Post-Remedial Groundwater Monitoring Report

Former Bellevue Chrysler Plymouth Site At the Bellevue South Project 126 and 200 116th Avenue NE Bellevue, Washington Cleanup Site ID 5127 (VCP 3226)

Bellevue 116th Avenue South, LLC

11225 SE 6th Street, Suite 215 Bellevue, Washington 98004 425-450-1550

SCS ENGINEERS

04218014.00 | October 5, 2020

2405 140th Avenue NE, Suite 107 Bellevue, WA 98005 425-746-4600 This Post-Remedial Groundwater Monitoring Report for the former Bellevue Chrysler Plymouth Site located at 126 116th Avenue NE, in Bellevue, Washington, was prepared by Brian Doan and Gregory Helland, LHG, of SCS Engineers.

de

Brian G. Doan, CSP Senior Project Scientist SCS ENGINEERS

of Washi 10/07/2020 Hydrogeologist 441 rsed Geo Gregory Dennis Helland

Gregory D. Helland, LHG Project Director SCS ENGINEERS

Table of Contents

Sect	ion		Page
1	EXECUT	LIVE SUMMARY	1
2	BACKG	ROUND INFORMATION	2
	2.1 Si	ite Setting	2
	2.2 H	istorical Summary	2
	2.3 G	eology and Hydrogeology	2
	2.4 R	egulatory Context	3
	2.5 Si	ummary of Prior Results: Supplemental Remedial Investigation and Cleanup	3
3	GROUN	DWATER MONITORING PROGRAM	5
	3.1 W	/ell Installation and Development	5
	3.2 W	/ater Level Measurements	5
	3.3 G	roundwater Sampling	5
	3.4 Ev	volution of the Monitoring Program	6
	3.5 Q	uality Assurence/Quality Control	7
4	GROUN	DWATER MONITORING RESULTS	8
	4.1 G	roundwater Elevation and Flow Direction	8
	4.2 Fi	ield Parameters	8
	4.3 Pe	etroleum Results	8
	4.4 Ar	rsenic Results	9
5	DISCUS	SION	11
6	CONCLU	USIONS AND RECOMMENDATIONS	12
7	REFERE	ENCES	13

Appendices

Appendix A FIGURES

Ligura 1	Cita Lagatian Man Farmar Balloving Chrysler Divergenth
FIGULE T	Site Location Map, Former Believue Univsier Plymouth

- Figure 2 Groundwater Wells and Current & Former Buildings
- Figure 3 Groundwater Contour Map (June 4, 2019)
- Figure 4 Groundwater Contour Map (August 29, 2019)
- Figure 2 Groundwater Contour Map (November 26, 2019)
- Figure 6 Groundwater Contour Map (May 21, 2020)
- Figure 7 Groundwater Contour Map (August 3, 2020)

Appendix B TABLES

- Table 1
 Well Construction Details and Groundwater Elevations
- Table 2Summary of Field Parameter Readings
- Table 3Summary of Analytical Results
- Appendix C LABORATORY DATA REPORTS

Appendix D DOCUMENTATION (FIELD NOTES)

Post-Remedial Groundwater Report

1 EXECUTIVE SUMMARY

This report summarizes results of post-remedial groundwater monitoring conducted from June 2019 through August 2020 at the Bellevue Chrysler Plymouth Site (the Site) in Bellevue, Washington (Figure 1). The Site is enrolled in the Department of Ecology (Ecology) voluntary Cleanup Program (VCP) as VCP Project ID NW3226. Groundwater monitoring results collectively demonstrate that soil cleanup actions in 2018 were adequate to protect groundwater quality consistent with Model Toxics Control Act (MTCA) Method A cleanup criteria.

The cleanup Site is situated at the south end of the larger Bellevue South redevelopment, a roughly rectangular, 5.0-acre parcel of commercially-zoned land (the Property) that has been recently redeveloped for commercial and retail businesses. The former dealership address of 126 116th Avenue NE is no longer used. The current address for the Property is 200 116th Avenue NE.

The soil cleanup was reported previously in *Supplemental Remedial Investigation and Soil Cleanup Report, Former Bellevue Chrysler Plymouth Site at the Bellevue South Project, 126 and 200 116th Avenue NE, Bellevue, Washington*; March 19, 2019; SCS Engineers, Bellevue, WA. Site contaminants identified in excess of MTCA Method A cleanup levels were limited to total petroleum hydrocarbons (TPH) in the oil and gasoline ranges (the latter as mineral spirits) in soils and diesel- and oil-range TPH in groundwater. The remedy implemented in 2018 consisted of removal of contaminated soil and water and placement of 877 kg of Oxygen Release Compound (ORC) in various excavations throughout the Site to help remediate any residual petroleum in groundwater. All confirmation soil samples were below MTCA soil cleanup standards for TPH, VOCs, and select heavy metals. No detectable concentrations of PAHs or PCBs were reported by the laboratory.

Post-remedial groundwater monitoring initially utilized three new monitoring wells: MW-1 in the former source area, MW-2 cross-gradient near the south Property boundary, and MW-3 downgradient a short distance west of the soil cleanup area. All groundwater samples met MTCA Method A cleanup standards for TPH. Cleanup standards were also met for typical auto-related heavy metals, such as cadmium, chromium, and lead.

Additional groundwater characterization was prompted by elevated arsenic reported in some groundwater samples. Assessing groundwater arsenic included sampling the building's foundation drain system, installing and sampling two additional groundwater monitoring wells (MW-4 and MW-5), and analyzing samples for fecal coliform bacteria to identify potential impacts from a 72-inch diameter sewer line situated a short distance upslope of the east (upgradient) side of the Property.

Post-remedial groundwater results indicate that the soil cleanup is protective of local groundwater quality and that elevated arsenic in the groundwater is an area-wide issue not related to historical Site activities or the Site cleanup or redevelopment.

2 BACKGROUND INFORMATION

2.1 SITE SETTING

The Property consists of a single tax parcel of approximately 5.0 acres situated east of downtown Bellevue, WA, immediately southeast of the intersection of 116th Avenue NE and NE 4th Street (Figure 1). The Property was formerly two separate tax parcels, with the south parcel occupied by the automotive dealership and service center and the north paved parcel used largely for outdoor vehicle parking.

The land elevation is approximately 100 feet above North American Vertical Datum 1988 (NAVD88). Pre-development topography sloped to the west, with a steep hillslope along the east side of the Property, a relatively flat and level center section, and a lesser slope on the west end down to 116th Avenue NE. The historical building, historical surface topography, soil cleanup areas, and the footprint of the redevelopment building and access drive are included on Figures 2 through 7.

The Property is zoned CB (Community Business). Local land use is chiefly commercial, with auto dealerships and related businesses dominating 116th Avenue NE in the vicinity of the Property. Mercer Slough is situated approximately 0.75 miles south.

2.2 HISTORICAL SUMMARY

The historical automobile dealership at the Property last operated as Eastside Chrysler Jeep, which closed in 2009. The building and associated infrastructure were removed in 2017 and 2018. Redevelopment activities in 2018 included significant earthwork to regrade the Property, followed by construction of a multi-story retail and office building with a three-story parking structure. The lower floor of the parking structure is approximately coincident with the elevation of the former slab-on-grade foundation for the historical auto dealership.

Removal of the dealership building and infrastructure during redevelopment presented an opportunity to identify and remove contaminated soil that had resulted from historical automotive repair and maintenance operations. Remedial actions addressed soil and groundwater impacts from petroleum hydrocarbons and were completed as a model remedy, consistent with WAC 173-340-390.

2.3 GEOLOGY AND HYDROGEOLOGY

Site geology is generally characterized by brown, gravelly, silty sand fill overlying gray Vashon glacial till that consists of compact, fine-grained sands, silts, and clays. The contact zone between these two uppermost units is roughly consistent with pre-development surface topography, sloping down steeply onto the Site from the eastern Property boundary. The thickness of the fill layer varies, with the fill thickness generally increasing towards the west 5 to 10 feet.

Descriptions of Site hydrogeology and soils observations, made both historically and during the 2018 redevelopment and remediation, support the conclusion that the eastern portion of the former dealership building was constructed on low-permeability glacial till by cutting into the eastern hillside and apparently intercepted the shallow water-bearing zone located on top of the glacial till; Groundwater was present directly beneath the slab. When the dealership building was removed, groundwater was encountered perched on the till or the weathered till surface. The moisture content of the till lessened with depth. The Site surface topography that existed from the 1960s to the 2018 is shown on Figure 2, along with the outlines of both the historical dealership building and the

current structure built in 2018. A geologic cross section depicting pre-remedial conditions was included in our 2019 cleanup report cited in Section 1.

Redevelopment soil work in 2018 included cutting further east into the hillside for construction of the much larger retail building (Figure 2). The general configuration of the building provides for retail tenant spaces adjoining the streets (north and west portions of the Property) backed by three levels of parking starting at the ground floor and set into the hillside. All three parking levels are served by a perimeter access road that ascends as it wraps around the south and east sides of the Property. The first floor of the current parking slopes up from the southwest to the northeast, whereas the historical dealership building had a floor that was level, not sloped. Currently, within the footprint of the former dealership, fill material is absent at the south end of the former western service area, increasing to approximately 5 feet thick at the northeast corner. Fill soils for the 2018 redevelopment were obtained from the eastern portion of the Property.

When the redevelopment cut eastward into the hillside, groundwater was encountered perched on the gray Vashon till. Significant on-site flow of perched groundwater continued from the eastern hillside throughout the summer and fall of 2018, despite drought conditions in the area. New construction includes a foundation drain system that captures groundwater along the east wall of the development and conveys it through pipes around the building to the south and west, where it discharges to a City of Bellevue stormwater line.

2.4 REGULATORY CONTEXT

The remedial goal for the Site is the protection of human health and the environment. Groundwater is not considered a significant exposure pathway. No water supply or irrigation wells are located on or near the Property.

MTCA Method A cleanup standards were selected for this project. Method A standards are published in WAC 173-340-900 as Table 720-1, Method A Cleanup Levels for Groundwater, and Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses. Specific cleanup levels are included in the bottom rows of Table 3 (Appendix B). Groundwater monitoring is intended to support a model remedy for the Site, consistent with WAC 173-340-390. The standard point of compliance for groundwater is throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.

2.5 SUMMARY OF PRIOR RESULTS: SUPPLEMENTAL REMEDIAL INVESTIGATION AND CLEANUP

During the 2018 Site remediation, oil-range TPH and gasoline-range TPH as mineral spirits were the only two contaminants reported in excess of MTCA soil cleanup levels. Mineral spirits were consistently identified in soil samples analyzed for gasoline-range TPH, consistent with odors from the remedial excavations, the absence of any historical gasoline storage at the Site, and similar investigative and remedial findings at another former auto dealership (the Dodge of Bellevue site) situated a short distance to the north.

No exceedances of diesel-range TPH, heavy metals, or VOCs were identified in soils during the supplemental remedial investigation (RI) or the remediation, and no detectible concentrations of benzene, PCBs, or PAHs were identified in soils. Select samples analyzed for heavy metals contained concentrations that were consistent with naturally-occurring background levels.

During the supplemental RI, the only two contaminants reported in excess of MTCA groundwater cleanup levels were TPH in the oil range and, to a lesser degree, in the diesel range. The highest concentrations were reported in the northeast corner of the eastern service area, consistent with historical results. Pre-remedial groundwater samples collected from three monitoring wells at the Property and from eleven direct-push borings did not contain detectible concentrations of gasoline-range TPH or VOCs. During the remediation, SCS installed a total of 877 kg of ORC in various excavations throughout the former Bellevue Chrysler Plymouth Site to help remediate any residual petroleum in the groundwater.

Selected heavy metals were reported in some of the direct-push groundwater samples at slightly elevated concentrations, including arsenic that ranged from 3.7 to 30 μ g/L. At the time, the metals results were not considered significant because the detections were consistent with typical sample turbidity for the direct-push method and collecting the samples in acidified containers, as required by Ecology sampling methods. The 2018 arsenic concentrations were consistent with results obtained in 1995 by Northwest Geotech from three groundwater monitoring wells, all of which were situated in the contamination source area (*Remedial Action Plan, Bellevue Chrysler Plymouth, 126 116th Avenue NE, Bellevue, WA*; July 31, 1996; Northwest Geotech, Inc.; Wilsonville, OR). Specifically, the 1995 arsenic results were 10, 20, and 50 μ g/L. No other metals sampling was reported for groundwater, either outside the contaminant source area or later in the project. Metals were not listed as a Site contaminant of concern in Ecology's interim and final no-further-action (NFA) letters issued in 2000.

3 GROUNDWATER MONITORING PROGRAM

3.1 WELL INSTALLATION AND DEVELOPMENT

Well installation included utility locating, concrete coring, and using a limited-access drill rig to install five groundwater monitoring wells. The well locations are depicted in Figure 2. Monitoring well MW-1 was installed as near as practical to where the highest groundwater contamination had been identified and confirmed by pre-remedial groundwater investigations. The task also included discussions with the City of Bellevue regarding placement of a downgradient well (MW-5) within the publically-owned planting strip just past the western Property boundary. Groundwater monitoring well construction data are presented in Table 1.

All five wells were drilled and constructed by Washington-licensed drillers. Soil sample analysis from the drilling events reported no detectible concentrations of TPH. Soil samples that were collected for gasoline-range TPH analysis were preserved in the field consistent with EPA Method 5035 to limit the loss of volatile contaminants from the samples.

The wells were completed with steel protective monuments, and their locations and elevations were acquired by a licensed surveyor to allow calculations of groundwater gradient and flow direction. Each well was developed by surging and bailing or pumping to establish a good hydraulic connection to the shallow aquifer.

3.2 WATER LEVEL MEASUREMENTS

Prior to sampling, standing water was bailed out of the well vaults as necessary to allow access to the sealed well casing. The sealing well-casing cap was removed, and water levels were allowed to equilibrate under atmospheric pressure at each monitoring well. Water levels were then measured to the nearest 0.01 foot using an electric water level probe. The probe was decontaminated between each well using a standard three-step process (Alconox detergent wash, tap water rinse, and a distilled water rinse).

3.3 GROUNDWATER SAMPLING

During each monitoring event, SCS staff collected groundwater samples from the Site monitoring wells using low-flow sampling techniques. The following specific sampling procedures were followed at each well:

- Purge the well at a low flow rate (less than 500 ml/minute) with a peristaltic pump.
- Monitor conductivity, temperature, dissolved oxygen, oxidation-reduction potential (Eh), and pH using a closed, in-line, flow-through cell.
- Monitor turbidity using a turbidity meter.
- Once the field parameters stabilize, collect groundwater samples in appropriate containers for subsequent laboratory analyses.
- Store samples in a cooler with ice and transfer to the analytical laboratory under proper chain-of-custody documentation.

New polyethylene tubing was used at each well. The stainless steel tubing-bottom weight was decontaminated between each well using a standard three-step process (Alconox detergent wash, tap water rinse, and a distilled water rinse) when it was utilized. A field duplicate was collected from well MW-1 during each monitoring event starting in August 2019. Copies of the groundwater sampling data sheets are provided in Appendix D.

The groundwater samples were delivered to Onsite Environmental, Inc., in Redmond, WA, which is accredited by Ecology for the analyses performed. All samples collected during the monitoring program were subjected to the following analyses:

- Gasoline-range TPH as mineral spirits by Method NWTPH-Gx
- Diesel- and oil-range TPH by Method NWTPH-Dx
- Total arsenic, cadmium, chromium, lead, selenium, silver, zinc by EPA Method 6010 and mercury by EPA Method 7471B

3.4 EVOLUTION OF THE MONITORING PROGRAM

Over the course of the post-remedial groundwater program, limited adjustments were made to the sampling and analysis plan (SAP):

- Samples from the November 2019 monitoring event were field filtered and analyzed for dissolved metals, as well as total metals, to help evaluate whether groundwater turbidity was contributing to elevated total arsenic detections. The results indicated that filtering and water sample turbidity had no effect on metals concentrations, so field filtering was not performed during subsequent monitoring events.
- Select samples were subject to laboratory sample preparation by silica gel cleanup for NWTPH-Dx analyses to remove biogenic interference.
- Water samples were collected from the building's two foundation drain systems in November 2019 to evaluate arsenic concentrations upgradient (east) of the Site and the monitoring well network that existed at that time (wells MW-1 through MW-3). The two water samples were analyzed for total metals. The foundation drain systems were accessed at cleanout locations shown in Figure 5 (F-15 Cleanout and SE Drain Wall).
- Based on the results of the first three monitoring events (June through November 2019), two
 additional groundwater monitoring wells were installed. Relative to the former dealership
 footprint and historic contaminant location, the two additional groundwater monitoring wells
 were located upgradient (MW-4) and downgradient (MW-5) of the Site. Development of the
 wells, and completion of the fourth monitoring event, was delayed from March to June 2020,
 due to restrictions on non-essential activities related to the COVID-19 pandemic and
 mandated by Governor Inslee.
- Samples from all five monitoring wells were also collected and analyzed for fecal coliform bacteria in May and August 2020 to evaluate a possible groundwater influence by a 6-foot diameter Metro sewer line located in a former railroad right of way adjacent to the upgradient edge of the Property. Samples for fecal coliform analysis were collected in sanitized bottles supplied by AmTest Laboratory in Kirkland, WA.

SCS Engineers maintained communication with the Ecology VCP case worker during this groundwater monitoring program. As the monitoring progressed, descriptions of the planned adjustments to the SAP were presented to Ecology and informal concurrence was obtained before the actions were implemented.

3.5 QUALITY ASSURENCE/QUALITY CONTROL

Field notes, field sampling data sheets (FSDSs), and photographs were maintained to document field activities and sample collection. The water-quality meter used during monitoring well sampling was properly maintained and calibrated daily to a known standard before it was used, consistent with the manufacturers' recommendations. Calibration logs were recorded in the field.

All soil and groundwater samples were kept in a chilled cooler during storage and transport to an Ecology-accredited testing laboratory. The samples were transported and custody transferred using chain-of-custody documentation. Copies of the chain-of-custody forms are included in the analytical reports prepared by the laboratory (Appendix C).

All analyses occurred within the appropriate holding times. Laboratory reports include method blank results, surrogate recovery results, chain-of-custody documents, laboratory duplicate results (when required by the method), and matrix spike or matrix spike duplicate results. The laboratory results were reviewed to assess data quality and acceptability consistent with the project requirements. All of the laboratory results were determined to be of sufficient quality for the purposes of this project. Analytical results of field duplicate samples were consistent with the results of the primary samples.

4 GROUNDWATER MONITORING RESULTS

4.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

Groundwater elevation contours for the five post-remedial monitoring events are presented on Figures 3 through 7. The groundwater flow direction was generally west-northwest across the Site.

The calculated groundwater flow direction is generally consistent with historic groundwater reported by others. Specifically, a 1996 groundwater investigation found that the groundwater flow direction curved from WNW to WSW as it transited the property (Northwest Geotech, Inc.; *Remedial Action Plan*; July 31, 1996). Groundwater elevations remained nearly unchanged at the wells installed through the floor of the garage (MW-1, MW-3, and MW-4), while the cross-gradient well (MW-2) saw limited fluctuations typical of seasonal variations due to precipitation. Wells MW-4 and MW-5 were monitored on only two occasions, which provided insufficient data regarding elevation changes over time.

The measured water level at upgradient well MW-4 was anomalously low during its first monitoring event (May 2020), likely because the water level had not fully recovered from well development and purging five days earlier. (The depth to water was initially 4.28 feet when the well was developed but had recovered to only 9.70 feet when it was monitored.) The anomalous water level was excluded from the May 2020 groundwater contour map (Figure 6).

4.2 FIELD PARAMETERS

A flow-through cell was used to monitor temperature, specific conductance, dissolved oxygen, pH, and oxidation-reduction potential (Eh) during purging, as mentioned above. The field parameter data are summarized in Table 2.

The field parameters were generally consistent from location to location and over the duration of the monitoring program, with a few exceptions. Dissolved oxygen (DO) concentrations were highest in the former contamination source area during the first monitoring event. Specifically, DO was measured at 3.37 mg/L at MW-1 in June 2019, while cross-gradient and downgradient DO values were somewhat lower at 2.75 and 1.62 mg/L, respectively. DO values were lower during subsequent monitoring events, with DO generally near or less than 1 mg/L across the Site.

