

January 19, 2021

Mr. Chang Kim 23886 SE Kent-Kangley Road Maple Valley, Washington 98038-6848

RE: December 2020 Compliance Quarterly Groundwater Monitoring & SVE O&M Report 4 Corners Cleaners 23866 SE Kent-Kangley Road Maple Valley, Washington 98038-6848 VCP ID No.: NW3234

Dear Mr. Kim:

Associated Environmental Group, LLC (AEG) has prepared the enclosed report presenting a summary of results for the groundwater sampling event conducted on December 11, 2020 and soil vapor extraction (SVE) system operations and maintenance (O&M) activities, at *4 Corners Cleaners* in Maple Valley, Washington (Site). The Site and surrounding area are detailed in Figure 1, *Vicinity Map*. Well locations are illustrated on Figure 2, *Groundwater Elevation Contour Map 12/11/2020*.

WORK PERFORMED THIS QUARTER [December 11 and 17, 2020]:

- Obtained depth to groundwater data in four groundwater wells (MW-1, MW-2, MW-3, and MW-5).
- Purged and sampled four groundwater monitoring well (MW-1, MW-2, MW-3, and MW-5).
- Collected outlet vapors from the active remediation system, along with operating and field parameters of the mechanical equipment to monitor the effectiveness of the SVE system.

WORK PROPOSED NEXT QUARTER [March 2021]:

- Obtain depth to groundwater data in four groundwater wells (MW-1, MW-2, MW-3, and MW-5).
- Purge and sample four groundwater monitoring well (MW-1, MW-2, MW-3, and MW-5).
- Ongoing O&M activities to optimize SVE performance.

December 2020 Compliance Quarterly Groundwater Monitoring& SVE O&M Report 4 Corners Cleaners, Maple Valley, Washington AEG Project No. 17-126 January 19, 2021

Sampling Event:	December 11, 2020	Values
Range of Depths to Groundwater:	19.75 to 22.22	Feet below top of well casing (Table 2, <i>Summary of Groundwater Elevations</i>)
Range of Groundwater Elevations:	541.66 to 542.97	Feet above Mean Sea Level (Table 2, Summary of Groundwater Elevations)
Groundwater Gradient: (Direction / Magnitude)	Northwest / 0.02	Feet per foot (ft/ft), determined using data from MW-1, MW-2, MW-3, and MW-5
Measurable NAPL Detected:	No	
Measurable NAPL Thickness:	N/A	
Current Remedial Action:	Active Remediation	SVE

GROUNDWATER MONITORING SUMMARY

GROUNDWATER DISCUSSION

The calculated groundwater gradient for the December 2020 sampling event is 0.02 feet per foot to the northwest as illustrated on Figure 2, *Groundwater Elevation Contour Map 12/11/2020*. A summary of groundwater elevations is presented as Table 1, *Summary of Groundwater Elevations*.

No constituents of concern were detected in groundwater samples above the laboratory detection limits for monitoring wells MW-1, MW-2, MW-3, or MW-5. Analytical results for this sampling event are presented in Table 2, *Summary of Groundwater Analytical Results*.

SVE SYSTEM PERFORMANCE

Sub-slab vapor samples were collected on December 17, 2020 from all four vapor monitoring points (VP-1 through VP-4). As shown in Table 3, *Summary of Sub-Slab Vapor Analytical Results*, the air sample results indicate that PCE was present in vapor monitoring point VP-1 at 420 micrograms per cubic meter (μ g/m³), at VP-3 at 690 μ g/m³, and at VP-4 at 400 μ g/m³, which are all above the MTCA Method B sub-slab screening level of 321 μ g/m³ for PCE.

The SVE system shut down on December 8, 2020 and was started on December 17, 2020. From the startup date of October 9, 2019, the SVE system had three shutdown events: October 22, 2019, December 17, 2019, and December 8, 2020 for a total of 16 days. These events were all caused by high water in the moisture knockout tank. AEG restarted the system after the alarms were cleared and the system vacuum was adjusted after the system was initiated.

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502-5751 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: <u>admin@aegwa.com</u> December 2020 Compliance Quarterly Groundwater Monitoring& SVE O&M Report 4 Corners Cleaners, Maple Valley, Washington AEG Project No. 17-126 January 19, 2021

The carbon filtration was removed from the system in January 2020 and the performance sample location has been the effluent air from the vacuum system stack output sample port. A 10-minute Summa canister sample was collected to evaluate compliance with the Puget Sound Clean Air Agency (PSCAA) maximum allowable emission rates. PCE and TCE constituents were detected at 23 μ g/m³ and 0.71 μ g/m³ respectively, in the exhaust air sample analysis from December 17, 2020. The potential to emit (PTE) toxic constituents are shown on Table 4, *Potential to Emit Summary*. Results from the air sampling are presented in Appendix A, Supporting Documents, *Laboratory Datasheets*. Approximately 0.72 pounds of halogenated volatile organic compounds (HVOCs) have been removed in vapor phase from the Site to date.

