Phase II Environmental Site Assessment Report

King County Metro South Annex Base 11911 East Marginal Way South King County Parcel No. 102304-9066 Tukwila, Washington 98168

Prepared for: King County Metro Transit Department 400 Yesler Way Seattle, WA 98104

Otak, Inc. 11241 Willows Road Northeast, Suite 200 Redmond, Washington 98052

May 21, 2020 PBS Project No. 41484.004

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Site Description and Topography	.1
2.0 REGIONAL GEOLOGY AND HYDROGEOLOGY	2
3.0 BACKGROUND	2
3.1 Phase I Environmental Site Assessment (Subject Property)	.2
3.2 Environmental Investigation of West-Adjacent Site	.3
4.0 SITE INVESTIGATION	4
5.0 INVESTIGATION-DERIVED WASTES	5
6.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS	5
6.1 Soil and Groundwater Cleanup Standards	.5
7.0 FINDINGS	6
7.1 Soil Profile	.6
7.2 Analytical Results	.6
8.0 CONCLUSIONS AND RECOMMENDATIONS	7
8.1 Conclusions	.7
8.2 Recommendations	.7
9.0 LIMITATIONS	8
10.0 REFERENCES	9

SUPPORTING DATA

FIGURES

Figure 1 – Vicinity Map Figure 2 – Site Plan

TABLES

Table 1 – Analytical Results

APPENDICES

Appendix A – Soil Boring Logs Appendix B – Laboratory Reports / Chain-of-Custody Forms

1.0 INTRODUCTION

PBS Engineering and Environmental Inc. (PBS) has conducted a Phase II Environmental Site Assessment at the King County Metro South Annex Base, located at 11911 E Marginal Way S, Tukwila, Washington (Site or subject property; see Figure 1). It is noted that the subject property does not include the facilities building or grounds located on the western portion of the parcel. The assessment was performed in general compliance with the ASTM International E1903-19 Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process. PBS completed the scope of services under contract with Otak, Inc, in support of the redevelopment of the site into the King County Metro South Annex Base. This report summarizes the work performed at the site and presents the results of the investigation and PBS' conclusions.

1.1 Site Description

The Site occupies the eastern 13-acres of 16.15-acre King County Assessor's Parcel No 1023049066 in Tukwila, Washington. The Site operates as the Training and Safety Facility for King County Metro, which has been the occupant of the site since 1987. The site is currently mostly graded flat with some artificial topography including stormwater basins and a hill used for coach drivers training. The site currently contains several structures, parking lots, open storage, and a training yard. The elevation of the site is approximately 15-feet above mean sea level.

In order to support its new 250-bus (approximately) fleet, South Annex Base will include vehicle maintenance bays, steam bays, inspection bays, bus wash bays, bus fueling, full electric charging infrastructure, approximately 8,400 square feet of maintenance offices and spaces, approximately 7,500 square feet of parts storage, approximately 16,500 square feet of operator spaces (break, locker, restroom, dispatch, chief, superintendent), and miscellaneous other business functions required for base operations (safety, health and wellness, etc.). Consistent with King County's Green Building Ordinance and Strategic Climate Action Plan, the base will be designed and built to achieve LEEDv4 Platinum certification and operated with the highest feasible sustainable practices.

The project will include the following elements:

- Construction of a new maintenance and operations facility, including offices, up to 22 bus cleaning and maintenance bays, outdoor storage, and a basement level for maintenance work, constructed to LEEDv4 Platinum standards;
- Demountable fueling systems to support an interim hybrid diesel-electric fleet;
- Construction of retaining walls on the east side of the property;
- Maintenance and repair of existing pavement;
- Frontage improvements on East Marginal Way South;
- Probable roadway improvements and culvert replacement on South 120th Place;
- Potential signalization at East Marginal Way South and South 120th Place;
- Probable daylighting of the east branch of Riverton Creek and culvert replacement beneath South 120th Place;
- Probable daylighting of the northern portion of the west branch of Riverton Creek and culvert replacement beneath the internal access drive and parking lot on the South Facilities site; and
- Installation of an electric bus charging system anticipated to include a gantry system with vertical supports and ground-based electrical infrastructure.

2.0 **REGIONAL GEOLOGY AND HYDROGEOLOGY**

The subject property is located in the Duwamish River valley. It is underlain by Holocene aged alluvium composed mostly of unconsolidated silt, sand, and gravel valley fill with some clay.

An intermittent drainage (Riverton Creek) runs through and along the north boundary of the subject property, and the Site lies on a flat area within the river plain of the Duwamish River, which bends around the property approximately 1,100 feet to the north and 1,400 feet to the east. The direction of shallow unconfined groundwater flow is inferred to be toward the north-northwest.

3.0 BACKGROUND

3.1 Phase I Environmental Site Assessment (Subject Property)

PBS completed a Phase I Environmental Site Assessment (ESA) in July 2019 which reported the following findings:

- 1. The King County Metro South Facilities, a set of maintenance facilities associated with the subject property, are west-adjacent and share the same address as the subject property. The maintenance facilities were listed as a leaking UST (LUST) site (Site ID #7790) in 1995. Three USTs were removed from the site in 1994. A total of 4,000 cubic yards of soil was reportedly removed and remediated via thin spread on the subject property. After one year (1995) the soil was re-sampled and concentrations were reportedly below the MTCA Method A Cleanup Levels. The 'clean' soil was used as fill on the subject property and the remaining contaminated material was reportedly transferred off site. In 1997 soil and groundwater samples were collected and analyzed for contaminants of concern. Benzene was detected in groundwater in exceedance of the current MTCA Method A Cleanup Level. In 2015, Ecology completed a Site Hazard Analysis and the site received a ranking of 1 out of 5; 1 representing the highest level of concern and 5 being the lowest. Ecology confirmed the potential transport pathways to air, surface water (a class 3 creek is located 50-feet downgradient from the former UST area) and groundwater from their review of previous reports. Prior to the July 2019 Phase I ESA prepared by PBS, the groundwater contamination had not been adequately characterized and there was inadequate information to rule out the potential for the west adjacent property to have impacted the subject property. PBS considers this to be of high environmental concern to the subject property.
- 2. Several unused buses are parked and stored on the north end of the property. The potential for leaking lubricants, fuels or oil from the vehicles poses the potential for release to the ground surface. No staining or other indications of a release were present. Given the lack of staining and current use, they pose a low environmental concern.
- 3. Several 55-gallon barrels were observed at the north end of the property with no labels to indicate their original purpose. The drums are reportedly used to store water for driver training, and no staining or other indications of a release were present. Given the lack of staining and its current use, they pose a low environmental concern.
- 4. Several lead-acid vehicles batteries were observed being stored in the open at the south end of the property. No staining or other indications of a release were present. Given the lack of staining or visible degradation, they pose a low environmental concern.
- 5. A large container marked "Burner Fuel Only" and "Diesel #1" was observed being stored in the

open at the south end of the property. No staining or other indications of a release were present. Given the lack of staining or visible degradation, it poses a low environmental concern.

