LAKE RIVER 2020 SEDIMENT MONITORING REPORT

FORMER PACIFIC WOOD TREATING CO. SITE FACILITY ID 1019, CLEANUP SITE ID 3020

Prepared for

PORT OF RIDGEFIELD

February 1, 2021 Project No. 9003.01.56

Prepared by Maul Foster & Alongi, Inc. 109 East 13th Street, Vancouver, WA 98660

LAKE RIVER 2020 SEDIMENT MONITORING REPORT

FORMER PACIFIC WOOD TREATING CO. SITE FACILITY ID 1019, CLEANUP SITE ID 3020

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Joshua Elliott, PE Senior Engineer

R:\9003.01 Port of Ridgefield\Report\56_2021.02.01 Lake River ISM\Rf_LR_2020_ISM.docx

CONTENTS

TABLE	ES AND ILLUSTRATIONS	IV
ACRO	DNYMS AND ABBREVIATIONS	V
1	INTRODUCTION 1.1 BACKGROUND	1 1
2	SITE CONDITIONS	2
3	SAMPLING PROGRAM 3.1 INCREMENTAL SAMPLING METHODOLOGY DESIGN 3.2 SAMPLING METHODS 3.3 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES 3.4 SAMPLE TRANSPORT 3.5 LABORATORY CHEMICAL SAMPLE PROCESS AND ANALYSIS 3.6 DATA REDUCTION, VALIDATION, AND REPORTING	2 3 3 4 4 4
4	RESULTS	5
LIMITA	ATIONS	

REFERENCES

TABLES

FIGURES

APPENDIX A

ANALYTICAL REPORTS

APPENDIX B

DATA VALIDATION MEMORANDUM

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 3-1 SEDIMENT SAMPLE DESCRIPTIONS
- 4-1 SEDIMENT SAMPLE RESULTS

FIGURES

- 1-1 SITE LOCATION
- 1-2 LAKE RIVER REMEDY AREA
- 3-1 SAMPLE LOCATIONS

ACRONYMS AND ABBREVIATIONS

Apex Laboratories, LLC

bml below mud line
CAP cleanup action plan
cm centimeter(s)
COC chain of custody
CUL cleanup level

dioxins polychlorinated dibenzo-p-dioxins and furans

DU decision unit

Ecology Washington State Department of Ecology

ENR enhanced natural recovery

EPA U.S. Environmental Protection Agency ISM incremental sampling methodology

MFA Maul Foster & Alongi, Inc. ng/kg nanograms per kilogram the Port Port of Ridgefield

PWT Pacific Wood Treating Co.

QA/QC quality assurance and quality control

REL remediation level

SAP sampling and analysis plan

TEQ toxicity equivalent TOC total organic carbon

INTRODUCTION

On behalf of the Port of Ridgefield (the Port), Maul Foster & Alongi, Inc. (MFA) has prepared this report to summarize Year 5 (2020) Lake River postremedy sediment monitoring results. Lake River is offshore of the former Pacific Wood Treating Co. (PWT) site in Ridgefield, Washington (see Figure 1-1). PWT operated a wood-treating facility from 1964 to 1993 at the Port's Lake River Industrial Site, now known as Miller's Landing.

On November 5, 2013, the Port entered into a Consent Decree with the State of Washington requiring remedial action to address contamination at the former PWT site. The selected cleanup action for the Lake River portion of the former PWT site consisted of mechanical dredging and placement of an enhanced natural recovery (ENR) sand layer and is described in the cleanup action plan (CAP) (Washington State Department of Ecology [Ecology], 2013). The remedy includes sediment chemical monitoring to assess cleanup efficacy in years 0, 2, 5, and 10.

Year 0 monitoring was completed in 2015 (MFA, 2015b) and Year 2 in 2017 (MFA, 2018). This report provides the results of the Year 5 (2020) monitoring, including sampling methodology and analysis, quality assurance protocols, and laboratory analytical results and interpretation. Sampling and reporting were conducted in accordance with the Ecology-approved sampling and analysis plan (SAP) (MFA, 2015a); any exceptions are noted in this report.

1.1 Background

The CAP identifies a remediation level (REL; 30 nanograms per kilogram [ng/kg] dioxin toxicity equivalent [TEQ]) and a cleanup level (CUL; 5 ng/kg dioxin TEQ) for polychlorinated dibenzo-pdioxins and furans (collectively referred to as dioxins) in Lake River sediments. These numeric criteria guided the remedial action substantively completed in 2015. Areas exceeding the REL were dredged and treated with a clean ENR sand layer, whereas areas above the CUL but below the REL were treated only with clean sand (see Figure 1-2). After remedy completion, Year 0 (baseline) monitoring was conducted in July 2015 to assesses cleanup effectiveness. Year 2 monitoring was completed in 2017 to quantify any changes compared to Year 0. The 2015 results showed that sediment dioxin TEQ concentrations were below the CUL and that a significant reduction in dioxin concentrations had been attained (MFA, 2015b). The Year 2 (2017) results showed that although the average incremental sampling methodology (ISM) sample dioxin TEQ had increased slightly (3.53 ng/kg in Year 2 compared to 1.16 ng/k g in Year 0), average dioxin TEQ concentrations were still below the CUL. The Year 5 (2020) monitoring described in this report was conducted to quantify any concentration changes relative to 2015 and 2017. Final monitoring efforts will also be conducted in Year 10 (2025) to further quantify concentration trends over time, and to confirm that natural recovery is effective in meeting the CUL in the long term, as anticipated.

$2\,$ site conditions

Lake River is a slow, flat slough of the Columbia River. Lake River is hydraulically connected to the Columbia River through a tide gate/flushing structure along the western shoreline of Vancouver Lake and at the mouth of Lake River on the Columbia River, 11 miles downstream of the Vancouver Lake tide gate. Overall river flow is from Vancouver Lake to the mouth of Lake River, and flow direction in Lake River reverses as a result of tidal influences from the Columbia River. Low water velocity, bathymetric analysis, and grain size distribution all indicate that Lake River is a predominantly depositional fluvial environment, and that natural attenuation of sediment concentrations should be expected to occur over time (MFA, 2013b).

An approximately 1-foot-thick, clean sand layer was placed over the entire remedy area as part of the sediment remedy (see Figure 1-2). Based on visual observations of riverbed exposed during low tide in 2020, it appears that more fines have deposited over the sand layer since the previous (2017) observations. No evidence of significant sand scour (e.g., exposed native sandy silt) was observed. Surface (0 to 10 centimeters [cm] below mudline [bml]) sediment samples retrieved during the 2020 event were generally fine to coarse sands (representing the clean sand layer placed as part of the remedy) with overlying silt. The samples with little to no overlying silt were generally observed near the fish mix rock, where there is likely more wave activity.

Based on previous investigations, the subsurface (deeper than 10 cm bml) sediment characteristics in Lake River vary with depth. In the remedy area, the current depth to native sediment below the placed clean sand layer likely varies (e.g., because of propwash and mixing processes). Generally, in the nearshore slope areas, the native subsurface sediment is characterized as a fine sandy silt to a depth of approximately 5 feet bml that then transitions to a fine to medium sand. Subsurface sediment in the channel areas of Lake River is generally very fine sandy silt down to 11 feet bml, with the exception of some fine to medium sand encountered in two cores in the Lake River channel area at approximately 6 to 7 feet bml (MFA, 2013a).

3 SAMPLING PROGRAM

ISM was used to characterize dioxins in sediments. ISM characterizes the average concentration of contaminants in a predefined area termed a decision unit (DU). Samples (called increments) were collected from multiple locations in a DU under evaluation. The increments were combined into one sample (called an ISM sample), which was analyzed to obtain a representative average contaminant concentration for the entire DU. Three ISM samples, called replicates, were collected to define variability resulting from sampling error or spatial heterogeneity. ISM provides data that are more representative of average concentrations than areawide concentrations derived from discrete or traditional composite samples (HDOH, 2009; ITRC, 2012).

3.1 Incremental Sampling Methodology Design

The sampling objective was to characterize the average concentration of dioxins in surface sediments in the remedy area. The DU sampled extends from the surface to 10 cm bml across the entire remedy area, as shown in Figure 3-1. Three replicate samples (ISM samples A, B, and C) consisting of 30 increments each were collected to assess sample variability. The increment locations are consistent with those sampled in 2015 and 2017 and were selected based on a stratified random approach using a triangular grid (using ArcGIS 10 and Visual Sample Plan 6). Using a systematic random grid, as opposed to a simple random sampling approach, reduces the probability of missing areas with significantly elevated concentrations.

3.2 Sampling Methods

MFA conducted sediment sampling on December 3 and 4, 2020. Water levels were normal, and all samples were collected from the boat. Figure 3-1 shows sampling locations and Table 3-1 presents soil sample classifications.

All sediment increments were collected using a handheld Van Veen (clamshell) sampler. The locked (open) sampler was manually lowered to the riverbed. The latch would unlock upon contact with the riverbed and close the two halves of the clamshell around the sediment before being manually raised back into the boat. The contents were deposited onto a clean work surface where the sample was bisected and characterized before being placed in the laboratory-supplied sampling container. If increment recovery was poor at certain locations, the increment was discarded and resampled within a few feet of the original location. Approximately 100 grams per increment, for a total of approximately 3 kilograms per ISM sample, was collected to provide the overall mass required by the analytical laboratory. The ISM sample was analyzed for dioxins and total organic carbon (TOC).

A differential global positioning system was used to navigate to the locations shown on Figure 3-1. Locations were determined to an accuracy of ±3 meters. Horizontal coordinates were referenced to the Washington South State Plane HARN (NAD83).

All equipment was decontaminated in accordance with the SAP. All sample containers were kept on ice before submittal, with chain-of-custody (COC) documentation, to the laboratory for analysis. Use of dedicated (nondisposable) sampling equipment significantly reduced the amount of decontamination fluids generated. Nondisposable incremental sampling equipment was decontaminated only between replicates (i.e., not decontaminated between increments within the unit). Decontamination of nondisposable sampling equipment (i.e., incremental sampling equipment) used disposable, single-use paper towels that were subsequently containerized, along with used personal protective equipment, and disposed of in a sanitary landfill.

3.3 Quality Assurance and Quality Control Samples

The following quality assurance and quality control (QA/QC) sampling was conducted.

Three replicate ISM samples were collected across the DU. Replicates were processed and analyzed (consistent with the methods used for the primary sample) to assess sample variability. In addition, an equipment rinsate blank was collected from decontaminated reusable equipment coming into direct contact with sediment samples (i.e., the Van Veen sampler, bowls, and spoons).

3.4 Sample Transport

Samples for ISM processing and TOC analysis were submitted to the Ecology-approved Apex Laboratories, LLC (Apex) of Tigard, Oregon. Following ISM processing, Apex submitted sample aliquots to the Ecology-approved Cape Fear Analytical, LLC, for dioxin analysis. COC documentation was maintained throughout the sample handling and testing process and is included in the laboratory analytical reports (see Appendix A).

3.5 Laboratory Chemical Sample Process and Analysis

Prior to analysis, Apex used SAP-identified ISM procedures to process the ISM samples. As discussed above, the approximately equal mass collected from each increment was field-consolidated to generate a sample of approximately 3 kilograms (wet weight). The laboratory air-dried each DU sample at room temperature. The entire volume of each sample was chopped and sieved to facilitate obtaining a representative subsample and improving analyte extraction efficiency. The sample was sieved using an ASTM International No. 10 (2-millimeter) sieve. Once the sample was dried and sieved, the laboratory performed the "1-dimensional slabcake" subsampling procedure to sub-aliquot sample volume to be used for analysis. The slabcake procedure involves spreading the sample at a consistent depth in a line, using 20 or more passes, and then using a square scoop to cut across the line as needed to create an aliquot for each analysis. Samples for TOC were ground prior to analysis. Precise volumes (as identified in the SAP) of samples were collected as aliquots for each individual laboratory analysis and for QA/QC requirements. The following analyses of ISM aliquots, by the methods indicated, were conducted:

- TOC by Puget Sound Estuary Program/SM 5310B Modified
- Dioxins by U.S. Environmental Protection Agency (EPA) Method 1613B

Laboratory QA/QC requirements were maintained using standard EPA methods, based on EPA test methods for evaluating solid waste, physical/chemical methods (also known as SW-846) requirements, as amended (EPA, 1986).

3.6 Data Reduction, Validation, and Reporting

The laboratory data produced were independently reviewed by MFA for data quality (see Appendix B). Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2010, 2014) and appropriate laboratory and method-specific guidelines (Apex, 2019; EPA, 1986), and are reported consistent with recent dioxin data treatment guidance (Ecology, 2019). ISM sample replicates were assessed as part of the data validation. Sample results were qualified appropriately to reflect any criteria not satisfied during the aforementioned assessments. All data are considered acceptable for use, with associated qualifiers. Consistent with Washington Administrative Code 173-340-840(5) and

Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data will be submitted in both written (this report) and electronic (the Ecology Environmental Information Management system) formats.

4 RESULTS

The 2015, 2017, and 2020 sediment monitoring results are provided in Table 4-1. For the 2020 monitoring event, most dioxin congener results are at or near the estimated detection limits. The dioxin TEQ concentrations for each sample (A, B, and C) were below the CUL of 5 ng/kg, with concentrations of 1.25 ng/kg, 1.53 ng/kg, and 1.62 ng/kg, respectively. Consequently, the 2020 average ISM sample concentration of 1.47 ng/mg is below the CUL. These concentrations are slightly higher than the 2015 average ISM concentration of 1.16 ng/kg, but lower than the 2017 concentration of 3.53 ng/kg.

Before the remedial action, dioxin TEQ concentrations in Lake River were as high as 910 ng/kg, and it was estimated that postremedy concentrations would range up to 23 ng/kg (MFA, 2015a), with an areawide average concentration of approximately 4.4 ng/kg following natural recovery and mixing of placed clean sand with native sediment (MFA, 2013a). Both the 2017 and 2020 average ISM concentrations are consistent with the areawide projection and are below the CUL of 5 ng/kg. Therefore, it appears that the continued mixing of sand with underlying sandy silt via bioturbation and anthropogenic events, as well as deposition from upstream sediments, are resulting in the desired long-term effect and demonstrate that the cleanup action is effective.

LIMITATIONS

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Apex. 2019. Quality assurance manual. Rev 77. Apex Laboratories, LLC, Tigard, Oregon. February 11

Ecology. 2013. Cleanup action plan, former Pacific Wood Treating Co. site. Washington State Department of Ecology. November 5.

Ecology. 2019. Sediment cleanup users manual II, guidance for implementing the cleanup provisions of the sediment management standards, Chapter 173-204 WAC. Publication No. 12-09-057. Washington State Department of Ecology. December.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2010. EPA contract laboratory program national functional guidelines for inorganic Superfund data review. EPA 540/R-10/011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2014. R10 data validation and review guidelines for polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran data (PCDD/PCDF) using Method 1613B, and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.

HDOH. 2009. Interim final technical guidance manual for the implementation of the Hawai'i state contingency plan. Office of Hazard Evaluation and Emergency Response. Hawai'i Department of Health. November 12.

ITRC. 2012. Technical and regulatory guidance: incremental sampling methodology. The Interstate Technology & Regulatory Council Incremental Sampling Methodology Team. February.

MFA. 2013a. Lake River remedy predesign sampling report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. June 14.

MFA. 2013b. Former PWT site remedial investigation and feasibility study. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 1.

MFA. 2015a. Lake River sediment monitoring sampling and analysis plan, former Pacific Wood Treating Co. site, facility ID 1019, cleanup site ID 3020. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. April 9.

MFA. 2015b. Lake River sediment monitoring report, former Pacific Wood Treating Co. site, facility ID 1019, cleanup site ID 3020. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 1.

