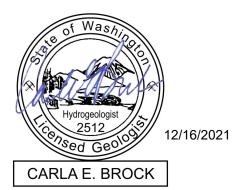
REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT

Shelton C Street Landfill, Shelton, Washington

Prepared for: City of Shelton

Project No. 150074-08 • December 16, 2021 • Final


REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT

Shelton C Street Landfill, Shelton, Washington

Prepared for: City of Shelton

Project No. 150074-08 • December 16, 2021 • Final

Aspect Consulting, LLC

Carla Brock, LHG
Senior Associate Geologist
cbrock@aspectconsulting.com

Peter S. Bannister, PE
Senior Associate Engineer
dheffner@aspectconsulting.com

Ali Cochrane, LG Senior Geologist acochrane@aspectconsulting.com

V:\150074 Shelton C Street Landfill Remediation\Deliverables\RIFS\FINAL RIFS\Shelton C Street_Final_RIFS Report_20211216.docx

Contents

	cronyms		v
Ex		ummarying Under Agreed Order	
		story and Remedial Investigation	
		ility Study for Potential Cleanup Alternatives	
1		ction	
	1.1 Rep	oort Organization	1
2	Site Des	scription and Background	2
		ject Location and Description	
		e History	
	2.2.1	Property Ownership	
	2.2.2	Landfilling History	
	2.2.3	Regulatory History	
		ology and Hydrogeology	
		ure Site Use	
	2.5 Gro	undwater Use	5
3	Field Inv	vestigations	6
		vious Environmental Investigations	
	3.2 Site	Characterization	7
	3.2 Site 3.2.1	Characterization	
		Characterization	7
	3.2.1 3.2.2 3.2.3	Contaminants of Potential Concern	7 9
	3.2.1 3.2.2 3.2.3 3.2.4	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program	9 9 11
	3.2.1 3.2.2 3.2.3	Contaminants of Potential Concern	9 9 11
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program	7 9 11 15
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results	7 9 11 15
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model	7 9 11 15 17
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model ntaminants and Sources	7 9 11 15 17
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor 4.2 Nat 4.2.1 4.2.2	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model htaminants and Sources ure and Extent Physical Conditions Soil Quality	
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor 4.2 Nat 4.2.1 4.2.2 4.2.3	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model ntaminants and Sources ure and Extent Physical Conditions Soil Quality Groundwater Quality	
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor 4.2 Nat 4.2.1 4.2.2 4.2.3 4.2.4	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model ntaminants and Sources ure and Extent Physical Conditions Soil Quality Groundwater Quality Soil Vapor/Landfill Gas Quality	71517181819
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor 4.2 Nat 4.2.1 4.2.2 4.2.3 4.2.4 4.3 Fate	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model ntaminants and Sources ure and Extent Physical Conditions Soil Quality Groundwater Quality Soil Vapor/Landfill Gas Quality e and Transport	
4	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Concep 4.1 Cor 4.2 Nat 4.2.1 4.2.2 4.2.3 4.2.4 4.3 Fate 4.4 Pot	Contaminants of Potential Concern Potential Exposure Pathways Site Screening Levels Remedial Investigation Field Program Remedial Investigation Results tual Site Model ntaminants and Sources ure and Extent Physical Conditions Soil Quality Groundwater Quality Soil Vapor/Landfill Gas Quality	

ASPECT CONSULTING

5	Pro	posed	l Cleanup Standards	22
	5.1	Clear	nup Levels	22
	5.2	Point	s of Compliance	22
	5	.2.1	Soil Points of Compliance	22
	5	.2.2	Groundwater Points of Compliance	
6	Fea	sibilit	y Study	23
	6.1	Reme	edial Action Objectives	23
	6.2	Poter	ntially Applicable Laws and Regulations	23
	6.3	Reme	edial Technologies	25
	6	.3.1	Landfill Capping	25
	6	.3.2	Source Removal	25
	_	.3.3	Institutional Controls	
	6	.3.4	Long -Term Monitoring	
	6.4	Selec	ction and Description of Remedial Alternatives	26
	6	.4.1	Alternative 1: Permeable Soil Cap, Institutional Controls, and	26
	6	.4.2	Monitoring Alternative 2: Impermeable Cap, Institutional Controls, and	26
	U	.4.2	Monitoring	27
	6	.4.3	Alternative 3: Removal of WWTP Sludge, Permeable Soil Cap,	
	_		Institutional Controls, and Monitoring	
	_	.4.4	Alternative 4: Full Removal of Contaminated Media	_
	6.5		uation of Remedial Alternatives	
	_	.5.1	Threshold Criteria Evaluation	
		.5.2	Disproportionate Cost Analysis	
	_	.5.3	Reasonable Restoration Time Frame Evaluation	_
	6.6	Reco	mmendation	34
Re	feren	ces		34
1 11	mitati	one		27

List of Tables

- 1 Groundwater Well Data
- 2a Surface Soil Characterization Data Dioxins/Furans, PAHs, and Metals
- 2b Surface Soil Characterization Data TPH, Pesticides/Herbicides, PCBs, and SVOCs
- 2c Surface Soil Characterization Data VOCs
- 3a Groundwater Data Geochemistry, TPH, and Metals
- 3b Groundwater Data PAHs, SVOCs, and VOCs
- 3c Groundwater Data Dioxins/Furans, Pesticides/Herbicides, and PCBs
- 4 Soil Gas Data
- 5 Cover Soil Characterization Data
- 6a Proposed Site Cleanup Levels for Soil
- 6b Proposed Site Cleanup Levels for Groundwater
- 7 Components of Remedial Alternatives
- 8 Disproportionate Cost Analysis

List of Figures

- 1 Site Vicinity Map
- 2 Current Site Features
- 3 Zoning Map
- 4 Aerial Photos 1965–1989
- 5 Site Characterization Plan
- 6 Cross Section A-A'
- 7 Cross Section B-B'
- 8 Groundwater Potentiometric Map, January 12, 2018
- 9 Groundwater Potentiometric Map, December 20, 2018
- 10 Groundwater Potentiometric Map, April 1, 2019
- 11 Groundwater Potentiometric Map, July 1, 2019

List of Appendices

- A Geophysical Survey Report
- B Exploration Logs
- C Laboratory Reports
- D Remedial Alternative Cost Estimate
- E Report Limitations for Guidelines for Use

Acronyms

2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

Agreed Order Agreed Order No. DE 12929

AOC Administrative Order on Consent

AF/yr acre-feet per year

APH air-phase hydrocarbons

ARARs Applicable Relevant and Appropriate Requirements

Aspect Consulting, LLC

bgs below ground surface

BPA Bonneville Power Administration

BTEX benzene, toluene, ethylbenzene, and xylene

CERCLA Comprehensive Environmental Response, Compensation,

and Liability Act

City City of Shelton

CLARC Cleanup Levels and Risk Calculation

COCs contaminants of concern

COPC contaminant of potential concern

cPAH carcinogenic polycyclic aromatic hydrocarbons

CSM conceptual site model

CY cubic yards

DCA disproportionate cost analysis

DU Decision Unit

Ecology Washington State Department of Ecology

EDB 1,2-dibromoethane
EDC 1,2-dichloroethane

EM electromagnetic induction

ER electrical resistivity

EPA U.S. Environmental Protection Agency

FS Feasibility Study

ASPECT CONSULTING

IM&M inspection, maintenance, and monitoring

ISM incremental sampling methodology

LEL lower explosive limit

MCL Maximum Contaminant Level
MFS Minimum Functional Standards

mg/kg milligrams per kilogram

ug/L micrograms per liter

ug/m³ micrograms per cubic meter

MTBE methyl tert-butyl ether

MTCA Model Toxics Control Act

NAVD88 North American Vertical Datum of 1988

NPV net present value

OSHA Occupational Safety and Health Administration

PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls

pg/g picograms per gram

PID photoionization detector

ppb parts per billion

PQL practical quantitation limits

Qa Quaternary alluvial deposits

Qc Quaternary undifferentiated sedimentary deposits

Qgo Quaternary proglacial or recessional outwash

Qgt Quaternary glacial till

RAO remedial action objectives

RCW Revised Code of Washington

RI Remedial Investigation

RI Work Plan Remedial Investigation Work Plan

SEPA State Environmental Policy Act

SHA Site Hazard Assessment

SL Screening Levels

ASPECT CONSULTING

SVOCs semivolatile organic compounds

TEQ toxic equivalent concentration

TPH total petroleum hydrocarbons

USCS Unified Soil Classification System

VOC volatile organic compound

WAC Washington Administrative Code

WISHA Washington Industrial Safety and Health Act

WSDOT Washington State Department of Transportation

WWTP wastewater treatment plant

Executive Summary

This report presents the results of the remedial investigation (RI) and feasibly study (FS) for the Shelton C Street Landfill, a former municipal solid waste landfill, located in Shelton, Washington (herein referred to as the Site; Figure 1). The Site is located on a 16.7-acre parcel owned by the City of Shelton (the Property; Figure 1). The Property is at the west end of West C Street, just west of the overpass across U.S. Highway 101 in Mason County, Washington.

Reporting Under Agreed Order

The RI/FS Report has been prepared for submittal to the Washington State Department of Ecology (Ecology) to meet the requirements of the Model Toxics Control Act Cleanup Regulation (MTCA) and regulations implementing it, Chapter 173-340 of the Washington Administrative Code (WAC 173-430). The RI/FS Report has been prepared in general accordance with the Remedial Investigation Checklist Guidance (Ecology, 2016a) and the Feasibility Study Checklist Guidance (Ecology, 2016b) and the requirements of the Agreed Order No. DE 12929 (Agreed Order) between the City of Shelton (City) and Ecology.

Site History and Remedial Investigation

The Shelton C Street Landfill is an unlined landfill that received municipal solid waste between approximately 1928 and the mid-1980s, consisting of residential solid waste and by-products, research waste, and demolition debris from nearby pulp mills, and sludge from the City's wastewater treatment plant (WWTP). Placement of these materials and spills or releases from associated activities are considered the potential sources of contaminants of potential concern (COPCs) to soil, groundwater, and soil vapor at the Site.

The Site characterization work completed during the RI consisted of a geophysical survey in May 2017, collection and laboratory analysis of surface soil in an area where the WWTP sludge was reportedly disposed of (referred to as the Surface Characterization), installation and sampling of four groundwater monitoring wells beginning in December 2017, performance of a soil gas survey in December 2018, and test pit excavations and sampling to characterize landfill cover soils in February 2020.

The COPCs identified as exceeding the Site Screening Levels (SLs) during the RI site characterization work and posing a potential risk to current or future receptors consist of the following:

- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs), dioxins/furans, and metals (barium, copper, lead, mercury, selenium, silver, and zinc) in surface soil
- Total and dissolved arsenic, iron, and manganese in groundwater
- Acrolein and benzene in soil vapor

Feasibility Study for Potential Cleanup Alternatives

The FS included evaluation of four remedial alternatives developed with consideration of the COPCs listed above and the potential risk to current or future receptors, and met all MTCA criteria. The alternatives consisted of:

- Alternative 1 Install a permeable soil cap, implement institutional controls, and conduct long-term monitoring
- Alternative 2 Install an impermeable cover system with geomembrane layer and stormwater controls, implement institutional controls, and conduct long-term monitoring
- Alternative 3 Remove WWTP sludge, install a permeable soil cap, implement institutional controls, and conduct long—term monitoring
- Alternative 4 Conduct full removal of landfill waste

FS alternatives were evaluated against criteria defined by MTCA, including comparative assessment of the environmental benefits and costs of each alternative to determine the alternative that uses permanent solutions to the maximum extent practicable. Based on the results of the FS evaluation, the recommended alternative, Alternative 1, has a reasonable restoration time frame, is the most cost-effective of the four remedial alternatives evaluated, and is identified as the alternative that is permanent to the maximum extent practicable. Alternative 1 includes installation of a permeable soil cap to prevent direct contact with landfill waste and contaminated soil by human and terrestrial receptors. Implementation of institutional controls would prevent future, unrestricted development or any other activities that could create exposure pathways for direct contact with the contaminated soil or landfill waste. An inspection, monitoring, and maintenance (IM&M) program to document and maintain the functional stability of the remedy is included.

1 Introduction

This report presents the results of the remedial investigation (RI) and feasibly study (FS) for the Shelton C Street Landfill, a former municipal solid waste landfill, located in Shelton, Washington (herein referred to as the Site; Figure 1). The Site is located on a 16.7-acre parcel owned by the City of Shelton (the Property; Figure 1). The Property is at the west end of West C Street, just west of the overpass across U.S. Highway 101 in Mason County, Washington. The City of Shelton (City) acquired the Property in 1928 and used a portion of it as a municipal solid waste landfill through the early 1980s for disposal of solid waste generated within the City limits and the surrounding areas.

The RI/FS Report has been prepared to meet the requirements of Agreed Order No. DE 12929 (Agreed Order) between the Washington State Department of Ecology (Ecology) and the City, executed on September 30, 2016. The scope of work for the RI/FS was outlined in the "Remedial Investigation Work Plan, Shelton C Street Landfill" (RI Work Plan; Aspect, 2017) and the "Memorandum regarding Shelton C Street Landfill – Remedial Investigation Work Plan Addendum and Feasibility Study Approach" (Addendum; Aspect, 2018). The draft RI/FS Report was submitted to Ecology in August 2019. Ecology reviewed the draft RI/FS Report and provided comments in a letter dated December 20, 2019 (Ecology, 2019). The final RI/FS Report incorporates Ecology's comments.

The purpose of this RI/FS is to collect and evaluate sufficient information to develop and evaluate cleanup action alternatives to enable selection of a cleanup action for the Site in accordance with Washington Administrative Code (WAC) 173-340-360 through -390. The RI/FS has been completed to meet the requirements of the Model Toxics Control Act (MTCA) Cleanup Regulation and regulations implementing it, Chapter 173-340 WAC.

1.1 Report Organization

This RI/FS report has been organized in accordance with Ecology's RI and FS Checklist Guidance documents (Publications No. 16-09-006 and 16-09-007, respectively) dated May 2016 and includes the following:

- Section 2 provides a definition of the Site and property and presents a summary of the background information, including the environmental setting, historical use of the property/vicinity, and regulatory involvement.
- Section 3 provides the scope of work and results of the RI, including a summary
 of the historical environmental studies/actions and screening/cleanup levels used
 to evaluate the soil, groundwater, and soil vapor/landfill gas data collected for the
 RI to facilitate Site characterization.
- Section 4 presents the Conceptual Site Model (CSM) for the Site, including the sources and nature and extent of concentrations of hazardous substances in soil and groundwater at the Site, and a preliminary assessment of potential receptors and exposure pathways.

- Section 5 presents the proposed cleanup standards for future cleanup at the Site, including cleanup levels and points of compliance for soil and groundwater.
- Section 6 presents the FS, including a summary of cleanup standards, remedial action objectives (RAOs), and applicable laws and regulations; the results of the screening and detailed evaluation of feasible remedial alternatives; and a description of the recommended remedial alternative.

2 Site Description and Background

This section describes the project location and a summary of ownership and operational history, including the documented waste disposal practices and regulatory actions. A significant amount of historical research pertaining to the Shelton C Street Landfill has been completed by others (Aspect, 2017). This section presents a summary of that information.

2.1 Project Location and Description

The Property is currently vacant, undeveloped land, covered by shrub vegetation and trees (Figure 2). The Property is located outside of the city limits, but within the Shelton Urban Growth Area and is zoned Public Institutional, for which permitted uses include government buildings, cultural facilities, churches, public utilities, and parks or open space (Figure 3). A 250-foot-wide strip of land along the eastern edge of the Property is a utility right-of-way that includes transmission towers, overhead electrical transmission lines, and a buried natural gas pipeline (Figure 2). The surface topography indicates a bowl-like depression near the center of the Property that reflects the limits of historical aggregate mining and subsequent landfilling. Portions of a paved access road that was formerly used to access the base of the bowl-like depression remain in place. Public access to the Property is restricted by a locking gate approximately 1,500 feet east of the Property on West C Street and signage indicating restricted access.

The Property is bound to the west and south by active gravel mining operations of the Miles Sand & Gravel Shelton Plant and Pit; to the east by Washington State Department of Transportation (WSDOT) right-of-way and U.S. Highway 101, beyond which is more active mining land owned by Miles Sand & Gravel; and to the north by vacant forest land (Figure 2). The land surrounding the Property is mostly zoned Industrial except to the north where it is zoned Rural Residential (Figure 3).

2.2 Site History

This section describes the Site history through property ownership, landfilling history, and regulatory history. To offer some historical context, Figure 4 provides a series of historical aerial photos that depict the landfill activities between 1965 and 1989. Earlier aerial photographs were not located.

2.2.1 Property Ownership

Before 1928, the Property was privately owned and mined for sand and gravel aggregate. The Property was purchased by the City in May 1928, including both the parcel and a perpetual easement for access. Landfilling activities started the same year the City acquired the property. In July 1931, the City sold the property to Rainier Pulp and Paper Company, but retained the right to continue to use the land as a garbage dump. Rayonier, Incorporated, successor of Rainier Pulp and Paper Company, sold the property back to the City in July 1949, except for a 250-foot-wide strip for which Rayonier granted an easement to Bonneville Power Administration (BPA) in August 1949. An additional transmission line easement, consisting of 62.5 feet on the west side of the BPA easement, was conveyed from the City to the federal government in 1956. In 1972, the City transferred 1.44 acres of property, located on the east side of the BPA easement, to the State of Washington for highway improvements and public rights-of-way.

2.2.2 Landfilling History

The landfill received municipal solid waste between approximately 1928 and the mid-1980s. Early on, waste consolidation practices included open burning and on-property incineration, common for the era. Documented waste streams disposed at the landfill and waste management practices included:

- Between 1931 and 1934, the landfill received by-products from the Rainier Pulp and Paper Company pulp mill in Shelton.
- Between 1931 and 1974, the landfill reportedly received waste from the Rayonier research laboratory, demolition debris from decommissioning of the Rayonier pulp mill, and sludge from a Port of Shelton Imhoff tank (a chamber used for reception and processing of sewage).
- From the mid-1950s to the mid-1960s, an incinerator constructed on the landfill property reportedly burned garbage.
- Between 1951 and 1981, the landfill was reportedly used for disposal of the City's wastewater treatment-plant sludge.
- Between 1976 and 1981, processed sludge from the City's wastewater treatment plant containing fly-ash material was disposed of in the landfill. The light, fly-ash baghouse residue (consisting of one-third unburned or charred wood residue and two-thirds salt) was generated by a wood-burning, boiler power plant at the Simpson Timber Company Shelton timber mill. One report documents that approximately 4.5 million gallons of sludge with a solids content of 30 to 40 percent by weight was disposed of in the landfill between July 1979 and November 1981 (CH2M Hill, 1986).

Additional details pertaining to historical ownership and regulatory activities are summarized below.

2.2.3 Regulatory History

In September 1973, the U.S. Environmental Protection Agency (EPA) notified Ecology of an August 1973 inspection of the 'Shelton dump site' in which they found it to be in violation of "Regulation I, Section 9.01 of the Olympic Air Pollution Control Authority,"

and requested any information that EPA should consider prior to issuance of a notice of violation to the "Shelton City Dump" (EPA, 1973). A response letter dated October 15, 1973, from Ecology indicated that an implementation schedule was in place, and approved by the Olympic Air Pollution Control Authority, to work towards cessation of open burning at the Shelton dump (Ecology, 1973). The letter further indicated that open burning at the Shelton dump would stop on January 31, 1974, and that a new central sanitary landfill site would begin operation in August 1974. An EPA Land Disposal Site Modification report, dated May 1975, indicates that the Shelton Dump site has been 'eliminated' with 'rats eradicated, burning stopped, water pollution corrected, and site covered' (EPA, 1975).

In May 1986, EPA and Simpson Timber Company announced that dioxin compounds were detected in baghouse ash from a wood-fueled boiler at the Simpson mill power plant during a national EPA study to evaluate dioxin contamination in the environment (EPA, 1986a). A study to determine whether this contamination was present at the Shelton C Street Landfill is detailed below in Section 3.1.

A July 2, 1986, Ecology inspection of the Shelton Dump, C Street indicated that the landfill was still being used for disposal and identified recent dumping of vegetative debris, small quantities of trash and household debris, and disposal of sewage treatment-plant sludge (Ecology, 1986).

EPA issued an Administrative Order on Consent (AOC) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to the Simpson Timber Company, effective September 26, 1986, to investigate potential releases of dioxins and furans to the environment associated with wastewater treatment-plant sludge disposal at three Shelton-area landfills (CH2M Hill, 1986), and to "determine the nature and extent of any threat to the public health or welfare or the environment that may be caused by the release or threatened release of hazardous substances, specifically dioxins and furans..." (EPA, 1986b). One of the specific objectives of the study was to determine the dioxin and furan content of sludge at the Shelton C Street Landfill. A discussion of the activities completed under the AOC is provided in Section 3.1.

On January 4, 1988, the "Correction and Closure Plan: Shelton Landfill Disposal Facility," prepared by Brown and Caldwell, provided recommendations to implement corrective actions and landfill closure (Brown and Caldwell, 1988). Specifically, the plan called for placement of 2 feet of soil cover over sludge soils, request for a variance to allow for Site closure without a groundwater monitoring system, and recommended new and larger signs as additional access control measures. There is no information that indicates whether these recommendations were implemented.

In a June 8, 2004, letter, Ecology notified the City of a pending Site Hazard Assessment (SHA; Ecology, 2004). SHAs are conducted as a preliminary assessment of a site to assign a hazard ranking. Hazard ranking scores range from 1 to 5, where a 1 represents the highest level of risk and a 5 the lowest. These scores are used to help Ecology prioritize cleanup sites to work on. On June 5, 2014, Ecology published the SHA indicating an overall rank of 3, which appears to be based primarily on potential risk to human health through migration of contaminants via groundwater from the landfill to drinking water sources, even though releases to groundwater have not been documented.

2.3 Geology and Hydrogeology

The Site is in a region referred to as the Puget Lowland, characterized by heterogeneous, glacially deposited sediments within a large topographic basin. Geologic maps identify the surface unit at the Site as Quaternary proglacial or recessional outwash (Qgo) deposited during the Vashon Stade of the Fraser Glaciation (Logan, 2003). These materials were encountered during drilling for installation of the Site groundwater monitoring wells and consist of alternating layers of poorly consolidated silty gravels, gravelly sands, and silty sands. Uphill and north of the Site, the surface unit is highly compacted Quaternary glacial till (Qgt), which stratigraphically underlies the Qgo, and was encountered in the boring for installation of monitoring well AMW-3 at approximately 110 feet below ground surface (bgs), at an elevation of approximately 60 feet relative to the North American Vertical datum of 1988 (NAVD88). Southwest of the Site, there are younger alluvial and undifferentiated sedimentary deposits (Qa and Qc, respectively) in the valley containing Goldsborough Creek.

Regionally, the "Final WRIA 14/ Kennedy-Goldsborough Watershed Phase II Hydrogeologic Investigation" indicates that the area contains six main geologic units; three that act as regional groundwater aquifers, and three that act as aquitards (Final WRIA 14; Northwest Land and Water, 2005). Hydrogeologic cross sections created for the Final WRIA 14 report pass near the Property and show Unit A overlying a confining layer of till (Unit B) atop an intermediate aquifer (Unit D), a deep aquitard of fine or silty sand (Unit E), and the deepest, highly permeable aquifer (Unit F) overlying bedrock as deep as 600 feet bgs (Northwest Land and Water, 2005). Static groundwater was observed in on-Site groundwater monitoring wells installed for the RI situated within the recessional outwash at elevations ranging from 64 to 73 feet NAVD88, which correspond to depths ranging from 83 to 108 feet bgs. Based on groundwater level measurements obtained in January 2018, December 2018, April 2019, and July 2019, groundwater levels fluctuated up to 8.5 feet, and the inferred groundwater flow direction toward the south-southeast.

2.4 Future Site Use

Future land use for the Property is uncertain, and the FS assumes development consistent with current zoning and easements. The Property is located outside of the city limits, but within the Shelton Urban Growth Area and is zoned Public Institutional, for which permitted uses include government buildings, cultural facilities, churches, public utilities, and parks or open space.

Land use at neighboring parcels is currently limited to mining activities at the Miles Sand & Gravel pit to the south and west. A large development project is being planned on vacant forest land located directly to the north and northwest of the Property. This project is anticipated to convert 604 acres of currently vacant, vegetated area into a mixed-use commercial, residential, and recreational development.

2.5 Groundwater Use

The shallow aquifers, Units A and D, are the most common groundwater sources of drinking and industrial water supply in the region. These aquifers are high yielding and

can deliver water at up to 1,500 gallons per minute (Golder, 2002). Of the private wells in the area, most are sourced out of the shallower Unit A aquifer (Northwest Land and Water, 2005). The City municipal water is sourced from the Shelton Springs and from the Unit F aquifer through two deep wells that are located approximately 1.5 miles northeast of the Site (Northwest Land and Water, 2005). The estimated total groundwater usage for the subbasin that contains Goldsborough Creek and the Site is 22,514 acre-feet per year (AF/yr), of which 18,436 AF/yr is for commercial and industrial uses (Golder, 2002).

A query was made on the Ecology well log database to identify water supply wells that lie within 0.25 miles of the Site. There are four wells on record that lie to the east or southeast of the Site, downgradient from the Site. The nearest to the property is a well owned by Rayonier, likely for industrial usage. It was completed in 1942, reaches 742 feet bgs into the Unit F aquifer, and exhibits flowing or artesian conditions (GeoEngineers, 2013). To the southeast, the second well is owned by Exceptional Foresters for domestic usage. It was drilled in 1984 to a depth of 190 feet bgs, and had a static water level 70 feet bgs at the time of drilling. The third well is owned by Leroy Saboe, presumably for domestic use. It was drilled in 1983 to a depth of 208 feet bgs, and had a static water level at 14 feet bgs. The last well is an industrial supply well owned by Scott Hilburn. It was drilled to 230 feet bgs, and had a static water level at 15 feet bgs at the time of drilling.

3 Field Investigations

This section presents a brief summary of the previous environmental investigation work, details of RI investigation work by Aspect Consulting, LLC (Aspect), and results of the RI investigations.

3.1 Previous Environmental Investigations

Prior to the RI, the only known investigation of the Site was conducted in 1986 following a national EPA study of dioxin/furan-contaminated sites. This study identified the baghouse ash from the Simpson Timber Company's wood-burning boiler as a source of dioxin.

A 1986 Dioxin Sampling Plan (CH2M Hill, 1986), prepared to meet the requirements of the AOC, indicates that baghouse residue mixed with municipal sludge was discharged into a 100- by 150-foot area of the Shelton C Street Landfill. The Final Dioxin Study Report (CH2M Hill, 1987) documents sampling results, including those collected to "determine the chlorinated dioxin and furan content of the residual sludge at the City of Shelton landfill (the only landfill with uncovered deposits of potentially contaminated sludge)."

Ten surface soil samples, collected from the sludge-disposal area at the landfill, were collected between the ground surface and 4 inches bgs, and composited for laboratory analysis of dioxins and furans. The specific sampling locations within the landfill are not documented. In addition, soil samples from outside of the sludge-disposal area were

collected from two vertical intervals (0 to 3 inches bgs and 3 to 6 inches bgs) for analysis of particle-size distribution and organic carbon content.

The results of the investigation are presented in the Final Dioxin Study Report (CH2M Hill, 1987). Based on the particle-size distribution, soils at the Site were classified as gravelly sandy loams to very gravelly sands and contained about 25 percent gravel by volume. The total organic carbon content ranged from 12 to 40 percent, but averaged 35 percent for the gravelly sandy loam that was most prevalent in the samples (CH2M Hill, 1987). The laboratory chemical results detected the principal congener of concern, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) at 0.17 parts per billion (ppb) with a total 2,3,7,8-TCDD toxic equivalent concentration (TEQ)¹ of 3.1 ppb (CH2M Hill, 1987).

The EPA Report of Dioxin Study Findings and Announcement of Public Meeting, dated April 13, 1987, discussed these results. The conclusions made by EPA, based on the investigation results, included the following:

- The vertical migration of 2,3,7,8-TCDD was likely limited to 6 inches based on the adsorption capacity of the landfill soils and the expected increased binding capacity over time as organic material decomposes.
- Leaching of 2,3,7,8-TCDD into groundwater was extremely unlikely given the immobility of dioxins/furans and the presence of organic carbon in landfill soils that further decrease potential leaching.

EPA further concluded that there did not appear to be any exposure to dioxins/furans, given the Site conditions, but that potential exposure because of dioxin/furan-containing sludge at the ground surface could not be quantified (EPA, 1987). Dioxin/furan-containing sludge was evaluated during the RI field program by Aspect, as described in Section 3.2.4.2.

3.2 Site Characterization

3.2.1 Contaminants of Potential Concern

Except for some old and limited data for dioxins/furans, as discussed above, prior to the RI, there had been no investigation into the presence of COPCs at the Site. Because of this, a broad list of COPCs was developed for evaluation during the RI. The COPCs were identified in the Final Chemicals of Potential Concern and Screening Levels Technical Memorandum (Aspect, 2016). The list of COPCs comprises three categories:

- Chemicals commonly associated with municipal landfills and/or included in landfill compliance monitoring and closure requirements.
- Chemicals documented to be present.

To evaluate cleanup level compliance for mixtures of dioxins and/or furans, the TEQ is calculated by multiplying each dioxin and furan congener by its corresponding toxicity equivalency factor and then adding the toxic equivalent concentrations of all the congeners to obtain a total toxic equivalent concentration of 2,3,7,8-TCDD (WAC 173-340-708[8][d]).

• Chemicals potentially present based on the reported and/or suspected disposal of waste from demolition and operation of local pulp, paper, and timber mills.

A description of each of these categories, and the specific chemicals associated with them, is provided in the following sections.

3.2.1.1 Landfill Chemicals of Potential Concern

Most waste, by volume, in the Shelton C Street Landfill is assumed to be municipal solid waste, defined by WAC 173-350 as waste consisting of unsegregated garbage, refuse, and similar solid waste materials discarded from residential, commercial, institutional, and industrial sources and community activities. The primary COPCs were those that are either typically associated with municipal solid waste landfills and/or required to demonstrate compliance with state laws and regulations regarding groundwater quality near the landfill. The preliminary COPC groups include the following:

- Metals, including priority pollutant metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, and silver) and geochemical indicator trace metals (calcium, iron, magnesium, manganese, sodium, and zinc)
- Total petroleum hydrocarbons (TPH)
- Volatile organic compounds (VOCs)
- Semivolatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs)
- Pesticides and herbicides
- Other geochemical indicator parameters, including alkalinity, ammonia, chloride, cyanide, nitrate, nitrite, and sulfate

3.2.1.2 Chemicals Documented to be Present

Based on the Site background information compiled and reviewed in scoping for the RI, as summarized above, there was little existing chemical data for the Shelton C Street Landfill before the RI was conducted. The results of limited investigation activities performed in the 1980s identified the presence of dioxins and furans in sludge/surface soil at the Shelton C Street Landfill. Based on this, dioxins and furans were identified as preliminary COPCs for the RI.

3.2.1.3 Chemicals Associated with Mill Waste Disposal and Others

Early in its operation (1931–1934), the landfill reportedly received by-products from the Rayonier (formerly Rainier Pulp and Paper) pulp mill. In addition, as described in detail in the sections above, dioxins and furans are documented to be present in wastewater treatment-plant sludge that contained baghouse ash from the Simpson Timber Company timber mill and placed in the landfill. The Correction and Closure Plan (Brown and Caldwell, 1988) indicated periodic disposal of waste under special permit, including dredge spoils from Oakland Bay, old dock timbers from rework of one of the mill facilities, demolition debris from decommissioning of the Rayonier pulp mill, and residues from cleanup of a hardware store fire. In addition to those chemicals already presented above, the COPCs associated with these miscellaneous waste disposal activities include:

- Polychlorinated biphenyls (PCBs)
- Total sulfide

3.2.2 Potential Exposure Pathways

The Site Screening Levels (SLs) for the RI were developed based on the identification of current and potential future exposure pathways and receptors. Potential future exposure pathways and receptors consider reasonably anticipated future Site use(s). In contrast to the Public Institutional zoning of the Shelton C Street Landfill property, the surrounding properties are primarily zoned Industrial, where current and future surrounding land use is primarily aggregate mining. Public access to the landfill property, and the surrounding aggregate mining properties, is restricted for safety reasons. However, illegal public access of the landfill property for recreational use is evident by the presence of off-road vehicle trails. With this setting and current and potential future Site uses, the following exposure pathways and receptors are applicable:

- Soil/landfill waste leaching to groundwater Contaminants in soil and landfill
 waste can leach to groundwater by infiltration of precipitation through
 contaminated soil and landfill waste or where groundwater is in contact with
 contaminated soil or landfill waste.
- Ingestion of groundwater Human receptors have the potential to contact contaminants in groundwater via ingestion. The presence, nature and extent of COPCs in groundwater will be evaluated during the RI to determine whether ingestion of groundwater is a complete pathway.
- Direct contact with soil and landfill waste Human and terrestrial receptors have the potential to contact contaminants in surface and shallow subsurface soil under current exposure scenarios.
- Soil vapor/landfill gas discharge to ambient air Soil vapor/landfill gas has the potential to migrate and expose ambient air receptors to volatile contaminants.

Groundwater discharge to surface water in Goldsborough Creek is a potential migration pathway. However, the nearest expression of surface water in Goldsborough Creek to the southeast, which is the presumed downgradient location from the landfill, is approximately 0.4 miles.

3.2.3 Site Screening Levels

This section presents the Site SLs, values that are used to evaluate data collected during the RI to assess the nature and extent of contamination at the Site. The Site SLs were developed based on the current and potential future exposure pathways and receptors, as presented in the previous section, and applicable regulatory criteria. The Site SLs are not cleanup levels, they are intentionally conservative, representing the most stringent of the relevant and appropriate criteria for all potential exposure pathways. The proposed Sitespecific cleanup levels are discussed in Section 5.

3.2.3.1 Soil

Landfill waste is heterogeneous and, for purposes of cleanup, assumed to be impacted with regulated hazardous substances. Under MTCA, it is not necessary to investigate the

presence, nature, or extent of COPCs in the landfill waste. Ecology recognizes the need to use engineering controls, such as containment, for sites that contain large volumes of materials containing relatively low levels of hazardous substances (WAC 173-340-370[3]), where treatment or removal is impracticable. MTCA allows for containment to be the preferred remedy for historical landfill sites and uses the Minimum Functional Standards (MFS) established in WAC 173-304 as a relevant and appropriate requirement (WAC 173-340-710[7][c]). Therefore, the soil criteria, including the Site SLs and final cleanup levels, apply to soil within the MTCA Site, but outside of the waste footprint of the landfill.

The Site SLs for soil include consideration of the following:

- MTCA Method B cleanup levels from the Ecology Cleanup Levels and Risk Calculation (CLARC) database.
- Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals.
- Natural Background Soil Metals Concentrations in Washington State (Ecology, 1994).
- Natural Background for Dioxins/Furans in Washington soils (Ecology, 2010).

The Site SLs are the lowest published values of the MTCA Method B cleanup level and the Ecological Indicator Soil Concentration, adjusted upward, if appropriate, when compared to background concentrations and laboratory practical quantitation limits (PQLs), in accordance with MTCA (WAC 173-340-709 and -705[6]). There are no MTCA Method B cleanup levels for TPH, so the MTCA Method A cleanup levels are used. The Site SLs for soil are included in Table 2.

3.2.3.2 Groundwater

The Site SLs for groundwater are based on the protection of drinking water and include the following:

- MTCA Method B groundwater cleanup levels from the Ecology CLARC database.
- Federal and State Maximum Contaminant Levels (MCLs).

The Site SLs are the lowest published values of these criteria, adjusted upward, if appropriate, so that Site SLs are not lower than the laboratory PQLs. There are not MTCA Method B cleanup levels or MCLs for TPH in groundwater, so the MTCA Method A values are used. The Site SLs for groundwater are included in Table 3.

3.2.3.3 Soil Vapor/Landfill Gas

Landfill gas is produced during decomposition of solid waste and typically contains methane and other organic and inorganic gases. MTCA does not provide cleanup levels for methane or landfill gas, but does establish Standard Method B air cleanup levels that do not exceed 10 percent of the lower explosive limit (LEL) of any hazardous substance

-

10

When Ecology determines that the closure requirements in WAC 173-304 or WAC 173-351 are legally applicable or relevant and appropriate requirements, the more stringent closure requirements under those laws shall also apply to cleanup actions.

or mix of hazardous substances (WAC 173-340-750[3][b][iii]). The MFS (WAC 173-304) provide air quality and toxic air emissions requirements that may apply to landfill gas at the property, as follows:

- The concentrations of explosive gases cannot exceed 25 percent of the LEL in Site structures.
- The concentration of explosive gases cannot exceed the LEL in the subsurface at or beyond the property boundary.
- The concentration of explosive gases cannot exceed 100 parts per million by volume of hydrocarbons (expressed as methane) in off-Site structures.

The LEL for methane is 5 percent by volume.

The presence of hazardous substances in landfill waste may provide a source of contaminants to soil vapor. Individual contaminant concentrations in soil vapor were compared to MTCA Method B soil gas screening levels. TPH in soil vapor, including airphase hydrocarbons (APH) and petroleum-associated VOCs, were compared to the generic MTCA Method B TPH screening level for deep soil gas in accordance with Ecology's Implementation Memorandum No. 18 (Ecology, 2018). The Site SLs for volatile COPCs in soil vapor are included in Table 4.

3.2.4 Remedial Investigation Field Program

The scope of work for the RI was developed to address data gaps regarding the nature and extent of contamination to enable selection of cleanup standards, and identification and evaluation of cleanup alternatives. The data gaps identified during preparation of the RI Work Plan (Aspect, 2017) are as follows:

- The hydrogeologic conditions at the Site, including the presence, thickness, and characteristics of aquifers and aquitards, and groundwater flow direction and gradients.
- The lateral and vertical extent of landfill waste.
- The presence, nature, and extent of COPCs in surface and shallow subsurface soil.
- The relationship between groundwater and the landfill waste, and the potential for contaminants to be leaching from landfill waste to groundwater.
- The presence, nature, and extent of COPCs in groundwater.
- The presence, nature, and extent of landfill gas and COPCs in soil gas.

The RI field program components addressing these data gaps consisted of four initial phases of work, including the Geophysical Investigation, Surface Characterization, Groundwater Evaluation, and Landfill Gas Investigation, which were completed in accordance with the RI Work Plan and Addendum (Aspect, 2017 and 2018). The RI Work Plan and Addendum were both approved by Ecology prior to the RI field activities.

Following Ecology's review of the draft RI/FS Report, an additional scope of work was developed to characterize landfill cover soil. Observations of surface conditions during

the RI field work indicate that imported cover soils were historically placed over the landfill waste. However, the origin and quality of this soil is unknown. Ecology requested that the landfill cover soil be characterized as part of the RI. Ecology reviewed and approved the scope of work for the landfill soil cover characterization on January 21, 2020.

Each investigation phase is described below in Sections 3.2.2.1 through 3.2.2.4, respectively. The results of the investigations are presented in Section 3.2.3.

3.2.4.1 Geophysical Investigation

A geophysical investigation consisting of an electromagnetic induction (EM) survey, magnetic survey, and electrical resistivity (ER) survey was completed to provide preliminary information regarding the lateral extent and thickness of landfill waste at the Site. The geophysical surveys, including the field data collection occurring on May 17 and 18, 2017, and interpretation, were completed by hydroGEOPHYSICs, Inc., based out of Portland, Oregon.

Electromagnetic induction data was acquired along parallel survey lines over the survey area. Magnetic data was collected using a cesium-vapor magnetometer along parallel survey lines across the survey area. The ER survey was performed using a SuperstingTM R8 multichannel electrical resistivity system and 18-inch long electrodes, installed 8 to 10 inches into the ground on 2-foot spacing along multiple transects across the Site.

Information from the survey was used to guide the subsequent phases of the RI field program. The geophysical survey area and the interpreted lateral boundary of landfill waste are shown on Figure 5. The data package and report prepared by hydroGEOPHYSICS, Inc., is included as Appendix A.

3.2.4.2 Surface Characterization

The surface characterization was conducted on July 25 and 26, 2017, to characterize the presence, nature and extent of COPCs in surface and shallow subsurface soil in the vicinity of the reported disposal of sewage treatment-plant sludge containing baghouse residue. The surface characterization utilized incremental sampling methodology (ISM) to determine average concentrations of COPCs within three Decision Units (DUs). Two separate sample types were obtained for characterization of the DUs: 1) a single, standard ISM sample from each DU, comprised of 30 soil sample increments collected from the top 6 inches of soil, was submitted for laboratory processing, subsampling, and analysis of diesel- and oil-range TPH, metals, SVOCs, PCBs, chlorinated pesticides and herbicides, and dioxins/furans; and 2) discrete samples obtained at a frequency of one sample for each 10,000 square feet of DU was submitted for laboratory analysis of volatile TPH and VOCs. Soil samples were submitted to Friedman and Bruya, Inc., in Seattle, Washington, for analysis. Analysis of dioxin/furans was further subcontracted to Frontier Analytical Laboratories in Eldorado Hills, California.

The extents of the DUs, locations of soil sample increments, and locations of discrete soil samples are shown on Figure 5. The RI Work Plan includes a detailed description of the specific sampling, processing, and analytical procedures for the surface characterization. Results of the surface characterization are presented in Section 3.2.5.1.

3.2.4.3 Groundwater Evaluation

The groundwater evaluation consisted of installation of four groundwater monitoring wells (AMW-1 to AMW-4; Figure 5) and three quarters of groundwater sampling to evaluate hydrogeologic conditions and groundwater quality. Well locations were selected based on the results of the geophysical investigation. Wells AMW-1 and AMW-2 are installed to the east and southeast, near the lateral boundary of the landfill waste and provide groundwater quality data cross- to downgradient of the waste. AMW-4 was installed as far south as possible, constrained by the property boundary, and is situated within the extent of the landfill waste. Well AMW-3 is installed west of the landfill waste to evaluate groundwater quality upgradient of the landfill.

The drilling and well construction were conducted by Holocene Drilling, Inc., using a sonic rig between December 11 and 22, 2017. The soil types were observed and classified by an Aspect geologist in accordance with the Unified Soil Classification System (USCS). Field screening of the soil included measurement of volatile organic vapor sin soil using a photoionization detector (PID), conducting water-sheen testing, and observing soil for staining and odors. The borings were advanced to approximate maximum elevations of 57 to 60 feet NAVD88, correlating to depths of approximately 105 to 120 feet bgs. Monitoring wells were installed in each boring with 20 feet of screen constructed between elevations of 80 and 60 feet NAVD88 (+/-3 feet; Table 1) and completed with 8-inch-diameter steel aboveground monuments. All wells were developed following installation, and the top of each well casing, top of each well monument, and ground surface were surveyed by Professional Land Surveyors, Inc. (PLS) to the nearest 0.01 foot. Well construction details and measured groundwater elevations are shown in Table 1, and the well construction logs are included in Appendix B.

Groundwater samples were obtained from each well during four sampling events occurring in January 2018, December 2018, April 2019, and July 2019. Groundwater samples collected during the initial groundwater sampling event in January 2018 were submitted for analysis of the full list of preliminary COPCs, in accordance with the RI Work Plan (Aspect, 2017). Based on the results of the January 2018 groundwater sampling and the surface characterization, select COPC groups were eliminated from the laboratory analytical program for subsequent groundwater sampling events, after consultation with Ecology. The adjusted COPCs list for later groundwater monitoring and sampling events included diesel-range TPH, total and dissolved metals, PAHs, and dioxins/furans (in addition to geochemical parameters), as described in the Addendum (Aspect, 2018). VOCs were later added to the COPCs list for subsequent groundwater sampling events based on discussions with Ecology. All groundwater samples were submitted to Friedman & Bruya, Inc., in Seattle, Washington, for analysis. Analysis of dioxin/furans was further subcontracted to Frontier Analytical Laboratory based in El Dorado Hills, California.

Groundwater elevation contours based on water level data obtained during each of the four sampling events are shown respectively on Figures 8 through 11. Results of the groundwater sampling are discussed in Section 3.2.5.2.

3.2.4.4 Landfill Gas and Soil Gas Investigation

A landfill gas and soil gas investigation was conducted to evaluate the presence, nature, and extent of landfill gas and COPCs in soil gas surrounding the landfill waste. Five temporary soil gas probes (SG-1 to SG-5; Figure 5) were installed at locations where the geophysical investigation suggested landfill waste was present.

On December 19, 2018, Holocene Drilling, Inc., installed each temporary soil gas probe using steel rods driven to approximately 20 feet bgs by a direct-push rig and fitted with 0.25-inch FEP-lined polyethylene tubing. An Aspect field geologist conducted landfill gas monitoring for methane, carbon dioxide, and oxygen at each location prior to obtaining a soil gas sample for laboratory analysis. A soil gas sample was collected from each soil gas probe using a laboratory-supplied and certified, evacuated 1-liter SUMMA cannister fitted with a 150 milliliters-per-minute flow controller and dedicated sampling train. Samples were submitted for analysis of the full list of COPCs for soil gas in accordance with the RI Work Plan. All soil gas samples were submitted to Friedman & Bruya, Inc., in Seattle, Washington. Results of the soil gas sampling and landfill gas monitoring are discussed in Section 3.2.5.3.

3.2.4.5 Cover Soils Characterization

The cover soil characterization was conducted on February 14, 2020, to characterize the cover soil that is overlying the landfill waste in areas outside of the WWTP sludge disposal area. Four test pits (TP-01 to TP-04; Figure 5) were excavated in locations where cover soils are present at ground surface. Test pits were excavated until landfill waste was encountered (generally, 2 to 6 feet bgs) using a track mounted backhoe excavator owned and operated by the City. An Aspect field geologist observed the excavations and classified soil types in accordance with USCS and conducted field screening. Field screening of the soil included measurement of volatile organic vapors in soil using a photoionization detector (PID), conducting water-sheen testing, and observing soil for staining and odors.

One composite soil sample was obtained from each test pit, comprised of three increments of approximately equal volume: one increment collected from a sidewall at a depth of approximately 1 foot bgs, one increment collected from another sidewall at a depth of approximately 1 foot above the landfill waste, and third increment collected from a third sidewall at a depth located between the first two. Increments were combined in a stainless-steel bowl and transferred to laboratory provided sample jars. The soil samples were submitted to Friedman & Bruya, Inc. of Seattle, Washington for laboratory analysis as follows:

- All samples were analyzed for contaminants that are commonly encountered in imported fill, consisting of PAHs, metals, pesticides/herbicides, and diesel- and oil-range TPH.
- One sample, obtained from the test pit located farthest from the WWTP disposal area (test pit TP-03), was analyzed for dioxins/furans.
- One discrete sample, collected from test pit TP-03, was analyzed for gasoline-range TPH and BTEX.

The locations of the test pits are shown on Figure 5. The test pit logs are provided in Appendix B. Results of the sampling are described in Section 3.2.5.4.

3.2.5 Remedial Investigation Results

This section presents the results of the RI field program completed by Aspect between 2017 and 2020. The results are presented by RI phase and further relied upon to update the CSM in Section 4. The exploration locations are shown on Figure 5. The data is provided in Tables 2 through 4. Laboratory reports are included in Appendix C.

3.2.5.1 Surface Soil Characterization Results

A total of three composite soil samples, each comprised of 30 soil sample increments, and 6 discrete soil samples were collected and analyzed to meet the objective of the surface characterization. Soil across the three DUs consisted of cover soil, mainly gravelly, silty sand, or wastewater sludge, a fine-grained, dark grey silt-like material. The results of the surface characterization identified concentrations of cPAHs, dioxin/furans, and metals above the Site SLs in surface soil samples collected from all three DUs, as follows:

- Total cPAHs³ were detected in the samples collected from all three DUs above the Site SL of 0.14 milligram per kilograms (mg/kg), at concentrations ranging from 0.34 mg/kg to 1.1 mg/kg (Table 2a).
- One chlorinated dibenzo-p-dioxin compound, 2,3,7,8-TCDD, was detected in the samples collected from all three DUs at concentrations ranging from 144 picograms per gram (pg/g) to 828 pg/g, all of which are above the Site SL of 2.0 pg/g (Table 2a). Furthermore, concentrations of total dioxins² (ranging from 1,760 pg/g to 12,200 pg/g) and total furans² (ranging from 280 pg/g to 2,520 pg/g) were detected in the samples collected from all three DUs above the Site SLs of 2.2 pg/g (Table 2a).
- Concentrations of metals, including barium, copper, lead, mercury, selenium, silver, and zinc, were detected at concentrations exceeding Site SLs in one or more of the DUs (Table 2a).

The remaining COPCs were either not detected above laboratory reporting limits, or were detected at concentrations below the Site SLs, as shown in Tables 2a through 2c.

3.2.5.2 Groundwater Evaluation Results

The data collected from monitoring wells on the Site in 2018 and 2019 indicates that water levels are highest on the northern and western sides of the Site and lowest on the southern side, indicating a general south-southeasterly groundwater flow direction (Figures 8 through 11). The laboratory results indicate that concentrations of COPCs in groundwater were either not detected or were detected below the Site SLs, with the

_

³ Total cPAHs and total dioxin/furans were calculated using the TEQ methodology and the toxicity equivalency factors (TEFs) prescribed in MTCA and WAC 173-340-708(8)(e).

exceptions of arsenic, iron, and manganese in select wells and monitoring events, as described below:

- Total and dissolved arsenic were detected at concentrations above the Site SL of 0.2 ug/L (micrograms per liter) in groundwater samples collected from wells AMW-2, AMW-3, and AMW-4, with concentrations ranging from 0.207 to 0.718 ug/L (Table 3a). These concentrations are below the natural background of 5 ug/L identified in MTCA (see Table 720-1).
- Total and dissolved iron were detected at concentrations above the Site SL of 300 ug/L in groundwater samples collected from all Site monitoring wells, with concentrations ranging from 317 to 5,630 ug/L (Table 3a). For context, the MTCA Method B formula value for iron is 11,200 ug/L.
- Total and dissolved manganese were detected at concentrations above the Site SL of 50 ug/L in groundwater samples collected from all Site monitoring wells, with concentrations ranging from 58.1 to 2,560 ug/L (Table 3a). For context, the MTCA Method B formula value for manganese is 2,240 ug/L.

Groundwater analytical data for the January 2018, December 2018, April 2019, and July 2019 monitoring events are shown on Tables 3a through 3c.

3.2.5.3 Soil Gas/Landfill Gas Results

Monitoring for landfill gas at the five soil gas sample locations showed methane up to 1.3 percent (SG-4), carbon dioxide up to 10.9 percent (SG-1), and oxygen between 7.6 percent (SG-4) and 20.2 percent (SG-2). Carbon sulfide was not identified, and laboratory analysis of soil gas samples did not show concentrations of methane above the laboratory reporting limit of 0.05 percent.

The results of soil gas samples submitted for laboratory analysis were compared against MTCA Method B Deep Soil Gas Screening Levels in accordance with the RI Work Plan (Aspect, 2017). TPH in soil gas were calculated and compared to the generic MTCA Method B total TPH screening level for deep soil gas. In accordance with Ecology's Implementation Memorandum No. 18 (Ecology, 2018), APH and petroleum-associated VOCs (benzene, toluene, ethylbenzene, and xylene [BTEX], 1,2-dibromoethane (EDB), 1,2-dichloroethane (EDC), methyl tert-butyl ether (MTBE) and naphthalene) were totaled, using one-half of the laboratory detection limit for nondetects of BTEX and naphthalene, and zero in place of the laboratory detection limit for nondetects of EDB, EDC, and MTBE. COPCs were generally not detected or were detected below the MTCA Method B Screening Levels, with the following exceptions:

- Acrolein was detected in the soil gas samples collected from probe SG-2 (4.5 micrograms per cubic meter [ug/m³]) and SG-3 (9.8 ug/m³) at concentrations above the MTCA Method B Screening Level of 0.914 ug/m³. Although acrolein was not detected above laboratory reporting limits in soil gas samples collected from probes SG-1, SG-4, and SG-5, the reporting limits exceed the SL, and exceedances of acrolein at these locations cannot be ruled out.
- Benzene was detected in soil gas samples collected from probes SG-1 (62 ug/m³), SG-4 (220 ug/m³) and SG-5 (38 ug/m³) at concentrations above the MTCA Method B Screening Level of 32.1 ug/m³.

16

The soil gas data and the MTCA Method B Screening Levels are presented in Table 4.

3.2.5.4 Cover Soil Characterization Results

A total of four composite samples, one from each test pit, and one discrete sample obtained from test pit TP-03 were collected and analyzed to meet the objectives of the cover soil characterization. Cover soils excavated at the test pit locations consisted generally of gravelly, silty sand underlying approximately 6 inches of topsoil. Although some debris was observed in the cover soil, including fragments of brick, asphalt, and ceramics, the cover soil is distinguishable from the landfill waste by soil type and color and was visually determined in the field at the time of the investigation.

Material interpreted to be landfill waste was encountered at depths ranging from 2 to 6 feet bgs in the test pits, and generally consisted of black gravelly silty sand mixed with abundant debris including wood, glass, brick, concrete chunks, and domestic trash. The results of the cover soil characterization identified lead, mercury and dioxins/furans at concentrations above the Site SLs, as follows:

- Concentrations of total dioxins (20.1 pg/g) and total furans (5.37 pg/g) were detected in the soil sample collected from test pit TP-03 above the Site SLs of 2.2 pg/g.
- Lead was detected above the Site SL of 50 mg/kg in the samples collected from test pits TP-01 and TP-02 at concentrations of 153 mg/kg and 62.2 mg/kg, respectively.
- Mercury was detected above the Site SL of 0.1 mg/kg in the samples collected from test pits TP-01 and TP-03 at concentrations of 0.15 mg/kg and 0.14 mg/kg, respectively.

The remaining contaminants were either not detected above laboratory reporting limits, or were detected at concentrations below the Site SLs, as shown on Table 5.

4 Conceptual Site Model

This section presents the CSM, which was originally developed in the RI Work Plan and refined based on the results of the RI. The CSM is the basis for developing technically feasible cleanup alternatives and selecting a final cleanup action. The following sections discuss the components of the CSM, including the sources of the COPCs, the nature and extent of contamination identified, and a preliminary exposure assessment.

4.1 Contaminants and Sources

The Shelton C Street Landfill is an unlined landfill that received solid waste between approximately 1928 and the mid-1980s, consisting of municipal solid waste, wastes from nearby pulp and timber mills, and processed sludge from the City's WWTP that contained fly-ash baghouse residue from the Simpson Timber company Shelton timber mill. Because of its age, the landfill contents are heavily degraded. The COPCs detected at the Site at concentrations exceeding Site SLs are metals (consisting of arsenic, barium,

copper, iron, lead, manganese, mercury, selenium, silver, and zinc), cPAHs, dioxins/furans, acrolein, and TPH. The source of COPCs at the Site is the landfill waste, with the following exceptions or clarifications:

- The processed wastewater sludge contains cPAHs, dioxins/furans, and metals at concentrations exceeding the Site SLs.
- Arsenic, iron, and manganese in groundwater are likely secondary contaminants associated with the reduced groundwater conditions typically associated with landfill waste.
- The landfill cover soil contains lead, mercury and dioxin/furans at concentrations exceeding the Site SLs. The source of the cover soils is unknown. Contaminants may have been present in cover soils prior to placement at the Site. Alternatively, the contaminants in cover soils may be a result of the intermixing of cover soils with WWTP sludge and/or landfill waste during past grading activities.

The extent of landfill waste is depicted on Figure 4. Due to its heterogeneous nature, specific contaminant sources within the waste have not been identified, except for the WWTP sludge. However, concentrations of acrolein and benzene reported in soil gas are assumed to originate from waste in the landfill.

4.2 Nature and Extent

4.2.1 Physical Conditions

Historically, the Property was mined for sand and gravel aggregate, resulting in a deep depression that was partially filled with solid waste, including WWTP sludge, and cover soils. The bowl-like depression remains today, with surface elevations within the bowl that are 50 to 80 feet lower than the ground surface surrounding the bowl (Figure 4).

Cover soils were observed across the landfill except in the northwest portion of the landfill, where WWTP sludge is exposed at the surface. The cover soils consist of gravelly, silty sand with minor amounts of municipal solid waste. The processed wastewater sludge is evident as a fine-grained, dark grey silt-like material. Based on the geophysical survey and observations during the cover soil characterization, the thickness of the cover soils is typically 6 to 10 feet, but range from as thin as 2 feet up to 15 feet. Disposal of approximately 4.5 million gallons of WWTP sludge (CH2M Hill, 1986) would result in an average of 4 to 5 feet of sludge in the sludge disposal area. During the surface characterization sampling, sampling locations were excavated to maximum depths of 6 inches, which did not identify the maximum vertical extent of the WWTP sludge in most sampling areas. The WWTP sludge was generally observed to pinch out to thicknesses less than 6 inches near the perimeter of the sludge disposal area shown on Figure 4. The municipal solid waste is approximately 20 to 25 feet thick. Assuming the maximum thicknesses of both cover soil, and landfill waste, the bottom of the waste is located at an approximate elevation of 108 feet NAVD88.

The subsurface conditions observed in explorations completed for the site characterization generally confirmed the geophysical survey findings and encountered cover soils, municipal solid waste, and/or glacial deposits. The glacial deposits consist of recessional outwash, which is comprised of poorly consolidated sand and gravel with

varying amounts of silt, overlying glacial till. Approximately 7 feet of cover soils and municipal solid waste were observed in the boring for well AMW-2. Approximately 26 feet of fill was observed in the boring for well AMW-4 and consisted of approximately 9 feet of cover soils overlying approximately 17 feet of municipal solid waste. Glacial deposits were encountered beneath and beyond the extent of the landfill (Figures 6 and 7).

Groundwater is located within the recessional outwash at elevations ranging from 64 to 73 feet NAVD88, which correspond to depths of 83 to 108 feet bgs. This indicates that there is more than 35 feet of separation between the base of the landfill waste and the top of the water table. Based on January 2018, December 2018, April 2019, and July 2019 water level measurements, groundwater levels fluctuated up to 8.5 feet, and the inferred groundwater flow direction is south-southeast.

Subsurface characteristics are shown conceptually on the cross sections presented as Figures 6 and 7. Measured groundwater elevations and inferred groundwater flow directions for each sampling event are shown on Figures 8 through 11.

4.2.2 Soil Quality

Concentrations of dioxins/furans, cPAHs, and metals exceeding Site SLs are contained in wastewater sludge that is present as surface soil in the northwest portion of the landfill (Figure 2). Concentrations of dioxin/furans and cPAHs were generally highest at DU1, in the southwest portion of the sampling area, and lowest at DU3, in the northeast portion of the sampling area (Figure 2). Dioxin/furans and metals (mercury and lead) exceeding the Site SLs are contained in cover soils overlying landfill waste in areas outside of the WWTP sludge disposal area; generally, concentrations in cover soils are all lower than concentrations in the WWTP sludge area and are up to two to three orders of magnitude lower for dioxin/furans. The extents of DU1, DU2, and DU3 and the locations of test pits excavated to characterize cover soils (TP-01 to TP-04) are shown on Figure 5.

4.2.3 Groundwater Quality

Four groundwater sampling events have been completed at the Site to date. Concentrations of primary COPCs have not been detected in groundwater above the Site SLs. Arsenic, iron and manganese, both total and dissolved, have been detected at concentrations exceeding the Site SLs in one or more wells during each sampling event. Although concentrations of total and dissolved arsenic have been detected at concentrations slightly above the Site SL, they are all below the MTCA Method A cleanup level of 5 ug/L for groundwater, which is based on background concentrations in Washington state. Based on these results, arsenic is not considered a contaminant of concern (COC) for the cleanup action. Concentrations of iron and/or manganese have been detected above the Site SLs in groundwater samples collected from all the monitoring wells at the Site and are retained as COCs in groundwater for the cleanup action.

4.2.4 Soil Vapor/Landfill Gas Quality

Concentrations of benzene or acrolein exceeding the SLs were detected in soil gas samples collected from all five of the soil gas probes. The highest concentration of benzene was identified in the southern central portion of the landfill (SG-4), where

landfill waste is anticipated to be the thickest based on the geophysical survey results. The lowest concentrations of benzene were reported in soil gas samples collected nearest to the edges of the landfill waste (SG-2 and SG-3; Figure 5). Methane, typically associated with landfill gas, was not encountered during the RI field investigation activities, which indicates little, if any, landfill gas generation.

4.3 Fate and Transport

The Shelton C Street Landfill received municipal solid waste between the late 1920s and the mid-1980s. The waste consisted primarily of residential solid waste, but was reported to also include disposal of by-products, research waste, and demolition debris from nearby pulp mills, and sludge from the City's WWTP. Because of its age, the landfill contents are heavily degraded. The landfill is unlined, and landfill waste is in contact with the surrounding recessional glacial outwash. The base of the landfill waste is situated more than 35 feet above groundwater.

Dioxin/furans, cPAHs, and metals are at the highest concentrations in surface soil at the northwest portion of the landfill, where WWTP sludge was disposed of on the ground surface. Although liquid wastes likely migrated downward through cover soils and/or landfill waste, the lack of significant impacts to groundwater suggest that the downward migration ceased at a depth above the saturated zone.

Similarly, leachate or other secondary products commonly sourced from the landfill waste and containing COPCs may have migrated downward via precipitation percolating from the ground surface downward through cover soils and landfill waste, impacting underlying native soils. The effect of leachate on groundwater is only observed at monitoring well AMW-4, where average concentrations of dissolved chloride and sodium were greater than at other wells.

COPCs exceeding Site SLs in groundwater are limited to arsenic, manganese, and iron; the highest concentrations of manganese, iron, and arsenic in groundwater have been identified in wells located downgradient of the landfill waste. However, the presence of carbon dioxide in landfill gas at concentrations less than 10 percent (due to late-stage decomposition), and the observed concentrations of arsenic, manganese, and iron in groundwater suggest a natural source of these constituents, and not a landfill or leachate source. Based on the geochemical parameters observed, subtle reducing and/or slightly acidic conditions associated with carbon dioxide in landfill gas resulted in dissolution of the naturally occurring constituents from native soils. Manganese and iron are secondary contaminants and screening levels are based on aesthetic criteria. Concentrations of arsenic only slightly exceed the Site SL and are below the state MCL, based on background conditions (see Table 720-1 in MTCA).

The lack of additional COPCs in groundwater above the Site SLs indicates that there is not an ongoing source of contamination from the landfill to groundwater. The geochemical effects on groundwater aesthetics due to carbon dioxide in soil gas are reversible. For these reasons, impacts to downgradient Goldsborough Creek that may result from discharge of groundwater to surface water are expected to be minimal and are not considered a risk to human health.

Acrolein and benzene identified in soil gas are at the highest concentrations in the southeast portion of the landfill. With the exception of benzene identified in soil gas at probe SG-3, concentrations of acrolein or benzene did not vary significantly between the five sample locations, indicating that sources of benzene and acrolein to soil gas are likely distributed throughout the landfill waste and that there is not a significant ongoing source of volatile COPCs to soil gas. Monitoring of landfill gas showed very low to no methane (up to 1.3 percent) and oxygen concentrations approach atmospheric concentrations in some locations, indicating that generation of landfill gas at the Shelton C Street Landfill is minimal, allowing for atmospheric gases to diffuse into the landfill.

4.4 Potential Receptors and Exposure Pathways

Public access to the Property and surrounding properties is restricted for safety reasons; however, illegal public access of the Property for recreational use is evident. With this setting and current and potential future site uses, the following exposure pathways and receptors are applicable and appear complete based on the data:

 Direct contact with soil and/or landfill waste – Human and terrestrial receptors have the potential to contact landfill waste and COPCs in surface and shallow subsurface soil.

Remaining potential exposure pathways and receptors discussed in Section 3.2.2 are not complete.

Groundwater COPCs exceeding Site SLs consist only of iron and manganese, which are secondary contaminants, and arsenic, which has been detected in groundwater at concentrations below the MCL. These exceedances are not considered likely to pose a risk to human or terrestrial receptors. Therefore, the ingestion of groundwater and possible groundwater discharge to surface water in Goldsborough Creek are not complete exposure pathways.

Soil gas COPCs detected at concentrations exceeding the Site SLs consist of benzene and acrolein. However, the inhalation pathway is considered incomplete because: 1) future use of the Site does not include construction of buildings; 2) the soil vapor exceedances were identified in samples obtained from approximately 20 feet below the ground surface, which is an additional 80 feet below the ground surface of surrounding developable properties; and 3) adjoining properties potentially available for future development are located at least 200 feet away from the landfill, and at least 300 feet away from the soil gas sample locations. Therefore, if future use of the adjoining properties were to include construction of buildings, the vertical and lateral separation demonstrated by the data obtained indicates a low risk for vapor intrusion.

4.4.1 Terrestrial Ecological Evaluation

The remedial alternatives developed during the FS (Section 6.3) each include remedial technologies that will result in the Site's exemption from assessment of terrestrial ecological evaluation consistent with WAC 173-340-7491(1)(b), because the landfill waste will be below "physical barriers that will prevent plants or wildlife from being exposed to soil contamination." As described in Sections 6.4, physical barriers are considered during the FS under Alternatives 1 through 3 and include a permeable soil cap

with geotextile barrier or an impermeable cover system with geomembrane layer, paired with an institutional control to meet the exemption under WAC 173-340-440. Alternative 4 consists of full removal of all landfill waste, eliminating the need for assessment of terrestrial ecological evaluation.

5 Proposed Cleanup Standards

The proposed cleanup levels and points of compliance for the Site are described in the following sections.

5.1 Cleanup Levels

This section identifies the proposed soil and groundwater cleanup levels for the Site. The cleanup levels proposed for the Site have been developed for those COPCs that were identified at concentrations that exceed Site SLs, and for which there is a current or likely future exposure pathway. The proposed soil cleanup levels are provided in Table 6a and are the most stringent of the cleanup levels protective of human health through the direct contact pathway and protective of ecological receptors. The proposed cleanup levels for groundwater are provided in Table 6b, and are the most stringent of the cleanup levels protective of human health and aquatic organisms.

5.2 Points of Compliance

The point of compliance is the point at which the contaminant- and media-specific cleanup levels shall be met at the Site. MTCA defines a point of compliance as "point or points where cleanup levels established...shall be attained." This section describes the points of compliance for the Site. The points of compliance are used for development and evaluation of the cleanup alternatives in the FS.

5.2.1 Soil Points of Compliance

In accordance with MTCA, the standard point of compliance for direct contact with soil extends to 15 feet bgs, based on a reasonable maximum depth of excavation and assumed placement of excavated soils at the surface where contact occurs. The conditional point of compliance extends to 6 feet bgs where an institutional control is established. As described in Section 6.4, the cleanup alternatives considered in the FS that pertain to containment of landfill waste incorporate a physical barrier (either a permeable soil cap with geotextile barrier or impermeable cover system with geomembrane layer) over the waste containment area. Under MTCA and landfill regulations, the presence of a physical barrier allows for further reduction of the depth for the point of compliance. The proposed point of compliance for direct contact with soil with installation of a physical barrier is 30 inches.

5.2.2 Groundwater Points of Compliance

Under MTCA, the standard point of compliance for groundwater cleanup levels is throughout the site, regardless of whether groundwater is potable (WAC 173-340-720(8)(b)). Under criteria for municipal solid waste landfills, groundwater monitoring is required near the edge of the landfill waste, which is considered a conditional point of

compliance under MTCA, and is placed as close as practicable to the edge of the landfill waste.

At the Site, the existing well network includes cross- and downgradient wells situated as near as practicable to the landfill waste boundary and is considered the conditional point of compliance monitoring well network for the Site:

- Wells AMW-1 and AMW-2 are situated east and southeast of the landfill waste boundary.
- AMW-4 was installed as far south as possible, constrained by the property boundary, and is situated within the landfill waste boundary where approximately 16 feet of landfill waste is present.
- AMW-3 is situated upgradient of the landfill waste, approximately 175 feet west of the landfill waste boundary.

6 Feasibility Study

6.1 Remedial Action Objectives

RAOs are medium-specific or site-specific goals for protecting human health and the environment. They are established based on the nature and extent of contamination, the receptors that are currently and potentially threatened, and the potential for human and environmental exposure. Based on the potential exposure pathways, receptors, and site characterization data obtained to date, the RAO is to prevent direct contact with landfill waste and contaminated soil.

6.2 Potentially Applicable Laws and Regulations

The cleanup action must comply with applicable state and federal laws (WAC 173-40-710[1]). Requirements from state and federal laws that are determined to be legally applicable or relevant and appropriate are collectively referred to as applicable or relevant and appropriate requirements (ARARs). Potentially applicable state and federal laws are discussed below.

Minimum Functional Standards for Solid Waste Handling. These regulations (Chapter 173-304 WAC) provide the minimum requirements for cleanup actions conducted under MTCA at solid waste landfills that stopped receiving waste prior to October 9, 1991. Chapter 173-304 WAC became effective in November 1985, replacing Washington State's first MFS for solid waste landfills, Chapter 173-301 WAC.

Criteria for Municipal Solid Waste Landfills. The 173-351 regulations specify postclosure care activities for municipal solid waste landfills that received waste after October 9, 1991.

MTCA. The MTCA statute (Chapter 70.105D Revised Code of Washington [RCW]) is the primary law that governs cleanup of contaminated sites in the state of Washington

ASPECT CONSULTING

(Ecology, 2013). The MTCA cleanup regulation (Chapter 173-340 WAC) specifies criteria for the evaluation and conduct of a cleanup action. It requires that cleanup actions protect human health and the environment, meet environmental standards in other applicable laws, and provide for monitoring to confirm compliance with cleanup levels.

For cleanup actions involving containment of hazardous substances, MTCA has requirements that must be met for the cleanup action to be considered in compliance with soil cleanup standards. These include implementing a compliance monitoring program that is designed to ensure the long-term integrity of the containment system and applying institutional controls where appropriate to the affected areas (WAC 173-340-440).

SEPA. The State Environmental Policy Act (SEPA; Chapter 197-11 WAC) and the SEPA procedures (Chapter 173-802 WAC) ensure that state and local government officials consider environmental values when making decisions. The SEPA process begins when an application for a permit is submitted to an agency, or an agency proposes to take some official action, such as implementing a Cleanup Action Plan under MTCA. Completion of a SEPA checklist would be required prior to initiating remedial construction activities.

Solid and Hazardous Waste Management. The Washington Dangerous Waste Regulations (Chapter 173-303 WAC) would apply if dangerous wastes are generated, and United States Department of Transportation (USDOT) and WSDOT regulations regarding transport of hazardous materials (49 CFR Parts 171-180) would apply if regulated material is transported off-site as part of the cleanup action. The Washington Solid Waste Handling Standards (Chapter 173-350 WAC) regulate handling, treatment, or off-site disposal of nonhazardous solid waste.

Other:

- Occupational Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) regulations (29 CFR 1910.120; Chapter 296-62 WAC) governing worker safety during cleanup action execution. Compliance would be achieved through preparation and implementation of site-specific health and safety plan(s) (HASP[s]) with appropriate controls, worker training and certifications, and occupational monitoring.
- City of Shelton Fill and Grade Permit/Erosion Control Permit for grading/excavation and filling.
- Washington State Water Well Construction Regulations (Chapter 173-160 WAC) regulating groundwater well installation and decommissioning as part of the cleanup action.

The Archeological and Historical Preservation Act (16 USCA 496a-1) would be applicable if any subject materials are discovered during grading and excavation activities. A cultural resources assessment and archeological oversight of subsurface disturbing activities may be required elements of the project.

6.3 Remedial Technologies

This section presents the appropriate remedial technologies considered during development of the remedial action alternatives during the FS. In the subsequent section of this report we assemble potential remedial alternatives from the list of viable technologies.

6.3.1 Landfill Capping

Capping would consist of the placement of a permeable soil cap, or an impermeable cover system with geomembrane layer, over locations where landfill waste or contaminated soil is present to provide a physical barrier to direct contact. Capping will achieve the Site RAOs by limiting the current and potential future human and terrestrial ecological exposure to landfill waste and contaminated soil.

A permeable soil cap, compliant with WAC 173-304-460, reduces precipitation infiltration and provides a physical barrier to direct contact with landfill waste and contaminated soil. Design and installation of a permeable soil cap includes consideration for erosion control to ensure that the integrity of the cap is not compromised over time by stormwater runoff. Cap permeability would be designed as at least 1×10^{-6} centimeters per second (cm/s) to comply with the requirements for closure of landfills prescribed in WAC 173-304-460. An isolation barrier, such as placement of geotextile, can be incorporated into the design to allow for a reduction in total cap thickness while still meeting the MTCA requirements for the protection of terrestrial ecological receptors.

An impermeable cover system with a geomembrane layer eliminates precipitation infiltration in addition to providing a physical barrier to direct contact with landfill waste and contaminated soil. Design and construction of a drainage layer above the geomembrane and stormwater management system would be required to address stormwater runoff.

6.3.2 Source Removal

Source removal would consist of physical removal and off-Site disposal of some or all the landfill waste and/or contaminated soil. Source removal would meet the Site RAOs by permanently removing the source. Standard excavation techniques would be used for source removal, although the physical setting and large volume of material requiring removal would result in significant implementability issues. The RI data indicates that the wastewater treatment plant-sludge would require handling and disposal as Dangerous Waste per WAC 173-303, while remaining landfill waste and contaminated soil could be handled and disposed of as municipal solid waste.

6.3.3 Institutional Controls

Institutional controls would be implemented to ensure that the constructed remedy provides for permanent protection of human health and the environment. They are not intended to physically alter the conditions at the Site or reduce contamination, but involve administrative or engineered tools including but not limited to:

• Restrictive covenants for the property

- Deed restrictions to limit land use, construction, or soil excavation without approval
- Use restrictions to prevent disturbance of the cap or other controls
- Fencing surrounding the landfill and cap and warning signs

Institutional controls are retained as a component of the remedial action.

6.3.4 Long -Term Monitoring

Long-term compliance monitoring is not a stand-alone technology, but is a required element of any cleanup action conducted under MTCA. Compliance monitoring would be conducted to ensure that the selected remedy meets the cleanup standards, both in the short-term and in the long-term. Monitoring requirements may include the integrity and functional stability of the cap, stormwater management systems, and concentrations of COPCs in Site media.

6.4 Selection and Description of Remedial Alternatives

The following remedial alternatives were selected for evaluation in this FS:

- Alternative 1 Install a permeable soil cap, implement institutional controls, and conduct long-term monitoring
- Alternative 2 Install an impermeable cover system with geomembrane layer, implement institutional controls, and conduct long-term monitoring
- Alternative 3 Remove WWTP sludge, install a permeable soil cap, implement institutional controls, and conduct long-term monitoring
- Alternative 4 Conduct full removal of landfill waste

Components of the alternatives are summarized in Table 7. Each alternative is described below, and conceptual design criteria and assumptions are briefly discussed. These criteria and assumptions provide the basis for estimating each alternative's cost. Costs are evaluated over a 30-year period, in accordance with EPA guidance for FS cost estimating. The cost estimates are order-of-magnitude, with an intended accuracy in the range of -30 percent to +50 percent. Costs are estimated in 2019 dollars, and the net present value (NPV) of future-year costs is calculated using a discount factor of 1.5 percent. The estimated costs of the remedial alternatives are listed in Table 8, and itemized cost estimates are provided in Appendix D.

6.4.1 Alternative 1: Permeable Soil Cap, Institutional Controls, and Monitoring

Alternative 1 includes installation of a permeable soil cap and implementation of institutional controls and an inspection, monitoring, and maintenance (IM&M) program to document and maintain the functional stability of the remedy. The existing cover soils would be graded prior to cap installation to minimize the potential for soil erosion and

_

⁴ The discount factor of 1.5 percent is based on the real interest rate on US Treasury 30-year notes and bonds (per the November 2018 revision of Circular A-94 Appendix C, Office of Management and Budget).

ponding of stormwater. The cap would be installed over the full extent of the landfill (approximately 4.0 acres) to prevent direct contact with landfill waste and contaminated soil by human and terrestrial receptors, and meet specifications described in WAC 173-304-460. The soil cap would consist of a geotextile isolation barrier, a minimum 2-foot thick layer of clean, imported low permeability cover materials, and a 1-foot thick vegetative layer of topsoil seeded with grasses or other shallow-rooted vegetation. It would reduce precipitation infiltration, and stormwater would naturally infiltrate at the edge of the soil cap. A soil gas management system would also not be needed. Institutional controls would include a deed restriction to prevent future, unrestricted development or any other activities that could create exposure pathways for direct contact with the contaminated soil or landfill waste, as well as fencing surrounding the landfill. Signage would also be provided warning of the presence of landfill waste, along with a gate or other physical restriction on the access road. The IM&M program would include the following:

- Annual topographic surveys for at least the first 5 years following construction,⁵ to evaluate soil settlement and cap stability.
- Periodic inspection of Site conditions.
- Maintenance of the remedy (e.g., removal of large vegetation from the cap area and filling of eroded areas), performed on an as-needed basis.
- Semiannual groundwater monitoring at the existing well network for iron and manganese concentrations.
- Periodic reporting of IM&M activities to Ecology, including 5-year reviews.

The institutional controls and IM&M program would be required in perpetuity.

For cost estimating purposes, an average imported fill thickness of 36 inches was assumed to ensure that a 30-inch minimum thickness is achieved. IM&M program inspections and informal reporting to Ecology are assumed to occur quarterly for the first 3 years following completion of construction, and semiannually thereafter.

6.4.2 Alternative 2: Impermeable Cap, Institutional Controls, and Monitoring

Alternative 2 includes design and installation of an impermeable landfill cover system and stormwater control system to eliminate the infiltration of precipitation through the landfill waste, along with institutional controls and an IM&M program. An impermeable cover system would be designed with a geomembrane layer, drainage layer and vegetation layer. The stormwater control system would consist of a perimeter drainage system to capture stormwater runoff from the cap surface, interflow from a drainage layer, and runoff from the upslope area adjoining the landfill to the north. The institutional controls and IM&M program would be similar to those in Alternative 1.

⁵ An initial topographic survey would also be conducted upon completion of cap construction.

⁶ Trees would not be allowed to grow in the capped area, since roots of large trees could extend into the landfill waste and bring it to the surface if a tree is blown over (for example).

However, inspection and maintenance of the stormwater control system would result in increased postconstruction costs relative to Alternative 1.

6.4.3 Alternative 3: Removal of WWTP Sludge, Permeable Soil Cap, Institutional Controls, and Monitoring

Alternative 3 is similar to Alternative 1, but includes removal of the portion of the landfill waste that contains WWTP sludge prior to capping. Since the WWTP sludge is at or near the existing ground surface and has elevated concentrations of dioxins/furans, it represents a disproportionate exposure risk in the event that the cap is compromised. The WWTP sludge would be disposed of in an off-Site landfill in accordance with regulatory requirements. The landfill area would then be graded and covered with a geotextile isolation barrier and permeable soil cap, as in Alternative 1. The institutional controls and IM&M program in Alternative 3 would be essentially the same as in Alternative 1.

For cost estimating purposes, a removal volume of approximately 8,700 cubic yards⁷ (CY) and off-Site disposal in a landfill permitted to accept hazardous waste were assumed.

6.4.4 Alternative 4: Full Removal of Contaminated Media

In Alternative 4, all contaminated soil and landfill waste would be excavated and disposed of off-Site in accordance with regulatory requirements. Overexcavation to maintain safe slopes of excavation sidewalls would likely be needed to achieve full removal. Excavation bottom and sidewall sampling would be completed to ensure that soil cleanup levels are achieved. Clean backfill material would then be imported, placed, and compacted to restore preconstruction grades, and the Site would be revegetated. Since no landfill waste or contaminant concentrations above cleanup levels would remain at the Site, institutional controls and an IM&M program would not be needed.

The following assumptions were made in estimating the cost of Alternative 4:

- Approximately 8,700 CY of WWTP sludge would be excavated and disposed of in a landfill permitted to accept hazardous waste.
- Approximately 159,000 CY of other landfill waste and contaminated soil⁸ would be excavated and disposed of in a permitted municipal solid waste landfill.

6.5 Evaluation of Remedial Alternatives

The remedial alternatives presented in Section 6.3 are evaluated in this section with respect to MTCA criteria. The evaluation is accomplished in three steps:

- Threshold criteria evaluation (Section 6.4.1)
- Disproportionate cost analysis (DCA; Section 6.4.2)

⁷ The volume of WWTP sludge is estimated based on an initial application of 4.5 million gallons of sludge with an average moisture content of 65 percent by weight, and an assumed existing moisture content of 10 percent by weight.

⁸ The total volume of landfill waste (including WWTP sludge) and contaminated soil is estimated at approximately 168,000 CY based on a surface area of 4.0 acres and an average thickness of 26 feet.

• Reasonable restoration time-frame evaluation (Section 6.4.3)

6.5.1 Threshold Criteria Evaluation

Cleanup actions selected under MTCA must meet four "threshold" requirements identified in WAC 173-340-360(2)(a) to be accepted by Ecology. All cleanup actions must:

- Protect human health and the environment
- Comply with cleanup standards
- Comply with applicable state and federal laws
- Provide for compliance monitoring

These requirements are evaluated in the following sections.

6.5.1.1 Protection of Human Health and the Environment

Capping of landfill waste and contaminated soils in Alternatives 1 through 3 would protect humans from direct contact exposures, and would also protect terrestrial ecological receptors. Implementation of institutional controls and an IM&M program would ensure that the capping remedy remains protective *in perpetuity*. In Alternative 4, humans and terrestrial ecological receptors at the Site would be protected by removing all contaminated media.

6.5.1.2 Compliance with Cleanup Standards

Alternatives 1 through 3 involve containment of soils with hazardous substance concentrations exceeding cleanup levels at the point of compliance (i.e., less than 15 feet bgs). These containment alternatives would achieve compliance with cleanup standards by meeting the requirements of WAC 173-340-740(6)(f). In Alternative 4, compliance with cleanup standards would be achieved by removing all contaminated media from the Site.

6.5.1.3 Compliance with Applicable State and Federal Laws

The remedial alternatives were specifically developed to comply with the MTCA regulation. Other potentially applicable state and federal laws were identified and discussed in Section 6.2, and were also considered in developing the alternatives. All four alternatives are expected to comply with all ARARs because the required engineering design and agency review process will include steps to ensure compliance. The ARARs may affect implementation, but they do not have a significant effect on whether a remedial alternative is fundamentally viable. The means of compliance with ARARs would be documented in the remedial design, remedial action work plan components, and other preconstruction documentation to be prepared during design.

6.5.1.4 Provisions for Compliance Monitoring

In Alternatives 1 through 3, quality control measures would ensure that the cap is constructed per design requirements, and IM&M would be conducted *in perpetuity* to ensure the long-term protectiveness of the remedy. In Alternative 4, excavation bottom and sidewall sampling would be conducted to ensure that all contaminated media are

removed from the Site. In all four alternatives, health and safety protocols outlined in a Site-specific HASP would provide protection monitoring during remedy construction.

The alternatives are all judged to meet the threshold criteria. Therefore, all four are carried forward to the next stage of evaluation.

6.5.2 Disproportionate Cost Analysis

A DCA is conducted to determine whether a cleanup action uses permanent solutions to the maximum extent practicable. This is done by evaluating the relative benefits and costs of remedial alternatives. Seven criteria are considered in the evaluation as specified in WAC173-340-360(3)(f):

- **Protectiveness** is the overall protectiveness of human health and the environment, including the degree to which existing Site risks are reduced, time required to reduce the risks and attain cleanup standards, on-Site and off-Site risks during implementation, and improvement in overall environmental quality.
- **Permanence** is the degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of destroying hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of treatment, and the characteristics and quantity of the treatment residuals.
- Cost includes the remedy design, construction, and long-term IM&M costs to implement the alternative.
- Long-term effectiveness is the degree of certainty that the alternative will successfully and reliably address contamination that exceeds applicable cleanup levels until cleanup levels are attained, the magnitude of the residual risk with the alternative in place, and the effectiveness of controls to manage treatment residue and remaining wastes.
- Manageability of short-term risks is the risks to human health and the environment during construction and implementation of the alternative, and the effectiveness of measures that will be taken to manage such risks.
- Implementability includes consideration of whether the alternative is technically possible; the availability of necessary off-Site facilities, services, and materials; administrative and regulatory requirements; scheduling, size, and complexity of the alternative; monitoring requirements; access for construction, operations, and monitoring; and integration with existing facility operations and other current or potential remedial actions.
- Consideration of public concerns includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, and other interested organizations are addressed by Ecology responding to public comments.

The DCA is based on a comparative evaluation of an alternative's cost against the other six criteria (environmental benefits). Per WAC 173-340-360(3)(e)(i), cost is disproportionate to benefits if the incremental cost of an alternative over that of a lower-

cost alternative exceeds the incremental degree of benefits achieved by the alternative over that of the lower-cost alternative.

The DCA is summarized in Table 8. Environmental benefit is quantified by first rating the alternatives with respect to each of the six criteria (excluding cost) discussed above. Rating values are assigned on a scale of 1 to 5, where 1 indicates the criterion is satisfied to a very low degree, and 5 indicates the criterion is satisfied to a very high degree. Since Ecology does not consider the criteria to be of equal importance, each criterion is assigned a "weighting factor." Weighting factors are assigned as follows:⁹

• Overall protectiveness: 30 percent

• Permanence: 20 percent

Long-term effectiveness: 20 percentShort-term effectiveness: 10 percent

• Implementability: 10 percent

• Consideration of public concerns: 10 percent

A MTCA benefits ranking is then obtained for each alternative by multiplying the six rating values by their corresponding weighting factors, and summing the weighted values. Finally, the benefits ranking of each alternative is divided by the alternative's estimated cost to obtain a benefit/cost ratio, which is a relative measure of the cost effectiveness of the alternative.

The relative environmental benefits of the four alternatives are discussed in the following sections.

6.5.2.1 Overall Protectiveness

All four remedial alternatives would be protective of human health and the environment. Installing a permeable soil cap (Alternatives 1 and 3) will eliminate the direct contact exposure pathway and reduce precipitation infiltration and leachate generation. Installing an impermeable cover system (Alternative 2) would not significantly increase the protectiveness of the remedy compared to Alternatives 1 and 3. In Alternatives 1 through 3, risks during remedy implementation are low, but long-term protectiveness relies on the effectiveness of institutional controls and the IM&M program. Compared to Alternatives 1 and 2. Alternative 3 would have marginally higher risks during remedy implementation (associated with WWTP sludge removal), but also marginally greater long-term protectiveness because the exposure threat would be less severe in the event of cap failure (because WWTP sludge has been removed). Alternative 4 would have considerable health and safety risks during remedy implementation due to the sheer scale of the landfill waste removal effort. Long-term protectiveness at the Site would be complete under Alternative 4 (all contamination removed). However, the increased risks during remedy implementation would likely be disproportionate to protectiveness gains in the long-term.

⁹ These weighting factors have been used by Ecology to evaluate remedial alternatives at other landfill sites, such as the Cornwall Avenue Landfill in Bellingham (RI/FS dated December 17, 2013).

Based on these considerations, Alternatives 1 through 3 were given a medium overall protectiveness rating (3), and Alternative 4 was given a slightly lower rating (2).

6.5.2.2 Permanence

None of the alternatives permanently reduces the toxicity, mobility, or volume of hazardous substances, so all four were given the lowest rating (1) with respect to this criterion.

6.5.2.3 Long-Term Effectiveness

Alternative 4 was given the highest rating (5) because physical removal of all contaminated media effectively eliminates residual risk at the Site. Alternatives 1 and 2 were given a medium rating (3) because the long-term effectiveness of risk management at the Site relies on effective implementation of institutional controls and the IM&M program *in perpetuity*. Alternative 3 was also given a medium rating (3) because only a small fraction of the waste is removed, and long-term effectiveness still relies on implementation of institutional controls and the IM&M program for containment of the vast majority of wastes that are left in place.

6.5.2.4 Manageability of Short-Term Risks

The short-term risks to human health and the environment during remedy construction and implementation are judged to be very low for Alternatives 1 and 2. Construction work of any type involves some inherent risks. These alternatives include relatively minor construction efforts and, apart from clearing and grading prior to cap installation, there would be little or no disturbance of waste materials, so the potential for worker exposures would be low. The construction area would be fenced to restrict access to authorized personnel only. Construction workers would be trained and certified for performing work at hazardous waste sites, and all work would be conducted in accordance with the requirements of a Site-specific HASP.

Alternative 3 is a significantly larger construction effort that includes excavation and off-Site transport of an estimated 8,700 CY of WWTP sludge to an off-Site landfill. Conventional erosion and sedimentation controls would be implemented to ensure that contaminated materials do not leave the Site except under controlled means (e.g., WWTP sludge transported in covered dump trucks). Nonetheless, the exposure potential to both workers and the general public would be greater than in Alternatives 1 and 2.

Due to the scale of the construction effort and the volume of contaminated media to be excavated and trucked to off-Site landfills, Alternative 4 has the potential for very significant short-term risks.

In light of the above considerations, Alternatives 1 and 2 were given the highest rating (5) for short-term risk manageability. Alternative 3 was rated somewhat lower (4), and Alternative 4 was given a relatively low rating (2).

6.5.2.5 Implementability

All four alternatives would use readily available services/equipment and common earthwork construction techniques. Both construction and long-term IM&M of the soil cap in Alternatives 1 and 3 are highly implementable, and removal of WWTP sludge in Alternative 3 is not expected to have implementability concerns. Alternative 2 is also considered to be readily implementable, with no unusual technical or administrative

challenges. However, the impermeable cover system and stormwater management system in Alternative 2 would be somewhat more challenging to construct and maintain than the simple permeable soil cap in Alternatives 1 and 3. In Alternative 4, a huge volume of contaminated media would need to be transported to off-Site landfills, and a similar volume of clean fill would need to be imported. Truck traffic would greatly impact traffic on public roadways over a long construction period, likely resulting in extreme administrative challenges.

In light of the above considerations, Alternatives 1 and 3 were given the highest rating (5) for implementability. Alternative 2 was given a slightly lower rating (4), and Alternative 4 was given the lowest rating (1).

6.5.2.6 Consideration of Public Concerns

The public has not yet had the opportunity to review and comment on the remedial alternatives. Construction noise and the significant increase in truck traffic are anticipated to have the greatest impact on members of the public, particularly those in the immediate vicinity of the Site. No contamination would be removed in Alternatives 1 and 2, but construction impacts would be lowest in those alternatives. Truck traffic would increase significantly in Alternative 3, but public concerns in that regard would likely be tempered by the fact that the most highly impacted waste (the WWTP sludge) would be removed. On the other hand, the huge amount of truck traffic on public roadways in Alternative 4 is anticipated to have significant transportation impacts to the public. On this basis, Alternative 3 was given the highest rating (4), Alternatives 1 and 2 were given a medium rating (3), and Alternative 4 was given the lowest rating (1).

6.5.2.7 Benefits Rankings, Estimated Costs, and Benefit/Cost Ratios

The MTCA benefits rankings, estimated costs, and benefit/cost ratios for the four remedial alternatives are presented at the bottom of Table 8. As previously noted, the MTCA benefits ranking for each alternative is obtained by multiplying the rating values assigned for the six evaluation criteria by their corresponding weighting factors and summing the weighted values. The benefits ranking is highest for Alternatives 1 and 3 (3.00), and only slightly lower for Alternative 2 (2.90). Alternative 4 has a significantly lower benefits ranking (2.20).

The estimated costs for the alternatives range from \$2.0 million (Alternative 1) to \$32 million (Alternative 4). The benefit/cost ratio, which is a relative measure of cost effectiveness, is obtained by dividing the benefits ranking for each alternative by its estimated cost (in millions of dollars). As listed in Table 8, the calculated benefit/cost ratios range from a low of 0.07 for Alternative 4 to a high of 1.50 for Alternative 1.

6.5.2.8 Disproportionate Cost Analysis Conclusion

Based on the DCA, Alternative 1 has the highest benefit/cost ratio. Therefore, under MTCA, Alternative 1 is identified as the alternative that is permanent to the maximum extent practicable.

Assuming a typical "truck-and-pup" load of 20 CY, some 8,400 trips would be required to truck the estimated 168,000 CY of contaminated media to an off-Site landfill, and another 8,400 trips to import clean fill.

6.5.3 Reasonable Restoration Time Frame Evaluation

MTCA places a preference on remedial alternatives that can achieve Site cleanup in a shorter period of time. Factors to be considered in evaluating whether an alternative provides for a reasonable restoration time frame are listed in WAC 173-340-360(4)(b). In all four alternatives, Site cleanup would be achieved upon completion of remedy construction. Alternative 1 is the simplest of the alternatives to design and construct. Permeable cap design and construction can likely be completed in roughly 1 year, which is considered to be a reasonable restoration time frame.

6.6 Recommendation

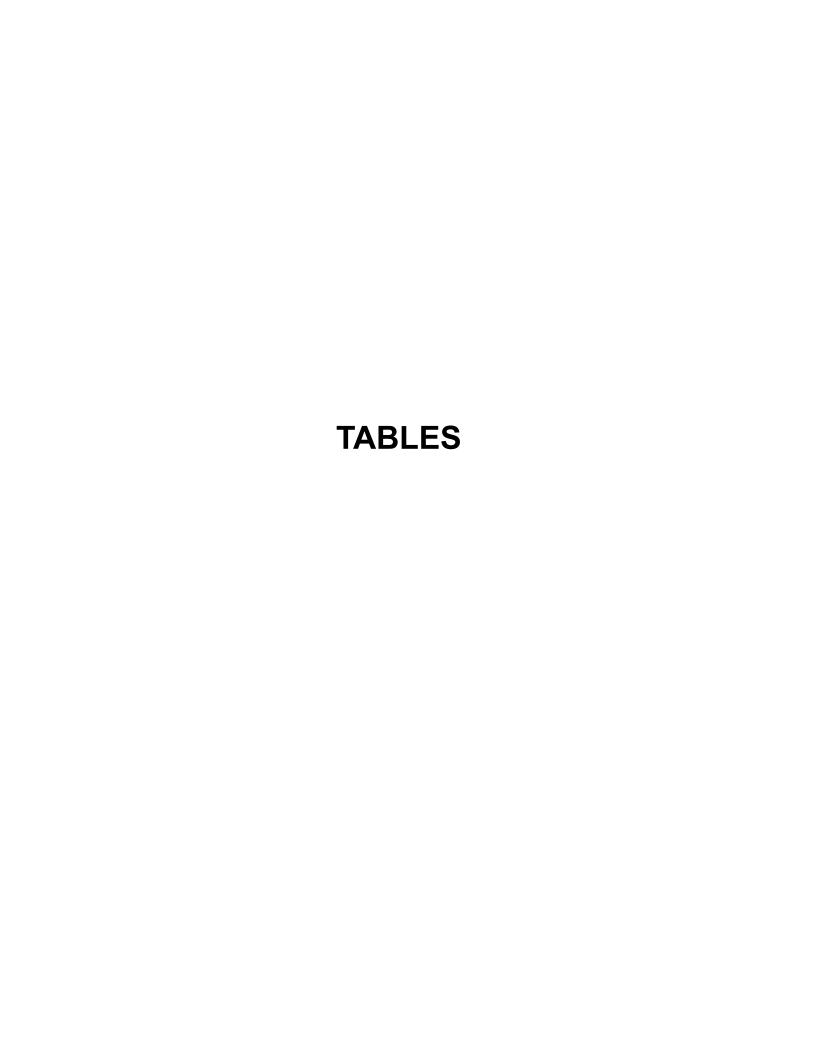
Based on the results of the above evaluation, Alternative 1 has a reasonable restoration time frame and is the most cost-effective of the four remedial alternatives evaluated. Therefore, under MTCA, Alternative 1 is identified as the alternative that is permanent to the maximum extent practicable and is the proposed alternative.

References

- Aspect Consulting, LLC (Aspect), 2016, Final Chemicals of Potential Concern and Screening Levels Technical Memorandum, Shelton C Street Landfill, Mason County, Washington, January 17, 2016.
- Aspect Consulting, LLC (Aspect), 2017, Remedial Investigation Work Plan, Shelton C Street Landfill, Shelton, Washington, April 21, 2017.
- Aspect Consulting, LLC (Aspect), 2018, Memorandum Re: Shelton C Street Landfill Remedial Investigation Work Plan Addendum and Feasibility Study Approach, November 9, 2018.
- Brown and Caldwell, 1988, Correction and Closure Plan: Shelton Landfill Disposal Facility, Administrative Draft, January 4, 1988.
- CH2M Hill, 1986, Simpson Timber Company, Draft Dioxin Sampling Plan, June 1986.
- CH2M Hill, 1987, Simpson Timber Company, Dioxin Study, Final Report, March 1987.
- GeoEngineers, 2013, Water Resources Element Report, Shelton Hills Development Project, Shelton, Washington. Appendix C of the Draft Environmental Impact Statement, Shelton Hills Mixed-Use Development Project, prepared by the City of Shelton, February 2013.
- Golder Associates, Inc. (Golder), 2002, Kennedy-Goldborough Watershed (WRIA-14) Phase II—Level I Assessment Draft, October 2002.
- Logan, Robert L., 2003, Geologic Map of Shelton 1:100,000 Quadrangle, Washington, Washington State Department of Natural Resources, Open File Report 2003-15, 1:100,000 scale.

- Northwest Land and Water, 2005, Final WRIA 14/ Kennedy-Goldsborough Watershed Phase II Hydrogeologic Investigation, December 31, 2005.
- US Environmental Protection Agency (EPA), 1973, Letter from Mr. Michael L. Anderson, Chief, Enforcement Branch to Mr. John A. Biggs, Director, Department of Ecology, September 25, 1973.
- US Environmental Protection Agency (EPA), 1975, Community Solid Waste Practices, Land Disposal Site Modification Report, Site Location: City of Shelton, Name of Site: Shelton Dump, August 7, 1975.
- US Environmental Protection Agency (EPA), 1986a, EPA News Release: "Discovery of dioxin in the ash at a Simpson Timber Company wood-fueled boiler..." May 2, 1986.
- US Environmental Protection Agency (EPA), 1986b, Administrative Order on Consent, Docket No. 1086-17-04-106, In the Matter of: Simpson Power Plant, Simpson Timber Co., Shelton, Washington, Respondent, Executed September 26, 1986.
- US Environmental Protection Agency (EPA), 1987, EPA Superfund Project Report, Simpson Timber Company Shelton, Washington, Report of Dioxin Study Findings and Announcement of Public Meeting, April 13, 1987.
- Washington State Department of Ecology (Ecology), 1973, Letter from Mr. Stanley M. Springer, Environmental Quality Inspector to Mr. Michael L. Anderson, Chief, Enforcement Branch, October 15, 1973.
- Washington State Department of Ecology (Ecology), 1986, Letter from Mr. Brett Betts, District III Inspector to Mr. John Getty, R.S., Environmental Health, Mason County Health Department regarding Shelton Dump, C Street, July 8, 1986.
- Washington State Department of Ecology (Ecology), 1994, Natural Background Soil Metals Concentrations in Washington State. Publication No. 94-115, October 1994.
- Washington State Department of Ecology (Ecology), 2004, Letter from Ms. Fern A. Svendsen, Site Hazard Assessments to Mr. Tom Moore, Mason Co Dept of Utilities & Waste Mgmt regarding Site Hazard Assessment Shelton Landfill, June 8, 2004.
- Washington State Department of Ecology (Ecology), 2010, Natural Background for Dioxins/Furans in WA Soils, Technical Memorandum #8, August 9, 2010.
- Washington State Department of Ecology (Ecology), 2013, Model Toxics Control Act Regulation and Statute, Chapter 173-340 of the Washington Administrative Code (WAC 173-340), and Chapter 70.105D of the Revised Code of Washington (RCW 70.105D), Publication No. 94-06, Revised 2013.
- Washington State Department of Ecology (Ecology), 2016a, Remedial Investigation Checklist, Toxics Cleanup Program, Publication No. 16-09-006, May 2016.

ASPECT CONSULTING


- Washington State Department of Ecology (Ecology), 2016b, Feasibility Study Checklist, Toxics Cleanup Program, Publication No. 16-09-007, May 2016.
- Washington State Department of Ecology (Ecology), 2018, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Implementation Memorandum No. 18, January 10, 2018.
- Washington State Department of Ecology (Ecology), 2019, Letter from Andrew Smith, Unit Supervisor UST/Technical Support Unit, Toxics Cleanup Program to Mr. Craig Gregory, Public Works Director, City of Shelton regarding Department of Ecology Comments on Draft Remedial Investigation/Feasibility Study, Shelton C Street Landfill, December 20, 2019.

Limitations

Work for this project was performed for the City of Shelton (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix E titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

Table 1. Groundwater Well Data

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

		AMW-1	AMW-2	AMW-3	AMW-4
Well	Construction Data				
Ecol	ogy Tag ID	BKC 045	BKC 047	BKC 048	BKC 046
Grou	ind Surface Elevation (ft NAVD88)	153.48	152.65	170.4	151.23
Тор	of Monument Elevation (ft NAVD88)	156.76	155.74	173.48	153.96
Casi	ng Stickup Height (ft above ground)	2.42	2.89	2.54	2.45
тос	Elevation (ft NAVD88)	155.9	155.54	172.94	153.68
Tota	Well Depth (ft bgs)	105	105	120	105
Botto	om of Well Elevation (ft NAVD88)	48.48	47.65	50.40	46.23
Тор	of Screen Elevation (ft NAVD88)	78.48	76.65	80.40	77.23
Botto	om of Screen Elevation (ft NAVD88)	58.48	56.65	60.40	57.23
Mea	sured Groundwater Elevations ¹				
1/12/2018	Depth to Water (ft bTOC)	83.07	83.3	100.10	81.22
1/12/	Elevation (ft NAVD88)	72.83	72.24	72.84	72.46
2018	Depth to Water (ft bTOM)	89.13	88.52	104.97	86.56
12/20/2018	Elevation (ft NAVD88)	67.63	67.22	68.51	67.40
910	Depth to Water (ft bTOM)	87.65	87.17	104.43	85.19
4/1/2019	Elevation (ft NAVD88)	69.11	68.57	69.05	68.77
7/1/2019	Depth to Water (ft bTOM)	91.53	90.95	107.75	88.98
7/1/2	Elevation (ft NAVD88)	65.23	64.79	65.73	64.98

Notes:

¹Depth to groundwater measured relative to the top of the well casings in January 2018, and relative to the top of the well monuments in December 2018, April 2019, and July 2019.

Surveyed elevations by Professional Land Surveyors, Inc., dated January 12, 2018

ft = feet

NAVD88 = North American Vertical Datum of 1988

bgs = below ground surface

bTOC = below top of well casing, measured from the north edge.

bTOM = below top of well monument, measured from the north rim.

Page 1 of 1

Table 2a. Surface Soil Characterization Data - Dioxins/Furans, PAHs, and Metals

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

		Decision Unit	DU-1	DU-2	DU-3
		Sample Type	ISM	ISM	ISM
		Sample Location	DU-1	DU-2	DU-3
		Sample ID	ISM-DU1-072617	ISM-DU2-072617	ISM-DU3-072517
	,	Sample Date	7/26/2017	7/26/2017	7/25/2017
	Site-Specific	Natural			
	Screening Level	Background			
Analyte (by group)	_	Concentrations			
Polycyclic Aromatic Hydrocarbor	ns (PAHs) (mg/kg)				
Non-Carcinogenic PAHs	•				•
1-Methylnaphthalene	34		0.05 U	0.05 U	0.1 U
2-Methylnaphthalene	320		0.05 U	0.05 U	0.1 U
Acenaphthene	20		0.1 U	0.1 U	0.01 U
Acenaphthylene	24000		0.1 U	0.1 U	0.01 U
Anthracene	24000		0.1 U 1.7	0.1 U 0.59	0.011 0.39
Benzo(g,h,i)perylene Fluoranthene	3200		2.2	0.88	0.39
Fluorene	30		0.1 U	0.88 0.1 U	0.41 0.01 U
Naphthalene	1600		0.18	0.1 U	0.029
Phenanthrene			1.0	0.47	0.16
Pyrene	2400		1.4	0.65	0.23
Carcinogenic PAHs (cPAHs)			- 1-1	2.00	
Benz(a)anthracene	1.37		0.42	0.22	0.13
Benzo(a)pyrene	0.14		0.61	0.29	0.22
Benzo(b)fluoranthene	1.37		2.0	0.74	0.54
Benzo(k)fluoranthene	13.7		0.49	0.20	0.15
Chrysene	137		1.1	0.46	0.31
Dibenzo(a,h)anthracene	0.14		0.11	0.1 U	0.04
Indeno(1,2,3-cd)pyrene	1.37		1.3	0.45	0.32
Total cPAHs TEQ (ND = 1/2 RDL)	0.14		1.1	0.46	0.34
Dioxins/Furans (pg/g)	· · · · · · · · · · · · · · · · · · ·				
Chlorinated dibenzo-p-dixoins (C			000	22.4	444
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	2.0		828 5170	234 1100	144 724
1,2,3,4,7,8-HxCDD			9860	2180	1480
1,2,3,6,7,8-HxCDD			20800	4210	2920
1,2,3,7,8,9-HxCDD			16600	3370	2260
1,2,3,4,6,7,8-HpCDD			145000 *	31200	22000
OCDD			104000 *	21900	30200
Dioxin TEQ	2.2	5.2	12200	2630	1760
Chlorinated Dibenzofurans (CDF					
2,3,7,8-TCDF			2980 F	702 F	399 F
1,2,3,7,8-PeCDF			2440	580	345
2,3,4,7,8-PeCDF			4390	730	371
1,2,3,4,7,8-HxCDF			1670 *	347 D,M,J	257 D,M,J
1,2,3,6,7,8-HxCDF			2130 D,M,*,J	495 D,M,J	330 D,M,J
1,2,3,7,8,9-HxCDF			934 *	173	114
2,3,4,6,7,8-HxCDF			3040 *	576	389
1,2,3,4,6,7,8-HpCDF			4240	780	721
1,2,3,4,7,8,9-HpCDF OCDF			1030 1460	176 404	141 1510
		 5 2			
Furan TEQ Metals (mg/kg)	2.2	5.2	2520	475	280
Arsenic	7	7	4.40	1.26	2.40
Barium	102		129	66.0	162
Cadmium	4	0.77	1.54	0.660	1.70
Chromium (total)	48	48	21.4 J	14.5 J	25.5 J
Copper	50	36	69.5 J	36.7 J	80.6 J
Lead	50	24	182 R	69.6	182 R
Mercury	0.1	0.07	1.15	0.938	0.812
Nickel	30		13.2 J	11.5 J	24.3 J
Selenium	0.78	0.78	0.790	0.5 U	0.540
Silver	2	0.61	6.55	1.65	3.62
Zinc	86	85	134 J	81.9 J	355 J

Notes:

Bold = a detected concentration

Gray shading = a concentration that exceeds the Site-Specific Screening Level.

- "--" = not established or not applicable.
- U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
- J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
- UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.
- X = the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- R = the sample results are unusable due to the quality of the data generated because certain criteria were not met.
- * = the result is taken from dilution due to high dioxin/furan concentrations in the sample
- F = analyte confirmation on secondary column
- D = presence of diphenyl ethers
- M = maximum possible concentration
- mg/kg = milligrams per kilogram
- pg/g = picograms per gram

TEQ = Toxicity equivalent quotient. TEQs for total cPAHs and total dioxins/furans were calculated using the methodology and the toxicity equivalency factors (TEFs) prescribed in Washington State Model Toxics Control Act (MTCA) and WAC 173-340-708(8)(e).

TCDD = tetrachloro dibenzo-p-dioxin

PeCDD = entachloro dibenzo-p-dioxin

HxCDD = hexachloro dibenzo-p-dioxin

HpCDD = heptachloro dibenzo-p-dioxin OCDD = octachloro dibenzo-p-dioxin

TCDF = tetrachloro dibenzofuran

PeCDF = pentachloro dibenzofuran

HxCDF = hexachlorodibenzofuran

HpCDF = heptachloro dibenzofuran OCDF = octachlorodibenzofuran

Aspect Consulting

Table 2b. Surface Soil Characterization Data - TPH, Pesticides/Herbicides, PCBs, and SVOCs Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

Sample Type Sample Location DU-1 DU-2 ISM DU-2 ISM-DU2-072617 ISM-DU2-07261	DU-3 ISM DU-3 U3-072517 25/2017
Sample Location Sample ID ISM-DU1-072617 ISM-DU2-072617 ISM-DU2-	DU-3 U3-072517
Sample ID ISM-DU1-072617 ISM-DU2-072617 ISM-DU2-072617 7/26/2017 7	U3-072517
Sample Date 7/26/2017 7/	
Site-Specific Screening Levels Petroleum Hydrocarbons (mg/kg)	2012011
Screening Levels Petroleum Hydrocarbons (mg/kg)	
Analyte (by group) Levels Petroleum Hydrocarbons (mg/kg) Gasoline Range Organics 100 2 U 2 U Diesel Range Organics 200 50 U 50 U Motor Oil Range Organics 2000 250 U 250 U Organochlorine Pesticides (mg/kg) 4,4'-DDD 4.17 0.0111 U 0.0107 U 0.4,4'-DDE 4,4'-DDT 2.94 0.0163 0.0130 0.0130	
Petroleum Hydrocarbons (mg/kg) Gasoline Range Organics 100 2 U 2 U Diesel Range Organics 200 50 U 50 U Motor Oil Range Organics 2000 250 U 250 U Organochlorine Pesticides (mg/kg) 4.41 O.0111 U 0.0107 U 0.014 O.0107 U 4,41-DDE 2.94 0.0111 U 0.0107 U 0.0107 U 4,41-DDT 2.94 0.0163 0.0130 0.0130	
Gasoline Range Organics 100 2 U 2 U Diesel Range Organics 200 50 U 50 U Motor Oil Range Organics 2000 250 U 250 U Organochlorine Pesticides (mg/kg) 4,4'-DDD 4.17 0.0111 U 0.0107 U 0.4,4'-DDE 4,4'-DDE 2.94 0.0111 U 0.0107 U 0.4,4'-DDT 0.0163 0.0130 0.0130	
Diesel Range Organics 200 50 U 50 U Motor Oil Range Organics 2000 250 U 250 U Organochlorine Pesticides (mg/kg) 4,4'-DDD 4.17 0.0111 U 0.0107 U 0.017 U 4,4'-DDE 2.94 0.0111 U 0.0107 U 0.017 U 4,4'-DDT 2.94 0.0163 0.0130 0.0130	3.5
Organochlorine Pesticides (mg/kg) 4,4'-DDD 4.17 0.0111 U 0.0107 U 0.017 U 0.0107 U 0.0111 U 0.0107 U	50 U
4,4'-DDD 4.17 0.0111 U 0.0107 U 0.0107 U 4,4'-DDE 2.94 0.0111 U 0.0107 U 0.0107 U 4,4'-DDT 2.94 0.0163 0.0130 0.0100 U	250 U
4,4'-DDE 2.94 0.0111 U 0.0107 U 0.0107 U 4,4'-DDT 2.94 0.0163 0.0130 0.0100 U	
4,4'-DDT 2.94 0.0163 0.0130 0	0104 U
,	0104 U
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0166
	0104 U 0104 U
	0104 U
	0104 U
	0104 U
	0104 U
Endosulfan I 480 0.0111 U 0.0107 U 0.	0104 U
	0104 U
	0104 U
	0104 U
,	0104 U
	0104 U 0104 U
	0104 U
'	0104 U
' '	0104 U
	0104 U
, , , , , , , , , , , , , , , , , , ,	.0166
Toxaphene 0.9 0.111 U 0.107 U 0	.104 U
Chlorinated Herbicides (mg/kg)	
· ·	52.0 U
2,4,6-Trichlorophenol 10 0.5 U 0.5 U 2,4-D 33.6 U 31.9 U 33.6 U	<u>1 U</u> 31.2 U
'	26.0 U
,	41.6 U
,	33.3 U
	36.4 U
Chloramben 22.4 UJ 21.3 UJ 2	0.8 UJ
,	31.2 U
'	208 U
	36.4 U
· '	26.0 U
	31.2 U 2910 U
	580 U
	52.0 U
	20.8 U
Polychlorinated Biphenyls (mg/kg)	
	0.2 U
	0.2 U 0.2 U
	0.2 U 0.2 U
	0.2 U
	0.2 U
	0.2 U

Table 2b. Surface Soil Characterization Data - TPH, Pesticides/Herbicides, PCBs, and SVOCs

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

DU-3 ISM DU-3 ISM-DU3-072517 7/25/2017
DU-3 ISM-DU3-072517
ISM-DU3-072517
0.1 U
0.1 U
0.1 U
0.1 U
1 U
1 U
1 U
3 U
0.5 U
0.5 U
0.1 U
1 U
1 U
0.5 U
1 U
2 U
10 U
3 U
0.1 U
1 U
10 U
0.1 U
10 U
3 U
5 U
1 U
10
0.1 U
0.1 U
0.1 U
1.6 U
1 U
0.1 U
1 U
1 U
1 U 1 U
0.1 U
0.1 U
0.1 U
0.3 U
0.1 U
0.1 U
0.1 U
0.1 U
1 U
1 U

Notes:

Bold = a detected concentration

Gray shading = a concentration that exceeds the Site-Specific Screening Level.

Page 2 of 2

[&]quot;--" = not established or not applicable

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value. mg/kg = milligrams per kilogram

Project No.150074, City of Shelton, C Street Landfill, Shelton, WA

	Decision Unit		DU-1		<u> </u>	U-2	l n	U-3
	Sample Type		Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Sample Location		DU1-G7	DU1-C2	DU2-L2	DU2-L7	DU3-P3	DU3-P7
	•	DU2-G2-072617^		DU2-C2-072617^		DU2-L7-072617	DU3-P3-072617	DU3-P7-072617
	-							
	Sample Date	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017
	Site-Specific							
Associate (becomes asso)	Screening Levels							
Analyte (by group)	_							
Petroleum Hydrocarbons (<u> </u>							
Gasoline Range Organics	100	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Volatile Organic Compound								
1,1,1,2-Tetrachloroethane	38	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,1-Trichloroethane	160000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,2,2-Tetrachloroethane	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,2-Trichloroethane	18	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethane	175	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethene	4000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,3-Trichlorobenzene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2,3-Trichloropropane	0.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,4-Trichlorobenzene	20	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2,4-Trimethylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dibromo-3-chloropropand	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichlorobenzene	7200	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichloroethane (EDC)	11	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichloropropane	28	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3,5-Trimethylbenzene	800	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3-Dichlorobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,4-Dichlorobenzene	20	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2,2-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2-Butanone	48000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Chlorotoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2-Hexanone		0.5 U	0.03 U	0.03 U	0.5 U	0.5 U	0.5 U	0.03 U
4-Chlorotoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
	 6400	0.05 U	0.03 U	0.05 U	0.5 U	0.05 U	0.5 U	0.05 U
4-Methyl-2-pentanone								
Acetone	72000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	18.2	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Bromobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromodichloromethane	16.1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromoform	127	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Bromomethane	112	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	14	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chlorobenzene	40	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloroethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	32	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene (DCE	160	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
cis-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromochloromethane	11.9	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromomethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dichlorodifluoromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	8000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Hexachlorobutadiene	13	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Isopropylbenzene	8000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
m,p-Xylenes	16000	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl tert-butyl ether (MTBE	556	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Methylene Chloride		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Naphthalene	1600	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
n-Hexane		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
n-Propylbenzene	8000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
o-Xylene	16000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
p-Isopropyltoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
sec-Butylbenzene	8000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Styrene	300	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
tert-Butylbenzene	8000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Tetrachloroethene (PCE)	476	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
Toluene	200	0.023 U	0.05 U	0.023 U	0.023 U	0.025 U	0.059	0.05 U
Total Xylenes	16000	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.033 0.1 U	0.03 U
trans-1,2-Dichloroethene	1600	0.05 U	0.05 U	0.15 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Trichloroethene (TCE)	12	0.05 U	0.05 U	0.05 U	0.05 U	0.03 U	0.05 U	0.05 U
Trichlorofluoromethane								
	24000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl Chloride	0.67	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U

Notes:

Bold = a detected concentration

Gray shading = a concentration that exceeds the Site-Specific Screening Level.

mg/kg = milligrams per kilogram

[^]Sample IDs for these samples were misspelled on the chain of custody and lab report dated September 8, 2017, and do not correlate with the actual sample location names indicated in this table and on the attached Figure 1.

[&]quot;--" indicates not established or not applicable

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.

Table 3a. Groundwater Data - Geochemistry, TPH, and Metals Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date	01/12/2018	01/12/2018	12/20/2018	04/01/2019	07/01/2019	07/01/2019	01/12/2018	12/20/2018	12/20/2018	04/01/2019	07/01/2019
		Sample Name	AMW-1-011218	AMW-5-011218	AMW-1-122018	AMW-1-040119	AMW-1-070119	AMW-5-070119	AMW-2-011218	AMW-2-122018	AMW-5-122018	AMW-2-040119	AMW-2-070119
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
	Water Level Ele	evation (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific											
Analyte (by group)	Units	Screening Level		(Field Duplicate)				(Field Duplicate)			(Field Duplicate)		
Field Parameters													
Temperature	deg C	ne	10.1	10.1	10.1	10.0	11.9	11.9	10.1	9.90	9.90	10.2	11.8
Specific Conductance	uS/cm	ne	219.8	219.8	271.1	301.3	359.7	359.7	232.6	245.5	245.5	258.3	266.0
Dissolved Oxygen	mg/L	ne	2.67	2.67	5.22	5.30	0.760	0.760	0.260	0.230	0.230	3.30	3.01
рН	pH units	ne	6.81	6.81	6.45	6.22	6.28	6.28	6.91	6.83	6.83	6.47	6.47
Oxidation Reduction Potential	mV	ne	106.6	106.6	78.60	234.5	171.7	171.7	41.20	57.60	57.60	218.2	181.0
Turbidity	NTU	ne	2.73	2.73	4.68	4.88	12.8	12.8	1.47	0.930	0.930	4.66	15.2
Geochecmical Indicator Parameters													
Alkalinity, Total	mg/L	ne	112	110	129	150	166	176	114	124	121	120	121
Ammonia as Nitrogen	mg/L	ne	0.100 U	0.100 U	0.100 U	0.100 UJ	0.100 UJ	0.100 UJ	0.100 U	0.100 U	0.100 U	0.100 UJ	0.100 UJ
Chloride	mg/L	250	2.28	2.28	1.54	1.48	1.71	1.71	2.10	2.78	2.78	1.88	1.89
Cyanide (total)	mg/L	0.0096	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Dissolved Organic Carbon	mg/L	ne	18.1	17.0	2.11	2.33	5.34	5.69	21.6	12.0	12.0	5.49	6.40
Nitrate as Nitrogen	mg/L	10	0.200 UJ	0.200 UJ	2.64 E	1.86	0.634	0.649	0.500 UJ	0.100 U	0.100 U	0.235	0.576
Nitrite as Nitrogen	mg/L	1	0.200 UJ	0.200 UJ	0.100 U	0.100 U	0.100 U	0.100 U	0.500 UJ	0.100 U	0.100 U	0.100 U	0.100 U
Sulfate	mg/L	250	17.4	17.3	25.6	5.70	17.6	18.1	14.9	18.2	18.2	14.7	16.6
Sulfide	mg/L	ne	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Total Petroleum Hydrocarbons													
Gasoline Range Organics	ug/L	1000	100 U	100 U		-			100 U				
Diesel Range Organics	ug/L	500	50 U	50 U	50 U	50 U	65 X	50 U	50 U	50 U	50 U	50 U	55 X
Motor Oil Range Organics	ug/L	500	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Dissolved Metals	•												
Arsenic	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.291	0.236	0.220	0.2 U	0.2 U
Barium	ug/L	2000	3.98	4.05	5.06	3.34	4.06	4.11	4.65	2.35	2.33	2.27	2.14
Cadmium	ug/L	5	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Calcium	ug/L	ne	30300	31200	27100	33100	24300	24500	31700	35200	35500	26300	16300
Chromium	ug/L	100	0.699	0.744	1 U	1 U	1 U	1 U	0.909	1.40	1.34	1 U	1 U
Copper	ug/L	640	0.670	0.651	5 U	5 U	5 U	5 U	1.72	5 U	5 U	5 U	5 U
Iron	ug/L	300	114	111	114	113	114	115	463	231	226	118	127
Lead	ug/L	15	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Magnesium	ug/L	ne	12400	12000	9780	13200	8650	8540	13900	14900	15000	11500	7100
Manganese	ug/L	50	58.1	58.6	14.2	1 U	24.8	24.9	1140	1880	1900	433	425
Mercury	ug/L	2	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Nickel	ug/L	100	1.63	1.64	1.11	1.33	1.63	1.63	1.73	1.49	1.51	1.13	1.07
Selenium	ug/L	50	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Silver	ug/L	80	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Sodium	ug/L	ne	4940	4940	36900	8680	5910	5870	5330	4870	4590	5710	5140
Zinc	ug/L	4800	4 U	4 U	5 U	5 U	5 U	5 U	4 U	5 U	5 U	5 U	5 U

Table 3a

Table 3a. Groundwater Data - Geochemistry, TPH, and Metals Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location Date Sample Name		AMW-1 01/12/2018 AMW-5-011218	AMW-1 12/20/2018 AMW-1-122018	AMW-1 04/01/2019 AMW-1-040119	AMW-1 07/01/2019 AMW-1-070119	AMW-1 07/01/2019 AMW-5-070119	AMW-2 01/12/2018 AMW-2-011218	AMW-2 12/20/2018 AMW-2-122018	AMW-2 12/20/2018 AMW-5-122018	AMW-2 04/01/2019 AMW-2-040119	AMW-2 07/01/2019 AMW-2-070119
	Water Level El	DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
	Water Level El	evation (feet NAVD88) Site-Specific	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
Analyte (by group)	Units	Screening Level		(Field Duplicate)				(Field Duplicate)			(Field Duplicate)		
Total Metals													
Arsenic	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.310	0.248	0.2 U	0.2 U	0.2 U
Barium	ug/L	2000	4.69	4.66	5.22	3.44	4.79	4.91	5.05	2.52	2.37	2.38	4.04
Cadmium	ug/L	5	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Calcium	ug/L	ne	30600	30100	25100	32300	23800	24200	30900	35600	37600	28400	15700
Chromium	ug/L	100	0.933	0.952	1.09	1 U	1 U	1 U	1.17	1.48	1.55	1 U	4.06
Copper	ug/L	640	1.08	1.06	5 U	5 U	5 U	5 U	2.26	5 U	5 U	5 U	5 U
Iron	ug/L	300	233	234	274	129	348	339	566	279	317	149	463
Lead	ug/L	15	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Magnesium	ug/L	ne	12100	12400	9080	13000	8360	8420	13300	15400	16400	12500	6720
Manganese	ug/L	50	71.4	68.3	15.9	1.80	46.5	41.9	1250	1970	1910	464	759
Mercury	ug/L	2	0.1 U	0.1 U	1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Nickel	ug/L	100	1.86	1.93	1.19	1.35	2.22	2.22	1.82	1.56	1.61	1.25	5.43
Selenium	ug/L	50	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Silver	ug/L	80	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Sodium	ug/L	ne	4820	4510	38600	10100	7030	7420	4600	5020	5140	6040	5970
Zinc	ug/L	4800	4 U	4 U	5 U	5 U	5 U	5 U	4 U	5 U	5 U	5 U	5 U

Table 3a. Groundwater Data - Geochemistry, TPH, and Metals Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-3	AMW-3	AMW-3	AMW-3	AMW-4	AMW-4	AMW-4	AMW-4	AMW-4
		Date	01/12/2018	12/20/2018	04/01/2019	07/01/2019	01/12/2018	12/20/2018	04/01/2019	04/01/2019	07/01/2019
		Sample Name	AMW-3-011218	AMW-3-122018	AMW-3-040119	AMW-3-070119	AMW-4-011218	AMW-4-122018	AMW-4-040119	AMW-5-040119	AMW-4-070119
		DTW (feet BTOC)	100.1	104.97	104.83	107.75	81.22	86.56	85.19	85.19	88.98
Wat	er Level El	evation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	68.49	64.7
		Site-Specific '									
Analyte (by group)	Units	Screening Level								(Field Duplicate)	
Field Parameters											
Temperature	deg C	ne	10.3	9.80	10.6	11.9	10.3	10.1	10.5	10.5	14.1
Specific Conductance	uS/cm	ne	252.2	465.4	770	830	730	504.4	900	900	870
Dissolved Oxygen	mg/L	ne	6.25	2.71	0.980	0.270	2.52	0.420	3.13	3.13	2.81
рН	pH units	ne	7.07	7.52	7.25	7.13	6.87	6.07	6.63	6.63	6.43
Oxidation Reduction Potential	mV	ne	146.7	68.70	204.4	173.4	191.4	116.7	224.7	224.7	213.8
Turbidity	NTU	ne	3.89	4.31	4.60	16.4	130	2.66	5.10	5.10	61.3
Geochecmical Indicator Parameters											
Alkalinity, Total	mg/L	ne	138	258	400	453	375	258	410	405	375
Ammonia as Nitrogen	mg/L	ne	0.100 U	0.100 U	0.100 UJ	0.100 UJ	0.100 U	0.100 U	0.100 UJ	0.100 UJ	0.100 UJ
Chloride	mg/L	250	1.91	2.24	2.61	2.89	5.46	3.92	5.12	4.99	5.44
Cyanide (total)	mg/L	0.0096	0.0500 U	0.0500 U							
Dissolved Organic Carbon	mg/L	ne	15.3	3.83	5.12	5.11	54.4	3.90	2.73	2.02	2.08
Nitrate as Nitrogen	mg/L	10	0.858 J	1.47	0.258	0.106	1.39 J	0.406	1.18	1.18	1.57
Nitrite as Nitrogen	mg/L	1	0.100 UJ	0.200 U	0.200 U	0.100 U	1.00 UJ	0.200 U	0.500 U	0.500 U	0.500 U
Sulfate	mg/L	250	14.0	29.3	36.8	42.2	55.7	44.9	69.4	66.2	71.4
Sulfide	mg/L	ne	0.500 U	0.500 U	0.500 U	1.56	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
Total Petroleum Hydrocarbons											
Gasoline Range Organics	ug/L	1000	100 U			-	100 U	-			
Diesel Range Organics	ug/L	500	50 U	50 U	50 U	50 U	60 X	50 U	50 U	50 U	100 X
Motor Oil Range Organics	ug/L	500	250 U	440							
Dissolved Metals											
Arsenic	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.240	0.230	0.319	0.278	0.236
Barium	ug/L	2000	2.40	4.58	5.75	5.26	25.3	18.6	31.4	29.2	30.8
Cadmium	ug/L	5	0.1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Calcium	ug/L	ne	30500	64500	82200	48500	67400	57800	77700	76700	43400
Chromium	ug/L	100	0.860	1 U	1 U	1 U	1.72	1.02	2.42	2.26	1.14
Copper	ug/L	640	0.883	5 U	5 U	5 U	2.98	5 U	5 U	5 U	5 U
Iron	ug/L	300	128	189	263	220	235	275	240	227	196
Lead	ug/L	15	0.1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Magnesium	ug/L	ne	17700	37200	50100	29700	22000	17900	23600	23300	13400
Manganese	ug/L	50	132	404	479	661	307	64.9	1.03	1 U	78.0
Mercury	ug/L	2	0.1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Nickel	ug/L	100	1.06	1.61	2.53	2.38	3.45	2.14	2.47	2.33	2.30
Selenium	ug/L	50	0.5 U	1 U	1 U	1 U	0.728	1 U	1 U	1 U	1 U
Silver	ug/L	80	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Sodium	ug/L	ne	3870	6190	8300	8190	76000	45200	90200	86300	61800
Zinc	ug/L	4800	4 U	5 U	5 U	5 U	4 U	5 U	5 U	5 U	5 U

Table 3a. Groundwater Data - Geochemistry, TPH, and Metals

Project No. 150074, C Street Landfill, Shelton, Washington

	Sample Location Date Sample Name DTW (feet BTOC) levation (feet NAVD88) Site-Specific	AMW-3 01/12/2018 AMW-3-011218 100.1 72.84	AMW-3 12/20/2018 AMW-3-122018 104.97 67.97	AMW-3 04/01/2019 AMW-3-040119 104.83 68.11	AMW-3 07/01/2019 AMW-3-070119 107.75 65.19	AMW-4 01/12/2018 AMW-4-011218 81.22 72.46	AMW-4 12/20/2018 AMW-4-122018 86.56 67.12	AMW-4 04/01/2019 AMW-4-040119 85.19 68.49	AMW-4 04/01/2019 AMW-5-040119 85.19 68.49	AMW-4 07/01/2019 AMW-4-070119 88.98 64.7	
Analyte (by group)	Units	Screening Level								(Field Duplicate)	
Total Metals Arsenic	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.207	0.665	0.225	0.344	0.339	0.718
Barium	ug/L	2000	2.86	6.91	6.37	12.1	42.7	19.6	33.8	31.0	55.2
Cadmium	ug/L	5	0.1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Calcium	ug/L	ne	29800	66000	83200	49500	75000	61000	78100	77500	43700
Chromium	ug/L	100	1.06	1.12	1 U	1 U	7.35	2.79	3.85	3.16	9.30
Copper	ug/L	640	1.08	5 U	5 U	5 U	9.27	5 U	5 U	5 U	10.4
Iron	ug/L	300	241	574	289	486	3250	1390	1180	860	5630
Lead	ug/L	15	0.1 U	1 U	1 U	1 U	0.334	1 U	1 U	1 U	1 U
Magnesium	ug/L	ne	16900	38700	51000	30300	23300	19200	24400	23800	13800
Manganese	ug/L	50	130	2560	757	2350	402	84	31.4 J	19.9 J	176
Mercury	ug/L	2	0.1 U	1 U	1 U	1 U	0.1 U	1 U	1 U	1 U	1 U
Nickel	ug/L	100	1.17	2.64	2.65	3.65	7.61	3.51	3.74	3.09	9.00
Selenium	ug/L	50	0.5 U	1 U	1 U	1 U	0.916	1 U	1 U	1 U	1 U
Silver	ug/L	80	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Sodium	ug/L	ne	3730	6770	9240	9840	73300	47600	98800	95200	60500
Zinc	ug/L	4800	4 U	5 U	5 U	5 U	5.46	5 U	5 U	5 U	9.83

Notes:

Bold = a detected concentration

Gray shading indicates a concentration that exceeds the Site-Specific Screening Level

ne = not established or not applicable

"--" = not analyzed.

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.

X = the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

E = the analyte result exceeded the calibration range and is considered an estimate.

mg/L = miligrams per liter

ug/L = micrograms per liter

deg C = degrees Celsius

uS/cm = microSiemens per centimeter

mV = millivolts

NTU = Nephelometric Turbidity Units

DTW = depth to water

BTOC = below top of casing

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date Sample Name	01/12/2018 AMW-1-011218	01/12/2018 AMW-5-011218	12/20/2018 AMW-1-122018	04/01/2019 AMW-1-040119	07/01/2019 AMW-1-070119	07/01/2019 AMW-5-070119	01/12/2018 AMW-2-011218	12/20/2018 AMW-2-122018	12/20/2018 AMW-5-122018	04/01/2019 AMW-2-040119	07/01/2019 AMW-2-070119
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
	Water Level Elev	vation (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific		(Field				(Field			(Field		
Analyte (by group)	Units	Screening Level		Duplicate)				Duplicate)			Duplicate)		
Polycyclic Aromatic Hydrocarbor	ns (PAHs)												
Non-Carcinogenic PAHs													
1-Methylnaphthalene	ug/L	1.51	0.01 U	0.01 U					0.01 U				
2-Methylnaphthalene	ug/L	32	0.01 U	0.01 U					0.01 U				
Acenaphthene	ug/L	960	0.01 U										
Acenaphthylene	ug/L	ne	0.01 U										
Anthracene	ug/L	4800	0.01 U										
Benzo(g,h,i)perylene	ug/L	ne	0.01 U										
Fluoranthene	ug/L	640	0.01 U	0.014	0.01 U	0.01 U	0.01 U	0.01 U					
Fluorene	ug/L	640	0.01 U										
Naphthalene	ug/L	160	0.036	0.035	0.1 U	0.1 U	0.1 U	0.1 U	0.037	0.1 U	0.14	0.1 U	0.1 U
Phenanthrene	ug/L	ne	0.01 U	0.021	0.01 U	0.01 U	0.01 U	0.01 U					
Pyrene	ug/L	480	0.01 U	0.018	0.01 U	0.01 U	0.01 U	0.01 U					
Carcinogenic PAHs (cPAHs)													
Benz(a)anthracene	ug/L	0.12	0.01 U										
Benzo(a)pyrene	ug/L	0.012	0.01 U										
Benzo(b)fluoranthene	ug/L	0.12	0.01 U										
Benzo(k)fluoranthene	ug/L	1.2	0.01 U										
Chrysene	ug/L	12	0.01 U										
Dibenzo(a,h)anthracene	ug/L	0.012	0.01 U										
Indeno(1,2,3-cd)pyrene	ug/L	0.12	0.01 U										
Total cPAHs TEQ (ND = 1/2 RDL)	ug/L	0.012	nd										
Semivolatile Organic Compound													
4-Nitrophenol	ug/L	ne	0.748 UJ	0.749 UJ					0.749 UJ				
2,4,5-Trichlorophenol	ug/L	800	0.5 U	0.5 U					0.5 U				
2,4-Dichlorophenol	ug/L	24	0.5 U	0.5 U					0.5 U				
2,4-Dimethylphenol	ug/L	160	0.5 U	0.5 U					0.5 U				
2,4-Dinitrophenol	ug/L	32	1.5 U	1.5 U					1.5 U				
2,4-Dinitrotoluene	ug/L	1	0.25 U	0.25 U					0.25 U				
2,6-Dinitrotoluene	ug/L	1	0.25 U	0.25 U					0.25 U				
2-Chloronaphthalene	ug/L	ne	0.05 U	0.05 U					0.05 U				
2-Chlorophenol	ug/L	40	0.5 U	0.5 U					0.5 U				
2-Methylphenol	ug/L	400	0.5 U	0.5 U					0.5 U				
2-Nitroaniline	ug/L	160	0.25 U	0.25 U					0.25 U				
2-Nitrophenol	ug/L	ne	0.5 U	0.5 U					0.5 U				
3 & 4 Methylphenol	ug/L	ne	1 U	1 U					1 U				
3-Nitroaniline	ug/L	ne	5 U	5 U					5 U				
4,6-Dinitro-2-methylphenol	ug/L	ne	1.5 U	1.5 U					1.5 U				
4-Bromophenyl phenyl ether	ug/L	ne	0.05 U	0.05 U					0.05 U				
4-Chloro-3-methylphenol	ug/L	ne	0.5 U	0.5 U					0.5 U				

Table 3b

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date	01/12/2018	01/12/2018	12/20/2018	04/01/2019	07/01/2019	07/01/2019	01/12/2018	12/20/2018	12/20/2018	04/01/2019	07/01/2019
		Sample Name	AMW-1-011218	AMW-5-011218	AMW-1-122018	AMW-1-040119	AMW-1-070119	AMW-5-070119	AMW-2-011218	AMW-2-122018	AMW-5-122018	AMW-2-040119	AMW-2-070119
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
	Water Level Elev	vation (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific		(Field				(Field			(Field		
Analyte (by group)	Units	Screening Level		Duplicate)				Duplicate)			Duplicate)		
4-Chloroaniline			5 U	5 U	<u> </u>	<u> </u>		Duplicate)	5 U		. ,		
	ug/L	ne	0.05 U	0.05 U					0.05 U				
4-Chlorophenyl phenyl ether 4-Nitroaniline	ug/L	ne	5 U	5 U					5 U				
	ug/L	ne 64000	2.5 U	2.5 U					2.5 U				
Benzoic acid Benzyl alcohol	ug/L	800	0.5 U	0.5 U					2.5 U				
	ug/L												
Benzyl butyl phthalate	ug/L	46	0.5 U	0.5 U					0.5 U				
Bis(2-chloro-1-methylethyl) ether	ug/L	ne	0.05 J	0.052 J					0.061 J				
Bis(2-chloroethoxy)methane	ug/L	ne 1	0.05 U	0.05 U					0.05 U				
Bis(2-chloroethyl) ether	ug/L	<u>'</u>	0.05 U	0.05 U					0.05 U				
Bis(2-ethylhexyl) phthalate	ug/L	6	0.8 U	0.8 U					0.8 U				
Carbazole	ug/L	ne	0.5 U	0.5 U					0.5 U				
Dibenzofuran	ug/L	16	0.05 U	0.05 U					0.05 U				
Diethyl phthalate	ug/L	12800	0.5 U	0.5 U					0.5 U				
Dimethyl phthalate	ug/L	ne	0.5 U	0.5 U					0.5 U				
Di-n-butyl phthalate	ug/L	1600	0.5 U	0.5 U					0.5 U				
Di-n-octyl phthalate	ug/L	160	0.5 U	0.5 U					0.5 U				
Hexachlorobenzene	ug/L	0.0547	0.05 U	0.05 U					0.05 U				
Hexachlorobutadiene	ug/L	0.56	0.05 U	0.05 U	0.2 U	0.2 U	0.2 U	0.2 U	0.05 U	0.2 U	0.2 U	0.2 U	0.2 U
Hexachlorocyclopentadiene	ug/L	48	0.15 U	0.15 U					0.15 U				
Hexachloroethane	ug/L	1.1	0.05 U	0.05 U					0.05 U				
Isophorone	ug/L	46	0.05 U	0.05 U					0.05 U				
Nitrobenzene	ug/L	16	0.05 U	0.05 U					0.05 U				
N-Nitroso-di-n-propylamine	ug/L	1	0.05 U	0.05 U					0.05 U				
N-Nitrosodiphenylamine	ug/L	17.9	0.05 U	0.05 U					0.05 U				
Pentachlorophenol	ug/L	10	0.5 U	0.5 U					0.5 U				
Phenol	ug/L	2400	0.5 U	0.5 U					0.5 U				
Volatile Organic Compounds (VC													
1,1,1,2-Tetrachloroethane	ug/L	1.7	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	ug/L	200	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	ug/L	0.22	0.2 U										
1,1,2-Trichloroethane	ug/L	0.77	0.2 U										
1,1-Dichloroethane	ug/L	7.68	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	ug/L	7	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1-Dichloropropene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	ug/L	0.5	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trichlorobenzene	ug/L	1.5	0.05 U	0.05 U	1 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	ug/L	0.5	0.5 U	0.5 U	2 U	2 U	2 U	2 U	0.5 U	2 U	2 U	2 U	2 U
1,2-Dibromoethane (EDB)	ug/L	0.2	0.2 U										
1,2-Dichlorobenzene	ug/L	600	0.05 U	0.05 U	1 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane (EDC)	ug/L	0.48	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	ug/L	1.2	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	ug/L	80	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	ug/L	ne	0.05 U	0.05 U	1 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,3-Dichloropropane	ug/L	ne	0.2 U	0.2 U	1 U	1 UJ	1 UJ	1 UJ	0.2 U	1 U	1 U	1 UJ	1 UJ
1,4-Dichlorobenzene	ug/L	8.1	0.05 U	0.05 U	1 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date	01/12/2018	01/12/2018	12/20/2018	04/01/2019	07/01/2019	07/01/2019	01/12/2018	12/20/2018	12/20/2018	04/01/2019	07/01/2019
								AMW-5-070119					
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
	Water Level Elev	vation (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific		(Field				(Field			(Field		
Analyte (by group)	Units	Screening Level		Duplicate)				Duplicate)			Duplicate)		
2,2-Dichloropropane	ug/L	ne	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
2-Butanone	ug/L	4800	2 U	2 U	10 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
2-Chlorotoluene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
2-Hexanone	ug/L	ne	2 U	2 U	10 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
4-Chlorotoluene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	ug/L	640	2 U	2 U	10 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
Acetone	ug/L	7200	50 U	50 U	50 U	50 U	50 U	50 U					
Benzene	ug/L	0.8	0.2 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
Bromobenzene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Bromodichloromethane	ug/L	0.71	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Bromoform	ug/L	5.5	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Bromomethane	ug/L	11.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	ug/L	0.63	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Chlorobenzene	ug/L	100	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Chloroethane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	ug/L	1.4	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Chloromethane	ug/L	ne	0.5 U	0.5 U	10 U	10 U	10 U	10 U	0.5 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene (DCE)	ug/L	16	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	ug/L	ne	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Dibromochloromethane	ug/L	0.52	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Dibromomethane	ug/L	ne	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/L	700	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Isopropylbenzene	ug/L	800	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
m,p-Xylenes	ug/L	1600	0.4 U	0.4 U	2 U	2 U	2 U	2 U	0.4 U	2 U	2 U	2 U	2 U
Methyl tert-butyl ether (MTBE)	ug/L	24.3	0.5 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Methylene Chloride	ug/L	ne	1 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
n-Hexane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
n-Propylbenzene	ug/L	800	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
o-Xylene	ug/L	1600	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
p-Isopropyltoluene	ug/L	ne	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
sec-Butylbenzene	ug/L	800	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Styrene	ug/L	100	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
tert-Butylbenzene	ug/L	800	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Tetrachloroethene (PCE)	ug/L	5	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Toluene	ug/L	640	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Total Xylenes	ug/L	1600	0.4 U	0.4 U	2 U	2 U	2 U	2 U	0.4 U	2 U	2 U	2 U	2 U
trans-1,2-Dichloroethene	ug/L	100	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	ug/L	ne	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Trichloroethene (TCE)	ug/L	0.54	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Trichlorofluoromethane	ug/L	2400	0.2 U	0.2 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Vinyl Chloride	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					

		Sample Location	AMW-3	AMW-3	AMW-3	AMW-3	AMW-4	AMW-4	AMW-4	AMW-4	AMW-4
		Date	01/12/2018	12/20/2018	04/01/2019	07/01/2019	01/12/2018	12/20/2018	04/01/2019	04/01/2019	07/01/2019
		Sample Name	AMW-3-011218	AMW-3-122018	AMW-3-040119	AMW-3-070119	AMW-4-011218	AMW-4-122018	AMW-4-040119	AMW-5-040119	AMW-4-070119
		DTW (feet BTOC)	100.1	104.97	104.83	107.75	81.22	86.56	85.19	85.19	88.98
W	ater Level Ele	vation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	68.49	64.7
Analyte (by group)	Units	Site-Specific Screening Level								(Field Duplicate)	
Polycyclic Aromatic Hydrocarbons (I		Corconning Lover								Bupilouto)	
Non-Carcinogenic PAHs	i Aiiə)										
1-Methylnaphthalene	ug/L	1.51	0.01 U				0.01 U				
2-Methylnaphthalene	ug/L	32	0.01 U				0.01 U				
Acenaphthene	ug/L	960	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Acenaphthylene	ug/L	ne	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Anthracene	ug/L	4800	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(g,h,i)perylene	ug/L	ne	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Fluoranthene	ug/L	640	0.01 U	0.01 U	0.01 U	0.01 U	0.010	0.01 U	0.01 U	0.01 U	0.01 U
Fluorene	ug/L	640	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Naphthalene	ug/L	160	0.093	0.1 U	0.1 U	0.15	0.053	0.1 U	0.1 U	0.1 U	0.1 U
Phenanthrene	ug/L	ne	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Pyrene	ug/L	480	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Carcinogenic PAHs (cPAHs)											
Benz(a)anthracene	ug/L	0.12	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(a)pyrene	ug/L	0.012	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene	ug/L	0.12	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene	ug/L	1.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chrysene	ug/L	12	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Dibenzo(a,h)anthracene	ug/L	0.012	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene	ug/L	0.12	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ (ND = 1/2 RDL)	ug/L	0.012	nd	nd	nd	nd	nd	nd	nd	nd	nd
Semivolatile Organic Compounds (S					1	1	1				
4-Nitrophenol	ug/L	ne	0.749 UJ				0.749 UJ				
2,4,5-Trichlorophenol	ug/L	800	0.5 U				0.5 U				
2,4-Dichlorophenol	ug/L	24	0.5 U				0.5 U				
2,4-Dimethylphenol	ug/L	160	0.5 U				0.5 U				
2,4-Dinitrophenol	ug/L	32	1.5 U				1.5 U				
2,4-Dinitrotoluene	ug/L	1	0.25 U				0.25 U				
2,6-Dinitrotoluene	ug/L	1	0.25 U				0.25 U				
2-Chloronaphthalene	ug/L	ne 40	0.05 U				0.05 U				
2-Chlorophenol	ug/L	40	0.5 U				0.5 U				
2-Methylphenol	ug/L	400	0.5 U				0.5 U				
2-Nitroaniline 2-Nitrophenol	ug/L	160	0.25 U				0.25 U				
2-Nitrophenol 3 & 4 Methylphenol	ug/L	ne	0.5 U 1 U				0.5 U 1 U				
3-Nitroaniline	ug/L ug/L	ne ne	5 U				5 U				
4,6-Dinitro-2-methylphenol			1.5 U				1.5 U				
4-Bromophenyl phenyl ether	ug/L	ne	0.05 U	_ 			0.05 U				
4-Chloro-3-methylphenol	ug/L	ne	0.05 U				0.5 U		<u></u>	 	
4-Gnioro-3-metriyiphenor	ug/L	ne	บ.อ บ				U.S U				

		Sample Location Date Sample Name DTW (feet BTOC)	AMW-3 01/12/2018 AMW-3-011218 100.1	AMW-3 12/20/2018 AMW-3-122018 104.97	AMW-3 04/01/2019 AMW-3-040119 104.83	AMW-3 07/01/2019 AMW-3-070119 107.75	AMW-4 01/12/2018 AMW-4-011218 81.22	AMW-4 12/20/2018 AMW-4-122018 86.56	AMW-4 04/01/2019 AMW-4-040119 85.19	AMW-4 04/01/2019 AMW-5-040119 85.19	AMW-4 07/01/2019 AMW-4-070119 88.98
W	ater Level Ele	evation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	68.49	64.7
Analyta (by group)	Units	Site-Specific Screening Level								(Field Duplicate)	
Analyte (by group)			5 11				5.11		1	. ,	
4-Chloroaniline	ug/L	ne	5 U				5 U				
4-Chlorophenyl phenyl ether 4-Nitroaniline	ug/L	ne	0.05 U 5 U				0.05 U 5 U				
Benzoic acid	ug/L	ne 64000	2.5 U				2.5 U				
Benzyl alcohol	ug/L	800	0.5 U				0.5 U				
Benzyl butyl phthalate	ug/L	46	0.5 U				0.5 U				
Bis(2-chloro-1-methylethyl) ether	ug/L		0.55 J				0.05 U				
Bis(2-chloroethoxy)methane	ug/L	ne	0.05 U				0.05 U				
	ug/L	ne 1	0.05 U				0.05 U				
Bis(2-chloroethyl) ether	ug/L	6	0.05 U				0.05 U				
Bis(2-ethylhexyl) phthalate Carbazole	ug/L										
Carbazole Dibenzofuran	ug/L	ne 16	0.5 U 0.05 U				0.5 U				
	ug/L						0.05 U				
Diethyl phthalate	ug/L	12800	0.5 U				0.5 U				
Dimethyl phthalate	ug/L	ne	0.5 U				0.5 U				
Di-n-butyl phthalate	ug/L	1600	0.5 U				0.5 U				
Di-n-octyl phthalate	ug/L	160	0.5 U				0.5 U				
Hexachlorobenzene	ug/L	0.0547	0.05 U				0.05 U				
Hexachlorobutadiene	ug/L	0.56	0.05 U	0.2 U	0.2 U	0.2 U	0.05 U	0.2 U	0.2 U	0.2 U	0.2 U
Hexachlorocyclopentadiene	ug/L	48	0.15 U				0.15 U				
Hexachloroethane	ug/L	1.1	0.05 U				0.05 U				
Isophorone	ug/L	46	0.05 U				0.05 U				
Nitrobenzene	ug/L	16	0.05 U				0.05 U				
N-Nitroso-di-n-propylamine	ug/L	1	0.05 U				0.05 U				
N-Nitrosodiphenylamine	ug/L	17.9	0.05 U				0.05 U				
Pentachlorophenol	ug/L	10	0.5 U				0.5 U				
Phenol	ug/L	2400	0.5 U				0.5 U				
Volatile Organic Compounds (VOCs)		1 7	0.011	4.11	4.11	4.11	0.011	4.11	1 411	4.11	4.11
1,1,1,2-Tetrachloroethane	ug/L	1.7	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	ug/L	200	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	ug/L	0.22	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	0.77	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-Dichloroethane	ug/L	7.68	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	ug/L	7	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,1-Dichloropropene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	ug/L	0.5	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trichlorobenzene	ug/L	1.5	0.05 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	ug/L	0.5	0.5 U	2 U	2 U	2 U	0.5 U	2 U	2 U	2 U	2 U
1,2-Dibromoethane (EDB)	ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichlorobenzene	ug/L	600	0.05 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane (EDC)	ug/L	0.48	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	ug/L	1.2	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	ug/L	80	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	ug/L	ne	0.05 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U
1,3-Dichloropropane	ug/L	ne	0.2 U	1 U	1 UJ	1 UJ	0.2 U	1 U	1 UJ	1 UJ	1 UJ
1,4-Dichlorobenzene	ug/L	8.1	0.05 U	1 U	1 U	1 U	0.05 U	1 U	1 U	1 U	1 U

Table 3b. Groundwater Data - PAHs, SVOCs, and VOCs

Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-3	AMW-3	AMW-3	AMW-3	AMW-4	AMW-4	AMW-4	AMW-4	AMW-4
		Date	01/12/2018	12/20/2018	04/01/2019	07/01/2019	01/12/2018	12/20/2018	04/01/2019	04/01/2019	07/01/2019
		-	AMW-3-011218	AMW-3-122018	AMW-3-040119	AMW-3-070119	AMW-4-011218	AMW-4-122018	AMW-4-040119	AMW-5-040119	AMW-4-070119
		DTW (feet BTOC)	100.1	104.97	104.83	107.75	81.22	86.56	85.19	85.19	88.98
W	Vater Level Ele	vation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	68.49	64.7
		Site-Specific								(Field	
Analyte (by group)	Units	Screening Level								Duplicate)	
2,2-Dichloropropane	ug/L	ne	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
2-Butanone	ug/L	4800	2 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
2-Chlorotoluene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
2-Hexanone	ug/L	ne	2 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
4-Chlorotoluene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	ug/L	640	2 U	10 U	10 U	10 U	2 U	10 U	10 U	10 U	10 U
Acetone	ug/L	7200	50 U								
Benzene	ug/L	0.8	0.2 U	0.35 U	0.35 U	0.35 U	0.2 U	0.35 U	0.35 U	0.35 U	0.35 U
Bromobenzene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Bromodichloromethane	ug/L	0.71	0.2 U								
Bromoform	ug/L	5.5	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Bromomethane	ug/L	11.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	ug/L	0.63	0.2 U								
Chlorobenzene	ug/L	100	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Chloroethane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	ug/L	1.4	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Chloromethane	ug/L	ne	0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene (DCE)	ug/L	16	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	ug/L	ne	0.2 U								
Dibromochloromethane	ug/L	0.52	0.2 U								
Dibromomethane	ug/L	ne	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/L	700	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Isopropylbenzene	ug/L	800	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
m,p-Xylenes	ug/L	1600	0.4 U	2 U	2 U	2 U	0.4 U	2 U	2 U	2 U	2 U
Methyl tert-butyl ether (MTBE)	ug/L	24.3	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U
Methylene Chloride	ug/L	ne	1 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
n-Hexane	ug/L	ne	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
n-Propylbenzene	ug/L	800	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
o-Xylene	ug/L	1600	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
p-Isopropyltoluene	ug/L	ne	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
sec-Butylbenzene	ug/L	800	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Styrene	ug/L	100	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
tert-Butylbenzene	ug/L	800	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Tetrachloroethene (PCE)	ug/L	5	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Toluene	ug/L	640	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Total Xylenes	ug/L	1600	0.4 U	2 U	2 U	2 U	0.4 U	2 U	2 U	2 U	2 U
trans-1,2-Dichloroethene	ug/L	100	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	ug/L	ne	0.2 U								
Trichloroethene (TCE)	ug/L	0.54	0.2 U								
Trichlorofluoromethane	ug/L	2400	0.2 U	1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Vinyl Chloride	ug/L	0.2	0.2 U								

Notes:

Bold = a detected concentration

Gray shading = a concentration that exceeds the Site-Specific Screening Level

ne = indicates not established or not applicable

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.

X = the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

"--" = not analyzed.

DTW = depth to water

BTOC = below top of casing

nd = not detected

ug/L = micrograms per liter

Aspect Consulting

12/15/2021

V:\150074 Shelton C Street Landfill Remediation\Deliverables\RIFS\FINAL RIFS\Tables and Figures\Tables\T3a to 3c. Summary GW Data Tables_revised 12-11-2019

Table 3c. Groundwater Data - Dioxins/Furans, Pesticides/Herbicides, and PCBs Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date Sample Name	01/12/2018 AMW-1-011218	01/12/2018 AMW-5-011218	12/20/2018 AMW-1-122018	04/01/2019 AMW-1-040119	07/01/2019 AMW-1-070119	07/01/2019 AMW-5-070119	01/12/2018 AMW-2-011218	12/20/2018 AMW-2-122018	12/20/2018 AMW-5-122018	04/01/2019 AMW-2-040119	07/01/2019 AMW-2-070119
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
Water	Level Elev	ration (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific		(Field		555	<u> </u>	0.1101			2110		
Analyte (by group)	Units	Screening Level		Duplicate)				(Field Duplicate)			(Field Duplicate)		
Dioxins/Furans													
Chlorinated di-benzi-p-dioxins (CDDs)								_			_		
2,3,7,8-TCDD	pg/L	30	0.510 U	0.795 U	1.13 U	1.2 U	0.967 U	0.977 U	0.692 U	1.06 U	0.790 U	1.61 U	0.931 U
1,2,3,7,8-PeCDD	pg/L	ne	1.02 U	1.36 U	1.74 U	1.96 U	1.43 U	1.84 U	1.64 U	1.98 U	1.71 U	3.89 U	1.51 U
1,2,3,4,7,8-HxCDD	pg/L	ne	1.36 U	1.90 U	2.05 U	3.54 U	1.38 U	1.88 U	1.87 U	2.92 U	2.34 U	3.69 U	2.13 U
1,2,3,6,7,8-HxCDD	pg/L	ne	1.45 U	1.93 U	1.89 U	3.87 U	1.44 U	1.96 U	1.88 U	3.13 U	2.63 U	3.88 U	2.31 U
1,2,3,7,8,9-HxCDD	pg/L	ne	1.36 U	1.85 U	1.84 U	3.49 U	1.32 U	1.8 U	1.82 U	2.83 U	2.32 U	3.56 U	2.08 U
1,2,3,4,6,7,8-HpCDD	pg/L	ne	2.29 U	2.62 U	3.62 U	3.76 U	2.7 U	3.28 U	3.18 U	3.60 U	3.98 U	4.06 U	4.18 U
OCDD	pg/L	ne	5.81 U	5.81 U	4.66 U	4.82 U	6.31 U	5.6 U	22.2 J	11.4 J	10.6 J	6.91 U	19.7 J
Total CDD TEQ (ND = 1/2 RDL)	pg/L	30	nd	nd	nd	nd	nd	nd	1.47 J	1.99 J	1.64 J	nd	1.57 J
Chlorinated dibenzofurans (CDFs)	, I		0.4007.	0.000	0.707	4 4= 1 .	0.000::	1 004411	0.0=0	0.000::	0.00=	0.001:	0.044
2,3,7,8-TCDF	pg/L	ne	0.499 U	0.883 U	0.797 U	1.45 U	0.803 U	0.914 U	0.856 U	0.988 U	0.965 U	2.03 U	0.811 U
1,2,3,7,8-PeCDF	pg/L	ne	0.656 U	1.06 U	1.75 U	2.22 U	0.86 U	1.1 U	0.781 U	2.17 U	1.51 U	3.04 U	0.961 U
2,3,4,7,8-PeCDF	pg/L	ne	0.688 U	1.04 U	1.82 U	2.26 U	0.805 U	1.11 U	0.842 U	2.33 U	1.58 U	2.91 U	0.875 U
1,2,3,4,7,8-HxCDF	pg/L	ne	0.819 U	0.827 U	1.99 U	1.57 U	0.767 U	1.01 U	1.23 U	1.92 U	1.56 U	1.79 U	0.857 U
1,2,3,6,7,8-HxCDF	pg/L	ne	0.845 U	0.867 U	2.11 U	1.58 U	0.875 U	1.11 U	1.24 U	1.95 U	1.63 U	1.96 U	1.01 U
1,2,3,7,8,9-HxCDF	pg/L	ne	1.14 U	1.21 U	2.31 U	2.17 U	1.07 U	1.34 U	1.71 U	2.18 U	1.65 U	2.58 U	1.25 U
2,3,4,6,7,8-HxCDF	pg/L	ne	0.873 U	0.901 U	2.62 U	1.73 U	0.899 U	1.13 U	1.41 U	2.91 U	2.26 U	2.01 U	0.998 U
1,2,3,4,6,7,8-HpCDF	pg/L	ne	0.929 U	1.43 U	2.65 U	1.96 U	1.14 U	1.53 U	1.52 U	2.74 U	2.15 U	1.76 U	1.5 U
1,2,3,4,7,8,9-HpCDF	pg/L	ne	1.23 U	1.92 U	2.36 U	2.59 U	1.41 U	1.65 U	2.16 U	3.42 U	2.68 U	2.42 U	1.63 U
OCDF	pg/L	ne	1.48 U	2.29 U	3.30 U	4.97 U	2.1 U	2.78 U	3.22 U	4.86 U	4.33 U	5 U	3.35 U
Total CDF TEQ (ND = 1/2 RDL)	pg/L	30	nd										
Organochlorine Pesticides	1/1	0.205	0.00511	0.005.11				I	0.005.11		I		
4,4'-DDD 4,4'-DDE	ug/L	0.365 0.257	0.005 U	0.005 U 0.025 U					0.005 U 0.025 U				
4,4'-DDE 4,4'-DDT	ug/L	0.257	0.025 U	0.025 U									
4,4-001 Aldrin	ug/L	0.257	0.005 U 0.005 U	0.005 U					0.005 U 0.005 U				
Alpha-BHC	ug/L ug/L		0.005 U	0.005 U					0.005 U				
Beta-BHC		ne ne	0.005 U	0.005 U					0.005 U				
cis-Chlordane	ug/L ug/L	ne	0.005 U	0.005 U				 	0.005 U				
Delta-BHC	ug/L	ne	0.005 U	0.005 U					0.005 U				
Dieldrin	ug/L ug/L	0.0055	0.005 U	0.005 U					0.005 U				
Endosulfan I	ug/L ug/L	96	0.005 U	0.005 U					0.005 U				
Endosulfan II	ug/L	96	0.025 U	0.025 U					0.005 U				
Endosulfan Sulfate	ug/L	ne	0.005 U	0.005 U					0.025 U				
Endrin	ug/L	2	0.005 U	0.005 U					0.005 U				
Endrin Aldehyde	ug/L	ne	0.025 U	0.025 U					0.025 U				
Endrin ketone	ug/L	ne	0.005 U	0.005 U					0.005 U				
Heptachlor	ug/L	0.0194	0.005 U	0.005 U					0.005 U				
Heptachlor Epoxide	ug/L	0.005	0.005 U	0.005 U					0.005 U				
Lindane	ug/L	0.0795	0.005 U	0.005 U					0.005 U				
Methoxychlor	ug/L	40	0.005 U	0.005 U					0.005 U				
Toxaphene	ug/L	0.0795	0.25 U	0.25 U					0.25 U				
trans-Chlordane	ug/L	0.25	0.005 U	0.005 U					0.005 U				

Table 3c. Groundwater Data - Dioxins/Furans, Pesticides/Herbicides, and PCBs Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-1	AMW-2	AMW-2	AMW-2	AMW-2	AMW-2
		Date	01/12/2018	01/12/2018	12/20/2018	04/01/2019	07/01/2019	07/01/2019	01/12/2018	12/20/2018	12/20/2018	04/01/2019	07/01/2019
		Sample Name	AMW-1-011218	AMW-5-011218		AMW-1-040119	AMW-1-070119	AMW-5-070119	AMW-2-011218		AMW-5-122018	AMW-2-040119	AMW-2-070119
		DTW (feet BTOC)	83.07	83.07	89.13	87.65	91.53	91.53	83.3	88.52	88.52	87.17	90.95
Wate	er Level Elev	vation (feet NAVD88)	72.83	72.83	66.77	68.25	64.37	64.37	72.24	67.02	67.02	68.37	64.59
		Site-Specific		(Field		00.20	0 1101	UU .		01102	01102		0.1.00
Analyte (by group)	Units	Screening Level		Duplicate)				(Field Duplicate)			(Field Duplicate)		
Chlorinated Herbicides													
3,5-Dichlorobenzoic acid	ug/L	ne	4.99 U	5.00 U			1		4.99 U	1			
Acifluorfen	ug/L	ne	4.24 U	4.25 U					4.24 U				
Bentazone	ug/L	ne	2.69 U	2.70 U					2.70 U				
Chloramben	ug/L	ne	1.20 U	1.20 U					1.20 U				
Chlorthal-dimethyl	ug/L	ne	0.848 U	0.849 U					0.849 U				
Picloram	ug/L	ne	0.499 U	0.500 U					0.499 U				
2,4,5-T	ug/L	ne	0.997 U	0.999 U			-		0.998 U				
2,4-D	ug/L	ne	1.99 U	2.00 U					2.00 U	1			
2,4-DB	ug/L	128	2.99 U	3.00 U					2.99 U				
Dalapon	ug/L	200	3.99 UJ	4.00 UJ					3.99 UJ				
Dicamba	ug/L	480	4.49 U	4.50 U					4.49 U				
Dichloroprop	ug/L	ne	0.997 U	0.999 U					0.998 U				
Dinoseb	ug/L	7	3.74 U	3.75 U					3.74 U				
MCPA	ug/L	ne	9.97 U	9.99 U					9.98 U				
MCPP	ug/L	ne	9.97 U	9.99 U					9.98 U				
Silvex	ug/L	50	0.598 U	0.600 U					0.599 U				
Polychlorinated Biphenols (PCBs)													
Aroclor 1016	ug/L	1.1	0.025 U	0.025 U					0.025 U				
Aroclor 1221	ug/L	ne	0.025 U	0.025 U					0.025 U				
Aroclor 1232	ug/L	ne	0.025 U	0.025 U					0.025 U				
Aroclor 1242	ug/L	ne	0.025 U	0.025 U					0.025 U				
Aroclor 1248	ug/L	ne	0.025 U	0.025 U					0.025 U				
Aroclor 1254	ug/L	0.044	0.025 U	0.025 U					0.025 U				
Aroclor 1260	ug/L	0.044	0.025 U	0.025 U					0.025 U				
Aroclor 1262	ug/L	ne	0.025 U	0.025 U					0.025 U				
Aroclor 1268	ug/L	ne	0.025 U	0.025 U					0.025 U				
Total PCBs (Sum of Aroclors)	ug/L	0.044	0.025 U	0.025 U			-		0.025 U				

Table 3c. Groundwater Data - Dioxins/Furans, Pesticides/Herbicides, and PCBs Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-3	AMW-3	AMW-3	AMW-3	AMW-4	AMW-4	AMW-4	AMW-4
		Date	01/12/2018	12/20/2018	04/01/2019	07/01/2019	01/12/2018	12/20/2018	04/01/2019	07/01/2019
		Sample Name	AMW-3-011218	AMW-3-122018	AMW-3-040119	AMW-3-070119	AMW-4-011218	AMW-4-122018	AMW-4-040119	AMW-4-070119
		DTW (feet BTOC)	100.1	104.97	104.83	107.75	81.22	86.56	85.19	88.98
	Water Level Ele	evation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	64.7
		Site-Specific	-				-	-		-
Analyte (by group)	Units	Screening Level								
Dioxins/Furans										
Chlorinated di-benzi-p-dioxins (CDDs)					T	1	T	T	T	
2,3,7,8-TCDD	pg/L	30	0.665 U	0.952 U	2.36 U	0.901 U	0.585 U	0.914 U	1.98 U	0.962 U
1,2,3,7,8-PeCDD	pg/L	ne	0.959 U	1.82 U	3.39 U	1.87 U	1.07 U	1.46 U	3.37 U	1.53 U
1,2,3,4,7,8-HxCDD	pg/L	ne	2.06 U	2.49 U	4.84 U	1.39 U	2.03 U	1.83 U	3.82 U	1.65 U
1,2,3,6,7,8-HxCDD	pg/L	ne	2.00 U	2.61 U	4.56 U	1.43 U	1.92 U	2.02 U	3.86 U	1.74 U
1,2,3,7,8,9-HxCDD	pg/L	ne	1.97 U	2.39 U	4.42 U	1.32 U	1.91 U	1.80 U	3.61 U	1.58 U
1,2,3,4,6,7,8-HpCDD	pg/L	ne	2.62 U	3.27 U	5.08 U	3.09 U	2.08 J	3.29 U	3.81 U	4.44 U
OCDD	pg/L	ne	4.61 U	5.61 J	5.52 U	5.23 U	15.5 J	10.6 J	11.2 J	17.9 J
Total CDD TEQ (ND = 1/2 RDL)	pg/L	30	nd	1.78 J	nd	nd	1.15 J	1.49 J	3.26 J	1.52 J
Chlorinated dibenzofurans (CDFs)			0.70411	0.70011	0.40.11	0.040.11	0.040.11	0.000.11	T 0.4.11	0.740.11
2,3,7,8-TCDF	pg/L	ne	0.704 U	0.702 U	2.18 U	0.842 U	0.643 U	0.893 U	2.1 U	0.748 U
1,2,3,7,8-PeCDF	pg/L	ne	0.899 U	1.50 U	2.84 U	0.901 U	1.21 U	1.32 U	2.5 U	1.09 U
2,3,4,7,8-PeCDF	pg/L	ne	0.903 U	1.49 U	2.78 U	0.883 U	1.23 U	1.42 U	2.37 U	1.05 U
1,2,3,4,7,8-HxCDF	pg/L	ne	0.810 U	1.76 U	2.1 U	0.86 U	0.989 U	1.30 U	1.68 U	0.915 U
1,2,3,6,7,8-HxCDF	pg/L	ne	0.825 U	1.85 U	2.11 U	1.01 U	1.04 U	1.29 U	1.8 U	1.02 U
1,2,3,7,8,9-HxCDF	pg/L	ne	1.20 U	1.95 U	2.87 U	1.26 U	1.44 U	1.32 U	2.44 U	1.24 U
2,3,4,6,7,8-HxCDF	pg/L	ne	0.901 U	2.28 U	2.19 U	0.998 U	1.10 U	1.82 U	1.89 U	1.05 U
1,2,3,4,6,7,8-HpCDF	pg/L	ne	1.26 U	1.88 U	2 U	0.977 U	0.860 U	1.93 U	1.88 U	1.26 U
1,2,3,4,7,8,9-HpCDF	pg/L	ne	1.78 U	2.60 U	2.68 U	1.27 U	1.18 U	2.48 U	2.55 U	1.5 U
OCDF	pg/L	ne	2.14 U	3.59 U	5.54 U	2.24 U	2.63 U	3.46 U	4.6 U	2.88 U
Total CDF TEQ (ND = 1/2 RDL)	pg/L	30	nd							
Organochlorine Pesticides	1 4	0.005	0.005.11			ı	0.00511		Т	
4,4'-DDD	ug/L	0.365	0.005 U				0.005 U			
4,4'-DDE	ug/L	0.257	0.025 U				0.025 U			
4,4'-DDT	ug/L	0.257	0.005 U				0.005 U			
Aldrin	ug/L	0.005	0.005 U				0.005 U			
Alpha-BHC	ug/L	ne	0.005 U				0.005 U			
Beta-BHC	ug/L	ne	0.005 U				0.005 U			
cis-Chlordane	ug/L	ne	0.005 U				0.005 U			
Delta-BHC	ug/L	ne	0.005 U				0.005 U			
Dieldrin	ug/L	0.0055	0.005 U				0.005 U			
Endosulfan I	ug/L	96	0.005 U				0.005 U			
Endosulfan II	ug/L	96	0.025 U				0.025 U			
Endosulfan Sulfate	ug/L	ne	0.005 U				0.005 U			
Endrin	ug/L	2	0.005 U				0.005 U			
Endrin Aldehyde	ug/L	ne	0.025 U				0.025 U			
Endrin ketone	ug/L	ne	0.005 U				0.005 U			
Heptachlor	ug/L	0.0194	0.005 U				0.005 U			
Heptachlor Epoxide	ug/L	0.005	0.005 U				0.005 U			
Lindane	ug/L	0.0795	0.005 U				0.005 U			
Methoxychlor	ug/L	40	0.005 U				0.005 U			
Toxaphene	ug/L	0.0795	0.25 U				0.25 U			
trans-Chlordane	ug/L	0.25	0.005 U				0.005 U			

Table 3c. Groundwater Data - Dioxins/Furans, Pesticides/Herbicides, and PCBs

Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	AMW-3	AMW-3	AMW-3	AMW-3	AMW-4	AMW-4	AMW-4	AMW-4
		Date	01/12/2018	12/20/2018	04/01/2019	07/01/2019	01/12/2018	12/20/2018	04/01/2019	07/01/2019
		Sample Name	AMW-3-011218	AMW-3-122018	AMW-3-040119	AMW-3-070119	AMW-4-011218	AMW-4-122018	AMW-4-040119	AMW-4-070119
		DTW (feet BTOC)	100.1	104.97	104.83	107.75	81.22	86.56	85.19	88.98
· ·	Votor Lovel E	levation (feet NAVD88)	72.84	67.97	68.11	65.19	72.46	67.12	68.49	64.7
<u> </u>	Valer Lever E	Site-Specific	12.04	67.57	00.11	65.15	72.40	07.12	66.49	04.7
Analyte (by group)	Units	Screening Level								
Chlorinated Herbicides	1 311113									
3,5-Dichlorobenzoic acid	ug/L	ne	4.99 U				5.00 U			
Acifluorfen	ug/L	ne	4.25 U				4.25 U			
Bentazone	ug/L	ne	2.70 U				2.70 U			
Chloramben	ug/L	ne	1.20 U				1.20 U			
Chlorthal-dimethyl	ug/L	ne	0.849 U				0.849 U			
Picloram	ug/L	ne	0.499 U				0.500 U			
2,4,5-T	ug/L	ne	0.999 U				0.999 U			-
2,4-D	ug/L	ne	2.00 U				2.00 U			
2,4-DB	ug/L	128	3.00 U				3.00 U			-
Dalapon	ug/L	200	4.00 UJ	-			4.00 UJ			
Dicamba	ug/L	480	4.49 U	-			4.50 U			-
Dichloroprop	ug/L	ne	0.999 U				0.999 U			
Dinoseb	ug/L	7	3.75 U				3.75 U			
MCPA	ug/L	ne	9.99 U				9.99 U			
MCPP	ug/L	ne	9.99 U				9.99 U			
Silvex	ug/L	50	0.599 U				0.599 U			
Polychlorinated Biphenols (PCBs)	·									
Aroclor 1016	ug/L	1.1	0.025 U				0.025 U			
Aroclor 1221	ug/L	ne	0.025 U				0.025 U			
Aroclor 1232	ug/L	ne	0.025 U				0.025 U			
Aroclor 1242	ug/L	ne	0.025 U				0.025 U			
Aroclor 1248	ug/L	ne	0.025 U				0.025 U			
Aroclor 1254	ug/L	0.044	0.025 U				0.025 U			
Aroclor 1260	ug/L	0.044	0.025 U				0.025 U			
Aroclor 1262	ug/L	ne	0.025 U				0.025 U			
Aroclor 1268	ug/L	ne	0.025 U				0.025 U			
Total PCBs (Sum of Aroclors)	ug/L	0.044	0.025 U				0.025 U			-

Notes:

Bold = a detected concentration.

Gray shading = a concentration that exceeds the Site-Specific Screening Level.

ne = indicates not established or not applicable.

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

J = the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.

X = the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

-- = not analyzed

TEQ = Toxicity equivalent quotient. TEQs for total cPAHs and total dioxins/furans were calculated using the methodology and the toxicity equivalency factors (TEFs) prescribed in Washington State Model

Toxics Control Act (MTCA) and WAC 173-340-708(8)(e).

TCDD = tetrachloro dibenzo-p-dioxin
PeCDD = entachloro dibenzo-p-dioxin
HxCDD = hexachloro dibenzo-p-dioxin
HpCDD = heptachloro dibenzo-p-dioxin
HpCDD = heptachloro dibenzo-p-dioxin
OCDD = octachloro dibenzo-p-dioxin
BTOC = below top of casing

TCDF = tetrachloro dibenzofuran pg/L = picograms per liter
PeCDF = pentachloro dibenzofuran ug/L = micrograms per liter

Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location Sample Date Sample Name	SG-1 12/19/2018 SG-1-121918	SG-2 12/19/2018 SG-2-121918	SG-3 12/19/2018 SG-3-121918	SG-4 12/19/2018 SG-4-121918	SG-5 12/19/2018 SG-5-121918
Compound	Units	Soil Gas Screening Levels	30-1-121310	30-2-121310	30-3-121310	30-4-121310	30-3-121310
FIELD DATA	Units	Levels					
Methane	%	N/A	0.10	0	0	1.3	0.10
Carbon Dioxide	%	N/A	10.9	3.2	3.7	3.2	7.4
Oxygen	%	N/A	10.3	20.2	16.0	7.60	9.80
Hydrogen Sulfide	%	N/A	0	0	0	0	0
LABORATORY ANALYTICAL DA	TA						
Methane	0/	N1/A	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11
Methane Petroleum Hydrocarbons	%	N/A	0.05 U				
Air-Phase Hydrocarbons							
C5 - C8 Aliphatic Hydrocarbons	ug/m3	270000	6300	410	910	23000 E	540
C9 - C10 Aromatic Hydrocarbons	ug/m3	18000	190 U	40 U	37 U	360 U	37 U
C9 - C12 Aliphatic Hydrocarbons	ug/m3	14000	330	110	550	1200	250
Petroleum-Associated Volatile C Benzene	ug/m3	32.1	62	7.3	26	220	38
Toluene	ug/m3	229000	19	9.9	26	160	34
Ethylbenzene	ug/m3	45700	4.9	5.0	4.9	15	8.0
Xylenes	ug/m3	ne	8.8	33	12	44	16
1,2-Dibromoethane (EDB)	ug/m3	0.417	0.58 U	0.12 U	0.12 U	1.1 U	0.12 U
1,2-Dichloroethane (EDC) Methyl tert-butyl ether (MTBE)	ug/m3	9.62 962	0.3 U 14 U	0.065 U 2.9 U	0.27 2.7 U	0.59 U 26 U	0.061 U 2.7 U
Naphthalene	ug/m3 ug/m3	7.35	3.9 U	2.9 U 0.84 U	2.7 U 0.79 U	7.7 U	0.79 U
Total Petroleum Hydrocarbons ¹	ug/m3	14,000 ²	180	43	76	580	99
Volatile Organic Compounds (V		,					
1,1,1-Trichloroethane	ug/m3	229000	4.1 U	0.87 U	0.82 U	8 U	0.82 U
1,1,2,2-Tetrachloroethane	ug/m3	4.31	1 U	0.22 U	0.21 U	2 U	0.21 U
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	ug/m3 ug/m3	15.6 1370000	0.82 U 5.7 U	0.17 U 1.2 U	0.16 U 1.1 U	1.6 U 11 U	0.16 U 1.1 U
1,1-Dichloroethane	ug/m3	1570000	3.7 U	0.65 U	0.61 U	5.9 U	0.87
1,1-Dichloroethene	ug/m3	9140	3 U	0.63 U	0.59 U	5.8 U	1.3
1,2,4-Trichlorobenzene	ug/m3	91.4	5.6 U	1.2 U	1.1 U	11 U	1.1 U
1,2,4-Trimethylbenzene	ug/m3	320	18 U	3.9 U	3.7 U	36 U	3.7 U
1,2-Dichlorobenzene	ug/m3	9140	4.5 U	0.96 U	0.9 U	8.8 U	0.9 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/m3 ug/m3	25 ne	1.7 U 18 U	0.37 U 3.9 U	0.35 U 3.7 U	3.4 U 36 U	0.35 U 3.7 U
1,3-Butadiene	ug/m3	8.33	0.17 U	0.035 U	0.033 U	0.32 U	0.033 U
1,3-Dichlorobenzene	ug/m3	ne	4.5 U	0.96 U	0.9 U	8.8 U	0.9 U
1,4-Dichlorobenzene	ug/m3	22.7	1.8 U	0.38 U	0.36 U	3.5 U	0.36 U
1,4-Dioxane	ug/m3	ne	2.7 U	0.58 U	0.54 U	5.3 U	0.54 U
1-Propene 2,2,4-Trimethylpentane	ug/m3 ug/m3	ne ne	560 E 35 U	76 E 7.5 U	230 E 7 U	5500 E 68 U	380 E 7 U
2-Butanone	ug/m3	229000	22 U	23	37	180	4.4 U
2-Chlorotoluene	ug/m3	ne	39 U	8.3 U	7.8 U	76 U	7.8 U
2-Hexanone	ug/m3	ne	31 U	6.6 U	6.1 U	60 U	6.1 U
4-Ethyltoluene	ug/m3	ne	18 U	3.9 U	3.7 U	36 U	3.7 U
4-Methyl-2-pentanone	ug/m3	137000	31 U	6.6 U	6.1 U	60 U	6.1 U
Acetone Acrolein	ug/m3 ug/m3	ne 0.914	36 U 6.9 U	140 E 4.5	200 E 9.8	410 13 U	7.1 U 1.4 U
Allyl Chloride	ug/m3	ne	9.4 U	2 U	1.9 U	18 U	1.9 U
alpha-Chlorotoluene	ug/m3	5.1	0.39 U	0.083 U	0.078 U	0.76 U	0.085
Bromodichloromethane	ug/m3	6.76	0.5 U	0.11 U	0.1 U	0.98 U	0.1 U
Bromoform	ug/m3	227	16 U	3.3 U	3.1 U	30 U	3.1 U
Bromomethane Butane	ug/m3 ug/m3	229 ne	12 U 2100 E	2.5 U 81	2.3 U 150 E	23 U 4200 E	2.3 U 300 E
Carbon Disulfide	ug/m3	32000	47 U	10 U	9.3 U	230	9.3 U
Carbon Tetrachloride	ug/m3	41.7	4.7 U	1 U	1.8	9.2 U	0.94 U
Chlorobenzene	ug/m3	2290	3.5 U	0.74 U	0.69 U	6.7 U	0.70
Chloroethane	ug/m3	457000	20 U	4.2 U	4 U	39 U	4 U
Chloroform Chloromethane	ug/m3 ug/m3	10.9 4110	0.37 U 15 U	0.17 3.3 U	0.94 3.1 U	0.71 U 30 U	0.073 U 3.1 U
cis-1,2-Dichloroethene (DCE)	ug/m3 ug/m3	4110 ne	3 U	0.63 U	0.59 U	5.8 U	3.10
cis-1,3-Dichloropropene	ug/m3	ne	3.4 U	0.73 U	0.68 U	6.6 U	0.68 U
Cyclohexane	ug/m3	ne	52 U	17	26	170	10 U
Dibromochloromethane	ug/m3	9.26	0.64 U	0.14 U	0.13 U	1.2 U	0.13 U
Dichlorodifluoromethane	ug/m3	4570	7.8	3.8	30	13	31
Ethanol Ethyl acetate	ug/m3 ug/m3	ne ne	760 E 54 U	12 U 12 U	11 U 11 U	110 U 110 U	11 U 11 U
Freon 114	ug/m3	ne	15	1.2	33	170 G	180
Heptane	ug/m3	ne	230	16	30	1100	8.2
Hexachlorobutadiene	ug/m3	11.4	1.6 U	0.34 U	0.32 U	3.1 U	0.32 U
Isopropyl Alcohol	ug/m3	ne	65 UJ	14 UJ	13 UJ	130 UJ	13 UJ
Isopropylbenzene	ug/m3	18300	18 U	3.9 U	3.7 U	36 U	3.7 U
m,p-Xylenes Methyl Methacrylate	ug/m3 ug/m3	ne 32000	8.8 31 U	24 6.6 U	9.1 6.1 U	32 60 U	12 6.1 U
Methylene Chloride	ug/m3	25000	650 U	140 U	130 U	1300 U	130 U
n-Hexane	ug/m3	32000	790 E	27	51	1900 E	20

Table 4. Soil Gas Data

Project No. 150074, C Street Landfill, Shelton, Washington

		Sample Location	SG-1	SG-2	SG-3	SG-4	SG-5
		Sample Date	12/19/2018	12/19/2018	12/19/2018	12/19/2018	12/19/2018
		Sample Name	SG-1-121918	SG-2-121918	SG-3-121918	SG-4-121918	SG-5-121918
		Soil Gas Screening					
Compound	Units	Levels					
Nonane	ug/m3	ne	39 U	8.4 U	16	170	7.9 U
n-Propylbenzene	ug/m3	ne	18 U	3.9 U	3.7 U	36 U	3.7 U
o-Xylene	ug/m3	4570	3.3 U	8.8	2.9	12	4.0
Pentane	ug/m3	ne	1800 E	44	77	3100 E	61
Styrene	ug/m3	45700	6.4 U	1.4 U	1.3 U	12 U	1.3 U
t-Butyl alcohol (TBA)	ug/m3	ne	91 U	19 U	18 U	180 U	18 U
Tetrachloroethene (PCE)	ug/m3	962	120	100	67	99 U	14
Tetrahydrofuran	ug/m3	ne	2.2 U	0.47 U	0.44 U	4.3 U	0.44 U
trans-1,2-Dichloroethene	ug/m3	ne	3 U	0.63 U	0.59 U	5.8 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	ne	3.4 U	0.73 U	0.68 U	6.6 U	0.68 U
Trichloroethene (TCE)	ug/m3	37	8.4	0.43 U	0.4 U	5.7	4.3
Trichlorofluoromethane	ug/m3	32000	17 U	3.6 U	5.3	33 U	3.4 U
Vinyl Acetate	ug/m3	9140	53 U	11 U	11 U	100 U	11 U
Vinyl Bromide	ug/m3	ne	3.3 U	0.7 U	0.66 U	6.4 U	0.66 U
Vinyl Chloride	ug/m3	28	1.9 U	0.41 U	0.38 U	20	2.2

Notes:

Bold = detected concentrations of compounds

Gray shading = concentrations of compounds that exceed the Screening Level

E = reported concentration exceeds the calibration range

N/A = not applicable

ne = not established

U = concentrations of the compound not detected above the stated laboratory reporting limit.

UJ = concentrations of the compound not detected above the standard reporting limit, the concentration is an estimate.

ug/m3 = micrograms per cubic meter

¹Calculated total petroleum hydrocarbon concentration using one-half of the laboratory detection limit for nondetects of air phase hydrocarbons and benzene, ethylbenzene, toluene, and xylenes, and zero in place of the laboratory detection limit for nondetects of EDC, EDB, and MTBE.

²Generic MTCA Method B subslab soil gas screening level per Washington State Department of Ecology Implementation Memo #18.

Aspect Consulting
12/15/2021

RI/FS Report

Table 5. Cover Soil Characterization Data

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

		Sample Location		TP-02 02/14/2020	TP-03 02/14/2020	TP-03 02/14/2020	TP-04 02/14/2020
		Sample Date Sample ID	TP-01-021420	TP-02-021420	TP-03-021420	TP-03-1.0	TP-04-021420
	Site-Specific	Sample Type Natural	Composite	Composite	Composite	Discrete	Composite
	Screening	Background					
Analyte (by group)	Level	Concentrations					
Polycyclic Aromatic Hydroca							
Non-Carcinogenic PAHs		·· ·············					
Acenaphthene	20		0.05 U	0.05 U	0.05 U		0.05 U
Acenaphthylene			0.05 U	0.05 U	0.05 U		0.05 U
Anthracene	24000		0.05 U	0.05 U	0.05 U	I	0.05 U
Benzo(g,h,i)perylene			0.05 U	0.05 U	0.05 U		0.05 U
Fluoranthene	3200		0.086	0.085	0.05 U		0.083
Fluorene	30		0.05 U	0.05 U	0.05 U		0.05 U
Naphthalene	1600		0.05 U	0.05 U	0.05 U		0.05 U
Phenanthrene			0.05 U	0.05 U	0.05 U		0.05 U
Pyrene	2400		0.086	0.086	0.05 U		0.069
Carcinogenic PAHs (cPAHs)	1 4 07 1			0.0511	0.05.11		1 00511
Benz(a)anthracene	1.37		0.056	0.05 U	0.05 U		0.05 U
Benzo(a)pyrene	0.14		0.080	0.05 U	0.05 U		0.05 U
Benzo(b)fluoranthene	1.37		0.080	0.050	0.05 U		0.05 U
Benzo(k)fluoranthene	13.7 137		0.05 U	0.05 U 0.051	0.05 U 0.05 U		0.05 U 0.05 U
Chrysene Dibenzo(a,h)anthracene	0.14	 	0.070 0.05 U	0.051 0.05 U	0.05 U		0.05 U
Indeno(1,2,3-cd)pyrene	1.37		0.053	0.05 U	0.05 U		0.05 U
Total cPAHs TEQ (ND = 1/2 R			0.10	0.03 0	0.03 U		0.03 U
Dioxins/Furans (pg/g)	<u>ų 0.14 j</u>		0.10	0.041	0.04 0		0.04 0
Chlorinated dibenzo-p-dioxir	ne (CDDe)						
2,3,7,8-TCDD	2				1.92		
1,2,3,7,8-PeCDD					9.32		
1,2,3,4,7,8-HxCDD					13.0		
1,2,3,6,7,8-HxCDD					26.0		
1,2,3,7,8,9-HxCDD					18.7		
1,2,3,4,6,7,8-HpCDD					265		
OCDD					1550		
Dioxin TEQ	2.2	5.2			20.1		
Chlorinated Dibenzofurans (CDFs)						
2,3,7,8-TCDF					4.67		
1,2,3,7,8-PeCDF					4.29		
2,3,4,7,8-PeCDF					7.56		
1,2,3,4,7,8-HxCDF					6.37		
1,2,3,6,7,8-HxCDF					4.99		
1,2,3,7,8,9-HxCDF					1.73 J		
2,3,4,6,7,8-HxCDF					6.13		
1,2,3,4,6,7,8-HpCDF					50.3		
1,2,3,4,7,8,9-HpCDF					3.59		
OCDF Furan TEQ	2.2	5.2			147		
Metals (mg/kg)	2.2	5.2			5.37		
Arsenic	7	7	3.08	3.02	2.45		2.50
Cadmium	4	0.77	3.08 1.16	1 U	2. 45 1 U		2.50 1 U
Chromium	48	48	32.4	34.5	35.7		33.7
Lead	50	24	153	62.2	29.5		33.9
Mercury	0.1	0.07	0.15	0.1 U	0.14		0.1 U
Petroleum Hydrocarbons (mg		5.01		<u> </u>	V.1.1		<u> </u>
Gasoline Range Organics	100					5 U	
Diesel Range Organics	200		50 U	50 U	50 U		50 U
Motor Oil Range Organics	2000		250 U	460	250 U		250 U
BTEX (mg/kg)							
Benzene	18.2					0.02 U	
Toluene	200					0.02 U	
Ethylbenzene	8000					0.02 U	
Total Xylenes	16000					0.06 U	

Table 5. Cover Soil Characterization Data

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

		Sample Location	TP-01	TP-02	TP-03	TP-03	TP-04
		Sample Date	02/14/2020	02/14/2020	02/14/2020	02/14/2020	02/14/2020
			TP-01-021420	TP-02-021420	TP-03-021420	TP-03-1.0	TP-04-021420
		Sample Type		Composite	Composite	Discrete	Composite
	Site-Specific	Natural	•	'	,		· ·
	Screening	Background					
Analyte (by group)	Level	Concentrations					
Chlorinated Herbicides (mg/l	ka)						
3,5-Dichlorobenzoic acid			46.2 U	47.7 U	47.5 U		47.3 U
Acifluorfen			92.3 UJ	95.4 UJ	95.0 UJ		94.6 UJ
Bentazone			40.4 U	41.7 U	41.6 U		41.4 U
Chloramben			23.1 U	23.8 U	23.7 U		23.7 U
Chlorthal-dimethyl			34.6 U	35.8 U	35.6 U		35.5 U
Picloram			57.7 UJ	59.6 UJ	59.4 UJ		59.1 UJ
2,4,5-T			57.7 U	59.6 U	59.4 U		59.1 U
2,4-D			34.6 U	35.8 U	35.6 U		35.5 U
2,4-DB	640000		28.8 U	29.8 U	29.7 U		29.6 U
Dalapon	2400000		231 UJ	238 UJ	237 UJ		237 UJ
Dicamba	2400000		40.4 U	41.7 U	41.6 U		41.4 U
Dichloroprop			28.8 U	29.8 U	29.7 U		29.6 U
Dinoseb	80000		34.6 U	35.8 U	35.6 U		35.5 U
MCPA			3230 U	3340 U	3320 U		3310 U
MCPP			5080 U	5250 U	5220 U		5200 U
Silvex	640000		23.1 U	23.8 U	23.7 U	-	23.7 U
Organochlorine Pesticides (r	ng/kg)						
4,4'-DDD	4.17		0.01 U	0.01 U	0.01 U		0.01 UJ
4,4'-DDE	2.94		0.01 U	0.01 U	0.01 U		0.01 UJ
4,4'-DDT	2.94		0.037 J	0.01 UJ	0.01 UJ		0.01 UJ
Aldrin	0.0588		0.01 U	0.01 U	0.01 U		0.01 UJ
Alpha-BHC	6		0.01 U	0.01 U	0.01 U		0.01 UJ
Beta-BHC	6		0.01 U	0.01 U	0.01 U		0.01 UJ
cis-Chlordane	1		0.011	0.01 U	0.012	-	0.01 UJ
Delta-BHC	6		0.01 U	0.01 U	0.01 U	-	0.01 UJ
Dieldrin	0.1		0.011	0.01 U	0.01 U	-	0.01 UJ
Endosulfan I	480	-	0.01 U	0.01 U	0.01 U	I	0.01 UJ
Endosulfan II	480	-	0.01 U	0.01 U	0.01 U	I	0.01 UJ
Endosulfan Sulfate		-	0.01 U	0.01 U	0.01 U	I	0.01 UJ
Endrin	0.2	-	0.01 UJ	0.01 UJ	0.01 UJ	I	0.01 UJ
Endrin Aldehyde			0.01 U	0.01 U	0.01 U		0.01 UJ
Endrin ketone			0.01 UJ	0.01 UJ	0.01 UJ		0.01 UJ
Heptachlor	0.222		0.01 UJ	0.01 UJ	0.01 UJ		0.01 UJ
Heptachlor Epoxide	0.11		0.027 J	0.01 U	0.01 U		0.01 UJ
Lindane	0.909		0.01 U	0.01 U	0.01 U	-	0.01 UJ
Methoxychlor	400		0.01 UJ	0.01 UJ	0.01 UJ	-	0.01 UJ
Toxaphene	0.9		1 UJ	1 UJ	1 UJ	-	1 UJ
trans-Chlordane	1		0.011	0.01 U	0.01 U	-	0.01 UJ

Notes:

Bold = a detected concentration

Gray shading = a concentration that exceeds the Site-Specific Screening Level.

U = the analyte was analyzed for, but was considered not detected at the reporting limit or reported value.

 $\label{eq:J} \textbf{J} = \textbf{the analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.}$

UJ = the analyte was analyzed for, and the associated quantitation limit was an estimated value.

mg/kg = milligrams per kilogram

pg/g = picograms per gram

TEQ = Toxicity equivalent quotient. TEQs for total cPAHs and total dioxins/furans were calculated using the methodology and the toxicity equivalency factors (TEFs) prescribed in Washington State Model Toxics Control Act (MTCA) and WAC 173-340-708(8)(e).

TCDD = tetrachloro dibenzo-p-dioxin

PeCDD = entachloro dibenzo-p-dioxin

HxCDD = hexachloro dibenzo-p-dioxin

HpCDD = heptachloro dibenzo-p-dioxin

OCDD = octachloro dibenzo-p-dioxin

TCDF = tetrachloro dibenzofuran PeCDF = pentachloro dibenzofuran

HxCDF = hexachlorodibenzofuran

HpCDF = heptachloro dibenzofuran

OCDF = octachlorodibenzofuran

[&]quot;--" = not established or not applicable.

Table 6a. Proposed Site Cleanup Levels for Soil

Project No. 150074, Shelton C Street Landfill Remediation, Shelton, WA

	Applicable Criteria					
	Human Direct	Protective	of Ecological F	Receptors ²		
	4				Natural Background	Proposed Site
Analyte (by group)	MTCA Method B ¹	Plants	Soil biota	Wildlife	Concentration	Cleanup Level
Dioxins/Furans (ng/kg) ^{3,4}						
tetrachlorodibenzo-p-dioxin (tcdd); 2,3,7,8-	12.8			2.0		2.0
chlorinated dibenzo-p-dioxins (PCDDs), total				2.0	2.2	2.2
chlorinated dibenzofurans (PCDFs), total				2.0	2.2	2.2
Metals (mg/kg) ⁵						
barium	16,000	500		102		102
copper	3,200	100	50	217	36	50
lead		50	500	118	24	50
mercury		0.30	0.10	5.50	0.07	0.10
selenium	400	1	70	0.30	0.78	0.78
silver	400	2			0.61	2
zinc	24,000	86	200	360	85	86
Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAH	s; mg/kg)					
benzo[a]anthracene	1.37					1.37
benzo[a]pyrene	0.14		-	12		0.14
benzo[b]fluoranthene	1.37		-	-		1.37
benzo[k]fluoranthene	13.7					13.7
chrysene	137					137
dibenzo[a,h]anthracene	0.14					0.14
indeno[1,2,3-cd]pyrene	1.37					1.37
total cPAHs TEQ	0.14					0.14

Notes

mg/kg = milligrams per kilogram

Ecology = Washington State Department of Ecology

[&]quot;--" = no applicable criteria.

¹Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code, Method B standard formula values.

²Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals, MTCA 173-340-7493, Table 749-3.

³Natural Background for Dioxins/Furans in WA Soils, Ecology Technical Memorandum #8, August 9, 2010.

⁴Dioxins, Furans, and Dioxin-Like PCB Congeners, Addressing Non-Detects and Establishing PQLs for Ecological Risk Assessments in Soil, Ecology Implementation Memorandum #11, July 22, 2015

⁶Background metals concentrations from Ecology Natural Background Soil Metals Concentrations in Washington State, October 1994. Puget Sound region values used where established, statewide values used otherwise.

Table 6b. Proposed Site Cleanup Levels for Groundwater

Project No. 150074, Shelton C Street Landfill Remediation, Shelton, WA

	Applicable Groundwater Criteria			Applicable Surface Water Criteria			
	Protection of Human Health			Protection of Surface Water ⁵			
Analyte (by group)	MTCA Method B ¹	Federal MCL ²	WA State	Groundwater Quality WAC 173-200	Aquatic Fresh/Chronic (CWA 304)	Human Health Fresh/Chronic (CWA 304)	Proposed Site Cleanup Level
Secondary Contaminants (µg/L)							
Iron	11,200		300	300	1,000	300	300
Manganese	2,240		50	50		50	50

Notes

μg/L = micrograms per liter

[&]quot;--" = no applicable criteria.

¹Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC), Method B standard formula values.

²U.S. Environmental Protection Agency Maximum Contaminant Levels (MCLs), 40CFR 141.

³Washington State maximum contaminant levels (MCLs), WAC 246-290-310

⁴Water Quality Standards for Groundwaters of the State of Washington, Groundwater Quality Criteria for Secondary Contaminants, WAC 173-200.

⁵Surface water criteria established under the Clean Water Action (CWA)

Table 7. Components of Remedial Alternatives

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

	Remedial Alternative			
Remedial Alternative Components	Alternative 1 Permeable Soil Cap, Institutional Controls, and Monitoring	Alternative 2 Impermeable Cap, Institutional Controls, and Monitoring	Alternative 3 Removal of WWTP Sludge, Permeable Soil Cap, Institutional Controls, and Monitoring	Alternative 4 Full Removal of Contaminated Media
Install permeable soil cap	Х		Х	
Install impermeable soil cap with stormwater control system		Х		
Remove WWTP sludge and dispose of off site			Х	
Remove all contaminated soil and landfill waste and dispose of off site				Х
Implement institutional controls and IM&M program to ensure remedy protectiveness in perpetuity	Х	Х	Х	

Notes:

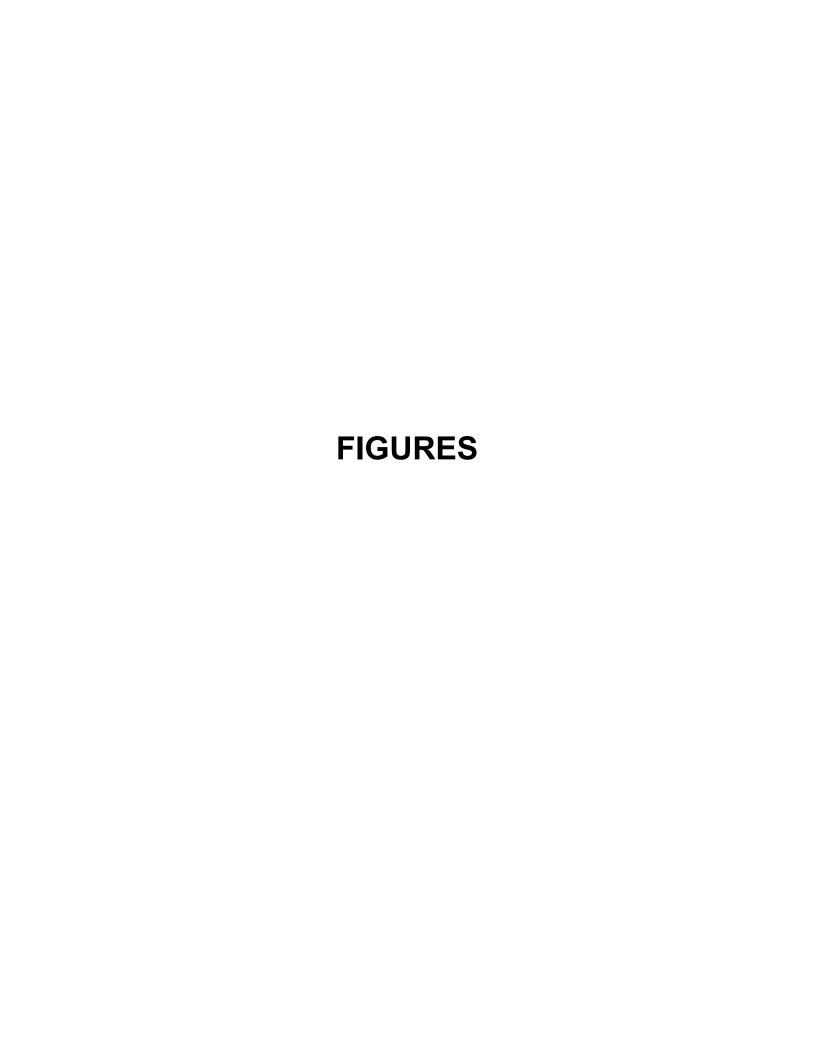
IM&M = inspection, monitoring, and maintenance WWTP = wastewater treatment plant

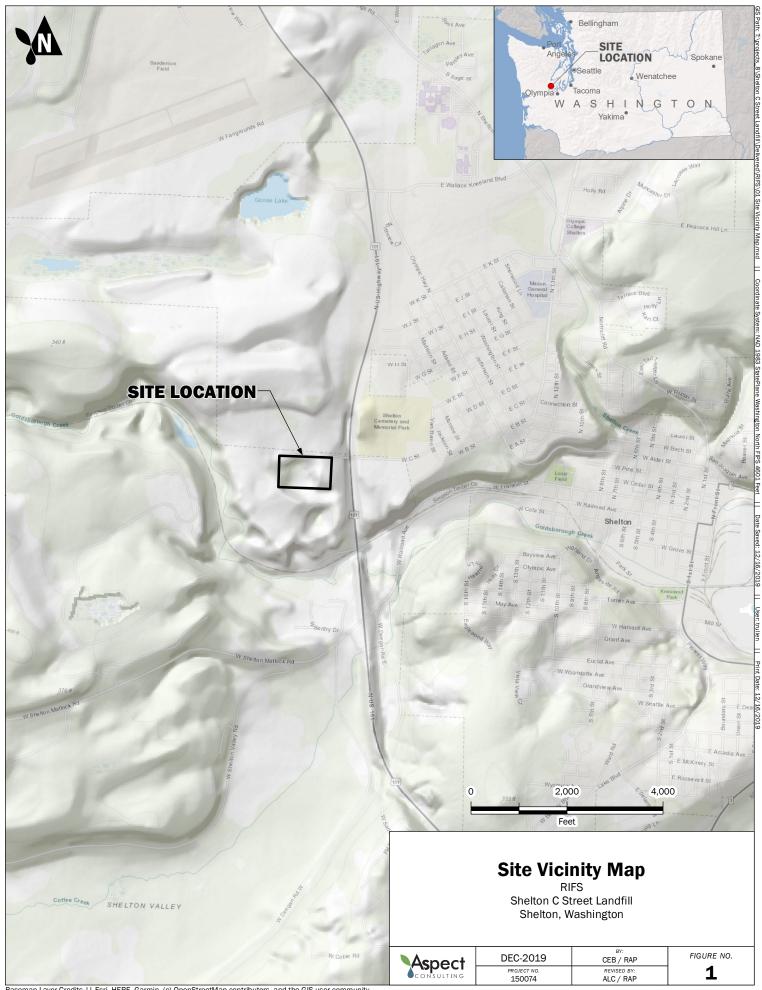
Table 8. Disproportionate Cost Analysis

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

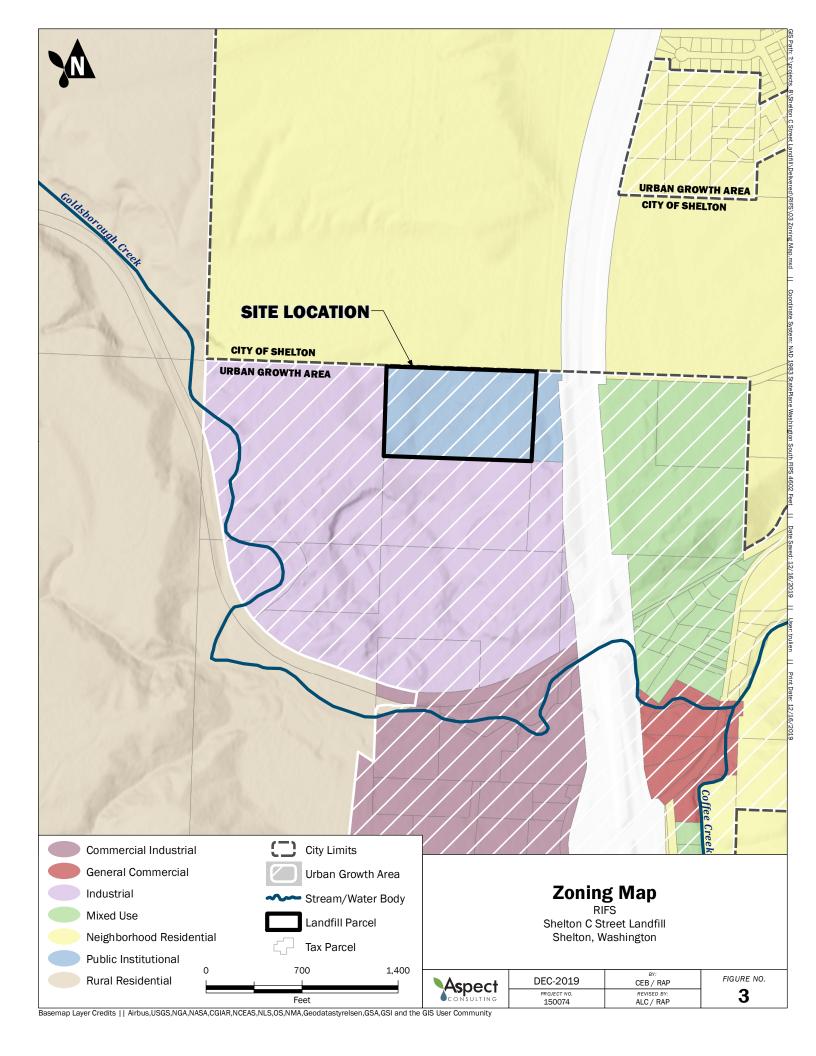
			Remedial Alternatives that	Meet the Threshold Criteria	
		Alternative 1 - Permeable Soil Cap, Institutional Controls, and Monitoring	Alternative 2 - Impermeable Cap, Institutional Controls, and Monitoring	Alternative 3 - Removal of WWTP Sludge, Permeable Soil Cap, Institutional Controls, and Monitoring	Alternative 4 - Full Removal of Contaminated Media
Solutions to the Maximum ble	Protectiveness (30% weighting factor)	Risks during remedy implementation are low, but long- term protectiveness relies on the effectiveness of institutional controls and the IM&M program (3).	This alternatives is considered to have the same protectiveness as Alternative 1 (3).	Compared to Alternatives 1 and 2, the marginally higher risks associated with WWTP sludge removal during remedy implementation are balanced by marginally greater long-term protectiveness (3).	The considerable short-term risks associated with full removal of contaminated media make this alternative less protective than Alternatives 1 through 3 (2).
ns to th	Permanence (20% weighting factor)	Waste toxicity, mobility, and volume are not reduced in this alternative (1).	Waste toxicity, mobility, and volume are not reduced in this alternative (1).	Waste toxicity, mobility, and volume are not reduced in this alternative (1).	Waste toxicity, mobility, and volume are not reduced in this alternative (1).
nent Solutio cticable	Long-Term Effectiveness (20% weighting factor)	The long-term effectiveness of this alternative relies on the effectiveness of institutional controls and the IM&M program (3).	This alternative is considered to have the same long- term effectiveness as Alternative 1 (3).	This alternative is considered to have the same long- term effectiveness as Alternative 1 because, while WWTP sludge is removed, institutional controls and cap maintenance are still required (3).	This alternative is highly effective in the long-term because all contaminated media are removed from the site (5).
e of Permanent Solı Extent Practicable	Manageability of Short Term Risks (10% weighting factor)	Since wastes would remain in place, short-term risks are low and easily managed in this alternative (5).	This alternative is considered to have the same short-term risk management as Alternative 1 (5).	Short-term risks are somewhat higher than in Alternatives 1 and 2 due to the potential for exposure during excavation and transport of WWTP sludge (4).	Contaminant exposure risks as well as risks associated with large earthmoving projects would be much more significant compared to Alternatives 1 through 3 (2).
Evaluate Use of Perr Extent F	Implementability (10% weighting factor)	This alternative is highly implementable (5).	The impermeable cap and stormwater management system in this alternative would be somewhat more difficult to construct and maintain than the soil cap in Alternative 1 (4).	The implementability of this alternative is similar to Alternative 1 (removal of the WWTP sludge would be highly implementable) (5).	Due to the huge volume of contaminated media to be transported on public roadways in this alternative, implementation would likely encounter extreme administrative challenges (1).
Criteria to	Public Concerns (10% weighting factor)	Leaving waste in place may generate concerns, particularly among nearby property owners (3).	Public concerns are expected to be similar to Alternative 1 (3).	Somewhat less likely than Alternatives 1 and 2 to generate public concerns because the most highly contaminated waste is removed with relatively modest construction-related impacts (4).	Concerns regarding truck traffic and other construction- related impacts would likely overwhelm any perceived benefits of waste excavation and offsite disposal (1).
	MTCA Benefits Ranking ⁽²⁾	3.00	2.90	3.00	2.20
	Estimated Cost ⁽³⁾	\$2,000,000	\$2,600,000	\$5,300,000	\$32,000,000
	Benefit/Cost Ratio ⁽⁴⁾	1.50	1.12	0.57	0.07

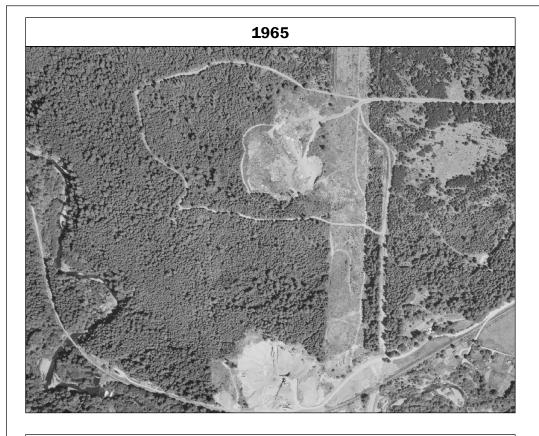
Notes:


- 1) A numeric scale of 1 to 5 is used to rate the alternatives with respect to the criteria to evaluate use of permanent solutions to the maximum extent practicable, as follows:
 - 1 meets criterion to a very low degree
- 3 meets criterion to a moderate degree
- 5 meets criterion to a very high degree

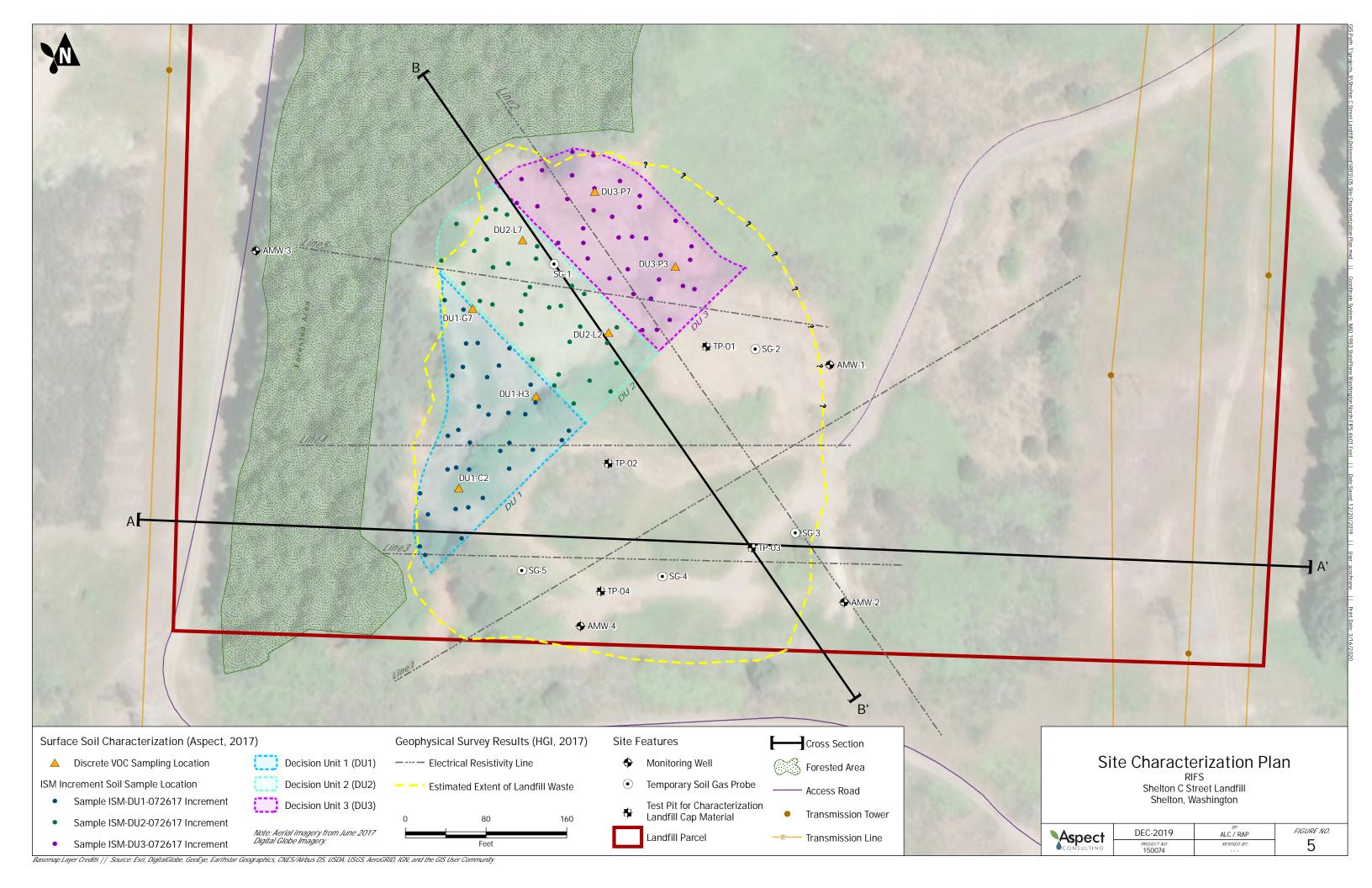

- 2 meets criterion to a low degree
- 4 meets criterion to a high degree
- 2) The MTCA benefits ranking is obtained by multiplying the rating for each criterion by its weighting factor, and summing the results for the six criteria.
- 3) Costs are estimated in 2019 dollars. The costs shown are rounded to two significant figures. Itemized estimates are provided in Appendix F.
- 4) The benefit/cost ratio is obtained by dividing the alternative's MTCA benefits ranking by its estimated cost (in \$million).

