on March 13, 2019.

Table 2. Test organisms (Oncorhynchus mykiss)

Test organism age	65 days post swim-up (hatch date 2/4/2	2019)
Mean weight	0.39 g	
Mean length	40mm	
Ratio of longest to shortest	1.2	
Loading	0.67 g/L	
Test organism source	Trout Lodge; Sumner, WA	

3.0 RESULTS

A summary of results for the dangerous waste characterization conducted on sample SR02-D09-Assay is contained in Table 3. There was no mortality during the test. Based on these results, the sample does not designate as either a dangerous or extremely hazardous waste. Copies of the laboratory bench sheets, statistical summaries of reference toxicant tests, and chain-of-custody form are provided in Appendices A through C.

Table 3. Summary of Results

Sample ID	Concentration (mg/L)	Survival (# fish, N=30)	Percent Mortality	Dangerous Waste Designation
Control	0	30	0	NA
SR02-D09-Assay	10 100	30 30	0	None

4.0 QUALITY ASSURANCE

The most recently completed reference toxicant test was initiated April 19, 2019. The LC₅₀ of $83.1~\mu g/L$ copper fell within the acceptable range of mean \pm two standard deviations of historical test results indicating that the test organisms were of an appropriate degree of sensitivity. The coefficient of variation (CV) for the last 21 tests was 20.6 percent, which is considered excellent by the Biomonitoring Science Advisory Board.

5.0 REFERENCES

- WDOE. 2008. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Washington State Department of Ecology. Water Quality Program. Publication number: WQ-R-95-80, Revised December 2008.
- WDOE. 2009. Biological Testing Methods 80-12 for the Designation of Dangerous Waste. Washington State Department of Ecology. Hazardous Waste and Toxics Reduction Program. Publication number: 80-12, Revised June 2009.

Appendix A

Oncorhynchus mykiss Dangerous Waste Toxicity Test

Raw Bench Sheets

Dangerous Waste Toxicity Test

Client: ONSITE FUVIRONMENTAL	Start Date & Time: _5/2/19 0945
Sample ID: SRO2-D09-ASSAY	End Date & Time: $5/6/19$ 1025
Test #: 1905 - 002	Test Organism: Oncorhynchus mykiss
Log In #: ブ/ター0ウス	Test Protocol: Washington State Department of Ecology Publ. 80-12

	Conc.				lumbe				Disso		Oxyger	1	1		pН	4,5			Conducti	vity		Τe	mperat	ure		
Rep		Cont		and the same of th	A PROPERTY OF THE PARTY OF THE	misms				(mg/L					(units	*			(umhos/c			gas Nilai	(°C)			Percent
-	CON	6	10	10	10	10	96	9.1	24 8,7	48 BH	72	96	0	24	48	72	96	202	24 48			0 24			96	Survival
2	4070	10	10	10	10	10	10	3.8	0,1	733	78	7,3	7.64	121	7.40	722	7/3	282		37	5/2	10 19,3	191	11.3	14,3	
3		2	10	10	10	110	tío	8.7	3.4	8.1	3.0	79	7.71	750	737	7/2	7.15	283		29						
1	10 PPM	16	10	10	10	10	10		ساجين باشعاب	80	7.6		7.75		-	_		A STATE OF THE PARTY OF THE PAR		29		106	10.1	110	12 1	
2	TUPFIL	13	10	10	10	10	10		8.3		75	1		753	735	7.15		283		30	7/10	10 125	13.1	11.9	1011	
3		24	10	10	10	10	tõ	8.7	55	3.1	7.9	9900 art.	•	75i	7.3 <i>i</i>		7/4	-		3			-			
ī	JOOPPM	18	1ŏ	10	110	10	110		197	3.3	80	The same of the sa			727	STATISTICS OF THE PARTY OF THE	714	DG 1	and the second			.1 124	10.1	Trail	12.3	
2	, 00,,,,	11	10	10	liö	10	10		8,7	8,2					7.31		716	2011 2011		37 27	7 13 	11 10.5	[di]	11/7	O YOY	
3		27	10	10	10	10				3,0	7.8	74	777	534	7.30	799	714	207 283		27 29						
1		~			'		 	19.7	103.1	10,50	1.0	1/-1-	1000	PI	1.2	4,07	£ ;1]	(3/2)		12(/	-				-	
2				†		†		1		-							·									
3				<u> </u>		1		t	ļ <u>.</u>												-					
1			All Chicagons and the Control of the					f														are en				
2																										
3																						500000				
1			o III II by based or any or be a ser														****									
2																	3.5									1
3																										
1	1																									
2										-																
3																										
Tec	chnician Initia	als	U	91	Û	Q.F	比	4	13°	94	it	₹ V														

·					5.30133				1	Test Volume:	16.9L	
1	Sample	Alk. (init.)	Hard. (init.)	Alk. (fin.)	Hard. (fin.)	Chlorine	Animal Source:	TRAGE	I ladge	Date of Hatch:	2/4/19	
1	Sumple		(mg/L as	CaCO3)		(mg/L Cl2)	Date Received:	3/13/	19	Date of Swim up:	2/25/1º	
	Control	64	92	64	96	20.03						
	100PPM	64	भे र	6.4	92	Weights (g):	H .37 .38	37 40	40 36	4 49 41	μ=_	Rainier Environmental
-		- · · · · · · · · · · · · · · · · · · ·				Lengths(mm):	40 39 , 39	<u> 39 41</u>	41 37	40 43 40	μ=_	40 Washington Laboratory
L					<u> </u>	Length max	/min: <u>43/37</u>	12	Loading:	0.67 g/L		5013 Pacific HWY E Suite 20

Tacoma, WA 98424

Dilution Water Source: MHSW 03/ QA Check U

Appendix B

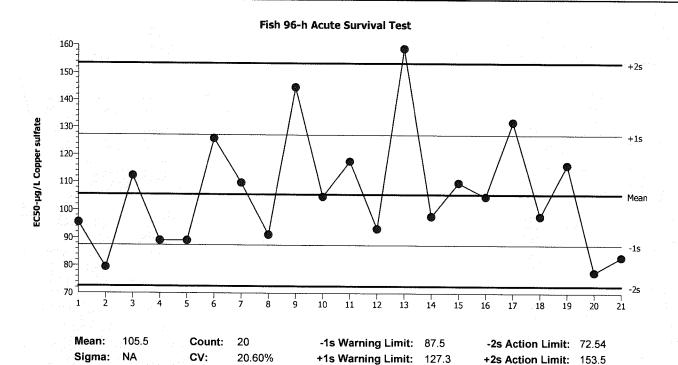
Reference Toxicant Test

Control Chart and Statistical Summary

Report Date:

25 Apr-19 12:24 (1 of 1)

Fish 96-h Acute Survival Test


Test Type: Survival (96h)

Organism: Oncorhynchus mykiss (Rainbow Tro
Protocol: Not Applicable

Organism: Oncorhynchus mykiss (Rainbow Tro
Endpoint: 96h Survival Rate

Rainier Environmental Laboratory

Material: Copper sulfate
Source: Reference Toxicant-REF

Quali	ty Con	trol Dat	а .									
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID		
1	2017	Jul	5	95.48	-10.05	-0.5338	And Co. C. Co.		15-6974-4640	17-7171-1787	 	
2		Aug	9	79.37	-26.16	-1.52	(-)		14-0940-5366	14-5578-7811		
3		Sep	6	112.2	6.716	0.3292			20-3302-1945	19-8536-6321		
4		Oct	10	89.09	-16.44	-0.9037			16-6680-8798	20-0898-2992		
5		Nov	14	89.09	-16.44	-0.9037			03-8806-4974	08-0487-5780		
6		Dec	17	126	20.46	0.9457			21-2907-2796	14-7957-6406		
7	2018	Jan	16	109.7	4.152	0.2059			07-7088-1157	16-4889-5798		
8		Feb	15	91.17	-14.36	-0.7804			06-6357-5370	00-6522-6981		
9		Mar	17	144.7	39.2	1.685	(+)		00-4331-1834	10-4388-1035		
10		Apr	21	104.7	-0.8011	-0.04066			00-5606-6972	09-2556-2363		
11		May	23	117.6	12.02	0.5758			20-2785-4749	16-3316-3415		
12		Jun	20	93.3	-12.23	-0.6571			05-6858-8909	21-3433-5668		
13		Jul	25	158.7	53.21	2.179	(+)	(+)	03-7661-5860	05-4916-3169		
14		Aug	30	97.72	-7.814	-0.4105			01-6631-0399	00-2872-0274		
15		Oct	5	109.7	4.152	0.2059			09-8718-1650	14-5303-2875		
16		Nov	6	104.7	-0.8011	-0.04066			20-5282-8357	01-3690-0719		
17		Dec	5	132	26.42	1.192	(+)		01-4499-1094	07-5652-1457		
18	2019	Jan	7	97.72	-7.814	-0.4105			03-9395-5944	09-6087-0434		
19		Feb	9	116.1	10.61	0.5113			13-6349-4914	05-5573-8325		
20		Mar	12	77.56	-27.97	-1.643	(-)		03-9582-1391	08-0363-8342		
21		Apr	19	83.12	-22.41	-1.274	(-)		16-0727-4914	09-8538-6220		

CETIS Summary Report

Report Date:

25 Apr-19 12:28 (p 1 of 1)

Test Code:

RA041919OM | 16-0727-4914

				····				1	est Code:	RA041	919OM 16	6-0727 -4 91
Fish 96-h Acu	te Survival Test	<u> </u>							R	ainier Envir	onmental I	_aboratory
Batch ID:	17-1999-0854		Test	Type:	Survival (96h)				Analyst: Eric	Tollefson		***
Start Date:	19 Apr-19 15:30)	Proto		Not Applicable				•	d-Hard Synth	netic Water	
Ending Date:	23 Apr-19 15:15		Spec		Oncorhynchus	mykiss			Brine:	a riaia Oyiia	TOUGHT VALOR	
Duration:	96h		Sour		Trout Lodge Fis			_	\ge: 52d			
Sample ID:	09-3050-7889		Code	ş· .	RA041919OM				Client: Inte	rnal Lab		
Sample Date:			Mate		Copper sulfate				Project:	IIIai Lab		
Receive Date:			Sour		Reference Toxi	cant		•	TOJECL.			
Sample Age:	16h		Stati		In House	Cant						
Comparison S	Summary	· · · · ·		<u> </u>								
Analysis ID	Endpoint			NOEL	LOEL	TOEL	PMSD	TU	Method			
10-8271-5589	96h Survival Ra	te	<u> </u>	50	100	70.71	16.1%	-10		fultiple Com	parison Tes	st
Point Estimate	e Summary						·					
Analysis ID	Endpoint			Level	µg/L	95% LCL	95% UCL	TU	Method			
09-8538-6220	96h Survival Ra	te		LC50	83.12	70.5	98		Spearmai	n-Kärber		
96h Survival F	Rate Summary									-	<u></u>	
C-µg/L	Control Type	Coun	ıt	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3		1	1	1	1	1	0	0	0.0%	0.0%
25		3		1	1	1	1	1	0	0	0.0%	0.0%
50		3		0.8333	0.7902	0.8765	0.7	0.9	0.06667	0.1155	13.86%	16.67%
100		3		0.3333	0.2763	0.3904	0.2	0.5	0.08819	0.1528	45.83%	66.67%
200		3		0.0666	7 0.02355	0.1098	0	0.2	0.06667	0.1155	173.2%	93.33%
400		3		0	0	0	0	0	0	0		100.0%
96h Survival I	Rate Detail						***************************************			11 1401		
C-µg/L	Control Type	Rep	1	Rep 2	Rep 3							
0	Dilution Water	1		1	1							
25		1		1	1							
50		0.9		0.7	0.9							
100		0.5		0.2	0.3							
200		0		0.2	0							
400		0		0	0							
96h Survival	Rate Binomials											
C-µg/L	Control Type	Rep	1	Rep 2	Rep 3							
0	Dilution Water	10/10)	10/10	10/10							
25		10/10)	10/10	10/10							
50		9/10		7/10	9/10							
100		5/10		2/10	3/10							
200		0/10		2/10	0/10							
		3.13										

400

0/10

0/10

0/10

Appendix C Chain-of-Custody Form

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: Rainier Environmental

Attention: Eric Tollefson

Address: 5013 Pacific Highway E, Suite 20, Fife, WA 98424

Phone Number: (253) 922-8898

Turnaround Request

1 Day 2 Day

3 Day

Standard Other:

Laboratory Reference #: 04 - 160

Project Manager: David Baumeister

dbaumeister@onsite-env.com email:

004296-008-00 Project Number:

Project Name:

Lab ID	Sample Identification	*****************	Date impled	Time Sampled	Matrix	# of Cont.		Requested Analyses
1	SR02-D09-Assay	4,	11/19	1230	Solid	1	Fish I	Bioassay (Dangerous Waste 80-12 Test)
	Signature	- 0	Com	ірапу		4/25/19	Time	Comments/Special Instructions
Relinqu	ished by:		8E	.00		4195/17	1600	
Receive	ed by:			19				
Relinqu	ished by:	U	<u>'</u>					Logn# T19-092
Receive	Received by: Crie Tally		RAINIER			4/26/19	1300	
Relinqu	ished by:							
Receive	ed by:							

The	OnSite
	Environmental Inc.

Chain of Custody

Page 1 of 3

Environmental II 14648 NE 95th Street • Redmond, WA Phone: (425) 883-3881 • www.onsite-ei	98052	ırnaround Req (in working da			L	.abc	orat	ory	Nu	ımk	er:					() 4	-	1 (6 0)					
GeoEngineers		(Check One) ame Day	1 Day		-										WIS/		one)				+					
004296-008-00 Project Name:	2	Days	3 Days											D81A	8270D	8151A	circle				Mn, Hg,					
Saddle Rock IRA		tandard (7 Days		LS						8260E	SIM	/-level)		ides 8	sticides	icides	fetals (1664		Pb, M					
Nick Rohrbach		Tranaiyolo o i	Duyoj	ntaine		EX				olatiles	270D/9	M (low		Pestic	irus Pe	id Herb	ITCA N		rease)							
Sampled by: Hanna		(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	VWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	fotal RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	l As	Total As, Ba, Fe,	Se, Ag			sture	
Lab ID Sample Identification	Date Sample	Time d Sampled	Matrix	Numb	NWTE	NWTP	NWTPH-Gx	NWT	Volatil	Halog	Semiv (with lo	PAHS	PCBs 8082	Organ	Organ	Chlori	Total F	TCLP	HEM (Total As	Tota	Total			% Moisture	
1 SR03-DS-01-	2-4 49/10	1330	ss	1																Х					>	<
2 SROB-DS-03	3-4-6 4/9/10	1 1018	SS	1																Х					1	
3 SROSDOM - SROI - DS-07		91205	ss																	X	X	X				
4 SROE-DOOZ SROI - DS -03	3-4-6 4/8/10	1 1/28	SS																	Х						
5 SRUE DS-03 5/208-DS-04	1-2-4 49/10	1025	ss																	4						
6 SROS-DOCK-5/207-DS-05	-2-4 4/9/	9 1410	ss																	X						
7 51202-05-05-2-4	4/9/19	1544																		K						
8 5/202-05-01-4-6 9 5/203-05-03-4-6	4/8/1	9 1558																		X						
9 5/203-05-03-4-6	· 49/19	1354																		X						
10 5/203-05-09-4-4		91505	V	0																X	X	X	-		V	
Signature		Company				Date	_		Time	1		Con	nmen	s/Spe	ecial	Instru	iction	IS								
Relinquished	2	beok	inghee	7_		C	1/10	119		70	8		4	Α	10	lec	1	4/	25	-/,	9.	D	21	51	-4	1
Received	Da C	367	Ne F	U		4	li3l	a	1	13	0			-4				(2/	"	/
Relinquished																										
Received																										
Relinquished																										
Received									1																	
Reviewed/Date		Reviewed/Da	ate									Chro	matog	rams	with f	inal re	port [

