

Interim Action Work Plan

Go East Corp Landfill Site Everett, Washington Ecology Agreed Order No. DE 18121

for Washington State Department of Ecology on Behalf of P&GE, LLC

August 10, 2020

2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Interim Action Work Plan

Go East Corp Landfill Site Everett, Washington

File No. 6694-002-03

August 10, 2020

Prepared for:

Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98008

Attention: Alan Noell

On Behalf of:

Martin Penhallegon P&GE, LLC 11255 Kirkland Way, Suite 300 Kirkland, Washington 98033-6715

Prepared by:

GeoEngineers, Inc. 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Robert C. Leet, LG

Senior Environmental Geologist

Dobert Reed

Terry R McPhetridge I G

Principal Environmental Geologist

RCL:TRM:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
1.1	Interim Action Objective and Scope	1
1.2	Property Description	2
	1.2.1 Location and Setting	2
	1.2.2 Vegetation and Structures	3
	1.2.3 Local Geology	3
	1.2.4 Regional and Local Surface Water Hydrology	4
1.3	Landfill Operational History and Regulatory Background	5
1.4	Future Land Use	7
2.0	EXISTING CONDITIONS AND PREVIOUS INVESTIGATIONS	7
2.1	Test Pit Explorations	8
	Groundwater Monitoring Wells	
3.0	_	
4.0		
4.1	Interim Action Components	13
	4.1.1 On-Site Fill Source Sampling	
	4.1.2 Former Storage Tank Area Sampling	14
	4.1.3 Supplemental Landfill Material Sampling	15
	4.1.4 Excavation of Landfill Material and Reconnaissance of Northeastern Slope	16
	4.1.5 Confirmation Soil Sampling	18
	4.1.6 Lot Exploration Outside Current Landfill Limit	
	Compliance with MTCA Interim Action Criteria	
4.3	Alternative Actions Considered	19
5.0	REPORTING	19
6.0	SCHEDULE	19

LIST OF TABLES

Table 1. Analytical Results for Soil Samples Collected June 2019

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Property Location in Relation to Physiographic Features
- Figure 3. Historical Topography and Surface Geology
- Figure 4. Present-Day Topography and Previous Subsurface Exploration Locations
- Figure 5. Generalized Cross Sections Through Landfill
- Figure 6. Test Pit Locations with Observed Landfill Material
- Figure 7. Proposed Soil Sampling Locations On-Site Fill Source, Former Storage Tank Area, and Supplemental Landfill Material Samples
- Figure 8. Proposed Soil Sampling Locations Confirmation Soil Samples

APPENDICES

Appendix A. Test Pit Logs and Monitoring Well Boring Logs

Appendix B. Geotechnical Report (Terra Associates 2019)

Appendix C. Laboratory Analytical Reports for June 2019 Soil Samples

Appendix D. Ecology-Derived Soil Interim Action Levels

Appendix E. Sampling and Analysis Plan

Appendix F. Quality Assurance Project Plan

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) has prepared this Interim Action Work Plan (IAWP) on behalf of P&GE, LLC (P&GE) to describe the interim action activities that will be conducted at the Go East Corp Landfill Site in Everett, Washington (Site) (Figure 1). This IAWP was prepared in accordance with applicable requirements of Section 173-340-430(7) of the Washington State Model Toxics Control Act (MTCA) Cleanup Regulation, Washington Administrative Code (WAC) Chapter 173-340. It was revised based on comments received during the public comment period from May 8 to June 28, 2020.

The Go East Corp Landfill (Landfill) is a 9.6-acre, inactive, limited purpose landfill as defined in WAC 173-350-400. The Landfill and the 40.9-acre property on which it is located (Property) are owned by P&GE.

The interim action will be completed as a part of the Landfill closure activities described in the *Go East Landfill Closure Plan* (LFCP) (PACE 2012), which was last revised in January 2018. The Landfill closure will reduce the Landfill area from the current 9.6 acres to a final area of approximately 6.8 acres. This interim action applies primarily to the 2.8 acres of the Landfill that will be removed as part of the Landfill closure. This area is referred to herein as the interim action excavation area (the LFCP refers to this area as the "wedge area"). The area immediately outside the future Landfill limit to the west, south, and east, including the interim action excavation area, will be developed for residential use as part of the Bakerview Plat Subdivision (97 residential lots) following closure of the Landfill. The LFCP describes the planned development of the Bakerview Plat Subdivision. The Snohomish Health District (SHD) and the Washington State Department of Ecology (Ecology) approved the LFCP as part of SHD Solid Waste Facility Permit No. SW-027 (the Permit), subject to the development and written approval of final design drawings, construction specifications, and a Construction Quality Assurance Plan (CQAP) pursuant to WAC 173-350-400(5). The final design drawings and construction specifications are provided in the Land Disturbing Activity No. 1 plans (Landfill closure construction plans), which have been reviewed by Ecology and approved by the Snohomish County Planning and Development Services (PDS) and SHD.

The interim action will be performed under an Agreed Order with Ecology. The Agreed Order identifies remedial actions that P&GE must conduct at the Site to comply with MTCA. The Agreed Order requires P&GE to implement this IAWP during Landfill closure and to prepare a remedial investigation (RI) work plan, an RI and feasibility study (RI/FS) report, and a preliminary draft cleanup action plan in accordance with the MTCA Cleanup Regulation and the Washington State Solid Waste Handling Standards (WAC 173-350). This IAWP is a fully integrated part of the Agreed Order and is included as Exhibit D of the Agreed Order.

1.1 Interim Action Objective and Scope

The interim action will protect human health and the environment by removing landfill material from beyond the future Landfill limit during implementation of the LFCP. The current Landfill limit depicted in the figures contained in this IAWP is approximate; previous field surveys and investigations have not defined its exact location. Consequently, it is possible that landfill material exists beyond the approximate current Landfill limit depicted in the IAWP figures. For the purposes of the interim action, landfill material includes solid waste and intermixed soil within the approximate current Landfill limit depicted in the IAWP figures and any solid waste and intermixed soil that may be present beyond the current Landfill limit depicted in the IAWP figures but within the historical Landfill area. Approximately 50,000 to 60,000 cubic yards of landfill material will be excavated from the periphery of the Landfill and relocated beneath an engineered capping

system to be installed during Landfill closure, thereby reducing the footprint of the Landfill from 9.6 acres to approximately 6.8 acres.

The interim action also includes the removal of potential contaminated soil that may be encountered beneath or beyond landfill material during excavation. The Permit allows landfill material to be disposed of in the Landfill but prohibits contaminated soil from being disposed of in the Landfill. For this interim action, contaminated soil is defined as soil that is beneath or beyond landfill material, that has become contaminated by a release and contains hazardous substances at concentrations that exceed applicable MTCA cleanup levels (WAC 173-350-100).

After the interim action excavation is completed and confirmation soil sampling indicates that soil remaining beyond the future Landfill limit does not contain hazardous substances at concentrations exceeding Site-specific interim action levels (IALs) developed by Ecology, the interim action excavation area will be backfilled with clean fill obtained from areas of the Property outside the current Landfill limit. Development of the Bakerview Plat Subdivision will not begin until the Landfill closure work and interim action are completed as described in the LFCP, the approved Landfill closure construction plans (i.e., the design drawings, construction specifications, and CQAP), and this IAWP.

1.2 Property Description

1.2.1 Location and Setting

The Landfill and Property (Snohomish County Parcel Number 280521-004-002-00) are situated in the northwest quarter of the southeast quarter of Section 21, Township 28 North, Range 5 East, Willamette Meridian in Snohomish County (Figure 1). The Property address is 4330 108th Street Southeast, Everett, Washington, 98208. The Property is located approximately 1.4 miles east-northeast of Silver Lake and is generally situated on a northeastward-facing bluff that overlooks the Snohomish River Valley, with the Snohomish River located approximately 1.8 miles north-northeast of the Property. The location of the Property in relation to regional physiographic features is shown in Figure 2.

The Landfill is situated within a former eastward-sloping ravine that historically existed in the northern portion of the Property. This former ravine was entirely filled by the historical landfilling activities. A map depicting the topography of the former ravine beneath the Landfill and the major geologic units that constitute the landforms and native soils on the Property is shown in Figure 3. Local geology is discussed in Section 1.2.3.

The present-day topography of the Property is depicted in Figure 4. Two steep-sided, eastward-sloping drainage ravines are present in the southern portion of the Property south of the Landfill. These ravines turn northward just east of the eastern Property boundary and extend beyond the northeastern corner of the Property to the Snohomish River Valley, which is approximately at sea level. The western and southwestern approximately two-thirds of the Landfill surface generally slopes gently to the east (Figure 4). The northeastern approximately one-third of the Landfill surface consists of a steep, heavily vegetated slope. Elevations of the Landfill surface range from approximately 260 feet above the North American Vertical Datum of 1988 (NAVD88) in the westernmost portion of the Landfill, to 225 feet NAVD88 at the top of the steep northeastern slope, to 110 feet NAVD88 at the base of the northeastern slope.

The deepest portion of the Landfill occurs near its center at the top of the northeastern slope. The estimated maximum depth of the Landfill in this area is approximately 50 feet below ground surface (bgs) based on

test pit explorations completed in the Landfill (see Section 2.1) and a comparison of present-day ground surface elevations in the Landfill area to estimated historical ground surface elevations in the former ravine beneath the Landfill. Figure 5 shows two generalized cross sections through the Landfill, one parallel and one perpendicular to the axis of the former ravine. The locations of the cross-section lines are shown in Figure 4. The cross sections shown in Figure 5 were developed based on limited observations and data from field reconnaissance and subsurface explorations in the Landfill area (Geolabs – Washington, Inc. 1970, Associated Earth Sciences, Inc. [AESI] 2009b), as well as topographic and geologic information obtained from land surveying and geologic mapping studies in western Snohomish County (Newcomb 1952, Smith 1976, United States Geological Survey [USGS] 1985). The groundwater levels and subdrain depicted on the cross sections are discussed below. Subsurface conditions at the Site will be further investigated during the RI.

1.2.2 Vegetation and Structures

Vegetation across most of the area disturbed by landfilling activity consists of a sparse canopy of red alder and Black cottonwood, with Himalayan blackberry in the understory. Portions of the Property in the west and in the ravine areas are less disturbed and contain red alder, big leaf maple, Western hemlock, salmonberry, sword fern, filaree, and piggy-back plant (Wetland Resources, Inc. 2010). Several trails are present on the Property including trails around and across portions of the Landfill. Four groundwater monitoring wells (wells MW-1 through MW-4) were installed around the Landfill perimeter in 2009 (Figure 4). The measured depth to groundwater in three of these monitoring wells in 2009 and 2011 was approximately 30 to 50 feet bgs. Groundwater was not present in the other monitoring well (see Section 2.2).

The only existing building on the Property is a small wooden storage shed located approximately 200 feet south of the northwestern corner of the Property (Figure 4). This shed belongs to the owner of the west-adjacent residential property.

An abandoned storage tank appeared on the Property approximately 40 feet east of the wooden storage shed sometime after the cessation of Landfill operations in 1983 and before 2010. The cylindrical tank was resting on its side directly on the ground surface and was not connected to any piping, equipment, or other structures. It appeared to be a former steel underground storage tank with a capacity of approximately 500 gallons. According to P&GE, the tank was empty (P&GE 2020). The origin and past use of this abandoned tank is unknown. It was never used by the then owner of the Landfill, the Go East Corporation (Go East), nor by the present owner, P&GE. It is presumed to have been a residential heating oil tank that was disposed of on the Property by a trespasser (P&GE 2020). A previous owner of the west-adjacent residential property asked P&GE in approximately 2017 if P&GE would be willing to remove the tank, as the property owner considered the tank an eyesore. P&GE agreed to remove the tank during Landfill closure construction that was anticipated to begin in 2019. The residential property owner expressed displeasure at having to wait until 2019 for the tank to be removed. P&GE noticed that the storage tank was gone during a Property visit in September 2018. The tank was not seen during subsequent Property visits in 2019 and 2020 and was presumed to have been removed by a trespasser (P&GE 2020).

1.2.3 Local Geology

Three geologic units have been mapped on the Property (Figure 3). These units consist of approximately 10 to 60 feet of Vashon glacial till (Qvt) (a mixture of sand, silt, pebbles, cobbles, and boulders), underlain by approximately 80 to 130 feet of Vashon glacial advance outwash (Qva) (primarily sand with some gravel),

underlain by pre-Vashon glacial lacustrine silt deposits. Within the Property boundaries, the glacial lacustrine silt deposits constitute the upper portion of the transitional beds stratigraphic sequence (Qtb) that has been identified throughout the Snohomish River Valley and adjacent plateau areas. The glacial till (Qvt) mantles the plateau areas in the western and northwestern portions of the Property at elevations greater than approximately 260 to 320 feet NAVD88. Directly beneath the glacial till, the advance outwash sand (Qva) deposits comprise the ridges, walls, and floors of the ravines at elevations between approximately 260 to 320 feet NAVD88 and 180 feet NAVD88. The lacustrine silt deposits (Qtb) comprise the walls and floors of the ravines at elevations below approximately 180 feet NAVD88.

The Geologic Map of the Everett 7.5-Minute Quadrangle, Snohomish County, Washington (USGS 1985) indicates that the transitional beds comprising the lacustrine silt unit and other pre-Vashon deposits are laterally continuous across a broad area of the bluff bounding the western margin of the Snohomish River Valley including the areas north, northeast, and east of the Property. This suggests the lacustrine silts are present below the advance outwash sands throughout the Property. The lacustrine silt unit was encountered below the advance outwash sand unit in borings drilled for four groundwater monitoring wells installed on the Property in 2009 (see below), providing further evidence that the lacustrine silts are present below the advance outwash sands throughout the Property.

The former ravine beneath the Landfill was originally operated as an excavation borrow source for sand from 1969 until the early to mid-1970s. The advance outwash sand deposits were mined from the walls of the ravine. The sand mining activities widened the ravine before landfilling activities began in the early 1970s. Portions of the steep bank below the plateau areas in the western and northwestern portions of the Property likely represent relic cut faces from the mining operations. The approximate shape of the widened ravine created by the mining activities has been estimated by others (AESI 2009b) and is depicted in Figure 3. The widened ravine was subsequently filled with landfill wastes to form the Landfill. The lateral and vertical limits of the Landfill correspond to the approximate lateral and vertical limits of the historical sand mining activities.

1.2.4 Regional and Local Surface Water Hydrology

The Property is situated in the Marshland Tributaries drainage basin within the City of Everett Snohomish River watershed (City of Everett 2017). The Marshland Tributaries basin constitutes 3.5 square miles of the City's 11.6 square mile Snohomish River watershed. Most of this basin lies southeast of the Everett city limits but within the City's Urban Growth Area. The headwaters of the basin's tributaries are in the upland bluffs bordering the western edge of the Snohomish River Valley. The upland bluffs are heavily urbanized with a significant amount of residential land use and some commercial land use. The tributaries receive surface water drainage from the bluff areas and flow through steep ravines in an easterly to northeasterly direction before discharging to a series of agricultural drainage channels in the Snohomish River floodplain. The floodplain drainage channels discharge to the Snohomish River (City of Everett 2017).

The historical development in the residential and commercial areas of the Marshland Tributaries basin has resulted in degraded water quality conditions. The significant urban footprint of the upland bluff areas produces surface water runoff with a variety of pollutants including metals, fertilizers, pesticides, nutrients, and fecal coliform bacteria. In the Snohomish River Valley directly east of the basin, commercial agriculture and pasture lands dominate. These land use practices likely contribute sediment, nutrient, and bacterial contamination to receiving waters through disturbed soils, livestock grazing, and application of fertilizers (City of Everett 2017).

Surface water quality in the Marshland Tributaries basin is generally poor based on 2002 data. Elevated concentrations of fecal coliform, copper, and lead have been reported (City of Everett 2017). Pet wastes and failing septic systems are likely sources of fecal coliform. The elevated copper and lead concentrations are likely a result of untreated stormwater from roads and parking lots. High sediment loads have been reported and are likely due to erosion from the steep streams on the bluffs. Elevated nutrient concentrations also have been reported and are likely a result of fertilizer use in upland residential areas (City of Everett 2017).

There are three streams (Streams 1 through 3) on the Property in the vicinity of the Landfill (Figure 4). Stream 1 enters the Property from the west and flows southeast across the graded area south-adjacent to the Landfill before descending into the drainage ravine south of the Landfill, where it joins Stream 2. Stream 1 previously flowed along the bottom of the former ravine beneath the Landfill. At the direction of SHD and PDS, Go East diverted Stream 1 to the south after it acquired the Property in 1979 (P&GE 2020).

Stream 2 flows east in the drainage ravine south of the Landfill and then off the Property where it turns towards the north. Stream 2 ultimately drains to the Snohomish River Valley.

Stream 3 originates from one or more groundwater seeps or "springs" at the base of the Landfill's northeastern slope and flows east off the Property, where it joins Stream 2. At the direction of SHD and PDS, Rekoway, Inc. (Rekoway), the operator of the Landfill prior to Go East's acquisition of the Property, installed a subdrain on the bottom of the former ravine beneath the Landfill before landfilling activities began (P&GE 2020). The subdrain consists of a perforated pipe embedded in gravel. This subdrain likely drains groundwater beneath the Landfill and discharges groundwater towards the base of the northeastern slope. The local geology and measured groundwater levels in the monitoring wells surrounding the Landfill suggest that the groundwater source of Stream 3 is perched on top of the low-permeability lacustrine silts and that groundwater flows to the northeast in the advance outwash sands beneath the Landfill. This conceptual model of groundwater occurrence and flow is depicted in the cross sections shown in Figure 5. The engineered capping system described in the LFCP will reduce infiltration and percolation of stormwater through the Landfill.

Snohomish County critical area maps and resources available from the Washington State Department of Fish and Wildlife and the Washington State Department of Natural Resources (DNR) indicate that fish do not use the streams on the Property or the agricultural drainage channels in the Snohomish River floodplain. Fish are deterred from accessing the streams and the floodplain drainage channels by a pump station adjacent to the Snohomish River and by poor water quality in the drainage channels (Wetland Resources, Inc. 2010, PDS 2020). Streams 1 and 2 have been classified as Type Np streams according to the DNR forest practices water typing classification system, and Stream 3 has been classified as a Type Ns stream (Wetland Resources, Inc. 2010). Type Np streams are non-fish supporting, perennial streams that may have spatially intermittent dry reaches. Type Ns streams are non-fish supporting, seasonal streams. Neither Type Np nor Type Ns streams meet the physical criteria to be potentially used by fish (DNR 2020).

1.3 Landfill Operational History and Regulatory Background

Detailed descriptions of the Landfill operational history are provided in the Agreed Order, the LFCP, and the document *Amended Decision of the Snohomish County Hearing Examiner: Amended Decision Affirming SEPA Threshold Determination, Approving Rezone, and Approving Preliminary Subdivision with Conditions* (Amended Decision) (Snohomish County 2018). The Agreed Order and the Amended Decision also provide

detailed summaries of the Landfill regulatory background. The summary presented below is based on information contained in the Agreed Order.

The former ravine beneath the Landfill was used as an excavation borrow source beginning in 1969 when a permit was issued for excavation and sand reclamation for a two-year period. Sand was mined from the walls of the ravine for several years before landfilling activities began.

Rekoway purchased the Property in February 1972 and received a conditional use (CU) permit in March 1972 to perform sand and gravel excavation and operate a solid waste landfill accepting wood, mineral, and concrete solid materials, but not garbage or putrescibles (i.e., solid waste containing organic material that is liable to decompose). In 1974 or 1975, Rekoway sought authorization to accept tires and bulk packaging such as cardboard, pallets, large parcel wrappings, shredded paper, and warehousing waste materials. In September 1975, Snohomish County issued a CU permit allowing additional types of waste.

In August 1974, Rekoway accepted approximately 200 cubic yards of baghouse dust containing magnesium, phosphate, and aluminum dusts from Northwest Wire and Rope in Seattle (Ecology & Environment, Inc. 1987). The initial intermixing of these waste materials caused fires when the materials were first deposited in the Landfill. The fire hazard was eliminated when the different types of wastes were separated using a front-end loader. The fires caused by the metal dusts soon burned out and the remaining waste materials were covered with soil (Ecology & Environment, Inc. 1987). Rekoway also accepted partially burned trees and stumps that may have contributed to ongoing smoldering through 1977, when SHD and Snohomish County suspended Rekoway's CU permit.

Go East conditionally purchased the Property from Rekoway in 1979 and applied to Snohomish County to reinstate the CU permit and approve its transfer to Go East. Go East applied for a new woodwaste landfill permit following Snohomish County's conditional approval of these requests. Both the CU permit and the woodwaste landfill permit were conditioned on extinguishing existing fire(s) left by Rekoway. From November 1979 through early 1980, Go East excavated smoldering woodwaste debris (primarily large tree stumps) from Rekoway's previous operations and extinguished the smoldering fires. Full Landfill operations commenced in early 1980 after the Snohomish County Fire Marshal formally verified that Go East had successfully extinguished the fires. Thereafter, the CU permit and the woodwaste landfill permit were renewed until 1982, when the CU permit expired. SHD renewed the woodwaste landfill permit into 1983. Throughout Go East's operation of the Landfill, SHD frequently oversaw and inspected the operations and the imported waste materials without finding problems under its regulations. SHD issued a stop work order in 1983 and Go East stopped accepting waste in the summer of 1983.

An additional fire began on the surface of the Landfill's northeastern slope in October 1983. The soil cover in the area where the fire started was washed away when the local fire district sprayed water on the slope in an effort to extinguish the fire. This caused the fire to spread across the top surface of the Landfill without penetrating to the lower disposal cells. The fire burned out by January 1986. There have been no other fires at the Landfill since January 1986.

SHD prepared a Site Hazard Assessment (SHA) under MTCA in May 2004. Based on the SHA findings, SHD recommended that future residential development of the Property include and implement a landfill closure plan. SHD further recommended No Further Action (NFA) at the Site under MTCA. SHD subsequently issued an NFA letter in June 2004 that stated Ecology had made an NFA determination for the Site based on the SHA.

P&GE acquired the Property from Go East in May 2009 and subsequently developed plans to close the Landfill as part of Property redevelopment. SHD issued Solid Waste Facility Permit No. SW-027 to P&GE on May 11, 2018. The Permit authorized a limited purpose landfill subject to WAC 173-350-400 and required P&GE to close the Landfill in accordance with the approved LFCP. Ecology's Solid Waste Management Program has provided technical support to SHD for the authorization and oversight of the Permit.

The Kings Ridge Homeowners Association and the 108th Street Point Homeowners Association (collectively, the HOAs) appealed SHD's issuance of the Permit to the Washington State Pollution Control Hearings Board (PCHB). Following an adjudicative hearing on the appeal, the PCHB found that the HOAs had not met their burden to prove either that the LFCP or the Permit violated applicable landfill closure regulations. The PCHB determined that the LFCP met the closure requirements specified in WAC 173-350-400(8) and that additional design evaluation and components could be added to the Permit-required design drawings, construction specifications, and CQAP if necessary and appropriate.

Based on information contained in the report *Go East Landfill – Information for MTCA* Assessment (Practical Environmental Solutions [PES] 2019) that was submitted to Ecology in March 2019 on behalf of the HOAs, Ecology prepared an Initial Investigation Field Report for the Site in June 2019. The Initial Investigation Field Report stated that concentrations of total and dissolved arsenic and total chromium, iron, lead, and/or manganese reported in groundwater samples collected from three groundwater monitoring wells in 2009 exceeded MTCA default cleanup levels, and recommended that the Site be listed on Ecology's Confirmed and Suspected Contaminated Sites List.

Ecology rescinded its 2004 NFA determination on June 18, 2019 and added the Site to Ecology's Confirmed and Suspected Contaminated Sites List. The Cleanup Site Identification Number is 4294 and the Facility/Site Identification Number is 2708.

1.4 Future Land Use

After the Landfill is capped and closed pursuant to the LFCP and the Landfill closure construction plans, the Landfill area will be developed with a grass cover, stormwater control facilities, and playfields. An environmental covenant will be recorded for the Property to ensure the engineered capping system remains protective of human health and the environment.

As described in the LFCP, the area adjacent to the west, south, and east sides of the future Landfill limit will be developed for residential use within the Bakerview Plat Subdivision. The planned lot layout of the subdivision is shown in Figure 4.

2.0 EXISTING CONDITIONS AND PREVIOUS INVESTIGATIONS

The area that will be excavated and developed for future residential use is located on the western, southern, and eastern periphery of the Landfill (Figure 4). The northeastern portion of the Landfill consists of a steep, heavily vegetated slope. After historical landfilling activities ceased in the summer of 1983, the surface of the Landfill was covered with 1 to 2 feet of sandy soil obtained from the on-site advance outwash deposits. The northeastern slope area will not be excavated as part of the interim action. However, this area will be inspected during the interim action excavation activities as discussed in Section 4.0. If landfill debris is observed on or near the ground surface in the northeastern slope area, it will be removed and disposed of in accordance with the approved Landfill closure construction plans.

The ground surface in the interim action excavation area is generally rugged. Thick shrub vegetation including blackberry brambles is present in some areas, while other areas have relatively little vegetation. Landfill material such as concrete and asphalt rubble, glass and wood debris, carpet, and scraps of metal are visible on the ground surface in unvegetated portions of the interim action excavation area. Groundwater occurs at depths of approximately 30 to 50 feet bgs based on groundwater levels measured in monitoring wells installed around the perimeter of the Landfill in 2009 (see Section 2.2).

Previous subsurface explorations and sampling in and adjacent to the interim action excavation area have included test pit explorations, landfill gas probes, and groundwater monitoring well installation and sampling. Observations and/or sampling of soil and landfill materials in the test pit explorations and monitoring well borings are relevant to the interim action and are discussed below. Previous landfill gas and groundwater sampling will be described in a forthcoming RI work plan.

2.1 Test Pit Explorations

A total of 130 test pits have been completed on the Property (Figure 4) to assess the types of materials contained in the Landfill, the depth and lateral limits of the Landfill, concentrations of hazardous substances potentially present in the landfill material, and/or geotechnical properties of the landfill material and native soil. The test pits allowed for visual observation of subsurface conditions and were completed to variable depths ranging from a few feet to 38 feet bgs. The test pits completed on the Property are identified in the following list by the company that performed the work, the number of test pits completed, and the year the work was performed.

- Hong West Associates completed 47 test pits in 2002.
- AESI completed 17 test pits in 2009.
- Terra Associates completed 15 test pits in January 2019 and 25 test pits in June 2019.
- Hos Brothers Construction completed 26 test pits in July 2019.

Approximately 91 of the 130 test pits were excavated within the interim action excavation area or immediately adjacent to the interim action excavation area within the Landfill, including the 25 test pits completed in June 2019. Soil samples were collected for chemical analysis from the 25 test pits completed in June 2019; soil samples were not collected from the other test pits. Exploration logs for all but the 26 test pits completed in July 2019 (for which test pit logs were not prepared) are contained in Appendix A. The scope and purpose of the test pit investigations are summarized below.

Forty-seven test pits were completed in 2002 by Hong West Associates and 17 test pits were completed in 2009 by AESI. These test pits were excavated within and just outside the Landfill limit to assess the types of materials contained in the Landfill, the depth and lateral limits of the Landfill, and/or geotechnical properties of the landfill material.

Fifteen test pits were completed by Terra Associates in January 2019 to assess geotechnical properties of the advance outwash sand deposits that will be used as a source of structural fill during the Landfill closure construction activities. Fourteen of these test pits were excavated outside the Landfill limit; one test pit (TP-15) was excavated inside the eastern edge of the Landfill (Figure 4). The scope and results of the January 2019 geotechnical investigation are presented in Geotechnical Report, Bakerview, 4330 - 708th Street SE, Everett, Washington (Terra Associates 2019), contained in Appendix B.

Fifty-one test pits were completed by Terra Associates and Hos Brothers Construction in June and July 2019. These test pits were excavated within and adjacent to the interim action excavation area to assess the depth and lateral limits of the Landfill, and to characterize hazardous substance concentrations potentially present in the landfill material as required by Section 3.6.2 of the LFCP ("Preventive Measures during Relocation"). Test pits TP-1 through TP-25 excavated in June 2019 were completed for the primary purpose of assessing hazardous substance concentrations in the landfill material to be excavated. Exploration logs for these 25 test pits are included in Appendix A and the sampling conducted at these locations is described below. An additional 26 reconnaissance test pits were excavated in July 2019 to further assess the depth and lateral limits of the Landfill. Seven of the reconnaissance test pits were named (test pits TP-1-A, TP-1-B, TP-2-A, TP-3-A, TP-5-A, TP-8-A, and TP-9-A) (Figure 4); the other 19 reconnaissance test pits were not named. Exploration logs for the reconnaissance test pits were not prepared and samples were not collected from them.

Landfill materials encountered in the test pits (including in the interim action excavation area) consisted of assorted construction debris including gravel, concrete, wire, woody debris, tires, brick, asphalt, plastic pipe, dimensional lumber, burned wood, metal, broken glass, and carpet. These materials were encountered at depths ranging from 1 foot to 38 feet bgs. Landfill materials also included soil used as cover material during Landfill operations. This soil was obtained from borrow sources on the Property and consisted of loose silty sand with gravel. Native soil encountered beneath the landfill materials generally consisted of gray or tan to brown, fine to medium-grained sand interpreted as Vashon glacial advance outwash (AESI 2009a). No apparent hazardous materials such as asbestos or lead-based paint were observed in the test pits.

The lateral limits of the Landfill have been delineated and surveyed based on the previous test pit explorations, Go East's knowledge of the Landfill limits at the time landfilling activities ceased in 1983 (as documented in a survey drawing prepared in 1984 by Chenoweth & Associates, Inc.), and the estimated limits of the historical sand mining activities (Figure 3). Figure 6 shows the test pit locations where landfill material was observed.

As required by Section 3.6.2 of the LFCP ("Preventive Measures during Relocation"), soil samples were collected from test pits TP-1 through TP-25 completed in June 2019 to assess concentrations of hazardous substances potentially present in the landfill material to be relocated beneath the engineered capping system. Five soil samples were collected from the sidewalls of test pit TP-1 at depths ranging from 4 to 20 feet bgs. One soil sample was collected from the temporary stockpile of landfill material excavated at each of the other test pits (TP-2 through TP-25). The soil samples were submitted for laboratory analysis of the following parameters:

- Gasoline range organics (GRO) and benzene, toluene, ethylbenzene, and xylenes (BTEX) by Method NWTPH-Gx and United States Environmental Protection Agency (EPA) Method 8021B, respectively.
- Diesel range organics (DRO) and heavy oil range organics (ORO) by Method NWTPH-Dx.
- Low-level polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D/Selective Ion Monitoring (SIM).
- Arsenic, cadmium, chromium, lead, mercury, nickel, and zinc by EPA Methods 6010D/7471B.
- pH by EPA Method 9045D.

In addition to the above analyses, seven soil samples were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) lead by EPA Methods 1311/6010D.

Analytical testing results for the soil samples collected in June 2019 are summarized in Table 1. Laboratory analytical reports for the samples are contained in Appendix C.

All the June 2019 soil analytical results except TCLP lead were screened against numerical "suggested maximum values" (SMVs) presented in LFCP Table G.4 – Recommended Parameters and Suggested Values for Determining Reuse and Disposal Options. The analytical results for TCLP lead were screened against the Washington State toxicity characteristic dangerous waste threshold for lead (WAC 173-303-090[8][c]). The June 2019 soil analytical results also were compared to soil IALs developed for the interim action by Ecology. The soil IALs are conservative, risk-based numerical criteria that must be met in soil outside the future Landfill limit after landfill material in the interim action excavation area has been removed and relocated beneath the engineered capping system.¹ The June 2019 soil analytical results were compared to the soil IALs to select supplemental landfill material sampling locations as described in Section 4.1.3. Exceedances of the IALs in the June 2019 soil samples do not preclude the relocation of landfill materials from the interim action excavation area to the interior portion of the Landfill for containment beneath the engineered capping system as described in the LFCP.

The reported concentrations of the following constituents exceeded respective SMVs in one or more of the soil samples collected in June 2019 (Table 1): DRO, ORO, carcinogenic PAHs (cPAHs), cadmium, chromium, lead, mercury, and zinc. None of the TCLP lead results exceeded the toxicity characteristic dangerous waste threshold for lead. Supplemental sampling and analysis of landfill material is required by Section 3.6.2 of the LFCP because constituents were detected in soil at concentrations exceeding SMVs. The supplemental sampling is described in Section 4.1.3.

2.2 Groundwater Monitoring Wells

AESI installed four groundwater monitoring wells (wells MW-1 through MW-4) around the perimeter of the Landfill in August 2009 to measure groundwater levels and assess groundwater quality. The monitoring well locations are shown in Figure 4. Details of the monitoring well installation and sampling are provided in the report Revised Hydrogeology, Ground Water, and Surface Water Quality Report, Former Go East Landfill, Snohomish County, Washington (AESI 2009b), included as Appendix B of the LFCP. Boring logs for the monitoring wells are contained in Appendix A of this IAWP. The discussion below focuses on the soil types encountered in the monitoring well borings and the measured depths to groundwater in the wells. Previous sampling and chemical analysis of groundwater will be described in a forthcoming RI work plan.

Native soil encountered from the ground surface to depths ranging from approximately 28 to 73 feet bgs in the monitoring well borings consisted of gray or tan to brown, fine to medium-grained sand with

¹ The soil IALs and the risk-based regulatory criteria Ecology used to derive them are provided in Appendix D. The risk-based criteria apply to various potential routes of human and ecological exposure to hazardous substances under Ecology default assumptions regarding the highest beneficial use of a particular environmental medium (i.e., soil, groundwater, surface water, sediment, or indoor air) and the maximum exposure expected to occur under current and potential future Site use conditions (e.g., residential land use; land use as habitat for plants, soil biota, and wildlife; groundwater use as drinking water; surface water use as drinking water and fish habitat; surface water use for fishing). For most constituents, the most stringent risk-based criterion was selected as the IAL. However, if the most stringent criterion was less than the Puget Sound or statewide natural background concentration or the practical quantitation limit of the associated laboratory analytical method, the higher of natural background or the practical quantitation limit was selected as the IAL in accordance with WAC 173-340-740(5)(c).

occasional gravel and silt lenses. AESI interpreted this soil as Vashon glacial advance outwash. Soil encountered directly below the advance outwash deposits consisted of very stiff to hard, bluish gray silt interpreted as pre-Vashon glacial lacustrine deposits (AESI 2009a, 2009b). The base of the lacustrine silt deposits has not been identified in the subsurface explorations completed on the Property. However, the fine-grained Admiralty clay geologic unit, a member of the transitional beds that includes the lacustrine silt deposits, has been described as being hundreds of feet thick beneath Snohomish County's main river troughs (e.g., the Snohomish River Valley) (Newcomb 1952).

The groundwater monitoring wells range in depth from 31 feet bgs (well MW-4) to 75 feet bgs (well MW-1) and extend into the upper 2 to 3 feet of the lacustrine silt deposits. The wells are constructed of 2-inch diameter polyvinyl chloride (PVC) casing with 10-foot screens installed at the bottom of the wells. The well screens extend approximately 8 feet into the advance outwash sands above the lacustrine silts. The wells are completed at the ground surface with a concrete surface seal, an aboveground protective steel casing, and bollards.

Groundwater levels in the monitoring wells were measured in August 2009, February 2011, and April 2011. The depths to groundwater in wells MW-1 through MW-3 during these gauging events ranged from approximately 30 to 50 feet bgs (AESI 2009b). Well MW-4 was dry (i.e., it did not contain groundwater) during each gauging event. Groundwater occurs in the advance outwash sands above the lacustrine silt unit (AESI 2009b). Wells MW-1 and MW-3 are hydraulically upgradient of the Landfill and well MW-2 is crossgradient of the Landfill based on the measured groundwater levels. Groundwater is inferred to generally flow to the east toward the Snohomish River Valley, with a component of southerly flow in the northern portion of the Property (AESI 2009b).

Available information suggests that in general, the groundwater table beneath the Property occurs at or below the bottom of the Landfill. This is based on several lines of evidence including the measured groundwater levels in monitoring wells MW-1 through MW-3, the elevation of the bottom of the Landfill as estimated from the historical topography of the former ravine beneath the Landfill, and the reported presence of a subdrain beneath the Landfill (described in Section 1.2.4). Groundwater occurrence relative to the bottom of the Landfill is depicted conceptually in Figure 5.

3.0 REGULATORY REQUIREMENTS

The environmental impacts of the planned Landfill closure (including the excavation, relocation, and capping of landfill material described in this IAWP) were evaluated by PDS pursuant to the State Environmental Policy Act (SEPA) (Revised Code of Washington [RCW] Chapter 43.21C) beginning in 2014. The history of the SEPA process for the Landfill closure is detailed in the Agreed Order. PDS issued a mitigated determination of nonsignificance decision (MDNS) on May 7, 2017. The MDNS was appealed by the HOAs. The Snohomish County Hearing Examiner affirmed the MDNS in the Amended Decision. The Amended Decision stated that SHD relies heavily on Ecology's review of landfill closure applications, and that SHD would not issue a landfill closure permit unless and until Ecology concurs with the proposed Landfill closure plan. The Amended Decision also stated that the Landfill closure work requires a land disturbing activity permit from PDS (per the Land Disturbing Activity code, Snohomish County Code Chapter 30.63B), and that a Hydraulic Project Approval permit is required (per the Hydraulic Code Rules, WAC 220-660) to relocate the stream on the west side of the Property (Stream 1) as described in the LFCP.

PDS authorized a land disturbing activity permit for the Landfill closure to P&GE on May 11, 2019. The Washington State Department of Fish and Wildlife issued a Hydraulic Project Approval permit for the stream relocation to P&GE on October 16, 2018. Ecology authorized permit coverage under Ecology's Construction Stormwater General Permit dated November 18, 2015 to P&GE on September 18, 2018 (per the Washington State Water Pollution Control Act, RCW 90.48, and the Federal Water Pollution Control Act, Title 33 United States Code, Section 1251 et seq.).

The Landfill closure work will be performed in accordance with the Solid Waste Management Act (RCW 70.95) and Solid Waste Handling Standards (WAC 173-350) pursuant to the Permit. The Permit requires P&GE to close the Landfill in accordance with the approved LFCP and submit and obtain SHD's written approval of the final design drawings, construction specifications, and a CQAP prior to beginning construction. The required design drawings, specifications, and CQAP were reviewed by Ecology and approved by SHD. The applicable requirements for the Landfill closure are identified in Sections 2.1, 5.3, and 9.2.6 of the LFCP.

The interim action will be performed pursuant to MTCA (RCW 70.105D) and the requirements of the Agreed Order. Accordingly, the interim action is exempt from the procedural requirements of certain state laws and any laws requiring or authorizing local government permits or approvals for the action per WAC 173-340-710(9)(b). The interim action still must comply with the substantive requirements of applicable laws.

Other laws and regulations with substantive requirements (in addition to MTCA and its implementing regulations) anticipated to be applicable to the interim action described in this IAWP and that are known at this time include the following:

- Hazardous Waste Management Act (RCW 70.105) and Dangerous Waste Regulations (WAC 173-303).
- Washington Industrial Safety and Health Act (RCW 49.17) and applicable parts of Safety Standards for Construction Work (WAC 296-155).
- Occupational Safety and Health Act of 1970 (Title 29 United States Code, Chapter 15) and the Hazardous Waste Operations and Emergency Response standard for construction (Title 29 Code of Federal Regulations [CFR], Section 1926.65).

The Safety Standards for Construction Work (WAC 296-155) and the Hazardous Waste Operations and Emergency Response standard for construction (29 CFR 1926.65) include requirements that workers are to be protected from exposure to contaminants. A Health and Safety Plan describing actions that will be taken to protect the health and safety of environmental field representatives will be prepared before interim action construction activities begin. The construction contractor will be required to prepare and submit a separate Health and Safety Plan for use by contractor personnel. Personnel engaged in work that involves hazardous material excavation and handling will comply with MTCA worker safety and health provisions in WAC 173-340-810.

4.0 INTERIM ACTION DESCRIPTION

This section describes the interim action including the interim action components, compliance with MTCA interim action criteria, and alternative actions considered.

4.1 Interim Action Components

The interim action consists of the following components, listed in the general sequential order in which they will be completed:

- On-site fill source sampling.
- Former storage tank area sampling.
- Supplemental landfill material sampling.
- Excavation of landfill material and reconnaissance of northeastern slope.
- Confirmation soil sampling in interim action excavation area.
- Lot exploration outside current Landfill limit.

Three of the interim action components – supplemental landfill material sampling, excavation of landfill material and reconnaissance of the northeastern slope, and elements of the lot exploration outside the current Landfill limit – are required elements of the approved LFCP and Landfill closure construction plans, and are being performed pursuant to the Permit. The IAWP provides additional sampling plans for these Permit-required tasks. The other interim action components – on-site fill source sampling, former storage tank area sampling, confirmation soil sampling in the interim action excavation area, and sampling elements of lot exploration – are being performed pursuant to the Agreed Order. The interim action components are described below.

On-site fill source sampling (Section 4.1.1), former storage tank area sampling (Section 4.1.2), and supplemental landfill material sampling (Section 4.1.3) were completed prior to finalization of this IAWP, as requested by Ecology based on public comments. The IAWP, which was updated after P&GE's submission of these sampling results to Ecology on July 30, 2020, does not reconcile the Ecology-approved modifications to the work plan based on field conditions.

4.1.1 On-Site Fill Source Sampling

Following the excavation and relocation of landfill material (described in Section 4.1.4), the interim action excavation area will be backfilled with structural fill consisting of the on-site native sandy soil (advance outwash sand) present in areas outside the current Landfill limit. This on-site source of structural fill will be sampled at ten locations to evaluate background concentrations of metals, polychlorinated biphenyls (PCBs), and PAHs in the native soil and to verify that other hazardous substances are not present at concentrations exceeding IALs. The approximate proposed sampling locations are shown in Figure 7. Samples will be collected from shallow test pits excavated to a depth of 1 to 3 feet bgs using hand tools or a backhoe or excavator.

Soil in each test pit will be field screened for the potential presence of hazardous substances. Field screening will consist of visual observation for soil staining, soil headspace vapor screening using a photoionization detector, and water sheen testing. If field screening evidence of contamination is not observed, the on-site fill source samples will be collected from the temporary stockpile of excavated soil at each test pit location. If field screening evidence of contamination is observed, the samples will be collected from soil considered most likely to be contaminated based on the field screening results. Each test pit will be backfilled with the excavated soil following sampling. Details regarding sampling procedures, analytical testing, and quality assurance/quality control (QA/QC) guidelines and procedures are provided in the

Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) contained in Appendices E and F, respectively.

The on-site fill source soil samples will be submitted to OnSite Environmental, Inc. in Redmond, Washington (OnSite), a Washington State accredited laboratory, and analyzed for the following parameters to evaluate background concentrations:

- Low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

Three of the samples also will be analyzed for the following parameters to verify that other hazardous substances are not present at concentrations exceeding IALs:

- GRO by Method NWTPH-Gx.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics (e.g., tannins and lignins from woody debris).
- Volatile organic compounds (VOCs) by EPA Methods 5035A (unpreserved sample collection and preparation) and 8260D (analysis).
- Semivolatile organic compounds (SVOCs) with low-level PAHs by EPA Method 8270E/SIM.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.

It is anticipated that there is enough clean native sandy soil available on the Property to meet the structural fill needs of the Landfill closure project. Should it become necessary to use imported structural fill, a sample of the import fill material will be obtained from the fill supplier and analyzed before the material is used on-site. The import fill sample will be analyzed for the parameters listed above to verify that the material does not contain concentrations of hazardous substances exceeding IALs.

4.1.2 Former Storage Tank Area Sampling

Soil at the location of the former storage tank approximately 40 feet east of the existing wooden shed will be sampled to assess whether soil at this location is contaminated. The approximate proposed sampling location is shown in Figure 7. One shallow soil sample will be collected from the upper 1 foot of soil using hand tools. The sample will be collected during the same field mobilization as the on-site fill source sampling described in Section 4.1.1.

Soil in the former storage tank area will be field screened for the potential presence of hazardous substances as described in Section 4.1.1. If field screening evidence of contamination is not observed, the soil sample will be collected from shallow soil at the center of the estimated former storage tank location. If field screening evidence of contamination is observed, the sample will be collected from soil considered most likely to be contaminated based on the field screening results. Details regarding sampling procedures,

analytical testing, and QA/QC guidelines and procedures are provided in the SAP and QAPP contained in Appendices E and F.

The former storage tank area soil sample will be analyzed by OnSite for the following parameters:

- GRO and BTEX by Method NWTPH-Gx and EPA Method 8021B.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.

The former storage tank area soil sample will be archived at the laboratory. If GRO, BTEX, DRO, or ORO are detected in the sample at concentrations exceeding IALs, additional constituents will be analyzed in accordance with MTCA Table 830-1, "Required Testing for Petroleum Releases" (WAC 173-340-900). If soil contamination exceeding IALs or other applicable MTCA criteria is confirmed, the contaminated soil will be excavated and disposed of off site as appropriate based on the analytical results. If contaminated soil is removed from the former storage tank area, confirmation soil samples will be collected at the excavation limits to confirm that contamination exceeding IALs or other applicable MTCA criteria has been removed. The confirmation soil sampling in the former storage tank area will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

4.1.3 Supplemental Landfill Material Sampling

Section 3.6.2 of the LFCP includes a sampling plan to pre-characterize landfill material, including sampling frequency, analytical parameters, and unspecified supplemental sampling contingent on results of the initial pre-characterization sampling. This IAWP describes the supplemental sampling locations and analytical parameters for the landfill material. Pre-characterization samples are collected and analyzed to identify potential dangerous waste and potential PCB waste in the Landfill. As described in the LFCP, the pre-characterization sample results also are compared to SMVs, which are based on MTCA cleanup levels, to allow the contractor to evaluate worker protection requirements. The pre-characterization samples are predictive in nature. Section 4.1.4 describes plans for additional observation, field screening, and contingent sampling and analysis during excavation of the heterogeneous landfill material.

Supplemental sampling of landfill material in the interim action excavation area will be conducted to further characterize the landfill material prior to excavating and relocating it beneath the engineered capping system. As discussed in Section 2.1, 29 soil samples were collected from 25 test pits excavated in or adjacent to the interim action excavation area in June 2019. These soil samples were collected and analyzed as required by Section 3.6.2 of the LFCP to characterize concentrations of hazardous substances potentially present in the landfill material that will be relocated beneath the engineered capping system, and to evaluate whether landfill materials requiring off-site disposal as a Washington State dangerous waste may be present. The June 2019 soil samples were analyzed for GRO, DRO, ORO, BTEX, PAHs, selected metals, TCLP lead, and pH.

The supplemental soil samples will be collected during the same field mobilization as the on-site fill source sampling described in Section 4.1.1. The samples will be collected from 12 test pits in the interim action excavation area (Figure 7). The proposed supplemental soil sampling locations are adjacent to the June 2019 test pit locations where the highest concentrations of hazardous substances were detected relative

to the IALs, as these are the locations considered most likely to contain elevated concentrations of other hazardous substances, if present.

The test pits will be excavated using a backhoe or excavator and will be observed and logged by an environmental representative. The test pits will be excavated to a depth of 15 feet bgs or to native soil beneath the landfill material if native soil is encountered first. Soil in the test pits will be field screened for the potential presence of hazardous substances as described in Section 4.1.1.

One soil sample will be collected from each test pit for chemical analysis. The sample will be collected from soil considered most likely to be contaminated based on field screening results. If field screening evidence of contamination is not observed, the soil sample will be collected from the temporary stockpile of excavated landfill material at each test pit location. Each test pit will be backfilled with the excavated material following sampling. Details regarding sampling procedures, analytical testing, and QA/QC guidelines and procedures are provided in the SAP and QAPP contained in Appendices E and F.

The supplemental soil samples will be analyzed by OnSite for the following parameters:

- GRO by Method NWTPH-Gx.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.
- VOCs by EPA Methods 5035A and 8260D.
- SVOCs with low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

Follow-up TCLP analysis will be performed if any constituents are detected in a soil sample at concentrations (in milligrams per kilogram) greater than 20 times the respective Washington State toxicity characteristic dangerous waste thresholds specified in WAC 173-303-090(8)(c) (in milligrams per liter). The TCLP analysis will be performed to evaluate whether the constituent concentrations in the sample leachate exceed the respective toxicity characteristic criteria. Any landfill material found to exceed toxicity characteristic dangerous waste thresholds will be disposed of at an off-site facility permitted to receive Washington State dangerous wastes. Additionally, any landfill material found to contain total PCB concentrations (sum of Aroclors) greater than or equal to 1 milligram per kilogram will be disposed of in accordance with the Federal Toxic Substances Control Act requirements for PCB remediation waste (40 CFR 761.50[b][3] and 761.61).

4.1.4 Excavation of Landfill Material and Reconnaissance of Northeastern Slope

Landfill material will be excavated from the interim action excavation area and relocated beneath the engineered capping system as required by the LFCP. Details regarding the planned execution of this work

are contained in the LFCP. The landfill material will be excavated, hauled, and graded using conventional construction equipment (e.g., excavators, trucks, dozers, etc.). Qualified personnel including a certified asbestos professional will be present on site during the excavation work to observe the excavated material and the soil exposed in the excavation. If anomalous soil staining, odors, or unexpected wastes such as drums are observed, associated soil will be field screened for VOCs or other contaminants using a photoionization detector and water sheen testing as described in Section 4.1.1. If this field screening indicates potential soil contamination, one or more soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on observed conditions and suspected contaminants. The LFCP, Landfill closure construction plans, and Permit specify waste handling and disposal requirements for various landfill materials that may be encountered.

As landfill material is removed from the interim action excavation area, native soil beneath the landfill material will be field screened as described in Section 4.1.1. An assessment of whether all landfill material has been removed from a particular area will be made based on visual observation of native soil on the bottom and/or sidewalls of the excavation as described in the LFCP, and on Landfill depth data derived from previous subsurface explorations. If field screening indicates that native soil at any location on the bottom and/or sidewalls of the excavation may be contaminated, the suspect contaminated soil will be excavated, temporarily stockpiled on site, and covered with plastic sheeting. Suspect contaminated native soil stockpiles will be characterized for disposal in accordance with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016). If contamination exceeding IALs is confirmed in stockpiled native soil, the contaminated soil will be disposed of off site at a permitted facility. Confirmation soil samples will be collected from the excavation limits in a particular area as described in Section 4.1.5 when all landfill material and suspect contaminated native soil has been removed from the area. An environmental representative will document field activities, observations, and field screening results in field reports and photographs.

The report Go East Landfill – Information for MTCA Assessment (PES 2019) states that representatives of Landau Associates, Inc. observed partially exposed drums and metal debris near the base of the Landfill's steep northeastern slope in January 2019. The approximate location where the drums and metal debris were reportedly observed is shown in Figure 4.

A reconnaissance inspection of the entire northeastern slope of the Landfill will be conducted and if landfill material (e.g., drums or other debris) is found in the existing landfill cover, it will be removed and disposed of in accordance with the LFCP, Landfill closure construction plans, and Permit. If field screening indicates potential contamination of the landfill cover, soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on the waste types observed and suspected contaminants. If concentrations of hazardous substances exceeding IALs are detected, the affected landfill cover material will be excavated and placed beneath the engineered capping system or disposed of off site as appropriate based on the analytical results. Confirmation soil samples will be collected at the excavation limits and analyzed to confirm the soil removal meets regulatory requirements. The confirmation soil sampling will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

4.1.5 Confirmation Soil Sampling

Confirmation soil sampling will be conducted in the interim action excavation area following removal of landfill material and any suspect contaminated native soil. The confirmation soil samples will be submitted for laboratory analysis to confirm that hazardous substances are not present in native soil beyond the future Landfill limit at concentrations exceeding IALs.

The approximate proposed confirmation soil sampling locations are shown in Figure 8. The confirmation soil samples will be collected from the bottom and/or sidewalls of the excavation area as the excavation work progresses using an excavator or hand tools. The sampling locations may be adjusted based on the size and shape of the excavation area, access constraints, or other field conditions. The final sampling locations will be evaluated and selected based on field conditions and field screening results. Details regarding sampling procedures, analytical testing, and QA/QC guidelines and procedures are provided in the SAP and QAPP contained in Appendices E and F. An environmental representative will document the confirmation soil sampling activities in field reports and photographs.

The confirmation soil samples will be submitted to OnSite and analyzed for the following parameters:

- GRO by Method NWTPH-Gx.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.
- VOCs by EPA Methods 5035A and 8260D.
- SVOCs with low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

If contamination exceeding IALs is detected in native soil, the contaminated soil will be excavated, potentially staged on site, and disposed of at an off-site, permitted facility, and follow-up confirmation soil sampling will be conducted to confirm that no contaminated soil remains. The interim action excavation area will not be backfilled until results of the confirmation soil sampling indicate that hazardous substances are not present in soil beyond the future Landfill limit at concentrations exceeding IALs.

4.1.6 Lot Exploration Outside Current Landfill Limit

Excavation activities conducted in areas of the future Bakerview Plat Subdivision outside the current Landfill limit (to obtain borrow material for structural fill, for example) will be observed by a qualified professional as detailed in the lot exploration plan contained in the Landfill closure construction plans. Additionally, areas outside the current Landfill limit that are to be filled or left ungraded will be scarified to a depth of 1 foot to verify that no landfill wastes are present before filling or recompacting these areas. Test pit explorations also will be performed as determined necessary to verify that no landfill wastes are present in areas outside the current Landfill limit.

Solid waste found outside the historical Landfill area (if any) will be removed and disposed of off site in accordance with the LFCP, Landfill closure construction plans, and Permit. If field screening indicates native soil in the area may be contaminated, soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on the waste types observed and suspected contaminants. If contamination exceeding IALs is detected in native soil, the contaminated soil will be excavated, potentially staged on site, and disposed of at an off-site, permitted facility. Confirmation soil samples will be collected at the excavation limits and analyzed to confirm that contamination exceeding IALs has been removed. The confirmation soil sampling will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

4.2 Compliance with MTCA Interim Action Criteria

The interim action meets the MTCA criteria for interim actions identified in subsections (1), (2), and (3) of WAC 173-340-430, as follows:

- The interim action will eliminate or substantially reduce one or more pathways for exposure to hazardous substances at the Site (i.e., the direct contact and leaching to groundwater exposure pathways) (WAC 173-340-430[1][a]).
- The interim action will provide for completion of an RI/FS (WAC 173-340-430[1][c]).
- The interim action will achieve soil cleanup standards for a portion of the Site (i.e., the interim action excavation area) (WAC 173-340-430[2][a]).
- The interim action will not foreclose reasonable alternatives for the final cleanup action if a final cleanup action is determined to be necessary based on the results of the RI (WAC 173-340-430[3][b]).

4.3 Alternative Actions Considered

During the early stages of Landfill closure planning, consideration was given to transporting the landfill material excavated from the interim action excavation area to an off-site, permitted facility for disposal. The proposed alternative of consolidating the excavated material under the engineered capping system within the future Landfill limit was selected because this approach minimizes worker safety hazards by minimizing handling of the excavated landfill material. Consolidating and capping the excavated material within the future Landfill limit also reduces community traffic impacts and potential safety risks associated with hauling an estimated 50,000 to 60,000 in-place cubic yards (i.e., 2,500+ truck and trailer loads) of landfill material to an off-site disposal facility.

5.0 REPORTING

Upon completion of the interim action, an interim action completion report will be submitted to Ecology as required by the Agreed Order.

6.0 SCHEDULE

The on-site fill source sampling, former storage tank area sampling, and supplemental landfill material sampling were performed on June 29 and June 30, 2020. Ecology authorized P&GE to perform clearing

and grubbing of trees and other vegetation in the construction area before the Agreed Order is finalized. Landfill excavation and closure construction work is scheduled to begin after the Agreed Order is finalized.

7.0 REFERENCES

- Associated Earth Sciences, Inc. (AESI), 2009a. Subsurface Exploration, Geologic Hazards, and Geotechnical Engineering Report, Former Go East Landfill, Snohomish County, Washington. October 21, 2009, revised February 28, 2013. (Contained in Appendix A of the LFCP.)
- AESI, 2009b. Revised Hydrogeology, Ground Water, and Surface Water Quality Report, Former Go East Landfill, Snohomish County, Washington. December 15, 2009, revised October 26, 2011. (Contained in Appendix B of the LFCP.)
- City of Everett, 2017. City of Everett Surface Water Comprehensive Plan, Volume IV Snohomish River Watershed Plan. November 2017.
- Ecology & Environment, Inc., 1987. Site Inspection Report for Rekoway Landfill, Merwin, Washington. Submitted to J.E. Osborn, Field Operations and Technical Support Branch, EPA Region X. June 1987.
- Geolabs Washington, Inc., 1970. Letter report re: Soils and Geology Survey, Proposed Solid Waste Disposal Site, NW ¼ of SE ¼, Sec. 21, T28N, R5E, Snohomish County, Washington. From Alvin R. Zeman to Mr. Vernon Holt, c/o Ruskin Fisher & Associates. October 13, 1970.
- Newcomb, R.C., 1952. Ground-Water Resources of Snohomish County, Washington. United States Geological Survey Water-Supply Paper 1135.
- PACE Engineers, Inc. (PACE), 2012. Go East Landfill Closure Plan, Go East Landfill, 4330 108th Street SE, Everett, Washington, 98208. February 8, 2012, revised January 2018.
- P&GE, LLC (P&GE), 2020. Personal communication between Gary East and Marty Penhallegon, P&GE, and Rob Leet, GeoEngineers. March 6, 2020.
- Practical Environmental Solutions, 2019. Go East Landfill Information for MTCA Assessment. March 31, 2019.
- Smith, M., 1976. Preliminary Surficial Geologic Map of the Mukilteo and Everett Quadrangles, Snohomish County, Washington. Washington State Department of Natural Resources, Geologic Map GM-20.
- Snohomish County, 2018. Amended Decision of the Snohomish County Hearing Examiner: Amended Decision Affirming SEPA Threshold Determination, Approving Rezone, and Approving Preliminary Subdivision with Conditions. In Re Bakerview File No. 10-101204 SD/REZO. February 14, 2018.
- Snohomish County Planning and Development Services (PDS), 2020. PDS Map Portal (http://gismaps.snoco.org/Html5Viewer/Index.html?viewer=pdsmapportal). Accessed 3/12/2020.

- United States Geological Survey (USGS), 1985. Geologic Map of the Everett 7.5-Minute Quadrangle, Snohomish County, Washington. By James P. Minard.
- Washington State Department of Ecology (Ecology), 2016. Guidance for Remediation of Petroleum Contaminated Sites. Toxics Cleanup Program Publication No. 10-09-057. Revised June 2016.
- Washington State Department of Natural Resources (DNR), 2020. Forest Practices Water Typing webpage (https://www.dnr.wa.gov/forest-practices-water-typing). Accessed 3/13/20.
- Wetland Resources, Inc., 2010. Landfill Closure Mitigation Plan for Bakerview. September 1, 2010. (Contained in Appendix C of the LFCP.)

Table 1

Analytical Results for Soil Samples Collected June 2019

Go East Corp Landfill Site Everett, Washington

								Everett, wasn										
Sample Identification	TP-1-4'	TP-1-8'	TP-1-12'	TP-1-16'	TP-1-20'	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-8	TP-9	TP-10	TP-11			Toxicity
Sample Date	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/12/2019	6/17/2019	6/14/2019	6/17/2019	6/17/2019	LFCP Table G.4	Interim Action	Characteristic
Approximate Sample Depth	4-5 ft bgs	8-9 ft bgs	12-1 3 ft bgs	16-17 ft bgs	20-21 ft bgs	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	SMV (a)	Level (b)	Criterion (c)
Total Petroleum Hydrocarbons by Ecology Meth	ods NWTPH-Gx/	NWTPH-Dx (mg	/kg)															
Gasoline Range Organics (GRO)	7.2 U	6.9	8.1 U	8.0 U	11	8.3 U	6.9 U	7.4 U	7.8 U	7.1 U	32	8.6 U	11 U	7.0 U	9.5 U	100	30/100	-
Diesel Range Organics (DRO)	30 U	650 U	340 U	320 U	1,600 U	340 U	300 U	170 U	230	150 U	90	370 U	190 U	300 U	370 U	200 - 460	260 (d)	_
Heavy Oil Range Organics (ORO)	330	11,000	3,600	2,800	28,000	5,000	4,100	2,000	1,400	910	660	3,100	1,300	1,400	5,200	200 - 460	260 (d)	-
Aromatic Volatile Organic Compounds by EPA N	Method 8021B (ı	mg/kg)																
Benzene	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.023 U	0.020 U	0.020 U	0.03	0.0024	
Toluene	0.072 U	0.064 U	0.081 U	0.080 U	0.073 U	0.083 U	0.069 U	0.074 U	0.078 U	0.071 U	0.077 U	0.086 U	0.11 U	0.070 U	0.095 U	7	0.40	-
Ethylbenzene	0.072 U	0.064 U	0.081 U	0.080 U	0.073 U	0.083 U	0.069 U	0.074 U	0.078 U	0.071 U	0.077 U	0.086 U	0.11 U	0.070 U	0.095 U	6	0.24	-
Xylene, m-,p-	0.072 U	0.064 U	0.081 U	0.080 U	0.073 U	0.083 U	0.069 U	0.074 U	0.078 U	0.071 U	0.077 U	0.086 U	0.11 U	0.070 U	0.095 U	9 (e)	14 (e)	-
Xylene, o-	0.072 U	0.064 U	0.081 U	0.080 U	0.073 U	0.083 U	0.069 U	0.074 U	0.078 U	0.071 U	0.077 U	0.086 U	0.11 U	0.070 U	0.095 U	9 (e)	14 (e)	-
Polycyclic Aromatic Hydrocarbons by EPA Meth	od 8270D/Selec	ctive Ion Monitor	ring (mg/kg)															
1-Methylnaphthalene	0.016 U	0.12 U	0.13 U	0.025 U	0.13 U	0.14 U	0.13	0.089 U	0.081 U	0.082 U	0.017	0.016	0.12	0.70	0.075 U	NE	34	-
2-Methylnaphthalene	0.016 U	0.12 U	0.13 U	0.027	0.14	0.14 U	0.18	0.089 U	0.081 U	0.082 U	0.024	0.023	0.11	1.2	0.075 U	NE	320	-
Acenaphthene	0.016 U	0.12 U	0.13 U	0.025 U	0.19	0.14 U	0.29	0.16	0.20	0.36	0.022	0.038	0.44	2.0	0.075 U	NE	3.1	-
Acenaphthylene	0.028	0.12 U	0.13 U	0.025 U	0.13 U	0.14 U	0.12 U	0.089 U	0.081 U	0.082 U	0.0085 U	0.048	0.20	0.46	0.075 U	NE	NE	
Anthracene	0.040	0.12 U	0.13 U	0.027	0.19	0.14 U	0.15	0.089 U	0.081 U	0.26	0.011	0.044	0.22	2.2	0.075 U	NE	47	-
Benzo(g,h,i)perylene	0.20	0.23	0.24	0.074	0.41	0.17	0.31	0.49	0.12	0.093	0.024	0.13	0.66	0.37	0.16	NE	NE	
Fluoranthene	0.25	0.26	0.37	0.14	1.1	0.34	0.88	0.40	0.28	0.52	0.060	0.15	0.89	12	0.10	NE	0.020	
Fluorene	0.016 U	0.12 U	0.13 U	0.025 U	0.20	0.14 U	0.33	0.12	0.22	0.46	0.015	0.039	0.28	2.5	0.075 U	NE	1.6	-
Naphthalene	0.016 U	0.12 U	0.14	0.036	0.30	0.14 U	0.39	0.24	0.18	0.082 U	0.022	0.073	0.34	1.1	0.075 U	NE	4.5	
Phenanthrene	0.084	0.34	0.45	0.074	1.2	0.27	0.69	0.31	0.34	0.85	0.071	0.11	0.36	11	0.075 U	NE	NE	
Pyrene	0.43	0.33	0.45	0.19	1.3	0.42	0.76	0.53	0.26	0.39	0.068	0.20	1.4	9.0	0.18	NE	0.020	
Benzo(a)anthracene	0.22	0.16	0.19	0.089	0.54	0.15	0.39	0.27	0.081 U	0.082 U	0.020	0.087	0.80	3.0	0.075 U	See cPAHs	See cPAHs	
Benzo(a)pyrene	0.20	0.19	0.22	0.085	0.44	0.16	0.29	0.53	0.098	0.082 U	0.027	0.14	0.95	0.99	0.12	See cPAHs	See cPAHs	
Benzo(b)fluoranthene	0.26	0.24	0.22	0.11	0.53	0.20	0.45	0.59	0.14	0.091	0.033	0.18	1.3	1.7	0.13	See cPAHs	See cPAHs	
Benzo(j,k)fluoranthene	0.044	0.12 U	0.13 U	0.027	0.14	0.14 U	0.14	0.17	0.081 U	0.082 U	0.0094	0.041	0.46	0.59	0.075 U	See cPAHs	See cPAHs	_
Chrysene	0.30	0.40	0.36	0.16	0.98	0.26	0.57	0.39	0.099	0.15	0.026	0.11	0.91	2.5	0.11	See cPAHs	See cPAHs	
Dibenz(a,h)anthracene	0.042	0.12 U	0.13 U	0.025 U	0.13 U	0.14 U	0.12 U	0.089 U	0.081 U	0.082 U	0.0085 U	0.025	0.15	0.11	0.075 U	See cPAHs	See cPAHs	
Indeno(1,2,3-c,d)pyrene	0.14	0.17	0.16	0.059	0.30	0.14	0.30	0.47	0.10	0.082 U	0.022	0.13	0.68	0.45	0.096	See cPAHs	See cPAHs	
cPAHs (TTEC)	0.27	0.26	0.29	0.12	0.61	0.23	0.43	0.69	0.14	0.068	0.036	0.19	1.3	1.6	0.15	0.1 - 2.0	0.084	_
Metals by EPA Methods 6010D/7471B (mg/kg	()																	
Arsenic	12 U	12 U	13 U	13 U	13 U	14 U	12 U	13 U	12 U	12 U	13 U	15 U	15 U	12 U	15 U	20	20	
Cadmium	0.59 U	0.90	1.0	1.5	0.99	0.69 U	1.0	0.81	0.78	0.61 U	1.5	1.2	5.3	0.59 U	0.99	2.0	0.80	-
Chromium	33	32	28	26	24	31	31	32	46	29	30	40	66	39	37	42	48	-
Lead	49	99	270	260	180	140	170	120	160	83	95	310	560	98	620	250	50	-
Mercury	0.30 U	0.30 U	0.39	0.32 U	0.32 U	0.34 U	0.43	0.33 U	0.30 U	0.31 U	0.32 U	0.37 U	0.38 U	0.30 U	0.48	2.0	0.070	_
Nickel	47	42	31	29	33	39	32	34	41	43	29	35	57	44	37	100	48	_
Zinc	120	810	300	340	390	290	300	400	410	130	3,000	330	1,800	150	640	270	86	_
TCLP Metals by EPA Methods 1311/6010D (mg	-												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
TCLP Lead	-	, 	0.20 U	0.20 U	_	_	_	_	_	_	_		_	_	1.3	5.0	_	5.0
General Chemistry Parameters by EPA Method	9045D				•										-	-		
pH (SU)	6.8	6.2	7.0	7.3	7.2	6.4	7.3	7.1	7.4	7.1	6.9	7.4	7.4	5.5	7.5	6.5 - 8.5	NE	_
1 \ '/	_	1			1	1				1		1	1		1			