To monitor efficacy of the applied vacuum to reach beneath the tenant space, the pressure differential beneath the slab is measured at the four permanent sub-slab monitoring points (VP-1 through VP-4). On December 17, 2020, the vacuum readings were measured and compared to ambient indoor air pressure (Humidity: 62% & Barometer: 29.99 inches of mercury) to evaluate the system's vacuum radius of influence. A vacuum reading indicates a negative differential pressure is being generated underneath the building slab around the extraction points, as compared to indoor air or ambient pressure. One sampling port (VP-1) within the tenant space measured vacuum at 0.03 inches of water (inches W.C.), which meets or exceeds the pressure reduction goal of 0.02 inches of water proposed in EPA guidance (EPA 2008). Vacuum monitoring point locations are illustrated on Figure 2, *Groundwater Elevation Contour Map 12/11/2020*. The response to applied vacuum is shown on Table 5, *Applied Vacuum Response Monitoring*.

AEG had restarted the SVE system on December 17, 2020 after removing approximately 12 gallons of condensate. The system was allowed to equilibrate for one hour and, at the time of monitoring SVE-5 (located inside the building), was surging water indicating the sub-slab foundation gravels were full of water. AEG removed an additional 5 gallons of water from the condensate collection tank and left the system operating.

On December 17, 2020, the SVE system was left operating at 50 inches of water column (W.C.) applied vacuum. This vacuum was adjusted using fresh air dilution to unload the blower and to reduce the amount of water removed as condensate. The total system vacuum was adjusted to operate SVE wells SVE-1, SVE-3, SVE-4, and SVE-5 to increase the removal rates near monitoring points VP-3 and VP-1.

December 2020 Compliance Quarterly Groundwater Monitoring& SVE O&M Report 4 Corners Cleaners, Maple Valley, Washington AEG Project No. 17-126 January 19, 2021

CLOSING:

AEG has completed this monitoring event at the Site. AEG recommends continued operation of the SVE system and a review of the monthly O&M data to make adjustments, as needed, to enhance system performance.

Continued groundwater sampling of monitoring wells MW-1, MW-2, MW-3, and MW-5 is also recommended for at least one additional consecutive quarter to document any seasonal variation in contaminant concentrations at the Site and to evaluate Ecology's questions about a potential impact to the groundwater at the Site. Should you have questions or require additional information, please contact our office at 360-352-9835.

Sincerely,

Associated Environmental Group, LLC

Pls. sh

Charles Swift, R.S.A. Project Manager

Scott Rose, L.H.G. Senior Hydrogeologist

Attachments: Figure 1 – Vicinity Map Figure 2 – Groundwater Elevation Contour Map 12/11/2020

- Table 1 Summary of Groundwater Elevations
- Table 2 Summary of Groundwater Analytical Results
- Table 3 Summary of Sub-Slab Vapor Analytical Results
- Table 4 Potential to Emit Summary
- Table 5 Applied Vacuum Response Monitoring

Appendix A – Supporting Documents Laboratory Datasheets

FIGURES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

TABLES

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Table 1 - Summary of Groundwater Elevations

Well No./ TOC Elevation	Date	Depth to Water	Depth to Free Product	Free Product Thickness	Actual Groundwater Elevation	Change in Elevation
MW-1	6/23/2020	22.67			540.04	
562.71	9/14/2020	28.97			533.74	-6.30
	12/11/2020	20.40			542.31	8.57
MW-2	6/23/2020	22.04			540.35	
562.39	9/14/2020	28.29			534.10	-6.25
	12/11/2020	20.25			542.14	8.04
MW-3	6/23/2020	24.82			539.06	
563.88	9/14/2020	31.08			532.80	-6.26
	12/11/2020	22.22			541.66	8.86
MW-5	6/23/2020	22.22			540.50	
562.72	9/14/2020	28.60			534.12	-6.38
	12/11/2020	19.75			542.97	8.85

4 Corners Cleaners (17-126) Maple Valley, Washington

Notes:

All values reported in feet

TOC = Top of casing elevation relative to assigned benchmark.

-- = Not measured, not available, or not applicable

Table 2 - Summary of Groundwater Analytical Results

	_	-	_						
Sample Number	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride			
Boring Groundwater Data									
B4-W	7/17/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
B5-W	7/17/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
B6-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
B7-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
B8-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
B9-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	< 0.2			
Monitoring Well Groundwater Data ¹									
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
MW-1	9/14/2020	<1.0	<0.4	<1.0	<1.0	< 0.2			
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
MW-2	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
MW-3	9/14/2020	<1.0	<0.4	<1.0	<1.0	< 0.2			
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
MW-5	9/14/2020	<1.0	<0.4	<1.0	<1.0	< 0.2			
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2			
	PQL	1.0	0.4/1.0	1.0	1.0	0.2			
MTCA Metho	d A Cleanup Levels	5.0	5.0	160*	16*	0.2			

4 Corners Cleaners (17-126) Maple Valley, Washington

Notes:

All values present are micrograms per liter (μ g/L)

-- = Not analyzed for constituent

< = Not detected at the listed laboratory detection limits

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

PCE = Tetrachloroethene

TCE = Trichloroethene

DCE = Dichloroethene

¹Refusal was consistently encountered throughout the area proposed for well MW-4; it was never installed.