The pH values recorded during the monitoring program were generally near neutral with marginally lower pH in the downgradient wells (MW-3 and MW-5). Higher pH of approximately 9 was measured at upgradient well MW-4 during May and August 2020, the only events in which the well was monitored.

4.3 PETROLEUM RESULTS

A summary of the laboratory results is presented in Table 3. In all cases, the laboratory detection limits were less than the MTCA Method A cleanup levels for the various potential contaminants of concern (COCs).

Based on historical activities and assessments, and data obtained by SCS in 2018 from a supplemental RI as well as the cleanup activities, the Site COCs for groundwater were limited to oil-range TPH and gasoline-range TPH (calibrated to mineral spirits based on cleanup findings). Groundwater samples collected during the 2018 supplemental RI contained no detectible concentrations of gasoline-range petroleum, BTEX compounds, or VOCs. During the remedial

activities, gasoline-range TPH was identified in the soil as mineral spirits, but no benzene was detected in any of the soil samples. Total RCRA 8 metals were added to the analytical suite at the request of the Ecology manager. Specifically, samples were analyzed for total arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.

Over the 15-month duration of the monitoring program, no exceedances of MTCA Method A cleanup levels were reported for TPH in the diesel or oil ranges, or in the gasoline range as mineral spirits. The only laboratory detection of TPH was 0.23 mg/L oil-range TPH reported in the August 2020 sample from well MW-1. The reported detection is only slightly above the method reporting limit of 0.21 mg/L but well below the MTCA Method A cleanup level of 0.50 mg/L for oil-range TPH in groundwater.

Preliminary lab results for the November 2019 monitoring events suggested the presence of dieselrange and oil-range petroleum hydrocarbons in samples from three or more monitoring wells. SCS suspected biogenic interference and requested that the laboratory re-analyze the samples using silica-gel cleanup to remove the polar biogenic organics but retain the non-polar organics, such as petroleum. Biogenic interference in the samples was suspected for the following reasons:

- The first two rounds of groundwater samples had not contained detectible concentrations of any petroleum hydrocarbons.
- Well MW-2 is situated cross gradient to the former contaminant source area, so indications of contaminated groundwater at MW-2 were highly suspect.
- Significant sources of potential biogenic interference, including upslope vegetation and a 6foot diameter Metro sewer line adjacent to the upgradient (eastern) edge of the Property, had been noted during pre-remedial investigations. During construction excavations in 2018, a sample of groundwater seepage near the eastern edge of the Property, and downslope of the Metro sewer line, identified significantly elevated fecal coliform bacteria on one occasion associated with an unusually heavy rain event. With respect to the results of the current monitoring program, SCS suspected that increased seasonal rainfall might have caused a repeat of the condition documented in 2018.

Re-analysis after silica gel cleanup reported no detectible petroleum hydrocarbons, consistent with results from the first two monitoring events. Silica gel cleanup was utilized again for NWTPH-Dx analysis in May and August 2020.

4.4 ARSENIC RESULTS

Total arsenic was reported in Site groundwater samples at concentrations that exceeded the MTCA Method A cleanup level of 5 μ g/L. Given that the historical activities did not suggest a Site source for arsenic, and arsenic had not been identified is Site soils in excess of the soil cleanup level, SCS suspected influence from one or more of the following factors:

- Sample turbidity, given that unfiltered groundwater is collected in bottles that contain an acid preservative (consistent with Ecology requirements for metals sampling at MTCA sites)
- An off-Site, upgradient source of arsenic contamination
- An area-wide condition of elevated arsenic in the groundwater

During the second monitoring event (August 2019), samples for RCRA 8 metals were collected for dissolved (field filtered), as well as total metals (unfiltered), to evaluate whether the exceedances might be artifacts of groundwater turbidity associated with the sampling methodology (collecting unfiltered samples in acidified sample bottles). The laboratory results were very similar for the dissolved and total metals samples, and they did not suggest that turbidity from the sampling was the source of the arsenic detections in the groundwater.

During the third monitoring event (November 2019), samples were collected from buildingfoundation drainage systems that serve the eastern/upgradient retaining wall (sample "SE Drain Wall") and the eastern/upgradient garage wall (sample "F-15 Clean out"). These samples were collected to provide an indication of groundwater quality upgradient of the Site's groundwater monitoring network to assess the suspected upgradient source or area-wide condition. Arsenic was detected in both samples, with the garage wall drain sample containing 7.4 μ g/L arsenic, which exceeds the 5 ppb MTCA Method A groundwater cleanup level.

Based on the November 2019 results, a properly-constructed upgradient monitoring well (MW-4) was installed in the eastern end of the ground-floor parking garage, beyond the footprint of the former building and beyond the eastern limit of former dealership activities. A downgradient well (MW-5) was installed in the city-owned planting strip just beyond the western Property boundary to provide an indication of groundwater quality leaving the Property. The two new wells (installed in February and March 2020, respectively) were included in the June and August 2020 monitoring events. The delay in monitoring was due to COVID-19 restrictions on non-essential activities.

The results for the 2020 monitoring events, including the two, additional, groundwater monitoring wells, indicated that total arsenic was highest at the off-Site, upgradient well (MW-4). In May and August, the arsenic concentrations in MW-4 were 22 μ g/L and 46 μ g/L, respectively. By comparison, at the downgradient well (MW-5), lower arsenic concentrations were present in May (4.2 μ g/L) and August (12 μ g/L).

Samples collected during the May and August 2020 monitoring events were also analyzed for fecal coliform bacteria as an indication of possible upgradient groundwater issues. From the May 2020 event, fecal coliform bacteria were reported in the samples from MW-2 and MW-4 at concentrations of 2 and 180 fecal coliform units per 100 milliliters (FCU/100 mL), respectively. These values exceeded the state groundwater quality standard of 1 FCU/100 mL (WAC 173-200). Fecal coliform was not detected in the August 2020 samples above the method reporting limit of 2 FCU/100 mL.

5 DISCUSSION

SCS Engineers has completed a program of post-remedial groundwater monitoring at the former Bellevue Chrysler Plymouth Site, following the removal of petroleum-contaminated soil in 2018. The post-remedial program was initiated in the spring of 2019 with the installation of three monitoring wells situated in the former contaminant source area (MW-1), cross gradient to the south (MW-2), and downgradient to the west beyond the cleanup Site (MW-3). The monitoring wells were installed in May 2019, and the first round of groundwater sampling was completed in June 2019. The monitoring program progressed at roughly quarterly intervals, except for a delay in early 2020, due to state-wide restrictions on non-essential activities during the early stages of the COVID-19 pandemic. A total of five rounds of groundwater monitoring were completed from June 2019 to August 2020.

Groundwater contaminants of concern are TPH in diesel and oil ranges, plus gasoline-range TPH as mineral spirits, as indicated by the past results of historical site assessments by others, a supplemental RI completed by SCS in 2018, and data from the 2018 soil remediation. Total RCRA metals were added to the analytical suite at the request of the Ecology case manager.

No exceedances of MTCA Method A groundwater cleanup levels were reported for any of the TPH ranges from gasoline to oil. Verified laboratory detections of TPH were limited to only one groundwater sample: 0.23 mg/L oil-range TPH was reported in the MW-1 sample from the August 2020 monitoring event. The reported concentration is only slightly higher than the laboratory method reporting limit of 0.21 mg/L and well below the MTCA Method A groundwater cleanup level of 0.5 mg/L. Select samples were subject to silica gel cleanup and reanalysis to remove biogenic organics that had resulted in false positives for diesel and oil-range TPH. Upgradient sources of biogenic organics include upslope vegetation and a 6-foot diameter Metro sewer line adjacent to the eastern edge of the Property.

Over the five rounds of groundwater monitoring, arsenic concentrations exceeded the MTCA Method A groundwater cleanup level of 5 μ g/L in samples from the upgradient well (MW-4) and the foundation-drain system that serves the east (upgradient) side of the building, as well as the on-Site well (MW-1) and downgradient wells (MW-3 and MW-5). The highest arsenic concentration was 46 μ g/L, reported in the August 2020 sample from upgradient well MW-4. The reported arsenic concentrations are very similar to results obtained in 1995 by others and in 2018 by SCS, as described above in Section 2.5.

No source is known related to historical activities at the Bellevue Chrysler Plymouth Site that would contribute to arsenic in the groundwater. Soil sample results from 2018 did not suggest there would be an issue with arsenic in the groundwater. Arsenic detections in soil were 2.2 mg/kg and less during the supplemental RI and Site cleanup. These results are below the MTCA Method A soil cleanup level of 20 mg/kg, which is intended to be protective of groundwater. Remedial soil data indicated that soils affected by past activities were removed, and this conclusion is supported by the post-remedial groundwater data for the contaminants of concern (TPH gasoline [mineral spirits] and oil).

Field-filtered metals samples for dissolved metals analysis were collected in August 2019, as well as unfiltered samples for total metals analysis. The nearly identical results did not suggest that sample turbidity from Site soils was the source of the arsenic detections.

6 CONCLUSIONS AND RECOMMENDATIONS

Data from the post-remedial groundwater monitoring program indicate that the 2018 Site remediation adequately removed contamination to provide for protection of groundwater quality. Contamination had resulted from historical auto-repair and maintenance operations. Through five monitoring events, hydrocarbon data were consistently below MTCA Method A cleanup levels and were less than the analytical method reporting limits in all but one instance.

SCS concludes that the presence of arsenic in groundwater reflects an area-wide upgradient groundwater issue. The presence of elevated arsenic in the upgradient well (MW-4) and in a sample collected from the building's foundation-drain system demonstrates that historical Site operations were not the cause of elevated arsenic in local groundwater. The presence of fecal coliform bacteria in groundwater samples also indicate that groundwater quality upgradient of the Site is compromised.

Based on these findings, no additional groundwater monitoring is recommended.

SCS recommends that a copy of this report be provided to Ecology for technical review with a request to the VCP case manager for an unrestricted, no-further-action (NFA) designation.

7 REFERENCES

Northwest Geotech, Inc.; *Remedial Action Plan, Bellevue Chrysler Plymouth,* 126 116th Avenue NE, Bellevue, WA; July 31, 1996, Wilsonville, OR.

SCS Engineers. Supplemental Remedial Investigation and Soil Cleanup Report, Former Bellevue Chrysler Plymouth Site at the Bellevue South Project, 126 and 200 116th Avenue NE, Bellevue, Washington; March 19, 2019, Bellevue, WA.

Appendix A

Figures

Appendix B

Tables

TABLE 1: SUMMARY OF WELL CONSTRUCTION AND GROUNDWATER ELEVATION DATA POST-REMEDIAL GROUNDWATER MONITORING BELLEVUE SOUTH, FORMER BELLEVUE CHRYSLER PLYMOUTH BELLEVUE, WASHINGTON

Well Const	ruction Details					
Well	Easting	Northing	Top of	Top of	Bottom of	Screen
Name	Lasting	Northing	Casing (ft)	Screen (ft)	Screen (ft)	Length (ft)
MW-1	1307199.80	226172.17	82.74	77.74	72.74	5
MW-2	1307182.06	226022.88	95.52	90.52	80.52	10
MW-3	1307025.09	226106.06	78.83	73.83	63.83	10
MW-4	1307278.94	226135.93	84.50	79.50	69.50	10
MW-5	1306933.30	226093.83	72.97	67.97	62.97	5

Water Level Elevations in Feet								
Date	Well ID	Depth to Water	Water Level Flevation					
6/4/2019	MW-1	5.32	77.42					
6/4/2019	MW-2	15.66	79.86					
6/4/2019	MW-3	5.93	72.90					
8/29/2019	MW-1	5.55	77.19					
8/29/2019	MW-2	16.18	79.34					
8/29/2019	MW-3	6.00	72.83					
11/26/2019	MW-1	5.75	76.99					
11/26/2019	MW-2	14.1	81.42					
11/26/2019	MW-3	5.85	72.98					
5/21/2020	MW-1	5.63	77.11					
5/21/2020	MW-2	13.38	82.14					
5/21/2020	MW-3	5.68	73.15					
5/21/2020	MW-4	9.70	74.80					
5/21/2020	MW-5	4.72	68.25					
8/3/2020	MW-1	5.56	77.18					
8/3/2020	MW-2	14.95	80.57					
8/3/2020	MW-3	6.02	72.81					
8/3/2020	MW-4	1.98	82.52					
8/3/2020	MW-5	4.74	68.23					

TABLE 2: SUMMARY OF FIELD PARAMETER READINGS POST-REMEDIAL GROUNDWATER MONITORING BELLEVUE SOUTH, FORMER BELLEVUE CHRYSLER PLYMOUTH BELLEVUE, WASHINGTON

MW-1

Date	Temp (°C)	SpC (mS)	D0 (mg/L)	pH (units)	Eh (mV)	Turb (ntu)
Jun-19	12.35	382	3.37	7.02	309	41.5
Aug-19	15.00	421	0.34	7.75	-7	5.1
Nov-19	12.47	411	0.38	7.33	105	5.2
May-20	11.37	402	0.42	7.90	-73	2.8
Aug-20	13.93	407	0.4	7.56	-73	2.66

MW-2

Date	Temp (°C)	SpC (mS)	D0 (mg/L)	pH (units)	Eh (mV)	Turb (ntu)
Jun-19	14.33	399	2.75	6.95	252	8.5
Aug-19	17.61	377	1.12	6.86	139	14.5
Nov-19	11.91	568	1.38	6.53	248	8.1
May-20	11.47	509	0.49	7.21	185	5.9
Aug-20	16.09	685	0.42	7.00	80	2.3

MW-3

Date	Temp (°C)	SpC (mS)	D0 (mg/L)	pH (units)	Eh (mV)	Turb (ntu)
Jun-19	12.61	379	1.62	6.67	44	4.8
Aug-19	15.10	338	0.28	6.86	-51	3.0
Nov-19	13.35	386	0.41	6.95	-69	2.7
May-20	11.59	363	0.51	6.86	-72	3.2
Aug-20	15.02	378	0.38	6.80	-47	1.8

MW-4

Date	Temp (°C)	SpC (mS)	D0 (mg/L)	pH (units)	Eh (mV)	Turb (ntu)
Jun-19						
Aug-19						
Nov-19						
May-20	11.13	404	1.53	9.13	59.00	475
Aug-20	13.16	487	0.53	8.92	80.60	26.00

MW-5

Date Temp (°C		SpC (mS)	D0 (mg/L)	pH (units)	Eh (mV)	Turb (ntu)
Jun-19						
Aug-19						
Nov-19	Nov-19					
May-20	14.56	795	0.63	6.86	-62.50	136.00
Aug-20	18.10	7	0.71	6.71	-66.60	237.00

Temp (°C) Temperature (°C)

SpC (mS) Specific Conductivity (mS)

DO (mg/L) Dissolved Oxygen (mg/L)

Turb (ntu) Turbidity (ntu)

-- Well not monitored (not installed)

TABLE 3: SUMMARY OF ANALYTICAL RESULTS POST-REMEDIAL GROUNDWATER MONITORING BELLEVUE SOUTH, FORMER BELLEVUE CHRYSLER PLYMOUTH BELLEVUE, WASHINGTON

		Total P	etroleum Hydrod	carbons										
		NWTP	H-Dx	NWTPH-Gx					RCRA Metals					
			Oil-Range	Gasoline-Range										Total
		Diesel-Range	Organics	Organics (GRO) ^a	Total	Dissolved	Total	Total	Total	Total	Total	Total	Total	Coliform
		Organics (DRO)	(ORO)	as Mineral Spirits	Arsenic	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	(CFU/100
	Sample ID & Date	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	mL)
	MW-1 June 2019	<0.26	<0.41	<100	11		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
	MW-1 August 2019	<0.26	<0.42	<100	15	16	30	<4.4	<11	<1.1	<0.5	<5.6	<11	
MW-1	MW-1 Nov 2019	<0.20 ^b	<0.23 ^b	<100	15		28	<4.4	<11	<1.1	<0.5	<5.6	<11	-
	MW-1 May 2020	<0.22	<0.22	<100	7.3		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
	MW-1 August 2020	<0.21 ^b	0.23 ^b	<100	17		30	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
	MW-2 June 2019	<0.25	<0.41	<100	<3.3		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
	MW-2 August 2019	<0.25	<0.40 ^b	<100	<3.3	<3	<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
MW-2	MW-2 Nov 2019	<0.20 ^b	<0.26 ^b	<100	<3.3		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
N	MW-2 May 2020	<0.23 ^b	<0.23 ^b	<100	<3.3		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	2
	MW-2 August 2020	<0.21 ^b	<0.21 ^b	<100	3.4		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
N N	MW-3 June 2019	<0.25	<0.4	<100	21		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
	MW-3 August 2019	<0.25	<0.41	<100	35	39	<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
MW-3	MW-3 Nov 2019	<0.20 ^b	<0.20 ^b	<100	31		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
	MW-3 May 2020	<0.21 ^b	<0.21 ^b	<100	12		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
	MW-3 August 2020	<0.21 ^b	<0.21 ^b	<100	28		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
MM/ A	MW-4 May 2020	<0.22	<0.22	<100	22		31	<4.4	<11	<1.1	<0.5	<5.6	<11	180
10100-4	MW-4 August 2020	<0.21 ^b	<0.21 ^b	<100	46		32	<4.4	<11	<1.1	<0.5	<5.6	<11	<2
MW-5	MW-5 May 2020	<0.22 ^b	<0.22 ^b	<100	4.2		50	<4.4	13	1.2	<0.5	<5.6	<11	<2
10100-5	MW-5 August 2020	<0.22 ^b	<0.22 ^b	<100	12		110	<4.4	33	2.7	<0.5	<5.6	<11	<2
Building Wall	F-15 Clean out Nov 2019	NA	NA	NA	7.4		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
Drains	SE Drain Wall Nov 2019	NA	NA	NA	4.0		<28	<4.4	<11	<1.1	<0.5	<5.6	<11	
Ecology MTCA	Method A Cleanup Level													.0
or Groundwat	er Quality Standard	0.5	0.5	1000	5	5	None	5	50	15	2	None	None	1ັ

Notes:

a = Analysis calibrated to mineral spirits, not gasoline, consistent with a recommendation by the analyst following a review of chromatographs for contaminated soils in the remedial excavation.

b = Sample analyzed after silica-gel cleanup to remove interference from biogenic (polar, naturally-occurring) organics.

c = State Groundwater Quality Standard (WAC 173-200)

<5 = Not detected at or above the reporting or detection limit indicated

Shaded concentrations exceed the MTCA Method A cleanup level

-- = Not analyzed

MTCA = Model Toxics Control Act

Appendix C

Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 13, 2019

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 1906-028

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on June 5, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 13, 2019 Samples Submitted: June 5, 2019 Laboratory Reference: 1906-028 Project: 04218014.00

Case Narrative

Samples were collected on June 4, 2019 and received by the laboratory on June 5, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	06-028-01					
Stoddard Solvent	ND	100	NWTPH-Gx	6-11-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	59-122				
Client ID:	MW-2					
Laboratory ID:	06-028-02					
Stoddard Solvent	ND	100	NWTPH-Gx	6-11-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	59-122				
Client ID:	MW-3					
Laboratory ID:	06-028-03					
Stoddard Solvent	ND	100	NWTPH-Gx	6-11-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	59-122				
I IUUIUUUUUUUUUUUU	19	03-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

						Date	Date)	
Analyte	Result		PQL	Me	ethod	Prepared	Analyzed		Flags
METHOD BLANK									
Laboratory ID:		MB0611W3							
Stoddard Solvent		ND		NWTPH-Gx		6-11-19	6-11-1	9	
Surrogate:	Pei	rcent Recovery	 Control Limi 	ts					
Fluorobenzene		73	59-122						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-02	28-01							
	ORIG	DUP							
Stoddard Solvent	ND	ND	NA NA		NA	NA	NA	30	