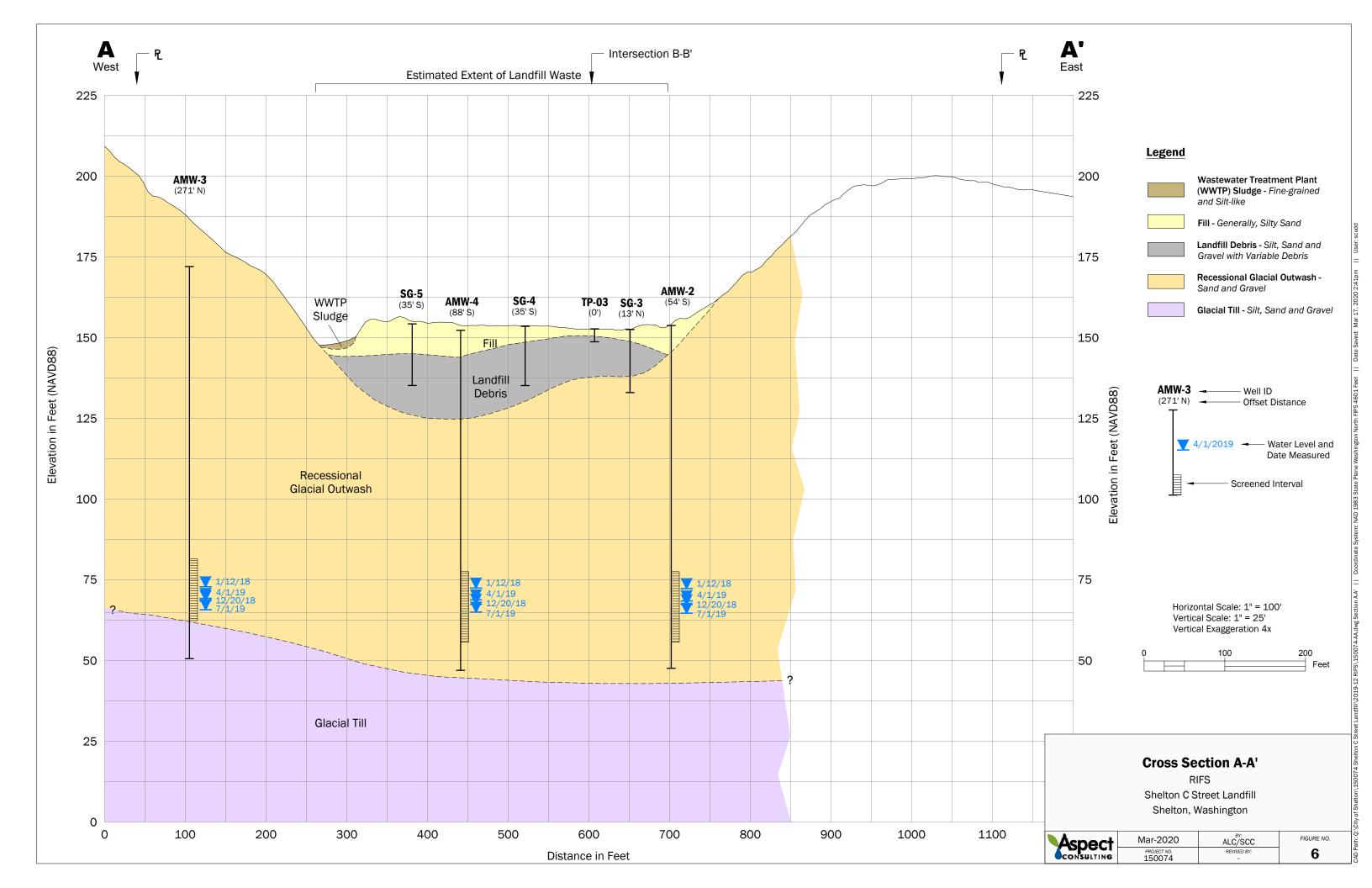
IM&M = inspection, monitoring, and maintenance

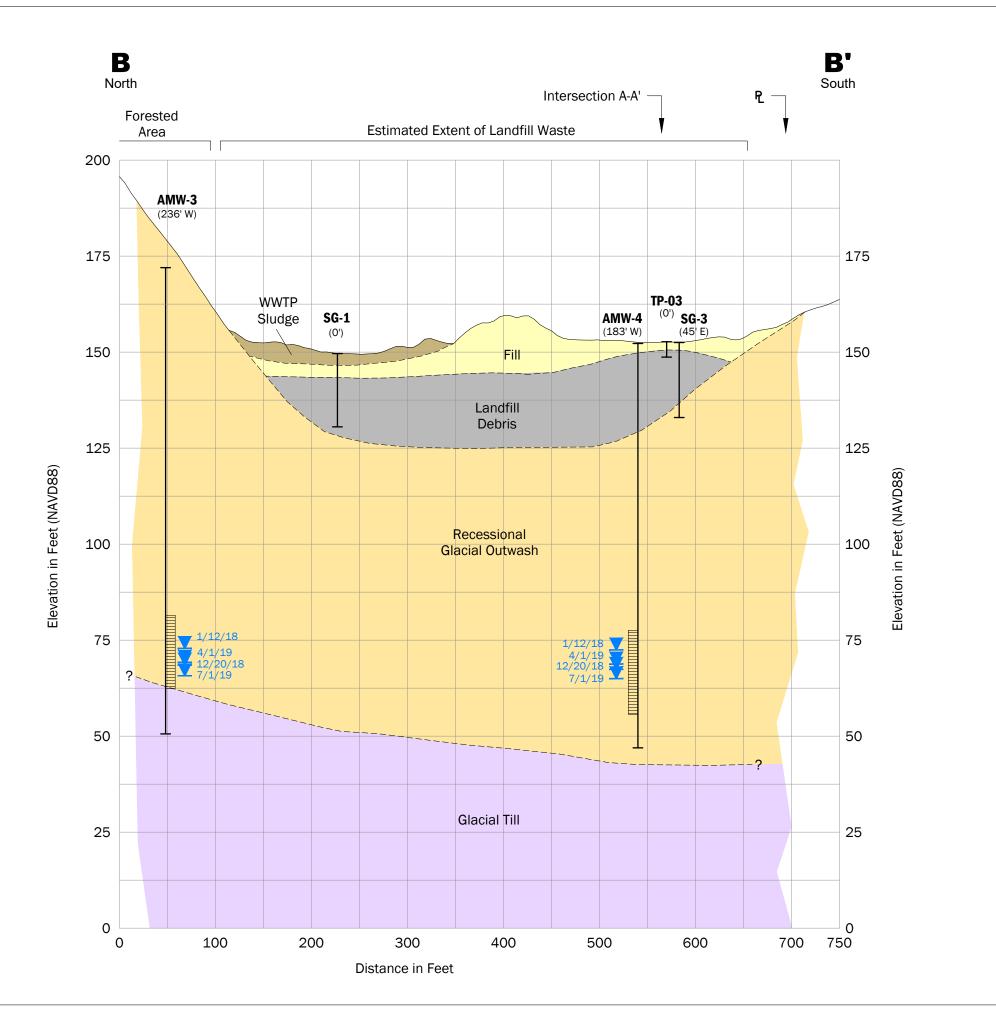

WWTP = wastewater treatment plant


Table 8

Aerial Photos 1965-1989

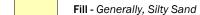

RIFS Shelton C Street Landfill Shelton, Washington

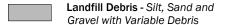

Aspect

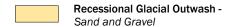

DEC-2019 CEB / RAP

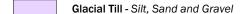
PROJECT NO. REVISED BY:
150074

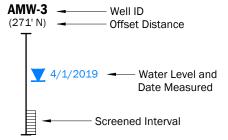
FIGURE NO.

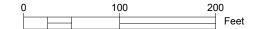






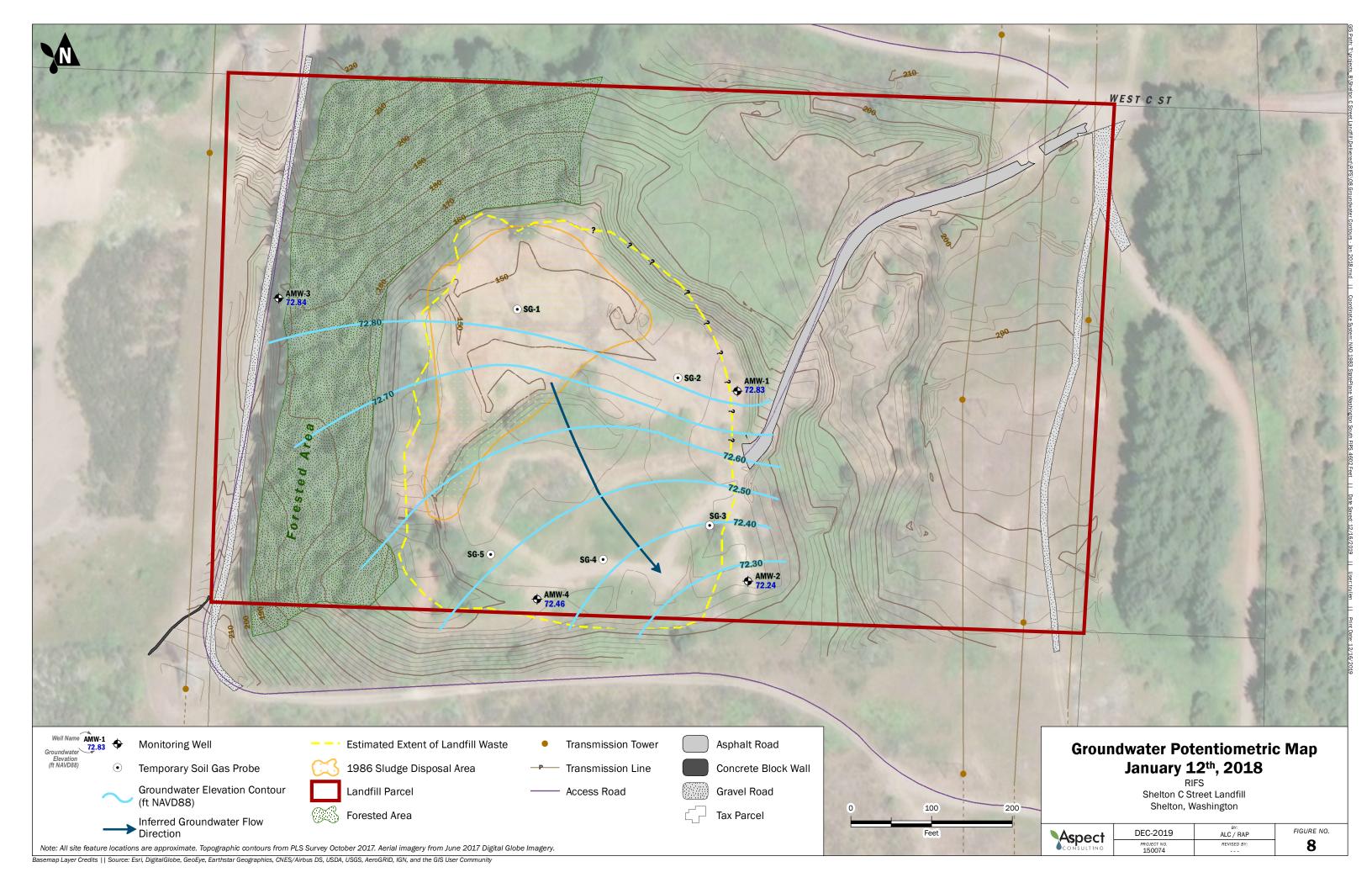

Legend

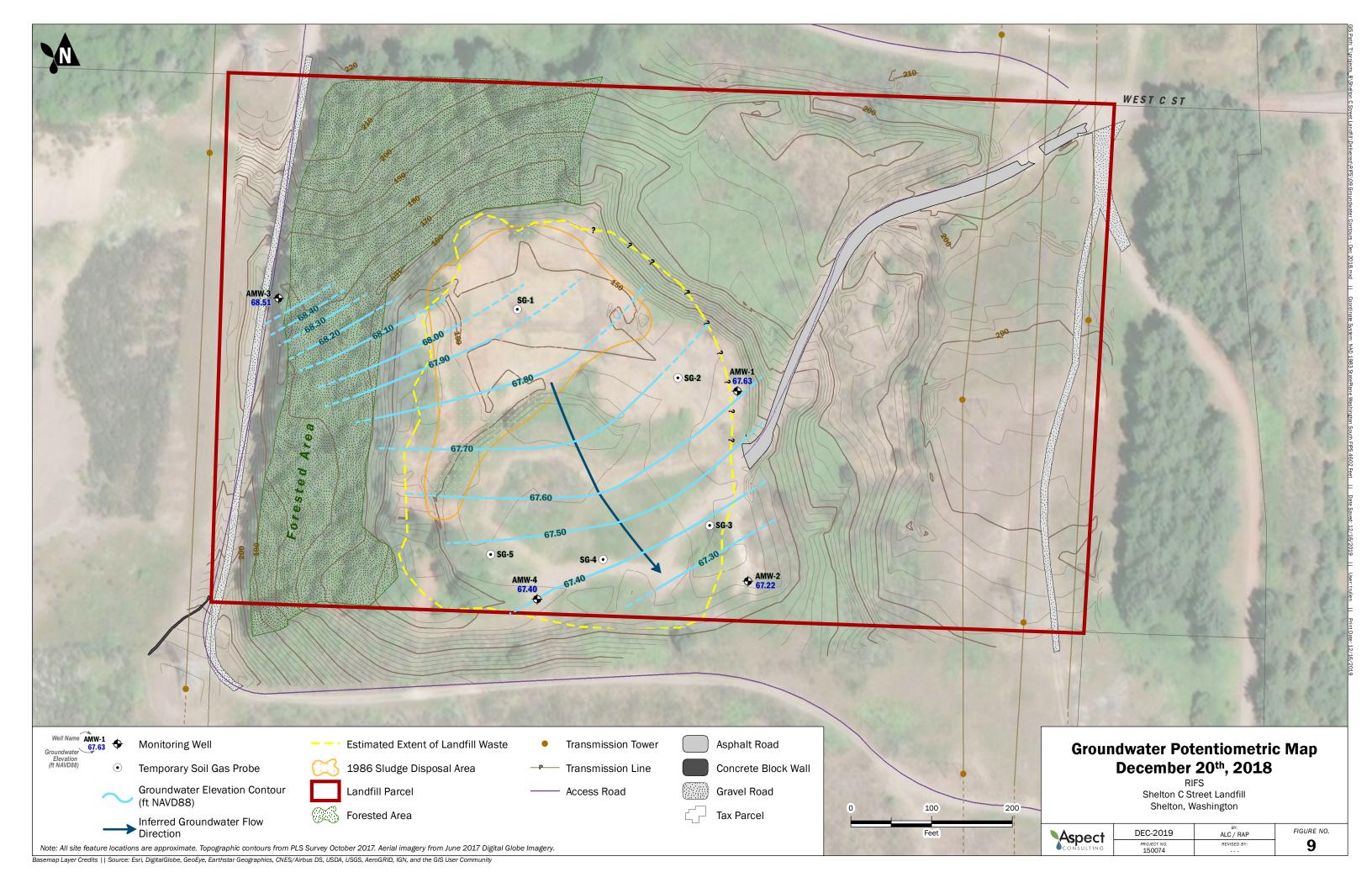


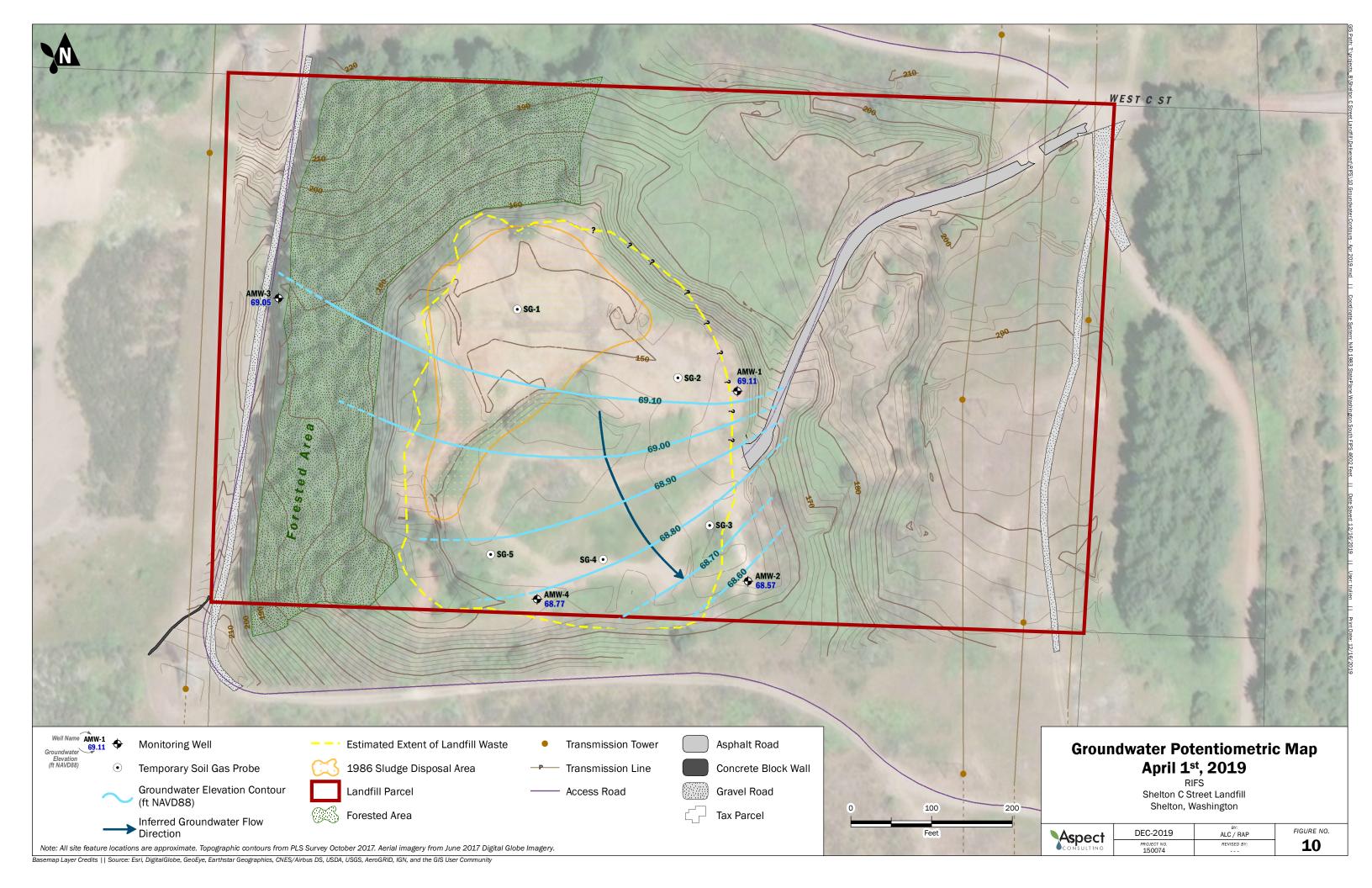


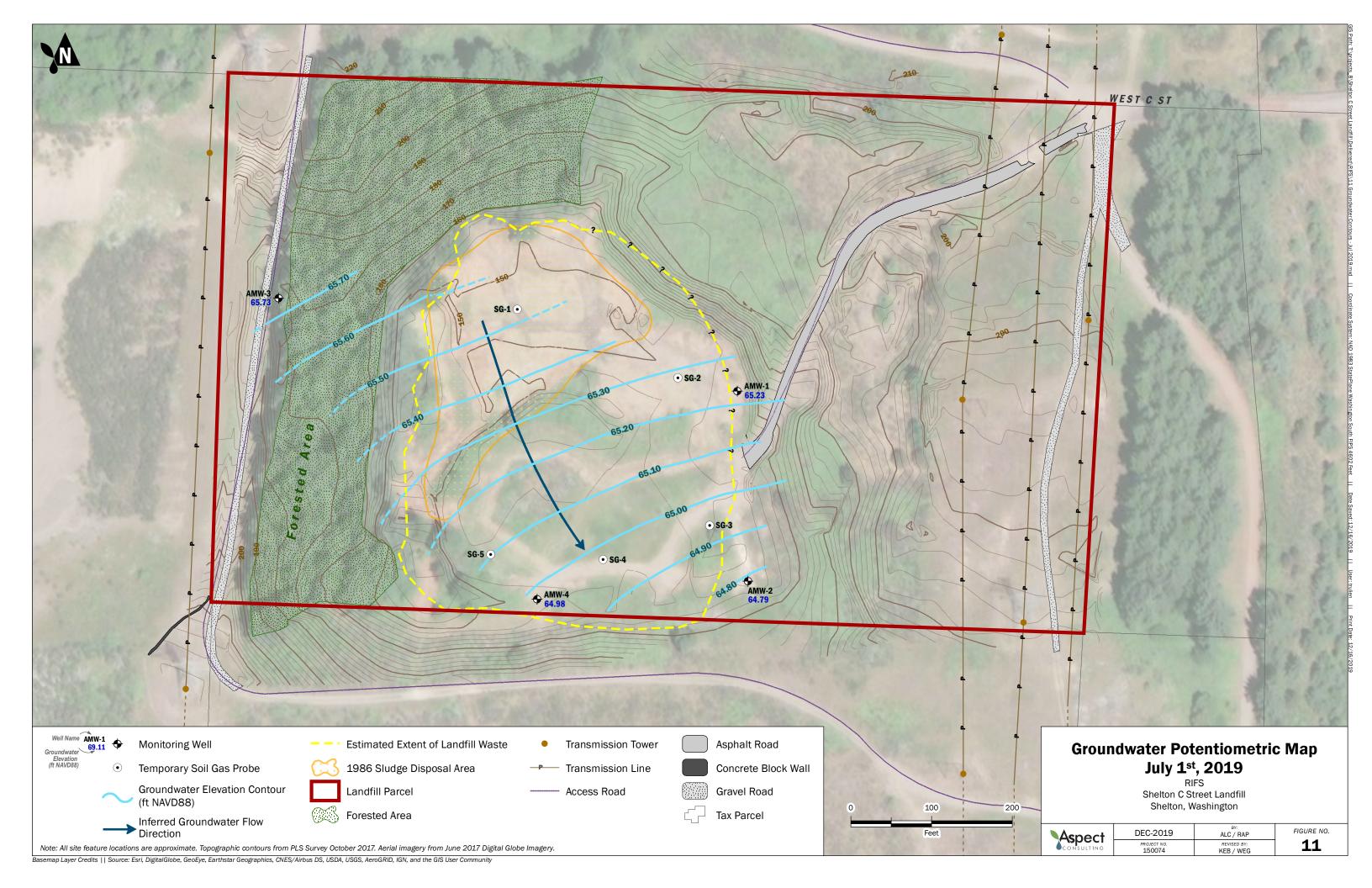
Horizontal Scale: 1" = 100' Vertical Scale: 1" = 25' Vertical Exaggeration 4x

Cross Section B-B'


RIFS


Shelton C Street Landfill Shelton, Washington


Aspect	
CONSULTING	


May-2020	ALC/SCC
PROJECT NO.	REVISED BY:
150074	_

eet Landfill\2019-12 RIFS\150074-BB.dwg Section A-A' || Coordinate System: NAD 1983 State Plane Washington North FIPS 4601 Feet || Date Saved: May 08, 2020 9:28am || User: scudd

APPENDIX A

Geophysical Survey Report

RPT-2017-024, Rev. 0

Geophysical Survey of the C Street Landfill, Shelton, WA

N. Crook, Ph.D.

M. Levitt

K. Rucker

M. McNeill

2302 N. Forbes Blvd, Tucson, AZ 85745 USA

Date Published

August 2017

Prepared for:

Aspect Consulting LLC

TABLE OF CONTENTS

1.0	INTRODUCTION	
1.1	PROJECT DESCRIPTION	1
1.2	SCOPE	1
1.3		
2.0	BACKGROUND	
2.1		
3.0	METHODOLOGY	
3.1 3.2		
3.2	EQUIPMENT	
	3.2.1.2 Electromagnetic Induction	6
3	3.2.2 Resistivity	<i>6</i>
	3.2.2.1 Handheld GPS	7
3.3		
3	3.3.1 Quality Control	7
	3.3.1.1 Total Field Magnetics	7
	3.3.1.2 Electromagnetic Induction	7
	3.3.1.3 EM & Mag Plotting	8
3	3.3.2 Resistivity Data Processing	8
	3.3.2.1 2D Resistivity Inversion	8
	3.3.2.2 2D Resistivity Plotting	9
4.0	RESULTS	10
4.1	\mathcal{E}	
4.2	J	
	4.2.1 Line 1	
	4.2.2 Line 2	
	4.2.3 Line 3	
	4.2.4 Line 4	
	4.2.5 Line 5	
5.0	CONCLUSIONS	
6.0	REFERENCES	
7.0	DESCRIPTION OF ELECTRICAL RESISTIVITY	
8.0 8.1	DESCRIPTION OF EM & Mag	
8.2	E	
0.4		

LIST OF FIGURES

Figure 1.	General Survey Location.	2
Figure 2.	Detailed Survey Coverage Map.	
Figure 3.	Example of Dense Vegetation Cover across the Proposed Survey Area.	
Figure 4.	Contoured Electromagnetics and Magnetics Map.	
Figure 5.	Lines 1 and 2 Electrical Resistivity Model Results.	
Figure 6.	Lines 3-5 Electrical Resistivity Results.	
Figure 7.	Summary of the Interpreted Boundaries for the C-Street Landfill Geophysical Survey	
Figure 8.	Possible Arrays for Use in Electrical Resistivity Characterization.	

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION

In May 2017, hydroGEOPHYSICS, Inc. (HGI) performed a multi-method geophysical survey at a closed landfill in Shelton, WA. This survey effort was completed to determine the lateral extents and thickness of buried waste and the depth of cover material over the waste at the location of the former C Street Landfill. A combined electromagnetic (EM) and magnetic (Mag) survey over the entire accessible landfill area, as well as five lines of two-dimensional (2D) Electrical Resistivity Tomography (ERT) were completed.

1.2 SCOPE

The scope of this project includes using EM, Mag, and ERT to characterize the subsurface at the survey site. The ground conductivity portion of the EM measurement provides a good indication of the lateral limits of covered or closed landfill, presented in a georeferenced 2D plan view of the electrical properties of the subsurface. The magnetic measurements are highly sensitive to ferrous metals in the landfill, providing a high-resolution plan view map of the distribution of ferrous metallic wastes within the landfills. The electrical resistivity imaging method results in 2D cross sections of the electrical properties of the subsurface materials, allowing the depth, thickness, and lateral limits of the conductive wastes to be estimated, together with an estimate of the thickness of the cover material.

1.3 OBJECTIVE

The objective of this multi-method geophysical survey was to non-invasively determine the extent and thickness of buried waste and the depth of cover material over the waste by mapping the electrical properties of the subsurface. This is based on the theory that, generally, the products of the decomposition of municipal solid waste are conductive, and as these mix with precipitation and/or groundwater flow, the resulting bulk electrical properties of the wastes are likely to be highly conductive compared to typical background native geological materials. The landfill is also expected to contain metallic debris which when imaged using magnetic gradiometry should display contrast to undisturbed materials outside the landfill boundaries.

2.0 BACKGROUND

2.1 SITE LOCATION

The C Street Landfill is located in the city of Shelton, WA, USA. Figure 1 shows the general location of the geophysical survey site.

The C Street Landfill is located at west end of C Street on the west side of the overpass over Highway 101. The landfill operated during the years 1928-1984, with an unknown total of estimated waste and is located in a depression in the ground formed by an old gravel quarry.

Figure 1. General Survey Location.

Aerial imagery © Google Earth 2016

3.0 METHODOLOGY

3.1 SURVEY AREA AND LOGISTICS

EM & Mag data were acquired between 5/17/17 and 5/18/17 at high-resolution sampling with rapid acquisition using a walking system. Data were recorded continuously along survey lines to produce the coverage shown in Figure 2. The total area covered was approximately 8.3 acres. The survey area had steep topography around the edges of the depression and heavy vegetation throughout.

Because of this heavy vegetation, we were unable to cover the entire proposed survey area with the EM and Mag. The planned parallel line spacing of 15 feet was also modified due to the dense vegetation. Instead, the instrument operators selected surveying routes where available access allowed. Sufficient survey coverage over the assumed landfill area was achieved despite the vegetation in most areas, however, towards the northeast, we were unable to get full coverage beyond the landfill boundary. Figure 3 is an example photograph showing the dense vegetation that dominated the side besides the central cleared area.

Resistivity data, were acquired between 5/19/17 and 5/20/17, and consisted of five lines of data with two being approximately 817 feet long each, and three others being approximately 542 feet long, totaling approximately 3,260 feet of total line coverage. The locations of the survey lines are shown in Figure 2 (pink lines). Table 1 lists specific parameters for the resistivity survey lines.

Prior to commencement of the geophysical survey, a general assumption existed on the location of the boundary of the landfill. This information is posted on Figure 2 as the red line, with extents as provided by Aspect Consulting LLC.

Table 1. Resistivity Line Parameters.

Line #	Date of Acquisition	Electrode Spacing (feet)	Length (feet)	Line Orientation	Start Position (Easting, Northing) UTM - meters	End Position (Easting, Northing) UTM - meters
1	5/20/17	10	817	SW-NE	489820.8, 5228954	490025, 5229082
2	5/20/17	10	817	NW-SE	489846.4, 5229133	489986.7, 5228942
3	5/21/17	10	542	E-W	489973.1, 5228993	489816.1, 5228992
4	5/21/17	10	542	E-W	489957, 5229029	489789.9, 5229024
5	5/21/17	10	542	E-W	489949.1, 5229065	489788.7, 5229084

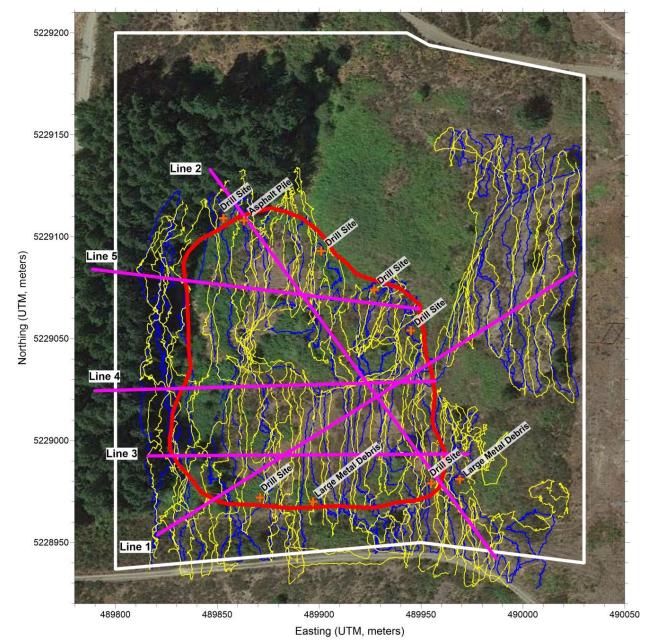
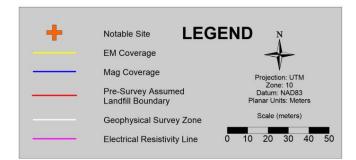
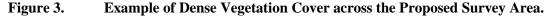




Figure 2. Detailed Survey Coverage Map.

3.2 EQUIPMENT

3.2.1.1 Magnetic Gradiometry

A Geometrics, Inc. G-859 cesium vapor magnetometer with integrated WAAS/EGNOS enabled TallysmanTM GPS was used to provide magnetic data for the project. The magnetometer and GPS system were mounted on a non-magnetic backpack, with a waist mounted console used to control data collection parameters and record the total magnetic field data. The instrument is commercially available and was designed to provide detection of subsurface ferrous metals by mapping distortions to the measured localized magnetic field. The magnetometer console contains a serial input and necessary firmware that is used to interface with and store GPS data.

Interchangeable low voltage 12V dc gel cell batteries are used to power the magnetometer console. A daily inspection is completed by the qualified operator to ensure all components are in satisfactory working condition. Quality assurance tests, including a visual inspection and an instrument check survey line were performed at the beginning and end of each day and each time the instrument power was cycled.

To perform the diurnal correction, a Geometrics, Inc. G-857 proton precession magnetometer was used as a base station to provide a continuous record of changes in the Earth's magnetic field to correct the collected total magnetic field survey data.

A daily inspection is completed by the qualified operator to ensure all components are in satisfactory working condition. Quality assurance tests including a visual inspection, a function test, a static response test, a vibration test, and a dynamic response test were performed daily.

3.2.1.2 Electromagnetic Induction

The GEM-2® electromagnetic instrument (Geophex Ltd, Raleigh, NC) was used to provide electromagnetic (EM) data. The electromagnetic system is used to detect variations in subsurface soil moisture, soil conductivity, and the presence of subsurface infrastructure (utilities, pipes, tanks, etc.). The GEM-2 consists of a sensor housing (the "ski"), and the electronics console. The console includes the data acquisition, rechargeable battery, and data storage hardware. Accessories include a battery charger, carrying straps, a download cable, a brief field guide, and manual. The console contains one DB9 serial connector for downloading data to a PC using the manufacturer-supplied WinGEM software, and another DB9 serial connector that accepts and records a GPS data stream. The GPS time and location are appended to each electromagnetic data point. The instrument is commercially available and is widely used within the geophysical arena.

A daily inspection is completed by the qualified operator to ensure all components are in satisfactory working condition. Quality assurance tests including a visual inspection, a function test, a static response test, a vibration test, and a dynamic response test were performed daily.

3.2.2 Resistivity

Data were collected using a SuperstingTM R8 multichannel electrical resistivity system (Advanced Geosciences, Inc. (AGI), Austin, TX) and associated cables, electrodes, and battery power supply. The SuperstingTM R8 meter is commonly used in surface geophysical projects and has proven itself to be reliable for long-term, continuous acquisition. The stainless steel electrodes were laid out along lines with a constant electrode spacing of approximately 10 feet (3 meters). Multi-electrode systems allow for automatic switching through preprogrammed combinations of seven electrode measurements.

_

[®] GEM-2 is a registered trademark of Geophex, Ltd.

3.2.2.1 Handheld GPS

Positional data for the resistivity lines were acquired via a handheld Garmin GPS unit. Topographical data were incorporated into the 2D resistivity inversion modeling routines.

3.3 DATA CONTROL AND PROCESSING

3.3.1 Quality Control

All data were given a preliminary assessment for quality control (QC) in the field to assure quality of data before progressing the survey. Following onsite QC, all data were transferred to the HGI server for storage and detailed data processing and analysis. Each line or sequence of acquisition was recorded with a separate file name. Data quality was inspected and data files were saved to designated folders on the server. Raw data files were retained in an unaltered format as data editing and processing was initiated. Daily notes on survey configuration, location, equipment used, environmental conditions, proximal infrastructure or other obstacles, and any other useful information were recorded during data acquisition and were saved to the HGI Tucson server. The server was backed up nightly and backup tapes were stored at an offsite location on a weekly and monthly basis.

3.3.1.1 Total Field Magnetics

Time, date, and magnetic data were stored within a data logger and downloaded to a laptop PC for processing. Magnetic data were processed using MAGMAPPER software. The raw data are downloaded to a computer and then the GPS data are integrated with the magnetic data to provide sub-meter accuracy. There are several options that are employed to remove any spikes in the data set from anomalous data points. In addition, data are corrected for diurnal changes by normalizing to a local base magnetometer. Data are reviewed on a daily basis with emphasis on making sure the data quality is good. As the survey progressed, each new day was added into the existing data base to ensure coherency among the whole dataset. There are typical offsets from one day to the next and to ensure that the whole dataset was on the same datum we collected calibration lines at several times during the day; in the morning, and at about every 3 hours when there was a battery change. Each dataset collected was corrected to the first day's calibration line using a calculated correction factor.

3.3.1.2 Electromagnetic Induction

Multiple frequencies were acquired for the electromagnetic data and each were processed and analyzed. Both in-phase and quadrature data were acquired at 3 frequencies ranging from 5 kHz to 20 kHz. These electromagnetic data were processed using the WinGEM Software as provided by the manufacturer and an electrical conductivity value was calculated. The EM conductivity and EM in-phase data were selected for final processing and presentation. The EM conductivity

data is more sensitive to soil conductivity (electrical properties) changes, while the EM in-phase data is more sensitive to metal in the subsurface. For the purposes of this survey, all frequencies were reviewed and there was virtually no difference in the interpretation of the datasets, so only the 10 kHz data are presented. A similar process to the mag dataset is used to integrate the GPS and correct each dataset against the calibration line.

3.3.1.3 EM & Mag Plotting

The EM and Mag data were gridded and color contoured in Surfer (Golden Software, Inc.). The combined EM and Mag datasets, after being compensated for the calibration set, were combined into one master file. The Kriging gridding algorithm was used within the Surfer software. This algorithm is good for large datasets and honors the actual raw data very well without adding in artificial character to the datasets.

3.3.2 Resistivity Data Processing

The geophysical data for the resistivity survey, including measured voltage, current, measurement (repeat) error, and electrode position, were recorded digitally with the AGI SuperSting R8 resistivity meter. Quality control both in-field and in-office was performed throughout the survey to ensure acceptable data quality. Data were assessed and data removal was performed based on quality standards and degree of noise/other erroneous data. Edited data were inverted and the results plotted for final presentation and analysis.

The raw data were evaluated for measurement noise. Those data that appeared to be extremely noisy and fell outside the normal range of accepted conditions were manually removed within an initial Excel spreadsheet analysis. Examples of conditions that would cause data to be removed include, negative or very low voltages, high-calculated apparent resistivity, extremely low current, and high repeat measurement error. Secondary data removal occurred for some of the lines via the RMS error filter built in to the RES2DINVx64 software. RMS error filter runs were performed removing no greater than 5% of the data, and were initiated to bring the final RMS value down to 5% or below based on model convergence standards (see section 3.3.2.1 for more details).

3.3.2.1 2D Resistivity Inversion

RES2DINVx64 software (Geotomo, Inc.) was used for inverting individual lines in two dimensions. RES2DINV is a commercial resistivity inversion software package available to the public from www.geoelectrical.com. An input file was created from the initial edited resistivity data and inversion parameters were chosen to maximize the likelihood of convergence. It is important to note that up to this point, no resistivity data values had been manipulated or changed, such as smoothing routines or box filters. Noisy data had only been removed from the general population.

The inversion process followed a set of stages that utilized consistent inversion parameters to maintain consistency between each model. Inversion parameter choices included the starting model, the inversion routine (robust or smooth), the constraint defining the value of smoothing and various routine halting criteria that automatically determined when an inversion was complete. Convergence of the inversion was judged whether the model achieved an RMS of less than 5% within three to five iterations.

Additional data editing was performed for some of the lines using the RMS error filter with RES2DINVx64. This option provides a secondary means of removing bad data points from the data set; the RES2D program displays the distribution of the percentage difference between the logarithms of the observed and calculated apparent resistivity values in the form of a bar chart. It is expected the "bad" data points will have relatively large "errors", for example above 100 percent. Points with large errors can be removed and a new input file is created omitting these points based on the cut-off error limit selected. The data are then re-run through the inversion routine, and named with the naming convention (_i, _ii) to denote the filter trial number.

3.3.2.2 2D Resistivity Plotting

The inverted data were output from RES2DINV into a .XYZ data file and were gridded and color contoured in Surfer (Golden Software, Inc.). Where relevant, intersecting features were plotted on the resistivity section to assist in data analysis. Qualified in-house inversion experts subjected each profile to a final review.

4.0 RESULTS

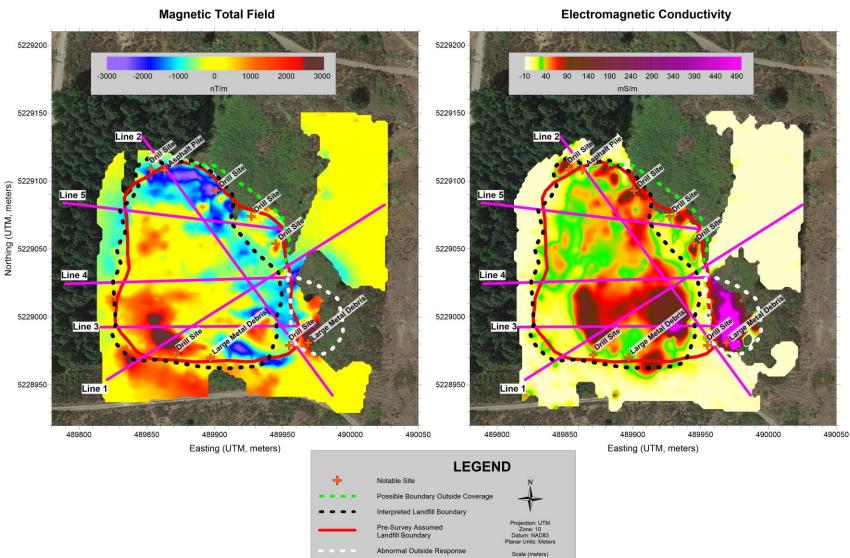
4.1 EM & MAG

The analysis of the EM & Mag results is based on the anticipated contrast in electrical properties between the conductive (low resistivity) landfill materials and the more resistive natural background materials. Generally, the products of the decomposition of waste are conductive, and as these mix with precipitation and surface water inflitration, the resulting bulk electrical properties of the wastes are likely to be highly conductive compared to typical natural background materials. Metal waste within the landfill will also be electrically conductive and generally magnetic. The electromagnetic and magnetic survey methods result in high-resolution 2D plan view maps of the electrical properties of the subsurface materials, allowing the lateral limits of the landfill to be estimated.

The magnetic measurements are highly sensitive to ferrous metals in the landfill. This can provide a high-resolution map of the distribution of metallic wastes within the landfills. The EM conductivity measurements would be expected to be more susceptible to moisture content and other conductive materials (clays, leachate, etc.), with the moisture in contact with waste materials of the landfill expected to be of increased conductivity.

Figure 4 shows the results of the EM conductivity (sensitive to bulk conductivity changes) and Mag (sensitive to ferrous metal only) survey for the whole survey site. Magnetic data are plotted as total magnetic field, measured in nanotesla (nT). Red and purple hues indicate highest anomalous areas, while yellow are more representative of background values or areas where fill material is thicker and landfill waste is beyond detection limits. The data show heterogeneity throughout the survey site, generally within the assumed landfill boundaries.

The results of the EM survey are plotted as 10 kHz conductivity data in millisiemens per meter (mS/m). In the EM conductivity results, purple and green hues indicate anomalous areas, yellow hues represent background values. The data show heterogeneity throughout the survey site, generally within the assumed landfill boundaries.


Generally speaking, the magnetic response patterns are in congruence with the EM results. Data for the complete survey site, as well as the results of the resistivity transects, are discussed in detail in the following sections.

The inverse model results for the electrical resistivity survey lines are presented as two-dimensional (2D) profiles. Common color contouring scales are used for all of the lines to provide the ability to compare anomalies from line to line. Electrically conductive (low resistivity) subsurface regions are represented by cool hues (purple to blue) and electrically resistive regions are represented by warm hues (olive to red).

The objective of the survey is to geophysically characterize heterogeneities in the subsurface that can indicate contrasts in electrical conductivity or metallic content. As such, within the resistivity profiles, the zones of lower resistivity (higher conductivity) would be assumed to be within the landfill, while contrasting higher resistivity would be expected to persist in the outer undisturbed materials.

Electrical Resistivity Line

Figure 4. Contoured Electromagnetics and Magnetics Map.

The results of the EM and Mag surveys have been interpreted to provide a potential waste boundary to delineate the spatial extent of the landfill, shown with a black dashed perimeter line in Figure 4. In general, the interpreted western and southern landfill boundary shows a good agreement to the pre-survey assumed landfill boundary (shown as the red polygon). There are a number of areas along these two boundaries where the interpreted landfill boundary (black dashed line) extends beyond the assumed boundary by approximately 20-30 feet. The EM results display a very distinct change along these two boundaries, with very homogeneous low conductivity values reflecting the native geological materials outside of the interpreted landfill area. In contrast, while the western boundary of the Mag displays a similar sharp boundary to more homogeneous background values, the area outside the southern boundary appears to display somewhat more heterogeneity in places. This appears as a broad positive Mag response (red tones) and could be a response to the underlying geology. The northern boundary displays a good agreement between the interpreted and assumed boundaries, apart from a significant EM and Mag response on the northwest corner. The response extends the interpreted boundary of the landfill by approximately 40 feet in this area. The northeastern side of the landfill was an area of limited coverage due to the hill slope and associated dense vegetation, which made access extremely difficult outside of our coverage area. Consequently, there is a significant portion of this area where the EM and Mag results do not display a distinct change to the homogeneous background values, as observed on the western boundary for example. Therefore, we have indicated two potential interpreted boundaries along this side of the landfill; the dashed black line of the interpreted landfill boundary and a green dashed line indicating the potential boundary outside the geophysical coverage based on the limited indications that background values were reached along this boundary area. For example, there in the region to the northwest of the access road into the landfill (where the eastern end of Line 5 is located) the EM and Mag results would appear to indicate a transition to background values, which is also corroborated in the electrical resistivity results of Line 5. However, on the eastern limit of the EM and Mag coverage we observe several responses that would indicate waste materials are still present in the subsurface. These responses are on the coverage limit of the electrical resistivity Line 5 and so it is difficult to be certain if this is a return to landfill waste material in the subsurface or an isolated response to surface features (rubble or debris piles or metallic objects on the ground surface).

The interpreted landfill boundary on the eastern side of the landfill, to the south of the access road into the landfill, would suggest the boundary shifts to the west by 20-40 feet based on the EM results. The Mag results still display some heterogeneity in this region, possibly again a response to the underlying native geology, since the electrical resistivity results from Line 3 corroborate the EM results. There is a very significant response in the EM and Mag results to the east of this area, indicated by the white dashed line in Figure 4. Based on field observations this would appear to be a near-surface response to a debris pile and surface metallic objects on the ground. This would correlate to the abnormally large responses observed in both the EM and Mag values. The EM coverage to the north and east of the large response manages to capture the

return to background values on the eastern edge of this feature, highlighting the lateral limits of this response.

As stated, the EM results are in general congruence with the Mag results, with high amplitude anomalies in the EM conductivity correlating with high amplitude anomalies in the Mag results. The majority of the high amplitude responses tend to be associated with the southern half of the landfill, potentially indicating thicker waste material depths or a greater degree of decomposition. Higher concentrations of decomposition products and leachates are expected in areas with increased ferrous metal content. Another smaller region associated with high amplitude responses in the EM and Mag results is located on the northeast edge of the landfill. Again this could indicate thicker waste material depths or a higher degree of decomposition potential, with increased ferrous metal content.

4.2 RESISTIVITY RESULTS

4.2.1 Line 1

Figure 5 shows the resistivity profile for Line 1 (upper profile), which ran approximately southwest to northeast across the southern portion of the landfill. Line 1 spanned the pre-survey assumed extent of the landfill and extended into the native geology on either side of the landfill.

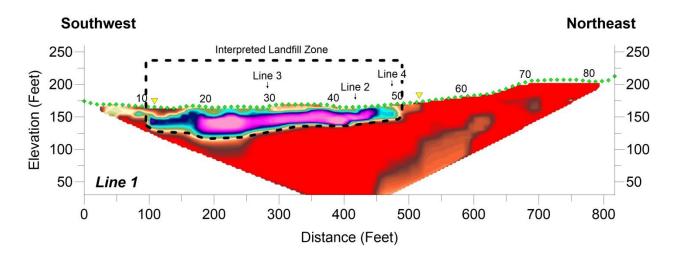
The landfill wastes typically present as a conductive target (purple and blue colors), therefore between approximately 95 to 490 feet along the line, the depth of the waste is estimated to be on average approximately 30 feet (the interpreted base of the waste material is highlighted by the black dashed line in

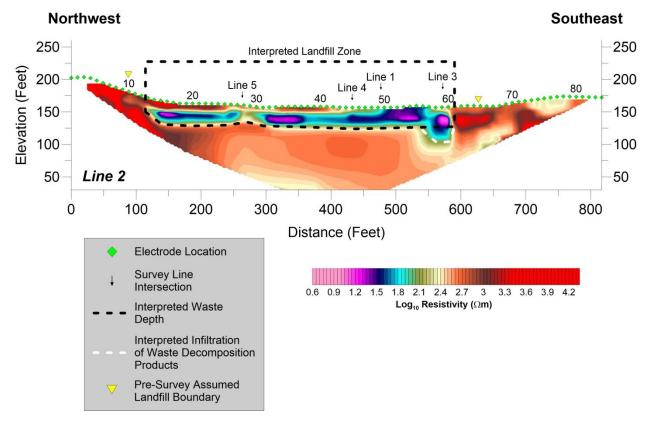
Figure 5), and the thickness of the cover is around 8 to 10 feet based on the more resistive near-surface layer (olive and brown colors). This extent of waste material correlates well to the presurvey assumed landfill boundaries, indicated by the yellow triangles in Figure 5.

Between approximately 160 to 275 feet along the line the depth of the conductive waste feature appears to increase to approximately 45 feet, with a waste material thickness of approximately 35 feet. Below this thickening of the waste material layer there appears to be a reduction in the resistivity of the underlying native geological materials (indicated by the resistive red colors). This thickening of the highly conductive material could be attributable to thicker waste and-or infiltration of waste decomposition products into the underlying native geological formation.

The cover material appears to increase in thickness between approximately 95 and 150 feet along the line, which correlates to a decrease in the EM Conductivity value in the EM results of Figure 4. This would be expected since as the thickness of the more resistive cover material increases, the EM instrument, which has a limited investigation depth, would be sensitive to a decreasing amount of the conductive waste materials. Therefore, while the EM results may indicate an absence of waste material in this region, based on the conductivity value, the electrical resistivity confirms that the waste layer is present but has a thicker cover material layer.

4.2.2 Line 2


Figure 5 shows the resistivity profile for Line 2 (lower profile), which ran approximately northwest to southeast across the northeast portion of the landfill. Line 2 spanned the pre-survey assumed extent of the landfill and extended into the native geology on either side of the landfill.


Again the landfill wastes are represented by the highly conductive target between approximately 115 and 590 feet along the line (the interpreted base of the waste material is highlighted by the back dashed line in Figure 6). In general, there appears to be a thin approximately 7 feet thick cover material layer, overlying a highly conductive layer, representing the waste materials, approximately 22 feet in thickness, both of which appear consistent across the line. This extent of waste material correlates well to the pre-survey assumed landfill boundary on the northwest end of the line, indicated by the yellow triangles in Figure 5. There is a degree of discrepancy on the southeast end of the line, where the pre-survey assumed boundary extends approximately 35 feet beyond the interpreted boundary.

Between approximately 265 and 285 feet along the line the model results appear to indicate the waste material layer becomes more resistive. This may be the result of more resistive waste materials being placed in the landfill in this region, or a cell division within the landfill separated by more resistive natural materials. The cover material thickness appears to significantly decrease between approximately 475 and 550 feet along the line, with the model results indicate highly conductive material at the ground surface. This may reflect the cover material being very thin in this region, or the cover material contains a higher degree of finer materials (increased clay content for example). Between approximately 540 to 590 feet along the line the depth of the conductive waste feature appears to increase to approximately 50 feet, with a waste material thickness of approximately 45 feet. This thickening of the highly conductive material could be attributable to thicker waste and-or infiltration of waste decomposition products into the underlying native geological formation.

Figure 5. Lines 1 and 2 Electrical Resistivity Model Results.

4.2.3 Line 3

Figure 6 shows the electrical resistivity profile for Line 3 (lower profile), which ran approximately west to east across the southern portion of the landfill. Line 3 spanned the presurvey assumed extent of the landfill and extended into the native geology on either side of the landfill.

Again the landfill wastes are represented by the highly conductive target between approximately 75 and 440 feet along the line (the interpreted base of the waste material is highlighted by the back dashed line in Figure 6). This extent of waste material displays a degree of discrepancy to the pre-survey assumed landfill boundary; with the pre-survey assumed boundary extending approximately 35 feet beyond the interpreted boundary on each end of the line.

There appears to be some variability in the thickness of the waste material and overlying cover material layers across this line. Between approximately 75 and 120 feet along the line the thickness of the cover material decreases, from approximately 15 to 10 feet. correlates well to the low conductivity region observed in this area of the landfill in the EM results, and discussed previously for the Line 1 results section. The waste material layer rapidly increases in thickness, from approximately 7 to 40 feet. Beyond 120 feet along the line, the depth to the base of the waste material remains constant, at approximately 40 feet below ground surface (bgs), although the thickness of the waste layer increases due to a decreasing cover material layer thickness. The waste material reaches a maximum thickness of approximately 35 feet, between approximately 140 and 175 feet along the line, where the cover material reduces to approximately 2 to 3 feet thickness. In general beyond 225 feet along the line, there appears to be a thin approximately 8 feet thick cover material layer, overlying the highly conductive layer, representing the waste materials, approximately 18 feet in thickness. Between approximately 205 to 285 feet along the line the conductive waste feature appears to increase significantly, extending down to the depth limit of the model between approximately 250 and 300 feet along the line. This thickening of the highly conductive material could be attributable to thicker waste and-or infiltration of waste decomposition products into the underlying native geological formation.

The conductive layer appears predominantly highly conductive in nature, indicated by the pink and purple colors. This could be responses to the waste materials having a increased decomposition potential, which has produced significant quantities of decomposition products. The waste material layer in the southern portion of the landfill, covered by the majority of Lines 1 and 3, presents on average as more conductive than other regions of the landfill. This could reflect a difference in the waste materials across the landfill and their potential for decomposition.

4.2.4 Line 4

Figure 6 shows the electrical resistivity profile for Line 4 (middle profile), which ran approximately west to east across the central portion of the landfill. Line 4 spanned the presurvey assumed extent of the landfill and extended into the native geology on either side of the landfill.

Again the landfill wastes are represented by the highly conductive target between approximately 130 and 490 feet along the line (the interpreted base of the waste material is highlighted by the back dashed line in Figure 6). This extent of waste material correlates well to the pre-survey assumed landfill boundary on the west end of the line, indicated by the yellow triangles in Figure 6. There is a degree of discrepancy on the east end of the line, where the pre-survey assumed boundary extends approximately 45 feet beyond the interpreted boundary.

There appears to be some variability in the thickness of the waste material and overlying cover material layers across this line. Between approximately 130 and 250 feet along the line the thickness of the cover material decreases, from approximately 10 to 6 feet. This again correlates well to the low conductivity region observed in this area of the landfill in the EM results, which has been discussed previously. The waste material layer increases in thickness, from approximately 30 to 35 feet, as the cover material layer thickness appears to decrease. The depth to the base of the waste material appears to displays little variation across the line, although it is difficult to be certain as there is a broad response to a potential conductive "plume" apparent between approximately 175 and 375 feet along the line. This extends to the depth limit of the model results between approximately 250 and 350 feet along the line, with the majority of this plume feature associated with the highly conductive regions of the waste material layer. This is similar to the deep response noted on Line 3 (showing good continuity), but with a slightly shallower, broader feature. This thickening of the highly conductive material could be attributable to thicker waste and-or infiltration of waste decomposition products into the underlying native geological formation.

Beyond approximately 250 feet along the line, the thickness of the waste material layer decrease gradually from approximately 35 to 18 feet. Since the base of the waste materials remains constant across this section of the line, at approximately 28 feet (bgs), the cover material layer increases in thickness, from approximately 6 to 9 feet between 250 and 490 feet along the line. There is a section, between approximately 415 and 445 feet along the line, where the conductive layer appears to approach the ground surface. This may reflect the cover material being very thin in this region, or the cover material contains a higher degree of finer materials (increased clay content for example).

4.2.5 Line 5

Figure 6 shows the electrical resistivity profile for Line 5 (upper profile), which ran approximately west to east across the northern portion of the landfill. Line 5 spanned the presurvey assumed extent of the landfill and extended into the native geology on either side of the landfill.

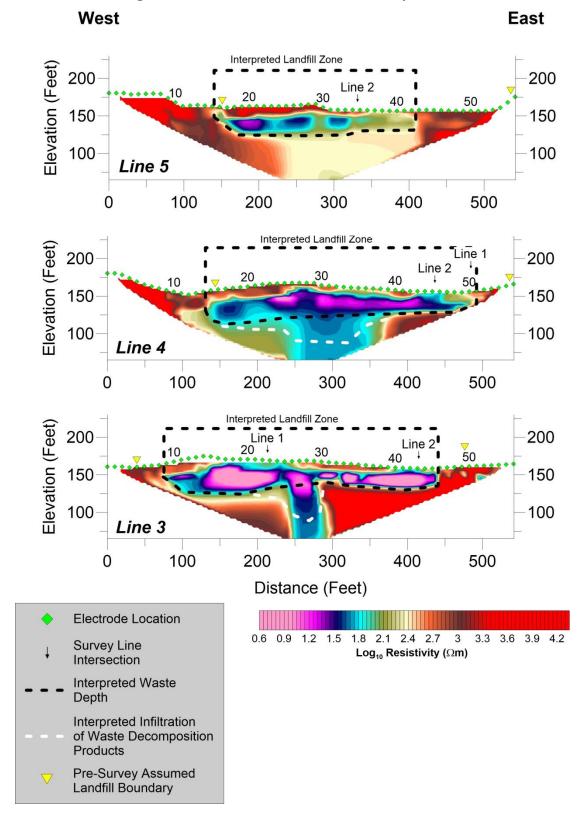
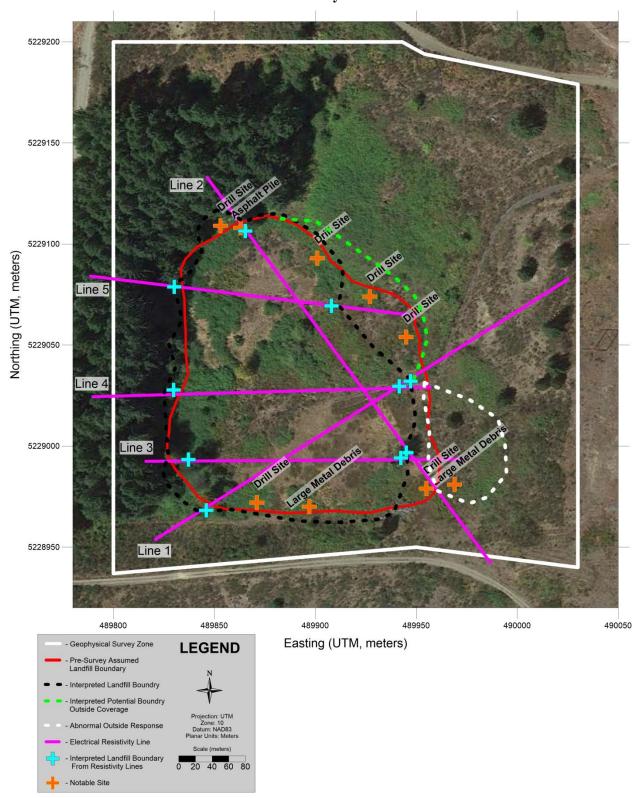

Again the landfill wastes are represented by the highly conductive target between approximately 140 and 410 feet along the line, the depth of the waste is estimated to be on average approximately 26 feet (the interpreted base of the waste material is highlighted by the black dashed line in

Figure 5), and the thickness of the cover is around 7 to 10 feet based on the more resistive near-surface layer (olive and brown colors). This extent of waste material correlates well to the presurvey assumed landfill boundary on the west end of the line, indicated by the yellow triangles in Figure 6. There is a degree of discrepancy on the east end of the line, where the pre-survey assumed boundary extends approximately 125 feet beyond the interpreted boundary.

The cover material layer appears to thicken on the west end of the interpreted landfill zone, with a maximum thickness of approximately 14 feet between approximately 140 and 180 feet along the line. This increase in thickness again correlates well to the low conductivity region observed in this area of the landfill in the EM results, which has been discussed previously. While there is no significant increase in conductivity below the waste layer similar to those observed on electrical resistivity lines 2, 3, and 4, we do observed a general decrease in the resistivity of the underlying materials (indicated by the yellow colors between approximately 250 and 350 feet along the line). This could indicate infiltration of waste decomposition products to a lesser degree and-or with less conductivity relative to other areas of the landfill. In general, the conductivity associated with the waste material layer in the northern portion of the landfill area tends to be lower, possibly indicating less decomposition of wastes.

5.0 CONCLUSIONS

A multi-method geophysical survey was performed at the C Street Landfill near, Shelton, WA, USA, in May of 2017. The survey was performed to determine the lateral extents and thickness of landfill waste and the thickness of the cover material. Combined electromagnetic and magnetic surveys over the entire accessible landfill area, as well as five lines of 2D electrical resistivity were completed. The EM and Mag measurements provided an indication of the lateral limits of covered landfill (Figures 4 and 7). The electrical resistivity imaging method confirmed these boundary results and allowed the depth and thickness of the conductive wastes and the thickness of the cover material to be estimated (Figures 5, 6, and 7).


Based on the theory that the products of the decomposition of municipal solid waste will be conductive compared to background geological materials, and that areas with metallic debris will display increased magnetic gradient contrast to undisturbed materials outside the landfill boundaries, the following observations have been made using the acquired geophysical data:

- The EM and Mag data were acquired at reasonably high spatial resolution throughout the survey site, and showed good agreement for distribution of anomalous data that would indicate the presence of landfill waste material. The anomalous data for both methods mainly occur within the boundary of the landfill boundary that was assumed prior to geophysical surveying. The data outside of this assumed boundary mostly show little anomalous data, indicating background conditions have been mapped effectively. Combined analysis of the EM, Mag, and Resistivity results would tend to suggest the western and southern portions of the assumed landfill boundary would increase by 20 to 30 feet in some portions as indicated by the black dashed line in Figure 4. However, the south eastern corner would appear to recede by up to 60 feet in places from the pre survey assumed boundary, and likewise portions of the northeast would recede by as much as 90 feet in places.
- The resistivity data provided additional imaging to support the lateral extents determined using the EM and Mag data, and the resistivity interpretation was favored in the north and northeastern areas where EM and MAG coverage was limited.

The resistivity profile results estimated the thickness of the waste to be approximately 20-35 feet at the locations of the resistivity survey lines, with cover thickness estimated on average to be 6-10 feet. Highly conductive regions were observed towards the central portions of resistivity lines 1, 3, and 4 and to some degree line 5, where the magnitude and character of the anomaly are indicative of infiltration of waste decomposition products into the native geological formations extending to the bottom of the techniques imaging depth.

Figure 7. Summary of the Interpreted Boundaries for the C-Street Landfill Geophysical Survey.

6.0 REFERENCES

- Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, No. 3, 289-300.
- Dahlin, T., Leroux, V., Rosqvist, H., Svensson, M., Lindsjo, M., Mansson, C.H., and Johansson, S., 2009, Geoelectrical resistivity monitoring for localizing gas at landfills. Procs. Near Surface 2009 15th European Meeting of Environmental and Engineering Geophysics Society, Dublin Ireland, 7-9 September.
- Dey, A., and H.F. Morrison, 1979, Resistivity modeling for arbitrarily shaped three-dimensional structures: Geophysics, 44, 753-780.
- Ellis, R.G., and D.W. Oldenburg, 1994, Applied geophysical inversion: Geophysical Journal International, 116, 5-11.
- Loke, M.H., I. Acworth, and T. Dahlin, 2003, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys: Exploration Geophysics, 34, 182-187.
- Rosqvist, H., Leroux, V., Dahlin, T., Lindsjo, M., Mansson, C., and Johansson, S., 2011, Mapping landfill gas migration using resistivity monitoring. Waste and Resource Management, 164(1), 3-15.
- Rucker, D.F., Levitt, M.T., Greenwood, W.J., 2009. Three-dimensional electrical resistivity model of a nuclear waste disposal site. Journal of Applied Geophysics 69, 150-164.
- Rucker, D.F., G.E. Noonan, and W.J. Greenwood, 2011. Electrical resistivity in support of geologic mapping along the Panama Canal. Engineering Geology 117(1-2):121-133.
- Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: Geophysics, 54, 254-262.
- Telford, W. M., Geldart, L. P., and Sherriff, R. E., 1990, Applied Geophysics (2nd Edition), Cambridge University Press.

APPENDIX A

Description of Electrical Resistivity

7.0 DESCRIPTION OF ELECTRICAL RESISTIVITY

Electrical resistivity is a volumetric property that describes the resistance of electrical current flow within a medium (Rucker et al., 2011; Telford et al., 1990). Direct electrical current is propagated in rocks and minerals by electronic or electrolytic means. Electronic conduction occurs in minerals where free electrons are available, such as the electrical current flow through metal. Electrolytic conduction, on the other hand, relies on the dissociation of ionic species within a pore space. With electrolytic conduction, the movement of electrons varies with the mobility, concentration, and the degree of dissociation of the ions.

Mechanistically, the resistivity method uses electric current (I) that is transmitted into the earth through one pair of electrodes (transmitting dipole) that are in contact with the soil. The resultant voltage potential (V) is then measured across another pair of electrodes (receiving dipole). Numerous electrodes can be deployed along a transect (which may be anywhere from feet to miles in length), or within a grid. Figure 8. Possible Arrays for Use in Electrical Resistivity Characterization, shows examples of electrode layouts for surveying. The figure shows transects with a variety of array types (dipole-dipole, Schlumberger, pole-pole). A complete set of measurements occurs when each electrode (or adjacent electrode pair) passes current, while all other adjacent electrode pairs are utilized for voltage measurements. Modern equipment automatically switches the transmitting and receiving electrode pairs through a single multi-core cable connection. Rucker et al. (2009) describe in more detail the methodology for efficiently conducting an electrical resistivity survey.

dipole-dipole Schlumberger pole-pole

V = Voltage

I = Current

■ Point electrode

— = Wire connection between electrodes

∞ = Wire connection to an infinite remote electrode

Figure 8. Possible Arrays for Use in Electrical Resistivity Characterization.

The modern application of the resistivity method uses numerical modeling and inversion theory to estimate the electrical resistivity distribution of the subsurface given the known quantities of electrical current, measured voltage, and electrode positions. A common resistivity inverse method incorporated in commercially available codes is the regularized least squares optimization method (Sasaki, 1989; Loke, et al., 2003). The objective function within the optimization aims to minimize the difference between measured and modeled potentials (subject

to certain constraints, such as the type and degree of spatial smoothing or regularization) and the optimization is conducted iteratively due to the nonlinear nature of the model that describes the potential distribution. The relationship between the subsurface resistivity (ρ) and the measured voltage is given by the following equation (from Dey and Morrison, 1979):

$$-\nabla \cdot \left[\frac{1}{\rho(x, y, z)} \nabla V(x, y, z) \right] = \left(\frac{I}{U} \right) \delta(x - x_s) \delta(y - y_s) \delta(z - z_s)$$
 (1)

where I is the current applied over an elemental volume U specified at a point (x_s, y_s, z_s) by the Dirac delta function.

Equation (1) is solved many times over the volume of the earth by iteratively updating the resistivity model values using either the L₂-norm smoothness-constrained least squares method, which aims to minimize the square of the misfit between the measured and modeled data (de Groot-Hedlin & Constable, 1990; Ellis & Oldenburg, 1994):

$$\left(J_i^T J_i + \lambda_i W^T W\right) \Delta r_i = J_i^T g_i - \lambda_i W^T W r_{i-1} \tag{2}$$

or the L₁-norm that minimizes the sum of the absolute value of the misfit:

$$\left(J_i^T R_d J_i + \lambda_i W^T R_m W\right) \Delta r_i = J_i^T R_d g_i - \lambda_i W^T R_m W r_{i-1} \tag{3}$$

where g is the data misfit vector containing the difference between the measured and modeled data, J is the Jacobian matrix of partial derivatives, W is a roughness filter, R_d and R_m are the weighting matrices to equate model misfit and model roughness, Δr_i is the change in model parameters for the i^{th} iteration, r_i is the model parameters for the previous iteration, and λ_i = the damping factor.

APPENDIX B

Description of Electromagnetic Induction and Magnetic Methods

8.0 DESCRIPTION OF EM & MAG

8.1 MAGNETOMETRY

Magnetometry is the study of the Earth's magnetic field and is the oldest branch of geophysics. The Earth's field is composed of three main parts:

- 1. Main field is internal (i.e., from a source within the Earth that varies slowly in time and space)
- 2. Secondary field is external to the Earth and varies rapidly in time
- 3. Small internal fields constant in time and space are caused by local magnetic anomalies in the near-surface crust.

Of interest to the geophysicist are the localized anomalies. These anomalies are either caused by magnetic minerals, mainly magnetite or pyrrhotite, or buried steel and are the result of contrasts in the magnetic susceptibility (k) with respect to the background sediments. The average values for k are typically less than 1 for sedimentary formations and upwards to 20,000 for magnetite minerals.

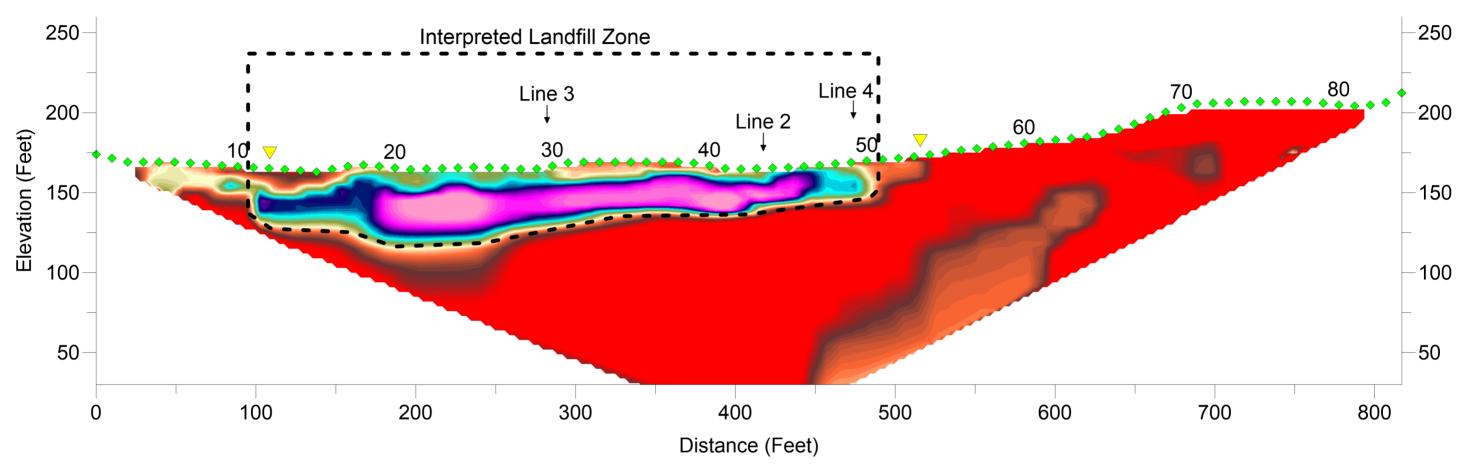
The magnetic field is measured with a magnetometer. Magnetometers permit rapid, non-contact surveys to locate buried metallic objects and features. A one person portable field unit can be used virtually anywhere a person can walk; although, they may be sensitive to local interferences, such as fences and overhead wires. Airborne magnetometers are towed by aircraft and are used to measure regional anomalies. Field-portable magnetometers maybe single- or dual-sensor. Single-sensor magnetometers measure total field. Dual-sensor magnetometers are called gradiometers and measure gradient of the magnetic field.

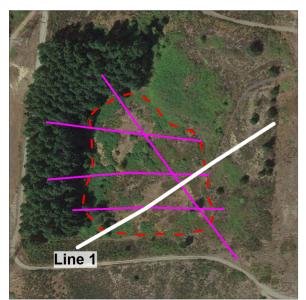
Magnetic surveys are typically conducted with two separate magnetometers. The first magnetometer is used as a base station to record the Earth's primary field and the diurnally changing secondary field. The second magnetometer is used as a rover to measure the spatial variation of the Earth's field and may include various components (e.g., inclination, declination, and total intensity). By removing the temporal variation and perhaps the static value of the base station from that of the rover, one is left with a residual magnetic field that is the result of local spatial variations only. The rover magnetometer is moved along a predetermined linear grid laid out at the site. Readings are virtually continuous and results can be monitored in the field as the survey proceeds.

The shortcoming with most magnetometers is that they only record the total magnetic field (F) and not the separate components of the vector field. This shortcoming can make the interpretation of magnetic anomalies difficult, especially since the strength of the field between the magnetometer and target is reduced as a function of the inverse of distance between the

magnetometer and target, cubed. Additional complications can include the inclination and declination of the Earth's field, the presence of any remnant magnetization associated with the target, and the shape of the target.

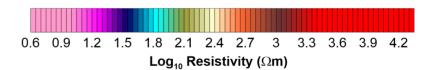
8.2 ELECTROMAGNETIC INDUCTION


EM data is typically collected using portable ground conductivity instrumentation. Basically, a transmitting coil induces an electromagnetic field and a receiving coil at a fixed separation usually measures the amplitudes of the in-phase and quadrature components of the magnetic field. Various instruments have different coil spacings and operating frequencies. Spacing and frequency effect depth of signal penetration. Both single frequency and multi-frequency instruments have been developed for commercial use.


Earth materials have the capacity to transmit electrical currents over a wide range. Earth conductivity is a function of soil type, porosity, permeability, and dissolved salts. Terrain conductivity methods seek to identify various Earth materials by measuring their electrical characteristics and interpreting results in terms of those characteristics. EM techniques are used to measure Earth conductivities of various soil, rock, and water components at individual survey areas employing portable, rapid, non-invasive equipment operating at various frequencies depending on range and depth desired.

The recorded electromagnetic field is separated into two sub-components: in-phase and conductivity (also referred to as quadrature). The in-phase component is the most sensitive to metallic objects and is measured in parts per million (ppm). The conductivity component is sensitive to soil condition variations and is measured in log Siemens per meter (log S/m) using the GEM-2 instrument.

The EM method was chosen due to the capability of mapping changes in soil conductivity that are caused by changes in soil moisture, disruption, other conductivity changes caused by physical property contrasts, the ability to detect metallic objects (i.e., ferrous and non-ferrous), and the relatively rapid rate of data acquisition.

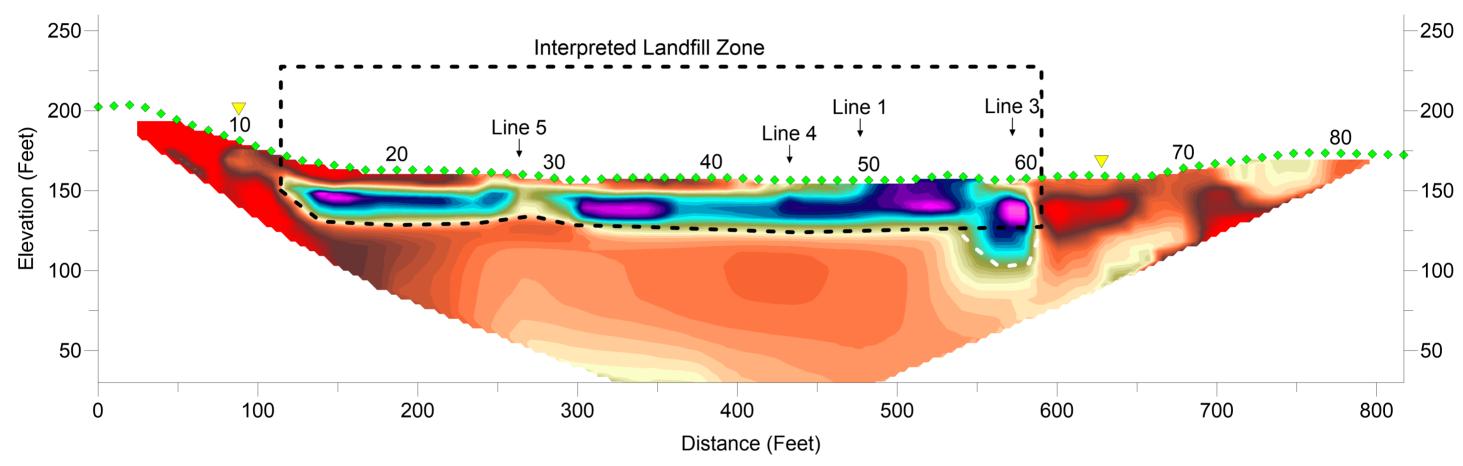

Electrode Location

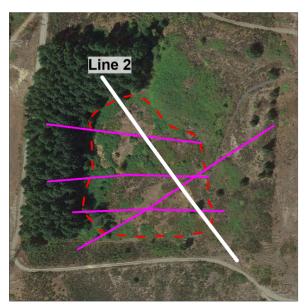
Survey Line Intersection

Interpreted Waste Depth

Interpreted Infiltration
of Waste Decomposition
Products

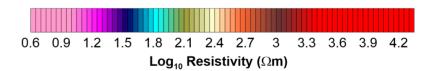
Pre-Survey Assumed Landfill Boundary




C Street Landfill Geophysical Survey

Date: May.2017

Fig.: RESISTIVITY LINE 1

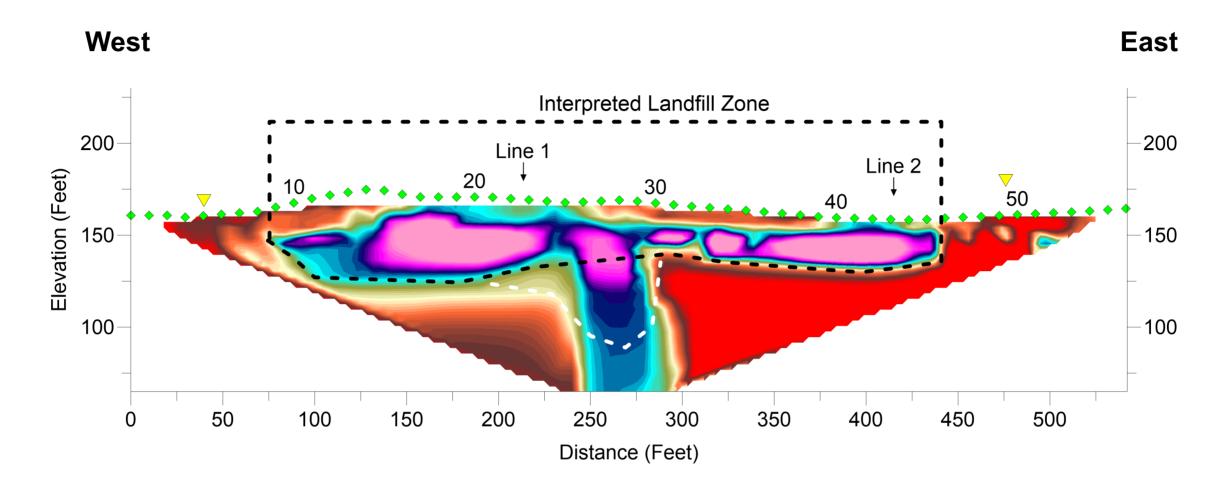

Electrode Location

Survey Line Intersection

Interpreted Waste Depth

Interpreted Infiltration
of Waste Decomposition
Products

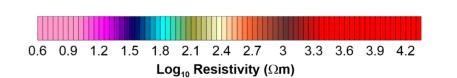
Pre-Survey Assumed Landfill Boundary



C Street Landfill Geophysical Survey

Date: May.2017

Fig.: RESISTIVITY LINE 2

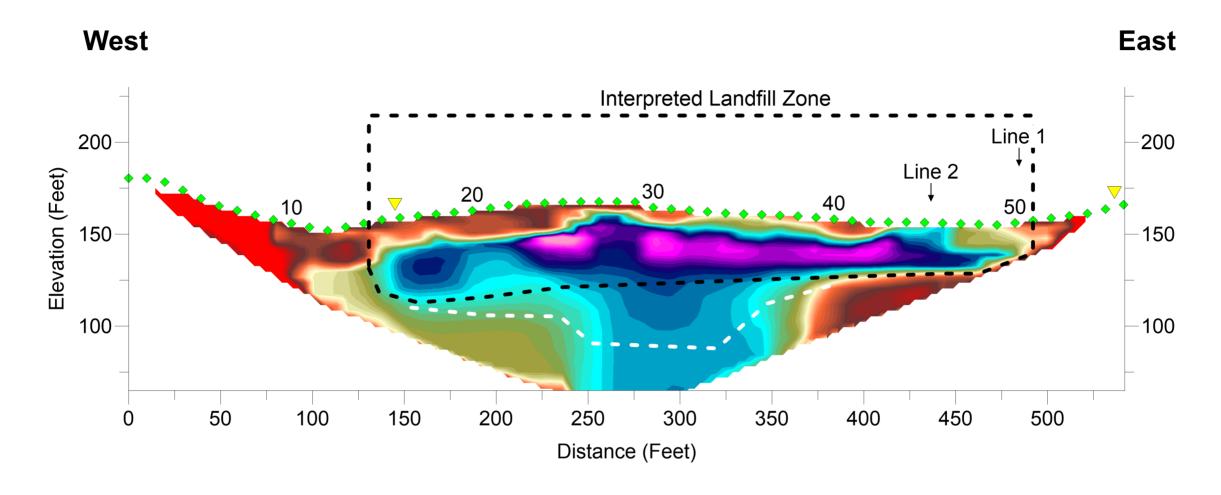


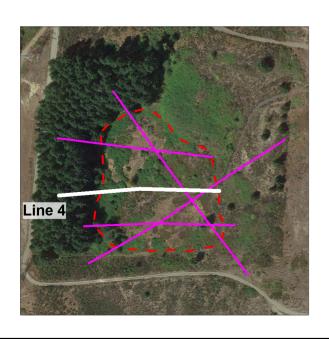
Survey Line
Intersection

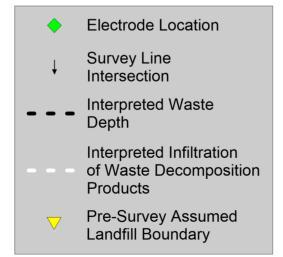
Interpreted Waste
Depth

Interpreted Infiltration
of Waste Decomposition
Products

Pre-Survey Assumed
Landfill Boundary






C Street Landfill Geophysical Survey

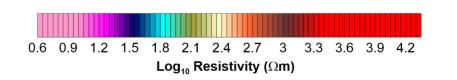

Date: May.2017

Fig.: RESISTIVITY LINE 3

C Street Landfill Geophysical Survey

Date: May.2017

Fig.: RESISTIVITY LINE 4

APPENDIX B

Exploration Logs

	raction (5)		GW	Well-graded gravel and gravel with sand, little to no fines		escribing Ro	elative Dens	sity and Consistency ot Test Symbols
)0 Sieve	(1) Coarse Fraction No. 4 Sieve	000000000	GP	Poorly-graded gravel and gravel with sand, little to no fines	Coarse- Grained Soils	Loose Medium Dense Dense Very Dense	4 to 10 10 to 30 30 to 50 >50	FC = Fines Content G = Grain Size M = Moisture Content A = Atterberg Limits
Retained on No. 200 Sieve	Gravels - More than 50% ⁽¹) Retained on No. ≥15% Fines ⁽⁵⁾		GM	Silty gravel and silty gravel with sand	Fine- Grained Soils	Consistency Very Soft Soft Medium Stiff Stiff	SPT ⁽²⁾ blows/for 0 to 2 2 to 4 4 to 8 8 to 15	Ot DD = Dry Density K = Permeability Str = Shear Strength Env = Environmental
	Bravels - N ≥15%		GC	Clayey gravel and clayey gravel with sand		Very Stiff Hard	15 to 30 >30	PiD = Photoionization Detector
Coarse-Grained Soils - More than 50%			SW	Well-graded sand and sand with gravel, little to no fines	Descriptive T Boulders Cobbles	erm Size R	ponent Definance and Sieve than 12" 2"	
ined Soils - N	of Coarse 4 Sieve ≤5%		SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel Coarse Gravel Fine Gravel Sand	vel 3" to 3 3/4" to No. 4 (No. 4 (4.75 mm) (4.75 mm) to No. 2	
Coarse-Gra	0% (1) br More Passes No.		SM	Silty sand and silty sand with gravel	Coarse Sand Medium Sar Fine Sand Silt and Clay	No. 10 No. 40	(4.75 mm) to No. 10 (2.00 mm) to No. (0.425 mm) to No. (or than No. 200 (0.0	40 (0.425 mm) 5. 200 (0.075 mm)
	Sands - 5		SC	Clayey sand and clayey sand with gravel	(3) Estimate Percentage by Weight		_	Moisture Content Dry - Absence of moisture, dusty, dry to the touch
Sieve	s ian 50		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	<5 5 to 15		e tly (sandy, silty, ey, gravelly)	Slightly Moist - Perceptible moisture Moist - Damp but no visible water
200	Silts and Clays Liquid Limit Less than 50		CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	15 to 30 30 to 49	grave Very	ly, silty, clayey, elly) (sandy, silty, ey, gravelly)	Very Moist - Water visible but not free draining Wet - Visible free water, usually from below water table
(1)r More Passes No.	S Liquid		OL	Organic clay or silt of low plasticity	Sampler Type	Blows/6" or portion of 6"	Symbols	Cement grout surface seal Bentonite chips
- 50%	s More		МН	Elastic silt, clayey silt, silt with micaceous or diato- maceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT)	Continuous Pu		chips Grout seal Filter pack with
Fine-Grained Soils	Silts and Clays Liquid Limit 50 or More		СН	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample Grab Sample	Non-Standard 3.0" OD Thin-W (including Shel	' /all Tube Sampler	blank casing section Screened casing or Hydrotip with filter pack
Fine-(S Liquic		ОН	Organic clay or silt of medium to high plasticity	(1) Percentage by	Portion not rec		(5) Combined USCS symbols used for
Highly	Organic Soils		PT	Peat, muck and other highly organic soils	(ASTM D-1586 (3) In General Acc Standard Prac			fines between 5% and 15% as estimated in General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488)
	_				(4) Depth of grou		ATD = At time of di Static water level (d	9

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Exploration Log Key

ATE:	PROJECT NO.
ESIGNED BY:	
RAWNBY:	FIGURE NO.
EVISED BY:	B-1

	Δς	pec	,		SI			andfill - 15007	4		Monitoring V		
		NSULTIN						Specific Location orner of landfill			Coordinates (SPN NAD83 ft) E:986256.0 N:697079	Exploration Nun	
		ntractor	+	Equ	uipment	SHEROI	i, WA, NE C	Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88	AMW-	
	Hol	locene		Geopro	be 8140	LC	Continuous	s core 10" outer,	6" innei	casing	153.48'	Ecology Well Table BKC 045	ag No.
	Op	perator		Explorati	on Method	d(s)	V	Vork Start/Completio	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	low GS)
	Zach	n Bailey		S	onic			/11/2017 to 12/1	2/2017		155.9'	85' (ATD))
	Elev. (feet)	Explorat a	tion Con ind Notes	npletion s	Sample Type/ID	Sampl	nalytical le Number & b Test(s)	Field Tests	Material Type		Description		Depth (ft)
0 -	155	pro	otective	reground : with bollards concrete					0.000.000.000.000.000.000.000.000.000.		RECESSIONAL GLACIAL OI brown, sandy, silty GRAVEL (G fine to coarse sand, no odor, r	SM); fine to coarse	- 0 e
5 -	150							PID= 0.3 Sheen= None					_ - 5
-	145	I						PID= 0.6 Sheen= Slight					
10 -	-		ealed wit out	h bentonite				PID= 0.4 Sheen= None		Moist, I	brown, gravelly, silty SAND (SM ine gravel, no odor, no landfill v	/l); fine to coarse vaste	- 10 -
15 -	140	I						PID= 0.3 Sheen= None					- - - 15
-	- -	I						PID= 0.2 Sheen= Slight					-
20 -	135							PID= 0.6 Sheen= None		sand, r	red-brown, silty SAND (SM); fir no odor, no landfill waste brown, gravelly, silty SAND (SN ine gravel, no odor, no landfill v	Л); fine to coarse	- 20
Sample 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Lege	end No Soil Sa Continuous				Water Level	☑ Water Le	evel ATD		explana Logged	oloration Log Key for tion of symbols by: KB ed by: ALC 6/6/2019	Explorati Log AMW-1 Sheet 1 of	

	Δc	nect			ton C Street La		4		Monitoring W		,
7		pect			oject Address & Site				Coordinates (SPN NAD83 ft)	Exploration Num	ber
•		SULTING	_		elton, WA, NE c				E:986256.0 N:697079	AMW-	1
	Con	ntractor	Eq	uipment		Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)		
	Hole	ocene	Geopro	be 8140LC	Continuous	s core 10" outer	, 6" inner	casing	153.48'	Ecology Well Ta BKC 045	ay I\
	Ор	erator	Explorat	ion Method(s)	И	Vork Start/Completic	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	
	Zach	Bailey	8	Sonic	12	/11/2017 to 12/	12/2017		155.9'	85' (ATD)	
)onth	Elev.	Exploration	Completies	Sample	Analytical		Material		_	, ,	De
(feet)	- 130	and N	lotes	Type/ID	Sample Ńumber & Lab Test(s)	PID= 2.4 Sheen= None	Туре	Moist, b	Description prown, gravelly, silty SAND (SM) ne gravel, no odor, no landfill w); fine to coarse aste (continued)	+
-	- 125					PID= 0.3 Sheen= None		Moist, b	prown, gravelly SAND (SW); fine coarse gravel, no odor, no landf	e to coarse sand ill waste	,
30 -		Ш				PID= 0.2 Sheen= None		Ma-:-4	No. of the Control of	ND (OW ON)	-; -
-	- 120					PID= 3.7 Sheen= None		Moist, b	prown, gravelly, slightly silty SAI coarse sand, fine to coarse grav waste	עט (SW-SM); rel, no odor, no	
35 -		Sealed grout	d with bentonite			PID= 0.7 Sheen= None					
-	- 115					PID= 3.0 Sheen= None					+
40 -						PID= 3.3 Sheen= None					
-	- 110					PID= 2.7 Sheen= None					-
45 -						PID= 0.2 Sheen= None		Moist, b	orown, gravelly silty SAND (SM) ne gravel, no odor, no landfill w	; fine to coarse aste	- - -
Sample Method	Lege N	nd lo Soil Samp continuous co		Water	☑ Water Le	evel ATD		explanat	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Explorati Log AMW-1	

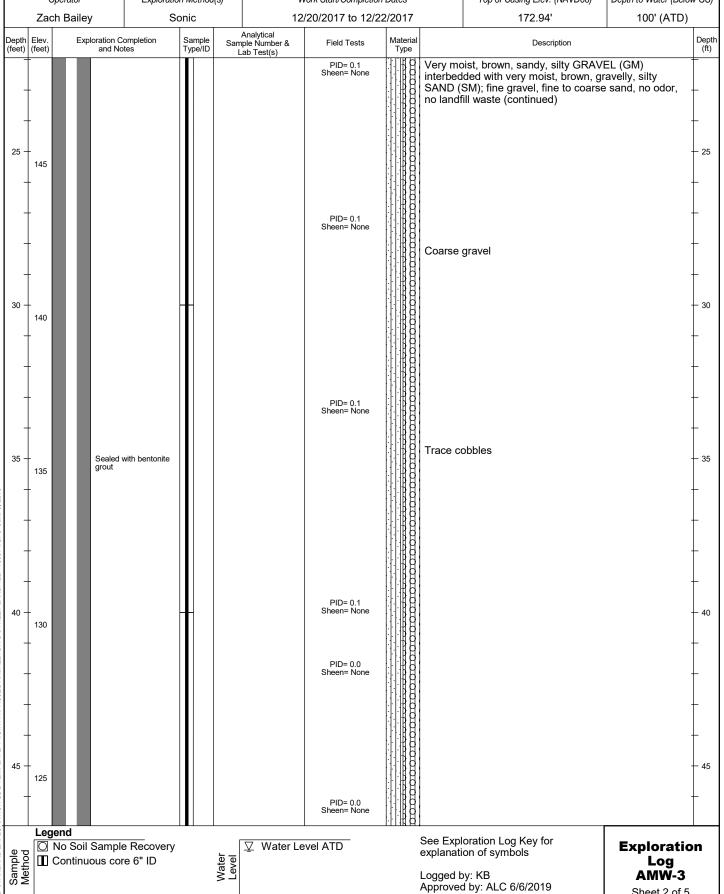
Man a at	Shelton	n C Street Landfill - 15007	74	Monitoring V	Vell Log
Aspect	Projec	ct Address & Site Specific Location		Coordinates (SPN NAD83 ft)	Exploration Number
CONSULTING		on, WA, NE corner of landfill		E:986256.0 N:697079	AMW-1
Contractor	Equipment	Sampling Meth	nod	Ground Surface (GS) Elev. (NAVD88)	
Holocene	Geoprobe 8140LC	Continuous core 10" outer	_	153.48'	Ecology Well Tag N BKC 045
Operator	Exploration Method(s)	Work Start/Completi	on Dates	Top of Casing Elev. (NAVD88)	Depth to Water (Below 0
Zach Bailey	Sonic	12/11/2017 to 12/	12/2017	155.9'	85' (ATD)
epth Elev. Exploration C	completion Sample San	Analytical nple Number & Field Tests Lab Test(s)	Material Type	Description	D
105 - - - - - - - - - - - - - - - - - - -	drated bentonite	PID= 1.1 Sheen= None PID= 1.2 Sheen= None PID= 0.1 Sheen= None PID= 0.4 Sheen= Slight PID= 0.8 Sheen= None	Moist, I sand, fi	crown, gravelly silty SAND (SM ne gravel, no odor, no landfill was brown, sandy, silty GRAVEL (GM medium to coarse sand, no odor, no landfill was brown, gravelly, silty SAND (SM ne gravel, appears dense, no corown, gravelly, sandy, SILT (M coarse gravel, no odor, no landfill was gravel, fine and coarse sand, no gravel, fine and gravel, fine and gravel, fine and gravel, fine	ifine to coarse vaste (continued) (i); fine to coarse or, no landfill (ii); fine to medium dor, no landfill (iii); fine sand, fill waste
Legend No Soil Sampl Continuous co		☑ Water Level ATD	explanat Logged	oloration Log Key for tion of symbols by: KB ed by: ALC 6/6/2019	Exploration Log AMW-1 Sheet 3 of 5

	A.		1	Sh	elton C Street L		4		Monitoring V	Vell Log	_
		spec			Project Address & Site	•			Coordinates (SPN NAD83 ft)	Exploration Numb	er
(NSULTIN			Shelton, WA, NE				E:986256.0 N:697079	AMW-1	1
	С	ontractor	Eq	uipment		Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)		
	H	olocene	Geopro	be 8140L		s core 10" outer		casing	153.48'	Ecology Well Tag BKC 045	
	(Operator	Explorat	ion Method	(s)	Work Start/Completic	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belov	w G
	Zad	ch Bailey	8	Sonic	12	2/11/2017 to 12/	12/2017		155.9'	85' (ATD)	
epth	Elev. (feet)		on Completion d Notes	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description	•	De
- - 75 -	80			I I	Lab Test(s)	PID= 0.8 Sheen= Slight		with sa	orown, gravelly, silty SAND (SM ndy, silty GRAVEL (GM); fine to coarse gravel, no odor, no land	medium sand,	+
	75	100	20 silica sand filter			PID= 0.1 Sheen= None PID= 0.1 Sheen= None		Moist, k	orown, gravelly, slightly silty SA um sand, fine gravel, trace coa o landfill waste orown, gravelly, sandy SILT (MI se gravel, no odor, no landfill w	_); fine sand, fine aste	+ + + + + + + + + + + + + + + + + + + +
-	70	pac				PID= 0.1 Sheen= None		(SP-SM landfill Dry, bro sand, fi Moist to	prown, slightly gravelly, slightly fl; fine to medium sand, fine gravete own, gravelly, sandy, SILT (ML) one gravel, no odor, no landfill we overy moist, brown, gravelly, si medium sand, trace coarse sand landfill waste	r; fine to coarse //aste // Ity SAND (SM);	
85 - - -	-	1	2/12/2017			PID= 0.0 Sheen= None		.∖sand, fi Very m . SAND (moist, gravelly, sandy, SILT (MI ne gravel, no odor, no landfill w oist to wet, brown, slightly grave SW-SM); fine to coarse sand, no odor, no landfill waste	vaste // elly, slightly silty	
- 90 -	- 65 -	Scr. 0.02	nedule 40 PVC 20" slotted screen			PID= 0.0 Sheen= None	\$ 0.00		oist to wet, brown, gravelly, silty medium sand, fine gravel, no od		- - -
-						PID= 0.2 Sheen= None		SAND	oist to wet, brown, slightly grav (SP-SM); fine to medium sand, o landfill waste	elly, slightly silty fine gravel, no	† -
- 95 - -	60					PID= 0.0 Sheen= None			oist to wet, brown-gray, slightly		_
									M); fine to coarse sand, trace find a landfill waste	ie gravei, 110	
Sample		gend No Soil Sar Continuous	nple Recovery core 6" ID	_	Water Level ∑ Water r	evel ATD	<u> </u>	explanat	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-1 Sheet 4 of 5	

	$\Delta \epsilon$	spect			elton C Street L		4		Monitoring V	Vell Log	mh = =
7		NSULTING			Project Address & Site Shelton, WA, NE o				Coordinates (SPN NAD83 ft) E:986256.0 N:697079	Exploration Nur	
_		ontractor	Egu	ipment	meion, WA, NE	Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)	AMW-	
	Но	olocene		, be 8140L	C Continuou	s core 10" outer		casing	153.48'	Ecology Well T BKC 045	ag N
		perator		on Method(s		Nork Start/Completio			Top of Casing Elev. (NAVD88)	Depth to Water (Be	
	Zac	h Bailey	S	onic	12	2/11/2017 to 12/	12/2017		155.9'	85' (ATD))
	Elev.	Exploration Co	es es	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description		Dep (ft
lepth feet)	(feet) - 55 - 50 - 45	Exploration Co and Note	es e	Sample Type/ID	Analytical Sample Number & Lab Test(s)	PID= 0.0 Sheen= None PID= 0.0 Sheen= None PID= 0.0 Sheen= None	Material	Very mo (SW-SN odor, no	Description Dist to wet, brown-gray, slightly while to coarse sand, trace fit of landfill waste (continued) of exploration at 105 ft. bgs.	silty SAND ne gravel, no	Deg(fi
-	- 35 -										-
20-	-										-1
-	-										+
Method	Leg	end No Soil Sample Continuous core		1	Mater F	evel ATD		explanat Logged I	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Explorati Log AMW-1 Sheet 5 of	

	Δ	spe	C +			elton C Street L		74		Monitoring V		_
7		NSULT				Project Address & Site Shelton, WA, SE of				Coordinates (SPN NAD83 ft) E:986269.2 N:696844	Exploration Number	
_		ontractor	1110	Equ	iipment	JIIEROII, WA, JE C	Sampling Meth	od		Ground Surface (GS) Elev. (NAVD88)	AMW-2	
		olocene			be 8140L	C Continuou	s core 10" outer		casina	152.65'	Ecology Well Tag BKC 047	Į ľ
		Operator			on Method(Work Start/Completic	•		Top of Casing Elev. (NAVD88)	Depth to Water (Below	
	Zad	h Bailey	,		onic		2/18/2017 to 12/	19/2017		155.54'	85' (ATD)	
epth	Elev.		loration Co		Sample	Analytical Sample Number &	Field Tests	Material		Description	. ,	D
eet)	(feet)	N N	and Not	es	Type/ID	Lab Test(s)	7 10.0 7 00.0	Туре		2008.1.p.10.1.	+	L
0	155		monume protectiv	oveground nt with e bollards in concrete			PID= 0.3 Sheen= Slight PID= 0.1 Sheen= Organic PID= 0.1 Sheen= None		Moist, t (SP-SM coarse Moist, t (GW-G (GW-G sand, tr Moist, t	FILL dark brown, gravelly, silty SANI n sand; abundant organics, me fragments, organic odor RECESSIONAL GLACIAL OL brown-gray, gravelly, slightly sil l); medium to coarse sand, fine gravel and cobbles, no odor, no brown, gravelly, slightly silty SA se sand, fine gravel, no odor, no brown, slightly sandy, slightly si M); fine to coarse gravel, mediu ace cobbles, no odor, no landf brown, gravelly, silty SAND (SM prown, gravelly, silty SAND (SM	ITWASH ty SAND gravel, trace o landfill waste IND (SP-SM); fine o landfill waste Ity GRAVEL um to coarse ill waste Ity GRAVEL ill waste	
- - 15 -	- 140 - -		Sealed w	vith bentonite			PID= 0.1 Sheen= Slight		sand, fi	ne gravel, no odor, no landfill v	vaste	_ _ -
- - 20 -	135						PID= 0.1 Sheen= Slight PID= 0.1 Sheen= Slight					
Sample Method		jend Continu	ous cor	e 6" ID		Water Level	evel ATD		explanat Logged	oloration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-2	n

	Δc	ne/	∼ ∔ └				Landfill - 15007	4		Monitoring V		
		pec				Project Address & Si				Coordinates (SPN NAD83 ft)	Exploration Num	ber
•		TS U L T I I	NG			Shelton, WA, SE		_		E:986269.2 N:696844	AMW-	2
	Con	tractor		Equ	uipment		Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)	/	
	Hold	ocene		Geopro	be 8140L	_C Continuo	us core 10" outer	6" inner	casing	152.65'	Ecology Well Ta BKC 047	ay I\
	Оре	erator		Exploration	on Method((s)	Work Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	
	Zach	Bailey		S	onic	1	12/18/2017 to 12/	19/2017		155.54'	85' (ATD)	
on4l-			ation C:			Analytical					, -,	D-
et)	Elev. (feet)		ation Com and Notes	ipieuon S	Sample Type/ID	Sample Ńumber & Lab Test(s)	Field Tests	Material Type		Description		De (1
25	125 125		and Notes	n bentonite	Type/ID		PID= 0.1 Sheen= None PID= 0.1 Sheen= None PID= 0.4 Sheen= None		Moist, be sand, no sa	prown, gravelly, silty SAND (SAND) (S	AVEL (GW-GM); fine dium to coarse trace cobbles, no	- 2
45 -	110						PID= 0.1 Sheen= None PID= 0.1	00-00-00-00-00-00-00-00-00-00-00-00-00-				
Sample Method	Leger II C	nd ontinuou	s core	6" ID		Water level	Level ATD			loration Log Key for ion of symbols	Exploration Log AMW-2	on
ΰŽ						>			Approve	d by: ALC 6/6/2019	Sheet 2 of 5	5


	. A					SI	neltor	n C Street La	andfill - 15007	4		Monitoring V	Vell Log	
	H			ect:			-		Specific Location			Coordinates (SPN NAD83 ft)	Exploration Numi	ber
	Dc.	ON	SUL	TING			Shelto	on, WA, SE c	orner of landfill			E:986269.2 N:696844	AMW-	2
		Con	tractor		Equ	ipment			Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)		
	H	Hold	ocene)	Geoprol	oe 8140	LC	Continuous	core 10" outer,	6" inner	casing	152.65'	Ecology Well Ta BKC 047	ig ivo.
		Ор	erator		Exploration	on Method	l(s)	И	ork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belo	
	Za	ach	Baile	Э У	s	onic		12	/18/2017 to 12/1	9/2017		155.54'	85' (ATD)	
epth	Elev	v.	Ex	ploration	Completion	Sample		Analytical ple Number &	Field Tests	Material		Description		Depth
feet) - -	105			and N	lotes	Type/ID		ab Test(s)	Sheen= None	Type	(SP-SM slightly to coars	prown, slightly gravelly, slightly (1) interbedded with moist, brown silty SAND (SW-SM); fine to mose gravel, trace cobbles, no odd continued)	n, gravelly, edium sand, fine	(ft)
50 -	100	0	l						PID= 0.1 Sheen= None PID= 0.1 Sheen= None					- 50 -
55	95	55			with bentonite				PID= 0.2 Sheen= None		Moist, b	prown, gravelly, slightly silty SA coarse sand, fine to coarse grav waste	ND (SW-SM); vel, no odor, no	- 55 - 55 60
	90		**************************************	grout					PID= 0.2 Sheen= None					
70 -	85	**************************************		3/8" hy chips	rdrated bentonite				PID= 0.3 Sheen= Slight		coarse waste Moist, b	prown, slightly gravelly, silty SA sand, fine to coarse gravel, no prown, gravelly, slightly silty SA coarse sand, fine gravel, trace of b landfill waste	odor, no landfill ND (SW-SM);	- 70
Sample Method		egei □ C		uous co	ore 6" ID	11	Water Level	☑ Water Le	vel ATD		See Exp explanat Logged I	loration Log Key for ion of symbols	Exploration Log AMW-2 Sheet 3 of 5	

$oldsymbol{Q} oldsymbol{\Lambda}$	nest			on C Street La		+		Monitoring V	veii Log
10	pect		-	ject Address & Site	•			Coordinates (SPN NAD83 ft)	Exploration Number
	SULTING			lton, WA, SE co				E:986269.2 N:696844	AMW-2
	ntractor		ipment		Sampling Metho			Ground Surface (GS) Elev. (NAVD88)	Ecology Well Tag N
	ocene	•	be 8140LC		core 10" outer,		casing	152.65'	BKC 047
	perator		on Method(s)		ork Start/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Below G
Zach	n Bailey	S	onic	12/	/18/2017 to 12/1	9/2017		155.54'	85' (ATD)
pth Elev. et) (feet)	Exploration Co		Sample Sa	Analytical ample Number &	Field Tests	Material Type		Description	De (
reet) (feet)	and Not	ica sand filter	Type/ID	AMW-2-85	PID= 0.2 Sheen= None PID= 0.3 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None	Type Type	Moist, b medium cobbles Moist, b gravel, 1	rown, gravelly, slightly silty SA oarse sand, fine gravel, trace of landfill waste (continued) rown, slightly silty SAND (SP-sand, trace fine to coarse gra, no odor, no landfill waste rown, sandy, silty GRAVEL (Gine to coarse sand, no odor, no landfill waste) sist to wet, brown, slightly silty nedium sand, trace fine to coarse landfill waste	ND (SW-SM); coarse gravel, no SM); fine to vel, trace M); fine to coarse o landfill waste
Method Method	end Continuous cor	e 6" ID	<u>.</u>	∑ Water Le	vel ATD		See Expl explanati	oration Log Key for on of symbols	Exploration Log
let			Water	<u> </u>			Logged b	oy: KB	AMW-2
ا ≤ ر			>-	- 1			2224 1	d by: ALC 6/6/2019	

lacksquare	spect			elton C Street L		4	Monitoring V		
	spect			Project Address & Site			Coordinates (SPN NAD83 ft)	Exploration Num	
	NSULTING			helton, WA, SE c			E:986269.2 N:696844	AMW-2	2
C	Contractor	Equ	uipment		Sampling Metho	oa	Ground Surface (GS) Elev. (NAVD88	/	
H	olocene	Geopro	be 8140L	C Continuous	s core 10" outer,	, 6" inner casing	152.65'	Ecology Well Ta BKC 047	ıy ıv
(Operator	Explorati	ion Method(s) V	Vork Start/Completio	n Dates	Top of Casing Elev. (NAVD88)	Depth to Water (Beld	w G
Za	ch Bailey	S	Sonic	12	2/18/2017 to 12/1	19/2017	155.54'	85' (ATD)	
epth Elev.	Exploration Co		Sample	Analytical Sample Number &	Field Tests	Material	Description	, ,	Dep
feet) (feet)	and Not	es	Type/ID	Lab Test(s)	PID= 0.3 Sheen= None	Type Very	moist, brown, gravelly, slightly si SM); fine to coarse sand, fine gra I, no odor, no landfill waste	Ity SAND avel, trace coarse	(f
100-					PID= 0.2 Sheen= None				- -10
50									+
105+				AMW-2-105	PID= 0.3 Sheen= None	Botto	m of exploration at 105 ft. bgs.		10
45									<u></u>
110-									<u>+</u>
_									
40									
115-									
35									
120-									-1
Lec	gend								<u> </u>
	Continuous core	e 6" ID	, O () ()	∑ Water Le	evel ATD	explan Logge	xploration Log Key for ation of symbols d by: KB ved by: ALC 6/6/2019	Exploration Log AMW-2 Sheet 5 of 5	

Mencet					Shelton C Street Landfill - 150074					Monitoring V	
		spe				Project Address & Sit	•	Coordinates (SPN NAD83 ft)	Exploration Number		
CONSULTING Contractor Holocene Operator				Shelton, WA, Along W side road						E:985687.2 N:697194	
					Equipment Sampling Method					Ground Surface (GS) Elev. (NAVD88)	AMW-3 Ecology Well Tag N
				Geoprobe 8140LC Continuous core 10" outer,				r casing	170.4' Top of Casing Elev. (NAVD88)	Ecology Well Tag N BKC 048	
				Exploration Method(s)		(s)	Work Start/Completion Dates			Depth to Water (Below G	
	Zac	Zach Bailey		Sonic		1	12/20/2017 to 12/22/2017			172.94'	100' (ATD)
epth feet)	Elev. (feet)	Exp	loration Co and Not		Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	De
	-		monume	oveground ent with re bollards		.,					-
0 -	- 170 -		Capped	in concrete			PID= 0.1 Sheen= Slight		gravel, organic Moist, r	RECESSIONAL GLACIAL OL brown, sandy, silty GRAVEL (G fine to coarse sand, trace cobb s, no odor, no landfill waste red-brown, sandy, SILT (ML); fin n sand, organic odor, no landfill	M); fine to coarse les, abundant ne gravel, fine to
5 -	- 165 -		3/8" hydi chips	rated bentonite	è		PID= 0.6 Sheen= Slight		sand, tı	ed-brown, silty SAND (SM); fin ace cobbles, trace woody debr fill waste	
- 10 - -	- - 160 -									prown, sandy, cobbley, silty GR se gravel, fine to coarse sand, i waste	
- 15 -	- - 155		Sealed v grout	with bentonite	_		PID= 0.5 Sheen= Slight			orown, gravelly, silty SAND (SM ne to coarse gravel, trace cobb waste	
- - 20 -	- - 150						PID= 0.3 Sheen= None		coarse	red-brown, gravelly, silty SAND sand, fine to coarse gravel, tra o landfill waste	(SM); fine to ce cobbles, no
Sample Method		end No Soil Continue		Recovery e 6" ID	<u> </u>	Water Level	evel ATD		explanat	oloration Log Key for ion of symbols by: KB	Exploration Log AMW-3
n ≥	:								Annrove	d by: ALC 6/6/2019	Sheet 1 of 5

				Shelton C Street Landfill - 150074									
	Α.			SI	heltor	C Street L	andfill - 150074			Monitoring V	Vell Log		
		spect			Projec	t Address & Site	Specific Location			Coordinates (SPN NAD83 ft)	Exploration Numb	oer	
(Dcc	NSULTING			Shelt	on, WA, Alon	g W side road			E:985687.2 N:697194	:985687.2 N:697194 AMW-3		
	С	ontractor	Equ	ipment			Sampling Method	I		Ground Surface (GS) Elev. (NAVD88)		_	
	Н	olocene	Geoprob	Geoprobe 8140LC			s core 10" outer, 6	6" inner	casing	170.4'	Ecology Well Ta	g No.	
	(Operator	Exploration	on Method	d(s)	Work Start/Completion Dates				Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w GS)	
	Za	ch Bailey	S	Sonic			/20/2017 to 12/22	2/2017		172.94'	100' (ATD)		
	Elev. (feet)	Exploration (and N		ompletion Sample Sam			Analytical uple Number & Field Tests Material Type Analytical Type			Description		Depth (ft)	
_	+								aint browns annaly ailty CDAV/	TI (CNA)	_		

OLD STANDARD EXPLORATION LOG TEMPLATE PAGINTWARQJECTS/SHELTON C STREET LANDFILL - 150074.GPJ June 6, 2019

Logged by: KB Approved by: ALC 6/6/2019

Exploration Log AMW-3 Sheet 2 of 5

		۸_				S	heltor	n C Street L	andfill - 15007	4		Monitoring V	Vell Log	
	Y		pe				Projec	ct Address & Site	Specific Location			Coordinates (SPN NAD83 ft)	Exploration Num	ber
(COI	SUL	IING			Shelt	on, WA, Alon	ng W side road			E:985687.2 N:697194	AMW-	3
		Coi	ntractor		Equ	iipment			Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)		
		Hol	ocene		Geopro				s core 10" outer,		r casing	170.4'	Ecology Well Ta BKC 048	
		Op	perator		Explorati	on Method	d(s)	V	Vork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Beld	ow GS)
		Zach	n Baile	y	S	onic		12	2/20/2017 to 12/2	2/2017		172.94'	100' (ATD)	
epth eet)	E (fe	lev.	Exp	oloration Co	ompletion tes	Sample Type/ID	Sam	Analytical ple Number & ab Test(s)	Field Tests	Materia Type	ı	Description		Depti (ft)
50 -	1	120						ear resign			interbed SAND (oist, brown, sandy, silty GRAVI Ided with very moist, brown, gr SM); fine gravel, fine to coarse fill waste (continued)	avelly, silty	— — — 50
- - - - 555 -	+								PID= 0.0 Sheen= None					- - - - - 55
-	-	115							PID= 0.0 Sheen= None					
60 -	1	110		Sealed v	with bentonite				PID= 0.2 Sheen= None					- 60 -
- 65 - -	1	105	I						PID= 0.0 Sheen= None		Moist, b medium waste	orown, gravelly, slightly silty SA n to coarse sand, fine gravel, n	ND (SP-SM); o odor, no landfill	- 65 - 65
- 70 - -	1	100							PID= 0.0 Sheen= None		Moist, b	orown, gravelly, silty SAND (SM ne to coarse gravel, no odor, n	1); fine to coarse o landfill waste	- - - 70
Sample	Г		lo Soil	Sample ous cor	e Recovery e 6" ID	· • ·	Water Level	☑ Water Le	evel ATD		explanat Logged I	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-3	

	A -				Sh	eltor	C Street L	andfill - 15007	4		Monitoring V	Vell Log	
		spe	CT			Projec	t Address & Site	Specific Location			Coordinates (SPN NAD83 ft)	Exploration Num	ber
_(D co	NSULI	ING			Shelte	on, WA, Alor	ng W side road			E:985687.2 N:697194	AMW-	2
_	Co	ontractor		Equ	iipment			Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)	/1	
	Но	olocene		Geopro	be 8140l	LC	Continuous	s core 10" outer,	6" inne	r casing	170.4'	Ecology Well Ta BKC 048	ag N
	C	Operator		Exploration	on Method	(s)	V	Vork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	ow G
	Zac	h Baile	y	s	onic		12	2/20/2017 to 12/2	2/2017		172.94'	100' (ATD))_
oth	Elev. (feet)	Exp	loration Co		Sample Type/ID	Sam	Analytical ple Number &	Field Tests	Materia	ı	Description		D
	95	× × × × × × × × × × × × × × × × × × ×		with bentonite	урель	L	ab Test(s)	PID= 0.0 Sheen= None	Туре	sand, fii (continu	orown, gravelly, silty SAND (SM) ne to coarse gravel, no odor, n ned) orown, slightly gravelly, slightly not); medium to coarse sand, fine gravel, no odor, no landfill was	o landfill waste	+
- 0 -	90		3/8" hvdi	rated bentonite				PID= 0.0 Sheen= None					
5 -	- - 85		chips					PID= 0.0 Sheen= Slight					
-	_									Become	es very moist		+
- 00 -	80							PID= 0.0 Sheen= None		Moist, b gravel, waste	orown, sandy, silty GRAVEL (G medium to coarse sand, no od	M); fine to coarse or, no landfill	-
	75		10/20 sil	lica sand filter				PID= 0.1 Sheen= None	00-00-00-00-00-00-00-00-00-00-00-00-00-	(GW-GI sand, n Moist, b	oist to wet, sandy, slightly silty M); fine to coarse gravel, medi o odor, no landfill waste brown, gravelly, silty SAND (SM ne to coarse gravel, no odor, n	um to coarse 1); fine to medium	
Method	Leg			Recovery re 6" ID	<u> </u>	Water Level	☑ Water Le	evel ATD	<u> : : : </u>	explanat	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-3 Sheet 4 of 9	

	Λ.	coot		SI	helton C Street L		4		Monitoring V		
17	_	spect			Project Address & Site	•			Coordinates (SPN NAD83 ft)	Exploration Num	
		ONSULTING Contractor	Fau	ipment	Shelton, WA, Alon	g vv side road Sampling Meth	nd		E:985687.2 N:697194 Ground Surface (GS) Elev. (NAVD88)	AMW-	3
		olocene	Geoprol		Ontinuous	s core 10" outer		r casina	170.4'	Ecology Well Ta BKC 048	ag No
		Operator	Exploration			Vork Start/Completic		casing	Top of Casing Elev. (NAVD88)	Depth to Water (Belo	ow GS)
		ch Bailey		onic		/20/2017 to 12/2			172.94'	100' (ATD)	
Depth (feet)	Elev. (feet)	Exploration (Completion otes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
100-	70	▼ 12/2	1/2017		Lab resign	PID= 0.3 Sheen= None PID= 0.1 Sheen= None		sand, find (continution)	orown, gravelly, silty SAND (SM) ne to coarse gravel, no odor, n ned) own, sandy, silty GRAVEL (GM) parse gravel, coarse sand, no c	o landfill waste	100
105-	65	Sched: 0.020"	ule 40 PVC slotted screen				00-100-100-100-100-100-100-100-100-100-	waste	own, silty SAND (SM); fine sar gravel, exhibits rapid dilatency	nd, trace fine to	
774,GPJ June 6, 2019	60					PID= 0.0 Sheen= None		landfill \		r; fine to coarse vaste	
OLD STANDARD EXPLORATION LOG TEMPLATE PAGINTWIPROJECTS/SHELTON C STREET LANDFILL - 150074, GPJ June 6, 2019 Sample Method	55	Slough				PID= 0.0 Sheen= None		Moist, t	orown, silty SAND (SM); fine sa waste	and, no odor, no	115
RATION LOG TEMPLATE PAGINTWIPRO	50					PID= 0.1 Sheen= None		Bottom	of exploration at 120 ft. bgs.		120
Sample Sample Method		gend No Soil Samp Continuous co	-		Mater Level	evel ATD		explanat	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-3 Sheet 5 of 5	

Man	921			elton C Street La		4		Monitoring V	
Lap h	ect			Project Address & Site	•			Coordinates (SPN NAD83 ft)	Exploration Number
	JLTING			Shelton, WA, SW c				E:986008.0 N:696820	AMW-4
Contrac	tor		uipment		Sampling Metho			Ground Surface (GS) Elev. (NAVD88,	/
Holoce		•	be 8140L		core 10" outer,		casing	151.23'	Ecology Well Tag N BKC 046
Operat	or	Explorati	on Method(S) V	ork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Below 0
Zach Ba	ailey	S	onic	12	/14/2017 to 12/1	15/2017		153.68'	82' (ATD)
epth Elev.	Exploration Co	ompletion	Sample	Analytical	Ejold Toota	Material		Doggrintien	D
0 - 150	and Not		Type/ID	Sample Number & Lab Test(s)	Field Tests	Type	Moist, d	FILL lark brown, gravelly, silty SANI coarse gravel, abundant organi stics, organic odor	O (SM); fine sand,
5 -					PID= 0.2 Sheen= None PID= 0.1 Sheen= Slight		6 inches	es black s Asphalt	-
145					PID= 0.3 Sheen= Slight PID= 0.2 Sheen= Slight			orown, gravelly, silty SAND (SM sand, fine gravel, no odor, no l	
10 - 140 - 140 - 1	3/8" hydr chips	rated bentonite			PID= 0.0 Sheen= Slight		medium abunda organic Moist, re	o very moist, black, gravelly, sil n to coarse sand, fine to coarse nt wood fragments, glass, and odor ed-black, silty SAND (SM); about nts, glass, metal, and brick frag	e gravel, brick fragments,
15 -					PID= 0.0 Sheen= Slight		3 inch i	nterbed of white powdery subs	tance
					PID= 0.5 Sheen= Slight		Moist, b	orick red, silty SAND (SM); glas	es fragments,
20 -	Sealed w grout	vith bentonite			PID= 0.3 Sheen= None		pulveriz	ed brick, no odor	+
	Soil Sample inuous cor			Water Le	vel ATD	• • • • • • • • • • • • • • • • • • •	explanat Logged I	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-4 Sheet 1 of 5

\mathbf{V}	tager			on C Street La				Monitoring W	icii Log	
	spect			ect Address & Site				Coordinates (SPN NAD83 ft)	Exploration Num	ber
	NSULTING			ton, WA, SW c	orner of landfill			E:986008.0 N:696820	AMW-	4
Co	ontractor	Equip	ment		Sampling Metho	d		Ground Surface (GS) Elev. (NAVD88)		
Ho	locene	Geoprobe	e 8140LC	Continuous	core 10" outer,	6" inne	casing	151.23'	Ecology Well Ta BKC 046	ay N
0	perator	Exploration	Method(s)	И	ork Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	
Zac	h Bailey	Soi	nic	12	/14/2017 to 12/1	5/2017		153.68'	82' (ATD)	
epth Elev.	-			Analytical					(- /	Dep
eet) (feet)	Exploration Coand No	tes	Sample Type/ID Sa	ample Ńumber & Lab Test(s)	Field Tests PID= 0.0	Material Type		Description rick red, silty SAND (SM); glass	s fragments	(fi
25 - 125 - 125 - 120 - 135 - 115 - 110 - 110 - 110	Sealed variout	with bentonite			PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.1 Sheen= None PID= 0.1 Sheen= None		Become Moist, b (SW-SM landfill v	ed brick, no odor (continued) es brown RECESSIONAL GLACIAL OU prown, slightly gravelly, slightly s d); fine to coarse sand, fine gra	TWASH silty SAND	- 2 - 3 - 3 - 4 - 4 - 4
45 -	l	_					Moist, li coarse waste	ght brown, gravelly, silty SAND sand, fine to coarse gravel, no	(SM); fine to odor, no landfill	+
Leg	end									
o 7 O	No Soil Sample Continuous cor		Water Level	∑ Water Le	vel ATD			loration Log Key for ion of symbols ov: KB	Exploration Log AMW-4	on

Aspec Consulting Contractor				Project Address & Site Specific Location Shelton, WA, SW corner of landfill			4		Monitoring V	veii Log		
7	HSP	ect			Project	Address & Site	Specific Location			Coordinates (SPN NAD83 ft)	Exploration Num	ber
	\			5	Sheltor	n, WA, SW c	orner of landfill			E:986008.0 N:696820	A B #\A/	A
	Contra	ctor	Equ	ipment			Sampling Metho	od		Ground Surface (GS) Elev. (NAVD88)	AMW-	
	Holoce	ene	Geopro	be 8140L	_c	Continuous	s core 10" outer,	6" inner	casing	151.23'	Ecology Well Ta BKC 046	ag N
	Opera		<u> </u>	on Method(Vork Start/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Beld	
	Zach B		•	onic	'		/14/2017 to 12/1			153.68'	82' (ATD)	-
\neg		,		JIIIC		nalytical	, 1712UII (U 12/1			133.00	02 (ATD)	
	Elev. (feet)	Exploration Co and Not		Sample Type/ID	Samp	nalytical ble Number & ab Test(s)	Field Tests	Material Type		Description		Dep (fi
-		Sealed w	vith bentonite				PID= 0.1 Sheen= None		coarse	ght brown, gravelly, silty SANE sand, fine to coarse gravel, no continued)		-
50 -	100						PID= 0.1 Sheen= None		Moist, b	orown, silty SAND (SM); fine to ne gravel, no odor, no landfill w	medium sand, aste	5
55 —	95						PID= 0.2 Sheen= None		sand, fi	prown, gravelly, silty SAND (SM) ne to coarse gravel, no odor, n prown, slightly silty SAND (SW) sand, trace fine gravel, no odo	SM); fine to	+ + + 5
-		3/8" hydr	rated bentonite				PID= 0.2 Sheen= None PID= 0.1	• • •	Moist, b	prown, silty SAND (SM); fine to , no landfill waste	medium sand,	
	90	C rips					Sheen= None PID= 0.1 Sheen= Slight			orown, slightly gravelly, slightly Λ); fine to coarse sand, fine gra waste		
70 -	80	\$XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					PID= 0.2 Sheen= None PID= 0.1		medium Moist, b	prown, slightly gravelly, silty SA n sand, fine gravel, no odor, no prown, slightly silty SAND (SP-3 no landfill waste	landfill waste	- 7
	Legend		. Da		Г	V 181-4 1			See Exp	loration Log Key for	Escala - 4	
Method	☑ No S ☐ Con	Soil Sample tinuous core			Water	☑ Water Le	evel ATD			ion of symbols	Exploration Log AMW-4	on
· Ě	1				> -				-ogged i	d by: ALC 6/6/2019	~!4!44-	

	Λ.	cnost		SI	nelton C Street L		4		Monitoring V		
		spect			Project Address & Site	•			Coordinates (SPN NAD83 ft)	Exploration Num	ber
		ONSULTING Contractor	Fau		Shelton, WA, SW o	orner of landfill Sampling Methor	nd .		E:986008.0 N:696820 Ground Surface (GS) Elev. (NAVD88)	AMW-	4
				ipment	d Combinuous	, ,				Ecology Well Ta BKC 046	ag No.
		olocene Operator	Geoprok Exploration			s core 10" outer Vork Start/Completion		r casing	151.23' Top of Casing Elev. (NAVD88)	BKC 046 Depth to Water (Belo	
		ch Bailey	1	onic		/14/2017 to 12/			153.68'	82' (ATD)	
Depth (feet)	Elev. (feet)	Exploration (Completion	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description	,	Depth (ft)
(leet)	(leet)	and iv	Jies	Турель	Lab Test(s)	Sheen= Slight	i iji	Moist, b	prown, slightly silty SAND (SP-	SM); fine sand,	+ (11)
- 75 -	_					PID= 1.0 Sheen= None		Moist, b	prown, gravelly, silty SAND (SM) ne gravel, appears consolidate	d, no odor, no	75
- 80 -	75	10/20.6	ilica sand filter			PID= 0.9 Sheen= None		no sas.	, no tanam wacte		
-	70	10/20 s pack				PID= 0.1 Sheen= None			oist, brown, gravelly, silty SANI sand, fine gravel, no odor, no la es wet		
4.GPJ June 6, 2019	65					PID= 0.1 Sheen= None			own, silty SAND (SM); fine to n parse gravel, no odor, no landfi		- 85 -
06 - 15007	† -	Schedu 0.020"	ıle 40 PVC slotted screen			PID= 0.1 Sheen= None					— — 90
OLD STANDARD EXPLORATION LOG TEMPLATE PAGIN IMPROJECT SISHELTON CSTREET LANDFILL: 1500/4, GPJ June 6, Sample 6 Method 1	60					PID= 0.1 Sheen= None			own, sandy, silty GRAVEL (GN parse gravel, coarse sand, no c		<u>+</u> - - -
LORATION LOG TEMPLATE	55 Lec	gend							own, sandy GRAVEL (GW); fin coarse sand, no odor, no landf		— 95 —
OLD STANDARD EXPL		No Soil Sampl Continuous co			Water Level	evel ATD		explanat	loration Log Key for ion of symbols by: KB d by: ALC 6/6/2019	Exploration Log AMW-4 Sheet 4 of 5	

	Λ.			Sł	nelton C Street	Landfill - 15007	'4		Monitoring V	Vell Log	
	_	spect			Project Address & Sit				Coordinates (SPN NAD83 ft)	Exploration Nun	nber
		NSULTING	_		Shelton, WA, SW				E:986008.0 N:696820	AMW-	.4
		ontractor		ipment		Sampling Meth			Ground Surface (GS) Elev. (NAVD88		
		olocene	Geoprob			us core 10" outer		casing	151.23'	Ecology Well T BKC 046	
		Operator	Exploratio		` '	Work Start/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Be	,
	Zad	ch Bailey	So	onic		2/14/2017 to 12/	15/2017		153.68'	82' (ATD))
Depth (feet)	Elev. (feet)	Exploration Coand No	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
Sample Sample Method Sample Method Sample Sample	50	and No	tes	Type/ID	Lab Test(s)	PID= 0.1 Sheen= None	Type - - -	gravel, (continu	own, sandy GRAVEL (GW); fir coarse sand, no odor, no land	ne to coarse fill waste	(ft)
120 -	30										120
Sample Method		gend No Soil Sample Continuous cor			पू Water L	evel ATD	•	See Exp explanat	loration Log Key for ion of symbols	Explorati Log	on
Sar					Water Level			Logged I Approve	oy: KB d by: ALC 6/6/2019	AMW-4 Sheet 5 of	

	e Fraction	5% Fines		GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND		
200 Sieve	Gravels - More than 50%¹ of Coarse Fraction Retained on No. 4 Sieve	≥ 5% F	000000000000000000000000000000000000000	GP	Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND		
Coarse-Grained Soils - More than 50% Retained on No. 200 Sieve	More than 50 Retained on	≥ 15% Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND		
า 50%1 Reta	Gravels - P	≥15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND		
- More than	e Fraction	≤5% Fines		sw	Well-graded SAND Well-graded SAND WITH GRAVEL		
ained Soils	Sands - $50\%^1$ or More of Coarse Fraction Passes No. 4 Sieve	%5≅		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL		
Coarse-Gr	50% ¹ or More Passes No.	≥15% Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL		
	Sands -	≥15%		sc	CLAYEY SAND CLAYEY SAND WITH GRAVEL		
Sieve	ys Son 50%	20%		ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL		
re Passes No. 200 Sieve	Silts and Clays	IIIIII FESS II		CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL		
	S - Gingi	רולמות ה		OL	ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL		
ils - 50%1 or	Clays % or More			МН	ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL		
Fine-Grained Soils - 50%1 or Mo	ilts and Cla	Silts and Clays Liquid Limit 50% or More		Limit 50% of		СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL
Fine-	0) 7:::0:	בולק ה		ОН	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL		
Highly	Organic Soils			PT	PEAT and other mostly organic soils		

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

MC GS FC GH AL C Str OC Comp K SG	= (= = = (= (= (= =	Grain S Fines C Hydrom Atterbe Consoli Strengt Organic Proctor Hydrau	neter Test rg Limits dation Test h Test c Content (9	ution < 0.075 mn t % Loss by Ig	•		OTECHNI	CAL LAB TESTS
		Organic	Chemical	s			CHEMI	CAL LAB TESTS
BTEX TPH-Dx TPH-G VOCs SVOCs PAHs PCBs RCRA8 MTCA5 PP-13	= = 0 = 1 = 1 = = 1	Diesel a Gasolin Volatile Semi-Vo Polycyc Polychlo <u>Metals</u> As, Ba, As, Cd,	and Oil-Ran e-Range Pe Organic Co blatile Orga lic Aromati orinated Bi Cd, Cr, Pb, Cr, Hg, Pb	nnic Compo c Hydrocark phenyls Hg, Se, Ag, (d = dissolv	um F ydro unds oon ((d =	Hydrocarbo carbons S Compound dissolved t = total)	ds d, t = total) ssolved, t=total)
PID	=	Photoio	nization De	etector				FIELD TESTS
Sheen SPT ²			en Test rd Penetrat	tion Test				
NSPT	= 1	Non-Sta	andard Pen	etration Te				
DCPT	=	Dynami	c Cone Per	netration Te	est			
Descrip Boulder Cobbles Coarse S Fine Gra Coarse S Medium Fine Sar Silt and	s Grave avel Sand Sand	= = = = = = d =	Larger tha 3 inches t 3 inches t 3/4 inche No. 4 (4.7 No. 10 (2. No. 40 (0.	te and Sieve on 12 inches o 12 inches o 3/4 inches s to No. 4 (5 mm) to No. 00 mm) to 425 mm) to ann No. 200	s es 4.75 lo. 1 No. o No	5 mm) 0 (2.00 m 40 (0.425 5. 200 (0.0	5 mm)	COMPONENT DEFINITIONS
% by We <1 1 to <5 5 to 10	=	Trace	race	% by Weig 15 to 25 30 to 45 >50	<u>ht</u> = = =	Modifier Little Some Mostly		ESTIMATED¹ PERCENTAGE
Dry Slightly Moist	Moist	t = P	erceptible	moisture, d moisture o visible wa	•	, dry to th	e touch	MOISTURE CONTENT

0 10 20	. •			
Dry		Absence of moisture, dusty	, dry to the touch	MOISTURE
Slightly Moist	=	Perceptible moisture		CONTENT

Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

RELATIVE DENSITY Non-Cohesive or Coarse-Grained Soils

Density ³	SPT ² Blows	/Foot	Penetration	with 1/2" Diameter Rod
Very Loose	= 0 to	4		≥ 2'
Loose	= 5 to	10		1' to 2'
Medium Dense	e = 11 t	o 30		3" to 1'
Dense	= 311	o 50		1" to 3"
Very Dense	= > 50)		< 1"

Cohesive or Fine-Grained Soils

CONSISTENCY

Manual Test

Concietonev3	CDT2 Playe /Foot
Consistency ³	SPT ² Blows/Foot

Penetrated >1" easily by thumb. Extrudes between thumb & fingers. = 0 to 1Very Soft Penetrated 1/4" to 1" easily by thumb. Easily molded. Soft 2 to 4

Medium Stiff = 5 to 8 Penetrated >1/4" with effort by thumb. Molded with strong pressure. = 9 to 15 Stiff Indented $\sim 1/4$ " with effort by thumb.

Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

GEOLOGIC CONTACTS

Observed and Distinct

Observed and Gradual

Inferred

Exploration Log Key

	A	spect		5			andfill - 150074	•		Environmer Coordinates (Lat,Lon	ntal Ex	ploration L	og mber
	Oco	NSULTING			•		W of SG-2			47.215, -123.13	3 (est)	TP-0	
		ontractor	1	ipment			Sampling Metho	od		Ground Surface (G	S) Elev.	117-0	•
		of Shelton		avator	(/)		Grab	D (NA T fo i s		D # / 14/ / /D	/ 00\
		Operator	Exploration		d(s)	И	Vork Start/Completion	n Dates		Top of Casing E	:lev.	Depth to Water (Be	,
		Daniel -	Tra	ckhoe			2/14/2020	_	1	NA		No Water Encou	ıntered
Depth (feet)	Elev. (feet)	Exploration (and N	Completion otes	Sample Type/ID	Analyt Sample Nu Lab Te	umber &	Field Tests	Material Type		Descrip			Depth (ft)
1 -		Excave	ition backfilled	<u>&</u>	TP-01-0:		PID= 0.0 Sheen= No Sheen		no odor	FIL rown Topsoil; with roo rown, slightly silty SAI sand coarse, subrour no odor	ots, no land	M); coarse to	
1 Mail 700 Mail 70 M	_			83	TP-01-0:	21420*	PID= 0.0 Sheen= No Sheen		Wet, bla medium	ck, slightly silty SANE sand; no landfill wast) (SW-SM) e present,); coarse to no odor	3
Sample A A Ashbod A A	_			EP 2	TP-01-0	21420*	PID= 0.0 Sheen= No Sheen		medium wood fra odor *Compo amounts	LANDFILI very moist, black, gra to coarse sand, fine t igments, glass, and bi site sample TP-01-02 of soil collected from of exploration at 4 ft. b	velly, silty o coarse g rick fragme 1420 cons of the indica	ravel; abundant ents, organic-like sists of equal	4
Sample Method	(III)	gend Grab sample			Water	No Water	Encountered		of symbo		planation	Explorati Log TP-01 Sheet 1 of	

	Δα	spect	,	S	helton C Street L				Environmental Ex		
7		NSULTING			Project Address & Site	•			Coordinates (Lat,Lon WGS84) Exploration No. 47.215, -123.134 (est)		
_		CONSULTING Shelton, WA, Between SG-2 and SG-5 Contractor Equipment Sampling Method						Ground Surface (GS) Elev.	⊣ TP-02	<u> </u>	
			'	•		, ,	-		` ′		
	-	of Shelton Operator	Exploration	avator on Method	(s) M	Grab Vork Start/Completion	n Dates		NA Top of Casing Elev.	Depth to Water (Belo	ow G
					(9)		שנוניט				
		Daniel		ckhoe	Analytical	2/14/2020	M-4		NA	No Water Encour	
∌pth eet)	Elev. (feet)	Exploration and	Completion Notes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		De (1
				1	TP-02-021420*	PID= 0.0 Sheen= No Sheen	1/. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	landfill w	FILL rown Topsoil; with roots and chi raste present, no odor rown, slightly silty SAND (SW-S	•	
1 -								medium present,	sand, coarse, subrounded grav	vel; no landfill waste	+
3 -	_	Exca with:	vation backfilled spoils								
5 -				5	TP-02-021420*	PID= 0.0 Sheen= No Sheen		· Very mo	ist, black, slightly silty SAND (S	SW-SM); coarse to	
								medium	sand, ceramic fragments prese esent, no odor	ent; no landfill	
									•		
6 -	-			m,	TP-02-021420*	PID= 0.0 Sheen= No Sheen			LANDFILL WASTE		+
								medium	very moist, black, gravelly, silty to coarse sand, fine to coarse (gments, glass, and brick fragm	SAND (SM); gravel; abundant	
7 -	-							amounts	site sample TP-02-021420 cons of soil collected from the indica of exploration at 6.5 ft. bgs.		1
Sample Method	Leg	end Grab sample			No Water Fevel	- Encountered		of symbol Logged b		Exploration Log TP-02	or

	Sport		S			andfill - 150074			Environmental Ex	ploration Lo	og
	Aspect CONSULTING		9	-		Specific Location n SG-3 and SG-4		Coordinates (Lat,Lon WGS84) 47.214, -123.133 (est)	Exploration Num		
	Contractor	Equ	uipment	illeitori,	VVA, Detwee	Sampling Metho			Ground Surface (GS) Elev.	− TP-03	3
Ci	ity of Shelton	Excavator Grab NA									
	Operator	Exploration	on Method	d(s)	V	Vork Start/Completion	n Dates		Top of Casing Elev.	Depth to Water (Beld	ow GS)
	Daniel	Tra	ckhoe			2/14/2020			NA	No Water Encour	ntered
Depth Ele (feet) (fe	ev. Exploration C	ompletion Sample Analytical Sample Number & Field Tests Material Type/ID Lab Test(s)					Description		Dept (ft)		
1 - 2 - 4 -	Excava	tion backfilled		TP-C	03-021420* 03-021420* P-03-1.0	PID= 0.0 Sheen= No Sheen PID= 0.0 Sheen= No Sheen PID= 0.0 Sheen= No Sheen		Moist, bi medium ceramic odor Moist to medium wood fra odor	FILL rown Topsoil; with roots, no land rown, slightly silty SAND (SW-S sand, coarse, subrounded grav fragments present, no landfill v LANDFILL WASTE very moist, black, gravelly, silty to coarse sand, fine to coarse of gments, glass, and brick fragments, glass, and brick fragments of soil collected from the indicator exploration at 4.3 ft. bgs.	SM); coarse to rel; brick and vaste present, no SAND (SM); gravel; abundant ents, organic-like	-1 -4
	egend Grab sample		•	Water Level	No Wate	r Encountered		of symbo Logged b		Exploration Log TP-03 Sheet 1 of 1	

	Aspe	ct 📙		S		Landfill - 150074			Environmental Ex Coordinates (Lat,Lon WGS84)	ploration Lo	og ober
	CONSULT					NE of AMW-4			47.214, -123.134 (est)	TP-04	
	Contractor		Equip	ment		Sampling Metho	od		Ground Surface (GS) Elev.	17-04	ŀ
	City of Shelto		Exca Exploration		//o)	Grab	n Dotoo		NA	Donth to Water (Dale	ou CCI
	Operator Daniel	-			(S)	Work Start/Completion	n Dates		Top of Casing Elev. NA	Depth to Water (Belo No Water Encour	
			Trac		Analytical	2/14/2020			INA INA	No water Encour	
Depth (feet)	Elev. Explo	ration Comple and Notes	etion	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
Sample Sample 1 20074.670 May 21, 2020 C STREET LANDFILL - 130074.670 May 21, 2020 C C C C C C C C C C C C C C C C C		Excavation ba with spoils	ackfilled		TP-04-021420*	PID= 0.0 Sheen= No Sheen	1/2 · 3/4/2 ·	Moist, by medium of ashpa present, Moist to medium wood fra odor *Compo amounts	FILL rown Topsoil; with roots, no land rown, slightly silty SAND (SW-S sand, fine to coarse, subrounde alt, woody debris, some cobbles, no odor LANDFILL WASTE very moist, black, gravelly, silty to coarse sand, fine to coarse g agments, glass, and brick fragm site sample TP-04-021420 cons s of soil collected from the indicator of exploration at 5 ft. bgs.	SAND (SM); gravel; abundant ents, organic-like	- 1 - 2 - 3
Sample Method	Legend The Grab san	nple	-		Water Level w od	ter Encountered		of symbo		Exploration Log TP-04	

APPENDIX C

Laboratory Reports

August 15, 2017

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **10830**. This corresponds to your project number **707388** and purchase order number **F-27**. Three soil samples were received at Frontier Analytical Laboratory on 8/2/2017. These samples were extracted and analyzed by EPA Method 8290 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples have been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **10830**.

Please note that due to high concentrations of hexa dioxin, hepta dioxins, octa dioxin and hexa furans, the extract from sample 10830-003-SA (Friedman and Bruya, Inc. Sample ID: ISM-DU1-072617) was diluted and reanalyzed. The results taken from the analysis of the diluted extracts have been identified with a "*" qualifier on the corresponding sample data sheet.

The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The enclosed results and electronic data deliverable (EDD) are specifically for the samples referenced in this report only. These results meet all NELAP requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is 4041, our State of California ELAP certificate number is 2934 and our State of Washington certificate number is C844. This report along with the associated electronic data deliverable (EDD) has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **10830**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Thomas C. Crabtree

Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 10830

Project Due:

08/24/2017 Storage: R2

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
10830-001-SA	2	707388	ISM-DU3-072517	EPA 8290 D/F	Soil	07/25/2017	02:07 pm	08/24/2017
10830-002-SA	2	707388	ISM-DU2-072617	EPA 8290 D/F	Soil	07/26/2017	12:32 pm	08/25/2017
10830-003-SA	2	707388	ISM-DU1-072617	EPA 8290 D/F	Soil	07/26/2017	03:00 pm	08/25/2017

Received on: 08/02/2017

FAL ID: 10830-001-MB Client ID: Method Blank Matrix: Soil Batch No: X4198

Date Extracted: 08-07-2017 Date Received: NA Amount: 5.00 g

ICal: pcddfal3-5-3-17-7pt GC Column: DB5MS Units: pg/g

Acquired: 08-10-2017 2005 WHO TEQ: 0.0 Basis: Dry Weight

Compound	Conc	DL	Qual	2005 WHO Tox	MDI	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.137 0.284 0.425		- - -	0.0315 0.0468 0.0503	3			
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND	0.436 0.403		- -	0.0490 0.0488		ND ND	0.137 0.284	
1,2,3,4,6,7,8-HpCDD OCDD	ND ND	0.652 1.22		-	0.0541 0.0888		ND ND	0.436 0.652	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND ND ND	0.188 0.290 0.328 0.279 0.283 0.295		- - - - -	0.0243 0.0288 0.0298 0.0258 0.0253 0.0278	5 3 5 3			
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	ND ND	0.365 0.408		-	0.0367 0.0327	7 Total TCDF	ND ND	0.188 0.328	
1,2,3,4,7,8,9-HpCDF OCDF	ND ND	0.528 0.626		-	0.0396 0.0843	Total HxCDF	ND ND	0.365 0.528	
Internal Standards	% Rec	QC Limits	Qual						. 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	90.7 84.9	40.0 - 135 40.0 - 135			Α	Isotopic Labeled Sta signal to noise ratio	is >10:1	•	e but
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	93.5 96.3	40.0 - 135 40.0 - 135			B	Analyte is present in Chemical Interference		ank	
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	92.2 85.5	40.0 - 135 40.0 - 135				Presence of Diphen	yl Ethers		
13C-2,3,7,8-TCDF	92.0	40.0 - 135				Analyte concentration Analyte concentration			٠ ١
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	81.0 78.1	40.0 - 135 40.0 - 135				Analyte confirmation	on second	ary column	
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	94.2 96.5	40.0 - 135 40.0 - 135			J	Analyte concentration Maximum possible of			nge
13C-2,3,4,6,7,8-HxCDF	94.1	40.0 - 135				Analyte Not Detecte			el
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	96.6 93.0	40.0 - 135 40.0 - 135			NP	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF	97.4 86.8	40.0 - 135 40.0 - 135			1	Pre-filtered through			filter
.55 5651	33.3				S	Sample acceptance Matrix interferences	criteria not	met	
Cleanup Surrogate					*	Result taken from di	lution or rei	njection	
37CI-2,3,7,8-TCDD	94.7	50.0 - 150							

Analyst Date: 8/14/2017

Reviewed By: Date:_ 8/14/2017

FAL ID: 10830-001-OPR Client ID: OPR Matrix: Soil Batch No: X4198 Date Extracted: 08-07-2017 Date Received: NA Amount: 5.00 g ICal: pcddfal3-5-3-17-7pt GC Column: DB5MS Units: ng/ml

Acquired: 08-10-2017 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.7 50.5 50.8 51.3 50.0 52.6 108	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 70.0 - 130	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	10.8 52.4 53.4 51.7 54.2 51.8 52.6 52.7 53.0 109	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	95.9 88.3 96.1 99.7 92.8 87.2	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	96.2 84.1 81.4 99.7 98.9 98.5 100 94.4 99.8 89.9	40.0 - 135 40.0 - 135	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	103	50.0 - 150	

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- DNQ Analyte concentration is below calibration range
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst: 8/14/2017

Reviewed By: 8/14/2017

000004 of 000010

FAL ID: 10830-001-SA Client ID: ISM-DU3-072517 Matrix: Soil Batch No: X4198

Date Extracted: 08-07-2017 Date Received: 08-02-2017 Amount: 5.03 g % Solids: 95.00

ICal: pcddfal3-5-3-17-7pt GC Column: DB5MS Units: pg/g

Acquired: 08-10-2017 2005 WHO TEQ: 2040 Basis: Dry Weight

Compound	Conc	DL	Qual	2005 WHO Tox	MD	L Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	144 724 1480 2920 2260 22000 30200	- - - - -		144 724 148 292 226 220 9.06	0.031: 0.046: 0.050: 0.049: 0.048: 0.054: 0.088:	8 3 0 Total TCDD 8 Total PeCDD 1 Total HxCDD	104000 121000 142000 36300	- - -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	399 345 371 257 330 389 114 721 141	-	F D,M D,M	39.9 10.4 111 25.7 33.0 38.9 11.4 7.21 1.41 0.453	0.024; 0.028; 0.029; 0.025; 0.027; 0.036; 0.032; 0.039; 0.084;	5 8 5 3 9 7 Total TCDF 1 Total PeCDF 5 Total HxCDF	9020 5970 3310 1970	- - - -	D,M D,M D,M
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0,2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	98.3 113 114 103 101 86.7 104 103	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		A B C D D N Q E F J M N D N P S X *	Isotopic Labeled Sta signal to noise ratio Analyte is present in Chemical Interference Presence of Diphen Analyte concentratio Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detecte Not Provided Pre-filtered through Sample acceptance Matrix interferences Result taken from di	is >10:1 Method Blace yl Ethers on is below on is above on on second on is below on concentration d at Detection a Whatman criteria not	calibration raicalibration railary column calibration raion ion Limit Level 0.7um GF/F met	nge inge nge el
37Cl-2,3,7,8-TCDD	94.7	50.0 - 150							

Analyst Date: 8/14/2017

Reviewed By: Date:_ 8/14/2017

DL Qual

D,M

D,M

D,M

FAL ID: 10830-002-SA Client ID: ISM-DU2-072617 Matrix: Soil Batch No: X4198

Date Extracted: 08-07-2017 Date Received: 08-02-2017 Amount: 5.04 g % Solids: 92.45

ICal: pcddfal3-5-3-17-7pt GC Column: DB5MS Units: pg/g

MDL

0.0315

0.0468 0.0503

0.0490

0.0488

0.0541

0.0888

0.0243

0.0285 0.0298

0.0255 0.0253 0.0279

0.0367

0.0321

0.0396

0.0843

Compound

Total TCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF Total HxCDF

Total HpCDF

Matrix interferences

Acquired: 08-10-2017 2005 WHO TEQ: 3100 Basis: Dry Weight

Conc

152000

181000

203000

51200

15800

9710

4690

1590

Compound	Conc	DL	Qual	2005 WHO Tox
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	234 1100 2180 4210 3370 31200 21900	- - - - -		234 1100 218 421 337 312 6.57
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	702 580 730 347 495 576 173 780 176 404	-	F D,M D,M	70.2 17.4 219 34.7 49.5 57.6 17.3 7.80 1.76 0.121
Internal Standards	% Rec	QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	90.3 87.0 92.9 95.8 109	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135		
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	95.5 97.1 85.7 102 98.2 89.4 94.8 91.0 100 93.4	40.0 - 135 40.0 - 135		
Cleanup Surrogate				
37CI-2,3,7,8-TCDD	91.8	50.0 - 150		

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
DNQ	Analyte concentration is below calibration range
E	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
s	Sample acceptance criteria not met

Result taken from dilution or reinjection

Analyst 8/14/2017 Date:

Reviewed By: Date:_ 8/14/2017

FAL ID: 10830-003-SA Client ID: ISM-DU1-072617 Matrix: Soil Batch No: X4198

Date Extracted: 08-07-2017 Date Received: 08-02-2017 Amount: 5.02 g % Solids: 86.87

ICal: pcddfal3-5-3-17-7pt GC Column: DB5MS Units: pg/g

Acquired: 08-10-2017 2005 WHO TEQ: 14700 Basis: Dry Weight

				0005					
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	828 5170 9860 20800 16600 145000 104000	- - - - -	*	828 5170 986 2080 1660 1450 31.2	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD	459000 669000 902000 238000	- - - -	*
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	2980 2440 4390 1670 2130 3040 934 4240 1030 1460	- - - - - - - -	* D,M,* *	298 73.2 1320 167 213 304 93.4 42.4 10.3 0.438	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF	66500 45200 22300 8300	-	D,M D,M D,M,*
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	95.2 92.4 97.3 90.5 114 109 99.8 102 90.3 110 116 91.4 94.1 94.1 98.1	40.0 - 135 40.0 - 135	* * * * * *		B C DNQ E F J M ND NP	Isotopic Labeled Sta signal to noise ratio in Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance	s > 10:1 Method Blace If Ethers In is below on seconda In is below on seconda In is below on a concentration of at Detection	calibration racalibration racalibration racary column calibration rancon Limit Lev	ange ange ange vel
Cleanup Surrogate						Matrix interferences Result taken from dil	ution or reir	njection	
37CI-2,3,7,8-TCDD	99.8	50.0 - 150							

Analyst Date: 8/14/2017

Reviewed By: Date:_ 8/14/2017

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

10830

Page # ___

Send Report To Michael Erdahl			Funty							TURNAROUND TIME								
CompanyFriedman and Bruya, Inc						PC	PO# Standard (2 Weeks) 21-7											
Address3012 16th Ave W			707388			ŧ-27				Rush charges authorized by:								
City, State, ZIP_Seattle, WA 98119			REMAR	KS	***************************************			1		SAMPLE DISPOSAL								
Phone #(206) 285-8282 Fax #(206) 283-5044				Please Email Results						☐ Dispose after 30 days☐ Return samples☐ Will call with instructions				ions				
					7				ANAL	YSE	S REQ	UES	ESTED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH	Nitrate	Sulfate	Alkalinity	TOC-9060M	Thomas	chlorium tud. He-bicidus	O'NIN FAM	1	Votes	
ISM-DU3-672517-	类	7/25/17	1407	S8:]	3		*************			***************************************			Martin and American State of S		×	VOA	n each	
ISM-DUZ-0726/7	刄	7/26/17	1232		3							~	***************************************		*	VON	N - 4 8 -	
ISM-Du 1-072617	•	and the second	-00-24	ţ.	3		•								×			
michael to &	alle	<u></u>	ERA	net	ho	Q	87	2910	D	Æ		IS	77	77.	42	ća.		
Friedman & Bruya, Inc.		SIGNA'	TURE			PRIN	T NA	ME				COM	PANY	7		DATE	TIME	1
3012 16th Avenue West	Relinquish	the Landenson	Samuel Sa	Mi	chael E						Friedn					1/12	Nosta	
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received b		86	1	ath	5	ZU	PP			Four	ter	An	ityl		8/4/17		
Fax (206) 283-5044	Received b	y:								-		······································			-		000008of1	00001

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 10830

Client:	Friedman & Bruya, Inc.
Client Project ID:	707388
Date Received:	08/02/2017
Time Received:	09:30 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	3
Duplicates:	6
Storage Location:	R2

Method of Delivery:	Fed-Ex
Tracking Number:	809992619396
Shipping Container Received Intact	Yes
Custody seals(s) present?	Yes
Custody seals(s) intact?	Yes
Sample Arrival Temperature (C)	0
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	No
pH Range of Aqueous Sample	N/A

Anomalies or additional comments:

Please note that the samples were received in clear glass jars. NELAP requires samples be received in amber glass bottles or jars. Although this anomaly will not affect your results, we are required by NELAP to make a note of it. We will proceed with analysis unless directed otherwise by you.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 8, 2017

Ali Cochrance, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Cochrane:

Included are the additional results from the testing of material submitted on July 27, 2017 from the Shelton C Street Landfill, PO 150074, F&BI 707388 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Carla Brock ASP0908R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 27, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C Street Landfill, PO 150074, F&BI 707388 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
707388 -01	ISM-DU3-072517
707388 -02	ISM-DU2-072617
707388 -03	ISM-DU1-072617
707388 -04	DU3-P7-072617
707388 -05	DU3-P3-072617
707388 -06	DU2-L2-072617
707388 -07	DU2-L7-072617
707388 -08	DU2-G7-072617
707388 -09	DU2-G2-072617
707388 -10	DU1-C2-072617
707388 -11	Trip Blank

Several compounds in the 6020A matrix spike exceeded the acceptance criteria. The laboratory control sample met the acceptance criteria, therefore the results were likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: ISM-DU3-072517 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

 Date Extracted:
 08/29/17
 Lab ID:
 707388-01

 Date Analyzed:
 08/30/17
 Data File:
 707388-01 rr.045

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration Analyte: mg/kg (ppm) Arsenic 2.40 Barium 162 Cadmium 1.70 Chromium 25.5 Copper 80.6 Lead 172 ve Mercury 0.812 Nickel 24.3 Selenium 0.540 Silver 3.62 Zinc 355

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: ISM-DU3-072517 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/29/17 Lab ID: 707388-01 x2
Date Analyzed: 08/30/17 Data File: 707388-01 x2.043

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 182

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: ISM-DU2-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

 Date Extracted:
 08/29/17
 Lab ID:
 707388-02

 Date Analyzed:
 08/30/17
 Data File:
 707388-02 rr.046

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration Analyte: mg/kg (ppm) Arsenic 1.26 Barium 66.0 Cadmium 0.660 Chromium 14.5 Copper 36.7 Lead 69.6 Mercury 0.938 Nickel 11.5 Selenium < 0.5 Silver 1.65 Zinc 81.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: ISM-DU1-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

 Date Extracted:
 08/29/17
 Lab ID:
 707388-03

 Date Analyzed:
 08/30/17
 Data File:
 707388-03 rr.047

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration Analyte: mg/kg (ppm) Arsenic 4.40 Barium 129 Cadmium 1.54 Chromium 21.4 Copper 69.5 Lead 164 ve Mercury 1.15 Nickel 13.2 Selenium 0.790 Silver 6.55 Zinc 134

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: ISM-DU1-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/29/17 Lab ID: 707388-03 x2 08/30/17 Data File: 707388-03 x2.044 Date Analyzed:

Matrix: Instrument: ICPMS2 Soil

mg/kg (ppm) Dry Weight Units: Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 182

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Shelton C Street Landfill, PO 150074

 Date Extracted:
 08/29/17
 Lab ID:
 I7-461 mb 1/0.2

 Date Analyzed:
 08/29/17
 Data File:
 I7-461 mb 1/0.2.061

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration Analyte: mg/kg (ppm) Arsenic < 0.2 Barium < 0.2 Cadmium < 0.2 Chromium < 0.5 Copper < 0.2 Lead < 0.2 Mercury < 0.2 Nickel < 0.2 Selenium < 0.5 Silver < 0.2 Zinc <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 708425-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	0.340	83	87	75-125	5
Barium	mg/kg (ppm)	50	6.83	86	92	75-125	7
Cadmium	mg/kg (ppm)	10	< 0.2	87	93	75-125	7
Chromium	mg/kg (ppm)	50	11.4	69 vo	77	75-125	11
Copper	mg/kg (ppm)	50	6.15	74 vo	79	75-125	7
Lead	mg/kg (ppm)	50	0.959	80	87	75-125	8
Mercury	mg/kg (ppm	5	< 0.2	79	91	75-125	14
Nickel	mg/kg (ppm)	25	19.6	69 vo	79	75-125	14
Selenium	mg/kg (ppm)	5	< 0.5	88	92	75-125	4
Silver	mg/kg (ppm)	10	< 0.2	78	82	75-125	5
Zinc	mg/kg (ppm)	50	13.1	71 vo	78	75-125	9

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Arsenic	mg/kg (ppm)	10	96	80-120			
Barium	mg/kg (ppm)	50	106	80-120			
Cadmium	mg/kg (ppm)	10	102	80-120			
Chromium	mg/kg (ppm)	50	97	80-120			
Copper	mg/kg (ppm)	50	102	80-120			
Lead	mg/kg (ppm)	50	99	80-120			
Mercury	mg/kg (ppm)	5	97	80-120			
Nickel	mg/kg (ppm)	25	104	80-120			
Selenium	mg/kg (ppm)	5	101	80-120			
Silver	mg/kg (ppm)	10	95	80-120			
Zinc	mg/kg (ppm)	50	99	80-120			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 707388

Work Order Number: 1708018

August 15, 2017

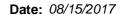
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 8/1/2017 for the analyses presented in the following report.

Herbicides by EPA Method 8151A Organochlorine Pesticides by EPA Method 8081

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

And c. Rady

Sincerely,

Mike Ridgeway Laboratory Director

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 707388 **Work Order:** 1708018

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1708018-001	ISM-DU3-072517	07/25/2017 2:07 PM	08/01/2017 12:19 PM
1708018-002	ISM-DU2-072617	07/26/2017 12:32 PM	08/01/2017 12:19 PM
1708018-003	ISM-DU1-072617	07/26/2017 3:00 PM	08/01/2017 12:19 PM

Case Narrative

WO#: **1708018**Date: **8/15/2017**

CLIENT: Friedman & Bruya

Project: 707388

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Client provided percent moisture for dry-weight correction.

Qualifiers & Acronyms

WO#: **1708018**

Date Reported: 8/15/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/25/2017 2:07:00 PM

Project: 707388

Lab ID: 1708018-001 **Matrix:** Soil

Client Sample ID: ISM-DU3-072517

RL Qual Units DF **Date Analyzed Analyses** Result Batch ID: 17824 Analyst: SG Organochlorine Pesticides by EPA Method 8081 ND 0.104 mg/Kg-dry 8/7/2017 7:04:35 PM Toxaphene 1 Alpha BHC ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Beta BHC ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Gamma BHC (Lindane) ND 0.0104 1 8/7/2017 7:04:35 PM mg/Kg-dry Delta BHC ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Heptachlor ND 0.0104 mg/Kg-dry 8/7/2017 7:04:35 PM 1 Aldrin ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM ND Heptachlor epoxide 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM gamma-Chlordane ND 0.0104 1 8/7/2017 7:04:35 PM mg/Kg-dry Endosulfan I ND 8/7/2017 7:04:35 PM 0.0104 1 mg/Kg-dry alpha-Chlordane ND 0.0104 8/7/2017 7:04:35 PM mg/Kg-dry 1 Dieldrin ND 0.0104 8/7/2017 7:04:35 PM mg/Kg-dry 1 4.4'-DDE ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Endrin ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Endosulfan II ND 8/7/2017 7:04:35 PM 0.0104 1 mg/Kg-dry 4,4'-DDD ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Endrin aldehyde ND 8/7/2017 7:04:35 PM 0.0104 mg/Kg-dry 1 Endosulfan sulfate ND 0.0104 8/7/2017 7:04:35 PM mg/Kg-dry 1 0.0166 4.4'-DDT 0.0104 1 8/7/2017 7:04:35 PM mg/Kg-dry Endrin ketone ND 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM ND Methoxychlor 0.0104 mg/Kg-dry 1 8/7/2017 7:04:35 PM Surr: Decachlorobiphenyl 127 17.8 - 157 %Rec 1 8/7/2017 7:04:35 PM Surr: Tetrachloro-m-xylene 11 - 150 8/7/2017 7:04:35 PM 125 %Rec 1 Herbicides by EPA Method 8151A Batch ID: 17825 Analyst: BT Dicamba ND 36.4 8/10/2017 2:54:45 AM μg/Kg-dry 1 2,4-D ND 31.2 μg/Kg-dry 1 8/10/2017 2:54:45 AM 2,4-DP ND 26.0 8/10/2017 2:54:45 AM μg/Kg-dry 1 2,4,5-TP (Silvex) ND 20.8 1 8/10/2017 2:54:45 AM μg/Kg-dry 52.0 2,4,5-T ND μg/Kg-dry 1 8/10/2017 2:54:45 AM Dinoseb ND 31.2 8/10/2017 2:54:45 AM μg/Kg-dry 1 ND 208 Dalapon 1 8/10/2017 2:54:45 AM μg/Kg-dry 2,4-DB ND 26.0 μg/Kg-dry 1 8/10/2017 2:54:45 AM **MCPP** ND 4,580 μg/Kg-dry 1 8/10/2017 2:54:45 AM **MCPA** ND 2,910 μg/Kg-dry 8/10/2017 2:54:45 AM 1 Picloram ND 52.0 μg/Kg-dry 1 8/10/2017 2:54:45 AM ND Bentazon 36.4 8/10/2017 2:54:45 AM μg/Kg-dry 1 Chloramben ND 20.8 μg/Kg-dry 8/10/2017 2:54:45 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/25/2017 2:07:00 PM

Project: 707388

Lab ID: 1708018-001 **Matrix:** Soil

Client Sample ID: ISM-DU3-072517

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 17	7825 Analyst: BT
Acifluorfen	ND	83.3		μg/Kg-dry	1	8/10/2017 2:54:45 AM
3,5-Dichlorobenzoic acid	ND	41.6		μg/Kg-dry	1	8/10/2017 2:54:45 AM
4-Nitrophenol	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Dacthal (DCPA)	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Surr: 2,4-Dichlorophenylacetic acid	44.6	20.1 - 168		%Rec	1	8/10/2017 2:54:45 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 12:32:00 PM

Project: 707388

Lab ID: 1708018-002 **Matrix:** Soil

Client Sample ID: ISM-DU2-072617

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>		Batch	1D: 1	7824 Analyst: SG
Toxaphene	ND	0.107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Alpha BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Beta BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Gamma BHC (Lindane)	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Delta BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Heptachlor	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Aldrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Heptachlor epoxide	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
gamma-Chlordane	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan I	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
alpha-Chlordane	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Dieldrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDE	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan II	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDD	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin aldehyde	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan sulfate	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDT	0.0130	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin ketone	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Methoxychlor	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Surr: Decachlorobiphenyl	143	17.8 - 157		%Rec	1	8/7/2017 7:14:34 PM
Surr: Tetrachloro-m-xylene	130	11 - 150		%Rec	1	8/7/2017 7:14:34 PM
Herbicides by EPA Method 815	51A			Batch	1D: 1	7825 Analyst: BT
Dicamba	ND	37.2		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-D	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-DP	ND	26.6		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4,5-TP (Silvex)	ND	21.3		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4,5-T	ND	53.1		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dinoseb	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dalapon	ND	213		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-DB	ND	26.6		μg/Kg-dry	1	8/10/2017 3:15:56 AM
MCPP	ND	4,680		μg/Kg-dry	1	8/10/2017 3:15:56 AM
MCPA	ND	2,980		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Picloram	ND	53.1		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Bentazon	ND	37.2		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Chloramben	ND	21.3		μg/Kg-dry	1	8/10/2017 3:15:56 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 12:32:00 PM

Project: 707388

Lab ID: 1708018-002 **Matrix:** Soil

Client Sample ID: ISM-DU2-072617

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 17	7825 Analyst: BT
Acifluorfen	ND	85.0		μg/Kg-dry	1	8/10/2017 3:15:56 AM
3,5-Dichlorobenzoic acid	ND	42.5		μg/Kg-dry	1	8/10/2017 3:15:56 AM
4-Nitrophenol	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dacthal (DCPA)	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Surr: 2,4-Dichlorophenylacetic acid	51.3	20.1 - 168		%Rec	1	8/10/2017 3:15:56 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 3:00:00 PM

Project: 707388

Lab ID: 1708018-003 **Matrix:** Soil

Client Sample ID: ISM-DU1-072617

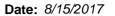
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by EPA	Method 80) <u>81</u>		Batch	ID:	17824 Analyst: SG
Toxaphene	ND	0.111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Alpha BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Beta BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Gamma BHC (Lindane)	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Delta BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Heptachlor	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Aldrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Heptachlor epoxide	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
gamma-Chlordane	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan I	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
alpha-Chlordane	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Dieldrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDE	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan II	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDD	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin aldehyde	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan sulfate	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDT	0.0163	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin ketone	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Methoxychlor	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Surr: Decachlorobiphenyl	8.48	17.8 - 157	S	%Rec	1	8/7/2017 7:24:35 PM
Surr: Tetrachloro-m-xylene	13.8	11 - 150		%Rec	1	8/7/2017 7:24:35 PM

NOTES:

S - Outlying surrogate recovery(ies) observed. All other laboratory and field samples recovered within range.

Herbicides by EPA Method 8151A			Batch	ID: 1	7825 Analyst: BT
Dicamba	ND	39.2	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-D	ND	33.6	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-DP	ND	28.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4,5-TP (Silvex)	ND	22.4	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4,5-T	ND	56.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dinoseb	ND	33.6	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dalapon	ND	224	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-DB	ND	28.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
MCPP	ND	4,930	μg/Kg-dry	1	8/10/2017 3:37:12 AM
MCPA	ND	3,140	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Picloram	ND	56.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM

Work Order: **1708018**Date Reported: **8/15/2017**


Client: Friedman & Bruya Collection Date: 7/26/2017 3:00:00 PM

Project: 707388

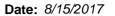
Lab ID: 1708018-003 **Matrix:** Soil

Client Sample ID: ISM-DU1-072617

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	ı ID:	17825 Analyst: BT
Bentazon	ND	39.2		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Chloramben	ND	22.4		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Acifluorfen	ND	89.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
3,5-Dichlorobenzoic acid	ND	44.8		μg/Kg-dry	1	8/10/2017 3:37:12 AM
4-Nitrophenol	ND	33.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dacthal (DCPA)	ND	33.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Surr: 2,4-Dichlorophenylacetic acid	56.8	20.1 - 168		%Rec	1	8/10/2017 3:37:12 AM

CLIENT: Friedman & Bruya

Project: 707388


QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID MB-17825	SampType: MBL	K		Units: µg/Kg		Prep Date:	8/4/201	7	RunNo: 379	948	
Client ID: MBLKS	Batch ID: 1782	5				Analysis Date:	8/9/201	7	SeqNo: 729	9321	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	35.0									
2,4-D	ND	30.0									
2,4-DP	ND	25.0									
2,4,5-TP (Silvex)	ND	20.0									
2,4,5-T	ND	50.0									
Dinoseb	ND	30.0									
Dalapon	ND	200									
2,4-DB	ND	25.0									
MCPP	ND	4,400									
MCPA	ND	2,800									
Picloram	ND	50.0									
Bentazon	ND	35.0									
Chloramben	ND	20.0									
Acifluorfen	ND	80.0									
3,5-Dichlorobenzoic acid	ND	40.0									
4-Nitrophenol	ND	30.0									
Dacthal (DCPA)	ND	30.0									
Surr: 2,4-Dichlorophenylacetic acid	716		1,000		71.6	20.1	168				

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg		Prep Dat	te: 8/4/201	7	RunNo: 379	948	
Client ID: LCSS	Batch ID: 17825					Analysis Da	te: 8/9/201	7	SeqNo: 72 9	322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	160	35.0	200.0	0	80.2	24.7	141				
2,4-D	179	30.0	200.0	0	89.6	22.4	130				
2,4-DP	166	25.0	200.0	0	83.2	26.4	130				
2,4,5-TP (Silvex)	180	20.0	200.0	0	90.0	21.2	138				
2,4,5-T	165	50.0	200.0	0	82.6	22.8	144				
Dinoseb	140	30.0	200.0	0	69.8	5	165				
Dalapon	930	200	1,000	0	93.0	18.4	162				

Original Page 11 of 21

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg		Prep Dat	te: 8/4/201	7	RunNo: 37 9	948	
Client ID: LCSS	Batch ID: 17825					Analysis Dat	te: 8/9/201	7	SeqNo: 729	322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,4-DB	190	25.0	200.0	0	94.8	5	164				
MCPP	826	4,400	1,000	0	82.6	22.2	157				
MCPA	883	2,800	1,000	0	88.3	47.4	128				
Picloram	171	50.0	200.0	0	85.7	5	175				
Bentazon	122	35.0	200.0	0	61.0	7.59	162				
Chloramben	64.5	20.0	200.0	0	32.3	5	147				
Acifluorfen	196	80.0	200.0	0	97.9	5	163				
3,5-Dichlorobenzoic acid	160	40.0	200.0	0	79.9	18.7	139				
4-Nitrophenol	146	30.0	200.0	0	73.0	5	163				
Dacthal (DCPA)	120	30.0	200.0	0	60.2	5	164				
Surr: 2,4-Dichlorophenylacetic acid	l 786		1,000		78.6	20.1	168				

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg/I	Kg-dry	Prep Date: 8/4	1/2017	RunNo: 37948	
Client ID: BATCH	Batch ID: 17825					Analysis Date: 8/	0/2017	SeqNo: 729336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighL	imit RPD Ref Val	%RPD RPDLimit	Qual
Dicamba	ND	32.6					0	30	
2,4-D	ND	27.9					0	30	
2,4-DP	ND	23.3					0	30	
2,4,5-TP (Silvex)	ND	18.6					0	30	
2,4,5-T	ND	46.5					0	30	
Dinoseb	ND	27.9					0	30	
Dalapon	ND	186					0	30	
2,4-DB	ND	23.3					0	30	
MCPP	ND	4,090					0	30	
MCPA	ND	2,610					0	30	
Picloram	ND	46.5					0	30	
Bentazon	ND	32.6					0	30	
Chloramben	ND	18.6					0	30	
Acifluorfen	ND	74.5					0	30	

Original Page 12 of 21

Date: 8/15/2017

Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg	/Kg-dry	Prep Date: 8/4/2017		RunNo: 37948			
Client ID: BATCH	Batch ID: 1782	5	Analysis Date: 8/10/2017			SeqNo: 729336					
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
3,5-Dichlorobenzoic acid	ND	37.2						0		30	
4-Nitrophenol	ND	27.9						0		30	
Dacthal (DCPA)	ND	27.9						0		30	
Surr: 2,4-Dichlorophenylacetic acid	451		930.7		48.4	20.1	168		0		

Sample ID 1707301-001AMS	SampType: MS			Units: µg/k	(g-dry	Prep Dat	te: 8/4/201	7	RunNo: 37 9	948	
Client ID: BATCH	Batch ID: 17825					Analysis Da	te: 8/10/20	17	SeqNo: 729	337	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	154	35.7	204.3	0	75.6	31.9	118				
2,4-D	173	30.6	204.3	0	84.8	12.4	134				
2,4-DP	164	25.5	204.3	0	80.2	27.2	129				
2,4,5-TP (Silvex)	178	20.4	204.3	0	87.3	28.6	134				
2,4,5-T	153	51.1	204.3	0	74.7	13.1	147				
Dinoseb	208	30.6	204.3	0	102	10	179				
Dalapon	865	204	1,021	0	84.7	24.9	139				
2,4-DB	191	25.5	204.3	0	93.6	50.2	152				
MCPP	795	4,490	1,021	0	77.8	37.8	140				
MCPA	867	2,860	1,021	0	84.9	13.7	147				
Picloram	309	51.1	204.3	0	151	5	153				
Bentazon	153	35.7	204.3	0	75.1	15	140				
Chloramben	126	20.4	204.3	0	61.6	5	162				
Acifluorfen	251	81.7	204.3	0	123	15	140				
3,5-Dichlorobenzoic acid	157	40.9	204.3	0	77.0	10	164				
4-Nitrophenol	52.9	30.6	204.3	0	25.9	44.8	125				S
Dacthal (DCPA)	133	30.6	204.3	0	64.9	5	132				
Surr: 2,4-Dichlorophenylacetic acid	d 735		1,021		72.0	20.1	168				

NOTES:

Original Page 13 of 21

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Date: 8/15/2017

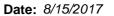
Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A


Sample ID 1707301-001AMSD	SampType	: MSD			Units: µg/l	Kg-dry	Prep Dat	e: 8/4/20 1	17	RunNo: 37 9	948	
Client ID: BATCH	Batch ID:	17825					Analysis Dat	e: 8/10/2 0)17	SeqNo: 729	9338	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		142	34.5	196.9	0	72.1	31.9	118	154.3	8.30	30	
2,4-D		161	29.5	196.9	0	81.6	12.4	134	173.1	7.42	30	
2,4-DP		146	24.6	196.9	0	73.9	27.2	129	163.8	11.8	30	
2,4,5-TP (Silvex)		159	19.7	196.9	0	81.0	28.6	134	178.3	11.1	30	
2,4,5-T		166	49.2	196.9	0	84.5	13.1	147	152.6	8.60	30	
Dinoseb		187	29.5	196.9	0	95.1	10	179	207.6	10.3	30	
Dalapon		875	197	984.5	0	88.9	24.9	139	864.6	1.18	30	
2,4-DB		175	24.6	196.9	0	88.9	50.2	152	191.3	8.80	30	
MCPP		789	4,330	984.5	0	80.1	37.8	140	0		30	
MCPA		867	2,760	984.5	0	88.0	13.7	147	0		30	
Picloram		270	49.2	196.9	0	137	5	153	308.9	13.5	30	
Bentazon		133	34.5	196.9	0	67.5	15	140	153.4	14.4	30	
Chloramben		81.5	19.7	196.9	0	41.4	5	162	125.8	42.7	30	R
Acifluorfen		200	78.8	196.9	0	102	15	140	251.4	22.8	30	
3,5-Dichlorobenzoic acid		146	39.4	196.9	0	74.0	10	164	157.3	7.61	30	
4-Nitrophenol		55.9	29.5	196.9	0	28.4	44.8	125	52.91	5.56	30	S
Dacthal (DCPA)		114	29.5	196.9	0	58.1	5	132	132.5	14.7	30	
Surr: 2,4-Dichlorophenylacetic acid	d	691		984.5		70.2	20.1	168		0		

NOTES:

Original Page 14 of 21

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recovery is within range.

Project:

Endrin aldehyde

4,4'-DDT

Endrin ketone

Methoxychlor

Endosulfan sulfate

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

ND

ND

ND

ND

ND

0.0480

0.0469

0.0100

0.0100

0.0100

0.0100

0.0100

0.05000

0.05000

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

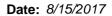
707388

Organochlorine Pesticides by EPA Method 8081

Sample ID TOX CCV A 17824	SampType: CC	V		Units: mg/L	•	Prep Da	te: 8/7/20 1	17	RunNo: 378	836	
Client ID: CCV	Batch ID: 178	324				Analysis Da	ite: 8/7/20	17	SeqNo: 72	7576	
Analyte	Resul	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	930	0.100	1,000	0	93.0	80	120				
Sample ID MB-17824	SampType: MB	BLK		Units: mg/Kg		Prep Da	ite: 8/4/20 1	17	RunNo: 378	836	
Client ID: MBLKS	Batch ID: 178	324				Analysis Da	ite: 8/7/201	17	SeqNo: 72	7577	
Analyte	Resul	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	NE	0.100									
Alpha BHC	NE	0.0100									
Beta BHC	NE	0.0100									
Gamma BHC (Lindane)	NE	0.0100									
Delta BHC	NE	0.0100									
Heptachlor	NE	0.0100									
Aldrin	NE	0.0100									
Heptachlor epoxide	NE	0.0100									
gamma-Chlordane	NE	0.0100									
Endosulfan I	NE	0.0100									
alpha-Chlordane	NE	0.0100									
Dieldrin	NE	0.0100									
4,4´-DDE	NE	0.0100									
Endrin	NE	0.0100									
Endosulfan II	NE	0.0100									
4,4´-DDD	NE	0.0100									

Original Page 15 of 21

17.8


11

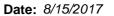
157

150

95.9

93.9

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

Organochlorine Pesticides by EPA Method 8081

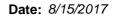
Sample ID LCS-17824	SampType: LCS			Units: mg/Kg		Prep Date:	8/4/201	7	RunNo: 378	36	
Client ID: LCSS	Batch ID: 17824					Analysis Date:	8/7/201	7	SeqNo: 727	′578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.195	0.0100	0.2000	0	97.7	54.2	139				
Beta BHC	0.183	0.0100	0.2000	0	91.7	56.5	142				
Gamma BHC (Lindane)	0.195	0.0100	0.2000	0	97.5	55.5	142				
Delta BHC	0.193	0.0100	0.2000	0	96.6	47.4	157				
Heptachlor	0.209	0.0100	0.2000	0	105	50.9	153				
Aldrin	0.174	0.0100	0.2000	0	87.0	43.7	147				
Heptachlor epoxide	0.180	0.0100	0.2000	0	90.0	56.2	137				
gamma-Chlordane	0.172	0.0100	0.2000	0	86.1	58.5	136				
Endosulfan I	0.177	0.0100	0.2000	0	88.4	60	132				
alpha-Chlordane	0.173	0.0100	0.2000	0	86.6	46.1	140				
Dieldrin	0.177	0.0100	0.2000	0	88.6	61.2	133				
4,4´-DDE	0.187	0.0100	0.2000	0	93.4	55.4	142				
Endrin	0.181	0.0100	0.2000	0	90.4	56.5	143				
Endosulfan II	0.175	0.0100	0.2000	0	87.7	62	143				
4,4´-DDD	0.177	0.0100	0.2000	0	88.5	53.3	145				
Endrin aldehyde	0.168	0.0100	0.2000	0	83.8	39.5	153				
Endosulfan sulfate	0.181	0.0100	0.2000	0	90.3	53.8	148				
4,4´-DDT	0.208	0.0100	0.2000	0	104	48.2	152				
Endrin ketone	0.189	0.0100	0.2000	0	94.5	28.5	162				
Methoxychlor	0.222	0.0100	0.2000	0	111	34.6	159				
Surr: Decachlorobiphenyl	0.0516		0.05000		103	17.8	157				
Surr: Tetrachloro-m-xylene	0.0524		0.05000		105	11	150				
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-	drv	Prep Date:	8/4/201	 7	RunNo: 378	 336	

Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 8/4/20 1	7	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Date	: 8/7/20 1	17	SeqNo: 727	7580	
Analyte	Result	RL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	ND	0.101						0		30	
Alpha BHC	ND	0.0101						0		30	
Beta BHC	ND	0.0101						0		30	

Page 16 of 21 Original

Project:

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

707388

Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001ADUP	SampType: DUP			Units: mg	/Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	836	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 72	7580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gamma BHC (Lindane)	ND	0.0101						0		30	
Delta BHC	ND	0.0101						0		30	
Heptachlor	ND	0.0101						0		30	
Aldrin	ND	0.0101						0		30	
Heptachlor epoxide	ND	0.0101						0		30	
gamma-Chlordane	ND	0.0101						0		30	
Endosulfan I	ND	0.0101						0		30	
alpha-Chlordane	ND	0.0101						0		30	
Dieldrin	ND	0.0101						0		30	
4,4´-DDE	ND	0.0101						0		30	
Endrin	ND	0.0101						0		30	
Endosulfan II	ND	0.0101						0		30	
4,4´-DDD	ND	0.0101						0		30	
Endrin aldehyde	ND	0.0101						0		30	
Endosulfan sulfate	ND	0.0101						0		30	
4,4´-DDT	ND	0.0101						0		30	
Endrin ketone	ND	0.0101						0		30	
Methoxychlor	ND	0.0101						0		30	
Surr: Decachlorobiphenyl	0.0471		0.05057		93.2	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0469		0.05057		92.8	11	150		0		
Sample ID 1707301-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	836	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 72	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.135	0.00929	0.1858	0	72.5	49.1	158				
Beta BHC	0.129	0.00929	0.1858	0	69.4	30.1	161				
Gamma BHC (Lindane)	0.136	0.00929	0.1858	0	73.2	40.5	158				
Delta BHC	0.136	0.00929	0.1858	0	73.0	31.5	153				
Heptachlor	0.147	0.00929	0.1858	0	79.0	37.9	156				

Original Page 17 of 21

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Organochlorine Pesticides by EPA Method 8081

Project: 707388						Org	anochloi	rine Pestic	ides by El	PA Metho	od 8081
Sample ID 1707301-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Dat	e: 8/4/201 7	7	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/201 7	7	SeqNo: 727	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aldrin	0.121	0.00929	0.1858	0	64.9	41.9	130				
Heptachlor epoxide	0.128	0.00929	0.1858	0	68.9	41	161				
gamma-Chlordane	0.124	0.00929	0.1858	0	66.5	40.9	132				
Endosulfan I	0.126	0.00929	0.1858	0	68.0	44.7	162				
alpha-Chlordane	0.125	0.00929	0.1858	0	67.2	41.4	132				
Dieldrin	0.128	0.00929	0.1858	0	69.0	43.9	155				
4,4´-DDE	0.136	0.00929	0.1858	0	73.1	34	166				
Endrin	0.134	0.00929	0.1858	0	72.1	50.5	166				
Endosulfan II	0.134	0.00929	0.1858	0	72.3	37.9	154				
4,4´-DDD	0.135	0.00929	0.1858	0	72.4	38.9	144				
Endrin aldehyde	0.125	0.00929	0.1858	0	67.5	38.3	156				
Endosulfan sulfate	0.135	0.00929	0.1858	0	72.7	25.2	144				
4,4´-DDT	0.163	0.00929	0.1858	0	87.7	38.4	160				
Endrin ketone	0.148	0.00929	0.1858	0	79.8	40.2	119				
Methoxychlor	0.185	0.00929	0.1858	0	99.5	43.4	178				
Surr: Decachlorobiphenyl	0.0441		0.04645		94.9	17.8	157				
Surr: Tetrachloro-m-xylene	0.0372		0.04645		80.1	11	150				

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/Kg-dry			te: 8/4/20 1	17	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Da	te: 8/7/20 1	17	SeqNo: 72	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.140	0.00954	0.1907	0	73.3	49.1	158	0.1347	3.73	30	
Beta BHC	0.130	0.00954	0.1907	0	68.1	30.1	161	0.1289	0.700	30	
Gamma BHC (Lindane)	0.140	0.00954	0.1907	0	73.4	40.5	158	0.1360	2.85	30	
Delta BHC	0.135	0.00954	0.1907	0	70.5	31.5	153	0.1357	0.890	30	
Heptachlor	0.153	0.00954	0.1907	0	80.1	37.9	156	0.1468	3.97	30	
Aldrin	0.124	0.00954	0.1907	0	65.2	41.9	130	0.1206	3.10	30	
Heptachlor epoxide	0.130	0.00954	0.1907	0	68.3	41	161	0.1280	1.81	30	
gamma-Chlordane	0.125	0.00954	0.1907	0	65.4	40.9	132	0.1235	0.975	30	

Page 18 of 21 Original

Date: 8/15/2017

Work Order: 1708018

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

707388

Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 727	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Endosulfan I	0.127	0.00954	0.1907	0	66.4	44.7	162	0.1264	0.211	30	
alpha-Chlordane	0.126	0.00954	0.1907	0	66.0	41.4	132	0.1248	0.909	30	
Dieldrin	0.127	0.00954	0.1907	0	66.6	43.9	155	0.1282	0.926	30	
4,4´-DDE	0.135	0.00954	0.1907	0	70.6	34	166	0.1358	0.768	30	
Endrin	0.131	0.00954	0.1907	0	68.5	50.5	166	0.1341	2.50	30	
Endosulfan II	0.126	0.00954	0.1907	0	65.9	37.9	154	0.1344	6.61	30	
4,4´-DDD	0.128	0.00954	0.1907	0	67.2	38.9	144	0.1345	4.88	30	
Endrin aldehyde	0.109	0.00954	0.1907	0	57.1	38.3	156	0.1254	14.1	30	
Endosulfan sulfate	0.122	0.00954	0.1907	0	63.8	25.2	144	0.1351	10.5	30	
4,4´-DDT	0.154	0.00954	0.1907	0	81.0	38.4	160	0.1630	5.34	30	
Endrin ketone	0.133	0.00954	0.1907	0	69.7	40.2	119	0.1483	11.0	30	
Methoxychlor	0.168	0.00954	0.1907	0	88.0	43.4	178	0.1849	9.64	30	
Surr: Decachlorobiphenyl	0.0354		0.04769		74.3	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0372		0.04769		78.1	11	150		0		

Original Page 19 of 21

Sample Log-In Check List

С	lient Name:	FB				Work Order	3			
Lo	ogged by:	Clare Grig	gs			Date Recei	ved:	8/1/2017	7 12:19:00 PM	
<u>Cha</u>	in of Cust	ody								
1.	Is Chain of C	ustody comp	olete?			Yes 🗸]	No 🗌	Not Present	
2.	How was the	sample deliv	vered?			<u>FedEx</u>				
Log	ı İn									
_	Coolers are p	present?				Yes 🗸]	No 🗌	NA \square	
4.	Shipping con	tainer/cooler	in good condition	1?		Yes 🗸]	No 🗌		
5.			shipping contain ustody Seals not			Yes		No 🗌	Not Required ✓	
6.	Was an atter	npt made to	cool the samples	?		Yes 🗸]	No 🗌	NA 🗆	
7.	Were all item	s received a	t a temperature o	f >0°C to 10	.0°C*	Yes 🗸]	No 🗆	NA 🗌	
8.	Sample(s) in	proper conta	ainer(s)?			Yes 🗸]	No 🗌		
9.	Sufficient sar	nple volume	for indicated test	(s)?		Yes 🗸]	No 🗌		
10.	Are samples	properly pre	served?			Yes 🗸		No 🗌		
11.	Was preserva	ative added t	to bottles?			Yes]	No 🗸	NA 🗆	
12.	Is there head	space in the	VOA vials?			Yes]	No 🗌	NA 🗸	
13.	Did all sampl	es container	s arrive in good c	ondition(unb	roken)?	Yes 🗸		No 🗌		
14.	Does paperw	ork match be	ottle labels?			Yes 🗸		No \square		
15.	Are matrices	correctly ide	ntified on Chain o	of Custody?		Yes 🗸]	No 🗌		
16.	Is it clear wha	at analyses v	vere requested?			Yes 🗸]	No 🗌		
17.	Were all hold	ling times ab	le to be met?			Yes 🗸		No 🗌		
Spe	cial Handl	ing (if apr	olicable)							
-			liscrepancies with	this order?		Yes]	No 🗌	NA 🗸	
	Person	Notified:			Date					
	By Who	m:			Via:	eMail	Phone	Fax	☐ In Person	
	Regardi	ng:								
	Client Ir	structions:								
19.	Additional rer	marks:								
<u>Item</u>	<u>Information</u>									
		Item #		Temp ⁰C						
	Cooler			4.6						

2.7

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98119-2029 Received by:	Relinquisherby: Michael Erdahl	Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY							k 500. 4	7/26/17 1232 / 3	TSM-DN3-672517 7/25/17 1407 Sb. 3	Sample ID Lab ID Date Time Matrix # of Dioxins/Furans EPH VPH Nitrate Sulfate Alkalinity TOC-9060M Chloriasted Perfectles	ANALYSES REQUESTED	Phone # (206) 285-8282 Fax # (206) 283-5044	3	10	3012 16th Ave W 707 \$88 F. 26 e, ZIP_Seattle, WA 98119 REMARKS	y Friedman and Bruya, Inc. 3012 16th Ave W ate, ZIP Seattle, WA 98119 PROJECT NAME/NO. PO# 707388 F.26
			Friedman and Bruya	COMPANY							_			Sulfate Alkalinity TOC-9060M Chloriagted		□ Ret □ Wil				#
8017 126			N 41/1/8	DATE TIME				por completion	be forward of	Dry Weight wil	×		الم زم وسد ساما	Herbicides Dioxinstrans Notes		Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	0	rges authorized by:	Standard (2 Weeks) RUSH ush charges authorized by:

Ph. (206) 285-8282 3012 16th Avenue West Briedman & Bruya, Inc. Seuttle, WA 98119-2029 Company_ City, State, ZIP Address 15m-0u3-67274 13m-DUI-076/7 03 EPRED CIRCLAUS 11.3-P7-072617 419240-47-EM 016/9C60 CD-1/19 12-62-0726/7 たるのとなってい J-P3-072617 105 ¥07388 Sample ID 12-073617 Bmail Relinquished by: Relinquished by: Received by: Received by: 7 000 OH A.D 0 \supseteq Lab ID 口吸几 1904 41/25/4 Sampled 2 S S SAMPLE CHAIN OF CUSTODY Time Sampled 1605 4227 SS SAMPLERS (sumature) PROJECT NAME REMARKS Shelfon @ Street, 201 Sample Type SIC Marketon 人的 # of Jars PRINT NAME 二 $\boldsymbol{\mathsf{Z}}$ TPH-HCID X 2002 2 \times > \times ME07-27-17 MARSI OL BOLOANI F+82 COMPANY Samples received at SAMPLE DISPOSAL Dispose after 30 days D'Archive Samples Rush charges authorized by: DRUSH X Standard Turnaround TURNAROUND TIME Page# アンマア **CIRCUE** 7-27-17 man wan DATE inles 152/s0 878 TIME 2,0 OCC A

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 16, 2017

Ali Cochrane, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Cochrane:

Included are the results from the testing of material submitted on July 27, 2017 from the Shelton C Street Landfill, PO 150074, F&BI 707388 project. There are 33 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Carla Brock

ASP0816R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 27, 2017 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C Street Landfill, PO 150074, F&BI 707388 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
707388 -01	ISM-DU3-072517
707388 -02	ISM-DU2-072617
707388 -03	ISM-DU1-072617
707388 -04	DU3-P7-072617
707388 -05	DU3-P3-072617
707388 -06	DU2-L2-072617
707388 -07	DU2-L7-072617
707388 -08	DU2-G7-072617
707388 -09	DU2-G2-072617
707388 -10	DU1-C2-072617
707388 -11	Trip Blank

Samples ISM-DU3-072517, ISM-DU2-072617, and ISM-DU1-072617 were sent to Fremont Analytical for chlorinated pesticide and herbicide analyses. In addition, the samples were sent to Frontier Analytical for dioxin and furan analysis. The report from Fremont Analytical is enclosed. The report generated by Frontier will be forwarded to your office upon receipt.

