

July 9, 2019

Mr. Mahbub Alam Environmental Engineer, Toxics Cleanup Program Department of Ecology PO Box 47600 Olympia, WA 98504

Re: Summary Report - 2019 Data Gap Assessment

Former E.A. Nord Facility, Everett, Washington (FS ID 2757)

Dear Mahbub,

SLR International Corporation (SLR) has prepared the following summary report of field activities completed per the April 2019 Work Plan Addendum to the December 2017 Source Control Evaluation (SCE) Work Plan to Assess Data Gaps for completion of the Remedial Investigation (RI)/Feasibility Study (FS) for the Former E.A. Nord Door facility (i.e. JELD-WEN Cleanup Site; FS ID 2757). This summary report presents the selected investigation areas from the Work Plan, sampling activities, laboratory analytical results, and suggestions for additional sampling based on the findings.

1. DATA GAP ASSESSMENT ACTIVITIES AND FINDINGS

The scope of work completed for this data gap assessment was based on communications and discussions with Washington Department of Ecology (Ecology) following submittal of the January 2019 SCE Summary Report and upon Ecology's review of the October 2016 Final Draft RI/FS. In April 2019, SLR submitted, and Ecology approved, the Work Plan Addendum presenting the proposed sampling locations, sampling rationale, and proposed analytical suite for each sample location.

In general, proposed investigation areas were selected to assess potential data gaps from the seep sampling/initial SCE activities and historical upland assessments included as part of the RI. Field notes including soil boring logs and groundwater sampling forms are included in Appendix A.

Laboratory analytical results are summarized on Table 1 and Table 2. Revised Preliminary Cleanup Levels (PCLs) were developed based on discussions with Ecology and to reflect changes to CLARC values for analytes measured above laboratory reporting limits during this assessment. A summary of the revised PCLs used for this assessment are shown on Table 3 and Table 4. Copies of the laboratory analytical reports are included as Appendix B and laboratory data review documents are included in Appendix C. The following section presents the work scope from the April 2019 Work Plan Addendum, the activities completed for this assessment, and a summary of findings for each investigation area.

Extent of Existing Groundwater Impacts and Deep Zone Assessment

Data Gap per Work Plan Addendum: Previously identified isolated area of soil and groundwater contamination (GP-14 and GP-707). Need to verify the presence and trend of contamination. Help define groundwater flow and gradient for deep zone.

Completed Data Gap Assessment: One soil boring was completed with a Geoprobe drilling rig (GP-MW-11) for collection of a depth composite soil sample from surface to 12' below ground surface (bgs). Soil sample GP-MW-11-SS was submitted for laboratory analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyl (PCB) congeners, and dioxins/furans. The boring was extended to approximately 40' bgs to assess for potential deep zone impacts. Field observations and photoionization detector (PID) readings did not indicate soil impacts at this location. A shallow monitoring well (MW-11A) was installed with a hollow-stem auger drilling rig to a depth of 13' bgs with a 10' section of screen. An adjacent deep monitoring well (MW-11B) was installed to a depth of 41.5' bgs with a 10' section of screen and a 2' sump. Groundwater samples were collected and submitted for laboratory analysis of VOCs, SVOC, carcinogenic polynuclear aromatic hydrocarbons (cPAHs), dioxin/furans (sample held pending soil results), and priority pollutant metals for MW-11A, and VOCs, SVOCs, cPAHs, and total petroleum hydrocarbons – diesel and oil range (TPH-Dx) for MW-11B, respectively.

Findings: Soil analytical results did not measure concentrations of contaminants of potential concern (COPCs) above PCLs (**Table 1**). Groundwater analytical results measured concentrations of arsenic at 5.95 micrograms per liter (μ g/L), above the PCL of 5.0 μ g/L (based on natural background), and copper at 6.34 μ g/L, above the PCL of 2.4 μ g/L. No evidence of dense nonaqueous phase liquids (DNAPL) was observed in the sump installed in deep monitoring well MW-11B.

Knoll Area

Data Gap from Work Plan Addendum: Previously identified isolated areas of groundwater impacts (GP-601 and GP-603). Need to assess groundwater impacts using a monitoring well, and define groundwater flow gradient and direction in the knoll area. Assess if PCB impacts observed at adjacent seep sample location S-16 are present in the knoll area.

Completed Data Gap Assessment: Three soil borings were completed with a Geoprobe drilling rig (GP-MW-12, GP-MW-13, and GP-MW-14) for collection of depth composite soil samples from surface to 12' bgs at each location.

Soil sample GP-MW-12-SS was submitted for laboratory analysis of VOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 25' bgs in the area of former boring GP-601 and test pit TP-16. Soil lithology consisted of sandy fill material (likely dredged due to presence of shell fragments) down to approximately 18' bgs, underlain by apparent native woody material. A thin layer of gray material that appeared to be pulverized rock was observed at approximately 18.5' bgs (sample collected for dioxin/furan analysis based on Ecology concerns it was buried ash material). Field observations and PID readings did not indicate soil impacts at

this location. A monitoring well (MW-12A) was installed with a hollow-stem auger drilling rig to a depth of 25' bgs with a 10' section of screen. A groundwater sample (MW-12-GW) was collected and submitted for laboratory analysis of VOCs, cPAHs, PCB congeners, dioxin/furans (sample held pending soil results), and metals.

Soil sample GP-MW-13-SS was submitted for laboratory analysis of SVOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 25' bgs in the area of former boring GP-603. Soil lithology consisted of sandy fill material (likely dredged due to presence of shell fragments) down to approximately 20' bgs, underlain by apparent native woody material. Field observations and PID readings did not indicate soil impacts at this location. A monitoring well (MW-13A) was installed with a hollow-stem auger drilling rig to a depth of 25' bgs with a 10' section of screen. A groundwater sample (MW-13-GW) was collected and submitted for laboratory analysis of SVOCs, cPAHs, PCB congeners, dioxin/furans (sample held pending soil results), and metals.

Soil sample GP-MW-14-SS was submitted for laboratory analysis of SVOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 23' bgs in the area of former boring GP-604 and upland of seep sample S-16. Soil lithology consisted of sandy fill material (likely dredged due to presence of observed shell fragments) down to approximately 17' bgs, underlain by apparent native woody material. Field observations and PID readings did not indicate soil impacts at this location; however, a section of gravel fill material with a slag-like appearance was observed at 18.5' bgs. A monitoring well (MW-14A) was installed with a hollow-stem auger drilling rig to a depth of 23' bgs with a 10' section of screen. A groundwater sample (MW-14-GW) was collected and submitted for laboratory analysis of SVOCs, cPAHs, PCB congeners, dioxin/furans (sample held pending soil results), and metals.

Findings: Soil analytical results did not measure concentrations of COPCs above PCLs at any of the three borings completed in the knoll area (**Table 1**). Concentrations of metals were measured above PCLs in groundwater at MW-12 (arsenic, copper, lead), MW-13 (copper and lead), and MW-14 (arsenic, copper)(**Table 2**). In addition, total PCB congeners were measured above the human-health based PCL of 7.0 picograms per liter (pg/L) at MW-12, MW-13, and MW-14 at 8,790 pg/L, 29,800 pg/L, and 16,100 pg/L, respectively (**Table 2**). The Toxic Equivalency Quotient (TEQ) value at each of these locations was calculated below the PCL for TEQ using ½ the detection limit for non-detect values.

Area 4 Locations

Data Gap from Work Plan Addendum: Previously identified isolated areas (identified as Area 4 in the RI/FS) of soil impacts at former borings GP-311 and GP-34. Assessment for the presence and trend of groundwater impacts. Further define groundwater flow gradient and direction and apparent mounding at existing monitoring well MW-1. Assess if PCB impacts observed at adjacent seep sample location S-1 are present.

Completed Data Gap Assessment: Two soil borings were completed with a Geoprobe drilling rig (GP-MW-15 and GP-MW-16) for collection of depth composite soil samples from surface to 12' bgs at each location. Soil sample GP-MW-15-SS was submitted for laboratory analysis of VOCs and PCB congeners. The boring was extended to approximately 15' bgs in the area of former boring GP-311 and near seep sample S-1. Soil lithology consisted of sandy fill material down to approximately 10.5' bgs, underlain by an apparent native silt layer. Field observations and PID readings did not indicate soil impacts at this location. A monitoring well (MW-15A) was installed with a hollow-stem auger drilling rig to a depth of 13' bgs with a 10' section of screen. A groundwater sample (MW-15-GW) was collected and submitted for laboratory analysis of PCB congeners and metals.

Soil sample GP-MW-16-SS was submitted for laboratory analysis of TPH, SVOCs, cPAHs, PCB congeners, and dioxins/furans. The boring was extended to approximately 15' bgs in the area of former boring GP-34 and test pit TP-2. Soil lithology consisted of sandy/gravelly fill material down to approximately 12' bgs, underlain by an apparent native silt layer. Field observations and PID readings did not indicate soil impacts at this location. A monitoring well (MW-16A) was installed with a hollow-stem auger drilling rig to a depth of 13' bgs with a 10' section of screen. A groundwater sample (MW-16-GW) was collected and submitted for laboratory analysis of SVOCs, cPAHs, PCB congeners, dioxins/furans (held pending soil results), and metals.

Findings: Soil analytical results did not measure concentrations of COPCs above PCLs at MW-15 (**Table 1**). Concentrations of total PCB congeners and dioxin/furan TEQ were calculated above PCLs at MW-16. In groundwater, total PCB congeners were measured above the PCL of 7.0 pg/L at MW-15 and MW-16 at 125 pg/L and 286 pg/L, respectively. The TEQ value at each of these locations was calculated below the PCL for TEQ using ½ the detection limit for non-detect values.

Stormwater Conveyance System

Data Gap from Work Plan Addendum: Potential impacts from previously identified damaged or plugged facility-related stormwater lines. Assessment if leaks in the stormwater system have contributed to soil and groundwater impacts or show relationship to sediment sample results from outfall OF-8 and OF-9. Need to better define boundary of potential salt water intrusion inland as measured in groundwater.

Completed Data Gap Assessment: Three soil borings were completed with a Geoprobe drilling rig (GP-MW-17, GP-801, and GP-802) for collection of depth composite soil samples from surface to 12' bgs at each location.

Soil sample GP-MW-17-SS was submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 15' bgs in the area of previously identified damaged stormwater lines that discharge to the finger area via outfall OF-4 (**Figure 1**). Soil lithology consisted of sandy fill material. Field observations and PID readings did not indicate soil impacts at this location. A monitoring well (MW-17) was installed with a hollow-stem auger drilling rig to a depth of 13' bgs with a 10' section of screen. A

groundwater sample (MW-17-GW) was collected and submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, dioxin/furans (sample held pending soil results), and metals.

Soil sample GP-801-SS was submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 15' bgs in the area of previously identified damaged stormwater lines that discharge to outfall OF-6. Soil lithology consisted of sandy fill material. Field observations and PID readings did not indicate soil impacts at this location. A temporary well was set and a groundwater sample (GP-801-GW) was collected and submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, and dioxin/furans (sample held pending soil results).

Soil sample GP-802-SS was submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, and dioxins and furans. The boring was extended to approximately 15' bgs in the area of previously identified damaged stormwater lines that discharge to outfalls OF-9 and OF-10. Soil lithology consisted of sandy fill material. Field observations and PID readings did not indicate soil impacts at this location. A temporary well was set and a groundwater sample (GP-802-GW) was collected and submitted for laboratory analysis of TPH, VOCs, SVOCs, cPAHs, PCB congeners, and dioxin/furans (sample held pending soil results).

Findings: Soil analytical results did not measure concentrations of COPCs above PCLs, with the exception of total PCBs at GP-802 that were measured at 4,250 pg/g, above the natural background concentrations of 3,500 pg/g (**Table 1**). In groundwater, total PCB congeners were measured above the PCL of 7.0 pg/L at MW-17, GP-801, and GP-802 at 164 pg/L, 17,600 pg/L, and 174 pg/L, respectively. The TEQ value at each of these locations was calculated below the PCL for TEQ using ½ the detection limit for non-detect values. In addition, arsenic in groundwater was measured at MW-17 at 43.9 μ g/L, above the natural background concentration of 5.0 μ g/L, and TEQ for cPAHs was calculated above the practical quantitation limit (PQL)-based PCL of 0.015 μ g/L at GP-801 (**Table 2**).

Vertical and Horizontal Groundwater Flow and Gradient

Data Gap from Work Plan Addendum: Ecology has identified deep zone groundwater flow direction and gradient, potential vertical gradient, as well as a better understanding of site-wide groundwater gradient (including the knoll area) as data gaps. A transducer study was completed in 2007; however, fewer monitoring wells were present on-site at that time and no monitoring wells were completed as deep wells.

Completed Data Gap Assessment: A follow-up transducer study was performed by installing pressure transducers in select wells from May 6 to May 15. Pressure transducers were installed at all nested well locations (shallow and deep well), as well as several new and existing monitoring wells (**Figure 2**).

Findings: As seen in the 2007 transducer study, tidal influence on groundwater levels are limited to near shore locations including MW-3, MW-15, and MW-16. Minimal undulations associated with the tides were observed at other wells including the knoll area. Estimated tidal influence for a portion of the assessment is portrayed on **Figure 2** and in **Graph 1**. It should be noted that some small discrepancies shown in the wells across the road (MW-9A and MW-10A) may be caused by the adjacent railroad traffic. Estimated groundwater gradient and flow direction were consistent with observations from quarterly groundwater monitoring (see **Figure 3** for estimated gradient and flow for the deep zone wells).

2. FINDINGS FROM DATA GAP ASSESSMENT

Overall exceedances of PCLs from the data gap assessments are displayed on Figure 1.

General Soil Analytical Results

Exceedances of PCLs in soil during the data gap assessment were limited to total PCB congeners and dioxins/furans TEQ in soil sample GP-MW-16 and total PCB congeners in sample GP-802-SS. The TEQ value using ½ detection limit for non-detect values for dioxin-like PCB congeners was calculated below the PCL of 2.0 pg/g at each of these locations. Follow-up groundwater sampling at MW-16 and from GP-802 measured relatively low concentrations of total PCB congeners in groundwater and it does not appear that the elevated concentrations observed in the soil samples are readily mobilizing to groundwater at these locations.

Follow-up analysis for dioxins/furans in groundwater at MW-16 was received on June 18, 2019 and the Level IV quality assurance (QA) assessment is currently pending. Concentrations of dioxins/furans in groundwater at MW-16 measured 1.9 pg/L, which is below the PQL-based PCL of 63 pg/L.

General Groundwater Analytical Results

Exceedances of PCLs for metals in groundwater were limited to arsenic at MW-11A, MW-12, MW-14, and MW-16, copper at MW-11A, MW-12, MW-13, and MW-14, and lead at MW-12 and MW-13.

TPH-Dx, VOCs (including COPCs from RI/FS of benzene and naphthalene), and SVOCs were not measured above applicable PCLs in the groundwater samples.

TEQ values for cPAHs were calculated above the PCL from GP-801 and at MW-13. The PCL of 0.015 μ g/L is based on the laboratory PQL provided by ARI laboratory using a low detection level method.

Concentrations of total PCB congeners were measured at each groundwater sample location. Relative elevated concentrations were limited to MW-12, MW-13, and MW-14 (knoll area locations) and GP-801. The concentration of total PCB congeners measured at MW-14 was 16,100 pg/L, compared to 16,200 pg/L measured at the adjacent Seep S-16 during the April 2018 seep sampling event; however, an analysis of total PCB congener groupings for the samples was not consistent between the two locations (further discussed below).

Total PCB Congener Assessment

Elevated concentrations of total PCB congeners in soil were observed in samples GP-MW-15-SS, GP-MW-16-SS, and GP-802-SS. Follow-up groundwater sampling at these locations measured relatively low concentrations of total PCB congeners and it does not appear that the elevated concentrations observed in the soil samples are readily mobilizing to groundwater at these locations. **Graph 2** presents the soil and groundwater analytical results for each location. Typically, PCBs are not considered mobile in groundwater however some of the highest groundwater concentrations (knoll area) did not correlate to soil concentrations at the same locations. This could be due to very low detection limits, colloidal interference (particularly at seep sample and temporary well GP-801), or the depth composite soil sampling method.

As one method to assess the potential relationship of the total PCB congener results across the Site, the contribution of each sub group of PCBs (i.e. mono-, Di-, Tri-, etc.) to the total PCB congener concentration was reviewed. As shown on **Graph 3**, some patterns were observed based on sample location; this includes similarities at MW-12 and MW-13 (knoll area), GP-801 and Seep S-16 (as opposed to assumed relationship of knoll area findings and adjacent Seep S-16), and upland locations MW-15, MW-16, MW-17, and GP-802. While the entire Site consists of fill material, filling activities have been completed at various times throughout the operational history of the Site and often from unknown sources of fill material.

Groundwater Gradient and Flow

As assessment of site-wide groundwater gradient and flow confirms the tidal influence of near-shore monitoring wells that was observed in the 2009 tidal assessment (**Figure 2**). In addition, vertical gradient from various groundwater assessments do not appear to be a significant factor in the site-wide hydrology, and minor observed differences between shallow and deep well water elevation measurements may be attributed to errors in measurement versus any vertical gradient.

3. ADDITIONAL ACTIONS TO BE CONSIDERED

With the recent expansion of the site monitoring well network, the scope and schedule for the next quarterly groundwater sampling event is being reviewed based on the recent analytical results and findings from this assessment, however, it is still expected to remain on the current quarterly schedule (July-Aug). Proposed revisions to the groundwater sampling plan will be provided to Ecology for review under separate cover.

JELD-WEN is reviewing available records regarding fill placement. It appears that the knoll area was initially filled in 1960's. The sandy consistency of this material and observed shell fragments in the fill indicate that this material is primarily dredged material. The source of the fill material is unknown.

JELD-WEN is considering solid-phase micro-extraction (SPME) sampling in groundwater at MW-13 and MW-14 concurrently with SPME sampling of seep water from approximate seep locations S-3, S-16, and S-18 (pending observed seep flow at time of sampling event). SPME sampling is a sampling technique to assist with quantifying dissolved phase analytes with limited particle interference. The SPME samples will

be submitted for PCB congeners. Actual SPME sampling locations will be discussed with Ecology and incorporated into a work plan addendum for Ecology's approval.

Sincerely,

SLR International Corporation

R. Srott Miller

R. Scott Miller, P.E. Managing Principal

cc Dwayne Arino, JELD-WEN Inc.

Enc. Figures

Tables Graphs

Appendices

Chris Kramer

Associate Scientist

Chis Ku

FIGURES

TABLES

Table 1 Soil Analytical Summary Table 2019 Data Gap Assessment Former E.A. Nord Everett, WA

Lab Sample ID				L1093844	4-01	L109384	4-02	-		L109384	4-04	L109384	4-05	L109384	4-06	L109384	4-07	L109384	4-08	L1093844	4-09	L109384	4-10
Client Sample ID			Preliminary	GP-MW-1	L1-SS	GP-MW-1	12-SS	GP-MW-12-SS	-18-19	GP-MW-2	13-SS	GP-MW-	14-SS	GP-MW-15-SS		GP-MW-16-SS		.6-SS GP-MW-17-		GP-801-	-SS	GP-802	-SS
Date Collected			Cleanup Levels	04/25/20	019	04/25/2	019	04/25/20:	19	04/25/2	019	04/25/2	2019	04/26/2	019	04/26/2	2019	04/26/2	019	04/26/20	019	04/26/2	.019
Method	Analyte	Units	(PCLs) ^a	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
2540 G-2011	TOTAL SOLIDS	%		82.5		87.3		-		88		86.5		61.3		85		80.5		85		89.3	
Total Petroleum Hy	drocarbons - Diesel and Oil Range (TP	PH-Dx)																					
NWTPHDX-NO SGT	DIESEL RANGE ORGANICS	mg/kg	200	-		-		ı		-		-		-		62.7		3.81	J	<47.1		2.4	J
NWTPHDX-NO SGT	RESIDUAL RANGE ORGANICS	mg/kg	2,000	-		-		ı		-		-		-		604		11.1	J	75	J	13.1	
Volatile Organic Co	mpounds (VOCs)																						
8260C	BENZENE	mg/kg	0.002	0.000853	J	<0.00115		ı		-		-		<0.00163		-		<0.00124		0.000507	J	<0.00112	
8260C	ETHYLBENZENE	mg/kg	0.34	0.00112	J	<0.00286		ı		-		-		<0.00408		-		<0.00311		<0.00294		<0.00280	1
8260C	NAPHTHALENE	mg/kg	0.24	0.00812	J	<0.0143		-		-		-		0.00883	J	-		<0.0155		<0.0147		<0.0140	
8260C	TETRACHLOROETHENE	mg/kg	476	0.00242	J	<0.00286		-		-		-		0.00162	J	-		0.000919	J	<0.00294		<0.00280	
8260C	TOLUENE	mg/kg	0.22	0.0043	J	<0.00573		-		-		-		0.00268	J	-		<0.00621		<0.00589		<0.00560	
8260C	1,2,4-TRIMETHYLBENZENE	mg/kg	0.03	0.00405	J	<0.00573		-		-		-		<0.00815		-		<0.00621		0.00167	J	<0.00560	
8260C	1,2,3-TRIMETHYLBENZENE	mg/kg	0.03	0.00299	J	<0.00573		-		-		-		<0.00815		-		<0.00621		<0.00589		<0.00560	
	ic Compounds (SVOCs)																						
8270D	ACENAPHTHENE	mg/kg	5.0	0.118	J	-		-		<0.190		<0.193		-		<0.392		<0.207		<0.392		<0.373	
	ANTHRACENE	mg/kg	114	<0.202		-		-		<0.190		0.0479	J	-		<0.392		<0.207		<0.392		<0.373	
	BENZO(A)ANTHRACENE	mg/kg	TEQ	<0.202		-		-		<0.190		0.0992	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	BENZO(B)FLUORANTHENE	mg/kg	TEQ	<0.202		-		ı		<0.190		0.0813	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	BENZO(G,H,I)PERYLENE	mg/kg	2,400	<0.202		-		-		<0.190		0.0458	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	BENZO(A)PYRENE	mg/kg	TEQ	<0.202		-		ı		<0.190		0.081	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	CHRYSENE	mg/kg	TEQ	<0.202		-		-		<0.190		0.0891	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	FLUORANTHENE	mg/kg	32	<0.202		-		-		<0.190		0.19	J	-		<0.392		<0.207		<0.392		<0.373	
	FLUORENE	mg/kg	5.1	0.058	J	-		-		<0.190		<0.193		-		<0.392		<0.207		<0.392		<0.373	
8270D	INDENO(1,2,3-CD)PYRENE	mg/kg	TEQ	<0.202		-		-		<0.190		0.0495	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	NAPHTHALENE	mg/kg	0.24	<0.202	J3	-		-		<0.190	J3	<0.193	J3	-		<0.392	J3	<0.0414	J3	<0.392	J3	<0.373	J3
8270D	PHENANTHRENE	mg/kg	24,000	0.0532	J	-		-		<0.190		0.116	J	-		<0.392		<0.207		<0.392		<0.373	
8270D	PYRENE	mg/kg	33	<0.202		-		-		<0.190		0.187	J	-		<0.392		<0.207		<0.392		<0.373	
Carcinogenic Polyni	uclear Aromatic Hydrocarbons (cPAHs	5)																					
8270SIM	TEQ: ND=1/2DL	mg/kg	0.37	-		0.004		-		0.003		0.006		-		0.009		0.009		0.024		0.004	
Polychlorinated Bip	phenyls (PCBs)										_		_				_						
1668A	Total PCBs	pg/g	3,500	178		321		-		546		768		3,240		7,070		365		1,840		4,250	
1668A	TEQ: ND=1/2DL	pg/g	2.0	0.017		0.030		-		0.023		0.021		0.057		0.89		0.057		0.025		0.031	
Dioxins and Furans]
8290A	TEQ: ND=1/2DL	pg/g	5.2	4.4		0.38		4.1		0.38		0.30		-		8.3		0.74		2.0		4.5	

Notes:

Bold indicates measured above the laboratory reporting limit

Gray shading indicates measured above Preliminary Cleanup Level (PCL)

< 0.00115 indicates measured less than laboratory reporting limit of 0.00115

Laboratory qualifiers are defined in laboratory reports (Appendix B) and analyzed in laboratory data review documents (Appendix C).

Former E.A. Nord 1 of 1

a - PCL selection process and sources identifed in Table 3

Table 2 Groundwater Analytical Summary Table 2019 Data Gap Assessment Former E.A. Nord Everett, WA

Lab Sample ID				L109383	1-01	L109383	1-03	L109600	02-01	L109600	2-02	L109600	2-03	L109600	2-04	L109600	2-05	L109600	02-08	L109600	2-06	L109600	2-07
Field Sample ID			Preliminary	GP-801-		GP-802-		MW-11A		MW-11B-		MW-12-		MW-13-		MW-14-0519		MW-15-0519		MW-16-		MW-17-0	
Date Collected			Cleanup Levels	04/26/2	_	04/26/2		05/03/2		05/03/2		05/03/2		05/03/2		05/03/2		05/03/2		05/03/2		05/03/2	
Method	Analyte	Units	(PCLs)		Qual		Qual	<u> </u>	Qual	<u> </u>	Qual	Result	Qual		Qual	Result		Result		Result		Result	
Metals		10			4		-,						40.0.		40.0		4						
6020B	ANTIMONY	μg/L	90	-		_		<2.00		-		6.55		2.05		<2.00		<2.00		<2.00		<2.00	
6020B	ARSENIC	μg/L	5.0	-		-		5.95	J6	-		18.7		4.38		16.6		0.587	J	3.03		43.9	1
6020B	CHROMIUM	μg/L	243,060	-		-		20.5	J6 O1	-		4.82		2.45		3.55		1.29	J	1.24	J	6.43	
6020B	COPPER	μg/L	5.0	-		-		6.34	B O1	-		7.26	В	45.9		7.35	В	1.24	JВ	3.49	JВ	2.27	J B
6020B	LEAD	μg/L	8.1	-		-		1.01	J	-		11.2		23.6		2.10		<2.00		1.79	J	0.911	J
6020B	NICKEL	μg/L	8.2	-		-		4.17		-		7.67		2.96		2.85		<2.00		1.34	J	2.10	1
6020B	SELENIUM	μg/L	71	-		-		0.49	JВ	-		<2.00		0.683	JВ	0.413	J B	<2.00		<2.00		0.391	J B
6020B	ZINC	μg/L	81	-		-		6.85	J B O1	-		27.7	В	20.0	J B	9.27	J B	<25.0		3.95	JB	3.76	JB
7470A	MERCURY	μg/L	0.2	-		-		<0.200		-		<0.200		0.0664	J	<0.200		<0.200		<0.200		<0.200	
Total Petroleum Hydr	ocarbons - Diesel and Oil Range (TPH-D	x)																					
NWTPHDX-NO SGT	DIESEL RANGE ORGANICS	μg/L	500	324		<200		-		<200		-		-		-		-		-		130	J
NWTPHDX-NO SGT	RESIDUAL RANGE ORGANICS	μg/L	500	396		<250		-		<250		-		-		-		-		-		<250	
Volatile Organic Comp	pounds (VOCs)									•					•				•				
8260C	ACETONE	μg/L	7,200	4.68	J	5.37	J	1.97	J	4.2	J	46.1		-		-		-		-		3.22	J
8260C	BENZENE	μg/L	1.6	<0.500		<0.500		<0.500		<0.500		0.207	J	-		-		-		-		<0.500	1
8260C	CARBON DISULFIDE	μg/L	400	<0.500		<0.500		<0.500		<0.500		2.87		-		-		-		-		<0.500	
8260C	CHLOROFORM	μg/L	1.2	<0.500		<0.500		<0.500		1.32		<0.500		-		-		-		-		<0.500	
8260C	N-HEXANE	μg/L	7.8	<5.00		<5.00		<5.00		<5.00		4.74	J	-		-		-		-		<5.00	1
8260C	P-ISOPROPYLTOLUENE	μg/L	-	<0.500		<0.500		<0.500		<0.500		3.81		-		-		-		-		<0.500	1
8260C	2-BUTANONE (MEK)	μg/L	1,740,000	<5.00		<5.00		<5.00		<5.00		4.21	J	-		-		-		-		<5.00	1
8260C	NAPHTHALENE	μg/L	8.9	1.52	J	<2.50		0.188	JB	<2.50		<2.50		-		-		-		-		<2.50	1
8260C	1,2,4-TRIMETHYLBENZENE	μg/L	28	<0.500		<0.500		0.151	J	<0.500		<0.500		-		-		-		-		<0.500	1
Semivolatile Organic	Compounds (SVOCs)																						
8270D	ACENAPHTHENE	μg/L	30	<1.00		<1.00		32		<1.00		-		<1.00		<1.00		-		<1.00		15.9	1
8270D	ANTHRACENE	μg/L	100	<1.00		<1.00		<1.00		<1.00		-		<1.00		0.361	J	-		<1.00		<1.00	1
8270D	FLUORENE	μg/L	10	<1.00		<1.00		19.1		<1.00		-		<1.00		<1.00		-		<1.00		<1.00	ı
8270D	NAPHTHALENE	μg/L	8.9	0.801	J J3	<1.00	J3	<1.00		<1.00		-		<1.00		<1.00		-		<1.00		<1.00	i
8270D	PHENANTHRENE	μg/L	100	<1.00	J4	<1.00	J4	14.1		<1.00		-		<1.00		<1.00		-		<1.00		<1.00	ı
8270D	3&4-METHYL PHENOL	μg/L	400	0.599	J	<10.0		<10.0		<10.0		-		<10.0		<10.0		-		<10.0		<10.0	1
8270D	PHENOL	μg/L	70,000	18.5		11.6		1.29	J	2.89	J	-		1.40	J	9.50	J	-		1.34	J	3.08	J
Carcinogenic Polynuc	lear Aromatic Hydrocarbons (cPAHs)																						
8270SIM	TEQ: ND=1/2DL	μg/L	0.015	0.14		0.008		0.008		0.008		0.007		0.02		0.007		-		0.008		0.008	
Polychlorinated Biphe	enyls (PCBs)																						
1668A	Total PCBs	pg/L	7.0	17,600		174		-		-		8,790		29,800		16,100		125		286		164	
1668A	TEQ: ND=1/2DL	pg/L	1.3	0.39		0.11		-		-		0.15		0.13		0.15		0.15		0.092		0.043	
Dioxins and Furans																							
8290A	TEQ: ND=1/2DL	pg/L	63	-		-		-		-		-		-		-		-		1.9		-	

Notes:

Bold indicates measured above the laboratory reporting limit

Gray shading indicates measured above Preliminary Cleanup Level (PCL)

<2.0 indicates measured less than laboratory reporting limit of 2.0

a - PCL selection process and sources identifed in Table 4

Laboratory qualifiers are defined in laboratory reports (Appendix B) and analyzed in laboratory data review documents (Appendix C).