Table 1

Analytical Results for Soil Samples Collected June 2019

Go East Corp Landfill Site Everett, Washington

		T						i, washington							Г		
Sample Identification	TP-12	TP-13	TP-14	TP-15	TP-16	TP-17	TP-18	TP-19	TP-20	TP-21	TP-22	TP-23	TP-24	TP-25			Toxicity
Sample Date	6/17/2019	6/12/2019	6/12/2019	6/17/2019	6/17/2019	6/12/2019	6/12/2019	6/12/2019	6/12/2019	6/12/2019	6/17/2019	6/12/2019	6/12/2019	6/12/2019	LFCP Table G.4	Interim Action	Characteristic
Approximate Sample Depth	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	SMV (a)	Level (b)	Criterion (c)
Total Petroleum Hydrocarbons by Ecology Meth			<u> </u>			T			1								
Gasoline Range Organics (GRO)	6.1 U	9.7 U	6.9	11 U	9.3 U	8.1 U	6.6 U	6.3 U	26 U	8.6 U	7.9 U	13	8.0 U	7.5 U	100	30/100	-
Diesel Range Organics (DRO)	30 U	190 U	310 U	39 U	37 U	34 U	30 U	28 U	100	340 U	660 U	330 U	320 U	37 U	200 - 460	260 (d)	
Heavy Oil Range Organics (ORO)	98	1,200	2,200	300	230	280	59 U	150	440	2,400	9,800	2,600	5,500	410	200 - 460	260 (d)	<u> </u>
Aromatic Volatile Organic Compounds by EPA		· · · · ·													T		
Benzene	0.020 U	0.020 U	0.020 U	0.022 U	0.020 U	0.020 U	0.020 U	0.020 U	0.051 U	0.020 U	0.03	0.0024					
Toluene	0.061 U	0.097 U	0.056 U	0.11 U	0.093 U	0.081 U	0.066 U	0.063 U	0.26 U	0.086 U	0.079 U	0.078 U	0.080 U	0.075 U	7	0.40	-
Ethylbenzene	0.061 U	0.097 U	0.056 U	0.11 U	0.093 U	0.081 U	0.066 U	0.063 U	0.26 U	0.086 U	0.079 U	0.078 U	0.080 U	0.075 U	6	0.24	-
Xylene, m-,p-	0.061 U	0.097 U	0.056 U	0.11 U	0.093 U	0.081 U	0.066 U	0.063 U	0.26 U	0.086 U	0.079 U	0.078 U	0.080 U	0.075 U	9 (e)	14 (e)	-
Xylene, o-	0.061 U	0.097 U	0.056 U	0.11 U	0.093 U	0.081 U	0.066 U	0.063 U	0.26 U	0.086 U	0.079 U	0.078 U	0.080 U	0.075 U	9 (e)	14 (e)	
Polycyclic Aromatic Hydrocarbons by EPA Meth	od 8270D/Sele	ective Ion Monito	ring (mg/kg)														
1-Methylnaphthalene	0.0081 U	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	0.41	0.084 U	0.0089	NE	34	
2-Methylnaphthalene	0.0081 U	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	0.60	0.084 U	0.016	NE	320	
Acenaphthene	0.0099	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	1.9	0.084 U	0.0086 U	NE	3.1	
Acenaphthylene	0.0081 U	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	1.0	0.084 U	0.072	NE	NE	_
Anthracene	0.021	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0095	0.021 U	0.090 U	0.066 U	2.6	0.084 U	0.060	NE	47	-
Benzo(g,h,i)perylene	0.029	0.16	0.11	0.022	0.074 U	0.0092 U	0.0079 U	0.014	0.021 U	0.24	0.092	0.93	0.084 U	0.28	NE	NE	-
Fluoranthene	0.084	0.14	0.18	0.038	0.074 U	0.0092 U	0.0079 U	0.049	0.021 U	0.090 U	0.11	8.7	0.084 U	0.44	NE	0.020	-
Fluorene	0.0090	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	1.9	0.084 U	0.0086 U	NE	1.6	_
Naphthalene	0.0081 U	0.10 U	0.082 U	0.027	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	0.48	0.084 U	0.085	NE	4.5	
Phenanthrene	0.080	0.10 U	0.099	0.028	0.074 U	0.0092 U	0.0079 U	0.040	0.021 U	0.090 U	0.066 U	6.6	0.084 U	0.14	NE	NE	
Pyrene	0.097	0.16	0.23	0.048	0.074 U	0.0092 U	0.0079 U	0.052	0.021 U	0.090 U	0.14	6.4	0.091	0.42	NE	0.020	
Benzo(a)anthracene	0.047	0.10	0.12	0.018	0.074 U	0.0092 U	0.0079 U	0.022	0.021 U	0.090 U	0.076	2.2	0.084 U	0.35	See cPAHs	See cPAHs	-
Benzo(a)pyrene	0.045	0.15	0.13	0.020	0.074 U	0.0092 U	0.0079 U	0.022	0.021 U	0.090 U	0.096	1.4	0.084 U	0.39	See cPAHs	See cPAHs	-
Benzo(b)fluoranthene	0.047	0.24	0.16	0.030	0.074 U	0.0092 U	0.0079 U	0.022	0.021 U	0.090 U	0.11	2.2	0.084 U	0.45	See cPAHs	See cPAHs	-
Benzo(j,k)fluoranthene	0.018	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0083	0.021 U	0.090 U	0.066 U	0.48	0.084 U	0.14	See cPAHs	See cPAHs	_
Chrysene	0.049	0.14	0.16	0.025	0.074 U	0.0099	0.0079 U	0.024	0.021 U	0.090 U	0.079	2.2	0.12	0.32	See cPAHs	See cPAHs	_
Dibenz(a,h)anthracene	0.0081 U	0.10 U	0.082 U	0.010 U	0.074 U	0.0092 U	0.0079 U	0.0074 U	0.021 U	0.090 U	0.066 U	0.23	0.084 U	0.049	See cPAHs	See cPAHs	
Indeno(1,2,3-c,d)pyrene	0.031	0.16	0.091	0.019	0.074 U	0.0092 U	0.0079 U	0.013	0.021 U	0.090 U	0.080	1.0	0.084 U	0.28	See cPAHs	See cPAHs	_
cPAHs (TTEC)	0.060	0.21	0.18	0.028	0.056 U	0.0070	0.0060 U	0.029	0.016 U	0.068 U	0.13	2.0	0.064	0.52	0.1 - 2.0	0.084	
Metals by EPA Methods 6010D/7471B (mg/kg																	1
Arsenic	12 U	15 U	12 U	16 U	15 U	14 U	12 U	11 U	17	13 U	13 U	17	13 U	13 U	20	20	
Cadmium	0.61 U	0.94	0.61 U	0.78 U	0.74 U	0.69 U	0.59 U	0.56 U	1.6 U	0.82	1.1	0.66 U	1.0	0.65 U	2.0	0.80	
Chromium	49	45	27	37	33	39	32	33	37	31	39	28	31	32	42	48	
Lead	29	1,200	87	77	110	46	5.9 U	21	26	300	300	100	46	62	250	50	
Mercury	0.30 U	5.4	0.31 U	0.39 U	0.37 U	0.34 U	0.29 U	0.28 U	0.78 U	1.0	0.33 U	0.33 U	0.32 U	0.32 U	2.0	0.070	
Nickel	36	34	35	31	32	50	44	44	45	32	41	32	40	42	100	48	
Zinc	80	480	160	100	150	130	27	71	82	360	460	180	110	78	270	86	
TCLP Metals by EPA Methods 1311/6010D (m.		700	100	100	130	130		1.1	UZ.	300	+50	130	110	70	210	30	
TCLP Lead	5/ - /	0.78		_	_			_		0.39	0.20 U	0.20 U	_		5.0		5.0
General Chemistry Parameters by EPA Method	9045D	0.76					J=			0.59	0.200	0.200			5.0		5.0
, , , , , , , , , , , , , , , , , , , ,	7.0	6.2	7.7	6.5	6.9	6.2	7.1	6.7	6.1	7.3	7.0	6.9	6.7	5.9	6.5 - 8.5	NE	
pH (SU)	1.0	0.∠	1.1	0.5	0.9	0.2	1.⊥	0.7	0.1	1.3	1.0	0.9	0.7	۵.9	0.0 - 6.0	INE	

Notes:

- (a) Suggested maximum value (SMV) from Landfill Closure Plan (LFCP) Table G.4 Recommended Parameters and Suggested Values for Determining Reuse and Disposal Options
- (b) Risk-based interim action levels (IALs) were derived by Ecology-derived IALs were adjusted to the laboratory analytical method practical quantitation limit (PQL) if the Ecology-derived IAL was less than the PQL, per WAC 173-340-740(5)(c). See Appendix D. For GRO, the 100 mg/kg value applies to gasoline mixtures without benzene and the total of toluene, ethylbenzene, and xylene is less than 1% of the gasoline mixture; the 30 mg/kg value applies to all other gasoline mixtures.
- (c) Source: WAC 173-303-090(8)(c)
- (d) Value for total diesel and heavy oil range organics (DRO+ORO)
- (e) Value for total xylenes
- -- = Not analyzed or not applicable

cPAHs = Carcinogenic polycyclic aromatic hydrocarbons

ft bgs = Feet below ground surface

LFCP = Landfill Closure Plan

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NE = Not established

SMV = Suggested maximum value

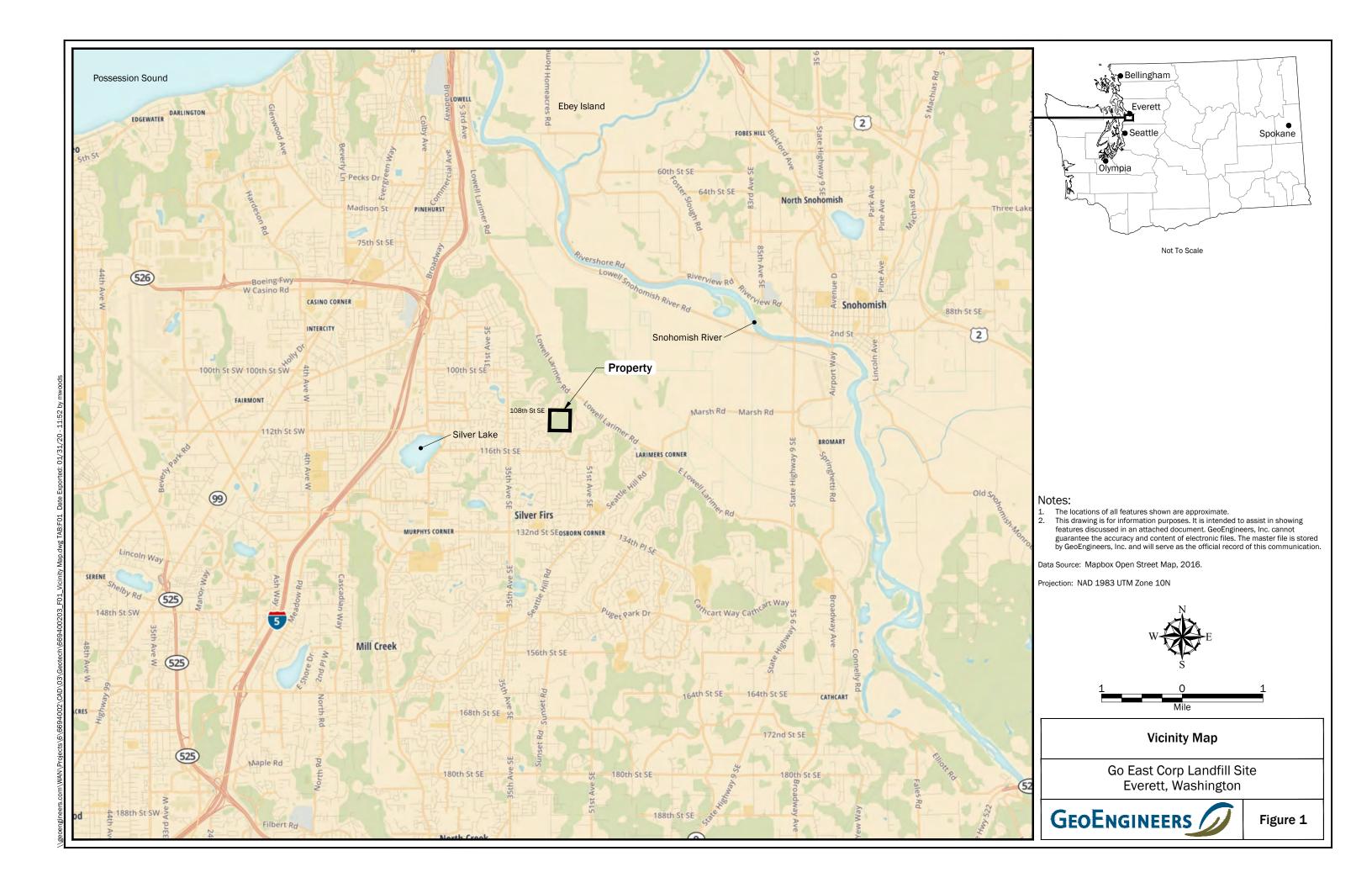
SU = pH Standard Units

TCLP = Toxicity Characteristic Leaching Procedure

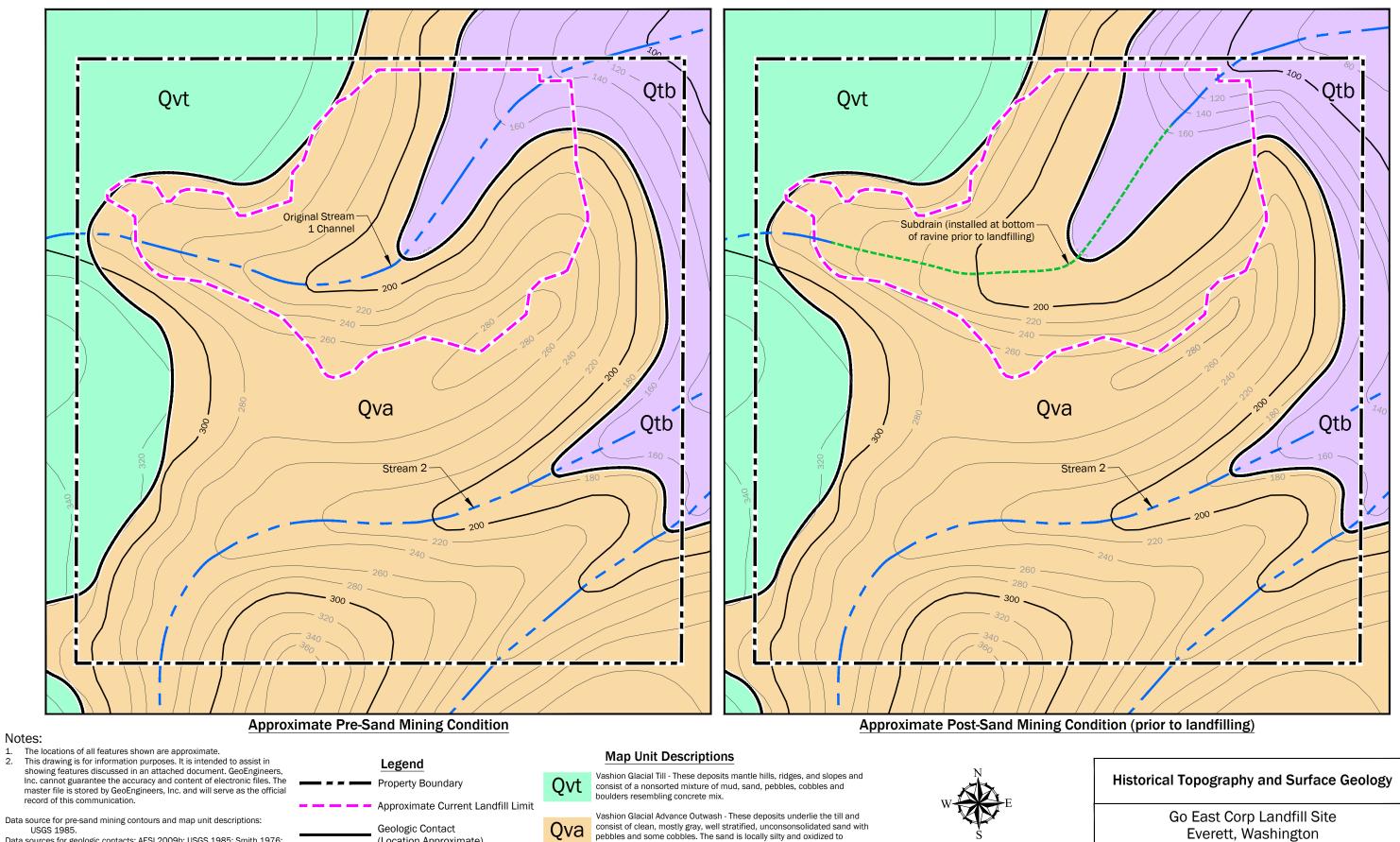
TTEC = Total toxic equivalent concentration of benzo(a)pyrene calculated per WAC 173-340-708(8)(e)(iii)(A) and using one-half the laboratory reporting limit for non-detected cPAHs.

U = The analyte was not detected; the reported numerical value represents the laboratory reporting limit.

Bold typeface indicates the constituent was detected at the reported concentration.


	Pink highlighting indicates the reported concentration exceeds the LFCP Table G.4 SMV and the interim action level.


Orange highlighting indicates the reported concentration exceeds the LFCP Table G.4 SMV but not the interim action level.


Yellow highlighting indicates the reported concentration exceeds the interim action level but not the LFCP Table G.4 SMV.

Blue highlighting indicates the laboratory reporting limit exceeds the interim action level but not the LFCP Table G.4 SMV.

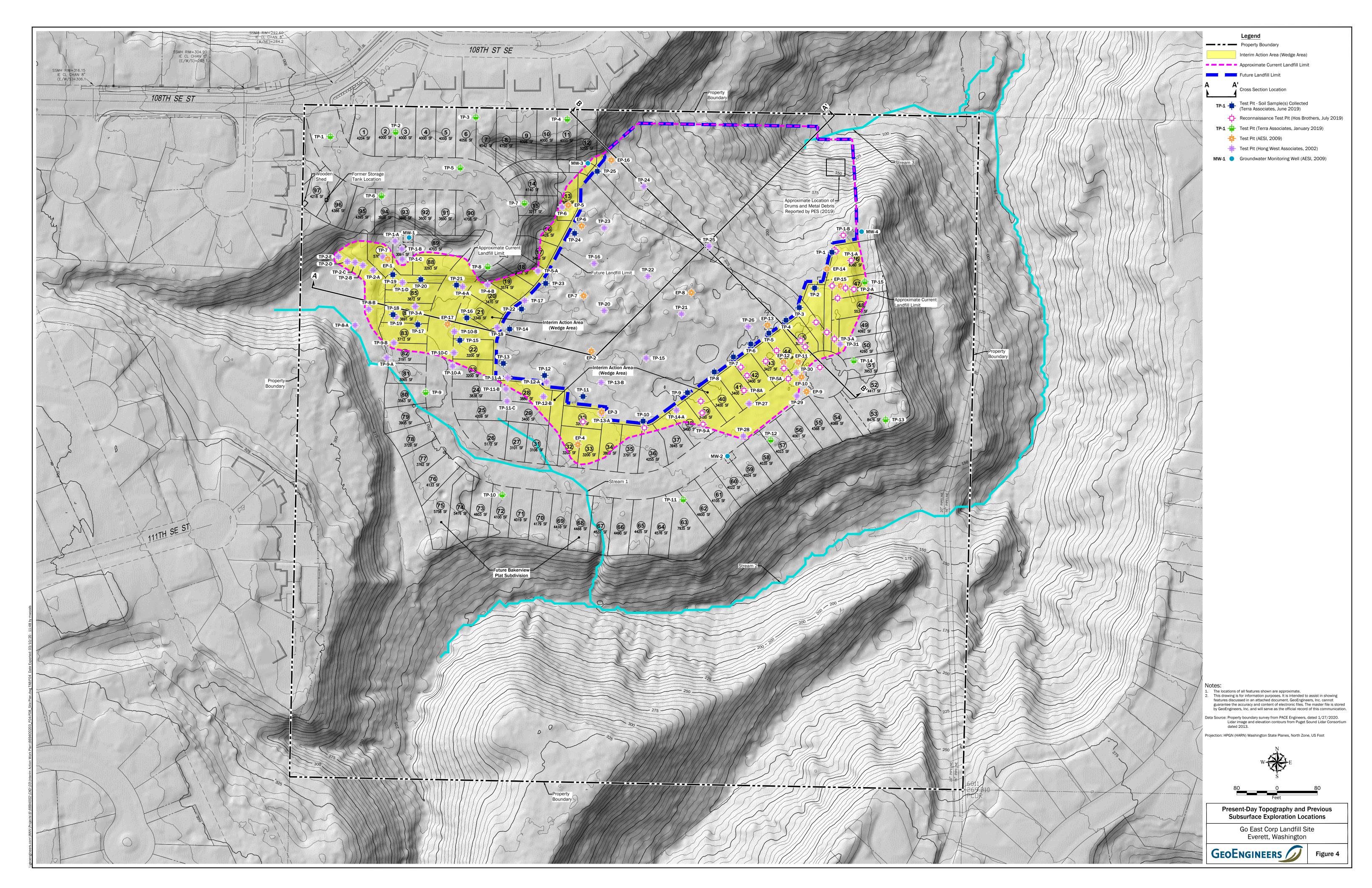
Violet highlighting indicates the laboratory reporting limit exceeds the interim action level and the LFCP Table G.4 SMV.

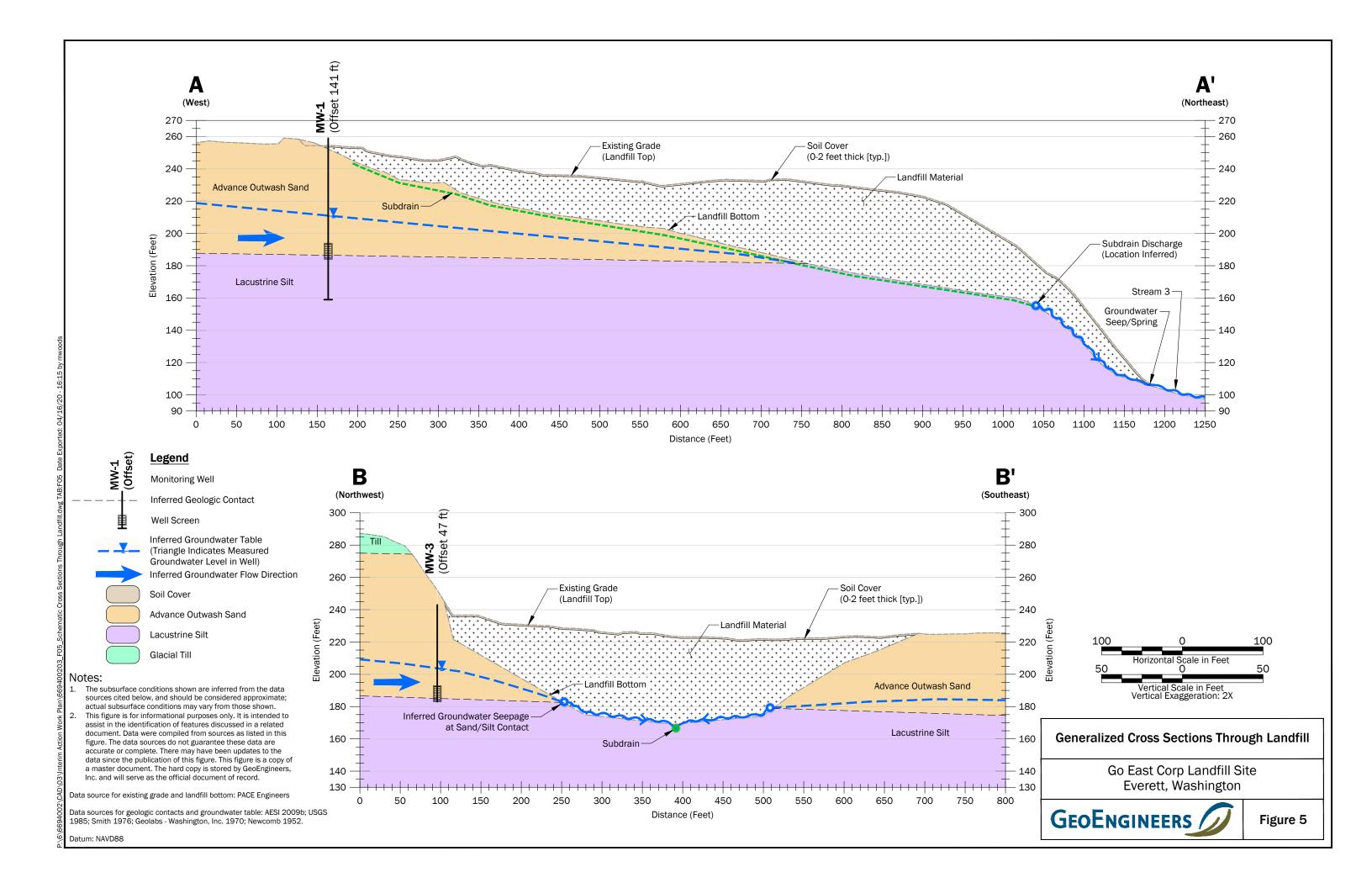
Transitional Beds (includes pre-Vashon glacial lacustrine silt) - These

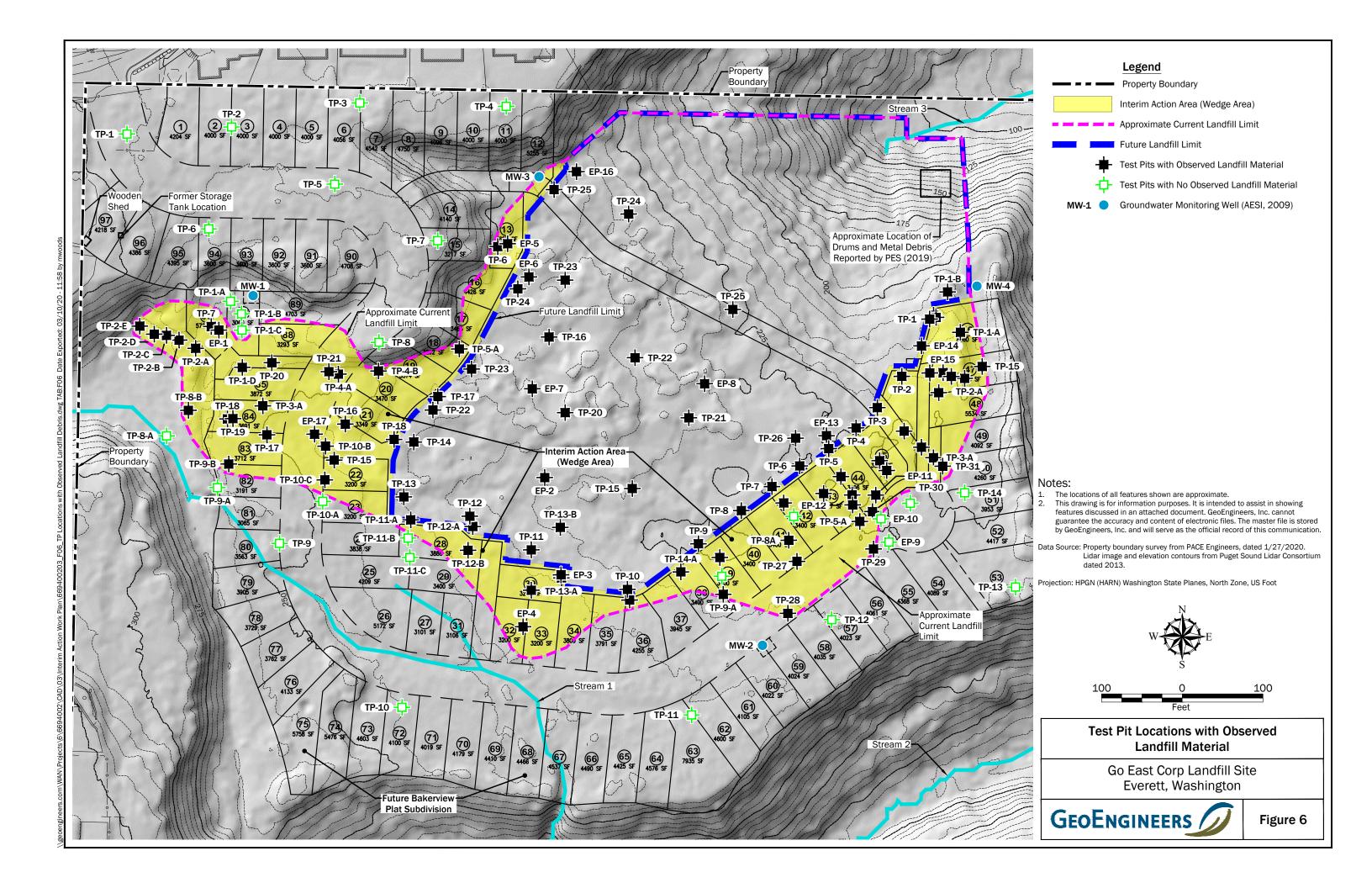
moving water (e.g., lakes and slowly flowing rivers/streams).

deposits underlie the advance outwash and consist of clay, silt, and very fine to fine sand. The sediments were mostly deposited in still to slowly

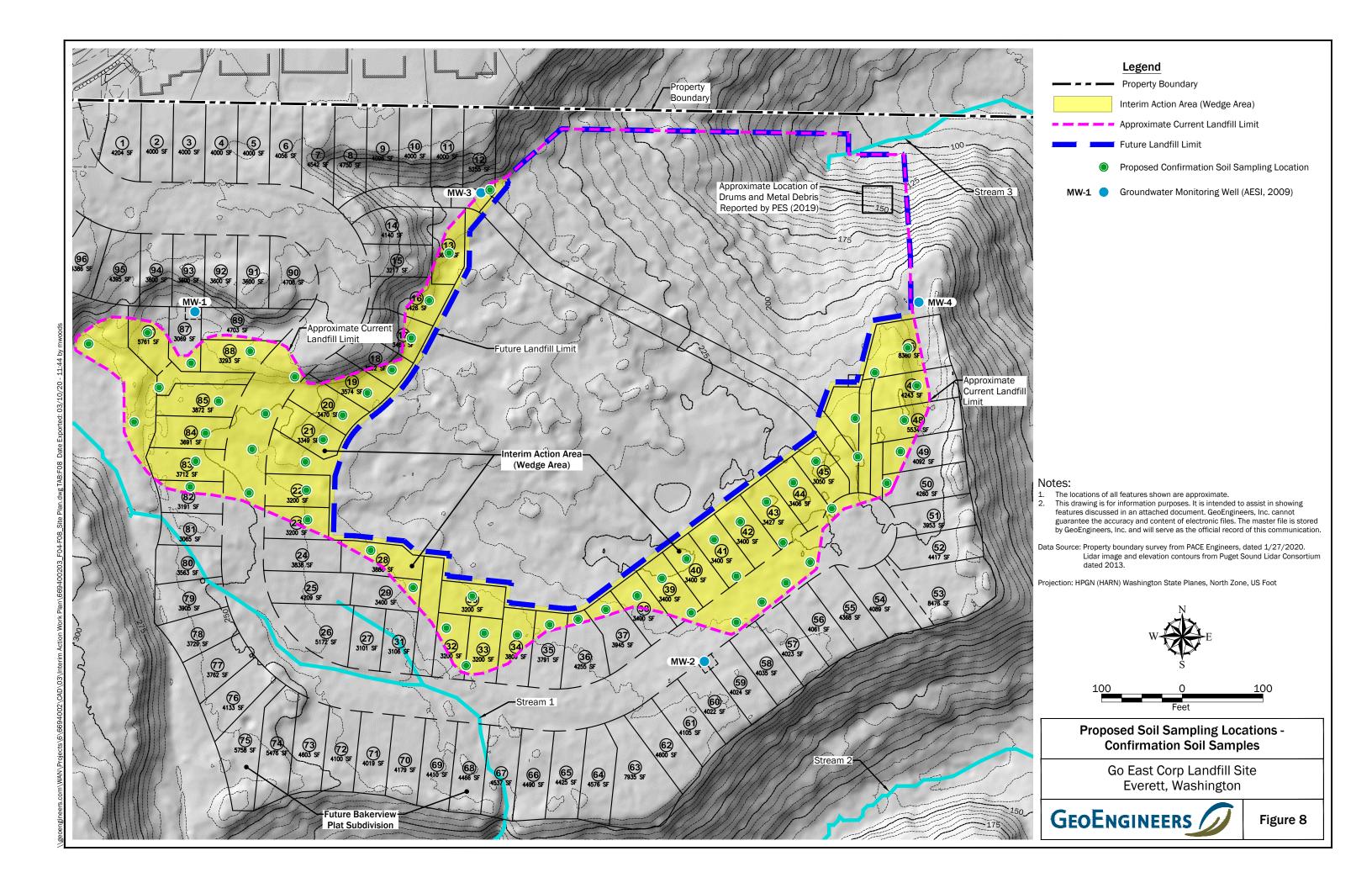
GEOENGINEERS /


Figure 3


Data sources for geologic contacts: AESI 2009b; USGS 1985; Smith 1976; Geolabs - Washington, Inc. 1970; Newcomb 1952.


(Location Approximate)

Projection: HPGN (HARN) Washington State Planes, North Zone, US Foot


Datum: NAVD88

APPENDIX A Test Pit Logs and Monitoring Well Boring Logs

	MAJOR DIVISIONS		LETTER SYMBOL	TYPICAL DESCRIPTION
	CDAVELC	Clean Gravels (less	GW	Well-graded gravels, gravel-sand mixtures, little or no fines.
arger e	More than 50%	than 5% fines)	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines.
erial la	is larger than No.	Gravels with	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.
6 mate 00 sie	1 010 70	fines	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.
COARSE GRAINED SOILS lore than 50% material large than No. 200 sieve size	SANDS More than 50%	Clean Sands	sw	Well-graded sands, sands with gravel, little or no fines.
re tha than I		5% fines)	SP	Poorly-graded sands, sands with gravel, little or no fines.
Mo	is smaller than	Sands with fines	SM	Silty sands, sand-silt mixtures, non-plastic fines.
	NO. 4 SIEVE		sc	Clayey sands, sand-clay mixtures, plastic fines.
naller e			ML	Inorganic silts, rock flour, clayey silts with slight plasticity.
rial sn ⁄e sizo			CL	Inorganic clays of low to medium plasticity. (Lean clay)
mateı 0 siev			OL	Organic silts and organic clays of low plasticity.
50% to. 20			мн	Inorganic silts, elastic.
than han N	SILTS AND CLAYS Liquid Limit is greater than 50%		СН	Inorganic clays of high plasticity. (Fat clay)
More				Organic clays of high plasticity.
	HIGHLY OR	GANIC SOILS	PT	Peat.
	More than 50% material smaller than No. 200 sieve size than No. 200 sieve size	GRAVELS More than 50% of coarse fraction is larger than No. 500 sieve size than No. 500 sieve size than No. 4 sieve SANDS More than 50% of coarse fraction is larger than No. 4 sieve of coarse fraction is smaller than No. 4 sieve SILTS AND Liquid Limit is less SILTS AND Liquid Limit is greater SILTS AND SILTS AND Liquid Limit is greater SILTS AND Liquid Limit is greater SILTS AND Liquid Limit is greater SILTS AND Liquid Limit	GRAVELS More than 50% of coarse fraction is larger than No. 4 sieve Gravels (less than 5% fines) Gravels with fines Gravels (less than 5% fines) Gravels with fines Clean Sands (less than 5% fines) Clean Sands (less than 5% fines) SANDS More than 50% of coarse fraction is smaller than No. 4 sieve Sands with fines	MAJOR DIVISIONS SYMBOL GRAVELS More than 50% of coarse fraction is larger than No. 4 sieve SANDS More than 50% of coarse fraction is larger than No. 4 sieve GRAVELS More than 50% of coarse fraction is smaller than No. 4 sieve SANDS More than 50% of coarse fraction is smaller than No. 4 sieve Sands with fines SC ML SILTS AND CLAYS Liquid Limit is less than 50% OL MH SILTS AND CLAYS Liquid Limit is greater than 50% OH OH

DEFINITION OF TERMS AND SYMBOLS

COHESIONLESS	Density Very Loose Loose Medium Dense Dense Very Dense	Standard Penetration Resistance in Blows/Foot 0-4 4-10 10-30 30-50 >50	I I	2" OUTSIDE DIAMETER SPILT SPOON SAMPLER 2.4" INSIDE DIAMETER RING SAMPLER OR SHELBY TUBE SAMPLER WATER LEVEL (Date) TORVANE READINGS, tsf
COHESIVE	Consistancy Very Soft Soft Medium Stiff Stiff Very Stiff Hard	Standard Penetration Resistance in Blows/Foot 0-2 2-4 4-8 8-16 16-32 >32	Pp DD LL PI N	PENETROMETER READING, tsf DRY DENSITY, pounds per cubic foot LIQUID LIMIT, percent PLASTIC INDEX STANDARD PENETRATION, blows per foot

Associates, Inc.
Consultants in Geotechnical Engineering
Geology and
Environmental Earth Sciences

UNIFIED SOIL CLASSIFICATION SYSTEM BAKERVIEW EVERETT, WASHINGTON

Proj.No.T-8096-1 Date: MAR 2019

Figure A-1

FIGURE 1

DATE LOGGED: June 14, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING:8 Feet Page Page Description Consistency/ Relative Density		LOC	CATION: Everett, Washington SURFACE CONDITIONS: Brush APPR	OX. ELEV: N/A	-
FILL: Brown silty SAND with gravel and debris, medium grained, moist, debris consisted of glass, metal, wire, fibrous roof tar, and occasional plastic. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Large concrete rubble and stumps below 10 feet. Loose -Large concrete rubble and stumps below 10 feet. -Increase in wood debris below 17 feet -Increase in wood debris below 17 feet -Sulfer/organic odor when material disturbed entire depth of pit.		DAT	TE LOGGED: June 14, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CA	VING:8 Feet	_
FILL: Brown silty SAND with gravel and debris, medium grained, moist, debris consisted of glass, metal, wire, fibrous roof tar, and occasional plastic. Lots of roof tar and wood from 4 to 7 feet. Lots of roof tar and wood from 4 to 7 feet. Large concrete rubble and stumps below 10 feet. Large concrete rubble and stumps below 10 feet. Loose Increase in wood debris below 17 feet Sulfer/organic odor when material disturbed entire depth of pit. Gray SAND at 29 feet, medium grained, moist. (SP) Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet.	Depth (ft)	Sample No.	Description		W (%)
metal, wire, fibrous roof tar, and occasional plastic. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Large concrete rubble and stumps below 10 feet. -Large concrete rubble and stumps below 10 feet. -Large concrete rubble and stumps below 10 feet. -Losse -Increase in wood debris below 17 feet	0_				
-Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet. -Lots of roof tar and wood from 4 to 7 feet.	2-		FILL: Brown silty SAND with gravel and debris, medium grained, moist, debris consisted of glass, metal, wire, fibrous roof tar, and occasional plastic.		
-Large concrete rubble and stumps below 10 feet. -Large concrete rubble and stumps below 10 feet. Loose -Increase in wood debris below 17 feet -Increase in wood debris below 17 feet	4- 5- 6-	1	-Lots of roof tar and wood from 4 to 7 feet.		
Loose Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet. Caving at 8 feet.	8- 9- 10- 11- 12-		-Large concrete rubble and stumps below 10 feet.		
*Sulfer/organic odor when material disturbed entire depth of pit. *Sulfer/organic odor when material disturbed entire depth of pit. *Sulfer/organic odor when material disturbed entire depth of pit. *Sulfer/organic odor when material disturbed entire depth of pit. Gray SAND at 29 feet, medium grained, moist. (SP) Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet.	15 — 16 — 17 — 18 — 19 —		-Increase in wood debris below 17 feet	Loose	
Gray SAND at 29 feet, medium grained, moist. (SP) Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet.	21 — 22 — 23 — 24 — 25 — 26 —	5	*Sulfer/organic odor when material disturbed entire depth of pit.		
Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet.	29 –		Gray SAND at 29 feet, medium grained, moist. (SP)		
	31 — 32 — 33 —		No groundwater seepage observed.		
35	35				

FIGURE 2

			OX. ELEV: N/A	
	DAT	VING:8 Feet	Т	
	Sample No.	Description	Consistency/ Relative Density	
-		FILL: Brown silty SAND with gravel and debris consisting of wood, metal, concrete, moist.		
-			1	
		-Charred asphaltic material from 5 to 8 feet.		
1				l
			13	l
-			1 13	
	.			
		-Mostly glass from 15 to 18 feet.	Loose	
		-Nostly glass noth to to leet.		
-	-	-Large stumps below 18 feet.		
-				
_				
1		*Sulfer/organic odor when material disturbed entire depth of pit.		
		Suller/organic odor when material disturbed critics depart of pic.		
+		Gray SAND, fine to medium grained, moist. (SP)		
		Test pit terminated at approximately 30 feet. No groundwater seepage observed. Caving at 8 feet.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 3

LC)C/	ATION: Everett, Washington SURFACE CONDITIONS: Brush APPRO	DX. ELEV: N/A	
D/	ATE	E LOGGED: June 14, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAV	/ING:8 Feet	
Cample Mo	Sample No.	Description	Consistency/ Relative Density	
		FILL: Brown silty SAND with gravel and debris consisting of wood, concrete, metal, and occasional plastic, moist. -Charred asphaltic layer from 5 to 7 feet. -Large concrete debris below 10 feetLots of stumps and wood debris below 10 feet.	Loose	
		*Sulfer/organic odor when material disturbed. Gray SAND, fine to medium grained, moist, trace silt. (SP-SM)		
		Test pit terminated at approximately 29 feet. No groundwater seepage observed. Moderate to heavy caving below 8 feet.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.
Consultants in Geotechnical Engineering

nsultants in Geotechnical Éngineering Geology and Environmental Earth Sciences

FIGURE 4

	LOC	ATION: Everett, Washington SUR	FACE CONDITIONS: Brush	APPROX. ELEV: N/A	_
	DAT	E LOGGED: June 14, 2019 DEPTH	I TO GROUNDWATER: N/A	DEPTH TO CAVING:Surface	_
Depth (ft)	Sample No.		Description	Consistency/ Relative Density	(%) M
0_					
1— 2— 3— 4— 5— 6— 7— 8— 9— 11— 112— 113— 114—		FILL: Brown silty SAND with gravel and de-Lots of stumps below 8 feet. -Asphalt shingles at 12 feet.	ebris consisting of wood, metal, brid	ks, glass.	
16 — 17 — 18 — 19 — 20 —		-Mostly glass from 18 to 20 feet.			
21 — 22 —		*Sulfer/organic odor when material disturb	ped.	7	
23 – 24 – 25 –		Gray SAND, fine to medium grained, mois	st. (SP)		
26 – 27 – 28 – 29 –		Test pit terminated at approximately 26 fer No groundwater seepage observed. Moderate caving from surface down.	et.		
30					

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 5

DAT	TE LOGGED: June 14, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CA	AVING:Surface	
Sample No.	Description	Consistency/ Relative Density	
	FILL: Brown silty SAND with gravel and debris consisting of wood, concrete, and occasional plastic, moist.		
	-Charred asphaltic from 6 to 7 feet.		
	-Lots of wood debris consisting of stumps and dimensional lumber below 12 feet. -Gray SAND layer with minor to moderate wood debris from 15 to 18 feet.	Loose	
	-Brown from 18 to 21 feet.		
	-Gray SAND with large stumps from 21 to 28 feet.		
	*No petroleum sheens or odors noted.		
	Test pit terminated at approximately 28 feet in fill. No groundwater seepage observed. Moderate caving from surface down.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 6

ATE LOGG	ED: June 14, 2019 DEPTH TO GROUNDWATER: N/A DEP	TH TO CAVING:Surface
Sample No.	Description	Consistency/ Relative Densit
FILL: Bi	rown silty SAND with gravel, fine grained, moist, occasional rubble in upper 5 feet.	
-Large s	stumps and concrete rubble from 5 to 12 feet.	
-Becom	nes gray SAND with minor to moderate wood rubble from 12 to 18 feet.	Loose
-Becom	nes brown with lots of wood, metal, and concrete debris.	
*No pet	troleum sheens or odors noted.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

FIGURE 7

TAC	E LOGGED: June 14, 2019 DEPTH TO GROUNDWATER: 21 Feet DEPTH TO CA	AVING:Surface	T
Sample No.	Description	Consistency/ Relative Density	
	FILL: Dark brown silty SAND with gravel and debris consisting of large concrete rubble, glass,		T
	metal, bricks, and occasional plastic and trees, occasional creosote treated wood.		
	-Becomes gray with stumps at 12 to 13 feet.		
		Loose	
	-Lots of wood below 16 feet.		
	-Seepage.		
	*No petroleum sheens or odors noted.		
	Test pit terminated at approximately 28 feet in fill. Moderate to heavy seepage from 21 to 22 feet. Minor to moderate caving from surface down.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 8

PRC	DJECT NAME: Baker View	PROJ. NO:	T-8096 LOGGED BY: NRH
LOC	CATION: Everett, Washington	SURFACE CONDITIONS: Cleared Brush	APPROX. ELEV: N/A
DAT	TE LOGGED: June 14, 2019	DEPTH TO GROUNDWATER: N/A	DEPTH TO CAVING:Surface
Sample No.		Description	Consistency/ Relative Density
	FILL: Dark brown silty SAND woccasional plastic, moist, wet b	rith gravel and debris consisting of wood, concret elow 16 feet.	re, metal, and
	-Large stumps/logs below 16 fe	eet.	Loose
	*No petroleum sheens or odors	s noted.	
	Test pit terminated at approxim No groundwater seepage obse Moderate caving from surface	erved.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 9

ATION: Everett, Washington			
	SURFACE CONDITIONS: Cleared Brush	h A	APPROX. ELEV: N/A
E LOGGED: June 14, 2019	DEPTH TO GROUNDWATER: N/A	DEPTH TO	O CAVING:Surface
	Description		Consistency/ Relative Density
FILL: Brown silty SAND with g metal and brick debris.	ravel and lots of wood debris from surface to 8 in	nches, occasiona	al
-Gray and brown SAND with m	ninor silt from 8 to 10 feet.		
-Below 10 feet mostly wood de	ebris with concrete chunks and some soil.		
-Becomes wet below 14 feet.			Loose
*No petroleum sheens or odor	s noted.		
No groundwater seepage obse	erved.		
	-Gray and brown SAND with many sellow 10 feet mostly wood despective. *No petroleum sheens or odors Test pit terminated at approxim No groundwater seepage observable.	FILL: Brown silty SAND with gravel and lots of wood debris from surface to 8 is metal and brick debris. -Gray and brown SAND with minor silt from 8 to 10 feet. -Below 10 feet mostly wood debris with concrete chunks and some soil.	FILL: Brown sity SAND with gravel and lots of wood debris from surface to 8 inches, occasions metal and brick debris. -Gray and brown SAND with minor silt from 8 to 10 feet. -Below 10 feet mostly wood debris with concrete chunks and some soil. -Becomes wet below 14 feet. *No petroleum sheens or odors noted. Test pit terminated at approximately 37 feet in fill. No groundwater seepage observed.

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

FIGURE 10

	PRC	DJECT NAME: Baker View	PROJ. NO:	T-8096	LOGGE	ED BY: NRH	_
	LOC	CATION: Everett, Washington SURF	ACE CONDITIONS: Cleared Brush	1	_ APPRO	DX. ELEV: <u>N/A</u>	_
	DAT	TE LOGGED: June 17, 2019 DEPTH	TO GROUNDWATER: N/A	DEPT	H TO CAV	/ING:N/A	_
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0_		FILL: Gray and brown SAND and silty SANI	D. fine to modium grained, econoist	not logo and	etumes		
1-		concrete blocks.	o, line to medium gramed, occasion	iai iogs and	stumps,		
2-						Loose	
3-	7						
4 – 5 –		Tan SAND starting at 4 feet on south side o moist. (SP) (Outwash)	f pit and 10 feet on north side of pit	, medium gr	ained,		
6-		*No petroleum sheens or odors noted.					
7-						Medium Dense	
8-							
9-						-7	
) -		Test pit terminated at approximately 10.5 fe No groundwater seepage observed. No caving observed.	et.				
2 -		INO CAVING ODSERVED.			(e)		
3 -							
-							
5							

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 11

	SURFACE CONDITIONS: Cleared Brush APPRO E LOGGED: June 17, 2019 DEPTH TO GROUNDWATER: 30 Feet DEPTH TO CAN	OX. ELEV: N/A
AI	E LOGGED. JUNE 17, 2019 DEF III 10 GROONDWATER. GOTTEE.	
Sample No.	Description	Consistency/ Relative Density
	FILL: Tan and brown SAND and silty SAND with debris consisting of wood, occasional wire, large	
	concrete chunks, and metal, occasional tires. -Becomes dark brown and gray below 10 feet.	
	-Becomes moist to wet below 15 feetMostly wood debris below 15 feet.	Loose
	*No petroleum sheens or odors noted.	
	Test pit terminated at 31 feet in fill. Light groundwater seepage at 30 feet. Light to moderate caving entire depth.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left$

Associates, Inc.
Consultants in Geotechnical Engineering

nsultants in Geotechnical Engineering Geology and Environmental Earth Sciences

FIGURE 12

UC)X. ELEV: <u>N/A</u>
AT	E LOGGED: June 17, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAV	ING:Surface
Sample No.	Description	Consistency/ Relative Density
	FILL: Tan SAND with trace organics, medium grained, moist.	
	FILL Brown silty SAND with gravel and debris consisting of wood, metal, and bricks	
	Gray SAND, fine to medium grained, moist. (SP) (Outwash) *Native outwash encountered at 13.5 feet at south end of pit. The fill sloped down to a depth of 26 feet at the north end of the pit and consisted of dark brown silty SAND with gravel and debris consisting of wood, large stumps, metal, and concrete.	Loose
	*No petroleum sheens or odors noted.	
	Test pit terminated at 27 feet in outwash. No groundwater seepage observed. Minor to moderate caving from surface down.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 13

DATE LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING: Surface Description Consistency/Relative Density PillL: Brown silty SAND with gravel and debris consisting of concrete, carpet, large stumps, and occasional metal, fine to medium grained, moist to wet. -Becomes dark brown at 8 feet. Loose Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash) Medium Dense	PRO	DJECT NAME: Baker View	PROJ. NO:	<u>T-8096</u> LOGG	ED BY: NRH	_
Description Consistency/Relative Density Description Consistency/Relative Density Description Consistency/Relative Density Description Consistency/Relative Density FILL: Brown sity SAND with gravel and debris consisting of concrete, carpet, large stumps, and occasional metal, fine to medium grained, moist to wet. -Becomes dark brown at 8 feet. Loose -Becomes dark brown at 8 feet. Loose Tan sity SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	LOC	CATION: Everett, Washington	SURFACE CONDITIONS: Cleared Brush	APPR(OX. ELEV: <u>N/A</u>	_
FILL: Brown silty SAND with gravel and debris consisting of concrete, carpet, large stumps, and occasional metal, fine to medium grained, moist to wet.	DAT	TE LOGGED: June 12, 2019	DEPTH TO GROUNDWATER: N/A	DEPTH TO CA	/ING:Surface	
FILL: Brown silty SAND with gravel and debris consisting of concrete, carpet, large stumps, and occasional metal, fine to medium grained, moist to wet.	Depth (ft) Sample No.		Description			W (%)
1— occasional metal, fine to medium grained, moist to wet. 2— 3— 4— 5— 6— 7— 8— Becomes dark brown at 8 feet. Loose 9— 10— 11— 12— 13— 14— 15— 16— Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	0					
3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	1-	FILL: Brown silty SAND with groccasional metal, fine to media	ravel and debris consisting of concrete, carpet, la um grained, moist to wet.	rge stumps, and		
3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	2-					
5-6-7-8Becomes dark brown at 8 feet. Loose 9-10-11-12-13-14-15-16- Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)						
6- 7- 8- 8- 9- 10- 11- 12- 13- 14- 15- 16- Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	4-					
-Becomes dark brown at 8 feet. Loose -Becomes dark brown at 8 feet. Loose 10 - 11 - 12 - 13 - 14 - 15 - 16 - Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	5-					
8— Becomes dark brown at 8 feet. 10— 11— 12— 13— 14— 15— 16— Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	6-					
9- 10- 11- 12- 13- 14- 15- 16- Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	7-					
10 — 11 — 12 — 13 — 14 — 15 — 16 — Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	8-	-Becomes dark brown at 8 feet	L.		Loose	
11 — 12 — 13 — 14 — 15 — 16 — Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	9-					
12 — 13 — 14 — 15 — 16 — Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	10 —					
13 – 14 – 15 – 16 – Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	11-					
14 — 15 — 16 — Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	12-					
15 — Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	13-					
Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	14 —					
Tan silty SAND with gravel, fine grained, moist to wet. (SM) (Outwash)	15 —					
	16 —	T W CAMP W I S.	Carlot and the wat (CM) (Orbital)			
	-1	Tan siity SAND with gravel, fin	e grained, moist to wet. (SM) (Outwash)		Medium Dense	
Test pit terminated at 18 feet in outwash. No groundwater seepage observed. Caving at surface.		No groundwater seepage obse	n outwash. erved.			
20	20					

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

FIGURE 14

	PRO	DJECT NAME: Baker View PROJ. NO: T-8096 LOGG	ED BY: NRH	-
	LOC	ATION: Everett, Washington SURFACE CONDITIONS: Cleared Brush APPR	OX. ELEV: N/A	_
	DAT	E LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: 12 Feet DEPTH TO CA	VING:4 Feet	_
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0_ 1- 2- 3-		FILL: Gray silty SAND with gravel, fine grained, moist.		
4- 5- 6- 7- 8-		FILL: Brown and light brown silty SAND with gravel and occasional debris consisting of wood, stumps, metal, concrete and plastic.		
9- 10- 11- 12- 13- 14-		-Becomes dark gray and wet with primarily wood debris below 12 feet.	Loose	
15 – 16 – 17 – 18 – 19 –				
21 – 22 – 23 – 24 –				
26 –		*No petroleum sheens or odors noted.		
27 – 28 – 29 –	1	Test pit terminated at 27 feet in fill. Groundwater seepage observed at 12 feet. Caving at 4 feet.		
30 -				

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 15

.oc	ATION: Everett, Washington SURFACE CONDITIONS: Trees and Cleared Brush AF	PROX. ELEV: N/A
АТ	E LOGGED: June 17, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO	CAVING:Surface
Sample No.	Description	Consistency/ Relative Density
	FILL: Brown silty SAND with debris consisting of glass, metal, and concrete from 0 to 4 feet.	
	Increasing wood content below 7 feet.	Loose
	*No petroleum sheens or odors noted. Gray SAND, medium grained, wet to saturated. (SP) (Outwash)	
		Medium Dense
	Terminated at approximately 20 feet in native outwash. No groundwater seepage observed. Caving at surface.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 16

PRC	DJECT NAME: Baker View	PROJ. NO: <u>T-8</u>	LOGGED BY: NRH
LOC	CATION: Everett, Washington	SURFACE CONDITIONS: Cleared Brush	APPROX. ELEV: N/A
DAT	ΓE LOGGED: June 17, 2019	DEPTH TO GROUNDWATER: 20 Feet	DEPTH TO CAVING:Surface
Sample No.		Description	Consistency/ Relative Density
	FILL: Gray silty SAND with gra	vel, fine grained, moist, trace rubble from 0 to 8 feet	t.
	Becomes brown with moderate chunks from 8 to 16 feet.	amounts of rubble consisting of bricks glass, plasti	c, and concrete
	-Gray SAND and silty SAND fro -Below 17 feet gray SAND and	orn 16 to 17 feet. silty SAND with lots of wood debris.	Loose
	-Light seepage at 20 feet.		
	Terminated at approximately 3. Groundwater seepage observe Caving at surface.	2 to 33 in fill. d at 20 feet.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc

FIGURE 17

,	7	E LOGGED:DEPTH TO GROUNDWATER: N/ADEPTH TO CAN	/ING:N/A	
1	JAI	E LOGGED. DEFIN TO GROUNDWATER. MAY		
	Sample No.	Description	Consistency/ Relative Density	
_				
		FILL: Gray and brown silty SAND with gravel and debris consisting of glass, wood, bricks, plastic bags, stumps, and metal, moist.		
			Loose	
			20000	
1				
		*No petroleum odors or sheens noted.		
		Tan SAND and silty SAND, fine to medium grained, moist. (SP-SM) (Outwash)	Medium Dense	
		Test pit terminated at 13 feet in outwash. No groundwater seepage observed. No caving.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 18

	PRC	DJECT NAME: Baker View P	PROJ. NO: T-8096	LOGGED BY: NRH	_
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Gra	ass/Brush	APPROX. ELEV: N/A	
	DAT	E LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: N	I/A DEP	TH TO CAVING:Surface	_
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	(%) M
0_		FILL: Brown silty SAND with gravel and rootlets, moist.		T I	
1- 2- 3- 4- 5-		-6 inches asphalt debris larger from 18 inches to 2 feetBelow 2 feet gray SAND, fine to medium grained, moist with wet ler	nses.	Loose	
6- 7- 8- 9-		Tan SAND, fine to medium grained, moist to wet. (SP) (Outwash)		Medium Dense	
10 — 11 — 12 — 13 — 14 —		Test pit terminated at 10 feet in native outwash. No groundwater seepage observed. Caving at surface.			
15					
_					

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 19

LOCATION: Everett, Washington SURFACE CONDITIONS: Cleared Brush DATE LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING: 7 Feet Consistency/ Relative Density FILL: Light brown silty SAND with gravel, fine grained, moist.	=
Description Consistency/ Relative Density FILL: Light brown silty SAND with gravel, fine grained, moist.	
0	-
FILL: Light brown silty SAND with gravel, fine grained, moist.	W (%)
FILL: Light brown silty SAND with gravel, fine grained, moist.	
'7	
2— -Asphalt debris layer from 2 to 3 feet.	
3 -Below 3 feet becomes gray with debris consisting of wood, metal, brick, and occasional concrete.	
4-	
5— -Mostly wood debris from 6 to 9 feet.	
6-	
7- Loose	
8-	
9-	
10-	
11-	
12-	
13 –	
14 - Tan/brown SAND and silty SAND, fine grained, moist. (SP-SM) (Outwash) Medium Dense	
15 — Test pit terminated at 14.5 feet in native outwash.	
Light groundwater seepage observed at 3 feet. Light to moderate caving below 7 feet.	
17 -	
18 –	
19 —	
20	11

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 20

oc	ATION: Everett, Washington	SURFACE CONDITIONS: Cleared Brush	APPROX. ELEV: N/A
ΑT	E LOGGED: June 12, 2019	DEPTH TO GROUNDWATER: 17 Feet	DEPTH TO CAVING:Surface
sample No.		Description	Consistency/ Relative Density
	ELLI: Prove cilty SAND with grove	el and debris consisting of asphalt, concrete, v	wires alses and
	wood.	rand debris consisting of aspiral, consiste,	wires, glass, and
			Loose
			Loose
	-Becomes gray at 12 feet.		
	-Pile of stumps at 17 feet.		
	-Decaying organic odor to total de	oth,	
	Test pit terminated at 20 feet in fill. Light groundwater seepage observ Light caving at surface.	ved at 17 feet.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

FIGURE 21

PKO	DJECT NAME: Baker View	PROJ. NO:	1-8096	LOGGED BY: NRH
-oc	CATION: Everett, Washington SUR	FACE CONDITIONS: Grass/Brush		APPROX. ELEV: N/A
DAT	TE LOGGED: June 12, 2019 DEPTH	I TO GROUNDWATER: N/A	DEPTH 1	O CAVING:N/A
Sample No.		Description		Consistency/ Relative Density
	FILL: Brown silty SAND with gravel, fine gravel, metal, and plastic debris.	rained, moist to wet, moderate amou	ints of asphalt,	brick,
				Loose
	*No petroleum sheens or odors noted. Tan and gray SAND, fine to medium grain	ed, moist. (SP-SM) (Outwash)		Madium Dana
	Test pit terminated at 13 feet in native out No groundwater seepage observed. No caving observed.	wash.		Medium Dense

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc

FIGURE 22

	OJECT NAME: Baker View	PROJ. NO: <u>T-8096</u>	LOGGED BY: NRH
.00	CATION: Everett, Washington SURFACE CONDITIONS: C	Cleared Brush	APPROX. ELEV: N/A
ΑT	TE LOGGED: June 12, 2019 DEPTH TO GROUNDWATER	t: N/A DEP	PTH TO CAVING:4 Feet
Sample No.	Description		Consistency/ Relative Density
	FILL: Gray and brown silty SAND with occasional small brick and	I concrete from 0 to 4 fee	ət.
	-Below 4 feet becomes gray with moderate wood and stump debr	ris and a large piece of fi	iber glass.
			Loose
	*No petroleum sheens or odors noted.		
	Tan/mottled silty SAND, fine grained, moist. (SP-SM) (Outwash))	Medium Dense
	Test pit terminated at 21 feet in native outwash. No groundwater seepage observed. Caving observed at 4 feet.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc

FIGURE 23

		SURFACE CONDITIONS: Cleared Brush APPRO	OX. ELEV: N/A
1	\ I	DEPTH TO GROUNDWATER. IVA DEPTH TO GROUNDWATER.	VING.IV/A
O Company	Sample No.	Description	Consistency/ Relative Density
		FILL: Dark brown silty SAND with gravel and debris consisting of wood, wires, plastic, creosote treated wood and metal.	Loose
		Brown SAND, fine to medium grained, moist. (SP) (Outwash)	Medium Dense
		Test pit terminated at 7 feet in native outwash. No groundwater seepage observed. No caving observed.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 24

1	DAT	E LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CA	VING:Surface
	Sample No.	Description	Consistency/ Relative Density
1			
		FILL: Dark gray and brown silty SAND with gravel and debris consisting of glass, foam, plastic, shingles, roof tar, and metal.	Loose
		-3-foot thick layer of asphaltic tar from 6 to 9 feet.	
		Brown becoming gray silty SAND, fine grained, wet. (SM) (Outwash)	Medium Dense
		Test pit terminated at 12 feet in native outwash. No groundwater seepage observed. Light caving in fill.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE 25

DA	TE LOGGED: June 12, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO C	CAVING:Surface
Sample No	Description	Consistency/ Relative Density
	FILL: Dark brown silty SAND with gravel and occasional brick and metal fragments, moist.	Loose
	Tan SAND, fine to medium grained, moist. (SP) (Outwash)	Loose to Medium Dense
	Test pit terminated at 10.5 feet in native outwash. No groundwater seepage observed. Caving at surface.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

MAJOR DIVISIONS			LETTER SYMBOL	TYPICAL DESCRIPTION
	CDAVEL C	Clean Gravels (less	GW	Well-graded gravels, gravel-sand mixtures, little or no fines.
arger e	More than 50%	than 5% fines)	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines.
erial la	is larger than No.	Gravels with	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.
6 mate 00 sie	7 01070	fines	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.
n 50% No. 2(SVNDS	Clean Sands	sw	Well-graded sands, sands with gravel, little or no fines.
re tha than I	More than 50%	5% fines)	SP	Poorly-graded sands, sands with gravel, little or no fines.
Mo	is smaller than	Sands with	SM	Silty sands, sand-silt mixtures, non-plastic fines.
	I tines I I		Clayey sands, sand-clay mixtures, plastic fines.	
naller e			ML	Inorganic silts, rock flour, clayey silts with slight plasticity.
rial sn ⁄e sizo			CL	Inorganic clays of low to medium plasticity. (Lean clay)
mateı 0 siev			OL	Organic silts and organic clays of low plasticity.
50% to. 20			мн	Inorganic silts, elastic.
than han N	ł		СН	Inorganic clays of high plasticity. (Fat clay)
More			ОН	Organic clays of high plasticity.
	HIGHLY OR	GANIC SOILS	PT	Peat.
	More than 50% material smaller than No. 200 sieve size than No. 200 sieve size	GRAVELS More than 50% of coarse fraction is larger than No. 500 sieve size than No. 500 sieve size than No. 4 sieve SANDS More than 50% of coarse fraction is larger than No. 4 sieve of coarse fraction is smaller than No. 4 sieve SILTS AND Liquid Limit is less SILTS AND Liquid Limit is greater SILTS AND SILTS AND Liquid Limit is greater SILTS AND Liquid Limit is greater SILTS AND Liquid Limit is greater SILTS AND Liquid Limit	GRAVELS More than 50% of coarse fraction is larger than No. 4 sieve Gravels (less than 5% fines) Gravels with fines Gravels with fines Gravels with fines Clean Gravels (less than 5% fines) Gravels with fines Clean Sands (less than 5% fines) SANDS More than 50% of coarse fraction is smaller than No. 4 sieve Sands with fines	MAJOR DIVISIONS SYMBOL GRAVELS More than 50% of coarse fraction is larger than No. 4 sieve SANDS More than 50% of coarse fraction is larger than No. 4 sieve GRAVELS More than 50% of coarse fraction is smaller than No. 4 sieve SANDS More than 50% of coarse fraction is smaller than No. 4 sieve Sands with fines SC ML SILTS AND CLAYS Liquid Limit is less than 50% OL MH SILTS AND CLAYS Liquid Limit is greater than 50% OH OH

DEFINITION OF TERMS AND SYMBOLS

COHESIONLESS	Density Very Loose Loose Medium Dense Dense Very Dense	Standard Penetration Resistance in Blows/Foot 0-4 4-10 10-30 30-50 >50	I I	2" OUTSIDE DIAMETER SPILT SPOON SAMPLER 2.4" INSIDE DIAMETER RING SAMPLER OR SHELBY TUBE SAMPLER WATER LEVEL (Date) TORVANE READINGS, tsf
COHESIVE	Consistancy Very Soft Soft Medium Stiff Stiff Very Stiff Hard	Standard Penetration Resistance in Blows/Foot 0-2 2-4 4-8 8-16 16-32 >32	Pp DD LL PI N	PENETROMETER READING, tsf DRY DENSITY, pounds per cubic foot LIQUID LIMIT, percent PLASTIC INDEX STANDARD PENETRATION, blows per foot

Associates, Inc.
Consultants in Geotechnical Engineering
Geology and
Environmental Earth Sciences

UNIFIED SOIL CLASSIFICATION SYSTEM BAKERVIEW EVERETT, WASHINGTON

Proj.No.T-8096-1 Date: MAR 2019

Figure A-1

FIGURE A-2

	PRC	OJECT NAME: Bakerview PROJ. NO: T-8096-1 L	OGGED BY: HM	
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass A	APPROX. ELEV: N/A	
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO	D CAVING: N/A	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	W (%)
0_			*	-
1-		Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose	
2-	1	FILL: Brown silty SAND with gravel, fine to coarse sand, fine to coarse gravel, moist, some cobl (SM)	bles.	7.4
3-			Medium Dense to Dense	-
4				
5-	2	Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine grave moist, trace cobbles. (SP-SM/SM)	el,	5.9
6-				
7-				
8-				
9-			Very Dense	
10 —				
11 –				
12 —	3			13.6
13 –	.	T-4-74		
14 –		Test pit terminated at approximately 13 feet. No groundwater or caving observed.		
15				·····

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGI	JRE	A-3
------	-----	-----

	PROJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGED BY: HM							
	LOCATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX. ELEV: N/A							
	DAT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVI	NG:_N/A					
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M				
0								
-		Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose					
1-		FILL: Brown silty SAND with gravel, fine to medium sand, fine gravel, moist, scattered organics,						
2-		trace cobbles. (SM)	Medium Dense	11.8				
3-	1							
4-	•	Tan to gray SAND with silt and gravel interbedded with silty SAND with gravel, fine to coarse sand, fine gravel, trace cobbles. (SP-SM/SM)		4.4				
5-	2							
6-								
7-			,					
8-		*Boulder size rock observed at approximately 8 feet.	Dense to Very Dense					
9-								
10		Gray SAND with silt and some gravel, fine to medium sand, fine gravel, moist. (SP-SM)						
11 -								
12 —				10.6				
13 —	3	Test pit terminated at approximately 12.5 feet. No groundwater or caving observed.						
14 —	_							
15	<u> </u>							

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-4

	PRO	DJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGE	D BY: <u>HM</u>	
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX	X. ELEV: N/A	
	DAT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVI	NG: N/A	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	W (%)
0_	1			
1-	1	(9 inches of TOPSOIL) FILL: Brown silty SAND with gravel, fine to medium sand, fine gravel, moist, scattered organics, trace cobbles. (SM)	Medium Dense	19.6
2- 3-		Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel, trace cobbles. (SP-SM/SM)		
4-	2			7.4
5-	-			
6-				
7-			Dense to Very Dense	
8-				
9-				
10 —	3			15.5
11 -				
12 -		Test pit terminated at approximately 12 feet. No groundwater or caving observed.		
13 –				
14 —				
15	I.			