- 6. An unlabeled, empty gas can was being stored near the floor drain in the maintenance training garage. Given the lack of staining and lack of odor, it poses a low environmental concern.
- 7. The property was in agricultural (crop fields) use from the 1910s to the 1960s. The use of regulated agricultural chemicals (e.g., organochlorine pesticides and arsenical herbicides) is considered an acceptable practice. Spillage, mixing, or handling of these chemicals in bulk quantities or intense usage can result in hazardous soil conditions requiring remedial action in accordance with state or federal agencies. No information was available indicating hazardous soil conditions exist on the subject property; therefore, this is considered a de minimis environmental condition.

From these findings, the following recognized environmental conditions (RECs) were identified:

- 1. The west-adjacent South Facilities have been categorized as a rank 1 environmental hazard by Ecology. The incomplete remediation of soil and recorded residual soil, groundwater, and air contamination present at these adjacent facilities constitutes a REC.
- 2. The storage of old, potentially leaking vehicles on the subject property may result in a release of petroleum product to surface soils. This constitutes a REC.

3.2 Environmental Investigation of West-Adjacent Site

In 2019 and 2020, King County Metro commissioned groundwater and subsurface investigations at the west-adjacent South Facilities site to determine if contamination discovered during the mid-1990s was still present. Groundwater samples collected in October 2019 from wells in the vicinity of the replaced USTs revealed no detectable concentrations of the contaminants of concern. Samples collected from well SB-8 in the northeast corner of South Facilities, adjacent to the northwest corner of the Subject Property, in September 2019 contained concentrations of heavy oil range total petroleum hydrocarbons (TPH) in exceedance of MTCA Method A Cleanup Levels. Parametrix reported that *due to the extended period since installation of the monitoring wells and the observations of turbidity and drawdown in some wells during purging, the wells should be redeveloped and resampled to verify the results (Parametrix, 2019).*

PBS redeveloped the wells using surge, bail and pump techniques with a disposable bailer and electric submersible pump. Approximately 40 gallons of tap water were also introduced and then removed from the wells in an attempt to loosen sediment within the well filter pack, screen and zone of influence. Groundwater samples were collected from site wells on December 17, 2019 following well redevelopment. Analysis of groundwater samples collected in December 2019 did not detect contaminants of concern in exceedance of MTCA Method A Cleanup Levels (PBS, 2020).

Soil and groundwater samples were collected by push probe methodology in April 2020 at various locations at the South Facilities site to determine if contaminants revealed during the mid-1990s sampling events had possibly migrated towards the South Annex Base site. Initial findings of diesel- and heavy oil-range TPH in soil and groundwater samples were determined to likely be a result of biogenic interference in the samples as the soils underlying South Facilities have a high peat content, and concentrations of TPH were below laboratory reporting limits after the sample was passed through silica gel cleanup. Groundwater sampling completed in April 2020 indicated that migration of contaminants from the tank

area toward and onto the South Annex Base portion of the property is unlikely as groundwater flow is towards the northwest (Parametrix, 2020).

These investigations concluded that observed TPH concentrations did not represent residual contamination from the remediated LUST and that migration of TPH in groundwater from the South Facilities site has not impacted the Subject Property.

4.0 SITE INVESTIGATION

The purpose of the subsurface investigation was to investigate the soil and groundwater quality in the vicinity of the identified potential concerns. Six boring locations (E-1 to E-6) were chosen based on proximity to the inferred location of the REC's. Borings E-1 and E-2 were placed near the western boundary of the site adjacent to the South Facilities in order to identify any potential migration of soil and groundwater contamination from that site, and borings E-3 through E-6 were located throughout the vehicle storage yards and within the presumed 1997 remediation area to assess any existing impacts to soil and groundwater from those historical uses.

Prior to beginning the drilling investigation, PBS filed a public utility notification request. On March 30, 2020, PBS supervised a private utility locating company, Applied Professional Services of North Bend, WA, while they conducted borehole clearance for subsurface obstructions. Once the six boring locations were cleared for drilling, Holt Services of Puyallup, Washington, deployed a Geoprobe 5800 truck-mounted direct-push drilling rig to advance the borings on April 9, 2020, with supervision by PBS.

The drilling and sampling program included the advancement of six soil borings for collection of soil samples and "grab" groundwater samples. In each boring soils were logged continuously, noting grain size, density, color, odor, and moisture. During the advancement of boreholes, soil was screened for volatiles using a hand-held photoionization detector (PID). Cursory PID readings were taken along the runs of soil as they were brought to the surface. PID readings were also taken from select soil intervals by partially filling a sealable plastic bag and taking headspace readings within the bag. Borings were advanced to a total depth of 15 feet below ground surface (bgs).

Two soil samples were collected from each boring; shallow soil samples were collected at the interface between gravel fill and underlying native silt, approximately 4-6 feet bgs. The native silts have a lower hydraulic permeability than the overlying gravel fill. Shallow soil samples targeted contaminants which may have migrated down from the surface and been trapped on top of the lower permeability soils. Deep soil samples were taken at the top of first encountered saturated soils, approximately 10-12 feet bgs.

Groundwater was first encountered during drilling at depths ranging from 10 to 11 feet bgs. PVC well screens were temporarily installed in each borehole to facilitate collection of "grab" groundwater samples. Static groundwater stabilized in the temporary well screens at depths ranging from 6.6 to 7.2 feet bgs. Grab groundwater samples were collected from the well screens using a peristaltic pump and disposable polyethylene tubing at flow rates not exceeding 300 milliliters per minute.

Boring locations are presented in Figure 2: Site Plan. Boring logs describing the subsurface lithology, sample depths, and PID readings are presented in Appendix A.

A total of twelve soil samples and six grab groundwater samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported to Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times and under chain-of-custody documentation. Samples were submitted for the following analyses:

- Diesel range Total Petroleum Hydrocarbons (TPH) by EPA method NWTPH-Dx
- Gasoline range TPH by EPA method NWTPH-Gx
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

5.0 INVESTIGATION-DERIVED WASTES

Gloves, tubing and other disposable field supplies were disposed of as solid waste. Soil cuttings were placed in 55gallon drums and stored onsite pending analytical results. One waste soil sample was collected of drilling spoils and submitted to the laboratory for the analyses presented in section 4 plus metals by EPA Method 6020. Contaminants were not detected in the waste soil sample above laboratory reporting limits, with the exception of metals, which were detected below applicable disposal criteria. As such cuttings were disposed of as clean soil. Analytical results of the waste soil sample are presented in Appendix B.

6.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS

Contaminated site assessment and cleanup is conducted in accordance with the substantive requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington (RCW) and its implementing regulations, Chapter 173-340 of the Washington Administrative Code (WAC).

Site assessment is performed under MTCA. This section summarizes the adopted criteria screening levels established for this site.

6.1 Soil and Groundwater Cleanup Standards

In accordance with MTCA, development of preliminary cleanup levels includes identifying potential exposure pathways for human and ecological impacts based on the planned land use. MTCA provides for three methods (Method A, B or C) for establishing cleanup standards. Method A (unrestricted land use) is typically used as the default standard levels. Method B and C are used when developing site-specific cleanup levels.