Former E.A. Nord 1 of 1

Table 3 Soil PCLs 2019 Data Gap Assessment Former E.A. Nord Everett, WA

		CLARC Values	s from May 2019		Ī				
	Soil Protective	of Groundwater		Soil Protective of Human Direct Contact ^e	Soil Protective of	Natural Background			Ls - Human Health Iwater Protection
	Unsaturated Soil	Saturated Soil	Soil, Method A	Soil, Method B	Terrestrial Species	Concentratio n	Laboratory PQL	PCL	Source
	(gwl-u)	(gwl-s)	(mA)	(mB)	(TEE)	(back)	•		
Total Petroleum Hydrocarbons		10 -7		,	,	, , , , , ,			
Diesel Range Hydrocarbons	-	-	2,000	-	200	-	4	200	(TEE)
Oil Range Hydrocarbons	-	-	2,000	-	-	-	10	2,000	(mA)
Volatile Organic Compounds (V	OCs) (mg/kg)								
1,2,4-Trimethylbenzene	0.47	0.03	-	-	-	-	0.005	0.03	(gwl-s)
1,2,3-Trimethylbenzene	0.47	0.03	-	-	-	-	0.005	0.03	(gwl-s) (x)
Benzene	0.03	0.002	0.03	18	-	-	0.001	0.002	(gwl-s)
Ethylbenzene	6.1	0.34	6.0	8,000	-	-	0.0025	0.34	(gwl-s)
Tetrachloroethene (PCE)	0.05	0.003	0.05	476	-	-	0.0025	476	Direct
Toluene	4.7	0.27	7	6,400	200	-	0.005	0.27	(gwl-s)
Polycyclic Aromatic Hydrocarbo	ons (PAHs) (mg/kg	:)		·					
Total cPAHs TEQ	7.5	0.37	-	3.4	12	-	0.005	0.37	(gwl-s)
Semi-Volatile Organics (SVOCs)	(mg/kg)				•			•	
Acenaphthene	98	5.0	-	4,800	20	-	0.033	5.0	(gwl-s)
Anthracene	2,270	114	-	24,000	-	-	0.033	114	(gwl-s)
Benzo(g,h,i)perylene	655	33	-	2,400		-	0.033	2,400	Direct (y)
Fluoranthene	631	32	-	3,200	-	-	0.033	32	(gwl-s)
Fluorene	101	5.1	-	3,200	30	-	0.033	5.1	(gwl-s)
Naphthalene	4.5	0.24	5.0	1,600	-	-	0.033	0.24	(gwl-s)
Phenanthrene	2,270	114	-	24,000	-	-	0.033	24,000	Direct (z)
Pyrene	655	33	-	2,400	-	-	0.033	33	(gwl-s)
Benz(a)anthracene	0.86	0.04	-	1.4	-	-	0.006	NA	Calculated TEQ
Benzo(a)pyrene	2.3	0.12	0.10	0.14	12	-	0.006	NA	Calculated TEQ
Benzo(b)fluoranthene	2.95	0.15	-	1.4	-	-	0.006	NA	Calculated TEQ
Chrysene	96	4.8	-	140	-	-	0.006	NA	Calculated TEQ
Indeno(1,2,3-cd)pyrene	8.3	0.42	-	1.4	-	-	0.006	NA	Calculated TEQ
Polychlorinated Biphenyls (PCB	s) (mg/kg)		•						
Total PCBs	-	-	1	0.5	0.65	0.0035	NA	0.0035	(back)
TEQ: ND=1/2 DL	-	-		-	-	-	2.00E-06	2.00E-06	(pql)
Dioxins/Furans (mg/kg)									
Total 2,3,7,8 TCDD (TEQ)	-	-	-	1.3E-05	2.0E-06	5.2E-06	3.80E-08	5.2E-06	(back)

Notes:

All values in miligrams per kilogram (mg/kg)

Gray shading indicates source value for PCL

Explanation of Sources

 ${\it gwl-s: Saturated Soil Concentration Protective of Leachability to Groundwater for Unrestricted Land Use}\\$

mA: Soil, Method A, Unrestricted Land Use, Table Value

Direct: Direct Contact (Per Ecology email dated July 14, 2014, direct contact value used if constituent not detected above the PCL in groundwater)

pql: Applicable Practical Quantitation Level (PQL)

TEE: Soil Protective of Terrestrial Species

back: Published background concentration

x: No CLARC values for compound, used 1,2,4-Trimethylbenzene as surrogate

y: No CLARC values for compound, used Pyrene as surrogate $\,$

z: No CLARC values for compound, used Anthracene as surrogate

Table 4 Groundwater PCLs 2019 Data Gap Assessment Former E.A. Nord Everett, WA

	CLARC Values - May 2019											
				CLARC V	alues - Iviay 2019							
		Selecti	ion of Method B Su	rface Water Cleanup	Levels				GW Protective of		Selected	PCLs - 2019
Analyte	SW ARAR - Marine/Chronic - Ch. 173-201A WAC	SW ARAR - Marine/Chronic - Clean Water Act §304	SW ARAR - Marine/Chronic - National Toxics Rule, 40 CFR 131	Health – Marine – WA	SW ARAR - Human Health – Marine – EPA	SW, Human Health, Method B	Potable Gr Screenii	ng Level	Vapor Intrusion - Method B, Unrestricted Land Use	Lab PQLs	Value	Source
Total Petroleum Hydrocarbons (TP	(ma-wac)	(ma-cwa)	(ma-ntr)	(hh-wac)	(hh-cwa)	(sw-b)	(pot)	Basis	(vi-b)	(pql)		
		T	I	T			500		1	200	F00	(nat)
Diesel Range Hydrocarbons Oil Range Hydrocarbons	-	-	-	-	-	-	500	-	-	250	500 500	(pot)
Metals	-	-	-	-	-	-	300	-	-	230	300	(pot)
Antimony	<u> </u>	<u> </u>	_	180	90	1,040	6.0	(mcl)		2	90	(hh-cwa)
· · · · · · · · · · · · · · · · · · ·	36	36	36	10	0.14	0.098	5.0	` '		2	5.0	(back)
Arsenic Chromium (Total)	-	-	-	-	0.14	243,060	5.0	(gw-a) (gw-a)	-	2	243,060	(back) (sw-b)
Copper Copper	3.1	3.1	2.4	-	-	2,880	640	(gw-a) (gw-b)	-	5	243,060 5	(SW-D)
Lead	8.1	8.1	8.1	-		2,000	15		-	2	8.1	(pqi) (ma-wac)
Mercury	0.025	0.94	0.025	-	-	-	2	(gw-a) (gw-a)	0.89	0.2	0.2	(ma-wac) (pql)
Nickel	8.2	8.2	8.2	190	100	1,100	100	(mcl)	0.89	2	8.2	(ma-wac)
Selenium	71	71	71	480	200	2,700	50	(mcl)	-	2	71	(ma-wac)
Zinc	81	81	81	2,900	1,000	16,500	4,800	(gw-b)	-	25	81	(ma-wac)
Volatile Organic Compounds (VOCs		01	01	2,300	1,000	10,500	4,800	(gw-D)		23	01	(IIIa-wac)
1,2,4-Trimethylbenzene	, _	_	_	_	_	-	_	_	28	0.5	28	(vi-b)
Acetone	_	_	_	_	_	_	7,200	(gw-b)	-	25	7,200	(gw-b)
Carbon Disulfide	_	_	-	_	_	-	800	(gw-b)	400	0.5	400	(vi-b)
Benzene	-	-	-	1.6	1.6	22.7	5	(gw-a)	2.4	0.5	1.6	(hh-wac)
Chloroform	_	_	-	1,200	600	55	1.4	(gw-b)	1.2	0.5	1.2	(vi-b)
N-Hexane	-	-	-	-	-	-	480	(gw-b)	7.8	5	7.8	(vi-b)
p-Isopropyltoluene	-	-	-	-	-	-	-	-	-	0.5	0.5	(lpq)
2-Butanone (MEK)	-	-	-	-	-	-	4,800	(gw-b)	1,740,000	5	1,740,000	(vi-b)
Naphthalene	-	-	-	-	-	4,710	160	(gw-a)	8.9	2.5	8.9	(vi-b)
Polycyclic Aromatic Hydrocarbons	(PAHs)	JI.	I.	JI.				,			<u> </u>	
Acenaphthene	-	-	-	110	30	648	960	(gw-b)	-	1	30	(hh-cwa)
Anthracene	-	-	-	4,600	100	25,900	4800	(gw-b)	-	1	100	(hh-cwa)
Fluorene	-	-	-	610	10	3,460	640	(gw-b)	-	1	10	(hh-cwa)
Naphthalene	-	-	-	-	-	4,710	160	(gw-a)	8.9	1	8.9	(vi-b)
Phenanthrene	-	-	-	4,600	100	25,900	4800	(gw-b)	-	1	100	(hh-cwa)
Total cPAHs TEQ ^e	-	-	-	0.051	0.0004	0.69	-	-	-	0.015	0.015	(pql)
Semi-Volatile Organics (SVOCs)												
3,4-Methylphenol (m,p-cresol)	-	-	-	-	-	-	400	(gw-b)	-	10	400	(pot)
Phenol	-	-	-	200,000	70,000	556,000	2,400	(gw-b)	-	10	70,000	(hh-cwa)
Dioxins/Furans												
Total 2,3,7,8 TCDD (TEQ)	-	-	-	6.4E-08	1.4E-08	1.0E-08	1.12E-05	(gw-b)	-	5.70E-05	5.70E-05	(pql)
Polychlorinated Bipheyls (PCBs)												
Total PCBs	0.003	0.003	0.003	-	7.0E-06	1.1E-04	0.10	(gw-a)	-	-	7.0E-06	(hh-cwa)

Notes:

All values in micrograms per liter (µg/L) Gray shading indicates source value for PCL

Former E.A. Nord 1 of 2 June 2019

GRAPHS

APPENDIX A

Field Notes

FLUID MEASUREMENT FIELD DATA FORM

SHEET:) OF PROJECT # 108.00224.00059 DATE: 5/3/19 PROJECT LOCATION Exercity WA Water Level Measurement Instrument: Product Detection Instrument: NA Equipment Decon: Alconox Wash Distilled Water ★Tap Water Final Rinse □ Tap Water Wash □ Hexane Wash □ Liquinox Wash □ Air Dry Depth to Product Depth to Water **Below TOC** Well ID **Below TOC Product Thickness** Well Depth Time MW-11A 4.33 12.92 NA 0913 MA NA 4.0% MW-11B 41.03 NA 0916 25.19 26.40 15.76 71.69 MW-12 NA NA 0855 MW-13 26.67 NA 20,70 0849 SL N/A MW-14 21.69 18.76 26.80 25. NA 0852 NA NA MW-15 13.04 NIA 0909 5.60 MA 6.29 MW-16 12.88 N/A 0901 NA 5.97 MW-17 12.99 NA 0905 losleben Prepared by: Stoven

Project No. 108 a Project Name: Force through Location: Evere	E.A. Nord T	tree and as	Sampled B	y: sml		Vell I.D.:	MW-11A N-11A-0E	19
Date Purged: <u>5/3</u> Date Sampled: <u>5/3</u>	11.0	Start (240 ample Time (240	-	t- 7	End (2400hr):	: 1537		
Casing Casing Volume: (gallon				5"	6" (1.50)	8"(2.60)	Other	
Total depth (feet fror Depth to water (feet fror Water column heigh	n TOC) =4,3]		Minim	ng Volume (gal num Purge (gal tual Purge (gal	1) =			
Volume (Gal) (2400hr 0 1516 0.26 1519 0.5 1522 0.75 1525 1.0 1524 1.75 1531 1.75 1537	14.21 13.46 13.51 13.46 13.46 13.50	FIEL Conductivity (mS/cm) 0.764 0.803 0.417 0.406 0.406 0.401 0.405 0.401	D MEASUF TDS (g/L) 0.499 0.527 6.524 0.524 0.524 0.525 0.523	REMENTS DO (mg/L) %2 3.0% 1.74 1.0% 0.%6 0.72 0.67 0.63	pH (units) 6.61 6.55 6.54 6.65 6.69 6.66	ORP (mV) 15.1 -26.1 -31.6 -34.9 -19.4 -56.3 -61.3	Turbidity (Visual) Close close close close close close close close close	Color (Visual) Alecal Alecal Alecal Alecal Alecal Alecal Alecal Alecal
PURGING 8	& SAMPLING EC	QUIPMENT			SAMPL	E VESSEL	s	
Well Wizard Bladder I Active Extraction Well Submersible Pump X Peristaltic Pump Other: Pump Intake Depth: 也	I Pump	_ Bailer (disposa _ Bailer (PVC) _ Bailer (Stainles _ Dedicated <u></u>	ss Steel) 2	mL HD	ber glass 🖘 ber glass w/ H0	Cl	_mL HDPE v	API
Well Integrity: Cool Remarks: N/F Tide Status: Loui O.0		1 10.05 @ 17	73 Refe	Odo erence: ハのハ	r: <u>No</u> A			
Signature:	C. A.						Page) of [

I = a con the term of the te	urged By: ≤ML Well I.D.: MW-IB-0E19 npled By: ≤ML Sample I.D.: MW-IB-0E19 QA Samples: €
Date Purged: <u>5/3//9</u> Start (2400hr): Date Sampled: <u>5/3//9</u> Sample Time (2400hr):	
Chairm Malius and H	6" 6" 8" Other (0.67) (1.02) (1.50) (2.60) ()
Total depth (feet from TOC) = \frac{\frac{\psi_1.6^2}{3}}{9.0\frac{\psi}{2}} Depth to water (feet from TOC) = \frac{\psi_2.0\frac{\psi}{2}}{9.0\frac{\psi}{2}} Water column height (feet) =	Casing Volume (gal) = Minimum Purge (gal) = Actual Purge (gal) =
Volume (Gal) Time (2400hr) Temp. (degrees C) Conductivity (mS/cm)	ASUREMENTS DS DO pH (mg/L) (units) (mV) (Visual) (Visual) 264 7.21 7.67 19.2 class elect 411 1.30 8.13 13.0 class elect 833 0.97 8.24 10.1 class elect 833 0.97 8.29 7.9 class elect 833 0.97 8.37 6.5 dear elect 833 0.64 8.37 5.8 elect elect 833 0.64 8.37 5.9 elect elect 833 0.64 8.37 5.9 elect elect 835 0.64 8.37 5.9 elect elect 835 0.60 60.86 5.9 elect elect 853 0.60 60.86 5.9 elect elect 855 0.60 60.86 5.9 elect elect 857 0.60 60.86 5.9 elect 858 0.60 60.86 5.9 elect 858 0.60 60.86 5.9 elect 859 0.60 60.86 5.9 elect 850 0.60 60.8
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Bailer (disposable) Active Extraction Well Pump Bailer (PVC) Submersible Pump Bailer (Stainless Ste Peristaltic Pump Other: Pump Intake Depth: 350 (feet) Well Integrity: 600 (100) (100) (100) (100)	SAMPLE VESSELS 2. 40mL VOA EscmL HDPE w/ H2SO4 5. 40mL VOA w/ HCL Esc 2. 50 ° ml _ outle 6
Signature: Share Color	Page / of /

Project Nam	e: Former E	A. Nord Inc. Second TELD-W	and as through		The Mark		Well I.D.:	MW-12-08	519
	ed: <u>5/3/19</u> ed: <u>5/3/19</u>		Start (2400 ample Time (2400	Ohr): <u>105</u> Ohr): <u>11</u> 2		End (2400hr): 1120		
Casing Volur	Casing D		25	4" (0.67)		6" (1.50)	8" (2.60)	Other	
Depth to water		ΓΟC) = <u>75.19</u> ΓΟC) = <u>14.76</u> (feet) =	11	Mini	ing Volume (ga mum Purge (ga ctual Purge (ga	1) =			
			FIEL		JREMENTS				
Volume (Gal)	Time (2400hr)	Temp. (degrees C)	Conductivity (mS/cm)	TDS (g/L)	DO (mg/L)	pH (units)	ORP (mV)	Turbidity (Visual)	Color (Visual)
0.25	1056	11.62	1.986	1.320	3.92	10.40	-89.9	Clear	Drok hie
0.5	1102	11.65	1.990	1.293	1.57	10.38	-138.5	eleur	Dask hue
0.75	1105	11.67	2.000	1.300	1.15	7777777	-162.1	cleut	dark has
1.0	1108	11.70	2.011	1, 307	1.07	10.22	-186.3	cless	dark hu
1.25	1111	11.73	2.033	1.322	1.0%	10,15	-199.0	clear	dark h
1.50	1114	11.72	2072	1.347	1.06	9.93	-214.8 -232.8	clent	dark
1.75	1117	11.76	2.116	1.377	1.02	9.69	-248.9	clear	drik h
2.0	1120	11.79	2.115	1.402	0.94	9.79	-25 5.5	cleur	dark h
		SAMPLING E				SAMP	LE VESSEI	_s	
		ump	_ Bailer (disposa _ Bailer (PVC) _ Bailer (Stainles _ Dedicated _	s Steel)	40mL VOA 3 40mL VOA mL am mL am		2	mL HDPE v 500 at am	
other:other: ump Intake De	nth: 73	(fact)		-	mL HD				
Vell Integrity: _ Remarks: _	bood VA	(feet)		-		PE w/ HNO3/		/ sulfal -)	in
Tide Status:	ow: 0.81 (2 1102 ; High: 1	0.05 @1739	Re	ference: NoAl	9			
ignature:		table						Page	of

Peristaltic Pump Mer: Mer: Mer: Mer Meritan Merita		mL amb mL HDP 250_mL HDP				
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Active Extraction Well Pump Submersible Pump Peristaltic Pump Dedicated \$1000000000000000000000000000000000000	Steel)	_ 40mL VOA	Es⊄ // HCL er glass Æs⊄	<u> </u>	S _mL HDPE w 200_ and co 2001 and	r glass S
1.0 1013 11.58 3.003 1.25 1016 11.61 2.676 1.5 1019 11.69 3.686 1.75 1072 11.65 3.656 2.0 1025 11.72 3.656	2.429 2.407 2.407 2.407 2.308 2.382 2.382	1.97 1.83 1.96 1.37 1.16 1.10	4.57 4.54 4.57 4.55 4.53	116.8 116.0 115.1 117.6 112.5 112.5 112.5	dens dens dens dens dens dens dens	Ment Check C
Volume (Gal) Time (2400hr) Temp. (degrees C) Conductivity (mS/cm) 0 1001 11.90 3.672 0.25 1004 11.60 3.744	MEASUF TDS (g/L) 2.45% 2.45%	ual Purge (gal) REMENTS DO (mg/L) -6,23	pH (units) 4.43	ORP (mV) 134.4	Turbidity (Visual) Clent	Color (Visual) clear
Casing Diameter: $2" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(0.67) Casin	(1.02) g Volume (gal) um Purge (gal)	=	(2.60)	Other	· · · · · · · · ·
Date Purged: $\frac{5}{3}/19$ Start (2400h Date Sampled: $\frac{5}{3}/19$ Sample Time (2400h		5	End (2400hr)	: 1025		

Project No. 10%.00 Project Name: Lormor through Location: Even	E.A. Nord To	TELO-WEN	Sampled F	By: <u>SML</u> By: <u>SML</u>	Sa	Well I.D.: _/		9
Date Purged: 5/3/	19	Start (240 ample Time (240	00hr): <u>)/ 4 (</u> 10hr):12		4 7 14 7	r): <u> 120</u> 7		
Casing Casing Volume: (gallon	Diameter: 2" _ s per foot) (0.	707 Page 1	11.000	. 5"	6" (1.50)	8" (2.60)	Other	
Total depth (feet from Depth to water (feet from Water column heigh	TOC) = 21.6	0 65.19	Minir	ing Volume (ga num Purge (ga ctual Purge (ga	1) =			
Volume (Gal) (2400hr, 0 1146 0.25 1152 0.75 1155 1.0 1156 1.25 1201 1.75 1207	12.26	FIEL Conductivity (mS/cm) 7.951 7.797 7.745 7.664 7.617 7.606 7.597 7.606	D MEASU TDS (g/L) 5.166 5.064 5.030 4.941 4.949 4.946 4.939 4.945	REMENTS DO (mg/L) 6.40 1.41 1.29 1.88 1.06 0.93 0.88 0.89	pH (units) 7.24 7.10 7.67 7.05 7.05 7.05 7.03 7.09	ORP (mV) -42. 4 -57. 4 -64. 7 -75. 6 -43.5 -47.6 -49.1	Turbidity (Visual) clear	Color (Visual) dash hu dash hue dash hue dash hue dash hue dash hue dash hue dash hue
PURGING 8 Well Wizard Bladder FActive Extraction WellSubmersible PumpX Peristaltic Pump Other: Pump Intake Depth:	Pump	QUIPMENT _ Bailer (disposa _ Bailer (PVC) _ Bailer (Stainles _ Dedicated _Twb	ss Steel)	mL HD <u>25</u> C_mL HD	w/ HCL ber glass Esc ber glass w/ H	2 10a	S _mL HDPE v O mL ando	er ARI
Tide Status: 60.81	@ 1102; High:)	0.05 @ 1739	Refe	erence: No A	A		Page	/ of/

Project No. 108.00278.0027 Purger Project Name: Ferrica E.A. Nord Tre. and as Sampler Through the successor JE20.00EN, Inc. Location: Everett, WA	
Date Purged: 5/3/19 Start (2400hr): 125 Date Sampled: 5/3/19 Sample Time (2400hr): 125	
Casing Diameter: $2" X 3" 4"$ Casing Volume: (gallons per foot) (0.17) (0.38) (0.67)	
Depth to water (feet from TOC) = 5.60 Mil	asing Volume (gal) = nimum Purge (gal) = Actual Purge (gal) =
Volume Time Temp. Conductivity TDS (Gal) (2400hr) (degrees C) (mS/cm) (g/L) O 125 14.04 14.41 9.67 0.25 1257 12.42 15.01 9.46 0.5 1257 12.29 15.17 9.46 0.75 1300 12.23 15.16 9.450 1.25 1306 12.23 15.21 9.450 1.25 1306 12.23 15.21 9.450 1.5 1309 12.23 15.21 9.457 1.75 1312 12.24 15.22 9.97 2.0 1315 12.35 15.20 9.47	DO (mg/L) (units) (mV) (Visual) (Visual) PY 73.78 7.14 -jol.) And Acad G 3.26 6.82 -jgl.2 dead dead L 2.10 6.21 236.5 clear dead O 0.92 6.77 -283.3 dead clear O 0.99 6.77 -283.3 dead clear O 0.80 6.77 -283.3 dead clear O 0.91 6.76 -291.0 dead clear O 0.91 6.76 -293.1 clear
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder PumpBailer (disposable) Active Extraction Well PumpBailer (PVC) Submersible PumpBailer (Stainless Steel) Y Peristaltic PumpX Dedicated	SAMPLE VESSELS 40mL VOA
Well Integrity: Good Remarks: N/A Tide Status: Low. 0.4) (2) 1102; High: 10.05 (2) 173 R	Odor: No

Project Name Location	through Through	W/ W/A	Inc. and ors TELD-WEN	Purged By Sampled By	y: <u>3/4</u> L	Sal	Well I.D.: <u>//</u> mple I.D.: <u>/</u>		519
Date Purge Date Sample	ed: <u>5/3/</u> ed: <u>5/3</u>	a	Start (2400 ample Time (2400	Ohr): 133 Ohr): 35		End (2400hr): <u>1357</u>		
Casing Volum	Casing Di ne: (gallons p		3"		5"(1.02)	6" (1.50)	8" (2.60)	Other	
Depth to water		OC) = 17.4 OC) = 6.2 feet) =		Minim	ng Volume (ga um Purge (ga ual Purge (ga	ıl) =			
			FIELI	D MEASUF	REMENTS				
Volume (Gal) 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0	Time (2400hr) 1333 1336 1339 1342 1345 1346 1357 1357	Temp. (degrees C) 6.00 12.96 12.96 13.04 13.06 12.95 13.00	Conductivity (mS/cm) 1.171 0.649 0.439 0.449 0.436 0.447 0.447	TDS (g/L) 0.746 0.371 0.265 0.265 0.267 0.267 0.268 0.268	DO (mg/L) 12.30 2.34 1.34 1.32 1.16 0.93 0.93 0.45	pH (units) 6.47 7.69 7.48 7.35 7.24 7.22 7.16 7.15 7.12	ORP (mV) 93.9 -75.7 -67.3 -61.0 -63.0 -49.4 -49.8 -13.2 -43.5	Turbidity (Visual) Lead Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear	Color (Visual) eticol
		SAMPLING EC	UIPMENT			SAMP	LE VESSEL	.S	
Well Wizard Active Extrac Submersible X Peristaltic Pu Other: Pump Intake Dep	ction Well Pu Pump ump	ump	_ Bailer (disposal _ Bailer (PVC) _ Bailer (Stainless _ Dedicated _ &	s Steel)	mL am mL HD	ber glass Esc ber glass w/ H	<u>2 (0</u>	_mL HDPE \ 000 and audo 800 all and	er ARI
Well Integrity:	<u> </u>	Dioz: Highin	10.05 @ 17.39	_		r: <i>No</i>			
Signature: <i></i> あん				,				Page	of /

Project Name: Former E.A. Mord., Inc. and as Sample Through the encress TFLD-WEN, Inc. Location: Everet, WA Date Purged: 5/3/19 Start (2400hr):	QA Samples: _ρ						
Date Sampled: 6/3/19 Sample Time (2400hr):	5"6"8"Other 57) (1.02) (1.50) (2.60) ()						
Total depth (feet from TOC) = 12.99 Casing Volume (gal) = Depth to water (feet from TOC) = 5.97 Minimum Purge (gal) = Water column height (feet) = Actual Purge (gal) =							
FIELD MEA Volume Time Temp. Conductivity TDS (Gal) (2400hr) (degrees C) (mS/cm) (g/L 0 1473 14.46 0.606 0.36 0.25 1426 14.16 6.607 0.36 0.5 1429 14.16 0.608 0.36 0.75 1432 14.19 0.608 0.36 1.0 1435 14.16 0.606 0.39 1.25 1436 161.18 0.606 0.39 1.5 1441 14.16 0.606 0.39 1.75 1444 14.15 0.606 0.39	(mg/L) (units) (mV) (Visual) (Visual) (Visual						
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump	SAMPLE VESSELS 2 40mL VOA SAMPLE VESSELS mL HDPE w/ H2SO4 mL HDPE w/ H2SO4 mL amber glass s/s/c mL amber glass s/s/c mL HDPE mL HDPE mL HDPE w/ HNO3 Esc						
Well Integrity:	Odor: No Reference: NOAA Page of						

WELL NUMBER MW-11A

PROJECT NAME Former E.A. Nord Door, Inc.

PAGE 1 OF 2

CLIENT JELD-WEN, Inc.

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

PROJECT NUMBER 108.00228.00059	PROJECT LOCATION 300 West Marine \	/iew D	rive, Everett, WA				
DATE STARTED 4/25/19 COMPLETED 4/29/19	GROUND ELEVATION 12.39 ft HOLE SIZE 4" - diameter						
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:						
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 5.5 ft						
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A						
NOTES	-						
O DEPTH INTERVAL TYPE NAME U.S.C.S. U.S.C.S.	▼ ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM				
Direct Push Sand, gray, fine to c	coarse grained, moist, no odor	0.1	Hydrated bentonite chips 2-inch sch 40 PVC riser #10/20 silica sand				
GP-MW- 11-SS* SP SAND, gray, fine to n 7.0 SILT, brown-gray wit debris, moist, no odd 8.0	nedium grained, wet, no odor 5.4 h some mottling, trace organic	0.0	0.01" slot screen				
Direct Push	-0.6	0.6	End cap				
WELL COMPLETION DETAILS:							

REMARKS

0.0 to 1.0 feet: Concrete.

1.0 to 2.5 feet: Hydrated bentonite chips. 2.5 to 13.0 feet: 10x20 silica sand pack.

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

Boring continued to 40.0 feet bgs. (description included in boring log for MW-11B)

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PID = Photoionization detector readings in parts per million (ppm).

Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

* = Soil sample consisted of composite sample fronm 0-12 feet bgs.

WELL NUMBER MW-11A

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER 108.00228.00059	PROJECT LOCATION _300 West Marine View Drive, Everett, WA			
DATE STARTED 4/25/19 COMPLETED 4/29/19	GROUND ELEVATION 12.39 ft HOLE SIZE 4" - diameter			
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:			
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 5.5 ft			
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A			
NOTES				
DEPTH (ft) INTERVAL TYPE NAME U.S.C.S. GRAPHIC LOG	RIAL DESCRIPTION G WELL DIAGRAM			

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser.
3.0 to 12.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.
12.8 to 13.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring continued to 40.0 feet bgs. (description included in boring log for MW-11B)

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings.

PID = Photoionization detector readings in parts per million (ppm).

Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

* = Soil sample consisted of composite sample fronm 0-12 feet bgs.

WELL NUMBER MW-11B

PAGE 1 OF 3

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.						
PROJECT NUMBER 108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA						
DATE STARTED 4/25/19 COMPLETED 4/29/19	GROUND ELEVATION 12.39 ft F	HOLE SIZE 4" - diameter					
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:						
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 5.5 ft						
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A						
NOTES							
O RECO NATE OF THE OF T	ERIAL DESCRIPTION	(Edd) WELL DIAGRAM					
Direct Push 80 SW	coarse grained, moist, no odor	0.1 Concrete 0.0					
Direct Push Dire	medium grained, wet, no odor h some mottling, trace organic or medium grained, trace fine gravel,	0.0					
Direct Push ML 100 SILT, gray, wet, no of the second of		0.3					
15							

KEIVIAKKS

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

Boring completed at 40.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings.

PID = Photoionization detector readings in parts per million (ppm).

Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

WELL NUMBER MW-11B

PAGE 2 OF 3

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT	LIENT JELD-WEN, Inc.		PROJECT NAME Former E.A. Nord Door, Inc.						
PROJE	CT NU	JMBER 108.00228.00059 PROJECT LOCATION 300 West Marine View Drive, Everett, View Drive, Evere		rive, Everett, WA					
DATE S			GROUND ELEVATION 12.39 ft HOLE SIZE 4" - diameter						
DRILLIN	NG CO	NTRACTOR	Cas	cade	Drilling		GROUND WATER LEVELS:		
DRILLIN	NG ME	THOD Dire	ct Pus	sh			AT TIME OF DRILLING 5.5 ft		
LOGGED BY S. Losleben CHECKED BY C. Kramer			AFTER DRILLING N/A						
NOTES	_	ı					-		T
DEPTH (ft)	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG		ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	Direc Push		100			SAND, gray, fine to n wet, no odor <i>(continu</i>	medium grained, trace fine gravel, ued)	0.2	Hydrated bentonite chips
25	Direc Push		90	SP				0.0	
	Direc Push		100					0.1	2-inch sch 4 PVC riser
30				<u> </u>					
Monito NT = N PID =	compl oring wo Not test Photoi	eted at 40.0 ell installed a ted onization de	adjace tector	readi	ngs in pai	e boring with a hollow ster rts per million (ppm). nuous core within a 5-foot	n auger. Lithology descriptions based o acetate liner.	on Geoprobe	borings.