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra

Associates. Inc

FIGURE A-5

	PRO	JECT NAME: Bakerview		_ PROJ. NO: <u>T-8096-1</u>	LOGGED	BY:HM	
	LOC	ATION: Everett, Washington	SURFACE CONDITIONS:	Grass	APPROX	K. ELEV: N/A	
	DAT	E LOGGED: January 31, 2019	DEPTH TO GROUNDWATER	R: <u>N/A</u> DEF	TH TO CAVI	NG: N/A	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0_	r						
1-		Black silty SAND, fine sand, moist,	heavy organic inclusions. (S	iM) (Topsoil)		Loose	
2-	1	Tan to gray SAND with silt and grav moist, trace cobbles. (SP-SM/SM)	vel to silty SAND with gravel,	fine to medium sand, fin	e gravel,	·	13.9
3-	J						
4-	2						14.8
5-	_						
6-		•					
7-						Medium Dense to Dense	
8-							
9-							
10 —							
11 —	3						9.6
12		Test pit terminated at approximately No groundwater or caving observed	y 12 feet.				
13 —		The groundwater or caving observed					
14 —							
15			LULATEDOCALIA LA CAMPITATION CONTROL VINTO MARIA	90000000000000000000000000000000000000		-	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-6

	PRO	DJECT NAME: Bakerview PRO	DJ. NO: <u>T-8096-1</u>	_ LOGGED BY: HM	
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass		APPROX. ELEV: N/A	
	DAT	FE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A	DEPTH	I TO CAVING: N/A	
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	W (%)
0	•		•		
		(11 inches of TOPSOIL)			
1-		Tan to brown silty SAND with gravel, fine to coarse sand, fine gravel, m cobbles. (SM)	ioist, scattered organ	ics, trace	
2-	-			Medium Dense	16.8
3-	1			to Dense	
4-					
5-	2	Tan to gray silty SAND to SAND with silt, fine to medium sand, fine grav (SM/SP-SM)	vel, moist, trace cobb	les.	18.3
6-	_				
7-					
8-					
9-				Very Dense	
10 —	3				8.7
11 –	J				
12 —					
13 –		Test pit terminated at approximately 12.5 feet. No groundwater or caving observed.			
14 —					
15	I		Sec		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-7

LOCATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX. ELEV: N/A	
DATE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING: N/A	
Consistence Relative Den	
0	
(15 inches of TOPSOIL) Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	
Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to coarse sand, fine gravel, dry	
2- to moist, trace cobbles. (SP-SM/SM)	11.6
3	
4-	
5—	
6— Medium Der to Dense	
7	
8-	
9-	
10—	
11 - 3	8.1
12 —	
Test pit terminated at approximately 12 feet. No groundwater or caving observed.	
14 —	
15	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-8

	PRC	DJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGED	D BY: HM	
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX	C. ELEV: <u>N/A</u>	***Colorecto
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVIN	NG: N/A	- THE STATE OF THE
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0	· production of the contract o		***************************************	
1—		(12 inches of TOPSOIL) Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose	
2-		Tan to gray SAND with silt and gravel interbeded with tan silty SAND with gravel, fine to coarse sand, fine gravel, moist, scattered organics, trace cobbles. (SP-SM/SM)		10.9
3-	1			
4-				
5-			. 1	1997
6-	2			9.5
7-			Medium Dense to Dense	
8-				
9-				
10 –				
11 –				
12 –	3			9.4
13		Test pit terminated at approximately 13 feet. No groundwater or caving observed.		-
14 –				
15			I	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc

FIGURE A-9

	PRO	JECT NAME; Bakerview	PROJ. NO:	<u>T-8096-1</u> LOGGE	D BY: HM	
	LOC	ATION: Everett, Washington	SURFACE CONDITIONS: Grass	APPRO	OX. ELEV: <u>N/A</u>	
	DAT	E LOGGED: January 31, 2019	DEPTH TO GROUNDWATER: N/A	DEPTH TO CAV	ING: N/A	
Depth (ff)	Sample No.		Description		Consistency/ Relative Density	(%) M
0_						
1-		Black silty SAND, fine sand, mo	ist, heavy organic inclusions. (SM) (Topsoil)		Loose	
2- 3-	1	Tan to gray SAND with silt, fine	to coarse sand, moist. (SP-SM)	·		15.1
4 5 6	2					7.3
7-						
8-					Medium Dense to Dense	
9						
10 —					·	
11 —						
12 –						
13 —						5.9
14 —	3				20 C C C C C C C C C C C C C C C C C C C	
15 —		Test pit terminated at approximation of the street of the	itely 14 feet. ved.			
16 —						
17 —						
18 –					**	
19				•		
20						

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-10

	PRO	DJECT NAME: Bakerview	PRO	J. NO: <u>T-8096-1</u>	_ LOGGED	BY:HM	-
	LOC	ATION: Everett, Washington	SURFACE CONDITIONS: Grass	No.	APPROX	. EL EV : <u>N/A</u>	. <u></u>
	DAT	E LOGGED: January 31, 2019	DEPTH TO GROUNDWATER: _4.5 F	Feet DEPT	I TO CAVIN	IG: N/A	
Depth (ft)	Sample No.		Description			Consistency/ Relative Density	(%) M
0_	1						
1-		(6 inches of TOPSOIL) Tan to gray silty SAND with grav trace cobbles. (SM/ML)	rel to sandy SILT with gravel, fine to med	lium sand, fine grav	vel, wet,		
2- 3-	1						13.7
4- ¥							
5	2					Medium Dense to Dense	24.6
7- 8-							
9-							i
10 –	3						25.7
11 -					Lugar Park		
12 – 13 –		Test pit terminated at approximat Groundwater seepage observed No caving observed.	ely 12 feet. at 4.5 feet.				
14 —							
15	1						

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc

FIGURE A-11

	PRO	JECT NAME: Bakerview	PROJ. NO:	T-8096-1	LOGGE	BY:HM	
	LOC	ATION: Everett, Washington	SURFACE CONDITIONS: Grass		APPROX	(. ELEV: <u>N/A</u>	
	DAT	E LOGGED: January 31, 2019	DEPTH TO GROUNDWATER: 4 Feet	DEPTH	TO CAVII	NG:0 to 12.5 Feet	
Depth (ff)	Sample No.		Description		·	Consistency/ Relative Density	(%) M
0_							
		(9 inches of TOPSOIL)			:		
1-	1	Tan to gray silty SAND with gra	vel to sandy SILT with gravel, fine to coarse sa	nd, fine grave	, wet.		21.0
2-	┦ ′	(Silviniz)				·	21.0
			•				
3-							
¥ 4-	-		·				
5-							
5-							
6-	-					Medium Dense	
7							
8-	2						22.4
9-	_						
10-	1					-	•
11 -	-						
12 -	3						22.0
13 -	-	Test pit terminated at approximated Moderate groundwater seepage Caves easily the entire depth.	ately 12.5 feet. observed at 4 feet.				
14 -	1						
15 -	<u> </u>					-	***************************************
15							

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-12

	PR	OJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGE	D BY: <u>HM</u>	
	LO	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX	X. ELEV: N/A	
	DA	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: 6 Feet DEPTH TO CAVI	NG: N/A	
Death (ff)	Sample No	Description	Consistency/ Relative Density	(%) M
0	-T			· · · · · · · · · · · · · · · · · · ·
1		(3 inches of TOPSOIL) Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel,		
		moist, trace cobbles. (SP-SM/SM)		
2	1			9.9
3	-		Medium Dense to Dense	
4	2	Brown to gray silty SAND with some gravel to sandy SILT with gravel, fine sand, fine gravel, moist to		
5		wet, strongly cemented. (SM/ML)		22.8
<u>∓</u> 6	4			
7-				23.3
•	3			23.3
8-				
9-			Very Dense	
10 -	1			20.8
11 -	4			
12 -				
13 -		Test pit terminated at approximately 12 feet. Minor groundwater seepage observed at 6 feet. No caving observed.`		
14 -				
15 ~				

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc

FIGURE A-13

LOG OF TEST PIT NO. TP-12

	PRC	JECT NAME: Bakerview	PROJ. NO: T	<u>-8096-1</u> L O 0	GGED BY: <u>HM</u>	<u> </u>
	LOC	ATION: Everett, Washington	SURFACE CONDITIONS: Grass	API	PROX. ELEV: N/A	
	DAT	E LOGGED: January 31, 2019 DE	EPTH TO GROUNDWATER: 4 Feet	DEPTH TO (CAVING: N/A	
Depth (ft)	Sample No.	·	Description		Consistency/ Relative Density	(%) M
0_		**************************************				
		(4 inches of TOPSOIL)				
1-	-	Tan to gray SAND with silt and grave moist. (SP-SM/SM)	I to silty SAND with gravel, fine to medium s	and, fine gravel,	,	
2-	-				Medium Dense	
	1					17.5
3-						
∓ 4-	-	T				32.3
5-	_ 2	strongly cemented. (SM/ML)	sandy SILT with gravel, fine sand, fine grav	ei, moist to wet,		
J						
6-	1					
7-	_					
					Dense to Very	
8-	1	Gray SAND wiith silt and gravel, fine	to medium sand, fine gravel, moist to wet.	(SP-SM)	Dense	
9-	-					
4.0						
10 -	3					9.4
11 -	-	,				
12 -					·	
12-		Test pit terminated at approximately Minor groundwater seepage observe	12 feet.			
13 -	1	No caving observed.	u at 4 lect.			
14 -		·				
- •						
15			HAMPARAS SANDERS AND			

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-14

	PRO	DJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGE	D BY: HM	
·	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPRO	X. ELEV: <u>N/A</u>	
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAV	NG: N/A	
Depth (ff)	Sample No.	Description	Consistency/ Relative Density	(%) M
0	T	(6 inches of TOPCOUL)		
1	1	(6 inches of TOPSOIL) Tan to gray SAND with silt and gravel, fine to medium sand, fine gravel, moist, trace cobbles. (SP-SM)	Medium Dense to Dense	0.4
3-			·	8,1
4	2	Tan to gray sandy SILT, fine sand, moist. (ML)		24.2
5- 6-				
7-		Tan to gray silty SAND, fine to medium sand, fine gravel, moist. (SM)		
8-			Dense to Very Dense	
9-				
10 – 11 –	3			6.7
12 —				
13 —	4			7.6
14 —		Test pit terminated at approximately 13 feet. No groundwater or caving observed.		
15				

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

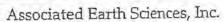
	PRC	DJECT NAME: Bakerview	PF	ROJ. NO: <u>T-8096-1</u>	LOGGED E	BY: HM	
	LOC	CATION: Everett, Washington SUR	FACE CONDITIONS: Gras	ss	APPROX. I	ELEV: <u>N/A</u>	_
	DAT	TE LOGGED: January 31, 2019 DEPTH	I TO GROUNDWATER: _5	5.5 Feet DEPTH	TO CAVING	6: 0 to 12 Feet	
Depth (ft)	Sample No.		Description		ļ	Consistency/ Relative Density	(%) M
0_							
270		(5 inches of TOPSOIL)	•				
1-		Tan to gray silty SAND with gravel to sand trace cobbles. (SM/ML)	ly SILT with gravel, fine to	medium sand, fine grav	el, wet,		
2-	-	i					7.8
_	1	·					
3-	1						
4-	-						
5- ∓	2						22.2
- 6-						Medium Dense	
							•
7-	1						
8-	3						26.5
.					,		
9-	1		•				
10 -						·	
10 -							
11 -	-		•				
	4						22.3
12 -		Test pit terminated at approximately 12 fe	et.				
13 -	-	Moderate groundwater seepage observed Caving easily the entire depth.	at 5.5 feet.				
4 =							
14 –	1						
15 -				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
					•		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.
Consultants in Geotechnical Engineering

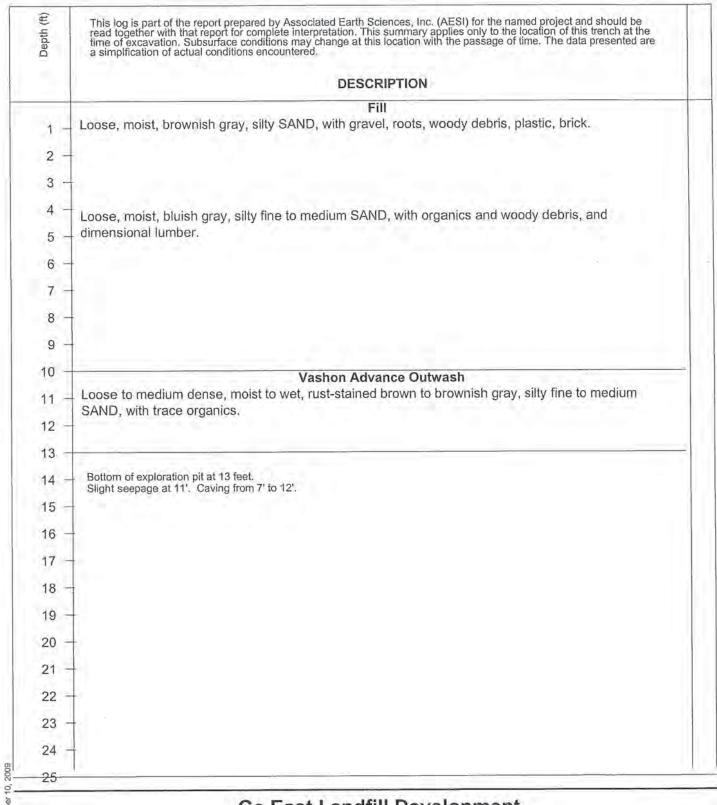
Geology and Environmental Earth Sciences

FIGURE A-16


	PRO	DJECT NAME: Bakerview	PROJ. NO:	: <u>T-8096-1</u>	_ LOGGED	BY:HM	
	LOC	CATION: Everett, Washington S	URFACE CONDITIONS: Grass		APPROX	. EL EV : <u>N/A</u>	
	DAT	E LOGGED: January 31, 2019 DEP	TH TO GROUNDWATER: N/A	DEPTH	I TO CAVIN	G: <u>N/A</u>	Periodologia
Depth (ff)	Sample No.		Description			Consistency/ Relative Density	(%) M
0	T						*******************************
1-		(5 inches of TOPSOIL) FILL: Gray SAND with silt and gravel to and glass debris, tree roots. (SP-SM/SM	silty SAND with gravel, fine sand, fine	gravel, moist,	wood		
2-		and giass deuris, tiee roots. (or-ownow	vi)				
3-	1					,	13.2
4-						Medium Dense	
5-							
6	2	FILL: Tan to brown sandy SILT, fine sar	nd, moist, wood debris. (ML)	*****			24.1
7-	_						
8-	:	Tan to gray SAND with silt and gravel, fi		*********			
9-		·					
10 —						Dense	
11 –							
12 —	3	Test pit terminated at approximately 12	feet.	·			4.9
13 —		No groundwater or caving observed.					
14 —							
15					· <u> </u>		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Retained	Gravels - More than 50% (1) of Coarse Fraction Relatined on No. 4 Sleve	15% Fines			gravel with sand Clayey gravel and	Soft 2 to 4 DD = Dry Density						
an 50% ¹¹	n Grave		9		clayey gravel with sand Well-graded sand and	Component Definitions Descriptive Term Size Range and Sieve Number						
- More th	se Fracilo	6 Fines (5)			sand with gravel, little to no fines	Boulders Larger than 12" Cobbles 3" to 12" Gravel 3" to No. 4 (4.75 mm)						
Coarse-Grained Solls More than 50% 17 Retained on No. 200 Sleve	Sands - 50% ⁽¹⁾ or More of Coarse Fraction Passes No. 4 Steve	₹22%		SP	Poorly-graded sand and sand with gravel, little to no fines	Coarse Gravel 3" to 3/4" Fine Gravel 3/4" to No. 4 (4.75 mm) Sand No. 4 (4.75 mm) to No. 200 (0.075 mm) Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm)						
Coarse-Gr		D% Mor Mo	Passes No	Passes No	D% Mor Mo	50% Wor M	50% (1) or Mi	Passes N	Fines (5)		SM	Silty sand and silty sand with gravel
	Sands - 5	≥15% 8		sc	Clayey sand and clayey sand with gravel	(3) Estimated Percentage Moisture Content Dry - Absence of moisture, dusty, dry to the touch						
Sleve	Silis and Clays	lan 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	Trace <5 Slightly Moist - Perceptible moisture Few 5 to 10 moisture Little 15 to 25 Moist - Damp but no visible water						
ore Passes No. 200 Sleve		Silis and Clay	Silts and Clay	uld Limit Less I		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	constituents: > 15% Very Moist - Water visible but - Fines content between not free draining 5% and 15% Wet - Visible free water, usually from below water table				
More Pass		Liquid L		OL	Organic clay or silt of low plasticity	Symbols Blows/6" or Sampler portion of 6" Type Cement grout						
1 - 50% (1) or						-			More		мн	Elastic silt, clayey silt, silt with micaceous or diatomaceous fine sand or silt
Fine-Grained Soils - 50% (1) or M	Silts and Clays	Limit 50 or		СН	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample 3.0" OD Thin-Wall Tube Sampler (including Shelby tube) Screened cast or Hydrolip with filter pack						
Fine-G	[S	Liguld		он	Organic clay or silt of medium to high plasticity	(1) Percentage by dry weight (2) (SPT) Standard Penetration Test (4) Depth of ground water X ATD = At time of drilling						
Highly	Organic			PT	Peat, muck and other highly organic soils	(ASTM D-1585) In General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488) Static water level (date) (5) Combined USCS symbols used fines between 5% and 15%						



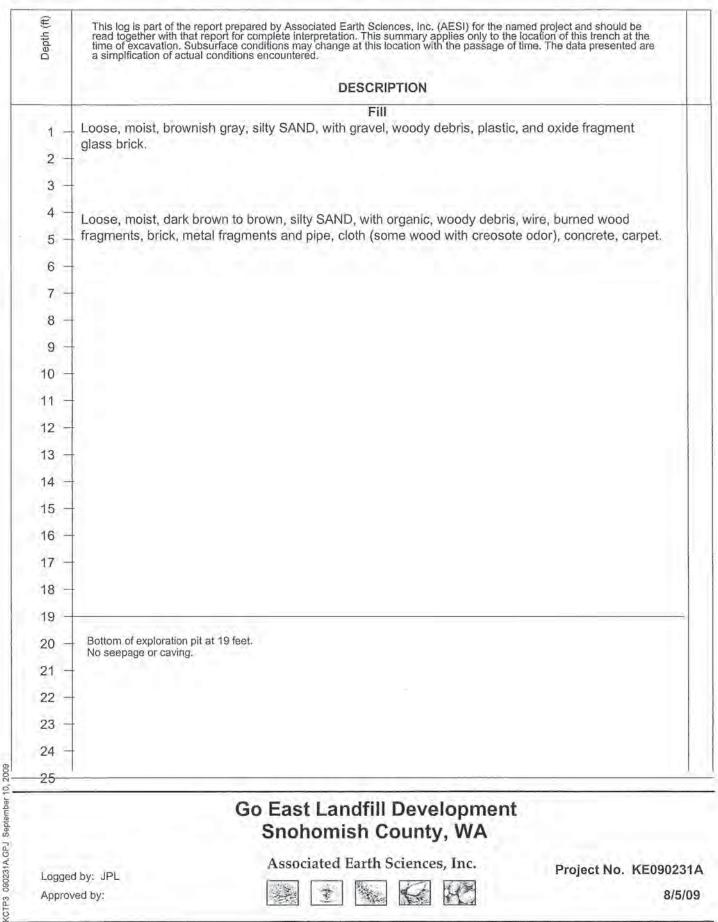
Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

090231A.GPJ

KCTP3

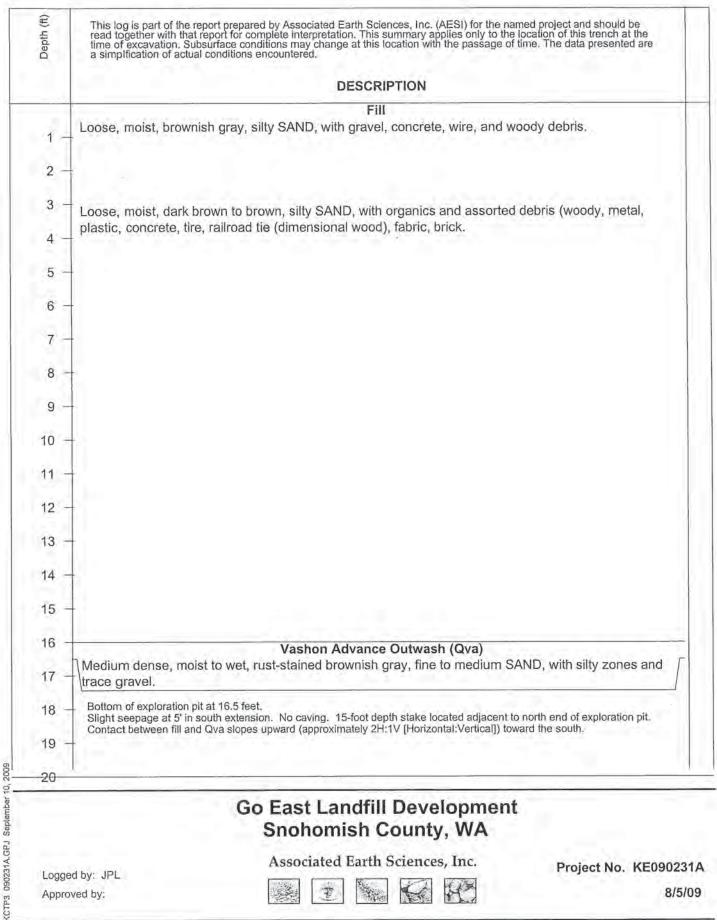


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

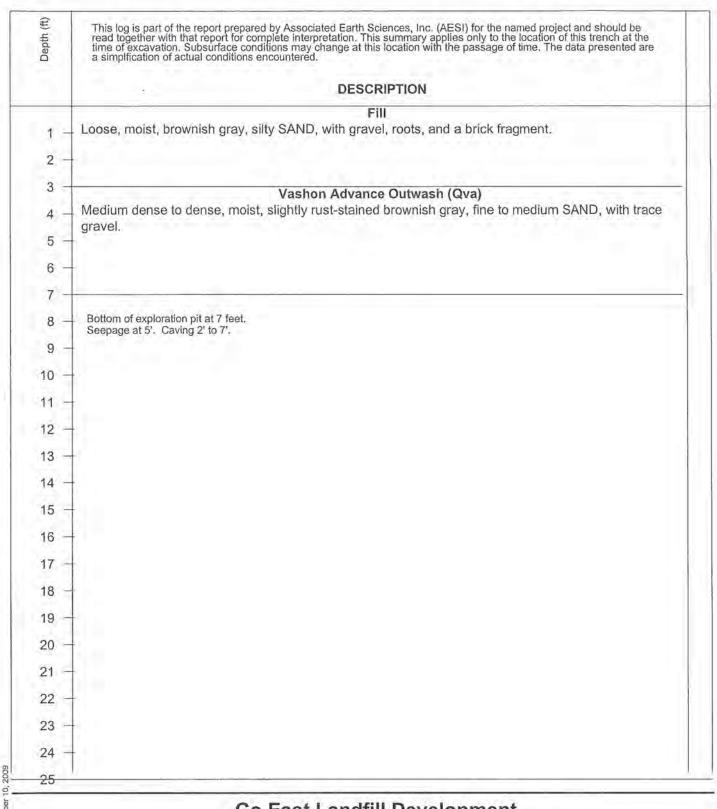


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:



Project No. KE090231A

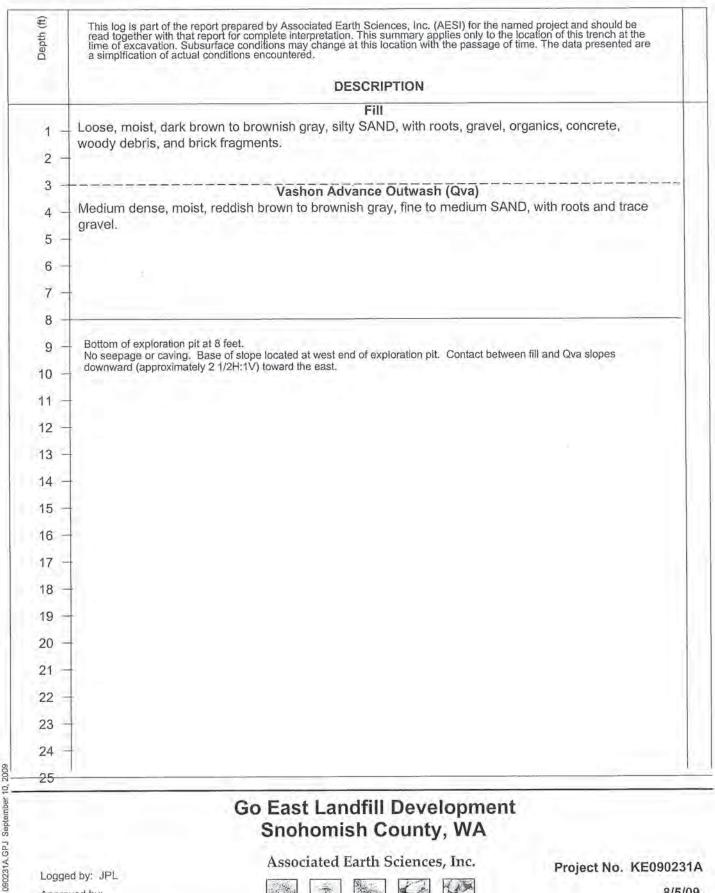
Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

090231A.GPJ

KCTP3

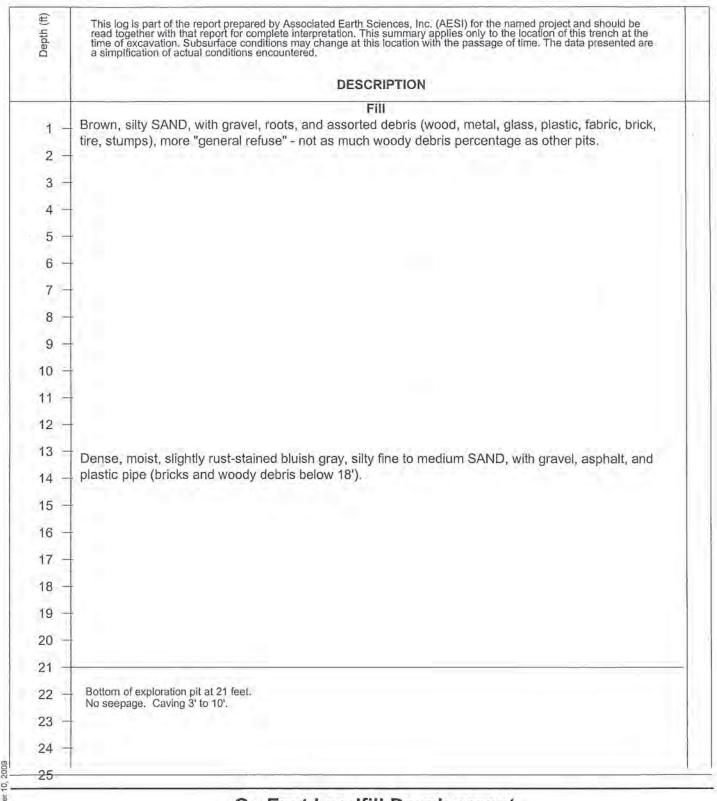


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:



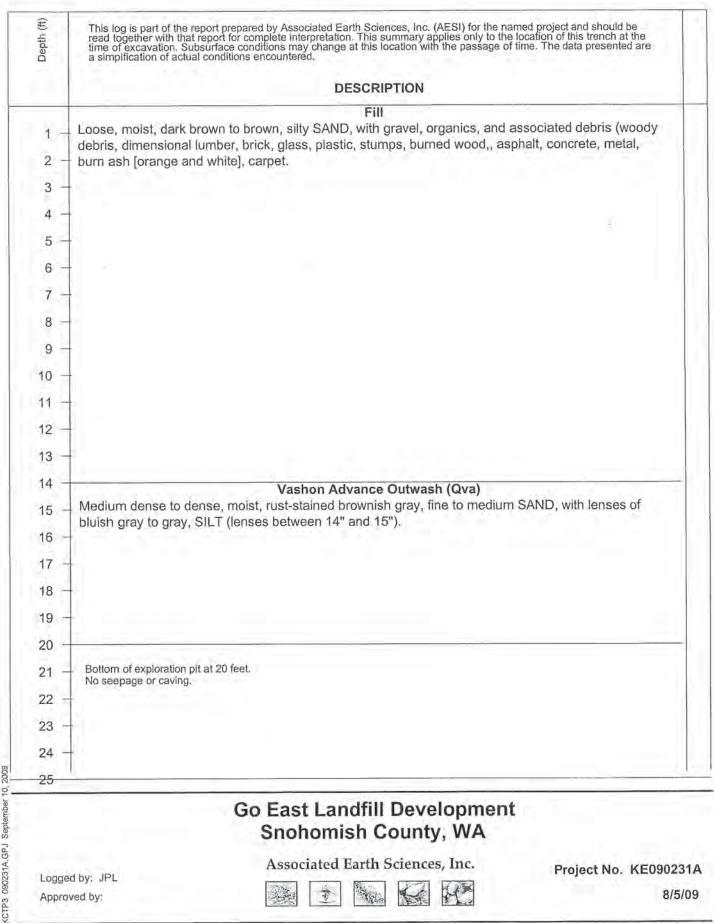
Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

KCTP3 090231A.GPJ

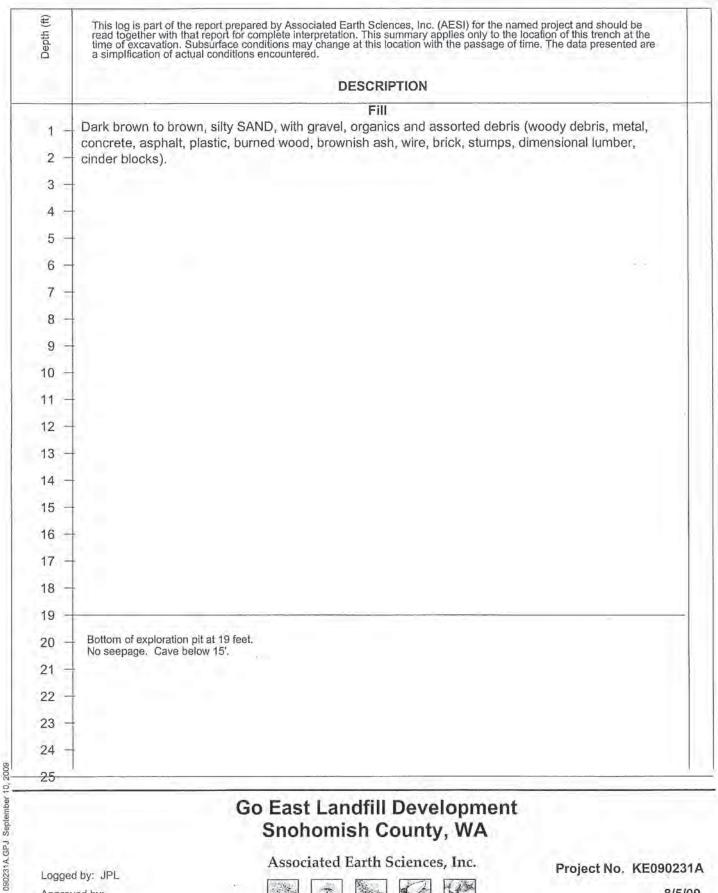


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

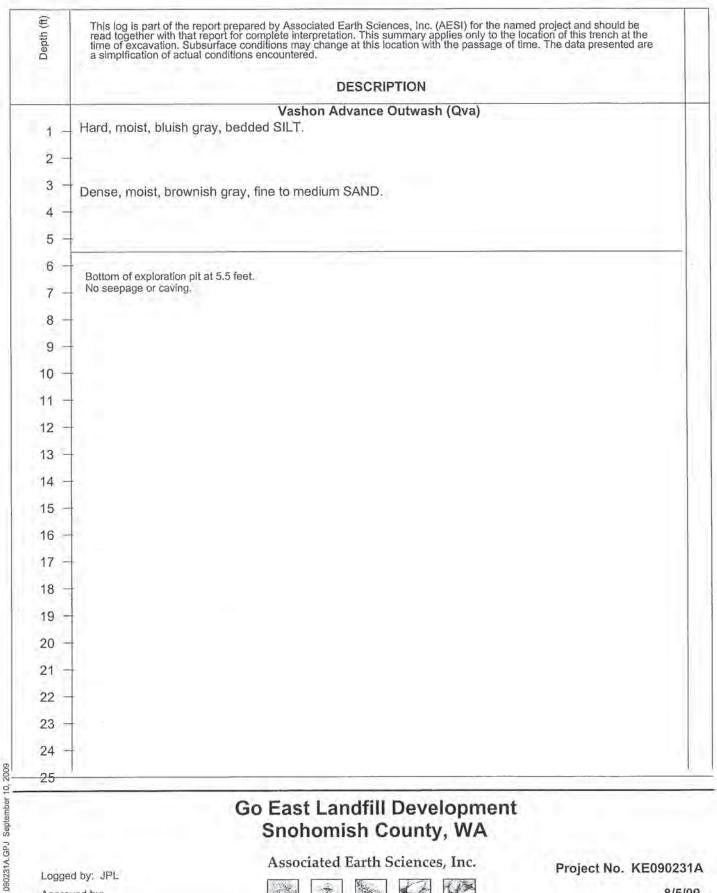


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

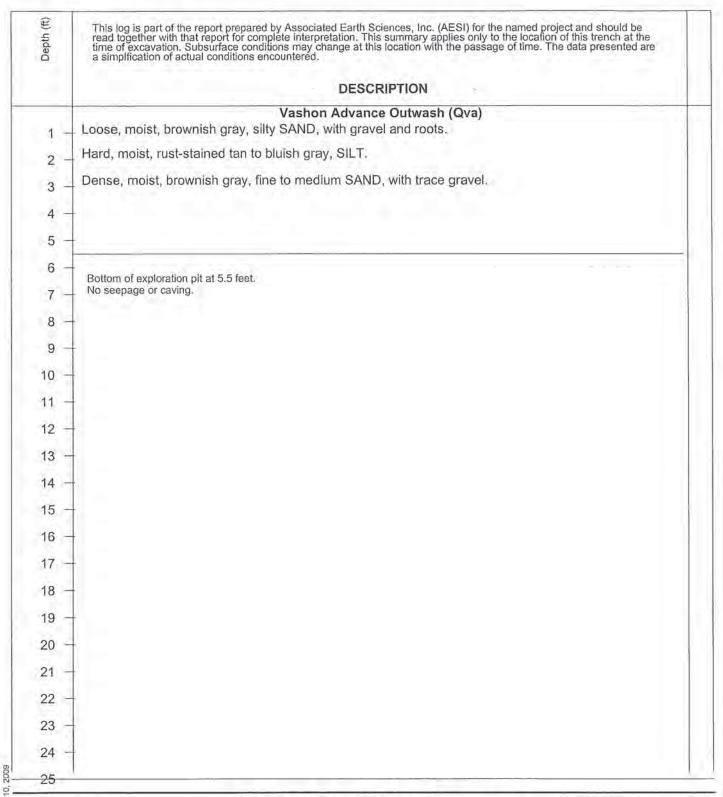


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:



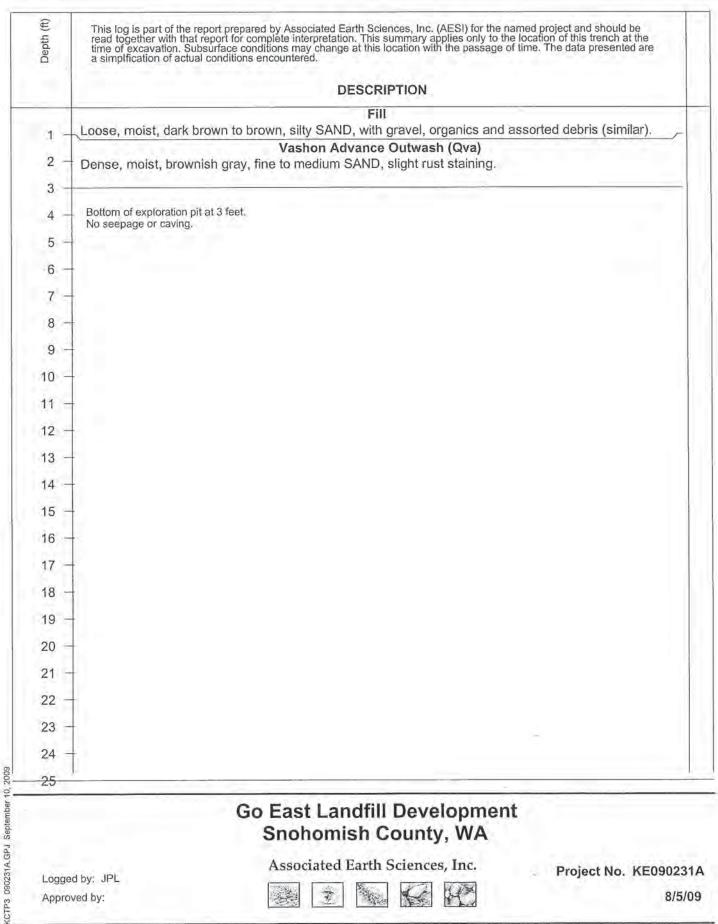
Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

KCTP3 090231A.GPJ September

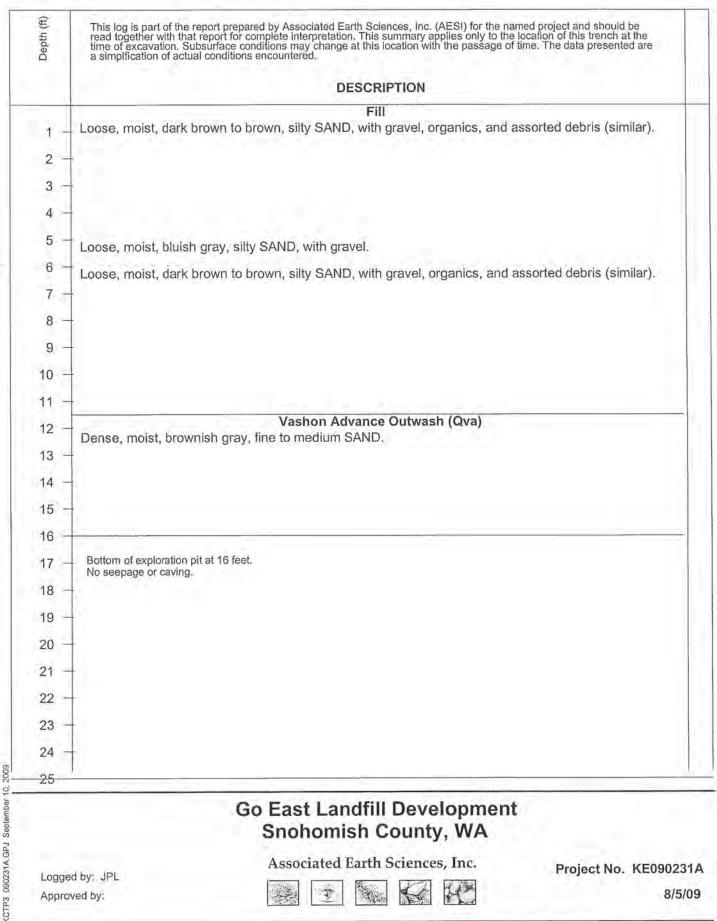


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

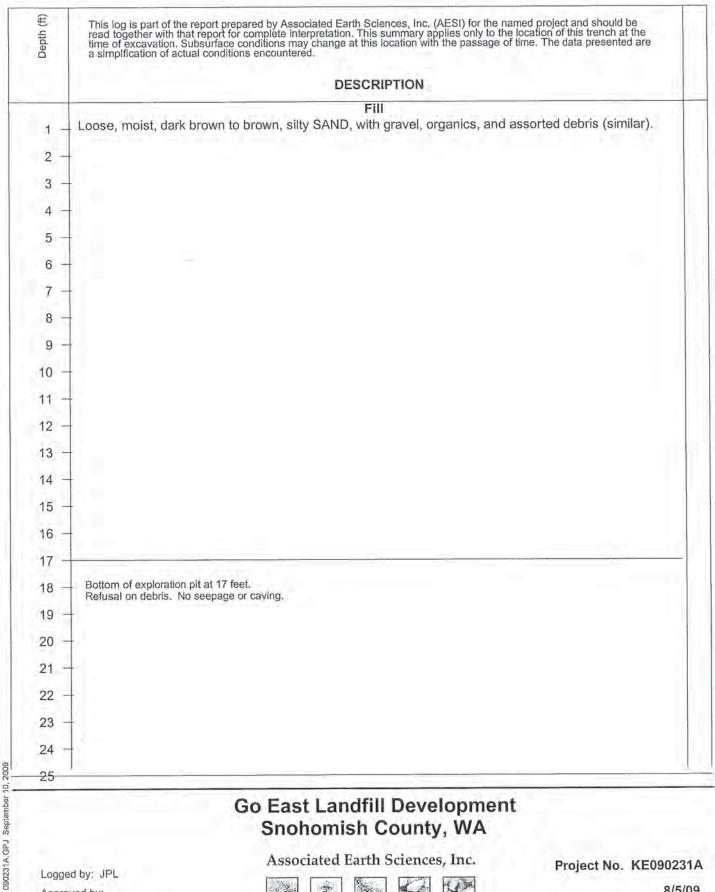


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

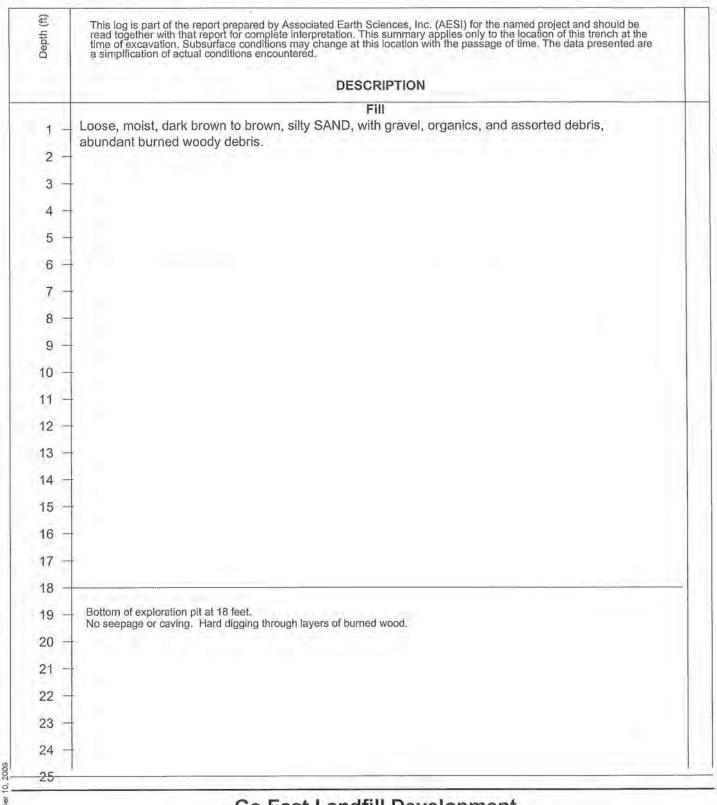


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:



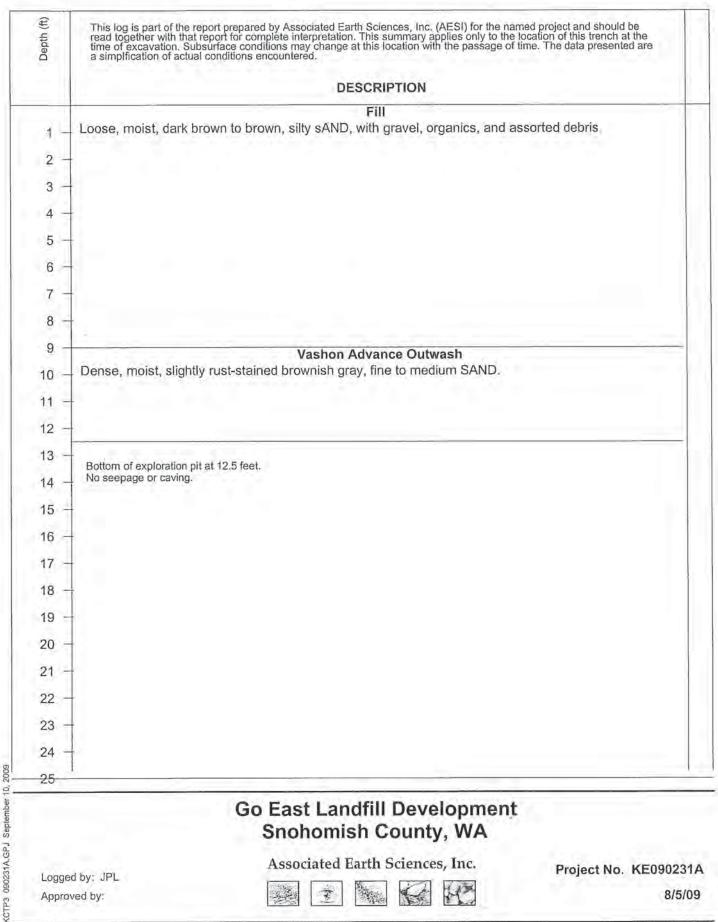
Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

KCTP3 090231A.GPJ

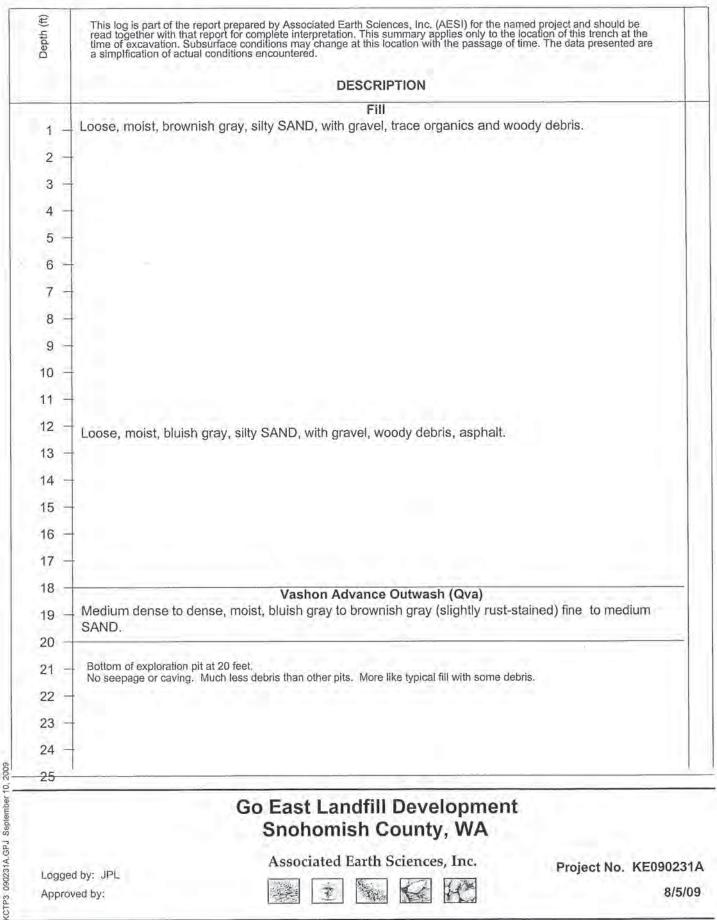


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

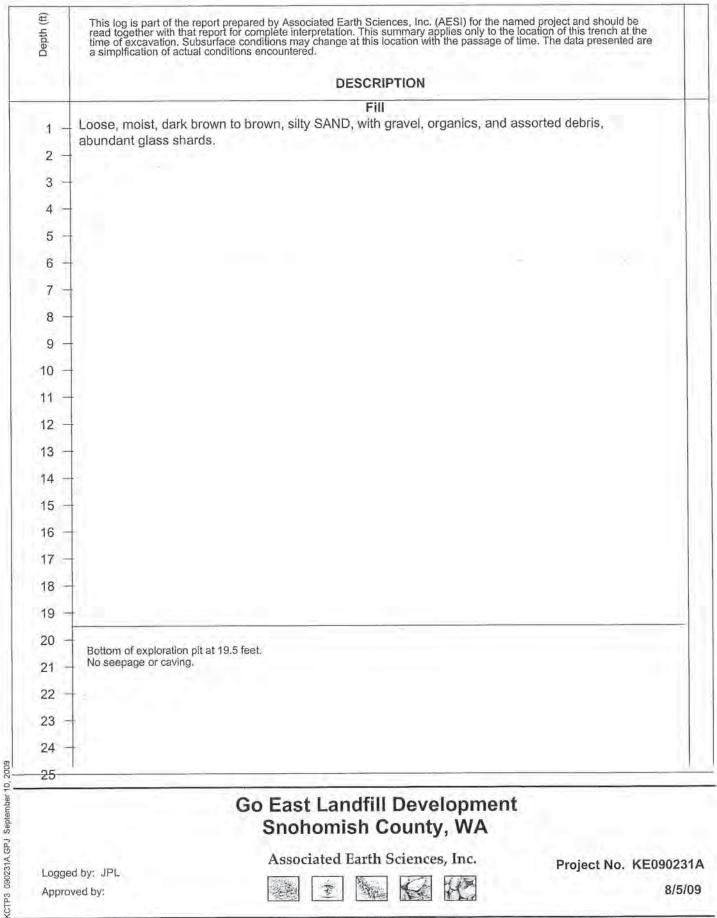


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:

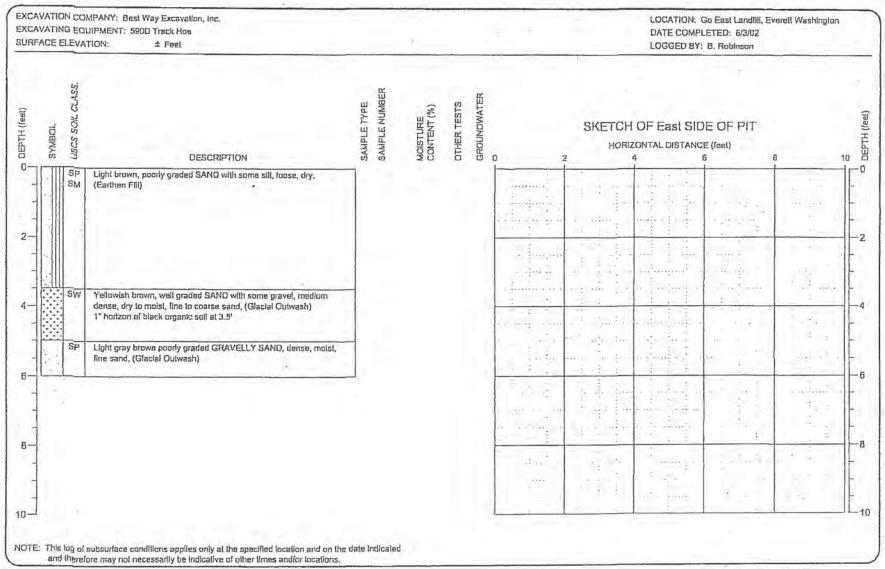


Project No. KE090231A

Go East Landfill Development Snohomish County, WA

Associated Earth Sciences, Inc.

Logged by: JPL Approved by:



Project No. KE090231A

GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-1-A

PROJECT NO.: 2002071

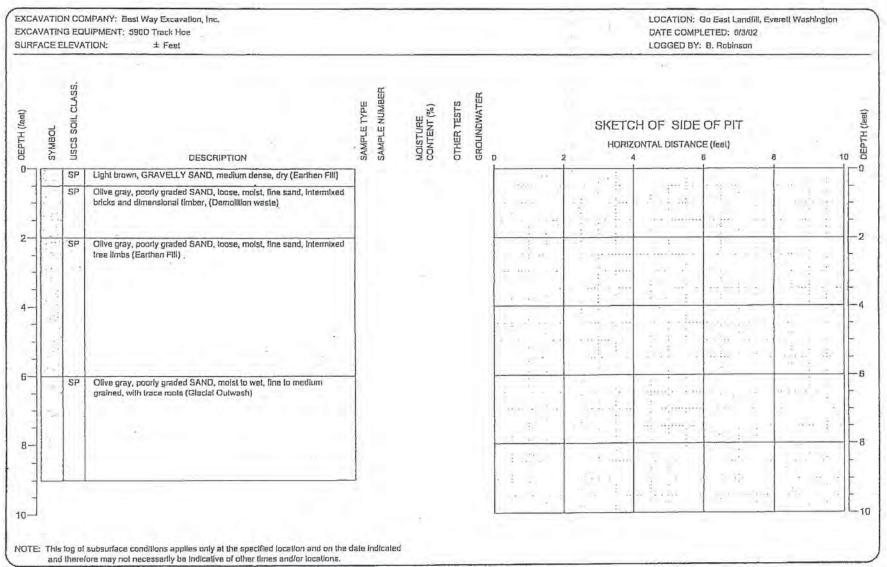
EXCAVATION COMPANY: Best Way Excavallon, Inc. LOCATION: Go East Landfill, Everett Washington DATE COMPLETED: 5/3/02 EXCAVATING EQUIPMENT: 590D Track Hoe LOGGED BY: B. Robinson SURFACE ELEVATION: # Feel SAMPLE NUMBER OTHER TESTS SAMPLE TYPE DEPTH (feet) DEPTH (Real) SKETCH OF SIDE OF PIT HORIZONTAL DISTANCE (feel) DESCRIPTION Yellowish brown, poorly graded SAND, medium dense, dry (Gladal 10-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-1-B

PROJECT NO.: 2002071

LOCATION: Go East Landfill, Everett Washington EXCAVATION COMPANY: Best Way Excavation, Inc. DATE COMPLETED: 6/3/02 EXCAVATING EQUIPMENT: 5900 Track Hos LOGGED BY: B. Robinson SURFACE ELEVATION: ± Feet SAMPLE NUMBER MOISTURE CONTENT (%) OTHER TESTS SAMPLE TYPE DEPTH (feel) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feet) DESCRIPTION Yellowish brown, poorly graded SAND, medium dense, dry. (Glacial Outwash) 6-10-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.



GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-1-C

PAGE: 1 of 1

PROJECT NO .: 2002071

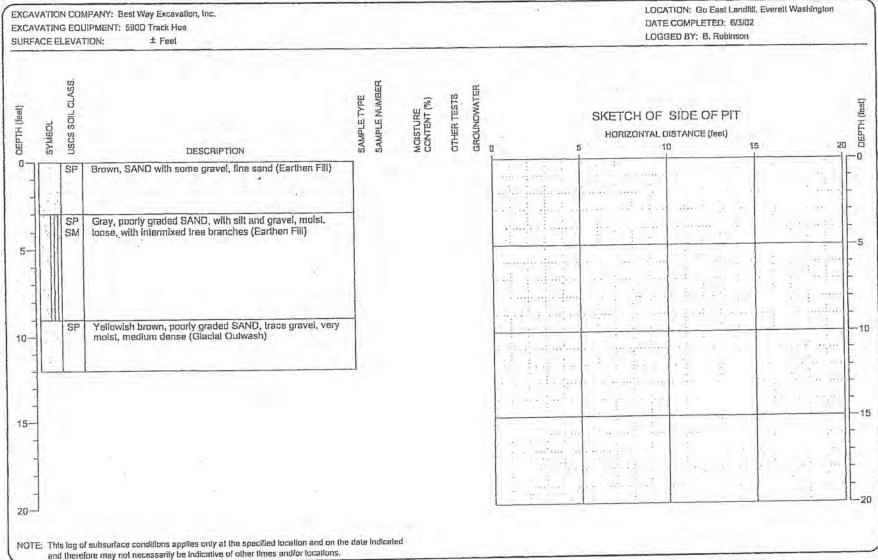
GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-1-D

PAGE: 1 of 1

PROJECT NO .: 2002071

LOCATION: Go East Landfill, Everett Washington EXCAVATION COMPANY: Best Way Excavation, Inc. DATE COMPLETED: 6/3/02 EXCAVATING EQUIPMENT: 590D Track Hos LOGGED BY: B. Robinson SURFACE ELEVATION: # Feet USCS SOIL CLASS. SAMPLE NUMBER MOISTURE CONTENT (%) OTHER TESTS SAMPLE TYPE DEPTH (leet) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feet) 20 DESCRIPTION -0 0-Gray brown, poorly graded SAND, loose, fine sand, some roots (Earthen Fili) Brown, poorly graded SAND, loose, fine sand (Earthen SP 5-Gray, poorly graded SAND, loose, fine sand, some wood and plastic (Earthen Fill) 10 15-20-NOTE: This log of subsurface conditions applies only at the specified localion and on the date indicated and therefore may not necessarily be indicalive of other times and/or locations.

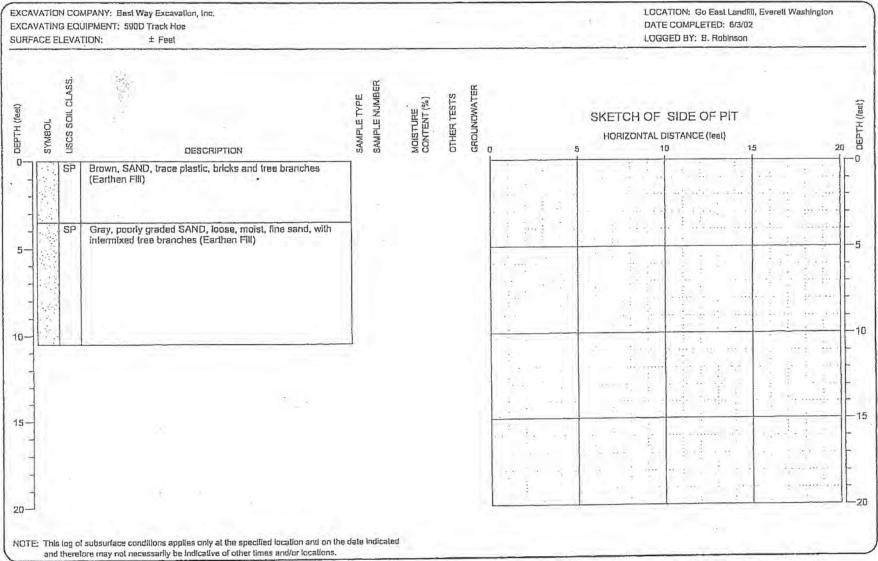


GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT

PAGE: 1 of 1

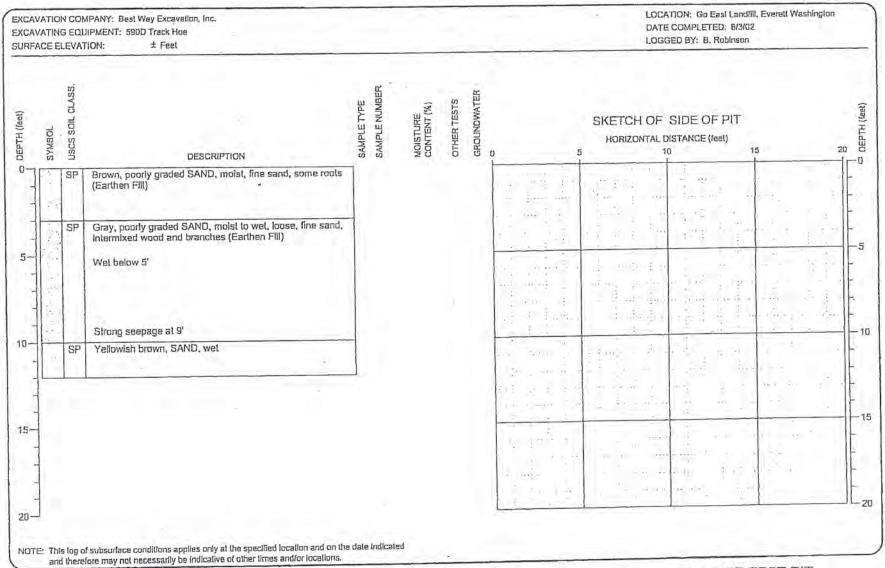
PROJECT NO.: 2002071



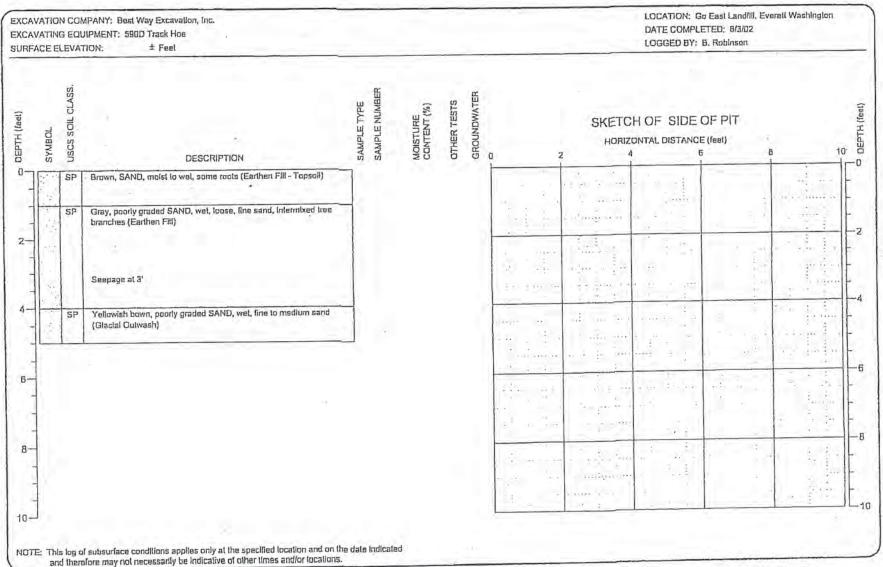
GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-2-B

PAGE: 1 0/ 1

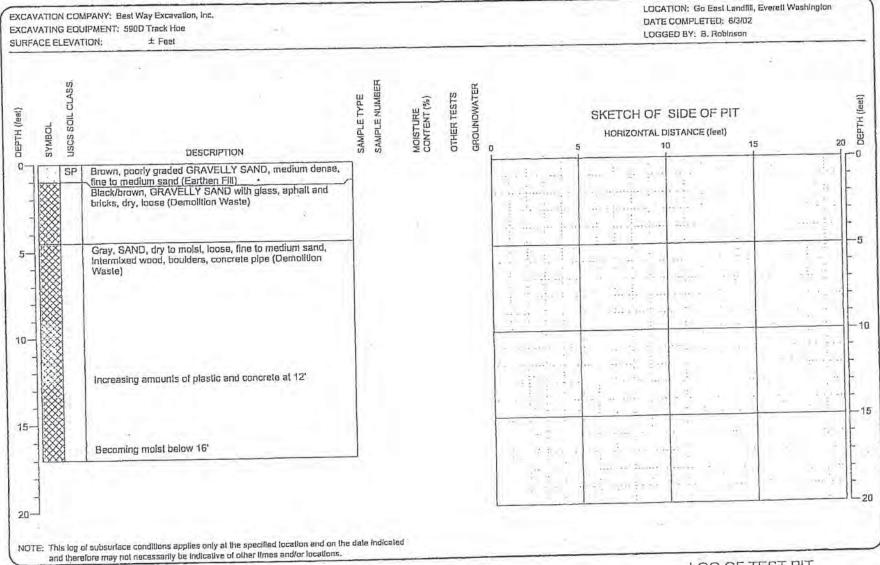

PROJECT NO .: 2002071

LOG OF TEST PIT TP-2-C


PROJECT NO.: 2002071

LOG OF TEST PIT TP-2-D

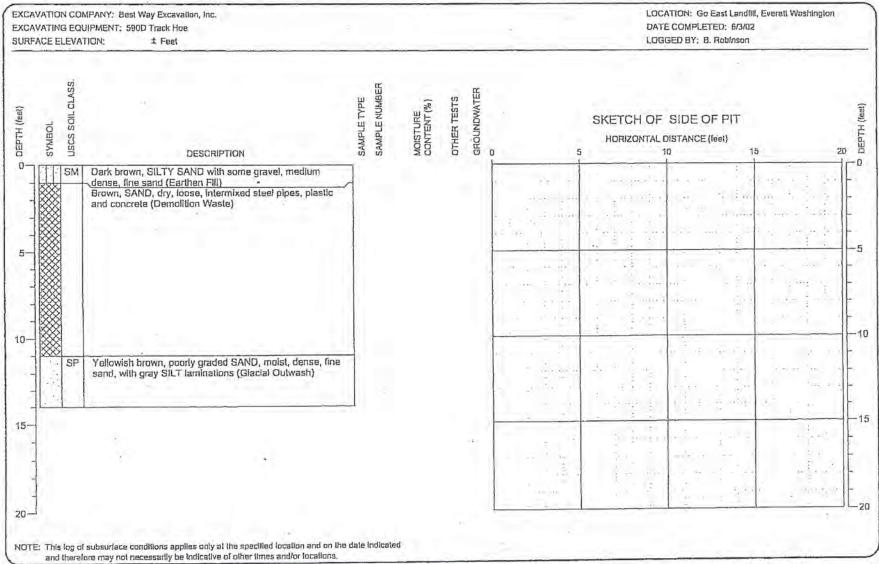
PROJECT NO .: 2002071



LOG OF TEST PIT TP-2-E

PAGE: 1 of 1

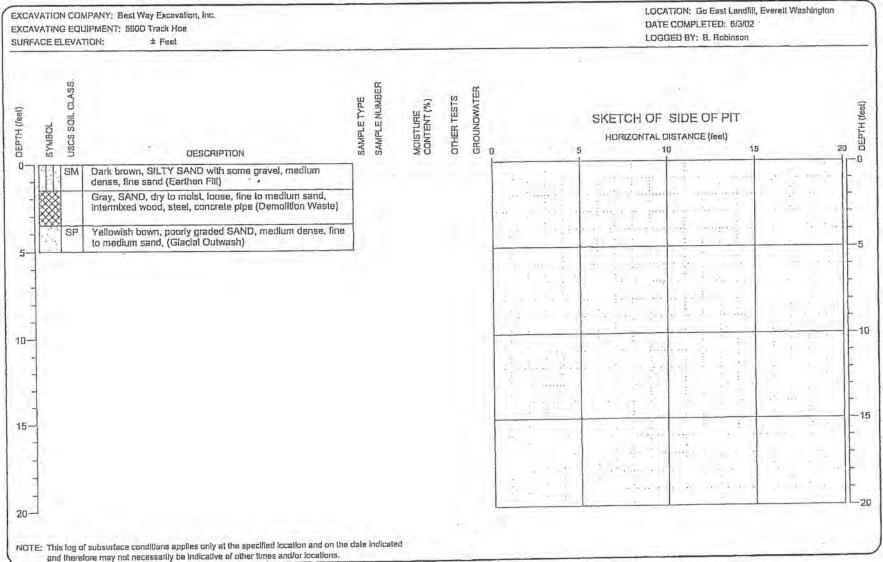
PROJECT NO.: 2002071



LOG OF TEST PIT TP-3-A

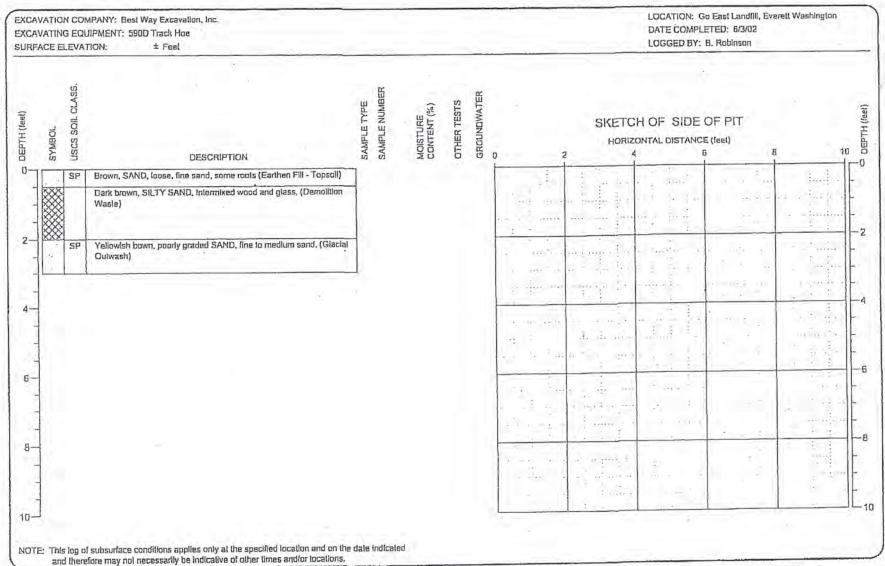
PAGE: 1 of 1

PROJECT NO.: 2002071



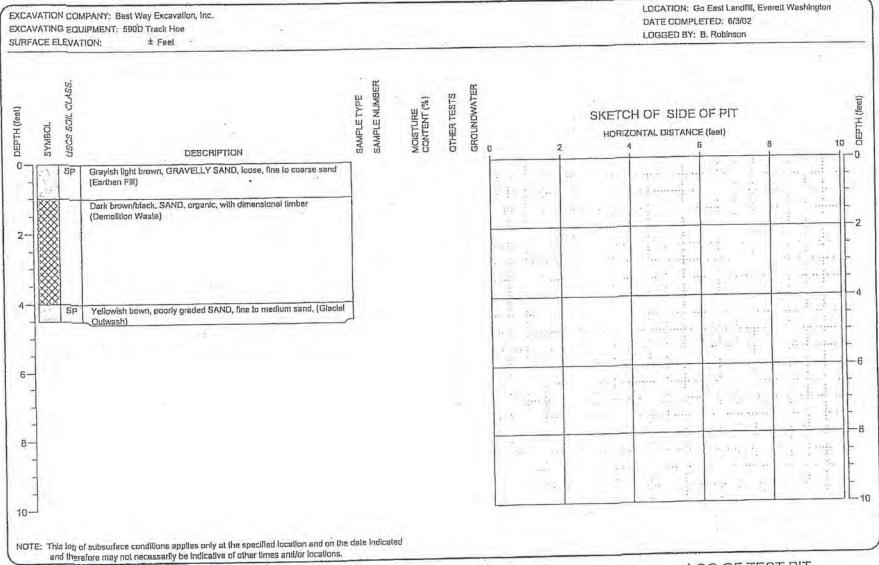
LOG OF TEST PIT TP-4-A

PAGE: 1 of 1


PROJECT NO .: 2002071

LOG OF TEST PIT TP-4-B

PROJECT NO.: 2002071



LOG OF TEST PIT TP-5-A

PAGE: 1 of 1

PROJECT NO.: 2002071

LOG OF TEST PIT TP-6

PROJECT NO .: 2002071

LOCATION: Go East Landfill, Everett Washington EXCAVATION COMPANY: Best Way Excavation, Inc. DATE COMPLETED: 6/3/02 EXCAVATING EQUIPMENT: 5900 Track Hoe LOGGED BY: B. Robinson SURFACE ELEVATION: ± Feet CLASS. SAMPLE NUMBER OTHER TESTS SAMPLETYPE DEPTH (feel) USCS SOIL SKETCH OF SIDE OF PIT HORIZONTAL DISTANCE (feet) 10 DESCRIPTION SP Brown, SAND, loose, dry to moist, medium sand (Earthen Fill) Dark brown, SAND with some gravel, medium dense with trace wood (Earthen Fill) SP Gray, SAND, loose, slightly moist, with intermixed wood (Earthen Yellowish bown, poorly graded SAND, fine to medium sand, (Glacial 8-10-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

