

TECHNICAL MEMORANDUM

DATE January 29, 2021

Project No. 152030402

TO Mr. Alan Noell Washington State Department of Ecology (Ecology)

FROM Gary Zimmerman and Tom Haskins, LG

RESERVE SILICA RECLAMATION SITE – 2020 REMEDIAL INVESTIGATION ACTIVITIES FACILITY ID NO.: 2041; CLEANUP SITE NO.: 4728

1.0 INTRODUCTION

A Remedial Investigation (RI) and Feasibility Study (FS) Work Plan (Work Plan) is being prepared for the Reserve Silica Reclamation Site (Site) under Agreed Order No. DE 16052. The draft Work Plan was submitted to Ecology in June 2020. The draft Work Plan is being revised to address comments provided by Ecology in the letter regarding *Draft Remedial Investigation/Feasibility Study Work Plan (Golder Associates, June 30, 2020) comments for the following Site: Reserve Silica Reclamation*, dated September 30, 2020. The draft Work Plan included a description for completing preliminary RI tasks during 2020 to support the overall RI/FS and to provide additional data in support of finalizing the RI/FS Work Plan. Ecology's letter provided comments on the proposed scope of work and approval to complete the preliminary RI task during 2020. The following preliminary RI tasks were completed in 2020:

- Conduct a frequency domain electromagnetic (EM) geophysical survey across the Lower Disposal Area (LDA) to map areas where alkaline groundwater (i.e., high pH) is present within the LDA.
- Install a new groundwater monitoring well (identified as P-14) within an area of the LDA where the indicated conductivity readings from the EM survey were the highest.
- Collect a groundwater sample from new well P-14 and analyze the sample for the chemicals of potential concern (COPCs) approved by Ecology in the comment letter.
- Collect a groundwater sample from an existing monitoring well (P-11) located on the west side of the Lower Haul Road, which is hydrologically downgradient of the LDA, and analyze the sample for the list of COPCs approved by Ecology in the comment letter.

This technical memorandum presents the results of the above preliminary RI tasks completed in 2020. The work was completed in accordance with the draft Sampling and Analysis Plan and draft Quality Assurance Project Plan, included as Appendices D and E, respectively, to the draft Work Plan, as modified where appropriate based on Ecology's comments on the draft Work Plan.

2.0 EM GEOPHYSICAL SURVEY AND INSTALLATION OF P-14

Prior to drilling and construction of well P-14, the EM geophysical survey of the LDA was completed in October 2020. Results of the EM survey and the proposed location for drilling and installing well P-14 were provided to

Ecology in a previous Technical Memorandum¹. The attached Figure 1 shows the results of the EM survey and the location of well P-14. The proposed location for well P-14 was near the center of the LDA in a location where the highest EM readings were recorded. Installing the well in this highest EM area location would provide representative data on the chemical composition of highly alkaline groundwater in direct contact with the cement kiln dust (CKD) within the LDA and prior to the groundwater migrating through native soils and other fill material located outside of the LDA. Ecology verbally approved the proposed location of well P-14 and the proposed drilling and well construction specifications during a conference call on November 9, 2020.

Borehole drilling and installation of well P-14 were completed on November 20, 2020 by Cascade Drilling, Inc., a Washington State-licensed driller, using roto-sonic drilling methods. The roto-sonic drilling method collected continuous cores, which permitted detailed evaluation of the soils and materials encountered during drilling. Soils were logged by a qualified Golder geologist in accordance with Unified Soil Classification System (USCS) standards and Golder technical guidelines. The P-14 borehole was advanced to a maximum depth of 70 feet below ground surface (bgs). The following general lithologies were encountered and are shown in the P-14 well log, which is included in Attachment 1:

- 0 to 2 feet bgs: Vegetated topsoil and low permeability clay cap
- 2 to 14 feet bgs: Clay waste mine soils; light gray clay, stiff, dry to moist
- 14 to 36 feet bgs: CKD material: light gray powder, dry to wet, (field testing indicated high pH around 13 when mixed with water)
- 36 to 51 feet bgs: CKD mixed with mine waste soils and gravels; CKD with gravel, some pockets of sand, intermittent mottled red/brown color. Groundwater was observed within this interval at the time of drilling, at a depth of 40 feet bgs.
- 51 to 61 feet bgs: Clayey Silt CKD mixed with mine waste soils and gravels: Clayey silt (possible saturated compacted CKD) and sand and gravel some mottling, glass fragments and paper debris, high pH around 13 when mixed with water.
- 61 to 70+ feet bgs: Weathered to competent sandstone bedrock; highly weathered, orange, thinly laminated sandstone, oxidized, dry to moist, neutral pH when mixed with water, an indicated confining unit upon which water in the LDA is perched.

After bedrock was encountered, the P-14 borehole was backfilled with hydrated bentonite to a depth of 52 feet bgs, and two feet of silica sand was placed above the bentonite seal. The P-14 monitoring well was constructed with 10 feet of 2-inch diameter, 0.010-inch slot size, schedule 40 poly vinyl chloride (PVC) screen placed from approximately 40 to 50 feet bgs. The well completion schematic is shown in Attachment 1. P-14 well development was completed on December 4, 2020 through surging and pumping to remove any materials introduced during drilling and to produce groundwater representative of the formation.

3.0 GROUNDWATER SAMPLING

On December 11, 2020, groundwater samples were collected from both wells P-14 and P-11. Groundwater sampling and analyses were performed following the procedures described in the draft Work Plan. As detailed in

¹ Golder Associates Inc. (Golder). 2020. Reserve Silica Reclamation Site – 2020 Geophysical Survey and Proposed Location of Groundwater Monitoring Well P-14.

the draft Work Plan and in the Technical Memorandum (Golder, November 2020) approved by Ecology, this initial sampling round from well P-14 included the expanded list of COPCs, including the following: antimony, arsenic, beryllium, chromium, lead, mercury, nickel, selenium, silver, thallium, vanadium, and 2,3,7,8-substituted dioxins & furans. The purpose of analyzing for this expanded list of COPCs in well P-14 was to evaluate the presence and concentrations of these compounds in groundwater located within the LDA in an area where saturated CKD is present and some of the highest conductivity readings were measured during the geophysical survey. If these COPCs are leaching to groundwater from the CKD and other material disposed in the LDA, samples collected from well P-14 would be expected, based on the EM survey, to contain the highest concentrations generally detected within the LDA.

Well P-11 is located west of the Lower Haul Road and appears to monitor the shallow groundwater migrating from the LDA, after the high pH groundwater has migrated through the fill material beneath the Lower Haul Road. Previous investigations completed by others identified ASARCO slag in the near surface soils that comprise the Lower Haul Road and other, deeper fill soil, coal pieces, woody debris, with occasional occurrences of CKD². The groundwater samples collected from wells P-11 and P-14 were analyzed for the same COPCs, except Ecology requested that copper also be analyzed for in the well P-11 sample, because ASARCO slag is known to contain copper, in addition to its primary contaminants of arsenic and lead. The P-11 sample was not analyzed for 2,3,7,8-substituted dioxins & furans, as these compounds were only analyzed in well P-14 to evaluate if these compounds are leaching from the CKD. Analyzing groundwater samples from wells P-14 and P-11 for a similar list of COPCs allows for a preliminary evaluation of groundwater quality within and downgradient of the LDA.

4.0 GROUNDWATER ANALYTICAL RESULTS

Table 1 presents a summary of the laboratory metals analytical results for the groundwater samples collected from wells P-14 and P-11. Table 2 presents the dioxins and furans analytical results. The analytical results indicate the following:

- Antimony, arsenic, and lead were detected in groundwater samples collected from both wells P-11 and P-14 at concentrations exceeding Model Toxics Control Act (MTCA) cleanup levels.
- Vanadium was detected in P-11 at a reported concentration that exceeded MTCA cleanup level. Vanadium was also detected in P-14 but at a reported concentration that was below the MTCA cleanup level.
- The estimated concentration of thallium reported in P-11 was slightly above the MTCA cleanup level, but the reported concentration was below the laboratory reporting limit, so the concentration is considered estimated.
- Beryllium, chromium, mercury, silver, and thallium were not detected in P-14.
- The concentrations of arsenic, chromium, lead, nickel, and vanadium reported in the groundwater samples collected from well P-11 were significantly higher (more than 200% higher) than the concentrations reported in the groundwater samples collected from well P-14.
- There were no dioxins or furans compounds detected above the laboratory reporting limits.

