

FOCUSED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Commercial Property

8701 Greenwood Avenue North Seattle, Washington 97103

Prepared for:

Left Coast Services, LLC (DBA Universal Applicators)

Attn: Alexander Moss 515 S. Southern Street Seattle, Washington 98108-4356

Issued on:

December 30, 2020

Project No. 114-20001-01

Focused Phase II Environmental Site Assessment

Report for:

Commercial Property

at:

8701 Greenwood Avenue North Seattle, Washington 98103

Has been prepared for the sole benefit and use of our Client:

Left Coast Services, LLC (DBA Universal Applicators)

Attn: Alexander Moss 515 S. Southern Street Seattle, Washington 98108-4356

and its assignees

Issued December 30, 2020 by:

Evan Bruggeman Staff Geologist Paul M. Trone, L.G. Principal Geologist

Lynn D. Green, L.E.G.
Principal Engineering Geologist & Project Manager

Lynn D. Green

EXP. 12/14/2021

1.0	Intro	duction	1
2.0	Back	ground	1
3.0	Scope	e of Work	2
4.0	Site D	Description	2
5.0	Meth	ods	4
	5.1	Project Approach	4
	5.2	Work Objectives	4
	5.3	Direct-Push Soil Borings	4
	5.4	Monitor Well Sampling	5
	5.5	Laboratory Analytical Methods	5
	5.6	Cleanup Standards – Model Toxics Control Act Regulations	5
6.0	Resul	ts	6
	6.1	Laboratory Results - Soil	6
		6.1.1 Petroleum Hydrocarbons	7
		6.1.2 Volatile Organic Compounds	7
	6.2	Laboratory Results – Ground Water	7
		6.2.1 Petroleum Hydrocarbons	7
		6.2.2 Volatile Organic Compounds	7
	6.3	Previous Investigation	7
7.0	Discu	ssion	8
8.0	Reco	mmendations	9
9.0	Limita	ations	9

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

- 5-1 Analytical Methods Used
- 6-1 Summary of Soil and Reconnaissance Ground Water Samples

AFTER TEXT (following 'Tables' tab)

- 1 Summary of Analytical Data, Soil
- 2 Summary of Analytical Data, Ground Water

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Sample Location Diagram

Appendices

- A Site Photographs
- B Boring Logs
- C Laboratory Analytical Reports

List of Acronyms and Abbreviations

amsl above mean sea level bgs below ground surface

BTEX benzene, toluene, ethylbenzene and xylenes

CDF control density fill

Client Left Coast Services, LLC (LCS, dba Universal Applicators, Inc.)

CMMP contaminated media management plan

COC chain of custody

CREC controlled recognized environmental condition

CUL cleanup level
cPAHs carcinogenic PAHs
DPT direct-push technology
DRO diesel-range organics

Ecology Washington State Department of Ecology

ENW EVREN Northwest, Inc.

EPA US Environmental Protection Agency
ESA Environmental Site Assessment

F&BI Friedman & Bruya, Inc. of Seattle, Washington

FSI Focused Site Investigation
GRO gasoline-range organics
HCID hydrocarbon identification

HVOCs halogenated volatile organic constituents

μg/L micrograms per liter
 mg/Kg milligrams per Kilogram
 MRL method reporting limit
 MTCA Model Toxics Control Act

PAHs polynuclear aromatic hydrocarbons
Partner Partner Engineering North Carolina, PLLC

PID photoionization detector PQL practical quantitation limit

PVC polyvinyl chloride

RCRA Resource Conservation and Recovery Act
REC recognized environmental condition

RRO residual-range organics

SOW scope of work

SSRO Stoddard-solvent range organics
SVOC semi-volatile organic compound
TPH Total Petroleum Hydrocarbon

USGS U.S. Geological Survey
UST underground storage tank
VOC volatile organic constituent

1.0 Introduction

At the request of Left Coast Services, LLC (Client), EVREN Northwest, Inc. (ENW) completed a Focused Phase II Environmental Site Assessment (ESA) for the subject property located at 8701 Greenwood Avenue North in Seattle, Washington (see Figures 1 and 2). This ESA is intended to evaluate site characterization for potential environmental concerns identified in completion of a recent Phase I ESA by others at the subject property.

2.0 Background

Left Coast Services, LLC (LCS) recently completed a limited Site Characterization Report documenting a subsurface investigation of the subject property. The stated purpose of the investigation was to "collect samples in response to a Phase I Environmental Site Assessment (PIESA), dated 09/29/2020, by Partner Engineering North Carolina, PLLC (Partner)." The stated environmental concerns from the PIESA at the subject property include:

- Vanity Cleaners reportedly operated as a cleaners and dryers at the subject property between 1951 and 1955. Since dry cleaning operations typically utilized chlorinated solvents that could impact the subsurface environmental through leaks and spills over time, the former Vanity Cleaners was identified as a recognized environmental condition (REC).
- The adjacent property to the north, in the presumed cross- to upgradient position from the site is listed on multiple environmental databases under SMI Inc. Trust at 8733 North Greenwood Avenue. Confirmed releases of "conventional contaminants," organics and metals, and two documented surface spills of petroleum hydrocarbons have been reported on this adjoining property. Additionally, suspected releases of halogenated volatile constituents (HVOCs). The regulatory status of the site is reportedly listed as awaiting cleanup. Due to its cross- to upgradient position, the offsite adjoining property was identified as a REC.
- Reportedly, a gasoline service station occupied the southern portion of the subject property from at least 1940 to 1994. Total petroleum hydrocarbons and petroleum fuel related constituents [benzene, toluene, ethylbenzene, and xylenes (BTEX)] were detected in soil and ground water beneath the station in investigations beginning in 1991. Five monitoring wells were installed and sampled of which three contained "elevated concentrations" of BTEX. All fuel storage and dispensing equipment, including underground storage tanks (USTs), pump islands and underground piping were removed from the property in 1994. A reported 600 cubic yards of petroleum impacted soils was excavated during the decommissioning and eventually disposed offsite. Residual soil and ground water impacts were reportedly treated through operation of an air sparge/vapor extraction system over a period of approximately 1 year. Ensuing ground water monitoring showed a decrease in dissolved contaminants that eventually dropped below state

cleanup levels. The site received a conditional closure from the Washington Department of Ecology (Ecology) in July 1996, with a restrictive covenant recorded on the subject site for provisions to conduct future ground water monitoring and ensure residual soil impacts were handled and disposed appropriately. Based on site remedial actions and regulatory closure with institutional restrictions, the former gas station was identified as a controlled recognized environmental condition (CREC).

The LCS investigation report states that on October 29, 2020, LCS completed two (2) soil borings on the south-southwestern side (reportedly down gradient side) of the former Vanity Cleaners, and two (2) soil borings along the northern property line beneath the presumed upgradient portion of the subject property. LCS also reportedly collected a ground water sample from an existing monitoring well on the subject property.

ENW utilized data obtained by LCS' investigation, along with other available reference material, as the basis for the findings of this report.

3.0 Scope of Work

LCS reportedly completed the following scope of work (SOW) for this project:

- Advanced four (4) exploratory borings (GSB01 through GSB04) using direct-push technology (DPT) and collected soil samples from borings for laboratory analysis.
- Purged and sampled ground water from an existing ground water monitoring well.
- Submitted four soil samples and one ground water sample to an independent laboratory for selected analytical procedures.

4.0 Site Description

The subject property is located on the northwest corner of the intersection of Greenwood Avenue N and N 87th Street in the Greenwood neighborhood of North Seattle, Washington. The site is located approximately six (6) miles north-northwest of downtown Seattle, Washington and approximately four (4) miles west of Lake Washington. The King County Assessor's Office identifies the site as Parcel number 2920700030 and describes the property as rectangular in shape and 32,728 square feet in area.

The subject property is in a mixed residential and commercial area of King County. The site is bordered to the north by single-family residence, west by an alley beyond which are single-family residences, to the east by Greenwood Avenue North, beyond which is a vacant commercial building and parking lot, and to the south by N 87th Avenue, beyond which is a multi-family residential building and street-level retail businesses.

The subject property was developed in 1997 with the current commercial building in the southern portion of the site. Other site improvements include an asphalt-paved parking lot in the northern portion of the site, drainage features and landscaped areas.

Topography. According to the U.S. Geological Survey (USGS) Seattle North, Washington 7.5-minute quadrangle (Figure 1), the subject property lies at an approximate elevation of 260 feet above mean sea level (amsl). Topography in the area of the subject property is indicated as sloping gently to the west-southwest.

Geologic Setting. Seattle is within the Puget Lowland, an elongate structural and topographic basin between the Cascade Range and Olympic Mountains. The Seattle area has experienced repeated glacial advancements during the past 2 million years causing cyclic glacial scouring and deposition and later modified by landsides and stream erosion. Seattle is located on a complex succession of glacial and nonglacial deposits that overlie an irregular bedrock surface. According to the Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), the upper most geology beneath the site is mapped as Holocene age Peat deposits, which are accumulations of wood and other plant material forming layers of greater than about 1 meter and of mappable extent. These units are gradational within other non-glacial deposits. The mapped stratigraphy underlying these surficial deposits are mapped as Pleistocene age glacial deposits consisting of glacially transported silt, sand and subrounded to well-rounded gravel.

Borings completed at the site encountered up to 9 feet of silt with clay, sand, and gravel overlying sand with trace silt in all borings. An organic layer described as "being organic rich with abundant woody debris was present at the 5- to 15-foot depth interval in all borings.

Surface Water. No surface water bodies, lagoons, or manmade drainages are located on the subject property. The nearest surface water body is Green Lake, located approximately 0.95 miles southeast of the site.

Ground Water. Well log data in the area indicates ground water occurs as shallow as 4 feet bgs. Borings during this investigation confirmed the presence of shallow ground water at between 3.5 to 5 feet bgs. Based on surface topography, ground water flow beneath the site is anticipated to be generally west-southwest.

-

¹ Booth, D.B., Goetz, K., Schimel, S.A., 2009, Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigations Map 3065, Map 1:24,000.

5.0 Methods

This section describes the methods used by LCS field personnel to conduct the SOW of this assessment. Field activities for this project were performed on October 29, 2020. Work is documented in the photographic log included as Appendix A.

5.1 Project Approach

This Focused Phase II ESA was conducted in two separate phases. The first phase included assessment of areas of concern according to the initial proposed SOW. The field work for the first phase was completed by LCS and the field boring logs, site photographs, laboratory analytical report of sampled media, and a project narrative and summary report were provided to ENW for review. The second phase included review of the initial SOW and other available resources including the recent Phase I ESA that recommended the field work for completeness.

5.2 Work Objectives

LCS developed and conducted a SOW to quantitatively determine whether historical use of the subject property and an adjacent property has resulted in the presence of petroleum hydrocarbons or hazardous substances beneath the site. ENW reviewed available resources to determine if LCS' investigation had sufficiently investigated the concerns identified in the PIESA.

5.3 Direct-Push Soil Borings

On October 29, 2020 LCS directed the completion of four (4) exploratory soil borings (GSB-1 through GSB-4) at the subject site. Two (2) borings were placed in the vicinity of the former Vanity Cleaners that operated on the site in the 1950s. An additional two (2) borings were placed along the northern property boundary to investigate impacts on the adjacent site that may have migrated onto the subject site.

Soil borings were advanced using a GeoProbe 5410 truck-mounted DPT drill rig owned and operated by Standard Environmental Probe of Tumwater, Washington. Soil borings were advanced to approximately sixteen (16) feet bgs. Shallow ground water was encountered in each boring between three and five feet bgs. During advancement of each boring, soils were retrieved inside a 4-foot-long core barrel with polyvinyl chloride (PVC) liners. The full length of each 4-foot soil core was inspected by LCS personnel to identify soil type and field screen soil for possible impacts. Soil descriptions were recorded onto soil boring logs included in Appendix B.

Soils were retained for laboratory analysis based on observations by LCS personnel. Soil samples were placed into laboratory-prepared glass jars, sealed with a Teflon-lined lid, documented onto a chain of custody (COC), and preserved in a cooler pending transport to the project laboratory.

On October 29, 2020 (same day), each of the soil borings was backfilled with bentonite chips, hydrated, and completed at the surface to match surrounding grade.

Commercial Property, Seattle, WA

5.4 Monitor Well Sampling

On October 29, 2020 LCS collected a ground water sample from the existing monitoring well present in the southwest corner of the subject site. LCS referred to this monitoring well as MW-01 but, based on available records, the well had previously been designated AGW-6. The well was purged using a peristaltic pump and new polyethylene tubing for approximately one hour prior to sampling. Following purging, laboratory-supplied containers were filled using the peristaltic pump.