* MTCA Method B cleanup level; Method A cleanup level not established

Table 3 - Summary of Sub-Slab Vapor Analytical Results 4 Corners Cleaners Maple Valley, Washington

Sample		Date		PCE	and Daught	er Products		Other Det	ected Volatile Orga	nic Compounds	
Number	Depth	Collected	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	Chloroform	Dichloro-	1,1,2-	
SV 1	SUD SLAP	2/21/2017	1 600	<10	DCE	DCE <10	chloride	<10	difluoromethane		
SV-1	SUD-SLAD	3/31/2017	1,000	<10	<10	<10	<10	<10	<10	<10	
SV-2	SUB-SLAB	3/31/2017	1,000	<10	<10	<10	<10	<10	12 000	<10	
SV-3	SUB-SLAB	3/31/2017	790	<10	<10	<10	<10	<10	12,000	<10	
SV-4	SUB-SLAB	3/31/2017	940	<10	<10	<10	<10	<10	8 200	<10	
SV-6	SUB-SLAB	3/31/2017	850	<10	<10	<10	<10	<10	7,200	<10	
SV-7	SUB-SLAB	3/31/2017	1.700	<10	<10	<10	<10	<10	870	<10	
SV-8	SUB-SLAB	3/31/2017	1,100	<10	<10	<10	<10	<10	290	<10	
SV-9	SUB-SLAB	3/31/2017	2,800	<10	<10	<10	<10	310	2,500	<10	
SV-10	SUB-SLAB	3/31/2017	2,100	<10	<10	<10	<10	31,000	3,100	380	
SV-11	SUB-SLAB	3/31/2017	6,300	<10	<10	<10	<10	<10	2,800	<10	
SV-12	SUB-SLAB	3/31/2017	2,600	<10	<10	<10	<10	<10	3,400	<10	
SV-13	SUB-SLAB	3/31/2017	180	<10	<10	<10	<10	<10	9,000	<10	
SV-14	SUB-SLAB	3/31/2017	2,600	<10	<10	<10	<10	<10	610	<10	
SVE SYSTEM STARTUP OCTOBER 9, 2019											
		10/9/2019	586	4.48	< 0.793	< 0.793	< 0.511				
VP-1 ¹ SUB-SLA		12/16/2019	4.03	1.95	< 0.793	< 0.793	< 0.511				
		1/16/2020	264E	3.18	< 0.793	< 0.793	< 0.511				
		2/25/2020	198	3.92	< 0.793	< 0.793	<0.793 <0.511				
	SUB-SI AB	3/16/2020	270	3.7	<2.7	<2.7	<1.7				
	SCD SEAD	5/20/2020	570	4.3	<5.6	<5.6	<3.6				
		7/8/2020	580	4.6	<2.8	<2.8	<1.8				
		8/26/2020	42	<1.0	<1.5	<1.5	< 0.97			< 0.41	
		9/16/2020	<45	<0.71	<2.6	<2.6	<1.7			< 0.36	
		12/17/2020	420	2.7	<8.3	<8.3	<5.4			<1.1	
		10/9/2019	<2.03	<1.07	< 0.793	<0.793	< 0.511				
		12/16/2019	4.77	<1.07	< 0.793	< 0.793	< 0.511				
		1/16/2020	101	1.49	< 0.793	<0.793	< 0.511				
		2/25/2020	72	<1.07	< 0.793	< 0.793	< 0.511				
$VP-2^1$	SUB-SLAB	3/16/2020	66	<1.07	<2.7	<2.7	<1.7				
		5/20/2020	230	<1.8	<2.7	<2.7	<1.7				
		7/8/2020	170	<1.9	<2.8	<2.8	<1.8				
		8/26/2020	120	<2.7	<4	<4	<2.6			<5.5	
		9/16/2020	<44	<0.7	<2.6	<2.6	<1./			<0.35	
		12/17/2020	87	<1.1	<4.0	<4	<2.6			<0.55	
		10/9/2019	743	1.32	<0.793	<0.793	<0.511				
		12/16/2019	2.53	<1.07	<0.793	<0.793	<0.511				
		1/16/2020	423	<1.0/	<0.793	<0.793	< 0.511				
		2/25/2020	457	1.13	<0.793	<0./93	<0.511				
VP-3 ¹	SUB-SLAB	5/20/2020	900	< 9.4	<14	<14	< 8.9				
		7/8/2020	1,300	< 9.4	<14	<14	< 0.9				
		8/26/2020	970 420	< J.0 1.9	< 1.6	< 1.6	< 3.0				
		9/16/2020	720	1.0	<1.0	<1.0	<1.0	_		~0.44	
		12/17/2020	600	~ 3.0	<7.9	<7.0	<5.1			<1.1	
		12/17/2020	020	\ 2.1	1.9	1.9	5.1			<1.1	