REMARKS

WELL NUMBER MW-11B

PROJECT NAME Former E.A. Nord Door, Inc.

PAGE 3 OF 3

CLIENT JELD-WEN, Inc.

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

PROJECT NUMBER 10	08.00228	3.00059		PROJECT LOCATION 300 West Marine	View D	rive, Everett, WA	
DATE STARTED 4/25/19 COMPLETED 4/29/19			GROUND ELEVATION 12.39 ft	HOLE SIZE 4" - diameter			
DRILLING CONTRACTOR Cascade Drilling				GROUND WATER LEVELS:			
DRILLING METHOD Direct Push				▼ AT TIME OF DRILLING 5.5 ft			
LOGGED BY S. Losleben CHECKED BY C. Kramer			AFTER DRILLING N/A				
NOTES							
% DEPTH (ft) INTERVAL TYPE	RECOVERY %	U.S.C.S.		RIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
Direct Push	100	SP	SAND, gray, fine to m wet, no odor <i>(continue</i>	edium grained, trace fine gravel, ed)	0.2	#10/20 silica sand 0.01" slot screen	
Direct Push	100	SM	38.5	AVEL , gray, fine grained, little silt, o odor	0.0	2-inch sch 40	
						PVC sump	
						End cap	

WELL COMPLETION DETAILS:

0.0 to 2.0 feet: Concrete.

2.0 to 28.0 feet: Hydrated bentonite chips. 28.0 to 41.5 feet: 10x20 silica sand pack.

0.0 to 29.5 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 29.5 to 39.5 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 39.5 to 41.3 feet: 2"-diameter, flush-threaded Sch. 40 PVC sump. 41.3 to 41.5 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 40.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PID = Photoionization detector readings in parts per million (ppm).

Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER 108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA			
DATE STARTED 4/25/19 COMPLETED 4/30/19	GROUND ELEVATION 29.66 ft H	UND ELEVATION 29.66 ft HOLE SIZE 4" - diameter		
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:			
DRILLING METHOD Direct Push				
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A			
NOTES				
O DE CO DE C	ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
	ND dark brown, fine grained, some gravel, trace root debris, moist, no 29.2 ne grained, abundant shell odor	NT 0.1	▼ Concrete	
GP-MW- 12-SS* Direct Push SP		NT 0.0	Hydrated bentonite chips	
Direct Push	comes dark gray	0.4	2-inch sch 40 PVC riser	

REMARKS

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

Boring completed at 25.0 feet bgs.
Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

10.2

6.7

4.7

0.4

18.9

0.01" slot screen

■#10/20 silica sand

End cap

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.								PROJECT NAME Former E.A. Nord Doo	r, Inc.	
PROJECT NUMBER _108.00228.00059								PROJECT LOCATION _300 West Marine	View D	rive, Everett, WA
DATE	DATE STARTED 4/25/19 COMPLETED 4/30/19							GROUND ELEVATION 29.66 ft	HOLE S	IZE _4" - diameter
			NTRACTOR			Drilling	_	GROUND WATER LEVELS:		
DRIL	LINC	G MET	HOD Dire	ect Pus	sh	-		X AT TIME OF DRILLING _19.0 ft		
						CHE	CKED BY C. Kramer	AFTER DRILLING N/A		
NOTE		_								
									1	
DEPTH (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		Direct Push		100	SP SP		fragments, moist, no 17.0 SAND, black-gray, fir coarse gravel, moist,	ne to coarse grained, trace fine to no odor		
	1/ \						ROCK FRAGMENTS.	, gray and dark gray, pulverized		

SANDY SILT, gray, some fine sand, trace native wood

SAND, black-gray, fine to coarse grained, few silty fines, abundant decomposing native wood and organic debris,

WELL COMPLETION DETAILS:

0.0 to 1.5 feet: Concrete.

Direct

Push

1.5 to 14.0 feet: Hydrated bentonite chips. 14.0 to 25.0 feet: 10x20 silica sand pack.

0.0 to 15.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser.

ML

SP

100

15.0 to 24.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.

25.0

 \triangle \triangle

△ △<u>19.5</u>

rock debris

wet, organic-like odor

24.8 to 25.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 25.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PID = Photoionization detector readings in parts per million (ppm).
Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

* = Soil sample consisted of composite sample fronm 0-12 feet bgs.

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

20

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.				PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER _108.00228.00059			PROJECT LOCATION 300 West Marine View Drive, Everett, WA				
DATE STARTED 4/25/19		COMP	PLETED _4/30/19	GROUND ELEVATION 28.68 ft	HOLE SI	ZE 4" - diameter	
DRILLING CONTRACTOR _	Cascade	Drilling		GROUND WATER LEVELS:			
DRILLING METHOD Direct	Push			TAT TIME OF DRILLING 18.0 ft			
OGGED BY S. Losleben		CHEC	KED BY C. Kramer	AFTER DRILLING N/A			
NOTES							
	RECOVERY %	GRAPHIC LOG		ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
- Push	<u>SM</u>		silty fines, some orga	ND, dark brown, fine grained, some28.4 anics, moist, no odor / ne grained, abundant shell ve wood debris, moist, no odor	NT	▼ Concrete	
5	80 SP				0.0	Hydrated bentonite chips	
- Direct	80		@ 10.0 feet bgs: Bed	comes dark gray	3.8	2-inch sch PVC riser	
	1	T. C.			1 E		

REMARKS

NT

1.0

3.7

#10/20 silica sand

-End cap

PAGE 2 OF 2

SI	P
OL	.K

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.								PROJECT NAME Former E.A. Nord Doo	r, Inc.	
PRO.	PROJECT NUMBER 108.00228.00059							PROJECT LOCATION 300 West Marine	View D	rive, Everett, WA
DATE STARTED 4/25/19 COMPLETED 4/30/19						СОМ	PLETED 4/30/19	GROUND ELEVATION 28.68 ft	HOLE S	IZE _4" - diameter
DRIL	LIN	G CON	ITRACTOR	Cas	cade	Drilling		GROUND WATER LEVELS:		
DRIL	LIN	G MET	HOD Dire	ct Pus	sh			TAT TIME OF DRILLING 18.0 ft		
LOG	GED	BY _	S. Loslebe	n		CHE	CKED BY C. Kramer	AFTER DRILLING N/A		
NOTI	ES _									
HI OEPTH (#)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATE	FRIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		Direct Push		50	SP		fragments, trace native (continued) ② 18.0 feet bgs: Become state of the state of	ne grained, abundant shell ve wood debris, moist, no odor comes wet ne to coarse grained, trace silt, ng native wood debris, wet, no odor	NT 1.5	0.01" slot screen

WELL COMPLETION DETAILS:

0.0 to 1.5 feet: Concrete.

Direct

Push

1.5 to 13.5 feet: Hydrated bentonite chips. 13.5 to 24.5 feet: 10x20 silica sand pack.

SP

10

0.0 to 14.5 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 14.5 to 24.3 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.

25.0

24.3 to 24.5 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

Boring completed at 25.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PID = Photoionization detector readings in parts per million (ppm).
Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

* = Soil sample consisted of composite sample fronm 0-12 feet bgs.

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.							PROJECT NAME Former E.A. Nord Door, Inc. PROJECT LOCATION 300 West Marine View Drive, Everett, WA				
PROJECT NUMBER 108.00228.00059 DATE STARTED 4/25/19 COMPLETED 5/1/19											
DRILLING CONTRACTOR Cascade Drilling DRILLING METHOD Direct Push LOGGED BY S. Losleben CHECKED BY C. Kramer						Drilling		GROUND WATER LEVELS: AT TIME OF DRILLING 14.0 ft			
NOTE		_						- -			
O DEPTH (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG		ERIAL DESCRIPTION		PID (ppm)	WELL DIAGRAM
	-	Direct Push		75	SM		$^{0.5}$ $-$ silty fines, some org	ND, dark brown, fine grained, sanics, moist, no odor fine grained, abundant shell o odor	some <u>26.2</u>	0.0	- Concrete
-	-	Direct Push	GP-MW- 14-SS*	75	SP					0.3	Hydrated bentonite chips
- - -	-	Direct Push		95			▼ @ 14.0 feet bgs: bed	comes wet		0.5	2-inch sch PVC riser
REI Borin Mon NT = PID	ng d itori = No = P	ing we ot teste hotoio	ed nization de	adjace tector	ent to (readii	ngs in p	be boring with a hollow ster earts per million (ppm). tinuous core within a 5-foo	n auger. Lithology descriptions	s based on Geo	probe b	porings.

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.				
PROJECT NUMBER _ 108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA				
DATE STARTED 4/25/19 COMPLETED 5/1/19	GROUND ELEVATION 26.68 ft HOLE SIZE 4" - diameter				
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:				
DRILLING METHOD _Direct Push	TAT TIME OF DRILLING 14.0 ft				
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A				
NOTES	_				

DEPTH (ft)	INTERVAL	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	Dire Pus		90	SP SP	0	SAND, brown-gray, fine grained, abundant shell fragments, moist, no odor (continued) 17.0 SAND with GRAVEL, dark gray, coarse grained, few fine to coarse gravel, wet, no odor 18.5 GRAVEL, black, orange, tan, fine to coarse grained,	3.0	#10/20 silica sand 0.01" slot screen
	Dire Pus		95	GP		vesicular, wet, no odor, slag-like fill material 21.5 WOOD, dark brown-black, solid and fragmented native wood debris	0.8	
CD1 2/50/18 25				SP	<u> </u>	23.5 SAND interbedded with SILT, gray, fine grained, few 4-inch silt lenses, moist, no odor 25.0 3.2	0.8	End cap

WELL COMPLETION DETAILS:

0.0 to 2.0 feet: Concrete.

2.0 to 12.0 feet: Hydrated bentonite chips. 12.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 13.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 13.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.

22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 25.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PID = Photoionization detector readings in parts per million (ppm).

Geoprobe = Soil samples collected as a continuous core within a 5-foot acetate liner.

* = Soil sample consisted of composite sample fronm 0-12 feet bgs.

CONTINENTAL-UNITED MODIFIED WELL LOG NORD DOOR.GPJ GINT US.GDT 5/20/19

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _ PROJECT		PROJECT NAME Former E.A. Nord Door, Inc. PROJECT LOCATION 300 West Marine View Drive, Everett, WA			
DATE STA		IZE 4" - diameter			
ORILLING ORILLING	GROUND WATER LEVELS: Push AT TIME OF DRILLING 6.0 ft	GROUND WATER LEVELS: AT TIME OF DRILLING 6.0 ft			
NOTES _					
O DEPTH (ft) INTERVAL	MATERIAL DESCRIPTION MATERIAL DESCRIPTION	WELL DIAGRAM			
- - - - -	O.3 ASPHALT PAVEMENT GRAVELLY SAND, brown, fine grained, some fine to medium gravel, moist, no odor, no staining 0.0 SP 3.0 SAND, dark gray, fine grained, few wood fragments, moist, no odor, no staining 0.3 0.4	■ Concrete ■ Hydrated bentonite chips ■ 2-inch sch PVC riser			
5 - CF	■	■#10/20 sili sand 0.01" slot screen			
- - - - -	ML	End cap			
		l			
15 REMAF Boring co Monitorin NT = Not PID = Ph Geoprobe	0.0 SP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER _108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA			
DATE STARTED 4/26/19 COMPLETED 4/29/19	GROUND ELEVATION 12.24 ft HOLE SIZE 4" - diameter			
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:			
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 6.0 ft			
LOGGED BY C. Lee CHECKED BY C. Kramer	AFTER DRILLING N/A			
NOTES				
DEPTH (ft) INTERVAL TYPE NAME U.S.C.S. GRAPHIC LOG	RIAL DESCRIPTION G			

WELL COMPLETION DETAILS:

0.0 to 1.0 feet: Concrete.1.0 to 2.5 feet: Hydrated bentonite chips. 2.5 to 13.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 12.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 12.8 to 13.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 15.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.								PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER				PROJECT LOCATION 300 West Marine View Drive, Everett, WA							
DATE STARTED 4/26/19 COMPLETED 4/29/19					PLETED 4/29/19	GROUND ELEVATION 12.89 ft	H	HOLE S	SIZE 4" - diameter		
DRILLING CONTRACTOR Cascade Drilling						Drilling		GROUND WATER LEVELS:			
DRIL	LIN	G MET	HOD Dire	ct Pus	sh			Ψ AT TIME OF DRILLING 5.5	ft		
LOGO	BEC	BY _	C. Lee			CHE	CKED BY C. Kramer	AFTER DRILLING N/A			
NOTE	S										
o DEPTH (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	МАТЕ	ERIAL DESCRIPTION		PID (ppm)	WELL DIAGRAM
-					GP		0.2 ASPHALT PAVEMEN GRAVEL, gray, fine t sand, moist, no odor	o coarse grained, few fine grained	12.7	0.5	◄ Concrete
-	-	Direct Push		80		000	2.0	, gray-brown, fine grained, few fine r, no staining	10.9	1.5	Hydrated bentonite chips
-]/				 GP		cond fow cilty fines	o coarse grained, few fine grained moist, no odor, no staining	9.4	0.7	PVC riser
5					SP		SAND with GRAVEL	, black, coarse grained, few fine	8.6 7.9		
-	-	Direct Push	GP-MW- 16-SS*	20	SM		SILTY SAND with GF silty fines, few coarse @ 5.5 feet bgs: Becco	r, no staining RAVEL, gray, fine grained, some e gravel, moist, no odor emes wet		0.0	■#10/20 silic sand 0.01" slot screen
-	-	Direct Push		90	SP ———		debris, wet, no odor,	ned, few silty fines, few wood no staining wood fragments, moist, no odor,	1.9 0.9	0.0	End con
-					SP		SAND, gray, fine grai	ned, wet, no odor, no staing	<u>-0.6</u>	0.0	End cap
15							15.0		-2.1		
REI Bori Mon NT = PID Geo	ng o itor = No = P pro	ing we ot teste hotoio be = S	ed nization de oil samples	adjace tector s colle	ogs. Int to 0 readir	ngs in p s a co		n auger. Lithology descriptions based acetate liner.			borings.

REMARKS

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER _108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA			
DATE STARTED 4/26/19 COMPLETED 4/29/19	GROUND ELEVATION 12.89 ft HOLE SIZE 4" - diameter			
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:			
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 5.5 ft			
LOGGED BY C. Lee CHECKED BY C. Kramer	AFTER DRILLING N/A			
NOTES				
(f) INTERVAL TYPE TYPE U.S.C.S. GRAPHIC LOG	RIAL DESCRIPTION G WELL DIAGRAM			

WELL COMPLETION DETAILS:

0.0 to 1.0 feet: Concrete.1.0 to 2.5 feet: Hydrated bentonite chips. 2.5 to 13.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 12.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 12.8 to 13.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 15.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings. NT = Not tested

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT JELD-WEN, Inc.					PROJECT NAME Former E.A. Nord Door, Inc.			
PROJECT NUMBER 108.	R _108.00228.00059 PROJECT LOCATION _300 West Marine View Drive, Eve				rive, Everett, WA			
ATE STARTED 4/26/19 COMPLETED 4/30/19			GROUND ELEVATION 12.61 ft		IOLE S	IZE 4" - diameter		
DRILLING CONTRACTOR	Caso	ade D	rilling		GROUND WATER LEVELS:			
DRILLING METHOD Dire	ct Push	h			▼ AT TIME OF DRILLING 7.5 f	ft		
LOGGED BY C. Lee			CHECKE	D BY C. Kramer	AFTER DRILLING N/A			
NOTES					-		•	
O DEPTH (ft) INTERVAL TYPE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION		PID (ppm)	WELL DIAGRAM
			0.3	ASPHALT PAVEMEN	/	12.3		
-		CD	0 1.5	little fine sand moist	own, medium to coarse grained, , no odor, no staining	11 1		◄ Concrete
Direct Push	75	SP		SAND, brown, fine g	rained, moist, no odor, no staining	11.1	0.2	Hydrated bentonite chips 2-inch sch PVC riser
GP-MW- 17-SS*	100	ML SM	8.0 8.5 9.0	SILTY SAND, dark g	omes wet no odor, no staining ray, fine grained, some silty fines, t, no odor, no staining e grained, wet, no odor, no staining	4.6 4.1 3.6	0.0	■ #10/20 silid sand 0.01" slot screen
10 - Direct Push -	100	SP					0.0	End cap
-		-					0.0	
45						0.4	i .	į.
15 REMARKS		<u>.</u>	15.0)		-2.4		

REMARKS

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT _JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.				
PROJECT NUMBER 108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA				
DATE STARTED _4/26/19 COMPLETED _4/30/19	GROUND ELEVATION 12.61 ft HOLE SIZE 4" - diameter				
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:				
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 7.5 ft				
LOGGED BY C. Lee CHECKED BY C. Kramer	AFTER DRILLING N/A				
NOTES					
DEPTH (ft) INTERVAL TYPE NAME U.S.C.S. GRAPHIC LOG	RIAL DESCRIPTION (English Well DIAGRAM OF THE CONTROL OF THE CONTR				

WELL COMPLETION DETAILS:

0.0 to 1.0 feet: Concrete.
1.0 to 2.5 feet: Hydrated bentonite chips. 2.5 to 13.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 12.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 12.8 to 13.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

Boring completed at 15.0 feet bgs.

Monitoring well installed adjacent to Geoprobe boring with a hollow stem auger. Lithology descriptions based on Geoprobe borings.

NT = Not tested

BORING NUMBER GP-801 PAGE 1 OF 1

SI R	22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425 402 8800
JLK	Telephone: 425.402.8800
	Fax: 425.402.8488

CLIENT JELD-WEN, Inc.	PROJECT NAME Former E.A. Nord Door, Inc.				
PROJECT NUMBER 108.00228.00059	PROJECT LOCATION 300 West Marine View Drive, Everett, WA				
DATE STARTED <u>4/26/19</u> COMPLETED <u>4/26/19</u>	GROUND ELEVATION HOLE SIZE _4" - diameter				
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:				
DRILLING METHOD Direct Push	▼ AT TIME OF DRILLING 5.0 ft				
LOGGED BY S. Losleben CHECKED BY C. Kramer	AFTER DRILLING N/A				
NOTES					
O DEPTH (ft) INTERVAL TYPE NAME NAME U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION				
0.3 ASPHALT PAVEM					
SP Direct 2.5	n, fine to coarse grained, trace fine gravel, moist, no odor NT				
Push 40 SILTY SAND, gray odor	y, fine to medium grained, little silty fines, trace fine gravel, moist, no 2.4				
SAND dark grav	vn-black, solid and fragmented native wood debris fine to medium grained, wet, no odor				
Direct Push 50	0.2				
Direct Push 100 15	0.0				
REMARKS Boring completed at 15.0 feet bgs. Temporary monitoring well installed and sampled. NT = Not tested PID = Photoionization detector readings in parts per million (ppm). Geoprobe = Soil samples collected as a continuous core within a 5-fc * = Soil sample consisted of composite sample fronm 0-12 feet bgs.	pot acetate liner.				

SLR SB LOG (LARGE FOOTER) NORD DOOR.GPJ GINT US.GDT 5/22/19

 $\overline{\mathcal{Q}}$ Water level at time of drilling.

BORING NUMBER GP-802

PAGE 1 OF 1

1	2
CID	В
DIK.	Т
	_

SLR SB LOG (LARGE FOOTER) NORD DOOR.GPJ GINT US.GDT 5/22/19

 $\overline{igspace}$ Water level at time of drilling.

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT	<u>JELD</u>	-WEN, Inc.				PROJECT NAME Former E.A. Nord Door, Inc.	
PROJECT NUMBER _108.00228.00059				.0005	9	PROJECT LOCATION 300 West Marine View Drive, Everett, WA	
DATE ST	FARTE	d 4/26/19			COMI	PLETED 4/26/19 GROUND ELEVATION HOLE SIZE 4" - diameter	
DRILLIN	G CON	TRACTOR	Caso	ade [Drilling	GROUND WATER LEVELS:	
DRILLIN	G MET	HOD Direc	ct Pusi	h		AT TIME OF DRILLING 6.0 ft	
LOGGE	BY S	S. Losleben	l		CHEC	CKED BY C. Kramer AFTER DRILLING N/A	
NOTES							
O DEPTH (ft) INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
J						Griderias riceri, gray, orderiod i men minae, trace departit ragmente	
 				SP		GRAVELLY SAND, light orange-brown, medium to coarse grained, some fine gravel, trace silt, moist, no odor	0.2
	Llond				<u> </u>	SAND, light brown, fine grained, trace silt, moist, no odor	0.1
	Hand Auger		100	SP		4.5	
5 -		GP-802- SS*				SAND, gray, fine to medium grained, moist, no odor Q 6.0 feet bgs: Becomes wet	0.0
10	Direct Push		100	SP			0.1
	Direct		80				0.0
	Push		_	SP		SAND, dark gray, fine grained, wet, no odor	0.0
15						15.0	
REMA			_				
Tempo NT = N PID = F	rary mo ot teste Photoio	nization det	ll insta	illed a readin	ngs in p	mpled. parts per million (ppm). ntinuous core within a 5-foot acetate line	

APPENDIX B

Laboratory Analytical Reports

ANALYTICAL REPORT

May 04, 2019

SLR International Corp. - West Linn, OR

Sample Delivery Group: L1093831

Samples Received: 04/30/2019

Project Number: 108.00228.00059

Description: Nord Door Project - Everett, WA

EVERETT, WA Site:

Report To: Chris Kramer

1800 Blankenship Road, Suite 440

West Linn, OR 97068

Entire Report Reviewed By:

Jared Starkey Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary	3				
Cn: Case Narrative	4				
Sr: Sample Results	5				
GP-801-GW L1093831-01	5				
GP-802-GW L1093831-03	8				
Qc: Quality Control Summary					
Volatile Organic Compounds (GC/MS) by Method 8260C	11				
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	15				
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	16				
GI: Glossary of Terms	21				
Al: Accreditations & Locations					
Sc: Sample Chain of Custody					

CD 004 CW 4002024 04 CW			Collected by S.L.	Collected date/time 04/26/19 09:00	Received da 04/30/19 08:	
GP-801-GW L1093831-01 GW		J.E.	5.E. 04/20/19 03.00		. 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1274531	1	05/01/19 19:14	05/01/19 19:14	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC)□ by Method NWTPHDX-NO SGT	WG1274142	1	05/01/19 17:02	05/02/19 17:48	TH	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1274172	1	05/01/19 16:08	05/02/19 02:07	JF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GP-802-GW L1093831-03 GW			S.L.	04/26/19 16:35	04/30/19 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1274531	1	05/01/19 19:34	05/01/19 19:34	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC)☐ by Method NWTPHDX-NO SGT	WG1274142	1	05/01/19 17:02	05/02/19 18:10	TH	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1274172	1	05/01/19 16:08	05/02/19 02:28	JF	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Jared Starkey Project Manager

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 09:00

Volatile	Organic	Compounds	(GC/MS)	by Metho	d 8260C
----------	---------	-----------	---------	----------	---------

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	4.68	J	1.05	25.0	1	05/01/2019 19:14	WG1274531
Acrylonitrile	U		0.873	5.00	1	05/01/2019 19:14	WG1274531
Benzene	U		0.0896	0.500	1	05/01/2019 19:14	WG1274531
Bromobenzene	U		0.133	0.500	1	05/01/2019 19:14	WG1274531
Bromodichloromethane	U		0.0800	0.500	1	05/01/2019 19:14	WG1274531
Bromochloromethane	U		0.145	0.500	1	05/01/2019 19:14	WG1274531
Bromoform	U		0.186	0.500	1	05/01/2019 19:14	WG1274531
Bromomethane	U		0.157	2.50	1	05/01/2019 19:14	WG1274531
n-Butylbenzene	U		0.143	0.500	1	05/01/2019 19:14	WG1274531
sec-Butylbenzene	U		0.134	0.500	1	05/01/2019 19:14	WG1274531
tert-Butylbenzene	U		0.183	0.500	1	05/01/2019 19:14	WG1274531
Carbon disulfide	U		0.101	0.500	1	05/01/2019 19:14	WG1274531
Carbon tetrachloride	U		0.159	0.500	1	05/01/2019 19:14	WG1274531
Chlorobenzene	U		0.140	0.500	1	05/01/2019 19:14	WG1274531
Chlorodibromomethane	U		0.128	0.500	1	05/01/2019 19:14	WG1274531
Chloroethane	U		0.141	2.50	1	05/01/2019 19:14	WG1274531
Chloroform	U		0.0860	0.500	1	05/01/2019 19:14	WG1274531
Chloromethane	U		0.153	1.25	1	05/01/2019 19:14	WG1274531
2-Chlorotoluene	U		0.111	0.500	1	05/01/2019 19:14	WG1274531
4-Chlorotoluene	U		0.0972	0.500	1	05/01/2019 19:14	WG1274531
1,2-Dibromo-3-Chloropropane	U		0.325	2.50	1	05/01/2019 19:14	WG1274531
1,2-Dibromoethane	U		0.193	0.500	1	05/01/2019 19:14	WG1274531
Dibromomethane	U		0.117	0.500	1	05/01/2019 19:14	WG1274531
1,2-Dichlorobenzene	U		0.101	0.500	1	05/01/2019 19:14	WG1274531
1,3-Dichlorobenzene	U		0.130	0.500	1	05/01/2019 19:14	WG1274531
1,4-Dichlorobenzene	U		0.121	0.500	1	05/01/2019 19:14	WG1274531
Dichlorodifluoromethane	U		0.127	2.50	1	05/01/2019 19:14	WG1274531
1,1-Dichloroethane	U		0.114	0.500	1	05/01/2019 19:14	WG1274531
1,2-Dichloroethane	U		0.108	0.500	1	05/01/2019 19:14	WG1274531
1,1-Dichloroethene	U		0.188	0.500	1	05/01/2019 19:14	WG1274531
cis-1,2-Dichloroethene	U		0.0933	0.500	1	05/01/2019 19:14	WG1274531
trans-1,2-Dichloroethene	U		0.152	0.500	1	05/01/2019 19:14	WG1274531
1,2-Dichloropropane	U		0.190	0.500	1	05/01/2019 19:14	WG1274531
1,1-Dichloropropene	U		0.128	0.500	1	05/01/2019 19:14	WG1274531
1,3-Dichloropropane	U		0.147	1.00	1	05/01/2019 19:14	WG1274531
cis-1,3-Dichloropropene	U		0.0976	0.500	1	05/01/2019 19:14	WG1274531
trans-1,3-Dichloropropene	U		0.222	0.500	1	05/01/2019 19:14	WG1274531
trans-1,4-Dichloro-2-butene	U		0.257	5.00	1	05/01/2019 19:14	WG1274531
2,2-Dichloropropane	U		0.0929	0.500	1	05/01/2019 19:14	WG1274531
Di-isopropyl ether	U		0.0924	0.500	1	05/01/2019 19:14	WG1274531
Ethylbenzene	U		0.158	0.500	1	05/01/2019 19:14	WG1274531
Hexachloro-1,3-butadiene	U		0.157	1.00	1	05/01/2019 19:14	WG1274531
2-Hexanone	U		0.757	5.00	1	05/01/2019 19:14	WG1274531
n-Hexane	U		0.305	5.00	1	05/01/2019 19:14	WG1274531
lodomethane	U		0.377	10.0	1	05/01/2019 19:14	WG1274531
Isopropylbenzene	U		0.126	0.500	1	05/01/2019 19:14	WG1274531
p-Isopropyltoluene	U		0.138	0.500	1	05/01/2019 19:14	WG1274531
2-Butanone (MEK)	U		1.28	5.00	1	05/01/2019 19:14	WG1274531
Methylene Chloride	U		1.07	2.50	1	05/01/2019 19:14	WG1271551 WG1274531
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00	1	05/01/2019 19:14	WG1271551 WG1274531
Methyl tert-butyl ether	U		0.102	0.500	1	05/01/2019 19:14	WG1274531
Naphthalene	1.52	J	0.102	2.50	1	05/01/2019 19:14	WG1274531 WG1274531
n-Propylbenzene	U	<u>=</u>	0.162	0.500	1	05/01/2019 19:14	WG1274531
Styrene	U		0.162	0.500	1	05/01/2019 19:14	WG1274531 WG1274531
1,1,1,2-Tetrachloroethane	U		0.117	0.500	1	05/01/2019 19:14	WG1274531 WG1274531
			0.120				
1,1,2,2-Tetrachloroethane	U		0.130	0.500	1	05/01/2019 19:14	WG1274531

Ss

Cn

GI

Sc

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 09:00

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/01/2019 19:14	WG1274531
Tetrachloroethene	U		0.199	0.500	1	05/01/2019 19:14	WG1274531
Toluene	U		0.412	0.500	1	05/01/2019 19:14	WG1274531
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/01/2019 19:14	WG1274531
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/01/2019 19:14	WG1274531
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/01/2019 19:14	WG1274531
1,1,2-Trichloroethane	U		0.186	0.500	1	05/01/2019 19:14	WG1274531
Trichloroethene	U		0.153	0.500	1	05/01/2019 19:14	WG1274531
Trichlorofluoromethane	U	<u>J4</u>	0.130	2.50	1	05/01/2019 19:14	WG1274531
1,2,3-Trichloropropane	U		0.247	2.50	1	05/01/2019 19:14	WG1274531
1,2,4-Trimethylbenzene	U		0.123	0.500	1	05/01/2019 19:14	WG1274531
1,2,3-Trimethylbenzene	U		0.0739	0.500	1	05/01/2019 19:14	WG1274531
1,3,5-Trimethylbenzene	U		0.124	0.500	1	05/01/2019 19:14	WG1274531
Vinyl acetate	U		0.645	5.00	1	05/01/2019 19:14	WG1274531
Vinyl chloride	U	<u>J4</u>	0.118	0.500	1	05/01/2019 19:14	WG1274531
Xylenes, Total	U		0.316	1.50	1	05/01/2019 19:14	WG1274531
(S) Toluene-d8	96.9			80.0-120		05/01/2019 19:14	WG1274531
(S) 4-Bromofluorobenzene	105			77.0-126		05/01/2019 19:14	WG1274531
(S) 1,2-Dichloroethane-d4	95.9			70.0-130		05/01/2019 19:14	WG1274531

Semi-Volatile Organic Compounds (GC) $\hfill \square$ by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	324		66.7	200	1	05/02/2019 17:48	WG1274142
Residual Range Organics (RRO)	396		83.3	250	1	05/02/2019 17:48	WG1274142
(S) o-Terphenyl	84.7			52.0-156		05/02/2019 17:48	<u>WG1274142</u>