Bis(2-ethylhexyl) phthalate was detected in sample ISM-DU1-072617. Bis(2-ethylhexyl) phthalate is a common laboratory and field contaminant and the data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

Date Extracted: 07/28/17 and 08/07/17 Date Analyzed: 07/28/17 and 08/07/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
ISM-DU3-072517 707388-01	3.5	90
ISM-DU2-072617 707388-02	<2	92
ISM-DU1-072617 707388-03	<2	91
DU3-P7-072617 707388-04	<2	87
DU3-P3-072617 707388-05	<2	90
DU2-L2-072617 707388-06	<2	87
DU2-L7-072617 707388-07	<2	89
DU2-G7-072617 707388-08	<2	87
DU2-G2-072617 707388-09	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

Date Extracted: 07/28/17 and 08/07/17 Date Analyzed: 07/28/17 and 08/07/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
DU1-C2-072617 707388-10	<2	89
Method Blank 07-1517 MB2	<2	89
Method Blank 07-1623 MB	<2	94

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

Date Extracted: 08/01/17 Date Analyzed: 08/01/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
ISM-DU3-072517 707388-01	< 50	<250	112
ISM-DU2-072617 707388-02	< 50	<250	109
ISM-DU1-072617 707388-03	<50	<250	113
Method Blank 07-1640 MB	<50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU3-P7-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-04 Data File: Date Analyzed: 07/28/17 072742.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	ing/kg (ppin)	Compounds.	ing/kg (ppin)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU3-P3-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-05 Data File: Date Analyzed: 07/28/17 072743.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	0.059	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU2-L2-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-06 Data File: Date Analyzed: 07/28/17 072744.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	103	65	139

Compounds: mg/kg (ppm) Compounds: mg/kg (ppm) Dichlorodifluoromethane <0.5 1,3-Dichloropropane <0.05 Chloromethane <0.5 Tetrachloroethene <0.025 Vinyl chloride <0.05 Dibromochloromethane <0.05
Chloromethane <0.5 Tetrachloroethene <0.025 Vinyl chloride <0.05 Dibromochloromethane <0.05
Vinyl chloride <0.05 Dibromochloromethane <0.05
J
Duamonathons (FDD) 0.05
Bromomethane <0.5 1,2-Dibromoethane (EDB) <0.05
Chloroethane <0.5 Chlorobenzene <0.05
Trichlorofluoromethane <0.5 Ethylbenzene <0.05
Acetone <0.5 1,1,1,2-Tetrachloroethane <0.05
1,1-Dichloroethene <0.05 m,p-Xylene <0.1
Hexane <0.25 o-Xylene <0.05
Methylene chloride <0.5 Styrene <0.05
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05
trans-1,2-Dichloroethene <0.05 Bromoform <0.05
1,1-Dichloroethane <0.05 n-Propylbenzene <0.05
2,2-Dichloropropane <0.05 Bromobenzene <0.05
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene <0.05
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05
2-Butanone (MEK) < 0.5 1,2,3-Trichloropropane < 0.05
1,2-Dichloroethane (EDC) <0.05 2-Chlorotoluene <0.05
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05
1,1-Dichloropropene <0.05 tert-Butylbenzene <0.05
Carbon tetrachloride <0.05 1,2,4-Trimethylbenzene <0.05
Benzene <0.03 sec-Butylbenzene <0.05
Trichloroethene <0.02 p-Isopropyltoluene <0.05
1,2-Dichloropropane <0.05 1,3-Dichlorobenzene <0.05
Bromodichloromethane <0.05 1,4-Dichlorobenzene <0.05
Dibromomethane <0.05 1,2-Dichlorobenzene <0.05
4-Methyl-2-pentanone <0.5 1,2-Dibromo-3-chloropropane <0.5
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25
Toluene <0.05 Hexachlorobutadiene <0.25
trans-1,3-Dichloropropene <0.05 Naphthalene <0.05
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25
2-Hexanone <0.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU2-L7-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-07 Data File: Date Analyzed: 07/28/17 072745.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	102	65	139

Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05Chloromethane<0.5Tetrachloroethene<0.025Vinyl chloride<0.05Dibromochloromethane<0.05Bromomethane<0.51,2-Dibromoethane (EDB)<0.05
Chloromethane<0.5Tetrachloroethene<0.025Vinyl chloride<0.05
Vinyl chloride<0.05Dibromochloromethane<0.05Bromomethane<0.5
Bromomethane <0.5 1,2-Dibromoethane (EDB) <0.05
Chloroethane <0.5 Chlorobenzene <0.05
Trichlorofluoromethane <0.5 Ethylbenzene <0.05
Acetone <0.5 1,1,1,2-Tetrachloroethane <0.05
1,1-Dichloroethene <0.05 m,p-Xylene <0.1
Hexane <0.25 o-Xylene <0.05
Methylene chloride <0.5 Styrene <0.05
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05
trans-1,2-Dichloroethene <0.05 Bromoform <0.05
1,1-Dichloroethane <0.05 n-Propylbenzene <0.05
2,2-Dichloropropane <0.05 Bromobenzene <0.05
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene <0.05
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05
2-Butanone (MEK) < 0.5 1,2,3-Trichloropropane < 0.05
1,2-Dichloroethane (EDC) <0.05 2-Chlorotoluene <0.05
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05
1,1-Dichloropropene <0.05 tert-Butylbenzene <0.05
Carbon tetrachloride <0.05 1,2,4-Trimethylbenzene <0.05
Benzene <0.03 sec-Butylbenzene <0.05
Trichloroethene <0.02 p-Isopropyltoluene <0.05
1,2-Dichloropropane <0.05 1,3-Dichlorobenzene <0.05
Bromodichloromethane <0.05 1,4-Dichlorobenzene <0.05
Dibromomethane <0.05 1,2-Dichlorobenzene <0.05
4-Methyl-2-pentanone <0.5 1,2-Dibromo-3-chloropropane <0.5
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25
Toluene <0.05 Hexachlorobutadiene <0.25
trans-1,3-Dichloropropene <0.05 Naphthalene <0.05
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25
2-Hexanone <0.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU2-G7-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-08 Data File: Date Analyzed: 07/28/17 072746.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Operator: Units: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	101	65	139

Commonada	Concentration	Commonado	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU2-G2-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-09 Data File: Date Analyzed: 07/28/17 072747.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DU1-C2-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 707388-10 Data File: Date Analyzed: 07/28/17 072748.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	102	65	139

C	Concentration	Community de	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C Street Landfill, PO 150074

Date Extracted: 07/27/17 Lab ID: 07-1548 mb2 Date Analyzed: 07/27/17 Data File: 072705.D Matrix: Instrument: GCMS4 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

C	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	101	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID:	ISM-DU3-072517	Client:	Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 707388-01 1/10 Data File: Date Analyzed: 08/04/17 080406.D Matrix: Soil Instrument: GCMS8 mg/kg (ppm) Dry Weight Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	63 d	56	115
Phenol-d6	67 d	54	113
Nitrobenzene-d5	75 d	31	164
2-Fluorobiphenyl	86 d	47	133
2,4,6-Tribromophenol	52 d	35	141
Terphenyl-d14	93 d	24	188

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Phenol	<1	Hexachlorocyclopentadiene	< 0.3
Bis(2-chloroethyl) ether	< 0.1	2,4,6-Trichlorophenol	<1
2-Chlorophenol	<1	2,4,5-Trichlorophenol	<1
1,3-Dichlorobenzene	< 0.1	2-Chloronaphthalene	< 0.1
1,4-Dichlorobenzene	< 0.1	2-Nitroaniline	< 0.5
1,2-Dichlorobenzene	< 0.1	Dimethyl phthalate	<1
Benzyl alcohol	<1	2,6-Dinitrotoluene	< 0.5
2,2'-Oxybis(1-chloropropane)	< 0.1	3-Nitroaniline	<10
2-Methylphenol	<1	2,4-Dinitrophenol	<3
Hexachloroethane	< 0.1	Dibenzofuran	< 0.1
N-Nitroso-di-n-propylamine	< 0.1	2,4-Dinitrotoluene	< 0.5
3-Methylphenol + 4-Methylphenol	<2	4-Nitrophenol	<3
Nitrobenzene	< 0.1	Diethyl phthalate	<1
Isophorone	< 0.1	4-Chlorophenyl phenyl ether	< 0.1
2-Nitrophenol	<1	N-Nitrosodiphenylamine	< 0.1
2,4-Dimethylphenol	<1	4-Nitroaniline	<10
Benzoic acid	<5	4,6-Dinitro-2-methylphenol	<3
Bis(2-chloroethoxy)methane	< 0.1	4-Bromophenyl phenyl ether	< 0.1
2,4-Dichlorophenol	<1	Hexachlorobenzene	< 0.1
1,2,4-Trichlorobenzene	< 0.1	Pentachlorophenol	<1
Hexachlorobutadiene	< 0.1	Carbazole	<1
4-Chloroaniline	<10	Di-n-butyl phthalate	<1
4-Chloro-3-methylphenol	<1	Benzyl butyl phthalate	<1
2-Methylnaphthalene	< 0.1	Bis(2-ethylhexyl) phthalate	<1.6
1-Methylnaphthalene	< 0.1	Di-n-octyl phthalate	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID:	ISM-DU2-072617	Client:	Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 707388-02 1/5 Data File: Date Analyzed: 08/04/17 080413.D Matrix: Instrument: GCMS8 Soil mg/kg (ppm) Dry Weight Units: Operator: VM

Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5	% Recovery: 91 89 98	Lower Limit: 56 54 31	Upper Limit: 115 113 164
2-Fluorobiphenyl	100	47	133
2,4,6-Tribromophenol	91	35	141
Terphenyl-d14	102	24	188

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Phenol	< 0.5	Hexachlorocyclopentadiene	< 0.15
Bis(2-chloroethyl) ether	< 0.05	2,4,6-Trichlorophenol	< 0.5
2-Chlorophenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
1,3-Dichlorobenzene	< 0.05	2-Chloronaphthalene	< 0.05
1,4-Dichlorobenzene	< 0.05	2-Nitroaniline	< 0.25
1,2-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
Benzyl alcohol	< 0.5	2,6-Dinitrotoluene	< 0.25
2,2'-Oxybis(1-chloropropane)	< 0.05	3-Nitroaniline	<5
2-Methylphenol	< 0.5	2,4-Dinitrophenol	<1.5
Hexachloroethane	< 0.05	Dibenzofuran	< 0.05
N-Nitroso-di-n-propylamine	< 0.05	2,4-Dinitrotoluene	< 0.25
3-Methylphenol + 4-Methylphenol	<1	4-Nitrophenol	<1.5
Nitrobenzene	< 0.05	Diethyl phthalate	< 0.5
Isophorone	< 0.05	4-Chlorophenyl phenyl ether	< 0.05
2-Nitrophenol	< 0.5	N-Nitrosodiphenylamine	< 0.05
2,4-Dimethylphenol	< 0.5	4-Nitroaniline	<5
Benzoic acid	< 2.5	4,6-Dinitro-2-methylphenol	<1.5
Bis(2-chloroethoxy)methane	< 0.05	4-Bromophenyl phenyl ether	< 0.05
2,4-Dichlorophenol	< 0.5	Hexachlorobenzene	< 0.05
1,2,4-Trichlorobenzene	< 0.05	Pentachlorophenol	< 0.5
Hexachlorobutadiene	< 0.05	Carbazole	< 0.5
4-Chloroaniline	<5	Di-n-butyl phthalate	< 0.5
4-Chloro-3-methylphenol	< 0.5	Benzyl butyl phthalate	< 0.5
2-Methylnaphthalene	< 0.05	Bis(2-ethylhexyl) phthalate	< 0.8
1-Methylnaphthalene	< 0.05	Di-n-octyl phthalate	< 0.5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID:	ISM-DU1-072617	Client:	Aspect Consulting, LLC
-------------------	----------------	---------	------------------------

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 707388-03 1/5 Data File: Date Analyzed: 08/04/17 080414.D Matrix: Instrument: GCMS8 Soil mg/kg (ppm) Dry Weight Units: Operator: VM

Surrogates: 2-Fluorophenol Phenol-d6	% Recovery: 89 88	Lower Limit: 56 54	Upper Limit: 115 113
Nitrobenzene-d5	100	31	164
2-Fluorobiphenyl	99	47	133
2,4,6-Tribromophenol	98	35	141
Terphenyl-d14	108	24	188

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Phenol	< 0.5	Hexachlorocyclopentadiene	< 0.15
Bis(2-chloroethyl) ether	< 0.05	2,4,6-Trichlorophenol	< 0.5
2-Chlorophenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
1,3-Dichlorobenzene	< 0.05	2-Chloronaphthalene	< 0.05
1,4-Dichlorobenzene	0.079	2-Nitroaniline	< 0.25
1,2-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
Benzyl alcohol	< 0.5	2,6-Dinitrotoluene	< 0.25
2,2'-Oxybis(1-chloropropane)	< 0.05	3-Nitroaniline	<5
2-Methylphenol	< 0.5	2,4-Dinitrophenol	<1.5
Hexachloroethane	< 0.05	Dibenzofuran	0.12
N-Nitroso-di-n-propylamine	< 0.05	2,4-Dinitrotoluene	< 0.25
3-Methylphenol + 4-Methylphenol	<1	4-Nitrophenol	<1.5
Nitrobenzene	< 0.05	Diethyl phthalate	< 0.5
Isophorone	< 0.05	4-Chlorophenyl phenyl ether	< 0.05
2-Nitrophenol	< 0.5	N-Nitrosodiphenylamine	< 0.05
2,4-Dimethylphenol	< 0.5	4-Nitroaniline	<5
Benzoic acid	< 2.5	4,6-Dinitro-2-methylphenol	<1.5
Bis(2-chloroethoxy)methane	< 0.05	4-Bromophenyl phenyl ether	< 0.05
2,4-Dichlorophenol	< 0.5	Hexachlorobenzene	< 0.05
1,2,4-Trichlorobenzene	< 0.05	Pentachlorophenol	< 0.5
Hexachlorobutadiene	< 0.05	Carbazole	< 0.5
4-Chloroaniline	<5	Di-n-butyl phthalate	< 0.5
4-Chloro-3-methylphenol	< 0.5	Benzyl butyl phthalate	< 0.5
2-Methylnaphthalene	< 0.05	Bis(2-ethylhexyl) phthalate	2.6 fc
1-Methylnaphthalene	< 0.05	Di-n-octyl phthalate	< 0.5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 07-1648 mb 08/04/17 Data File: Date Analyzed: 080405.D Matrix: Soil Instrument: GCMS8 mg/kg (ppm) Dry Weight Units: Operator: VM

Surrogates: 2-Fluorophenol	% Recovery:	Lower Limit: 56	Upper Limit: 115
Phenol-d6	98	54	113
Nitrobenzene-d5	98	31	164
2-Fluorobiphenyl	100	47	133
2,4,6-Tribromophenol	90	35	141
Terphenyl-d14	114	24	188

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Phenol	< 0.1	Hexachlorocyclopentadiene	< 0.03
Bis(2-chloroethyl) ether	< 0.01	2,4,6-Trichlorophenol	< 0.1
2-Chlorophenol	< 0.1	2,4,5-Trichlorophenol	< 0.1
1,3-Dichlorobenzene	< 0.01	2-Chloronaphthalene	< 0.01
1,4-Dichlorobenzene	< 0.01	2-Nitroaniline	< 0.05
1,2-Dichlorobenzene	< 0.01	Dimethyl phthalate	< 0.1
Benzyl alcohol	< 0.1	2,6-Dinitrotoluene	< 0.05
2,2'-Oxybis(1-chloropropane)	< 0.01	3-Nitroaniline	<1
2-Methylphenol	< 0.1	2,4-Dinitrophenol	< 0.3
Hexachloroethane	< 0.01	Dibenzofuran	< 0.01
N-Nitroso-di-n-propylamine	< 0.01	2,4-Dinitrotoluene	< 0.05
3-Methylphenol + 4-Methylphenol	< 0.2	4-Nitrophenol	< 0.3
Nitrobenzene	< 0.01	Diethyl phthalate	< 0.1
Isophorone	< 0.01	4-Chlorophenyl phenyl ether	< 0.01
2-Nitrophenol	< 0.1	N-Nitrosodiphenylamine	< 0.01
2,4-Dimethylphenol	< 0.1	4-Nitroaniline	<1
Benzoic acid	< 0.5	4,6-Dinitro-2-methylphenol	< 0.3
Bis(2-chloroethoxy)methane	< 0.01	4-Bromophenyl phenyl ether	< 0.01
2,4-Dichlorophenol	< 0.1	Hexachlorobenzene	< 0.01
1,2,4-Trichlorobenzene	< 0.01	Pentachlorophenol	< 0.1
Hexachlorobutadiene	< 0.01	Carbazole	< 0.1
4-Chloroaniline	<1	Di-n-butyl phthalate	< 0.1
4-Chloro-3-methylphenol	< 0.1	Benzyl butyl phthalate	< 0.1
2-Methylnaphthalene	< 0.01	Bis(2-ethylhexyl) phthalate	< 0.16
1-Methylnaphthalene	< 0.01	Di-n-octyl phthalate	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: ISM-DU3-072517 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 707388-01 1/5 Date Analyzed: 08/03/17 Data File: 080310.D Matrix: Soil Instrument: GCMS6 mg/kg (ppm) Dry Weight Units: Operator: ya

Lower Upper

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 78 31 163 Benzo(a)anthracene-d12 93 24 168

0.040

0.39

Concentration Compounds: mg/kg (ppm) Naphthalene 0.029 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene 0.16 Anthracene 0.011 Fluoranthene 0.41 Pyrene 0.23 Benz(a)anthracene 0.13 Chrysene 0.31 Benzo(a)pyrene 0.22 Benzo(b)fluoranthene 0.54 Benzo(k)fluoranthene 0.15 Indeno(1,2,3-cd)pyrene 0.32

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: ISM-DU2-072617 Client: Asp	ect Consulting, LL	C
--	--------------------	---

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 707388-02 1/50 Date Analyzed: 08/03/17 Data File: 080308.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: ya

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 113 d 31 163
Benzo(a)anthracene-d12 100 d 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.1 Acenaphthylene < 0.1 Acenaphthene < 0.1 Fluorene < 0.1 Phenanthrene 0.47 Anthracene < 0.1 Fluoranthene 0.88 Pyrene 0.65 Benz(a)anthracene 0.22 Chrysene 0.46 Benzo(a)pyrene 0.29 Benzo(b)fluoranthene 0.74 Benzo(k)fluoranthene 0.20 Indeno(1,2,3-cd)pyrene 0.45 Dibenz(a,h)anthracene < 0.1 Benzo(g,h,i)perylene 0.59

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	ISM-DU1-072617	Client:	Aspect Consulting, LLC
-------------------	----------------	---------	------------------------

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

08/03/17 Lab ID: 707388-03 1/50 Date Extracted: Data File: Date Analyzed: 08/03/17 080309.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: ya

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 114 d 31 163
Benzo(a)anthracene-d12 100 d 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene 0.18 Acenaphthylene < 0.1 Acenaphthene < 0.1 Fluorene < 0.1 Phenanthrene 1.0 Anthracene < 0.1 Fluoranthene 2.2 Pyrene 1.4 Benz(a)anthracene 0.42 Chrysene 1.1 Benzo(a)pyrene 0.61 Benzo(b)fluoranthene 2.0 Benzo(k)fluoranthene 0.49 Indeno(1,2,3-cd)pyrene 1.3 Dibenz(a,h)anthracene 0.11 Benzo(g,h,i)perylene 1.7

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/03/17 Lab ID: 07-1647 mb 1/5 Date Analyzed: 08/03/17 Data File: 080305.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: ya

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 76 31 163 Benzo(a)anthracene-d12 90 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/01/17 Lab ID: 707388-01 1/50 Data File: Date Analyzed: 08/01/17 080124.D Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower Surrogates: TCMX % Recovery: 105 d Limit:

29 154 Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.2 Aroclor 1232 < 0.2 Aroclor 1016 < 0.2 Aroclor 1242 < 0.2 Aroclor 1248 < 0.2 Aroclor 1254 < 0.2 Aroclor 1260 < 0.2 Aroclor 1262 < 0.2 Aroclor 1268 < 0.2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: ISM-DU2-072617 Client: Aspect Consulting, LLC

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/01/17 Lab ID: 707388-02 1/50 Data File: Date Analyzed: 08/01/17 080125.D Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: Surrogates: TCMX % Recovery: 80 d Limit: 29 154

< 0.2

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.2 Aroclor 1232 < 0.2 Aroclor 1016 < 0.2 Aroclor 1242 < 0.2 Aroclor 1248 < 0.2 Aroclor 1254 < 0.2 Aroclor 1260 < 0.2 Aroclor 1262 < 0.2

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	ISM-DU1-072617	Client:	Aspect Consulting, LLC
-------------------	----------------	---------	------------------------

Date Received: 07/27/17 Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/01/17 Lab ID: 707388-03 1/50 Data File: Date Analyzed: 08/01/17 080126.D Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.2 Aroclor 1232 < 0.2 Aroclor 1016 < 0.2 Aroclor 1242 < 0.2 Aroclor 1248 < 0.2 Aroclor 1254 < 0.2 Aroclor 1260 < 0.2 Aroclor 1262 < 0.2 Aroclor 1268 < 0.2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C Street Landfill, PO 150074

Date Extracted: 08/01/17 Lab ID: 07-1603 mb 1/5 08/01/17 Date Analyzed: Data File: 080112.D Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower Limit:

Surrogates: TCMX % Recovery: 80 29 154

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 707375-01 (Duplicate)

		Duplicate						
		Sample Result	Result	RPD				
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	<2	2	nm				

			Percent		
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	85	61-153	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 708024-01 (Duplicate)

		Duplicate						
		Sample Result	Result	RPD				
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	3	3	0				

			Percent		
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	85	61-153	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 708018-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	92	90	73-135	2

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	94	74-139

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 707356-01 (Matrix Spike)

Laboratory Code: 707556-01 (I	viatrix Spike)		Sample	Percent	Percent		
	Donouting	Cuiles	Result			At	RPD
	Reporting	Spike		Recovery	Recovery	Acceptance	
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5 2.5	< 0.5	22 50	20	10-142	10 2
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.05	50 48	49 46	10-126 10-138	4
Bromomethane	mg/kg (ppm)	2.5	< 0.5	61	62	10-163	2
Chloroethane	mg/kg (ppm)	2.5	< 0.5	60	60	10-176	0
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	53	50	10-176	6
Acetone 1,1-Dichloroethene	mg/kg (ppm)	12.5 2.5	<0.5 <0.05	92 65	89 62	10-163 10-160	3 5
Hexane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	49	45	10-100	9
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	79	81	10-156	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	85	83	21-145	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	73	14-137	1
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	80 86	79 83	19-140 10-158	1 4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	81	80	25-135	1
Chloroform	mg/kg (ppm)	2.5	< 0.05	81	79	21-145	2
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	96	90	19-147	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	83	81	12-160	2
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	80 78	78 77	10-156 17-140	3 1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	78	77	9-164	1
Benzene	mg/kg (ppm)	2.5	< 0.03	81	80	29-129	i
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	78	79	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	84	84	30-135	0
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	84 83	84 81	23-155 23-145	0 2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	94	92	24-155	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	88	87	28-144	ĩ
Toluene	mg/kg (ppm)	2.5	< 0.05	81	81	35-130	0
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	88	89	26-149	1
1,1,2-Trichloroethane 2-Hexanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	<0.05 <0.5	85 93	85 92	10-205 15-166	0 1
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	87	88	31-137	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	82	80	20-133	2
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	86	87	28-150	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	86	86	28-142	0
Chlorobenzene Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	81 84	82 85	32-129 32-137	1 1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	86	89	31-143	3
m,p-Xylene	mg/kg (ppm)	5	<0.1	83	84	34-136	1
o-Xylene	mg/kg (ppm)	2.5	< 0.05	84	86	33-134	2
Styrene	mg/kg (ppm)	2.5 2.5	< 0.05	86 84	88 86	35-137 31-142	2
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	88	86 87	21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	85	83	23-146	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	85	84	34-130	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	85	84	18-149	1
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	91 86	90 84	28-140 25-144	1 2
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	84	83	31-134	1
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	85	84	31-136	i
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	86	85	30-137	1
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	85	84	10-182	1
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	87 85	86 83	23-145 21-149	1 2
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	84	84	30-131	0
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	82	82	29-129	Ö
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	82	83	31-132	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	84	84	11-161	0
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.25	80 83	80 84	22-142 10-142	0 1
Naphthalene	mg/kg (ppm)	2.5	< 0.25	81	81	14-157	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	81	80	20-144	1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Ţ Ţ	-	Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Dichlorodifluoromethane	mg/kg (ppm)	2.5	67	10-146	
Chloromethane Vinyl chloride	mg/kg (ppm)	2.5 2.5	81 86	27-133 22-139	
Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5	87	38-114	
Chloroethane	mg/kg (ppm)	2.5	90	10-163	
Trichlorofluoromethane	mg/kg (ppm)	2.5	95	10-196	
Acetone	mg/kg (ppm)	12.5	112	52-141	
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	47-128	
Hexane Mathedana ablanida	mg/kg (ppm)	2.5	104 106	43-142	
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	105	42-132 60-123	
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	103	67-127	
1,1-Dichloroethane	mg/kg (ppm)	2.5	107	68-115	
2,2-Dichloropropane	mg/kg (ppm)	2.5	113	52-170	
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	107	72-113	
Chloroform	mg/kg (ppm)	2.5	104	66-120	
2-Butanone (MEK)	mg/kg (ppm)	12.5	115	57-123	
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	107	56-135	
1,1,1-Trichloroethane	mg/kg (ppm)	2.5 2.5	106 106	62-131	
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm) mg/kg (ppm)	2.5	107	69-128 60-139	
Benzene	mg/kg (ppm)	2.5	107	68-114	
Trichloroethene	mg/kg (ppm)	2.5	103	64-117	
1,2-Dichloropropane	mg/kg (ppm)	2.5	108	72-127	
Bromodichloromethane	mg/kg (ppm)	2.5	108	72-130	
Dibromomethane	mg/kg (ppm)	2.5	105	70-120	
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	110	45-145	
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	111	75-136	
Toluene trans-1,3-Dichloropropene	mg/kg (ppm)	2.5 2.5	105 113	66-126 72-132	
1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5	106	75-132 75-113	
2-Hexanone	mg/kg (ppm)	12.5	109	33-152	
1,3-Dichloropropane	mg/kg (ppm)	2.5	110	72-130	
Tetrachloroethene	mg/kg (ppm)	2.5	109	72-114	
Dibromochloromethane	mg/kg (ppm)	2.5	112	74-125	
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	110	74-132	
Chlorobenzene	mg/kg (ppm)	2.5	105	76-111	
Ethylbenzene	mg/kg (ppm)	2.5 2.5	107	64-123	
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5 5	110 106	69-135 78-122	
o-Xylene	mg/kg (ppm)	2.5	109	77-124	
Styrene	mg/kg (ppm)	2.5	110	74-126	
Isopropylbenzene	mg/kg (ppm)	2.5	107	76-127	
Bromoform	mg/kg (ppm)	2.5	113	56-132	
n-Propylbenzene	mg/kg (ppm)	2.5	107	74-124	
Bromobenzene	mg/kg (ppm)	2.5	107	72-122	
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	107 109	76-126	
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	105	56-143 61-137	
2-Chlorotoluene	mg/kg (ppm)	2.5	105	74-121	
4-Chlorotoluene	mg/kg (ppm)	2.5	107	75-122	
tert-Butylbenzene	mg/kg (ppm)	2.5	107	73-130	
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	107	76-125	
sec-Butylbenzene	mg/kg (ppm)	2.5	108	71-130	
p-Isopropyltoluene	mg/kg (ppm)	2.5	106	70-132	
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	108	75-121	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	105 106	74-117 76-121	
1,2-Dichioropenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	106	76-121 58-138	
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	104	64-135	
Hexachlorobutadiene	mg/kg (ppm)	2.5	108	50-153	
Naphthalene	mg/kg (ppm)	2.5	105	63-140	
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	106	63-138	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270D

Education Code: Education	outer or Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
A 1.	Reporting				Acceptance	
Analyte	Ûnits	Level	LCS	LCSD	Criteria	(Limit 20)
Phenol	mg/kg (ppm)	0.33	96	91	51-119	5
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.33	86	80	60-112	7
2-Chlorophenol	mg/kg (ppm)	0.33	88	83	59-114	6
1,3-Dichlorobenzene	mg/kg (ppm)	0.33	82	75	62-113	9
1,4-Dichlorobenzene	mg/kg (ppm)	0.33	83	76	61-114	9
1,2-Dichlorobenzene	mg/kg (ppm)	0.33	84	77	61-113	9
Benzyl alcohol	mg/kg (ppm)	0.33	92	86	50-119	7
2,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.33	91	85	59-113	7
2-Methylphenol	mg/kg (ppm)	0.33	87	80	58-115	8
Hexachloroethane	mg/kg (ppm)	0.33	85	75	63-114	12
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.33	90	83	62-114	8
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.33	89 88	84	54-120	6
Nitrobenzene	mg/kg (ppm)	0.33		82 88	59-114	7 7
Isophorone 2-Nitrophenol	mg/kg (ppm)	0.33 0.33	94 85	82	61-113 59-114	4
	mg/kg (ppm)	0.33	85 67	82 55	54-107	20
2,4-Dimethylphenol Benzoic acid	mg/kg (ppm)	0.5	76	55 69	43-150	10
Bis(2-chloroethoxy)methane	mg/kg (ppm) mg/kg (ppm)	0.33	88	85	60-114	3
2,4-Dichlorophenol	mg/kg (ppm)	0.33	92	86	57-118	3 7
1,2,4-Trichlorobenzene	mg/kg (ppm)	0.33	85	79	56-112	7
Hexachlorobutadiene	mg/kg (ppm)	0.33	85	79 79	60-116	7
4-Chloroaniline	mg/kg (ppm)	0.66	67	70	10-126	4
4-Chloro-3-methylphenol	mg/kg (ppm)	0.33	91	85	59-115	7
2-Methylnaphthalene	mg/kg (ppm)	0.33	90	84	60-115	7
1-Methylnaphthalene	mg/kg (ppm)	0.33	88	83	70-130	6
Hexachlorocyclopentadiene	mg/kg (ppm)	0.33	102	94	41-107	8
2,4,6-Trichlorophenol	mg/kg (ppm)	0.33	87	82	47-119	6
2,4,5-Trichlorophenol	mg/kg (ppm)	0.33	91	88	61-121	3
2-Chloronaphthalene	mg/kg (ppm)	0.33	88	83	58-114	6
2-Nitroaniline	mg/kg (ppm)	0.33	90	87	55-119	3
Dimethyl phthalate	mg/kg (ppm)	0.33	88	86	58-116	2
2,6-Dinitrotoluene	mg/kg (ppm)	0.33	88	87	57-119	1
3-Nitroaniline	mg/kg (ppm)	0.66	84	84	10-143	0
2,4-Dinitrophenol	mg/kg (ppm)	0.33	84	79	40-122	6
Dibenzofuran	mg/kg (ppm)	0.33	90	86	56-115	5
2,4-Dinitrotoluene	mg/kg (ppm)	0.33	90	86	53-126	5
4-Nitrophenol	mg/kg (ppm)	0.33	94	90	40-124	4
Diethyl phthalate	mg/kg (ppm)	0.33	82	80	57-116	2
4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.33	90	86	54-119	5
N-Nitrosodiphenylamine	mg/kg (ppm)	0.33	85	81	54-113	5
4-Nitroaniline	mg/kg (ppm)	0.66	93	89	47-109	4
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.33	81	77	55-147	5
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.33	85 89	83	56-116	2 3
Hexachlorobenzene	mg/kg (ppm)	0.33 0.33	89 81	86	57-115	6
Pentachlorophenol Carbazole	mg/kg (ppm)	0.33	81 99	76 97	45-123 57-116	2
	mg/kg (ppm)	0.33	99 98	97 97	56-118	2 1
Di-n-butyl phthalate Benzyl butyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.33	98 85	97 82	56-122	4
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.33	90	84	56-155	7
Di-n-octyl phthalate	mg/kg (ppm)	0.33	83	76	58-120	9
2 octj. pricialace	mg/ng (PPm)	0.00	00	, ,	00 120	o o

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 707388-01 1/5 (Matrix Spike)

Editoriatory Code: Toroco (or to (materin op	1110)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	0.028	92	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	93	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	93	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	93	37-137
Phenanthrene	mg/kg (ppm)	0.17	0.15	106 b	34-141
Anthracene	mg/kg (ppm)	0.17	0.011	88	32-124
Fluoranthene	mg/kg (ppm)	0.17	0.39	134 b	16-160
Pyrene	mg/kg (ppm)	0.17	0.22	160 b	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	0.12	123 b	23-144
Chrysene	mg/kg (ppm)	0.17	0.30	123 b	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.52	146 b	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	0.14	100 b	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.21	112 b	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.31	90 b	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	0.039	75 b	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	0.37	96 b	37-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	93	58-121	0
Acenaphthylene	mg/kg (ppm)	0.17	96	95	54-121	1
Acenaphthene	mg/kg (ppm)	0.17	96	96	54-123	1
Fluorene	mg/kg (ppm)	0.17	99	99	56-127	0
Phenanthrene	mg/kg (ppm)	0.17	96	96	55-122	0
Anthracene	mg/kg (ppm)	0.17	95	95	50-120	1
Fluoranthene	mg/kg (ppm)	0.17	98	96	54-129	2
Pyrene	mg/kg (ppm)	0.17	103	101	53-127	2
Benz(a)anthracene	mg/kg (ppm)	0.17	99	95	51-115	4
Chrysene	mg/kg (ppm)	0.17	103	97	55-129	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	96	97	56-123	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	102	100	54-131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	91	90	51-118	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	93	49-148	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	88	92	50-141	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	90	91	52-131	1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/17 Date Received: 07/27/17

Project: Shelton C Street Landfill, PO 150074, F&BI 707388

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 707433-01 1/50 (Matrix Spike) 1/50

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	4.2	< 0.2	80	50-150
Aroclor 1260	mg/kg (ppm)	4.2	< 0.2	84	50-150

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	4.2	83	85	55-130	2
Aroclor 1260	mg/kg (ppm)	4.2	86	84	58-133	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 707388

Work Order Number: 1708018

August 15, 2017

Attention Michael Erdahl:

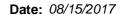
Fremont Analytical, Inc. received 3 sample(s) on 8/1/2017 for the analyses presented in the following report.

Herbicides by EPA Method 8151A
Organochlorine Pesticides by EPA Method 8081

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

And c. Rady

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 707388 **Work Order:** 1708018

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1708018-001	ISM-DU3-072517	07/25/2017 2:07 PM	08/01/2017 12:19 PM
1708018-002	ISM-DU2-072617	07/26/2017 12:32 PM	08/01/2017 12:19 PM
1708018-003	ISM-DU1-072617	07/26/2017 3:00 PM	08/01/2017 12:19 PM

Case Narrative

WO#: **1708018**Date: **8/15/2017**

CLIENT: Friedman & Bruya

Project: 707388

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Client provided percent moisture for dry-weight correction.

Qualifiers & Acronyms

WO#: **1708018**

Date Reported: 8/15/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/25/2017 2:07:00 PM

Project: 707388

Lab ID: 1708018-001 **Matrix:** Soil

Client Sample ID: ISM-DU3-072517

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>		Batch	ı ID:	17824 Analyst: SG
Toxaphene	ND	0.104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Alpha BHC	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Beta BHC	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Gamma BHC (Lindane)	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Delta BHC	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Heptachlor	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Aldrin	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Heptachlor epoxide	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
gamma-Chlordane	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endosulfan I	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
alpha-Chlordane	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Dieldrin	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
4,4´-DDE	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endrin	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endosulfan II	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
4,4´-DDD	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endrin aldehyde	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endosulfan sulfate	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
4,4´-DDT	0.0166	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Endrin ketone	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Methoxychlor	ND	0.0104		mg/Kg-dry	1	8/7/2017 7:04:35 PM
Surr: Decachlorobiphenyl	127	17.8 - 157		%Rec	1	8/7/2017 7:04:35 PM
Surr: Tetrachloro-m-xylene	125	11 - 150		%Rec	1	8/7/2017 7:04:35 PM
Herbicides by EPA Method 81	<u>51A</u>			Batch	ı ID:	17825 Analyst: BT
Dicamba	ND	36.4		μg/Kg-dry	1	8/10/2017 2:54:45 AM
2,4-D	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
2,4-DP	ND	26.0		μg/Kg-dry	1	8/10/2017 2:54:45 AM
2,4,5-TP (Silvex)	ND	20.8		μg/Kg-dry	1	8/10/2017 2:54:45 AM
2,4,5-T	ND	52.0		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Dinoseb	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Dalapon	ND	208		μg/Kg-dry	1	8/10/2017 2:54:45 AM
2,4-DB	ND	26.0		μg/Kg-dry	1	8/10/2017 2:54:45 AM
MCPP	ND	4,580		μg/Kg-dry	1	8/10/2017 2:54:45 AM
MCPA	ND	2,910		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Picloram	ND	52.0		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Bentazon	ND	36.4		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Chloramben	ND	20.8		μg/Kg-dry	1	8/10/2017 2:54:45 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/25/2017 2:07:00 PM

Project: 707388

Lab ID: 1708018-001 **Matrix:** Soil

Client Sample ID: ISM-DU3-072517

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 17	7825 Analyst: BT
Acifluorfen	ND	83.3		μg/Kg-dry	1	8/10/2017 2:54:45 AM
3,5-Dichlorobenzoic acid	ND	41.6		μg/Kg-dry	1	8/10/2017 2:54:45 AM
4-Nitrophenol	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Dacthal (DCPA)	ND	31.2		μg/Kg-dry	1	8/10/2017 2:54:45 AM
Surr: 2,4-Dichlorophenylacetic acid	44.6	20.1 - 168		%Rec	1	8/10/2017 2:54:45 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 12:32:00 PM

Project: 707388

Lab ID: 1708018-002 **Matrix:** Soil

Client Sample ID: ISM-DU2-072617

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>		Batch	1D: 1	7824 Analyst: SG
Toxaphene	ND	0.107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Alpha BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Beta BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Gamma BHC (Lindane)	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Delta BHC	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Heptachlor	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Aldrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Heptachlor epoxide	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
gamma-Chlordane	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan I	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
alpha-Chlordane	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Dieldrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDE	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan II	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDD	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin aldehyde	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endosulfan sulfate	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
4,4´-DDT	0.0130	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Endrin ketone	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Methoxychlor	ND	0.0107		mg/Kg-dry	1	8/7/2017 7:14:34 PM
Surr: Decachlorobiphenyl	143	17.8 - 157		%Rec	1	8/7/2017 7:14:34 PM
Surr: Tetrachloro-m-xylene	130	11 - 150		%Rec	1	8/7/2017 7:14:34 PM
Herbicides by EPA Method 815	51A			Batch	1D: 1	7825 Analyst: BT
Dicamba	ND	37.2		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-D	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-DP	ND	26.6		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4,5-TP (Silvex)	ND	21.3		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4,5-T	ND	53.1		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dinoseb	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dalapon	ND	213		μg/Kg-dry	1	8/10/2017 3:15:56 AM
2,4-DB	ND	26.6		μg/Kg-dry	1	8/10/2017 3:15:56 AM
MCPP	ND	4,680		μg/Kg-dry	1	8/10/2017 3:15:56 AM
MCPA	ND	2,980		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Picloram	ND	53.1		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Bentazon	ND	37.2		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Chloramben	ND	21.3		μg/Kg-dry	1	8/10/2017 3:15:56 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 12:32:00 PM

Project: 707388

Lab ID: 1708018-002 **Matrix:** Soil

Client Sample ID: ISM-DU2-072617

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 17	7825 Analyst: BT
Acifluorfen	ND	85.0		μg/Kg-dry	1	8/10/2017 3:15:56 AM
3,5-Dichlorobenzoic acid	ND	42.5		μg/Kg-dry	1	8/10/2017 3:15:56 AM
4-Nitrophenol	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Dacthal (DCPA)	ND	31.9		μg/Kg-dry	1	8/10/2017 3:15:56 AM
Surr: 2,4-Dichlorophenylacetic acid	51.3	20.1 - 168		%Rec	1	8/10/2017 3:15:56 AM

Work Order: **1708018**Date Reported: **8/15/2017**

Client: Friedman & Bruya Collection Date: 7/26/2017 3:00:00 PM

Project: 707388

Lab ID: 1708018-003 **Matrix:** Soil

Client Sample ID: ISM-DU1-072617

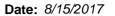
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by EPA	Method 80) <u>81</u>		Batch	ID:	17824 Analyst: SG
Toxaphene	ND	0.111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Alpha BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Beta BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Gamma BHC (Lindane)	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Delta BHC	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Heptachlor	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Aldrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Heptachlor epoxide	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
gamma-Chlordane	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan I	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
alpha-Chlordane	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Dieldrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDE	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan II	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDD	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin aldehyde	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endosulfan sulfate	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
4,4´-DDT	0.0163	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Endrin ketone	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Methoxychlor	ND	0.0111		mg/Kg-dry	1	8/7/2017 7:24:35 PM
Surr: Decachlorobiphenyl	8.48	17.8 - 157	S	%Rec	1	8/7/2017 7:24:35 PM
Surr: Tetrachloro-m-xylene	13.8	11 - 150		%Rec	1	8/7/2017 7:24:35 PM

NOTES:

S - Outlying surrogate recovery(ies) observed. All other laboratory and field samples recovered within range.

Herbicides by EPA Method 8151A			Batch	ID: 1	7825 Analyst: BT
Dicamba	ND	39.2	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-D	ND	33.6	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-DP	ND	28.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4,5-TP (Silvex)	ND	22.4	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4,5-T	ND	56.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dinoseb	ND	33.6	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dalapon	ND	224	μg/Kg-dry	1	8/10/2017 3:37:12 AM
2,4-DB	ND	28.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM
MCPP	ND	4,930	μg/Kg-dry	1	8/10/2017 3:37:12 AM
MCPA	ND	3,140	μg/Kg-dry	1	8/10/2017 3:37:12 AM
Picloram	ND	56.0	μg/Kg-dry	1	8/10/2017 3:37:12 AM

Work Order: **1708018**Date Reported: **8/15/2017**


Client: Friedman & Bruya Collection Date: 7/26/2017 3:00:00 PM

Project: 707388

Lab ID: 1708018-003 **Matrix:** Soil

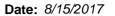
Client Sample ID: ISM-DU1-072617

Analyses	Result R		Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	1D: 1	7825 Analyst: BT
Bentazon	ND	39.2		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Chloramben	ND	22.4		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Acifluorfen	ND	89.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
3,5-Dichlorobenzoic acid	ND	44.8		μg/Kg-dry	1	8/10/2017 3:37:12 AM
4-Nitrophenol	ND	33.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Dacthal (DCPA)	ND	33.6		μg/Kg-dry	1	8/10/2017 3:37:12 AM
Surr: 2.4-Dichlorophenylacetic acid	56.8	20.1 - 168		%Rec	1	8/10/2017 3:37:12 AM

Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388


QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID MB-17825	SampType: MBL	K		Units: µg/Kg		Prep Date:	8/4/201	7	RunNo: 379	948	
Client ID: MBLKS	Batch ID: 1782	5				Analysis Date:	8/9/201	7	SeqNo: 729	9321	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	35.0									
2,4-D	ND	30.0									
2,4-DP	ND	25.0									
2,4,5-TP (Silvex)	ND	20.0									
2,4,5-T	ND	50.0									
Dinoseb	ND	30.0									
Dalapon	ND	200									
2,4-DB	ND	25.0									
MCPP	ND	4,400									
MCPA	ND	2,800									
Picloram	ND	50.0									
Bentazon	ND	35.0									
Chloramben	ND	20.0									
Acifluorfen	ND	80.0									
3,5-Dichlorobenzoic acid	ND	40.0									
4-Nitrophenol	ND	30.0									
Dacthal (DCPA)	ND	30.0									
Surr: 2,4-Dichlorophenylacetic acid	716		1,000		71.6	20.1	168				

Sample ID LCS-17825	SampType: LCS			Units: μg/Kg Prep Date: 8/4/2017			7	RunNo: 37948			
Client ID: LCSS	Batch ID: 17825				Analysis Date: 8/9/2017			SeqNo: 729322			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	160	35.0	200.0	0	80.2	24.7	141				
2,4-D	179	30.0	200.0	0	89.6	22.4	130				
2,4-DP	166	25.0	200.0	0	83.2	26.4	130				
2,4,5-TP (Silvex)	180	20.0	200.0	0	90.0	21.2	138				
2,4,5-T	165	50.0	200.0	0	82.6	22.8	144				
Dinoseb	140	30.0	200.0	0	69.8	5	165				
Dalapon	930	200	1,000	0	93.0	18.4	162				

Original Page 11 of 21

Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg		Prep Dat	te: 8/4/201	7	RunNo: 37 9	948	
Client ID: LCSS	Batch ID: 17825					Analysis Dat	te: 8/9/201	7	SeqNo: 729322		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,4-DB	190	25.0	200.0	0	94.8	5	164				
MCPP	826	4,400	1,000	0	82.6	22.2	157				
MCPA	883	2,800	1,000	0	88.3	47.4	128				
Picloram	171	50.0	200.0	0	85.7	5	175				
Bentazon	122	35.0	200.0	0	61.0	7.59	162				
Chloramben	64.5	20.0	200.0	0	32.3	5	147				
Acifluorfen	196	80.0	200.0	0	97.9	5	163				
3,5-Dichlorobenzoic acid	160	40.0	200.0	0	79.9	18.7	139				
4-Nitrophenol	146	30.0	200.0	0	73.0	5	163				
Dacthal (DCPA)	120	30.0	200.0	0	60.2	5	164				
Surr: 2,4-Dichlorophenylacetic acid	l 786		1,000		78.6	20.1	168				

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg/I	Kg-dry	Prep Date:	8/4/201	17	RunNo: 37 9	948	
Client ID: BATCH	Batch ID: 17825					Analysis Date:	8/10/20	017	SeqNo: 72 9	336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	32.6						0		30	
2,4-D	ND	27.9						0		30	
2,4-DP	ND	23.3						0		30	
2,4,5-TP (Silvex)	ND	18.6						0		30	
2,4,5-T	ND	46.5						0		30	
Dinoseb	ND	27.9						0		30	
Dalapon	ND	186						0		30	
2,4-DB	ND	23.3						0		30	
MCPP	ND	4,090						0		30	
MCPA	ND	2,610						0		30	
Picloram	ND	46.5						0		30	
Bentazon	ND	32.6						0		30	
Chloramben	ND	18.6						0		30	
Acifluorfen	ND	74.5						0		30	

Original Page 12 of 21

Date: 8/15/2017

Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg	/Kg-dry	Prep Date: 8/4/2017		RunNo: 37 9				
Client ID: BATCH	Batch ID: 1782	5	Anal				Analysis Date: 8/10/2017			SeqNo: 729336		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
3,5-Dichlorobenzoic acid	ND	37.2						0		30		
4-Nitrophenol	ND	27.9						0		30		
Dacthal (DCPA)	ND	27.9						0		30		
Surr: 2,4-Dichlorophenylacetic acid	451		930.7		48.4	20.1	168		0			

Sample ID 1707301-001AMS	SampType: MS			Units: µg/k	(g-dry	Prep Dat	te: 8/4/201	7	RunNo: 37948		
Client ID: BATCH	Batch ID: 17825					Analysis Da	te: 8/10/20	17	SeqNo: 729	337	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	154	35.7	204.3	0	75.6	31.9	118				
2,4-D	173	30.6	204.3	0	84.8	12.4	134				
2,4-DP	164	25.5	204.3	0	80.2	27.2	129				
2,4,5-TP (Silvex)	178	20.4	204.3	0	87.3	28.6	134				
2,4,5-T	153	51.1	204.3	0	74.7	13.1	147				
Dinoseb	208	30.6	204.3	0	102	10	179				
Dalapon	865	204	1,021	0	84.7	24.9	139				
2,4-DB	191	25.5	204.3	0	93.6	50.2	152				
MCPP	795	4,490	1,021	0	77.8	37.8	140				
MCPA	867	2,860	1,021	0	84.9	13.7	147				
Picloram	309	51.1	204.3	0	151	5	153				
Bentazon	153	35.7	204.3	0	75.1	15	140				
Chloramben	126	20.4	204.3	0	61.6	5	162				
Acifluorfen	251	81.7	204.3	0	123	15	140				
3,5-Dichlorobenzoic acid	157	40.9	204.3	0	77.0	10	164				
4-Nitrophenol	52.9	30.6	204.3	0	25.9	44.8	125				S
Dacthal (DCPA)	133	30.6	204.3	0	64.9	5	132				
Surr: 2,4-Dichlorophenylacetic acid	d 735		1,021		72.0	20.1	168				

NOTES:

Original Page 13 of 21

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Date: 8/15/2017

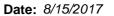
Work Order: 1708018

CLIENT: Friedman & Bruya

Project: 707388

QC SUMMARY REPORT

Herbicides by EPA Method 8151A


Sample ID 1707301-001AMSD	SampType	: MSD			Units: µg/l	Kg-dry	Prep Dat	e: 8/4/20 1	17	RunNo: 37 9	948	
Client ID: BATCH	Batch ID:	17825					Analysis Dat	e: 8/10/2 0)17	SeqNo: 729	9338	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		142	34.5	196.9	0	72.1	31.9	118	154.3	8.30	30	
2,4-D		161	29.5	196.9	0	81.6	12.4	134	173.1	7.42	30	
2,4-DP		146	24.6	196.9	0	73.9	27.2	129	163.8	11.8	30	
2,4,5-TP (Silvex)		159	19.7	196.9	0	81.0	28.6	134	178.3	11.1	30	
2,4,5-T		166	49.2	196.9	0	84.5	13.1	147	152.6	8.60	30	
Dinoseb		187	29.5	196.9	0	95.1	10	179	207.6	10.3	30	
Dalapon		875	197	984.5	0	88.9	24.9	139	864.6	1.18	30	
2,4-DB		175	24.6	196.9	0	88.9	50.2	152	191.3	8.80	30	
MCPP		789	4,330	984.5	0	80.1	37.8	140	0		30	
MCPA		867	2,760	984.5	0	88.0	13.7	147	0		30	
Picloram		270	49.2	196.9	0	137	5	153	308.9	13.5	30	
Bentazon		133	34.5	196.9	0	67.5	15	140	153.4	14.4	30	
Chloramben		81.5	19.7	196.9	0	41.4	5	162	125.8	42.7	30	R
Acifluorfen		200	78.8	196.9	0	102	15	140	251.4	22.8	30	
3,5-Dichlorobenzoic acid		146	39.4	196.9	0	74.0	10	164	157.3	7.61	30	
4-Nitrophenol		55.9	29.5	196.9	0	28.4	44.8	125	52.91	5.56	30	S
Dacthal (DCPA)		114	29.5	196.9	0	58.1	5	132	132.5	14.7	30	
Surr: 2,4-Dichlorophenylacetic acid	d	691		984.5		70.2	20.1	168		0		

NOTES:

Original Page 14 of 21

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recovery is within range.

Work Order: 1708018

Project:

Endrin aldehyde

4,4'-DDT

Endrin ketone

Methoxychlor

Endosulfan sulfate

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

ND

ND

ND

ND

ND

0.0480

0.0469

0.0100

0.0100

0.0100

0.0100

0.0100

0.05000

0.05000

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

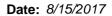
707388

Organochlorine Pesticides by EPA Method 8081

Sample ID TOX CCV A 17824	SampType: CC	V		Units: mg/L	•	Prep Da	ite: 8/7/20 1	17	RunNo: 378	836	
Client ID: CCV	Batch ID: 178	324				Analysis Da	ite: 8/7/20	17	SeqNo: 72	7576	
Analyte	Result	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	930	0.100	1,000	0	93.0	80	120				
Sample ID MB-17824	SampType: MB	BLK		Units: mg/Kg		Prep Da	ite: 8/4/20 1	17	RunNo: 378	836	
Client ID: MBLKS	Batch ID: 178	324				Analysis Da	ite: 8/7/20 1	17	SeqNo: 72	7577	
Analyte	Result	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	ND	0.100									
Alpha BHC	ND	0.0100									
Beta BHC	ND	0.0100									
Gamma BHC (Lindane)	ND	0.0100									
Delta BHC	ND	0.0100									
Heptachlor	ND	0.0100									
Aldrin	ND	0.0100									
Heptachlor epoxide	ND	0.0100									
gamma-Chlordane	ND	0.0100									
Endosulfan I	ND	0.0100									
alpha-Chlordane	ND	0.0100									
Dieldrin	ND	0.0100									
4,4´-DDE	ND	0.0100									
Endrin	ND	0.0100									
Endosulfan II	ND	0.0100									
4,4´-DDD	ND	0.0100									

Original Page 15 of 21

17.8


11

157

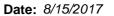
150

95.9

93.9

1708018 Work Order:

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

Organochlorine Pesticides by EPA Method 8081

Sample ID LCS-17824	SampType: LCS			Units: mg/Kg		Prep Date:	8/4/201	7	RunNo: 378	36	
Client ID: LCSS	Batch ID: 17824					Analysis Date:	8/7/201	7	SeqNo: 727	′578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.195	0.0100	0.2000	0	97.7	54.2	139				
Beta BHC	0.183	0.0100	0.2000	0	91.7	56.5	142				
Gamma BHC (Lindane)	0.195	0.0100	0.2000	0	97.5	55.5	142				
Delta BHC	0.193	0.0100	0.2000	0	96.6	47.4	157				
Heptachlor	0.209	0.0100	0.2000	0	105	50.9	153				
Aldrin	0.174	0.0100	0.2000	0	87.0	43.7	147				
Heptachlor epoxide	0.180	0.0100	0.2000	0	90.0	56.2	137				
gamma-Chlordane	0.172	0.0100	0.2000	0	86.1	58.5	136				
Endosulfan I	0.177	0.0100	0.2000	0	88.4	60	132				
alpha-Chlordane	0.173	0.0100	0.2000	0	86.6	46.1	140				
Dieldrin	0.177	0.0100	0.2000	0	88.6	61.2	133				
4,4´-DDE	0.187	0.0100	0.2000	0	93.4	55.4	142				
Endrin	0.181	0.0100	0.2000	0	90.4	56.5	143				
Endosulfan II	0.175	0.0100	0.2000	0	87.7	62	143				
4,4´-DDD	0.177	0.0100	0.2000	0	88.5	53.3	145				
Endrin aldehyde	0.168	0.0100	0.2000	0	83.8	39.5	153				
Endosulfan sulfate	0.181	0.0100	0.2000	0	90.3	53.8	148				
4,4´-DDT	0.208	0.0100	0.2000	0	104	48.2	152				
Endrin ketone	0.189	0.0100	0.2000	0	94.5	28.5	162				
Methoxychlor	0.222	0.0100	0.2000	0	111	34.6	159				
Surr: Decachlorobiphenyl	0.0516		0.05000		103	17.8	157				
Surr: Tetrachloro-m-xylene	0.0524		0.05000		105	11	150				
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-	drv	Prep Date:	8/4/201		RunNo: 378	36	

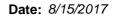
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/	Prep Date: 8/4/2017			RunNo: 378			
Client ID: BATCH	Batch ID: 17824					Analysis Date	e: 8/7/20	17	SeqNo: 72	7580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	ND	0.101						0		30	
Alpha BHC	ND	0.0101						0		30	
Beta BHC	ND	0.0101						0		30	

Page 16 of 21 Original

Work Order: 1708018

Project:

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

707388

Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001ADUP	SampType: DUP			Units: mg	/Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	836	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 72	7580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gamma BHC (Lindane)	ND	0.0101						0		30	
Delta BHC	ND	0.0101						0		30	
Heptachlor	ND	0.0101						0		30	
Aldrin	ND	0.0101						0		30	
Heptachlor epoxide	ND	0.0101						0		30	
gamma-Chlordane	ND	0.0101						0		30	
Endosulfan I	ND	0.0101						0		30	
alpha-Chlordane	ND	0.0101						0		30	
Dieldrin	ND	0.0101						0		30	
4,4´-DDE	ND	0.0101						0		30	
Endrin	ND	0.0101						0		30	
Endosulfan II	ND	0.0101						0		30	
4,4´-DDD	ND	0.0101						0		30	
Endrin aldehyde	ND	0.0101						0		30	
Endosulfan sulfate	ND	0.0101						0		30	
4,4´-DDT	ND	0.0101						0		30	
Endrin ketone	ND	0.0101						0		30	
Methoxychlor	ND	0.0101						0		30	
Surr: Decachlorobiphenyl	0.0471		0.05057		93.2	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0469		0.05057		92.8	11	150		0		
Sample ID 1707301-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	836	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 72	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.135	0.00929	0.1858	0	72.5	49.1	158				
Beta BHC	0.129	0.00929	0.1858	0	69.4	30.1	161				
Gamma BHC (Lindane)	0.136	0.00929	0.1858	0	73.2	40.5	158				
Delta BHC	0.136	0.00929	0.1858	0	73.0	31.5	153				
Heptachlor	0.147	0.00929	0.1858	0	79.0	37.9	156				

Original Page 17 of 21

Work Order: 1708018

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Organochlorine Pesticides by EPA Method 8081

Project: 707388						Org	anochloi	rine Pestic	ides by El	PA Metho	od 8081
Sample ID 1707301-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Dat	e: 8/4/201 7	7	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	sis Date: 8/7/2017		SeqNo: 727		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aldrin	0.121	0.00929	0.1858	0	64.9	41.9	130				
Heptachlor epoxide	0.128	0.00929	0.1858	0	68.9	41	161				
gamma-Chlordane	0.124	0.00929	0.1858	0	66.5	40.9	132				
Endosulfan I	0.126	0.00929	0.1858	0	68.0	44.7	162				
alpha-Chlordane	0.125	0.00929	0.1858	0	67.2	41.4	132				
Dieldrin	0.128	0.00929	0.1858	0	69.0	43.9	155				
4,4´-DDE	0.136	0.00929	0.1858	0	73.1	34	166				
Endrin	0.134	0.00929	0.1858	0	72.1	50.5	166				
Endosulfan II	0.134	0.00929	0.1858	0	72.3	37.9	154				
4,4´-DDD	0.135	0.00929	0.1858	0	72.4	38.9	144				
Endrin aldehyde	0.125	0.00929	0.1858	0	67.5	38.3	156				
Endosulfan sulfate	0.135	0.00929	0.1858	0	72.7	25.2	144				
4,4´-DDT	0.163	0.00929	0.1858	0	87.7	38.4	160				
Endrin ketone	0.148	0.00929	0.1858	0	79.8	40.2	119				
Methoxychlor	0.185	0.00929	0.1858	0	99.5	43.4	178				
Surr: Decachlorobiphenyl	0.0441		0.04645		94.9	17.8	157				
Surr: Tetrachloro-m-xylene	0.0372		0.04645		80.1	11	150				

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 8/4/20 1	17	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Da	te: 8/7/20 1	17	SeqNo: 72	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.140	0.00954	0.1907	0	73.3	49.1	158	0.1347	3.73	30	
Beta BHC	0.130	0.00954	0.1907	0	68.1	30.1	161	0.1289	0.700	30	
Gamma BHC (Lindane)	0.140	0.00954	0.1907	0	73.4	40.5	158	0.1360	2.85	30	
Delta BHC	0.135	0.00954	0.1907	0	70.5	31.5	153	0.1357	0.890	30	
Heptachlor	0.153	0.00954	0.1907	0	80.1	37.9	156	0.1468	3.97	30	
Aldrin	0.124	0.00954	0.1907	0	65.2	41.9	130	0.1206	3.10	30	
Heptachlor epoxide	0.130	0.00954	0.1907	0	68.3	41	161	0.1280	1.81	30	
gamma-Chlordane	0.125	0.00954	0.1907	0	65.4	40.9	132	0.1235	0.975	30	

Page 18 of 21 Original

Date: 8/15/2017

Work Order: 1708018

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

707388

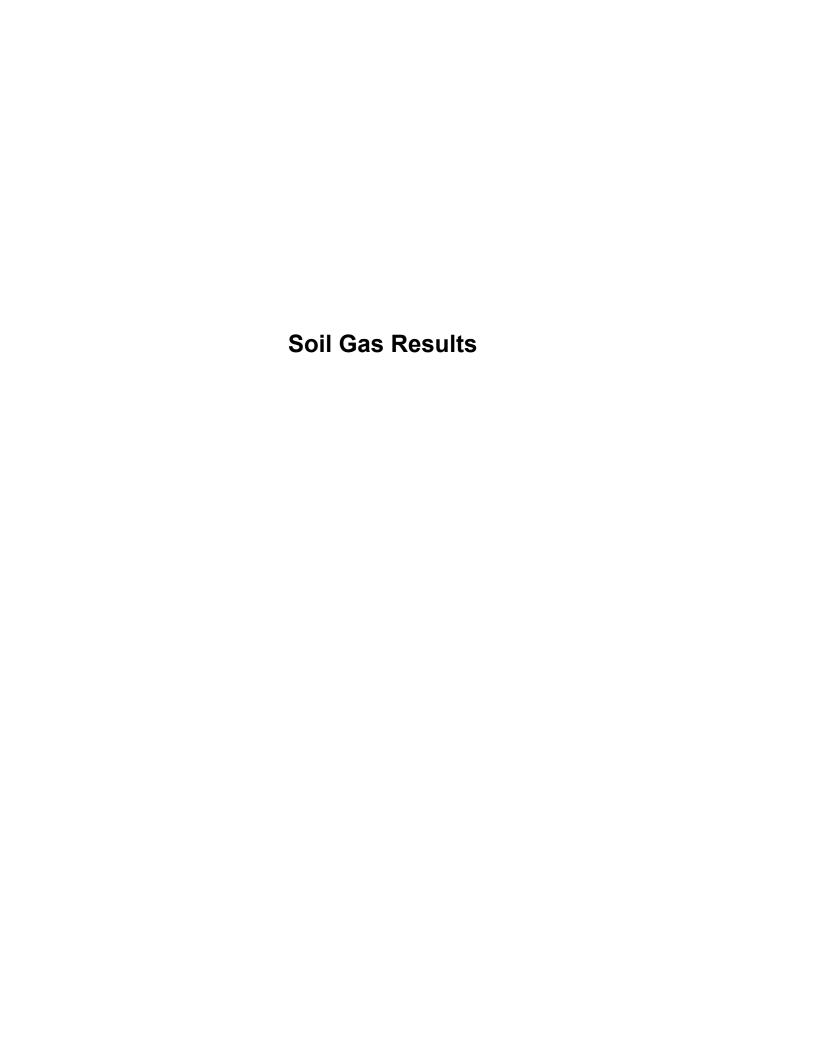
Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Dat	e: 8/4/20 1	7	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Dat	e: 8/7/20 1	7	SeqNo: 727	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Endosulfan I	0.127	0.00954	0.1907	0	66.4	44.7	162	0.1264	0.211	30	
alpha-Chlordane	0.126	0.00954	0.1907	0	66.0	41.4	132	0.1248	0.909	30	
Dieldrin	0.127	0.00954	0.1907	0	66.6	43.9	155	0.1282	0.926	30	
4,4´-DDE	0.135	0.00954	0.1907	0	70.6	34	166	0.1358	0.768	30	
Endrin	0.131	0.00954	0.1907	0	68.5	50.5	166	0.1341	2.50	30	
Endosulfan II	0.126	0.00954	0.1907	0	65.9	37.9	154	0.1344	6.61	30	
4,4´-DDD	0.128	0.00954	0.1907	0	67.2	38.9	144	0.1345	4.88	30	
Endrin aldehyde	0.109	0.00954	0.1907	0	57.1	38.3	156	0.1254	14.1	30	
Endosulfan sulfate	0.122	0.00954	0.1907	0	63.8	25.2	144	0.1351	10.5	30	
4,4´-DDT	0.154	0.00954	0.1907	0	81.0	38.4	160	0.1630	5.34	30	
Endrin ketone	0.133	0.00954	0.1907	0	69.7	40.2	119	0.1483	11.0	30	
Methoxychlor	0.168	0.00954	0.1907	0	88.0	43.4	178	0.1849	9.64	30	
Surr: Decachlorobiphenyl	0.0354		0.04769		74.3	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0372		0.04769		78.1	11	150		0		

Original Page 19 of 21

Sample Log-In Check List

С	lient Name:	FB				Work Order	r Number:	1708018	3	
Lo	ogged by:	Clare Grig	gs			Date Recei	ved:	8/1/2017	7 12:19:00 PM	
<u>Cha</u>	in of Cust	ody								
1.	Is Chain of C	ustody comp	olete?			Yes 🗸]	No 🗌	Not Present	
2.	How was the	sample deliv	vered?			<u>FedEx</u>				
Log	ı İn									
_	Coolers are p	present?				Yes 🗸]	No 🗌	NA \square	
4.	Shipping con	tainer/cooler	in good condition	1?		Yes 🗸]	No 🗌		
5.			shipping contain ustody Seals not			Yes		No 🗌	Not Required ✓	
6.	Was an atter	npt made to	cool the samples	?		Yes 🗸]	No 🗌	NA \square	
7.	Were all item	s received a	t a temperature o	f >0°C to 10	.0°C*	Yes 🗸]	No 🗆	NA 🗌	
8.	Sample(s) in	proper conta	ainer(s)?			Yes 🗸]	No 🗌		
9.	Sufficient sar	nple volume	for indicated test	(s)?		Yes 🗸]	No 🗌		
10.	Are samples	properly pre	served?			Yes 🗸		No 🗌		
11.	Was preserva	ative added t	to bottles?			Yes]	No 🗸	NA 🗌	
12.	Is there head	space in the	VOA vials?			Yes]	No 🗌	NA 🗸	
13.	Did all sampl	es container	s arrive in good c	ondition(unb	roken)?	Yes 🗸		No 🗌		
14.	Does paperw	ork match be	ottle labels?			Yes 🗸		No \square		
15.	Are matrices	correctly ide	ntified on Chain o	of Custody?		Yes 🗸]	No 🗌		
16.	Is it clear wha	at analyses v	vere requested?			Yes 🗸]	No 🗌		
17.	Were all hold	ling times ab	le to be met?			Yes 🗸		No 🗌		
Spe	cial Handl	ing (if apr	olicable)							
-			liscrepancies with	this order?		Yes]	No 🗌	NA 🗸	
	Person	Notified:			Date					
	By Who	m:			Via:	eMail	Phone	Fax	☐ In Person	
	Regardi	ng:								
	Client Ir	structions:								
19.	Additional rer	marks:								
<u>Item</u>	<u>Information</u>									
		Item #		Temp ⁰C						
	Cooler			4.6						


2.7

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98119-2029 Received by:	Relinquisherby: Michael Erdahl	Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY							k 500. 4	7/26/17 1232 / 3	TSM-DN3-672517 7/25/17 1407 Sb. 3	Sample ID Lab ID Date Time Matrix # of Dioxins/Furans EPH VPH Nitrate Sulfate Alkalinity TOC-9060M Chloriasted Perfectles	ANALYSES REQUESTED	Phone # (206) 285-8282 Fax # (206) 283-5044	3	10	3012 16th Ave W 707 \$88 F. 26 e, ZIP_Seattle, WA 98119 REMARKS	y Friedman and Bruya, Inc. 3012 16th Ave W ate, ZIP Seattle, WA 98119 PROJECT NAME/NO. PO# 707388 F.26
			Friedman and Bruya	COMPANY							_			Sulfate Alkalinity TOC-9060M Chloriagted		□ Ret □ Wil				#
8017 126			N 41/1/8	DATE TIME				por completion	be forward of	Dry Weight wil	×		الم زم وسد ساما	Herbicides Dioxinstrans Notes		Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	0	rges authorized by:	Standard (2 Weeks) RUSH ush charges authorized by:

	3 84 2	,													. *	V						
	Ph. (206) 285-8282 Reco	Seattle, WA 98119-2029 Reli	T	ć I		0.619260-119800	1926-89-811	Du2-67-07617	Du2-17-072617	Du2-12-072617	Du3-P3-072617	DU3-P7-072617	ISm-DU1-072617	TSM-DUZ-072617	ISM-DU3-672517	Sample ID		City, State, ZIP Latt	Address Address	Arrat 1	707300	ののの。七ヶ人
	Received by:	Relinquished by:	Received by:	Remidusined by:	QIS	5/210	C _A	08	07	96	05 (OH A D	7 03	180	0.1	Lab ID		o OA	Tartiner	nane 4		4.5
de la la la la la la la la la la la la la			λ,	とが	GNATURE TO	4							7/20/17	FIBOLE	7/25/17	Date Sampled		Tice		actator))	
				Ž.		1503	15/7	1527	1539	1545	1556	1605	7282	1232	1407	Time Sampled		REMARKS	Shelton (PROJECT NAME	SAMPLE CHAIN OF CUSTODY	e e
	* 2					(De la constantina		258	3108	Sel/	Sample Type		83	In C	TNAM	CHAI RS (sign	
90	2			TIS I	PRI			<u></u>	=	F	F	-2-			\	# of Jars			Sheet		N OF	
10	۱ کا	c	Jax exic	3	PRINT NAME		\$									TPH-HCID			tot	Ç	N g	
			جر	Bec	AME	2		-		3 2			×	×	×	TPH-Diesel		ι,	2	2	OES	
			: 	X		<u>K</u>		۴	×	<u>×</u>	<u>×</u>	Χ.	×	×	×	TPH-Gasoline			A.	R	, DX	
						×	K	×	X	*	*	X				BTEX by 8021B VOCs by 8260C	ANAL		~	-Q	<i>5</i>	
							10.2				4	460,000,000	\times	\overline{x}	×	SVOCs by 8270D	ALYS	INVOICE TO	5		1 17	1
1	tı	Ī	こう	X		\ \ \ \		. ·									热	2 4 B	B	# 0P	74.	
7		1	8	Z	COMPANY								X	X	X	PAHS 8270D SIM TOM PCBI Dioxins/Auran	DQU	12 3 B	1/1		ME 07-27-17) ()
1)			1	PAN		San						\neq	X	X	Dioxins/Airan	TI SH			<u> </u>		
					7		Samples	¥					X	×	\times	chlorinated pest	-		RUSH	Stan	_ [-	
													×	×	Х,	herbicides		SAMI ose at ive S	H_	TURN	Page #	
t-17-17	•		7-17-17	th Hind	DATE	adoled in	received at									Notes		SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other	□ RUSH	AROUND	1524/	5
7.40	>		240 m	-	HMIL	in leb	į V	ა								Ö		SAL	d by:	IME	7/2/2	
<u>l</u>	= 1		\$		R	<u>&</u>	<u> </u>														12 July 20	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 8, 2019

Carla Brock, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Brock:

Included are the results from the testing of material submitted on December 21, 2018 from the Shelton C St. Landfill 150074, F&BI 812315 project. There are 17 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Kristin Beck

ASP0108R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C St. Landfill 150074, F&BI 812315 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
812315 -01	SG-1-121918
812315 -02	SG-2-121918
812315 -03	SG-3-121918
812315 -04	SG-4-121918
812315 -05	SG-5-121918
812315 -06	Ambient-121918

Samples SG-1-121918, SG-2-121918, SG-3-121918, SG-4-121918, and SG-5-121918 were sent to Fremont Analytical for methane analysis. The report is enclosed.

Several analytes exceeded the calibration range. The data were flagged accordingly.

2-Propanol the TO-15 laboratory control sample failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SG-1-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-01 1/7.5 Date Analyzed: 01/03/19 Data File: 010228.D Matrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit:

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 79 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 6,300 APH EC9-12 aliphatics 330 APH EC9-10 aromatics <190

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SG-2-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-02 1/1.6 Date Analyzed: 01/03/19 Data File: 010225.D Matrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 410 APH EC9-12 aliphatics 110 APH EC9-10 aromatics <40

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SG-3-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-03 1/1.5 Date Analyzed: 01/03/19 Data File: 010226.D Matrix: Instrument: GCMS7 Air Units: ug/m3 Operator: MS/BAT

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 84 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 910 APH EC9-12 aliphatics 550 APH EC9-10 aromatics <37

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SG-4-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-04 1/14.6

Date Analyzed: 01/03/19 Data File: 010229.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MS/BAT

% Lower Upper

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 83 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 23,000 ve APH EC9-12 aliphatics 1,200 APH EC9-10 aromatics <360

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SG-5-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-05 1/1.5 Date Analyzed: Data File: 01/03/19 010227.D Matrix: Instrument: GCMS7 Air ug/m3 Units: Operator: MS/BAT

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 540 APH EC9-12 aliphatics 250 APH EC9-10 aromatics <37

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: Not Applicable Lab ID: 09-004 mb 01/02/19 Date Analyzed: Data File: 010208.D Matrix: Air Instrument: GCMS7 ug/m3 Units: Operator: MS/BAT

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <46
APH EC9-12 aliphatics <35
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Lower Limit:

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Upper

Limit:

 Date Collected:
 12/19/18
 Lab ID:
 812315-01 1/7.5

 Date Analyzed:
 01/03/19
 Data File:
 010228.D

 Matrix:
 Air
 Instrument:
 CCMS7

Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

%

Recovery:

Surrogates:

4-Bromofluorobenzene	8 6	70	130		
	Concent	tration			
	Concent	tration			
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	560 ve	330 ve	1,2-Dichloropropane	<1.7	< 0.37
Dichlorodifluoromethane	7.8	1.6	1,4-Dioxane	<2.7	< 0.75
Chloromethane	<15	< 7.5	2,2,4-Trimethylpentane	<35	< 7.5
F-114	15	2.2	Methyl methacrylate	<31	< 7.5
Vinyl chloride	<1.9	< 0.75	Heptane	230	57
1,3-Butadiene	< 0.17	< 0.075	Bromodichloromethane	< 0.5	< 0.075
Butane	2,100 ve	870 ve	Trichloroethene	8.4	1.6
Bromomethane	<12	<3	cis-1,3-Dichloropropene	< 3.4	< 0.75
Chloroethane	<20	< 7.5	4-Methyl-2-pentanone	<31	< 7.5
Vinyl bromide	<3.3	< 0.75	trans-1,3-Dichloropropene	< 3.4	< 0.75
Ethanol	760 ve	400 ve	Toluene	19	5.2
Acrolein	< 6.9	<3	1,1,2-Trichloroethane	< 0.82	< 0.15
Pentane	1,800 ve	620 ve	2-Hexanone	<31	< 7.5
Trichlorofluoromethane	<17	<3	Tetrachloroethene	120	17
Acetone	<36	<15	Dibromochloromethane	< 0.64	< 0.075
2-Propanol	<65 jl	<26 jl	1,2-Dibromoethane (EDB)	< 0.58	< 0.075
1,1-Dichloroethene	<3	< 0.75	Chlorobenzene	< 3.5	< 0.75
trans-1,2-Dichloroethene	<3	< 0.75	Ethylbenzene	4.9	1.1
Methylene chloride	<650	<190	1,1,2,2-Tetrachloroethane	<1	< 0.15
t-Butyl alcohol (TBA)	<91	<30	Nonane	<39	< 7.5
3-Chloropropene	< 9.4	<3	Isopropylbenzene	<18	< 3.7
CFC-113	< 5.7	< 0.75	2-Chlorotoluene	<39	< 7.5
Carbon disulfide	<47	<15	Propylbenzene	<18	< 3.7
Methyl t-butyl ether (MTB)	E) <14	< 3.7	4-Ethyltoluene	<18	< 3.7
Vinyl acetate	<53	<15	m,p-Xylene	8.8	2.0
1,1-Dichloroethane	<3	< 0.75	o-Xylene	<3.3	< 0.75
cis-1,2-Dichloroethene	<3	< 0.75	Styrene	< 6.4	<1.5
Hexane	790 ve	220 ve	Bromoform	<16	<1.5
Chloroform	< 0.37	< 0.075	Benzyl chloride	< 0.39	< 0.075
Ethyl acetate	< 54	<15	1,3,5-Trimethylbenzene	<18	< 3.7
Tetrahydrofuran	<2.2	< 0.75	1,2,4-Trimethylbenzene	<18	< 3.7
2-Butanone (MEK)	<22	< 7.5	1,3-Dichlorobenzene	< 4.5	< 0.75
1,2-Dichloroethane (EDC)	< 0.3	< 0.075	1,4-Dichlorobenzene	<1.8	< 0.3
1,1,1-Trichloroethane	<4.1	< 0.75	1,2-Dichlorobenzene	<4.5	< 0.75
Carbon tetrachloride	<4.7	< 0.75	1,2,4-Trichlorobenzene	< 5.6	< 0.75
Benzene	62	19	Naphthalene	< 3.9	< 0.75
Cyclohexane	<52	<15	Hexachlorobutadiene	<1.6	< 0.15

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG-2-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-02 1/1.6 Date Analyzed: 01/03/19 Data File: 010225.D

Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MS/BAT

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	97	70	130

	Concen				
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	76 ve	44 ve	1,2-Dichloropropane	< 0.37	< 0.08
Dichlorodifluoromethane	3.8	0.76	1,4-Dioxane	< 0.58	< 0.16
Chloromethane	<3.3	<1.6	2,2,4-Trimethylpentane	< 7.5	<1.6
F-114	1.2	0.17	Methyl methacrylate	< 6.6	<1.6
Vinyl chloride	< 0.41	< 0.16	Heptane	16	3.9
1,3-Butadiene	< 0.035	< 0.016	Bromodichloromethane	< 0.11	< 0.016
Butane	81	34	Trichloroethene	< 0.43	< 0.08
Bromomethane	< 2.5	< 0.64	cis-1,3-Dichloropropene	< 0.73	< 0.16
Chloroethane	<4.2	<1.6	4-Methyl-2-pentanone	< 6.6	<1.6
Vinyl bromide	< 0.7	< 0.16	trans-1,3-Dichloropropene	< 0.73	< 0.16
Ethanol	<12	< 6.4	Toluene	9.9	2.6
Acrolein	4.5	2.0	1,1,2-Trichloroethane	< 0.17	< 0.032
Pentane	44	15	2-Hexanone	< 6.6	<1.6
Trichlorofluoromethane	< 3.6	< 0.64	Tetrachloroethene	100	15
Acetone	140 ve	58 ve	Dibromochloromethane	< 0.14	< 0.016
2-Propanol	<14 jl	<5.6 jl	1,2-Dibromoethane (EDB)	< 0.12	< 0.016
1,1-Dichloroethene	< 0.63	< 0.16	Chlorobenzene	< 0.74	< 0.16
trans-1,2-Dichloroethene	< 0.63	< 0.16	Ethylbenzene	5.0	1.1
Methylene chloride	<140	<40	1,1,2,2-Tetrachloroethane	< 0.22	< 0.032
t-Butyl alcohol (TBA)	<19	< 6.4	Nonane	< 8.4	<1.6
3-Chloropropene	<2	< 0.64	Isopropylbenzene	< 3.9	< 0.8
CFC-113	<1.2	< 0.16	2-Chlorotoluene	<8.3	<1.6
Carbon disulfide	<10	< 3.2	Propylbenzene	< 3.9	< 0.8
Methyl t-butyl ether (MTBE)	< 2.9	< 0.8	4-Ethyltoluene	< 3.9	< 0.8
Vinyl acetate	<11	< 3.2	m,p-Xylene	24	5.4
1,1-Dichloroethane	< 0.65	< 0.16	o-Xylene	8.8	2.0
cis-1,2-Dichloroethene	< 0.63	< 0.16	Styrene	<1.4	< 0.32
Hexane	27	7.7	Bromoform	< 3.3	< 0.32
Chloroform	0.17	0.035	Benzyl chloride	< 0.083	< 0.016
Ethyl acetate	<12	< 3.2	1,3,5-Trimethylbenzene	< 3.9	< 0.8
Tetrahydrofuran	< 0.47	< 0.16	1,2,4-Trimethylbenzene	< 3.9	< 0.8
2-Butanone (MEK)	23	7.8	1,3-Dichlorobenzene	< 0.96	< 0.16
1,2-Dichloroethane (EDC)	< 0.065	< 0.016	1,4-Dichlorobenzene	< 0.38	< 0.064
1,1,1-Trichloroethane	< 0.87	< 0.16	1,2-Dichlorobenzene	< 0.96	< 0.16
Carbon tetrachloride	<1	< 0.16	1,2,4-Trichlorobenzene	<1.2	< 0.16
Benzene	7.3	2.3	Naphthalene	< 0.84	< 0.16
Cyclohexane	17	4.8	Hexachlorobutadiene	< 0.34	< 0.032

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG-3-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-03 1/1.5
Date Analyzed: 01/03/19 Data File: 010226.D

Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

	Concen				
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	230 ve	130 ve	1,2-Dichloropropane	< 0.35	< 0.075
Dichlorodifluoromethane	30	6.1	1,4-Dioxane	< 0.54	< 0.15
Chloromethane	< 3.1	<1.5	2,2,4-Trimethylpentane	<7	<1.5
F-114	33	4.7	Methyl methacrylate	< 6.1	<1.5
Vinyl chloride	< 0.38	< 0.15	Heptane	30	7.2
1,3-Butadiene	< 0.033	< 0.015	Bromodichloromethane	< 0.1	< 0.015
Butane	150 ve	65 ve	Trichloroethene	< 0.4	< 0.075
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.68	< 0.15
Chloroethane	<4	<1.5	4-Methyl-2-pentanone	< 6.1	<1.5
Vinyl bromide	< 0.66	< 0.15	trans-1,3-Dichloropropene	< 0.68	< 0.15
Ethanol	<11	<6	Toluene	26	6.9
Acrolein	9.8	4.3	1,1,2-Trichloroethane	< 0.16	< 0.03
Pentane	77	26	2-Hexanone	< 6.1	<1.5
Trichlorofluoromethane	5.3	0.94	Tetrachloroethene	67	9.9
Acetone	200 ve	84 ve	Dibromochloromethane	< 0.13	< 0.015
2-Propanol	<13 jl	<5.2 jl	1,2-Dibromoethane (EDB)	< 0.12	< 0.015
1,1-Dichloroethene	< 0.59	< 0.15	Chlorobenzene	< 0.69	< 0.15
trans-1,2-Dichloroethene	< 0.59	< 0.15	Ethylbenzene	4.9	1.1
Methylene chloride	<130	<37	1,1,2,2-Tetrachloroethane	< 0.21	< 0.03
t-Butyl alcohol (TBA)	<18	<6	Nonane	16	3.0
3-Chloropropene	<1.9	< 0.6	Isopropylbenzene	< 3.7	< 0.75
CFC-113	<1.1	< 0.15	2-Chlorotoluene	< 7.8	<1.5
Carbon disulfide	< 9.3	<3	Propylbenzene	< 3.7	< 0.75
Methyl t-butyl ether (MTBE)	< 2.7	< 0.75	4-Ethyltoluene	< 3.7	< 0.75
Vinyl acetate	<11	<3	m,p-Xylene	9.1	2.1
1,1-Dichloroethane	< 0.61	< 0.15	o-Xylene	2.9	0.67
cis-1,2-Dichloroethene	< 0.59	< 0.15	Styrene	<1.3	< 0.3
Hexane	51	15	Bromoform	< 3.1	< 0.3
Chloroform	0.94	0.19	Benzyl chloride	< 0.078	< 0.015
Ethyl acetate	<11	<3	1,3,5-Trimethylbenzene	< 3.7	< 0.75
Tetrahydrofuran	< 0.44	< 0.15	1,2,4-Trimethylbenzene	< 3.7	< 0.75
2-Butanone (MEK)	37	13	1,3-Dichlorobenzene	< 0.9	< 0.15
1,2-Dichloroethane (EDC)	0.27	0.067	1,4-Dichlorobenzene	< 0.36	< 0.06
1,1,1-Trichloroethane	< 0.82	< 0.15	1,2-Dichlorobenzene	< 0.9	< 0.15
Carbon tetrachloride	1.8	0.28	1,2,4-Trichlorobenzene	<1.1	< 0.15
Benzene	26	8.1	Naphthalene	< 0.79	< 0.15
Cyclohexane	26	7.7	Hexachlorobutadiene	< 0.32	< 0.03

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG-4-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-04 1/14.6

Date Analyzed: 01/03/19 Data File: 010229.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MS/BAT

Conce	ntr	ation	ì
_			

		tration			
C		itration	C	1/0	
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	5,500 ve	3,200 ve	1,2-Dichloropropane	< 3.4	< 0.73
Dichlorodifluoromethane	13	2.7	1,4-Dioxane	< 5.3	<1.5
Chloromethane	<30	<15	2,2,4-Trimethylpentane	<68	<15
F-114	17	2.5	Methyl methacrylate	<60	<15
Vinyl chloride	20	8.0	Heptane	1,100	270
1,3-Butadiene	< 0.32	< 0.15	Bromodichloromethane	< 0.98	< 0.15
Butane	4,200 ve	1,800 ve	Trichloroethene	5.7	1.1
Bromomethane	<23	< 5.8	cis-1,3-Dichloropropene	< 6.6	<1.5
Chloroethane	<39	<15	4-Methyl-2-pentanone	<60	<15
Vinyl bromide	< 6.4	<1.5	trans-1,3-Dichloropropene	< 6.6	<1.5
Ethanol	<110	< 58	Toluene	160	44
Acrolein	<13	< 5.8	1,1,2-Trichloroethane	< 1.6	< 0.29
Pentane	3,100 ve	1,100 ve	2-Hexanone	<60	<15
Trichlorofluoromethane	<33	< 5.8	Tetrachloroethene	<99	<15
Acetone	410	170	Dibromochloromethane	<1.2	< 0.15
2-Propanol	<130 jl	<51 jl	1,2-Dibromoethane (EDB)	<1.1	< 0.15
1,1-Dichloroethene	< 5.8	<1.5	Chlorobenzene	< 6.7	<1.5
trans-1,2-Dichloroethene	< 5.8	<1.5	Ethylbenzene	15	3.5
Methylene chloride	<1,300	<360	1,1,2,2-Tetrachloroethane	<2	< 0.29
t-Butyl alcohol (TBA)	<180	< 58	Nonane	170	32
3-Chloropropene	<18	< 5.8	Isopropylbenzene	<36	<7.3
CFC-113	<11	<1.5	2-Chlorotoluene	<76	<15
Carbon disulfide	230	73	Propylbenzene	<36	<7.3
Methyl t-butyl ether (MTBI	E) <26	<7.3	4-Ethyltoluene	<36	< 7.3
Vinyl acetate	<100	<29	m,p-Xylene	32	7.4
1,1-Dichloroethane	< 5.9	<1.5	o-Xylene	12	2.7
cis-1,2-Dichloroethene	< 5.8	<1.5	Styrene	<12	< 2.9
Hexane	1,900 ve	540 ve	Bromoform	<30	< 2.9
Chloroform	< 0.71	< 0.15	Benzyl chloride	< 0.76	< 0.15
Ethyl acetate	<110	<29	1,3,5-Trimethylbenzene	<36	< 7.3
Tetrahydrofuran	<4.3	<1.5	1,2,4-Trimethylbenzene	<36	< 7.3
2-Butanone (MEK)	180	60	1,3-Dichlorobenzene	<8.8	<1.5
1,2-Dichloroethane (EDC)	< 0.59	< 0.15	1,4-Dichlorobenzene	< 3.5	< 0.58
1,1,1-Trichloroethane	<8	<1.5	1,2-Dichlorobenzene	<8.8	<1.5
Carbon tetrachloride	< 9.2	<1.5	1,2,4-Trichlorobenzene	<11	<1.5
Benzene	220	69	Naphthalene	<7.7	<1.5
Cyclohexane	170	50	Hexachlorobutadiene	<3.1	< 0.29
·					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG-5-121918 Client: Aspect Consulting, LLC

Date Received: 12/21/18 Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: 12/19/18 Lab ID: 812315-05 1/1.5
Date Analyzed: 01/03/19 Data File: 010227.D

Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

Concentration Concentration Compounds: Compounds: ug/m3 ppbv ug/m3 ppbv Propene 380 ve 220 ve 1,2-Dichloropropane < 0.35 < 0.075 Dichlorodifluoromethane 1,4-Dioxane 31 6.3 < 0.54 < 0.15 Chloromethane 2,2,4-Trimethylpentane < 3.1 < 1.5 <7 < 1.5 F-114 180 26 Methyl methacrylate < 6.1 < 1.5 Vinyl chloride 2.2 0.85 Heptane 8.2 2.0 Bromodichloromethane 1,3-Butadiene < 0.033 < 0.015 < 0.1 < 0.015 Butane 300 ve 130 ve Trichloroethene 4.3 0.79 Bromomethane < 0.6 cis-1.3-Dichloropropene < 0.68 < 2.3 < 0.15 Chloroethane <1.5 4-Methyl-2-pentanone < 6.1 <4 < 1.5 Vinvl bromide < 0.15 trans-1,3-Dichloropropene < 0.15 < 0.66 < 0.68 Ethanol <11 <6 Toluene 34 9.1 Acrolein < 0.6 1.1.2-Trichloroethane <1.4 < 0.16 < 0.03 Pentane 2-Hexanone 61 21 < 6.1 < 1.5 Trichlorofluoromethane Tetrachloroethene < 3.4 < 0.6 14 2.0 Acetone < 7.1 <3 Dibromochloromethane < 0.13 < 0.015 1.2-Dibromoethane (EDB) 2-Propanol <13 jl <5.2 jl < 0.12 < 0.015 1,1-Dichloroethene Chlorobenzene 1.3 0.34 0.70 0.15 Ethylbenzene trans-1,2-Dichloroethene < 0.59 < 0.15 8.0 1.8 Methylene chloride <130 <37 1,1,2,2-Tetrachloroethane < 0.21 < 0.03 t-Butyl alcohol (TBA) <18 <6 Nonane < 7.9 < 1.5 3-Chloropropene < 0.6 Isopropylbenzene < 3.7 < 0.75 < 1.9 2-Chlorotoluene CFC-113 <1.1 < 0.15 < 7.8 < 1.5 Propylbenzene Carbon disulfide < 3.7 < 0.75 < 9.3 <3 4-Ethyltoluene Methyl t-butyl ether (MTBE) < 2.7 < 0.75 < 3.7 < 0.75 m,p-Xylene Vinyl acetate <11 <3 12 2.7 1.1-Dichloroethane 0.21 o-Xylene 0.87 4.0 0.93 cis-1.2-Dichloroethene 0.88 Styrene <1.3 < 0.3 3.5 Hexane 20 5.6 Bromoform < 3.1 < 0.3 0.085 fb 0.016 fb < 0.073 < 0.015 Benzyl chloride Chloroform Ethvl acetate 1.3.5-Trimethylbenzene <11 <3 < 3.7 < 0.75 Tetrahydrofuran < 0.15 1.2.4-Trimethylbenzene < 0.75 < 0.44 < 3.7 2-Butanone (MEK) <1.5 1.3-Dichlorobenzene < 0.15 <4.4 < 0.9 1.2-Dichloroethane (EDC) 1.4-Dichlorobenzene < 0.061 < 0.015 < 0.36 < 0.06 1.1.1-Trichloroethane < 0.82 < 0.15 1.2-Dichlorobenzene < 0.9 < 0.15 Carbon tetrachloride 1,2,4-Trichlorobenzene < 0.94 < 0.15 <1.1 < 0.15 12 Naphthalene Benzene 38 < 0.79 < 0.15 Cyclohexane <10 <3 Hexachlorobutadiene < 0.32 < 0.03

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C St. Landfill 150074, F&BI 812315

Date Collected: Not Applicable Lab ID: 09-004 mb
Date Analyzed: 01/02/19 Data File: 010208.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: MS/BAT

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concent				centration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	< 0.69	< 0.4	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	<0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<2.1	<1	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.022	< 0.01	Bromodichloromethane	< 0.067	< 0.01
Butane	<2.4	<1	Trichloroethene	< 0.27	< 0.05
Bromomethane	<1.6	< 0.4	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluene	< 0.38	< 0.1
Acrolein	< 0.92	< 0.4	1,1,2-Trichloroethane	< 0.11	< 0.02
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	<2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6 jl	<3.5 jl	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<87	<25	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.3	< 0.4	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.24	< 0.04
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.63	< 0.1	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.52	< 0.1
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/19 Date Received: 12/21/18

Project: Shelton C St. Landfill 150074, F&BI 812315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 812391-03 1/1.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	430	420	2
APH EC9-12 aliphatics	ug/m3	140	150	7
APH EC9-10 aromatics	ug/m3	<40	<40	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	45	73	70-130
APH EC9-12 aliphatics	ug/m3	45	92	70-130
APH EC9-10 aromatics	ug/m3	45	86	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/19 Date Received: 12/21/18

Project: Shelton C St. Landfill 150074, F&BI 812315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ppbv	5	83	70-130
Dichlorodifluoromethane	ppbv	5	95	70-130
Chloromethane	ppbv	5	85	70-130
F-114	ppbv	5	111	70-130
Vinyl chloride	ppbv	5	94	70-130
1,3-Butadiene	ppbv	5	94	70-130
Butane	ppbv	5	90	70-130
Bromomethane	ppbv	5	113	70-130
Chloroethane	ppbv	5	99	70-130
Vinyl Bromide	ppbv	5	108	70-130
Ethanol	ppbv	5	81	70-130
Acrolein	ppbv	5	97	70-130
Pentane	ppbv	5	82	70-130
Trichlorofluoromethane	ppbv	5	101	70-130
Acetone	ppbv	5	94	70-130
2-Propanol	ppbv	5	35 vo	70-130
1,1-Dichloroethene	ppbv	5	105	70-130
trans-1,2-Dichloroethene	ppbv	5	108	70-130
Methylene chloride	ppbv	5	121	70-130
t-Butyl alcohol (TBA)	ppbv	5	101	70-130
3-Chloropropene	ppbv	5	89	70-130
CFC-113	ppbv	5	108	70-130
Carbon disulfide	ppbv	5	95	70-130
Methyl t-butyl ether (MTBE)	ppbv	5	108	70-130
Vinyl acetate	ppbv	5	97	70-130
1,1-Dichloroethane	ppbv	5	102	70-130
cis-1,2-Dichloroethene	ppbv	5	108	70-130
Hexane	ppbv	5	112	70-130
Chloroform	ppbv	5	108	70-130
Ethyl acetate	ppbv	5	94	70-130
Tetrahydrofuran	ppbv	5	91	70-130
2-Butanone (MEK)	ppbv	5	104	70-130
1,2-Dichloroethane (EDC)	ppbv	5	101	70-130
1,1,1-Trichloroethane	ppbv	5	114	70-130
Carbon tetrachloride	ppbv	5	113	70-130
Benzene	ppbv	5	107	70-130
Cyclohexane	ppbv	5	110	70-130
1,2-Dichloropropane	ppbv	5	80	70-130
1,4-Dioxane	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{v}$	5	89	70-130
2,2,4-Trimethylpentane	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{v}$	5	87	70-130
Methyl methacrylate	ppbv	5	79	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/19 Date Received: 12/21/18

Project: Shelton C St. Landfill 150074, F&BI 812315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Heptane	ppbv	5	79	70-130
Bromodichloromethane	ppbv	5	88	70-130
Trichloroethene	ppbv	5	91	70-130
cis-1,3-Dichloropropene	ppbv	5	88	70-130
4-Methyl-2-pentanone	ppbv	5	98	70-130
trans-1,3-Dichloropropene	ppbv	5	86	70-130
Toluene	ppbv	5	95	70-130
1,1,2-Trichloroethane	ppbv	5	87	70-130
2-Hexanone	ppbv	5	84	70-130
Tetrachloroethene	ppbv	5	101	70-130
Dibromochloromethane	ppbv	5	100	70-130
1,2-Dibromoethane (EDB)	ppbv	5	95	70-130
Chlorobenzene	ppbv	5	89	70-130
Ethylbenzene	ppbv	5	94	70-130
1,1,2,2-Tetrachloroethane	ppbv	5	92	70-130
Nonane	ppbv	5	88	70-130
Isopropylbenzene	ppbv	5	97	70-130
2-Chlorotoluene	ppbv	5	102	70-130
Propylbenzene	ppbv	5	96	70-130
4-Ethyltoluene	ppbv	5	99	70-130
m,p-Xylene	ppbv	10	98	70-130
o-Xylene	ppbv	5	97	70-130
Styrene	ppbv	5	101	70-130
Bromoform	ppbv	5	112	70-130
Benzyl chloride	ppbv	5	96	70-130
1,3,5-Trimethylbenzene	ppbv	5	99	70-130
1,2,4-Trimethylbenzene	ppbv	5	98	70-130
1,3-Dichlorobenzene	ppbv	5	102	70-130
1,4-Dichlorobenzene	ppbv	5	100	70-130
1,2-Dichlorobenzene	ppbv	5	103	70-130
1,2,4-Trichlorobenzene	ppbv	5	99	70-130
Naphthalene	ppbv	5	101	70-130
Hexachlorobutadiene	ppbv	5	106	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 812315

Work Order Number: 1812326

December 27, 2018

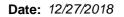
Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 12/21/2018 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 812315 **Work Order:** 1812326

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1812326-001	SG-1-121918	12/19/2018 11:32 AM	12/21/2018 9:36 AM
1812326-002	SG-2-121918	12/19/2018 10:41 AM	12/21/2018 9:36 AM
1812326-003	SG-3-121918	12/19/2018 2:50 PM	12/21/2018 9:36 AM
1812326-004	SG-4-121918	12/19/2018 1:24 PM	12/21/2018 9:36 AM
1812326-005	SG-5-121918	12/19/2018 12:32 PM	12/21/2018 9:36 AM

Case Narrative

WO#: **1812326**Date: **12/27/2018**

CLIENT: Friedman & Bruya

Project: 812315

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Samples are reported as a %.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original

Qualifiers & Acronyms

WO#: **1812326**

Date Reported: 12/27/2018

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1812326

Date Reported: 12/27/2018

12/21/2018 12:40:00 PM

CLIENT: Friedman & Bruya

Project: 812315

Methane

Lab ID: 1812326-001 **Collection Date:** 12/19/2018 11:32:00 AM

Client Sample ID: SG-1-121918 Matrix: Air

ND

Analyses Result RL Qual Units DF Date Analyzed

Major Gases by EPA Method 3C

Batch ID: R48577 Analyst: AD

0.0500

Lab ID: 1812326-002 **Collection Date:** 12/19/2018 10:41:00 AM

Client Sample ID: SG-2-121918 Matrix: Air

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Major Gases by EPA Method 3C
 Batch ID: R48577
 Analyst: AD

 Methane
 ND
 0.0500
 %
 1
 12/21/2018 12:55:00 PM

Lab ID: 1812326-003 **Collection Date:** 12/19/2018 2:50:00 PM

Client Sample ID: SG-3-121918 Matrix: Air

Analyses Result RL Qual Units DF Date Analyzed

Major Gases by EPA Method 3C

Methane ND 0.0500 % 1 12/21/2018 1:18:00 PM

Analytical Report

Work Order: 1812326

Date Reported: 12/27/2018

CLIENT: Friedman & Bruya

Project: 812315

Lab ID: 1812326-004 **Collection Date:** 12/19/2018 1:24:00 PM

Client Sample ID: SG-4-121918 Matrix: Air

Analyses Result RL Qual Units DF Date Analyzed

Major Gases by EPA Method 3C Batch ID: R48577 Analyst: AD

Methane ND 0.0500 % 1 12/21/2018 2:26:00 PM

Lab ID: 1812326-005 **Collection Date:** 12/19/2018 12:32:00 PM

Client Sample ID: SG-5-121918 Matrix: Air

Analyses Result RL Qual Units DF Date Analyzed

Major Gases by EPA Method 3C Batch ID: R48577 Analyst: AD

Methane ND 0.0500 % 1 12/21/2018 2:55:00 PM

Original

Date: 12/27/2018

Work Order: 1812326

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812315

Major Gases by EPA Method 3C

Sample ID LCS-R48577 SampType: LCS Units: % Prep Date: 12/21/2018 RunNo: 48577

Client ID: **LCSW** Batch ID: **R48577** Analysis Date: **12/21/2018** SeqNo: **952155**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Methane 100 0.0500 100.0 0 100 70 130

Sample ID 1812276-001BREP SampType: REP Units: % Prep Date: 12/21/2018 RunNo: 48577

Client ID: **BATCH** Batch ID: **R48577** Analysis Date: **12/21/2018** SeqNo: **952149**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Methane 98.1 0.0500 98.11 0.0339 30

Original Page 7 of 9

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	per: 1812326	
L	ogged by:	Brianna Barnes	Date Received:	12/21/201	18 9:36:00 AM
Cha	ain of Cust	<u>ody</u>			
1.	Is Chain of C	sustody complete?	Yes 🗹	No 🗌	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	ı In				
	Coolers are p	present?	Yes	No 🗸	NA \square
٥.			Air samples.		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗹	Not Required
6.	Was an atter	npt made to cool the samples?	Yes	No \square	NA 🗹
7.	Were all item	ns received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🗹	No \square	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserv	ative added to bottles?	Yes	No 🗸	NA \square
12.	Is there head	Ispace in the VOA vials?	Yes	No \square	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
14.	Does paperw	vork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌	
Spe	ecial Handl	ing (if applicable)			
		otified of all discrepancies with this order?	Yes	No 🗆	NA 🗹
	Person	Notified: Date			
	By Who	om: Via:	eMail Pho	one 🗌 Fax	☐ In Person
	Regardi	ing:			
	Client Ir	nstructions:			

19. Additional remarks:

Item Information

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

											Received by:		Fax (206) 283-5044
Ī	9	4								y:	Relinquished by:	T - J	Ph. (206) 285-8282
10		4	14.		mas	S	2	Nicole	7	Charles .	Received by:		Seattle, WA 98119-2029
12/21	Bruya	Friedman &				dahl	Michael Erdahl	Mich	1	her	Rejundujshed by:		3012 16th Avenue West
DATE	ANY	COMPANY		E	PRINT NAME	PRINT				SIGNATURE		Inc.	Friedman & Bruya, Inc.
			\vdash									Ц	
			+	_									
-									`				
											-		
		5											
								_	A	1232	-		50 5-121918
		7						-	D	324			56-4-121918
		<						,	A	1450			55-3-121918
		<					٠	(D	1041	_		56-2-121918
		<						_	A	1182	12/10/18		56-1-121918
		Sulfide	Sulfate	Chloride	BOD	COD	Total Organic Carbon	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
П		REQUESTED	NALYSES	ANAL									
mple ith i	☐ Return samples☐ Will call with instructions			ts	Resul	Email	Please Email Results	٠,		(206) 283-5044	Fax #(2	-8282	Phone # <u>(206)</u> 285-8282
PLE ter	SAMPLE DISPOSAL □ Dispose after 30 days						. Ω	REMARKS	RE		Seattle, WA 98119	eattle,	City, State, ZIP_Se
s au	Rush charges authorized by:	149	A.671			UI	315	812315			3012 16th Ave W	012 16	
(2 W	Standard (2 Weeks)	PO#				E/NO	NAM	PROJECT NAME/NO.	PR	a, Inc.	Friedman and Bruya, Inc	riedma	CompanyF
#AR	Page # of TURNAROUND TIMI				7	TER	NTRACTER	SUBCONTRACTER	SC		Michael Erdahl	Michae	Send Report To N

5480 TIME ndard (2 Weeks) TURNAROUND TIME

Page 9 of 9

City, State, ZIP JEWHLOWA SMUY Address 7/0 Company_ Report To


	SAMPLE
	CHAIN
	\mathbf{g}
ائي.	OF CUSTODY

						ţ.
ANA	□ Indoor Air □ Deep Soil Gas □ Sub Slab/Soil Gas □ SVE/Grab	REPORTING LEVEL	Shelton CSt. Lowdfill	PROJECT NAME '	SAMPLERS (signature) Hat Red	SAMPLE CHAIN OF CUSTODY
ANALYSIS REQUESTED	Mayable	INVOICE TO	htoasl	PO#		ME 12-21-18
	☐ Archive Samples ☐ Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard	TURNAROUND TIME	21-18

		·	<u>,</u>	·				
		Ambient-121918	SG-5-121918 18 1 3378	(G-4-121918 M	S6-3-121518	SB-2-121918	56-1-121918	Sample Name
		06	8		S W	02	01 A-B	Lab ID
		to 9th	3528	3254	3260	71 12998	OI A-B 3677	Canister ID
		67	=	10	108	7	20	Flow Contr.
		<					02 12/19/8 \$30 1132	Field Initial Date Press. Sampled (Hg)
		7	30	36	30	30	成30	Field Initial Press. (Hg)
		1500	1232	30 1324 5	30 1458	30 1041	1132	Field Initial
		5	4	ς	N	7	N	Field Final Field Press. Final (Hg) Time
		isas	1240	1328	1537	4.1.31	15. 15.	Field Final Time
			×	×	~	×	×	TO-15 Full Scan
			(X).	8	8	8	8	APH TO-15 BTEXN
								TO-15 cVOCs
		ŧ	×	×	×	×	×	Methane
		Please hold	PID- 4.5 pp	PID= 0.0 ppm	PID= 11.6 ppm	PID= 6.3 ppr	PID= O.O ppm	(X)-per L8 12/21/15 ME Notes
L	<u> </u>	J	<u></u>	1	<u> </u>	<u></u>	<u> </u>	L

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-Friedman & Bruya 3012 16th Avenue 1

٧	ار م	ved at	samples received atoc	. :	Received by:	14
•	Do				Relinquished by:	10
•			Fraky	5.05an	Received by: & M	9-2029
	0600	12/21/18/06 40	Aspect	Kristin Deck	Relinquished by: La Hole	West
	TIME	DATE	COMPANY	PRINT NAME	SIGNATURE	a, Inc.

January 31, 2018

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **11211**. This corresponds to your project number **801176** and purchase order number **A-233**. Five aqueous samples were received at Frontier Analytical Laboratory (FAL) on 1/16/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **11211**.

The following Level IV report consists of an Analytical Data section, a Sample Receipt section, a Laboratory Raw Data section, and an Instrument Raw Data section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo. The Laboratory Raw Data section contains our project request sheet, a percent solids sheet, an extraction bench sheet and the cleanup bench sheet. The instrument raw data section contains three subsections; the sample results section, the initial calibration section and the continuing/ending calibration section. The sample results sub-section consists of the quantitation summary forms with chromatograms for all samples and QC. The initial calibration curve as well as an overall quantitation summary form of the initial calibration curve. The continuing/ending calibration sub-section consists of the quantitation summary forms and chromatograms for all beginning and ending calibration injections associated with the samples and QC. The Level IV data package on compact disk has been sent to you via OnTrac. The enclosed results are specifically for the samples referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP Certificate number is 4041. Our State of California ELAP certificate number is 2934.

If you have any questions regarding project **11211**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Thomas C. Crabtree

lower C. Cralitree

Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11211

Project Due:

02/07/2018

Storage: R2

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11211-001-SA	0	801176	AMW-3-011218	EPA 1613 D/F	Aqueous	01/12/2018	10:15 am	01/14/2019
11211-002-SA	0	801176	AMW-4-011218	EPA 1613 D/F	Aqueous	01/12/2018	12:15 pm	01/14/2019
11211-003-SA	0	801176	AMW-2-011218	EPA 1613 D/F	Aqueous	01/12/2018	01:50 pm	01/14/2019
11211-004-SA	0	801176	AMW-1-011218	EPA 1613 D/F	Aqueous	01/12/2018	03:30 pm	01/14/2019
11211-005-SA	0	801176	AMW-5-011218	EPA 1613 D/F	Aqueous	01/12/2018	05:00 pm	01/14/2019

Received on: 01/16/2018

FAL ID: 11211-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-26-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	. Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.588 0.892 1.75		- -	0.209 0.231 0.305				
1,2,3,6,7,8-HxCDD	ND	1.75		-	0.319		ND	0.588	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND	1.70 2.03		-	0.306 0.408		ND ND	0.892 1.75	
OCDD	ND	4.95		-	1.01	Total HpCDD	ND	2.03	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND ND ND ND	0.699 0.889 0.937 0.940 0.986		- - - -	0.196 0.271 0.303 0.251 0.260	 } 			
2,3,4,6,7,8-HxCDF	ND	1.02		-	0.279				
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	ND ND	1.38 1.30		-	0.332 0.324		ND ND	0.699 0.937	
1,2,3,4,0,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND	1.81		-	0.324		ND	1.38	
OCDF	ND	2.61		-	0.619	Total HpCDF	ND	1.81	
Internal Standards	% Rec	QC Limits	Qual			la stancia I alcala Cta		:d- 00	- 14
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD		25.0 - 164 25.0 - 181				Isotopic Labeled Sta signal to noise ratio		ide QC range	e but
13C-1,2,3,7,8-PeCDD		25.0 - 161 32.0 - 141			В	Analyte is present in	Method Bl	ank	
13C-1,2,3,6,7,8-HxCDD		28.0 - 130			С	Chemical Interference	ce		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		23.0 - 140 17.0 - 157			D	Presence of Dipheny	yl Ethers		
130-0000	00.7	17.0 - 137			DNQ	Analyte concentration	n is below	calibration ra	inge
13C-2,3,7,8-TCDF		24.0 - 169			E	Analyte concentration	n is above	calibration ra	ange
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		24.0 - 185 21.0 - 178			F	Analyte confirmation	on second	dary column	
13C-1,2,3,4,7,8-HxCDF		26.0 - 152			J	Analyte concentration	n is below	calibration ra	inge
13C-1,2,3,6,7,8-HxCDF		26.0 - 123			M	Maximum possible of	concentration	on	
13C-2,3,4,6,7,8-HxCDF		28.0 - 136			1	Analyte Not Detecte			el
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF		29.0 - 147 28.0 - 143				Not Provided			
13C-1,2,3,4,0,7,8-HpCDF		26.0 - 143 26.0 - 138				Pre-filtered through	a Whatman	0 7um GE/E	filter
13C-OCDF		17.0 - 157				Sample acceptance			
						Matrix interferences	Sinteria riot	met	
Cleanup Surrogate						Result taken from di	lution or rei	injection	
37CI-2,3,7,8-TCDD	87.3	35.0 - 197							

Reviewed By: Date: 1/30/2018

FAL ID: 11211-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X4385 Date Extracted: 01-25-2018 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: ng/ml Acquired: 01-26-2018 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.5 50.2 51.9 50.9 51.4 51.6 99.2	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	11.2 52.5 53.7 50.4 51.5 51.5 50.2 50.3 51.1 99.6	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 39.0 - 65.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	91.6 73.8 73.6 70.8 63.9 63.2	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	94.8 76.6 76.5 77.0 70.1 75.1 67.9 67.1 65.1 57.8	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	94.8	31.0 - 191	

۸	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst: 1/30/2018

Reviewed By: 0'
Date: 1/30/2018

FAL ID: 11211-001-SA Client ID: AMW-3-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.879 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.665 0.959 2.06 2.00 1.97 2.62 4.61		- - - - - -	0.209 0.231 0.305 0.319 0.306 0.408 1.01	Total TCDD Total PeCDD Total HxCDD	ND ND ND ND	0.665 0.959 2.06 2.62	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.704 0.899 0.903 0.810 0.825 0.901 1.20 1.26 1.78 2.14		- - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324 0.401	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.704 0.903 1.20 1.78	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	82.3 77.2 73.7 74.9 72.7 70.0 76.4 72.0 72.7 79.0 78.2 76.0 70.3 74.0 69.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		B C D DNQ E F J M ND P P S X	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference of Dipheny Analyte concentratio Analyte concentratio Analyte concentratio Maximum possible concentration Maximum possible concentrat	s > 10:1 Method Blace If Ethers In is below on second In is below on oncentration If at Detection If a Whatman calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met	nge inge nge	
37Cl-2,3,7,8-TCDD	88.9	35.0 - 197							

Analyst: 1/30/2018

FAL ID: 11211-002-SA Client ID: AMW-4-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.960 L

ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L

Acquired: 01-27-2018 2005 WHO TEQ: 0.0255

				2005					
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND 2.08 15.5	0.585 1.07 2.03 1.92 1.91	J	- - - - - 0.0208 0.00465	0.209 0.231 0.305 0.319 0.306 0.408 1.01	Total TCDD Total PeCDD Total HxCDD	ND ND ND 4.87	0.585 1.07 2.03	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.643 1.21 1.23 0.989 1.04 1.10 1.44 0.860 1.18 2.63		- - - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324 0.401 0.619	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.643 1.23 1.44 1.18	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0,2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	86.7 81.2 75.2 76.8 74.3 69.0 80.6 77.7 77.7 81.7 78.8 79.7 73.2 73.7 71.5 63.6	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157			B C DNQ E F J M ND NP P S X	Isotopic Labeled Sta signal to noise ratio Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detecte Not Provided Pre-filtered through a Sample acceptance Matrix interferences Result taken from di	is >10:1 Method Blace If Ethers In is below on second In is below on second In is below on the second of at Detection at Whatman criteria not	calibration ra calibration ra lary column calibration rai on ion Limit Leve 1 0.7um GF/F met	nge inge nge
37Cl-2,3,7,8-TCDD	85.6	35.0 - 197						,	

Date: 1/30/2018 Reviewed By: Date: 1/30/2018

FAL ID: 11211-003-SA Client ID: AMW-2-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.903 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.00666

0	0	DI	01	2005	MDI	0	0	DI	01
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	0.692		-	0.209				
1,2,3,7,8-PeCDD	ND	1.64		-	0.231				
1,2,3,4,7,8-HxCDD	ND	1.87		-	0.305				
1,2,3,6,7,8-HxCDD	ND	1.88		-	0.319		ND	0.692	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND	1.82 3.18		-	0.306 0.408	Total PeCDD Total HxCDD	ND ND	1.64 1.88	
0CDD	22.2	3.10	J	0.00666	1.01	Total HpCDD	ND	3.18	
0022			·	0.00000	1.01	rotarripobb	110	0.10	
2,3,7,8-TCDF	ND	0.856		-	0.196				
1,2,3,7,8-PeCDF	ND	0.781		-	0.271				
2,3,4,7,8-PeCDF	ND ND	0.842 1.23		-	0.303 0.251				
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND	1.23		-	0.251				
2,3,4,6,7,8-HxCDF	ND ND	1.41		-	0.279				
1,2,3,7,8,9-HxCDF	ND	1.71		_	0.332	Total TCDF	ND	0.856	
1,2,3,4,6,7,8-HpCDF	ND	1.52		-	0.324		ND	0.842	
1,2,3,4,7,8,9-HpCDF	ND	2.16		-	0.401		ND	1.71	
OCDF	ND	3.22		-	0.619	Total HpCDF	ND	2.16	
Internal Standards	% Rec C	QC Limits	Qual						
13C-2,3,7,8-TCDD	60.4 2	5.0 - 164				Isotopic Labeled Star		de QC range	but
13C-1,2,3,7,8-PeCDD		5.0 - 181				signal to noise ratio is			
13C-1,2,3,4,7,8-HxCDD		2.0 - 141			B	Analyte is present in l	Method Bla	ank	
13C-1,2,3,6,7,8-HxCDD		8.0 - 130			C	Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		23.0 - 140 7.0 - 157			D	Presence of Diphenyl	l Ethers		
130-0000	33.3	7.0 - 137			DNQ /	Analyte concentration	n is below o	alibration ra	nge
13C-2,3,7,8-TCDF		4.0 - 169			E	Analyte concentration	n is above o	calibration ra	inge
13C-1,2,3,7,8-PeCDF		4.0 - 185			F A	Analyte confirmation	on seconda	ary column	
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF		1.0 - 178 6.0 - 152			l J	Analyte concentration	is below o	alibration ra	nge
13C-1,2,3,6,7,8-HxCDF		.6.0 - 132 .6.0 - 123				Maximum possible co			90
13C-2,3,4,6,7,8-HxCDF		8.0 - 136							.
13C-1,2,3,7,8,9-HxCDF		9.0 - 147				Analyte Not Detected	at Detection	on Limit Leve	ei
13C-1,2,3,4,6,7,8-HpCDF		8.0 - 143			NP I	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF		6.0 - 138			P	Pre-filtered through a	Whatman	0.7um GF/F	filter
13C-OCDF	50.2 1	7.0 - 157			S	Sample acceptance o	criteria not i	met	
					X	Matrix interferences			
Cleanup Surrogate					*	Result taken from dilu	ution or reir	njection	
37Cl-2,3,7,8-TCDD	80.0 3	5.0 - 197							

Analyst: 1/30/2018

FAL ID: 11211-004-SA Client ID: AMW-1-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.958 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.510 1.02 1.36 1.45 1.36 2.29 5.81		- - - - - -	0.209 0.231 0.305 0.319 0.306 0.408 1.01	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.510 1.02 1.45 2.29	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND ND	0.499 0.656 0.688 0.819 0.845 0.873 1.14 0.929 1.23 1.48		- - - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324 0.401 0.619	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.499 0.688 1.14 1.23	
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-OCDF	% Rec 92.9 86.1 86.6 86.0 86.9 79.0 91.5 87.1 85.9 91.5 88.9 89.2 84.5 83.0 84.6 74.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		B A C C D F DNQ A E A M ND A NP N P F S S X M	sotopic Labeled Starignal to noise ratio is malyte is present in Chemical Interference Presence of Dipheny Malyte concentration Malyte concentration Maximum possible of Matter Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences Result taken from dill	s >10:1 Method Blace I Ethers In is below on second In is above I selow on second In a below on the second I at Detection Whatman Criteria not	calibration ra calibration ra ary column calibration ra on on Limit Leve 0.7um GF/F met	nge inge nge
37CI-2,3,7,8-TCDD	94.9	35.0 - 197							

Analyst: 1/30/2018

FAL ID: 11211-005-SA Client ID: AMW-5-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.940 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.795 1.36 1.90		- - -	0.209 0.231 0.305				
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND	1.93 1.85 2.62 5.81		- - -	0.319 0.306 0.408 1.01	Total PeCDD Total HxCDD	ND ND ND ND	0.795 1.36 1.93 2.62	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND	0.883 1.06 1.04 0.827 0.867 0.901 1.21 1.43 1.92		- - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324	Total TCDF Total PeCDF Total HxCDF	ND ND ND	0.883 1.06 1.21	
OCDF Internal Standards	ND % Rec	2.29 QC Limits	Qual	-	0.619	Total HpCDF	ND	1.92	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	77.6 73.2 71.3 68.0 62.6 78.4 74.7	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185			B C D DNQ	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interferenc Presence of Dipheny Analyte concentratio Analyte concentratio Analyte confirmation	is >10:1 Method Blace yl Ethers on is below on is above	ank calibration ra calibration ra	nge
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	77.9 74.8 76.2 67.8 67.9 67.0	21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157			J M ND NP P S	Analyte concentration Maximum possible concentration Maximum possible concentration Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences	n is below oncentration at Detection at Whatman	calibration ra on on Limit Leve 0.7um GF/F	el
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	86.4	35.0 - 197			*	Result taken from dil	lution or rei	njection	

Analyst: 1/30/2018

Reviewed By: 0 Date: 1/30/2018

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michae	l Erdahl				SUE	SCON	ITRAC	TER .	Front	ier				-			- Commission of the Commission	OUND	The control of the co	
Company Friedm	an and Br	uva, I	nc.		PRC	JEC	T NAM	IE/NO				РО	#			Standa RUSH		Veeks)		
	6th Ave W	•				Ę	30117	6			A	-233	•					uthorized	l by:	
City, State, ZIP Seattle,					REN	IARI		ning a mana na 1991 na 1996 na na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996	ONLY VOIGE OF COMPLET WHEN PARKET WHEN PARKET	and the second s		112				Dispos	e after	E DISPO 30 days	SAL	
Phone #(206) 285-8282	Fax #_	(206) 283-	5044			Please	Email ———	Resu	lts 		10	· C				sampl ll with	es instruct	ions	
							CENTRAL STATE OF THE STATE OF T				ANAI	LYSES	S REG	UEST	red					ı
Sample ID	Lab ID	:	ate ipled	Time Sampled	Ma	trix	# of jars	1613 Dioxins/Furans	EPH	ΗdΛ	Nitrate	Sulfate	Alkalinity	TOC-9060M]	Notes	
AMW-3-011218		1/12	118	1015	wat	ier		У												
AMW-4-011218				1215	11	ļ		×									ļ			
AMW-2-011218	AND THE PROPERTY OF THE PROPER	оттой говог готоры		1350		Sens Tubumah Ayonno prawi	Granical and the second of the	<u> </u>	**************************************		*************					<u> </u>			ull k Consticularium (n. 1946) kuu seeleeli kuu muutus konstitus konstitus saasa	
AMW-1-011218				1530		······································		×												
AMW-5-011218		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	1700	1	!		Х			ментописатоп звин зациализано	No. 200 M. Albanya harangan			econordinacione de la constanta de la constanta de la constanta de la constanta de la constanta de la constant					
		-	Mayba orkite ilg servino pio emplore		-						Mark Barrier State Commission of the Commission					ļ				
мо на клютимоски настраменательности и настранения и мужений подпринений постании с стании и настранений на при		Manuscons and the same	устин сталогогогостана		-				On the second second second second	uos, para para boso estrapo			***************************************		***************************************	ļ	<u> </u>		lladen likk den et bliverlichen in der gezicht zum dezen zu zu zu zu zu zu zu zu zu zu zu zu zu	The control of the co
			and the second section of the section of the second section of the section of the second section of the section of th		-	a hawaan aaban ayaan a										<u> </u>	 			
		 			 			 									 			
			· · · · · · · · · · · · · · · · · · ·												····		2	<u> </u>		
																	1			

Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	hed by	SIGNA	TURE	7	Mi	chael I		NT NA	ME				COM man a				DATE IS/18	TIME //: 34	<u> </u>
Seattle, WA 98119-2029	Received	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	^	307		V	ath	<u></u>	7	10	0		T.c.	<u></u>	Λ.		1 /	16.18		-
Ph. (206) 285-8282	Relinquis		5	200	and the latest securious	1	<u> </u>	<u>w</u>		IPI			T/U	0/1-	KN/		-#-	101/X	1105	1
Fax (206) 283-5044	Received	by:		thrist trader Pale for sink skeen pale keep op troubs on processors.									, , , , , , , , , , , , , , , , , , , ,		The control of the latest the lat				000010 of (300285

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11211

Client:	Friedman & Bruya, Inc.
Client Project ID:	801176
Date Received:	01/16/2018
Time Received:	11:05 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R2

Method of Delivery:	Fed-Ex
Tracking Number:	809992619570
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	1
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9
Anomalies or additional comments:	

Frontier Analytical Laboratory

PROJECT REQUEST SHEET

Project #:	11211	Sample #:	1 - 5	Client Manager:	BS
Client:	Friedman & Bruya, In	<u>C.</u>		Hold Time:	01/14/2019
Matrix:	<u>Aqueous</u>	Extraction Batch:	4385	Due Date:	02/07/2018
Method:	EPA 1613 D/F			Storage:	<u>R2</u>
SOP:	SOPs: EP2A Rev.14	IP2A Rev.16			
COMME	NTS/INSTRUCT	ONS:-noc	2aps—		
	Sample	Full Weight (g)	Emp	oty Weight (g)	_
	11211-001-0001-SA	1370.32	490	D.90a	_
	11211-002-0001-SA		491	t.819	

11211-003-0001-SA 11211-004-0001-SA

Results: 12	Instrument: DB5	Feel 3
	DB225	
1.)	DB1	
Extract/s located in box: Wugget	Other	
Standards:		

L4 dota packagl

Frontier Analytical Laboratory **Percent Solids**

FAL Project: 11211

Sample ID 11211-001-0001-SA 11211-002-0001-SA 11211-003-0001-SA 11211-004-0001-SA	Chemist RP	Date 1.25.18	Wet Sample Weight (g) 4.29g 4.51g 5.37g 4.71a	Dry Sample Weight (g) O.OOg O.OOg O.OOg	% Solids O.OO% O.OO% O.OO%	10g Equiv	Wet Wt Oven Temp	Dry Wt Oven Temp	Boat Wt (gms) 1.089 1.09 1.09a
11211-005-0001-SA		1	3.019		0.00%	V	V	1	1.129

% Solids Summary:

Non-Filtered Determination

- Place an aliquot of sample into a pre-weighed aluminum weighing boat. Use approximately two to ten grams for solid samples, approximately 10 mL for aqueous samples.
- 3. Dry sample overnight at approximately 110 C.

Filtered Determination

- Pre-weigh a glass fiber filter of appropriate pore size and pressure filter a sample aliquot (200-1000mL) through it.
 Air dry the filter and record the dry weight.

% Solids calculation

% solids = aliquot after drying/aliquot before drying x 100

- Samples containing one percent solids or less are prepared as aqueous samples.
 Samples containing greater than one percent solids prepared as solid samples.

Frontier Analytical Laboratory **EXTRACTION SHEET**

Project #:

11211

Extraction Date: 2018-01-25

Extraction Chemist: RR

Method/Analysis:

EPA 1613 D/F

Procedure:

SPE/SOX

Solvent: Toluene

						NO.	CSS
					IS	NS	1
				Amt:			Amt: 10.0uL ID: 171128C
				ID:			
	Sample ID	Wet wt.	Dry wt.	Vial:	_		Vial: 2
		(g/L)	(g/L)	Chemis	t/Witness/Date	Chemist/Witness/Date	Chemist/VVitness/Date
11157	04385-001-0001-MB						
	04385-001-0001-OPR						
	11211-001-0001-SA	0.8791	NA.	RR	KC 1.25.18	NA	RR KC 1.26.18
	11211-002-0001-SA	09601					
	11211-003-0001-SA	0.9031					
1.	11211-004-0001-SA	09581				·	
	11211-005-0001-SA	09401	- 🗸			\downarrow	VVV
						·	
			-				
	-						
					,		

AX-21 Charcoal Cleaned	160609	Acetone	56288	Acid Alumina	A0370183	Hexane	57114
Methanol	171476	Methylene Chloride (DCM)	57230	Silica Gel	TA2051534	Sodium Hydroxide 1N	164777
Sodium Sulfate	17D135205	Sulfuric Acid	166942	Tetradecane	170531	Toluene	57173
Water	57095	C-18 Empore Discs	320922D	Cyclohexane	56242		

Comments:

Frontier Analytical Laboratory CLEANUP SHEET

Project #:

11211

Method/Analysis:

EPA 1613 D/F

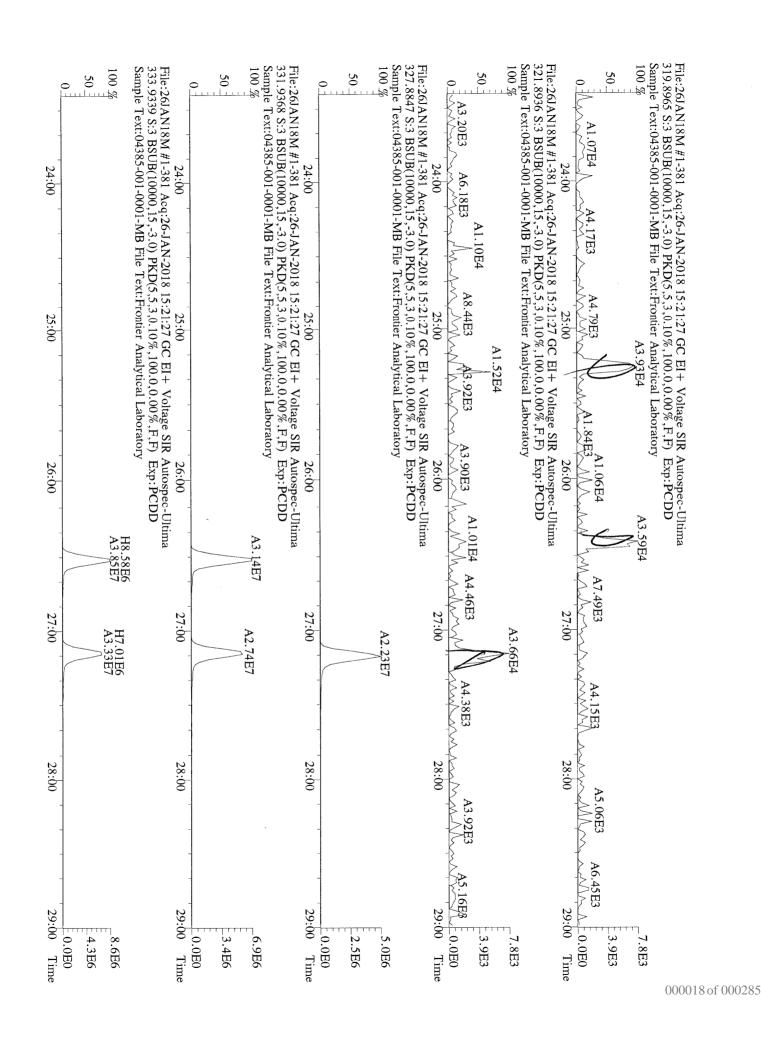
Splits:

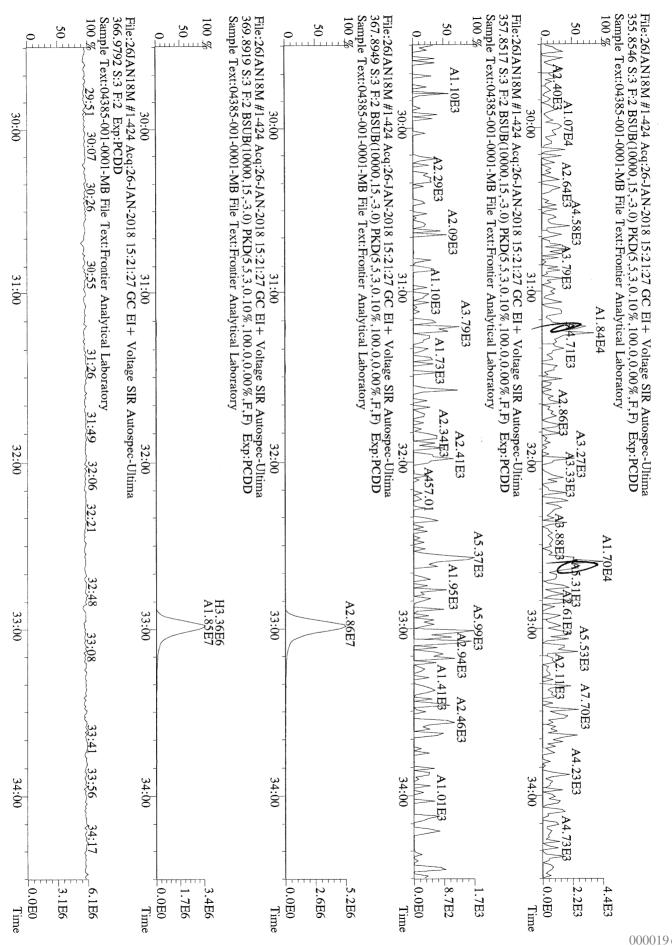
0

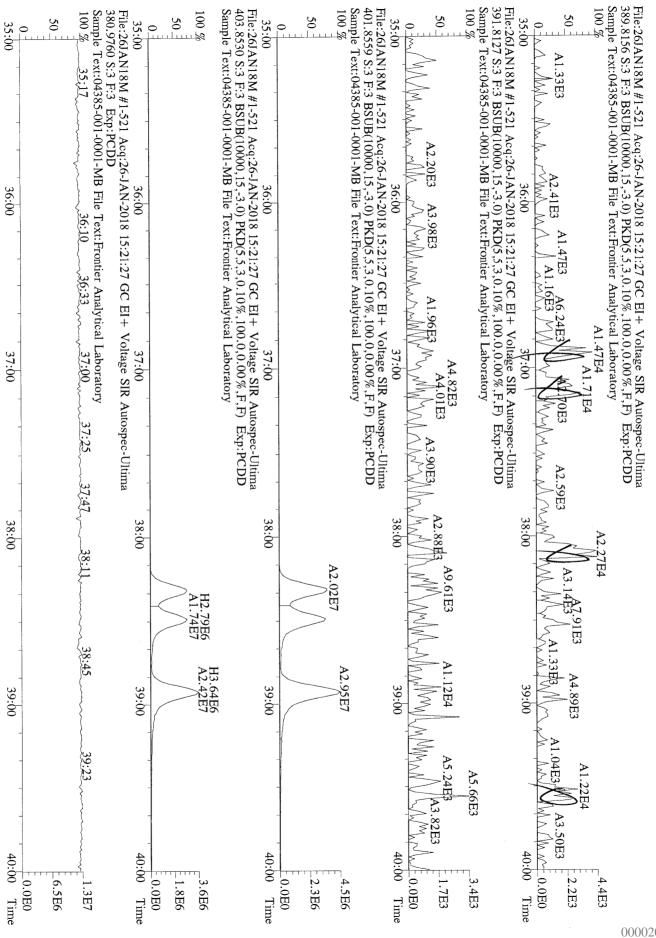
Split Date:

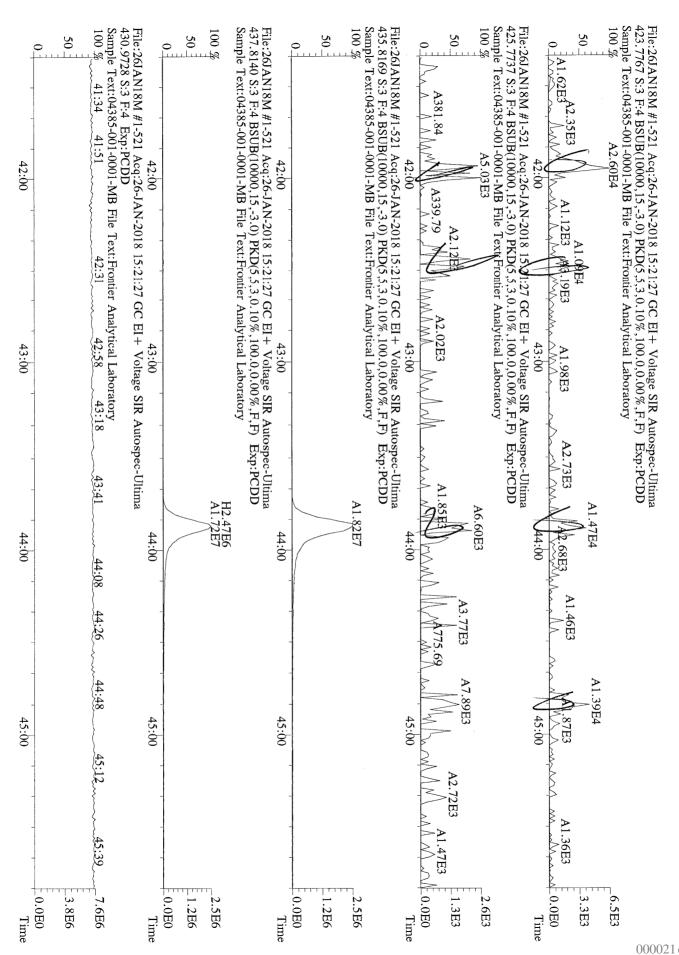
<u>N/A</u>

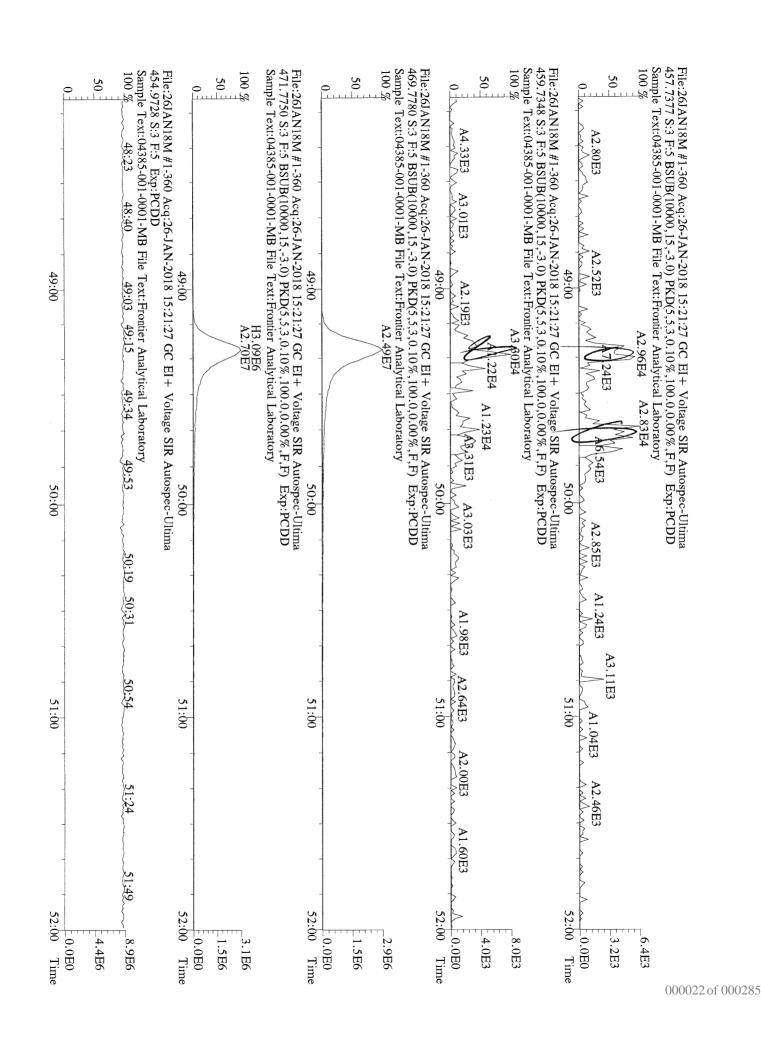
Final Volume:

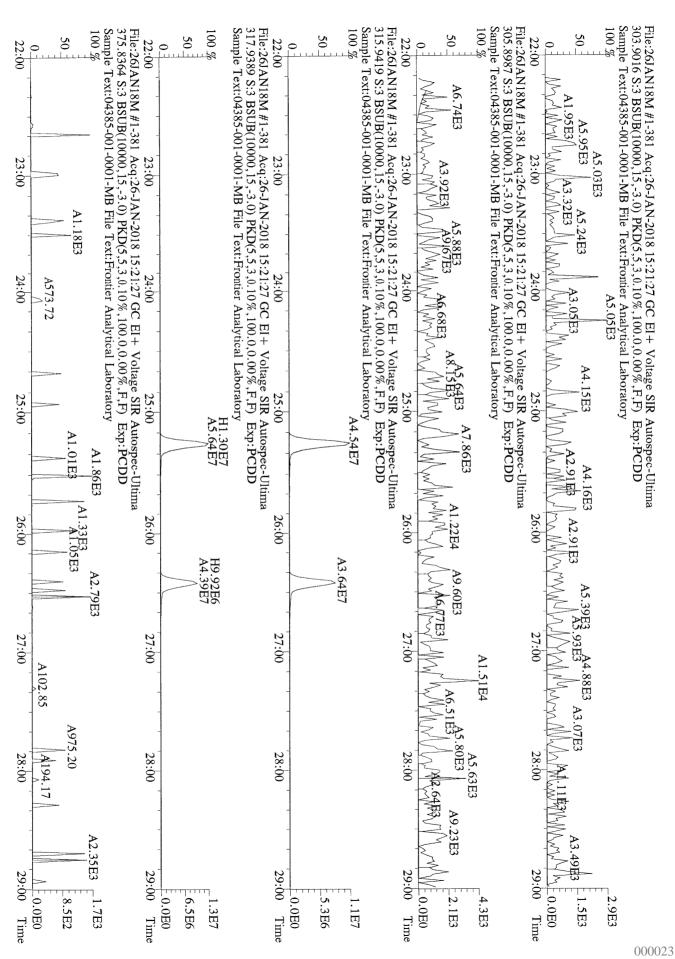

20.0uL

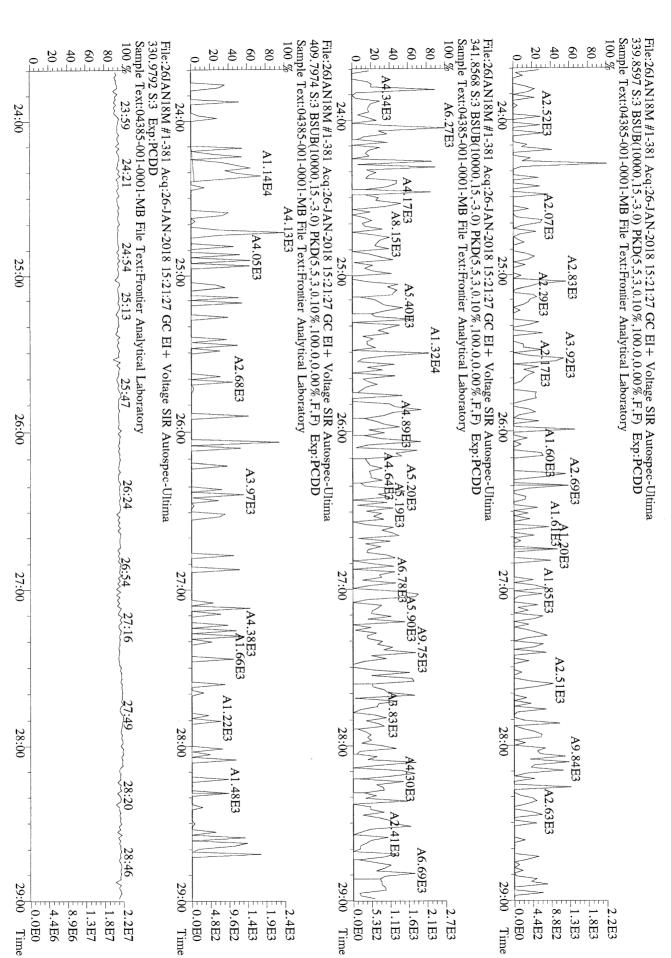

			•	
	Cleanup 1	Cleanup 2	Cleanup 3	RS
	MSG-AA	NA	NA	Amt: 10.0uL ID: 171128D
Sample ID	Chemist/Date	Chemist/Date	Chemist/Date	Vial: 3 Chemist/Witness/Date
004385-001-0001-MB				
04385-001-0001-OPR	·			
11211-001-0001-SA	RR1-26-18	2A	NA	PR KC1-26-18
11211-002-0001-SA	\			
11211-003-0001-SA				
11211-004-0001-SA				
11211-005-0001-SA				1 1 1 1
		-	-	
	Mark to the second seco			

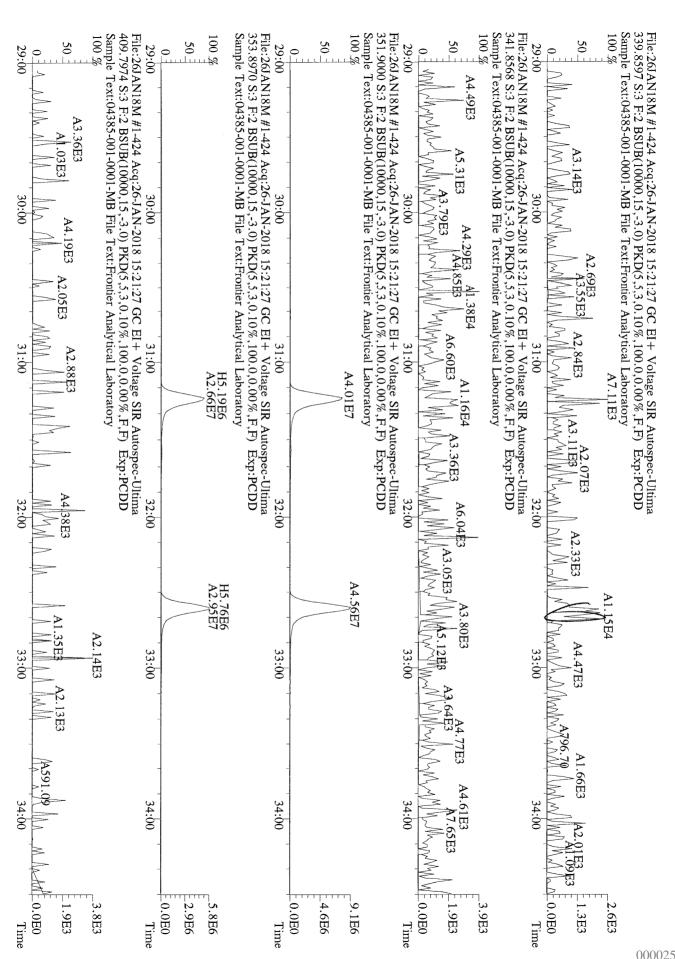

AX-21 Charcoal Cleaned	160609	Acetone	56288	Acid Alumina	A0370183	Hexane	57114
Methanol	171476	Methylene Chloride (DCM)	57230	Silica Gel	TA2051534	Sodium Hydroxide 1N	164777
Sodium Sulfate	17D135205	Sulfuric Acid	166942	Tetradecane	170531	Toluene	57173
Water	57095	C-18 Empore Discs	320922D	Cyclohexane	56242		

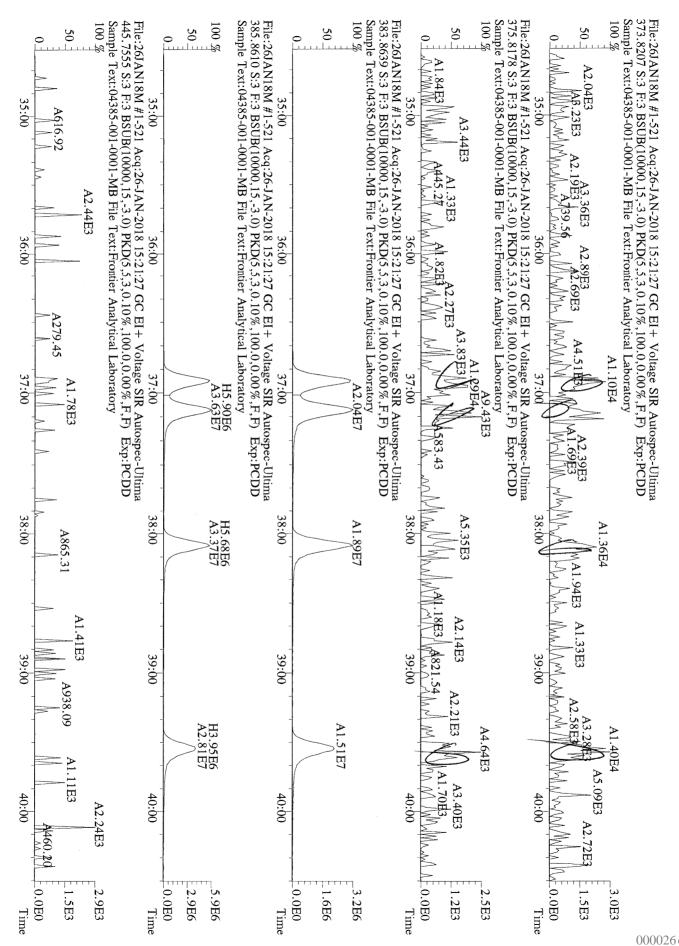

Comments:

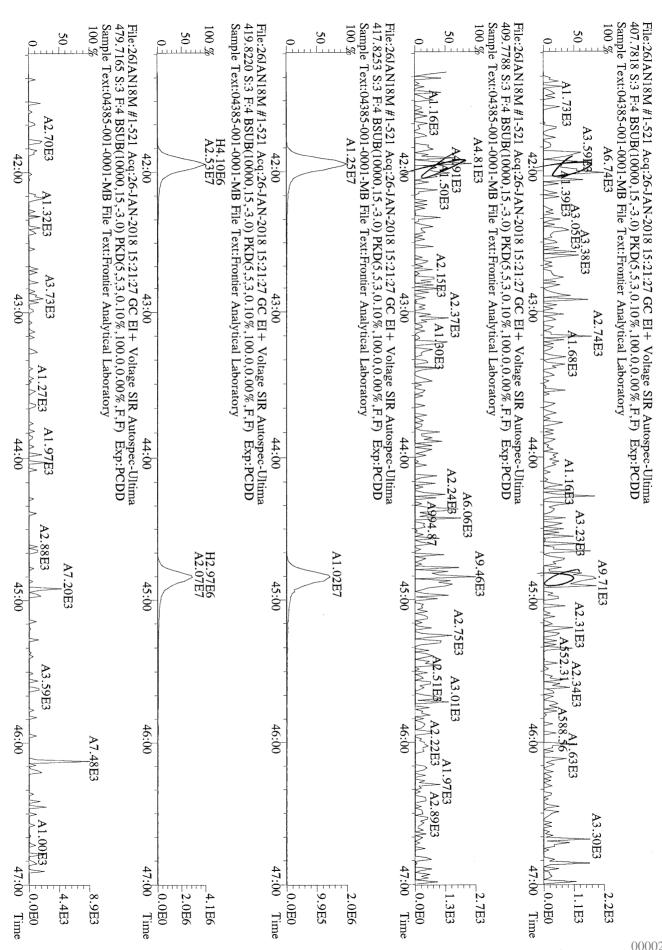

FAL ID: 04385-001-0001-MB	Filenar	ne: 26	. IAN18M	Sam:3	Acquired: 26	- JAN - 18	3 15:21:	27 ICal:	: PCDDFAL3	-12-22-17	
	riteriai	ile. Zu	JAN TON	Jan. 3			ST012618		Cal: ST01		
Client ID: Method Blank	Golumn: DB5	:MC	Amount:	1 000	NATO 1989		0.0				
	GOLUMNI: DB.	כויוכ	Amount.	1.000	WHO 1998		0.0		2005 Tox	0.00	
Instrument ID: FAL3 Name	Resp	RA	RT	RRF	Conc	Qual		Noise-1	Noise-2	DL	
				4.04	*		2 50	9/7	748	0.588	
2,3,7,8-TCDD	*		n NotFnd	1.06			2.50	847			
1,2,3,7,8-PeCDD	*		n NotFnd	1.00			2.50	822	711	0.892	
1,2,3,4,7,8-HxCDD	*	*	n NotFnd	1.07			2.50	1260	1100	1.75	
1,2,3,6,7,8-HxCDD	*	*	n NotFnd	1.08	*		2.50	1260	1100	1.75	
1,2,3,7,8,9-HxCDD	*	*	n NotFnd	1.11	*		2.50	1260	1100	1.70	
1,2,3,4,6,7,8-HpCDD	*	*	n NotFnd	0.99	*		2.50	1270	711	2.03	
OCDD	*	*	n NotFnd	1.11	*		2.50	1590	1710	4.95	
2,3,7,8-TCDF	*	*	n NotFnd	1.03	*		2.50	1050	1510	0.699	
1,2,3,7,8-PeCDF	*		n NotFnd				2.50	805	1390	0.889	
2,3,4,7,8-PeCDF	*		n NotFnd				2.50	805	1390	0.937	
	*		n NotFnd				2.50	1020	937	0.940	
1,2,3,4,7,8-HxCDF	*		n NotFnd				2.50	1020	937	0.986	
1,2,3,6,7,8-HXCDF	*		n NotFnd				2.50	1020	937	1.02	
2,3,4,6,7,8-HxCDF	*		n NotFnd				2.50	1020	937	1.38	
1,2,3,7,8,9-HxCDF	*						2.50	887	1050	1.30	
1,2,3,4,6,7,8-HpCDF			n NotFnd				2.50	887	1050	1.81	
1,2,3,4,7,8,9-HpCDF	*		n NotFnd							2.61	
OCDF	*	*	n NotFnd	0.90	*		2.50	1090	886		
										Rec	
13C-2,3,7,8-TCDD										84.9	
13C-1,2,3,7,8-PeCDD	4.71e+07	1.54	y 32:59	0.88	1530					76.6	
13C-1,2,3,4,7,8-HxCDD	3.63e+07	1.26	y 38:19	0.85	1580					79.0	
13C-1,2,3,6,7,8-HxCDD		1.22	y 38:29	0.94	1530					76.7	
13c-1,2,3,4,6,7,8-HpCDD		1.06	y 43:52	0.90	1460					72.8	
13c-OCDD					2750					68.7	
470 2 7 7 0 700 5	0.0/07	0.07	24.2E	0.07	1690					84.7	
13C-2,3,7,8-TCDF										75.6	
13C-1,2,3,7,8-PeCDF										74.4	
13C-2,3,4,7,8-PeCDF										81.9	
13C-1,2,3,4,7,8-HxCDF			•								
13C-1,2,3,6,7,8-HxCDF			•							78.4	
13C-2,3,4,6,7,8-HxCDF										79.4	
13C-1,2,3,7,8,9-HxCDF			•							70.3	
13C-1,2,3,4,6,7,8-HpCDF			•							72.3	
13C-1,2,3,4,7,8,9-HpCDF	3.09e+07	0.49	y 44:50	0.82	1410					70.4	
13C-OCDF	7.38e+07	0.95	y 49:43	1.06	2580					64.6	
37cl-2,3,7,8-TCDD	2.23e+07		27:10	0.91	698					87.3	
470 4 0 7 / ***	4 0007	0 00	v 26:32)	192						
13C-1,2,3,4-TCDD											
13C-1,2,3,4-TCDF					196						
13C-1,2,3,7,8,9-HxCDD	5.38e+07	1.22	y 38:55	-	176		_	v. *		D.I	#11 am
								Noise-1	Noise-2	DL	#Hom
Total Tetra-Dioxins			NotFno				2.50	847	748	0.588	0
Total Penta-Dioxins	*		NotFno				2.50	822	711	0.892 /	0
Total Hexa-Dioxins	*		NotFno				2.50	1260	1100	1.75	0
Total Hepta-Dioxins	*		NotFno	0.99	*		2.50	1270	711	2.03	0
Total Tetra-Furans	*		NotFno	1.03	*		2.50	1050	1510	0.699/	0
1st Fn. Tot Penta-Furans			NotFno	0.86	*		2.50	805	1390	0.937 PeCDF	0
Total Penta-Furans			NotFno				2.50	805	1390	0.937/*	0
Total Hexa-Furans			NotFno				2.50	1020	937	1.38	0
Total Hepta-Furans			NotFno				2.50	887	1050	1.81	0
Total hepta ful alis				. 1160					,,,,,		

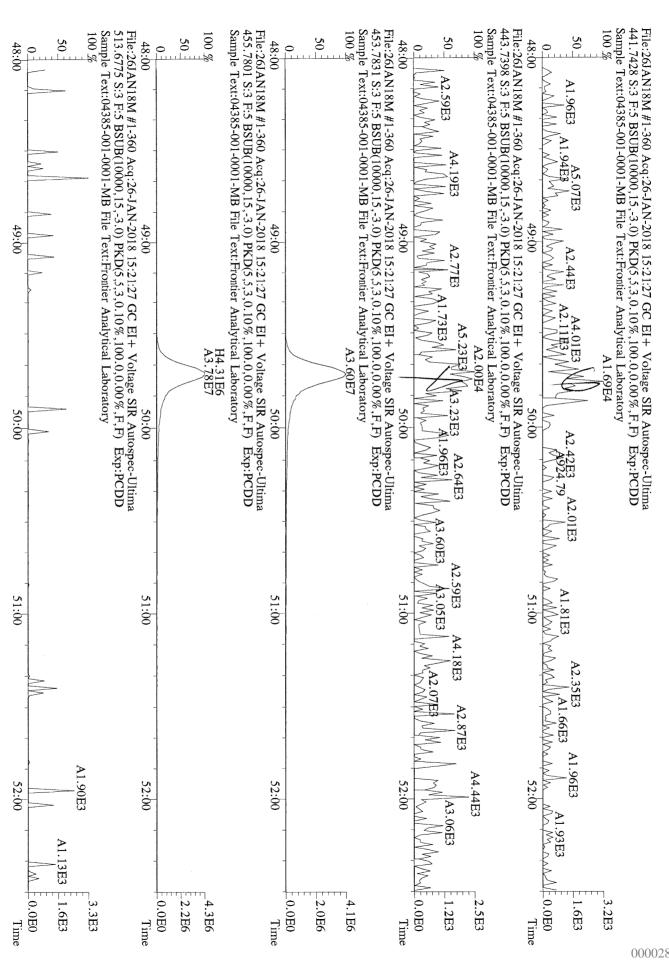












4385-001-0001-0PR

USEPA - ITD

FORM 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Matrix (aqueous/solid/leachate): Aqueous OPR Data Filename: 26JAN18M Sam:2

Ext. Date: 1/25/18 Shift: Day

Analysis Date: 26-JAN-18 14:26:32

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS (1) (ng/mL)
NATIVE ANALYTES			
2,3,7,8-TCDD	10	10.5	6.70 - 15.8
1,2,3,7,8-PeCDD	50	50.2	35.0 - 71.0
1,2,3,4,7,8-HxCDD	50	51.9	35.0 - 82.0
1,2,3,6,7,8-HxCDD	50	50.9	38.0 - 67.0
1,2,3,7,8,9-HxCDD	50	51.4	32.0 - 81.0
1,2,3,4,6,7,8-HpCDD	50	51.6	35.0 - 70.0
OCDD	100	99.2	78.0 - 144
2,3,7,8-TCDF	10	11.2	7.50 - 15.8
1,2,3,7,8-PeCDF	50	52.5	40.0 - 67.0
2,3,4,7,8-PeCDF	50	53.7	34.0 - 80.0
1,2,3,4,7,8-HxCDF	50	50.4	36.0 - 67.0
1,2,3,6,7,8-HxCDF	50	51.5	42.0 - 65.0
2,3,4,6,7,8-HxCDF	50	51.5	35.0 - 78.0
1,2,3,7,8,9-HxCDF	50	50.2	39.0 - 65.0
1,2,3,4,6,7,8-HpCDF	50	50.3	41.0 - 61.0
1,2,3,4,7,8,9-HpCDF	50	51.1	39.0 - 69.0
OCDF	100	99.6	63.0 - 170

(1) Contract-required concentration limits for OPR as specified in Table 6, Method 1613

Analyst: Date: 1/19/18

USEPA - ITD

FORM 8B PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

Lab Name: Frontier Analytical Laboratory

Episode No.:

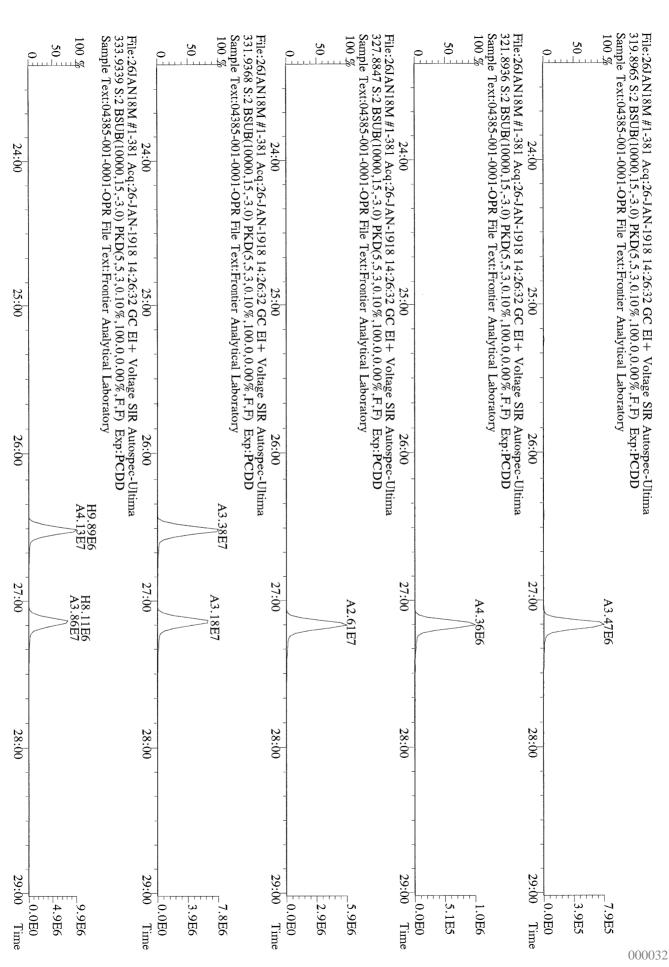
Contract No.:

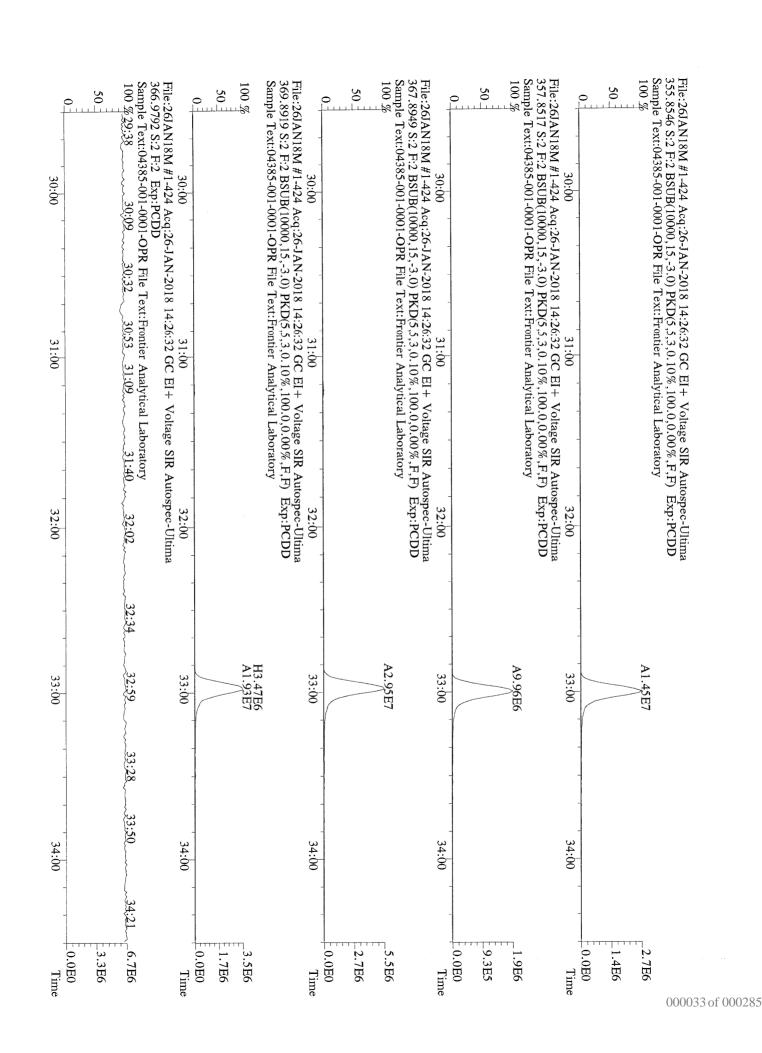
SAS No.:

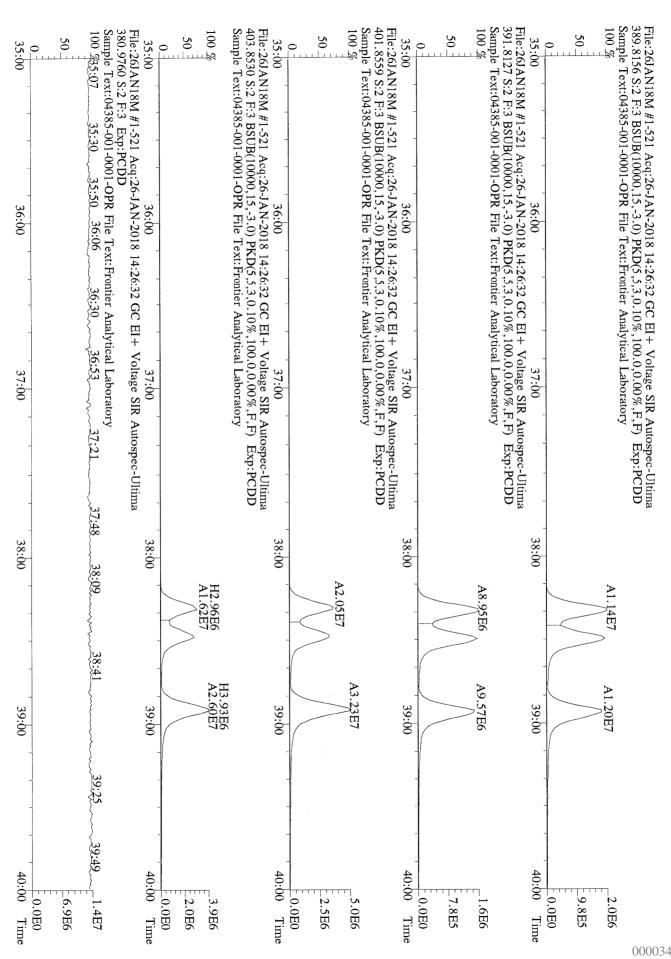
Matrix (aqueous/solid/leachate): Aqueous

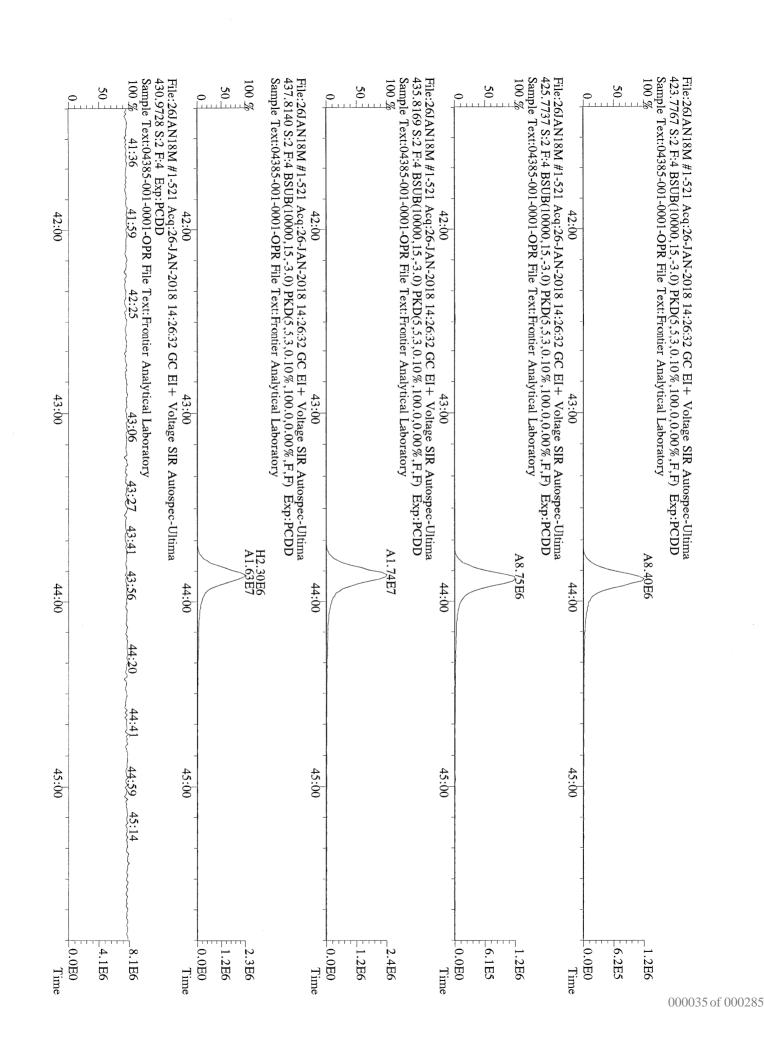
OPR Data Filename: 26JAN18M Sam:2

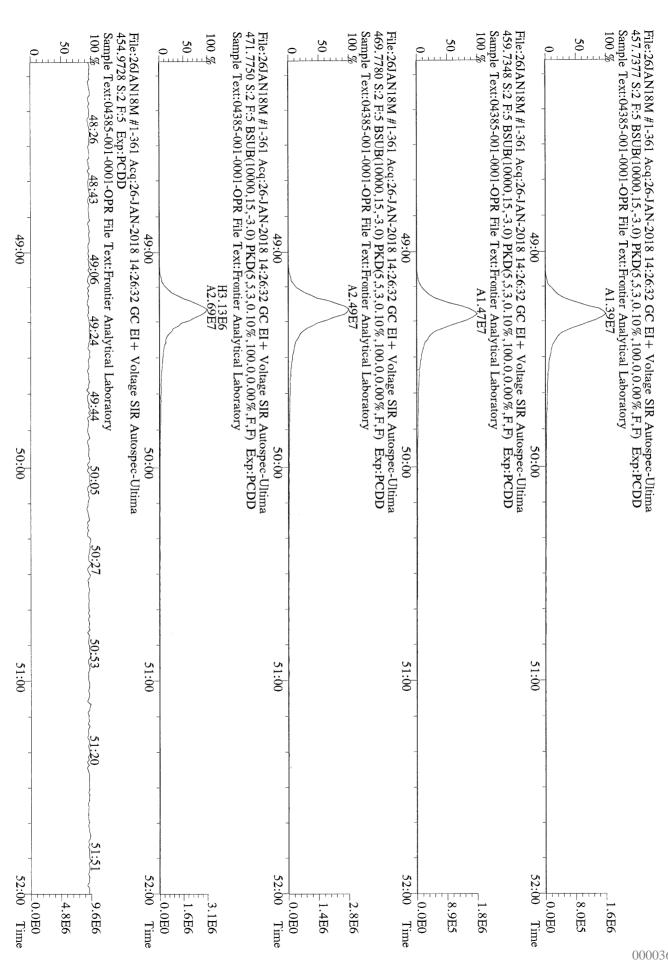
Ext. Date: 1/25/18 Shift: Day

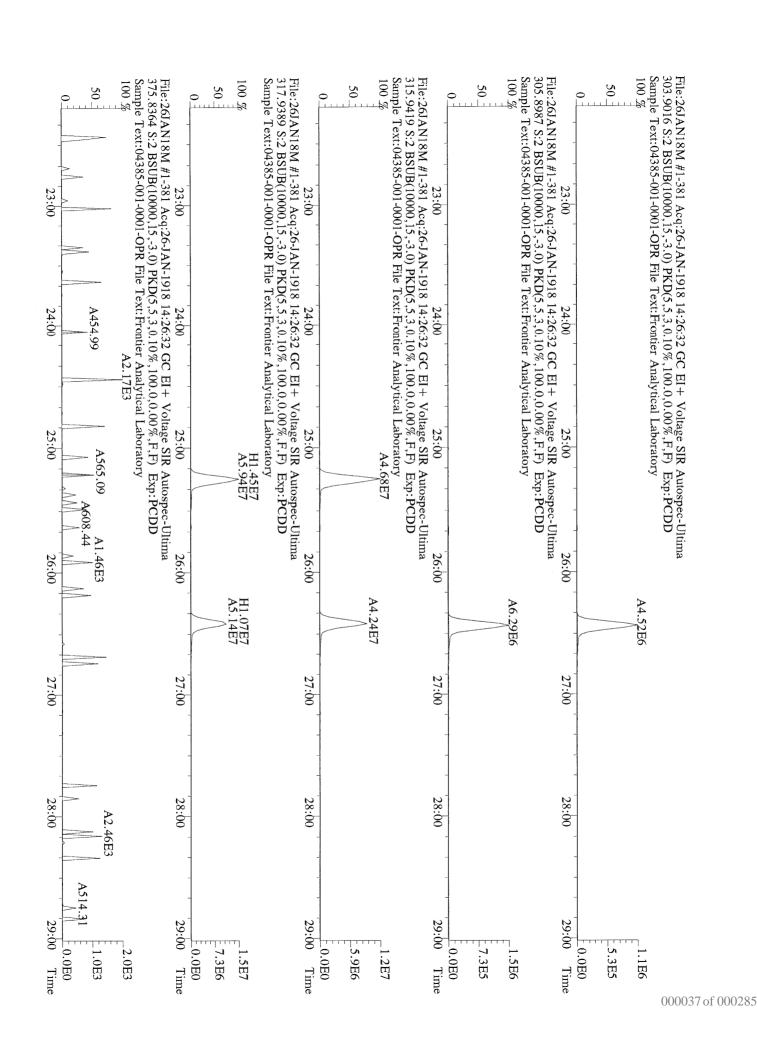

Analysis Date: 26-JAN-18 14:26:32

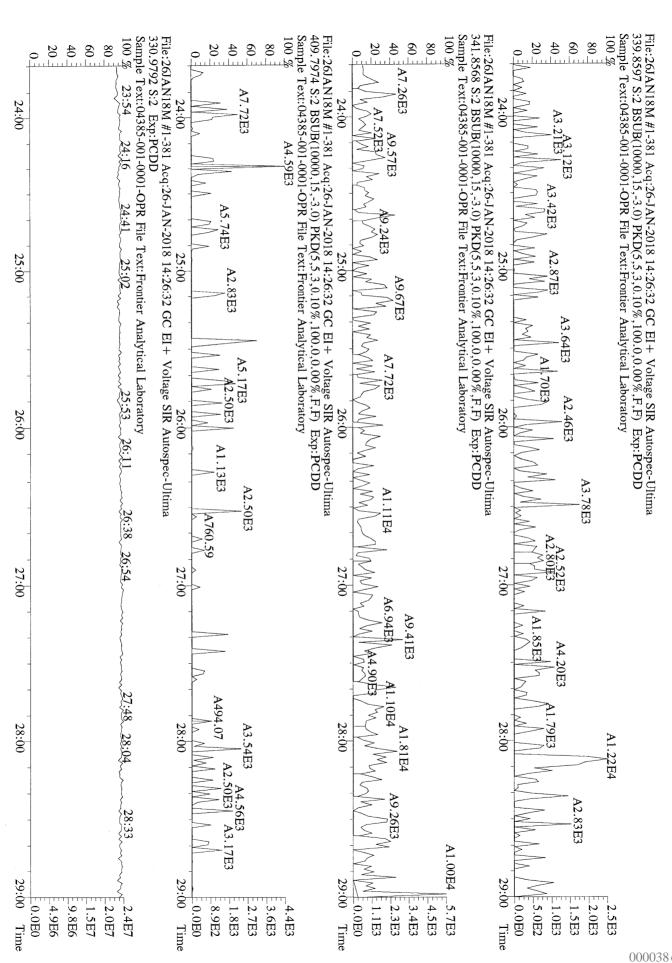

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

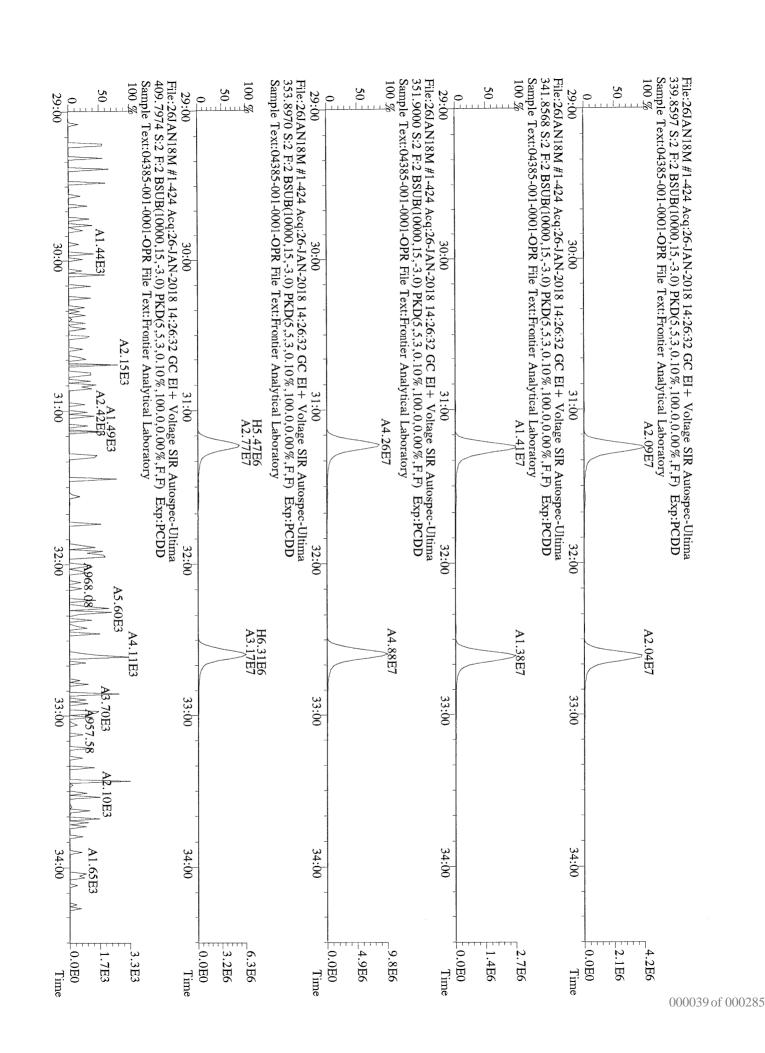

	SPIKE	CONC.	OPR CONC.
	CONC.	FOUND	LIMITS (1)
	(ng/mL)	(ng/mL)	(ng/mL)
LABELED COMPOUNDS			
13C-2,3,7,8-TCDD	100	91.6	20.0 - 175
13C-1,2,3,7,8-PeCDD	100	73.8	21.0 - 227
13C-1,2,3,4,7,8-HxCDD	100	73.6	21.0 - 193
13C-1,2,3,6,7,8-HxCDD	100	70.8	25.0 - 163
13C-1,2,3,4,6,7,8-HpCDD	100	63.9	26.0 - 166
13C-OCDD	200	126	26.0 - 397
13C-2,3,7,8-TCDF	100	94.8	22.0 - 152
13C-1,2,3,7,8-PeCDF	100	76.6	21.0 - 192
13C-2,3,4,7,8-PeCDF	100	76.5	13.0 - 328
13C-1,2,3,4,7,8-HxCDF	100	77.0	19.0 - 202
13C-1,2,3,6,7,8-HxCDF	100	70.1	21.0 - 159
13C-2,3,4,6,7,8-HxCDF	100	75.1	22.0 - 176
13C-1,2,3,7,8,9-HxCDF	100	67.9	17.0 - 205
13C-1,2,3,4,6,7,8-HpCDF	100	67.1	21.0 - 158
13C-1,2,3,4,7,8,9-HpCDF	100	65.1	20.0 - 186
13C-OCDF	200	116	26.0 - 397
CLEANUP STANDARD			
37cl-2,3,7,8-TCDD	40	37.9	12.4 - 76.4

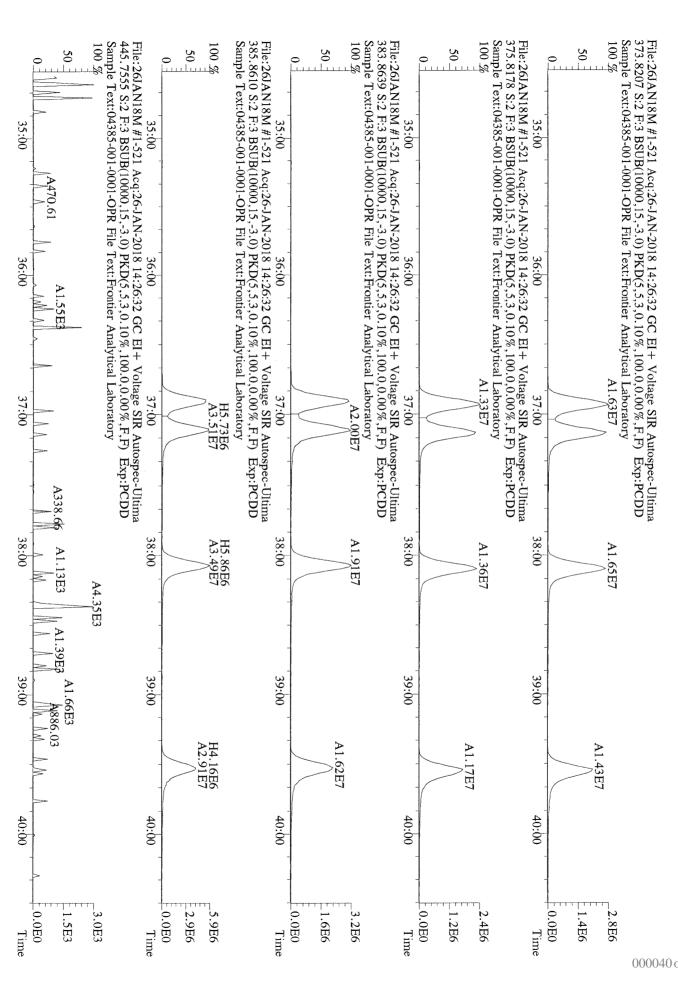

⁽¹⁾ Contract-required concentration limits for OPR as specified in Table 6, Method 1613 Labeled compound concentration limits are based on required percent recovery of 25%-150%.

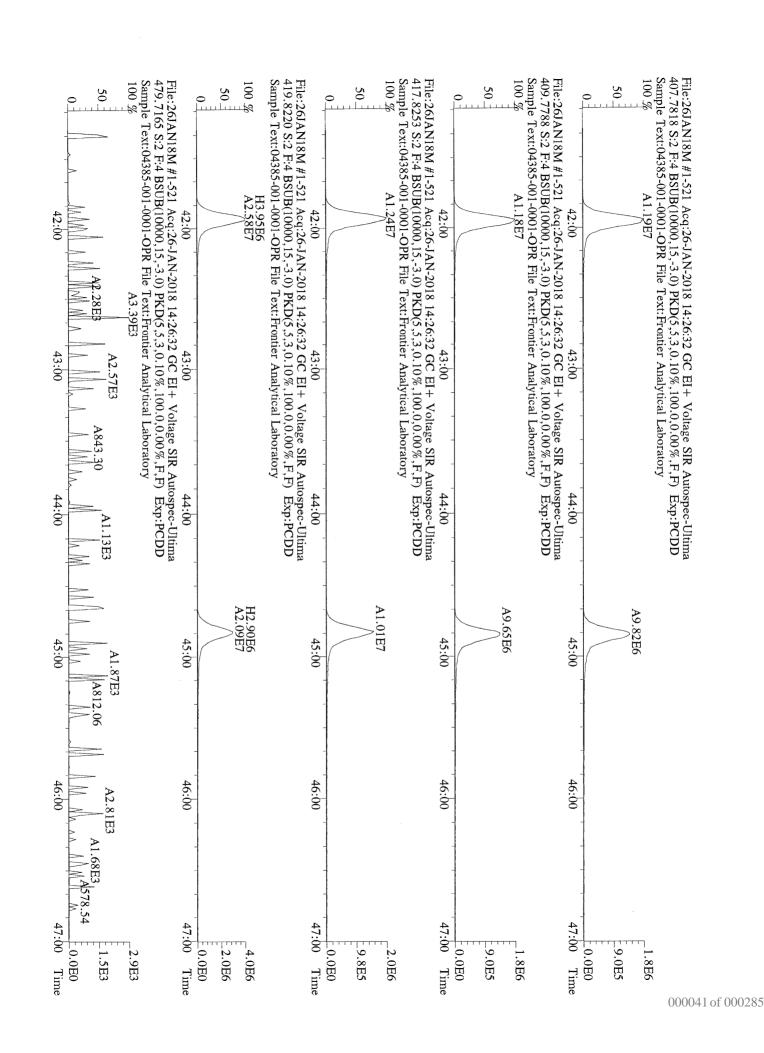

FAL ID: 04385-001-0001-0PR Client ID: OPR	Filenam	ne: 26.	JAN18M	Sam:2	Acquired: 26		14:26:32 012618M1		PCDDFAL3-1 Cal: ST0126		
	Golumn: DB5	5MS	Amount:	1.000	NATO 1989	Tox:	104				
Instrument ID: FAL3					who 1998	Tox:	129	WHO	2005 Tox:	117	
Name	Resp	RA	RT	RRF	Conc	Qual	Fac Nois	e-1	Noise-2	DL	
										*	
2,3,7,8-TCDD	7.84e+06			1.06	10.5		2.50	-	-	*	
1,2,3,7,8-PeCDD	2.45e+07			1.00	50.2		2.50	-	-	*	
1,2,3,4,7,8-HxCDD	2.04e+07			1.07	51.9		2.50	-	-	*	
1,2,3,6,7,8-HxCDD				1.08	50.9		2.50	-	-	*	
1,2,3,7,8,9-HxCDD				1.11	51.4		2.50	-	-	*	
1,2,3,4,6,7,8-HpCDD	1.72e+07			0.99	51.6		2.50	-	-	*	
OCDD	2.86e+07	0.94	y 49:18	1.11	99.2		2.50	-	-	^	
	4 00 .07	0.70	2/-2/	1 07	11 2		2.50	_		*	
2,3,7,8-TCDF				1.03	11.2		2.50	_	_	*	
1,2,3,7,8-PeCDF				0.95	52.5		2.50		_	*	
2,3,4,7,8-PeCDF				0.79	53.7			_		*	
1,2,3,4,7,8-HxCDF				1.20	50.4		2.50	-	-	*	
1,2,3,6,7,8-HxCDF	3.11e+07			1.10	51.5		2.50	-	-		
2,3,4,6,7,8-HxCDF	3.01e+07			1.08	51.5		2.50	-	-	*	
1,2,3,7,8,9-HxCDF				1.15	50.2		2.50	-	-	*	
1,2,3,4,6,7,8-HpCDF	2.37e+07	1.01	y 41:57		50.3		2.50	-	-	*	
1,2,3,4,7,8,9-HpCDF				1.23	51.1		2.50	-	-	*	
OCDF	3.23e+07	0.92	y 49:43	0.90	99.6		2.50	-	-		
										Rec	
13C-2,3,7,8-TCDD	7.04e+07	0.82	y 27:08	1.02	91.6					91.6	
13C-1,2,3,7,8-PeCDD	4.88e+07	1.53	y 32: 59	0.88	73.8					73.8	
13C-1,2,3,4,7,8-HxCDD	3.67e+07	1.27	y 38:18	0.85	73.6					73.6	
13C-1,2,3,6,7,8-HxCDD	3.88e+07	1.20	y 38:29	0.94	70.8					70.8	
13C-1,2,3,4,6,7,8-HpCDD	3.37e+07	1.07	y 43:51	0.90	63.9					63.9	
13C-OCDD	5.18e+07	0.92	y 49:17	0.70	126					63.2	
			•								
13C-2,3,7,8-TCDF	9.38e+07	0.82	y 26:25	0.93	94.8					94.8	
13C-1,2,3,7,8-PeCDF	7.04e+07	1.54	y 31:14	0.87	76.6					76.6	
13C-2,3,4,7,8-PeCDF	8.04e+07		•		76.5					76.5	
13C-1,2,3,4,7,8-HxCDF	4.91e+07		•		77.0					77.0	
13C-1,2,3,6,7,8-HxCDF	5.51e+07		•							70.1	
13C-2,3,4,6,7,8-HxCDF	5.40e+07		•							75.1	
13C-1,2,3,7,8,9-HxCDF	4.53e+07									67.9	
13C-1,2,3,4,6,7,8-HpCDF	3.81e+07		•							67.1	
	3.10e+07		•							65.1	
	7.17e+07									57.8	
130 0001	7.110.01	0.,,	, ,,,,,								
37cl-2,3,7,8-TCDD	2.61e+07		27:10	0.91	37.9					94.8	
			aa		007						
13C-1,2,3,4-TCDD	7.52e+07				207						
13C-1,2,3,4-TCDF	1.06e+08				204						
13C-1,2,3,7,8,9-HxCDD	5.84e+07	1.24	y 38:54	-	190				W-5 2	D.I.	#11 am
					40.0		Fac Nois	se-I	Noise-2	DL *	#Hom
Total Tetra-Dioxins	8.05e+06		22:56				2.50	-	-		18
Total Penta-Dioxins	2.48e+07		31:14				2.50	-	-	*	10
Total Hexa-Dioxins	6.42e+07		36:54				2.50	-	-	*	22
Total Hepta-Dioxins	1.81e+07		42:14	0.99	54.4		2.50	-	=	*	33
Total Total Fores	1 120107		22:53	1.03	11.7		2.50	_	_	*	25
Total Tetra-Furans	1.12e+07 1.01e+05		22:33				2.50	_	_	* PeCDF	17
1st Fn. Tot Penta-Furans							2.50	_	_	* 109	17
Total Penta-Furans	7.06e+07		29:59				2.50	_	-	*	27
Total Hexa-Furans	1.18e+08		34:58				2.50	_	-	*	35
Total Hepta-Furans	4.45e+07		41:57	1.23	105	_	2.50	-	-	**	رو
				Anal	yst:				/29/10	<u>\$</u>	

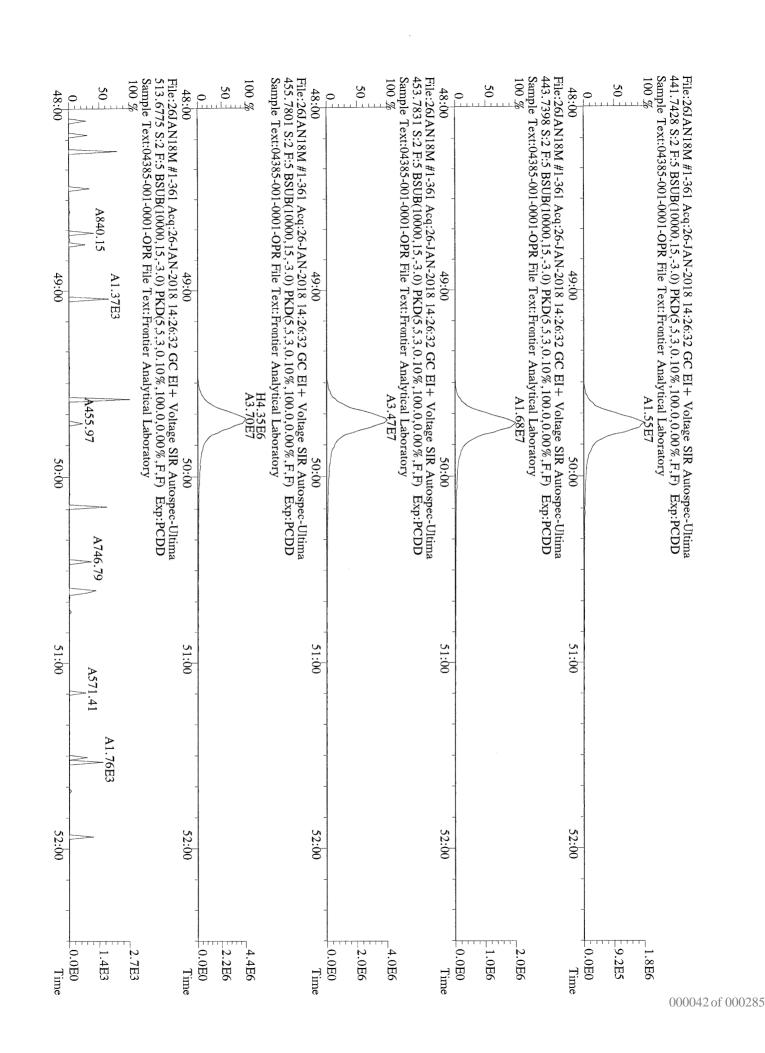


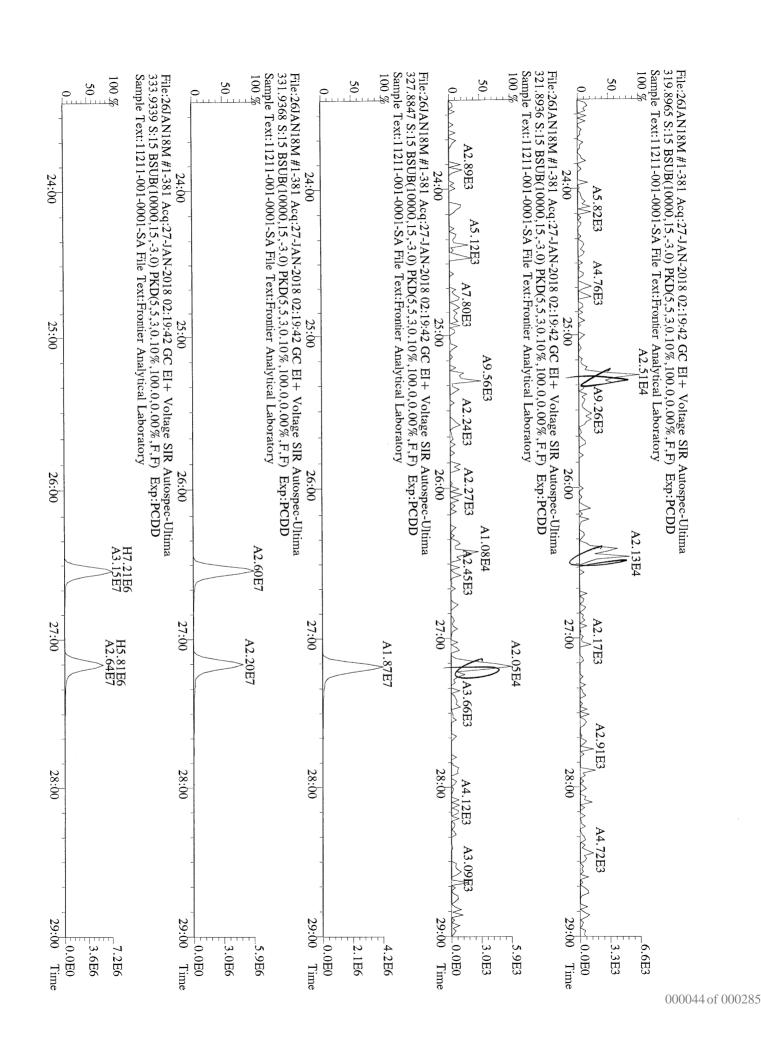


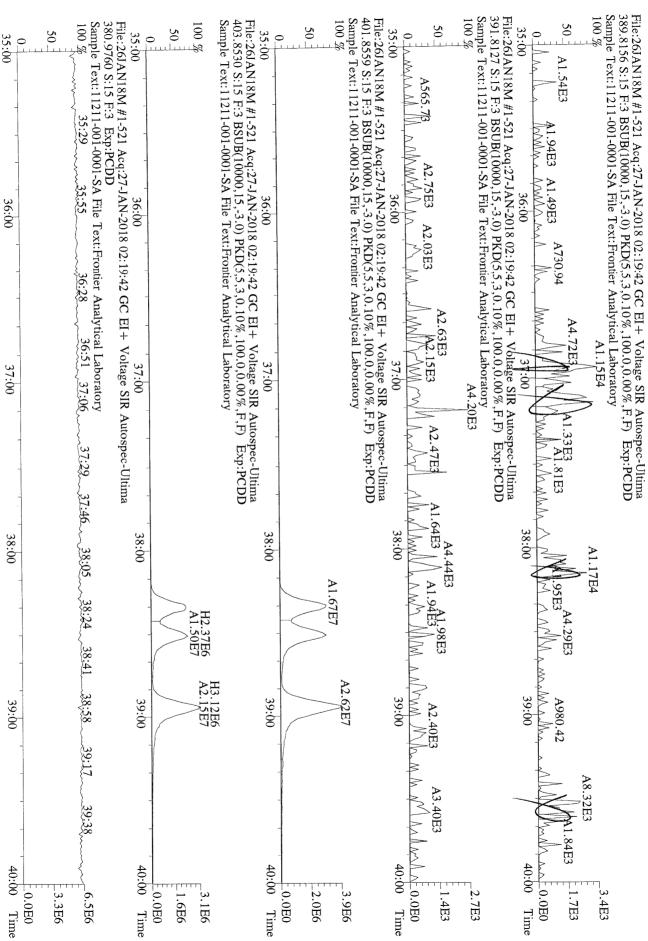


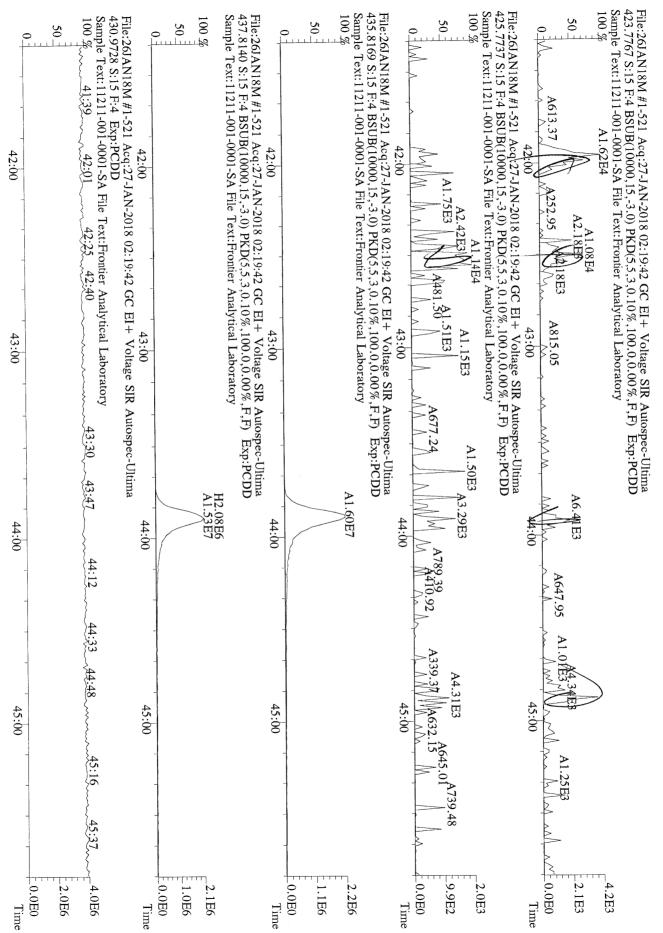


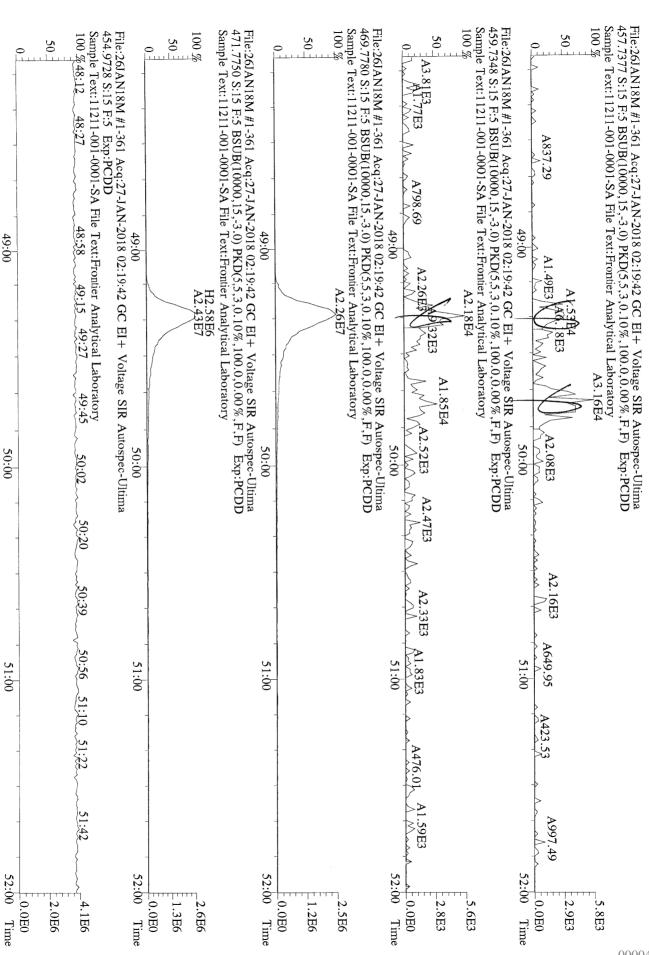


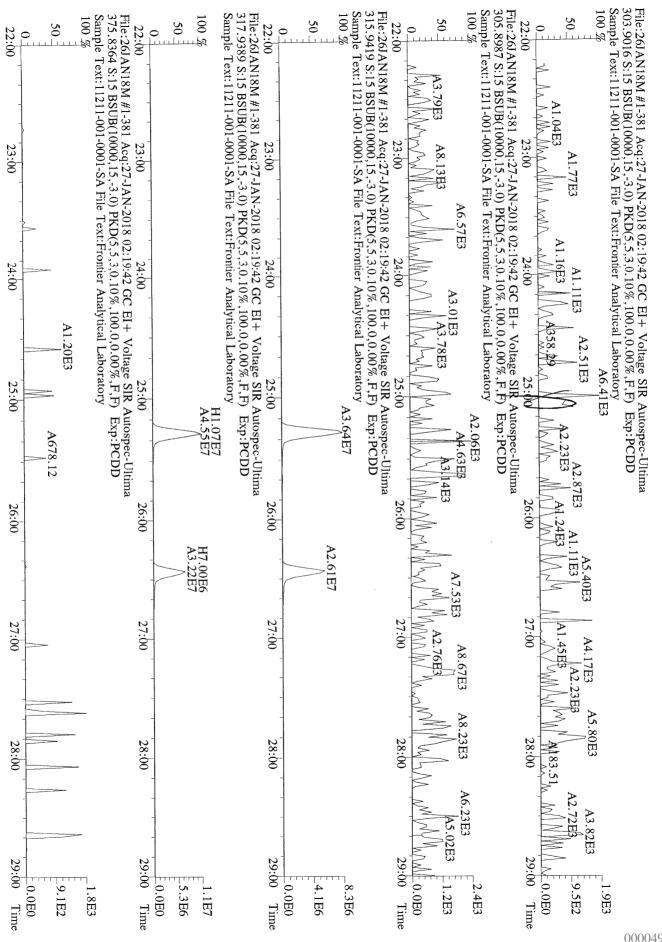


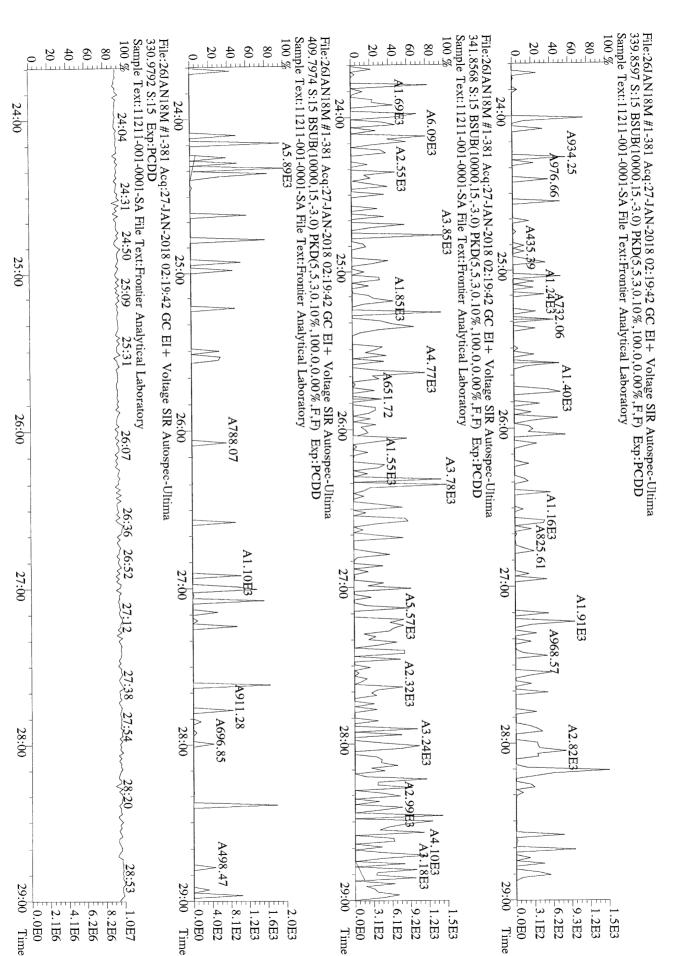


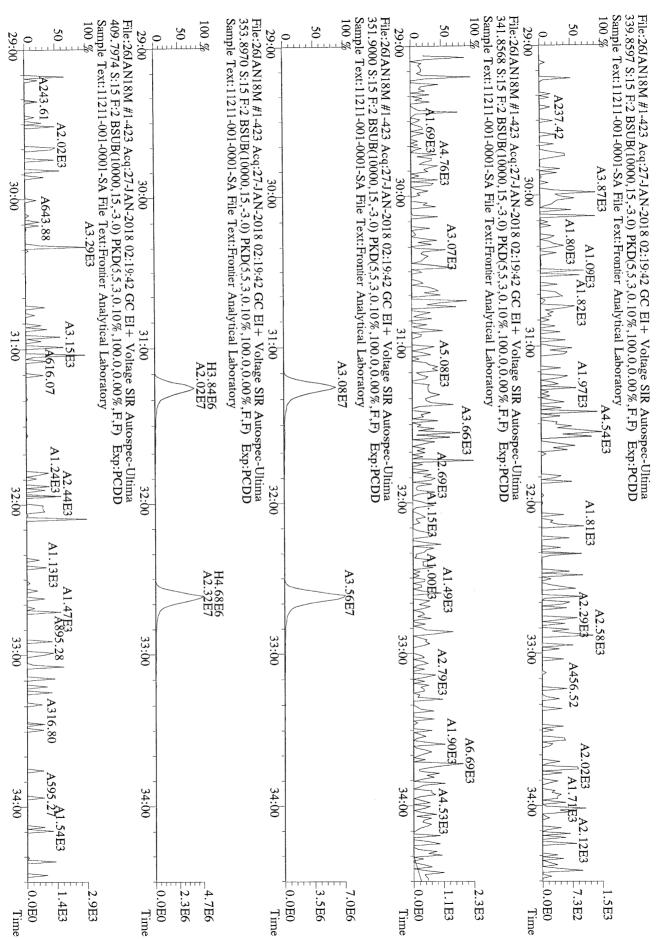


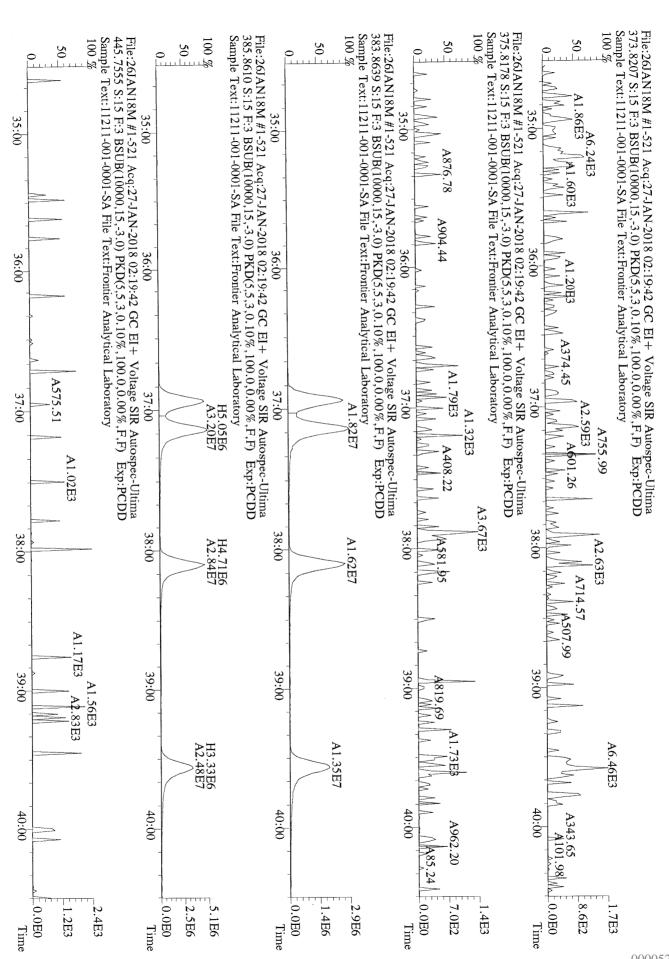

Sam:15 Acquired: 27-JAN-18 02:19:42 ICal: PCDDFAL3-12-22-17 Filename: 26JAN18M FAL ID: 11211-001-0001-SA ConCal: ST012618M2 EndCal: ST012618M3 Client ID: AMW-3-011218 0.00 Amount: 0.8790 NATO 1989 Tox: GC Golumn: DB5MS Results: 11211 0.00 / WHO 2005 Tox: WHO 1998 Tox: 0.00 Instrument ID: FAL3 DL Noise-2 Fac Noise-1 RA RT RRF Conc Qual Resp Name 659 0.665 2.50 660 * n NotFnd 1.06 2,3,7,8-TCDD 500 0.959 * * n NotFnd 2.50 677 1.00 1,2,3,7,8-PeCDD 2.06 1090 * 2.50 932 * n NotFnd 1.07 1,2,3,4,7,8-HxCDD 2.00 * 2.50 932 1090 * n NotFnd 1.08 1,2,3,6,7,8-HxCDD 1.97 * n NotFnd 2.50 932 1090 1.11 1,2,3,7,8,9-HxCDD 1220 736 2.62 * n NotFnd 0.992.50 1,2,3,4,6,7,8-HpCDD 1310 4.61 2.50 964 * n NotFnd 1.11 697 916 0.704 2.50 * n NotFnd 1.03 2,3,7,8-TCDF 891 0.899 576 2.50 * n NotFnd 0.95 1,2,3,7,8-PeCDF 891 0.903 576 * n NotFnd 0.79 2.50 2,3,4,7,8-PeCDF 541 0.810 * n NotFnd 1.20 2.50 715 1,2,3,4,7,8-HxCDF 2.50 715 541 0.825 * n NotFnd 1.10 1,2,3,6,7,8-HxCDF 0.901 * n NotEnd 1.08 2.50 715 541 2,3,4,6,7,8-HxCDF 2.50 715 541 1.20 * n NotFnd 1.15 1,2,3,7,8,9-HxCDF 623 1.26 2.50 776 * n NotFnd 1.23 1,2,3,4,6,7,8-HpCDF 1.78 2.50 776 623 1,2,3,4,7,8,9-HpCDF * n NotFnd 1.23 918 2.14 2.50 340 * n NotFnd 0.90 Rec 1870 82.3 1.02 4.83e+07 0.83 y 27:10 13C-2,3,7,8-TCDD 77.2 1760 0.88 3.90e+07 1.52 y 32:60 13C-1,2,3,7,8-PeCDD 73.7 1680 3.00e+07 1.25 y 38:20 0.85 13C-1,2,3,4,7,8-HxCDD 74.9 0.94 1700 3.36e+07 1.24 y 38:31 13C-1,2,3,6,7,8-HxCDD 72.7 0.90 1660 3.13e+07 1.05 y 43:54 13c-1,2,3,4,6,7,8-HpCDD 70.0 3180 0.70 4.69e+07 0.93 y 49:19 13C-OCDD 76.4 1740 13C-2,3,7,8-TCDF 5.83e+07 0.81 y 26:26 0.93 72.0 0.87 1640 5.10e+07 1.52 y 31:15 13C-1,2,3,7,8-PeCDF 72.7 0.99 1650 13C-2,3,4,7,8-PeCDF 5.89e+07 1.53 y 32:37 79.0 1800 4.12e+07 0.54 y 36:56 1.09 13C-1,2,3,4,7,8-HxCDF 78.2 5.02e+07 0.57 y 37:09 1.35 1780 13C-1,2,3,6,7,8-HxCDF 1.23 1730 76.0 4.46e+07 0.57 y 38:06 13C-2,3,4,6,7,8-HxCDF 70.3 3.83e+07 0.55 y 39:34 1.14 1600 13C-1,2,3,7,8,9-HxCDF 3.44e+07 0.50 y 41:58 0.97 1680 74.0 13C-1,2,3,4,6,7,8-HpCDF 1580 69.4 2.70e+07 0.50 y 44:51 0.82 13C-1,2,3,4,7,8,9-HpCDF 3030 66.5 13C-OCDF 6.74e+07 0.95 y 49:44 1.06 88.9 0.91 809 37Cl-2,3,7,8-TCDD 1.87e+07 27:11 13C-1,2,3,4-TCDD 5.75e+07 0.82 y 26:32 180 179 8.18e+07 0.80 y 25:17 13C-1,2,3,4-TCDF 13C-1,2,3,7,8,9-HxCDD 4.77e+07 1.22 y 38:56 177 #Hom Fac Noise-1 Noise-2 DL 2.50 659 0.665/ 0 1.06 660 Total Tetra-Dioxins NotFnd 0.959 0 500 NotFnd 1.00 2.50 677 Total Penta-Dioxins 2.06 / 0 NotFnd 1.09 2.50 932 1090 Total Hexa-Dioxins 2.62 736 0 NotFnd 0.99 2.50 1220 Total Hepta-Dioxins 0.704 < 2.50 697 916 0 Total Tetra-Furans NotFnd 1.03 576 891 0.903 PeCDF 0 2.50 1st Fn. Tot Penta-Furans NotFnd 0.86 0.903 * 891 0 2.50 576 NotFnd 0.86 Total Penta-Furans 2.50 715 541 1.20 / 0 NotFnd 1.13 Total Hexa-Furans 0 2.50 776 623 1.78 Total Hepta-Furans NotFnd 1.23