.:-		
M	OnSite	
1	Environmental Inc	
	14648 NE 95th Street • Redmond, WA 9805	

Chain of Custody

Page Z of 3

	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		naround Req 1 working da			L	abo	orat	ory	/ Nu	uml	oer:						C) 4	- "	1 6	0			
Projec	GeoEngineers t Number: 004296-008-00 t Name: Saddle Rock IRA t Manager: Nick Rohrbach ded by:				Number of Containers	CID	x/BTEX	×	×	260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)		Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	als	HEM (oil and grease) 1664		Total As, Ba, Fe, Pb, Mn, Hg,	, Ag		
Lab ID		Date Sampled	Time Sampled	Matrix	- Number	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenat	Semivolati (with low-le	PAHs 8270	PCBs 8082	Organochi	Organopho	Chlorinate	Total RCR.	TCLP Metals	HEM (oil a	Total As	Total As	Total Se,		% Moisture
11	SROODS 02 51205 - DS - 02 - 2 - 4 SROODS 02 51205 - DS - 03 - 0 - 2	4/14/9	1832	SS	1	-															X				X
13	Spec 05-05-07-0-2	4/11/19	1104	SS																	X	X	x		\dagger
14	SPORTS (1204 - US-03-4-6)	4/19	654	SS																	X			-	Ţ
15	SPOR DS-05 S1204-US-05-4-10	4/1/19	703	ss ss																	X				+
17	SROY-DS-02-4-6	YINA	728	55																	X				
18	S1204-05-03-820-2	44/19	735	55	V	1															L				V
Relir	Signature quished	Co	geo Car	my laces	2			119			70	8	Con	nment	ts/Spe	ecial I	Instru	ction	S						
Rece	quished		200	Yei	Tu		4	113/	19	1	(3	0													
Rece					.,																				
Relin	quished																								
Rece																									
Revie	ewed/Date		Reviewed/Da	te									Chro	matog	rams	with fi	nal re	port [

MA	OnSite	
	Environmental	

Chain of Custody

 $_{\text{Page}}$ 3_{of}

	Environmental inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Tur (ir	naround Req n working da	uest ys)		L	abo	orat	ory	/ Nu	ıml	oer:							0	4 -	- 1	6	0				
Projec	GeoEngineers tt Number: 004296-008-00 tt Name: Saddle Rock IRA tt Manager: Nick Rohrbach ed by SiGS / Hanna			1 Day 3 Days Days	Number of Containers	-HCID	NWTPH-Gx/BTEX	-Gx	-Dx	8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	82	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	stals	IEM (oil and grease) 1664	S	TCLP/SPLP As	Bioassay Fe (Method 80-12)	a)	ay AI (Method 80-12)		ire
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH-HCID	NWTPH	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogen	Semivola (with low	PAHs 82	PCBs 8082	Organoc	Organopl	Chlorina	Total RC	TCLP Metals	HEM (oil	Total As	TCLP/8	Bioass	Total Fe	Bioassay	Total Al	% Moisture
19	SR05-D05-TCLP	4149	1330	WR	1																х	160					X
20	SR02-D09-Assay	4/149	1230	WR	1																			х			1
21	SR06-C02-D-Assay	4/10/19	1138	WR	4																				00	X	
	Signature	Co	ompany				Date			Time			Com	ment	s/Spe	ecial I	nstru	ction	s								
Relin	quished	m) C	,00 Fm	itu t			4/1	3/0	9		300		7	S	7/	or OL	TO	pto (15	1317	holoas	Jesan	Fo.	Pen	Din	VI	
Relin	quished							,,,,					-	10	tal	5	5	25	ال	S.					1		
Rece	ived												,		1	1											
Relin	quished																										
Rece	ived																										
Revie	wed/Date		Reviewed/Da	te									Chror	natog	rams v	with fi	nal re	oort									

Sample/Cooler Receipt and Acceptance Checklist

Client: GET Client Project Name/Number: 004296-008-00 OnSite Project Number: 04-160		Initiated by:	BG/M 4/13/1	9	-: -:
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler? 1.2 Were the custody seals intact? 1.3 Were the custody seals signed and dated by last custodian? 1.4 Were the samples delivered on ice or blue ice?	Yes Yes Yes	No No No	N/A N/A N/A	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius? 1.6 Have shipping bills (if any) been attached to the back of this form? 1.7 How were the samples delivered?	Yes Yes Client	No N/A Courier	Temperature:	OSE Pickup	Other
2.0 Chain of Custody Verification					
2.1 Was a Chain of Custody submitted with the samples? 2.2 Was the COC legible and written in permanent ink?	(Yes)	No No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian? 2.4 Did the sample labels (ID, date, time, preservative) agree with COC? 3.5 Ware all of the complex listed on the COC submitted?	(res) (res) (res)	No No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC?	Yes	No		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised? 3.2 Were any sample labels missing or illegible? 3.3 Have the correct containers been used for each analysis requested?	Yes Yes	No No		1 2 3 4 1 2 3 4 1 2 3 4	
3.4 Have the samples been correctly preserved? 3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes Yes	No No	N/A	1 2 3 4 1 2 3 4 1 2 3 4	
3.6 Is there sufficient sample submitted to perform requested analyses? 3.7 Have any holding times already expired or will expire in 24 hours? 3.8 Was method 5035A used?	Yes	No No		1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	Yes #	No	N/A	1 2 3 4 1 2 3 4	
Explain any discrepancies:					

^{1 -} Discuss issue in Case Narrative

^{2 -} Process Sample As-is

^{3 -} Client contacted to discuss problem

^{4 -} Sample cannot be analyzed or client does not wish to proceed

ATTACHMENT E ProUCL Stats Results and Graphical Chart Presentations (Chart 1 through 6)

Attachment E-1

All Pile Background Assessment

```
6
     SR03-US-04-2-4 Saddle Rock - Background All
 7
     SR03-US-01-4-6
 7
     SR03-US-04-4-6
 7
                                      MTCAStat 3.0
     SR08-US-02-0-2
 7
     SR08-US-02-4-6 Number of samples
                                                 Uncensored values
 8
     SR03-US-02-4-6
                          Uncensored
                                                             Mean
                                                                            45.42
 8
     SR04-US-01-2-4
                            Censored
                                                  0.ognormal mean
                                                                            43.84
 8
                              TOTAL
                                                                            56.16
     SR08-US-02-2-4
                                                         Std. devn.
 9
                                                            Median
                                                                               28
     SR03-US-02-2-4
 9
     SR03-US-04-0-2
                                                               Min.
                                                                                6
 9
     SR04-US-02-0-2
                                                              Max.
                                                                              433
11
     SR03-US-03-0-2
     SR04-US-02-4-6 Lognormal distribution?
                                                Normal distribution?
11
12
     SR03-US-01-0-2
12
     SR04-US-01-4-6
                          r-squared is: 0.98
                                                       r-squared is: 0.59
13
     SR03-US-01-2-4
     SR04-US-02-2-4 Recommendations:
13
14
    SR08-US-01-4-6
    SR08-US-03-4-6
14
    SR04-US-01-0-2
15
15 SR04-US-04-0-2
                                               Use lognormal distribution.
    SR05-US-06-4-6
16
    SR01-US-04-4-6
16
    SR03-US-03-4-6
16 SR08-US-03-2-4
                     Distribution selection
                                                                   Value corresponding
                                                    Enter percentile to that percentile is:
17 SR03-US-02-0-2
17
    SR04-US-04-2-4
                            1
                                                          90
                                                                            94.99
                     1 = Lognormal
                                                              50th
17
    SR04-US-04-4-6
                                                                            29.39
18 SR02-US-02-4-6
                     2 = Normal
                                                           4 X 50th
                                                                           117.55
    SR02-US-05-2-4
                     3 = Nonparametric method
                                                             Coefficient of Variation = 1.15
18
    SR05-US-06-2-4
    SR08-US-03-0-2
18
19 SR01-US-04-0-2
20 SR05-US-06-0-2
20 SR08-US-01-0-2
21 SR01-US-04-2-4
21 SR03-US-05-0-2
21 SR08-US-01-2-4
23 SR05-US-03-4-6
24 SR02-US-02-0-2
25 SR01-US-05-0-2
25 SR04-US-05-0-2
26 SR02-US-02-2-4
26 SR03-US-03-2-4
27 SR02-US-03-0-2
28 SR02-US-03-4-6
28 SR04-US-05-2-4
28 SR05-US-03-0-2
28 SR05-US-03-2-4
29 SR02-US-03-2-4
29 SR02-US-05-0-2
29 SR03-US-05-2-4
29 SR04-US-05-4-6
30 SR01-US-05-4-6
32 SR01-US-05-2-4
33 SR01-US-01-0-2
33 SR02-US-01-2-4
```

36 SR02-US-01-4-6

- 36 SR02-US-05-4-6
- 39 SR02-US-04-0-2
- 40 SR05-US-01-2-4
- 42 SR01-US-01-2-4
- 44 SR02-US-04-2-4
- 44 SR05-US-01-4-6
- 44 SR08-US-06-2-4
- 47 SR02-US-04-4-6
- 56 SR05-US-01-0-2
- 59 SR05-US-02-0-2
- 63 SR05-US-02-2-4
- 65 SR01-US-02-4-6
- 67 SR05-US-02-4-6
- 70 SR01-US-01-4-6
- 70 SR01-US-02-2-4
- 71 SR01-US-03-0-2
- 71 SR01-US-03-2-4
- 71 SR04-US-03-0-2
- 72 SR02-US-01-0-2
- 73 SR01-US-03-4-6
- 75 SR01-US-02-0-2
- -- ----
- 89 SR08-US-05-2-4
- 89 SR08-US-05-4-6
- 99 SR04-US-03-2-4
- 101 SR03-US-05-4-6
- 111 SR08-US-05-0-2
- 136 SR05-US-05-0-2
- 138 SR05-US-05-4-6
- 144 SR08-US-06-0-2
- 144 SR08-US-07-0-2
- 153 SR05-US-05-2-4
- 186 SR04-US-03-4-6
- 433 SR08-US-06-4-6

	UCL Statis	tics for Unc	ensored Full Data Sets	
Lloor Coloated Options	T			
User Selected Options	ProUCL 5.16/8/2019 7:49).E7 AM		
Date/Time of Computation From File	WorkSheet.xls	9:57 AIVI		
Full Precision	OFF			
Confidence Coefficient				
	95%			
Number of Bootstrap Operations	2000			
Upslope All				
		General	Statistics	
Total	Number of Observations	91	Number of Distinct Observations	51
			Number of Missing Observations	0
	Minimum	6	Mean	45.42
	Maximum	433	Median	28
	SD	56.16	Std. Error of Mean	5.887
	Coefficient of Variation	1.237	Skewness	4.185
		NI	205 7	
	N : MEH T : O: :: ::		GOF Test	
	Shapiro Wilk Test Statistic	0.627	Shapiro Wilk GOF Test	
	5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.241	Lilliefors GOF Test	
<u></u>	5% Lilliefors Critical Value	0.0931	Data Not Normal at 5% Significance Level	
	Data Not	Normal at 5	% Significance Level	
		suming Nori	mal Distribution	
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	55.2	95% Adjusted-CLT UCL (Chen-1995)	57.86
			95% Modified-t UCL (Johnson-1978)	55.63
		Gamma	GOF Test	
	A-D Test Statistic	2.175	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.776	Data Not Gamma Distributed at 5% Significance Leve	el
	K-S Test Statistic	0.149	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.0959	Data Not Gamma Distributed at 5% Significance Leve	el
	Data Not Gamn	na Distribute	ed at 5% Significance Level	
			Statistics	
	k hat (MLE)	1.29	k star (bias corrected MLE)	1.255
	Theta hat (MLE)	35.22	Theta star (bias corrected MLE)	36.2
	nu hat (MLE)	234.7	nu star (bias corrected)	228.3
MI	LE Mean (bias corrected)	45.42	MLE Sd (bias corrected)	40.55
			Approximate Chi Square Value (0.05)	194.3
Adjus	sted Level of Significance	0.0474	Adjusted Chi Square Value	193.8
		suming Gam	ma Distribution	
95% Approximate Gamma	a UCL (use when n>=50))	53.36	95% Adjusted Gamma UCL (use when n<50)	53.5
		Lognorma	GOF Test	
9	Shapiro Wilk Test Statistic	0.966	Shapiro Wilk Lognormal GOF Test	
	apiro Triik Tool Olaliolic	3.000	Chapito Wilk Edgitorina doi: 100t	

5% Shapiro Wilk P Value	0.0945	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0883	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0931	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal at 59	% Significance Level	
	Lognormal Sta	atistics	
Minimum of Logged Data	1.792	Mean of logged Data	3.38
Maximum of Logged Data	6.071	SD of logged Data	0.89
Assu	ming Lognorma	I Distribution	
95% H-UCL	53.68	90% Chebyshev (MVUE) UCL	57.82
95% Chebyshev (MVUE) UCL	64.27	97.5% Chebyshev (MVUE) UCL	73.22
99% Chebyshev (MVUE) UCL	90.81	57.676 S.162) S.167 (S.2.) S.2	
-		Free UCL Statistics	
Data appear to follow a D	Discernible Distr	ibution at 5% Significance Level	
<u> </u>	ametric Distribu		
95% CLT UCL	55.1	95% Jackknife UCL	55.2
95% CLT UCL 95% Standard Bootstrap UCL	55.1 55.19	95% Jackknife UCL 95% Bootstrap-t UCL	59.65
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	55.1 55.19 65.71	95% Jackknife UCL	
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	55.1 55.19 65.71 58.4	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	59.65 55.9
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	59.65 55.9
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	55.1 55.19 65.71 58.4	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	59.65
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	59.65 55.9 71.08
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08 82.18	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	59.65 55.9 71.08
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08 82.18	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	59.65 55.9 71.08
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08 82.18 Suggested UCL 53.68	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	59.65 55.9 71.08
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	55.1 55.19 65.71 58.4 63.08 82.18 Suggested UCL 53.68 UCL are provide	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	59.65 55.9 71.08
95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL Note: Suggestions regarding the selection of a 95% Recommendations are base	55.1 55.19 65.71 58.4 63.08 82.18 Suggested UCL 53.68 UCL are provide ed upon data size	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL .to Use	59.65 55.9 71.08

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Goodness-of-Fit Test Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.16/12/2019 10:34:36 AM

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 0.95

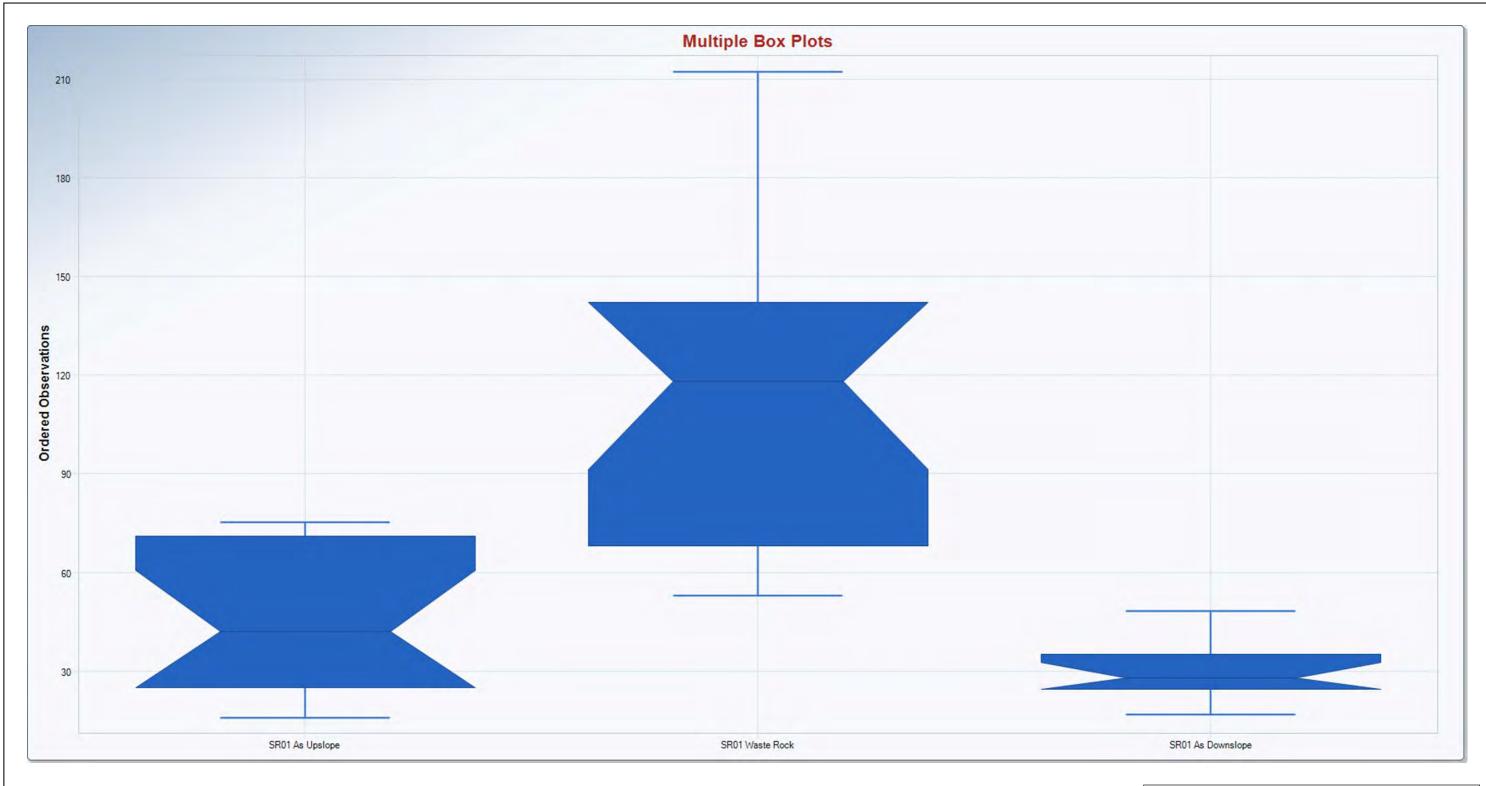
As Upslope

	Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs
Raw Statistics	91	0	91	85	6	6.59%
	Number	Minimum	Maximum	Mean	Median	SD
Statistics (Non-Detects Only)	6	6	11	8	7.5	1.789
Statistics (Non-Detects Only)	85	7	433	48.06	28	57.2
Statistics (All: NDs treated as DL value)	91	6	433	45.42	28	56.16
Statistics (All: NDs treated as DL/2 value)	91	3	433	45.15	28	56.35
Statistics (Normal ROS Imputed Data)	91	-70.42	433	41.41	28	60.8
Statistics (Gamma ROS Imputed Data)	91	0.01	433	44.89	28	56.55
Statistics (Lognormal ROS Imputed Data)	91	3.522	433	45.22	28	56.3
	K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV
Statistics (Non-Detects Only)	1.398	1.356	34.39	3.474	0.849	0.244
Statistics (NDs = DL)	1.29	1.255	35.22	3.381	0.894	0.265
Statistics (NDs = DL/2)	1.191	1.159	37.91	3.335	0.976	0.293
Statistics (Gamma ROS Estimates)	0.7	0.684	64.11	2.941	2.177	0.74
Statistics (Lognormal ROS Estimates)				3.349	0.947	0.283