5.5 Laboratory Analytical Methods

Soil and ground water samples were submitted to Friedman & Bruya, Inc. (F&BI) of Seattle, Washington on October 29, 2020 for analysis. Select soil samples were subcontracted to Fremont Analytical for analysis of glycols. Copies of the laboratory analytical reports are provided in Appendix C. Table 5-1 describes the analytical plan.

Boring Locations	Constituents	Soil	Ground Water
NWTPH-Gx	Total petroleum hydrocarbons as gasoline- range organics (GRO) and Stoddard-solvent range organics (SSRO)	GSB-3 and GSB-4	Existing MW
NWTPH-Dx	Total petroleum hydrocarbons as diesel- and residual-range organics (DRO and RRO, respectively)	GSB-3 and GSB-4	1
NWTPH-Gx	Total petroleum hydrocarbons as SSRO	GSB-1 and GSB-2	Existing MW
EPA Method 8021B	benzene, toluene, ethylbenzene, and xylene (BTEX)	GSB-3 and GSB-4	
EPA Method 8260D	Chlorinated volatile organic constituents (VOCs)	GSB-1 and GSB-2	Existing MW
SW8015	Glycols	GSB-3 and GSB-4	Existing MW

Table 5-1. Analytical Methods Used

5.6 Cleanup Standards – Model Toxics Control Act Regulations

The State of Washington Model Toxics Control Act (MTCA) Regulations (WAC Chapter 173-340) sets numeric cleanup levels for "routine cleanup actions". "Routine cleanup actions" are defined as those sites where: 1) cleanup standards for each hazardous substance are obvious and undisputed, allowing for an adequate margin of safety for protection of human health and the environment; 2) does not require preparation of an environmental impact statement, and 3) qualifies for an exclusion from conducting a terrestrial ecological evaluation. Cleanup levels are defined as the concentration of a hazardous substance in soil, water, air, or sediment that is determined to be protective of human health and the environment under specified exposure conditions.

MTCA's three (3) methods for establishing cleanup levels are briefly described below.

Method A: Method A provides tables of cleanup levels that are protective of human health for the most common hazardous substances found in soil and ground water at sites. Note that these levels were developed by procedures of Method B. The Method A cleanup must meet the concentrations listed in the Method A table and, if not listed in the table, the

concentration standards established under applicable state or federal laws. If neither the Method A table nor applicable state and federal laws provide an appropriate cleanup level, then natural background concentration or the practical quantification limit (PQL) may be used as the cleanup level. Method A is the simplest, most streamlined approach to cleanup, but is meant to be applied to sites that have releases of only a few common hazardous substances.

Method B: Method B provides cleanup levels using risk assessment equations developed for various exposure pathways, as well as by using standards specified by applicable state and federal laws. Standard Method B uses generic default assumptions; Modified Method B uses chemical-specific and/or site-specific parameters in calculating the cleanup levels. Natural background concentrations and PQLs are also considered in this method. Method B is considered the universal approach to site closure and is the method most commonly used.

Both Methods A and B do not permit cleanup levels that would allow impacts to ecological receptors unless it can be demonstrated that ecological impacts are not a concern at the site.

Method C: Method C is used at industrial sites with the most complex impacts and employs less stringent exposure assumptions and less stringent lifetime cancer risks. Although ecological impacts are evaluated, only impacts to wildlife are considered during terrestrial ecological evaluation.

6.0 Results

Site work was completed October 29, 2020. This section discusses the findings of the investigation. Please reference:

- Figure 3 for sampling locations.
- Table 1 for a summary of soil analytical data.
- Table 2 for a summary of ground water analytical data.
- Appendix A for a photolog of site work.
- Appendix B for soil boring logs.
- Appendix C for laboratory analytical reports.

6.1 Laboratory Results - Soil

Results of laboratory analysis of soil samples referenced in this report are summarized on Table 1 (behind the text) and pertinent results are provided below. Results in Table 1 are evaluated by screening them against Ecology's MTCA Method A soil cleanup standards. Where a MTCA Method A value is not provided by Ecology, the more conservative (i.e., lower) of MTCA Method B cancer and non-cancer soil cleanup levels are provided. Copies of the laboratory reports are included in Appendix C.

Please note: Ecology guidance states that a "non-detect" is considered adequate confirmation that a constituent is not present as long as standard analytical method detection limits are met. Therefore, constituents not detected above the indicated method detection limits are considered to meet screening levels for the purposes of this investigation.

6.1.1 Petroleum Hydrocarbons

Soil samples collected by LCS from borings GSB-3 and GSB-4 were analyzed for the presence of gasolineand diesel-range organics (GRO and DRO) using methods NWTPH-Gx and NWTPH-Dx, respectively. The sample collected from GSB-3 suggested the presence of GRO at a concentration of 42mg/Kg which is below the MTCA Level A concentration of 100 mg/Kg (for samples with no detectable benzene). DRO was detected a concentration of 1100 mg/Kg, which is below the MTCA Level A cleanup level.

Soil samples collected by LCS from borings GSB-1 and GSB-2 were analyzed for the presence of Stoddard-solvent range organics (SSRO) using method NWTPH-Gx. Neither sample suggested the presence of Stoddard solvents above laboratory method reporting limits (MRLs).

6.1.2 Volatile Organic Compounds

Soil samples collected by LCS from borings GSB-1 and GSB-2 were analyzed for chlorinated volatile organic constituents (VOCs) by EPA method 8260D. No VOCs were detected above laboratory MRLs.

Soil samples collected by LCS from borings GSB-3 and GSB-4 were analyzed for select VOCs and glycols. Ethylbenzene and ethylene glycol were detected in the sample from boring GSB-3 but at concentrations below their respective MTCA cleanup levels. No other VOCs were detected above MRLs.

6.2 Laboratory Results – Ground Water

Results of laboratory analysis of ground water samples are summarized on Table 2 (behind the text) and pertinent results are provided below. Results in Table 2 are compared to Ecology's MTCA Method A ground water or Method B ground water cleanup standards.

6.2.1 Petroleum Hydrocarbons

The ground water sample collected by LCS from the existing onsite monitoring well was analyzed for DRO, GRO and SSRO. Laboratory analysis of the sample did not suggest the presence of any petroleum hydrocarbons above laboratory MRLs.

6.2.2 Volatile Organic Compounds

The ground water sample collected by LCS from the existing onsite monitoring well was additionally analyzed for select chlorinated VOCs typically associated with dry cleaning operations. Laboratory analysis did not suggest the presence of any chlorinated VOCs above laboratory MRLs.

6.3 Previous Investigation

A 1997 report by Environmental Associates, Inc. (EAI) entitled *Limited Subsurface Sampling and Testing* documents the installation of a boring (B-1) sited immediately downgradient of the former Vanity Cleaners location (Figure 3). Soil samples were collected from five (5) depth intervals between 2.5 and 24 feet bgs. A reconnaissance ground water sample was also collected. The soil samples were analyzed for SSRO, GRO and chlorinated VOCS. The reconnaissance ground water sample was analyzed for GRO and

chlorinated VOCs. Laboratory results for these samples are summarized in Tables 1 and 2 following this report.

Low concentrations of methylene chloride (dichloromethane) were detected in both the soil and reconnaissance ground water samples. However, it was noted that this constituent was also detected in the method blanks at identical concentrations and was flagged accordingly by the laboratory as a likely laboratory contaminant. Thus, it is the opinion of ENW that it is unlikely that methylene chloride was genuinely present in either media.

7.0 Discussion

This Focused PIIESA included the review of the recent LCS investigation as well as other available resources to assess areas of concern identified in the PIESA recently completed by Partner.

The findings of this investigation are as follows:

- Petroleum hydrocarbons, ethylbenzene and ethylene glycol were detected at low concentrations in the soil sample collected from boring GSB-3 sited along the northern property boundary. All detections were below their applicable MTCA Cleanup Levels. However, it should be noted that a sheen was observed in ground water in the boring, suggesting possible impacts to ground water at this location.
- No detections of chlorinated VOCs were suggested in the borings placed immediately downgradient from the former Vanity Cleaners location during the recent LCS investigation.
- A previous 1997 subsurface investigation immediately downgradient of the former Vanity Cleaners locations did not suggest the occurrence of dry-cleaning solvents (chlorinated VOCs) in soil or reconnaissance ground water in a boring sited in the inferred down-gradient location from the former dry cleaner location.
- A ground water sample collected from an existing monitoring well in the most downgradient corner of the property did not suggest the occurrence of petroleum hydrocarbons or chlorinated VOCs.

Based on the above findings, ENW makes the following conclusions:

- The historical presence of the Vanity Cleaners, a possible dry cleaner facility, at the subject property does not appear to have resulted in the occurrence of residual dry-cleaning solvents in soil or ground water in the vicinity of the former Vanity Cleaners location.
- Historical use of adjoining property to the north had been identified as a likely source of migration
 of petroleum-related constituents beneath the subject site. Detections of petroleum and
 petroleum-related constituents in samples collected along the northern property boundary
 during the recent investigation did not suggest concentrations in excess of MTCA cleanup levels
 in soil; however, a sheen was observed in ground water during drilling in this area, suggesting

possible impacts to ground water in this portion of the property. As this area is currently developed only as a paved parking area and since the source of the apparent impacts to soil and likely ground water appears to be offsite, ENW does not believe additional investigation of these impacts is necessary at this time. However, prior to any redevelopment in this portion of the property, further investigation is recommended.

• The southern portion of the site formerly developed as a service station appears to have been adequately investigated and remediated prior to receiving a conditional closure from Ecology in 1996. Based on correspondence in the State's files for this project, the condition of additional monitoring for one year of the existing monitoring well may have been completed and a letter requesting removal of this condition was submitted to Ecology for consideration.

8.0 Recommendations

Based on the above conclusions, ENW recommends the following:

- A CMMP should be developed for the site and include impacts from offsite migration in the northern portion of the site. This document would provide guidance for handling impacted media that may be encountered during any future site redevelopment or subsurface work that may occur.
- 2. Ecology should be contacted regarding the monitoring well that exists on the property. If monitoring is no longer required, the well should be appropriately abandoned.

Based on the findings of this report derived from reviewing the recent LCS investigation and other available resources, no additional investigation is warranted at this time.

We recommend this report is kept as part of the permanent property records.

9.0 Limitations

The scope of this report is limited to interpretations of UAI's on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the site closure does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

Naturally occurring toxic or hazardous substances in the subsurface soils, geology and water,

Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,

Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,

Commercial Property, Seattle, WA

Unpredictable events that may occur after site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. This investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW have endeavored to document representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. It is possible, ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