Table 3 - Summary of Sub-Slab Vapor Analytical Results 4 Corners Cleaners Maple Valley, Washington

Sample Number		Date Collected		PCE and Daughter Products					Other Detected Volatile Organic Compounds			
	Depth Collected (feet)		PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	Chloroform	Dichloro- difluoromethane	1,1,2- Trichloroethane		
VP-4 ¹ SUB-S		7/8/2020	<32	<1.3	<1.9	<1.9	<1.2					
	CUD CLAD	8/26/2020	290	<13	<19	<19	<13			<13		
	SUD-SLAD	9/16/2020	56	<2.4	<3.4	<2.4	<1.5			< 0.33		
		12/17/2020	400	<2.1	<7.9	<7.9	<5.1			<1.1		
	PQL		varies	varies	varies	varies	varies	10.0	10.0	varies		
MTCA Method B Sub-Slab Screening Levels		321	12.3	NL	NL	9.33	3.62	1,520	5.21			

Notes:

¹ - Collected from the permanent vapor monitoring point.

All values are presented in micrograms per cubic meter $(\mu g/m^{3})$

PCE = Tetrachloroethene TCE = Trichloroethene DCE = Dichloroethene

< = Not detected at the listed laboratory detection limits

 $\mathbf{E}=\mathbf{E}stimated$ value. The amount exceeds the linear working range of the instrument.

PQL = Practical Quantification Limit (laboratory detection limit)

NL = Not Listed; no sub-slab screening levels have been established for this constituent

Red Bold indicates the detected concentration exceeds Ecology MTCA Method B sub-slab screening level

Bold indicates the detected concentration is below Ecology MTCA Method B sub-slab screening levels

TABLE 4 Potential to Emit Summary 4 Corners Cleaners, Maple Valley, Washington

Date	Sample ID	Contaminant	Laboratory	Molecular	Flowrate	Potential To	*Maximum
			Sample Results	Weight (1)	Measured (2)	Emit Estimated	Allowable Emission Rate
			Results	(1)	(2)	Estimated	nate
			parts per million		cubic feet per	pounds per	pounds per
			(ppmy)	grams per - mole (g/mole)	(cfm)	(lb/day)	(lb/day)
1/16/2020	INPUT	Tetrachloroethene (PCE)	0.0229	165.85	120	0.0016785	2.74
1/ 10/ 2020	14:08:00	Trichloroethene (TCE)					1.37
	Flow Temp = 60 F	······ ,		łł	1		
	50-inches W.C.		Estimated To	otal Pounds of Total	HVOCs Removed 10/	/9/2019 to 12/17/19	0.420000
	Total System Vacuum		Estimated 7	Fotal Pounds of Total	I HVOCs Removed 1/	/14/2020 to 1/31/20	0.046998
2/25/2020	INPUT	Tetrachloroethene (PCE)	0.0450	165.85	120	0.0032983	
	9:27:00	Trichloroethene (TCE)		I			
	Flow Temp = 60 F						
	50-inches W.C.						
	Total System Vacuum		Estima	ated Total Pounds of	Total HVOCs Remov	ed 2/1/20 to 3/5/20	0.108845
3/16/2020	OUPUT	Tetrachloroethene (PCE)	0.0023	165.85	120	0.0001686	
	10:34:00	Trichloroethene (TCE)	0.00019	131.4	120	0.0000110	
	Flow Temp = 60 F						
	50-inches W.C.						
	Total System Vacuum		Estimate	d Total Pounds of To	tal HVOCs Removed	3/16/20 to 4/09/20	0.005927
5/20/2020	OUPUT	Tetrachloroethene (PCE)	0.0003	165.85	120	0.0000220	
	11:56:00	Trichloroethene (TCE)	0.006	131.4	120	0.0003484	
	Flow Temp = 60 F			<u> </u>			
	50-inches W.C.						0.015105
2/0/2020	Total System vacuum	T 11 (1 (DCE)	Estimated I	iotal Pounds of Total	HVOCs Removed 4/	10/2020 to 5/20/20	0.01518/
7/8/2020	OUPUT	Tetrachloroethene (PCE)	0.0056	165.85	120	0.0004105	
	11:56:00	Trichloroethene (ICE)	0.000	151.4	120	0.0003484	
	Flow 1 emp = 60 F						
	50-incres w.C.		Ectimated	Total Dounds of Tot	-LUVOCa Romoved [- /20/2020 to 7/8/20	0.037186
e/20/2020	ACC Inlat SVF	Tatrachlaraethene (PCE)	0.0014	165.85		0.000041	0.057100
8/20/2020	4CC-IIIIet 5 V E	Trichloroethene (TCE)	0.0014	131 /	110	0.0000341	
	Flow Temp = 55 F	Inchioroeutene (10E)	0.000	131.7	110	0.000100	
	55_inches W C						
	Total System Vacuum		Estimated	Total Pounds of Tot	al HVOCs Removed 7	7/8/2020 to 8/20/20	0.004503
9/16/2020	Effluent-091620	Tetrachloroethene (PCE)	0.0034	165.85	120	0.0002492	0.0012.00
<i>J</i> /10/2020	11:56:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000075	
	Flow Temp = 60 F	······ ()		++			
	50-inches W.C.				<u></u>		
	Total System Vacuum		Estimated 7	Fotal Pounds of Total	I HVOCs Removed 8/	/20/2020 to 9/16/20	0.006932
12/17/2020	Influent-121720	Tetrachloroethene (PCE)	0.0110	165.85	120	0.0008063	
	13:20:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000093	
	Flow Temp = 60 F						
	55-inches W.C.						
	Total System Vacuum		Estimated	Total Pounds of Tot	al HVOCs Removed 9	9/16/20 to 12/17/20	0.075031
			Estimate	d Total Pounds of Tc	tal HVOCs Removed	376 Days Operating	0.720608