² Aspect Consulting, LLC (Aspect). 2017. Remedial Investigation Report, Reserve Silica Site. November. Aspect. 2019. Lot 6 Historical Review, Reserve Silica, Ravensdale Site, Washington. August 19.

Data obtained during these 2020 remedial investigation activities will be evaluated in conjunction with the extensive amount of existing Site environmental data during the development of the Final RI/FS Work Plan.

Golder Associates Inc.

Joseph XI, PE Senior Project Engineer

Gary Zimmerman

Principal

GZ/TH/JX/sb

Attachments Tables 1 and 2 Figure 1 Attachment 1: P-11 and P-14 Well Log

152030402-tm-rev0-2020-ri- 4728-012921

Tom Haskins, LG Staff Hydrogeologist

Tables

January 2021

Table 1: Summary of Field Parameters and Laboratory Analytical Results for Metals

	R	es	ults					
				P-14		P-11		
Analyte	CAS Number	Units	MTCA Applicable GW CUL ¹	12/11/202	20	12/11/202	0	Percent Difference P-11:P-14
Water Levels and Elevations		-						
Depth to Water	-	feet BTOC	-	31.09		14.02		-
Groundwater Elevation	-	feet AMSL	-	742.23		725.00		-
Screened Interval	-	feet BGS	-	40 - 50		14 - 19		-
Field Parameter	-		÷					
рН	-	рН	-	13.30		12.67		-
Conductivity	-	µS/cm	-	18697		6113		-
Temperature	-	°C	-	11.6		11.6		-
Dissolved Oxygen	-	mg/L	-	0.12		1.25		-
Oxidation Reduction Potential	-	mV	-	-61.2		15.9		-
Turbidity	-	NTU	-	17.9		34.3		-
Total Metals								
Antimony	7440-36-0	µg/L	6.4	147		201		37%
Arsenic	7440-38-2	µg/L	5	270		1670		519%
Beryllium	7440-41-7	µg/L	32	2	U	0.76	J	-
Chromium	7440-47-3	µg/L	50	5	U	45.1		802%
Copper	7440-50-8	µg/L	640	NA		75.5		-
Mercury	7439-97-6	µg/L	2	0.1	U	0.11		-
Lead	7439-92-1	µg/L	15	18.8		138		634%
Nickel	7440-02-0	µg/L	320	36.8		112		204%
Selenium	7782-49-2	µg/L	80	11.9		6.41		-46%
Silver	7440-22-4	µg/L	80	2	U	0.35	J	-
Thallium	7440-28-0	µg/L	0.32	1	U	0.54	J	-
Vanadium	7440-62-2	µg/L	80	23.4		116		396%

Notes:

1 - Applicable MTCA CUL is either the MTCA Method A CUL or the lower of either the MTCA Method B Cancer or Non-Cancer CULs.

"U" qualifier - indicates analyte was not detected above reporting limit.

"J" qualifier - indicates analyte was not detected above reporting limit, but was estimated between method detection limit and reporting limit.

BTOC - Below Top of Casing | AMSL - Above Mean Sea Level | BGS - Below Ground Surface | MTCA - Model Toxics Control Act | GW - Groundwater | CUL - Cleanup Level | μ S/cm - microsiemens per centimeter | mV - millivolts | NA - Not Analyzed | NTU - Nephelometric Turbidity Units