December 30, 2020

		B-1-4	GSB-1-7	GSB-2-5	GSB-3-5.5	GSB-4-3	ı				
	ample ID										
	Sampled	3/24/1997	10/29/2020	10/29/2020	10/29/2020	10/29/2020		MTCA Method A	MTCA Method B Soil	Constituent of Potential	MTCA Method C
Depth Samp	led (feet)	17.5-19	7	5	5.5	3	Maximum	Soil Cleanup	Cleanup Levels (if Method A not available) 1	Concern (COPC, exceeds	Soil Cleanup
San	pled by:	Environemntal Associates, Inc.	UAI	UAI	UAI	UAI	Residual Soil Concentration (detected)	Levels for Unrestricted Land Uses ¹			Levels for Industrial Land
Locati		Southwest corner of former dry cleaners	Central east site boundary	West of GSB-1 by 10 feet	Central northern site boundary	Northwest corner of property	(detected)	Land Oses		Method A or B CULs)?	Uses
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	Y/N	mg/Kg (ppm)
Volatile Organic Constituents (VOCs)											
Benzene	c, v				<0.02 ND	<0.02 ND	<0.02 (ND)	0.03	18.2	N	2390
Bromodichloromethane	c, v	<1 ND					<1 (ND)	NE	16.1	N	NE
Bromoform	c, nv	<1 ND					<1 (ND)	NE	127	N	NE
Bromomethane	nc, v	<1 ND					<1 (ND)	NE	112	N	NE
Carbon tetrachloride	C, V	<1 ND					<1 (ND)	NE	14.3	N	NE
Chlorobenzene	nc, v	<1 ND					<1 (ND)	NE	1600	N	NE
Chlorodibromomethane	c, nv	<1 ND					<1 (ND)	NE	16.1	N	NE
Chloroethane	C, V	<1 ND	<0.5 ND	<0.5 ND			<1 (ND)	NE	NE	(Y)	NE
Chloroform	nc, v	<1 ND					<1 (ND)	NE	32.3	N	NE
Chloromethane	nc, v	<1 ND					<1 (ND)	NE	NE	(Y)	NE
Dichlorobenzene, 1,2-	nc, v	<1 ND					<1 (ND)	NE	7200	N	NE
Dichlorobenzene, 1,3-	nc, v	<1 ND					<1 (ND)	NE	NE	(Y)	NE
Dichlorobenzene, 1,4-	C, V	<1 ND					<1 (ND)	NE	185	N	NE
Dichloroethane, 1,1-	c, v	<1 ND	<0.05 ND	<0.05 ND			<1 (ND)	NE	175	N	NE
Dichloroethene, 1,1-	nc, v	<1 ND	<0.05 ND	<0.05 ND			<1 (ND)	NE	4000	N	NE
Dichloroethene, cis-1,2-	nc, v	<1 ND	<0.05 ND	<0.05 ND			<1 (ND)	NE	160	N	NE
Dichloroethene, trans-1,2-	nc, v	<1 ND	<0.05 ND	<0.05 ND			<1 (ND)	NE	1600	N	NE
Dichloromethane	C, V	0.13 B	<0.5 ND	<0.5 ND			<0.5 (ND)	0.02	480	(Y)	0.02
EDB (1,2-dibromoethane)	c, v	<1 ND			-		<1 (ND)	0.005	0.5	(Y)	0.005
EDC (1,2-dichloroethane)	c, v		<0.05 ND	<0.05 ND			<0.05 (ND)	NE	11	N	NE
Ethylbenzene	nc, v				0.054	<0.02 ND	<0.054 (ND)	6	8000	N	350000
Ethylene glycol	nc, v				18.7	<9.07 ND	<18.7 (ND)	NE	160000	N	700000
Propylene glycol	nc, v				<18 ND	<9.07 ND	<18 (ND)	NE	NE	NE	NE
Tetrachloroethene (PCE)	c, v	<1 ND	<0.025 ND	<0.025 ND			<1 (ND)	0.05	476	(Y)	0.05
Toluene	nc, v				<0.02 ND	<0.02 ND	<0.02 (ND)	7	6400	N	7
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	nc, v	<1 ND	-		-		<1 (ND)	NE	2400000	N	NE
Trichloroethane, 1,1,1-	nc, v	<1 ND	<0.05 ND	<0.05 ND			<1 (ND)	2	160000	N	2
Trichloroethane, 1,1,2-	nc, v	<1 ND					<1 (ND)	NE	17.5	N	NE
Trichloroethene	c, v	<1 ND	<0.02 ND	<0.02 ND	-		<1 (ND)	0.03	12	(Y)	0.03
Trichlorofluoromethane (Freon 11)	nc, v	<1 ND					<1 (ND)	NE	24000	N	NE
Vinyl chloride	c, v	<1 ND	<0.05 ND	<0.05 ND	-		<1 (ND)	NE	240	N	NE
Xylenes	nc, v				<0.06 ND	<0.06 ND	<0.06 (ND)	9	16000	N	700000

Table 1 - Summary of Analytical Data, Soil

Sam Date Sai Depth Sampled		B-1-4 3/24/1997 17.5-19	GSB-1-7 10/29/2020 7	GSB-2-5 10/29/2020 5	GSB-3-5.5 10/29/2020 5.5	GSB-4-3 10/29/2020 3	Maximum	MTCA Method A Soil Cleanup	MTCA Method B Soil	Constituent of Potential	MTCA Method C Soil Cleanup Levels for Industrial Land
Sample		Environemntal Associates, Inc.	UAI	UAI	UAI	UAI	Residual Soil Concentration	Levels for Unrestricted	Cleanup Levels (if Method A not available) 1	Concern (COPC, exceeds	
Loc	cation	Southwest corner of former dry cleaners	Central east site boundary	West of GSB-1 by 10 feet	Central northern site boundary	Northwest corner of property	(detected)	Land Uses 1	,	Method A or B CULs)?	
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	Y/N	mg/Kg (ppm)
Total Petroleum Hydrocarbons											
SSR	nc, v	<5 ND	<5 ND	<5 ND	1		<5 (ND)	30	NE	N	CALC
GRO	nc, v	<5 ND			42	<5 ND	42	100	NE	N	CALC
DRO r	nc, nv				1100	<50 (ND)	1100	2000	NE	N	CALC
RRO r	nc, nv				<500 (ND)	<250 (ND)	<500 (ND)	2000	NE	N	2000

NOtes: NP = not present based on NWTPH-HCID (hydrocarbon identification) analysis UAI = Universal Applicators ND = not detected at or above laboratory method reporting

ND = not detected at or above laboratory method reporting limits
(Y) indicates analyte not detected, but detection limit is above screening concentration.

— = not analyzed or not applicable.

< = not detected at or above the method reporting limit shown.

NE = not established.

mg/Kg = milligram per kilogram.

c = carcinogenic

nc = noncarcinogenic

nc = noncarcinogenic
v = volatile
v = nonvolatile
GRO = gasoline-range organics.
DRO = diesel-range organics.
RRO = residual-range organics.

Table 2 - Summary of Analytical Data, Ground Water

Lou	cation ID	B-1 GW	MW-01					
	Sample ID							
	Sampled		MW01 10/29/2020		MTCA Mathad A	MTCA Method B Cleanup Levels		Constituent of Potential
	Sampler	Environemntal Associates, Inc.	UAI	Maximum	MTCA Method A Cleanup Levels for Ground		Background	
Depth Samp	,	NI	Ground Water Concetnration	Water	for Ground	Concentrations	Concern	
				(Unrestricted	Water (lowest)	(metals) ²	(COPC)?3	
	Location	southwest coner of former dry cleaners	Southwest corner of lot		Land Use)			
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	Y/N
Volatile Organic Constituents (VOCs)	11010	μg/ Ε (ρρυ)	μg/ L (μμυ)	μg/ Ε (ppb)	рg/	μg/ Ε (ρρυ)	ру/с (ррь)	1714
Bromodichloromethane	C, V	<1 ND		<1 (ND)	NE	0.706	NE	(Y)
Bromoform	c, nv	<1 ND		<1 (ND)	NE NE	5.54	NE NE	N N
Bromomethane	nc, v	<1 ND		<1 (ND)	NE	11.2	NE	N
Carbon tetrachloride	C, V	<1 ND		<1 (ND)	NE NE	0.625	NE	(Y)
Chlorobenzene	nc, v	<1 ND		<1 (ND)	NE NE	160	NE	N N
Chlorodibromomethane	c, nv	<1 ND		<1 (ND)	NE NE	0.521	NE NE	(Y)
Chloroethane	C, 11V	<1 ND	<1 ND	<1 (ND)	NE NE	NE	NE NE	(1) (Y)
Chloroform	nc, v	<1 ND		<1 (ND)	NE NE	1.41	NE NE	N N
Chloromethane	nc, v	<1 ND		<1 (ND)	NE NE	NE	NE NE	(Y)
Dichlorobenzene. 1.2-	nc, v	<1 ND		<1 (ND)	NE NE	720	NE NE	N N
Dichlorobenzene, 1,2-	nc, v	<1 ND		<1 (ND)	NE NE	NE	NE NE	(Y)
Dichlorobenzene, 1,4-	C, V	<1 ND		<1 (ND)	NE	560	NE	N N
Dichloroethane, 1,1-	C, V	<1 ND	<1 ND	<1 (ND)	NE NE	7.68	NE	N
Dichloroethene, 1,1-	nc, v	<1 ND	<1 ND	<1 (ND)	NE	7.00	NE	N
Dichloroethene, cis-1,2-	nc, v	<1 ND	<1 ND	<1 (ND)	NE NE	400	NE	N
Dichloroethene, trans-1,2-	nc, v	<1 ND	<1 ND	<1 (ND)	NE NE	16	NE	N
Dichloromethane	C, V	2.5 B		2.5	5	21.9	NE	N
EDB (1,2-dibromoethane)	C, V	<1 ND		<1 (ND)	0.01	0.0219	NE	(Y)
EDC (1,2-dichloroethane)	C, V		<1 ND	<1 (ND)	5	0.48	NE	(Y)
Tetrachloroethene (PCE)	C, V	<1 ND	<1 ND	<1 (ND)	5	20.8	NE	N N
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	nc, v	<1 ND		<1 (ND)	NE NE	240000	NE	N
Trichloroethane, 1,1,1-	nc, v	<1 ND	<1 ND	<1 (ND)	200	16000	NE	N
Trichloroethane, 1,1,2-	nc, v	<1 ND		<1 (ND)	32	0.768	NE	(Y)
Trichloroethene	C, V	<1 ND	<1 ND	<1 (ND)	5	0.768	NE NE	(1) (Y)
Trichlorofluoromethane (Freon 11)	nc, v	<1 ND		<1 (ND)	NE	2400	NE NE	N N
Vinyl chloride	C, V	<1 ND	<0.2 ND	<1 (ND)	0.2	2400	NE NE	Y
Total Petroleum Hydrocarbons	C, V	VI ND	NU.Z IND	<1 (ND)	0.2	27	INL	
SSR			<100 (ND)	<100 (ND)	500	NE	NE	N
GRO	nc, v	<100 ND	<100 (ND)	<100 (ND)	800	NE NE	NE NE	N
		< 100 ND	<50 (ND)	<50 (ND)	500	NE NE	NE NE	N
DRO	nc, nv			. ,				
RRO	nc, nv		<250 (ND)	<250 (ND)	500	NE	NE	N

Notes

UAI = Universal Applicators

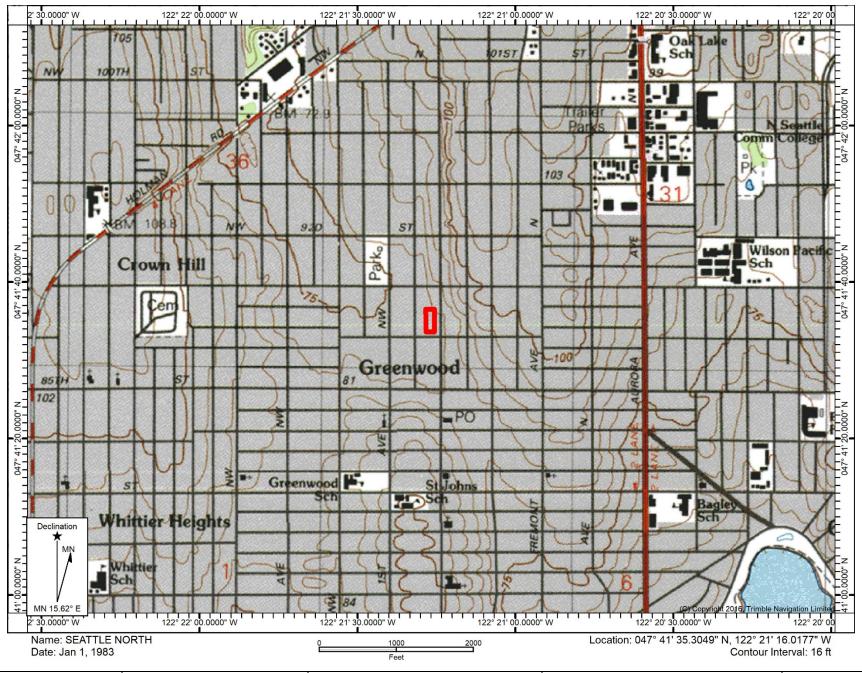
— = not analyzed or not applicable.

ND = not detected at or above the method reporting limit (MRL) or practical quantitation limit (PQL) shown.

(Y) indicates analyte not detected, but detection limit is above screening concentration.

nv = nonvolatile

GRO = gasoline-range organics.