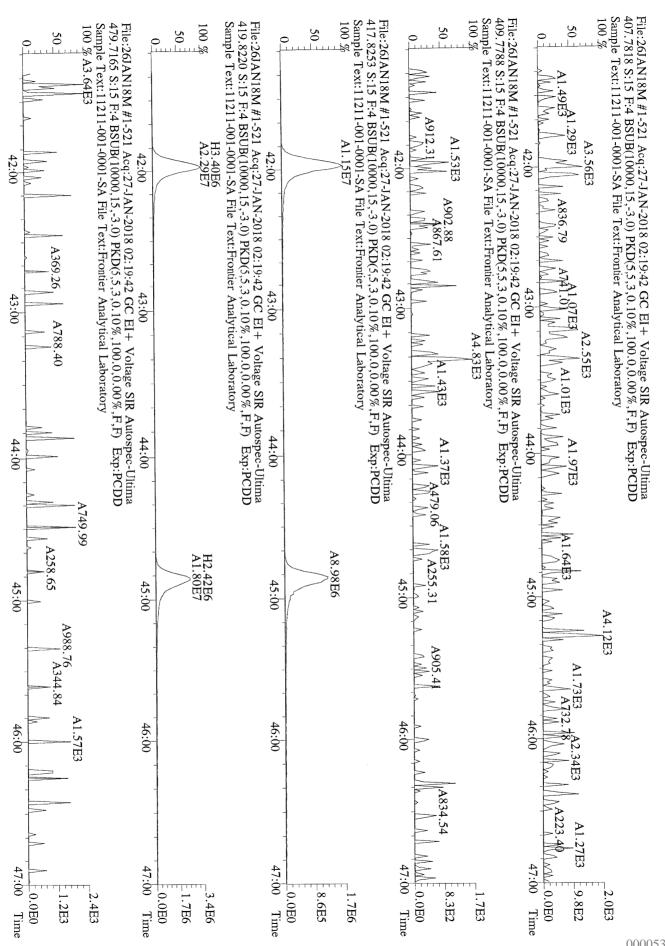

Analyst:

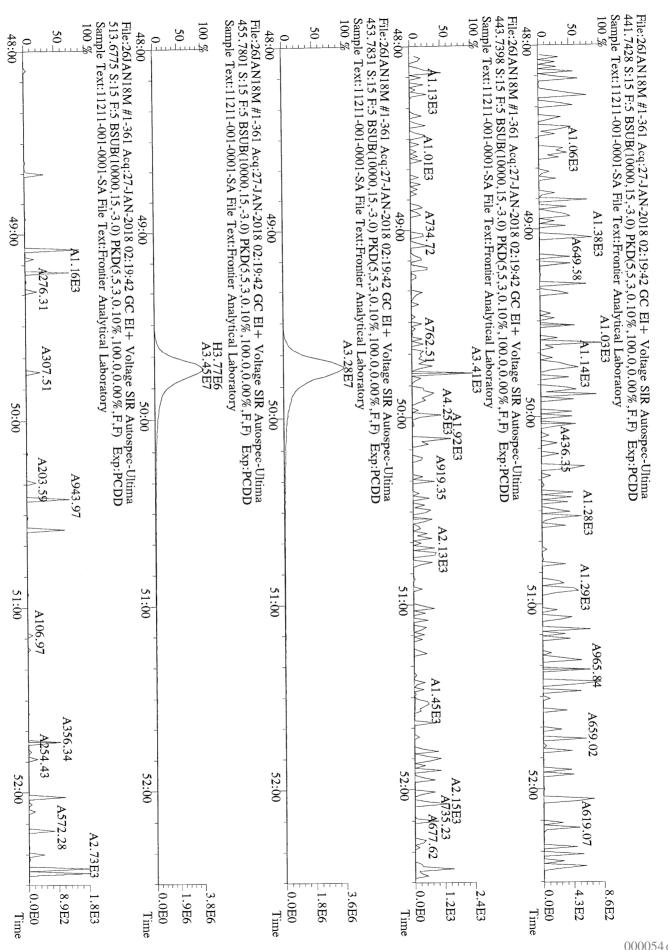

Date: 1/19/18









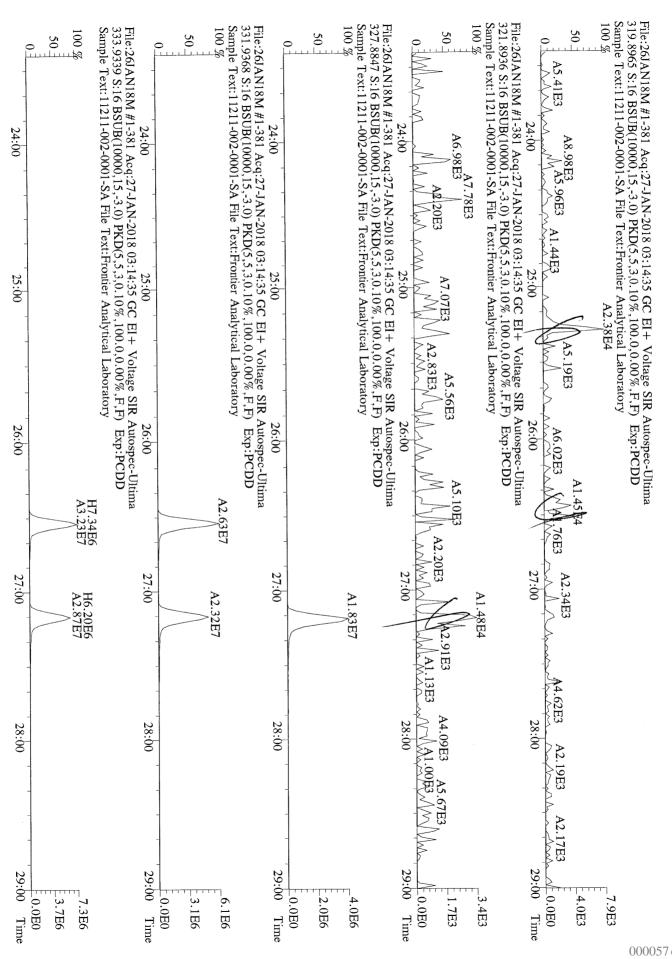


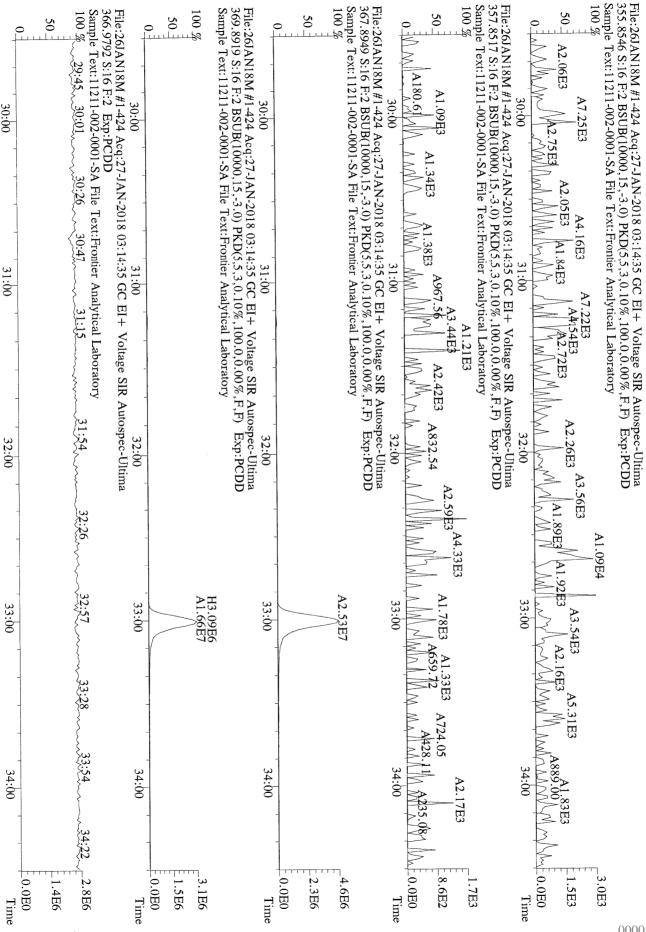
Filename: 26JAN18M Sam:16 Acquired: 27-JAN-18 03:14:35 ICal: PCDDFAL3-12-22-17 FAL ID: 11211-002-0001-SA ConCal: ST012618M2 EndCal: ST012618M3 Client ID: AMW-4-011218

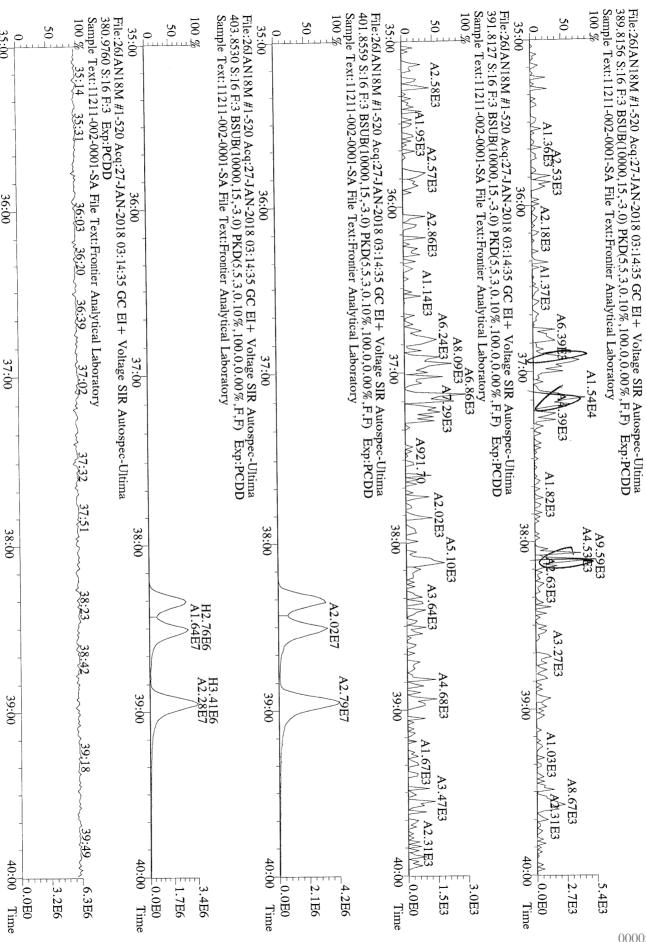
Client ID: AMW-4-011218				,	Co	nCal: S	т012618	M2 End	Cal: ST01	2618M3	
	Golumn: DB5	MS	Amount:	0.9600	NATO 1989	Tox:	0.036	2			-66
	dotamin bbs		7		WHO 1998		0.022	3 WHO	2005 Tox	: 0.0254. <i>C</i>	18/18
Instrument ID: FAL3	Doon	RA	RT	RRF	Conc	Qual		Noise-1	Noise-2	: 0.0254.0	1/4011
Name	Resp	KA	KI	KKI	Conc	auu t					
0.7.7.0.7000	*		- NotEnd	1.06	*		2.50	833	502	0.585	
2,3,7,8-TCDD			n NotFnd		*		2.50	907	678	1.07	
1,2,3,7,8-PeCDD	*		n NotFnd		*			1330	1130	2.03	
1,2,3,4,7,8-HxCDD	*		n NotFnd				2.50				
1,2,3,6,7,8-HxCDD	*	*	n NotFnd	1.08	*		2.50	1330	1130	1.92	
1,2,3,7,8,9-HxCDD	*	*	n NotFnd	1.11	*		2.50	1330	1130	1.91	
	3.35e+04	0.99	y 43:56	0.99	2.08	J	2.50	-	-	*	
OCDD	2.03e+05	0.92	y 49:20	1.11	15.5	J	2.50	-	-	*	
2,3,7,8-TCDF	*	*	n NotFnd	1.03	*		2.50	691	1060	0.643	
	*		n NotFnd		*		2.50	1340	959	1.21	
1,2,3,7,8-PeCDF	*		n NotFnd		*		2.50	1340	959	1.23	
2,3,4,7,8-PeCDF	*				*		2.50	983	985	0.989	
1,2,3,4,7,8-HxCDF			n NotFnd		*		2.50	983	985	1.04	
1,2,3,6,7,8-HxCDF	*		n NotFnd		*			983	985	1.10	
2,3,4,6,7,8-HxCDF	*		n NotFno				2.50			1.44	
1,2,3,7,8,9-HxCDF	*		n NotFno		*		2.50	983	985		
1,2,3,4,6,7,8-HpCDF	*	*	n NotFno	1.23	*		2.50	595	574	0.860	
1,2,3,4,7,8,9-HpCDF	*	*	n NotFno	1.23	*		2.50	595	574	1.18	
OCDF	*	*	n NotFno	0.90	*		2.50	934	877	2.63	
										Rec	
13C-2,3,7,8-TCDD	5 19e+07	0.81	v 27:10	1.02	1810					86.7	
13C-1,2,3,7,8-PeCDD					1690					81.2	
					1570					75.2	
13c-1,2,3,4,7,8-HxCDD					1600					76.8	
13C-1,2,3,6,7,8-HxCDD										74.3	
13C-1,2,3,4,6,7,8-HpCDD	3.40e+07	1.04	y 43:53	0.90	1550						
13C-OCDD	4.92e+07	0.88	y 49:19	0.70	2880					69.0	
13C-2,3,7,8-TCDF	6.19e+07	0.80	y 26:26	0.93	1680					80.6	
13C-1,2,3,7,8-PeCDF					1620					77.7	
13C-2,3,4,7,8-PeCDF					1620					77.7	
13C-1,2,3,4,7,8-HxCDF					1700					81.7	
13C-1,2,3,6,7,8-HxCDF					1640					78.8	
13C-2,3,4,6,7,8-HxCDF					1660					79.7	
					1530					73.2	
13C-1,2,3,7,8,9-HxCDF					1540					73.7	
13C-1,2,3,4,6,7,8-HpCDF	3.64e+U/	0.50	y 41:50	0.97						71.5	
13C-1,2,3,4,7,8,9-HpCDF	2.96e+07	0.49	y 44:5	0.82	1490						
13C-OCDF	6.86e+07	0.94	y 49:44	1.06	2650					63.6	
										25 (
37cl-2,3,7,8-TCDD	1.83e+07		27:1	0.91	713					85.6	
13C-1,2,3,4-TCDD	5.86e+07	0.82	y 26:33	3 -	168						
13C-1,2,3,4-TCDF	8.23e+07	0.81	y 25:17	7 -	165						
13C-1,2,3,7,8,9-HxCDD					172						
			•				Fac	Noise-1	Noise-2	DL	#Hom
Total Tetra-Dioxins	*		NotFno	d 1.06	*		2.50	833	502	0.585 -	0
			NotFno		*		2.50		678	1.07 -	0
Total Penta-Dioxins					*		2.50		1130	2.03	0
Total Hexa-Dioxins			NotFno			J		1550	-	*	2
Total Hepta-Dioxins	7.86e+U4		42:29	9 0.99	4.87	J	2.50	-	-		<u>~</u>
					٠.		2.50	/01	10/0	0 4/7 5	0
Total Tetra-Furans	*		NotFno		*		2.50	691	1060	0.643	0
1st Fn. Tot Penta-Furans	*		NotFn		*		2.50		959	1.23 PeCDF	0
Total Penta-Furans			NotFno		*		2.50	1340	959	1.23 0.00	0
Total Hexa-Furans	*		NotFn	d 1.13	*		2.50	983	985	1.44	0
Total Hepta-Furans	*		NotFn	1.23	*		2.50	595	574	1.18	0
•											

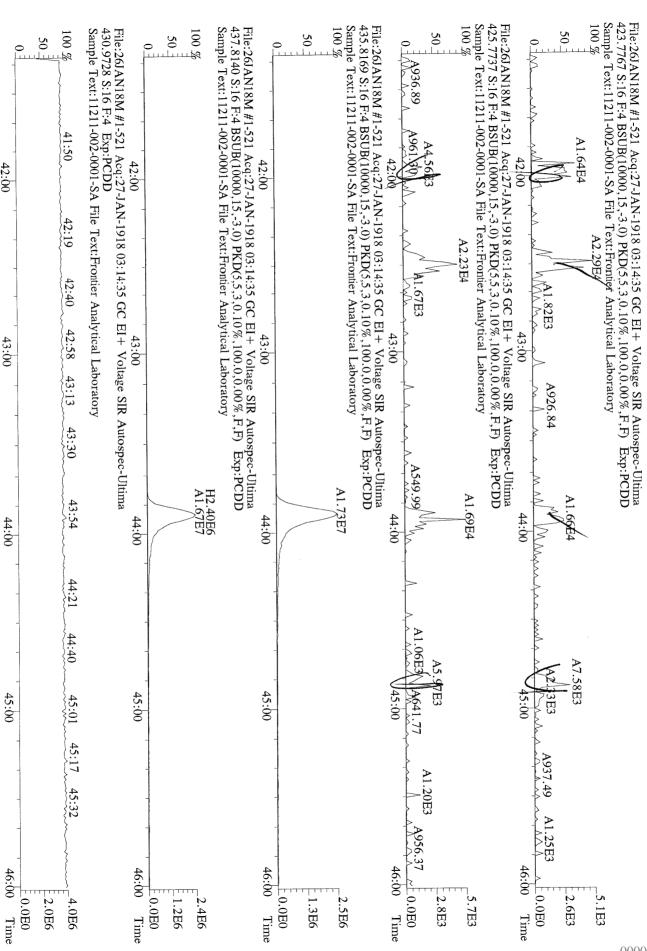
Analyst: ______ Date: _____ | /24//8____

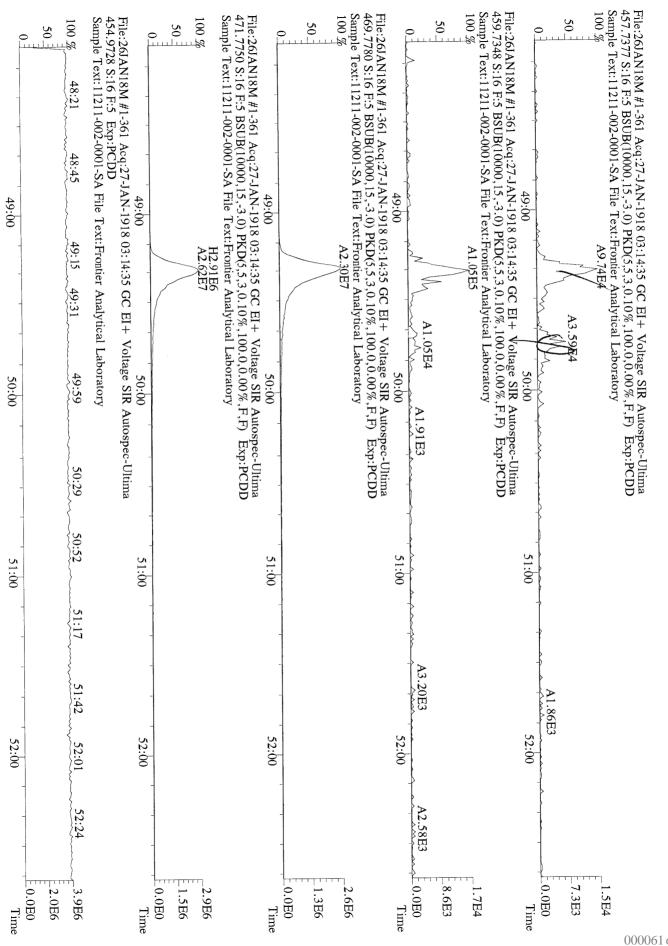
Totals class: Total Hepta-Dioxins Entry #: 41

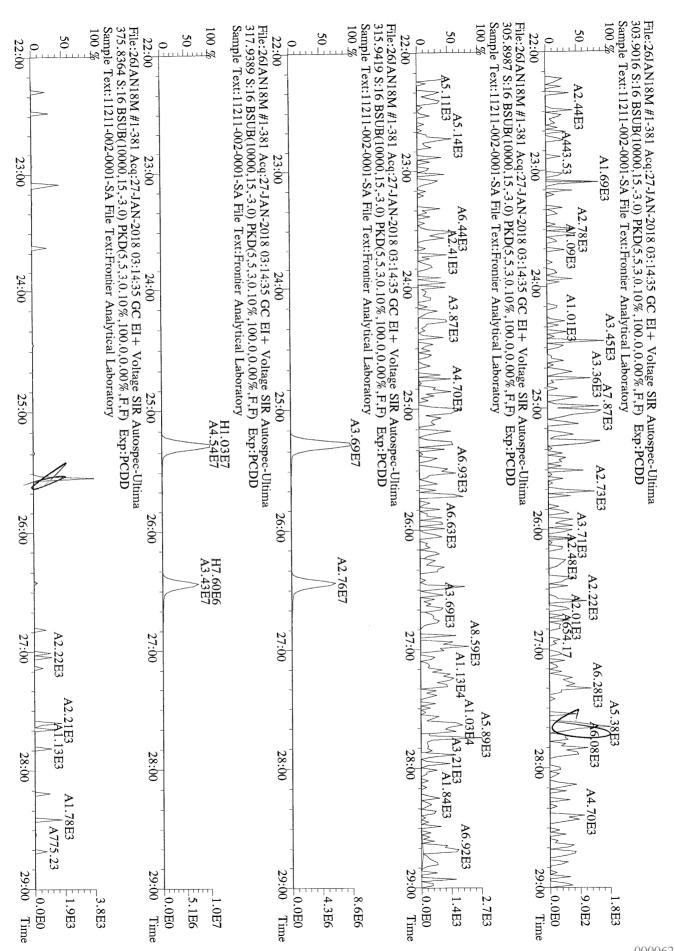

Run: 21 File: 26JAN18M S: 16 I: 1 F: 4

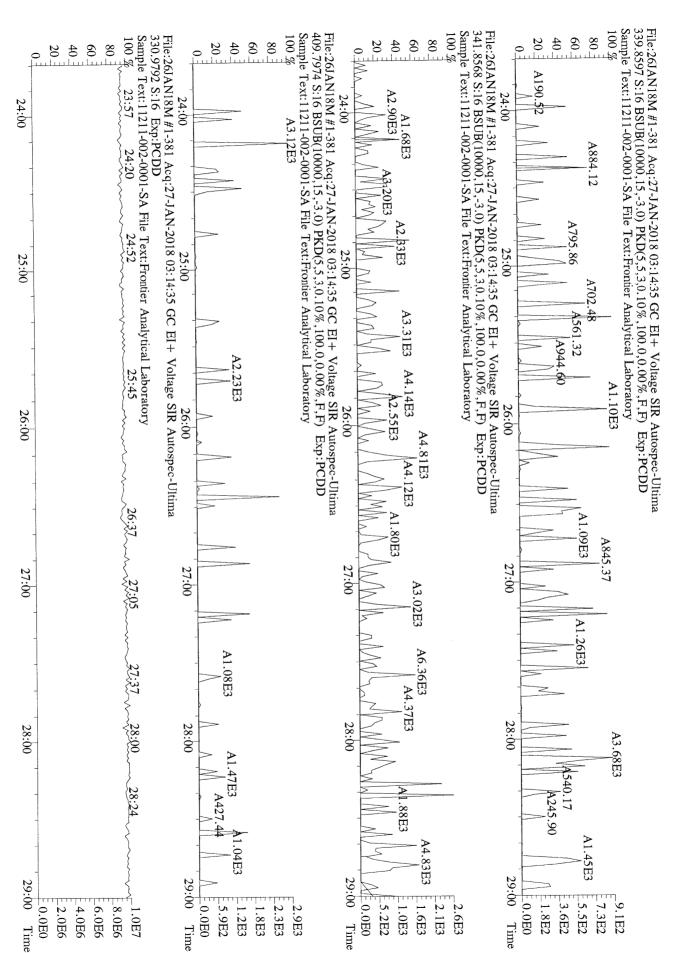

Acquired: 27-JAN-18 03:14:35

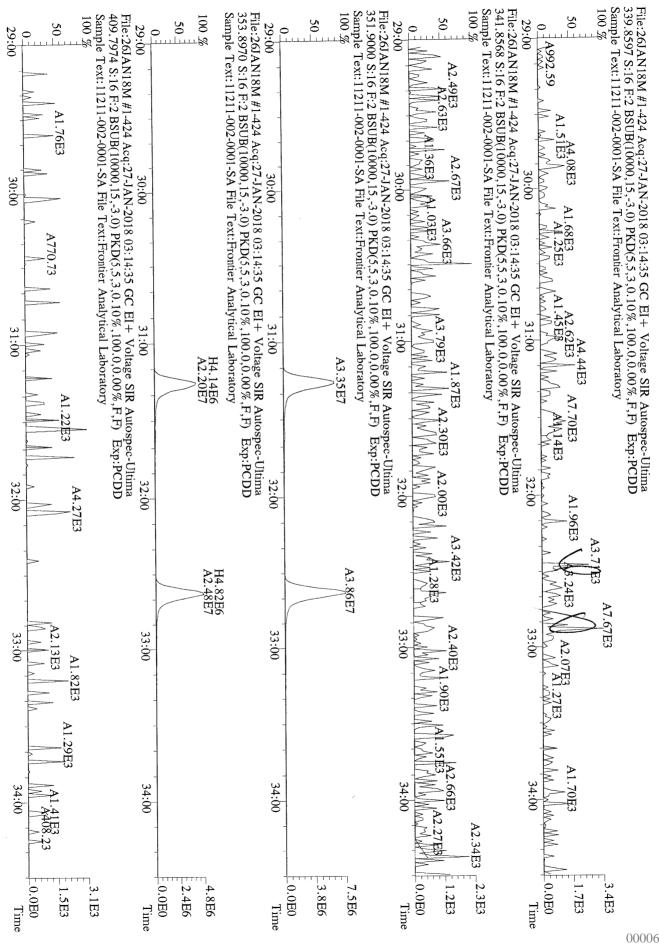

Total Concentration: 4.87 Unnamed Concentration: 2.798

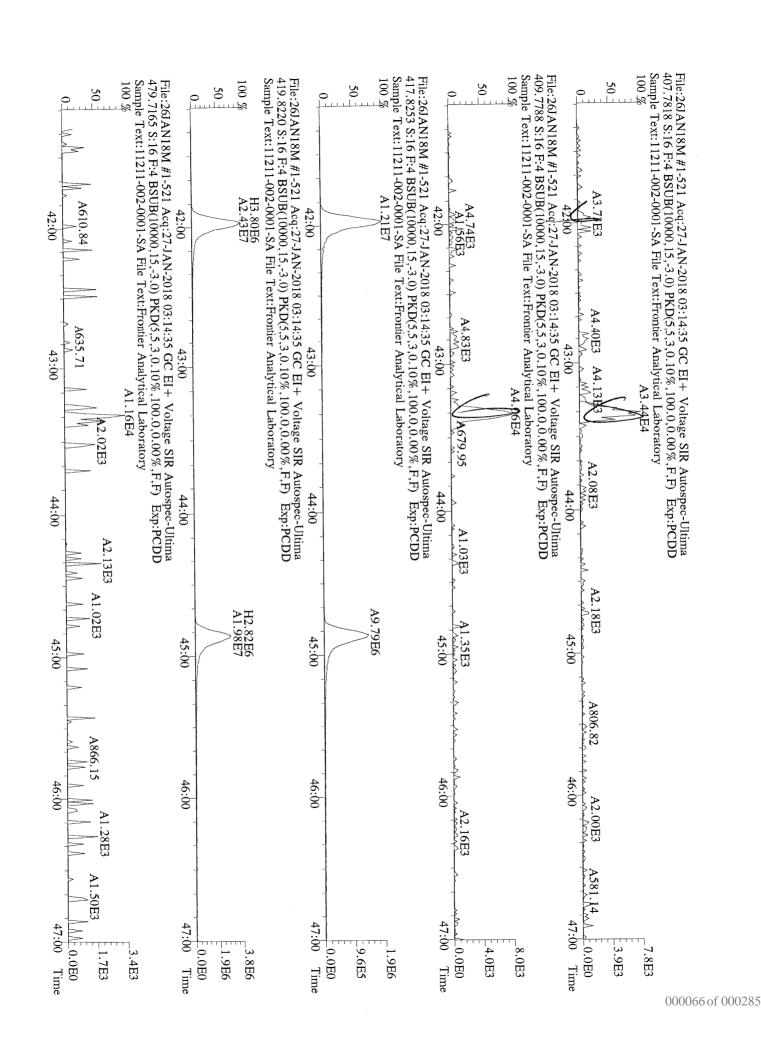

RT ml Resp m2 Resp RA Resp Concentration Name

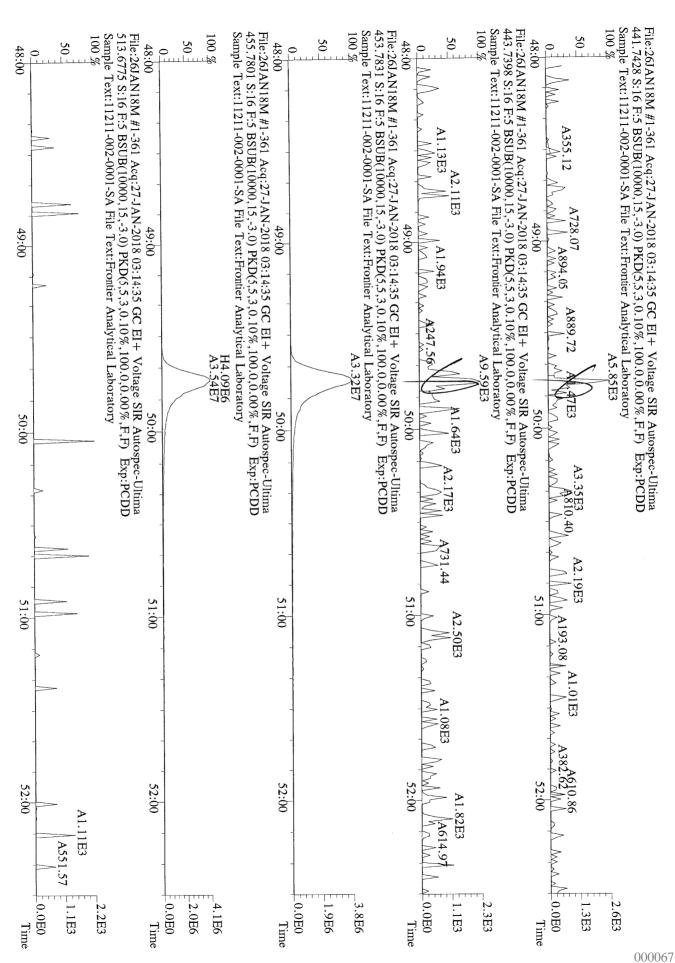

42:29 2.29e+04 2.23e+04 1.03 y 4.51e+04 2.80 43:56 1.66e+04 1.69e+04 0.99 y 3.35e+04 2.08 1,2,3,4,6,7,8-HpCDD

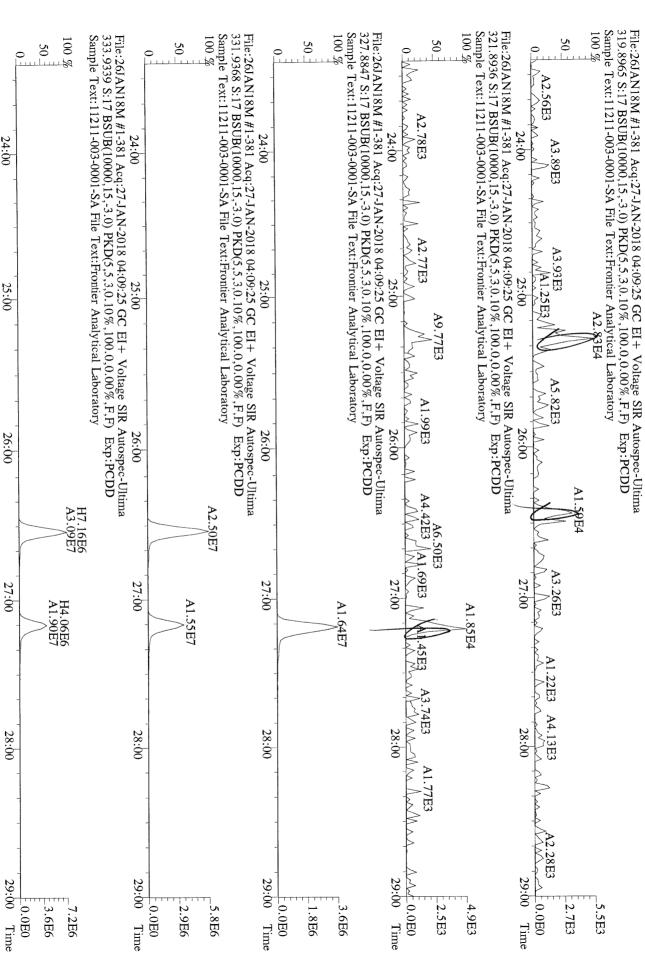


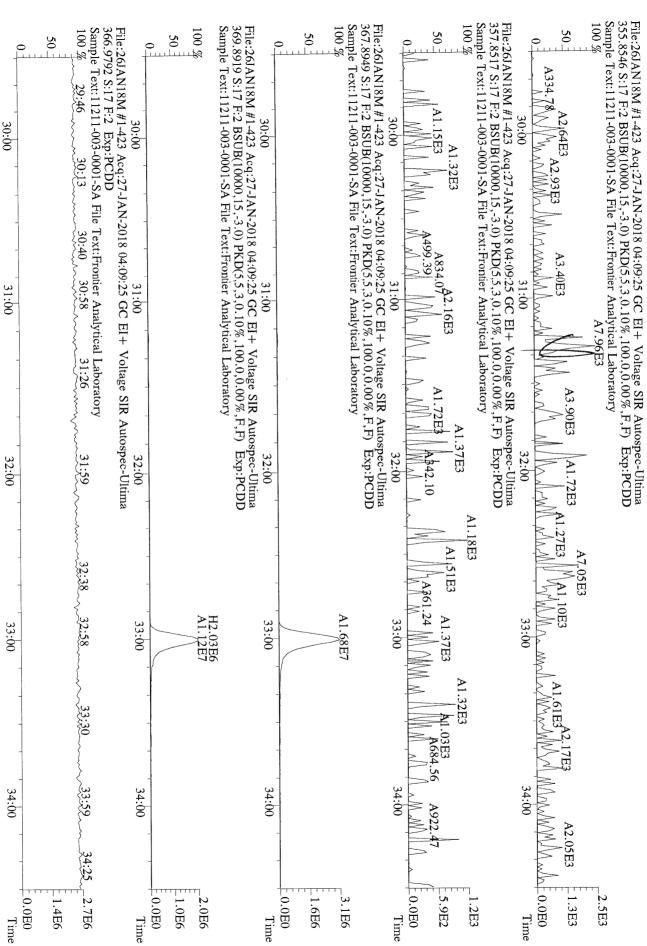


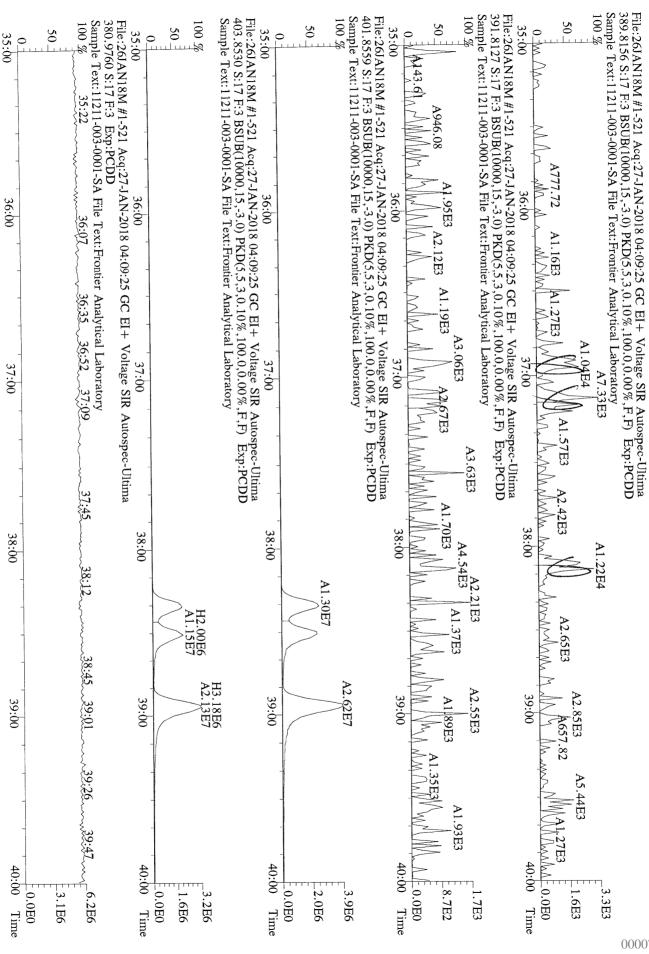


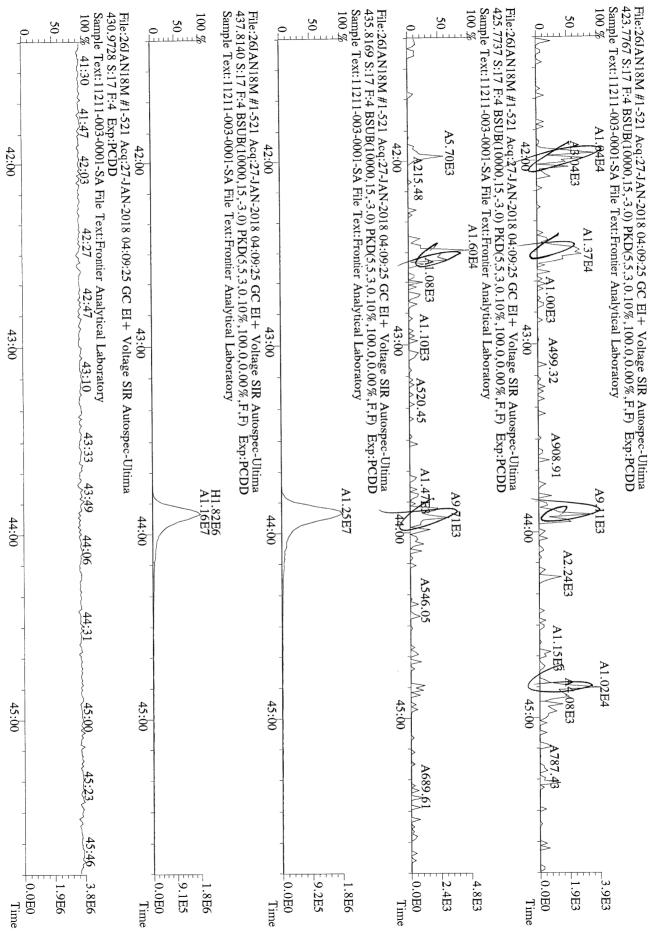


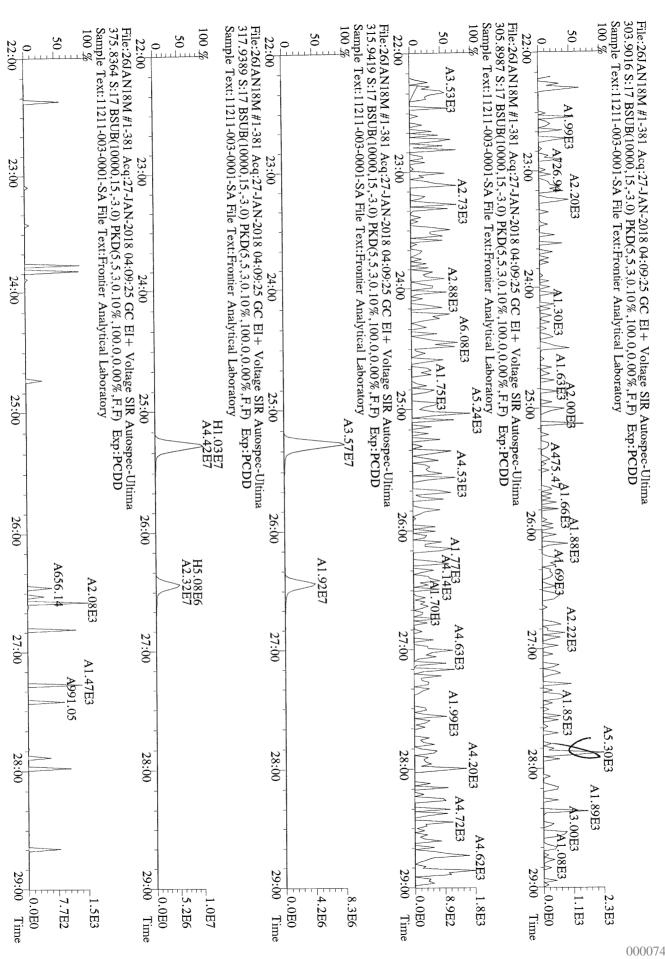


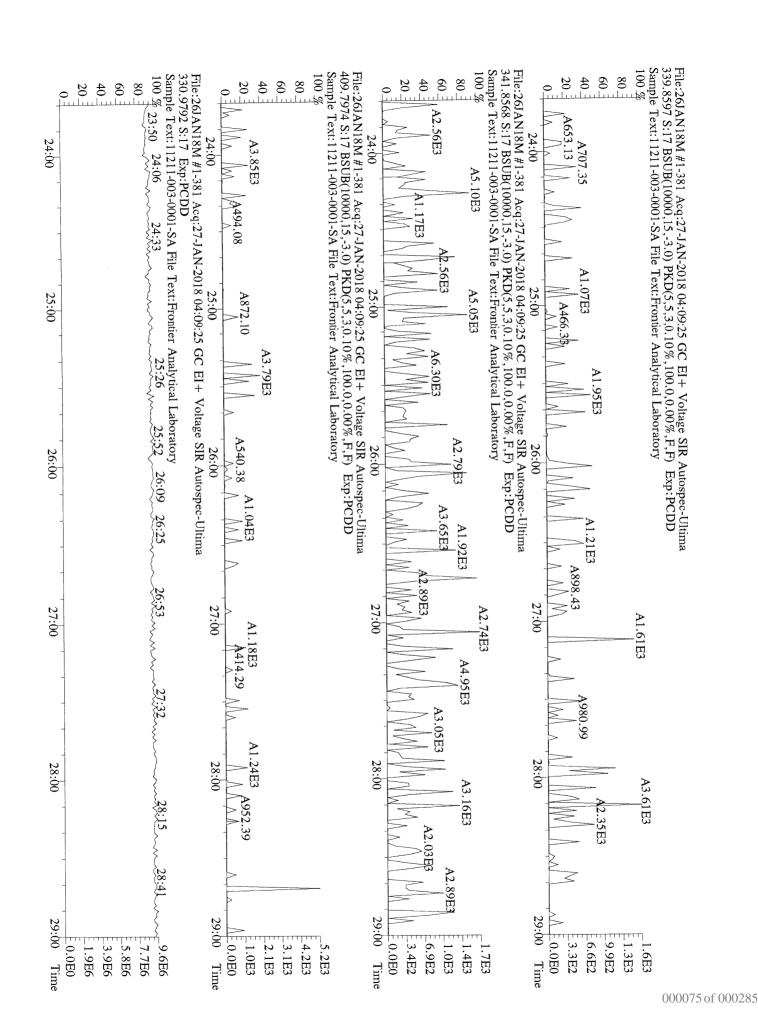


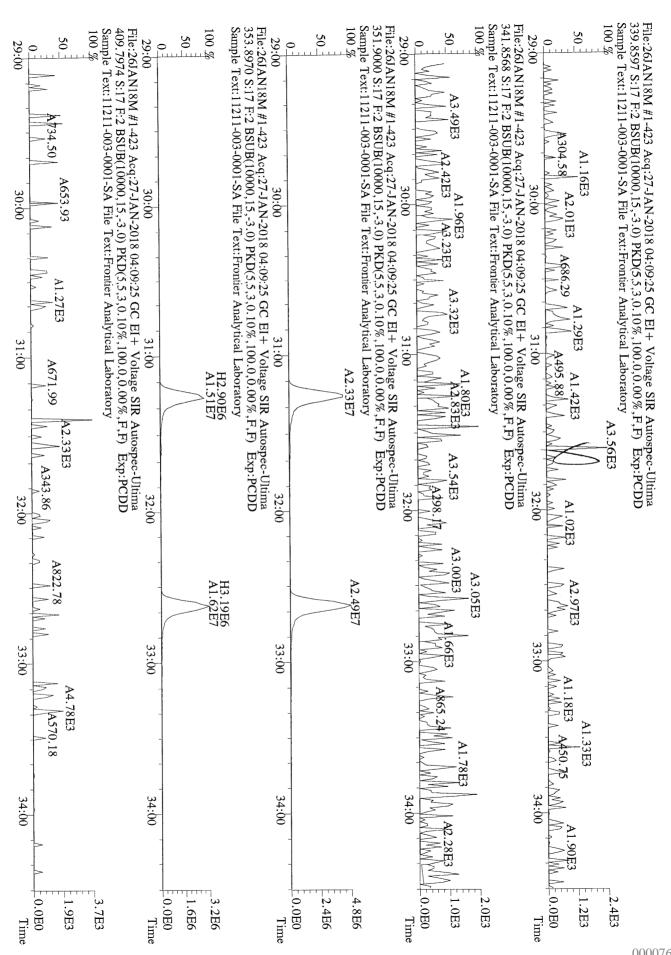


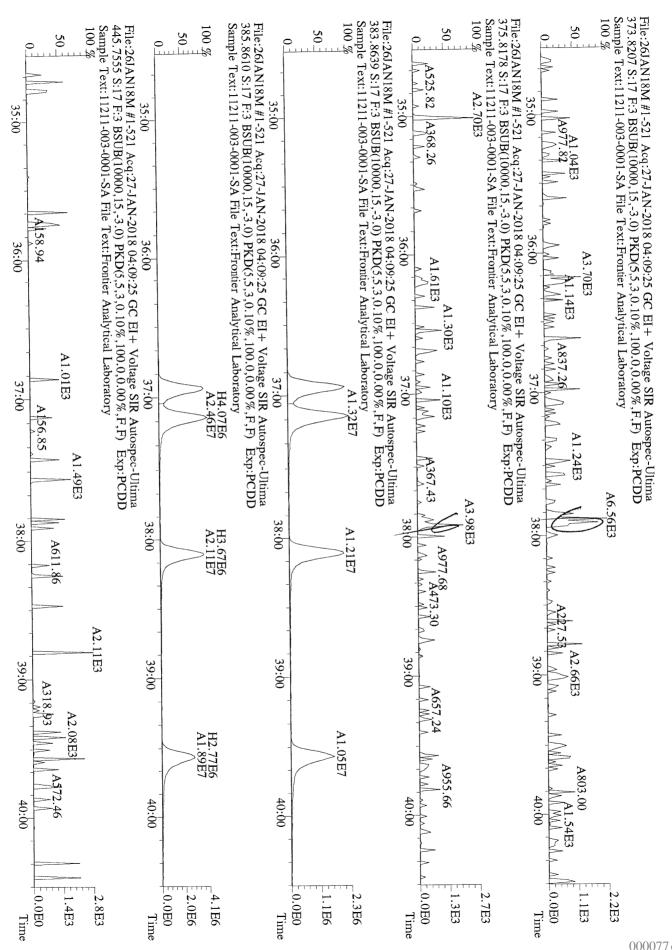

FAL ID: 11211-003-0001-SA Filename: 26JAN18M Sam:17 Acquired: 27-JAN-18 04:09:25 ICal: PCDDFAL3-12-22-17 ConCal: ST012618M2 EndCal: ST012618M3

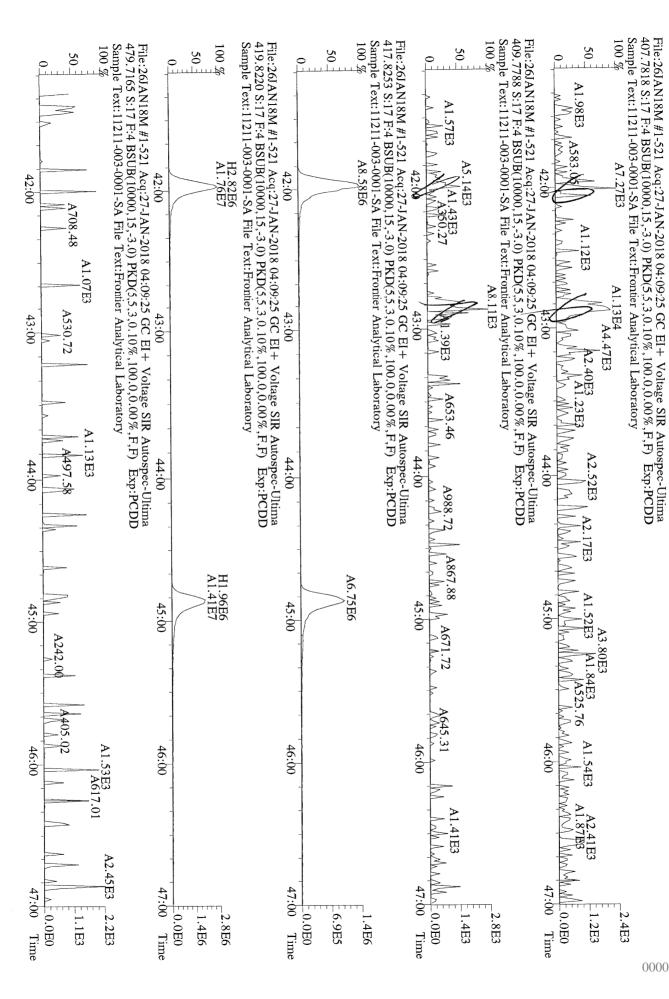

Client ID: AMW-2-011218 Re

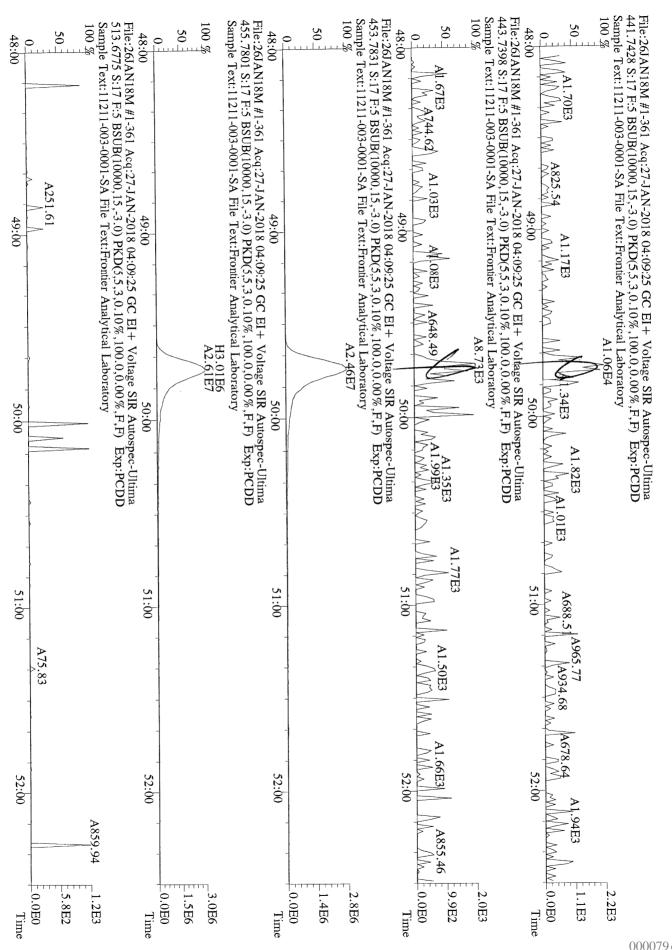

Client ID: AMW-2-011218				/			1012010		icat: Sivi		
Results: 11157X GC	Golumn: DB5	MS	Amount:	0.9030/	NATO 1989		0.022			0.00/5	a dala la
Instrument ID: FAL3					who 1998		0.0022		2005 Tox	: 0.00665 , C	1-0/18
Name	Resp	RA	RT	RRF	Conc	Qual	Fac	Noise-1	Noise-2	DL <	C 1130110
2,3,7,8-TCDD	*	*	n NotFnd	1.06	*		2.50	537	448	0.692	
1,2,3,7,8-PeCDD	*	*	n NotFnd	1.00	*		2.50	911	605	1.64	
1,2,3,4,7,8-HxCDD	*		n NotFnd		*		2.50	904	671	1.87	
	*		n NotFnd		*		2.50	904	671	1.88	
1,2,3,6,7,8-HxCDD	*		n NotFnd		*		2.50	904	671	1.82	
1,2,3,7,8,9-HxCDD	*				*		2.50	983	1100	3.18	
1,2,3,4,6,7,8-HpCDD			n NotFnd			J	2.50	-	-	*	
OCDD	2.06e+05	0.96	y 49:20	1.11	22.2	J	2.70				
							2 50	789	677	0.856	
2,3,7,8-TCDF	*		n NotFnd		*		2.50				
1,2,3,7,8-PeCDF	*	*	n NotFnd	0.95	*		2.50	318	644	0.781	
2,3,4,7,8-PeCDF	*	*	n NotFnd	0.79	*		2.50	318	644	0.842	
1,2,3,4,7,8-HxCDF	*	*	n NotFnd	1.20	*		2.50	752	820	1.23	
1,2,3,6,7,8-HxCDF	*	*	n NotFnd	1.10	*		2.50	752	820	1.24	
2,3,4,6,7,8-HxCDF	*	*	n NotFnd	1.08	*		2.50	752	820	1.41	
1,2,3,7,8,9-HxCDF	*	*	n NotFno	1.15	*		2.50	752	820	1.71	
1,2,3,4,6,7,8-HpCDF	*		n NotFno		*		2.50	866	554	1.52	
1,2,3,4,7,8,9-HpCDF	*		n NotFno		*		2.50	866	554	2.16	
	*		n NotFno		*		2.50	779	757	3.22	
OCDF			II NOTITIC	0.70						Rec	
470 2 7 7 0 7000	7 /5-107	0.01	. 27.10	1 02	1340					60.4	
13C-2,3,7,8-TCDD										56.9	
13C-1,2,3,7,8-PeCDD	2.80e+07				1260						
13C-1,2,3,4,7,8-HxCDD	2.36e+07				1290					58.1	
13C-1,2,3,6,7,8-HxCDD	2.52e+07	1.20	y 38:31	0.94	1250					56.5	
13C-1,2,3,4,6,7,8-HpCDD	2.41e+07	1.08	y 43:54	0.90	1250					56.3	
13C-OCDD	3.71e+07	0.89	y 49:19	0.70	2460					55.5	
			•								
13C-2,3,7,8-TCDF	4 23e+07	0.83	v 26:26	0.93	1260					56.8	
13C-1,2,3,7,8-PeCDF	3.84e+07				1230					55.5	
* * * *	4.11e+07		•		1150					51.9	
13C-2,3,4,7,8-PeCDF			•		1350					61.1	
13C-1,2,3,4,7,8-HxCDF	3.18e+07									59.0	
13C-1,2,3,6,7,8-HxCDF					1310					56.6	
13C-2,3,4,6,7,8-HxCDF	3.31e+0/	0.57	y 38:07	1.23	1250						
13C-1,2,3,7,8,9-HxCDF					1200					54.0	
13C-1,2,3,4,6,7,8-HpCDF					1250					56.6	
13C-1,2,3,4,7,8,9-HpCDF					1190					53.8	
13c-ocdf	5.07e+07	0.94	y 49:44	1.06	2220					50.2	
37Cl-2,3,7,8-TCDD	1.64e+07		27:1	0.91	709					80.0	
13C-1,2,3,4-TCDD	5.60e+07	0.81	y 26:32	_	171						
13C-1,2,3,4-TCDF	7.99e+07		y 25:17		170						
13C-1,2,3,7,8,9-HxCDD			-		172						
130-1,2,3,7,8,9-8,000	4.736+07	1.23	y 30.51	'	172		Fac	Noise-1	Noise-2	DL	#Hom
	*		No 45.	J 1 04	*		2.50	537	448	0.692 /	0
Total Tetra-Dioxins			NotFno		*			911	605	1.64	0
Total Penta-Dioxins	*		NotFno				2.50				
Total Hexa-Dioxins	*		NotFno		*		2.50	904	671	1.88	0
Total Hepta-Dioxins	*		NotFno	0.99	*		2.50	983	1100	3.18	0
											_
Total Tetra-Furans	*		NotFno		*		2.50	789	677	0.856	0
1st Fn. Tot Penta-Furans	*		NotFno	0.86	*		2.50	318	661	0.842 PeCDF	0
Total Penta-Furans	*		NotFno	d 0.86	*		2.50	318	661	0.842 0.00	0
Total Hexa-Furans	*		NotFno	1.13	*		2.50	752	820	1.71	0
Total Hepta-Furans	*		NotFno		*		2.50	866	554	2.16	0

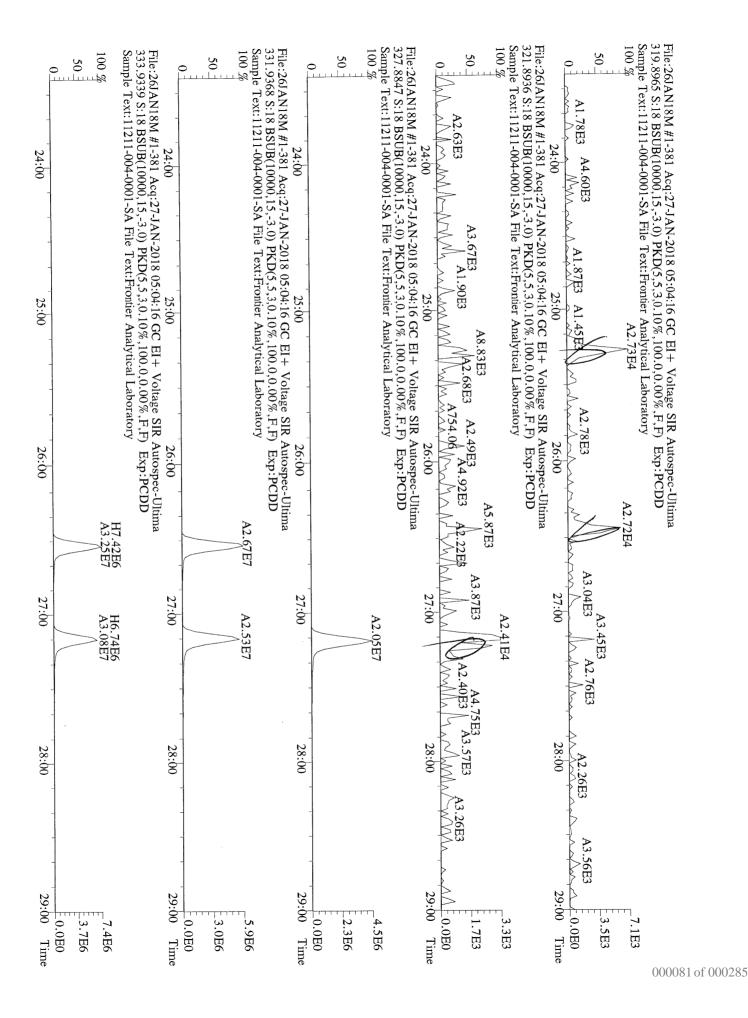


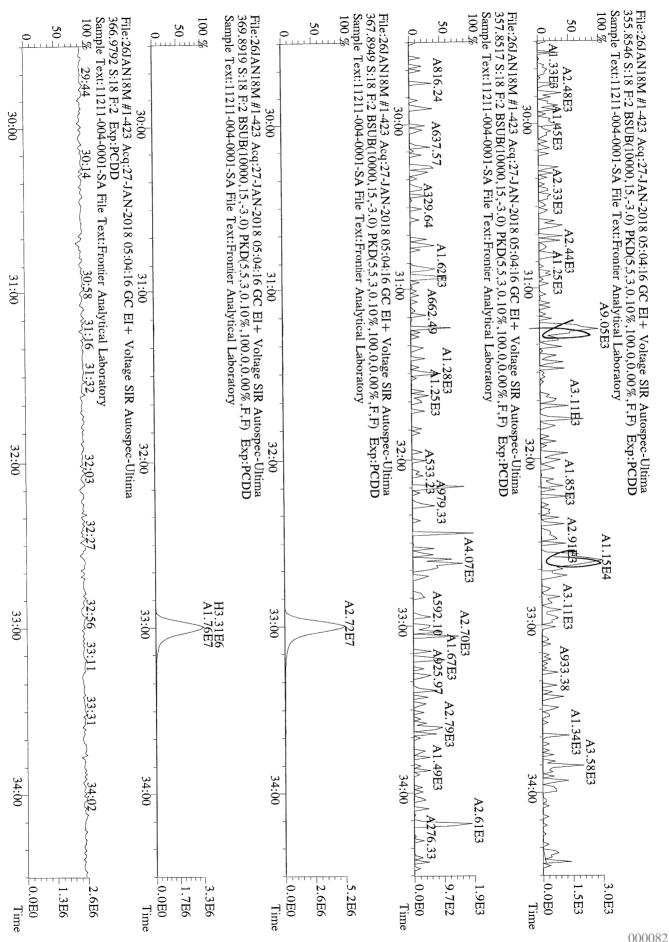


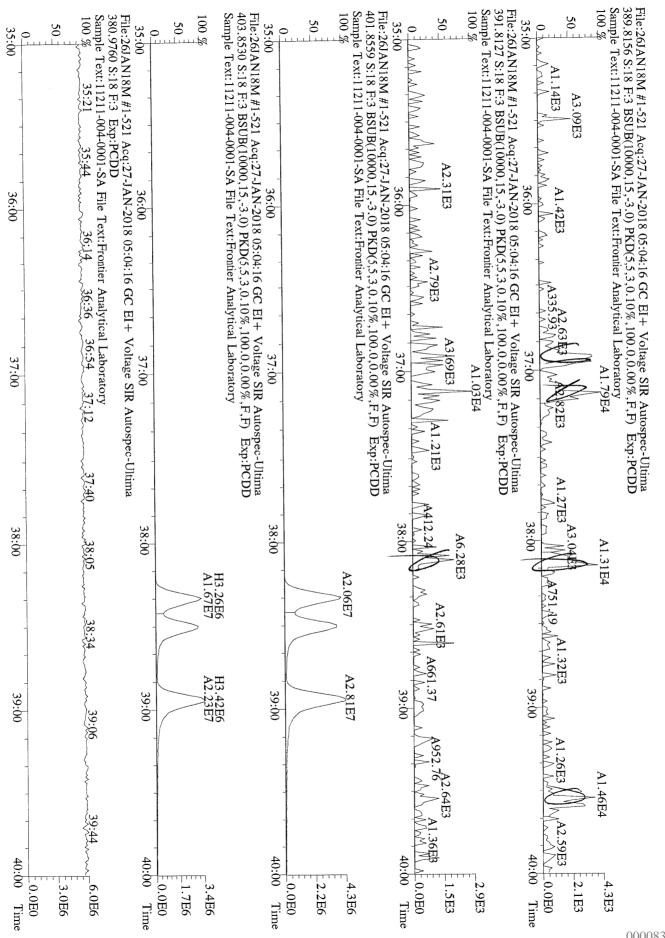


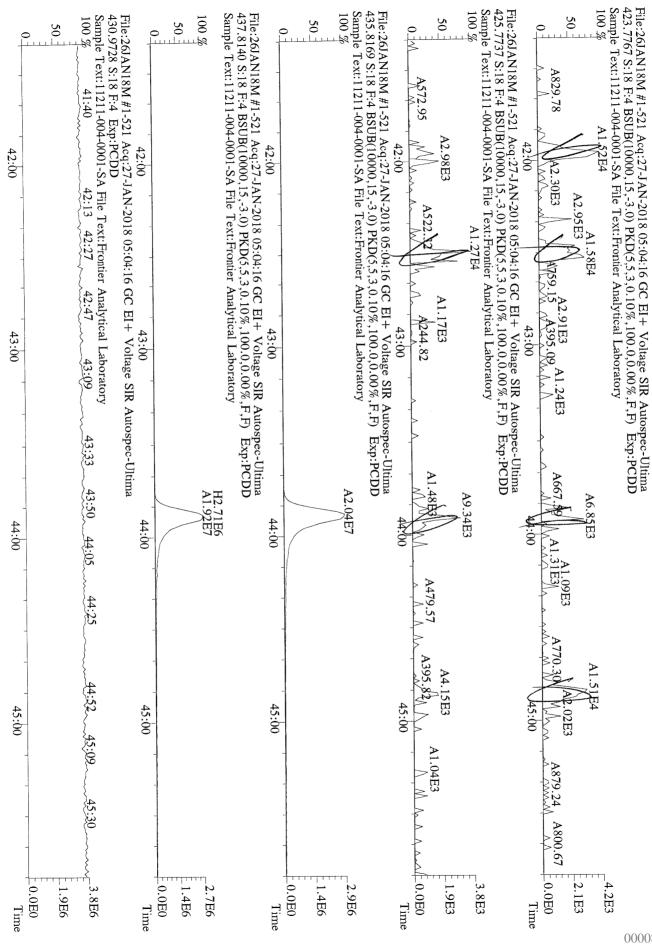


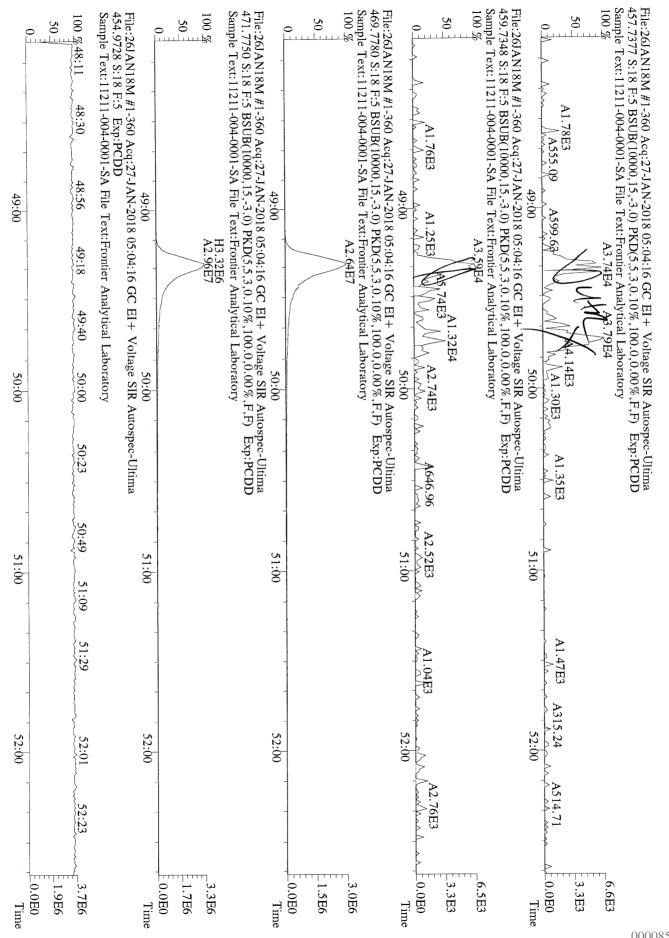


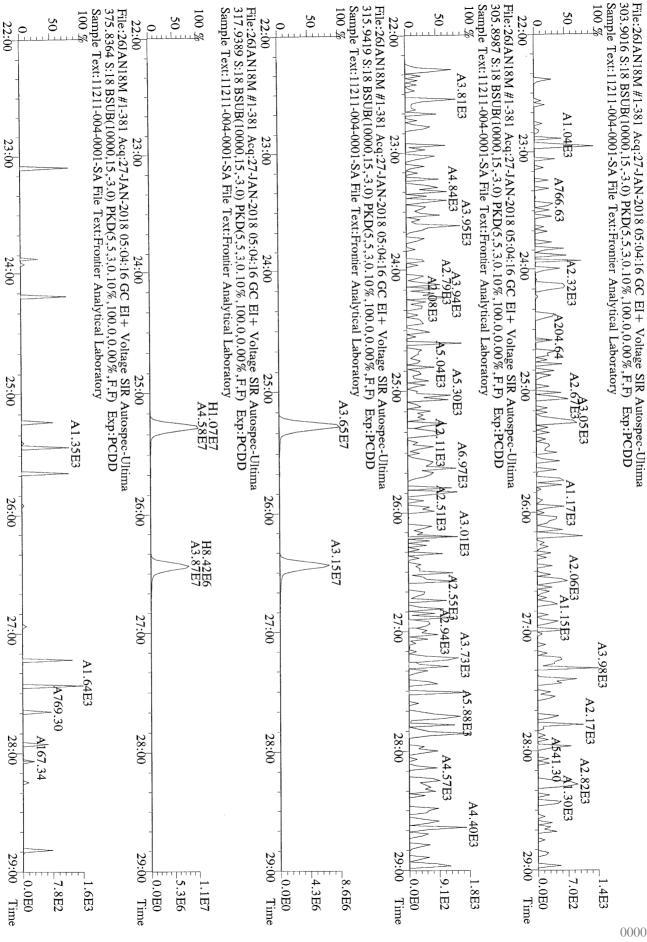


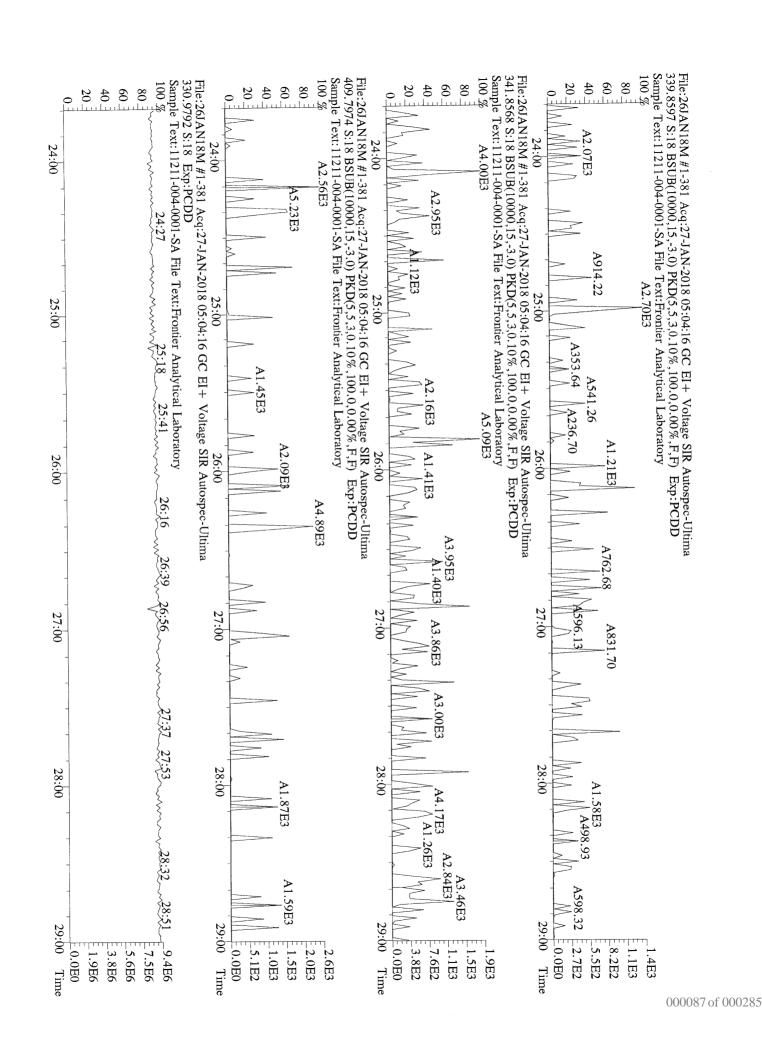


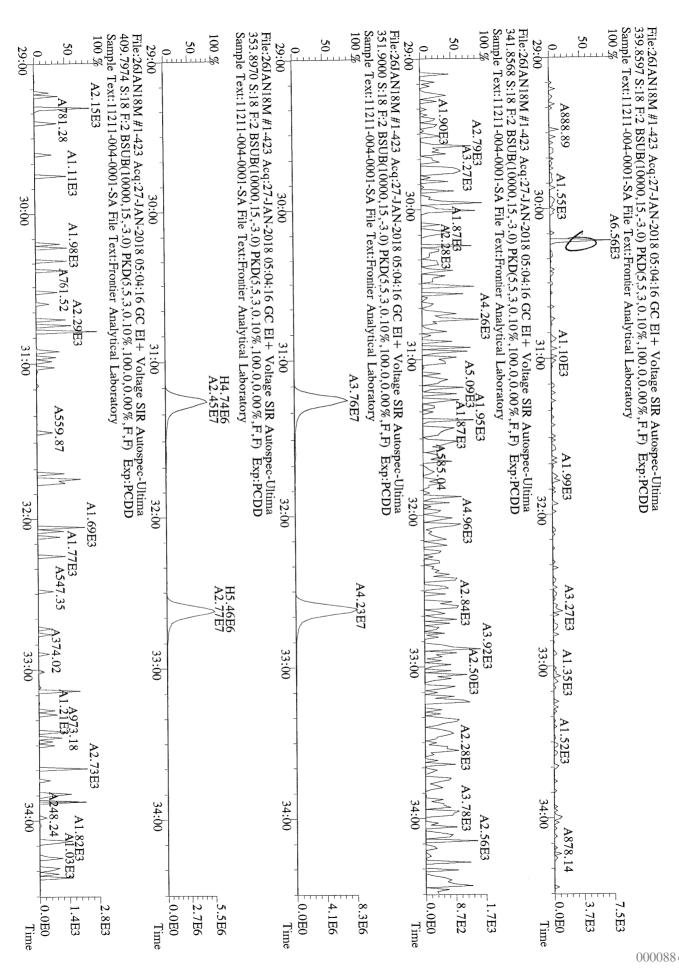

Sam:18 Acquired: 27-JAN-18 05:04:16 ICal: PCDDFAL3-12-22-17 Filename: 26JAN18M FAL ID: 11211-004-0001-SA EndCal: ST012618M3 ConCal: ST012618M2 Client ID: AMW-1-011218 0.00 NATO 1989 Tox: GC Golumn: DB5MS Amount: 0.9580 Results: 11211 0.00 0.00 WHO 2005 Tox: WHO 1998 Tox: Instrument ID: FAL3 DL Fac Noise-1 Noise-2 RA RT RRF Conc Qual Resp Name 604 0.510 2.50 664 * n NotFnd 1.06 2,3,7,8-TCDD 782 1.02 * 2.50 878 * n NotFnd 1.00 1,2,3,7,8-PeCDD 979 1.36 2.50 1050 * n NotFnd 1.07 1,2,3,4,7,8-HxCDD 1.45 1050 979 * n NotFnd 2.50 1.08 1,2,3,6,7,8-HxCDD 2.50 1050 979 1.36 1,2,3,7,8,9-HxCDD * n NotFnd 1.11 1330 2.29 2.50 1090 * n NotFnd 0.99 1,2,3,4,6,7,8-HpCDD 2090 5.81 1810 * n NotFnd 1.11 2.50 OCDD 0.499 701 814 2.50 1.03 2,3,7,8-TCDF * n NotFnd 843 0.656 588 * n NotFnd 0.95 2.50 1,2,3,7,8-PeCDF 843 0.688 588 * n NotFnd 0.79 2.50 2,3,4,7,8-PeCDF 945 0.819 * n NotFnd 2.50 830 1.20 1,2,3,4,7,8-HxCDF 2.50 830 945 0.845 * n NotFnd 1.10 1,2,3,6,7,8-HxCDF 945 0.873 * n NotFnd 1.08 2.50 830 2,3,4,6,7,8-HxCDF 945 2.50 830 1.14 * n NotFnd 1.15 1,2,3,7,8,9-HxCDF 525 0.929 2.50 885 * n NotEnd 1.23 1,2,3,4,6,7,8-HpCDF 885 525 1.23 2.50 1,2,3,4,7,8,9-HpCDF * n NotFnd 1.23 1.48 605 553 0.90 2.50 * n NotFnd OCDE Rec 92.9 1940 1.02 13C-2,3,7,8-TCDD 5.62e+07 0.82 y 27:10 86.1 1800 0.88 13C-1,2,3,7,8-PeCDD 4.48e+07 1.54 y 32:60 86.6 13C-1,2,3,4,7,8-HxCDD 3.73e+07 1.23 y 38:20 1810 0.85 86.0 13C-1,2,3,6,7,8-HxCDD 4.08e+07 1.24 y 38:30 0.94 1800 86.9 13c-1,2,3,4,6,7,8-HpCDD 3.96e+07 1.07 y 43:53 0.90 1810 79.0 3300 13C-OCDD 5.60e+07 0.89 y 49:19 0.70 91.5 13C-2,3,7,8-TCDF 7.02e+07 0.81 y 26:26 0.93 1910 87.1 13C-1,2,3,7,8-PeCDF 6.21e+07 1.53 y 31:15 0.87 1820 85.9 13C-2,3,4,7,8-PeCDF 7.00e+07 1.53 y 32:37 1790 0.99 1910 91.5 0.55 y 36:56 1.09 13C-1,2,3,4,7,8-HxCDF 5.05e+07 1860 88.9 6.03e+07 0.55 y 37:08 1.35 13C-1,2,3,6,7,8-HxCDF 89.2 0.56 y 38:06 1.23 1860 13C-2,3,4,6,7,8-HxCDF 5.54e+07 4.87e+07 0.54 y 39:33 1.14 1760 84.5 13C-1,2,3,7,8,9-HxCDF 0.48 y 41:58 0.97 1730 83.0 4.08e+07 13C-1,2,3,4,6,7,8-HpCDF 1770 84.6 0.48 y 44:52 0.82 13C-1,2,3,4,7,8,9-HpCDF 3.49e+07 74.1 13c-ocdf 7.94e+07 0.93 y 49:44 1.06 3090 94.9 27:11 0.91 793 37Cl-2,3,7,8-TCDD 2.05e+07 13C-1,2,3,4-TCDD 5.92e+07 0.82 y 26:32 170 165 13C-1,2,3,4-TCDF 8.23e+07 0.80 y 25:17 172 13C-1,2,3,7,8,9-HxCDD 5.05e+07 1.26 y 38:57 Fac Noise-1 Noise-2 DL #Hom 0.510 / 0 2.50 664 604 Total Tetra-Dioxins NotFnd 1.06 0 878 782 1.02 < NotFnd 1.00 2.50 Total Penta-Dioxins 1.45 < 979 0 Total Hexa-Dioxins NotFnd 1.09 2.50 1050 2.50 1090 1330 2.29/ 0 Total Hepta-Dioxins NotFnd 0.99 2.50 701 814 0.499 < 0 Total Tetra-Furans NotFnd 1.03 0.688 PeCDF 0 2.50 588 843 1st Fn. Tot Penta-Furans NotFnd 0.86 0.688/ * 588 843 0 NotFnd 0.86 2.50 Total Penta-Furans 1.14 2.50 830 945 0 Total Hexa-Furans **Not Fnd** 1.13 1.23 / 885 0 **Not Fnd** 1.23 2.50 Total Hepta-Furans

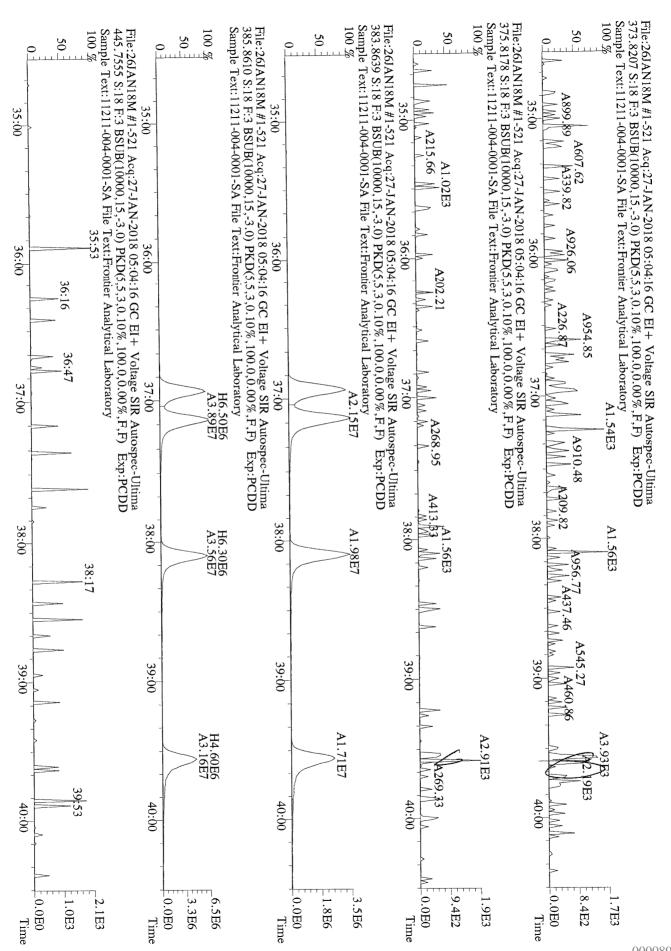

Analyst:

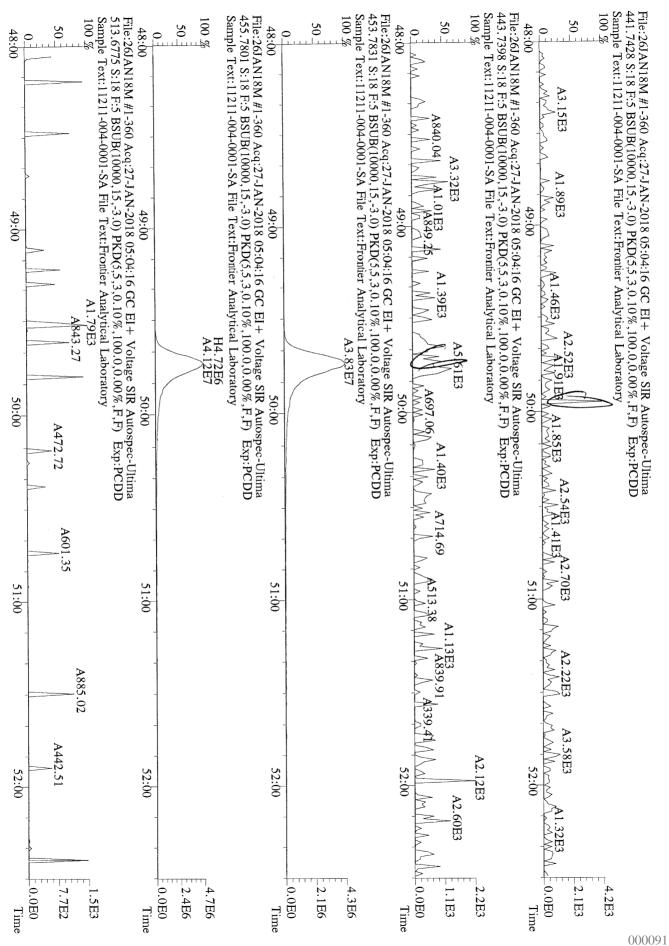

Date: 1/2/18

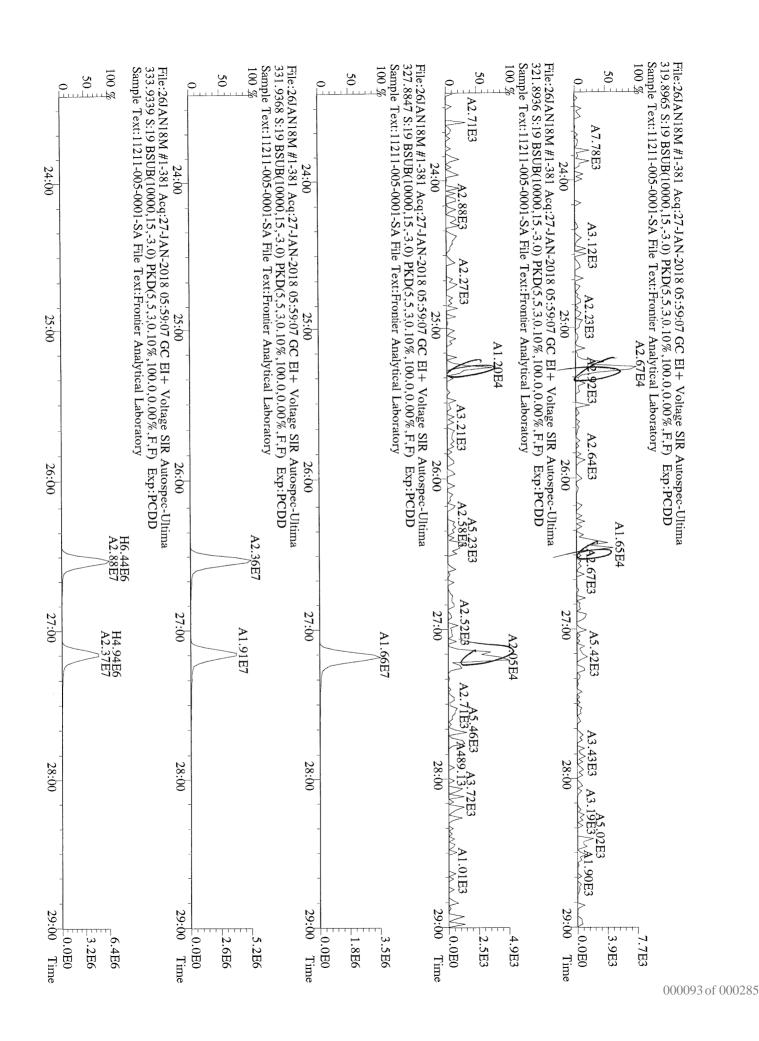


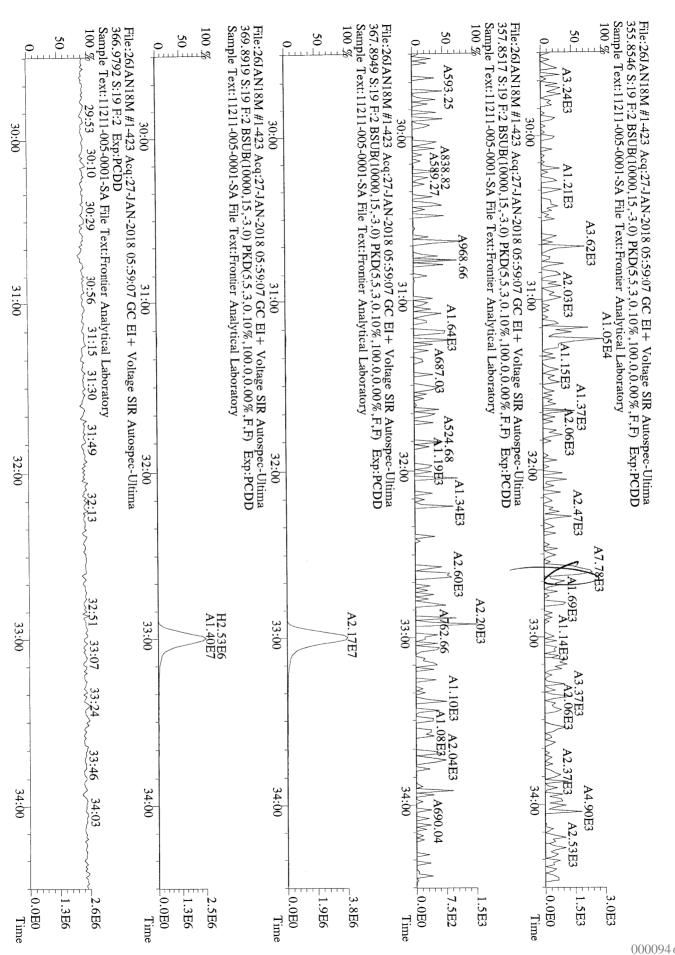


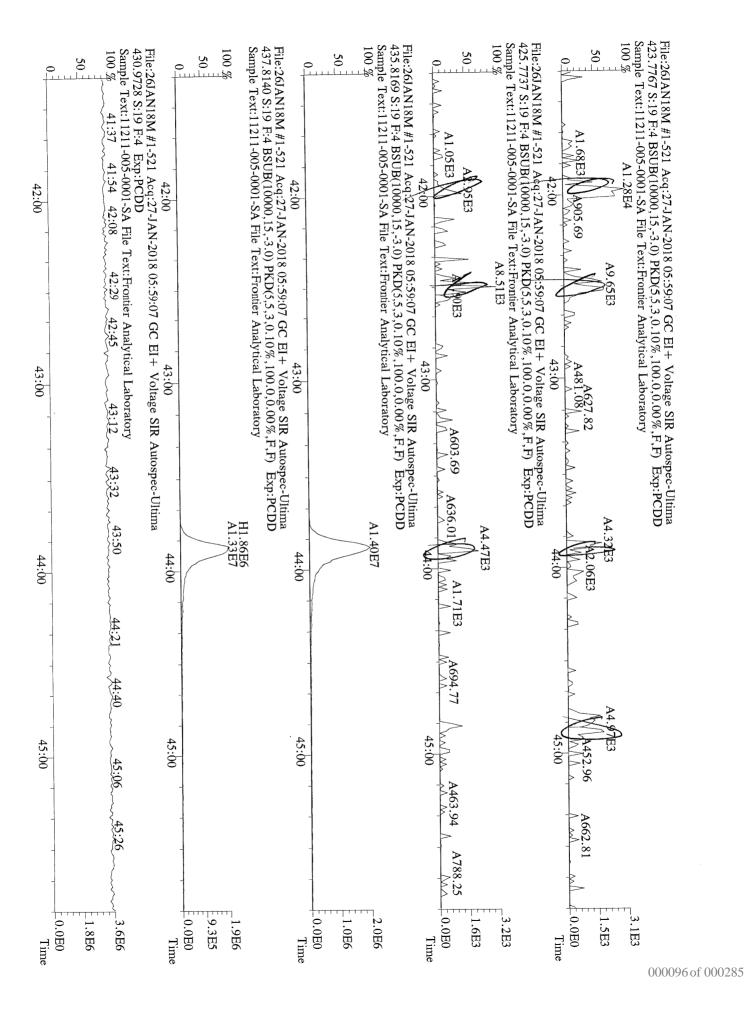


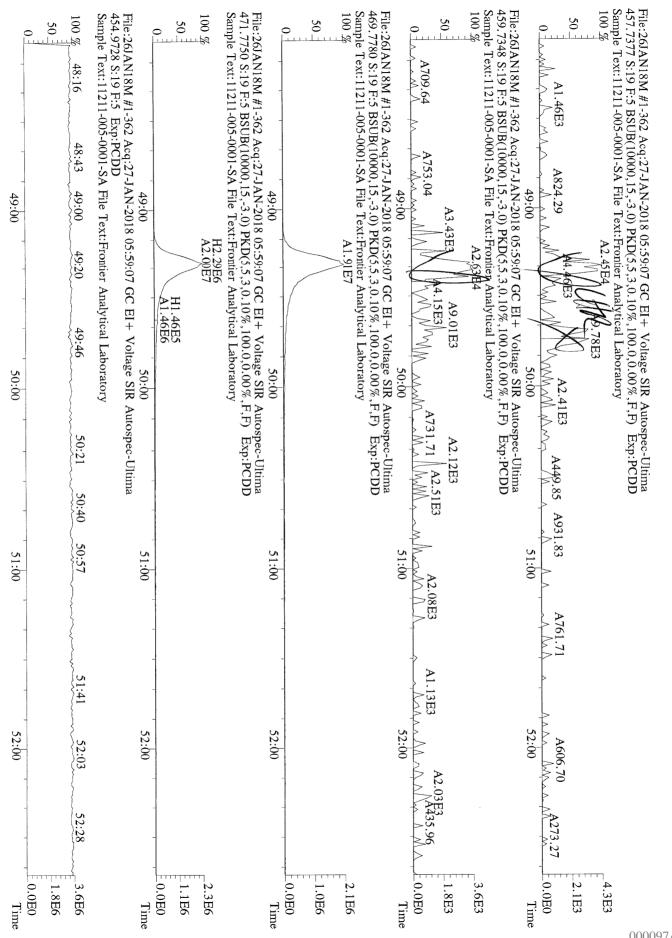


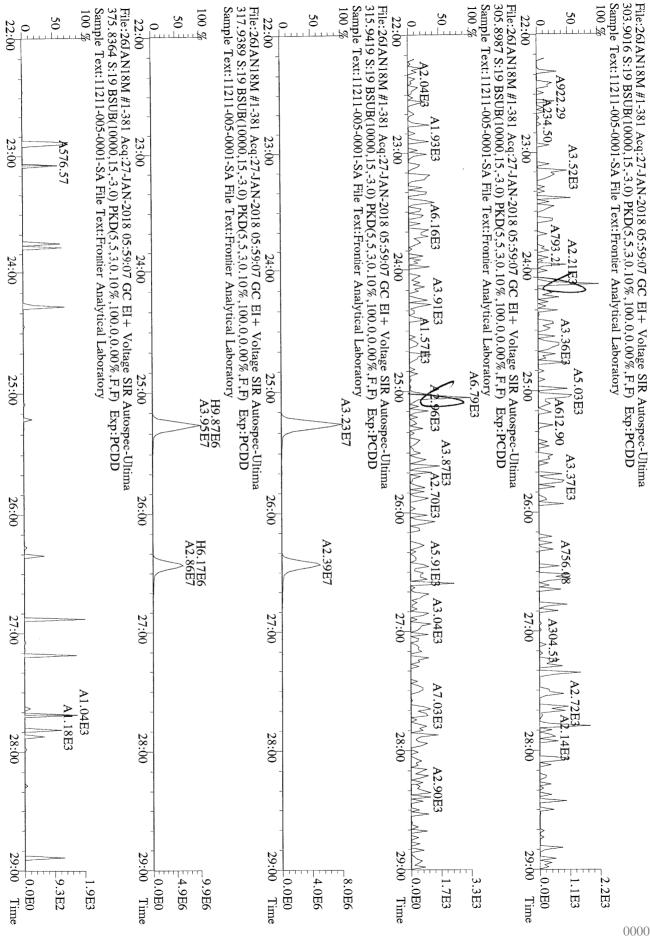


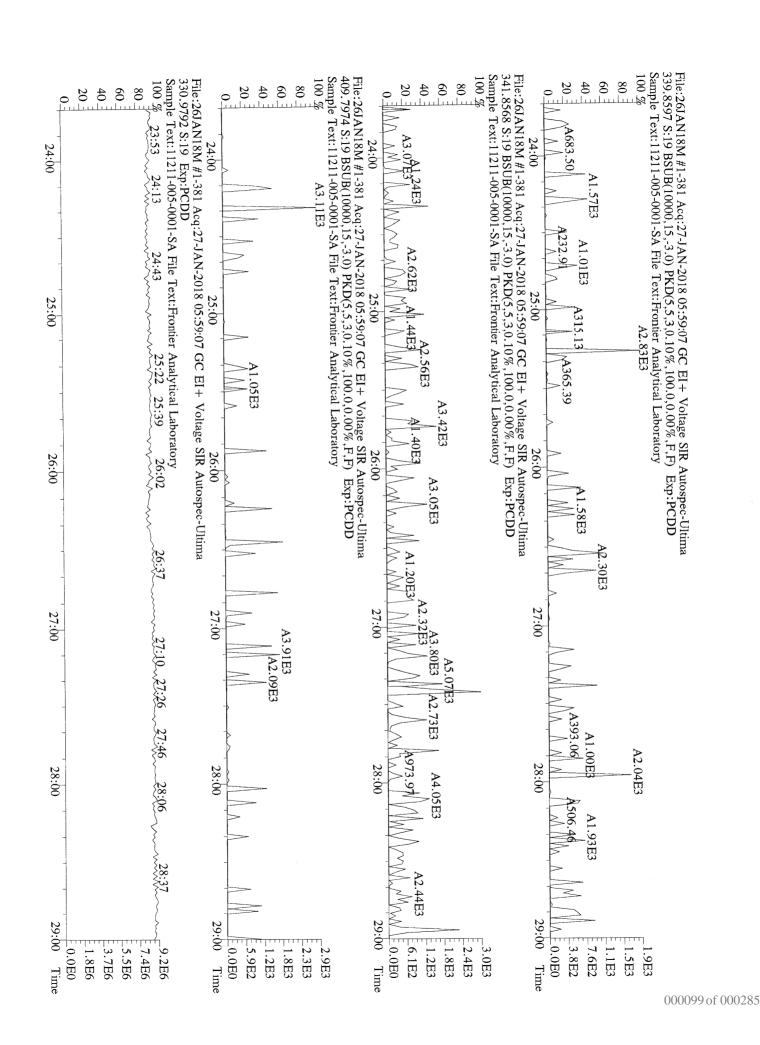


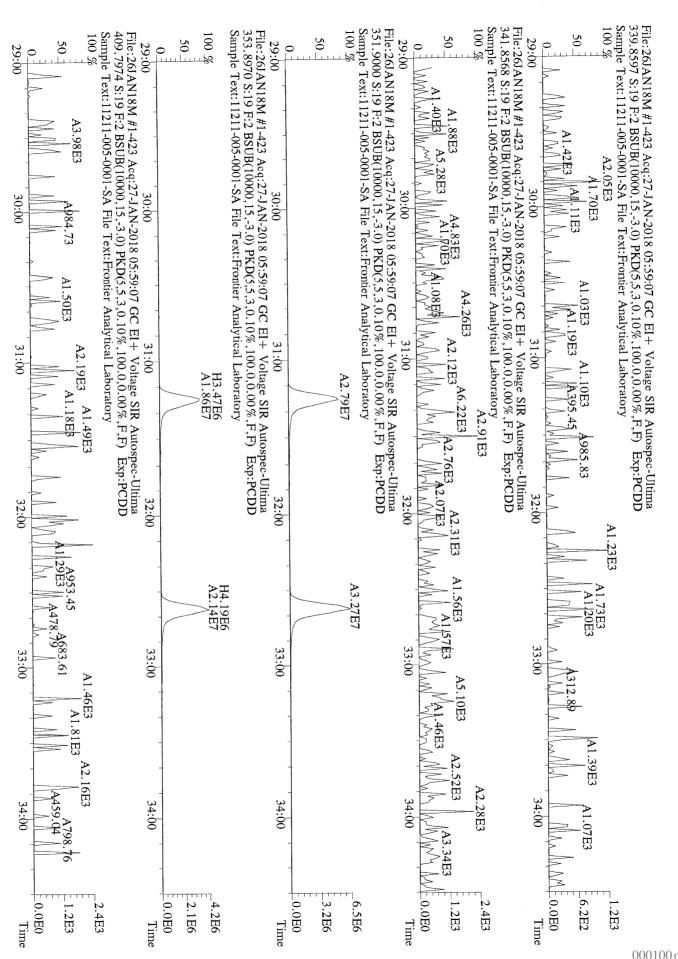


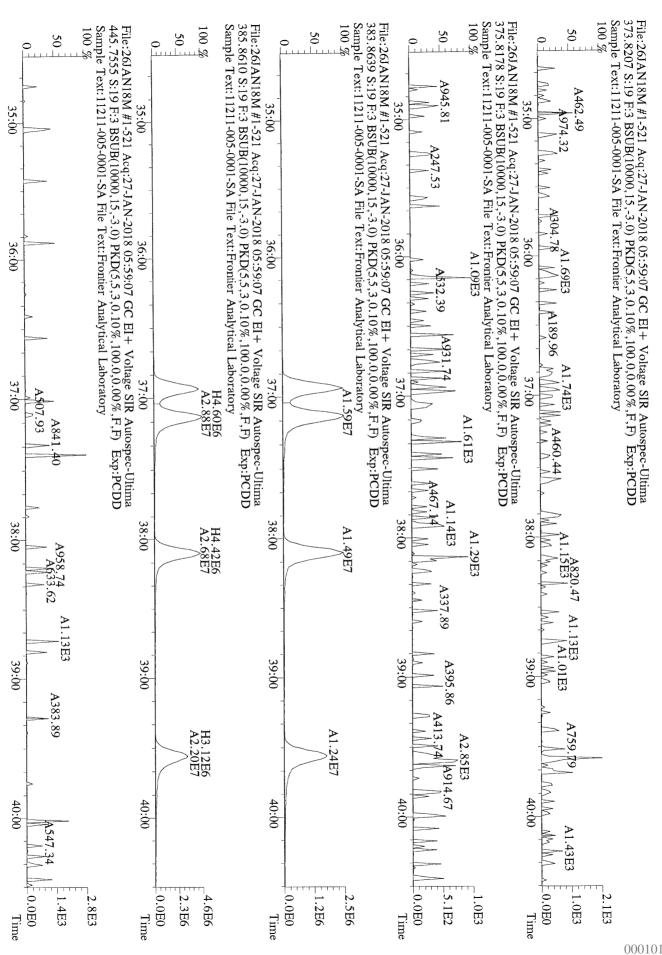

Sam:19 Acquired: 27-JAN-18 05:59:07 ICal: PCDDFAL3-12-22-17 FAL ID: 11211-005-0001-SA Filename: 26JAN18M ConCal: ST012618M2 EndCal: ST012618M3 Client ID: AMW-5-011218 Amount: 0.9400 NATO 1989 Tox: 0.00 GC Golumn: DB5MS Results: 11211 WHO 2005 Tox: 0.00 0.00 WHO 1998 Tox: Instrument ID: FAL3 DL Noise-2 RT RRF Conc Qual Fac Noise-1 RA Resp Name 0.795 586 2.50 815 * n NotFnd 1.06 2,3,7,8-TCDD 1040 586 1.36 * n NotFnd 2.50 1.00 1,2,3,7,8-PeCDD 807 1.90 2.50 1060 1,2,3,4,7,8-HxCDD * n NotFnd 1.07 807 1.93 1060 2.50 * n NotFnd 1.08 1,2,3,6,7,8-HxCDD 807 1.85 2.50 1060 1,2,3,7,8,9-HxCDD * n NotFnd 1.11 2.50 708 1170 2.62 0.99 * n NotFnd 1,2,3,4,6,7,8-HpCDD 5.81 * n NotFnd 2.50 1370 1270 1.11 OCDD 0.883 2.50 751 1150 * n NotFnd 1.03 2,3,7,8-TCDF 1.06 0.95 2.50 674 975 * n NotEnd 1,2,3,7,8-PeCDF 2.50 674 975 1.04 * n NotFnd 0.79 2,3,4,7,8-PeCDF 2.50 850 416 0.827 * n NotFnd 1,2,3,4,7,8-HxCDF 1.20 0.867 2.50 850 416 * n NotFnd 1.10 1,2,3,6,7,8-HxCDF 2.50 850 416 0.901 * n NotFnd 2,3,4,6,7,8-HxCDF 1.08 2.50 850 416 1.21 * n NotFnd 1.15 1,2,3,7,8,9-HxCDF 999 514 1.43 1,2,3,4,6,7,8-HpCDF * n NotFnd 1.23 2.50 999 514 1.92 * n NotFnd 1.23 2.50 1,2,3,4,7,8,9-HpCDF 2.50 650 555 2.29 * n NotFnd 0.90 Rec 1700 80.0 1.02 13C-2,3,7,8-TCDD 4.28e+07 0.81 y 27:09 77.6 13C-1,2,3,7,8-PeCDD 3.57e+07 1.55 y 32:60 0.88 1650 73 2 0.85 1560 13C-1,2,3,4,7,8-HxCDD 2.77e+07 1.24 y 38:20 13C-1,2,3,6,7,8-HxCDD 2.98e+07 1.24 y 38:30 1520 71.3 0.94 68.0 13C-1,2,3,4,6,7,8-HpCDD 2.72e+07 1.05 y 43:53 0.90 1450 62.6 2670 13C-OCDD 3.91e+07 0.96 y 49:19 0.70 78.4 13C-2,3,7,8-TCDF 5.25e+07 0.84 y 26:26 0.93 1670 74.7 1590 13C-1,2,3,7,8-PeCDF 4.65e+07 1.50 y 31:15 0.87 76.1 13C-2,3,4,7,8-PeCDF 5.41e+07 1.53 y 32:37 0.99 1620 77.9 3.78e+07 0.56 y 36:56 1.09 1660 13C-1,2,3,4,7,8-HxCDF 4.47e+07 0.55 y 37:08 1.35 1590 74.8 13C-1,2,3,6,7,8-HxCDF 1620 76.2 4.16e+07 0.55 y 38:06 1.23 13C-2,3,4,6,7,8-HxCDF 0.56 y 39:33 1440 67.8 13C-1,2,3,7,8,9-HxCDF 3.44e+07 1.14 0.97 1440 67.9 2.93e+07 0.49 y 41:57 13C-1,2,3,4,6,7,8-HpCDF 67.0 1430 13C-1,2,3,4,7,8,9-HpCDF 2.43e+07 0.50 y 44:51 0.82 59.6 13C-OCDF 5.62e+07 0.95 y 49:44 1.06 2530 27:11 0.91 736 86.4 37Cl-2,3,7,8-TCDD 1.66e+07 13C-1,2,3,4-TCDD 5.24e+07 0.82 y 26:31 153 13C-1,2,3,4-TCDF 7.18e+07 0.82 y 25:16 147 13C-1,2,3,7,8,9-HxCDD 4.44e+07 1.21 y 38:56 154 #Hom Fac Noise-1 Noise-2 DI 586 0.795~ n Total Tetra-Dioxins NotFnd 1.06 2.50 815 1.00 2.50 1040 580 1.36 / n Total Penta-Dioxins NotFnd Total Hexa-Dioxins NotFnd 1.09 2.50 1060 807 1.93 < 0 Total Hepta-Dioxins NotFnd 0.99 2.50 708 1170 2.62 / 0 751 1150 0.883 n Total Tetra-Furans NotFnd 1.03 2.50 975 1st Fn. Tot Penta-Furans NotFnd 0.86 2.50 674 1.06 < PeCDF 0 0.86 2.50 674 975 1.06" * 0 Total Penta-Furans NotFnd 2.50 850 1.21 Total Hexa-Furans NotFnd 1.13 416 0 999 NotFnd 1.23 2.50 1.92 / Total Hepta-Furans

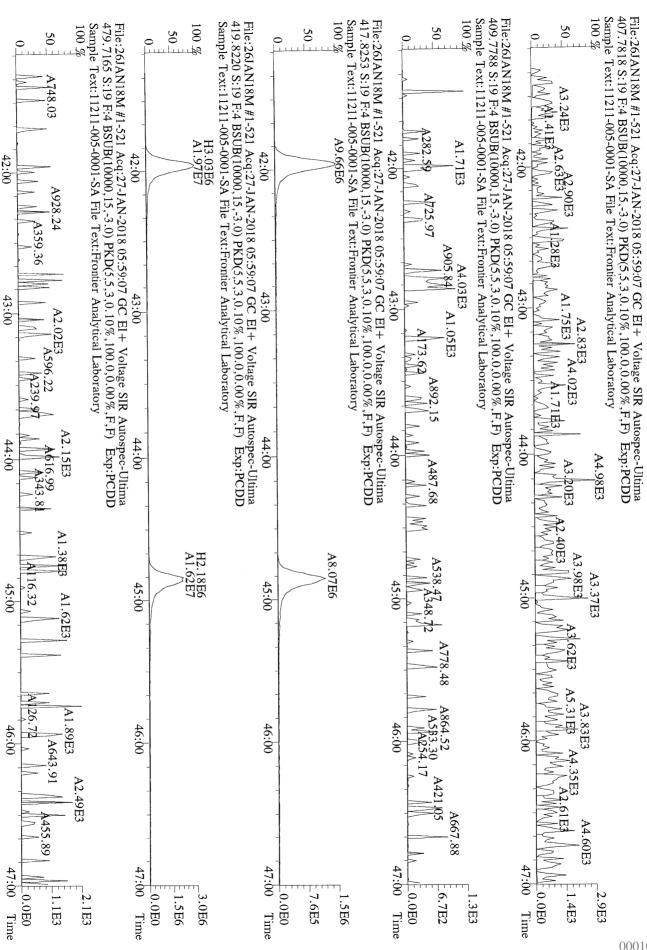

Analyst:

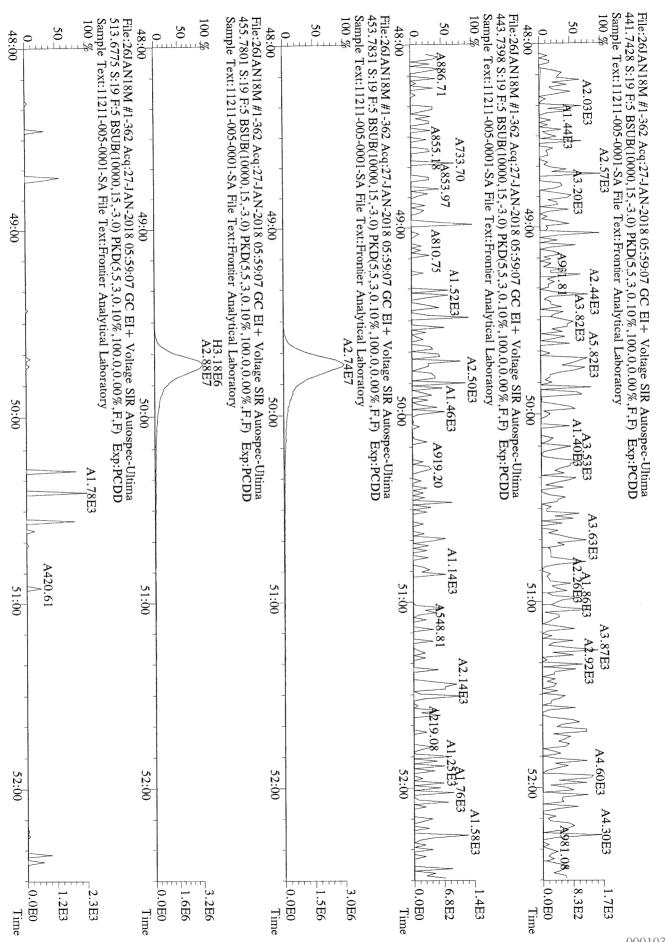

Date: 1/29/18











Data Filename: 22DEC17M

	pata i iteliane. Ezzerin								
Analyte:		Cal: P	CDDFAL3-12				- /	٥.5	0/
				S1	\$2	S3	\$4 \$5.577	S5	S6
Name	RRF	S.D.	%RSD	RRF#1	RRF#2	RRF#3	RRF#4	RRF#5	RRF#6
2,3,7,8-TCDD	1.06	0.0823	7.77 %	1.12	1.01	1.04	1.19	1.01	0.98
1,2,3,7,8-PeCDD	1.00	0.0185	1.85 %	1.03	0.98	0.99	1.01	0.99	1.00
1,2,3,4,7,8-HxCDD	1.07	0.0238	2.22 %	1.11	1.08	1.07	1.07	1.06	1.04
1,2,3,6,7,8-HxCDD	1.08	0.0107	0.986 %	1.09	1.07	1.10	1.09	1.08	1.08
1,2,3,7,8,9-HxCDD	1.11	0.0369	3.32 %	1.17	1.10	1.11	1.11	1.12	1.05
1,2,3,4,6,7,8-HpCDD	0.99	0.0291	2.94 %	1.04	0.95	0.97	0.99	1.00	0.98
OCDD	1.11	0.0211	1.90 %	1.14	1.09	1.08	1.13	1.11	1.10
2,3,7,8-TCDF	1.03	0.0682	6.65 %	1.16	1.02	0.99	1.04	0.97	0.98
1,2,3,7,8-PeCDF	0.95	0.0275	2.90 %	0.98	0.91	0.92	0.97	0.95	0.95
2,3,4,7,8-PeCDF	0.79	0.0263	3.33 %	0.83	0.76	0.76	0.80	0.79	0.80
1,2,3,4,7,8-HxCDF	1.20	0.0282	2.35 %	1.22	1.17	1.16	1.21	1.22	1.21
1,2,3,6,7,8-HxCDF	1.10	0.0354	3.22 %	1.11	1.03	1.08	1.11	1.12	1.12
	1.08	0.0222	2.05 %	1.08	1.04	1.08	1.09	1.10	1.10
2,3,4,6,7,8-HxCDF		0.0336		1.17	1.08	1.14	1.15	1.16	1.18
1,2,3,7,8,9-HxCDF	1.15		2.93 %				1.13	1.10	1.26
1,2,3,4,6,7,8-HpCDF	1.23	0.0346	2.80 %	1.25	1.19	1.19			
1,2,3,4,7,8,9-HpCDF	1.23	0.0471	3.83 %	1.28	1.16	1.20	1.22	1.28	1.24
OCD F	0.90	0.0229	2.54 %	0.91	0.86	0.89	0.92	0.93	0.91
13C-2,3,7,8-TCDD	1.02	0.0298	2.92 %	1.05	1.05	1.02	0.98	0.99	1.04
13C-1,2,3,7,8-PeCDD	0.88	0.0275	3.13 %	0.88	0.89	0.88	0.83	0.90	0.90
13C-1,2,3,4,7,8-HxCDD	0.85	0.0326	3.82 %	0.86	0.85	0.83	0.82	0.85	0.91
13C-1,2,3,6,7,8-HxCDD	0.94	0.0316	3.36 %	0.91	0.91	0.92	0.98	0.97	0.96
13C-1,2,3,4,6,7,8-HpCDD	0.90	0.0260	2.88 %	0.92	0.91	0.88	0.92	0.86	0.92
13C-OCDD	0.70	0.0360	5.12 %	0.70	0.68	0.68	0.72	0.67	0.76
155 555	••••	******							
13C-2,3,7,8-TCDF	0.93	0.0403	4.33 %	0.99	0.94	0.95	0.92	0.87	0.92
13C-1,2,3,7,8-PeCDF	0.87	0.0245	2.83 %	0.90	0.86	0.87	0.84	0.85	0.89
		0.0325	3.28 %	1.02	0.99	1.03	0.95	0.96	1.00
13C-2,3,4,7,8-PeCDF	0.99			1.02	1.07	1.03	1.08	1.11	1.15
13C-1,2,3,4,7,8-HxCDF	1.09	0.0333	3.04 %						1.41
13C-1,2,3,6,7,8-HxCDF	1.35	0.0657		1.26	1.30	1.30	1.38	1.41	
13C-2,3,4,6,7,8-HxCDF	1.23	0.0371	3.02 %	1.19	1.20	1.20	1.25	1.26	1.28
13C-1,2,3,7,8,9-HxCDF	1.14	0.0429	3.75 %	1.08	1.12	1.12	1.18	1.17	1.19
13C-1,2,3,4,6,7,8-HpCDF	0.97	0.0400	4.10 %	0.95	0.93	0.94	1.03	0.97	1.02
13C-1,2,3,4,7,8,9-HpCDF	0.82	0.0269	3.29 %	0.82	0.80	0.81	0.82	0.78	0.86
13C-OCDF	1.06	0.0805	7.57 %	1.00	0.99	1.02	1.12	1.05	1.19
37cl-2,3,7,8-TCDD	0.91	0.0881	9.64 %	1.01	1.03	0.91	0.82	0.82	0.89
13C-1,2,3,4-TCDD	-	-	- %	-	-	-	-	-	-
13C-1,2,3,4-TCDF	_	-	- %	-	-	-	_	-	-
13C-1,2,3,7,8,9-HxCDD	_	_	- %	-	-	_	_	-	-
130 1,2,3,1,0,7 11,000									
Total Tetra-Dioxins	1.06	0.0823	7.77 %	1.12	1.01	1.04	1.19	1.01	0.98
Total Penta-Dioxins	1.00	0.0325	1.85 %	1.03	0.98	0.99	1.01	0.99	1.00
				1.12	1.08	1.09	1.09	1.09	1.06
Total Hexa-Dioxins	1.09	0.0208	1.91 %			0.97	0.99	1.09	0.98
Total Hepta-Dioxins	0.99	0.0291	2.94 %	1.04	0.95	0.97	0.77	1.00	0.70
	4 0=	0.010=	/ /F °′		4 00	0.00	1 0/	0.07	0.00
Total Tetra-Furans	1.03	0.0682		1.16	1.02	0.99	1.04	0.97	0.98
1st Fn. Tot Penta-Furans	0.86	0.0269		0.90	0.83	0.84	0.88	0.87	0.87
Total Penta-Furans	0.86	0.0269		0.90	0.83	0.84	0.88	0.87	0.87
Total Hexa-Furans	1.13	0.0286		1.14	1.08	1.11	1.14	1.15	1.15
Total Hepta-Furans	1.23	0.0392	3.18 %	1.26	1.18	1.19	1.23	1.28	1.25

Analyst: Date: 1994/

Run #1 Filename 22DEC17M S: 1 Acquired: 22-DEC-17 10:18:22 Cal: PCDDFAL3-12-22-17 Client ID: ST122217M0 Analyte: FAL ID: 1613 CS0 171128G

Clie	ent ID:	S1122217MU	Allo	atyte.					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Тур	Name	Amount	Resp	RA	RT	RF	RRF		
1	Unk	2,3,7,8-TCDD	0.25	1.18e+05	0.87 y	27:16	-	1.12	у	
2	Unk	1,2,3,7,8-PeCDD	1.25	4.51e+05	1.57 y	33:06	-	1.03	У	
3	Unk	1,2,3,4,7,8-HxCDD	1.25	4.15e+05	1.37 y	38:28	-	1.11	У	
4	Unk	1,2,3,6,7,8-HxCDD	1.25	4.29e+05	1.19 y	38:37	-	1.09	У	
5	Unk	1,2,3,7,8,9-HxCDD	1.25	4.49e+05	1.28 y	39:04	-	1.17	У	
6	Unk	1,2,3,4,6,7,8-HpCDD	1.25	4.16e+05	1.09 y	44:01	-	1.04	У	
7	Unk	OCDD	2.50	6.97e+05	0.90 y	49:29	-	1.14	У	
8	Unk	2,3,7,8-TCDF	0.25	1.59e+05	0.68 y	26:33	-	1.16	У	
9	Unk	1,2,3,7,8-PeCDF	1.25	6.10e+05	1.56 y	31:21	-	0.978	У	
10	Ųnk	2,3,4,7,8-PeCDF	1.25	5.85e+05	1.47 y	32:44	-	0.827	У	
11	Unk	1,2,3,4,7,8-HxCDF	1.25	5.72e+05	1.35 y	37:03	-	1.22	У	
12	Unk	1,2,3,6,7,8-HxCDF	1.25	6.07e+05	1.22 y	37:16	-	1.11	У	
13	Unk	2,3,4,6,7,8-HxCDF	1.25	5.61e+05	1.23 y	38:14	-	1.08	У	
14	Unk	1,2,3,7,8,9-HxCDF	1.25	5.50e+05	1.35 y	39:41	-	1.17	У	
15	Unk	1,2,3,4,6,7,8-HpCDF	1.25	5.19e+05	1.01 y	42:06	-	1.25	У	
16	Ųnk	1,2,3,4,7,8,9-HpCDF	1.25	4.55e+05	1.03 y	44:60	-	1.28	y	
17	Unk	OCDF	2.50	7.90e+05	0.89 y	49:54	-	0.906	у	
18	IS/RT	13C-2,3,7,8-TCDD	100.00	4.21e+07	0.80 y	27:15	-	1.05	у	
19	IS	13C-1,2,3,7,8-PeCDD	100.00	3.51e+07	1.60 y	33:05	-	0.877	У	
20	IS	13C-1,2,3,4,7,8-HxCDD	100.00	2.99e+07	1.26 y	38:26	-	0.861	У	
21	IS	13C-1,2,3,6,7,8-HxCDD	100.00	3.15e+07	1.28 y	38:36	_	0.906	y	
22	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	3.21e+07	1.03 y	43:60	_	0.924	У	
			200.00	4.90e+07	0.91 y	49:28	-	0.704	У	
23	IS	13C-OCDD	200.00	4.900-07		47.20		0.704	у	
24	IS	13C-2,3,7,8-TCDF	100.00	5.48e+07	0.80 y	26:32	-	0.990	У	
25	IS	13C-1,2,3,7,8-PeCDF	100.00	4.99e+07	1.59 y	31:21	-	0.901	У	
26	IS	13C-2,3,4,7,8-PeCDF	100.00	5.65e+07	1.58 y	32:43	-	1.02	У	
27	IS	13C-1,2,3,4,7,8-HxCDF	100.00	3.75e+07	0.52 y	37:02	-	1.08	У	
28	IS	13C-1,2,3,6,7,8-HxCDF	100.00	4.39e+07	0.54 y	37:14	-	1.26	У	
29	IS	13C-2,3,4,6,7,8-HxCDF	100.00	4.14e+07	0.53 y	38:13	-	1.19	У	
30	IS	13C-1,2,3,7,8,9-HxCDF	100.00	3.77e+07	0.53 y	39:40	-	1.08	У	
31	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	3.31e+07	0.45 y	42:05	-	0.953	У	
32	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	2.85e+07	0.44 y	44:59	_	0.819	У	
33	IS	13C-OCDF	200.00	6.97e+07	0.91 y	49:52	-	1.00	y	
34	C/Up	37cl-2,3,7,8-TCDD	0.25	1.01e+05		27:16	-	1.01	У	
35	RS	13C-1,2,3,4-TCDD	100.00	4.00e+07	0.81 y	26:37	4.00e+05	-	n	
36	RS	13C-1,2,3,4-TCDF	100.00	5.54e+07	0.79 y	25:22	5.54e+05	-	n	
37	RS/RT	13C-1,2,3,7,8,9-HxCDD	100.00	3.48e+07	1.25 y	39:02	3.48e+05	-	n	
38	Tot	Total Tetra-Dioxins	0.00	-	- n	-	-	1.12	у	
39	Tot	Total Penta-Dioxins	0.00	-	- n	-	-	1.03	У	
40	Tot	Total Hexa-Dioxins	0.00	-	- n	-	-	1.12	У	
41	Tot	Total Hepta-Dioxins	0.00	-	- n	-	-	1.04	У	
42	Tot	Total Tetra-Furans	0.00	-	- n	-	-	1.16	y	
43	Tot	1st Fn. Tot Penta-Furans	0.00	-	- n	-	-	0.898	У	
44	Tot	Total Penta-Furans	0.00	-	- n	-	-	0.898	У	
45	Tot	Total Hexa-Furans	0.00	-	- n	-	-	1.14	У	
46	Tot	Total Hepta-Furans	0.00	-	- n	-	-	1.26	У	

Acquired: 22-DEC-17 11:13:13 Cal: PCDDFAL3-12-22-17 s: 2 Run #2 Filename 22DEC17M FAL ID: 1613 CS1 171128H Analyte: Client ID: ST122217M1 RF RRF RT Name Amount Resp RΔ Typ 0.76 y 1.01 27:15 0.50 2.38e+05 У 1 Unk 2,3,7,8-TCDD 0.976 1,2,3,7,8-PeCDD 2.50 9.77e+05 1.53 y 33:06 У 2 Unk 1.08 1,2,3,4,7,8-HxCDD 8.80e+05 1.29 y 38:26 У 2.50 3 Unk 38:37 1.07 2.50 9.37e+05 1.24 y У 1,2,3,6,7,8-HxCDD 4 Unk 9.35e+05 1.33 y 39:04 1.10 2.50 У 5 1,2,3,7,8,9-HxCDD Unk 0.99 y 0.951 8.34e+05 44:00 2.50 У 6 Unk 1,2,3,4,6,7,8-HpCDD 1.09 0.87 y49:28 OCDD 5.00 1.44e+06 У Unk 1.02 8 2.3.7.8-TCDF 0.50 3.07e+05 0.66 y26:32 Unk 1.59 y 31:21 0.905 9 1,2,3,7,8-PeCDF 2.50 1.24e+06 У Unk 0.758 1.20e+06 1.57 y 32:43 2,3,4,7,8-PeCDF 2.50 У 10 Ųnk 1.26 y 1.17 1.20e+06 37:02 11 Unk 1,2,3,4,7,8-HxCDF 2.50 У 1.03 1.30e+06 1.18 y 37:15 12 Unk 1,2,3,6,7,8-HxCDF 2.50 У 1.04 1.28 y 2,3,4,6,7,8-HxCDF 2.50 1.21e+06 38:13 У 13 Unk 1.08 1.23 y 39:41 1,2,3,7,8,9-HxCDF 2.50 1.17e+06 У 14 Unk 1.19 2.50 1.08e+06 1.01 y 42:05 У 15 Unk 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 8.93e+05 1.08 y 44:59 1.16 2.50 16 Unk 5.00 1.65e+06 0.89 y 49:54 0.863 У OCDE 17 Unk 0.79 y 1.05 18 IS/RT 13C-2,3,7,8-TCDD 100.00 4.72e+07 27:14 У 19 IS 13C-1,2,3,7,8-PeCDD 100.00 4.00e+07 1.60 y 33:04 0.887 У 1.32 y 38:25 0.846 20 IS 13C-1,2,3,4,7,8-HxCDD 100.00 3.26e+07 У 0.911 1.24 y 38:35 13C-1,2,3,6,7,8-HxCDD 100.00 3.51e+07 У 21 IS 1.01 y 0.909 22 13C-1,2,3,4,6,7,8-HpCDD 100.00 3.51e+07 43:60 У IS 23 13C-OCDD 200.00 5.25e+07 0.90 y49:27 0.680 IS 0.944 100.00 6.05e+07 0.80 y 26:31 У 24 IS 13C-2,3,7,8-TCDF 0.858 13C-1,2,3,7,8-PeCDF 100.00 5.50e+07 1.59 y 31:20 У 25 IS 0.987 26 IS 13C-2,3,4,7,8-PeCDF 100.00 6.33e+07 1.60 y 32:42 0.52 y 37:01 1.07 27 TS 13C-1,2,3,4,7,8-HxCDF 100.00 4.13e+07 У 1.30 100.00 5.03e+07 0.53 y37:14 28 IS 13C-1,2,3,6,7,8-HxCDF У 0.51 y29 100.00 38:12 1.20 4.64e+07 У IS 13C-2,3,4,6,7,8-HxCDF 0.53 y1.12 39:40 30 IS 13C-1,2,3,7,8,9-HxCDF 100.00 4.31e+07 У 0.934 13C-1,2,3,4,6,7,8-HpCDF 100.00 3.60e+07 0.45 y42:04 У 31 IS 0.800 IS 13C-1,2,3,4,7,8,9-HpCDF 100.00 3.09e+07 0.43 y44:58 32 200.00 7.62e+07 0.89 y49:52 0.988 У 33 LS 13C-OCDF 27:15 1.03 0.50 2.32e+05 У 34 C/Up 37cl-2,3,7,8-TCDD 100.00 4.51e+07 0.81 y 26:37 4.51e+05 35 RS 13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDF 100.00 6.41e+07 0.79 y 25:21 6.41e+05 n 36 RS 3.86e+07 1.30 y 39:02 3.86e+05 n 100.00 37 RS/RT 13C-1,2,3,7,8,9-HxCDD 1.01 38 Total Tetra-Dioxins 0.00 - n У Tot

39

40

41

42

43

44

45

46

Tot

Tot

Tot

Tot

Tot

Tot

Tot

Tot

Total Penta-Dioxins

Total Hepta-Dioxins

Total Tetra-Furans

Total Penta-Furans

Total Hexa-Furans

Total Hepta-Furans

1st Fn. Tot Penta-Furans

Total Hexa-Dioxins

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

- n

- n

- n

- n

- n

- n

- n

- n

Analyst:_____ Date:______Date:______

0.976

0.951

1.02

0.826

0.826

1.08

1.18

1.08

У

У

У

У

У

Run #3 Filename 22DEC17M S: 3 Acquired: 22-DEC-17 12:08:04 Cal: PCDDFAL3-12-22-17 Client ID: ST122217M2 Analyte: FAL ID: 1613 CS2 171128I

Clie	ent ID:	ST122217M2	Ana	alyte:			Γ,	4L 1D: 1	613 632 17
	Тур	Name	Amount	Resp	RA	RT	RF	RRF	
1	Unk	2,3,7,8-TCDD	2.00	8.71e+05	0.78 y	27:14	-	1.04	У
2	Unk	1,2,3,7,8-PeCDD	10.00	3.60e+06	1.55 y	33:06	-	0.992	У
3	Unk	1,2,3,4,7,8-HxCDD	10.00	3.14e+06	1.23 y	38:26	-	1.07	У
4	Unk	1,2,3,6,7,8-HxCDD	10.00	3.56e+06	1.31 y	38:36	-	1.10	У
5	Unk	1,2,3,7,8,9-HxCDD	10.00	3.42e+06	1.24 y	39:03	-	1.11	У
6	Unk	1,2,3,4,6,7,8-HpCDD	10.00	2.99e+06	1.00 y	44:00	-	0.966	У
7	Unk	OCDD	20.00	5.20e+06	0.87 y	49:27	-	1.08	У
8	Unk	2,3,7,8-TCDF	2.00	1.07e+06	0.67 y	26:31	-	0.992	У
9	Unk	1,2,3,7,8-PeCDF	10.00	4.58e+06	1.57 y	31:21	-	0.925	У
10	Unk	2,3,4,7,8-PeCDF	10.00	4.44e+06	1.58 y	32:43	-	0.761	У
11	Unk	1,2,3,4,7,8-HxCDF	10.00	4.36e+06	1.24 y	37:02	-	1.16	У
12	Unk	1,2,3,6,7,8-HxCDF	10.00	4.99e+06	1.26 y	37:15	-	1.08	У
13	Unk	2,3,4,6,7,8-HxCDF	10.00	4.57e+06	1.25 y	38:13	-	1.08	У
14	Unk	1,2,3,7,8,9-HxCDF	10.00	4.48e+06	1.24 y	39:41	-	1.14	У
15	Unk	1,2,3,4,6,7,8-HpCDF	10.00	3.96e+06	1.03 y	42:05	-	1.19	У
16	Unk	1,2,3,4,7,8,9-HpCDF	10.00	3.44e+06	1.03 y	44:59	-	1.20	У
17	Unk	OCDF	20.00	6.45e+06	0.89 y	49:53	-	0.895	У
18	IS/RT	13C-2,3,7,8-TCDD	100.00	4.19e+07	0.80 y	27:13	-	1.02	У
19	IS	13C-1,2,3,7,8-PeCDD	100.00	3.63e+07	1.61 y	33:04	-	0.884	У
20	IS	13C-1,2,3,4,7,8-HxCDD	100.00	2.92e+07	1.29 y	38:24	-	0.828	у
21	IS	13C-1,2,3,6,7,8-HxCDD	100.00	3.25e+07	1.25 y	38:34	-	0.920	у
22	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	3.10e+07	1.04 y	43:59	-	0.877	, y
23	IS	13C-OCDD	200.00	4.80e+07	0.89 y	49:27	-	0.680	y
24	IS	13C-2,3,7,8-TCDF	100.00	5.41e+07	0.79 y	26:30	_	0.951	У
25	IS	13C-1,2,3,7,8-PeCDF	100.00	4.96e+07	1.59 y	31:20	-	0.871	У
26	IS	13C-2,3,4,7,8-PeCDF	100.00	5.84e+07	1.58 y	32:42	_	1.03	y
27	IS	13C-1,2,3,4,7,8-HxCDF	100.00	3.77e+07	0.53 y	37:01	_	1.07	y
28	IS	13C-1,2,3,6,7,8-HxCDF	100.00	4.60e+07	0.53 y	37:13	-	1.30	y
29	IS	13C-2,3,4,6,7,8-HxCDF	100.00	4.25e+07	0.53 y	38:12	-	1.20	y
30	IS	13C-1,2,3,7,8,9-HxCDF	100.00	3.94e+07	0.53 y	39:39	_	1.12	y
31	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	3.32e+07	0.46 y	42:04	-	0.941	y
32	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	2.87e+07	0.45 y	44:57	_	0.812	y
33	IS	13c-ocdf	200.00	7.21e+07	0.90 y	49:52	-	1.02	y
34	C/Up	37Cl-2,3,7,8-TCDD	2.00	7.49e+05		27:15	-	0.912	У
35	RS	13C-1,2,3,4-TCDD	100.00	4.11e+07	0.80 y	26:36	4.11e+05	-	n
36	RS	13C-1,2,3,4-TCDF	100.00	5.69e+07	0.78 y	25:20	5.69e+05	-	n
37	RS/RT	13C-1,2,3,7,8,9-HxCDD	100.00	3.53e+07	1.25 y	39:01	3.53e+05	-	n
38	Tot	Total Tetra-Dioxins	0.00	-	- n	_	-	1.04	у
39	Tot	Total Penta-Dioxins	0.00	-	- n	-	-	0.992	У
40	Tot	Total Hexa-Dioxins	0.00	-	- n	-	-	1.09	У
41	Tot	Total Hepta-Dioxins	0.00	-	- n	-	-	0.966	У
42	Tot	Total Tetra-Furans	0.00	-	- n	-	-	0.992	У
43	Tot	1st Fn. Tot Penta-Furans	0.00	-	- n	-	-	0.836	У
44	Tot	Total Penta-Furans	0.00	-	- n	-	-	0.836	У
45	Tot	Total Hexa-Furans	0.00	-	- n	-	-	1.11	у
46	Tot	Total Hepta-Furans	0.00	-	- n	-	-	1.19	У

Analyst:______ Date:__|\(\frac{12\lambda \lambda \lamb

Run #4 Filename 22DEC17M S: 4 Acquired: 22-DEC-17 13:02:55 Cal: PCDDFAL3-12-22-17 Client ID: ST122217M3 Analyte: FAL ID: 1613 CS3 171128J

Clie	ent ID:	ST122217M3	Ana	atyte:			Γ,	IL ID. IC	313 633 17
	Тур	Name	Amount	Resp	RA	RT	RF	RRF	
1	Unk	2,3,7,8-TCDD	10.00	3.60e+06	0.77 y	27:14	-	1.19	у
2	Unk	1,2,3,7,8-PeCDD	50.00	1.29e+07	1.53 y	33:06	-	1.01	У
3	Unk	1,2,3,4,7,8-HxCDD	50.00	1.05e+07	1.26 y	38:26	-	1.07	У
4	Unk	1,2,3,6,7,8-HxCDD	50.00	1.27e+07	1.26 y	38:37	=	1.09	У
5	Unk	1,2,3,7,8,9-HxCDD	50.00	1.20e+07	1.27 y	39:03	-	1.11	У
6	Unk	1,2,3,4,6,7,8-HpCDD	50.00	1.08e+07	0.99 y	44:00	-	0.989	У
7	Unk	OCDD	100.00	1.95e+07	0.85 y	49:28	-	1.13	У
8	Unk	2,3,7,8-TCDF	10.00	4.16e+06	0.69 y	26:31	-	1.04	У
9	Unk	1,2,3,7,8-PeCDF	50.00	1.77e+07	1.57 y	31:20	-	0.972	У
10	Unk	2,3,4,7,8-PeCDF	50.00	1.66e+07	1.57 y	32:43	-	0.800	У
11	Unk	1,2,3,4,7,8-HxCDF	50.00	1.56e+07	1.24 y	37:03	-	1.21	У
12	Unk	1,2,3,6,7,8-HxCDF	50.00	1.82e+07	1.27 y	37:15	-	1.11	У
13	Unk	2,3,4,6,7,8-HxCDF	50.00	1.62e+07	1.24 y	38:13	-	1.09	У
14	Unk	1,2,3,7,8,9-HxCDF	50.00	1.62e+07	1.23 y	39:41	-	1.15	У
15	Unk	1,2,3,4,6,7,8-HpCDF	50.00	1.51e+07	0.99 y	42:05	-	1.24	У
16	Unk	1,2,3,4,7,8,9-HpCDF	50.00	1.19e+07	1.03 y	44:59	-	1.22	У
17	Unk	OCDF	100.00	2.45e+07	0.90 y	49:53	-	0.915	У
18	IS/RT	13C-2,3,7,8-TCDD	100.00	3.02e+07	0.80 y	27:13	-	0.982	У
19	IS	13C-1,2,3,7,8-PeCDD	100.00	2.54e+07	1.61 y	33:04	-	0.826	У
20	IS	13c-1,2,3,4,7,8-HxCDD	100.00	1.96e+07	1.23 y	38:25	-	0.823	У
21	IS	13C-1,2,3,6,7,8-HxCDD	100.00	2.33e+07	1.30 y	38:35	-	0.980	У
22	IS	13c-1,2,3,4,6,7,8-HpCDD	100.00	2.19e+07	1.06 y	43:59	-	0.919	У
23	IS	13C-OCDD	200.00	3.44e+07	0.94 y	49:27	-	0.722	У
24	IS	13c-2,3,7,8-TCDF	100.00	4.02e+07	0.79 y	26:30	-	0.920	У
25	IS	13C-1,2,3,7,8-PeCDF	100.00	3.65e+07	1.57 y	31:20	-	0.835	У
26	IS	13C-2,3,4,7,8-PeCDF	100.00	4.15e+07	1.60 y	32:42	-	0.949	У
27	IS	13C-1,2,3,4,7,8-HxCDF	100.00	2.58e+07	0.54 y	37:01	-	1.08	У
28	IS	13C-1,2,3,6,7,8-HxCDF	100.00	3.29e+07	0.55 y	37:13	-	1.38	У
29	IS	13C-2,3,4,6,7,8-HxCDF	100.00	2.97e+07	0.53 y	38:12	-	1.25	У
30	IS	13C-1,2,3,7,8,9-HxCDF	100.00	2.81e+07	0.54 y	39:39	-	1.18	У
31	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	2.44e+07	0.45 y	42:04	-	1.03	у
32	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	1.96e+07	0.45 y	44:58	_	0.823	y
33	IS	13C-OCDF	200.00	5.35e+07	0.89 y	49:52	-	1.12	y
34	C/Up	37cl-2,3,7,8-TCDD	10.00	2.54e+06		27:14	-	0.825	У
35	RS	13C-1,2,3,4-TCDD	100.00	3.07e+07	0.80 y	26:36	3.07e+05	-	n
36	RS	13C-1,2,3,4-TCDF	100.00	4.37e+07	0.79 y	25:19	4.37e+05	-	n
37	RS/RT	13C-1,2,3,7,8,9-HxCDD	100.00	2.38e+07	1.26 y	39:02	2.38e+05	-	n
38	Tot	Total Tetra-Dioxins	0.00	-	- n	-	-	1.19	У
39	Tot	Total Penta-Dioxins	0.00	-	- n	-	100	1.01	У
40	Tot	Total Hexa-Dioxins	0.00	-	- n	-	-	1.09	У
41	Tot	Total Hepta-Dioxins	0.00	-	- n	-	-	0.989	У
42	Tot	Total Tetra-Furans	0.00	-	- n	-	-	1.04	У
43	Tot	1st Fn. Tot Penta-Furans	0.00	-	- n	-	-	0.880	У
44	Tot	Total Penta-Furans	0.00	-	- n	-	-	0.880	У
45	Tot	Total Hexa-Furans	0.00	_	- n	-	-	1.14	У
46	Tot	Total Hepta-Furans	0.00	-	- n	-	-	1.23	У

Analyst: Date: 12/24/17

Acquired: 22-DEC-17 13:57:46 Cal: PCDDFAL3-12-22-17 S: 5 Filename 22DEC17M FAL ID: 1613 CS4 171128K Analyte: Client ID: ST122217M4 RART RF RRF Name Amount Resp Тур 0.81 y 27:14 1.01 Unk 2,3,7,8-TCDD 40.00 1.25e+07 У 1 0.991 5.58e+07 1.56 y 33:05 1,2,3,7,8-PeCDD 200.00 У 2 Unk 1.32 y 38:26 1.06 4.64e+07 3 Unk 1,2,3,4,7,8-HxCDD 200.00 У 1.08 1.24 y 38:36 5.38e+07 4 Unk 1,2,3,6,7,8-HxCDD 200.00 У 1.26 y 1.12 39:03 5 1,2,3,7,8,9-HxCDD 200.00 5.27e+07 У Unk 0.999 200.00 4.46e+07 1.00 y 44:00 У 6 Unk 1,2,3,4,6,7,8-HpCDD 400.00 7.66e+07 0.89 y49:27 1.11 7 Unk 40.00 1.58e+07 0.73 v26:31 0.973 8 2,3,7,8-TCDF У Unk 1.56 y 0.948 200.00 7.50e+07 31:20 9 Unk 1,2,3,7,8-PeCDF У 0.794 200.00 7.09e+07 1.56 y 32:43 10 Unk 2,3,4,7,8-PeCDF У 11 Unk 1,2,3,4,7,8-HxCDF 200.00 6.98e+07 1.25 y 37:02 1.22 У 12 Unk 1,2,3,6,7,8-HxCDF 200.00 8.21e+07 1.22 y 37:14 1.12 У 7.18e+07 1.22 y 38:13 1.10 13 Unk 2,3,4,6,7,8-HxCDF 200.00 У 7.03e+07 1.24 y 39:40 1.16 14 Unk 1,2,3,7,8,9-HxCDF 200.00 У 1.03 y 1.27 15 Unk 1,2,3,4,6,7,8-HpCDF 200.00 6.38e+07 42:04 ν 5.17e+07 1.03 y 44:58 1.28 Unk 1,2,3,4,7,8,9-HpCDF 200..00 У 16 1.00e+08 0.930 400.00 0.91 y49:53 У 17 Unk OCDF 13C-2,3,7,8-TCDD 100.00 3.11e+07 0.80 y27:13 0.991 18 IS/RT У 19 13C-1,2,3,7,8-PeCDD 100.00 2.82e+07 1.61 y 33:04 0.896 У IS 20 100.00 2.20e+07 1.26 y 38:24 0.851 IS 13C-1,2,3,4,7,8-HxCDD У 1.27 y 38:35 0.968 21 IS 13C-1,2,3,6,7,8-HxCDD 100.00 2.50e+07 У 100.00 2.23e+07 1.03 y 43:59 0.864 22 IS 13C-1,2,3,4,6,7,8-HpCDD У 200.00 3.44e+07 0.90 y 49:27 0.666 23 13C-OCDD У IS 0.868 13C-2,3,7,8-TCDF 100.00 4.06e+07 0.78 y26:30 24 IS У 31:20 0.846 25 IS 13C-1,2,3,7,8-PeCDF 100.00 3.96e+07 1.57 y У 100.00 4.47e+07 1.59 y 32:42 0.956 26 IS 13C-2,3,4,7,8-PeCDF У 27 100.00 2.86e+07 0.52 y37:01 1.11 IS 13C-1,2,3,4,7,8-HxCDF У 0.52 y 28 IS 13C-1,2,3,6,7,8-HxCDF 100.00 3.65e+07 37:13 1.41 У 29 IS 13C-2,3,4,6,7,8-HxCDF 100.00 3.25e+07 0.54 y38:12 1.26 У 13C-1,2,3,7,8,9-HxCDF 100.00 3.02e+07 0.53 y39:39 1.17 IS У 2.50e+07 0.45 y 0.971 31 IS 13C-1,2,3,4,6,7,8-HpCDF 100.00 42:04 У 100.00 2.02e+07 0.48 y 44:57 0.784 32 IS 13C-1,2,3,4,7,8,9-HpCDF У 0.89 y 200.00 5.39e+07 49:52 1.05 33 13C-OCDF У IS 34 C/Up 37Cl-2,3,7,8-TCDD 40.00 1.03e+07 27:14 0.821 0.81 y35 RS 13C-1,2,3,4-TCDD 100.00 3.14e+07 26:36 3.14e+05 n 4.67e+07 0.80 y 25:20 4.67e+05 100.00 36 RS 13C-1,2,3,4-TCDF n 2.58e+05 37 RS/RT 13C-1,2,3,7,8,9-HxCDD 100.00 2.58e+07 1.23 y 39:02 - n 38 Total Tetra-Dioxins 0.00 1.01 Tot У 0.00 - n 0.991 39 Total Penta-Dioxins Tot У 0.00 - n 40 Tot Total Hexa-Dioxins 1.09 У 0.999 41 Tot Total Hepta-Dioxins 0.00 - n 42 Tot Total Tetra-Furans 0.00 - n 0.973 У 43 Tot 1st Fn. Tot Penta-Furans 0.00 - n 0.866 У 44 0.00 - n 0.866 Tot Total Penta-Furans У

0.00

0.00

Total Hexa-Furans

Total Hepta-Furans

- n

- n

45

46

Tot

Tot

Analyst: Date: 12/26/17

1.15

1.28

У

Run #6 Filename 22DEC17M S: 6 Acquired: 22-DEC-17 14:52:37 Cal: PCDDFAL3-12-22-17 Client ID: ST122217M5 Analyte: FAL ID: 1613 CS5 171128L

Clie	ent ID:	ST122217M5	Ana	alyte:			F.F.	AL ID:	1613 (85
	Тур	Name	Amount	Resp	RA	RT	RF	RRF	
1	Unk	2,3,7,8-TCDD	200.00	6.08e+07	0.78 y	27:13	-	0.983	у
2	Unk	1,2,3,7,8-PeCDD	1000.00	2.68e+08	1.57 y	33:05	-	1.000	У
3	Unk	1,2,3,4,7,8-HxCDD	1000.00	2.42e+08	1.28 y	38:25	-	1.04	У
4	Unk	1,2,3,6,7,8-HxCDD	1000.00	2.63e+08	1.28 y	38:36	-	1.08	У
5	Unk	1,2,3,7,8,9-HxCDD	1000.00	2.51e+08	1.27 y	39:02	-	1.05	У
6	Unk	1,2,3,4,6,7,8-HpCDD	1000.00	2.32e+08	0.99 y	43:60	-	0.984	У
7	Unk	OCDD	2000.00	4.30e+08	0.89 y	49:28	-	1.10	У
8	Unk	2,3,7,8-TCDF	200.00	8.09e+07	0.72 y	26:30	-	0.982	У
9	Unk	1,2,3,7,8-PeCDF	1000.00	3.76e+08	1.55 y	31:20	-	0.951	У
10	Unk	2,3,4,7,8-PeCDF	1000.00	3.58e+08	1.55 y	32:42	-	0.797	У
11	Unk	1,2,3,4,7,8-HxCDF	1000.00	3.57e+08	1.25 y	37:01	-	1.21	У
12	Unk	1,2,3,6,7,8-HxCDF	1000.00	4.06e+08	1.25 y	37:14	=	1.12	У
13	Unk	2,3,4,6,7,8-HxCDF	1000.00	3.59e+08	1.25 y	38:12	-	1.10	У
14	Unk	1,2,3,7,8,9-HxCDF	1000.00	3.57e+08	1.26 y	39:40	-	1.18	У
15	Unk	1,2,3,4,6,7,8-HpCDF	1000.00	3.27e+08	1.02 y	42:04	-	1.26	У
16	Unk	1,2,3,4,7,8,9-HpCDF	1000.00	2.73e+08	1.02 y	44:58	-	1.24	У
17	Unk	OCDF	2000.00	5.57e+08	0.91 y	49:53	-	0.913	У
18	IS/RT	13C-2,3,7,8-TCDD	100.00	3.10e+07	0.81 y	27:12	-	1.04	У
19	IS	13C-1,2,3,7,8-PeCDD	100.00	2.68e+07	1.61 y	33:03	-	0.904	У
20	IS	13C-1,2,3,4,7,8-HxCDD	100.00	2.33e+07	1.28 y	38:24	-	0.914	У
21	IS	13C-1,2,3,6,7,8-HxCDD	100.00	2.44e+07	1.26 y	38:35	-	0.955	У
22	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	2.36e+07	1.07 y	43:59	-	0.924	У
23	IS	13C-OCDD	200.00	3.90e+07	0.91 y	49:27	-	0.763	У
24	IS	13C-2,3,7,8-TCDF	100.00	4.12e+07	0.79 y	26:28	-	0.923	У
25	IS	13C-1,2,3,7,8-PeCDF	100.00	3.95e+07	1.57 y	31:19	-	0.885	У
26	IS	13C-2,3,4,7,8-PeCDF	100.00	4.48e+07	1.58 y	32:41	-	1.00	У
27	IS	13C-1,2,3,4,7,8-HxCDF	100.00	2.94e+07	0.53 y	37:01	-	1.15	У
28	IS	13C-1,2,3,6,7,8-HxCDF	100.00	3.61e+07	0.53 y	37:13	-	1.41	У
29	IS	13C-2,3,4,6,7,8-HxCDF	100.00	3.27e+07	0.53 y	38:11	-	1.28	У
30	IS	13C-1,2,3,7,8,9-HxCDF	100.00	3.03e+07	0.52 y	39:38	• -	1.19	•
31	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	2.60e+07	0.46 y	42:04	=	1.02	У
32	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	2.20e+07	0.44 y	44:57	-	0.864	У
33	IS	13C-OCDF	200.00	6.10e+07	0.92 y	49:52	-	1.19	У
34	C/Up	37Cl-2,3,7,8-TCDD	200.00	5.29e+07		27:13	-	0.891	У
35	RS	13C-1,2,3,4-TCDD	100.00	2.97e+07	0.83 y	26:35	2.97e+05	-	n
36	RS	13C-1,2,3,4-TCDF	100.00	4.46e+07	0.79 y	25:19	4.46e+05	-	n
37	RS/RT	13C-1,2,3,7,8,9-HxCDD	100.00	2.55e+07	1.27 y	39:01	2.55e+05	-	n
38	Tot	Total Tetra-Dioxins	0.00	-	- n	-	-	0.983	у
39	Tot	Total Penta-Dioxins	0.00	-	- n	-	-	1.000	У
40	Tot	Total Hexa-Dioxins	0.00	-	- n	-	-	1.06	У
41	Tot	Total Hepta-Dioxins	0.00	-	- n	-	-	0.984	У
42	Tot	Total Tetra-Furans	0.00	-	- n	-	-	0.982	•
43	Tot	1st Fn. Tot Penta-Furans	0.00	-	- n	-	-	0.869	•
44	Tot	Total Penta-Furans	0.00	-	- n	-	-	0.869	
45	Tot	Total Hexa-Furans	0.00	-	- n	-	-	1.15	•
46	Tot	Total Hepta-Furans	0.00	-	- n	-	-	1.25	У

FORM 3A PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

CSO Data Filename: 22DEC17M S1 CS3 Data Filename: 22DEC17M S4

CS1 Data Filename: 22DEC17M S2 CS4 Data Filename: 22DEC17M S5

CS2 Data Filename: 22DEC17M S3 CS5 Data Filename: 22DEC17M S6

		į	RELATIVE I	RESPONSE	(RR)		MEAN RR	C∨ (%RSD)
	CS1	CS2	CS3	CS4	CS5	CS6	•	•
NATIVE ANALYTES								
2,3,7,8-TCDD	1.12	1.01	1.04	1.19	1.01	0.98	1.06	7.77
1,2,3,7,8-PeCDD	1.03	0.98	0.99	1.01	0.99	1.00	1.00	1.85
1,2,3,4,7,8-HxCDD	1.11	1.08	1.07	1.07	1.06	1.04	1.07	2.22
1,2,3,6,7,8-HxCDD	1.09	1.07	1.10	1.09	1.08	1.08	1.08	0.986
1,2,3,7,8,9-HxCDD	1.17	1.10	1.11	1.11	1.12	1.05	1.11	3.32
1,2,3,4,6,7,8-HpCDD	1.04	0.95	0.97	0.99	1.00	0.98	0.99	2.94
OCDD	1.14	1.09	1.08	1.13	1.11	1.10	1.11	1.90
2,3,7,8-TCDF	1.16	1.02	0.99	1.04	0.97	0.98	1.03	6.65
1,2,3,7,8-PeCDF	0.98	0.91	0.92	0.97	0.95	0.95	0.95	2.90
2,3,4,7,8-PeCDF	0.83	0.76	0.76	0.80	0.79	0.80	0.79	3.33
1,2,3,4,7,8-HxCDF	1.22	1.17	1.16	1.21	1.22	1.21	1.20	2.35
1,2,3,6,7,8-HxCDF	1.11	1.03	1.08	1.11	1.12	1.12	1.10	3.22
2,3,4,6,7,8-HxCDF	1.08	1.04	1.08	1.09	1.10	1.10	1.08	2.05
1,2,3,7,8,9-HxCDF	1.17	1.08	1.14	1.15	1.16	1.18	1.15	2.93
1,2,3,4,6,7,8-HpCDF	1.25	1.19	1.19	1.24	1.27	1.26	1.23	2.80
1,2,3,4,7,8,9-HpCDF	1.28	1.16	1.20	1.22	1.28	1.24	1.23	3.83
OCDF	0.91	0.86	0.89	0.92	0.93	0.91	0.90	2.54

Analyst: Date: Na Sulf

FORM 3B PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

CSO Data Filename: 22DEC17M S1 CS4 Data Filename: 22DEC17M S4

CS1 Data Filename: 22DEC17M S2 CS4 Data Filename: 22DEC17M S5

CS2 Data Filename: 22DEC17M S3 CS5 Data Filename: 22DEC17M S6

	RELATIVE RESPONSE (RR)						MEAN RR	C∨ (%RSD)
	CS1	CS2	CS3	CS4	CS5	CS6		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LABELED COMPOUNDS								
13C-2,3,7,8-TCDD	1.05	1.05	1.02	0.98	0.99	1.04	1.02	2.92
13C-1,2,3,7,8-PeCDD	0.88	0.89	0.88	0.83	0.90	0.90	0.88	3.13
13c-1,2,3,4,7,8-HxCDD	0.86	0.85	0.83	0.82	0.85	0.91	0.85	3.82
13C-1,2,3,6,7,8-HxCDD	0.91	0.91	0.92	0.98	0.97	0.96	0.94	3.36
13С-1,2,3,4,6,7,8-НрСОО	0.92	0.91	0.88	0.92	0.86	0.92	0.90	2.88
13C-OCDD	0.70	0.68	0.68	0.72	0.67	0.76	0.70	5.12
13C-2,3,7,8-TCDF	0.99	0.94	0.95	0.92	0.87	0.92	0.93	4.33
13C-1,2,3,7,8-PeCDF	0.90	0.86	0.87	0.84	0.85	0.89	0.87	2.83
13C-2,3,4,7,8-PeCDF	1.02	0.99	1.03	0.95	0.96	1.00	0.99	3.28
13C-1,2,3,4,7,8-HxCDF	1.08	1.07	1.07	1.08	1.11	1.15	1.09	3.04
13C-1,2,3,6,7,8-HxCDF	1.26	1.30	1.30	1.38	1.41	1.41	1.35	4.88
13C-2,3,4,6,7,8-HxCDF	1.19	1.20	1.20	1.25	1.26	1.28	1.23	3.02
13C-1,2,3,7,8,9-HxCDF	1.08	1.12	1.12	1.18	1.17	1.19	1.14	3.75
13C-1,2,3,4,6,7,8-HpCDF	n 05	0.93	0.94	1.03	0.97	1.02	0.97	4.10
13C-1,2,3,4,7,8,9-HpCDF		0.80	0.81	0.82	0.78	0.86	0.82	3.29
120 1/2/3/1/1/0/> 11/0/	0.02	0.00	0.01	0.02	00	0100	0.02	3.27
13C-OCDF	1.00	0.99	1.02	1.12	1.05	1.19	1.06	7.57
CLEANUP STANDARD								
37cl-2,3,7,8-TCDD	1.01	1.03	0.91	0.82	0.82	0.89	0.91	9.64

FORM 3C PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

CSO Data Filename: 22DEC17M S1 CS3 Data Filename: 22DEC17M S4

CS1 Data Filename: 22DEC17M S2 CS4 Data Filename: 22DEC17M S5

CS2 Data Filename: 22DEC17M S3 CS5 Data Filename: 22DEC17M S6

	M/Z'S ION ABUNDANCE RATIOS FORMING						QC LIMITS	
	RATIO	CS1	CS2	CS3	CS4	CS5	CS6	
NATIVE ANALYTES								
2,3,7,8-TCDD	M/M+2	0.87	0.76	0.78	0.77	0.81	0.78	0.65-0.89
1,2,3,7,8-PeCDD	M+2/M+4	1.57	1.53	1.55	1.53	1.56	1.57	1.32-1.78
1,2,3,4,7,8-HxCDD	M+2/M+4	1.37	1.29	1.23	1.26	1.32	1.28	1.05-1.43
1,2,3,6,7,8-HxCDD	M+2/M+4	1.19	1.24	1.31	1.26	1.24	1.28	1.05-1.43
1,2,3,7,8,9-HxCDD	M+2/M+4	1.28	1.33	1.24	1.27	1.26	1.27	1.05-1.43
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.09	0.99	1.00	0.99	1.00	0.99	0.88-1.20
OCDD	M+2/M+4	0.90	0.87	0.87	0.85	0.89	0.89	0.76-1.02
2,3,7,8-TCDF	M/M+2	0.68	0.66	0.67	0.69	0.73	0.72	0.65-0.89
1,2,3,7,8-PeCDF	M+2/M+4	1.56	1.59	1.57	1.57	1.56	1.55	1.32-1.78
2,3,4,7,8-PeCDF	M+2/M+4	1.47	1.57	1.58	1.57	1.56	1.55	1.32-1.78
1,2,3,4,7,8-HxCDF	M+2/M+4	1.35	1.26	1.24	1.24	1.25	1.25	1.05-1.43
1,2,3,6,7,8-HxCDF	M+2/M+4	1.22	1.18	1.26	1.27	1.22	1.25	1.05-1.43
2,3,4,6,7,8-HxCDF	M+2/M+4	1.23	1.28	1.25	1.24	1.22	1.25	1.05-1.43
1,2,3,7,8,9-HxCDF	M+2/M+4	1.35	1.23	1.24	1.23	1.24	1.26	1.05-1.43
1,2,3,4,6,7,8-HpCDF	M+2/M+4	1.01	1.01	1.03	0.99	1.03	1.02	0.88-1.20
1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.03	1.08	1.03	1.03	1.03	1.02	0.88-1.20
OCDF	M+2/M+4	0.89	0.89	0.89	0.90	0.91	0.91	0.76-1.02

_____ Date: |>|>(///)

FORM 3D PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

Lab Name: Frontier Analytical Laboratory Episode No.:

SAS No.: Contract No.:

Initial Calibration Date: 12/22/17

GC Column ID: DB5MS Instrument ID: FAL3

CSO Data Filename: 22DEC17M S1 CS3 Data Filename: 22DEC17M S4

CS1 Data Filename: 22DEC17M S2 CS4 Data Filename: 22DEC17M S5

CS2 Data Filename: 22DEC17M S3 CS5 Data Filename: 22DEC17M S6

	M/Z'S FORMING		1		QC LIMITS			
LABELED COMPOUNDS	RATIO	CS1	CS2	CS3	CS4	CS5	CS6	
EABLEED COM COMPS								
13C-2,3,7,8-TCDD	M/M+2	0.80	0.79	0.80	0.80	0.80	0.81	0.65-0.89
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.60	1.60	1.61	1.61	1.61	1.61	1.32-1.78
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.26	1.32	1.29	1.23	1.26	1.28	1.05-1.43
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.28	1.24	1.25	1.30	1.27	1.26	1.05-1.43
13C-1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.03	1.01	1.04	1.06	1.03	1.07	0.88-1.20
13C-OCDD	M+2/M+4	0.91	0.90	0.89	0.94	0.90	0.91	0.76-1.02
13C-2,3,7,8-TCDF	M/M+2	0.80	0.80	0.79	0.79	0.78	0.79	0.65-0.89
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.59	1.59	1.59	1.57	1.57	1.57	1.32-1.78
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.58	1.60	1.58	1.60	1.59	1.58	1.32-1.78
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.52	0.52	0.53	0.54	0.52	0.53	0.43-0.59
13C-1,2,3,6,7,8-HxCDF	M/M+2	0.54	0.53	0.53	0.55	0.52	0.53	0.43-0.59
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.53	0.51	0.53	0.53	0.54	0.53	0.43-0.59
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.53	0.53	0.53	0.54	0.53	0.52	0.43-0.59
13C-1,2,3,4,6,7,8-HpCDF	M/M+2	0.45	0.45	0.46	0.45	0.45	0.46	0.37-0.51
13C-1,2,3,4,7,8,9-HpCDF	M/M+2	0.44	0.43	0.45	0.45	0.48	0.44	0.37-0.51
13C-OCDF	M+2/M+4	0.91	0.89	0.90	0.89	0.89	0.92	0.76-1.02

Analyst: _____ Date: __|2|26|17

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Contract No.: SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

VER Data Filename: 22DEC17M Sam:4 Analysis Date: 22-DEC-17 13:02:55

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)	
NATIVE ANALYTES							
2,3,7,8-TCDD	M/M+2	0.77	0.65-0.89	У	11.3	7.80 - 12.9	1
1,2,3,7,8-PeCDD	M+2/M+4	1.53	1.32-1.78	У	50.7	39.0 - 65.0	_
1,2,3,4,7,8-HxCDD	M+2/M+4	1.26	1.05-1.43	У	50.0	39.0 - 64.0	
1,2,3,6,7,8-HxCDD	M+2/M+4	1.26	1.05-1.43	У	50.3	39.0 - 64.0	,
1,2,3,7,8,9-HxCDD	M+2/M+4	1.27	1.05-1.43	У	50.1	41.0 - 61.0	
1,2,3,4,6,7,8-HpCDD	M+2/M+4	0.99	0.88-1.20	У	50.1	43.0 - 58.0	/
OCDD	M+2/M+4	0.85	0.76-1.02	У	102	79.0 - 126	,
2,3,7,8-TCDF	M/M+2	0.69	0.65-0.89	У	10.1	8.40 - 12.0	,
1,2,3,7,8-PeCDF	M+2/M+4	1.57	1.32-1.78	У	51.3	41.0 - 60.0	1
2,3,4,7,8-PeCDF	M+2/M+4	1.57	1.32-1.78	У	50.7	41.0 - 60.0	•
1,2,3,4,7,8-HxCDF	M+2/M+4	1.24	1.05-1.43	у	50.4	45.0 - 56.0	/
1,2,3,6,7,8-HxCDF	M+2/M+4	1.27	1.05-1.43	У	50.6	44.0 - 57.0	1
2,3,4,6,7,8-HxCDF	M+2/M+4	1.24	1.05-1.43	У	50.5	44.0 - 57.0	•
1,2,3,7,8,9-HxCDF	M+2/M+4	1.23	1.05-1.43	У	50.2	45.0 - 56.0	1
1,2,3,4,6,7,8-HpCDF	M+2/M+4	0.99	0.88-1.20	У	50.2	45.0 - 55.0	,
1,2,3,4,7,8,9-HpCDF		1.03	0.88-1.20	У	49.6	43.0 - 58.0	/
OCDF	M+2/M+4	0.90	0.76-1.02	У	101	63.0 - 159	1

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst: Date: 13/34/1

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

VER Data Filename: 22DEC17M Sam:4 Analysis Date: 22-DEC-17 13:02:55

LARELER COMPONING	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	M/M+2	0.80	0.65-0.89	У	96.1	82.0 - 121 /
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.61	1.32-1.78	У	94.0	62.0 - 160 /
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.23	1.05-1.43	У	96.4	85.0 - 117 /
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.30	1.05-1.43	У	104	85.0 - 118 ,
13c-1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.06	0.88-1.20	У	102	72.0 - 138
13C-OCDD	M+2/M+4	0.94	0.76-1.02	У	206	96.0 - 415 /
13C-2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	У	98.7	71.0 - 140 /
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.57	1.32-1.78	У	96.5	76.0 - 130 '
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.60	1.32-1.78	У	95.8	77.0 - 130
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.54	0.43-0.59	У	99.0	76.0 - 131 ,
13C-1,2,3,6,7,8-HxCDF	M/M+2	0.55	0.43-0.59	У	103	70.0 - 143
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.53	0.43-0.59	У	101	73.0 - 137
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.54	0.43-0.59	У	103	74.0 - 135
13c-1,2,3,4,6,7,8-HpCDF	M/M+2	0.45	0.37-0.51	У	105	78.0 - 129
13C-1,2,3,4,7,8,9-HpCDF	M/M+2	0.45	0.37-0.51	У	101	77.0 - 129 ,
13C-OCDF	M+2/M+4	0.89	0.76-1.02	У	212	96.0 - 415 /
CLEANUP STANDARD (4)						
37cl-2,3,7,8-TCDD					9.03	7.90 - 12.7

- (1) See Table 8, Method 1613, for m/z specifications.
- (2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (3) Contract-required concentration range as specified in Table 6, Method 1613.
- (4) No ion abundance ratio; report concentration found.

Analyst: Date: 12/24/17

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Instrument ID: FAL3 Initial Calibration Date: 12/22/17

RT Window Data Filename: 22DEC17M Sam:4 Analysis Date: 22-DEC-17 Time: 13:02:55

DB-5 IS Data Filename: 22DEC17M Sam:4 Analysis Date: 22-DEC-17 Time: 13:02:55

DB-225 IS Date Filename: Analysis Date: Time:

DB-5 RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	24:10 /	1,3,6,8-TCDF (F)	22:49 ′
1,2,8,9-TCDD (L)	28:11 /	1,2,8,9-TCDF (L)	28:28
1,2,4,7,9-PeCDD (F)	30:03 /	1,3,4,6,8-PeCDF (F)	28:11 ′
1,2,3,8,9-PeCDD (L)	33:41	1,2,3,8,9-PeCDF (L)	34:08 /
1,2,4,6,7,9-HxCDD (F)	35:55 -	1,2,3,4,6,8-HxCDF (F)	35:03
1,2,3,7,8,9-HxCDD (L)	39:03	1,2,3,7,8,9-HxCDF (L)	39:41
1,2,3,4,6,7,9-HpCDD (F)	42:36	1,2,3,4,6,7,8-HpCDF (F)	42:05 /
1,2,3,4,6,7,8-HpCDD (L)	44:00	1,2,3,4,7,8,9-HpCDF (L)	44:59 /
(F) = First eluting isomer	(DB-5);	(L) = Last eluting isomer	(DB-5)

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirement, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: Date: 18/24/17

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Episode No.:

Lab Name: Frontier Analytical Laboratory

Contract No.: SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

Analysis Date: 22-DEC-17 13:02:55 CS3 or VER Data Filename: 22DEC17M Sam:4

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD 2,3,7,8-TCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF	13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PECDD 13C-1,2,3,7,8-PECDF 13C-2,3,4,7,8-PECDF	1.001 1.001 1.001 1.000	0.999-1.002 0.999-1.003 0.999-1.002 0.999-1.002 0.999-1.002
LABELED COMPOUNDS			
37Cl-2,3,7,8-TCDD 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	13C-1,2,3,4-TCDD	1.024 / 1.024 / 0.997 / 1.244 / 1.178 /	0.989-1.052 0.976-1.043 0.923-1.103 1.000-1.567 1.000-1.425 1.011-1.526

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

nalyst:_____ Date:_/2/2///

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.: SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

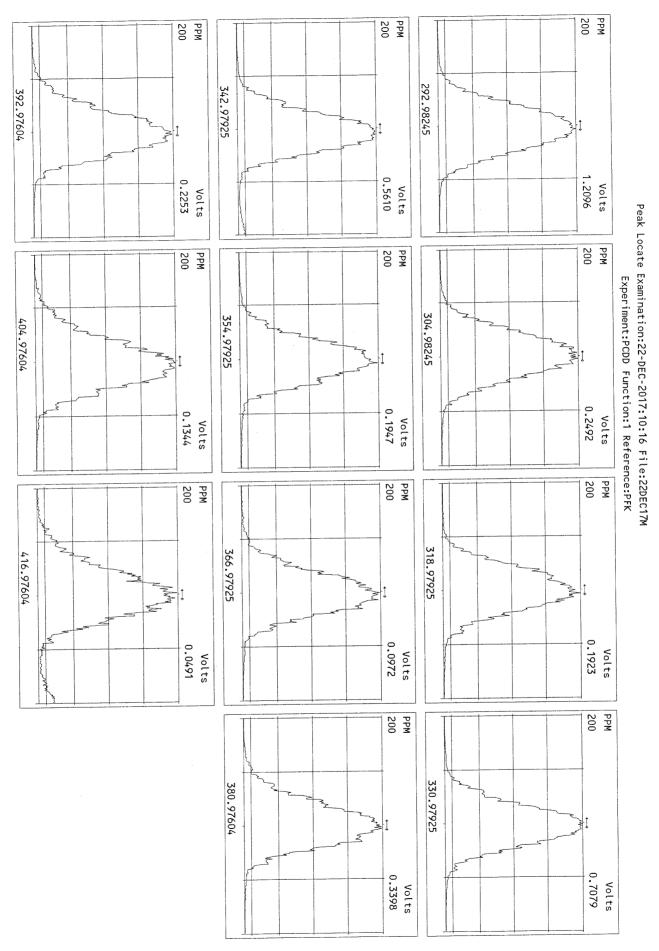
Analysis Date: 22-DEC-17 13:02:55 CS3 or VER Data Filename: 22DEC17M Sam:4

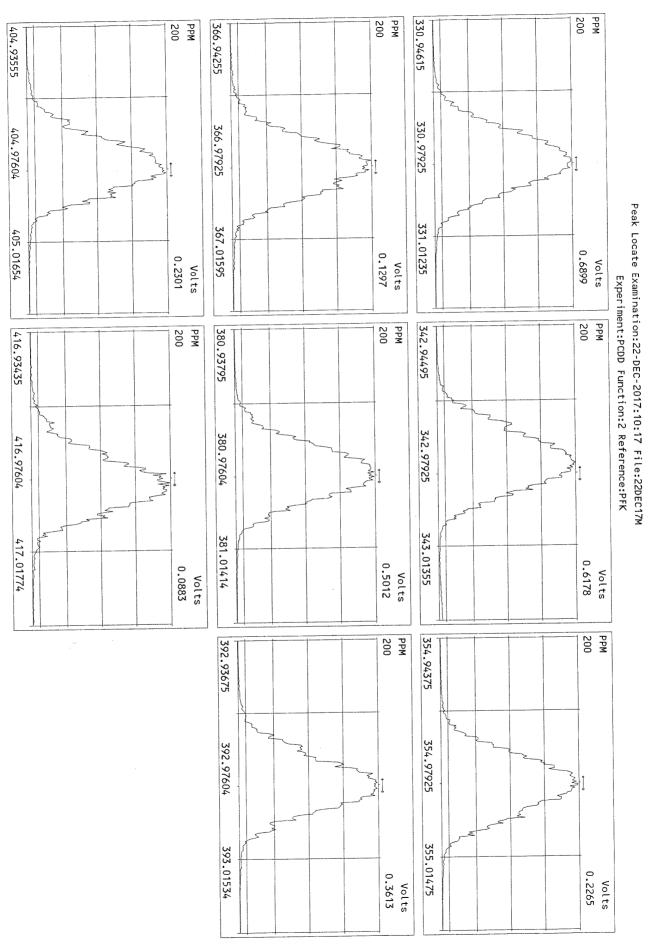
NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF	13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDD 13C-0CDD	1.001 _ 1.001 . 1.001 , 1.000	0.999-1.001 0.999-1.003 1.000-1.019 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001
LABELED COMPOUNDS			
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDD	13C-1,2,3,7,8,9-HxCDD	0.984 (0.988 ' 0.948 (0.953 / 0.979 (1.016 / 1.127 (1.078 / 1.152 / 1.267 (1.278	0.977-1.000 0.981-1.003 0.944-0.970 0.949-0.975 0.959-1.021 0.977-1.047 1.086-1.130 1.043-1.085 1.057-1.156 1.032-1.311

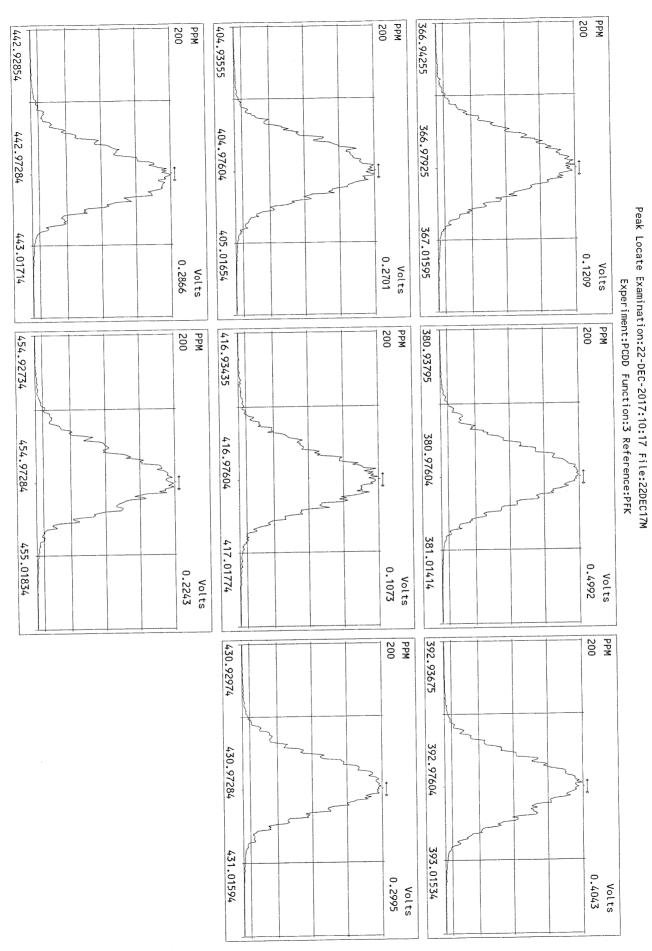
(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

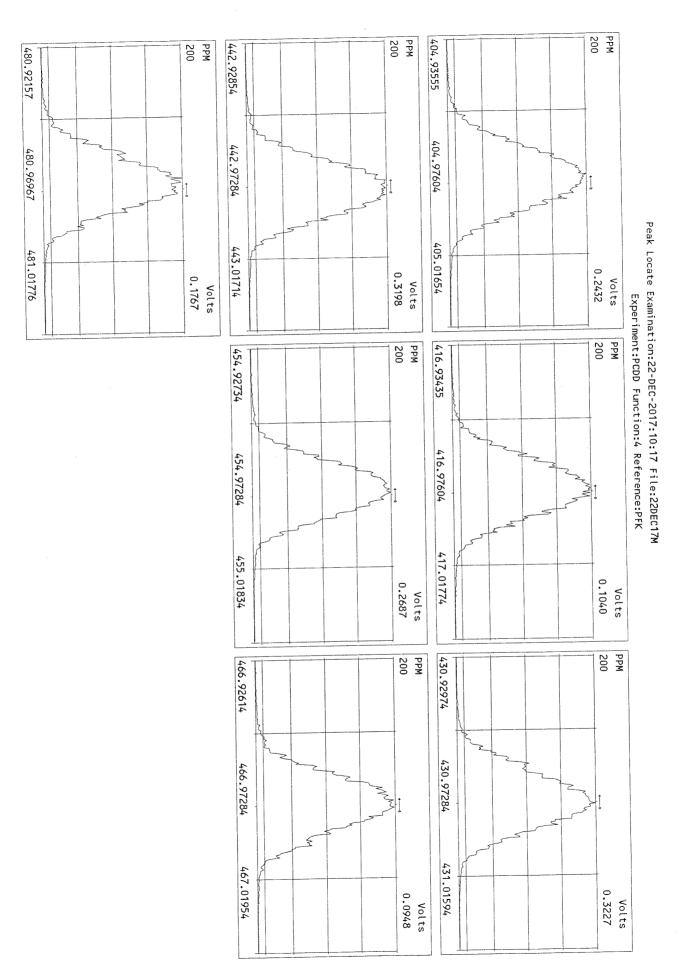
Analyst: Date: 18/26/17

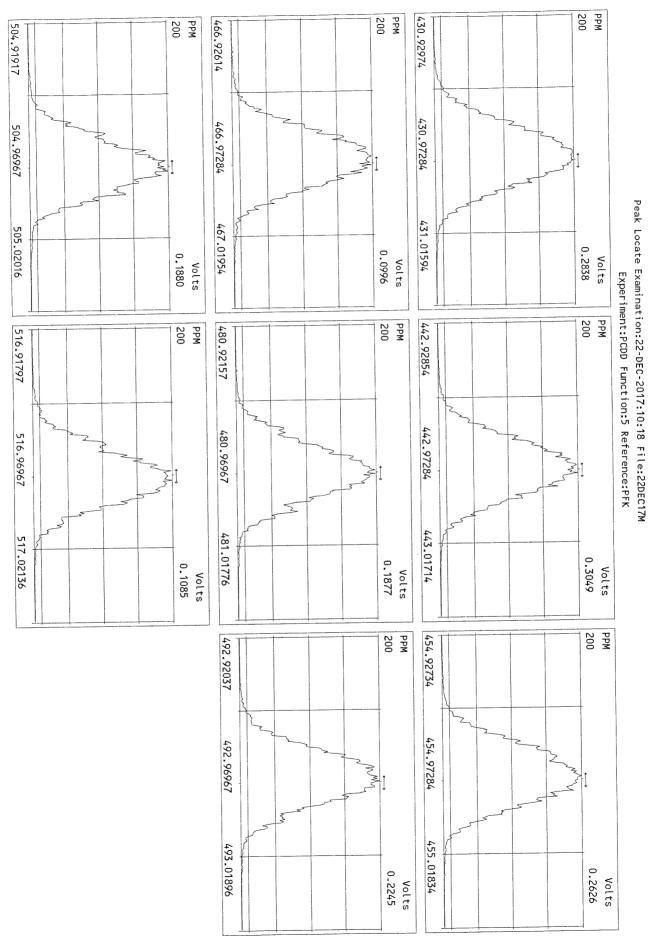
FAL ID: ST122217M3 Filename: 22DEC17M Sam:4 EndCal: NA Client ID: 1613 CS3 171128J ConCal: NA 102 GC Golumn: DB5MS Amount: 1.000 NATO 1989 Tox: Results: WHO 1998 Tox: 128 WHO 2005 Tox: 116 Instrument ID: FAL3 DL Fac Noise-1 Noise-2 RRF Qual Name Resp RA RΤ Conc 2,3,7,8-TCDD 3.60e+06 0.77 y 27:14 1.06 11.3 2.50 2.50 1,2,3,7,8-PeCDD 1.29e+07 1.53 y 33:06 1.00 50.7 1.07 50.0 2.50 1,2,3,4,7,8-HxCDD 1.05e+07 1.26 y 38:26 1.26 y 38:37 50.3 2.50 1.08 1,2,3,6,7,8-HxCDD 1.27e+07 50.1 2.50 1.27 y 39:03 1.11 1,2,3,7,8,9-HxCDD 1.20e+07 0.99 50.1 2.50 1,2,3,4,6,7,8-HpCDD 1.08e+07 0.99 y 44:00 OCDD 1.95e+07 0.85 y 49:28 1.11 102 2.50 2.3.7.8-TCDF 4.16e+06 0.69 y 26:31 1.03 10.1 2.50 1,2,3,7,8-PeCDF 1.77e+07 1.57 y 31:20 0.95 51.3 2.50 2,3,4,7,8-PeCDF 1.66e+07 1.57 y 32:43 0.79 50.7 2.50 2.50 1,2,3,4,7,8-HxCDF 1.56e+07 1.24 y 37:03 1.20 50.4 2.50 1,2,3,6,7,8-HxCDF 1.82e+07 1.27 y 37:15 1.10 50.6 50.5 2.50 2,3,4,6,7,8-HxCDF 1.62e+07 1.24 y 38:13 1.08 1.15 2.50 1,2,3,7,8,9-HxCDF 1.62e+07 1.23 y 39:41 50.2 1,2,3,4,6,7,8-HpCDF 1.51e+07 0.99 y 42:05 1.23 50.2 2.50 1,2,3,4,7,8,9-HpCDF 1.19e+07 1.03 y 44:59 1.23 49.6 2.50 OCDF 2.45e+07 0.90 y 49:53 0.90 101 2.50 Rec 13C-2,3,7,8-TCDD 3.02e+07 0.80 y 27:13 1.02 96.1 96.1 0.88 94.0 94.0 13C-1,2,3,7,8-PeCDD 2.54e+07 1.61 y 33:04 0.85 96.4 96.4 13C-1,2,3,4,7,8-HxCDD 1.96e+07 1.23 y 38:25 0.94 104 104 13C-1,2,3,6,7,8-HxCDD 2.33e+07 1.30 y 38:35 13C-1,2,3,4,6,7,8-HpCDD 2.19e+07 1.06 y 43:59 0.90 102 102 13C-OCDD 3.44e+07 0.94 y 49:27 0.70 206 103 0.93 98.7 98.7 13C-2,3,7,8-TCDF 4.02e+07 0.79 y 26:30 13C-1,2,3,7,8-PeCDF 3.65e+07 1.57 y 31:20 0.87 96.5 96.5 13C-2,3,4,7,8-PeCDF 4.15e+07 1.60 y 32:42 0.99 95.8 95.8 99.0 13C-1,2,3,4,7,8-HxCDF 2.58e+07 0.54 y 37:01 1.09 99.0 13C-1,2,3,6,7,8-HxCDF 3.29e+07 0.55 y 37:13 1.35 103 103 1.23 101 101 13C-2,3,4,6,7,8-HxCDF 2.97e+07 0.53 y 38:12 13C-1,2,3,7,8,9-HxCDF 2.81e+07 0.54 y 39:39 1.14 103 103 13C-1,2,3,4,6,7,8-HpCDF 2.44e+07 0.45 y 42:04 0.97 105 105 13C-1,2,3,4,7,8,9-HpCDF 1.96e+07 0.45 y 44:58 0.82 101 101 13C-OCDF 5.35e+07 0.89 y 49:52 212 106 1.06 0.91 9.03 90.3 37Cl-2,3,7,8-TCDD 2.54e+06 27:14 13C-1,2,3,4-TCDD 3.07e+07 0.80 y 26:36 84.6 13C-1,2,3,4-TCDF 4.37e+07 0.79 y 25:19 84.2 13C-1,2,3,7,8,9-HxCDD 2.38e+07 1.26 y 39:02 77.7 Fac Noise-1 Noise-2 DL #Hom Total Tetra-Dioxins 1.61e+07 22:54 1.06 50.3 2.50 19 Total Penta-Dioxins 3.95e+07 30:03 1.00 155 2.50 16 Total Hexa-Dioxins 5.02e+07 35:55 1.09 215 2.50 29 0.99 2.50 33 Total Hepta-Dioxins 2.39e+07 42:36 111 Total Tetra-Furans 1.87e+07 22:49 1.03 45.3 2.50 23 * PeCDF 1st Fn. Tot Penta-Furans 2.29e+07 28:11 0.86 68.2 2.50 4 Total Penta-Furans 5.05e+07 30:01 0.86 150 2.50 218 14 1.13 255 Total Hexa-Furans 8.38e+07 35:03 2.50 21 32 Total Hepta-Furans 2.82e+07 42:05 1.23 104 2.50

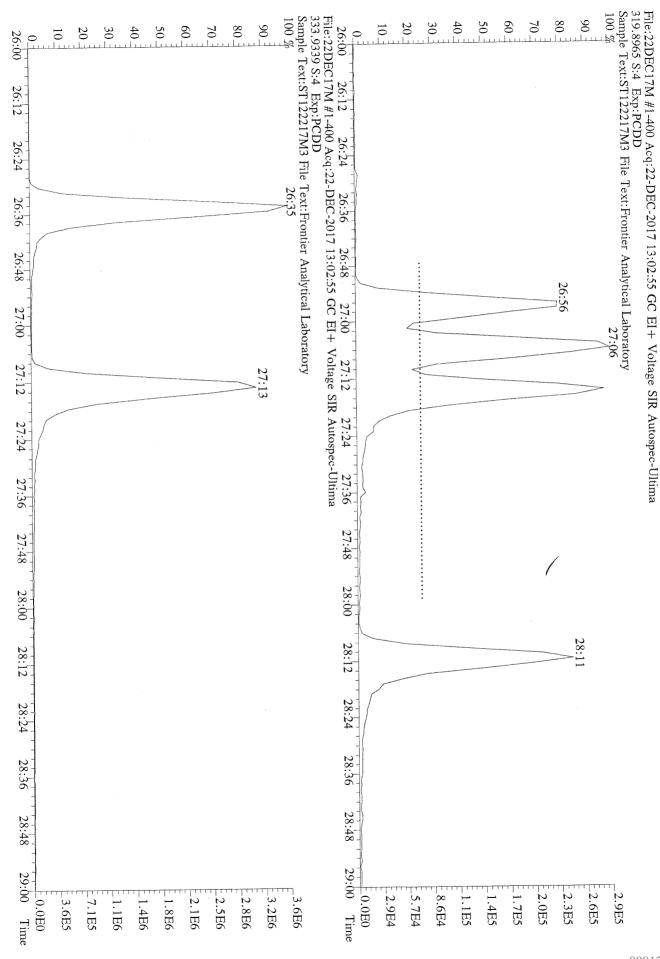

Analyst:_____ Date:__________

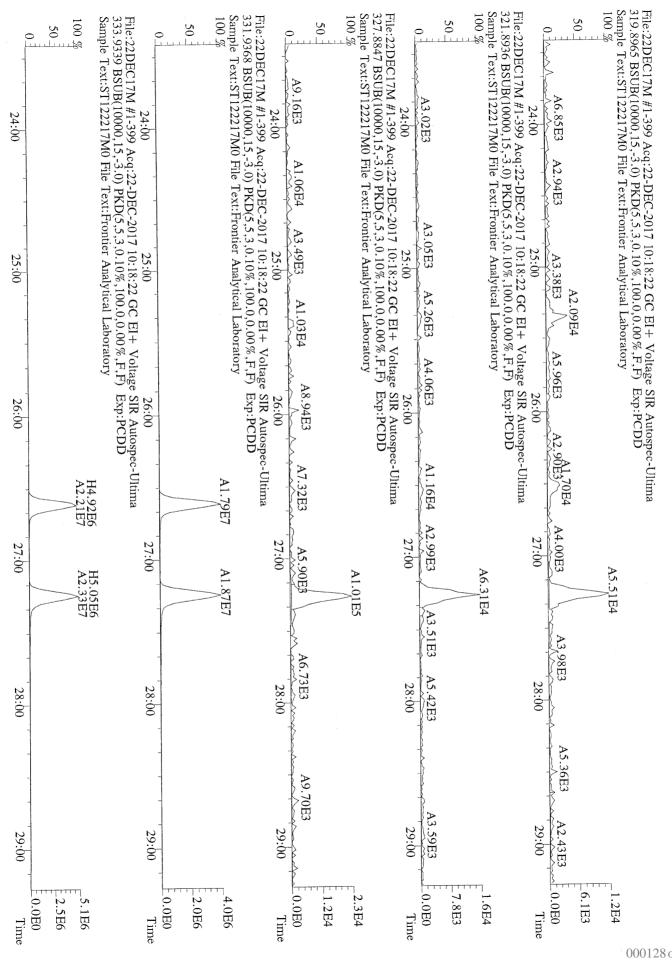

Frontier Analytical Laboratory - Acquisition Log

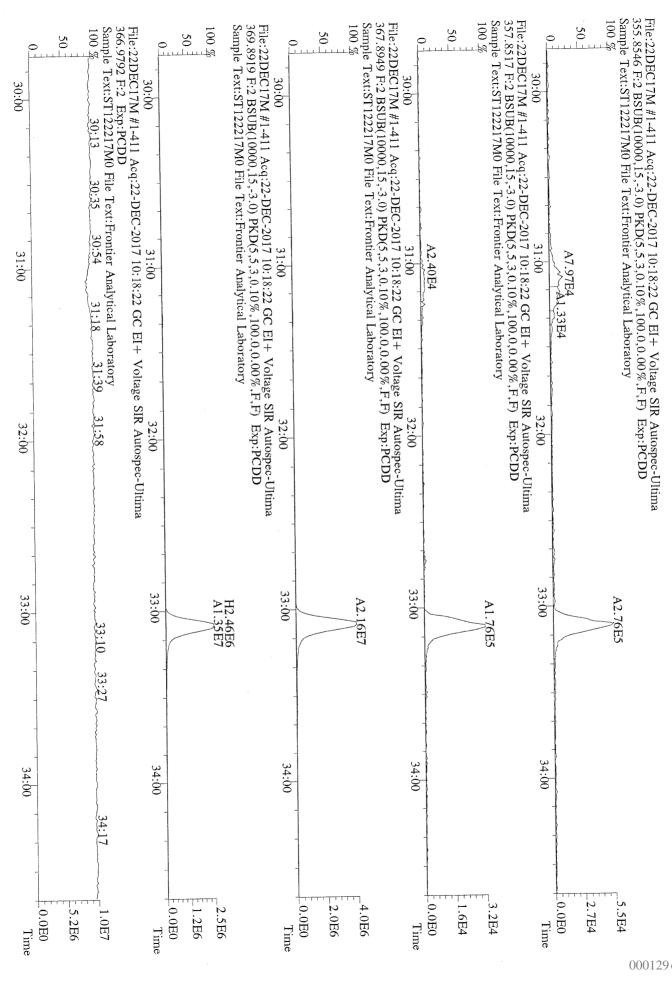

Run Name:22DEC17M		Instrument: FAL3	GC: DB5MS	Experiment:P			
s	FAL ID	Client ID		Acquired	ConCal	EndCal	Analyst
1	ST122217M0	1613 CSO 171128G		22-DEC-17 10:18:22	NA	NA	TC
2	ST122217M1	1613 CS1 171128H		22-DEC-17 11:13:13	NA	NA	TC
3	ST122217M2	1613 CS2 171128I		22-DEC-17 12:08:04	NA	NA	TC
4	ST122217M3	1613 CS3 171128J		22-DEC-17 13:02:55	NA	NA	TC
5	ST122217M4	1613 CS4 171128K		22-DEC-17 13:57:46	NA	NA	TC
6	ST122217M5	1613 CS5 171128L		22-DEC-17 14:52:37	NA	NA	TC
7	ST122217M6	1613 CS6 171128M		22-DEC-17 15:47:28	NA	NA	TC
8	SB122217M1	Solvent Blank		22-DEC-17 16:42:20	NA	NA	TC
9	SB122217M2	Solvent Blank		22-DEC-17 17:37:10	NA	NA	TC
10	SS122217M1	2nd Source 171128	N	22-DEC-17 18:32:00	NA	NA	TC
11	ST122217M7	1613 CS3 171128J		22-DEC-17 19:26:52	NA	NA	TC
	S 1 2 3 4 5 6 7 8 9	S FAL ID 1 ST122217M0 2 ST122217M1 3 ST122217M2 4 ST122217M3 5 ST122217M4 6 ST122217M5 7 ST122217M6 8 SB122217M1	S FAL ID Client ID 1 ST122217M0 1613 CS0 171128G 2 ST122217M1 1613 CS1 171128H 3 ST122217M2 1613 CS2 171128I 4 ST122217M3 1613 CS3 171128J 5 ST122217M4 1613 CS4 171128K 6 ST122217M5 1613 CS5 171128L 7 ST122217M6 1613 CS6 171128M 8 SB122217M1 Solvent Blank 9 SB122217M2 Solvent Blank 10 SS122217M1 2nd Source 171128M	S FAL ID Client ID 1 ST122217M0 1613 CSO 171128G 2 ST122217M1 1613 CSI 171128H 3 ST122217M2 1613 CS2 171128I 4 ST122217M3 1613 CS3 171128J 5 ST122217M4 1613 CS4 171128K 6 ST122217M5 1613 CS5 171128L 7 ST122217M6 1613 CS6 171128M 8 SB122217M1 Solvent Blank 9 SB122217M2 Solvent Blank 10 SS122217M1 2nd Source 171128N	S FAL ID Client ID Acquired 1 ST122217M0 1613 CS0 171128G 22-DEC-17 10:18:22 2 ST122217M1 1613 CS1 171128H 22-DEC-17 11:13:13 3 ST122217M2 1613 CS2 171128I 22-DEC-17 12:08:04 4 ST122217M3 1613 CS3 171128J 22-DEC-17 13:02:55 5 ST122217M4 1613 CS4 171128K 22-DEC-17 13:57:46 6 ST122217M5 1613 CS5 171128L 22-DEC-17 14:52:37 7 ST122217M6 1613 CS6 171128M 22-DEC-17 15:47:28 8 SB122217M1 Solvent Blank 22-DEC-17 16:42:20 9 SB122217M2 Solvent Blank 22-DEC-17 17:37:10 10 SS122217M1 2nd Source 171128N 22-DEC-17 18:32:00	S FAL ID Client ID Acquired ConCal 1 ST122217M0 1613 CS0 171128G 22-DEC-17 10:18:22 NA 2 ST122217M1 1613 CS1 171128H 22-DEC-17 11:13:13 NA 3 ST122217M2 1613 CS2 171128I 22-DEC-17 12:08:04 NA 4 ST122217M3 1613 CS3 171128J 22-DEC-17 13:02:55 NA 5 ST122217M4 1613 CS4 171128K 22-DEC-17 13:57:46 NA 6 ST122217M5 1613 CS5 171128L 22-DEC-17 14:52:37 NA 7 ST122217M6 1613 CS6 171128M 22-DEC-17 15:47:28 NA 8 SB122217M1 Solvent Blank 22-DEC-17 16:42:20 NA 9 SB122217M2 Solvent Blank 22-DEC-17 17:37:10 NA 10 SS122217M1 2nd Source 171128N 22-DEC-17 18:32:00 NA	S FAL ID Client ID Acquired ConCal EndCal 1 ST122217M0 1613 CS0 171128G 22-DEC-17 10:18:22 NA NA 2 ST122217M1 1613 CS1 171128H 22-DEC-17 11:13:13 NA NA 3 ST122217M2 1613 CS2 171128I 22-DEC-17 12:08:04 NA NA 4 ST122217M3 1613 CS3 171128J 22-DEC-17 13:02:55 NA NA 5 ST122217M4 1613 CS4 171128K 22-DEC-17 13:57:46 NA NA 6 ST122217M5 1613 CS5 171128L 22-DEC-17 14:52:37 NA NA 7 ST122217M6 1613 CS6 171128M 22-DEC-17 15:47:28 NA NA 8 SB122217M1 Solvent Blank 22-DEC-17 16:42:20 NA NA 9 SB122217M2 Solvent Blank 22-DEC-17 17:37:10 NA NA 10 SS122217M1 2nd Source 171128N 22-DEC-17 18:32:00 NA NA

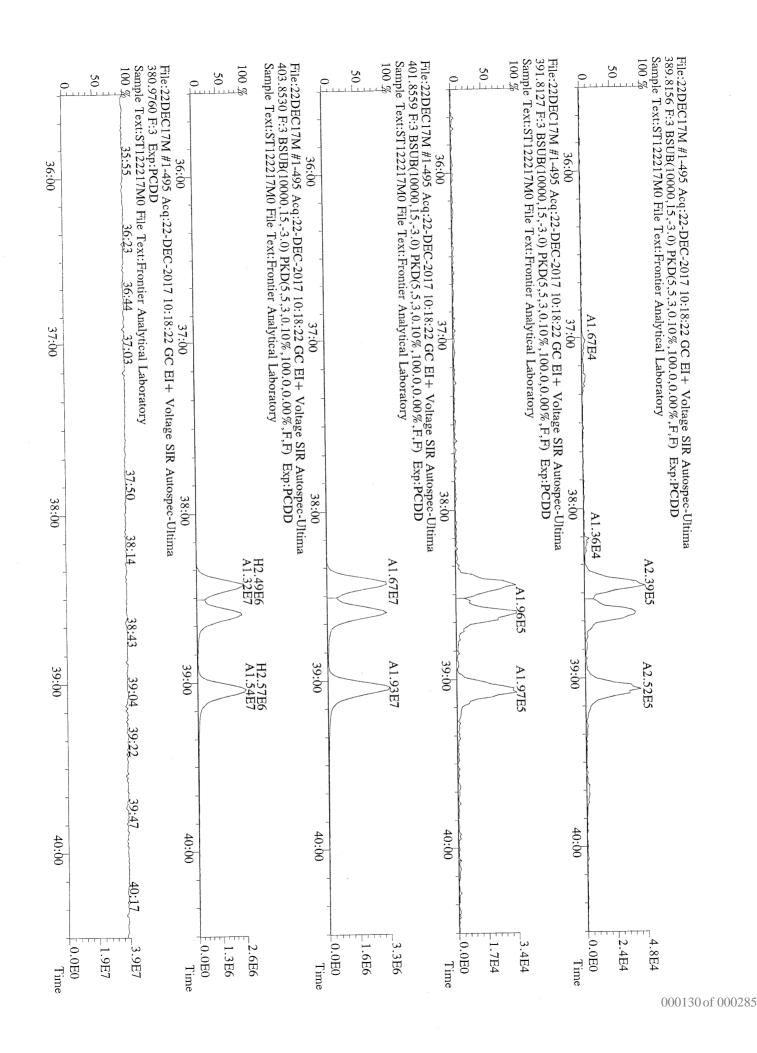

8 12/24/17

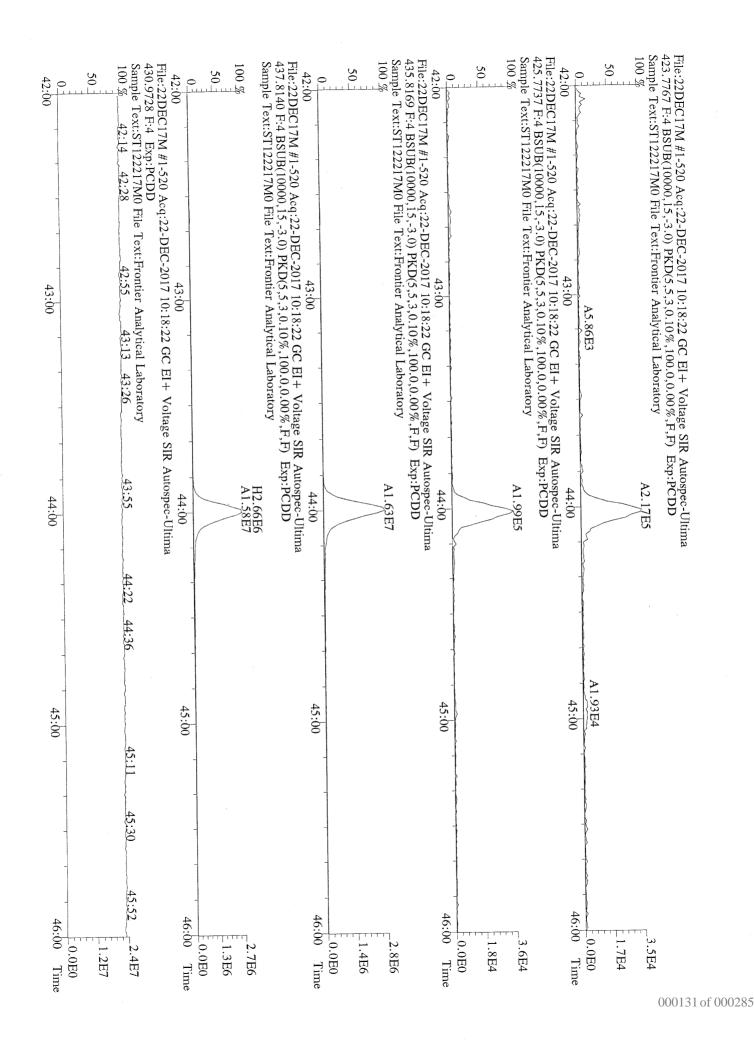

ata Ba	acked	Up:_		
ate:				