Notes:

CFM = Flow rate of gas (standard cubic feet per minute)

PPMV = Concentration of gas in parts per million by volume

1 Pound = 453.6 grams

* PSCAA Maximum Allowable Emission Rate for soil and groundwater remediation projects involving <15 pounds per year of benzene or vinyl chloride, <500 pounds per year of perchloroethylene (PCE), and <1,000 pounds per year of toxic air contaminants. *(ref. PSCAA, Regulation I, Section 6.03)*

1 Liter = 0.03531 cubic feet 1 Mole of gas = 24.46 Liters volume at STP (77"F and 29.92 "w.c.)

ft/min = feet per minute

inches W.C. = Inches of Water Column

TO CALCULATE TOTAL POUNDS REMOVED:

TOTAL LBS	= MW g x	1 lb x	1 mole x	1 L x	SCFM std cu ft	x CONC ppmv
REMOVED	1 mole	453.6 g	24.46 std L	0.03531 cu ft	min	1x10 ⁶ /ppmv

(1) = Taken from the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards.

(2) = Velocity estimated from FPZ Blower Model SCL-K05 flow curves based on 40 inches W.C. vacuum at the system inlet.

Table 5 - Applied Vacuum Response Monitoring 4 Corners Dry Cleaners Maple Valley, WA

Vacuum Monitoring Point	Date	Measured Response (Inches W.C.) ¹	EPA Pressure Reduction Goal (Inches W.C.) ²	
	10/9/2019	0.04	0.02	
	10/24/2019	0.05	0.02	
	1/16/2020	0.03	0.02	
	3/16/2020	0.03	0.02	
	5/20/2020	0.00	0.02	
VP-1	7/17/2020	0.03	0.02	
	8/19/2020	0.22	0.02	
	9/15/2020	0.12	0.02	
	10/14/2020*	0.03	0.02	
	11/23/2020**	0.02	0.02	
	12/17/2020	0.03	0.02	
	10/9/2019	0.05	0.02	
	10/24/2019	0.03	0.02	
	1/16/2020	0.02	0.02	
	3/16/2020	0.03	0.02	
VP-2	7/17/2020	0.03	0.02	
VI 2	8/19/2020	0.02	0.02	
	9/15/2020	0.03	0.02	
	10/14/2020*	0.03	0.02	
	11/23/2020**	0.02	0.02	
	12/17/2020	0.00	0.02	
	10/9/2019	0.04	0.02	
	10/24/2019	0.03	0.02	
	1/16/2020	0.00	0.02	
	3/16/2020	0.03	0.02	
VP-3	7/17/2020	0.03	0.02	
11.5	8/19/2020	0.04	0.02	
	9/15/2020	0.03	0.02	
	10/14/2020*	0.03	0.02	
	11/23/2020**	0.02	0.02	
	12/17/2020	0.00	0.02	
	7/17/2020	0.00	0.02	
	8/19/2020	0.02	0.02	
VP-4	10/14/2020*	0.03	0.02	
	11/23/2020**	0.02	0.02	
	12/17/2020	0.00	0.02	

Notes:

All values presented in inches of water column (Inches W.C.)

¹ Readings from permanent vapor monitoring points inside the building (Dwyer Series 2001 Magnehelic gage).

² EPA-600-R-08115 Engineering Issue: Indoor Air Vapor Intrusion Mitigation Approaches, October 2008

-- = Not measured

* = SVE system shut down for the first "pulsing" of the system.