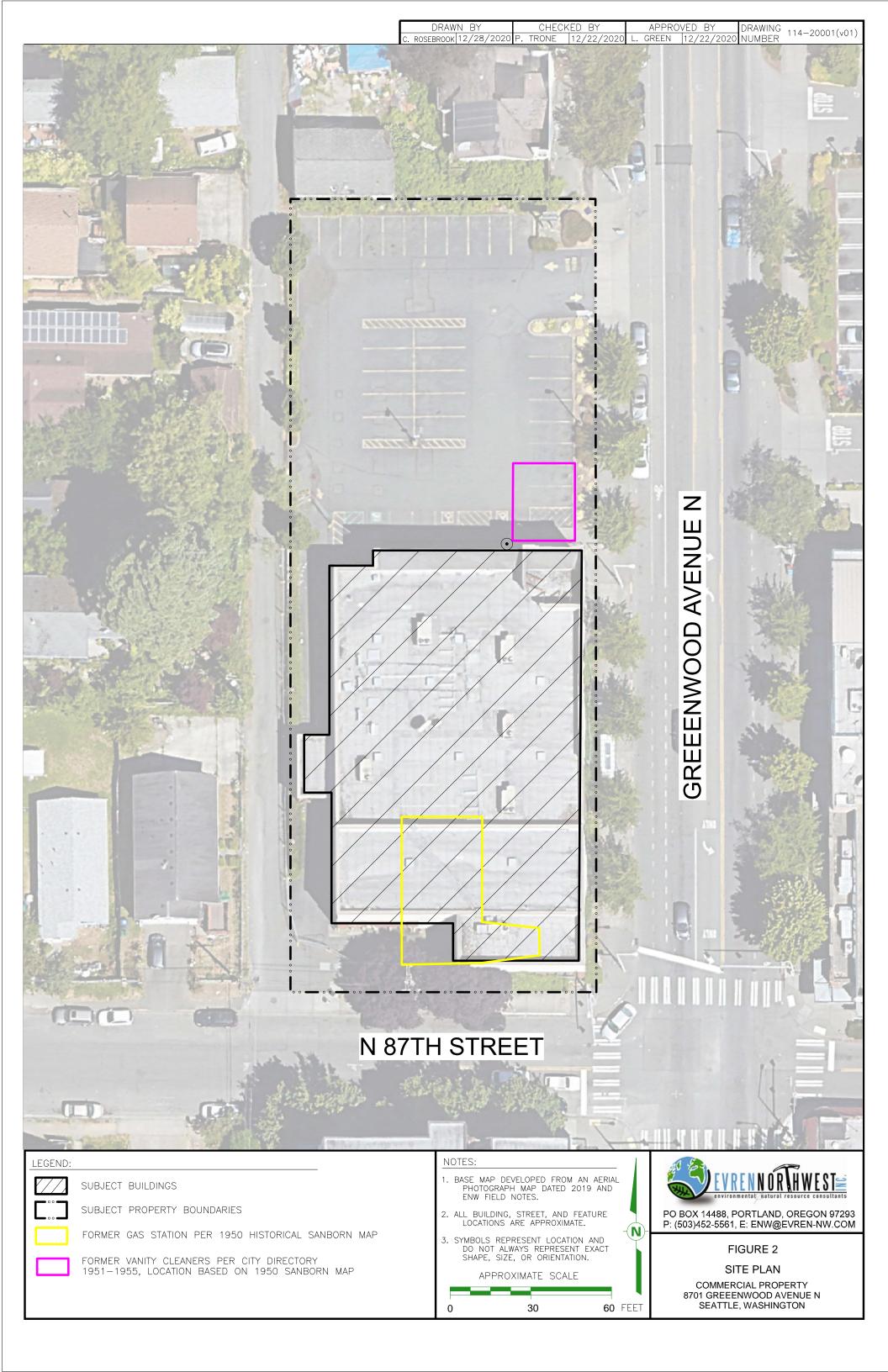

DRO = diesel-range organics.

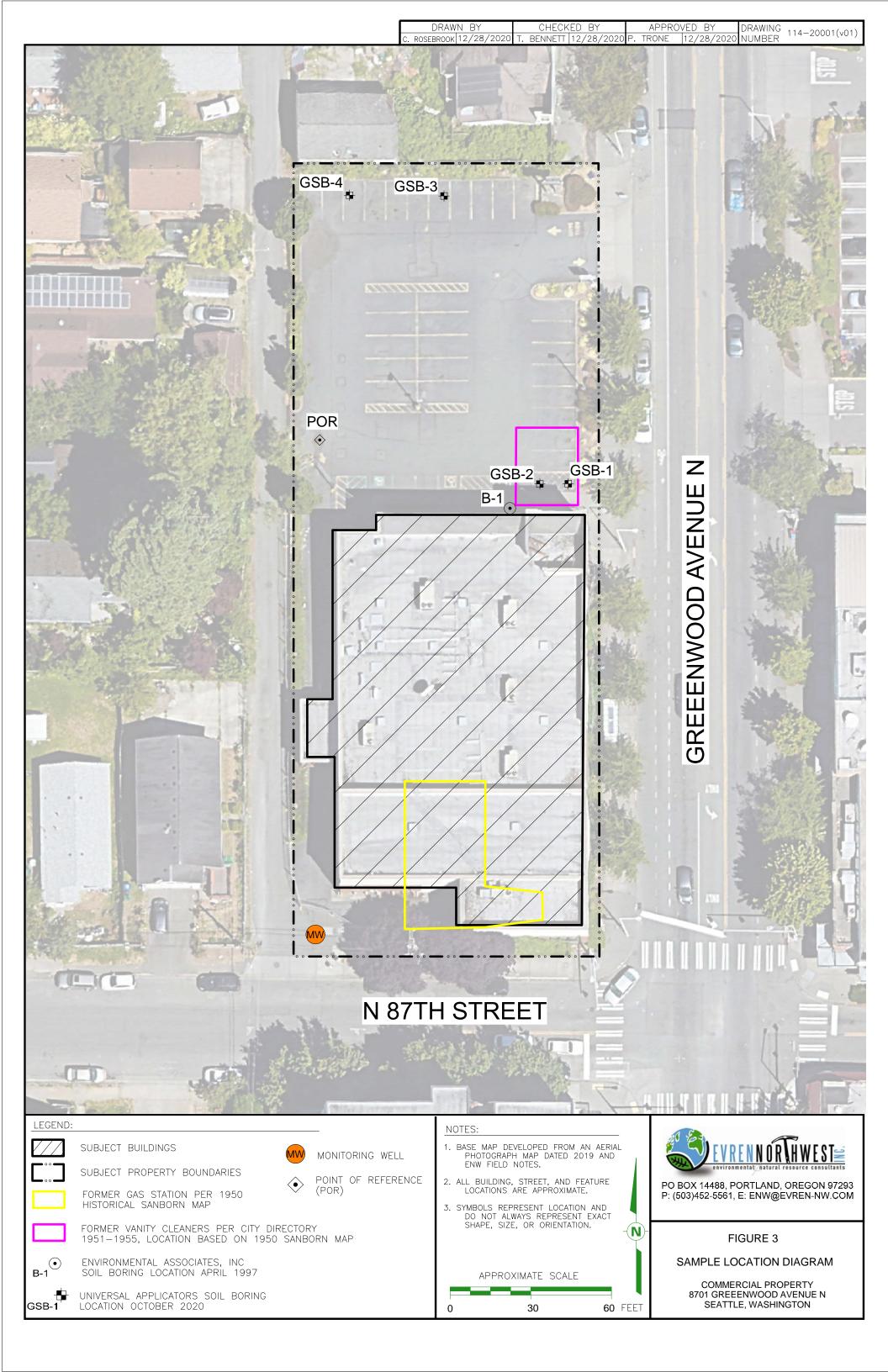
(Y) indicates analyte not detected, but detection limit is above screening concentration.

*** Cleanup standard for all naphthalene compounds

NI = not indicated

SSR = stoddard solvent range


Date Drawn: 12/22/2020 CAD File Name: 114-20001_fig1sv_map Drawn By: CLR Approved By: LDG Commercial Property 8701 Greenwood Avenue Seattle, Washington


Site Vicinity Map

Project No. 114-20001

Figure No.

1

Appendix A Site Photographs

View looking north of reference point used to record the location of soil borings. Borings GSB-3 and GSB-4 were sited along the northern property boundary visible in the background.

View looking east of the reference point. Borings GSB-1 and GSB-2 were sited north of the existing building near the eastern property boundary.

Prior to drilling, a private locator cleared all boring locations. Pictured is the locator using GPR to clear boring locations for GSB-1 and GSB-2.

Commercial Property 8701 Greenwood Avenue N Seattle, Washington 97103

Site Photographs

Project No. 114-20001-01 Appendix

Α

Appendix B
Boring Logs

DR	ILL L	OG	PROJECT					PROJECT NO.			BORING NO.	
SITE		BEGUN COMPLE		PLETED	1	14-20001 HOLE SIZE	01	GSB-1 ANGLE FROM HORIZ.				
COORD	8701 Greenwood Avenue N, Seattle, WA		10/29/2 DEPTH GROUND WATER	2020 DATE SL	1	0/29/20 STATIO	020 CLEVEL	FIRST V	VATER	GROUND ELEVATION		
ORILLEF				CORE REC	OVERY (%)	# SAMP	LES	# CORE	BOXES	DEPTH TOP OF ROCK	
ORILL M	Stand NAKE AND MO	ard En	vironmental Probe	LOGGED B	Y:						DEPTH BOTTOM OF HO	
	Geoprobe 5410						UAI				16	
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE		SAMPLE TYPE TYPE	CORE PECOVERY	MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.	
0			Asphalt with base gravel.				_				CONDITIONS.	
- - -			SILT with caly, sand, and gravel.		- - -		- - -					
2.5 - - -				-	- - -	_	 - -					
5 —			Wet.	-	- - -	-	- - -					
7.5 -				-	GSB-1	-7	Soil -					
10 —		**************************************	Organic rich, abundant wood debris.	-			- - - -					
- 2.5 - -		*******		-	_ _ _ _		- - - -					
15 —			SAND with trace silt.		_ _ _	-	- -					
- 7.5 -			End of boring.	-	- - -	-	- - -					
-					-	-	-					

DR	ILL L	റ്റ	PROJECT					PROJE			BORING NO.	
SITE				BEGUN	T	COM	PLETED	1	14-20001 HOLE SIZE	-01	GSB-2 ANGLE FROM HORIZ.	
COORD	8701 Greenwood Avenue N, Seattle, WA RDINATES		Greenwood Avenue N, Seattle, WA		2020 DATE SL	1(0/29/20 STATIO	020 C LEVEL	FIRST V	VATER	GROUND ELEVATION	
DRILLE				CORE REC	OVERY (%)	# SAMP	LES	# CORE	BOXES	DEPTH TOP OF ROCK	
ORILL N	Stand MAKE AND MO	lard En ODEL	vironmental Probe	LOGGED B	Y:						DEPTH BOTTOM OF HO	
		Geo	probe 5410				UAI				16	
	Ž	90g				S	SAMPLE		Τ.		REMARKS: NOTES ON WATER	
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHIC LOG	DESCRIPTION		SAMPLE NO.		SAMPLE TYPE	CORE RECOVERY	MW Const./ Completion	PID/OVM	LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.	
0			Asphalt with base gravel.	-		T						
- - -			SILT with caly, sand, and gravel.									
2.5 —				-		-	_					
_						-						
5 —			Organic rich, abundant wood debris. Wet.		GSB-2	-5	Soil	-				
-					-							
7.5 —				-			-					
-					-							
10 —				_	_		· ·					
-					_							
-					_							
2.5 —				-	_		-					
-					-	-						
15 —			SAND with trace silt.		_	-	-					
-					-	+						
-		1-1-1-1-1-1-1	End of boring.			T	-					
- 17.5 				-	-		<u> </u>					
-					-							
											Paga 1 o	

DRILL	IOC	PROJECT					CT NO.		BORING NO.
DRILL	LUG		BEGUN	Т	COMPLET		14-20001 HOLE SIZE	l-01	GSB-3 ANGLE FROM HORIZ.
8701 C COORDINATES	8701 Greenwood Avenue N, Seattle, WA ORDINATES		10/29/2020 10/29/202		/2020 TIC LEVE	20 LEVEL FIRST WATER		GROUND ELEVATION	
RILLER			CORE REC	OVERY (%) # SAM	MPLES	# CORE	BOXES	DEPTH TOP OF ROCK
S PRILL MAKE AN	LOGGED B	Y:					DEPTH BOTTOM OF HOLI		
<u> </u>	Geoprobe 5410				U _Z	AI LE DATA			16
DEPTH STRATA ELEVATION/	DEPTH GRAPHIC LOG	DESCRIPTION		SAMPLE		Α.	MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
0 _		Asphalt with base gravel.	_	_	_				
2.5—		GRAVEL with silt and sand.	-		- - -				
- - -		SILT with gravel and trace sand. Wet.			- - -				
5 —		Sheen observed.	-	GSB-3-	5.5 Soil				
7.5 —		Organic rich, abundant wood debris.	-	- - - -	- - - - -				
10 —			-	- - -	- - -				
2.5 —		SAND with trace silt.	-		- - -				
15 —		End of boring.	-	_	-				
7.5 —			-		-				
1				1					