Normal GOF Test Results

	No NDs	NDs = DL	NDs = DL/2 No	rmal ROS
Correlation Coefficient R	0.768	0.767	0.773	0.839
	Apr. Test	P Value	Con	clusion with Alpha(0.05)
Shapiro-Wilk (Detects Only)	0.629	0	Data Not Norm	al
Shapiro-Wilk (NDs = DL)	0.627	0	Data Not Norm	al
Shapiro-Wilk (NDs = DL/2)	0.636	0	Data Not Norm	al
Shapiro-Wilk (Normal ROS Estimates)	0.751	0	Data Not Norm	al
	Test value	Crit. (0.05)	Con	clusion with Alpha(0.05)
Lilliefors (Detects Only)	0.236	0.0962	Data Not Norm	al
Lilliefors (NDs = DL)	0.241	0.0931	Data Not Norm	al
Lilliefors (NDs = DL/2)	0.227	0.0931	Data Not Norm	al
Lilliefors (Normal ROS Estimates)	0.22	0.0931	Data Not Norm	al

Gamma GOF Test Results

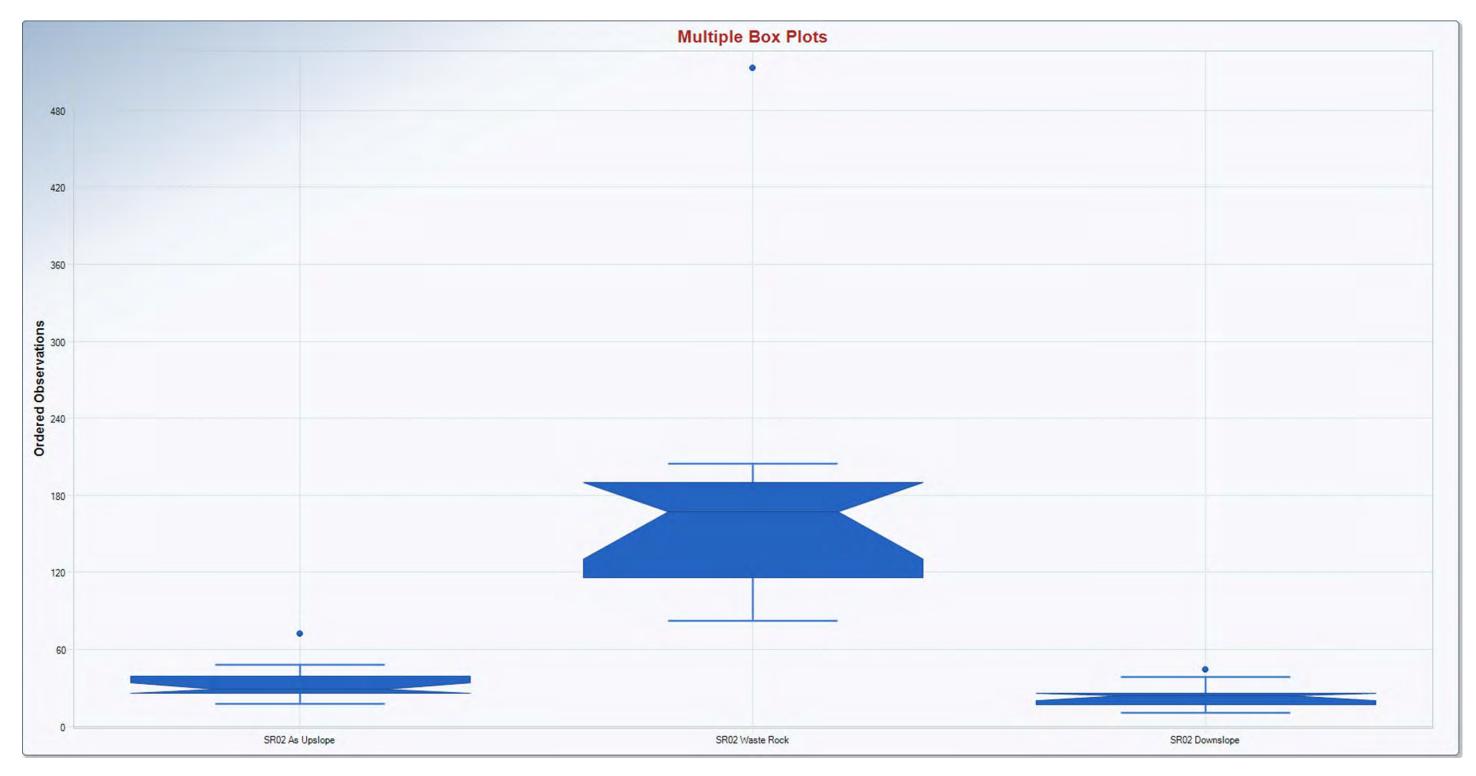

	No NDs	NDs = DL	NDs = DL/2Gamma ROS
Correlation Coefficient R	0.919	0.922	0.928 0.949
	Test value	Crit. (0.05)	Conclusion with Alpha(0.05)
Anderson-Darling (Detects Only)	2.242	0.773	
Kolmogorov-Smirnov (Detects Only)	0.154	0.099	Data Not Gamma Distributed
Anderson-Darling (NDs = DL)	2.175	0.776	
Kolmogorov-Smirnov (NDs = DL)	0.149	0.0959	Data Not Gamma Distributed
Anderson-Darling (NDs = $DL/2$)	1.513	0.778	
Kolmogorov-Smirnov (NDs = DL/2)	0.135	0.0961	Data Not Gamma Distributed
Anderson-Darling (Gamma ROS Estimates)	3.557	0.799	
Kolmogorov-Smirnov (Gamma ROS Est.)	0.173	0.0978	Data Not Gamma Distributed

Lognormal GOF Test Results

	No NDs	NDs = DL	NDs = DL/2 Log ROS
Correlation Coefficient R	0.987	0.989	0.995 0.995
	Apr. Test	P Value	Conclusion with Alpha(0.05)
Shapiro-Wilk (Detects Only)	0.966	0.0989	Data Appear Lognormal
Shapiro-Wilk (NDs = DL)	0.966	0.0945	Data Appear Lognormal
Shapiro-Wilk (NDs = DL/2)	0.983	0.682	Data Appear Lognormal
Shapiro-Wilk (Lognormal ROS Estimates)	0.983	0.716	Data Appear Lognormal
	Test value	Crit. (0.05)	Conclusion with Alpha(0.05)
Lilliefors (Detects Only)	0.103	0.0962	Data Not Lognormal
Lilliefors (NDs = DL)	0.0883	0.0931	Data Appear Lognormal
Lilliefors (NDs = DL/2)	0.0692	0.0931	Data Appear Lognormal
Lilliefors (Lognormal ROS Estimates)	0.0749	0.0931	Data Appear Lognormal

Note: Substitution methods such as DL or DL/2 are not recommended.