** = SVE system restarted and operated until 12/08/20 system piping flooded.

APPENDIX A

Supporting Documents Laboratory Datasheets

2633 Parkmont Lane SW, Suite A • Olympia, WA • 98502 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

3322 South Bay Road NE • Olympia, WA 98506-2957

December 14, 2020

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaner Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	
		Blank					
Date Sampled		N/A	12/11/2020	12/11/2020	12/11/2020	12/11/2020	
Date Analyzed	PQL	12/13/2020	12/13/2020	12/13/2020	12/13/2020	12/13/2020	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		122	126	109	127	125	
1,2-Dichloroethane-d4		111	113	132	109	112	
Toluene-d8		101	69	84	65	100	
4-Bromofluorobenzene		98	100	97	101	102	
"nd" Indicates not detect	ed at listed	d detection lin	mit.				
"int" Indicates that interf	erence pre	events determ	ination.				

Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Matrix S ₁	pike Sample Id	lentification:	L201208-4	
		Da	te Analyzed:	12/13/2020	
	Spiked	MS	MS	Limits	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	-
Vinyl Chloride (VC)	5.0	3.6	72	65-135	
1,1-Dichloroethene	5.0	4.4	88	65-135	
trans-1,2-Dichloroethene	5.0	4.2	84	65-135	
cis-1,2-Dichloroethene	5.0	6.4	128	65-135	
Trichloroethene (TCE)	5.0	4.0	80	65-135	
Tetrachloroethene (PCE)	5.0	4.2	84	65-135	
Surrogate Recovery (%)			MS		
Dibromofluoromethane			130	65-135	
1,2-Dichloroethane-d4			128	65-135	
Toluene-d8			89	65-135	
4-Bromofluorobenzene			114	65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Date Analyzed: 12/13/2020								
	Spiked	LCS	LCS	LCS	Data			
	Conc.	Response	Recovery	Recovery	Flag			
	(µg/L)	(µg/L)	(%)	Limits (%)				
Vinyl Chloride (VC)	5.0	4.7	94	80-120				
1,1-Dichloroethene	5.0	4.1	82	80-120				
trans-1,2-Dichloroethene	5.0	4.1	82	80-120				
cis-1,2-Dichloroethene	5.0	5.7	114	80-120				
Trichloroethene (TCE)	5.0	5.4	108	80-120				
Tetrachloroethene (PCE)	5.0	5.1	102	80-120				
Surrogate Recovery								
Dibromofluoromethane			124	65-135				
1,2-Dichloroethane-d4			125	65-135				
Toluene-d8			107	65-135				
4-Bromofluorobenzene			113	65-135				

Laboratory Control Sample

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Libby Project # L201211-7 Date Received 12/11/2020 14:20 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	\checkmark	Yes	🗌 No		
2. How was the sample delivered?	\checkmark	Hand Delivered	Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	\checkmark	Yes	🗌 No		□ N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes	🗌 No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	\checkmark	Yes	🗌 No		🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.8	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		2.3	°C		
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes	🗌 No		
10. Is it clear what analyses were requested?	\checkmark	Yes	🗌 No		
11. Did container labels match Chain of Custody?	\checkmark	Yes	🗌 No		
12. Are matrices correctly identified on Chain of Custody?	\checkmark	Yes	🗌 No		
13. Are correct containers used for the analysis indicated?	\checkmark	Yes	🗌 No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes	🗌 No		
15. Were all containers properly preserved per each analysis?	\checkmark	Yes	🗌 No		
16. Were VOA vials collected correctly (no headspace)?	\checkmark	Yes	🗌 No		🗌 N/A
17. Were all holding times able to be met?	\checkmark	Yes	🗌 No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	🗌 No		☑ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

Libby Environm	nental	, Inc.		Cł	nain	of	Cus	tod	ly F	leco	ord					W	/ww.Lib	byEnv	ironmental.com
4139 Libby Road NE	Ph:	360-352-2	2110					0	111	200						/			1
Olympia, WA 98506	Fax:	360-352-4	154			[Date:	12/	11/	W			~		Page:	/		of	/
Client: AEG						F	Project	Mana	ger:	S	ot	F .	Ros	e					
Address: 605 11# P	We SE	Suit	e 201			F	Project	Name	:	40	200	ner	50	ile	ner				
City: Olympia		State: W	/A Zip	98501		L	ocation	1: 23	786	SE	Ker	7-6	angle	er R	City, St	ate: M	ade	vq	11er WA
Phone: (36)7352-	9835	Fax:				(Collecto	or: F	05	ter	Ka	eta	el	0	Date of	Collecti	ion:	12/1	1/20
Client Project # 17-1	26					E	Email:	SI	205	ea	AE	GWF	7.00	m					
Samela Number	Donth	Time	Sample	Container		A 80219	88218 82 88218 82	50 0011	ATPHX ATPHX	SID GT	RH.OT	HID CONT	410 5	882 5M	Sale Here			otes	
	Depui	la(h	(Id	Voo	K^{\sim}			1 T		<u> </u>	Y	Ý	X N		f	ſ '		0100	
2 Mul-7		1000	600	VOA		-		-		-	+	+	+	1×					
3 001-3		(807	611	VaA		-	-	+			+	+	-	X					
4 MU-5		0938	GW	VOA				+			-			X					
5		0120	001																
6																			
7																			
8																			
9			1																
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
Relinquished by:	2 Date	1/20 1	420	Received by:	du	ldu	AR	1/1	Date 20	/Time	D S	amp	le Red	ceipt:		Rema	arks:		
Relinquished by:	Date	/ Time		Received by:				1	Date	/ Time	G	ood Co	ondition	?					
				/							C	old?							
Relinquished by:	Date	/ Time		Received by:					Date	/ Time	Se	eals In	act?						
	novmost and/or fail	ure to pay. Client a	mean to new the cost	s of collection including cou	rt costs and	reasonah	e attornev fee	s to he det	ermined hy	a cout of la	To	otal Nu	mber of	Conta	iners	TAT:	24H	IR 4	8HR 5-DAY