January 2021

1520304-02.003

Table 2: Summary of Laboratory Analytical Results for Dioxins and Furans

				Results (µg	/L)
				P-14	
Analyte	CAS Number	MTCA Applicable GW CUL (μg/L) ¹	Toxicity Equivalency Factor ²	12/11/2020	0
Dioxins/Furans					
2,3,7,8-TCDF	51207-31-9	-	0.1	9.92E-06	U
2,3,7,8-TCDD	1746-01-6	6.70E-07	1	9.92E-06	U
1,2,3,7,8-PeCDF	57117-41-6	-	0.03	9.92E-06	U
2,3,4,7,8-PeCDF	57117-31-4	-	0.3	9.92E-06	U
1,2,3,7,8-PeCDD	40321-76-4	-	1	9.92E-06	U
1,2,3,4,7,8-HxCDF	70648-26-9	-	0.1	4.90E-07	J
1,2,3,6,7,8-HxCDF	57117-44-9	-	0.1	9.92E-06	U
2,3,4,6,7,8-HxCDF	60851-34-5	-	0.1	4.90E-07	J
1,2,3,7,8,9-HxCDF	72918-21-9	-	0.1	9.92E-06	U
1,2,3,4,7,8-HxCDD	39227-28-6	-	0.1	6.80E-07	J
1,2,3,6,7,8-HxCDD	57653-85-7	-	0.1	9.92E-06	U
1,2,3,7,8,9-HxCDD	19408-74-3	-	0.1	9.92E-06	U
1,2,3,4,6,7,8-HpCDF	67562-39-4	-	0.01	9.92E-06	U
1,2,3,4,7,8,9-HpCDF	55673-89-7	-	0.01	9.92E-06	U
1,2,3,4,6,7,8-HpCDD	35822-46-9	-	0.01	9.92E-06	U
OCDF	39001-02-0	-	0.0003	1.98E-05	U
OCDD	3268-87-9	-	0.0003	4.96E-05	U
TEF Sum of Dioxins/Furan Concentrations ²	-	6.70E-07	-	1.66E-07	-

Notes:

1 - Applicable MTCA CUL is either the MTCA Method A CUL or the lower of either the MTCA Method B Cancer or Non-Cancer CULs.

2 - Dioxin/Furan cleanup levels will be calculated using Ecology's Toxicity Equivalent Factors calculation methodology and guidance. *Evaluating the Toxicity and Assessing the Carcinogenic Risk of Environmental Mixtures Using Toxicity Equivalency Factors* (Ecology 2007).

"U" qualifier - indicates analyte was not detected above reporting limit.

"J" qualifier - indicates analyte was not detected above reporting limit, but was estimated between method detection limit and reporting limit.