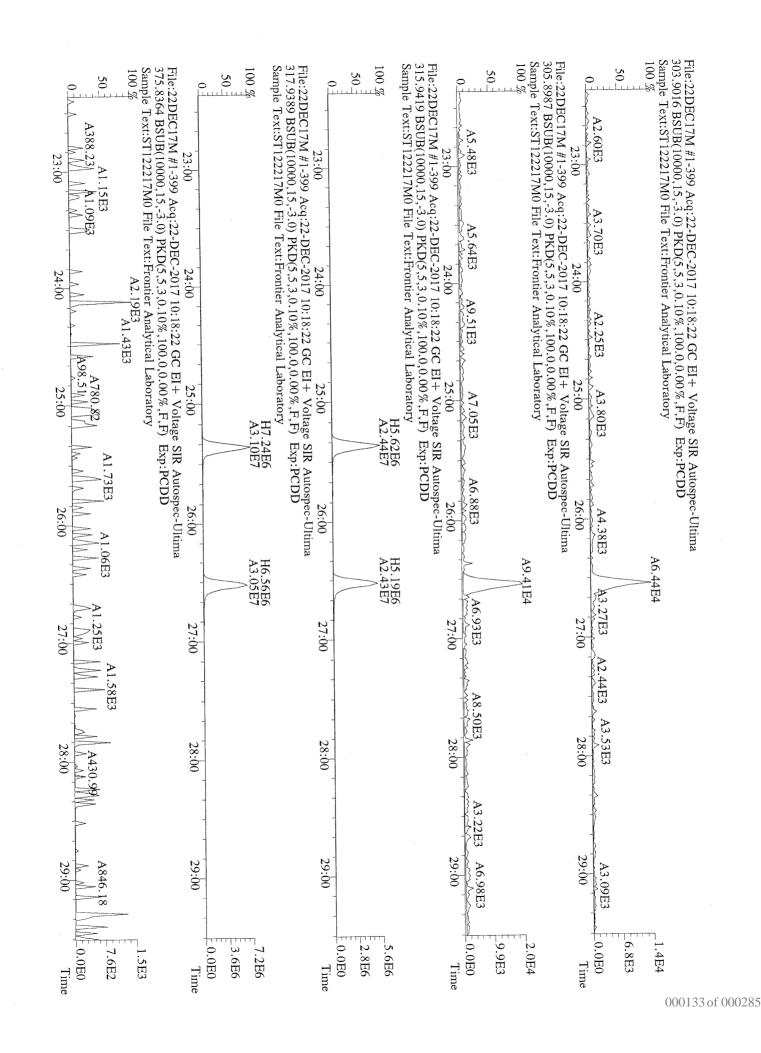


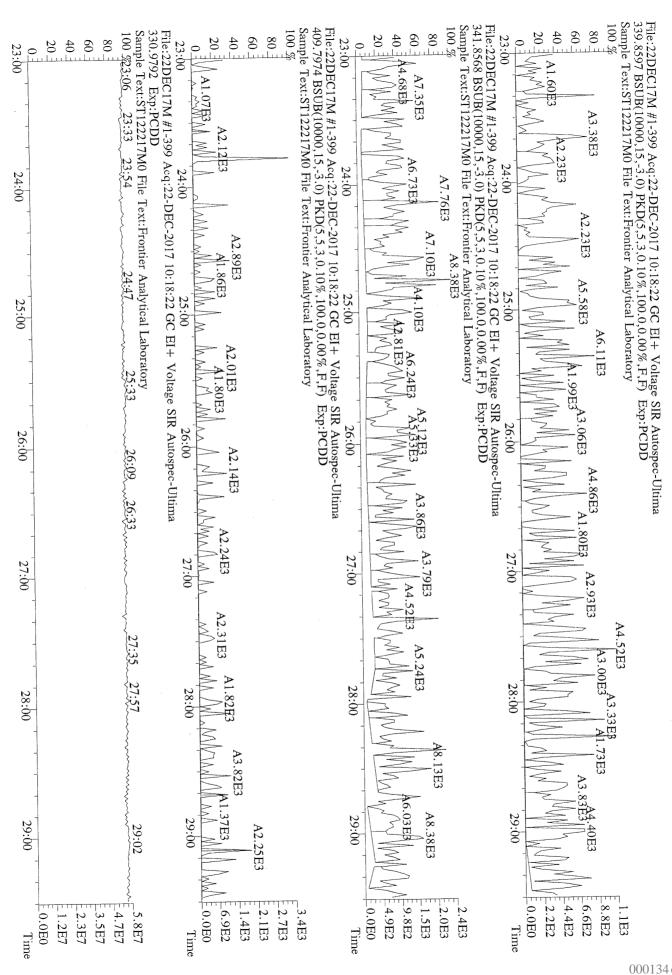


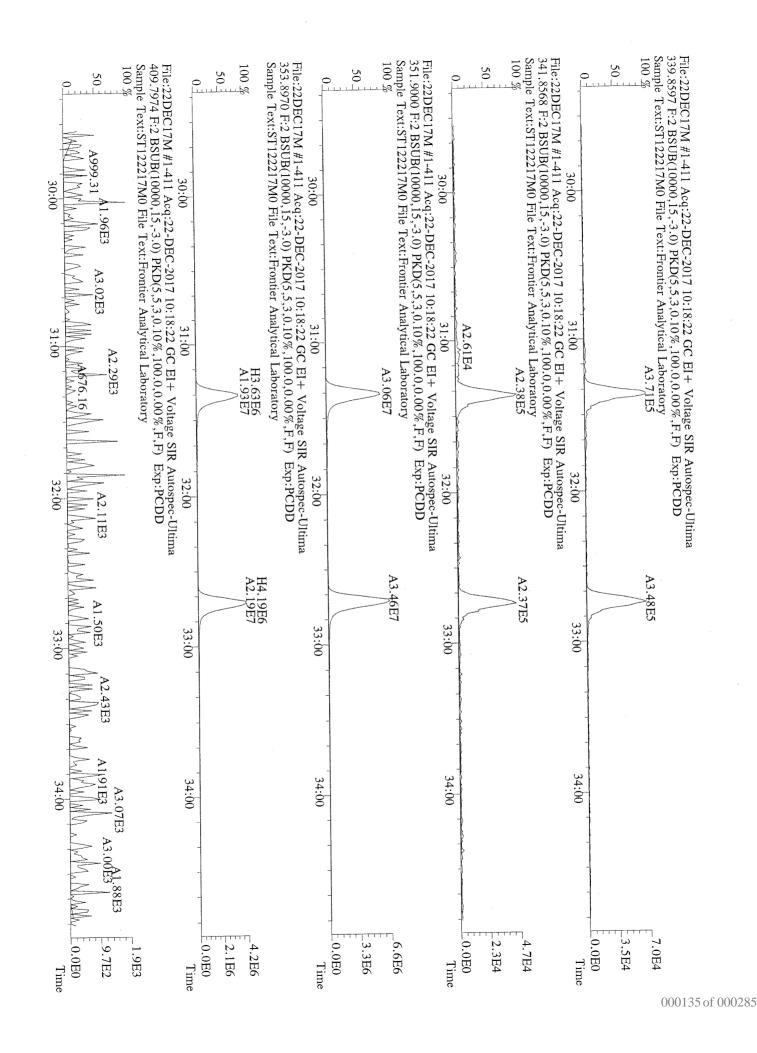


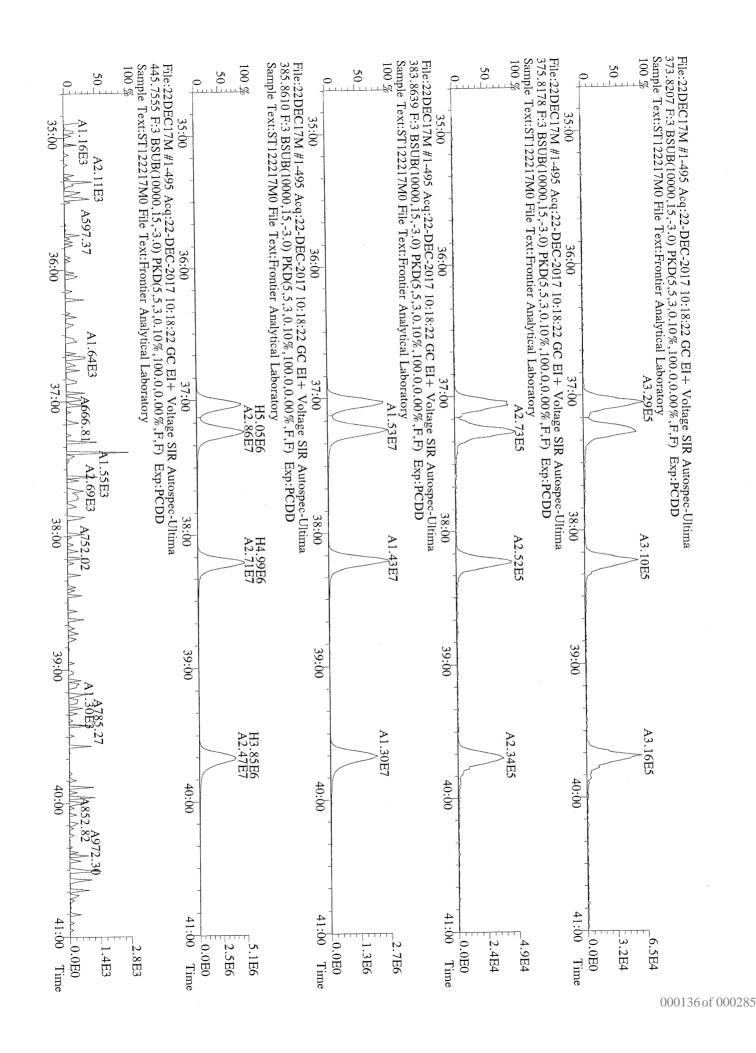


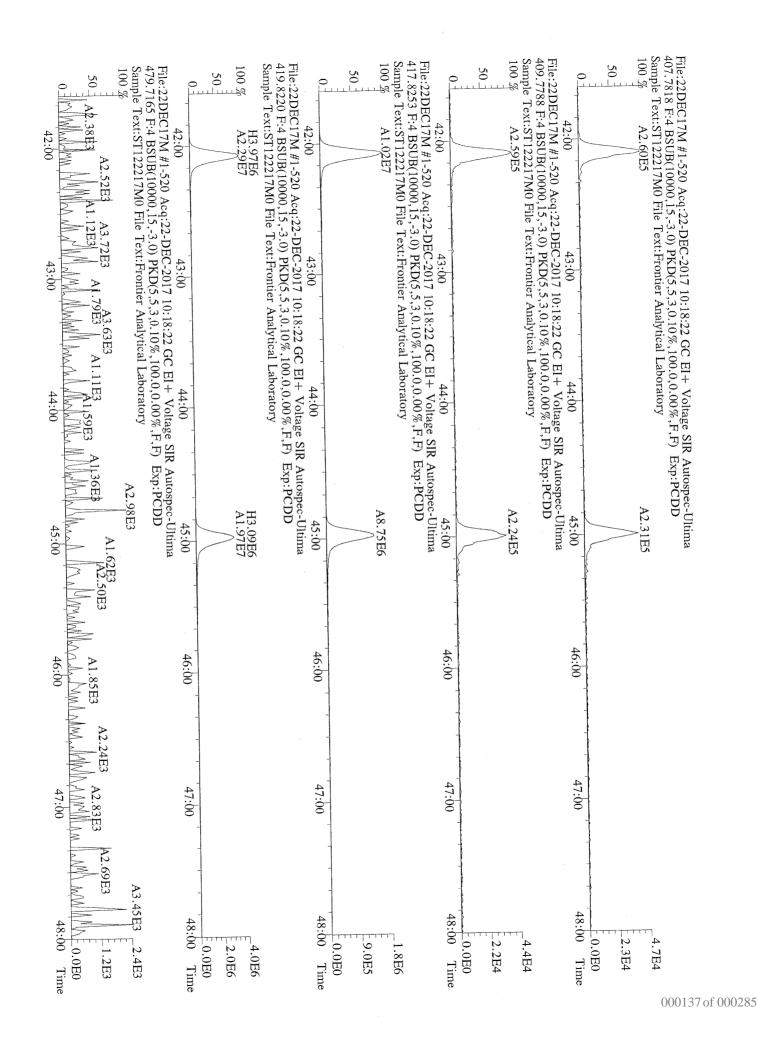


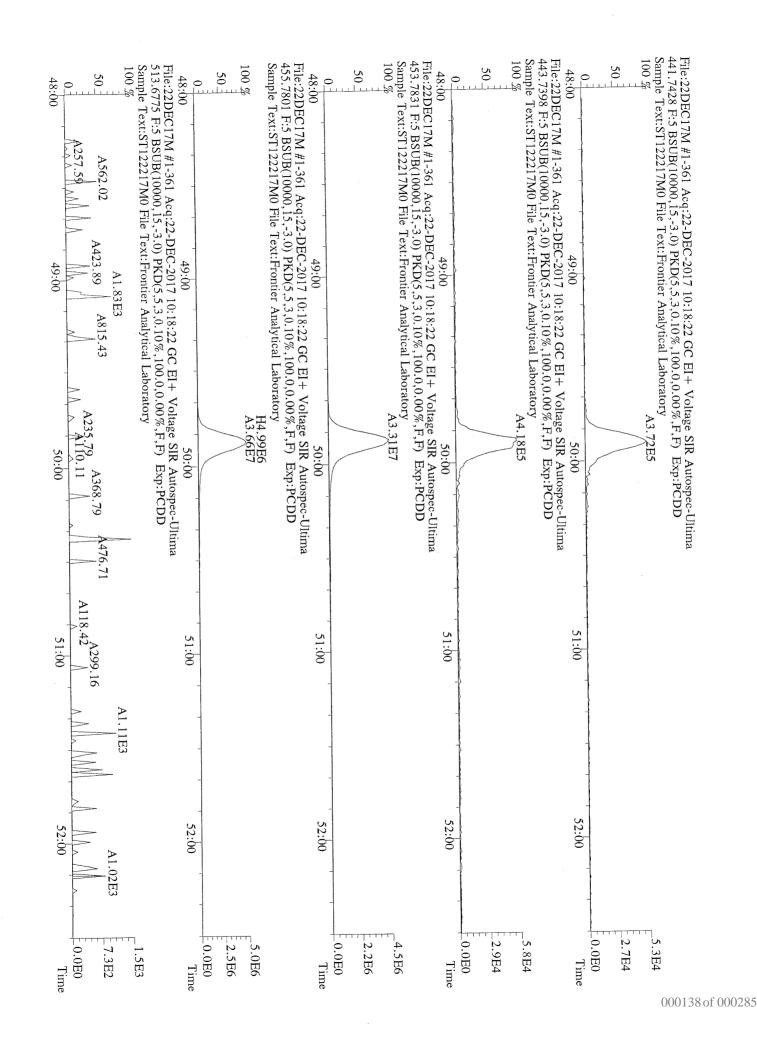


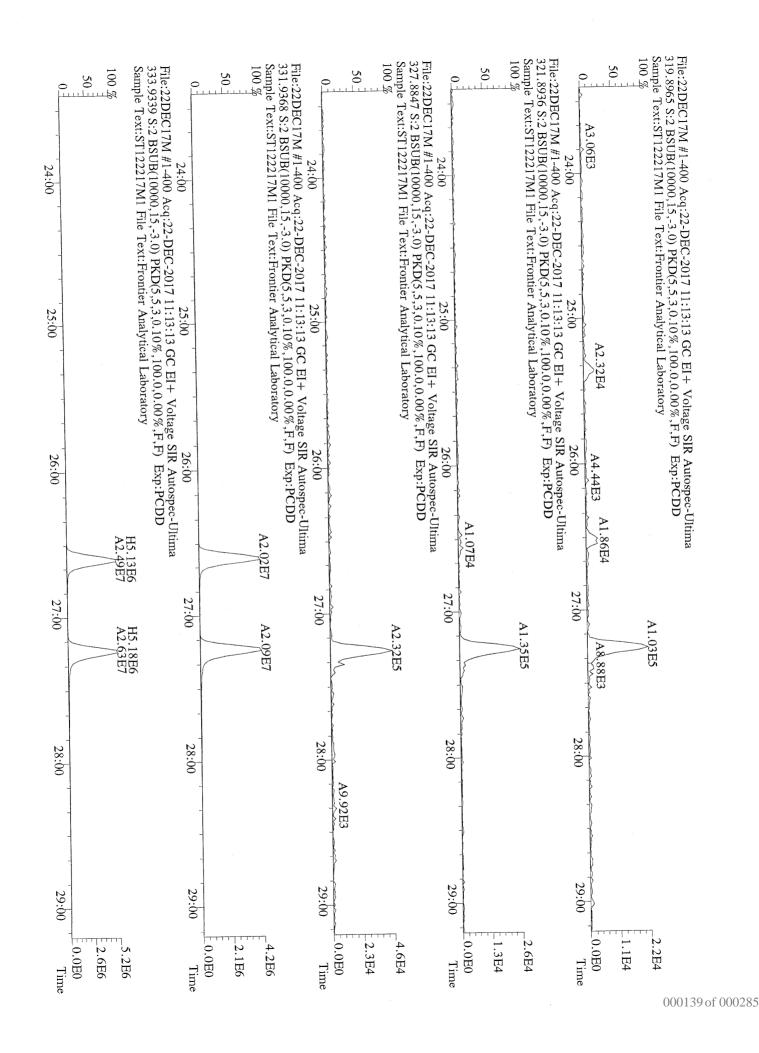


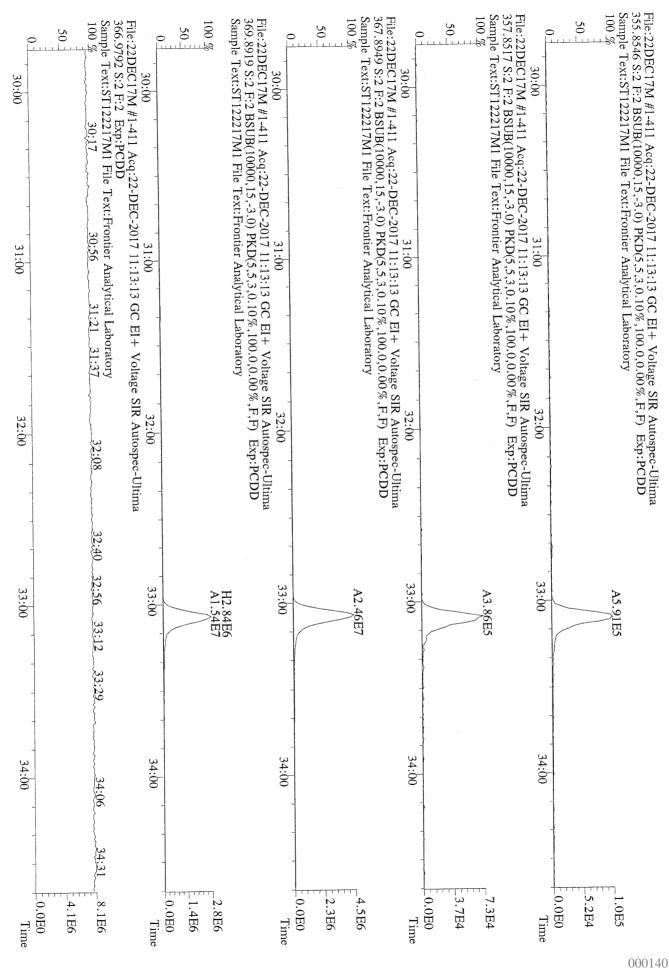


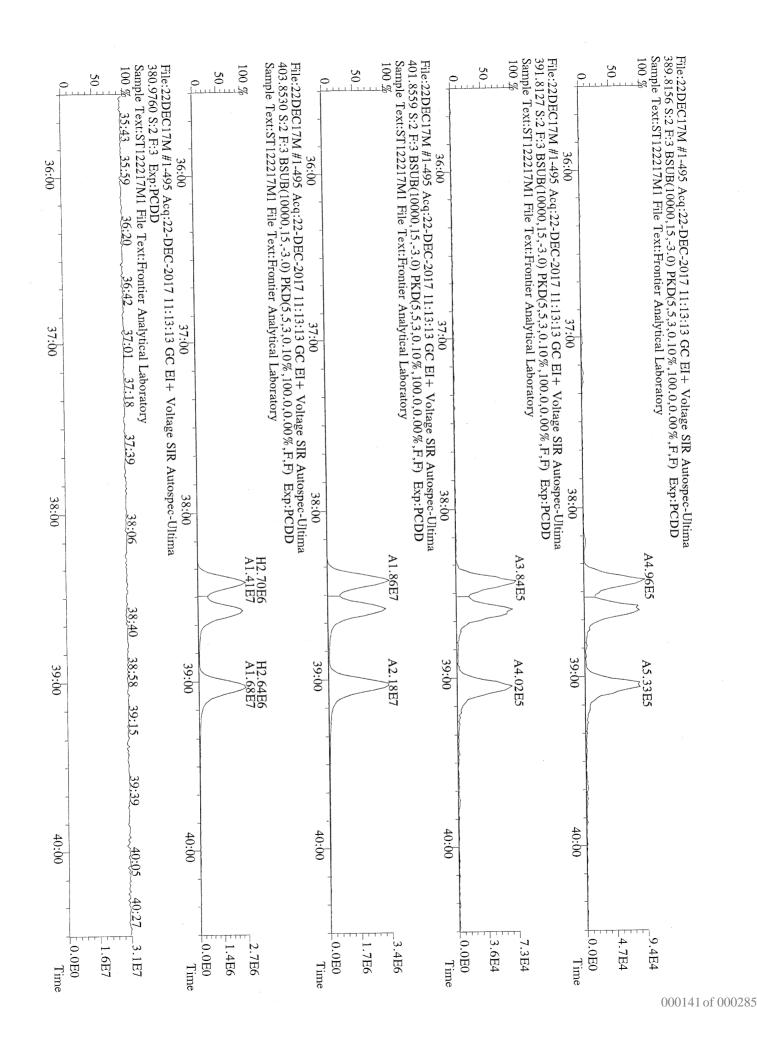


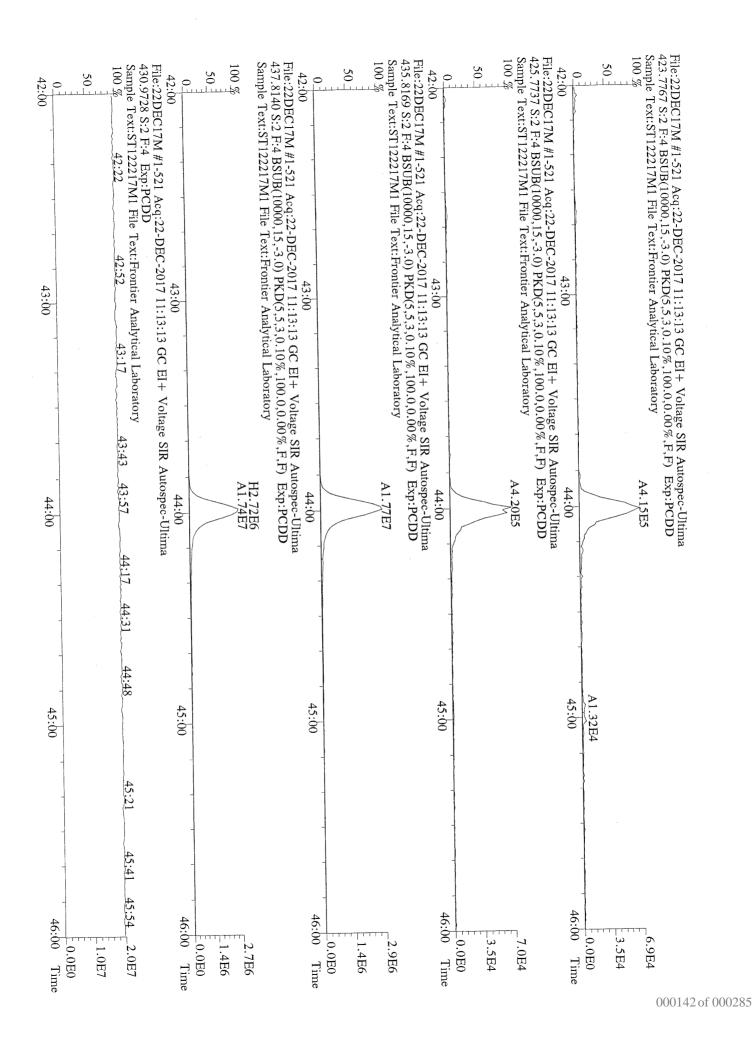


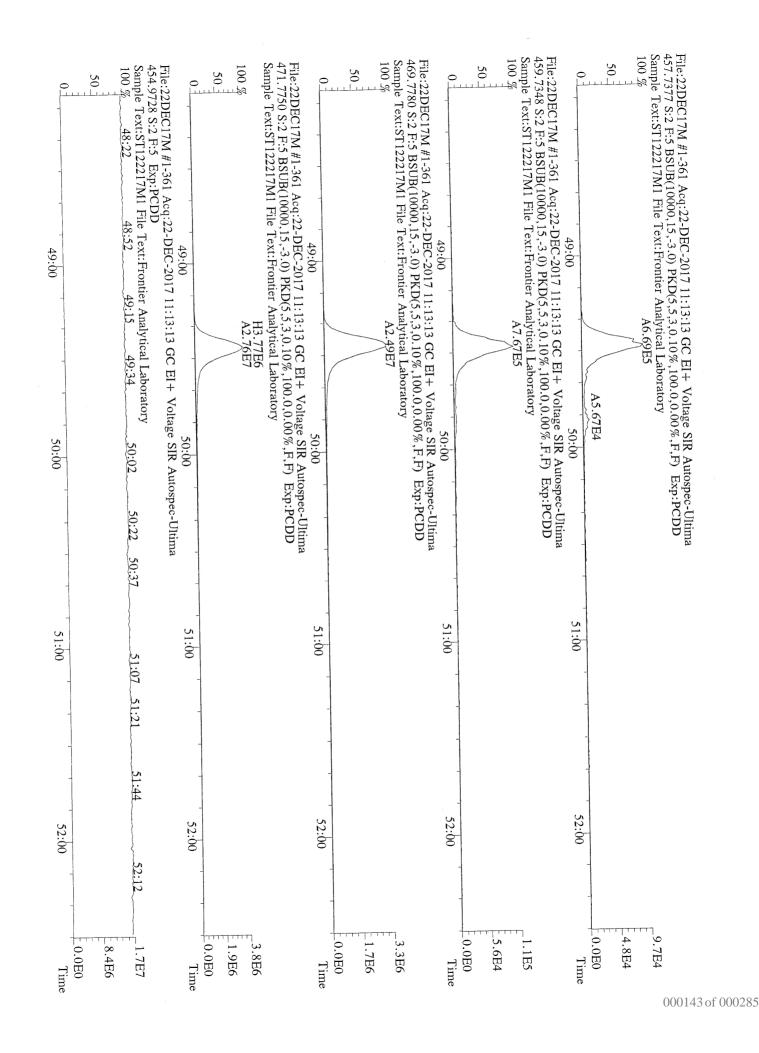


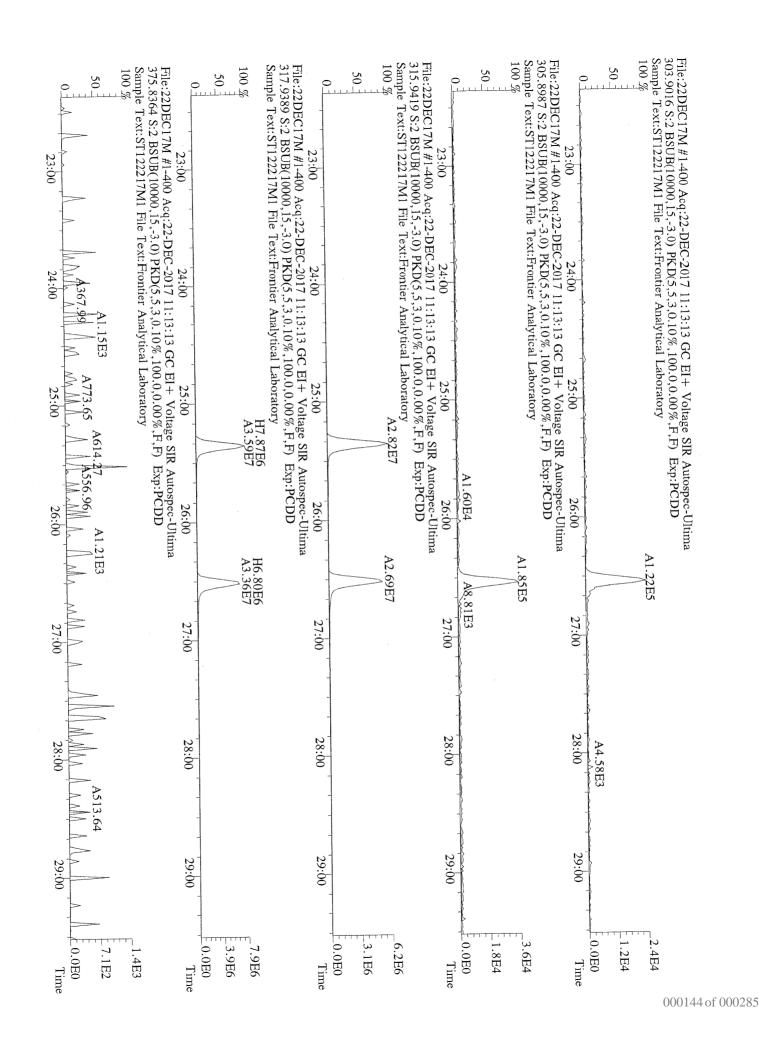


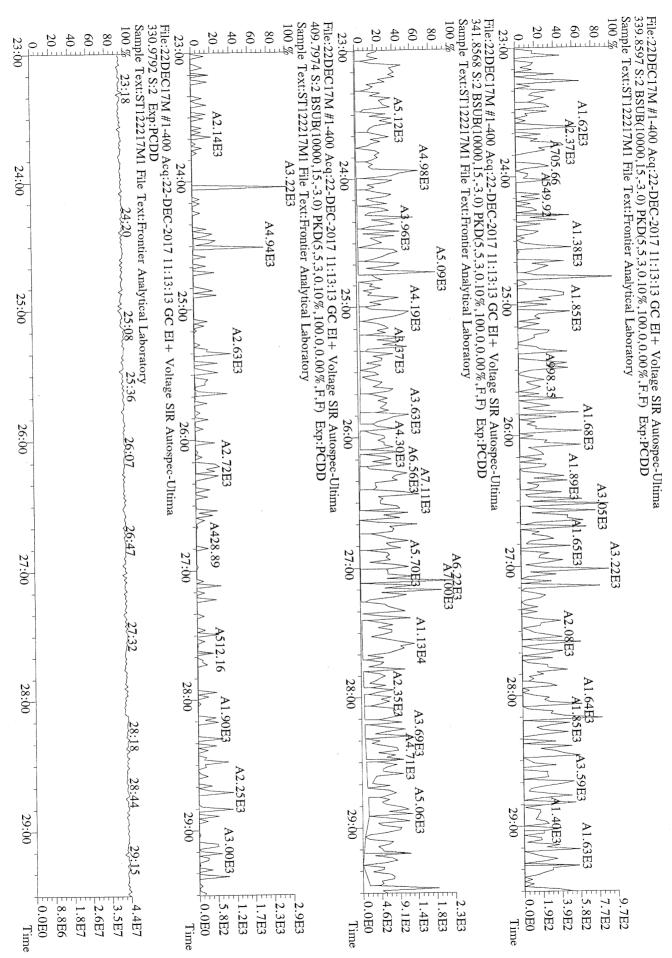


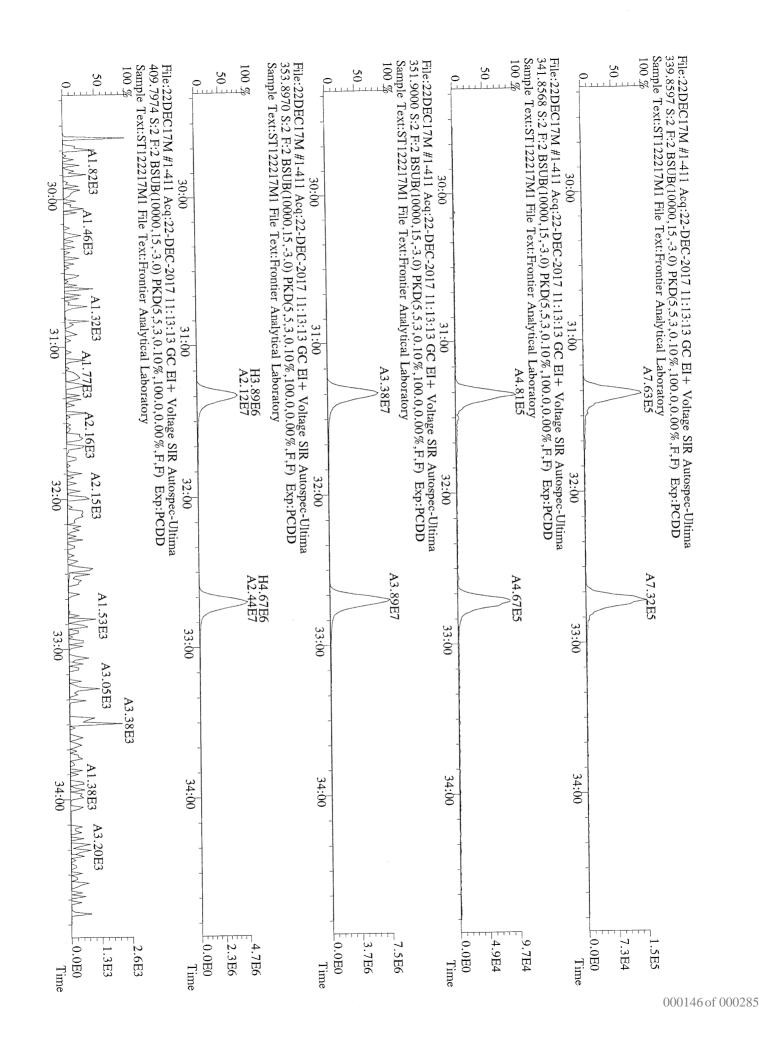


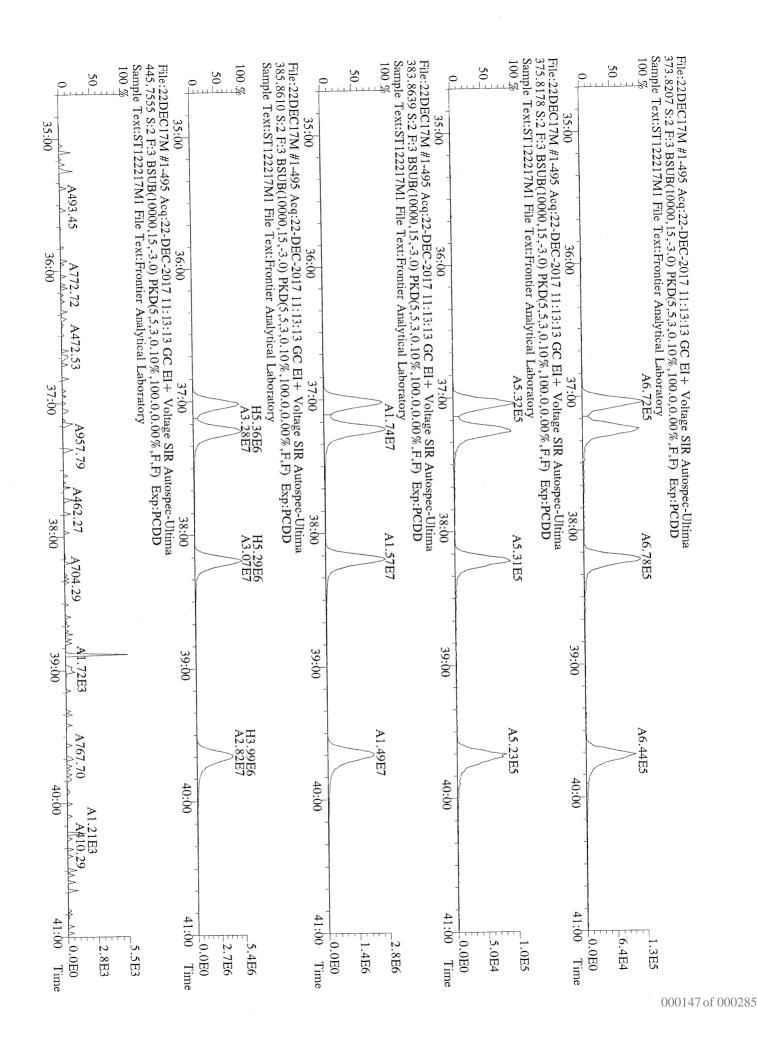


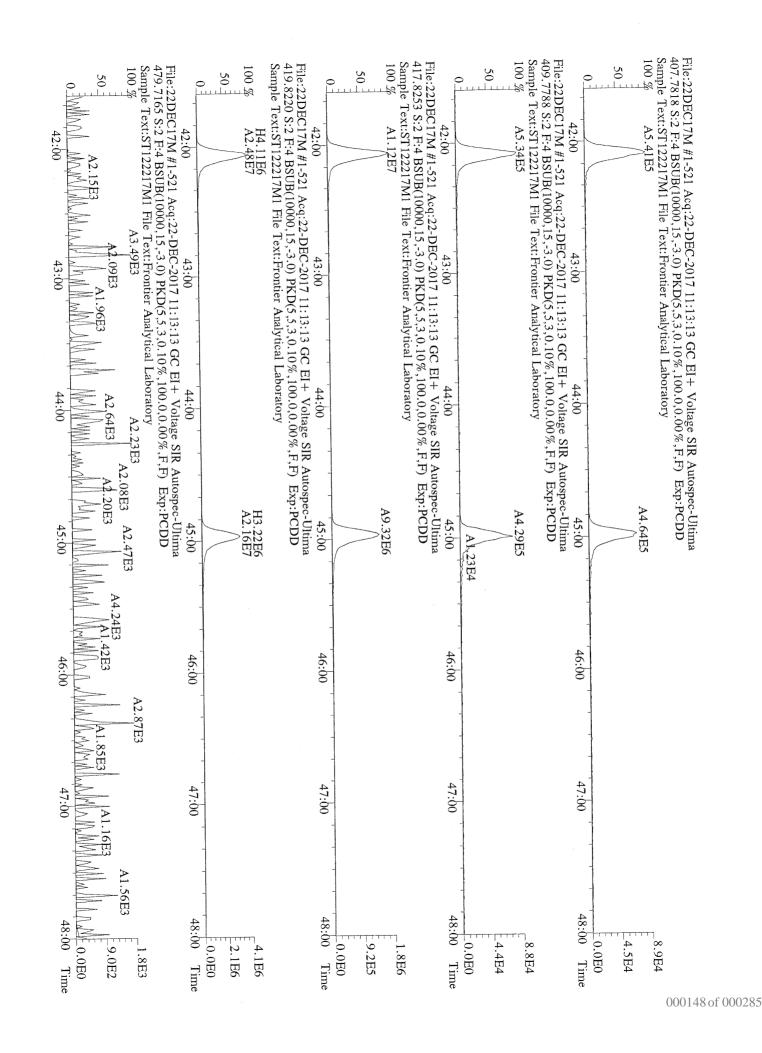


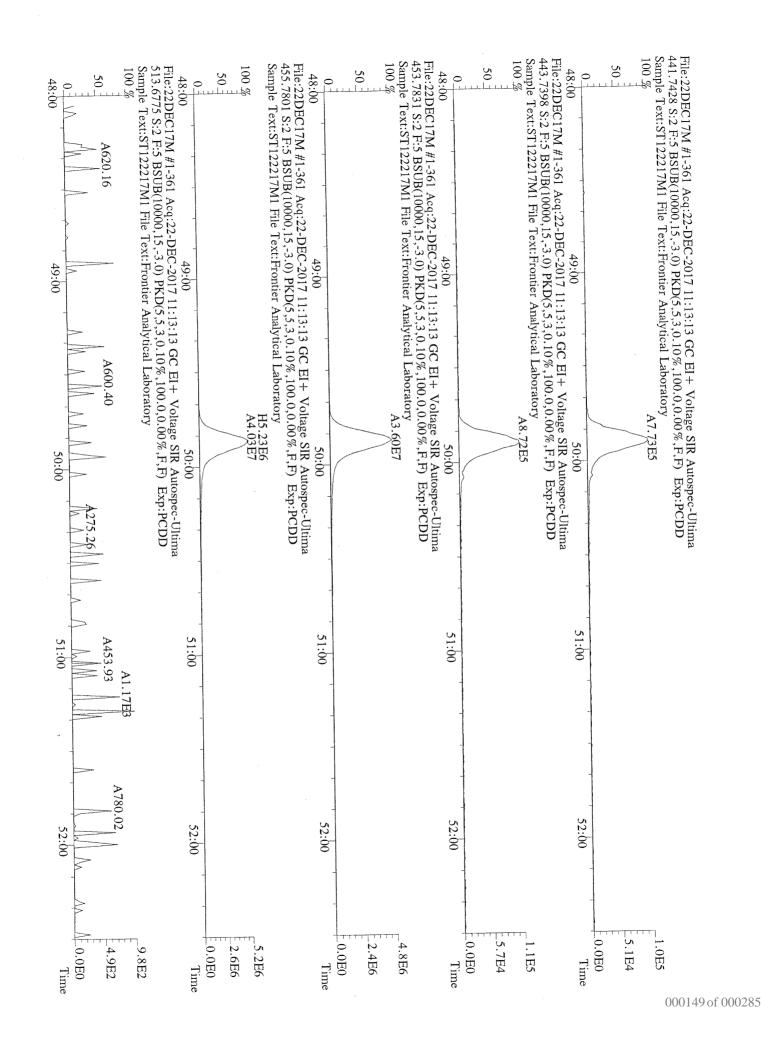


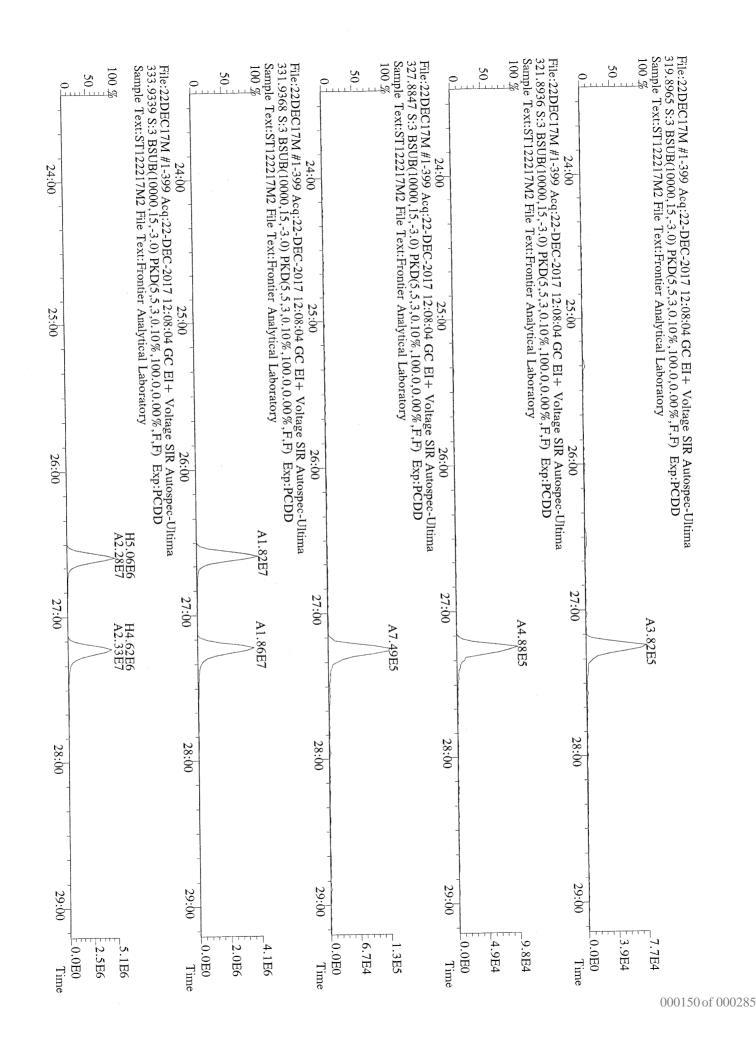


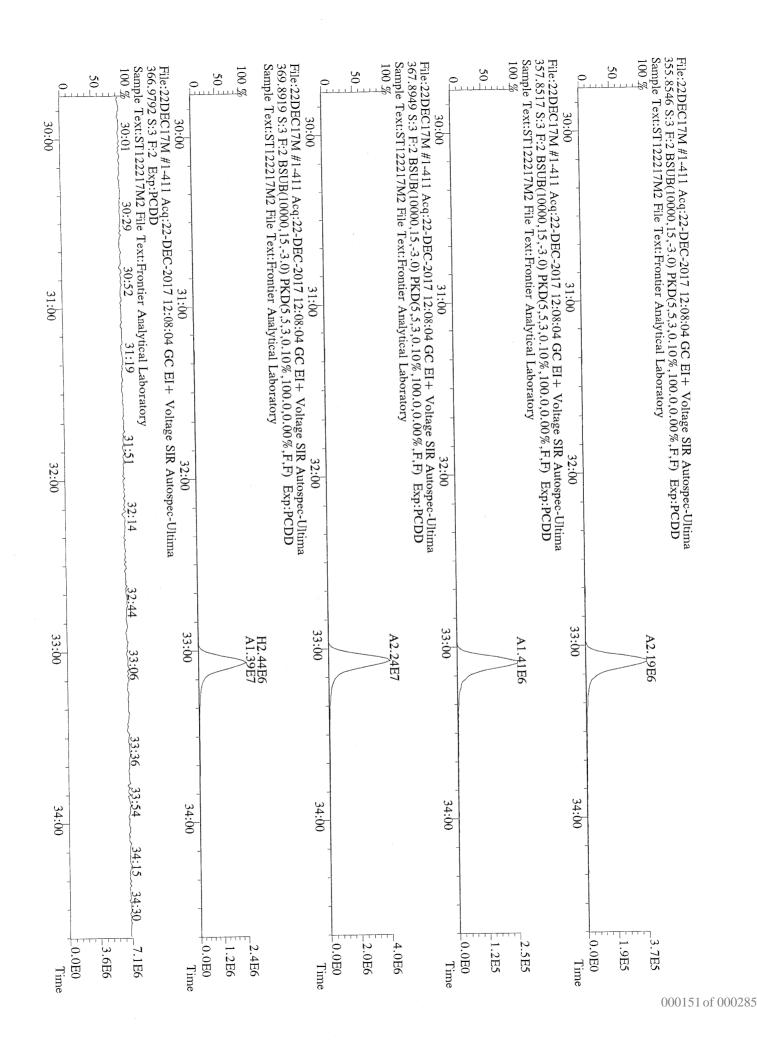


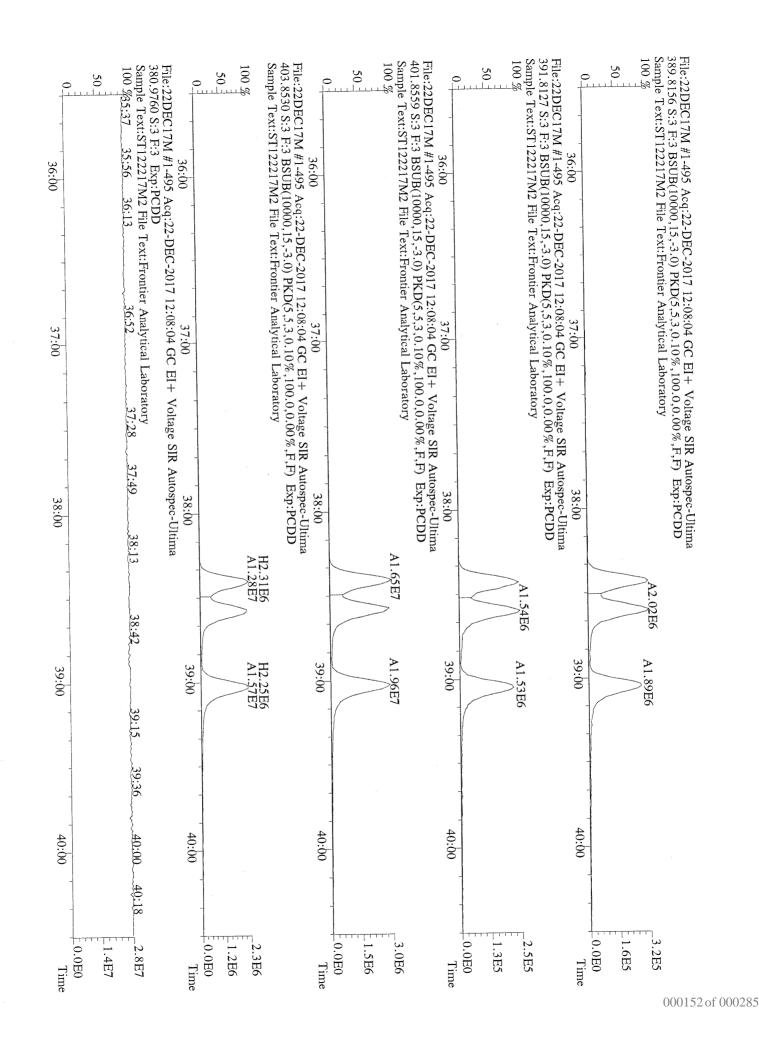


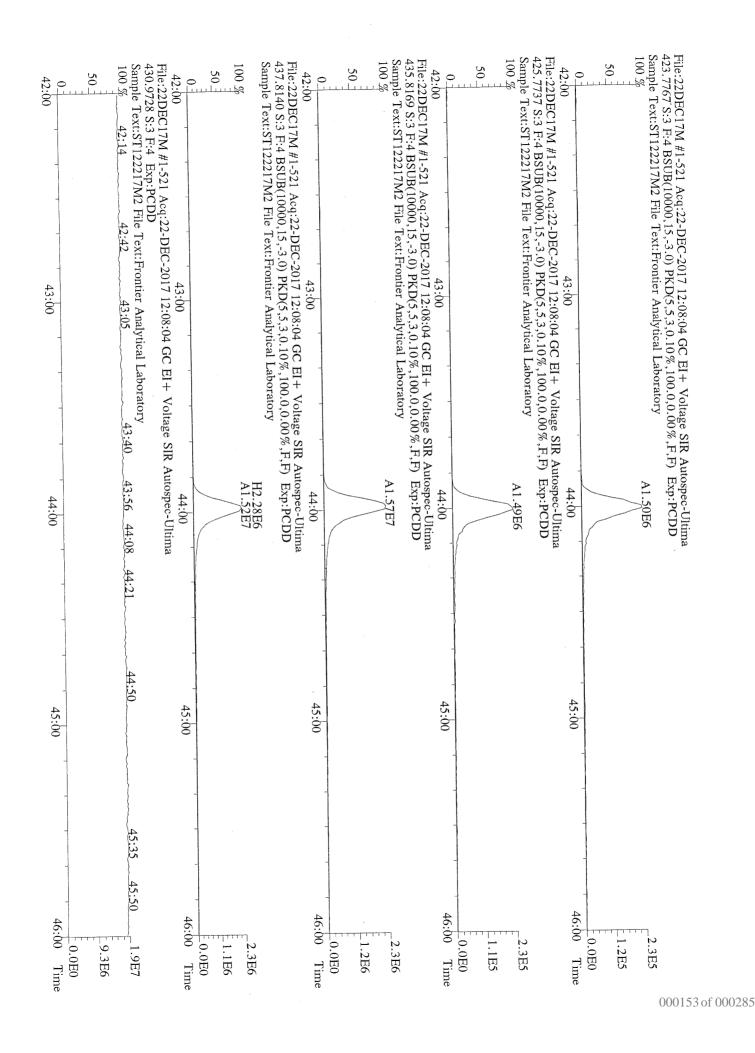


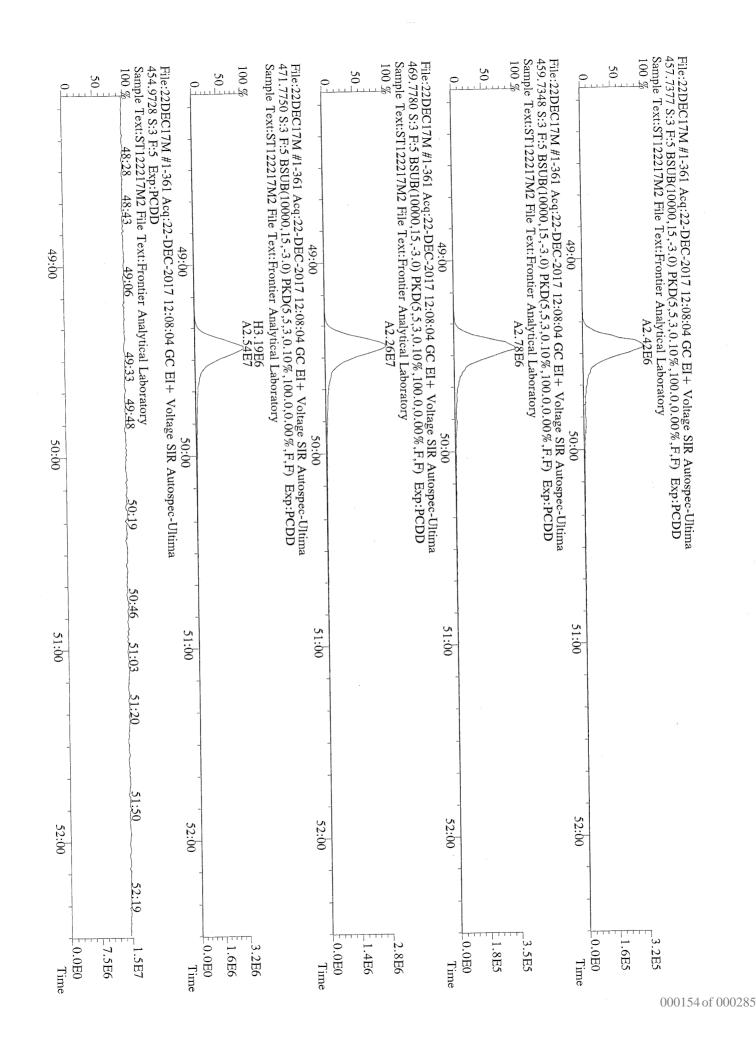


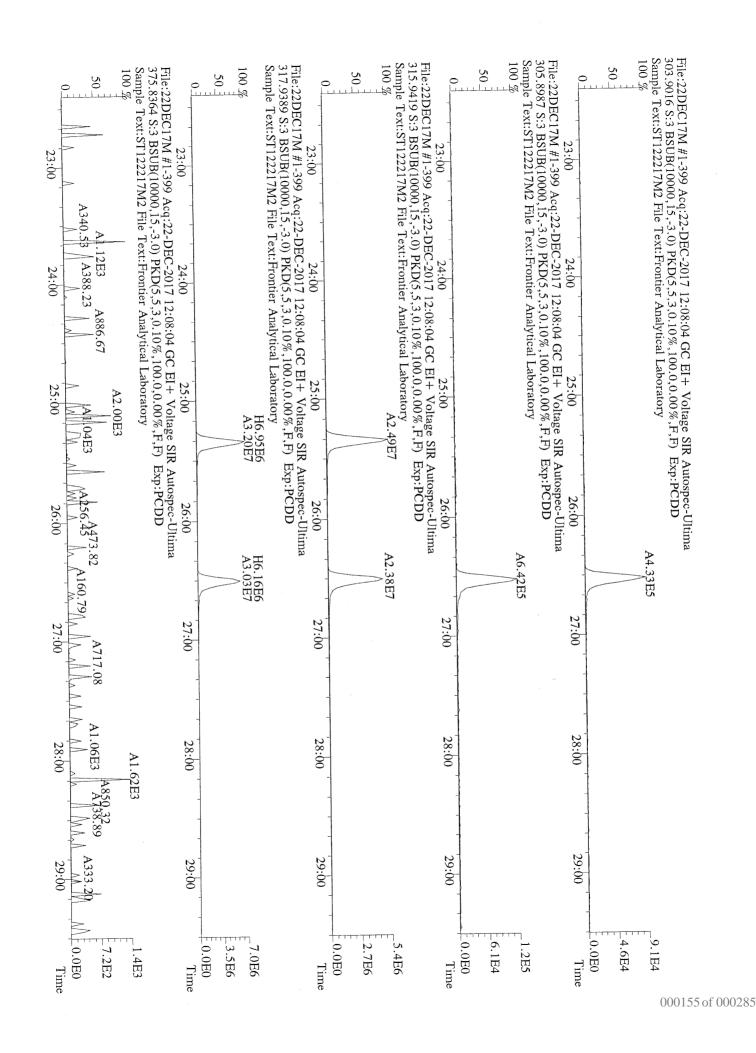


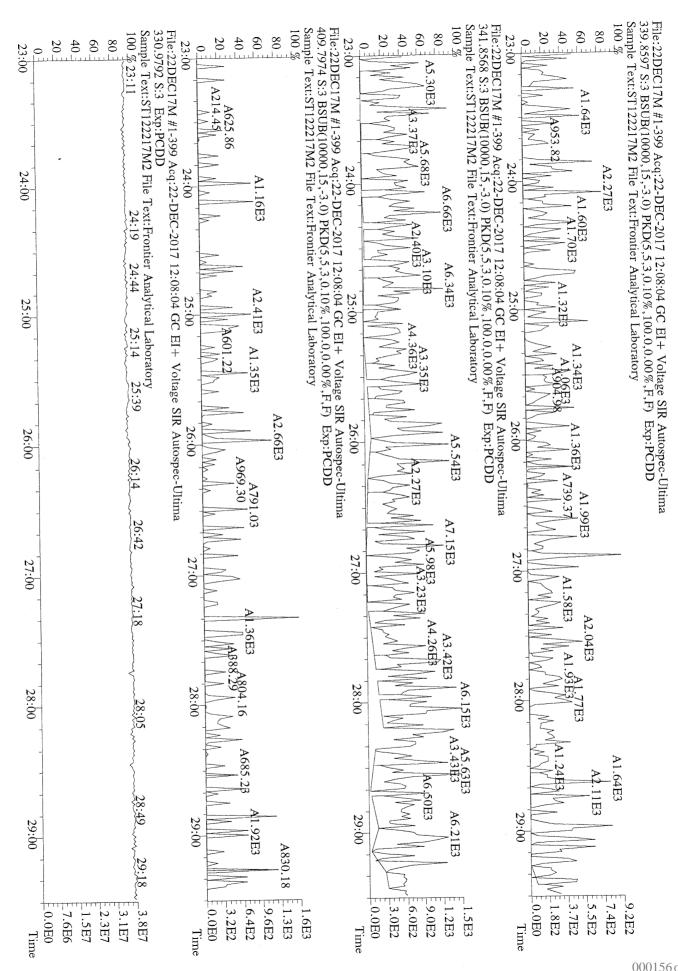


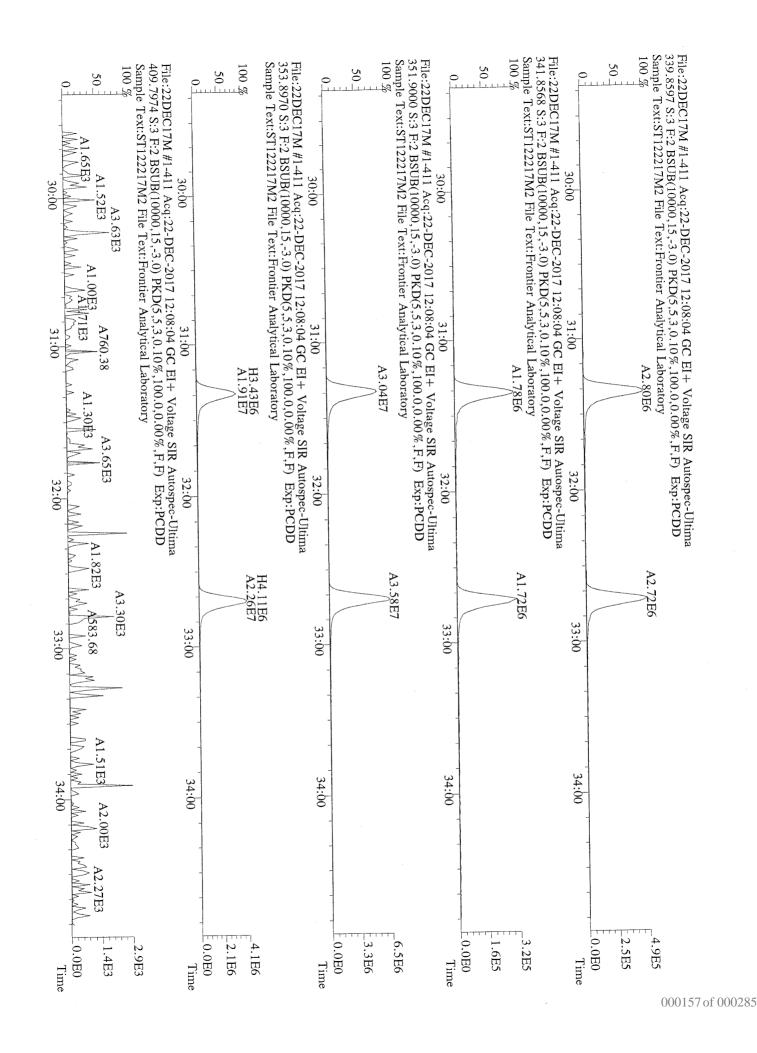


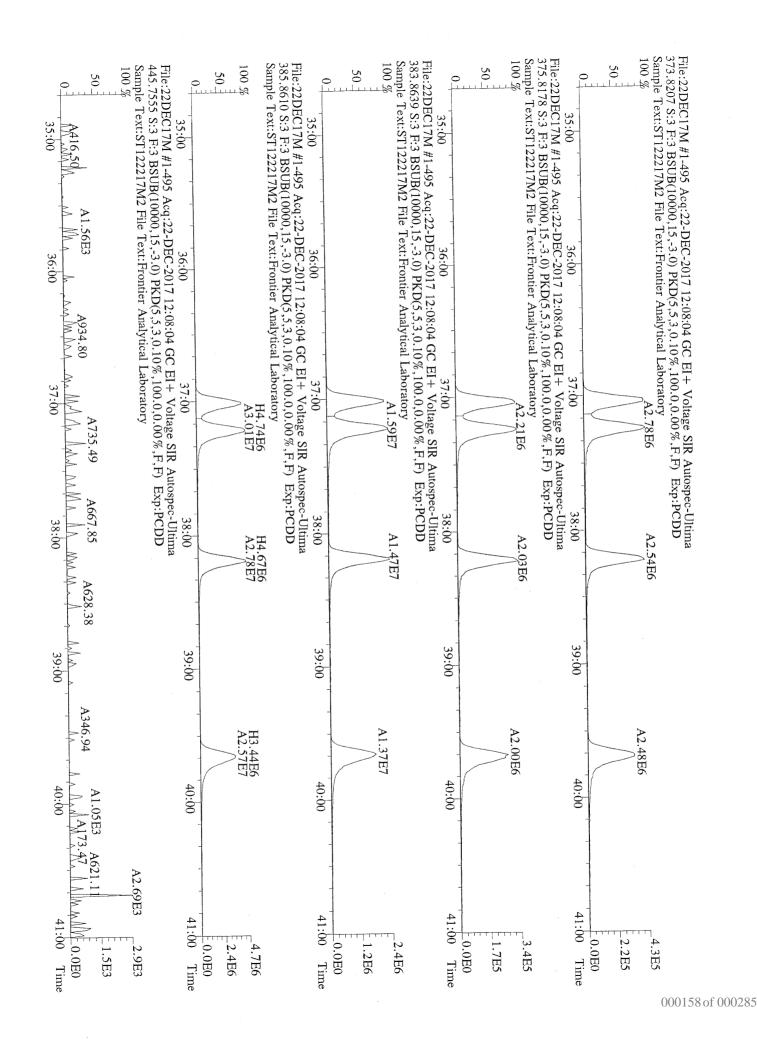


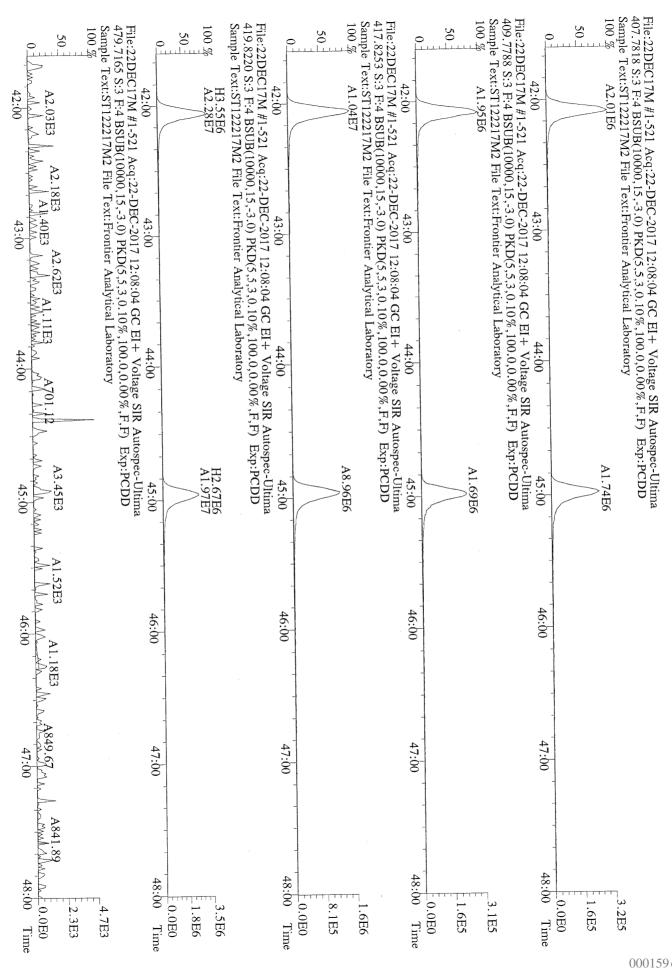


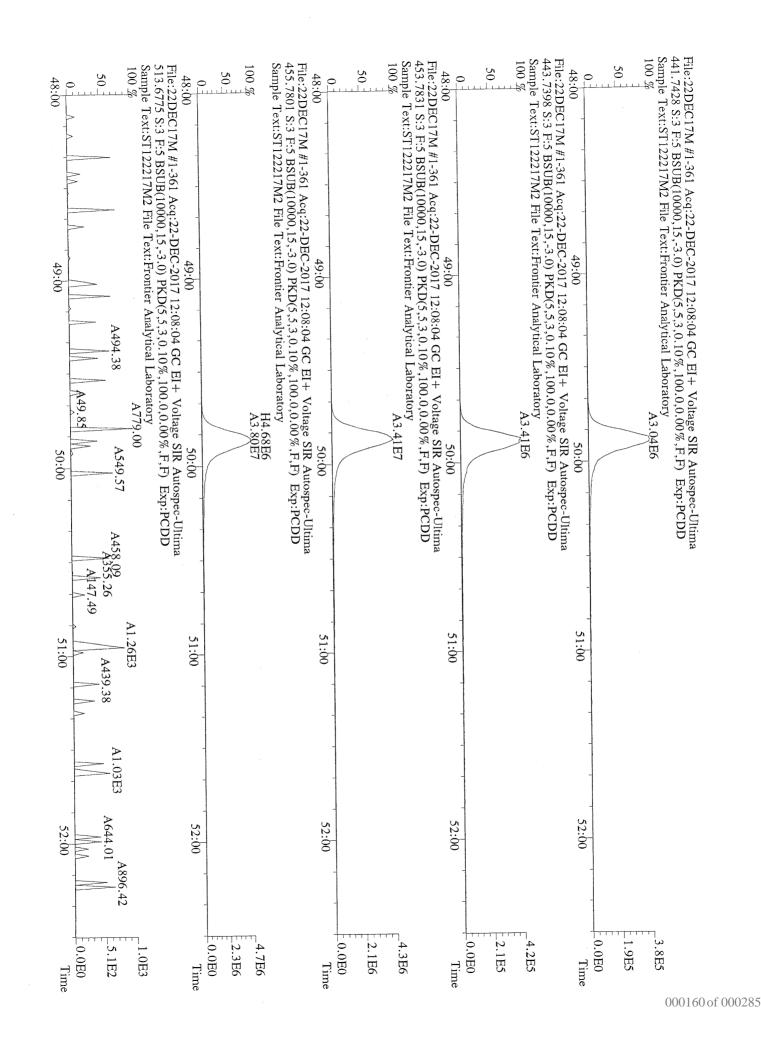


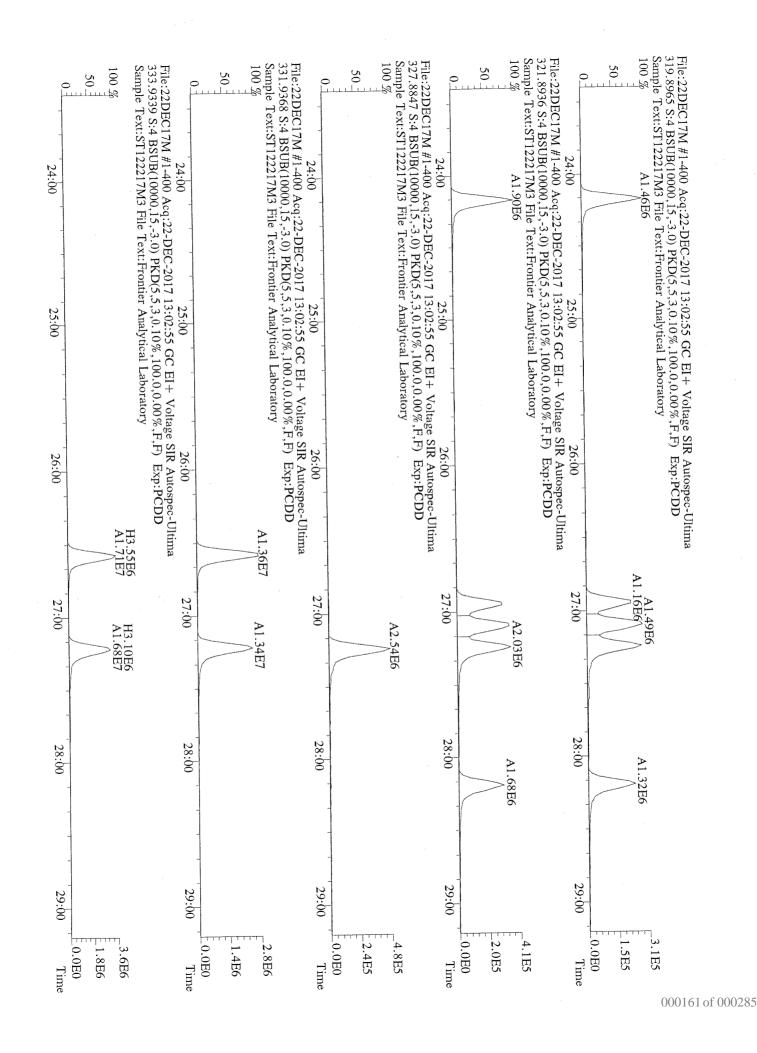


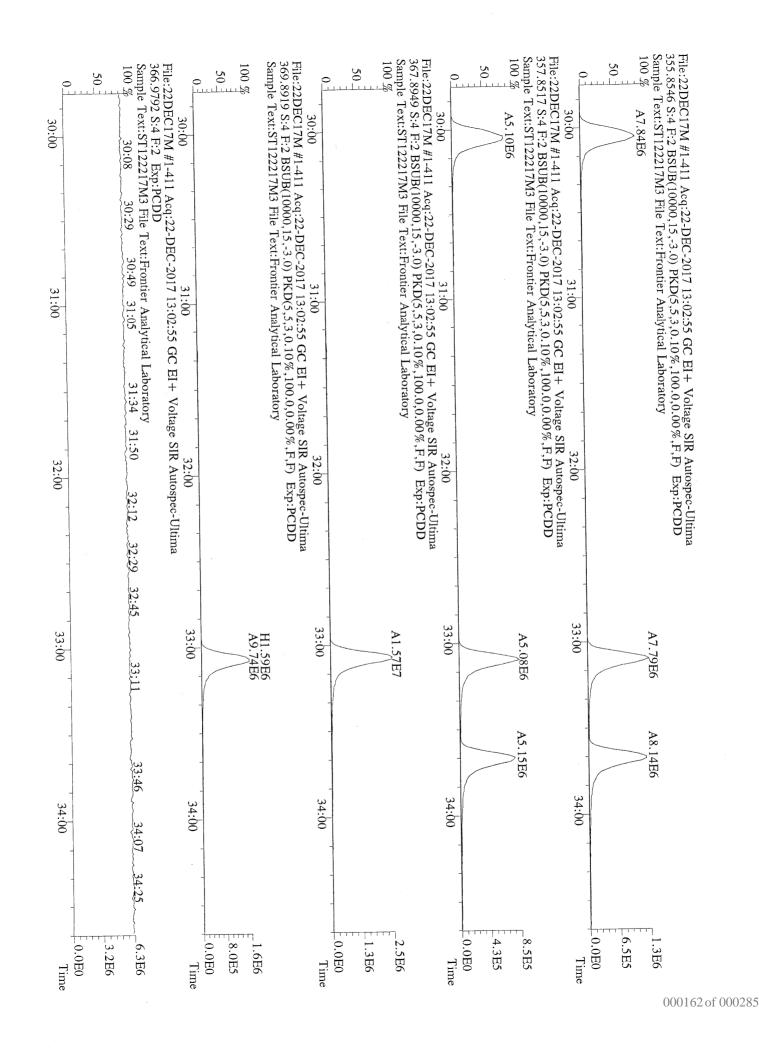


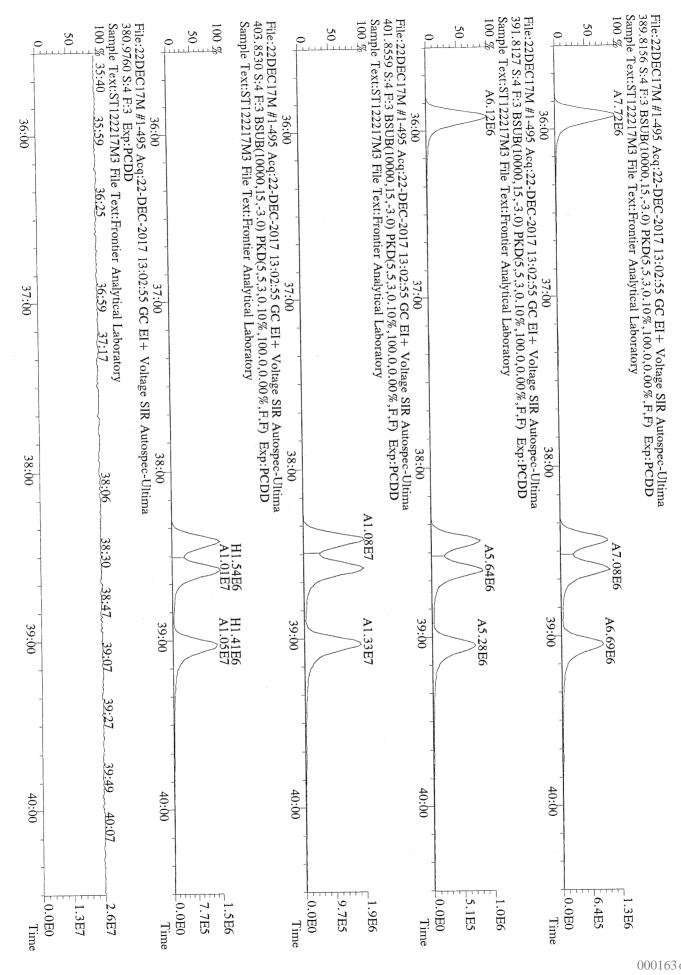


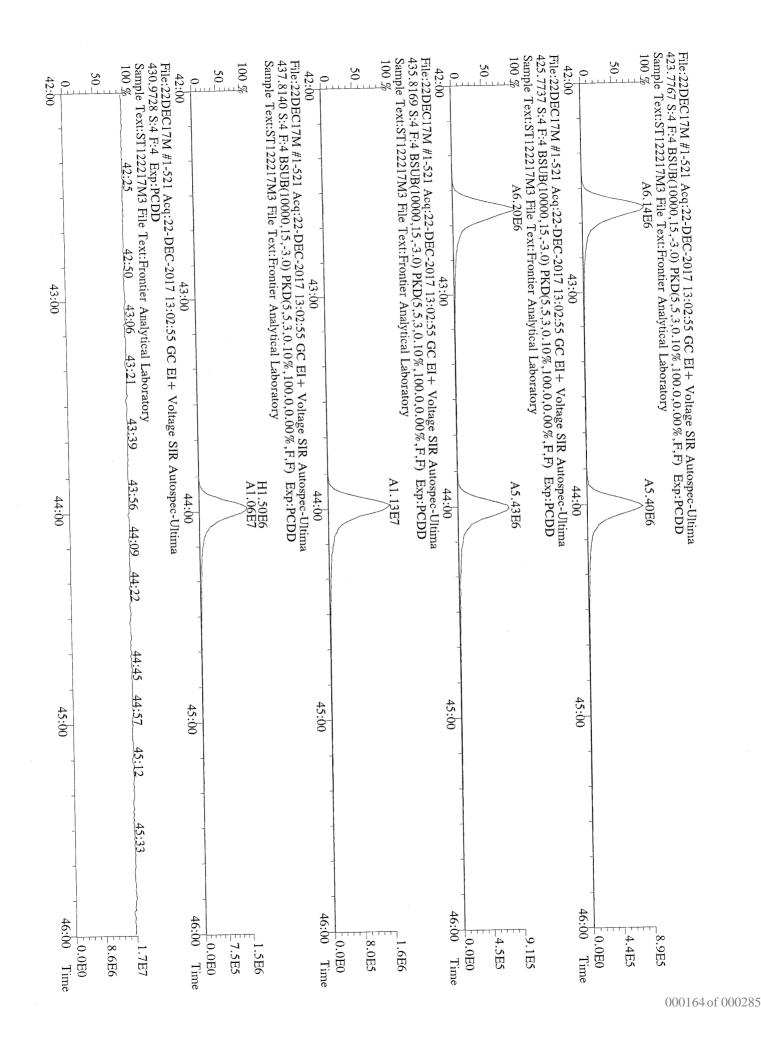


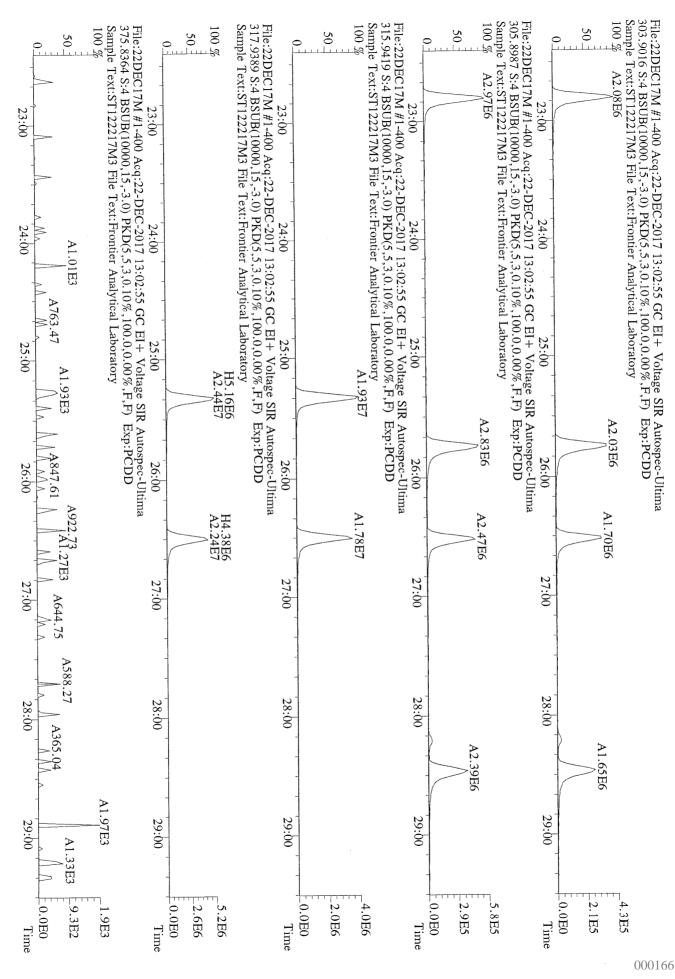


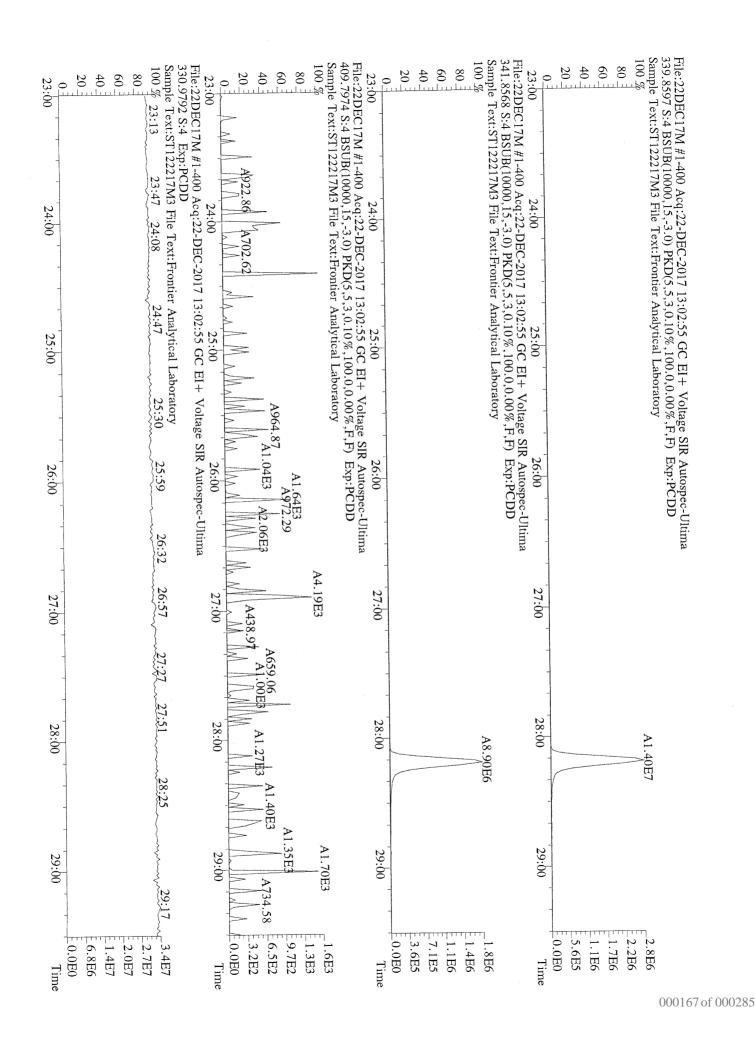


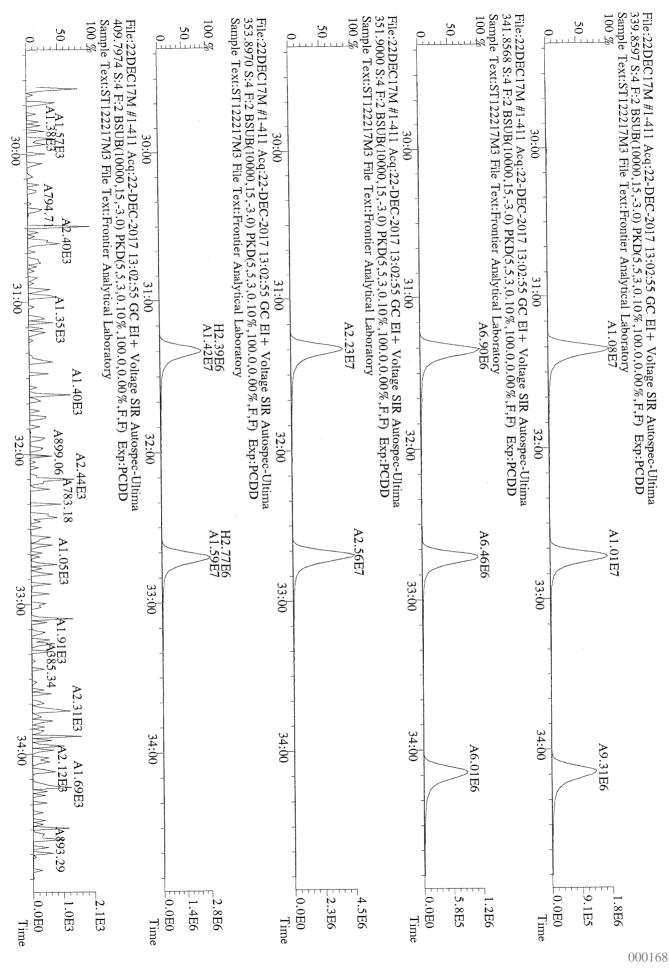


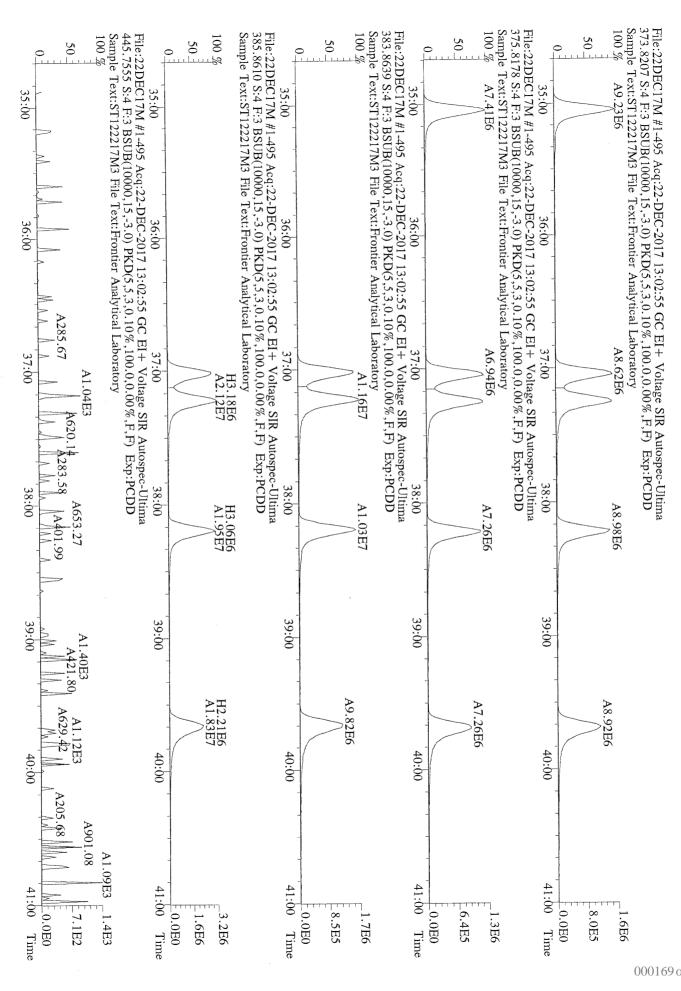


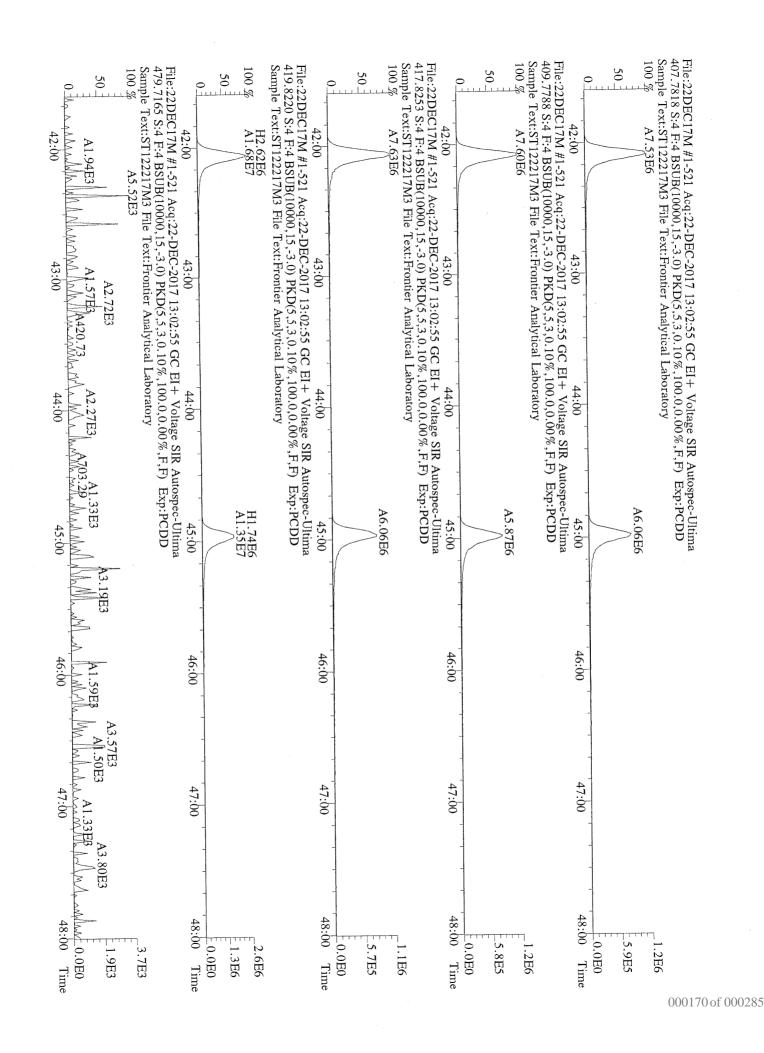


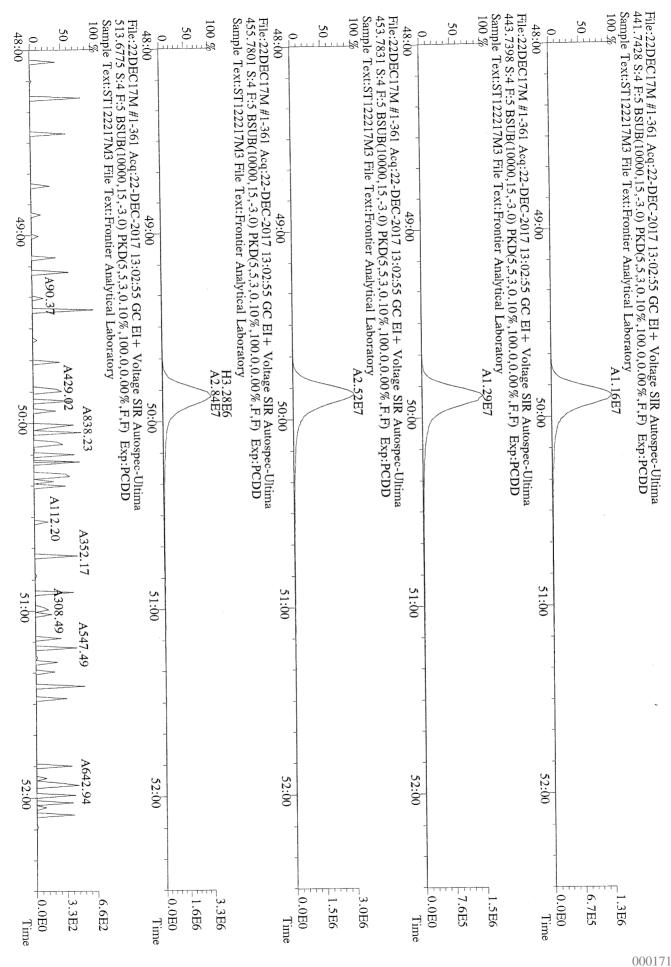


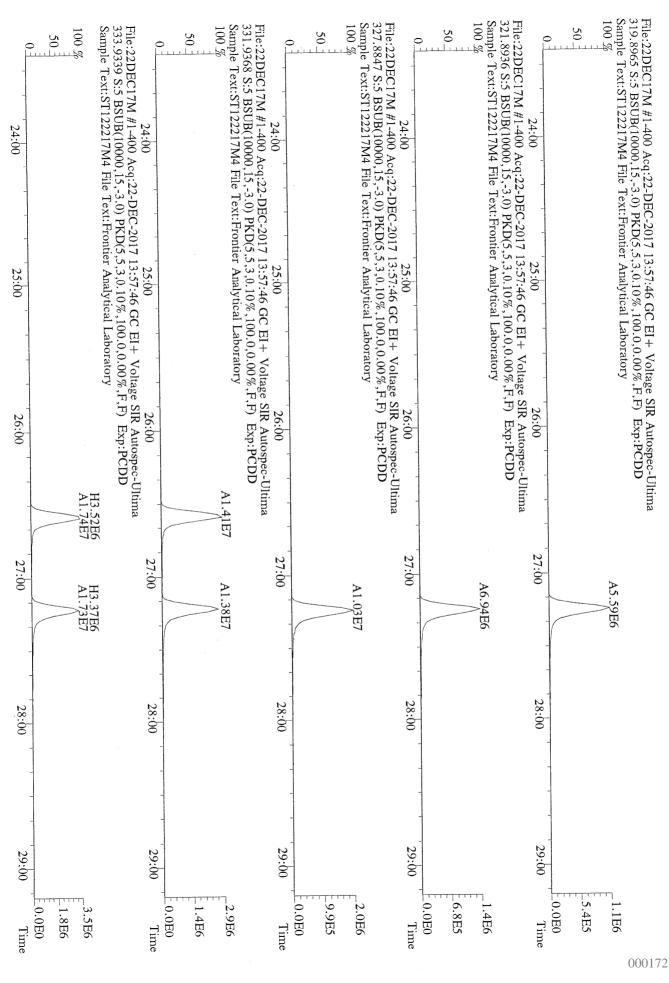


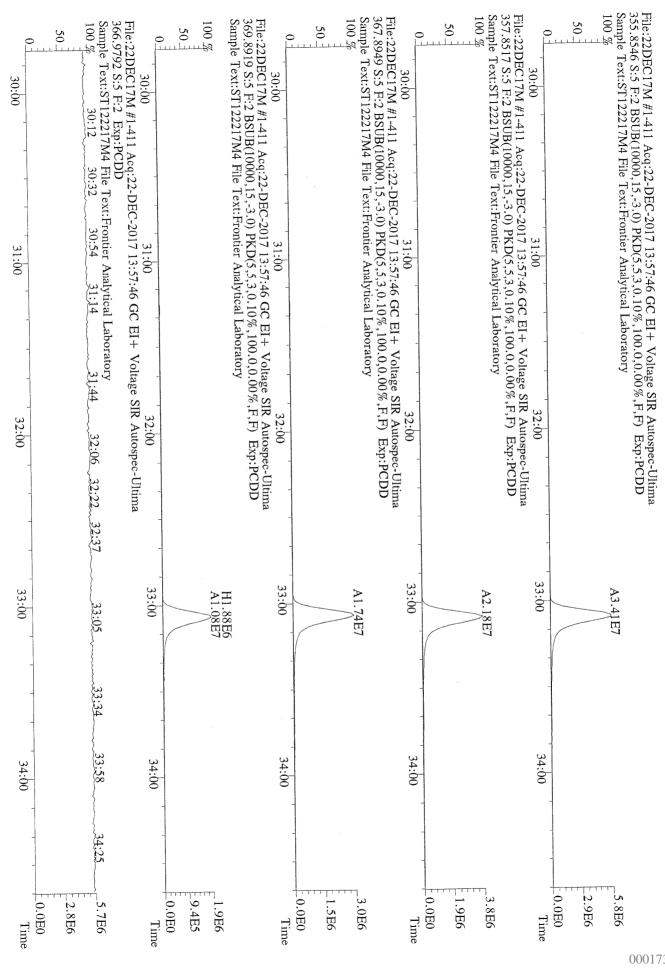


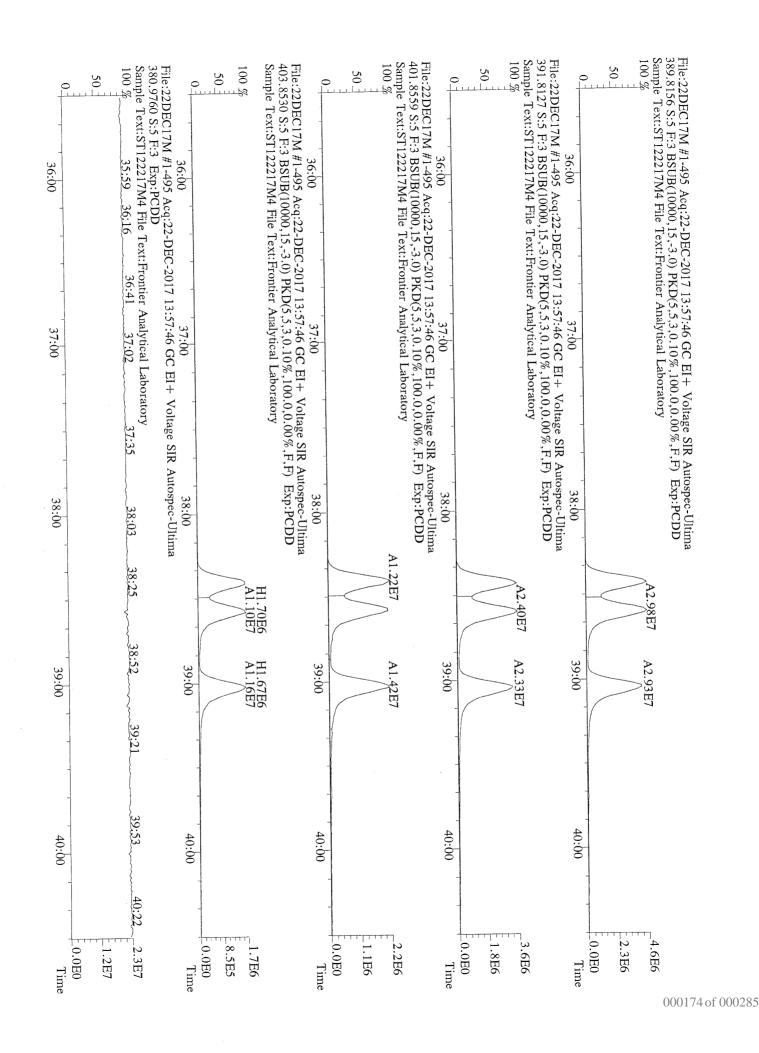


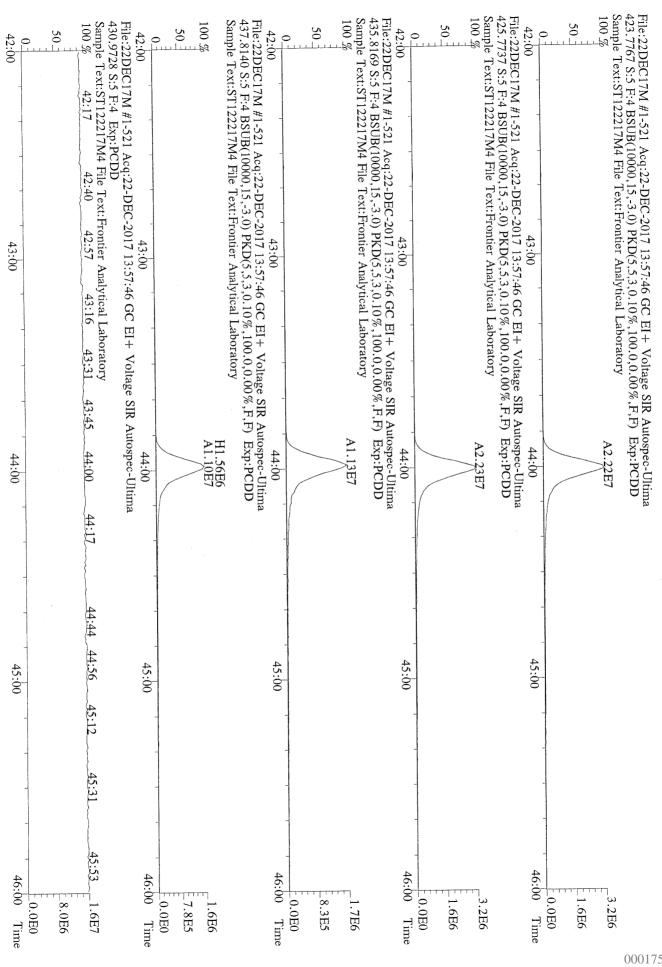


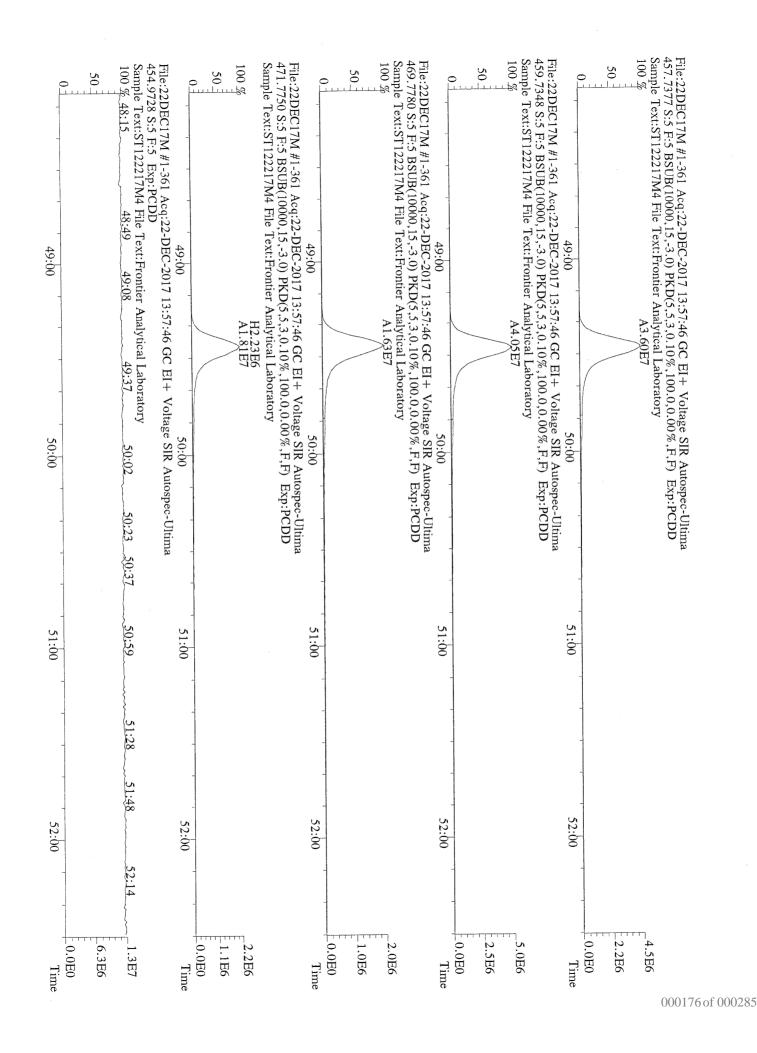


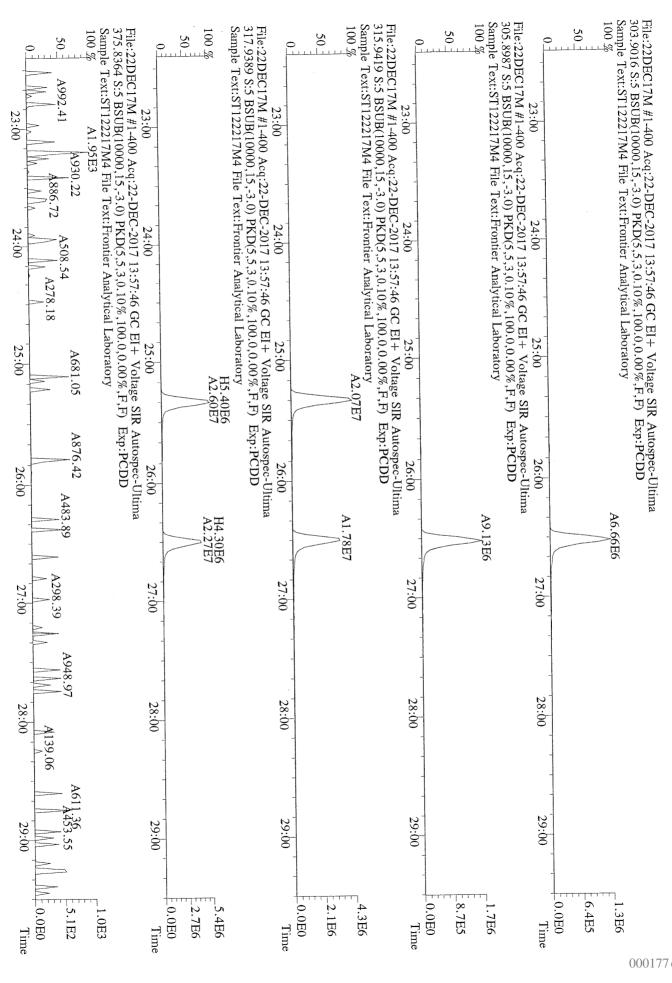


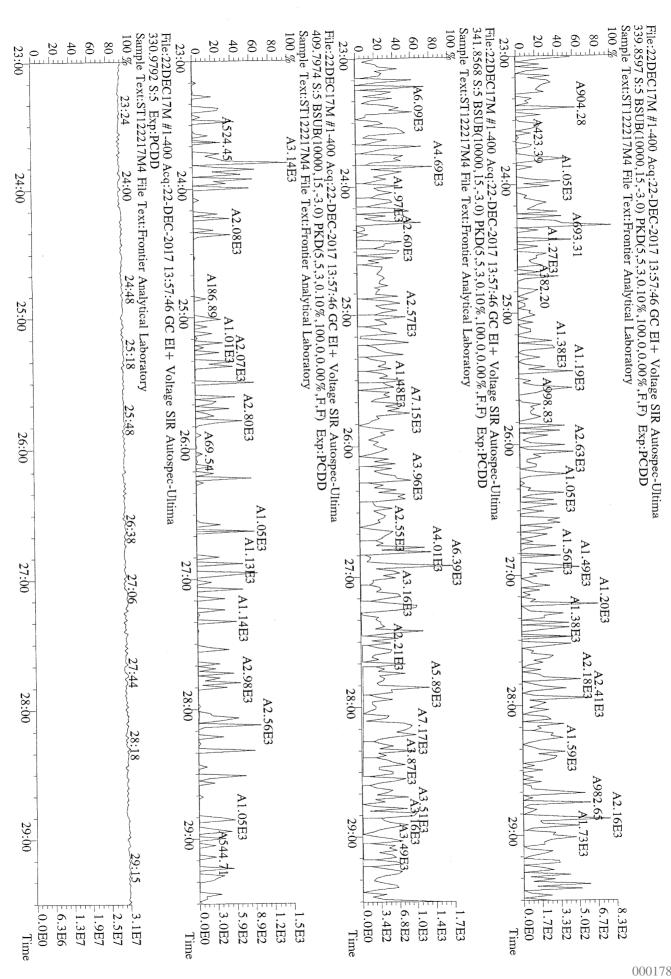


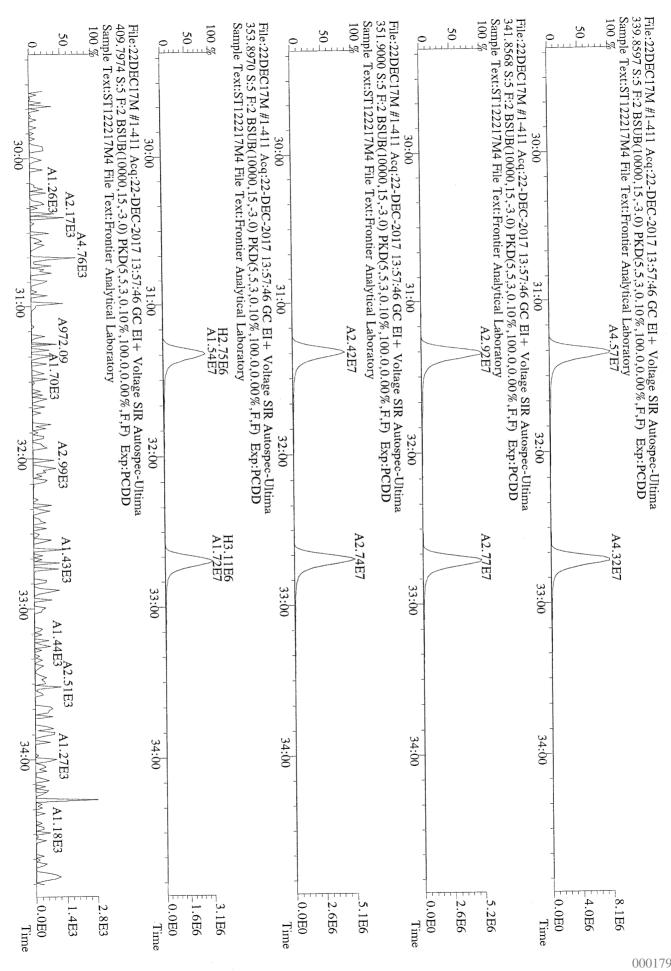


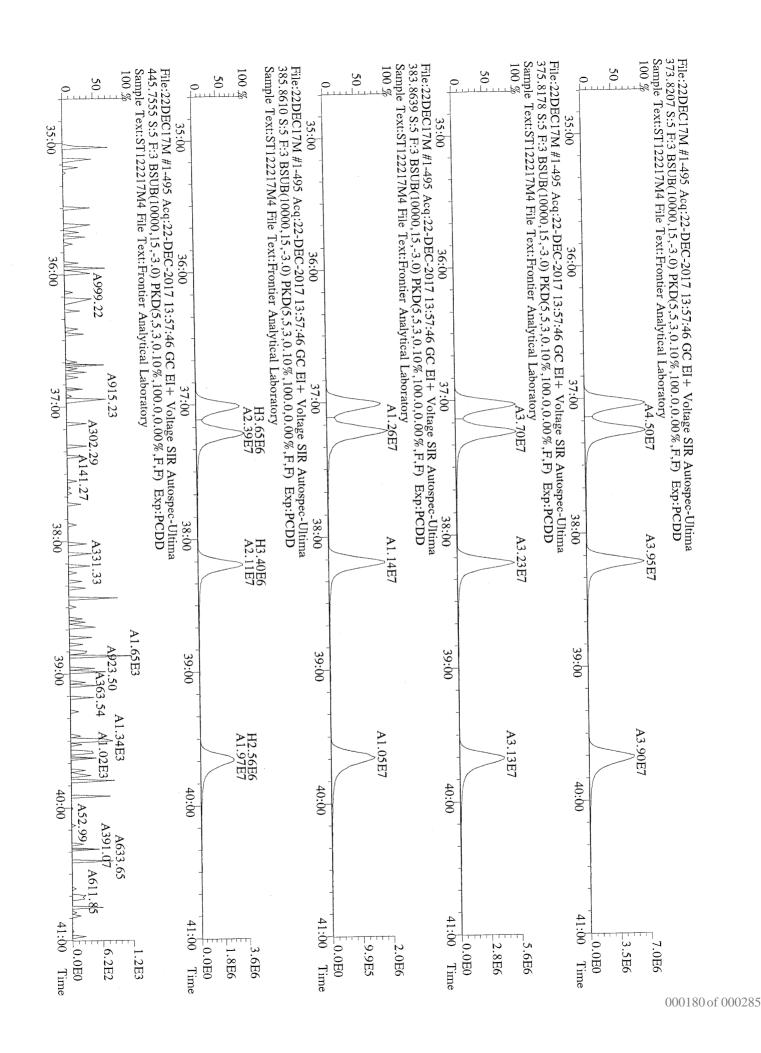


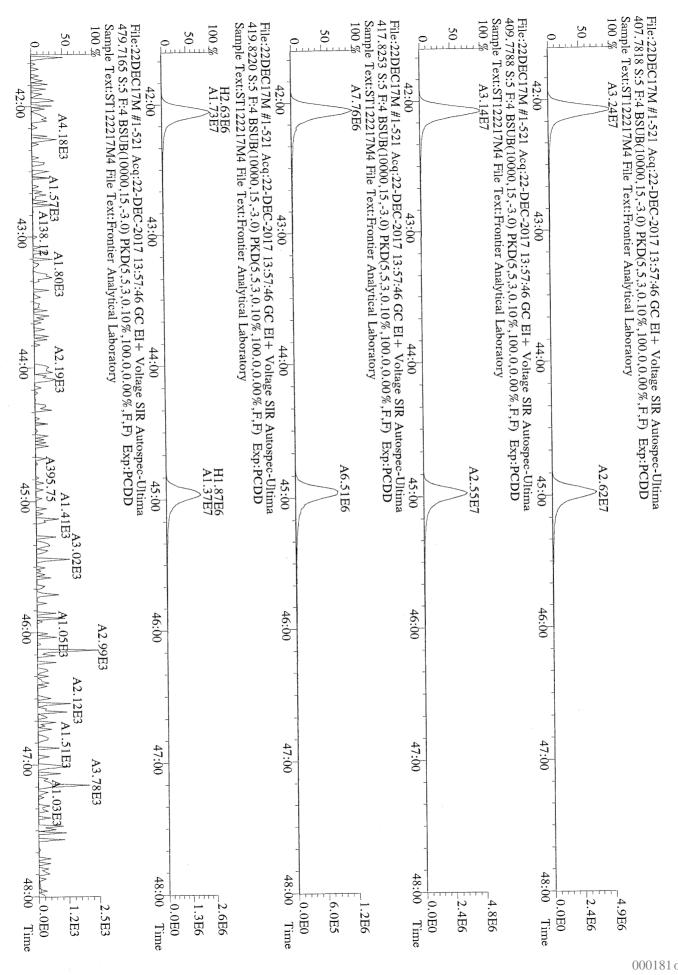


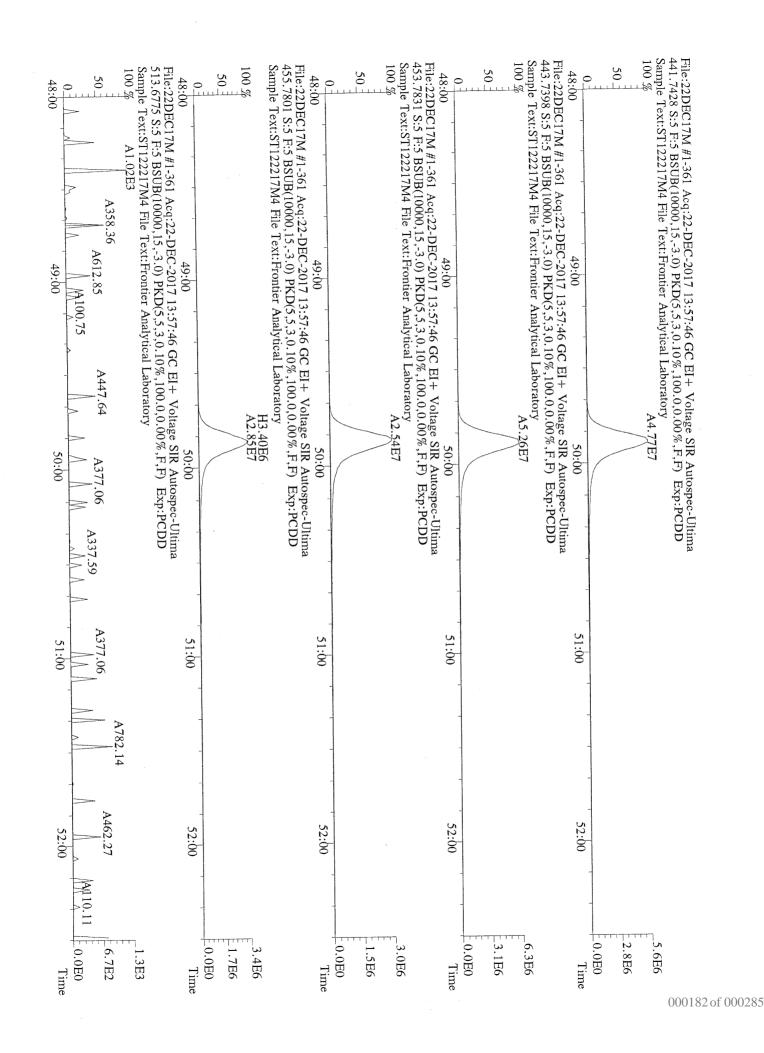


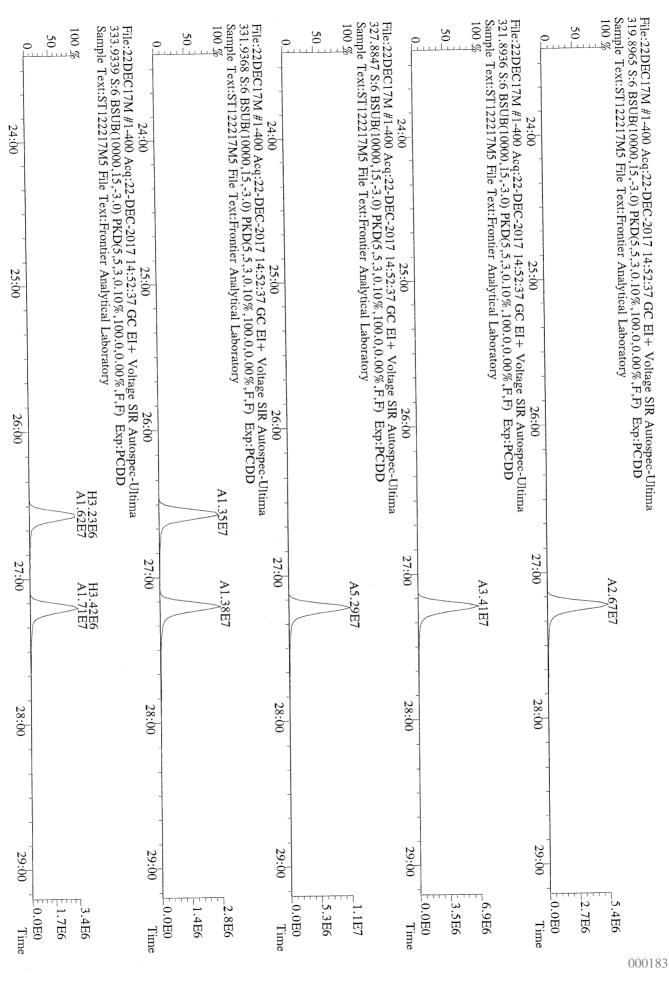


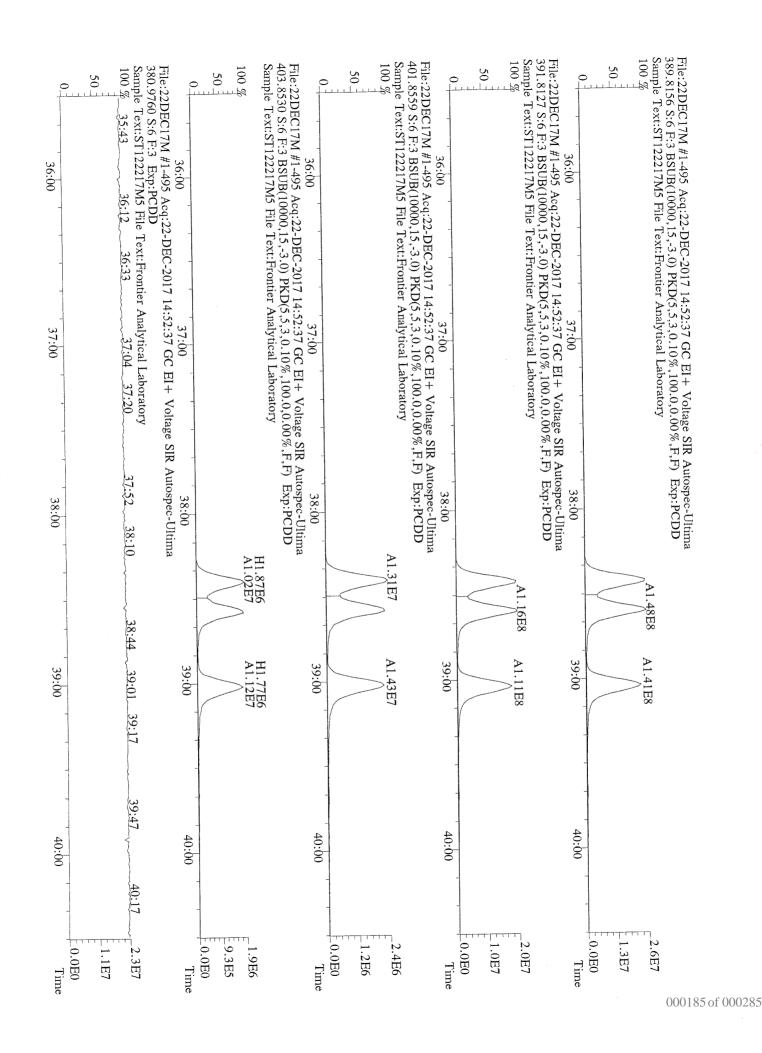


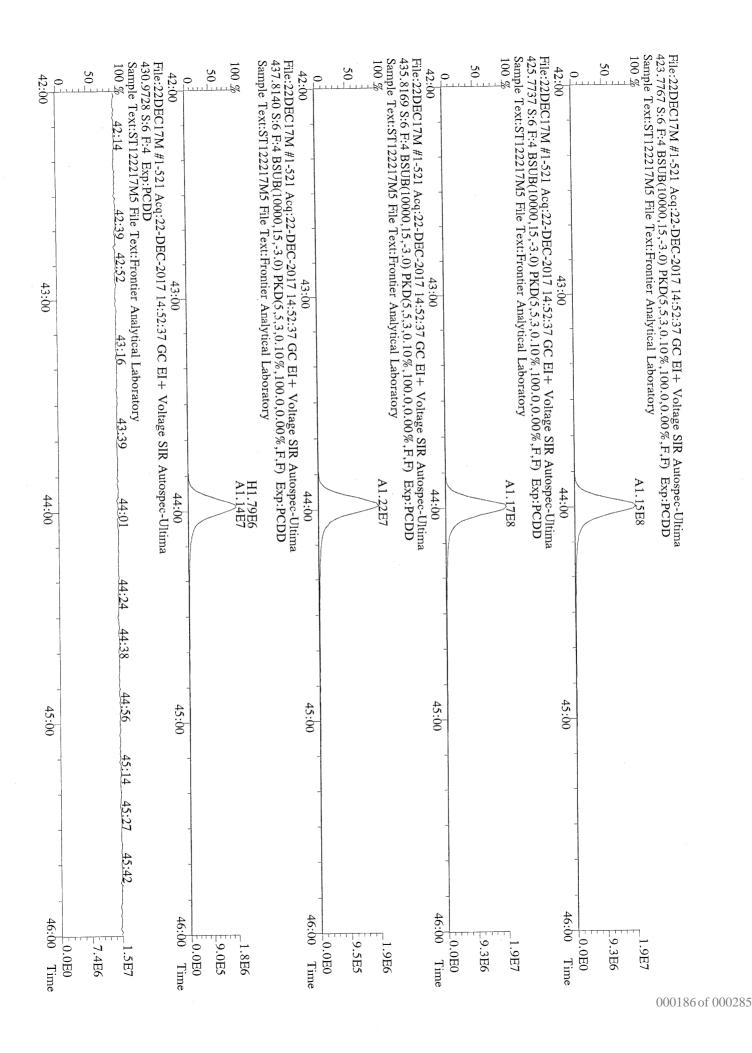


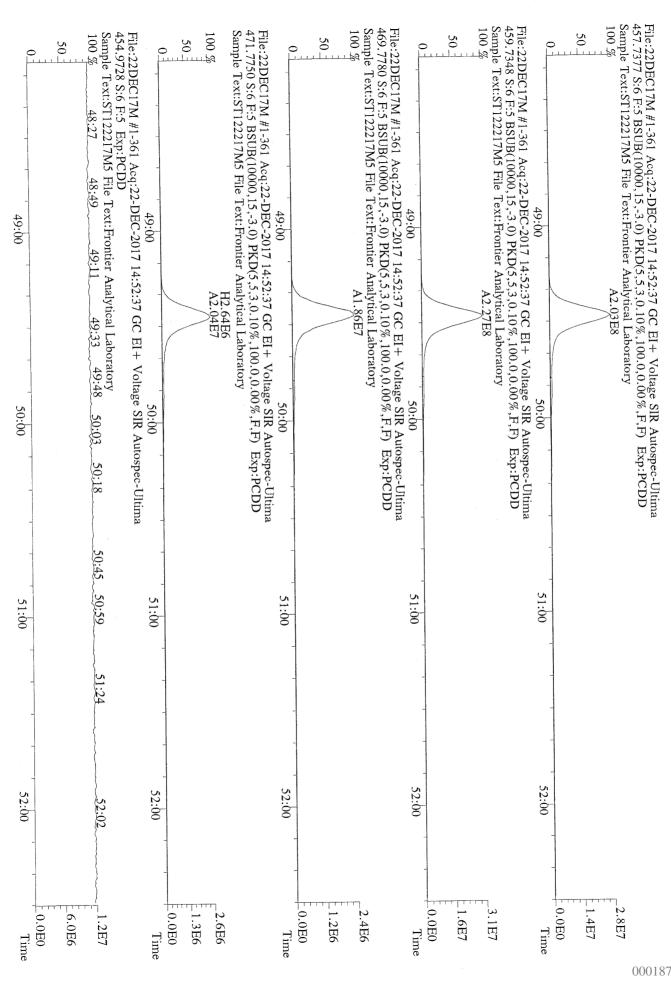


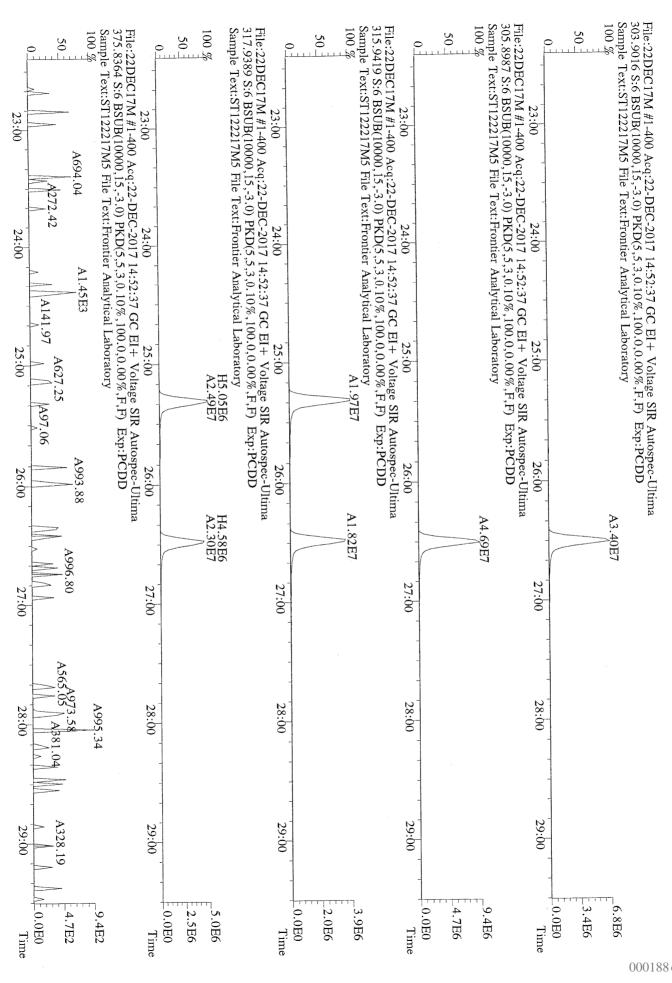


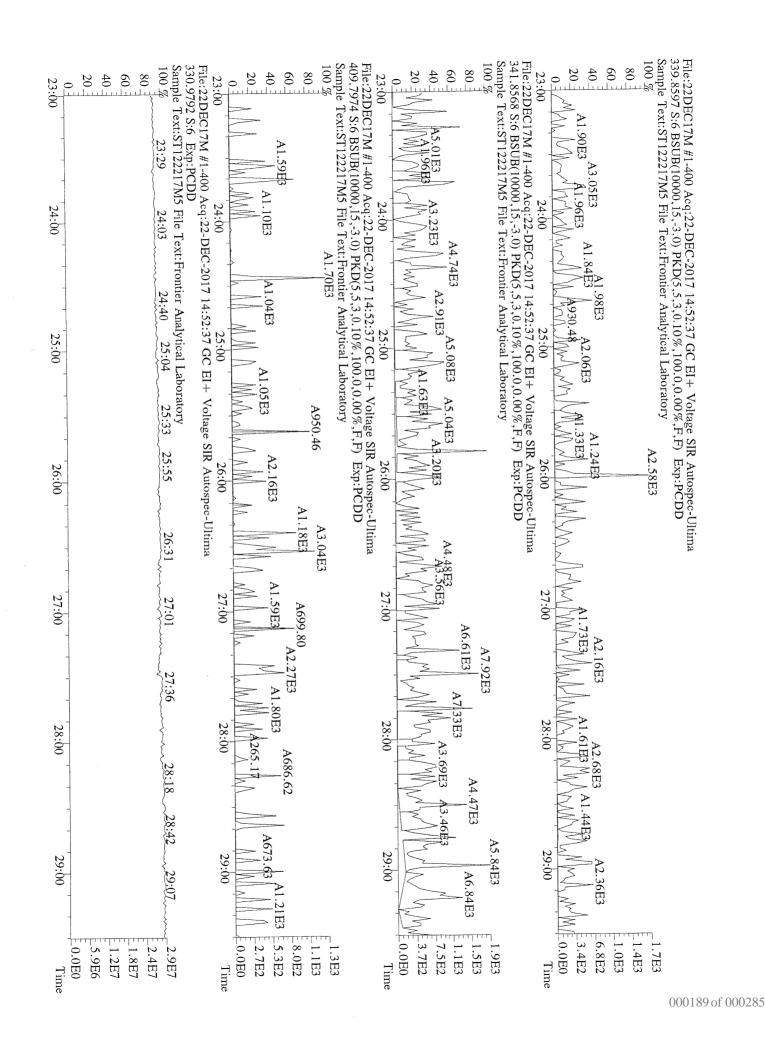


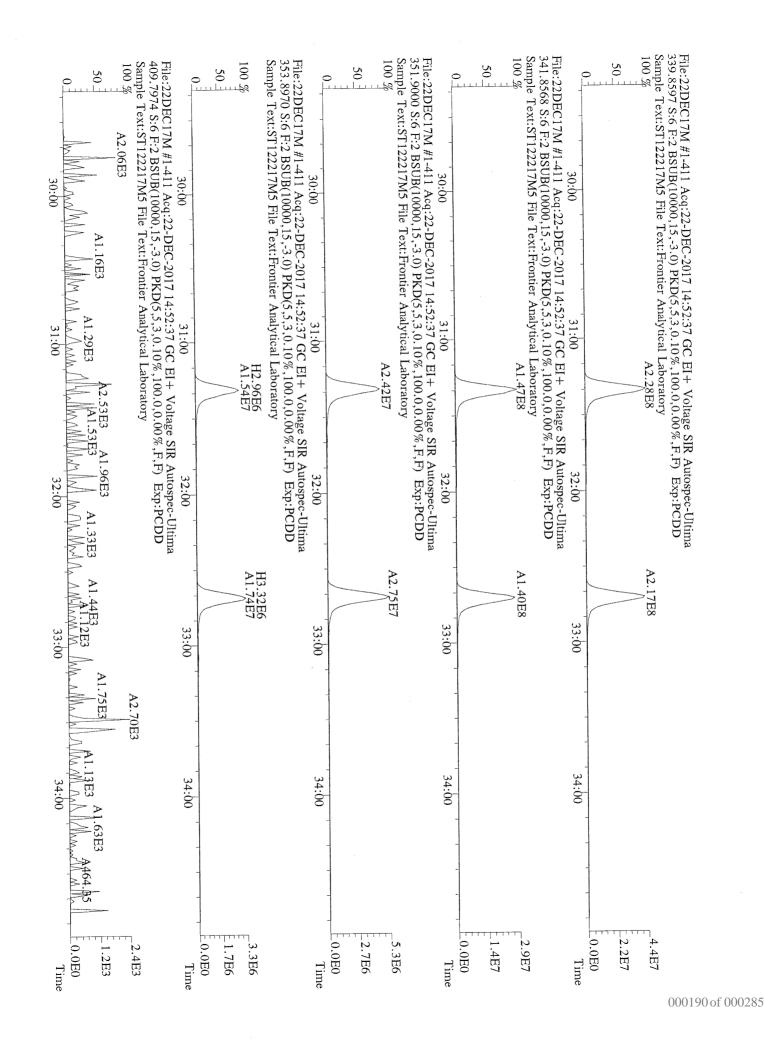




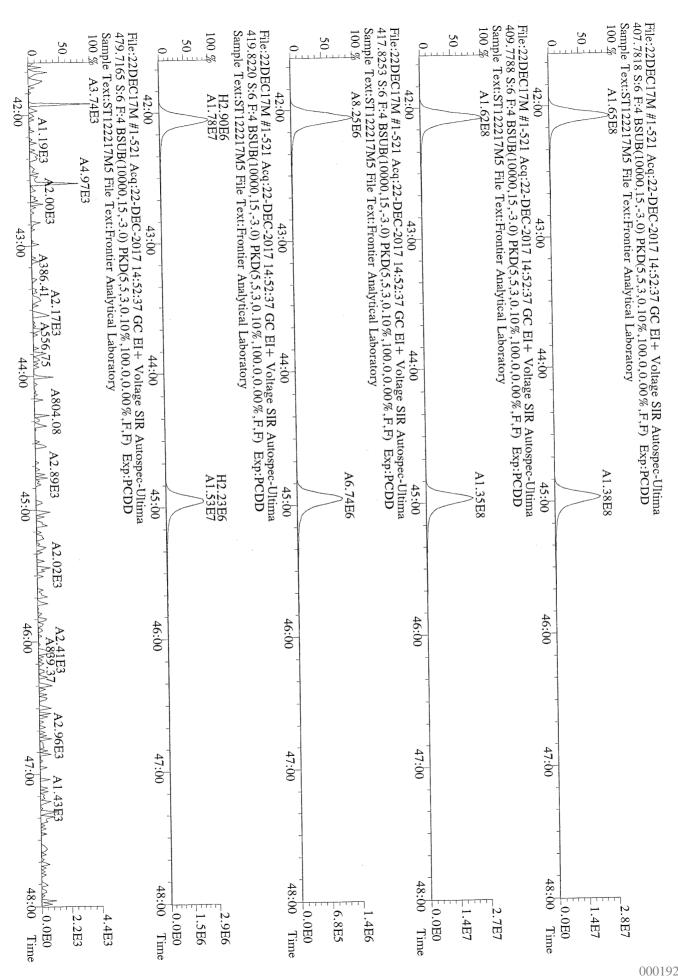


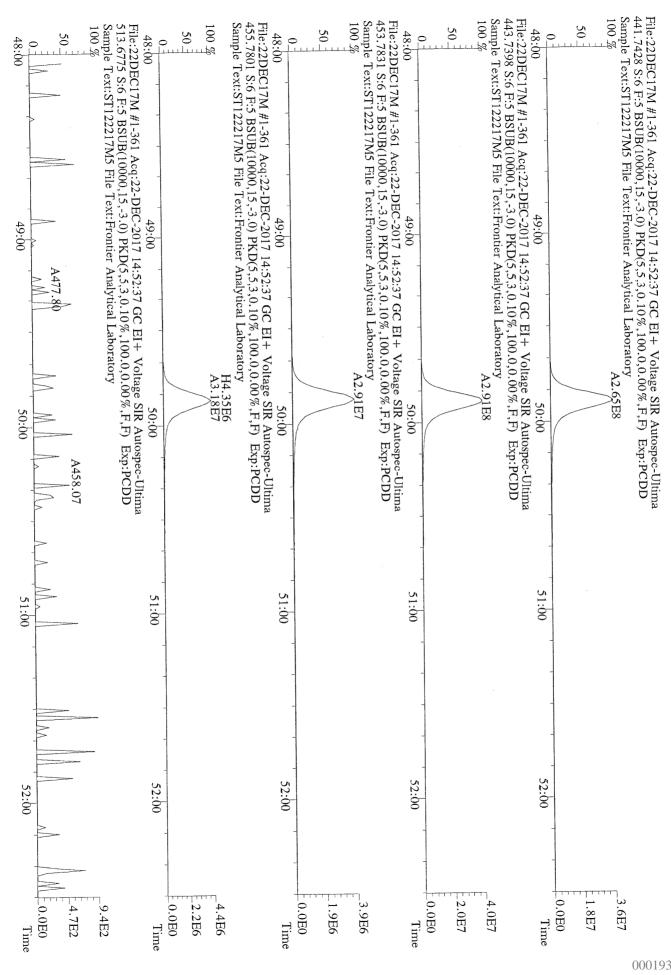


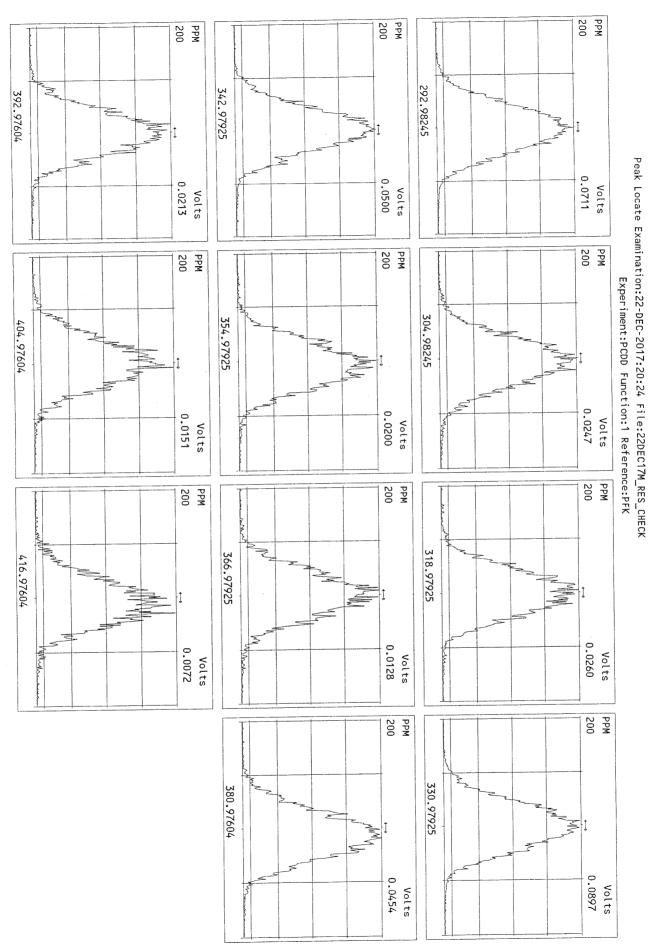


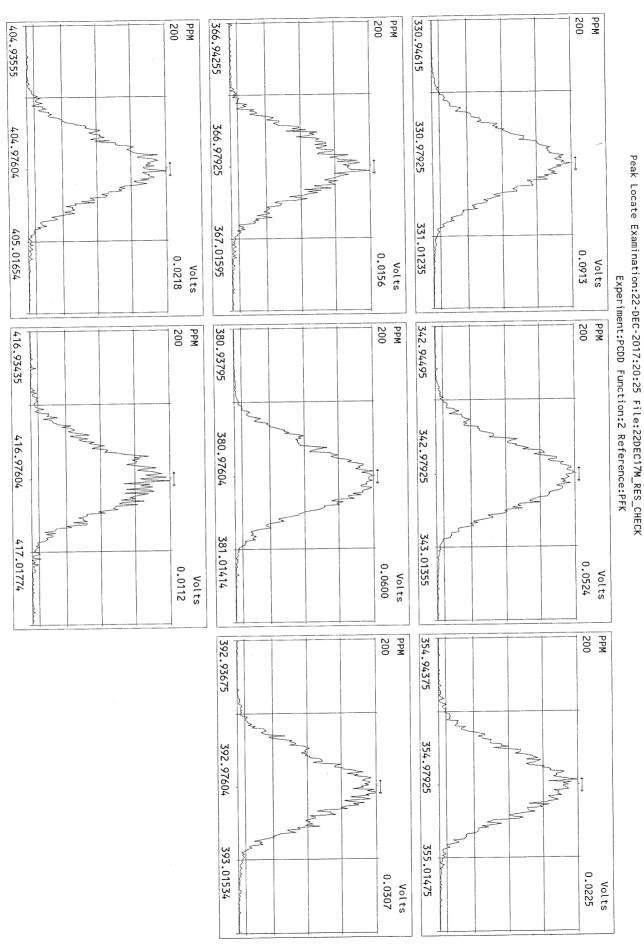


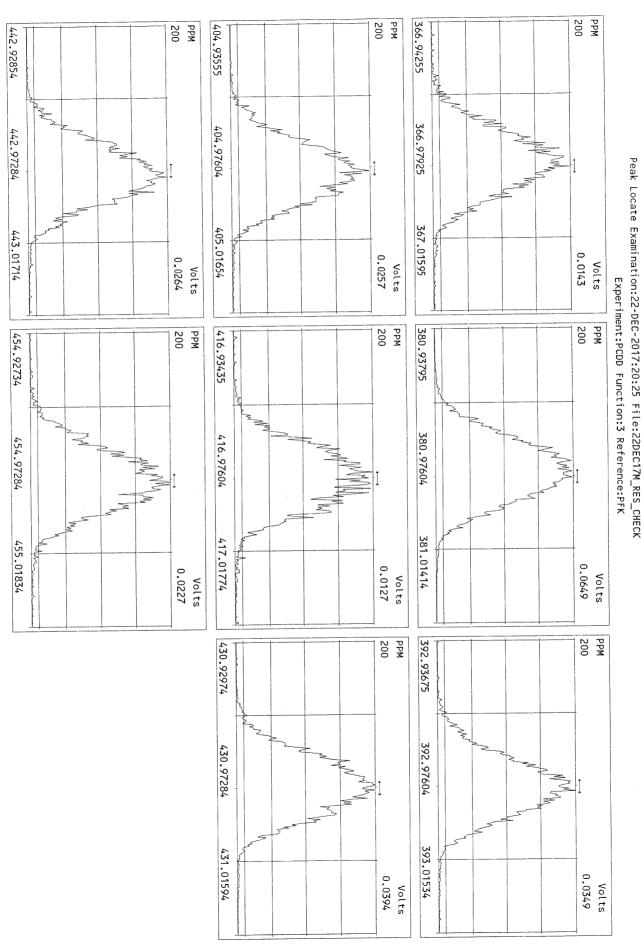


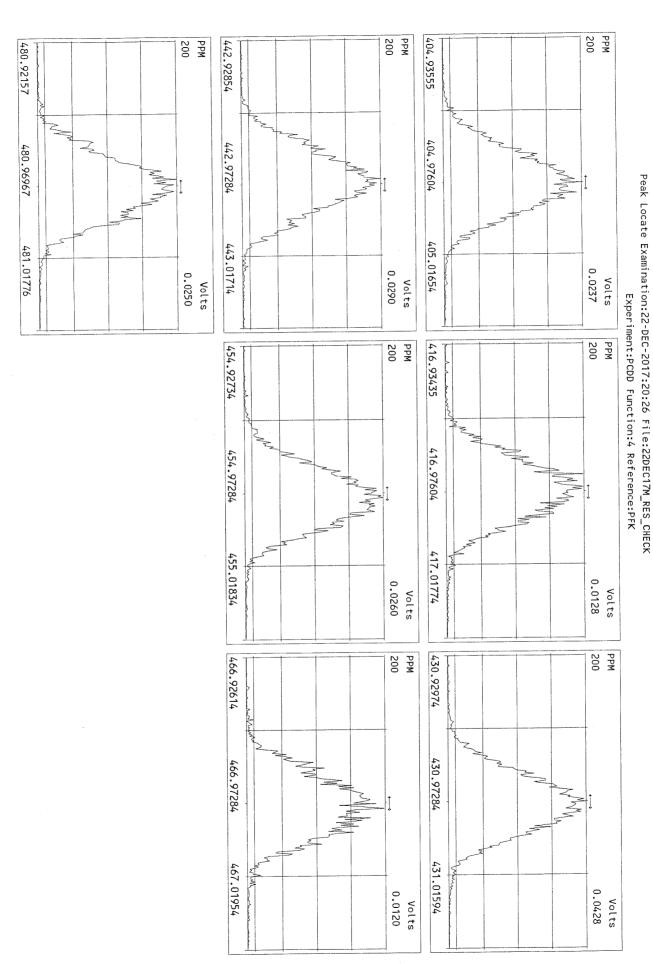


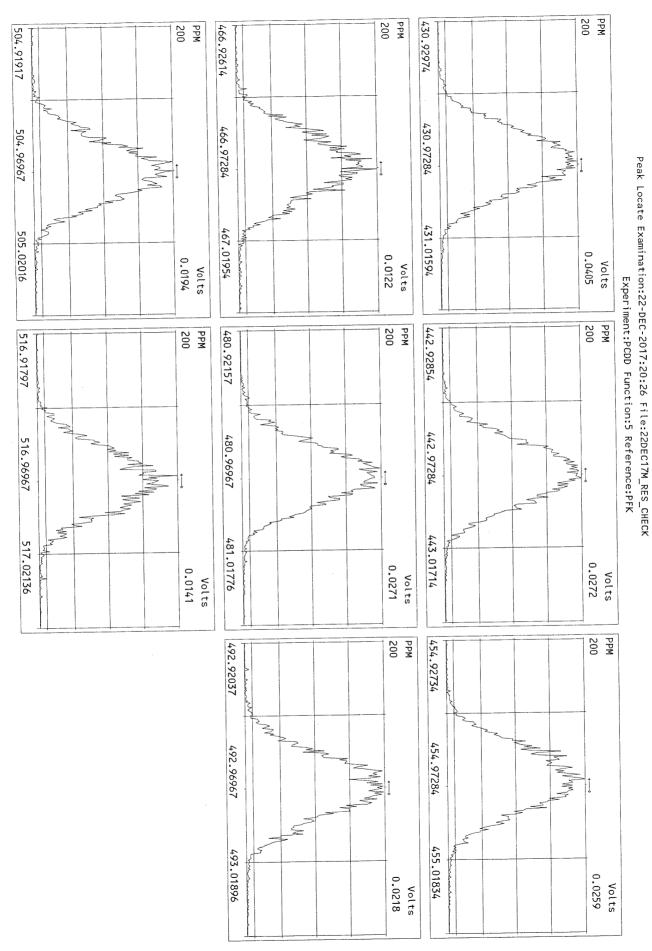












000195 of 000285

 $000196 \, \mathrm{of} \, 000285$

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

VER Data Filename: 26JAN18M Sam:1

Analysis Date: 26-JAN-18 13:31:42

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
NATIVE ANALYTES						
2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89	У	11.5	7.80 - 12.9
1,2,3,7,8-PeCDD	M+2/M+4	1.50	1.32-1.78	У	50.7	39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.28	1.05-1.43	У	52.4	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M+2/M+4	1.18	1.05-1.43	У	52.3	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.26	1.05-1.43	У	54.0	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.00	0.88-1.20	У	52.4	43.0 - 58.0
OCDD	M+2/M+4	0.93	0.76-1.02	У	102	79.0 - 126
2,3,7,8-TCDF	M/M+2	0.73	0.65-0.89	у	11.6	8.40 - 12.0
1,2,3,7,8-PeCDF	M+2/M+4	1.49	1.32-1.78	у	55.6	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.48	1.32-1.78	У	54.8	41.0 - 60.0
1,2,3,4,7,8-HxCDF	M+2/M+4	1.22	1.05-1.43	у	51.3	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.23	1.05-1.43	У	51.6	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.20	1.05-1.43	У	52.4	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.19	1.05-1.43	У	51.7	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF	M+2/M+4	1.03	0.88-1.20	У	52.9	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF		1.00	0.88-1.20	У	53.7	43.0 - 58.0
OCD F	M+2/M+4	0.91	0.76-1.02	У	103	63.0 - 159

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst: Date: 1/29/18

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

VER Data Filename: 26JAN18M

Sam:1

Analysis Date: 26-JAN-18 13:31:42

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC.	CONC. RANGE (ng/mL) (3)
LABELED COMPOUNDS	KATIO (17		(-/			
13C-2,3,7,8-TCDD	M/M+2	0.82	0.65-0.89	У	107	82.0 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.54	1.32-1.78	у	92.4	62.0 - 160
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.25	1.05-1.43	У	99.7	85.0 - 117
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.23	1.05-1.43	У	94.7	85.0 - 118
13C-1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.06	0.88-1.20	У	96.1	72.0 - 138
13C-OCDD	M+2/M+4	0.89	0.76-1.02	у	181	96.0 - 415
13C-2,3,7,8-TCDF	M/M+2	0.81	0.65-0.89	У	112	71.0 - 140
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.53	1.32-1.78	У	96.0	76.0 - 130
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.53	1.32-1.78	У	93.4	77.0 - 130
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.55	0.43-0.59	У	102	76.0 - 131
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.55	0.43-0.59	y	93.8	70.0 - 143
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.55	0.43-0.59	y	97.9	73.0 - 137
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.56	0.43-0.59	y	93.8	74.0 - 135
170 1 2 7 / 4 7 9-HmCDE	M/M+2	0.49	0.37-0.51	У	97.3	78.0 - 129
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	M/M+2	0.50	0.37-0.51	У	94.4	77.0 - 129
136-1,2,3,4,7,6,9-11pcb1	11/11/2	0.50	0.57 0.51	,		
13C-OCDF	M+2/M+4	0.93	0.76-1.02	У	168	96.0 - 415
CLEANUP STANDARD (4)						
37cl-2,3,7,8-TCDD					11.7	7.90 - 12.7

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst: ______ Date: ____/29//8

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

⁽⁴⁾ No ion abundance ratio; report concentration found.

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.:

SAS No.:

Instrument ID: FAL3

Initial Calibration Date: 12/22/17

RT Window Data Filename: 26JAN18M Sam:1

Analysis Date: 26-JAN-18 Time: 13:31:42

DB-5 IS Data Filename: 26JAN18M Sam:1 Analysis Date: 26-JAN-18 Time: 13:31:42

DB-225 IS Date Filename:

Analysis Date:

Time:

DB-5 RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	24:06	1,3,6,8-TCDF (F)	22:43
1,2,8,9-TCDD (L)	28:06	1,2,8,9-TCDF (L)	28:22
1,2,4,7,9-PeCDD (F)	29:58	1,3,4,6,8-PeCDF (F)	28:06
1,2,3,8,9-PeCDD (L)	33:34	1,2,3,8,9-PeCDF (L)	34:01
1,2,4,6,7,9-HxCDD (F)	35:49	1,2,3,4,6,8-HxCDF (F)	34:56
1,2,3,7,8,9-HxCDD (L)	38:56	1,2,3,7,8,9-HxCDF (L)	39:33
1,2,3,4,6,7,9-HpCDD (F)	42:28	1,2,3,4,6,7,8-HpCDF (F)	41:57
1,2,3,4,6,7,8-HpCDD (L)	43:53	1,2,3,4,7,8,9-HpCDF (L)	44:51
(F) = First eluting isomer	(DB-5);	(L) = Last eluting isomer	(DB-5)

.______

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirement, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst:______ Date:____/79/18

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Episode No.: Lab Name: Frontier Analytical Laboratory

SAS No.: Init. Cal. Date: 12/22/17 Contract No.:

GC Column ID: DB5MS Instrument ID: FAL3

Analysis Date: 26-JAN-18 13:31:42 CS3 or VER Data Filename: 26JAN18M Sam:1

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD 2,3,7,8-TCDF	13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF	1.001	0.999-1.002 0.999-1.003 0.999-1.002
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	1.001 1.001 1.001	0.999-1.002 0.999-1.002 0.999-1.002
LABELED COMPOUNDS			
37Cl-2,3,7,8-TCDD 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	13C-1,2,3,4-TCDD	1.025 1.025 0.997 1.244 1.179 1.230	0.989-1.052 0.976-1.043 0.923-1.103 1.000-1.567 1.000-1.425 1.011-1.526

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

Analyst: Date: 1/24/18

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Episode No.: Lab Name: Frontier Analytical Laboratory

Contract No.:

SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

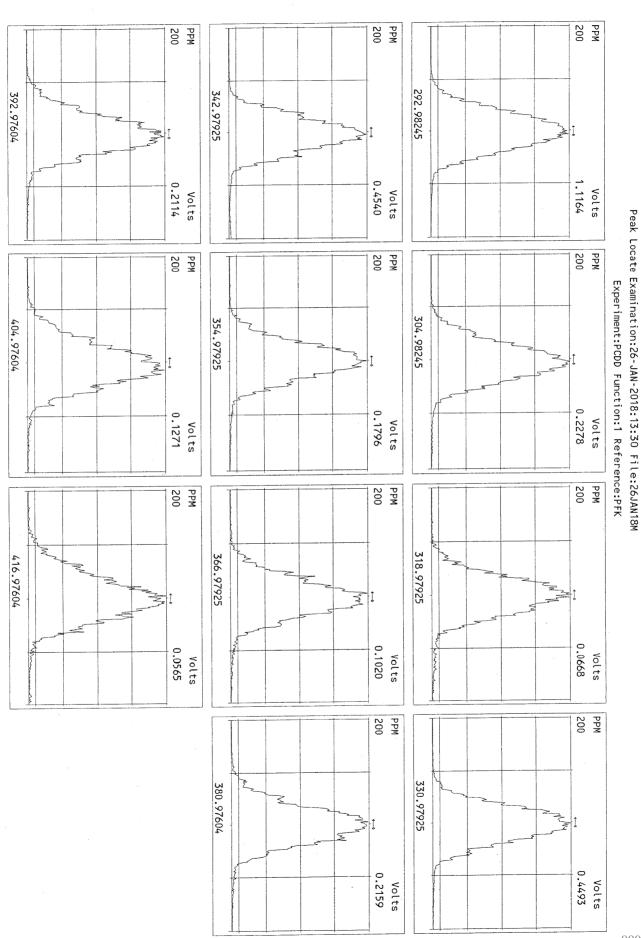
Analysis Date: 26-JAN-18 13:31:42 CS3 or VER Data Filename: 26JAN18M

Sam:1

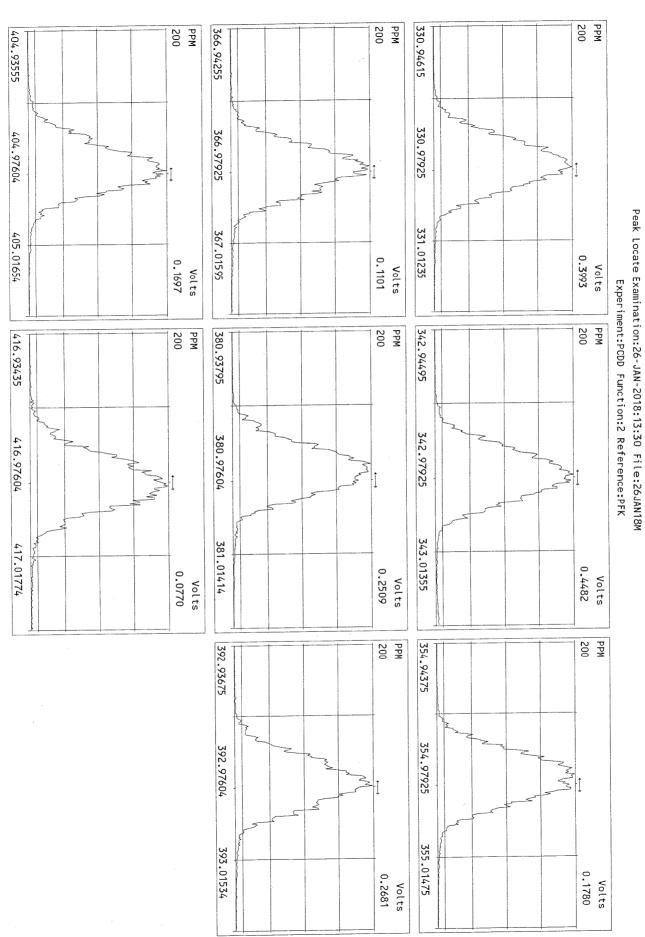
NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 0CDD 0CDF	13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDD	1.000 1.000 1.012 1.001 1.000 1.001 1.001 1.000 1.001 1.001 1.001	0.999-1.001 0.999-1.003 1.000-1.019 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001 0.999-1.001
LABELED COMPOUNDS			
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDD 13C-OCDD	13C-1,2,3,7,8,9-HxCDD	0.985 0.989 0.949 0.954 0.979 1.016 1.127 1.078 1.152 1.266 1.278	0.977-1.000 0.981-1.003 0.944-0.970 0.949-0.975 0.959-1.021 0.977-1.047 1.086-1.130 1.043-1.085 1.057-1.156 1.032-1.311

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

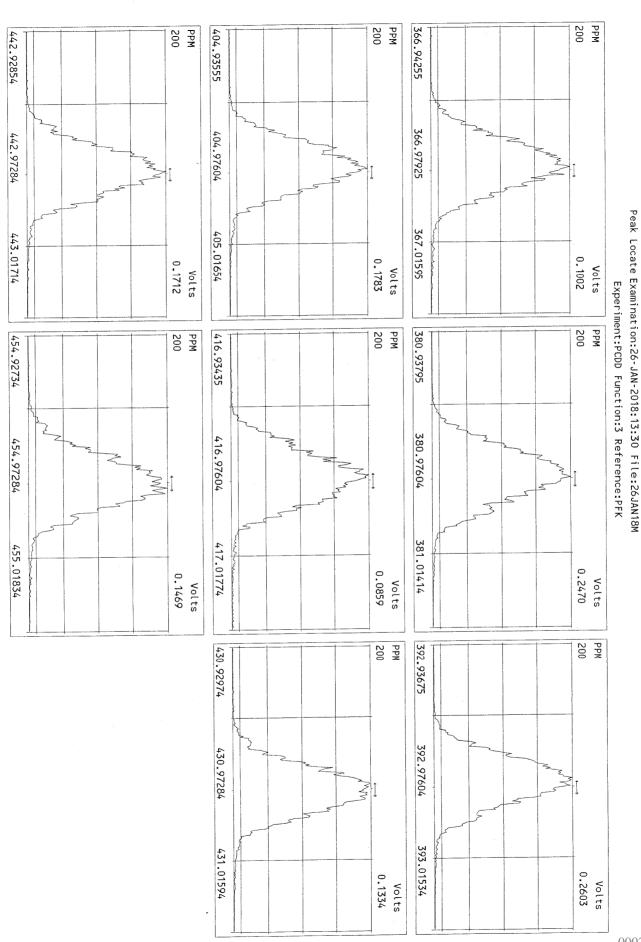
Analyst: Date: 1/79/18

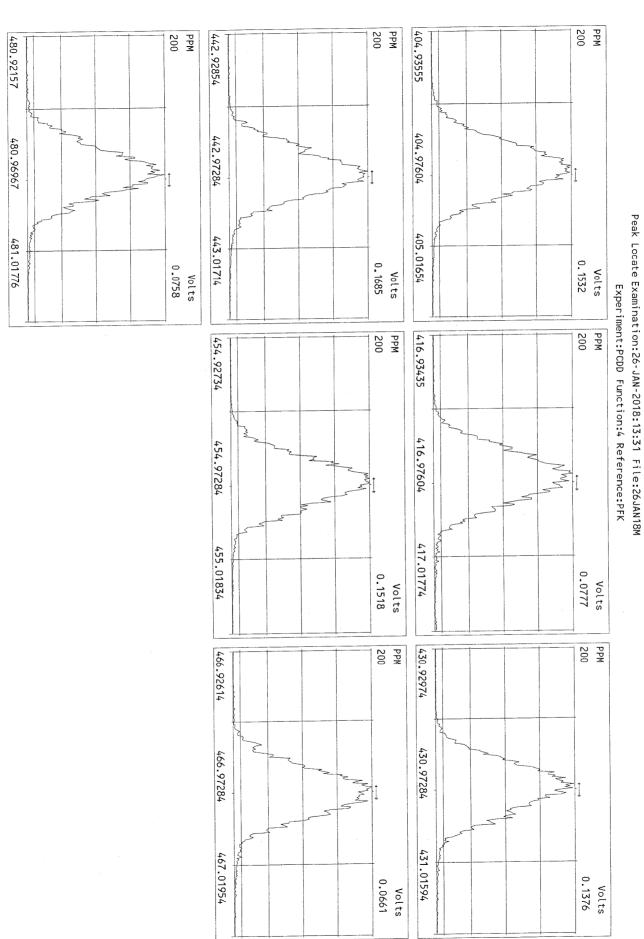

Filename: 26JAN18M Sam:1 FAL ID: ST012618M1 ConCal: ST012618M1 EndCal: ST012618M2 Client ID: 1613 CS3 171128J 107 Amount: 1.000 NATO 1989 Tox: GC Golumn: DB5MS Results: 11153-3RX 120 WHO 2005 Tox: 132 WHO 1998 Tox: Instrument ID: FAL3 Fac Noise-1 Noise-2 DL RRF Conc Qual RT Resp RA Name 2,3,7,8-TCDD 8.94e+06 0.78 y 27:10 1.06 11.5 2.50 2.50 1,2,3,7,8-PeCDD 2.78e+07 1.50 y 33:00 1.00 50.7 2.50 1,2,3,4,7,8-HxCDD 2.54e+07 1.28 y 38:19 1.07 52.4 2.50 1,2,3,6,7,8-HxCDD 2.68e+07 1.18 y 38:30 1.08 52.3 2.50 1,2,3,7,8,9-HxCDD 2.78e+07 1.26 y 38:56 54.0 1.11 2.50 1,2,3,4,6,7,8-HpCDD 2.39e+07 1.00 y 43:53 52.4 0.99 OCDD 3.84e+07 0.93 y 49:18 102 2.50 1.11 2.50 1.03 11.6 2,3,7,8-TCDF 1.18e+07 0.73 y 26:26 55.6 2.50 1,2,3,7,8-PeCDF 4.14e+07 1.49 y 31:15 0.95 2.50 54.8 2,3,4,7,8-PeCDF 3.79e+07 1.48 y 32:37 0.79 2.50 1,2,3,4,7,8-HxCDF 3.64e+07 1.22 y 36:56 51.3 1.20 2.50 51.6 1,2,3,6,7,8-HxCDF 3.80e+07 1.23 y 37:07 1.10 2.50 2,3,4,6,7,8-HxCDF 3.64e+07 1.20 y 38:06 52.4 1.08 51.7 2.50 1,2,3,7,8,9-HxCDF 3.38e+07 1.19 y 39:33 1.15 1.23 52.9 2.50 1,2,3,4,6,7,8-HpCDF 3.29e+07 1.03 y 41:57 1.23 53.7 2.50 1,2,3,4,7,8,9-HpCDF 2.70e+07 1.00 y 44:51 2.50 0.90 103 OCDF 4.43e+07 0.91 y 49:44 Rec 107 107 13C-2,3,7,8-TCDD 7.35e+07 0.82 y 27:09 1.02 92.4 13C-1,2,3,7,8-PeCDD 5.48e+07 1.54 y 32:58 0.88 92.4 99.7 13c-1,2,3,4,7,8-HxCDD 4.53e+07 1.25 y 38:18 99.7 0.85 94 7 13C-1,2,3,6,7,8-HxCDD 4.73e+07 1.23 y 38:29 0.94 94.7 96.1 13c-1,2,3,4,6,7,8-HpCDD 4.62e+07 1.06 y 43:51 0.90 96.1 90.3 13C-OCDD 6.75e+07 0.89 y 49:16 181 0.70 112 0.93 112 13C-2,3,7,8-TCDF 9.93e+07 0.81 y 26:25 96.0 96.0 13C-1,2,3,7,8-PeCDF 7.88e+07 1.53 y 31:14 0.87 93.4 93.4 13C-2,3,4,7,8-PeCDF 8.76e+07 1.53 y 32:36 0.99 102 13c-1,2,3,4,7,8-HxCDF 5.92e+07 0.55 y 36:54 102 1.09 93.8 13C-1,2,3,6,7,8-HxCDF 6.71e+07 0.55 y 37:07 1.35 93.8 97.9 97.9 13C-2,3,4,6,7,8-HxCDF 6.41e+07 0.55 y 38:04 1.23 93.8 93.8 13C-1,2,3,7,8,9-HxCDF 5.70e+07 0.56 y 39:31 1.14 0.97 97.3 97.3 13C-1,2,3,4,6,7,8-HpCDF 5.04e+07 0.49 y 41:56 94.4 13C-1,2,3,4,7,8,9-HpCDF 4.10e+07 0.50 y 44:49 94.4 0.82 84.0 1.06 168 13C-OCDF 9.49e+07 0.93 y 49:42 117 0.91 11.7 37Cl-2,3,7,8-TCDD 7.21e+06 27:10 186 13C-1.2.3.4-TCDD 6.75e+07 0.82 y 26:30 182 13C-1,2,3,4-TCDF 9.47e+07 0.80 y 25:15 174 13C-1,2,3,7,8,9-HxCDD 5.32e+07 1.22 y 38:54 #Hom Fac Noise-1 Noise-2 DL 18 2.50 23:34 1.06 56.7 Total Tetra-Dioxins 4.41e+07 10 2.50 Total Penta-Dioxins 8.79e+07 1.00 160 29:58 27 Total Hexa-Dioxins 1.12e+08 35:49 1.09 223 2.50 25 2.50 42:28 0.99 114 Total Hepta-Dioxins 5.19e+07 18 2.50 53.1 Total Tetra-Furans 5.40e+07 22:43 1.03 PeCDF 4 2.50 77.5 1st Fn. Tot Penta-Furans 5.56e+07 28:06 0.86 240 23 2.50 Total Penta-Furans 1.17e+08 0.86 162 29:54 33 264 2.50 34:56 1.13 Total Hexa-Furans 1.84e+08 31 2.50 41:57 1.23 109 Total Hepta-Furans 6.13e+07

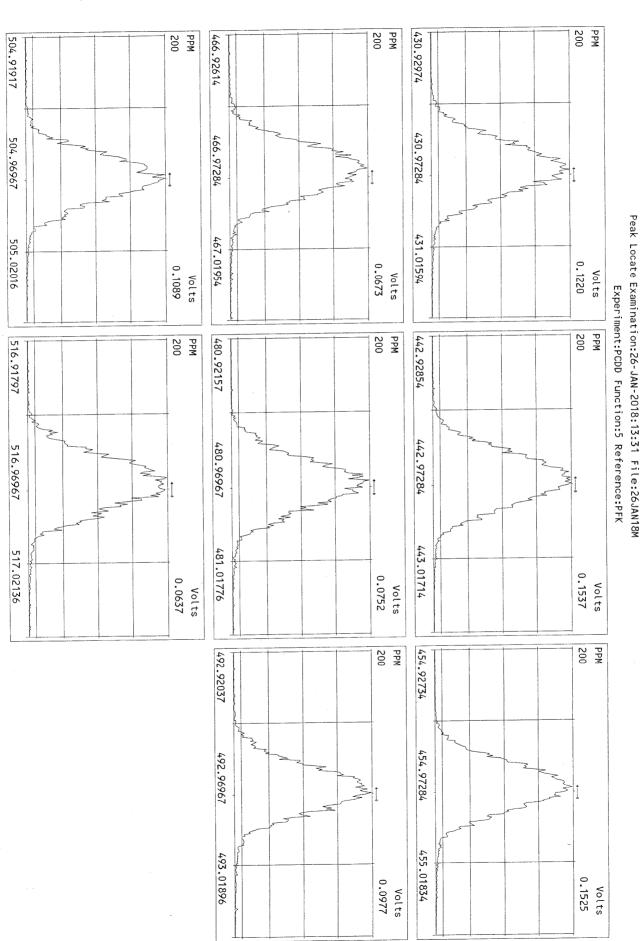
Analyst:


Date: 1/29/18

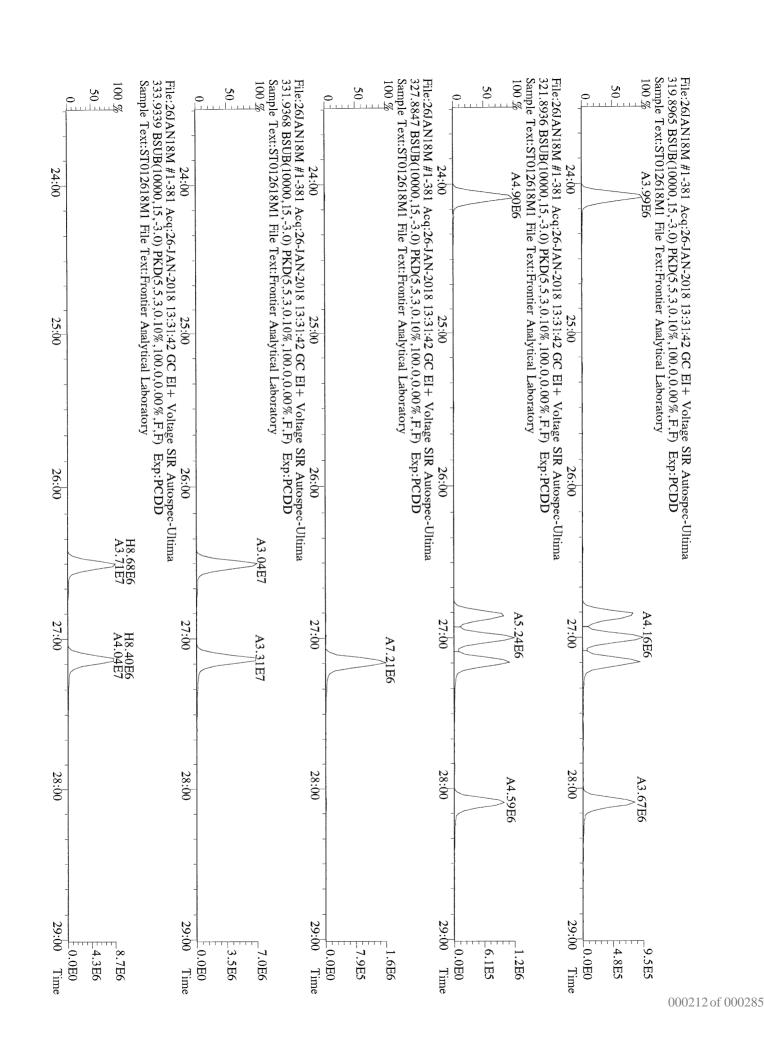
Run Name:26JAN18M	Instrument: FAL3 GC	: DB5MS Experiment:F	PCDD	
Data File S FAL ID	Client ID	Acquired	ConCal EndCal	Analyst
26JAN18M 1 ST012618M1	1613 CS3 171128J	26-JAN-18 13:31:42	ST012618M1 ST012618M2	TC
26JAN18M 2 04385-001-000	I-OPR OPR	26-JAN-18 14:26:32	ST012618M1 ST012618M2	TC
26JAN18M 3 04385-001-0001	I-MB Method Blank	26-JAN-18 15:21:27	ST012618M1 ST012618M2	TC
26JAN18M 4 11157-003-X002	2-sa nfmw1d	26-JAN-18 16:16:22	ST012618M1 ST012618M2	TC
26JAN18M 5 11193-001-000	1-SA 201801110018	26-JAN-18 17:11:11	ST012618M1 ST012618M2	TC
26JAN18M 6 11194-001-000	1-SA 201801110019	26-JAN-18 18:06:03	ST012618M1 ST012618M2	TC
26JAN18M 7 11194-002-000	1-SA 201801110020	26-JAN-18 19:00:54	ST012618M1 ST012618M2	TC
26JAN18M 8 11194-003-000	1-SA 201801110021	26-JAN-18 19:55:45	ST012618M1 ST012618M2	TC
26JAN18M 9 11202-001-000	1-SA EFF-001A	26-JAN-18 20:50:36	ST012618M1 ST012618M2	TC
26JAN18M 10 SB012618M1	Solvent Blank	26-JAN-18 21:45:27	ST012618M1 ST012618M2	TC
26JAN18M 11 ST012618M2	1613 CS3 171128J	26-JAN-18 22:40:18	ST012618M2 ST012618M3	TC
26JAN18M 12 SB012618M2	Solvent Blank	26-JAN-18 23:35:08	ST012618M2 ST012618M3	TC
26JAN18M 13 11203-001-000	1-SA Sycamore Creek Downst	ream R ₁ 27-JAN-18 00:30:00	ST012618M2 ST012618M3	TC
26JAN18M 14 11204-001-000	1-SA Sycamore Creek Upstre	eam RSW ₁ 27-JAN-18 01:24:51	ST012618M2 ST012618M3	TC
26JAN18M 15 11211-001-000	1-SA AMW-3-011218	27-JAN-18 02:19:42	ST012618M2 ST012618M3	TC
26JAN18M 16 11211-002-000	1-SA AMW-4-011218	27-JAN-18 03:14:35	ST012618M2 ST012618M3	TC
26JAN18M 17 11211-003-000	1-SA AMW-2-011218	27-JAN-18 04:09:25	ST012618M2 ST012618M3	TC
26JAN18M 18 11211-004-000	1-SA AMW-1-011218	27-JAN-18 05:04:16	ST012618M2 ST012618M3	TC
26JAN18M 19 11211-005-000	1-SA AMW-5-011218	27-JAN-18 05:59:07	ST012618M2 ST012618M3	TC
26JAN18M 20 SB012618M3	Solvent Blank	27-JAN-18 06:53:59	ST012618M2 ST012618M3	TC
26JAN18M 21 SB012618M4	Solvent Blank	27-JAN-18 07:48:50	ST012618M2 ST012618M3	TC
26JAN18M 22 ST012618M3	1613 CS3 171128J	27-JAN-18 08:43:41	ST012618M2 ST012618M3	TC
	4	1/29/18		

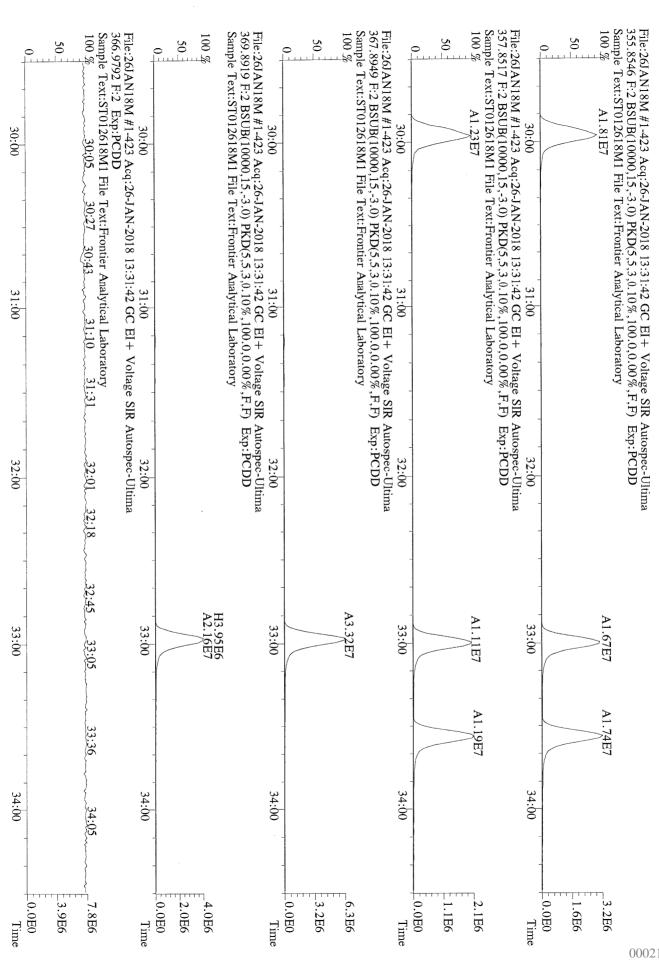

Data Backed Up:_____

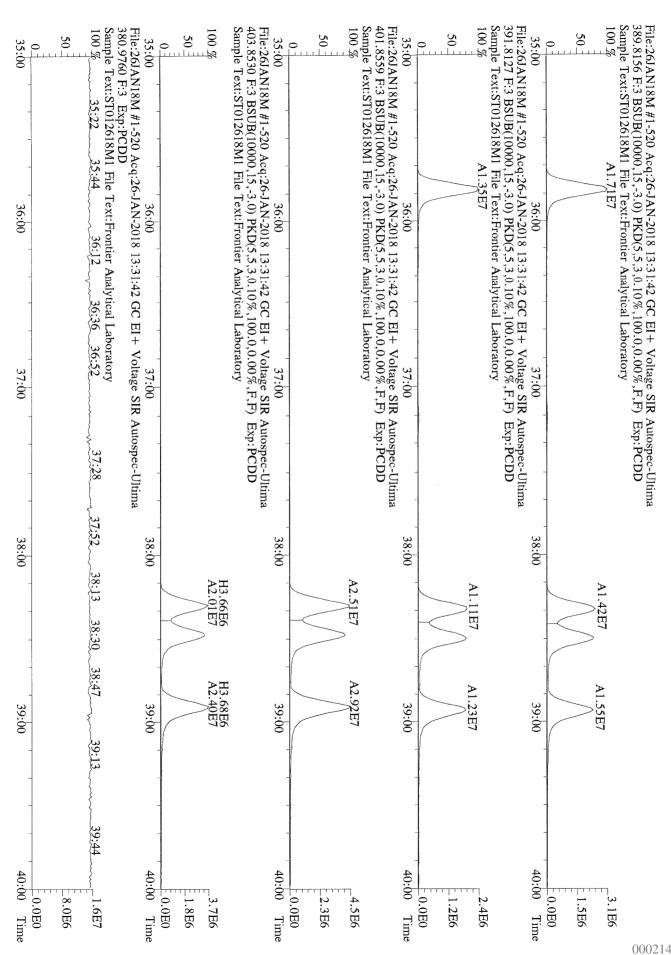

000206 of 000285

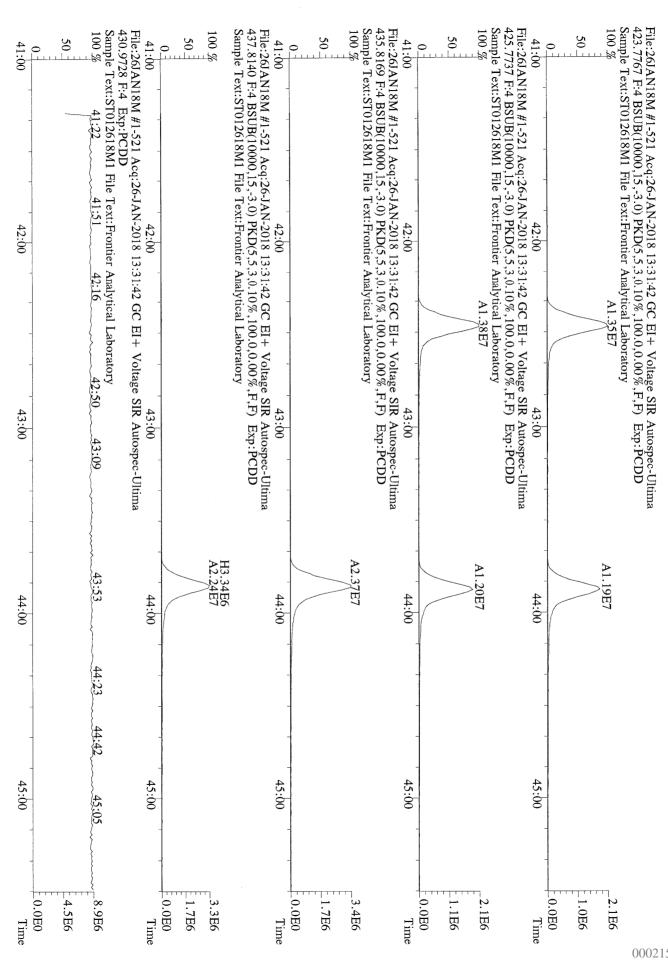

000207 of 000285

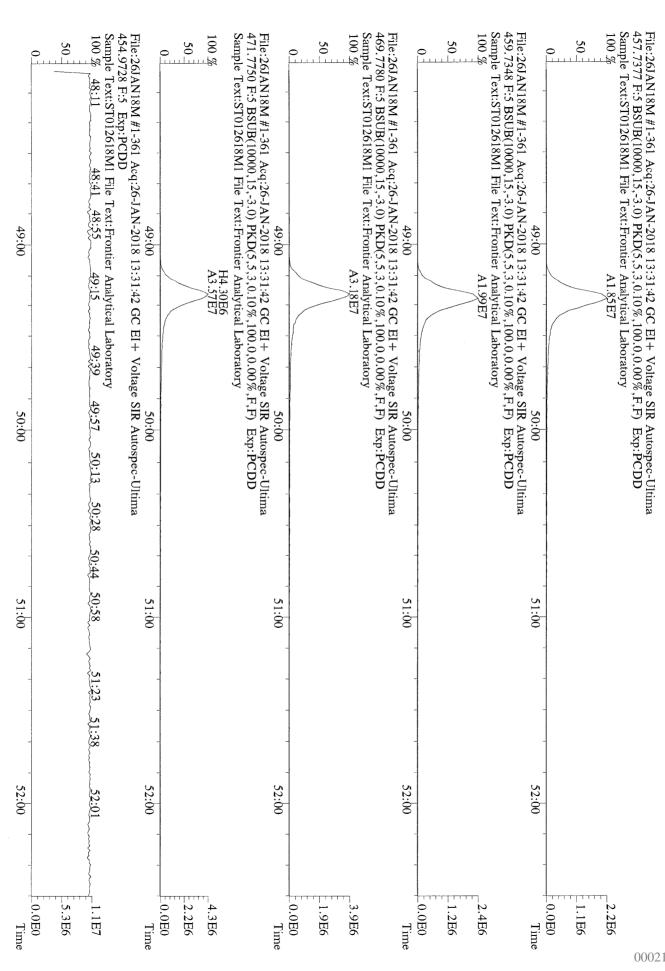
 $000208 \, \mathrm{of} \, 000285$

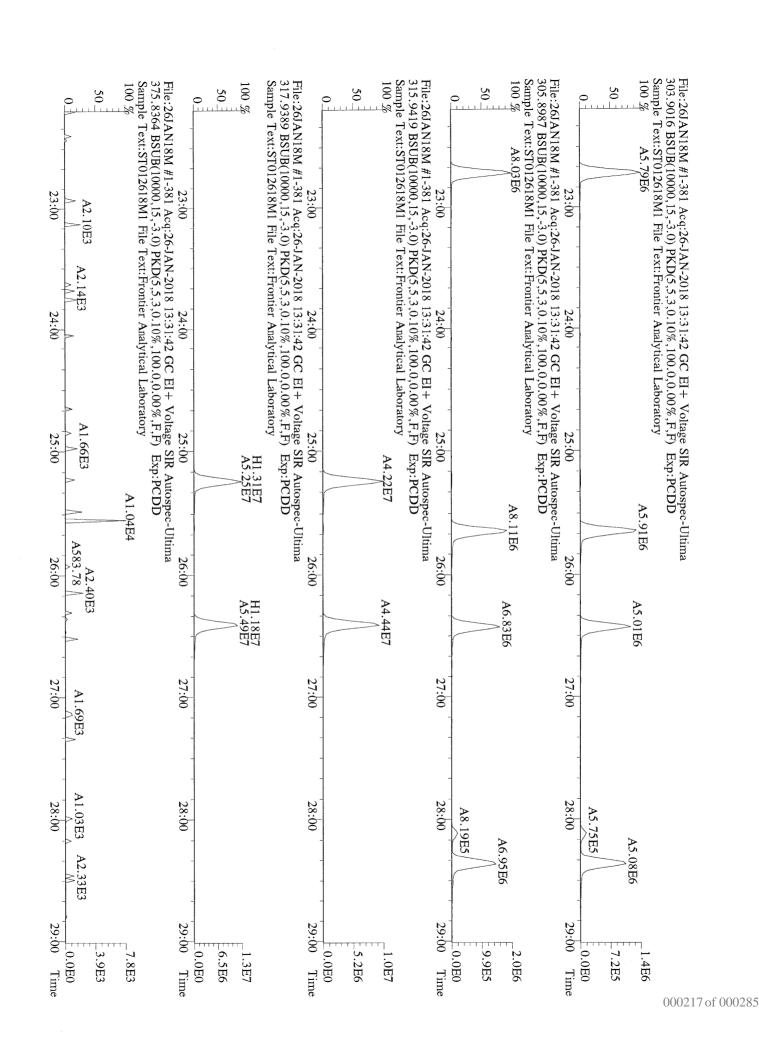


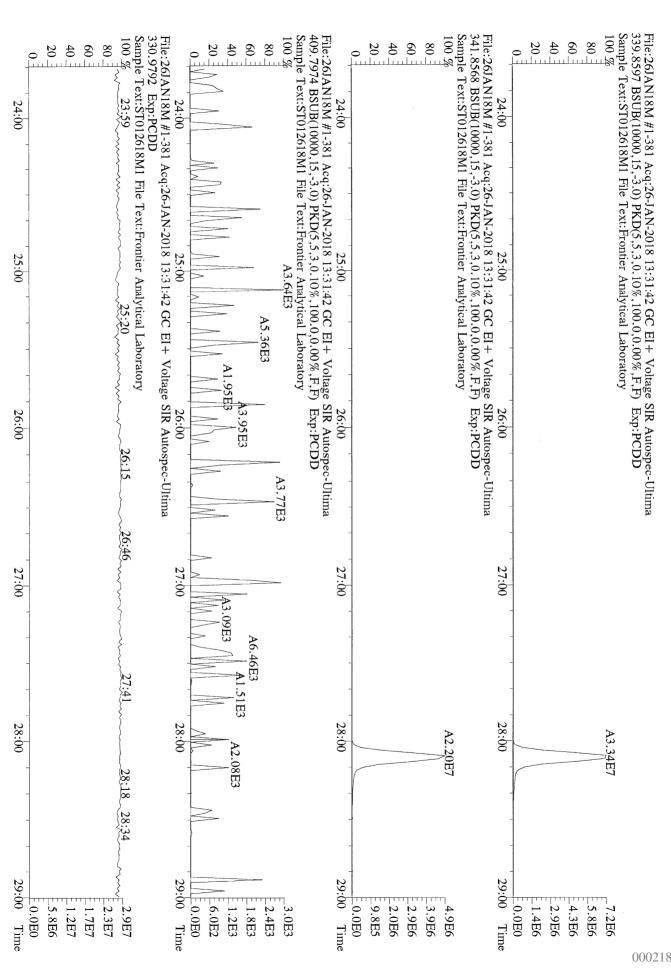

000209 of 000285

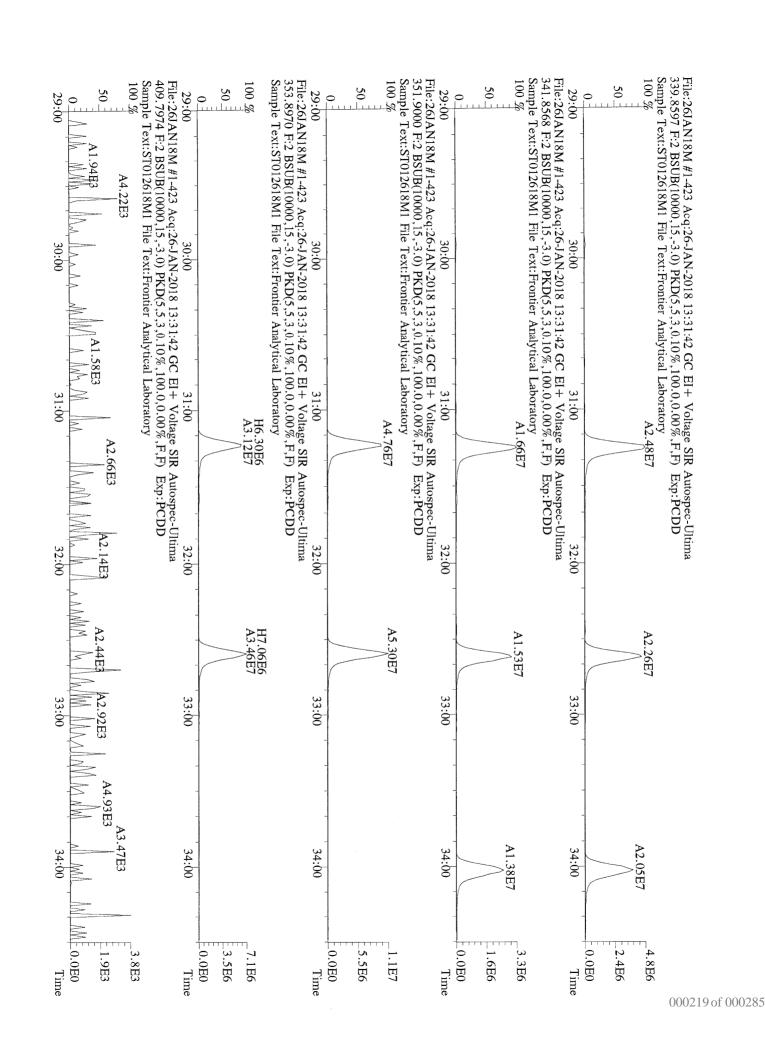


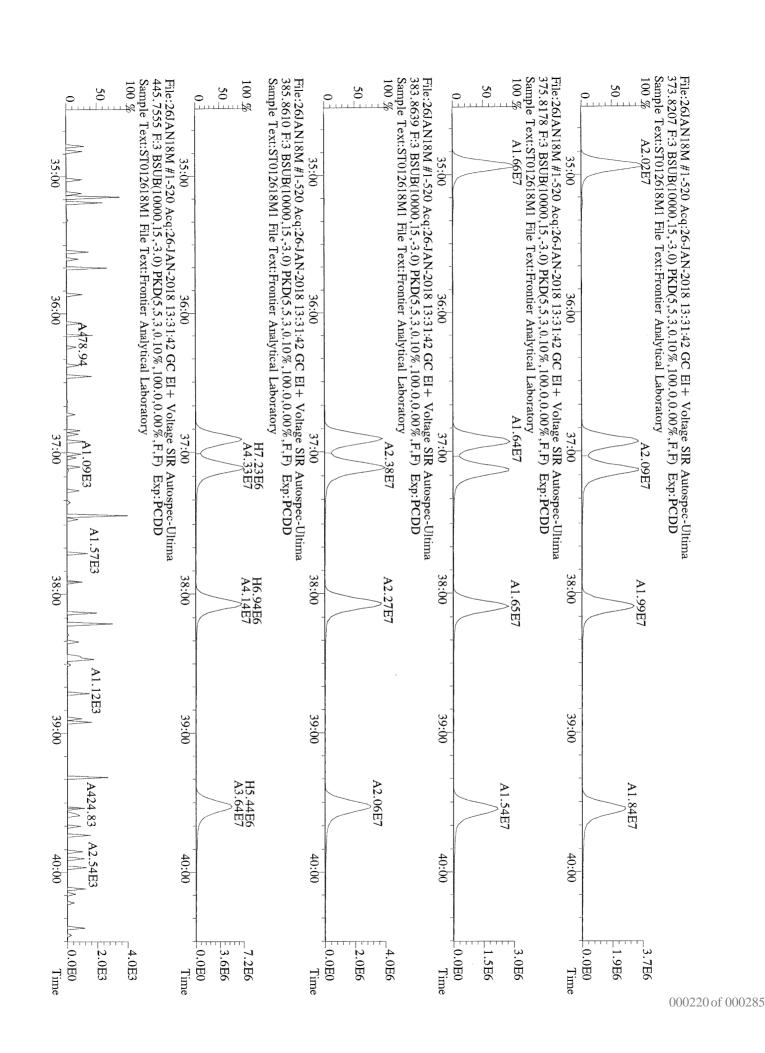

 $000210 \, \mathrm{of} \, 000285$

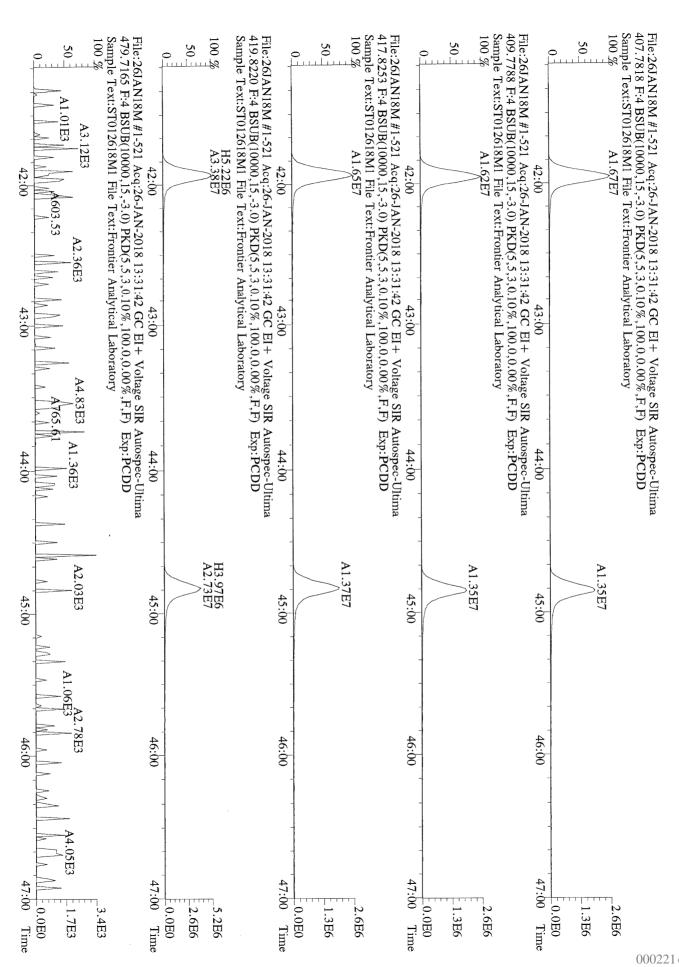


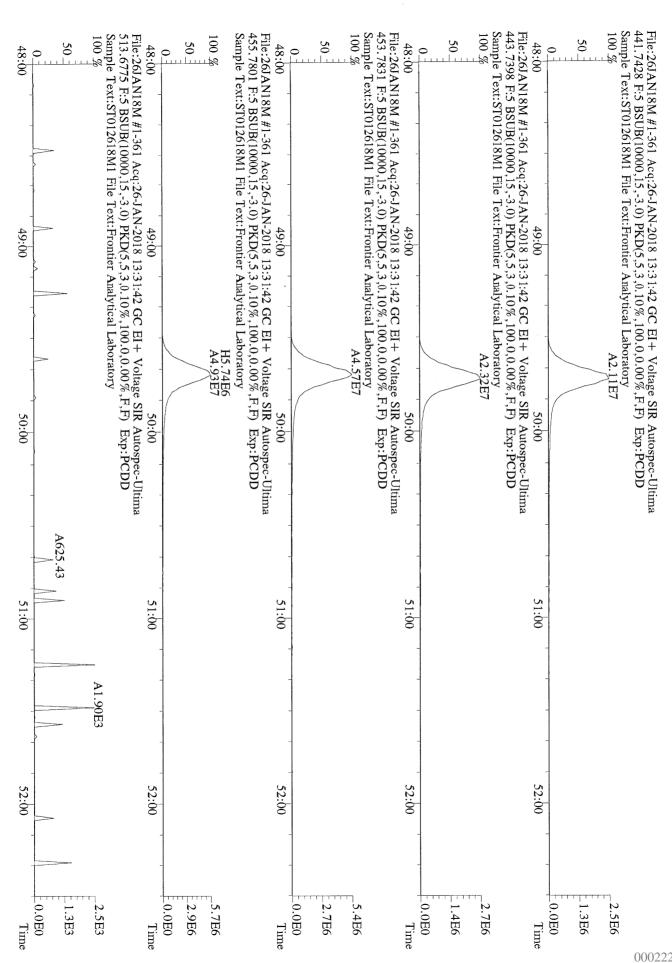


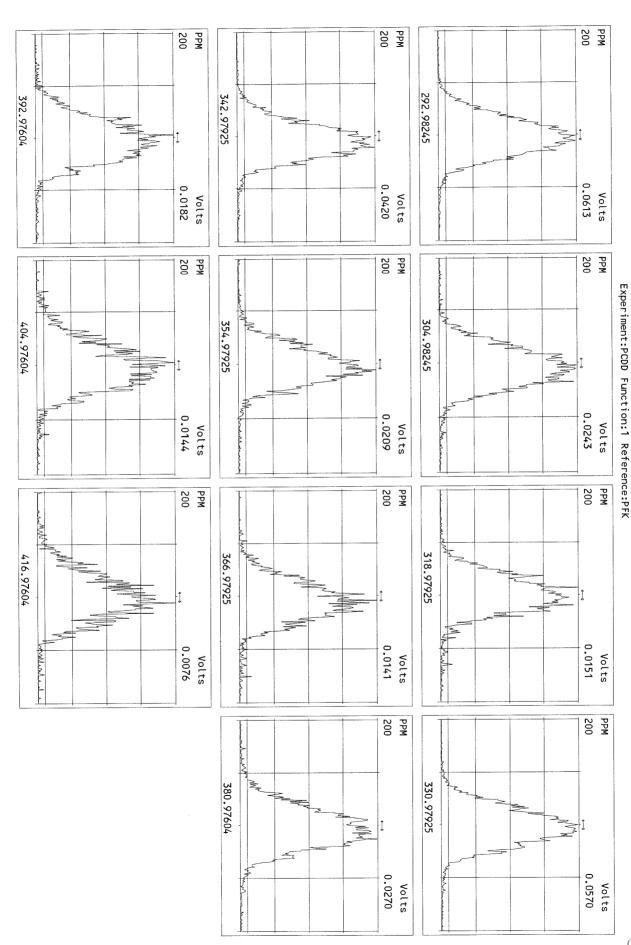


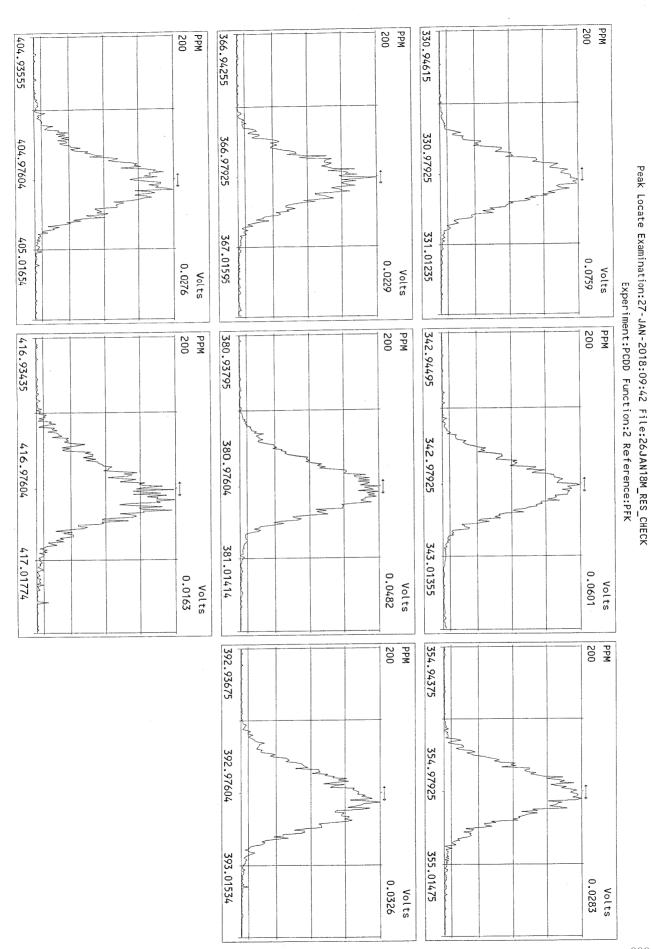


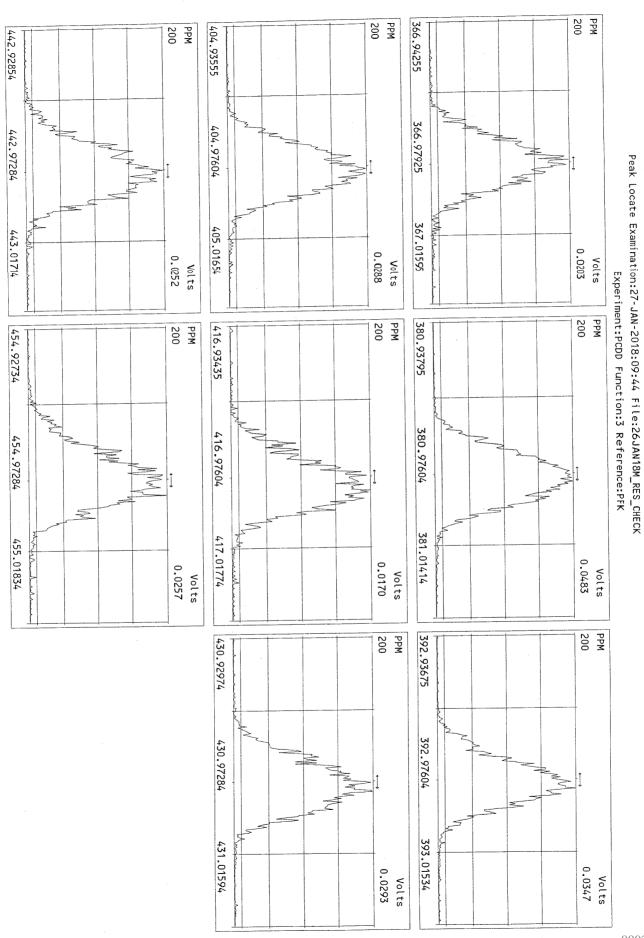




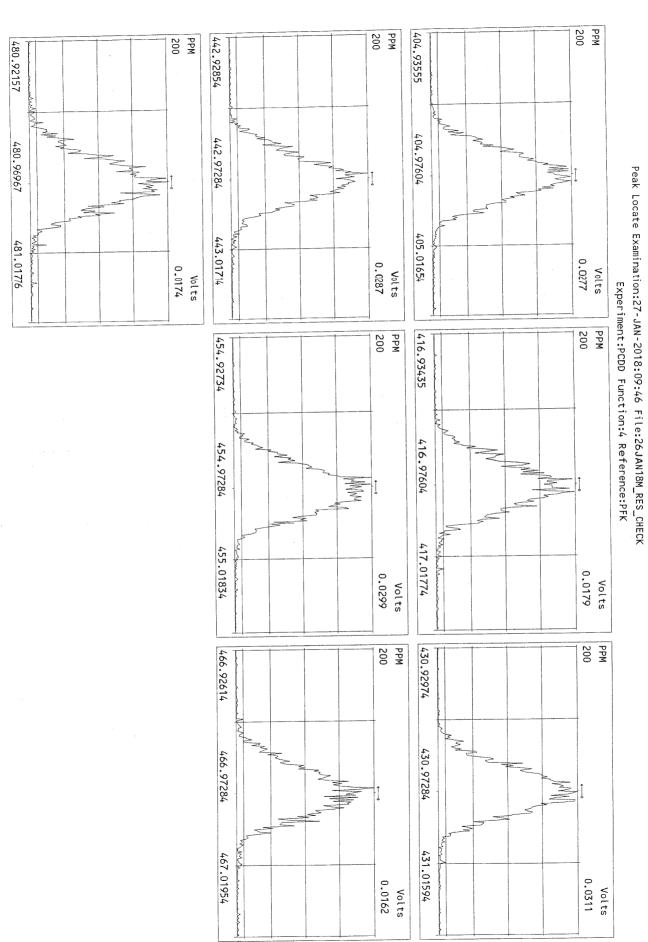


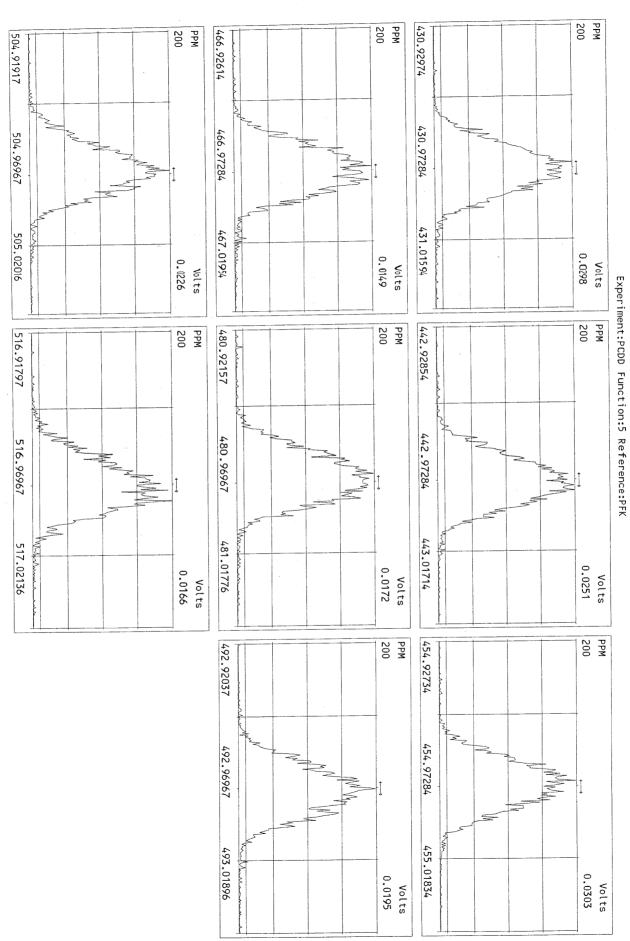






000223 of 000285


Peak Locate Examination:27-JAN-2018:09:40 File:26JAN18M_RES_CHECK


000224 of 000285

000225 of 000285

 $000226 \, \text{of} \, 000285$

000227 of 000285

Peak Locate Examination:27-JAN-2018:09:48 File:26JAN18M_RES_CHECK

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3 GC Column ID: DB5MS

VER Data Filename: 26JAN18M Sam:11 Analysis Date: 26-JAN-18 22:40:18

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
NATIVE ANALYTES						
2,3,7,8-TCDD	M/M+2	0.81	0.65-0.89	У	11.6	7.80 - 12.9
1,2,3,7,8-PeCDD	M+2/M+4	1.43	1.32-1.78	У	50.3	39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.25	1.05-1.43	У	54.0	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M+2/M+4	1.27	1.05-1.43	У	52.5	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.25	1.05-1.43	У	55.8	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	0.99	0.88-1.20	У	54.2	43.0 - 58.0
OCDD	M+2/M+4	0.90	0.76-1.02	У	107	79.0 - 126
2,3,7,8-TCDF	M/M+2	0.68	0.65-0.89	У	11.4	8.40 - 12.0
1,2,3,7,8-PeCDF	M+2/M+4	1.48	1.32-1.78	У	53.8	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.47	1.32-1.78	У	52.3	41.0 - 60.0
1,2,3,4,7,8-HxCDF	M+2/M+4	1.22	1.05-1.43	У	51.6	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.20	1.05-1.43	У	52.1	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.21	1.05-1.43	У	51.9	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.17	1.05-1.43	У	49.9	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF	M+2/M+4	1.00	0.88-1.20	У	50.3	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.02	0.88-1.20	У	50.2	43.0 - 58.0
OCDF	M+2/M+4	0.90	0.76-1.02	У	103	63.0 - 159

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst: Date: 1/2/18

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

VER Data Filename: 26JAN18M

Sam:11

Analysis Date: 26-JAN-18 22:40:18

LABELED COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
LABELED COMPOUNDS						
13C-2,3,7,8-TCDD	M/M+2	0.82	0.65-0.89	У	112	82.0 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.53	1.32-1.78	У	99.1	62.0 - 160
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.23	1.05-1.43	У	95.4	85.0 - 117
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.25	1.05-1.43	У	94.1	85.0 - 118
13C-1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.05	0.88-1.20	у	88.5	72.0 - 138
13C-OCDD	M+2/M+4	0.94	0.76-1.02	у	169	96.0 - 415
13C-2,3,7,8-TCDF	M/M+2	0.81	0.65-0.89	У	113	71.0 - 140
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.53	1.32-1.78	у	100	76.0 - 130
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.54	1.32-1.78	У	96.5	77.0 - 130
17c-1 2 7 / 7 9-UVCDE	M/M+2	0.56	0.43-0.59	У	103	76.0 - 131
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	M/M+2	0.54	0.43-0.59	y	97.2	70.0 - 143
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.56	0.43-0.59	, y	97.3	73.0 - 137
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.57	0.43-0.59	У	89.4	74.0 - 135
470 4 2 7 / / 7 9 HmcDF	M /M : 2	0.49	0.37-0.51	У	87.9	78.0 - 129
13C-1,2,3,4,6,7,8-HpCDF	M/M+2	0.49	0.37-0.51	· ·	89.9	77.0 - 129
13c-1,2,3,4,7,8,9-HpCDF	M/M+2	0.40	0.37-0.51	У	09.9	11:0 - 129
13C-OCDF	M+2/M+4	0.92	0.76-1.02	У	158	96.0 - 415
CLEANUP STANDARD (4)						
37cl-2,3,7,8-TCDD					12.1	7.90 - 12.7

- (1) See Table 8, Method 1613, for m/z specifications.
- (2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (3) Contract-required concentration range as specified in Table 6, Method 1613.
- (4) No ion abundance ratio; report concentration found.