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/02/2019 02:07	WG1274172
Acenaphthylene	U		0.309	1.00	1	05/02/2019 02:07	WG1274172
Anthracene	U		0.291	1.00	1	05/02/2019 02:07	WG1274172
Benzo(a)anthracene	U		0.0975	1.00	1	05/02/2019 02:07	WG1274172
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/02/2019 02:07	WG1274172
Benzo(k)fluoranthene	U		0.355	1.00	1	05/02/2019 02:07	WG1274172
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/02/2019 02:07	WG1274172
Benzo(a)pyrene	U		0.340	1.00	1	05/02/2019 02:07	WG1274172
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/02/2019 02:07	WG1274172
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/02/2019 02:07	WG1274172
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/02/2019 02:07	WG1274172
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/02/2019 02:07	WG1274172
2-Chloronaphthalene	U	<u>J4</u>	0.330	1.00	1	05/02/2019 02:07	WG1274172
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/02/2019 02:07	WG1274172
Chrysene	U		0.332	1.00	1	05/02/2019 02:07	WG1274172
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/02/2019 02:07	WG1274172
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/02/2019 02:07	WG1274172
2,4-Dinitrotoluene	U		1.65	10.0	1	05/02/2019 02:07	WG1274172
2,6-Dinitrotoluene	U		0.279	10.0	1	05/02/2019 02:07	WG1274172
Fluoranthene	U		0.310	1.00	1	05/02/2019 02:07	WG1274172
Fluorene	U		0.323	1.00	1	05/02/2019 02:07	WG1274172
Hexachlorobenzene	U		0.341	1.00	1	05/02/2019 02:07	WG1274172
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.329	10.0	1	05/02/2019 02:07	WG1274172
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/02/2019 02:07	WG1274172
Hexachloroethane	U		0.365	10.0	1	05/02/2019 02:07	WG1274172

¹Cp

(S) 2,4,6-Tribromophenol

(S) p-Terphenyl-d14

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 09:00

L1093831

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/02/2019 02:07	WG1274172
Isophorone	U		0.272	10.0	1	05/02/2019 02:07	WG1274172
Naphthalene	0.801	<u>J J3</u>	0.372	1.00	1	05/02/2019 02:07	WG1274172
Nitrobenzene	U		0.367	10.0	1	05/02/2019 02:07	WG1274172
n-Nitrosodimethylamine	U		1.26	10.0	1	05/02/2019 02:07	WG1274172
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/02/2019 02:07	WG1274172
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/02/2019 02:07	WG1274172
Phenanthrene	U	<u>J4</u>	0.366	1.00	1	05/02/2019 02:07	WG1274172
Pyridine	U		1.37	10.0	1	05/02/2019 02:07	WG1274172
Benzylbutyl phthalate	U		0.275	3.00	1	05/02/2019 02:07	WG1274172
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/02/2019 02:07	WG1274172
Di-n-butyl phthalate	U		0.266	3.00	1	05/02/2019 02:07	WG1274172
Diethyl phthalate	U		0.282	3.00	1	05/02/2019 02:07	WG1274172
Dimethyl phthalate	U		0.283	3.00	1	05/02/2019 02:07	WG1274172
Di-n-octyl phthalate	U		0.278	3.00	1	05/02/2019 02:07	WG1274172
Pyrene	U		0.330	1.00	1	05/02/2019 02:07	WG1274172
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.355	10.0	1	05/02/2019 02:07	WG1274172
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/02/2019 02:07	WG1274172
2-Chlorophenol	U		0.283	10.0	1	05/02/2019 02:07	WG1274172
2,4-Dichlorophenol	U		0.284	10.0	1	05/02/2019 02:07	WG1274172
2,4-Dimethylphenol	U		0.264	10.0	1	05/02/2019 02:07	WG1274172
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/02/2019 02:07	WG1274172
2,4-Dinitrophenol	U	<u>J3</u>	3.25	10.0	1	05/02/2019 02:07	WG1274172
2-Methylphenol	U		0.312	10.0	1	05/02/2019 02:07	WG1274172
3&4-Methyl Phenol	0.599	<u>J</u>	0.266	10.0	1	05/02/2019 02:07	WG1274172
2-Nitrophenol	U		0.320	10.0	1	05/02/2019 02:07	WG1274172
4-Nitrophenol	U		2.01	10.0	1	05/02/2019 02:07	WG1274172
Pentachlorophenol	U		0.313	10.0	1	05/02/2019 02:07	WG1274172
Phenol	18.5		0.334	10.0	1	05/02/2019 02:07	WG1274172
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/02/2019 02:07	WG1274172
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/02/2019 02:07	WG1274172
(S) 2-Fluorophenol	39.9			10.0-120		05/02/2019 02:07	WG1274172
(S) Phenol-d5	28.6			10.0-120		05/02/2019 02:07	WG1274172
(S) Nitrobenzene-d5	69.9			10.0-127		05/02/2019 02:07	WG1274172
(S) 2-Fluorobiphenyl	65.7			10.0-130		05/02/2019 02:07	WG1274172

92.3

78.1

10.0-155

10.0-128

05/02/2019 02:07

05/02/2019 02:07

WG1274172

WG1274172

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 16:35

Volatile Organic Compounds (GC/MS) by Method 8260C

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 04/26/19 16:35

L1093

1093831

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/01/2019 19:34	WG1274531
Tetrachloroethene	U		0.199	0.500	1	05/01/2019 19:34	WG1274531
Toluene	U		0.412	0.500	1	05/01/2019 19:34	WG1274531
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/01/2019 19:34	WG1274531
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/01/2019 19:34	WG1274531
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/01/2019 19:34	WG1274531
1,1,2-Trichloroethane	U		0.186	0.500	1	05/01/2019 19:34	WG1274531
Trichloroethene	U		0.153	0.500	1	05/01/2019 19:34	WG1274531
Trichlorofluoromethane	U	<u>J4</u>	0.130	2.50	1	05/01/2019 19:34	WG1274531
1,2,3-Trichloropropane	U		0.247	2.50	1	05/01/2019 19:34	WG1274531
1,2,4-Trimethylbenzene	U		0.123	0.500	1	05/01/2019 19:34	WG1274531
1,2,3-Trimethylbenzene	U		0.0739	0.500	1	05/01/2019 19:34	WG1274531
1,3,5-Trimethylbenzene	U		0.124	0.500	1	05/01/2019 19:34	WG1274531
Vinyl acetate	U		0.645	5.00	1	05/01/2019 19:34	WG1274531
Vinyl chloride	U	<u>J4</u>	0.118	0.500	1	05/01/2019 19:34	WG1274531
Xylenes, Total	U		0.316	1.50	1	05/01/2019 19:34	WG1274531
(S) Toluene-d8	106			80.0-120		05/01/2019 19:34	WG1274531
(S) 4-Bromofluorobenzene	109			77.0-126		05/01/2019 19:34	WG1274531
(S) 1,2-Dichloroethane-d4	95.2			70.0-130		05/01/2019 19:34	WG1274531

Semi-Volatile Organic Compounds (GC) \square by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	05/02/2019 18:10	WG1274142
Residual Range Organics (RRO)	U		83.3	250	1	05/02/2019 18:10	WG1274142
(S) o-Terphenyl	84.2			52.0-156		05/02/2019 18:10	WG1274142

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/02/2019 02:28	WG1274172
Acenaphthylene	U		0.309	1.00	1	05/02/2019 02:28	WG1274172
Anthracene	U		0.291	1.00	1	05/02/2019 02:28	WG1274172
Benzo(a)anthracene	U		0.0975	1.00	1	05/02/2019 02:28	WG1274172
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/02/2019 02:28	WG1274172
Benzo(k)fluoranthene	U		0.355	1.00	1	05/02/2019 02:28	WG1274172
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/02/2019 02:28	WG1274172
Benzo(a)pyrene	U		0.340	1.00	1	05/02/2019 02:28	WG1274172
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/02/2019 02:28	WG1274172
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/02/2019 02:28	WG1274172
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/02/2019 02:28	WG1274172
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/02/2019 02:28	WG1274172
2-Chloronaphthalene	U	<u>J4</u>	0.330	1.00	1	05/02/2019 02:28	WG1274172
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/02/2019 02:28	WG1274172
Chrysene	U		0.332	1.00	1	05/02/2019 02:28	WG1274172
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/02/2019 02:28	WG1274172
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/02/2019 02:28	WG1274172
2,4-Dinitrotoluene	U		1.65	10.0	1	05/02/2019 02:28	WG1274172
2,6-Dinitrotoluene	U		0.279	10.0	1	05/02/2019 02:28	WG1274172
Fluoranthene	U		0.310	1.00	1	05/02/2019 02:28	WG1274172
Fluorene	U		0.323	1.00	1	05/02/2019 02:28	WG1274172
Hexachlorobenzene	U		0.341	1.00	1	05/02/2019 02:28	WG1274172
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.329	10.0	1	05/02/2019 02:28	WG1274172
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/02/2019 02:28	WG1274172
Hexachloroethane	U		0.365	10.0	1	05/02/2019 02:28	WG1274172

(S) 2,4,6-Tribromophenol

(S) p-Terphenyl-d14

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 16:35

L1093831

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/02/2019 02:28	WG1274172
Isophorone	U		0.272	10.0	1	05/02/2019 02:28	WG1274172
Naphthalene	U	<u>J3</u>	0.372	1.00	1	05/02/2019 02:28	WG1274172
Nitrobenzene	U		0.367	10.0	1	05/02/2019 02:28	WG1274172
n-Nitrosodimethylamine	U		1.26	10.0	1	05/02/2019 02:28	WG1274172
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/02/2019 02:28	WG1274172
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/02/2019 02:28	WG1274172
Phenanthrene	U	<u>J4</u>	0.366	1.00	1	05/02/2019 02:28	WG1274172
Pyridine	U		1.37	10.0	1	05/02/2019 02:28	WG1274172
Benzylbutyl phthalate	U		0.275	3.00	1	05/02/2019 02:28	WG1274172
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/02/2019 02:28	WG1274172
Di-n-butyl phthalate	U		0.266	3.00	1	05/02/2019 02:28	WG1274172
Diethyl phthalate	U		0.282	3.00	1	05/02/2019 02:28	WG1274172
Dimethyl phthalate	U		0.283	3.00	1	05/02/2019 02:28	WG1274172
Di-n-octyl phthalate	U		0.278	3.00	1	05/02/2019 02:28	WG1274172
Pyrene	U		0.330	1.00	1	05/02/2019 02:28	WG1274172
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.355	10.0	1	05/02/2019 02:28	WG1274172
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/02/2019 02:28	WG1274172
2-Chlorophenol	U		0.283	10.0	1	05/02/2019 02:28	WG1274172
2,4-Dichlorophenol	U		0.284	10.0	1	05/02/2019 02:28	WG1274172
2,4-Dimethylphenol	U		0.264	10.0	1	05/02/2019 02:28	WG1274172
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/02/2019 02:28	WG1274172
2,4-Dinitrophenol	U	<u>J3</u>	3.25	10.0	1	05/02/2019 02:28	WG1274172
2-Methylphenol	U		0.312	10.0	1	05/02/2019 02:28	WG1274172
3&4-Methyl Phenol	U		0.266	10.0	1	05/02/2019 02:28	WG1274172
2-Nitrophenol	U		0.320	10.0	1	05/02/2019 02:28	WG1274172
4-Nitrophenol	U		2.01	10.0	1	05/02/2019 02:28	WG1274172
Pentachlorophenol	U		0.313	10.0	1	05/02/2019 02:28	WG1274172
Phenol	11.6		0.334	10.0	1	05/02/2019 02:28	WG1274172
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/02/2019 02:28	WG1274172
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/02/2019 02:28	WG1274172
(S) 2-Fluorophenol	48.1			10.0-120		05/02/2019 02:28	WG1274172
(S) Phenol-d5	31.3			10.0-120		05/02/2019 02:28	WG1274172
(S) Nitrobenzene-d5	78.8			10.0-127		05/02/2019 02:28	WG1274172
(S) 2-Fluorobiphenyl	70.5			10.0-130		05/02/2019 02:28	WG1274172

85.2

70.8

10.0-155

10.0-128

05/02/2019 02:28

05/02/2019 02:28

WG1274172 WG1274172

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093831-01,03

Mothod Blank (MR)

Method Blank (MB)				
(MB) R3407196-3 05/01/19	14:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Acetone	U		1.05	25.0
Acrylonitrile	U		0.873	5.00
Benzene	U		0.0896	0.500
Bromobenzene	U		0.133	0.500
Bromochloromethane	U		0.145	0.500
Bromodichloromethane	U		0.0800	0.500
Bromoform	U		0.186	0.500
Bromomethane	U		0.157	2.50
n-Butylbenzene	U		0.143	0.500
Carbon disulfide	U		0.101	0.500
sec-Butylbenzene	U		0.134	0.500
tert-Butylbenzene	U		0.183	0.500
Carbon tetrachloride	U		0.159	0.500
Chlorobenzene	U		0.140	0.500
Chlorodibromomethane	U		0.128	0.500
Chloroethane	U		0.141	2.50
Chloroform	U		0.0860	0.500
Chloromethane	U		0.153	1.25
2-Chlorotoluene	U		0.111	0.500
4-Chlorotoluene	U		0.0972	0.500
1,2-Dibromo-3-Chloropropane	U		0.325	2.50
1,2-Dibromoethane	U		0.193	0.500
Dibromomethane	U		0.117	0.500
1,2-Dichlorobenzene	U		0.101	0.500
1,3-Dichlorobenzene	U		0.130	0.500
1,4-Dichlorobenzene	U		0.121	0.500
Dichlorodifluoromethane	U		0.127	2.50
1,1-Dichloroethane	U		0.114	0.500
1,2-Dichloroethane	U		0.108	0.500
1,1-Dichloroethene	U		0.188	0.500
cis-1,2-Dichloroethene	U		0.0933	0.500
trans-1,2-Dichloroethene	U		0.152	0.500
1,2-Dichloropropane	U		0.190	0.500
trans-1,4-Dichloro-2-butene	U		0.257	5.00
1,1-Dichloropropene	U		0.128	0.500
1,3-Dichloropropane	U		0.147	1.00
cis-1,3-Dichloropropene	U		0.0976	0.500
trans-1,3-Dichloropropene	U		0.222	0.500
2,2-Dichloropropane	U		0.0929	0.500
2-Hexanone	U		0.757	5.00

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093831-01,03

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

94.9

(MB) R3407196-3 05/01/19	9 14:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
n-Hexane	U		0.305	5.00
Di-isopropyl ether	U		0.0924	0.500
lodomethane	U		0.377	10.0
Ethylbenzene	U		0.158	0.500
Hexachloro-1,3-butadiene	0.364	<u>J</u>	0.157	1.00
Isopropylbenzene	U		0.126	0.500
p-Isopropyltoluene	U		0.138	0.500
2-Butanone (MEK)	U		1.28	5.00
Methylene Chloride	U		1.07	2.50
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00
Methyl tert-butyl ether	U		0.102	0.500
n-Propylbenzene	U		0.162	0.500
Styrene	U		0.117	0.500
1,1,1,2-Tetrachloroethane	U		0.120	0.500
Naphthalene	U		0.174	2.50
1,1,2,2-Tetrachloroethane	U		0.130	0.500
Tetrachloroethene	U		0.199	0.500
Vinyl acetate	U		0.645	5.00
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500
1,2,3-Trichlorobenzene	U		0.164	0.500
1,2,4-Trichlorobenzene	U		0.355	0.500
1,1,1-Trichloroethane	U		0.0940	0.500
1,1,2-Trichloroethane	U		0.186	0.500
Toluene	U		0.412	0.500
Trichloroethene	U		0.153	0.500
Trichlorofluoromethane	U		0.130	2.50
1,2,3-Trichloropropane	U		0.247	2.50
1,2,3-Trimethylbenzene	U		0.0739	0.500
1,2,4-Trimethylbenzene	U		0.123	0.500
1,3,5-Trimethylbenzene	U		0.124	0.500
Vinyl chloride	U		0.118	0.500
Xylenes, Total	U		0.316	1.50
(S) Toluene-d8	95.3			80.0-120
(S) 4-Bromofluorobenzene	104			77.0-126

70.0-130

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093831-01,03

(LCS) R3407196-1 05/01/19	9 13:00 • (LCSD) R3407196-2	05/01/19 13:20								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromochloromethane	25.0	24.8	23.3	99.1	93.2	76.0-122			6.07	20	
Carbon disulfide	25.0	31.6	29.0	126	116	61.0-128			8.78	20	
Acetone	125	171	172	137	138	19.0-160			0.538	27	
Acrylonitrile	125	152	164	122	131	55.0-149			7.52	20	
Bromobenzene	25.0	22.4	22.8	89.6	91.0	73.0-121			1.56	20	
Bromodichloromethane	25.0	22.6	20.4	90.6	81.8	75.0-120			10.2	20	
Bromoform	25.0	27.2	26.7	109	107	68.0-132			1.80	20	
Bromomethane	25.0	16.8	15.6	67.2	62.4	10.0-160			7.45	25	
trans-1,4-Dichloro-2-butene	25.0	19.8	19.9	79.3	79.7	33.0-144			0.492	20	
n-Butylbenzene	25.0	20.9	21.6	83.7	86.5	73.0-125			3.29	20	
sec-Butylbenzene	25.0	22.2	22.1	88.6	88.2	75.0-125			0.452	20	
tert-Butylbenzene	25.0	22.7	23.1	90.8	92.4	76.0-124			1.77	20	
2-Hexanone	125	136	141	109	112	67.0-149			2.94	20	
Carbon tetrachloride	25.0	24.2	24.2	96.8	96.9	68.0-126			0.0831	20	
Chlorobenzene	25.0	24.3	23.9	97.3	95.8	80.0-121			1.61	20	
n-Hexane	25.0	30.0	31.2	120	125	57.0-133			3.89	20	
Chlorodibromomethane	25.0	24.4	23.8	97.6	95.2	77.0-125			2.53	20	
lodomethane	125	145	132	116	106	33.0-147			8.95	26	
Chloroethane	25.0	16.1	14.3	64.4	57.1	47.0-150			12.0	20	
Chloroform	25.0	22.3	22.2	89.2	88.7	73.0-120			0.549	20	
Chloromethane	25.0	21.8	20.0	87.2	79.9	41.0-142			8.74	20	
2-Chlorotoluene	25.0	21.7	21.8	87.0	87.2	76.0-123			0.258	20	
Benzene	25.0	26.1	26.3	104	105	70.0-123			1.07	20	
4-Chlorotoluene	25.0	22.3	22.3	89.2	89.3	75.0-122			0.138	20	
1,2-Dibromo-3-Chloropropane	25.0	25.8	26.4	103	106	58.0-134			2.11	20	
1,2-Dibromoethane	25.0	23.7	23.3	94.9	93.4	80.0-122			1.64	20	
Dibromomethane	25.0	23.3	21.0	93.1	83.8	80.0-120			10.5	20	
1,2-Dichlorobenzene	25.0	22.9	23.2	91.8	92.7	79.0-121			1.02	20	
1,3-Dichlorobenzene	25.0	22.6	22.8	90.4	91.0	79.0-120			0.627	20	
1,4-Dichlorobenzene	25.0	22.2	22.1	88.8	88.3	79.0-120			0.623	20	
Dichlorodifluoromethane	25.0	25.1	22.8	100	91.2	51.0-149			9.69	20	
1,1-Dichloroethane	25.0	24.3	25.4	97.4	102	70.0-126			4.35	20	
1,2-Dichloroethane	25.0	21.2	21.8	84.9	87.2	70.0-128			2.68	20	
,1-Dichloroethene	25.0	27.6	25.2	110	101	71.0-124			9.13	20	
cis-1,2-Dichloroethene	25.0	24.3	23.8	97.2	95.2	73.0-120			2.05	20	
rans-1,2-Dichloroethene	25.0	25.1	24.9	100	99.5	73.0-120			0.882	20	
1,2-Dichloropropane	25.0	26.3	23.7	105	94.6	77.0-125			10.8	20	
1,1-Dichloropropene	25.0	24.7	25.1	98.7	100	74.0-126			1.53	20	
1,3-Dichloropropane	25.0	24.5	24.1	98.1	96.2	80.0-120			1.92	20	
Y reselvations	25.0		20.4	00.0	00.0	00.0.400			0.00		

25.0

cis-1,3-Dichloropropene

96.8

88.6

80.0-123

22.1

24.2

8.90

20

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093831-01,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3407196-1	05/01/19 13:00	• (LCSD) R3407196-2	05/01/19 13:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Vinyl acetate	125	122	136	97.4	109	11.0-160			11.3	20	
trans-1,3-Dichloropropene	25.0	23.1	22.6	92.4	90.3	78.0-124			2.24	20	
2,2-Dichloropropane	25.0	30.4	30.6	121	122	58.0-130			0.649	20	
Di-isopropyl ether	25.0	27.1	30.0	108	120	58.0-138			10.4	20	
Hexachloro-1,3-butadiene	25.0	26.9	27.7	108	111	54.0-138			2.73	20	
Isopropylbenzene	25.0	26.2	25.6	105	102	76.0-127			2.41	20	
p-Isopropyltoluene	25.0	22.9	22.6	91.6	90.5	76.0-125			1.18	20	
2-Butanone (MEK)	125	151	168	120	134	44.0-160			11.0	20	
Methylene Chloride	25.0	25.0	25.0	100	100	67.0-120			0.215	20	
4-Methyl-2-pentanone (MIBK)	125	133	130	106	104	68.0-142			2.31	20	
Ethylbenzene	25.0	24.8	24.2	99.1	96.8	79.0-123			2.30	20	
n-Propylbenzene	25.0	21.6	22.0	86.3	88.0	77.0-124			2.01	20	
Styrene	25.0	27.7	27.1	111	108	73.0-130			2.40	20	
1,1,1,2-Tetrachloroethane	25.0	24.0	23.7	95.9	94.8	75.0-125			1.07	20	
1,1,2,2-Tetrachloroethane	25.0	21.3	21.7	85.1	86.7	65.0-130			1.87	20	
Tetrachloroethene	25.0	26.6	25.8	106	103	72.0-132			3.02	20	
1,1,2-Trichlorotrifluoroethane	25.0	26.2	24.1	105	96.6	69.0-132			8.24	20	
1,2,3-Trichlorobenzene	25.0	23.7	24.3	94.7	97.4	50.0-138			2.83	20	
1,2,4-Trichlorobenzene	25.0	24.9	25.4	99.5	102	57.0-137			2.03	20	
1,1,1-Trichloroethane	25.0	24.0	23.5	96.1	94.0	73.0-124			2.22	20	
1,1,2-Trichloroethane	25.0	22.9	22.5	91.6	90.1	80.0-120			1.71	20	
Trichloroethene	25.0	26.1	24.2	105	96.9	78.0-124			7.61	20	
Trichlorofluoromethane	25.0	16.0	14.6	64.2	58.3	59.0-147		<u>J4</u>	9.60	20	
1,2,3-Trichloropropane	25.0	19.6	20.0	78.4	80.0	73.0-130			1.90	20	
Methyl tert-butyl ether	25.0	24.3	24.8	97.4	99.1	68.0-125			1.76	20	
1,2,3-Trimethylbenzene	25.0	21.3	21.0	85.0	83.9	77.0-120			1.30	20	
1,2,4-Trimethylbenzene	25.0	21.6	21.6	86.5	86.6	76.0-121			0.129	20	
1,3,5-Trimethylbenzene	25.0	21.8	22.1	87.3	88.2	76.0-122			1.10	20	
Naphthalene	25.0	23.6	24.3	94.3	97.2	54.0-135			3.09	20	
Vinyl chloride	25.0	17.1	15.2	68.3	60.9	67.0-131		<u>J4</u>	11.4	20	
Toluene	25.0	26.1	25.4	104	102	79.0-120		-	2.46	20	
Xylenes, Total	75.0	74.9	73.8	99.9	98.4	79.0-123			1.48	20	
(S) Toluene-d8				101	100	80.0-120					
(S) 4-Bromofluorobenzene				109	111	77.0-126					

70.0-130

89.8

102

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds $(GC)\square$ by Method NWTPHDX-NO SGT

L1093831-01,03

Method Blank (MB)

(MB) R3407446-1 05/02/19	9 00:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	79.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R340/446-2 05/02/	19 01:03 • (LCS	D) R340/446-3	3 05/02/19 01:	46						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	883	841	118	112	50.0-150			4.87	20
Residual Range Organics (RRO)	750	665	620	88.7	82.7	50.0-150			7.00	20
(S) o-Terphenyl				92.0	89.0	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093831-01,03

Method Blank (MB

Method Blank (MB))				
(MB) R3407356-3 05/01/1	9 23:25				
	MB Result	MB Qualifier	MB MDL	IB RDL	
Analyte	ug/l		ug/l	g/l	
Acenaphthene	U		0.316	00	
Acenaphthylene	U		0.309	00	
Anthracene	U		0.291	00	
Benzo(a)anthracene	U		0.0975	00	
Benzo(b)fluoranthene	U		0.0896	00	
Benzo(k)fluoranthene	U		0.355	00	
Benzo(g,h,i)perylene	U		0.161	00	
Benzo(a)pyrene	U		0.340	00	
Bis(2-chlorethoxy)methane	U		0.329	0.0	
Bis(2-chloroethyl)ether	U		1.62	0.0	
Bis(2-chloroisopropyl)ether	U		0.445	0.0	
4-Bromophenyl-phenylether	U		0.335	0.0	
2-Chloronaphthalene	U		0.330	00	
4-Chlorophenyl-phenylether	U		0.303	0.0	
Chrysene	U		0.332	00	
Dibenz(a,h)anthracene	U		0.279	00	
3,3-Dichlorobenzidine	U		2.02	0.0	
2,4-Dinitrotoluene	U		1.65	0.0	
2,6-Dinitrotoluene	U		0.279	0.0	
Fluoranthene	U		0.310	00	
Fluorene	U		0.323	00	
Hexachlorobenzene	U		0.341	00	
Hexachloro-1,3-butadiene	U		0.329	0.0	
Hexachlorocyclopentadiene	U		2.33	0.0	
Hexachloroethane	U		0.365	0.0	
Indeno(1,2,3-cd)pyrene	U		0.279	00	
Isophorone	U		0.272	0.0	
Naphthalene	U		0.372	00	
Nitrobenzene	U		0.367	0.0	
n-Nitrosodimethylamine	U		1.26	0.0	
n-Nitrosodiphenylamine	U		1.19	0.0	
n-Nitrosodi-n-propylamine	U		0.403	0.0	
Phenanthrene	U		0.366	00	
Benzylbutyl phthalate	U		0.275	.00	
Bis(2-ethylhexyl)phthalate	U		0.709	.00	
Di-n-butyl phthalate	U		0.266	.00	
Diethyl phthalate	U		0.282	.00	
Dimethyl phthalate	U		0.283	.00	
Di-n-octyl phthalate	U		0.278	.00	
Pyrene	U		0.330	00	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093831-01,03

Method Blank (MB)

(MB) R3407356-3 05/01/	19 23:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	ug/l		ug/l	ug/l	ľ
Pyridine	U		1.37	10.0	L
1,2,4-Trichlorobenzene	U		0.355	10.0	3
4-Chloro-3-methylphenol	U		0.263	10.0	L
2-Chlorophenol	U		0.283	10.0	4
2-Methylphenol	U		0.312	10.0	1
3&4-Methyl Phenol	U		0.266	10.0	L
2,4-Dichlorophenol	U		0.284	10.0	5
2,4-Dimethylphenol	U		0.264	10.0	L
4,6-Dinitro-2-methylphenol	U		2.62	10.0	6
2,4-Dinitrophenol	U		3.25	10.0	
2-Nitrophenol	U		0.320	10.0	
4-Nitrophenol	U		2.01	10.0	7
Pentachlorophenol	U		0.313	10.0	L
Phenol	U		0.334	10.0	8
2,4,5-Trichlorophenol	U		0.236	10.0	
2,4,6-Trichlorophenol	U		0.297	10.0	_
(S) Nitrobenzene-d5	64.6			10.0-127	9
(S) 2-Fluorobiphenyl	64.2			10.0-130	L
(S) p-Terphenyl-d14	<i>75.0</i>			10.0-128	
(S) Phenol-d5	25.8			10.0-120	
(S) 2-Fluorophenol	40.3			10.0-120	
(S) 2,4,6-Tribromophenol	74.0			10.0-155	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3407356-1 05/01/19 22:44 • (LCSD) R3407356-2 05/01/19 23:04												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Acenaphthene	50.0	23.3	20.8	46.6	41.6	41.0-120			11.3	22		
Acenaphthylene	50.0	28.2	24.0	56.4	48.0	43.0-120			16.1	22		
Anthracene	50.0	23.8	23.1	47.6	46.2	45.0-120			2.99	20		
Benzo(a)anthracene	50.0	28.3	27.9	56.6	55.8	47.0-120			1.42	20		
Benzo(b)fluoranthene	50.0	27.4	27.5	54.8	55.0	46.0-120			0.364	20		
Benzo(k)fluoranthene	50.0	28.1	28.4	56.2	56.8	46.0-120			1.06	21		
Benzo(g,h,i)perylene	50.0	26.1	26.0	52.2	52.0	48.0-121			0.384	20		
Benzo(a)pyrene	50.0	27.2	27.0	54.4	54.0	47.0-120			0.738	20		
Bis(2-chlorethoxy)methane	50.0	25.3	23.8	50.6	47.6	33.0-120			6.11	24		
Bis(2-chloroethyl)ether	50.0	25.0	21.1	50.0	42.2	23.0-120			16.9	33		
Bis(2-chloroisopropyl)ether	50.0	22.4	17.4	44.8	34.8	28.0-120			25.1	31		

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093831-01,03

 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

 (LCS) R3407356-1 05/01/19 22:44 • (LCSD) R3407356-2 05/01/19 23:04

 Spike Amount LCS Result LCS Result LCSD Result LCSD Resc. LCSD Rec. LCSD Rec. Limits LCS Qualifier RPD RPD Limits