Considering the current land use and potential future land use, MTCA level A Cleanup Levels are the Adopted Criteria for screening levels at this time. Method A Cleanup Levels for soil and groundwater are presented in Tables 1 along with the contaminant concentrations.

7.0 FINDINGS

7.1 Soil Profile

A typical subsurface profile encountered on site is presented below:

Classification	Description	Approximate Depth Range (feet bgs)								
Asphalt	Artificial Surface	0.0 to 0.25								
Gravel (Fill)	Dense, gray, silty GRAVEL with sand; fine to coarse sand; fine to coarse subangular gravel; dry; fill.	0.5 to 5								
Silt	Soft, dark brown, elastic SILT (MH) with sand and organics; medium to high plasticity; fine to medium sand; moist.	5 to 10								
Sand	Variable thickness (1- to 4-foot) beds of medium dense, dark gray, poorly graded SAND (SP); fine to medium sand; occasional interbedding with thin lenses of silts (MH) and clays (CL)	10 to 15								

Typical Subsurface Profile

Graphic boring logs are provided in Appendix A.

7.2 Analytical Results

No contaminants of concern were detected above laboratory reporting limits in the soil samples. Gasoline range TPH and BTEX were not detected above laboratory reporting limits and/or the adopted cleanup criteria in the groundwater samples.

Heavy Oil range TPH were detected above reporting limits but below the MTCA Method A Cleanup Level in groundwater samples from three borings (E-1, E-4, and E-5). Diesel range TPH were detected in the six groundwater samples collected from the site. Diesel range TPH concentrations exceeded the MTCA Method A cleanup level of 500 micrograms per liter (µg/L) in the sample from boring E-1 (E-1-W). However, each of the detections of diesel and heavy oil range TPH in water samples collected from the site were flagged by the laboratory because the sample chromatographic patterns did not resemble the fuel standard used for quantitation. The laboratory reported that the contaminant did not resemble diesel or heavy oil range TPH, and could be naturally occurring organic material or a fuel metabolite. Fuel metabolites are the byproducts of the degradation of total petroleum hydrocarbons via metabolism by microorganisms. These interfering byproducts can be removed from the sample with the use of a Silica Gel Column; this process is referred to as Silica Gel Cleanup. Silica gel cleanup can be used in column chromatography, such as that used in Method NWTPH-Dx, for the separation of analytes from interfering compounds of a different chemical polarity.

Sample E-1 was selected for silica gel cleanup analysis due to it having the highest initially detected diesel range TPH concentration. Analysis of sample E-1-W by Method NWTPH-Dx with Silica Gel Cleanup did not detect diesel or heavy oil range TPH above laboratory reporting limits. The lack of diesel detections after Silica Gel Cleanup suggests that the detected hydrocarbons are either naturally decaying organic material or a highly weathered or degraded petroleum product. This conclusion is further supported by the observance of organic rich silty soils in the 5 to 10-foot depth range in environmental and geotechnical

soil borings across the site. This depth interval intersects the temporary well screen interval from which groundwater samples were collected for analysis.

Analytical results are presented in Table 1. Laboratory reports and chain of custody documentation, including chromatographs, are included in Appendix B.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

A summary of the pertinent findings of the Phase II Environmental Site Assessment are presented below:

- Six soil borings were advanced to investigate recognized environmental conditions previously identified in the Phase I Environmental Site Assessment. Soil and water samples were collected from each borehole and were analyzed for contaminants of concern.
- All contaminant concentrations in soil were below the laboratory method detection limit and/or the adopted cleanup criteria.
- Diesel concentrations in groundwater exceeded the adopted cleanup criteria in one location in the northwest corner of the Site (E-1). Supplemental analysis of the groundwater sample with diesel concentrations in exceedance of the adopted criteria after silica gel cleanup did not detect diesel or heavy oil range TPH above laboratory reporting limits. Laboratory results indicate the detected contaminant to be naturally occurring organic material or a weathered/degraded petroleum product.
- Boring E-1 is located in proximity to the west adjacent property with a confirmed release of diesel range TPH from a leaking underground storage tank system. The detections of diesel range TPH in groundwater in boring E-1 may be the results of migration of contaminants from the former UST system. Based on the weathered/degraded nature of the diesel range TPH detected in groundwater, the TPH constituents appear to be naturally degrading in the subsurface with time. TPH constituents were not detected in soil anywhere on the subject property, suggesting an offsite source for diesel range TPH concentrations in groundwater. As the UST system at the west adjacent property has since been removed and replaced, including the removal of TPH contaminated soils, the suspected source of TPH constituents in groundwater at the subject property has been eliminated. Given the elimination of the contaminant source, and apparent degradation of TPH constituents in groundwater, concentrations are expected to achieve cleanup levels by natural attenuation within a reasonable time frame.

8.2 Recommendations

Based on site observations and analytical results from the investigation there is no evidence of contamination in soil or groundwater with the exception of the E-1 location. Given a lack of contaminant source for groundwater in the E-1 location and apparent natural degradation of TPH constituents in groundwater, further investigation or cleanup at the site is not warranted based on the findings of this assessment.

9.0 LIMITATIONS

PBS has prepared this report for use by Otak, Inc., and King County Metro. This report is for the exclusive use of the client and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced, in total or in part, without the expressed written consent of the client and PBS.

This study was limited to the tests, locations, and depths as indicated to determine the absence or presence of certain contaminants. The site as a whole may have other contamination that was not characterized by this study. The findings and conclusions of this report are not scientific certainties but, rather, are probabilities based on professional judgment concerning the significance of the data gathered during the course of this investigation. PBS is not able to represent that the site or adjoining land contain no hazardous substances or other latent conditions beyond that detected or observed by PBS.

Sincerely, PBS Engineering and Environmental Inc.

Nathan Dickey, GIT Staff Geologist

James Welles, LG Sr. Project Geologist

Thomas Mergy, LHG Principal Hydrogeologist

10.0 REFERENCES

Some references, primarily internet-based and governmental resources, are cited within the text of this report and are not repeated on this page.

Parametrix, Inc. 2019. South Base Facilities Annex Groundwater Status Update, East Marginal Way South, Tukwila, WA. Prepared for King County Transit Division – Design & Construction Section. October 22, 2019.

- Parametrix, Inc. 2020. South Facilities Push Probe Investigation Results, East Marginal Way South, Tukwila, Washington. Prepared for King County Transit Division – Design & Construction Section. April 21, 2020.
- PBS Engineering and Environmental, Inc. 2019. *Phase I Environmental Site Assessment (ESA) King County Metro South Base Annex*, located at 11911 E Marginal Way S, Tukwila, Washington, July 8, 2019
- PBS Engineering and Environmental, Inc. 2020. *Groundwater Sampling at King County Metro South Base Facilities*, 11911 E. Marginal Way S., Seattle WA 98168. Prepared for King County Metro Transit. January 10, 2020.