93

75

59-122

Surrogate: Fluorobenzene

M

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Posult	POI	Method	Date Prepared	Date Analyzed	Flage
	MIN/ 4	r v(∟	Wethou	Fiepaleu	Analyzeu	Tays
Laboratory ID:						
	00-020-01	0.00		0.40.40	0.44.40	
Diesel Range Organics	ND	0.26	NWTPH-DX	6-10-19	6-11-19	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	6-10-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	MW-2					
Laboratory ID:	06-028-02					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-10-19	6-11-19	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	6-10-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	MW-3					
Laboratory ID:	06-028-03					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-10-19	6-11-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-10-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0610W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-10-19	6-11-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-10-19	6-11-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB06	10W1								
	ORIG	DUP								
Diesel Fuel #2	0.829	0.763	NA	NA		NA	NA	8	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						92 82	50-150			

6

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	06-028-01					
Arsenic	11	3.3	EPA 200.8	6-11-19	6-11-19	
Barium	ND	28	EPA 200.8	6-11-19	6-11-19	
Cadmium	ND	4.4	EPA 200.8	6-11-19	6-11-19	
Chromium	ND	11	EPA 200.8	6-11-19	6-11-19	
Lead	ND	1.1	EPA 200.8	6-11-19	6-11-19	
Mercury	ND	0.50	EPA 7470A	6-11-19	6-11-19	
Selenium	ND	5.6	EPA 200.8	6-11-19	6-11-19	
Silver	ND	11	EPA 200.8	6-11-19	6-11-19	

Client ID:	MW-2					
Laboratory ID:	06-028-02					
Arsenic	ND	3.3	EPA 200.8	6-11-19	6-11-19	
Barium	ND	28	EPA 200.8	6-11-19	6-11-19	
Cadmium	ND	4.4	EPA 200.8	6-11-19	6-11-19	
Chromium	ND	11	EPA 200.8	6-11-19	6-11-19	
Lead	ND	1.1	EPA 200.8	6-11-19	6-11-19	
Mercury	ND	0.50	EPA 7470A	6-11-19	6-11-19	
Selenium	ND	5.6	EPA 200.8	6-11-19	6-11-19	
Silver	ND	11	EPA 200.8	6-11-19	6-11-19	

Client ID:	MW-3					
Laboratory ID:	06-028-03					
Arsenic	21	3.3	EPA 200.8	6-11-19	6-11-19	
Barium	ND	28	EPA 200.8	6-11-19	6-11-19	
Cadmium	ND	4.4	EPA 200.8	6-11-19	6-11-19	
Chromium	ND	11	EPA 200.8	6-11-19	6-11-19	
Lead	ND	1.1	EPA 200.8	6-11-19	6-11-19	
Mercury	ND	0.50	EPA 7470A	6-11-19	6-11-19	
Selenium	ND	5.6	EPA 200.8	6-11-19	6-11-19	
Silver	ND	11	EPA 200.8	6-11-19	6-11-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0611WM1					
Arsenic	ND	3.3	EPA 200.8	6-11-19	6-11-19	
Barium	ND	28	EPA 200.8	6-11-19	6-11-19	
Cadmium	ND	4.4	EPA 200.8	6-11-19	6-11-19	
Chromium	ND	11	EPA 200.8	6-11-19	6-11-19	
Lead	ND	1.1	EPA 200.8	6-11-19	6-11-19	
Selenium	ND	5.6	EPA 200.8	6-11-19	6-11-19	
Silver	ND	11	EPA 200.8	6-11-19	6-11-19	
Laboratory ID:	MB0611W1					
Mercury	ND	0.50	EPA 7470A	6-11-19	6-11-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-02	28-03									
	ORIG	DUP									
Arsenic	20.6	20.3	NA	NA		1	NA	NA	1	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory (D)		84.04									
	00-00	04-01	N 1 A	N 1 A				N 14	N 1 A		
Mercury	ND	ND	NA	NA		ſ	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-02	28-03									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	126	130	111	111	20.6	95	99	75-125	3	20	
Barium	112	116	111	111	ND	101	105	75-125	4	20	
Cadmium	101	105	111	111	ND	91	95	75-125	4	20	
Chromium	100	104	111	111	ND	90	94	75-125	4	20	
Lead	97.8	102	111	111	ND	88	92	75-125	4	20	
Selenium	116	122	111	111	ND	105	110	75-125	4	20	
Silver	107	115	111	111	ND	97	104	75-125	7	20	
Laboratory ID:	06-08	84-01									
Mercury	6.25	5.50	6.25	6.25	ND	100	88	75-125	13	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite	Chain of Custody											Page of												
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ii	naround Req n working da	juest ys)		L	abo	rate	ory	Nur	nbe	er:	06	5 -	0	28	3								
Phone: (425) 883-3881 · www.onsite-env.com Company: SCS ENSINEEVS Project Number: 04218014,00 Project Name: Bellevne South Project Manager: Brian Doan Sampled by:	Same	(Check One)	1 Day 3 Days	Containers		/BTEX	Mineral Spints	(Acid / SG Clean-up)	60C	d Volatiles 8260C	011 (Waters Only)	ss 8270D/SIM vel PAHs)	J/SIM (IOW-IEVEI)	rine Pesticidas 80818	suborus Pasticidas 82700/SIM	Acid Herbicides 8151A	Metals	Metals	S	d grease) 1664A				
San Grabar	Date	(other)		umber of	NTPH-H(MTPH-G)	NTPH-G	NTPH-D)	olatiles 82	alogenate	OB EPA 8	ith low-le	0/28 SHV	ruanochir	odoonen	nlorinated	tal RCRA	tal MTC/	CLP Meta	EM (oil ar				Moisture
Lab ID Sample Identification	Sampled	Sampled	Matrix	NI	N	Ź	ž V	X	× :	Ï		321			Ĉ	0	P	4	Ĕ	Ŧ			-	%
2 MW-2 3 MW-3	J	1135	J	65			J	ſ									J	/						
Relinquished A A A Received Relinquished A A A A A A A A A A A A A A A A A A A		SCS AC	PHA	1_ [2	Date 6/. 4/2	5/1	9 9 9	Time 102 10 10	0 5 1:0 1:0	5	Com	ments	s/Spec	ial In	struct	ions							
Received Relinquished		0	SE			61	5	9	10)2	1													
Received Reviewed/Date	Reviewed/Date											Data Chror	Pack natog	age: grams	Stan with	dard final I	D L	evel I	II 🗌	Lev nic Da	el IV [verable	⊧s (ED[)s) 🗌

September 6, 2019

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 1908-379

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on August 29, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 6, 2019 Samples Submitted: August 29, 2019 Laboratory Reference: 1908-379 Project: 04218014.00

Case Narrative

Samples were collected on August 29, 2019 and received by the laboratory on August 29, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	08-379-01					
Mineral Spirits	ND	100	NWTPH-Gx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	59-122				
Client ID:	MW-2					
Laboratory ID:	08-379-02					
Mineral Spirits	ND	100	NWTPH-Gx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	59-122				
Client ID:	MW-3					
Laboratory ID:	08-379-03					
Mineral Spirits	ND	100	NWTPH-Gx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	74	59-122				
Client ID:	Dup-1					
Laboratory ID:	08-379-04					
Mineral Spirits	ND	100	NWTPH-Gx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	59-122				
Client ID:	Trip blank					
Laboratory ID:	08-379-05					
Mineral Spirits	ND	100	NWTPH-Gx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	59-122				

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Date)	
Analyte	Result	PQL	Ме	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0903W3							
Mineral Spirits	ND	100	NWT	TPH-Gx	9-3-19	9-3-1	9	
Surrogate:	Percent Recovery	Control Limit	s					
Fluorobenzene	77	59-122						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								

Laboratory ID:	08-37	79-01								
	ORIG	DUP								
Mineral Spirits	ND	ND	NA	NA	Ν	JA	NA	NA	30	
Surrogate: Fluorobenzene					75	75	59-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-1					
08-379-01					
ND	0.26	NWTPH-Dx	9-3-19	9-3-19	
ND	0.42	NWTPH-Dx	9-3-19	9-3-19	
Percent Recovery	Control Limits				
69	50-150				
MW-2					
08-379-02					
ND	0.25	NWTPH-Dx	9-3-19	9-3-19	
ND	0.40	NWTPH-Dx	9-3-19	9-3-19	
Percent Recovery	Control Limits				
66	50-150				
MW-3					
08-379-03					
ND	0.25	NWTPH-Dx	9-3-19	9-3-19	
ND	0.41	NWTPH-Dx	9-3-19	9-3-19	
Percent Recovery	Control Limits				
65	50-150				
Dup-1					
08-379-04					
ND	0.27	NWTPH-Dx	9-3-19	9-3-19	
ND	0.43	NWTPH-Dx	9-3-19	9-3-19	
Percent Recovery	Control Limits				
68	50-150				
	Result MW-1 08-379-01 ND ND Percent Recovery 69 MW-2 08-379-02 ND Percent Recovery 66 MW-3 08-379-03 Percent Recovery 66 MW-3 08-379-03 ND ND Percent Recovery 65 Dup-1 08-379-04 ND Percent Recovery 65 Dup-1 08-379-04 ND ND ND 08-379-04 ND 08-379-04 ND ND ND 08-379-04 ND ND 08-379-04 ND 08-379-04	Result PQL MW-1 08-379-01 ND 0.26 ND 0.42 Percent Recovery Control Limits 69 50-150 MW-2 08-379-02 08-379-02 0.40 Percent Recovery 0.40 Percent Recovery 0.40 Percent Recovery 0.40 Percent Recovery Control Limits 66 50-150 MW-3 0.40 Percent Recovery Control Limits 66 50-150 MW-3 0.25 ND 0.25 ND 0.25 ND 0.41 Percent Recovery Control Limits 65 50-150 ND 0.25 ND 0.21 08-379-04 50-150 ND 0.27 ND 0.43 Percent Recovery Control Limits 68 50-150	Result PQL Method MW-1 08-379-01 ND 0.26 NWTPH-Dx ND 0.42 NWTPH-Dx NWTPH-Dx Percent Recovery Control Limits 69 50-150 Support MW-2 08-379-02 NWTPH-Dx NWTPH-Dx ND 0.25 NWTPH-Dx ND 0.40 NWTPH-Dx Percent Recovery Control Limits 66 66 50-150 NWTPH-Dx Percent Recovery Control Limits 66 65 50-150 NWTPH-Dx Percent Recovery Control Limits 65 65 50-150 NWTPH-Dx Percent Recovery Control Limits 65 65 50-150 Support 08-379-04 0.43 NWTPH-Dx ND 0.27 NWTPH-Dx ND 0.43 NWTPH-Dx ND 0.43 NWTPH-Dx ND 0.43 NWTPH-Dx ND 0	Result PQL Method Prepared MW-1 08-379-01 9-3-19 9-3-19 ND 0.26 NWTPH-Dx 9-3-19 ND 0.42 NWTPH-Dx 9-3-19 Percent Recovery Control Limits 9 50-150 MW-2 08-379-02 ND 0.40 NWTPH-Dx 08-379-02 0.25 NWTPH-Dx 9-3-19 ND 0.25 NWTPH-Dx 9-3-19 ND 0.40 NWTPH-Dx 9-3-19 Percent Recovery Control Limits 66 50-150 MW-3 0.40 NWTPH-Dx 9-3-19 O8-379-03 0.41 NWTPH-Dx 9-3-19 Percent Recovery Control Limits 65 50-150 Percent Recovery Control Limits 50-150 Secondary 19 Pola-1 0.43 NWTPH-Dx 9-3-19 ND 0.27 NWTPH-Dx 9-3-19 ND 0.43 NWTPH-Dx 9-3-19 ND	Result PQL Method Prepared Analyzed MW-1 08-379-01 9-3-19 9-3-19 9-3-19 ND 0.26 NWTPH-Dx 9-3-19 9-3-19 ND 0.42 NWTPH-Dx 9-3-19 9-3-19 Percent Recovery Control Limits 50-150 9-3-19 9-3-19 NW-2 08-379-02 NWTPH-Dx 9-3-19 9-3-19 ND 0.25 NWTPH-Dx 9-3-19 9-3-19 ND 0.25 NWTPH-Dx 9-3-19 9-3-19 Percent Recovery Control Limits 66 50-150 9-3-19 MW-3 0.40 NWTPH-Dx 9-3-19 9-3-19 O8-379-03 ND 0.41 NWTPH-Dx 9-3-19 Percent Recovery Control Limits 65 50-150 9-3-19 Percent Recovery Control Limits 50-150 9-3-19 9-3-19 Percent Recovery Control Limits 50-150 9-3-19 9-3-19 ND

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0903W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-3-19	9-3-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-3-19	9-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	66	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB09	03W1								
	ORIG	DUP								
Diesel Fuel #2	0.922	0.848	NA	NA		NA	NA	8	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						73 67	50-150			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	08-379-01					
Arsenic	15	3.3	EPA 200.8	8-30-19	8-30-19	
Barium	30	28	EPA 200.8	8-30-19	8-30-19	
Cadmium	ND	4.4	EPA 200.8	8-30-19	8-30-19	
Chromium	ND	11	EPA 200.8	8-30-19	8-30-19	
Lead	ND	1.1	EPA 200.8	8-30-19	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	9-3-19	
Selenium	ND	5.6	EPA 200.8	8-30-19	8-30-19	
Silver	ND	11	EPA 200.8	8-30-19	8-30-19	

Client ID:	MW-2					
Laboratory ID:	08-379-02					
Arsenic	ND	3.3	EPA 200.8	8-30-19	8-30-19	
Barium	ND	28	EPA 200.8	8-30-19	8-30-19	
Cadmium	ND	4.4	EPA 200.8	8-30-19	8-30-19	
Chromium	ND	11	EPA 200.8	8-30-19	8-30-19	
Lead	ND	1.1	EPA 200.8	8-30-19	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	9-3-19	
Selenium	ND	5.6	EPA 200.8	8-30-19	8-30-19	
Silver	ND	11	EPA 200.8	8-30-19	8-30-19	

Client ID:	MW-3					
Laboratory ID:	08-379-03					
Arsenic	35	3.3	EPA 200.8	8-30-19	8-30-19	
Barium	ND	28	EPA 200.8	8-30-19	8-30-19	
Cadmium	ND	4.4	EPA 200.8	8-30-19	8-30-19	
Chromium	ND	11	EPA 200.8	8-30-19	8-30-19	
Lead	ND	1.1	EPA 200.8	8-30-19	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	9-3-19	
Selenium	ND	5.6	EPA 200.8	8-30-19	8-30-19	
Silver	ND	11	EPA 200.8	8-30-19	8-30-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Dup-1					
Laboratory ID:	08-379-04					
Arsenic	15	3.3	EPA 200.8	8-30-19	8-30-19	
Barium	31	28	EPA 200.8	8-30-19	8-30-19	
Cadmium	ND	4.4	EPA 200.8	8-30-19	8-30-19	
Chromium	ND	11	EPA 200.8	8-30-19	8-30-19	
Lead	ND	1.1	EPA 200.8	8-30-19	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	9-3-19	
Selenium	ND	5.6	EPA 200.8	8-30-19	8-30-19	
Silver	ND	11	EPA 200.8	8-30-19	8-30-19	

8

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830WM1					
Arsenic	ND	3.3	EPA 200.8	8-30-19	8-30-19	
Barium	ND	28	EPA 200.8	8-30-19	8-30-19	
Cadmium	ND	4.4	EPA 200.8	8-30-19	8-30-19	
Chromium	ND	11	EPA 200.8	8-30-19	8-30-19	
Lead	ND	1.1	EPA 200.8	8-30-19	8-30-19	
Selenium	ND	5.6	EPA 200.8	8-30-19	8-30-19	
Silver	ND	11	EPA 200.8	8-30-19	8-30-19	
Laboratory ID:	MB0903W1					
Mercury	ND	0.50	EPA 7470A	9-3-19	9-3-19	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-34	49-02								
	ORIG	DUP								
Arsenic	6.62	5.56	NA	NA		NA	NA	18	20	
Barium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Lead	2.53	2.31	NA	NA		NA	NA	9	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	08-37	70-12								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
MATRIX SPIKES										

08-349-02 Laboratory ID: MS MSD MS MSD MS MSD Arsenic 130 131 111 112 112 0 20 111 6.62 75-125 122 125 112 110 Barium 111 ND 75-125 2 20 111 Cadmium 118 113 106 102 20 111 111 ND 75-125 4 116 116 105 105 20 Chromium 111 111 ND 75-125 0 104 102 Lead 118 115 111 111 2.53 75-125 2 20 128 124 116 112 Selenium 111 111 ND 75-125 3 20 Silver 115 113 ND 104 102 75-125 2 20 111 111 Laboratory ID: 08-370-12 11.8 12.8 12.5 12.5 ND 94 102 20 Mercury 75-125 8

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	08-379-01					
Arsenic	16	3.0	EPA 200.8		8-30-19	
Barium	27	25	EPA 200.8		8-30-19	
Cadmium	ND	4.0	EPA 200.8		8-30-19	
Chromium	ND	10	EPA 200.8		8-30-19	
Lead	ND	1.0	EPA 200.8		8-30-19	
Mercury	ND	0.50	EPA 7470A		9-3-19	
Selenium	ND	5.0	EPA 200.8		8-30-19	
Silver	ND	10	EPA 200.8		8-30-19	

Client ID:	MW-2				
Laboratory ID:	08-379-02				
Arsenic	ND	3.0	EPA 200.8	8-30-19	
Barium	ND	25	EPA 200.8	8-30-19	
Cadmium	ND	4.0	EPA 200.8	8-30-19	
Chromium	ND	10	EPA 200.8	8-30-19	
Lead	ND	1.0	EPA 200.8	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	
Selenium	ND	5.0	EPA 200.8	8-30-19	
Silver	ND	10	EPA 200.8	8-30-19	

Client ID:	MW-3				
Laboratory ID:	08-379-03				
Arsenic	39	3.0	EPA 200.8	8-30-19	
Barium	ND	25	EPA 200.8	8-30-19	
Cadmium	ND	4.0	EPA 200.8	8-30-19	
Chromium	ND	10	EPA 200.8	8-30-19	
Lead	ND	1.0	EPA 200.8	8-30-19	
Mercury	ND	0.50	EPA 7470A	9-3-19	
Selenium	ND	5.0	EPA 200.8	8-30-19	
Silver	ND	10	EPA 200.8	8-30-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Dup-1					
Laboratory ID:	08-379-04					
Arsenic	15	3.0	EPA 200.8		8-30-19	
Barium	ND	25	EPA 200.8		8-30-19	
Cadmium	ND	4.0	EPA 200.8		8-30-19	
Chromium	ND	10	EPA 200.8		8-30-19	
Lead	ND	1.0	EPA 200.8		8-30-19	
Mercury	ND	0.50	EPA 7470A		9-3-19	
Selenium	ND	5.0	EPA 200.8		8-30-19	
Silver	ND	10	EPA 200.8		8-30-19	

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829F1					
Arsenic	ND	3.0	EPA 200.8		8-30-19	
Barium	ND	25	EPA 200.8		8-30-19	
Cadmium	ND	4.0	EPA 200.8		8-30-19	
Chromium	ND	10	EPA 200.8		8-30-19	
Lead	ND	1.0	EPA 200.8		8-30-19	
Selenium	ND	5.0	EPA 200.8		8-30-19	
Silver	ND	10	EPA 200.8		8-30-19	
Laboratory ID:	MB0903D1					
Mercury	ND	0.50	EPA 7470A		9-3-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-3	63-01									
	ORIG	DUP									
Arsenic	6.58	5.70	NA	NA			NA	NA	14	20	
Barium	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Selenium	ND	ND	NA	NA			NA	NA	NA	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	08-3	79-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-3	63-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	84.8	83.8	80.0	80.0	6.58	98	97	75-125	1	20	
Barium	88.8	87.4	80.0	80.0	ND	111	109	75-125	2	20	
Cadmium	76.8	75.6	80.0	80.0	ND	96	95	75-125	2	20	

89

97

107

88

97

ND

ND

ND

ND

ND

88

95

104

88

96

75-125

75-125

75-125

75-125

75-125

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12.5

80.0

80.0

80.0

80.0

71.4

77.4

85.6

70.4

12.2

08-379-01

Chromium

Selenium

Laboratory ID:

A

Lead

Silver

Mercury

70.2

76.2

83.0

70.4

12.0

80.0

80.0

80.0

80.0

12.5

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

20

20

20

20

20

2

2

3

0

2

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o	f	Cu	st	00	ly									P	age _	l	of _	(
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ii	Turnaround Request (in working days) Laboratory Number:						-379															
Phone: (425) 883-3881 · www.onsite-env.com Company: SCS Eusideurs Project Number: 04218014.00 Project Name: B. South	Same	(Check One) e Day ys dard (7 Days)	1 Day 3 Days	10			al Spirits)	SG Clean-up)	3260C	: Only)	W	ievel)	des 8081B	sticides 8270D/SIM	cides 8151A				664A	RA metals			
Project Manager: B. Doan Sampled by: SEG		(other)		ter of Container	H-HCID	PH-Gx/BTEX	PH-GX (Miller	PH-Dx (Acid / :	les 8260C enated Volatiles 8	EPA 8011 (Waters	/olatiles 8270D/S low-level PAHs)	-woi) INIIC/UDV-	iochlorine Pestici	iophosphorus Pe	inated Acid Herbi	RCRA Metals	MTCA Metals	Metals	(oil and grease) 1	solved RC			isture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numt	NWTF	NWTF	NWTF	NWT	Volati Halog	EDB [Semix (with	PCBs	Orgar	Orgar	Chlori	Total	Total	TCLP	HEM	Dis			% Mo
1 MW-1	3/24/19	1310	wher	1			Х	X								X				X			
2 MW-2		1156		7			1	1		_													
3 Mw-3		1040		7				\square															
4 Dup-1		1320		1				V					_			\vee				\vee	_		
5 trip blank	V		V	3			V		_	_		_		-									
										_		_									_		
									_	_		_	_										
									_			_	_		<u> </u>							-	
												_	-										
											0		Duratio	1.1									
Signature Relinguished	G	c / <				Date	201	. a	i < 7	0	Com	nems/a	specia	i insu	ructio	ΠS							
Received		D. i	>			8.	29.	-17	15:	30	-	Plea	ise	M	clu	do		5+	10	Þ	DI	2	
Relinquished	-	UNSI				0	- •		101		-								/- (, -			
Received												wit	4	ref	sort	- (del	iU e	гаЫ	e.			
Relinquished																							
Received											Data	Packa	ge: S	tanda	rd 🗌	Lev	vel III		Leve				
Reviewed/Date		Reviewed/Da	ate								Chror	natogra	ams w	ith fir	nal rep	oort 🗌	Ele	ectron	ic Data	a Delive	erables (l	EDDs) [

December 9, 2019

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 1911-269

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on November 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 9, 2019 Samples Submitted: November 26, 2019 Laboratory Reference: 1911-269 Project: 04218014.00

Case Narrative

Samples were collected on November 26, 2019 and received by the laboratory on November 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	11-269-01					
Mineral Spirits	ND	100	NWTPH-Gx	12-3-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	59-122				
Client ID:	MW-2					
Laboratory ID:	11-269-02					
Mineral Spirits	ND	100	NWTPH-Gx	12-3-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	59-122				
Client ID:	MW-3					
Laboratory ID:	11-269-03					
Mineral Spirits	ND	100	NWTPH-Gx	12-3-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	59-122				
Client ID:	DUP-1					
Laboratory ID:	11-269-04					
Mineral Spirits	ND	100	NWTPH-Gx	12-3-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	59-122				

3

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date	•	
Analyte		Result		PQL	Method		Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB1203W1								
Mineral Spirits		ND		100	NW	ГPH-Gx	12-3-19	12-3-1	9	
Surrogate:	Pe	rcent Recov	/ery	Control Limi	its					
Fluorobenzene		86		59-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Sp	oike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	11-26	69-01								
	ORIG	DUP								
Mineral Spirits	ND	ND	N	A NA		NA	NA	NA	30	
Surrogate:										

Fluorobenzene

86 76 59-122

See reanalysis results, Laboratory Reference No. 1911-269B, Dec. 19, 2019.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	11-269-01					
Diesel Range Organics	0.20	0.16	NWTPH-Dx	12-2-19	12-3-19	
Lube Oil Range Organics	0.29	0.21	NWTPH-Dx	12-2-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	126	50-150				
Client ID:	MW-2					
Laboratory ID:	11-269-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	12-2-19	12-3-19	
Lube Oil Range Organics	0.28	0.21	NWTPH-Dx	12-2-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	MW-3					
Laboratory ID:	11-269-03					
Diesel Range Organics	0.48	0.16	NWTPH-Dx	12-2-19	12-3-19	
Lube Oil Range Organics	0.64	0.21	NWTPH-Dx	12-2-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	125	50-150				
Client ID:	DUP-1					
Laboratory ID:	11-269-04					
Diesel Range Organics	0.18	0.16	NWTPH-Dx	12-2-19	12-3-19	
Lube Oil Range Organics	0.29	0.21	NWTPH-Dx	12-2-19	12-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	131	50-150				

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1202W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-2-19	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-2-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	126	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	11-2	52-01								
	ORIG	DUP								
Diesel Range Organics	0.717	0.571	NA	NA		NA	NA	23	NA	
Lube Oil Range Organics	1.03	0.795	NA	NA		NA	NA	26	NA	
Surrogate:										
o-Terphenyl						133 117	50-150			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	11-269-01					
Arsenic	15	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	28	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

Client ID:	MW-2					
Laboratory ID:	11-269-02					
Arsenic	ND	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

Client ID:	MW-3					
Laboratory ID:	11-269-03					
Arsenic	31	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP-1					
Laboratory ID:	11-269-04					
Arsenic	14	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

Client ID:	F-15 Clean out					
Laboratory ID:	11-269-05					
Arsenic	7.4	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

Client ID:	SE Drain Wall					
Laboratory ID:	11-269-06					
Arsenic	4.0	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1204WM1					
Arsenic	ND	3.3	EPA 200.8	12-4-19	12-4-19	
Barium	ND	28	EPA 200.8	12-4-19	12-4-19	
Cadmium	ND	4.4	EPA 200.8	12-4-19	12-4-19	
Chromium	ND	11	EPA 200.8	12-4-19	12-4-19	
Lead	ND	1.1	EPA 200.8	12-4-19	12-4-19	
Selenium	ND	5.6	EPA 200.8	12-4-19	12-4-19	
Silver	ND	11	EPA 200.8	12-4-19	12-4-19	
Laboratory ID:	MB1204W1					
Mercury	ND	0.50	EPA 7470A	12-4-19	12-4-19	

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	11-15	51-10									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	٨N	NA	NA	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	٨N	NA	NA	20	
Chromium	ND	ND	NA	NA		1	٨٨	NA	NA	20	
Lead	ND	ND	NA	NA		NA		NA	NA	20	
Selenium	ND	ND	NA	NA		NA		NA	NA	20	
Silver	ND	ND	NA	NA		NA		NA	NA	20	
Laboratory ID:	11-26	69-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	11-15	51-10									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	119	118	111	111	ND	107	106	75-125	1	20	
Barium	124	125	111	111	ND	112	113	75-125	1	20	
Cadmium	114	112	111	111	ND	103	101	75-125	1	20	
Chromium	113	114	111	111	ND	102	103	75-125	1	20	
Lead	122	123	111	111	ND	110	111	75-125	1	20	
Selenium	123	128	111	111	ND	111	115	75-125	4	20	
Silver	114	120	111	111	ND	103	108	75-125	4	20	

Laboratory ID:	11-26	69-01									
Mercury	11.7	12.0	12.5	12.5	ND	94	96	75-125	2	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.		Cha	ain o	f	Cu	IS	toc	ly									P	age _	l	of _	l		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	naround Req 1 working da	uest ys)		L	abo	orato	ory	Num	ber	1	1 -	2	69			A. 12-5000						
Company: SCS EUSINEERS Project Number: 64218014.00 Project Name: Bellevice Sonth Project Manager: Brian Doan Sampled by:	2 Day	(Check One) Day [vs [dard (7 Days) (other)] 1 Day] 3 Days	· of Containers	HCID	-Gx/BTEX	-Gx (Mineral Spirits)	-Dx (🗌 Acid / SG Clean-up)	8260C ated Volatiles 8260C	A 8011 (Waters Only)	atiles 8270D/SIM v-level PAHs)	(10D/SIM (low-level)	blorine Pesticides 8081B	hosphorus Pesticides 8270D/SIM	ted Acid Herbicides 8151A	RA Metals	CA Metals	etals	and grease) 1664A				ure
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTPH	NWTPH	NWTPH	NWTPH	Volatiles	EDB EP	Semivol (with lov	PAHs 82	Organoc	Organop	Chlorine	Total RC	Total MT	TCLP M	HEM (oi				% Moist
$1 \qquad \mu \omega - 1$	11/26/19	1029	iveter	6			\times	\times								X	\langle						
2 mw-2		909		6				1															
3 nw-3		1303		6																			
4 Dup-1	Y	1040	Y	6			V	V															
5 F-15 Cleanout		1133		1																			
Ø SE Drain Wall	V	1218	¥	1												V							
Signature	Co	ompany				Date	•		Time		Coi	nments	/Spec	ial Ins	truction	ons			加工方				4512
Relinquished Summer Received	>	515	8E			11	26 26	15	16	120	>	Pl.	lase	2	inc	lude	e	Eİ	M	E	DD		
Relinquished Received Relinquished										w/	T	epor	+	de	101	erab	le.	/					
Received											Dat	a Pack	age:	Stand	ard [Le	evel II	[]	Leve	∍IIV [I	T	·
Reviewed/Date		Reviewed/Date									Chromatograms with final report Electronic Data Deliverables (EDDs)												

December 19, 2019

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 1911-269B

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on November 26, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 19, 2019 Samples Submitted: November 26, 2019 Laboratory Reference: 1911-269B Project: 04218014.00

Case Narrative

Samples were collected on November 26, 2019 and received by the laboratory on November 26, 2019. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

Sample MW-2 (acid cleaned fraction) had a surrogate recovery outside of control limits. Because the recovery showed high bias and the sample was non-detect, no further action was deemed necessary.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	11-269-01					
Diesel Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-13-19	X1
Lube Oil	ND	0.23	NWTPH-Dx	12-2-19	12-13-19	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	148	50-150				
Client ID:	MW-2					
Laboratory ID:	11-269-02					
Diesel Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-13-19	X1
Lube Oil	ND	0.26	NWTPH-Dx	12-2-19	12-13-19	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	156	50-150				Q
Client ID:	MW-3					
Laboratory ID:	11-269-03					
Diesel Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-13-19	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-13-19	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	143	50-150				
Client ID:	DUP-1					
Laboratory ID:	11-269-04					
Diesel Bange Organics	<u>ND</u>	0.16	NWTPH-Dx	12-2-19	12-18-19	X1
Lube Oil Bange Organics	ND	0.30	NWTPH-Dx	12-2-19	12-18-19	X1
Surrogate:	Percent Recovery	Control Limits		12 2 10	12 10 10	
o-Terphenvl	136	50-150				
, · · /						

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1202W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	12-2-19	12-13-19	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-2-19	12-13-19	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	139	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	11-25	52-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Lube Oil Range Organics	0.214	ND	NA	NA		NA	NA	NA	NA	X1
Surrogate:										
o-Terphenyl						124 124	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o	f (Cu	IS	too	dy.									Pa	ige	t	_ of _	l	→ 1	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i)	naround Req n working da	uest ys)		L	abc	orate	ory	Num	ber:	11	-2	26	9									
Phone: (425) 883-3881 · www.onsite-env.com Company: SCS EUSILEEVS Project Number: Brian Doan Sampled by: Sam Graber	Sama	(Check One) e Day [ys [dard (7 Days) (other)	_ 1 Day _ 3 Days	er of Containers	H-HCID	H-Gx/BTEX	H-GX (Mineral Spirits)	H-Dx (🗌 Acid / SG Clean-up)	es 8260C anatad Mulatilas 82600	EPA 8011 (Waters Only)	olatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level)	8082A	ochlorine Pesticides 8081B	ophosphorus Pesticides 8270D/SIM	nated Acid Herbicides 8151A	RCRA Metals	MTCA Metals	Metals	(oil and grease) 1664A	DX Ac/SG			isture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Num	NWTF	ITWN	ILMN	NWT	Volati	EDB	Semi (with PAHs	PCB	Orgai	Orgai	Chlor	Total	Total	TCLP	HEW	M			% Mc
$\mu \omega - 1$	11/26/19	1029	iviter	6			X	\times								X				X			
2 mw-2		909		6																10			
3 nw-3		1303		6															_	R			
4 Dup-1	4	1040	Y	6		-	V	V		_			-						_(X			
5 F-15 Clamout		1133		1								_							_				
Ø SE Drain Wull		1218	V	1												V							
Signature	C	ompany				Dat	e		Time		Comme	nts/S	pecial	Instr	uction	ns							
Relinquished Small	>	SLS	RE.			nj 11	26	2019	16	20	, P	K	7f se	fde i	dee	d nd e	12	-1101 EIN	19 1	NE	3A20		
Relinquished Received											_ ω	/	ref	Dor-	ł	del	100	rable	2.	/			
Relinquished																							
Received											Data Pa	ickag	e: St	anda	rd 🗌	Lev	vel III		Level	IV 🗆		Y	
Reviewed/Date		Reviewed/Date									Chromatograms with final report Electronic Data Deliverables (EDDs)												

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 4, 2020

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 2005-167

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on May 21, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 4, 2020 Samples Submitted: May 21, 2020 Laboratory Reference: 2005-167 Project: 04218014.00

Case Narrative

Samples were collected on May 21, 2020 and received by the laboratory on May 21, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	05-167-01					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	65-120				
Client ID:	MW-2					
Laboratory ID:	05-167-02					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	65-120				
Client ID:	MW-3					
Laboratory ID:	05-167-03					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	65-120				
Client ID:	MW-4					
Laboratory ID:	05-167-04					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-120				
Client ID:	MW-5					
Laboratory ID:	05-167-05					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	65-120				
Client ID:	DUP					
Laboratory ID:	05-167-06					
Mineral Spirits	ND	100	NWTPH-Gx	5-22-20	5-22-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • •								Date	Date	•	
Analyte		Result		PQL	Me	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0522W1									
Mineral Spirits		ND		100	NWT	PH-G	х	5-22-20	5-22-2	20	
Surrogate:	Pe	rcent Recove	ry Cor	ntrol Lim	its						
Fluorobenzene		95	-	65-120							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-16	67-01									
	ORIG	DUP									
Mineral Spirits	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						97	99	65-120			

See reanalysis results on page 10 of this lab report.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	05-167-01					
Diesel Range Organics	ND	0.22	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	MW-2					
Laboratory ID:	05-167-02					
Diesel Range Organics	ND	0.23	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	0.38	0.23	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	MW-3					
Laboratory ID:	05-167-03					
Diesel Range Organics	0.24	0.21	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	0.50	0.21	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MW-4					
Laboratory ID:	05-167-04					
Diesel Range Organics	ND	0.22	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MW-5					
Laboratory ID:	05-167-05					
Diesel Range Organics	0.51	0.22	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	0.95	0.22	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
	B 1 · -					
Client ID:	DUP					
Laboratory ID:	05-167-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	0.37	0.21	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o- I erphenyl	88	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0527W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	5-27-20	5-27-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	5-27-20	5-27-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB05	27W1								
	ORIG	DUP								
Diesel Fuel #2	0.564	0.519	NA	NA		NA	NA	8	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						111 107	50-150			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	05-167-01					
Arsenic	7.3	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	ND	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

Client ID:	MW-2					
Laboratory ID:	05-167-02					
Arsenic	ND	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	ND	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

Client ID:	MW-3					
Laboratory ID:	05-167-03					
Arsenic	12	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	ND	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	05-167-04					
Arsenic	22	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	31	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

Client ID:	MW-5					
Laboratory ID:	05-167-05					
Arsenic	4.2	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	50	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	13	11	EPA 200.8	5-26-20	5-26-20	
Lead	1.2	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

Client ID:	DUP					
Laboratory ID:	05-167-06					
Arsenic	6.4	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	ND	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0526WM1					
Arsenic	ND	3.3	EPA 200.8	5-26-20	5-26-20	
Barium	ND	28	EPA 200.8	5-26-20	5-26-20	
Cadmium	ND	4.4	EPA 200.8	5-26-20	5-26-20	
Chromium	ND	11	EPA 200.8	5-26-20	5-26-20	
Lead	ND	1.1	EPA 200.8	5-26-20	5-26-20	
Selenium	ND	5.6	EPA 200.8	5-26-20	5-26-20	
Silver	ND	11	EPA 200.8	5-26-20	5-26-20	
Laboratory ID:	MB0526W1					
Mercury	ND	0.50	EPA 7470A	5-26-20	5-26-20	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-16	65-07									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	05-16	67-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	05-10	65-07									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	124	120	111	111	ND	112	108	75-125	4	20	

	MS	MSD	MS	MSD		MS	MSD				
Arsenic	124	120	111	111	ND	112	108	75-125	4	20	
Barium	142	137	111	111	21.2	109	105	75-125	3	20	
Cadmium	120	115	111	111	ND	108	104	75-125	4	20	
Chromium	120	117	111	111	ND	108	105	75-125	3	20	
Lead	126	122	111	111	ND	113	110	75-125	3	20	
Selenium	128	132	111	111	ND	115	119	75-125	3	20	
Silver	133	130	111	111	ND	120	117	75-125	2	20	
Laboratory ID:	05-1	67-01									
Mercury	11.9	12.0	12.5	12.5	ND	95	96	75-125	1	20	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

• • • • • • • • • • • • • • • • • • •		501		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	05-167-02					
Diesel Range Organics	ND	0.23	NWTPH-Dx	5-27-20	6-4-20	X1
Lube Oil Range Organics	ND	0.23	NWTPH-Dx	5-27-20	6-4-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	MW-3					
Laboratory ID:	05-167-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	5-27-20	6-4-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	5-27-20	6-4-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	MW-5					
Laboratory ID:	05-167-05					
Diesel Range Organics	ND	0.22	NWTPH-Dx	5-27-20	6-4-20	X1
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	5-27-20	6-4-20	X1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	DUP					
Laboratory ID.	05-167-06					
Diesel Range Organics		0.21		5-27-20	6-4-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	5-27-20	6-4-20	X1
Surrogate:	Percent Recovery	Control Limits		02120	0 7 20	<u></u>
o-Ternhenvl	111	50-150				
	111	30-730				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0527W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	5-27-20	6-4-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	5-27-20	6-4-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB05	27W1								
	ORIG	DUP								
Diesel Fuel #2	0.551	0.520	NA	NA		NA	NA	6	NA	X1
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Surrogate:										
o-Terphenyl						109 102	50-150			

11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.		Cha	ain o	f	Cu	S	too	ły											Pa	age _	l	of			
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ii	naround Req n working da	uest ys)		La	abo	orate	ory	Nun	nbe	ər:	()5	- '	16	57									
Phone: (425) 883-3881 · www.onsite-env.com Company: SCS EUSINEEVS Project Number: Project Name: Bellevue South Project Manager: Briun Down Sampled by: Contemporation of the second se	Same	(Check One) e Day [ys [dard (7 Days) (other)] 1 Day] 3 Days	of Containers	ICID	3x/BTEX	ax Mineral Spirts	0x (🗌 Acid / SG Clean-up)	3260C	ted volatiles 8260C	8011 (Waters Only)	iles 8270D/SIM level PAHs)	0D/SIM (low-level)	2CA	Norine Pesticides 8081B	osphorus Pesticides 8270D/SIM	ad Acid Herbicides 8151A	A Metals (8 metals)	A Metals (Chrender)	tals	and grease) 1664A		156		0
Lah ID Sample Identification	Date	Time Samiled	Matrix	Number	I-H4TWN	NWTPH-(NWTPH-(I-HdTWN	/olatiles	Taiogena	EDB EPA	Semivola with low-	AHs 827		Jrganocr	Jrganopt	Chlorinat	fotal RCF	fotal MTC	ICLP Me	HEM (oil a		Acu		6 Moistu
$1 \qquad MW \sim 1$	5/2/20	1305	water	63		-	X	X		-	4							X						-	6
2 MW-2]	335	1	6			1	1										1				(Ø		
3 mw-3		955		1																		(Ø		
4 mw-4		1130																							
5 MW-5		1415							8													1	Ø		
6 Dip		1320		V			\checkmark	\checkmark										\checkmark				(X		
7 Trip blank *		-	\checkmark	2																					
												-		10											
Relinquished	C(sis Fue	SUPPORT			Date	nı/	20	Time	50		Com	ments	s/spe		nstru	ction	s I I						anne a	
Received WHUN UTLEN	(OSE),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5	21/2	0	15	30)	7	t l	101	9,	trip	6	1441	ı f	Br	640	ilys	i5.		
Relinquished Received Relinquished												PL	eur DF	e h Juli	nclu	de 61	E h]	1/ 20	20	El , 7	DDB	(s7	TA)) <	
Received												Data	Pack	age:	Star	ndarc		Lev	el III		Leve	I IV []		
Reviewed/Date		Reviewed/Da	te									Chro	matog	grams	s with	n fina	repo	ort 🗌	Ele	ctron	ic Data	a Deliv	erables	(EDDs)	×

Professional Analytical Services

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

May 27 2020 S.C.S. Engineers 2405 140th Ave NE Suite 107 Bellevue, WA 98005 Attention: BRIAN DOAN

Dear BRIAN DOAN:

Enclosed please find the analytical data for your BELLEVUE SOUTH project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-1	Water	20-A006821	Micro
MW-2	Water	20-A006822	Micro
MW-3	Water	20-A006823	Micro
MW-4	Water	20-A006824	Micro
MW-5	Water	20-A006825	Micro
DUP	Water	20-A006826	Micro

Your samples were received on Thursday, May 21, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Kathy Fugiel

Rathy Fugiel President

Project #: 04218014.00

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 05/21/20 Date Reported: 5/27/20

S.C.S. Engineers 2405 140th Ave NE Bellevue, WA 98005 Attention: BRIAN DOAN Project Name: BELLEVUE SOUTH Project #: 04218014.00 All results reported on an as received basis.