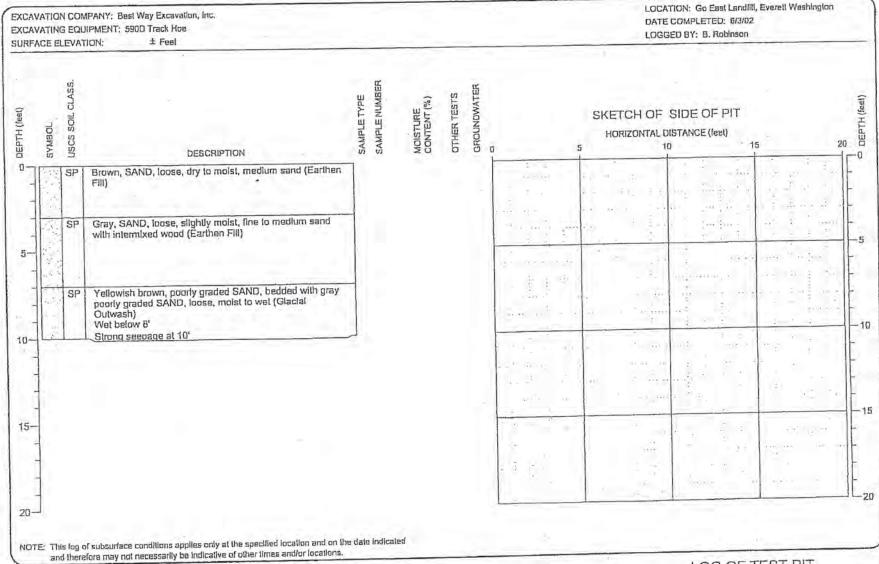
GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-7

PAGE: 1 of 1

PROJECT NO .: 2002071

EXCAVATION COMPANY: Best Way Excavation, Inc. LOCATION: Go East Landfill, Everett Washington EXCAVATING EQUIPMENT: 5900 Track Hoe DATE COMPLETED: 6/3/02 SURFACE ELEVATION: # Feel LOGGED BY: B, Robinson USCS SOIL CLASS. SAMPLE NUMBER MOISTURE CONTENT (%) SAMPLE TYPE DEPTH (leat) ОЕРТН (Гев) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feel) DESCRIPTION 10 SP Brown, SAND, loose, dry to moist, medium sand (Earthen Fill) SP Yellowish brown, poorly graded SAND, bedded with gray poorly graded SAND, moist to wel (Glacial Outwash) Strong seepage at 3' 10-NOTE: This tog of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

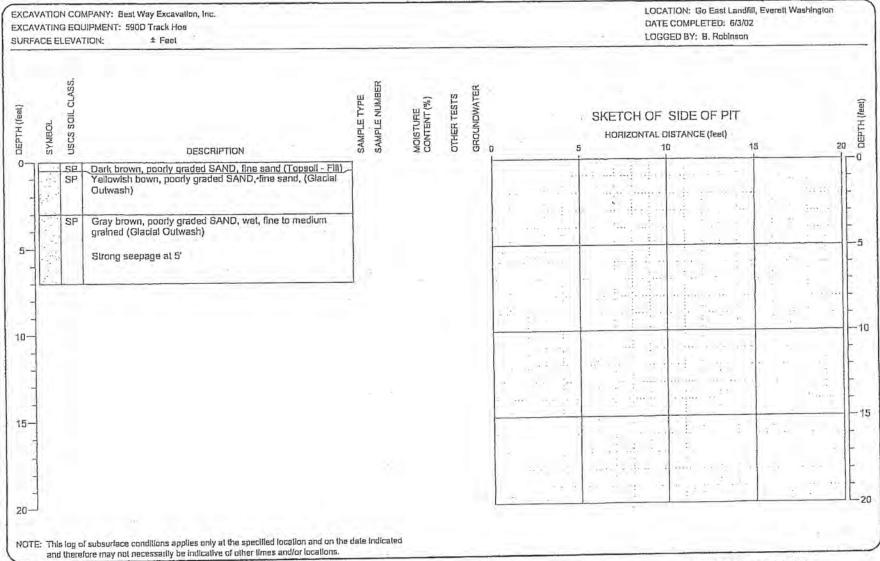


GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-8-A

PAGE: 1 of 1

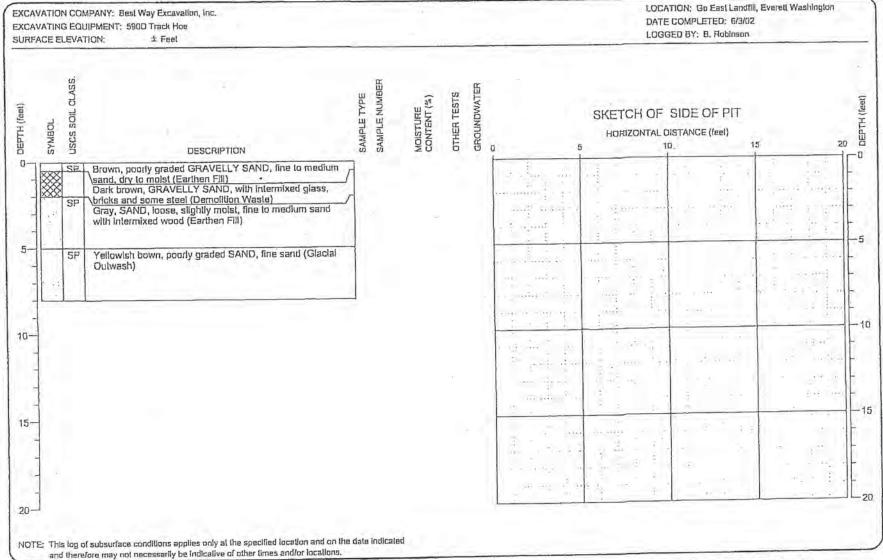
PROJECT NO.: 2002071



LOG OF TEST PIT TP-8-B

PAGE: 1 of 1

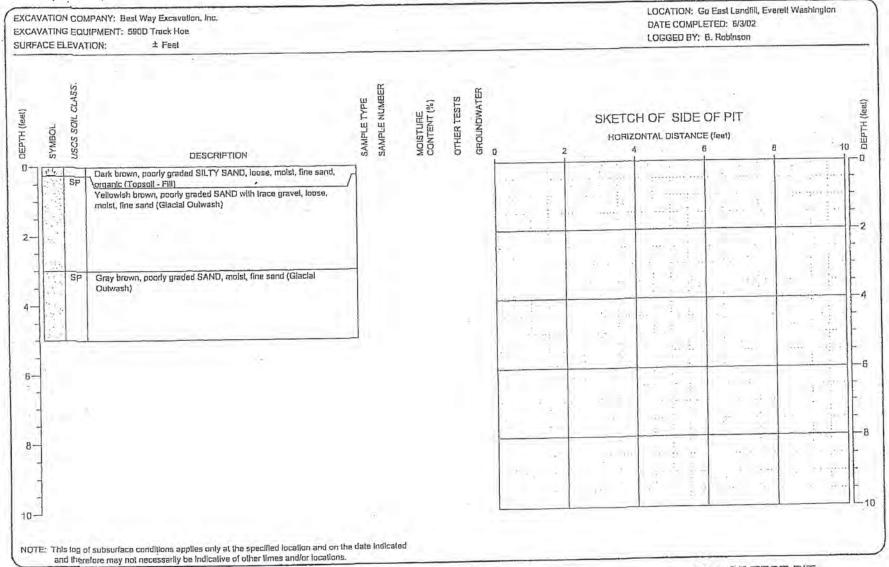
PROJECT NO .: 2002071



LOG OF TEST PIT TP-9-A

PAGE: 1 of 1

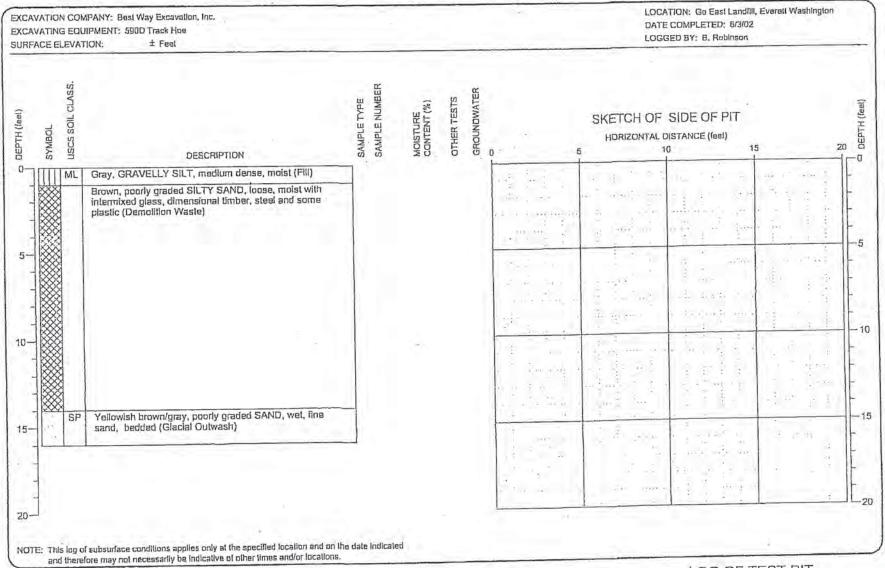
PROJECT NO.: 2002071



LOG OF TEST PIT TP-9-B

PAGE: 1 of 1

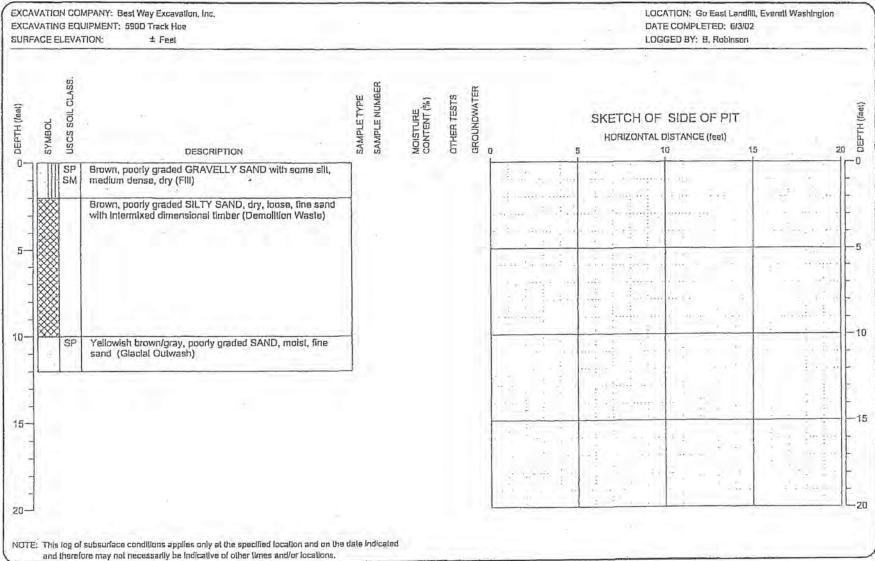
PROJECT NO .: 2002071



LOG OF TEST PIT TP-10-A

PAGE: 1 of 1

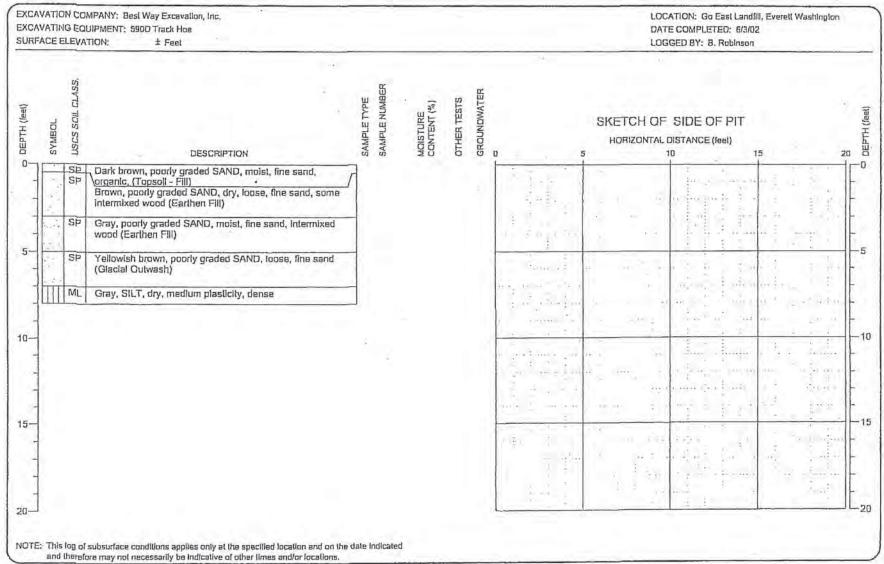
PROJECT NO .: 2002071



LOG OF TEST PIT TP-10-B

PAGE: 1 of 1

PROJECT NO.: 2002071



LOG OF TEST PIT TP-10-C

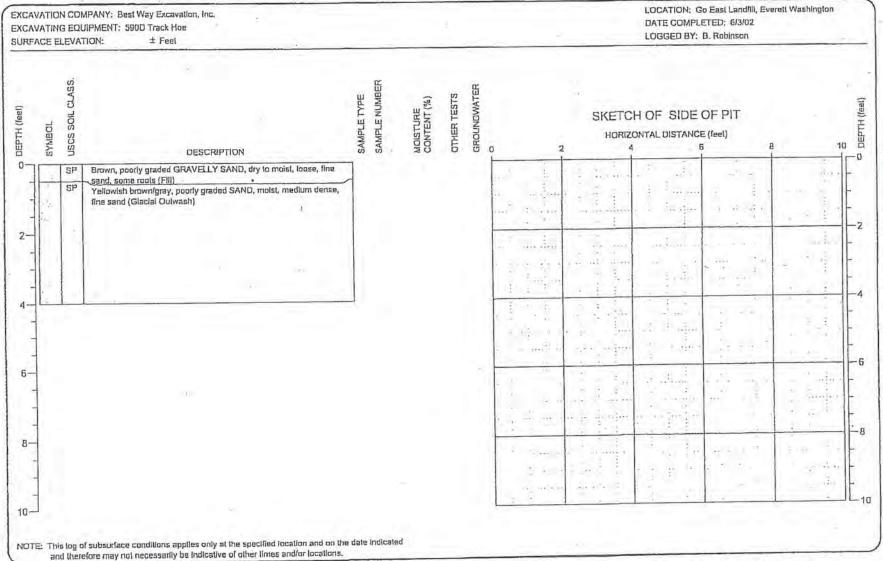
PAGE: 1 of 1

PROJECT NO .: 2002071

LOG OF TEST PIT TP-11-A

PAGE: 1 of 1

PROJECT NO .: 2002071


EXCAVATION COMPANY: Best Way Excavation, Inc. LOCATION: Go East Landfill, Everett Washington EXCAVATING EQUIPMENT: 590D Track Hoe DATE COMPLETED: 6/3/02 SURFACE ELEVATION: ± Feet LOGGED BY: B. Robinson USCS SOIL CLASS SAMPLE NUMBER DEPTH (feet) DEPTH (feet) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feet) 10 DESCRIPTION Brown, SAND, loose, moist, organic, (Topsoll - Fill) Gray brown, pourly graded SAND, moist, loose, fine sand (Glacial Outwash) Gray/yellowish brown, poorly graded SAND, moist to wel, fine sand, bedded, (Glacial Oulwash) V Seepage at 3.5" NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

GO EAST LANDFILL EVERETT, WASHINGTON LOG OF TEST PIT TP-11-B

PAGE: 1 of 1

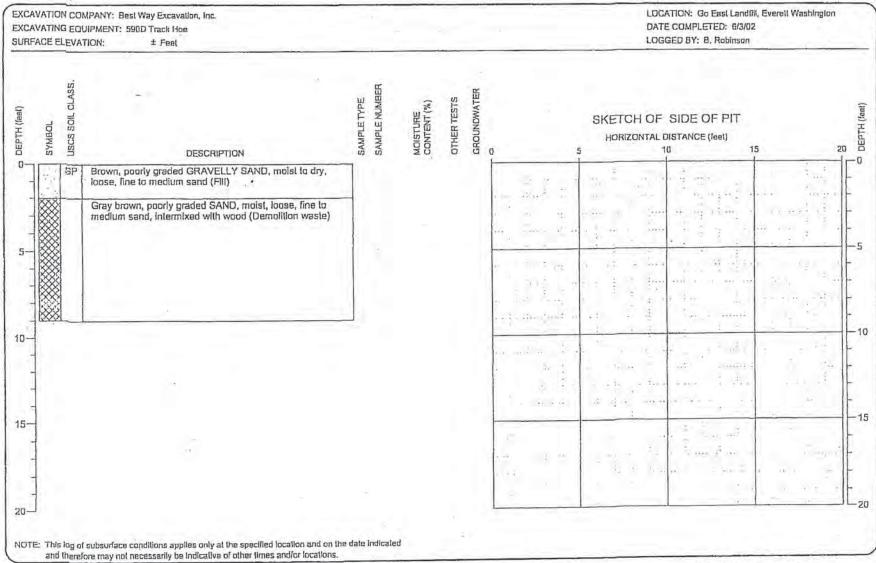
PROJECT NO.: 2002071

LOG OF TEST PIT TP-11-C

PAGE: 1 of 1

PROJECT NO .: 2002071

EXCAVATION COMPANY: Best Way Excavation, Inc. LOCATION: Go East Landfill, Everett Washington EXCAVATING EQUIPMENT: 5900 Track Hoe DATE COMPLETED: 6/3/02 SURFACE ELEVATION: ± Feet LOGGED BY: B. Robinson USGS SOIL CLASS. SAMPLE NUMBER SAMPLE TYPE MOISTURE CONTENT (%) OTHER TESTS DEPTH (feet) DEPTH (feet) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feet) 20 DESCRIPTION Brown, poorly graded GRAVELLY SAND, dry to moist, loose, fine sand, some roots (Fill) Charcoal and partially burnt wood Brown, poorly graded SAND, dry, loose, intermixed bricks, (Demolition waste) Gray brown, poorly graded SAND, molst, toose, fine to medium sand, intermixed wood and steel, with some hoses (Demolition Waste) 20-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

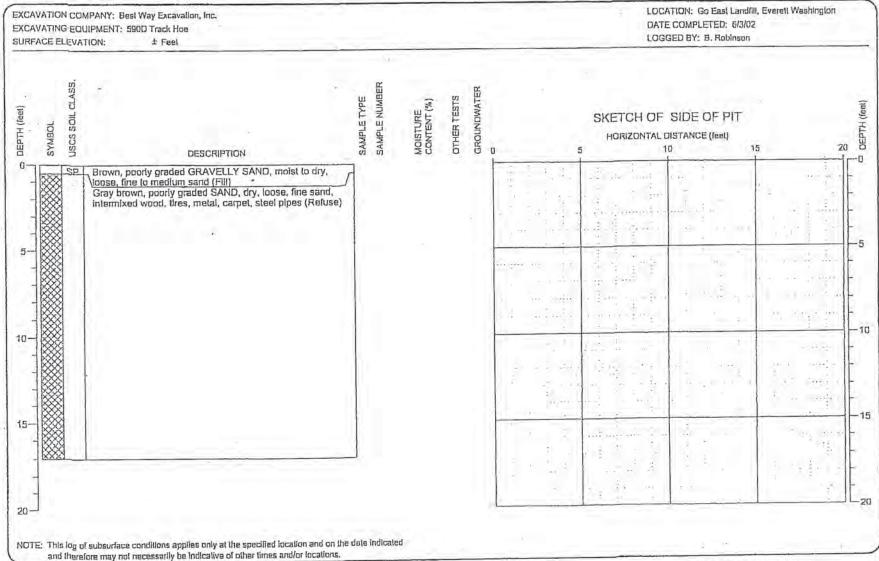


GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-12-A

PAGE 1 of 1

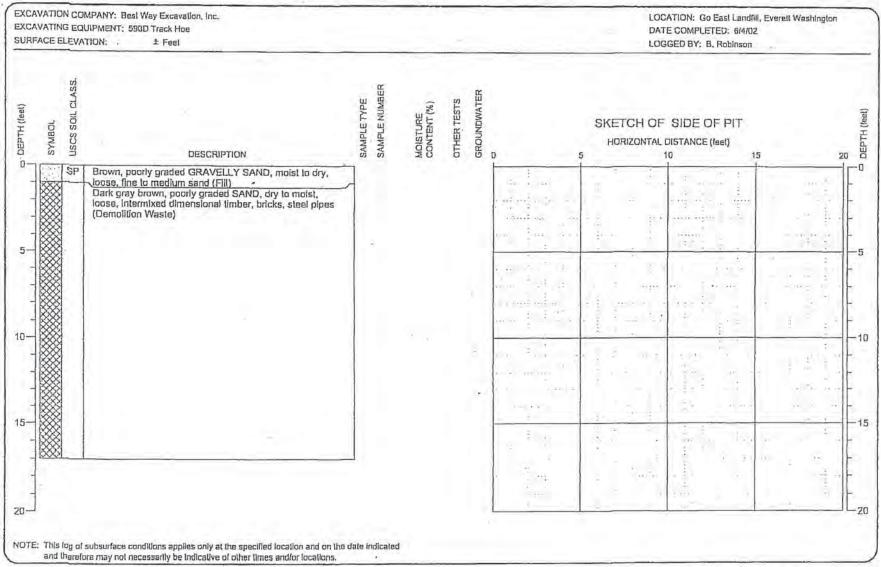
PROJECT NO .: 2002071



LOG OF TEST PIT TP-12-B

PAGE: 1 of 1

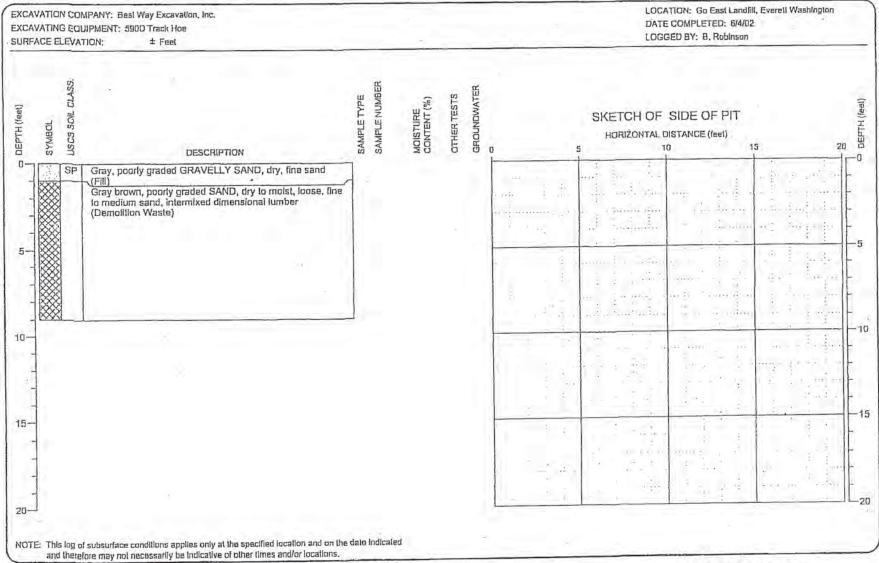
PROJECT NO .: 2002071



LOG OF TEST PIT

PAGE: 1 of 1

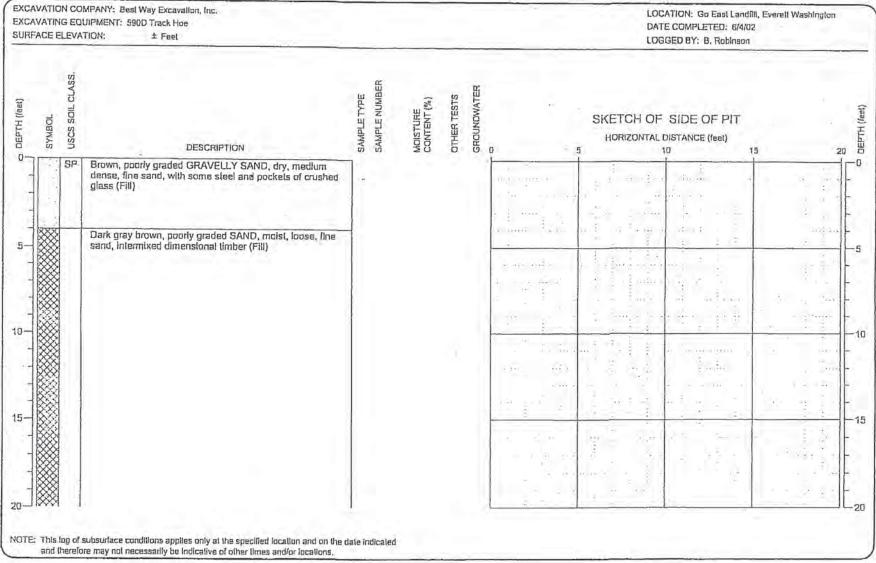
PROJECT NO.: 2002071



LOG OF TEST PIT TP-13-B

PAGE: 1 of 1

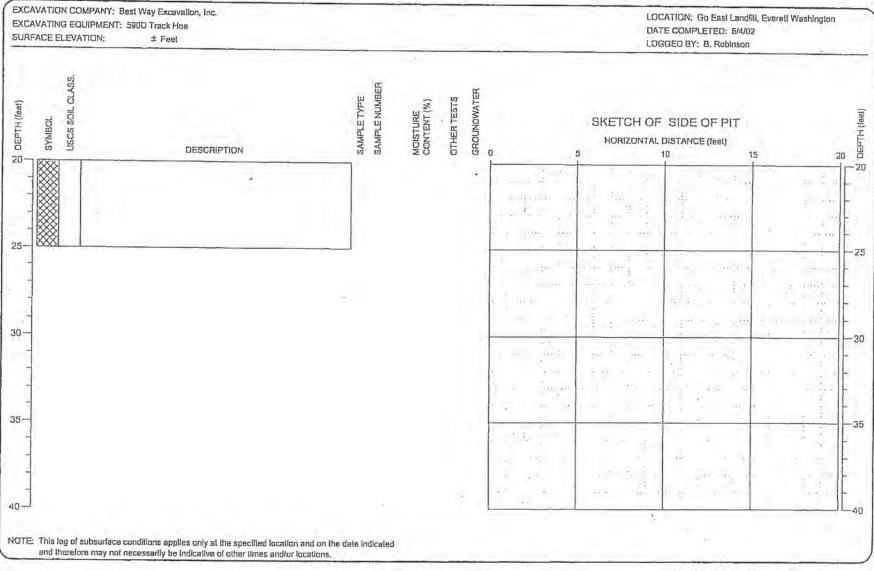
PROJECT NO .: 2002071



LOG OF TEST PIT TP-14-A

PAGE: 1 of 1

PROJECT NO .: 2002071



LOG OF TEST PIT TP-15

PAGE: 1 of 2

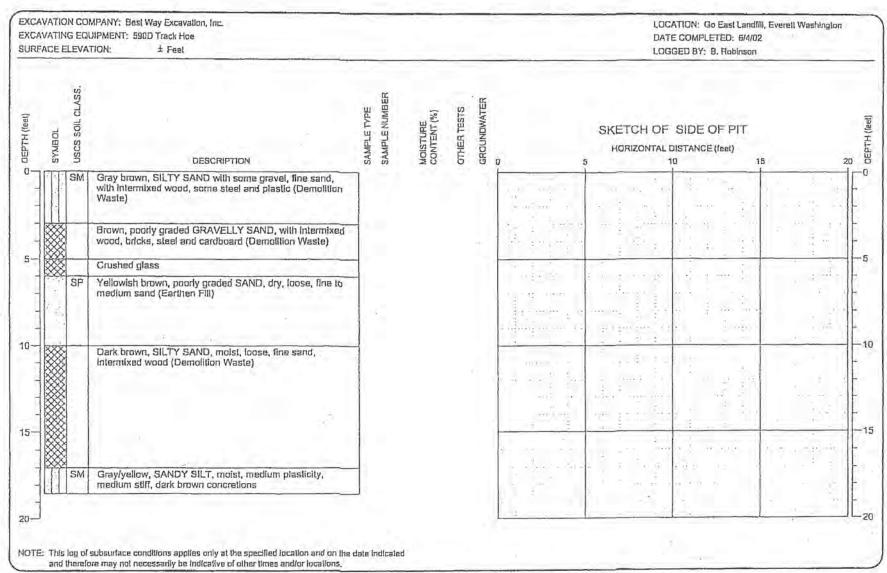
PROJECT NO. 2002071

LOG OF TEST PIT TP-15

PAGE: 2 of 2

PROJECT NO.: 2002071

EXCAVATION COMPANY: Best Way Excavation, Inc. LOCATION: Go East Landfill, Everell Washington EXCAVATING EQUIPMENT: 590D Track Hoe DATE COMPLETED: 6/4/02 SURFACE ELEVATION: LOGGED BY: B. Robinson USCS SOIL CLASS. SAMPLE NUMBER GROUNDWATER SAMPLE TYPE MOISTURE CONTENT (%) OTHER TESTS DEPTH (feel) DEPTH (feat) SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feel) DESCRIPTION 20 Brown, poorly graded GRAVELLY SAND, moist to dry, loose, fine to medium sand with some wood (Earthen Fill) Dark brown, poorly graded SAND, dry to moist, fine sand, with Intermixed wood and plastic (Demolition Waste) Pocket of pink packing foam and plastic at 8 feet Pocket of crushed glass at 10 feet No plastic in demolition waste below 13 feet Gray, poorly graded SAND, moist, fine sand, (Glacial Outwash - Fill) NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

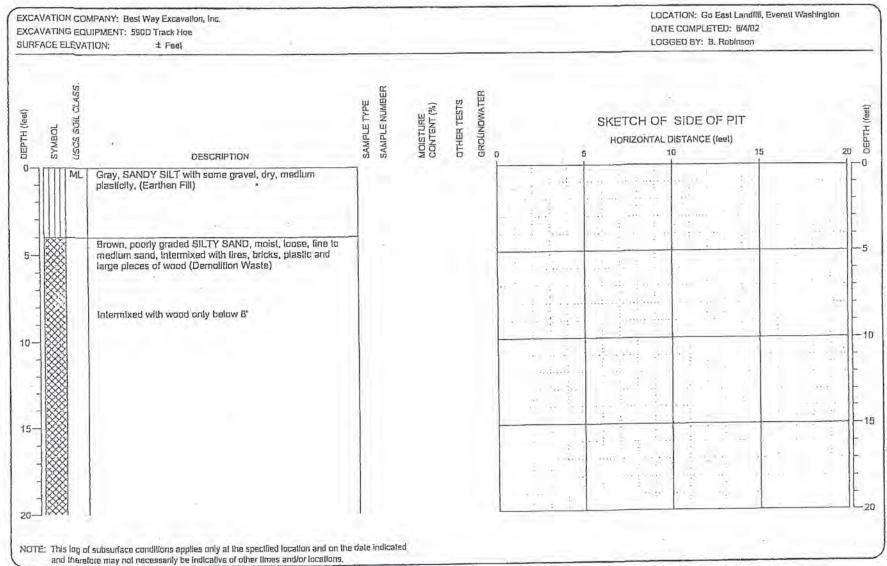


GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-16

PAGE: 1 of 1

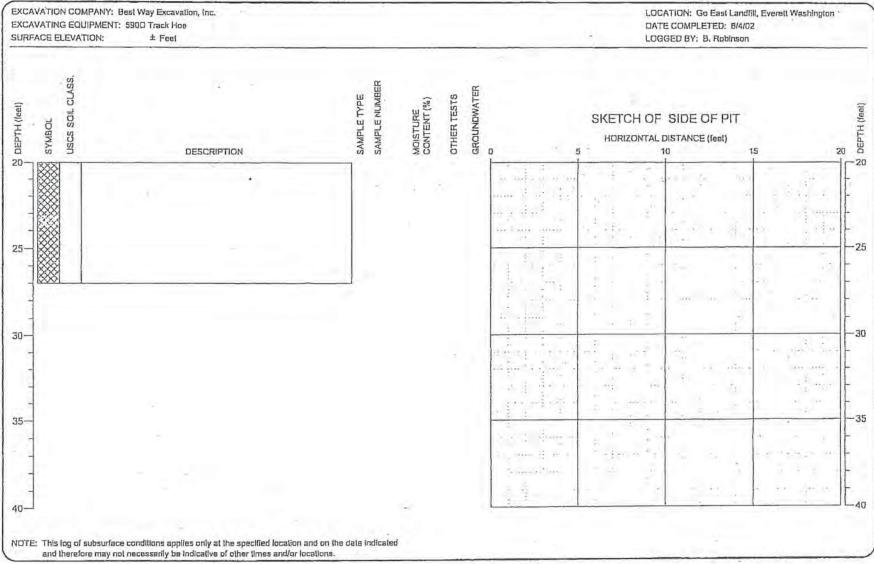
PROJECT NO .: 2002071



LOG OF TEST PIT TP-17

PAGE: 1 of 1

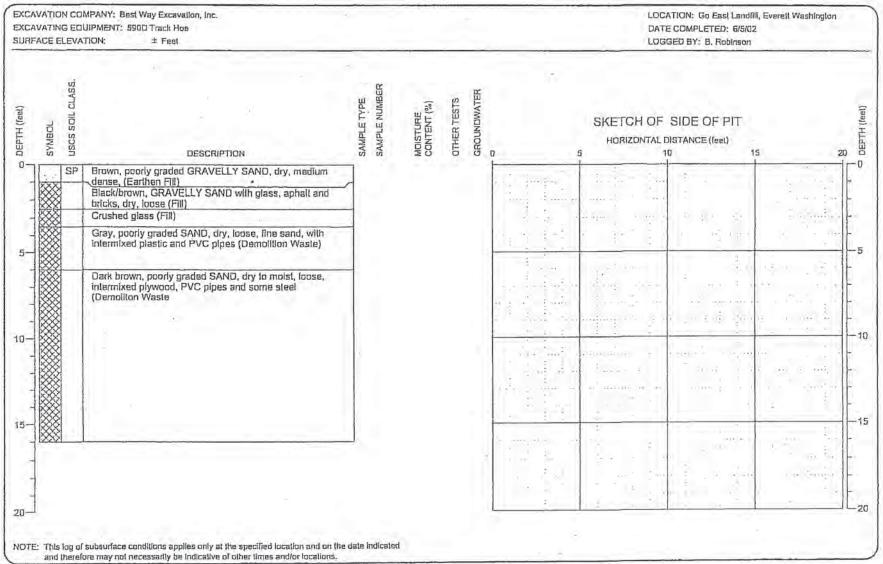
PROJECT NO.: 2002071



LOG OF TEST PIT TP-18

PAGE: 1 of 2

PROJECT NO.: 2002071



LOG OF TEST PIT TP-18

PAGE: 2 of 2

PROJECT NO .: 2002071

LOG OF TEST PIT TP-19

PROJECT NO.: 2002071

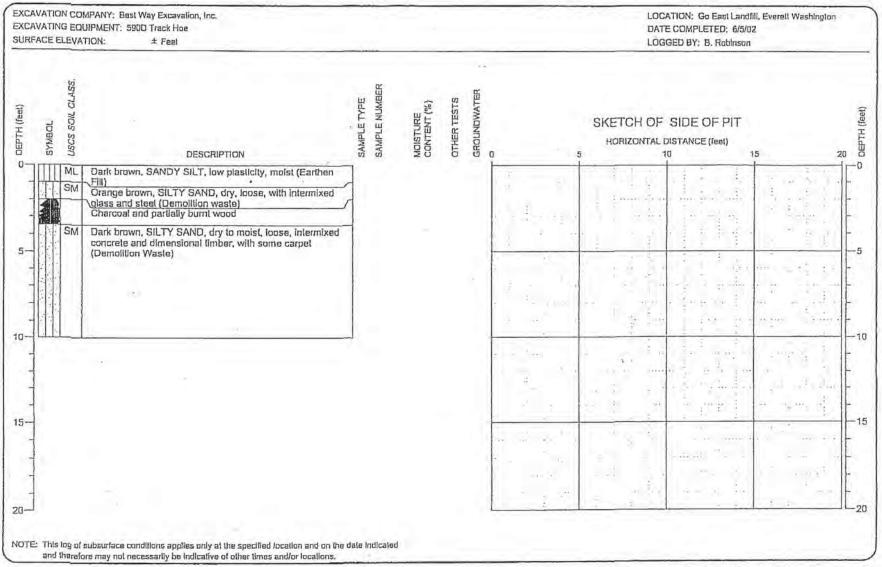
EXCAVATION COMPANY: Best Way Excavation, Inc. LOCATION: Go East Landfill, Everett Washington EXCAVATING EQUIPMENT: 590D Track Hoe DATE COMPLETED: 6/5/02 SURFACE ELEVATION: ± Feel LOGGED BY: B. Robinson SAMPLE NUMBER GROUNDWATER MOISTURE CONTENT (%) SAMPLE TYPE OTHER TESTS DEPTH (lest) USCS SOIL SKETCH OF SIDE OF PIT SYMBOL HORIZONTAL DISTANCE (feet) DESCRIPTION 15 20 Dark brown, SILTY SAND with some gravel, moist (Earthen Fill) Brown, SILTY SAND, dry to moist, loose, fine to medium sand, internixed plywood, bricks, plastic sheeling, steel and occasional tire (Demolition Waste) Olive grey, poorly graded SAND, loose, molst, fine to medium sand 15 20-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP20

PAGE: 1 of 1

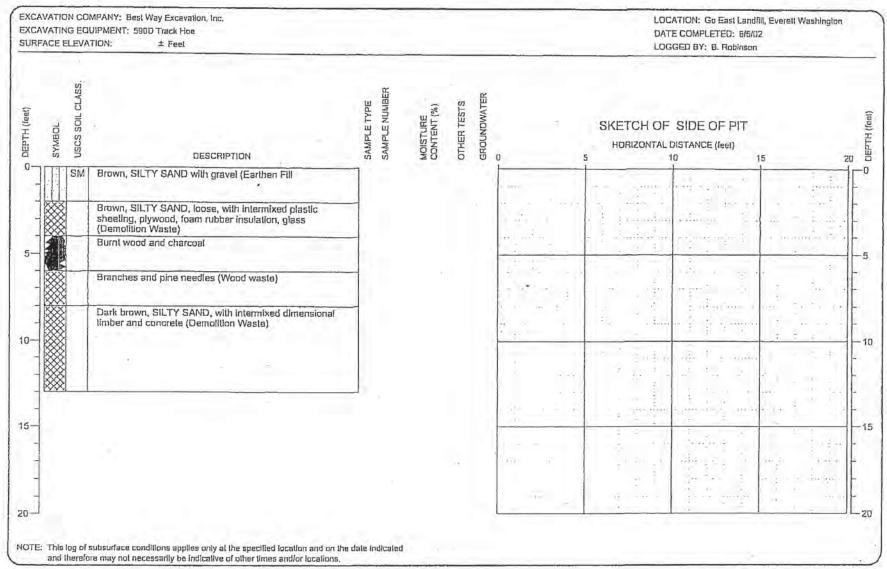
PROJECT NO.: 2002071


EXCAVATION COMPANY: Best Way Excavalion, Inc. LOCATION: Go East Landfill, Everall Washington EXCAVATING EQUIPMENT: 5900 Track Hos DATE COMPLETED: 6/5/02 SURFACE ELEVATION: ± Feet LOGGED BY: B. Robinson CLASS. SAMPLE NUMBER GROUNDWATER SAMPLETYPE MOISTURE CONTENT (%) OTHER TESTS DEPTH (feet) USCS SOIL DEPTH (feet) SYMBOL SKETCH OF SIDE OF PIT HORIZONTAL DISTANCE (feet) DESCRIPTION 20 Dark brown, SILTY SAND with some gravel, moist SM (Earthen Fill) Brown, SILTY SAND, moist, loose, fine to medium sand (Demolition Waste) Some plastic at 3' Burnt wood at 4' Tyres and PVC piping at 6' to 8' Dark brown, SAND, moist, loose, with Intermixed plywood and dimensional timber (Demolition waste) 10-Blue gray, SANDY SILT, moist, with intermixed plywood, thres and concrete (Demolition waste) 15-20-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP21 PAGE: 1 of 1

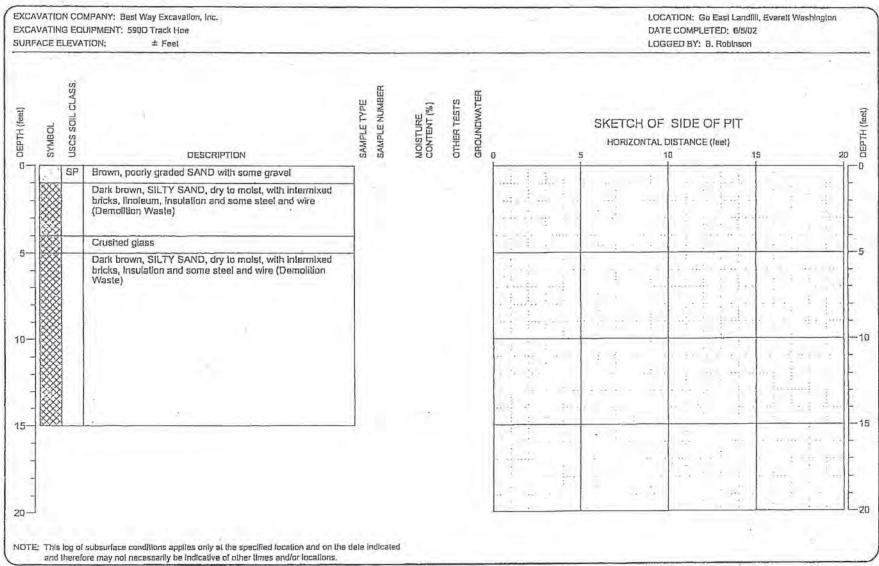
PROJECT NO .: 2002071



LOG OF TEST PIT

PAGE: 1 of 1

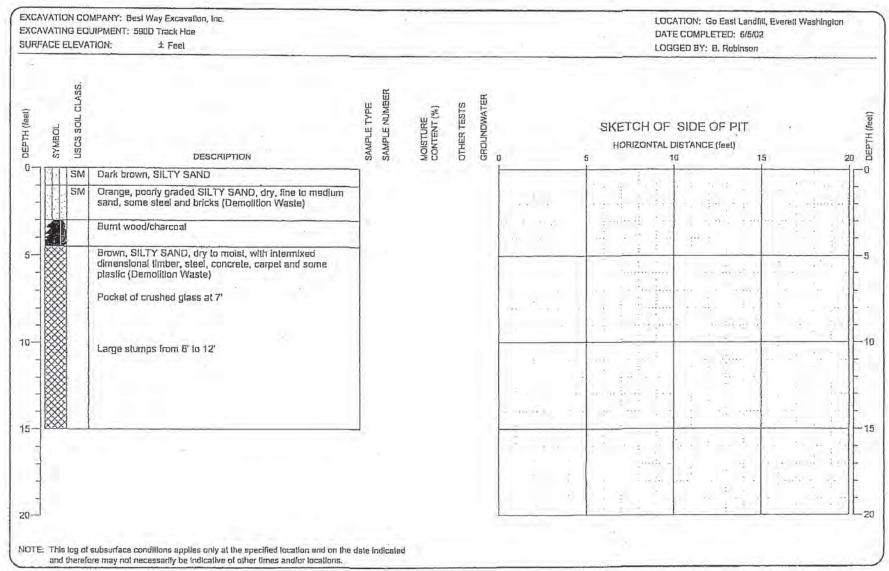
PROJECT NO .: 2002071



LOG OF TEST PIT TP23

PAGE: 1 of 1

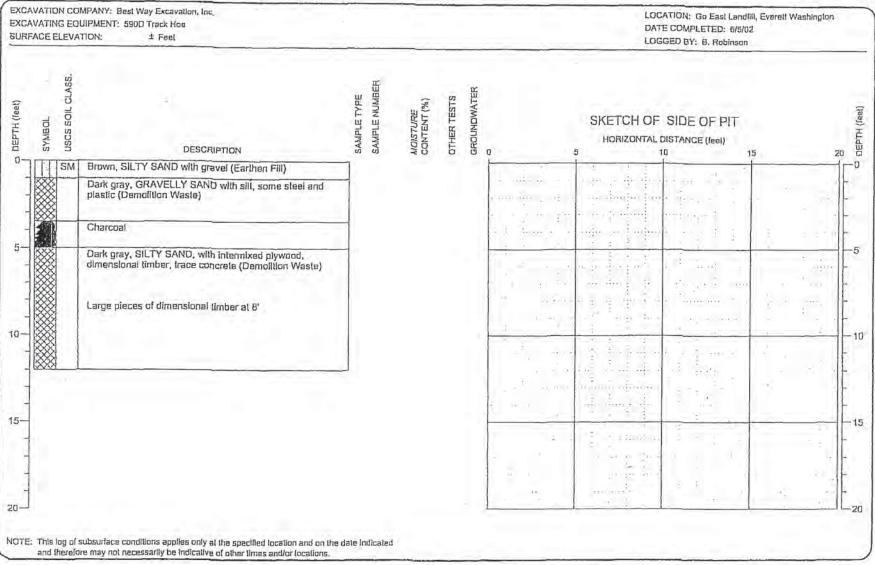
PROJECT NO.: 2002071



LOG OF TEST PIT TP-24

PAGE: 1 of 1

PROJECT NO .: 2002071

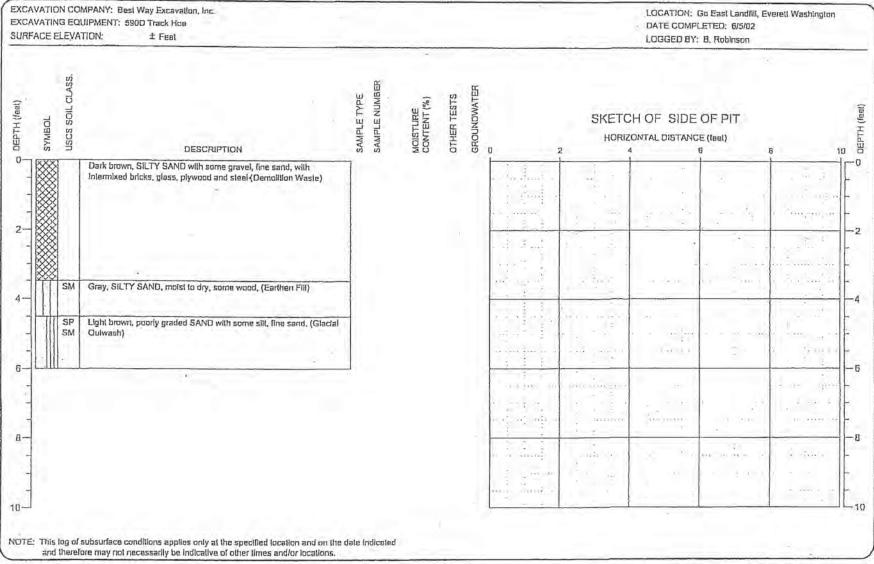


GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-25

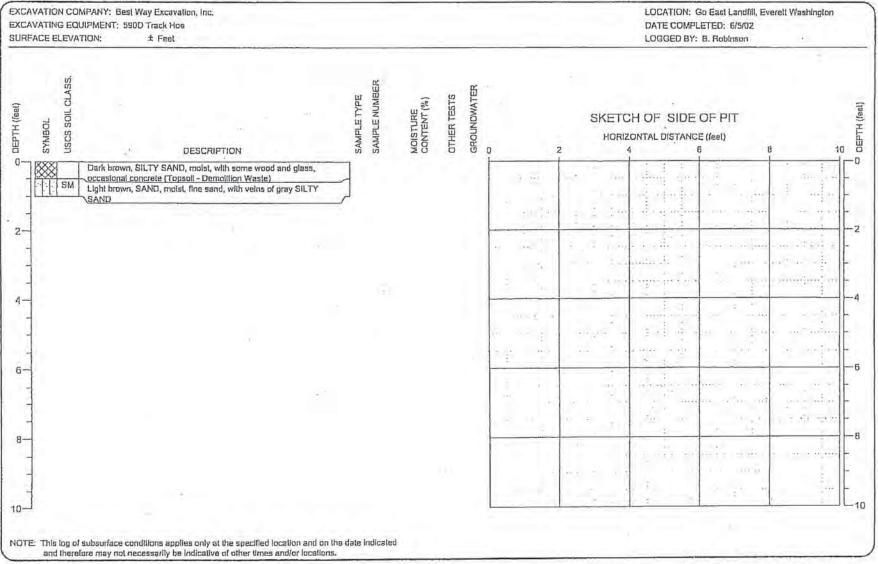
PAGE: 1 of 1

PROJECT NO .: 2002071

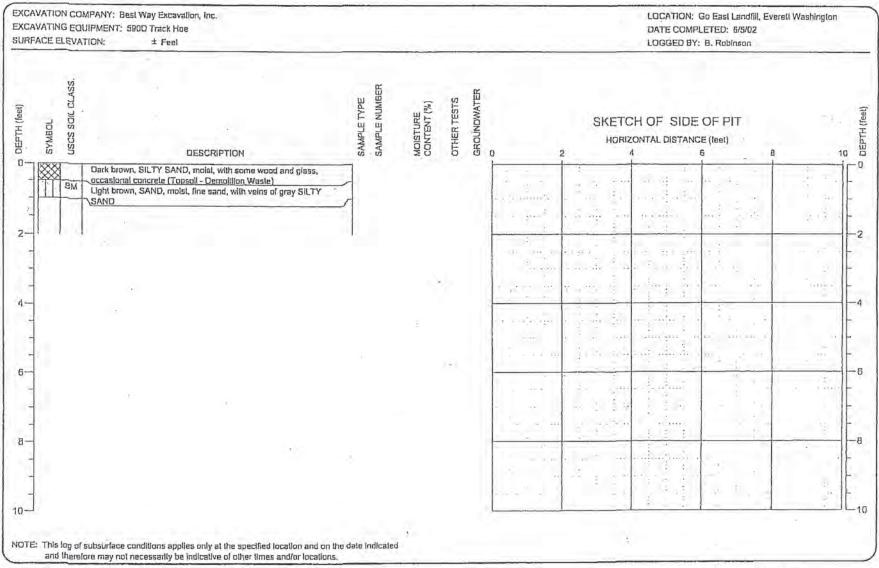


LOG OF TEST PIT TP-26

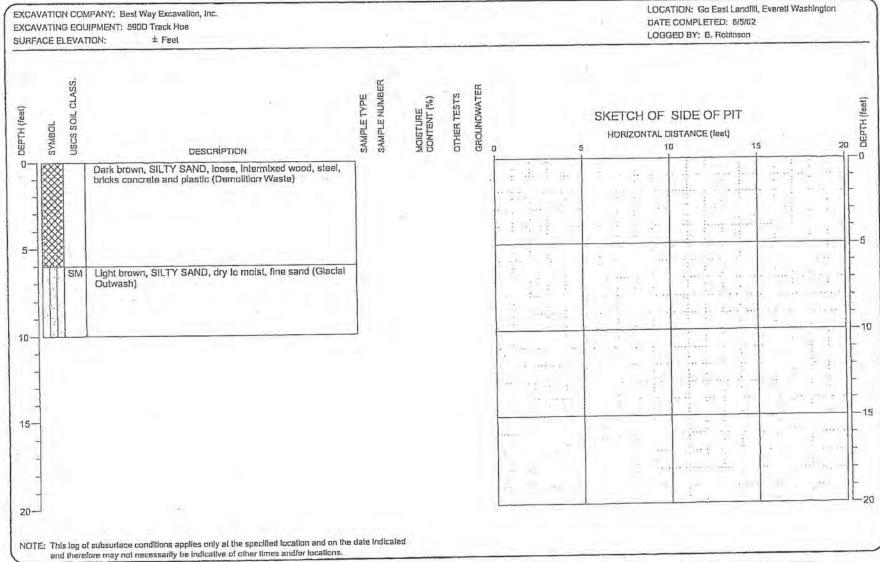
PAGE: 1 of 1


PROJECT NO.: 2002071

LOG OF TEST PIT TP-27

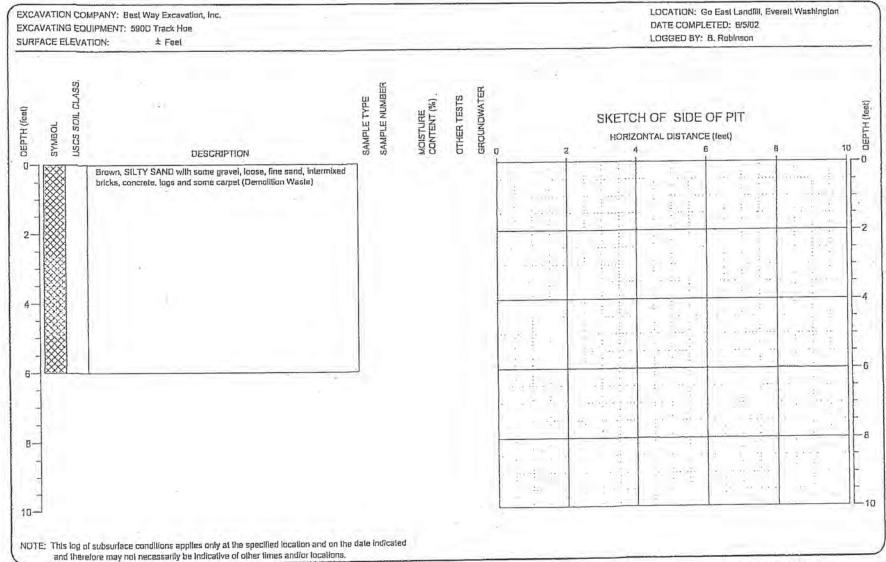

PROJECT NO.: 2002071

LOG OF TEST PIT TP-28


PROJECT NO.: 2002071

LOG OF TEST PIT TP-29

PROJECT NO.: 2002071


HWAGEOSCIENCES INC.

GO EAST LANDFILL EVERETT, WASHINGTON

LOG OF TEST PIT TP-30

PAGE: 1 of 1

PROJECT NO .: 2002071

LOG OF TEST PIT TP-31

PROJECT NO.: 2002071

	se Fraction	Fines (5)	0.50	Well-graded gravel and gravel with sand, little to no fines	Terms Describing Relative Density and Consistency Density SPT blows/foot Vary Loose 0 to 4
ZOO Sleve	% (1) of Coar	\$5% 00000000	0000000	Poorly-graded gravel and gravel with sand, little to no fines	Grained Soils Loose 4 to 10 Medium Dense 10 to 30 Dense 30 to 50 Very Dense >50 G = Grain Size .
lined on No.	Gravels - More than 50% (1) of Goarse Fraction Retained on No. 4 Sieve	Fines (6)	0.30	Silty gravel and silty M gravel with sand	Consistency SPT Sp
10% (1) Rate	sravels - M	.E15%	G	Clayey gravel and clayey gravel with sand	Stiff 8 to 15 Very Stiff 15 to 30 Hard >30 Component Definitions
Coarse-Grained Solls - More than 50% (1) Retained on No. 200 Sleve		Fines (5)	sı	Well-graded sand and with gravel, little to no fines	Descriptive Term Size Range and Sieve Number. Boulders Larger than 12* Cobbles 3* to 12*
ined Solls -	re of Coarse o, 4 Sleve	%9% 19% 19%	sı	Poorly-graded sand and sand with gravel, little to no fines	Gravel 3° to No. 4 (4.75 mm) Coarse Gravel 3° to 3/4° Fine Gravel 3/4° to No. 4 (4.75 mm) Sand No. 4 (4.75 mm) to No. 200 (0.075 mm)
Coarse-Gra	Sands - 50% ⁽¹⁾ or More of Coarse Fraction Passes No. 4 Sleve	Fines (3)	sı	Silty sand and silty sand with gravel	Coarse Sand No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand No. 40 (0.425 mm) to No. 200 (0.075 mm) Silt and Clay Smaller than No. 200 (0.075 mm)
() ()	Sands -	E46%	SC	Clayey sand and clayey sand with gravel	(3) Estimated Percentage Moisture Content Component Percentage by Dry- Absence of moisture, Component Weight dusty, dry to the touch
Sleve	ys han 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	Trace <5 Slightly Molst - Perceptible Few 5 to 10 moisture Little 15 to 25 Moist - Damp but no visible With - Non-primary coarse water
50% (1) or More Passes No. 200 Sleve	Silts and Clays		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	constituents: ≥ 15% Very Moist - Water visible but - Fines content between not free draining 5% and 15% Wet - Visible free water, usually from below water table
or More Pas	S		O.L	price using	Symbols Blows/6" or Sampler portion of 6" Type / Surface seal
i ,	iys r More		HM	diatomaceous fine sand or silt	2.0° OD Sampler Type Split-Spoon Sampler Sampl
Fine-Grained Soils	Silts and Clays Liquid Limit 50 or More		СН	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample Bulk sample 3.0" OD Thin-Wall Tube Sampler (including Shelby tube) Grab Sample
Fine	計		он	Organic clay or silt of medium to high plasticity	(1) Percentage by dry weight (2) (SPT) Standard Penetration Test ATD = At time of drilling
Highiy	Organic Solis		PT	Peat, muck and other highly organic soils	(ASTM D-1586) (3) In General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488) Static water level (date) (5) Combined USCS symbols used for fines between 5% and 15%

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Associated Earth Sciences, Inc.

Asso	ociated	Earth Sciences, Inc.	Proj	Geo ect Nu	logic	8 N	Nonitoring Well Construction Log Well Number Sheet
	***		KE	0902	31A		MW-1 1 of 3
Projec	t Name	Go East Landfill of Well Casing) ~262'					Location Snohomish County, WA Surface Elevation (ft) ~259'
Water	Level El	levation ~211'					Date Start/Finish 8/11/09 8/12/09 Hole Diameter (in) 6 1/4" I.D.
	g/Equipm ner Weigl	ht/Drop <u>Casca</u>	de CME 75 30"				Tible Diameter (iii) 0 174 1.D.
						-일-o	
Depth (#)	Water Level				Blows/ 6"	Graphic Symbol	
	Wate	WELL CONSTRUC	CTION	T	ш.	000	DESCRIPTION
	V	Well monument			-		Vashon Advance Outwash
-		(aboveground) Concrete					
				-			
				-			
- 5		Bentonite chips		+	8		Moist, slightly rust-stained brownish gray, fine to medium SAND, with trace gravel.
				1	12 28		tiate gravei.
-							
				1			
- 10				1	14 28		Moist, brownish gray, fine to medium SAND, with silty zones and coarse sand beds.
				1	40		Godfac Band Book.
-							
-				4			
- 15				+	10		Wet, slightly rust-stained brownish gray, fine to medium SAND, with trace gravel.
_			•]	15 25		uate graver.
-				-			
_				4			
-20		Bentonite grout		$-\frac{1}{1}$	8		Moist, bluish gray, SILT.
				1	18 21		
-				\downarrow			
}				1			
-25				中	50/6"		Moist, brownish gray, fine to medium SAND.
]			
-							
<u> </u>							
30					25 50/5"		Moist, slightly rust-stained brownish gray, fine to medium SAND, with a silt lens containing trace charcoal.
				.			
-				}			
-35				+	18 33		Moist, brownish gray, fine to medium SAND, with siltier zones.
				1	34		
-				.			1 ;
-				1			
s	ampler T	Type (ST):					
1	2"	OD Split Spoon Sampler			есочегу		M - Moisture Logged by: JPL
		OD Split Spoon Sampler			Sample	_	✓ Water Level (8/19/09) Approved by:
t	Gr.	ab Sample	П	Shelb	y Tube 🤄	Sample	Water Level at time of drilling (ATD)

	變	6.1		Project KE090			-11	lonitoring Well Con Well Number MW-1	2 of 3 Snohomish County, WA
evation ater later	Name on (Top Level E /Equipr er Weig	of W levation	Cascade	CME 75				Location Surface Elevation (ft) Date Start/Finish Hole Diameter (in)	~259' 8/11/09 8/12/09 6 1/4" I.D.
(ft)	Water Level	WE	ELL CONSTRUCT	ION	ST	Blows/ 6"	Graphic Symbol	DESCR	RIPTION
			0		T	36 50/5"		Moist, bluish gray, fine to mediu	n SAND, with siltier zones.
	华玉蒙				1	E2.70		Driller reports significant water.	
45	$\bar{\Delta}$	4.17			T	50/6"		Above bottom 6": Same as abo Bottom 6": Moist, bluish gray, S sand partings.	ve (filled sampler [heave?]). ILT, with a few light gray, very fine
50	*	光平型多光温			1	24 27 41		Moist, bluish gray, silly very fine	SAND interbedded with sandy SILT
55			×*			14 17 32		Moist, bluish gray, SILT.	
60	· · · · · · · · · · · · · · · · · · ·		Bentonite chips			10 23 26		Moist to wet, bluish gray, fine S.	AND.
65			Silica sand 2/12		1	18 28 39		Wet, same.	
70			2" I.D. Schedule 40 P machine slotted well with 0.010" slots (65'	screen	1	16 24 36		Wet, bluish gray, silty very fine fine sand.	SAND interbedded with SILT, with
75	A. 1968	**************************************	Threaded end cap			10 22 27			Glacial Lacustrine y fine sand, a few very fine sand dium sand.

Asso	ciate	ed Earth Sciences, Inc.		Geo	logic	: & N	onitoring Well Cons	struction Log
				ject Nur 09023			Well Number MW-1	3 of 3
Projec	t Nan	ne <u>Go East Landfill</u>					Location Surface Elevation (ft)	Snohomish County, WA ~259'
Elevat Water	ion (T Leve	Fop of Well Casing) ~262' I Elevation ~211'					Date Start/Finish	8/11/09 8/12/09 6 1/4" I.D.
Drilling	g/Equ ier Wi	ipment <u>Cascac</u> eight/Drop <u>140#/3</u>	le CME 75 30"				Hole Diameter (in)	6 1/4 1.D.
	1 1					27		
Depth (ff)	r Lev				Blows/ 6"	Graphic Symbol		
Δ	Water Level	WELL CONSTRUC	TION	S	<u>a</u>	დთ	DESCF	RIPTION
					14		Moist, bluish gray, SILT, with sca	attered white sand-sized grains.
_				1	14 22 28			
ŀ]				
]				
-85				+	1.0		Moist, bluish gray, SILT, with a fo	ew very fine sand partings.
_				1	18 23 24		,	•
-				1				
-].				
-90				4	45	-	Moist, bluish gray, SILT.	
-			•	1	15 21 25		, , , , , , , , , , , , , , , , , , ,	
-								
-]				•
95				4			Moist bluish gray SILT with a f	ew very fine sand partings and a fine
-					9 17 30		sand bed.	
-				1	30			
-]			,	
100				1			Moist, bluish gray, SILT, with a f	ew very fine sand partings.
100				.	12 19 26	:		
-				F	7		Boring terminated at 101.5 feet of	n 8/12/09
<u> </u>				-				
105]	1			
- 100								
-				1				
<u> </u>				1				
110]				
7110								
-								
-				.				•. •
115]				
i - 13				1		1		
-				1				
5								
115 S		ler Type (ST):	apr. [1	M			M - Moisture	Logged by: JPL
S	Ш	2" OD Split Spoon Sampler (ecovery Sample		✓ Water Level (8/19/09)	Approved by:
1	<u> </u>	3" OD Split Spoon Sampler (D&M) ∏ ∏			Sample	Water Level at time of d	
ž	C	Grab Sample		OF ICIL	.,	221.1010		

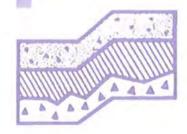
Asso	ciate	d Earth Sciences, Inc.		Geolo	ogic	: & M	onitoring Well Construction Log Well Number Sheet
22			Proje KE(ect Numb 090231	oer A		MW-2 1 of 2
Projec	t Name	e Go East Landfill					Location Snohomish County, WA Surface Elevation (ft) ~232'
Water	Level	op of Well Casing) <u>~234'</u> Elevation <u>~183'</u>					Date Start/Finish 8/12/09 8/12/09 Hole Diameter (in) 6 1/4" I.D.
Drilling		pment <u>Casca</u> eight/Drop <u>140#</u>	de CME 75 730"				Hole Diameter (III) 0 174 1.D.
		ngitt top				0-5	
Depth (#)	Water Level				Blows/ 6"	Graphic Symbol	
ا م	later	WELL CONSTRU	CTION	S	m	ত ত	DESCRIPTION
		·					Vashon Advance Outwash
		Well monument (aboveground)	•	4			Vasion Advance Odition
-		Concrete		4			
<u> </u>				1			
_							SAND OVOE
- 5		Bentonite chips		\mathbb{T}	10 12	l I	~4" moist, rust-stained brownish gray, fine to medium SAND over moist, brownish gray to bluish gray (with depth), SILT.
				뷥	14		
-			•	1			
-							
- 10				廿	11		Moist, brownish gray, fine SAND.
_				14	11 13		
			•]			
- 15					0		Moist, brownish gray, fine SAND interbedded with brownish gray, SILT, rust staining at contacts.
-	di Billi di Ci				9 19 29		SILT, rust staining at contacts.
<u> </u>	THE PERSON			-			
-	N N N N N N N N N N N N N N N N N N N			1			
-	. Spiriting						The San CAND with a modium cand
-20	III	Bentonite grout			8 12 17		Moist to wet, brownish gray, silty fine SAND, with a medium sand bed, interbedded with brownish gray, SILT.
	HILIPARAN				17		
_	III SIEBERI				,		
-	NAME OF THE PARTY						
-25	Stephiller				5		Moist, brownish gray, fine SAND.
-	and and a]_	14 22		
			*				·
				-			
-30				-	13		Wet, same, with slight rust staining.
-				. 1	21		
F				1			
F							
3				1			Mot same with siltier zones
35					21 26		Wet, same with siltier zones.
3	.			+	33		
SING.				1			
NWWELL 090231A.GPJ BORING.GDT 9/10/US				1			•
5	Samol	eler Type (ST):	,		بار		
BU23 1		2" OD Split Spoon Sampl	er (SPT)	No Re	ecover	У	M - Moisture Logged by: JPL
1		3" OD Split Spoon Sampl	er (D & M)		Sample		₩ Water Level (8/19/09) Approved by:
NAV.	3	Grab Sample		Shelb	y Tube	Sample	e Water Level at time of drilling (ATD)

Asso	cia	ted E	arth	Sciences, Inc.	C	ieo!	logic	: & N	onitoring Well Construction Log Well Number Sheet
	(å	*				ct Nun 9023			MW-2 2 07 2
rojec	t Na	me	1 143	So East Landfill	11110				Location Snohomish County, WA Surface Elevation (ft) ~232'
levati	ion (Top o	f We	ell Casing) <u>~234'</u> ~183'			-		Date Start/Finish 8/12/09 8/12/09
rillina	/Ea	uiome	nt	Cascade	CME 75				Hole Diameter (in) 6 1/4" I.D.
amm		Veight	יוטוני	р <u>140# / 30</u>					
Depth (ft)	Water Level	}			•		Blows/ 6"	Graphic Symbol	
<u> </u>	/ater		WE	ELL CONSTRUCTION	ON	S	BE	ගි ගි	DESCRIPTION
	5					_			Moist to wet, brownish gray, SILT, with fine sand beds.
						Щ	11 21 21		Modern Hot Drawn 20 y
						4	•		
45						+	10		Moist to wet, brownish gray to bluish gray, silty very fine SAND interbedded with SILT, with fine sand.
				Bentonite chips		1	12 26 37		interbedded with SILT, with fine sand.
				•		1			
	꼬		2116	Silica sand 2/12					
50						+	11		Wet, bluish gray, fine SAND, medium sand laminae with organics at
						.	19 22		50.5'.
•				2" I.D. Schedule 40 PV	/C]			
				machine slotted well swith 0.010" slots (50' to	o 60')				
55						+	12		Wet, bluish gray, silty very fine SAND.
						#	20 24		
						1			Pre-Vashon Glacial Lacustrine
-						-			Lie-Assion diacial racustime
-60				Threaded end cap		+	7	,	Moist, bluish gray, SILT.
							19 22		Boring terminated at 61.5 feet on 8/12/09
						1			
-65						\dashv			
]			
						-			
						-			
-70						+			
]			
						1			
						}			
-75						4			
						-			
	Sam	nler T	Vne	(ST);					
•		2" (DD:	Split Spoon Sampler (SI	PT)	No R	tecover	/	M - Moisture Logged by: JPL
				Split Spoon Sampler (D		Ring	Sample	9	

oject Name	Go East Landfill	Ge Project KE090	Number	2 & M	lonitoring Well Con- Well Number MW-3 Location	Struction Log Sheet 1 of 2 Snohomish County, WA
evation (Top ater Level Ele illing/Equipmanmer Weigh	of Well Casing) <u>~245'</u> evation <u>~214'</u> ent <u>Casca</u>	de CME 75 30"			Surface Elevation (ft) Date Start/Finish Hole Diameter (in)	~243' 8/13/09 8/13/09 6 1/4" I.D.
(ft) (Water Level	WELL CONSTRUC	CTION	LS Blows/ 6"	Graphic Symbol	DESCF	RIPTION
	Well monument (aboveground) Concrete				Vashon Ad	vance Outwash
5	Bentonite chips		2 4 6		Wet, slightly rust-stained brownic	sh gray, fine to medium SAND.
0			6 11 13		Moist, rust-stained bluish gray, b Bottom 3": Moist, brownish gray gravel.	redded SILT.
5			10 16 21		Moist, brownish gray, fine to me	dium SAND, with trace gravel.
0	Bentonite grout		8 13 13		Moist, brownish gray, fine to me	dium SAND.
5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			10 13 16		Moist, same.	
0			20 29 22		Wet, brownish gray, fine SAND,	with siltier zones.
5			11 18 29		cilf	aish gray, fine to medium SAND, w

Asso	ciated Ear	th Sciences, Inc.	G	ieo	logic	: & N	Ionitoring Well Construction Log Well Number Sheet
			Projec KE0				Well Number Sheet MW-3 2 of 2
Projec	t Name	Go East Landfill	1120	0020			Location Snohomish County, WA
Elevati	on (Top of V Level Eleval	Vell Casing) ~245'					Surface Elevation (ft) ~243' Date Start/Finish 8/13/09.8/13/09 Hole Diameter (in) 6 1/4" I.D.
Drilling	/Equipment	Cascade	CME 75				Hole Diameter (in) 6 1/4" I.D.
Hamm	er Weight/D	rop <u>140# / 30</u>)"				
Depth (ft)	Water Level	·			"s/	Graphic Symbol	
Deg	afer l	ELL CONSTRUCT	IONI :	s	Blows/ 6"	Gra	DESCRIPTION
	× VV	ELL CONSTRUCT	IOIA	T	ļ		
					12 20	-	Moist, bluish gray, SILT.
			•	#	26		
-				4			
			•				
-45				+	12 21		Wet, bluish gray, fine SAND, with silt.
ŀ		Bentonite chips		1	21 29		·
]			
		Silica sand 2/12		-			
50		• •		+	14		Wet, same.
				-1	18 21		
-		2" I.D. Schedule 40 P	VC	1			
<u> </u>		machine slotted well s with 0.010" slots (50'	creen to 60')				
-55			•]			Moist to wet, bluish gray, laminated SILT, with very fine sand.
_ 33					12 24		Moist to wet, bluish gray, landhated St.L., with very line same.
-				1	30		
-				1			Pre-Vashon Glacial Lacustrine
}				1			
60		Threaded end cap			14 24		Moist, bluish gray, SILT, with a few very fine sand partings and a bed of fine sand.
				1	28		Boring terminated at 61.5 feet on 8/13/09
				4			
-				1			
65				+			
-				1			
] .						
-				-			
70				4			•
-				4			
F				1			
75							
75 -	.			1			
-				4			
				1			
<u>. </u>				1			
S S S S S S S S S S S S S S S S S S S	ampler Type						
2020		Split Spoon Sampler (Sl	. —		ecovery		M - Moisture Logged by: JPL
1	∭ 3" OD	Split Spoon Sampler (D			Sample	٠.	☐ Water Level (8/19/09) ☐ Approved by:
222	Grab S	Sample	Ø	Shelb	y Tube	Sample	▼ Water Level at time of drilling (ATD)

	ciated Earl		Geologic Project Number KE090231A	c & N	Ionitoring Well Construction Log Well Number Sheet MW-4 1 of 2 Location Snohomish County, WA
Elevati Water Drilling	ion (Top of V Level Elevat d/Equipment er Weight/D	Vell Casing) ion No water (8/19 Cascade CME	/09) 75		Surface Elevation (ft) ~206' Date Start/Finish 8/14/09 8/14/09 Hole Diameter (in) 6 1/4" I.D.
Depth (ft)	Water Level	ELL CONSTRUCTION	Blows/	Graphic Symbol	DESCRIPTION
		Locking cap Concrete Bentonite chips			Vashon Advance Outwash
- 5		Bentonite grout	6 8 10		Moist, grayish brown, fine SAND, little silt (SM).
10 		2" I.D. Schedule 40 PVC blank	7 9 10		Moist, grayish brown, fine SAND, few slit (SP).
15 		Bentonite chips	7 11 12		Becomes slightly more gray, trace silt, trace rust mottling. Moist to very moist, grayish tan, silty fine SAND (SM).
-20 -20		#2/12 silica sand	9 -11 15 18		Wolf to foly mole, graften and any moles (cony)
-25		2" I.D. Schedule 40 PVC machine slotted well screen with 0.010" slots (20' to 30')	6 14 19		Pre-Vashon Glacial Lacustrine
-30		Threaded end cap	6 8 16		Wet, grayish tan, SILT (ML); non-plastic, contains dilatant zones.
-35		Bentonite chips	5 9 11		Becomes blue-gray and very moist to wet.
-35 - - - - S	3" OD	e (ST): Split Spoon Sampler (SPT) Split Spoon Sampler (D & M) Sample	No Recovery Ring Sample Shelby Tube	e	M - Moisture Logged by: TJP Water Level () Approved by: Water Level at time of drilling (ATD)

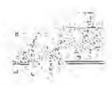

Asso	cia	ted Ear	th Sciences, Inc.		Geo	ologio umber	8. N	lonito	ring Well Con	struction	on Log Sheet	
2.2	- A			i -	KE0902	31A			MVV-4	ŀ	2012	
Projec	t Na	me Top of l	Go East Landf Well Casing)						Location Surface Elevation (ft)	<u>Snohomi</u> ~206'	sh County, W	<u> </u>
Water	Lev	el Eleva	tion No w	vater (8/19 cade CME # / 30"	/09)				Date Start/Finish Hole Diameter (in)	8/14/09 8 6 1/4" I.D	3/14/09	
Drilling Hamm	ı/Eqi er V	uipment Veight/D	<u>Caso</u> rop 140#	cade CME # / 30"	75				Hole Diameter (iii)	0 174 1.0	'•	
						1	0-5				-	
Depth (ft)	Water Level					Blows/ 6"	Graphic Symbol					
مَ ا	Vater	$ $ $_{\rm W}$	ELL CONSTRU	JCTION		SÖ	ଠିତି		DESC	RIPTION		
	>					1						-
				. •		11 13 17						
					4	17						
Ī						}	Ì					
-												
- 45					- 1	9				*		
-					1	12 18		Boring te	rminated at 46.5 feet or	8/14/09		
			·									
					4							
-50			·					1				
-					-	-						
-					1							
-					1					•		
-55												
					-							
-					. 1	-					•	
				•								
- 60												
<u> </u>					1	, .						
					.]							•
					.							
-65												
}									•			
-												
-					-							
70												
-70										•		
-				•								
}					1							
<u> </u>					-	1	1					
- 75 -					- 							
					1							
	-											
-					-							
S	<u> </u>	<u></u>	(0.7)				1	<u> </u>				
S	amp ∭	oler Type	e (ST): Split Spoon Sampl	er (SPT)	∏ No F	Recovery		М -	Moisture		Logged by:	TJP
	Ш		Split Spoon Sampl			Sample			Water Level ()		Approved by:	
			Sample	(= ,··/	P2.3	by Tube			Water Level at time of d	rilling (ATD)		
1	\boxtimes	UI du c	- airipio		<u>E</u>	,						

APPENDIX B
Geotechnical Report (Terra Associates 2019)

GEOTECHNICAL REPORT

Bakerview 4330 – 108th Street SE Everett, Washington

Project No. T-8096-1



Terra Associates, Inc.