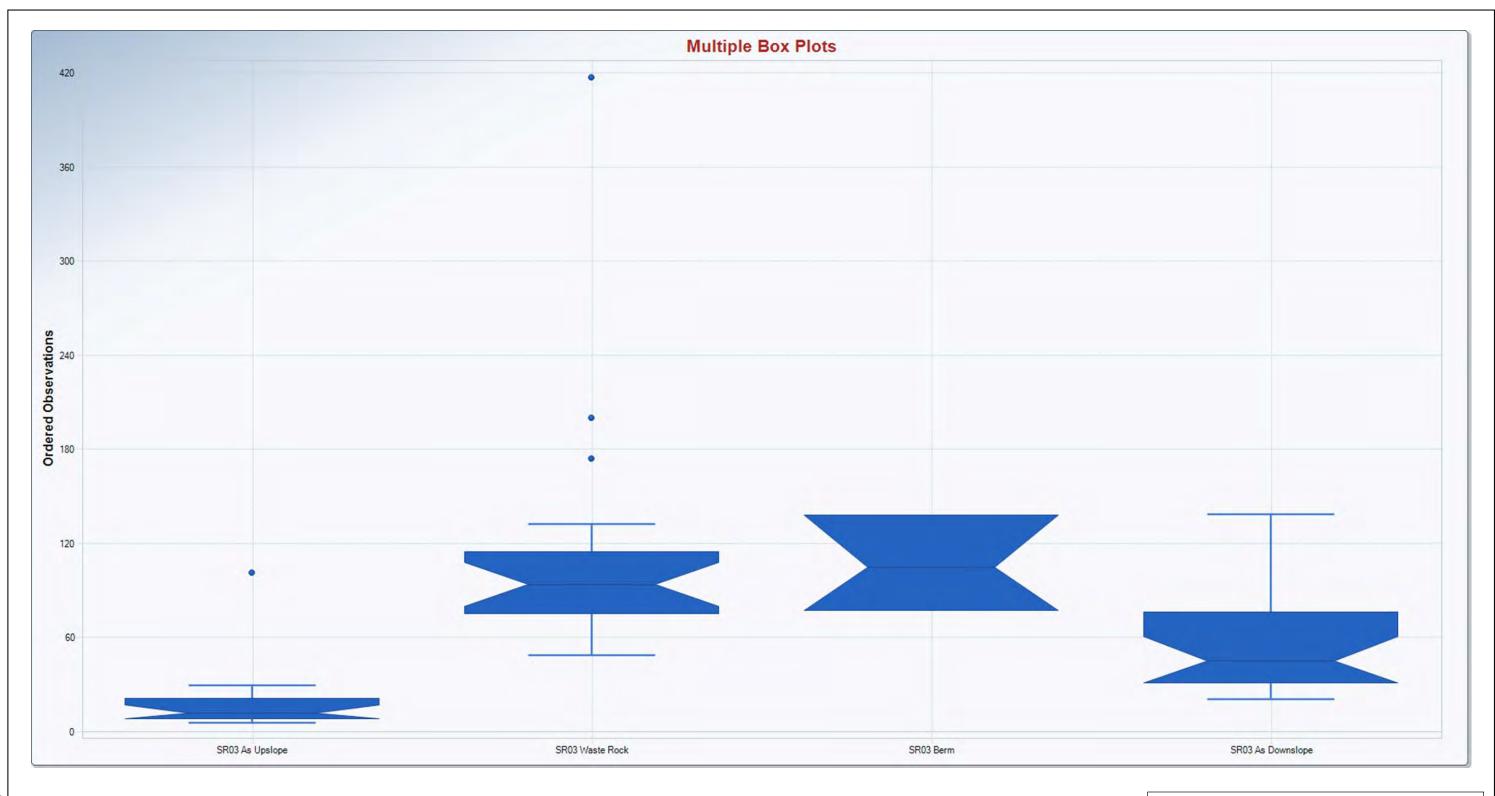
Attachment E-2 Box and Whisker Charts



Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

Saddle Rock Interim Remedial Action Project Wenatchee, Washington



Data Source: ProUCL 5.16/12/2019 2:52:52 PM

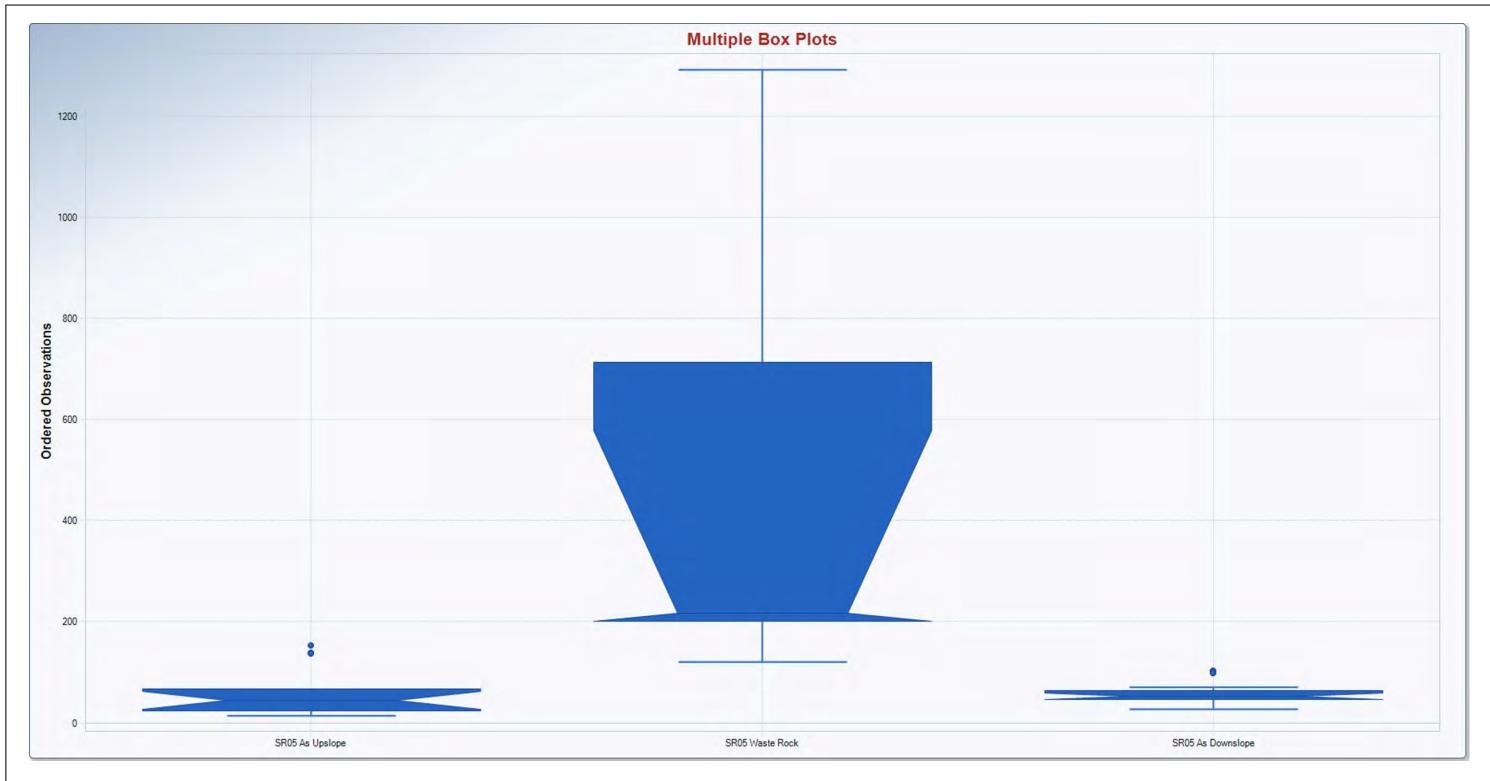
Box and Whisker Chart

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

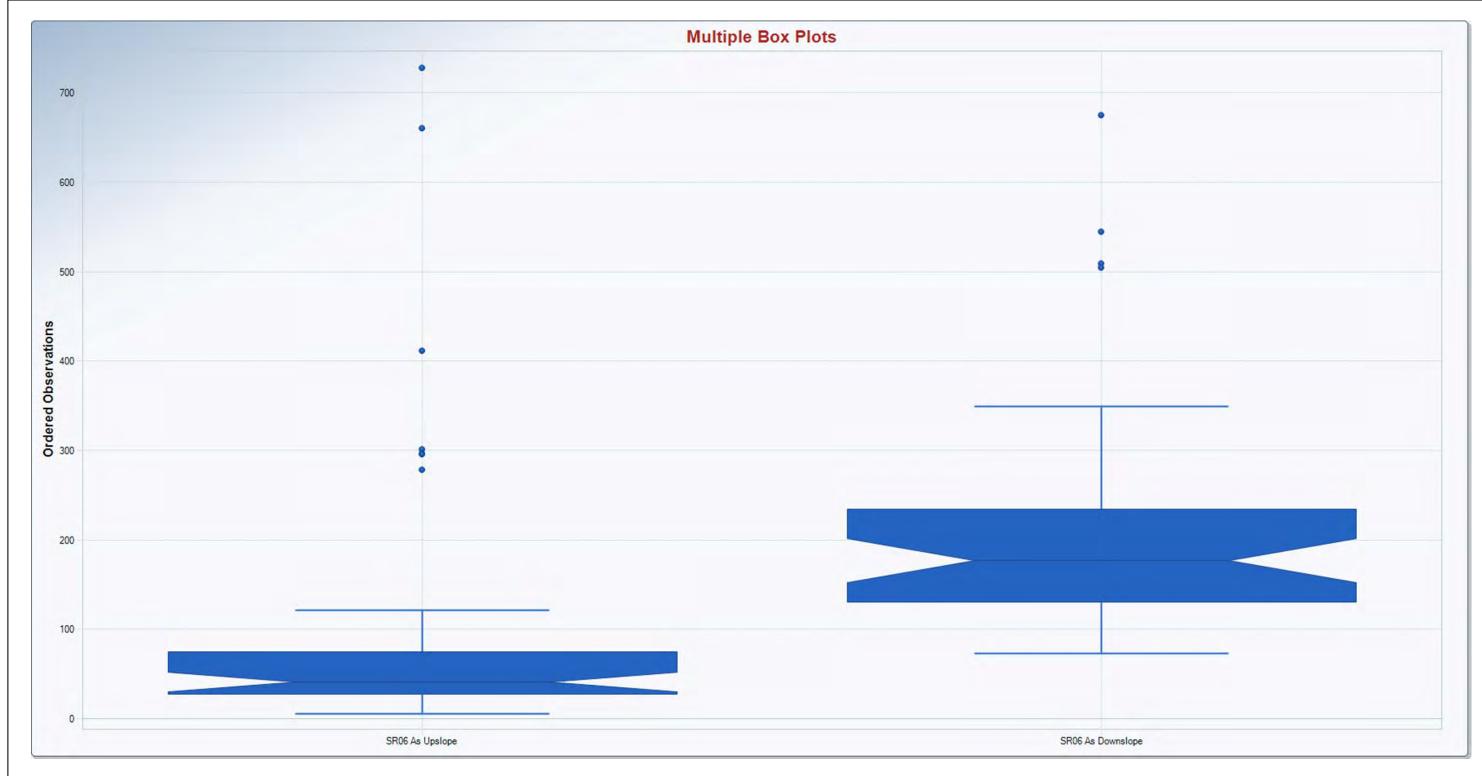
Saddle Rock Interim Remedial Action Project Wenatchee, Washington



Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

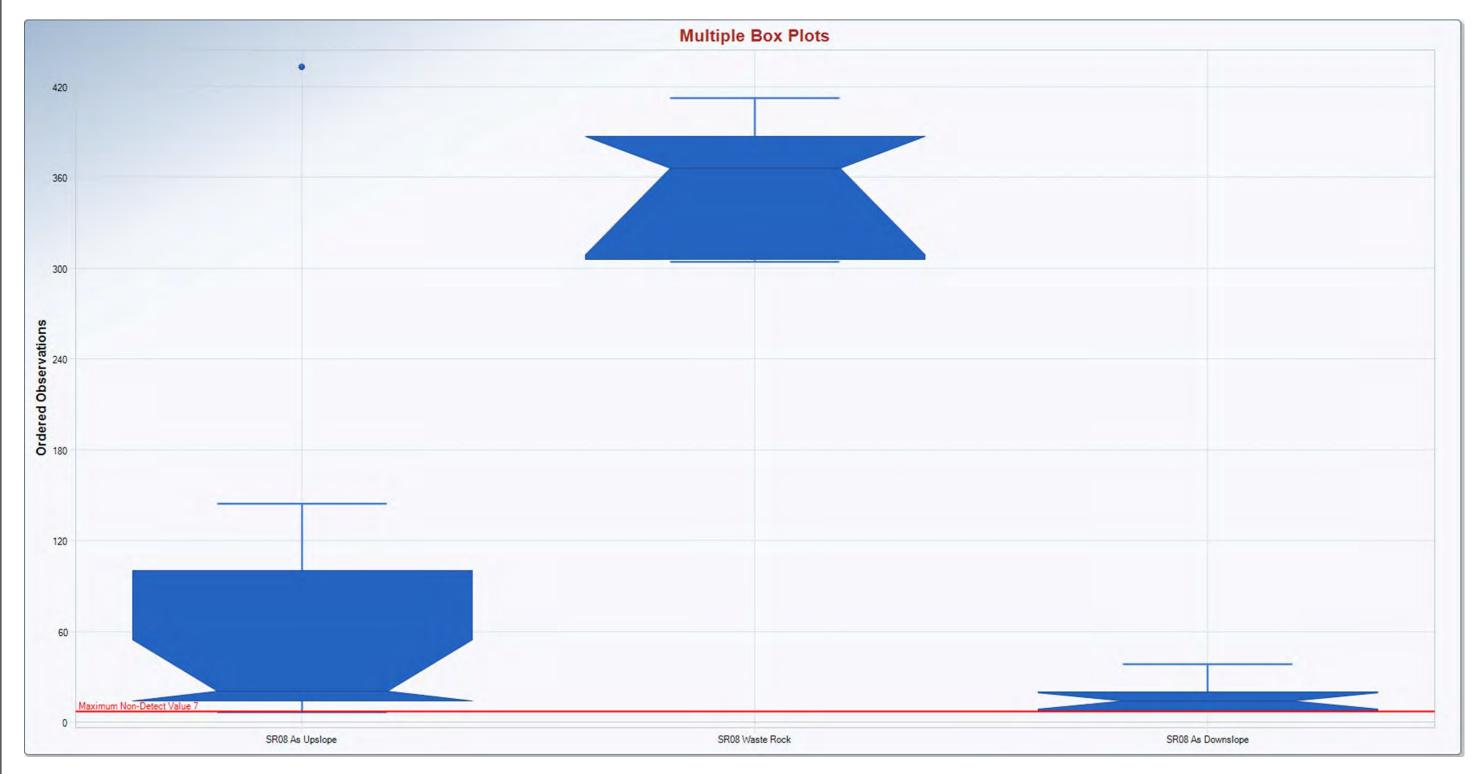
Saddle Rock Interim Remedial Action Project Wenatchee, Washington



Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

Saddle Rock Interim Remedial Action Project Wenatchee, Washington



Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Box and Whisker Chart

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

Attachment E-3 Individual Pile Background Assessment

User Selected Options				
Date/Time of Computation	ProUCL 5.16/8/2019 7:07	·07 ΔΜ		
From File	WorkSheet.xls	.07 AIVI		
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Number of Bootstrap Operations	2000			
R01 As Upslope				
		General St	atistics	
Total	Number of Observations	15	Number of Distinct Observations	13
			Number of Missing Observations	0
	Minimum	16	Mean	47.53
	Maximum	75	Median	42
	SD	23.34	Std. Error of Mean	6.028
	Coefficient of Variation	0.491	Skewness	-0.038
		Normal GC		
	Shapiro Wilk Test Statistic	0.828	Shapiro Wilk GOF Test	
5% S	hapiro Wilk Critical Value	0.881	Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
5	% Lilliefors Critical Value	0.22 Normal at 5%	Data Not Normal at 5% Significance Level Significance Level	
			-	
	Ass	uming Norma		
OFO(N				
95% No	ormal UCL	E0 1E	95% UCLs (Adjusted for Skewness)	E7 00
95% No	95% Student's-t UCL	58.15	95% Adjusted-CLT UCL (Chen-1995)	
95% No		58.15	• •	
95% No	95% Student's-t UCL	Gamma GC	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test	
95% No	95% Student's-t UCL A-D Test Statistic	Gamma GO	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test	58.14
95% No	95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	Gamma GC 1.007 0.741	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	58.14
95% No	95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Gamma GO 1.007 0.741 0.259	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	58.14
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma GC 1.007 0.741 0.259 0.223	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	58.14 el
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma GC 1.007 0.741 0.259 0.223	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	58.14
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma GC 1.007 0.741 0.259 0.223	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level	58.14
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma GC 1.007 0.741 0.259 0.223 na Distributed	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level	58.14
95% No	95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm	Gamma GO 1.007 0.741 0.259 0.223 na Distributed Gamma St	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level	58.14
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm k hat (MLE)	Gamma GC 1.007 0.741 0.259 0.223 na Distributed Gamma St 3.844	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	58.14 el 3.11!
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm k hat (MLE) Theta hat (MLE)	Gamma GC 1.007 0.741 0.259 0.223 na Distributed Gamma St 3.844 12.37	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE)	58.14 el 3.11 15.24 93.58
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma GO 1.007 0.741 0.259 0.223 na Distributed Gamma St 3.844 12.37 115.3	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	58.14 el 3.11' 15.24 93.58 26.91
M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma GO 1.007 0.741 0.259 0.223 na Distributed Gamma St 3.844 12.37 115.3	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level at 5% Significance Level at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	3.119 15.24 93.58 26.91 72.27
M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm k hat (MLE) Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected)	Gamma GC 1.007 0.741 0.259 0.223 na Distributed Gamma St 3.844 12.37 115.3 47.53	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) DF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve at 5% Significance Level atistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	

UCL Statistics for Uncensored Full Data Sets

	Lognormal GOF	Test	
Shapiro Wilk Test Statistic	0.856	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.881	.881 Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.253	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.22	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal at 5% S	ignificance Level	
	Lognormal Stati		
Minimum of Logged Data	2.773	Mean of logged Data	3.72
Maximum of Logged Data	4.317	SD of logged Data	0.56
Assu	ıming Lognormal I	Distribution	
95% H-UCL	67.2	90% Chebyshev (MVUE) UCL	69.89
95% Chebyshev (MVUE) UCL	79.77	97.5% Chebyshev (MVUE) UCL	93.48
99% Chebyshev (MVUE) UCL	120.4	97.5% Chebyshev (WVOL) OCL	
33% Gliobyshev (involv) GGL	120.4		
Nonparame	tric Distribution F	ree UCL Statistics	
Data do not fo	ollow a Discernible	e Distribution (0.05)	
N	Biological Control		
<u> </u>	ametric Distribution		
95% CLT UCL	57.45	95% Jackknife UCL	58.15
95% Standard Bootstrap UCL	57.1	95% Bootstrap-t UCL	58.14
	56.64		
95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	56.93
95% BCA Bootstrap UCL	57.4	·	
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	57.4 65.62	95% Chebyshev(Mean, Sd) UCL	73.8 ⁻
95% BCA Bootstrap UCL	57.4	·	
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	57.4 65.62 85.18	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	73.81
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	57.4 65.62 85.18 Suggested UCL t	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	73.81
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	57.4 65.62 85.18	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	73.81
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL	57.4 65.62 85.18 Suggested UCL t	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	73.8 ⁻
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL Note: Suggestions regarding the selection of a 95%	57.4 65.62 85.18 Suggested UCL t 73.81 UCL are provided	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use	73.8
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL Note: Suggestions regarding the selection of a 95% Recommendations are bas	57.4 65.62 85.18 Suggested UCL t 73.81 UCL are provided ed upon data size	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use I to help the user to select the most appropriate 95% UCL.	73.8 ⁻
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL Note: Suggestions regarding the selection of a 95% Recommendations are based upon the result	57.4 65.62 85.18 Suggested UCL t 73.81 UCL are provided ed upon data size tts of the simulation	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL o Use I to help the user to select the most appropriate 95% UCL. data distribution, and skewness.	73.81

reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

16		Saddle Rock - SR01 Backgroun	d	
19	SR01-US-04-0-2			
21	SR01-US-04-2-4			
25	SR01-US-05-0-2	MTCA <i>Stat</i> :	3.0	
30	SR01-US-05-4-6	Number of samples	Uncensored values	
32	SR01-US-05-2-4	Uncensored	15 Mean	47.53
33	SR01-US-01-0-2	Censored	0 Lognormal mean	48.67
42	SR01-US-01-2-4	TOTAL	15 Std. devn.	23.34
65	SR01-US-02-4-6		Median	42
70	SR01-US-01-4-6		Min.	16
70	SR01-US-02-2-4		Max.	75
71	SR01-US-03-0-2			
71	SR01-US-03-2-4	Lognormal distribution?	Normal distribution?	
73	SR01-US-03-4-6	_		
75	SR01-US-02-0-2	r-squared is: 0.88	r-squared is:	0.85
		·	·	
		Recommendations:		
			Use nonparametric meth	od
			Coo nonparamente men	ou.
		Distribution selection	,	Value corresponding
				to that percentile is:
		3	90	73.80
		1 = Lognormal	50th	42.00
		2 = Normal	4 X 50th	168.00
		3 = Nonparametric method		cient of Variation = N/A
		o – Nonparametric metriou	Coemic	Signification - IVA

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.16/8/2019 7:14:32 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

SR02 As Upslope

Genera	I Statistics
Genera	ı Glalləlicə

Total Number of Observations	15	Number of Distinct Observations	12
		Number of Missing Observations	0
Minimum	18	Mean	33.73
Maximum	72	Median	29
SD	13.51	Std. Error of Mean	3.489
Coefficient of Variation	0.401	Skewness	1.661

Normal GOF Test

Shapiro Wilk Test Statistic	0.861	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	39.88	95% Adjusted-CLT UCL (Chen-1995)	41.07
		95% Modified-t UCL (Johnson-1978)	40.13

Gamma GOF Test

A-D Test Statistic	0.325	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.15	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.222	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

6.427	k star (bias corrected MLE)	7.978	k hat (MLE)
5.249	Theta star (bias corrected MLE)	4.228	Theta hat (MLE)
192.8	nu star (bias corrected)	239.3	nu hat (MLE)
13.31	MLE Sd (bias corrected)	33.73	MLE Mean (bias corrected)
161.7	Approximate Chi Square Value (0.05)		
158.2	Adjusted Chi Square Value	0.0324	Adjusted Level of Significance

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.881	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.129	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.22	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.89	Mean of logged Data	3.455
Maximum of Logged Data	4.277	SD of logged Data	0.361

Assuming Lognormal Distribution

95% H-UCL	40.71	90% Chebyshev (MVUE) UCL	43.18
95% Chebyshev (MVUE) UCL	47.51	97.5% Chebyshev (MVUE) UCL	53.52
99% Chebyshey (MVUE) UCL	65.33		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

39.88	95% Jackknife UCL	39.47	95% CLT UCL
42.5	95% Bootstrap-t UCL	39.26	95% Standard Bootstrap UCL
39.8	95% Percentile Bootstrap UCL	49.86	95% Hall's Bootstrap UCL
		41.27	95% BCA Bootstrap UCL
48.94	95% Chebyshev(Mean, Sd) UCL	44.2	90% Chebyshev(Mean, Sd) UCL
68.45	99% Chebyshev(Mean, Sd) UCL	55.52	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 39.88

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

18	SR02-US-02-4-6	Saddle Rock - SR02 Upslope			
18	SR02-US-05-2-4				
24	SR02-US-02-0-2				
26	SR02-US-02-2-4	MTCA <i>Stat</i>	3.0		
27	SR02-US-03-0-2	Number of samples		Uncensored values	
28	SR02-US-03-4-6	Uncensored	15	Mean	33.73
29	SR02-US-03-2-4	Censored	0	Lognormal mean	33.78
29	SR02-US-05-0-2	TOTAL	15	Std. devn.	13.51
33	SR02-US-01-2-4			Median	29
36	SR02-US-01-4-6			Min.	18
36	SR02-US-05-4-6			Max.	72
39	SR02-US-04-0-2				
44	SR02-US-04-2-4	Lognormal distribution?	1	Normal distribution?	
47	SR02-US-04-4-6				
72	SR02-US-01-0-2	r-squared is: 0.96		r-squared is:	0.85
		Recommendations:			
			Use log	normal distribution.	
		Distribution selection			Value corresponding
				Enter percentile	to that percentile is:
		1		90	51.95
		1 = Lognormal		50th	31.64
		2 = Normal		4 X 50th	126.57
		3 = Nonparametric method		Coeff	icient of Variation = 0.4