Analyst:

Date: 1/19/18

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.:

SAS No.:

Instrument ID: FAL3

Initial Calibration Date: 12/22/17

RT Window Data Filename: 26JAN18M Sam:11

Analysis Date: 26-JAN-18 Time: 22:40:18

DB-5 IS Data Filename: 26JAN18M

Analysis Date: 26-JAN-18 Time: 22:40:18

DB-225 IS Date Filename:

Analysis Date:

Time:

DB-5 RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	24:08	1,3,6,8-TCDF (F)	22:45
1,2,8,9-TCDD (L)	28:08	1,2,8,9-TCDF (L)	28:23
1,2,4,7,9-PeCDD (F)	30:00	1,3,4,6,8-PeCDF (F)	28:08
1,2,3,8,9-PeCDD (L)	33:36	1,2,3,8,9-PeCDF (L)	34:04
1,2,4,6,7,9-HxCDD (F)	35:51	1,2,3,4,6,8-HxCDF (F)	34:58
1,2,3,7,8,9-HxCDD (L)	38:58	1,2,3,7,8,9-HxCDF (L)	39:35
1,2,3,4,6,7,9-HpCDD (F)	42:30	1,2,3,4,6,7,8-HpCDF (F)	41:60
1,2,3,4,6,7,8-HpCDD (L)	43:55	1,2,3,4,7,8,9-HpCDF (L)	44:53
(F) = First eluting isomer	(DB-5);	(L) = Last eluting isomer	(DB-5)

Sam: 11

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirement, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: Date: 1/29/18

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

Analysis Date: 26-JAN-18 22:40:18 CS3 or VER Data Filename: 26JAN18M Sam:11

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD	13C-2,3,7,8-TCDD	1.001	0.999-1.002
2,3,7,8-TCDF	13C-2,3,7,8-TCDF	1.001	0.999-1.003
1,2,3,7,8-PeCDD	13C-1,2,3,7,8-PeCDD	1.001	0.999-1.002
1,2,3,7,8-PeCDF	13C-1,2,3,7,8-PeCDF	1.001	0.999-1.002
2,3,4,7,8-PeCDF	13C-2,3,4,7,8-PeCDF	1.001	0.999-1.002
LABELED COMPOUNDS			
37Cl-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.024	0.989-1.052
13C-2,3,7,8-TCDD		1.024	0.976-1.043
13C-2,3,7,8-TCDF		0.996	0.923-1.103
13C-1,2,3,7,8-PeCDD		1.244	1.000-1.567
13C-1,2,3,7,8-PeCDF		1.178	1.000-1.425
13C-2,3,4,7,8-PeCDF		1.230	1.011-1.526

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

Analyst: Date: 1/29/18

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Frontier Analytical Laboratory Episode No.:

Contract No.:

SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

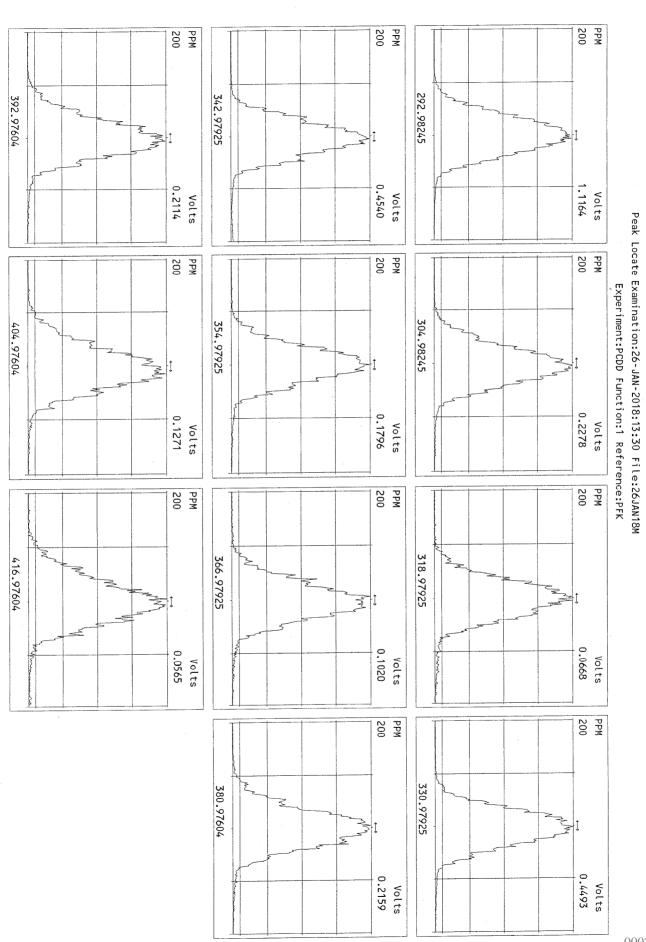
Analysis Date: 26-JAN-18 22:40:18 CS3 or VER Data Filename: 26JAN18M

Sam:11

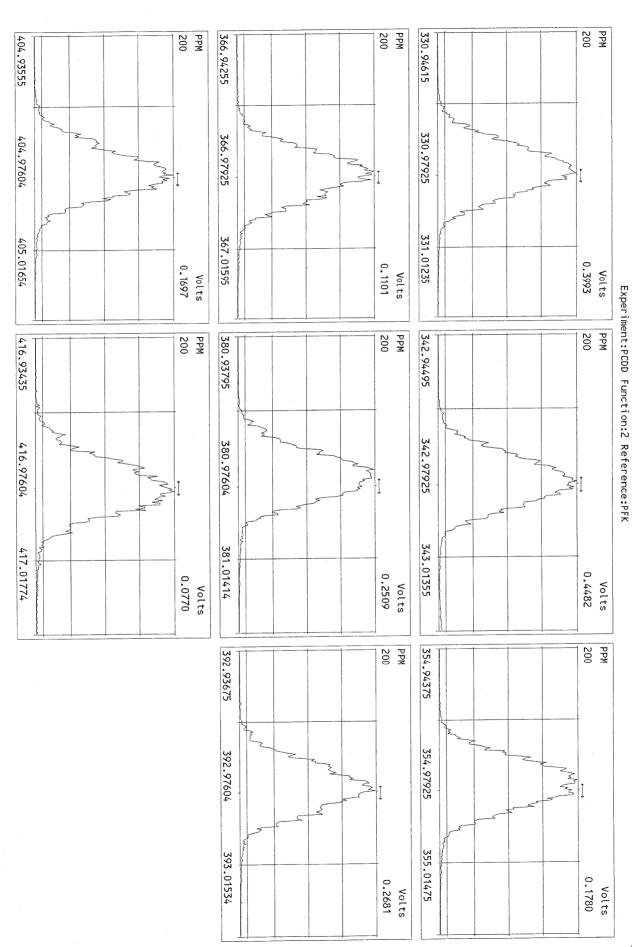
	RETENTION TIME		RRT
NATIVE ANALYTES	REFERENCE	RRT	QC LIMITS (1)
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.001	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.000	0.999-1.003
1,2,3,7,8,9-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.012	1.000-1.019
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.000	0.999-1.003
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.001	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDD	1.001	0.999-1.001
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.001	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.000	0.999-1.001
OCDD	13C-OCDD	1.000	0.999-1.001
OCDF	13c-ocdf	1.001	0.999-1.001
LABELED COMPOUNDS			
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,7,8,9-HxCDD	0.984	0.977-1.000
13C-1,2,3,6,7,8-HxCDD		0.989	0.981-1.003
13C-1,2,3,4,7,8-HxCDF		0.949	0.944-0.970
13C-1,2,3,6,7,8-HxCDF		0.954	0.949-0.975
13C-2,3,4,6,7,8-HxCDF		0.978	0.959-1.021
13C-1,2,3,7,8,9-HxCDF		1.016	0.977-1.047
13C-1,2,3,4,6,7,8-HpCDD		1.127	1.086-1.130
13C-1,2,3,4,6,7,8-HpCDF		1.077	1.043-1.085
13C-1,2,3,4,7,8,9-HpCDF		1.152	1.057-1.156
13C-OCDD		1.266	1.032-1.311
13C-OCDF		1.277	1.000-1.311

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

Filename: 26JAN18M Sam:11 Acquired: 26-JAN-18 22:40:18 ICal: PCDDFAL3-12-22-17 FAL ID: ST012618M2 EndCal: ST012618M3 ConCal: ST012618M2 Client ID: 1613 CS3 171128J NATO 1989 Tox: 105 GC Golumn: DB5MS Amount: 1.000 Results: 11153-3RX WHO 1998 Tox: 130 WHO 2005 Tox: 119 Instrument ID: FAL3 Fac Noise-1 Noise-2 DL Conc Qual RRF Name Resp RA RT 1.06 11.6 2.50 2,3,7,8-TCDD 7.84e+06 0.81 y 27:11 50 3 2.50 1,2,3,7,8-PeCDD 2.45e+07 1.43 y 33:02 1.00 2.50 54.0 1,2,3,4,7,8-HxCDD 2.42e+07 1.25 y 38:22 1.07 52.5 2.50 1,2,3,6,7,8-HxCDD 2.58e+07 1.27 y 38:32 1.08 1,2,3,7,8,9-HxCDD 2.71e+07 1.25 y 38:58 2.50 1.11 55.8 1,2,3,4,6,7,8-HpCDD 2.20e+07 0.99 y 43:55 2.50 0.99 54.2 107 2.50 OCDD 3.62e+07 0.90 y 49:20 1.11 2.50 2,3,7,8-TCDF 9.51e+06 0.68 y 26:28 1.03 11.4 53.8 2.50 1,2,3,7,8-PeCDF 3.40e+07 1.48 y 31:17 0.95 2.50 2,3,4,7,8-PeCDF 3.04e+07 1.47 y 32:39 0.79 52.3 2.50 1,2,3,4,7,8-HxCDF 3.56e+07 1.22 y 36:58 1.20 51.6 1,2,3,6,7,8-HxCDF 3.84e+07 1.20 y 37:10 1.10 52.1 2.50 2,3,4,6,7,8-HxCDF 3.46e+07 1.21 y 38:08 1.08 51.9 2.50 2.50 1,2,3,7,8,9-HxCDF 3.01e+07 1.17 y 39:35 1.15 49.9 50.3 2.50 1,2,3,4,6,7,8-HpCDF 2.73e+07 1.00 y 42:00 1.23 1,2,3,4,7,8,9-HpCDF 2.33e+07 1.02 y 44:53 1.23 50.2 2.50 2.50 OCDF 4.00e+07 0.90 y 49:46 0.90 103 Rec 112 13C-2.3.7.8-TCDD 6.40e+07 0.82 y 27:10 1.02 112 99.1 13C-1,2,3,7,8-PeCDD 4.88e+07 1.53 y 33:00 0.88 99.1 13C-1,2,3,4,7,8-HxCDD 4.18e+07 1.23 y 38:20 95.4 95.4 0.85 94.1 13C-1,2,3,6,7,8-HxCDD 4.54e+07 1.25 y 38:31 0.94 94.1 88.5 13C-1,2,3,4,6,7,8-HpCDD 4.11e+07 1.05 y 43:53 0.90 88.5 84.7 13C-OCDD 6.11e+07 0.94 y 49:19 0.70 169 113 13C-2,3,7,8-TCDF 8.14e+07 0.81 y 26:26 0.93 113 100 100 13C-1,2,3,7,8-PeCDF 6.69e+07 1.53 y 31:16 0.87 96.5 0.99 96.5 13C-2,3,4,7,8-PeCDF 7.37e+07 1.54 y 32:38 103 13C-1,2,3,4,7,8-HxCDF 5.76e+07 0.56 y 36:57 103 1.09 97.2 97.2 13C-1,2,3,6,7,8-HxCDF 6.72e+07 0.54 y 37:09 1.35 97.3 13C-2,3,4,6,7,8-HxCDF 6.16e+07 0.56 y 38:06 97.3 1.23 89.4 89.4 13C-1,2,3,7,8,9-HxCDF 5.25e+07 0.57 y 39:34 1.14 87.9 87.9 13C-1,2,3,4,6,7,8-HpCDF 4.40e+07 0.49 y 41:58 0.97 89.9 89.9 13C-1,2,3,4,7,8,9-HpCDF 3.77e+07 0.48 y 44:52 0.82 78.9 13C-OCDF 8.62e+07 0.92 y 49:44 1.06 158 0.91 12.1 121 37Cl-2,3,7,8-TCDD 6.19e+06 27:11 154 13C-1,2,3,4-TCDD 5.60e+07 0.83 y 26:32 13c-1,2,3,4-TCDF 7.71e+07 0.80 y 25:17 148 168 13C-1,2,3,7,8,9-HxCDD 5.14e+07 1.21 y 38:57 #Hom Fac Noise-1 Noise-2 DΙ 55.7 2.50 17 Total Tetra-Dioxins 3.77e+07 24:08 1.06 2.50 18 30:00 1.00 161 Total Penta-Dioxins 7.85e+07 2.50 31 Total Hexa-Dioxins 1.09e+08 230 35:51 1.09 2.50 30 0.99 118 Total Hepta-Dioxins 4.80e+07 42:30 21 Total Tetra-Furans 4.37e+07 22:45 1.03 52.3 2.50 PeCDF 1 1st Fn. Tot Penta-Furans 4.72e+07 28:08 0.86 77.8 2.50 29:56 0.86 157 2.50 234 18 Total Penta-Furans 9.50e+07 260 2.50 25 Total Hexa-Furans 1.75e+08 34:58 1.13 2.50 32 42:00 1.23 104 Total Hepta-Furans 5.21e+07

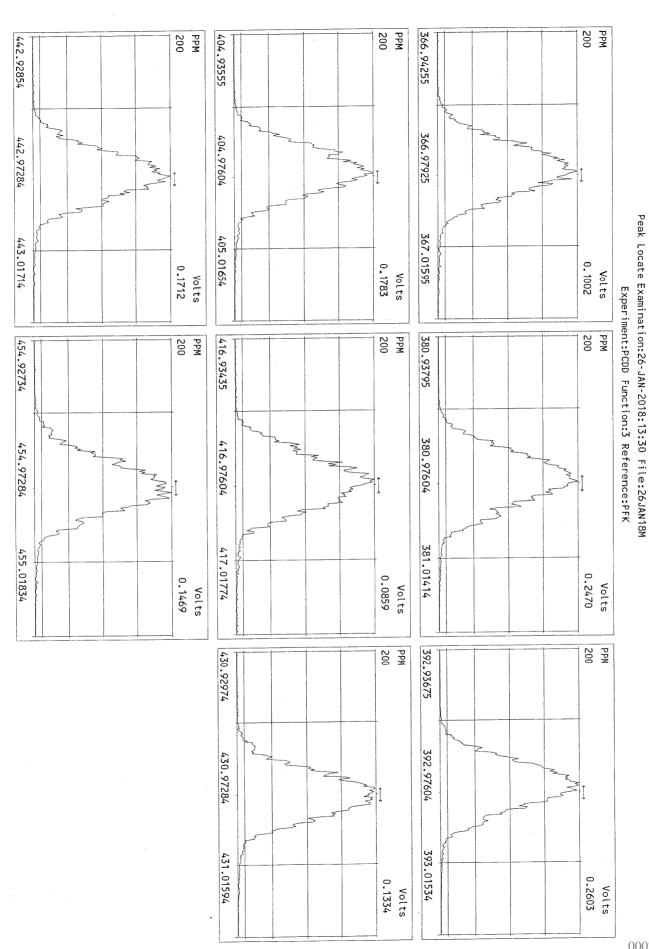

Analyst:

Date: 1/29/18

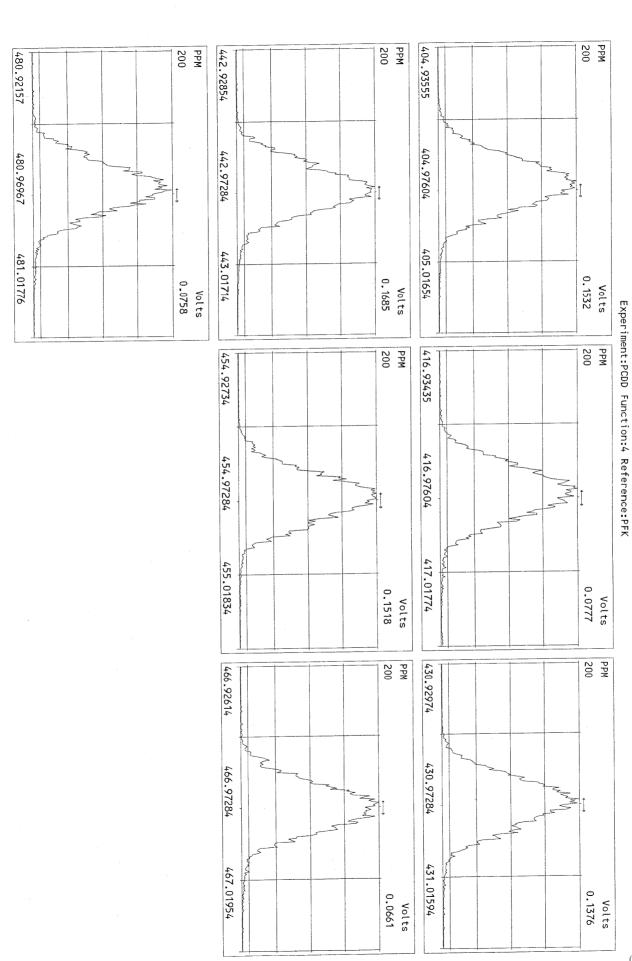

Run Name:26JAN18M	Instrument: FAL3	GC: DB5MS Exp	periment:PCDD		
Data File S FAL ID	Client ID	Acquired	ConCal	EndCal	Analyst
26JAN18M 1 ST012618M1	1613 CS3 171128J	26-JAN-18	13:31:42 ST012618M1	ST012618M2	TC
26JAN18M 2 04385-001-		26-JAN-18	14:26:32 ST012618M1	ST012618M2	TC
26JAN18M 3 04385-001-		26-JAN-18	15:21:27 ST012618M1	ST012618M2	TC
26JAN18M 4 11157-003-	X002-SA NFMW1d	26-JAN-18	16:16:22 ST012618M1	ST012618M2	TC
26JAN18M 5 11193-001-	0001-SA 201801110018	26-JAN-18	17:11:11 ST012618M1	ST012618M2	TC
26JAN18M 6 11194-001-	0001-sa 201801110019	26-JAN-18	18:06:03 ST012618M1	ST012618M2	TC
26JAN18M 7 11194-002-	0001-SA 201801110020	26-JAN-18	19:00:54 ST012618M1	ST012618M2	TC
26JAN18M 8 11194-003-	0001-SA 201801110021	26-JAN-18	19:55:45 ST012618M1	ST012618M2	TC
26JAN18M 9 11202-001-	0001-SA EFF-001A	26-JAN-18	20:50:36 ST012618M1	ST012618M2	TC
26JAN18M 10 SB012618M1	Solvent Blank	26-JAN-18	21:45:27 ST012618M1	ST012618M2	TC
26JAN18M 11 ST012618M2	1613 CS3 171128J	26-JAN-18	22:40:18 ST012618M2	ST012618M3	TC
26JAN18M 12 SB012618M2	Solvent Blank	26-JAN-18	23:35:08 ST012618M2	ST012618M3	TC
26JAN18M 13 11203-001-		ownstream R ₁ 27-JAN-18	00:30:00 ST012618M2	ST012618M3	TC
26JAN18M 14 11204-001-	·0001-SA Sycamore Creek U	pstream RSW ₁ 27-JAN-18	01:24:51 ST012618M2	ST012618M3	TC
26JAN18M 15 11211-001-	-0001-SA AMW-3-011218	" 27-JAN-18	02:19:42 ST012618M2	ST012618M3	TC
26JAN18M 16 11211-002-	-0001-SA AMW-4-011218	27-JAN-18	03:14:35 ST012618M2	ST012618M3	TC
26JAN18M 17 11211-003	-0001-SA AMW-2-011218	27-JAN-18	04:09:25 ST012618M2	ST012618M3	TC
26JAN18M 18 11211-004-	-0001-SA AMW-1-011218	27-JAN-18	05:04:16 ST012618M2	ST012618M3	TC
26JAN18M 19 11211-005	-0001-SA AMW-5-011218	27-JAN-18	05:59:07 ST012618M2	ST012618M3	TC
26JAN18M 20 SB012618M	3 Solvent Blank	27-JAN-18	06:53:59 ST012618M2	ST012618M3	TC
26JAN18M 21 SB012618M4	4 Solvent Blank	27-JAN-18	07:48:50 ST012618M2	ST012618M3	TC
26JAN18M 22 ST012618M3		27-JAN-18	08:43:41 ST012618M2	ST012618M3	TC

1/29/18

Data Backed Up:_____

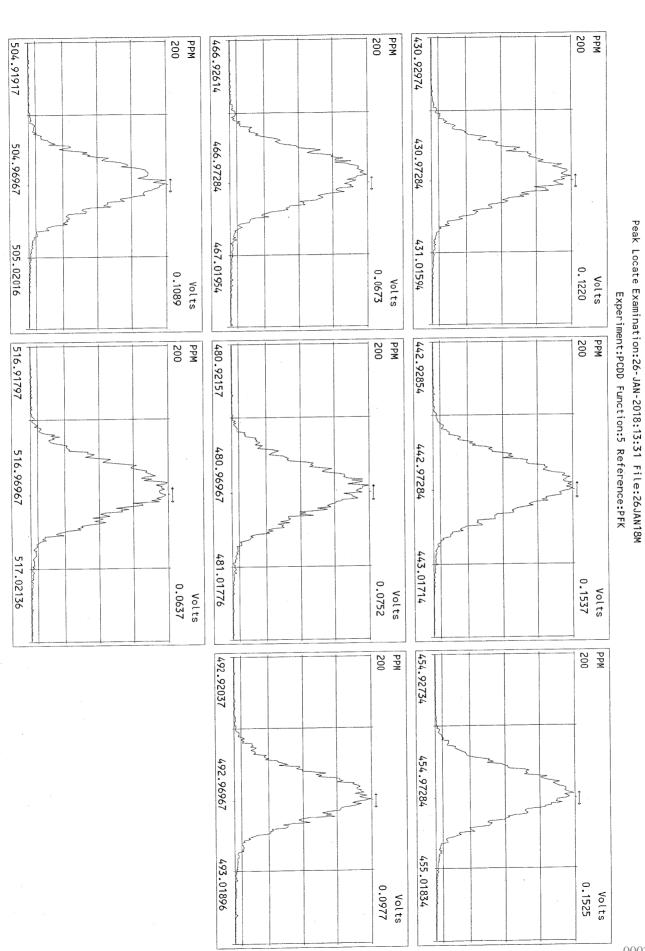


 $000235 \, \mathrm{of} \, 000285$

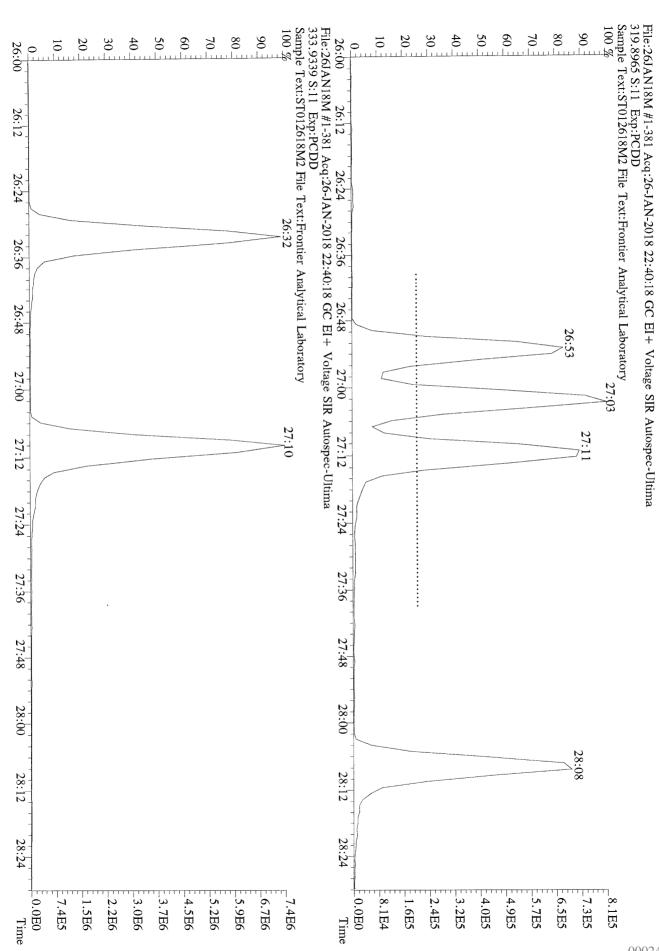


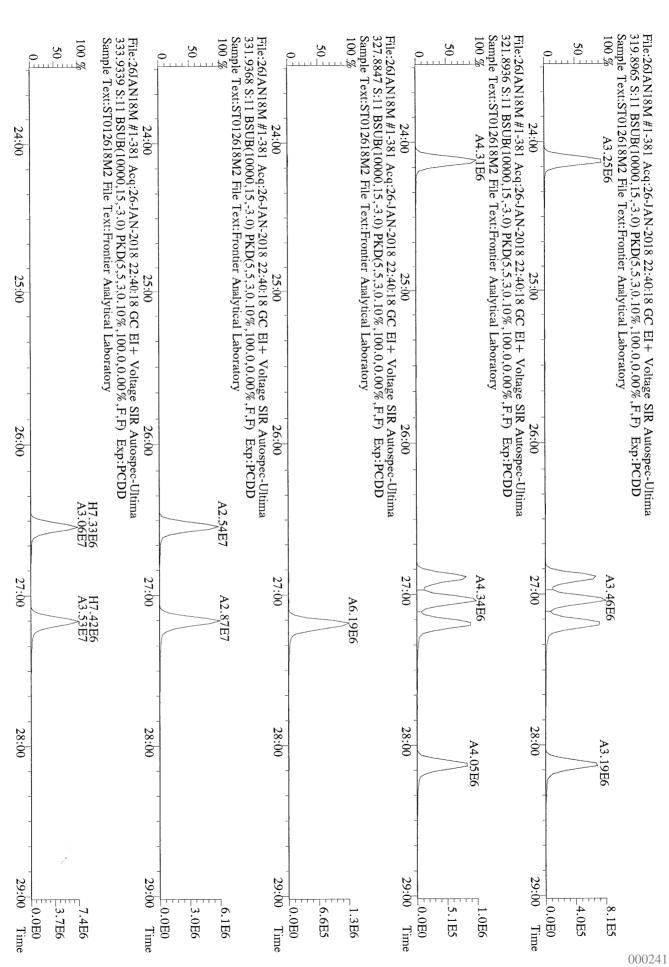
 $000236 \, \mathrm{of} \, 000285$

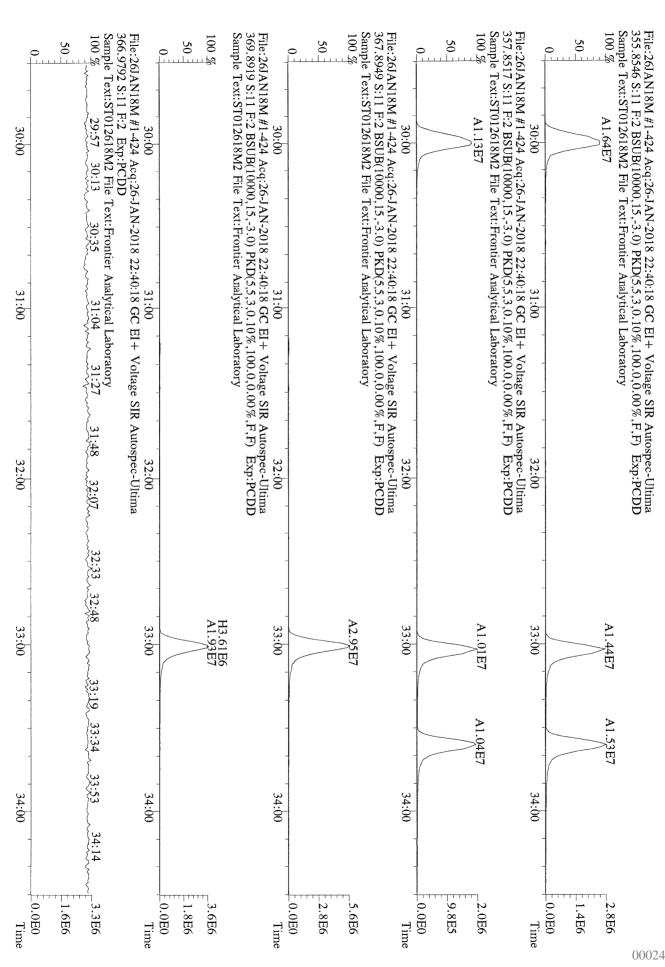
Peak Locate Examination:26-JAN-2018:13:30 File:26JAN18M

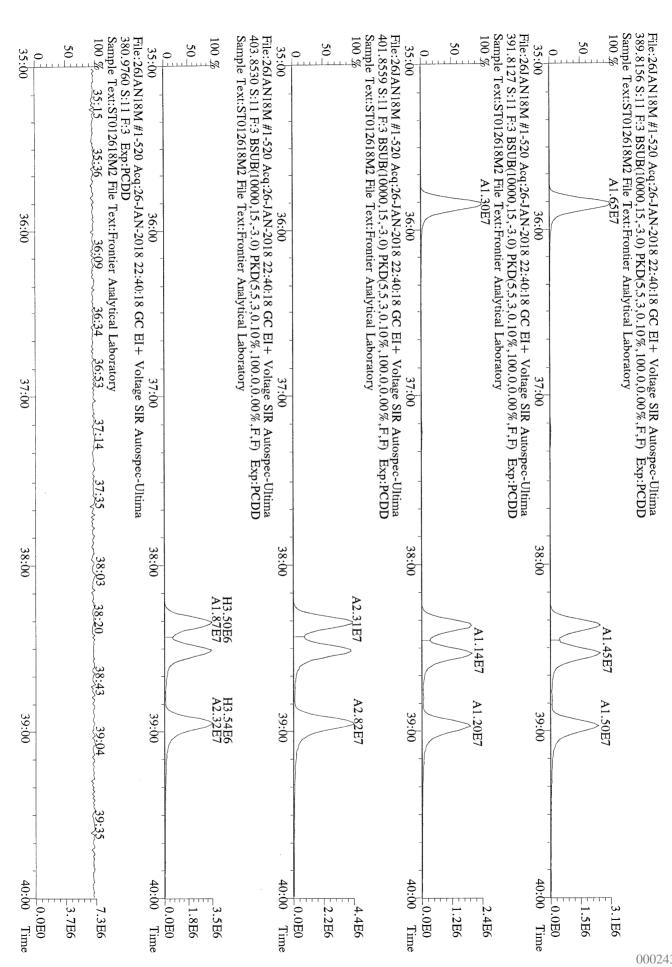


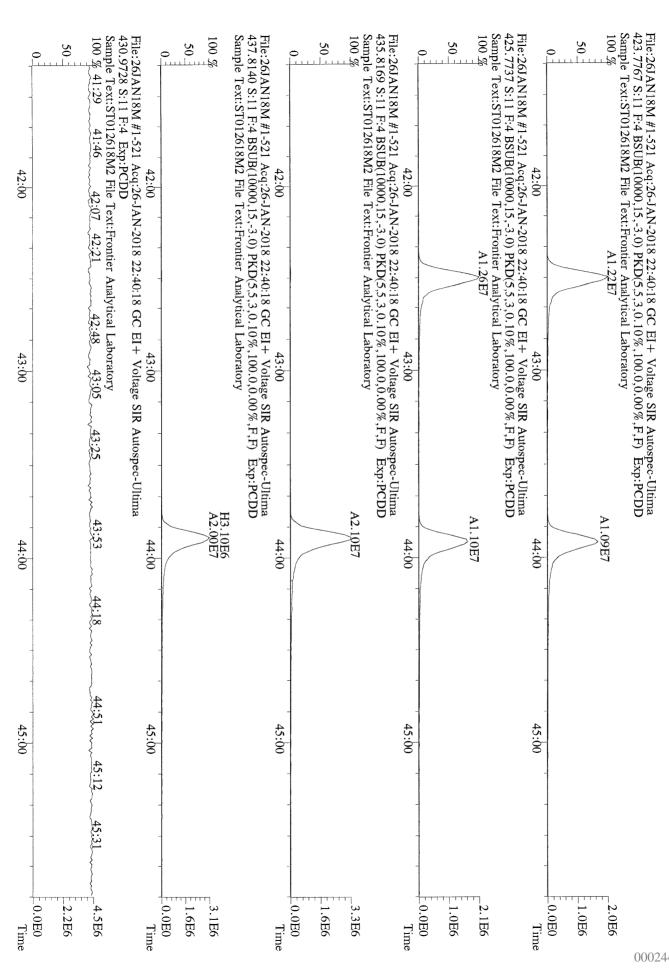
000237 of 000285

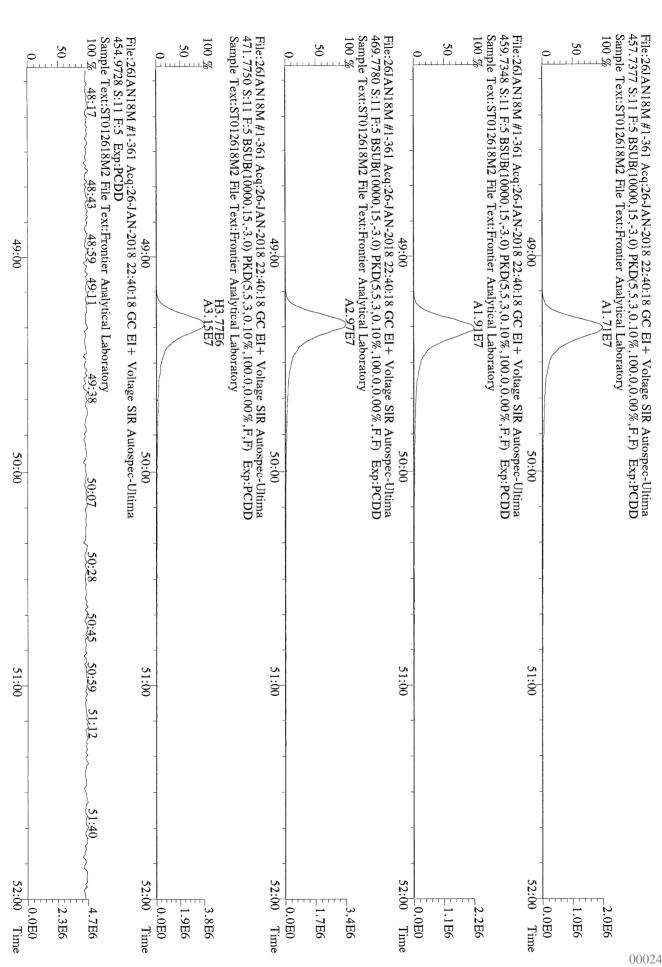


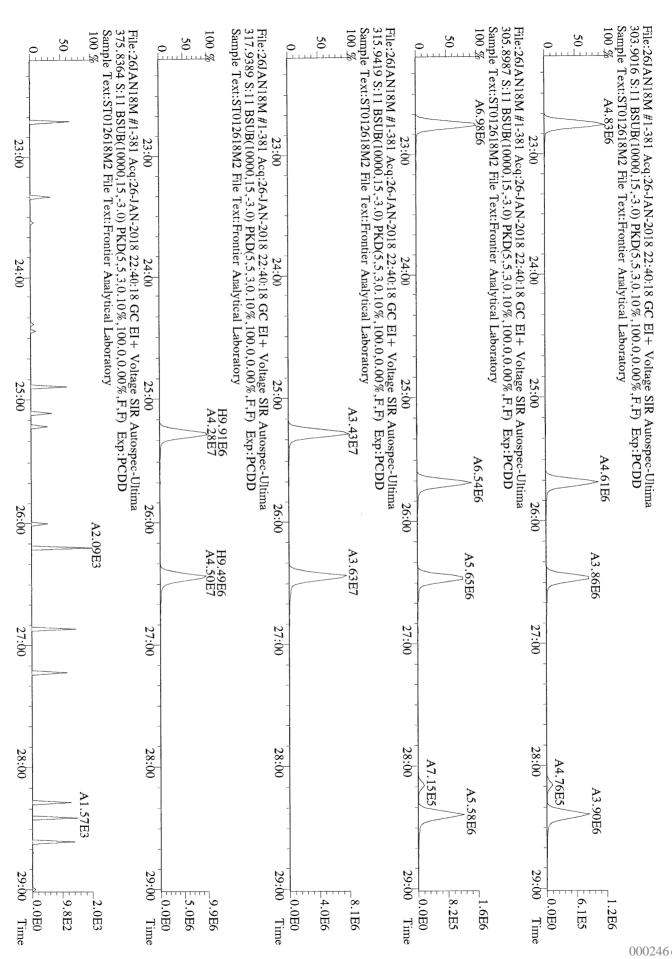

000238 of 000285

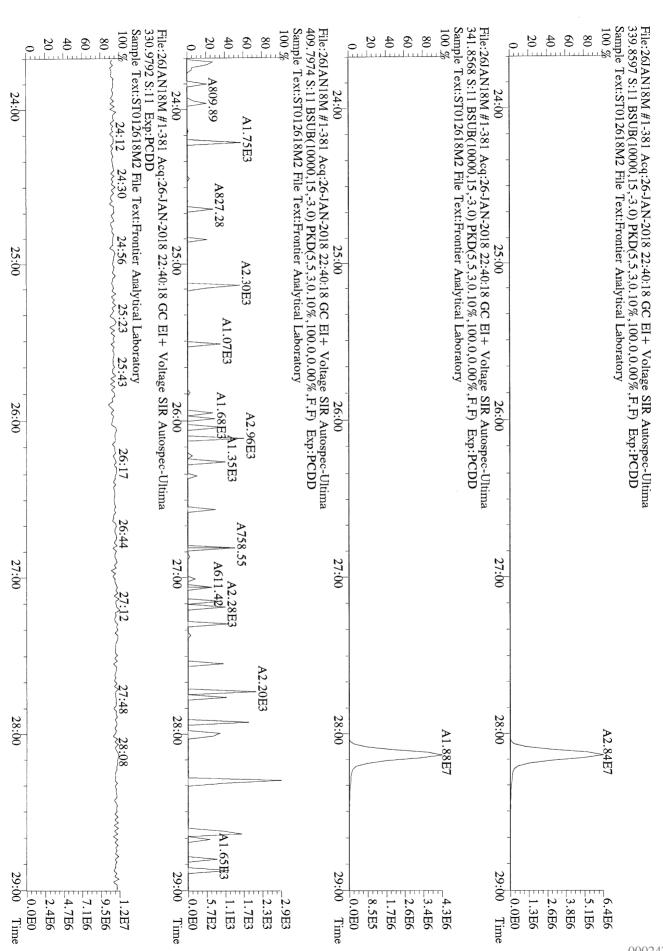

Peak Locate Examination:26-JAN-2018:13:31 File:26JAN18M

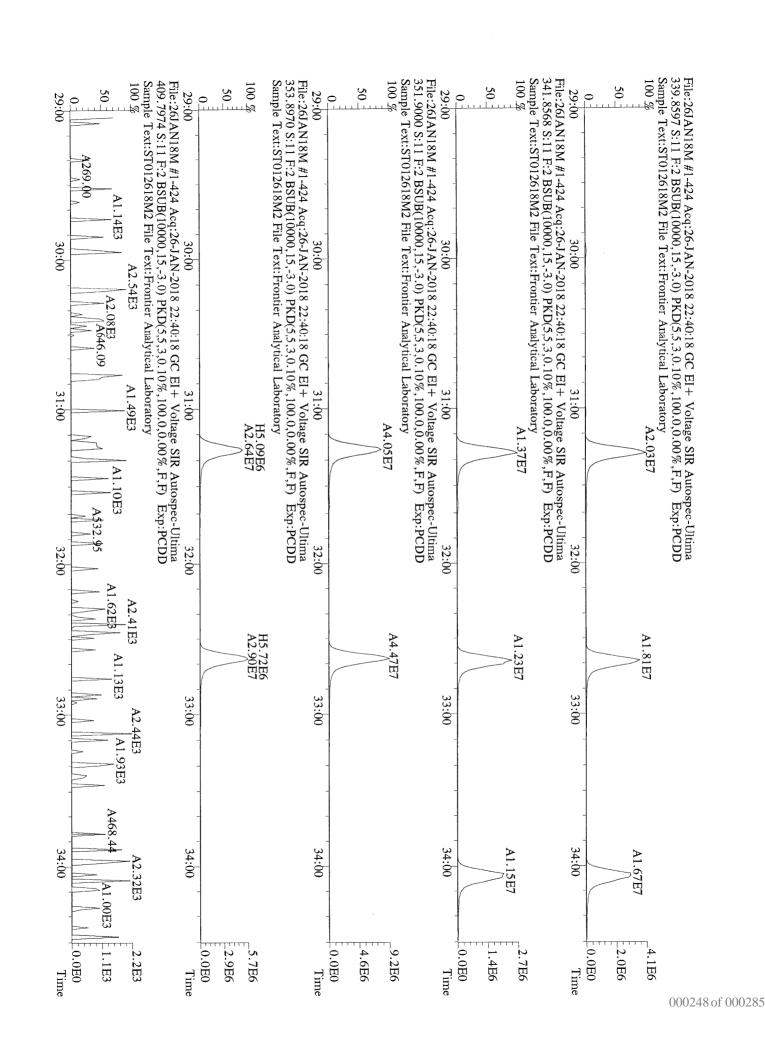


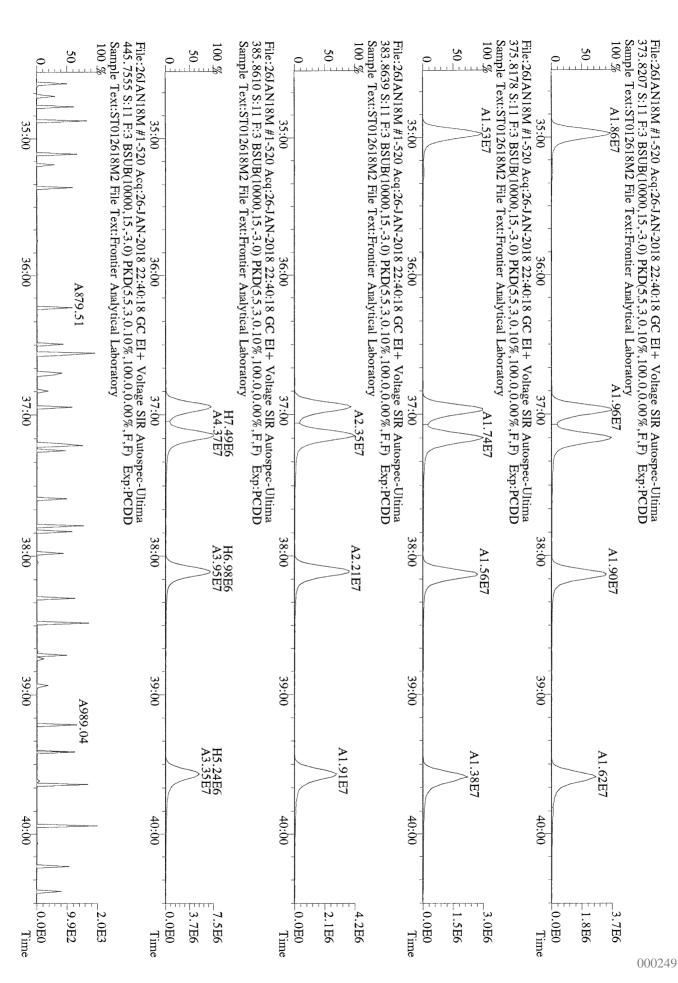

000239 of 000285

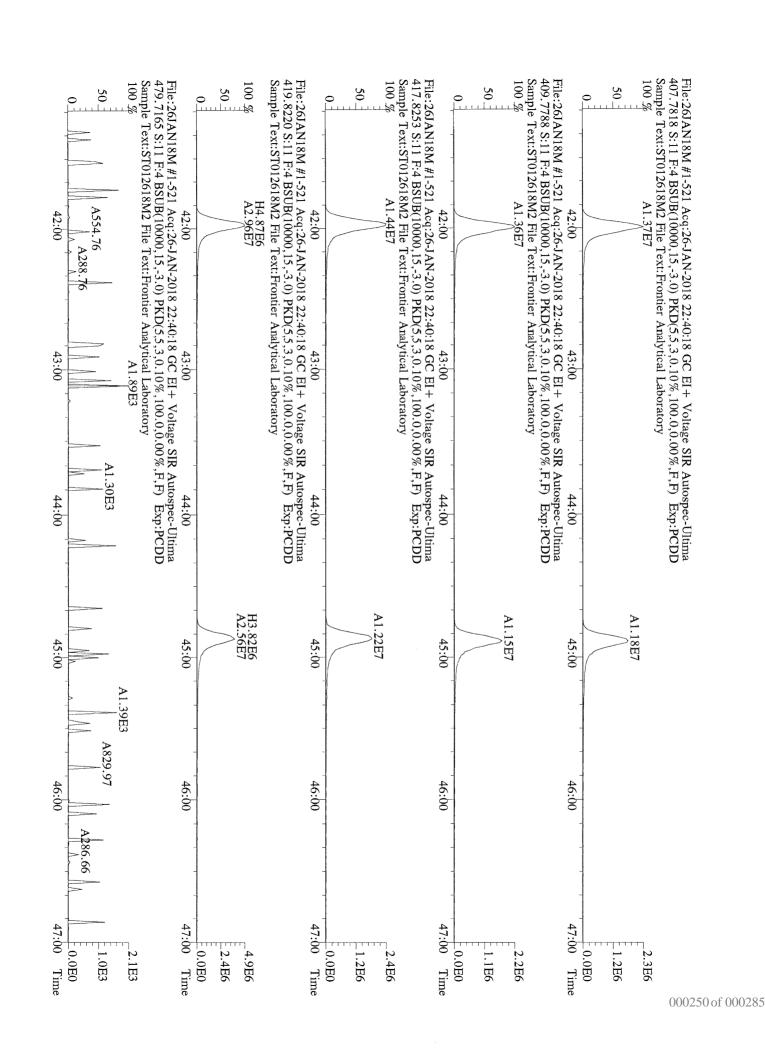


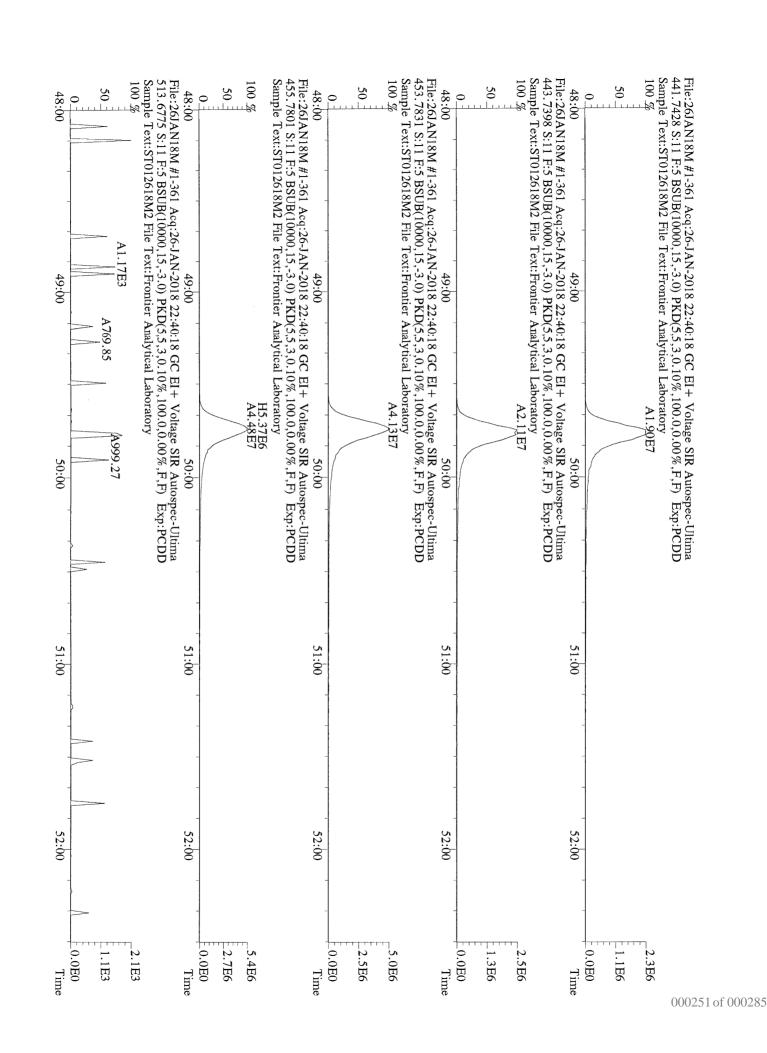


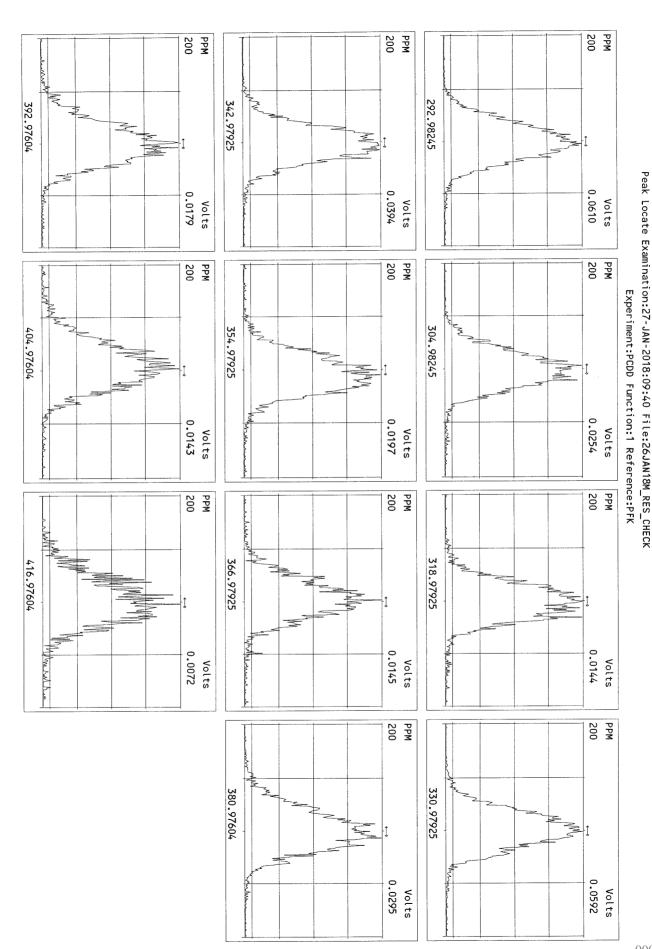


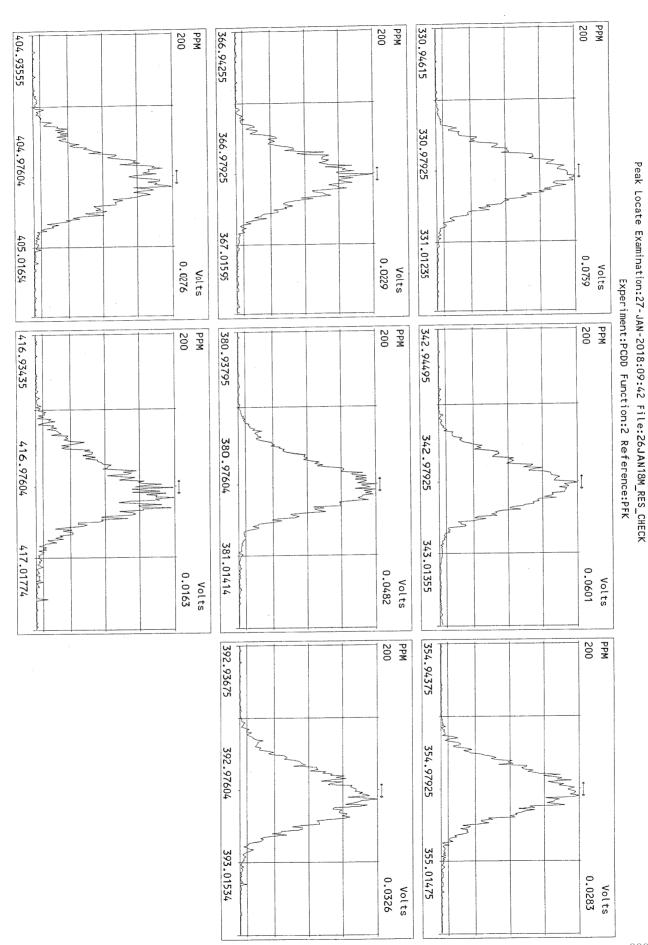


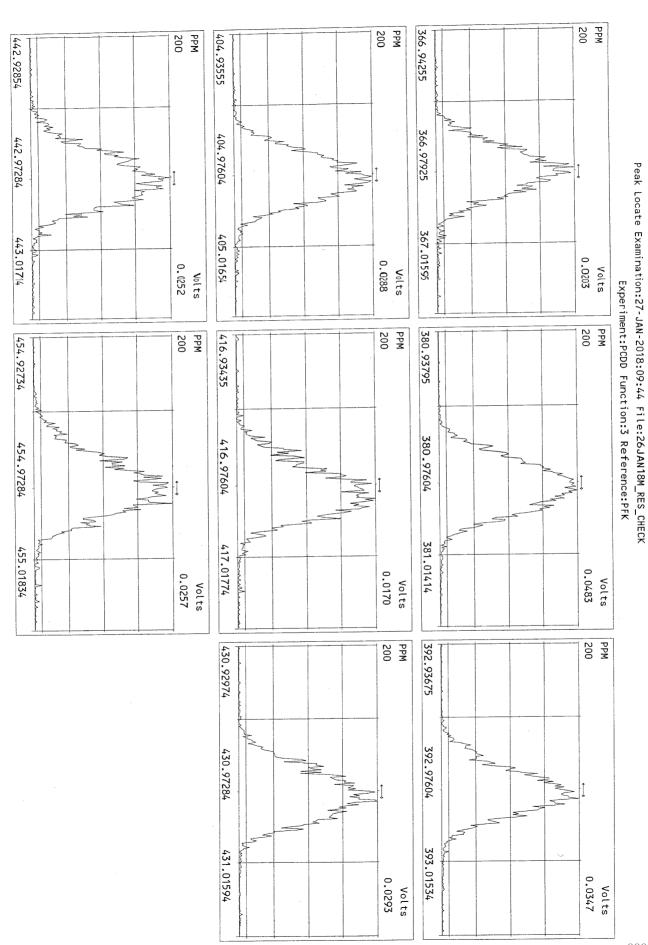


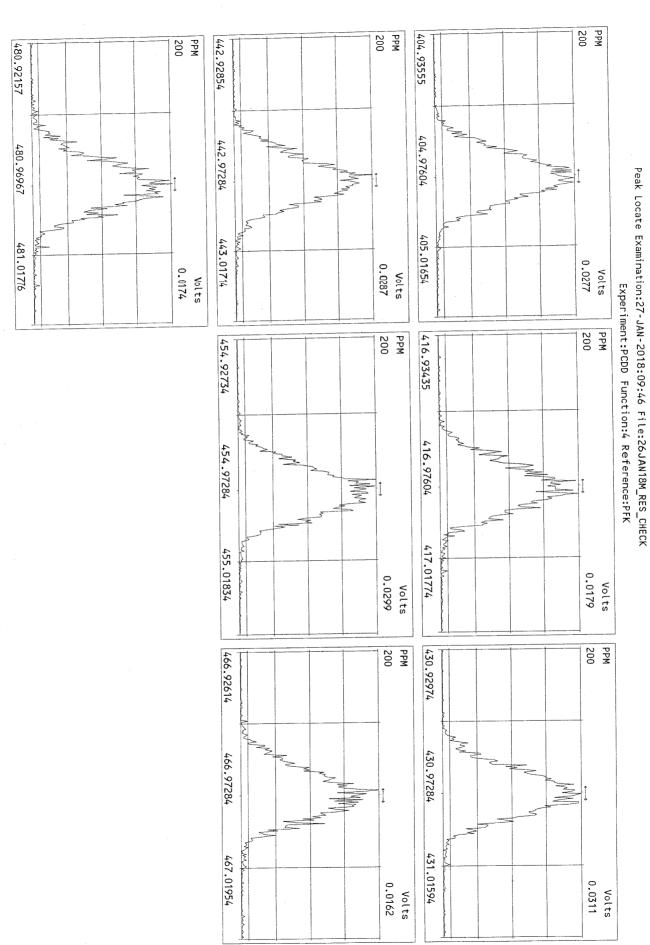


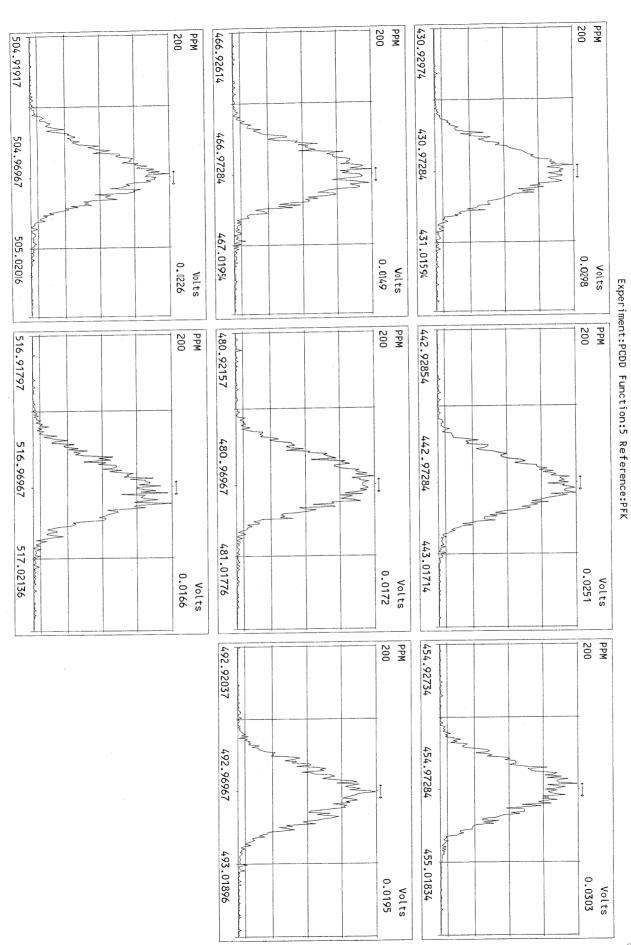









000252 of 000285


000253 of 000285

000254 of 000285

000255 of 000285

 $000256 \, \mathrm{of} \, 000285$

Peak Locate Examination:27-JAN-2018:09:48 File:26JAN18M_RES_CHECK

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

VER Data Filename: 26JAN18M Sam:22

Analysis Date: 27-JAN-18 08:43:41

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
NATIVE ANALYTES						
2,3,7,8-TCDD	M/M+2	0.80	0.65-0.89	У	11.3	7.80 - 12.9
1,2,3,7,8-PeCDD	M+2/M+4	1.46	1.32-1.78	У	50.3	39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.28	1.05-1.43	У	54.1	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M+2/M+4	1.26	1.05-1.43	У	54.8	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.28	1.05-1.43	У	56.4	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	0.97	0.88-1.20	У	54.0	43.0 - 58.0
OCDD	M+2/M+4	0.85	0.76-1.02	У	109	79.0 - 126
2,3,7,8-TCDF	M/M+2	0.73	0.65-0.89	У	11.3	8.40 - 12.0
1,2,3,7,8-PeCDF	M+2/M+4	1.47	1.32-1.78	У	51.9	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.47	1.32-1.78	У	51.8	41.0 - 60.0
1,2,3,4,7,8-HxCDF	M+2/M+4	1.20	1.05-1.43	У	51.9	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.24	1.05-1.43	У	52.2	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.20	1.05-1.43	У	53.1	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.25	1.05-1.43	У	52.3	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF	M+2/M+4	1.00	0.88-1.20	У	50.6	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF		1.01	0.88-1.20	У	48.2	43.0 - 58.0
OCDF	M+2/M+4	0.91	0.76-1.02	У	99.0	63.0 - 159

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst: ______ Date: _____/29/18

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Frontier Analytical Laboratory

Episode No.:

Contract No.:

SAS No.:

Initial Calibration Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

VER Data Filename: 26JAN18M

Sam:22

Analysis Date: 27-JAN-18 08:43:41

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	ACCEPT	CONC. FOUND	CONC. RANGE (ng/mL) (3)
LABELED COMPOUNDS	KATIO (1)	KATIO	(2)	7,0027		
13C-2,3,7,8-TCDD	M/M+2	0.81	0.65-0.89	У	109	82.0 - 121
13C-1,2,3,7,8-PeCDD	M+2/M+4	1.54	1.32-1.78	У	96.4	62.0 - 160
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.23	1.05-1.43	У	96.6	85.0 - 117
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.24	1.05-1.43	У	96.1	85.0 - 118
13C-1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.07	0.88-1.20	У	89.7	72.0 - 138
13C-OCDD	M+2/M+4	0.90	0.76-1.02	у	153	96.0 - 415
13C-2,3,7,8-TCDF	M/M+2	0.81	0.65-0.89	У	105	71.0 - 140
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.52	1.32-1.78	У	95.3	76.0 - 130
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.53	1.32-1.78	У	95.0	77.0 - 130
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.55	0.43-0.59	У	108	76.0 - 131
13C-1,2,3,6,7,8-HxCDF	M/M+2	0.57	0.43-0.59	ý	104	70.0 - 143
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.56	0.43-0.59	y	103	73.0 - 137
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.55	0.43-0.59	У	92.6	74.0 - 135
13C-1,2,3,4,6,7,8-HpCDF	M/M+2	0.50	0.37-0.51	У	93.5	78.0 - 129
13C-1,2,3,4,7,8,9-HpCDF	M/M+2	0.49	0.37-0.51	y	88.3	77.0 - 129
13C-OCDF	M+2/M+4	0.92	0.76-1.02	У	152	96.0 - 415
CLEANUP STANDARD (4)						
37cl-2,3,7,8-TCDD					11.6	7.90 - 12.7

⁽¹⁾ See Table 8, Method 1613, for m/z specifications.

Analyst:

⁽²⁾ Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

⁽³⁾ Contract-required concentration range as specified in Table 6, Method 1613.

⁽⁴⁾ No ion abundance ratio; report concentration found.

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Episode No.: Lab Name: Frontier Analytical Laboratory

Contract No.:

SAS No.:

Instrument ID: FAL3

Initial Calibration Date: 12/22/17

RT Window Data Filename: 26JAN18M Sam:22

Analysis Date: 27-JAN-18 Time: 08:43:41

DB-5 IS Data Filename: 26JAN18M

Sam: 22

Analysis Date: 27-JAN-18 Time: 08:43:41

DB-225 IS Date Filename:

Analysis Date:

Time:

DB-5 RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	24:06	1,3,6,8-TCDF (F)	22:44
1,2,8,9-TCDD (L)	28:06	1,2,8,9-TCDF (L)	28:22
1,2,4,7,9-PeCDD (F)	29:58	1,3,4,6,8-PeCDF (F)	28:07
1,2,3,8,9-PeCDD (L)	33:34	1,2,3,8,9-PeCDF (L)	34:03
1,2,4,6,7,9-HxCDD (F)	35:50	1,2,3,4,6,8-HxCDF (F)	34:57
1,2,3,7,8,9-HxCDD (L)	38:57	1,2,3,7,8,9-HxCDF (L)	39:34
1,2,3,4,6,7,9-HpCDD (F)	42:29	1,2,3,4,6,7,8-HpCDF (F)	41:58
1,2,3,4,6,7,8-HpCDD (L)	43:54	1,2,3,4,7,8,9-HpCDF (L)	44:52
(F) = First eluting isomer	(DB-5);	(L) = Last eluting isomer	(DB-5)

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirement, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: Date: 1/29/18

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Episode No.: Lab Name: Frontier Analytical Laboratory

Contract No.:

SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

Analysis Date: 27-JAN-18 08:43:41 CS3 or VER Data Filename: 26JAN18M

Sam:22

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	1.001 1.001 1.001 1.000 1.001	0.999-1.002 0.999-1.003 0.999-1.002 0.999-1.002
LABELED COMPOUNDS			
37Cl-2,3,7,8-TCDD 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	13c-1,2,3,4-TCDD	1.025 1.024 0.996 1.244 1.179	0.989-1.052 0.976-1.043 0.923-1.103 1.000-1.567 1.000-1.425 1.011-1.526

(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

Analyst: Date: 1/29/18

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Episode No.: Lab Name: Frontier Analytical Laboratory

Contract No.:

SAS No.: Init. Cal. Date: 12/22/17

Instrument ID: FAL3

GC Column ID: DB5MS

Analysis Date: 27-JAN-18 08:43:41 CS3 or VER Data Filename: 26JAN18M

Sam:22

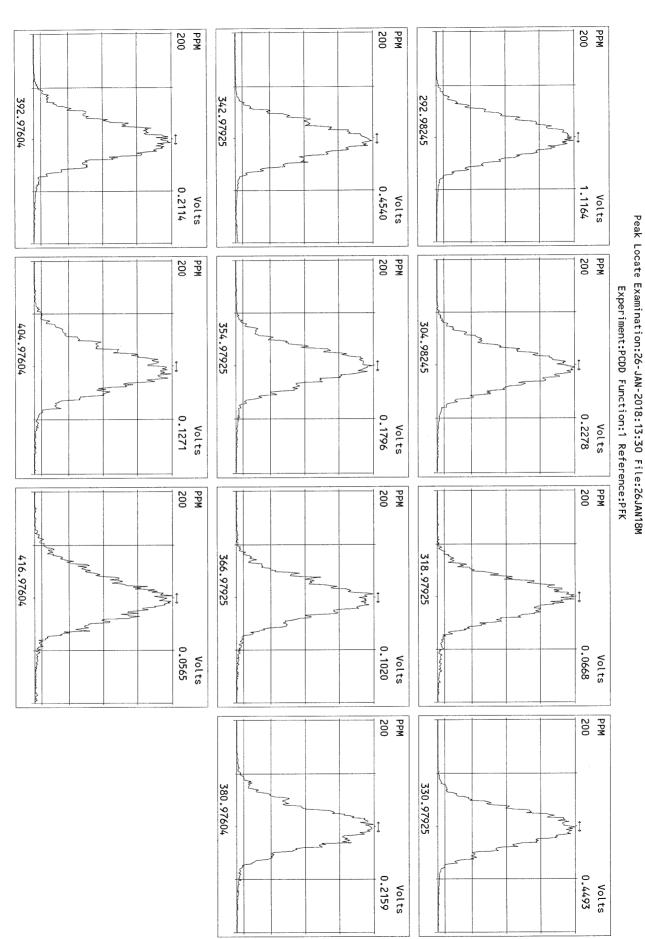
	RETENTION TIME		RRT
NATIVE ANALYTES	REFERENCE	RRT	QC LIMITS (1)
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.001	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.001	0.999-1.003
1,2,3,7,8,9-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.012	1.000-1.019
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.000	0.999-1.003
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.001	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13c-1,2,3,4,6,7,8-HpCDD	1.001	0.999-1.001
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.000	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.001	0.999-1.001
OCDD	13C-OCDD	1.001	0.999-1.001
OCDF	13C-OCDF	1.000	0.999-1.001
LABELED COMPOUNDS			
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,7,8,9-HxCDD	0.985	0.977-1.000
13C-1,2,3,6,7,8-HxCDD		0.989	0.981-1.003
13C-1,2,3,4,7,8-HxCDF		0.949	0.944-0.970
13C-1,2,3,6,7,8-HxCDF		0.954	0.949-0.975
13C-2,3,4,6,7,8-HxCDF		0.979	0.959-1.021
13C-1,2,3,7,8,9-HxCDF		1.016	0.977-1.047
13C-1,2,3,4,6,7,8-HpCDD		1.127	1.086-1.130
13C-1,2,3,4,6,7,8-HpCDF		1.078	1.043-1.085
13C-1,2,3,4,7,8,9-HpCDF		1.152	1.057-1.156
13c-ocdd		1.266	1.032-1.311
13C-OCDF		1.278	1.000-1.311

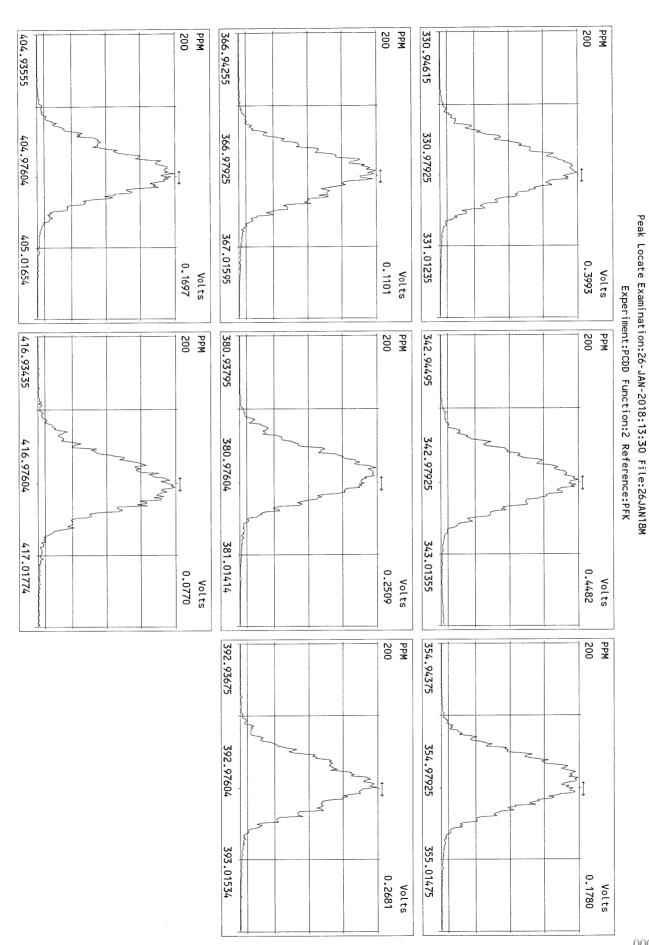
(1) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

Filename: 26JAN18M Sam:22 Acquired: 27-JAN-18 08:43:41 ICal: PCDDFAL3-12-22-17 FAL ID: ST012618M3 ConCal: ST012618M2 EndCal: ST012618M3 Client ID: 1613 CS3 171128J NATO 1989 Tox: 105 Amount: 1.000 GC Golumn: DB5MS Results: 11153-3RX 119 WHO 2005 Tox: WHO 1998 Tox: 130 Instrument ID: FAL3 Conc Qual Fac Noise-1 Noise-2 DL RT RRF RA Name Resp 2.50 2,3,7,8-TCDD 6.81e+06 0.80 y 27:10 1.06 11.3 1.00 50.3 2 50 1,2,3,7,8-PeCDD 2.17e+07 1.46 y 33:00 54.1 2.50 1.07 1,2,3,4,7,8-HxCDD 2.07e+07 1.28 y 38:21 2.50 1.08 54.8 2.32e+07 1.26 y 38:31 1,2,3,6,7,8-HxCDD 2.50 56.4 1,2,3,7,8,9-HxCDD 1.11 2.34e+07 1.28 y 38:57 54.0 2.50 1.87e+07 0.97 y 43:54 0.99 1,2,3,4,6,7,8-HpCDD 1.11 109 2.50 2.82e+07 0.85 y 49:19 OCDD 11.3 2.50 2,3,7,8-TCDF 8.19e+06 0.73 y 26:26 1.03 51.9 2.50 1,2,3,7,8-PeCDF 2.93e+07 1.47 y 31:15 0.95 51.8 2.50 2,3,4,7,8-PeCDF 2.79e+07 1.47 y 32:37 0.79 2.50 1,2,3,4,7,8-HxCDF 3.16e+07 1.20 y 36:56 51.9 1.20 2.50 1,2,3,6,7,8-HxCDF 3.45e+07 1.24 y 37:09 1.10 52.2 2.50 53.1 2,3,4,6,7,8-HxCDF 3.16e+07 1.20 y 38:07 1.08 1,2,3,7,8,9-HxCDF 2.74e+07 1.25 y 39:34 52.3 2.50 1.15 1,2,3,4,6,7,8-HpCDF 2.46e+07 1.00 y 41:58 1.23 50.6 2.50 2.50 1,2,3,4,7,8,9-HpCDF 1.85e+07 1.01 y 44:52 1.23 48.2 99.0 2.50 OCDF 3.12e+07 0.91 y 49:43 0.90 Rec 109 109 13c-2.3.7.8-TCDD 5.69e+07 0.81 y 27:09 1.02 96.4 13C-1,2,3,7,8-PeCDD 4.31e+07 1.54 y 32:59 96.4 0.88 96.6 13C-1,2,3,4,7,8-HxCDD 3.57e+07 1.23 y 38:19 0.85 96.6 96 1 13C-1,2,3,6,7,8-HxCDD 3.91e+07 1.24 y 38:29 96.1 0.94 89.7 13c-1,2,3,4,6,7,8-HpCDD 3.51e+07 1.07 y 43:52 0.90 89.7 76.5 13C-OCDD 4.65e+07 0.90 y 49:17 153 0.70 105 0.93 105 13C-2,3,7,8-TCDF 7.06e+07 0.81 y 26:25 95.3 95.3 13C-1,2,3,7,8-PeCDF 5.98e+07 1.52 y 31:15 0.87 95.0 95.0 13C-2,3,4,7,8-PeCDF 6.81e+07 1.53 y 32:36 0.99 108 13C-1,2,3,4,7,8-HxCDF 5.09e+07 0.55 y 36:55 1.09 108 13C-1,2,3,6,7,8-HxCDF 6.03e+07 0.57 y 37:08 104 1.35 104 103 13C-2,3,4,6,7,8-HxCDF 5.49e+07 0.56 y 38:05 103 1.23 92.6 13C-1,2,3,7,8,9-HxCDF 4.58e+07 0.55 y 39:33 1.14 92.6 93.5 13C-1,2,3,4,6,7,8-HpCDF 3.94e+07 0.50 y 41:57 0.97 93.5 88.3 88.3 13C-1,2,3,4,7,8,9-HpCDF 3.12e+07 0.49 y 44:50 0.82 76.0 13C-OCDF 6.99e+07 0.92 y 49:43 1.06 152 116 27:10 0.91 11.6 37Cl-2,3,7,8-TCDD 5.39e+06 13C-1,2,3,4-TCDD 5.09e+07 0.82 y 26:31 140 139 13C-1,2,3,4-TCDF 7.24e+07 0.82 y 25:16 141 13C-1,2,3,7,8,9-HxCDD 4.33e+07 1.24 y 38:55 Fac Noise-1 Noise-2 DL #Hom 17 2.50 1.06 56.2 Total Tetra-Dioxins 3.39e+07 24:06 13 2.50 Total Penta-Dioxins 7.02e+07 29:58 1.00 163 30 Total Hexa-Dioxins 9.63e+07 1.09 237 2.50 35:50 37 0.99 120 2.50 42:29 Total Hepta-Dioxins 4.17e+07 2.50 21 54.1 Total Tetra-Furans 3.92e+07 22:44 1.03 PeCDF 1 77.9 2.50 1st Fn. Tot Penta-Furans 4.30e+07 28:07 0.86 2.50 230 12 Total Penta-Furans 8.40e+07 29:55 0.86 152 35 2.50 34:57 1.13 268 Total Hexa-Furans 1.60e+08 32 Total Hepta-Furans 4.51e+07 41:58 1.23 103 2.50

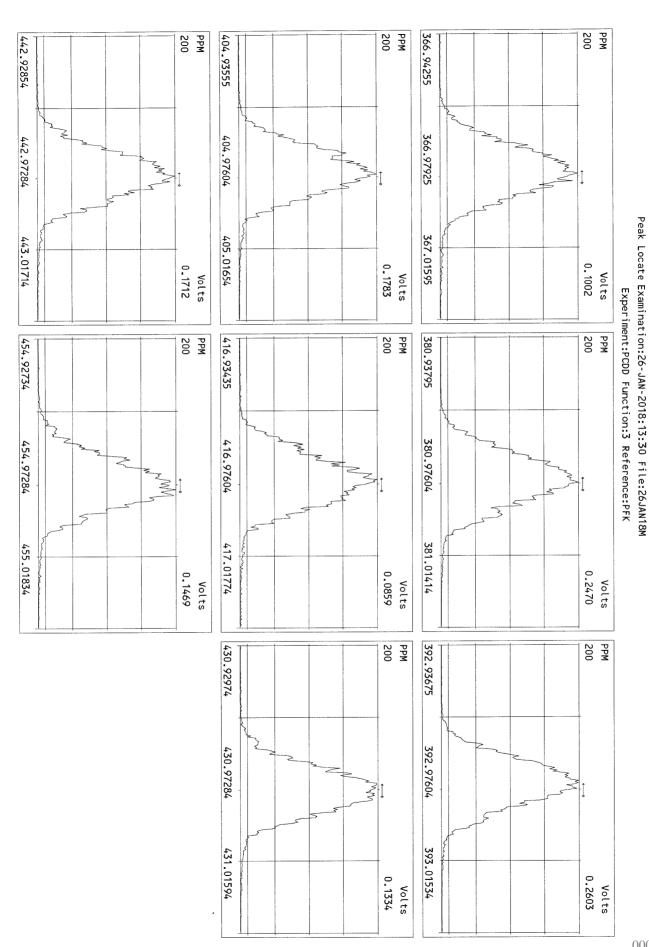
Analyst:

Date: 1/29/18

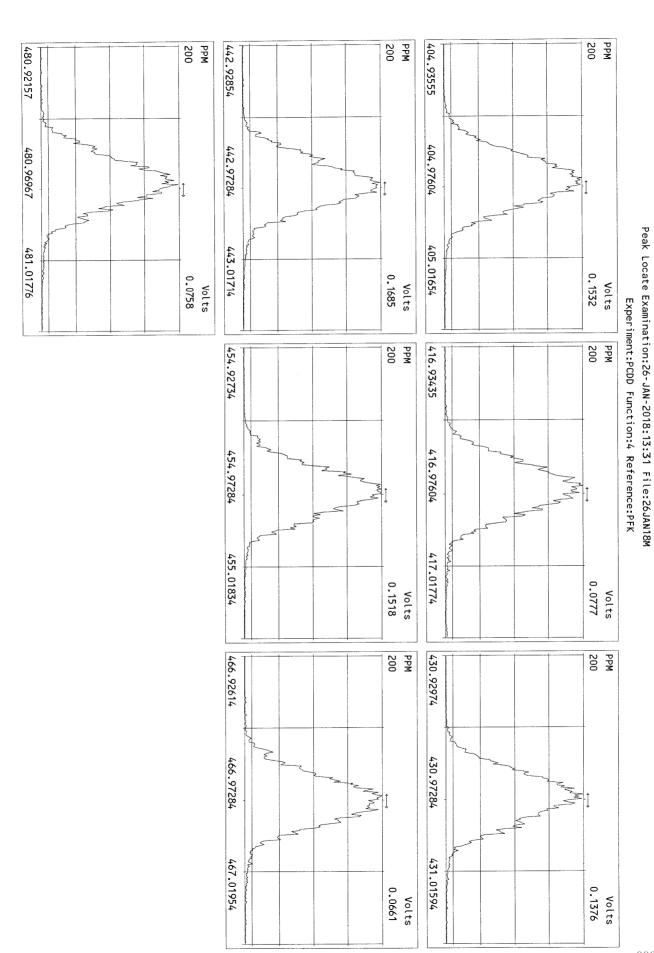

Run Name:26JAN18M

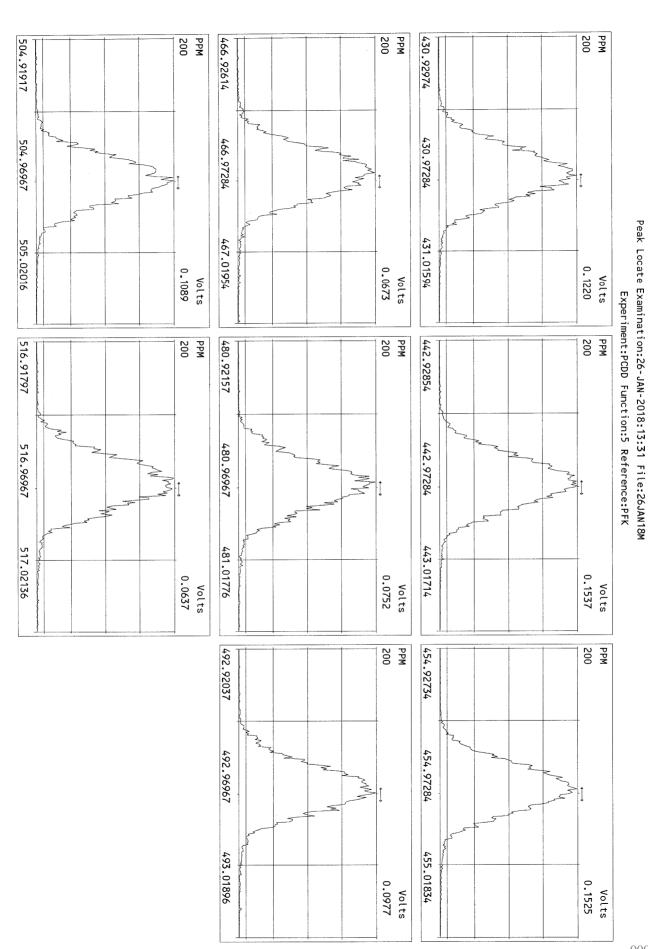

Data File S FAL ID	Client ID	Acquired	ConCal	EndCal	Analyst
26JAN18M 1 ST012618M1	1613 CS3 171128J	26-JAN-18 13:31:42	ST012618M1	ST012618M2	TC
26JAN18M 2 04385-001-0001-0PR	OPR	26-JAN-18 14:26:32	ST012618M1	ST012618M2	TC
26JAN18M 3 04385-001-0001-MB	Method Blank	26-JAN-18 15:21:27	ST012618M1	ST012618M2	TC
26JAN18M 4 11157-003-X002-SA	NFMW1d	26-JAN-18 16:16:22	ST012618M1	ST012618M2	TC
26JAN18M 5 11193-001-0001-SA	201801110018	26-JAN-18 17:11:11	ST012618M1	ST012618M2	TC
26JAN18M 6 11194-001-0001-SA	201801110019	26-JAN-18 18:06:03	ST012618M1	ST012618M2	TC
26JAN18M 7 11194-002-0001-SA	201801110020	26-JAN-18 19:00:54	ST012618M1	ST012618M2	TC
26JAN18M 8 11194-003-0001-SA	201801110021	26-JAN-18 19:55:45	ST012618M1	ST012618M2	TC
26JAN18M 9 11202-001-0001-SA	EFF-001A	26-JAN-18 20:50:36	ST012618M1	ST012618M2	TC
26JAN18M 10 SB012618M1	Solvent Blank	26-JAN-18 21:45:27	ST012618M1	ST012618M2	TC
26JAN18M 11 ST012618M2	1613 CS3 171128J	26-JAN-18 22:40:18	ST012618M2	ST012618M3	TC
26JAN18M 12 SB012618M2	Solvent Blank	26-JAN-18 23:35:08	ST012618M2	ST012618M3	TC
26JAN18M 13 11203-001-0001-SA	Sycamore Creek Downstream R _T	27-JAN-18 00:30:00	ST012618M2	ST012618M3	TC
26JAN18M 14 11204-001-0001-SA	Sycamore Creek Upstream RSW	27-JAN-18 01:24:51	ST012618M2	ST012618M3	TC
26JAN18M 15 11211-001-0001-SA	AMW-3-011218	27-JAN-18 02:19:42	ST012618M2	ST012618M3	TC
26JAN18M 16 11211-002-0001-SA	AMW-4-011218	27-JAN-18 03:14:35	ST012618M2	ST012618M3	TC
26JAN18M 17 11211-003-0001-SA	AMW-2-011218	27-JAN-18 04:09:25	ST012618M2	ST012618M3	TC
26JAN18M 18 11211-004-0001-SA	AMW-1-011218	27-JAN-18 05:04:16	ST012618M2	ST012618M3	TC
26JAN18M 19 11211-005-0001-SA	AMW-5-011218	27-JAN-18 05:59:07	ST012618M2	ST012618M3	TC
26JAN18M 20 SB012618M3	Solvent Blank	27-JAN-18 06:53:59	ST012618M2	ST012618M3	TC
26JAN18M 21 SB012618M4	Solvent Blank	27-JAN-18 07:48:50	ST012618M2	ST012618M3	TC
26JAN18M 22 ST012618M3	1613 CS3 171128J	27-JAN-18 08:43:41	ST012618M2	ST012618M3	TC

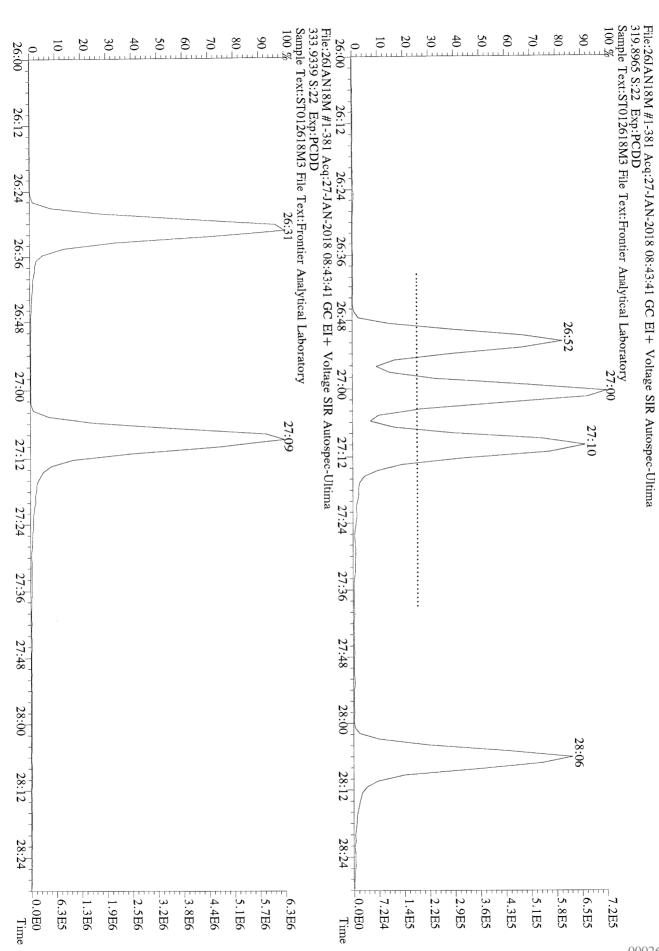
Instrument: FAL3 GC: DB5MS Experiment:PCDD

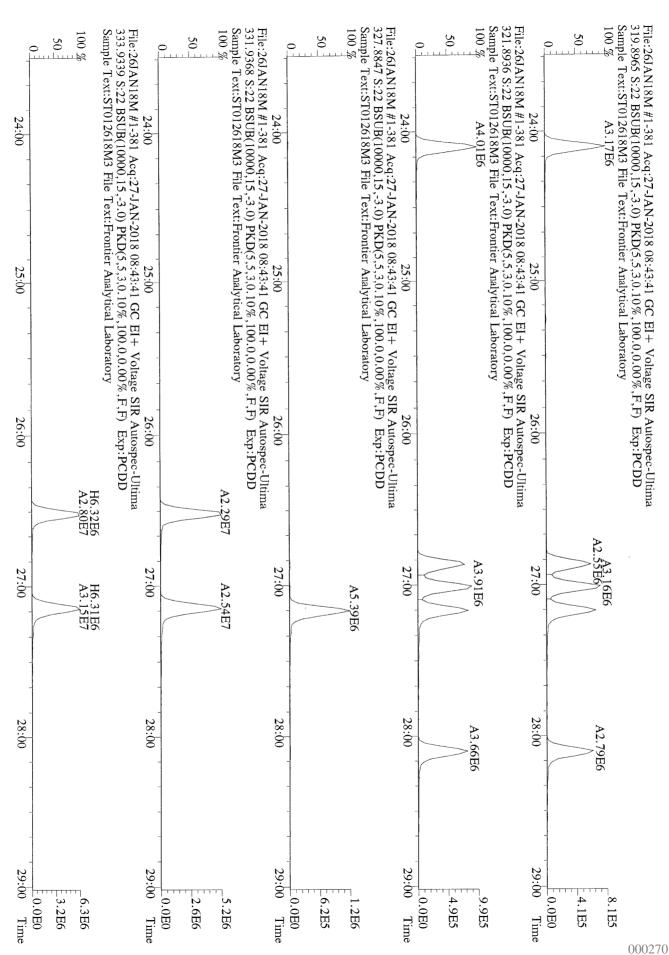

1613 CS3 171128J 27-JAN-

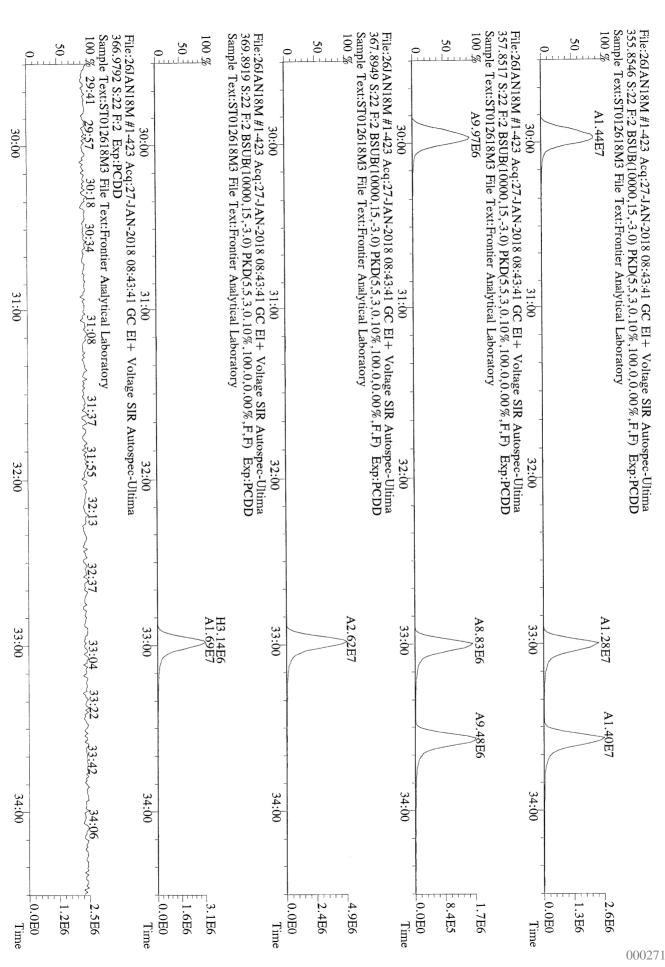
Data Backed Up:_____

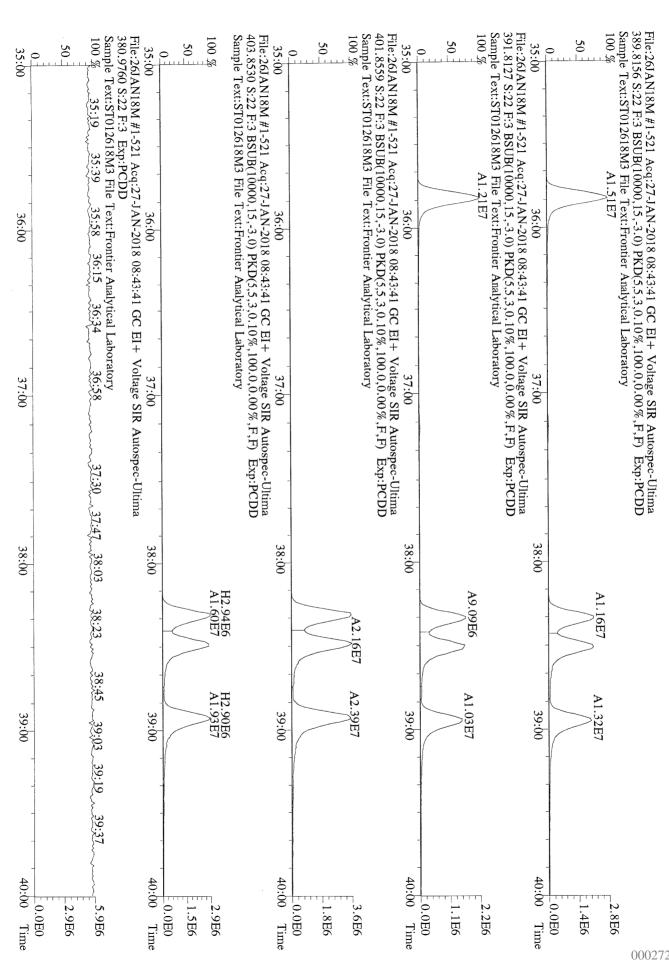


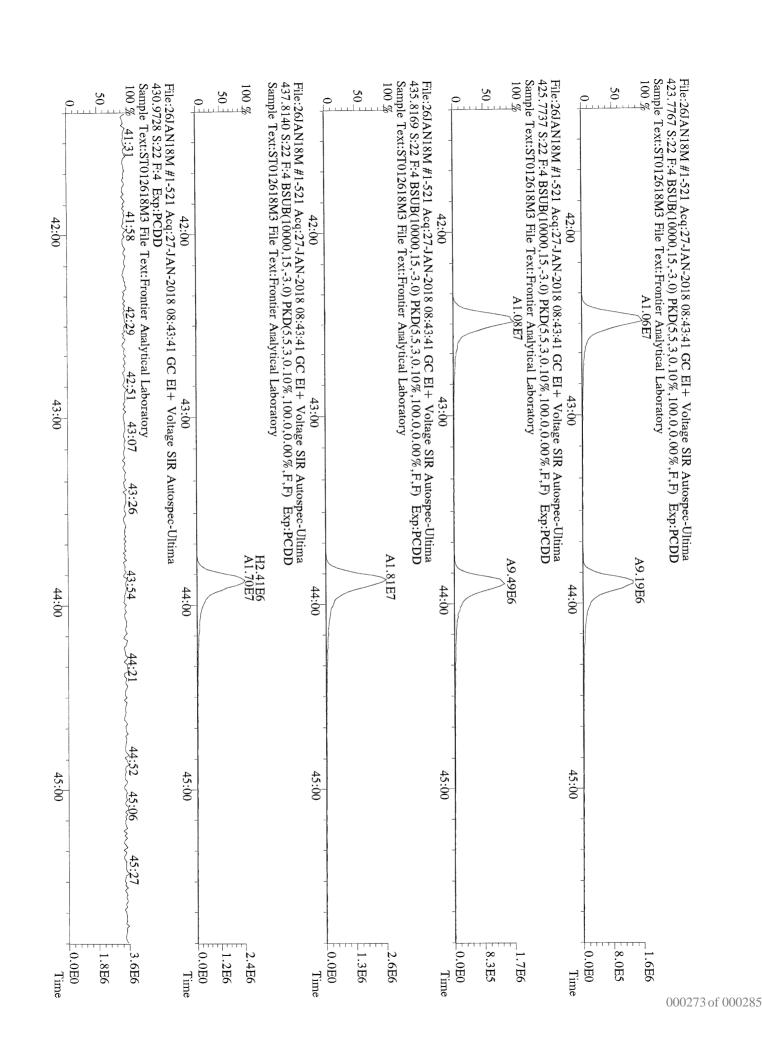

000265 of 000285

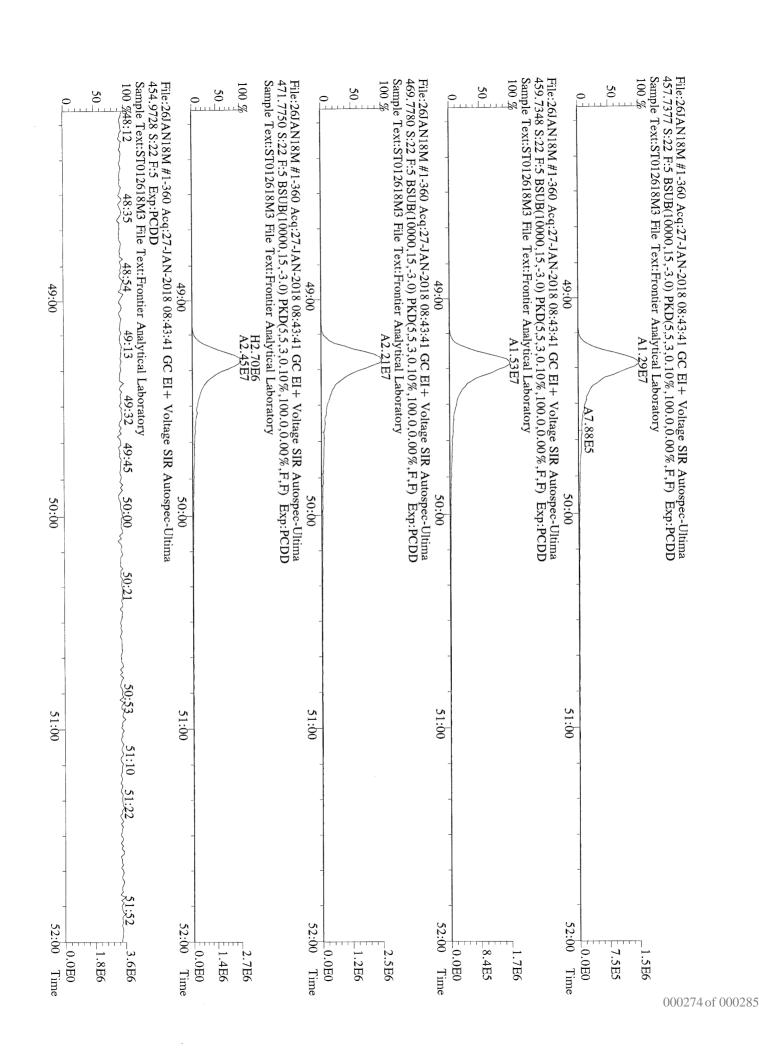

 $000266 \, \mathrm{of} \, 000285$

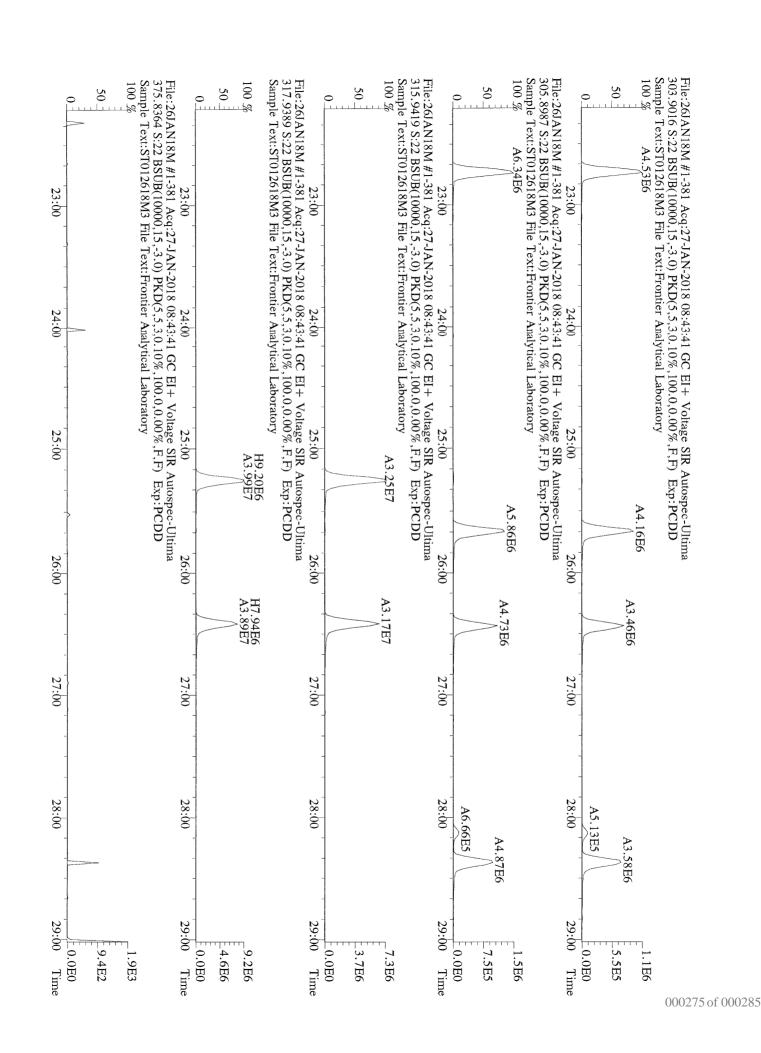


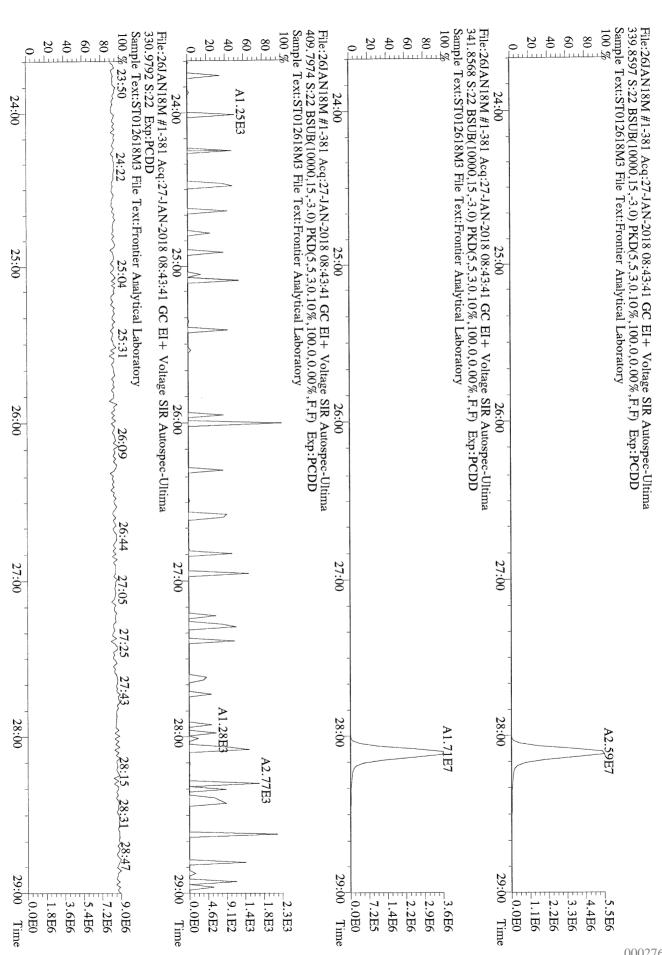

000267 of 000285

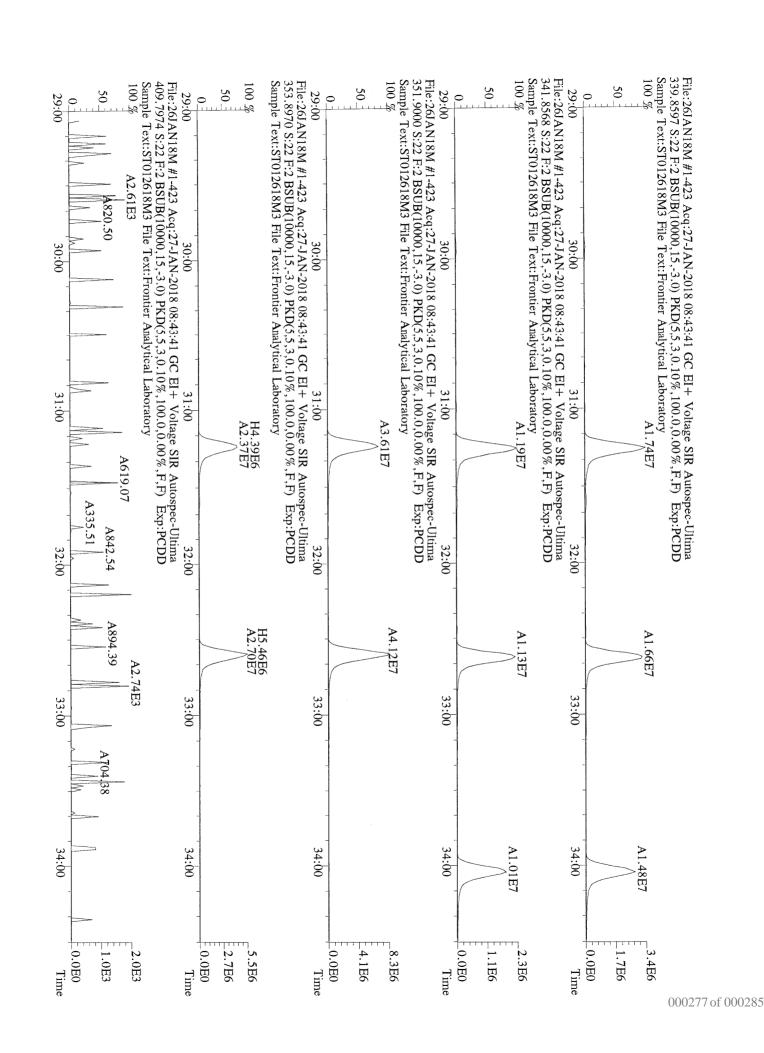


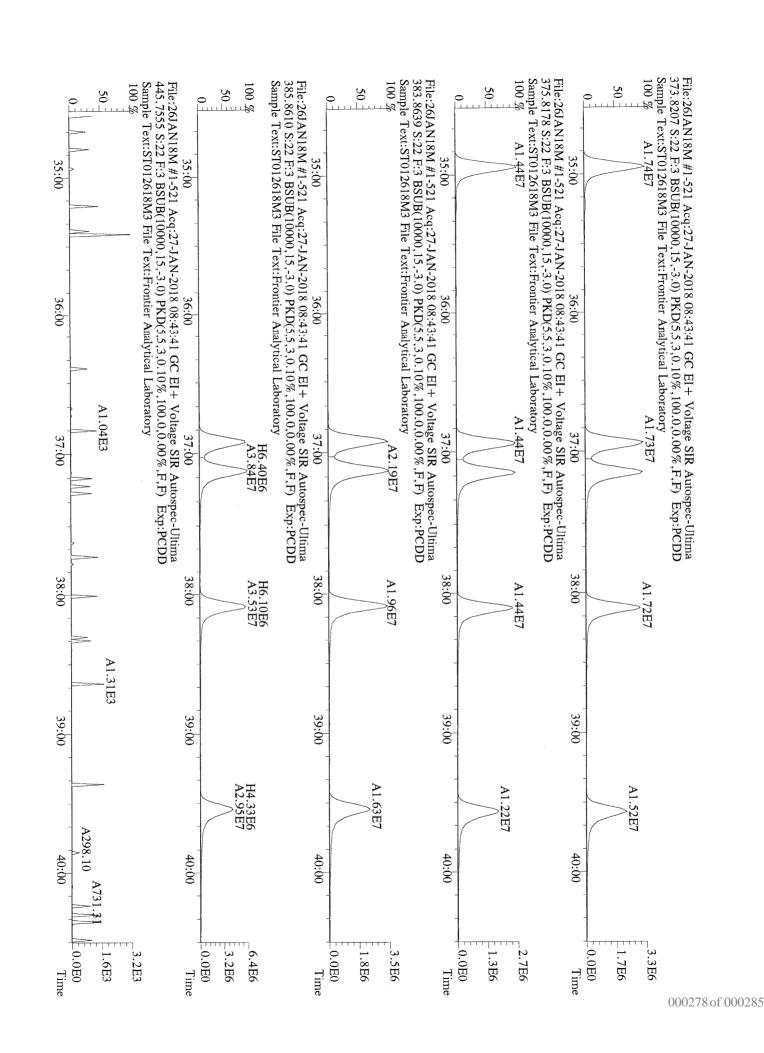

 $000268 \, \mathrm{of} \, 000285$

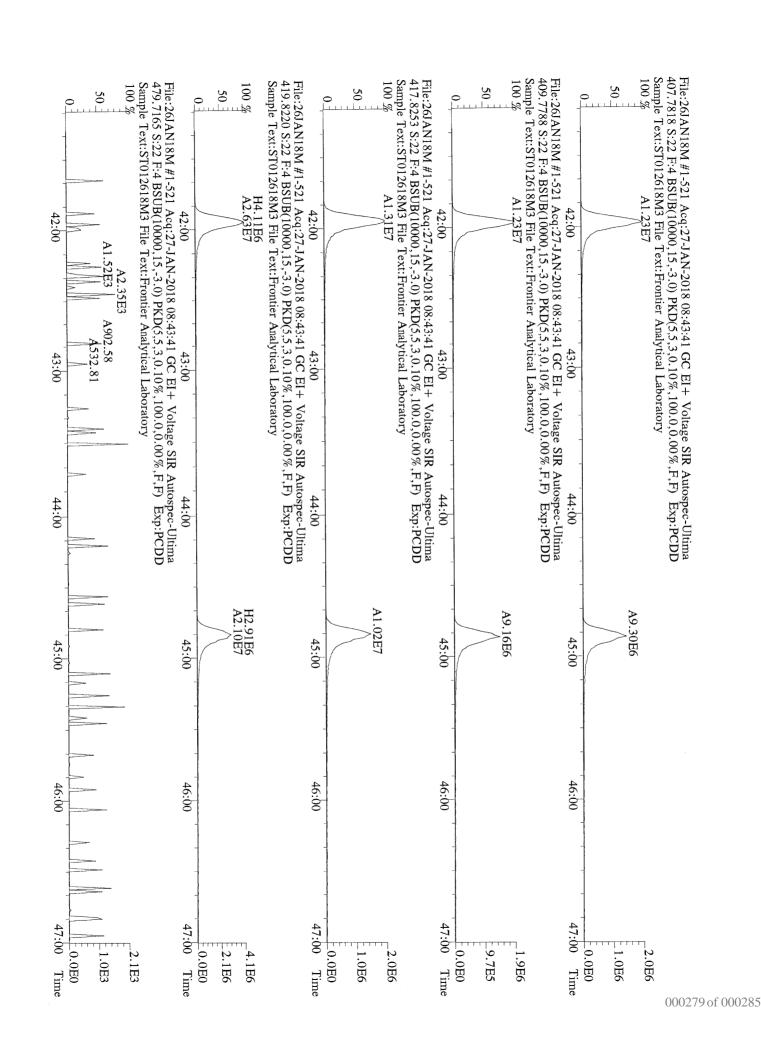


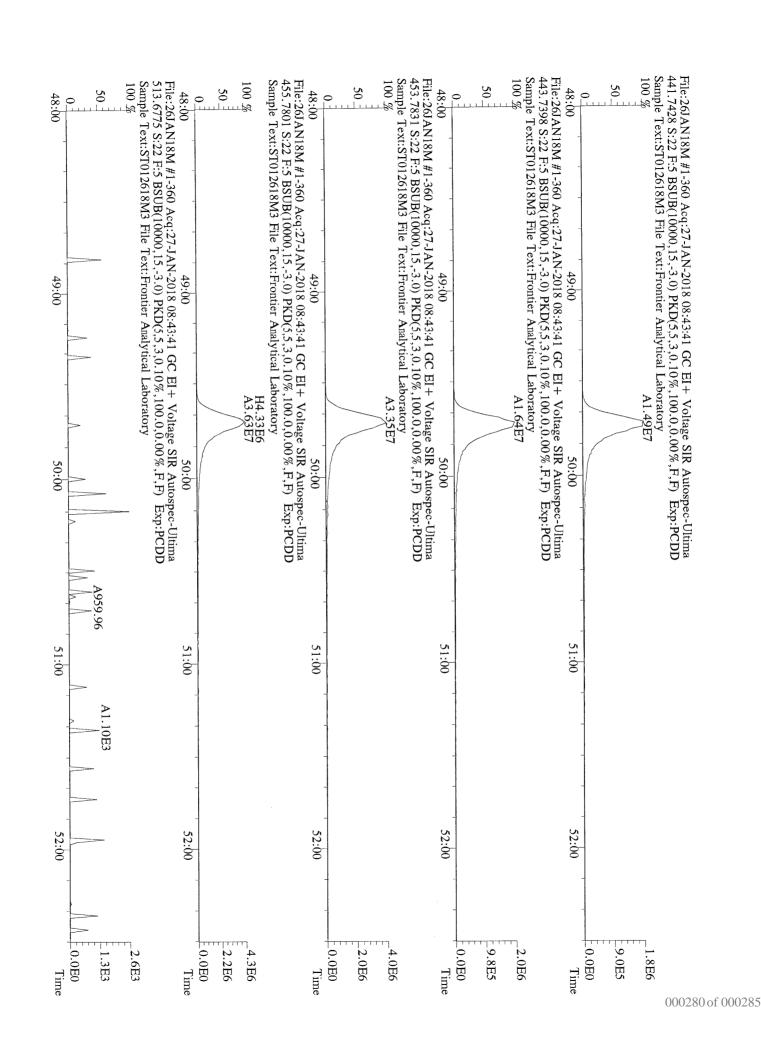


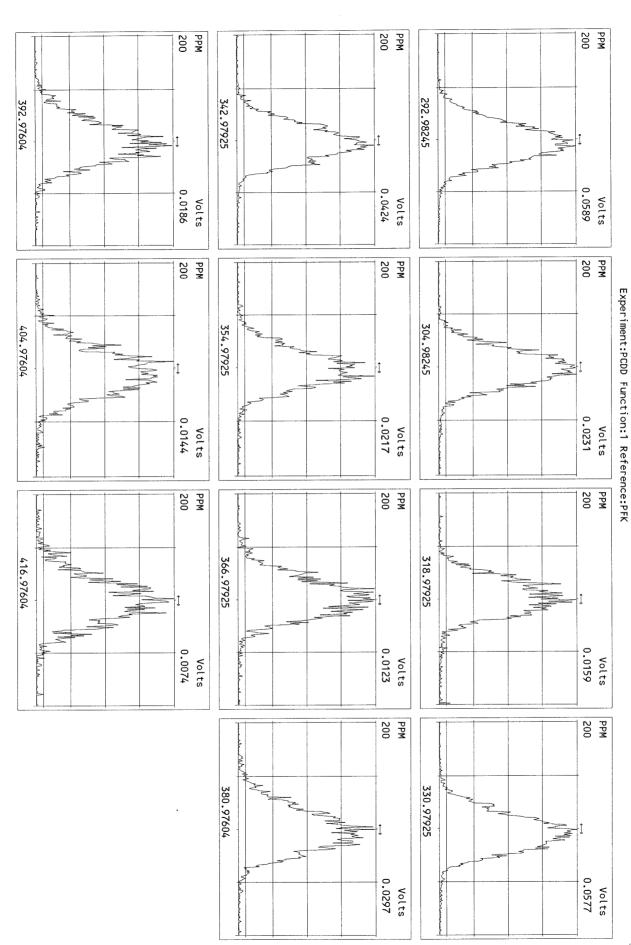


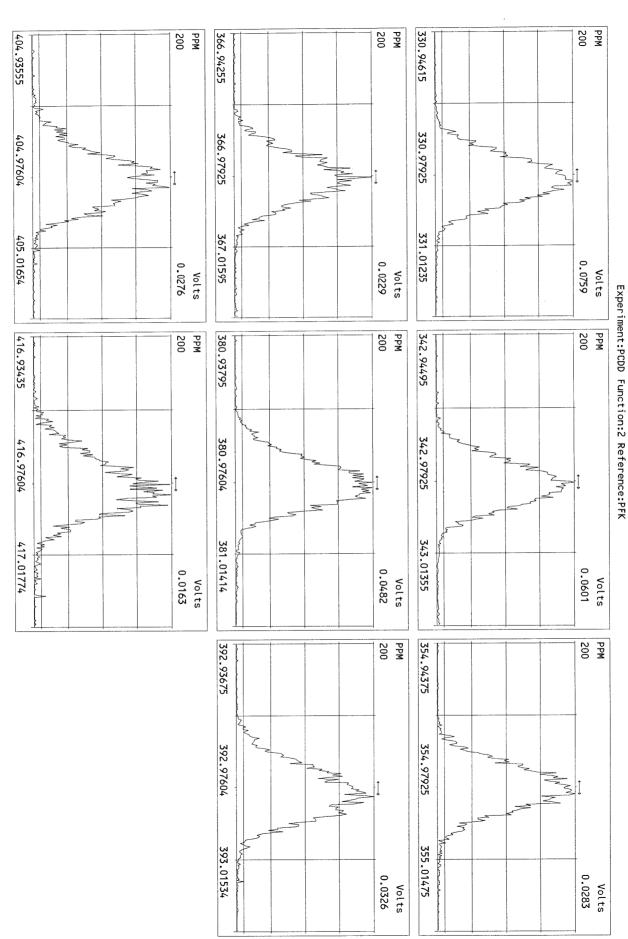


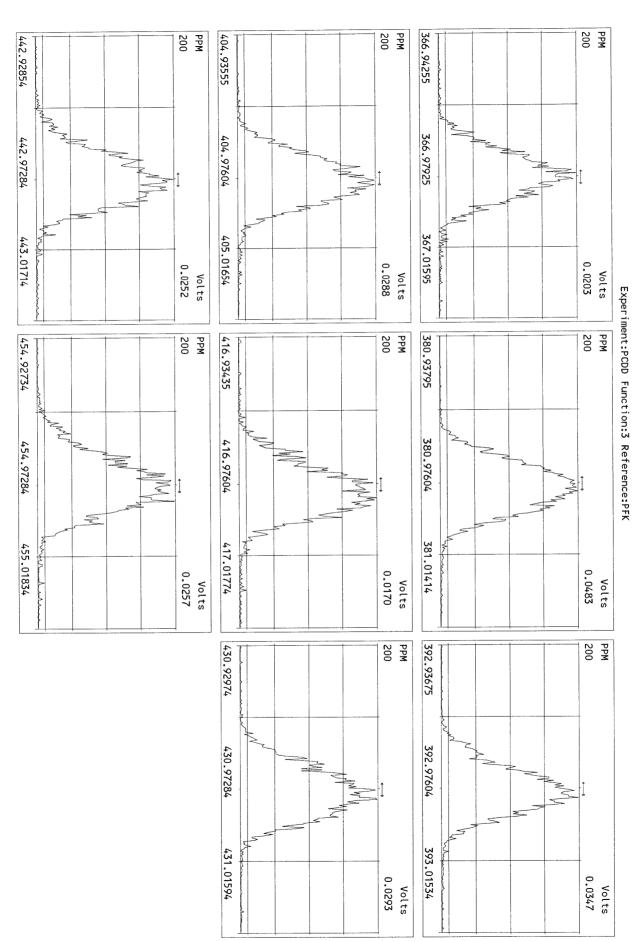




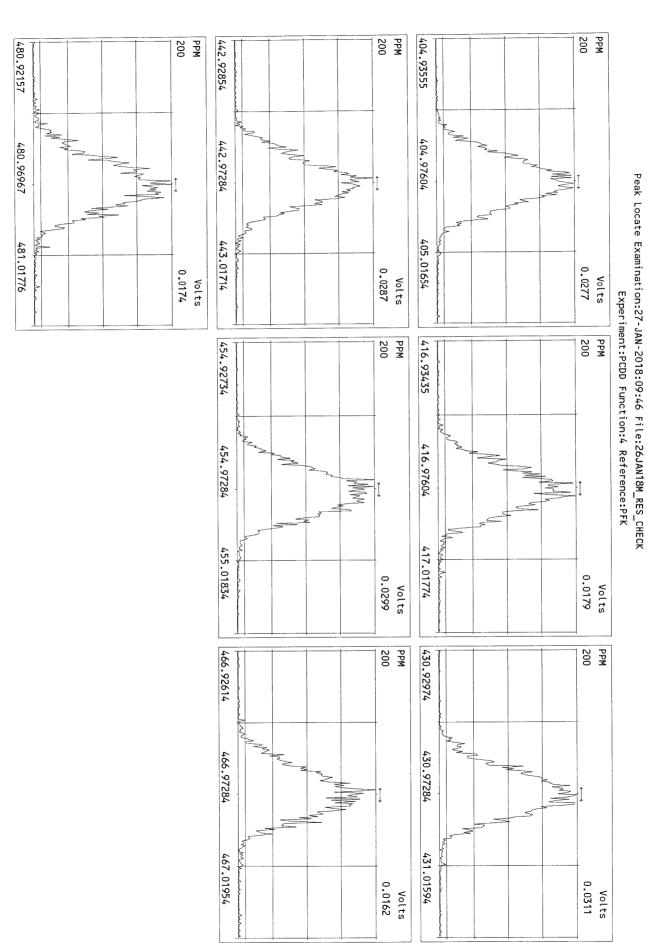




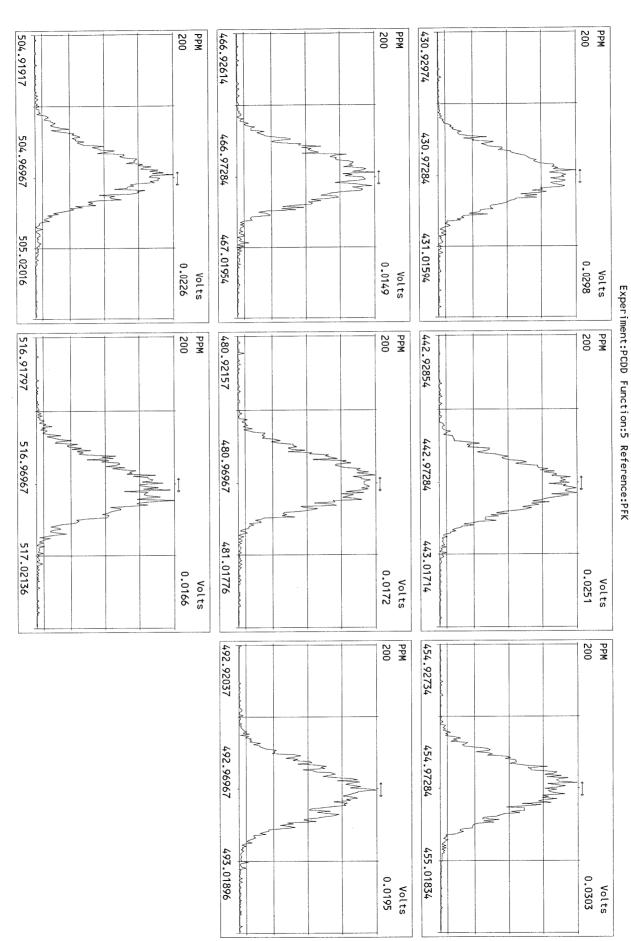




Peak Locate Examination:27-JAN-2018:09:40 File:26JAN18M_RES_CHECK


000282 of 000285

Peak Locate Examination:27-JAN-2018:09:42 File:26JAN18M_RES_CHECK



000283 of 000285

Peak Locate Examination:27-JAN-2018:09:44 File:26JAN18M_RES_CHECK

000284 of 000285

000285 of 000285

Peak Locate Examination:27-JAN-2018:09:48 File:26JAN18M_RES_CHECK

January 15, 2019

FAL Project: 12096

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **12096**. This corresponds to your project number **812310** and purchase order number **A-673**. Five aqueous samples were received on 12/27/2018 in good condition. These samples were extracted and analyzed by EPA Method 8290 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **12096**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and the sample photos. The enclosed results and electronic data deliverable (EDD) are specifically for the samples referenced in this report only. These results meet all NELAP requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**, our State of California ELAP certificate number is **2934** and our State of Washington certificate number is **C844**. This report along with the associated EDD has been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **12096**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>12096</u>

Received on: <u>12/27/2018</u> Project Due: <u>01/21/2019</u> Storage: <u>R-4</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
12096-001-SA	0	812310	AMW-1-122018	EPA 8290 D/F	Aqueous	12/20/2018	09:20 am	01/19/2019
12096-001-SA 12096-002-SA	0	812310	AMW-2-122018	EPA 8290 D/F	Aqueous	12/20/2018	10:31 am	01/19/2019
12096-003-SA	0	812310	AMW-3-122018	EPA 8290 D/F	Aqueous	12/20/2018	01:00 pm	01/19/2019
12096-004-SA 12096-005-SA	0	812310 812310	AMW-4-122018 AMW-5-122018	EPA 8290 D/F EPA 8290 D/F	Aqueous Aqueous	12/20/2018 12/20/2018	11:55 am 11:10 am	01/19/2019

EPA Method 8290 PCDD/F

FAL ID: 12096-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X4766

Date Extracted: 01-11-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L Acquired: 01-14-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.770 0.921 1.08 1.08 1.01 1.38 2.47		- - - - - -	0.178 0.289 0.311 0.370 0.324 0.393 1.10	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.770 0.921 1.08 1.38	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND	0.527 0.732 0.718 0.651 0.733 0.780 0.808 1.10 1.37 2.36		- - - - - - - - -	0.174 0.300 0.311 0.290 0.264 0.318 0.359 0.346 0.484 0.858	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.527 0.732 0.808 1.37	
Internal Standards	% Rec	QC Limits 40.0 - 135	Qual			sotopic Labeled Star		de QC range	e but
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	93.9 92.8 93.8	40.0 - 135 40.0 - 135 40.0 - 135				Analyte is present in Chemical Interference		ank	
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	88.8 86.8	40.0 - 135 40.0 - 135			D F	Presence of Dipheny	Ethers	I'l I'	
13C-2,3,7,8-TCDF	96.8	40.0 - 135				Analyte concentration Analyte concentration			•
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	89.6 92.4 87.9	40.0 - 135 40.0 - 135 40.0 - 135				Analyte confirmation Analyte concentration		•	nge
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	93.9 91.9	40.0 - 135 40.0 - 135				Maximum possible co Analyte Not Detected			
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	92.6 86.6	40.0 - 135 40.0 - 135				Not Provided	at Detecti	On Limit Levi	51
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF	91.1 87.6	40.0 - 135 40.0 - 135				Pre-filtered through a Sample acceptance o			filter
Cleanup Surrogate						Matrix interferences Result taken from dilu	ution or rei	njection	
37Cl-2,3,7,8-TCDD	85.2	50.0 - 150			1				

FAL ID: 12096-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X4766 Date Extracted: 01-11-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: ng/ml Acquired: 01-14-2019 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	9.64 46.8 45.3 45.3 45.2 46.4 89.9	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 70.0 - 130	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	9.09 46.5 45.6 46.2 45.8 45.3 45.7 46.6 46.4 91.0	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	87.7 78.9 77.9 77.8 72.8 75.1	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,5,4,7,8,9-HpCDF	94.0 75.8 79.6 73.6 76.4 76.9 76.7 70.8 75.7 76.3	40.0 - 135 40.0 - 135	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	88.9	50.0 - 150	

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- DNQ Analyte concentration is below calibration range
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Reviewed By:

Date: 1/15/2019

FAL ID: 12096-001-SA Client ID: AMW-1-122018 Matrix: Aqueous Batch No: X4766

Date Extracted: 01-11-2019 Date Received: 12-27-2018 Amount: 0.475 L

ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L

Acquired: 01-14-2019 2005 WHO TEQ: 0.0

				2005					
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	1.13		-	0.178				
1,2,3,7,8-PeCDD	ND	1.74		-	0.289				
1,2,3,4,7,8-HxCDD	ND	2.05		-	0.311				
1,2,3,6,7,8-HxCDD	ND	1.89		-	0.370		ND	1.13	
1,2,3,7,8,9-HxCDD	ND	1.84		-	0.324		ND	1.74	
1,2,3,4,6,7,8-HpCDD	ND	3.62		-	0.393		ND	2.05	
OCDD	ND	4.66		-	1.10	Total HpCDD	ND	3.62	
2,3,7,8-TCDF	ND	0.797		-	0.174				
1,2,3,7,8-PeCDF	ND	1.75		-	0.300				
2,3,4,7,8-PeCDF	ND	1.82		-	0.311				
1,2,3,4,7,8-HxCDF	ND	1.99		-	0.290				
1,2,3,6,7,8-HxCDF	ND	2.11		-	0.264				
2,3,4,6,7,8-HxCDF	ND	2.31		-	0.318		ND	0.707	
1,2,3,7,8,9-HxCDF	ND	2.62		-	0.359		ND	0.797	
1,2,3,4,6,7,8-HpCDF	ND	2.65		-	0.346		ND	1.82	
1,2,3,4,7,8,9-HpCDF OCDF	ND ND	2.36 3.30		-	0.484 0.858		ND ND	2.62 2.65	
OCDF	ND	3.30		-	0.000	Total npcbr	ND	2.00	
Internal Standards	% Rec	QC Limits	Qual						
12C 2 2 7 9 TCDD	76.6	40.0 - 135				Isotopic Labeled Sta		de QC range	e but
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	76.6 71.6	40.0 - 135			^	signal to noise ratio i	s >10:1		
13C-1,2,3,4,7,8-HxCDD	74.3	40.0 - 135			В	Analyte is present in	Method Bla	ank	
13C-1,2,3,6,7,8-HxCDD	77.1	40.0 - 135			С	Chemical Interference	-		
13C-1,2,3,4,6,7,8-HpCDD	74.1	40.0 - 135			-				
13C-OCDD		40.0 - 135				Presence of Dipheny			
						Analyte concentratio			_
13C-2,3,7,8-TCDF	78.5	40.0 - 135			E	Analyte concentratio	n is above o	calibration ra	nge
13C-1,2,3,7,8-PeCDF	71.1	40.0 - 135			F	Analyte confirmation	on seconda	ary column	
13C-2,3,4,7,8-PeCDF	71.6	40.0 - 135				Analyte concentratio		•	nge
13C-1,2,3,4,7,8-HxCDF	68.9	40.0 - 135				•			rige
13C-1,2,3,6,7,8-HxCDF		40.0 - 135				Maximum possible c			
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	72.4 74.0	40.0 - 135			ND	Analyte Not Detected	d at Detection	on Limit Leve	el
13C-1,2,3,7,6,9-fixCDF 13C-1,2,3,4,6,7,8-HpCDF	74.0 71.4	40.0 - 135 40.0 - 135			NP	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	74.0	40.0 - 135				Pre-filtered through a	\Mhatman	0.7um GE/E	filtor
13C-OCDF	74.0 78.1	40.0 - 135				_			IIILEI
302.						Sample acceptance	criteria not i	met	
Cloop: C						Matrix interferences			
Cleanup Surrogate					*	Result taken from dil	ution or reir	njection	
37CI-2,3,7,8-TCDD	75.0	50.0 - 150							

Analyst: Date: 1/15/2019

Reviewed By: Date: 1/15/2019

2005 WHO Tox

0.00342

DL Qual

1.06

1.98

3.13

3.60

0.988

2.33 2.91

3.42

FAL ID: 12096-002-SA Client ID: AMW-2-122018 Matrix: Aqueous Batch No: X4766

Date Extracted: 01-11-2019 Date Received: 12-27-2018 Amount: 0.479 L ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L

MDL

0.178 0.289 0.311 0.370

0.324

0.393

1.10

0.174

0.174 0.300 0.311 0.290 0.264 0.318

0.359

0.346

0.484

0.858

Compound

Total TCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF Total HxCDF

Total HpCDF

Acquired: 01-14-2019 2005 WHO TEQ: 0.00342

Conc

ND

ND

ND

ND

ND

ND

ND

Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	1.06 1.98 2.92 3.13 2.83 3.60	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.988 2.17 2.33 1.92 1.95 2.18 2.91 2.74 3.42 4.86	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	67.7 72.1 73.1 73.2	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	66.4 65.2 66.3 69.2 64.7 67.6 71.5	40.0 - 135 40.0 - 135	
Cleanup Surrogate			
37Cl-2,3,7,8-TCDD	76.9	50.0 - 150	

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
S	Sample acceptance criteria not met
Χ	Matrix interferences
*	Result taken from dilution or reinjection

DL Qual

0.952 1.82

2.61

3.27

0.702 1.50 2.28

2.60

FAL ID: 12096-003-SA Client ID: AMW-3-122018 Matrix: Aqueous Batch No: X4766 Date Extracted: 01-11-2019 Date Received: 12-27-2018 Amount: 0.481 L ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L

MDL

0.178 0.289 0.311 0.370

0.324

0.393

1.10

0.174

0.174 0.300 0.311 0.290 0.264 0.318

0.359

0.346

0.484

0.858

Compound

Total TCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF Total PeCDF Total HxCDF

Total HpCDF

Acquired: 01-14-2019 2005 WHO TEQ: 0.00168

Conc

ND

ND

ND

ND

ND

ND

ND

Compound	Conc	DL	Qual	2005 WHO Tox
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND 5.61	0.952 1.82 2.49 2.61 2.39 3.27	J	- - - - - 0.00168
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.702 1.50 1.49 1.76 1.85 1.95 2.28 1.88 2.60 3.59		- - - - - - - -
Internal Standards	% Rec	QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	88.9 85.5 86.9 89.6 89.3 99.5	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135		
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	94.4 87.5 87.5 80.8 84.9 85.5 87.2 85.8 87.5 93.2	40.0 - 135 40.0 - 135		
Cleanup Surrogate				
37CI-2,3,7,8-TCDD	88.5	50.0 - 150		

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
E	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
S	Sample acceptance criteria not met
Χ	Matrix interferences

Result taken from dilution or reinjection

FAL ID: 12096-004-SA Client ID: AMW-4-122018 Matrix: Aqueous Batch No: X4766

Date Extracted: 01-11-2019 Date Received: 12-27-2018 Amount: 0.480 L

ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L

Acquired: 01-14-2019 2005 WHO TEQ: 0.00318

Compound	Conc	DL	Qual	2005 WHO Tox	MDI	Compound	Conc	DL C	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.914 1.46 1.83 2.02 1.80 3.29	J	- - - - - 0.00318	0.178 0.289 0.317 0.370 0.324 0.393 1.10	Total TCDD Total PeCDD Total HxCDD	ND ND ND ND	0.914 1.46 2.02 3.29	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.893 1.32 1.42 1.30 1.29 1.32 1.82 1.93 2.48 3.46		- - - - - - - - -	0.174 0.300 0.317 0.290 0.318 0.359 0.346 0.484 0.858	O Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.893 1.42 1.82 2.48	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	88.0 89.5 92.7 90.6 97.0 96.9 91.5 92.2 84.1 87.6 87.0 87.9 89.2 91.7 94.2	40.0 - 135 40.0 - 135			C D DNQ E F J	Isotopic Labeled Sta signal to noise ratio Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detecte Not Provided Pre-filtered through Sample acceptance Matrix interferences Result taken from di	is >10:1 Method Blace yl Ethers on is below on is above on on second on is below of concentration d at Detection a Whatman criteria not	calibration rang calibration rang ary column calibration rang on on Limit Level	ge ge ge
37CI-2,3,7,8-TCDD	90.2	50.0 - 150							

А	signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
INI	NOT FTOVIDED

Analyst: Date: 1/15/2019

Reviewed By: Date: 1/15/2019

DL Qual

0.790 1.71

2.63

3.98

0.965 1.28 2.26

2.68

FAL ID: 12096-005-SA Client ID: AMW-5-122018 Matrix: Aqueous Batch No: X4766

Date Extracted: 01-11-2019 Date Received: 12-27-2018 Amount: 0.483 L

ICal: PCDDFAL4-1-7-19 GC Column: DB5MS Units: pg/L

Acquired: 01-15-2019 2005 WHO TEQ: 0.00318

Compound	Con	c DL	Qual	2005 WHO Tox	MD	L Compound	Conc	D
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NI NI NI NI 10.	1.71 2.34 2.63 2.32 3.98	J	- - - - - 0.00318	0.17 0.28 0.31 0.37 0.32 0.39	9 1 0 Total TCDD 4 Total PeCDD 3 Total HxCDD	ND ND ND ND	0.79 1.7 2.6 3.9
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	NI NI NI NI NI NI NI	1.51 1.58 1.56 1.56 1.63 1.65 1.65 1.65 1.226 1.236 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.6		-	0.17 0.30 0.31 0.29 0.26 0.31 0.35 0.34 0.48	0 1 0 4 8 8 9 Total TCDF 6 Total PeCDF 4 Total HxCDF	ND ND ND ND	0.96 1.2 2.2 2.6
Internal Standards	% Rec	QC Limits	Qual					
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-0,2,3,4,7,8,9-HyCDF 13C-0,2,3,4,7,8,9-HyCDF 13C-0,2,3,4,7,8,9-HyCDF	87.2 88.8 88.9 92.6 89.6 101 88.3 89.7 88.6 83.5 88.2 83.4 85.5 90.0 94.4	40.0 - 135 40.0 - 135			A B C D D N Q E F J M N D N P P S X *	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference Presence of Dipheny Analyte concentratio Analyte concentratio Analyte concentratio Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences	s > 10:1 Method Blace If Ethers In is below on secondary In is below on secondary In is below on the secondary If the seconda	calibration calibration ary colum calibration n on Limit L 0.7um G met
37Cl-2,3,7,8-TCDD	89.2	50.0 - 150			*	Result taken from dil	ution or reir	njection
3701-2,3,7,0-1000	00.2	50.0 - 150						

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
S	Sample acceptance criteria not met
Χ	Matrix interferences

Analyst Date: 1/15/2019

Reviewed By: Date: 1/15/2019

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To N	Michael	l Erdahl			SUB	BCON'	[RAC]	ER .	tront	:er							#O NAROUND T	
_			T		PRO	JECT	NAM					PO	#		⊀Sta □ RU	ndard	(3 Weeks)	
1 2		an and Bruya	a, Inc.			6	123	10			A	-67	3		Rush	charge	es authorized	l by:
Address3	012 16	th Ave W			REM	ARK:										SAN	IPLE DISPO	SAL
City, State, ZIP_S	<u>eattle,</u>	WA 98119					ease F		Dogula		12	00	16				fter 30 days imples	
Phone #(206) 285	-8282	Fax #(2	206) 283-5044			P.	lease r	-maii	resun		12	ے ر					with instructi	ons
										ANAI	LYSES	SRE	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Matı	cix	# of jars	Total Organic Carbon	COD	BOD	Chloride	Sulfate	Silfide	Dioxins/ 8240 Funns	-			Not	es
AMW -1-122018		12/20/16	0920	water	_								<u> </u>			ļ		
AMW-2-122018			(03	4						,			<u> </u>	<u> </u>		ļ		
810221-8-MM			1300										γ_					
810551-4-VMA			1155										<u> </u>					
AUNW-5 -122018		*	1110	1									×					
			- Nit															
													-					
							٠						 	· 60				
	:																	
			44.00															
Friedman & Bruya,	Inc.		SIGNATURE	1					T NAI	ИE				OMP			DATE	TIME
3012 16th Avenue V		Relinquished	200			Micl	hael E	rdahl					Friedm	an & I	Bruya		12/21/16	
Seattle, WA 98119-2	2029	Received by	10 20	P	34		Var	411	M	711	OP		From	orner 12/27/18 945				
Ph. (206) 285-8282		Relinquished	by:	.,		Karthy Zapp From												
Fax (206) 283-5044		Received by:	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10												0000)10 of	000012	

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 12096

Client:	Friedman & Bruya, Inc.
Client Project ID:	812310
Date Received:	12/27/2018
Time Received:	09:45 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Fed-Ex
Tracking Number:	813795597913
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	2
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9
Anomalies or additional comments:	•

July 17, 2019

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **12520**. This corresponds to your project number **907023** and purchase order number **A-312**. Five aqueous samples were received on 7/3/2019 in good condition. All five samples were extracted and analyzed for tetra through octa chlorinated dibenzo dioxins and furans via EPA Method **8290**. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **12520**.

The following Level IV report consists of an Analytical Data section, a Sample Receipt section, a Laboratory Raw Data section, and an Instrument Raw Data section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form, and a sample photo. The Laboratory Raw Data section contains our project request sheet, a percent solids sheet, an extraction bench sheet and the cleanup bench sheet. The instrument raw data section contains three sub-sections; the sample results section, the initial calibration section and the continuing/ending calibration section. The sample results sub-section consists of the quantitation summary forms with chromatograms for all samples and QC. The initial calibration sub-section consists of the individual quantitation summary forms and chromatograms for each point of the initial calibration curve as well as an overall quantitation summary form of the initial calibration curve. The continuing/ending calibration sub-section consists of the quantitation summary forms and chromatograms for all beginning and ending calibration injections associated with the samples and OC. The Level IV data package on compact disk has been sent to you via OnTrac. The enclosed results and electronic data deliverables (EDDs) are specifically for the samples referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP Certificate number is 4041. Our State of California ELAP certificate number is 2934 and our State of Washington certificate number is C844. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **12520**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>12520</u>

	Received on:	07/03/2019		Project Due:	07/26/2019	Storage:	<u>R-3</u>	
FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
12520-001-SA	0	907023	AMW-1-070119	EPA 8290 D/F	Aqueous	07/01/2019	12:01 pm	07/31/2019
12520-002-SA	0	907023	AMW-2-070119	EPA 8290 D/F	Aqueous	07/01/2019	02:25 pm	07/31/2019
12520-003-SA	0	907023	AMW-3-070119	EPA 8290 D/F	Aqueous	07/01/2019	05:25 pm	07/31/2019
12520-004-SA	0	907023	AMW-4-070119	EPA 8290 D/F	Aqueous	07/01/2019	04:00 pm	07/31/2019
12520-005-SA	0	907023	AMW-5-070119	EPA 8290 D/F	Aqueous	07/01/2019	09:00 am	07/31/2019
FAL								
Sample ID	Notes							
12520-001-SA 12520-002-SA 12520-003-SA 12520-004-SA 12520-005-SA	'Using : 'Using : 'Using :	sample date and sample date and sample date and	time from sample bottles.' time from sample bottles.' time from sample bottles.' time from sample bottles.' time from sample bottles.'					

FAL ID: 12520-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L Acquired: 07-17-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.833 0.796 0.841 0.767 1.52		- - - - - -	0.448 0.473 0.548 0.525 0.502 0.561 0.970	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.560 0.833 0.841 1.52	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND	0.525 0.495 0.748 0.861 0.852 1.02 0.750 0.973		- - - - - - - -	0.410 0.497 0.491 0.506 0.520 0.504 0.474 0.548 0.613 0.970	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.414 0.525 1.02 0.973	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	% Rec 90.4 90.6 82.2 81.5 79.3 111 88.6 88.1 94.6 84.1 84.4 86.4 80.2 80.9 85.4	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		B / C O D I DNQ / E / F / M I ND / NP I S S X I	sotopic Labeled Starsignal to noise ratio is Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences Result taken from dili	s >10:1 Method Blace I Ethers In is below an is above on second in is below an is below and an is below and an is below and at Detection at Whatman criteria not	ank calibration ra calibration ra lary column calibration ra on ion Limit Leve 10.7um GF/F met	nge nge nge
37Cl-2,3,7,8-TCDD	93.4	50.0 - 150						,	

FAL ID: 12520-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X4974 Date Extracted: 07-15-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: ng/ml Acquired: 07-16-2019 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	9.78 50.3 48.9 50.0 52.6 49.4 89.9	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 70.0 - 130	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF	9.59 47.7 48.4 47.6 50.1 49.9 51.0 49.4 49.6 99.8	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	78.6 76.2 65.3 61.1 62.1 66.5	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	80.0 75.2 84.5 67.0 66.4 70.2 70.2 57.7 58.4 59.4	40.0 - 135 40.0 - 135	
Cleanup Surrogate			
37Cl-2,3,7,8-TCDD	89.1	50.0 - 150	

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- DNQ Analyte concentration is below calibration range
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Reviewed By:

Date: 7/17/2019

FAL ID: 12520-001-SA Client ID: AMW-1-070119 Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: 07-03-2019 Amount: 0.457 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L Acquired: 07-16-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.967 1.43 1.38 1.44 1.32 2.70 6.31		- - - - -	0.448 0.473 0.548 0.525 0.502 0.561 0.970	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.967 1.43 1.44 2.70	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.803 0.860 0.805 0.767 0.875 0.899 1.07 1.14 1.41 2.10		- - - - - - - -	0.410 0.497 0.491 0.506 0.520 0.504 0.474 0.548 0.613 0.970	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.803 0.860 1.07 1.41	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HyCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF	% Rec 87.4 87.1 81.1 81.6 83.0 94.4 83.1 83.8 88.6 85.3 86.5 87.0 88.9 82.2 87.7 87.9	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		B A C C C D F DNQ A F A A A A A A A A A A A A A A A A A	sotopic Labeled Stasignal to noise ratio in Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences Result taken from dil	s >10:1 Method Blace If Ethers In is below on second In is below on second In is below on a below on a below on a below on a transporter a Whatman criteria not	calibration ra calibration ra ary column calibration ra in on Limit Leve 0.7um GF/F met	nge inge nge
37Cl-2,3,7,8-TCDD	90.6	50.0 - 150			-				

FAL ID: 12520-002-SA Client ID: AMW-2-070119 Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: 07-03-2019 Amount: 0.475 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L

Acquired: 07-16-2019 2005 WHO TEQ: 0.00591

Compound	Conc	DL.	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	NE			-	0.448				
1,2,3,7,8-PeCDD	NE			-	0.473				
1,2,3,4,7,8-HxCDD	ND			-	0.548		ND	0.024	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	NC NC			-	0.525 0.502		ND ND	0.931 1.51	
1,2,3,4,6,7,8-HpCDD	ND			_	0.561		ND	2.31	
OCDD	19.7		J	0.00591	0.970		ND	4.18	
2,3,7,8-TCDF	NE			-	0.410				
1,2,3,7,8-PeCDF	NE			-	0.497				
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	NC NC			-	0.491 0.506				
1,2,3,6,7,8-HxCDF	NC NC			-	0.500				
2,3,4,6,7,8-HxCDF	ND			-	0.504				
1,2,3,7,8,9-HxCDF	ND			-	0.474		ND	0.811	
1,2,3,4,6,7,8-HpCDF	NE			-	0.548		ND	0.961	
1,2,3,4,7,8,9-HpCDF	ND			-	0.613		ND	1.25	
OCDF	NE	3.35		-	0.970	Total HpCDF	ND	1.63	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	78.8	40.0 - 135				Isotopic Labeled Star signal to noise ratio is		de QC range	e but
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	79.6 76.9	40.0 - 135 40.0 - 135			В	Analyte is present in	Method Bla	ank	
13C-1,2,3,4,7,6-HxCDD	76.9 78.1	40.0 - 135 40.0 - 135				Chemical Interference			
13C-1,2,3,4,6,7,8-HpCDD	78.9	40.0 - 135							
13C-OCDD	105	40.0 - 135				Presence of Dipheny			
						Analyte concentration			-
13C-2,3,7,8-TCDF	78.0	40.0 - 135			E	Analyte concentration	n is above o	calibration ra	inge
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	79.7 88.2	40.0 - 135 40.0 - 135			F	Analyte confirmation	on seconda	ary column	
13C-1,2,3,4,7,8-HxCDF	80.0	40.0 - 135 40.0 - 135			J	Analyte concentration	n is below o	calibration ra	nge
13C-1,2,3,6,7,8-HxCDF	78.5	40.0 - 135				Maximum possible co			3
13C-2,3,4,6,7,8-HxCDF	80.4	40.0 - 135				•			
13C-1,2,3,7,8,9-HxCDF	82.0	40.0 - 135				Analyte Not Detected	at Detection	on Limit Lev	eı
13C-1,2,3,4,6,7,8-HpCDF	78.1	40.0 - 135				Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	80.9	40.0 - 135			P	Pre-filtered through a	Whatman	0.7um GF/F	filter
13C-OCDF	85.5	40.0 - 135			S	Sample acceptance	criteria not	met	
					×	Matrix interferences			
Cleanup Surrogate					*	Result taken from dil	ution or reir	njection	
37CI-2,3,7,8-TCDD	87.3	50.0 - 150							

Analyst: Date: 7/17/2019

Reviewed By: Date: 7/17/2019

FAL ID: 12520-003-SA Client ID: AMW-3-070119 Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: 07-03-2019 Amount: 0.480 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L Acquired: 07-16-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.901 1.87 1.39 1.43 1.32 3.09 5.23		- - - - -	0.448 0.473 0.548 0.525 0.502 0.561 0.970	Total TCDD Total PeCDD Total HxCDD	ND ND ND ND	0.901 1.87 1.43 3.09	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND ND ND ND	0.842 0.901 0.883 0.860 1.01 0.998 1.26 0.977 1.27 2.24		- - - - - - -	0.410 0.497 0.491 0.506 0.520 0.504 0.474 0.548 0.613	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.842 0.901 1.26 1.27	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	79.5 83.8 81.7 83.2 88.8 103 77.0 80.4 85.8 86.6 85.9 85.4	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		B C D DNQ E F J M ND NP P S	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference Presence of Dipheny Analyte concentratio Analyte concentratio Analyte concentratio Maximum possible c Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences Result taken from dil	s > 10:1 Method Blace If Ethers In is below on second In is below on second In is below oncentration If at Detection at Whatman	calibration ra calibration ra ary column calibration ra in on Limit Leve 0.7um GF/F met	nge nge nge
37CI-2,3,7,8-TCDD	88.5	50.0 - 150							

FAL ID: 12520-004-SA Client ID: AMW-4-070119 Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: 07-03-2019 Amount: 0.482 L

ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L

Acquired: 07-16-2019 2005 WHO TEQ: 0.00537

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND			-	0.448				
1,2,3,7,8-PeCDD	ND	1.53		-	0.473				
1,2,3,4,7,8-HxCDD	ND			-	0.548				
1,2,3,6,7,8-HxCDD	ND			-	0.525	Total TCDD	ND	0.962	
1,2,3,7,8,9-HxCDD	ND ND			-	0.502 0.561	Total PeCDD Total HxCDD	ND ND	1.53 1.74	
1,2,3,4,6,7,8-HpCDD OCDD	17.9	4.44	J	0.00537	0.561	Total HpCDD	ND	4.44	
ОСББ	17.9	-	J	0.00557	0.970	тока продд	ND	4.44	
2,3,7,8-TCDF	ND			-	0.410				
1,2,3,7,8-PeCDF	ND	1.09		-	0.497				
2,3,4,7,8-PeCDF	ND	1.05		-	0.491				
1,2,3,4,7,8-HxCDF	ND	0.915		-	0.506				
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	1.02 1.05		-	0.520 0.504				
1,2,3,7,8,9-HxCDF	ND ND			- -	0.304	Total TCDF	ND	0.748	
1,2,3,4,6,7,8-HpCDF	ND ND				0.548	Total PeCDF	ND	1.09	
1,2,3,4,7,8,9-HpCDF	ND ND			-	0.613	Total HxCDF	ND	1.24	
OCDF	ND			_	0.970	Total HpCDF	ND	1.50	
333.		2.00			0.010		5		
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	77.8	40.0 - 135				sotopic Labeled Star		de QC range	e but
13C-1,2,3,7,8-PeCDD	83.4	40.0 - 135				•			
13C-1,2,3,4,7,8-HxCDD	74.8	40.0 - 135				Analyte is present in		ank	
13C-1,2,3,6,7,8-HxCDD	75.6	40.0 - 135			C (Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD	74.9 88.0	40.0 - 135			DI	Presence of Dipheny	I Ethers		
13C-OCDD	00.0	40.0 - 135			DNQ /	Analyte concentration	n is below c	alibration ra	nge
13C-2,3,7,8-TCDF	79.0	40.0 - 135			E	Analyte concentration	n is above o	calibration ra	nge
13C-1,2,3,7,8-PeCDF	79.0	40.0 - 135			l F	Analyte confirmation	on seconda	arv column	
13C-2,3,4,7,8-PeCDF	85.5	40.0 - 135				Analyte concentration		•	nao
13C-1,2,3,4,7,8-HxCDF	74.5	40.0 - 135				•			rige
13C-1,2,3,6,7,8-HxCDF	76.2	40.0 - 135			M	Maximum possible o	oncentration	n	
13C-2,3,4,6,7,8-HxCDF	78.0	40.0 - 135			ND /	Analyte Not Detected	d at Detection	on Limit Lev	el
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	79.6 71.2	40.0 - 135 40.0 - 135			NP I	Not Provided			
13C-1,2,3,4,6,7,6-HPCDF	71.2 76.3	40.0 - 135				Pre-filtered through a	Mhotmon	0.7um.CF/F	filtor
13C-0CDF	76.3 76.1	40.0 - 135				J			ilitei
100 0021	70.1	10.0 100				Sample acceptance	criteria not i	met	
Classica Come						Matrix interferences			
Cleanup Surrogate					*	Result taken from dil	ution or reir	njection	
37CI-2,3,7,8-TCDD	90.3	50.0 - 150							

Date: 7/17/2019

Reviewed By: Date: 7/17/2019

FAL ID: 12520-005-SA Client ID: AMW-5-070119 Matrix: Aqueous Batch No: X4974

Date Extracted: 07-15-2019 Date Received: 07-03-2019 Amount: 0.457 L ICal: PCDDFAL4-3-20-19 GC Column: DB5MS Units: pg/L Acquired: 07-16-2019 2005 WHO TEQ: 0.0

	_			2005					
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND ND ND ND	0.977 1.84 1.88 1.96 1.80 3.28		- - - - -	0.448 0.473 0.548 0.525 0.502 0.561	Total TCDD Total PeCDD Total HxCDD	ND ND ND	0.977 1.84 1.96	
OCDD	ND	5.60		-	0.970	Total HpCDD	ND	3.28	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.914 1.10 1.11 1.01 1.11 1.13 1.34 1.53 1.65 2.78		- - - - - - - -	0.410 0.497 0.491 0.506 0.520 0.504 0.474 0.548 0.613 0.970	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.914 1.11 1.34 1.65	
Internal Standards	% Rec	QC Limits	Qual			- Assis Labata d Ohan		1- 00	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	70.5 70.8	40.0 - 135 40.0 - 135				sotopic Labeled Star ignal to noise ratio is		e QC range	e but
13C-1,2,3,4,7,8-HxCDD	69.0	40.0 - 135			B A	analyte is present in	Method Bla	nk	
13C-1,2,3,6,7,8-HxCDD	69.5	40.0 - 135			C	Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD	70.9	40.0 - 135			D F	Presence of Dipheny	l Ethers		
13C-OCDD	87.1	40.0 - 135			DNQ A	nalyte concentration	n is below c	alibration ra	inge
13C-2,3,7,8-TCDF	70.6	40.0 - 135			E A	nalyte concentration	n is above o	alibration ra	ange
13C-1,2,3,7,8-PeCDF	70.5	40.0 - 135			l F A	analyte confirmation	on seconda	arv column	•
13C-2,3,4,7,8-PeCDF	75.4	40.0 - 135				analyte concentration		•	nnae
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	71.9 72.1	40.0 - 135 40.0 - 135				•			inge
13C-2,3,4,6,7,8-HxCDF	72.1	40.0 - 135				Maximum possible co			_
13C-1,2,3,7,8,9-HxCDF	74.7	40.0 - 135				Analyte Not Detected	at Detection	on Limit Lev	el
13C-1,2,3,4,6,7,8-HpCDF	69.5	40.0 - 135			NP N	lot Provided			
13C-1,2,3,4,7,8,9-HpCDF	69.9	40.0 - 135			PF	Pre-filtered through a	Whatman	0.7um GF/F	filter
13C-OCDF	77.6	40.0 - 135			l s s	Sample acceptance of	criteria not r	net	
						Matrix interferences		- *	
Cleanup Surrogate						Result taken from dilu	ution or rein	jection	
37CI-2,3,7,8-TCDD	81.4	50.0 - 150							

12	5	20)
A CONTRACTOR OF THE PARTY OF TH	F	0	

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	٤) ~		UBCONTRACTER Frontie.								Page # of TURNAROUND TIME						
Send Report To N	<u> Michael</u>	l Erdahl		· · · · · · · · · · · · · · · · · · ·	DDC	OJECT :	NAME	VNO	04114	•	I	20#		X	Standar			
Company F	riedma	an and Bruya	a, Inc.		III		702				A - 3			10	RUSH_ ish char			l by:
Address3	012 16 [.]	th Ave W												=	SA	MPLE	DISPO	SAL
City, State, ZIP_S			000 000 5044		REI	MARKS Ple		mail F	Result:	sTi	e IVI				Dispose Return : Will cal	after 3 sample	0 days s	
Phone #(206) 285	-8282	Fax #(2	06) 283-5044		L									<u> </u>	1122 002			
										ANAI	YSES	REQU	ESTE	ED T				
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	Dioxins/Furans	ЕРН	VPH	8290 Dioxins/Frans							N	otes
AMW-1-070119		7/1/19	1201	wat	e				`	×								
AMW-2-070119			1420							. x				_				
AMW-3-070119			1600		•					×							,	
AMW-4 - 070119			1725							×			<u> </u>	_		-		
AMW-5 -070119			०५००	1						X				\dashv				
•																		
															<u> </u>			
													_	_				
														+	_	_		·
								PRINT	1 7747			T	COM	PAN	Y		ATE	TIME
Friedman & Bruya, 3012 16th Avenue W		Relinquished !	SIGNATURE		7	Mich	ael Er		NAW	TE.		Fried	lman 8			1 ,	-/19	08:34 AM,
Seattle, WA 98119-2	2029	Received by:	100)(O		16.	21	PF	>			Fro	TH	ien		7/3	119	910
Ph. (206) 285-8282	Ì	Relinquished b												(000010 c	f 0002	84	
Fax (206) 283-5044		Received by:									•					eq. e-z		

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 12520

Client:	Friedman & Bruya, Inc.
Client Project ID:	907023
Date Received:	07/03/2019
Time Received:	09:10 am
Received By:	KZ
Logged In By:	RR
# of Samples Received:	5
Duplicates:	0
Storage Location:	R-3

Method of Delivery:	Fed-Ex
Tracking Number:	813795597144
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 22, 2018

Carla Brock, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Brock:

Included is the amended report from the testing of material submitted on January 12, 2018 from the Shelton C St. Landfill 150074, F&BI 801176 project. The 8270D SIM naphthalene reporting limit has been raised to <0.1 ug/L.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Ali Cochrane

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2018

Carla Brock, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Brock:

Included are the results from the testing of material submitted on January 12, 2018 from the Shelton C St. Landfill 150074, F&BI 801176 project. There are 61 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Ali Cochrane ASP0207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 12, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C St. Landfill 150074, F&BI 801176 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
801176 -01	AMW-3-011218
801176 -02	AMW-4-011218
801176 -03	AMW-2-011218
801176 -04	AMW-1-011218
801176 -05	AMW-5-011218
801176 -06	Trip Blank

The samples were sent to Fremont Analytical for alkalinity, ammonia, calcium, chloride, cyanide, magnesium, nitrate, nitrite, sodium, sulfate, and sulfide analyses. In addition, samples were sent to Frontier analytical for dioxin and furan. The report is enclosed.

Cadmium and lead were reported below the standard reporting limit. The data were flagged accordingly.

The 8270D 4-nitrophenol calibration standard did not pass the acceptance criteria. The data were flagged accordingly.

2,2'-Oxybis(1-chloropropane) was detected in the 8270D method blank. The detections in samples AMW-3-011218, AMW-2-011218, AMW-1-011218 and AMW-5-011218 were flagged accordingly.

The 8270D and 8081B laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

Date Extracted: 01/16/18 Date Analyzed: 01/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
AMW-3-011218 801176-01	<100	94
AMW-4-011218 801176-02	<100	93
AMW-2-011218 801176-03	<100	94
AMW-1-011218 801176-04	<100	92
AMW-5-011218 801176-05	<100	91
Method Blank 08-026 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

Date Extracted: 01/16/18 Date Analyzed: 01/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
AMW-3-011218 801176-01	<50	<250	119
AMW-4-011218 801176-02	60 x	<250	112
AMW-2-011218 801176-03	< 50	<250	84
AMW-1-011218 801176-04	< 50	<250	114
AMW-5-011218 801176-05	<50	<250	107
Method Blank 08-120 MB2	<50	<250	95

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-01
Date Analyzed:	01/22/18	Data File:	801176-01.041
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	2.86
Cadmium	<0.1 j
Chromium	1.06
Copper	1.08
Iron	241
Lead	<0.1 j
Manganese	130
Nickel	1.17
Selenium	< 0.5
Silver	< 0.2
Zinc	<4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-02
Date Analyzed:	01/22/18	Data File:	801176-02.044
Matrix:	Water	Instrument:	ICPMS2

Units: ug/L (ppb) Operator: SP

Cines.	ag/E (pps)	operator.	51
Analyte:	Concentration ug/L (ppb)		
Arsenic	0.665		
Barium	42.7		
Cadmium	<0.1 j		
Chromium	7.35		
Copper	9.27		
Iron	3,250		
Lead	0.334		
Manganese	402		
Nickel	7.61		
Selenium	0.916		
Silver	< 0.2		
Zinc	5.46		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-03
Date Analyzed:	01/22/18	Data File:	801176-03.045
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

	-8 - (FF-)	- F	
Analyte:	Concentration ug/L (ppb)		
Arsenic	0.310		
Barium	5.05		
Cadmium	<0.1 j		
Chromium	1.17		
Copper	2.26		
Iron	566		
Lead	<0.1 j		
Manganese	1,250		
Nickel	1.82		
Selenium	< 0.5		
Silver	< 0.2		
Zinc	<4		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-04
Date Analyzed:	01/22/18	Data File:	801176-04.046
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.69
Cadmium	<0.1 j
Chromium	0.933
Copper	1.08
Iron	233
Lead	<0.1 j
Manganese	71.4
Nickel	1.86
Selenium	< 0.5
Silver	< 0.2
Zinc	<4

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-05
Date Analyzed:	01/22/18	Data File:	801176-05.047
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

C III CO.	48 = (PP2)	o peracer.	~-	
Analyte:	Concentration ug/L (ppb)			
Arsenic	<0.2			
Barium	4.66			
Cadmium	<0.1 j			
Chromium	0.952			
Copper	1.06			
Iron	234			
Lead	<0.1 j			
Manganese	68.3			
Nickel	1.93			
Selenium	< 0.5			
Silver	< 0.2			
Zinc	<4			

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Shelton C St. Landfill 150074
1	0.4.10.0.14.0	T 1 TD	TO 0 10 1

Date Extracted: 01/22/18 Lab ID: I8-043 mb

Date Analyzed: 01/22/18 Data File: I8-043 mb.113

Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		< 0.2		
Barium		< 0.5		
Cadmium		<0.1 j		
Chromium		< 0.5		
Copper		< 0.5		
Iron		< 50		
Lead		<0.1 j		
Manganese		<1		
Nickel		< 0.5		
Selenium		< 0.5		
Silver		< 0.2		
Zinc		<4		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-01
Date Analyzed:	01/22/18	Data File:	801176-01.050
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	2.40
Cadmium	<0.1 j
Chromium	0.860
Copper	0.883
Iron	128
Lead	<0.1 j
Manganese	132
Nickel	1.06
Selenium	< 0.5
Silver	<0.2 j
Zinc	<4

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-02
Date Analyzed:	01/22/18	Data File:	801176-02.055
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.240
Barium	25.3
Cadmium	<0.1 j
Chromium	1.72
Copper	2.98
Iron	235
Lead	<0.1 j
Manganese	307
Nickel	3.45
Selenium	0.728
Silver	< 0.2
Zinc	<4

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-03
Date Analyzed:	01/22/18	Data File:	801176-03.056
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

C III CO.	28 = (PP2)	operator.	~-	
Analyte:	Concentration ug/L (ppb)			
Arsenic	0.291			
Barium	4.65			
Cadmium	<0.1 j			
Chromium	0.909			
Copper	1.72			
Iron	463			
Lead	<0.1 j			
Manganese	1,140			
Nickel	1.73			
Selenium	< 0.5			
Silver	< 0.2			
Zinc	<4			

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-04
Date Analyzed:	01/22/18	Data File:	801176-04.057
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	3.98
Cadmium	<0.1 j
Chromium	0.699
Copper	0.670
Iron	114
Lead	<0.1 j
Manganese	58.1
Nickel	1.63
Selenium	< 0.5
Silver	< 0.2
Zinc	<4

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	801176-05
Date Analyzed:	01/22/18	Data File:	801176-05.058
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.05
Cadmium	<0.1 j
Chromium	0.744
Copper	0.651
Iron	111
Lead	<0.1 j
Manganese	58.6
Nickel	1.64
Selenium	< 0.5
Silver	< 0.2
Zinc	<4

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/22/18	Lab ID:	I8-044 mb

Date Extracted. 01/22/16 Lab ID. 16-044 IIID

Date Analyzed: 01/22/18 Data File: I8-044 mb.048

Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Units:	ug/L (ppb)	Operator:	SP	
Analyte:	Concentration ug/L (ppb)			
Arsenic	< 0.2			
Barium	< 0.5			
Cadmium	<0.1 j			
Chromium	< 0.5			
Copper	< 0.5			
Iron	< 50			
Lead	<0.1 j			
Manganese	<1			
Nickel	< 0.5			
Selenium	< 0.5			
Silver	< 0.2			
Zinc	<4			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

Date Extracted: 01/15/18 Date Analyzed: 01/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Total Mercury</u>
AMW-3-011218 801176-01	<0.1
AMW-4-011218 801176-02	<0.1
AMW-2-011218 801176-03	<0.1
AMW-1-011218 801176-04	<0.1
AMW-5-011218 801176-05	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

Date Extracted: 01/15/18 Date Analyzed: 01/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Dissolved Mercury</u>
AMW-3-011218 801176-01	<0.1
AMW-4-011218 801176-02	<0.1
AMW-2-011218 801176-03	<0.1
AMW-1-011218 801176-04	<0.1
AMW-5-011218 801176-05	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/15/18 Lab ID: 801176-01 Data File: Date Analyzed: 01/15/18 011515.D Matrix: Water Instrument: GCMS9 ug/L (ppb) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	99	91	108
4-Bromofluorobenzene	97	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/15/18 Lab ID: 801176-02 Data File: Date Analyzed: 01/15/18 011517.D Matrix: Water Instrument: GCMS9 ug/L (ppb) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	100	91	108
4-Bromofluorobenzene	98	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
	0.4.14.27.14.0	T 1 TD	004470.00

Date Extracted: 01/15/18 Lab ID: 801176-03 Date Analyzed: 01/15/18 Data File: 011519.D Matrix: Water Instrument: GCMS9 ug/L (ppb) Units: Operator: JS

Commentation	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	85	117
Toluene-d8	102	91	108
4-Bromofluorobenzene	101	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/15/18 Lab ID: 801176-04 Date Analyzed: 01/15/18 Data File: 011521.D Matrix: Water Instrument: GCMS9 ug/L (ppb) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	102	91	108
4-Bromofluorobenzene	100	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/15/18 Lab ID: 801176-05 Data File: Date Analyzed: 01/15/18 011523.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	101	91	108
4-Bromofluorobenzene	100	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
		- · ·	

Date Extracted: 01/15/18 Lab ID: 801176-06 Data File: Date Analyzed: 01/15/18 011514.D Matrix: Water Instrument: GCMS9 ug/L (ppb) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	85	117
Toluene-d8	101	91	108
4-Bromofluorobenzene	100	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Low Level

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/15/18 Lab ID: 08-0108 mb 01/15/18 Data File: Date Analyzed: 011513.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	97	91	108
4-Bromofluorobenzene	97	76	126

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	< 0.2
Chloromethane	< 0.5	Tetrachloroethene	< 0.2
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	< 0.2
Trichlorofluoromethane	< 0.2	Ethylbenzene	< 0.2
Acetone	< 50	1,1,1,2-Tetrachloroethane	< 0.2
1,1-Dichloroethene	< 0.2	m,p-Xylene	< 0.4
Hexane	<1	o-Xylene	< 0.2
Methylene chloride	<1	Styrene	< 0.2
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	Bromoform	< 0.5
1,1-Dichloroethane	< 0.2	n-Propylbenzene	< 0.2
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
Chloroform	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<2	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.2
1,1,1-Trichloroethane	< 0.2	4-Chlorotoluene	< 0.2
1,1-Dichloropropene	< 0.2	tert-Butylbenzene	< 0.2
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	< 0.2
Benzene	< 0.2	sec-Butylbenzene	< 0.2
Trichloroethene	< 0.2	p-Isopropyltoluene	< 0.2
1,2-Dichloropropane	< 0.2	1,3-Dichlorobenzene	< 0.2
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	< 0.2
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.2
4-Methyl-2-pentanone	<2	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
Toluene	< 0.2	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.2	Naphthalene	< 0.2
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	< 0.2
2-Hexanone	<2		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-01 1/0.25
Date Analyzed:	01/17/18	Data File:	011709.D

Date Analyzed: 01/17/18 Data File: 011709. Data Fil

	0.4.75	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	67	31	160
Benzo(a)anthracene-d12	79	25	165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-02 1/0.25
Date Analyzed:	01/17/18	Data File:	011710.D
Motning	Water	Instrument	CCMCC

Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	23 ip °	31	160
Benzo(a)anthracene-d12	62	25	165

Concentration Compounds: ug/L (ppb) < 0.1 Naphthalene Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene 0.010 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-03 1/0.25
Date Analyzed:	01/17/18	Data File:	011711.D
Matrix:	Water	Instrument:	GCMS6

ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	50 °	31	160
Benzo(a)anthracene-d12	65	25	165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene 0.021 Anthracene < 0.01 Fluoranthene 0.014 Pyrene 0.018 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-04 1/0.25
Date Analyzed:	01/17/18	Data File:	011712.D

Date Analyzed: 01/17/18 Data File: 011712.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	68	31	160
Benzo(a)anthracene-d12	83	25	165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-05 1/0.25
Date Analyzed:	01/17/18	Data File:	011713.D

Date Analyzed: 01/17/18 Data File: 011713.L Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	77	31	160
Benzo(a)anthracene-d12	97	25	165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St. Landfill 150074
D . D 1	01/10/10	I -l. ID.	00 104 1 1/0 07

Date Extracted: 01/16/18 Lab ID: 08-134 mb 1/0.25 01/17/18 Data File: Date Analyzed: 011707.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 83 31 160 Benzo(a)anthracene-d12 92 25 165

< 0.01

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01 1-Methylnaphthalene < 0.01

2-Methylnaphthalene

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-01 1/0.25
Date Analyzed:	01/17/18	Data File:	011709.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	39	32	162
Phenol-d6	26	10	170
Nitrobenzene-d5	102	50	150
2-Fluorobiphenyl	94	43	158
2,4,6-Tribromophenol	78	43	146
Terphenyl-d14	98	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	<1.5
2,2'-Oxybis(1-chloropropane)	0.053 fb	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylphenol	<1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	<1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Hexachlorobutadiene 4-Chloroaniline 4-Chloro-3-methylphenol	<0.5 <0.05 <0.05 <5 <0.5	Carbazole Di-n-butyl phthalate Benzyl butyl phthalate Bis(2-ethylhexyl) phthalate	<0.5 <0.5 <0.5 <0.8

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-02 1/0.25
Date Analyzed:	01/17/18	Data File:	011710.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	37	32	162
Phenol-d6	22	10	170
Nitrobenzene-d5	99	50	150
2-Fluorobiphenyl	91	43	158
2,4,6-Tribromophenol	89	43	146
Terphenyl-d14	98	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	< 1.5
2,2'-Oxybis(1-chloropropane)	< 0.05	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylphenol	<1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	< 1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-03 1/0.25
Date Analyzed:	01/17/18	Data File:	011711.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	37	32	162
Phenol-d6	25	10	170
Nitrobenzene-d5	93	50	150
2-Fluorobiphenyl	72	43	158
2,4,6-Tribromophenol	64	43	146
Terphenyl-d14	78	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	<1.5
2,2'-Oxybis(1-chloropropane)	0.061 fb	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylpheno	l <1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	<1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-04 1/0.25
Date Analyzed:	01/17/18	Data File:	011712.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	30 ip	32	162
Phenol-d6	21	10	170
Nitrobenzene-d5	100	50	150
2-Fluorobiphenyl	96	43	158
2,4,6-Tribromophenol	80	43	146
Terphenyl-d14	102	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	< 1.5
2,2'-Oxybis(1-chloropropane)	0.050 fb	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylpheno	ol <1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	<1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	801176-05 1/0.25
Date Analyzed:	01/17/18	Data File:	011713.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	45	32	162
Phenol-d6	27	10	170
Nitrobenzene-d5	103	50	150
2-Fluorobiphenyl	97	43	158
2,4,6-Tribromophenol	87	43	146
Terphenyl-d14	103	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	< 1.5
2,2'-Oxybis(1-chloropropane)	0.052 fb	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylphenol	<1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	< 1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/16/18	Lab ID:	08-133 mb 1/0.25
Date Analyzed:	01/17/18	Data File:	011707.D
Motning	Water	Instrument	CCMC0

Matrix: Water Instrument: GCMS8 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	43	32	162
Phenol-d6	29	10	170
Nitrobenzene-d5	99	50	150
2-Fluorobiphenyl	94	43	158
2,4,6-Tribromophenol	62	43	146
Terphenyl-d14	98	39	168

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	< 0.5	2,4,5-Trichlorophenol	< 0.5
Bis(2-chloroethyl) ether	< 0.05	2-Chloronaphthalene	< 0.05
2-Chlorophenol	< 0.5	2-Nitroaniline	< 0.25
1,3-Dichlorobenzene	< 0.05	Dimethyl phthalate	< 0.5
1,4-Dichlorobenzene	< 0.05	2,6-Dinitrotoluene	< 0.25
1,2-Dichlorobenzene	< 0.05	3-Nitroaniline	<5
Benzyl alcohol	< 0.5	2,4-Dinitrophenol	< 1.5
2,2'-Oxybis(1-chloropropane)	0.056 lc	Dibenzofuran	< 0.05
2-Methylphenol	< 0.5	2,4-Dinitrotoluene	< 0.25
Hexachloroethane	< 0.05	4-Nitrophenol	<1.5 ca
N-Nitroso-di-n-propylamine	< 0.05	Diethyl phthalate	< 0.5
3-Methylphenol + 4-Methylphenol	<1	4-Chlorophenyl phenyl ether	< 0.05
Nitrobenzene	< 0.05	N-Nitrosodiphenylamine	< 0.05
Isophorone	< 0.05	4-Nitroaniline	<5
2-Nitrophenol	< 0.5	4,6-Dinitro-2-methylphenol	<1.5
2,4-Dimethylphenol	< 0.5	4-Bromophenyl phenyl ether	< 0.05
Benzoic acid	< 2.5	Hexachlorobenzene	< 0.05
Bis(2-chloroethoxy)methane	< 0.05	Pentachlorophenol	< 0.5
2,4-Dichlorophenol	< 0.5	Carbazole	< 0.5
1,2,4-Trichlorobenzene	< 0.05	Di-n-butyl phthalate	< 0.5
Hexachlorobutadiene	< 0.05	Benzyl butyl phthalate	< 0.5
4-Chloroaniline	<5	Bis(2-ethylhexyl) phthalate	< 0.8
4-Chloro-3-methylphenol	< 0.5	Di-n-octyl phthalate	< 0.5
Hexachlorocyclopentadiene	< 0.15		

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/17/18	Lab ID:	801176-01 1/0.25
Date Analyzed:	01/18/18	Data File:	011816.D
N (- 4!	VV - 4	T4	CCT

Matrix: Water Instrument: GC7
Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: AMW-4-011218 Client: Aspect Consulting, LLC
Date Received: 01/12/18 Project: Shelton C St. Landfill 150074
Date Extracted: 01/17/18 Lab ID: 801176-02 1/0.25

Date Analyzed: 01/18/18 Data File: 011817.D Matrix: Water Instrument: GC7 Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/17/18	Lab ID:	801176-03 1/0.25
Date Analyzed	01/18/18	Data File	011818 D

Date Analyzed: 01/18/18 Data File: 011818.D Matrix: Water Instrument: GC7 Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: AMW-1-011218 Client: Aspect Consulting, LLC Date Received: 01/12/18 Project: Shelton C St. Landfill 150074 Date Extracted: 01/17/18 Lab ID: 801176-04 1/0.25 Date Analyzed: 01/18/18 Data File: 011819.D

Date Analyzed: 01/18/18 Data File: 011819
Matrix: Water Instrument: GC7
Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074
Date Extracted:	01/17/18	Lab ID:	801176-05 1/0.25
Date Analyzed	01/18/18	Data File	011820 D

Date Analyzed: 01/18/18 Data File: 011820.D Matrix: Water Instrument: GC7 Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Shelton C St. Landfill 150074
Date Extracted: 01/17/18 Lab ID: 08-135 mb 1/0.25

Date Extracted. 01/17/16 Lab ID. 06-133 III

Date Analyzed: 01/18/18 Data File: 011815.D

Matrix: Water Instrument: GC7

Units: ug/L Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	AMW-3-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/17/18 Lab ID: 801176-01 1/0.25 Data File: Date Analyzed: 01/18/18 011816.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates: TCMX	% Recovery:	Limit:	Limit:
TCMX	54	24	127

ICIVIX	34	24	
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221	< 0.025		
Aroclor 1232	< 0.025		
Aroclor 1016	< 0.025		
Aroclor 1242	< 0.025		
Aroclor 1248	< 0.025		
Aroclor 1254	< 0.025		
Aroclor 1260	< 0.025		
Aroclor 1262	< 0.025		
Aroclor 1268	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	AMW-4-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/17/18 Lab ID: 801176-02 1/0.25 Data File: Date Analyzed: 01/18/18 011817.D Matrix: Water Instrument: GC7 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates: TCMX	% Recovery:	Limit:	Limit:
TCMX	59	24	127

1 OIVIZE	00	2-1	
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221	< 0.025		
Aroclor 1232	< 0.025		
Aroclor 1016	< 0.025		
Aroclor 1242	< 0.025		
Aroclor 1248	< 0.025		
Aroclor 1254	< 0.025		
Aroclor 1260	< 0.025		
Aroclor 1262	< 0.025		
Aroclor 1268	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	AMW-2-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: Lab ID: 01/17/18801176-03 1/0.25 Date Analyzed: 01/18/18 Data File: 011818.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.025 Aroclor 1232 < 0.025 Aroclor 1016 < 0.025 Aroclor 1242 < 0.025 Aroclor 1248 < 0.025 Aroclor 1254 < 0.025 Aroclor 1260 < 0.025 Aroclor 1262 < 0.025 Aroclor 1268 < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	AMW-1-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: Lab ID: 01/17/18801176-04 1/0.25 Date Analyzed: 01/18/18 Data File: 011819.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 49 24 127

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.025 Aroclor 1232 < 0.025 Aroclor 1016 < 0.025 Aroclor 1242 < 0.025 Aroclor 1248 < 0.025 Aroclor 1254 < 0.025 Aroclor 1260 < 0.025 Aroclor 1262 < 0.025 Aroclor 1268 < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	AMW-5-011218	Client:	Aspect Consulting, LLC
Date Received:	01/12/18	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/17/18 Lab ID: 801176-05 1/0.25 Data File: Date Analyzed: 01/18/18 011820.D Matrix: Water Instrument: GC7 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates: TCMX	% Recovery:	Limit:	Limit:
TCMX	51	24	127

I CIVIX	31	<i>4</i> 4	
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221	< 0.025		
Aroclor 1232	< 0.025		
Aroclor 1016	< 0.025		
Aroclor 1242	< 0.025		
Aroclor 1248	< 0.025		
Aroclor 1254	< 0.025		
Aroclor 1260	< 0.025		
Aroclor 1262	< 0.025		
Aroclor 1268	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St. Landfill 150074

Date Extracted: 01/17/18 Lab ID: 08-135 mb 1/0.25 01/18/18 Data File: Date Analyzed: 011815.D Matrix: Water Instrument: GC7 ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Surrogates: TCMX	57	24	127

Compounda	Concentration
Compounds:	ug/L (ppb)
Aroclor 1221	< 0.025
Aroclor 1232	< 0.025
Aroclor 1016	< 0.025
Aroclor 1242	< 0.025
Aroclor 1248	< 0.025
Aroclor 1254	< 0.025
Aroclor 1260	< 0.025
Aroclor 1262	< 0.025
Aroclor 1268	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 801176-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	ug/L (ppb)	1,000	102	69-134	-	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	72	76	63-142	5

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 801176-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	< 0.2	107	112	70-130	5
Barium	ug/L (ppb)	50	2.86	103	109	70-130	6
Cadmium	ug/L (ppb)	5	<0.1 j	106	109	70-130	3
Chromium	ug/L (ppb)	20	1.06	108	108	70-130	0
Copper	ug/L (ppb)	20	1.08	99	102	70-130	3
Iron	ug/L (ppb)	100	241	106	113	70-130	6
Lead	ug/L (ppb)	10	<0.1 j	95	98	70-130	3
Manganese	ug/L (ppb)	20	130	139 b	156 b	70-130	12 b
Nickel	ug/L (ppb)	20	1.17	106	108	70-130	2
Selenium	ug/L (ppb)	5	< 0.5	105	106	70-130	1
Silver	ug/L (ppb)	5	< 0.2	101	104	70-130	3
Zinc	ug/L (ppb)	50	<4	102	106	70-130	4

		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/L (ppb)	10	100	85-115
ug/L (ppb)	50	101	85-115
ug/L (ppb)	5	102	85-115
ug/L (ppb)	20	102	85-115
ug/L (ppb)	20	101	85-115
ug/L (ppb)	100	105	85-115
ug/L (ppb)	10	101	85-115
ug/L (ppb)	20	105	85-115
ug/L (ppb)	20	104	85-115
ug/L (ppb)	5	100	85-115
ug/L (ppb)	5	94	85-115
ug/L (ppb)	50	103	85-115
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 50 ug/L (ppb) 5 ug/L (ppb) 20 ug/L (ppb) 20 ug/L (ppb) 100 ug/L (ppb) 10 ug/L (ppb) 20 ug/L (ppb) 5 Reporting Units Spike Level Recovery LCS ug/L (ppb) 10 100 ug/L (ppb) 50 101 ug/L (ppb) 5 102 ug/L (ppb) 20 102 ug/L (ppb) 20 101 ug/L (ppb) 100 105 ug/L (ppb) 10 101 ug/L (ppb) 20 105 ug/L (ppb) 20 104 ug/L (ppb) 5 100 ug/L (ppb) 5 94	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 801229-11 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	0.610	101	104	70-130	3
Barium	ug/L (ppb)	50	5.86	99	102	70-130	3
Cadmium	ug/L (ppb)	5	<0.1 j	99	101	70-130	2
Chromium	ug/L (ppb)	20	1.02	99	99	70-130	0
Copper	ug/L (ppb)	20	2.15	94	97	70-130	3
Iron	ug/L (ppb)	100	< 50	92	101	70-130	9
Lead	ug/L (ppb)	10	0.293	91	95	70-130	4
Manganese	ug/L (ppb)	20	61.9	69 b	89 b	70-130	25 b
Nickel	ug/L (ppb)	20	1.89	99	102	70-130	3
Selenium	ug/L (ppb)	5	< 0.5	98	98	70-130	0
Silver	ug/L (ppb)	5	< 0.2	90	95	70-130	5
Zinc	ug/L (ppb)	50	<4	97	98	70-130	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	107	85-115
Barium	ug/L (ppb)	50	108	85-115
Cadmium	ug/L (ppb)	5	112	85-115
Chromium	ug/L (ppb)	20	110	85-115
Copper	ug/L (ppb)	20	112	85-115
Iron	ug/L (ppb)	100	110	85-115
Lead	ug/L (ppb)	10	104	85-115
Manganese	ug/L (ppb)	20	111	85-115
Nickel	ug/L (ppb)	20	113	85-115
Selenium	ug/L (ppb)	5	108	85-115
Silver	ug/L (ppb)	5	110	85-115
Zinc	ug/L (ppb)	50	111	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 801176-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	ug/L (ppb)	0.5	< 0.1	102	104	71-125	2

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Mercury	ug/L (ppb)	0.5	105	79-120	-

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Laboratory Code: 801176-01 (Matrix Spike)

-				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	ug/L (ppb)	0.5	< 0.1	105	105	71-125	0

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Mercury	ug/L (ppb)	0.5	106	79-120	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801176-01 (Matrix Spike)

Analyte					Percent	
Dichloroeithane		Reporting	Spike	Sample	Recovery	Acceptance
Chloromethane ugd. (ppb) 50	Analyte	Units	Level	Result	MS	Criteria
Viny (Inbride Wg/L (ppb)						
Bromomethane						
Chloroethane (gf. (ppb) 50 <1 105 55.149 Trichlorollucomenthane (gf. (ppb) 50 <0.2 106 77.128 Acetone (gf. (ppb) 250 <50 98 48.149 Acetone (gf. (ppb) 50 <0.2 99 77.123 Hexane (gf. (ppb) 50 <0.1 102 44.139 Hexane (gf. (ppb) 50 <1 102 44.139 Methyler chloride (gf. (ppb) 50 <1 102 44.139 Methyler chloride (gf. (ppb) 50 <0.5 101 61.128 Methyler chloride (gf. (ppb) 50 <0.5 101 61.128 Methyler chloride (gf. (ppb) 50 <0.5 101 61.128 Methyler chloride (gf. (ppb) 50 <0.5 102 69.128 (gf. (ppb) 50 <0.5 102 69.128 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.186 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.187 (gf. (ppb) 50 <0.5 109 68.186 (gf. (ppb) 50 <0.5 109 68.186 (gf. (ppb) 50 <0.5 109 68.186 (gf. (ppb) 50 <0.5 109 77.117 (gf. (
Trichloroethene						
Acctone ugf. (ppb) 50 50,2 99 71-123 Hexane ugf. (ppb) 50 cl 102 44-139 Hexane ugf. (ppb) 50 cl 101 61-126 Methyle chloride Mugf. (ppb) 50 cl 101 61-126 Methyle chloride Methylene c						
1.1 Dichloroethene						
Hexane						
Methyl i E-butyl ether (MTBE)	Hexane		50	<1	102	44-139
Tanis 1.2 Dichloroethene wgL (ppb) 50 0.02 102 72 122 1.1 Dichloroethane wgL (ppb) 50 0.05 109 48 157 65 151			50		101	61-126
1,1-Dichlororethane						
22.Dichloropropane						
cis-12-Dichforoethene ug/L (ppb) 50						
Chloroform ugL (ppb) 50 -0.2 99 77-117						
2-Butanone (MEK)						
1.2-Dichloroethane (EDC)						
I,I-Tichloroethane						
Carbon tetrachloride	1,1,1-Trichloroethane		50	< 0.2	101	
Benzene						
Trichloroethene						
12-Dichloropropane ug/L (ppb) 50						
Bromodichloromethane ug/L (ppb) 50 <0.2 104 78-117						
Dibromomethane						
4-Methyl-2-pentanone ug/L (ppb) 250 <2						
cis-13-Dichloropropene ug/L (ppb) 50 -0.2 104 76-120 Toluene ug/L (ppb) 50 -0.2 99 73-117 trans-1,3-Dichloropropene ug/L (ppb) 50 -0.2 99 75-122 1,1,2-Trichloroethane ug/L (ppb) 250 -2 95 74-127 1,3-Dichloropropane ug/L (ppb) 50 -0.2 97 80-113 Tetrachloroethane ug/L (ppb) 50 -0.2 100 72-113 Dibromochloromethane ug/L (ppb) 50 -0.2 100 72-113 Dibromochloromethane ug/L (ppb) 50 -0.2 102 69-129 12-Dibromochloromethane ug/L (ppb) 50 -0.2 102 69-129 12-Dibromochloromethane ug/L (ppb) 50 -0.2 100 75-115 Ethylbenzene ug/L (ppb) 50 -0.2 100 75-115 Ethylbenzene ug/L (ppb) 50 -0.2 100 76-120						
Trans-1.3-Dichloropropene			50	< 0.2	104	76-120
1.1.2-Trichloroethane		ug/L (ppb)				
2-Hexanone ug/L (ppb) 50 <20 95 74-127 1,3-Dichloropropane ug/L (ppb) 50 <0.2 97 80-113 Tetrachloroethene ug/L (ppb) 50 <0.2 100 72-113 Dibromochloromethane ug/L (ppb) 50 <0.2 102 69-129 1,2-Dibromochane (EDB) ug/L (ppb) 50 <0.2 100 75-115 Ethylbenzene ug/L (ppb) 50 <0.2 100 75-115 Ethylbenzene ug/L (ppb) 50 <0.2 100 66-124 1,1,1,2-Tetrachloroethane ug/L (ppb) 50 <0.2 100 66-124 1,1,1,2-Tetrachloroethane ug/L (ppb) 50 <0.2 100 66-124 1,1,1,2-Tetrachloroethane ug/L (ppb) 50 <0.2 100 66-124 1,1,2-Tetrachloroethane ug/L (ppb) 50 <0.2 102 76-130 mp-Xylene ug/L (ppb) 50 <0.2 102 64-129 Styrene ug/L (ppb) 50 <0.2 102 74-122 Spromoform ug/L (ppb) 50 <0.5 110 49-138 n-Propylbenzene ug/L (ppb) 50 <0.5 110 49-138 n-Propylbenzene ug/L (ppb) 50 <0.2 102 65-129 Bromobenzene ug/L (ppb) 50 <0.2 102 66-129 Indianal environmental ug/L (ppb) 50 <0.2 102 60-138 I,1,2,2-Tetrachloroethane ug/L (ppb) 50 <0.2 103 79-120 I,2,3-Trinethylbenzene ug/L (ppb) 50 <0.5 103 79-120 I,2,3-Trinethylbenzene ug/L (ppb) 50 <0.5 103 79-120 I,2,3-Trinethylbenzene ug/L (ppb) 50 <0.2 102 40-159 I-Chlorotoluene ug/L (ppb) 50 <0.2 104 74-125 I,3-Dichlorobenzene ug/L (ppb) 50 <0.2 103 69-127 I-Sporppyltoluene ug/L (ppb) 50 <0.2 103 69-127 I,3-Dichlorobenzene ug/L (ppb) 50 <0.2 103 69-127 I-Sporppyltoluene ug/L (ppb) 50 <0.5 106 66-123 I-Sporppyltoluene ug/L (ppb) 50 <0.5 106 53-136 I-Sporppyltoluene ug/L (ppb) 50 <0.5 106 53-136 I-Sporppyltoluene ug/L (ppb) 50						
1.3-Dichloropropane						
Tetrachloroethene						
Dibromochloromethane						
1,2-Dibromoethane (EDB)						
Chlorobenzene ug/L (ppb) 50						
Ethylbenzene ug/L (ppb) 50 <0.2 100 66-124 1,1,1,2-Tetrachloroethane ug/L (ppb) 50 <0.2			50		100	
mp-Xylene ug/L (ppb) 100 <0.4 103 63-128 o-Xylene		ug/L (ppb)				
o-Xylene ug/L (ppb) 50 <0.2 102 64-129 Styrene ug/L (ppb) 50 <0.2						
Styrene						
Isopropylbenzene						
Bromoform ug/L (ppb) 50 <0.5 110 49-138 n-Propylbenzene ug/L (ppb) 50 <0.2						
n-Propylbenzene ug/L (ppb) 50 <0.2 102 65-129 Bromobenzene ug/L (ppb) 50 <0.2 95 70-121 1,3.5-Trimethylbenzene ug/L (ppb) 50 <0.2 102 60-138 1,1,2.2-Tetrachloroethane ug/L (ppb) 50 <0.2 103 79-120 1,2.3-Trichloropropane ug/L (ppb) 50 <0.5 97 62-125 2-Chlorotoluene ug/L (ppb) 50 <0.2 102 40-159 4-Chlorotoluene ug/L (ppb) 50 <0.2 102 40-159 4-Chlorotoluene ug/L (ppb) 50 <0.2 104 74-125 1,2.4-Trimethylbenzene ug/L (ppb) 50 <0.2 104 74-125 1,2.4-Trimethylbenzene ug/L (ppb) 50 <0.2 101 59-136 sec-Butylbenzene ug/L (ppb) 50 <0.2 103 69-127 p-Isopropyltoluene ug/L (ppb) 50 <0.2 103 69-127 p-Isopropyltoluene ug/L (ppb) 50 <0.2 103 64-132 1,3-Dichlorobenzene ug/L (ppb) 50 <0.2 102 77-113 1,4-Dichlorobenzene ug/L (ppb) 50 <0.2 102 77-113 1,4-Dichlorobenzene ug/L (ppb) 50 <0.2 102 77-110 1,2-Dichlorobenzene ug/L (ppb) 50 <0.2 102 70-120 1,2-Dibromo-3-chloropropane ug/L (ppb) 50 <0.5 97 69-129 1,2-L'Trichlorobenzene ug/L (ppb) 50 <0.5 97 69-129 1,2-L'Trichlorobenzene ug/L (ppb) 50 <0.5 106 53-136 Naphthalene ug/L (ppb) 50 <0.2 104 60-145						
1,3,5-Trimethylbenzene						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1,2,3-Trichloropropane						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ug/L (ppb)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
Hexachlorobutadiene ug/L (ppb) 50 <0.5 106 53-136 Naphthalene ug/L (ppb) 50 <0.2 104 60-145						
Naphthalene ug/L (ppb) 50 <0.2 104 60-145						

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

, , ,	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	109	110	50-157	1
Chloromethane	ug/L (ppb)	50 50	94 97	91 100	62-130 70-128	3 3
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	105	100	62-188	3 4
Chloroethane	ug/L (ppb)	50	101	102	66-149	1
Trichlorofluoromethane	ug/L (ppb)	50	104	107	70-132	3
Acetone	ug/L (ppb)	250	95	93	44-145	2
1,1-Dichloroethene	ug/L (ppb)	50	97	96	75-119	1
Hexane Mathedana ablasida	ug/L (ppb)	50 50	105	103	51-153	2
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	100 102	100 101	63-132 70-122	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	99	99	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	101	100	77-119	1
2,2-Dichloropropane	ug/L (ppb)	50	99	106	62-141	7
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	96	76-119	2
Chloroform	ug/L (ppb)	50 250	95 105	96 106	78-117	1 1
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	99	100	49-147 78-114	1
1,1,1-Trichloroethane	ug/L (ppb)	50 50	97	99	80-116	2
1,1-Dichloropropene	ug/L (ppb)	50	97	97	78-119	0
Carbon tetrachloride	ug/L (ppb)	50	102	104	72-128	2
Benzene	ug/L (ppb)	50	98	98	75-116	0
Trichloroethene	ug/L (ppb)	50	102	103	72-119	1
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	99 102	100 104	79-121 76-120	1 2
Dibromomethane	ug/L (ppb)	50 50	104	104	79-121	0
4-Methyl-2-pentanone	ug/L (ppb)	250	106	106	54-153	0
cis-1,3-Dichloropropene	ug/L (ppb)	50	104	104	76-128	0
Toluene	ug/L (ppb)	50	97	98	79-115	1
trans-1,3-Dichloropropene	ug/L (ppb)	50	100	100	76-128	0
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb) ug/L (ppb)	50 250	96 101	97 101	78-120 49-147	1
1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	97	98	81-115	1
Tetrachloroethene	ug/L (ppb)	50	98	98	78-109	0
Dibromochloromethane	ug/L (ppb)	50	101	101	63-140	0
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	100	100	82-118	0
Chlorobenzene	ug/L (ppb)	50	98	99	80-113	1
Ethylbenzene 1.1.1.2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	99 98	99 99	83-111 76-125	0 1
m,p-Xylene	ug/L (ppb) ug/L (ppb)	100	100	100	84-112	0
o-Xylene	ug/L (ppb)	50	99	99	81-117	0
Styrene	ug/L (ppb)	50	94	95	83-121	1
Isopropylbenzene	ug/L (ppb)	50	98	99	81-122	1
Bromoform	ug/L (ppb)	50	112	111	40-161	1
n-Propylbenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	101 93	100 95	81-115 80-113	1 2
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	99	100	83-117	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	102	102	79-118	0
1,2,3-Trichloropropane	ug/L (ppb)	50	98	98	74-116	0
2-Chlorotoluene	ug/L (ppb)	50	100	100	79-112	0
4-Chlorotoluene	ug/L (ppb)	50	98	98	80-116	0
tert-Butylbenzene 1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	100 98	101 98	81-119 81-121	1 0
sec-Butylbenzene	ug/L (ppb)	50 50	101	100	83-123	1
p-Isopropyltoluene	ug/L (ppb)	50	100	101	81-122	i
1,3-Dichlorobenzene	ug/L (ppb)	50	100	101	80-115	1
1,4-Dichlorobenzene	ug/L (ppb)	50	97	97	77-112	0
1,2-Dichlorobenzene	ug/L (ppb)	50	99	99	79-115	0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	ug/L (ppb)	50 50	95 100	96 101	62-133 75-119	1 1
1,2,4-1 richiorobenzene Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	100	101	75-119 70-116	3
Naphthalene	ug/L (ppb)	50 50	97	100	70-110	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	99	102	74-122	3
	- •• ·					

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level		LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	89	89	67-116	0
2-Methylnaphthalene	ug/L (ppb)	0.25	89	89	63-122	0
1-Methylnaphthalene	ug/L (ppb)	0.25	89	89	65-122	0
Acenaphthylene	ug/L (ppb)	0.25	89	90	65-119	1
Acenaphthene	ug/L (ppb)	0.25	90	91	66-118	1
Fluorene	ug/L (ppb)	0.25	91	89	64-125	2
Phenanthrene	ug/L (ppb)	0.25	92	90	67-120	2
Anthracene	ug/L (ppb)	0.25	91	89	65-122	2
Fluoranthene	ug/L (ppb)	0.25	92	91	65-127	6
Pyrene	ug/L (ppb)	0.25	94	97	62-130	2
Benz(a)anthracene	ug/L (ppb)	0.25	96	95	60-118	1
Chrysene	ug/L (ppb)	0.25	95	93	66-125	2
Benzo(b)fluoranthene	ug/L (ppb)	0.25	89	87	55-135	2
Benzo(k)fluoranthene	ug/L (ppb)	0.25	92	89	62-125	3
Benzo(a)pyrene	ug/L (ppb)	0.25	89	87	58-127	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	85	85	36-142	0
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	84	81	37-133	4
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	85	84	34-135	1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER **SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270D**

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Phenol	ug/L (ppb)	2.5	27	32	10-84	17
Bis(2-chloroethyl) ether	ug/L (ppb)	2.5	89	94	52-113	5
2-Chlorophenol	ug/L (ppb)	2.5	69	84	50-110	20
1,3-Dichlorobenzene	ug/L (ppb)	2.5	85	90	45-109	6
1,4-Dichlorobenzene	ug/L (ppb)	2.5	85	89	44-118	5
1,2-Dichlorobenzene	ug/L (ppb)	2.5	87	92	46-116	6
Benzyl alcohol	ug/L (ppb)	2.5	73	78	42-100	7
2,2'-Oxybis(1-chloropropane)	ug/L (ppb)	2.5	91	96	51-124	5
2-Methylphenol	ug/L (ppb)	2.5	56	69	38-100	21 vo
Hexachloroethane	ug/L (ppb)	2.5	87	89	42-117	2
N-Nitroso-di-n-propylamine	ug/L (ppb)	2.5	99	103	48-124	4
	ug/L (ppb)	2.5	52	63	40-105	19
3-Methylphenol + 4-Methylphenol	ug/L (ppb)	2.5	92	98	50-118	6
Nitrobenzene	ug/L (ppb)	2.5	96	101	55-116	5
Isophorone	ug/L (ppb)	2.5	96	104	42-127	8
2-Nitrophenol	ug/L (ppb)					25 vo
2,4-Dimethylphenol	ug/L (ppb)	2.5 16	49	63	11-135	18
Benzoic acid	ug/L (ppb)		25	30	10-110	5
Bis(2-chloroethoxy)methane	ug/L (ppb)	2.5	92	97	55-115	13
2,4-Dichlorophenol		2.5	85	97	55-113	4
1,2,4-Trichlorobenzene	ug/L (ppb)	2.5	87	91	50-109	6
Hexachlorobutadiene	ug/L (ppb)	2.5	88	93	50-109	
4-Chloroaniline	ug/L (ppb)	5	87	82	30-109	6
4-Chloro-3-methylphenol	ug/L (ppb)	2.5	75	90	54-114	18
2-Methylnaphthalene	ug/L (ppb)	2.5	90	94	53-113	4
1-Methylnaphthalene	ug/L (ppb)	2.5	90	94	70-130	4
Hexachlorocyclopentadiene	ug/L (ppb)	2.5	57	55	10-121	4
2,4,6-Trichlorophenol	ug/L (ppb)	2.5	92	99	46-114	7
2,4,5-Trichlorophenol	ug/L (ppb)	2.5	90	98	57-122	9
2-Chloronaphthalene	ug/L (ppb)	2.5	87	91	52-112	4
2-Nitroaniline	ug/L (ppb)	2.5	91	98	47-128	7
Dimethyl phthalate	ug/L (ppb)	2.5	92	103	55-116	11
2,6-Dinitrotoluene	ug/L (ppb)	2.5	88	97	49-126	10
3-Nitroaniline	ug/L (ppb)	5	78	81	21-125	4
2,4-Dinitrophenol	ug/L (ppb)	2.5	82	87	29-130	6
Dibenzofuran	ug/L (ppb)	2.5	86	93	53-113	8
2,4-Dinitrotoluene	ug/L (ppb)	2.5	82	92	48-129	11
4-Nitrophenol	ug/L (ppb)	2.5	30	32	10-80	6
Diethyl phthalate	ug/L (ppb)	2.5	88	99	55-116	12
4-Chlorophenyl phenyl ether	ug/L (ppb)	2.5	87	95	52-115	9
N-Nitrosodiphenylamine	ug/L (ppb)	2.5	94	99	51-112	5
4-Nitroaniline	ug/L (ppb)	5	89	86	42-115	3
4,6-Dinitro-2-methylphenol	ug/L (ppb)	2.5	98	99	40-128	1
4-Bromophenyl phenyl ether	ug/L (ppb)	2.5	93	97	53-114	4
Hexachlorobenzene	ug/L (ppb)	2.5	91	95	54-115	4
Pentachlorophenol	ug/L (ppb)	2.5	95	96	49-114	1
Carbazole	ug/L (ppb)	2.5	95	96	54-115	1
	ug/L (ppb)	2.5	102	110	54-115	8
Di-n-butyl phthalate Benzyl butyl phthalate	ug/L (ppb)	2.5	100	108	53-122	8
Denzyi nilivi phthalate		2.0	100	100	JU-166	-
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	2.5	89	95	54-122	7

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

		Percent Percen		Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
alpha-BHC	ug/L (ppb)	0.12	68	74	52-107	8
gamma-BHC (Lindane)	ug/L (ppb)	0.12	68	74	55-105	8
beta-BHC	ug/L (ppb)	0.12	68	76	58-105	11
delta-BHC	ug/L (ppb)	0.12	67	75	58-102	11
Heptachlor	ug/L (ppb)	0.12	61	70	50-107	14
Aldrin	ug/L (ppb)	0.12	61	69	51-103	12
Heptachlor Epoxide	ug/L (ppb)	0.12	69	77	57-109	11
trans-Chlordane	ug/L (ppb)	0.12	66	73	42-123	10
cis-Chlordane	ug/L (ppb)	0.12	67	76	51-106	13
4,4'-DDE	ug/L (ppb)	0.12	68	77	55-113	12
Endosulfan I	ug/L (ppb)	0.12	39	49	15-150	23 vo
Dieldrin	ug/L (ppb)	0.12	71	80	61-112	12
Endrin	ug/L (ppb)	0.12	74	80	44-136	8
4,4'-DDD	ug/L (ppb)	0.12	70	80	47-131	13
Endosulfan II	ug/L (ppb)	0.12	23	31	15-122	30 vo
4,4'-DDT	ug/L (ppb)	0.12	65	74	55-111	13
Endrin Aldehyde	ug/L (ppb)	0.12	65	77	51-112	17
Methoxychlor	ug/L (ppb)	0.12	70	78	51-118	11
Endosulfan Sulfate	ug/L (ppb)	0.12	73	83	63-109	13
Endrin Ketone	ug/L (ppb)	0.12	71	81	62-106	13
Toxaphene	ug/L (ppb)	0.5	74	79	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/12/18

Project: Shelton C St. Landfill 150074, F&BI 801176

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

•	· ·	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.63	81	82	37-136	1
Aroclor 1260	ug/L (ppb)	0.63	85	85	41-135	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

January 31, 2018

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **11211**. This corresponds to your project number **801176** and purchase order number **A-233**. Five aqueous samples were received at Frontier Analytical Laboratory (FAL) on 1/16/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **11211**.

The following Level IV report consists of an Analytical Data section, a Sample Receipt section, a Laboratory Raw Data section, and an Instrument Raw Data section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo. The Laboratory Raw Data section contains our project request sheet, a percent solids sheet, an extraction bench sheet and the cleanup bench sheet. The instrument raw data section contains three subsections; the sample results section, the initial calibration section and the continuing/ending calibration section. The sample results sub-section consists of the quantitation summary forms with chromatograms for all samples and QC. The initial calibration curve as well as an overall quantitation summary form of the initial calibration curve. The continuing/ending calibration sub-section consists of the quantitation summary forms and chromatograms for all beginning and ending calibration injections associated with the samples and QC. The Level IV data package on compact disk has been sent to you via OnTrac. The enclosed results are specifically for the samples referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP Certificate number is 4041. Our State of California ELAP certificate number is 2934.