DΒ	ILL L	$\overline{\Omega C}$	PROJECT					PROJE	CT NO.		BORING NO.				
SITE		OG		BEGUN	Ti	COM	PLETED	1	14-20001 HOLE SIZE	-01	GSB-4 ANGLE FROM HORIZ.				
COORD	8701 Greenwood Avenue N, Seattle, WA ORDINATES		10/29/2020 10/29 DEPTH DATE SL ST/ GROUND WATER		0/29/20 STATIO	020 FIRST		VATER	GROUND ELEVATION						
DRILLEI		1.5	10.1	CORE REC	OVERY (%)	# SAMP	LES	# CORE	BOXES	DEPTH TOP OF ROCK				
DRILL M	Standa MAKE AND MC	ard En	vironmental Probe	LOGGED B	Y:						DEPTH BOTTOM OF HOL				
	Geoprobe 5410						UAI				16				
DEPTH	STRATA ELEVATION/ DEPTH	DESCRIPTION DESCRIPTION		STRAIA DESCRIPTION MAPHIC LOG RAPHIC FOR		STRATA ELEVATION DEPTH DEPTH GRAPHIC LOG			SAMPLE NO.	SAMPLE TYPE		CORE RECOVERY	MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
0			Asphalt with base gravel.	_											
- - -			GRAVEL with silt and sand.			-	-								
2.5 —			SILT with sand and trace gravel. Wet.	-	GSB-3- -	5.5	Soil								
5 - -			Organic rich, abundant wood debris.		- - -	-	- - -								
7.5				-	- - -	-	- - -								
10 —				-	- - - -	-	- - - -								
- - 12.5 — -			SAND with trace silt.	-	- - - -		- - -								
15 —				-	- - -	-	- - -								
- - 17.5 	<u>.</u>		End of boring.		<u>-</u> -		- - -								
					_	-	-								

Appendix C

Laboratory Analytical Reports

Analytical Testing and Mobile Laboratory Services

March 27, 1997

Jim Ruef Environmental Associates, Inc. 2122 112th Avenue NE, Suite B-100 Bellevue, WA 98004

Re:

Analytical Data for Project JN 4234-2 Laboratory Reference No. 9703-083

Dear Jim:

Enclosed are the results of the analyses, and associated quality control data, of samples submitted on March 24, 1997.

The standard policy of OnSite Environmental Inc., is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Chemist

Enclosures

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997 Lab Traveler: 03-083

Project: JN 4234-2

WTPH-G

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Water Units: ug/L (ppb)

Lab ID:

03-083-1

Client ID:

B-1 GW

Dilution Factor

Result

Flags

PQL

TPH-Gas

ND

100

Fluorobenzene

Surrogate Recovery

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997 Lab Traveler: 03-083

Project: JN 4234-2

WTPH-G METHOD BLANK QUALITY CONTROL

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Water Units: ug/L (ppb)

Lab ID:

MB0324W1

Dilution Factor

1

Result

Flags

PQL

TPH-Gas

ND

100

Fluorobenzene

Surrogate Recovery

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997

Lab Traveler: 03-083 Project: JN 4234-2

WTPH-G **DUPLICATE QUALITY CONTROL**

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Water Units: ug/L (ppb)

Lab ID:

03-083-1

03-083-1 **Duplicate**

Original

RPD

Dilution Factor

1

1

TPH-Gas

ND

ND

NA

Fluorobenzene

Surrogate Recovery

87%

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997

Lab Traveler: 03-083 Project: JN 4234-2

WTPH-G

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Soil

Units: mg/Kg (ppm)

Lab ID:

03-083-5

Client ID:

B-1-4

Dilution Factor

50

Result

Flags

PQL

TPH-Gas

ND

5.6

Fluorobenzene

Surrogate Recovery

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997 Lab Traveler: 03-083 Project: JN 4234-2

WTPH-G METHOD BLANK QUALITY CONTROL

Flags

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Soil

Units: mg/Kg (ppm)

Lab ID:

MB0324S1

Dilution Factor

50

Result

PQL

TPH-Gas

ND

5.0

Fluorobenzene

Surrogate Recovery

103%

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997 Lab Traveler: 03-083 Project: JN 4234-2

WTPH-G **DUPLICATE QUALITY CONTROL**

Date Extracted:

3-24-97

Date Analyzed:

3-24-97

Matrix: Soil

Units: mg/Kg (ppm)

Lab ID	03-077-4 Original	03-077-4 Duplicate	RPD	Flags
Dilution Factor	50	50		
TPH-Gas	ND	ND	NA	
Fluorobenzene Surrogate Recovery	84%	86%		

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997

Lab Traveler: 03-083 Project: JN 4234-2

HALOGENATED VOLATILES by EPA 8260 page 1 of 2

Date Extracted:

3-25-97

Date Analyzed:

3-25-97

Matrix: Units:

Water ug/L (ppb)

Lab ID: Client ID: 03-083-1

B-1 GW

Dilution Factor:

1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		1
Chloromethane	ND		1
Vinyl Chloride	ND		1
Bromomethane	ND	•	1
Chloroethane	ND		1
Trichlorofluoromethane	ND		1
1,1-Dichloroethene	ND		1
Methylene Chloride .	2.5	В	1
(trans) 1,2-Dichloroethene	ND		1
1,1-Dichloroethane	ND		1
2,2-Dichloropropane	ND		1
(cis) 1,2-Dichloroethene	ND		1
Chloroform	ND		1
1,1,1-Trichloroethane	ND		1
Carbon Tetrachloride	ND		5
1,1-Dichloropropene	ND		1
1,2-Dichloroethane	ND		1
Trichloroethene	ND		1
1,2-Dichloropropane	ND		1
Dibromomethane	ND		1
Bromodichloromethane	ND		1
(cis) 1,3-Dichloropropene	ND		1
(trans) 1,3-Dichloropropene	ND		1
1,1,2-Trichloroethane	ND		1
Tetrachloroethene	ND		1
1,3-Dichloropropane	ND		1
Dibromochloromethane	ND .		1
1,2-Dibromoethane	ND		1

DATA QUALIFIERS AND ABBREVIATIONS

A - Due to high sample concentration, amount spiked insufficient for meaningful MS/MSD data recovery.
B - The analyte indicated was also found in the blank sample.
C - The duplicate RPD outside control limits due to analyte concentration within five times the quantitation limit.
D - Data from 1: dilution.
E - Value reported exceeds the quantitation range. Value is an estimate.
F - Surrogate recovery data not available due to the high concentration in the sample.
G - Insufficient sample quantity for duplicate analysis.
J - The value reported was below the practical quantitation limit. The value is an estimate.
K - Sample duplicate RPD outside control limited due to sample inhomogeniety. Sample re-extracted and re-analyzed with similar results.
L - Quantitated from C7-C34 as diesel fuel #2.
M - Predominantly range hydrocarbons present in the sample.
N - Hydrocarbons in the gasoline range (C7-toluene) present in the sample. N1 - Hydrocarbons in the gasoline range (C7-toluene) present in the sample which are elevating the diese result.
O - Hydrocarbons in the heavy oil range (>C24) present in the sample. O1 - Hydrocarbons in the heavy oil range (>C24) present in the sample which are elevating the diesel result.
R - Hydrocarbons outside defined gasoline range present in the sample.
S - Surrogate recovery data not available due to the necessary dilution of the sample.
T - The sample chromatogram is not similar to a typical
U - Matrix Spike/Matrix Spike Duplicate RPD outside control limits due to matrix effects.
V - Matrix Spike/Matrix Spike Duplicate recoveries outside control limits due to matrix effects.
Z - Interferences were present which prevented the quantitation of the analyte below the detection limit reported.
ND - Not Detected
MRL - Method Reporting Limit
PQL - Practical Quantitation Limit

chain Or "usrody

Project Chemist: 7 0 0

	entai Inc.		rioject Crieniist		La	oorat	Laboratory No.		- 083	
14924 NE 31st Circle • Redmond, WA 98052	mond, WA 98052	(Check One)			ania).		SISTEMATION OF THE PROPERTY OF			
Fax: (206) 885-4603 • Phone	s: (206) 883-3881	Same Day	(a * x -	₩ 479,				Dom.		
	CA This.	24 Hours	hodelo	, 8240/8260/		<u>.</u>		ગુણમ		
1		Standard		09				od r		
Project Marager.		(other)	ИТРН-НСІD ТРН-G/В ФЕ П-НЧТР	S8 yd aelitelo S8 yd aelitelo oV betanirold:	emivolatiles b	CB's by 8080	CLP Metals	y 844		ehulsioM a
	27 16 C - 8		^ ^ ><	^	_			,		%
5 2-1-1	1	V)				-		>		
-3 19-11-2	V.	1535 S				-		· *		
4 2-1-3	V 1	1540 5 1						. 7%		
1	> >		X	<u>メ</u> 						X
2-1-X	2-5-5	27.7						×		
		r,t				-				
						_ *****				
	100									
RELINQUISHED BY	3/2 1 97 RE	RECEIVED BY CO CO CO	all the	DATE 3-3 0-91		COMMENTS:				
FIRM EAT	TIME 'PIE	HRM C		TIME SOLO	*	2	nead	regr		
RELINQUISHED BY	DATE RE	RECEIVED BY		DATE		 	indian.	B		
ыям	TIME	MRIH		TIME						\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.
REVIEWED BY	ΔO	DATE REVIEWED			1					
	DISTRIBUT	DISTRIBUTION LEGEND: White - OnSi	-OnSite Copy Yellow - Re	Yellow - Report Copy Pink - Client Copy	ent Copy					

Summary: DATA VALID?

☐ YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Universal Applicators	Project Number:	114-20001-01		_
Date of Review: 12/28/2020	Lab. Name: Onsite ENV	Lab Batch ID #: 970	3-083	_
Chain of Custody				
1.) Are all requested analyses reported	ed?	⊠yes	□no	
2.) Were the requested methods used		⊠yes	□no	
3.) Trip blank submitted?		□yes	⊠no	
4.) Field blank submitted?		□yes	⊠no	
Timing				
5.) Samples extracted within holding	times?	⊠yes	□no	
If not, are all discrepancies fo	otnoted?	□yes	□no	$\boxtimes NA$
6.) Analysis performed within holding	times?	⊠yes	□no	
If not, are all discrepancies fo	otnoted?	□yes	□no	$\boxtimes NA$
Quality Assurance/Quality Control				
7.) Are the required reporting limits re		-		
8.) Are all reported values above eith		⊠yes		
9.) Are all values between the MDL &		□yes		$\boxtimes NA$
10a.) Are reporting limits raised for ot	her reason besides high an	•		
10b.) If so, are they footnoted?		□yes		$\boxtimes NA$
11.) Lab method blank completed?		⊠yes		
12.) Lab, Field, or Trip Blank(s) repor		⊠yes	□no	
If yes, indicate blank type, chemical(s	and concentration(s): See	comments		
13.) For inorganics and metals, is the	re one method blank for ea	ch analyte? □yes	□no	⊠NA
If not, are all discrepancies fo	otnoted?	□yes	□no	
14.) For VOCs, is there one method by	plank for each day of analys	is? ⊠yes	□no	\square NA
If not, are all discrepancies fo		□yes	□no	
15.) For SVOC's, is there one method		oatch? □yes	□no	$\boxtimes NA$
If not, are all discrepancies fo	otnoted?	□yes	□no	
Accuracy				
16.) Is there a surrogate spike recover	ery for all VOC & SVOC sam	nples? ⊠yes	□no	\square NA
Do all surrogate spike recove	ries meet accepted criteria?	⊠yes	□no	
If not, are all discrepancies fo	otnoted?	□yes	□no	$\boxtimes NA$
17.) Is there a spike recovery for all L	aboratory Control Samples	? ⊠yes	□no	\square NA
Do all LCS/LCSD spike recov	eries meet accepted criteria	ı? ⊠yes	□no	
If not, are all discrepancies fo	otnoted?	□yes	□no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within a	cceptable limits?	□yes	□no	$\boxtimes NA$
If not, are all discrepancies fo	otnoted?	□yes	□no	$\boxtimes NA$
Precision				
19.) Are all matrix spike/matrix spike	duplicate recoveries within	_		
acceptable limits?		⊠yes		□NA
If not, are all discrepancies footn		□yes	□no	$\boxtimes NA$
20.) Are all matrix spike/matrix spike	duplicate RPDs within	<u> </u>		
acceptable limits?	-410	⊠yes		□NA
If not, are all discrepancies footn		□yes		⊠NA
21.) Do all RPD calculations for Field	Duplicates meet accepted	criteria? □yes	□no	⊠NA
Comments:				
Methylene chloride detected in soil an	d water - attributed to lab c	ontamination. Flagged	'B'	
Initial Review By: CR		Final Review By: EB		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2020