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.16/8/2019 7:20:54 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

SR03 As Upslope

General Statistics

Total Number of Observations	15	Number of Distinct Observations	13
Number of Detects	11	Number of Non-Detects	4
Number of Distinct Detects	11	Number of Distinct Non-Detects	4
Minimum Detect	7	Minimum Non-Detect	6
Maximum Detect	101	Maximum Non-Detect	11
Variance Detects	711.3	Percent Non-Detects	26.67%
Mean Detects	23.55	SD Detects	26.67
Median Detects	16	CV Detects	1.133
Skewness Detects	2.9	Kurtosis Detects	8.953
Mean of Logged Detects	2.833	SD of Logged Detects	0.751

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.594	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.328	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	18.99	KM Standard Error of Mean	6.244
KM SD	23.05	95% KM (BCA) UCL	30.53
95% KM (t) UCL	29.99	95% KM (Percentile Bootstrap) UCL	30.47
95% KM (z) UCL	29.26	95% KM Bootstrap t UCL	49.21
90% KM Chebyshev UCL	37.72	95% KM Chebyshev UCL	46.21
97.5% KM Chebyshev UCL	57.98	99% KM Chebyshev UCL	81.11

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.779	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.741	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.205	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.259	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.682	k star (bias corrected MLE)	1.284
Theta hat (MLE)	14	Theta star (bias corrected MLE)	18.34
nu hat (MLE)	36.99	nu star (bias corrected)	28.24
Mean (detects)	23.55		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	17.27
Maximum	101	Median	12
SD	24.98	CV	1.447
k hat (MLE)	0.338	k star (bias corrected MLE)	0.315
Theta hat (MLE)	51.06	Theta star (bias corrected MLE)	54.82
nu hat (MLE)	10.15	nu star (bias corrected)	9.45
Adjusted Level of Significance (β)	0.0324		
Approximate Chi Square Value (9.45, α)	3.601	Adjusted Chi Square Value (9.45, β)	3.169
95% Gamma Approximate UCL (use when n>=50)	45.32	95% Gamma Adjusted UCL (use when n<50)	51.49

Estimates of Gamma Parameters using KM Estimates

23.05	SD (KM)	18.99	Mean (KM)
6.244	SE of Mean (KM)	531.4	Variance (KM)
0.587	k star (KM)	0.679	k hat (KM)
17.62	nu star (KM)	20.36	nu hat (KM)
32.33	theta star (KM)	27.98	theta hat (KM)
49.63	90% gamma percentile (KM)	31.3	a percentile (KM)
115.5	99% gamma percentile (KM)	68.86	a percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

80% gamma 95% gamma

Approximate Chi Square Value (17.62, α)	9.119	Adjusted Chi Square Value (17.62, β)	8.374
95% Gamma Approximate KM-UCL (use when n>=50)	36.7	95% Gamma Adjusted KM-UCL (use when n<50)	39.97

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.905	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	18.31	Mean in Log Scale	2.432
SD in Original Scale	24.27	SD in Log Scale	0.948
95% t UCL (assumes normality of ROS data)	29.35	95% Percentile Bootstrap UCL	29.02
95% BCA Bootstrap UCL	35.54	95% Bootstrap t UCL	47.61
95% H-UCL (Log ROS)	34.98		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.573	KM Geo Mean	13.11
KM SD (logged)	0.752	95% Critical H Value (KM-Log)	2.376
KM Standard Error of Mean (logged)	0.204	95% H-UCL (KM -Log)	28.04
KM SD (logged)	0.752	95% Critical H Value (KM-Log)	2.376
KM Standard Error of Mean (logged)	0.204		

DL/2 Statistics

Mean in Original Scale	18.37	Mean in Log Scale	2.448
SD in Original Scale	24.24	SD in Log Scale	0.925
95% t UCL (Assumes normality)	29.39	95% H-Stat UCL	33.94

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 39.97

95% GROS Adjusted Gamma UCL 51.49

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

SR03-US-04-2-4	Saddle Rock - SR03 Background				
SR03-US-01-4-6					
SR03-US-04-4-6					
SR03-US-02-4-6	MTCA <i>S</i>	tat 3.0			
SR03-US-02-2-4	Number of samples	Unce	nsored values		
SR03-US-04-0-2	Uncensored	15	Mean	19.47	
SR03-US-03-0-2	Censored	0 Log	gnormal mean	18.20	
SR03-US-01-0-2	TOTAL	15	Std. devn.	23.62	
SR03-US-01-2-4			Median	12	
SR03-US-03-4-6			Min.	6	
SR03-US-02-0-2			Max.	101	
SR03-US-05-0-2					
SR03-US-03-2-4	Lognormal distribution?	Norma	al distribution?		
SR03-US-05-2-4					
SR03-US-05-4-6	r-squared is: 0.87		r-squared is:	0.52	
	Recommendations:				
		Use nonparame	etric method.		
	Distribution selection		,	Value corresponding	
		Er	nter percentile	to that percentile is:	
	3		90	57.80	
	1 = Lognormal		50th	12.00	
	2 = Normal		4 X 50th	48.00	
	3 = Nonparametric method		Coeffic	ient of Variation = N/A	
	SR03-US-01-4-6 SR03-US-02-4-6 SR03-US-02-2-4 SR03-US-04-0-2 SR03-US-03-0-2 SR03-US-01-0-2 SR03-US-01-2-4 SR03-US-03-4-6 SR03-US-03-0-2 SR03-US-03-2-4 SR03-US-05-0-2	SR03-US-04-4-6 SR03-US-02-4-6 SR03-US-02-2-4 SR03-US-04-0-2 SR03-US-03-0-2 SR03-US-01-0-2 SR03-US-01-2-4 SR03-US-03-4-6 SR03-US-05-0-2 SR03-US-05-0-2 SR03-US-05-0-2 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-3-4-6 Distribution selection 3 1 = Lognormal 2 = Normal	SR03-US-01-4-6 SR03-US-02-4-6 SR03-US-02-4-6 SR03-US-02-2-4 SR03-US-04-0-2 SR03-US-03-0-2 SR03-US-01-0-2 SR03-US-01-2-4 SR03-US-03-4-6 SR03-US-05-0-2 SR03-US-05-0-2 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-2-4 SR03-US-05-3-2-4 SR03-US-05-3-2-4 SR03-US-05-3-2-4 SR03-US-05-3-2-4 SR03-US-05-3-3 I = Lognormal 2 = Normal	SR03-US-01-4-6 SR03-US-02-4-6 SR03-US-02-2-4 SR03-US-04-0-2 SR03-US-04-0-2 SR03-US-03-0-2 SR03-US-01-0-2 SR03-US-01-0-2 SR03-US-01-0-2 SR03-US-01-0-2 SR03-US-03-4-6 SR03-US-03-4-6 SR03-US-05-0-2 SR03-U	SR03-US-01-4-6 SR03-US-02-4-6 SR03-US-02-2-4 SR03-US-03-02-2-5 SR03-US-03-02-2-6 SR03-US-03-02-2 SR03-US-03-0-2 SR03-US-01-0-2 SR03-US-01-0-2 SR03-US-03-0-2 SR03-US-03-0-2 SR03-US-03-0-2 SR03-US-03-0-2 SR03-US-03-0-2 SR03-US-05-0-2

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.16/8/2019 7:26:33 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

SR04 As Upslope

Canaral	Statistics
General	Jananca

13	Number of Distinct Observations	15	Total Number of Observations
0	Number of Missing Observations		
37	Mean	8	Minimum
17	Median	186	Maximum
12.49	Std. Error of Mean	48.37	SD
2.513	Skewness	1.307	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.621	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.366	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	59	95% Adjusted-CLT UCL (Chen-1995)	66.21
		95% Modified-t UCL (Johnson-1978)	60.35

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.335	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.76	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.273	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.227	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.971	k star (bias corrected MLE)	1.158	k hat (MLE)
38.11	Theta star (bias corrected MLE)	31.95	Theta hat (MLE)
29.12	nu star (bias corrected)	34.74	nu hat (MLE)
37.55	MLE Sd (bias corrected)	37	MLE Mean (bias corrected)
17.81	Approximate Chi Square Value (0.05)		
16.72	Adjusted Chi Square Value	0.0324	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	60.52	95% Adjusted Gamma UCL (use when n<50)	64.44
---	-------	--	-------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.881	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.223	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.22	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.079	Mean of logged Data	3.121
Maximum of Logged Data	5.226	SD of logged Data	0.914

Assuming Lognormal Distribution

95% H-UCL	65.13	90% Chebyshev (MVUE) UCL	58.58
95% Chebyshev (MVUE) UCL	70.1	97.5% Chebyshev (MVUE) UCL	86.07
99% Chebyshev (MVUE) UCL	117.5		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

59	95% Jackknife UCL	57.54	95% CLT UCL
91.45	95% Bootstrap-t UCL	57.42	95% Standard Bootstrap UCL
58.67	95% Percentile Bootstrap UCL	117.4	95% Hall's Bootstrap UCL
		68.47	95% BCA Bootstrap UCL
91.44	95% Chebyshev(Mean, Sd) UCL	74.47	90% Chebyshev(Mean, Sd) UCL
161.3	99% Chebyshev(Mean, Sd) UCL	115	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 91.44

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

8	SR04-US-01-2-4	Saddle Rock - SR04 Backgrou	ınd		
9	SR04-US-02-0-2	J	ina		
11	SR04-US-02-4-6				
12	SR04-US-01-4-6	MTCAStat	3.0		
13		Number of samples	Unce	ensored values	
15	SR04-US-01-0-2	·	15	Mean	37.00
15				gnormal mean	34.42
17	SR04-US-04-2-4	TOTAL	15	Std. devn.	48.37
17	SR04-US-04-4-6			Median	17
25	SR04-US-05-0-2			Min.	8
28	SR04-US-05-2-4			Max.	186
29	SR04-US-05-4-6				
71	SR04-US-03-0-2	Lognormal distribution?	Norm	al distribution?	
99	SR04-US-03-2-4				
186	SR04-US-03-4-6	r-squared is: 0.88		r-squared is: 0.60	
		Recommendations:			

Use nonparametric method.

Distribution selection Value corresponding

Enter percentile to that percentile is:

3 90 133.80 1 = Lognormal 50th 17.00 2 = Normal 4 X 50th 68.00

3 = Nonparametric method Coefficient of Variation = N/A

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.16/8/2019 7:29:58 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

SR05 As Upslope

Gen	oral	Sta	tiet	ice
Gen	erai	ota	เเธเ	ILCS

14	Number of Distinct Observations	15	Total Number of Observations
0	Number of Missing Observations		
59.2	Mean	15	Minimum
44	Median	153	Maximum
11.96	Std. Error of Mean	46.32	SD
1.188	Skewness	0.782	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.233	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	80.26	95% Adjusted-CLT UCL (Chen-1995)	82.79
		95% Modified-t UCL (Johnson-1978)	88.08

Gamma GOF Test

A-D Test Statistic	0.524	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.747	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.157	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.224	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.655	k star (bias corrected MLE)	2.014	k hat (MLE)
35.76	Theta star (bias corrected MLE)	29.4	Theta hat (MLE)
49.66	nu star (bias corrected)	60.41	nu hat (MLE)
46.01	MLE Sd (bias corrected)	59.2	MLE Mean (bias corrected)
34.48	Approximate Chi Square Value (0.05)		
32.93	Adjusted Chi Square Value	0.032	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)	85.26	95% Adjusted Gamma UCL (use when n<50)	89.28

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.881	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.138	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.22	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.708	Mean of logged Data	3.813
Maximum of Logged Data	5.03	SD of logged Data	0.755

Assuming Lognormal Distribution

95% H-UCL	97.36	90% Chebyshev (MVUE) UCL	95.34
95% Chebyshev (MVUE) UCL	111.9	97.5% Chebyshev (MVUE) UCL	134.8
99% Chebyshev (MVUE) UCL	179.9		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

80.26	95% Jackknife UCL	78.87	95% CLT UCL
86.56	95% Bootstrap-t UCL	78.28	95% Standard Bootstrap UCL
79.07	95% Percentile Bootstrap UCL	78.17	95% Hall's Bootstrap UCL
		83.33	95% BCA Bootstrap UCL
111.3	95% Chebyshev(Mean, Sd) UCL	95.08	90% Chebyshev(Mean, Sd) UCL
178.2	99% Chebyshev(Mean, Sd) UCL	133.9	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 89.28

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

```
15 SR05-US-06-4-6 Saddle Rock - SR05 Upslope
```

- 18 SR05-US-06-2-4
- 20 SR05-US-06-0-2

23	SR05-US-03-4-6	MTCAS	Stat 3.0			
28	SR05-US-03-0-2	Number of samples	Uncen	sored values		
28	SR05-US-03-2-4	Uncensored	15	Mean	59.20	
40	SR05-US-01-2-4	Censored	0 agr	normal mean	60.21	
44	SR05-US-01-4-6	TOTAL	15	Std. devn.	46.32	
56	SR05-US-01-0-2			Median	44	
59	SR05-US-02-0-2			Min.	15	
63	SR05-US-02-2-4			Max.	153	
67	CDOF HC 02 4 C					

67 SR05-US-02-4-6

136 SR05-US-05-0-2 Lognormal distribution? Normal distribution?

138 SR05-US-05-4-6

153 SR05-US-05-2-4 r-squared is: 0.96 r-squared is: 0.82

Recommendations:

Use lognormal distribution.

Distribution selection Value corresponding

Enter percentile to that percentile is:

1 90 127.65 1 = Lognormal 50th 45.27 2 = Normal 4 X 50th 181.06

3 = Nonparametric method Coefficient of Variation = 0.96

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.16/8/2019 7:41:33 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

SR08 As Upslope

General Statistics

Total Number of Observations	16	Number of Distinct Observations	12
		Number of Missing Observations	0
Minimum	7	Mean	73.69
Maximum	433	Median	20.5
SD	107.8	Std. Error of Mean	26.94
Coefficient of Variation	1 462	Skewness	2 75

Normal GOF Test

Shapiro Wilk Test Statistic	0.638	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.268	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL	120.9	95% Adjusted-CLT UCL (Chen-199	5)	137.8
		95% Modified-t UCL (Johnson-197	8)	124

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.83	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.774	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.256	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.223	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.669	k star (bias corrected MLE)	0.772	k hat (MLE)
110.2	Theta star (bias corrected MLE)	95.48	Theta hat (MLE)
21.4	nu star (bias corrected)	24.7	nu hat (MLE)
90.11	MLE Sd (bias corrected)	73.69	MLE Mean (bias corrected)
11.89	Approximate Chi Square Value (0.05)		
11.09	Adjusted Chi Square Value	0.0335	Adjusted Level of Significance

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.918	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Le	0.887	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.211	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Le	0.213	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.946	Mean of logged Data	3.527
Maximum of Logged Data	6.071	SD of logged Data	1.268

Assuming Lognormal Distribution

95% H-UCL	212.4	90% Chebyshev (MVUE) UCL	145.6
95% Chebyshev (MVUE) UCL	179.8	97.5% Chebyshev (MVUE) UCL	227.3
99% Chebyshev (MVUE) UCL	320.5		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

120.9	95% Jackknife UCL	95% CLT UCL
173.7	95% Bootstrap-t UCL	95% Standard Bootstrap UCL
121.6	95% Percentile Bootstrap UCL	95% Hall's Bootstrap UCL
		95% BCA Bootstrap UCL
191.1	95% Chebyshev(Mean, Sd) UCL	90% Chebyshev(Mean, Sd) UCL
341.7	99% Chebyshev(Mean, Sd) UCL	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 191.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