FIGURES

TABLES

TABLE 1 ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER

King County Metro South Base Annex Phase II Investigation

11911 E Marginal Way, Tukwila, Washington

PBS Project No. 41484.004

Result													
	Donth			ТРН		BTEX							
Location	(feet bgs)	Gasoline	Diesel	Diesel with SGC ^a	Heavy Oil	Heavy Oil with SGC ^a	Benzene	Toluene	Ethyl- Benzene	Total Xylenes			
Soil Samples (mg/kg)													
Adopted (Criteria ^b	100	2,000	2,000	2,000	2,000	0.03	7	6	9			
F_1	4	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
L-1	11	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E O	5	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E-2	11	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
ГЭ	6	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E-2	12	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
Γ 4	5.5	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E-4	12	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
F F	5.5	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E-2	11	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
ГС	6	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
E-0	12	< 5	< 50		< 250		< 0.02	< 0.02	< 0.02	< 0.06			
				Groundwater	r Grab Samp	les (µg/L)							
Adopted (Criteria ^b	1,000	500	500	500	500	5	1,000	700	1,000			
E-1		< 100	640 ^c	< 50	480 ^c	< 250	< 1	< 1	< 1	< 3			
E-2		< 100	140 ^c		< 250		< 1	< 1	< 1	< 3			
E-3	6.9 ^d	< 100	86 ^c		< 250		< 1	< 1	< 1	< 3			
E-4	6.6 ^d	< 100	450 ^c		440 ^c		< 1	< 1	< 1	< 3			
E-5	7.2 ^d	< 100	310 ^c		330 ^c		< 1	< 1	< 1	< 3			
E-6	7.1 ^d	< 100	89 ^c		< 250		< 1	< 1	< 1	< 3			

Notes:

Gasoline range TPH analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx) Diesel and heavy oil range TPH analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx) BTEX analyzed by Environmental Protection Agency Method 8021B

bold indicates concentration exceeds Adopted Criteria

< Analyte not detected at or above the indicated laboratory reporting limit

-- Not Analyzed / Not Measured

Abbreviations & Acronyms:

BTEX - Benzene, toluene, ethylbenzene and xylenes

mg/kg - milligrams per kilogram

 $\mu g/L$ - microgram per liter

bgs - below ground surface

toc - top of casing

SGC - Silica Gel Cleanup

TPH - total petroleum hydrocarbons

Footnotes:

- ^a Sample extracts passed through a silica gel column prior to analysis (Silica Gel Cleanup)
- ^b Washington State Department of Ecology Model Toxics Control Act Method A Cleanup Level for Unrestricted Land Use as established in WAC 173-340-900
- ^c The sample chromatographic pattern does not resemble the fuel standard used for quantitation
- ^d Depth to static groundwater from ground surface, measured in temporary well

APPENDIX A

Soil Boring Logs

		DDC	KING COUI SEA	NTY ME TTLE, V	ETRO S WASH	SOUTH NGTO	BORING E-1		
		PD 3	PBS	S PROJ 414	ECT NI 84.004	JMBER	:		BORING E-1 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
		ASPHALT (3 inches) Dense, light gray, Silty GRAVEL with sand; non-plastic; fine to co sand; fine to coarse, sub-angula dry; FILL. Medum stiff, dark brown, Sandy (ML); low plasticity; fine sand; m	GM) arse r gravel; SILT oist.		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E-1-W E-1-4 S/ NU		53 53	Background PID: 0.0 Well Start: 8:30 am
		Medium dense, dark gray, poorly SAND (SP); no plasticity; fine to sand; wet.	y graded medium	- ⊻ - - - - -	0.0 0.0 0.0 0.0	E-1-11		80	bgs; low recharge.
ENV CORE 41484 004 E1-6 09APRIL2020 ENV - JW.GPJ DATATM		Final Depth: 15 feet bgs. Ground encountered at 10.5 feet bgs.	lwater	-				_	
20.0	METH BY: H BIT DI,	L OD: Geoprobe olt Services AMETER: 2¼-inch		LOGGI COMPL	ED BY: N ETED: 4	L. Dickey /09/20		I	

KING COUN SEA		NTY MI TTLE, '	ETRO S WASHI	SOUTH	H ANNE N	X	BORING E-2	
	PD3	PBS	8 PROJ 414	ECT NI 84.004	JMBER	R :		BORING E-2 LOCATION: (See Site Plan)
		ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
	ASPHALT (3 inches) Dense, light gray, silty GRAVEL sand; non-plastic; fine to coarse to coarse sub-angular gravel; dr	(GM) with sand; fine y; FILL.	-	0.0			40	Background PID: 0.0 Well Start: 9:45am
6.0	Medium stiff, brown, Sandy SILT sand; low plasticity; fine sand; m - Becomes dark brown and me plasticity; increased fines	୮ (ML) ıoist. edium	- - - -	0.0	E-2-5		80	No hydrocarbon odor.
8.0			 - - ⊻	0.0			_	
	Medium dense, dark gray, poorly SAND (SP); no plasticity; fine to sand; wet.	y graded medium	-	0.0	E-2-W E-2-11		67	Temporary well screen set from 10 to 15 ft bgs; fast recharge.
16.0	Final Depth: 15 feet bgs. Ground encountered at 10.5 feet bgs.	dwater						
18.0	HOD: Geoprobe Holt Services		- - - LOGG	ED BY: N	J. Dickey	,		
BORING BIT	DIAMETER: 21/4-inch		50 WII ⁻ L		, 55, 20			

BORING LOG-ENV CORE 41484.004_E1-6_09APRIL2020_ENV - JW.GPJ_DATATMPL.GDT_PRINT DATE: 5/1/20:

KING COUL SEA			NTY ME TTLE, N	ETRO S WASHI	SOUTH	H ANNE DN	EX	BORING E-3	
		FD3	PBS	6 PROJI 414	ECT NU 84.004	JMBER	{ :		BORING E-3 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION		GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT (3 inches) Dense; light gray, silty GRAVEL sand; non-plastic; fine to coarse	(GM) with sand; fine	_	0.1				Background PID: 0.0-0.1 Well Start: 10:30am
2.0		to coarse sub-angular gravel; dr	y; FILL.	-	0.1				
-				_	0.0			60	
4.0				_					
			0.11 T	_	0.0			-	
6.0 — –		(MH) with sand and organics; me plasticity; fine sand; moist.	edium	 11:03	0.0	E-3-6			
-		- Becomes grey-brown		_ <u>¥</u> -	0.0			60	No hydrocarbon odor.
8.0				_	0.0				
- 10.0 —				-	0.0			_	
-		Loose, dark gray, poorly graded	SAND	- -	0.0	E-3-W			
12.0 —		(SP); no plasticity; fine to medium wet.	m sand;	_	0.0	E-3-12		80	
-				_	0.0			00	Temporary well screen set from 8.25 to 13.25 ft bgs; fast recharge.
14.0				_					
-	<u>9. 19. 1</u> .	Final Depth: 15 feet bgs. Static groundwater measured to be approximately 6.9 ft bgs at 11:03	Bam.	_					
16.0				-					
- 18.0 —				_					
-				_					
20.0	/ETH	DD: Geoprobe		LOGGI		I. Dickey	, ,		
DRILLED I BORING E	BA: Ho BIT DI	METER: 2¼-inch		COMPL	ETED: 4	/09/20			