Greg Mackay, Project Manager Left Coast Services 126 SW 148th St Suite C100-Box 4 Burien, WA 98166-1984

Dear Mr Mackay:

Included are the results from the testing of material submitted on October 29, 2020 from the Singh, F&BI 010545 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Kelly Mackay, Alexander Moss

LCS1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 29, 2020 by Friedman & Bruya, Inc. from the Left Coast Services Singh, F&BI 010545 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Left Coast Services
010545 -01	MW-01
010545 -02	GSB-1-7
010545 -03	GSB-2-5
010545 -04	GSB-3-5.5
010545 -05	GSB-4-3

Samples MW-01, GSB-3-5.5, and GSB-4-3 were sent to Fremont Analytical for glycol analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 10/30/20 Date Analyzed: 11/02/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-01 010545-01	<100	75
Method Blank 00-2397 MB	<100	73

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 10/30/20 Date Analyzed: 11/03/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
GSB-3-5.5 010545-04	< 0.02	< 0.02	0.054	<0.06	42	83
GSB-4-3 010545-05	< 0.02	<0.02	< 0.02	<0.06	<5	73
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<5	82

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 10/30/20 Date Analyzed: 10/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 41-152)
MW-01 010545-01	<50	<250	58
Method Blank 00-2453 MB	< 50	<250	83

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 11/02/20 Date Analyzed: 11/02/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 48-168)
GSB-3-5.5 010545-04	1,100	<500	91
GSB-4-3 010545-05	<50	<250	96
Method Blank 00-2455 MB	<50	<250	99

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GSB-1-7	Client:	Left Coast Services
Date Received:	10/29/20	Project:	Singh, F&BI 010545
Date Extracted:	10/30/20	Lab ID:	010545-02
Date Analyzed:	11/02/20	Data File:	110216.D
Matrix:	Soil	Instrument:	GCMS11
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	111	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GSB-2-5	Client:	Left Coast Services
Date Received:	10/29/20	Project:	Singh, F&BI 010545
Date Extracted:	10/30/20	Lab ID:	010545-03
Date Analyzed:	11/02/20	Data File:	110217.D
Matrix:	Soil	Instrument:	GCMS11
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Left Coast Services
Date Received:	Not Applicable	Project:	Singh, F&BI 010545
Date Extracted:	10/30/20	Lab ID:	00-2644 mb
Date Analyzed:	10/30/20	Data File:	103009.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-01	Client:	Left Coast Services
Date Received:	10/29/20	Project:	Singh, F&BI 010545
Date Extracted:	11/03/20	Lab ID:	010545-01
Date Analyzed:	11/04/20	Data File:	110442.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentratio ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Left Coast Services
Date Received:	Not Applicable	Project:	Singh, F&BI 010545
Date Extracted:	11/03/20	Lab ID:	00-2651 mb
Date Analyzed:	11/03/20	Data File:	110308.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	99	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 10/30/20 Date Analyzed: 11/02/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Stoddard Solvent Range (C8-C11)	Surrogate (% Recovery) (Limit 50-150)
GSB-1-7 010545-02	<5	71
GSB-2-5 010545-03	<5	62
Method Blank 00-2396 MB	<5	73

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545 Date Extracted: 10/30/20 Date Analyzed: 11/02/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Stoddard Solvent Range (C ₈ -C ₁₁)	Surrogate (% Recovery) (Limit 50-150)
MW-01 010545-01	<100	75
Method Blank 00-2397 MB	<100	73

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE AND STODDARD SOLVENT USING METHOD NWTPH-Gx

Laboratory Code: 010545-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm
Stoddard Solvent	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	94	70-119
Stoddard Solvent	ug/L (ppb)	500	83	70-130

Page 27 of 47

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 010572-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	69-120
Toluene	mg/kg (ppm)	0.5	81	70-117
Ethylbenzene	mg/kg (ppm)	0.5	78	65-123
Xylenes	mg/kg (ppm)	1.5	80	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR STODDARD SOLVENT USING METHOD NWTPH-Gx

Laboratory Code: 010545-02 (Duplicate)

		Sample	Duplicate		
	Reporting	Result	Result	RPD	
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)	_
Stoddard Solvent	mg/kg (nnm)	<5	<5	nm	-

	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Stoddard Solvent	mg/kg (ppm)	10	73	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 010554-07 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	<50	117	124	50-150	6

	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	116	63-142	11

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 010594-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	94	98	73-135	4

	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	98	74-139	_

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 010579-11 (Matrix Spike)

			Башріе	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1	< 0.05	85	80	10-138	6
Chloroethane	mg/kg (ppm)	1	< 0.5	92	87	10-176	6
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	104	104	10-160	0
Methylene chloride	mg/kg (ppm)	1	< 0.5	117	112	10-156	4
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	106	105	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	105	105	19-140	0
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	109	109	25-135	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	102	102	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	100	106	10-156	6
Trichloroethene	mg/kg (ppm)	1	< 0.02	108	107	21-139	1
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	109	109	20-133	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1	83	22-139
Chloroethane	mg/kg (ppm)	1	86	9-163
1,1-Dichloroethene	mg/kg (ppm)	1	103	47-128
Methylene chloride	mg/kg (ppm)	1	111	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	1	97	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	98	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	1	100	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	95	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	94	62-131
Trichloroethene	mg/kg (ppm)	1	99	64-117
Tetrachloroethene	mg/kg (ppm)	1	92	72-114

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/20 Date Received: 10/29/20 Project: Singh, F&BI 010545

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011007-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.2	94	36-166
Chloroethane	ug/L (ppb)	10	<1	94	46-160
1,1-Dichloroethene	ug/L (ppb)	10	<1	100	60-136
Methylene chloride	ug/L (ppb)	10	<5	107	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	90	72-129
1,1-Dichloroethane	ug/L (ppb)	10	<1	94	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	93	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	88	48-149
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	91	60-146
Trichloroethene	ug/L (ppb)	10	<1	89	66-135
Tetrachloroethene	ug/L (ppb)	10	<1	84	10-226

	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	105	102	50-154	3
Chloroethane	ug/L (ppb)	10	107	106	58-146	1
1,1-Dichloroethene	ug/L (ppb)	10	108	106	67-136	2
Methylene chloride	ug/L (ppb)	10	101	95	39-148	6
trans-1,2-Dichloroethene	ug/L (ppb)	10	103	100	68-128	3
1,1-Dichloroethane	ug/L (ppb)	10	100	97	74-135	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	101	99	74-136	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	93	92	66-129	1
1,1,1-Trichloroethane	ug/L (ppb)	10	97	95	74-142	2
Trichloroethene	ug/L (ppb)	10	99	95	67-133	4
Tetrachloroethene	ug/L (ppb)	10	94	96	76-121	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 010545

Work Order Number: 2010509

November 17, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 10/30/2020 for the analyses presented in the following report.

Glycols by SW8015 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

www.fremontanalytical.com

Page 1 of 10

Date: 11/17/2020

CLIENT: Project: Work Order:	Friedman & Bruya 010545 2010509	Work Order S	Sample Summary		
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received		
2010509-001	MW-01	10/29/2020 11:50 AM	10/30/2020 8:34 AM		
2010509-002	GSB-3-5.5	10/29/2020 1:10 PM	10/30/2020 8:34 AM		
2010509-003	GSB-4-3	10/29/2020 1:34 PM	10/30/2020 8:34 AM		

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Original

Page 2 of 10

Case Narrative

WO#: 2010509 Date: 11/17/2020

CLIENT: Friedman & Bruya

Project: 010545

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original Page 3 of 10

Qualifiers & Acronyms

WO#: 2010509 Date Reported: 11/17/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Original

www.fremontanalytical.com

Page 4 of 10

Analytical Report

Work Order: 2010509

Date Reported: 11/17/2020

CLIENT: Friedman & Bruya

Project: 010545

Lab ID: 2010509-001 Collection Date: 10/29/2020 11:50:00 AM

Client Sample ID: MW-01 Matrix: Water

RL Qual Units DF **Analyses** Result **Date Analyzed** Glycols by SW8015 Batch ID: 30373 Analyst: DW Ethylene glycol ND 10.0 1 11/11/2020 1:01:51 PM mg/L Propylene glycol ND 10.0 mg/L 1 11/11/2020 1:01:51 PM Surr: 2,4,6-Tribromophenol 81.3 22.2 - 154 11/11/2020 1:01:51 PM

Lab ID: 2010509-002 Collection Date: 10/29/2020 1:10:00 PM

Client Sample ID: GSB-3-5.5 Matrix: Soil

Analyses Result RL Qual Units DF **Date Analyzed** Batch ID: 30375 Analyst: DW Glycols by SW8015 11/16/2020 10:25:31 PM Ethylene glycol 18.7 18.0 mg/Kg-dry 1 Propylene glycol ND 18.0 mg/Kg-dry 1 11/16/2020 10:25:31 PM 11/16/2020 10:25:31 PM Surr: 2,4,6-Tribromophenol 87.5 21.7 - 145 %Rec 1 Batch ID: R63267 Analyst: LB Sample Moisture (Percent Moisture) Percent Moisture 45.3 0.500 1 11/10/2020 10:35:02 AM

Lab ID: 2010509-003 Collection Date: 10/29/2020 1:34:00 PM

Client Sample ID: GSB-4-3 Matrix: Soil

Analyses RL Qual Units DF **Date Analyzed** Result Glycols by SW8015 Batch ID: 30375 Analyst: DW 11/16/2020 10:39:19 PM Ethylene glycol ND 9.07 mg/Kg-dry 1 Propylene glycol ND 9.07 mg/Kg-dry 1 11/16/2020 10:39:19 PM 11/16/2020 10:39:19 PM Surr: 2,4,6-Tribromophenol 92.3 21.7 - 145 %Rec 1 Analyst: LB Sample Moisture (Percent Moisture) Batch ID: R63267 Percent Moisture 2.99 0.500 wt% 1 11/10/2020 10:35:02 AM

Original

Page 5 of 10

Analytical Report

Work Order: 2010509
Date Reported: 11/17/2020

CLIENT: Friedman & Bruya

Project: 010545

Original Page 6 of 10

Date: 11/17/2020

Work Order:	2010509									oc 9	SUMMA	RY REF	ORT
CLIENT:	Friedman 8	& Bruya								~~			
Project:	010545										Glyd	cols by S	W8015
Sample ID: MB-3	0375	SampType	: MBLK			Units: mg/K	g	Prep Da	te: 11/12/2	020	RunNo: 634	456	
Client ID: MBLK	(S	Batch ID:	30375					Analysis Da	te: 11/16/2	2020	SeqNo: 12	73977	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol			ND	10.0									
Propylene glycol			ND	10.0									
Surr: 2,4,6-Trib	romophenol		41.8		50.00		83.5	21.7	145				
Sample ID: LCS-3	30375	SampType	: LCS			Units: mg/K	g	Prep Da	te: 11/12/2	2020	RunNo: 634	456	
Client ID: LCSS	i	Batch ID:	30375					Analysis Da	te: 11/16/2	2020	SeqNo: 12	73976	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol			103	10.0	100.0	0	103	38	134				
Propylene glycol			93.6	10.0	100.0	0	93.6	42	126				
Surr: 2,4,6-Trib	romophenol		45.7		50.00		91.4	21.7	145				
Sample ID: 20105	509-002AMS	SampType	: MS			Units: mg/K	g-dry	Prep Da	te: 11/12/2	2020	RunNo: 634	456	
Client ID: GSB-	3-5.5	Batch ID:	30375					Analysis Da	te: 11/16/2	2020	SeqNo: 12	73969	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol			178	18.7	186.9	18.74	85.2	5	129				
Propylene glycol			169	18.7	186.9	15.60	81.8	5	119				
Surr: 2,4,6-Trib	romophenol		91.7		93.45		98.1	21.7	145				
Sample ID: 20105	509-002AMSD	SampType	: MSD			Units: mg/K	g-dry	Prep Da	te: 11/12/2	1020	RunNo: 634	456	
Client ID: GSB-	3-5.5	Batch ID:	30375					Analysis Da	te: 11/17/2	2020	SeqNo: 12	73970	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol			168	18.2	182.4	18.74	81.8	5	129	177.9	5.80	30	
Propylene glycol			161	18.2	182.4	15.60	79.5	5	119	168.5	4.76	30	
Surr: 2,4,6-Trib	romophenol		82.9		91.21		90.9	21.7	145		0		