AMTEST Identification Number	20-A006821
Client Identification	MW-1
Sampling Date	05/21/20, 13:05

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

AMTEST Identification Number
Client Identification
Sampling Date

20-A006822 MW-2 05/21/20, 08:35

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	2.	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

AMTEST Identification Number	20-A006823
Client Identification	MW-3
Sampling Date	05/21/20, 09:55

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

AMTEST Identification Number	20-A006824
Client Identification	MW-4
Sampling Date	05/21/20, 11:33

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	180	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

AMTEST Identification Number	20-A006825
Client Identification	MW-5
Sampling Date	05/21/20, 14:15

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

AMTEST Identification Number	20-A006826
Client Identification	DUP
Sampling Date	05/21/20, 13:20

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	6.	CFU/100 ml		2	SM 9222D	JM	05/21/20 16:00

Kathy Fugiel President

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A006821 to 20-A006826

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
20-A006825	Fecal coliform	CFU/100 ml	< 2	< 2	
BLANKS					
ANALYTE		UNITS	RESULT		
Fecal coliform	1	CFU/100 ml	< 1		

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 13, 2020

Brian Doan SCS Engineers 2405 140th Avenue NE, Suite 107 Bellevue, WA 98005

Re: Analytical Data for Project 04218014.00 Laboratory Reference No. 2008-008

Dear Brian:

Enclosed are the analytical results and associated quality control data for samples submitted on August 3, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 13, 2020 Samples Submitted: August 3, 2020 Laboratory Reference: 2008-008 Project: 04218014.00

Case Narrative

Samples were collected on August 3, 2020 and received by the laboratory on August 3, 2020. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	08-008-01					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-120				
Client ID:	MW-2					
Laboratory ID:	08-008-02					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-120				
Client ID:	MW-4					
Laboratory ID:	08-008-03					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-120				
Client ID:	MW-3					
Laboratory ID:	08-008-04					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-120				
Client ID:	MW-1					
Laboratory ID:	08-008-05					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	65-120				
Client ID:	Dup					
Laboratory ID:	08-008-06					
Mineral Spirits	ND	100	NWTPH-Gx	8-5-20	8-5-20	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • •							Date	Date	;	
Analyte	te Result			PQL	Me	ethod	Prepared	Analyzed		Flags
METHOD BLANK										
Laboratory ID:		MB0805W1								
Mineral Spirits		ND		100	NWT	「PH-Gx	8-5-20	8-5-2	0	
Surrogate:	Pe	rcent Recover	y Cor	ntrol Lim	its					
Fluorobenzene		90		65-120						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-00	08-01								
	ORIG	DUP								
Mineral Spirits	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						101 10	1 65-120			

See reanalysis results on page 10 of this lab report.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	08-008-01					
Diesel Range Organics	0.37	0.22	NWTPH-Dx	8-4-20	8-4-20	
Lube Oil Range Organics	0.79	0.22	NWTPH-Dx	8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	MW-2					
Laboratory ID:	08-008-02					
Diesel Range Organics	0.23	0.21	NWTPH-Dx	8-4-20	8-4-20	
Lube Oil Range Organics	0.56	0.21	NWTPH-Dx	8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	MW-4					
Laboratory ID:	08-008-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-4-20	
Lube Oil Range Organics	0.24	0.21	NWTPH-Dx	8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
	NN <i>N</i> 0					
	MVV-3					
Laboratory ID:	08-008-04	0.04		0.4.00	0.4.00	
Diesel Range Organics	0.23	0.21	NWTPH-DX	8-4-20	8-4-20	
Lube Oil Range Organics	0.32	0.21	NWIPH-DX	8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	113	50-150				
Client ID:	NAVA/ 4					
Laboratory ID:	08-008-05					
Diesel Range Organics	00-000-03	0.21		8-4-20	8-4-20	
Lube Oil Range Organics	0.30	0.21		8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits		0-4-20	0-4-20	
o-Ternhenvl	100	50-150				
o respicility	100	00 100				
Client ID:	Dup					
Laboratory ID:	08-008-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-4-20	
Lube Oil Range Organics	0.40	0.21	NWTPH-Dx	8-4-20	8-4-20	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	95	50-150				
	-					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	8-4-20	8-4-20	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	8-4-20	8-4-20	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-00	08-01								
	ORIG	DUP								
Diesel Range Organics	0.368	0.370	NA	NA		NA	NA	1	NA	
Lube Oil Range Organics	0.790	0.725	NA	NA		NA	NA	9	NA	
Surrogate:										
o-Terphenyl						104 105	50-150			

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

U (1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	08-008-01					
Arsenic	12	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	110	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	33	11	EPA 200.8	8-4-20	8-4-20	
Lead	2.7	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

Client ID:	MW-2					
Laboratory ID:	08-008-02					
Arsenic	3.4	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	ND	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

Client ID:	MW-4					
Laboratory ID:	08-008-03					
Arsenic	46	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	32	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	08-008-04					
Arsenic	28	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	ND	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

Client ID:	MW-1					
Laboratory ID:	08-008-05					
Arsenic	17	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	30	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

Client ID:	Dup					
Laboratory ID:	08-008-06					
Arsenic	18	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	30	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804WM1					
Arsenic	ND	3.3	EPA 200.8	8-4-20	8-4-20	
Barium	ND	28	EPA 200.8	8-4-20	8-4-20	
Cadmium	ND	4.4	EPA 200.8	8-4-20	8-4-20	
Chromium	ND	11	EPA 200.8	8-4-20	8-4-20	
Lead	ND	1.1	EPA 200.8	8-4-20	8-4-20	
Selenium	ND	5.6	EPA 200.8	8-4-20	8-4-20	
Silver	ND	11	EPA 200.8	8-4-20	8-4-20	
Laboratory ID:	MB0805W1					
Mercury	ND	0.50	EPA 7470A	8-5-20	8-5-20	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-20	67-03								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	ND	ND	NA	NA		NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	ND	ND	NA	NA		NA	NA	NA	20	
Lead	ND	ND	NA	NA		NA	NA	NA	20	
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	07-20	67-11								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	
MATRIX SPIKES										
Laboratory ID:	07-2	67-03								
	MS	MSD	MS	MSD		MS MSD				
								-		

Laboratory ID.	01-2	01-00									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	124	121	111	111	ND	112	109	75-125	3	20	
Barium	130	127	111	111	ND	117	115	75-125	2	20	
Cadmium	124	119	111	111	ND	111	108	75-125	3	20	
Chromium	120	116	111	111	ND	108	105	75-125	3	20	
Lead	118	116	111	111	ND	106	104	75-125	2	20	
Selenium	124	121	111	111	ND	112	109	75-125	3	20	
Silver	122	118	111	111	ND	110	106	75-125	4	20	
Laboratory ID:	07-2	67-11									
Mercury	10.3	10.5	12.5	12.5	ND	82	84	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	08-008-01					
Diesel Range Organics	ND	0.22	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenvl	109	50-150				
Client ID:	MW-2					
Laboratory ID:	08-008-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	114	50-150				
, ,						
Client ID:	MW-4					
Laboratory ID:	08-008-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-3					
Laboratory ID:	08-008-04					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	MW-1					
Laboratory ID:	08-008-05					
Diesel Range Organics	ND	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	0.23	0.21	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
	D.					
Client ID:						
Laboratory ID:	08-008-06	0.04		0.4.00	0.40.00	
Diesel Range Organics	ND	0.21		8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.21	NVV I PH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804W1					
Diesel Range Organics	ND	0.20	NWTPH-Dx	8-4-20	8-12-20	X1
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	8-4-20	8-12-20	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-00	08-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	X1
Surrogate:										
o-Terphenyl						109 110	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain c	f	Cı	IS	to	dy	1									P	age _	l	of	(_	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Rec n working da	juest ys)		L	abo	orat	ory	Nu	mb	er:	08	-	0 ()8									
Company: SCS Eusineers		(Check One)	1 Day				1								SIM		()							
Project Number: 64213014.00		e Day	3 Days				pirit	(dn-u						18	8270D/	51A	retal							
Project Name: Belleune South	Stan	dard (7 Days)	_ /	rs			ral S	SG Clea		8260C	rs Only)	SIM /-level)		cides 808	esticides	oicides 81	0			1664A				
Sampled by:		(Containe	CID	<td>Milne</td> <td>(🗌 Acid /</td> <td>160C</td> <td>d Volatiles</td> <td>011 (Water</td> <td>es 8270D/; vel PAHs) D/SIM (low</td> <td>A</td> <td>orine Pestic</td> <td>sphorus P</td> <td>I Acid Herk</td> <td>Metals</td> <td>Metals</td> <td><u>v</u></td> <td>d grease)</td> <td>156</td> <td></td> <td></td> <td></td>	Milne	(🗌 Acid /	160C	d Volatiles	011 (Water	es 8270D/; vel PAHs) D/SIM (low	A	orine Pestic	sphorus P	I Acid Herk	Metals	Metals	<u>v</u>	d grease)	156			
586	Data	(other)		nher of	LPH-HG	[PH-G)	[PH-G)	CPH-D	tiles 82	genate	EPA 8	iivolatila 1 low-le s 8270	s 8082	anochic	unopho	rinated	I RCRA	I MTCA	P Meta	l (oil an	Jul			oisture
Lab ID Sample Identification	Sampled	Sampled	Matrix	Num	IMN	LMN	IMN	MZ	Vola	Halo	EDB	Sem (with PAH	PCB	Orga	Orga	Chlo	Total	Total	TCLI	HEN	4			W %
1 MW-5	3/3/20	920	water	6			X	X									Х				\otimes			
2 mw-2		1040		1				Ĩ									1				Ì			
3 MW-4		1154																			Ø			
4 MW-3		1300																		($\widehat{\mathbf{x}}$			
5 MW-1		1400						Π												($\widehat{\mathbf{x}}$			
6 1747		1415	V	V			V	V									V				R			
7 Trip blank *		-	-	3																				
					_								-	-			_							
Simature	0	umpany				Data			Timo			Comme	inte/Si	necia	Inetr	uctio	ne							
Relinquished	C	inpuny				0 (210	1.0	THIE	20		J	401	1 1	c:0	uotioi	110		for		inal	455		
Received	- ,	Of Of	E	5-		8	3/1	0	15	53	0	AK .		. 1	(]- (X) Ad	de	18	3/11	120	05 6	.DZ(STA
Relinquished		,										Ple	<i>use</i>		incl	lude	:	ET	In		ED		. /	
Received												1.		~1	1	.].	(00		h/	
Relinquished												(epoi	+	di	elfu	jøa	ble	٠					
Received												Data Pa	ickage	e: St	andar	rd 🗌	Lev	/el III		Leve	I IV 🗆			
Reviewed/Date		Reviewed/Da	te									Chroma	tograi	ms w	ith fina	al rep	oort 🗌	Ele	ctroni	c Data	a Delive	erables (EDDs)	\triangleleft

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Aug 6 2020 S.C.S. Engineers 2405 140th Ave NE Suite 107 Bellevue, WA 98005 Attention: BRIAN DOAN

Dear BRIAN DOAN:

Enclosed please find the analytical data for your BELLEVUE SOUTH project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-5	Water	20-A011560	Micro
MW-2	Water	20-A011561	Micro
MW-4	Water	20-A011562	Micro
MW-3	Water	20-A011563	Micro
MW-1	Water	20-A011564	Micro
DUP	Water	20-A011565	Micro

Your samples were received on Monday, August 3, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Kathy Fugiel

President

Project #: 04218014.00

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

ES

ANALYSIS REPORT

Date Received: 08/03/20 Date Reported: 8/ 6/20

Professional

Analytical

Services

S.C.S. Engineers 2405 140th Ave NE Bellevue, WA 98005 Attention: BRIAN DOAN Project Name: BELLEVUE SOUTH Project #: 04218014.00 All results reported on an as received basis.

AMTEST Identification Number	20-A011560
Client Identification	MW-5
Sampling Date	08/03/20, 09:20

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

AMTEST Identification Number	
Client Identification	
Sampling Date	

20-A011561 MW-2 08/03/20, 10:40

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

AMTEST Identification Number	20-A011562
Client Identification	MW-4
Sampling Date	08/03/20, 11:54

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

AMTEST Identification Number	20-A011563
Client Identification	MW-3
Sampling Date	08/03/20, 13:00

Microbiological

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

AMTEST Identification Number	20-A011564
Client Identification	MW-1
Sampling Date	08/03/20, 14:00

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

AMTEST Identification Number	20-A011565
Client Identification	DUP
Sampling Date	08/03/20, 14:15

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE / TIME
Fecal coliform	< 2	CFU/100 ml		2	SM 9222D	JM	08/03/20 16:00

Kathy Fugiel President

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A011560 to 20-A011565

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
20-A011552	Fecal coliform	CFU/100 mI	11.	16.	37.
BLANKS					
ANALYTE		UNITS	RESULT		
Fecal coliform	1	CFU/100 ml	< 1		

AmTest Chain of Custody Record 13600 NE 126th PL, Suite C, Kirkland, WA 98034 Ph (425) 885-1664 Fx (425) 820-0245

www.amtestlab.com

1.1

LIENT

,									Chai	n of (Custo	dy No.		- '	.1	
Client Name	& Address:				nvoice	e To:										
565	Engineers				>											
1,405 10	10th Avenue NE	# 10	7 7													
Billevie	WA 98005	·														
Contact Persor	1: Bright Dogin	·.			invoice	Conta	act:									
Phone No:	125-766-1	2487)	F	PO Num	ber:										
Fax No:	[*]	1		. I	(nvoice	Ph/Fa	ax:			¢ .						
E-mail:	3 Doan @ s.cse	nginee	JS, Com	I	Invoice \rightarrow	E-ma	il:							. <u>À</u>		
Report Deliver Mail /	y: (Choose all that ap Fax / Email)	oly) / Poste	ed Online	I N	Data po Web Lo	sted gin II	to onli):	ne aco	count	t: Y	ES /	NO				
Special Instru	ctions: Include 6	EDD	pleuse							•		•				
Requested TA Standar	I: (Rush must be pre-a RUSH (5 D	pproved b ay / 3[y lab) Day / 48 HF	<u> 24 </u>	HR')	Tem	peratu	ire upo	on Re	eceip	t: [5.0)			
Project Name	Bellevne Sou	thi				ers		•	A	nalys	sis Re	equest	:ed`			
Project Numb	er: 04218014.0	U	mplec	mplea	rix	ntaine	£									
AmTest ID	Client ID (35 characters ma:	x)	Date Sa	Time Sa	Mat	No. of co	Fecul Colifor									QA/QC
11560	MW-5	1	8/3/20	920	water	1	X									
61	MW-2)	1040												
62	MW-4			1154												
. 63	MW-3			1300	,											
64	MW-1			1400								· ·		<u> </u>		<u></u>
65	Dup			1415	V	V	$ \Psi $									
	J					<u> </u>								<u> </u>		
	-	•					<u>.</u>							<u> </u>		-
												Date	<u> </u>		Tim	
Collected/Relir	nquished By:	Date β/ンパ	Time	Receive	еа ву:	<u> </u>	4	<u> </u>			1	S	3/1	٥	15	
Relinquished F	Junit	Date		Receive	ed By:		-	<u> </u>				Date	212	-	Tin	ne
	-1.						and the second									
Relinguished B	Ву:	Date	Time	Receive	ed By:							Date	а		Tin	ne
															-	

COMMENTS:

Appendix D Documentation (Field Notes)

ہ ج	2403 Belle Ph: (5 140 evue, (800) EX	th Ave WA 727-6	enue, 98003 3393 LO RAT	GI Suite Fax: GOI ORY	107 (206)	E R 746-6 RING	S 747	CLII PRO PEF DRI DRI DRI	ENT/P DJECT RSONI LLING LLING LL RK	ROJECTRedmond Nike Facility BORING NOMW - [NO04219012.00 $o421901400$ DATE BEGUN $5/17/1000$ NEL5.E.G. DATE COMPLETED V CONTRACTOREEM Halocrac TOTAL DEPTH0' METHODGeoprobe Hs.A AR SMODELDietrech500 D-500
	OTHER TZ	BOREHOLE / WELL /	PIEZOMETER	SAMPLE NUMBER	SAMPLE METHOD	BLOWS/ 6"	RECOVERY	INTERVAL SAMPLED	DEPTH IN FEET	SOIL GROUP USCS SYMBOL	WATER LEVEL DATA FIELD BORING LOCATION DEPTH
									- 0 -		
		Ŵ	1								
	1		1h						- 1 -		
		14	1/2			71 1.41					
	4	7	P					3			
	18.1	1							2 -		
			K	_					3 B		
		4	Ľ				_ 8		- 3 -		-1 x / x
4		е с.,	e 44			- F.2			2 4		
3	ł.		04						* *		
1.40		n.,	20	-					- 4 -		
t ^a											will control
f.							3 (1		- 5 -		Brown Silty send - wet / moist
100	0.0				55	2007	14.	X			
			1			IJ	_				transition to grey self w/ svare 1 + clay. at :
						56			- 6 -		ory have (fill)
								÷.,			
		1/							- 7 -		
			10	_							
										÷.	
									- 8 -		
2									- 1		
		-FS							- 9 -		
			6 L V U								
		A LINE	100			30				- j	
	1	20	E.		35	23	18"		- 10 -		
	REM	ARK	S:			6					