MFA. 2018. Lake River 2017 sedim facility ID 1019, cleanup site ID 302 Inc., Vancouver, Washington. Januar	20. Prepared for the Port	

TABLES

Increment Number	Group	Date Collected	Comments
0	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
1	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
2	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
3	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
4	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
5	Α	12/03/2020	Dark brown to gray sand; fine to coarse; woody debris.
6	Α	12/03/2020	Dark brown to gray sand; fine to coarse; woody debris.
7	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
8	Α	12/03/2020	Dark brown to gray silty sand; fine; no debris.
9	Α	12/03/2020	Dark brown to gray silty sand; fine; no debris.
10	Α	12/03/2020	Dark brown to gray sand; fine; trace woody debris.
11	Α	12/03/2020	Dark brown to gray sand; fine to coarse; trace debris.
12	Α	12/03/2020	Dark brown to gray silty sand; fine; no debris.
13	Α	12/03/2020	Dark brown to gray sand; fine to coarse; trace debris.
14	Α	12/03/2020	Dark brown to gray silty sand; fine; no debris.
15	Α	12/03/2020	Dark brown to gray sandy silt; fine to coarse; no debris.
16	Α	12/03/2020	Dark brown to gray sandy silt; fine; trace debris.
17	Α	12/03/2020	Dark brown to gray silt; fine; no debris.
18	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
19	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
20	Α	12/03/2020	Dark brown to gray sand; fine to coarse; trace debris.
21	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
22	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
23	Α	12/03/2020	Dark brown to gray sandy silt; fine; no debris.
24	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
25	Α	12/03/2020	Dark brown to gray sandy silt; fine; no debris.
26	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
27	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
28	Α	12/03/2020	Dark brown to gray sand; fine to coarse; no debris.
29	Α	12/03/2020	Dark brown to gray silt with underlying sand.
30	В	12/04/2020	Dark brown to gray sand; fine to coarse; trace debris.
31	В	12/04/2020	Dark brown to gray, silty sand; fine to coarse; trace debris.
32	В	12/04/2020	Dark brown to gray, slightly silty sand.
33	В	12/04/2020	Dark brown to gray sand with overlying silt.
34	В	12/04/2020	Dark brown to gray sand with overlying silt; trace debris.
35	В	12/04/2020	Dark brown to gray, silty sand; trace debris.
36	В	12/04/2020	Dark brown to gray, silty sand; trace detritus.
37	В	12/04/2020	Dark brown to gray, silty sand.
38	В	12/04/2020	Dark brown to gray, silty sand.
39	В	12/04/2020	Dark brown to gray sand with overlying silt; some debris.
40	В	12/04/2020	Dark brown to gray, silty sand; trace detritus.
41	В	12/04/2020	Dark brown silt with some debris.

Table 3-1 Sediment Sample Descriptions Former PWT Site Ridgefield, Washington

Increment Number	Group	Date Collected	Comments
42	В	12/04/2020	Dark brown to gray, sandy silt; trace detritus.
43	В	12/04/2020	Dark brown silt.
44	В	12/04/2020	Dark brown to gray sand; mollusk.
45	В	12/04/2020	Dark brown to gray, silty sand.
46	В	12/04/2020	Dark brown to gray sand with silt.
47	В	12/04/2020	Dark brown to gray, sandy silt.
48	В	12/04/2020	Dark brown to gray sand with gravel.
49	В	12/04/2020	Dark brown to gray sand with overlying silt.
50	В	12/04/2020	Dark brown to gray sand with overlying silt.
51	В	12/04/2020	Dark brown to gray sand with overlying silt.
52	В	12/04/2020	Dark brown to gray sand with overlying silt; trace cobble.
53	В	12/04/2020	Dark brown to gray sand with some overlying silt.
54	В	12/04/2020	Sand with overlying silt.
55	В	12/04/2020	Sand with overlying silt.
56	В	12/04/2020	Sand with overlying silt.
57	В	12/04/2020	Sand with overlying silt.
58	В	12/04/2020	Sand with overlying silt.
59	В	12/04/2020	Sand with overlying silt; trace detritus.
60	С	12/04/2020	Dark brown to gray sand with silt overlay; trace debris.
61	С	12/04/2020	Dark brown to gray silty sand; some debris.
62	С	12/04/2020	Dark brown to gray sand with silt overlay; some detritus.
63	С	12/04/2020	Dark brown to gray sand with silt overlay; trace detritus.
64	С	12/04/2020	Dark brown to gray silt with sand.
65	С	12/04/2020	Dark brown to gray sand with overlying silt; trace woody debris.
66	С	12/04/2020	Dark brown to gray, sandy silt.
67	С	12/04/2020	Dark brown to gray, silty sand; no debris.
68	С	12/04/2020	Dark brown to gray sand with some overlying silt; trace detritus.
69	С	12/04/2020	Dark brown to gray sand with silt overlay; trace debris.
70	С	12/04/2020	Dark brown to gray sand with silt overlay; trace detritus.
71	С	12/04/2020	Dark brown to gray sand.
72	С	12/04/2020	Dark brown to gray silty sand with trace detritus.
73	С	12/04/2020	Dark brown to gray silty sand.
74	С	12/04/2020	Dark brown to gray sandy silt with trace detritus.
75	С	12/04/2020	Dark brown to gray sand with silt overlay.
76	С	12/04/2020	Dark brown to gray silty sand.
77	С	12/04/2020	Dark brown to gray sand with silt overlay; cobble.
78	С	12/04/2020	Dark brown to gray sand with silt overlay.
79	С	12/04/2020	Dark brown to gray sand with silt overlay.
80	С	12/04/2020	Dark brown to gray sand with silt overlay.
81	С	12/04/2020	Dark brown to gray sand with silt overlay; some detritus.
82	С	12/04/2020	Dark brown to gray sand with silt overlay; trace detritus.
83	С	12/04/2020	Dark brown to gray sand with some silt overlay.

Table 3-1 **Sediment Sample Descriptions** Former PWT Site Ridgefield, Washington

Increment Number	Group	Date Collected	Comments
84	С	12/04/2020	Dark brown to gray sand with silt overlay; trace detritus.
85	С	12/04/2020	Dark brown to gray sand with silt overlay; detritus.
86	С	12/04/2020	Dark brown to gray sand with silt overlay; some detritus.
87	С	12/04/2020	Dark brown to gray sand with silt overlay.
88	С	12/04/2020	Dark brown to gray sand with silt overlay; cobble.
89	С	12/04/2020	Dark brown to gray sand.
NOTE:			

PWT = Pacific Wood Treating Co.

	Location	ISM Sample A	ISM Sample B	ISM Sample C	ISM Sample A	ISM Sample B	ISM Sample C	ISM Sample A	ISM Sample B	ISM Sample C
5	Sample ID	ISM-A-150240	ISM-B-150421	ISM-C-150422	ISM-A-170925	ISM-B-170926	ISM-C-170927	ISM-A-20201203	ISM-B-20201204	ISM-C-20201204
Date (Collected	04/20/2015	04/21/2015	04/22/2015	09/25/2017	09/26/2017	09/27/2017	12/03/2020	12/04/2020	12/04/2020
Sar	nple Type	ISM	ISM	ISM	ISM	ISM	ISM	ISM	ISM	ISM
Start Depth		0	0	0	0	0	0	0	0	0
End Depth	(cm bml)	10	10	10	10	10	10	10	10	10
	Cleanup Level		YEAR 0 (2015)			YEAR 2 (2017)			YEAR 5 (2020)	
Dioxins and Furans (ng/kg)										
1,2,3,4,6,7,8-HpCDD		30.3	9.9	6.23	30.7 J	248 J	77.5 J	44.3	60.2	61.6
1,2,3,4,6,7,8-HpCDF		4.03	1.65	0.969 U	4.89 J	32 J	9.38 J	7.65	10.4	10.4
1,2,3,4,7,8,9-HpCDF		0.806 J	0.276 J	0.291 J	1.22 U	2.25 J	0.819 J	0.627 UJ	0.646 UJ	0.686 UJ
1,2,3,4,7,8-HxCDD		0.77 J	0.216 J	0.282 J	0.746 U	1.33 J	0.506 J	0.385 UJ	0.369 UJ	0.459 UJ
1,2,3,4,7,8-HxCDF		1.15	0.278 U	0.345 J	1.07 J	4.82 J	1.37 J	0.685 UJ	1.03 UJ	1.11 UJ
1,2,3,6,7,8-HxCDD		2.08	0.546 J	0.527 J	1.45 J	7.26 J	2.95 J	1.87 J	2.57 J	2.48 J
1,2,3,6,7,8-HxCDF		0.884 J	0.251 J	0.267 J	0.541 U	1.71 J	0.62 UJ	0.368 UJ	0.532 UJ	0.521 UJ
1,2,3,7,8,9-HxCDD		1.2	0.316 J	0.331 J	0.676 U	2.33 J	0.899 UJ	0.762 UJ	0.868 UJ	1.01 UJ
1,2,3,7,8,9-HxCDF		0.675 J	0.238 UJ	0.233 J	0.963 U	1.33 J	0.53 U	0.392 UJ	0.55 UJ	0.509 UJ
1,2,3,7,8-PeCDD		0.607 J	0.281 U	0.208 J	0.284 U	0.404 J	0.244 U	0.275 UJ	0.145 U	0.287 UJ
1,2,3,7,8-PeCDF		0.666 J	0.229 U	0.255 J	0.42 U	0.428 UJ	0.425 J	0.281 J	0.32 J	0.303 J
2,3,4,6,7,8-HxCDF		0.76 J	0.21 UJ	0.2 J	0.586 U	1.95 J	0.759 UJ	0.54 UJ	0.572 UJ	0.661 UJ
2,3,4,7,8-PeCDF		0.585 J	0.222 U	0.241 J	0.414 UJ	2.04 J	0.672 UJ	0.381 UJ	0.497 UJ	0.491 UJ
2,3,7,8-TCDD		0.218 J	0.117 U	0.166 U	0.523 U	0.566 U	0.33 U	0.102 U	0.095 U	0.0833 U
2,3,7,8-TCDF		0.216 J	0.169 U	0.143 U	0.502 U	0.532 U	0.365 U	0.232 UJ	0.298 UJ	0.285 UJ
OCDD		264	76	53.1	298 J	2570 J	864 J	370	467	484
OCDF		7.36	2.11	1.81 J	8.34 J	52.9 J	27.1 J	16.2	18.3	15.8
Total HpCDDs		54.3	18.1	11.9	61.9 J	466 J	150 J	87.5	107	117
Total HpCDFs		11.3	4.48	1.84	15 J	105 J	30.5 J	25.3 J	35.5 J	32.5 J
Total HxCDDs		7.75	2.29	2.05	5.85	62.6 U	17 U	10.1 J	11.1 J	14.6 J
Total HxCDFs		9.57	2.54	2.44	9.93 U	75	18.9 U	12.1 J	18.7 J	18.2 J
Total PeCDDs		0.607 J	0.281 U	0.208 J	0.284 U	14.7 U	2.07 UJ	0.733 J	0.874 J	2.07 UJ
Total PeCDFs		1.74	0.225 U	0.668 J	2.65 UJ	28.9 U	6.38 U	3.67 J	4.29 J	5.27 J
Total TCDDs		0.218	0.117 U	0.166 U	0.523 U	9.24	0.33 U	0.102 U	0.095 U	0.103 J
Total TCDFs		0.216	0.169 U	0.143 U	0.502 U	17 U	0.365 U	1.09 UJ	0.738 UJ	1 UJ
Total TEQ Mammals (U = 1/2 EDL)	5	2.23	0.555	0.683	1.38	7.01	2.19	1.25	1.53	1.62
verage ISM Sample TEQ (U = 1/2 EDL)			3.53		1.47					
Conventionals (%)										
Total Organic Carbon		1.2	0.74	0.66	3.8	6.2	4.9	0.58	0.44	0.40
Average Total Organic Carbon			0.87			4.97			0.47	

9003.01.56, 2/1/2021, Table 4-1_Analytical Results

Table 4-1 Sediment Sample Results Former PWT Site Ridgefield, Washington

NOTES:

Average results are in **bold** font.

-- = no value.

% = percent.

cm bml = centimeters below mudline.

EDL = estimated detection limit.

ISM = incremental sampling methodology.

J = associated result is an estimated quantity.

ng/kg = nanograms per kilogram.

PWT = Pacific Wood Treating Co.

TEQ = toxicity equivalent.

U = associated result is less than listed detection limit.

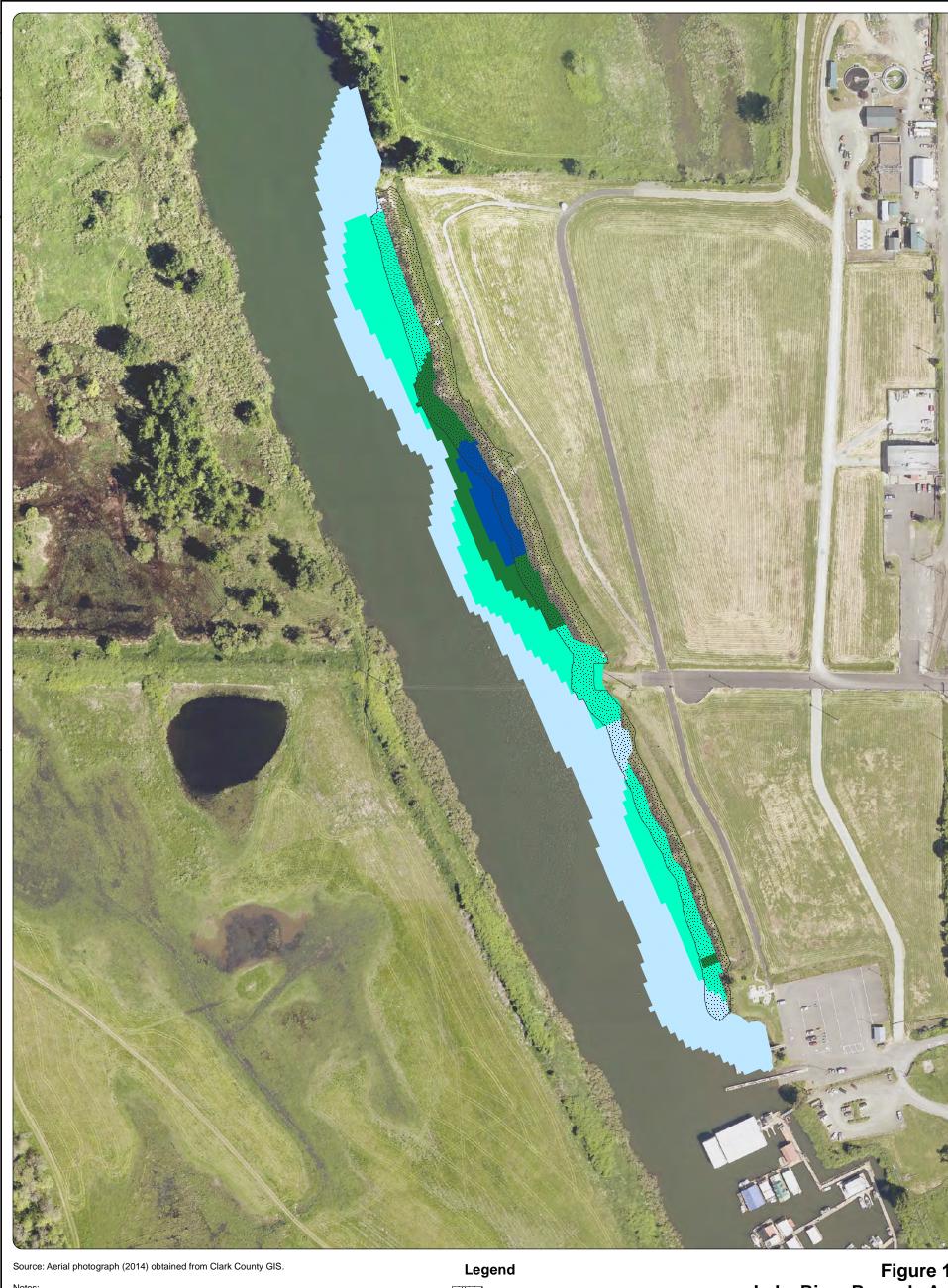
UJ = associated result is less than listed detection limit and is an estimated quantity.

9003.01.56, 2/1/2021, Table 4-1_Analytical Results

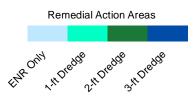
FIGURES

Source: Topographic Quadrangle obtained from ArcGIS Online Services/NGS-USGS TOPO! U.S. Geological Survey (1999) 7.5-minute topographic quadrangle: Ridgefield Address: Lake River Industrial Site 111 W. Division Street, Ridgefield, WA 98642 Section: 24 Township: 4N Range: 1W of Willamette Meridian PWT = Pacific Wood Treating Co.

Figure 1-1 Site Location


Former PWT Site Ridgefield, Washington

0 1,000 2,000 Feet


This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

- Notes:
 1. PWT = Pacific Wood Treating Co.
 2. ENR = Enhanced Natural Recovery.

- ENR = Enhanced Natural Recovery.
 Dredge depths denote neatline.
 Dredged areas will also receive 1 foot of ENR treatment.
 Analysis extent has been clipped to the bank-sediment interface. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to least the as 5:1 horizontal to vertical slope. sitions to less than a 5:1 horizontal to vertical slope.



Figure 1-2 Lake River Remedy Area

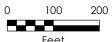
Former PWT Site Ridgefield, Washington

100 200

Bankward sample locations extent was clipped to the extent of fish plus 5 feet riverward.

ISM = incremental sampling methodology.

PWT = Pacific Wood Treating Co.


Source: Aerial photograph (2014) obtained from Clark County GIS.

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

- ISM Sample Location (A)
- ISM Sample Location (B)
- ISM Sample Location (C)
- ISM Sample Boundary Fish Mix

Figure 3-1 Sample Locations

Former PWT Site Ridgefield, Washington

APPENDIX A ANALYTICAL REPORTS

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, January 5, 2021 Phil Wiescher Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A0L0214 - Lake River-Sediment - 9003.01.49

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0L0214, which was received by the laboratory on 12/7/2020 at 10:06:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

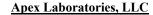
Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 4.0 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.