Prepared for:

Pulte Homes of Washington, Inc. Bellevue, Washington

March 13, 2019

TERRA ASSOCIATES, Inc.

Consultants in Geotechnical Engineering, Geology and Environmental Earth Sciences

> March 13, 2019 Project No. T-8096-1

Mr. Jim Sprott Pulte Homes of Washington, Inc. 3535 Factoria Blvd., Suite 600 Bellevue, Washington 98006

Subject:

Geotechnical Report

Bakerview

4330 – 108th Street SE Everett, Washington

Dear Mr. Sprott:

As requested, we have conducted a geotechnical engineering study for the subject project. The attached report presents our findings and recommendations for the geotechnical aspects of project design and construction.

Our field exploration indicates the site is generally underlain by 5 to 18 inches of organics overlying native soils consisting of various layers of sand with silt, silty sand, and sandy silt to the termination of the test pits. There were two exceptions to this general condition. The first was observed in Test Pits TP-1, TP-2, and TP-3 where we observed approximately two to three feet of medium dense, inorganic fill material overlying the native soils. The second was observed in Test Pit TP-15 where we observed approximately seven and one-half feet of loose, organic fill material overlying the native soils. We observed minor perched groundwater seepage at five tests pits between depths of four and six feet below current site grades.

In our opinion, the native soils on the site will be suitable for support of the proposed development, provided the recommendations presented in this report are incorporated into project design and construction.

We trust the information presented in this report is sufficient for your current needs. If you have any questions or require additional internation please call.

Sincerely was

TERRA SSOCIATES

Carolyn S

en 3-13-19

TABLE OF CONTENTS

		Pag	e No.
1.0	Proie	ect Description	1
2.0		be of Work	
3.0		Conditions	
17.17	3.1	Surface	
	3.2	Subsurface	
	3.3	Groundwater	
	3.4	Geologic Hazards	
		3.4.1 Erosion Hazard Areas	
		3.4.2 Landslide Hazard Areas	
		3.4.3 Seismic Hazard Areas	5
4.0	Disci	ussion and Recommendations	6
	4.1	General	6
	4.2	Site Preparation and Grading	7
	4.3	Excavation	8
	4.4	Foundation Support	8
	4.5	Floor Slab-on-Grade	
	4.6	Drainage	9
	4.7	Utilities	10
	4.8	Pavement	
5.0	Addi	itional Services	11
6.0	Limit	tations	11
Figures			
Vicinity	Мар	Figu	ire 1
		cation PlanFigu	
Append	<u>ix</u>		
Field Ex	ploration	on and Laboratory Testing	dix A

Geotechnical Report Bakerview 4330 – 108th Street SE Everett, Washington

1.0 PROJECT DESCRIPTION

The project consists of developing a single tax parcel totaling approximately 40.64 acres with 96 single-family residential building lots, stormwater facilities, and associated access and utilities. The project site is located around a landfill that is in the process of being closed. Based on the preliminary grading plans prepared by Pace Engineers, dated October 23, 2018 for the landfill closure, grading to achieve building lot and roadway elevations will consist of cuts and fills from 1 to 16 feet. Site stormwater will be collected and directed to a stormwater pond in the approximate center of the landfill. Vertical grade transitions throughout the site will be supported by retaining walls and slopes.

We expect that the residential buildings on the lots will be two- to three-story wood-framed single-family residences constructed over a crawl space with an attached garage constructed at grade. Structural loading for these buildings is expected to be generally light; with bearing walls carrying loads of one to three kips per foot and isolated columns carrying maximum loads of 30 to 40 kips.

The recommendations contained in the following sections of this report are based on our understanding of the above design features. If actual features vary or changes are made, we should review them in order to modify our recommendations, as required. We should review final design drawings and specifications to verify that our recommendations have been properly interpreted and incorporated into project design.

2.0 SCOPE OF WORK

Our work was completed in accordance with our authorized proposal, dated December 20, 2018. Accordingly, on January 31, 2019, we observed soil conditions at 15 test pits excavated to depths of about 12 to 14 feet below existing site grades. Using the information obtained from the subsurface exploration and laboratory testing, we performed analyses to develop geotechnical recommendations for project design and construction. Specifically, this report addresses the following:

- · Soil and groundwater conditions
- Geologic hazards per the City of Everett Municipal Code
- Seismic design parameters per 2015 International Building Code (IBC)
- · Site preparation and grading
- Excavations
- Foundations
- Floor slabs
- Drainage
- Utilities
- Pavements

It should be noted that recommendations outlined in this report regarding drainage are associated with soil strength, design earth pressures, erosion, and stability. Design and performance issues with respect to moisture as it relates to the structure environment are beyond Terra Associates' purview. A building envelope specialist or contractor should be consulted to address these issues, as needed.

3.0 SITE CONDITIONS

3.1 Surface

The project site consists of a single tax parcel totaling approximately 40.64 acres located at 4330 – 108th Street SE in Everett, Washington. The approximate site location is shown on Figure 1.

The site is currently occupied by a landfill that is in the process of being closed. The landfill occupies the center of the project site and extends partially to the west. The landfill closure plans include overexcavation and removal of the soils associated with the landfill within the proposed project footprint. The site is currently covered with tall grass, weeds, and areas of clustered mature trees. Site topography consists of a slope that descends from the northwest to the southeast. The slope transitions across the site and has various gradients from relatively flat to steep.

3.2 Subsurface

In general, the soil conditions observed in the test pits consisted of 5 to 18 inches of organics overlying native soils consisting of various layers of sand with silt, silty sand, and sandy silt to the termination of the test pits. There were two exceptions to this general condition. The first was observed in Test Pits TP-1, TP-2, and TP-3 where we observed approximately two to three feet of medium dense, inorganic fill material overlying the native soils. The second was observed in Test Pit TP-15 where we observed approximately seven and one-half feet of loose, organic fill material overlying the native soils.

The Geologic Map of the Everett 7.5 Minute Quadrangle, Snohomish County, Washington by J.P. Minard (1985) indicates the site is underlain by advance outwash (Qva), Vashon till (Qvt), and transitional bed materials (Qtb). The soils observed in our test pits are consistent with these mapped descriptions.

The preceding discussion is intended to be a general review of the soil conditions encountered. For more detailed descriptions, please refer to the Test Pit in Appendix A.

3.3 Groundwater

We observed minor to moderate, perched groundwater seepage in Test Pits TP-9, TP-10, TP-11, TP-12, and TP-14 between four to six feet below current site grades, respectively. The groundwater was noted to flow generally from sandier layers within the glacial till or transitional bed material. This groundwater seepage would not be significantly affected by seasonal weather variations and would likely be present during the drier summer and fall months. However, once exposed by excavation, we would anticipate the rate and volume of flow will diminish as storage from the isolated sandier zones is depleted.

3.4 Geologic Hazards

We evaluated site conditions for the presence of geologic hazards as designated in Chapter 19.37.080 "Geologically Hazardous Areas" of the City of Everett Municipal Code (EMC).

3.4.1 Erosion Hazard Areas

Section 19.37.080 (3) of the Everett Municipal Code (EMC) defines an erosion hazard as:

- "a. Those areas defined as high and very high/severe risk of erosion in the Dames and Moore Methodology for the Inventory, Classification and Designation of Geologically Hazardous Areas, City of Everett, Washington: July 1, 1991:
 - High erosion hazard areas include slopes of 25 to 40 percent in Qva and Qal geologic units;
 and slopes of greater than forty percent in other (not Qva or Qal) geologic units.
 - Very high/severe erosion hazard areas include slopes of greater than 40 percent in Qva and Qal geologic units.
 - b. Those areas defined as medium risk of erosion in the Dames and Moore Methodology for the Inventory, Classification and Designation of Geologically Hazardous Areas, City of Everett, Washington: July 1, 1991, when they contain debris and mud flows, gullying or rifling, immature vegetation, or no vegetation:
 - i. Slopes of 25 to 40 percent in other (not Qva or Qal) geologic units."

The soils encountered on-site are classified as Alderwood gravelly sandy loam, 0 to 8 percent slopes and Alderwood-Everett gravelly sandy loams, 25 to 70 percent slopes by the United States Department of Agriculture Natural Resources Conservation Service (NRCS). These soil types are rated as having a slight to severe potential for erosion when exposed. Therefore, according to the EMC, the site would be considered an erosion hazard area.

Implementation of temporary and permanent Best Management Practices (BMPs) for preventing and controlling erosion will be required and will mitigate the erosion hazard. As a minimum, we recommend implementing the following erosion and sediment control BMPs prior to, during, and immediately following construction activities at the site.

Prevention

- Limit site clearing and grading activities to the relatively dry months (typically May through September).
- Limit disturbance to areas where construction is imminent.
- Locate temporary stockpiles of excavated soils no closer than ten feet from the crest of the slope.
- Provide temporary cover for cut slopes and soil stockpiles during periods of inactivity. Temporary cover
 may consist of durable plastic sheeting that is securely anchored to the ground surface or straw mulch.
- Establish permanent cover over exposed areas that will not be disturbed for a period of 30 days or more by seeding, in conjunction with a mulch cover or appropriate hydroseeding.

Containment

- Install a silt fence along site margins and downslope of areas that will be disturbed. The silt fence should be in place before clearing and grading is initiated.
- Intercept surface water flow and route the flow away from the slope to a stabilized discharge point. Surface
 water must not discharge at the top or onto the face of the steep slope.
- Provide on-site sediment retention for collected runoff.

The contractor should perform daily review and maintenance of all erosion and sedimentation control measures at the site.

3.4.2 Landslide Hazard Areas

Section 19.37.080 (1) of the EMC defines a landslide hazard area as

- "a. Those areas defined as high and very high/severe risk of landslide hazard in the Dames and Moore Methodology for the Inventory, Classification and Designation of Geologically Hazardous Areas, City of Everett, Washington: July 1, 1991:
- Very high/severe: slopes greater than 15 percent in the Qtb, Qw, and Qls geologic units; and slopes greater than 15 percent with uncontrolled fill.
 - ii. High: slopes greater than 40 percent in all other geologic units (not Qtb, Qw, and Qls or uncontrolled fill).
 - b. Those areas defined as medium risk of landslide hazard in the Dames and Moore Methodology for Inventory, Classification and Designation of Geologically Hazardous Areas, City of Everett, Washington: July 1, 1991, when combined with springs or seeps, immature vegetation, and/or no vegetation:
 - i. Slopes less than 15 percent for Qtb, Qw, and Qls geologic units and uncontrolled fill.
 - ii. Slopes of 25 percent to 40 percent in all other geologic units.
 - c. Any area with all three of the following characteristics:
 - i. Slopes greater than 15 percent.
 - Hillsides intersecting geologic contacts with a relatively permeable sediment overlying a relatively impermeable sediment or bedrock.
 - iii. Springs, groundwater seepage, or saturated soils.

- d. Any area which has shown movement during the Holocene epoch (from 10,000 years ago to the present) or which is underlain or covered by mass wastage debris of that epoch.
- Any area potentially unstable as a result of rapid stream incision, stream bank erosion, or undercutting by wave action.
- f. Areas of historic failures, including areas of unstable, old and recent landslides or landslide debris within a head scarp, and areas exhibiting geomorphological features indicative of past slope failure, such as hummocky ground, slumps, earthflows, mudflows, etc.
- g. Any area with a slope of 40 percent or steeper and with a vertical relief of fifteen or more feet, except those manmade slopes created under the design and inspection of a geotechnical professional, or slopes composed of consolidated rock.
- h. Areas that are at risk of landslide due to high seismic hazard.
- i. Areas that are at risk of landslides or mass movement due to severe erosion hazards."

There are portions of the site that meet the definitions of a and b outlined above. However, during the closure process of the landfill and during the grading process for the site the majority of the manmade landslide hazards that are currently present will be removed and the result of the grading will create a more stable project site.

The exception to this is the slope along the eastern side of the project the descends from the site to a ravine to the east. Any structure located along this slope should maintain a minimum buffer of 25 feet with a 15-foot building setback for a total of 40 feet from the crest of the slope. Alternatively, the building foundations can be lowered to create a 40-foot horizontal separation from the outside edge of the building foundation and the face of the steep slope.

3.4.3 Seismic Hazard Areas

Section 19.37.080 (2) of the EMC defines a seismic hazard as

- "a. Those areas mapped as seismic/liquefaction hazards per the Dames and Moore Methodology for the Inventory, Classification and Designation of Geologically Hazardous Areas, City of Everett, Washington: July 1, 1991.
- b. Those areas mapped as high and moderate to high liquefaction susceptibility on the Liquefaction Susceptibility Map of Snohomish County, Washington, Washington State Department of Natural Resources, Palmer, Stephen, et al., September 2004."

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of fine grained sand that are below the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction; thus, eliminating the soil's strength.

The glacial sediments observed at the site were observed to be in a medium dense to very dense state and would typically exhibit moderate to high shear strengths capable of offsetting the liquefaction inducing stresses caused by a design level earthquake. Therefore, it is our opinion that the hazard for soil liquefaction during an earthquake and the associated risk or impact is negligible. Therefore, the site would not be meet the seismic hazard area criteria as described above.

Based on soil conditions observed in the test pits and our knowledge of the area geology, per Chapter 16 of the 2015 International Building Code (IBC), site class "D" should be used in structural design. Based on this site class, in accordance with the 2015 IBC, the following parameters should be used in computing seismic forces:

Seismic Design Parameters (IBC 2015)

Spectral response acceleration (Short Period), S _{Ms}	1.386g
Spectral response acceleration (1 - Second Period), S _{M1}	0.794g
Five percent damped .2 second period, S _{Ds}	0.924g
Five percent damped 1.0 second period, S _{D1}	0.529g

These values were determined using the latitude and longitude coordinates of 47.89783°N and 122.171849°W and the OSHPD Seismic Design Maps, accessed on March 12, 2019 at the web site https://seismicmaps.org/.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 General

Based on our study, there are no geotechnical considerations that would preclude development of the site, as currently planned. The residential building can be supported on conventional spread footings bearing on competent inorganic native soil, competent existing fill, or on structural fill placed and compacted above the competent soils. Pavement and floor slabs can be similarly supported.

The approximately seven and one-half feet of loose, organic fill material that was observed in Test Pit TP-15 would not be suitable for support of building foundations, pavements, or other site improvements. We recommend this material be removed from below all building elements and replaced with new structural fill placed and compacted as recommended below. We would note that this test pit was excavated near edge of the landfill closure area.

The native and existing fill soils encountered at the site contain a significant amount of soil fines that will make compaction as structural fill difficult when too wet. The ability to use the soil from site excavations as structural fill will depend on its moisture content and the prevailing weather conditions at the time of construction. If grading activities will take place during the wet winter months, the owner should be prepared to import clean granular material for use as structural fill and backfill.

The following sections provide detailed recommendations regarding the preceding issues and other geotechnical design considerations. These recommendations should be incorporated into the final design drawings and construction specifications.

4.2 Site Preparation and Grading

To prepare the site for construction, all vegetation, organic surface soils, and other deleterious material should be stripped and removed from below building and pavement areas. Stripping depths of 5 to 18 inches should be expected to remove the upper layer of organic material. Soil containing organic material will not be suitable for use as structural fill but may be used for limited depths in nonstructural areas.

As mentioned above, the seven and one-half feet of loose, organic fill material observed in Test Pit TP-15 will not be suitable for support of building foundations and pavements in its current condition. We recommend that this material be removed and replaced with structural fill placed and compacted as outlined below. The lateral extent of the removal will need to be determined in the field during grading.

The closure of the landfill will include over excavation and removal of unsuitable soils located along the perimeter of the landfill and extend into the proposed development area. We recommend the material that is used to restore grades be a structural fill material that is placed and compacted as outlined below.

Once clearing and excavation operations are complete, cut and fill operations can be initiated to establish desired grades. Prior to placing fill, all exposed bearing surfaces should be observed by a representative of Terra Associates, Inc. to verify soil conditions are as expected and suitable for support of new fill. Our representative may request a proofroll using heavy rubber-tired equipment to determine if any isolated soft and yielding areas are present. If excessively yielding areas are observed, and they cannot be stabilized in place by compaction, the affected soils should be excavated and removed to firm bearing and grade restored with new structural fill. Beneath embankment fills or roadway subgrade if the depth of excavation to remove unstable soils is excessive, the use of geotextile fabrics, such as Mirafi 500X, or an equivalent fabric, can be used in conjunction with clean granular structural fill. Our experience has shown that, in general, a minimum of 18 inches of a clean, granular structural fill placed and compacted over the geotextile fabric should establish a stable bearing surface.

The native and existing fill soils encountered at the site contain a sufficient amount of soil fines that will make them difficult to compact as structural fill when too wet or too dry. The ability to use soils from site excavations as structural fill will depend on its moisture content and the prevailing weather conditions at the time of construction. If wet soils are encountered, the contractor will need to dry the soils by aeration during dry weather conditions. Alternatively, the use of an additive such as Portland cement or lime to stabilize the soil moisture can be considered. If the soil is amended, additional Best Management Practices (BMPs) addressing the potential for elevated pH levels will need to be included in the Storm Water Pollution Prevention Program (SWPPP) prepared with the Temporary Erosion and Sedimentation Control (TESC) plan.

If grading activities are planned during the wet winter months, or if they are initiated during the summer and extend into fall and winter, the owner should be prepared to import wet weather structural fill. For this purpose, we recommend importing a granular soil that meets the following grading requirements:

U.S. Sieve Size	Percent Passing
6 inches	100
No. 4	75 maximum
No. 200	5 maximum*

^{*} Based on the 3/4-inch fraction.

Prior to use, Terra Associates, Inc. should examine and test all materials imported to the site for use as structural fill.

Structural fill should be placed in uniform loose layers not exceeding 12 inches and compacted to a minimum of 95 percent of the soil's maximum dry density, as determined by American Society for Testing and Materials (ASTM) Test Designation D-698 (Standard Proctor). The moisture content of the soil at the time of compaction should be within minus one to plus three percent of its optimum, as determined by this ASTM standard. In nonstructural areas, the degree of compaction can be reduced to 90 percent.

4.3 Excavation

All excavations at the site associated with confined spaces, such as utility trenches, must be completed in accordance with local, state, and federal requirements. Based on regulations outlined in the Washington Industrial Safety and Health Act (WISHA), the existing fill and medium dense soils observed at the site would be classified as Type C soils. The dense to very dense native soils would be classified as Type B soil.

Accordingly, temporary excavations in Type C soils should have their slopes laid back at an inclination of 1.5:1 (Horizontal:Vertical) or flatter, from the toe to the crest of the slope. Side slopes in Type B soils can be laid back at a slope inclination of 1:1 or flatter. All exposed temporary slope faces that will remain open for an extended period of time should be covered with a durable reinforced plastic membrane during construction to prevent slope raveling and rutting during periods of precipitation.

Perched groundwater seepage may be encountered at shallow depths within excavations in the native soils. In our opinion, the volume of water and rate of flow into the excavation should be relatively minor and would not be expected to impact the stability of the excavations when completed as described above. Conventional sump pumping procedures along with a system of collection trenches, if necessary, should be capable of maintaining a relatively dry excavation for construction purposes.

The above information is provided solely for the benefit of the owner and other design consultants, and should not be construed to imply that Terra Associates, Inc. assumes responsibility for job site safety. It is understood that job site safety is the sole responsibility of the project general contractor.

4.4 Foundation Support

The buildings can be supported on conventional spread footing foundations bearing on competent native soils, competent existing fill soils, or on structural fills placed above competent soils. As noted above, the existing loose fill material observed in Test Pit TP-15 would not be suitable for support of building foundations in its current condition. Foundation subgrade should be prepared as recommended in Section 4.2 of this report. Perimeter foundations exposed to the weather should bear a minimum depth of 1.5 feet below final exterior grades for frost protection. Interior foundations can be constructed at any convenient depth below the floor slab.

Foundations obtaining support on competent existing fill, native soils or on new structural fill can be dimensioned for a net allowable bearing capacity of 2,500 pounds per square foot (psf). For short-term loads, such as wind and seismic, a one-third increase in this allowable capacity can be used. With structural loading as anticipated and this bearing stress applied, estimated total and differential settlements are expected to be less than one-half inch.

For designing foundations to resist lateral loads, a base friction coefficient of 0.35 can be used. Passive earth pressures acting on the side of the footing can also be considered. We recommend calculating this lateral resistance using an equivalent fluid weight of 350 pcf. We recommend not including the upper 12 inches of soil in this computation because they can be affected by weather or disturbed by future grading activity. This value assumes the foundation will be constructed neat against competent native soil or backfilled with structural fill as described in Section 4.2 of this report. The values recommended include a safety factor of 1.5.

4.5 Floor Slab-on-Grade

Slab-on-grade floors may be supported on subgrade prepared as recommended in Section 4.2 of this report. Immediately below the floor slab, we recommend placing a four-inch thick capillary break layer composed of clean, coarse sand or fine gravel that has less than three percent passing the No. 200 sieve. This material will reduce the potential for upward capillary movement of water through the underlying soil and subsequent wetting of the floor slab.

The capillary break layer will not prevent moisture intrusion through the slab caused by water vapor transmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer and then cover the membrane with a layer of clean sand or fine gravel to protect it from damage during construction, and to aid in uniform curing of the concrete slab. It should be noted that if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will not be effective in assisting uniform curing of the slab and can actually serve as a water supply for moisture bleeding through the slab, potentially affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. We recommend floor designers and contractors refer to the current American Concrete Institute (ACI) Manual of Concrete Practice for further information regarding vapor barrier installation below slab-on-grade floors.

4.6 Drainage

Surface

Final exterior grades should promote free and positive drainage away from the site at all times. Water must not be allowed to pond or collect adjacent to foundations or within the immediate building areas. We recommend providing a positive drainage gradient away from the building perimeters. If this gradient cannot be provided, surface water should be collected adjacent to the structures and disposed to appropriate storm facilities.

Surface water must not be allowed to flow uncontrolled over the crest of the site slopes and embankments. Surface water should be directed away from the slope crests to a point of collection and controlled discharge. If site grades do not allow for directing surface water away from slopes, then water should be collected and tightlined down the slope face in a controlled manner.

Subsurface

We recommend installing perimeter foundation drains adjacent to shallow foundations. The drains can be laid to grade at an invert elevation equivalent to the bottom of footing grade. The drains can consist of four-inch diameter perforated PVC pipe that is enveloped in washed pea gravel-sized drainage aggregate. The aggregate should extend six inches above and to the sides of the pipe. Roof and foundation drains should be tightlined separately to the storm drains. All drains should be provided with cleanouts at easily accessible locations.

4.7 Utilities

Utility pipes should be bedded and backfilled in accordance with American Public Works Association (APWA) or the local jurisdiction specifications. As a minimum, trench backfill should be placed and compacted as structural fill, as described in Section 4.2 of this report. As noted, depending on the soil moisture when excavated most inorganic native soils on the site should be suitable for use as backfill material during dry weather conditions. However, if utility construction takes place during the wet winter months, it will likely be necessary to import suitable wet weather fill for utility trench backfilling.

4.8 Pavement

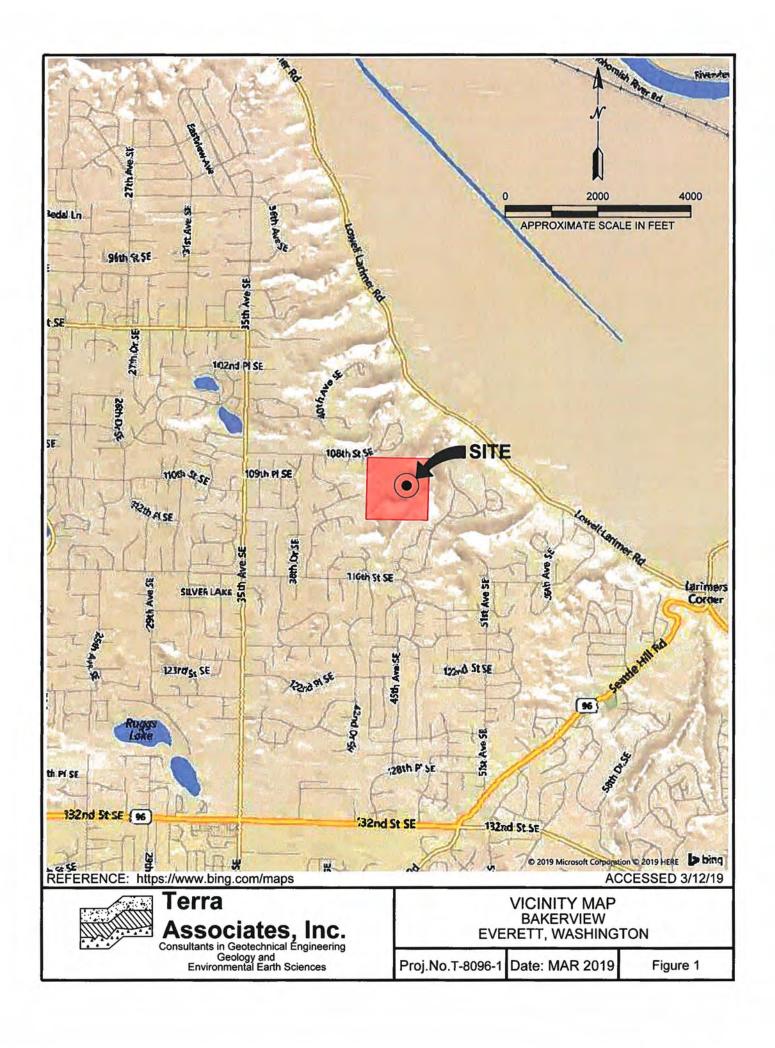
Pavement subgrade should be prepared as described in the Section 4.2 of this report. Regardless of the degree of relative compaction achieved, the subgrade must be firm and relatively unyielding before paving. The subgrade should be proofrolled with heavy rubber-tire construction equipment such as a loaded 10-yard dump truck to verify this condition.

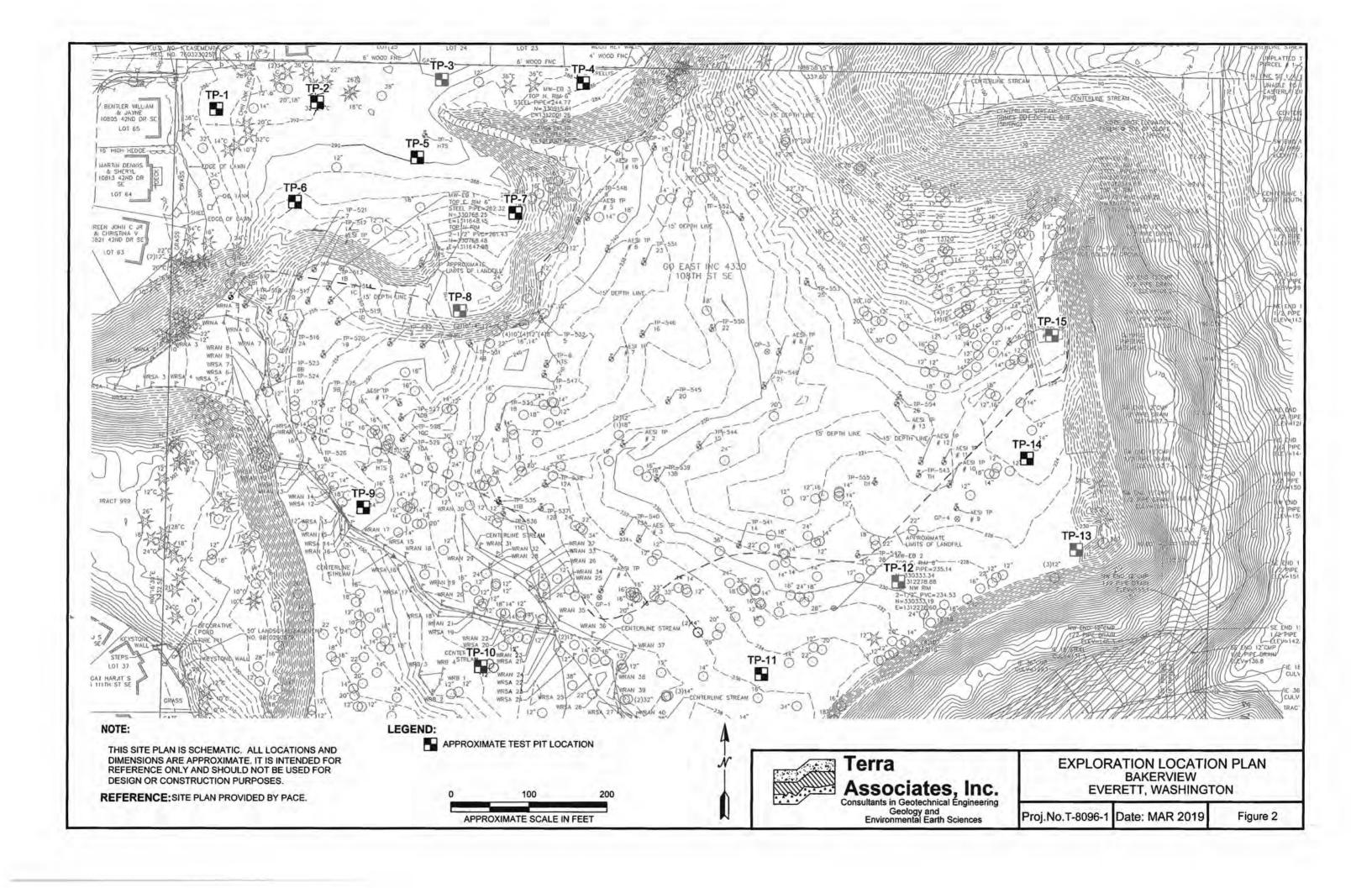
The pavement design section is dependent upon the supporting capability of the subgrade soils and the traffic conditions to which it will be subjected. For the plat access, with traffic consisting mainly of light passenger vehicles with only occasional heavy traffic, and with a stable subgrade prepared as recommended, we recommend the following pavement sections:

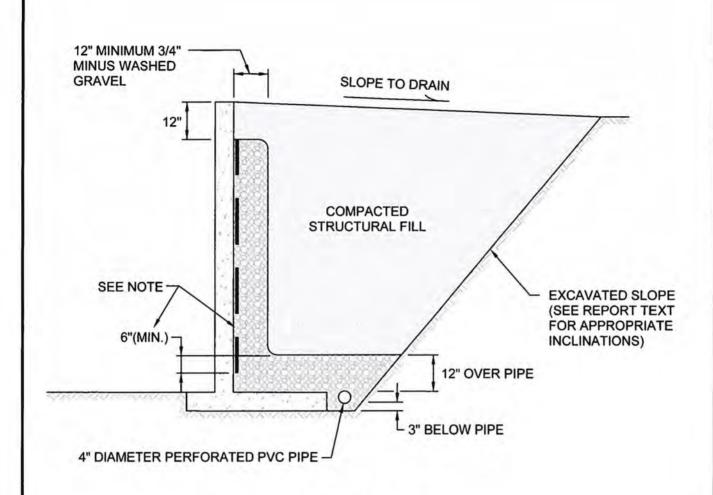
- Two inches of hot mix asphalt (HMA) over six inches of crushed rock base (CRB)
- · Four inches full depth HMA

The paving materials used should conform to the Washington State Department of Transportation (WSDOT) specifications for ½-inch class HMA and CRB.

Long-term pavement performance will depend on surface drainage. A poorly-drained pavement section will be subject to premature failure as a result of surface water infiltrating into the subgrade soils and reducing their supporting capability. For optimum pavement performance, we recommend surface drainage gradients of at least two percent. Some degree of longitudinal and transverse cracking of the pavement surface should be expected over time. Regular maintenance should be planned to seal cracks when they occur.


5.0 ADDITIONAL SERVICES


Terra Associates, Inc. should review the final design drawings and specifications in order to verify that earthwork and foundation recommendations have been properly interpreted and implemented in project design. We should also provide geotechnical service during construction to observe compliance with our design concepts, specifications, and recommendations. This will allow for design changes if subsurface conditions differ from those anticipated prior to the start of construction.


6.0 LIMITATIONS

We prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranty, expressed or implied, is made. This report is the copyrighted property of Terra Associates, Inc. and is intended for specific application to the Bakerview project in Everett, Washington. This report is for the exclusive use of Pulte Homes of Washington, Inc. and its authorized representatives.

The analyses and recommendations present in this report are based on data obtained from the subsurface exploration conducted on-site. Variations in soil conditions can occur, the nature and extent of which may not become evident until construction. If variations appear evident, Terra Associates, Inc. should be requested to reevaluate the recommendations in this report prior to proceeding with construction.

NOT TO SCALE

NOTE:

MIRADRAIN G100N PREFABRICATED DRAINAGE PANELS OR SIMILAR PRODUCT CAN BE SUBSTITUTED FOR THE 12-INCH WIDE GRAVEL DRAIN BEHIND WALL. DRAINAGE PANELS SHOULD EXTEND A MINIMUM OF SIX INCHES INTO 12-INCH THICK DRAINAGE GRAVEL LAYER OVER PERFORATED DRAIN PIPE.

Associates, Inc. Consultants in Geotechnical Engineering Geology and Environmental Earth Sciences

TYPICAL WALL DRAINAGE DETAIL **BAKERVIEW EVERETT, WASHINGTON**

Proj.No.T-8096-1 Date: MAR 2019

Figure 3

APPENDIX A FIELD EXPLORATION AND LABORATORY TESTING

Bakerview Everett, Washington

On January 31, 2019, we investigated subsurface conditions at the site by excavating 15 test pits to a maximum depth of approximately 14 feet below existing surface grades using a track-mounted excavator. The test pit locations were approximately determined by measurements from existing site features and using GPS coordinates from Google Earth. The approximate test pit locations are shown on Figure 2. The Test Pit Logs are presented on Figures A-2 through A-16.

A geotechnical engineer from our office conducted the field exploration. Our representative classified the soil conditions encountered, maintained a log of each test pit, obtained representative soil samples, and recorded water levels observed during excavation. All soil samples were visually classified in accordance with the Unified Soil Classification System (USCS) described on Figure A-1.

Representative soil samples obtained from the test pits were placed in closed containers and taken to our laboratory for further examination and testing. The moisture content of each sample was measured and is reported on the individual Test Pit Logs. Grain size analyses were performed on selected samples. The results are shown on Figures A-17 and A-18.

		MAJOR DIVISIONS	1	LETTER SYMBOL	TYPICAL DESCRIPTION
		CDAVELC	Clean Gravels (less	GW	Well-graded gravels, gravel-sand mixtures, little or no fines.
FINE GRAINED SOILS COARSE GRAINED SOILS	arger e	GRAVELS More than 50% of coarse fraction	than 5% fines)	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
	erial la ve siz	is larger than No.	Gravels with	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.
	More than 50% material larger than No. 200 sieve size	4 31646	fines	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.
	n 50% No. 20	CANDO	Clean Sands (less than	sw	Well-graded sands, sands with gravel, little or no fines.
	e than 5 than No.	SANDS More than 50%	5% fines)	SP	Poorly-graded sands, sands with gravel, little or no fines.
	Mor	of coarse fraction is smaller than No. 4 sieve	Sands with	SM	Silty sands, sand-silt mixtures, non-plastic fines.
		INO, 4 Sieve	fines	sc	Clayey sands, sand-clay mixtures, plastic fines.
	aller			ML	Inorganic silts, rock flour, clayey silts with slight plasticity.
OILS	ial sma	SILTS AND Liquid Limit is les		CL	Inorganic clays of low to medium plasticity. (Lean clay)
EDS	mater 0 siev	Liquid Limit is less than 5		OL	Organic silts and organic clays of low plasticity.
RAIN	50% m lo. 200	Janasas		МН	Inorganic silts, elastic.
NE G	More than 50% material smaller than No. 200 sieve size	4 10 12 11 11 11	SILTS AND CLAYS Liquid Limit is greater than 50%		Inorganic clays of high plasticity. (Fat clay)
Œ	More				Organic clays of high plasticity.
		HIGHLY OR	SANIC SOILS	PT	Peat.

DEFINITION OF TERMS AND SYMBOLS

ESS	Density	Standard Penetration Resistance in Blows/Foot	I	2" OUTSIDE DIAMETER SPILT SPOON SAMPLER
COHESIONLESS	Very Loose Loose	0-4 4-10	I	2.4" INSIDE DIAMETER RING SAMPLER OR SHELBY TUBE SAMPLER
OFE	Medium Dense Dense	10-30 30-50	•	WATER LEVEL (Date)
0	Very Dense	>50	Tr	TORVANE READINGS, tsf
	1 S-20-57	Standard Penetration	Pp	PENETROMETER READING, tsf
M	Consistancy	Resistance in Blows/Foot	DD	DRY DENSITY, pounds per cubic foot
COHESIVE	Very Soft Soft	0-2 2-4	LL	LIQUID LIMIT, percent
8	Medium Stiff Stiff	4-8 8-16	PI	PLASTIC INDEX
	Very Stiff Hard	16-32 >32	Ñ	STANDARD PENETRATION, blows per foot
	Zon Tar	70	LINIE	IED SOIL CLASSIFICATION SYSTEM

Associates, Inc.
Consultants in Geotechnical Engineering
Geology and
Environmental Earth Sciences

UNIFIED SOIL CLASSIFICATION SYSTEM BAKERVIEW EVERETT, WASHINGTON

Proj.No.T-8096-1

Date: MAR 2019

Figure A-1

FIGURE A-2

i	LOC	ATION: Everett, Washington SURFACE CONDITIONS: Grass APPRO	X. ELEV: N/A	2
1	DAT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVI	NG: N/A	-
nebui (ii)	Sample No.	Description	Consistency/ Relative Density	W (%)
)_,				
-		Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose	
3-	1	FILL: Brown silty SAND with gravel, fine to coarse sand, fine to coarse gravel, moist, some cobbles. (SM)	Medium Dense to Dense	7.4
i -	2	Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel, moist, trace cobbles. (SP-SM/SM)		5.9
	3		Very Dense	13.6
-		Test pit terminated at approximately 13 feet. No groundwater or caving observed.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-3

	PRO	DJECT NAME: Bakerview	PROJ. NO: T-8	8096-1 LC	OGGED BY: HM	-
	LOC	CATION: Everett, Washington SUF	RFACE CONDITIONS: Grass	AF	PPROX. ELEV: N/A	_
	DAT	TE LOGGED: January 31, 2019 DEPTI	H TO GROUNDWATER: N/A	_ DEPTH TO	CAVING: N/A	_
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	W (%)
0						
j.		Black silty SAND, fine sand, moist, heavy	organic inclusions. (SM) (Topsoil)		Loose	
1- 2- 3-	1	FILL: Brown silty SAND with gravel, fine to trace cobbles. (SM)	o medium sand, fine gravel, moist, scatte	ered organics,	Medium Dense	11.8
4- 5-	2	Tan to gray SAND with silt and gravel inte fine gravel, trace cobbles. (SP-SM/SM)	erbedded with silty SAND with gravel, fine	e to coarse sa	nd,	4.4
6- 7- 8-		*Boulder size rock observed at approxima	stely 8 feet.		Dense to Very Dense	
9-	1					
10 –		Gray SAND with silt and some gravel, fine	e to medium sand, fine gravel, moist. (SP	P-SM)		
11-						10.6
3-	3	Test pit terminated at approximately 12.5 No groundwater or caving observed.	feet.			
14 -						
5						

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.

FIGURE A-4

	PRO	OJECT NAME: Bakerview	PROJ. NO: <u>T-8096-1</u>	LOGGED BY: HM	_
	LOC	CATION: Everett, Washington SURFACE CONDITIONS	3: Grass	APPROX. ELEV: N/A	~
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATE	ER: N/A DEPTI	H TO CAVING: N/A	_
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	W (%)
0_					
1-	1	(9 inches of TOPSOIL) FILL: Brown silty SAND with gravel, fine to medium sand, fine grave cobbles. (SM)	gravel, moist, scattered organ	nics, Medium Dense	19,6
3-		Tan to gray SAND with silt and gravel to silty SAND with grave trace cobbles. (SP-SM/SM)	I, fine to medium sand, fine g	iravel,	
4-					7.4
5-	2				
6-					
7-				Dense to Very Dense	
8-					
9-					
10 -	3				15.5
11 -	J				
12 -		Test pit terminated at approximately 12 feet. No groundwater or caving observed.			
13 –		No groundwater or caving observed.			
14 -					
15	Ų				

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc.

FIGURE A-5

DA	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVING	G:_N/A
Sample No.	Description	Consistency/ Relative Density
	Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose
1	Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel, moist, trace cobbles. (SP-SM/SM)	
2		
		Medium Dense to Dense
3		
	Test pit terminated at approximately 12 feet. No groundwater or caving observed.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc.

FIGURE A-6

	PRC	DJECT NAME: Bakerview PROJ. I	NO: T-8096-1 LO	OGGED BY: HM	-
- 3	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass	AI	PPROX. ELEV: N/A	-
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A	DЕРТН ТО	CAVING: N/A	
Depth (ft)	Sample No.	Description		Consistency/ Relative Density	(%) M
0_		(11 inches of TOPSOIL)			
1-	1	Tan to brown silty SAND with gravel, fine to coarse sand, fine gravel, moist cobbles. (SM)	t, scattered organics,	trace	
2-	1			Medium Dense to Dense	16.
3-					
1-					
i -	2	Tan to gray silty SAND to SAND with silt, fine to medium sand, fine gravel, (SM/SP-SM)	moist, trace cobbles.		18.
				Very Dense	
_					8.7
	3				
4					
		Test pit terminated at approximately 12.5 feet. No groundwater or caving observed.			
+					
1					

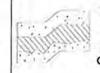
NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc.

FIGURE A-7

	PRO	DJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGGER	BY:HM	_
	LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPROX	(. ELEV: N/A	-
	DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVII	NG: N/A	_
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	(%) M
0_		(15 inches of TOPSOIL) Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)		
1- 2- 3-	1	Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to coarse sand, fine gravel, dry to moist, trace cobbles. (SP-SM/SM)		11.6
4- 5- 6-			Medium Dense to Dense	7.6
7-	2		io Delise	
9- 10-				
12 -	3	Test pit terminated at approximately 12 feet. No groundwater or caving observed.		8.1
14 -				

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.



Terra Associates, Inc.

FIGURE A-8

			OX. ELEV: N/A	-
	DAT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CA	VING: N/A	
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	W (%)
0_				
1-		(12 inches of TOPSOIL) Black silty SAND, fine sand, moist, heavy organic inclusions. (SM) (Topsoil)	Loose	
2- 3-	1	Tan to gray SAND with silt and gravel interbeded with tan silty SAND with gravel, fine to coarse sand, fine gravel, moist, scattered organics, trace cobbles. (SP-SM/SM)		10.9
4- 5- 6- 7- 8-	2		Medium Dense to Dense	9.5
9- 10- 11- 12-	3			9.4
13 – 14 –		Test pit terminated at approximately 13 feet. No groundwater or caving observed.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.

FIGURE A-9

	ROJECT NAME: Bakerview	PROJ. NO:		LOGGED BY: HM	
LO	CATION: Everett, Washington	SURFACE CONDITIONS: Grass		APPROX. ELEV: N/A	_
DA	ATE LOGGED: January 31, 2019	DEPTH TO GROUNDWATER: N/A	DEPT	H TO CAVING: N/A	
Sample No		Description		Consistency/ Relative Density	
	Disabathy CAND fine and ma	int hanny arganic inclusions (SM) (Tanasil)		1 1	
-		ist, heavy organic inclusions. (SM) (Topsoil) to coarse sand, moist. (SP-SM)		Loose	
		to coarse sand, moist. (SF-SW)			
1					
-					
2					
1					
				Medium Dense	
				to Dense	
3					
	Test pit terminated at approxima No groundwater or caving obser	itely 14 feet. ved.			

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra Associates, Inc

FIGURE A-10

D	AT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: 4.5 Feet DEPTH TO CAVI	NG: N/A
	Sample No.	Description	Consistency/ Relative Density
_	1		
	1	(6 inches of TOPSOIL) Tan to gray silty SAND with gravel to sandy SILT with gravel, fine to medium sand, fine gravel, wet, trace cobbles. (SM/ML)	
	2		Medium Dense to Dense
	3		
		Test pit terminated at approximately 12 feet. Groundwater seepage observed at 4.5 feet. No caving observed.	

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

FIGURE A-11

	PRO	DJECT NAME: Bakerview	PROJ. NO:	T-8096-1 LOGGE	D BY: HM	-
	LOC	CATION: Everett, Washington SURFA	ACE CONDITIONS: Grass	APPRO	X. ELEV: N/A	-
	DAT	TE LOGGED: January 31, 2019 DEPTH T	O GROUNDWATER: 4 Feet	DEPTH TO CAV	NG:0 to 12.5 Feet	
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	W (%)
0_						
1-	1	(9 inches of TOPSOIL) Tan to gray silty SAND with gravel to sandy (SM/ML)	SILT with gravel, fine to coarse sar	nd, fine gravel, wet.		21.0
3-						
¥ 4-						
5-						
6-					Medium Dense	
7-						
8-	2					22.4
9-						
10-						
11-						
12 -						22.0
13 -	3	Test pit terminated at approximately 12.5 fee Moderate groundwater seepage observed at Caves easily the entire depth.	et. 4 feet.			
15						

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.

FIGURE A-12

PRO	DJECT NAME: Bakerview PROJ. NO: T-8096-1 LOGG	ED BY: HM	-
LOC	CATION: Everett, Washington SURFACE CONDITIONS: Grass APPRO	X. ELEV: N/A	_
DAT	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: 6 Feet DEPTH TO CAN	ING: N/A	_
Sample No.	Description	Consistency/ Relative Density	
1 2	(3 inches of TOPSOIL) Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel, moist, trace cobbles. (SP-SM/SM) Brown to gray silty SAND with some gravel to sandy SILT with gravel, fine sand, fine gravel, moist to wet, strongly cemented. (SM/ML)	Medium Dense to Dense	
3		Very Dense	37
	Test pit terminated at approximately 12 feet. Minor groundwater seepage observed at 6 feet. No caving observed.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra

FIGURE A-13

	DAT	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: 4 Feet DEPTH TO CAVI	NG: N/A	-
Depth (ft)	Sample No.	Description	Consistency/ Relative Density	W (%)
0_				
1- 2- 3-	1	(4 inches of TOPSOIL) Tan to gray SAND with silt and gravel to silty SAND with gravel, fine to medium sand, fine gravel, moist. (SP-SM/SM)	Medium Dense	17.5
5- 6- 7-	2	Tan to gray silty SAND with gravel to sandy SILT with gravel, fine sand, fine gravel, moist to wet, strongly cemented. (SM/ML)		32.3
8- 9- 10- 11-	3	Gray SAND wiith silt and gravel, fine to medium sand, fine gravel, moist to wet. (SP-SM)	Dense to Very Dense	9.4
12 - 13 - 14 -		Test pit terminated at approximately 12 feet. Minor groundwater seepage observed at 4 feet. No caving observed.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra

FIGURE A-14

DA	TE LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CA	VING: N/A	
Comple Me	Description	Consistency/ Relative Density	
7	(6 inches of TOPSOIL)		
	Tan to gray SAND with silt and gravel, fine to medium sand, fine gravel, moist, trace cobbles. (SP-SM)	Medium Dense to Dense	
1		lo bense	
	Tan to gray sandy SILT, fine sand, moist. (ML)		:
2			
	Tan to gray silty SAND, fine to medium sand, fine gravel, moist. (SM)		
		Dense to Very Dense	
3			
4			
	Test pit terminated at approximately 13 feet.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

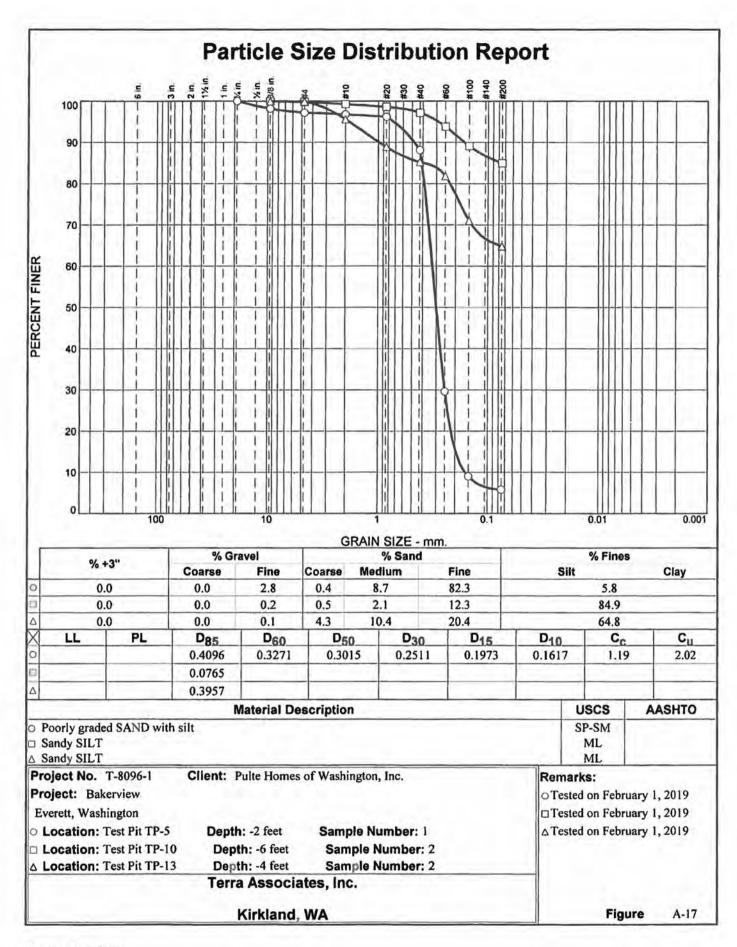
Terra Associates, Inc

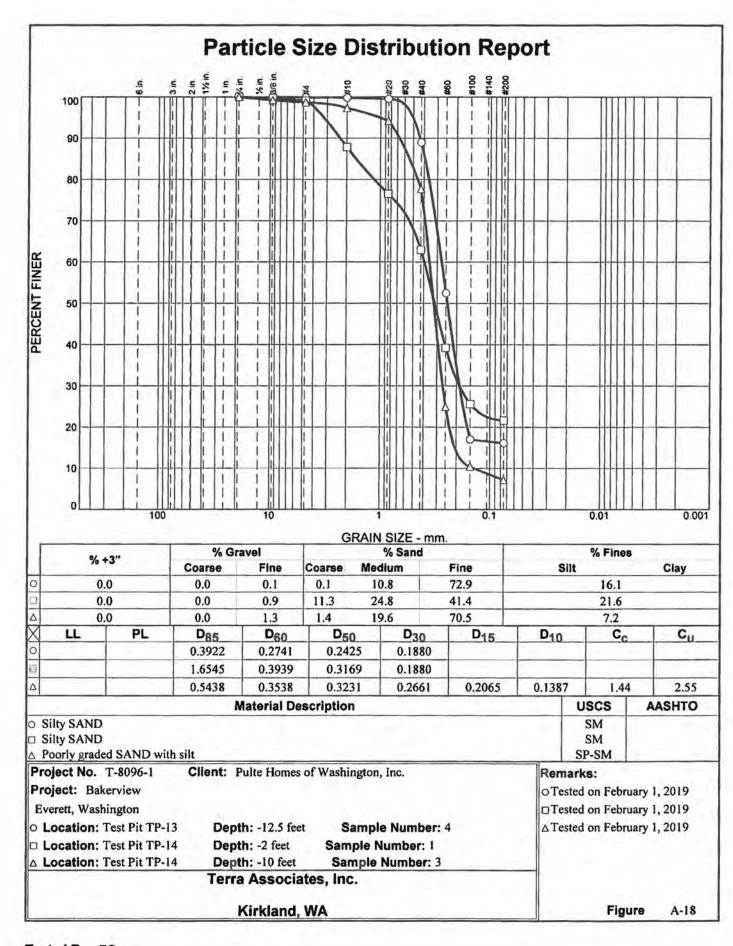
FIGURE A-15

	PRO	DJECT NAME: Bakerview	PROJ. NO: T	-8096-1 LOGGE	D BY: HM	_
	LOC	CATION: Everett, Washington	SURFACE CONDITIONS: Grass	APPRO	K. ELEV: <u>N/A</u>	_
1	DAT	TE LOGGED: January 31, 2019 DI	EPTH TO GROUNDWATER: 5.5 Feet	DEPTH TO CAVI	NG: 0 to 12 Feet	
Depth (ft)	Sample No.		Description		Consistency/ Relative Density	W (%)
0_						
1-		(5 inches of TOPSOIL) Tan to gray silty SAND with gravel to trace cobbles. (SM/ML)	sandy SILT with gravel, fine to medium san	d, fine gravel, wet,		7.8
3-	1					
4-						Щ
5-	2					22.2
6-	-				Medium Dense	
7-	3					26.5
8-						
9-						
11 –						
12-	4					22.3
13 –		Test pit terminated at approximately of Moderate groundwater seepage observating easily the entire depth.	12 feet. erved at 5.5 feet.			
14 —						
15						

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.


FIGURE A-16


D	ATI	E LOGGED: January 31, 2019 DEPTH TO GROUNDWATER: N/A DEPTH TO CAVI	NG: N/A	
	Sample No.	Description	Consistency/ Relative Density	
1	_			_
	1	(5 inches of TOPSOIL) FILL: Gray SAND with silt and gravel to silty SAND with gravel, fine sand, fine gravel, moist, wood and glass debris, tree roots. (SP-SM/SM)	Medium Dense	1
2	2	FILL: Tan to brown sandy SILT, fine sand, moist, wood debris. (ML)		-1
		Tan to gray SAND with silt and gravel, fine sand, fine gravel, moist. (SP-SM)	Dense	
63	3	Test pit terminated at approximately 12 feet. No groundwater or caving observed.		

NOTE: This subsurface information pertains only to this test pit location and should not be interpreted as being indicative of other locations at the site.

Terra
Associates, Inc.