 Analyte
 ug/l
 ug/l
 %
 %
 %
 %
 %

 4-Bromophenyl-phenylether
 50.0
 26.6
 24.6
 53.2
 49.2
 45.0-120
 7.81
 20

 2-Chloronaphthalene
 50.0
 20.9
 17.6
 41.8
 35.2
 37.0-120
 J4
 17.1
 25

 4-Chlorophenyl-phenylether
 50.0
 28.9
 26.6
 57.8
 53.2
 44.0-120
 8.29
 20

Sr

Analyte	ug/l	ug/l	ug/l	%	%	%		%	%	
4-Bromophenyl-phenylether	50.0	26.6	24.6	53.2	49.2	45.0-120		7.81	20	
2-Chloronaphthalene	50.0	20.9	17.6	41.8	35.2	37.0-120	<u>J4</u>	17.1	25	
4-Chlorophenyl-phenylether	50.0	28.9	26.6	57.8	53.2	44.0-120		8.29	20	
Chrysene	50.0	26.2	26.7	52.4	53.4	48.0-120		1.89	20	
Dibenz(a,h)anthracene	50.0	27.3	27.3	54.6	54.6	47.0-120		0.000	20	
3,3-Dichlorobenzidine	100	55.8	53.7	55.8	53.7	44.0-120		3.84	20	
2,4-Dinitrotoluene	50.0	32.4	34.3	64.8	68.6	49.0-124		5.70	20	
2,6-Dinitrotoluene	50.0	29.1	30.5	58.2	61.0	46.0-120		4.70	21	
Fluoranthene	50.0	30.2	30.6	60.4	61.2	51.0-120		1.32	20	
Fluorene	50.0	28.6	26.7	57.2	53.4	47.0-120		6.87	20	
Hexachlorobenzene	50.0	28.1	25.3	56.2	50.6	44.0-120		10.5	20	
Hexachloro-1,3-butadiene	50.0	22.8	16.2	45.6	32.4	19.0-120	<u>J3</u>	33.8	32	
Hexachlorocyclopentadiene	50.0	18.7	14.0	37.4	28.0	15.0-120		28.7	31	
Indeno(1,2,3-cd)pyrene	50.0	27.2	27.0	54.4	54.0	49.0-122		0.738	20	
Isophorone	50.0	28.3	26.0	56.6	52.0	36.0-120		8.47	23	
Naphthalene	50.0	21.3	16.1	42.6	32.2	27.0-120	<u>J3</u>	27.8	27	
Nitrobenzene	50.0	23.6	20.2	47.2	40.4	27.0-120		15.5	29	
n-Nitrosodimethylamine	50.0	17.3	16.8	34.6	33.6	10.0-120		2.93	40	
n-Nitrosodiphenylamine	50.0	25.0	23.7	50.0	47.4	47.0-120		5.34	20	
n-Nitrosodi-n-propylamine	50.0	28.4	25.7	56.8	51.4	31.0-120		9.98	28	
Phenanthrene	50.0	23.7	22.3	47.4	44.6	46.0-120	<u>J4</u>	6.09	20	
Benzylbutyl phthalate	50.0	26.9	26.5	53.8	53.0	43.0-121		1.50	20	
Bis(2-ethylhexyl)phthalate	50.0	27.9	27.7	55.8	55.4	43.0-122		0.719	20	
Di-n-butyl phthalate	50.0	32.4	32.7	64.8	65.4	49.0-121		0.922	20	
Diethyl phthalate	50.0	34.6	36.0	69.2	72.0	48.0-122		3.97	20	
Dimethyl phthalate	50.0	29.6	32.1	59.2	64.2	48.0-120		8.10	20	
Di-n-octyl phthalate	50.0	29.7	29.2	59.4	58.4	42.0-125		1.70	20	
Pyrene	50.0	24.2	23.9	48.4	47.8	47.0-120		1.25	20	
Pyridine	50.0	17.0	16.4	34.0	32.8	10.0-120		3.59	38	
1,2,4-Trichlorobenzene	50.0	19.1	13.8	38.2	27.6	24.0-120	<u>J3</u>	32.2	29	
4-Chloro-3-methylphenol	50.0	31.3	30.3	62.6	60.6	40.0-120		3.25	21	
2-Chlorophenol	50.0	23.1	20.1	46.2	40.2	25.0-120		13.9	35	
2-Methylphenol	50.0	24.5	21.7	49.0	43.4	28.0-120		12.1	29	
3&4-Methyl Phenol	50.0	26.6	23.6	53.2	47.2	31.0-120		12.0	30	
2,4-Dichlorophenol	50.0	25.6	22.0	51.2	44.0	36.0-120		15.1	26	
2,4-Dimethylphenol	50.0	27.2	24.9	54.4	49.8	33.0-120		8.83	26	
4,6-Dinitro-2-methylphenol	50.0	30.0	27.6	60.0	55.2	38.0-138		8.33	25	
2,4-Dinitrophenol	50.0	30.7	13.4	61.4	26.8	10.0-120	<u>J3</u>	78.5	39	
2-Nitrophenol	50.0	24.3	21.1	48.6	42.2	31.0-120		14.1	29	
4-Nitrophenol	50.0	15.8	14.7	31.6	29.4	10.0-120		7.21	33	
А	.CCOUNT:			Р	ROJECT:		SDG:		DATE/TIME:	PAGE:

05/04/19 17:17

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093831-01,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

7356-2 05/01/19 23:0	CSD) R3407356-	05/01/19 22:44 • (1	(LCS) R3407356-1

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Pentachlorophenol	50.0	27.0	25.1	54.0	50.2	23.0-120			7.29	25
Phenol	50.0	12.5	11.3	25.0	22.6	10.0-120			10.1	36
2,4,5-Trichlorophenol	50.0	29.1	28.9	58.2	57.8	44.0-120			0.690	22
2,4,6-Trichlorophenol	50.0	28.6	26.7	57.2	53.4	42.0-120			6.87	23
(S) Nitrobenzene-d5				49.9	39.5	10.0-127				
(S) 2-Fluorobiphenyl				50.1	40.9	10.0-130				
(S) p-Terphenyl-d14				54.1	54.2	10.0-128				
(S) Phenol-d5				22.8	20.5	10.0-120				
(S) 2-Fluorophenol				34.0	29.6	10.0-120				
(S) 2,4,6-Tribromophenol				63.5	61.0	10.0-155				

L1093799-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1093799-01 05/02/19 03:08 • (MS) R3407356-4 05/02/19 03:29 • (MSD) R3407356-5 05/02/19 03:49													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%	·		%	%	
Acenaphthene	50.0	U	32.8	34.5	65.6	69.0	1	28.0-120			5.05	25	
Acenaphthylene	50.0	U	38.7	40.9	77.4	81.8	1	31.0-121			5.53	25	
Anthracene	50.0	U	35.4	37.6	70.8	75.2	1	36.0-120			6.03	23	
Benzo(a)anthracene	50.0	U	40.6	42.7	81.2	85.4	1	39.0-120			5.04	23	
Benzo(b)fluoranthene	50.0	U	42.6	43.3	85.2	86.6	1	37.0-120			1.63	23	
Benzo(k)fluoranthene	50.0	U	40.1	40.6	80.2	81.2	1	37.0-120			1.24	26	
Benzo(g,h,i)perylene	50.0	U	35.7	38.8	71.4	77.6	1	37.0-123			8.32	25	
Benzo(a)pyrene	50.0	U	39.9	40.7	79.8	81.4	1	37.0-120			1.99	24	
Bis(2-chlorethoxy)methane	50.0	U	33.9	34.8	67.8	69.6	1	17.0-120			2.62	31	
Bis(2-chloroethyl)ether	50.0	U	58.5	78.9	117	158	1	14.0-120		<u>J5</u>	29.7	33	
Bis(2-chloroisopropyl)ether	50.0	U	35.6	72.4	71.2	145	1	18.0-120		<u>J3 J5</u>	68.1	34	
4-Bromophenyl-phenylether	50.0	U	40.6	44.3	81.2	88.6	1	37.0-120			8.72	24	
2-Chloronaphthalene	50.0	U	29.8	33.9	59.6	67.8	1	29.0-120			12.9	28	
4-Chlorophenyl-phenylether	50.0	U	41.6	42.0	83.2	84.0	1	36.0-120			0.957	23	
Chrysene	50.0	U	37.2	38.3	74.4	76.6	1	38.0-120			2.91	23	
Dibenz(a,h)anthracene	50.0	U	37.0	38.8	74.0	77.6	1	36.0-121			4.75	24	
3,3-Dichlorobenzidine	100	U	ND	ND	0.000	0.000	1	10.0-134	<u>J6</u>	<u>J6</u>	0.000	30	
2,4-Dinitrotoluene	50.0	U	44.1	44.0	88.2	88.0	1	39.0-125			0.227	25	
2,6-Dinitrotoluene	50.0	U	43.1	40.8	86.2	81.6	1	36.0-120			5.48	27	
Fluoranthene	50.0	U	43.3	45.1	86.6	90.2	1	41.0-121			4.07	22	
Fluorene	50.0	U	41.2	41.9	82.4	83.8	1	37.0-120			1.68	24	
Hexachlorobenzene	50.0	U	39.6	43.9	79.2	87.8	1	35.0-122			10.3	24	
Hexachloro-1,3-butadiene	50.0	U	26.3	39.0	52.6	78.0	1	12.0-120		<u>J3</u>	38.9	34	

2-Nitrophenol

50.0

QUALITY CONTROL SUMMARY

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093799-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(00) 11002700 01	05/02/10 02:00	(MC) D24072EC 4	05/02/10 02:20	(MCD) D24072EC E	05/02/10 02:40
1051 L1093/99-01	05/02/19 03:08 •	(IVIS) R34U/356-4	05/02/19 03:29 •	(MSD) R3407356-5	05/02/19 03:49

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Hexachlorocyclopentadiene	50.0	U	18.9	16.1	37.8	32.2	1	10.0-120			16.0	33
Indeno(1,2,3-cd)pyrene	50.0	U	37.6	39.4	75.2	78.8	1	38.0-125			4.68	24
	F0.0		247	40.0	CO 4	05.0	4	24.0.420			24.4	27

Phenanthrene	50.0	U	35.3	37.0	/0.6	/4.0	1	33.0-120	4.70	22	
Benzylbutyl phthalate	50.0	U	42.0	43.5	84.0	87.0	1	34.0-126	3.51	24	
Bis(2-ethylhexyl)phthalate	50.0	3.08	47.8	55.1	89.4	104	1	33.0-126	14.2	25	
Di-n-butyl phthalate	50.0	U	47.8	49.2	95.6	98.4	1	35.0-128	2.89	23	
Diethyl phthalate	50.0	U	49.6	47.5	99.2	95.0	1	39.0-125	4.33	24	
Dimethyl phthalate	50.0	U	40.4	42.3	80.8	84.6	1	37.0-120	4.59	24	
Di-n-octyl phthalate	50.0	U	43.1	44.8	86.2	89.6	1	25.0-135	3.87	26	

Pyrene	50.0	U	39.3	39.5	78.6	79.0	1	39.0-120			0.508	22	
Pyridine	50.0	4.35	26.5	36.8	44.3	64.9	1	10.0-120			32.5	37	
1,2,4-Trichlorobenzene	50.0	U	19.1	28.0	38.2	56.0	1	15.0-120		<u>J3</u>	37.8	31	
4-Chloro-3-methylphenol	50.0	U	62.1	73.2	124	146	1	26.0-120	<u>J5</u>	<u>J5</u>	16.4	27	
2-Chlorophenol	50.0	U	10.9	15.3	21.8	30.6	1	18.0-120			33.6	34	

2-Methylphenol	50.0	U	51.5	61.7	103	123	1	10.0-120	<u>J5</u>	18.0	30	
3&4-Methyl Phenol	50.0	215	240	298	50.0	166	1	10.0-120	EV	21.6	36	
2,4-Dichlorophenol	50.0	U	33.8	43.8	67.6	87.6	1	19.0-120		25.8	27	
2,4-Dimethylphenol	50.0	U	42.1	51.0	84.2	102	1	15.0-120		19.1	28	
4,6-Dinitro-2-methylphenol	50.0	U	35.9	36.4	71.8	72.8	1	10.0-144		1.38	39	
2,4-Dinitrophenol	50.0	U	36.6	33.6	73.2	67.2	1	10.0-120		8.55	40	

65.2

4-Nitrophenol	50.0	U	75.2	82.2	150	164	1	10.0-120	<u>J5</u>	<u>J5</u>	8.89	40	
Pentachlorophenol	50.0	U	45.5	46.0	91.0	92.0	1	10.0-128			1.09	37	
Phenol	50.0	60.9	70.8	94.7	19.8	67.6	1	10.0-120			28.9	40	
2,4,5-Trichlorophenol	50.0	U	42.6	44.6	85.2	89.2	1	33.0-120			4.59	31	
2,4,6-Trichlorophenol	50.0	U	35.6	39.9	71.2	79.8	1	26.0-120			11.4	31	
(S) Nitrobenzene-d5					54.0	74.8		10.0-127					

20.0-120

32.4

(S) 2-Fluorobiphenyl	67.6	94.2	10.0-130	
(S) p-Terphenyl-d14	92.0	98.8	10.0-128	
(S) Phenol-d5	58.5	8.80	10.0-120	J2

47.0

32.6

(S) 2-Fluorophenol	44.8	55.0	10.0-120
(S) 2,4,6-Tribromophenol	94.5	105	10.0-155

23.5

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

West Linn, OR 97068									Analysis / Container / Preservative					2.5	Chair	n of Custody	Page of			
				SLR International Corp West Lii OR 1800 Blankenship Road, Suite 440			1800 Bla	1800 Blankenship Rd, Ste 440												-/-
Report to: Chris Kramer				kramer@slrcons rconsulting.com;			-	BT		103		w-sa-W				Moun	5 Lebanon Rd nt Juliet, TN 37			
roject pescription: Nord Door Project -	Everett, WA]	City/State Collected: Ev	erett, WA	+	mb-H(b-HCl-	res	PE-HI		-NoPr		i.		Phone	e: 615-758-585 e: 800-767-585 515-758-5859			
phone: 503-723-4423 ax: 503-723-4436	Client Project 108.00228.	# 00048 5	Lab F		ORDDOOR		40mlAmb-HC	OmlAm	100ml Amb NoPres	50mlHE	nb-HCl	mlAmk				L#	LIOP	3831 03 6		
collected by (print): Steven Losleben	Site/Facility ID EVERETT, V			P.O.#			8260LLC	SGT 4	Jml An	020 2	OmlAr	/ID) 4(Acct	num: SLR	WLOK		
collected by (signature): All Laboratory mmediately Packed on Ice N Y	Same Day Five 5 Day		Day 5 Day (Rad Only) ay 10 Day (Rad Only)		ults Needed	No of	Benzene Naph 82	HDX LVINO	HDX LVING		SVOCs 8270D 100	Total PP Metals 6020 250mlHDPE-HNO3	VOCs V8260LLC 40mlAmb-HCl	CPAHS (PAHSIMLVID) 40mlAmb-NoPres-WT			lines	Prelo	plate: T14 ogin: P70 110 - Brian	3211
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Benze	NWT	SVOC	Fotal	10Cs	PAHS			1 - 7/2	-deglar	ped Via:	Sample # (lab only		
GP-601-GW	- e	GW		4/26/19	0900	9		X	X		X	X						-01		
GP-801-GW	/ /	GW	-	4/26/19	1635	9		X	X		X	X								
		GW		1	Man .				S. Par						To the state of th					
		GW												100			5			
		GW		77.00						DAD										
	P.42 34 L.1	GW								טאייו	SCR	EEN:	<0.5 mF	?/h:		a many VI				
		GW	25,1									7.2		4						
		GW			2					1						16				
	6.7	GW		1000000						1	State.	S a								
		GW	6		15-13									4						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater								COC					COC Seal COC Sigr Bottles	Sample Receipt Checklist C Seal Present/Intact: NP Y N C Signed/Accurate: YY N ttles arrive intact: YY N						
OW - Drinking Water OT - Other	Samples returnUPSFe	ned via: dExCou	rier	Tracking # 46.8				-4	70	FlowOther				Correct bottles used: Sufficient volume sent: If Applicable						
Relinquished by: (Signature) Date: 4/29/19			ime: R	eceived by: (Sign	ature)							Yes No HCL/Med TBR	оН	VOA Zero Headspace: Y Preservation Correct/Checked: Y 1						
Relinquished by : (Signature)		Date:	Time: Received by: (Sign.			ature)			176	Temp: 0-6	+0:0	UN	ttles Receive	d:	If preserva	ation requ	ired by Log	gin: Date/Time		
Relin quished by : (Signature) Date:		ime: R	eceived for lab b	y: (Signa	ture)			Date: 1/3	0/1		ne: 084:		Hold:			Condition: NCF OK				

ANALYTICAL REPORT

May 08, 2019

SLR International Corp. - West Linn, OR

Sample Delivery Group: L1093844

Samples Received: 04/30/2019

Project Number: 108.00228.00059

Description: Nord Door Project - Everett, WA

EVERETT, WA Site:

Report To: Chris Kramer

1800 Blankenship Road, Suite 440

West Linn, OR 97068

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
GP-MW-11-SS L1093844-01	6
GP-MW-12-SS L1093844-02	9
GP-MW-13-SS L1093844-04	11
GP-MW-14-SS L1093844-05	13
GP-MW-15-SS L1093844-06	15
GP-MW-16-SS L1093844-07	17
GP-MW-17-SS L1093844-08	19
GP-801-SS L1093844-09	23
GP-802-SS L1093844-10	26
Qc: Quality Control Summary	29
Total Solids by Method 2540 G-2011	29
Volatile Organic Compounds (GC/MS) by Method 8260C	31
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	36
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	37
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	41
GI: Glossary of Terms	44
Al: Accreditations & Locations	45

Sc: Sample Chain of Custody

46

GP-MW-11-SS L1093844-01 Solid			Collected by S.L.	Collected date/time 04/25/19 15:10	Received da 04/30/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1274486	1	04/25/19 15:10	05/01/19 12:58	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1275175	1	04/25/19 15:10	05/02/19 14:11	JHH	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	5	05/03/19 07:41	05/04/19 17:45	SNR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GP-MW-12-SS L1093844-02 Solid			S.L.	04/25/19 11:40	04/30/19 08:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1274486	1	04/25/19 11:40	05/01/19 13:17	BMB	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1275238	1	05/02/19 16:00	05/03/19 14:55	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GP-MW-13-SS L1093844-04 Solid			S.L.	04/25/19 09:40	04/30/19 08:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, Ti
emi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	5	05/03/19 07:41	05/04/19 17:07	SNR	Mt. Juliet, TI
Gemi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1275238	1	05/02/19 16:00	05/03/19 15:16	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
GP-MW-14-SS L1093844-05 Solid			S.L.	04/25/19 14:15	04/30/19 08:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	5	05/03/19 07:41	05/04/19 17:26	SNR	Mt. Juliet, TN
emi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1276612	1	05/06/19 12:55	05/07/19 12:19	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
GP-MW-15-SS L1093844-06 Solid			S.L.	04/26/19 13:42	04/30/19 08:	:45
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, Ti
olatile Organic Compounds (GC/MS) by Method 8260C	WG1274486	1	04/26/19 13:42	05/03/19 14:31	BMB	Mt. Juliet, Ti
olatile Organic Compounds (GC/MS) by Method 8260C	WG1275175	1	04/26/19 13:42	05/02/19 14:30	JHH	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
GP-MW-16-SS L1093844-07 Solid			S.L.	04/26/19 13:15	04/30/19 08:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
otal Solids by Method 2540 G-2011	WG1275562	1	date/time 05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1274928	10	05/02/19 08:58	05/02/19 22:43	AAT	Mt. Juliet, Ti
(27,2)						54 11
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	10	05/03/19 07:41	05/06/19 17:36	JNJ	Mt. Juliet, TN

SAMPLE SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

WG1276612

05/06/19 12:55

DMG

05/07/19 13:44

Mt. Juliet, TN

			Collected by	Collected date/time	Received da	
GP-MW-17-SS L1093844-08 Solid			S.L.	04/26/19 14:50	04/30/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1274486	1	04/26/19 14:50	05/01/19 13:57	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1274928	1	05/02/19 08:58	05/02/19 21:25	AAT	Mt. Juliet, TI
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	1	05/03/19 07:41	05/04/19 16:47	SNR	Mt. Juliet, T
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	5	05/03/19 07:41	05/06/19 19:32	JNJ	Mt. Juliet, T
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1276612	1	05/06/19 12:55	05/07/19 12:41	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
GP-801-SS L1093844-09 Solid			S.L.	04/26/19 08:45	04/30/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1275562	1	05/03/19 14:20	05/03/19 14:31	KDW	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1274486	1	04/26/19 08:45	05/01/19 14:16	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1274928	10	05/02/19 08:58	05/02/19 23:09	AAT	Mt. Juliet, T
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1275198	10	05/03/19 07:41	05/06/19 18:15	JNJ	Mt. Juliet, Ti
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1276612	1	05/06/19 12:55	05/07/19 13:02	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
GP-802-SS L1093844-10 Solid			S.L.	04/26/19 16:15	04/30/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
	WG1275563	1	05/03/19 14:01	05/03/19 14:10	KDW	Mt. Juliet, T
Total Solids by Method 2540 G-2011	WG1275563	i i	03/03/13 11.01	03/03/13 11.10	IND VV	Wit. Juliet, 1
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC/MS) by Method 8260C	WG1275563 WG1274486	1	04/26/19 16:15	05/01/19 14:36	ВМВ	Mt. Juliet, T

WG1275198

WG1276612

10

1

05/03/19 07:41

05/06/19 12:55

05/06/19 17:56

05/07/19 13:23

JNJ

DMG

Mt. Juliet, TN

Mt. Juliet, TN

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.5		1	05/03/2019 14:31	WG1275562

⁴ Cn
CII

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0166	0.0303	1	05/01/2019 12:58	WG1274486	
Acrylonitrile	U		0.00230	0.0151	1	05/01/2019 12:58	WG1274486	
Benzene	0.000853	<u>J</u>	0.000485	0.00121	1	05/01/2019 12:58	WG1274486	
Bromobenzene	U		0.00127	0.0151	1	05/01/2019 12:58	WG1274486	
Bromodichloromethane	U		0.000955	0.00303	1	05/01/2019 12:58	WG1274486	
Bromoform	U		0.00724	0.0303	1	05/01/2019 12:58	WG1274486	
Bromomethane	U		0.00448	0.0151	1	05/01/2019 12:58	WG1274486	
n-Butylbenzene	U		0.00465	0.0151	1	05/01/2019 12:58	WG1274486	
ec-Butylbenzene	U		0.00306	0.0151	1	05/01/2019 12:58	WG1274486	
ert-Butylbenzene	U		0.00188	0.00606	1	05/01/2019 12:58	WG1274486	
Carbon tetrachloride	U		0.00131	0.00606	1	05/01/2019 12:58	WG1274486	
Chlorobenzene	U		0.000694	0.00303	1	05/01/2019 12:58	WG1274486	
Chlorodibromomethane	U		0.000545	0.00303	1	05/01/2019 12:58	WG1274486	
Chloroethane	U		0.00131	0.00606	1	05/01/2019 12:58	WG1274486	
Chloroform	U		0.000503	0.00303	1	05/01/2019 12:58	WG1274486	
Chloromethane	U		0.00168	0.0151	1	05/01/2019 12:58	WG1274486	
2-Chlorotoluene	U		0.00111	0.00303	1	05/01/2019 12:58	WG1274486	
1-Chlorotoluene	U		0.00137	0.00606	1	05/01/2019 12:58	WG1274486	
,2-Dibromo-3-Chloropropane	U	<u>J0</u>	0.00618	0.0303	1	05/01/2019 12:58	WG1274486	
,2-Dibromoethane	U	_	0.000636	0.00303	1	05/01/2019 12:58	WG1274486	
Dibromomethane	U		0.00121	0.00606	1	05/01/2019 12:58	WG1274486	
,2-Dichlorobenzene	U		0.00176	0.00606	1	05/01/2019 12:58	WG1274486	
,3-Dichlorobenzene	U		0.00206	0.00606	1	05/01/2019 12:58	WG1274486	
,4-Dichlorobenzene	U		0.00239	0.00606	1	05/01/2019 12:58	WG1274486	
Dichlorodifluoromethane	U	<u>J4</u>	0.000991	0.00303	1	05/01/2019 12:58	WG1274486	
,1-Dichloroethane	U	_	0.000697	0.00303	1	05/01/2019 12:58	WG1274486	
,2-Dichloroethane	U		0.000575	0.00303	1	05/01/2019 12:58	WG1274486	
,1-Dichloroethene	U		0.000606	0.00303	1	05/01/2019 12:58	WG1274486	
is-1.2-Dichloroethene	U		0.000836	0.00303	1	05/01/2019 12:58	WG1274486	
rans-1,2-Dichloroethene	U		0.00173	0.00606	1	05/01/2019 12:58	WG1274486	
,2-Dichloropropane	U		0.00154	0.00606	1	05/01/2019 12:58	WG1274486	
,1-Dichloropropene	U		0.000848	0.00303	1	05/01/2019 12:58	WG1274486	
,3-Dichloropropane	U		0.00212	0.00606	1	05/01/2019 12:58	WG1274486	
cis-1,3-Dichloropropene	U		0.000821	0.00303	1	05/01/2019 12:58	WG1274486	
rans-1,3-Dichloropropene	U		0.00185	0.00606	1	05/01/2019 12:58	WG1274486	
2,2-Dichloropropane	U		0.000961	0.00303	1	05/01/2019 12:58	WG1274486	
Di-isopropyl ether	U		0.000424	0.00121	1	05/01/2019 12:58	WG1274486	
Ethylbenzene	0.00112	<u>J</u>	0.000642	0.00303	1	05/01/2019 12:58	WG1274486	
Hexachloro-1,3-butadiene	U	<u>J0</u>	0.0154	0.0303	1	05/01/2019 12:58	WG1274486	
sopropylbenzene	U	<u>50</u>	0.00105	0.00303	1	05/01/2019 12:58	WG1274486	
p-Isopropyltoluene	U		0.00103	0.00505	1	05/01/2019 12:58	WG1274486	
?-Butanone (MEK)	U		0.00282	0.0000	1	05/01/2019 12:58	WG1274486	
Methylene Chloride	U		0.00804	0.0303	1	05/01/2019 12:58	WG1274486	
-Methyl-2-pentanone (MIBK)	U		0.00804	0.0303	1	05/01/2019 12:58	WG1274486	
Methyl tert-butyl ether	U		0.000357	0.0303	1	05/01/2019 12:58	WG1274486 WG1274486	
laphthalene	0.00812	J	0.000337	0.00121	1	05/02/2019 14:11	WG1275175	
n-Propylbenzene	U.00812	3	0.00378	0.00606	1	05/02/2019 14:11	WG1274486	
	U		0.00143	0.00606				
Styrene 112 Tetrachloroothana					1	05/01/2019 12:58	WG1274486	
,1,1,2-Tetrachloroethane	U		0.000606	0.00303	1	05/01/2019 12:58	WG1274486	
,1,2,2-Tetrachloroethane	U		0.000472	0.00303	1	05/01/2019 12:58	WG1274486	

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 15:10

L1093844

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000818	0.00303	1	05/01/2019 12:58	WG1274486
Tetrachloroethene	0.00242	<u>J</u>	0.000848	0.00303	1	05/01/2019 12:58	WG1274486
Toluene	0.00430	<u>J</u>	0.00151	0.00606	1	05/01/2019 12:58	WG1274486
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.000757	0.00303	1	05/01/2019 12:58	WG1274486
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00584	0.0151	1	05/01/2019 12:58	WG1274486
1,1,1-Trichloroethane	U		0.000333	0.00303	1	05/01/2019 12:58	WG1274486
1,1,2-Trichloroethane	U		0.00107	0.00303	1	05/01/2019 12:58	WG1274486
Trichloroethene	U		0.000485	0.00121	1	05/01/2019 12:58	WG1274486
Trichlorofluoromethane	U		0.000606	0.00303	1	05/01/2019 12:58	WG1274486
1,2,3-Trichloropropane	U		0.00618	0.0151	1	05/01/2019 12:58	WG1274486
1,2,4-Trimethylbenzene	0.00405	<u>J</u>	0.00141	0.00606	1	05/01/2019 12:58	WG1274486
1,2,3-Trimethylbenzene	0.00299	J	0.00139	0.00606	1	05/01/2019 12:58	WG1274486
Vinyl chloride	U		0.000827	0.00303	1	05/01/2019 12:58	WG1274486
1,3,5-Trimethylbenzene	U		0.00131	0.00606	1	05/01/2019 12:58	WG1274486
Xylenes, Total	U		0.00579	0.00787	1	05/01/2019 12:58	WG1274486
(S) Toluene-d8	109			75.0-131		05/01/2019 12:58	WG1274486
(S) Toluene-d8	108			75.0-131		05/02/2019 14:11	WG1275175
(S) 4-Bromofluorobenzene	95.9			67.0-138		05/01/2019 12:58	WG1274486
(S) 4-Bromofluorobenzene	95.2			67.0-138		05/02/2019 14:11	WG1275175
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/01/2019 12:58	WG1274486
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		05/02/2019 14:11	WG1275175

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acenaphthene	0.118	<u>J</u>	0.0389	0.202	5	05/04/2019 17:45	WG1275198
Acenaphthylene	U		0.0406	0.202	5	05/04/2019 17:45	WG1275198
Anthracene	U		0.0383	0.202	5	05/04/2019 17:45	WG1275198
Benzo(a)anthracene	U		0.0259	0.202	5	05/04/2019 17:45	WG1275198
Benzo(b)fluoranthene	U		0.0420	0.202	5	05/04/2019 17:45	WG1275198
Benzo(k)fluoranthene	U		0.0353	0.202	5	05/04/2019 17:45	WG1275198
Benzo(g,h,i)perylene	U		0.0437	0.202	5	05/04/2019 17:45	WG1275198
Benzo(a)pyrene	U		0.0332	0.202	5	05/04/2019 17:45	WG1275198
Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.0466	2.02	5	05/04/2019 17:45	WG1275198
Bis(2-chloroethyl)ether	U	<u>J3</u>	0.0543	2.02	5	05/04/2019 17:45	WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0460	2.02	5	05/04/2019 17:45	WG1275198
4-Bromophenyl-phenylether	U		0.0691	2.02	5	05/04/2019 17:45	WG1275198
2-Chloronaphthalene	U		0.0388	0.202	5	05/04/2019 17:45	WG1275198
4-Chlorophenyl-phenylether	U		0.0380	2.02	5	05/04/2019 17:45	WG1275198
Chrysene	U		0.0337	0.202	5	05/04/2019 17:45	WG1275198
Dibenz(a,h)anthracene	U		0.0498	0.202	5	05/04/2019 17:45	WG1275198
3,3-Dichlorobenzidine	U		0.481	2.02	5	05/04/2019 17:45	WG1275198
2,4-Dinitrotoluene	U		0.0368	2.02	5	05/04/2019 17:45	WG1275198
2,6-Dinitrotoluene	U		0.0447	2.02	5	05/04/2019 17:45	WG1275198
Fluoranthene	U		0.0300	0.202	5	05/04/2019 17:45	WG1275198
Fluorene	0.0580	<u>J</u>	0.0413	0.202	5	05/04/2019 17:45	WG1275198
Hexachlorobenzene	U		0.0518	2.02	5	05/04/2019 17:45	WG1275198
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.0606	2.02	5	05/04/2019 17:45	WG1275198
Hexachlorocyclopentadiene	U	<u>J3</u>	0.355	2.02	5	05/04/2019 17:45	WG1275198
Hexachloroethane	U	<u>J3</u>	0.0812	2.02	5	05/04/2019 17:45	WG1275198
Indeno(1,2,3-cd)pyrene	U		0.0468	0.202	5	05/04/2019 17:45	WG1275198
Isophorone	U		0.0316	2.02	5	05/04/2019 17:45	WG1275198
Naphthalene	U	<u>J3</u>	0.0539	0.202	5	05/04/2019 17:45	WG1275198
Nitrobenzene	U	<u>J3</u>	0.0420	2.02	5	05/04/2019 17:45	WG1275198
n-Nitrosodimethylamine	U		0.391	2.02	5	05/04/2019 17:45	WG1275198
n-Nitrosodiphenylamine	U		0.545	2.02	5	05/04/2019 17:45	WG1275198

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 15:10

L1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		L
n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.0549	2.02	5	05/04/2019 17:45	WG1275198	2
Phenanthrene	0.0532	<u>J</u>	0.0320	0.202	5	05/04/2019 17:45	WG1275198	
Pyridine	U	<u>J3</u>	0.380	2.02	5	05/04/2019 17:45	WG1275198	3
Benzylbutyl phthalate	U		0.0624	2.02	5	05/04/2019 17:45	WG1275198	
Bis(2-ethylhexyl)phthalate	U		0.0727	2.02	5	05/04/2019 17:45	WG1275198	L
Di-n-butyl phthalate	U		0.0660	2.02	5	05/04/2019 17:45	WG1275198	4
Diethyl phthalate	U		0.0419	2.02	5	05/04/2019 17:45	WG1275198	
Dimethyl phthalate	U		0.0327	2.02	5	05/04/2019 17:45	WG1275198	5
Di-n-octyl phthalate	U		0.0550	2.02	5	05/04/2019 17:45	WG1275198	
Pyrene	U		0.0745	0.202	5	05/04/2019 17:45	WG1275198	
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.0531	2.02	5	05/04/2019 17:45	WG1275198	6
4-Chloro-3-methylphenol	U		0.0290	2.02	5	05/04/2019 17:45	WG1275198	
2-Chlorophenol	U	<u>J3</u>	0.0503	2.02	5	05/04/2019 17:45	WG1275198	7
2,4-Dichlorophenol	U		0.0452	2.02	5	05/04/2019 17:45	WG1275198	
2,4-Dimethylphenol	U		0.286	2.02	5	05/04/2019 17:45	WG1275198	<u> </u>
4,6-Dinitro-2-methylphenol	U		0.751	2.02	5	05/04/2019 17:45	WG1275198	8
2,4-Dinitrophenol	U	<u>J3</u>	0.594	2.02	5	05/04/2019 17:45	WG1275198	
2-Methylphenol	U	<u>J3</u>	0.0597	2.02	5	05/04/2019 17:45	WG1275198	9
3&4-Methyl Phenol	U		0.0475	2.02	5	05/04/2019 17:45	WG1275198	
2-Nitrophenol	U	<u>J3</u>	0.0787	2.02	5	05/04/2019 17:45	WG1275198	L
4-Nitrophenol	U		0.319	2.02	5	05/04/2019 17:45	WG1275198	
Pentachlorophenol	U		0.291	2.02	5	05/04/2019 17:45	WG1275198	
Phenol	U		0.0420	2.02	5	05/04/2019 17:45	WG1275198	
2,4,6-Trichlorophenol	U		0.0471	2.02	5	05/04/2019 17:45	WG1275198	
2,4,5-Trichlorophenol	U		0.0630	2.02	5	05/04/2019 17:45	WG1275198	
(S) 2-Fluorophenol	52.8			12.0-120		05/04/2019 17:45	WG1275198	
(S) Phenol-d5	51.7			10.0-120		05/04/2019 17:45	WG1275198	
(S) Nitrobenzene-d5	44.7			10.0-122		05/04/2019 17:45	WG1275198	
(S) 2-Fluorobiphenyl	52.2			15.0-120		05/04/2019 17:45	WG1275198	
(S) 2,4,6-Tribromophenol	61.0			10.0-127		05/04/2019 17:45	WG1275198	

10.0-120

05/04/2019 17:45

WG1275198

Sample Narrative:

(S) p-Terphenyl-d14

L1093844-01 WG1275198: Dilution due to viscosity.