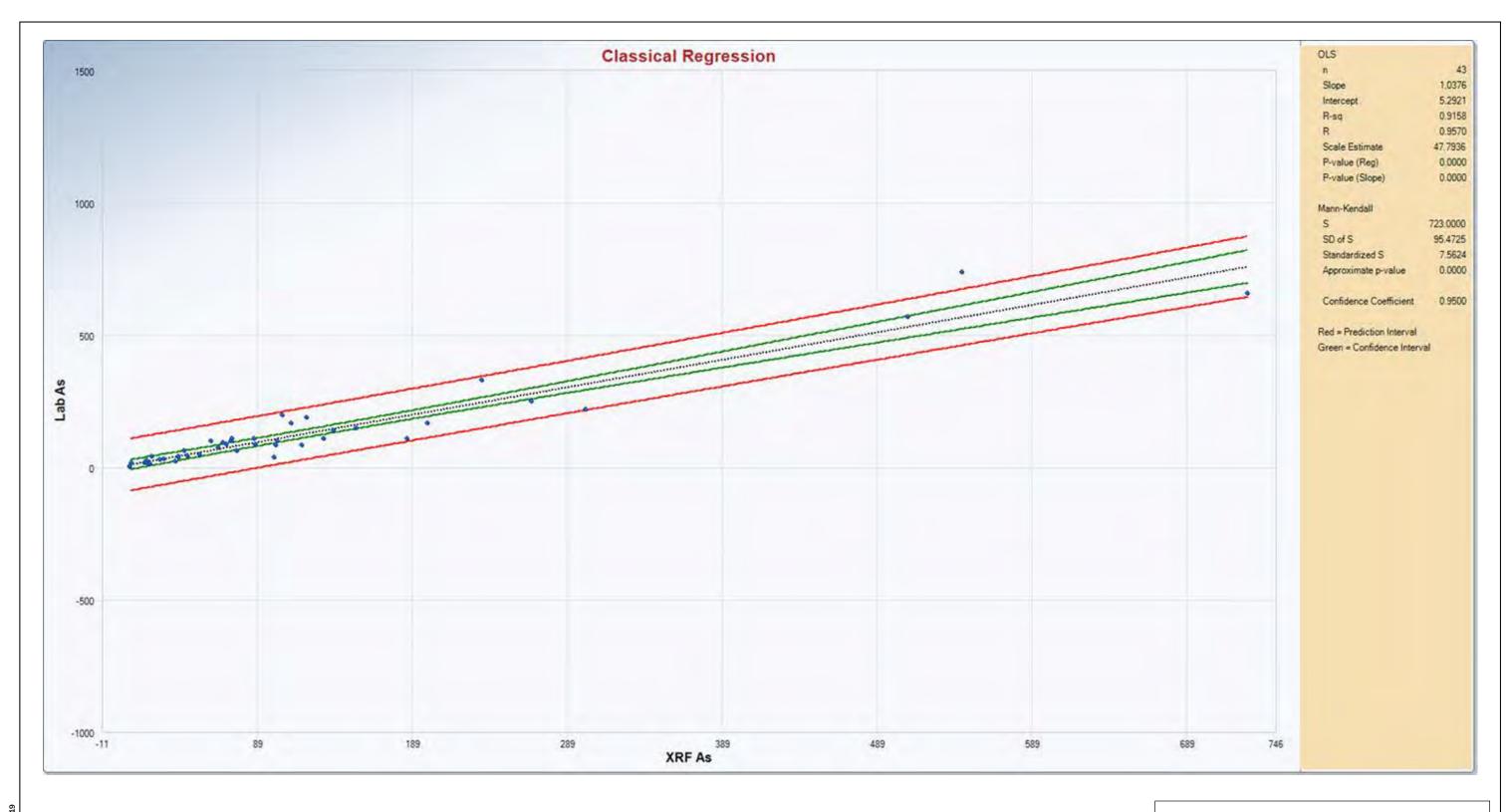
73R08-US-02-0-2	Saddle Rock - SR08 Background				
73R08-US-02-4-6	· ·				
83R08-US-02-2-4					
143R08-US-01-4-6	MTCA <i>Stat</i> 3	.0			
143R08-US-03-4-6	Number of samples	Uncens	sored values		
163R08-US-03-2-4	Uncensored	16	Mean	73.69	
183R08-US-03-0-2	Censored	0 Logn	ormal mean	76.00	
203R08-US-01-0-2	TOTAL	16	Std. devn.	107.75	
213R08-US-01-2-4			Median	20.5	
443R08-US-06-2-4			Min.	7	
893R08-US-05-2-4			Max.	433	
893R08-US-05-4-6					
	Lognormal distribution?	Normal	distribution?		
1443R08-US-06-0-2					
1443R08-US-07-0-2	r-squared is: 0.93	1	r-squared is:	0.62	
4333R08-US-06-4-6					
	Recommendations:				
		Use lognorm	nal distribution	۱.	
	D:				
	Distribution selection	- .		Value corresponding	
		Ente	•	to that percentile is:	
	1		90	197.90	
	1 = Lognormal		50th	34.03	
	2 = Normal		4 X 50th	136.10	

Coefficient of Variation = 2.37

3 = Nonparametric method

Attachment E-4 Lab vs XRF

1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.


GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

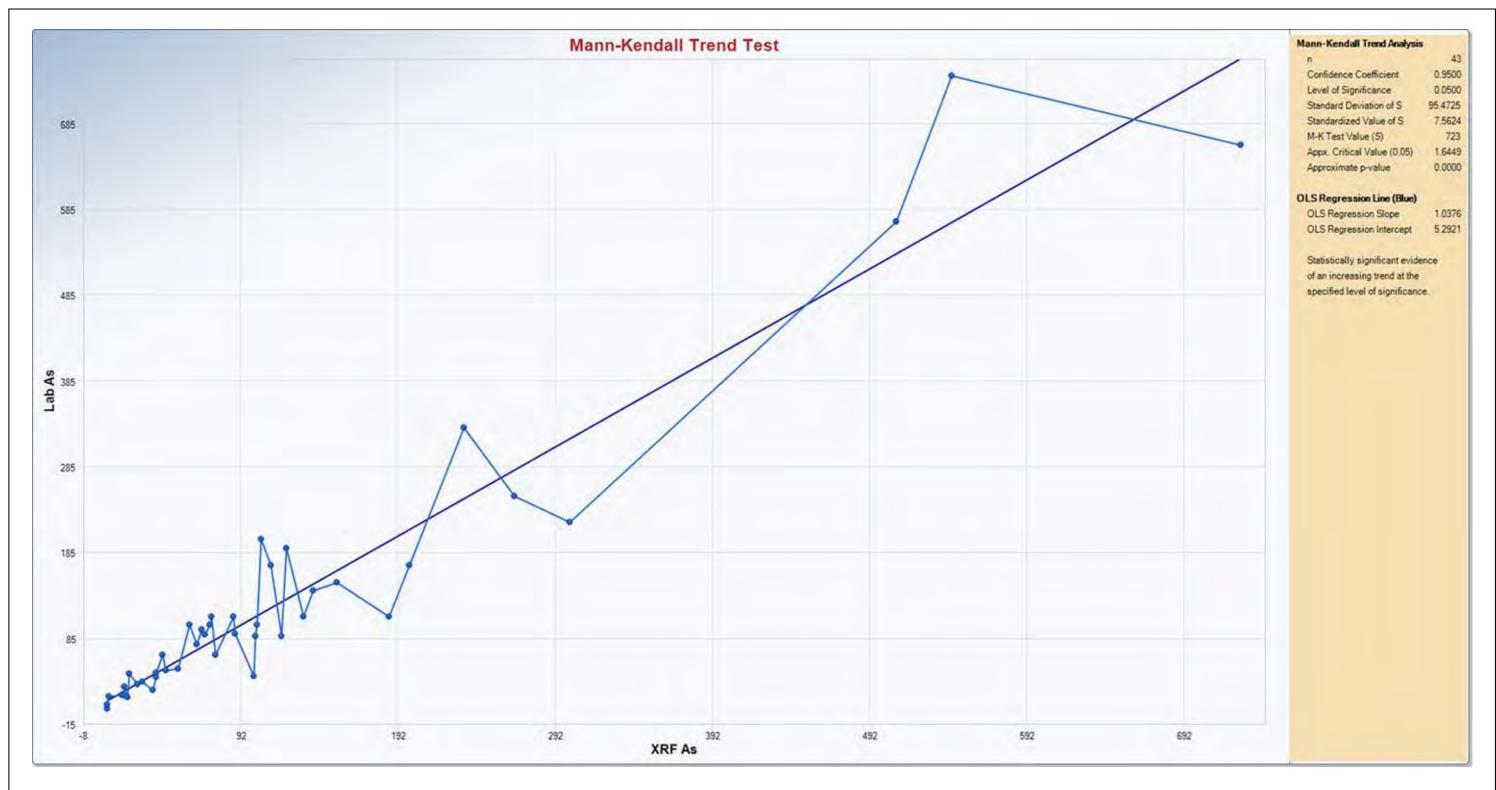
Data Source: ProUCL 5.15/30/2019 2:54:24 PM

Lab vs XRF

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.

2. The process of all features are approximated to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Data Source: ProUCL 5.15/30/2019 2:54:24 PM

Lab vs XRF

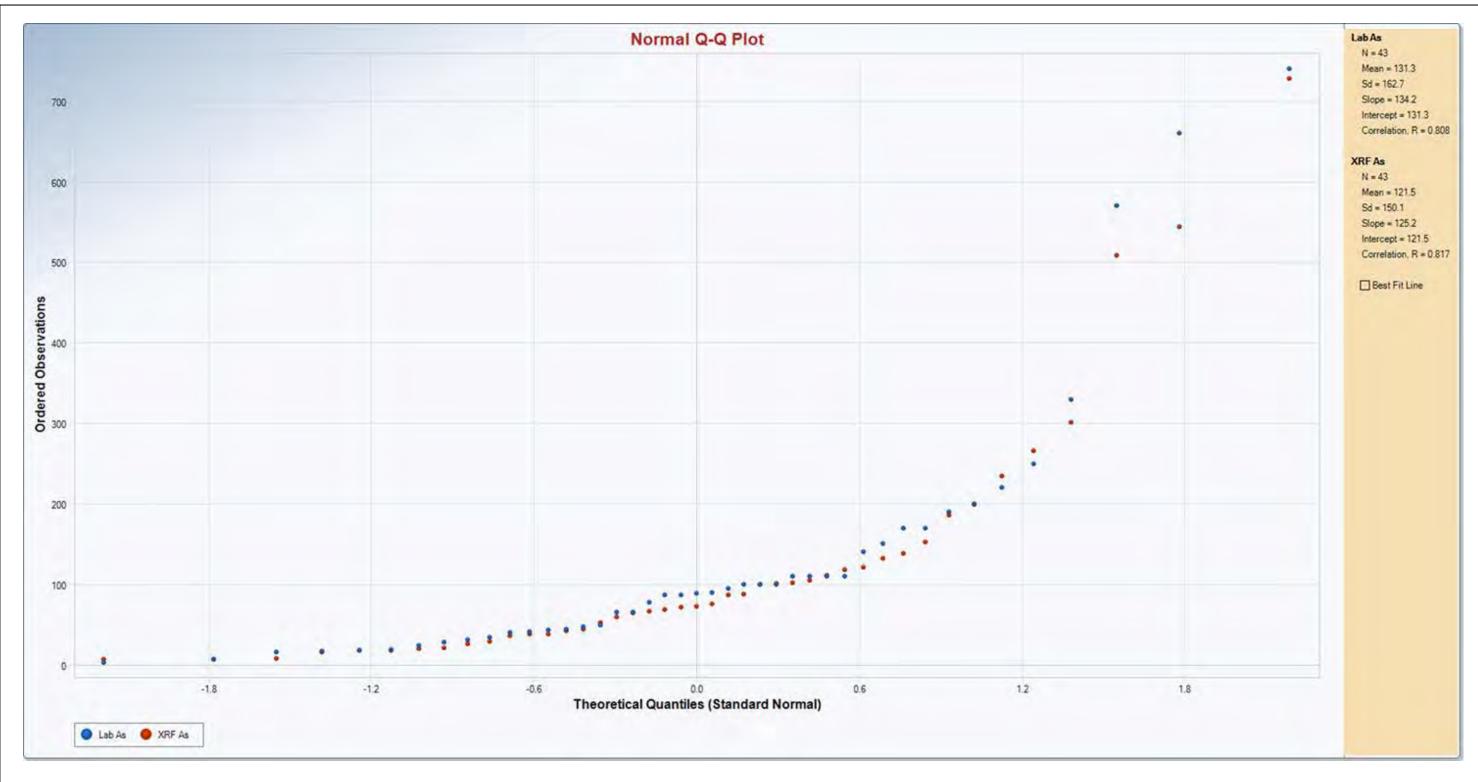
Saddle Rock Interim Remedial Action Project Wenatchee, Washington

Chart 2

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Data Source: ProUCL 5.15/30/2019 2:54:24 PM

Lab vs XRF

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

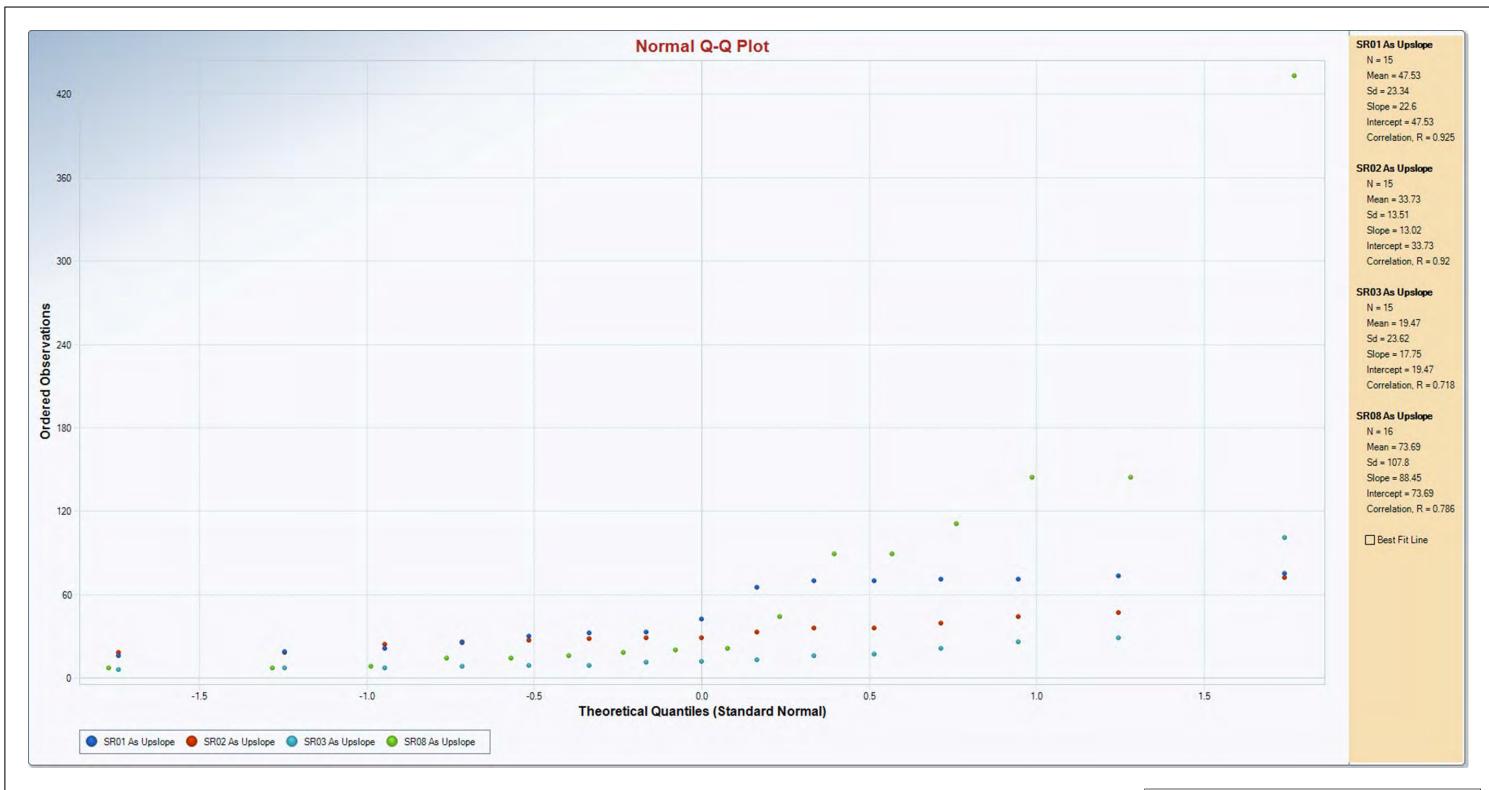
Chart 3

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ProUCL 5.15/30/2019 2:54:24 PM