			KING COUN SEA	NTY ME TTLE, V	ETRO S WASH	SOUTH	I ANNE	X	BORING E-4
		PD 3	PBS	S PROJ 414	ECT NI 84.004	JMBER	k :		BORING E-4 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPTION			DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —	<u>×17/</u>	Topsoil (6 inches)						-	Background PID: 0.0
-		Dense, light gray, silty GRAVEL sand; non-plastic; fine to coarse to coarse sub-angular gravel; dr	(GM) with sand; fine y; [FILL].	-	0.0				
2.0				-				33	Driller notes low recovery due to large cobbles blocking core catcher.
 4.0 				- 	0.0			_	11:22am: Background PID: 0.1
6.0 — 		- Becomes wet for bottom 3 in Soft, dark brown, elastic SILT (M sand and organics; medium plas sand; moist. Occasional <1" lens plasticity gray SILT (ML) observe throughout	ches of fill IH) with sticity; fine ses of low ed		0.1	E-4-5.5			
 8.0 		unoughout.		- - -	0.1			70	No hydrocarbon odor.
		Medium dense, dark gray, poorly	y graded	- ⊻	0.1	M-1		-	
- 12.0 — -		sand; wet.	medium	-	0.0	E-4-12 E-4		70	Temporary well screen set from 8.5 to 13.5
- - 14.0 —				- - 	0.0				it bys, lost fooridige.
- - 16.0		Final Depth: 15 feet bgs. Static groundwater measured to be approximately 6.6 ft bgs at 11:03	3am.	- - 				-	
- - 18.0 —				_ 					
20.0	AF-71 14			-					
DRILLED BORING E	BY: HO	DL Services AMETER: 2¼-inch		COMPL	ED BY: N ETED: 4	i. Dickey /09/20			

KING COUL SEA			NTY ME TTLE, N	ETRO S NASHI	SOUTH INGTO	I ANNE	X	BORING E-5	
		PD 3	PBS	8 PROJI 414	ECT NI 84.004	JMBER	k :		BORING E-5 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	PID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0 —		ASPHALT (3 inches)							Background PID: 0.0
		Dense, light gray, silty GRAVEL sand; non-plastic; fine to coarse to coarse sub-angular gravel; dry	(GM) with sand; fine ⁄; FILL.	-	0.0				
2.0			· · · · · · · · · · · · · · · · · · ·	-				30	
4.0				-					
-		Stiff, dark brown, elastic SILT (M	IH) with	_	0.0	:-5-5.5		-	
6.0	Ш	sand; medium plasticity; fine san Occasional grey and brown <1" t	id; moist. hick		0.0				
-		lenses of similar material. Crush organic material observed at upp lithologic boundary.	ed ber	12:30 - ⊻_ -	0.0			55	No bydroesthon oder
8.0 —	Ш				0.0			00	No hydrocarbon odor.
-				-					
10.0 —	Ш				0.0			-	
-				- _ ⊻ -	0.0	E-5-W1			
12.0 —					0.0			70	T
-		Medium dense, dark gray, poorly SAND (SP); no plasticity; fine to sand; wet.	/ graded medium	_	0.0				ft bgs; fast recharge.
14.0				_					
 16.0	<u></u>	Final Depth: 15 feet bgs. Static groundwater measured to be approximately 7.2 ft bgs at 12:20)am.	-					
				– –					
_				_					
18.0 —									
_				_					
-				-					
20.0 BORING M DRILLED F	/IETHO 3Y: Ho	DD: Geoprobe olt Services		LOGGE	ED BY: N .ETFD: 4	J. Dickey /09/20			
BORING E	BIT DI	AMETER: 21/4-inch		COM L					

BORING LOG-ENV CORE 41484.004 E1-6 09APRIL2020 ENV - JW.GPJ DATATMPL.GDT PRINT DATE: 5/1/20:

		DDC	KING COUN SEA	NTY MI TTLE, '	ETRO S WASH	SOUTH	BORING E-6		
		FD3	PBS	S PROJ 414	ECT NI 84.004	JMBEF	{ :		BORING E-6 LOCATION: (See Site Plan)
DEPTH FEET	GRAPHIC LOG	MATERIAL DESCRIPT	ION	GROUND- WATER	DID (PPM)	SAMPLE NUMBER	SAMPLE/ TEMPORARY WELL(S)	RECOVERY (%)	COMMENTS/ WELL INSTALLATION
0.0		ASPHALT (6 inches) Dense, light gray, Silty GRAVEL with sand; non-plastic; fine to co sand; fine to coarse sub-angular drv: FILL	(GM) arse gravel;	-	0.0				Background PID: 0.0 Well Start: 12:40am
2.0		Gry, FILL.		 	0.0			55	
4.0				-	0.0	E-6-5		_	
6.0		Medium stiff, dark brown, elastic (MH) with sand and organics; mo plasticity; fine sand; moist. Occa grey and brown <1" thick lenses material. Crushed organic mater observed at upper lithologic bou	SILT edium sional of similar ial ndarv.	- ^{4/9/20} 13:15 - <u>¥</u>	0.0			50	No hydrocarbon odor.
10.0	-			- - - - -	0.0	N		_	
		Medium dense, dark gray, poorly SAND (SP); no plasticity; fine to sand; wet.	/ graded medium	-	0.0	E-6-12 E-6-1		70	Temporary well screen set from 8.6 to 13.6 ft bgs; fast recharge.
- JW.GPJ DATATMPL.		Final Depth: 15 feet bgs. Static groundwater measured to be approximately 7.1 ft bgs at 1:15p	om.	_					
	-	, , , , , , , , , , , , , , , , , , ,		-					
		DD: Geoprobe		- - -		Dickey			
DRILLED BORING	BY: H	olt Services AMETER: 2¼-inch		COMPL	ETED: 4	/09/20			

APPENDIX B

Laboratory Reports Chain-of-Custody Documentation

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 20, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included are the results from the testing of material submitted on April 9, 2020 from the KCM South Base Annex Phase II 41484.004, F&BI 004098 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Nathan Dickey PBS0420R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 9, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental KCM South Base Annex Phase II 41484.004, F&BI 004098 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
004098 -01	E-1-4
004098 -02	E-1-11
004098 -03	E-1-W
004098 -04	E-2-5
004098 -05	E-2-11
004098 -06	E-2-W
004098 -07	E-3-6
004098 -08	E-3-12
004098 -09	E-3-W
004098 -10	E-4-5.5
004098 -11	E-4-12
004098 -12	E-4-W
004098 -13	E-5-5.5
004098 -14	E-5-11
004098 -15	E-5-W
004098 -16	E-6-6
004098 -17	E-6-12
004098 -18	E-6-W