60.7

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

Collected date/time: 04/25/19 11:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.3		1	05/03/2019 14:31	WG1275562

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 11:40

L1093844

Volatile Organic Compounds (GC/MS) by Method 8260C

	Decult (dm)	Ovalifian	MDL (dm.)	DDI (dm.)	Dilution	Amalucio	Datah	
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2-Trichlorotrifluoroethane	U		0.000773	0.00286	1	05/01/2019 13:17	WG1274486	
Tetrachloroethene	U		0.000802	0.00286	1	05/01/2019 13:17	WG1274486	
Toluene	U		0.00143	0.00573	1	05/01/2019 13:17	WG1274486	
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.000716	0.00286	1	05/01/2019 13:17	WG1274486	
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00552	0.0143	1	05/01/2019 13:17	WG1274486	
1,1,1-Trichloroethane	U		0.000315	0.00286	1	05/01/2019 13:17	WG1274486	
1,1,2-Trichloroethane	U		0.00101	0.00286	1	05/01/2019 13:17	WG1274486	
Trichloroethene	U		0.000458	0.00115	1	05/01/2019 13:17	WG1274486	
Trichlorofluoromethane	U		0.000573	0.00286	1	05/01/2019 13:17	WG1274486	
1,2,3-Trichloropropane	U		0.00584	0.0143	1	05/01/2019 13:17	WG1274486	
1,2,4-Trimethylbenzene	U		0.00133	0.00573	1	05/01/2019 13:17	WG1274486	
1,2,3-Trimethylbenzene	U		0.00132	0.00573	1	05/01/2019 13:17	WG1274486	
Vinyl chloride	U		0.000783	0.00286	1	05/01/2019 13:17	WG1274486	
1,3,5-Trimethylbenzene	U		0.00124	0.00573	1	05/01/2019 13:17	WG1274486	
Xylenes, Total	U		0.00548	0.00745	1	05/01/2019 13:17	WG1274486	
(S) Toluene-d8	108			75.0-131		05/01/2019 13:17	WG1274486	
(S) 4-Bromofluorobenzene	92.7			67.0-138		05/01/2019 13:17	WG1274486	
(S) 1,2-Dichloroethane-d4	100			70.0-130		05/01/2019 13:17	WG1274486	

¹Cp

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.00225	<u>J</u>	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Benzo(a)pyrene	0.00248	<u>J</u>	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Benzo(b)fluoranthene	0.00335	<u>J</u>	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Benzo(k)fluoranthene	0.00106	<u>J</u>	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Chrysene	0.00223	<u>J</u>	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Dibenz(a,h)anthracene	U		0.000688	0.00688	1	05/03/2019 14:55	WG1275238
Indeno(1,2,3-cd)pyrene	0.00150	J	0.000688	0.00688	1	05/03/2019 14:55	WG1275238
(S) Nitrobenzene-d5	75.9			14.0-149		05/03/2019 14:55	WG1275238
(S) 2-Fluorobiphenyl	74.0			34.0-125		05/03/2019 14:55	WG1275238
(S) p-Terphenyl-d14	76.7			23.0-120		05/03/2019 14:55	WG1275238

SAMPLE RESULTS - 04 L1093844

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/19 09:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.0		1	05/03/2019 14:31	WG1275562

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	qualifici	mg/kg	mg/kg	Dilation	date / time	<u>Baten</u>
Acenaphthene	U		0.0365	0.190	5	05/04/2019 17:07	WG1275198
Acenaphthylene	U		0.0381	0.190	5	05/04/2019 17:07	WG1275198
Anthracene	U		0.0359	0.190	5	05/04/2019 17:07	WG1275198
Benzo(a)anthracene	U		0.0243	0.190	5	05/04/2019 17:07	WG1275198
Benzo(b)fluoranthene	U		0.0394	0.190	5	05/04/2019 17:07	WG1275198
Benzo(k)fluoranthene	U		0.0334	0.190	5	05/04/2019 17:07	WG1275198
Benzo(g,h,i)perylene	U		0.0331	0.190	5	05/04/2019 17:07	WG1275198
Benzo(a)pyrene	U		0.0410	0.190	5	05/04/2019 17:07	WG1275198
Bis(2-chlorethoxy)methane	U	12	0.0311	1.90	5	05/04/2019 17:07	WG1275198 WG1275198
•		<u>J3</u>	0.0438	1.90	5	05/04/2019 17:07	
Bis(2-chloroethyl)ether	U						WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0432	1.90	5	05/04/2019 17:07	WG1275198
-Bromophenyl-phenylether	U		0.0648	1.90	5	05/04/2019 17:07	WG1275198
-Chloronaphthalene	U		0.0364	0.190	5	05/04/2019 17:07	WG1275198
-Chlorophenyl-phenylether	U		0.0357	1.90	5	05/04/2019 17:07	WG1275198
Chrysene	U		0.0316	0.190	5	05/04/2019 17:07	WG1275198
Dibenz(a,h)anthracene	U		0.0467	0.190	5	05/04/2019 17:07	WG1275198
3,3-Dichlorobenzidine	U		0.451	1.90	5	05/04/2019 17:07	WG1275198
2,4-Dinitrotoluene	U		0.0345	1.90	5	05/04/2019 17:07	WG1275198
,6-Dinitrotoluene	U		0.0419	1.90	5	05/04/2019 17:07	WG1275198
luoranthene	U		0.0282	0.190	5	05/04/2019 17:07	WG1275198
luorene	U		0.0388	0.190	5	05/04/2019 17:07	WG1275198
lexachlorobenzene	U		0.0486	1.90	5	05/04/2019 17:07	WG1275198
lexachloro-1,3-butadiene	U	<u>J3</u>	0.0568	1.90	5	05/04/2019 17:07	WG1275198
lexachlorocyclopentadiene	U	<u>J3</u>	0.333	1.90	5	05/04/2019 17:07	WG1275198
lexachloroethane	U	<u>J3</u>	0.0761	1.90	5	05/04/2019 17:07	WG1275198
ndeno(1,2,3-cd)pyrene	U		0.0439	0.190	5	05/04/2019 17:07	WG1275198
sophorone	U		0.0297	1.90	5	05/04/2019 17:07	WG1275198
laphthalene	U	<u>J3</u>	0.0506	0.190	5	05/04/2019 17:07	WG1275198
litrobenzene	U	<u>J3</u>	0.0394	1.90	5	05/04/2019 17:07	WG1275198
n-Nitrosodimethylamine	U		0.367	1.90	5	05/04/2019 17:07	WG1275198
-Nitrosodiphenylamine	U		0.511	1.90	5	05/04/2019 17:07	WG1275198
-Nitrosodi-n-propylamine	U	<u>J3</u>	0.0515	1.90	5	05/04/2019 17:07	WG1275198
Phenanthrene	U	_	0.0300	0.190	5	05/04/2019 17:07	WG1275198
Pyridine	U	J3	0.357	1.90	5	05/04/2019 17:07	WG1275198
Benzylbutyl phthalate	U	_	0.0585	1.90	5	05/04/2019 17:07	WG1275198
lis(2-ethylhexyl)phthalate	U		0.0682	1.90	5	05/04/2019 17:07	WG1275198
Di-n-butyl phthalate	U		0.0619	1.90	5	05/04/2019 17:07	WG1275198
Diethyl phthalate	U		0.0393	1.90	5	05/04/2019 17:07	WG1275198
Dimethyl phthalate	U		0.0307	1.90	5	05/04/2019 17:07	WG1275198
Pi-n-octyl phthalate	U		0.0516	1.90	5	05/04/2019 17:07	WG1275198
yrene	U		0.0699	0.190	5	05/04/2019 17:07	WG1275198
2,4-Trichlorobenzene	U	<u>J3</u>	0.0498	1.90	5	05/04/2019 17:07	WG1275198
-Chloro-3-methylphenol	U	<u> </u>	0.0438	1.90	5	05/04/2019 17:07	WG1275198
-Chlorophenol	U	<u>J3</u>	0.0272	1.90	5	05/04/2019 17:07	WG1275198
,4-Dichlorophenol	U	<u> </u>	0.0472	1.90	5	05/04/2019 17:07	WG1275198
,4-Dimethylphenol	U		0.0424	1.90	5	05/04/2019 17:07	WG1275198
						05/04/2019 17:07	
-,6-Dinitro-2-methylphenol	U	12	0.705	1.90	5		WG1275198
,4-Dinitrophenol	U	<u>J3</u>	0.557	1.90	5	05/04/2019 17:07	WG1275198
2-Methylphenol	U	<u>J3</u>	0.0560	1.90	5	05/04/2019 17:07	WG1275198
3&4-Methyl Phenol	U		0.0445	1.90	5	05/04/2019 17:07	WG1275198

Sample Narrative:

L1093844-04 WG1275198: Dilution due to viscosity.

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 09:40

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Nitrophenol	U	<u>J3</u>	0.0739	1.90	5	05/04/2019 17:07	WG1275198
4-Nitrophenol	U		0.299	1.90	5	05/04/2019 17:07	WG1275198
Pentachlorophenol	U		0.273	1.90	5	05/04/2019 17:07	WG1275198
Phenol	U		0.0394	1.90	5	05/04/2019 17:07	WG1275198
2,4,6-Trichlorophenol	U		0.0442	1.90	5	05/04/2019 17:07	WG1275198
2,4,5-Trichlorophenol	U		0.0591	1.90	5	05/04/2019 17:07	WG1275198
(S) 2-Fluorophenol	82.2			12.0-120		05/04/2019 17:07	WG1275198
(S) Phenol-d5	74.1			10.0-120		05/04/2019 17:07	WG1275198
(S) Nitrobenzene-d5	65.4			10.0-122		05/04/2019 17:07	WG1275198
(S) 2-Fluorobiphenyl	67.9			15.0-120		05/04/2019 17:07	WG1275198
(S) 2,4,6-Tribromophenol	65.1			10.0-127		05/04/2019 17:07	WG1275198
(S) p-Terphenyl-d14	82.9			10.0-120		05/04/2019 17:07	WG1275198

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.00227	<u>J</u>	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Benzo(a)pyrene	0.00216	<u>J</u>	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Benzo(b)fluoranthene	0.00230	J	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Benzo(k)fluoranthene	0.000788	<u>J</u>	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Chrysene	0.00206	<u>J</u>	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Dibenz(a,h)anthracene	U		0.000682	0.00682	1	05/03/2019 15:16	WG1275238
Indeno(1,2,3-cd)pyrene	0.00105	<u>J</u>	0.000682	0.00682	1	05/03/2019 15:16	WG1275238
(S) Nitrobenzene-d5	83.1			14.0-149		05/03/2019 15:16	WG1275238
(S) 2-Fluorobiphenyl	79.7			34.0-125		05/03/2019 15:16	WG1275238
(S) p-Terphenyl-d14	82.2			23.0-120		05/03/2019 15:16	WG1275238

SLR International Corp. - West Linn, OR

ONE LAB. NATIONWIDE.

*

Collected date/time: 04/25/19 14:15

Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.5		1	05/03/2019 14:31	WG1275562

3 _

³Ss

⁴ Cn	
CII	

Analyte mg/lig mg/lig one-friender Modername Accepatithylerie U 0.0327 0.193 5 0.004091 126 MS1221989 Accepatithylerie U 0.0327 0.193 5 0.00409 1026 MS1221989 Accepatithylerie 0.0792 2 0.0404 0.1933 5 0.00409 1026 WS1221989 Berzolphilosardhere 0.0833 2 0.0401 0.193 5 0.004010 1926 WS1221989 Berzolphilosardhere 0.0488 2 0.0417 0.193 5 0.004010 1926 WS1221989 Berzolaphyrome 0.0480 1 0.0417 0.193 5 0.00402019 126 WS1221989 Berzolaphyrome 0.0480 1 0.0417 0.193 5 0.00402019 126 WS1221989 Berzolaphyrome 0.0480 1 0.0415 1.93 5 0.00402019 126 WS1221989 Berzolaphyrome 0.045 1.33 0.0415 1.93 5 0.0042019 126		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Accessibility/role U	Analyte	mg/kg		mg/kg	mg/kg		date / time	
Ambinisonamie O.0479 J. O.0561 0.1933 5 O.06402019 72.6 WCL727108 Benoclofathricoree 0.0293 J. O.0471 0.1933 5 O.0402019 72.6 WCL727108 Beroclofathricoree 0.0283 J. 0.0471 0.1933 5 O.0402019 72.6 WCL727108 Beroclofathricoree 0.0488 J. 0.0477 0.1933 5 O.0402019 72.6 WCL727108 Beroclofathricoree 0.0488 J. 0.0477 0.1933 5 O.0602019 72.6 WCL727108 Biolization Christophylother U. J. 0.058 1933 5 O.06010719 72.6 WCL727108 Biolization Christophylother U. J. 0.0669 133 5 O.06010719 72.6 WCL727109 4-Branchplenylother U. J. 0.0669 133 5 O.06010719 72.6 WCL727109 4-Branchplenylother U. J. 0.027 0.193 5 O.06042019 72.6 WCL727109 4-B	Acenaphthene	U		0.0371	0.193	5	05/04/2019 17:26	WG1275198
Bouncy John Missenset 0.0892	Acenaphthylene	U		0.0387	0.193	5	05/04/2019 17:26	WG1275198
Berozolfshipcommbene	Anthracene	0.0479	<u>J</u>	0.0365	0.193	5	05/04/2019 17:26	WG1275198
Benzing Entrogen U	Benzo(a)anthracene	0.0992	J	0.0247	0.193	5	05/04/2019 17:26	WG1275198
Bamzolg Najpowine	Benzo(b)fluoranthene	0.0813	J	0.0401	0.193	5	05/04/2019 17:26	WG1275198
Renote Description Descri	Benzo(k)fluoranthene	U		0.0336	0.193	5	05/04/2019 17:26	WG1275198
Big2_c-Informethygenther	Benzo(g,h,i)perylene	0.0458	J	0.0417	0.193	5	05/04/2019 17:26	WG1275198
Big2_chioracolsylopher	Benzo(a)pyrene	0.0810	J	0.0317	0.193	5	05/04/2019 17:26	WG1275198
Big2_chioroschylophene	Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.0445	1.93	5	05/04/2019 17:26	WG1275198
A-Bromopheny-phenylether	Bis(2-chloroethyl)ether	U		0.0518	1.93	5	05/04/2019 17:26	WG1275198
A-Bromopheny-pheny-lether	Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0439	1.93	5	05/04/2019 17:26	WG1275198
4-Chiorophenyl-henyletheric U 0.0383 1,93 5 0.504/2019 17.26 Wint 12/5188 Chrysone 0.081 ½ 0.0371 0.193 5 0.504/2019 17.26 Wint 12/5188 3.3-Dichfordenzidine U 0.0495 0.193 5 0.504/2019 17.26 Wint 12/5188 2.4-Dinitrotolune U 0.0457 193 5 0.504/2019 17.26 Wint 12/5188 2.4-Dinitrotolune U 0.0427 193 5 0.504/2019 17.26 Wint 12/5188 2.5-Dinitrotolune U 0.0427 193 5 0.504/2019 17.26 Wint 12/5188 Fluorantine U 0.0427 193 5 0.504/2019 17.26 Wint 12/5188 Hexachiorophane U J 0.0495 193 5 0.504/2019 17.26 Wint 12/5188 Hexachiorophane U J 0.0495 193 5 0.504/2019 17.26 Wint 12/5188 Hexachiorophane U J 0.0475 133 5 0.504/2019 17.26 </td <td>4-Bromophenyl-phenylether</td> <td>U</td> <td></td> <td>0.0659</td> <td>1.93</td> <td>5</td> <td>05/04/2019 17:26</td> <td>WG1275198</td>	4-Bromophenyl-phenylether	U		0.0659	1.93	5	05/04/2019 17:26	WG1275198
Chysene 0,0891 J 0,0321 0,193 5 0,504/2019 17,26 Win275188 Dibenda/liphthracene U 0,0475 0,193 5 0,504/2019 17,26 W01275188 3Dichinorabidine U 0,045 193 5 0,504/2019 17,26 W01275188 2.4-Dintinotoluce U 0,0477 193 5 0,504/2019 17,26 W01275188 Fluoranthene 0,190 J 0,0487 0,193 5 0,504/2019 17,26 W01275188 Fluoranthene 0,190 J 0,0384 0,193 5 0,504/2019 17,26 W01275188 Fluoranthene U J3 0,0578 193 5 0,504/2019 17,26 W01275188 Hexachloro-L3-abudiene U J3 0,039 193 5 0,504/2019 17,26 W01275188 Hexachloro-L3-abudiene U J3 0,033 193 5 0,504/2019 17,26 W01275188 Hexachloro-L3-abudiene U J3 0,034 0,193	2-Chloronaphthalene	U		0.0370	0.193	5	05/04/2019 17:26	WG1275198
Diberta s, bjanthracene U	4-Chlorophenyl-phenylether	U		0.0363	1.93	5	05/04/2019 17:26	WG1275198
Dibertial/planthracene	Chrysene	0.0891	<u>J</u>	0.0321	0.193	5	05/04/2019 17:26	WG1275198
2,4-Dinitrotoluene U 0.0351 1.93 5 0.5040/2019 17:26 W61275198 2,6-Dinitrotoluene U 0.0427 1.93 5 0.5040/2019 17:26 W61275198 Huorathrene 0.190 J 0.0287 0.193 5 0.5040/2019 17:26 W61275198 Hexachforoberzene U J 0.0785 1.93 5 0.5040/2019 17:26 W61275198 Hexachforoberzene U J3 0.0578 1.93 5 0.5040/2019 17:26 W61275198 Hexachforocyclopertadiene U J3 0.0775 1.93 5 0.5040/2019 17:26 W61275198 Hexachforocyclopertadiene U J3 0.0775 1.93 5 0.5040/2019 17:26 W61275198 Hexachforocyclopertadiene U J3 0.0746 0.193 5 0.5040/2019 17:26 W61275198 Hexachforocyclopertadiene U J3 0.0466 0.193 5 0.5040/2019 17:26 W61275198 Hospatian W J3 </td <td>Dibenz(a,h)anthracene</td> <td>U</td> <td></td> <td>0.0475</td> <td>0.193</td> <td>5</td> <td>05/04/2019 17:26</td> <td>WG1275198</td>	Dibenz(a,h)anthracene	U		0.0475	0.193	5	05/04/2019 17:26	WG1275198
2,6 Dinitrotoluene U 0.0427 1.93 5 0504/2019 17:26 WG1275198 Fluorantene 1990 2 0.0287 0.193 5 0504/2019 17:26 WG1275198 Fluorantene U 0.0344 0.193 5 0504/2019 17:26 WG1275198 Hexachlorobenzone U J3 0.078 193 5 0504/2019 17:26 WG1275198 Hexachlorocyclopentadiene U J3 0.0394 193 5 0504/2019 17:26 WG1275198 Hexachlorocyclopentadiene U J3 0.0375 193 5 0504/2019 17:26 WG1275198 Hexachlorocyclopentadiene U J3 0.0775 193 5 0504/2019 17:26 WG1275198 Indenot(1,23-ctl)pyrene 0.0495 J 0.0446 0.193 5 0504/2019 17:26 WG1275198 Nitrobenzene U J3 0.051 1.93 5 0504/2019 17:26 WG1275198 Nitrobenzene U J3 0.052	3,3-Dichlorobenzidine	U		0.459	1.93	5	05/04/2019 17:26	WG1275198
Fluoranthene 0.190 J 0.0287 0.193 5 05/04/2019 17:26 WG1275198 Fluorene U 0.0394 0.193 5 05/04/2019 17:26 WG1275198 Hexachlorocarce U J3 0.0578 1.93 5 05/04/2019 17:26 WG1275198 Hexachloroc-Labudeine U J3 0.0578 1.93 5 05/04/2019 17:26 WG1275198 Hexachloroc-Labudeine U J3 0.0775 1.93 5 05/04/2019 17:26 WG1275198 Hexachloroc-Labudeine U J3 0.0775 1.93 5 05/04/2019 17:26 WG1275198 Hexachloroc-Labudeine U J3 0.0745 1.93 5 05/04/2019 17:26 WG1275198 Indenot(L2,3-cdlyrene U J3 0.0544 0.193 5 05/04/2019 17:26 WG1275198 Indenot(L2,3-cdlyrene U J3 0.0541 0.193 5 05/04/2019 17:26 WG1275198 Indenot(L2,2-cdlyrene U <th< td=""><td>2,4-Dinitrotoluene</td><td>U</td><td></td><td>0.0351</td><td>1.93</td><td>5</td><td>05/04/2019 17:26</td><td>WG1275198</td></th<>	2,4-Dinitrotoluene	U		0.0351	1.93	5	05/04/2019 17:26	WG1275198
Fluorene U	2,6-Dinitrotoluene	U		0.0427	1.93	5	05/04/2019 17:26	WG1275198
Hexachlorobenzene U	Fluoranthene	0.190	J	0.0287	0.193	5	05/04/2019 17:26	WG1275198
Hexachloro-1,3-butadiene U	Fluorene	U		0.0394	0.193	5	05/04/2019 17:26	WG1275198
Hexachloroethane U	Hexachlorobenzene	U		0.0495	1.93	5	05/04/2019 17:26	WG1275198
Hexachloroethane U	Hexachloro-1,3-butadiene	U	<u>J3</u>	0.0578	1.93	5	05/04/2019 17:26	WG1275198
Hexachloroethane U	Hexachlorocyclopentadiene	U	<u>J3</u>	0.339	1.93	5	05/04/2019 17:26	WG1275198
Indeno(() 2,3-cd)pyrene 0,0495 0,0446 0,193 5 0,50/4/2019 17:26 0,61275198 Isophrone 0	Hexachloroethane	U	<u>J3</u>	0.0775	1.93	5	05/04/2019 17:26	WG1275198
Naphthalene U J3 0.0514 0.193 5 05/04/2019 17:26 WG1275198 Nitrobenzene U J3 0.0401 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodinhethylamine U J 0.520 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodin-propylamine U J3 0.0524 1.93 5 05/04/2019 17:26 WG1275198 Phenanthrene 0.116 J 0.0524 1.93 5 05/04/2019 17:26 WG1275198 Phridine U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U J 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U J 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U <t< td=""><td>Indeno(1,2,3-cd)pyrene</td><td>0.0495</td><td>J</td><td>0.0446</td><td>0.193</td><td>5</td><td>05/04/2019 17:26</td><td>WG1275198</td></t<>	Indeno(1,2,3-cd)pyrene	0.0495	J	0.0446	0.193	5	05/04/2019 17:26	WG1275198
Nitrobenzene U J3 0.0401 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodimethylamine U 0.373 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodiphenylamine U J3 0.520 1.93 5 05/04/2019 17:26 WG1275198 Phenanthrene 0.116 J 0.0524 1.93 5 05/04/2019 17:26 WG1275198 Phrenanthrene 0.116 J 0.0554 1.93 5 05/04/2019 17:26 WG1275198 Phrenanthrene U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Phrydride U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U 0.0595 1.93 5 0.504/2019 17:26 WG1275198 Dietrlyl phthalate U 0.0630 1.93 5 0.504/2019 17:26 WG1275198 Dietrlyl phthalate U 0.0525 1.93 5 0	Isophorone	U		0.0302	1.93	5	05/04/2019 17:26	WG1275198
Nitrobenzene U J3 0.0401 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodiriethylamine U -5 0.373 1.93 5 05/04/2019 17:26 WG1275198 n-Nitrosodirhenylamine U J3 0.0524 1.93 5 05/04/2019 17:26 WG1275198 Phenanthrene 0.116 J 0.0305 0.193 5 05/04/2019 17:26 WG1275198 Pyridine U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U J3 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Bis(2-ethylbexyl)phthalate U 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U 0.0525 1.93	Naphthalene	U	<u>J3</u>	0.0514	0.193	5	05/04/2019 17:26	WG1275198
n-Nitrosodimethylamine U	Nitrobenzene	U		0.0401	1.93	5	05/04/2019 17:26	WG1275198
n-Nitrosodi-n-propylamine U J3 0.0524 1.93 5 05/04/2019 17:26 WG1275198 Phenanthrene 0.116 J 0.0305 0.193 5 05/04/2019 17:26 WG1275198 Pyridine U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U - 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Bis(2-ethylhexyl)phthalate U - 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Die-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 WG1275198 Die-butyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Die-n-cxyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Die-n-cxyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Die-n-cxyl phthalate U 0.187 0.0711 0.193	n-Nitrosodimethylamine	U		0.373	1.93	5	05/04/2019 17:26	WG1275198
Phenanthrene 0.116 J 0.0305 0.193 5 05/04/2019 17:26 WG1275198 Pyridine U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U 0.0595 1.93 5 05/04/2019 17:26 WG1275198 Bis(2-ethylhexyl)phthalate U 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 WG1275198 Diethyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0710 0.193 5 05/04/2019 17:26 WG1275198 <td>n-Nitrosodiphenylamine</td> <td>U</td> <td></td> <td>0.520</td> <td>1.93</td> <td>5</td> <td>05/04/2019 17:26</td> <td>WG1275198</td>	n-Nitrosodiphenylamine	U		0.520	1.93	5	05/04/2019 17:26	WG1275198
Pyridine U J3 0.363 1.93 5 05/04/2019 17:26 WG1275198 Benzylbutyl phthalate U 0.0595 1.93 5 05/04/2019 17:26 WG1275198 Bis(2-ethylhexyl)phthalate U 0.0694 1.93 5 05/04/2019 17:26 WG1275198 Di-n-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 WG1275198 Diethyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U J 0.0276 1.93 5 05/04/2019 17:26	n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.0524	1.93	5	05/04/2019 17:26	WG1275198
Ryridine U J3 0.363 1.93 5 05/04/2019 17:26 MG1275198 Benzylbutyl phthalate U 0.0595 1.93 5 05/04/2019 17:26 MG1275198 Bis(2-ethylhexyl)phthalate U 0.0694 1.93 5 05/04/2019 17:26 MG1275198 Di-n-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 MG1275198 Diethyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 MG1275198 Dienethyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 MG1275198 Dienectyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 MG1275198 Pyrene 0.187 J 0.0525 1.93 5 05/04/2019 17:26 MG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 MG1275198 4-Chloro-3-methylphenol U J 0.0276 1.93 5 0.5/04/2019 17:26 <t< td=""><td>Phenanthrene</td><td>0.116</td><td><u>J</u></td><td>0.0305</td><td>0.193</td><td>5</td><td>05/04/2019 17:26</td><td>WG1275198</td></t<>	Phenanthrene	0.116	<u>J</u>	0.0305	0.193	5	05/04/2019 17:26	WG1275198
Bis(2-eth)lnexyl)phthalate	Pyridine	U	<u>J3</u>	0.363	1.93	5	05/04/2019 17:26	WG1275198
Di-n-butyl phthalate U 0.0630 1.93 5 05/04/2019 17:26 WG1275198 Diethyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Dimethyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dirichlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U J3 0.0431 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U J3 0.567 1.93	Benzylbutyl phthalate	U		0.0595	1.93	5	05/04/2019 17:26	WG1275198
Diethyl phthalate U 0.0400 1.93 5 05/04/2019 17:26 WG1275198 Dimethyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U J3 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U J3 0.273 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitro-2-methylphenol U J3 0.567 1.93	Bis(2-ethylhexyl)phthalate	U		0.0694	1.93	5	05/04/2019 17:26	WG1275198
Dimethyl phthalate U 0.0312 1.93 5 05/04/2019 17:26 WG1275198 Di-n-octyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U 0.0276 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U 3 0.567 1.93 5 05/04/2019 17:26	Di-n-butyl phthalate	U		0.0630	1.93	5	05/04/2019 17:26	WG1275198
Di-n-octyl phthalate U 0.0525 1.93 5 05/04/2019 17:26 WG1275198 Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U 0.0276 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05	Diethyl phthalate	U		0.0400	1.93	5	05/04/2019 17:26	WG1275198
Pyrene 0.187 J 0.0711 0.193 5 05/04/2019 17:26 WG1275198 1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93	Dimethyl phthalate	U		0.0312	1.93	5	05/04/2019 17:26	WG1275198
1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U J3 0.0276 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	Di-n-octyl phthalate	U		0.0525	1.93	5	05/04/2019 17:26	WG1275198
1,2,4-Trichlorobenzene U J3 0.0506 1.93 5 05/04/2019 17:26 WG1275198 4-Chloro-3-methylphenol U 0.0276 1.93 5 05/04/2019 17:26 WG1275198 2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinchlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	Pyrene	0.187	J	0.0711	0.193	5	05/04/2019 17:26	WG1275198
2-Chlorophenol U J3 0.0480 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	1,2,4-Trichlorobenzene	U		0.0506	1.93	5	05/04/2019 17:26	WG1275198
2,4-Dichlorophenol U 0.0431 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	4-Chloro-3-methylphenol	U		0.0276	1.93	5	05/04/2019 17:26	WG1275198
2,4-Dimethylphenol U 0.273 1.93 5 05/04/2019 17:26 WG1275198 4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	2-Chlorophenol	U	<u>J3</u>	0.0480	1.93	5	05/04/2019 17:26	WG1275198
4,6-Dinitro-2-methylphenol U 0.717 1.93 5 05/04/2019 17:26 WG1275198 2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	2,4-Dichlorophenol	U		0.0431	1.93	5	05/04/2019 17:26	WG1275198
2,4-Dinitrophenol U J3 0.567 1.93 5 05/04/2019 17:26 WG1275198 2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	2,4-Dimethylphenol	U		0.273	1.93	5	05/04/2019 17:26	WG1275198
2-Methylphenol U J3 0.0570 1.93 5 05/04/2019 17:26 WG1275198	4,6-Dinitro-2-methylphenol	U		0.717	1.93	5	05/04/2019 17:26	WG1275198
2-Methylphenol U <u>J3</u> 0.0570 1.93 5 05/04/2019 17:26 <u>WG1275198</u>	2,4-Dinitrophenol	U	<u>J3</u>	0.567	1.93	5	05/04/2019 17:26	WG1275198
	2-Methylphenol	U		0.0570	1.93	5	05/04/2019 17:26	WG1275198
	3&4-Methyl Phenol	U		0.0453	1.93	5	05/04/2019 17:26	WG1275198

ONE LAB. NATIONWIDE.