Lab vs XRF

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

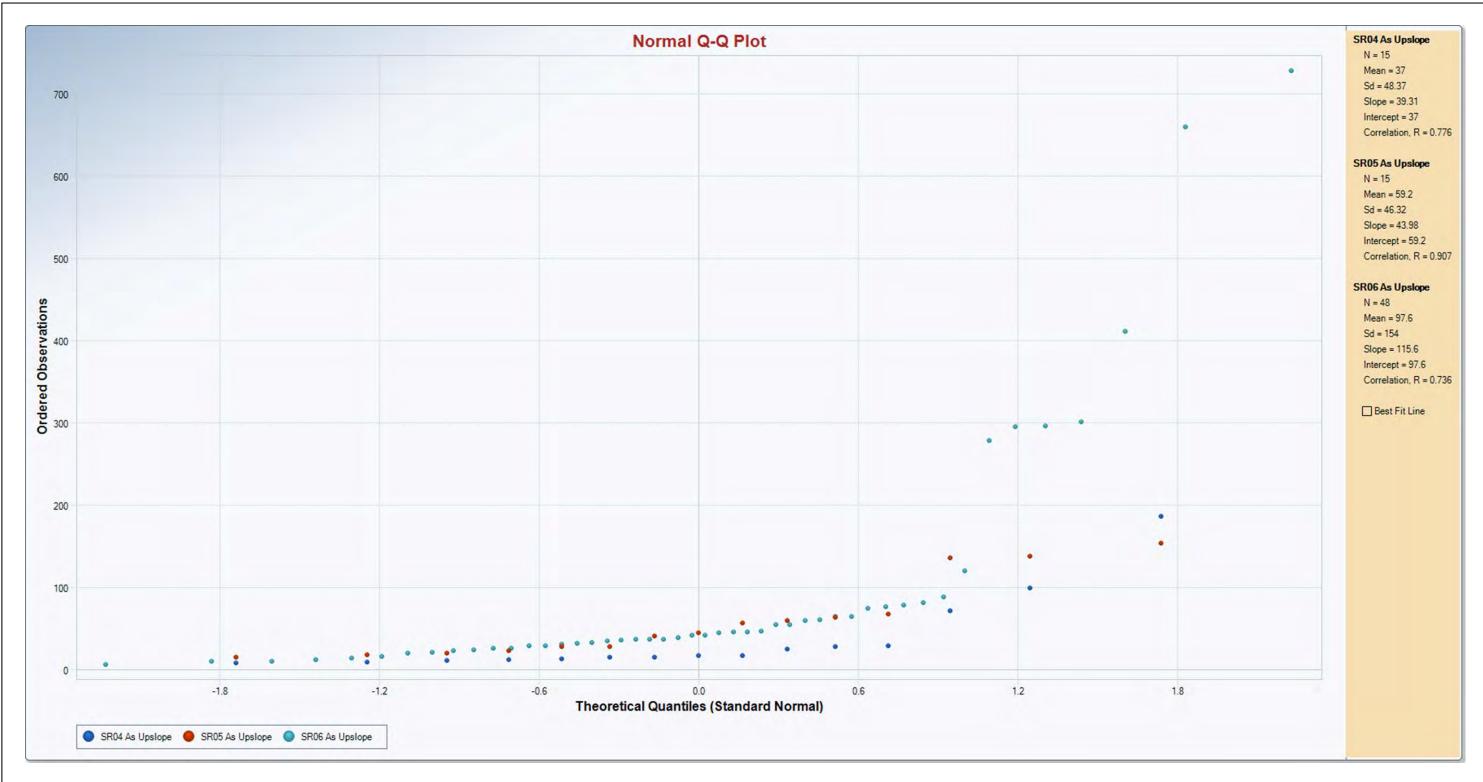
Chart 4

Attachment E-5 Statistical Distribution

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Statistical Distribution

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

QQ Plot Phase I

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ProUCL 5.16/12/2019 2:52:52 PM

Statistical Distribution

Saddle Rock Interim Remedial Action Project Wenatchee, Washington

QQ Plot Phase 2

Attachment E-6 XRF Upslope vs Downslope

Wilcoxon-Mann-Whitney Sample 1 vs Sample 2 Comparison Test for Uncensor Full Data Sets without NDs

User Selected Options

Date/Time of Computation ProUCL 5.16/12/2019 1:02:36 PM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95% Substantial Difference 0.000

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: SR01 AS Down Sample 2 Data: SR01 As Up

Raw Statistics

	Sample 1	Sample 2
Number of Valid Observations	12	15
Number of Distinct Observations	9	13
Minimum	17	16
Maximum	48	75
Mean	29.75	47.53
Median	28	42
SD	8.159	23.34
SE of Mean	2.355	6.028

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

Sample 1 Rank Sum W-Stat 135

WMW U-Stat

Mean (U) 90 SD(U) - Adj ties 20.48

124

WMW U-Stat Critical Value (0.05) Standardized WMW U-Stat -1.636

Approximate P-Value 0.949

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Sample 1 <= Sample 2

Wilcoxon-Mann-Whitney Sample 1 vs Sample 2 Comparison Test for Uncensor Full Data Sets without NDs

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 7:40:55 AM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95% Substantial Difference 0.000

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Observations	15	15
Number of Distinct Observations	12	12
Minimum	11	18
Maximum	44	72
Mean	24.2	33.73
Median	24	29
SD	9.451	13.51
SE of Mean	2.44	3.489

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

Sample 1 Rank Sum W-Stat 174.5

WMW U-Stat 54.5 Mean (U) 112.5

SD(U) - Adj ties 24.07 WMW U-Stat Critical Value (0.05) 152

Standardized WMW U-Stat -2.432
Approximate P-Value 0.992

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Sample 1 <= Sample 2

Gehan Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.16/12/2019 1:28:05 PM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: SR03 AS Down Sample 2 Data: SR03 As Up

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	21	15
Number of Non-Detects	0	4
Number of Detect Data	21	11
Minimum Non-Detect	N/A	6
Maximum Non-Detect	N/A	11
Percent Non-detects	0.00%	26.67%
Minimum Detect	21	7
Maximum Detect	138	101
Mean of Detects	54.62	23.55
Median of Detects	45	16
SD of Detects	32.2	26.67
KM Mean	54.62	18.99
KM SD	32.2	23.05

Sample 1 vs Sample 2 Gehan Test

H0: Mean/Median of Sample 1 <= Mean/Median of background

Gehan z Test Value 4.067 Critical z (0.05) 1.645 P-Value 2.38E-05

Conclusion with Alpha = 0.05
Reject H0, Conclude Sample 1 > Sample 2
P-Value < alpha (0.05)

Tarone-Ware Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.16/12/2019 1:28:52 PM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: SR03 AS Down Sample 2 Data: SR03 As Up

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	21	15
Number of Non-Detects	0	4
Number of Detects	21	11
Minimum Non-Detect	N/A	6
Maximum Non-Detect	N/A	11
Percent Non-detects	0.00%	26.67%
Minimum Detect	21	7
Maximum Detect	138	101
Mean of Detects	54.62	23.55
Median of Detects	45	16
SD of Detects	32.2	26.67
KM Mean	54.62	18.99
KM SD	32.2	23.05

Sample 1 vs Sample 2 Tarone-Ware Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

TW Statistic 4.534
TW Critical Value (0.05) 1.645
P-Value 2.8919E-6

Conclusion with Alpha = 0.05
Reject H0, Conclude Sample 1 > Sample 2
P-Value < alpha (0.05)

Wilcoxon-Mann-Whitney Sample 1 vs Sample 2 Comparison Test for Uncensor Full Data Sets without NDs

User Selected Options

Date/Time of Computation ProUCL 5.16/12/2019 1:36:51 PM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95% Substantial Difference 0.000

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: SR04 AS Down Sample 2 Data: SR04 As Up

Raw Statistics

	Sample 1	Sample 2
Number of Valid Observations	15	15
Number of Distinct Observations	15	13
Minimum	28	8
Maximum	160	186
Mean	61.67	37
Median	54	17
SD	35.07	48.37
SE of Mean	9.056	12.49

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

Sample 1 Rank Sum W-Stat 305.5

WMW U-Stat 185.5

Mean (U) 112.5 24.1

SD(U) - Adj ties WMW U-Stat Critical Value (0.05) 152

Standardized WMW U-Stat 3.008

Approximate P-Value 0.00131

Conclusion with Alpha = 0.05 Reject H0, Conclude Sample 1 > Sample 2

Wilcoxon-Mann-Whitney Sample 1 vs Sample 2 Comparison Test for Uncensor Full Data Sets without NDs

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 7:58:02 AM

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0.000

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Observations	21	15
Number of Distinct Observations	17	14
Minimum	29	15
Maximum	102	153
Mean	57.62	59.2
Median	52	44
SD	20.81	46.32
SE of Mean	4.541	11.96

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

Sample 1 Rank Sum W-Stat 418.5 Standardized WMW U-Stat 0.947

Mean (U) 157.5 SD(U) - Adj ties 31.15

Approximate U-Stat Critical Value (0.05) 1.645

P-Value (Adjusted for Ties) 0.172

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Sample 1 <= Sample 2

P-Value >= alpha (0.05)

Gehan Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 9:18:01 AM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	45	48
Number of Non-Detects	0	2
Number of Detect Data	45	46
Minimum Non-Detect	N/A	6
Maximum Non-Detect	N/A	10
Percent Non-detects	0.00%	4.17%
Minimum Detect	74	10
Maximum Detect	675	728
Mean of Detects	212	101.5
Median of Detects	177	42.5
SD of Detects	128	156.2
KM Mean	212	97.52
KM SD	128	152.5

Sample 1 vs Sample 2 Gehan Test

H0: Mean/Median of Sample 1 <= Mean/Median of background

Gehan z Test Value 6.043 Critical z (0.05) 1.645 P-Value 7.582E-10

Conclusion with Alpha = 0.05
Reject H0, Conclude Sample 1 > Sample 2
P-Value < alpha (0.05)

Tarone-Ware Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 9:18:30 AM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	45	48
Number of Non-Detects	0	2
Number of Detects	45	46
Minimum Non-Detect	N/A	6
Maximum Non-Detect	N/A	10
Percent Non-detects	0.00%	4.17%
Minimum Detect	74	10
Maximum Detect	675	728
Mean of Detects	212	101.5
Median of Detects	177	42.5
SD of Detects	128	156.2
KM Mean	212	97.52
KM SD	128	152.5

Sample 1 vs Sample 2 Tarone-Ware Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

TW Statistic 7.289
TW Critical Value (0.05) 1.645
P-Value 1.564E-13

Conclusion with Alpha = 0.05
Reject H0, Conclude Sample 1 > Sample 2
P-Value < alpha (0.05)

Gehan Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 8:21:01 AM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	13	14
Number of Non-Detects	2	2
Number of Detect Data	11	12
Minimum Non-Detect	7	7
Maximum Non-Detect	7	8
Percent Non-detects	15.38%	14.29%
Minimum Detect	10	7
Maximum Detect	38	433
Mean of Detects	19.64	93.58
Median of Detects	19	66.5
SD of Detects	7.685	118.7
KM Mean	17.69	81.21
KM SD	8.137	109.5

Sample 1 vs Sample 2 Gehan Test

H0: Mean/Median of Sample 1 <= Mean/Median of background

Gehan z Test Value -1.41 Critical z (0.05) 1.645 P-Value 0.921

Conclusion with Alpha = 0.05
Do Not Reject H0, Conclude Sample 1 <= Sample 2
P-Value >= alpha (0.05)

Tarone-Ware Sample 1 vs Sample 2 Comparison Hypothesis Test for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/30/2019 8:21:28 AM

From File WorkSheet.xls

Full Precision OFF Confidence Coefficient 95%

Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)

Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Arsenic Downslope Sample 2 Data: Arsenic Upslope

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	13	14
Number of Non-Detects	2	2
Number of Detects	11	12
Minimum Non-Detect	7	7
Maximum Non-Detect	7	8
Percent Non-detects	15.38%	14.29%
Minimum Detect	10	7
Maximum Detect	38	433
Mean of Detects	19.64	93.58
Median of Detects	19	66.5
SD of Detects	7.685	118.7
KM Mean	17.69	81.21
KM SD	8.137	109.5

Sample 1 vs Sample 2 Tarone-Ware Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

TW Statistic -1.009 TW Critical Value (0.05) 1.645

P-Value 0.844

Conclusion with Alpha = 0.05
Do Not Reject H0, Conclude Sample 1 <= Sample 2
P-Value >= alpha (0.05)

ATTACHMENT FData Validation Report

Data Validation Report

1101 Fawcett Avenue, Suite 200, Tacoma, Washington 98402, Telephone: 253.383.4940, Fax: 253.383.4923

www.geoengineers.com

Project: City of Wenatchee – Saddle Rock Natural Area Interim Remedial Action

March and April 2019 Soil Samples

GEI File No: 04296-008-00 **Date:** May 13, 2019

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A or Stage 2B* data validation (EPA Document 540-R-08-005; EPA 2009) of analytical data from the analyses of soil samples collected as part of the March and April 2019 sampling events, and the associated laboratory quality control (QC) samples. The samples were obtained from the Saddle Rock Natural Area site located in Wenatchee, Washington.

*The stage of data validation is dependent upon the sample delivery group (SDG). The SDGs and stage of validation are detailed in Table 1.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017a) and Inorganic Superfund Methods Data Review (EPA 2017b) (National Functional Guidelines) and with guidance from Biological Testing Methods 80-12 for the Designation of Dangerous Waste (Ecology 2009) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (QAPP) (Appendix A of the Sampling and Analysis Plan, Interim Remedial Action Design and Remedial Action (GeoEngineers 2019), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
- Laboratory Duplicates
- Internal Standards

- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Reporting Limits

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1. SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Validation Stage	Samples Validated
1903-258	2A	SR-2-4C-PS, SR-01-WR-1C-PS
1904-158	2В	SR01-US-01-2-4, SR01-US-03-4-6, SR01-US-04-4-6, SR02-US-01-0-2, SR02-US-02-4-6, SR02-US-05-4-6, SR03-US-01-4-6, SR03-US-05-4-6, SR05-US-02-0-2, SR05-US-05-2-4, SR05-US-06-2-4, SR06-DS-01-4-6, SR06-DS-03-4-6, SR06-DS-05-4-6, SR06-DS-07-4-6, SR06-DS-13-0-2, SR06-DS-15-4-6, SR06-US-02-4-6, SR06-US-06-0-2, SR06-US-07-0-2, SR06-US-08-4-6, SR06-US-12-2-4, SR06-US-16-0-2, SR08-US-02-0-2, SR08-US-05-0-2
1904-160	2В	SR01-DS-03-4-6, SR01-DS-07-4-6, SR02-D09-ASSAY, SR02-DS-01-4-6, SR02-DS-05-2-4, SR03-DS-01-2-4, SR03-DS-03-4-6, SR03-DS-05-2-4, SR03-DS-09-4-6, SR04-DS-02-4-6, SR04-DS-03-0-2, SR04-US-01-2-4, SR04-US-03-4-6, SR04-US-05-4-6, SR05-D05-TCLP, SR05-DS-02-2-4, SR05-DS-03-0-2, SR05-DS-07-0-2, SR06-C02-ASSAY, SR08-DS-03-4-6, SR08-DS-04-2-4
	2B	SR05-D05-TCLP
1901-160B	2A	(Sub-contracted) SR02-D09-Assay

CHEMICAL ANALYSIS PERFORMED

OnSite Environmental, Inc. (OnSite), located in Redmond, Washington, performed laboratory analysis on the samples using one or more of the following methods:

- Total Metals by Methods EPA6010D, EPA6020B, EPA7471B;
- Total Metals Toxicity Characteristic Leaching Procedure (TCLP) by Method EPA6020B; and
- Total Metals Synthetic Precipitation Leaching Procedure (SPLP) by Method EPA6020B

Rainier Environmental (Rainier), located in Tacoma, Washington, served as a secondary laboratory sub-contracted through OnSite and performed analysis using the following method:

Static Acute Fish Toxicity Test by Ecology Method 80-12

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

The laboratories provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratories followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample cooler arrived at the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 1904-158: (Total Metals) The laboratory performed an MS/MSD sample set on Sample SR06-US-06-0-2. The percent recoveries for total iron and total manganese were greater than the control limits in the MS/MSD sample set digested on 4/19/2019. The parent sample concentrations for these target analytes were greater than four times the amount spiked into the sample; therefore, no qualifications were required.

The laboratory performed an MS/MSD sample set on Sample SR06-US-06-0-2. The percent recovery for total mercury was greater than the control limits in the MSD digested on 4/23/2019; however, the percent recovery for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier.

SDG 1904-160: (Total Metals) The laboratory performed two MS/MSD sample sets with QC outliers; however, they were performed on a sample from a different SDG and are not applicable to the field samples within this SDG; therefore, no action was required.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS analyses. Additionally, data qualification based on LCS analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits are specified in the laboratory documents.

The laboratory performed MS/MSD sample sets in lieu of an LCS analysis.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standards should be analyzed at the beginning of a 12-hour sample run. All internal standard recoveries were within the internal laboratory control limits or the control limits stated in the National Functional Guidelines (EPA 2017).