Original Page 7 of 10

Date: 11/17/2020

Project: 010545 Sample ID: MB-30373 Client ID: MBLKW Analyte Ethylene glycol Propylene glycol Surr: 2,4,6-Tribromophenol Sample ID: LCS-30373 Client ID: LCSW Analyte Ethylene glycol	SampType: MBLK Batch ID: 30373 Result ND ND 53.6 SampType: LCS Batch ID: 30373 Result 316	RL 10.0 10.0	64.00	Units: mg/L SPK Ref Val Units: mg/L SPK Ref Val	%REC 83.7	Analysis Dat LowLimit 22.2	154 ee: 11/11/2	RPD Ref Val	RunNo: 633 SeqNo: 127 %RPD RunNo: 633 SeqNo: 127	70993 RPDLimit	Qual
Analyte Ethylene glycol Propylene glycol Surr: 2,4,6-Tribromophenol Sample ID: LCS-30373 Client ID: LCSW Analyte	Batch ID: 30373 Result ND ND 53.6 SampType: LCS Batch ID: 30373 Result	10.0 10.0	64.00	Units: mg/L	83.7	LowLimit 22.2 Prep Dat	154 ee: 11/11/2	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol Propylene glycol Surr: 2,4,6-Tribromophenol Sample ID: LCS-30373 Client ID: LCSW Analyte	ND ND 53.6 SampType: LCS Batch ID: 30373 Result	10.0 10.0	64.00	Units: mg/L	83.7	22.2 Prep Dat	154 le: 11/11/2 le: 11/11/2	2020	RunNo: 633	331	Qual
Propylene glycol Surr: 2,4,6-Tribromophenol Sample ID: LCS-30373 Client ID: LCSW Analyte	ND 53.6 SampType: LCS Batch ID: 30373 Result	10.0				Prep Dat	e: 11/11/2 ie: 11/11/2				
Surr: 2,4,6-Tribromophenol Sample ID: LCS-30373 Client ID: LCSW Analyte	53.6 SampType: LCS Batch ID: 30373 Result	RL				Prep Dat	e: 11/11/2 ie: 11/11/2				
Sample ID: LCS-30373 Client ID: LCSW Analyte	SampType: LCS Batch ID: 30373 Result					Prep Dat	e: 11/11/2 ie: 11/11/2				
Client ID: LCSW Analyte	Batch ID: 30373 Result		SPK value		%REC		te: 11/11/2				
Analyte	Result		SPK value	SPK Ref Val	%REC	Analysis Dat		1020	SeqNo: 127	70991	
			SPK value	SPK Ref Val	%REC						
Ethylene alycol	316				MILLO	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Euryronio gryoor		10.0	400.0	0	79.0	47	143				
Propylene glycol	272	10.0	400.0	0	68.0	48.3	136				
Surr: 2,4,6-Tribromophenol	51.2		64.00		79.9	22.2	154				
Sample ID: LCSD-30373	SampType: LCSD			Units: mg/L		Prep Dat	e: 11/11/2	1020	RunNo: 633	331	
Client ID: LCSW02	Batch ID: 30373					Analysis Dat	te: 11/11/2	020	SeqNo: 127	70992	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol	324	10.0	400.0	0	81.1	47	143	315.8	2.66	30	
Propylene glycol	309	10.0	400.0	0	77.3	48.3	136	272.2	12.8	30	
Surr: 2,4,6-Tribromophenol	54.0		64.00		84.3	22.2	154		0		
Sample ID: 2010509-001AMS	SampType: MS			Units: mg/L		Prep Dat	e: 11/11/2	1020	RunNo: 633	331	
Client ID: MW-01	Batch ID: 30373					Analysis Dat	te: 11/11/2	1020	SeqNo: 127	70988	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylene glycol	283	10.0	400.0	3.890	69.8	14.9	163				
Propylene glycol	288	10.0	400.0	5.668	70.6	27.4	139				
Surr: 2,4,6-Tribromophenol	54.4		64.00		85.0	22.2	154				

47° 41'34" N 122° 21' 20" W ~260 foot Elevation (206)762-7500

Page 8 of 10

Original

Sample Log-In Check List

Client Name: FB	Work Order Numb	per: 2010509		
Logged by: Gabrielle Coeuille	Date Received:	10/30/202	0 8:34:00 AM	
Chain of Custody				
1. Is Chain of Custody complete?	Yes 🗹	No 🗆	Not Present	
2. How was the sample delivered?	Client			
<u>Log In</u>				
3. Coolers are present?	Yes 🗹	No 🗆	NA 🗆	
4. Shipping container/cooler in good condition?	Yes 🗸	No 🗆		
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗆	Not Present ✓	
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗆	
7. Were all items received at a temperature of >2°C to 6°C *	Y.,	No	NA 🗆	
8. Sample(s) in proper container(s)?	Y.,	No		
9. Sufficient sample volume for indicated test(s)?	Y.,	No		
10. Are samples properly preserved?	Yes 🗹	No 🗆		
11. Was preservative added to bottles?	Yes 🗌	No 🗹	NA L	
12. Is there headspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
14. Does paperwork match bottle labels?	Yes 🗸	No 🗌		
15. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗆		
16. Is it clear what analyses were requested?	Yes 🗹	No 🗆		
17. Were all holding times able to be met?	Yes ✓	No		
Special Handling (if applicable)				
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:	E	one Fax	In Parxon	
19. Additional remarks:				
Item Information				
Item # Temp °C				
Sample 1 0.1				
* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C				
Original				Page 9 of 10

Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044	Friedman & Bruya, Inc. 3012 16th Avenue West				6-4-3	6513-7-5.5	MW-0	Sample ID		Phone #(206) 285-8282_merdahl@friedmanandbruya.com	City, State, ZIP S		Company F	Send Report To
2029	Vest							Lab ID		-8282	eattle,	012 16	riedma	Michael
Received by: Received by:	Relinquished by				-		10/20/20	Date Sampled		merdahl@fri	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruya, Inc	Michael Erdahl
	SIGNATURE				1334	13/0	1150	Time Sampled		edmanandbru			Inc.	
7	6				4	Ş	H ₂ O	Matrix		ya.com	RE		PR(SU
6	Mich				-	-	-	# of		P	REMARKS	0	PROJECT NAME/NO	SUBCONTRACTER
orter	Michael Erdahl							Dioxins/Furans		Please Email Results	5.	010545	NAME	RACTI
	PRINT NAME	Ш		1				EPH		mail Re		S	NO.	-12
Johnson	NAME	\sqcup		1				VPH	A	sults				Fremon
3				+	X	X	Υ	Glycols	NALY					*
TAI	COMPANY Friedman & Bruya								ANALYSES REQUEST			A-442	PO#	
	COMPANY nan & Bruya								TED	□ Return	S Dispos	Rush cha	Standard TAT	TI P
10/3dr	DATE							7		Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	ard TAT	Page # 0 of TURNAROUND TIME
N530	TIME							Notes		tions	JASC	d by:		TIME (

nus _						
Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 FORMSCOCCCOC.DOC		C-4-955	GSB-2-5	10-MW	Sample ID	Send Report To Greg Mackay Send Report To Greg Mackay Company Left Coast Services LLC Address 515 S Southern St City, State, ZIP Seattle, WA 98108 Phone # (206)762-7500 Fax # (206)76 Email Address uai_zander@yahoo.com
Relinquished by:		59	63	07 A-B	Lab ID	ay 28 LLC t t A 98108 Fax # (206 @yahoo.o
SIGNATURE		(C		105-17-706	Date	es LLC .98108 .Fax # (206)762-7757
138		13.34	12:10	17.77	Time	
pt.	1	P		Soil	Sample Type	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAMENO. PROJECT ADDRESS 8701 6 Cemud Aven Settly, VA 98103 ANAR 1/1/1/ ELECTRONIC DATA REQUESTED ANALYSES R
PRINT NAME HEXALD MOY		5	SS	20	# of containers	N OF CU ignature) MENO. DRESS CONTARES
MoyL		× ×	× ×	×	TPH-Diesel TPH-Gasoline	Sand Vary
7 8	\vdash		8	110	BTEX by 8021B	
			×	< y	CVOCs by 8260	
					SVOCs by 8270	
			-		HFS	PO #
75			×	× ×	Ant-Frese	PO# PO# PO# INALYSES REQUES
COMPANY	<u>va</u>	×	×	++	x Glycols	SS
				++		
	SS S			++		Page# TURN amdard SSH 5 charge charge spose a spose a spose a spose a
100	Samples received at		-	++		Page # of TURNAROUND TIME Standard Turnaround ORUSIL S-Day Rush charges authorized by: SAMPLE DISPOSAL D Dispose after 30 days Return samples Return samples Will call with instructions Samples Received at°C
1/54/01	ed :			1 4		DUNI naron tay uthor DISI
	1 11-1	1		3 2	Notes	of TIN OSA
15:05 15:05				X) per/IM injayer		
719	၂ ရ			1 2		L ZZ
						Ž.

HALOGENATED VOLATILES by EPA 8260

page 2 of 2

Lab ID:

03-083-1

Client ID:

B-1 GW

Dilution Factor:

Compound	Results	Flags	PQL
Chlorobenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
Bromoform	ND		1
Bromobenzene	ND		1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichloropropane	ND		1
2-Chlorotoluene	ND		1
4-Chlorotoluene	ND		1
1,3-Dichlorobenzene	ND		1
1,4-Dichlorobenzene	ND		1
1,2-Dichlorobenzene	ND		1
1,2-Dibromo-3-chloropropane	ND		1
1,2,4-Trichlorobenzene	ND		1
Hexachlorobutadiene	ND		1
1,2,3-Trichlorobenzene	. ND		1
Freon 113	ND	*	

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	114	86-118	
Toluene-d8	106	88-110	
4-Bromofluorobenzene	99	86-115	

^{*} Not calibrated.

HALOGENATED VOLATILES by EPA 8260 METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted:

3-25-97

Date Analyzed:

3-25-97

Matrix: Units:

Water ug/L (ppb)

Lab ID:

MB0325W1

Dilution Factor:

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	•	1
Chloromethane	ND		1
Vinyl Chloride	ND		1
Bromomethane	ND		1
Chloroethane	. ND		1
Trichlorofluoromethane	ND		1
1,1-Dichloroethene	ND		1
Methylene Chloride	2,5		1
(trans) 1,2-Dichloroethene	ND		1
1,1-Dichloroethane	ND		1
2,2-Dichloropropane	ND		1
(cis) 1,2-Dichloroethene	ND		1
Chloroform	ND		1
1,1,1-Trichloroethane	ND		1
Carbon Tetrachloride	ND		5
1,1-Dichloropropene	ND		1
1,2-Dichloroethane	ND		1
Trichloroethene	ND		1
1,2-Dichtoropropane	ND		1
Dibromomethane	ND		1
Bromodichloromethane	ND		1
(cis) 1,3-Dichloropropene	ND		1
(trans) 1,3-Dichloropropene	ND		1
1,1,2-Trichloroethane	ND		1
Tetrachloroethene	ND		1
1,3-Dichloropropane	ND		1
Dibromochloromethane	ND		1
1,2-Dibromoethane	ND		1

HALOGENATED VOLATILES by EPA 8260 METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID:

MB0325W1

Dilution Factor:

Compound	Results	Flags	PQL
Chlorobenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
Bromoform	ND		1
Bromobenzene	ND		1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichioropropane	ND		1
2-Chlorotoluene	ND		1
4-Chlorotoluene	· ND		1
1,3-Dichlorobenzene	ND		1
1,4-Dichlorobenzene	ND		1
1,2-Dichlorobenzene	ND		1
1,2-Dibromo-3-chloropropane	ND		1
1,2,4-Trichlorobenzene	ND		1
Hexachlorobutadiene	ND		1
1,2,3-Trichlorobenzene	ND		1

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	112	86-118
Toluene-d8	102	88-110
4-Bromofluorobenzene	96	86-115

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997

Lab Traveler: 03-083 Project: JN 4234-2

VOLATILES by EPA 8260 MS/MSD QUALITY CONTROL

Date Extracted:

3-12-97

Date Analyzed:

3-12-97

Matrix:

Water

Units:

ug/L (ppb)

Dilution Factor:

1

Lab ID:

04402V

•	Spike		Percent		Percent	
Compound	Amount	MS	Recovery	MSD	Recovery	RPD
1,1-Dichloroethene	50,0	53.3	107	60.7	121	13
Benzene	50.0	54.6	109	55.8	111	2.2
Trichloroethene	50.0	88.3	106	87.2	104	1.9
Toluene	50.0	50,5	101	51.1	102	1.2
Chlorobenzene	50.0	49.6	99	50.8	102	2.5