Apex Laboratories

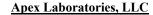
Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>Lake River-Sediment</u>

3140 NE Broadway StreetProject Number: 9003.01.49Report ID:Portland, OR 97232Project Manager: Phil WiescherA0L0214 - 01 05 21 1539


ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
ISM-A-20201203As Received	A0L0214-01	Sediment	12/03/20 14:45	12/07/20 10:06							
ISM-A-20201203After Processing	A0L0214-02	Sediment	12/03/20 14:45	12/07/20 10:06							
ISM-B-20201204As Received	A0L0214-03	Sediment	12/04/20 15:30	12/07/20 10:06							
ISM-B-20201204After Processing	A0L0214-04	Sediment	12/04/20 15:30	12/07/20 10:06							
ISM-C-20201204As Received	A0L0214-05	Sediment	12/04/20 12:00	12/07/20 10:06							
ISM-C-20201204After Processing	A0L0214-06	Sediment	12/04/20 12:00	12/07/20 10:06							
Rinsate Blank	A0L0214-07	Water	12/04/20 15:30	12/07/20 10:06							

Apex Laboratories

Philip Memberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Lake River-Sediment

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539

ANALYTICAL SAMPLE RESULTS

		De	mand Param	eters						
Analyte	Sample Result	Detection Limit	Reporting Limit	Date Units Dilution Analyzed Method Ref.						
ISM-A-20201203After Processing	g (A0L0214-02)	Matrix: Sediment								
Batch: 0120426										
Total Organic Carbon	5800		200	mg/kg dry 1 12/16/20 02:49 PSEP_SM 5310B MOD						
ISM-B-20201204After Processing		Matrix: Sediment								
Batch: 0120426										
Total Organic Carbon	4400		200	mg/kg dry	1	12/16/20 03:11	PSEP_SM 5310B MOD			
ISM-C-20201204After Processing	g (A0L0214-06)			Matrix: Sed	liment					
Batch: 0120426										
Total Organic Carbon	4000		200	mg/kg dry	1	12/16/20 03:22	PSEP_SM 5310B MOD			

Apex Laboratories

Philip Memberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

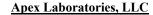
ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: <u>Lake River-Sediment</u>

3140 NE Broadway Street Portland, OR 97232 Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539


ANALYTICAL SAMPLE RESULTS

Total Org	Total Organic Carbon (Non-Purgeable) by Persulfate Oxidation by Standard Method 5310C										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
Rinsate Blank (A0L0214-07)				Matrix: W	ater	Batch: 0120274					
Total Organic Carbon	ND		1.00	mg/L	1	12/09/20 19:30	SM 5310 C				

Apex Laboratories

Philip Nevenberg

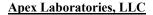
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Lake River-Sediment</u>

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539


ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
ISM-A-20201203After Proces	Matrix: So	0120419						
% Solids	98.6		1.00	%	1	12/14/20 07:33	EPA 8000D	
ISM-B-20201204After Proces	ssing (A0L0214-04)			Matrix: S	Matrix: Sediment Batch: 0120419			
% Solids	98.8		1.00	%	1	12/14/20 07:33	EPA 8000D	
SM-C-20201204After Processing (A0L0214-06)					ediment	Batch:	0120419	
% Solids	98.9		1.00	%	1	12/14/20 07:33	EPA 8000D	

Apex Laboratories

Philip Nevenberg

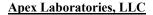
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Lake River-Sediment</u>

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539


QUALITY CONTROL (QC) SAMPLE RESULTS

				Demand	Paramet	ers						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0120426 - PSEP-5310B T	ос						Soil					
Blank (0120426-BLK1)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/15	/20 18:32					
PSEP SM 5310B MOD												
Total Organic Carbon	ND		200	mg/kg w	et 1							
Blank (0120426-BLK2)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/15	/20 18:21					
PSEP_SM 5310B MOD												
Total Organic Carbon	ND		200	mg/kg w	et 1							A-0
LCS (0120426-BS1)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/15	/20 18:43					
PSEP_SM 5310B MOD												
Total Organic Carbon	9200			mg/kg	1	10000		92	88-111%			
Duplicate (0120426-DUP1)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/15	/20 23:56					
QC Source Sample: Non-SDG (A0K	(0363-28)											
Total Organic Carbon	460		250	mg/kg d	ry 1		500			8	27%	
Duplicate (0120426-DUP2)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/16	/20 00:28					
QC Source Sample: Non-SDG (A0K	(0363-28)											
Total Organic Carbon	410		250	mg/kg d	ry 1		500			19	27%	
Duplicate (0120426-DUP3)			Prepared	: 12/11/20)9:01 Anal	yzed: 12/16	/20 03:00					
QC Source Sample: ISM-A-2020120	3After P	rocessing (A0	L0214-02)									
PSEP_SM 5310B MOD												
Total Organic Carbon	5800		200	mg/kg d	ry 1		5800			0.2	27%	

Apex Laboratories

Philip Memberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

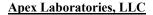
Project: <u>Lake River-Sediment</u>

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Organic Carbon (Non-Purgeable) by Persulfate Oxidation by Standard Method 5310C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0120274 - Method Prep:	Aq						Wat	er				
Blank (0120274-BLK1)			Prepared	: 12/08/20	08:44 Anal	yzed: 12/09	/20 11:15					
SM 5310 C												
Total Organic Carbon	ND		1.00	mg/L	1							
LCS (0120274-BS1)			Prepared	: 12/08/20	08:44 Anal	yzed: 12/09	/20 11:46					
SM 5310 C												
Total Organic Carbon	10.6		1.00	mg/L	1	10.0		106	90-114%			
Duplicate (0120274-DUP1)			Prepared	: 12/08/20 (08:44 Anal	yzed: 12/09	/20 12:47					
QC Source Sample: Non-SDG (A0	K0936-01)											
Total Organic Carbon	ND		1.00	mg/L	1		ND				10%	
Matrix Spike (0120274-MS1)			Prepared	: 12/08/20 ()8:44 Anal	yzed: 12/09	/20 13:18					
QC Source Sample: Non-SDG (A0	K0936-01)											
SM 5310 C												
Total Organic Carbon	11.6		1.01	mg/L	1	10.0	ND	116	90-114%			


Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 15

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Lake River-Sediment</u>

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0120419 - Total Solids (I	Ory Weigh	ıt)					Soil					
Duplicate (0120419-DUP1)			Prepared	: 12/11/20	07:26 Anal	yzed: 12/14/	/20 07:33					
QC Source Sample: ISM-A-202012	203After P	rocessing (A0	L0214-02)									
<u>EPA 8000D</u> % Solids	98.6		1.00	%	1		98.6			0.02	10%	
Duplicate (0120419-DUP2)			Prepared	: 12/11/20	07:26 Anal	yzed: 12/14/	/20 07:33					
QC Source Sample: Non-SDG (A0	L0300-08)											
% Solids	76.9		1.00	%	1		77.7			1	10%	
Duplicate (0120419-DUP3)			Prepared	: 12/11/20	07:26 Anal	yzed: 12/14/	/20 07:33					
QC Source Sample: Non-SDG (A0)	L0329-03)											
% Solids	74.5		1.00	%	1		80.0			7	10%	
Duplicate (0120419-DUP4)			Prepared	: 12/11/20	07:26 Anal	yzed: 12/14/	/20 07:33					
QC Source Sample: Non-SDG (A0	L0336-03)											
% Solids	75.6		1.00	%	1		75.9			0.4	10%	
Duplicate (0120419-DUP5)			Prepared	: 12/11/20	07:26 Anal	yzed: 12/14/	/20 07:33					
QC Source Sample: Non-SDG (A0	L0346-12)			<u> </u>								<u> </u>
% Solids	76.7		1.00	%	1		76.5			0.2	10%	
Duplicate (0120419-DUP6)			Prepared	: 12/11/20	19:58 Anal	yzed: 12/14	/20 07:33					
QC Source Sample: Non-SDG (A0	L0415-01)											
% Solids	90.6		1.00	%	1		90.4			0.2	10%	
Duplicate (0120419-DUP7)			Prepared	: 12/11/20	19:58 Anal	yzed: 12/14	/20 07:33					
QC Source Sample: Non-SDG (A0												
% Solids	85.7		1.00	%	1		86.3			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 15

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

 3140 NE Broadway Street
 Project Number: 9003.01.49
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A0L0214 - 01 05 21 1539

SAMPLE PREPARATION INFORMATION

Lake River-Sediment

			Demand Parame	ters			
Prep: PSEP-5310B T	OC				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0120426							
A0L0214-02	Sediment	PSEP_SM 5310B MOD	12/03/20 14:45	12/11/20 09:01			NA
A0L0214-04	Sediment	PSEP_SM 5310B MOD	12/04/20 15:30	12/11/20 09:01			NA
A0L0214-06	Sediment	PSEP_SM 5310B MOD	12/04/20 12:00	12/11/20 09:01			NA
	Total Orga	nic Carbon (Non-Purg	eable) by Persulfate	e Oxidation by Stand	dard Method 5310	OC .	
Prep: Method Prep: A	<u>\q</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0120274							
A0L0214-07	Water	SM 5310 C	12/04/20 15:30	12/08/20 08:44	40mL/40mL	40mL/40mL	1.00
			Percent Dry We	ight			
Prep: Total Solids (Dr	y Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0120419				•			
A0L0214-02	Sediment	EPA 8000D	12/03/20 14:45	12/11/20 07:26			NA
A0L0214-04	Sediment	EPA 8000D	12/04/20 15:30	12/11/20 07:26			NA
A0L0214-06	Sediment	EPA 8000D	12/04/20 12:00	12/11/20 07:26			NA

Apex Laboratories

Philip Memberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Lake River-Sediment

3140 NE Broadway Street Project Number: 9003.01.49 Report ID:
Portland, OR 97232 Project Manager: Phil Wiescher A0L0214 - 01 05 21 1539

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

A-01 Grind Blank

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 15

ORELAP ID: OR100062

Maul Foster & Alongi, INC. **Lake River-Sediment** Project:

3140 NE Broadway Street Project Number: 9003.01.49 Report ID: Portland, OR 97232 Project Manager: Phil Wiescher A0L0214 - 01 05 21 1539

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " "(blank) designation.

" dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

" wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 11 of 15 Philip Nerenberg, Lab Director

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: 3140 NE Broadway Street Project Number: 9003.01.49

Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539

REPORTING NOTES AND CONVENTIONS (Cont.):

Lake River-Sediment

Blanks (Cont.):

Portland, OR 97232

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 15 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Lake River-Sediment

3140 NE Broadway Street Project Number: 9003.01.49 Report ID:
Portland, OR 97232 Project Manager: Phil Wiescher A0L0214 - 01 05 21 1539

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 15

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project Number: 9003.01.49

Project:

3140 NE Broadway Street Portland, OR 97232

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Lake River-Sediment

Report ID: A0L0214 - 01 05 21 1539

Commany Line 1 From L. Propert Mary D. 1 1. 12 December 1	2	Proje	set Mar	d	1					-						'	'		,	H		1			,	
Address: 109 East 12th Street Vancourer (149 Secto) Prone: 503 407 (166 Email: Public Street Communication of the prone of	t K	, TOO	ر. ن	649	3 3	ن ا	hone	33	3		200	Email	ار تا ت	9 3	¥ 5	15	ig z	1956 Email: PLUI ESCHEREMENT SOSTIONENTS	1 2	8	roject	Project #: 1003.01.44	3	J S	5	
Sampled by: JE RJ , JRM															7		YSIS	ANALYSIS REOLIFS	h							
Site Location: OR (WA) CA AK ID SAMPLE ID	I.AB ID #		37 (12)		XIATAM	# OF CONTAINERS	NWTPH-HCID	NALLH-Cx	8760 BTEX	8700 KBDW AOC	8260 Halo VOCs	8700 AOCs Enli List	8HA9 MI2 0728	si70 Semi-Vols Full List	8087 PCBs	8081 Pest	RCRA Metals (8)	Priority Metals (13)	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Ti, Y, Zn	TOTAL DISS. ICLP	TCLP Metals (8)	BEIGH CRIMOTO				Агећіче
ISH-A-acaciaes	\dashv	<u> </u>	3/c3/H.45		S												-	_			1	×		\vdash	-	1
1514-8-20301204		28	AUX 15:30	3	S	_															^	×				
154-C-20201204		300	3020 13:00	કુ	S		8								-			-			×	×			ļ	
Rinsate Blank		38	50	30	3	3																×				
			+		-	-		+		\perp			-	_			+	+		-+	 -	-				
			-	-	+								-	+	_	-	+		3	-		-		-		
			 	\vdash			\vdash								+	+	+	+		1	+-			+		
Norms	Normal Time (TAT) - 10 Business Dura	and Tir			-			_	_								\dashv									
TAT Decemented (circula)	1 Day	y	2.0	2 Day	31	3 Day	3	Í				10.10	STECIAL INSTRUCTIONS	T C		S										
	4 DAY 5 DAY	Y DE LE	5.0	5 DAY		Other:				- , [
RELINQUISHED BY: Signature: MIXTRACEL	Date: 13/C7/20	±/2c	Sign.	RECEIVED BY:				Date:	12/2	1 3	1 0	RELINQUISHED BY: Signature:	re:	03H	87:		1		Date:	Sign	RECEIV Signature:	RECEIVED BY: Signature:		Date:		10.00
Printed Name: Little Memoster	Time: 10:106	9	ŽĘ 🔏	Printed Name	El, a	1/		Time	20	S		Printed Name	Name						Time:	E	Printed Name	ame:		Time:	نة	
Company:			- Co	ompany:	14	. 6.1	ζ					Сотрапу:	ny:							3	Company:					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Lake River-Sediment

Project Number: 9003.01.49
Project Manager: Phil Wiescher

Report ID: A0L0214 - 01 05 21 1539

APEX LABS COOLER RECEIPT FORM Client: Mart Foster + Mongi, Tue Element WO#: AO LOVIH Project/Project #: Lalle Piver Gedineent # 9083.01,49 **Delivery Info:** Date/time received: 177/10 @ 1006 By: Delivered by: Apex___Client_K_ESS__FedEx__UPS__Swift__Senvoy__SDS__Other_ Date/time inspected: 12/2/20 @ 10:06 By: W/ Cooler Inspection Chain of Custody included? Yes \(\sqrt{No} \) Custody seals? Yes_____ Yes X No ___ Signed/dated by client? Yes X No ___ Signed/dated by Apex? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition: Cooler out of temp? (YN) ossible reason why:___ If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No/NA Out of temperature samples form initiated? Yes/No/NA Samples Inspection: Date/time inspected: 1777 @_ 25 1410 By: ACK acc 127/20 All samples intact? Yes \checkmark No ___ Comments:_ Bottle labels/COCs agree? Yes No K Comments: No DIT on Tays. IDS on Conts. reads ISMA, ISMB, ISM C, Rinsqte. COC/container discrepancies form initiated? Yes ___ No × Containers/volumes received appropriate for analysis? Yes / No _ Comments: ___ Do VOA vials have visible headspace? Yes ___ No __ NA × Comments Water samples: pH checked: Yes No NA pH appropriate? Yes No NA Comments: _ Additional information: Labeled by: Cooler Inspected by: See Project Contact Form: Y AUC

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

an affiliate of The GEL Group INC

www.capefearanalytical.com

December 31, 2020

Mr. Philip Nerenberg Apex Laboratories 6700 SW Sandburg Street Portland, Oregon 97223

Re: DXN & PCB Subcontract

Work Order: 17497 SDG: A0L0214

Dear Mr. Nerenberg:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on December 14, 2020. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Cyride Larkins

Cynde Larkins Project Manager

Enclosures

Apex Laboratories A0L0214

OB 1211010

CFA NO#17497

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager:

Philip Nerenberg

RECEIVING LABORATORY:

Cape Fear Analytical, LLC 3306 Kitty Hawk Rd Suite 120

Wilmington, NC 28405 Phone: (910) 795-0421

Fax: -

Sample Name: ISM-A-20201203Afte	r Processing	Sedimen Sampleo	i: 12/03/20 14:45 (A0L0214-02
Analysis	Due	Expires	Comments
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	01/11/20 17:00	06/01/21 14:45	Cape Fear, subcontract unground volume
Sample Name: ISM-B-20201204After	r Processing	Sedimen Sampleo	i: 12/04/20 15:30 (A0L0214-04
Analysis	Due	Expires	Comments
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	01/11/20 17:00	06/02/21 15:30	Cape Fear, subcontract unground volume
Sample Name: ISM-C-20201204Afte	r Processing	Sedimen Sample	d: 12/04/20 12:00 (A0L0214-06
Analysis	Due	Expires	Comments
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	01/11/20 17:00	06/02/21 12:00	Cape Fear, subcontract unground volume
(B)4 UZ Glass Jai			ID on Conts. read Rinsate.
Sample Name: Rinsate Blank		Water Sample	d: 12/04/20 15:30 (A0L0214-07
Analysis	Due	Expires	Comments
1613B Dioxins and Furans (SUB) Containers Supplied: (B)1 L Amber Glass - Non Preserved (C)1 L Amber Glass - Non Preserved	01/11/20 17:00	06/02/21 15:30	Cape Fear