S	CS E	N	GI	NE	ER	S	CLI	ENT/P	PROJECTRedmond NikeBORING NOMW - 1
2405	140th Ave	enue,	Suite	107			PRO	DJECT	TNO 04219012.00 ση219014.00 DATE BEGUN 5/17/19
Bellev	VUE, VVA	98005 3303) Eavid	(206)	746 6	747			DATE COMPLETED V
<u>1 n. (c</u>	500) 121-0	LO	GOF	(200)	740-0	/4/		LLING	GMETHOD Geoprope HSA LAR SHEET 2 OF 2
	EXPLO	RAT	ORY	BOF	RING		DRI		G MODEL HOLE DIAMETER 3'
									WATER LEVEL DATA FIELD BORING LOCATION:
	ELL	ĸ	8			LEI			DEPTH
20	N N	IMBI	НН			SAM		а Д	DATE
MEN	AETE S	EN	E WE	»/ e	ĒRY	AL S	Ľ.	ROU	
₩	TAIL	MPL	MPL	SWC	§	ERV	H	CS S	CASING DEPTH DATUM:
5	BEE	SA	SA	BL	R R	EN.	В	S SU	LITHOLOGIC DESCRIPTION
0.V						JK.	e		Grey silt w/ Cluy, dry-haved (fill)
						X	- 11 -		
						4			
	agent Belletarrow-					-			
							10		
							¹² -		split spoon from (D-11.5
									Augues down to 10'.
	2						- 13 -		
	5								0-1.5 concrete
									1.5-> bartonik 1 pag
	5						÷. 9		J-10 scho y pugs
	ř.						- 14 -		
									SUSCARED 5-10 bas.
							- 15 -		List split spoon 10-11.51
		_							
							= e		
							- 16 -		
							-		
							- 17 -		
							2 3		
							- 18 -		
							• •		
							- 19 -		
							2 2		
						-			
·····							- 20 -		
							⊂ .c		
	DKO								
	AKKS:								
1	40# HAMM	ER 📰	30	00# HAI	MMER		=1.5"	ID SPLI	
					_				

S	С	5	C	I N	GI	NE	ER	S	CLIE	ENT/P	ROJECT Bellow Swatty BORING NO. 11W-2
2405	14	Oth	Av	enue	NW, S	Suite 1	07	112	PRC	JECT	# 04218014.00 DATE BEGUN 5/17/19
Belle	vue	e, V	VA S	98005					PER	SON	
Ph: (4	425	5) 7	46-4	4600	<u> </u>	-			DRI	LLING	CONTRACTOR Hold and TOTAL DEPTH 15'
	_				GOF	-			DRI	LLER/	HELPER 2 SHEET 1 OF 2
	E	X٢		RAI	URY	BOF	RING		DRI	LLING	METHOD_HSA_LAKHOLE DIAMETER_8"
		ì									WATER LEVEL DATA FIELD BORING LOCATION: 5
	٦ ×			BER	P			MPL	ħ	_	DATE U VIZ I.D. GUSAT
210	Ц Ш	TER :		N N	MET	5	2	SA	Ë	MBC	TIME
۶.	<u> </u>	Ne la	ILS	Ē	Ē	NS/ B	N EF	SVAI	NI H.	GRO	BORING DEPTH GROUND ELEVATION
Į		IEZ(ETA	AMF	AME	Lo Lo	U U U U		EPT		
	1112		Vi.	0)	0)	<u> </u>	<u> </u>			00	OBSERVATIONS
	9//	1	4]	e)							
		1	4/				·		- 1 -		
	VA).		4,								
	VA.		1/2					-	74 7		
	1		M						- 2 -		
	1		1								
			1							. :	
			1	-		-	-				
<u> </u>	Ļ		Ĺ.						- 3 -	e - 1	
	5							·	8 g	÷ ;	
	*.		17 L -							a	
	1		et.						47 ° 4	1	
	4		14	_					- 4 -		
	1										
									- 5 -		
		14.84				10					Brunsilly sund ul gravel + orequires Dry
		144	8			11			<u>1</u>	e - :	
00					_	NI.	u ⁿ	$\overline{\mathbf{x}}$	р. <u>с</u>		
U-W						17	9	\sim	- 6 -	6	
					-				fi e		
									-		
									7		
									5		
			8	_		-			- 8 -		
			3			-					
						-				÷ .	
				_					71 F		
									- 9 -		Driller suid delling bot hurder at 91
			а								
	-		4.0						- 10 -		
	1	1	2								
REM		Ke	art					()	5 E		
	140#	≄ HA	MM	ER _	30	0# HAN	IMER		=1.5"	D SPLI	BARREL SAMPLER=3" ID SPLIT BARREL SAMPLER

CLIENT/PROJECT____Reemond Nike SCS ENGINEERS BORING NO. MW - Z DATE BEGUN ディマノ19 2405 140th Avenue, Suite 107 PROJECT NO 0421901200 04213014.00 DATE COMPLETED 🗸 Bellevue, WA 98005 PERSONNEL 576 DRILLING CONTRACTOR _____ TOTAL DEPTH 151 Ph: (800) 727-6393 Fax: (206) 746-6747 SHEET 2 OF 2 LOG OF DRILLING METHOD __ Geoprobe + ISA LAR DRILL RIG MODEL Dietrich D 50 turbo HOLE DIAMETER 3" **EXPLORATORY BORING** WATER LEVEL DATA FIELD BORING LOCATION: BOREHOLE / WELL / PIEZOMETER DETAILS INTERVAL SAMPLED DEPTH SAMPLE NUMBER SAMPLE METHOD DEPTH IN FEET SOIL GROUP USCS SYMBOL DATE 210 TIME RECOVERY BLOWS/ 6" BORING DEPTH GROUND ELEVATION OFFER DATUM: CASING DEPTH LITHOLOGIC DESCRIPTION 37 Brown sandy silt al gravel, slightly proist. 37 0.0 - 11 50/4 16" 12 13 14 · · · · THE R 15 Gray silt of sund & gravel. Dry dense, but not us dense ab till observed at MW-1. Weathered 39 50/6 +11. ? 14" more sand a softer at top of split spoon, more 0.0 16 silt at bottom. No chause in Feel of motorial while drilling From 9'-15' 17 Screened from 5'-15' bys 18 Sund 3-15' pendouite 2'-3' Concrete 0'-2' 19 Lust split spoon 15-16.5' 20 **REMARKS:** 100-2-6 @ 1425 MW-2-11@1430 12 MW-2-16 10/445

2405	140th	n Ave	enue,	Suite	107	EK			DJECT	NO04210012:00 04219014 DATE BEGUN <u>5/17/19</u>
Bellev	vue, V	NA 9	98005	5				PEF	RSON	
Ph: (8	300) 7	27-6	393	Fax:	(206)	746-6	747	DRI	LLING	CONTRACTOR ESM the TOTAL DEPTH 151
				GOF						METHOD Geoprobe 145.4 LAIL SHEET OF 2
	EXF	۷LO	RAI	ORY	BOF	RING	<u> </u>	DRI	LL RIC	MODEL <u>Differich DSO fuibo</u> HOLE DIAMETER 3"
	1						e.			WATER LEVEL DATA FIELD BORING LOCATION
	NEL		SER.	Q				⊢⊢		DEPTH
200	2 8		Ň			<u>ہ</u>	SAM		특应	
(10	Į Į	S	N L	E E	9/6	ER	∣₹	z	N N	
	Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	I	MPL	MPL	Ň	1 8	ER	H	US SS	CASING DEPTH DATUM:
8		Ш	SAI	SAI	BLO	RE	L T	E	N SO	LITHOLOGIC DESCRIPTION
		12/2								
	Y)	1						0		
	9	12						Γ ' '		
	4	1						1 1		
]	6
	Y									
		12						[']		
	4	14						[]		
	21	1						Г 1	1	
									1	
		1		-				F 2 1	1	
	/	/						T T	1	
	1	1							1	
1		1							1	Dellarged to fait due a divide at 31
_	-	10						- 3 -	1	Perino me ca rea compension
_	U 2	94							1	
_	Ŭ,							h ~	1 - 4	
_	10	1.4								
_		1.522						- 4 -		
_									1	
								1	1	
_								5 S		
_	-				9			- 5 -	1	
	F-				- 1				1	Dencell and I days and much
0.0			1		2	103	V		1	Sound String Sand to only of Statel Mist
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1	182		•		v) organ is f some grey sitt.
_					7			- 6 -		
					1			5 5		
_			-					× •	1	
								- 7 -	1	
	1					-		5 2		
								1	1	
							-			
				-				- 8 -		790
					-				1	
								- 9 -	1	
	¥	1								
	1	" w				-			1	
	14	2								
	3 L.	÷.						- 10 -		
	ADVO	0						L		
	-11173									
1	140# H	АММ	ER _	30	00# HA	MMER		_=1.5"	ID SPL	T BARREL SAMPLER=3" ID SPLIT BARREL SAMPLER

CLIENT/PROJECT _____ Reamond Nike Cllow Saft BORING NO. _____ 7 PROJECT NO ______ 04249912.00 047/80(4.0) DATE BEGUN _____ 5/17/19 SCS ENGINEERS 2405 140th Avenue, Suite 107 PERSONNEL SEC DATE COMPLETED 5/17/17 Bellevue, WA 98005 DRILLING CONTRACTOR_____ESM Hofo Come DRILLING METHOD___ Geoprobe HSA LAR TOTAL DEPTH 151 Ph: (800) 727-6393 Fax: (206) 746-6747 SHEET 2 OF 7 LOG OF **EXPLORATORY BORING** HOLE DIAMETER 3" DRILL RIG MODEL WATER LEVEL DATA FIELD BORING LOCATION: BOREHOLE / WELL / PIEZOMETER DETAILS INTERVAL SAMPLED DEPTH SAMPLE NUMBER SAMPLE METHOD DEPTH IN FEET SOIL GROUP USCS SYMBOL DATE PED RECOVERY TIME BLOWS/ 6" BORING DEPTH GROUND ELEVATION **FIELD** CASING DEPTH DATUM: LITHOLOGIC DESCRIPTION 13 blown for geninged sand w/ silts - wet - suft 2 gray tyrine (A siturated. 13 0.0 11 j4" 17 Drille feet difference in stilling (hader) at 12 13 14 15 Grey silt w/ clay & gravel. Hard, dry till. water slaushed in from above. Possibly weathered till. 20 37 0.0 16 Mere gravel at tattan it sample. 50/5 19" Screened \$2.40. 5'-15' Filter sand 45 3-15' 6 buys barbaik 1.5-3 17 concrete 0-1.5 18 Last split spoon 15-16.5' 19 20 **REMARKS:**

1.120					2 1				BORING NO. VIUS
40	5 140th A	venue, Su	ite 107				PRO	DJECT	NO
belli Dh	(800) 727	-6303	Fav	(206)	746-67	747	DPH		CONTRACTOR ESTIMUT
11.	(000) 121	LOC	GOF	(200)	140-01				METHOD BOWN - Probe LAR SHEET / OF /
	EXP	LORATO	DRY E	BORI	NG		DRI	LL RIG	
	· ·			F		e		f	WATER LEVEL DATA FIELD BORING LOCATION:
	AELL VEL	BER	Q			APLE	H-	Ι.,	DEPTH In Planting strip
	Ц Ц Ц Ц Ц Ц Ц	IWN			≻	SAA	E	IBOI	TIME Phtrance
r	LSHOL	ШЧ	<u>ц</u>	S/6	VER	VAL	Z_ Ţ	SYN	BORING DEPTH 10 GROUND ELEVATION
Ľ	EZO	AMP	MM	NO	8	TER	E E	SCS	
2	M T D	7S	Ś		Ř	Z	ā	S S	LITHOLOGIC DESCRIPTION
_				<u> </u>					Topsoil cover 6
_		h					- 0 -		R. 1 / " 12"
			1						Brown coarse sand b - 10
à	a 17						*		Brown soudy sitt w/ anno 11-51
									1. lot 0.45' Structure 7 ~4.9'
	A VA	4							
	4 12	3					-		
-							a -		
-	Sa						- 4 -	{	
-	20	. ~	4.7				2 1		
		517	-				2,		Row and the atterned of a
	111						25		Stown gravery stilly said D-6 we
	H						- 6 -		Grow a neelly sittle sound 6-7 wat
					_				and grand sing source and the
	11						- 8 -		Tan/Brown gravely sity sand 7-10
	1 (U / / wet
	N N								
-	104						2		
-	- (**)	10.				1	- 10 -		
							× 34		
							21 .38	1	
1)							12		Hand awaen to 53" to clear utilitie
	0 1						12		Stof z" 0.010 slot screen FVC
							-5 R4		5' of z" blanke niger DVC
1	d 5	ļ					× 14		10-20 send to 3' bys
-	a l						- 14 -		Bertanite 3-1 bys
	0				_		2. IS		Concrete 1-0
1	0						20 04		Ecology 10 DARSES
									Good P. D. La Lad Land Land
							- 16 -		LOC-to 102 AR & 10'
						1	12. J.T.		~95 217 @ 20'
							70 X 5		
							- 18 -		
-							28 B\$		
_	16 - I						- 20 -		
ĒŇ	ARKS:		L	u,	l			_	

Bellevue,	WA 98005		(425) 746-4	600				Groundwater Sampling Data Sheet				
Project #	04218014	.00			1.0.0	Sampling	Method	Dedicated	1.75" QED SamplePro Bail	Peristaltic Grab Other		
Site	e Bellevue S	South		Υ Σ	5.32	DTW	Meter:	CONTROL SETTI	NGS: 1 ft water = 0.62L	1L = 0.26 gallons		
Well ID	: MW-	- (/	_TOS	MP-20	Refill	One Well Volume	Other :		
Sample ID	: <u></u> MW	-1		_	_/_	Intake (YSI	Discharge	(liters)	Flow		
Date	6/4/2019			_ 8	/	BOS		Pressure	Total Volume Bailed	Setting :		
Weather:	Sann	4			9,90	Total Depth		Flow	(liters)			
Filtered? Y	N	Locked? Y	\mathbb{N}	Water in Protect	ctor? YN		Damage?	YC				
Sample Cont	ainers:	1000 ml Poly		500 ml H2SO4	×2	250 ml Poly	v3 v6	125 ml Poly	Notes / Observations (color, odor, anoma	lies, etc):		
		125 ml NaOF	1	300 mi 12304	**		X3 X0	1000 mi Amber				
TIME	DTW	Тетр	Sp Cond	DO	рН	Fh	Turbidity	O / Vol	topius / Fait	toute TD		
		romps	op.oonu.		pri	, ,	randiality					
445	5,62	12.51	406	4.91	5.71	328.4	U.1	· · · · · · · · · · · · · · · · · · ·				
450	5.95	12.36	407	И.21	6.53	322.1			· · · · · · · · · · · · · · · · · · ·			
953	6.27	12.41	365	3.47	6.80	319.0	34.7					
956	6.53	12.38	370	3.22	6.92	315.6			· · · · · · · · · · · · · · · · · · ·			
959	6.95	12.35	382	3.37	7.02	308. S	41.5	1.59				
1025	7.42	Afles	- Samplio	nz.								
	Sampl	le tin	ne = 1	1010								
	1											
							-					
	_						1					
						-						
Stabilization Par	ameters: pH/DO	± 0.2, SpC ± 10%	, Temp ± 0.5℃,	Turb. \pm 10% or \leq 5	٨			1	0			
SAMPLER:		Sum	610	i bar	the	1		A	1			
	Printed Name	9			0			Signature				

Bellevue,	WA 98005		(425) 746-40	600			Groundwater Sampling Data Sheet						
Project #	t: 04218014	.00				Sampling	Method :	Dedicated	cated 1.75" QED SamplePro Bail Peristattic Grab Other TROL SETTINGS: 1 ft water = 0.62L 1L = 0.26 gallons		Other		
Site	e Bellevue S	South		2	15.66	_DTW	Meter:	CONTROL SETTI	NGS:	1 ft water = 0.62L	1L = 0.26 gallo	ns	
Well ID	: MW -	2				TOS	MP-20	Refill	Or	ne Well Volume		Other:	
Sample ID	MW	-2				Intake	(SL)	Discharge		(liters)		Flow	
Date	e: 6/4/2019			_ 8		BOS		Pressure	Total	Volume Bailed		Setting :	
Weather:	Duryl	y douby	<u> </u>	-)	18,65	Total Depth		Flow	<u> </u>	(iiters)			
Filtered? Y		Locked? (Y	/ N	Water in Prote	ctor? YN	050 - I D-k	Damage?	Y D	Notes / Observations	(color odor anoma	alies etc):		
Sample Cont	lamers.	500 ml HNO	3 x2	500 mi Poly 500 mi H2SO4	x2	40 ml VOA	x3 x6	125 mi Poly 1000 ml Amber			alles, etc).		
		125 ml NaOl	1										
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.	1				
1115		14.56	406	611	7.31	277.2		1					
1120	16-11	14,03	400	2.89	6.91	283.3	32.5						
1(23	16.25	14.05	411	2.66	6.86	274.6							
1726		14.06	i(10	2.66	6.87	267.7							
1129	16.50	14,16	405	2.70	6.90	259.6							
1132	16.60	14.33	399	2.75	6.95	252.1	B.53	19					
	17.13	uPters	jaupting.										
1135	<	Sample	time.										
							_		a				
State Ward and Date		+ 0.0 5 6 + 100	T +0.000	T + 100/ < C					<u> И</u>			_	
SAMPLER:	Printed Nam	<u>- 0.2, spc = 10%</u> <u>Sam</u>	6, 1emp ± 0.5°C,	10m I 10% or ≤ 5		_		Signature	L.A	2			

2405 140th ave NE #107

Bellevue,	WA 98005		(425) 746-46	500			Groundwater Sampling Data Sheet					
Project #	04218014	,00	-	_	2	Samplin	g_Method :	Dedicated	1.75" QED SamplePro Bail	Peristaltic Gr	ab	Other
Site	e Bellevue S	South		Y	5.93	DTW	Meter:	CONTROL SETTI	NGS: 1 ft water = 0.62L	1L = 0.26 gallons		
Well ID	· Min	-3			/	TOS	MP-20	Refill	One Well Volume	C	Other:	
Sample ID	hw.	-3		_ 8	_/	Intake	YSI	Discharge	(liters)	F	Flow	
Date	6/4/2019			_		BOS	U	Pressure	Total Volume Bailed	Se	etting :	
Weather:	5444	14	0	-	14.72	Total Depth		Flow	(liters)			
Filtered? Y(N	Locked? Y	(W)	Water in Protect	tor? YN		Damage?	YA	[]			
Sample Conta	ainers:	1000 ml Poly	~2	500 ml Poly	~1	250 ml Poly		125 ml Poly	Notes / Observations (color, odor, and	imalies, etc):		
		125 ml NaOH		500 mii ri2304		40 MI VOA	_X3 X0	Tooo mi Amber		· · · · · · · · · · · · · · · · · · ·		
(<u> </u>									turned pump off	@ 1338	2	
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.	5TW = 7.35			
1250		12.91	418	4.51	6.36	214.7			05		t	
1255	6.67	12.69	337	0.90	6.64	65.9			1220 [341 =	695		
1258	6.80	12.73	342	0.72	6.63	42.4	12.5		"DL) @ 1400 =	635	_	
1301	6.90	[2.63	346	0.37	6.64	35.5			" " 1405 =	6.25		
1304	7.02	12.65	356	1.25	6.63	37.2	12.9					
1307	7.12	12,70	365	1.56	6.64	45.2	166					
1310	7.19	12.67	367	1.56	6.63	48.7	9.28					
1313 Same	7.24	12.62	377	1.74	6.64	50.7	7.99					
1323	7.35	12.66	331	1.67	6.66	47.4	5.76					
1326	7.38	(2,61	379	1.62	6.67	43,6	4.82	2.5 g				
												2
Stabilization Par	rameters: pH/DO	± 0.2, SpC ± 10%	, Temp ± 0.5°C,	Turb. $\pm 10\%$ or ≤ 5				X	Δ			
SAMPLER:	Printed New	Sam	brub	er"		-		Signature	r st			
	Finted Man							Signature				

31

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION DOCUMENTATION FORM

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	6/1	1/19				
Time	90	06				
Weather (sky or precip, temp)	Suuv	ry				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <01	ų
Pre-Cal Reading	1433	3.99	7:15			
Post Cal Reading	1413	N.00	7.00	6.15	791,98.2,19.5,0.21	
Descrepancy	A	lio				
Calib. Successful?	Yes	5				
Calibration by	5ê	Ъ			14	
Instrument Type, ID		MP20 /	YSI 556		MicoTPW (HACH2000	
Calibration Location	2	B. S.				

* If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

.