HALOGENATED VOLATILES by EPA 8260 page 1 of 2

Date Extracted:

3-25-97

Date Analyzed:

3-25-97

Matrix:

Soil

Units:

mg/Kg (ppm)

Lab ID:

03-083-5

Client ID:

B-1-4

Dilution Factor:

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0,056
Chloromethane	ND		0.056
Vinyl Chloride	ND		0.056
Bromomethane	ND		0.056
Chloroethane	ND		0.056
Trichlorofluoromethane	ND		0.056
1,1-Dichloroethene	ND		0.056
Methylene Chloride	0.13	В	0.056
(trans) 1,2-Dichloroethene	ND		0.056
1,1-Dichloroethane	ND		0.056
2,2-Dichloropropane	ND		0.056
(cis) 1,2-Dichloroethene	ND		0,056
Chloroform	ND		0.056
1,1,1-Trichloroethane	ND		0.056
Carbon Tetrachloride	ND		0.28
1,1-Dichloropropene	ND		0.056
1,2-Dichloroethane	ND		0.056
Trichloroethene	ND		0.056
1,2-Dichloropropane	ND		0.056
Dibromomethane	ND		0.056
Bromodichloromethane	ND		0.056
(cis) 1,3-Dichloropropene	ND		0.056
(trans) 1,3-Dichloropropene	ND		0.056
1,1,2-Trichloroethane	ND		0.056
Tetrachloroethene	ND	•	0.056
1,3-Dichloropropane	ND		0.056
Dibromochloromethane	ND		0.056

HALOGENATED VOLATILES by EPA 8260

page 2 of 2

Lab ID:

03-083-5

Client ID:

B-1-4

Dilution Factor:

Compound	Results	Flags	PQL
1,2-Dibromoethane	ND		0.056
Chlorobenzene	N D		0.056
1,1,1,2-Tetrachloroethane	ND		0.056
Bromoform	ND		0,056
Bromobenzene	ND		0.056
1,1,2,2-Tetrachioroethane	ND		0.056
1,2,3-Trichloropropane	ND		0,056
2-Chlorotoluene	N D		0.056
4-Chlorotoluene	ND		0.056
1,3-Dichlorobenzene	ND		0.056
1,4-Dichlorobenzene	ND		0.056
1,2-Dichlorobenzene	ND		0.056
1,2-Dibromo-3-chloropropane	ND		0.28
1,2,4-Trichlorobenzene	ND		0,056
Hexachlorobutadiene	ND		0.056
1,2,3-Trichlorobenzene	ND		0.056
Freon 113	ND	*	
	Percent		Control

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	109	80-120	
Toluene-d8	117	81-117	
4-Bromofluorobenzene	104	74-121	

^{*} Not calibrated.

HALOGENATED VOLATILES by EPA 8260 METHOD BLANK QUALITY CONTROL

page 1 of 2

Date Extracted:

3-25-97

Date Analyzed:

3-25-97

Matrix:

Soil

Units:

mg/Kg (ppm)

Lab ID:

MB0325S1

Dilution Factor:

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.05
Chloromethane	ND		0.05
Vinyl Chloride	ND		0.05
Bromomethane	ND		0.05
Chloroethane ,	ND		0.05
Trichlorofluoromethane	ND		0.05
1,1-Dichloroethene	ND		0.05
Methylene Chloride	0.12		0.05
(trans) 1,2-Dichloroethene	ND		0.05
1,1-Dichloroethane	ND		0.05
2,2-Dichloropropane	ND		0.05
(cis) 1,2-Dichtoroethene	ND		0.05
Chloroform	ND		0.05
1,1,1-Trichloroethane	ND		0.05
Carbon Tetrachloride	ND		0.25
1,1-Dichloropropene	ND		0.05
1,2-Dichloroethane	ND		0.05
Trichloroethene	ND		0.05
1,2-Dichloropropane	ND		0.05
Dibromomethane	ND		0.05
Bromodichloromethane	ND		0.05
(cis) 1,3-Dichloropropene	ND		0.05
(trans) 1,3-Dichloropropene	ND		0.05
1,1,2-Trichloroethane	ND		0.05
Tetrachloroethene	ND		0.05
1,3-Dichloropropane	ND		0.05
Dibromochloromethane	ND		0.05

HALOGENATED VOLATILES by EPA 8260 METHOD BLANK QUALITY CONTROL

page 2 of 2

Lab ID:

MB0325S1

Dilution Factor:

Compound	Results	Flags	PQL
1,2-Dibromoethane	ND		0.05
Chlorobenzene	ND		0.05
1,1,1,2-Tetrachloroethane	ND		0.05
Bromoform	ND		0.05
Bromobenzene	ND		0.05
1,1,2,2-Tetrachloroethane	ND		0.05
1,2,3-Trichloropropane	ND		0.05
2-Chlorotoluene	ND		0.05
4-Chlorotoluene	ND		0.05
1,3-Dichlorobenzene	ND		0.05
1,4-Dichlorobenzene	ND		0.05
1,2-Dichlorobenzene	ND		0.05
1,2-Dibromo-3-chloropropane	. ND		0.25
1,2,4-Trichlorobenzene	ND		0.05
Hexachlorobutadiene	ND		0.05
1,2,3-Trichlorobenzene	ND		0.05

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	102	80-120	
Toluene-d8	113	81-117	
4-Bromofluorobenzene	99	74-121	

Date of Report: March 27, 1997 Samples Submitted: March 24, 1997 Lab Traveler: 03-083

Project: JN 4234-2

HALOGENATED VOLATILES by EPA 8260 MS/MSD QUALITY CONTROL

Date Extracted:

3-14-97

Date Analyzed:

3-17-97

Matrix:

Soil

Units:

mg/Kg (ppm)

Dilution Factor:

50

Lab ID:

05411V

	Spike		Percent		Percent		
Compound	Amount	MS	Recovery	MSD	Recovery	RPD	
1,1-Dichloroethene	2.50	1.72	68	1.81	72	5.2	
Benzene	2.50	2,12	82	2.25	87	6.4	
Trichloroethene	2.50	2.26	89	2.39	94	5.6	
Toluene	2.50	2.27	90	2.35	.93	3.6	
Chlorobenzene	2.50	2.40	96	2.49	99	3.7	

Date Analyzed: 3-24-97

% MOISTURE

Client ID	Lab ID	% Moisture		
B-1-4	03-083-5	10		

Summary: DATA VALID? ⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Universal Applicators	Project Numbe	r: <u>114-20001-01</u>			_
Date of Review: 12/22/2020	Lab. Name: F&BI	Lab Batch ID	# <u>: 0105</u>	45	_
Chain of Custody					
1.) Are all requested analyses reported?2.) Were the requested methods used?			⊠yes ⊠yes	□no □no	
3.) Trip blank submitted?4.) Field blank submitted?Timing			□yes □yes	⊠no ⊠no	
5.) Samples extracted within holding time	es?		⊠yes	□no	
If not, are all discrepancies footno			□yes	□no	$\boxtimes NA$
6.) Analysis performed within holding time			⊠yes	□no	
If not, are all discrepancies footno	oted?		□yes	□no	$\boxtimes NA$
Quality Assurance/Quality Control	410 (MDL MDL	(DOL -)	N		
7.) Are the required reporting limits report		PQLS)	⊠yes	□no	
8.) Are all reported values above either N			⊠yes	□no	
9.) Are all values between the MDL & PC	• • •	nalista cono 2	□yes	□no	⊠NA
10a.) Are reporting limits raised for other	reason besides nigh a	nalyte conc.?	□yes	⊠no □no	⊠NA
10b.) If so, are they footnoted?11.) Lab method blank completed?			□yes ⊠yes	□no	△INA
12.) Lab Field, or Trip Blank(s) report de	stactions?		□yes	⊠no	
If yes, indicate blank type, chemical(s) an			yes	ZIIO	
13.) For inorganics and metals, is there of	and mothed blank for a	ach analyto?		□no	
If not, are all discrepancies footnoted		acii allalyte :	□yes □yes	□no	
14.) For VOCs, is there one method blan		veie?	⊠yes	□no	□NA
If not, are all discrepancies footnot		313 :	□yes	□no	
15.) For SVOC's, is there one method bla		hatch?	⊠yes	□no	□NA
If not, are all discrepancies footnot		baton:	□yes	□no	
Accuracy	olou:		∟ус з		
16.) Is there a surrogate spike recovery f	or all VOC & SVOC sa	mples?	⊠yes	□no	\square NA
Do all surrogate spike recoveries		-	⊠yes	□no	
If not, are all discrepancies footno	·		□yes	□no	$\boxtimes NA$
17.) Is there a spike recovery for all Labo		s?	⊠yes	□no	\square NA
Do all LCS/LCSD spike recoverie	•		⊠yes	□no	
If not, are all discrepancies footno			□yes	□no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within acce			⊠yes	□no	\square NA
If not, are all discrepancies footno	•		□yes	□no	$\boxtimes NA$
<u>Precision</u>			•		
19.) Are all matrix spike/matrix spike dup	licate recoveries withir	1			
acceptable limits?			⊠yes	□no	\square NA
If not, are all discrepancies footnoted			□yes	□no	$\boxtimes NA$
20.) Are all matrix spike/matrix spike dup	licate RPDs within			_	
acceptable limits?			⊠yes	□no	□NA
If not, are all discrepancies footnoted			□yes	□no	⊠NA
21.) Do all RPD calculations for Field Du	plicates meet accepted	d criteria?	□yes	□no	⊠NA
Comments:					
Initial Review By: CR		Final Review B	y: <u>EB</u>		

Summary: DATA VALID? ⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Universal Applicators	Project Number:	114-20001-01				
Date of Review: 12/22/2020 L	ab. Name: <u>Fremont</u>	Lab Batch ID #	:_2010	509		
Chain of Custody						
 Are all requested analyses reported? Were the requested methods used? Trip blank submitted? Field blank submitted? 			⊠yes ⊠yes □yes □yes	□no □no ⊠no ⊠no		
<u>Timing</u> 5.) Samples extracted within holding times?)		⊠yes	□no		
If not, are all discrepancies footnote 6.) Analysis performed within holding times? If not, are all discrepancies footnote	d?		□yes ⊠yes □yes	□no □no □no	⊠NA ⊠NA	
Quality Assurance/Quality Control7.) Are the required reporting limits reported8.) Are all reported values above either MR	L or MDL?		⊠yes ⊠yes	□no □no		
9.) Are all values between the MDL & PQL10a.) Are reporting limits raised for other re10b.) If so, are they footnoted?	••	lyte conc.?	□yes □yes □yes	□no ⊠no □no	⊠NA ⊠NA	
11.) Lab method blank completed?12.) Lab, Field, or Trip Blank(s) report detection to the service of the serv		1	⊠yes □yes	□no ⊠no		
	` `	h analyta?		□no	⊠NA	
13.) For inorganics and metals, is there one If not, are all discrepancies footnote14.) For VOCs, is there one method blank f	d?	ا	□yes □yes ⊠yes	□no □no □no	□NA	
If not, are all discrepancies footnote 15.) For SVOC's, is there one method blank	d? k for each extraction ba	1	□yes □yes	□no □no	⊠NA	
If not, are all discrepancies footnote Accuracy	d?		□yes	□no		
16.) Is there a surrogate spike recovery for Do all surrogate spike recoveries mulf not, are all discrepancies footnote	eet accepted criteria? d?		⊠yes ⊠yes □yes	□no □no □no	□NA ⊠NA	
17.) Is there a spike recovery for all Labora Do all LCS/LCSD spike recoveries r If not, are all discrepancies footnote	meet accepted criteria?	?	⊠yes ⊠yes □yes	□no □no □no	□NA ⊠NA	
18.) Are all LCS/LCSD RPDs within acceptation of the second secon	able limits?	1	⊠yes □yes	□no □no	□NA ⊠NA	
<u>Precision</u>19.) Are all matrix spike/matrix spike duplication acceptable limits?	ate recoveries within		⊠yes	□no	□NA	
If not, are all discrepancies footnoted? 20.) Are all matrix spike/matrix spike duplications accordable limits?	ate RPDs within		□yes	□no	⊠NA	
acceptable limits? If not, are all discrepancies footnoted? 21.) Do all RPD calculations for Field Duplic	cates meet accepted c		⊠yes □yes □yes	□no □no □no	□NA ⊠NA ⊠NA	
Comments:						
Initial Review By: CR	Initial Review By: CR Final Review By: EB					