Standard TAT

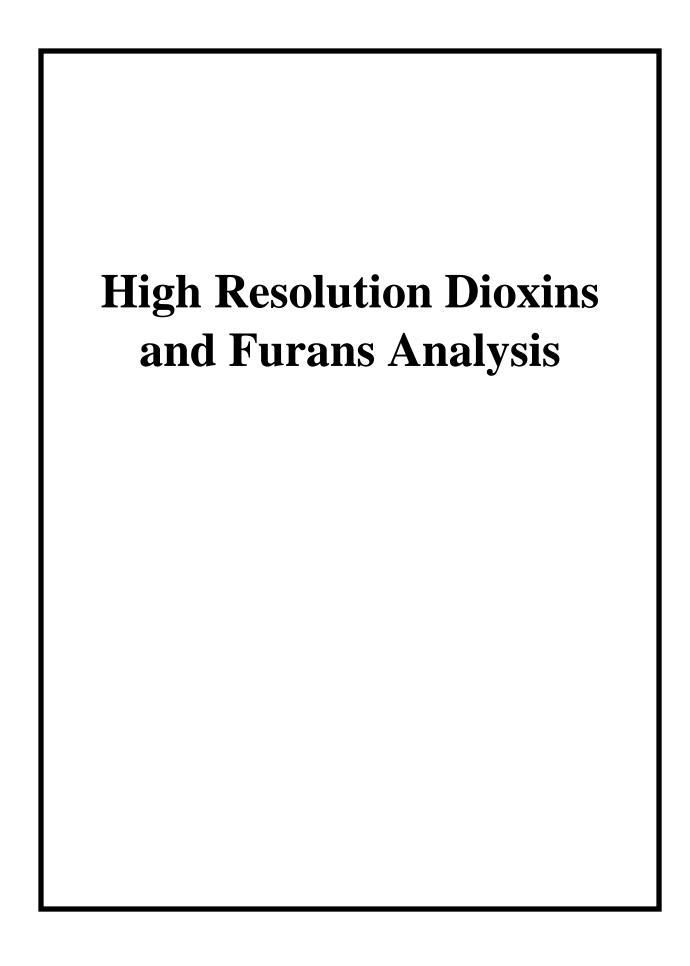
L ploke

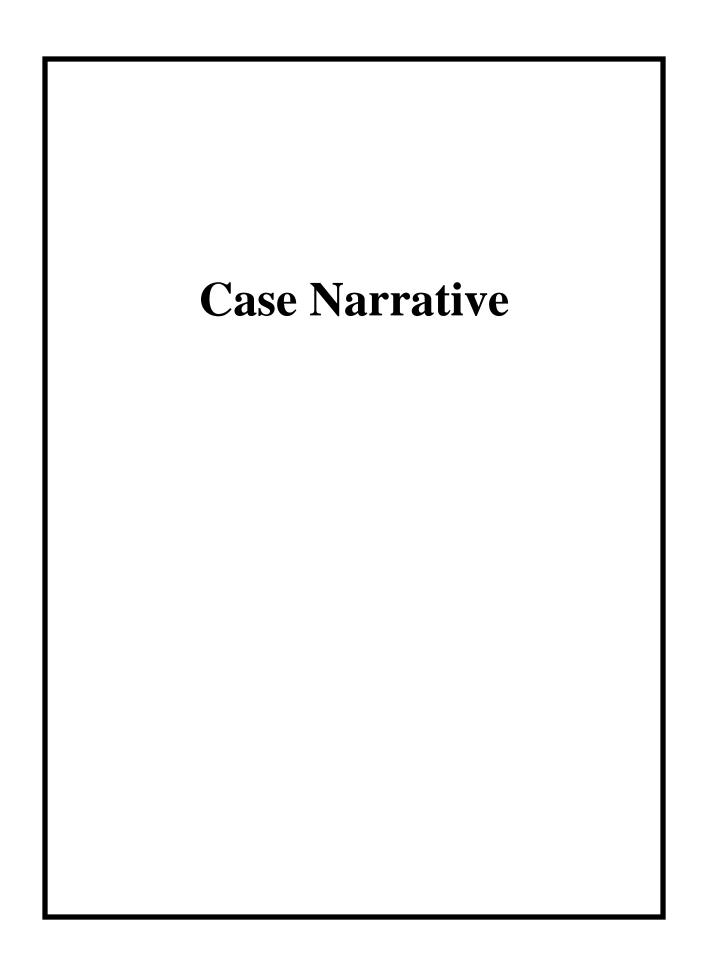
Released B Fed Ex (Shipper)

Released By

Date

Cynde Larkins
Received By


14De C20 @


Fed Ex (Shipper)

Page 1 of 1

SAMPLE RECEIPT CHECKLIST

 Clie	nt: ADE X				Work Order: 17497
Shir	pping Company: Tedtx			····	Date/Time Received: 14 Dec 20 1032
			NA	No	1
	pected Hazard Information pped as DOT Hazardous?	Yes	NA	No	DOE Site Sample Packages Yes NA No Screened <0.5 mR/hr?
	pples identified as Foreign Soil?				Samples < 2x background?
A :	Cample Descipt Consilies	Yes	NA	No	* Notify RSO of any responses in this column immediately.
	Sample Receipt Specifics sample in shipment?	162	IVA	INO U	Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	~			Circle Applicable: seals broken damaged container leaking container other(describe)
2	Custody seal/s present on cooler?			~	Şéal intact? Yes No
3	Chain of Custody documents included with shipment?	<i>\</i>			
4	Samples requiring cold preservation within 0-6°C?	~			Preservation Method: Temperature Blank present: (Yes) No lice bags bose ice blue ice dry ice none other (describe) 3.1° - 0.1 = 3.0°
5	Aqueous samples found to have visible solids?			/	Sample IDs, containers affected:
5	Samples requiring chemical preservation at proper pH?		V		Sample IDs, containers affected and pH observed: PH = T on Koth If preservative added, Lot#:
7	Samples requiring preservation have no residual chlorine?	/			Sample IDs, containers affected: If preservative added, Lot#:
8	Samples received within holding time?	~			Sample IDs, tests affected:
9	Sample IDs on COC match IDs on containers?	~			Sample IDs, containers affected:
10	Date & time of COC match date & time on containers?	·/			Sample IDs, containers affected:
11	Number of containers received match number indicated on COC?	V			List type and number of containers / Sample IDs, containers affected: 3-40z. clear glass sail jars and 2-1L NMAG bettles
12	COC form is properly signed in relinquished/received sections?	1			
Со	mments:				
	A control and characteristics and characteristics are control and characteristics.		r o degrado e deben de del recipio de c		
	A. D = 111xxxx	$\hat{\ }$			
be	3 of 38 (Work Order J. 1995)	only if	it inclu	ıdes C	Cape Fear Analytical Data Page 18 of 53 01/05/2021

HDOX Case Narrative Apex Laboratories (APEX) SDG A0L0214 Work Order 17497

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3520C, SW846 3540C

Analytical Batch Number: 45635, 45603 Clean Up Batch Number: 45632, 45601 Extraction Batch Number: 45631, 45600

Sample Analysis

Samples were received at 3.0°C. (17497001,17497002,17497003,17497004). The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
12028193	Method Blank (MB)
12028194	Laboratory Control Sample (LCS)
12028195	Laboratory Control Sample Duplicate (LCSD)
12028226	Method Blank (MB)
12028227	Laboratory Control Sample (LCS)
12028228	Laboratory Control Sample Duplicate (LCSD)
17497001	ISM-A-20201203After Processing
17497002	ISM-B-20201204After Processing
17497003	ISM-C-20201204After Processing
17497004	Rinsate Blank

Samples 17497 001, 002 and 003 in this SDG were analyzed on a "dry weight" basis. Sample 17497 004 in this SDG was analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 18.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A sample of similar matrix, not associated with this SDG, was selected for analysis as the matrix spike and matrix spike duplicate. Batch 45603.

Technical Information

Receipt Temperature

Samples were received within temperature requirements.

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

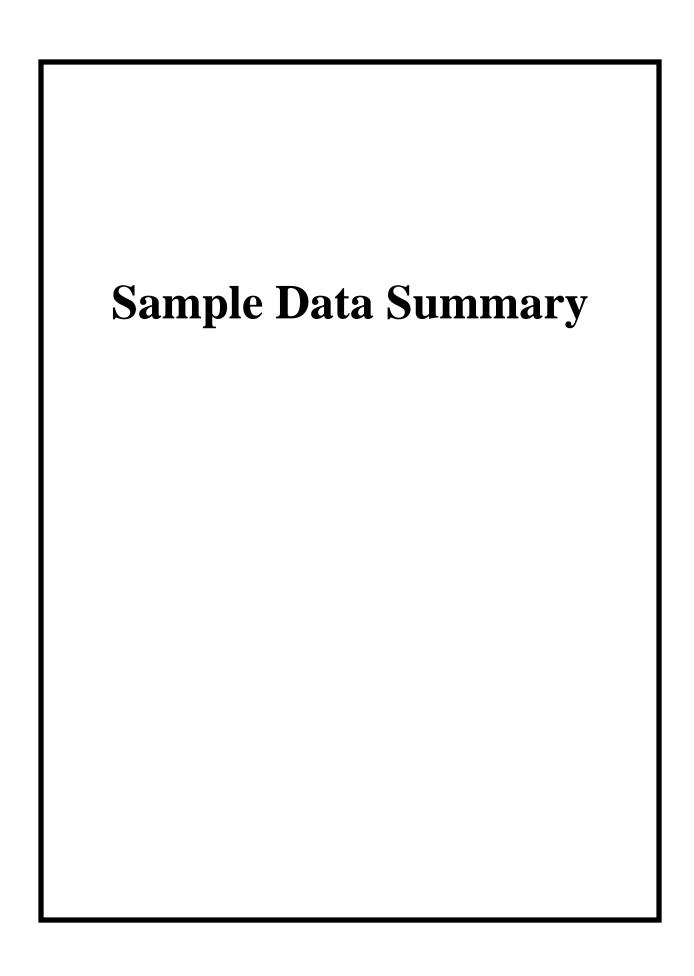
A NCR was not required for this SDG.

Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

Sample Preparation

No difficulties were encountered during sample preparation.


System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
HRP750_2	Primary Dioxin Analysis	Dioxin Analysis	DB-5MS	60m x 0.25mm, 0.25um

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Qualifier Definition Report

APEX001 Apex Laboratories

Client SDG: A0L0214 CFA Work Order: 17497

The Qualifiers in this report are defined as follows:

- A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- J Value is estimated
- K Estimated Maximum Possible Concentration
- Analyte was analyzed for, but not detected above the specified detection limit. U
- DL Indicates that sample is diluted.
- Indicates that sample is re-analyzed without re-extraction. RA
- RE Indicates that sample is re-extracted.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Suhree Name: Erin Suhrie

Date: 31 DEC 2020 Title: Data Validator

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDF

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

Report Date: December 31, 2020

Page 1

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

APEX001 **SDG Number:** A0L0214 Client: Project: APEX00320 12/03/2020 14:45 17497001 **Date Collected:** Lab Sample ID: Matrix: SOIL 1613B Soil 12/14/2020 10:32 %Moisture: Date Received: **Client Sample: Client ID:** ISM-A-20201203--After Processing **Prep Basis: Dry Weight Batch ID:** 45603 Method: EPA Method 1613B Run Date: 12/16/2020 20:12 Analyst: MLL **Instrument: HRP750** Data File: A16DEC20A_2-7 Dilution: 1 SW846 3540C Prep Batch: 45600 Prep Method: **Prep Aliquot:** 11.12 g **Prep Date:** 15-DEC-20 CAS No. **Parmname** Qual Result Units **EDL PQL** 1746-01-6 2,3,7,8-TCDD U 0.102 0.102 0.912 pg/g 40321-76-4 1,2,3,7,8-PeCDD BJ 0.275 pg/g 0.141 4.56 39227-28-6 1,2,3,4,7,8-HxCDD BJ 0.385 0.188 4.56 pg/g 57653-85-7 1,2,3,6,7,8-HxCDD J 1.87 0.181 4.56 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD BJ0.762 pg/g 0.1884.56 35822-46-9 1,2,3,4,6,7,8-HpCDD 44 3 0.485 4.56 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 370 0.735 9.12 pg/g 51207-31-9 2,3,7,8-TCDF JK 0.232 0.164 0.912 pg/g 57117-41-6 1,2,3,7,8-PeCDF 0.281 pg/g 0.126 4.56 57117-31-4 2,3,4,7,8-PeCDF BJK 0.381 0.125 4.56 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF BJ 0.0930 0.685 4.56 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF BJK 0.368 0.0975 4.56 pg/g 60851-34-5 2.3.4.6.7.8-HxCDF BJ 0.540 0.104 4.56 pg/g 1,2,3,7,8,9-HxCDF BJ 72918-21-9 0.392 0.141 4.56 pg/g 67562-39-4 1,2,3,4,6,7,8-HpCDF 7.65 pg/g 0.1664.56 55673-89-7 1,2,3,4,7,8,9-HpCDF BJ 0.627 0.277 4.56 pg/g 1,2,3,4,6,7,8,9-OCDF 39001-02-0 16.2 pg/g 0.339 9.12 U 41903-57-5 Total TeCDD 0.102 0.102 0.912 pg/g 36088-22-9 Total PeCDD BJ 0.733 0.141 4.56 pg/g 34465-46-8 Total HxCDD J 10.1 0.181 4.56 pg/g Total HpCDD 37871-00-4 87.5 pg/g 0.485 4.56 30402-14-3 Total TeCDF 1.09 0.912 BIK pg/g 0.164 30402-15-4 Total PeCDF BJK 3.67 0.0478 4.56 pg/g 55684-94-1 Total HxCDF BJK 12.1 0.0930 4.56 pg/g 38998-75-3 Total HpCDF J 25.3 pg/g 0.166 4.56 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 1.56 pg/g 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 1.61 pg/g Surrogate/Tracer recovery Qual Result Nominal Units Recovery% **Acceptable Limits** 13C-2,3,7,8-TCDD 157 182 pg/g 85.9 (25%-164%) 13C-1,2,3,7,8-PeCDD 158 182 86.5 (25%-181%) pg/g 13C-1,2,3,4,7,8-HxCDD 146 182 pg/g 80.0 (32%-141%) 13C-1,2,3,6,7,8-HxCDD 140 182 76.9 (28%-130%) pg/g 13C-1,2,3,4,6,7,8-HpCDD 144 182 79.0 (23%-140%) pg/g 13C-OCDD 199 (17%-157%) 365 54.6 pg/g

182

182

182

182

182

182

182

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

146

163

157

146

137

137

139

(24%-169%)

(24%-185%)

(21%-178%)

(26%-152%)

(26%-123%)

(28%-136%)

(29%-147%)

79.9

89.7

86.4

80.1

75.2

75.1

76.3

Cape Fear Analytical LLC Report Date: December 31, 2020

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

Client: APEX001 **Project:** APEX00320 12/03/2020 14:45 **Date Collected:** Matrix: SOIL %Moisture: 1.3 **Date Received:** 12/14/2020 10:32

Page 2

of 2

Client Sample: Prep Basis: Dry Weight **Client ID:** ISM-A-20201203--After Processing

Batch ID: 45603 Method: EPA Method 1613B

Instrument: HRP750 Run Date: 12/16/2020 20:12 **Analyst:** MLL Data File: A16DEC20A_2-7 Dilution: 1 SW846 3540C **Prep Method:**

Prep Aliquot: 11.12 g **Prep Date:** 15-DEC-20 CAS No. Units **EDL PQL Parmname** Qual Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		137	182	pg/g	75.3	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		122	182	pg/g	66.7	(26%-138%)
37Cl-2,3,7,8-TCDD		15.5	18.2	pg/g	84.8	(35%-197%)

Comments:

SDG Number:

Prep Batch:

Lab Sample ID:

- The target analyte was detected in the associated blank. В
- J Value is estimated
- **Estimated Maximum Possible Concentration** K