APPENDIX C Laboratory Analytical Reports for June 2019 Soil Samples

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 24, 2019

Chuck Lie Terra Associates, Inc. 12220 113th Avenue NE, Suite 130 Kirkland, WA 98034

Re: Analytical Data for Project 8096

Laboratory Reference No. 1906-121

Dear Chuck:

Enclosed are the analytical results and associated quality control data for samples submitted on June 12, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 8096

Case Narrative

Samples were collected on June 12, 2019 and received by the laboratory on June 12, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-19					
Laboratory ID:	06-121-01					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.063	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.063	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.063	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.063	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	6.3	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	58-129				
Client ID:	TP-18					
Laboratory ID:	06-121-02					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.066	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.066	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.066	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.066	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	6.6	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Client ID:	TP-17					
Laboratory ID:	06-121-03					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.1	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

ormo. Triging (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-20					
Laboratory ID:	06-121-04					
Benzene	ND	0.051	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.26	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.26	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.26	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.26	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	26	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	58-129				
Client ID:	TP-21					
Laboratory ID:	06-121-05					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.086	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.086	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.086	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.086	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.6	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	TP-25					
Laboratory ID:	06-121-06					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.075	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.075	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.075	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.075	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	7.5	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

omo. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-24					
Laboratory ID:	06-121-07					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.0	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Client ID:	TP-23					
Laboratory ID:	06-121-08					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
Gasoline	13	7.8	NWTPH-Gx	6-17-19	6-17-19	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	58-129				
Client ID:	TP-7					
Laboratory ID:	06-121-09					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	_
Toluene	ND	0.077	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.077	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.077	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.077	EPA 8021B	6-17-19	6-17-19	
Gasoline	32	7.7	NWTPH-Gx	6-17-19	6-17-19	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14					
Laboratory ID:	06-121-10					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	_
Toluene	ND	0.056	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.056	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.056	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.056	EPA 8021B	6-17-19	6-17-19	
Gasoline	6.9	5.6	NWTPH-Gx	6-17-19	6-17-19	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	58-129				
Client ID:	TP-13					
Laboratory ID:	06-121-11					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	_
Toluene	ND	0.097	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.097	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.097	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.097	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	9.7	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617S1					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	5.0	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Laboratory ID:	MB0617S2					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	5.0	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits	_			•
Fluorobenzene	98	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-12	21-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						100	96	58-129			
Laboratory ID:	06-12	21-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	95	58-129			
SPIKE BLANKS											
Laboratory ID:	SB06	317S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.910	0.921	1.00	1.00		91	92	69-109	1	10	
Toluene	1.05	1.07	1.00	1.00		105	107	67-112	2	10	
Ethyl Benzene	1.06	1.08	1.00	1.00		106	108	67-113	2	10	
m,p-Xylene	1.08	1.09	1.00	1.00		108	109	66-114	1	11	
o-Xylene	1.04	1.08	1.00	1.00		104	108	68-112	4	11	
Surrogate:											
Fluorobenzene						100	100	58-129			

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-19					
Laboratory ID:	06-121-01					
Diesel Range Organics	ND	28	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil Range Organics	150	56	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	TP-18					
Laboratory ID:	06-121-02					
Diesel Range Organics	ND	30	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil Range Organics	ND	59	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	TP-17					
Laboratory ID:	06-121-03					
Diesel Range Organics	ND	34	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	280	69	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	TP-20					
Laboratory ID:	06-121-04					
Diesel Range Organics	100	78	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil Range Organics	440	160	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Oli 4 ID-	TD 04					
Client ID:	TP-21					
Laboratory ID:	06-121-05					
Diesel Range Organics	ND	340	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	2400	670	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-25					
Laboratory ID:	06-121-06	07	NIM/TOLL D	0.40.40	0.44.40	114
Diesel Range Organics	ND	37 65	NWTPH-Dx	6-13-19	6-14-19	U1
Lube Oil	410	65	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	TP-24			•	•	
Laboratory ID:	06-121-07					
Diesel Range Organics	ND	320	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	5500	630	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-23					
Laboratory ID:	06-121-08					
Diesel Range Organics	ND	330	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	2600	660	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-7					
Laboratory ID:	06-121-09					
Diesel Range Organics	90	63	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	660	130	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	TP-14					
Laboratory ID:	06-121-10					
Diesel Range Organics	ND	310	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	2200	610	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-13					
Laboratory ID:	06-121-11					
Diesel Range Organics	ND	190	NWTPH-Dx	6-13-19	6-14-19	
Lube Oil	1200	380	NWTPH-Dx	6-13-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0613S2					
ND	25	NWTPH-Dx	6-13-19	6-13-19	
ND	50	NWTPH-Dx	6-13-19	6-13-19	
Percent Recovery	Control Limits				
126	50-150				
	MB0613S2 ND ND Percent Recovery	MB0613S2 ND 25 ND 50 Percent Recovery Control Limits	MB0613S2 ND 25 NWTPH-Dx ND 50 NWTPH-Dx Percent Recovery Control Limits	MB0613S2 ND 25 NWTPH-Dx 6-13-19 ND 50 NWTPH-Dx 6-13-19 Percent Recovery Control Limits	Result PQL Method Prepared Analyzed MB0613S2 ND 25 NWTPH-Dx 6-13-19 6-13-19 ND 50 NWTPH-Dx 6-13-19 6-13-19 Percent Recovery Control Limits

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-1	11-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						116 119	50-150			
Laboratory ID:	06-12	28-02								
	ORIG	DUP								
Diesel Range Organics	1940	1870	NA	NA		NA	NA	4	NA	
Lube Oil Range Organics	812	829	NA	NA		NA	NA	2	NA	
Surrogate: o-Terphenyl						109 118	50-150			

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

• •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-19					
Laboratory ID:	06-121-01					
Naphthalene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	0.040	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	0.0095	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	0.049	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.052	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	0.022	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.024	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	0.022	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	0.0083	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	0.022	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	0.013	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.014	0.0074	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	40 - 111				
Pyrene-d10	86	40 - 110				
Terphenyl-d14	86	<i>45 - 122</i>				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-18					
Laboratory ID:	06-121-02					
Naphthalene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	ND	0.0079	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	40 - 111				
Pyrene-d10	83	40 - 110				
Terphenyl-d14	90	<i>45 - 122</i>				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-17					
Laboratory ID:	06-121-03					
Naphthalene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.0099	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	ND	0.0092	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 111				
Pyrene-d10	80	40 - 110				
Terphenyl-d14	70	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-20					
Laboratory ID:	06-121-04					
Naphthalene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	ND	0.021	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	40 - 111				
Pyrene-d10	72	40 - 110				
Terphenyl-d14	79	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-21					
Laboratory ID:	06-121-05					
Naphthalene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.24	0.090	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	80	<i>45 - 122</i>				

Project: 8096

PAHs EPA 8270D/SIM

• •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-25					
Laboratory ID:	06-121-06					
Naphthalene	0.085	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	0.016	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	0.0089	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	0.072	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	0.14	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	0.060	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	0.44	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.42	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	0.35	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.32	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	0.45	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	0.14	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	0.39	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	0.28	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	0.049	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.28	0.0086	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	40 - 111				
Pyrene-d10	85	40 - 110				
Terphenyl-d14	79	<i>45</i> - 122				

Project: 8096

PAHs EPA 8270D/SIM

• •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-24					
Laboratory ID:	06-121-07					
Naphthalene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.091	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.12	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	ND	0.084	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	40 - 111				
Pyrene-d10	89	40 - 110				
Terphenyl-d14	83	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-23					
Laboratory ID:	06-121-08					
Naphthalene	0.48	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	0.60	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	0.41	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	1.0	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	1.9	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	1.9	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	6.6	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	2.6	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	8.7	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	6.4	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	2.2	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	2.2	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	2.2	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	0.48	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	1.4	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	1.0	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	0.23	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.93	0.18	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	40 - 111				
Pyrene-d10	74	40 - 110				

Terphenyl-d14

45 - 122

78

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-7					
Laboratory ID:	06-121-09					
Naphthalene	0.022	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	0.024	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	0.017	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	0.022	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	0.015	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	0.071	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	0.011	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	0.060	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.068	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	0.020	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.026	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	0.033	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	0.0094	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	0.027	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	0.022	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.024	0.0085	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	82	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14					
Laboratory ID:	06-121-10					
Naphthalene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	0.099	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	0.18	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.23	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	0.12	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.16	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	0.16	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	0.13	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	0.091	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.11	0.082	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	81	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-13					
Laboratory ID:	06-121-11					
Naphthalene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	0.14	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	0.16	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	0.10	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	0.14	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	0.24	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	0.15	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	0.16	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	0.16	0.10	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	40 - 111				
Pyrene-d10	84	40 - 110				
Terphenyl-d14	80	45 - 122				

Project: 8096

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0614S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Fluorene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Anthracene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Pyrene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	6-14-19	6-14-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	40 - 111				
Pyrene-d10	88	40 - 110				
Terphenyl-d14	91	<i>45 - 122</i>				

Project: 8096

PAHS EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-12	21-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0816	0.0808	0.0833	0.0833	ND	98	97	44 - 111	1	21	
Acenaphthylene	0.0952	0.0946	0.0833	0.0833	ND	114	114	47 - 122	1	24	
Acenaphthene	0.0974	0.0950	0.0833	0.0833	ND	117	114	46 - 122	2	24	
Fluorene	0.0894	0.0899	0.0833	0.0833	ND	107	108	53 - 118	1	23	
Phenanthrene	0.0881	0.0893	0.0833	0.0833	0.0361	62	64	41 - 124	1	24	
Anthracene	0.0900	0.0909	0.0833	0.0833	0.00849	98	99	53 - 119	1	21	
Fluoranthene	0.0921	0.0913	0.0833	0.0833	0.0441	58	57	39 - 135	1	32	
Pyrene	0.0905	0.0918	0.0833	0.0833	0.0470	52	54	39 - 134	1	34	
Benzo[a]anthracene	0.0971	0.0951	0.0833	0.0833	0.0197	93	91	53 - 131	2	23	
Chrysene	0.0881	0.0867	0.0833	0.0833	0.0218	80	78	46 - 126	2	24	
Benzo[b]fluoranthene	0.0919	0.0896	0.0833	0.0833	0.0194	87	84	45 - 127	3	25	
Benzo(j,k)fluoranthene	0.0873	0.0875	0.0833	0.0833	0.00739	96	96	52 - 122	0	21	
Benzo[a]pyrene	0.0913	0.0903	0.0833	0.0833	0.0195	86	85	51 - 126	1	24	
Indeno(1,2,3-c,d)pyrene	0.0912	0.0887	0.0833	0.0833	0.0116	96	93	48 - 127	3	23	
Dibenz[a,h]anthracene	0.0869	0.0862	0.0833	0.0833	ND	104	103	51 - 124	1	22	
Benzo[g,h,i]perylene	0.0858	0.0857	0.0833	0.0833	0.0125	88	88	50 - 120	0	22	
Surrogate:											
2-Fluorobiphenyl						93	91	40 - 111			
Pyrene-d10						89	91	40 - 110			
Terphenyl-d14						89	89	45 - 122			

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-19			-		
Laboratory ID:	06-121-01					
Arsenic	ND	11	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.56	EPA 6010D	6-17-19	6-17-19	
Chromium	33	0.56	EPA 6010D	6-17-19	6-17-19	
Lead	21	5.6	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.28	EPA 7471B	6-17-19	6-17-19	
Nickel	44	2.8	EPA 6010D	6-17-19	6-17-19	
Zinc	71	2.8	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-18					
Laboratory ID:	06-121-02					
Arsenic	ND	12	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.59	EPA 6010D	6-17-19	6-17-19	
Chromium	32	0.59	EPA 6010D	6-17-19	6-17-19	
Lead	ND	5.9	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.29	EPA 7471B	6-17-19	6-17-19	
Nickel	44	2.9	EPA 6010D	6-17-19	6-17-19	
Zinc	27	2.9	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-17					
Laboratory ID:	06-121-03					
Arsenic	ND	14	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.69	EPA 6010D	6-17-19	6-17-19	
Chromium	39	0.69	EPA 6010D	6-17-19	6-17-19	
Lead	46	6.9	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.34	EPA 7471B	6-17-19	6-17-19	
Nickel	50	3.4	EPA 6010D	6-17-19	6-17-19	
Zinc	130	3.4	EPA 6010D	6-17-19	6-17-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-20					
Laboratory ID:	06-121-04					
Arsenic	17	16	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	1.6	EPA 6010D	6-17-19	6-17-19	
Chromium	37	1.6	EPA 6010D	6-17-19	6-17-19	
Lead	26	16	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.78	EPA 7471B	6-17-19	6-17-19	
Nickel	45	7.8	EPA 6010D	6-17-19	6-17-19	
Zinc	82	7.8	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-21					
Laboratory ID:	06-121-05					
Arsenic	ND	13	EPA 6010D	6-17-19	6-17-19	
Cadmium	0.82	0.67	EPA 6010D	6-17-19	6-17-19	
Chromium	31	0.67	EPA 6010D	6-17-19	6-17-19	
Lead	300	6.7	EPA 6010D	6-17-19	6-17-19	
Mercury	1.0	0.34	EPA 7471B	6-17-19	6-17-19	
Nickel	32	3.4	EPA 6010D	6-17-19	6-17-19	
Zinc	360	3.4	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-25					
Laboratory ID:	06-121-06					
Arsenic	ND	13	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.65	EPA 6010D	6-17-19	6-17-19	
Chromium	32	0.65	EPA 6010D	6-17-19	6-17-19	
Lead	62	6.5	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.32	EPA 7471B	6-17-19	6-17-19	
Nickel	42	3.2	EPA 6010D	6-17-19	6-17-19	
Zinc	78	3.2	EPA 6010D	6-17-19	6-17-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-24					
Laboratory ID:	06-121-07					
Arsenic	ND	13	EPA 6010D	6-17-19	6-17-19	
Cadmium	1.0	0.63	EPA 6010D	6-17-19	6-17-19	
Chromium	31	0.63	EPA 6010D	6-17-19	6-17-19	
Lead	46	6.3	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.32	EPA 7471B	6-17-19	6-17-19	
Nickel	40	3.2	EPA 6010D	6-17-19	6-17-19	
Zinc	110	3.2	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-23					
Laboratory ID:	06-121-08					
Arsenic	17	13	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.66	EPA 6010D	6-17-19	6-17-19	
Chromium	28	0.66	EPA 6010D	6-17-19	6-17-19	
Lead	100	6.6	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.33	EPA 7471B	6-17-19	6-17-19	
Nickel	32	3.3	EPA 6010D	6-17-19	6-17-19	
Zinc	180	3.3	EPA 6010D	6-17-19	6-17-19	
Client ID:	TP-7					
Laboratory ID:	06-121-09					
Arsenic	ND	13	EPA 6010D	6-17-19	6-17-19	
Cadmium	1.5	0.63	EPA 6010D	6-17-19	6-17-19	
Chromium	30	0.63	EPA 6010D	6-17-19	6-17-19	
Lead	95	6.3	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.32	EPA 7471B	6-17-19	6-17-19	
Nickel	29	3.2	EPA 6010D	6-17-19	6-17-19	
Zinc	3000	32	EPA 6010D	6-17-19	6-19-18	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-14					
Laboratory ID:	06-121-10					
Arsenic	ND	12	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.61	EPA 6010D	6-17-19	6-17-19	
Chromium	27	0.61	EPA 6010D	6-17-19	6-17-19	
Lead	87	6.1	EPA 6010D	6-17-19	6-17-19	
Mercury	ND	0.31	EPA 7471B	6-17-19	6-17-19	
Nickel	35	3.1	EPA 6010D	6-17-19	6-17-19	
Zinc	160	3.1	EPA 6010D	6-17-19	6-17-19	

Client ID:	TP-13					
Laboratory ID:	06-121-11					
Arsenic	ND	15	EPA 6010D	6-17-19	6-17-19	
Cadmium	0.94	0.76	EPA 6010D	6-17-19	6-17-19	
Chromium	45	0.76	EPA 6010D	6-17-19	6-17-19	
Lead	1200	7.6	EPA 6010D	6-17-19	6-17-19	
Mercury	5.4	3.8	EPA 7471B	6-17-19	6-17-19	
Nickel	34	3.8	EPA 6010D	6-17-19	6-17-19	
Zinc	480	3.8	EPA 6010D	6-17-19	6-17-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617SM2					
Arsenic	ND	5.0	EPA 6010D	6-17-19	6-17-19	
Cadmium	ND	0.50	EPA 6010D	6-17-19	6-17-19	
Chromium	ND	0.50	EPA 6010D	6-17-19	6-17-19	
Lead	ND	5.0	EPA 6010D	6-17-19	6-17-19	
Nickel	ND	2.5	EPA 6010D	6-17-19	6-17-19	
Zinc	ND	2.5	EPA 6010D	6-17-19	6-17-19	
Laboratory ID:	MB0617S1					
Mercury	ND	0.25	EPA 7471B	6-17-19	6-17-19	

			Source	Pei	rcent	Recovery		RPD															
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags												
DUPLICATE																							
Laboratory ID:	06-07	76-13																					
	ORIG	DUP																					
Arsenic	ND	ND	NA	NA		1	NA AV	NA	NA	20													
Cadmium	ND	ND	NA	NA		1	NΑ	NA	NA	20													
Chromium	6.95	8.35	NA	NA		1	NΑ	NA	18	20													
Lead	ND	ND	NA	NA		1	NΑ	NA	NA	20													
Nickel	5.80	6.30	NA	NA		1	NΑ	NA	8	20													
Zinc	15.7	16.6	NA	NA		1	NA	NA	6	20													
Laboratory ID:	06-07	76-13																					
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20													
MATRIX SPIKES																							
Laboratory ID:	06-07	76-13																					
	MS	MSD	MS	MSD		MS	MSD																
Arsenic	102	101	100	100	ND	102	101	75-125	1	20													
Cadmium	46.1	45.0	50.0	50.0	ND	92	90	75-125	2	20													
Chromium	110	103	100	100	6.95	103	96	75-125	7	20													
Lead	232	229	250	250	ND	93 91		93 91		93 91		93 91		93 91				75-125	1	20			
Nickel	104	102	100	100	5.80	98 96		98 96		98 96		98 96		98 96		98 96		98 96		75-125	2	20	
Zinc	117	113	100	100	15.7	101 97		75-125	4	20													
Laboratory ID:	06-07	76-13																					
Mercury	0.523	0.544	0.500	0.500	0.0190	101	105	80-120	4	20													

Project: 8096

pH EPA 9045D

Matrix: Soil

Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	TP-19				
Laboratory ID:	06-121-01				
рН	6.7	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-18				
Laboratory ID:	06-121-02				
рН	7.1	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-17				
Laboratory ID:	06-121-03				
pH	6.2	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-20				
Laboratory ID:	06-121-04				
рН	6.1	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-21				
Laboratory ID:	06-121-05				
рН	7.3	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-25				
Laboratory ID:	06-121-06				
рН	5.9	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-24				
Laboratory ID:	06-121-07				
pH	6.7	EPA 9045D	6-13-19	6-13-19	

Project: 8096

pH EPA 9045D

Matrix: Soil

Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	TP-23				
Laboratory ID:	06-121-08				
рН	6.9	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-7				
Laboratory ID:	06-121-09				
рН	6.9	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-14				
Laboratory ID:	06-121-10				
рН	7.7	EPA 9045D	6-13-19	6-13-19	
Client ID:	TP-13				
Laboratory ID:	06-121-11				
pН	6.2	EPA 9045D	6-13-19	6-13-19	

Project: 8096

TCLP LEAD EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-21					
Laboratory ID:	06-121-05					
Lead	0.39	0.20	EPA 6010D	6-24-19	6-24-19	
Client ID:	TP-23					
Laboratory ID:	06-121-08					
Lead	ND	0.20	EPA 6010D	6-24-19	6-24-19	
Client ID:	TP-13					
Laboratory ID:	06-121-11					
Lead	0.78	0.20	EPA 6010D	6-24-19	6-24-19	

Project: 8096

TCLP LEAD EPA 1311/6010D QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624TM1					
Lead	ND	0.20	FPA 6010D	6-24-19	6-24-19	

Analyte	Res	sult	Spike	Level	Source Result	_	rcent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE							,				
Laboratory ID:	06-15	55-03									
	ORIG	DUP									
Lead	1.32	1.37	NA	NA			NA	NA	4	20	
MATRIX SPIKES											
Laboratory ID:	06-15	55-03									
	MS	MSD	MS	MSD		MS	MSD				
Lead	10.2	10.3	10.0	10.0	1.32	88	90	75-125	1	20	

Project: 8096

% MOISTURE

011 415		0/ 88 1 /	Date
Client ID	Lab ID	% Moisture	Analyzed
TP-19	06-121-01	10	6-13-19
TP-18	06-121-02	15	6-13-19
TP-17	06-121-03	27	6-13-19
TP-20	06-121-04	68	6-13-19
TP-21	06-121-05	26	6-13-19
TP-25	06-121-06	23	6-13-19
TP-24	06-121-07	21	6-13-19
TP-23	06-121-08	24	6-13-19
TP-7	06-121-09	21	6-13-19
TP-14	06-121-10	18	6-13-19
TP-13	06-121-11	35	6-13-19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

MA	OnSite
	Environmental Inc.

Chain of Custody

Page _ 1 _ of _ Z

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Req in working da			La	abo	rato	ry I	Num	be	r:	00	5 -	1	2	1							
Company:	Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One)				T				7		-	-	T	Ī	T				-			
	Torra Associates Inc	_ Sam	ne Day	1 Day											Σ			3	2					
Project Number	8096	☐ 2 Da		3 Days										B	70D/SI	51A		47	NCV					
Project Name:										300		(el)		s 808	des 82	les 81		~	0	4A				
Project Manag	er: O	(TPI	ndard (7 Days) I analysis 5 Da	ays)	ners					es 82(MIS/C	s) ow-le		sticide	esticio	arbicio		+	EAD	e) 166				
Sampled by:	Chrck Lie	X	+ DAY	TAT	of Containers		3TEX		9	Volatil	10708	PAH SIM (I		ne Pes	Jorus F	cid H	/letals	/letals	7	greas				
Gampied by.	Picolos R. Hoffman	7	(other)		er of C	1-HCIE	H-Gx/E	ğ	XQ-P	s 8260	latiloc	w-leve	1082A	chlorir	dsoud	ated A	CRAN	TCA N	/letals	il and	I			sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	volatiles 8260C Halogenated Volatiles 8260C	Semiyo	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	ā			% Moisture
1	TP-19	6/12/19	8:30	Soil	Z		X		X			×						X			X			X
2	TP-18		8150	1	1		X		X			×						X			X			メ
3	TP-17		9:10		1		×		X			7	<					×			X			X
4	TP-20		9135				×		X			*						X			X			X
5	TP-ZI		10:05				X		X			×						X	\otimes		×			X
6	TP-25		10:30				X		X			×						X			X			X
7	TP-24		10:45				X		X			X						X			X			X
8	TP-23		11105				X		X			×						X	(X)		×			X
9	TP-7		11155				X		X			×						X			X			X
10	TP-14	V	14:30	9	V		X		1			7	<					X			1			X
	Signature	V C	Company				Date		-	Time			omme	nts/Sp	ecial	Instru	uction	IS			1			
Relinquished	The 19		TA	1			6/	2/1	9	171	30	X	1	11	P	-	NA.	21	53	5 Y	0	414	X	
Received	14		OSP				6/	12/	19	17	30	3	10	X	4	1	1	-1.	1 '	0	-agi	42	VV	1
Relinquished													6	1-	Ho	local local	0	1.0	1.0	7.	DB (40	ay	
Received													Q	9"	100	JCC	6	(17	11) - L	77	Ay)T	17 1	
Relinquished																								
Received																								
Reviewed/Da	ate		Reviewed/Da	te								Ch	roma	togra	ns w	th fin	al rep	ort [1					
	Data Package: S	Standard 🗆 I	Level III 🗌 Le	evel IV		E	ectro	nic Dat	a Deliv	erables	s (ED	Ds) 🗌 _												

Chain of Custody

Page 2 of 2

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	(ir	naround Req working da	ys)		La	abo	rate	ory	Nui	mb	er:		0	6	-1	2	1								
Project Name Project Mana Sampled by:	Tarra Associates Inc ber: 8096 e: Chick Lie	Same	/s dard (7 <u>Days)</u> analysis 5 D	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals + Ni Zn	+ 9	K		Hd			% Moisture
1)	TP-13	6/12/19	15:00		2	_	X	4	X			0) &	メ	ш	O.	O	U		×	X	1		メ			*
																									+	
																									+	
																						-	-	+	+	+
	Signature	Co	ompany				Date	1		Time			Con	nmen	ts/Sp	ecial	Instru	uction	18							
Relinquishe	and Interview		TA COP	FI_	_			2/1	-																	
Relinquishe	ed S		002			-	5/)	2/	7	17	72	0														
Received																										
Relinquishe	ed																									
Received																										
Reviewed/I			Reviewed/Da										Chro	omato	ogran	ns wi	th fin	al rep	oort [
	Data Package: 5	Standard 🗆 L	evel III 🗌 L	evel IV		El	lectro	nic Da	ta Del	iverab	les (E	DDs)					_									

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 19, 2019

Chuck Lie Terra Associates, Inc. 12220 113th Avenue NE, Suite 130 Kirkland, WA 98034

Re: Analytical Data for Project 8096

Laboratory Reference No. 1906-146

Dear Chuck:

Enclosed are the analytical results and associated quality control data for samples submitted on June 15, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 8096

Case Narrative

Samples were collected on June 14, 2019 and received by the laboratory on June 15, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010D/7471B Analysis:

The Matrix Spike/ Matrix Spike Duplicate recoveries for Zinc are outside control limits due to matrix inhomogeneity . The samples were re-extracted and re-analyzed with similar results. The Spike Blank recovery was 96%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-4'					
Laboratory ID:	06-146-01					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.072	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.072	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.072	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.072	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	7.2	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	58-129				
Client ID:	TP-1-8'					
Laboratory ID:	06-146-02					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.064	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.064	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.064	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.064	EPA 8021B	6-17-19	6-17-19	
Gasoline	6.9	6.4	NWTPH-Gx	6-17-19	6-17-19	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	58-129				
Client ID:	TP-1-12'					
Laboratory ID:	06-146-03					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.081	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.1	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-16'					
Laboratory ID:	06-146-04					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.080	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.0	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	58-129				
Client ID:	TP-1-20'					
Laboratory ID:	06-146-05					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.073	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.073	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.073	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.073	EPA 8021B	6-17-19	6-17-19	
Gasoline	11	7.3	NWTPH-Gx	6-17-19	6-17-19	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	58-129				
Client ID:	TP-2					
Laboratory ID:	06-146-06					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.083	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.083	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.083	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.083	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	8.3	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

ormo. Triging (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3					
Laboratory ID:	06-146-07					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.069	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.069	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.069	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.069	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	6.9	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	58-129				
Client ID:	TP-4					
Laboratory ID:	06-146-08					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.074	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.074	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.074	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.074	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	7.4	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	58-129				
Client ID:	TP-5					
Laboratory ID:	06-146-09					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.078	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	7.8	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-6					
Laboratory ID:	06-146-10					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	_
Toluene	ND	0.071	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.071	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.071	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.071	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	7.1	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	58-129				
Client ID:	TP-9					
Laboratory ID:	06-146-11					
Benzene	ND	0.023	EPA 8021B	6-18-19	6-18-19	_
Toluene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	11	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits	_			
Fluorobenzene	93	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617S2					
Benzene	ND	0.020	EPA 8021B	6-17-19	6-17-19	
Toluene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Ethyl Benzene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
m,p-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
o-Xylene	ND	0.050	EPA 8021B	6-17-19	6-17-19	
Gasoline	ND	5.0	NWTPH-Gx	6-17-19	6-17-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	58-129				
Laboratory ID:	MB0618S1					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	5.0	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				•
Fluorobenzene	95	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

g, ng (pp	,				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-12										
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	95	58-129			
Laboratory ID:	06-14	16-10									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Surrogate:											
Fluorobenzene						100	93	58-129			
SPIKE BLANKS											
Laboratory ID:	SB06	17S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.910	0.921	1.00	1.00		91	92	69-109	1	10	
Toluene	1.05	1.07	1.00	1.00		105	107	67-112	2	10	
Ethyl Benzene	1.06	1.08	1.00	1.00		106	108	67-113	2	10	
m,p-Xylene	1.08	1.09	1.00	1.00		108	109	66-114	1	11	
o-Xylene	1.04	1.08	1.00	1.00		104	108	68-112	4	11	
Surrogate:											
Fluorobenzene						100	100	58-129			
Laboratory ID:	SB06	18 S 2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.882	0.900	1.00	1.00		88	90	69-109	2	10	
Toluene	0.896	0.909	1.00	1.00		90	91	67-112	1	10	
Ethyl Benzene	0.871	0.883	1.00	1.00		87	88	67-113	1	10	
m,p-Xylene	0.863	0.875	1.00	1.00		86	88	66-114	1	11	
o-Xylene	0.877	0.889	1.00	1.00		88	89	68-112	1	11	
Surrogate:											
Fluorobenzene						81	81	58-129			

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

5 5 W 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-4'					
Laboratory ID:	06-146-01					
Diesel Range Organics	ND	30	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	330	59	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	TP-1-8'					
	06-146-02					
Laboratory ID:	ND	650	NWTPH-Dx	6-17-19	6-18-19	U1
Diesel Range Organics	ที่ป 11000	1200				UI
Lube Oil		Control Limits	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery					c
o-Terphenyl		50-150				S
Client ID:	TP-1-12'					
Laboratory ID:	06-146-03					
Diesel Range Organics	ND	340	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	3600	670	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-1-16'					
	06-146-04					
Laboratory ID:	ND	320	NWTPH-Dx	6-17-19	6-18-19	
Diesel Range Organics	2800	630	NWTPH-Dx			
Lube Oil Surrogate:	Percent Recovery	Control Limits	INVV I PIT-DX	6-17-19	6-18-19	
	Percent Recovery	50-150				c
o-Terphenyl		50-150				S
Client ID:	TP-1-20'					
Laboratory ID:	06-146-05	4000	NW/TDLL Day	0.47.40	0.40.40	1.14
Diesel Range Organics	ND 28000	1600	NWTPH-Dx	6-17-19	6-18-19	U1
Lube Oil		2600	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				c
o-Terphenyl		50-150				S
Client ID:	TP-2					
Laboratory ID:	06-146-06					
Diesel Range Organics	ND	340	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	5000	690	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits		-		
o-Terphenyl		50-150				S
· 1· · · J						-

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

5 5 d i 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3					
Laboratory ID:	06-146-07					
Diesel Range Organics	ND	300	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	4100	600	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-4					
Laboratory ID:	06-146-08					
Diesel Range Organics	ND	170	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	2000	340	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits	INVVIFII-DX	0-17-19	0-10-19	
o-Terphenyl	84	50-150				
о-тегрпепуі	04	30-130				
Client ID:	TP-5					
Laboratory ID:	06-146-09					
Diesel Range Organics	230	150	NWTPH-Dx	6-17-19	6-18-19	N
Lube Oil Range Organics	1400	300	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	TP-6					
Laboratory ID:	06-146-10					
Diesel Range Organics	ND	150	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	910	310	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
, ,						
Client ID:	TP-9					
Laboratory ID:	06-146-11					
Diesel Range Organics	ND	190	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil	1300	380	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
· ·						

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0617S3					
Diesel Range Organics	ND	25	NWTPH-Dx	6-17-19	6-18-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-17-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-14	1 6-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N/	Ą	NA	NA	NA	
Lube Oil	276	236	NA	NA		N	A	NA	16	NA	
Surrogate:											
o-Terphenyl						91	93	50-150			
Laboratory ID:	06-14	16-11									
-	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N,	Ą	NA	NA	NA	
Lube Oil	840	781	NA	NA		N	Ą	NA	7	NA	
Surrogate: o-Terphenyl						80	85	50-150			

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-4'					
Laboratory ID:	06-146-01					
Naphthalene	ND	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	0.028	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.084	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.040	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.25	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.43	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.22	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.30	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.26	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.044	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.20	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.14	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	0.042	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.20	0.016	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	40 - 111				
Pyrene-d10	89	40 - 110				
Terphenyl-d14	86	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-8'					
Laboratory ID:	06-146-02					
Naphthalene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.34	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.26	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.33	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.16	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.40	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.24	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.19	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.17	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.23	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	40 - 111				
Pyrene-d10	102	40 - 110				
Tornhanyl d11	04	45 400				

Project: 8096

PAHs EPA 8270D/SIM

5 5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-12'					
Laboratory ID:	06-146-03					
Naphthalene	0.14	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.45	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.37	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.45	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.19	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.36	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.22	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.22	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.16	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.24	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	40 - 111				
Pyrene-d10	81	40 - 110				
Terphenyl-d14	78	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-16'					
Laboratory ID:	06-146-04					
Naphthalene	0.036	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	0.027	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.074	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.027	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.14	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.19	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.089	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.16	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.11	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.027	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.085	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.059	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.074	0.025	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	40 - 111				
Pyrene-d10	89	40 - 110				
Terphenyl-d14	87	<i>45</i> - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-20'					
Laboratory ID:	06-146-05					
Naphthalene	0.30	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	0.14	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.19	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.20	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	1.2	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.19	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	1.1	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	1.3	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.54	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.98	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.53	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.14	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.44	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.30	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.41	0.13	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	40 - 111				
Pyrene-d10	80	40 - 110				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-2					
Laboratory ID:	06-146-06					
Naphthalene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.27	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.34	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.42	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.15	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.26	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.20	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.16	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.14	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.17	0.14	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits	_		_	
2-Fluorobiphenyl	86	40 - 111				
Pyrene-d10	90	40 - 110				
Terphenyl-d14	89	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3					
Laboratory ID:	06-146-07					
Naphthalene	0.39	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	0.18	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	0.13	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.29	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.33	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.69	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.15	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.88	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.76	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.39	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.57	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.45	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.14	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.29	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.30	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.31	0.12	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	40 - 111				
Pvrene-d10	85	40 - 110				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-4					
Laboratory ID:	06-146-08					
Naphthalene	0.24	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.16	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.12	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.31	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.40	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.53	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.27	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.39	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.59	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.17	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.53	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.47	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.49	0.089	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	40 - 111				
Pyrene-d10	85	40 - 110				
Terphenyl-d14	91	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

Client ID: TP-5 Laboratory ID: 06-146-09 Naphthalene 0.18 0.081 EPA 8270D/SIM 2-Methylnaphthalene ND 0.081 EPA 8270D/SIM 1-Methylnaphthalene ND 0.081 EPA 8270D/SIM Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	Prepared	Analyzed	Flags
Laboratory ID: 06-146-09 Naphthalene 0.18 0.081 EPA 8270D/SIM 2-Methylnaphthalene ND 0.081 EPA 8270D/SIM 1-Methylnaphthalene ND 0.081 EPA 8270D/SIM Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM			-
Naphthalene 0.18 0.081 EPA 8270D/SIM 2-Methylnaphthalene ND 0.081 EPA 8270D/SIM 1-Methylnaphthalene ND 0.081 EPA 8270D/SIM Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM			
2-Methylnaphthalene ND 0.081 EPA 8270D/SIM 1-Methylnaphthalene ND 0.081 EPA 8270D/SIM Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM			
1-Methylnaphthalene ND 0.081 EPA 8270D/SIM Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene ND 0.081 EPA 8270D/SIM Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene 0.20 0.081 EPA 8270D/SIM Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene 0.22 0.081 EPA 8270D/SIM Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene 0.34 0.081 EPA 8270D/SIM Anthracene ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
ND 0.081 EPA 8270D/SIM Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene 0.28 0.081 EPA 8270D/SIM Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene 0.26 0.081 EPA 8270D/SIM Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
• •	6-18-19	6-19-19	
Chrysene 0.099 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
	6-18-19	6-19-19	
Benzo[b]fluoranthene 0.14 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene 0.098 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene 0.10 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene ND 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene 0.12 0.081 EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate: Percent Recovery Control Limits			
2-Fluorobiphenyl 86 40 - 111			
Pyrene-d10 85 40 - 110			
Terphenyl-d14 84 45 - 122			

Project: 8096

PAHs EPA 8270D/SIM

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-6					
Laboratory ID:	06-146-10					
Naphthalene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.36	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.46	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.85	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.26	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.52	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.39	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.15	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.091	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.093	0.082	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	40 - 111				
Pyrene-d10	80	40 - 110				
Terphenyl-d14	81	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-9					
Laboratory ID:	06-146-11					
Naphthalene	0.34	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	0.11	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	0.12	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	0.20	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.44	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.28	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.36	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.22	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.89	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	1.4	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.80	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.91	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	1.3	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.46	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.95	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.68	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	0.15	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.66	0.10	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits		_	_	
2-Fluorobiphenyl	86	40 - 111				
Pyrene-d10	85	40 - 110				
Tombonul d11	06	AE 100				

Project: 8096

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0618S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Fluorene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	40 - 111				
Pyrene-d10	91	40 - 110				
Terphenyl-d14	95	<i>45 - 122</i>				

Project: 8096

PAHS EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	318S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0829	0.0798	0.0833	0.0833	100	96	57 - 109	4	15	
Acenaphthylene	0.0904	0.0893	0.0833	0.0833	109	107	60 - 121	1	15	
Acenaphthene	0.0889	0.0868	0.0833	0.0833	107	104	59 - 121	2	15	
Fluorene	0.0945	0.0957	0.0833	0.0833	113	115	63 - 119	1	15	
Phenanthrene	0.0926	0.0942	0.0833	0.0833	111	113	59 - 114	2	15	
Anthracene	0.0931	0.0943	0.0833	0.0833	112	113	63 - 119	1	15	
Fluoranthene	0.0955	0.0968	0.0833	0.0833	115	116	63 - 120	1	15	
Pyrene	0.0915	0.0935	0.0833	0.0833	110	112	62 - 119	2	15	
Benzo[a]anthracene	0.101	0.103	0.0833	0.0833	121	124	64 - 127	2	15	
Chrysene	0.0921	0.0934	0.0833	0.0833	111	112	63 - 121	1	15	
Benzo[b]fluoranthene	0.0942	0.0962	0.0833	0.0833	113	115	61 - 122	2	15	
Benzo(j,k)fluoranthene	0.0967	0.0964	0.0833	0.0833	116	116	64 - 123	0	15	
Benzo[a]pyrene	0.0957	0.0972	0.0833	0.0833	115	117	62 - 122	2	15	
Indeno(1,2,3-c,d)pyrene	0.0971	0.0979	0.0833	0.0833	117	118	59 - 124	1	15	
Dibenz[a,h]anthracene	0.0963	0.0961	0.0833	0.0833	116	115	61 - 123	0	15	
Benzo[g,h,i]perylene	0.0961	0.0959	0.0833	0.0833	115	115	61 - 119	0	15	
Surrogate:										
2-Fluorobiphenyl					98	91	40 - 111			
Pyrene-d10					93	91	40 - 110			
Terphenyl-d14					97	96	45 - 122			

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-4'					
Laboratory ID:	06-146-01					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.59	EPA 6010D	6-18-19	6-18-19	
Chromium	33	0.59	EPA 6010D	6-18-19	6-18-19	
Lead	49	5.9	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	47	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	120	3.0	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-1-8'					
Laboratory ID:	06-146-02					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	0.90	0.59	EPA 6010D	6-18-19	6-18-19	
Chromium	32	0.59	EPA 6010D	6-18-19	6-18-19	
Lead	99	5.9	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	42	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	810	15	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-1-12'					
Laboratory ID:	06-146-03					
Arsenic	ND	13	EPA 6010D	6-18-19	6-18-19	
Cadmium	1.0	0.67	EPA 6010D	6-18-19	6-18-19	
Chromium	28	0.67	EPA 6010D	6-18-19	6-18-19	
Lead	270	6.7	EPA 6010D	6-18-19	6-18-19	
Mercury	0.39	0.33	EPA 7471B	6-18-19	6-18-19	
Nickel	31	3.3	EPA 6010D	6-18-19	6-18-19	
Zinc	300	3.3	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-16'					
Laboratory ID:	06-146-04					
Arsenic	ND	13	EPA 6010D	6-18-19	6-18-19	
Cadmium	1.5	0.63	EPA 6010D	6-18-19	6-18-19	
Chromium	26	0.63	EPA 6010D	6-18-19	6-18-19	
Lead	260	6.3	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.32	EPA 7471B	6-18-19	6-18-19	
Nickel	29	3.2	EPA 6010D	6-18-19	6-18-19	
Zinc	340	3.2	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-1-20'					
Laboratory ID:	06-146-05					
Arsenic	ND	13	EPA 6010D	6-18-19	6-18-19	
Cadmium	0.99	0.65	EPA 6010D	6-18-19	6-18-19	
Chromium	24	0.65	EPA 6010D	6-18-19	6-18-19	
Lead	180	6.5	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.32	EPA 7471B	6-18-19	6-18-19	
Nickel	33	3.2	EPA 6010D	6-18-19	6-18-19	
Zinc	390	3.2	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-2					
Laboratory ID:	06-146-06					
Arsenic	ND	14	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.69	EPA 6010D	6-18-19	6-18-19	
Chromium	31	0.69	EPA 6010D	6-18-19	6-18-19	
Lead	140	6.9	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.34	EPA 7471B	6-18-19	6-18-19	
Nickel	39	3.4	EPA 6010D	6-18-19	6-18-19	
Zinc	290	3.4	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-3					
Laboratory ID:	06-146-07					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	1.0	0.60	EPA 6010D	6-18-19	6-18-19	
Chromium	31	0.60	EPA 6010D	6-18-19	6-18-19	
Lead	170	6.0	EPA 6010D	6-18-19	6-18-19	
Mercury	0.43	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	32	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	300	3.0	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-4					
Laboratory ID:	06-146-08					
Arsenic	ND	13	EPA 6010D	6-18-19	6-18-19	
Cadmium	0.81	0.67	EPA 6010D	6-18-19	6-18-19	
Chromium	32	0.67	EPA 6010D	6-18-19	6-18-19	
Lead	120	6.7	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.33	EPA 7471B	6-18-19	6-18-19	
Nickel	34	3.3	EPA 6010D	6-18-19	6-18-19	
Zinc	400	3.3	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-5					
Laboratory ID:	06-146-09					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	0.78	0.61	EPA 6010D	6-18-19	6-18-19	
Chromium	46	0.61	EPA 6010D	6-18-19	6-18-19	
Lead	160	6.1	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	41	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	410	3.0	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-6					
Laboratory ID:	06-146-10					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.61	EPA 6010D	6-18-19	6-18-19	
Chromium	29	0.61	EPA 6010D	6-18-19	6-18-19	
Lead	83	6.1	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.31	EPA 7471B	6-18-19	6-18-19	
Nickel	43	3.1	EPA 6010D	6-18-19	6-18-19	
Zinc	130	3.1	EPA 6010D	6-18-19	6-18-19	

Client ID:	TP-9					
Laboratory ID:	06-146-11					
Arsenic	ND	15	EPA 6010D	6-18-19	6-18-19	
Cadmium	5.3	0.77	EPA 6010D	6-18-19	6-18-19	
Chromium	66	0.77	EPA 6010D	6-18-19	6-18-19	
Lead	560	7.7	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.38	EPA 7471B	6-18-19	6-18-19	
Nickel	57	3.8	EPA 6010D	6-18-19	6-18-19	
Zinc	1800	38	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0618SM2					
ND	10	EPA 6010D	6-18-19	6-18-19	
ND	0.50	EPA 6010D	6-18-19	6-18-19	
ND	0.50	EPA 6010D	6-18-19	6-18-19	
ND	5.0	EPA 6010D	6-18-19	6-18-19	
ND	2.5	EPA 6010D	6-18-19	6-18-19	
ND	2.5	EPA 6010D	6-18-19	6-18-19	
MB0618S1					
ND	0.25	EPA 7471B	6-18-19	6-18-19	
	MB0618SM2 ND ND ND ND ND ND ND ND ND N	MB0618SM2 ND 10 ND 0.50 ND 0.50 ND 5.0 ND 2.5 ND 2.5 ND 2.5	ND 10 EPA 6010D ND 0.50 EPA 6010D ND 0.50 EPA 6010D ND 5.0 EPA 6010D ND 2.5 EPA 6010D ND 2.5 EPA 6010D MD 2.5 EPA 6010D MB0618S1	Result PQL Method Prepared MB0618SM2 ND 10 EPA 6010D 6-18-19 ND 0.50 EPA 6010D 6-18-19 ND 0.50 EPA 6010D 6-18-19 ND 5.0 EPA 6010D 6-18-19 ND 2.5 EPA 6010D 6-18-19 ND 2.5 EPA 6010D 6-18-19 MB0618S1	Result PQL Method Prepared Analyzed MB0618SM2 ND 10 EPA 6010D 6-18-19 6-18-19 ND 0.50 EPA 6010D 6-18-19 6-18-19 ND 0.50 EPA 6010D 6-18-19 6-18-19 ND 5.0 EPA 6010D 6-18-19 6-18-19 ND 2.5 EPA 6010D 6-18-19 6-18-19 ND 2.5 EPA 6010D 6-18-19 6-18-19

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-14	46-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	27.7	27.7	NA	NA			NA	NA	0	20	
Lead	41.8	36.8	NA	NA			NA	NA	13	20	
Nickel	39.6	37.3	NA	NA			NA	NA	6	20	
Zinc	103	126	NA	NA			NA	NA	20	20	
Laboratory ID:	06-1	55-02									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-14	46-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	98.6	98.4	100	100	ND	99	98	75-125	0	20	
Cadmium	45.5	45.5	50.0	50.0	ND	91	91	75-125	0	20	
Chromium	119	114	100	100	27.7	92	87	75-125	4	20	
Lead	264	263	250	250	41.8	89	88	75-125	1	20	
Nickel	132	132	100	100	39.6	92	93	75-125	0	20	
Zinc	201	230	100	100	103	98	126	75-125	13	20	
Laboratory ID:	06-1	55-02									
Mercury	0.630	0.640	0.500	0.500	0.170	92	94	80-120	2	20	

Project: 8096

pH EPA 9045D

Matrix: Soil

Units: pH (@ 25°C)

. , ,			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-4'				
Laboratory ID:	06-146-01				
рН	6.8	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-1-8'				
Laboratory ID:	06-146-02				
pH	6.2	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-1-12'				
Laboratory ID:	06-146-03				
pH	7.0	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-1-16'				
Laboratory ID:	06-146-04				
рН	7.3	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-1-20'				
Laboratory ID:	06-146-05				
pН	7.2	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-2				
Laboratory ID:	06-146-06				
pH	6.4	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-3				
Laboratory ID:	06-146-07				
рН	7.3	EPA 9045D	6-17-19	6-17-19	

Project: 8096

pH EPA 9045D

Matrix: Soil

Units: pH (@ 25°C)

			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	TP-4				
Laboratory ID:	06-146-08				
рН	7.1	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-5				
Laboratory ID:	06-146-09				
рН	7.4	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-6				
Laboratory ID:	06-146-10				
рН	7.1	EPA 9045D	6-17-19	6-17-19	
Client ID:	TP-9				
Laboratory ID:	06-146-11				
pН	7.4	EPA 9045D	6-17-19	6-17-19	

Project: 8096

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
TP-1-4'	06-146-01	15	6-17-19
TP-1-8'	06-146-02	15	6-17-19
TP-1-12'	06-146-03	25	6-17-19
TP-1-16'	06-146-04	21	6-17-19
TP-1-20'	06-146-05	23	6-17-19
TP-2	06-146-06	27	6-17-19
TP-3	06-146-07	16	6-17-19
TP-4	06-146-08	25	6-17-19
TP-5	06-146-09	17	6-17-19
TP-6	06-146-10	19	6-17-19
TP-9	06-146-11	35	6-17-19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

MA	0.00	
MIL	OnSite	
	Environmental	Inc.

Chain of Custody

Page of 2

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Req in working da			L	abo	rato	ry l	Numb	ber:					0	6 -	- 1	4	6				
Project Name: Project Manag Sampled by:	8096			1 Day	er of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	H-DX	Volatiles 8260C Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM	(with low-level Parts) PARs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	+	Nickel & Zinc		isture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTP	NWTP	NWTPH-Gx	XU-H-I MAI	Volatil	Semiv	PAHs	PCBs	Organ	Organo	Chlorir	Total F	Total N	TCLP	HEM (0	2		% Moisture
1	TP-1 -+'	6/14/19	7:40	Soil	2		X	0	X			X						X			X	X		X
2	TP-1 -4' TP-1 -8'		7150	,	1		X)	X			X						X			x	X		1
3	TP-1 -12'		8:00				X		X			X						X			X	X		
4	TP-1 -16'		8:05				X	,	1			X						1			X	X		
5	TP-1 -20'		8:15				X	,	X			X						1			X	X		
le	TP-2		111.00				X		X			X						X			X	X		T
7	TP-3		1010				X		X			X						X			X	X		
8	TP-4		12:00				V		r			X						X			X	X		
9	TP-5		13115				x		X			X						X			X	X		
10	TP-6	1	12:50		1		X)				X						V			X	V	\top	T
	Signature / / /	C	ompany				Date			Time		Con	nmen	ts/Sp	ecial	Instr	uction	ıs				1		
Relinquished	The fat		TAI				6/1	3/10		900	0													
Received	709	> <	BE 1	Yu E	こ	-	d	15/6		90														
Relinquished																								
Received																								
Relinquished	· GLI J'LL LL LL																							
Received																								
Reviewed/Da	ate		Reviewed/Da	ate								Chr	omat	ograr	ns w	ith fin	al rep	oort [1					
	Data Package:	Standard [Level III 🗌 L	evel IV		Е	lectro	nic Data	Deli	verables	(EDDs	s) 🗆 🗕												

Chain of Custody

Page Z of Z

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	(ii	naround Req working da (Check One	iys)		La	abo	rate	ory	Nui	mb	er:					C	6	-	1 4	16					
Company: Project Num Project Nam Project Mana Sampled by:	e: Chrck Lie	Same	e Day	1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	Ha	Wichel & Zinc			% Moisture
11	TP-9	6/14/19	14:40	Sail	2		Х		X				X						X			X	X			X
																									-	
																							+	+	+	+
																							1	+		
																						-	+	+		+
	Signature / 10/	Co	mpany				Date			Time			Cor	nmen	ts/Sp	ecial	Instru	ction	IS							
Relinquishe	ad Hills		T	AI			6/1	9/k)	4	नेव	ر														
Received	The same of the sa	C	26	AC	F		6	15/	19	9	oc															
Relinquishe	ed																									
Received Relinquishe	od																									
Received																										
Reviewed/[Date		Reviewed/Da	ate	_								Chro	omate	oaran	ns wi	th fina	al rec	ort [
	Data Parkana: S	tandard 🗆 La	wal III I II	ovel IV I		El	loctron	nio Dat	n Dal	ivorabl	loo /E	DDe)	_					1								

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 24, 2019

Chuck Lie Terra Associates, Inc. 12220 113th Avenue NE, Suite 130 Kirkland, WA 98034

Re: Analytical Data for Project 8096

Laboratory Reference No. 1906-146B

Dear Chuck:

Enclosed are the analytical results and associated quality control data for samples submitted on June 15, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 8096

Case Narrative

Samples were collected on June 14, 2019 and received by the laboratory on June 15, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 8096

TCLP LEAD EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-1-12'					
Laboratory ID:	06-146-03					
Lead	ND	0.20	EPA 6010D	6-24-19	6-24-19	
Client ID:	TP-1-16'					
Laboratory ID:	06-146-04					
Lead	ND	0.20	EPA 6010D	6-24-19	6-24-19	

Project: 8096

TCLP LEAD EPA 1311/6010D QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624TM1					
Lead	ND	0.20	FPA 6010D	6-24-19	6-24-19	

Analyte	Res	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	06-15	55-03									
	ORIG	DUP									
Lead	1.32	1.37	NA	NA			NA	NA	4	20	
MATRIX SPIKES											
Laboratory ID:	06-15	55-03									
	MS	MSD	MS	MSD		MS	MSD				
Lead	10.2	10.3	10.0	10.0	1.32	88	90	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

1		
MA	OnSite	
	Environmental Inc.	

Chain of Custody

		7
Page	of	_

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			La	bo	rato	ry	Nun	nbe	er:				0	6 -	-1	46						
Project Number Project Name: Project Manag	8096			1 Day 3 Days	Number of Containers	-HCID	NWTPH-Gx/BTEX	-Gx	-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	382A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A.	Total RCRA Metals	Total MTCA Metals	Metals LEADONLY	ll and grease) 1664A		ckal & Zinc			ture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH-HCID	NWTPH	NWTPH-Gx	NWTPH-Dx	Volatiles	наюдег	Semivol (with lov	PCBs 8082A	Organo	Organop	Chlorina	Total RC	Total M	TCLP N	HEM (oil and	110	Ž			% Moisture
1	TP-1 -+'	6/14/19	7:40	Suil	2		X		X)	<					X			X	X			X
2	TP-1 -8'		7150	,	1		X		X			×	1					X		4	2	X			1
3	TP-1 -12'		8:00				/		X)	(X	\otimes		X.	X			
4	TP-1 -16'		8:05				X		1				X					1	0		X.	X			
5	TP-1 -20'		8:15				X		X)	<					X		L	X.	X			
le	TP-Z		111.00				X		X			>	<					X		7	X	X			
7	TP-3		1010				X		X)	7					X		2	X	<			
8	TP-4		12:00				V		X)	<					X			X.	×			1
9	TP-5		13115			3	X		X			3	<					X		1	X				
10	TP-6	1	12:50		1		X		X)						X			X	V			T
	Signature / / / /	Co	ompany			1	Date			Time		(Comme	nts/S	pecial	Instr	uction	IS							
Relinquished	THE STATE OF THE S	> <	TAI	Tu Z	ī	4	di	5/10	7	90			8)A	de	ed	6/	21	1,0	9 · I	3	6	doy	T	+7
Relinquished																									
Received																									
Relinquished																									
Received																									
Reviewed/Da	ate		Reviewed/Da	ate								C	hroma	itogra	ms w	ith fin	al rep	ort [
	Data Package: S	Standard L	evel III 🗌 L	evel IV		Ele	ctror	nic Dat	a Deli	verable	es (E	DDs)													

Chain of Custody

Page 2 of 2

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req working da			La	abo	rato	ory	Nui	mb	er:					C	6	-	1 4	16					
Project Num Project Nam Project Man Sampled by	ager: Chrck Lie	Same		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A.	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	Ha	Wichel & Zinc			% Moisture
11	TP-9	6/14/19	14:40		2		X		X			0,0	X						X			X	X			X
																									\perp	
																								+	+	-
																								+		
																								+	+	1
																					-			-		
	Signature 1 10/1	Co	ompany				Date			Time			Cor	nmen	its/Sp	ecial	Instri	uction	ns							
Relinquish	ed Hills		7	AI			6/1	5/4	7	-	Pa													19		
Received	W		36	AL	F	ī	6	15/	6	9	oc	,														
Relinquish	ned .																									
Received	hed																									
Received									_	-	_															
Reviewed	/Date		Reviewed/Da	ate							-		Chr	omat	ograr	ns w	th fin	al rep	port [1						
	Data Package: S	Standard L	evel III 🔲 L	evel IV		E	lectro	nic Da	ta Del	iverab	oles (E	DDs)								-						

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 19, 2019

Chuck Lie Terra Associates, Inc. 12220 113th Avenue NE, Suite 130 Kirkland, WA 98034

Re: Analytical Data for Project 8096

Laboratory Reference No. 1906-155

Dear Chuck:

Enclosed are the analytical results and associated quality control data for samples submitted on June 17, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 8096

Case Narrative

Samples were collected on June 17, 2019 and received by the laboratory on June 17, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

omo: mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-8					
Laboratory ID:	06-155-01					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.086	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.086	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.086	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.086	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	8.6	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	58-129				
Client ID:	TP-10					
Laboratory ID:	06-155-02					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.070	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.070	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.070	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.070	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	7.0	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	58-129				
Client ID:	TP-11					
Laboratory ID:	06-155-03					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	_
Toluene	ND	0.095	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.095	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.095	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.095	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	9.5	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

omo: mg/ng (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12					
Laboratory ID:	06-155-04					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.061	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.061	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.061	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.061	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	6.1	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	58-129				
Client ID:	TP-22					
Laboratory ID:	06-155-05					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.079	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.079	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.079	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.079	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	7.9	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	58-129				
Client ID:	TP-16					
Laboratory ID:	06-155-06					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.093	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.093	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.093	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.093	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	9.3	NWTPH-Gx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	58-129				

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15					,
Laboratory ID:	06-155-07					
Benzene	ND	0.022	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.11	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	11	NWTPH-Gx	6-18-19	6-18-19	

Surrogate: Percent Recovery Control Limits Fluorobenzene 78 58-129

Project: 8096

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0618S1					
Benzene	ND	0.020	EPA 8021B	6-18-19	6-18-19	
Toluene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
Ethyl Benzene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
m,p-Xylene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
o-Xylene	ND	0.050	EPA 8021B	6-18-19	6-18-19	
Gasoline	ND	5.0	NWTPH-Gx	6-18-19	6-18-19	
Surrogato:	Parcent Pacayony	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 95 58-129

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-14	16-10									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	1A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						100	93	58-129			
SPIKE BLANKS											
Laboratory ID:	SB06	18S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.882	0.900	1.00	1.00		88	90	69-109	2	10	
Toluene	0.896	0.909	1.00	1.00		90	91	67-112	1	10	
Ethyl Benzene	0.871	0.883	1.00	1.00		87	88	67-113	1	10	
m,p-Xylene	0.863	0.875	1.00	1.00		86	88	66-114	1	11	
o-Xylene	0.877	0.889	1.00	1.00		88	89	68-112	1	11	
Surrogate:											
Fluorobenzene						81	81	58-129			

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

5 5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-8					
Laboratory ID:	06-155-01					
Diesel Range Organics	ND	370	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	3100	730	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	TP-10					
Laboratory ID:	06-155-02					
Diesel Range Organics	ND	300	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	1400	590	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
, ,						
Client ID:	TP-11					
Laboratory ID:	06-155-03					
Diesel Range Organics	ND	370	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	5200	750	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl		50-150				S
Client ID:	TP-12					
Laboratory ID:	06-155-04					
Diesel Range Organics	ND	30	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	98	61	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits	TWITT BX	0 10 10	0 10 10	
o-Terphenyl	82	50-150				
	~-					
Client ID:	TP-22					
Laboratory ID:	06-155-05					
Diesel Range Organics	ND	660	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	9800	1300	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Oliant ID.	TD 40					
Client ID:	TP-16					
Laboratory ID:	06-155-06	27	NIM/TOLL Des	6 10 10	6 10 10	
Diesel Range Organics	ND 230	37 74	NWTPH-Dx NWTPH-Dx	6-18-19 6-18-19	6-19-19 6-19-19	
Lube Oil Surrogate:	Percent Recovery	Control Limits	INVVICEDX	0-10-19	0-13-13	
o-Terphenyl	Percent Recovery 76	50-150				
о-тегрпенуі	70	30-130				

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

5 5 11 1				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15					
Laboratory ID:	06-155-07					
Diesel Range Organics	ND	39	NWTPH-Dx	6-18-19	6-19-19	
Lube Oil	300	78	NWTPH-Dx	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				

Project: 8096

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0618S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-18-19	6-18-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-155-01									
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil	2110	1680	NA	NA		NA	NA	23	NA	
Surrogate:										
o-Terphenyl							50-150			S,S

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Elage
Client ID:	TP-8	PQL	Wethou	Prepareu	Analyzeu	Flags
Laboratory ID:	06-155-01					
Naphthalene	0.073	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	0.023	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	0.016	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	0.048	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	0.038	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	0.039	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.11	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	0.044	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.15	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.20	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.087	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.11	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.18	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	0.041	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.14	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.13	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	0.025	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.13	0.0097	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	40 - 111				
Pyrene-d10	94	40 - 110				
Terphenyl-d14	89	45 - 122				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
nalyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-10					
aboratory ID:	06-155-02					
laphthalene	1.1	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
-Methylnaphthalene	1.2	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
-Methylnaphthalene	0.70	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
cenaphthylene	0.46	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
cenaphthene	2.0	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
luorene	2.5	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
henanthrene	11	0.24	EPA 8270D/SIM	6-18-19	6-19-19	
nthracene	2.2	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
luoranthene	12	0.24	EPA 8270D/SIM	6-18-19	6-19-19	
yrene	9.0	0.24	EPA 8270D/SIM	6-18-19	6-19-19	
enzo[a]anthracene	3.0	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	2.5	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
enzo[b]fluoranthene	1.7	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
senzo(j,k)fluoranthene	0.59	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
enzo[a]pyrene	0.99	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
ndeno(1,2,3-c,d)pyrene	0.45	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	0.11	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
senzo[g,h,i]perylene	0.37	0.059	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
-Fluorobiphenyl	79	40 - 111				
Pyrene-d10	89	40 - 110				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-11					
Laboratory ID:	06-155-03					
Naphthalene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.10	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.18	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.11	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.13	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.12	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.096	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.16	0.075	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits	3			
2-Fluorobiphenyl	70	40 - 111				
Pyrene-d10	75	40 - 110				

Pyrene-d10 40 - 110 Terphenyl-d14 75 45 - 122

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

Analyte Result PQL Method Prepared Analyzed Client ID: TP-12 Laboratory ID: 06-155-04 Naphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 2-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 1-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenarchthene 0.080 0.0081 EPA 8270D/SIM <th>Flags</th>	Flags
Laboratory ID: 06-155-04 Naphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 2-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 1-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]f	
Naphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 2-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 1-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EP	
2-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 1-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081	
1-Methylnaphthalene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Acenaphthylene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Acenaphthene 0.0099 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Fluorene 0.0090 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Phenanthrene 0.080 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Anthracene 0.021 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Fluoranthene 0.084 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Pyrene 0.097 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Benzo[a]anthracene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Chrysene 0.049 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Benzo[b]fluoranthene 0.047 0.0081 EPA 8270D/SIM 6-18-19 6-19-19 Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Benzo(j,k)fluoranthene 0.018 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Benzo[a]pyrene 0.045 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Indeno(1,2,3-c,d)pyrene 0.031 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Dibenz[a,h]anthracene ND 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Benzo[g,h,i]perylene 0.029 0.0081 EPA 8270D/SIM 6-18-19 6-19-19	
Surrogate: Percent Recovery Control Limits	
2-Fluorobiphenyl 78 40 - 111	
Pyrene-d10 81 40 - 110	

Terphenyl-d14 79 45 - 122

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

					Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-22					
_aboratory ID:	06-155-05					
Naphthalene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
I-Methylnaphthalene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.11	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.14	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.076	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.079	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.11	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.096	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
ndeno(1,2,3-c,d)pyrene	0.080	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.092	0.066	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	40 - 111				
Pyrene-d10	81	40 - 110				

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	TP-16	1 44	MEUIOG	i iepaieu	Allalyzed	riags
Laboratory ID:	06-155-06					
Naphthalene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	ND	0.074	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	40 - 111				
Pyrene-d10	84	40 - 110				
	<u> </u>					

Project: 8096

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15					
Laboratory ID:	06-155-07					
Naphthalene	0.027	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
2-Methylnaphthalene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
1-Methylnaphthalene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthylene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Acenaphthene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Fluorene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Phenanthrene	0.028	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Anthracene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Fluoranthene	0.038	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Pyrene	0.048	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]anthracene	0.018	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Chrysene	0.025	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[b]fluoranthene	0.030	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[a]pyrene	0.020	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Indeno(1,2,3-c,d)pyrene	0.019	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Benzo[g,h,i]perylene	0.022	0.010	EPA 8270D/SIM	6-18-19	6-19-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	40 - 111				
Pyrene-d10	81	40 - 110				

Terphenyl-d14 45 - 122 85

Project: 8096

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0618S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Fluorene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	6-18-19	6-18-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	40 - 111				
Pyrene-d10	91	40 - 110				
Terphenyl-d14	95	45 - 122				

Project: 8096

PAHS EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pei	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	318S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0829	0.0798	0.0833	0.0833	100	96	57 - 109	4	15	
Acenaphthylene	0.0904	0.0893	0.0833	0.0833	109	107	60 - 121	1	15	
Acenaphthene	0.0889	0.0868	0.0833	0.0833	107	104	59 - 121	2	15	
Fluorene	0.0945	0.0957	0.0833	0.0833	113	115	63 - 119	1	15	
Phenanthrene	0.0926	0.0942	0.0833	0.0833	111	113	59 - 114	2	15	
Anthracene	0.0931	0.0943	0.0833	0.0833	112	113	63 - 119	1	15	
Fluoranthene	0.0955	0.0968	0.0833	0.0833	115	116	63 - 120	1	15	
Pyrene	0.0915	0.0935	0.0833	0.0833	110	112	62 - 119	2	15	
Benzo[a]anthracene	0.101	0.103	0.0833	0.0833	121	124	64 - 127	2	15	
Chrysene	0.0921	0.0934	0.0833	0.0833	111	112	63 - 121	1	15	
Benzo[b]fluoranthene	0.0942	0.0962	0.0833	0.0833	113	115	61 - 122	2	15	
Benzo(j,k)fluoranthene	0.0967	0.0964	0.0833	0.0833	116	116	64 - 123	0	15	
Benzo[a]pyrene	0.0957	0.0972	0.0833	0.0833	115	117	62 - 122	2	15	
Indeno(1,2,3-c,d)pyrene	0.0971	0.0979	0.0833	0.0833	117	118	59 - 124	1	15	
Dibenz[a,h]anthracene	0.0963	0.0961	0.0833	0.0833	116	115	61 - 123	0	15	
Benzo[g,h,i]perylene	0.0961	0.0959	0.0833	0.0833	115	115	61 - 119	0	15	
Surrogate:										
2-Fluorobiphenyl					98	91	40 - 111			
Pyrene-d10					93	91	40 - 110			
Terphenyl-d14					97	96	45 - 122			

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-8					
Laboratory ID:	06-155-01					
Arsenic	ND	15	EPA 6010D	6-18-19	6-18-19	
Cadmium	1.2	0.73	EPA 6010D	6-18-19	6-18-19	
Chromium	40	0.73	EPA 6010D	6-18-19	6-18-19	
Lead	310	7.3	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.37	EPA 7471B	6-18-19	6-18-19	
Nickel	35	3.7	EPA 6010D	6-18-19	6-18-19	
Zinc	330	3.7	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-10					
Laboratory ID:	06-155-02					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.59	EPA 6010D	6-18-19	6-18-19	
Chromium	39	0.59	EPA 6010D	6-18-19	6-18-19	
Lead	98	5.9	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	44	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	150	3.0	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-11					
Laboratory ID:	06-155-03					
Arsenic	ND	15	EPA 6010D	6-18-19	6-18-19	
Cadmium	0.99	0.75	EPA 6010D	6-18-19	6-18-19	
Chromium	37	0.75	EPA 6010D	6-18-19	6-18-19	
Lead	620	7.5	EPA 6010D	6-18-19	6-18-19	
Mercury	0.48	0.37	EPA 7471B	6-18-19	6-18-19	
Nickel	37	3.7	EPA 6010D	6-18-19	6-18-19	
Zinc	640	3.7	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Units: mg/Kg (ppm)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-12					
Laboratory ID:	06-155-04					
Arsenic	ND	12	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.61	EPA 6010D	6-18-19	6-18-19	
Chromium	49	0.61	EPA 6010D	6-18-19	6-18-19	
Lead	29	6.1	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.30	EPA 7471B	6-18-19	6-18-19	
Nickel	36	3.0	EPA 6010D	6-18-19	6-18-19	
Zinc	80	3.0	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-22					
Laboratory ID:	06-155-05					
Arsenic	ND	13	EPA 6010D	6-18-19	6-18-19	
Cadmium	1.1	0.66	EPA 6010D	6-18-19	6-18-19	
Chromium	39	0.66	EPA 6010D	6-18-19	6-18-19	
Lead	300	6.6	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.33	EPA 7471B	6-18-19	6-18-19	
Nickel	41	3.3	EPA 6010D	6-18-19	6-18-19	
Zinc	460	3.3	EPA 6010D	6-18-19	6-18-19	
Client ID:	TP-16					
Laboratory ID:	06-155-06					
Arsenic	ND	15	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.74	EPA 6010D	6-18-19	6-18-19	
Chromium	33	0.74	EPA 6010D	6-18-19	6-18-19	
Lead	110	7.4	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.37	EPA 7471B	6-18-19	6-18-19	
Nickel	32	3.7	EPA 6010D	6-18-19	6-18-19	
Zinc	150	3.7	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-15					
Laboratory ID:	06-155-07					
Arsenic	ND	16	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.78	EPA 6010D	6-18-19	6-18-19	
Chromium	37	0.78	EPA 6010D	6-18-19	6-18-19	
Lead	77	7.8	EPA 6010D	6-18-19	6-18-19	
Mercury	ND	0.39	EPA 7471B	6-18-19	6-18-19	
Nickel	31	3.9	EPA 6010D	6-18-19	6-18-19	
Zinc	100	3.9	EPA 6010D	6-18-19	6-18-19	

Project: 8096

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0618SM3					
Arsenic	ND	10	EPA 6010D	6-18-19	6-18-19	
Cadmium	ND	0.50	EPA 6010D	6-18-19	6-18-19	
Chromium	ND	0.50	EPA 6010D	6-18-19	6-18-19	
Lead	ND	5.0	EPA 6010D	6-18-19	6-18-19	
Nickel	ND	2.5	EPA 6010D	6-18-19	6-18-19	
Zinc	ND	2.5	EPA 6010D	6-18-19	6-18-19	
Laboratory ID:	MB0618S1					
Mercury	ND	0.25	EPA 7471B	6-18-19	6-18-19	

	_				Source	_	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-18	55-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	33.0	29.3	NA	NA		1	NΑ	NA	12	20	
Lead	82.9	91.2	NA	NA		1	NA	NA	10	20	
Nickel	37.1	33.6	NA	NA		1	NΑ	NA	10	20	
Zinc	123	125	NA	NA		1	NΑ	NA	2	20	
Laboratory ID:	06-15	55-02									
Mercury	ND	ND	NA	NA		1	NΑ	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-14	55-02									
Laboratory ID.	MS	MSD	MS	MSD		MS	MSD				
Arsenic	102	101	100	100	ND	102	101	75-125	1	20	
Cadmium	47.0	46.7	50.0	50.0	ND	94	93	75-125 75-125	1	20	
Chromium	47.0 126	46.7 126	100	100	33.0	94 93	93	75-125 75-125		20	
									0		
Lead	318	312	250	250	82.9	94	92	75-125	2	20	
Nickel	133	134	100	100	37.1	96	97	75-125	1	20	
Zinc	231	232	100	100	123	108	109	75-125	1	20	
Laboratory ID:	06-1	55-02									
Mercury	0.630	0.640	0.500	0.500	0.170	92	94	80-120	2	20	

Project: 8096

pH EPA 9045D

Matrix: Soil

Units: pH (@ 25°C)

1 (* ,			Date	Date	
Analyte	Result	Method	Prepared	Analyzed	Flags
Client ID:	TP-8				
Laboratory ID:	06-155-01				
pH	7.4	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-10				
Laboratory ID:	06-155-02				
pH	5.5	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-11				
Laboratory ID:	06-155-03				
pH	7.5	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-12				
Laboratory ID:	06-155-04				
рН	7.0	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-22				
Laboratory ID:	06-155-05				
pH	7.0	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-16				
Laboratory ID:	06-155-06				
рН	6.9	EPA 9045D	6-18-19	6-18-19	
Client ID:	TP-15				
Laboratory ID:	06-155-07				
рН	6.5	EPA 9045D	6-18-19	6-18-19	

Project: 8096

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
TP-8	06-155-01	32	6-18-19
TP-10	06-155-02	15	6-18-19
TP-11	06-155-03	33	6-18-19
TP-12	06-155-04	18	6-18-19
TP-22	06-155-05	24	6-18-19
TP-16	06-155-06	32	6-18-19
TP-15	06-155-07	36	6-18-19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Chain of Custody

Page ____ of ____

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Req n working da	uest ys)		L	abo	rate	ory	Nun	nbe	er:	0	6	-1	5	5										
Company: Project Num Project Nam Project Mana Sampled by:	8096 e: Chuck Lia	Sam Stan Date Sampled		1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Taiogeriated Volatiles 8200C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level)	Organochlorina Daeticidae 80818		Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	Ha	Nikkal 73 Mc		A Antibute subs	% Moisture
1	TP-8	6/17/19		Siil	2		X		X					X						X			X	X		1	C
2	TP-10		9:45				X		X					X						X			X	X			1
3	TP-II		10/30				X		X					Х						X			×	X			
4	TP-12 TP-22		11130				X		X					X						X			X	X			
3	TP-22		12:00				X		X					X						X			X	X			
G.	TP-16		13:00				Y		X					X						X			4	X			
7	TP-15	V	13:30	4	V		×		X					\times	+	1				X			X	X		-	1
																										1	
Relinquishe	Signature and	С	ompany TA	I ST			Date G	1)	19	16! 16!	00	0	Com	ments	/Spec	ial I	nstru	ictioi	ns								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Relinquish	ed			~ _			e,	v · /		10																	
Received																											
Relinquish	ed																										
Received													Data	_				_	_	_	_		_				
Reviewed/	Date		Reviewed/Da	ite									Chro	matog	grams	with	fina	al rep	ort [] Ele	ectron	ic Data	a Deliv	erable	s (EDD)s) 🗌	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 24, 2019

Chuck Lie Terra Associates, Inc. 12220 113th Avenue NE, Suite 130 Kirkland, WA 98034

Re: Analytical Data for Project 8096

Laboratory Reference No. 1906-155B

Dear Chuck:

Enclosed are the analytical results and associated quality control data for samples submitted on June 17, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 8096

Case Narrative

Samples were collected on June 17, 2019 and received by the laboratory on June 17, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 8096

TCLP LEAD EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP-11					
Laboratory ID:	06-155-03					
Lead	1.3	0.20	EPA 6010D	6-24-19	6-24-19	
Client ID:	TP-22					
Laboratory ID:	06-155-05					
Lead	ND	0.20	EPA 6010D	6-24-19	6-24-19	

Project: 8096

TCLP LEAD EPA 1311/6010D QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624TM1					
Lead	ND	0.20	FPA 6010D	6-24-19	6-24-19	

Analyte	Res	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	06-15	55-03									
	ORIG	DUP									
Lead	1.32	1.37	NA	NA			NA	NA	4	20	
MATRIX SPIKES											
Laboratory ID:	06-15	55-03									
	MS	MSD	MS	MSD		MS	MSD				
Lead	10.2	10.3	10.0	10.0	1.32	88	90	75-125	1	20	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

MA	OnSite Environmental Inc	
	Environmental Inc. Analytical Laboratory Testing Services	

Chain of Custody

Page _____ of ____

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Req n working day	uest /s)		L	abo	rato	ry N	luml	ber:	()6	- 1	1 5	5 5									
Project Num Project Nam Project Man Sampled by	8096 ager: Chuck Lia	Da	,	1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NW I PH-bx (Acid / SG Clean-up) Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	AHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	15	HEM (oil and grease) 1664A	Ha	Nikkal, 72 Mc		% Moisture
Lab ID	TP-8	6/17/19		Suil	2		X		X			0, 2	X			0	0		X	-	_	X	X		V
2	TP - 10		9:45	1	1		X		X				X						X			X	X		1
3	TP-11		10:30				X		X				X						X	X)	×	X		\prod
4	TP-12		11130				X		X				X						X			X	X		
5	TP-22		12:00				X		7				X						X	X)	X	X		
G	TP-16		13:00				Y		X				×						X			4	X		
7	TP-15	1	13:30	V	V		×		X				\times						X			X	X		1
Relinquish	Signature	C	ompany	+			Date	1)		me	7		nmen									/	1		
Received			0	DIE			61	- 1	1	1610	1	(X)	Ac	ble	d	6/	2)	19	4-1	B (راه	day	TA	T)
Relinquish	ned			00			Q	1 1/1		CC	/														
Received																									
Relinquish	ned																								
Received												Data	a Pac	kage:	Sta	ndar	d 🗆	Lev	vel III		Level	IV [1		
Reviewed	/Date		Reviewed/Dat	te								Chro	omato	gram	s wit	h fina	al rep	ort [Ele	ctronic	c Data	a Deliv	erables	(EDDs) 🗆

APPENDIX D Ecology-Derived Soil Interim Action Levels

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	Puget Sound Natural Background (a)	PQL (b)
Metals									
Arsenic	20	surface water adjusted to background	6.7E-01	3.4E-01	1.1E-02	2.0E+02	7.0E+00	20 (c)	10
Cadmium	0.80	sediment adjusted to background	8.0E+01	6.9E-01	9.9E-02	2.6E-02	4.0E+00	8.0E-01	0.50
Chromium, total	48	TER adjusted to background	na	na	na	na	4.2E+01	4.8E+01	0.50
Copper	36	sediment adjusted to background	3.2E+03	2.8E+02	5.0E+00	7.0E-01	5.0E+01	3.6E+01	1.0
Lead	50	TER	2.5E+02	3.0E+03	5.0E+02	1.8E+02	5.0E+01	2.4E+01	5.0
Mercury, inorganic	0.070	surface water adjusted to background	2.4E+01	2.1E+00	1.3E-02	1.0E+00	1.0E-01	7.0E-02	0.025
Nickel	48	TER adjusted to background	1.6E+03	1.3E+02	6.8E+01	3.4E+01	3.0E+01	4.8E+01	2.5
Selenium	0.80	TER adjusted to PQL	4.0E+02	5.2E+00	5.2E-01	3.7E+00	3.0E-01	7.8E-01 (d)	0.80
Zinc	86	TER	2.4E+04	6.0E+03	1.3E+02	2.2E+02	8.6E+01	8.5E+01	2.5
TPH									
Gasoline range hydrocarbons	30/100	groundwater (Method A with/without benzene present)	1.5E+03	30/100	na	na	1.2E+02	na	5.0
Total diesel & oil range hydrocarbons	260	TER	na	2.0E+03	na	na	2.6E+02	na	50
PCBs									
Total PCB Aroclors	0.050	surface water adjusted to PQL	1.0E+00	2.7E+00	4.3E-05	4.8E-02	6.5E-01	na	0.050

- (a) Source: Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, October 1994)
- (b) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.
- (c) Statewide regulatory background value for arsenic per MTCA Table 740-1, Footnote b (WAC 173-340-900).
- (d) Statewide background value; a Puget Sound background value has not been established.