Bellevue,	WA 98005		(425) 746-46	500				Groundw	ater Sampli	ng Data Sh	neet		
Project #	: 04218014	4.00				Samplin	g Method :	Dedicated	1.75" QED SamplePro	Bail	Peristaltic	Grab	Other
Site	Bellevue	South		V	5.55	WTD	Meter:	CONTROL SETTI	NGS:	1 ft water = 0.62L	1L = 0.26 gallo	ons	
Well ID	:MW	_1				TOS	MP-20	Refill		One Well Volume		Other :	
Sample ID	:			_ 8		Intake	(YSI)	Discharge		(liters)		Flow	
Date	8/29/2019)		_ 8		BOS		Pressure	Tol	al Volume Bailed		Setting :	
Weather:			0	_	9.90	Total Depth		Flow		(illers)			
Filtered? (Y)	'N	Locked? Y		Water in Prote	ector? Y	050 ml Dalu	Damage?	Y N	Notes / Observation	e (color odor anor	nalios ota):		
Sample Conta	diriers.	500 ml HNO	3 x2	500 ml H2SO4	x2	40 ml VOA	x3 x6	125 mi Poly 1000 ml Amber	-	13 (COIOI, OUDI, ANDI	nanes, etc).		
		125 ml NaOł	Η										
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.	1 0.0	Alected			
1250		14,96	438	1.49	7,51	142.0	È			(MILLONDO			
1255		15.21	423	0.69	7.55	114,9			ut	1320			
1258		15.20	6/11	6.58	7.61	86.7	-						
1361		15.16	406	0.49	7.64	43.2							
1304		15.10	413	0.40	7.70	6.5							
1307		13.06	רוא	0.37	7.72	-3.2							
1310	8.51	15.00	121	0.34	1.75	-6.9	5,10						
		-											
					1								
Stabilization P	ameters: pH/DO	+0.2 5-0 + 10%	(Tome + 0.6%)	Turk + 10% 5			1				_	_	
Stubilization Pare	uneters: pH/DO	_ 0.2, SPC ± 10%	₀, remp ± 0.5°C, 1	iuro. \pm 10% or \leq 5									
SAMPLER:	Delete d Marco	Jam	loabs		_				trut				
	Printed Nam	e						Signature					

Project #: 04218014.00 Sampling Method : Dedicated 1.75° QED SamplePro Bail Peristatic Grab Site Bellevue South		Groundwater Sampling Data Sheet							00	(425) 746-46		/A 98005	Bellevue, V
Site Bellevue South Ite = 0.26 gallons Weil ID: MW - 2 TOS MP-20 Refill One Well Volume Other = 0.62L It = 0.26 gallons Sample ID: Date: 8/29/2019 BOS Pressure Total Volume Bailed Other = 0.62L It = 0.26 gallons Weather: Clocked? N Water in Protector? Y @ Damage? Y @ Sample Containers: 1000 ml Poly 500 ml Poly 250 ml Poly 125 ml Poly Notes / Observations (color, odor, anomalies, etc): Site Inflate DTW Temp. Sp. Cond. DO pH Eh Turbidity Q / Vol. 113D 17.65 763 2.32 6.92 13%.2 Ites Ites	Other	ristaltic) Grab	lePro Bail (Per	1.75" QED Sam	Dedicated	Method :	Sampling	7			00	04218014.0	Project #:
Weil ID:		= 0.26 gallons	1 ft water = 0.62L 1L =	NGS:	CONTROL SETTI	Meter:	DTW	16.18	V		outh	Bellevue S	Site
Sample ID:		Other:	One Well Volume		Refill	MP-20	TOS	-			2	nu-	Well ID:
Date: 8/29/2019 BOS Pressure Total Volume Bailed Setting : Weather:	4	Flow	(liters)		Discharge	YSI	Intake		_				Sample ID:
Weather: Image: Condy Image: Condy Con		Setting	Pressure Total Volume Bailed		Pressure	<u> </u>	BOS		_ 8			8/29/2019	Date:
Filtered? () N Locked? () N Water in Protector? Y () Damage? Y () Sample Containers: 1000 ml Poly 500 ml Poly 250 ml Poly 125 ml Poly 500 ml HNO3 x2 500 ml H2SO4 x2 40 ml VOA x3 x6 1000 ml Amber 125 ml NaOH 125 ml NaOH 100 ml Amber 100 ml Amber 100 ml Amber 100 ml Amber TIME DTW Temp. Sp.Cond. DO pH Eh Turbidity Q / Vol. 11'30 17.65 767 2.32 6.92 13.4.9 139.2 1139.2 11'38 17.18 368 1.90 6.77 140.2 44.9 144.9 144.9 11'41 17.30 364 1.67 6.77 140.7 44.9 144.9 144.9 144.9			(liters)		Flow		Total Depth	18.65	-		1	cloud	Weather:
Sample Containers: 100 mi Poly 500 mi Poly 250 mi Poly 125 mi Poly 100 mi Amber 500 mi HNO3 x2 500 mi H2SO4 x2 40 mi VOA x3 x6 1000 mi Amber 100 mi Amber TIME DTW Temp. Sp.Cond. DO pH Eh Turbidity Q / Vol. 1130 17.65 767 2.32 6.92 134.9		tc):	vations (color odor apomalias at	Notes / Obso	Y	Damage?		ctor? Y 🕼	Water in Prote	^N N	Locked?	l	Filtered?
I25 ml NaOH TIME DTW Temp. Sp.Cond. DO pH Eh Turbidity Q/Vol. 1150 17.65 767 2.32 6.92 /34.9		ic).			125 mi Poly 1000 ml Amber	x3 x6	40 ml VOA	x2	500 ml Poly 500 ml H2SO4	x2	500 ml HNO3	ners:	Sample Conta
TIME DTW Temp. Sp.Cond. DO pH Eh Turbidity Q/Vol. 1130 17.65 767 2.32 6.92 /34.9 1 1135 17.51 367 2.01 6.81 139.2 1 1/38 17.28 368 /.90 6-77 140.2 44.9 1 1141 17.30 364 1.67 6.77 140.7 1 1											125 ml NaOH		
1130 17.65 767 2.32 6.92 134.8 1135 17.51 367 2.01 6.31 139.2 1138 17.28 368 1.90 6.77 140.2 44.9 1141 17.30 364 1.67 6.77 140.7 1				1	Q / Vol.	Turbidity	Eh	рH	DO	Sp.Cond.	Temp.	DTW	TIME
1135 17.51 367 2.01 6.31 139.2 1138 17.28 368 1.90 6.77 140.2 44.9 1141 17.30 364 1.67 6.77 140.7							134.3	6.92	2.32	767	17.65		1130
1138 17.28 368 1.90 6.77 140.2 44.9 1141 17.30 369 1.67 6.77 140.7							133.2	6.31	2.01	367	17.51		1135
1141 17.30 369 1.67 6.77 140.7						44.9	140.2	6-77	1.90	368	17.28		1138
	_						140.7	6.77	1.67	369	17.30		1141
1144 17.34 368 1.53 6.77 140.8							140,8	6.77	1.53	368	17.34		1144
1147 17.35 369 1.42 6.76 141.6	_						141.6	6.76	1.42	369	17.35		ראון
1130 17.36 371 1.41 6.78 141.1 11.9						11.9	141.1	6.78	1.41	371	17.36		1130
1153 17.45 375 1.42 6.32 1408							1408	6.32	1.42	375	17.45		1153
1156 17.35 17.61 377 1.12 6.86 139.3 14.5						14.5	139.3	6.86	1.12	377	17.61	7:35	1156
			_										
						L							
Stabilization Parameters: $pH/DQ \pm 0.2$ SpC $\pm 10\%$ Temp $\pm 0.5\%$ Turb $\pm 10\%$ or ≤ 5				J. L	1				what $10\% \propto 5$	Temp + 0.5°C T	t 0.2 SpC + 10%		Stabilization Par
				1Λ	/				010. ± 10% or ≤ 3	, remp <u>-</u> 0.5°C, I	- 0.2, spc - 10%		STUDIEZOTION POR
SAMPLER: Jam Grabs				rJL	Signature		-			n lora	Jan	Printed Name	SAMPLER:

Bellevue,	WA 98005		(425) 746-4	600				Groundw	ater Samp	ling Data S	Sheet			
Project #	t: 04218014	4.00			,	Samplin	g Method :	Dedicated	1.75" QED Sample	Pro Bail	Peristaltic	Grab	Other	
Site	e Bellevue	South		2	6,00	DTW	Meter:	CONTROL SETTI	NGS:	1 ft water = 0,62	L 1L = 0.26 gal	ons		
Well ID	: <u>M</u> w	-3		_		TOS	MP-20	Refill		One Well Volume		Other:		<u>.</u>
Sample ID):			_ 8		Intake	YSI	Discharge		(liters)	Flow		
Date	e: <u>8/29/2019</u>	9		_		BOS		Pressure		Total Volume Bailed	1	Setting :	4	-
Weather					14.72	Total Depth		Flow		(liters)			
Filtered? Y	N	Locked? Y	' N	Water in Protect	ctor? YN		Damage?	Y 🔊	/	92 				_
Sample Cont	tainers:	1000 ml Pol	y	500 ml Poly		250 ml Poly		125 ml Poly	Notes / Observa	tions (color, odor, a	nomalies, etc):			
		125 ml NaO	13 x2 H	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber	-					
		120 111 1100							ton	6.00 @	957			-
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.		1 0		_		
1020		1600	323	510	5.62	187.6				6.00 @	1003			
1025		15.01	317	0.51	6.62	И.1								
1023		14,10	321	0.42	6.71	-11.3								
1031		15,13	327	0.30	6.80	-38.1	-							1
1034		15,12	335	0.34	6.93	-43.7								_
1037	7,23	i5.[]	334	0.28	6.35	- 48.3								_
1040		15,10	338	0.23	6.96	- 50.9	2.93				14			_
				-										_
	1													_
											•			
													¢	
		1												
Stabilization Pa	rameters: pH/DO	0 ± 0.2, SpC ± 105	%, Temp ± 0.5℃,	Turb. ± 10% or ≤ 5				Λ	\sim	5				
SAMPLER:	Drinted New	Sum	Gube					Signature	12					
	FILLEU NAM							Signature						

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION DOCUMENTATION FORM

2	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	<u>a</u> 6 /	129/19				
Time	931	þ				
Weather (sky or precip, temp)	5440	ny				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1330	2,39	6.35			
Post Cal Reading	1413	4.01	7.00	8.5		
Descrepancy	100					
Calib. Successful?	Ye	5				
Calibration by		SEB				
Instrument Type, ID		MP20 /	YSI 556		MicoTPW / HACH2000	
Calibration Location		B,	South			

* If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

Bellevue,	WA 98005		(425) 746-46	600				Groundw	ater Samplin	g Data Sh	leet	
Project a	#: 04218014	1.00				Sampling	Method	Dedicated	1.75" QED SamplePro	Bail	Peristaltic Grab	Other
Sit	e Bellevue	South		2	5.75	DTW	Meter:	CONTROL SETTI	NGS:	1 ft water = 0.62L	1L = 0.26 gallons	
Well IC	D: MUL)-1			/	TOS	MP-20	Refill	On	e Well Volume	Other:	
Sample II	D:			- 8		Intake	YST)	Discharge		(liters)	Flow	
Date	e: <u>11/26/201</u>	19		_ 🗏	/	BOS		Pressure	Total	Volume Bailed	Setting :	
Weather	The	tide purvin	ng syarias	20	9.90	Total Depth		Flow		(liters)		
Filtered? Y	ℕ	Locked? Y	\mathbb{N}	Water in Prote	ctor?Y		Damage?	Y		(and Baran and a New	
Sample Con	tainers:	1000 ml Poly 500 ml HNO:	3 x2	500 ml Poly 500 ml H2SO4	x2	250 ml Poly 40 ml VOA	x3 x6	125 ml Poly	Notes / Observations	(color, odor, anon	nalles, etc):	
		125 ml NaOH					<u>xo</u> xo			1	0	
TIME	DTW	-	A 17 A 17 A						Dup 1	Collected	@ 1040	
TIME	DIW	Temp,	Sp.Cond.	DO	рН	Eh	Turbidity	Q / Vol.				
1012		12.06	430		6.94	268.9				0		
1017		12.31	431	0.52	7.14	252.0						=
1020	6.20	12.32	428	0.47	7.20	233.5					•)	
1023		12.41	426	0.42	7.21	214.5	a					
1226	6.53	12,45	417	0.38	7,27	165.1						
1029		12,47	વા	0.38	7,33	104.6	5.22					
		1				+						
							1					
	1											
Stabilization Pa	rameters: pH/DO	± 0.2, SpC ± 10%	6, Temp ± 0.5℃, T	°urb. ± 10% or ≤ 5				λ	\square			
SAMPLER:	Printed Nam	le	DINDE	3		_		Signature	_14			

SCS ENGINEERS 4 4 4 4

Bellevue, V	VA 98005		(425) 746-46	500				Groundw	ater Sampling Data Sheet
Project #:	04218014 Bellevue S	.00			14.10	Samplin	g Method :		1.75" QED SamplePro Bail Peristatic Grab Other
Well ID: Sample ID:	<u> </u>	-2		-		TOS Intake	MP-20	CONTROL SETTI Refill Discharge	NGS: 1 ft water = 0.62L 1L = 0.26 gallons One Well Volume Other : (liters) Flow Setting :
Uate: Weather:	11/26/2019	9 14		- 8	18.0	BOS		Pressure Flow	Total Volume Bailed Cetting
ample Conta	iners:	Locked? (2) 1000 ml Poly 500 ml HNO3 125 ml NaOH)N 3 x2 1	Water in Protec 500 ml Poly 500 ml H2SO4	x2	250 ml Poly 40 ml VOA	Damage? x3 x6	Y (N) 125 ml Poly 1000 ml Amber	Notes / Observations (color, odor, anomalies, etc):
TIME २,५४	DTW	Temp.	Sp.Cond.	DO	рн 6.12	Eh 256.0	Turbidity	Q / Vol.	[4]] C [33
900		11.93	568	1.57	6.45	250.1			
903		11.20	571	1.53	6.50	249.2			
406 409	15.53	11,79	568	1.47	6.53	248.7	8.05		
abilization Parar	meters: pH/DO :	± 0.2, SpC ± 10%,	, Temp ± 0.5°C, T	5 Turb. ± 10% or ≤ 5				J	Δ

SAMPLER:

Printed Name

2405 140th ave NE #107 ------ --

Bellevue,	WA 98005		(425) 746-46	500				Groundw	ater Sampling Data Sheet	
Project #	#: 04218014	1.00			- 0 -	Samplin	g Method :	Dedicated	1.75" QED SamplePro Bail Per	ristaltic Grab Other
Site	e Bellevue	South	-	Y	5,85	_DTW	Meter:	CONTROL SETTI	IGS: 1 ft water = 0.62L 1L =	= 0.26 gallons
Well ID	: MW	-3			/	TOS	MP-20	Refill	One Well Volume	Other :
Sample ID):					Intake	YSI	Discharge	(liters)	Flow
Date	e: <u>11/26/201</u>	9		_ =		BOS	\smile	Pressure	Total Volume Bailed	Setting :
Weather	7a(*	the cloudy			_M.72	Total Depth		Flow	(liters)	
Filtered? Y	$\langle \mathbb{N} \rangle$	Locked? Y	D	Water in Prot	tector?Y 🕥		Damage?	YN		
Sample Cont	tainers:	1000 ml Poly	1	500 ml Poly		250 ml Poly	0.0	125 ml Poly	Notes / Observations (color, odor, anomalies, et	c):
		125 ml NaOl		500 MI H25C	<u>14 XZ</u>	40 mi VOA	X3 X0	1000 mi Amber	······································	
		3							Sediom + / noteral shaving	95 on WL
TIME	DTW	Temp.	Sp.Cond.	DO	рН	Eh	Turbidity	Q / Vol.	all a Mar bright	
1246	_	17.76	492	2.51	7,211	53:3			Inches wher verying 1-	- up.
1251	ļ.	13.30	390	0.74	7.17	-43.2				
1254		(3.23	374	0.56	7.07	-60.7	ŀ			
1257		13.28	377	0.47	7.00	-65.2				
1300		13.32	380	0,441	6.93	-67.2				
1303		13.35	386	0.41	6.95	-69.4	2,72			
		-								
	-		-							
Stabilization Par	rameters: pH/DO	± 0.2 SpC $\pm 10^{9}$	6 Temp ± 0.5%	Turb $\pm 10\%$ or ≤ 3	5				L	
statement rul	ramerera: pri/ DQ	_ 0.2, opc - 107	 remp ± 0.5 C, /	1010. 2 1070 OF S 3				Ň	Λ	
SAMPLER:	Printed Nam	Jain (Drabe	-		.		Signature	14	

Bellevue,	WA 98005		(425) 746-46	600				Groundw	ater San	npling Data She	eet	
Project #	04218014	.00		_		Sampling	g_Method :	Dedicated	1.75" QED Sam	nplePro Bail	Peristaltic	Other
Site	Bellevue S	South		Z	-2.5	DTW	Meter:	CONTROL SETTI	NGS:	1 ft water = 0_62L	1L = 0.26 gallons	
Well ID:	: Cleap	T OUT				TOS	MP-20	Refill		One Well Volume	Other :	
Sample ID:	F.1	5 clean .	1+			Intake	YSI	Discharge		(liters)	Flow	
Date	: 11/26/201	9				BOS	\sim	Pressure		Total Volume Bailed	Setting :	
Weather:				_		Total Depth		Flow		(liters)		
Filtered? Y	N	Locked? Y	N	Water in Prote	ctor? YN		Damage?	YŃ	(
Sample Conta	ainers:	1000 ml Poly		500 ml Poly		250 ml Poly		125 ml Poly	Notes / Obse	ervations (color, odor, anoma	alies, etc):	
		500 ml HNO3	x2	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber				
									-			
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.]			
1130		10.76	291	91.25	7.62	130.1				11		
1123		11 00	192	863	703	179 3						
(1)		11100	017	0,00	1. 11	(1 () -						
	1			1								
					-							
	ſ											
						27						
						-						
		<u> </u>										
				+								
						1						
		1										
						1						
Stabilization Par	ameters: pH/DO	± 0.2, SpC ± 10%,	, Temp ± 0.5°C,	Turb. \pm 10% or \leq 5				λ	. 1			
		Sum	brut					A	- M			
GANN LEIN	Printed Nam	e	No. Contraction	<u> </u>				Signature	ν	<u>`</u>		-0

Bellevue,	WA 98005		(425) 746-46	500				Groundw	ater Samp	ling Data She	eet	
Project #	. 04.0705	12 04ZI	130140	> _		Samplin	g_Method :	Dedicated	1.75" QED Sample	Pro Bail	Peristaltic Grab	Other
Site	lsland Co	EE (CSWE)	Bellesne	5. ₽	/	_DTW	Meter:	CONTROL SETT	INGS:	1 ft water = 0.62L	1L = 0.26 gallons	
Well ID:	SE	E Drain	Wall	_	/	TOS	MP-20	Refil		One Well Volume	Other :	
Sample ID	:_ 1019-		8	_ 🗏		Intake	YSI)	Discharge		(liters)	Flow	
Date	10/	-/19 [[126/19			BOS	Ŭ	Pressure		Total Volume Bailed	Setting :	
Weather:				_		Total Depth		Flow		(liters)		
Filtered? Y	D	Locked? Y	æ	Water in Prote	ctor? Y		Damage?	Y 🔊				
Sample Conta	ainers:	1000 ml Poly		500 ml Poly		250 ml Poly		125 ml Poly	- Notes / Observa	tions (color, odor, anoma	ilies, etc):	
		125 ml NaOH	<u>s xz</u>	500 ml H2SO4	x2	40 mi VOA	X3 X6	1000 ml Amber	-			
		120 111 11201							-			
TIME	DTW	Temp.	Sp.Cond.	DO	рН	Eh	Turbidity	Q / Vol.				
1215		11.39	30(10.22	7-64	209.5					<u>k</u>	
1213		1197	3.1	270		70/ H						
	1	11.12	161	8.10	1.10	200.4						
			78									
	1											
								1				
						+						
			l									
			1									
								7.				
Stabilization Par	ameters: pH/DO	0 ± 0.2 , SpC $\pm 10\%$	o, Temp ± 0.5°C,	Turb. $\pm 10\%$ or ≤ 5				1	D			
SAMPLER:	Printed Nam)4m 1e	Grabe	r		-		Signature	S	<u> </u>		• <