A0L0214

17497001

1613B Soil

45600

Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

APEX001 **SDG Number:** A0L0214 Client: Project: APEX00320 12/04/2020 15:30 17497002 **Date Collected:** Lab Sample ID: Matrix: SOIL .9 1613B Soil 12/14/2020 10:32 %Moisture: Date Received: **Client Sample: Client ID:** ISM-B-20201204--After Processing **Prep Basis: Dry Weight Batch ID:** 45603 Method: EPA Method 1613B Run Date: 12/16/2020 21:00 Analyst: MLL **Instrument: HRP750** Data File: A16DEC20A_2-8 Dilution: 1 SW846 3540C Prep Batch: 45600 Prep Method: **Prep Aliquot:** 11.16 g **Prep Date:** 15-DEC-20 CAS No. **Parmname** Qual Result Units **EDL PQL** 1746-01-6 2,3,7,8-TCDD U 0.0950 0.0950 0.904 pg/g U 40321-76-4 1,2,3,7,8-PeCDD 0.145 pg/g 0.145 4.52 39227-28-6 1,2,3,4,7,8-HxCDD BJ 0.369 0.140 4.52 pg/g 57653-85-7 1,2,3,6,7,8-HxCDD 2.57 0.148 4.52 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD BJ0.868 pg/g 0.146 4.52 35822-46-9 1,2,3,4,6,7,8-HpCDD 60.2 0.559 4 52 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 467 0.933 9.04 pg/g 51207-31-9 2,3,7,8-TCDF JK 0.298 0.177 0.904 pg/g 57117-41-6 1,2,3,7,8-PeCDF 0.320 pg/g 0.124 4.52 57117-31-4 2,3,4,7,8-PeCDF BJK 0.497 0.117 4.52 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF BJ1.03 0.136 4.52 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF BJ 0.532 0.145 4.52 pg/g BJK 60851-34-5 2.3.4.6.7.8-HxCDF 0.572 0.148 4.52 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF BJ 0.206 0.550 4.52 pg/g 67562-39-4 1,2,3,4,6,7,8-HpCDF 10.4 pg/g 0.156 4.52 55673-89-7 1,2,3,4,7,8,9-HpCDF BJ 0.646 0.262 4.52 pg/g 1,2,3,4,6,7,8,9-OCDF 39001-02-0 18.3 pg/g 0.373 9.04 U 41903-57-5 Total TeCDD 0.0950 0.0950 0.904 pg/g 36088-22-9 Total PeCDD BJ 0.874 0.145 4.52 pg/g 34465-46-8 Total HxCDD JK 11.1 0.140 4.52 pg/g Total HpCDD 37871-00-4 107 pg/g 0.559 4.52 30402-14-3 Total TeCDF 0.738 0.904 BIK pg/g 0.177 30402-15-4 Total PeCDF BJK 4.29 0.0485 4.52 pg/g 55684-94-1 Total HxCDF JK 18.7 0.136 4.52 pg/g 38998-75-3 Total HpCDF J 35.5 pg/g 0.156 4.52 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 1.70 pg/g 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 1.82 pg/g Surrogate/Tracer recovery Qual Result Nominal Units Recovery% **Acceptable Limits** 13C-2,3,7,8-TCDD 160 181 pg/g 88.4 (25%-164%) 13C-1,2,3,7,8-PeCDD 177 181 97.6 (25%-181%) pg/g 13C-1,2,3,4,7,8-HxCDD 141 181 pg/g 78.1 (32%-141%) 13C-1,2,3,6,7,8-HxCDD 140 181 pg/g 77.4 (28%-130%) 13C-1,2,3,4,6,7,8-HpCDD 140 181 77 4 (23%-140%) pg/g 13C-OCDD 195 362 (17%-157%) 53.8 pg/g 13C-2,3,7,8-TCDF 143 181 (24%-169%) 78.8 pg/g 13C-1,2,3,7,8-PeCDF 180 181 99.5 (24%-185%) pg/g 13C-2,3,4,7,8-PeCDF 174 181 96.0 (21%-178%) pg/g

144

133

134

134

181

181

181

181

pg/g

pg/g

pg/g

pg/g

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

(26%-152%)

(26%-123%)

(28%-136%)

(29%-147%)

79.5

73.7

74.3

74.1

Cape Fear Analytical LLC Report Date: December 31, 2020

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

APEX00320 Client: APEX001 **Project:** 12/04/2020 15:30 **Date Collected:** Matrix: SOIL %Moisture: .9 **Date Received:** 12/14/2020 10:32

Page 2

of 2

ISM-B-20201204--After Processing Dry Weight **Client ID: Prep Basis:**

Batch ID: 45603 Method: EPA Method 1613B

HRP750 Run Date: 12/16/2020 21:00 **Analyst:** MLL **Instrument:** Data File: A16DEC20A_2-8 Dilution: 1 SW846 3540C

Prep Method: Prep Aliquot: 11.16 g **Prep Date:** 15-DEC-20 CAS No. Units **EDL PQL Parmname** Qual Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		135	181	pg/g	74.6	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		119	181	pg/g	65.9	(26%-138%)
37Cl-2,3,7,8-TCDD		16.6	18.1	pg/g	91.6	(35%-197%)

Comments:

SDG Number:

Lab Sample ID:

Client Sample:

Prep Batch:

The target analyte was detected in the associated blank. В

J Value is estimated

Estimated Maximum Possible Concentration K

A0L0214

17497002

1613B Soil

45600

 \mathbf{U} Analyte was analyzed for, but not detected above the specified detection limit.

13C-1,2,3,7,8-PeCDF

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

Report Date: December 31, 2020

Page 1

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A0L0214 Client: APEX001 Project: APEX00320 12/04/2020 12:00 17497003 **Date Collected:** SOIL Lab Sample ID: Matrix: 1613B Soil 12/14/2020 10:32 %Moisture: Date Received: **Client Sample: Client ID:** ISM-C-20201204--After Processing **Prep Basis: Dry Weight Batch ID:** 45603 Method: EPA Method 1613B Run Date: 12/16/2020 21:49 Analyst: MLL **Instrument: HRP750** Data File: A16DEC20A_2-9 Dilution: 1 SW846 3540C Prep Batch: 45600 Prep Method: 11.39 g **Prep Aliquot: Prep Date:** 15-DEC-20 CAS No. **Parmname** Qual Result Units **EDL PQL** 1746-01-6 2,3,7,8-TCDD U 0.0833 0.0833 0.887 pg/g BJK 40321-76-4 1,2,3,7,8-PeCDD 0.287 pg/g 0.131 4.43 39227-28-6 1,2,3,4,7,8-HxCDD BJ 0.459 0.190 4.43 pg/g 57653-85-7 1,2,3,6,7,8-HxCDD J 2.48 0.190 4.43 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD BJ1.01 pg/g 0.193 4.43 35822-46-9 1,2,3,4,6,7,8-HpCDD 61.6 0.465 4 43 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 484 1.07 8.87 pg/g 51207-31-9 2,3,7,8-TCDF JK 0.285 0.159 0.887 pg/g 57117-41-6 1,2,3,7,8-PeCDF 0.303 pg/g 0.0881 4.43 57117-31-4 2,3,4,7,8-PeCDF BJ 0.491 0.0885 4.43 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF BJ 0.0936 4.43 1.11 pg/g 57117-44-9 1,2,3,6,7,8-HxCDF ΒI 0.521 0.0995 4.43 pg/g 4.43 60851-34-5 2.3.4.6.7.8-HxCDF BJ 0.661 0.108 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF BJ 0.509 0.148 4.43 pg/g 67562-39-4 1,2,3,4,6,7,8-HpCDF 10.4 pg/g 0.171 4.43 55673-89-7 1,2,3,4,7,8,9-HpCDF BJ 0.686 0.284 4.43 pg/g 1,2,3,4,6,7,8,9-OCDF 0.403 39001-02-0 15.8 pg/g 8.87 41903-57-5 Total TeCDD J 0.103 0.0833 0.887 pg/g 36088-22-9 Total PeCDD JK 2.07 0.131 4.43 pg/g 34465-46-8 Total HxCDD JK 14.6 0.190 4.43 pg/g Total HpCDD 37871-00-4 117 pg/g 0.465 4.43 30402-14-3 Total TeCDF BIK 1.00 0.887 pg/g 0.159 30402-15-4 Total PeCDF JK 5.27 0.0509 4.43 pg/g 55684-94-1 Total HxCDF 18.2 0.0936 4.43 pg/g 38998-75-3 Total HpCDF J 32.5 pg/g 0.171 4.43 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 2.02 pg/g 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 2.06 pg/g Surrogate/Tracer recovery Qual Result Nominal Units Recovery% **Acceptable Limits** 13C-2,3,7,8-TCDD 152 177 pg/g 85.8 (25%-164%) 13C-1,2,3,7,8-PeCDD 152 177 85.9 (25%-181%) pg/g 13C-1,2,3,4,7,8-HxCDD 143 177 pg/g 80.5 (32%-141%) 13C-1,2,3,6,7,8-HxCDD 141 177 pg/g 79.8 (28%-130%) 13C-1,2,3,4,6,7,8-HpCDD 140 177 78.9 (23%-140%) pg/g 13C-OCDD 193 54.4 (17%-157%) 355 pg/g 13C-2,3,7,8-TCDF 143 80.6 (24%-169%) 177 pg/g

162

152

148

139

138

136

177

177

177

177

177

177

pg/g

pg/g

pg/g

pg/g

pg/g

pg/g

(24%-185%)

(21%-178%)

(26%-152%)

(26%-123%)

(28%-136%)

(29%-147%)

91.1

85.7

83.2

78.3

77.8

76.6

Cape Fear Analytical LLC

Report Date: December 31, 2020

of 2

Page 2

Dry Weight

Prep Basis:

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

APEX001 APEX00320 SDG Number: A0L0214 Client: **Project:** 12/04/2020 12:00 17497003 Lab Sample ID: **Date Collected:** Matrix: SOIL %Moisture: 1613B Soil **Date Received:** 12/14/2020 10:32 **Client Sample:**

ISM-C-20201204--After Processing **Client ID:**

A16DEC20A_2-9

Batch ID: 45603 Method: EPA Method 1613B **HRP750** Run Date: 12/16/2020 21:49 **Analyst:** MLL **Instrument:** Dilution: 1

SW846 3540C **Prep Method:** Prep Batch: 45600 11.39 g **Prep Aliquot: Prep Date:** 15-DEC-20

CAS No. Units **EDL PQL Parmname** Qual Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		137	177	pg/g	77.4	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		122	177	pg/g	68.6	(26%-138%)
37Cl-2,3,7,8-TCDD		14.6	17.7	pg/g	82.3	(35%-197%)

Comments:

Data File:

- The target analyte was detected in the associated blank. В
- J Value is estimated
- **Estimated Maximum Possible Concentration** K
- Analyte was analyzed for, but not detected above the specified detection limit.

3333-30-3

TEQ WHO2005 ND=0.5 with EMPCs

Report Date: December 31, 2020

of 2

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

APEX00320 **SDG Number:** A0L0214 Client: APEX001 Project: 12/04/2020 15:30 17497004 Lab Sample ID: **Date Collected:** WATER Matrix: 1613B Water 12/14/2020 10:32 Date Received: **Client Sample: Client ID:** Rinsate Blank **Prep Basis:** As Received **Batch ID:** 45635 Method: EPA Method 1613B **HRP750** Run Date: 12/29/2020 00:48 Analyst: CLP **Instrument:** Data File: A28DEC20D-12 Dilution: 1 SW846 3520C Prep Batch: 45631 **Prep Method: Prep Aliquot:** 1044.8 mL **Prep Date:** 17-DEC-20 **EDL** CAS No. **Parmname** Qual Result Units **PQL** 1746-01-6 2,3,7,8-TCDD U 1.32 pg/L 1.32 9.57 U 40321-76-4 1,2,3,7,8-PeCDD 1.11 pg/L 1.11 47.9 39227-28-6 1,2,3,4,7,8-HxCDD U 1.41 pg/L 1.41 47.9 1,2,3,6,7,8-HxCDD U 57653-85-7 1.29 pg/L 1.29 47.9 19408-74-3 1,2,3,7,8,9-HxCDD U 1.36 pg/L 1.36 47.9 U 35822-46-9 1,2,3,4,6,7,8-HpCDD 2.18 pg/L 2.18 47.9 U 3268-87-9 1,2,3,4,6,7,8,9-OCDD 2.93 pg/L 2.93 95.7 51207-31-9 2,3,7,8-TCDF U 1.28 pg/L 1.28 9.57 U 57117-41-6 1,2,3,7,8-PeCDF 0.599 pg/L 0.599 47.9 57117-31-4 2,3,4,7,8-PeCDF U 0.599 pg/L 0.599 47.9 70648-26-9 1,2,3,4,7,8-HxCDF U 0.674 0.674 47.9 pg/L U 57117-44-9 1,2,3,6,7,8-HxCDF 0.693 pg/L 0.693 47.9 60851-34-5 2,3,4,6,7,8-HxCDF U 0.741 0.741 47.9 pg/L 72918-21-9 1,2,3,7,8,9-HxCDF U 1.00 1.00 47.9 pg/L U 67562-39-4 1,2,3,4,6,7,8-HpCDF 0.724pg/L 0.724 47.9 pg/L 55673-89-7 1,2,3,4,7,8,9-HpCDF U 1.34 1.34 47.9 39001-02-0 1,2,3,4,6,7,8,9-OCDF U 2.83 pg/L 2.83 95.7 U 41903-57-5 Total TeCDD 1.32 pg/L 1.32 9.57 U 36088-22-9 Total PeCDD 1.11 pg/L 1.11 47.9 Total HxCDD U 34465-46-8 1.29 pg/L 1.29 47.9 U 37871-00-4 Total HpCDD 2.18 pg/L 2.18 47.9 30402-14-3 Total TeCDF IJ 1.28 1.28 pg/L 9.57 30402-15-4 Total PeCDF U 0.599 0.599 47.9 pg/L 55684-94-1 Total HxCDF U 0.674 pg/L 0.674 47.9 U 47.9 38998-75-3 Total HpCDF 0.724pg/L 0.724 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 0.000 pg/L

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		1480	1910	pg/L	77.2	(25%-164%)
13C-1,2,3,7,8-PeCDD		1470	1910	pg/L	76.9	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		1240	1910	pg/L	65.0	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		1300	1910	pg/L	67.7	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		1230	1910	pg/L	64.2	(23%-140%)
13C-OCDD		2330	3830	pg/L	60.8	(17%-157%)
13C-2,3,7,8-TCDF		1470	1910	pg/L	76.9	(24%-169%)
3C-1,2,3,7,8-PeCDF		1470	1910	pg/L	76.5	(24%-185%)
13C-2,3,4,7,8-PeCDF		1450	1910	pg/L	75.9	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		1230	1910	pg/L	64.0	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		1240	1910	pg/L	64.7	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		1240	1910	pg/L	64.9	(28%-136%)
3C-1,2,3,7,8,9-HxCDF		1240	1910	pg/L	65.0	(29%-147%)

1.76

pg/L

Cape Fear Analytical LLC

Hi-Res Dioxins/Furans Certificate of Analysis

Sample Summary

CLP

A0L0214 SDG Number: 17497004 Lab Sample ID: 1613B Water **Client Sample:**

Rinsate Blank

12/29/2020 00:48

45635

Client: **Date Collected:** Date Received:

Method:

Analyst:

APEX001 12/04/2020 15:30 12/14/2020 10:32

EPA Method 1613B

Project: Matrix: APEX00320

Page 2

Report Date: December 31, 2020

of 2

WATER

Prep Basis:

As Received

Instrument:

HRP750 1

Dilution:

Data File: A28DEC20D-12 45631 Prep Batch: **Prep Date:** 17-DEC-20

Client ID:

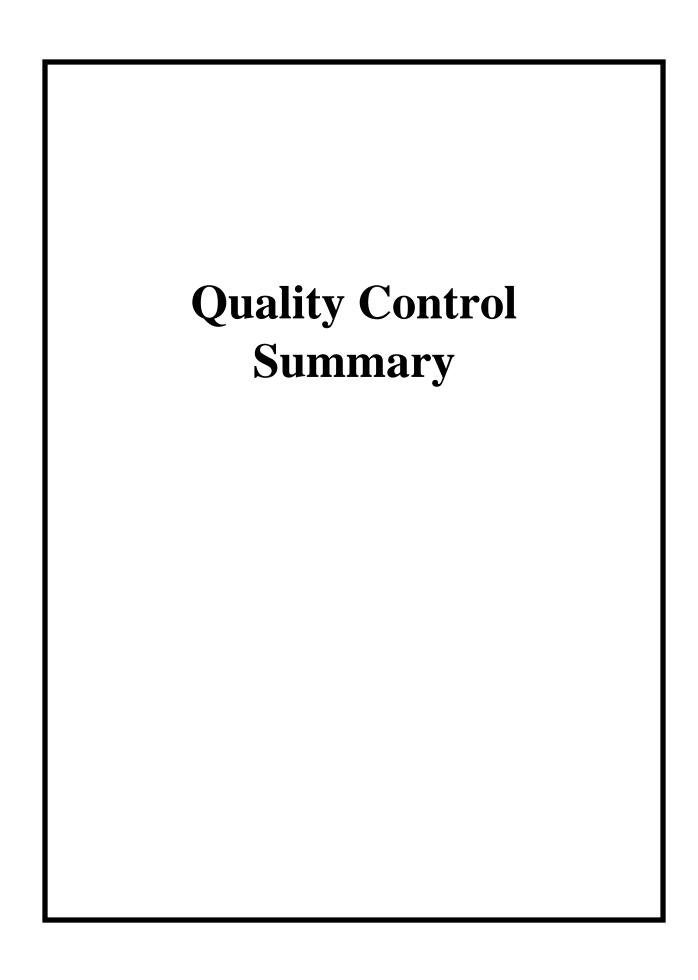
Batch ID:

Run Date:

Prep Method: Prep Aliquot: SW846 3520C

1044.8 mL

CAS No.