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 28, 2020

Charlie Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the results from the testing of material submitted on December 17, 2020 from the 4-Corners Cleaners PO 17-126, F&BI 012313 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG1228R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 17, 2020 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners PO 17-126, F&BI 012313 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{\text{AEG}}$
012313 -01	VP-4-121720
012313 -02	VP-2-121720
012313 -03	VP-3-121720
012313 -04	VP-1-121720
012313 -05	Influent-121720

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-1 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 20 20 20	Client Projec Lab II Data Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-01 1/20 122153.D GCMS7 bat
Surrogates		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	107	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.1	<2		
Chloroethane		<53	<20		
1,1-Dichloroethene		<7.9	<2		
trans-1,2-Dichloroet	thene	<7.9	<2		
1,1-Dichloroethane		<8.1	<2		
cis-1,2-Dichloroethe	ne	<7.9	<2		
1,2-Dichloroethane	(EDC)	< 0.81	< 0.2		
1,1,1-Trichloroethan	ne	<11	<2		
Trichloroethene		<2.1	< 0.4		
1,1,2-Trichloroethan	ne	<1.1	< 0.2		
Tetrachloroethene		400	59		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-12 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 0 0 0	Client Projec Lab II Data Instru Opera	:: bt: D: File: ument: utor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-02 1/10 122152.D GCMS7 bat
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	108	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<2.6	<1		
Chloroethane		<26	<10		
1,1-Dichloroethene		<4	<1		
trans-1,2-Dichloroet	thene	<4	<1		
1,1-Dichloroethane		<4	<1		
cis-1,2-Dichloroethe	ne	<4	<1		
1,2-Dichloroethane	(EDC)	< 0.4	< 0.1		
1,1,1-Trichloroethar	ne	<5.5	<1		
Trichloroethene		<1.1	< 0.2		
1,1,2-Trichloroethar	ne	< 0.55	< 0.1		
Tetrachloroethene		87	13		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-1 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 20 20 20	Client Projec Lab II Data I Instru Opera	: t: D: File: ment: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-03 1/20 122155.D GCMS7 bat
C		%	Lower	Upper	
4-Bromofluorobenze	ene	Recovery: 87	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.1	<2		
Chloroethane		<53	<20		
1,1-Dichloroethene		<7.9	<2		
trans-1,2-Dichloroet	hene	<7.9	<2		
1,1-Dichloroethane		<8.1	<2		
cis-1,2-Dichloroethe	ne	<7.9	<2		
1,2-Dichloroethane	(EDC)	< 0.81	< 0.2		
1,1,1-Trichloroethar	ne	<11	<2		
Trichloroethene		<2.1	< 0.4		
1,1,2-Trichloroethar	пе	<1.1	< 0.2		
Tetrachloroethene		690	100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-12 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 0 0 0	Client Projec Lab II Data I Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-04 1/21 122154.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	108	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.4	<2.1		
Chloroethane		<55	<21		
1,1-Dichloroethene		<8.3	<2.1		
trans-1,2-Dichloroet	thene	<8.3	<2.1		
1,1-Dichloroethane		<8.5	<2.1		
cis-1,2-Dichloroethe	ene	<8.3	<2.1		
1,2-Dichloroethane	(EDC)	< 0.85	< 0.21		
1,1,1-Trichloroethan	ne	<11	<2.1		
Trichloroethene		2.7	0.50		
1,1,2-Trichloroethan	ne	<1.1	< 0.21		
Tetrachloroethene		420	62		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Influent 12/17/20 12/17/20 12/22/20 Air ug/m3	-121720	Clien Proje Lab I Data Instr Oper	nt: ect: ID: File: ument: ator:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-05 1/6.7 122151.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	I	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	110	70	130	
		Concent	ration		
Compounds:		ug/m3	nnhv		
compounds.		ug/mo	ppor		
Vinyl chloride		<1.7	< 0.67		
Chloroethane		<18	<6.7		
1,1-Dichloroethene		<2.7	< 0.67		
trans-1,2-Dichloroet	thene	<2.7	< 0.67		
1,1-Dichloroethane		<2.7	< 0.67		
cis-1,2-Dichloroethe	ne	<2.7	< 0.67		
1,2-Dichloroethane	(EDC)	< 0.27	< 0.067		
1,1,1-Trichloroethar	ne	<3.7	< 0.67		
Trichloroethene		0.86	0.16		
1,1,2-Trichloroethar	ne	< 0.37	< 0.067		
Tetrachloroethene		73	11		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not Ap Not Ap 12/21/2 Air ug/m3	l Blank plicable plicable 0	Client Projec Lab II Data I Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 00-2829 MB 122132.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	101	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethan	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethan	ne	< 0.055	< 0.01		
Tetrachloroethene		< 6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/20 Date Received: 12/17/20 Project: 4-Corners Cleaners PO 17-126, F&BI 012313