mg/kg = Milligrams per kilogram

na = Not available

PCBs = Polychlorinated biphenyls

PQL = Laboratory analytical method practical quantitation limit

TEE = Terrestrial ecological evaluation

TER = Terrestrial ecological receptors (plants, soil biota, and wildlife)

TPH = Total petroleum hydrocarbons

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
Metals							
Arsenic	1.1E+01	natural background	3.5E+02	1.8E-02	NTR/NRWQC human health	5.8E-01	MCL adj. to 1E-5 risk
Cadmium	8.0E-01	natural background	1.9E-01	7.2E-01	NRWQC aquatic life	5.0E+00	WA/federal MCL
Chromium, total	6.2E+01	natural background	na	na		1.0E+02	WA/federal MCL
Copper	4.5E+01	natural background	1.6E+00	1.1E+01	WA aquatic life	6.4E+02	noncancer risk
Lead	2.1E+01	natural background	9.0E-01	2.5E+00	WA/NRWQC aquatic life	1.5E+01	federal MCL
Mercury, inorganic	2.0E-01	natural background	1.0E+00	1.2E-02	WA aquatic life	2.9E-01	protect indoor air
Nickel	5.0E+01	natural background	2.6E+01	5.2E+01	NRWQC aquatic life	1.0E+02	state MCL
Selenium	1.0E-01	natural background	3.6E+01	5.0E+00	WA aquatic life	5.0E+01	WA/federal MCL
Zinc	9.3E+01	natural background	1.8E+02	1.0E+02	WA aquatic life	4.8E+03	noncancer risk
TPH							
Gasoline range hydrocarbons	na		_	1.0E+03	aquatic life (Implementation Memo 23)	8.0E+02	Method A
Total diesel & oil range hydrocarbons	na (values are established for -D and -O separately)			3.0E+03	aquatic life (Implementation Memo 23)	5.0E+02	Method A
PCBs							
Total PCB Aroclors	1.2E-02	PQL	7.8E-03	7.0E-06	NTR human health	4.4E-01	MCL adj. to 1E-5 risk

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)
Pesticides								
4,4'-DDD	0.010	surface water adjusted to PQL	2.4E+00	3.4E-01	7.3E-06	1.4E+01	7.5E-01	0.010
4,4'-DDE	0.010	surface water adjusted to PQL	2.9E+00	4.5E-01	1.5E-06	1.0E+01	7.5E-01	0.010
4,4'-DDT	0.010	surface water adjusted to PQL	2.9E+00	3.5E+00	1.6E-05	4.0E-04	7.5E-01	0.010
Aldrin	0.0050	surface water adjusted to PQL	5.9E-02	2.5E-03	4.0E-08	4.0E-04	1.0E-01	0.0050
alpha-BHC	0.0050	surface water adjusted to PQL	1.6E-01	5.4E-04	1.9E-06	5.6E-01	6.0E+00	0.0050
beta-BHC	0.0050	surface water adjusted to PQL	5.6E-01	2.3E-03	6.1E-05	3.0E-02	6.0E+00	0.0050
cis-Chlordane	0.010	sediment adjusted to PQL	2.9E+00	2.6E-01	3.7E-04	1.1E-04	1.0E+00	0.010
delta-BHC	6.0	TER	na	na	na	na	6.0E+00	0.0050
Dieldrin	0.010	surface water adjusted to PQL	6.3E-02	2.8E-03	3.6E-08	4.0E-04	7.0E-02	0.010
Endosulfan I	0.0050	surface water adjusted to PQL	4.8E+02	4.3E+00	2.5E-03	na	na	0.0050
Endosulfan II	0.010	surface water adjusted to PQL	4.8E+02	4.3E+00	2.5E-03	na	na	0.010
Endosulfan sulfate	480	direct contact	4.8E+02	na	na	na	na	0.010
Endrin	0.0050	surface water adjusted to PQL	2.4E+01	4.4E-01	4.4E-04	na	2.0E-01	0.0050
Endrin aldehyde	no value		na	na	na	na	na	0.010
Endrin ketone	no value		na	na	na	na	na	0.010
gamma-BHC	0.0050	surface water adjusted to PQL	9.1E-01	6.2E-03	2.5E-03	3.3E+00	6.0E+00	0.0050
Heptachlor	0.0050	surface water adjusted to PQL	2.2E-01	3.8E-02	6.6E-08	4.0E-04	4.0E-01	0.0050
Heptachlor epoxide	0.0050	surface water adjusted to PQL	1.1E-01	8.0E-02	4.0E-06	na	4.0E-01	0.0050
Methoxychlor	0.032	surface water	4.0E+02	6.4E+01	3.2E-02	3.4E+03	na	0.010
Toxaphene	0.050	surface water adjusted to PQL	9.1E-01	1.5E+00	6.1E-05	na	na	0.050
trans-Chlordane	0.0050	sediment adjusted to PQL	2.9E+00	2.6E-01	3.7E-04	1.1E-04	1.0E+00	0.0050

(a) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.

mg/kg = Milligrams per kilogram

na = Not available

PQL = Laboratory analytical method practical quantitation limit

TEE = Terrestrial ecological evaluation

TER = Terrestrial ecological receptors (plants, soil biota, and wildlife)

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
Pesticides							
4,4'-DDD	3.6E+00	cancer risk	1.5E+01	7.9E-06	NTR human health	3.6E-01	cancer risk
4,4'-DDE	2.5E+00	cancer risk	5.8E+00	8.8E-07	NTR human health	2.6E-01	cancer risk
4,4'-DDT	1.0E-04	PQL	2.9E-05	1.2E-06	NTR human health	2.6E-01	cancer risk
Aldrin	1.0E-04	PQL	4.1E-04	4.1E-08	NTR human health	2.6E-03	cancer risk
alpha-BHC	1.4E-01	cancer risk	1.4E+01	4.8E-05	NTR human health	1.4E-02	cancer risk
beta-BHC	7.2E-03	LAET	6.4E-01	1.3E-03	NTR human health	4.9E-02	cancer risk
cis-Chlordane	1.0E-04	PQL	1.0E-04	3.6E-04	cancer risk	2.5E-01	cancer risk
delta-BHC	na		na	na		na	
Dieldrin	1.0E-04	PQL	7.8E-04	7.0E-08	NTR human health	5.5E-03	cancer risk
Endosulfan I	PQL		TBD	5.6E-02	WA/NRWQC aquatic life	9.6E+01	noncancer risk
Endosulfan II	PQL		TBD	5.6E-02	WA/NRWQC aquatic life	9.6E+01	noncancer risk
Endosulfan sulfate	1.0E+03	noncancer risk	na	9.0E+00	NTR human health	9.6E+01	noncancer risk
Endrin	PQL		TBD	2.0E-03	NTR human health	2.0E+00	WA/federal MCL
Endrin aldehyde	na		na	3.4E-02	WA human health	na	
Endrin ketone	8.5E-03	LAET	na	na		na	
gamma-BHC	7.8E-01	cancer risk	1.1E+02	8.0E-02	WA aquatic life	2.0E-01	WA/federal MCL
Heptachlor	1.0E-04	PQL	2.1E-03	3.4E-07	NTR human health	1.9E-01	MCL adj. to 1e-5 risk
Heptachlor epoxide	PQL		TBD	2.4E-06	NTR human health	4.8E-02	MCL adj. to 1e-5 risk
Methoxychlor	8.4E+02	noncancer risk	2.1E+03	2.0E-02	NRWQC human health	4.0E+01	WA/federal MCL
Toxaphene	PQL		TBD	3.2E-05	WA human health	8.0E-01	MCL adj. to 1e-5 risk
trans-Chlordane	1.0E-04	PQL	1.0E-04	3.6E-04	cancer risk	2.5E-01	cancer risk

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)			
Herbicides											
2,4,5-T	800	direct contact	8.0E+02	na	na	na	na	0.0095			
2,4,5-TP	640	direct contact	6.4E+02	na	na	na	na	0.0095			
2,4-D	800	direct contact	8.0E+02	na	na	na	na	0.0094			
2,4-DB	2,400	direct contact	2.4E+03	na	na	na	na	0.0095			
Dalapon	2,400	direct contact	2.4E+03	na	na	na	na	0.18			
Dicamba	2,400	direct contact	2.4E+03	na	na	na	na	0.0094			
Dichlorprop	no value		na	na	na	na	na	0.071			
Dinoseb	80	direct contact	8.0E+01	na	na	na	na	0.0095			
MCPA	40	direct contact	4.0E+01	na	na	na	na	2.3			
MCPP	80	direct contact	8.0E+01	na	na	na	na	0.94			

(a) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.

mg/kg = Milligrams per kilogram

na = Not available

PQL = Laboratory analytical method practical quantitation limit

TEE = Terrestrial ecological evaluation

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
Herbicides							
2,4,5-T	1.7E+03	noncancer risk	na	na		1.6E+02	noncancer risk
2,4,5-TP	1.4E+03	noncancer risk	na	1.0E+02	NRWQC human health	5.0E+01	WA/federal MCL
2,4-D	1.7E+03	noncancer risk	na	1.3E+03	NRWQC human health	7.0E+01	WA/federal MCL
2,4-DB	5.1E+03	noncancer risk	na	na		4.8E+02	noncancer risk
Dalapon	5.1E+03	noncancer risk	na	na		2.0E+02	WA/federal MCL
Dicamba	5.1E+03	noncancer risk	na	na		4.8E+02	noncancer risk
Dichlorprop	na			na		na	
Dinoseb	1.7E+02	noncancer risk	na	na		7.0E+00	WA/federal MCL
MCPA	8.4E+01	noncancer risk	na	na		8.0E+00	noncancer risk
MCPP	1.7E+02	noncancer risk	na	na		1.6E+01	noncancer risk

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)			
PAHs											
1-Methylnaphthalene	34	direct contact	3.4E+01	na	na	na	na	0.0067			
2-Methylnaphthalene	320	direct contact	3.2E+02	na	na	na	na	0.0067			
Acenaphthene	3.1	surface water	4.8E+03	9.8E+01	3.1E+00	4.1E+04	2.0E+01	0.0067			
Acenaphthylene	no value		na	na	na	na	na	0.0067			
Anthracene	47	surface water	2.4E+04	2.3E+03	4.7E+01	2.0E+05	na	0.0067			
Benzo(g,h,i)perylene	no value		na	na	na	na	na	0.0067			
Fluoranthene	0.020	sediment	3.2E+03	6.3E+02	5.9E+00	2.0E-02	na	0.0067			
Fluorene	1.6	surface water	3.2E+03	1.0E+02	1.6E+00	2.7E+04	3.0E+01	0.0067			
Naphthalene	4.5	drinking water	1.6E+03	4.5E+00	3.8E+01	1.4E+04	na	0.0067			
Phenanthrene	no value		na	na	na	na	na	0.0067			
Pyrene	0.020	sediment	2.4E+03	6.5E+02	1.1E+01	2.0E-02	na	0.0067			
cPAHs (TTEC) (b)	0.084	sediment	1.9E-01	3.9E+00	2.3E-01	8.4E-02	na	0.0051			

- (a) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.
- (b) Includes benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene.
- cPAHs = Carcinogenic polycyclic aromatic hydrocarbons
- mg/kg = Milligrams per kilogram
- na = Not available
- PAHs = Polycyclic aromatic hydrocarbons
- PQL = Laboratory analytical method practical quantitation limit
- TEE = Terrestrial ecological evaluation
- TTEC = Total toxic equivalent concentration of benzo(a)pyrene calculated per WAC 173-340-708(8)(e)(iii)(A) and using one-half the analytical method reporting limit for non-detected cPAHs.

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
PAHs							
1-Methylnaphthalene	2.9E+01	cancer risk	na	na		1.5E+00	cancer risk
2-Methylnaphthalene	6.8E+02	noncancer risk	na	na		3.2E+01	noncancer risk
Acenaphthene	1.0E+04	noncancer risk	4.0E+05	3.0E+01	NTR human health	9.6E+02	noncancer risk
Acenaphthylene	na		na	na		na	
Anthracene	5.1E+04	noncancerl risk	4.3E+05	1.0E+02	NTR human health	4.8E+03	noncancer risk
Benzo(g,h,i)perylene	5.0E-03	PQL	na	na		na	
Fluoranthene	5.0E-03	PQL	2.0E-02	6.0E+00	NTR human health	6.4E+02	noncancer risk
Fluorene	6.8E+03	noncancer risk	1.7E+05	1.0E+01	NTR human health	6.4E+02	noncancer risk
Naphthalene	3.4E+03	noncancer risk	5.2E+05	1.4E+03	noncancer risk	8.9E+00	protect indoor air
Phenanthrene	na		na	na		na	
Pyrene	5.0E-03	PQL	1.5E-02	8.0E+00	NTR human health	4.8E+02	noncancer risk
cPAHs (TTEC) (a)	2.1E-02	natural background	4.3E-03	1.2E-02	cancer risk	na	

⁽a) Includes benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene. These individual PAHs may have applicable water quality criteria that should be considered if setting interim action levels for media other than soil.

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)
SVOCs								
1,2,4-Trichlorobenzene	0.033	surface water adjusted to PQL	3.4E+01	5.6E-01	1.3E-03	1.2E+02	2.0E+01	0.033
1,2-Dichlorobenzene	7.0	drinking water	7.2E+03	7.0E+00	8.1E+00	2.3E+04	na	0.033
1,2-Dinitrobenzene	8.0	direct contact	8.0E+00	na	na	na	na	0.033
1,2-Diphenylhydrazine	1.3	direct contact	1.3E+00	na	na	na	na	0.033
1,3-Dichlorobenzene	no value		na	na	na	na	na	0.033
1,3-Dinitrobenzene	8.0	direct contact	8.0E+00	na	na	na	na	0.033
1,4-Dichlorobenzene	0.98	surface water	1.9E+02	1.2E+00	9.8E-01	2.1E+02	2.0E+01	0.033
1,4-Dinitrobenzene	8.0	direct contact	8.0E+00	na	na	na	na	0.033
1,4-Dioxane	10	direct contact	1.0E+01	na	na	na	na	0.0067
2,3,4,6-Tetrachlorophenol	2,400	direct contact	2.4E+03	na	na	na	na	0.033
2,3,5,6-Tetrachlorophenol	no value		na	na	na	na	na	0.033
2,4,5-Trichlorophenol	4.0	TER	8.0E+03	2.9E+01	1.1E+01	2.0E+03	4.0E+00	0.033
2,4,6-Trichlorophenol	0.033	surface water adjusted to PQL	8.0E+01	4.6E-02	2.9E-03	6.9E+00	1.0E+01	0.033
2,4-Dichlorophenol	0.069	surface water	2.4E+02	1.7E-01	6.9E-02	4.8E+01	na	0.033
2,4-Dimethylphenol	0.70	surface water	1.6E+03	1.3E+00	7.0E-01	1.7E+04	na	0.033
2,4-Dinitrophenol	0.17	surface water adjusted to PQL	1.6E+02	1.3E-01	4.0E-02	2.2E+03	2.0E+01	0.17
2,4-Dinitrotoluene	0.033	surface water adjusted to PQL	3.2E+00	1.7E-03	2.3E-04	1.5E+01	na	0.033
2,6-Dinitrotoluene	0.033	drinking water adjusted to PQL	6.7E-01	3.1E-04	na	3.2E+00	na	0.033
2-Chloronaphthalene	6,400	direct contact	6.4E+03	na	na	na	na	0.033
2-Chlorophenol	0.18	surface water	4.0E+02	4.7E-01	1.8E-01	3.5E+01	na	0.033
2-Methylphenol	2.3	drinking water	4.0E+03	2.3E+00	na	4.6E+04	na	0.033
2-Nitroaniline	800	direct contact	8.0E+02	na	na	na	na	0.033
2-Nitrophenol	no value		na	na	na	na	na	0.033
3,3'-Dichlorobenzidine	0.17	surface water adjusted to PQL	2.2E+00	3.6E-03	5.7E-05	2.4E+00	na	0.17
3+4-Methylphenol	4,000 (b)	direct contact	4.0E+03 (b)	na	na	na	na	0.033
3-Nitroaniline	no value		na	na	na	na	na	0.033
4,6-Dinitro-2-methylphenol	no value		na	na	na	na	na	0.17
4-Bromophenyl phenyl ether	no value		na	na	na	na	na	0.033
4-Chloro-3-methylphenol	no value		na	na	na	na	na	0.033
4-Chloroaniline	0.17	drinking water adjusted to PQL	5.0E+00	1.2E-03	na	2.4E+01	na	0.17
4-Chlorophenyl phenyl ether	no value	annual granter asymptotic to the	na	na	na	na	na	0.033
4-Nitroaniline	320	direct contact	3.2E+02	na	na	na	na	0.033
4-Nitrophenol	7.0	TER	na	na	na	na	7.0E+00	0.033
Aniline	180	direct contact	1.8E+02	na	na	na	na	0.17
Benzoic acid	11	sediment	3.2E+05	2.6E+02	na	1.1E+01	na	0.17
Benzyl alcohol	8,000	direct contact	8.0E+03	na	na	na	na	0.17
Bis(2-chloroethoxy)methane	no value	a soc oornaac	na	na	na	na	na	0.033
Bis(2-chloroethyl)ether	0.033	surface water adjusted to PQL	9.1E-01	2.2E-04	1.1E-04	4.4E+00	na	0.033
Bis(2-ethylhexyl) phthalate	0.17	surface water adjusted to PQL	7.1E+01	1.3E+01	1.0E-01	2.0E+00	na	0.17
Butyl benzyl phthalate	0.17	surface water adjusted to PQL	5.3E+02	1.3E+01	3.6E-03	1.8E+03	na	0.17

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)
SVOCs								
Carbazole	3.7	sediment	na	na	na	3.7E+00	na	0.033
Dibutyl phthalate	0.28	surface water	8.0E+03	5.7E+01	2.8E-01	4.4E-01	2.0E+02	0.17
Diethyl phthalate	1.1	surface water	6.4E+04	7.2E+01	1.1E+00	7.5E+05	1.0E+02	0.17
Dimethyl phthalate	200	TER	na	na	na	na	2.0E+02	0.033
Di-n-octyl phthalate	0.17	sediment adjusted to PQL	8.0E+02	2.7E+05	na	1.6E-01	na	0.17
Hexachlorobenzene	0.033	surface water adjusted to PQL	6.3E-01	8.8E-01	8.0E-06	4.0E-03	1.7E+01	0.033
Hexachlorobutadiene	0.033	sediment adjusted to PQL	1.3E+01	6.0E-01	1.1E-02	1.2E-03	na	0.033
Hexachlorocyclopentadiene	4.0	surface water	4.8E+02	1.9E+02	4.0E+00	4.1E+03	1.0E+01	0.033
Hexachloroethane	0.033	surface water adjusted to PQL	2.5E+01	4.3E-02	7.9E-04	8.9E+01	na	0.033
Isophorone	0.13	drinking water	1.1E+03	2.3E-01	1.3E-01	5.3E+03	na	0.033
Nitrobenzene	0.064	surface water	1.6E+02	1.0E-01	6.4E-02	1.8E+03	4.0E+01	0.033
n-Nitrosodimethylamine	0.033	direct contact adjusted to PQL	2.0E-02	na	na	na	na	0.033
n-Nitrosodi-n-propylamine	0.033	surface water adjusted to PQL	1.4E-01	5.6E-05	2.0E-05	7.6E-01	na	0.033
n-Nitrosodiphenylamine	0.033	surface water adjusted to PQL	2.0E+02	5.3E-01	1.8E-02	7.4E+02	2.0E+01	0.033
Pentachlorophenol	0.17	surface water adjusted to PQL	2.5E+00	1.6E-02	3.2E-05	1.4E-02	3.0E+00	0.17
Phenol	0.74	sediment	2.4E+04	1.1E+01	1.8E+01	7.4E-01	3.0E+01	0.033
Pyridine	80	direct contact	8.0E+01	na	na	na	na	0.33

(a) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.

(b) Value for 3-methylphenol; the value for 4-methylphenol is 8,000 mg/kg.

mg/kg = Milligrams per kilogram

na = Not available

PQL = Laboratory analytical method practical quantitation limit

SVOCs = Semivolatile organic compounds

TEE = Terrestrial ecological evaluation

TER = Terrestrial ecological receptors (plants, soil biota, and wildlife)

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
SVOCs							
1,2,4-Trichlorobenzene	2.9E+01	cancer risk	3.3E+03	3.6E-02	NTR human health	1.5E+01	MCL adj to 1e-5 risk
1,2-Dichlorobenzene	1.5E+04	noncancer risk	1.9E+06	7.0E+02	NTR human health	6.0E+02	WA/federal MCL
1,2-Dinitrobenzene	1.7E+01	noncancer risk	na	na		1.6E+00	noncancer risk
1,2-Diphenylhydrazine	1.1E+00	cancer risk	na	1.0E-02	NTR human health	1.1E-01	cancer risk
1,3-Dichlorobenzene	na		na	2.0E+00	NTR human health	na	
1,3-Dinitrobenzene	1.7E+01	noncancer risk	na	na		1.6E+00	noncancer risk
1,4-Dichlorobenzene	1.6E+02	cancer risk	1.3E+04	6.0E+01	WQC adj. to risk of 1e-5	4.9E+00	protect indoor air
1,4-Dinitrobenzene	1.7E+01	noncancer risk	na	na		1.6E+00	noncancer risk
1,4-Dioxane	8.5E+00	cancer risk	na	na		4.4E-01	cancer risk
2,3,4,6-Tetrachlorophenol	5.1E+03	noncancer risk	na	na		4.8E+02	noncancer risk
2,3,5,6-Tetrachlorophenol	na		na	na		na	
2,4,5-Trichlorophenol	1.7E+04	noncancer risk	5.7E+04	3.0E+02	NRWQC human health	8.0E+02	noncancer risk
2,4,6-Trichlorophenol	7.8E+01	cancer risk	5.9E+02	2.5E-01	WA human health	4.0E+00	cancer risk
2,4-Dichlorophenol	5.1E+02	noncancer risk	7.0E+03	1.0E+01	NTR/NRWQC human health	2.4E+01	noncancer risk
2,4-Dimethylphenol	3.4E+03	noncancer risk	2.1E+06	8.5E+01	WA human health	1.6E+02	noncancer risk
2,4-Dinitrophenol	3.4E+02	noncancer risk	5.5E+05	1.0E+01	NRWQC human health	3.2E+01	noncancer risk
2,4-Dinitrotoluene	2.8E+00	cancer risk	2.5E+03	3.9E-02	WA human health	2.8E-01	cancer risk
2,6-Dinitrotoluene	5.7E-01	cancer risk	6.0E+02	na		5.8E-02	cancer risk
2-Chloronaphthalene	1.4E+04	noncancer risk	na	1.0E+02	NTR human health	6.4E+02	noncancer risk
2-Chlorophenol	8.4E+02	noncancer risk	2.9E+03	1.5E+01	WA human health	4.0E+01	noncancer risk
2-Methylphenol	8.4E+03	noncancer risk	8.0E+06	na		4.0E+02	noncancer risk
2-Nitroaniline	1.7E+03	noncancer risk	na	na		1.6E+02	noncancer risk
2-Nitrophenol	na		na	na		na	
3,3'-Dichlorobenzidine	1.9E+00	cancer risk	1.3E+02	3.1E-03	WA human health	1.9E-01	cancer risk
3-Methylphenol	8.4E+03	noncancer risk	na	na		4.0E+02	noncancer risk
3-Nitroaniline	na		na	na		na	
4,6-Dinitro-2-methylphenol	na		na	2.0E+00	NRWQC human health	na	
4-Bromophenyl phenyl ether	na		na	na		na	
4-Chloro-3-methylphenol	na		na	3.6E+01	WA human health	na	
4-Chloroaniline	4.3E+00	cancer risk	4.6E+03	na		2.2E-01	cancer risk
4-Chlorophenyl phenyl ether	na		na	na		na	
4-Methylphenol	2.6E-01	LAET	na	na		8.0E+02	noncancer risk
4-Nitroaniline	6.8E+02	noncancer risk	na	na		6.4E+01	noncancer risk
4-Nitrophenol	na		na	na		na	
Aniline	1.5E+02	cancer risk	na	na		7.7E+00	cancer risk

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
SVOCs							
Benzoic acid	2.9E+00	LAET	2.6E+03	na		6.4E+04	noncancer risk
Benzyl alcohol	1.7E+04	noncancer risk	na	na		8.0E+02	noncancer risk
Bis(2-chloroethoxy)methane	na		na	na		na	
Bis(2-chloroethyl)ether	7.8E-01	cancer risk	7.9E+02	2.0E-02	WA human health	4.0E-02	cancer risk
Bis(2-ethylhexyl) phthalate	5.0E-01	LAET	9.0E-01	4.5E-02	NTR human health	6.0E+00	WA/federal MCL
Butyl benzyl phthalate	4.5E+02	cancer risk	6.5E+03	1.3E-02	NTR human health	4.6E+01	cancer risk
Carbazole	9.0E-01	LAET	5.1E+01	na		na	
Dibutyl phthalate	3.8E-01	LAET	1.2E+01	8.0E+00	NTR human health	1.6E+03	noncancer risk
Diethyl phthalate	1.4E+05	noncancer risk	1.3E+08	2.0E+02	NTR human health	1.3E+04	noncancer risk
Dimethyl phthalate	na		na	6.0E+02	NTR human health	na	
Di-n-octyl phthalate	3.9E-02	LAET	9.4E-05	na		1.6E+02	noncancer risk
Hexachlorobenzene	1.0E-03	PQL	2.5E-03	5.0E-06	NTR human health	5.5E-01	MCL adj to 1e-5 risk
Hexachlorobutadiene	3.0E-04	PQL	1.1E-03	1.0E-02	NTR/NRWQC human health	5.6E-01	cancer risk
Hexachlorocyclopentadiene	1.0E+03	noncancer risk	1.0E+03	1.0E+00	NTR human health	4.8E+01	noncancer risk
Hexachloroethane	2.1E+01	cancer risk	2.2E+03	2.0E-02	NTR human health	1.1E+00	cancer risk
Isophorone	9.0E+02	cancer risk	1.1E+06	2.7E+01	WA human health	4.6E+01	cancer risk
Nitrobenzene	3.4E+02	noncancer risk	2.8E+05	1.0E+01	NRWQC human health	1.6E+01	noncancer risk
n-Nitrosodimethylamine	1.7E-02	cancer risk	na	6.5E-04	WA human health	8.6E-04	cancer risk
n-Nitrosodi-n-propylamine	1.2E-01	cancer risk	1.7E+02	4.4E-03	WA human health	1.3E-02	cancer risk
n-Nitrosodiphenylamine	1.7E+02	cancer risk	2.5E+04	6.2E-01	WA human health	1.8E+01	cancer risk
Pentachlorophenol	3.6E-01	PQL	8.6E-01	2.0E-03	NTR human health	1.0E+00	WA/federal MCL
Phenol	1.2E-01	LAET	1.6E+02	4.0E+03	NRWQC human health	2.4E+03	noncancer risk
Pyridine	1.7E+02	noncancer risk	na	na		8.0E+00	noncancer risk

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Interim Action Basis is Protection of		Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)
VOCs								
1,1,1,2-Tetrachloroethane	38	direct contact	3.8E+01	na	na	na	na	0.0010
1,1,1-Trichloroethane	1.5	drinking water	1.6E+05	1.5E+00	7.4E+01	na	na	0.0010
1,1,2,2-Tetrachloroethane	0.0010	surface water adjusted to PQL	5.0E+00	1.2E-03	5.6E-04	na	na	0.0010
1,1,2-Trichloroethane	0.0019	surface water	1.8E+01	1.7E-02	1.9E-03	na	na	0.0010
1,1-Dichloroethane	0.041	drinking water	1.8E+02	4.1E-02	na	na	na	0.0010
1,1-Dichloroethylene	0.044	drinking water	4.0E+03	4.4E-02	1.9E+00	na	na	0.0010
1,1-Dichloropropene	no value		na	na	na	na	na	0.0010
1,2,3-Trichlorobenzene	20	TER	na	na	na	na	2.0E+01	0.0010
1,2,3-Trichloropropane	0.033	direct contact	3.3E-02	na	na	na	na	0.0010
1,2,4-Trimethylbenzene	800	direct contact	8.0E+02	na	na	na	na	0.0010
1,2-Dibromo-3-chloropropane	1.3	direct contact	1.3E+00	na	na	na	na	0.0050
1,2-Dichloroethane	0.023	drinking water	1.1E+01	2.3E-02	4.3E-02	na	na	0.0010
1,2-Dichloroethylene (mixed isomers)	720	direct contact	7.2E+02	na	na	na	na	0.0010
1,2-Dichloropropane	0.0036	surface water	2.7E+01	2.5E-02	3.6E-03	na	7.0E+02	0.0010
1,3,5-Trimethylbenzene	800	direct contact	8.0E+02	na	na	na	na	0.0010
1,3-Dichloropropane	no value		na	na	na	na	na	0.0010
2,2-Dichloropropane	no value		na	na	na	na	na	0.0010
2-Chloroethyl vinyl ether	no value		na	na	na	na	na	0.0050
2-Chlorotoluene	1,600	direct contact	1.6E+03	na	na	na	na	0.0010
2-Hexanone	400	direct contact	4.0E+02	na	na	na	na	0.0050
4-Chlorotoluene	no value		na	na	na	na	na	0.0010
4-Isopropyltoluene	no value		na	na	na	na	na	0.0010
Acetone	29	drinking water	7.2E+04	2.9E+01	na	na	na	0.0050
Benzene	0.0024	surface water	1.8E+01	2.7E-02	2.4E-03	na	na	0.0010
Bromobenzene	0.56	drinking water	6.4E+02	5.6E-01	na	na	na	0.0010
Bromochloromethane	no value		na	na	na	na	na	0.0010
Bromoform	0.030	surface water	1.3E+02	3.6E-01	3.0E-02	na	na	0.0050
Bromomethane	0.050	drinking water	1.1E+02	5.0E-02	4.5E-01	na	na	0.0010
Carbon disulfide	5.0	drinking water	8.0E+03	5.0E+00	na	na	na	0.0010
Carbon tetrachloride	0.0017	surface water	1.4E+01	4.2E-02	1.7E-03	na	na	0.0010
Chlorobenzene	0.17	surface water	1.6E+03	8.6E-01	1.7E-01	na	4.0E+01	0.0010
Chloroethane	no value		na	na	na	na	na	0.0050
Chloroform	0.074	drinking water	3.2E+01	7.4E-02	3.1E-01	na	na	0.0010
Chloromethane	no value		na	na	na	na	na	0.0050
cis-1,2-Dichloroethylene	0.078	drinking water	1.6E+02	7.8E-02	na	na	na	0.0010
cis-1,3-Dichloropropene	0.0011	surface water	1.0E+01	2.3E-03	1.1E-03	na	na	0.0010
Dibromochloromethane	0.0032	surface water	1.2E+01	2.8E-02	3.2E-03	na	na	0.0010
Dibromomethane	800	direct contact	8.0E+02	na	na	na	na	0.0010
Dichlorobromomethane	0.0038	surface water	1.6E+01	3.6E-02	3.8E-03	na	na	0.0010

Chemical (all concentrations are in mg/kg for vadose zone soil)	Selected Interim Action Level	Basis is Protection of	Direct Contact	Protect Potable Groundwater	Protect Surface Water via Groundwater	Protect Sediment via Groundwater	Site-Specific TEE	PQL (a)
VOCs								
Dichlorodifluoromethane	16,000	direct contact	1.6E+04	na	na	na	na	0.0010
Ethylbenzene	0.24	surface water	8.0E+03	5.9E+00	2.4E-01	na	na	0.0010
Ethylene dibromide	0.0010	drinking water adjusted to PQL	5.0E-01	2.7E-04	na	na	na	0.0010
Isopropylbenzene	8,000	direct contact	8.0E+03	na	na	na	na	0.0010
Methyl ethyl ketone (MEK)	48,000	direct contact	4.8E+04	na	na	na	na	0.0050
Methyl iodide	no value		na	na	na	na	na	0.0050
Methyl isobutyl ketone	6,400	direct contact	6.4E+03	na	na	na	na	0.0050
Methyl tert-butyl ether	0.10	drinking water	5.6E+02	1.0E-01	na	na	na	0.0010
Methylene chloride	0.021	surface water	4.8E+02	2.1E-02	4.3E-02	na	na	0.0050
n-Butylbenzene	4,000	direct contact	4.0E+03	na	na	na	na	0.0010
n-Propylbenzene	8,000	direct contact	8.0E+03	na	na	na	na	0.0010
sec-Butylbenzene	8,000	direct contact	8.0E+03	na	na	na	na	0.0010
Styrene	2.2	drinking water	1.6E+04	2.2E+00	na	na	3.0E+02	0.0010
tert-Butylbenzene	8,000	direct contact	8.0E+03	na	na	na	na	0.0010
Tetrachloroethylene	0.024	surface waer	4.8E+02	5.0E-02	2.4E-02	na	na	0.0010
Toluene	0.40	surface water	6.4E+03	4.5E+00	4.0E-01	na	2.0E+02	0.0050
Total xylenes	14	drinking water	1.6E+04	1.4E+01	na	na	na	0.0020
trans-1,2-Dichloroethylene	0.52	drinking water/surface water	1.6E+03	5.2E-01	5.2E-01	na	na	0.0010
trans-1,3-Dichloropropene	0.0011	surface water	1.0E+01	2.3E-03	1.1E-03	na	na	0.0010
Trichloroethylene	0.0019	surface water	1.2E+01	2.5E-02	1.9E-03	na	na	0.0010
Trichlorofluoromethane	24,000	direct contact	2.4E+04	na	na	na	na	0.0010
Vinyl acetate	33	drinking water	8.0E+04	3.3E+01	na	na	na	0.0050
Vinyl chloride	0.0010	surface water adjusted to PQL	6.7E-01	1.7E-03	1.2E-04	na	na	0.0010

Notes:

(a) Listed values are from OnSite Environmental, Inc., Redmond, Washington, and are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.

mg/kg = Milligrams per kilogram

na = Not available

PQL = Laboratory analytical method practical quantitation limit

TEE = Terrestrial ecological evaluation

TER = Terrestrial ecological receptors (plants, soil biota, and wildlife)

VOCs = Volatile organic compounds

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
VOCs							
1,1,1,2-Tetrachloroethane	na			na		1.7E+00	cancer risk
1,1,1-Trichloroethane	na			1.0E+04	NRWQC human health	2.0E+02	WA/federal MCL
1,1,2,2-Tetrachloroethane	na			1.0E-01	NTR human health	2.2E-01	cancer risk
1,1,2-Trichloroethane	na			3.5E-01	NTR human health	3.0E+00	federal MCLG
1,1-Dichloroethane	na			na		7.7E+00	cancer risk
1,1-Dichloroethylene	na			3.0E+02	NRWQC human health	7.0E+00	WA/federal MCL
1,1-Dichloropropene	na			na		na	
1,2,3-Trichlorobenzene	na			na		na	
1,2,3-Trichloropropane	na			na		1.5E-03	cancer risk
1,2,4-Trimethylbenzene	na			na		8.0E+01	noncancer risk
1,2-Dibromo-3-chloropropane	na			na		2.0E-01	WA/federal MCL
1,2-Dichloroethane	na			8.9E+00	NTR human health	4.2E+00	protect indoor air
1,2-Dichloroethylene (mixed isomers)	na			na		7.2E+01	noncancer risk
1,2-Dichloropropane	na			7.1E-01	WA human health	5.0E+00	WA/federal MCL
1,3,5-Trimethylbenzene	na			na		8.0E+01	noncancer risk
1,3-Dichloropropane	na			na		na	
2,2-Dichloropropane	na			na		na	
2-Chloroethyl vinyl ether	na			na		na	
2-Chlorotoluene	na			na		1.6E+02	noncancer risk
2-Hexanone	na			na		4.0E+01	noncancer risk
4-Chlorotoluene	na			na		na	
4-Isopropyltoluene	na			na		na	
Acetone	na			na		7.2E+03	noncancer risk
Benzene	na			4.4E-01	WA human health	2.4E+00	protect indoor air
Bromobenzene	na			na		6.4E+01	noncancer risk
Bromochloromethane	na			na		na	
Bromoform	na			4.6E+00	NTR human health	5.5E+01	MCL adj. to 1e-5 risk
Bromomethane	na			1.0E+02	NRWQC human health	1.1E+01	noncancer risk
Carbon disulfide	na			na		4.0E+02	protect indoor air
Carbon tetrachloride	na			2.0E-01	WA human health	5.6E-01	protect indoor air
Chlorobenzene	na			2.0E+01	NRWQC human health	1.0E+02	WA/federal MCL
Chloroethane	na			na		1.9E+04	protect indoor air
Chloroform	na			6.0E+01	NRWQC human health	1.2E+00	protect indoor air
Chloromethane	na			na		1.5E+02	protect indoor air
cis-1,2-Dichloroethylene	na			na		1.6E+01	noncancer risk

Chemical	protective sediment concentration (mg/kg dw)	sediment basis	groundwater - protect sediment (ug/L)	groundwater - protect surface water (ug/L)	GW-SW basis	protect potable groundwater (ug/L)	potable groundwater basis
VOCs							
cis-1,3-Dichloropropene	na			2.2E-01	NTR human health	4.4E-01	cancer risk
Dibromochloromethane	na			6.0E-01	NTR human health	5.2E+00	MCL adj. to 1e-5 risk
Dibromomethane	na			na		8.0E+01	noncancer risk
Dichlorobromomethane	na			7.3E-01	NTR human health	1.8E+00	protect indoor air
Dichlorodifluoromethane	na			na		5.6E+00	protect indoor air
Ethylbenzene	na			2.9E+01	NTR human health	7.0E+02	WA/federal MCL
Ethylene dibromide	na			na		5.0E-02	WA/federal MCL
Isopropylbenzene	na			na		8.0E+02	noncancer risk
Methyl ethyl ketone (MEK)	na			na		4.8E+03	noncancer risk
Methyl iodide	na			na		na	
Methyl isobutyl ketone	na			na		6.4E+02	noncancer risk
Methyl tert-butyl ether	na			na		2.4E+01	cancer risk
Methylene chloride	na			1.0E+01	NTR human health	5.0E+00	WA/federal MCL
n-Butylbenzene	na			na		4.0E+02	noncancer risk
n-Propylbenzene	na			na		8.0E+02	noncancer risk
sec-Butylbenzene	na			na		8.0E+02	noncancer risk
Styrene	na			na		1.0E+02	WA/federal MCL
tert-Butylbenzene	na			na		8.0E+02	noncancer risk
Tetrachloroethylene	na			2.4E+00	NTR human health	5.0E+00	WA/federal MCL
Toluene	na			5.7E+01	NRWQC human health	6.4E+02	noncaner eqn
Total xylenes	na			na		3.3E+02	protect indoor air
trans-1,2-Dichloroethylene	na			1.0E+02	NRWQC human health	1.0E+02	WA/federal MCL
trans-1,3-Dichloropropene	na			2.2E-01	NTR human health	4.4E-01	cancer risk
Trichloroethylene	na			3.0E-01	NTR human health	1.5E+00	protect indoor air
Trichlorofluoromethane	na			na		1.2E+02	protect indoor air
Vinyl acetate	na			na		7.8E+03	protect indoor air
Vinyl chloride	na			2.0E-02	WA human health	2.9E-01	MCL adj to risk of 1e-5

Blue highlighting indicates parameter values that are site-specific (many, especially for sediment, default to Lower Duwamish Waterway values in the absence of site-specific data)

MTCA Equation 720-1 (Method B groundwater cleanup level, noncancer, potable water)

$$CUL-GW-N = \frac{RfDo\ x\ ABW\ x\ UCF\ x\ HQ\ x\ AT}{DWIR\ x\ INH\ x\ DWF\ x\ ED}$$

IDWIFn = ABW x UCF x HQ x AT / (DWIR x DWF x ED) CUL-GW-NC = IDWIFn x RfDo / INH

CUL-GW-N	Groundwater cleanup level, noncancer	ug/L	Calculated
RfDo	Oral reference dose	mg/kg-day	from CLARC
ABW	Average body weight over exposure duration, default	kg	16
UCF	Unit conversion factor, default	ug/mg	1E+03
HQ	Acceptable hazard quotient, default	unitless	1
AT	Averaging time, default	years	6
DWIR	Drinking water ingestion rate, default	L/day	1
INH	Inhalation correction factor	unitless	from CLARC
DWF	Drinking water fraction, default	unitless	1
ED	Exposure duration, default	years	6
IDWIFn	Intermediate drinking water intake factor, noncancer	kg-ug-day/mg-L	1.60E+04

MTCA Equation 720-2 (Method B groundwater cleanup level, cancer, potable water)

$$CUL-GW-C = \frac{Risk \ x \ ABW \ x \ UCF \ x \ AT}{CPFo \ x \ DWIR \ x \ INH \ x \ DWF \ x \ ED}$$

IDWIFc = Risk x ABW x UCF x AT / (DWIR x DWF x ED) CUL-GW-C = IDWIFc / (CPFo x INH)

CUL-GW-C	Groundwater cleanup level, cancer	ug/L	Calculated
Risk	Acceptable cancer risk level, default	unitless	1E-06
ABW	Average body weight over exposure duration, default	kg	70
UCF	Unit conversion factor, default	ug/mg	1E+03
AT	Averaging time, default	years	75
CPFo	Oral cancer potency factor	kg-day/mg	from CLARC
DWIR	Drinking water ingestion rate, default	L/day	2
INH	Inhalation correction factor	unitless	from CLARC
DWF	Drinking water fraction, default	unitless	1
ED	Exposure duration, default	years	30
IDWIFc	Intermediate drinking water intake factor, cancer	kg-ug-day/mg-L	8.75E-02

MTCA Equation 730-1 (Method B surface water cleanup level, noncancer)

$$CUL - SW - N = \frac{RfDo \ x \ ABW \ x \ UCF1 \ x \ UCF2 \ x \ HQ \ x \ AT}{BCF \ x \ FCR \ x \ FDF \ x \ ED}$$

ISWIFn = ABW x UCF1 x UCF2 x HQ x AT / (FCR x FDF x ED) CUL-SW-NC = RfDo x ISWIFn / BCF

CUL-SW-N	Surface water cleanup level, noncancer	ug/L	Calculated
RfD	Oral reference dose	mg/kg-day	from CLARC
ABW	Average body weight, default	kg	70
UCF1	Unit conversion factor 1, default	ug/mg	1E+03
UCF2	Unit conversion factor 2, default	g/kg	1E+03
HQ	Acceptable hazard quotient, default	unitless	1
AT	Averaging time, default	years	30
BCF	Bioconcentration factor	L/kg	from CLARC
FCR	Fish consumption rate, LDW	g/day	97.5
FDF	Fish diet fraction, LDW	unitless]1
ED	Exposure duration, default	years	30
ISWIFn	Intermediate surface water intake factor, noncancer	ug-day/mg	7.18E+05

MTCA Equation 730-2 (Method B surface water cleanup level, cancer)

$$CUL-SW-C = \frac{Risk \ x \ ABW \ x \ UCF1 \ x \ UCF2 \ x \ AT}{CPFo \ x \ BCF \ x \ FCR \ x \ FDF \ x \ ED}$$

ISWIFc = Risk x ABW x UCF1 x UCF2 x AT / (FCR x FDF x ED) CUL-SW-C = ISWIFc / (CPFo x BCF)

CUL-SW-C	Surface water cleanup level, cancer	ug/L	Calculated
Risk	Acceptable cancer risk level, default	unitless	1.00E-06
ABW	Average body weight, default	kg	70
UCF1	Unit conversion factor 1, default	ug/mg	1E+03
UCF2	Unit conversion factor 2, default	g/kg	1E+03
AT	Averaging time, default	years	75
CPF	Cancer potency factor	kg-day/mg	from CLARC
BCF	Bioconcentration factor	L/kg	from CLARC
FCR	Fish consumption rate, LDW	g/day	97.5
FDF	Fish diet fraction, LDW	unitless	1
ED	Exposure duration, default	years	30
ISWIFc	Intermediate surface water intake factor, cancer	ug-day/mg	1.79E+00

MTCA Equation 740-1 (Method B soil cleanup level, noncancer)

$$CUL-S-RN = \frac{RfDo\ x\ ABW\ x\ UCF\ x\ HQ\ x\ AT}{SIR\ x\ AB1\ x\ EF\ x\ ED}$$

ISIFrn = ABW x UCF x HQ x AT / (SIR x EF x ED) CUL-S-RNC = ISIFrn x RfDo / AB1

CUL-S-N	Soil cleanup level, noncancer	mg/kg	Calculated
RfDo	Oral reference dose	mg/kg-day	from CLARC
ABW	Average body weight over exposure duration, default	kg	16
UCF	Unit conversion factor, default	mg/kg	1E+06
HQ	Hazard quotient, default	unitless	1
AT	Averaging time, default	years	6
SIR	Soil ingestion rate, default	mg/day	200
AB1	Gastrointestinal absorption fraction, default	unitless	Chemical-specific
EF	Exposure frequency, default	unitless	1
ED	Exposure duration, default	years	6
ISIFrn	Intermediate soil intake factor, residential noncancer	1/day	8.00E+04

MTCA Equation 740-2 (Method B soil cleanup level, cancer)

$$CUL-S-RC = \frac{Risk \ x \ ABW \ x \ UCF \ x \ AT}{CPFo \ x \ SIR \ x \ AB1 \ x \ EF \ x \ ED}$$

ISIFrc = Risk x ABW x UCF x AT / (SIR x EF x ED) CUL-S-RC = ISIFrc / (CPFo x AB1)

CUL-S-C	Soil cleanup level, cancer	mg/kg	Calculated
Risk	Acceptable cancer risk level, default	unitless	1E-06
ABW	Average body weight over exposure duration, default	kg	16
AT	Averaging time, default	years	75
UCF	Unit conversion factor, default	mg/kg	1E+06
CPFo	Oral cancer potency factor	kg-day/mg	from CLARC
SIR	Soil ingestion rate, default	mg/day	200
AB1	Gastrointestinal absorption fraction, default	unitless	Chemical-specific
EF	Exposure frequency, default	unitless	1
ED	Exposure duration, default	years	6
ISIFrc	Intermediate soil intake factor, residential cancer	1/day	1.00E+00

MTCA Equation 747-1 (Soil cleanup level for groundwater protection)

$$CUL-S-GW = CUL-GW \times UCF \times DF \times \left[K_d + \frac{\theta_w + \theta_a H_{cc}}{\rho_b}\right]$$

ILF1 = UCF x DF

ILF2 = θ w / ρ b

ILF3 = $\theta a / \rho b$

CUL-S-FW = GUL-GW x ILF1 (Kd + ILF2 + ILF3 x Hcc)

CUL-S-GW	Soil cleanup level, groundwater protection	mg/kg	Calculated
CUL-GW	Selected groundwater CUL	ug/L	Calculated
UCF	Unit conversion factor, default	mg/ug	1E-03
DF	Dilution factor, default		
	Vadose	unitless	20
	Saturated	unitless	1
K _d	Distribution coefficient	L/kg	calculated with MTCA eqn. 747-2; also see Tables 747-2 and 747-3
θ_{w}	Water-filled soil porosity, default		
	Vadose	ml water/ml soil	0.3
	Saturated	ml water/ml soil	0.43
θ_{a}	Air-filled soil porosity, default		
	Vadose	ml air/ml soil	0.13
	Saturated	ml air/ml soil	0
H _{cc}	Henry's law constant at 13 degrees C	unitless	from CLARC
ρ_{b}	Dry soil bulk density, default	kg/L	1.5
ILF1v	Intermediate leaching factor 1, vadose zone	mg/ug	2.00E-02
ILF2v	Intermediate leaching factor 2, vadose zone	L/kg	2.00E-01
ILF3v	Intermediate leaching factor 3, vadose zone	L/kg	8.67E-02
ILF1s	Intermediate leaching factor 1, saturated zone	mg/ug	1.00E-03
ILF2s	Intermediate leaching factor 2, saturated zone	L/kg	2.87E-01
	There is no ILF3 for the saturated zone		

MTCA Equation 747-2 (Kd, distribution coefficient) (not used for metals)

$$K_d = Koc \ x \ Foc$$

K _d	Distribution coefficient	II /ka	calculated; also see MTCA Tables 747-2 and 747-3
K _{oc}	Soil organic carbon-water partitioning coefficient	ml/g	from CLARC
F _{oc}	Organic carbon fraction		
	Soil	g/g	0.001
	Sediment	g/g	0.005

Modified MTCA Equation 747-1 (GW concentration for protection of sediment; from Ecology [2016], Appendix A)

$$CUL-GW-SED = \frac{RBC-SED}{UCF \ x \ DF \ x \ \left[K_d + \frac{\theta_w}{\rho_b}\right]}$$

 $\begin{aligned} & \mathsf{IPF1} = \mathsf{UCF} \ \mathsf{x} \ \mathsf{DF} \\ & \mathsf{IPF2} = \theta \mathsf{w} \ / \ \rho \mathsf{b} \end{aligned}$

CUL-GW-SED = RBC-SED / [IPF1 (Kd + IPF2)]

CUL-GW-SED	Groundwater cleanup level, sediment protection	ug/L	Calculated
RBC-SED	Sediment risk-based concentration (Lower Tier Sediment PCUL)	mg/kg	Calculated
UCF	Unit conversion factor, default	mg/ug	1E-03
DF	Dilution factor, default (saturated)	unitless	1
K _d	Distribution coefficient in sediment	L/kg	calculated with MTCA eqn. 747-2; also see Tables 747-2 and 747-3
θ_{w}	Water-filled soil porosity, LDW average	ml water/ml soil	0.615
$ ho_{b}$	Dry soil bulk density, from Ecology (2016)	kg/L	1.02
IPF1	Intermediate partitioning factor 1	mg/ug	1.00E-03
IPF2	Intermediate partitioning factor 2	L/kg	6.03E-01

MTCA Equation 750-1 (Method B air cleanup level, noncancer)

$$CUL-A-RN = \frac{RfD_i x ABW x UCF x HQ x AT}{BR x ABS x EF x ED}$$

IAIFrn = ABW x UCF x HQ x AT / (BR x EF x ED) CUL-A-RN = RfDi x IAIFrn / ABS

CUL-A-RN	Air cleanup level, noncancer	ug/m3	Calculated
RfDi	Inhalation reference dose	mg/kg-day	from CLARC
ABW	Average body weight over exposure duration, default	kg	16
UCF	Unit conversion factor, default	ug/mg	1E+03
HQ	Hazard quotient, default	unitless	1
AT	Averaging time, default	years	6
BR	Breathing rate	m3/day	10
ABS	Inhalation absorption fraction, default	unitless	1
EF	Exposure frequency, default	unitless	1
ED	Exposure duration	years	6
IAIFrn	Intermediate air intake factor, noncancer	kg-ug-day/mg-m3	1.60E+03

MTCA Equation 750-2 (Method B air cleanup level, cancer)

$$CUL-A-RC = \frac{Risk \ x \ ABW \ x \ UCF \ x \ AT}{CPF_i \ x \ BR \ x \ ABS \ x \ EF \ x \ ED}$$

IAIFrc = Risk x ABW x UCF x AT / (BR x EF x ED) CUL-A-RC = IAIFrc / (CPFi x ABS)

CUL-S-RC	Air cleanup level, cancer	ug/m3	Calculated
Risk	Acceptable cancer risk level, default	unitless	1E-06
ABW	Average body weight over exposure duration, default	kg	70
AT	Averaging time, default	years	75
UCF	Unit conversion factor, default	ug/mg	1E+03
CPFi	Inhalation cancer potency factor	kg-day/mg	from CLARC
BR	Breathing rate	m3/day	20
ABS	Inhalation absorption fraction, default	unitless	1
EF	Exposure frequency, default	unitless	1
ED	Exposure duration, default	years	30
IAIFrc	Intermediate air intake factor, cancer	kg-ug-day/mg-m3	8.75E-03

Equation 1 (Vapor Intrusion Guidance 2009, rev. Feb 2016, page 3-6)

$$SL-GW-VI = \frac{SL_{IA}}{VAF \ x \ UCF \ x \ Hcc}$$

SL-GW-VI	Screening level in groundwater protective of indoor air	ug/L	Calculated
SL _{IA}	Indoor air screening level	ug/m3	Calculated
VAF	Vapor attenuation factor; default	unitless	1E-03
Hcc	Henry's Law Constant at 13 degrees C	unitless	from CLARC
	Unit conversion factor	L/m3	1E+03
IVEF	Intermediate vapor exposure factor	m3/L	1

Equation 2 (Vapor Intrusion Guidance 2009, rev. Feb 2016, page 3-10)

$$SL - SG = \frac{SL_{IA}}{VAF}$$

SL-SG	Screening level in soil gas protective of indoor air	ug/m3	Calculated
VAF	Vapor attenuation factor		
	Shallow soil gas/sub-slab	unitless	0.03
	Deep soil gas	unitless	0.01

SMS SCUM II, Equation 9-1 (sediment ingestion / direct contact, cancer)

$$RBC-SED-C = \frac{ACR \ x \ BW \ x \ ATc}{EF \ x \ ED \ x \ \left[\left(\frac{IR \ x \ AB \ x \ CPFo}{UCF}\right) + \left(\frac{SA \ x \ AF \ x \ ABS \ x \ CPFd}{UCF}\right)\right]}$$

 $ISDIF1c = BW \times ATc \times UCF / (EF \times ED)$

 $ISDIF2 = SA \times AF$

RBC-SED-C = ACR x ISDIF1c / (IR x AB x CPFo + ISDIF2 x ABS x CPFd)

General Paramete	rs				
RBC-SED-C	Risk-based concentration, sediment, cancer	mg/kg	Calculated		
ACR	ACD Acceptable concer risk level	unitless	1E-06 (Lower Tier SCO)		
ACR	Acceptable cancer risk level	unitiess	1E-05 (Upper Tier CSL)		
AB	Gastrointestinal absorption fraction	unitless	Chemical-specific		
CPFo	Oral cancer potency factor	(mg/kg-day) ⁻¹	from CLARC		
UCF	Unit conversion factor	mg/kg	1E+06		
ABS	Dermal absorption factor	unitless	From SCUM II Appendix E		
CPFd	Dermal cancer potency factor	(mg/kg-day) ⁻¹	Calculated; see Equation 9-3 below		
Scenario-Specific	Parameters (from LDW ROD)		Beach Play (Child)	Subsistence Clam Digging (Adult)	Subsistence Net Fishing (Adult)
BW	Average body weight over exposure duration	kg	16	81.8	81.8
ATc	Averaging time (cancer)	days	27,375	27,375	27,375
EF	Exposure frequency	days/year	120	120	119
ED	Exposure duration	years	6	64	44
IR	Sediment ingestion rate	mg/day	200	100	50
SA	Skin surface area	cm ² /day	2,200	6,040	3,600
AF	Sediment-to-skin adherence factor	mg/cm ² -day	0.2	0.2	0.2
Intermediate Calc	ulations		Beach Play (Child)	Subsistence Clam Digging (Adult)	Subsistence Net Fishing (Adult)
ISDIF1c	Intermediate sediment intake factor 1, cancer	mg	6.08E+08	2.92E+08	4.28E+08
ISDIF2	Intermediate sediment intake factor 2	mg/day	4.40E+02	1.21E+03	7.20E+02

SMS SCUM II, Equation 9-2 (sediment ingestion / direct contact, noncancer)

$$RBC - SED - N = \frac{HQ \ x \ BW \ x \ ATn}{EF \ x \ ED \ x \ \left[\left(\frac{IR \ x \ AB}{Rf Do \ x \ UCF} \right) + \left(\frac{SA \ x \ AF \ x \ ABS}{Rf Dd \ x \ UCF} \right) \right]}$$

ISDIF1n = HQ x BW x ATn x UCF / (EF x ED)
ISDIF2 = SA x AF

RBC-SED-N = ISDIF1n / (IR x AB/RfDo + ISDIF2 x ABS/RfDd)

General Parameters					
RBC-SED-N	Risk-based concentration, sediment, noncancer	mg/kg	Calculated		
HQ	Hazard quotient	unitless	1		
AB	Gastrointestinal absorption fraction	unitless	Chemical-specific		
RfDo	Oral reference dose	mg/kg-day	from CLARC		
UCF	Unit conversion factor	mg/kg	1E+06		
ABS	Dermal absorption factor	unitless	From SCUM II Appendix E		
RfDd	Dermal reference dose	mg/kg-day	Calculated; see Equation 9-4 below		

Scenario-Specific Par	ameters (from LDW ROD)		Beach Play (Child)	Subsistence Clam Digging (Adult)	Subsistence Net Fishing (Adult)
BW	Average body weight over exposure duration	kg	16	81.8	81.8
ATn	Averaging time (noncancer)	days	2,190	23,360	16,060
EF	Exposure frequency	days/year	120	120	119
ED	Exposure duration	years	6	64	44
IR	Sediment ingestion rate	mg/day	200	100	50
SA	Skin surface area	cm ² /day	2,200	6,040	3,600
AF	Sediment-to-skin adherence factor	mg/cm ² -day	0.2	0.2	0.2

Intermediate Calculations			Beach Play (Child)	Subsistence Clam Digging (Adult)	Subsistence Net Fishing (Adult)
	Intermediate sediment intake factor 1, noncancer Intermediate sediment intake factor 2	mg mg/day	4.87E+07 4.40E+02	2.49E+08 1.21E+03	2.51E+08 7.20E+02

SMS SCUM II, Equation 9-3 (CPFd)

$$CPFd = \frac{CPFo}{GI}$$

CPFd	Cancer potency factor, dermal	(mg/kg-day) ⁻¹	Calculated
CPFo	Cancer potency factor, oral	(mg/kg-day) ⁻¹	From CLARC
GI	Gastrointestinal absorption conversion factor	unitless	Chemical-specific

SMS SCUM II, Equation 9-4 (RFDd)

$$RfDd = RfDo x GI$$

RfDd	Reference dose, dermal	(mg/kg-day)	Calculated
RfDo	Reference dose, oral	(mg/kg-day)	From CLARC
GI	Gastrointestinal absorption conversion factor	unitless	Chemical-specific

Values considered and notes for each route. Risk based values were based on unrestricted land use.

Sediment:

- Lowest adverse effects threshold (LAET; for freshwater sediment, this is the CSO from SCUM Table 8-1)
- PQL for bioaccumulatives programmatic PQLs in SCUM Table 11-1; bioaccumulative if on PBT list in WAC 173-333 or on list 1 or 2 in DMMP guidance; if programmatic PQL is not established, sediment value will say "PQL" and groundwater protective of sediment will say "TBD"
- Natural background for metals and cPAH TEQ; based on marine sediment background concentrations
- Risk-based values calculated using SCUM equations 9-1 and 9-2
- Chemicals with sediment values but an "na" for corresponding groundwater concentration do not have a K_d to be used in the calculation

Surface water:

- WA state water quality criteria (WQC) protection of aquatic life (freshwater, chronic; WAC 173-201A-240)
- National recommended water quality criteria (NRWQC) protection of aquatic life (freshwater, chronic; Clean Water Act section 304)
- WA state WQC protection of human health (consumption of organisms + water; WAC 173-201A-240)
- National Toxics Rule promulgated human health criteria (consumption of organisms + water; 40 CFR 131.45)
- NRWQC protection of human health (consumption of organisms + water; Clean Water Act section 304) if multiple criteria had the same value, all are included in the table
- Risk-based values calculated using MTCA equations 730-1 and 730-2

Potable groundwater:

- Federal maximum contaminant level (MCL; 40 CFR 141)
- Federal MCL goal (MCLG; 40 CFR 141)
- WA state MCL (WAC 246-290) in many cases, values for the state MCL and federal MCL and/or MCLG are the same; these are noted in the table as WA/federal MCL
- If an ARAR was used as the basis but was not sufficiently protective and required adjusting, it is noted as "MCL adj. to 1e-5 risk" in the table
- Vapor intrusion screening levels
- Risk-based values calculated using MTCA equations 720-1 and 720-2

Vadose zone soil concentrations considered for the final selection of interim action levels included:

- soil protective of human health direct contact (calculated using MTCA equations 740-1 and 740-2)
- soil protective of environmental health site-specific TEE
- natural background (when available)
- soil protective of leaching to potable groundwater
- soil protective of groundwater that is transported to surface water
- soil protective of groundwater that partitions to sediment

APPENDIX E Sampling and Analysis Plan

Sampling and Analysis Plan

Go East Corp Landfill Site Everett, Washington

for Washington State Department of Ecology on Behalf of P&GE, LLC

August 10, 2020

2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Table of Contents

1.0 INTR	ODUCTION	E-1
1.1.Purpo	se	E-1
1.2.Projec	et Organization and Responsibilities	E-1
1.2.1	Principal-in-Charge	E-2
1.2.2	Project Manager	E-2
1.2.3	Field Coordinator	E-2
1.2.4	Quality Assurance Leader	E-2
1.2.5	Laboratory Management	E-3
2.0 SAM	PLING ACTIVITIES AND SAMPLE DESIGNATION	E-3
2.1.0n-Sit	e Fill Source Sampling	E-3
2.2.Forme	er Storage Tank Area Sampling	E-5
2.3.Supple	emental Landfill Material Sampling	E-5
2.4.Confir	mation Soil Sampling	E-6
2.5.0ther	Soil Sampling	E-7
2.5.1	Interim Action Excavation Area	E-7
2.5.2	Northeastern Slope Area	E-8
2.5.3	Areas Outside Current Landfill Limit	E-8
2.6.Samp	le Designation	E-8
3.0 SAM	PLING EQUIPMENT AND PROCEDURES	E-9
3.1.Field l	Logging	E-9
3.2.Field	Screening	E-9
3.2.1	Visual Screening	E-9
3.2.2	Water Sheen Screening	E-9
3.2.3	Headspace Vapor Screening	E-10
3.3.Soil Sa	ampling	
	ment Decontamination	
3.5.Field [Documentation	E-11
3.5.1	Sample Labels	E-11
3.5.2	Chain-of-Custody	E-11
3.6.Deteri	mination of Sampling Locations	E-12
3.6.1	Determination by Field Personnel	
3.6.2	Surveying by Professional Land Surveyor	E-12
3.7.Invest	igation Derived Waste	
4.0 SAM	PLE HANDLING	E-12
4.1.Samp	le Containers and Preservation	E-12
-	le Packaging and Shipping	
5.0 LAB	DRATORY ANALYTICAL METHODS	E-13
6.0 QUA	LITY ASSURANCE AND QUALITY CONTROL REQUIREMENTS	E-13
7		E.13

LIST OF FIGURES

Figure E-1. Proposed Soil Sampling Locations – On-Site Fill Source, Former Storage Tank Area, and Supplemental Landfill Material Samples

Figure E-2. Proposed Soil Sampling Locations - Confirmation Soil Samples

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) has prepared this Sampling and Analysis Plan (SAP) for the Go East Corp Landfill Site (Site) as an appendix to the *Interim Action Work Plan, Go East Corp Landfill Site, Everett, Washington* (GeoEngineers 2020) (IAWP). The objective and scope of the interim action are presented in the IAWP. The SAP describes field sampling procedures and laboratory analyses to be performed in support of the interim action. Field sampling activities described in this SAP include:

- Sampling of the on-site source of structural fill that will be used to backfill the interim action excavation area.
- Sampling of soil in the area where an abandoned storage tank previously was observed on the ground surface beyond the current limit of the Go East Corp Landfill (Landfill).
- Supplemental sampling of landfill material to be excavated from the interim action excavation area during closure of the Landfill.
- Confirmation soil sampling at the limits of the interim action excavation area.
- Sampling of soil in any areas where unexpected wastes such as drums are found (if any) or where landfill materials are found outside the current Landfill limit (if any).

As described in the IAWP, the landfill material excavated from the interim action excavation area will be consolidated in the interior portion of the Landfill and covered with an engineered capping system.

This SAP has been prepared in general accordance with requirements of the Washington State Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] Chapter 173-340). A Quality Assurance Project Plan (QAPP) is included in Appendix F of the IAWP.

1.1 Purpose

This SAP describes planned field methods, sample collection and handling, and analytical testing for soil samples¹ to be collected during the interim action.

1.2 Project Organization and Responsibilities

GeoEngineers key personnel and responsibilities for the interim action project are identified below. These personnel are responsible for ensuring that the project, including the sampling and analysis activities described herein, is conducted in accordance with the IAWP.

¹ Per the IAWP, landfill material in the interim action excavation area consists of solid waste debris (e.g., concrete/asphalt rubble, glass and wood debris, tires, carpet, metal) and admixed on-site borrow soil that was historically used as Landfill cover material. The admixed soil will be sampled as described in the IAWP to provide supplemental information regarding chemical concentrations in the landfill material.

1.2.1 Principal-in-Charge

Mr. Terry McPhetridge is the Principal-in-Charge and has overall responsibility for ensuring that the project is implemented in accordance with the IAWP.

1.2.2 Project Manager

Mr. Robert Leet is the Project Manager and will assign project team members, coordinate and schedule field and laboratory testing activities, coordinate subcontractors, and track the project schedule. Mr. Leet will also verify that SAP and QAPP objectives are achieved and that deviations from the IAWP, SAP, or QAPP are documented, if deviations are necessary based on conditions at the time of the work. Additionally, Mr. Leet will provide technical oversight and coordinate production and review of project deliverables.

1.2.3 Field Coordinator

The Field Coordinator will be identified before field work begins. The Field Coordinator is responsible for the daily management of activities in the field. Specific responsibilities include:

- Supervise and provide technical direction to GeoEngineers field personnel and subcontractors (e.g., a certified asbestos professional) as needed under the supervision of the Project Manager.
- Develop schedules and allocate resources for field tasks.
- Coordinate data collection and field documentation activities.
- Supervise the compilation of field data and laboratory analytical results.
- Review data for correct and complete reporting.
- Implement and oversee field sampling in accordance with the IAWP including this SAP and related documents.
- Coordinate work with on-site subcontractors.
- Schedule sample shipments/delivery with the analytical laboratory.
- Monitor that appropriate sampling, testing, and measurement procedures are followed.
- Coordinate the transfer of field records (data, sample tracking forms, field reports, etc.) to the Project Manager.
- Identify whether deviations from the SAP and QAPP procedures are necessary and appropriate to achieve the project goals and discuss deviations with the Project Manager.

1.2.4 Quality Assurance Leader

Mr. Mark Lybeer is the Quality Assurance (QA) Leader responsible for overseeing quality assurance/quality control for laboratory testing of field samples. Specific responsibilities of the QA Leader include the following:

- Serve as the GeoEngineers point of contact for laboratory OA questions and concerns.
- Confirm acceptability of the Laboratory QA Plan.
- Respond to laboratory data QA needs, answer laboratory requests for guidance and assistance, and resolve issues.

- Monitor laboratory compliance with data quality requirements outlined in the QAPP.
- Confirm that appropriate sampling and analysis procedures are followed including implementation of proper QC checks.
- Coordinate the implementation of the QAPP and review the overall quality of the analytical data generated.
- Implement or direct corrective actions if necessary.
- Review project policies, procedures, and guidelines and review the project activities to verify that the QA program is being properly implemented.
- Provide oversight of the data development and review process and of subcontracted laboratories.
- Develop work scopes for subcontracted laboratories that incorporate QAPP requirements.
- Conduct or delegate data review activities.
- Enter data into the Washington State Department of Ecology's (Ecology) Environmental Information Management system.

1.2.5 Laboratory Management

Subcontracted laboratories conducting analytical testing for this project are required to confirm with the QA Leader that laboratory procedures are consistent with the project QA objectives outlined in the QAPP. The Laboratory QA Coordinator for each subcontracted laboratory administers the Laboratory QA Plan and is responsible for QC. Specific responsibilities of the Laboratory QA Coordinator include:

- Verify implementation of the Laboratory QA Plan.
- Serve as the laboratory point of contact.
- Implement corrective action as necessary when analytical QC limits are exceeded.
- Issue the final laboratory analytical report and QC data.
- Comply with the QAPP and contractual requirements for laboratory services.
- Participate in QA audits and compliance inspections as directed by the QA Leader, if needed.

OnSite Environmental, Inc. (OnSite) of Redmond, Washington, a Washington State accredited laboratory, will be the subcontracted analytical laboratory for the project. Mr. David Baumeister or designee will be OnSite's Laboratory QA Coordinator.

2.0 SAMPLING ACTIVITIES AND SAMPLE DESIGNATION

The interim action sampling activities identified in Section 1.0 are described below.

2.1 On-Site Fill Source Sampling

Following the excavation and relocation of landfill material, the interim action excavation area will be backfilled with structural fill consisting of the on-site native sandy soil (advance outwash sand) present in areas outside the current Landfill limit. This on-site source of structural fill will be sampled at ten locations to evaluate background concentrations of metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic

hydrocarbons (PAHs) in the native soil and to verify that other hazardous substances are not present at concentrations exceeding the interim action levels (IALs) presented in Appendix D of the IAWP. The approximate proposed sampling locations are shown in Figure E-1. Samples will be collected from shallow test pits excavated to a depth of 1 to 3 feet below ground surface (bgs) using hand tools or a backhoe or excavator.

Soil in each test pit will be field screened for the potential presence of hazardous substances. Field screening will consist of visual observation for soil staining, soil headspace vapor screening using a photoionization detector (PID), and water sheen testing. Field screening procedures are discussed in Section 3.2. If field screening evidence of contamination is not observed, the on-site fill source samples will be collected from the temporary stockpile of excavated soil at each test pit location. If field screening evidence of contamination is observed, the samples will be collected from soil considered most likely to be contaminated based on the field screening results. Each test pit will be backfilled with the excavated soil following sampling.