Parmname Qual

Units **EDL PQL** Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		1170	1910	pg/L	61.0	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		1140	1910	pg/L	59.4	(26%-138%)
37CI-2,3,7,8-TCDD		152	191	pg/L	79.3	(35%-197%)

Comments:

Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 31, 2020

of 5

Page 1

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0L0214 Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2028227	LCS for batch 45631	13C-2,3,7,8-TCDD		74.9	(20%-175%)
		13C-1,2,3,7,8-PeCDD		71.9	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		62.3	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		65.5	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		64.0	(22%-166%)
		13C-OCDD		65.7	(13%-199%)
		13C-2,3,7,8-TCDF		71.3	(22%-152%)
		13C-1,2,3,7,8-PeCDF		69.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF		68.4	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		61.5	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		60.8	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		61.9	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		63.3	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		58.4	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		58.8	(20%-186%)
		37C1-2,3,7,8-TCDD		78.8	(31%-191%)
2028228	LCSD for batch 45631	13C-2,3,7,8-TCDD		87.1	(20%-175%)
		13C-1,2,3,7,8-PeCDD		86.1	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		74.4	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		77.4	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		73.3	(22%-166%)
		13C-OCDD		76.9	(13%-199%)
		13C-2,3,7,8-TCDF		85.4	(22%-152%)
		13C-1,2,3,7,8-PeCDF		84.9	(21%-192%)
		13C-2,3,4,7,8-PeCDF		84.2	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		73.3	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		72.9	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		72.7	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		72.0	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		66.4	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		69.1	(20%-186%)
		37C1-2,3,7,8-TCDD		83.2	(31%-191%)
028226	MB for batch 45631	13C-2,3,7,8-TCDD		77.9	(25%-164%)
		13C-1,2,3,7,8-PeCDD		74.8	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		65.8	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		69.4	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		67.3	(23%-140%)
		13C-OCDD		61.0	(17%-157%)
		13C-2,3,7,8-TCDF		79.6	(24%-169%)
		13C-1,2,3,7,8-PeCDF		74.8	(24%-185%)
		13C-2,3,4,7,8-PeCDF		75.1	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		63.7	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		64.8	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		65.3	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		67.1	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		63.3	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		60.1	(26%-138%)
		37C1-2,3,7,8-TCDD		82.0	(35%-197%)
497004	Rinsate Blank	13C-2,3,7,8-TCDD		77.2	(25%-164%)

Report Date: December 31, 2020

of 5

Page 2

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0L0214 Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
7497004	Rinsate Blank	13C-1,2,3,7,8-PeCDD		76.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		65.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		67.7	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		64.2	(23%-140%)
		13C-OCDD		60.8	(17%-157%)
		13C-2,3,7,8-TCDF		76.9	(24%-169%)
		13C-1,2,3,7,8-PeCDF		76.5	(24%-185%)
		13C-2,3,4,7,8-PeCDF		75.9	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		64.0	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		64.7	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		64.9	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		65.0	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		61.0	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		59.4	(26%-138%)
		37Cl-2,3,7,8-TCDD		79.3	(35%-197%)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

Report Date: December 31, 2020

of 5

Page 3

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0L0214 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
12028194	LCS for batch 45600	13C-2,3,7,8-TCDD		91.3	(20%-175%)
		13C-1,2,3,7,8-PeCDD		92.0	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		82.4	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		87.5	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		62.8	(22%-166%)
		13C-OCDD		37.6	(13%-199%)
		13C-2,3,7,8-TCDF		85.6	(22%-152%)
		13C-1,2,3,7,8-PeCDF		94.0	(21%-192%)
		13C-2,3,4,7,8-PeCDF		92.0	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		83.4	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		83.0	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		80.7	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		78.9	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		71.9	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		52.5	(20%-186%)
		37C1-2,3,7,8-TCDD		88.6	(31%-191%)
12028195	LCSD for batch 45600	13C-2,3,7,8-TCDD		88.1	(20%-175%)
		13C-1,2,3,7,8-PeCDD		79.4	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		80.6	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		83.8	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		75.3	(22%-166%)
		13C-OCDD		46.4	(13%-199%)
		13C-2,3,7,8-TCDF		85.6	(22%-152%)
		13C-1,2,3,7,8-PeCDF		86.8	(21%-192%)
		13C-2,3,4,7,8-PeCDF		81.0	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		81.4	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		80.8	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		80.3	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		79.0	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		77.2	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		61.6	(20%-186%)
		37C1-2,3,7,8-TCDD		85.8	(31%-191%)
2028193	MB for batch 45600	13C-2,3,7,8-TCDD		95.4	(25%-164%)
		13C-1,2,3,7,8-PeCDD		89.4	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		88.2	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		88.7	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		78.3	(23%-140%)
		13C-OCDD		43.0	(17%-157%)
		13C-2,3,7,8-TCDF		84.6	(24%-169%)
		13C-1,2,3,7,8-PeCDF		95.9	(24%-185%)
		13C-2,3,4,7,8-PeCDF		90.6	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		91.5	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		89.3	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		85.3	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		81.8	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		79.7	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		63.5	(26%-138%)
		37Cl-2,3,7,8-TCDD		88.7	(35%-197%)
17497001	ISM-A-20201203After Processing	13C-2,3,7,8-TCDD		85.9	(25%-164%)

of 5

Page 4

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A0L0214 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
7497001	ISM-A-20201203After Processing	13C-1,2,3,7,8-PeCDD		86.5	(25%-181%)
	_	13C-1,2,3,4,7,8-HxCDD		80.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		76.9	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		79.0	(23%-140%)
		13C-OCDD		54.6	(17%-157%)
		13C-2,3,7,8-TCDF		79.9	(24%-169%)
		13C-1,2,3,7,8-PeCDF		89.7	(24%-185%)
		13C-2,3,4,7,8-PeCDF		86.4	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		80.1	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		75.2	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		75.1	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		76.3	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		75.3	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		66.7	(26%-138%)
		37Cl-2,3,7,8-TCDD		84.8	(35%-197%)
497002	ISM-B-20201204After Processing	13C-2,3,7,8-TCDD		88.4	(25%-164%)
.,,,,,,	ibii b 20201201 Tittel Hotelsomg	13C-1,2,3,7,8-PeCDD		97.6	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		78.1	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		77.4	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		77.4	(23%-140%)
		13C-OCDD		53.8	(17%-157%)
		13C-2,3,7,8-TCDF		78.8	(24%-169%)
		13C-1,2,3,7,8-PeCDF		99.5	(24%-185%)
		13C-2,3,4,7,8-PeCDF		96.0	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		79.5	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		73.7	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		74.3	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		74.1	(29%-147%)
		13C-1,2,3,4,6,7,8-HxCDF		74.6	(28%-147%)
		13C-1,2,3,4,0,7,8-HpCDF		65.9	(26%-143%)
		37Cl-2,3,7,8-TCDD		91.6	(35%-197%)
497003	ISM-C-20201204After Processing	13C-2,3,7,8-TCDD		85.8	(25%-164%)
157005	ishi C 20201201 Ther i rocessing	13C-1,2,3,7,8-PeCDD		85.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		80.5	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		79.8	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		78.9	(23%-140%)
		13C-OCDD		54.4	(17%-157%)
		13C-2,3,7,8-TCDF		80.6	(24%-169%)
		13C-1,2,3,7,8-PeCDF		91.1	(24%-185%)
		13C-2,3,4,7,8-PeCDF		85.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		83.2	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		78.3	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		77.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		77.8 76.6	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		77.4	(28%-147%)
		13C-1,2,3,4,0,7,8-HpCDF		68.6	(26%-143%)
		13C-1,4,3,4,7,0,7-HPCDI		00.0	(4070-130%)

^{*} Recovery outside Acceptance Limits

Cape Fear Analytical LLC

Hi-Res Dioxins/Furans Surrogate Recovery Report Page 5

Report Date: December 31, 2020

of 5

SDG Number: A0L0214 Matrix Type: SOLID

Sample ID	Client ID	Surrogate QUAL	Recovery (%)	Acceptance Limits
Sample ID	Client ID	Surrogate QUAL	(%)	Limits

^{*} Recovery outside Acceptance Limits

D Sample Diluted

[#] Column to be used to flag recovery values

of 2

Page 1

Hi-Res Dioxins/Furans Quality Control Summary

Quanty Control Summar Spike Recovery Report

SDG Number: A0L0214 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 45600 Matrix: SOIL

Lab Sample ID: 12028194

Instrument: HRP750 Analysis Date: 12/16/2020 15:21 Dilution: 1

Analyst: MLL Prep Batch ID:45600

			Amount Added	Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits
1746-01-6	LCS	2,3,7,8-TCDD	20.0	19.5	97.6	67-158
40321-76-4	LCS	1,2,3,7,8-PeCDD	100	102	102	70-142
39227-28-6	LCS	1,2,3,4,7,8-HxCDD	100	101	101	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	100	101	101	76-134
19408-74-3	LCS	1,2,3,7,8,9-HxCDD	100	98.7	98.7	64-162
35822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	100	95.8	95.8	70-140
3268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	200	189	94.7	78-144
51207-31-9	LCS	2,3,7,8-TCDF	20.0	19.3	96.3	75-158
57117-41-6	LCS	1,2,3,7,8-PeCDF	100	99.6	99.6	80-134
57117-31-4	LCS	2,3,4,7,8-PeCDF	100	102	102	68-160
70648-26-9	LCS	1,2,3,4,7,8-HxCDF	100	96.7	96.7	72-134
57117-44-9	LCS	1,2,3,6,7,8-HxCDF	100	101	101	84-130
60851-34-5	LCS	2,3,4,6,7,8-HxCDF	100	96.7	96.7	70-156
72918-21-9	LCS	1,2,3,7,8,9-HxCDF	100	95.2	95.2	78-130
67562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	100	99.4	99.4	82-122
55673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	100	93.7	93.7	78-138
39001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	200	173	86.5	63-170

Page 2

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A0L0214 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 45600 Matrix: SOIL

Lab Sample ID: 12028195

Instrument: HRP750 Analysis Date: 12/16/2020 16:09 Dilution: 1

Analyst: MLL Prep Batch ID:45600

CAS No.		Parmname	Amount Added pg/g	Spike Conc. pg/g	Recovery	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	18.9	94.5	67-158	3.14	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	106	106	70-142	3.47	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	101	101	70-164	0.360	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	103	103	76-134	1.78	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	102	102	64-162	3.17	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	95.3	95.3	70-140	0.561	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	190	94.9	78-144	0.280	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	19.0	95.2	75-158	1.22	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	96.6	96.6	80-134	3.13	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	105	105	68-160	3.15	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	97.6	97.6	72-134	0.972	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	100	100	84-130	0.943	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	97.9	97.9	70-156	1.22	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	96.2	96.2	78-130	1.03	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	97.5	97.5	82-122	1.95	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	96.5	96.5	78-138	2.94	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	173	86.4	63-170	0.0613	0-20

of 2

Page 1

Hi-Res Dioxins/Furans Quality Control Summary

Spike Recovery Report

SDG Number: A0L0214 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 45631 Matrix: WATER

Lab Sample ID: 12028227

Instrument: HRP750 Analysis Date: 12/28/2020 16:45 Dilution: 1

Analyst: CLP Prep Batch ID:45631

			Amount Added	Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/L	pg/L	%	Limits
1746-01-6	LCS	2,3,7,8-TCDD	200	174	87.1	67-158
40321-76-4	LCS	1,2,3,7,8-PeCDD	1000	968	96.8	70-142
39227-28-6	LCS	1,2,3,4,7,8-HxCDD	1000	941	94.1	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	1000	959	95.9	74-134
19408-74-3	LCS	1,2,3,7,8,9-HxCDD	1000	963	96.3	64-162
5822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	1000	932	93.2	70-140
268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	2000	1780	88.8	78-144
207-31-9	LCS	2,3,7,8-TCDF	200	172	85.8	75-158
7117-41-6	LCS	1,2,3,7,8-PeCDF	1000	926	92.6	80-134
7117-31-4	LCS	2,3,4,7,8-PeCDF	1000	962	96.2	68-160
0648-26-9	LCS	1,2,3,4,7,8-HxCDF	1000	915	91.5	72-134
7117-44-9	LCS	1,2,3,6,7,8-HxCDF	1000	943	94.3	84-130
50851-34-5	LCS	2,3,4,6,7,8-HxCDF	1000	915	91.5	70-156
2918-21-9	LCS	1,2,3,7,8,9-HxCDF	1000	912	91.2	78-130
7562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	1000	893	89.3	82-122
5673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	1000	911	91.1	78-138
9001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	2000	1660	83.2	63-170

of 2

Page 2

Hi-Res Dioxins/Furans Quality Control Summary

Juality Control Summar Spike Recovery Report

SDG Number: A0L0214 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 45631 Matrix: WATER

Lab Sample ID: 12028228

Instrument: HRP750 Analysis Date: 12/28/2020 17:34 Dilution: 1

Analyst: CLP Prep Batch ID:45631

CAS No.		Parmname	Amount Added pg/L	Spike Conc. pg/L	Recovery %	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	LCSD	2,3,7,8-TCDD	200	177	88.6	67-158	1.74	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	1000	966	96.6	70-142	0.256	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	1000	946	94.6	70-164	0.528	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	1000	966	96.6	74-134	0.735	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	1000	956	95.6	64-162	0.813	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	1000	932	93.2	70-140	0.0107	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	2000	1780	89	78-144	0.276	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	200	175	87.3	75-158	1.68	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	1000	922	92.2	80-134	0.381	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	1000	969	96.9	68-160	0.719	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	1000	906	90.6	72-134	0.951	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	1000	944	94.4	84-130	0.0806	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	1000	901	90.1	70-156	1.56	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	1000	926	92.6	78-130	1.47	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	1000	871	87.1	82-122	2.46	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	1000	904	90.4	78-138	0.774	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	2000	1670	83.7	63-170	0.562	0-20

Cape Fear Analytical LLC Report Date: December 31, 2020

Page 1

of 1

Method Blank Summary

SDG Number: A0L0214 Client: APEX001 Matrix: SOIL

 Client ID:
 MB for batch 45600
 Instrument ID:
 HRP750
 Data File:
 A16DEC20A_2-3

 Lab Sample ID:
 12028193
 Prep Date:
 15-DEC-20
 Analyzed:
 12/16/20 16:57

Column:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 45600	12028194	A16DEC20A_2-1	12/16/20	1521	
02 LCSD for batch 45600	12028195	A16DEC20A_2-2	12/16/20	1609	
03 ISM-A-20201203After Processing	17497001	A16DEC20A_2-7	12/16/20	2012	
04 ISM-B-20201204After Processing	17497002	A16DEC20A_2-8	12/16/20	2100	
05 ISM-C-20201204After Processing	17497003	A16DEC20A_2-9	12/16/20	2149	

Cape Fear Analytical LLC Report Date: December 31, 2020

Page 1

of 1

Method Blank Summary

SDG Number: A0L0214 Client: APEX001 Matrix: WATER
Client ID: MB for batch 45631 Instrument ID: HRP750 Data File: A28DEC20D-4
Lab Sample ID: 12028226 Prep Date: 17-DEC-20 Analyzed: 12/28/20 18:22

Column:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 45631	12028227	A28DEC20D-2	12/28/20	1645	
02 LCSD for batch 45631	12028228	A28DEC20D-3	12/28/20	1734	
03 Rinsate Blank	17497004	A28DEC20D-12	12/29/20	0048	

 $\quad \text{of } 2$

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A0L0214 Client: APEX001 Project: APEX00320 Lab Sample ID: 12028193 Matrix: SOIL Client Sample: QC for batch 45600

Client ID: MB for batch 45600 Prep Basis: As Received Batch ID: 45603 Method: EPA Method 1613B