Collected date/time: 04/25/19 14:15

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Nitrophenol	U	<u>J3</u>	0.0751	1.93	5	05/04/2019 17:26	WG1275198
4-Nitrophenol	U		0.304	1.93	5	05/04/2019 17:26	WG1275198
Pentachlorophenol	U		0.277	1.93	5	05/04/2019 17:26	WG1275198
Phenol	U		0.0401	1.93	5	05/04/2019 17:26	WG1275198
2,4,6-Trichlorophenol	U		0.0450	1.93	5	05/04/2019 17:26	WG1275198
2,4,5-Trichlorophenol	U		0.0601	1.93	5	05/04/2019 17:26	WG1275198
(S) 2-Fluorophenol	60.2			12.0-120		05/04/2019 17:26	WG1275198
(S) Phenol-d5	58.0			10.0-120		05/04/2019 17:26	WG1275198
(S) Nitrobenzene-d5	50.6			10.0-122		05/04/2019 17:26	WG1275198
(S) 2-Fluorobiphenyl	50.3			15.0-120		05/04/2019 17:26	WG1275198
(S) 2,4,6-Tribromophenol	61.4			10.0-127		05/04/2019 17:26	WG1275198
(S) p-Terphenyl-d14	57.0			10.0-120		05/04/2019 17:26	WG1275198

L1093844-05 WG1275198: Dilution due to viscosity.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.00395	J	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Benzo(a)pyrene	0.00447	<u>J</u>	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Benzo(b)fluoranthene	0.00465	J	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Benzo(k)fluoranthene	0.00158	J	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Chrysene	0.00513	J	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Dibenz(a,h)anthracene	U		0.000694	0.00694	1	05/07/2019 12:19	WG1276612
Indeno(1,2,3-cd)pyrene	0.00185	J	0.000694	0.00694	1	05/07/2019 12:19	WG1276612
(S) Nitrobenzene-d5	98.7			14.0-149		05/07/2019 12:19	WG1276612
(S) 2-Fluorobiphenyl	85.1			34.0-125		05/07/2019 12:19	WG1276612
(S) p-Terphenyl-d14	108			23.0-120		05/07/2019 12:19	WG1276612

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	61.3		1	05/03/2019 14:31	WG1275562

Ss

⁴ Cn	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	_
Acetone	U		0.0223	0.0408	1	05/01/2019 13:37	WG1274486
Acrylonitrile	U		0.00310	0.0204	1	05/01/2019 13:37	WG1274486
Benzene	U		0.000652	0.00163	1	05/01/2019 13:37	WG1274486
Bromobenzene	U		0.00171	0.0204	1	05/01/2019 13:37	WG1274486
Bromodichloromethane	U		0.00129	0.00408	1	05/01/2019 13:37	WG1274486
Bromoform	U		0.00975	0.0408	1	05/01/2019 13:37	WG1274486
Bromomethane	U		0.00603	0.0204	1	05/01/2019 13:37	WG1274486
n-Butylbenzene	U		0.00626	0.0204	1	05/01/2019 13:37	WG1274486
sec-Butylbenzene	U		0.00413	0.0204	1	05/01/2019 13:37	WG1274486
tert-Butylbenzene	U		0.00253	0.00815	1	05/01/2019 13:37	WG1274486
Carbon tetrachloride	U		0.00176	0.00815	1	05/01/2019 13:37	WG1274486
Chlorobenzene	U		0.000934	0.00408	1	05/01/2019 13:37	WG1274486
Chlorodibromomethane	U		0.000734	0.00408	1	05/01/2019 13:37	WG1274486
Chloroethane	U		0.00176	0.00815	1	05/01/2019 13:37	WG1274486
Chloroform	U		0.000677	0.00408	1	05/01/2019 13:37	WG1274486
Chloromethane	U		0.00227	0.0204	1	05/01/2019 13:37	WG1274486
2-Chlorotoluene	U		0.00150	0.00408	1	05/01/2019 13:37	WG1274486
4-Chlorotoluene	U		0.00184	0.00815	1	05/01/2019 13:37	WG1274486
1,2-Dibromo-3-Chloropropane	U	<u>JO</u>	0.00832	0.0408	1	05/01/2019 13:37	WG1274486
1,2-Dibromoethane	U	<u>50</u>	0.000856	0.00408	1	05/01/2019 13:37	WG1274486
Dibromomethane	U		0.00163	0.00815	1	05/01/2019 13:37	WG1274186
1,2-Dichlorobenzene	U		0.00103	0.00815	1	05/01/2019 13:37	WG1274186
1,3-Dichlorobenzene	U		0.00230	0.00815	1	05/01/2019 13:37	WG1274186
1,4-Dichlorobenzene	U		0.00277	0.00815	1	05/01/2019 13:37	WG1274486
Dichlorodifluoromethane	U	<u>J4</u>	0.00321	0.00408	1	05/01/2019 13:37	WG1274486
1,1-Dichloroethane	U	<u>5-</u>	0.000938	0.00408	1	05/01/2019 13:37	WG1274486
1,2-Dichloroethane	U		0.000338	0.00408	1	05/01/2019 13:37	WG1274486
1,1-Dichloroethene	U		0.000775	0.00408	1	05/01/2019 13:37	WG1274486
cis-1,2-Dichloroethene	U		0.000813	0.00408	1	05/01/2019 13:37	WG1274486
trans-1,2-Dichloroethene	U		0.00233	0.00815	1	05/01/2019 13:37	WG1274186
1,2-Dichloropropane	U		0.00207	0.00815	1	05/01/2019 13:37	WG1274186
1,1-Dichloropropene	U		0.00207	0.00408	1	05/01/2019 13:37	WG1274186
1,3-Dichloropropane	U		0.00114	0.00408	1	05/01/2019 13:37	WG1274486
cis-1,3-Dichloropropene	U		0.00283	0.00408	1	05/01/2019 13:37	WG1274486
trans-1,3-Dichloropropene	U		0.00250	0.00815	1	05/01/2019 13:37	WG1274486
2,2-Dichloropropane	U		0.00230	0.00408	1	05/01/2019 13:37	WG1274486
Di-isopropyl ether	U		0.00123	0.00408	1	05/01/2019 13:37	WG1274486
Ethylbenzene	U		0.000371	0.00408	1	05/01/2019 13:37	WG1274486
Hexachloro-1,3-butadiene	U	<u>JO</u>	0.0207	0.0408	1	05/01/2019 13:37	WG1274486
Isopropylbenzene	U	<u>30</u>	0.00141	0.00408	1	05/01/2019 13:37	WG1274186
p-Isopropyltoluene	U		0.00380	0.00815	1	05/01/2019 13:37	WG1274186
2-Butanone (MEK)	U		0.0204	0.0408	1	05/01/2019 13:37	WG1274186
Methylene Chloride	U		0.0108	0.0408	1	05/01/2019 13:37	WG1274186
4-Methyl-2-pentanone (MIBK)	U		0.0163	0.0408	1	05/01/2019 13:37	WG1274186
Methyl tert-butyl ether	U		0.000481	0.00163	1	05/01/2019 13:37	WG1274186
Naphthalene	0.00883	J	0.00509	0.0204	1	05/02/2019 14:30	WG1275175
n-Propylbenzene	U	<u>=</u>	0.00192	0.00815	1	05/01/2019 13:37	WG1274486
Styrene	U		0.00192	0.00013	1	05/01/2019 13:37	WG1274486
1,1,1,2-Tetrachloroethane	U		0.000443	0.0204	1	05/01/2019 13:37	WG1274486
1,1,2,2-Tetrachloroethane	U		0.000636	0.00408	1	05/01/2019 13:37	WG1274486
1,1,2,2 Tetracilloroctriane	U		0.000000	0.00700		03/01/2013 13.37	

(S) 1,2-Dichloroethane-d4

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 13:42

L1093844

Volatile Organic Compounds (GC/MS) by Method 8260C

99.1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.00110	0.00408	1	05/01/2019 13:37	WG1274486
Tetrachloroethene	0.00162	J	0.00114	0.00408	1	05/01/2019 13:37	WG1274486
Toluene	0.00268	<u>J</u>	0.00204	0.00815	1	05/01/2019 13:37	WG1274486
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.00102	0.00408	1	05/01/2019 13:37	WG1274486
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00786	0.0204	1	05/01/2019 13:37	WG1274486
1,1,1-Trichloroethane	U		0.000448	0.00408	1	05/01/2019 13:37	WG1274486
1,1,2-Trichloroethane	U		0.00144	0.00408	1	05/01/2019 13:37	WG1274486
Trichloroethene	U		0.000652	0.00163	1	05/01/2019 13:37	WG1274486
Trichlorofluoromethane	U		0.000815	0.00408	1	05/01/2019 13:37	WG1274486
1,2,3-Trichloropropane	U		0.00832	0.0204	1	05/01/2019 13:37	WG1274486
1,2,4-Trimethylbenzene	U		0.00189	0.00815	1	05/01/2019 13:37	WG1274486
1,2,3-Trimethylbenzene	U		0.00188	0.00815	1	05/01/2019 13:37	WG1274486
Vinyl chloride	U		0.00111	0.00408	1	05/01/2019 13:37	WG1274486
1,3,5-Trimethylbenzene	U		0.00176	0.00815	1	05/01/2019 13:37	WG1274486
Xylenes, Total	U		0.00779	0.0106	1	05/01/2019 13:37	WG1274486
(S) Toluene-d8	107			75.0-131		05/01/2019 13:37	WG1274486
(S) Toluene-d8	106			75.0-131		05/02/2019 14:30	WG1275175
(S) 4-Bromofluorobenzene	94.0			67.0-138		05/01/2019 13:37	WG1274486
(S) 4-Bromofluorobenzene	92.7			67.0-138		05/02/2019 14:30	WG1275175
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		05/01/2019 13:37	WG1274486

70.0-130

05/02/2019 14:30

WG1275175

ONE LAB. NATIONWIDE.

DE.

Total Solids by Mothod 2510 G 2011

Collected date/time: 04/26/19 13:15

lotal	Solids	by	Method	2540) G-20)11

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.0		1	05/03/2019 14:31	WG1275562

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	62.7		15.7	47.1	10	05/02/2019 22:43	WG1274928
Residual Range Organics (RRO)	604		39.2	118	10	05/02/2019 22:43	WG1274928
(S) o-Terphenyl	44.7			18.0-148		05/02/2019 22:43	WG1274928

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acenaphthene	U		0.0756	0.392	10	05/06/2019 17:36	WG1275198
Acenaphthylene	U		0.0790	0.392	10	05/06/2019 17:36	WG1275198
Anthracene	U		0.0744	0.392	10	05/06/2019 17:36	WG1275198
Benzo(a)anthracene	U		0.0504	0.392	10	05/06/2019 17:36	WG1275198
Benzo(b)fluoranthene	U		0.0818	0.392	10	05/06/2019 17:36	WG1275198
Benzo(k)fluoranthene	U		0.0685	0.392	10	05/06/2019 17:36	WG1275198
Benzo(g,h,i)perylene	U		0.0849	0.392	10	05/06/2019 17:36	WG1275198
Benzo(a)pyrene	U		0.0645	0.392	10	05/06/2019 17:36	WG1275198
Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.0906	3.92	10	05/06/2019 17:36	WG1275198
Bis(2-chloroethyl)ether	U	<u>J3</u>	0.105	3.92	10	05/06/2019 17:36	WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0894	3.92	10	05/06/2019 17:36	WG1275198
4-Bromophenyl-phenylether	U		0.134	3.92	10	05/06/2019 17:36	WG1275198
2-Chloronaphthalene	U		0.0752	0.392	10	05/06/2019 17:36	WG1275198
4-Chlorophenyl-phenylether	U		0.0738	3.92	10	05/06/2019 17:36	WG1275198
Chrysene	U		0.0653	0.392	10	05/06/2019 17:36	WG1275198
Dibenz(a,h)anthracene	U		0.0966	0.392	10	05/06/2019 17:36	WG1275198
3,3-Dichlorobenzidine	U		0.935	3.92	10	05/06/2019 17:36	WG1275198
2,4-Dinitrotoluene	U		0.0714	3.92	10	05/06/2019 17:36	WG1275198
2,6-Dinitrotoluene	U		0.0867	3.92	10	05/06/2019 17:36	WG1275198
Fluoranthene	U		0.0584	0.392	10	05/06/2019 17:36	WG1275198
luorene	U		0.0803	0.392	10	05/06/2019 17:36	WG1275198
Hexachlorobenzene	U		0.101	3.92	10	05/06/2019 17:36	WG1275198
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.118	3.92	10	05/06/2019 17:36	WG1275198
Hexachlorocyclopentadiene	U	<u> 10 13</u>	0.691	3.92	10	05/06/2019 17:36	WG1275198
Hexachloroethane	U	<u>J3</u>	0.158	3.92	10	05/06/2019 17:36	WG1275198
ndeno(1,2,3-cd)pyrene	U		0.0909	0.392	10	05/06/2019 17:36	WG1275198
sophorone	U		0.0614	3.92	10	05/06/2019 17:36	WG1275198
Naphthalene	U	<u>J3</u>	0.105	0.392	10	05/06/2019 17:36	WG1275198
Nitrobenzene	U	<u>J3</u>	0.0818	3.92	10	05/06/2019 17:36	WG1275198
n-Nitrosodimethylamine	U		0.761	3.92	10	05/06/2019 17:36	WG1275198
n-Nitrosodiphenylamine	U		1.06	3.92	10	05/06/2019 17:36	WG1275198
n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.107	3.92	10	05/06/2019 17:36	WG1275198
Phenanthrene	U		0.0621	0.392	10	05/06/2019 17:36	WG1275198
Pyridine	U	<u>J3</u>	0.739	3.92	10	05/06/2019 17:36	WG1275198
Benzylbutyl phthalate	U		0.121	3.92	10	05/06/2019 17:36	WG1275198
Bis(2-ethylhexyl)phthalate	U		0.141	3.92	10	05/06/2019 17:36	WG1275198
Di-n-butyl phthalate	U		0.128	3.92	10	05/06/2019 17:36	WG1275198
Diethyl phthalate	U		0.0813	3.92	10	05/06/2019 17:36	WG1275198
Dimethyl phthalate	U		0.0636	3.92	10	05/06/2019 17:36	WG1275198
Di-n-octyl phthalate	U		0.107	3.92	10	05/06/2019 17:36	WG1275198
Pyrene	U		0.145	0.392	10	05/06/2019 17:36	WG1275198
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.103	3.92	10	05/06/2019 17:36	WG1275198
4-Chloro-3-methylphenol	U		0.0561	3.92	10	05/06/2019 17:36	WG1275198

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 13:15

L1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Chlorophenol	U	<u>J3</u>	0.0978	3.92	10	05/06/2019 17:36	WG1275198
2,4-Dichlorophenol	U		0.0878	3.92	10	05/06/2019 17:36	WG1275198
2,4-Dimethylphenol	U	<u>J0</u>	0.554	3.92	10	05/06/2019 17:36	WG1275198
4,6-Dinitro-2-methylphenol	U		1.46	3.92	10	05/06/2019 17:36	WG1275198
2,4-Dinitrophenol	U	<u>J3</u>	1.15	3.92	10	05/06/2019 17:36	WG1275198
2-Methylphenol	U	<u>J3</u>	0.116	3.92	10	05/06/2019 17:36	WG1275198
3&4-Methyl Phenol	U		0.0922	3.92	10	05/06/2019 17:36	WG1275198
2-Nitrophenol	U	<u>J3</u>	0.153	3.92	10	05/06/2019 17:36	WG1275198
4-Nitrophenol	U		0.618	3.92	10	05/06/2019 17:36	WG1275198
Pentachlorophenol	U		0.565	3.92	10	05/06/2019 17:36	WG1275198
Phenol	U		0.0818	3.92	10	05/06/2019 17:36	WG1275198
2,4,6-Trichlorophenol	U		0.0917	3.92	10	05/06/2019 17:36	WG1275198
2,4,5-Trichlorophenol	U		0.122	3.92	10	05/06/2019 17:36	WG1275198
(S) 2-Fluorophenol	<i>75.8</i>			12.0-120		05/06/2019 17:36	WG1275198
(S) Phenol-d5	69.3			10.0-120		05/06/2019 17:36	WG1275198
(S) Nitrobenzene-d5	61.3			10.0-122		05/06/2019 17:36	WG1275198
(S) 2-Fluorobiphenyl	60.4			15.0-120		05/06/2019 17:36	WG1275198
(S) 2,4,6-Tribromophenol	62.4			10.0-127		05/06/2019 17:36	WG1275198
(S) p-Terphenyl-d14	64.7			10.0-120		05/06/2019 17:36	WG1275198

Sample Narrative:

L1093844-07 WG1275198: Dilution due to matrix impact during extract concentration procedure

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.00551	J	0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Benzo(a)pyrene	0.00630	J	0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Benzo(b)fluoranthene	0.0109		0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Benzo(k)fluoranthene	0.00271	J	0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Chrysene	0.0214		0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Dibenz(a,h)anthracene	U		0.000706	0.00706	1	05/07/2019 13:44	WG1276612
Indeno(1,2,3-cd)pyrene	0.00231	<u>J</u>	0.000706	0.00706	1	05/07/2019 13:44	WG1276612
(S) Nitrobenzene-d5	89.7			14.0-149		05/07/2019 13:44	WG1276612
(S) 2-Fluorobiphenyl	76.4			34.0-125		05/07/2019 13:44	WG1276612
(S) p-Terphenyl-d14	79.7			23.0-120		05/07/2019 13:44	WG1276612

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 14:50

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.5		1	05/03/2019 14:31	WG1275562

Dilution

Тс

Cn	4 (
----	-----

(S) 1,2-Dichloroethane-d4

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 14:50

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000839	0.00311	1	05/01/2019 13:57	WG1274486
Tetrachloroethene	0.000919	<u>J</u>	0.000870	0.00311	1	05/01/2019 13:57	WG1274486
Toluene	U		0.00155	0.00621	1	05/01/2019 13:57	WG1274486
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.000777	0.00311	1	05/01/2019 13:57	WG1274486
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00599	0.0155	1	05/01/2019 13:57	WG1274486
1,1,1-Trichloroethane	U		0.000342	0.00311	1	05/01/2019 13:57	WG1274486
1,1,2-Trichloroethane	U		0.00110	0.00311	1	05/01/2019 13:57	WG1274486
Trichloroethene	U		0.000497	0.00124	1	05/01/2019 13:57	WG1274486
Trichlorofluoromethane	U		0.000621	0.00311	1	05/01/2019 13:57	WG1274486
1,2,3-Trichloropropane	U		0.00634	0.0155	1	05/01/2019 13:57	WG1274486
1,2,4-Trimethylbenzene	U		0.00144	0.00621	1	05/01/2019 13:57	WG1274486
1,2,3-Trimethylbenzene	U		0.00143	0.00621	1	05/01/2019 13:57	WG1274486
Vinyl chloride	U		0.000849	0.00311	1	05/01/2019 13:57	WG1274486
1,3,5-Trimethylbenzene	U		0.00134	0.00621	1	05/01/2019 13:57	WG1274486
Kylenes, Total	U		0.00594	0.00808	1	05/01/2019 13:57	WG1274486
(S) Toluene-d8	108			75.0-131		05/01/2019 13:57	WG1274486
(S) 4-Bromofluorobenzene	93.8			67.0-138		05/01/2019 13:57	WG1274486

Cp

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.81	<u>J</u>	1.65	4.97	1	05/02/2019 21:25	WG1274928
Residual Range Organics (RRO)	11.1	<u>J</u>	4.14	12.4	1	05/02/2019 21:25	WG1274928
(S) o-Terphenyl	89.0			18.0-148		05/02/2019 21:25	WG1274928

70.0-130

05/01/2019 13:57

WG1274486

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

98.3

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acenaphthene	U		0.0399	0.207	5	05/06/2019 19:32	WG1275198
Acenaphthylene	U		0.0416	0.207	5	05/06/2019 19:32	WG1275198
Anthracene	U		0.0393	0.207	5	05/06/2019 19:32	WG1275198
Benzo(a)anthracene	U		0.0266	0.207	5	05/06/2019 19:32	WG1275198
Benzo(b)fluoranthene	U		0.0431	0.207	5	05/06/2019 19:32	WG1275198
Benzo(k)fluoranthene	U		0.0362	0.207	5	05/06/2019 19:32	WG1275198
Benzo(g,h,i)perylene	U		0.0449	0.207	5	05/06/2019 19:32	WG1275198
Benzo(a)pyrene	U		0.0340	0.207	5	05/06/2019 19:32	WG1275198
Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.00957	0.414	1	05/04/2019 16:47	WG1275198
Bis(2-chloroethyl)ether	U	<u>J3</u>	0.0111	0.414	1	05/04/2019 16:47	WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.00944	0.414	1	05/04/2019 16:47	WG1275198
4-Bromophenyl-phenylether	U		0.0708	2.07	5	05/06/2019 19:32	WG1275198
2-Chloronaphthalene	U		0.0398	0.207	5	05/06/2019 19:32	WG1275198
4-Chlorophenyl-phenylether	U		0.0390	2.07	5	05/06/2019 19:32	WG1275198
Chrysene	U		0.0345	0.207	5	05/06/2019 19:32	WG1275198
Dibenz(a,h)anthracene	U		0.0511	0.207	5	05/06/2019 19:32	WG1275198
3,3-Dichlorobenzidine	U		0.493	2.07	5	05/06/2019 19:32	WG1275198
2,4-Dinitrotoluene	U		0.0378	2.07	5	05/06/2019 19:32	WG1275198
2,6-Dinitrotoluene	U		0.0458	2.07	5	05/06/2019 19:32	WG1275198
Fluoranthene	U		0.0308	0.207	5	05/06/2019 19:32	WG1275198
Fluorene	U		0.0424	0.207	5	05/06/2019 19:32	WG1275198
Hexachlorobenzene	U		0.0532	2.07	5	05/06/2019 19:32	WG1275198
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.0124	0.414	1	05/04/2019 16:47	WG1275198
Hexachlorocyclopentadiene	U	<u>J0 J3</u>	0.364	2.07	5	05/06/2019 19:32	WG1275198
Hexachloroethane	U	<u>J3</u>	0.0166	0.414	1	05/04/2019 16:47	WG1275198
Indeno(1,2,3-cd)pyrene	U		0.0480	0.207	5	05/06/2019 19:32	WG1275198

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 14:50

L1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Isophorone	U		0.00649	0.414	1	05/04/2019 16:47	WG1275198
Naphthalene	U	<u>J3</u>	0.0110	0.0414	1	05/04/2019 16:47	WG1275198
Nitrobenzene	U	<u>J3</u>	0.00863	0.414	1	05/04/2019 16:47	WG1275198
n-Nitrosodimethylamine	U		0.0804	0.414	1	05/04/2019 16:47	WG1275198
n-Nitrosodiphenylamine	U		0.559	2.07	5	05/06/2019 19:32	WG1275198
n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.0113	0.414	1	05/04/2019 16:47	WG1275198
Phenanthrene	U		0.0328	0.207	5	05/06/2019 19:32	WG1275198
Pyridine	U	<u>J3</u>	0.0780	0.414	1	05/04/2019 16:47	WG1275198
Benzylbutyl phthalate	U		0.0640	2.07	5	05/06/2019 19:32	WG1275198
Bis(2-ethylhexyl)phthalate	U		0.0745	2.07	5	05/06/2019 19:32	WG1275198
Di-n-butyl phthalate	U		0.0677	2.07	5	05/06/2019 19:32	WG1275198
Diethyl phthalate	U		0.0430	2.07	5	05/06/2019 19:32	WG1275198
Dimethyl phthalate	U		0.0335	2.07	5	05/06/2019 19:32	WG1275198
Di-n-octyl phthalate	U		0.0564	2.07	5	05/06/2019 19:32	WG1275198
Pyrene	U		0.0764	0.207	5	05/06/2019 19:32	WG1275198
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.0109	0.414	1	05/04/2019 16:47	WG1275198
4-Chloro-3-methylphenol	U		0.00593	0.414	1	05/04/2019 16:47	WG1275198
2-Chlorophenol	U	<u>J3</u>	0.0103	0.414	1	05/04/2019 16:47	WG1275198
2,4-Dichlorophenol	U		0.00927	0.414	1	05/04/2019 16:47	WG1275198
2,4-Dimethylphenol	U		0.0585	0.414	1	05/04/2019 16:47	WG1275198
4,6-Dinitro-2-methylphenol	U		0.770	2.07	5	05/06/2019 19:32	WG1275198
2,4-Dinitrophenol	U	<u>J3</u>	0.609	2.07	5	05/06/2019 19:32	WG1275198
2-Methylphenol	U	<u>J3</u>	0.0123	0.414	1	05/04/2019 16:47	WG1275198
3&4-Methyl Phenol	U		0.00973	0.414	1	05/04/2019 16:47	WG1275198
2-Nitrophenol	U	<u>J3</u>	0.0162	0.414	1	05/04/2019 16:47	WG1275198
4-Nitrophenol	U		0.327	2.07	5	05/06/2019 19:32	WG1275198
Pentachlorophenol	U		0.298	2.07	5	05/06/2019 19:32	WG1275198
Phenol	U		0.00863	0.414	1	05/04/2019 16:47	WG1275198
2,4,6-Trichlorophenol	U		0.0483	2.07	5	05/06/2019 19:32	WG1275198
2,4,5-Trichlorophenol	U		0.0646	2.07	5	05/06/2019 19:32	WG1275198
(S) 2-Fluorophenol	48.5			12.0-120		05/04/2019 16:47	WG1275198
(S) 2-Fluorophenol	66.8			12.0-120		05/06/2019 19:32	WG1275198
(S) Phenol-d5	48.5			10.0-120		05/04/2019 16:47	WG1275198
(S) Phenol-d5	65.2			10.0-120		05/06/2019 19:32	WG1275198
(S) Nitrobenzene-d5	54.3			10.0-122		05/06/2019 19:32	WG1275198
(S) Nitrobenzene-d5	38.1			10.0-122		05/04/2019 16:47	WG1275198
(S) 2-Fluorobiphenyl	40.5			15.0-120		05/04/2019 16:47	WG1275198
(S) 2-Fluorobiphenyl	51.8			15.0-120		05/06/2019 19:32	WG1275198
(S) 2,4,6-Tribromophenol	55.5			10.0-127		05/04/2019 16:47	WG1275198
(S) 2,4,6-Tribromophenol	73.5			10.0-127		05/06/2019 19:32	WG1275198
(S) p-Terphenyl-d14	76.2			10.0-120		05/06/2019 19:32	WG1275198
(5) p respicings dit	70.2			10.0 120		05,00,2015 15.52	1101210100

Sample Narrative:

(S) p-Terphenyl-d14

L1093844-08 WG1275198: IS/SURR failed on lower dilution.