MTCA - Model Toxics Control Act | GW - Groundwater | CUL - Cleanup Level

Figure

CONSULTANT **GOLDER**

YYYY-MM-DD	2021-01-15
DESIGNED	JX
PREPARED	REDMOND
REVIEWED	JX
APPROVED	GZ

CLIENT HOLCIM

LOWER DISPOSAL AREA (LLA) FORMER NORTH

770

765

FORMER TAN SAND PIT SAND PIT

₽-8			
	B-24 B-27	B-21	B-8
T20	•B-15	P-9	INTERCEPTOR TRENCH DISCHARGE OUTLET
P-14 (LDA MONITORING WELL)	S MWE	B-3LDA	
742.23	P-48		
TORING POINT)			
	NOTE(S) 1. BASE TOPOGRAPHY OU INC., SEATTLE, WA FROM	TSIDE OF LDA FOOTPRINT F M AERIAL PHOTOS FLOWN (PREPARED BY AERO-METRIC, ON FEBRUARY 10, 2007.
Apparent Conductivity (mS/m) 90	HORIZONTAL DATUM VERTICAL DATUM: CONTOUR INTERVAL	WASHINGTON STATE PLA NAD 27 US FEET - TRANS NGVD 29 - TRANSLATED	NE NORTH ZONE, SLATED TO NAD83/91 (HARN) TO NAVD88
80 70 60	2. BASE TOPOGRAPHY INS GEOMATIC SERVICES, IN TAKEN ON NOVEMBER 1	SIDE OF LDA FOOTPRINT PR NC., MOUNTLAKE TERRACE I, 2007.	EPARED BY PACIFIC , WA FROM FIELD DATA
50 40	HORIZONTAL DATUM: VERTICAL DATUM: CONTOUR INTERVAL:	WASHINGTON STATE PLA NAD 27 US FEET - TRANS NGVD 29 - TRANSLATED 1 FT	NE NORTH ZONE, SLATED TO NAD83/91 (HARN) TO NAVD88
JCT 30 20 10	3. BASE TOPOGRAPHY INS INC., BELLEVUE, WA FRO HORIZONTAL DATUM:	DIDE OF DSP FOOTPRINT PR DM FIELD DATA TAKEN ON J WASHINGTON STATE PLA NAD 27 US FEET - TRAN	REPARED BY PARAMETRIX, IULY 6, 2011. INE NORTH ZONE, SLATED TO NAD83/91 (HARN)
	VERTICAL DATUM: CONTOUR INTERVAL	NGVD 29 - TRANSLATED - : 1 FT	I U NAVD88
	PROJECT RI WORK PLAN 2020 RAVENSDALE, WA		
D 2021-01-15 JX	TITLE 2020 GEOPHYSICAL	SURVEY AND P-14 W	ELL LOCATION
REDMOND			
JX GZ	PROJECT NO. PHAS 152030402 002	SE .	REV. FIGURE

ATTACHMENT 1

P-11 and P-14 Well Logs

PR	OJECT OJECT	RI : Resrve Silica LDA Field InvestDRILLIN NUMBER: 073-93074-02.013 DRILLIN	ECC	DRD	OF B Hollow S 5/10		REH Auger	OLE P- DATUM: AZIMUTH	- 11 Local : N/A	HS	A			SHEE ⁻ ELEVA	⊺ 1 of 2 .TION: 735 IATION: -90	
LOC		N: Adjacent to MWB-2LDA DRILL R SOIL PROFILE	IG: CI	ME 65 L	imited A	ccess	;	COORDIN SAMPLES	ATES	S: N:	1,712,7 PENE1	41.18 FRATIC	E: 1 ON RE	27,159.0 SISTANC	00 E	
DEPTH (ft)	ORING METHO	DESCRIPTION	nscs	GRAPHIC LOG	ELEV.	NUMBER	ТҮРЕ	BLOWS per 6 in	N	REC ATT	10 WATER	BLO ¹ 20 R CON	WS / ft 30 TENT	40 (PERCEN	T) GRAPHIC	_S
- 0 - - - - - 5	BC	0.0 - 20.5 Compact to very dense, mottled, olive brown to medium gray, heterogeneous, mix of silty fine to medium SAND and SILT, some fine to coarse subrounded to subangular gravel, scattered cobble/boulder fragments, scattered pockets of fine-grained coal fragments, damp to wet (SM) (FILL-MINE SPOILS)			(ft)	S-1	CA	18-18-14	32	<u>1.0</u> 1.5		400	600) <u>80</u>	Flush-mount set in concrete with locked well cap 2 in nominal diameter schedule 40 PVC pipe set in cement	
- - - 10	Hollow Stem Auger 8-inch Casing Diameter		SM			S-2	СА	10-10-18	28	<u>1.5</u> 1.5					2 in nominal diameter solid schedule 40 ► PVC pipe set in bentonite chips	
		15.0 Slightly cohesive silt and fine to medium sand observed				S-3	CA	8-10-50/6"	>50	<u>1.3</u> 1.5					2 in nominal diameter solid schedule 40 PVC pipe set in #2/12 silica sand backfill Groundwater measured at 13.21 ft BGS ATD (borehole depth 20 ft) 2 in nominal diameter 0.010-inch slotted schedule 40 ► PVC pipe set in #2/12 silica sand backfill	y = -
1 in DRI	to 3 ft LLING	20.0 Debris (metal wire) observed Log continued on next page	Inc.			LO CH	GGEI	D: S. Morga ED: D. Find	an Iley						#2/12 silica sand backfill	