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012334-02 1/3.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.84	< 0.84	nm
Chloroethane	ug/m3	<8.7	<8.7	nm
1,1-Dichloroethene	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,1-Dichloroethane	ug/m3	<1.3	<1.3	nm
cis-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.13	< 0.13	nm
1,1,1-Trichloroethane	ug/m3	<1.8	<1.8	nm
Trichloroethene	ug/m3	< 0.35	< 0.35	nm
1,1,2-Trichloroethane	ug/m3	< 0.18	< 0.18	nm
Tetrachloroethene	ug/m3	<22	<22	nm

Laboratory Code: Laboratory Control Sample

-		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	35	98	70-130
ug/m3	36	99	70 - 130
ug/m3	54	100	70 - 130
ug/m3	54	107	70 - 130
ug/m3	55	102	70 - 130
ug/m3	54	107	70 - 130
ug/m3	55	103	70 - 130
ug/m3	74	108	70-130
ug/m3	73	110	70-130
ug/m3	74	110	70-130
ug/m3	92	109	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting Units Spike Level ug/m3 35 ug/m3 36 ug/m3 54 ug/m3 54 ug/m3 55 ug/m3 55 ug/m3 55 ug/m3 74 ug/m3 73 ug/m3 74 ug/m3 74 ug/m3 92	Reporting Units Spike Level Percent Recovery LCS ug/m3 35 98 ug/m3 36 99 ug/m3 54 100 ug/m3 54 107 ug/m3 55 102 ug/m3 55 103 ug/m3 74 108 ug/m3 74 110 ug/m3 92 109

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	012313				SAMPL	E CHAI	N OF	CUST	ODY		ŗ	1Ē	121	117	120)				
1	Report To 4E6	110		,	SAMPI	LERS (sign	uature)	p)	$\int $	$\overline{\mathbb{N}}$		4				Page i	# NAROI	of IND TIM	 F	<u>,</u>
	Company Chalin	- 52,	<i>G</i>		PROJE	PROJECT NAME & ADDRESS PO #							Standard							
Ĺ	Address 2633 Per K	no-t.	Ln Se	; 4A	_ 4	4-Corners Class 17-126 Ru					Rush charges authorized by:									
(City, State, ZIP	L.,.).	WA9	8-502	NOTES	NOTES: INVOICE TO SAMPLE DISI						ISPOSAI after 3 da	vs							
]	Phone <u>3/0-752-5711</u> En	nail		-						A	E(F,2	IC		Arcl	nive	(Fee ma	ay apply)	2	
S	AMPLE INFORMATION				X		y	·····		· · · · · · · · · · · · · · · · · · ·	ANA	LYS	IS R	EQU	EST	ED		· · · ·]
					Reporting Level:						ó Full Scan	5 BTEXN	15 cVOCs	APH	Ielium	125 +	sh he Perhacts			ar P
	Somple Neme	Lab	Canister	Flow Cont.	IA=Indoor Air SG=Soil Gas	Date	Vac.	Field Initial	Final Vac.	Field Final	TOI	TOI	D		<u>н</u> ч	RE	Due	Matao		
	+7P- 4-121720	0)	8538	259	IA / (SG)	12/17/20	27	//:30	$\left(\frac{\Pi g}{S}\right)$	11:29						\mathbf{x}		notes		
	UP-2-121720	02	8267	242	IA / SG	2/17/2	28	11:45	- 5	11:58						X				
	HP-3-121720	03	4177	256	IA / SQ /	0/17/20	29	11:55	8	12:05						X				
	HP-1-121720	oy	4183	241	IA / (SG)	12/17/22	30	12:00	8	12:10						\times				
					IA / SG													-		
	Influent - 1217	205	4175	109	IA / SG	12/17/20	29	1:20	8	1:20						X				
					IA / SG		** *					\downarrow								
L					IA / SG			×												

		¥ ·			
Friedman & Bruya, Inc.	SIGNAŢURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Cherles Swift	AFG, LLC	12/17 h.	15:00
Seattle, WA 98119-2029	Received by	Gac YOUNG	FCB	Plato	1500
Ph. (206) 285-8282	Relinquished by:			A	
Fax (206) 283-5044	Received by:	· · · · · · · · · · · · · · · · · · ·	Samples received	at IT oc	
FORMS\COC\COCTO-15.DOC				· · •	

ж.