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/10/20 and 04/15/20 Date Analyzed: 04/13/20 and 04/16/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
E-1-4 004098-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
E-1-11 004098-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	92
E-2-5 004098-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
E-2-11 004098-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	97
E-3-6 004098-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
E-3-12 004098-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	94
E-4-5.5 004098-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
E-4-12 004098-11	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
E-5-5.5 004098-13	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
E-5-11 004098-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
E-6-6 004098-16	< 0.02	< 0.02	< 0.02	< 0.06	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/10/20 and 04/15/20 Date Analyzed: 04/13/20 and 04/16/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
E-6-12 004098-17	< 0.02	< 0.02	< 0.02	<0.06	<5	100
Method Blank 00-844 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/14/20 Date Analyzed: 04/14/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
E-1-W 004098-03	<1	<1	<1	<3	<100	100
E-2-W 004098-06	<1	<1	<1	<3	<100	103
E-3-W 004098-09	<1	<1	<1	<3	<100	103
E-4-W 004098-12	<1	<1	<1	<3	<100	102
E-5-W 004098-15	<1	<1	<1	<3	<100	100
E-6-W 004098-18	<1	<1	<1	<3	<100	103
Method Blank 00-845 MB	<1	<1	<1	<3	<100	102

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/13/20 Date Analyzed: 04/13/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
E-1-W 004098-03	640 x	480 x	103
E-2-W 004098-06	140 x	<250	97
E-3-W 004098-09	86 x	<250	107
E-4-W 004098-12	450 x	440 x	102
E-5-W 004098-15	310 x	330 x	104
E-6-W 004098-18	89 x	<250	99
Method Blank 00-897 MB	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/10/20 Date Analyzed: 04/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
E-1-4 004098-01	<50	<250	102
E-1-11 004098-02	<50	<250	102
E-2-5 004098-04	<50	<250	98
E-2-11 004098-05	<50	<250	103
E-3-6 004098-07	<50	<250	103
E-3-12 004098-08	<50	<250	93
E-4-5.5 004098-10	<50	<250	99
E-4-12 004098-11	<50	<250	101
E-5-5.5 004098-13	<50	<250	101
E-5-11 004098-14	<50	<250	100
E-6-6 004098-16	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/10/20 Date Analyzed: 04/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
E-6-12 004098-17	<50	<250	98
Method Blank 00-893 MB	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004098-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	104	69-120
Toluene	mg/kg (ppm)	0.5	102	70-117
Ethylbenzene	mg/kg (ppm)	0.5	102	65 - 123
Xylenes	mg/kg (ppm)	1.5	107	66 - 120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004076-01 (Duplicate) Reporting Sample Duplicate RPD Units Result Result (Limit 20) Analyte Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes <3 <3 ug/L (ppb) nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

	Percent						
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	100	65-118			
Toluene	ug/L (ppb)	50	100	72 - 122			
Ethylbenzene	ug/L (ppb)	50	103	73 - 126			
Xylenes	ug/L (ppb)	150	100	74 - 118			
Gasoline	ug/L (ppb)	1,000	104	69-134			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	100	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	004098-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	92	104	64-133	12
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	104	58-1	147		
ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N O A		С С А		
	in the second		9999 - 1997	- Welling of a second sec		a a a a a a a a a a a a a a a a a a a	Servineesingulaaridetsestel süünet en
0	a a company of the second s						
Data File Name Operator Instrument Sample Name Run Time Bar Acquired on Report Created	e : : : : : : : : : : : : : : : : : : :	C:\HPC TL GCL 004098 13 Apr 14 Apr	HEM\1\DATA -18 20 01:53 20 08:00	2\04-1 3 PM 5 AM	3-20\014	F0401.D Page Number Vial Number Injection Number Sequence Line Instrument Metho Analysis Method	: 1 : 14 : 1 : 4 d: DX.MTH : DX.MTH
			χ		· · · · ·		

	-	n an
D O	Ő	
	•	
	1	
	Construction for Andreastic	
	a series de la constante de la c	
	And the second	
Data File Name : C:\HPCHEM\1\DATA	\04-	13-20\003F0301.D
Operator : TL Instrument : GC1 Sample Name : 500 Dx 58-146H		Page Number : 1 Vial Number : 3 Injection Number : 1
Run Time Bar Code: Acquired on : 13 Apr 20 08:39	АМ	Sequence Line : 3 Instrument Method: DX.MTH
Report Created on 17 Apr 20 03:12	PM	Analysis Method : DEFAULT.MTH

• • •

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	Friedman & Bruya, Inc.		E-4-5,5	E-3-W	E-3-12	5-3-6	E-2-W	E-2-11	E-2-5	E-1-2	E-1-11	E-I-Y		Sample ID			PhoneEn	City, State, ZIP	Address Ser Ha	Company QRS	Report To James	x60400
Received by:	Relinquisted by:	Receivering:	Relinquished by:	SI	JA 6/	04 PB	- 2 8	07A-E	06A-D	8-1	OY A-E	Q2 A.D	021	01 A.E		Lab ID		<u>в</u>	James. mally				Jelles	
	4		the second	GNATURE										4/9/20		Sampled			esepsisa		· · ·			
		*			1220	1100	1050	1040	loos	1000	0956	0920	0850	0840		Sampled	,		5	REMAR	- 7 () }	PROJE	SAMPL	SAMPLI
	*		Nat		s	٤	S	s	E	2	S	ε	S	S		оашріе Туре	2			KS	oly in	CT NAME	ERS (signat	CHAIN
			2 2	PRINT N	s	2	S	s	2	S	5	٦	S	N		¥ ع PH-H	t CID				て	A	ure)	OF CUS
			5	IAME										XXX	T TP	PH-D H-Ga	iesel soline				ň		0	TODY
		·													vo svc	Cs by Cs by Cs by	8021B 8260C 8270D	ANALYSI		INVOI	નાપક્ષ.	PC		ME OY
			2 EJ G	COMP		2	2								PAH	(s 827)	DD SIM	S REQUES		CE TO	205)#		109/20
				ANY		ar cardin												STED	□ Archive □ Other_	SA:	Rush cha	D RUSH	Page	SN. G
	4 7 52	4/2/2	4/2	DATE		elven at										N			Samples	MPLE DISP(after 30 days	rges authoriz	rd Turnaroun	waround	1/vwz/
		1520	1520	TIME												otes	MP-2-0)SAL 3	ed by:	đ	TIME	205