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. All relative standard deviation (%RSD) and relative response factors (RRF) were within the internal laboratory control limits or the control limits stated in the National Functional Guidelines (EPA 2017).

Continuing Calibrations (CCALs)

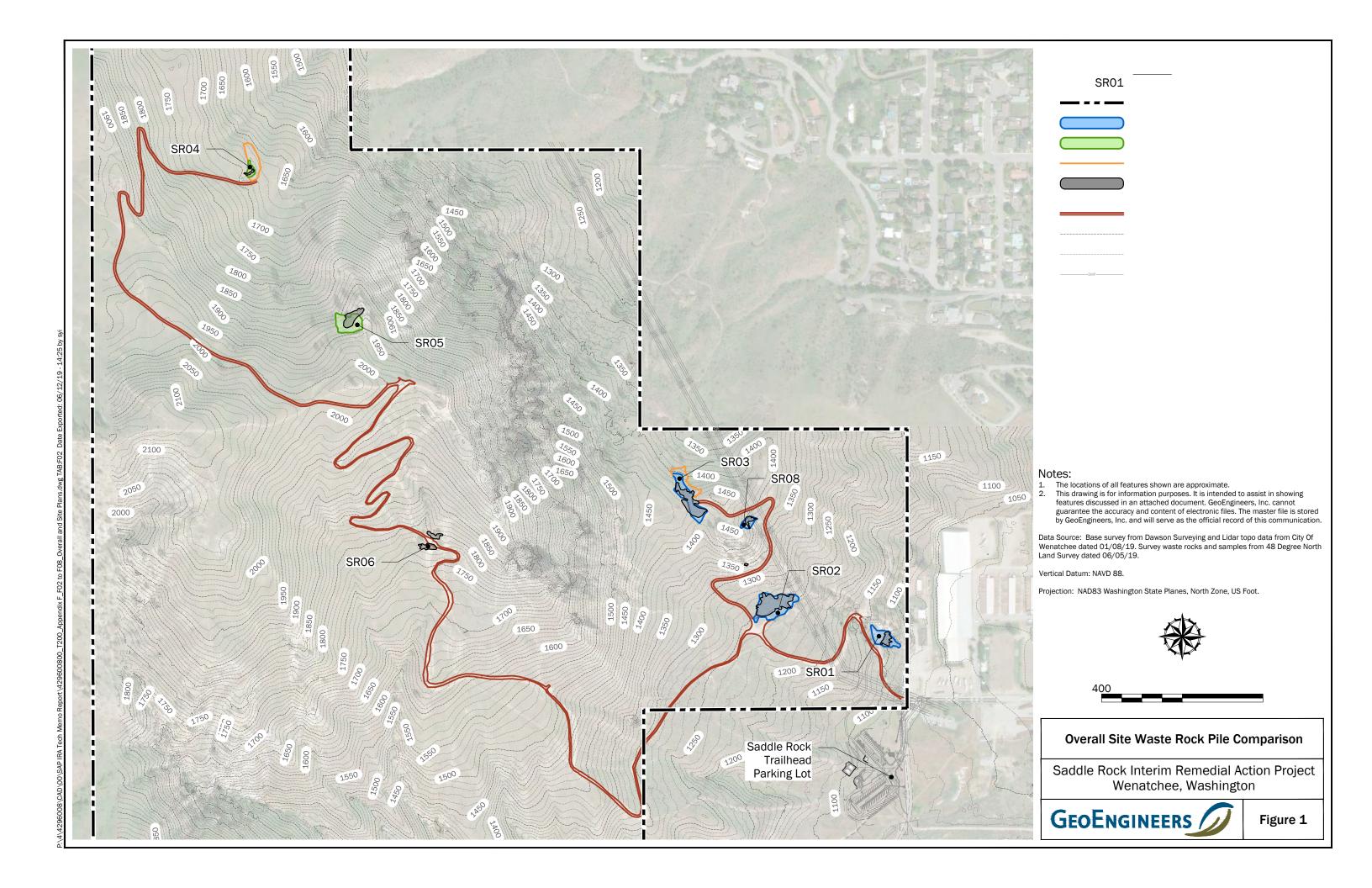
All continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. All percent difference (%D) and relative response factors (RRF) were within the internal laboratory control limits or the control limits stated in the National Functional Guidelines (EPA 2017).

Reporting Limits

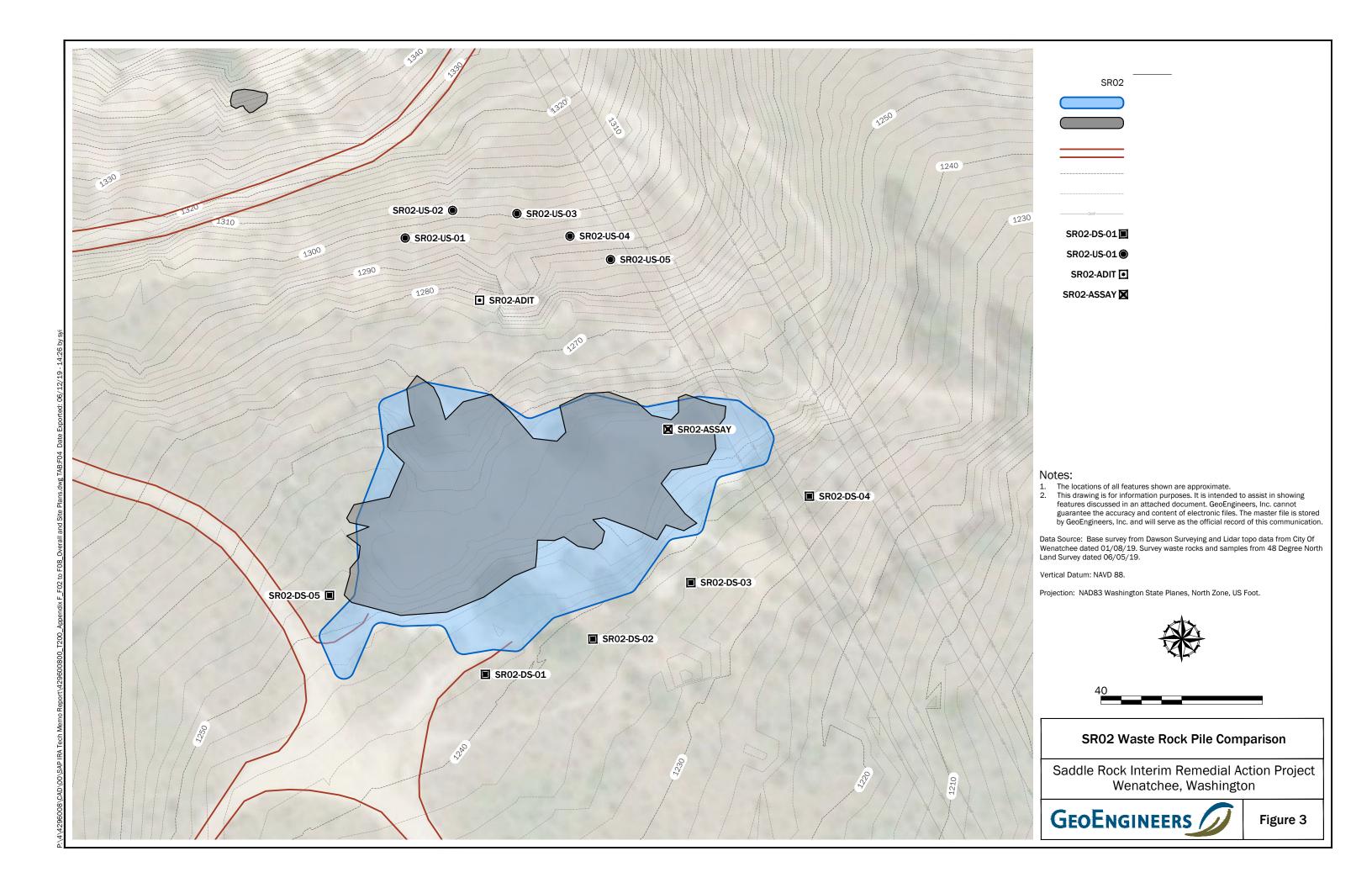
The contract required quantitation limits (CRQL) were met by the laboratory for the target analytes throughout this sampling event.

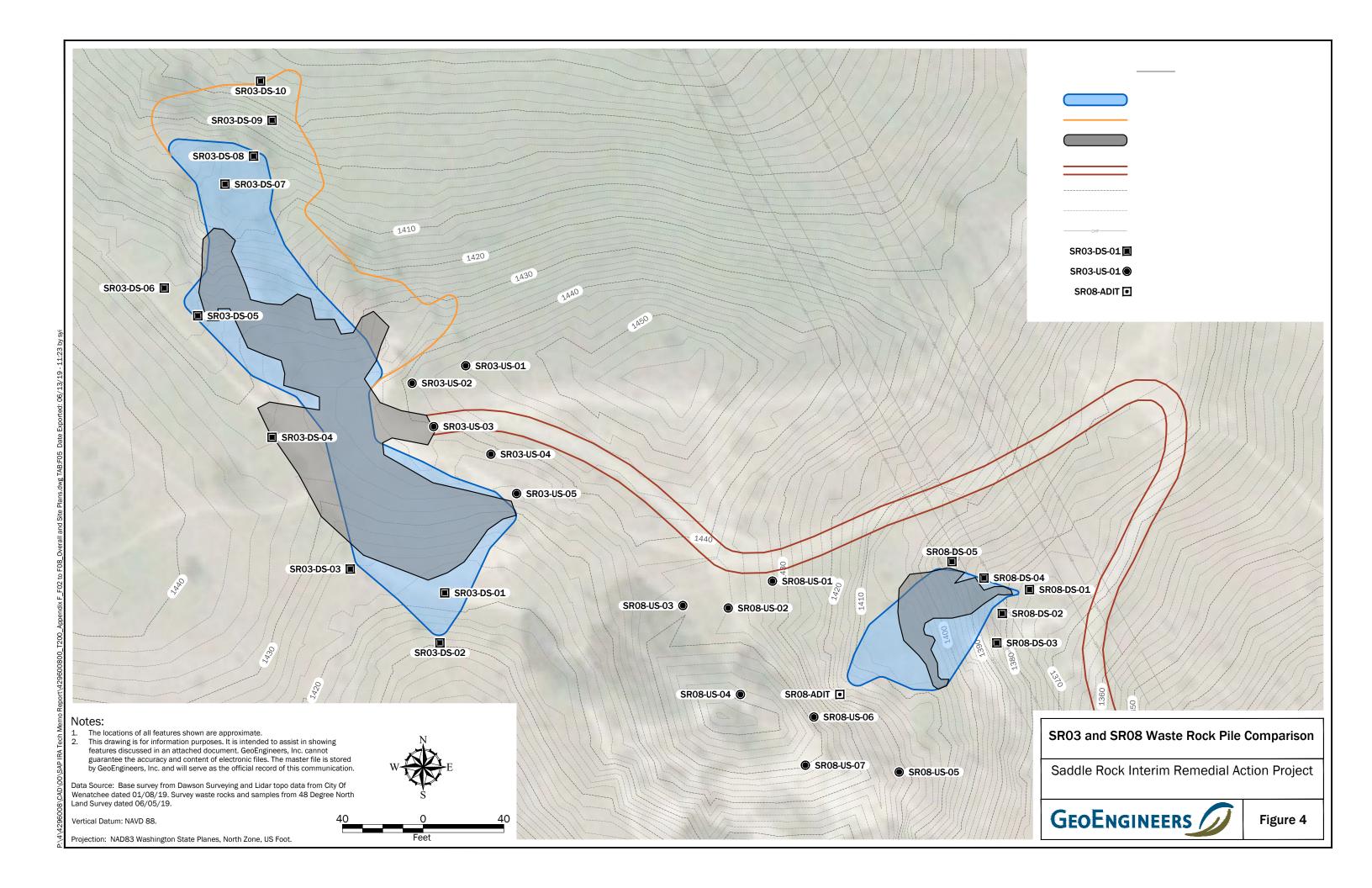
OVERALL ASSESSMENT

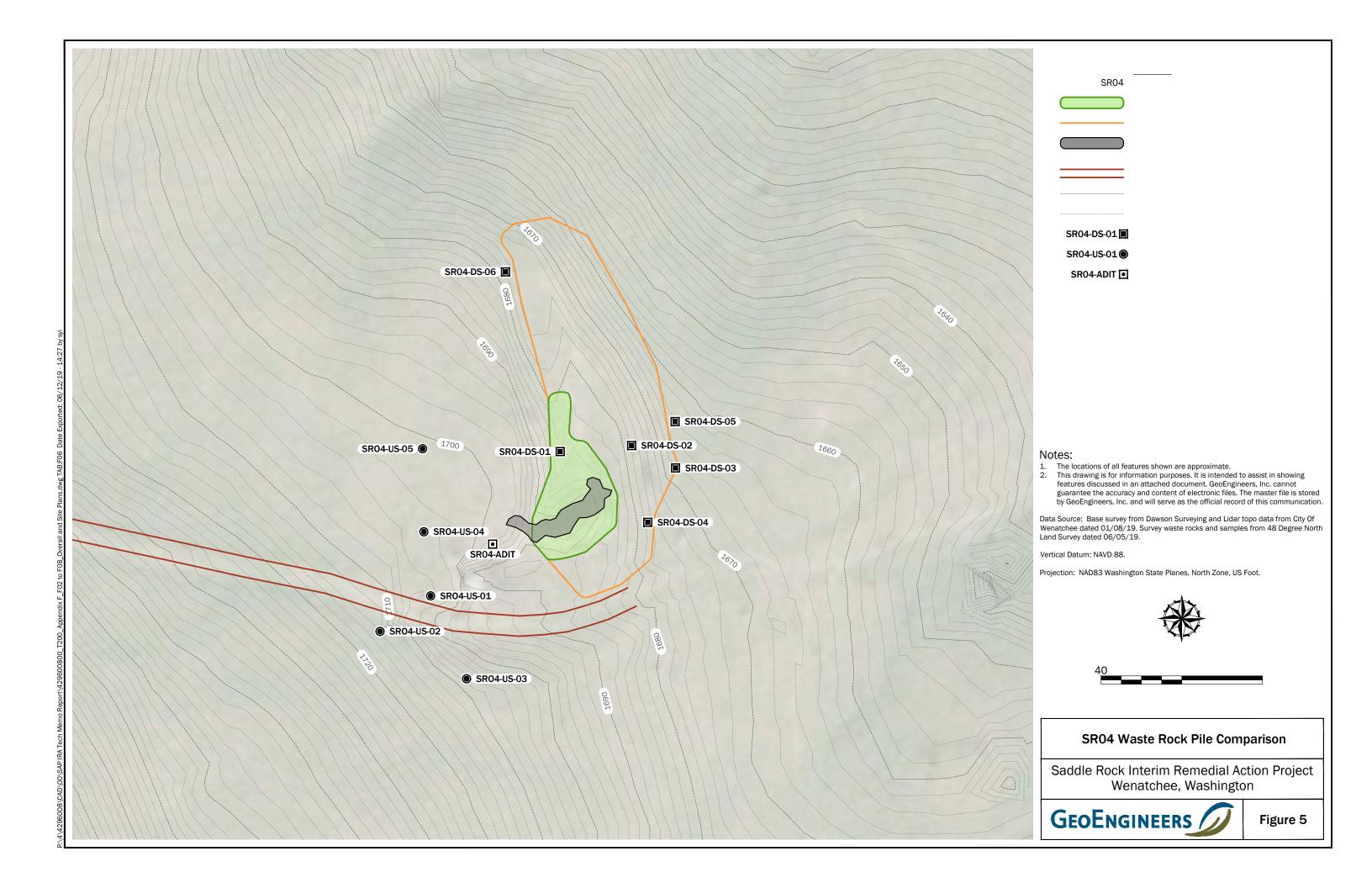
As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the MS/MSD and laboratory duplicate RPD values.


No analytical results were qualified. The data are acceptable for the intended use.


REFERENCES


- GeoEngineers, Inc. 2019. "Sampling and Analysis Plan, Interim Remedial Action Design and Remedial Action," prepared for City of Wenatchee. GEI File No. 4296-008-00. February 20, 2019.
- U.S. Environmental Protection Agency (EPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (EPA), 2017a. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.
- U.S. Environmental Protection Agency (EPA), 2017b. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.
- Washington State Department of Ecology (Ecology). 2009. "Biological Testing Methods 80-12 for the Designation of Dangerous Waste," Publication number 80-12. June 2009.




ATTACHMENT GWaste Rock Pile Comparison