	PRO	DJECT	Resrve Silica LDA Field InvestDRILLIN	CO G MET	RD				OLE P-	11 Local	HS	A			S⊦ EL	IEET 2 .EVATI	of 2 ON: 735	
	PRC LOC		NUMBER: 073-93074-02.013 DRILLIN N: Adjacent to MWB-2LDA DRILL R	DAT و G: CN	E: 11/1 <u>1E 65 L</u>	5/10 imited A	ACINIUTIT. IN/A INCLINATION: -9 Access COORDINATES: N: 1,712,741.18 E: 127,159.00						110N: -90					
.	-	THOD	SOIL PROFILE				SAMPLES PENE							ION RI DWS /	ESIST ft ■	ANCE	NOTES	
	£	NG ME	DESCRIPTION	scs	PHIC	ELEV.	ABER	ЪЕ	BLOWS per 6 in	N	REC	1 WATE	0 2 R COI	NTENT	30 40		WATER LEVELS	
		BORIN		ñ	GRA	DEPTH (ft)	NUN	ŕ	, 140 lb hammer 30 inch drop		AII	W _p	0 4		30	—I W,	GRAPHIC	
F	20 -			SM		714.5	S-4	CA	50/6"	>50	0.5					>>		
	Ī		Boring completed at 20.5 ft.			20.5												
_																	-	
-																	-	
-																	-	
	25																	
-																	-	
╞																	-	
F																	-	
L	30																-	
╞																	-	
F																	-	
																	_	
ð -																		
																	-	
	35																-	
Ś																		
																	-	
																	-	
10-01																	-	
	40																	
	1 in 1 DRIL	to 3 ft _LING	CONTRACTOR: Cascade Drilling	nc.			LO CH	GGE IECKI	D: S. Morga ED: D. Find	an ley						(Golder	
	DRIL	LER:	S. Stivers				DA	TE:	1/12/2011	•							DAssociates	

lient Rojec	Holcim T NUMBER <u>15203040</u>	2		PROJECT NAMEReserve Silica Reclamati PROJECT LOCATION _Ravensdale, WA	n Site					
ATE ST RILLIN	G CONTRACTOR Cas	COMF	PLETED <u>11/20/20</u>	GROUND ELEVATION Not Surveyed HC GROUND WATER LEVELS:	DLE SIZE <u>6-</u>	LE SIZE 6-inch				
	DBY _T. Haskins, LG Ecology Well ID: BLZ44	CHEC	KED BY _G. Zimmerman	▲ AFTER DRILLING 31.09 feet bgs						
REMARKS HEVEN				MATERIAL DESCRIPTION	WEL	L DIAGRAM				
-		<u>x¹/z¹/2</u>	Topsoil and Clay Cap Light gray CLAY, stiff,	high plasticity, moist [MINE WASTE SOIL]		Flush-moun monument				
5			Dry			surface sea				
5 - - - -		14	Light gray powder/SILT	r, dry [Cement Kiln Dust (CKD)]						
<u>0</u> - - - - - - - - - -			Moist Wet, perched groundw	ater		3/8" hydrate bentonite chips				
60 - - - 	pH 13 when soil mixed with water	_	Clayey SILT/CKD, mo	vist						
			CKD with gravel, moist			12/20				
-			Gray SILT with gravel	, moist [CKD] ay, GRAVEL with silt and sand, dry		Colorado silica sand filter pack				
15 - - - 50 -	pri 13 when Soli mixed with water		to moist [MINE WAŠT Red and brown, SILT wet [MINE WASTE SI	E GRAVEL] and gravel, oxidized, moist to LT and CKD]		around 0.01 slotted PVC screen fron 40 to 50 ft l				
- - 55 -			Dry to moist Mottled gray, SILT and moist [MINE WASTE :	d clay, with sand and gravel, SILT and CKD]		End cap				
	pH 13 when soil mixed with water		Glass fragments/pape							
35 	pH neutral when soil mixed with water		Highly weathered SAN oxidized, thinly lamina	NDSTONE, white, grades to orange at 61.5ft, ted, dry to moist [SANDSTONE BEDROCK]		3/8" hydrate bentonite chips				
U		1	Bot	tom of borehole at 70.0 feet.	_1031/1031					