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION DOCUMENTATION FORM

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	1/2	6/14				
Time	510				U.	
Weather (sky or precip, temp)	dou	ndy				1
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1401	4,21	6.91			1
Post Cal Reading	113	4-01	7.00	v <u>.</u> S		
Descrepancy	No					
Calib. Successful?	Y	es				
Calibration by	l	SEG				
Instrument Type, ID		MP20 /	YSI 556		MicoTPW/HACH2000	
Calibration Location		Belleune	South			

* If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

Bellevue,	WA 98005		(425) 746-40	600				Groundw	ater Sampling Data Sheet	
Project #	e 04218014	1.00				Samplin	g Method :	Dedicated	1.75" QED SamplePro Bail Peristalitic Grab O	ther
Site	e Bellevue	South		- V	5.63	DTW	Meter:	CONTROL SETTI	INGS: 1 ft water = 0.62L 1L = 0.26 gallons	-
Well ID	M	N-1			/	TOS	MP-20	Refill	One Well Volume Other :	
Sample ID	:	112 -		- 🗐		Intake	(YSI)	Discharge	(liters) Flow	
Date	- 5/1	1700		_		BOS		Pressure	Total Volume Bailed Setting :	
Weather:	(D)		6		9,90	Total Depth		Flow	(inters)	
Sample Cont	ainers:	1000 ml Poly	v	500 ml Poly	ctor? Y N	250 ml Poly	Damage?	Y N 125 ml Poly	Notes / Observations (color, odor, anomalies, etc.):	
·		500 ml HNO	3 x2	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber		
		125 ml NaOl	Η							
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.		
12.10		1100	410	1		1.10 1			Myp collected @ 1560	
1645	1	(1. DT	917	(.4)	8.20	-40.1				
1250		11.35	409	0.78	8.08	-69.9				
1253		11.44	405	0.51	7,96	-98.8				
1256		11.42	YOZ	0.48	7.94	- 40.7				
1259	6.90	11,41	YOD	0.43	2.91	-83.4		· · · · · · · · · · · · · · · · · · ·		
1902		11.39	396	0.45	7.90	-79.9				
1305	5	1637	402	0.42	7.90	-73.3	2,78			
							-			
Stabilization Par	ameters: pH/DO	+ 0.2 SpC + 10%	6 Temp ± 0.5% 1	$10\% \text{ pr} \leq 5$						
Grading and POP	unelets: pri/DO	÷ 0.2, 3pc ± 10%	o, remp ⊥ 0.5°C, I	urb. ± 10% or ≤ 5				Δ		
SAMPLER:	Printed Nam	Sam	Graber			_	Ă -			
								Signature		

1.6

pling Data SI	heet
lePro Bail	Peristalting Grab Other
1 ft water = 0.62L	1L = 0.26 gallons
One Well Volume	Other :
(liters)	Flow
Total Volume Bailed	Setting :
(liters)	
rations (color, odor, anoi	omalies, etc):
	- he
38 750	
2	

2405 140th	ave NE #107	

Bellevue, V	NA 98005		(425) 746-46	500				Groundw	ater Sampl	ing Data She	eet	
Project #:	04218014	1.00				Samplin	g Method :	Dedicated	1.75" QED SampleF	Pro Bail	Peristaltic) Grab	Other
Site	Bellevue	South		∠	5,63	_DTW	Meter:	CONTROL SETTI	NGS:	1 ft water = 0.62L	1L = 0.26 gallons	
Well ID:	aru	1-3			/	TOS	MP-20	Refill		One Well Volume	Other :	<u>.</u>
Sample ID:				_ 🗐	_/	Intake	YSK	Discharge		(liters)	Flow	
Date:	512	1/20		_ 🗏		BOS	\cup	Pressure	т	otal Volume Bailed	Setting :	
Weather:	14	ing		_	14,85	Total Depth		Flow	<u> </u>	(liters)		
Filtered? Y	N)	Locked? Y	N)	Water in Protect	ctor? YN		Damage?	Y A				
Sample Conta	ainers:	1000 ml Poly	3 2	500 ml Poly	v?	250 ml Poly	v3 v6	125 ml Poly	- Notes / Observat	ons (color, odor, anoma	alies, etc):	
		125 ml NaOl	<u>5 xz</u>	500 111 12304		40 IIII VOA	<u>x3 x0</u>	Todo III Allibei				
TIME	DTW	Tomp	So Cood	DO	21	ES.	Tuchiditu	0.0/0		0 0 9701		
0.0	DIVV	remp.	op.conu.	00	рп	En	Turbidity	Q7 V0I.	5.6	Ber Ici		
975		11.41	561	4,98	7.10	33.6						
940		11.93	361	1.10	6.97	-56.3						
943		11.46	261	0.78	6.95	-662						
946		11.50	361	0.60	6.93	-66.2						
949		11.53	359	0.59	6.92	- 70.7						
952		11.53	162	0.48	6.36	-70.2						
955		11.59	363	0.51	6.86	-71.8	3.15					
. 0												
						<u> </u>						
			1					·				
			1									
Stabilization Para	meters: pH/DO	± 0.2. SpC + 10%	6. Temp + 0.5°C	Turb. ± 10% or < 5								
SAMPLER:		Sum	Grape			_		5	L	A		
	Printed Nam	e						Signature 🧹				

Bellevue,	WA 98005		(425) 746-4	600				Groundw	ater Sampling Data Sheet
Project #	: 04218014	1.00			_	Samplin	g Method :	Dedicated	1.75" QED SamplePro Bail Peristalfic Grab Other
Site	Bellevue	South		- 2	9.70	_DTW	Meter:	CONTROL SETTI	NGS: 1 ft water = 0.62L 1L = 0.26 gallons
Well ID	MW.	-4		_ 1	/	TOS	MP-20	Refill	One Well Volume Other :
Sample ID	:			_		Intake	YSI	Discharge	(liters) Flow
Date	5/2	1/20		_		BOS	\smile	Pressure	Total Volume Bailed Setting :
Weather:	14	iny	~		15.0	5 Total Depth		Flow	(inters)
Filtered? Y	N)	Locked? Y	(\mathbf{w})	Water in Protect	ctor? Y (N)		Damage?	YN	
Sample Cont	ainers:	1000 ml Poly	3 v2	500 ml H2SO4	x2	250 ml Poly	×3 ×6	125 ml Poly	Notes / Observations (color, odor, anomalies, etc):
		125 ml NaOH	+	500 111 12304		40 III VOA	X3 X0	Tooo Ini Amber	
C									6268
TIME	DTW	Temp.	Sp.Cond.	DO	рН	Eh	Turbidity	Q / Vol.	9,70 8 1093
1110		11.03	405	3.37	9.02	51.4			
1115	10.32	11.01	412	2.06	9.10	50.2	347		
1113		14.00	431	2.51	9.12	53.9			
1121		10.99	462	2.92	4.15	56.4	-		
1124		11.10	44D	3.11	9.14	60.3			
1127	11.02	11.25	429	3.37	9.13	64.4	536		
(130)	11.30	11.14	405	1,82	9.14	61.2			
1(33	11.50	11.13	yoy	1.53	9.13	59.0	475		
					1		-		
								1	
C. 1.11					1		_		
stabilization Par	ameters: pH/DO	± 0.2, SpC ± 10%	o, ⊺emp ± 0.5°C,	Turb. \pm 10% or \leq 5				N	\sum
SAMPLER:		Sam	Gabe					A	J.J.
	Printed Nam	e						Signature	

Bellevue,	WA 98005		(425) 746-40	500				Groundw	ater Sampling Data Sheet	
Project #	t: 04218014	.00				Sampling	Method :	Dedicated	1.75" QED SamplePro Bail Perista	altic Grab Other
Site	e Bellevue S	South		2	4.72	_DTW	Meter:	CONTROL SETTI	NGS: 1 ft water = 0.62L 1L = 0.2	.6 gallons
Well ID	min	1-5				TOS	MP-20	Refill	One Well Volume	Other :
Sample ID):					Intake	YSI	Discharge	(liters)	Flow
Date	Date: 5/21/20			1	BOS	\mathbf{U}	Pressure	Total Volume Bailed	Setting :	
Weather:				_	9,70	Total Depth		Flow	(liters)	
Filtered? Y	(N)	Locked? Y	N	Water in Prote	ctor? Y N		Damage?	YN		
Sample Cont	ainers:	1000 ml Poly		500 ml Poly		250 ml Poly		125 ml Poly	Notes / Observations (color, odor, anomalies, etc):	
		500 ml HNO3	3 x2	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber	•	
Sec		120 mi NaOr	1							
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.		
1755		[4,05	305	2.12	7.00	-75.9				
IUUD	6.60	14,22	0,00	6,77	6.95	-72.9				
1403	7.10	14.36	795	0.63	6.96	-62.5	136			
1413	Sam	ple time.	T							
		1								
							1			
						1				
						1				
	1									
Stabilization Pa	rameters: pH/DO	± 0.2, SpC ± 10%	, Temp ± 0.5°C,	Turb. $\pm 10\%$ or ≤ 5						
SAMPLER:		Sam	Gabe					A	-	
	Printed Nam	e						Signature		

Bellevue, W	VA 98005	×	(425) 746-46	600				Groundw	ater San	npling Data Sl	neet		
Project #: Site Well ID: Sample ID: Date: Weather: Filtered? Y N Sample Contai	04218014.1 Bellevue Si F-13 5/ N iners:	.00 South S (Lan out /N/W Locked? Y N 1000 ml Poly 500 ml HNO3 x2		Water in Protect 500 ml Poly 500 ml H2SO4	tor? Y N x2	Sampling DTW TOS Intake BOS Total Depth 250 ml Poly 40 ml VOA	g Method : Meter: MP-20 YSI Damage?	Dedicated <u>CONTROL SETTI</u> Refill Discharge Pressure Flow Y N 125 ml Poly 1000 ml Amber	1.75" QED SampleP <u>NGS:</u> TT	nplePro Bail 1 ft water = 0.62L One Well Volume _ (liters) Total Volume Bailed _ (liters) ervations (color, odor, ano	Peristattic 1L = 0.26 gall malies, etc):	Grab ons Other : Flow Setting :	Other
TIME	DTW Dlgh	Temp.	Sp.Cond.	DO 7. 2.6 [↑]	рН — Ю (Eh	Turbidity	Q / Vol.					
SAMPLER:	Printed Name	Sun	6 raber		ti			Signature	r D	~			- ji

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION DOCUMENTATION FORM

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	ちん	ho				
Time		745				
Weather (sky or precip, temp)		failing				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, <u>10,</u> 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1441	9,95	6.96			
Post Cal Reading	43	4.01	7.00	0,5		
Descrepancy	/	10				
Calib. Successful?		Ye5-				
Calibration by		SE6		C		
Instrument Type, ID		MP20 /	YSI 556		MicoTPW / HACH2000	
Calibration Location		1	Bellevine	South		

* If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

Bellevue,	NA 98005		(425) 746-46	500				Groundwa	ater Sam	oling Data Sho	eet	
Project # Site Well ID Sample ID Date Weather: Filtered? Y (Sample Cont	04218014 Bellevue S MW 3/- Sur N ainers:	5.00 South - [3 /20 Muy Locked? Y 1000 ml Poly	(+2.0) / +0-4(Water in Prote	5,56 (0,00 ctor? Y (17)	Sampling DTW TOS Intake BOS Total Depth 250 ml Poly	Method : Meter: MP-20 YSI Damage?	Dedicated CONTROL SETTIN Refill Discharge Pressure Flow Y N 125 ml Poly	1.75" QED Sampl	ePro Bail 1 ft water = 0.62L One Well Volume (liters) Total Volume Bailed (liters) ations (color, odor, anoma	Peristaltic Grab 1L = 0.26 gallons Other : Flow Setting : alies, etc):	Other
		500 ml HNO 125 ml NaOH	3 x2 H	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber				
TIME 1343 [348 1351 1354 [357]400	DTW 7.26	Temp. [4,52 [4,10 [4,09 [4,08 [4+0] [3,93	Sp.Cond. 422 410 407 403 404 404	DO [3.35 0.43 0.41 0.38 0.39 0.40	рН 7,50 7,47 7,49 7.52 7.55 7.56	Eh 38. - 13. 9 - 25. 6 - 33. 6 - 34. 3 - 73. 3	Turbidity 2.66	Q / Vol.		1p collected	1 © 1415	
itabilization Para	ameters: pH/DO	± 0.2, SpC ± 10% Sam	6, Temp ± 0.5°C,	Turb. ± 10% or ≤ 5				Signature				

Bellevue, V	NA 98005		(425) 746-40	600				Groundw	ater Sam	pling Data Sh	leet		
Project #:	04218014.	00			14.95	Samplin	g Method :		1.75" QED Samp	olePro Bail	Peristaltio	Grab	Other
Well ID: Sample ID: Date: Weather: Filtered?	Well ID: $M (\omega - 2)$ Sample ID: $M (\omega - 2)$ Date: $B/3/2D$ Weather: $C(\omega) d_{f}$ iittered? Y(N) Locked? (ω) N		2 _N	Water in Protect	- 18.5 ctor? YQD	TOS Intake BOS Total Depth	Meter: MP-20 YSI Damage?	CONTROL SETTI Refill Discharge Pressure Flow		1 ft water = 0.62L One Well Volume (liters) Total Volume Bailed (liters)	1L = 0.26 galk	Other : _ Flow Setting : _	
Sample Conta	ainers:	1000 ml Poly 500 ml HNO3 125 ml NaOH	3 x2	500 ml Poly 500 ml H2SO4	x2	250 ml Poly 40 ml VOA	x3 x6	125 ml Poly 1000 ml Amber	Notes / Obser	vations (color, odor, anor	nalies, etc):		
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.]				
1020		16.13	722	11.44	7.23	102.6							
1025		15.71	728	0.28	6.96	91.6							
1028		15.71	728	0.37	6.96	38.1							
(03)	15.60	15,72	727	0.46	6.97	36.6							
1034		15.77	705	0.53	6.97	83.6							
1037		16. oy	691	0.44	6.97	31.2							
1040		16.09	685	0.42	7.00	79.3	2,32						
													î
Stabilization Para	meters: pH/DO ±	5 0.2, spc ± 10%	, Temp ± 0.5°С, 6 rubu	Turb. ± 10% or ≤ 5		- -	8	Signature					

2405 140th ave NE #107 Bellevite WA 98005

Bellevue,	WA 98005		(425) 746-46	00				Groundw	ater Samp	oling Data Sl	neet	
Project # Site Well ID Sample ID Date Weather: Filtered? Y(Sample Conta	Bellevue Mu Bellevue Mu Bo Su Su ainers:	14.00 e South w - 3 /3 / 20 4442 Locked? Y N 1000 ml Poly 500 ml HNO3 x2 125 ml NaOH		Water in Protect 500 ml Poly 500 ml H2SO4	6.02 	Sampling DTW TOS Intake BOS Total Depth 250 ml Poly 40 ml VOA	Method : Meter: MP-20 YSI Damage? x3 x6	Dedicated <u>CONTROL SETTI</u> Refill Discharge Pressure Flow Y N 125 ml Poly 1000 ml Amber	1.75" QED Sampl	ePro Bail 1 ft water = 0.62L One Well Volume (liters) Total Volume Bailed (liters) ations (color, odor, ano	Peristaltic Grab 1L = 0.26 gallons Other : Flow Setting : malies, etc):	Other
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.				
1240		14,51	386	2.35	7.59	-61.4						
1245		14.54	377	0.47	6.36	-53.4						
1248		14.61	377	0.44	6.35	-51.0	1					
1251		14.91	377	0.42	6.83	-49.8						
1254	6.56	14,99	377	0.39	6.79	-46.4						
1257		15,02	378	0.33	6.80	-46.5	1.82					
(300) Stabilization Pare	ameters: pH/DC	Sum ₁ 0 ± 0.2, SpC ± 10%	, Temp ± 0.5℃, T	urb. ± 10% or ≤ 5					Δ			
SAMPLER:	Printed Nam	Savn	Graber					Signature	_ /}	<u> </u>		

Bellevue,	WA 98005		(425) 746-46	000				Groundw	ater Sampling Data Sheet
Project #	04218014	1.00		- "	100	Sampling	Method :	Dedicated	1.75" QED SamplePro Bail Peristaltie Grab Other
Site Well ID Sample ID Date Weather:	Site Bellevue South Well ID: MW-9 Sample ID: Date: 8/3/20 Weather: Cloudy				1, 10	_DTW _TOS _Intake _BOS _Total Depth	Meter: MP-20	CONTROL SETTI Refill Discharge Pressure Flow	INGS: 1 ft water = 0.62L 1L = 0.26 gallons One Well Volume Other : (liters) Flow Total Volume Bailed Setting :
Filtered? Y Sample Conta	ainers:	Locked? Y 1000 ml Poly		Water in Protec 500 ml Poly	tor?Y	250 ml Poly	Damage?	Y (N) 125 ml Poly	Notes / Observations (color, odor, anomalies, etc):
		500 ml HNO3 125 ml NaOH	3 x2	500 ml H2SO4	x2	40 ml VOA	x3 x6	1000 ml Amber	
TIME	DTW	Temp.	Sp.Cond.	DO	pН	Eh	Turbidity	Q / Vol.	
1134		13.55	504	4.72	8.63	118.0			
1139		13.07	496	0.54	8,78	109.0)	4	
1142		13.09	496	0.46	8.36	98.0			
1145	4.41	13.07	495	0.43	8-91	91.3			
1148		13.09	493	0.42	8.93	85.2			
1151	5.43	13.16	407	0.53	8.92	30.6	26.0		
1144	nt	Surp	le fin	¢,					
Stabilization Para	Printed Nam	± 0.2, SpC ± 10%, Sam G 1e	, Temp ± 0.5℃, 1 フィレー	Furb. ± 10% or ≤ 5		-		Signature	D A

Bellevue, WA 98005			(425) 746-4	500	Groundwater Sampling Data Sheet									
Project #	. 04218014	1.00			:170	Sampling	Method :	Dedicated	1.75" QED SamplePro Bail Peristattic Grab Other					
Site Bellevue S Well ID: Sample ID: Date: Weather:		South N - 5 3 / 20 Ady			4.14	DTW TOS Intake BOS	Meter: MP-20	CONTROL SETTI Refill Discharge Pressure	NGS: 1 ft water = 0.62L 1L = 0.26 gallons One Well Volume Other : (liters) Flow Total Volume Bailed Setting :					
Weather: <u>() (20</u> Filtered? Y () Sample Containers:		Locked? Y N 1000 ml Poly 500 ml HNO3 x2 125 ml NaOH		Water in Protector? YN 500 ml Poly 500 ml H2SO4 x2		Total Depth 250 ml Poly 40 ml VOA	Damage? x3 x6	Flow Y N 125 ml Poly 1000 ml Amber	Notes / Observations (color, odor, anomalies, etc):					
TIME	DTW	Temp	Sp Cond	DO	рH	Eb	Turbidity	0 / Val	DTU 4.75@ 876					
910		18.18	731	2.43	6.50	-27.4	raiolaly							
913		18.28	738	0.82	6.69	-71.5		21						
916		18.10	742	0.71	6.71	-66.6	237							
920		Sumple	tim											
Stabilization Para	ameters: pH/DO	± 0.2, SpC ± 10%,	, Temp ± 0.5°C, 1	Turb. ± 10% or ≤ 5				Λ						
SAMPLER:	Printed Nam	e lan br	aber					Signature						
SCS ENGINEERS

GROUNDWATER SAMPLING INSTRUMENT CALIBRATION DOCUMENTATION FORM

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	B13/20					
Time	830					
Weather (sky or precip, temp)	Cloudy					
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.0 <i>1</i>	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, ≤0.1	
Pre-Cal Reading	1417	4.02	6.97			22 e
Post Cal Reading	1417	U1.00	7.00	200		
Descrepancy	No					
Calib. Successful?	Yes					
Calibration by	SEG					
Instrument Type, ID	MP20 / YSI 556 MicoTPW / HACH2000					
Calibration Location		SEB				

* If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)