 Run Date:
 12/16/2020 16:57
 Analyst:
 MLL
 Instrument:
 HRP750

 Data File:
 A16DEC20A_2-3
 Dilution:
 1

Prep Batch: 45600 Prep Method: SW846 3540C

Prep Date:	15-DEC-20	Prep Aliquot:	10 g				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD	U	0.111	pg/g	0.111	1.00	
40321-76-4	1,2,3,7,8-PeCDD	J	0.112	pg/g	0.0932	5.00	
39227-28-6	1,2,3,4,7,8-HxCDD	J	0.232	pg/g	0.160	5.00	
57653-85-7	1,2,3,6,7,8-HxCDD	JK	0.172	pg/g	0.150	5.00	
19408-74-3	1,2,3,7,8,9-HxCDD	JK	0.246	pg/g	0.157	5.00	
35822-46-9	1,2,3,4,6,7,8-HpCDD	JK	0.340	pg/g	0.216	5.00	
3268-87-9	1,2,3,4,6,7,8,9-OCDD	J	0.946	pg/g	0.694	10.0	
51207-31-9	2,3,7,8-TCDF	U	0.148	pg/g	0.148	1.00	
57117-41-6	1,2,3,7,8-PeCDF	U	0.116	pg/g	0.116	5.00	
57117-31-4	2,3,4,7,8-PeCDF	JK	0.152	pg/g	0.107	5.00	
70648-26-9	1,2,3,4,7,8-HxCDF	JK	0.344	pg/g	0.101	5.00	
57117-44-9	1,2,3,6,7,8-HxCDF	J	0.208	pg/g	0.104	5.00	
60851-34-5	2,3,4,6,7,8-HxCDF	J	0.222	pg/g	0.108	5.00	
72918-21-9	1,2,3,7,8,9-HxCDF	JK	0.262	pg/g	0.166	5.00	
67562-39-4	1,2,3,4,6,7,8-HpCDF	JK	0.618	pg/g	0.144	5.00	
55673-89-7	1,2,3,4,7,8,9-HpCDF	J	0.294	pg/g	0.258	5.00	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	J	0.742	pg/g	0.518	10.0	
41903-57-5	Total TeCDD	U	0.111	pg/g	0.111	1.00	
36088-22-9	Total PeCDD	J	0.112	pg/g	0.0932	5.00	
34465-46-8	Total HxCDD	JK	0.650	pg/g	0.150	5.00	
37871-00-4	Total HpCDD	JK	0.570	pg/g	0.216	5.00	
30402-14-3	Total TeCDF	J	0.154	pg/g	0.148	1.00	
30402-15-4	Total PeCDF	JK	0.504	pg/g	0.0706	5.00	
55684-94-1	Total HxCDF	JK	1.25	pg/g	0.101	5.00	
38998-75-3	Total HpCDF	JK	0.912	pg/g	0.144	5.00	
3333-30-2	TEQ WHO2005 ND=0 with EMPCs		0.339	pg/g			
3333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		0.404	pg/g			

Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
	191	200	pg/g	95.4	(25%-164%)
	179	200	pg/g	89.4	(25%-181%)
	176	200	pg/g	88.2	(32%-141%)
	177	200	pg/g	88.7	(28%-130%)
	157	200	pg/g	78.3	(23%-140%)
	172	400	pg/g	43.0	(17%-157%)
	169	200	pg/g	84.6	(24%-169%)
	192	200	pg/g	95.9	(24%-185%)
	181	200	pg/g	90.6	(21%-178%)
	183	200	pg/g	91.5	(26%-152%)
	179	200	pg/g	89.3	(26%-123%)
	171	200	pg/g	85.3	(28%-136%)
	164	200	pg/g	81.8	(29%-147%)
	Qual	191 179 176 177 157 172 169 192 181 183 179	191 200 179 200 176 200 177 200 157 200 157 200 169 200 192 200 181 200 183 200 179 200 171 200	191 200 pg/g 179 200 pg/g 176 200 pg/g 177 200 pg/g 157 200 pg/g 157 200 pg/g 169 200 pg/g 192 200 pg/g 181 200 pg/g 183 200 pg/g 179 200 pg/g 179 200 pg/g 179 200 pg/g	191 200 pg/g 95.4 179 200 pg/g 89.4 176 200 pg/g 88.2 177 200 pg/g 88.7 157 200 pg/g 78.3 172 400 pg/g 43.0 169 200 pg/g 84.6 192 200 pg/g 95.9 181 200 pg/g 90.6 183 200 pg/g 91.5 179 200 pg/g 89.3 171 200 pg/g 89.3

Cape Fear Analytical LLC Report Date: December 31, 2020

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

Page 2

HRP750

Instrument:

of 2

A0L0214 APEX001 APEX00320 SDG Number: Client: **Project:** 12028193 Lab Sample ID: Matrix: SOIL

QC for batch 45600 **Client Sample: Client ID:**

MB for batch 45600 **Prep Basis:** As Received

Batch ID: 45603 Method: EPA Method 1613B 12/16/2020 16:57 **Run Date:** Analyst: MLL

Data File: A16DEC20A_2-3 Dilution: 1 SW846 3540C 45600 **Prep Method:** Prep Batch:

Prep Aliquot: 10 g **Prep Date:** 15-DEC-20 CAS No. Units **EDL PQL Parmname** Qual Result

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		159	200	pg/g	79.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		127	200	pg/g	63.5	(26%-138%)
37Cl-2,3,7,8-TCDD		17.7	20.0	pg/g	88.7	(35%-197%)

Comments:

Value is estimated

Estimated Maximum Possible Concentration \mathbf{K}

Analyte was analyzed for, but not detected above the specified detection limit.

of 1

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Numbe Lab Sample Client Samp	ID: 12028194	Clie	nt:	APEX001			Project: Matrix:	APEX00320 SOIL
Client ID: Batch ID:	LCS for batch 45600 45603	Met	hod:	EPA Method 1613B			Prep Basis:	As Received
Run Date:	12/16/2020 15:21	Ana		MLL	10131		Instrument:	HRP750
Data File: Prep Batch: Prep Date:	A16DEC20A_2-1 45600 15-DEC-20	-	Method: Aliquot:	SW846 35 10 g	540C		Dilution:	1
CAS No.	Parmname		Qual	Result		Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD			19.5		pg/g	0.133	1.00
40321-76-4	1,2,3,7,8-PeCDD			102		pg/g	0.230	5.00
39227-28-6	1,2,3,4,7,8-HxCDD			101		pg/g	0.464	5.00
57653-85-7	1,2,3,6,7,8-HxCDD			101		pg/g	0.452	5.00
19408-74-3	1,2,3,7,8,9-HxCDD			98.7		pg/g	0.464	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD			95.8		pg/g	0.658	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD			189		pg/g	1.34	10.0
51207-31-9	2,3,7,8-TCDF			19.3		pg/g	0.151	1.00
57117-41-6	1,2,3,7,8-PeCDF			99.6		pg/g	0.286	5.00
57117-31-4	2,3,4,7,8-PeCDF			102		pg/g	0.262	5.00
70648-26-9	1,2,3,4,7,8-HxCDF			96.7		pg/g	0.586	5.00
57117-44-9	1,2,3,6,7,8-HxCDF			101		pg/g	0.570	5.00
60851-34-5	2,3,4,6,7,8-HxCDF			96.7		pg/g	0.646	5.00
72918-21-9	1,2,3,7,8,9-HxCDF			95.2		pg/g	0.920	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF			99.4		pg/g	0.372	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF			93.7		pg/g	0.810	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF			173		pg/g	1.40	10.0
Surrogate/Tracer recovery		Qual	Result	Nominal	Units	Recovery	6 Acceptab	ole Limits
13C-2,3,7,8-TCDD			183	200	pg/g	91.3	(20%-	175%)
13C-1,2,3,7,8-PeCDD			184	200	pg/g	92.0	(21%-	227%)
120 1 2 2 4 7 9	H CDD		165	200	/-	92.4	(210)	1020/

Surrogate/Tracer recovery		Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		183	200	pg/g	91.3	(20%-175%)
13C-1,2,3,7,8-PeCDD		184	200	pg/g	92.0	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		165	200	pg/g	82.4	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		175	200	pg/g	87.5	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		126	200	pg/g	62.8	(22%-166%)
13C-OCDD		150	400	pg/g	37.6	(13%-199%)
13C-2,3,7,8-TCDF		171	200	pg/g	85.6	(22%-152%)
13C-1,2,3,7,8-PeCDF		188	200	pg/g	94.0	(21%-192%)
13C-2,3,4,7,8-PeCDF		184	200	pg/g	92.0	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		167	200	pg/g	83.4	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		166	200	pg/g	83.0	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		161	200	pg/g	80.7	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		158	200	pg/g	78.9	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		144	200	pg/g	71.9	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		105	200	pg/g	52.5	(20%-186%)
37Cl-2,3,7,8-TCDD		17.7	20.0	pg/g	88.6	(31%-191%)

Comments:

U Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

of 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number Lab Sample Client Samp	ID: 12028195	Client:	APEX001		Project: Matrix:	APEX00320 SOIL
Client ID:	LCSD for batch 45600				Prep Basis:	As Received
Batch ID: Run Date: Data File:	45603 12/16/2020 16:09 A16DEC20A_2-2	Method: Analyst:	EPA Method 161: MLL	3B	Instrument: Dilution:	HRP750 1
Prep Batch: Prep Date:	45600 15-DEC-20	Prep Method: Prep Aliquot:	SW846 3540C 10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		18.9	pg/g	0.113	1.00
40321-76-4	1,2,3,7,8-PeCDD		106	pg/g	0.200	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		101	pg/g	0.406	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		103	pg/g	0.406	5.00
19408-74-3	1,2,3,7,8,9-HxCDD		102	pg/g	0.412	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		95.3	pg/g	0.616	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		190	pg/g	1.53	10.0
51207-31-9	2,3,7,8-TCDF		19.0	pg/g	0.160	1.00
57117-41-6	1,2,3,7,8-PeCDF		96.6	pg/g	0.248	5.00
57117-31-4	2,3,4,7,8-PeCDF		105	pg/g	0.250	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		97.6	pg/g	0.502	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		100	pg/g	0.512	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		97.9	pg/g	0.534	5.00
72918-21-9	1,2,3,7,8,9-HxCDF		96.2	pg/g	0.776	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF		97.5	pg/g	0.428	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		96.5	pg/g	0.874	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		173	pg/g	1.27	10.0
Surrogate/Tracer recovery		Qual Result	Nominal Units	Recovery	% Acceptab	le Limits
13C-2,3,7,8-TCDD		176	200 pg/g	88.1	(20%-	175%)
13C-1,2,3,7,8-PeCDD		159	200 pg/g	79.4	(21%-2	227%)
13C-1,2,3,4,7,8-HxCDD		161	200 pg/g	80.6	(21%-	193%)
13C-1,2,3,6,7,8-HxCDD		168	200 pg/g	83.8	(25%-	163%)
13C-1,2,3,4,6,	7,8-HpCDD	151	200 pg/g	75.3	(22%-	166%)
13C-OCDD		186	400 pg/g	46.4	(13%-	199%)
			100			

171

174

162

163

162

161

158

154

123

17.2

200

200

200

200

200

200

200

200

200

20.0

pg/g

85.6

86.8

81.0

81.4

80.8

80.3

79.0

77.2

61.6

85.8

(22%-152%)

(21%-192%)

(13%-328%)

(19%-202%)

(21%-159%)

(22%-176%)

(17%-205%)

(21%-158%)

(20%-186%)

(31%-191%)

Comments:

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDF

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

U Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A0L0214 Client: APEX001 Project: APEX00320 12028226 Lab Sample ID: WATER Matrix: QC for batch 45631 **Client Sample: Client ID:** MB for batch 45631 **Prep Basis:** As Received **Batch ID:** 45635 Method: EPA Method 1613B **HRP750** Run Date: 12/28/2020 18:22 Analyst: CLP **Instrument:** Data File: A28DEC20D-4 Dilution: 1 SW846 3520C Prep Batch: 45631 Prep Method: 1000 mL **Prep Aliquot: Prep Date:** 17-DEC-20 CAS No. **Parmname** Qual Result Units **EDL PQL** 1746-01-6 2,3,7,8-TCDD U 1.26 pg/L 1.26 10.0 U 40321-76-4 1,2,3,7,8-PeCDD 0.828 pg/L 0.828 50.0 39227-28-6 1,2,3,4,7,8-HxCDD U 1.38 pg/L 1.38 50.0 U pg/L 57653-85-7 1,2,3,6,7,8-HxCDD 1.37 1.37 50.0 19408-74-3 1,2,3,7,8,9-HxCDD U 1.39 pg/L 1.39 50.0 U 35822-46-9 1,2,3,4,6,7,8-HpCDD 1.82 pg/L 1.82 50.0 3268-87-9 1,2,3,4,6,7,8,9-OCDD JK 3.92 pg/L 3.28 100 51207-31-9 2,3,7,8-TCDF U 1.22 1.22 10.0 pg/L 57117-41-6 1,2,3,7,8-PeCDF U 0.990 pg/L 0.990 50.0 57117-31-4 2,3,4,7,8-PeCDF U 0.978 pg/L 0.978 50.0 70648-26-9 1,2,3,4,7,8-HxCDF U 0.980 0.980 50.0 pg/L IJ 57117-44-9 1,2,3,6,7,8-HxCDF 0.996 pg/L 0.996 50.0 U 60851-34-5 2.3.4.6.7.8-HxCDF 1.03 pg/L 1.03 50.0 72918-21-9 1,2,3,7,8,9-HxCDF U 1.46 pg/L 1.46 50.0 U 67562-39-4 1,2,3,4,6,7,8-HpCDF 1.18 pg/L 1.18 50.0 55673-89-7 1,2,3,4,7,8,9-HpCDF U 1.72 pg/L 1.72 50.0 1,2,3,4,6,7,8,9-OCDF U 39001-02-0 2.86 pg/L 2.86 100 U 41903-57-5 Total TeCDD 1.26 pg/L 1.26 10.0 36088-22-9 Total PeCDD U 0.828 pg/L 0.828 50.0 U pg/L 34465-46-8 Total HxCDD 1.37 1.37 50.0 37871-00-4 Total HpCDD U 1.82 pg/L 1.82 50.0 30402-14-3 Total TeCDF IJ 1.22 1.22 pg/L 10.0 30402-15-4 Total PeCDF U 0.978 0.978 50.0 pg/L 55684-94-1 Total HxCDF U 0.980 pg/L 0.980 50.0 U 38998-75-3 Total HpCDF 1.18 pg/L 1.18 50.0 3333-30-2 TEQ WHO2005 ND=0 with EMPCs 0.00118 pg/L 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 1.72 pg/L **Acceptable Limits** Surrogate/Tracer recovery Qual Result Units Recovery% Nominal 13C-2,3,7,8-TCDD 1560 2000 pg/L 77.9 (25%-164%) 13C-1,2,3,7,8-PeCDD 1500 2000 pg/L 74.8 (25%-181%) 13C-1,2,3,4,7,8-HxCDD 1320 2000 pg/L 65.8(32%-141%) 13C-1,2,3,6,7,8-HxCDD 2000 1390 pg/L 69.4 (28%-130%) 13C-1,2,3,4,6,7,8-HpCDD 1350 2000 pg/L 67.3 (23%-140%) 13C-OCDD 2440 4000 pg/L 61.0 (17%-157%) 13C-2,3,7,8-TCDF 2000 79.6 (24%-169%) 1590 pg/L 13C-1,2,3,7,8-PeCDF 1500 2000 pg/L 74.8 (24%-185%)

1500

1270

1300

1310

1340

2000

2000

2000

2000

2000

pg/L

pg/L

pg/L

pg/L

pg/L

75.1

63.7

64.8

65.3

67.1

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

(21%-178%)

(26%-152%)

(26%-123%)

(28%-136%)

(29%-147%)

Cape Fear Analytical LLC Report Date: December 31, 2020

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary Page 2

Dilution:

1

of 2

SDG Number: A0L0214 Client: APEX001 Project: APEX00320 Lab Sample ID: 12028226 APEX00320 Matrix: WATER

Client Sample: QC for batch 45631

Client ID: MB for batch 45631 Prep Basis: As Received

 Batch ID:
 45635
 Method:
 EPA Method 1613B

 Run Date:
 12/28/2020 18:22
 Analyst:
 CLP
 Instrument:
 HRP750

Prep Batch: 45631 Prep Method: SW846 3520C Prep Date: 17-DEC-20 Prep Aliquot: 1000 mL

CAS No. Parmname Qual Result Units EDL PQL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		1270	2000	pg/L	63.3	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		1200	2000	pg/L	60.1	(26%-138%)
37Cl-2,3,7,8-TCDD		164	200	pg/L	82.0	(35%-197%)

Comments:

Data File:

J Value is estimated

K Estimated Maximum Possible Concentration

A28DEC20D-4

U Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 31, 2020

of 1

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: Lab Sample II Client Sample	D: 12028227	Client	: :	APEX001			Project: Matrix:	APEX00320 WATER
Client ID: Batch ID: Run Date:	LCS for batch 45631 45635 12/28/2020 16:45	Metho Analy		EPA Meth	od 1613B]	Prep Basis: Instrument:	As Received HRP750
Data File: Prep Batch:	A28DEC20D-2 45631	Pren l	Method:	SW846 35	520C]	Dilution:	1
Prep Date:	17-DEC-20	-	Aliquot:	1000 mL				
CAS No.	Parmname	Ç	ual	Result		Units	EDL	PQL
	2,3,7,8-TCDD			174		pg/L	2.50	10.0
	1,2,3,7,8-PeCDD			968		pg/L	3.90	50.0
39227-28-6	1,2,3,4,7,8-HxCDD			941		pg/L	7.26	50.0
57653-85-7	1,2,3,6,7,8-HxCDD			959		pg/L	6.76	50.0
19408-74-3	1,2,3,7,8,9-HxCDD			963		pg/L	7.08	50.0
35822-46-9	1,2,3,4,6,7,8-HpCDD			932		pg/L	9.50	50.0
3268-87-9	1,2,3,4,6,7,8,9-OCDD			1780		pg/L	19.7	100
51207-31-9	2,3,7,8-TCDF			172		pg/L	2.62	10.0
57117-41-6	1,2,3,7,8-PeCDF			926		pg/L	3.98	50.0
57117-31-4	2,3,4,7,8-PeCDF			962		pg/L	3.90	50.0
70648-26-9	1,2,3,4,7,8-HxCDF			915		pg/L	7.60	50.0
57117-44-9	1,2,3,6,7,8-HxCDF			943		pg/L	7.84	50.0
60851-34-5	2,3,4,6,7,8-HxCDF			915		pg/L	8.02	50.0
72918-21-9	1,2,3,7,8,9-HxCDF			912		pg/L	11.6	50.0
67562-39-4	1,2,3,4,6,7,8-HpCDF			893		pg/L	8.48	50.0
55673-89-7	1,2,3,4,7,8,9-HpCDF			911		pg/L	13.7	50.0
39001-02-0	1,2,3,4,6,7,8,9-OCDF			1660		pg/L	12.6	100
Surrogate/Tra	acer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptab	le Limits
13C-2,3,7,8-TCE	DD		1500	2000	pg/L	74.9	(20%-1	75%)
13C-1,2,3,7,8-Pe	CDD		1440	2000	pg/L	71.9	(21%-2	227%)
13C-1,2,3,4,7,8-I	HxCDD		1250	2000	pg/L	62.3	(21%-1	93%)
13C-1,2,3,6,7,8-I	HxCDD		1310	2000	pg/L	65.5	(25%-1	63%)
13C-1,2,3,4,6,7,8	3-HpCDD		1280	2000	pg/L	64.0	(22%-1	66%)
13C-OCDD			2630	4000	pg/L	65.7	(13%-1	99%)
13C-2,3,7,8-TCD	DF		1430	2000	pg/L	71.3	(22%-1	
13C-1,2,3,7,8-Pe			1390	2000	pg/L pg/L	69.6	(21%-1	
13C-2,3,4,7,8-Pe			1370	2000	pg/L	68.4	(13%-3	
13C-1,2,3,4,7,8-I			1230	2000	pg/L pg/L	61.5	(19%-2	
13C-1,2,3,6,7,8-I			1220	2000	pg/L pg/L	60.8	(21%-1	
13C-2,3,4,6,7,8-I			1240	2000	pg/L pg/L	61.9	(22%-1	
13C-1,2,3,7,8,9-I	пхсрг		1270	2000	pg/L	63.3	(17%-2	305%)

1170

1180

158

2000

2000

200

pg/L

pg/L

pg/L

Comments:

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37C1-2,3,7,8-TCDD

58.4

58.8

78.8

(21%-158%)

(20%-186%)

(31%-191%)

U Analyte was analyzed for, but not detected above the specified detection limit.

of 1

Page 1

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number Lab Sample I Client Sample	D: 12028228	Clie	nt:	APEX001	·		Project: Matrix:	APEX00320 WATER
Client ID: Batch ID: Run Date:	LCSD for batch 45631 45635 12/28/2020 17:34	Met Ana		EPA Meth	od 1613B		Prep Basis: Instrument: Dilution:	As Received HRP750 1
Data File: Prep Batch: Prep Date:	A28DEC20D-3 45631 17-DEC-20	•	Method: Aliquot:	SW846 35 1000 mL	520C		Diluuon:	1
CAS No.	Parmname		Qual	Result		Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD			177		pg/L	1.59	10.0
40321-76-4	1,2,3,7,8-PeCDD			966		pg/L	2.22	50.0
39227-28-6	1,2,3,4,7,8-HxCDD			946		pg/L	5.32	50.0
57653-85-7	1,2,3,6,7,8-HxCDD			966		pg/L	5.06	50.0
19408-74-3	1,2,3,7,8,9-HxCDD			956		pg/L	5.26	50.0
35822-46-9	1,2,3,4,6,7,8-HpCDD			932		pg/L	9.10	50.0
3268-87-9	1,2,3,4,6,7,8,9-OCDD			1780		pg/L	18.9	100
51207-31-9	2,3,7,8-TCDF			175		pg/L	1.85	10.0
57117-41-6	1,2,3,7,8-PeCDF			922		pg/L	3.52	50.0
57117-31-4	2,3,4,7,8-PeCDF			969		pg/L	3.26	50.0
70648-26-9	1,2,3,4,7,8-HxCDF			906		pg/L	5.98	50.0
57117-44-9	1,2,3,6,7,8-HxCDF			944		pg/L	5.92	50.0
60851-34-5	2,3,4,6,7,8-HxCDF			901		pg/L	6.16	50.0
72918-21-9	1,2,3,7,8,9-HxCDF			926		pg/L	9.04	50.0
67562-39-4	1,2,3,4,6,7,8-HpCDF			871		pg/L	6.40	50.0
55673-89-7	1,2,3,4,7,8,9-HpCDF			904		pg/L	10.1	50.0
39001-02-0	1,2,3,4,6,7,8,9-OCDF			1670		pg/L	13.3	100
Surrogate/Tra	acer recovery	Qual	Result	Nominal	Units	Recovery%	6 Acceptab	le Limits
13C-2,3,7,8-TCI	OD .		1740	2000	pg/L	87.1	(20%-	175%)
13C-1,2,3,7,8-Pe	eCDD		1720	2000	pg/L	86.1	(21%-2	227%)
13C-1,2,3,4,7,8-	HxCDD		1490	2000	pg/L	74.4	(21%-	193%)
13C-1,2,3,6,7,8-	HxCDD		1550	2000	pg/L	77.4	(25%-	163%)
13C-1,2,3,4,6,7,8	8-HpCDD		1470	2000	pg/L	73.3	(22%-	166%)
13C-OCDD			3070	4000	pg/L	76.9	(13%-	199%)
13C-2,3,7,8-TCI	OF		1710	2000	pg/L	85.4	(22%-	152%)
13C-1,2,3,7,8-Pe	eCDF		1700	2000	pg/L	84.9	(21%-	192%)
13C-2,3,4,7,8-Pe	CDF		1680	2000	pg/L	84.2	(13%-3	328%)
13C-1,2,3,4,7,8-HxCDF			1470	2000	pg/L	73.3	(19%-2	202%)
13C-1,2,3,6,7,8-HxCDF			1460	2000	pg/L	72.9	(21%-	159%)
13C-2,3,4,6,7,8-HxCDF			1450	2000	pg/L	72.7	(22%-	
13C-1,2,3,7,8,9-1			1440	2000	pg/L	72.0	(17%-2	
13C-1,2,3,4,6,7,8			1330	2000	pg/L	66.4	(21%-	
13C-1,2,3,4,7,8,9	-		1380	2000	pg/L	69.1	(20%-1	
150 1,2,5,7,1,0,			1500	2000	P5/ L	07.1	(20/0=	,

166

200

pg/L

Comments

37C1-2,3,7,8-TCDD

83.2

(31%-191%)

U Analyte was analyzed for, but not detected above the specified detection limit.

APPENDIX B DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 9003.01.56 | JANUARY 11, 2021 | PORT OF RIDGEFIELD

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for sediment monitoring samples collected in Lake River, located offshore of the former Pacific Wood Treating Co. site in Ridgefield, Washington. The samples were collected on December 3 and 4, 2020.

Apex Laboratories, LLC (Apex) and Cape Fear Analytical, LLC (CF) performed the analyses. Apex report A0L0214 and CF report WO17497 were reviewed; CF report WO17497 was appended to report A0L0214. The samples were collected using incremental sampling methodology (ISM) and were first processed at Apex. Apex analyzed the prepared samples for total organic carbon (TOC) by Puget Sound Estuary Program (PSEP)—recommended Standard Methods for the Examination of Water and Wastewater Method 5310B modified, after which the samples were submitted to CF for analysis of chlorinated dibenzo-p-dioxins and dibenzofurans (dioxins/furans) by U.S. Environmental Protection Agency (EPA) Method 1613B. An equipment rinsate blank was also submitted to Apex for SM 5310C TOC analysis and to CF for EPA Method 1613B analysis. The following samples were analyzed.

Samples Analyzed							
Report A0L0214/WO17497							
ISM-A-20201203							
ISM-B-20201204							
ISM-C-20201204							
Rinsate Blank							

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2016, 2017) and appropriate laboratory and method-specific guidelines (Apex, 2019; CF, 2020; EPA, 1986).

EPA Method 1613B dioxin/furan results that had been reported as estimated maximum potential concentrations (EMPCs) were qualified by the reviewer with "U," as non-detect at the reported value.

EPA Method 1613B results reported by CF as EMPCs that were also associated with method blank detections requiring qualification are discussed in the method blank section of this validation report and are not discussed in the EMPC qualification tables below.

EPA Method 1613B total homolog results flagged as EMPCs by the laboratory were qualified by the reviewer with "UJ," as non-detect with an estimated detection limit (EDL), at the

reported concentration when all associated congeners were reported by the laboratory either as EMPCs or non-detect. However, when one or more associated congener was reported as a detection without an EMPC qualifier, the total homolog result was qualified by the reviewer with "J," as estimated. EPA Method 1613B EMPC results were qualified by the reviewer as follows:

Report	Sample	Component	Original Result (pg/g)	Qualified Result (pg/g)
		2,3,7,8-TCDF	0.232 JK	0.232 UJ
	1014 4 00001000	Total TCDF	1.09 JK	1.09 UJ
	ISM-A-20201203	Total PeCDF	3.67 JK	3.67 J
		Total HxCDF	12.1 JK	12.1 J
	ISM-B-20201204	2,3,7,8-TCDF	0.298 JK	0.298 UJ
		Total HxCDD	11.1 JK	11.1 J
WO17497		Total PeCDF	4.29 JK	4.29 J
		Total HxCDF	18.7 JK	18.7 J
		2,3,7,8-TCDF	0.285 JK	0.285 UJ
		Total PeCDD	2.07 JK	2.07 UJ
		Total HxCDD	14.6 JK	14.6 J
		Total TCDF	1.00 JK	1.00 UJ
		Total PeCDF	5.27 JK	5.27 J

NOTES:

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., PSEP/SM 5310B).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

J = result is estimated value.

 $[\]label{eq:JK} \textit{JK} = \textit{result} \ \textit{is} \ \textit{an} \ \textit{estimated} \ \textit{value} \ \textit{and} \ \textit{an} \ \textit{estimated} \ \textit{maximum} \ \textit{potential} \ \textit{concentration}.$

pg/g = picograms per gram.

UJ = result is non-detect with an estimated detection limit.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, laboratory method blanks were associated with all samples prepared in an analytical batch. Where an analyte was detected in a sample and in the associated method blank, the sample result was qualified if the concentration was less than five times the method blank concentration.

According to report WO17497, the EPA Method 1613B batch 45600 method blank had several dioxin/furan congener and homolog detections between the EDL and the method reporting limit (MRL). CF also flagged some method blank detections as EMPCs. Associated sample results less than five times the method blank concentrations have been qualified as follows:

Report	Sample	Component	Method Blank Result (pg/g)	Original Result (pg/g)	Qualified Result (pg/g)
WO17497		1,2,3,7,8-PeCDD	0.112 J	0.275 J	0.275 UJ
		1,2,3,4,7,8-HxCDD	0.232 J	0.385 J	0.385 UJ
		1,2,3,7,8,9-HxCDD	0.246 JK	0.762 J	0.762 UJ
		2,3,4,7,8-PeCDF	0.152 JK	0.381 JK	0.381 UJ
	ISM-A-20201203	1,2,3,4,7,8-HxCDF	0.344 JK	0.685 J	0.685 UJ
		1,2,3,6,7,8-HxCDF	0.208 J	0.368 JK	0.368 UJ
		2,3,4,6,7,8-HxCDF	0.222 J	0.540 J	0.540 UJ
		1,2,3,7,8,9-HxCDF	0.262 JK	0.392 J	0.392 UJ
		1,2,3,4,7,8,9-HpCDF	0.294 J	0.627 J	0.627 UJ
		1,2,3,4,7,8-HxCDD	0.232 J	0.369 J	0.369 UJ
		1,2,3,7,8,9-HxCDD	0.246 JK	0.868 J	0.868 UJ
		2,3,4,7,8-PeCDF	0.152 JK	0.497 JK	0.497 UJ
		1,2,3,4,7,8-HxCDF	0.344 JK	1.03 J	1.03 UJ
	ISM-B-20201204	1,2,3,6,7,8-HxCDF	0.208 J	0.532 J	0.532 UJ
		2,3,4,6,7,8-HxCDF	0.222 J	0.572 JK	0.572 UJ
		1,2,3,7,8,9-HxCDF	0.262 JK	0.550 J	0.550 UJ
		1,2,3,4,7,8,9-HpCDF	0.294 J	0.646 J	0.646 UJ
		Total TCDF	0.154 J	0.738 JK	0.738 UJ

Report	Sample	Component	Method Blank Result (pg/g)	Original Result (pg/g)	Qualified Result (pg/g)
		1,2,3,7,8-PeCDD	0.112 J	0.287 JK	0.287 UJ
		1,2,3,4,7,8-HxCDD	0.232 J	0.459 J	0.459 UJ
		1,2,3,7,8,9-HxCDD	0.246 JK	1.01 J	1.01 UJ
		2,3,4,7,8-PeCDF	0.152 JK	0.491 J	0.491 UJ
	ISM-C-20201204	1,2,3,4,7,8-HxCDF	0.344 JK	1.11 J	1.11 UJ
		1,2,3,6,7,8-HxCDF	0.208 J	0.521 J	0.521 UJ
		2,3,4,6,7,8-HxCDF	0.222 J	0.661 J	0.661 UJ
		1,2,3,7,8,9-HxCDF	0.262 JK	0.509 J	0.509 UJ
		1,2,3,4,7,8,9-HpCDF	0.294 J	0.686 J	0.686 UJ

NOTES:

pg/g = picograms per gram.

According to report WO17497, the EPA Method 1613B batch 45631 method blank had a detection of 1,2,3,4,6,7,8,9-OCDD between the EDL and the MRL. The associated sample result was non-detect; thus, qualification was not required.

Trip Blanks

Trip blanks were not required for this sampling event.

Equipment Rinsate Blanks

An equipment rinsate blank (Rinsate Blank) was submitted for SM 5310C and EPA Method 1613B analysis. The equipment rinsate blank was non-detect to the MRL for SM 5310C and non-detect to EDLs for all EPA Method 1613B analytes.

LABELED ANALOG STANDARD RECOVERY RESULTS

All EPA Method 1613B samples were spiked with C13-labeled analog standards (surrogates) to evaluate and document data recovery. All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS samples were extracted and analyzed at the required frequency. MSD results were not reported.

According to report A0L0214, the SM 5310C batch 0120274 MS exceeded the upper percent recovery acceptance limit of 114 percent for TOC, at 116 percent. The MS was prepared with

J = result is estimated.

JK = result is estimated and is an estimated maximum potential concentration.

UJ = result is non-detect with an estimated detection limit.

a sample from an unrelated project, and the associated sample was non-detect; thus, qualification was not required.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision. All laboratory duplicate relative percent differences (RPDs) were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS/LCSD results were within acceptance limits for percent recovery and RPD.

ISM REPLICATE EVALUATION

Triplicate ISM samples were collected and submitted to Apex and CF for TOC and dioxin/furan analysis, respectively (ISM-A-20201203, ISM-B-20201204, and ISM-C-20201204). The relative standard deviations (RSDs) of dioxin/furan and TOC results were calculated when all three results were detected. RSDs were not calculated when results were non-detect or qualified as U because of EMPCs. When RSDs exceeded 35 percent, ISM replicate results were qualified with J as estimated.

RSDs were 20 percent for TOC and ranged from 6.5 percent to 22.5 percent for detected dioxin/furan congeners and homologs. No qualification was required.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. Apex and CF did not report CCV results.

REPORTING LIMITS

CF and Apex used routine MRLs and EDLs for non-detect results. MRLs and EDLs were adjusted for samples requiring dilutions because of high analyte concentrations, matrix interferences, or ratio criteria exceedances (resulting in EMPCs).

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

All ISM sample names reported by Apex were appended with "--After Processing" to indicate ISM sample processing, or with "--As Received" to indicate the original unprocessed sample. For brevity, samples are referenced in this validation memorandum by the original sample name.

Apex indicated in the report A0L0214 cooler receipt form that sample collection date and time were not recorded on sample containers and that the sample names recorded on the sample containers did not match the names recorded on the chain of custody. The reviewer confirmed that sample "ISMA" was matched to "ISM-A-20201203," "ISMB" was matched to "ISM-B-20201204," "ISMC" was matched to "ISM-C-20201204," and "Rinsate" was matched to "Rinsate Blank."

No additional issues were found.

Apex. 2019. Quality systems manual. Rev. 77. Apex Laboratories, LLC, Tigard, Oregon. February 11.

CF. 2020. Quality assurance plan. Rev. 17. Cape Fear Analytical, LLC, Wilmington, North Carolina. March 11.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2016. EPA contract laboratory program, national functional guidelines for high resolution Superfund methods data review. EPA 542-B-16-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. April.

EPA. 2017. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.