The on-site fill source soil samples will be submitted to OnSite and analyzed for the following parameters to evaluate background concentrations:

- Low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

Three of the samples also will be analyzed for the following parameters to verify that other hazardous substances are not present at concentrations exceeding IALs:

- Gasoline range organics (GRO) by Method NWTPH-Gx.
- Diesel range organics (DRO) and heavy oil range organics (ORO) by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics (e.g., tannins and lignins from woody debris).
- Volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) Methods 5035A (unpreserved sample collection and preparation) and 8260D (analysis).
- Semivolatile organic compounds (SVOCs) with low-level PAHs by EPA Method 8270E/SIM.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.

It is anticipated that there is enough clean native sandy soil available on the Property to meet the structural fill needs of the Landfill closure project. Should it become necessary to use imported structural fill, a sample of the import fill material will be obtained from the fill supplier and analyzed before the material is used on site. The import fill sample will be analyzed for the parameters listed above to verify that the material does not contain concentrations of hazardous substances exceeding IALs.

2.2 Former Storage Tank Area Sampling

Soil at the location of the former storage tank approximately 40 feet east of the existing wooden shed will be sampled to assess whether soil at this location is contaminated. The approximate proposed sampling location is shown in Figure E-1. One shallow soil sample will be collected from the upper 1 foot of soil using hand tools. The sample will be collected during the same field mobilization as the on-site fill source sampling described in Section 2.1.

Soil in the former storage tank area will be field screened for the potential presence of hazardous substances as described in Section 3.2. If field screening evidence of contamination is not observed, the soil sample will be collected from shallow soil at the center of the estimated former storage tank location. If field screening evidence of contamination is observed, the sample will be collected from soil considered most likely to be contaminated based on the field screening results.

The former storage tank area soil sample will be analyzed by OnSite for the following parameters:

- GRO and benzene, toluene, ethylbenzene, and xylenes (BTEX) by Method NWTPH-Gx and EPA Method 8021B.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.

The former storage tank area soil sample will be archived at the laboratory. If GRO, BTEX, DRO, or ORO are detected in the sample at concentrations exceeding IALs, additional constituents will be analyzed in accordance with MTCA Table 830-1, "Required Testing for Petroleum Releases" (WAC 173-340-900). If soil contamination exceeding IALs or other applicable MTCA criteria is confirmed, the contaminated soil will be excavated and disposed of off site as appropriate based on the analytical results. If contaminated soil is removed from the former storage tank area, confirmation soil samples will be collected at the excavation limits to confirm that contamination exceeding IALs or other applicable MTCA criteria has been removed. The confirmation soil sampling in the former storage tank area will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

2.3 Supplemental Landfill Material Sampling

Supplemental sampling of landfill material in the interim action excavation area will be conducted as required by Section 3.6.2 of the *Go East Landfill Closure Plan* (PACE 2012) (LFCP) to further characterize the landfill material prior to excavating and relocating it beneath the engineered capping system. As discussed in Section 2.1 of the IAWP, 29 soil samples were collected from 25 test pits excavated in or adjacent to the interim action excavation area in June 2019. These soil samples were collected and analyzed as required by Section 3.6.2 of the LFCP to characterize concentrations of hazardous substances potentially present in the landfill material that will be relocated beneath the engineered capping system, and to evaluate whether landfill materials requiring off-site disposal as a Washington State dangerous waste may be present. The June 2019 soil samples were analyzed for GRO, DRO, ORO, BTEX, PAHs, selected metals, Toxicity Characteristic Leaching Procedure (TCLP) lead, and pH.

The supplemental soil samples will be collected during the same field mobilization as the on-site fill source sampling described in Section 2.1. The samples will be collected from 12 test pits in the interim action

excavation area (Figure E-1). The proposed supplemental soil sampling locations are adjacent to the June 2019 test pit locations where the highest concentrations of hazardous substances were detected relative to the IALs, as these are the locations considered most likely to contain elevated concentrations of other hazardous substances, if present.

The test pits will be excavated using a backhoe or excavator and will be observed and logged by a GeoEngineers representative. The test pits will be excavated to a depth of 15 feet bgs or to native soil beneath the landfill material if native soil is encountered first. Soil in the test pits will be field screened for the potential presence of hazardous substances as described in Section 3.2.

One soil sample will be collected from each test pit for chemical analysis. The sample will be collected from soil considered most likely to be contaminated based on field screening results. If field screening evidence of contamination is not observed, the soil sample will be collected from the temporary stockpile of excavated landfill material at each test pit location. Each test pit will be backfilled with the excavated material following sampling.

The supplemental soil samples will be analyzed by OnSite for the following parameters:

- GRO by Method NWTPH-Gx.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.
- VOCs by EPA Methods 5035A and 8260D.
- SVOCs with low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

Follow-up TCLP analysis will be performed if any constituents are detected in a soil sample at concentrations (in milligrams per kilogram) greater than 20 times the respective Washington State toxicity characteristic dangerous waste criteria specified in WAC 173-303-090(8)(c) (in milligrams per liter). The TCLP analysis will be performed to evaluate whether the constituent concentrations in the sample leachate exceed the respective toxicity characteristic criteria. Any landfill material found to exceed toxicity characteristic dangerous waste criteria will be disposed of at an off-site facility permitted to receive Washington State dangerous wastes. Additionally, any landfill material found to contain total PCB concentrations (sum of Aroclors) greater than or equal to 1 milligram per kilogram will be disposed of in accordance with the Federal Toxic Substances Control Act requirements for PCB remediation waste.

2.4 Confirmation Soil Sampling

Confirmation soil sampling will be conducted in the interim action excavation area following removal of landfill material and prior to backfilling the area with clean fill. The confirmation soil samples will be

submitted for laboratory analysis to confirm that hazardous substances are not present in native soil beyond the future Landfill limit at concentrations exceeding IALs.

The approximate proposed confirmation soil sampling locations are shown in Figure E-2. The confirmation soil samples will be collected from the bottom and/or sidewalls of the excavation area as the excavation work progresses using an excavator or hand tools. The sampling locations may be adjusted based on the size and shape of the excavation area, access constraints, or other field conditions. The final sampling locations will be evaluated and selected by the Project Manager and Field Coordinator based on field conditions and field screening results. A GeoEngineers representative will document the confirmation soil sampling activities in field reports and photographs.

The confirmation soil samples will be submitted to OnSite and analyzed for the following parameters:

- GRO by Method NWTPH-Gx.
- DRO and ORO by Method NWTPH-Dx without acid/silica gel cleanup. If DRO or ORO are detected above the IAL, follow-up analysis with acid/silica gel cleanup will be performed to assess potential analytical interference by biogenic organics.
- VOCs by EPA Methods 5035A and 8260D.
- SVOCs with low-level PAHs by EPA Method 8270E/SIM.
- PCBs as Aroclors by EPA Method 8082A.
- Organochlorine pesticides by EPA Method 8081B.
- Chlorinated acid herbicides by EPA Method 8151A.
- Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc by EPA Methods 6010D/6020B/7471B.

The interim action excavation area will not be backfilled until the results of confirmation soil sampling indicate that concentrations of hazardous substances in soil beyond the future Landfill limit do not exceed IALs.

2.5 Other Soil Sampling

2.5.1 Interim Action Excavation Area

Qualified personnel including a certified asbestos professional will be present on site during the excavation work in the interim action excavation area to observe the excavated material and the soil exposed in the excavation. If anomalous soil staining, odors, or unexpected wastes such as drums are observed, associated soil will be field screened for VOCs or other contaminants using a PID and water sheen testing as described in Section 3.2. If this field screening indicates potential soil contamination, one or more soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on observed conditions and suspected contaminants. The LFCP, Landfill closure construction plans, and existing Landfill permit (Snohomish Health District Solid Waste Facility Permit No. SW-027 [Permit]) specify waste handling and disposal requirements for various landfill materials that may be encountered.

2.5.2 Northeastern Slope Area

A reconnaissance inspection of the entire northeastern slope of the Landfill will be conducted and if landfill material (e.g., drums or other debris) is found in the existing landfill cover, it will be removed and disposed of in accordance with the LFCP, Landfill closure construction plans, and Permit. If field screening indicates potential contamination of the landfill cover, soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on the waste types observed and suspected contaminants. If concentrations of hazardous substances exceeding IALs are detected, the affected landfill cover material will be excavated and placed beneath the engineered capping system or disposed of off site as appropriate based on the analytical results. Confirmation soil samples will be collected at the excavation limits and analyzed to confirm the soil removal meets regulatory requirements. The confirmation soil sampling will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

2.5.3 Areas Outside Current Landfill Limit

Excavation activities conducted in areas of the future Bakerview Plat Subdivision outside the current Landfill limit will be observed by a qualified professional as detailed in the lot exploration plan contained in the Landfill closure construction plans. Additionally, areas outside the current Landfill limit that are to be filled or left ungraded will be scarified to a depth of 1 foot to verify that no landfill wastes are present before filling or recompacting these areas. Test pit explorations also will be performed as determined necessary to verify that no landfill wastes are present in areas outside the current Landfill limit.

Solid waste found outside the historical Landfill area (if any) will be removed and disposed of off site in accordance with the LFCP, Landfill closure construction plans, and Permit. If field screening indicates native soil in the area may be contaminated, soil samples will be collected and analyzed for GRO, DRO, ORO, VOCs, SVOCs, PCBs, pesticides, herbicides, metals, and/or relevant TCLP constituents depending on the waste types observed and suspected contaminants. If contamination exceeding IALs is detected in native soil, the contaminated soil will be excavated, potentially staged on site, and disposed of at an off-site, permitted facility. Confirmation soil samples will be collected at the excavation limits and analyzed to confirm that contamination exceeding IALs has been removed. The confirmation soil sampling will be performed consistent with applicable guidelines in Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology 2016).

2.6 Sample Designation

The soil samples will be assigned unique sample identification numbers. Examples are provided below.

- On-site fill source samples: Fill-01-3, where "Fill-01" indicates fill sample Fill-01 and "3" indicates the sample was obtained from a depth of approximately 3 feet bgs.
- Former storage tank area soil sample: FST-01-0.5, where "FST-01" indicates former storage tank area sample FST-01 and "0.5" indicates the sample was obtained from a depth of approximately 0.5 feet bgs.
- Supplemental landfill material samples (if field screening indicates potential contamination at a discrete depth): STP-01-12, where "STP-01" indicates supplemental test pit STP-01 and "12" indicates the sample was obtained from a depth of approximately 12 feet bgs.

- Supplemental landfill material samples (if field screening indicates no evidence of potential contamination): STP-01-SP, where "STP-01" indicates supplemental test pit STP-01 and "SP" indicates the sample was obtained from the temporary stockpile of material excavated from the test pit.
- Confirmation soil samples: IAEX-01-6, where "IAEX-01" indicates interim action excavation area sample IAEX-01 and "6" indicates the sample was obtained from a depth of approximately 6 feet bgs.

The sample locations will be recorded in the field and sample identification numbers will be written on the sample containers and chain-of-custody forms.

3.0 SAMPLING EQUIPMENT AND PROCEDURES

This section summarizes the sample collection procedures for soil.

3.1 Field Logging

Materials encountered in test pit explorations will be logged by field personnel on test pit logs, and the sidewalls of each test pit will be photographed. Information on the test pit logs will include the test pit identification number, excavation equipment used, material encountered, and sampling information such as sampling depths and field screening results. Soil will generally be described in accordance with ASTM D 2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) and classified according to the Unified Soil Classification System. Landfill solid waste debris will generally be described consistent with the descriptions used in previous Site investigations (e.g., brick, plastic, asphalt, glass, carpet). Descriptions of wood encountered will include additional detail to the extent discernable by field personnel (e.g., woody debris, dimensional lumber, stumps).

Although they are not anticipated, if drums, tanks, or apparent hazardous materials such as asbestos, lead-based paint, petroleum fuels, oily liquids, or solvents are encountered in the interim action excavation area during excavation activities, the locations, nature, condition, and disposition of the materials will be documented in field reports.

3.2 Field Screening

Soil in areas to be sampled will be field screened for evidence of potential contamination. Field screening results will be recorded on test pit logs, sample collection forms, and/or other field forms. Soil field screening methods will include visual screening, water sheen screening, and headspace vapor screening.

3.2.1 Visual Screening

Soil will be observed for possible staining that may be indicative of contamination.

3.2.2 Water Sheen Screening

This is a qualitative field screening method that can help identify the presence or absence of petroleum hydrocarbons. A portion of a soil sample will be placed in a pan containing distilled water. The water surface will be observed for signs of sheen. The following sheen classifications will be used:

Classification	Description
No Sheen (NS)	No visible sheen on the water surface
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly
Moderate Sheen (MS)	Moderate sheen; may have color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface; sheen does not dissipate rapidly
Heavy Sheen (HS)	Heavy sheen with strong color/iridescence; spread is rapid; entire water surface may be covered with sheen; sheen does not dissipate

3.2.3 Headspace Vapor Screening

This is a semi-quantitative field screening method that can help identify the presence or absence of volatile chemicals. As soon as possible after collecting a soil sample, a portion of the sample is placed in a resealable plastic bag and ambient air is captured in the bag. The bag is sealed to form a "headspace" of trapped air above the soil and the soil is gently agitated to expose the trapped air to the soil. If the ambient air temperature is low (e.g., below 45 degrees Fahrenheit), the sealed bag may be heated to accelerate partitioning of soil vapors into the headspace. Concentrations of VOCs present in the headspace (if any) are then measured by inserting the probe of a PID through a small opening in the bag. A PID measures the concentration of organic vapors ionizable by a 10.6 electron volt lamp (standard) in parts per million (ppm) and quantifies organic vapor concentrations in the range between 0.1 ppm and 2,000 ppm (isobutylene-equivalent) with an accuracy of 1 ppm between 0 ppm and 100 ppm. The maximum vapor concentration reading on the PID will be recorded on the sample collection form for each sample.

The PID will be calibrated to 100 ppm isobutylene. The PID calibration will be checked at the start of each day and at other times as necessary if anomalous or erratic instrument response is observed and a problem with the instrument is suspected.

3.3 Soil Sampling

Soil samples will be collected from the sidewalls or bottom of test pits or excavations, from temporary stockpiles of excavated material, and from in-place soil in the former storage tank area. Depending on the depth and width of test pits and excavations, soil samples will be collected either directly from the test pit/excavation sidewalls or bottom using hand tools, or from the bucket of the excavation equipment (backhoe or excavator). Field personnel will not collect a sample that has contacted the bucket of the excavation equipment. The former storage tank area soil sample will be collected using hand tools.

Samples will be placed into laboratory-supplied containers, capped with a plastic lid, and placed in a cooler containing ice pending delivery to the analytical laboratory. VOC containers will be filled first to minimize loss of volatiles. Applicable sampling procedures of EPA Method 5035A will be followed for samples to be analyzed for VOCs, including the use of EasyDraw syringes or similar equipment. The sand-sized and finer fractions of the soil will be targeted for collection. Foreign material including Landfill solid waste debris will not be sampled.

3.4 Equipment Decontamination

Hand tools used to collect soil samples (e.g., spade, trowel, stainless steel spoon) will be decontaminated using an Alconox/potable water wash and a distilled water rinse after each use. Excavation equipment will be decontaminated on site as necessary using an Alconox/potable water wash (or other effective method) if unanticipated material such as oily liquid is encountered during excavation. Decontamination water (if

generated during the interim action) will be contained and stored on site in marked drums pending characterization and off-site disposal.

3.5 Field Documentation

Field documentation will consist of test pit logs, sample collection forms, field notes, field reports, and georeferenced photographs. Field notes will be recorded in field notebooks and/or on maps. Field reports will include the date, time, description of field activities performed, names of personnel and site visitors, weather conditions, field measurements, calibration checks of field instruments (e.g., PID), and other pertinent data.

Sample data recorded on field forms will include the sample date, time, location, sample identification number, sample matrix (e.g., soil), sample collection method, field screening results, any associated quality control samples collected, and the sampler's name.

The original field records will be kept in the project file following final review by the Project Manager.

3.5.1 Sample Labels

Sample containers will be clearly labeled with waterproof ink at the time of sampling. Sample labels will include the following information:

- Project name and/or number.
- Sampling date.
- Sampling time.
- Sample identification number.
- Sample preservative used, if any.
- Initials of sampler.

The same information entered on the sample label will be recorded on the chain-of-custody form.

3.5.2 Chain-of-Custody

Samples will be retained in the custody of field personnel until the samples are delivered to the analytical laboratory. The samples will be maintained using chain-of-custody procedures following sample collection and labeling. These procedures document the transfer of sample custody from the field to the laboratory. Each sample sent to the laboratory for analysis will be recorded on a chain-of-custody form.

The chain-of-custody form documents the sample identification number, sample matrix, sample collection date and time, and the analyses to be performed for each sample, as well as all transfers of sample custody from the field to the analytical laboratory. The chain-of-custody form will be completed using waterproof ink. Any corrections will be made by drawing a line through the information being corrected, entering the correct information, and initialing and dating the change.

The individuals relinquishing and receiving samples will sign, date, and note the time on the chain-of-custody form when transferring custody of samples. Sample coolers shipped by common carrier will have the chain-of-custody form enclosed in a resealable plastic bag and placed in the sample cooler prior to sealing the cooler for shipping. Custody seals will be used on sample coolers that are shipped by common

carrier or delivered by courier to the laboratory. The common carrier shipping company (if applicable) will not sign the chain-of-custody forms as a receiver; instead, the laboratory will sign as a receiver when the samples are received. Internal laboratory records will document custody of the samples from the time they are received through final disposition.

3.6 Determination of Sampling Locations

3.6.1 Determination by Field Personnel

Horizontal and vertical sampling locations (e.g., test pit locations) will be estimated using a measuring tape and/or portable device equipped with a Global Positioning System receiver. A measuring tape will be used to estimate horizontal sampling locations only if measurements can be made accurately from a surveyed location or a relatively permanent structure, improvement, or other distinct site feature that will continue to exist after project construction activities are completed. Geolocation data recorded in the field using a Global Positioning System receiver will be processed in the office using measurements from the nearest reference station to each sample location.

3.6.2 Surveying by Professional Land Surveyor

Sampling locations will be surveyed by a professional land surveyor to the extent possible based on access constraints and other considerations.

3.7 Investigation Derived Waste

Material removed from test pits will be returned to the test pits following sample collection. Equipment decontamination water (if generated) will be contained and stored on site in marked drums pending characterization and off-site disposal. Gloves and other incidental waste will be disposed of in off-site waste receptacles.

4.0 SAMPLE HANDLING

4.1 Sample Containers and Preservation

Requirements for sample containers, sample preservation, and sample holding times for the planned laboratory analyses are discussed in the QAPP (Appendix F of the IAWP).

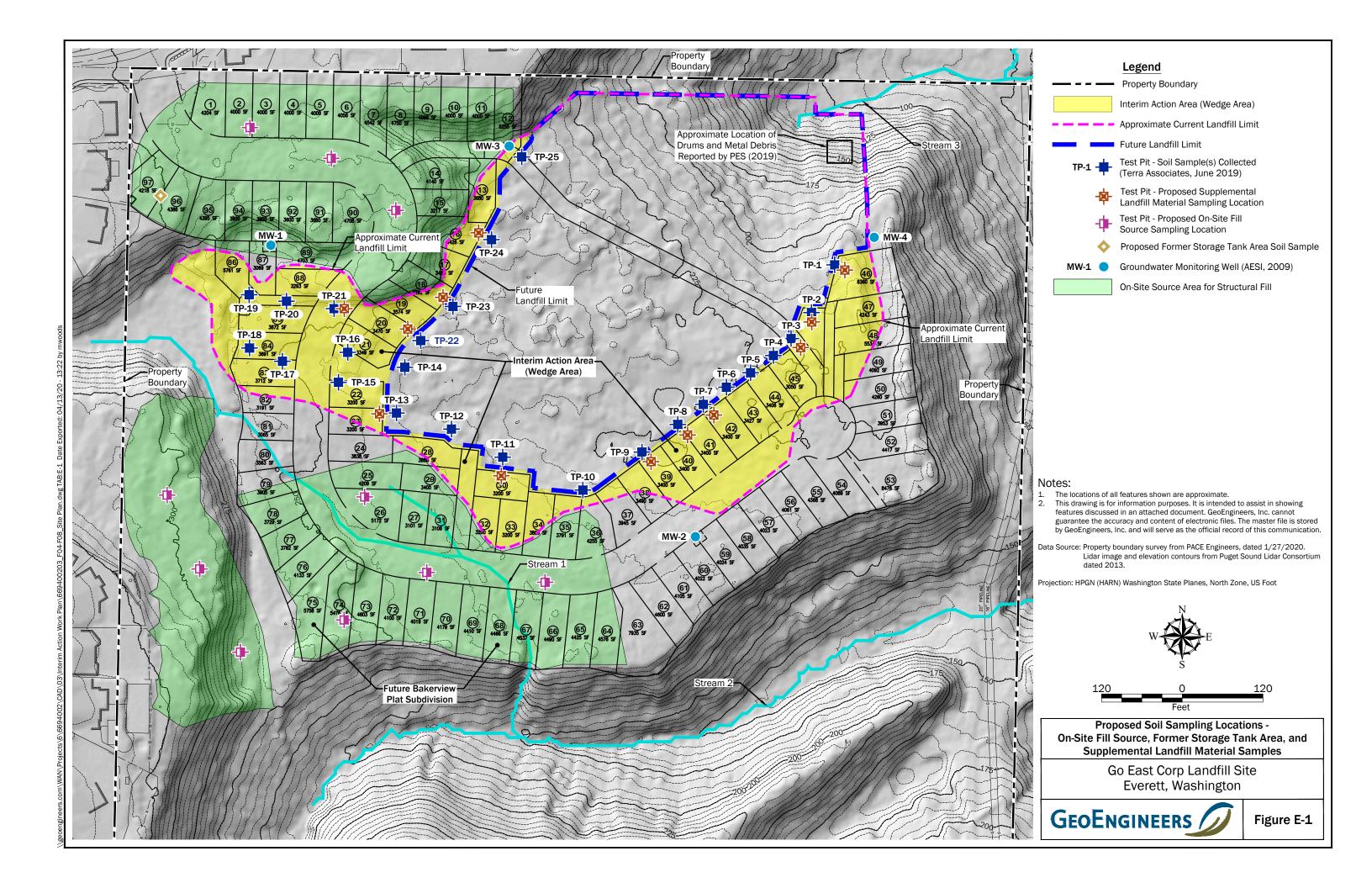
4.2 Sample Packaging and Shipping

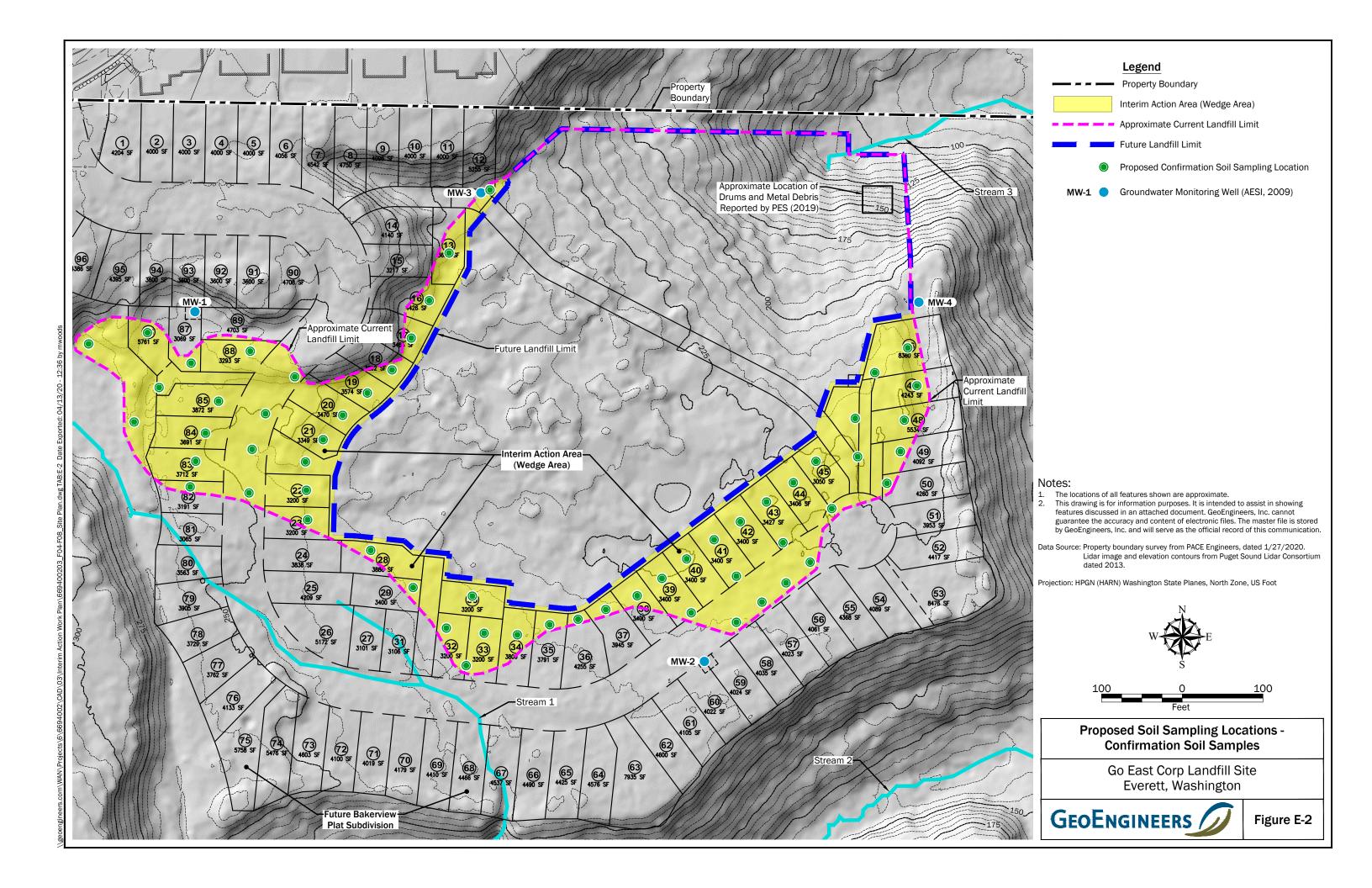
Samples will be stored in a cooler containing ice for delivery to the analytical laboratory. The samples will be either hand-delivered to the laboratory by field personnel or courier or shipped via a commercial carrier. Custody seals will be used on sample coolers that are not hand-delivered by field personnel.

Upon receipt of the sample coolers at the laboratory, the custody seals (if present) will be broken, the condition and temperature of the samples will be recorded, and the chain-of-custody forms will be signed to document transfer of sample custody. The chain-of-custody forms will be used internally in the laboratory to track sample handling and final disposition.

5.0 LABORATORY ANALYTICAL METHODS

The laboratory analytical methods to be used are specified in Section 2.0. Details regarding sample containers, sample preservation, and sample holding times are discussed in the QAPP.


6.0 QUALITY ASSURANCE AND QUALITY CONTROL REQUIREMENTS


The QAPP contained in Appendix F of the IAWP discusses quality assurance/quality control requirements in detail.

7.0 REFERENCES

- PACE Engineers, Inc. (PACE), 2012. Go East Landfill Closure Plan, Go East Landfill, 4330 108th Street SE, Everett, Washington, 98208. February 8, 2012, revised January 2018.
- Practical Environmental Solutions, 2019. Go East Landfill Information for MTCA Assessment. March 31, 2019.
- Washington State Department of Ecology (Ecology), 2016. Guidance for Remediation of Petroleum Contaminated Sites. Toxics Cleanup Program Publication No. 10-09-057. Revised June 2016.

APPENDIX FQuality Assurance Project Plan

Quality Assurance Project Plan

Go East Corp Landfill Site Everett, Washington

for Washington State Department of Ecology on Behalf of P&GE, LLC

August 10, 2020

2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Table of Contents

1.0	INTRODUCTION	F-1
2.0	SAMPLE COLLECTION, HANDLING, AND CUSTODY	F-1
3.0	CHEMICAL ANALYSES/METHODS	F-1
3.1.	Sample Containers, Preservation, and Holding Times	F-2
4.0	MEASUREMENT QUALITY OBJECTIVES	F-2
4.1.	Analytical Sensitivity	F-2
4.2.	Precision	F-3
4.3.	Accuracy and Bias	F-3
4.4.	Completeness, Representativeness, and Comparability	F-4
5.0	QUALITY CONTROL SAMPLES AND PROCEDURES	F-5
5.1.	Field Quality Control Samples	F-5
	5.1.1. Field Duplicates	F-5
	5.1.2. Other Field QC Samples	F-5
5.2.	Chemical Laboratory Quality Control	F-5
	5.2.1. Laboratory Blanks	F-6
	5.2.2. Matrix Spikes/Matrix Spike Duplicates	F-6
	5.2.3. Laboratory Control Spikes/Laboratory Control Spike Duplicates	F-7
	5.2.4. Laboratory Duplicates	F-7
	5.2.5. Surrogate Spikes	F-7
5.3.	Calibration Procedures	F-7
	5.3.1. Field Instrumentation	
	5.3.2. Laboratory Instrumentation	F-7
6.0	LABORATORY DATA REPORTING AND DELIVERABLES	F-8
7.0	DATA REDUCTION AND ASSESSMENT PROCEDURES	F-8
7.1.	Data Reduction	F-8
7.2.	Review of Field Documentation and Laboratory Receipt Information	F-8
7.3.	Chemical Data Validation	F-9
8.0	REFERENCES	F-10

LIST OF TABLES

Table F-1. Soil Analytical Methods, Sample Containers, Preservation, and Holding Times

Table F-2. Target Reporting Limits and Quality Control Limits for Soil Samples

Table F-3. Quality Control Sample Types and Frequency

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) has prepared this Quality Assurance Project Plan (QAPP) for the Go East Corp Landfill Site (Site) as an appendix to the *Interim Action Work Plan, Go East Corp Landfill Site, Everett, Washington* (GeoEngineers 2020) (IAWP). The objective and scope of the interim action are presented in the IAWP. The QAPP presents the quality objectives for environmental measurement data that will be generated during the interim action activities and the quality assurance/quality control (QA/QC) procedures for achieving the quality objectives. The QAPP was developed based on guidelines contained in the Washington State Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] Chapter 173-340) and Washington State Department of Ecology (Ecology) guidance contained in Ecology Publication No. 04-03-030, *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies* (Ecology 2016). Ecology's guidance is generally consistent with United States Environmental Protection Agency (EPA) guidance contained in EPA Document QA/G-5, *Guidance for Quality Assurance Project Plans*, EPA Publication No. EPA/240/R-02/009 (EPA 2002).

Environmental measurements will be performed throughout the project to produce data that are scientifically valid, of known and acceptable quality, and meet established objectives. QA/QC procedures will be implemented so that the precision, accuracy, representativeness, completeness, and comparability of the data generated meet the measurement quality objectives to the maximum extent possible.

2.0 SAMPLE COLLECTION, HANDLING, AND CUSTODY

The sample collection, handling, and custody procedures are described in the Sampling and Analysis Plan (SAP) contained in Appendix E of the IAWP. The anticipated chemical analytical laboratory to be subcontracted for this project will be OnSite Environmental, Inc. (OnSite) in Redmond, Washington.

3.0 CHEMICAL ANALYSES/METHODS

Soil samples will be collected during field activities as described in the SAP. The samples will be analyzed for one or more of the following constituents:

- Volatile organic compounds (VOCs) by EPA Methods 5035A (unpreserved sample collection and preparation) and 8260D (analysis).
- Petroleum hydrocarbons gasoline range organics by Method NWTPH-Gx and diesel range organics and heavy oil range organics by Method NWTPH-Dx (potentially both with and without silica gel cleanup).
- Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B.
- Carcinogenic polycyclic aromatic hydrocarbons by EPA Method 8270D/Selective Ion Monitoring.
- Polychlorinated biphenyls as Aroclors by EPA Method 8082A.
- Organochlorine pesticides by EPA Method 8081B.
- Arsenic, cadmium, chromium, copper, lead, mercury, selenium, and/or zinc by EPA Method 6010D/7471B.

3.1 Sample Containers, Preservation, and Holding Times

Samples subject to chemical laboratory analyses will be containerized and preserved in the field according to the guidelines summarized in Table F-1. Samples will be kept on ice in coolers while at the Site. The samples generally will be hand-delivered to the laboratory by the field representative or a courier service. The samples will be kept on ice in coolers until the next day in cases where hand-delivery is not possible (inclement weather, after-hours sampling, etc.). The samples will remain in a refrigerated state at the laboratory until analyzed.

Sample holding times are defined as the method-specific recommended time between sample collection and extraction, sample collection and analysis, or sample extraction and analysis. The analytical results may be biased low if a sample exceeds a recommended holding time. For example, if the extraction holding time for volatile analysis of soil samples is exceeded, then the possibility exists that some of the organic constituents may have volatilized from the sample or degraded. Results for that analysis would be qualified as estimated to indicate that the reported results may be lower than actual site conditions. Recommended holding times are presented in Table F-1.

4.0 MEASUREMENT QUALITY OBJECTIVES

The quality objectives for measurement data are to collect environmental sampling data of known, acceptable, and documentable quality. The specific quality objectives established for the project are as follows:

- Implement the procedures outlined herein for field sampling, sample custody, equipment operation and calibration, laboratory analysis, and data reporting to ensure consistency and thoroughness of data generated.
- Achieve the level of QA/QC required to produce scientifically valid analytical data of known and documented quality. This will be accomplished by establishing acceptance and performance criteria for analytical data precision, accuracy, representativeness, completeness, and comparability, and by evaluating project data against these criteria.

The sampling design, field procedures, laboratory procedures, and quality control (QC) procedures established for this project were developed to provide defensible data. Specific analytical data quality factors that may affect data usability include quantitative factors (analytical sensitivity, precision, accuracy, bias, and completeness) and qualitative factors such as representativeness and comparability. These data quality factors and associated acceptance and performance criteria are discussed below. Method-specific acceptance and performance criteria (QC limits) for chemical analysis of soil samples are presented in Table F-2.

4.1 Analytical Sensitivity

Analytical methods have qualitative limitations regarding the level at which an analyte can be theoretically detected with a given statistical level of confidence that are often expressed as the method detection limit (MDL). These same methods also have quantitative thresholds at which an analyte can be quantified that are typically represented by the lowest point on a 5- to 7-point calibration curve (linear, response factors, weighted, etc.) generated prior to project sample analysis. In all cases, these latter real-world

measurements are always greater (typically 3 to 5 times greater) than the MDL and are often expressed as the method reporting limit (MRL).

The detected concentration is identified as an estimate (i.e., "J" flagged) when an analyte is positively identified (i.e., detected) at a concentration greater than the MDL but less than the MRL. The analytical laboratory will provide numerical results for each analyte that is positively identified and report them as detected above the MRL or detected below the MRL but above the MDL.

Intended uses of project data such as risk assessment or comparison to numerical criteria typically dictate specific laboratory target MRLs necessary to fulfill stated objectives. The project laboratory target MRLs for the project are presented in Table F-2. (Laboratory target MRLs are also known as practical quantitation limits.) It may be possible to achieve MRLs less than the target MRLs under ideal conditions. However, the target MRLs presented in Table F-2 are considered targets because several factors may influence final MRLs. First, the moisture content and other physical conditions of samples can affect MRLs. Second, analytical procedures may require sample dilutions or other practices to accurately quantify a particular analyte at concentrations above the range of the instrument. The effect of this is that other analytes could be reported as not detected but at a laboratory-adjusted, final MRL that is higher than a specified target MRL. Data users must be aware that elevated MRLs can bias statistical data summaries, and careful interpretation is required when using data sets with MRLs that exceed targets.

4.2 Precision

The precision of analytical data is a measure of the reproducibility among duplicate measurements of an analyte in a sample and applies to duplicate samples and duplicate spiked samples (matrix spikes/matrix spike duplicates [MS/MSDs]). The closer the measured values are to each other, the more precise the measurement process. Precision error may affect data usability. Precision is expressed as the relative percent difference (RPD) of duplicate sample or duplicate spiked sample results. The RPD is calculated as:

Where:
$$RPD(\%) = \frac{|D_1 - D_2|}{(D_1 + D_2)/2} X 100,$$

 D_1 = Reported concentration of analyte in primary sample/aliquot.

 D_2 = Reported concentration of analyte in duplicate or duplicate spiked sample/aliquot.

The RPD will be calculated for duplicate measurements and compared to the project RPD QC limits. Examples of duplicate measurements for which RPD may be calculated include laboratory duplicates, field duplicates, laboratory control samples/laboratory control sample duplicates (LCS/LCSDs), and MS/MSDs. The RPD QC limit goals for field duplicate sample pairs (50% for soil) are only applicable if the primary and duplicate sample concentrations are greater than 5 times the MRL. For results less than 5 times the MRL, the difference between the primary and duplicate samples should be less than 2 times the MRL for soil samples and less than 1 times the MRL for water samples.

4.3 Accuracy and Bias

Accuracy is a measure of bias in the analytical process. The closer the measurement value is to the true value, the greater the accuracy. Accuracy is typically evaluated by adding a known concentration (a "spike") of a target or surrogate compound to a sample prior to analysis. The detected concentration or percent recovery (%R) of the spiked compound reported in the sample provides a quantitative measure of analytical accuracy. Since most environmental data collected represent single points spatially and temporally rather than an average, accuracy is generally more important than precision in assessing the data. In general, if

%R values are low, non-detect results may be reported for analytes of interest when in fact these analytes are present in the sample (i.e., false negative results), and results for detected analytes may be biased low. The reverse is true when %R values are high. In this case, non-detect results are considered accurate, whereas detected values may be higher than true values.

For this project, accuracy will be expressed as the %R of a known surrogate spike, matrix spike, or laboratory control sample (blank spike) concentration:

$$Recovery(\%R) = \frac{Spiked\ Result - Unspiked\ Result}{Known\ Spike\ Concentration}\ X\ 100$$

Accuracy (%R) criteria are presented in Table F-2.

4.4 Completeness, Representativeness, and Comparability

Completeness establishes whether enough valid measurements were obtained to meet project objectives. The number of samples and results expected establishes the comparative basis for completeness. The completeness goal is 90 percent useable data for the samples/analyses planned. If the completeness goal is not achieved, an evaluation will be performed to determine if the data are adequate to meet study objectives. The following equation is used to calculate percent completeness:

% Completeness = Number of valid results x 100/Number of possible results

Representativeness refers to the degree to which data accurately and precisely represent actual site conditions. Representativeness of the data will be evaluated by:

- Comparing actual field sampling procedures, including QC sampling activities, to those specified in the SAP and OAPP.
- Reviewing the RPD values for field primary/duplicate sample pairs to evaluate the precision of analytical results.
- Reviewing the data and identifying data that should be qualified as estimated, qualitative in nature, or rejected as not usable.

Only representative data will be used in subsequent data reduction, validation, and reporting activities.

Comparability refers to the confidence with which one set of data can be compared to another. Although numeric goals do not exist for comparability, the following items are evaluated when assessing data comparability:

- Whether each data set contains the same defining parameters.
- Whether the units used for each data set are convertible to a common metric scale.
- Whether similar analytical and quality assurance procedures were used to generate the data contained in each data set.
- Whether the analytical instruments used for each data set have similar detection levels.
- Whether the samples in each data set were selected and collected in a similar manner.

The overall usability of data sets generated during the project will be assessed based on the evaluation of the data quality factors discussed above and other QA/QC criteria described herein.

5.0 QUALITY CONTROL SAMPLES AND PROCEDURES

QC samples will be analyzed to ensure the precision, accuracy, representativeness, comparability, and completeness of the data. Table F-3 summarizes the types and frequency of QC samples to be analyzed during the project, including field QC samples and laboratory QC samples.

5.1 Field Quality Control Samples

Field QC samples serve as a control and check mechanism to monitor the consistency of sampling methods and potential influence of off-site factors on environmental samples. Examples of potential off-site factors include airborne VOCs and potable water used in drilling activities. As shown in Table F-3, field QC samples will generally consist of field duplicates.

5.1.1. Field Duplicates

Field duplicates serve as measures for precision. They are created by placing aliquots of an environmental sample in separate containers and identifying one of the aliquots as the primary sample and the other as the duplicate sample. Field duplicates measure the precision and consistency of laboratory analytical procedures and methods, as well as the consistency of the sample processing techniques used by field personnel and/or the relative homogeneity of sample matrices. The duplicate sample is submitted to gain precision information on sample homogeneity, handling, shipping, storage and preparation, and analysis. Field duplicates will be analyzed for the same parameters as the associated primary samples.

One field duplicate will be collected for approximately every 20 primary samples (i.e., a frequency of 5 percent).

5.1.2. Other Field QC Samples

According to the *National Functional Guidelines for Organic Superfund Methods Data Review* (EPA 2017a), "The purpose of laboratory (or field) blank analysis is to assess the existence and magnitude of contamination resulting from laboratory (or field) activities. The criteria for evaluation of blanks apply to any blank associated with the samples..." Field blanks will be used at the discretion of the QA Leader if there is a reason to suspect contamination introduced by ambient conditions in the field. Field blanks consist of samples of distilled water poured directly into sample containers in the field. Field blanks are analyzed for the same parameters as the associated project samples.

Analytical results for QC blanks, including field blanks, will be interpreted in general accordance with EPA's National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017a) and National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA 2017b) and professional judgment.

5.2 Chemical Laboratory Quality Control

The analytical laboratory will follow standard analytical method procedures that include specified QC monitoring requirements. These requirements will vary by method, but generally include:

- Method blanks.
- Internal standards.
- Instrument calibrations.
- MS/MSDs.
- LCS/LCSDs.
- Laboratory replicates or duplicates.
- Surrogate spikes.
- Initial and continuing instrument calibrations.

5.2.1. Laboratory Blanks

Laboratory procedures employ the use of several types of blanks but the most commonly used blanks for QA/QC assessments are method blanks. Method blanks are laboratory QC samples that consist of either a soil-like material that has undergone a contaminant destruction process, or a sample of reagent water. Method blanks are extracted and analyzed with each batch of environmental samples undergoing analysis. Method blanks are particularly useful during volatiles analysis since VOCs can be transported in the laboratory through the vapor phase. If a substance is found in the method blank, it indicates that one (or more) of the following occurred:

- Measurement apparatus or containers were not properly cleaned and contained contaminants.
- Reagents used in the analytical process were contaminated with a substance(s) of interest.
- Contaminated analytical equipment was not properly cleaned.
- Volatile substances in the air with high solubility or affinities for the sample matrix contaminated the samples during preparation or analysis.

If method blank contamination occurs, it can be difficult to determine which of the above scenarios caused the contamination. However, it is assumed that the conditions that affected the blanks also likely affected the project samples. Validation guidelines assist in determining which substances detected in associated project samples are likely present in the samples and which substances are likely attributable to the analytical process.

5.2.2. Matrix Spikes/Matrix Spike Duplicates

MS/MSDs are used to assess influences or interferences caused by the physical or chemical properties of the sample itself. For example, extreme pH can affect the results of semivolatile organic compound analyses. Additionally, the presence of a particular analyte in a sample may interfere with accurate quantitation of another analyte. MS/MSD data are reviewed in combination with other QC monitoring data to evaluate matrix effects. In some cases, matrix effects cannot be determined due to dilution and/or high levels of related substances in the sample.

An MS is created by spiking a known amount of one or more of the target analytes into a project sample, ideally at a concentration at least 5 to 10 times greater than the concentration in the unspiked sample.

The %R is calculated by subtracting the unspiked sample result from the spiked sample result, dividing by the spike amount, and multiplying by 100.

The samples designated for MS/MSD analysis should be obtained from a sampling location that is suspected to not be highly contaminated. A sample from an area of low-level contamination is needed because the objective of MS/MSD analyses is to assess possible matrix interferences, which can best be achieved with low levels of contaminants. Additional sample volume generally will be collected for MS/MSD analysis for every 20 primary soil samples for this project.

5.2.3. Laboratory Control Spikes/Laboratory Control Spike Duplicates

LCS/LCSDs (also known as blank spikes) are similar to MS/MSD samples in that a known amount of one or more of the target analytes is spiked into a prepared medium and the %R is calculated for the spiked substance(s). The primary difference between an MS and LCS is that the LCS spike medium is considered "clean" or contaminant-free. For example, reagent water is typically used for LCS water analyses. The purpose of an LCS is to help assess the overall accuracy and precision of the analytical process including sample preparation, instrument performance, and analyst performance. LCS data must be reviewed in context with other laboratory QC data to determine if corrective action is necessary for laboratory control limit exceedances.

5.2.4. Laboratory Duplicates

Laboratories often use MS/MSDs, LCS/LCSDs, and/or laboratory duplicates to assess precision. Laboratory duplicates are a second analysis of a field-collected environmental sample to assess internal laboratory precision.

5.2.5. Surrogate Spikes

Surrogate spikes are used to verify the accuracy of the analytical instrument and extraction procedures used for organic analysis methods. Surrogates are substances similar to the target analytes. A known concentration of surrogate is added to each project sample and passed through the instrument, noting the surrogate recovery. Each surrogate used has an acceptable range of %R. If a surrogate recovery is low, sample results may be biased low, and depending on the %R, a possibility of false negatives may exist. Conversely, a possibility of false positives exists when surrogate recoveries are biased high although non-detected results are considered accurate.

5.3 Calibration Procedures

5.3.1. Field Instrumentation

Field instrument calibration and calibration checks facilitate accurate and reliable field measurements. The calibration of the instruments will be checked and adjusted as necessary in general accordance with manufacturers' recommendations. Methods and frequency of calibration checks and instrument maintenance will be based on the type of instrument, stability characteristics, required accuracy, intended use, and environmental conditions.

5.3.2. Laboratory Instrumentation

The laboratory will be responsible for developing and implementing instrument calibration procedures. Several types of instrument calibrations are used, depending on the method, to determine whether the methodology is 'in control' by verifying the linearity of the calibration curve and to assure that the sample

results reflect accurate and precise measurements. This is done by verifying that the relative standard deviations (%RSD), the percent difference (%D), or the correlation coefficients are within the control limits specified in the validation documents. The main calibrations used are initial calibrations and continuing calibrations.

Calibration procedures and their appropriate chemical standards for chemical analytical testing are to comply with the specific methods within EPA SW-846, *Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, 3rd Edition*, December 1996 and the laboratory's Standard Operating Procedures. Calibration documentation will be retained at the laboratory for a minimum of 6 months.

6.0 LABORATORY DATA REPORTING AND DELIVERABLES

Laboratories will report data in formatted hardcopy and electronic form to the Project Manager and QA Leader. The laboratory will prepare electronic deliverables for data packages upon completion of analyses in accordance with project requirements. The laboratory will generally provide electronic data deliverable (EDD) files within 5 business days after delivering Portable Data Format (PDF) analytical results, including the appropriate QC documentation. Analytical laboratory measurements will be recorded in standard formats that display, at a minimum, the client/field sample identification, the laboratory sample identification, reporting units, analytical methods, analytes tested, analytical results, extraction and analysis dates, quantitation limits, and data qualifiers. Each sample delivery group will be accompanied by sample receipt forms and a case narrative identifying data quality issues.

GeoEngineers will establish EDD requirements with the analytical laboratories as part of subcontracting.

7.0 DATA REDUCTION AND ASSESSMENT PROCEDURES

This section describes data reduction and assessment procedures for field and laboratory analytical data.

7.1 Data Reduction

Data reduction involves the conversion or transcription of field and analytical data to a useable format. The laboratory personnel will reduce the analytical data for review by the QA Leader. This will involve generating both PDF forms and EDDs. The QA Leader will review both data formats to verify that the data are consistent between formats.

7.2 Review of Field Documentation and Laboratory Receipt Information

Documentation of field sampling data will be reviewed periodically for conformance with project QC requirements described in this QAPP. Field documentation will be checked for proper documentation of the following:

- Sample collection information (date, time, location, matrices, etc.).
- Field instruments used and calibration check data.
- Sample collection procedures.
- Sample containers, preservation, and volume.
- Field QC samples collected at the specified frequency.

- Chain-of-custody procedures.
- Sample delivery information.

Sample receipt forms provided by the laboratory will be reviewed for QC exceptions. The final laboratory data packages will describe (in the case narrative) the effects that any identified QC exceptions have on data quality. The laboratory will review transcribed sample collection and receipt information for correctness prior to delivering the final data packages.

7.3 Chemical Data Validation

Project decisions, conclusions, and recommendations will be based on validated data. The purpose of data validation is to ensure that data used for evaluations and calculations are scientifically valid, of known and documented quality, and defensible. Laboratory data validation will be used to identify data that should be rejected based on QA/QC deficiencies.

The QA Leader will validate data collected during the project to ensure that the data are valid and usable for their intended purpose. Data will be validated in general conformance with EPA functional guidelines for data validation (EPA 2017a, 2017b). At a minimum, the following items will be reviewed to validate the data as applicable:

- Documentation that a final review of the data was completed by the Laboratory QA Coordinator.
- Documentation of analytical and QC methodology.
- Documentation of sample preservation and transport.
- Sample receipt forms and case narratives.
- The following QC parameters:
 - Holding times and sample preservation.
 - Method blanks.
 - MS/MSDs.
 - LCS/LCSDs.
 - Surrogate spikes.
 - Duplicates.
 - Initial Calibrations.
 - Continuing Calibrations.
 - Internal Standards.

The accuracy and precision achieved will be compared to the laboratory's analytical QC limits. QC limits are presented in Table F-2. Additional specifications and professional judgment by the QA Leader may be incorporated when appropriate data from specific matrices and project samples are not available.

A data validation memorandum will be prepared to document the overall quality of the validated data relative to the measurement quality objectives. The data validation memorandum will include the following components:

- **Data Validation Summary.** Summarizes the data validation results for all sample delivery groups by analytical method. The summary identifies any systematic problems, data generation trends, general conditions of the data, and reasons for any data qualification.
- **QC Sample Evaluation.** Evaluates the results of QC sample analyses, and presents conclusions based on these results regarding the validity of the project data.
- Assessment of measurement quality objectives. An assessment of the quality of data measured and generated in terms of accuracy, precision, and completeness relative to objectives established for the project.
- Summary of Data Usability. Summarizes the usability of data based on the results of the data validation process.

The data validation will help to achieve an acceptable level of confidence in the decisions that are to be made based upon the project data.

The project analytical data will be submitted to Ecology's Environmental Information Management system after the data validation is completed.

8.0 REFERENCES

- United States Environmental Protection Agency (EPA), 2002. Document QA/G-5, Guidance for Quality Assurance Project Plans, EPA/240/R-02/009. December 2002.
- EPA, 2017a. National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-2017-002. January 2017.
- EPA, 2017b. National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-540-R-2017-001. January 2017.
- Washington State Department of Ecology (Ecology), 2016. Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies, Publication No. 04-03-030. July 2004, revised December 2016.

Table F-1

Soil Analytical Methods, Sample Containers, Preservation, and Holding Times

Go East Corp Landfill Site Everett, Washington

		Minimum		Sample	Recommended
		Sample Size	Sample Containers	Preservation	Sample Holding Times ¹
Analysis	Method	Soil	Soil	Soil	Soil
Volatile Organic Compounds (VOCs)	EPA 5035A/8260D	5 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	Samples without chemical preservative to be delivered to laboratory within 48 hours of collection; 14 days to analysis
Gasoline Range Organics	NWTPH-Gx	15 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	Samples without chemical preservative to be delivered to laboratory within 48 hours of collection; 14 days to analysis
Diesel & Heavy Oil Range Organics	NWTPH-Dx	15 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	14 days to laboratory extraction; 40 days to analysis after extraction
Benzene, Toluene, Ethylbenzene, and Xylenes	EPA 8021B	5 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	Samples without chemical preservative to be delivered to laboratory within 48 hours of collection; 14 days to analysis
Semivolatile Organic Compounds (SVOCs)	EPA 8270E/Selective Ion Monitoring	200 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	14 days to laboratory extraction; 40 days to analysis after extraction
Polychlorinated Biphenyls as Aroclors (PCBs)	EPA 8082A	12.5 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	None
Organochlorine Pesticides	EPA 8081B	50 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	14 days to laboratory extraction; 40 days to analysis after extraction
Chlorinated Acid Herbicides	EPA 8151A	50 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	14 days to laboratory extraction; 40 days to analysis after extraction
Mercury	EPA 7471B	100 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	28 days to analysis (Typically digestion & analysis occur on the same day)
Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, and Zinc	EPA 6010D/6020B	100 grams	4 oz glass clear widemouth jar	Cool to ≤6°C	6 months to analysis (Typically digestion & analysis occur on the same day)

Notes:

¹Recommended holding times are based on elapsed time from date of sample collection unless otherwise noted.

°C = degrees Celsius

oz = ounce

Table F-2

Laboratory Target Method Reporting Limits and Quality Control Limits for Soil Samples Go East Corp Landfill Site Everett, Washington

	Laboratory Target	Quality Contro	ol Limits
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
Volatile Organic Compounds (VOCs) - EPA Method 8260D (μg/kg)			
1,1,1,2-Tetrachloroethane	1.0	NA	NA
1,1,1-Trichloroethane	1.0	NA	NA
1,1,2,2-Tetrachloroethane	1.0	NA	NA
1,1,2-Trichloroethane	1.0	NA	NA
1,1-Dichloroethane	1.0	NA	NA
1,1-Dichloroethene	1.0	17 (LCS); 25 (MS)	65-130 (LCS)
1,1-Dichloropropene	1.0	NA	NA
1,2,3-Trichlorobenzene	1.0	NA	NA
1,2,3-Trichloropropane	1.0	NA	NA
1,2,4-Trichlorobenzene	1.0	NA	NA
1,2,4-Trimethylbenzene	1.0	NA	NA
1,2-Dibromo-3-chloropropane	5.0	NA	NA
1,2-Dibromoethane	1.0	NA	NA
1,2-Dichlorobenzene	1.0	NA	NA
1,2-Dichloroethane	1.0	NA	NA
1,2-Dichloropropane	1.0	NA	NA
1,3,5-Trimethylbenzene	1.0	NA	NA
1,3-Dichlorobenzene	1.0	NA	NA
1,3-Dichloropropane	1.0	NA	NA
1,4-Dichlorobenzene	1.0	NA	NA
2,2-Dichloropropane	1.0	NA	NA
2-Butanone (Methyl ethyl ketone [MEK])	5.0	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
2-Chloroethyl Vinyl Ether	5.0	NA	NA
2-Chlorotoluene	1.0	NA	NA
2-Hexanone	5.0	NA	NA
4-Chlorotoluene	1.0	NA	NA
4-Isopropyltoluene (p-Isopropyltoluene)	1.0	NA	NA
Acetone	5.0	NA	NA
Benzene	1.0	16 (LCS); 28 (MS)	65-121 (LCS)
Bromobenzene	1.0	NA	NA
Bromochloromethane	1.0	NA	NA
Bromodichloromethane (Dichlorobromomethane)	1.0	NA	NA
Bromoform	5.0	NA	NA
Bromomethane	1.0	NA	NA
Carbon Disulfide	1.0	NA	NA
Carbon Tetrachloride	1.0	NA	NA
Chlorobenzene	1.0	15 (LCS); 31 (MS)	72-123 (LCS)
Chloroethane	5.0	NA	NA
Chloroform	1.0	NA	NA
Chloromethane	5.0	NA	NA
cis-1,2-Dichloroethene	1.0	NA	NA
cis-1,3-Dichloropropene	1.0	NA	NA
Dibromochloromethane	1.0	NA	NA
Dibromomethane	1.0	NA	NA
Dichlorobromomethane	1.0	NA	NA
Dichlorodifluoromethane (CFC-12)	1.0	NA	NA
Ethylbenzene	1.0	NA	NA
Ethylene dibromide (EDB) (1,2-Dibromoethane)	1.0	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
Hexachlorobutadiene	5.0	NA	NA
lodomethane	5.0	NA	NA
Isopropylbenzene	1.0	NA	NA
m,p-Xylene	2.0	NA	NA
Methyl lodide (lodomethane)	5.0	NA	NA
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	5.0	NA	NA
Methyl t-Butyl Ether	1.0	NA	NA
Methylene Chloride	5.0	NA	NA
Naphthalene	1.0	NA	NA
n-Butylbenzene	1.0	NA	NA
n-Propylbenzene	1.0	NA	NA
o-Xylene	1.0	NA	NA
p-Isopropyltoluene	1.0	NA	NA
sec-Butylbenzene	1.0	NA	NA
Styrene	1.0	NA	NA
tert-Butylbenzene	1.0	NA	NA
Tetrachloroethene	1.0	NA	NA
Toluene	5.0	16 (LCS); 26 (MS)	71-121 (LCS)
trans-1,2-Dichloroethene	1.0	NA	NA
trans-1,3-Dichloropropene	1.0	NA	NA
trans-1,4-Dichloro-2-butene	NA	NA	NA
Trichloroethene	1.0	16 (LCS); 24 (MS)	74-126 (LCS)
Trichlorofluoromethane	1.0	NA	NA
Vinyl Acetate	5.0	NA	NA
Vinyl Chloride	1.0	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
Total Petroleum Hydrocarbons - Methods NWTPH-Gx and NWTPH-Dx (mg/kg)			
Gasoline Range Organics (NWTPH-Gx)	5.0	30	NA
Diesel Range Organics (NWTPH-Dx)	25	30	59-129 (LCS)
Heavy Oil Range Organics (NWTPH-Dx)	50	30	59-129 (LCS)
Aromatic Volatile Organic Compounds - EPA Method 8021B (mg/kg)			
Benzene	0.020	30	68-112 (LCS)
Toluene	0.050	30	70-114 (LCS)
Ethylbenzene	0.050	30	70-115 (LCS)
m,p-Xylene	0.050	30	69-117 (LCS)
o-Xylene	0.050	30	71-115 (LCS)
Semivolatile Organic Compounds (SVOCs) - EPA Method 8270E/Selective Ion Mor	nitoring (µg/kg)		
(3+4)-Methylphenol (m,p-Cresol)	33	NA	NA
1,2,4-Trichlorobenzene	33	32 (LCS); 38 (MS)	42 - 111 (LCS) 34 - 115 (MS)
1,2-Dichlorobenzene	33	NA	NA
1,2-Dinitrobenzene	33	NA	NA
1,2-Diphenylhydrazine	33	NA	NA
1,3-Dichlorobenzene	33	NA	NA
1,3-Dinitrobenzene	33	NA	NA
1,4-Dichlorobenzene	33	32 (LCS); 35 (MS)	41- 105 (LCS) 24-116 (MS)
1,4-Dinitrobenzene	33	NA	NA
1,4-Dioxane	6.7	NA	NA
1-Methylnaphthalene	6.7	NA	NA
2,3,4,6-Tetrachlorophenol	33	NA	NA
2,3,5,6-Tetrachlorophenol	33	NA	NA
2,3-Dichloroaniline	33	NA	NA
2,4,5-Trichlorophenol	33	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	%R
2,4,6-Trichlorophenol	33	NA	NA
2,4-Dichlorophenol	33	NA	NA
2,4-Dimethylphenol	33	NA	NA
2,4-Dinitrophenol	170	NA	NA
2,4-Dinitrotoluene	33	22 (LCS); 30 (MS)	57 - 107 (LCS) 32 - 114 (MS)
2,6-Dinitrotoluene	33	NA	NA
2-Chloronaphthalene	33	NA	NA
2-Chlorophenol	33	31 (LCS); 39 (MS)	45 - 108 (LCS) 30-113 (MS)
2-Methylnaphthalene	6.7	NA	NA
2-Methylphenol (o-Cresol)	33	NA	NA
2-Nitroaniline	33	NA	NA
2-Nitrophenol	33	NA	NA
3,3'-Dichlorobenzidine	170	NA	NA
3-Nitroaniline	33	NA	NA
4,6-Dinitro-2-methylphenol	170	NA	NA
4-Bromophenyl-phenylether	33	NA	NA
4-Chloro-3-methylphenol	33	25 (LCS); 26 (MS)	61 - 108 (LCS) 41 - 117 (MS)
4-Chloroaniline	170	NA	NA
4-Chlorophenyl-phenylether	33	NA	NA
4-Nitroaniline	33	NA	NA
4-Nitrophenol	33	24 (LCS); 32 (MS)	53 - 122 (LCS) 30 - 127 (MS)
Acenaphthene	6.7	23 (LCS); 21 (MS)	54 - 102 (LCS) 41 - 111 (MS)
Acenaphthylene	6.7	NA	NA
Aniline	170	NA	NA
Anthracene	6.7	NA	NA
Benzo(g,h,i)perylene	6.7	NA	NA

	Laboratory Target	Quality Control Limits		
Analyte	Method Reporting Limit (PQL)*	RPD**	%R	
Benzoic acid	170	NA	NA	
Benzyl alcohol	170	NA	NA	
bis(2-Chloroethoxy)methane	33	NA	NA	
bis(2-Chloroethyl)ether	33	NA	NA	
bis(2-Chloroisopropyl)ether	33	NA	NA	
bis(2-Ethylhexyl)phthalate	170	NA	NA	
bis-2-Ethylhexyladipate	33	NA	NA	
Butylbenzylphthalate	170	NA	NA	
Carbazole	33	NA	NA	
Dibenzofuran	33	NA	NA	
Dibutylphthalate	170	NA	NA	
Diethylphthalate	170	NA	NA	
Dimethylphthalate	33	NA	NA	
Di-n-butylphthalate	33	NA	NA	
Di-n-octylphthalate	170	NA	NA	
Fluoranthene	6.7	NA	NA	
Fluorene	6.7	NA	NA	
Hexachlorobenzene	33	NA	NA	
Hexachlorobutadiene	33	NA	NA	
Hexachlorocyclopentadiene	33	NA	NA	
Hexachloroethane	33	NA	NA	
Isophorone	33	NA	NA	
Naphthalene	6.7	NA	NA	
n-Decane	330	NA	NA	
Nitrobenzene	33	NA	NA	
n-Nitrosodimethylamine	33	NA	NA	

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
n-Nitroso-di-n-propylamine	33	28 (LCS); 34 (MS)	47 - 103 (LCS) 34-112 (MS)
n-Nitrosodiphenylamine	33	NA	NA
n-Octadecane	33	NA	NA
Pentachlorophenol	170	23 (LCS); 37 (MS)	44 - 132 (LCS) 36 - 147 (MS)
Phenanthrene	6.7	NA	NA
Phenol	33	30 (LCS); 37 (MS)	47 - 104 (LCS) 30-108 (MS)
Pyrene	6.7	21 (LCS); 33 (MS)	58 - 111 (LCS) 33 - 127 (MS)
Pyridine	330	NA	NA
Benzo(a)anthracene	6.7	NA	NA
Benzo(a)pyrene	6.7	NA	NA
Benzo(b)fluoranthene	6.7	NA	NA
Benzo(j,k)fluoranthene	6.7	NA	NA
Chrysene	6.7	NA	NA
Dibenz(a,h)anthracene	6.7	NA	NA
Indeno(1,2,3-cd)pyrene	6.7	NA	NA
Polychlorinated Biphenyls as Aroclors (PCBs) - EPA Method 8082A (µg/kg)	, ,		Г
Aroclor 1016	50	NA	NA
Aroclor 1221	50	NA	NA
Aroclor 1232	50	NA	NA
Aroclor 1242	50	NA	NA
Aroclor 1248	50	NA	NA
Aroclor 1254	50	NA	NA
Aroclor 1260	50	18 (LCS); 15 (MS)	50-134 (LCS)
Aroclor 1262	50	NA	NA
Aroclor 1268	50	NA	NA
Total Aroclors	50	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	%R
Organochlorine Pesticides - EPA Method 8081B (µg/kg)			
4,4'-DDD	10	15 (LCS); 21 (MS)	50 - 120 (LCS)
4,4'-DDE	10	15 (LCS); 22 (MS)	57-119 (LCS)
4,4'-DDT	10	15 (LCS); 32 (MS)	47-128 (LCS)
Aldrin	5	15 (LCS); 22 (MS)	55-110 (LCS)
alpha-BHC	5	15 (LCS); 21 (MS)	48-117 (LCS)
beta-BHC	5	15 (LCS); 21 (MS)	48-116 (LCS)
cis-Chlordane (alpha-Chlordane)	10	15 (LCS); 23 (MS)	53-110 (LCS)
delta-BHC	5	15 (LCS); 23 (MS)	40-118 (LCS)
Dieldrin	10	15 (LCS); 23 (MS)	53-110 (LCS)
Endosulfan I	5	15 (LCS); 25 (MS)	49-114 (LCS)
Endosulfan II	10	15 (LCS); 22 (MS)	50-110 (LCS)
Endosulfan sulfate	10	15 (LCS); 21 (MS)	50-110 (LCS)
Endrin	5	15 (LCS); 28 (MS)	51-114 (LCS)
Endrin aldehyde	10	15 (LCS); 22 (MS)	42-110 (LCS)
Endrin ketone	10	15 (LCS); 22 (MS)	47-114 (LCS)
gamma-BHC (Lindane)	5	15 (LCS); 21 (MS)	48-118 (LCS)
Heptachlor	5	15 (LCS); 24 (MS)	40-114 (LCS)
Heptachlor epoxide	5	15 (LCS); 22 (MS)	49 - 110 (LCS)
Methoxychlor	10	15 (LCS); 22 (MS)	46-124 (LCS)
Toxaphene	50	NA	NA
trans-Chlordane (beta- or gamma-Chlordane)	5	15 (LCS); 23 (MS)	54 - 110 (LCS)
Chlorinated Acid Herbicides - EPA Method 8151A (µg/kg)			
2,4,5-T	9.5	19 (LCS); 24 (MS)	24-144 (LCS)
2,4,5-TP	9.5	18 (LCS); 23 (MS)	38-127 (LCS)
2,4,6-Trichlorophenol	4.7	NA	NA

	Laboratory Target	Quality Control Limits	
Analyte	Method Reporting Limit (PQL)*	RPD**	% R
2,4-D	9.4	24 (LCS); 29 (MS)	10-131 (LCS)
2,4-DB	9.5	22 (LCS); 28 (MS)	17-154 (LCS)
Dalapon	180	37 (LCS); 30 (MS)	10 - 105 (LCS)
Dicamba	9.4	20 (LCS); 23 (MS)	32-106 (LCS)
Dichlorprop	71	20 (LCS); 27 (MS)	19-123 (LCS)
Dinoseb	9.5	32 (LCS); 23 (MS)	10-124 (LCS)
МСРА	2,300	25 (LCS); 35 (MS)	17-128 (LCS)
МСРР	940	23 (LCS); 32 (MS)	19-143 (LCS)
Pentachlorophenol	4.8	21 (LCS); 30 (MS)	10-119 (LCS)
Metals - EPA Methods 6010D/6020B/7471B (mg/kg)			_
Arsenic	10	20	80-120 (LCS)
Cadmium	0.50	20	80-120 (LCS)
Chromium	0.50	20	80-120 (LCS)
Copper	1.0	20	80-120 (LCS)
Lead	5.0	20	80-120 (LCS)
Mercury	0.025	20	80-120 (LCS)
Nickel	2.5	20	80-120 (LCS)
Selenium	0.80	20	80-120 (LCS)
Zinc	2.5	20	80-120 (LCS)

Notes:

kg = Kilogram

NA = Not applicable

LCS = Laboratory control sample

%R = Percent recovery

MS = Matrix spike $PQL = Practical \ quantitation \ limit \\ \mu g = Microgram$ $RPD = Relative \ percent \ difference$

mg = Milligram

^{*}Listed values are for analytical results reported on a wet-weight basis. Method reporting limits for project samples may vary depending on the moisture content and matrix characteristics of the samples.

 $^{{\}rm **Listed\;RPD\;limits\;are\;for\;LCS/MS\;duplicates\;or\;laboratory\;duplicates;\;RPD\;goal\;for\;soil\;field\;duplicates\;is\;50.}$

Table F-3

Quality Control Sample Types and Frequency

Go East Corp Landfill Site Everett, Washington

	Field QC Samples		Laboratory QC Samples			
Parameter	Field Duplicates	Field Duplicates Method Blanks LCS M		MS/MSD	Laboratory Duplicates	
VOCs		1 per batch*	1 per batch*	1 per batch*	NA	
Total Petroleum Hydrocarbons as Gasoline Range Organics		1 per batch*	NA	NA	1 per batch*	
Total Petroleum Hydrocarbons as Diesel Range Organics and Heavy Oil Range Organics		1 per batch*	1 per batch*	NA	1 per batch*	
Benzene, Toluene, Ethylbenzene, and Xylenes	1 per 20 primary soil samples	1 per batch*	1 per batch*	1 per batch*	1 per batch*	
SVOCs		1 per batch*	1 per batch*	1 per batch*	NA	
PCBs		1 per batch*	1 per batch*	1 per batch*	NA	
Organochlorine Pesticides		1 per batch*	1 per batch*	1 per batch*	NA	
Chlorinated Acid Herbicides		1 per batch*	1 per batch*	1 per batch*	NA	
Metals		1 per batch*	1 per batch*	1 per batch*	1 per batch*	

Notes:

*An analytical batch is defined as a group of samples taken through a preparation procedure and sharing a method blank, LCS, and MS/MSD

(or MS and laboratory duplicate). No more than 20 samples are contained in one batch.

LCS = Laboratory control sample

MS = Matrix spike

MSD = Matrix spike duplicate

NA = Not applicable

PCBs = Polychlorinated biphenyls as Aroclors

QC = Quality control

SVOCs = Semivolatile organic compounds

VOCs = Volatile organic compounds