If you have any questions regarding project **11211**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Thomas C. Crabtree

lower C. Cralitree

Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11211

Project Due:

02/07/2018

Storage: R2

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11211-001-SA	0	801176	AMW-3-011218	EPA 1613 D/F	Aqueous	01/12/2018	10:15 am	01/14/2019
11211-002-SA	0	801176	AMW-4-011218	EPA 1613 D/F	Aqueous	01/12/2018	12:15 pm	01/14/2019
11211-003-SA	0	801176	AMW-2-011218	EPA 1613 D/F	Aqueous	01/12/2018	01:50 pm	01/14/2019
11211-004-SA	0	801176	AMW-1-011218	EPA 1613 D/F	Aqueous	01/12/2018	03:30 pm	01/14/2019
11211-005-SA	0	801176	AMW-5-011218	EPA 1613 D/F	Aqueous	01/12/2018	05:00 pm	01/14/2019

Received on: 01/16/2018

FAL ID: 11211-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-26-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	. Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.588 0.892 1.75		- -	0.209 0.231 0.305				
1,2,3,6,7,8-HxCDD	ND	1.75		-	0.319		ND	0.588	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND	1.70 2.03		-	0.306 0.408		ND ND	0.892 1.75	
OCDD	ND	4.95		-	1.01	Total HpCDD	ND	2.03	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND ND ND ND	0.699 0.889 0.937 0.940 0.986		- - - -	0.196 0.271 0.303 0.251 0.260	 } 			
2,3,4,6,7,8-HxCDF	ND	1.02		-	0.279				
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	ND ND	1.38 1.30		-	0.332 0.324		ND ND	0.699 0.937	
1,2,3,4,0,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND	1.81		-	0.324		ND	1.38	
OCDF	ND	2.61		-	0.619	Total HpCDF	ND	1.81	
Internal Standards	% Rec	QC Limits	Qual			la stancia I alcala Cta		:d- 00	- 14
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD		25.0 - 164 25.0 - 181				Isotopic Labeled Sta signal to noise ratio		ide QC range	e but
13C-1,2,3,7,8-PeCDD		25.0 - 161 32.0 - 141			В	Analyte is present in	Method Bl	ank	
13C-1,2,3,6,7,8-HxCDD		28.0 - 130			С	Chemical Interference	ce		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		23.0 - 140 17.0 - 157			D	Presence of Dipheny	yl Ethers		
130-0000	00.7	17.0 - 137			DNQ	Analyte concentration	n is below	calibration ra	inge
13C-2,3,7,8-TCDF		24.0 - 169			E	Analyte concentration	n is above	calibration ra	ange
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		24.0 - 185 21.0 - 178			F	Analyte confirmation	on second	dary column	
13C-1,2,3,4,7,8-HxCDF		26.0 - 152			J	Analyte concentration	n is below	calibration ra	inge
13C-1,2,3,6,7,8-HxCDF		26.0 - 123			M	Maximum possible of	concentration	on	
13C-2,3,4,6,7,8-HxCDF		28.0 - 136			1	Analyte Not Detecte			el
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF		29.0 - 147 28.0 - 143				Not Provided			
13C-1,2,3,4,0,7,8-HpCDF		26.0 - 143 26.0 - 138				Pre-filtered through	a Whatman	0 7um GE/E	filter
13C-OCDF		17.0 - 157				Sample acceptance			
						Matrix interferences	Sinteria riot	met	
Cleanup Surrogate						Result taken from di	lution or rei	injection	
37CI-2,3,7,8-TCDD	87.3	35.0 - 197							

Reviewed By: Date: 1/30/2018

FAL ID: 11211-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X4385 Date Extracted: 01-25-2018 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: ng/ml Acquired: 01-26-2018 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.5 50.2 51.9 50.9 51.4 51.6 99.2	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	11.2 52.5 53.7 50.4 51.5 51.5 50.2 50.3 51.1 99.6	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 39.0 - 65.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	91.6 73.8 73.6 70.8 63.9 63.2	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	94.8 76.6 76.5 77.0 70.1 75.1 67.9 67.1 65.1 57.8	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	94.8	31.0 - 191	

٨	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst: 1/30/2018

Reviewed By: 0'
Date: 1/30/2018

FAL ID: 11211-001-SA Client ID: AMW-3-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.879 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.665 0.959 2.06 2.00 1.97 2.62 4.61		- - - - - -	0.209 0.231 0.305 0.319 0.306 0.408 1.01	Total TCDD Total PeCDD Total HxCDD	ND ND ND ND	0.665 0.959 2.06 2.62	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.704 0.899 0.903 0.810 0.825 0.901 1.20 1.26 1.78 2.14		- - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324 0.401	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.704 0.903 1.20 1.78	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	82.3 77.2 73.7 74.9 72.7 70.0 76.4 72.0 72.7 79.0 78.2 76.0 70.3 74.0 69.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		B C D DNQ E F J M ND P P S X	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference of Dipheny Analyte concentratio Analyte concentratio Analyte concentratio Maximum possible concentration analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences Result taken from dil	s >10:1 Method Blace If Ethers In is below on second In is below on oncentration If at Detection If a Whatman criteria not	calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met	nge inge nge
37Cl-2,3,7,8-TCDD	88.9	35.0 - 197							

Analyst: 1/30/2018

DL Qual

J

0.585

1.07

2.03

0.643

1.23

1.44

1.18

FAL ID: 11211-002-SA Client ID: AMW-4-011218 Matrix: Aqueous Batch No: X4385 Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.960 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L

MDL

0.209 0.231 0.305 0.319

0.306

0.408

1.01

0.196

0.196 0.271 0.303 0.251 0.260 0.279

0.332

0.324

0.401

0.619

Compound

Total TCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF Total PeCDF Total HxCDF

Total HpCDF

Acquired: 01-27-2018 2005 WHO TEQ: 0.0255

Conc

ND

ND

4.87

ND

ND

ND

ND

				2005
Compound	Conc	DL	Qual	WHO Tox
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND 2.08 15.5	1.07 2.03 1.92 1.91	J	- - - - - 0.0208 0.00465
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND ND	1.21 1.23 0.989 1.04 1.10 1.44 0.860 1.18		- - - - - - - -
Internal Standards	% Rec	QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HyCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	86.7 81.2 75.2 76.8 74.3 69.0 80.6 77.7	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185		
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	77.7 81.7 78.8 79.7 73.2 73.7 71.5 63.6	21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157		
Cleanup Surrogate				
37Cl-2,3,7,8-TCDD	85.6	35.0 - 197		

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
S	Sample acceptance criteria not met
Χ	Matrix interferences
*	Result taken from dilution or reinjection

Analyst: 1/30/2018

Reviewed By: 0'
Date: 1/30/2018

FAL ID: 11211-003-SA Client ID: AMW-2-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.903 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.00666

0	0	DI	01	2005	MDI	0	0	DI	01
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	0.692		-	0.209				
1,2,3,7,8-PeCDD	ND	1.64		-	0.231				
1,2,3,4,7,8-HxCDD	ND	1.87		-	0.305				
1,2,3,6,7,8-HxCDD	ND	1.88		-	0.319		ND	0.692	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	ND ND	1.82 3.18		-	0.306 0.408	Total PeCDD Total HxCDD	ND ND	1.64 1.88	
0CDD	22.2	3.10	J	0.00666	1.01	Total HpCDD	ND	3.18	
0022			·	0.00000	1.01	rotarripobb	110	0.10	
2,3,7,8-TCDF	ND	0.856		-	0.196				
1,2,3,7,8-PeCDF	ND	0.781		-	0.271				
2,3,4,7,8-PeCDF	ND ND	0.842 1.23		-	0.303 0.251				
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND	1.23		-	0.251				
2,3,4,6,7,8-HxCDF	ND ND	1.41		-	0.279				
1,2,3,7,8,9-HxCDF	ND	1.71		_	0.332	Total TCDF	ND	0.856	
1,2,3,4,6,7,8-HpCDF	ND	1.52		-	0.324		ND	0.842	
1,2,3,4,7,8,9-HpCDF	ND	2.16		-	0.401		ND	1.71	
OCDF	ND	3.22		-	0.619	Total HpCDF	ND	2.16	
Internal Standards	% Rec C	QC Limits	Qual						
13C-2,3,7,8-TCDD	60.4 2	5.0 - 164				Isotopic Labeled Star		de QC range	but
13C-1,2,3,7,8-PeCDD		5.0 - 181				signal to noise ratio is			
13C-1,2,3,4,7,8-HxCDD		2.0 - 141			B	Analyte is present in l	Method Bla	ank	
13C-1,2,3,6,7,8-HxCDD		8.0 - 130			C	Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		23.0 - 140 7.0 - 157			D	Presence of Diphenyl	l Ethers		
130-0000	33.3	7.0 - 137			DNQ /	Analyte concentration	n is below o	alibration ra	nge
13C-2,3,7,8-TCDF		4.0 - 169			E	Analyte concentration	n is above o	calibration ra	inge
13C-1,2,3,7,8-PeCDF		4.0 - 185			F A	Analyte confirmation	on seconda	ary column	
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF		1.0 - 178 6.0 - 152			l J	Analyte concentration	is below o	alibration ra	nge
13C-1,2,3,6,7,8-HxCDF		.6.0 - 132 .6.0 - 123				Maximum possible co			90
13C-2,3,4,6,7,8-HxCDF		8.0 - 136							.
13C-1,2,3,7,8,9-HxCDF		9.0 - 147				Analyte Not Detected	at Detection	on Limit Leve	ei
13C-1,2,3,4,6,7,8-HpCDF		8.0 - 143			NP I	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF		6.0 - 138			P	Pre-filtered through a	Whatman	0.7um GF/F	filter
13C-OCDF	50.2 1	7.0 - 157			S	Sample acceptance o	criteria not i	met	
					X	Matrix interferences			
Cleanup Surrogate					*	Result taken from dilu	ution or reir	njection	
37Cl-2,3,7,8-TCDD	80.0 3	5.0 - 197							

Analyst: 1/30/2018

FAL ID: 11211-004-SA Client ID: AMW-1-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.958 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.510 1.02 1.36 1.45 1.36 2.29 5.81		- - - - - -	0.209 0.231 0.305 0.319 0.306 0.408 1.01	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.510 1.02 1.45 2.29	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND ND	0.499 0.656 0.688 0.819 0.845 0.873 1.14 0.929 1.23		- - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324 0.401 0.619	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	0.499 0.688 1.14 1.23	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	92.9 86.1 86.6 86.0 86.9 79.0 91.5 87.1 85.9 91.5 88.9 89.2 84.5 83.0 84.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 28.0 - 136 29.0 - 147 28.0 - 138 26.0 - 138 17.0 - 157	Qual		B C D DNQ E F J M ND NP P S X	Isotopic Labeled Stasignal to noise ratio in Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences Result taken from dii	s >10:1 Method Blace I Ethers In is below on second In is above on second In is below on the second In is delow on the second I at Detection I Whatman criteria not	calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met	nge inge nge
37Cl-2,3,7,8-TCDD	94.9	35.0 - 197							

Analyst: 1/30/2018

FAL ID: 11211-005-SA Client ID: AMW-5-011218 Matrix: Aqueous Batch No: X4385

Date Extracted: 01-25-2018 Date Received: 01-16-2018 Amount: 0.940 L ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/L Acquired: 01-27-2018 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.795 1.36 1.90		- - -	0.209 0.231 0.305				
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND	1.93 1.85 2.62 5.81		- - -	0.319 0.306 0.408 1.01	Total PeCDD Total HxCDD	ND ND ND ND	0.795 1.36 1.93 2.62	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND	0.883 1.06 1.04 0.827 0.867 0.901 1.21 1.43 1.92		- - - - - - - -	0.196 0.271 0.303 0.251 0.260 0.279 0.332 0.324	Total TCDF Total PeCDF Total HxCDF	ND ND ND	0.883 1.06 1.21	
OCDF Internal Standards	ND % Rec	2.29 QC Limits	Qual	-	0.619	Total HpCDF	ND	1.92	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	77.6 73.2 71.3 68.0 62.6 78.4 74.7	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185			B C D DNQ	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interferenc Presence of Dipheny Analyte concentratio Analyte concentratio Analyte confirmation	is >10:1 Method Blace yl Ethers on is below on is above	ank calibration ra calibration ra	nge
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	77.9 74.8 76.2 67.8 67.9 67.0	21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157			J M ND NP P S	Analyte concentration Maximum possible concentration Maximum possible concentration Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences	n is below oncentration at Detection at Whatman	calibration ra on on Limit Leve 0.7um GF/F	el
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	86.4	35.0 - 197			*	Result taken from dil	lution or rei	njection	

Analyst: 1/30/2018

Reviewed By: 0 Date: 1/30/2018

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michae	l Erdahl				SUE	SCON	ITRAC	TER .	Front	ier				-	Page #of TURNAROUND TIME					
Company Friedm	an and Br	uva, I	nc.		PRC	JEC	T NAM	IE/NO		***************************************		РО	#			Standa RUSH		Veeks)		
	6th Ave W	•				Ę	30117	6			A	-233	•					uthorized	l by:	
City, State, ZIP Seattle,					REN	IARI		ning a mana na 1991 na 1996 na na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996 na 1996	ONLY VOIGE OF COMPLET WHEN PARKET WHEN PARKET	and the second s		112				Dispos	e after	E DISPO 30 days	SAL	
Phone #(206) 285-8282	Fax #_	(206) 283-	5044]	Please	Email ———	Resu	lts 		10	· C				sampl ll with	es instruct	ions	
							CENTRAL STATE OF THE STATE OF T				ANAI	LYSES	S REG	UEST	red					ı
Sample ID	Lab ID	:	ate ipled	Time Sampled	Ma	trix	# of jars	1613 Dioxins/Furans	EPH	ΗdΛ	Nitrate	Sulfate	Alkalinity	TOC-9060M]	Notes	
AMW-3-011218		1/12	118	1015	wat	ier		У												
AMW-4-011218				1215	11	ļ		×									ļ			
AMW-2-011218	AND THE PROPERTY OF THE PROPER	оттой говог глагра		1350		Sens Tubumah Ayonno prawi	Granic and the make of the control o	<u> </u>	**************************************		**************					<u> </u>			ull k Consticularium (n. 1946) k kuu pahak keen ngan kansan nasan sa sa sa	
AMW-1-011218				1530		······································		×												
AMW-5-011218		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	1700	1	!		Х			ментописителя засим засодилений	No. 200 M. Albanya harangan	normal management and an a		econordinacione de la constanta de la constanta de la constanta de la constanta de la constanta de la constant					
		-	Mayba orkite ilg servino pio emplore		-						Mark Barrier State Commission of the Commission					ļ				
мо не влютим не съгластво по предоставления на предоставления на предоставления в става и в предоставления в с		Manuscons and the same	устин сталогогогостана		-				On the second second second second	uos, para para boso estrapo			***************************************		***************************************	ļ	<u> </u>		lladen likk den et bliverlichen in der gezicht zum dezen zu zu zu zu zu zu zu zu zu zu zu zu zu	The control of the co
			and the second section of the section of the second section of the section of the second section of the section of th		-	a hawaan aaban ayaan a										<u> </u>	 			
		 	······································		 			 									 			
			· · · · · · · · · · · · · · · · · · ·			***************************************									·····		2	<u> </u>		
																	1			

Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	hed by	SIGNA	TURE	7	Mi	chael I		NT NA	ME				COM man a				DATE 15/18	TIME //: 34	<u> </u>
Seattle, WA 98119-2029	Received	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		301		V	ath	Λι _Δ	7	10	0		T.c.	<u></u>	Λ.		1 /	16.18		-
Ph. (206) 285-8282	Relinquis		5	200	and the latest securious	1	<u> </u>	<u>w</u>		IPI			T/U	0/1-	KN/		-#-	101/X	1105	1
Fax (206) 283-5044	Received	by:		thrist trader Pale for sink skeen pale keep op troubs on processors.									, , , , , , , , , , , , , , , , , , , ,		The control of the latest the lat				000010 of (300285

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11211

Client:	Friedman & Bruya, Inc.
Client Project ID:	801176
Date Received:	01/16/2018
Time Received:	11:05 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R2

Method of Delivery:	Fed-Ex
Tracking Number:	809992619570
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	1
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9
Anomalies or additional comments:	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 801176

Work Order Number: 1801202

February 05, 2018

Attention Michael Erdahl:

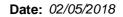
Fremont Analytical, Inc. received 5 sample(s) on 1/15/2018 for the analyses presented in the following report.

Ammonia by SM 4500 NH3G
Cyanide by SM 4500-CN C, E
Dissolved Metals by EPA Method 200.8
Dissolved Organic Carbon by SM 5310C
Herbicides by EPA Method 8151A
Ion Chromatography by EPA Method 300.0
Sulfide by SM 4500-S2-F
Total Metals by EPA Method 200.8
Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

And c. Kedy

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 801176 **Work Order:** 1801202

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1801202-001	AMW-3-011218	01/12/2018 10:15 AM	01/15/2018 3:05 PM
1801202-002	AMW-4-011218	01/12/2018 12:15 PM	01/15/2018 3:05 PM
1801202-003	AMW-2-011218	01/12/2018 1:50 PM	01/15/2018 3:05 PM
1801202-004	AMW-1-011218	01/12/2018 3:30 PM	01/15/2018 3:05 PM
1801202-005	AMW-5-011218	01/12/2018 5:00 PM	01/15/2018 3:05 PM

Case Narrative

WO#: **1801202**Date: **2/5/2018**

CLIENT: Friedman & Bruya

Project: 801176

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1801202**

Date Reported: 2/5/2018

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 10:15:00 AM

Project: 801176

Lab ID: 1801202-001 **Matrix:** Water

Client Sample ID: AMW-3-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A	,			Bato	h ID:	19542 Analyst: IH
Dicamba	ND	4.49		μg/L	1	2/3/2018 4:08:55 AM
2,4-D	ND	2.00		μg/L	1	2/3/2018 4:08:55 AM
2,4-DP	ND	0.999		μg/L	1	2/3/2018 4:08:55 AM
2,4,5-TP (Silvex)	ND	0.599		μg/L	1	2/3/2018 4:08:55 AM
2,4,5-T	ND	0.999		μg/L	1	2/3/2018 4:08:55 AM
Dinoseb	ND	3.75		μg/L	1	2/3/2018 4:08:55 AM
Dalapon	ND	4.00	*	μg/L	1	2/3/2018 4:08:55 AM
2,4-DB	ND	3.00		μg/L	1	2/3/2018 4:08:55 AM
MCPP	ND	9.99		μg/L	1	2/3/2018 4:08:55 AM
MCPA	ND	9.99		μg/L	1	2/3/2018 4:08:55 AM
Picloram	ND	0.499		μg/L	1	2/3/2018 4:08:55 AM
Bentazon	ND	2.70		μg/L	1	2/3/2018 4:08:55 AM
Chloramben	ND	1.20		μg/L	1	2/3/2018 4:08:55 AM
Acifluorfen	ND	4.25		μg/L	1	2/3/2018 4:08:55 AM
3,5-Dichlorobenzoic acid	ND	4.99		μg/L	1	2/3/2018 4:08:55 AM
4-Nitrophenol	ND	0.749	*	μg/L	1	2/3/2018 4:08:55 AM
Dacthal (DCPA)	ND	0.849		μg/L	1	2/3/2018 4:08:55 AM
Surr: 2,4-Dichlorophenylacetic acid	101	34.8 - 149		%Rec	1	2/3/2018 4:08:55 AM
NOTES: * - Flagged value is not within established Ion Chromatography by EPA Meti				Bato	h ID:	R41130 Analyst: KT
	_					
Chloride	1.91	0.100		mg/L	1	1/16/2018 4:12:00 PM
Nitrite (as N)	ND	0.100	Н	mg/L	1	1/16/2018 4:12:00 PM
Nitrate (as N)	0.858	0.100	Н	mg/L	1	1/16/2018 4:12:00 PM
Sulfate	14.0	0.300		mg/L	1	1/16/2018 4:12:00 PM
Dissolved Metals by EPA Method	200.8			Bato	h ID:	19551 Analyst: TN
Calcium	30,500	100		μg/L	1	1/19/2018 1:45:14 PM
Magnesium	17,700	100		μg/L	1	1/19/2018 1:45:14 PM
Sodium	3,870	100		μg/L	1	1/19/2018 1:45:14 PM
Total Metals by EPA Method 200.	<u>8</u>			Bato	h ID:	19553 Analyst: TN
Calcium	29,800	100		μg/L	1	1/19/2018 2:53:40 PM
	16,900	100		. •	1	1/19/2018 2:53:40 PM
Magnesium	•			μg/L		1/19/2018 2:53:40 PM
Sodium	3,730	100		μg/L	1	1/19/2018 2:53:40 PM

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 10:15:00 AM

Project: 801176

Lab ID: 1801202-001 **Matrix:** Water

Client Sample ID: AMW-3-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Organic Carbon by SN	1 5310C			Batc	h ID:	R41191 Analyst: KT
Organic Carbon, Dissolved	15.3	2.00	D	mg/L	4	1/19/2018 8:21:02 AM
Total Alkalinity by SM 2320B				Batc	h ID:	R41238 Analyst: WF
Alkalinity, Total (As CaCO3)	138	2.50		mg/L	1	1/22/2018 3:24:57 PM
Ammonia by SM 4500 NH3G				Batc	h ID:	19559 Analyst: KT
Nitrogen, Ammonia	ND	0.100		mg/L	1	1/18/2018 2:58:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	19544 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	1/18/2018 6:19:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R41236 Analyst: KT
Sulfide	ND	0.500		mg/L	1	1/19/2018 1:23:00 PM

Original

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 12:15:00 PM

Project: 801176

Lab ID: 1801202-002 **Matrix:** Water

Client Sample ID: AMW-4-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A	.			Batc	h ID: 19	542 Analyst: IH
Dicamba	ND	4.50		μg/L	1	2/3/2018 4:48:43 AM
2,4-D	ND	2.00		μg/L	1	2/3/2018 4:48:43 AM
2,4-DP	ND	0.999		μg/L	1	2/3/2018 4:48:43 AM
2,4,5-TP (Silvex)	ND	0.599		μg/L	1	2/3/2018 4:48:43 AM
2,4,5-T	ND	0.999		μg/L	1	2/3/2018 4:48:43 AM
Dinoseb	ND	3.75		μg/L	1	2/3/2018 4:48:43 AM
Dalapon	ND	4.00	*	μg/L	1	2/3/2018 4:48:43 AM
2,4-DB	ND	3.00		μg/L	1	2/3/2018 4:48:43 AM
MCPP	ND	9.99		μg/L	1	2/3/2018 4:48:43 AM
MCPA	ND	9.99		μg/L	1	2/3/2018 4:48:43 AM
Picloram	ND	0.500		μg/L	1	2/3/2018 4:48:43 AM
Bentazon	ND	2.70		μg/L	1	2/3/2018 4:48:43 AM
Chloramben	ND	1.20		μg/L	1	2/3/2018 4:48:43 AM
Acifluorfen	ND	4.25		μg/L	1	2/3/2018 4:48:43 AM
3,5-Dichlorobenzoic acid	ND	5.00		μg/L	1	2/3/2018 4:48:43 AM
4-Nitrophenol	ND	0.749	*	μg/L	1	2/3/2018 4:48:43 AM
Dacthal (DCPA)	ND	0.849		μg/L	1	2/3/2018 4:48:43 AM
Surr: 2,4-Dichlorophenylacetic acid	96.5	34.8 - 149		%Rec	1	2/3/2018 4:48:43 AM
NOTES:						
* - Flagged value is not within established	control limits.					
on Chromatography by EPA Metl	nod 300.0			Batc	h ID: R4	1130 Analyst: KT
Chloride	5.46	1.00	D	mg/L	10	1/16/2018 4:35:00 PM
Nitrite (as N)	ND	1.00	DH	mg/L	10	1/16/2018 4:35:00 PM
Nitrate (as N)	1.39	1.00	DH	mg/L	10	1/16/2018 4:35:00 PM
Sulfate	55.7	3.00	D	mg/L	10	1/16/2018 4:35:00 PM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Method	200.8			Batc	h ID: 19	567 Analyst: TN
Calcium	67,400	100		μg/L	1	1/22/2018 12:33:08 PM
Magnesium	22,000	100		μg/L	1	1/22/2018 12:33:08 PM
Sodium	76,000	1,000	D	μg/L	10	1/22/2018 12:29:06 PM
Total Metals by EPA Method 200.	.8			Batc	h ID: 19	553 Analyst: TN
Calcium						1/19/2018 3:29:55 PM

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 12:15:00 PM

Project: 801176

Lab ID: 1801202-002 **Matrix:** Water

Client Sample ID: AMW-4-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 200.	8			Batc	h ID:	19553 Analyst: TN
Magnesium Sodium	23,300 73,300	100 1,000	D	μg/L μg/L	1 10	1/19/2018 3:29:55 PM 1/22/2018 11:56:25 AM
Dissolved Organic Carbon by SM	<u>5310C</u>			Batc	h ID:	R41191 Analyst: KT
Organic Carbon, Dissolved	54.4	2.50	D	mg/L	5	1/19/2018 8:44:28 AM
Total Alkalinity by SM 2320B				Batc	h ID:	R41238 Analyst: WF
Alkalinity, Total (As CaCO3)	375	2.50		mg/L	1	1/22/2018 3:24:57 PM
Ammonia by SM 4500 NH3G				Batc	h ID:	19559 Analyst: KT
Nitrogen, Ammonia	ND	0.100		mg/L	1	1/18/2018 3:03:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	19544 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	1/18/2018 6:22:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R41236 Analyst: KT
Sulfide	ND	0.500		mg/L	1	1/19/2018 1:39:00 PM

Original

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 1:50:00 PM

Project: 801176

Lab ID: 1801202-003 **Matrix:** Water

Client Sample ID: AMW-2-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batc	h ID:	19542 Analyst: IH
Dicamba	ND	4.49		μg/L	1	2/3/2018 5:08:34 AM
2,4-D	ND	2.00		μg/L	1	2/3/2018 5:08:34 AM
2,4-DP	ND	0.998		μg/L	1	2/3/2018 5:08:34 AM
2,4,5-TP (Silvex)	ND	0.599		μg/L	1	2/3/2018 5:08:34 AM
2,4,5-T	ND	0.998		μg/L	1	2/3/2018 5:08:34 AM
Dinoseb	ND	3.74		μg/L	1	2/3/2018 5:08:34 AM
Dalapon	ND	3.99	*	μg/L	1	2/3/2018 5:08:34 AM
2,4-DB	ND	2.99		μg/L	1	2/3/2018 5:08:34 AM
MCPP	ND	9.98		μg/L	1	2/3/2018 5:08:34 AM
MCPA	ND	9.98		μg/L	1	2/3/2018 5:08:34 AM
Picloram	ND	0.499		μg/L	1	2/3/2018 5:08:34 AM
Bentazon	ND	2.70		μg/L	1	2/3/2018 5:08:34 AM
Chloramben	ND	1.20		μg/L	1	2/3/2018 5:08:34 AM
Acifluorfen	ND	4.24		μg/L	1	2/3/2018 5:08:34 AM
3,5-Dichlorobenzoic acid	ND	4.99		μg/L	1	2/3/2018 5:08:34 AM
4-Nitrophenol	ND	0.749	*	μg/L	1	2/3/2018 5:08:34 AM
Dacthal (DCPA)	ND	0.849		μg/L	1	2/3/2018 5:08:34 AM
Surr: 2,4-Dichlorophenylacetic acid	97.5	34.8 - 149		%Rec	1	2/3/2018 5:08:34 AM
NOTES: * - Flagged value is not within established on Chromatography by EPA Meth				Batc	h ID:	R41130 Analyst: KT
Chloride	2 10	0.500	D	ma/l	5	1/16/2018 4·58·00 PM
Chloride Nitrite (as N)	2.10 ND	0.500 0.500	D	mg/L mg/l	5 5	
Nitrite (as N)	ND	0.500	DH	mg/L	5	1/16/2018 4:58:00 PM
Nitrite (as N) Nitrate (as N)	ND ND	0.500 0.500	DH DH	mg/L mg/L	5 5	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM
Nitrite (as N)	ND	0.500	DH	mg/L	5	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM
Nitrite (as N) Nitrate (as N) Sulfate NOTES: Diluted due to matrix.	ND ND 14.9	0.500 0.500	DH DH	mg/L mg/L mg/L	5 5 5	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM
Nitrite (as N) Nitrate (as N) Sulfate NOTES: Diluted due to matrix.	ND ND 14.9	0.500 0.500	DH DH	mg/L mg/L mg/L Batc	5 5 5	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 Analyst: TN
Nitrite (as N) Nitrate (as N) Sulfate NOTES: Diluted due to matrix. Dissolved Metals by EPA Method	ND ND 14.9	0.500 0.500 1.50	DH DH	mg/L mg/L mg/L	5 5 5 h ID:	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM
Nitrite (as N) Nitrate (as N) Sulfate NOTES: Diluted due to matrix. Dissolved Metals by EPA Method Calcium	ND ND 14.9 200.8 31,700	0.500 0.500 1.50	DH DH	mg/L mg/L mg/L Batc μg/L	5 5 5 h ID:	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/19/2018 1:49:15 PM
Nitrite (as N) Nitrate (as N) Sulfate NOTES: Diluted due to matrix. Dissolved Metals by EPA Method Calcium Magnesium	ND ND 14.9 200.8 31,700 13,900 5,330	0.500 0.500 1.50	DH DH	mg/L mg/L mg/L Batc μg/L μg/L μg/L	5 5 5 h ID:	1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/16/2018 4:58:00 PM 1/19/2018 1:49:15 PM 1/19/2018 1:49:15 PM

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 1:50:00 PM

Project: 801176

Lab ID: 1801202-003 **Matrix:** Water

Client Sample ID: AMW-2-011218

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed	
Total Metals by EPA Method 200	.8			Bato	h ID:	19553	Analyst: TN	
Magnesium Sodium	13,300 4,600	100 100		μg/L μg/L	1		2018 3:33:56 PM 2018 3:33:56 PM	
Dissolved Organic Carbon by SM	5310C			Bato	h ID:	R41191	Analyst: KT	
Organic Carbon, Dissolved	21.6	2.50	D	mg/L	5	1/19/2	2018 9:02:41 AM	l
Total Alkalinity by SM 2320B				Bato	h ID:	R41238	Analyst: WF	;
Alkalinity, Total (As CaCO3)	114	2.50		mg/L	1	1/22/	2018 3:24:57 PM	I
Ammonia by SM 4500 NH3G				Bato	h ID:	19559	Analyst: KT	
Nitrogen, Ammonia	ND	0.100		mg/L	1	1/18/2	2018 3:08:00 PM	I
Cyanide by SM 4500-CN C, E				Bato	h ID:	19544	Analyst: WF	:
Cyanide, Total	ND	0.0500		mg/L	1	1/18/2	2018 6:25:00 PM	I
Sulfide by SM 4500-S2-F				Bato	h ID:	R41236	Analyst: KT	
Sulfide	ND	0.500		mg/L	1	1/19/	2018 1:43:00 PM	l

Original

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 3:30:00 PM

Project: 801176

Lab ID: 1801202-004 **Matrix:** Water

Client Sample ID: AMW-1-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Bato	h ID:	19542 Analyst: IH
Dicamba	ND	4.49		μg/L	1	2/3/2018 5:28:31 AM
2,4-D	ND	1.99		μg/L	1	2/3/2018 5:28:31 AM
2,4-DP	ND	0.997		μg/L	1	2/3/2018 5:28:31 AM
2,4,5-TP (Silvex)	ND	0.598		μg/L	1	2/3/2018 5:28:31 AM
2,4,5-T	ND	0.997		μg/L	1	2/3/2018 5:28:31 AM
Dinoseb	ND	3.74		μg/L	1	2/3/2018 5:28:31 AM
Dalapon	ND	3.99	*	μg/L	1	2/3/2018 5:28:31 AM
2,4-DB	ND	2.99		μg/L	1	2/3/2018 5:28:31 AM
MCPP	ND	9.97		μg/L	1	2/3/2018 5:28:31 AM
MCPA	ND	9.97		μg/L	1	2/3/2018 5:28:31 AM
Picloram	ND	0.499		μg/L	1	2/3/2018 5:28:31 AM
Bentazon	ND	2.69		μg/L	1	2/3/2018 5:28:31 AM
Chloramben	ND	1.20		μg/L	1	2/3/2018 5:28:31 AM
Acifluorfen	ND	4.24		μg/L	1	2/3/2018 5:28:31 AM
3,5-Dichlorobenzoic acid	ND	4.99		μg/L	1	2/3/2018 5:28:31 AM
4-Nitrophenol	ND	0.748	*	μg/L	1	2/3/2018 5:28:31 AM
Dacthal (DCPA)	ND	0.848		μg/L	1	2/3/2018 5:28:31 AM
Surr: 2,4-Dichlorophenylacetic acid	96.7	34.8 - 149		%Rec	1	2/3/2018 5:28:31 AM
NOTES:						
* - Flagged value is not within established	control limits.					
on Chromatography by EPA Meth	nod 300.0			Bato	h ID:	R41130 Analyst: KT
Chloride	2.28	0.200	D	mg/L	2	1/16/2018 5:21:00 PN
Nitrite (as N)	ND	0.200	DH	mg/L	2	1/16/2018 5:21:00 PM
Nitrate (as N)	0.110	0.200	JDH	mg/L	2	1/16/2018 5:21:00 PM
Sulfate	17.4	0.600	D	mg/L	2	1/16/2018 5:21:00 PM
NOTES:				J		
Diluted due to matrix.						
Dissolved Metals by EPA Method	200.8			Bato	h ID:	19551 Analyst: TN
Calcium	30,300	100		ug/l	1	1/19/2018 1:53:16 PN
Magnesium	12,400	100		μg/L μg/L	1	1/19/2018 1:53:16 PN
Sodium	4,940	100		μg/L μg/L	1	1/19/2018 1:53:16 PN
Codium	4,340	100		μg/L	ı	1/13/2010 1.33.10 FN
Total Metals by EPA Method 200.	<u>8</u>			Bato	h ID:	19553 Analyst: TN
Calcium	30,600	100		μg/L	1	1/19/2018 3:37:57 PM

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 3:30:00 PM

Project: 801176

Lab ID: 1801202-004 **Matrix:** Water

Client Sample ID: AMW-1-011218

Analyses	Result	RL	Qual	Units	DF	- Da	Date Analyzed	
Total Metals by EPA Method 200.	<u>8</u>			Batc	h ID:	19553	Analyst: TN	
Magnesium Sodium	12,100 4,820	100 100		μg/L μg/L	1		2018 3:37:57 PM 2018 3:37:57 PM	
Dissolved Organic Carbon by SM 5310C				Batch ID: R41		R41191	R41191 Analyst: KT	
Organic Carbon, Dissolved	18.1	2.50	D	mg/L	5	1/19/	2018 9:26:38 AM	
Total Alkalinity by SM 2320B				Batch ID:		R41238	Analyst: WF	
Alkalinity, Total (As CaCO3)	112	2.50		mg/L	1	1/22/	2018 3:24:57 PM	
Ammonia by SM 4500 NH3G				Batch ID:		19559	Analyst: KT	
Nitrogen, Ammonia	ND	0.100		mg/L	1	1/18/	2018 3:14:00 PM	
Cyanide by SM 4500-CN C, E				Batc	h ID:	19544	Analyst: WF	
Cyanide, Total	ND	0.0500		mg/L	1	1/18/	2018 6:28:00 PM	
Sulfide by SM 4500-S2-F				Batch ID:		R41236	Analyst: KT	
Sulfide	ND	0.500		mg/L	1	1/19/	2018 1:47:00 PM	

Original

Analytical Report

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 5:00:00 PM

Project: 801176

Lab ID: 1801202-005 **Matrix:** Water

Client Sample ID: AMW-5-011218

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batc	h ID:	19542 Analyst: IH
Dicamba	ND	4.50		μg/L	1	2/3/2018 5:48:24 AM
2,4-D	ND	2.00		μg/L	1	2/3/2018 5:48:24 AM
2,4-DP	ND	0.999		μg/L	1	2/3/2018 5:48:24 AM
2,4,5-TP (Silvex)	ND	0.600		μg/L	1	2/3/2018 5:48:24 AM
2,4,5-T	ND	0.999		μg/L	1	2/3/2018 5:48:24 AM
Dinoseb	ND	3.75		μg/L	1	2/3/2018 5:48:24 AM
Dalapon	ND	4.00	*	μg/L	1	2/3/2018 5:48:24 AM
2,4-DB	ND	3.00		μg/L	1	2/3/2018 5:48:24 AM
MCPP	ND	9.99		μg/L	1	2/3/2018 5:48:24 AM
MCPA	ND	9.99		μg/L	1	2/3/2018 5:48:24 AM
Picloram	ND	0.500		μg/L	1	2/3/2018 5:48:24 AM
Bentazon	ND	2.70		μg/L	1	2/3/2018 5:48:24 AM
Chloramben	ND	1.20		μg/L	1	2/3/2018 5:48:24 AM
Acifluorfen	ND	4.25		μg/L	1	2/3/2018 5:48:24 AM
3,5-Dichlorobenzoic acid	ND	5.00		μg/L	1	2/3/2018 5:48:24 AM
4-Nitrophenol	ND	0.749	*	μg/L	1	2/3/2018 5:48:24 AM
Dacthal (DCPA)	ND	0.849		μg/L	1	2/3/2018 5:48:24 AM
Surr: 2,4-Dichlorophenylacetic acid	95.7	34.8 - 149		%Rec	1	2/3/2018 5:48:24 AM
* - Flagged value is not within established on Chromatography by EPA Meth				Batc	h ID:	R41130 Analyst: KT
Chloride	2.28	0.200	D	mg/L	2	1/16/2018 6:31:00 PM
Nitrite (as N)	ND	0.200	DH	mg/L	2	1/16/2018 6:31:00 PM
Nitrate (as N)	0.128	0.200	JDH	mg/L	2	1/16/2018 6:31:00 PM
Sulfate	17.3	0.600	D	mg/L	2	1/16/2018 6:31:00 PM
	17.3					
NOTES: Diluted due to matrix.	17.3	0.000	J	mg/L		
NOTES: Diluted due to matrix.		0.000	D			19551 Analyst: TN
NOTES: Diluted due to matrix.		100	J	Batc		19551 Analyst: TN
NOTES: Diluted due to matrix. Dissolved Metals by EPA Method	200.8		J		h ID:	19551 Analyst: TN 1/19/2018 1:57:18 PM
NOTES: Diluted due to matrix. Dissolved Metals by EPA Method Calcium	200.8 31,200	100	Ü	Batc μg/L	h ID: 1	
NOTES: Diluted due to matrix. Dissolved Metals by EPA Method Calcium Magnesium	31,200 12,000 4,940	100 100	Ü	Batc μg/L μg/L μg/L	h ID: 1 1 1	19551 Analyst: TN 1/19/2018 1:57:18 PM 1/19/2018 1:57:18 PM

Analytical Report

Work Order: **1801202**Date Reported: **2/5/2018**

Client: Friedman & Bruya Collection Date: 1/12/2018 5:00:00 PM

Project: 801176

Lab ID: 1801202-005 **Matrix:** Water

Client Sample ID: AMW-5-011218

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed	
Total Metals by EPA Method 200.	<u>8</u>			Batc	h ID:	19553	Analyst: TN	
Magnesium Sodium	12,400 4,510	100 100		μg/L μg/L	1		2018 3:41:59 PM 2018 3:41:59 PM	
Dissolved Organic Carbon by SM	5310C			Batc	h ID:	R41191	Analyst: KT	
Organic Carbon, Dissolved	17.0	2.50	D	mg/L	5	1/19/2	2018 9:50:06 AM	
Total Alkalinity by SM 2320B				Batc	h ID:	R41238	Analyst: WF	
Alkalinity, Total (As CaCO3)	110	2.50		mg/L	1	1/22/	2018 3:24:57 PM	
Ammonia by SM 4500 NH3G				Batc	h ID:	19559	Analyst: KT	
Nitrogen, Ammonia	ND	0.100		mg/L	1	1/18/	2018 3:19:00 PM	
Cyanide by SM 4500-CN C, E				Batc	h ID:	19544	Analyst: WF	
Cyanide, Total	ND	0.0500		mg/L	1	1/18/	2018 6:31:00 PM	
Sulfide by SM 4500-S2-F				Batc	h ID:	R41236	Analyst: KT	
Sulfide	ND	0.500		mg/L	1	1/19/	2018 1:51:00 PM	

Work Order: 1801202

CLIENT: Friedman & Bruya

Project: 801176

QC SUMMARY REPORT

Total Alkalinity by SM 2320B

Sample ID MB-R41238 SampType: MBLK Units: mg/L Prep Date: 1/22/2018 RunNo: 41238

Client ID: **MBLKW** Batch ID: **R41238** Analysis Date: **1/22/2018** SeqNo: **795002**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS-R41238 SampType: LCS Units: mg/L Prep Date: 1/22/2018 RunNo: 41238 Client ID: LCSW Batch ID: R41238 Analysis Date: 1/22/2018 SeqNo: 795003 SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val Analyte Result RL %REC %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 101 2.50 100.0 0 101 80 120

 Sample ID
 1801202-001BDUP
 SampType:
 DUP
 Units:
 mg/L
 Prep Date:
 1/22/2018
 RunNo:
 41238

 Client ID:
 AMW-3-011218
 Batch ID:
 R41238
 Analysis Date:
 1/22/2018
 SeqNo:
 795005

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 137 2.50 137.7 0.743 20

Original Page 15 of 32

Work Order: 1801202

CLIENT: Friedman & Bruya

Project: 801176

QC SUMMARY REPORT

Ammonia by SM 4500 NH3G

Project:	801176					Ammonia by om 4000 Mile
Sample ID	MB-19559	SampType: MBLK			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41185
Client ID:	MBLKW	Batch ID: 19559				Analysis Date: 1/18/2018 SeqNo: 793702
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Nitrogen, A	mmonia	ND	0.100			
Sample ID	LCS-19559	SampType: LCS			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41185
Client ID:	LCSW	Batch ID: 19559				Analysis Date: 1/18/2018 SeqNo: 793703
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Nitrogen, A	mmonia	0.478	0.100	0.5000	0	95.6 80 120
Sample ID	1801202-001HDUP	SampType: DUP			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41185
Client ID:	AMW-3-011218	Batch ID: 19559				Analysis Date: 1/18/2018 SeqNo: 793712
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Nitrogen, A	mmonia	ND	0.100			0 30
Sample ID	1801202-001HMS	SampType: MS			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41185
Client ID:	AMW-3-011218	Batch ID: 19559				Analysis Date: 1/18/2018 SeqNo: 793715
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Nitrogen, A	mmonia	0.433	0.100	0.5000	0	86.6 70 130
Sample ID	1801202-001HMSD	SampType: MSD			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41185
Client ID:	AMW-3-011218	Batch ID: 19559				Analysis Date: 1/18/2018 SeqNo: 793716
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Nitrogen, A	mmonia	0.419	0.100	0.5000	0	83.8 70 130 0.4330 3.29 30

Original Page 16 of 32

Work Order: 1801202

QC SUMMARY REPORT

Friedman & Bruya CLIENT:

Cyanide by SM 4500-CN C, E

Project: 801176 Sample ID MB-19544 SampType: MBLK Units: mg/L Prep Date: 1/18/2018 RunNo: 41167 Client ID: MBLKW Batch ID: 19544 Analysis Date: 1/18/2018 SeqNo: 793530 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND Cyanide, Total 0.0500

Sample ID LCS-19544	SampType: LCS			Units: mg/L		Prep Dat	te: 1/18/20	18	RunNo: 41 1	167	
Client ID: LCSW	Batch ID: 19544					Analysis Da	te: 1/18/20	18	SeqNo: 793	3531	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.260	0.0500	0.2500	0	104	80	120				

Sample ID 1801213-002ADUP	SampType: DUP		Units: ı	ng/L	Prep Da	te: 1/18/2 0	018	RunNo: 41 1	167	
Client ID: BATCH	Batch ID: 19544				Analysis Da	te: 1/18/20	018	SeqNo: 793	3533	
Analyte	Result	RL	SPK value SPK Ref Va	I %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	ND	0.0500					0		20	

Sample ID 1801213-002AMS	SampType: MS			Units: mg/L		Prep Da	te: 1/18/2 0	18	RunNo: 41	167	
Client ID: BATCH	Batch ID: 19544					Analysis Da	te: 1/18/20	18	SeqNo: 79	3534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.134	0.0500	0.2500	0	53.5	80	120				S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID 1801213-002AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 1/18/2 0)18	RunNo: 41 1	167	
Client ID: BATCH	Batch ID: 19544					Analysis Da	te: 1/18/20)18	SeqNo: 793	3535	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.198	0.0500	0.2500	0	79.4	80	120	0.1337	39.0	30	RS

NOTES:

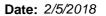
S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed. The method is in control as indicated by the LCS.

Page 17 of 32 Original

Work Order: 1801202

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

Project:	801176	Diaya						Diss	solved Orga	nic Carbo	n by SM	53100
Sample ID M	B-R41191	SampType: MBLK			Units: mg/L		Prep Date:	1/18/20	018	RunNo: 41	191	
Client ID: M	BLKW	Batch ID: R41191					Analysis Date	1/18/20	018	SeqNo: 79	3790	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Carbo	on, Dissolved	ND	0.500									
Sample ID L (CS-R41191	SampType: LCS			Units: mg/L		Prep Date:	1/18/20	018	RunNo: 41	191	
Client ID: LO	csw	Batch ID: R41191					Analysis Date	1/18/20	018	SeqNo: 79	3791	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Carbo	on, Dissolved	5.28	0.500	5.000	0	106	80	120				
Sample ID 18	301228-004BDUP	SampType: DUP			Units: mg/L		Prep Date:	1/18/20	018	RunNo: 41	191	
Client ID: B	ATCH	Batch ID: R41191					Analysis Date	1/18/20	018	SeqNo: 79	3796	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Carbo	on, Dissolved	7.83	0.500						8.605	9.42	20	
Sample ID 18	301228-004BMS	SampType: MS			Units: mg/L		Prep Date:	1/18/20	018	RunNo: 41	191	
Client ID: BA	ATCH	Batch ID: R41191					Analysis Date	1/18/20	018	SeqNo: 79	3797	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Carbo		11.9	0.500	5.000	8.605	65.7	70	130				S
· .	B01228-004BMSD	ossible matrix effect. The r SampType: MSD	nethod is in	control as inc	Units: mg/L	nory Conti	Prep Date:		n18	RunNo: 41	101	
Client ID: B		Batch ID: R41191			Ormo. mg/L		Analysis Date			SeqNo: 79	-	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	%RPD	RPDLimit	Qual
Organic Carbo	on. Dissolved	11.9	0.500	5.000	8.605	65.5	70	130	11.89	0.0841	30	S

NOTES:

Page 18 of 32 Original

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1801202

QC SUMMARY REPORT

20

20

0.438

0.4580

CLIENT: Friedman & Bruya

Project: 801176	ш а ышуа					I	Ion Chi	romatograp	hy by EP	A Method	300.0
Sample ID MB-R41130 Client ID: MBLKW	SampType: MBLK Batch ID: R41130			Units: mg/L		Prep Date:			RunNo: 41 1 SeqNo: 792		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									
Sample ID LCS-R41130	SampType: LCS			Units: mg/L		Prep Date:	1/16/20	18	RunNo: 41 1	130	
Client ID: LCSW	Batch ID: R41130					Analysis Date:	1/16/20	18	SeqNo: 792	2465	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.718	0.100	0.7500	0	95.7	90	110				
Nitrite (as N)	0.730	0.100	0.7500	0	97.3	90	110				
Nitrate (as N)	0.735	0.100	0.7500	0	98.0	90	110				
Sulfate	3.58	0.300	3.750	0	95.4	90	110				
Sample ID 1801207-001CDUI	P SampType: DUP			Units: mg/L		Prep Date:	1/16/20	18	RunNo: 41 1	130	
Client ID: BATCH	Batch ID: R41130			_		Analysis Date:	1/16/20	18	SeqNo: 792	2467	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	3.22	0.100						3.210	0.435	20	E
Nitrite (as N)	ND	0.100						0		20	

NOTES:

Sulfate

Nitrate (as N)

E - Estimated value. The amount exceeds the linear working range of the instrument.

ND

0.456

0.100

0.300

Sample ID 1801207-001CMS	SampType: MS			Units: mg/L		Prep Da	te: 1/16/2 0)18	RunNo: 41 1	130	-
Client ID: BATCH	Batch ID: R41130					Analysis Da	te: 1/16/2 0)18	SeqNo: 792	2468	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.10	0.100	0.7500	3.210	119	80	120				E

Original Page 19 of 32

Work Order: 1801202

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

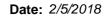
801176

Ion Chromatography by EPA Method 300.0

Sample ID 1801207-001CMS	SampType: MS			Units: mg/L		Prep Da	te: 1/16/2 0	018	RunNo: 411	30	
Client ID: BATCH	Batch ID: R41130					Analysis Da	te: 1/16/2 0	018	SeqNo: 792	2468	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	0.753	0.100	0.7500	0	100	80	120				
Nitrate (as N)	0.764	0.100	0.7500	0	102	80	120				
Sulfate	4.09	0.300	3.750	0.4580	96.9	80	120				

NOTES:

Project:


E - Estimated value. The amount exceeds the linear working range of the instrument.

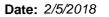
Sample ID 1801207-001CMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 1/16/2 0)18	RunNo: 41 1	130	
Client ID: BATCH	Batch ID: R41130					Analysis Da	te: 1/16/2 0)18	SeqNo: 792	2469	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.10	0.100	0.7500	3.210	119	80	120	4.100	0.0975	20	Е
Nitrite (as N)	0.758	0.100	0.7500	0	101	80	120	0.7530	0.662	20	
Nitrate (as N)	0.765	0.100	0.7500	0	102	80	120	0.7640	0.131	20	
Sulfate	4.11	0.300	3.750	0.4580	97.3	80	120	4.093	0.293	20	

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Original Page 20 of 32

Work Order: 1801202


CLIENT: Friedman & Bruya

QC SUMMARY REPORT

Sulfide by SM 4500-S2-F

Project: 801176					Sulfide by SM 4500-	52-F
Sample ID MB-R41236	SampType: MBLK			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41236	
Client ID: MBLKW	Batch ID: R41236				Analysis Date: 1/19/2018 SeqNo: 794893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Sulfide	ND	0.500				
Sample ID LCS-R41236	SampType: LCS			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41236	
Client ID: LCSW	Batch ID: R41236				Analysis Date: 1/19/2018 SeqNo: 794894	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Sulfide	2.20	0.500	2.000	0	110 65 135	
Sample ID 1801202-001CDUP	SampType: DUP			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41236	
Client ID: AMW-3-011218	Batch ID: R41236				Analysis Date: 1/19/2018 SeqNo: 794896	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Sulfide	ND	0.500			0 30	
Sample ID 1801202-001CMS	SampType: MS			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41236	
Client ID: AMW-3-011218	Batch ID: R41236				Analysis Date: 1/19/2018 SeqNo: 794897	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Sulfide	2.00	0.500	2.000	0	100 65 135	
Sample ID 1801202-001CMSD	SampType: MSD			Units: mg/L	Prep Date: 1/19/2018 RunNo: 41236	
Client ID: AMW-3-011218	Batch ID: R41236				Analysis Date: 1/19/2018 SeqNo: 794898	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Sulfide	1.80	0.500	2.000	0	90.0 65 135 2.000 10.5 30	

Page 21 of 32 Original

Work Order: 1801202

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project:	801176	,						Dis	solved Met	als by EP	A Method	200.8
Sample ID Client ID:	MB-19548FB MBLKW	SampType: MBLK Batch ID: 19551			Units: µg/L		Prep Dat Analysis Dat	te: 1/19/20 te: 1/19/20		RunNo: 412 SeqNo: 79		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium Sodium NOTES: Filter Bla		ND ND	100 100									
Sample ID	MB-19551	SampType: MBLK			Units: µg/L		Prep Dat	te: 1/19/20	18	RunNo: 412	205	
Client ID:	MBLKW	Batch ID: 19551					Analysis Dat	te: 1/19/20	18	SeqNo: 794	1158	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium Sodium		ND ND	100 100									
Sample ID	LCS-19551	SampType: LCS			Units: µg/L		Prep Dat	te: 1/19/20	18	RunNo: 412	205	
Client ID:	LCSW	Batch ID: 19551					Analysis Dat	te: 1/19/20	18	SeqNo: 794	4159	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium Sodium		1,110 1,030	100 100	1,000 1,000	0 0	111 103	50 50	150 150				
Sample ID	1801187-016DDUP	SampType: DUP			Units: µg/L		Prep Dat	te: 1/19/20	18	RunNo: 412	205	
Client ID:	ВАТСН	Batch ID: 19551					Analysis Dat	te: 1/19/20	18	SeqNo: 794	1161	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium Sodium		74,400 15,100	100 100						79,360 15,420	6.39 1.92	30 30	

Page 22 of 32 Original

Work Order: 1801202

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Metals by EPA Method 200.8

Project:	801176							Dis	solved Met	als by EP	A Method	1 200.8
Sample ID	1801187-016DMS	SampType: MS			Units: µg/L		Prep Dat	te: 1/19/20	18	RunNo: 412	205	
Client ID:	ВАТСН	Batch ID: 19551					Analysis Dat	te: 1/19/20	18	SeqNo: 794	4162	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium		78,800	100	5,000	79,360	-11.0	50	150				S
Sodium		19,800	100	5,000	15,420	86.6	50	150				
NOTES:												

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

ND

ND

100

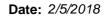
100

Sample ID 1801187-016DMSD	SampType: MSD			Units: µg/L		Prep Da	te: 1/19/2 0	18	RunNo: 412	205	
Client ID: BATCH	Batch ID: 19551					Analysis Da	te: 1/19/2 0	18	SeqNo: 794	1163	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	85,300	100	5,000	79,360	118	50	150	78,810	7.88	30	
Sodium	20,400	100	5,000	15,420	99.5	50	150	19,750	3.22	30	

Ī	Sample ID MB	3-19567 SampType: MB	LK	Un	its: µg/L	Prep Date:	1/22/2018	RunNo: 412	230	
	Client ID: MB	BLKW Batch ID: 195	67			Analysis Date:	1/22/2018	SeqNo: 794	4685	
	Analyte	Resul	RL	SPK value SPK R	ef Val %REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual
	Calcium	ND	100							

Sample ID MB-19565FB	SampType: MBLK	Units: µg/L	Prep Date: 1/22/2018	RunNo: 41230
Client ID: MBLKW	Batch ID: 19567		Analysis Date: 1/22/2018	SeaNo: 794686

Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	ND	100								


Magnesium ND 100 Sodium ND 100 NOTES:

Filter Blank

Magnesium

Sodium

Page 23 of 32 Original

Work Order: 1801202

O2
QC SUMMARY REPORT

CLIENT: Friedman & Bruya
Proiect: 801176

Dissolved Metals by EPA Method 200.8

Project: 801176											
Sample ID LCS-19567	SampType: LCS			Units: µg/L		Prep Dat	e: 1/22/2	018	RunNo: 412	230	
Client ID: LCSW	Batch ID: 19567					Analysis Dat	e: 1/22/2 0	018	SeqNo: 794	1687	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	1,070	100	1,000	0	107	50	150				
Magnesium	965	100	1,000	0	96.5	50	150				
Sodium	1,030	100	1,000	0	103	50	150				
Sample ID 1801202-002EDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 1/22/2 0)18	RunNo: 412	230	
Client ID: AMW-4-011218	Batch ID: 19567					Analysis Dat	e: 1/22/2 0	018	SeqNo: 794	1692	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	69,400	100						67,390	2.87	30	
Magnesium	21,700	100						22,030	1.45	30	
Sodium	71,100	100						68,870	3.19	30	
Sample ID 1801202-002EMS	SampType: MS			Units: µg/L		Prep Dat	e: 1/22/2 0)18	RunNo: 412	230	
Client ID: AMW-4-011218	Batch ID: 19567					Analysis Dat	e: 1/22/2 0	018	SeqNo: 794	1693	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	75,500	100	5,000	67,390	163	50	150				S
Magnesium	26,200	100	5,000	00.000			100				
O I'	20,200	.00	5,000	22,030	82.5	70	130				
Sodium	74,800	100	5,000	68,870	82.5 119	70 50	130 150				
Sample ID 1801202-002EMSD			•	•		50		018	RunNo: 41	230	
	74,800		•	68,870	119	50	150 re: 1/22/2 0		RunNo: 41 2 SeqNo: 79 4		
Sample ID 1801202-002EMSD Client ID: AMW-4-011218	74,800 SampType: MSD		5,000	68,870	119	50 Prep Dat Analysis Dat	150 re: 1/22/2 0 re: 1/22/2 0				Qual
Sample ID 1801202-002EMSD	74,800 SampType: MSD Batch ID: 19567	100	5,000	68,870 Units: μg/L	119	50 Prep Dat Analysis Dat	150 re: 1/22/2 0 re: 1/22/2 0)18	SeqNo: 794	1694	Qual
Sample ID 1801202-002EMSD Client ID: AMW-4-011218 Analyte	74,800 SampType: MSD Batch ID: 19567 Result	100 RL	5,000 SPK value	68,870 Units: μg/L SPK Ref Val	119 %REC	50 Prep Dat Analysis Dat LowLimit	150 re: 1/22/20 re: 1/22/20 HighLimit	N18 RPD Ref Val	SeqNo: 79 4 %RPD	1694 RPDLimit	Qual

Original Page 24 of 32

Work Order: 1801202

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 200.8

Project:	801176								Total Met	als by EP	A Method	200.8
Sample ID	MB-19553	SampType: MBLK			Units: µg/L		Prep Date	: 1/19/20	18	RunNo: 412	211	
Client ID:	MBLKW	Batch ID: 19553					Analysis Date	: 1/19/20	18	SeqNo: 794	1345	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium		ND	100									
Magnesium	1	ND	100									
Sodium		ND	100									
Sample ID	LCS-19553	SampType: LCS			Units: µg/L		Prep Date	: 1/19/20	118	RunNo: 412	211	
Client ID:	LCSW	Batch ID: 19553					Analysis Date	: 1/19/20	18	SeqNo: 794	1346	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium		1,010	100	1,000	0	101	50	150				
Magnesium	1	998	100	1,000	0	99.8	50	150				
Sodium		893	100	1,000	0	89.3	50	150				
Sample ID	1801202-001DDUP	SampType: DUP			Units: μg/L		Prep Date	: 1/19/20	118	RunNo: 412	211	
Client ID:	AMW-3-011218	Batch ID: 19553					Analysis Date	: 1/19/20	18	SeqNo: 794	1348	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium		31,500	100						29,830	5.33	30	
Magnesium	1	16,600	100						16,930	1.89	30	
Sodium		3,810	100						3,735	2.07	30	
Sample ID	1801202-001DMS	SampType: MS			Units: µg/L		Prep Date	: 1/19/20	118	RunNo: 412	211	
Client ID:	AMW-3-011218	Batch ID: 19553					Analysis Date	: 1/19/20	18	SeqNo: 794	1349	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium		37,900	100	5,000	29,830	162	50	150				S
Magnesium	1	22,200	100	5,000	16,930	105	70	130				
Sodium		8,790	100	5,000	3,735	101	50	150				

NOTES:

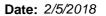
Page 25 of 32 Original

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Work Order: 1801202

Project:

QC SUMMARY REPORT


CLIENT: Friedman & Bruya

801176

Total Metals by EPA Method 200.8

Sample ID 1801202-001DMSD Client ID: AMW-3-011218	SampType: MSD Batch ID: 19553			Units: µg/L		Prep Da Analysis Da	te: 1/19/20 te: 1/19/20		RunNo: 412 SeqNo: 794		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	36,900	100	5,000	29,830	141	50	150	37,920	2.76	30	
Magnesium	22,400	100	5,000	16,930	109	70	130	22,170	0.999	30	
Sodium	8,570	100	5,000	3,735	96.6	50	150	8,795	2.64	30	

Original Page 26 of 32

Work Order: 1801202

CLIENT: Friedman & Bruya

Project: 801176

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID MB-19542	SampType: MBLK			Units: µg/L		Prep Date:	1/18/20	118	RunNo: 415	523	
Client ID: MBLKW	Batch ID: 19542					Analysis Date:	2/2/201	18	SeqNo: 800)400	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	4.50									
2,4-D	ND	2.00									
2,4-DP	ND	1.00									
2,4,5-TP (Silvex)	ND	0.600									
2,4,5-T	ND	1.00									
Dinoseb	ND	3.75									
Dalapon	ND	4.00									*
2,4-DB	ND	3.00									
MCPP	ND	10.0									
MCPA	ND	10.0									
Picloram	ND	0.500									
Bentazon	ND	2.70									
Chloramben	ND	1.20									
Acifluorfen	ND	4.25									
3,5-Dichlorobenzoic acid	ND	5.00									
4-Nitrophenol	ND	0.750									*
Dacthal (DCPA)	ND	0.850									
Surr: 2,4-Dichlorophenylacetic acid	d 24.0		19.99		120	34.8	149				
NOTES:											
* Floored value is not within setal	blighed central limits										

* - Flagged value is not within established control limits.

Sample ID LCS-19542 Client ID: LCSW	SampType: LCS Batch ID: 19542			Units: µg/L		•	te: 1/18/201 te: 2/2/2018		RunNo: 415 SeqNo: 800		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	3.54	4.49	3.995	0	88.6	29.9	130				
2,4-D	4.02	2.00	3.995	0	101	22.3	166				
2,4-DP	4.29	0.999	3.995	0	107	10	137				
2,4,5-TP (Silvex)	4.36	0.599	3.995	0	109	26.5	146				
2,4,5-T	3.81	0.999	3.995	0	95.4	15	148				
Dinoseb	3.60	3.75	3.995	0	90.2	10	130				

Original Page 27 of 32

Work Order: 1801202

CLIENT: Friedman & Bruya

Project: 801176

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCS-19542	SampType: LCS	·		Units: µg/L	·	Prep Da	te: 1/18/2 0	018	RunNo: 41	523	
Client ID: LCSW	Batch ID: 19542					Analysis Da	te: 2/2/20 1	18	SeqNo: 80	0401	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dalapon	ND	4.00	19.98	0	0	19	159				S
2,4-DB	3.65	3.00	3.995	0	91.3	26.8	157				
MCPP	13.0	9.99	19.98	0	65.0	23.1	178				
MCPA	14.7	9.99	19.98	0	73.4	24.7	153				
Picloram	2.70	0.499	3.995	0	67.6	10	159				
Bentazon	3.15	2.70	3.995	0	78.7	38.4	132				
Chloramben	0.595	1.20	3.995	0	14.9	5	131				
Acifluorfen	3.11	4.24	3.995	0	77.9	10	136				
3,5-Dichlorobenzoic acid	3.58	4.99	3.995	0	89.6	10	116				
4-Nitrophenol	ND	0.749	3.995	0	0	5	122				S
Dacthal (DCPA)	0.747	0.849	3.995	0	18.7	10	161				
Surr: 2,4-Dichlorophenylacetic acic NOTES:	18.4		19.98		92.1	34.8	149				

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Sample ID LCSD-19542	SampType: LCSD			Units: µg/L		Prep Da	te: 1/18/2 ()18	RunNo: 41	523	
Client ID: LCSW02	Batch ID: 19542					Analysis Da	te: 2/2/20 1	8	SeqNo: 80	0402	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	3.57	4.50	3.998	0	89.2	29.9	130	0		30	
2,4-D	3.92	2.00	3.998	0	98.1	22.3	166	4.023	2.58	30	
2,4-DP	4.19	1.00	3.998	0	105	10	137	4.293	2.40	30	
2,4,5-TP (Silvex)	4.37	0.600	3.998	0	109	26.5	146	4.360	0.324	30	
2,4,5-T	3.77	1.00	3.998	0	94.3	15	148	3.810	1.03	30	
Dinoseb	3.86	3.75	3.998	0	96.7	10	130	3.602	7.04	30	
Dalapon	ND	4.00	19.99	0	0	19	159	0		30	S
2,4-DB	3.53	3.00	3.998	0	88.3	26.8	157	3.650	3.34	30	
MCPP	17.6	10.0	19.99	0	87.8	23.1	178	12.99	29.9	30	
MCPA	19.6	10.0	19.99	0	98.0	24.7	153	14.67	28.8	30	
Picloram	3.15	0.500	3.998	0	78.8	10	159	2.702	15.3	30	
Bentazon	3.35	2.70	3.998	0	83.9	38.4	132	3.145	6.39	30	

Page 28 of 32 Original

Work Order: 1801202

CLIENT: Friedman & Bruya

Project: 801176

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCSD-19542	SampType: LCSD			Units: µg/L		Prep Da	te: 1/18/2 (018	RunNo: 41	523	
Client ID: LCSW02	Batch ID: 19542					Analysis Da	te: 2/2/20 1	18	SeqNo: 800402		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloramben	1.87	1.20	3.998	0	46.8	5	131	0.5946	104	30	R
Acifluorfen	3.98	4.25	3.998	0	99.4	10	136	0		30	
3,5-Dichlorobenzoic acid	4.19	5.00	3.998	0	105	10	116	0		30	
4-Nitrophenol	ND	0.750	3.998	0	0	5	122	0		30	S
Dacthal (DCPA)	1.67	0.850	3.998	0	41.8	10	161	0.7473	76.5	30	R
Surr: 2,4-Dichlorophenylacetic acid	20.2		19.99		101	34.8	149		0		

NOTES:

R - High RPD observed, spike recoveries are within range.

Sample ID 1801202-001FDUP	SampType: DUP			Units: µg/L		Prep Da	te: 1/18/2	018	RunNo: 41	523	
Client ID: AMW-3-011218	Batch ID: 19542					Analysis Da	te: 2/3/20	18	SeqNo: 800	0404	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	5.24						0		50	
2,4-D	ND	2.33						0		50	
2,4-DP	ND	1.16						0		50	
2,4,5-TP (Silvex)	ND	0.699						0		50	
2,4,5-T	ND	1.16						0		50	
Dinoseb	ND	4.37						0		50	
Dalapon	ND	4.66						0		50	*
2,4-DB	ND	3.49						0		50	
MCPP	ND	11.6						0		50	
MCPA	ND	11.6						0		50	
Picloram	ND	0.582						0		50	
Bentazon	ND	3.15						0		50	
Chloramben	ND	1.40						0		50	
Acifluorfen	ND	4.95						0		50	
3,5-Dichlorobenzoic acid	ND	5.82						0		50	
4-Nitrophenol	ND	0.874						0		50	*
Dacthal (DCPA)	ND	0.990						0		50	

Original Page 29 of 32

S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.

Work Order: 1801202

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Surr: 2,4-Dichlorophenylacetic acid

801176

Herbicides by EPA Method 8151A

0

Sample ID 1801202-001FD	UP SampType: DUP	Units: µg/L	Prep Date: 1/18/2018	RunNo: 41523
Client ID: AMW-3-011218	Batch ID: 19542		Analysis Date: 2/3/2018	SeqNo: 800404
Analyte	Result	RL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

98.9

34.8

149

23.30

NOTES:

Project:

23.0

Original Page 30 of 32

^{* -} Flagged value is not within established control limits.

Sample Log-In Check List

C	lient Name:	FB				Work Or	rder Num	ber: 1801202		
Lo	ogged by:	Brianna B	arnes			Date Re	ceived:	1/15/2018	3 3:05:00 PM	
Cha	nin of Custo	ody								
	Is Chain of Co	-	olete?			Yes	✓	No 🗌	Not Present	
2.	How was the	sample deli	vered?			<u>Cour</u>	<u>ier</u>			
<u>Log</u>	ı İn									
_		rocont?				Yes	.	No 🗌	NA 🗆	
3.	Coolers are p	nesent!				163	•	NO 🗀	NA L	
4.	Shipping cont	tainer/coole	r in good condition	?		Yes	✓	No \square		
5.			n shipping contain Custody Seals not			Yes		No 🗌	Not Required 🗹	
6.	Was an attem	npt made to	cool the samples	?		Yes	✓	No \square	NA 🗌	
7.	Were all item	s received a	at a temperature o	f >0°C to 10.0	0°C*	Yes		No 🗸	NA 🗆	
				<u>San</u>	nples red			ate temperatu	<u>ire</u>	
٠.	Sample(s) in		, ,			Yes		No 🗆		
٥.		•	for indicated test	(s)?		Yes		No □		
	Are samples					Yes		No 🗆	\Box	
11.	Was preserva	ative added	to bottles?			Yes	✓	No L	NA L	
12	Is there head	snace in the	VOA vials?			Yes	NaOH	No	I2SO4 to G fraction. NA ✓	
			rs arrive in good c	ondition(unbro	oken)?	Yes	<u>✓</u>	No \square	14/	
	Does paperw			oa		Yes	<u>✓</u>	No \square		
15.	Are matrices	correctly ide	entified on Chain o	f Custody?		Yes	✓	No \square		
16.	Is it clear wha	at analyses	were requested?			Yes	✓	No 🗌		
17.	Were all hold	ing times at	ole to be met?			Yes		No 🗸		
<u>Spe</u>	cial Handli	ing (if ap	olicable)							
18.	Was client no	otified of all	discrepancies with	this order?		Yes	✓	No \square	NA \square	
	Person I	Notified:	Micheal Erdahl		Date			1/15/2018		
	By Who	m:	Brianna Barnes		Via:	✓ eMa	il 🗌 Ph	one 🗌 Fax	☐ In Person	
	Regardi	ng:	Confirmation of [OC filtration;	ammonia	a method.				
	Client In	structions:	DOC volume not	filtered;						
19.	Additional ren	marks:								
	Nitrate a	and Nitrite re	eceived out of hold	I time.						
<u>ltem</u>	<u>Information</u>									
		Item #		Temp ⁰C						
	Cooler 1			10.3						

6.2

9.1

5.9

Cooler 2

Sample 1

Sample 2

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Page 32 of 32

, (i)	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.							812110- 5-WMA	AMW-1-011218	AMW-2-011218	AMW-4-011218	AMW-3-011218	Sample ID		Phone # (206) 2	City, State, ZIP_	Address	Company	Send Report To
	2029		a, Inc.							20	80	Q.	28	18			(206) 285-8282	Seattle,	3012 16	Friedma	Michael Erdahl
Relinquished by:	Received by:	Redenquished													Lab ID		Fax #_	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruya,	l Erdahl
od by:)	Contraction of the second	SIGNATURE							*			_	1/12/18	Date Sampled		(206) 283-5044	9		uya, Inc.	
		and of	TURE							1700	1530	1350	7215	3101	Time Sampled		-5044				
1	CH?	Mi								4			_	water	Matrix			REMARKS	~	PROJECT NAME/NO	SUBCONTRACTER
12/26	riar	Michael Erdahl							(36	cl	CB	E	CG	# of jars		Please Email Results	KS	941108	OT NAM	NTRAC
anna Bur	na .	rdahl	PRINT NAME							~	×	×	X	×	Cyanide Dioxins/Furans		Email		9 E	1E/NC	TER
B	Burne		T NA			_				×	~	× .	×	×	Chloride EPH		Resul				Fremon
NA	S. D.		Œ			_			_	×	×	*	*	×	w.t.te	7					Tron
3	,						_	\perp	_	×	×	*	×	×	Nitrate	NAL	Aspect COD		_		;
-		<u> </u>			-	_	_	1		×	×	×	× .	×	Sulfate	YSES	600		A-234	PO#	
++	T	Friedman and Bruya	C		-		_	\perp		X	×	Х,	×	×	Alkalinity	ANALYSES REQUESTED			7	#	
3	Z	an an	COMPANY			_		\perp	_	×	×	×	×	×	Sulfide TOC-9060 M	UEST					
		d Bru	ANY	-			_			×	×	×	×	×	Herbicides	ED			Rusl	□ X St	
		ya				_	_	$\perp \downarrow$	_	ĸ	x	×	Х	×	Ammonia		turn s	SAI	h char	andar USH_	Page #
211	- S:	2/2	DA			-			-	×	×	×	×	×	Total & Dissolved Ca, Mg, Na		Return samples Will call with in	MPLE after 3	ges aut	X Standard (2 Weeks) □ RUSH	e# NARC
200		//8	DATE							×	*	K	•		Dissolved Organic Carbon Notes		Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	ecks)	9
02	3:41	11:53	MIT												lotes		ons	SAL	by:		of 1

																1		
rn. (200) 285-8282	2029	3012 16th Avenue West Re	1 1			Trip Blank		12-12-0112B	Phono-1-011218	Amw-2-011218	19 JUSTS	19min -3-0/12/8	Sample II)		City, State, ZIP REACTURE Phone Email	Address 401 2ml	Report To Livilla Drack	801176
neceived by:	Relinquished by:	Recognition of the second				06 A-A		8	64	93	\$	DOIA-U	à D		10, WH 70 aii			I MI O
gamatrajum menumentan kanan		JANA JANA	SIGNATURE					<u>2</u> .	S. P. So		Fig.		Date Sampled		KIDY	6 201	The design of	and the state of t
A service of the serv							1700		536		マス	7010	Time Sampled			d Pars	OH FORKA	SAMPLE CHAIN OF CUST
44.10	R C							<			w	water	Sample Type		Yearse	Shallow CSt. LandRu	PROJECT NAME	MPLE CHAIN OF
A Charles of the Char	45		PRINT NAM	DECESSION NAME OF		8		2	<u></u>	<u>U</u>	2	<u>N</u>	Y n # n n n n n n n n n n n n n n n n n		Made	1. I.		
		Rec	NAMB										TPH-Diesel TPH-Gasoline			\$ PE	2	ACCOLLS
	gggagani Planning man man ngangangan	W.					*****						BTEX by 8021B	ΑN	35.5		18	
		1				É							VOCs by 8260C SVOCs by 8270D	ANALYSĖS REQUESTED	Payable	15W74	PO#	
	0	水	COMPANY					\leq	X	X,	X	X,	PAHs 8270D SIM See Table A-1, attacked	REQU	Payable	고 기	#	EOU
			ANA		Samples received								Cont. 1/15/19	CETE	D Dispos	R C R		12/18
					<u></u>			••••••							SAMP spose aft chive Sa her	JSH h charge	TURN.	Page #
	龙藤	1/12/18	DAT'E		# H	(B)							1-y		SAMPLE DISPOSAL © Dispose after 30 days © Archive Samples © Other	C RUSH Rush charges authorized by:	TURNAROUND TIME	Je Je Je Je Je Je Je Je Je Je Je Je Je J
	T T		TIME	, š	ිරි	116		e de la companya de l		timente mente mente proprieta (que mini-			Notes	***************************************	J& OSAL	zed by:	E BAUT (1/2
	111					 					1		· · · · · · · · · · · · · · · · · · ·		1			ST.

	impl latri:		Analytical Method	Sample Container	No. Containers	Preservation Requirements	Rolding Time
		Gasoline-Range TPH	NWTPH-GX	8 gunce (är, 3 40-m) vials	4	4°C ±2°C, Freeze within 48 hours to <-7°C	14 days for extraction; 40 days for analysis
		Diesel-Range TPH	NWTPH-Dx/SW846 Method 3630 (Silica Gel Cleanup)		, '4.	4°C ±2°C	14 days for extraction; 40 days for analysis
		vocs	EPA-8260C	Method 5035A, 40-ml	5	4°C ±2°C, Freeze within 48 hours to <-7°C, Methanol, Sodium Bisulfate	
		Metals ¹	EPA 200.8/6010/7471A	4 ounce jar	1 -	4°C ±2°C	14 days 6 months, Hg-28 days
	Soil	Mercury	EPA 1631E	4 ounce jar	1.	4°C ±2°C	26 days
I	Ø		EPA 8270D/8270D-		1		14 days for extraction; 40 days
		SVOCs w/low-level PAHs	SIM	8 ounce jar	1	4°C ±2°C	for analysis
		Pesticides	EPA 8081B	4 ounce iar	-1:	4°C ±2°C	14 days for extraction; 40 days for analysis
							14 days for
		PCBs	EPA 8082	4 ounce jar	1	4°C ±2°C	extraction; 40 days for analysis
		Herbic\des	EPA-8151	4 ounce jar	· .		14 days for extraction; 40 days
		Cyanide	EPA 9012	4 ounce jar	1 1	4°C ±2°C	for analysis
A Colores	none de vive			ndvara		4°C ±2°C	14 days
		Dioxins/Furans	EPA 1613	4 ounce jar	1	4°C±2°C	1 year
		Gasoline-Range TPH	NWTPH-Gx NWTPH-Dx/SW846	40-mL VOA vial	- 3	4°C ±2°C, HCI	14 days 7 days for
		Diesel-Range TPH	Method 3630 (Silica Gel Cleanup)	500-mL Amber Glass	- 2-	4°C ±2°C	extraction, 40 days for analysis
	į	vocs	EPA 8260C	40-mL VOA Vials	3	4°C ±2°C, 2 with HCl pH < 2, 2 without HCl	14 days for analysis
	- 6	Metals ¹ , total/dissolved (field filter)	EPA 200,7/200.8	500-mL HDPE	1	4°C ±2°C, HNO3 pH < 2 (after filtration)	180 days
		Mercury, total dissolved (field filter)	EPA 7470/245.1	500-mL HOPE	1.	4°C ±2°C, HNO3 pH < 2 (after filtration)	28 days for analysis
	•	SVOCs with low-level PAHs	EPA 8270D/8270D- SIM	500-mi. Amber Glass	.2	4°C ±2°C	7 days for extraction, 40 days for analysis
	6	2 Pesticides	EPA 8081	1-L Amber Glass	2	≤6*C	7 days for extraction, 40 days for analysis
	Groundwater	PCBs	EPA 8082	1-L Amber Glass	2	≤6°C.	7 days for extraction, 40 days for analysis
	Ž				,		7 days for extraction, 40 days
	³	· · · · · · · · · · · · · · · · · · ·	EPA 8151	1-L Amber Glass	2	≰6*C	for analysis
1			EPA 1613	1-L Amber Glass	2	≤6°C	1 year for analysis
	(Arnmonia	Method 350.1	500-mi. HDPE	1	4°C ±2°C, H2SO4 pH < 2 4°C ±2°C, Zinc Acetate	28 days
		2 Dissolved Sulfide	Method 376.2	500-mL HDPE	1	and NaOH pH > 9 (after filtration)	7 days
	o	Chlaride	SM4500-CI	250-mL HDPE	1.	none	28 days
	O	Cyanide, Total	SM4500-CN	500-mL HDPE	1	NaOH, pH>12 H2SO4 ph<2, s6°C, (after	14 days
	c)	Dissolved Organic Carbon	SM5310B	250-mL Amber glass	1	H2SO4 ph<2, s6°C, (after filtration)	28 days
	1 . 111	Nitrogen às Nitrale	353.2/9056	500-mL HDPE	1	\$6°C	48 hours
	о О		353:2/9056 300:0/9056	500-mL HDPE 500-mL HDPE	1	≤6°C ≤6°C	48 hours
					-1.	4°C ±2°C, HNO3 pH < 2	28 days
	0	The state of the s	Method 200,7/200,8 SM 2320B-97	500-mL HDPE 500-mL HDPE	1 1	(after filtration) s6°C	180 days
Soil	Gas		EPATO-	A PANDONIA COLEMA			14 days
L		TVOCs/APH	15/MassDEP APH	6-L Summa Canister	1	na	30 days

Charles Con Charles Charles Charles Con Sound To 18

Notes

Metals include arsenic, barium, cadmium, calcium, chromium, copper, Iron, lead, magnesium, manganese, sodium, nickel, selenium, silver and zinc

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 4, 2019

Carla Brock, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Ms Brock:

Included are the results from the testing of material submitted on December 21, 2018 from the Shelton C St-Landfill 150074, F&BI 812310 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Data Aspect, Kristin Beck

ASP0104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2018 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C St-Landfill 150074, F&BI 812310 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
812310 -01	AMW-1-122018
812310 -02	AMW-2-122018
812310 -03	AMW-3-122018
812310 -04	AMW-4-122018
812310 -05	AMW-5-122018
812310 -06	Trip Blank

The samples were sent to Fremont Analytical for nitrate, nitrite, sulfate, sulfide, alkalinity, chloride, dissolved organic carbon, ammonia, and cyanide analyses. The report is enclosed. In addition, the samples were sent to Frontier Analytical for dioxin and furan analysis. The report will be forwarded upon receipt.

The 8260C compound dibromochloromethane was reported between the method detection limit and the method reporting limit. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

Date Extracted: 12/24/18 Date Analyzed: 12/24/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
AMW-1-122018 812310-01	<50	<250	118
AMW-2-122018 812310-02	<50	<250	92
AMW-3-122018 812310-03	<50	<250	115
AMW-4-122018 812310-04	<50	<250	122
AMW-5-122018 812310-05	<50	<250	98
Method Blank 08-2901 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AMW-1-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-01 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-01 x100.065

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration mg/L (ppm)

Calcium 25.1 Magnesium 9.08

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AMW-2-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-02 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-02 x100.066

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 35.6 Magnesium 15.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AMW-3-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-03 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-03 x100.067

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 66.0 Magnesium 38.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AMW-4-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

Date Extracted: 12/26/18 Lab ID: 812310-04 x100
Date Analyzed: 12/28/18 Data File: 812310-04 x100.068

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 61.0 Magnesium 19.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AMW-5-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-05 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-05 x100.069

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 37.6 Magnesium 16.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Shelton C St-Landfill 150074

Date Extracted: 12/26/18 Lab ID: I8-886 mb Date Analyzed: 12/28/18 Data File: I8-886 mb.054 Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium <0.05 Magnesium <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: AMW-1-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-01 x10

 Date Analyzed:
 12/28/18
 Data File:
 812310-01 x10.057

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 27.1 Magnesium 9.78

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

 Date Extracted:
 12/26/18
 Lab ID:
 812310-02 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-02 x100.060

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 35.2 Magnesium 14.9

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: AMW-3-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-03 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-03 x100.061

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 64.5 Magnesium 37.2

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Date Extracted: 12/26/18 Lab ID: 812310-04 x100
Date Analyzed: 12/28/18 Data File: 812310-04 x100.062

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 57.8 Magnesium 17.9

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: AMW-5-122018 Client: Aspect Consulting, LLC
Date Received: 12/21/18 Project: Shelton C St-Landfill 150074

 Date Extracted:
 12/26/18
 Lab ID:
 812310-05 x100

 Date Analyzed:
 12/28/18
 Data File:
 812310-05 x100.063

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium 35.5 Magnesium 15.5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Shelton C St-Landfill 150074

Date Extracted: 12/26/18 Lab ID: I8-885 mb
Date Analyzed: 12/28/18 Data File: I8-885 mb.043
Matrix: Water Instrument: ICPMS2

Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \; (ppm) \end{array}$

Calcium <0.05 Magnesium <0.05

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-1-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-01
Date Analyzed:	12/27/18	Data File:	812310-01.061
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	5.22
Cadmium	<1
Chromium	1.09
Copper	<5
Iron	274
Lead	<1
Manganese	15.9
Mercury	<1
Nickel	1.19
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-2-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-02
Date Analyzed:	12/27/18	Data File:	812310-02.064
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Omes.	ug/L (ppb)		Operator.	51
Analyte:		Concentration ug/L (ppb)		
Arsenic		0.248		
Barium		2.52		
Cadmium		<1		
Chromium		1.48		
Copper		<5		
Iron		279		
Lead		<1		
Manganese		1,970		
Mercury		<1		
Nickel		1.56		
Selenium		<1		
Silver		<1		
Zinc		<5		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-3-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-03
Date Analyzed:	12/27/18	Data File:	812310-03.065
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	6.91
Cadmium	<1
Chromium	1.12
Copper	<5
Iron	574
Lead	<1
Manganese	2,560
Mercury	<1
Nickel	2.64
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-4-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-04
Date Analyzed:	12/27/18	Data File:	812310-04.066
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

A l 4	Concentration
Analyte:	ug/L (ppb)
Arsenic	0.225
Barium	19.6
Cadmium	<1
Chromium	2.79
Copper	<5
Iron	1,390
Lead	<1
Manganese	84.0
Mercury	<1
Nickel	3.51
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-5-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-05
Date Analyzed:	12/27/18	Data File:	812310-05.067
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	2.37
Cadmium	<1
Chromium	1.55
Copper	<5
Iron	317
Lead	<1
Manganese	1,910
Mercury	<1
Nickel	1.61
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Shelton C St-Landfill 150074
			•

Date Extracted: 12/26/18 Lab ID: I8-888 mb

Date Analyzed: 12/27/18 Data File: I8-888 mb.043

Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		< 0.2		
Barium		<1		
Cadmium		<1		
Chromium		<1		
Copper		<5		
Iron		< 50		
Lead		<1		
Manganese		<1		
Mercury		<1		
Nickel		<1		
Selenium		<1		
Silver		<1		
Zinc		<5		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-1-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-01
Date Analyzed:	12/27/18	Data File:	812310-01.054
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Cilits.	ug/L (ppb)	Operator.	. 51	
Analyte:		ntration (ppb)		
Arsenic	<	0.2		
Barium	5	.06		
Cadmium	•	<1		
Chromium	•	<1		
Copper	•	<5		
Iron	1	14		
Lead	•	<1		
Manganese	1	4.2		
Mercury	•	<1		
Nickel	1	.11		
Selenium	•	<1		
Silver	•	<1		
Zinc	•	< 5		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-2-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-02
Date Analyzed:	12/27/18	Data File:	812310-02.055
Matrix:	Water	Instrument:	ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.236
Barium	2.35
Cadmium	<1
Chromium	1.40
Copper	<5
Iron	231
Lead	<1
Manganese	1,880
Mercury	<1
Nickel	1.49
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-3-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-03
Date Analyzed:	12/27/18	Data File:	812310-03.056
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Cilits.	ug/L (ppb)		Operator.	OI.
Analyte:		ntration (ppb)		
Arsenic	<(0.2		
Barium	4.	58		
Cadmium	<	<1		
Chromium	<	<1		
Copper	<	<5		
Iron	1	89		
Lead	<	<1		
Manganese	4	.04		
Mercury	<	<1		
Nickel	1.	61		
Selenium	<	<1		
Silver	<	<1		
Zinc	<	<5		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-4-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-04
Date Analyzed:	12/27/18	Data File:	812310-04.059
Matrix:	Water	Instrument:	ICPMS2
I Inits:	ug/L (nnh)	Operator	SP

Omes.	ug/L (ppb)		Operator.	51
Analyte:		Concentration ug/L (ppb)		
Arsenic		0.230		
Barium		18.6		
Cadmium		<1		
Chromium		1.02		
Copper		<5		
Iron		275		
Lead		<1		
Manganese		64.9		
Mercury		<1		
Nickel		2.14		
Selenium		<1		
Silver		<1		
Zinc		<5		

ENVIRONMENTAL CHEMISTS

Client ID:	AMW-5-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-05
Date Analyzed:	12/27/18	Data File:	812310-05.060
Matrix:	Water	Instrument:	ICPMS2
Unite	ug/I (nnh)	Operator	CD

Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		0.220		
Barium		2.33		
Cadmium		<1		
Chromium		1.34		
Copper		<5		
Iron		226		
Lead		<1		
Manganese		1,900		
Mercury		<1		
Nickel		1.51		
Selenium		<1		
Silver		<1		
Zinc		<5		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	NA	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	I8-887 mb
Data Analyzad:	19/97/19	Data File	IQ-887 mh 052

Date Analyzed: 12/27/18 Data File: I8-887 mb.052 Water Matrix: Instrument: ICPMS2

Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentrati ug/L (ppb		
Arsenic	< 0.2		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Copper	<5		
Iron	< 50		
Lead	<1		
Manganese	<1		
Mercury	<1		
Nickel	<1		
Selenium	<1		
Silver	<1		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-1-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Data Errtmantadi	19/94/10	Lob ID:	919910 01

Date Extracted:12/24/18Lab ID:812310-01Date Analyzed:12/24/18Data File:122412.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	101	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-2-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/24/18	Lab ID:	812310-02

Date Extracted: 12/24/18 Lab ID: 812310-02
Date Analyzed: 12/24/18 Data File: 122413.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	102	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-3-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/24/18	Lab ID:	812310-03

Date Extracted: 12/24/18 Lab ID: 812310-03
Date Analyzed: 12/24/18 Data File: 122414.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-4-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/24/18	Lab ID:	812310-04

Date Extracted. 12/24/16 Lab ID. 812510-04
Date Analyzed: 12/24/18 Data File: 122415.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	<0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-5-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/24/18	I aĥ ID∙	812310-05

Date Extracted:12/24/18Lab ID:812310-05Date Analyzed:12/24/18Data File:122416.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	<0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St-Landfill 150074

Date Extracted: 12/24/18 Lab ID: 08-2856 mb Data File: Date Analyzed: 12/24/18 122409A.D Matrix: Water Instrument: GCMS4 ug/L (ppb) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	93	63	127
4-Bromofluorobenzene	93	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2 j
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-1-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-01 1/0.5
Date Analyzed:	12/28/18	Data File:	122735.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		rower.	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	87	31	160
Benzo(a)anthracene-d12	89	25	165

Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-2-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-02 1/0.5
Date Analyzed:	12/28/18	Data File:	122736.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 87 31 160 Benzo(a)anthracene-d12 90 25 165

Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-3-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-03 1/0.5
Date Analyzed:	12/28/18	Data File:	122737.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	91	31	160
Benzo(a)anthracene-d12	70	25	165

• •	
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-4-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-04 1/0.5
Date Analyzed:	12/28/18	Data File:	122738.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	94	31	160
Benzo(a)anthracene-d12	86	25	165

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01
J J	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	AMW-5-122018	Client:	Aspect Consulting, LLC
Date Received:	12/21/18	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	812310-05 1/0.5
Date Analyzed:	12/28/18	Data File:	122739.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	81	31	160
Benzo(a)anthracene-d12	75	25	165

Compounds:	Concentration ug/L (ppb)
Naphthalene	0.14
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Shelton C St-Landfill 150074
Date Extracted:	12/26/18	Lab ID:	08-2898 mb2 1/0.5

Date Analyzed: 12/27/18 Data File: 122707.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 90 31 160 Benzo(a)anthracene-d12 96 25 165

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

v	Ü	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	112	63-142	15

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	107	108	85-115	1
Magnesium	mg/L (ppm)	1.0	110	112	85-115	2

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 812310-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	27.1	96	100	70-130	4
Magnesium	mg/L (ppm)	1.0	9.78	96	94	70-130	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Calcium	mg/L (ppm)	1.0	102	85-115
Magnesium	mg/L (ppm)	1.0	104	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 812348-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	0.827	111	115	75-125	4
Barium	ug/L (ppb)	50	5.57	108	111	75-125	3
Cadmium	ug/L (ppb)	5	<1	106	109	75-125	3
Chromium	ug/L (ppb)	20	<1	111	114	75-125	3
Copper	ug/L (ppb)	20	<5	104	106	75-125	2
Iron	ug/L (ppb)	100	80.3	98	99	75-125	1
Lead	ug/L (ppb)	10	<1	109	112	75-125	3
Manganese	ug/L (ppb)	20	3.92	110	112	75-125	2
Mercury	ug/L (ppb)	5	<1	103	104	75-125	1
Nickel	ug/L (ppb)	20	<1	105	107	75-125	2
Selenium	ug/L (ppb)	5	<1	115	118	75-125	3
Silver	ug/L (ppb)	5	<1	105	108	75-125	3
Zinc	ug/L (ppb)	50	6.10	104	107	75-125	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	103	80-120
Barium	ug/L (ppb)	50	102	80-120
Cadmium	ug/L (ppb)	5	102	80-120
Chromium	ug/L (ppb)	20	106	80-120
Copper	ug/L (ppb)	20	101	80-120
Iron	ug/L (ppb)	100	108	80-120
Lead	ug/L (ppb)	10	110	80-120
Manganese	ug/L (ppb)	20	106	80-120
Mercury	ug/L (ppb)	5	102	80-120
Nickel	ug/L (ppb)	20	101	80-120
Selenium	ug/L (ppb)	5	110	80-120
Silver	ug/L (ppb)	5	99	80-120
Zinc	ug/L (ppb)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 812310-03 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	< 0.2	108	113	75-125	5
Barium	ug/L (ppb)	50	4.58	101	108	75-125	7
Cadmium	ug/L (ppb)	5	<1	97	102	75-125	5
Chromium	ug/L (ppb)	20	<1	109	114	75-125	4
Copper	ug/L (ppb)	20	<5	93	97	75-125	4
Iron	ug/L (ppb)	100	189	118 b	140 b	75-125	17 b
Lead	ug/L (ppb)	10	<1	96	102	75-125	6
Manganese	ug/L (ppb)	20	404	203 b	319 b	75-125	44 b
Mercury	ug/L (ppb)	5	<1	93	99	75-125	6
Nickel	ug/L (ppb)	20	1.61	98	102	75-125	4
Selenium	ug/L (ppb)	5	<1	112	118	75-125	5
Silver	ug/L (ppb)	5	<1	84	90	75-125	7
Zinc	ug/L (ppb)	50	<5	95	99	75-125	4

		reiteiit	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/L (ppb)	10	106	80-120
ug/L (ppb)	50	106	80-120
ug/L (ppb)	5	107	80-120
ug/L (ppb)	20	111	80-120
ug/L (ppb)	20	106	80-120
ug/L (ppb)	100	114	80-120
ug/L (ppb)	10	115	80-120
ug/L (ppb)	20	110	80-120
ug/L (ppb)	5	106	80-120
ug/L (ppb)	20	106	80-120
ug/L (ppb)	5	109	80-120
ug/L (ppb)	5	100	80-120
ug/L (ppb)	50	106	80-120
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 50 ug/L (ppb) 5 ug/L (ppb) 20 ug/L (ppb) 100 ug/L (ppb) 100 ug/L (ppb) 20 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5 ug/L (ppb) 5	Reporting Units Spike Level Recovery LCS ug/L (ppb) 10 106 ug/L (ppb) 50 106 ug/L (ppb) 5 107 ug/L (ppb) 20 111 ug/L (ppb) 20 106 ug/L (ppb) 100 114 ug/L (ppb) 10 115 ug/L (ppb) 20 110 ug/L (ppb) 5 106 ug/L (ppb) 5 106 ug/L (ppb) 5 109 ug/L (ppb) 5 100

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 812310-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	129	10-172
Chloromethane	ug/L (ppb)	50	<10	108	25-166
Vinyl chloride	ug/L (ppb)	50	<0.2	110	36-166
Bromomethane	ug/L (ppb)	50	<1	105	47-169
Chloroethane Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	106 104	46-160 44-165
Acetone	ug/L (ppb) ug/L (ppb)	250	<50	85	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	95	60-136
Hexane	ug/L (ppb)	50	<1	91	52-150
Methylene chloride	ug/L (ppb)	50	< 5	90	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	93	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	93	72-129
1,1-Dichloroethane	ug/L (ppb)	50 50	<1	90 80	70-128 36-154
2,2-Dichloropropane cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	93	30-154 71-127
Chloroform	ug/L (ppb) ug/L (ppb)	50 50	<1	93	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	91	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	< 0.2	92	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	97	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	93	69-133
Carbon tetrachloride	ug/L (ppb)	50	< 0.2	108	56-152
Benzene	ug/L (ppb)	50	< 0.35	91	76-125
Trichloroethene	ug/L (ppb)	50 50	<0.2 <1	90 96	66-135 78-125
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	<0.2	96 99	61-150
Dibromomethane	ug/L (ppb) ug/L (ppb)	50 50	<1	93	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	103	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	< 0.2	95	72-132
Toluene	ug/L (ppb)	50	<1	88	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	< 0.2	90	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	< 0.2	92	68-131
2-Hexanone	ug/L (ppb)	250	<10	89 94	10-185
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	94 93	71-128 10-226
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	<0.2 j	109	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<0.2	94	69-134
Chlorobenzene	ug/L (ppb)	50	<1	91	77-122
Ethylbenzene	ug/L (ppb)	50	<1	89	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	101	73-137
m,p-Xylene	ug/L (ppb)	100	<2	88	69-135
o-Xylene Styrene	ug/L (ppb)	50 50	<1 <1	89 91	60-140 71-133
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	89	65-142
Bromoform	ug/L (ppb)	50	<1	119	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	89	58-144
Bromobenzene	ug/L (ppb)	50	<1	95	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	90	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	< 0.2	93	51-154
1,2,3-Trichloropropane 2-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<0.2 <1	91 88	53-150 66-127
4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<1	88	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	88	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	91	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	87	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	89	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	91	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	91	69-126
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb)	50 50	<1 <2	93 93	69-128 32-164
1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<z <1</z 	93 90	32-164 66-136
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	<0.2	91	60-143
Naphthalene	ug/L (ppb)	50	<1	90	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	88	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

Project: Shelton C St-Landfill 150074, F&BI 812310

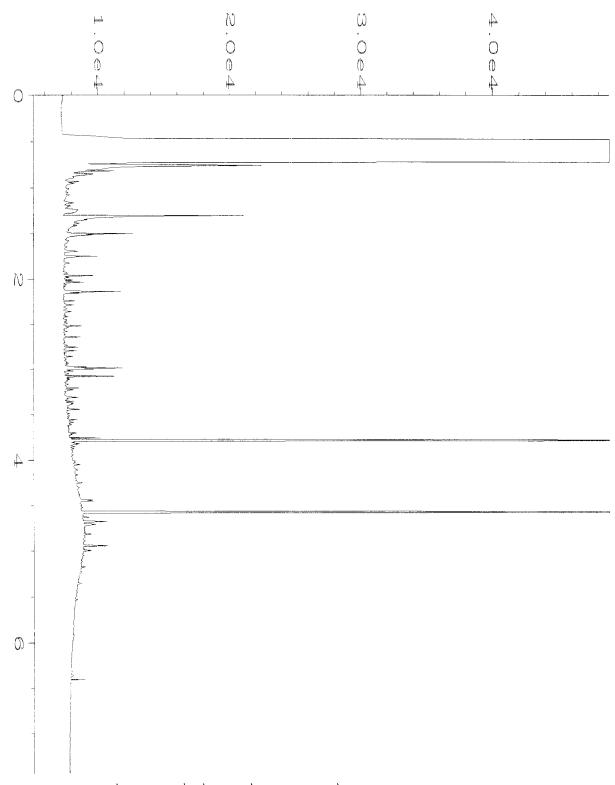
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

, , ,	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	131	133	25-158	2
Chloromethane	ug/L (ppb)	50	106	108	45-156	2
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	108 104	113 105	50-154 55-143	5 1
Chloroethane	ug/L (ppb) ug/L (ppb)	50	109	108	58-146	1
Trichlorofluoromethane	ug/L (ppb)	250	108	108	50-150	0
Acetone	ug/L (ppb)	250	88	92	53-131	4
1,1-Dichloroethene	ug/L (ppb)	50	99	103	67-136	4
Hexane	ug/L (ppb)	50	95	97	57-137	2
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	93 92	95 93	39-148 64-147	2 1
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50	98	98 98	68-128	0
1,1-Dichloroethane	ug/L (ppb)	50	95	96	79-121	1
2,2-Dichloropropane	ug/L (ppb)	50	92	91	55-143	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	98	97	80-123	1
Chloroform	ug/L (ppb)	50	99	98	80-121	1
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	91 93	95 96	57-149 73-132	4 3
1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50	98	100	83-130	2
1,1-Dichloropropene	ug/L (ppb)	50	99	98	77-129	ĩ
Carbon tetrachloride	ug/L (ppb)	50	111	112	75-158	1
Benzene	ug/L (ppb)	50	93	93	69-134	0
Trichloroethene	ug/L (ppb)	50	92	92	80-120	0
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	96 102	98 102	77-123 81-133	2
Dibromomethane	ug/L (ppb) ug/L (ppb)	50	93	95	82-125	2
4-Methyl-2-pentanone	ug/L (ppb)	250	98	103	65-138	5
cis-1,3-Dichloropropene	ug/L (ppb)	50	96	97	82-132	1
Toluene	ug/L (ppb)	50	92	91	72-122	1
trans-1,3-Dichloropropene	ug/L (ppb)	50	92	94	80-136	2
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb) ug/L (ppb)	50 250	90 84	94 93	75-124 60-136	4 10
1,3-Dichloropropane	ug/L (ppb)	50	92	96	76-126	4
Tetrachloroethene	ug/L (ppb)	50	95	94	76-121	1
Dibromochloromethane	ug/L (ppb)	50	110	111	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	91	96	82-125	5
Chlorobenzene	ug/L (ppb)	50 50	93 91	93 91	83-114	0
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	105	104	77-124 84-127	0 1
m,p-Xylene	ug/L (ppb)	100	90	91	83-125	1
o-Xylene	ug/L (ppb)	50	92	92	81-121	0
Styrene	ug/L (ppb)	50	91	93	84-119	2
Isopropylbenzene	ug/L (ppb)	50	92	92	85-117	0
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	119 93	120 92	74-136 74-126	1 1
Bromobenzene	ug/L (ppb) ug/L (ppb)	50	95 95	92 95	80-121	0
1,3,5-Trimethylbenzene	ug/L (ppb)	50	93	92	78-123	i
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	96	98	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	50	91	95	67-124	4
2-Chlorotoluene	ug/L (ppb)	50	91	90	77-127	1
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	91 93	92 90	78-128 80-123	1 3
1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50	92	90	79-122	2
sec-Butylbenzene	ug/L (ppb)	50	92	90	80-125	2
p-Isopropyltoluene	ug/L (ppb)	50	92	91	81-123	1
1,3-Dichlorobenzene	ug/L (ppb)	50	93	93	85-116	0
1,4-Dichlorobenzene	ug/L (ppb)	50	92	92	84-121	0
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	94 98	93 96	85-116 57-141	1 2
1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98 86	96 88	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50	90	90	53-141	0
Naphthalene	ug/L (ppb)	50	85	86	64-133	1
1,2,3-Trichlorobenzene	ug/L (ppb)	50	83	86	65-136	4

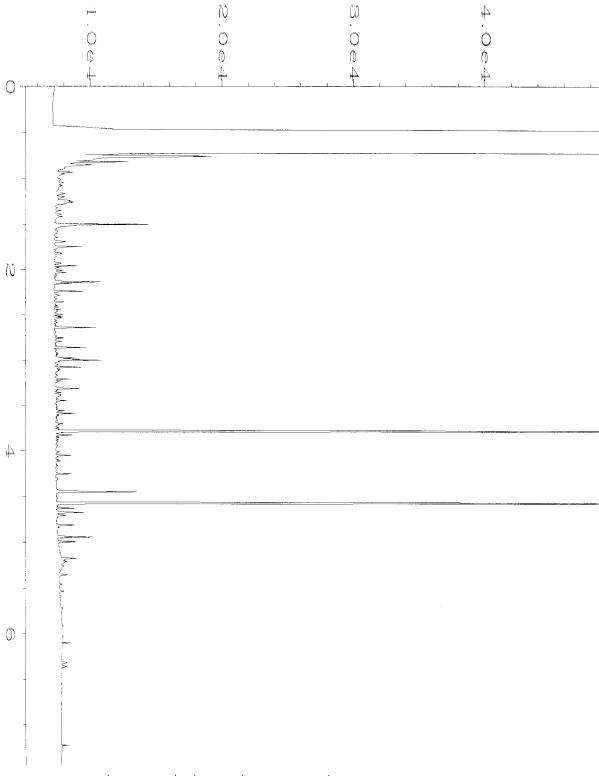
ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/19 Date Received: 12/21/18

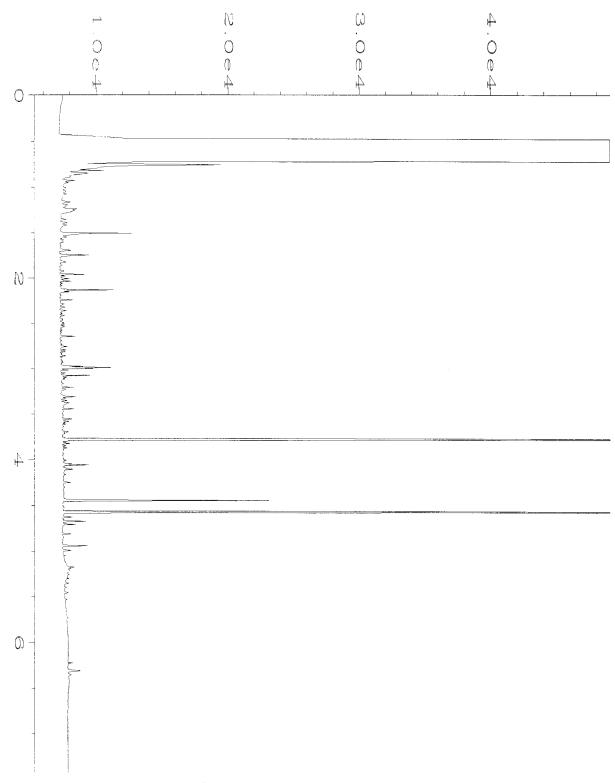
Project: Shelton C St-Landfill 150074, F&BI 812310

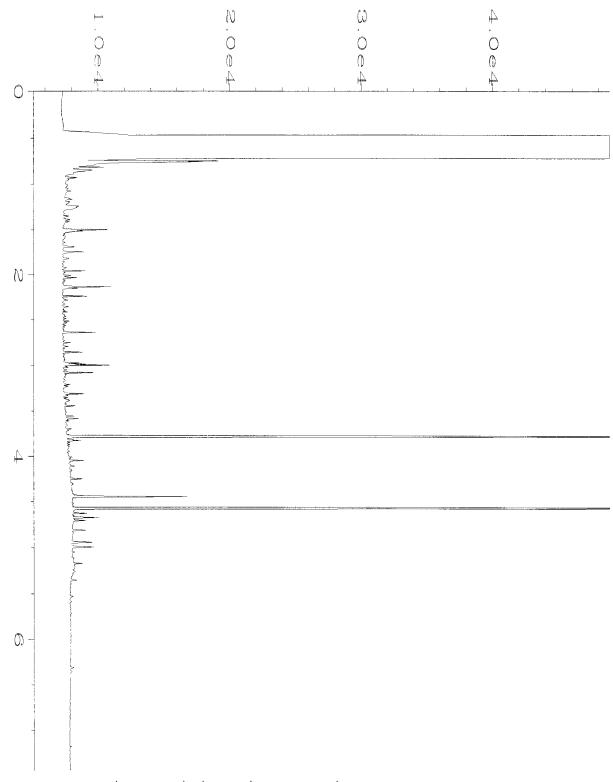

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

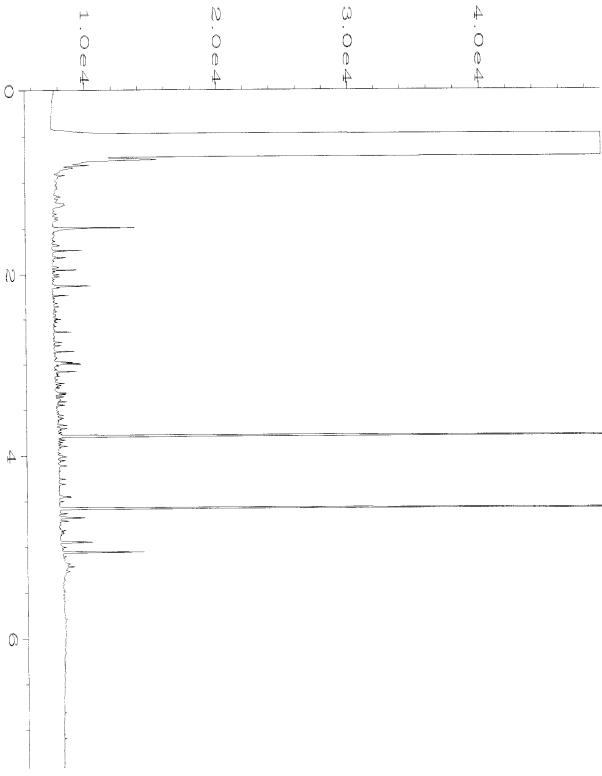
			Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level		LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.5	90	91	67-116	1
Acenaphthylene	ug/L (ppb)	0.5	104	103	65-119	1
Acenaphthene	ug/L (ppb)	0.5	98	98	66-118	0
Fluorene	ug/L (ppb)	0.5	109	108	64-125	1
Phenanthrene	ug/L (ppb)	0.5	91	91	67-120	0
Anthracene	ug/L (ppb)	0.5	96	95	65-122	1
Fluoranthene	ug/L (ppb)	0.5	97	98	65-127	1
Pyrene	ug/L (ppb)	0.5	100	100	62-130	0
Benz(a)anthracene	ug/L (ppb)	0.5	96	95	60-118	1
Chrysene	ug/L (ppb)	0.5	93	92	66-125	1
Benzo(b)fluoranthene	ug/L (ppb)	0.5	105	99	55-135	6
Benzo(k)fluoranthene	ug/L (ppb)	0.5	91	95	62-125	4
Benzo(a)pyrene	ug/L (ppb)	0.5	102	98	58-127	4
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.5	109	104	36-142	5
Dibenz(a,h)anthracene	ug/L (ppb)	0.5	99	87	37-133	13
Benzo(g,h,i)perylene	ug/L (ppb)	0.5	99	92	34-135	7

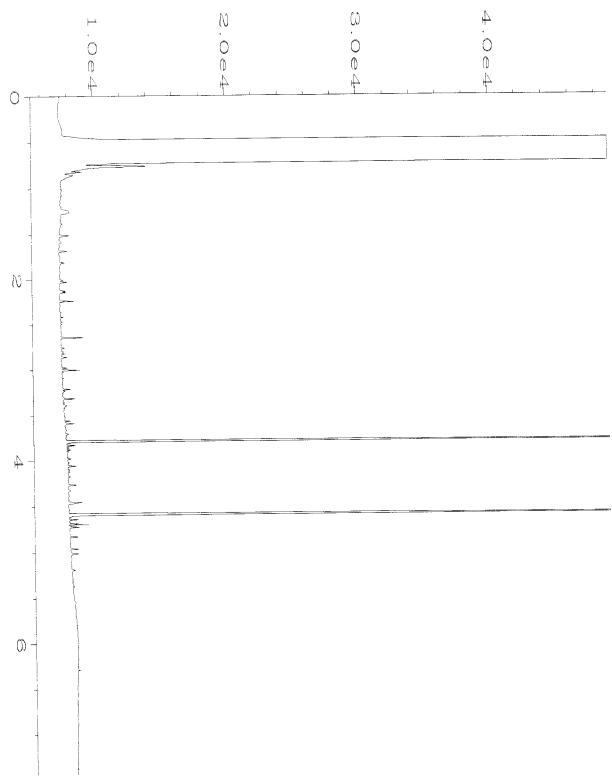

ENVIRONMENTAL CHEMISTS

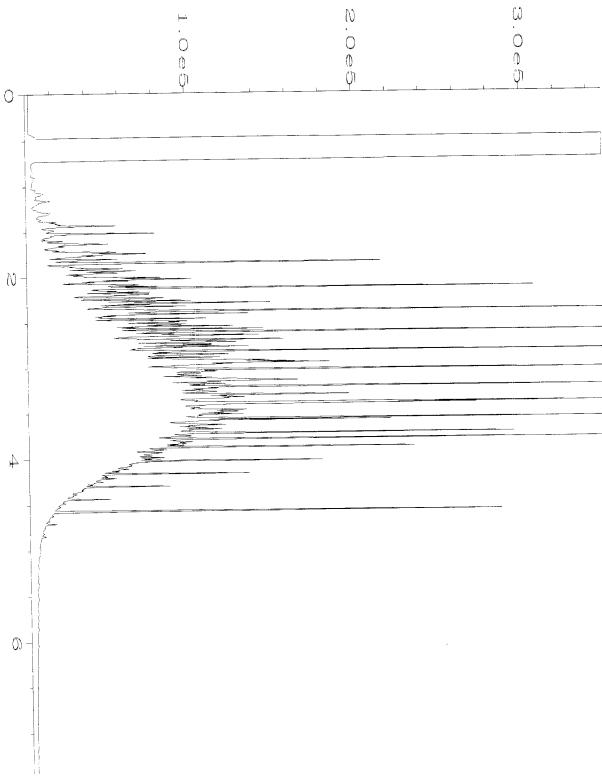
Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\1\DATA\12-24-18\012F0501.D
Data File Name
                : TL
                                               Page Number
Operator
                                               Vial Number
Instrument
                : GC1
                : 812310-01
                                               Injection Number: 1
Sample Name
Run Time Bar Code:
                                               Sequence Line
                                                               : 5
Acquired on
                : 24 Dec 18 11:53 AM
                                               Instrument Method: DX.MTH
Report Created on: 26 Dec 18 08:40 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\12-24-18\013F0501.D
                 : TL
Operator
                                               Page Number
Instrument
                                               Vial Number
                 : GC1
                                                                : 13
                 : 812310-02
Sample Name
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 5
Acquired on
                : 24 Dec 18 12:05 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Dec 18 08:40 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\12-24-18\014F0501.D
Operator
                 : TL
                                               Page Number
Instrument
                                               Vial Number
                 : GC1
                                                                : 14
                 : 812310-03
Sample Name
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 5
Acquired on
                : 24 Dec 18 12:16 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Dec 18 08:40 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\12-24-18\015F0501.D
Operator
                 : TL
                                               Page Number
                 : GC1
Instrument
                                               Vial Number
                                                                : 15
                                               Injection Number: 1
                : 812310-04
Sample Name
Run Time Bar Code:
                                               Sequence Line
                                                               : 5
Acquired on : 24 Dec 18 12:27 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Dec 18 08:40 AM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\12-24-18\016F0501.D
Data File Name
                                               Page Number
Operator
                 : TL
                                               Vial Number
                                                                 : 16
Instrument
                 : GC1
                                               Injection Number: 1
Sample Name
                 : 812310-05
                                               Sequence Line
                                                                : 5
Run Time Bar Code:
                                               Instrument Method: DX.MTH
             : 24 Dec 18
                              12:39 PM
Acquired on
Report Created on: 26 Dec 18 08:40 AM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\12-24-18\006F0501.D
Data File Name
                                                  Page Number
Vial Number
                  : TL
Operator
                  : GC1
Instrument
                                                  Injection Number: 1
                  : 08-2901 mb
Sample Name
                                                  Sequence Line
                                                                    : 5
Run Time Bar Code:
                                                  Instrument Method: DX.MTH
                 : 24 Dec 18
Acquired on
                               10:48 AM
                                                  Analysis Method : DX.MTH
Report Created on: 26 Dec 18
                               08:37 AM
```



```
: C:\HPCHEM\1\DATA\12-24-18\005F0601.D
Data File Name
                                               Page Number
                 : TL
Operator
                                               Vial Number
                 : GC1
Instrument
                                               Injection Number: 1
                : 1000 Dx 55-96F
Sample Name
                                               Sequence Line
                                                              : 6
Run Time Bar Code:
                                               Instrument Method: DX.MTH
                : 24 Dec 18
                              01:39 PM
Acquired on
Report Created on: 26 Dec 18 08:37 AM
                                               Analysis Method : DX.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 812310

Work Order Number: 1812337

January 02, 2019

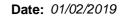
Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 12/21/2018 for the analyses presented in the following report.

Ammonia by SM 4500 NH3G
Cyanide by SM 4500-CN C, E
Dissolved Metals by EPA Method 200.8
Dissolved Organic Carbon by SM 5310C
Ion Chromatography by EPA Method 300.0
Sulfide by SM 4500-S2-F
Total Metals by EPA Method 200.8
Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 812310 **Work Order:** 1812337

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1812337-001	AMW-1-122018	12/20/2018 9:20 AM	12/21/2018 1:30 PM
1812337-002	AMW-2-122018	12/20/2018 10:31 AM	12/21/2018 1:30 PM
1812337-003	AMW-3-122018	12/20/2018 1:00 PM	12/21/2018 1:30 PM
1812337-004	AMW-4-122018	12/20/2018 11:55 AM	12/21/2018 1:30 PM
1812337-005	AMW-5-122018	12/20/2018 11:10 AM	12/21/2018 1:30 PM

Case Narrative

WO#: **1812337**Date: **1/2/2019**

CLIENT: Friedman & Bruya

Project: 812310

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1812337**

Date Reported: 1/2/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1812337**Date Reported: **1/2/2019**

Client: Friedman & Bruya Collection Date: 12/20/2018 9:20:00 AM

Project: 812310

Lab ID: 1812337-001 **Matrix:** Water

Client Sample ID: AMW-1-122018

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Met	hod 300.0			Batc	h ID:	23037 Analyst: TN
Chloride	1.54	0.100		mg/L	1	12/21/2018 7:11:00 PM
Nitrogen, Nitrite	ND	0.100		mg/L	1	12/21/2018 7:11:00 PM
Nitrogen, Nitrate	2.53	0.200	DH	mg/L	2	12/24/2018 11:57:00 PM
Nitrogen, Nitrate	2.64	0.100	Е	mg/L	1	12/21/2018 7:11:00 PM
Sulfate	25.6	0.600	D	mg/L	2	12/24/2018 11:57:00 PM
NOTES: E - Estimated value. The amount exceed	s the linear working	range of the	instrument.			
Dissolved Metals by EPA Method	1 200.8			Batc	h ID:	23079 Analyst: WC
Sodium	36,900	100		μg/L	1	12/27/2018 1:41:01 PM
Total Metals by EPA Method 200) <u>.8</u>			Batc	h ID:	23061 Analyst: TN
Sodium	38,600	1,000	D	μg/L	10	12/27/2018 10:59:51 AM
Dissolved Organic Carbon by SM	<u>1 5310C</u>			Batc	h ID:	R48642 Analyst: GM
Organic Carbon, Dissolved	2.11	0.500		mg/L	1	12/28/2018 3:23:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R48601 Analyst: ME
Alkalinity, Total (As CaCO3)	129	2.50		mg/L	1	12/27/2018 11:07:00 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	23117 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	12/31/2018 3:47:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	23100 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/28/2018 12:45:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R48643 Analyst: GM
Sulfide	ND	0.500		mg/L	1	12/27/2018 8:22:00 PM

Work Order: **1812337**Date Reported: **1/2/2019**

Client: Friedman & Bruya Collection Date: 12/20/2018 10:31:00 AM

Project: 812310

Lab ID: 1812337-002 **Matrix:** Water

Client Sample ID: AMW-2-122018

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA Me	ethod 300.0			Batc	h ID:	23037 Analyst: TN
Chloride	2.78	0.100		mg/L	1	12/21/2018 7:34:00 PM
Nitrogen, Nitrite	ND	0.100		mg/L	1	12/21/2018 7:34:00 PM
Nitrogen, Nitrate	ND	0.100		mg/L	1	12/21/2018 7:34:00 PM
Sulfate	18.2	0.600	D	mg/L	2	12/25/2018 12:20:00 AM
Dissolved Metals by EPA Metho	d 200.8			Batc	h ID:	23079 Analyst: WC
Sodium	4,870	100		μg/L	1	12/27/2018 1:45:02 PM
Total Metals by EPA Method 20	0.8			Batc	h ID:	23061 Analyst: TN
Sodium	5,020	100		μg/L	1	12/26/2018 1:27:31 PM
Dissolved Organic Carbon by S	M 5310C			Batc	h ID:	R48642 Analyst: GM
Organic Carbon, Dissolved	12.0	0.500		mg/L	1	12/28/2018 3:51:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R48601 Analyst: ME
Alkalinity, Total (As CaCO3)	124	2.50		mg/L	1	12/27/2018 11:07:00 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	23117 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	12/27/2018 4:38:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	23100 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/28/2018 12:48:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R48643 Analyst: GM
Sulfide	ND	0.500		mg/L	1	12/27/2018 8:22:00 PM

Work Order: **1812337**Date Reported: **1/2/2019**

Client: Friedman & Bruya Collection Date: 12/20/2018 1:00:00 PM

Project: 812310

Lab ID: 1812337-003 **Matrix:** Water

Client Sample ID: AMW-3-122018

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA Me	ethod 300.0			Batch	n ID:	23037 Analyst: TN
Chloride	2.24	0.200	D	mg/L	2	12/21/2018 7:57:00 PM
Nitrogen, Nitrite	ND	0.200	D	mg/L	2	12/21/2018 7:57:00 PM
Nitrogen, Nitrate	1.47	0.200	D	mg/L	2	12/21/2018 7:57:00 PM
Sulfate	29.3	0.600	D	mg/L	2	12/21/2018 7:57:00 PM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Metho	od 200.8			Batch	n ID:	23079 Analyst: WC
Sodium	6,190	100		μg/L	1	12/28/2018 6:54:17 PM
Total Metals by EPA Method 20	0.8			Batch	n ID:	23061 Analyst: TN
Sodium	6,770	100		μg/L	1	12/26/2018 1:31:32 PM
Dissolved Organic Carbon by S	M 5310C			Batch	n ID:	R48642 Analyst: GM
Organic Carbon, Dissolved	3.83	0.500		mg/L	1	12/28/2018 5:13:00 PM
Total Alkalinity by SM 2320B				Batch	n ID:	R48601 Analyst: ME
Alkalinity, Total (As CaCO3)	258	2.50		mg/L	1	12/27/2018 11:07:00 AM
Ammonia by SM 4500 NH3G				Batch	n ID:	23117 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	12/27/2018 4:43:00 PM
Cyanide by SM 4500-CN C, E				Batch	n ID:	23100 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/28/2018 12:51:00 PM
Sulfide by SM 4500-S2-F				Batch	n ID:	R48643 Analyst: GM
Sulfide	ND	0.500		mg/L	1	12/27/2018 8:22:00 PM

Work Order: **1812337**Date Reported: **1/2/2019**

Client: Friedman & Bruya Collection Date: 12/20/2018 11:55:00 AM

Project: 812310

Lab ID: 1812337-004 **Matrix:** Water

Client Sample ID: AMW-4-122018

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA M	ethod 300.0			Batcl	h ID:	23037 Analyst: TN
Chloride	3.92	0.200	D	mg/L	2	12/21/2018 8:20:00 PM
Nitrogen, Nitrite	ND	0.200	D	mg/L	2	12/21/2018 8:20:00 PM
Nitrogen, Nitrate	0.406	0.200	D	mg/L	2	12/21/2018 8:20:00 PM
Sulfate	44.9	1.50	D	mg/L	5	12/25/2018 12:43:00 AM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID:	23079 Analyst: WC
Sodium	45,200	100		μg/L	1	12/28/2018 6:58:18 PM
Total Metals by EPA Method 20	00.8			Batcl	h ID:	23061 Analyst: TN
Sodium	47,600	1,000	D	μg/L	10	12/27/2018 11:03:53 AM
Dissolved Organic Carbon by S	SM 5310C			Batc	h ID:	R48642 Analyst: GM
Organic Carbon, Dissolved	3.90	0.500		mg/L	1	12/28/2018 5:33:00 PM
Total Alkalinity by SM 2320B				Batcl	h ID:	R48601 Analyst: ME
Alkalinity, Total (As CaCO3)	258	2.50		mg/L	1	12/27/2018 11:07:00 AM
Ammonia by SM 4500 NH3G				Batcl	h ID:	23117 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	12/31/2018 4:07:00 PM
Cyanide by SM 4500-CN C, E				Batcl	h ID:	23100 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/28/2018 12:54:00 PM
Sulfide by SM 4500-S2-F				Batcl	h ID:	R48643 Analyst: GM
Sulfide	ND	0.500		mg/L	1	12/27/2018 8:22:00 PM

Work Order: **1812337**Date Reported: **1/2/2019**

Client: Friedman & Bruya Collection Date: 12/20/2018 11:10:00 AM

Project: 812310

Lab ID: 1812337-005 **Matrix:** Water

Client Sample ID: AMW-5-122018

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Me	ethod 300.0			Batc	h ID:	23037 Analyst: TN
Chloride	2.78	0.100		mg/L	1	12/21/2018 8:43:00 PM
Nitrogen, Nitrite	ND	0.100		mg/L	1	12/21/2018 8:43:00 PM
Nitrogen, Nitrate	ND	0.100		mg/L	1	12/21/2018 8:43:00 PM
Sulfate	18.2	0.600	D	mg/L	2	12/25/2018 1:06:00 AM
Dissolved Metals by EPA Metho	d 200.8			Batc	h ID:	23079 Analyst: WC
Sodium	4,590	100		μg/L	1	12/28/2018 7:02:19 PM
Total Metals by EPA Method 20	0.8			Batc	h ID:	23061 Analyst: TN
Sodium	5,140	100		μg/L	1	12/26/2018 1:47:39 PM
Dissolved Organic Carbon by S	M 5310C			Batc	h ID:	R48642 Analyst: GM
Organic Carbon, Dissolved	12.0	0.500		mg/L	1	12/28/2018 5:53:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R48601 Analyst: ME
Alkalinity, Total (As CaCO3)	121	2.50		mg/L	1	12/27/2018 11:07:00 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	23117 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	12/27/2018 5:41:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	23100 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	12/28/2018 12:57:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R48643 Analyst: GM
Sulfide	ND	0.500		mg/L	1	12/27/2018 8:22:00 PM

Work Order: 1812337

Alkalinity, Total (As CaCO3)

129

2.50

QC SUMMARY REPORT

0

129.0

20

Friedman & Bruya CLIENT:

Total Alkalinity by SM 2320B

Project:	812310								Tot	tal Alkalinity by SM	1 2320B
Sample ID MB	-R48601	SampType	MBLK			Units: mg/L		Prep Date:	12/27/2018	RunNo: 48601	
Client ID: MB	LKW	Batch ID:	R48601					Analysis Date:	12/27/2018	SeqNo: 952710	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total	(As CaCO3)		ND	2.50							
Sample ID LCS	S-R48601	SampType	LCS			Units: mg/L		Prep Date:	12/27/2018	RunNo: 48601	
Client ID: I CS	2\A/	Ratch ID:	D/8601					Analysis Data	12/27/2018	SeaNo: 052711	

Client ID: LCSW	Batch ID: R48601					Analysis Da	te: 12/27/201	18	SeqNo: 952	2711	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As CaCO3)	100	2.50	100.0	0	100	80	120				

Sa	ample ID 1812337-001ADUP	SampType: DUP			Units: mg/L		Prep Date:	12/27/2018	RunNo: 480	601	
CI	ient ID: AMW-1-122018	Batch ID: R48601					Analysis Date:	12/27/2018	SeqNo: 952	2713	
Aı	nalyte	Result	RL	SPK value S	SPK Ref Val	%REC	LowLimit Hi	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual

Page 10 of 25 Original

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ammonia by SM 4500 NH3G

Project: 812310							An	nmonia by S	SM 4500	NH3G
Sample ID LCS-23117	SampType: LCS			Units: mg/L		Prep Date: 12/2	27/2018	RunNo: 486 2	22	
Client ID: LCSW	Batch ID: 23117					Analysis Date: 12/2	27/2018	SeqNo: 953 1	196	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	0.560	0.100	0.5000	0	112	80 12	20			В
Sample ID MB-23117	SampType: MBLK			Units: mg/L		Prep Date: 12/2	27/2018	RunNo: 4862	22	
Client ID: MBLKW	Batch ID: 23117					Analysis Date: 12/2	27/2018	SeqNo: 953 1	197	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	0.112	0.100								
Sample ID 1812372-001BDUP	SampType: DUP			Units: mg/L		Prep Date: 12/2	27/2018	RunNo: 4862	22	
Client ID: BATCH	Batch ID: 23117					Analysis Date: 12/2	27/2018	SeqNo: 953 1	199	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	0.100					0		30	
Sample ID 1812372-001BMS	SampType: MS			Units: mg/L		Prep Date: 12/2	27/2018	RunNo: 4862	22	
Client ID: BATCH	Batch ID: 23117				į	Analysis Date: 12/2	27/2018	SeqNo: 9532	200	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	0.488	0.100	0.5000	0	97.6	70 1:	30			В
Sample ID 1812372-001BMSD	SampType: MSD			Units: mg/L		Prep Date: 12/2	27/2018	RunNo: 4862	22	
Client ID: BATCH	Batch ID: 23117					Analysis Date: 12/2	27/2018	SeqNo: 9532	201	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLin	nit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	0.455	0.100	0.5000	0	91.0	70 1:	30 0.4880	7.00	30	В

Page 11 of 25 Original

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ammonia by SM 4500 NH3G

Project: 812310

Sample ID 1812345-004EDUP SampType: DUP Units: mg/L Prep Date: 12/27/2018 RunNo: 48622

Client ID: **BATCH** Batch ID: **23117** Analysis Date: **12/27/2018** SeqNo: **953222**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Nitrogen, Ammonia ND 0.100 0 30

Sample ID 1812345-004EMS SampType: MS Units: mg/L Prep Date: 12/27/2018 RunNo: 48622 Client ID: BATCH Batch ID: 23117 Analysis Date: 12/27/2018 SeqNo: 953223 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Nitrogen, Ammonia 0.498 0.100 0.5000 0.04700 90.2 70 130 В

Original Page 12 of 25

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Cyanide by SM 4500-CN C, E

RunNo: 48621

SeqNo: 953138

2.79

%RPD RPDLimit

Qual

S

30

Project: Sample ID MB-23100 SampType: MBLK Units: mg/L Prep Date: 12/27/2018 RunNo: 48621 Client ID: MBLKW Batch ID: 23100 Analysis Date: 12/28/2018 SeaNo: 953133 LowLimit HighLimit RPD Ref Val Analyte Result SPK value SPK Ref Val %RFC %RPD RPDLimit Qual Cvanide. Total ND 0.0500 Sample ID LCS-23100 SampType: LCS Units: ma/L Prep Date: 12/27/2018 RunNo: 48621 23100 Client ID: LCSW Batch ID: Analysis Date: 12/28/2018 SeqNo: 953134 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Cyanide, Total 0.290 0.0500 0.2500 0 116 80 120 Sample ID 1812373-001BDUP SampType: DUP Units: ma/L Prep Date: 12/27/2018 RunNo: 48621 Client ID: BATCH Batch ID: 23100 Analysis Date: 12/28/2018 SeqNo: 953136 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result RI Cyanide, Total ND 0.0500 0 20 Sample ID 1812373-001BMS SampType: MS RunNo: 48621 Units: mg/L Prep Date: 12/27/2018 Client ID: BATCH Analysis Date: 12/28/2018 Batch ID: 23100 SeqNo: 953137 RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val Analyte Result %REC %RPD RPDLimit Qual S Cyanide, Total 0.307 0.0500 0.2500 0 123 80 120 NOTES: S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Cyanide, Total NOTES:

Client ID:

Analyte

Sample ID 1812373-001BMSD

BATCH

0.0500

RL

SampType: MSD

23100

Result

0.316

Batch ID:

Page 13 of 25 Original

Units: mg/L

0

%REC

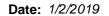
126

SPK value SPK Ref Val

0.2500

Prep Date: 12/27/2018

LowLimit HighLimit RPD Ref Val


120

0.3072

Analysis Date: 12/28/2018

80

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Organic Carbon by SM 5310C

Project: 812310							Dissolved Org	anic Carbon by SM (5310C
Sample ID MB-48642	SampType: MBLK			Units: mg/L		Prep Date:	12/28/2018	RunNo: 48642	
Client ID: MBLKW	Batch ID: R48642					Analysis Date:	12/28/2018	SeqNo: 953657	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Organic Carbon, Dissolved NOTES: Filter blank	ND	0.500							
Sample ID LCS-48642	SampType: LCS			Units: mg/L		Prep Date:	12/28/2018	RunNo: 48642	
Client ID: LCSW	Batch ID: R48642					Analysis Date:	12/28/2018	SeqNo: 953658	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Organic Carbon, Dissolved	5.15	0.500	5.000	0	103	80	120		
Sample ID 1812357-001ADUP	SampType: DUP			Units: mg/L		Prep Date:	12/28/2018	RunNo: 48642	
Client ID: BATCH	Batch ID: R48642					Analysis Date:	12/28/2018	SeqNo: 953660	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Organic Carbon, Dissolved	3.71	0.500					3.631	2.15 20	
Sample ID 1812357-001AMS	SampType: MS			Units: mg/L		Prep Date:	12/28/2018	RunNo: 48642	
Client ID: BATCH	Batch ID: R48642					Analysis Date:	12/28/2018	SeqNo: 953661	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Organic Carbon, Dissolved	8.26	0.500	5.000	3.631	92.6	70	130		
Sample ID 1812357-001AMSD	SampType: MSD			Units: mg/L		Prep Date:	12/28/2018	RunNo: 48642	
Client ID: BATCH	Batch ID: R48642					Analysis Date:	12/28/2018	SeqNo: 953662	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Organic Carbon, Dissolved	8.46	0.500	5.000	3.631	96.5	70	130 8.262	2.31 30	

Original Page 14 of 25

Work Order: 1812337

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Dissolved Organic Carbon by SM 5310C

Sample ID 1812345-001DUP SampType: DUP Units: mg/L Prep Date: 12/28/2018 RunNo: 48642

Client ID: **BATCH** Batch ID: **R48642** Analysis Date: **12/28/2018** SeqNo: **953673**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Organic Carbon, Dissolved 0.546 0.500 0.5720 4.65 20

Sample ID 1812345-001DMS Prep Date: 12/28/2018 SampType: MS Units: mg/L RunNo: 48642 Client ID: BATCH Batch ID: R48642 Analysis Date: 12/28/2018 SeqNo: 953674 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Organic Carbon, Dissolved 5.49 0.500 5.000 0.5720 98.3 70 130

Original Page 15 of 25

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Analysis Date 12/21/2018 SeqNo: 950113 SeqNo: 950113 SeqNo: 950113 Analysis Result R	Project: 812310							ion Ch	ıromatogra	phy by EP	A Method	300.0
Analyste Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride ND 0.100 Nitrogen, Nitrite ND 0.300 Nitrogen, Nitrite ND 0.300 Sample ID LCS-23037 SampType: LCS Units: mg/L Prep Date: 12/21/2018 SeqNo: 950114 Analyste Batch ID: 23037 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride OLGB4 0.100 0.7500 0 92.5 90 1110 Nitrogen, Nitrite 0.725 0.100 0.7500 0 92.5 90 1110 Nitrogen, Nitrite 0.704 0.100 0.7500 0 92.5 90 1110 Sulfate 3.47 0.300 3.750 0 92.5 90 1110 Sample ID 1812319-001BDUP SampType: DUP Units: mg/L Prep Date: 12/21/2018 SeqNo: 950-099 Analyste Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride Seq No 120 0 92.5 90 1110 Units: mg/L Prep Date: 12/21/2018 SeqNo: 950-099 Analyste Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride Seq No 120 0 92.5 90 110 Units: mg/L Prep Date: 12/21/2018 SeqNo: 950-099 Analyste Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride Seq No 120 0 92.0 92.0 92.0 92.0 92.0 92.0 92.0	Sample ID MB-23037	SampType: MBLK			Units: mg/L		Prep Dat	e: 12/21/ 2	2018	RunNo: 484	195	
ND	Client ID: MBLKW	Batch ID: 23037					Analysis Dat	e: 12/21/ 2	2018	SeqNo: 950	0113	
Nitrogen, Nitrate	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
No	Chloride	ND	0.100									
Sample ID LCS-23037 SampType: LCS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: LCSW Batch ID: 23037 Sequel Result RL SPK value SPK Ref Val Ref Va	Nitrogen, Nitrite	ND	0.100									
Sample ID LCS-23037 SampType: LCS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495	Nitrogen, Nitrate	ND	0.100									
Analyte Batch ID: 23037	Sulfate	ND	0.300									
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride O.694 O.100 O.7500 O 92.5 90 110 Nitrogen, Nitrite 0.725 0.100 0.7500 O 96.7 90 110 Sulfate 0.704 0.100 0.7500 O 93.9 90 110 Sulfate 0.704 0.300 3.750 O 92.5 90 110 SampType: DUP Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037	Sample ID LCS-23037	SampType: LCS			Units: mg/L		Prep Dat	e: 12/21/ 2	2018	RunNo: 484	495	
Chloride	Client ID: LCSW	Batch ID: 23037					Analysis Dat	e: 12/21/ 2	2018	SeqNo: 950	0114	
Nitrogen, Nitrite	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate 0.704 0.100 0.7500 0 93.9 90 110 Sample ID 1812319-001BDUP SampType: DUP Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950099 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit CONTROL Nitrogen, Nitrite ND 0.100 5.92 0.100 5.92 0.100 5.92 0.836 0.100 5.92 0.836 0.100 5.804 0.8370 0.120 2.00 Nitrogen, Nitrate 0.836 0.100 5.92 0.8370 0.120 2.00 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analyse SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit CONTROL Note: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit CONTROL Note: 12/21/2018 SeqNo: 950100	Chloride	0.694	0.100	0.7500	0	92.5	90	110				
Sulfate 3.47 0.300 3.750 0 92.5 90 110 Sample ID 1812319-001BDUP SampType: DUP Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit CONTROL No. 100 20 Nitrogen, Nitrate 0.836 0.100 5.92 0.836 0.100 0.836 0.100 0.836 0.100 0.836 0.100 0.836 0.100 0.836 0.100 0.8370 0.120 20 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analyte SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit CONTROL RESULT RES	Nitrogen, Nitrite	0.725	0.100	0.7500	0	96.7	90	110				
Sample D 1812319-001BDUP SampType: DUP	Nitrogen, Nitrate	0.704	0.100	0.7500	0	93.9	90	110				
Client ID: BATCH Batch ID: 23037	Sulfate	3.47	0.300	3.750	0	92.5	90	110				
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Chloride Chloride 5.92 0.100 Nitrogen, Nitrite ND 0.100 Nitrogen, Nitrate 0.836 0.100 Sulfate 14.5 0.300 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Client ID: BATCH Batch ID: 23037 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Characteristics (Concentration of the Concentration of the Concen	Sample ID 1812319-001BDUP	SampType: DUP			Units: mg/L		Prep Dat	e: 12/21/ 2	2018	RunNo: 484		
Chloride 5.92 0.100 5.921 0.0676 20 Nitrogen, Nitrite ND 0.100 0.20 Nitrogen, Nitrate 0.836 0.100 0.8370 0.120 20 Sulfate 14.5 0.300 14.54 0.0551 20 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Communications and the supplication of the supplication	Client ID: BATCH	Batch ID: 23037					Analysis Dat	e: 12/21/ 2	2018	SeqNo: 950	0099	
Nitrogen, Nitrite	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate 0.836 0.100 0.8370 0.120 20 Sulfate 14.5 0.300 14.54 0.0551 20 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Company of the instrument.	Chloride	5.92	0.100						5.921	0.0676	20	Е
Sulfate 14.5 0.300 14.54 0.0551 20 NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Communications and the sequence of the instrument.	Nitrogen, Nitrite	ND	0.100						0		20	
NOTES: E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Company of the instrument.	Nitrogen, Nitrate	0.836	0.100						0.8370	0.120	20	
E - Estimated value. The amount exceeds the linear working range of the instrument. Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Company of the instrument.	Sulfate	14.5	0.300						14.54	0.0551	20	
Sample ID 1812319-001BMS SampType: MS Units: mg/L Prep Date: 12/21/2018 RunNo: 48495 Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C		at avecade the linear worki	ng rango of	the instrumen	+							
Client ID: BATCH Batch ID: 23037 Analysis Date: 12/21/2018 SeqNo: 950100 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C			rig range or	the instrumen								
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Sample ID 1812319-001BMS	SampType: MS			Units: mg/L		Prep Dat	e: 12/21/ 2	2018	RunNo: 484	195	
,	Client ID: BATCH	Batch ID: 23037					Analysis Dat	e: 12/21/ 2	2018	SeqNo: 950	0100	
Chloride 6.76 0.100 0.7500 5.921 111 80 120	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	Chloride	6.76	0.100	0.7500	5.921	111	80	120				Е

Original Page 16 of 25

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Ion Chromatography by EPA Method 300.0

Sample ID 1812319-001BMS	SampType: MS			Units: mg/L		Prep Da	te: 12/21/ 2	2018	RunNo: 484	195	•
Client ID: BATCH	Batch ID: 23037					Analysis Da	te: 12/21/2	2018	SeqNo: 950	0100	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrite	0.743	0.100	0.7500	0	99.1	80	120				
Nitrogen, Nitrate	1.63	0.100	0.7500	0.8370	105	80	120				
Sulfate	18.7	0.300	3.750	14.54	111	80	120				Е

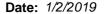
NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1812319-001BMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 12/21/2	2018	RunNo: 484	195	
Client ID: BATCH	Batch ID: 23037					Analysis Da	te: 12/21/2	2018	SeqNo: 950	0101	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	6.76	0.100	0.7500	5.921	111	80	120	6.756	0.0148	20	Е
Nitrogen, Nitrite	0.736	0.100	0.7500	0	98.1	80	120	0.7430	0.947	20	
Nitrogen, Nitrate	1.62	0.100	0.7500	0.8370	105	80	120	1.626	0.308	20	
Sulfate	18.7	0.300	3.750	14.54	111	80	120	18.68	0.0963	20	Е

NOTES:


E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1812320-006DDUP	SampType: DUP			Units: mg/L		Prep Da	te: 12/21/ 2	2018	RunNo: 484	195	
Client ID: BATCH	Batch ID: 23037					Analysis Da	te: 12/21/ 2	2018	SeqNo: 950	0110	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	5.71	0.100						5.706	0.140	20	Е
Nitrogen, Nitrite	ND	0.100						0		20	
Nitrogen, Nitrate	1.80	0.100						1.794	0.278	20	
Sulfate	9.47	0.300						9.348	1.32	20	

NOTES:

Original Page 17 of 25

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Ion Chromatography by EPA Method 300.0

Sample ID 1812320-006DMS	SampType: MS			Units: mg/L		Prep Da	te: 12/21/2	2018	RunNo: 48	495	
Client ID: BATCH	Batch ID: 23037					Analysis Da	te: 12/21/2	2018	SeqNo: 95	0111	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	6.22	0.100	0.7500	5.706	68.5	80	120				ES
Nitrogen, Nitrite	0.464	0.100	0.7500	0	61.9	80	120				S
Nitrogen, Nitrate	2.28	0.100	0.7500	1.794	65.3	80	120				S
Sulfate	11.6	0.300	3.750	9.348	59.7	80	120				S
NOTEC.											

NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID LCS-23032	SampType: LCS			Units: mg/L		Prep Date	e: 12/24/2018	RunNo: 48556	
Client ID: LCSW	Batch ID: 23032					Analysis Date	e: 12/24/2018	SeqNo: 951699	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrogen, Nitrate	0.704	0.100	0.7500	0	93.9	90	110		
Sulfate	3.51	0.300	3.750	0	93.7	90	110		
Sample ID MB-23032	SampType: MBLK			Units: mg/L		Prep Date	e: 12/24/2018	RunNo: 48556	
Client ID: MBLKW	Batch ID: 23032					Analysis Date	e: 12/24/2018	SeqNo: 951700	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrogen, Nitrate	ND	0.100							
Sulfate	ND	0.300							
Sample ID 1812146-002BDUP	SampType: DUP			Units: mg/L		Prep Date	e: 12/24/2018	RunNo: 48556	
Client ID: BATCH	Batch ID: 23032					Analysis Date	e: 12/24/2018	SeqNo: 951705	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrogen, Nitrate	ND	0.100					0	20	
Sulfate	0.969	0.300					0.9760	0.720 20	

Original Page 18 of 25

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Ion Chromatography by EPA Method 300.0

Sample ID 1812146-002BMS	SampType: MS			Units: mg/L		Prep Da	te: 12/24/2	2018	RunNo: 48	556	
Client ID: BATCH	Batch ID: 23032					Analysis Da	te: 12/24/2	2018	SeqNo: 95	1706	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate	0.662	0.100	0.7500	0	88.3	80	120				
Sulfate	3.95	0.300	3.750	0.9760	79.3	80	120				S

NOTES:

Project:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID 1812146-002BMSD	SampType: MSD			Units: mg/L		Prep Da	te: 12/24/2	2018	RunNo: 48	556	
Client ID: BATCH	Batch ID: 23032					Analysis Da	te: 12/24/2	2018	SeqNo: 95	1707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate	0.638	0.100	0.7500	0	85.1	80	120	0.6620	3.69	20	
Sulfate	3.84	0.300	3.750	0.9760	76.4	80	120	3.949	2.80	20	S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID 1812146-016BDUP	SampType: DUP			Units: mg/L		Prep Da	te: 12/24/2	2018	RunNo: 485	556	
Client ID: BATCH	Batch ID: 23032					Analysis Da	te: 12/24/2	2018	SeqNo: 951	1722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate	ND	0.100						0		20	
Sulfate	0.313	0.300						0.3150	0.637	20	

Sample ID 1812146-016BMS	SampType: MS			Units: mg/L		Prep Da	te: 12/24/2	2018	RunNo: 48	556	
Client ID: BATCH	Batch ID: 23032					Analysis Da	te: 12/24/2	2018	SeqNo: 95	1723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Nitrate	0.674	0.100	0.7500	0	89.9	80	120				
Sulfate	3.10	0.300	3.750	0.3150	74.2	80	120				S

NOTES:

Original Page 19 of 25

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1812337

Project:

QC SUMMARY REPORT

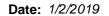
CLIENT: Friedman & Bruya

812310

Sulfide by SM 4500-S2-F

Sample ID MB-R48643	SampType: MBLK	Units: mg/L	Prep Date: 12	2/27/2018	RunNo: 48643
---------------------	----------------	-------------	---------------	-----------	---------------------

Client ID: **MBLKW** Batch ID: **R48643** Analysis Date: **12/27/2018** SeqNo: **953702**


Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sulfide ND 0.500

Sample ID LCS-R48643	SampType: LCS			Units: mg/L		Prep Dat	e: 12/27/2018	RunNo: 48643	
Client ID: LCSW	Batch ID: R48643					Analysis Da	te: 12/27/2018	SeqNo: 953703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	/al %RPD RPDLimit	Qual
Sulfide	2 00 0	500	2 000	0	100	65	135		

Sample ID LCSD-R48643	SampType: LCSD			Units: mg/L		Prep Dat	te: 12/27/2	018	RunNo: 486	643	
Client ID: LCSW02	Batch ID: R48643					Analysis Dat	te: 12/27/2	018	SeqNo: 953	3709	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	1.80	0.500	2.000	0	90.0	65	135	2.000	10.5	20	

Original Page 20 of 25

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Metals by EPA Method 200.8

Project:	812310								וט	ssolved Me	tals by EP	A Method	1 200.8
Sample ID MB-2	3079 Sai	прТуре:	MBLK			Units: µg/L		Prep Da	te: 12/27	/2018	RunNo: 485	598	
Client ID: MBLI	(W Ba	tch ID:	23079					Analysis Da	te: 12/27	2 018	SeqNo: 952	2526	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium			ND	100									
Sample ID LCS-	2 3079 Sai	mpType:	LCS			Units: µg/L		Prep Da	te: 12/27	/2018	RunNo: 485	598	
Client ID: LCSV	I Ba	tch ID:	23079					Analysis Da	te: 12/27	2 018	SeqNo: 952	2528	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		1	,010	100	1,000	0	101	50	150				
Sample ID 1812	259-001DDUP Sai	трТуре:	DUP			Units: µg/L		Prep Da	te: 12/27	/2018	RunNo: 485	 598	
Client ID: BATC	H Ba	tch ID:	23079					Analysis Da	te: 12/27 /	/2018	SeqNo: 952	2530	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		5	5,210	100						5,641	8.01	30	
Sample ID 1812	259-001 DMS Sai	трТуре:	MS			Units: µg/L		Prep Da	te: 12/27	/2018	RunNo: 485	 598	
Client ID: BATC	H Ba	tch ID:	23079					Analysis Da	te: 12/27	2 018	SeqNo: 952	2531	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		10),600	100	5,000	5,641	99.8	50	150				
Sample ID 18122	259-001DMSD Sai	mpType:	MSD			Units: µg/L		Prep Da	te: 12/27	/2018	RunNo: 485	598	
Client ID: BATC	H Ba	tch ID:	23079					Analysis Da	te: 12/27	2 018	SeqNo: 952	2532	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		10	,900	100	5,000	5,641	105	50	150	10,630	2.49	30	

Original Page 21 of 25

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

812310

Dissolved Metals by EPA Method 200.8

Sample ID MB1-23023FB

SampType: MBLK

Units: µg/L

Prep Date: 12/27/2018

RunNo: 48598

Analysis Date: 12/27/2018

SeqNo: 952615

Client ID: MBLKW

Batch ID: 23079

Analyte

Project:

ND

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Sodium

NOTES:

Filter Blank

Sample ID MB2-23023FB

MBLKW

SampType: MBLK

Units: µq/L

Prep Date: 12/27/2018

RunNo: 48598

Client ID:

Batch ID: 23079

Analysis Date: 12/27/2018

Analyte

Result

SPK value SPK Ref Val RL

%REC LowLimit HighLimit RPD Ref Val

SeqNo: 952616

%RPD RPDLimit Qual

Sodium

ND 100

RL

100

NOTES:

Filter Blank

Page 22 of 25 Original

Work Order: 1812337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 200.8

Project: 812310							lotai	Metals by EPA Method	200.8
Sample ID MB-23061	SampType: MBLK			Units: µg/L		Prep Date:	12/26/2018	RunNo: 48564	
Client ID: MBLKW	Batch ID: 23061					Analysis Date:	12/26/2018	SeqNo: 952027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref	/al %RPD RPDLimit	Qual
Sodium	ND	100							
Sample ID LCS-23061	SampType: LCS			Units: µg/L		Prep Date:	12/26/2018	RunNo: 48564	
Client ID: LCSW	Batch ID: 23061					Analysis Date:	12/26/2018	SeqNo: 952028	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref	/al %RPD RPDLimit	Qual
Sodium	1,020	100	1,000	0	102	50	150		
Sample ID 1812341-001ADUP	SampType: DUP			Units: µg/L		Prep Date:	12/26/2018	RunNo: 48564	
Client ID: BATCH	Batch ID: 23061					Analysis Date:	12/26/2018	SeqNo: 952030	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref	/al %RPD RPDLimit	Qual
Sodium	24,400	100					24,7	50 1.62 30	
Sample ID 1812341-001AMS	SampType: MS			Units: µg/L		Prep Date:	12/26/2018	RunNo: 48564	
Client ID: BATCH	Batch ID: 23061					Analysis Date:	12/26/2018	SeqNo: 952031	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref	/al %RPD RPDLimit	Qual
Sodium	28,500	100	5,000	24,750	74.5	50	150		E
Sample ID 1812341-001AMSD	SampType: MSD			Units: µg/L		Prep Date:	12/26/2018	RunNo: 48564	
Client ID: BATCH	Batch ID: 23061					Analysis Date:	12/26/2018	SeqNo: 952032	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref	Val %RPD RPDLimit	Qual
Sodium	28,600	100	5,000	24,750	76.2	50	150 28,4	70 0.310 30	Е

Original Page 23 of 25

Sample Log-In Check List

С	lient Name:	FB		Work Order N	umber: 181233	7	
Lo	ogged by:	Clare Griggs		Date Received	d: 12/21/2	018 1:30:00 PM	
<u>Cha</u>	in of Cust	ody					
1.	Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>FedEx</u>			
Log	ı In						
_	Coolers are p	present?		Yes 🗹	No 🗌	na 🗆	
٠.							
4.	Shipping con	tainer/cooler in good condition	1?	Yes 🗸	No \square		
5.		ls present on shipping contair nments for Custody Seals not		Yes	No 🗸	Not Required	
6.	Was an atter	npt made to cool the samples	?	Yes 🗸	No 🗌	NA 🗆	
7.	Were all item	s received at a temperature o	f >0°C to 10.0°C*	Yes 🗸	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?		Yes 🗸	No 🗌		
9.		mple volume for indicated test	(s)?	Yes	No 🗸		
10.	Are samples	properly preserved?		Yes 🗸	No \square		
11.	Was preserv	ative added to bottles?		Yes	No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes	No 🗌	NA 🗸	
13.	Did all sampl	es containers arrive in good c	ondition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of	of Custody?	Yes 🗸	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes 🗸	No 🗌		
17.	Were all hold	ling times able to be met?		Yes 🗸	No \square		
Spe	cial Handl	ing (if applicable)					
		otified of all discrepancies with	this order?	Yes	No 🗆	NA 🗸	
	Person	Notified:	Dai	te			
	By Who	m:	Via		Phone Fax	☐ In Person	
	Regardi				_		
	Client Ir	nstructions:					
19.	Additional rei	marks:					
<u>lte</u> m	<u>Information</u>						
		Item #	Temp °C				
	Cooler		5.4				

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Emindman & Rrive					8 10221 S-MM	81051-H-WMA	AMW-3-1220 18	810221-2-WMA	AMW-1-122018	Sample ID		Phone #(206) 285-8282	ate, ZIP_	Address		1
4	20	-2029	West	a Inc	T	\dagger								Lab ID		5-8282	Seattle,	3012 16	Friedma	
Received by:	Relinquished by:	Received by:	Relinguished by						-)	12/20/16	Date Sampled		Fax #(2	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruva, Inc	
	by:	5		SIGNATURE					0111	1155	1300	180	0920	Time Sampled		(206) 283-5044	,		Inc.	
		Ź							4			_	water	Matrix			RE		PR	
			Mi						_	_	_	-	-	# of jars			REMARKS	3	OJECT	
		Some	Michael Erdahl	I	\dagger									Total Organic Carbon		riease Emaii Kesuus	8	812310	PROJECT NAME/NO.	
	<	Bu	rdahl	PRINT	1	\top			×	×	χ	x	Х	Alke, linich		all	Limited	018	E/NO	
	0	Noch		T NAME					X	×	×	X	×	Chloride BOD		nesu	Ld X		•	
		0		ME					×	*	×	*	×	Na Tokh Ossalved Chloride		જિ	Koluma			
		1							×	×	×	×	Х	Sulfate	YSES		18	A		
			Fr	\dashv					×	×	×	*	×	Sulfide			3.	A-671	PO#	1
			Friedman &	CC	_				×	×	بر	*	×	Nitrate, Nitrate	REQUESTED					
			n & B1	COMPANY	_	_			70	~	x	K	×	Organic Carlon	ŒD		7			
			Bruya	YY	4	_			×	×	×	×	×	Ammoni a		□ Will o	Disp	Rush cl	SStanda RUSH	3
					_	_		-	×	×	×	×	×	Cyanide	Ш	Will call with in	SAMP ose aft	narges	dard ()	
	1 1	SINS	12/21/6	DATE										Notes		Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days Return samples	Rush charges authorized by:	□ RUSH	
	1	138	12:02	TIME										tes		ions	SAL	d by:		

Page 25 of 25

City, State, ZIP Jeast , WA 98104 Address 710 2nd Ave, Suite 550 Company_ Report To Email Metals: Ag, As, Ba, Od, Ca, Ca, Fe, Hg

2 St	PROJ	SAM)	SAMPI
Shelton C St. Land Ril	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
LandRill		Lax B	CUSTODY

Pb, Ma, Ma, Na, Ni, &, Zn

INVOICE TO

□ Other

Dispose after 30 days

Archive Samples

SAMPLE DISPOSAL

12002/ PO#

Standard Turnaround

TURNAROUND TIME

Rush charges authorized by:

2-21-18

		Trip Bhul 18"		AMW-5-122018	Arw-4-122018	AMW-3-122018	AMW-2-122018	AmW-1-122018	Sample ID	
		06 A-B		8	94	B	Ø (D/ A-K	Lab ID	
				<				01 A-K 12/20/18 0920 Water	Date Sampled	
				10	1155	1300	031	0920	Time Sampled	
				<				water	Sample Type	
		ىد		(# of Jars	
									TPH-HCID	
				*	<u> </u>	\leq	\leq	X	TPH-Diesel	
							<u> </u>		TPH-Gasoline	
									BTEX by 8021B	Ď
			····	メ	ベ	×		×	VOCs by 8260C	NAI
									SVOCs by 8270D	YSE
			***************************************	×	<u> </u>	\succeq		\times	PAHs 8270D SIM	ANALYSES REQU
င္သ				×	<u>×</u>	<u> </u>	<u>×</u>	~	Dioxin/Furani	QUI
du				ベ	<u> </u>	×	X	~	TOT/Dis meta	Ä
es r				\otimes	(X)	\otimes	\otimes	\otimes	Geochem Pannotes	Ű
E										
Samples received at	2 2			Ammon/Cyarde	Dissilved Organic Carbon	Alkalisty/Chloride	S.H.J./S.Hive	(8- Nitral/White	Notes	

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West

99,20

Friedman & Bruya, Inc. Received by: Relinquished by: Received by: Relinquished by PRINT NAME COMPANY DATE TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 23, 2019

Carla Brock, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Brock:

Included are the results from the testing of material submitted on April 1, 2019 from the Shelton C Street Landfill 150074, F&BI 904021 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Ali Cochrane

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C Street Landfill 150074, F&BI 904021 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
904021 -01	AMW-1-040119
904021 -02	AMW-2-040119
904021 -03	AMW-3-040119
904021 -04	AMW-4-040119
904021 -05	AMW-5-040119
904021 -06	Trip Blank

The samples were sent to Fremont Analytical for nitrate, nitrite, sulfate, sulfide, alkalinity, chloride, dissolved organic carbon, ammonia, and cyanide analyses. The report is enclosed. In addition, the samples were sent to Frontier Analytical for dioxin and furan analysis. The report will be forwarded upon receipt.

The 8270D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260C laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

1,3-Dichloropropane in the 8260C laboratory control sample failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

Date Extracted: 04/02/19 Date Analyzed: 04/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
AMW-1-040119 904021-01	<50	<250	111
AMW-2-040119 904021-02	<50	<250	80
AMW-3-040119 904021-03	<50	<250	107
AMW-4-040119 904021-04	<50	<250	119
AMW-5-040119 904021-05	<50	<250	105
Method Blank	<50	<250	109

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-1-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-01 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-01 x10.052

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 33.1 Magnesium 13.2

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-2-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-02 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-02 x10.061

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: mg/L (ppm)

Calcium 26.3 Magnesium 11.5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-3-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Date Extracted: 04/02/19 Lab ID: 904021-03 x10
Date Analyzed: 04/05/19 Data File: 904021-03 x10.064

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: mg/L (ppm)

Calcium 82.2 Magnesium 50.1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-4-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-04 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-04 x10.065

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: mg/L (ppm)

Calcium 77.7 Magnesium 23.6

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-5-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-05 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-05 x10.066

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 76.7 Magnesium 23.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium <0.05 Magnesium <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-01 Date Analyzed: 04/03/19 Data File: 904021-01.088 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	3.34
Cadmium	<1
Chromium	<1
Copper	<5
Iron	113
Lead	<1
Manganese	<1
Mercury	<1
Nickel	1.33
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-2-040119	Client:	Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-02 Date Analyzed: 04/03/19 Data File: 904021-02.096 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

<5

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	2.27
Cadmium	<1
Chromium	<1
Copper	<5
Iron	118
Lead	<1
Manganese	433
Mercury	<1
Nickel	1.13
Selenium	<1
Silver	<1

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-3-040119	Client:	Aspect Consulting, LLC
Date Received:	04/01/19	Project:	Shelton C Street Landfill 150074
Data Extracted:	04/03/10	Lab ID:	904091-03

 Date Extracted:
 04/03/19
 Lab ID:
 904021-03

 Date Analyzed:
 04/03/19
 Data File:
 904021-03.099

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

Units:	ug/L (ppb)	Operator:	SP	
Analyte:	Concentration ug/L (ppb)			
Arsenic	< 0.2			
Barium	5.75			
Cadmium	<1			
Chromium	<1			
Copper	<5			
Iron	263			
Lead	<1			
Manganese	479			
Mercury	<1			
Nickel	2.53			
Selenium	<1			
Silver	<1			
Zinc	<5			

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client:	Aspect Consulting,	LLC
7	lient:	dient: Aspect Consulting,

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-04 Date Analyzed: 04/03/19 Data File: 904021-04.100 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

<1

<1

<5

Analyte:	Concentration ug/L (ppb)
Arsenic	0.319
Barium	31.4
Cadmium	<1
Chromium	2.42
Copper	<5
Iron	240
Lead	<1
Manganese	1.03
Mercury	<1
Nickel	2.47

Selenium

Silver

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-5-040119	Client:	Aspect Consulting, LLC
			1 0,

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: 904021-05Date Extracted: 04/03/19 Date Analyzed: 04/03/19 Data File: 904021-05.101 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte:	Concentration ug/L (ppb)
Arsenic Barium	$0.278 \\ 29.2$

Cadmium <1 2.26 Chromium Copper <5 Iron 227 Lead <1 Manganese <1 Mercury <1 Nickel 2.33 Selenium <1 Silver <1 Zinc <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 I9-222 mb Date Analyzed: 04/03/19 Data File: I9-222 mb.093 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte:	Concentration ug/L (ppb)
Arsenic	<0.2
D .	. -

Barium <1 Cadmium <1 Chromium <1 Copper <5 Iron < 50 Lead <1 Manganese <1 Mercury <1 Nickel <1 Selenium <1 Silver <1 Zinc <5

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-1-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-01 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-01 x10.060

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: mg/L (ppm)

Calcium 32.3 Magnesium 13.0

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-2-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-02 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-02 x10.053

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 28.4 Magnesium 12.5

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-3-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-03 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-03 x10.054

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 83.2 Magnesium 51.0

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-4-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-04 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-04 x10.055

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 78.1 Magnesium 24.4

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-5-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 04/02/19
 Lab ID:
 904021-05 x10

 Date Analyzed:
 04/05/19
 Data File:
 904021-05 x10.057

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium 77.5 Magnesium 23.8

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium <0.05 Magnesium <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-1-040119	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 04/01/19 Shelton C Street Landfill 150074

Project: Lab ID: Date Extracted: 04/03/19 904021-01 Date Analyzed: 04/03/19 Data File: 904021-01.095 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	3.44
Cadmium	<1
Chromium	<1
Copper	<5
Iron	129
Lead	<1
Manganese	1.80
Mercury	<1
Nickel	1.35
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-2-040119	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 04/01/19 Shelton C Street Landfill 150074

Project: Lab ID: Date Extracted: 04/03/19 904021-02 Date Analyzed: 04/03/19 Data File: 904021-02.089 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	2.38
Cadmium	<1
Chromium	<1
Copper	<5
Iron	149
Lead	<1
Manganese	464
Mercury	<1
Nickel	1.25
Selenium	<1
Silver	<1
Zinc	- <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-3-040119	Client:	Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-03 Date Analyzed: 04/03/19 Data File: 904021-03.090 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	6.37
Cadmium	<1
Chromium	<1
Copper	<5
Iron	289
Lead	<1
Manganese	757
Mercury	<1
Nickel	2.65
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: AMW-4-040119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Date Received: 04/01/19 Shelton C Street Landfill 150074

Project: Lab ID: Date Extracted: 04/03/19 904021-04 Date Analyzed: 04/03/19 Data File: 904021-04.091 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.344
Barium	33.8
Cadmium	<1
Chromium	3.85
Copper	<5
Iron	1,180
Lead	<1
Manganese	31.4
Mercury	<1
Nickel	3.74
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: AMW-5-040119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-05 Date Analyzed: 04/03/19 Data File: 904021-05.092 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.339
Barium	31.0
Cadmium	<1
Chromium	3.16
Copper	<5
Iron	860
Lead	<1
Manganese	19.9
Mercury	<1
Nickel	3.09
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Choice ib. Hothor Blaim Choice Tropode Comparing, BBC	Client ID:	Method Blank	Client:	Aspect Consulting, LLC
---	------------	--------------	---------	------------------------

Date Received: NA Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 I9-221 mb Date Analyzed: 04/03/19 Data File: I9-221 mb.075 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	<1
Cadmium	<1
Chromium	<1

Chromium <1 Copper <5 Iron < 50 Lead <1 Manganese <1 Mercury <1 Nickel <1 Selenium <1 Silver <1 Zinc <5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-1-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 04/01/19
 Project:
 Shelton C Street Landfill 150074

 Date Extracted:
 04/03/19
 Lab ID:
 904021-01 1/0.5

 Date Analyzed:
 04/04/19
 Data File:
 040408.D

Date Analyzed:04/04/19Data File:040408.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 48 31 160 Benzo(a)anthracene-d12 38 25 165

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-2-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 04/01/19
 Project:
 Shelton C Street Landfill 150074

 Date Extracted:
 04/03/19
 Lab ID:
 904021-02 1/0.5

 Date Analyzed:
 04/04/19
 Date File:
 040409 D

Date Analyzed:04/04/19Data File:040409.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Concentration Ug/L (ppb) Naphthalene Acenaphthylene Acenaphthene Concentration ug/L (ppb) <0.1</p> <0.01</p>

Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 < 0.01 Chrysene Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-3-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074
Date Extracted: 04/03/19 Lab ID: 904021-03 1/0.5

Date Analyzed:04/04/19Data File:040410.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	43	31	160
Benzo(a)anthracene-d12	20	25	165

Concentration ug/L (ppb)

Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-4-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 04/01/19
 Project:
 Shelton C Street Landfill 150074

 Date Extracted:
 04/03/19
 Lab ID:
 904021-04 1/0.5

 Date Analyzed:
 04/04/19
 Data File:
 040411.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	46	31	160
Benzo(a)anthracene-d12	30	25	165

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-5-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074 Lab ID: Date Extracted: 04/03/19 904021-05 1/0.5 Date Analyzed: 04/04/19 Data File: 040412.D Matrix: Instrument: GCMS6 Water Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	48	31	160
Benzo(a)anthracene-d12	33	25	165

< 0.01

Concentration Compounds: ug/L (ppb) Naphthalene < 0.1 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01

Chrysene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Shelton C Street Landfill 150074

Lab ID: 04/03/19 Date Extracted: 09-716 mb 1/0.5 Date Analyzed: 04/04/19 Data File: 040407.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AMW-1-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-01 Date Analyzed: 04/03/19 Data File: 040334.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	97	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-2-040119	Client:	Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-02 Date Analyzed: 04/03/19 Data File: 040335.DMatrix: GCMS9 Water Instrument: Units: ug/L (ppb) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AMW-3-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-03 Date Analyzed: 04/03/19 Data File: 040336.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-4-040119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-04 Date Analyzed: 04/03/19 Data File: 040337.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AMW-5-040119 Client: Aspect Consulting, LLC

Date Received: 04/01/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 04/03/19 904021-05 Date Analyzed: 04/03/19 Data File: 040338.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C Street Landfill 150074

04/03/19 Lab ID: Date Extracted: 09-681 mbDate Analyzed: 04/03/19 Data File: 040312.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1 jl	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	104	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8 AND SM 2340B

Laboratory Code: 904021-02 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	26.3	140 b	137 b	70-130	2 b
Magnesium	mg/L (ppm)	1.0	11.5	130	107	70-130	19

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Calcium	mg/L (ppm)	1.0	90	85-115
Magnesium	mg/L (ppm)	1.0	93	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 904021-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	0.278	96	98	75-125	2
Barium	ug/L (ppb)	50	29.2	98	102	75 - 125	4
Cadmium	ug/L (ppb)	5	<1	94	96	75 - 125	2
Chromium	ug/L (ppb)	20	2.26	99	102	75 - 125	3
Copper	ug/L (ppb)	20	<5	88	90	75 - 125	2
Iron	ug/L (ppb)	100	227	103	112	75 - 125	8
Lead	ug/L (ppb)	10	<1	82	85	75 - 125	4
Manganese	ug/L (ppb)	20	<1	96	98	75 - 125	2
Mercury	ug/L (ppb)	5	<1	88	94	75 - 125	7
Nickel	ug/L (ppb)	20	2.33	90	92	75 - 125	2
Selenium	ug/L (ppb)	5	<1	93	95	75 - 125	2
Silver	ug/L (ppb)	5	<1	85	89	75 - 125	5
Zinc	ug/L (ppb)	50	<5	89	93	75 - 125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120
Barium	ug/L (ppb)	50	100	80-120
Cadmium	ug/L (ppb)	5	98	80-120
Chromium	ug/L (ppb)	20	103	80-120
Copper	ug/L (ppb)	20	95	80-120
Iron	ug/L (ppb)	100	101	80-120
Lead	ug/L (ppb)	10	99	80-120
Manganese	ug/L (ppb)	20	97	80-120
Mercury	ug/L (ppb)	5	106	80-120
Nickel	ug/L (ppb)	20	97	80-120
Selenium	ug/L (ppb)	5	89	80-120
Silver	ug/L (ppb)	5	96	80-120
Zinc	ug/L (ppb)	50	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8 AND SM 2340B

Laboratory Code: 904013-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	25.3	68 b	193 b	70-130	96 b
Magnesium	mg/L (ppm)	1.0	13.0	66 b	$126 \mathrm{\ b}$	70-130	$62 \mathrm{\ b}$

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Calcium	mg/L (ppm)	1.0	93	85-115
Magnesium	mg/L (ppm)	1.0	94	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 904054-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	30.0	107	99	75-125	8
Barium	ug/L (ppb)	50	65.1	108	95	75 - 125	13
Cadmium	ug/L (ppb)	5	<1	100	98	75 - 125	2
Chromium	ug/L (ppb)	20	1.33	102	99	75 - 125	3
Copper	ug/L (ppb)	20	8.35	93	90	75 - 125	3
Iron	ug/L (ppb)	100	659	115	110	75 - 125	4
Lead	ug/L (ppb)	10	<1	89	87	75 - 125	2
Manganese	ug/L (ppb)	20	334	155 b	129 b	75 - 125	18 b
Mercury	ug/L (ppb)	5	<1	94	95	75 - 125	1
Nickel	ug/L (ppb)	20	8.26	97	94	75 - 125	3
Selenium	ug/L (ppb)	5	<1	99	98	75 - 125	1
Silver	ug/L (ppb)	5	<1	95	92	75 - 125	3
Zinc	ug/L (ppb)	50	<5	93	91	75 - 125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	92	80-120
Barium	ug/L (ppb)	50	100	80-120
Cadmium	ug/L (ppb)	5	99	80-120
Chromium	ug/L (ppb)	20	97	80-120
Copper	ug/L (ppb)	20	97	80-120
Iron	ug/L (ppb)	100	96	80-120
Lead	ug/L (ppb)	10	94	80-120
Manganese	ug/L (ppb)	20	96	80-120
Mercury	ug/L (ppb)	5	99	80-120
Nickel	ug/L (ppb)	20	97	80-120
Selenium	ug/L (ppb)	5	91	80-120
Silver	ug/L (ppb)	5	98	80-120
Zinc	ug/L (ppb)	50	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.5	67	81	67-116	19
Acenaphthylene	ug/L (ppb)	0.5	78	96	65-119	21 vo
Acenaphthene	ug/L (ppb)	0.5	73	92	66-118	23 vo
Fluorene	ug/L (ppb)	0.5	82	101	64 - 125	21 vo
Phenanthrene	ug/L (ppb)	0.5	74	87	67 - 120	16
Anthracene	ug/L (ppb)	0.5	79	92	65 - 122	15
Fluoranthene	ug/L (ppb)	0.5	81	97	65 - 127	18
Pyrene	ug/L (ppb)	0.5	79	92	62-130	15
Benz(a)anthracene	ug/L (ppb)	0.5	81	97	60-118	18
Chrysene	ug/L (ppb)	0.5	78	90	66 - 125	14
Benzo(b)fluoranthene	ug/L (ppb)	0.5	80	97	55-135	19
Benzo(k)fluoranthene	ug/L (ppb)	0.5	84	95	62 - 125	12
Benzo(a)pyrene	ug/L (ppb)	0.5	85	101	58 - 127	17
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.5	96	112	36 - 142	15
Dibenz(a,h)anthracene	ug/L (ppb)	0.5	57	89	37-133	44 vo
Benzo(g,h,i)perylene	ug/L (ppb)	0.5	71	94	34 - 135	28 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

Project: Shelton C Street Landfill 150074, F&BI 904021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

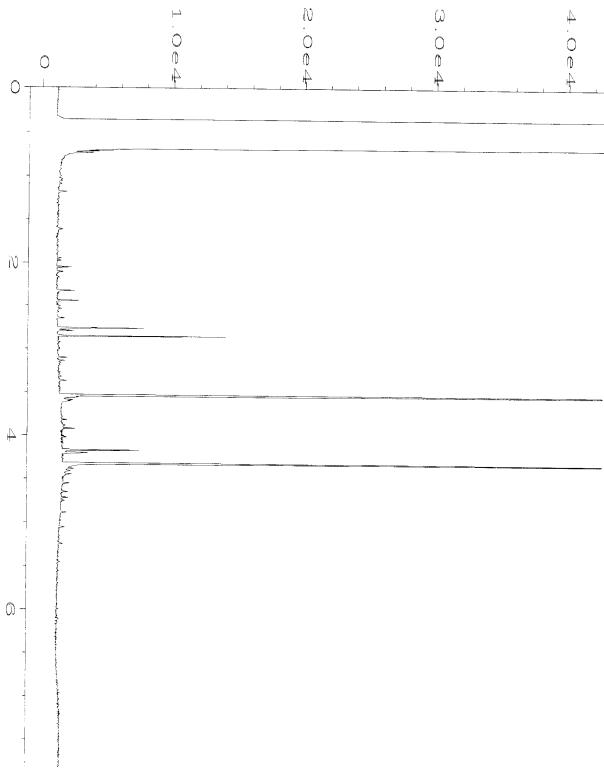
Laboratory Code: 904046-02 (Matrix Spike)

Laboratory Code: 904046-02 (манта оргке)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	104	55-137
Chloromethane	ug/L (ppb)	50	<10	102	61-120
Vinyl chloride	ug/L (ppb)	50	< 0.2	107	61-139
Bromomethane Chloroethane	ug/L (ppb)	50 50	<1 <1	97	20-265
Trichlorofluoromethane	ug/L (ppb)	50 50	<1	114 107	55-149 71-128
Acetone	ug/L (ppb) ug/L (ppb)	250	<50	107	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	106	71-123
Hexane	ug/L (ppb)	50 50	<1	88	44-139
Methylene chloride	ug/L (ppb)	50 50	<5	101	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68-125
trans-1.2-Dichloroethene	ug/L (ppb)	50	<1	99	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	97	79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	116	48-157
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	92	63-126
Chloroform	ug/L (ppb)	50	<1	95	77-117
2-Butanone (MEK)	ug/L (ppb)	250	<10	93	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	106	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	99	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	111	70-132
Benzene	ug/L (ppb)	50	< 0.35	91	75-114
Trichloroethene	ug/L (ppb)	50	<1	96	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	95	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	108	78-117
Dibromomethane	ug/L (ppb)	50	<1	96	73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	109	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	108	76-120
Toluene	ug/L (ppb)	50	<1	92	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	106	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	98	81-116
2-Hexanone	ug/L (ppb)	250	<10	96	74-127
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	50 50	<1 <1	93 96	80-113
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1	114	72-113 69-129
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1	100	79-120
Chlorobenzene	ug/L (ppb)	50 50	<1	92	75-120
Ethylbenzene	ug/L (ppb)	50	<1	95	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	105	76-130
m,p-Xylene	ug/L (ppb)	100	<2	96	63-128
o-Xylene	ug/L (ppb)	50	<1	93	64-129
Styrene	ug/L (ppb)	50	<1	100	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	100	74-122
Bromoform	ug/L (ppb)	50	<1	118	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	96	65-129
Bromobenzene	ug/L (ppb)	50	<1	98	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	100	60-138
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	102	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	93	62-125
2-Chlorotoluene	ug/L (ppb)	50	<1	95	40-159
4-Chlorotoluene	ug/L (ppb)	50	<1	97	76-122
tert-Butylbenzene	ug/L (ppb)	50	<1	103	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	99	59-136
sec-Butylbenzene	ug/L (ppb)	50	<1	100	69-127
p-Isopropyltoluene	ug/L (ppb)	50	<1	101	64-132
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	95	77-113
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	92	75-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	95	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	114	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50 50	<1	95	66-123
Hexachlorobutadiene	ug/L (ppb)	50 50	<1 <1	91 98	53-136
Naphthalene	ug/L (ppb)				60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	95	59-130

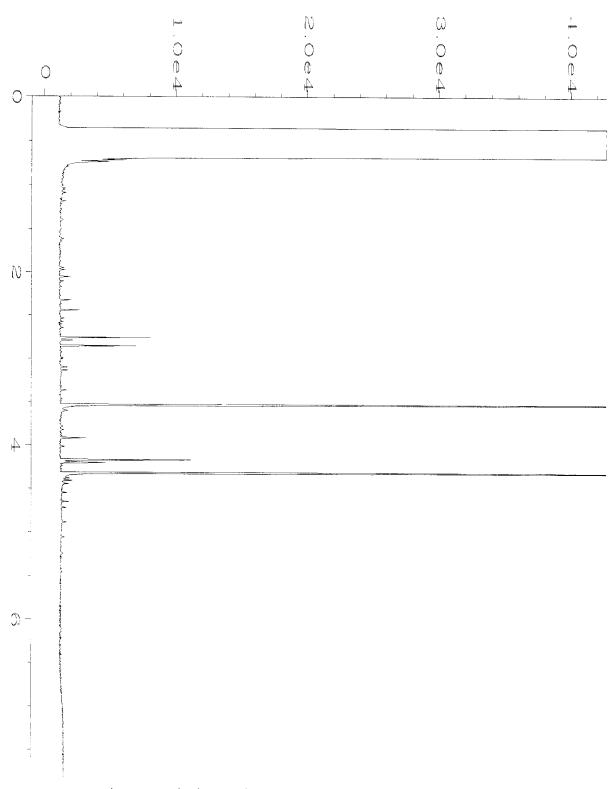
ENVIRONMENTAL CHEMISTS

Date of Report: 04/23/19 Date Received: 04/01/19

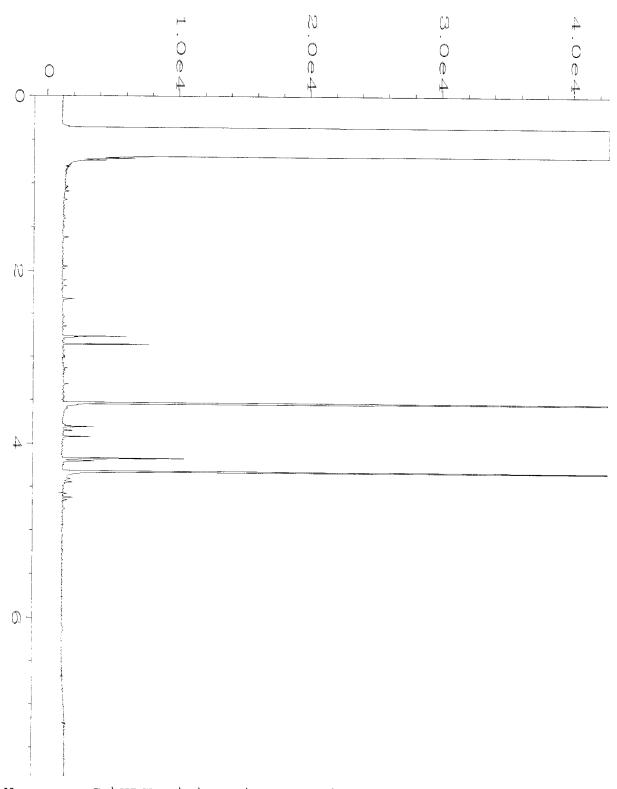
Project: Shelton C Street Landfill 150074, F&BI 904021

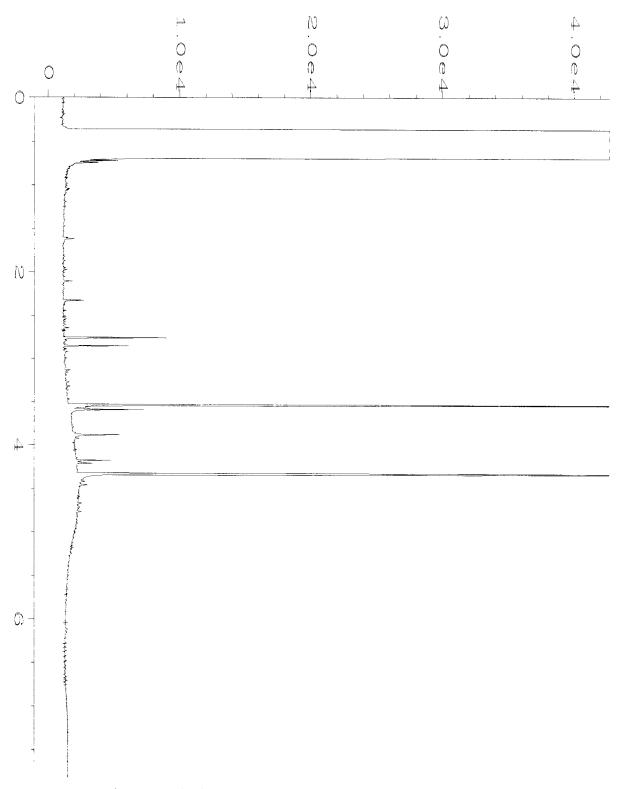

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

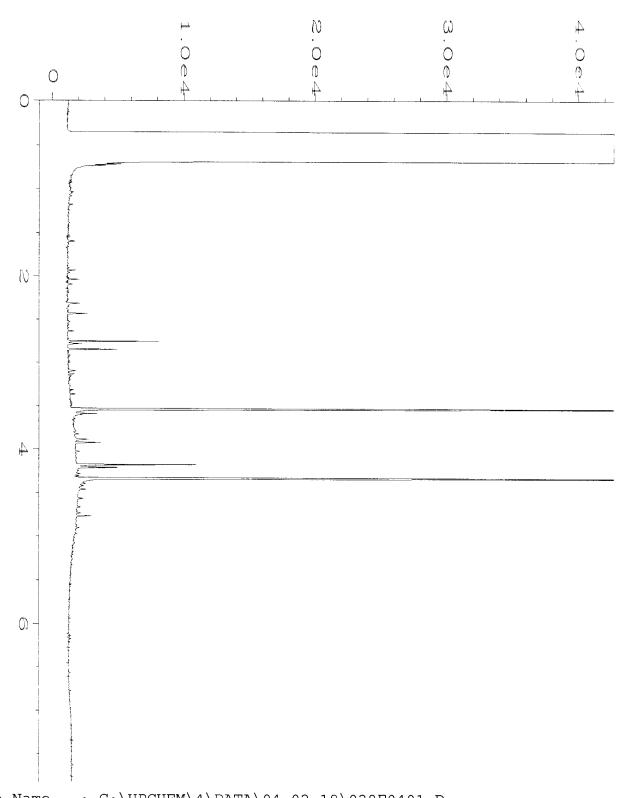
Lastratory court Lastratory con	itioi zampio		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	81	76	50-157	6
Chloromethane	ug/L (ppb)	50	90	86	62-130	5
Vinyl chloride	ug/L (ppb)	50	99	94	70-128	5
Bromomethane	ug/L (ppb)	50	90	90	62-188	0
Chloroethane	ug/L (ppb)	50	108	108	66-149	0
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	102 96	101 103	70-132 $44-145$	1 7
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	106	103	75-119	4
Hexane	ug/L (ppb)	50	79	83	51-153	5
Methylene chloride	ug/L (ppb)	50	103	97	63-132	6
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	100	96	70-122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	96	76-118	4
1,1-Dichloroethane	ug/L (ppb)	50	98	96	77-119	2
2,2-Dichloropropane	ug/L (ppb)	50	123	116	62-141	6
cis-1,2-Dichloroethene	ug/L (ppb)	50	92	91	76-119	1
Chloroform	ug/L (ppb)	50	96	95 92	78-117	1
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	73 88	92 95	49-147 78-114	23 vo 8
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	107	104	80-116	3
1,1-Dichloropropene	ug/L (ppb)	50	93	96	78-119	3
Carbon tetrachloride	ug/L (ppb)	50	110	110	72-128	0
Benzene	ug/L (ppb)	50	86	90	75-116	5
Trichloroethene	ug/L (ppb)	50	88	93	72-119	6
1,2-Dichloropropane	ug/L (ppb)	50	85	94	79-121	10
Bromodichloromethane	ug/L (ppb)	50	98	106	76-120	8
Dibromomethane	ug/L (ppb)	50	86	95	79-121	10
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	89 89	106 105	54-153 76-128	17 16
Toluene	ug/L (ppb) ug/L (ppb)	50 50	88	93	76-128 79-115	6
trans-1,3-Dichloropropene	ug/L (ppb)	50 50	90	107	76-118	17
1,1,2-Trichloroethane	ug/L (ppb)	50	87	98	78-120	12
2-Hexanone	ug/L (ppb)	250	71	93	49-147	27 vo
1,3-Dichloropropane	ug/L (ppb)	50	78 vo	93	81-115	18
Tetrachloroethene	ug/L (ppb)	50	90	95	78-109	5
Dibromochloromethane	ug/L (ppb)	50	104	114	63-140	9
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	85	100	82-118	16
Chlorobenzene	ug/L (ppb)	50 50	84	92 96	80-113	9
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	91 111	108	83-111 76-125	5 3
m,p-Xylene	ug/L (ppb) ug/L (ppb)	100	91	97	84-112	6
o-Xylene	ug/L (ppb)	50	93	95	81-117	2
Styrene	ug/L (ppb)	50	90	100	83-121	11
Isopropylbenzene	ug/L (ppb)	50	101	102	81-122	1
Bromoform	ug/L (ppb)	50	105	118	40-161	12
n-Propylbenzene	ug/L (ppb)	50	91	95	81-115	4
Bromobenzene	ug/L (ppb)	50	88	96	80-113	9
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	99	100 102	83-117	1 10
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	92 82	93	79-118 74-116	13
2-Chlorotoluene	ug/L (ppb)	50	92	95	79-112	3
4-Chlorotoluene	ug/L (ppb)	50	88	96	80-116	9
tert-Butylbenzene	ug/L (ppb)	50	101	104	81-119	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50	98	100	81-121	2
sec-Butylbenzene	ug/L (ppb)	50	99	100	83-123	1
p-Isopropyltoluene	ug/L (ppb)	50	99	101	81-122	2
1,3-Dichlorobenzene	ug/L (ppb)	50	88	95	80-115	8
1,4-Dichlorobenzene	ug/L (ppb)	50 50	84	92	77-112	9
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	92 105	$\frac{96}{114}$	79-115 62-133	4 8
1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98	96	62-133 75-119	8 2
Hexachlorobutadiene	ug/L (ppb)	50 50	92	95	70-116	3
Naphthalene	ug/L (ppb)	50	100	99	72-131	1
1,2,3-Trichlorobenzene	ug/L (ppb)	50	99	96	74-122	3

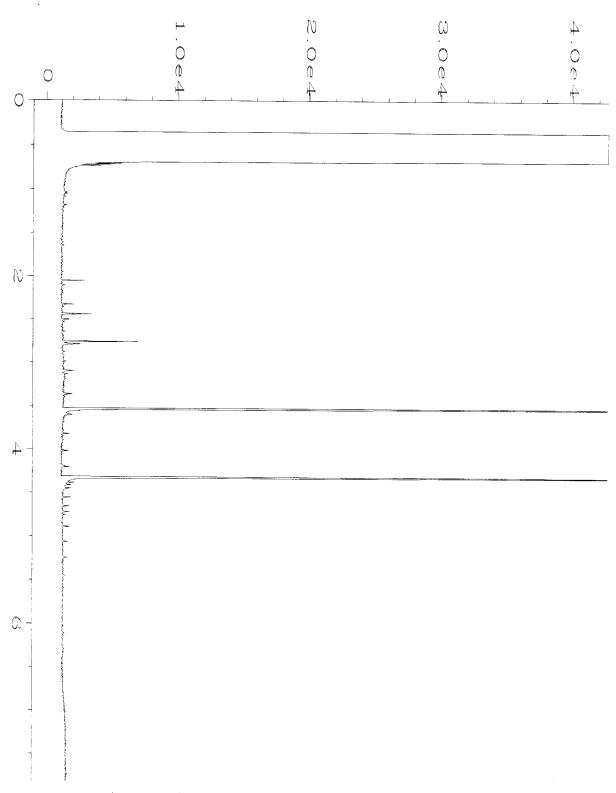

ENVIRONMENTAL CHEMISTS

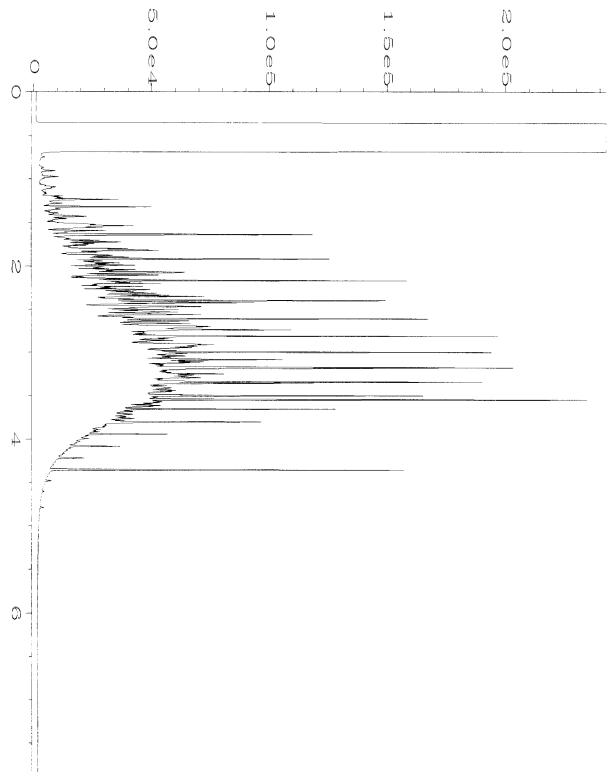
Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
              : C:\HPCHEM\4\DATA\04-02-19\024F0301.D
Operator
                : TL
                                             Page Number
Instrument
                : GC#4
                                             Vial Number : 24
Sample Name
                : 904021-01
                                             Injection Number : 1
Run Time Bar Code:
                                             Sequence Line : 3
Acquired on : 02 Apr 19 01:14 PM
                                             Instrument Method: DX.MTH
Report Created on: 03 Apr 19 07:55 AM
                                             Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\04-02-19\025F0301.D
Operator
                 : TL
                                               Page Number
                                                               : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 25
Sample Name
                : 904021-02
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
            : 02 Apr 19
Acquired on
                             01:26 PM
                                               Instrument Method: DX.MTH
Report Created on: 03 Apr 19 07:55 AM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\4\DATA\04-02-19\026F0301.D
Data File Name
Operator
                : TL
                                             Page Number
Instrument
                                             Vial Number : 26
                : GC#4
Sample Name
               : 904021-03
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 3
Acquired on
           : 02 Apr 19 01:38 PM
                                             Instrument Method: DX.MTH
Report Created on: 03 Apr 19 07:55 AM
                                             Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\04-02-19\027F0301.D
Operator
                                               Page Number
                 : TL
Instrument
                 : GC#4
                                               Vial Number
                                                               : 27
Sample Name
                                               Injection Number: 1
                : 904021-04
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on
                                               Instrument Method: DX.MTH
                : 02 Apr 19 01:50 PM
Report Created on: 03 Apr 19 07:56 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\04-02-19\028F0401.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                             : 28
Sample Name
                                              Injection Number: 1
                : 904021-05
Run Time Bar Code:
                                              Sequence Line
            : 02 Apr 19 02:07 PM
Acquired on
                                              Instrument Method: DX.MTH
Report Created on: 03 Apr 19 07:58 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\4\DATA\04-02-19\023F0301.D
Data File Name
Operator
                 : TL
                                               Page Number
Vial Number
                                                                : 1
Instrument
                 : GC#4
                                                                : 23
Sample Name
                : 09-698 mb2
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on
                                               Instrument Method: DX.MTH
             : 02 Apr 19 01:02 PM
Report Created on: 03 Apr 19 07:56 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\04-02-19\005F0501.D
Operator
                                              Page Number
                : TL
Instrument
                                              Vial Number
                : GC#4
Sample Name
                                              Injection Number: 1
                : 1000 Dx 56-131C
Run Time Bar Code:
                                              Sequence Line : 5
Acquired on : 02 Apr 19 02:34 PM
                                              Instrument Method: DX.MTH
                                              Analysis Method : DX.MTH
Report Created on: 03 Apr 19
                             07:57 AM
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 904021

Work Order Number: 1904032

April 10, 2019

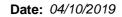
Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 4/2/2019 for the analyses presented in the following report.

Ammonia by SM 4500 NH3G
Cyanide by SM 4500-CN C, E
Dissolved Metals by EPA Method 200.8
Dissolved Organic Carbon by SM 5310C
Ion Chromatography by EPA Method 300.0
Sulfide by SM 4500-S2-F
Total Metals by EPA Method 200.8
Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 904021 **Work Order:** 1904032

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1904032-001	AMW-1-040119	04/01/2019 9:51 AM	04/02/2019 10:50 AM
1904032-002	AMW-2-040119	04/01/2019 11:00 AM	04/02/2019 10:50 AM
1904032-003	AMW-3-040119	04/01/2019 1:00 PM	04/02/2019 10:50 AM
1904032-004	AMW-4-040119	04/01/2019 12:01 PM	04/02/2019 10:50 AM
1904032-005	AMW-5-040119	04/01/2019 8:40 AM	04/02/2019 10:50 AM

Case Narrative

WO#: **1904032**Date: **4/10/2019**

CLIENT: Friedman & Bruya

Project: 904021

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1904032**

Date Reported: 4/10/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1904032**Date Reported: **4/10/2019**

Client: Friedman & Bruya Collection Date: 4/1/2019 9:51:00 AM

Project: 904021

Lab ID: 1904032-001 **Matrix:** Water

Client Sample ID: AMW-1-040119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
lon Chromatography by EPA Me	ethod 300.0			Batc	n ID:	24051	Analyst: GM	
Chloride	1.48	0.100		mg/L	1	4/2/2	019 7:05:00 PM	
Nitrite (as N)	ND	0.100		mg/L	1	4/2/2	019 7:05:00 PM	
Nitrate (as N)	1.86	0.100		mg/L	1	4/2/2	019 7:05:00 PM	
Sulfate	5.70	0.300		mg/L	1	4/2/2	019 7:05:00 PM	
Dissolved Metals by EPA Method 200.8					n ID:	24101	Analyst: WC	
Sodium	8,680	100		μg/L	1	4/9/2	019 9:42:42 PM	
Total Metals by EPA Method 200.8					n ID:	24059	Analyst: WC	
Sodium	10,100	100		μg/L	1	4/9/2	019 6:22:19 PM	
Dissolved Organic Carbon by SM 5310C				Batc	n ID:	R50569	Analyst: GM	
Organic Carbon, Dissolved	2.33	0.500		mg/L	1	4/5/20	019 10:47:00 PM	
Total Alkalinity by SM 2320B				Batcl	n ID:	R50596	Analyst: WF	
Alkalinity, Total (As CaCO3)	150	2.50		mg/L	1	4/9/20	019 11:42:09 AM	
Ammonia by SM 4500 NH3G				Batcl	n ID:	24119	Analyst: GM	
Nitrogen, Ammonia	ND	0.100		mg/L	1	4/5/20	019 1:33:00 PM	
Cyanide by SM 4500-CN C, E				Batc	n ID:	24086	Analyst: WF	
Cyanide, Total	ND	0.0500		mg/L	1	4/4/20	019 4:58:00 PM	
Sulfide by SM 4500-S2-F				Batc	n ID:	R50592	Analyst: GM	
Sulfide	ND	0.500		mg/L	1	4/8/20	019 4:18:00 PM	

Work Order: **1904032**Date Reported: **4/10/2019**

Client: Friedman & Bruya Collection Date: 4/1/2019 11:00:00 AM

Project: 904021

Lab ID: 1904032-002 **Matrix:** Water

Client Sample ID: AMW-2-040119

Analyses	Result	RL	Qual	Units	Units DF		te Analyzed	
Ion Chromatography by EPA Me	thod 300.0			Batc	h ID:	24051	Analyst: GM	
Chloride	1.88	0.100		mg/L	1	4/2/2	019 9:47:00 PM	
Nitrite (as N)	ND	0.100		mg/L	1	4/2/2	019 9:47:00 PM	
Nitrate (as N)	0.235	0.100		mg/L	1	4/2/2	019 9:47:00 PM	
Sulfate	14.7	0.600	D	mg/L	2	4/2/2	019 9:24:00 PM	
Dissolved Metals by EPA Method		Batcl	h ID:	24101	Analyst: WC			
Sodium	5,710	100		μg/L	1	4/9/2	019 9:47:29 PM	
Total Metals by EPA Method 200.8				Batcl	h ID:	24059	Analyst: WC	
Sodium	6,040	100		μg/L	1	4/9/2	019 6:27:51 PM	
Dissolved Organic Carbon by SM 5310C				Batc	h ID:	R50569	Analyst: GM	
Organic Carbon, Dissolved	5.49	0.500		mg/L	1	4/6/2	019 12:15:00 AM	
Total Alkalinity by SM 2320B				Batc	h ID:	R50596	Analyst: WF	
Alkalinity, Total (As CaCO3)	120	2.50		mg/L	1	4/9/2	019 11:42:09 AM	
Ammonia by SM 4500 NH3G				Batcl	h ID:	24119	Analyst: GM	
Nitrogen, Ammonia	ND	0.100		mg/L	1	4/5/2	019 1:53:00 PM	
Cyanide by SM 4500-CN C, E				Batcl	h ID:	24086	Analyst: WF	
Cyanide, Total	ND	0.0500		mg/L	1	4/4/2	019 5:12:00 PM	
Sulfide by SM 4500-S2-F				Batc	h ID:	R50592	Analyst: GM	
Sulfide	ND	0.500		mg/L	1	4/8/2	019 4:18:00 PM	

Work Order: **1904032**Date Reported: **4/10/2019**

Client: Friedman & Bruya Collection Date: 4/1/2019 1:00:00 PM

Project: 904021

Lab ID: 1904032-003 **Matrix:** Water

Client Sample ID: AMW-3-040119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Me	ethod 300.0			Batch	n ID:	24051 Analyst: GM
Chloride	2.61	0.200	D	mg/L	2	4/2/2019 10:33:00 PM
Nitrite (as N)	ND	0.200	D	mg/L	2	4/2/2019 10:33:00 PM
Nitrate (as N)	0.258	0.200	D	mg/L	2	4/2/2019 10:33:00 PM
Sulfate	36.8	1.50	D	mg/L	5	4/2/2019 10:10:00 PM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Metho	od 200.8			Batch	ı ID:	24101 Analyst: WC
Sodium	8,300	100		μg/L	1	4/9/2019 9:52:16 PM
Total Metals by EPA Method 20	00.8			Batch	n ID:	24059 Analyst: WC
Sodium	9,240	100		μg/L	1	4/9/2019 6:33:22 PM
Dissolved Organic Carbon by S	M 5310C			Batch	n ID:	R50569 Analyst: GM
Organic Carbon, Dissolved	5.12	0.500		mg/L	1	4/6/2019 12:35:00 AM
Total Alkalinity by SM 2320B				Batch	ı ID:	R50596 Analyst: WF
Alkalinity, Total (As CaCO3)	400	2.50		mg/L	1	4/9/2019 11:42:09 AM
Ammonia by SM 4500 NH3G				Batch	n ID:	24119 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	4/5/2019 1:58:00 PM
Cyanide by SM 4500-CN C, E				Batch	ı ID:	24086 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	4/4/2019 5:16:00 PM
Sulfide by SM 4500-S2-F				Batch	ı ID:	R50592 Analyst: GM
Sulfide	ND	0.500		mg/L	1	4/8/2019 4:18:00 PM

Work Order: **1904032**Date Reported: **4/10/2019**

Client: Friedman & Bruya Collection Date: 4/1/2019 12:01:00 PM

Project: 904021

Lab ID: 1904032-004 **Matrix:** Water

Client Sample ID: AMW-4-040119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA M	ethod 300.0			Batch	n ID:	24051 Analyst: GM
Chloride	5.12	0.500	D	mg/L	5	4/2/2019 11:19:00 PM
Nitrite (as N)	ND	0.500	D	mg/L	5	4/2/2019 11:19:00 PM
Nitrate (as N)	1.18	0.500	D	mg/L	5	4/2/2019 11:19:00 PM
Sulfate	69.4	1.50	D	mg/L	5	4/2/2019 11:19:00 PM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Metho	od 200.8			Batch	n ID:	24101 Analyst: WC
Sodium	90,200	100		μg/L	1	4/9/2019 9:57:03 PM
Total Metals by EPA Method 20	00.8			Batch	n ID:	24059 Analyst: WC
Sodium	98,800	100		μg/L	1	4/9/2019 6:38:54 PM
Dissolved Organic Carbon by S	SM 5310C			Batch	n ID:	R50569 Analyst: GM
Organic Carbon, Dissolved	2.73	0.500		mg/L	1	4/6/2019 12:55:00 AM
Total Alkalinity by SM 2320B				Batch	n ID:	R50596 Analyst: WF
Alkalinity, Total (As CaCO3)	410	2.50		mg/L	1	4/9/2019 11:42:09 AM
Ammonia by SM 4500 NH3G				Batch	n ID:	24119 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	4/5/2019 2:03:00 PM
Cyanide by SM 4500-CN C, E				Batch	n ID:	24086 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	4/4/2019 5:19:00 PM
Sulfide by SM 4500-S2-F				Batch	n ID:	R50592 Analyst: GM
Sulfide	ND	0.500		mg/L	1	4/8/2019 4:18:00 PM

Work Order: **1904032**Date Reported: **4/10/2019**

Client: Friedman & Bruya Collection Date: 4/1/2019 8:40:00 AM

Project: 904021

Lab ID: 1904032-005 **Matrix:** Water

Client Sample ID: AMW-5-040119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA N	lethod 300.0			Batcl	h ID:	24051 Analyst: GM
Chloride	4.99	0.500	D	mg/L	5	4/3/2019 12:52:00 AM
Nitrite (as N)	ND	0.500	D	mg/L	5	4/3/2019 12:52:00 AM
Nitrate (as N)	1.18	0.500	D	mg/L	5	4/3/2019 12:52:00 AM
Sulfate	66.2	1.50	D	mg/L	5	4/3/2019 12:52:00 AM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Meth	od 200.8			Batcl	h ID:	24101 Analyst: WC
Sodium	86,300	100		μg/L	1	4/9/2019 10:01:50 PM
Total Metals by EPA Method 2	00.8			Batcl	h ID:	24059 Analyst: WC
Sodium	95,200	100		μg/L	1	4/9/2019 6:44:26 PM
Dissolved Organic Carbon by	SM 5310C			Batcl	h ID:	R50569 Analyst: GM
Organic Carbon, Dissolved	2.02	0.500		mg/L	1	4/6/2019 1:15:00 AM
Total Alkalinity by SM 2320B				Batcl	h ID:	R50596 Analyst: WF
Alkalinity, Total (As CaCO3)	405	2.50		mg/L	1	4/9/2019 11:42:09 AM
Ammonia by SM 4500 NH3G				Batcl	h ID:	24119 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	4/5/2019 2:13:00 PM
Cyanide by SM 4500-CN C, E				Batcl	h ID:	24086 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	4/4/2019 5:22:00 PM
Sulfide by SM 4500-S2-F				Batcl	h ID:	R50592 Analyst: GM
Sulfide	ND	0.500		mg/L	1	4/8/2019 4:18:00 PM

Date: 4/10/2019

Work Order: 1904032

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

904021

Total Alkalinity by SM 2320B

Sample ID MB-R50596 SampType: MBLK Units: mg/L Prep Date: 4/9/2019 RunNo
--

Client ID: MBLKW Batch ID: R50596 Analysis Date: 4/9/2019 SeqNo: 993519

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) ND 2.50

Sample ID LCS	-R50596 SampType	e: LCS		Units: mg/L		Prep Date:	4/9/2019)	RunNo: 50	596	
Client ID: LCS	W Batch ID:	R50596			A	Analysis Date:	4/9/2019)	SeqNo: 993	3520	
Analyte		Result RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 100 2.50 100.0 0 100 80 120

Sample ID	1904032-001BDUP	SampType: DUP			Units: mg/L		Prep Date:	4/9/2019	9	RunNo: 50	596	
Client ID:	AMW-1-040119	Batch ID: R50596					Analysis Date:	4/9/2019	9	SeqNo: 99	3522	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Alkalinity, Total (As CaCO3) 153 2.50 149.5 2.15 20

Original Page 10 of 22

Date: 4/10/2019

Work Order: 1904032

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ammonia by SM 4500 NH3G

Project:	904021								Amm	ionia by	SM 4500	NH3G
Sample ID ME	B-24119	SampType: MBLK			Units: mg/L		Prep Date:	4/5/2019		RunNo: 50	586	
Client ID: ME	BLKW	Batch ID: 24119					Analysis Date:	4/5/2019		SeqNo: 99	3421	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	ef Val	%RPD	RPDLimit	Qual
Nitrogen, Amm	nonia	ND	0.100									
Sample ID LC	CS-24119	SampType: LCS			Units: mg/L		Prep Date:	4/5/2019	-	RunNo: 50	586	
Client ID: LC	sw	Batch ID: 24119					Analysis Date:	4/5/2019		SeqNo: 99 :	3422	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	ef Val	%RPD	RPDLimit	Qual
Nitrogen, Amm	nonia	0.459	0.100	0.5000	0	91.8	80	120				
Sample ID 19	04032-001GDUP	SampType: DUP			Units: mg/L		Prep Date:	4/5/2019		RunNo: 50 :	586	
Client ID: AN	/IW-1-040119	Batch ID: 24119					Analysis Date:	4/5/2019	;	SeqNo: 99	3424	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	f Val	%RPD	RPDLimit	Qual
Nitrogen, Amm	nonia	ND	0.100						0		30	
Sample ID 19	04032-001GMS	SampType: MS			Units: mg/L		Prep Date:	4/5/2019		RunNo: 50	586	
Client ID: AN	MW-1-040119	Batch ID: 24119					Analysis Date:	4/5/2019		SeqNo: 99	3425	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	ef Val	%RPD	RPDLimit	Qual
Nitrogen, Amm NOTES: S - Outlying		ND observed. A duplicate anal	0.100	0.5000	0 similar results indica	0	70	130				S
	04032-001GMSD	SampType: MSD	, 1.0 pc		Units: mg/L		Prep Date:			RunNo: 50	586	
	/IW-1-040119	Batch ID: 24119			- ·· 9 -		Analysis Date:			SeqNo: 99 :		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	f Val	%RPD	RPDLimit	Qual

NOTES:

Nitrogen, Ammonia

0.100

0.5000

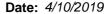
ND

Original Page 11 of 22

0

0

70

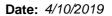

130

0

30

S

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

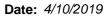

CLIENT:

QC SUMMARY REPORT Friedman & Bruya

Cyanide by SM 4500-CN C, E 904021

Project: Sample ID MB-24086 SampType: MBLK Units: mq/L Prep Date: 4/4/2019 RunNo: 50538 Client ID: MBLKW Batch ID: 24086 Analysis Date: 4/4/2019 SeaNo: 992587 %REC LowLimit HighLimit RPD Ref Val Analyte Result SPK value SPK Ref Val %RPD RPDLimit Qual Cvanide. Total ND 0.0500 Sample ID LCS-24086 SampType: LCS Units: ma/L Prep Date: 4/4/2019 RunNo: 50538 Client ID: LCSW Batch ID: 24086 Analysis Date: 4/4/2019 SeqNo: 992588 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Cyanide, Total 0.252 0.0500 0.2500 0 101 80 120 Sample ID 1904032-001ADUP SampType: **DUP** Prep Date: 4/4/2019 Units: ma/L RunNo: 50538 Client ID: AMW-1-040119 Batch ID: 24086 Analysis Date: 4/4/2019 SeqNo: 992590 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result RI Cyanide, Total ND 0.0500 0 20 Sample ID 1904032-001AMS SampType: MS Units: mg/L Prep Date: 4/4/2019 RunNo: 50538 Client ID: AMW-1-040119 Batch ID: 24086 Analysis Date: 4/4/2019 SeqNo: 992591 RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result Qual Cyanide, Total 0.228 0.0500 0.2500 0 91.4 80 120 Sample ID 1904032-001AMSD SampType: MSD Units: mg/L Prep Date: 4/4/2019 RunNo: 50538 Client ID: AMW-1-040119 Batch ID: 24086 Analysis Date: 4/4/2019 SeqNo: 992592 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Cyanide, Total 0.248 0.0500 0.2500 0 99.0 80 120 0.2285 8.02 30

Page 12 of 22 Original

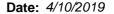

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Organic Carbon by SM 5310C

Project:	904021							Diss	solved Orga	anic Carbo	on by SM	5310C
Sample ID	MBLK-50569	SampType: MBLK			Units: mg/L		Prep Date	: 4/5/201	9	RunNo: 50	569	
Client ID:	MBLKW	Batch ID: R50569					Analysis Date	: 4/5/201	9	SeqNo: 99	3011	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Ca	rbon, Dissolved	ND	0.500									
Sample ID	LCS-50569	SampType: LCS			Units: mg/L		Prep Date	: 4/5/201	9	RunNo: 50	569	
Client ID:	LCSW	Batch ID: R50569					Analysis Date	: 4/5/201	9	SeqNo: 99	3012	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Ca	rbon, Dissolved	5.02	0.500	5.000	0	100	80	120				
Sample ID	1904032-001FDUP	SampType: DUP			Units: mg/L		Prep Date	: 4/5/201	9	RunNo: 50	569	
Client ID:	AMW-1-040119	Batch ID: R50569					Analysis Date	: 4/5/201	9	SeqNo: 99	3014	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Ca	rbon, Dissolved	2.40	0.500						2.329	3.17	20	
Sample ID	1904032-001FMS	SampType: MS			Units: mg/L		Prep Date	: 4/5/201	9	RunNo: 50	569	
Client ID:	AMW-1-040119	Batch ID: R50569					Analysis Date	: 4/5/201	9	SeqNo: 99	3015	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Ca	rbon, Dissolved	7.46	0.500	5.000	2.329	103	70	130				
Sample ID	1904032-001FMSD	SampType: MSD			Units: mg/L		Prep Date	: 4/5/201	9	RunNo: 50	569	
Client ID:	AMW-1-040119	Batch ID: R50569					Analysis Date	: 4/5/201	9	SeqNo: 99	3016	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Organic Ca	rbon, Dissolved	7.43	0.500	5.000	2.329	102	70	130	7.460	0.403	30	

Original Page 13 of 22


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 904021											
Sample ID LCS-24051	SampType: LCS			Units: mg/L		Prep Date	e: 4/2/20 1	19	RunNo: 504	199	
Client ID: LCSW	Batch ID: 24051					Analysis Date	e: 4/2/20 1	19	SeqNo: 991	1845	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.703	0.100	0.7500	0	93.7	90	110				
Nitrite (as N)	0.734	0.100	0.7500	0	97.9	90	110				
Nitrate (as N)	0.704	0.100	0.7500	0	93.9	90	110				
Sulfate	3.52	0.300	3.750	0	93.9	90	110				
Sample ID MB-24051	SampType: MBLK			Units: mg/L		Prep Date	e: 4/2/20 1	19	RunNo: 50 4	199	
Client ID: MBLKW	Batch ID: 24051					Analysis Date	e: 4/2/20 1	19	SeqNo: 991	1846	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.400									
Cilionae	ND	0.100									
	ND ND	0.100									
Nitrite (as N)											
Nitrite (as N) Nitrate (as N)	ND	0.100									
Nitrite (as N) Nitrate (as N) Sulfate	ND ND	0.100 0.100		Units: mg/L		Prep Date	e: 4/2/20 1	19	RunNo: 50 4	199	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP	ND ND ND	0.100 0.100		Units: mg/L		Prep Date Analysis Date			RunNo: 50 4 SeqNo: 99 1		
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH	ND ND ND	0.100 0.100	SPK value	Units: mg/L SPK Ref Val	%REC	Analysis Date	e: 4/2/20 1				Qual
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte	ND ND ND SampType: DUP Batch ID: 24051	0.100 0.100 0.300	SPK value	-		Analysis Date	e: 4/2/20 1	19	SeqNo: 99 1	850	Qual E
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride	ND ND SampType: DUP Batch ID: 24051 Result	0.100 0.100 0.300	SPK value	-		Analysis Date	e: 4/2/20 1	RPD Ref Val	SeqNo: 991 %RPD	RPDLimit	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N)	SampType: DUP Batch ID: 24051 Result 3.73	0.100 0.100 0.300 RL 0.100	SPK value	-		Analysis Date	e: 4/2/20 1	RPD Ref Val 3.715	SeqNo: 991 %RPD	RPDLimit	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N)	SampType: DUP Batch ID: 24051 Result 3.73 ND	0.100 0.100 0.300 RL 0.100 0.100	SPK value	-		Analysis Date	e: 4/2/20 1	RPD Ref Val 3.715 0	SeqNo: 99 1 %RPD 0.349	RPDLimit 20 20	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BMS	SampType: DUP Batch ID: 24051 Result 3.73 ND 0.102	0.100 0.100 0.300 RL 0.100 0.100 0.100	SPK value	-		Analysis Date	e: 4/2/20 1	3.715 0 0.1020 1.752	SeqNo: 99 7 %RPD 0.349	RPDLimit 20 20 20 20 20	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate	SampType: DUP Batch ID: 24051 Result 3.73 ND 0.102 1.76	0.100 0.100 0.300 RL 0.100 0.100 0.100	SPK value	SPK Ref Val	%REC	Analysis Date	e: 4/2/201 HighLimit	3.715 0 0.1020 1.752	SeqNo: 99 1 %RPD 0.349 0 0.171	RPDLimit 20 20 20 20 20 20	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BMS Client ID: BATCH	SampType: DUP Batch ID: 24051 Result 3.73 ND 0.102 1.76 SampType: MS	0.100 0.100 0.300 RL 0.100 0.100 0.100		SPK Ref Val	%REC	Analysis Date LowLimit Prep Date Analysis Date	e: 4/2/201 HighLimit e: 4/2/201 e: 4/2/201	3.715 0 0.1020 1.752	SeqNo: 991 %RPD 0.349 0.171 RunNo: 504 SeqNo: 991	RPDLimit 20 20 20 20 20 20	
Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BDUP Client ID: BATCH Analyte Chloride Nitrite (as N) Nitrate (as N) Sulfate Sample ID 1904016-001BMS	SampType: DUP Batch ID: 24051 Result 3.73 ND 0.102 1.76 SampType: MS Batch ID: 24051	0.100 0.100 0.300 RL 0.100 0.100 0.100 0.300		SPK Ref Val Units: mg/L	%REC	Analysis Date LowLimit Prep Date Analysis Date	e: 4/2/201 HighLimit e: 4/2/201 e: 4/2/201	3.715 0 0.1020 1.752	SeqNo: 991 %RPD 0.349 0.171 RunNo: 504 SeqNo: 991	RPDLimit 20 20 20 20 20 20 899 8851	E

Original Page 14 of 22

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

904021

Ion Chromatography by EPA Method 300.0

Sample ID 1904016-001BMS	mpType: MS Units: mg/L				Prep Da	te: 4/2/201	9	RunNo: 504	499		
Client ID: BATCH	Batch ID: 24051					Analysis Da	te: 4/2/201	9	SeqNo: 99	1851	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)	0.793	0.100	0.7500	0.1020	92.1	80	120				
Sulfate	5.38	0.300	3.750	1.752	96.6	80	120				

NOTES:

Project:

S - Analyte concentration was too high for accurate spike recovery(ies).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1904016-001BMSD	mple ID 1904016-001BMSD SampType: MSD				Units: mg/L Prep Date:			19	RunNo: 504	499	
Client ID: BATCH	Batch ID: 24051					Analysis Da	te: 4/2/20 1	19	SeqNo: 99	1852	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	4.62	0.100	0.7500	3.715	121	80	120	4.651	0.604	20	ES
Nitrite (as N)	0.698	0.100	0.7500	0	93.1	80	120	0.7230	3.52	20	
Nitrate (as N)	0.773	0.100	0.7500	0.1020	89.5	80	120	0.7930	2.55	20	
Sulfate	5.38	0.300	3.750	1.752	96.7	80	120	5.375	0.0744	20	

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID 1904032-001BDUP	SampType: DUP			Units: mg/L		Prep Da	te: 4/2/20 1	19	RunNo: 504	199	
Client ID: AMW-1-040119	Batch ID: 24051					Analysis Da	te: 4/2/20 1	19	SeqNo: 991	1859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	1.47	0.100						1.480	0.542	20	
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	1.86	0.100						1.865	0.322	20	
Sulfate	5.69	0.300						5.699	0.211	20	

Original Page 15 of 22

Date: 4/10/2019

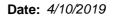
Work Order: 1904032

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

904021

Ion Chromatography by EPA Method 300.0

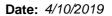

Sample ID 1904032-001BMS	SampType: MS			Units: mg/L	Prep Da	te: 4/2/20 1	19	RunNo: 50499			
Client ID: AMW-1-040119	Batch ID: 24051					Analysis Da	te: 4/2/20 1	19	SeqNo: 99'	1860	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.26	0.100	0.7500	1.480	104	80	120				
Nitrite (as N)	0.722	0.100	0.7500	0	96.3	80	120				
Nitrate (as N)	2.66	0.100 0.750		1.865	106	80	80 120				Е
Sulfate	9.59	0.300	3.750	5.699	104	80	120				

NOTES:

Project:

Original Page 16 of 22

E - Estimated value. The amount exceeds the linear working range of the instrument.