Ph. (206) 285-8282	Seattle, WA 98119-2029	Friedman & Bruya, Inc. 3019 16 th Avenue West				E-C-W	E-C-12	E-6-6	E-5-W	11-5-3	E-S-5.5	11-4-2	E-4-12	Sample ID			PhoneEr	City, State, ZIP	Address	Company PBS	00409
Received by:	Relinguished by:	Kelinquished by:	SIC		8	18 A-D	17 1	16 A.E	15-AD	14 1	13AE	17 4-2	34/1	Lab ID	4		nail				
		the for	NATURE										\$ K/up	Sampled	Date						
		Ń				1315	1300	1250	1230	1210	1205	1150	1130	Sampled	Time			REMAR		PROJEC	SAMPLE
	5Ar	Natur				Σ	s	s	٤	S	S	દ	5	Type	Sample	-		SX	Pux 1	T NAME	CHAIN (
	(bu)	n Dick	PRINT N			2	S	5	<u>بر</u>	S	5	2	5	TPH-H	* S. HCID			-	H,	1 Sc - Am	OF CUS
	N Y	\$	AME										XXX	TPH-D TPH-Ga BTEX by	Diesel usoline				4	ŝ	TODY
		Û.												VOCs by SVOCs by	8260C y 8270D	ANALYSI		IOANI	4140	· PC	IE OY
	T	280	COMH											PAHs 827	OD SIM	S REOUE	-	CE TO	4.0.40)#	109/0
	T	5	ANY		amples re											STED	D Archiv	S	Rush ch	D RUSH	
		4/2/	DAT		ceived at												ve Samples	AMPLE DI se after 30 c	arges autho	ard Turnar	VS4/V
	24	152	E TIM		toc									Notes				SPOSAL lays	rized by:	ound	NUZ CC
,		<u>/V</u>		[<u> </u>		<u> </u>]		<u> </u>								1	-	ħ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 24, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included are the additional results from the testing of material submitted on April 9, 2020 from the KCM South Base Annex Phase II 41484.004, F&BI 004098 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Nathan Dickey PBS0424R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 9, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental KCM South Base Annex Phase II 41484.004, F&BI 004098 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
004098 -01	E-1-4
004098 -02	E-1-11
004098 -03	E-1-W
004098 -04	E-2-5
004098 -05	E-2-11
004098 -06	E-2-W
004098 -07	E-3-6
004098 -08	E-3-12
004098 -09	E-3-W
004098 -10	E-4-5.5
004098 -11	E-4-12
004098 -12	E-4-W
004098 -13	E-5-5.5
004098 -14	E-5-11
004098 -15	E-5-W
004098 -16	E-6-6
004098 -17	E-6-12
004098 -18	E-6-W

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098 Date Extracted: 04/13/20 Date Analyzed: 04/22/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
E-1-W 004098-03	<50	<250	95
Method Blank 00-897 MB	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/20 Date Received: 04/09/20 Project: KCM South Base Annex Phase II 41484.004, F&BI 004098

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 1	Laboratory Contro	ol Sample	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	61-133	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N O A		С С А		
	in the second		9999 - 1997	- Welling of a second sec		a an a sa an	Servineesingulaaridetsestel süünet en
0	a a company of the second s						
Data File Name Operator Instrument Sample Name Run Time Bar Acquired on Report Created	e : : : : : : : : : : : : : : : : : : :	C:\HPC TL GCL 004098 13 Apr 14 Apr	HEM\1\DATA -18 20 01:53 20 08:00	2\04-1 3 PM 5 AM	3-20\014	F0401.D Page Number Vial Number Injection Number Sequence Line Instrument Metho Analysis Method	: 1 : 14 : 1 : 4 d: DX.MTH : DX.MTH
			χ		· · · · ·		

	-	n an
D O	Ő	
	•	
	1	
	Construction for Andreastic	
	a series de la constante de la c	
	And the second se	
Data File Name : C:\HPCHEM\1\DATA	\04-	13-20\003F0301.D
Operator : TL Instrument : GC1 Sample Name : 500 Dx 58-146H		Page Number : 1 Vial Number : 3 Injection Number : 1
Run Time Bar Code: Acquired on : 13 Apr 20 08:39	АМ	Sequence Line : 3 Instrument Method: DX.MTH
Report Created on 17 Apr 20 03:12	PM	Analysis Method : DEFAULT.MTH

• • •

PO So <	Priedman & Bruya, Inc. 2012 16 th Avenue West Seattle, WA 98119-2029 Relinquished by: Receiver by: Receiver by: Relinquished by: Receiver by: Relinquished by: Receiver by: Relinquished by: Receiver by: Receiver by: Relinquished by: Receiver by: Receive	E-4-5,5 /0 AE 1 11	E-3-60 07 AD 111	E-3-12 08 1 105	E-3-6 07A-E 104	E-2-6 06A-D 100	E-2-11 05 1 100	E-2-5 OFAE 09	E-(-W D3A2 097	E-1-11 02 1 08	E-1-4 O(A.E 4/9/20 08	Sample ID Lab ID Date Ti Sampled Sam		Phone Email methers distage provident	City. State, ZIP	Address Ser Her	Commany QRS PI
Image: Second state	- Ngther Q	20 S 5	00 W 4	5 2	10 5 5	os w y	<u>s</u>	5 5 95	ъ к Ч	5 S 9S	40 S S	npled Type Jars TPH-HCID		*	EMARKS	eling II	ROJECT NAME
	Liky Pros										× × ×	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM	ANALYSES REO		INVOICE TO	41484,00C	PO #