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Sulfide by SM 4500-S2-F

Project:	904021								Sulfide by	/ SM 450	0-S2-F
Sample ID	MB-R50592	SampType: MBLK			Units: mg/L	P	Prep Date:	4/8/2019	RunNo: 505	92	
Client ID:	MBLKW	Batch ID: R50592				Anal	ysis Date:	4/8/2019	SeqNo: 993	477	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC Lov	wLimit Hig	ghLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Sulfide		ND	0.500								
Sample ID	LCS-R50592	SampType: LCS			Units: mg/L	P	Prep Date:	4/8/2019	RunNo: 505	92	
Client ID:	LCSW	Batch ID: R50592				Anal	ysis Date:	4/8/2019	SeqNo: 993	478	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC Lov	wLimit Hig	ghLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Sulfide		2.00	0.500	2.000	0	100	65	135			
Sample ID	1904032-001EDUP	SampType: DUP			Units: mg/L	P	Prep Date:	4/8/2019	RunNo: 505	92	
Client ID:	AMW-1-040119	Batch ID: R50592				Anal	ysis Date:	4/8/2019	SeqNo: 993	480	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC Lov	wLimit Hig	ghLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Sulfide		ND	0.500					()	30	
Sample ID	1904032-001EMS	SampType: MS			Units: mg/L	P	Prep Date:	4/8/2019	RunNo: 505	92	
Client ID:	AMW-1-040119	Batch ID: R50592				Anal	ysis Date:	4/8/2019	SeqNo: 993	481	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC Lov	wLimit Hig	ghLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Sulfide		1.60	0.500	2.000	0	80.0	65	135			
Sample ID	1904032-001EMSD	SampType: MSD			Units: mg/L	P	Prep Date:	4/8/2019	RunNo: 505	92	
Client ID:	AMW-1-040119	Batch ID: R50592				Anal	ysis Date:	4/8/2019	SeqNo: 993	482	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC Lov	wLimit Hiç	ghLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Sulfide		1.80	0.500	2.000	0	90.0	65	135 1.600	11.8	30	

Original Page 17 of 22

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Metals by EPA Method 200.8

Project:	904021							Dis	solved Met	als by EP	A Method	1 200.8
Sample ID	MB-24101	SampType: MBLK			Units: µg/L		Prep Date	e: 4/8/201	9	RunNo: 50 6	614	
Client ID:	MBLKW	Batch ID: 24101					Analysis Date	e: 4/9/201	9	SeqNo: 993	3952	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		ND	100									
Sample ID	LCS-24101	SampType: LCS			Units: µg/L		Prep Date	e: 4/8/201	9	RunNo: 506	614	
Client ID:	LCSW	Batch ID: 24101					Analysis Date	e: 4/9/201	9	SeqNo: 993	3953	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		1,090	100	1,000	0	109	50	150				
Sample ID	1904030-001BDUP	SampType: DUP			Units: µg/L		Prep Date	e: 4/8/201	9	RunNo: 506	614	
Client ID:	ВАТСН	Batch ID: 24101					Analysis Date	e: 4/9/201	9	SeqNo: 993	3955	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		28,700	100						29,850	3.77	30	
Sample ID	1904030-001BMS	SampType: MS			Units: µg/L		Prep Date	e: 4/8/201	9	RunNo: 500	614	
Client ID:	ВАТСН	Batch ID: 24101					Analysis Date	e: 4/9/201	9	SeqNo: 993	3956	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		35,500	100	5,000	29,850	112	50	150				
Sample ID	1904030-001BMSD	SampType: MSD			Units: µg/L		Prep Date	e: 4/8/201	9	RunNo: 506	614	
Client ID:	ВАТСН	Batch ID: 24101					Analysis Date	e: 4/9/201	9	SeqNo: 993	3959	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		34,600	100	5,000	29,850	95.7	50	150	35,470	2.40	30	

Original Page 18 of 22

Date: 4/10/2019

Work Order: 1904032

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

904021

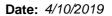
Dissolved Metals by EPA Method 200.8

Sample ID MB-24081FB SampType: MBLK Units: µg/L Prep Date: 4/8/2019 RunNo: 50614

Client ID: MBLKW Batch ID: 24101 Analysis Date: 4/9/2019 SeqNo: 993975

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sodium ND 100


 Sample ID
 MB-24098FB
 SampType: MBLK
 Units: μg/L
 Prep Date: 4/8/2019
 RunNo: 50614

Client ID: **MBLKW** Batch ID: **24101** Analysis Date: **4/9/2019** SeqNo: **993976**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sodium ND 100

Original Page 19 of 22

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 200.8

Project:	904021					Total Metals by EPA Method 200
Sample ID	MB-24059	SampType: MBLK			Units: µg/L	Prep Date: 4/4/2019 RunNo: 50607
Client ID:	MBLKW	Batch ID: 24059				Analysis Date: 4/9/2019 SeqNo: 993797
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Sodium		ND	100			
Sample ID	LCS-24059	SampType: LCS			Units: µg/L	Prep Date: 4/4/2019 RunNo: 50607
Client ID:	LCSW	Batch ID: 24059				Analysis Date: 4/9/2019 SeqNo: 993798
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Sodium		1,060	100	1,000	0	106 50 150
Sample ID	1904045-001EDUP	SampType: DUP			Units: µg/L	Prep Date: 4/4/2019 RunNo: 50607
Client ID:	BATCH	Batch ID: 24059				Analysis Date: 4/9/2019 SeqNo: 993800
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Sodium		11,100	100			10,970 1.08 30
Sample ID	1904045-001EMS	SampType: MS			Units: µg/L	Prep Date: 4/4/2019 RunNo: 50607
Client ID:	ВАТСН	Batch ID: 24059				Analysis Date: 4/9/2019 SeqNo: 993801
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Sodium		18,000	100	5,000	10,970	140 50 150
Sample ID	1904045-001EMSD	SampType: MSD			Units: µg/L	Prep Date: 4/4/2019 RunNo: 50607
Client ID:	ВАТСН	Batch ID: 24059				Analysis Date: 4/9/2019 SeqNo: 993802
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Sodium		17,600	100	5,000	10,970	133 50 150 17,970 1.89 30

Original Page 20 of 22

Sample Log-In Check List

CI	ient Name:	FB	Work Order Numb	per: 1904032	
Lo	gged by:	Brianna Barnes	Date Received:	4/2/2019	10:50:00 AM
Cha	in of Cust	ody			
		ustody complete?	Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
<u>Log</u>	In				
_	Coolers are p	present?	Yes 🗸	No 🗌	NA \square
٥.	·				
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		s present on shipping container/cooler? iments for Custody Seals not intact)	Yes	No 🗸	Not Required
6.	Was an atten	npt made to cool the samples?	Yes 🗹	No 🗌	NA \square
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	na 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserva	ative added to bottles?	Yes 🗸	No 🗌	NA \square
				See	additional remarks.
		space in the VOA vials?	Yes 🗔	No L	NA 🗸
		es containers arrive in good condition(unbroken)?		No 🗀	
14.	Does paperw	ork match bottle labels?	Yes 🗸	No L	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗸	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗸
	Person		ate		
	By Who			one Fax	☐ In Person
	Regardi				
	_	structions:			
10	Additional rer	,			
19.			d G. Zn Acetata addad	l to E	
	nformation	dded to fractions C and D, H2SO4 added to F an	u O, Zii Acelale added	∪ E.	

Item #	Ten	np ºC
Cooler	7	'.4
Sample	6	3.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Page 22 of 22

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Enindman & Bring						5			AMW-5-040119	AMW-4-640[19	P11040-5-WMA	Amw-2-040119	AMW-1-040119	Sample ID		Phone # (206) 285-8282	ate, ZIP_	Address 30		Send Report To N
			est	Inc														Lab ID		.8282	eattle,	012 16	riedma	fichael
Received by:	Relinquished by:	Received by:	Relinguished by										4		`	_	4/1/19	Date Sampled		Fax #_ (2	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruya, Inc	Michael Erdahl
	S. C.	2 Ale	7	SIGNATIIRE									0840	1051	1300	1100	0951	Time Sampled		Fax # (206) 283-5044			, Inc.	
^	0	De l'											4			1	water	Matrix			RE		PR	SU
		2	Mich															# of jars			REMARKS	٠. ــــــــــــــــــــــــــــــــــــ	PROJECT NAME/NO.	SUBCONTRACTER
		asey (Michael Erdahl			•												Dioxins/Furans			KS Please Email Results	170ho1	NAME	RACT
		0	dahl	RINT									<	4	~	×	×	Cganide EPH			mail R	1	NO.	ER T
		IKE	-	PRINT NAME	_				_	-	ļ.	_	×	×	*	*	×	Nitrate, Nitrate	A		osults			Frement
		Keefe			-			-	-	-	-	-	×	*	×	×	×	Alkalmety	ANALY			-		7
		0,	\		+		-	\vdash	-	+	-	+	< <	Y	×	Y	x	Chloride Total & Descalad No.	SES R			i	R-911	
5.		77	Friedn					-	+	+	-	-	\ \	\vdash	Y,	×	X	Sulate	EQUE			-	#	
			Friedman & Bruya	COMPANY					+	+			<	Ý	×	X	×	-100	YSES REQUESTED	L				
	i,		Bruya	ANY			T		T		T	T	<	Y	Y	×	×	Dissolved Organie Carbon		□ Will	□ Disp □ Retu		Bush o	
	_												×	Y	Y	×	×	Ammonia		call wi	Dispose after 30 Return samples		harves	Page #
é		4/2/19	4/2/19	DATE														Notes		☐ Will call with instructions	Dispose after 30 days Return samples	T D TODOG	Bush charges authorized by:	Page #of
		1050	0833	TIME														tes	, ,	ons	JAL.	, TA	by P	ME

April 19, 2019

FAL Project: 12312

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **12312**. This corresponds to your project number **904021** and purchase order number **B-196**. Five aqueous samples were received on 4/3/2019 in good condition. There samples were extracted and analyzed by EPA Method 8290 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **12312**.

The following Level IV report consists of an Analytical Data section, a Sample Receipt section, a Laboratory Raw Data section, and an Instrument Raw Data section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo. The Laboratory Raw Data section contains our project request sheet, a percent solids sheet, an extraction bench sheet and the cleanup bench sheet. The instrument raw data section contains three sub-sections; the sample results section, the initial calibration section and the continuing/ending calibration section. The sample results sub-section consists of the quantitation summary forms with chromatograms for all samples and QC. The initial calibration sub-section consists of the individual quantitation summary forms and chromatograms for each point of the initial calibration curve as well as an overall quantitation summary form of the initial calibration curve. The continuing/ending calibration sub-section consists of the quantitation summary forms and chromatograms for all beginning and ending calibration injections associated with the samples and QC. The Level IV data package on compact disk has been sent to you via On Trac. The enclosed results and electronic data deliverables (EDDs) are specifically for the samples referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP Certificate number is 4041. Our State of California ELAP certificate number is 2934 and our State of Washington certificate number is **C844**. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **12312**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Thomas C. Crabtree

honos C. Cralitres

Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 12312

Received on: <u>04/03/2019</u> Project Due: <u>04/25/2019</u> Storage: <u>R-3</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
12312-001-SA	0	904021	AMW-1-040119	EPA 8290 D/F	Aqueous	04/01/2019	09:51 am	05/01/2019
12312-002-SA	0	904021	AMW-2-040119	EPA 8290 D/F	Aqueous	04/01/2019	11:00 am	05/01/2019
12312-003-SA	0	904021	AMW-3-040119	EPA 8290 D/F	Aqueous	04/01/2019	01:00 pm	05/01/2019
12312-004-SA	0	904021	AMW-4-040119	EPA 8290 D/F	Aqueous	04/01/2019	12:01 pm	05/01/2019
12312-005-SA	0	904021	AMW-5-040119	EPA 8290 D/F	Aqueous	04/01/2019	08:40 am	05/01/2019

FAL Sample ID Notes

12312-003-SA 'Use sampling time from COC per Eric to Kathy.'

FAL ID: 12312-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L Acquired: 04-18-2019 2005 WHO TEQ: 0.0

				2005					
Compound	Con	c DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	NE			-	0.214				
1,2,3,7,8-PeCDD	NE			-	0.387				
1,2,3,4,7,8-HxCDD	NE			-	0.447				
1,2,3,6,7,8-HxCDD	NI			-	0.477	Total TCDD	ND	0.654	
1,2,3,7,8,9-HxCDD	NE			-	0.444	Total PeCDD	ND	1.07	
1,2,3,4,6,7,8-HpCDD	NE			-	0.572	Total HxCDD	ND	1.91	
OCDD	NI	2.48		-	1.12	Total HpCDD	ND	2.41	
2,3,7,8-TCDF	NE			-	0.206				
1,2,3,7,8-PeCDF	NI			-	0.326				
2,3,4,7,8-PeCDF	NE			-	0.341				
1,2,3,4,7,8-HxCDF	NE			-	0.317				
1,2,3,6,7,8-HxCDF	NE			-	0.330				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	NE NE			-	0.350 0.399	Total TCDF	ND	0.787	
1,2,3,4,6,7,8-HpCDF	NE NE			-	0.399	Total PeCDF	ND	1.28	
1,2,3,4,7,8,9-HpCDF	NE NE			-	0.301	Total HxCDF	ND	1.30	
OCDF	NE			_	0.717	Total HpCDF	ND	1.34	
Internal Standards	% Rec	QC Limits	Qual		, Is	sotopic Labeled Star	dard outsic	de QC range	e but
13C-2,3,7,8-TCDD	84.4 98.1	40.0 - 135 40.0 - 135			A si	ignal to noise ratio is	>10:1	•	
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	80.8	40.0 - 135			I в а	nalyte is present in I	Method Bla	nk	
13C-1,2,3,6,7,8-HxCDD	83.0	40.0 - 135				hemical Interference			
13C-1,2,3,4,6,7,8-HpCDD	79.7	40.0 - 135							
13C-OCDD	72.5	40.0 - 135				resence of Diphenyl			
						nalyte concentration			•
13C-2,3,7,8-TCDF	86.3	40.0 - 135			E A	nalyte concentration	is above c	alibration ra	ange
13C-1,2,3,7,8-PeCDF	88.9	40.0 - 135			F A	nalyte confirmation	on seconda	ary column	
13C-2,3,4,7,8-PeCDF	93.8	40.0 - 135			J A	nalyte concentration	is helow c	alihration ra	nge
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	77.5 81.7	40.0 - 135 40.0 - 135				•			ii igo
13C-2,3,4,6,7,8-HxCDF	79.8	40.0 - 135				laximum possible co			
13C-1,2,3,7,8,9-HxCDF	80.3	40.0 - 135			ND A	nalyte Not Detected	at Detection	on Limit Lev	el
13C-1,2,3,4,6,7,8-HpCDF	78.6	40.0 - 135			NP N	lot Provided			
13C-1,2,3,4,7,8,9-HpCDF	77.9	40.0 - 135			l P P	re-filtered through a	Whatman	0 7um GF/F	filter
13C-OCDF	72.0	40.0 - 135				ample acceptance of			into
						latrix interferences	iliciia iloti	iici	
Cleanup Surrogate						latitx interierences lesult taken from dilt	ition or roin	ication	
Oleanup Gungale					LR	esuit taken nom dilt	ilion or rein	Jection	
37Cl-2,3,7,8-TCDD	81.9	50.0 - 150							

Reviewed By: Date: 4/19/2019

FAL ID: 12312-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X4871 Date Extracted: 04-16-2019 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: ng/ml Acquired: 04-18-2019 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.4 58.3 53.8 55.6 55.5 56.4 112	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 35.0 - 65.0 70.0 - 130	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	10.7 50.8 52.7 53.7 53.1 53.5 52.9 56.3 53.9 108	7.00 - 13.0 35.0 - 65.0 35.0 - 65.0	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	83.2 71.7 62.5 65.3 60.0 53.9	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	87.1 77.4 80.6 45.7 51.9 65.1 63.7 42.6 60.1 51.1	40.0 - 135 40.0 - 135	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	80.9	50.0 - 150	

- A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- DNQ Analyte concentration is below calibration range
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Reviewed By: *U*Date: 4/19/2019

FAL ID: 12312-001-SA Client ID: AMW-1-040119 Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: 04-03-2019 Amount: 0.487 L ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L Acquired: 04-18-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	1.20 1.96 3.54 3.87 3.49 3.76 4.82		- - - - - -	0.214 0.387 0.447 0.477 0.444 0.572 1.12	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	1.20 1.96 3.87 3.76	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND	1.45 2.22 2.26 1.57 1.58 1.73 2.17 1.96 2.59 4.97		- - - - - - - -	0.206 0.326 0.341 0.317 0.330 0.350 0.399 0.301 0.445 0.717	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	1.45 2.26 2.17 2.59	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	% Rec 86.5 102 79.4 83.9 86.2 85.7 89.6 93.2 99.0 80.2 84.2 82.2 81.7 86.7 84.3 81.0	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		A Si B A C C D P DNQ A E A F A M M ND A NP N P P S S X M	sotopic Labeled Star gnal to noise ratio is nalyte is present in I hemical Interference resence of Diphenyl nalyte concentration nalyte concentration nalyte concentration laximum possible con nalyte Not Detected ot Provided re-filtered through a ample acceptance of latrix interferences esult taken from dilu	s > 10:1 Method Bla e Ethers n is below con seconda n is below concentration at Detection Whatman of	nk alibration ra alibration ra ry column alibration ra n on Limit Leve	nge inge nge
37Cl-2,3,7,8-TCDD	81.5	50.0 - 150						=	

FAL ID: 12312-002-SA Client ID: AMW-2-040119 Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: 04-03-2019 Amount: 0.483 L ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L Acquired: 04-18-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	1.61 3.89 3.69		- - -	0.214 0.387 0.447	·			
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND	3.88 3.56		-	0.477 0.444	Total TCDD Total PeCDD	ND ND	1.61 3.89	
1,2,3,4,6,7,8-HpCDD	ND ND	4.06		-	0.572	Total HxCDD	ND	3.88	
OCDD	ND	6.91		-	1.12	Total HpCDD	ND	4.06	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND ND ND ND	3.04 2.91 1.79		- - - -	0.206 0.326 0.341 0.317 0.330				
2,3,4,6,7,8-HxCDF	ND			-	0.350	T / LT0DE	ND	0.00	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	ND ND			-	0.399	Total TCDF Total PeCDF	ND ND	2.03 3.04	
1,2,3,4,7,8,9-HpCDF	ND ND	2.42		-	0.445	Total HxCDF	ND	2.58	
OCDF	ND	5.00		-	0.717	Total HpCDF	ND	2.42	
Internal Standards	% Rec	QC Limits 40.0 - 135	Qual		A	sotopic Labeled Star	ndard outsid	de QC range	e but
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	92.0	40.0 - 135			5	signal to noise ratio is			
13C-1,2,3,4,7,8-HxCDD	73.2	40.0 - 135				Analyte is present in		nk	
13C-1,2,3,6,7,8-HxCDD	77.4 78.0	40.0 - 135			C (Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	76.0 72.9	40.0 - 135 40.0 - 135			D F	Presence of Dipheny	l Ethers		
100 0000		10.0 100			DNQ A	Analyte concentration	is below c	alibration ra	nge
13C-2,3,7,8-TCDF	76.5	40.0 - 135			E	Analyte concentration	n is above o	alibration ra	nge
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	83.4 86.6	40.0 - 135 40.0 - 135			F A	Analyte confirmation	on seconda	ary column	
13C-1,2,3,4,7,8-HxCDF	73.6	40.0 - 135			J	Analyte concentration	n is below c	alibration ra	nge
13C-1,2,3,6,7,8-HxCDF	76.5	40.0 - 135			l M r	Maximum possible co	oncentration	1	
13C-2,3,4,6,7,8-HxCDF	74.7	40.0 - 135				Analyte Not Detected			اد
13C-1,2,3,7,8,9-HxCDF	74.7	40.0 - 135				Not Provided	at Detection	III LIIIII LEV	51
13C-1,2,3,4,6,7,8-HpCDF	79.1	40.0 - 135					148	07 05/5	cu.
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF	75.5 71.8	40.0 - 135 40.0 - 135				Pre-filtered through a			filter
130-0051	7 1.0	40.0 - 100				Sample acceptance of	criteria not r	net	
						Matrix interferences			
Cleanup Surrogate					* F	Result taken from dilu	ution or rein	jection	
37CI-2,3,7,8-TCDD	78.7	50.0 - 150							

Reviewed By: Date: 4/19/2019

FAL ID: 12312-003-SA Client ID: AMW-3-040119 Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: 04-03-2019 Amount: 0.485 L

ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L

Acquired: 04-18-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	. Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	2.36		_	0.214	ı			
1,2,3,7,8-PeCDD	ND	3.39		-	0.387				
1,2,3,4,7,8-HxCDD	ND	4.84		-	0.447	•			
1,2,3,6,7,8-HxCDD	ND	4.56		-	0.477		ND	2.36	
1,2,3,7,8,9-HxCDD	ND	4.42		-	0.444		ND	3.39	
1,2,3,4,6,7,8-HpCDD	ND	5.08		-	0.572		ND	4.84	
OCDD	ND	5.52		-	1.12	! Total HpCDD	ND	5.08	
2,3,7,8-TCDF	ND	2.18		-	0.206	;			
1,2,3,7,8-PeCDF	ND	2.84		-	0.326				
2,3,4,7,8-PeCDF	ND	2.78		-	0.341				
1,2,3,4,7,8-HxCDF	ND	2.10		-	0.317				
1,2,3,6,7,8-HxCDF	ND ND	2.11 2.19		-	0.330 0.350				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND	2.19		- -	0.399		ND	2.18	
1,2,3,4,6,7,8-HpCDF	ND ND	2.00		-	0.301		ND	2.84	
1,2,3,4,7,8,9-HpCDF	ND	2.68		-	0.445		ND	2.87	
OCDF	ND	5.54		-	0.717		ND	2.68	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	81.9	40.0 - 135				Isotopic Labeled Sta signal to noise ratio		de QC range	but
13C-1,2,3,7,8-PeCDD	100	40.0 - 135				· ·			
13C-1,2,3,4,7,8-HxCDD	79.4	40.0 - 135			B	Analyte is present in	Method Bla	ank	
13C-1,2,3,6,7,8-HxCDD	81.3	40.0 - 135			С	Chemical Interference	ce		
13C-1,2,3,4,6,7,8-HpCDD	84.6	40.0 - 135			D	Presence of Dipheny	/I Ethers		
13C-OCDD	83.8	40.0 - 135			DNQ	Analyte concentration	n is below o	alibration ra	nge
13C-2,3,7,8-TCDF	86.4	40.0 - 135			E	Analyte concentration	n is above o	calibration ra	inge
13C-1,2,3,7,8-PeCDF	88.3	40.0 - 135			l F	Analyte confirmation	on seconda	arv column	
13C-2,3,4,7,8-PeCDF	96.3	40.0 - 135				Analyte concentration		•	nge
13C-1,2,3,4,7,8-HxCDF	75.7	40.0 - 135				•			rige
13C-1,2,3,6,7,8-HxCDF	81.8 78.5	40.0 - 135 40.0 - 135				Maximum possible of			
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	76.5 81.4	40.0 - 135			ND	Analyte Not Detecte	d at Detection	on Limit Leve	el
13C-1,2,3,4,6,7,8-HpCDF	83.3	40.0 - 135			NP	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	82.5	40.0 - 135			lρ	Pre-filtered through	a Whatman	0 7um GF/F	filter
13C-OCDF	79.1	40.0 - 135				Sample acceptance			
					_	Matrix interferences			
Cleanup Surrogate					*	Result taken from di	lution or reir	njection	
37Cl-2,3,7,8-TCDD	81.7	50.0 - 150							· · · · · · ·

Date: 4/19/2019

Reviewed By: Date: 4/19/2019

FAL ID: 12312-004-SA Client ID: AMW-4-040119 Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: 04-03-2019 Amount: 0.472 L

ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L

Acquired: 04-18-2019 2005 WHO TEQ: 0.00336

Compound	Cond	: DL	Qual	2005 WHO Tox	MDI	Compound	Conc	DL	Qual
Compound	Conc	, DL	Quai	VVIIO TOX	וטוטו	Compound	COLIC	DL	Quai
2,3,7,8-TCDD	NE	1.98		-	0.214	4			
1,2,3,7,8-PeCDD	NE			-	0.387	7			
1,2,3,4,7,8-HxCDD	NE	3.82		-	0.447	7			
1,2,3,6,7,8-HxCDD	NE	3.86		-	0.47	7 Total TCDD	ND	1.98	
1,2,3,7,8,9-HxCDD	NE	3.61		-	0.444	4 Total PeCDD	ND	3.37	
1,2,3,4,6,7,8-HpCDD	NE	3.81		-	0.572		ND	3.86	
OCDD	11.2	-	J	0.00336	1.12	2 Total HpCDD	ND	3.81	
2,3,7,8-TCDF	NE	2.10		-	0.206	6			
1,2,3,7,8-PeCDF	NE	2.50		-	0.326				
2,3,4,7,8-PeCDF	NE			-	0.34				
1,2,3,4,7,8-HxCDF	NE			-	0.317				
1,2,3,6,7,8-HxCDF	NE			-	0.330				
2,3,4,6,7,8-HxCDF	NE			-	0.350				
1,2,3,7,8,9-HxCDF	NE			-	0.399		ND	2.10	
1,2,3,4,6,7,8-HpCDF	NE			-	0.30		ND	2.50	
1,2,3,4,7,8,9-HpCDF	NE			-	0.44		ND	2.44	
OCDF	NE	4.60		-	0.717	7 Total HpCDF	ND	2.55	
Internal Standards	% Rec	QC Limits	Qual						
milernal Standards	70 Rec	QC LIIIIIS	Quai						
13C-2,3,7,8-TCDD	90.0	40.0 - 135			lΑ	Isotopic Labeled Sta		de QC range	e but
13C-1,2,3,7,8-PeCDD	111	40.0 - 135				signal to noise ratio			
13C-1,2,3,4,7,8-HxCDD	86.4	40.0 - 135			В	Analyte is present in	Method Bla	ınk	
13C-1,2,3,6,7,8-HxCDD	89.3	40.0 - 135			l c	Chemical Interference	ce		
13C-1,2,3,4,6,7,8-HpCDD	92.7	40.0 - 135			D	Presence of Diphen	/l Ethers		
13C-OCDD	90.9	40.0 - 135				Analyte concentration	•	alibration ra	nae
13C-2,3,7,8-TCDF	93.1	40.0 - 135				Analyte concentration			•
13C-1,2,3,7,8-PeCDF	101	40.0 - 135				•			inge
13C-2,3,4,7,8-PeCDF	105	40.0 - 135			F	Analyte confirmation		,	
13C-1,2,3,4,7,8-HxCDF	81.5	40.0 - 135			J	Analyte concentration	n is below o	alibration ra	nge
13C-1,2,3,6,7,8-HxCDF	88.1	40.0 - 135			Ιм	Maximum possible of	concentration	า	
13C-2,3,4,6,7,8-HxCDF	86.6	40.0 - 135				Analyte Not Detecte			al .
13C-1,2,3,7,8,9-HxCDF	85.8	40.0 - 135				•	u at Detection	on Limit Levi	eı
13C-1,2,3,4,6,7,8-HpCDF	93.1	40.0 - 135			NP	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	91.4	40.0 - 135			P	Pre-filtered through	a Whatman	0.7um GF/F	filter
13C-OCDF	85.8	40.0 - 135			s	Sample acceptance	criteria not r	met	
					l x	Matrix interferences	ontona not i	1100	
Cleanup Surrogate					*	Result taken from di	lution or rein	jection	
2701 2 2 7 0 7000	87.6	50.0 - 150			1				
37Cl-2,3,7,8-TCDD	01.0	50.0 - 150							

Date: 4/19/2019

Reviewed By: Date: 4/19/2019

FAL ID: 12312-005-SA Client ID: AMW-5-040119 Matrix: Aqueous Batch No: X4871

Date Extracted: 04-16-2019 Date Received: 04-03-2019 Amount: 0.485 L

ICal: PCDDFAL3-3-11-19 GC Column: DB5MS Units: pg/L

Acquired: 04-18-2019 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	1.98 3.05 4.00 4.10 3.81 3.32 6.88		- - - - - - -	0.214 0.387 0.447 0.477 0.444 0.572	Total TCDD Total PeCDD Total HxCDD	ND ND ND ND	1.98 3.05 4.10 3.32
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	2.10 2.25 2.19 1.67 1.70 1.72 2.34 1.56 2.14 4.77	- - - - - - - -		0.206 0.326 0.341 0.317 0.330 0.350 0.399 0.301 0.445 0.717	Total TCDF Total PeCDF Total HxCDF	ND ND ND ND	2.10 2.25 2.34 2.14
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	87.1 107 82.2 88.7 92.6 91.4 90.0 100 103 79.4 85.7 84.4	QC Limits 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135	Qual		B C D DNQ E F J	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference Presence of Dipheny Analyte concentratio Analyte concentratio Analyte confirmation Analyte concentratio Maximum possible of Analyte Not Detected	s >10:1 Method Blace Al Ethers In is below on is above on seconda In is below on oncentration	calibration range calibration range ary column calibration range n
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF Cleanup Surrogate 37Cl-2,3,7,8-TCDD	92.1 90.5	40.0 - 135 40.0 - 135 40.0 - 135 40.0 - 135			P S X	Not Provided Pre-filtered through a Sample acceptance Matrix interferences Result taken from dil	criteria not i	met

Date: 4/19/2019

Reviewed By: Date: 4/19/2019

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

ſ							SUBCONTRACTER					Page # of							
Send Report To N	Send Report To Michael Erdahl								trontier.							TURNAROUND TIME			
_		ın and Bruya	, Inc		PROJECT NAME/NO. PO#					Standard (2-Weeks) 3weks									
1 5		th Ave W	-		904021 B-196						Rush charges authorized by:								
					REM	IARKS	,	7:0	- 707		To Pac	Vace					LE DISPOS er 30 days	SAL	
City, State, ZIP_S	<u>eattle,</u>	WA 98119_		y-,————————————————————————————————————		Pl	ease E	mail F	Results	3					□ Return	sam	ıples		
Phone #(206) 285	5-8282	Fax #(2	06) 283-5044												□ Will ca	III W1	th instructi	ons	
•	T									ANAI	LYSES	S RE	QUES	TED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	crix	# of jars	6240 Dioxins/Furans	EPH	VPH	,				, v			No	otes	
AMW-1-040119		4/1/19	0951	water	'		λ			•									
AMW-2-046119			1100	1		L	¥												
AMW-3-040119		/	1300	1		- 1	У										1331		
AMW-4-640119			1201			l	X	-						<u> </u>					
AMW-5-040119		y.	0640	8		- (×												
				1			-												
Friedman & Bruya	, Inc.		SIGNATURE		4				r nan	1E				OMPA			DATE	TIME	
3012 16th Avenue West Relinquished by				Mich	nael Er	dahl				Fr	1eama	ın & B	ruya		4/2/19	0833			
Seattle, WA 98119-2029 Received by:			,	Kathy Zipp Fr				onti	ert	Tralyt	1/4/	413/19	152						
Ph. (206) 285-8282 Relinquished by							_										000010 of		
Fax (206) 283-5044 Received by:																	00001001		

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 12312

Client:	Friedman & Bruya, Inc.
Client Project ID:	904021
Date Received:	04/03/2019
Time Received:	03:23 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R-3

Method of Delivery:	Fed-Ex
Tracking Number:	813795597810
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9
Anomalies or additional comments:	

Address_ City, State, ZIP_ Company HS pect Report To Carla Brock & Ali Cachrone

SAMPLE CHAIN OF CUSTODY

**? 3.53 1.

Email SAMPLERS (signature) REMARKS PROJECT NAME Shelton C Street Landfill 150074 Accti PO# N N 61-10-19 Dispose after 30 days

Archive Samples Rush charges authorized by: XStandard Turnaround SAMPLE DISPOSAL TURNAROUND TIME

٠	ם	Š	రు	استر	Γ		T		T	T		. 1	- 1	<u> </u>			7
 		<u>ئة</u>		Friedman & Bruya, Inc. R				TORREL BY			FINAL LOYOLD	11040-1-MMH	HMW-5-040115	MMN-2-040II	HWW-1-040119	Sample ID	
meren by.	C.	9/	Received by:	Relinquished by:			0000	154/12/1/2			105	104	2 8) Q		Lab ID	
	F	America &		SIGNATURE	X11 / T37 T37 Y7			·			4				0/A-0/4/1/19	Date Sampled	
Andrews of Original Inc. or as is a second			1/2						·····		0840	701	, W	100	(282)	Time Sampled	
<u>5</u>	Floor	14	>		THE PERSON NAMED IN COLUMN TO SERVICE AND				-		<				Markey 15	Sample Type	
BISHPI	Amadia	Amelia Cates	MAIN TO THE	PRINT NAME		<u> </u>	7	5			3	- C	5	N N	2	# of Jars	
1	_	0	K	NIT				_								TPH-HCID	
TAS	Dat	2/2	太	S E				_			7	×	<u> </u>	×	×	TPH-Diesel	
R	\$	5	6	_		_		_								TPH-Gasoline	
4			\	-												BTEX by 8021B	
1											×	×	<u> </u>	*	×	VOCs by 8260C	ANALYSES
																SVOCs by 8270D	3
4	8	A	TE	,							×	×	X.	×	×	PAHs 8270D SIM	S
8	Dec	0-	F	MO		San					×	×	×	×	×	Metals (Tot. Dis)	RECI
	4-	4	7	COMPANY		Samples					×	×	×	×	×		Į
				Y			T				×	×	×	У.	×	Dioxins/furan	Ź
	i.					received	 	\top			×	×	×,	Х	Χ	Alkalinity	
	<u> </u>	£.	T.			ed a		_			×	×	× ×	<i>/</i>	×	Nitrite Nitrate Sulfate Kulfide	
	***		1/4/	DATE		at .			100		×	×	X	×		Diss. Org. Carbon	
ا مـ	,S	•	2			2					×	Х	Х	×	×	chloride	
3	7	1636	1630	TI		ကိ			,		×	×	X	×	×	Ammônia	
	グ	Ø	O.	TIME							\times	X	×	×	$\overline{\times}$	Cyanide	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 12, 2019

Carla Brock, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Brock:

Included are the results from the testing of material submitted on July 2, 2019 from the Shelton C Street Landfill 150074, F&BI 907023 project. There are 50 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Ali Cochrane

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 2, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C Street Landfill 150074, F&BI 907023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907023 -01	AMW-1-070119
907023 -02	AMW-2-070119
907023 -03	AMW-3-070119
907023 -04	AMW-4-070119
907023 -05	AMW-5-070119
907023 -06	Trip Blank

The samples were sent to Fremont Analytical for nitrate, nitrite, sulfate, sulfide, alkalinity, chloride, dissolved organic carbon, ammonia, and cyanide analyses. The report is enclosed. In addition, the samples were sent to Frontier Analytical for dioxin and furan analysis. The report will be forwarded upon receipt.

1,1,1-Trichloroethane in the 8260C laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the samples, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

Date Extracted: 07/03/19 Date Analyzed: 07/03/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-134)
AMW-1-070119 907023-01	65 x	<250	97
AMW-2-070119 907023-02	55 x	<250	92
AMW-3-070119 907023-03	<50	<250	105
AMW-4-070119 907023-04	100 x	440	103
AMW-5-070119 907023-05	<50	<250	117
Method Blank 09-1605 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-1-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-01 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-01 x10.050

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium24.3Magnesium8.65Hardness (as CaCO3)96.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-2-070119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L\ (ppm) \end{array}$

Calcium16.3Magnesium7.10Hardness (as CaCO3)69.9

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-3-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-03 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-03 x10.054

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration mg/L (ppm)

Calcium48.5Magnesium29.7Hardness (as CaCO3)243

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-4-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium 43.4 Magnesium 13.4 Hardness (as CaCO3) 164

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: AMW-5-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-05 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-05 x10.056

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium 24.5 Magnesium 8.54 Hardness (as CaCO3) 96.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8 and SM 2340B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium <0.1 Magnesium <0.05 Hardness (as CaCO3) <0.50

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-1-070119	Client:	Aspect Consulting, LLC
Date Received:	07/02/19	Project:	Shelton C Street Landfill 150074

Date Received: 07/02/19 Project: Lab ID: Date Extracted: 07/05/19 907023-01 Date Analyzed: 07/05/19 Data File: 907023-01.096 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.06
Cadmium	<1
Chromium	<1
Copper	<5
Iron	114
Lead	<1
Manganese	24.8
Mercury	<1
Nickel	1.63
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 07/05/19 907023-02 Date Analyzed: 07/05/19 Data File: 907023-02.097 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

	~
	Concentration
Analyte:	ug/L (ppb)
Arsenic	< 0.2
Barium	2.14
Cadmium	<1
Chromium	<1
Copper	<5
Iron	127
Lead	<1
Manganese	425
Mercury	<1
Nickel	1.07
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: AMW-3-070119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-03 07/05/19 Date Analyzed: 07/05/19 Data File: 907023-03.098 Matrix: ICPMS2Water Instrument: Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	5.26
Cadmium	<1
Chromium	<1
Copper	<5
Iron	220
Lead	<1
Manganese	661
Mercury	<1
Nickel	2.38
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	AMW-4-070119	Client:	Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 07/05/19 907023-04 Date Analyzed: 07/05/19 Data File: 907023-04.099 Matrix: Water Instrument: ICPMS2Units: ug/L (ppb) Operator: SP

	Concentration
Analyte:	ug/L (ppb)

Arsenic	0.236
Barium	30.8
Cadmium	<1
Chromium	1.14
Copper	<5
Iron	196
Lead	<1
Manganese	78.0
Mercury	<1
Nickel	2.30
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: AMW-5-070119 Clie	ent: Aspect Consulting, LLC
------------------------------	-----------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 07/05/19 907023-05 Date Analyzed: 07/05/19 Data File: 907023-05.102 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.11
Cadmium	<1
Chromium	<1
Copper	<5
Iron	115
Lead	<1
Manganese	24.9
Mercury	<1
Nickel	1.63
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Lab ID: 07/05/19 Date Extracted: I9-408 mb Date Analyzed: 07/05/19 Data File: I9-408 mb.092 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte:	Concentration ug/L (ppb)
Arsenic	<0.2
D .	

Barium <1 Cadmium <1 Chromium <1 Copper <5 Iron < 50 Lead <1 Manganese <1 Mercury <1 Nickel <1 Selenium <1 Silver <1 Zinc <5

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-1-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-01 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-01 x10.057

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{ccc} & & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium 23.8 Magnesium 8.36 Hardness (as CaCO3) 93.9

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-2-070119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-02 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-02 x10.059

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{mg/L (ppm)} & \text{Operator:} & \text{SP} \end{array}$

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L\ (ppm) \end{array}$

Calcium 15.7 Magnesium 6.72 Hardness (as CaCO3) 66.9

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-3-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-03 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-03 x10.062

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium49.5Magnesium30.3Hardness (as CaCO3)248

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-4-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Date Extracted: 07/02/19 Lab ID: 907023-04 x10
Date Analyzed: 07/03/19 Data File: 907023-04 x10.063

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

 $\begin{array}{ccc} & & & Concentration \\ Analyte: & & mg/L \ (ppm) \end{array}$

Calcium 43.7 Magnesium 13.8 Hardness (as CaCO3) 166

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: AMW-5-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-05 x10

 Date Analyzed:
 07/03/19
 Data File:
 907023-05 x10.064

Matrix: Water Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium24.2Magnesium8.42Hardness (as CaCO3)95.1

ENVIRONMENTAL CHEMISTS

Analysis For Hardness By EPA Method 200.8 and SM 2340B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

Date Extracted: 07/02/19 Lab ID: I9-404 mb
Date Analyzed: 07/03/19 Data File: I9-404 mb.048
Matrix: Water Instrument: ICPMS2

Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm)

Calcium<0.05</th>Magnesium<0.05</td>Hardness (as CaCO3)<0.35</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-1-070119	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-01 07/02/19 Date Analyzed: 07/02/19 Data File: 907023-01.042 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.79
Cadmium	<1
Chromium	<1
Copper	<5
Iron	348
Lead	<1
Manganese	46.5
Mercury	<1
Nickel	2.22
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-2-070119	Client:	Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-02 07/02/19 Date Analyzed: 07/02/19 Data File: 907023-02.043 Matrix: Water Instrument: ICPMS2Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.04
Cadmium	<1
Chromium	4.06
Copper	<5
Iron	463
Lead	<1
Manganese	759
Mercury	<1
Nickel	5.43
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: AMW-3-070119	Client:	Aspect Consulting, LLC
-------------------------	---------	------------------------

Shelton C Street Landfill 150074 Date Received: 07/02/19

Project: Lab ID: Date Extracted: 07/02/19 907023-03 Date Analyzed: 07/02/19 Data File: 907023-03.044 Matrix: Instrument: Water ICPMS2Units: ug/L (ppb) Operator: SP

	Concentration
Analyte:	ug/L (ppb)

Arsenic	0.207
Barium	12.1
Cadmium	<1
Chromium	<1
Copper	<5
Iron	486
Lead	<1
Manganese	2,380 ve
Mercury	<1
Nickel	3.65
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: AMW-3-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Manganese 2,350

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	AMW-4-070119	Client:	Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-04 07/02/19 Date Analyzed: 07/02/19 Data File: 907023-04.045 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.718
Barium	55.2
Cadmium	<1
Chromium	9.30
Copper	10.4
Iron	5,770 ve
Lead	<1
Manganese	176
Mercury	<1
Nickel	9.00
Selenium	<1
Silver	<1
Zinc	9.83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: AMW-4-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-04 x10

 Date Analyzed:
 07/02/19
 Data File:
 907023-04 x10.051

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Iron 5,630

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: Shelton C Street Landfill 150074 07/02/19

Project: Lab ID: Date Extracted: 907023-05 07/02/19 Date Analyzed: 07/02/19 Data File: 907023-05.046 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	4.91
Cadmium	<1
Chromium	<1
Copper	<5
Iron	339
Lead	<1
Manganese	41.9
Mercury	<1
Nickel	2.22
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Shelton C Street Landfill 150074

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Barium	<1
Cadmium	<1
Chromium	<1
Copper	<5
Iron	< 50
Lead	<1
Manganese	<1
Mercury	<1
Nickel	<1
Selenium	<1
Silver	<1
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-1-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074 Lab ID: Date Extracted: 07/02/19 907023-01 1/0.5 Date Analyzed: 07/02/19 Data File: 070209.DMatrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: ya

< 0.01

< 0.01

< 0.01

< 0.01

Concentration Compounds: ug/L (ppb) < 0.1 Naphthalene Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 < 0.01 Chrysene Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-2-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

 Date Received:
 07/02/19
 Project:
 Shelton C Street Landfill 150074

 Date Extracted:
 07/02/19
 Lab ID:
 907023-02 1/0.5

Date Analyzed: 07/02/19 Data File: 07/0210.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: ya

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-3-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074 Lab ID: Date Extracted: 07/02/19 907023-03 1/0.5 Date Analyzed: 07/02/19 Data File: 070211.DMatrix: Instrument: Water GCMS6

Units: ug/L (ppb) Operator: ya

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	191	31	160
Benzo(a)anthracene-d12	142	25	165

Concentration Compounds: ug/L (ppb) Naphthalene 0.15Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-4-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074
Date Extracted: 07/02/19 Lab ID: 907023-04 1/0.5

Date Analyzed: 07/02/19 Data File: 07/0212.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: ya

Concentration Compounds: ug/L (ppb) Naphthalene <0.1 Acenaphthylene <0.01

Acenaphthylene Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 < 0.01 Chrysene Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AMW-5-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19Project: Shelton C Street Landfill 150074 Lab ID: 907023-05 1/0.5 Date Extracted: 07/02/19 Date Analyzed: 07/02/19 Data File: 070213.DMatrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: ya

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 07/02/19 09-1573 mb 1/0.5 Date Analyzed: 07/02/19 Data File: 070207.DInstrument: Matrix: Water GCMS6 Units: ug/L (ppb) Operator: ya

< 0.01

Benzo(a)anthracene-d12 Concentration Compounds: ug/L (ppb) < 0.1 Naphthalene Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01

Pyrene < 0.01 Benz(a)anthracene < 0.01 < 0.01 Chrysene Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-01 07/02/19 Date Analyzed: 07/02/19 Data File: 070213.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	93	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<2
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-2-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-02 07/02/19 Date Analyzed: 07/02/19 Data File: 070214.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	95	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AMW-3-070119 Client: Aspect Consulting, LLC

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 07/02/19 907023-03 Date Analyzed: 07/02/19 Data File: $070215.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	94	50	150
4-Bromofluorobenzene	94	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-4-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-04 07/02/19 Date Analyzed: 07/02/19 Data File: 070216.DMatrix: GCMS9 Water Instrument: Units: ug/L (ppb) MS/AEN Operator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	94	50	150
4-Bromofluorobenzene	94	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AMW-5-070119	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Date Extracted:07/02/19Lab ID:907023-05Date Analyzed:07/02/19Data File:070217.DMatrix:WaterInstrument:GCMS9Units:ug/L (ppb)Operator:MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	96	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
-------------------	------------	---------	------------------------

Date Received: 07/02/19 Project: Shelton C Street Landfill 150074

Lab ID: Date Extracted: 907023-06 07/02/19 Date Analyzed: 07/02/19 Data File: 070212.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	94	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	0.29
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Shelton C Street Landfill 150074

07/02/19 Lab ID: Date Extracted: 09-1509 mb Date Analyzed: 07/02/19 Data File: 070211.DMatrix: Water Instrument: GCMS9 Units: MS/AEN ug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	94	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.2
Bromomethane	<1	1,2-Dibromoethane (EDB)	< 0.2
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	< 0.2
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.2	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.2	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.2	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.2
trans-1,3-Dichloropropene	< 0.2	Naphthalene	<1
1,1,2-Trichloroethane	< 0.2	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	116	58-134	7

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8 AND SM 2340B

Laboratory Code: 907023-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	24.3	138 b	113 b	70-130	20 b
Magnesium	mg/L (ppm)	1.0	8.65	59 b	57 b	70-130	3 b

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Calcium	mg/L (ppm)	1.0	99	85-115
Magnesium	mg/L (ppm)	1.0	99	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 907023-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	< 0.2	99	101	75-125	2
Barium	ug/L (ppb)	50	4.11	95	96	75 - 125	1
Cadmium	ug/L (ppb)	5	<1	93	93	75 - 125	0
Chromium	ug/L (ppb)	20	<1	100	99	75 - 125	1
Copper	ug/L (ppb)	20	<5	92	88	75 - 125	4
Iron	ug/L (ppb)	100	115	99	99	75 - 125	0
Lead	ug/L (ppb)	10	<1	100	100	75 - 125	0
Manganese	ug/L (ppb)	20	24.9	113	111	75 - 125	2
Mercury	ug/L (ppb)	5	<1	101	102	75 - 125	1
Nickel	ug/L (ppb)	20	1.63	95	94	75 - 125	1
Selenium	ug/L (ppb)	5	<1	99	101	75 - 125	2
Silver	ug/L (ppb)	5	<1	91	92	75 - 125	1
Zinc	ug/L (ppb)	50	<5	94	91	75 - 125	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Barium	ug/L (ppb)	50	93	80-120
Cadmium	ug/L (ppb)	5	94	80-120
Chromium	ug/L (ppb)	20	97	80-120
Copper	ug/L (ppb)	20	93	80-120
Iron	ug/L (ppb)	100	97	80-120
Lead	ug/L (ppb)	10	102	80-120
Manganese	ug/L (ppb)	20	93	80-120
Mercury	ug/L (ppb)	5	101	80-120
Nickel	ug/L (ppb)	20	95	80-120
Selenium	ug/L (ppb)	5	97	80-120
Silver	ug/L (ppb)	5	96	80-120
Zinc	ug/L (ppb)	50	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8 AND SM 2340B

Laboratory Code: 907023-02 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Calcium	mg/L (ppm)	1.0	15.7	30 b	36 b	70-130	18 b
Magnesium	mg/L (ppm)	1.0	6.72	64 b	73 b	70-130	13 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Calcium	mg/L (ppm)	1.0	101	85-115
Magnesium	mg/L (ppm)	1.0	102	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906532-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	1.45	101	102	75-125	1
Barium	ug/L (ppb)	50	129	101	104	75 - 125	3
Cadmium	ug/L (ppb)	5	<1	103	103	75 - 125	0
Chromium	ug/L (ppb)	20	1.56	99	101	75 - 125	2
Copper	ug/L (ppb)	20	1,100 ve	0 b	0 b	75 - 125	0 b
Iron	ug/L (ppb)	100	775 ve	78 b	144 b	75 - 125	59 b
Lead	ug/L (ppb)	10	7.69	95	96	75 - 125	1
Manganese	ug/L (ppb)	20	94.8	84	90	75 - 125	7
Mercury	ug/L (ppb)	5	<1	94	97	75 - 125	3
Nickel	ug/L (ppb)	20	3.39	99	99	75 - 125	0
Selenium	ug/L (ppb)	5	<1	105	108	75 - 125	3
Silver	ug/L (ppb)	5	<1	98	98	75 - 125	0
Zinc	ug/L (ppb)	50	2,090 ve	0 b	12 b	75 - 125	200 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	100	80-120
Barium	ug/L (ppb)	50	100	80-120
Cadmium	ug/L (ppb)	5	101	80-120
Chromium	ug/L (ppb)	20	104	80-120
Copper	ug/L (ppb)	20	101	80-120
Iron	ug/L (ppb)	100	106	80-120
Lead	ug/L (ppb)	10	104	80-120
Manganese	ug/L (ppb)	20	103	80-120
Mercury	ug/L (ppb)	5	99	80-120
Nickel	ug/L (ppb)	20	102	80-120
Selenium	ug/L (ppb)	5	102	80-120
Silver	ug/L (ppb)	5	103	80-120
Zinc	ug/L (ppb)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	75	78	57-114	4
Acenaphthylene	ug/L (ppb)	1	79	83	65-119	5
Acenaphthene	ug/L (ppb)	1	79	82	66-118	4
Fluorene	ug/L (ppb)	1	77	81	64 - 125	5
Phenanthrene	ug/L (ppb)	1	78	85	67-120	9
Anthracene	ug/L (ppb)	1	82	89	65 - 122	8
Fluoranthene	ug/L (ppb)	1	73	81	65 - 127	10
Pyrene	ug/L (ppb)	1	81	83	62-130	2
Benz(a)anthracene	ug/L (ppb)	1	80	87	60-118	8
Chrysene	ug/L (ppb)	1	86	89	66 - 125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	85	84	55-135	1
Benzo(k)fluoranthene	ug/L (ppb)	1	82	92	62 - 125	11
Benzo(a)pyrene	ug/L (ppb)	1	77	82	58-127	6
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	76	80	36 - 142	5
Dibenz(a,h)anthracene	ug/L (ppb)	1	77	82	37-133	6
Benzo(g,h,i)perylene	ug/L (ppb)	1	77	80	34 - 135	4

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 907023-01 (Matrix Spike)

Laboratory Code: 907025-01 (Ma	itrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	91	55-137
Chloromethane	ug/L (ppb)	50	<10	95	57-129
Vinyl chloride	ug/L (ppb)	50	< 0.2	99	61-139
Bromomethane	ug/L (ppb)	50	<1	106	20-265
Chloroethane	ug/L (ppb)	50	<1	105	55-149
Trichlorofluoromethane Acetone	ug/L (ppb)	50	<1 <50	106 60	65-137 48-149
1,1-Dichloroethene	ug/L (ppb)	250 50	<50 <1	114	48-149 71-123
Hexane	ug/L (ppb) ug/L (ppb)	50 50	<1	84	44-139
Methylene chloride	ug/L (ppb)	50	<5	92	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	97	68-125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	112	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	109	79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	98	48-157
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	63-126
Chloroform	ug/L (ppb)	50	<1	104	77-117
2-Butanone (MEK)	ug/L (ppb)	250	<10	78	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50 50	<1 <1	112 103	75-121 67-121
1,1-Dichloropropene Carbon tetrachloride	ug/L (ppb) ug/L (ppb)	50 50	<1	112	70-132
Benzene	ug/L (ppb) ug/L (ppb)	50 50	< 0.35	99	70-132 75-114
Trichloroethene	ug/L (ppb)	50	<1	99	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	100	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	111	78-117
Dibromomethane	ug/L (ppb)	50	<1	102	73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	107	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	110	76-120
Toluene	ug/L (ppb)	50	<1	103	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	114	75-122
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	<1 <10	102 98	81-116 74-127
1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	103	80-113
Tetrachloroethene	ug/L (ppb)	50 50	<1	103	40-155
Dibromochloromethane	ug/L (ppb)	50	<1	125	69-129
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	105	79-120
Chlorobenzene	ug/L (ppb)	50	<1	102	75-115
Ethylbenzene	ug/L (ppb)	50	<1	103	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	117	76-130
m,p-Xylene	ug/L (ppb)	100	<2	105	63-128
o-Xylene	ug/L (ppb)	50	<1	104	64-129
Styrene Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	105 103	56-142 $74-122$
Bromoform	ug/L (ppb)	50 50	<1	116	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	101	65-129
Bromobenzene	ug/L (ppb)	50	<1	101	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	104	60-138
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	109	77-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	101	62-125
2-Chlorotoluene	ug/L (ppb)	50	<1	102	40-159
4-Chlorotoluene	ug/L (ppb)	50	<1	101	76-122
tert-Butylbenzene	ug/L (ppb)	50	<1	104	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	103	59-136
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb)	50 50	<1 <1	102 102	69-127 64-132
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	103	77-113
1,4-Dichlorobenzene	ug/L (ppb)	50 50	<1	98	77-113 75-110
1.2-Dichlorobenzene	ug/L (ppb)	50 50	<1	103	70-110
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	115	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	100	66-123
Hexachlorobutadiene	ug/L (ppb)	50	<1	94	53-136
Naphthalene	ug/L (ppb)	50	<1	104	60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	59-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/12/19 Date Received: 07/02/19

Project: Shelton C Street Landfill 150074, F&BI 907023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Education Court Education Con	rer or a diripro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	93	94	50-157	1
Chloromethane	ug/L (ppb)	50	99	100	62-130	1
Vinyl chloride	ug/L (ppb)	50	99	101	70-128	2
Bromomethane	ug/L (ppb)	50	107	108	60-143	1
Chloroethane	ug/L (ppb)	50	104	106	66-149	$\frac{2}{2}$
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	107 63	109 62	65-138 $44-145$	$\frac{2}{2}$
1,1-Dichloroethene	ug/L (ppb)	50	116	119	72-121	3
Hexane	ug/L (ppb)	50	89	88	51-153	1
Methylene chloride	ug/L (ppb)	50	97	99	63-132	$\overset{1}{2}$
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	98	102	70-122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	113	114	76-118	1
1,1-Dichloroethane	ug/L (ppb)	50	109	112	77-119	3
2,2-Dichloropropane	ug/L (ppb)	50	110	114	62-141	4
cis-1,2-Dichloroethene Chloroform	ug/L (ppb)	50 50	100 105	$\frac{102}{107}$	76-119 78-117	$\frac{2}{2}$
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	250	77	75	48-150	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50 50	98	98	75-116	0
1.1.1-Trichloroethane	ug/L (ppb)	50	115	117 vo	80-116	2
1,1-Dichloropropene	ug/L (ppb)	50	103	103	78-119	0
Carbon tetrachloride	ug/L (ppb)	50	117	119	72-128	2
Benzene	ug/L (ppb)	50	98	99	75-116	1
Trichloroethene	ug/L (ppb)	50	100	100	72-119	0
1,2-Dichloropropane	ug/L (ppb)	50	99	98	79-121	1
Bromodichloromethane	ug/L (ppb)	50	113	111	76-120	2
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	101 106	100 102	79-121 54-153	$\frac{1}{4}$
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	111	102	76-128	3
Toluene	ug/L (ppb)	50	102	102	79-115	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	116	111	76-128	4
1,1,2-Trichloroethane	ug/L (ppb)	50	100	98	78-120	2
2-Hexanone	ug/L (ppb)	250	96	89	49-147	8
1,3-Dichloropropane	ug/L (ppb)	50	102	98	81-111	4
Tetrachloroethene	ug/L (ppb)	50	101	101	78-109	0
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50 50	130 103	127 99	63-140 82-118	$\frac{2}{4}$
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	103	100	80-113	1
Ethylbenzene	ug/L (ppb)	50	102	101	83-111	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	120	123	76-125	2
m,p-Xylene	ug/L (ppb)	100	105	103	81-112	2
o-Xylene	ug/L (ppb)	50	104	104	81-117	0
Styrene	ug/L (ppb)	50	105	103	83-121	2
Isopropylbenzene	ug/L (ppb)	50	104	105	78-118	1
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	123 102	118 102	40-161 81-115	4
Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	102	100	80-113	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	105	107	83-117	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	108	108	79-118	0
1,2,3-Trichloropropane	ug/L (ppb)	50	100	99	74-116	1
2-Chlorotoluene	ug/L (ppb)	50	101	102	79-112	1
4-Chlorotoluene	ug/L (ppb)	50	101	100	80-116	1
tert-Butylbenzene	ug/L (ppb)	50	104	107	81-119	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	104	105	81-121	1
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	104 103	106 105	83-123 81-117	$\frac{2}{2}$
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	103	103	80-115	0
1,4-Dichlorobenzene	ug/L (ppb)	50 50	98	97	77-112	1
1,2-Dichlorobenzene	ug/L (ppb)	50	104	105	79-115	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	119	123	62-133	3
1,2,4-Trichlorobenzene	ug/L (ppb)	50	102	107	75-119	5
Hexachlorobutadiene	ug/L (ppb)	50	99	101	70-116	2
Naphthalene	ug/L (ppb)	50	106	111	72-131	5
1,2,3-Trichlorobenzene	ug/L (ppb)	50	102	110	74-122	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 907023

Work Order Number: 1907028

July 10, 2019

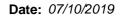
Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 7/2/2019 for the analyses presented in the following report.

Ammonia by SM 4500 NH3G
Cyanide by SM 4500-CN C, E
Dissolved Metals by EPA Method 200.8
Dissolved Organic Carbon by SM 5310C
Ion Chromatography by EPA Method 300.0
Sulfide by SM 4500-S2-F
Total Metals by EPA Method 200.8
Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 907023 **Work Order:** 1907028

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1907028-001	AMW-1-070119	07/01/2019 12:01 PM	07/02/2019 10:13 AM
1907028-002	AMW-2-070119	07/01/2019 2:20 PM	07/02/2019 10:13 AM
1907028-003	AMW-3-070119	07/01/2019 4:00 PM	07/02/2019 10:13 AM
1907028-004	AMW-4-070119	07/01/2019 5:25 PM	07/02/2019 10:13 AM
1907028-005	AMW-5-070119	07/01/2019 9:00 AM	07/02/2019 10:13 AM

Case Narrative

WO#: **1907028**Date: **7/10/2019**

CLIENT: Friedman & Bruya

Project: 907023

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1907028**

Date Reported: **7/10/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1907028**Date Reported: **7/10/2019**

Client: Friedman & Bruya Collection Date: 7/1/2019 12:01:00 PM

Project: 907023

Lab ID: 1907028-001 **Matrix:** Water

Client Sample ID: AMW-1-070119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Me	thod 300.0			Batc	h ID:	25111 Analyst: SS
Chloride	1.71	0.100		mg/L	1	7/2/2019 4:53:00 PM
Nitrite (as N)	ND	0.100		mg/L	1	7/2/2019 4:53:00 PM
Nitrate (as N)	0.634	0.100		mg/L	1	7/2/2019 4:53:00 PM
Sulfate	17.6	1.50	D	mg/L	5	7/2/2019 5:16:00 PM
Dissolved Metals by EPA Method 200.8				Batc	h ID:	25124 Analyst: CO
Sodium	5,910	100		μg/L	1	7/5/2019 11:39:12 AM
Total Metals by EPA Method 200	<u>).8</u>			Batc	h ID:	25114 Analyst: CO
Sodium	7,030	100		μg/L	1	7/3/2019 2:43:56 PM
Dissolved Organic Carbon by SM 5310C				Batc	h ID:	R52592 Analyst: GM
Organic Carbon, Dissolved	5.34	0.500		mg/L	1	7/9/2019 4:00:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R52573 Analyst: SS
Alkalinity, Total (As CaCO3)	166	2.50		mg/L	1	7/10/2019 9:41:39 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	25126 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	7/3/2019 2:37:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	25139 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	7/9/2019 4:11:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R52539 Analyst: SS
Sulfide	ND	0.500		mg/L	1	7/8/2019 5:30:06 PM

Work Order: **1907028**Date Reported: **7/10/2019**

Client: Friedman & Bruya Collection Date: 7/1/2019 2:20:00 PM

Project: 907023

Lab ID: 1907028-002 **Matrix:** Water

Client Sample ID: AMW-2-070119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Me	thod 300.0			Batc	h ID:	25111 Analyst: SS
Chloride	1.89	0.100		mg/L	1	7/2/2019 6:48:00 PM
Nitrite (as N)	ND	0.100		mg/L	1	7/2/2019 6:48:00 PM
Nitrate (as N)	0.576	0.100		mg/L	1	7/2/2019 6:48:00 PM
Sulfate	16.6	1.50	D	mg/L	5	7/2/2019 7:11:00 PM
Dissolved Metals by EPA Metho	<u>d 200.8</u>			Batc	h ID:	25124 Analyst: CO
Sodium	5,140	100		μg/L	1	7/5/2019 11:44:44 AM
Total Metals by EPA Method 20	0.8			Batc	h ID:	25114 Analyst: CO
Sodium	5,970	100		μg/L	1	7/3/2019 2:55:01 PM
Dissolved Organic Carbon by SI			Batc	h ID:	R52592 Analyst: GM	
Organic Carbon, Dissolved	6.40	0.500		mg/L	1	7/9/2019 4:21:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R52573 Analyst: SS
Alkalinity, Total (As CaCO3)	121	2.50		mg/L	1	7/10/2019 9:41:39 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	25126 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	7/3/2019 2:42:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	25139 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	7/9/2019 4:46:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R52539 Analyst: SS
Sulfide	ND	0.500		mg/L	1	7/8/2019 5:30:06 PM

Work Order: **1907028**Date Reported: **7/10/2019**

Client: Friedman & Bruya Collection Date: 7/1/2019 4:00:00 PM

Project: 907023

Lab ID: 1907028-003 **Matrix:** Water

Client Sample ID: AMW-3-070119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Ion Chromatography by EPA Me	thod 300.0			Batc	h ID:	25111 Analyst: SS
Chloride	2.89	0.100		mg/L	1	7/3/2019 12:01:00 PM
Nitrite (as N)	ND	0.100		mg/L	1	7/3/2019 12:01:00 PM
Nitrate (as N)	0.106	0.100		mg/L	1	7/3/2019 12:01:00 PM
Sulfate	42.2	1.50	D	mg/L	5	7/2/2019 8:21:00 PM
Dissolved Metals by EPA Metho			Batc	h ID:	25124 Analyst: CO	
Sodium	8,190	100		μg/L	1	7/5/2019 11:50:15 AM
Total Metals by EPA Method 200	0.8			Batc	h ID:	25114 Analyst: CO
Sodium	9,840	100		μg/L	1	7/3/2019 3:06:06 PM
Dissolved Organic Carbon by SI			Batc	h ID:	R52592 Analyst: GM	
Organic Carbon, Dissolved	5.11	0.500		mg/L	1	7/9/2019 5:46:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R52573 Analyst: SS
Alkalinity, Total (As CaCO3)	453	2.50		mg/L	1	7/10/2019 9:41:39 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	25126 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	7/3/2019 2:47:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	25139 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	7/9/2019 4:49:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R52539 Analyst: SS
Sulfide	1.56	0.500		mg/L	1	7/8/2019 5:30:06 PM

Work Order: **1907028**Date Reported: **7/10/2019**

Client: Friedman & Bruya Collection Date: 7/1/2019 5:25:00 PM

Project: 907023

Lab ID: 1907028-004 **Matrix:** Water

Client Sample ID: AMW-4-070119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA Method 300.0 Batch ID: 25111 Analyst: SS					25111 Analyst: SS	
Chloride	5.44	0.500	D	mg/L	5	7/2/2019 9:07:00 PM
Nitrite (as N)	ND	0.500	D	mg/L	5	7/2/2019 9:07:00 PM
Nitrate (as N)	1.57	0.500	D	mg/L	5	7/2/2019 9:07:00 PM
Sulfate	71.4	1.50	D	mg/L	5	7/2/2019 9:07:00 PM
NOTES: Diluted due to matrix.						
Dissolved Metals by EPA Method 200.8				Batc	h ID:	25124 Analyst: CO
Sodium	61,800	1,000	D	μg/L	10	7/5/2019 1:05:39 PM
Total Metals by EPA Method 200.8				Batc	h ID:	25114 Analyst: CO
Sodium	60,500	1,000	D	μg/L	10	7/5/2019 10:30:51 AM
Dissolved Organic Carbon by S	M 5310C			Batc	h ID:	R52592 Analyst: GM
Organic Carbon, Dissolved	2.08	0.500		mg/L	1	7/9/2019 6:06:00 PM
Total Alkalinity by SM 2320B				Batc	h ID:	R52573 Analyst: SS
Alkalinity, Total (As CaCO3)	375	2.50		mg/L	1	7/10/2019 9:41:39 AM
Ammonia by SM 4500 NH3G				Batc	h ID:	25126 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	7/3/2019 2:52:00 PM
Cyanide by SM 4500-CN C, E				Batc	h ID:	25139 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	7/9/2019 4:52:00 PM
Sulfide by SM 4500-S2-F				Batc	h ID:	R52539 Analyst: SS
Sulfide	ND	0.500		mg/L	1	7/8/2019 5:30:06 PM

Analytical Report

Work Order: **1907028**Date Reported: **7/10/2019**


Client: Friedman & Bruya Collection Date: 7/1/2019 9:00:00 AM

Project: 907023

Lab ID: 1907028-005 **Matrix:** Water

Client Sample ID: AMW-5-070119

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
lon Chromatography by EPA Me	ethod 300.0			Batcl	n ID:	25111 Analyst: SS
Chloride	1.71	0.100		mg/L	1	7/2/2019 9:53:00 PM
Nitrite (as N)	ND	0.100		mg/L	1	7/2/2019 9:53:00 PM
Nitrate (as N)	0.649	0.100		mg/L	1	7/2/2019 9:53:00 PM
Sulfate	18.1	1.50	D	mg/L	5	7/2/2019 10:16:00 PM
Dissolved Metals by EPA Metho	od 200.8			Batch	n ID:	25124 Analyst: CO
Sodium	5,870	100		μg/L	1	7/5/2019 12:01:18 PM
Total Metals by EPA Method 20	<u>8.00</u>			Batch	n ID:	25114 Analyst: CO
Sodium	7,420	100		μg/L	1	7/3/2019 3:17:09 PM
Dissolved Organic Carbon by S	M 5310C			Batcl	n ID:	R52592 Analyst: GM
Organic Carbon, Dissolved	5.69	0.500		mg/L	1	7/9/2019 6:28:00 PM
Total Alkalinity by SM 2320B				Batch	n ID:	R52573 Analyst: SS
Alkalinity, Total (As CaCO3)	176	2.50		mg/L	1	7/10/2019 9:41:39 AM
Ammonia by SM 4500 NH3G				Batch	n ID:	25126 Analyst: GM
Nitrogen, Ammonia	ND	0.100		mg/L	1	7/3/2019 2:57:00 PM
Cyanide by SM 4500-CN C, E				Batcl	n ID:	25139 Analyst: WF
Cyanide, Total	ND	0.0500		mg/L	1	7/9/2019 4:55:00 PM
Sulfide by SM 4500-S2-F				Batcl	n ID:	R52539 Analyst: SS
Sulfide	ND	0.500		mg/L	1	7/8/2019 5:30:06 PM

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Alkalinity by SM 2320B

Project: 907023					lota	al Alkalinity by SW 2320E
Sample ID: MB-R52573	SampType: MBLK			Units: mg/L	Prep Date: 7/10/2019	RunNo: 52573
Client ID: MBLKW	Batch ID: R52573				Analysis Date: 7/10/2019	SeqNo: 1038323
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	ND	2.50				
Sample ID: LCS-R52573	SampType: LCS			Units: mg/L	Prep Date: 7/10/2019	RunNo: 52573
Client ID: LCSW	Batch ID: R52573				Analysis Date: 7/10/2019	SeqNo: 1038324
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	106	2.50	100.0	0	106 80 120	
Sample ID: 1907028-001ADUP	SampType: DUP			Units: mg/L	Prep Date: 7/10/2019	RunNo: 52573
Client ID: AMW-1-070119	Batch ID: R52573				Analysis Date: 7/10/2019	SeqNo: 1038326
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	176	2.50			165.8	5.71 20
Sample ID: LCS1-R52573	SampType: LCS			Units: mg/L	Prep Date: 7/10/2019	RunNo: 52573
Client ID: LCSW	Batch ID: R52573				Analysis Date: 7/10/2019	SeqNo: 1038331
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	107	2.50	100.0	0	107 80 120	
Sample ID: LCS2-R52573	SampType: LCS			Units: mg/L	Prep Date: 7/10/2019	RunNo: 52573
Client ID: LCSW	Batch ID: R52573				Analysis Date: 7/10/2019	SeqNo: 1038332
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Total (As CaCO3)	107	2.50	100.0	0	107 80 120	

Original Page 10 of 26

Work Order: 1907028

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Total Alkalinity by SM 2320B

Sample ID: LCS3-R52573 SampType: LCS Units: mg/L Prep Date: 7/10/2019 RunNo: 52573

Client ID: **LCSW** Batch ID: **R52573** Analysis Date: **7/10/2019** SeqNo: **1038333**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Alkalinity, Total (As CaCO3) 109 2.50 100.0 0 109 80 120

Original Page 11 of 26

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Ammonia by SM 4500 NH3G

Project: 907023								Am	monia by	SM 4500	NH3
Sample ID: LCS-25126	SampType: LCS			Units: mg/L		Prep Dat	te: 7/5/201	9	RunNo: 524	199	
Client ID: LCSW	Batch ID: 25126					Analysis Dat	te: 7/3/201	9	SeqNo: 103	86986	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	0.550	0.100	0.5000	0	110	80	120				
Sample ID: MB-25126	SampType: MBLK			Units: mg/L		Prep Dat	te: 7/5/201	9	RunNo: 52 4	199	
Client ID: MBLKW	Batch ID: 25126					Analysis Dat	te: 7/3/201	9	SeqNo: 10 :	86987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	0.100									
Sample ID: 1907028-001GDUP	SampType: DUP			Units: mg/L		Prep Dat	te: 7/5/201	9	RunNo: 52 4	199	
Client ID: AMW-1-070119	Batch ID: 25126					Analysis Dat	te: 7/3/201	9	SeqNo: 10 3	86994	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	0.100						0		30	
Sample ID: 1907028-001GMS	SampType: MS			Units: mg/L		Prep Dat	te: 7/5/201	9	RunNo: 52 4	199	
Client ID: AMW-1-070119	Batch ID: 25126					Analysis Dat	te: 7/3/201	9	SeqNo: 10 3	86995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	0.100	0.5000	0.05100	1.40	70	130				S
S - Outlying spike recovery(ies)	observed. A duplicate anal	lysis was pe	erformed with s	similar results indicat	ing a poss	sible matrix e	ffect.				
Sample ID: 1907028-001GMSD	SampType: MSD			Units: mg/L		Prep Dat	te: 7/5/201	9	RunNo: 52 4	199	
Client ID: AMW-1-070119	Batch ID: 25126					Analysis Dat	te: 7/3/201	9	SeqNo: 10 3	86996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	0.100	0.5000	0.05100	0	70	130	0		30	S

NOTES:

Original Page 12 of 26

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Ammonia by SM 4500 NH3G

Sample ID: 1907028-002GDUP SampType: DUP Units: mg/L Prep Date: 7/5/2019 RunNo: 52499

Client ID: AMW-2-070119 Batch ID: 25126 Analysis Date: 7/3/2019 SeqNo: 1037007

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Nitrogen, Ammonia ND 0.100 0 30

Sample ID: 1907028-002GMS	SampType: MS			Units: mg/L		Prep Dat	te: 7/5/2019	RunNo: 52 4	99	
Client ID: AMW-2-070119	Batch ID: 25126					Analysis Dat	te: 7/3/2019	SeqNo: 103	7008	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen Ammonia	ND	0.100	0.5000	0.05000	-0.800	70	130			S

NOTES:

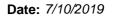
Project:

Original Page 13 of 26

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recovery is within range.

1907028 Work Order:


QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Cyanide by SM 4500-CN C, E

Project: 907023	·							Cya	ınide by S	M 4500-C	N C, E
Sample ID: MB-25139	SampType: MBLK			Units: mg/L		Prep Date	: 7/8/201	9	RunNo: 525	577	
Client ID: MBLKW	Batch ID: 25139					Analysis Date	: 7/9/201	9	SeqNo: 10 3	38365	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	ND	0.0500									
Sample ID: LCS-25139	SampType: LCS			Units: mg/L		Prep Date	: 7/8/201	9	RunNo: 52	577	
Client ID: LCSW	Batch ID: 25139					Analysis Date	: 7/9/201	9	SeqNo: 10 3	38366	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.272	0.0500	0.2500	0	109	80	120				
Sample ID: 1907028-001DDUP	SampType: DUP			Units: mg/L		Prep Date	: 7/8/201	9	RunNo: 52	577	
Client ID: AMW-1-070119	Batch ID: 25139					Analysis Date	: 7/9/201	9	SeqNo: 103	38368	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	ND	0.0500						0		20	
Sample ID: 1907028-001DMS	SampType: MS			Units: mg/L		Prep Date	: 7/8/201	9	RunNo: 525	577	
Client ID: AMW-1-070119	Batch ID: 25139					Analysis Date	: 7/9/201	9	SeqNo: 10 3	38369	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.227	0.0500	0.2500	0	91.0	80	120				
Sample ID: 1907028-001DMSD	SampType: MSD			Units: mg/L		Prep Date	: 7/8/201	9	RunNo: 525	577	
Client ID: AMW-1-070119	Batch ID: 25139					Analysis Date	: 7/9/201	9	SeqNo: 103	38370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total NOTES:	0.286	0.0500	0.2500	0	115	80	120	0.2274	23.0	30	R

Page 14 of 26 Original

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Dissolved Organic Carbon by SM 5310C

Project: 907023					Dissolved Organic Carbon by SM 531
Sample ID: MB-52592	SampType: MBLK			Units: mg/L	Prep Date: 7/9/2019 RunNo: 52592
Client ID: MBLKW	Batch ID: R52592				Analysis Date: 7/9/2019 SeqNo: 1038594
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Organic Carbon, Dissolved	ND	0.500			
Sample ID: LCS-52592	SampType: LCS			Units: mg/L	Prep Date: 7/9/2019 RunNo: 52592
Client ID: LCSW	Batch ID: R52592				Analysis Date: 7/9/2019 SeqNo: 1038595
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Organic Carbon, Dissolved	5.22	0.500	5.000	0	104 80 120
Sample ID: 1907028-002BDUP	SampType: DUP			Units: mg/L	Prep Date: 7/9/2019 RunNo: 52592
Client ID: AMW-2-070119	Batch ID: R52592				Analysis Date: 7/9/2019 SeqNo: 1038603
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Organic Carbon, Dissolved	6.44	0.500			6.403 0.607 20
Sample ID: 1907028-002BMS	SampType: MS			Units: mg/L	Prep Date: 7/9/2019 RunNo: 52592
Client ID: AMW-2-070119	Batch ID: R52592				Analysis Date: 7/9/2019 SeqNo: 1038604
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Organic Carbon, Dissolved	11.5	0.500	5.000	6.403	101 70 130
Sample ID: 1907028-002BMSD	SampType: MSD			Units: mg/L	Prep Date: 7/9/2019 RunNo: 52592
Client ID: AMW-2-070119	Batch ID: R52592				Analysis Date: 7/9/2019 SeqNo: 1038605
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Organic Carbon, Dissolved	11.5	0.500	5.000	6.403	102 70 130 11.47 0.218 30

Original Page 15 of 26

Work Order: 1907028

Analyte

Chloride

QC SUMMARY REPORT

%RPD RPDLimit

Qual

CLIENT: Friedman & Bruya

Ion Chromatography by EPA Method 300.0

Project: 907023							IOII CII	romatogra	DITY DY LE	A WIELIIO	J 300.
Sample ID: MB-25111	SampType: MBLK			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 524	497	
Client ID: MBLKW	Batch ID: 25111					Analysis Da	te: 7/2/201	9	SeqNo: 10 3	36894	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	ND	0.100									
Nitrite (as N)	ND	0.100									
Nitrate (as N)	ND	0.100									
Sulfate	ND	0.300									
Sample ID: LCS-25111	SampType: LCS			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 52 4	497	
Client ID: LCSW	Batch ID: 25111					Analysis Da	te: 7/2/201	9	SeqNo: 10 :	36895	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	0.752	0.100	0.7500	0	100	90	110				
Nitrite (as N)	0.758	0.100	0.7500	0	101	90	110				
Nitrate (as N)	0.750	0.100	0.7500	0	100	90	110				
Sulfate	3.74	0.300	3.750	0	99.8	90	110				
Sample ID: 1907028-001ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 52	497	
Client ID: AMW-1-070119	Batch ID: 25111					Analysis Da	te: 7/2/201	9	SeqNo: 10	36898	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	1.71	0.100						1.714	0.117	20	
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	0.635	0.100						0.6340	0.158	20	
Sulfate	18.3	0.300						18.30	0.219	20	Е
NOTES: E - Estimated value. The amour	nt exceeds the linear working	nd range of	the instrument	•							
		ig range of				Prop Do	to: 7/2/204	0	RunNo: 52 4	107	
Sample ID: 1907028-001AMS Client ID: AMW-1-070119	SampType: MS Batch ID: 25111			Units: mg/L		Analysis Da	te: 7/2/201		SegNo: 10 :		
Cilett ID. AWW-1-0/0119	Dalcii ID. 23111					Analysis Da	.e. //2/201	3	3eqino. 10,	00033	

Original Page 16 of 26

1.714

%REC

95.5

SPK value SPK Ref Val

0.7500

Result

2.43

RL

0.100

LowLimit HighLimit RPD Ref Val

120

80

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Ion Chromatography by EPA Method 300.0

Sample ID: 1907028-001AMS	SampType: MS			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 52 4	97	
Client ID: AMW-1-070119	Batch ID: 25111					Analysis Da	te: 7/2/201	9	SeqNo: 103	6899	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrite (as N)	0.656	0.100	0.7500	0	87.5	80	120				
Nitrate (as N)	1.30	0.100	0.7500	0.6340	88.5	80	120				
Sulfate	21.7	0.300	3.750	18.30	91.5	80	120				E

NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 1907028-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 7/2/201	RunNo: 52497				
Client ID: AMW-1-070119	Batch ID: 25111				Analysis Date: 7/2/2019 SeqNo: 1036900							
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chloride	2.51	0.100	0.7500	1.714	106	80	120	2.430	3.08	20		
Nitrite (as N)	0.721	0.100	0.7500	0	96.1	80	120	0.6560	9.44	20		
Nitrate (as N)	1.39	0.100	0.7500	0.6340	100	80	120	1.298	6.63	20		
Sulfate	22.2	0.300	3.750	18.30	104	80	120	21.73	2.16	20	Е	

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 1907028-005ADUP	SampType: DUP			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 524	97	
Client ID: AMW-5-070119	Batch ID: 25111					Analysis Da	te: 7/2/201	9	SeqNo: 103	6911	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	1.71	0.100						1.714	0	20	
Nitrite (as N)	ND	0.100						0		20	
Nitrate (as N)	0.648	0.100						0.6490	0.154	20	
Sulfate	18.3	0.300						18.35	0.0436	20	Е

NOTES:

Original Page 17 of 26

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Ion Chromatography by EPA Method 300.0


Sample ID: 1907028-005AMS	SampType: MS			Units: mg/L		Prep Da	te: 7/2/201	9	RunNo: 524	197	
Client ID: AMW-5-070119	Batch ID: 25111	ID: 25111				Analysis Da	te: 7/2/201	9	SeqNo: 1036912		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloride	2.50	0.100	0.7500	1.714	105	80	120				
Nitrite (as N)	0.729	0.100	0.7500	0	97.2	80	120				
Nitrate (as N)	1.40	0.100	0.7500	0.6490	101	80	120				
Sulfate	22.3	0.300	3.750	18.35	104	80	120				Ε

NOTES:

Project:

Original Page 18 of 26

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 907023	3								Sulfide b	y SM 450	0-S2-F
Sample ID: MB-R52539	SampType: MBLK			Units: mg/L		Prep Date:	7/8/201	9	RunNo: 52	539	
Client ID: MBLKW	Batch ID: R52539					Analysis Date:	7/8/201	9	SeqNo: 103	37733	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	ND	0.500									
Sample ID: LCS-R52539	SampType: LCS			Units: mg/L		Prep Date:	7/8/201	9	RunNo: 52	539	
Client ID: LCSW	Batch ID: R52539					Analysis Date:	7/8/201	9	SeqNo: 10 3	37734	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	1.90	0.500	2.000	0	95.0	65	135				
Sample ID: LCSD-R52539	SampType: LCSD			Units: mg/L		Prep Date:	7/8/201	9	RunNo: 52	539	
Client ID: LCSW02	Batch ID: R52539					Analysis Date:	7/8/201	9	SeqNo: 10 3	37735	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	1.88	0.500	2.000	0	94.0	65	135	1.900	1.06	20	
Sample ID: LCS2-R52539	SampType: LCS			Units: mg/L		Prep Date:	7/8/201	9	RunNo: 52	539	
Client ID: LCSW	Batch ID: R52539					Analysis Date:	7/8/201	9	SeqNo: 10 :	37741	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	1.77	0.500	2.000	0	88.4	65	135				
Sample ID: LCS3-R52539	SampType: LCS			Units: mg/L		Prep Date:	7/8/201	9	RunNo: 52	539	
Client ID: LCSW	Batch ID: R52539					Analysis Date:	7/8/201	9	SeqNo: 103	37742	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide	1.62	0.500	2.000	0	81.2	65	135				

Page 19 of 26 Original

Work Order: 1907028

Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Sulfide by SM 4500-S2-F

Sample ID: LCS4-R52539 SampType: LCS Units: mg/L Prep Date: 7/8/2019 RunNo: 52539 Client ID: LCSW Batch ID: **R52539** Analysis Date: 7/8/2019 SeqNo: 1037743 LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Result SPK value SPK Ref Val %REC Analyte RL

Sulfide 1.60 0.500 2.000 0 80.0 65 135

Original Page 20 of 26

Work Order: 1907028

QC SUMMARY REPORT

Friedman & Bruya **CLIENT:**

Project: 907023							Dis	ssolved Met	als by EP	A Method	200.8
Sample ID: MB-25124	SampType: MBLK			Units: µg/L		Prep Dat	te: 7/5/201	9	RunNo: 525	512	
Client ID: MBLKW	Batch ID: 25124					Analysis Dat	te: 7/5/201	9	SeqNo: 103	37248	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	ND	100									
Sample ID: LCS-25124	SampType: LCS			Units: µg/L		Prep Dat	te: 7/5/201	9	RunNo: 52	512	
Client ID: LCSW	Batch ID: 25124					Analysis Dat	te: 7/5/201	9	SeqNo: 10 3	37249	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	1,100	100	1,000	0	110	50	150				
Sample ID: 1906390-013DDUP	SampType: DUP			Units: µg/L		Prep Dat	te: 7/5/201	9	RunNo: 525	512	
Client ID: BATCH	Batch ID: 25124					Analysis Dat	te: 7/5/201	9	SeqNo: 103	37253	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	21,500	100						21,920	2.04	30	
Sample ID: 1906390-013DMS	SampType: MS			Units: µg/L		Prep Dat	te: 7/5/201	9	RunNo: 52	512	
Client ID: BATCH	Batch ID: 25124					Analysis Dat	te: 7/5/201	9	SeqNo: 10 3	37254	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium NOTES:	27,300	100	5,000	21,920	107	50	150				E
	ount exceeds the linear working	range or t	ne instrument			Draw Dat	7/5/004		DunNa FO		
Sample ID: 1906390-013DMSD Client ID: BATCH	SampType: MSD Batch ID: 25124			Units: µg/L		Analysis Dat	te: 7/5/201		RunNo: 52 5 SegNo: 10 3		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	%RPD		Qual
Sodium	27,100	100	5,000	21,920	103	50	150	27,290	0.832	30	E

NOTES:

Page 21 of 26 Original

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1907028

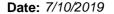
Project:

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Dissolved Metals by EPA Method 200.8


Sample ID: MB-25119FB SampType: MBLK Units: µg/L Prep Date: 7/5/2019 RunNo: 52512

Client ID: **MBLKW** Batch ID: **25124** Analysis Date: **7/5/2019** SeqNo: **1037262**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sodium ND 100

Original Page 22 of 26

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 200.8

Project: 907023 Sample ID: MB-25114 SampType: MBLK Units: µg/L Prep Date: 7/3/2019 RunNo: 52489 Client ID: MBLKW Batch ID: 25114 Analysis Date: 7/3/2019 SeqNo: 1036686 %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result RL SPK value SPK Ref Val ND 100 Sodium

Sample ID: LCS-25114	SampType: LCS			Units: µg/L		Prep Dat	te: 7/3/2019)	RunNo: 524	89	
Client ID: LCSW	Batch ID: 25114					Analysis Dat	te: 7/3/2019)	SeqNo: 103	6687	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	1,100	100	1,000	0	110	50	150				

Sample ID: 1907023-001ADUP	SampType: DUP		Units: µg/L		Prep Date: 7/3/20	19	RunNo: 524	89	
Client ID: BATCH	Batch ID: 25114				Analysis Date: 7/3/20	19	SeqNo: 103	6689	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	1,010,000	100				1,015,000	0.684	30	Е

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 1907023-001AMS	SampType: MS			Units: µg/L		Prep Da	te: 7/3/201	9	RunNo: 524	89	
Client ID: BATCH	Batch ID: 25114					Analysis Da	te: 7/3/201	9	SeqNo: 103	6690	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	981,000	100	5,000	1,015,000	-671	50	150				ES

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample ID: 1907023-001AMSD	SampType: MSD			Units: µg/L		Prep Da	te: 7/3/201	9	RunNo: 524	189	
Client ID: BATCH	Batch ID: 25114					Analysis Da	te: 7/3/201	9	SeqNo: 103	86691	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium	997,000	100	5,000	1,015,000	-360	50	150	981,300	1.57	30	ES

Page 23 of 26 Original

Work Order: 1907028

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

907023

Total Metals by EPA Method 200.8

Sample ID: 1907023-001AMSD

SampType: MSD

Units: µg/L

Prep Date: 7/3/2019

RunNo: 52489

Client ID: BATCH

Batch ID: 25114

Analysis Date: 7/3/2019

SeqNo: 1036691

Analyte

Project:

Result

RL SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

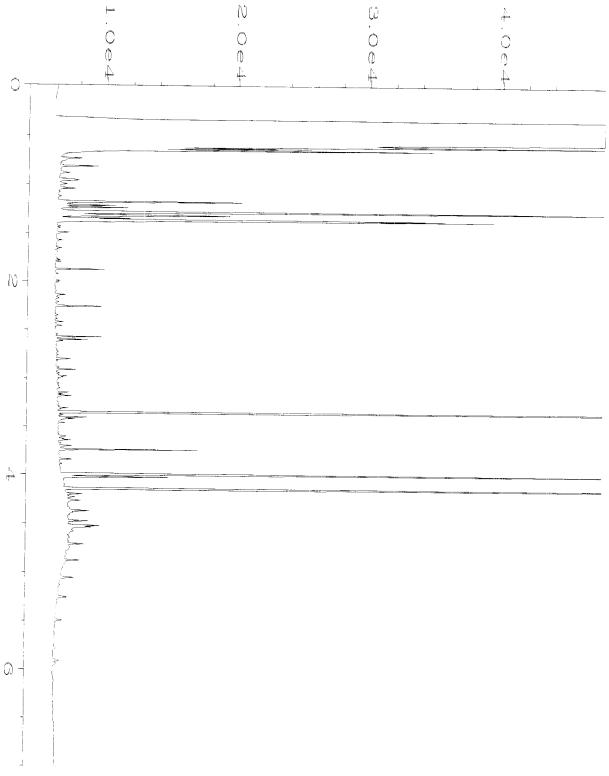
NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

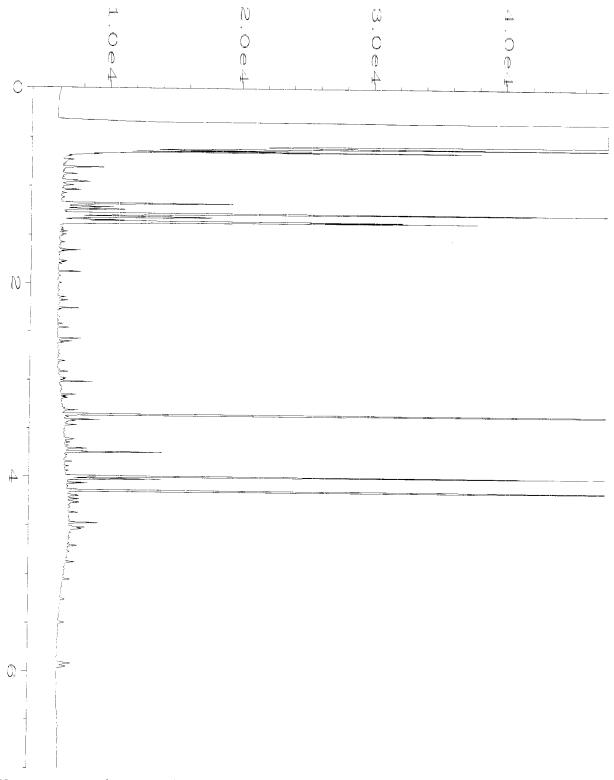
E - Estimated value. The amount exceeds the linear working range of the instrument.

Page 24 of 26 Original

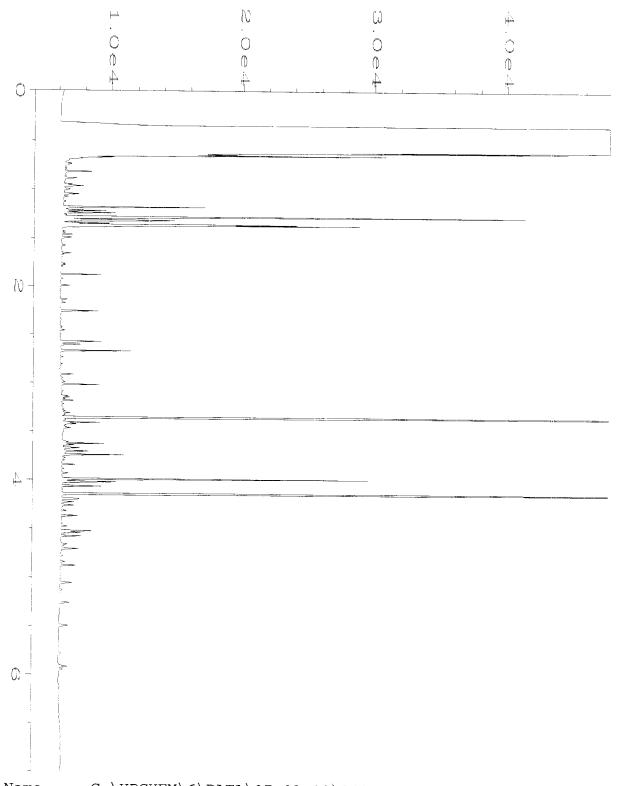
Sample Log-In Check List

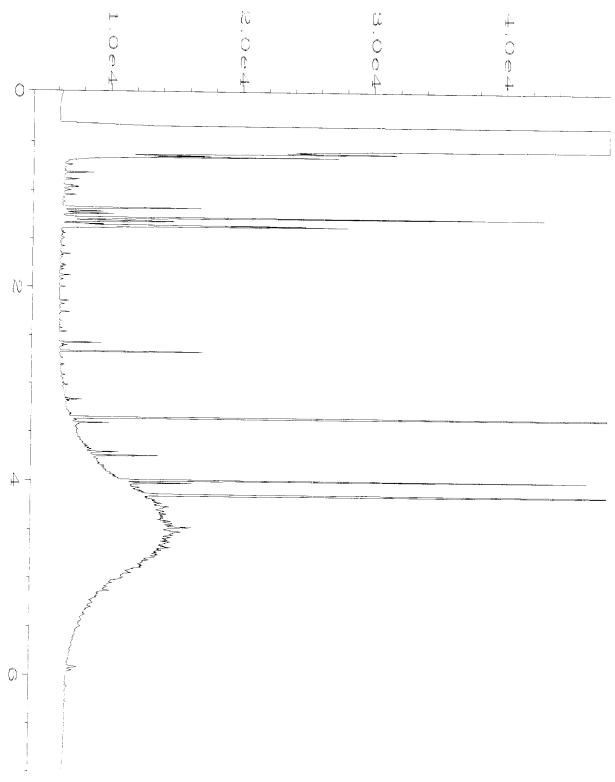

С	lient Name: FB		Work Order Numb	oer: 1907028	
L	ogged by: Carissa	True	Date Received:	7/2/2019	10:13:00 AM
Cha	ain of Custody				
	Is Chain of Custody cor	nplete?	Yes 🗸	No 🗌	Not Present
2.	How was the sample de	elivered?	<u>FedEx</u>		
Loc	ı İn				
	Coolers are present?		Yes 🗸	No 🗌	NA 🗌
4.	Shipping container/cool	er in good condition?	Yes 🗹	No \square	
5.		on shipping container/cooler? Custody Seals not intact)	Yes	No 🗸	Not Required
6.	Was an attempt made t	o cool the samples?	Yes 🗸	No \square	NA \square
7.	Were all items received	at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	NA 🗆
8.	Sample(s) in proper cor	ntainer(s)?	Yes 🗸	No \square	
	Sufficient sample volum		Yes 🗸	No 🗌	
10	Are samples properly p	reserved?	Yes 🗸	No 🗌	
11	Was preservative adde	d to bottles?	Yes 🗹	No 🗌	NA \square
			NAOH added C, H	INO3 added E	F/F, H2SO4 added G
12	Is there headspace in the	ne VOA vials?	Yes _	No 🗌	NA 🗹
13	Did all samples contain	ers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
14	Does paperwork match	bottle labels?	Yes 🗸	No 🗌	
15	Are matrices correctly in	dentified on Chain of Custody?	Yes 🗸	No 🗌	
16	Is it clear what analyses	s were requested?	Yes 🗸	No 🗌	
17	Were all holding times	able to be met?	Yes 🗹	No \square	
<u>Spe</u>	ecial Handling (if a	oplicable)			
18	Was client notified of al	I discrepancies with this order?	Yes 🗸	No 🗆	NA \square
	Person Notified:	Michael Date	:	7/2/2019	
	By Whom:	Carissa True Via:	✓ eMail Pho	one Fax	☐ In Person
	Regarding:	N,N or N+N			
	Client Instructions				

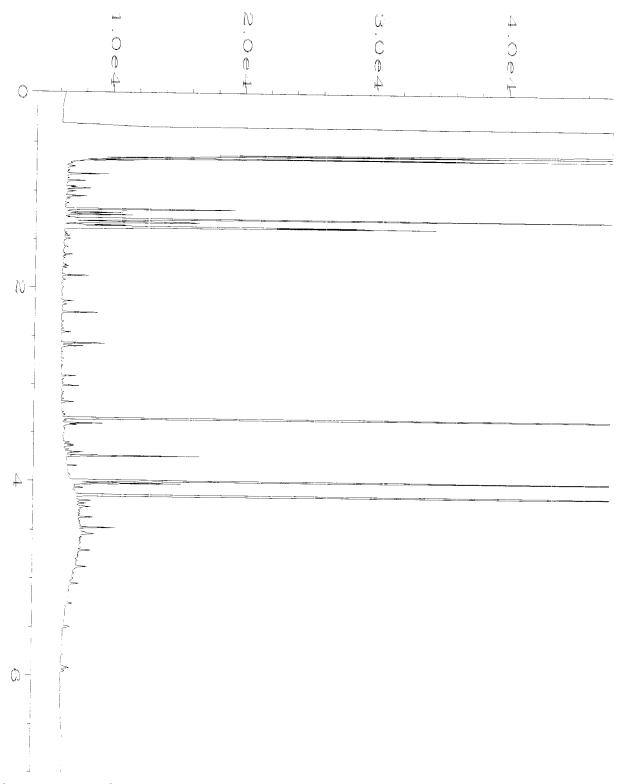
Item Information

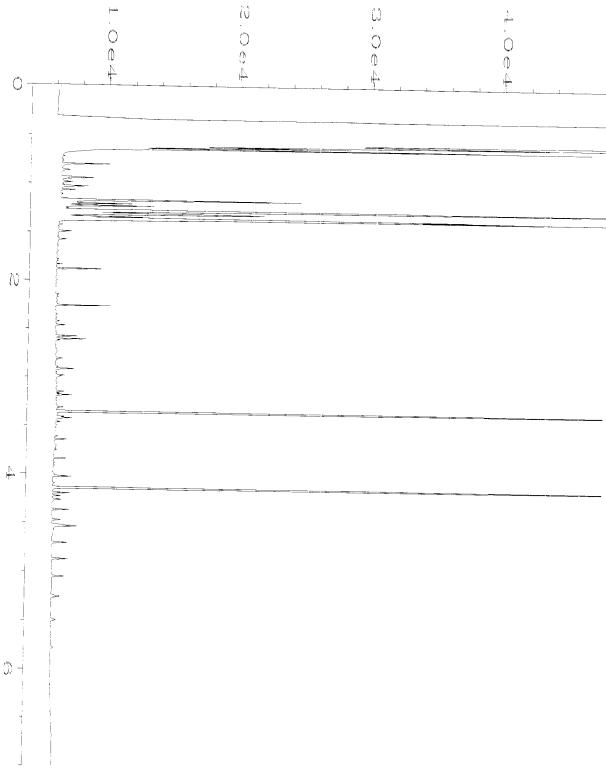

Item #	Temp ⁰C
Cooler 1	6.1
Sample 1	3.9

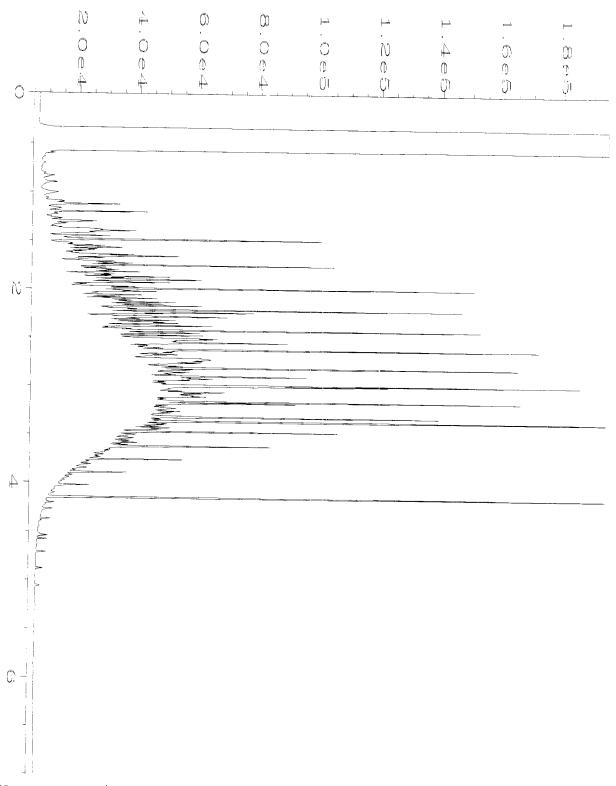
^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C


SUBCONTRACT SAMPLE CHAIN OF CUSTODY


```
Data File Name
                : C:\HPCHEM\6\DATA\07-03-19\039F1001.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC6
                                               Vial Number
Sample Name
                : 907023-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 10
Acquired on
                : 03 Jul 19 05:50 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Jul 19 10:02 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\07-03-19\040F1001.D
Data File Name
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC6
Sample Name
                : 907023-02
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 10
                                                Instrument Method: DX.MTH
Acquired on
             : 03 Jul 19 06:01 PM
Report Created on: 05 Jul 19 10:03 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-03-19\041F1001.D
Operator
                 : TL
                                               Page Number
Vial Number
                                                            : 41
Instrument
                 : GC6
Sample Name
                 : 907023-03
                                               Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 10
                                               Instrument Method: DX.MTH
Acquired on
             : 03 Jul 19 06:12 PM
Report Created on: 05 Jul 19 10:03 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\07-03-19\042F1001.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
Sample Name
                : 907023-04
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on
            : 03 Jul 19 06:23 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Jul 19 10:03 AM
                                              Analysis Method : DEFAULT.MTH
```



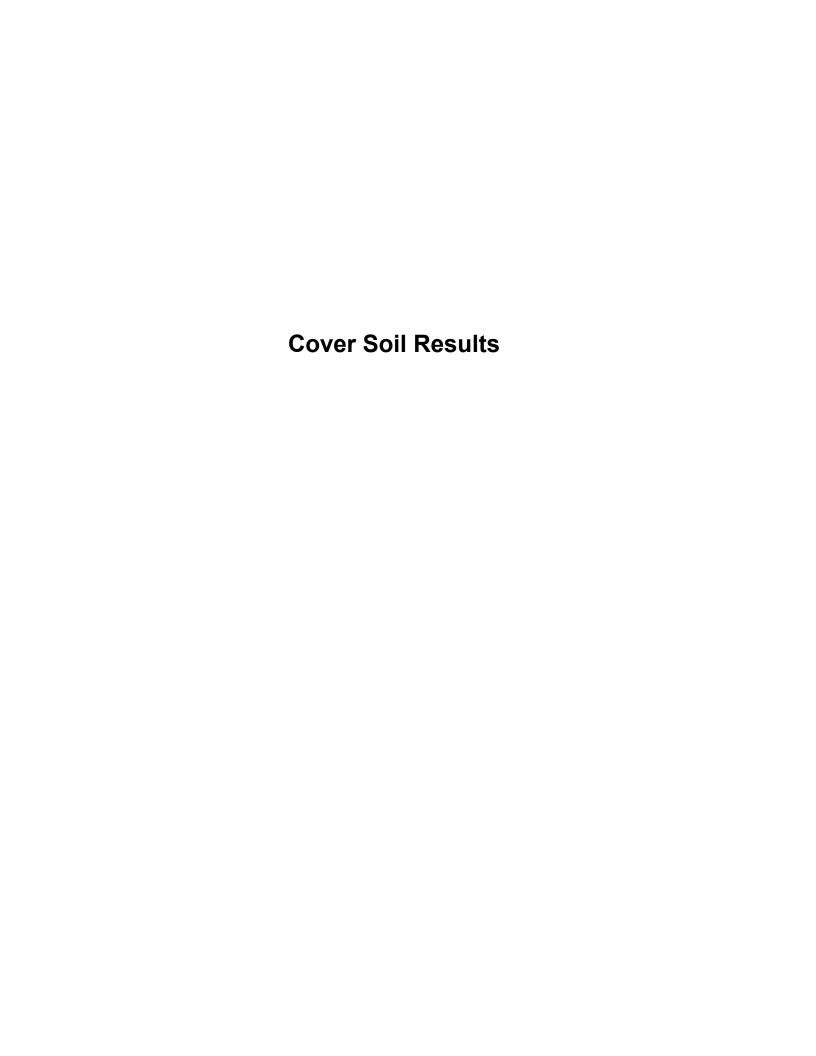
```
: C:\HPCHEM\6\DATA\07-03-19\043F1001.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
Sample Name
                : 907023-05
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on
            : 03 Jul 19 06:34 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Jul 19 10:03 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\07-03-19\036F1001.D
Data File Name
Operator
                 : TL
                                                Page Number
Instrument
                 : GC6
                                                Vial Number
                                                                  : 36
Sample Name
                 : 09-1605 mb
                                                Injection Number : 1
Run Time Bar Code:
                                                Sequence Line
                                                                : 10
Acquired on
                 : 03 Jul 19
                              05:16 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Jul 19
                              10:02 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\07-03-19\003F0201.D
Data File Name
Operator
                 : TL
                                                Page Number
Instrument
                 : GC6
                                               Vial Number
Sample Name
                : 500 Dx 57-78E
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                              : 2
Acquired on
                : 03 Jul 19 06:08 AM
                                               Instrument Method: DX.MTH
Report Created on: 05 Jul 19 10:02 AM
                                               Analysis Method : DEFAULT.MTH
```


Company_ City, State, ZIP_ Address_710 Report To Will Back & All Cool Email

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature) 90

	TED	ANALYSES REQUESTED		
	O Other	- THE SAME WAS ASSESSED.		
	Archive Samples			
	⚠ Dispose after 30 days	· · · · · · ·		The second secon
	SAMPLE DISPOSAL	INVOICE TO	REMARKS	MA SPIGH
		Tinnanowasan		
	Rush charges authorized by:	150074	Shelton C Street Landtill	OLS ALL
	D RUSH			
	X Standard Turnaround	PO#	PROJECT NAME	tro
_	A TIME CANONING A	1		
7	THE THINGS IT		ナタタ	いるななが
				×

ŗ		Seattle WA 00110 0000 Relia	ŕ, T		And the second s	Address of the second of the s	Trip Plank	Amw-5-070119	Amw-4-070119	AMW-3-070119	Amw-2-0-70119	AMN-1-070119	Sample ID
red by.	Received by:	Palimeriah da har	nemiquisned w:				06	05	64	03	02	DI11/E N-110	Lab ID
		7	Des	SICHATURE				<				2111/2	Date Sampled
			3.00					900	S2E.	1600	1420	1201	Time Sampled
		V	1									Water	Sample Type
		8 Norn	TAX TAX	PRIN	-P ² -1			(ヹ	# of Jars
		0	12	PRINT NAME	·		····			×		~	TPH-HCID
		Z	Dec	ME				×	_		<u> </u>		TPH-Diesel TPH-Gasoline
						-						·	BTEX by 8021B
							Χ	×	×	ベ	×	*	VOCs by 8260C
		T)											SVOCs by 8270D
		羡	A	Q				オ	<u>^</u>	~_	<u> ~ </u>	×	PAHs 8270D SIM
150 150		Ň,	Ž,	COMPANY		 		×	~		<u> </u>	~	Dioxins/frang
a lpl o		A	*	ANY				×	<u> </u>		<u> </u>	ベ	Metals(TOT/DUS)
Samples received at 2		r						Х	<u> </u>	^_	<u>^</u>	\times	Alkalinity
<u> </u>		\1						Ņ	^	<u>ጉ</u>	Х	Х.	Nitrite/Nitrale
ř. E		1/2/	74	DATE			1	× _	<u> </u>	<u> </u>	<u>X</u> X	X (WHILE ISUITION
D.	\	á	//8	3.1			1	4 4	$\frac{\wedge}{\times}$	X		<u> </u>	Diss arg Carbo Chlorade
ç		Š	86					17				<	Ammenia
(3		3	i S	TIME	·			*	Χ.	X	Ϋ́	Κ.	Cyanide

March 3, 2020

FAL Project: 12963

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **12963**. This corresponds to your project number **002211** and purchase order number **B-150**. One soil sample was received on 2/18/2020 in good condition. This sample was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your sample has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). Freidman and Bruya, Inc. requested a turnaround time of fifteen business days for project **12963**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The enclosed results and electronic data deliverable (EDD) are specifically for the sample referenced in this report only. These results meet all NELAP requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**, our State of California ELAP certificate number is **2934** and our State of Washington certificate number is **C844**. This report along with the associated EDD has been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **12963**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Daniel. P. vickers

Daniel P. Vickers Vice President

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>12963</u>

Received on: <u>02/18/2020</u>	Project Due:	<u>03/11/2020</u>	Storage:	<u>R-4</u>
--------------------------------	--------------	-------------------	----------	------------

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
12963-001-SA	1	002211	TP-03-021420	EPA 1613 D/F	Soil	02/14/2020	10:10 am	02/15/2021

EPA Method 1613 PCDD/F

FAL ID: 12963-001-MB Client ID: Method Blank Matrix: Soil Batch No: X5252

Date Extracted: 02-21-2020 Date Received: NA Amount: 10.00 g ICal: PCDDFAL4-12-2-19 GC Column: DB5MS Units: pg/g Acquired: 02-25-2020 2005 WHO TEQ: 0.0 Basis: Dry Weight

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND ND ND	0.0729 0.0904 0.107 0.110 0.0998		- - - -	0.0464 0.0791 0.0846 0.0993 0.0861	Total TCDD Total PeCDD	ND ND	0.0729 0.0904	
1,2,3,4,6,7,8-HpCDD OCDD	ND ND	0.150 0.406		-	0.0980 0.122	Total HxCDD Total HpCDD	ND ND	0.110 0.150	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND ND ND ND ND ND	0.0544 0.0801 0.0797 0.0679 0.0731 0.0714 0.0809 0.0841 0.0999 0.223		- - - - - - - - -	0.0397 0.0626 0.0713 0.0513 0.0576 0.0623 0.0715 0.0753 0.0868 0.156	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.0544 0.0801 0.0809 0.0999	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	81.6 82.7 90.4 88.6 82.1 68.8 89.2 83.2 86.3 80.5 74.9 82.4 84.7 70.7 82.6 75.0	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157			B A C C C D F DNQ A F A A NP NP NP NP NP NP NP NP NP NP NP NP NP	sotopic Labeled Starsignal to noise ratio is Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences Result taken from dilusies present in support of the start of	s > 10:1 Method Blace I Ethers In is below on secondary is below on concentration at Detection.	calibration racalibration racalibration racalibration random number on Limit Level 0.7um GF/F	nge inge nge
37Cl-2,3,7,8-TCDD	80.0	35.0 - 197							

Reviewed By: SPV

Date: 3/2/2020

EPA Method 1613 PCDD/F

FAL ID: 12963-001-OPR Client ID: OPR Matrix: Soil Batch No: X5252 Date Extracted: 02-21-2020 Date Received: NA Amount: 10.00 g ICal: PCDDFAL4-12-2-19 GC Column: DB5MS Units: ng/ml Acquired: 02-25-2020 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD	9.24	6.70 - 15.8	
1,2,3,7,8-PeCDD	46.9	35.0 - 71.0	
1,2,3,4,7,8-HxCDD	44.1	35.0 - 82.0	
1,2,3,6,7,8-HxCDD	44.2	38.0 - 67.0	
1,2,3,7,8,9-HxCDD	43.3	32.0 - 81.0	
1,2,3,4,6,7,8-HpCDD	46.1	35.0 - 70.0	
OCDD	95.7	78.0 - 144	
2,3,7,8-TCDF	9.05	7.50 - 15.8	
1,2,3,7,8-PeCDF	46.8	40.0 - 67.0	
2,3,4,7,8-PeCDF	46.0	34.0 - 80.0	
1,2,3,4,7,8-HxCDF	47.2	36.0 - 67.0	
1,2,3,6,7,8-HxCDF	48.2	42.0 - 65.0	
2,3,4,6,7,8-HxCDF	47.5	35.0 - 78.0	
1,2,3,7,8,9-HxCDF	47.7	39.0 - 65.0	
1,2,3,4,6,7,8-HpCDF	48.3	41.0 - 61.0	
1,2,3,4,7,8,9-HpCDF	48.2	39.0 - 69.0	
OCDF	91.7	63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD	76.0	20.0 - 175	
13C-1,2,3,7,8-PeCDD	76.2	21.0 - 227	
13C-1,2,3,4,7,8-HxCDD	80.5	21.0 - 193	
13C-1,2,3,6,7,8-HxCDD	80.5	25.0 - 163	
13C-1,2,3,4,6,7,8-HpCDD	68.8	26.0 - 166	
13C-OCDD	53.8	13.0 - 198	
13C-2,3,7,8-TCDF	78.1	22.0 - 152	
13C-1,2,3,7,8-PeCDF	71.4	21.0 - 192	
13C-2,3,4,7,8-PeCDF	77.7	13.0 - 328	
13C-1,2,3,4,7,8-HxCDF	73.8	19.0 - 202	
13C-1,2,3,6,7,8-HxCDF	69.3	21.0 - 159	
13C-2,3,4,6,7,8-HxCDF	72.4	22.0 - 176	
13C-1,2,3,4,6,7,8-HyCDF	74.7	17.0 - 205	
13C-1,2,3,4,6,7,8-HpCDF	59.1	21.0 - 158	
13C-1,2,3,4,7,8,9-HyCDF	71.3	20.0 - 186	
13C-0CDF	61.4	13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	76.3	31.0 - 191	

Α	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst:	\mathscr{G}	
Date: 3	/2/2020	

Revie	wed By:_	DPV	
Date:	3/2/20	20	

EPA Method 1613 PCDD/F

FAL ID: 12963-001-SA Client ID: TP-03-021420 Matrix: Soil Batch No: X5252

Date Extracted: 02-21-2020 Date Received: 02-18-2020 Amount: 10.46 g % Solids: 87.23

ICal: PCDDFAL4-12-2-19 GC Column: DB5MS Units: pg/g

Acquired: 02-25-2020 2005 WHO TEQ: 25.5 Basis: Dry Weight

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	1.92	_		1.92	0.0464				
1,2,3,7,8-PeCDD	9.32			9.32	0.0791				
1,2,3,4,7,8-HxCDD	13.0			1.30	0.0846				
1,2,3,6,7,8-HxCDD	26.0	-		2.60	0.0993	Total TCDD	505	_	
1,2,3,7,8,9-HxCDD	18.7	-		1.87	0.0861	Total PeCDD	593	-	
1,2,3,4,6,7,8-HpCDD	265	-		2.65	0.0980	Total HxCDD	673	-	
OCDD	1550	-		0.465	0.122	Total HpCDD	497	-	
2,3,7,8-TCDF	4.67	-	F	0.467	0.0397				
1,2,3,7,8-PeCDF	4.29	-		0.129	0.0626				
2,3,4,7,8-PeCDF	7.56			2.27	0.0713				
1,2,3,4,7,8-HxCDF	6.37			0.637	0.0513				
1,2,3,6,7,8-HxCDF	4.99			0.499	0.0576				
2,3,4,6,7,8-HxCDF	6.13			0.613	0.0623				
1,2,3,7,8,9-HxCDF	1.73		J	0.173	0.0715		97.4	-	D,M
1,2,3,4,6,7,8-HpCDF	50.3			0.503	0.0753		84.7	-	D,M
1,2,3,4,7,8,9-HpCDF	3.59			0.0359	0.0868		95.3	-	D,M
OCDF	147	-		0.0441	0.156	Total HpCDF	170	-	
Internal Standards	% Rec	QC Limits	Qual			Isotopic Labeled Star	ndard outside	OC range	a but
						signal to noise ratio is		QU range	but
13C-2,3,7,8-TCDD	92.7	25.0 - 164				. 3		1.	
13C-1,2,3,7,8-PeCDD	92.3	25.0 - 181				Analyte is present in l		K	
13C-1,2,3,4,7,8-HxCDD	95.7	32.0 - 141			C	Chemical Interference	Э		
13C-1,2,3,6,7,8-HxCDD	93.8	28.0 - 130			D	Presence of Diphenyl	Ethers		
13C-1,2,3,4,6,7,8-HpCDD	90.8	23.0 - 140				Analyte concentration		ibration ra	nae
13C-OCDD	82.9	17.0 - 157				•			U
100 0 0 7 0 7005	00.7	040 400			E .	Analyte concentration	ı is above ca	libration ra	ange
13C-2,3,7,8-TCDF	92.7	24.0 - 169			F.	Analyte confirmation	on secondar	y column	
13C-1,2,3,7,8-PeCDF	87.9	24.0 - 185			J	Analyte concentration	is below cal	ibration ra	nae
13C-2,3,4,7,8-PeCDF	92.9	21.0 - 178				Maximum possible co			3-
13C-1,2,3,4,7,8-HxCDF	82.6 78.7	26.0 - 152 26.0 - 123				•			
13C-1,2,3,6,7,8-HxCDF	70.7 85.4	28.0 - 123 28.0 - 136			ND .	Analyte Not Detected	at Detection	Limit Leve	el

Analyst:	\mathscr{G}	
Date: 3	/2/2020	

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-OCDF

Cleanup Surrogate 37CI-2,3,7,8-TCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

85.4

87.4

75.1

88.0

82.6

85.2

28.0 - 136

29.0 - 147

28.0 - 143

26.0 - 138

17.0 - 157

35.0 - 197

DPV Reviewed By: Date: 3/2/2020

P Pre-filtered through a Whatman 0.7um GF/F filter

Sample acceptance criteria not met

Result taken from dilution or reinjection

NP Not Provided

Matrix interferences

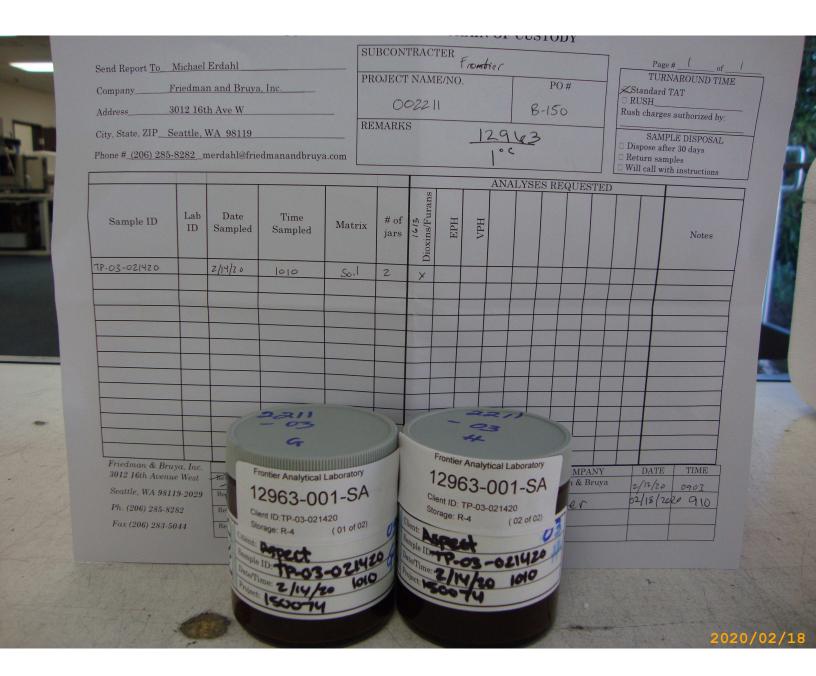
Х

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

					SUBC	ONT	RACT	ER 🗾	1.	_						Page #		of
Send Report <u>To</u>	Michael	l Erdahl	S BANGE S BANGE S SAN AND STATE OF THE SAN AND STAT						<i>watie</i>	<u>^</u>		DO //		41			AROUND '	TIME
Company	Friedma	an and Bruya	ı, Inc.		PROJ.	ECT	NAME	Z/NO.				PO#			∠ Stan □ RUS		rat	
Address	3012 16	th Ave W				00	2211				B-	150			Rush c	harge:	s authorize	d by:
City, State, ZIP_	Seattle,	WA 98119			REMA	ARKS	5		12	91	<u>e3</u>					ose af	PLE DISPO ter 30 days	SAL
Phone #_(206) 28	35-8282_1	merdahl@frie	edmanandbruya	a.com													ith instruct	ions
										ANA]	LYSES	S REG	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	ו צויר:	# of jars	1613 Dioxins/Furans	ЕРН	HdA								N	otes
TP-03-021420		2/14/20	1010	So	,(;	2	X											
				ļ													-	
i		*													-		_	
			3							,								

														ļ		-	<u> </u>	
														OMB	1		DAME	mixes
Friedman & Bru 3012 16th Avenu		Relinguished	SIGNATURE by:			Mich	nael Er	PRIN' dahl	' NAM	1E		Fr		OMPA in & F	ANY Bruya		DATE 2/17/20	7IME 0903
Seattle, WA 9811	19-2029	Received by	, 06	$ \sqrt{\bigcirc} $		\ <u>/</u>	all	ΛΙΛ	7	- 462	-Ω	FV	nat	ier			02/18/20	
Ph. (206) 285-82	82	Relinquished	by:)	0			WYV	'Y		- VOC		' '	0.11	101				
Fax (206) 283-50	044	Received by:	William St.					y-444							0000	06 of	000008	

Frontier Analytical Laboratory


Sample Login Form

FAL Project ID: 12963

Client:	Friedman & Bruya, Inc.
Client Project ID:	002211
Date Received:	02/18/2020
Time Received:	09:10 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	1
Duplicates:	1
Storage Location:	R-4

Method of Delivery:	Fed-Ex				
Tracking Number:	813795596972				
Shipping Container Received Intact	Yes				
Custody seals(s) present?	No				
Custody seals(s) intact?	No				
Sample Arrival Temperature (C)	1				
Cooling Method	Blue Ice				
Chain Of Custody Present?	Yes				
Return Shipping Container To Client	Yes				
Test aqueous sample for residual Chlorine	No				
Sodium Thiosulfate Added	No				
Adequate Sample Volume	Yes				
Appropriate Sample Container	Yes				
pH Range of Aqueous Sample	N/A				
Anomalies or additional comments:					

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2020

Ali Cochrane, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cochrane:

Included are the results from the testing of material submitted on February 14, 2020 from the Shelton C St. Landfill 150074, F&BI 002211 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 14, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Shelton C St. Landfill 150074, F&BI 002211 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
002211 -01	TP-01-021420
002211 -02	TP-02-021420
002211 -03	TP-03-021420
002211 -04	TP-04-021420
002211 -05	TP-03-1.0

Samples TP-01-021420, TP-02-021420, TP-03-021420, and TP-04-021420 were sent to Fremont Analytical for chlorinated herbicide analysis. In addition, sample TP-03-021420 was sent to Frontier Analytical for dioxin and furan analysis. The Fremont report is enclosed, and the report from Frontier Analytical will be forwarded upon receipt.

The 8081B calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly. In addition, several analytes in the matrix spike and matrix spike duplicate failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211 Date Extracted: 02/20/20

Date Extracted: 02/20/20 Date Analyzed: 02/20/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
TP-03-1.0 002211-05	< 0.02	< 0.02	< 0.02	<0.06	<5	82
Method Blank 02-20-20 07:19	< 0.02	< 0.02	< 0.02	<0.06	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

Date Extracted: 02/17/20 Date Analyzed: 02/17/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	<u>Diesel Range</u>	Motor Oil Range	Surrogate (% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}\text{-}C_{36})$	(Limit 48-168)
TP-01-021420 002211-01	<50	<250	70
TP-02-021420 002211-02	<50	460	77
TP-03-021420 002211-03	<50	<250	78
TP-04-021420 002211-04	<50	<250	73
Method Blank _{00-433 MB}	<50	<250	71

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	TP-01-021420	Client:	Aspect Consulting, LLC
Date Received:	02/14/20	Project:	Shelton C St. Landfill 150074
Data Fritmantadi	09/19/90	Lab ID:	009911 01

 Date Extracted:
 02/18/20
 Lab ID:
 002211-01

 Date Analyzed:
 02/18/20
 Data File:
 002211-01.097

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.08

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	TP-02-021420	Client:	Aspect Consulting, LLC
Date Received:	02/14/20	Project:	Shelton C St. Landfill 150074

 Date Extracted:
 02/18/20
 Lab ID:
 002211-02

 Date Analyzed:
 02/18/20
 Data File:
 002211-02.098

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.02

 Cadmium
 <1</td>

 Chromium
 34.5

 Lead
 62.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: TP-03-021420 Client: Aspect Consulting, LLC Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Lab ID: Date Extracted: 02/18/20 002211-03Date Analyzed: 02/18/20 Data File: 002211-03.099 Matrix: Soil Instrument: ICPMS2 SP

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm)

Arsenic 2.45 Cadmium <1 Chromium 35.7 Lead 29.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: TP-04-021420 Client: Aspect Consulting, LLC Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Lab ID: Date Extracted: 02/18/20 002211-04 Date Analyzed: 02/18/20 Data File: 002211-04.100 Matrix: Soil Instrument: ICPMS2 SP

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm)

Arsenic 2.50 Cadmium <1 Chromium 33.7 Lead 33.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Shelton C St. Landfill 150074

Date Extracted: 02/18/20 Lab ID: I0-098 mb
Date Analyzed: 02/18/20 Data File: I0-098 mb.061
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1

Analyte:

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

Date Extracted: 02/24/20 Date Analyzed: 02/24/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
TP-01-021420 002211-01	0.15
TP-02-021420 002211-02	<0.1
TP-03-021420 002211-03	0.14
TP-04-021420 002211-04	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: TP-01-021420 Client: Aspect Consulting, LLC
Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/17/20 Lab ID: 002211-01 1/25 Date Analyzed: 02/17/20 Data File: 021708.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.05 Acenaphthylene < 0.05 Acenaphthene < 0.05 Fluorene < 0.05 Phenanthrene < 0.05 Anthracene < 0.05 Fluoranthene 0.086 Pyrene 0.086 Benz(a)anthracene 0.056Chrysene 0.070 Benzo(a)pyrene 0.080 Benzo(b)fluoranthene 0.080 Benzo(k)fluoranthene < 0.05 Indeno(1,2,3-cd)pyrene 0.053Dibenz(a,h)anthracene < 0.05 Benzo(g,h,i)perylene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: TP-02-021420 Client: Aspect Consulting, LLC
Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/17/20 Lab ID: 002211-02 1/25 Date Analyzed: 02/17/20 Data File: 021709.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.05 Acenaphthylene < 0.05 Acenaphthene < 0.05 Fluorene < 0.05 Phenanthrene < 0.05 Anthracene < 0.05 Fluoranthene 0.085Pyrene 0.086 Benz(a)anthracene < 0.05 Chrysene 0.051 Benzo(a)pyrene < 0.05 Benzo(b)fluoranthene 0.050Benzo(k)fluoranthene < 0.05 Indeno(1,2,3-cd)pyrene < 0.05 Dibenz(a,h)anthracene < 0.05 Benzo(g,h,i)perylene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: TP-03-021420 Client: Aspect Consulting, LLC
Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/17/20 Lab ID: 002211-03 1/25 Date Analyzed: 02/17/20 Data File: 021710.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 88 d 31 163
Benzo(a)anthracene-d12 96 d 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.05 Acenaphthylene < 0.05 Acenaphthene < 0.05 Fluorene < 0.05 Phenanthrene < 0.05 Anthracene < 0.05 Fluoranthene < 0.05 Pyrene < 0.05 Benz(a)anthracene < 0.05 Chrysene < 0.05 Benzo(a)pyrene < 0.05 Benzo(b)fluoranthene < 0.05 Benzo(k)fluoranthene < 0.05 Indeno(1,2,3-cd)pyrene < 0.05 Dibenz(a,h)anthracene < 0.05 Benzo(g,h,i)perylene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: TP-04-021420 Client: Aspect Consulting, LLC
Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/17/20 Lab ID: 002211-04 1/25 Date Analyzed: 02/17/20 Data File: 021711.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Lower Upper Surrogates: % Recovery: Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 84 d 31 163 Benzo(a)anthracene-d12 100 d 24 168

< 0.05

Concentration
Compounds: mg/kg (ppm)

Naphthalene <0.05
Acenaphthylene <0.05
Acenaphthene <0.05
Fluorene <0.05
Phenanthrene <0.05

Phenanthrene Anthracene < 0.05 Fluoranthene 0.083 Pyrene 0.069 Benz(a)anthracene < 0.05 Chrysene < 0.05 Benzo(a)pyrene < 0.05 Benzo(b)fluoranthene < 0.05 Benzo(k)fluoranthene < 0.05 Indeno(1,2,3-cd)pyrene < 0.05 Dibenz(a,h)anthracene < 0.05

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Shelton C St. Landfill 150074

Date Extracted: 02/17/20 Lab ID: 00-437 mb 1/5 Date Analyzed: 02/17/20 Data File: 021707.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Benzo(a)anthracene-d12 88 $\overline{24}$ Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: TP-01-021420 Client: Aspect Consulting, LLC Date Received: Shelton C St. Landfill 150074 02/14/20 Project: 002211-01 1/6

Date Extracted: 02/19/20 Lab ID: Date Analyzed: 02/19/20 Data File: 021913.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight IJLOperator:

Upper Lower % Recovery: Limit: Limit:

 $\begin{array}{c} Surrogates:\\ TCMX \end{array}$ 150 50 73DBC 7450 150

Concentration Compounds: mg/kg (ppm) alpha-BHC < 0.01 gamma-BHC (Lindane) < 0.01 beta-BHC < 0.01 delta-BHC < 0.01 Heptachlor <0.01 ca Aldrin < 0.01 Heptachlor Epoxide 0.027 trans-Chlordane 0.011 cis-Chlordane 0.011 4,4'-DDE < 0.01 Endosulfan I < 0.01 Dieldrin 0.011 Endrin <0.01 ca 4,4'-DDD < 0.01 Endosulfan II < 0.01 4,4'-DDT 0.037 ca Endrin Aldehyde < 0.01 Methoxychlor <0.01 ca

Endosulfan Sulfate

Endrin Ketone

Toxaphene

Note: Heptachlor Epoxide RPD between primary and confirmation column is 130%.

< 0.01

<1 ca

<0.01 ca

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: TP-02-021420 Client: Aspect Consulting, LLC Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/19/20 Lab ID: 002211-02 1/6 Date Analyzed: 02/19/20 Data File: 021914.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight IJLOperator:

Upper Lower $\begin{array}{c} Surrogates:\\ TCMX \end{array}$ % Recovery: Limit: Limit: 150 63 50

DBC 59 50 150 Concentration Compounds: mg/kg (ppm) alpha-BHC < 0.01 gamma-BHC (Lindane) < 0.01 beta-BHC < 0.01 delta-BHC < 0.01 Heptachlor <0.01 ca Aldrin < 0.01 Heptachlor Epoxide < 0.01 trans-Chlordane < 0.01 cis-Chlordane < 0.01 < 0.01 4,4'-DDE Endosulfan I < 0.01 Dieldrin < 0.01 Endrin <0.01 ca 4,4'-DDD < 0.01 Endosulfan II < 0.01 4,4'-DDT <0.01 ca Endrin Aldehyde < 0.01 Methoxychlor

<0.01 ca

<0.01 ca

< 0.01

<1 ca

Endosulfan Sulfate

Endrin Ketone

Toxaphene

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: TP-03-021420 Client: Aspect Consulting, LLC
Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/19/20 Lab ID: 002211-03 1/6 Date Analyzed: 02/19/20 Data File: 021915.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight IJLOperator:

Lower Upper

 Surrogates:
 % Recovery:
 Limit:
 Limit:

 TCMX
 69
 50
 150

 DBC
 71
 50
 150

Concentration Compounds: mg/kg (ppm) alpha-BHC < 0.01 gamma-BHC (Lindane) < 0.01 beta-BHC < 0.01 delta-BHC < 0.01 Heptachlor <0.01 ca Aldrin < 0.01 Heptachlor Epoxide < 0.01 trans-Chlordane < 0.01 cis-Chlordane 0.012 4,4'-DDE < 0.01 Endosulfan I < 0.01 Dieldrin < 0.01 Endrin <0.01 ca

4,4'-DDD < 0.01 Endosulfan II < 0.01 4,4'-DDT <0.01 ca Endrin Aldehyde < 0.01 Methoxychlor <0.01 ca Endosulfan Sulfate < 0.01 **Endrin Ketone** <0.01 ca Toxaphene <1 ca

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: TP-04-021420 Client: Aspect Consulting, LLC Date Received: 02/14/20 Project: Shelton C St. Landfill 150074

Date Extracted: 02/19/20 Lab ID: 002211-04 1/6 Date Analyzed: 02/19/20 Data File: 021916.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight IJLOperator:

Upper Lower % Recovery: Limit: Limit:

 $\begin{array}{c} Surrogates:\\ TCMX \end{array}$ $\frac{83}{77}$ 150 50 DBC 50 150

Concentration Compounds: mg/kg (ppm) alpha-BHC < 0.01 gamma-BHC (Lindane) < 0.01 beta-BHC < 0.01 delta-BHC < 0.01 Heptachlor <0.01 ca Aldrin < 0.01 Heptachlor Epoxide < 0.01 trans-Chlordane < 0.01 cis-Chlordane < 0.01 < 0.01 4,4'-DDE Endosulfan I < 0.01 Dieldrin < 0.01 Endrin <0.01 ca 4,4'-DDD < 0.01 Endosulfan II < 0.01 4,4'-DDT <0.01 ca Endrin Aldehyde < 0.01 Methoxychlor <0.01 ca Endosulfan Sulfate < 0.01 **Endrin Ketone** <0.01 ca Toxaphene <1 ca

ENVIRONMENTAL CHEMISTS

Analysis For Organochlorine Pesticides By EPA Method 8081B

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Shelton C St. Landfill 150074

Date Extracted: 02/19/20 Lab ID: 00-438 mb 1/6 Date Analyzed: 02/19/20 Data File: 021906.D GC9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight IJLOperator:

Concentration Compounds: mg/kg (ppm) alpha-BHC < 0.01 gamma-BHC (Lindane) < 0.01 beta-BHC < 0.01 delta-BHC < 0.01 Heptachlor < 0.01 Aldrin < 0.01 Heptachlor Epoxide < 0.01 trans-Chlordane < 0.01 cis-Chlordane < 0.01 4,4'-DDE < 0.01 Endosulfan I < 0.01 Dieldrin < 0.01 Endrin < 0.01 4,4'-DDD < 0.01 Endosulfan II < 0.01 4,4'-DDT < 0.01 Endrin Aldehyde < 0.01 Methoxychlor < 0.01 Endosulfan Sulfate < 0.01 **Endrin Ketone** < 0.01 Toxaphene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 002211-05 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	96	69-120
Toluene	mg/kg (ppm)	0.5	96	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	98	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	105	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 002207-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	116	104	73-135	11

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	102	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 002223-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	30.1	0 b	0 b	75-125	0 b
Cadmium	mg/kg (ppm)	10	<1	98	95	75 - 125	3
Chromium	mg/kg (ppm)	50	13.6	88	81	75 - 125	8
Lead	mg/kg (ppm)	50	18.6	77 b	$72 \mathrm{\ b}$	75 - 125	7 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	81	80-120
Cadmium	mg/kg (ppm)	10	100	80-120
Chromium	mg/kg (ppm)	50	104	80-120
Lead	mg/kg (ppm)	50	106	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 002211-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	98	96	71-125	2

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	100	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	82	85	58-121	4
Acenaphthylene	mg/kg (ppm)	0.17	86	89	54 - 121	3
Acenaphthene	mg/kg (ppm)	0.17	85	88	54 - 123	3
Fluorene	mg/kg (ppm)	0.17	86	91	56 - 127	6
Phenanthrene	mg/kg (ppm)	0.17	87	90	55-122	3
Anthracene	mg/kg (ppm)	0.17	85	93	50-120	9
Fluoranthene	mg/kg (ppm)	0.17	92	96	54 - 129	4
Pyrene	mg/kg (ppm)	0.17	88	89	53 - 127	1
Benz(a)anthracene	mg/kg (ppm)	0.17	89	93	51-115	4
Chrysene	mg/kg (ppm)	0.17	86	91	55-129	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	76	77	56 - 123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	77	83	54 - 131	7
Benzo(a)pyrene	mg/kg (ppm)	0.17	78	85	51-118	9
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	82	80	49-148	2
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	83	50-141	8
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	83	76	52 - 131	9

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

Laboratory Code: 002211-04 1/6 (Matrix Spike) 1/6

				Percent	Percent		
	Reporting Units	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte		Level	Result	MS	MSD	Criteria	(Limit 20)
alpha-BHC	mg/kg (ppm)	0.1	< 0.01	25 vo	27 vo	50-150	8
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	< 0.01	25 vo	26 vo	50-150	4
beta-BHC	mg/kg (ppm)	0.1	< 0.01	26 vo	28 vo	50-150	7
delta-BHC	mg/kg (ppm)	0.1	< 0.01	26 vo	28 vo	50-150	7
Heptachlor	mg/kg (ppm)	0.1	< 0.01	20 vo	22 vo	50 - 150	10
Aldrin	mg/kg (ppm)	0.1	< 0.01	26 vo	28 vo	50 - 150	7
Heptachlor Epoxide	mg/kg (ppm)	0.1	< 0.01	28 vo	30 vo	50 - 150	7
trans-Chlordane	mg/kg (ppm)	0.1	< 0.01	54	49 vo	50 - 150	10
cis-Chlordane	mg/kg (ppm)	0.1	< 0.01	26 vo	28 vo	50 - 150	7
4,4'-DDE	mg/kg (ppm)	0.1	< 0.01	27 vo	29 vo	50 - 150	7
Endosulfan I	mg/kg (ppm)	0.1	< 0.01	27 vo	29 vo	50 - 150	7
Dieldrin	mg/kg (ppm)	0.1	< 0.01	28 vo	29 vo	50-150	4
Endrin	mg/kg (ppm)	0.1	< 0.01	26 vo	28 vo	50-150	7
4,4'-DDD	mg/kg (ppm)	0.1	< 0.01	34 vo	33 vo	50-150	3
Endosulfan II	mg/kg (ppm)	0.1	< 0.01	30 vo	30 vo	50-150	0
4,4'-DDT	mg/kg (ppm)	0.1	< 0.01	9 vo	12 vo	50-150	29 vo
Endrin Aldehyde	mg/kg (ppm)	0.1	< 0.01	23 vo	28 vo	50-150	20
Methoxychlor	mg/kg (ppm)	0.1	< 0.01	13 vo	15 vo	50-150	14
Endosulfan Sulfate	mg/kg (ppm)	0.1	< 0.01	24 vo	29 vo	50-150	19
Endrin Ketone	mg/kg (ppm)	0.1	< 0.01	19 vo	22 vo	50-150	15
Toxaphene	mg/kg (ppm)	4	<1	45 vo	42 vo	50-150	7

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/20 Date Received: 02/14/20

Project: Shelton C St. Landfill 150074, F&BI 002211

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

		Percent							
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
alpha-BHC	mg/kg (ppm)	0.1	86	70-130					
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	88	70-130					
beta-BHC	mg/kg (ppm)	0.1	88	70-130					
delta-BHC	mg/kg (ppm)	0.1	91	70-130					
Heptachlor	mg/kg (ppm)	0.1	87	70-130					
Aldrin	mg/kg (ppm)	0.1	89	70-130					
Heptachlor Epoxide	mg/kg (ppm)	0.1	90	70-130					
trans-Chlordane	mg/kg (ppm)	0.1	92	70-130					
cis-Chlordane	mg/kg (ppm)	0.1	92	70-130					
4,4'-DDE	mg/kg (ppm)	0.1	92	70-130					
Endosulfan I	mg/kg (ppm)	0.1	91	70-130					
Dieldrin	mg/kg (ppm)	0.1	93	70-130					
Endrin	mg/kg (ppm)	0.1	93	70-130					
4,4'-DDD	mg/kg (ppm)	0.1	89	70-130					
Endosulfan II	mg/kg (ppm)	0.1	92	70-130					
4,4'-DDT	mg/kg (ppm)	0.1	97	70-130					
Endrin Aldehyde	mg/kg (ppm)	0.1	94	70-130					
Methoxychlor	mg/kg (ppm)	0.1	101	70-130					
Endosulfan Sulfate	mg/kg (ppm)	0.1	93	70-130					
Endrin Ketone	mg/kg (ppm)	0.1	93	70-130					
Toxaphene	mg/kg (ppm)	4	86	70-130					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 002211

Work Order Number: 2002273

March 02, 2020

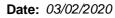
Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 2/17/2020 for the analyses presented in the following report.

Herbicides by EPA Method 8151A Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 002211 **Work Order:** 2002273

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2002273-001	TP-01-021420	02/14/2020 8:55 AM	02/17/2020 9:33 AM
2002273-002	TP-02-021420	02/14/2020 9:40 AM	02/17/2020 9:33 AM
2002273-003	TP-03-021420	02/14/2020 10:10 AM	02/17/2020 9:33 AM
2002273-004	TP-04-021420	02/14/2020 10:55 AM	02/17/2020 9:33 AM

Case Narrative

WO#: **2002273**Date: **3/2/2020**

CLIENT: Friedman & Bruya

Project: 002211

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2002273**

Date Reported: 3/2/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 8:55:00 AM

Project: 002211

Lab ID: 2002273-001 **Matrix:** Soil

Client Sample ID: TP-01-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Herbicides by EPA Method 8151A	i			Batch	n ID:	27511 Analyst: SB	
Dicamba	ND	40.4		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
2,4-D	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
2,4-DP	ND	28.8		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
2,4,5-TP (Silvex)	ND	23.1		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
2,4,5-T	ND	57.7		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Dinoseb	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Dalapon	ND	231	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM	
2,4-DB	ND	28.8		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
MCPP	ND	5,080		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
MCPA	ND	3,230		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Picloram	ND	57.7	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Bentazon	ND	40.4		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Chloramben	ND	23.1		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Acifluorfen	ND	92.3	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM	
3,5-Dichlorobenzoic acid	ND	46.2		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
4-Nitrophenol	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Dacthal (DCPA)	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM	
Surr: 2,4-Dichlorophenylacetic acid	76.0	15.3 - 163		%Rec	1	2/25/2020 4:49:16 PM	

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 15.2 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 9:40:00 AM

Project: 002211

Lab ID: 2002273-002 **Matrix:** Soil

Client Sample ID: TP-02-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Herbicides by EPA Method 8151A	ı.			Batch	n ID:	27511 Analyst: SB	
Dicamba	ND	41.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
2,4-D	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
2,4-DP	ND	29.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
2,4,5-TP (Silvex)	ND	23.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
2,4,5-T	ND	59.6		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Dinoseb	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Dalapon	ND	238	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM	
2,4-DB	ND	29.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
MCPP	ND	5,250		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
MCPA	ND	3,340		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Picloram	ND	59.6	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Bentazon	ND	41.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Chloramben	ND	23.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Acifluorfen	ND	95.4	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM	
3,5-Dichlorobenzoic acid	ND	47.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
4-Nitrophenol	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Dacthal (DCPA)	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM	
Surr: 2,4-Dichlorophenylacetic acid	54.3	15.3 - 163		%Rec	1	2/25/2020 5:09:49 PM	

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 17.6 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 10:10:00 AM

Project: 002211

Lab ID: 2002273-003 **Matrix:** Soil

Client Sample ID: TP-03-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID:	27511 Analyst: SB
Dicamba	ND	41.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-D	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-DP	ND	29.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4,5-TP (Silvex)	ND	23.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4,5-T	ND	59.4		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dinoseb	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dalapon	ND	237	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-DB	ND	29.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
MCPP	ND	5,220		μg/Kg-dry	1	2/25/2020 5:30:15 PM
MCPA	ND	3,320		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Picloram	ND	59.4	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
Bentazon	ND	41.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Chloramben	ND	23.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Acifluorfen	ND	95.0	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
3,5-Dichlorobenzoic acid	ND	47.5		μg/Kg-dry	1	2/25/2020 5:30:15 PM
4-Nitrophenol	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dacthal (DCPA)	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Surr: 2,4-Dichlorophenylacetic acid	71.1	15.3 - 163		%Rec	1	2/25/2020 5:30:15 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 15.9 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

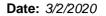
Client: Friedman & Bruya Collection Date: 2/14/2020 10:55:00 AM

Project: 002211

Lab ID: 2002273-004 **Matrix**: Soil

Client Sample ID: TP-04-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 2	27511 Analyst: SB
Dicamba	ND	41.4		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-D	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-DP	ND	29.6		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4,5-TP (Silvex)	ND	23.7		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4,5-T	ND	59.1		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dinoseb	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dalapon	ND	237	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-DB	ND	29.6		μg/Kg-dry	1	2/25/2020 5:50:42 PM
MCPP	ND	5,200		μg/Kg-dry	1	2/25/2020 5:50:42 PM
MCPA	ND	3,310		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Picloram	ND	59.1	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
Bentazon	ND	41.4		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Chloramben	ND	23.7		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Acifluorfen	ND	94.6	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
3,5-Dichlorobenzoic acid	ND	47.3		μg/Kg-dry	1	2/25/2020 5:50:42 PM
4-Nitrophenol	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dacthal (DCPA)	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Surr: 2,4-Dichlorophenylacetic acid	67.7	15.3 - 163		%Rec	1	2/25/2020 5:50:42 PM


NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 16.9 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: 2002273

CLIENT: Friedman & Bruya

Project: 002211

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID: MB-27511	SampType: MBLK			Units: µg/Kg		Prep Date:	2/19/20	20	RunNo: 576	530	
Client ID: MBLKS	Batch ID: 27511					Analysis Date:	2/25/20	20	SeqNo: 1150345		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	35.0									
2,4-D	ND	30.0									
2,4-DP	ND	25.0									
2,4,5-TP (Silvex)	ND	20.0									
2,4,5-T	ND	50.0									
Dinoseb	ND	30.0									
Dalapon	ND	200									Q
2,4-DB	ND	25.0									
MCPP	ND	4,400									
MCPA	ND	2,800									
Picloram	ND	50.0									Q
Bentazon	ND	35.0									
Chloramben	ND	20.0									
Acifluorfen	ND	80.0									Q
3,5-Dichlorobenzoic acid	ND	40.0									
4-Nitrophenol	ND	30.0									
Dacthal (DCPA)	ND	30.0									
Surr: 2,4-Dichlorophenylacetic aci	d 1,050		1,000		105	15.3	163				

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: LCS-27511	SampType: LCS			Units: µg/Kg Prep Date: 2/19/2020			20	RunNo: 57630			
Client ID: LCSS	Batch ID: 27511				Analysis Date: 2/25/2020			SeqNo: 1150346			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	198	35.0	200.0	0	99.1	21.2	167				
2,4-D	220	30.0	200.0	0	110	32	176				
2,4-DP	202	25.0	200.0	0	101	25.8	171				
2,4,5-TP (Silvex)	214	20.0	200.0	0	107	23.6	164				
2,4,5-T	215	50.0	200.0	0	108	25	166				
Dinoseb	71.9	30.0	200.0	0	36.0	5	168				

Original Page 9 of 14

Work Order: 2002273

CLIENT: Friedman & Bruya

Project: 002211

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID: LCS-27511	SampType: LCS			Units: µg/Kg		Prep Dat	e: 2/19/20	20	RunNo: 576	30	
Client ID: LCSS	Batch ID: 27511					Analysis Dat	e: 2/25/20	20	SeqNo: 115	0346	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dalapon	843	200	1,000	0	84.3	29.2	195				
2,4-DB	216	25.0	200.0	0	108	8.11	184				
MCPP	1200	4,400	1,000	0	120	17.3	191				
MCPA	1210	2,800	1,000	0	121	13.6	192				
Picloram	229	50.0	200.0	0	114	5	175				
Bentazon	213	35.0	200.0	0	107	21.5	170				
Chloramben	117	20.0	200.0	0	58.4	5	114				
Acifluorfen	102	80.0	200.0	0	51.2	5	168				
3,5-Dichlorobenzoic acid	204	40.0	200.0	0	102	26.2	174				
4-Nitrophenol	227	30.0	200.0	0	114	5.02	160				
Dacthal (DCPA)	207	30.0	200.0	0	103	18	168				
Surr: 2,4-Dichlorophenylacetic acid	1,090		1,000		109	15.3	163				

Sample ID: 2002204-034ADUP	SampType: DUP			Units: µg/l	(g-dry	Prep Da	te: 2/19/2 ()20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Da	te: 2/25/2 0)20	SeqNo: 115	50348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	59.4						0	0	30	
2,4-D	ND	50.9						0	0	30	
2,4-DP	ND	42.4						0	0	30	
2,4,5-TP (Silvex)	ND	33.9						0	0	30	
2,4,5-T	ND	84.8						0	0	30	
Dinoseb	ND	50.9						0	0	30	
Dalapon	ND	339						0	0	30	Q
2,4-DB	ND	42.4						0	0	30	
MCPP	ND	7,470						0	0	30	
MCPA	ND	4,750						0	0	30	
Picloram	ND	84.8						0	0	30	Q
Bentazon	ND	59.4						0	0	30	
Chloramben	ND	33.9						0	0	30	

Original Page 10 of 14

Work Order: 2002273

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Herbicides by EPA Method 8151A

Project:	002211

Sample ID: 2002204-034ADUP	SampType: DUP			Units: µg/K	(g-dry	Prep Dat	e: 2/19/2 0	20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Dat	e: 2/25/20	20	SeqNo: 115	50348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acifluorfen	ND	136						0	0	30	Q
3,5-Dichlorobenzoic acid	ND	67.9						0	0	30	
4-Nitrophenol	ND	50.9						0	0	30	
Dacthal (DCPA)	ND	50.9						0	0	30	
Surr: 2,4-Dichlorophenylacetic acid	d 527		1,697		31.0	15.3	163		0		

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: 2002204-034AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 2/19/2 0)20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Da	te: 2/25/2 0)20	SeqNo: 115	50349	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	39.2	59.6	340.4	0	11.5	5	136				
2,4-D	78.3	51.1	340.4	0	23.0	5	151				
2,4-DP	95.3	42.5	340.4	0	28.0	5	149				
2,4,5-TP (Silvex)	123	34.0	340.4	0	36.2	5.43	140				
2,4,5-T	76.5	85.1	340.4	0	22.5	6.68	133				
Dinoseb	192	51.1	340.4	0	56.4	5	141				
Dalapon	118	340	1,702	0	6.96	5	179				
2,4-DB	203	42.5	340.4	0	59.7	5.57	160				
MCPP	746	7,490	1,702	0	43.8	5	174				
MCPA	728	4,770	1,702	0	42.8	5	154				
Picloram	62.0	85.1	340.4	0	18.2	5	139				
Bentazon	138	59.6	340.4	0	40.5	5.31	146				
Chloramben	30.7	34.0	340.4	0	9.02	5	134				
Acifluorfen	65.7	136	340.4	0	19.3	5	168				
3,5-Dichlorobenzoic acid	97.5	68.1	340.4	0	28.6	6.99	144				
4-Nitrophenol	198	51.1	340.4	0	58.3	10.2	139				
Dacthal (DCPA)	9.84	51.1	340.4	0	2.89	5	156				S
Surr: 2,4-Dichlorophenylacetic ac	eid 690		1,702		40.5	15.3	163				

Original Page 11 of 14

Work Order: 2002273

QC SUMMARY REPORT

CLIENT: Friedman & Bruya
Project: 002211

Herbicides by EPA Method 8151A

Sample ID: 2002204-034AMS SampType: MS Units: μg/Kg-dry Prep Date: 2/19/2020 RunNo: 57630

Client ID: **BATCH** Batch ID: **27511** Analysis Date: **2/25/2020** SeqNo: **1150349**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2002204-034AMSD	SampType	e: MSD			Units: µg/K	g-dry	Prep Date	2/19/20)20	RunNo: 576	630	
Client ID: BATCH	Batch ID:	27511					Analysis Date	2/25/20)20	SeqNo: 115	50350	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		64.3	59.3	338.7	0	19.0	5	136	39.15	48.7	30	
2,4-D		101	50.8	338.7	0	29.8	5	151	78.30	25.2	30	
2,4-DP		119	42.3	338.7	0	35.2	5	149	95.35	22.4	30	
2,4,5-TP (Silvex)		150	33.9	338.7	0	44.4	5.43	140	123.4	19.8	30	
2,4,5-T		103	84.7	338.7	0	30.5	6.68	133	76.46	29.9	30	
Dinoseb		207	50.8	338.7	0	61.1	5	141	192.0	7.45	30	
Dalapon		146	339	1,694	0	8.63	5	179	118.4	21.0	30	
2,4-DB		219	42.3	338.7	0	64.6	5.57	160	203.2	7.42	30	
MCPP		997	7,450	1,694	0	58.9	5	174	746.2	28.8	30	
MCPA		980	4,740	1,694	0	57.9	5	154	727.8	29.6	30	
Picloram		64.2	84.7	338.7	0	19.0	5	139	62.03	3.45	30	
Bentazon		157	59.3	338.7	0	46.4	5.31	146	138.0	12.9	30	
Chloramben		33.5	33.9	338.7	0	9.89	5	134	30.72	8.63	30	
Acifluorfen		113	135	338.7	0	33.5	5	168	65.69	53.4	30	
3,5-Dichlorobenzoic acid		128	67.7	338.7	0	37.9	6.99	144	97.50	27.3	30	
4-Nitrophenol		180	50.8	338.7	0	53.1	10.2	139	198.3	9.69	30	
Dacthal (DCPA)		8.91	50.8	338.7	0	2.63	5	156	9.837	9.85	30	S
Surr: 2,4-Dichlorophenylacetic ac	id	743		1,694		43.9	15.3	163		0		

NOTES:

Original Page 12 of 14

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

С	ient Name:	FB	Work O	rder Numbe	er: 20022	273
Lo	ogged by:	Carissa True	Date Re	ceived:	2/17/2	2020 9:33:00 AM
<u>Cha</u>	in of Custo	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗆	Not Present □
2.	How was the	sample delivered?	<u>FedE</u>	<u> </u>		
Log	ln .					
_	Coolers are p	present?	Yes		No 🗸] NA □
0.			No coo	ler present	<u>t</u>	
4.	Shipping cont	tainer/cooler in good condition?	Yes	✓	No 🗆	
5.		s present on shipping container/cooler? aments for Custody Seals not intact)	Yes		No 🗸	Not Required
6.	Was an atten	npt made to cool the samples?	Yes	✓	No	NA □
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	✓	No 🗆	NA □
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆	
10.	Are samples	properly preserved?	Yes	✓	No	
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗆
12.	Is there head	space in the VOA vials?	Yes		No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗆	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗆	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗆	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No	
17.	Were all hold	ing times able to be met?	Yes	✓	No	
Spe	cial Handli	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No 🗆	NA 🗹
	Person	Notified: Date:				
	By Who	m: Via:	eMa	il 🗌 Pho	ne 🗌 Fa	ax In Person
	Regardi	ng:				
	Client In	structions:				
19.	Additional rer	narks:				
Item	Information					
		Item # Temp ⁰C				

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

							Received by:		Fax (206) 283-5044
String		4	-	600		1	Relinquished by		Ph. (206) 285-8282
5	2	4	2	0		12	Received by:	029	Seattle, WA 98119-2029
		ahl	el Erd	Michael Erdahl	1	an a	Relinquished by	est -	3012 16th Avenue West
S -	Z	PRINT NAME	p		7	SIGNATURE		Inc.	Friedman & Bruya, Inc.
		_							
			1						
\dagger									
+									
×				-	_	1055			TP-04-021420
×			20	-		010/			TP-03-021420
×				-		Ohto	-		TP-62-021420
×				-	No. 1	5580	2/14/26		TP-01-62/420
8151	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
ANA									
00	600	As pre 1	AS		com	merdahl@friedmanandbruya.com	merdahl@frie	1	Phone # (206) 285-8282
,)		>	REMARKS	REI		Seattle, WA 98119	eattle,	City, State, ZIP_S
		-	202211	000			3012 16th Ave W	012 16	Address 3
		NO.	NAME	PROJECT NAME/NO.	PR	Inc.	Friedman and Bruya, Inc	riedma	CompanyF
tromp	7	ER T	RACT	SUBCONTRACTER	SU		Michael Erdahl	Michae	Send Report To 1

Friedman & Bruya COMPANY

2/17/20

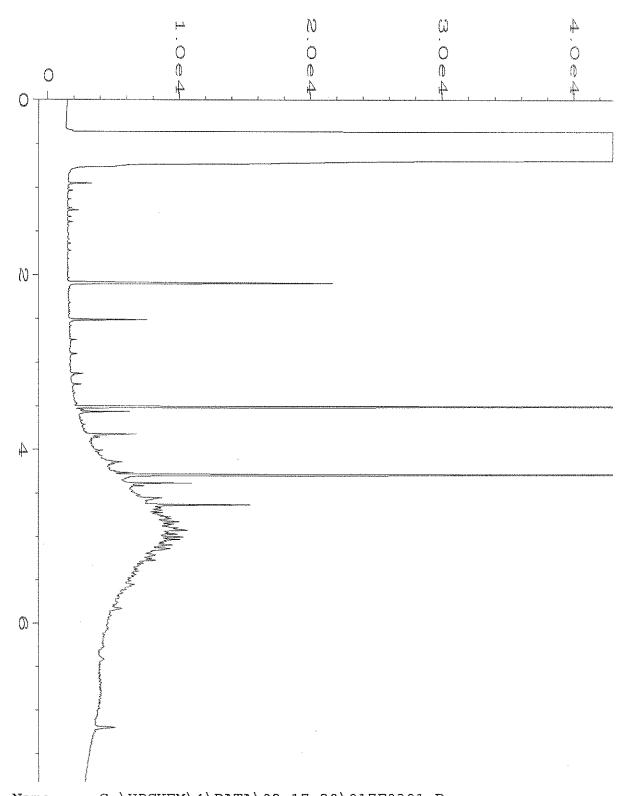
DATE

2/17/20

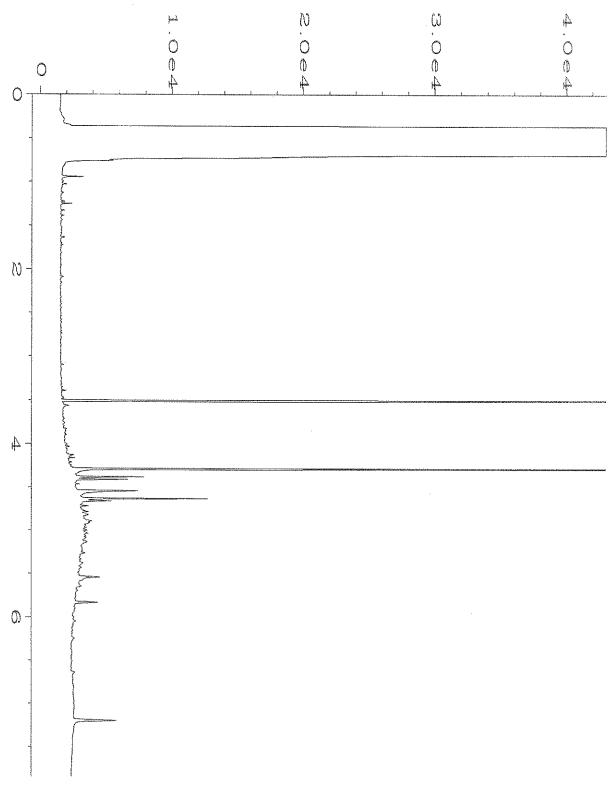
0933 WY 05:80 TIME Notes

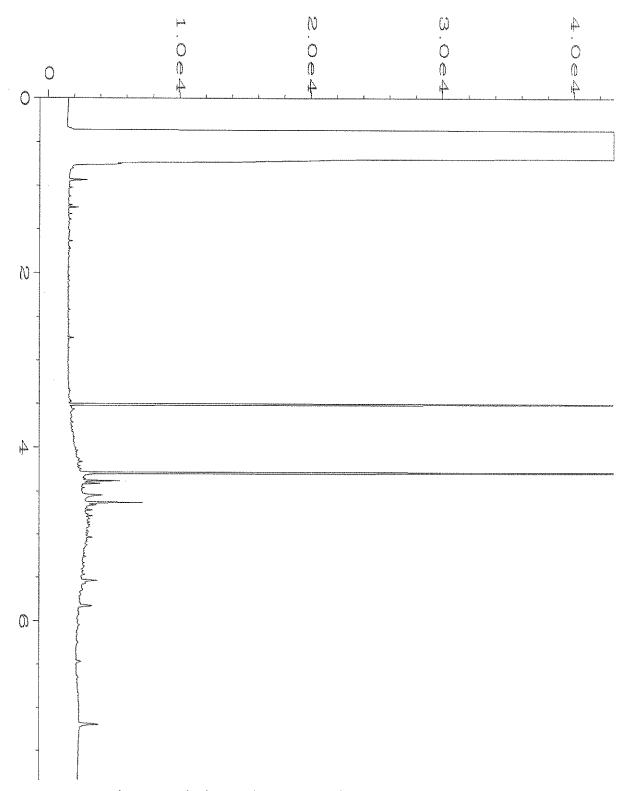
8151

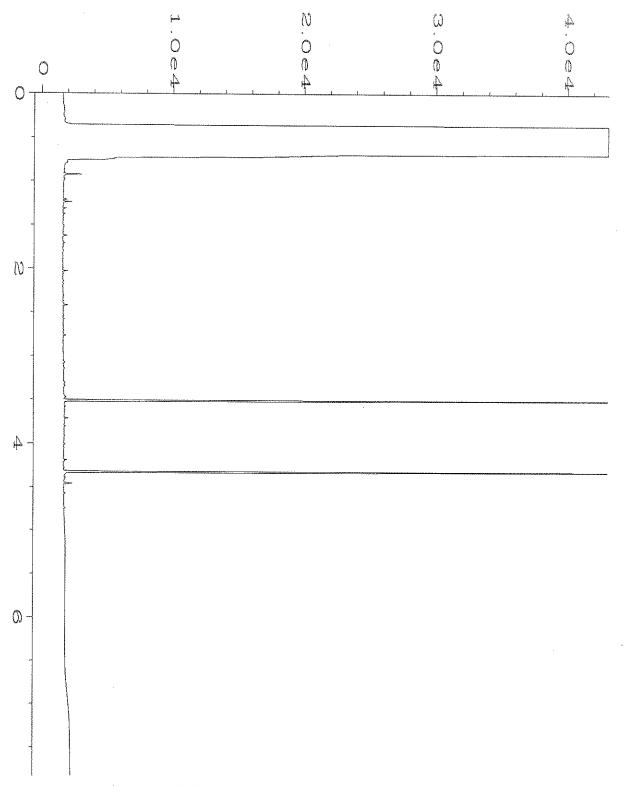
ANALYSES REQUESTED


SAMPLE DISPOSAL □ Dispose after 30 days □ Return samples □ Will call with instructions	☐ RUSH☐ Rush charges authorized by:	TURNAROUND TIME	2062273 Page # _ of
P:	age 14 of	14	

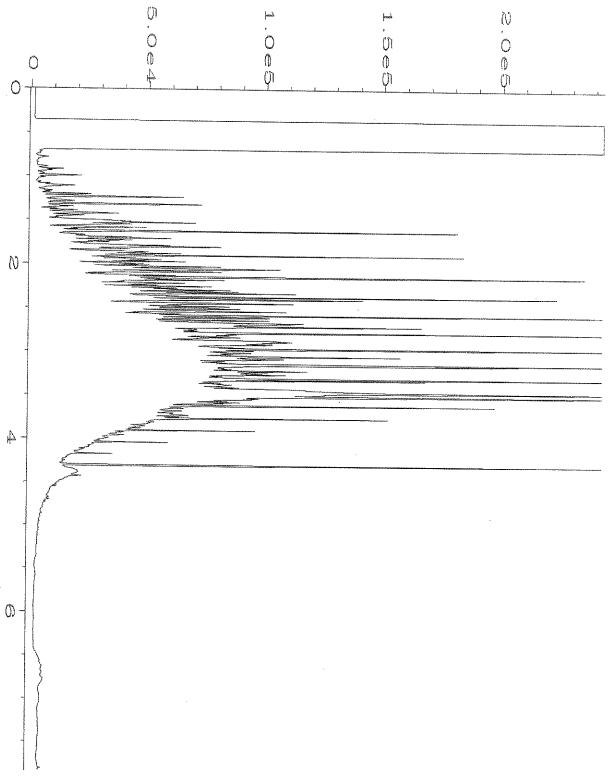
B-111


PO#


Acquired on : 17 Feb 20 11:20 AM Instrument Method: DX.MTH Report Created on: 18 Feb 20 07:12 AM Analysis Method : DEFAULT.MTH




```
Data File Name
                 : C:\HPCHEM\4\DATA\02-17-20\017F0301.D
Operator
                 : TL
                                               Page Number
                                               Vial Number
Instrument
                 : GC#4
Sample Name
                 : 002211-02
                                                Injection Number : 1
                                               Sequence Line
                                                              : 3
Run Time Bar Code:
Acquired on
                : 17 Feb 20 11:32 AM
                                               Instrument Method: DX.MTH
Report Created on: 18 Feb 20 07:12 AM
                                               Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\4\DATA\02-17-20\018F0301.D
Data File Name
Operator
                 TL
                                                 Page Number
Instrument
                                                 Vial Number
                 : GC#4
                                                                   : 18
                                                 Injection Number: 1
Sample Name
                 : 002211-03
                                                 Sequence Line : 3
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
             : 17 Feb 20 11:44 AM
Report Created on: 18 Feb 20 07:13 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\02-17-20\006F0301.D
Operator
                                                  Page Number
                  TL
Instrument
                  : GC#4
                                                  Vial Number
Sample Name
                                                  Injection Number: 1
                  : 00-433 mb
Run Time Bar Code:
                                                  Sequence Line : 3
Instrument Method: DX.MTH
Acquired on
                 : 17 Feb 20
                              08:47 AM
Report Created on: 18 Feb 20 07:13 AM
                                                  Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\02-17-20\005F0501.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC#4
                                               Vial Number
Sample Name
                 : 1000 Dx 58-146C
                                                Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 5
Acquired on
                : 17 Feb 20 01:46 PM
                                               Instrument Method: DX.MTH
Report Created on: 18 Feb 20 07:13 AM
                                               Analysis Method : DEFAULT.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 002211

Work Order Number: 2002273

March 02, 2020

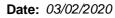
Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 2/17/2020 for the analyses presented in the following report.

Herbicides by EPA Method 8151A Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 002211 **Work Order:** 2002273

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2002273-001	TP-01-021420	02/14/2020 8:55 AM	02/17/2020 9:33 AM
2002273-002	TP-02-021420	02/14/2020 9:40 AM	02/17/2020 9:33 AM
2002273-003	TP-03-021420	02/14/2020 10:10 AM	02/17/2020 9:33 AM
2002273-004	TP-04-021420	02/14/2020 10:55 AM	02/17/2020 9:33 AM

Case Narrative

WO#: **2002273**Date: **3/2/2020**

CLIENT: Friedman & Bruya

Project: 002211

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2002273**

Date Reported: 3/2/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 8:55:00 AM

Project: 002211

Lab ID: 2002273-001 **Matrix:** Soil

Client Sample ID: TP-01-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A	i			Batch	n ID:	27511 Analyst: SB
Dicamba	ND	40.4		μg/Kg-dry	1	2/25/2020 4:49:16 PM
2,4-D	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM
2,4-DP	ND	28.8		μg/Kg-dry	1	2/25/2020 4:49:16 PM
2,4,5-TP (Silvex)	ND	23.1		μg/Kg-dry	1	2/25/2020 4:49:16 PM
2,4,5-T	ND	57.7		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Dinoseb	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Dalapon	ND	231	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM
2,4-DB	ND	28.8		μg/Kg-dry	1	2/25/2020 4:49:16 PM
MCPP	ND	5,080		μg/Kg-dry	1	2/25/2020 4:49:16 PM
MCPA	ND	3,230		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Picloram	ND	57.7	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM
Bentazon	ND	40.4		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Chloramben	ND	23.1		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Acifluorfen	ND	92.3	Q	μg/Kg-dry	1	2/25/2020 4:49:16 PM
3,5-Dichlorobenzoic acid	ND	46.2		μg/Kg-dry	1	2/25/2020 4:49:16 PM
4-Nitrophenol	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Dacthal (DCPA)	ND	34.6		μg/Kg-dry	1	2/25/2020 4:49:16 PM
Surr: 2,4-Dichlorophenylacetic acid	76.0	15.3 - 163		%Rec	1	2/25/2020 4:49:16 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 15.2 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 9:40:00 AM

Project: 002211

Lab ID: 2002273-002 **Matrix:** Soil

Client Sample ID: TP-02-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A	ı.			Batch	n ID:	27511 Analyst: SB
Dicamba	ND	41.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM
2,4-D	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
2,4-DP	ND	29.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
2,4,5-TP (Silvex)	ND	23.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
2,4,5-T	ND	59.6		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Dinoseb	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Dalapon	ND	238	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM
2,4-DB	ND	29.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
MCPP	ND	5,250		μg/Kg-dry	1	2/25/2020 5:09:49 PM
MCPA	ND	3,340		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Picloram	ND	59.6	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM
Bentazon	ND	41.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Chloramben	ND	23.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Acifluorfen	ND	95.4	Q	μg/Kg-dry	1	2/25/2020 5:09:49 PM
3,5-Dichlorobenzoic acid	ND	47.7		μg/Kg-dry	1	2/25/2020 5:09:49 PM
4-Nitrophenol	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Dacthal (DCPA)	ND	35.8		μg/Kg-dry	1	2/25/2020 5:09:49 PM
Surr: 2,4-Dichlorophenylacetic acid	54.3	15.3 - 163		%Rec	1	2/25/2020 5:09:49 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 17.6 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

Client: Friedman & Bruya Collection Date: 2/14/2020 10:10:00 AM

Project: 002211

Lab ID: 2002273-003 **Matrix:** Soil

Client Sample ID: TP-03-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID:	27511 Analyst: SB
Dicamba	ND	41.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-D	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-DP	ND	29.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4,5-TP (Silvex)	ND	23.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4,5-T	ND	59.4		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dinoseb	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dalapon	ND	237	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
2,4-DB	ND	29.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
MCPP	ND	5,220		μg/Kg-dry	1	2/25/2020 5:30:15 PM
MCPA	ND	3,320		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Picloram	ND	59.4	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
Bentazon	ND	41.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Chloramben	ND	23.7		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Acifluorfen	ND	95.0	Q	μg/Kg-dry	1	2/25/2020 5:30:15 PM
3,5-Dichlorobenzoic acid	ND	47.5		μg/Kg-dry	1	2/25/2020 5:30:15 PM
4-Nitrophenol	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Dacthal (DCPA)	ND	35.6		μg/Kg-dry	1	2/25/2020 5:30:15 PM
Surr: 2,4-Dichlorophenylacetic acid	71.1	15.3 - 163		%Rec	1	2/25/2020 5:30:15 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 15.9 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: **2002273**Date Reported: **3/2/2020**

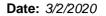
Client: Friedman & Bruya Collection Date: 2/14/2020 10:55:00 AM

Project: 002211

Lab ID: 2002273-004 **Matrix**: Soil

Client Sample ID: TP-04-021420

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 2	27511 Analyst: SB
Dicamba	ND	41.4		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-D	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-DP	ND	29.6		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4,5-TP (Silvex)	ND	23.7		μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4,5-T	ND	59.1		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dinoseb	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dalapon	ND	237	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
2,4-DB	ND	29.6		μg/Kg-dry	1	2/25/2020 5:50:42 PM
MCPP	ND	5,200		μg/Kg-dry	1	2/25/2020 5:50:42 PM
MCPA	ND	3,310		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Picloram	ND	59.1	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
Bentazon	ND	41.4		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Chloramben	ND	23.7		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Acifluorfen	ND	94.6	Q	μg/Kg-dry	1	2/25/2020 5:50:42 PM
3,5-Dichlorobenzoic acid	ND	47.3		μg/Kg-dry	1	2/25/2020 5:50:42 PM
4-Nitrophenol	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Dacthal (DCPA)	ND	35.5		μg/Kg-dry	1	2/25/2020 5:50:42 PM
Surr: 2,4-Dichlorophenylacetic acid	67.7	15.3 - 163		%Rec	1	2/25/2020 5:50:42 PM


NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 16.9 0.500 wt% 1 2/20/2020 9:59:07 AM

Batch ID: R57485

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Work Order: 2002273

CLIENT: Friedman & Bruya

Project: 002211

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID: MB-27511	SampType: MBLK			Units: µg/Kg		Prep Date:	2/19/20	20	RunNo: 576	630	
Client ID: MBLKS	Batch ID: 27511					Analysis Date:	2/25/20	20	SeqNo: 115	50345	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	35.0									
2,4-D	ND	30.0									
2,4-DP	ND	25.0									
2,4,5-TP (Silvex)	ND	20.0									
2,4,5-T	ND	50.0									
Dinoseb	ND	30.0									
Dalapon	ND	200									Q
2,4-DB	ND	25.0									
MCPP	ND	4,400									
MCPA	ND	2,800									
Picloram	ND	50.0									Q
Bentazon	ND	35.0									
Chloramben	ND	20.0									
Acifluorfen	ND	80.0									Q
3,5-Dichlorobenzoic acid	ND	40.0									
4-Nitrophenol	ND	30.0									
Dacthal (DCPA)	ND	30.0									
Surr: 2,4-Dichlorophenylacetic aci	d 1,050		1,000		105	15.3	163				

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: LCS-27511	SampType: LCS			Units: µg/Kg		Prep Da	te: 2/19/20	20	RunNo: 576	630	
Client ID: LCSS	Batch ID: 27511					Analysis Da	te: 2/25/20	20	SeqNo: 115	50346	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	198	35.0	200.0	0	99.1	21.2	167				
2,4-D	220	30.0	200.0	0	110	32	176				
2,4-DP	202	25.0	200.0	0	101	25.8	171				
2,4,5-TP (Silvex)	214	20.0	200.0	0	107	23.6	164				
2,4,5-T	215	50.0	200.0	0	108	25	166				
Dinoseb	71.9	30.0	200.0	0	36.0	5	168				

Original Page 9 of 14

Work Order: 2002273

CLIENT: Friedman & Bruya

Project: 002211

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID: LCS-27511	SampType: LCS			Units: µg/Kg		Prep Dat	e: 2/19/20	20	RunNo: 576	30	
Client ID: LCSS	Batch ID: 27511					Analysis Dat	e: 2/25/20	20	SeqNo: 115	0346	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dalapon	843	200	1,000	0	84.3	29.2	195				
2,4-DB	216	25.0	200.0	0	108	8.11	184				
MCPP	1200	4,400	1,000	0	120	17.3	191				
MCPA	1210	2,800	1,000	0	121	13.6	192				
Picloram	229	50.0	200.0	0	114	5	175				
Bentazon	213	35.0	200.0	0	107	21.5	170				
Chloramben	117	20.0	200.0	0	58.4	5	114				
Acifluorfen	102	80.0	200.0	0	51.2	5	168				
3,5-Dichlorobenzoic acid	204	40.0	200.0	0	102	26.2	174				
4-Nitrophenol	227	30.0	200.0	0	114	5.02	160				
Dacthal (DCPA)	207	30.0	200.0	0	103	18	168				
Surr: 2,4-Dichlorophenylacetic acid	1,090		1,000		109	15.3	163				

Sample ID: 2002204-034ADUP	SampType: DUP			Units: µg/l	(g-dry	Prep Da	te: 2/19/2 ()20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Da	te: 2/25/2 0)20	SeqNo: 115	50348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	59.4						0	0	30	
2,4-D	ND	50.9						0	0	30	
2,4-DP	ND	42.4						0	0	30	
2,4,5-TP (Silvex)	ND	33.9						0	0	30	
2,4,5-T	ND	84.8						0	0	30	
Dinoseb	ND	50.9						0	0	30	
Dalapon	ND	339						0	0	30	Q
2,4-DB	ND	42.4						0	0	30	
MCPP	ND	7,470						0	0	30	
MCPA	ND	4,750						0	0	30	
Picloram	ND	84.8						0	0	30	Q
Bentazon	ND	59.4						0	0	30	
Chloramben	ND	33.9						0	0	30	

Original Page 10 of 14

Work Order: 2002273

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Herbicides by EPA Method 8151A

Project:	002211

Sample ID: 2002204-034ADUP	SampType: DUP			Units: µg/K	(g-dry	Prep Dat	e: 2/19/2 0	20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Dat	e: 2/25/20	20	SeqNo: 115	50348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acifluorfen	ND	136						0	0	30	Q
3,5-Dichlorobenzoic acid	ND	67.9						0	0	30	
4-Nitrophenol	ND	50.9						0	0	30	
Dacthal (DCPA)	ND	50.9						0	0	30	
Surr: 2,4-Dichlorophenylacetic acid	d 527		1,697		31.0	15.3	163		0		

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: 2002204-034AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 2/19/2 0)20	RunNo: 576	30	
Client ID: BATCH	Batch ID: 27511					Analysis Da	te: 2/25/2 0)20	SeqNo: 115	50349	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	39.2	59.6	340.4	0	11.5	5	136				
2,4-D	78.3	51.1	340.4	0	23.0	5	151				
2,4-DP	95.3	42.5	340.4	0	28.0	5	149				
2,4,5-TP (Silvex)	123	34.0	340.4	0	36.2	5.43	140				
2,4,5-T	76.5	85.1	340.4	0	22.5	6.68	133				
Dinoseb	192	51.1	340.4	0	56.4	5	141				
Dalapon	118	340	1,702	0	6.96	5	179				
2,4-DB	203	42.5	340.4	0	59.7	5.57	160				
MCPP	746	7,490	1,702	0	43.8	5	174				
MCPA	728	4,770	1,702	0	42.8	5	154				
Picloram	62.0	85.1	340.4	0	18.2	5	139				
Bentazon	138	59.6	340.4	0	40.5	5.31	146				
Chloramben	30.7	34.0	340.4	0	9.02	5	134				
Acifluorfen	65.7	136	340.4	0	19.3	5	168				
3,5-Dichlorobenzoic acid	97.5	68.1	340.4	0	28.6	6.99	144				
4-Nitrophenol	198	51.1	340.4	0	58.3	10.2	139				
Dacthal (DCPA)	9.84	51.1	340.4	0	2.89	5	156				S
Surr: 2,4-Dichlorophenylacetic ac	eid 690		1,702		40.5	15.3	163				

Original Page 11 of 14

Work Order: 2002273

QC SUMMARY REPORT

CLIENT: Friedman & Bruya
Project: 002211

Herbicides by EPA Method 8151A

Sample ID: 2002204-034AMS SampType: MS Units: μg/Kg-dry Prep Date: 2/19/2020 RunNo: 57630

Client ID: **BATCH** Batch ID: **27511** Analysis Date: **2/25/2020** SeqNo: **1150349**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2002204-034AMSD	SampType	e: MSD			Units: µg/K	g-dry	Prep Date	2/19/20)20	RunNo: 576	630	
Client ID: BATCH	Batch ID:	27511					Analysis Date	2/25/20)20	SeqNo: 115	50350	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		64.3	59.3	338.7	0	19.0	5	136	39.15	48.7	30	
2,4-D		101	50.8	338.7	0	29.8	5	151	78.30	25.2	30	
2,4-DP		119	42.3	338.7	0	35.2	5	149	95.35	22.4	30	
2,4,5-TP (Silvex)		150	33.9	338.7	0	44.4	5.43	140	123.4	19.8	30	
2,4,5-T		103	84.7	338.7	0	30.5	6.68	133	76.46	29.9	30	
Dinoseb		207	50.8	338.7	0	61.1	5	141	192.0	7.45	30	
Dalapon		146	339	1,694	0	8.63	5	179	118.4	21.0	30	
2,4-DB		219	42.3	338.7	0	64.6	5.57	160	203.2	7.42	30	
MCPP		997	7,450	1,694	0	58.9	5	174	746.2	28.8	30	
MCPA		980	4,740	1,694	0	57.9	5	154	727.8	29.6	30	
Picloram		64.2	84.7	338.7	0	19.0	5	139	62.03	3.45	30	
Bentazon		157	59.3	338.7	0	46.4	5.31	146	138.0	12.9	30	
Chloramben		33.5	33.9	338.7	0	9.89	5	134	30.72	8.63	30	
Acifluorfen		113	135	338.7	0	33.5	5	168	65.69	53.4	30	
3,5-Dichlorobenzoic acid		128	67.7	338.7	0	37.9	6.99	144	97.50	27.3	30	
4-Nitrophenol		180	50.8	338.7	0	53.1	10.2	139	198.3	9.69	30	
Dacthal (DCPA)		8.91	50.8	338.7	0	2.63	5	156	9.837	9.85	30	S
Surr: 2,4-Dichlorophenylacetic ac	id	743		1,694		43.9	15.3	163		0		

NOTES:

Original Page 12 of 14

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

С	ient Name:	FB	Work O	rder Numbe	er: 20022	273
Lo	ogged by:	Carissa True	Date Re	ceived:	2/17/2	2020 9:33:00 AM
<u>Cha</u>	in of Custo	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗆	Not Present □
2.	How was the	sample delivered?	<u>FedE</u>	<u> </u>		
Log	ln .					
_	Coolers are p	present?	Yes		No 🗸] NA □
0.			No coo	ler present	<u>t</u>	
4.	Shipping cont	tainer/cooler in good condition?	Yes	✓	No 🗆	
5.		s present on shipping container/cooler? aments for Custody Seals not intact)	Yes		No 🗸	Not Required
6.	Was an atten	npt made to cool the samples?	Yes	✓	No	NA □
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	✓	No 🗆	NA □
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆	
10.	Are samples	properly preserved?	Yes	✓	No	
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗆
12.	Is there head	space in the VOA vials?	Yes		No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗆	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗆	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗆	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No	
17.	Were all hold	ing times able to be met?	Yes	✓	No	
Spe	cial Handli	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No 🗆	NA 🗹
	Person	Notified: Date:				
	By Who	m: Via:	eMa	il 🗌 Pho	ne 🗌 Fa	ax In Person
	Regardi	ng:				
	Client In	structions:				
19.	Additional rer	narks:				
Item	Information					
		Item # Temp ⁰C				

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

							Received by:		Fax (206) 283-5044
String		4	-	600		1	Relinquished by		Ph. (206) 285-8282
5	2	4	2	0		12	Received by:	029	Seattle, WA 98119-2029
		ahl	el Erd	Michael Erdahl	1	an a	Relinquished by	est -	3012 16th Avenue West
S -	Z	PRINT NAME	p		7	SIGNATURE		Inc.	Friedman & Bruya, Inc.
		_							
			1						
\dagger									
+									
×				-	_	1055			TP-04-021420
×			20	-		010/			TP-03-021420
×				-		Ohto	-		TP-62-021420
×				-	No. 1	5580	2/14/26		TP-01-62/420
8151	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
ANA									
00	600	As pre 1	AS		com	merdahl@friedmanandbruya.com	merdahl@frie	1	Phone # (206) 285-8282
,)		>	REMARKS	REI		Seattle, WA 98119	eattle,	City, State, ZIP_S
		-	202211	000			3012 16th Ave W	012 16	Address 3
		NO.	NAME	PROJECT NAME/NO.	PR	Inc.	Friedman and Bruya, Inc	riedma	CompanyF
tromp	7	ER T	RACT	SUBCONTRACTER	SU		Michael Erdahl	Michae	Send Report To 1

Friedman & Bruya COMPANY

2/17/20

DATE

2/17/20

0933 WY 05:80 TIME Notes

8151

ANALYSES REQUESTED

SAMPLE DISPOSAL □ Dispose after 30 days □ Return samples □ Will call with instructions	□ RUSH Rush charges authorized by:	TURNAROUND TIME	2002273 Page# of 1
P:	age 14 of	14	

B-111

PO#

APPENDIX D

Remedial Alternative Cost Estimate

Table D-1. Alternative 1 Cost Estimate

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

Remedial Action Description: Permeable Soil Cap, Institutional Controls, and Monitoring

	Qty		Unit		
Cleanup Elements		Unit	Cost	Cost	Notes
DIRECT CAPITAL COSTS ¹					
Contractor mobilization/demobilization	1	LS	\$ 20,000	\$ 20,000	2
Temporary erosion and sedimentation controls	1	LS	\$ 6,000	\$ 6,000	
Clearing/grubbing and grading of existing cover soil	4.0	acre	\$ 8,000	\$ 32,000	
Geotextile (isolation barrier, installed)	19,360	SY	\$ 1.70	\$ 32,912	
Import, place, grade, and compact fill (2 ft thickness)	12,907	CY	\$ 32	\$ 413,013	3
Import, place, and grade topsoil (1 ft thickness)	6,453	CY	\$ 36	\$ 232,320	3
Post-construction topographic survey	-	LS	\$ 8,000	\$ 8,000	
Hydroseed capped area		acre	\$ 5,000	\$ 20,000	
Institutional controls	1	LS	\$ 20,000	\$ 20,000	4
Subtotal for Direct Capital Costs				\$ 784,245	
INDIRECT CAPITAL COSTS ¹					
Remedial design and permitting	12%			\$ 94,109	5
Project management	5%			\$ 39,212	6
Construction management and monitoring	8%			\$ 62,740	7
Construction reporting and IM&M Plan	1 LS			\$ 30,000	
Taxes	8.8%			\$ 69,014	
Subtotal for Indirect Capital Costs				\$ 295,075	
Subtotal for Direct and Indirect Capital Costs				\$ 1,079,320	
Contingency for Direct and Indirect Capital Costs				\$ 215,864	8
Total for Direct and Indirect Capital Costs				\$ 1,295,184	
POST-CONSTRUCTION COSTS ¹					
Quarterly inspections and informal reporting in Years 1 through 3	3	year	\$ 10,000	\$ 29,122	9
Semi-annual inspections and informal reporting in Years 4 through 30		year	\$ 5,000	\$ 105,518	9
Semi-annual groundwater sampling and informal reporting		year	\$ 2,000	\$ 48,032	10
Annual topographic survey in Years 1 through 5	5	year	\$ 8,000	\$ 38,261	11
Annual maintenance and formal reporting	30	year	\$ 12,000	\$ 288,190	12
5-year reviews with Ecology		ea	\$ 10,000	\$ 39,620	13
Subtotal for Post-Construction Costs				\$ 548,743	
Contingency for Post-Construction Costs	20%			\$ 109,749	8
Total for Post-Construction Costs				\$ 658,492	
			_		

IM&M = inspection, monitoring, and maintenance

Notes:

- 1) All costs are in 2019 dollars. Costs are evaluated over a 30-year period. The net present value (NPV) of post-construction costs is estimated using a discount factor of 1.5 percent.
- 2) Mobilization/demobilization includes contractor submittals and temporary facilities.
- 3) A total fill/topsoil thickness of 3 feet is assumed to ensure that a minimum thickness of 30 inches is achieved everywhere.
- 4) Institutional controls include signage, access road barrier, and environmental covenant.
- 5) Remedial design includes preparation of construction plans and specifications, engineer's cost estimate, and bidding support.
- 6) Project management includes bid/contract administration, cost and performance reporting, planning, and coordination.
- 7) Construction management includes submittal review, change order review, design modifications, and construction schedule tracking.
- 8) Contingency costs include miscellaneous costs not itemized due to the current (preliminary) stage of remedy development, as well as costs to address unanticipated conditions encountered during remedy execution.
- 9) Informal reporting to Ecology site manager (e.g., via e-mail) following each inspection event.
- 10) It is assumed that the 4 existing wells are sampled for iron and manganese, and that sampling is performed during site inspections.
- 11) It is assumed that the capped surface is demonstrated to be stable after 5 years, so that annual surveys are no longer needed.
- 12) Annual maintenance includes removal of large vegetation.
- 13) Five-year reviews with Ecology are assumed to occur in Years 6, 11, 16, 21, and 26.
- 14) The total estimated cost is rounded to three significant figures.

Table D-2. Alternative 2 Cost Estimate

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

Remedial Action Description: Impermeable Cap, Institutional Controls, and Monitoring

	Qty			Unit		
Cleanup Elements		Unit		Cost	Cost	Notes
DIRECT CAPITAL COSTS ¹						
Contractor mobilization/demobilization	1	LS	\$	20,000	\$ 20,000	2
Temporary erosion and sedimentation controls	1	LS	\$	6,000	\$ 6,000	
Clearing/grubbing and grading of existing cover soil	4.0	acre	\$	10,000	\$ 40,000	
Impermeable cap	4.0	acre	\$	180,000	\$ 720,000	3
Stormwater management system	1	LS	\$	200,000	\$ 200,000	
Post-construction topographic survey	1	LS	\$	8,000	\$ 8,000	
Hydroseed capped area		acre	\$	5,000	\$ 20,000	
Institutional controls	1	LS	\$	20,000	\$ 20,000	4
Subtotal for Direct Capital Costs					\$ 1,034,000	
INDIRECT CAPITAL COSTS ¹						
Remedial design and permitting	15%				\$ 155,100	5
Project management	5%	5%			\$ 51,700	6
Construction management and monitoring	10%				\$ 103,400	7
Construction reporting and IM&M Plan	1 LS				\$ 40,000	
Taxes	8.8%				\$ 90,992	
Subtotal for Indirect Capital Costs					\$ 441,192	
Subtotal for Direct and Indirect Capital Costs					\$ 1,475,192	
Contingency for Direct and Indirect Capital Costs					\$ 295,038	8
Total for Direct and Indirect Capital Costs					\$ 1,770,230	
POST-CONSTRUCTION COSTS ¹						
Quarterly inspections and informal reporting in Years 1 through 3	3	year	\$	12,000	\$ 34,946	9
Semi-annual inspections and informal reporting in Years 4 through 30	27	year	\$	6,000	\$ 126,622	9
Semi-annual groundwater sampling and informal reporting	30	year	\$	2,000	\$ 48,032	10
Annual topographic survey in Years 1 through 5	5 year		\$	8,000	\$ 38,261	11
Annual maintenance and formal reporting	30 year		\$	16,000	\$ 384,253	12
5-year reviews with Ecology	5	ea	\$	10,000	\$ 39,620	13
Subtotal for Post-Construction Costs					\$ 671,735	
Contingency for Post-Construction Costs	Contingency for Post-Construction Costs 20%				\$ 134,347	8
Total for Post-Construction Costs					\$ 806,082	
NET PRESENT VALUE OF ALTERNATIVE 2					\$ 2,580,000	14

IM&M inspection, monitoring, and maintenance

Notes:

- 1) All costs are in 2019 dollars. Costs are evaluated over a 30-year period. The net present value (NPV) of post-construction costs is estimated using a discount factor of 1.5 percent.
- 2) Mobilization/demobilization includes contractor submittals and temporary facilities.
- 3) Based on typical unit cost for sanitary landfill closure (escalated to 2019 dollars) from *Estimated Costs of Landfill Closure*, Maryland Department of the Environment, Solid Waste Program, April 2015.
- 4) Institutional controls include signage, access road barrier, and environmental covenant.
- 5) Remedial design includes preparation of construction plans and specifications, engineer's cost estimate, and bidding support.
- 6) Project management includes bid/contract administration, cost and performance reporting, planning, and coordination.
- 7) Construction management includes submittal review, change order review, design modifications, and construction schedule tracking.
- 8) Contingency costs include miscellaneous costs not itemized due to the current (preliminary) stage of remedy development, as well as costs to address unanticipated conditions encountered during remedy execution.
- 9) Informal reporting to Ecology site manager (e.g., via e-mail) following each inspection event.
- 10) It is assumed that the 4 existing wells are sampled for iron and manganese, and that sampling is performed during site inspections.
- 11) It is assumed that the capped surface is demonstrated to be stable after 5 years, so that annual surveys are no longer needed.
- 12) Annual maintenance includes removal of large vegetation.
- 13) Five-year reviews with Ecology are assumed to occur in Years 6, 11, 16, 21, and 26.
- 14) The total estimated cost is rounded to three significant figures.

Table D-3. Alternative 3 Cost Estimate

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

Remedial Action Description: Removal of WWTP Sludge, Permeable Soil Cap, Institutional Controls, and Monitoring

Remedial Action Description: Removal of WWVTP Sludge, Permea		1	Unit	•	
Cleanup Elements	Qty	Unit	Cost	Cost	Notes
DIRECT CAPITAL COSTS ¹					
Contractor mobilization/demobilization	1	LS	\$ 20,000	\$ 20,000	2
Temporary erosion and sedimentation controls	1	LS	\$ 6,000	\$ 6,000	
Excavation and loading of WWTP sludge	8,663	CY	\$ 15	\$ 129,950	3
WWTP sludge transport and disposal	10,396	ton	\$ 190	\$ 1,975,248	4,5
Clearing/grubbing and grading of existing cover soil	4.0	acre	\$ 8,000	\$ 32,000	
Geotextile (isolation barrier, installed)	19,360	SY	\$ 1.70	\$ 32,912	
Import, place, grade, and compact fill (2 ft thickness)	12,907	CY	\$ 32	\$ 413,013	6
Import, place, and grade topsoil (1 ft thickness)	6,453	CY	\$ 36	\$ 232,320	6
Post-construction topographic survey	1	LS	\$ 8,000	\$ 8,000	
Hydroseed capped area		acre	\$ 5,000	\$ 20,000	
Institutional controls	1	LS	\$ 20,000	\$ 20,000	7
Subtotal for Direct Capital Costs				\$ 2,889,443	
INDIRECT CAPITAL COSTS ¹					
Remedial design and permitting	12%			\$ 346,733	8
Project management	5%			\$ 144,472	9
Construction management and monitoring	8%			\$ 231,155	10
Construction reporting and IM&M Plan	1 LS			\$ 30,000	
Taxes	8.8%			\$ 254,271	
Subtotal for Indirect Capital Costs				\$ 1,006,632	_,
Subtotal for Direct and Indirect Capital Costs				\$ 3,896,075	
Contingency for Direct and Indirect Capital Costs				\$ 779,215	11
Total for Direct and Indirect Capital Costs				\$ 4,675,290	
POST-CONSTRUCTION COSTS ¹					
Quarterly inspections and informal reporting in Years 1 through 3	3	year	\$ 10,000	\$ 29,122	12
Semi-annual inspections and informal reporting in Years 4 through 30		year	\$ 5,000	\$ 105,518	12
Semi-annual groundwater sampling and informal reporting		year	\$ 2,000	\$ 48,032	13
Annual topographic survey in Years 1 through 5		year	\$ 8,000	\$ 38,261	14
Annual maintenance and formal reporting		year	\$ 12,000	\$ 288,190	15
5-year reviews with Ecology		ea	\$ 10,000	\$ 39,620	16
Subtotal for Post-Construction Costs				\$ 548,743	
Contingency for Post-Construction Costs	20%			\$ 109,749	11
Total for Post-Construction Costs				\$ 658,492	
NET PRESENT VALUE OF ALTERNATIVE 3				\$ 5,330,000	17
	A/A/TD 14		atmont nla	=,000,000	•••

IM&M inspection, monitoring, and maintenance

WWTP wastewater treatment plant

Notes:

- 1) All costs are in 2019 dollars. Costs are evaluated over a 30-year period. The net present value (NPV) of post-construction costs is estimated using a discount factor of 1.5 percent.
- 2) Mobilization/demobilization includes contractor submittals and temporary facilities.
- 3) The volume of WWTP sludge is estimated based on an initial application of 4.5 million gallons of sludge with an average moisture content of 65% by weight, and an assumed moisture content of 10% by weight at the time of excavation.
- 4) The weight of WWTP sludge is estimated based on an in-place bulk density of 1.2 tons per cubic yard.
- 5) It is assumed that the WWTP sludge is disposed of in a hazardous waste landfill.
- 6) A total fill/topsoil thickness of 3 feet is assumed to ensure that a minimum thickness of 30 inches is achieved everywhere.
- 7) Institutional controls include signage, access road barrier, and environmental covenant.
- 8) Remedial design includes preparation of construction plans and specifications, engineer's cost estimate, and bidding support.
- 9) Project management includes bid/contract administration, cost and performance reporting, planning, and coordination.
- 10) Construction management includes submittal review, change order review, design modifications, and construction schedule tracking.
- 11) Contingency costs include miscellaneous costs not itemized due to the current (preliminary) stage of remedy development, as well as costs to address unanticipated conditions encountered during remedy execution.
- 12) Informal reporting to Ecology site manager (e.g., via e-mail) following each inspection event.
- 13) It is assumed that the 4 existing wells are sampled for iron and manganese, and that sampling is performed during site inspections.
- 14) It is assumed that the capped surface is demonstrated to be stable after 5 years, so that annual surveys are no longer needed.
- 15) Annual maintenance includes removal of large vegetation.
- 16) Five-year reviews with Ecology are assumed to occur in Years 6, 11, 16, 21, and 26.
- 17) The total estimated cost is rounded to three significant figures.

Aspect Consulting

Table D-4. Alternative 4 Cost Estimate

Project No. 150074, City of Shelton, C Street Landfill, Shelton, WA

Remedial Action Description: Full Removal of Contaminated Media

	Qty			Unit		
Cleanup Elements		Unit		Cost	Cost	Notes
DIRECT CAPITAL COSTS ¹						
Contractor mobilization/demobilization	1	LS	\$	40,000	\$ 40,000	2
Temporary erosion and sedimentation controls	1	LS	\$	6,000	\$ 6,000	
Excavation and loading of WWTP sludge	8,663	CY	\$	15	\$ 129,950	3
WWTP sludge transport and disposal	10,396	ton	\$	190	\$ 1,975,248	4,5
Excavation and loading of all other cover soil and landfill waste	159,123	CY	\$	15	\$ 2,386,850	6
Transport/disposal of cover soil and landfill waste	238,685	ton	\$	50	\$ 11,934,248	7,8
Import, place, grade, and compact fill (25 ft thickness)	161,333	CY	\$	30	\$ 4,840,000	9
Import, place, and grade topsoil (1 ft thickness)	6,453	CY	\$	36	\$ 232,320	9
Hydroseed capped area	4.0	acre	\$	5,000	\$ 20,000	
Subtotal for Direct Capital Costs					\$ 21,564,615	
INDIRECT CAPITAL COSTS ¹						
Remedial design and permitting	6%				\$ 1,293,877	10
Project management	3%				\$ 646,938	11
Construction management and monitoring	4%				\$ 862,585	12
Construction reporting	1	LS			\$ 100,000	
Taxes	8.8%				\$ 1,897,686	
Subtotal for Indirect Capital Costs					\$ 4,801,086	
Subtotal for Direct and Indirect Capital Costs					\$ 26,365,701	
Contingency for Direct and Indirect Capital Costs	20%				\$ 5,273,140	13
NET PRESENT VALUE OF ALTERNATIVE 4			\$ 31,600,000	14		

WWTP wastewater treatment plant

Notes:

- 1) All costs are in 2019 dollars. Alternative 4 is assumed to have no post-construction costs.
- 2) Mobilization/demobilization includes contractor submittals and temporary facilities.
- 3) The volume of WWTP sludge is estimated based on an initial application of 4.5 million gallons of sludge with an average moisture content of 65% by weight, and an assumed moisture content of 10% by weight at the time of excavation.
- 4) The weight of WWTP sludge is estimated based on an in-place bulk density of 1.2 tons per cubic yard.
- 5) It is assumed that the WWTP sludge is disposed of in a hazardous waste landfill.
- 6) The total volume of cover soil and landfill waste (including WWTP sludge) is estimated based on a surface area of 4.0 acres and an average thickness of 26 feet.
- 7) The weight of cover soil and landfill waste (excluding WWTP sludge) is estimated based on an in-place bulk density of 1.5 tons per cubic yard.
- 8) It is assumed that the cover soil and landfill waste are disposed of in a non-hazardous waste landfill.
- 9) A total fill/topsoil thickness of 26 feet is assumed to restore grade.
- 10) Remedial design includes preparation of construction plans and specifications, engineer's cost estimate, and bidding support.
- 11) Project management includes bid/contract administration, cost and performance reporting, planning, and coordination.
- 12) Construction management includes submittal review, change order review, design modifications, and construction schedule tracking.
- 13) Contingency costs include miscellaneous costs not itemized due to the current (preliminary) stage of remedy development, as well as costs to address unanticipated conditions encountered during remedy execution.
- 14) The total estimated cost is rounded to three significant figures.

Aspect Consulting Table D-4

APPENDIX E

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process", ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with subject property. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the subject property. There is always a potential that areas with contamination that were not identified during this ESA exist at the subject property or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.