	E-6-0	E-6-6 E-6-6	E-5-W	11-5-3	E-S-5.5	11-4-12	E-4-12	Sample ID	PhoneE	City, State, ZIP	Address	Company PBS	DOYOG Report To		
*	18 A-D	164.5	15-AD	14 V	13A.E	17 A-D	1 7. A. I.	Lab ID	mail				X		
	1315	1250	1230	1210	1205	1 1150	1/4/10 1130	Date Time Sampled Sample		REM		PROJ	SAMP		
	E H	s s s s	E K	s s	S S	ی بر	5 5	Sample # of	A.	ARKS	PLX H	ECT NAME	PLERS (signature)		
							XXX	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B			7_	Awe	custoby MC		
San								VOCs by 8260C SVOCs by 8270D PAHs 8270D SIM		INVOICE TO	1484,005	PO#	04/04/2		
mples received at 40C								TED Notes	D Archive Samples	SAMPLE DISPOSAL Representation of the second	Rush charges authorized by	Standard Turnaround	$\frac{D}{D} \frac{V>7}{Page \#} \frac{VW2}{2} \frac{1}{6f}$ TURNAROUND TIMI		
	Samples received at $\frac{1}{0}$ C	$\begin{array}{ c c c c c c } \hline E-\mathcal{L}-\mathcal{U} & & & & & & & & & & & & & & & & & & &$	E-C-6 $IGA-E$ $I250$ S S $E-C-12$ $I7$ I $I300$ S S $E-C-12$ $I7$ I $I300$ S S I $E-C-12$ $I7$ I $I300$ S S I I $E-C-12$ $I7$ I $I300$ S S I I I I $E-C-12$ $I7$ I $I300$ S S I	E-S-w ISAD I230 W V E-C-I2 IGAE I250 S S III E-C-I2 I7 I I300 S S III IIII E-C-I2 I7 I I300 S S IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E-S-1I $I4$ $I21o$ S S III $I4$ $I230$ W Y $E-S-W$ $ISAD$ $I230$ W Y Y $I230$ W Y	E-S-5.5 $(3.4.5)$ (1205) S S IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	$E \cdot 4 - \omega$ $I3 + b$ $I150$ ω 4 $I11$ $E - S - 5.5$ $I3 + c$ $I2os$ S S $I11$ $I11$ $E - S - 11$ $I4$ $I2os$ S S $I11$ $I11$ $I111$ $I111$ $E - S - 11$ $I4$ $I2os$ S S $I111$ $I1111$ $I1111$ $I1111$ $I1111$ $I1111$ $I1111$ $I1111$ $I1111$ $I1111$ $I11111$ $I11111$ $I11111$ $I11111$ $I11111$ $I11111$ $I11111$ $I111111$ $I111111$ $I1111111$ $I111111111111111111111111111111111111$	$E-u-12$ $1/A \in \mathcal{U}_{A/1w}$ 1130 S S S/SX $E-u-w$ $13A \div S$ 1130 W 1130 S S S/SX $E-S-5.S$ $13A \div S$ 1130 W 1130 S S S/SX $E-S-5.S$ $13A \div S$ 1205 S S M M M M $E-S-11$ 14^{-V} 1210 S S M <th< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Phone Email Chrone Samples Sample ID Lab ID Date Time Sample are Antive Samples E-4-12 1/4 \mathcal{E} M/A/ne 1130 S S Type date Type date Type date Notes E-4-12 1/4 \mathcal{E} M/A/ne 1130 S S TPH-Diesel Notes E-5 - 11 1/4 \mathcal{V} 1150 1205 S S TPH-Diesel Notes E-5 - 11 1/4 \mathcal{V} 1210 S S S H H Notes E-5 - 11 1/4 \mathcal{V} 1230 S S H H Notes E-6 - 12 12 \mathcal{V} 1360 S S H</td><td>Gity, State, ZIP REMARKS INVOICE TO Quartice State Disposal Phone Email Colspan="2" Sample INVOICE TO Quartice Samples Sample ID Date Time Sample Advance Colspan="2" Sample E - U - 12 $11 A \mathcal{E}$ M/A/Le Notae Sample Advance Colspan="2" Sample Advance <th colsp<="" colspan="2" td=""><td>Adivos \mathcal{P}_{IIV}, State, ZIP \mathcal{P}_{IIV}, State, ZIP</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th></td></th<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Phone Email Chrone Samples Sample ID Lab ID Date Time Sample are Antive Samples E-4-12 1/4 \mathcal{E} M/A/ne 1130 S S Type date Type date Type date Notes E-4-12 1/4 \mathcal{E} M/A/ne 1130 S S TPH-Diesel Notes E-5 - 11 1/4 \mathcal{V} 1150 1205 S S TPH-Diesel Notes E-5 - 11 1/4 \mathcal{V} 1210 S S S H H Notes E-5 - 11 1/4 \mathcal{V} 1230 S S H H Notes E-6 - 12 12 \mathcal{V} 1360 S S H	Gity, State, ZIP REMARKS INVOICE TO Quartice State Disposal Phone Email Colspan="2" Sample INVOICE TO Quartice Samples Sample ID Date Time Sample Advance Colspan="2" Sample E - U - 12 $11 A \mathcal{E}$ M/A/Le Notae Sample Advance Colspan="2" Sample Advance <th colsp<="" colspan="2" td=""><td>Adivos \mathcal{P}_{IIV}, State, ZIP \mathcal{P}_{IIV}, State, ZIP</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th>	<td>Adivos \mathcal{P}_{IIV}, State, ZIP \mathcal{P}_{IIV}, State, ZIP</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>		Adivos \mathcal{P}_{IIV} , State, ZIP	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2020

James Welles, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Welles:

Included are the results from the testing of material submitted on April 9, 2020 from the KCM SBA Soil Drum 41484.004, F&BI 004099 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures PBS0414R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 9, 2020 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental KCM SBA Soil Drum 41484.004, F&BI 004099 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID 004099 -01 <u>PBS Engineering and Environmental</u> Soil-Comp

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/09/20 Project: KCM SBA Soil Drum 41484.004, F&BI 004099 Date Extracted: 04/10/20 Date Analyzed: 04/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
Soil-Comp 004099-01	< 0.02	< 0.02	< 0.02	<0.06	<5	101
Method Blank 00-842 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	101

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/09/20 Project: KCM SBA Soil Drum 41484.004, F&BI 004099 Date Extracted: 04/10/20 Date Analyzed: 04/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
Soil-Comp 004099-01	<50	<250	105
Method Blank 00-891 MB2	<50	<250	107

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Soil-Comp 04/09/20 04/10/20 04/10/20 Soil	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental 41484.004, F&BI 004099 004099-01 004099-01.038 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	6.14		
Barium	53.7		
Cadmium	<1		
Chromium	11.9		
Lead	8.84		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 04/10/20 04/10/20 Soil	Client: Project: Lab ID: Data File: Instrument:	PBS Engineering and Environmental 41484.004, F&BI 004099 I0-212 mb2 I0-212 mb2.037 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/09/20 Project: KCM SBA Soil Drum 41484.004, F&BI 004099

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 004090-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	102	69-120
Toluene	mg/kg (ppm)	0.5	102	70-117
Ethylbenzene	mg/kg (ppm)	0.5	102	65 - 123
Xylenes	mg/kg (ppm)	1.5	107	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/09/20 Project: KCM SBA Soil Drum 41484.004, F&BI 004099

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

RPD

15

Laboratory Code: 004088-01 (Matrix Spike) Sample Percent Percent Reporting Spike Result Acceptance Recovery Recovery Analyte Units Level (Wet Wt) MSMSD Criteria (Limit 20) Diesel Extended mg/kg (ppm) 86 100 73-135 5,000 <50 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Analyte Level LCS Criteria Diesel Extended 5,000 86 74-139 mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/09/20 Project: KCM SBA Soil Drum 41484.004, F&BI 004099

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 004047-05 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	3.09	74 b	76 b	75 - 125	3 b
Barium	mg/kg (ppm)	50	42.7	100	109	75 - 125	9
Cadmium	mg/kg (ppm)	10	<1	96	98	75 - 125	2
Chromium	mg/kg (ppm)	50	13.3	91	90	75 - 125	1
Lead	mg/kg (ppm)	50	1.51	92	94	75 - 125	2
Mercury	mg/kg (ppm	5	<1	97	99	75 - 125	2
Selenium	mg/kg (ppm)	5	<1	92	92	75 - 125	0
Silver	mg/kg (ppm)	10	<1	88	92	75 - 125	4

Laboratory Code: Laboratory Control Sample

Laboratory Co	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Arsenic	mg/kg (ppm)	10	82	80-120		
Barium	mg/kg (ppm)	50	106	80-120		
Cadmium	mg/kg (ppm)	10	109	80-120		
Chromium	mg/kg (ppm)	50	105	80-120		
Lead	mg/kg (ppm)	50	104	80-120		
Mercury	mg/kg (ppm)	5	106	80-120		
Selenium	mg/kg (ppm)	5	98	80-120		
Silver	mg/kg (ppm)	10	102	80-120		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.