52.4

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.00486	<u>J</u>	0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Benzo(a)pyrene	0.00609	J	0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Benzo(b)fluoranthene	0.0118		0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Benzo(k)fluoranthene	0.00358	J	0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Chrysene	0.00968		0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Dibenz(a,h)anthracene	0.00128	<u>J</u>	0.000745	0.00745	1	05/07/2019 12:41	WG1276612
Indeno(1,2,3-cd)pyrene	0.00434	J	0.000745	0.00745	1	05/07/2019 12:41	WG1276612

10.0-120

05/04/2019 16:47

WG1275198

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 14:50

L1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	'	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
(S) Nitrobenzene-d5	105			14.0-149		05/07/2019 12:41	WG1276612
(S) 2-Fluorobiphenyl	85.0			34.0-125		05/07/2019 12:41	WG1276612
(S) p-Terphenyl-d14	113			23.0-120		05/07/2019 12:41	WG1276612

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 08:45

Total Solids by Method 2540 G-2011

ACCOUNT:

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	85.0		1	05/03/2019 14:31	WG1275562	

PAGE:

23 of 47

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 08:45

L1093844

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000795	0.00294	1	05/01/2019 14:16	WG1274486
Tetrachloroethene	U		0.000824	0.00294	1	05/01/2019 14:16	WG1274486
Toluene	U		0.00147	0.00589	1	05/01/2019 14:16	WG1274486
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.000736	0.00294	1	05/01/2019 14:16	WG1274486
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00567	0.0147	1	05/01/2019 14:16	WG1274486
1,1,1-Trichloroethane	U		0.000324	0.00294	1	05/01/2019 14:16	WG1274486
1,1,2-Trichloroethane	U		0.00104	0.00294	1	05/01/2019 14:16	WG1274486
Trichloroethene	U		0.000471	0.00118	1	05/01/2019 14:16	WG1274486
Trichlorofluoromethane	U		0.000589	0.00294	1	05/01/2019 14:16	WG1274486
1,2,3-Trichloropropane	U		0.00600	0.0147	1	05/01/2019 14:16	WG1274486
1,2,4-Trimethylbenzene	0.00167	<u>J</u>	0.00137	0.00589	1	05/01/2019 14:16	WG1274486
1,2,3-Trimethylbenzene	U		0.00135	0.00589	1	05/01/2019 14:16	WG1274486
Vinyl chloride	U		0.000804	0.00294	1	05/01/2019 14:16	WG1274486
1,3,5-Trimethylbenzene	U		0.00127	0.00589	1	05/01/2019 14:16	WG1274486
Xylenes, Total	U		0.00563	0.00765	1	05/01/2019 14:16	WG1274486
(S) Toluene-d8	107			75.0-131		05/01/2019 14:16	WG1274486
(S) 4-Bromofluorobenzene	90.5			67.0-138		05/01/2019 14:16	WG1274486
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/01/2019 14:16	WG1274486

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		15.7	47.1	10	05/02/2019 23:09	WG1274928
Residual Range Organics (RRO)	75.0	<u>J</u>	39.2	118	10	05/02/2019 23:09	WG1274928
(S) o-Terphenyl	83.2			18.0-148		05/02/2019 23:09	WG1274928

Sample Narrative:

L1093844-09 WG1274928: Diluted due to viscosity

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acenaphthene	U		0.0756	0.392	10	05/06/2019 18:15	WG1275198
Acenaphthylene	U		0.0790	0.392	10	05/06/2019 18:15	WG1275198
Anthracene	U		0.0744	0.392	10	05/06/2019 18:15	WG1275198
Benzo(a)anthracene	U		0.0504	0.392	10	05/06/2019 18:15	WG1275198
Benzo(b)fluoranthene	U		0.0818	0.392	10	05/06/2019 18:15	WG1275198
Benzo(k)fluoranthene	U		0.0685	0.392	10	05/06/2019 18:15	WG1275198
Benzo(g,h,i)perylene	U		0.0849	0.392	10	05/06/2019 18:15	WG1275198
Benzo(a)pyrene	U		0.0645	0.392	10	05/06/2019 18:15	WG1275198
Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.0906	3.92	10	05/06/2019 18:15	WG1275198
Bis(2-chloroethyl)ether	U	<u>J3</u>	0.105	3.92	10	05/06/2019 18:15	WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0895	3.92	10	05/06/2019 18:15	WG1275198
4-Bromophenyl-phenylether	U		0.134	3.92	10	05/06/2019 18:15	WG1275198
2-Chloronaphthalene	U		0.0752	0.392	10	05/06/2019 18:15	WG1275198
4-Chlorophenyl-phenylether	U		0.0738	3.92	10	05/06/2019 18:15	WG1275198
Chrysene	U		0.0653	0.392	10	05/06/2019 18:15	WG1275198
Dibenz(a,h)anthracene	U		0.0966	0.392	10	05/06/2019 18:15	WG1275198
3,3-Dichlorobenzidine	U		0.935	3.92	10	05/06/2019 18:15	WG1275198
2,4-Dinitrotoluene	U		0.0714	3.92	10	05/06/2019 18:15	WG1275198
2,6-Dinitrotoluene	U		0.0867	3.92	10	05/06/2019 18:15	WG1275198
Fluoranthene	U		0.0584	0.392	10	05/06/2019 18:15	WG1275198
Fluorene	U		0.0803	0.392	10	05/06/2019 18:15	WG1275198
Hexachlorobenzene	U		0.101	3.92	10	05/06/2019 18:15	WG1275198
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.118	3.92	10	05/06/2019 18:15	WG1275198

Ss

ONE LAB. NATIONWIDE.

Ss

Cn

СQс

Gl

Sc

Collected date/time: 04/26/19 08:45

1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Hexachlorocyclopentadiene	U	J0 J3	0.691	3.92	10	05/06/2019 18:15	WG1275198
Hexachloroethane	U	<u>J3</u>	0.158	3.92	10	05/06/2019 18:15	WG1275198
Indeno(1,2,3-cd)pyrene	U		0.0909	0.392	10	05/06/2019 18:15	WG1275198
Isophorone	U		0.0614	3.92	10	05/06/2019 18:15	WG1275198
Naphthalene	U	<u>J3</u>	0.105	0.392	10	05/06/2019 18:15	WG1275198
Nitrobenzene	U	<u>J3</u>	0.0818	3.92	10	05/06/2019 18:15	WG1275198
n-Nitrosodimethylamine	U		0.762	3.92	10	05/06/2019 18:15	WG1275198
n-Nitrosodiphenylamine	U		1.06	3.92	10	05/06/2019 18:15	WG1275198
n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.107	3.92	10	05/06/2019 18:15	WG1275198
Phenanthrene	U		0.0621	0.392	10	05/06/2019 18:15	WG1275198
Pyridine	U	<u>J3</u>	0.739	3.92	10	05/06/2019 18:15	WG1275198
Benzylbutyl phthalate	U		0.121	3.92	10	05/06/2019 18:15	WG1275198
Bis(2-ethylhexyl)phthalate	U		0.141	3.92	10	05/06/2019 18:15	WG1275198
Di-n-butyl phthalate	U		0.128	3.92	10	05/06/2019 18:15	WG1275198
Diethyl phthalate	U		0.0813	3.92	10	05/06/2019 18:15	WG1275198
Dimethyl phthalate	U		0.0636	3.92	10	05/06/2019 18:15	WG1275198
Di-n-octyl phthalate	U		0.107	3.92	10	05/06/2019 18:15	WG1275198
Pyrene	U		0.145	0.392	10	05/06/2019 18:15	WG1275198
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.103	3.92	10	05/06/2019 18:15	WG1275198
4-Chloro-3-methylphenol	U		0.0561	3.92	10	05/06/2019 18:15	WG1275198
2-Chlorophenol	U	<u>J3</u>	0.0978	3.92	10	05/06/2019 18:15	WG1275198
2,4-Dichlorophenol	U		0.0878	3.92	10	05/06/2019 18:15	WG1275198
2,4-Dimethylphenol	U	<u>J0</u>	0.554	3.92	10	05/06/2019 18:15	WG1275198
4,6-Dinitro-2-methylphenol	U		1.46	3.92	10	05/06/2019 18:15	WG1275198
2,4-Dinitrophenol	U	<u>J3</u>	1.15	3.92	10	05/06/2019 18:15	WG1275198
2-Methylphenol	U	<u>J3</u>	0.116	3.92	10	05/06/2019 18:15	WG1275198
3&4-Methyl Phenol	U		0.0922	3.92	10	05/06/2019 18:15	WG1275198
2-Nitrophenol	U	<u>J3</u>	0.153	3.92	10	05/06/2019 18:15	WG1275198
4-Nitrophenol	U		0.618	3.92	10	05/06/2019 18:15	WG1275198
Pentachlorophenol	U		0.565	3.92	10	05/06/2019 18:15	WG1275198
Phenol	U		0.0818	3.92	10	05/06/2019 18:15	WG1275198
2,4,6-Trichlorophenol	U		0.0917	3.92	10	05/06/2019 18:15	WG1275198
2,4,5-Trichlorophenol	U		0.122	3.92	10	05/06/2019 18:15	WG1275198
(S) 2-Fluorophenol	49.1			12.0-120		05/06/2019 18:15	WG1275198
(S) Phenol-d5	49.2			10.0-120		05/06/2019 18:15	WG1275198
(S) Nitrobenzene-d5	37.1			10.0-122		05/06/2019 18:15	WG1275198
(S) 2-Fluorobiphenyl	38.9			15.0-120		05/06/2019 18:15	WG1275198
(S) 2,4,6-Tribromophenol	54.5			10.0-127		05/06/2019 18:15	WG1275198
(C) T / / / / /							

Sample Narrative:

(S) p-Terphenyl-d14

L1093844-09 WG1275198: Dilution due to matrix impact during extract concentration procedure

53.9

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
mg/kg		mg/kg	mg/kg		date / time	
0.0120		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.0184		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.0232		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.00824		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.0228		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.00297	<u>J</u>	0.000706	0.00706	1	05/07/2019 13:02	WG1276612
0.0112		0.000706	0.00706	1	05/07/2019 13:02	WG1276612
91.7			14.0-149		05/07/2019 13:02	WG1276612
83.0			34.0-125		05/07/2019 13:02	WG1276612
89.8			23.0-120		05/07/2019 13:02	WG1276612
	mg/kg 0.0120 0.0184 0.0232 0.00824 0.0228 0.00297 0.0112 91.7 83.0	mg/kg 0.0120 0.0184 0.0232 0.00824 0.0228 0.00297 0.0112 91.7 83.0	mg/kg mg/kg 0.0120 0.000706 0.0184 0.000706 0.0232 0.000706 0.00824 0.000706 0.0228 0.000706 0.00297 J 0.000706 0.0112 0.000706 91.7 83.0	mg/kg mg/kg mg/kg 0.0120 0.000706 0.00706 0.0184 0.000706 0.00706 0.0232 0.000706 0.00706 0.00824 0.000706 0.00706 0.0228 0.000706 0.00706 0.00297 J 0.000706 0.00706 0.0112 0.000706 0.00706 91.7 14.0-149 83.0 34.0-125	mg/kg mg/kg mg/kg 0.0120 0.000706 0.00706 1 0.0184 0.000706 0.00706 1 0.0232 0.000706 0.00706 1 0.00824 0.000706 0.00706 1 0.0228 0.000706 0.00706 1 0.00297 J 0.000706 0.00706 1 0.0112 0.000706 0.00706 1 91.7 14.0-149 33.0 34.0-125	mg/kg mg/kg mg/kg date / time 0.0120 0.000706 0.00706 1 05/07/2019 13:02 0.0184 0.000706 0.00706 1 05/07/2019 13:02 0.0232 0.000706 0.00706 1 05/07/2019 13:02 0.00824 0.000706 0.00706 1 05/07/2019 13:02 0.0228 0.000706 0.00706 1 05/07/2019 13:02 0.00129 J 0.000706 0.00706 1 05/07/2019 13:02 0.0112 0.000706 0.00706 1 05/07/2019 13:02 91.7 14.0-149 05/07/2019 13:02 83.0 34.0-125 05/07/2019 13:02

10.0-120

WG1275198

05/06/2019 18:15

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 16:15

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.3		1	05/03/2019 14:10	WG1275563

2_

³Ss

⁴ Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0153	0.0280	1	05/01/2019 14:36	WG1274486
Acrylonitrile	U		0.00213	0.0140	1	05/01/2019 14:36	WG1274486
Benzene	U		0.000448	0.00112	1	05/01/2019 14:36	WG1274486
Bromobenzene	U		0.00118	0.0140	1	05/01/2019 14:36	WG1274486
Bromodichloromethane	U		0.000883	0.00280	1	05/01/2019 14:36	WG1274486
Bromoform	U		0.00670	0.0280	1	05/01/2019 14:36	WG1274486
Bromomethane	U		0.00414	0.0140	1	05/01/2019 14:36	WG1274486
n-Butylbenzene	U		0.00430	0.0140	1	05/01/2019 14:36	WG1274486
sec-Butylbenzene	U		0.00283	0.0140	1	05/01/2019 14:36	WG1274486
tert-Butylbenzene	U		0.00174	0.00560	1	05/01/2019 14:36	WG1274486
Carbon tetrachloride	U		0.00121	0.00560	1	05/01/2019 14:36	WG1274486
Chlorobenzene	U		0.000642	0.00280	1	05/01/2019 14:36	WG1274486
Chlorodibromomethane	U		0.000504	0.00280	1	05/01/2019 14:36	WG1274486
Chloroethane	U		0.00121	0.00560	1	05/01/2019 14:36	WG1274486
Chloroform	U		0.000465	0.00280	1	05/01/2019 14:36	WG1274486
Chloromethane	U		0.00156	0.0140	1	05/01/2019 14:36	WG1274486
2-Chlorotoluene	U		0.00103	0.00280	1	05/01/2019 14:36	WG1274486
4-Chlorotoluene	U		0.00127	0.00560	1	05/01/2019 14:36	WG1274486
1,2-Dibromo-3-Chloropropane	U	<u>J0</u>	0.00571	0.0280	1	05/01/2019 14:36	WG1274486
1,2-Dibromoethane	U	_	0.000588	0.00280	1	05/01/2019 14:36	WG1274486
Dibromomethane	U		0.00112	0.00560	1	05/01/2019 14:36	WG1274486
1,2-Dichlorobenzene	U		0.00162	0.00560	1	05/01/2019 14:36	WG1274486
1,3-Dichlorobenzene	U		0.00190	0.00560	1	05/01/2019 14:36	WG1274486
1,4-Dichlorobenzene	U		0.00221	0.00560	1	05/01/2019 14:36	WG1274486
Dichlorodifluoromethane	U	<u>J4</u>	0.000916	0.00280	1	05/01/2019 14:36	WG1274486
1,1-Dichloroethane	U		0.000644	0.00280	1	05/01/2019 14:36	WG1274486
1,2-Dichloroethane	U		0.000532	0.00280	1	05/01/2019 14:36	WG1274486
1,1-Dichloroethene	U		0.000560	0.00280	1	05/01/2019 14:36	WG1274486
cis-1,2-Dichloroethene	U		0.000773	0.00280	1	05/01/2019 14:36	WG1274486
trans-1,2-Dichloroethene	U		0.00160	0.00560	1	05/01/2019 14:36	WG1274486
1,2-Dichloropropane	U		0.00142	0.00560	1	05/01/2019 14:36	WG1274486
1,1-Dichloropropene	U		0.000784	0.00280	1	05/01/2019 14:36	WG1274486
1,3-Dichloropropane	U		0.00196	0.00560	1	05/01/2019 14:36	WG1274486
cis-1,3-Dichloropropene	U		0.000759	0.00280	1	05/01/2019 14:36	WG1274486
trans-1,3-Dichloropropene	U		0.00171	0.00560	1	05/01/2019 14:36	WG1274486
2,2-Dichloropropane	U		0.000888	0.00280	1	05/01/2019 14:36	WG1274486
Di-isopropyl ether	U		0.000392	0.00112	1	05/01/2019 14:36	WG1274486
Ethylbenzene	U		0.000594	0.00280	1	05/01/2019 14:36	WG1274486
Hexachloro-1,3-butadiene	U	<u>J0</u>	0.0142	0.0280	1	05/01/2019 14:36	WG1274486
Isopropylbenzene	U		0.000967	0.00280	1	05/01/2019 14:36	WG1274486
p-lsopropyltoluene	U		0.00261	0.00560	1	05/01/2019 14:36	WG1274486
2-Butanone (MEK)	U		0.0140	0.0280	1	05/01/2019 14:36	WG1274486
Methylene Chloride	U		0.00744	0.0280	1	05/01/2019 14:36	WG1274486
4-Methyl-2-pentanone (MIBK)	U		0.0112	0.0280	1	05/01/2019 14:36	WG1274486
Methyl tert-butyl ether	U		0.000330	0.00112	1	05/01/2019 14:36	WG1274486
Naphthalene	U		0.00350	0.0140	1	05/01/2019 14:36	WG1274486
n-Propylbenzene	U		0.00132	0.00560	1	05/01/2019 14:36	WG1274486
Styrene	U		0.00306	0.0140	1	05/01/2019 14:36	WG1274486
1,1,1,2-Tetrachloroethane	U		0.000560	0.00280	1	05/01/2019 14:36	WG1274486
1,1,2,2-Tetrachloroethane	U		0.000437	0.00280	1	05/01/2019 14:36	WG1274486
ACCOUNT:			PROJECT:		SE	og.	DATE/TIME: PAG
ACCOUNT.					JL		

(S) 1,2-Dichloroethane-d4

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/19 16:15

L1093844

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000756	0.00280	1	05/01/2019 14:36	WG1274486
Tetrachloroethene	U		0.000784	0.00280	1	05/01/2019 14:36	WG1274486
Toluene	U		0.00140	0.00560	1	05/01/2019 14:36	WG1274486
1,2,3-Trichlorobenzene	U	<u>J0</u>	0.000700	0.00280	1	05/01/2019 14:36	WG1274486
1,2,4-Trichlorobenzene	U	<u>J0</u>	0.00540	0.0140	1	05/01/2019 14:36	WG1274486
1,1,1-Trichloroethane	U		0.000308	0.00280	1	05/01/2019 14:36	WG1274486
1,1,2-Trichloroethane	U		0.000989	0.00280	1	05/01/2019 14:36	WG1274486
Trichloroethene	U		0.000448	0.00112	1	05/01/2019 14:36	WG1274486
Trichlorofluoromethane	U		0.000560	0.00280	1	05/01/2019 14:36	WG1274486
1,2,3-Trichloropropane	U		0.00571	0.0140	1	05/01/2019 14:36	WG1274486
1,2,4-Trimethylbenzene	U		0.00130	0.00560	1	05/01/2019 14:36	WG1274486
1,2,3-Trimethylbenzene	U		0.00129	0.00560	1	05/01/2019 14:36	WG1274486
Vinyl chloride	U		0.000765	0.00280	1	05/01/2019 14:36	WG1274486
1,3,5-Trimethylbenzene	U		0.00121	0.00560	1	05/01/2019 14:36	WG1274486
Xylenes, Total	U		0.00535	0.00728	1	05/01/2019 14:36	WG1274486
(S) Toluene-d8	107			75.0-131		05/01/2019 14:36	WG1274486
(S) 4-Bromofluorobenzene	92.3			67.0-138		05/01/2019 14:36	WG1274486

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.40	<u>J</u>	1.49	4.48	1	05/02/2019 22:04	WG1274928
Residual Range Organics (RRO)	13.1		3.73	11.2	1	05/02/2019 22:04	WG1274928
(S) o-Terphenyl	109			18.0-148		05/02/2019 22:04	WG1274928

70.0-130

05/01/2019 14:36

WG1274486

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

102

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acenaphthene	U		0.0719	0.373	10	05/06/2019 17:56	WG1275198
Acenaphthylene	U		0.0752	0.373	10	05/06/2019 17:56	WG1275198
Anthracene	U		0.0708	0.373	10	05/06/2019 17:56	WG1275198
Benzo(a)anthracene	U		0.0479	0.373	10	05/06/2019 17:56	WG1275198
Benzo(b)fluoranthene	U		0.0779	0.373	10	05/06/2019 17:56	WG1275198
Benzo(k)fluoranthene	U		0.0652	0.373	10	05/06/2019 17:56	WG1275198
Benzo(g,h,i)perylene	U		0.0808	0.373	10	05/06/2019 17:56	WG1275198
Benzo(a)pyrene	U		0.0614	0.373	10	05/06/2019 17:56	WG1275198
Bis(2-chlorethoxy)methane	U	<u>J3</u>	0.0863	3.73	10	05/06/2019 17:56	WG1275198
Bis(2-chloroethyl)ether	U	<u>J3</u>	0.100	3.73	10	05/06/2019 17:56	WG1275198
Bis(2-chloroisopropyl)ether	U	<u>J3</u>	0.0851	3.73	10	05/06/2019 17:56	WG1275198
4-Bromophenyl-phenylether	U		0.128	3.73	10	05/06/2019 17:56	WG1275198
2-Chloronaphthalene	U		0.0716	0.373	10	05/06/2019 17:56	WG1275198
4-Chlorophenyl-phenylether	U		0.0702	3.73	10	05/06/2019 17:56	WG1275198
Chrysene	U		0.0622	0.373	10	05/06/2019 17:56	WG1275198
Dibenz(a,h)anthracene	U		0.0920	0.373	10	05/06/2019 17:56	WG1275198
3,3-Dichlorobenzidine	U		0.889	3.73	10	05/06/2019 17:56	WG1275198
2,4-Dinitrotoluene	U		0.0680	3.73	10	05/06/2019 17:56	WG1275198
2,6-Dinitrotoluene	U		0.0826	3.73	10	05/06/2019 17:56	WG1275198
Fluoranthene	U		0.0556	0.373	10	05/06/2019 17:56	WG1275198
Fluorene	U		0.0764	0.373	10	05/06/2019 17:56	WG1275198
Hexachlorobenzene	U		0.0959	3.73	10	05/06/2019 17:56	WG1275198
Hexachloro-1,3-butadiene	U	<u>J3</u>	0.112	3.73	10	05/06/2019 17:56	WG1275198
Hexachlorocyclopentadiene	U	<u>J0 J3</u>	0.658	3.73	10	05/06/2019 17:56	WG1275198
Hexachloroethane	U	<u>J3</u>	0.150	3.73	10	05/06/2019 17:56	WG1275198
Indeno(1,2,3-cd)pyrene	U		0.0865	0.373	10	05/06/2019 17:56	WG1275198

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Collected date/time: 04/26/19 16:15

L1093844

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	-
Isophorone	U		0.0585	3.73	10	05/06/2019 17:56	WG1275198
Naphthalene	U	<u>J3</u>	0.0996	0.373	10	05/06/2019 17:56	WG1275198
Nitrobenzene	U	<u>J3</u>	0.0779	3.73	10	05/06/2019 17:56	WG1275198
n-Nitrosodimethylamine	U		0.725	3.73	10	05/06/2019 17:56	WG1275198
n-Nitrosodiphenylamine	U		1.01	3.73	10	05/06/2019 17:56	WG1275198
n-Nitrosodi-n-propylamine	U	<u>J3</u>	0.101	3.73	10	05/06/2019 17:56	WG1275198
Phenanthrene	U		0.0591	0.373	10	05/06/2019 17:56	WG1275198
Pyridine	U	<u>J3</u>	0.703	3.73	10	05/06/2019 17:56	WG1275198
Benzylbutyl phthalate	U		0.115	3.73	10	05/06/2019 17:56	WG1275198
Bis(2-ethylhexyl)phthalate	U		0.134	3.73	10	05/06/2019 17:56	WG1275198
Di-n-butyl phthalate	U		0.122	3.73	10	05/06/2019 17:56	WG1275198
Diethyl phthalate	U		0.0774	3.73	10	05/06/2019 17:56	WG1275198
Dimethyl phthalate	U		0.0605	3.73	10	05/06/2019 17:56	WG1275198
Di-n-octyl phthalate	U		0.102	3.73	10	05/06/2019 17:56	WG1275198
Pyrene	U		0.138	0.373	10	05/06/2019 17:56	WG1275198
1,2,4-Trichlorobenzene	U	<u>J3</u>	0.0981	3.73	10	05/06/2019 17:56	WG1275198
4-Chloro-3-methylphenol	U		0.0534	3.73	10	05/06/2019 17:56	WG1275198
2-Chlorophenol	U	<u>J3</u>	0.0931	3.73	10	05/06/2019 17:56	WG1275198
2,4-Dichlorophenol	U		0.0836	3.73	10	05/06/2019 17:56	WG1275198
2,4-Dimethylphenol	U	<u>J0</u>	0.528	3.73	10	05/06/2019 17:56	WG1275198
4,6-Dinitro-2-methylphenol	U		1.39	3.73	10	05/06/2019 17:56	WG1275198
2,4-Dinitrophenol	U	<u>J3</u>	1.10	3.73	10	05/06/2019 17:56	WG1275198
2-Methylphenol	U	<u>J3</u>	0.110	3.73	10	05/06/2019 17:56	WG1275198
3&4-Methyl Phenol	U		0.0877	3.73	10	05/06/2019 17:56	WG1275198
2-Nitrophenol	U	<u>J3</u>	0.146	3.73	10	05/06/2019 17:56	WG1275198
4-Nitrophenol	U		0.588	3.73	10	05/06/2019 17:56	WG1275198
Pentachlorophenol	U		0.538	3.73	10	05/06/2019 17:56	WG1275198
Phenol	U		0.0779	3.73	10	05/06/2019 17:56	WG1275198
2,4,6-Trichlorophenol	U		0.0873	3.73	10	05/06/2019 17:56	WG1275198
2,4,5-Trichlorophenol	U		0.117	3.73	10	05/06/2019 17:56	WG1275198
(S) 2-Fluorophenol	73.8			12.0-120		05/06/2019 17:56	WG1275198
(S) Phenol-d5	71.0			10.0-120		05/06/2019 17:56	WG1275198
(S) Nitrobenzene-d5	59.6			10.0-122		05/06/2019 17:56	WG1275198
(S) 2-Fluorobiphenyl	53.4			15.0-120		05/06/2019 17:56	WG1275198
(S) 2,4,6-Tribromophenol	85.4			10.0-127		05/06/2019 17:56	WG1275198

Sample Narrative:

(S) p-Terphenyl-d14

L1093844-10 WG1275198: Dilution due to matrix impact during extract concentration procedure

88.2

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)anthracene	0.000989	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Benzo(a)pyrene	0.00257	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Benzo(b)fluoranthene	0.00441	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Benzo(k)fluoranthene	0.00151	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Chrysene	0.00120	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Dibenz(a,h)anthracene	U		0.000672	0.00672	1	05/07/2019 13:23	WG1276612
Indeno(1,2,3-cd)pyrene	0.00204	<u>J</u>	0.000672	0.00672	1	05/07/2019 13:23	WG1276612
(S) Nitrobenzene-d5	117			14.0-149		05/07/2019 13:23	WG1276612
(S) 2-Fluorobiphenyl	86.7			34.0-125		05/07/2019 13:23	WG1276612
(S) p-Terphenyl-d14	105			23.0-120		05/07/2019 13:23	WG1276612
1, ,							

10.0-120

05/06/2019 17:56

WG1275198

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1093844-01,02,04,05,06,07,08,09

Method Blank (MB)

(MB) R3408164-1 05/03/19 14:31 MB Result MB RDL MB Qualifier MB MDL Analyte % % % Total Solids 0.00100

[°]Ss

L1093844-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1093844-04 05/03/19 14:31 • (DUP) R3408164-3 05/03/19 14:31

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	88.0	87.8	1	0.166		10

Laboratory Control Sample (LCS)

(LCS) R3408164-2 05/03/19 14:31

(200) 110 100 10 1 2 00,000	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1093844-10

Method Blank (MB)

(MB) R3408163	3-1 05/03/19 14:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1093848-01 Original Sample (OS) • Duplicate (DUP)

95.3

(OS) L1093848-01 05/03/19 14:10 • (DUP) R3408163-3 05/03/19 14:10									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			

1.14

96.4

Ss

Laboratory Control Sample (LCS)

(LCS) R3408163-2	05/03/19 14:10
------------------	----------------

Total Solids

(LCS) R3408163-2 05/03/		LCC Decult	LCC Doo	Dan Limita	LCC Ovalities
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

10

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093844-01,02,06,08,09,10

Method Blank (MB)

Method Blank (MB)				
(MB) R3407247-2 05/01/19	9 11:33			
. ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Acetone	U		0.0137	0.0250
Acrylonitrile	U		0.00190	0.0125
Benzene	U		0.000400	0.00100
Bromobenzene	U		0.00105	0.0125
Bromodichloromethane	U		0.000788	0.00250
Bromoform	U		0.00598	0.00250
Bromomethane	U		0.00338	0.0125
n-Butylbenzene	U		0.00384	0.0125
sec-Butylbenzene	U		0.00253	0.0125
tert-Butylbenzene	U		0.00155	0.00500
Carbon tetrachloride	U		0.00108	0.00500
Chlorobenzene	U		0.000573	0.00250
Chlorodibromomethane	U		0.000450	0.00250
Chloroethane	U		0.00108	0.00500
Chloroform	U		0.000415	0.00250
Chloromethane	U		0.00139	0.0125
2-Chlorotoluene	U		0.000920	0.00250
4-Chlorotoluene	U		0.00113	0.00500
1,2-Dibromo-3-Chloropropane	U		0.00510	0.0250
1,2-Dibromoethane	U		0.000525	0.00250
Dibromomethane	U		0.00100	0.00500
1,2-Dichlorobenzene	U		0.00145	0.00500
1,3-Dichlorobenzene	U		0.00170	0.00500
1,4-Dichlorobenzene	U		0.00197	0.00500
Dichlorodifluoromethane	U		0.000818	0.00350
1,1-Dichloroethane	U		0.000575	0.00250
1,2-Dichloroethane	U		0.000375	0.00250
1,1-Dichloroethene	U		0.000500	0.00250
cis-1,2-Dichloroethene	U		0.000690	0.00250
trans-1,2-Dichloroethene	U		0.00143	0.00500
1,2-Dichloropropane	U		0.00127	0.00500
1,1-Dichloropropene	U		0.000700	0.00250
1,3-Dichloropropane	U		0.00175	0.00500
cis-1,3-Dichloropropene	U		0.000678	0.00250
trans-1,3-Dichloropropene	U		0.00153	0.00500
2,2-Dichloropropane	U		0.000793	0.00250
Di-isopropyl ether	U		0.000350	0.00100
Ethylbenzene	U		0.000530	0.00250
Hexachloro-1,3-butadiene	U		0.0127	0.0250
Isopropylbenzene	U		0.000863	0.00250

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093844-01,02,06,08,09,10

Method Blank (MB)

(MB) R3407247-2 05/01/19	9 11:33					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
p-lsopropyltoluene	U		0.00233	0.00500		
2-Butanone (MEK)	U		0.0125	0.0250		
Methylene Chloride	U		0.00664	0.0250		
4-Methyl-2-pentanone (MIBK)	U		0.0100	0.0250		
Methyl tert-butyl ether	U		0.000295	0.00100		
Naphthalene	U		0.00312	0.0125		
n-Propylbenzene	U		0.00118	0.00500		
Styrene	U		0.00273	0.0125		
1,1,1,2-Tetrachloroethane	U		0.000500	0.00250		
1,1,2,2-Tetrachloroethane	U		0.000390	0.00250		
Tetrachloroethene	U		0.000700	0.00250		
Toluene	U		0.00125	0.00500		
1,1,2-Trichlorotrifluoroethane	U		0.000675	0.00250		
1,2,3-Trichlorobenzene	U		0.000625	0.00250		
1,2,4-Trichlorobenzene	U		0.00482	0.0125		
1,1,1-Trichloroethane	U		0.000275	0.00250		
1,1,2-Trichloroethane	U		0.000883	0.00250		
Trichloroethene	U		0.000400	0.00100		
Trichlorofluoromethane	U		0.000500	0.00250		
1,2,3-Trichloropropane	U		0.00510	0.0125		
1,2,3-Trimethylbenzene	U		0.00115	0.00500		
1,2,4-Trimethylbenzene	U		0.00116	0.00500		
1,3,5-Trimethylbenzene	U		0.00108	0.00500		
Vinyl chloride	U		0.000683	0.00250		
Xylenes, Total	U		0.00478	0.00650		
(S) Toluene-d8	109			75.0-131		
(S) 4-Bromofluorobenzene	90.7			67.0-138		

Laboratory Control Sample (LCS)

97.0

(S) 1,2-Dichloroethane-d4

(LCS) R3407247-1 05/0	(LCS) R3407247-1 05/01/19 10:14								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Acetone	0.625	0.571	91.4	10.0-160					
Acrylonitrile	0.625	0.782	125	45.0-153					
Benzene	0.125	0.119	95.4	70.0-123					
Bromobenzene	0.125	0.114	91.0	73.0-121					
Bromodichloromethane	0.125	0.130	104	73.0-121					

70.0-130

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L10<u>93844-</u>01,02,06,08,09,10

Laboratory Control Sample (LCS)								
(LCS) R3407247-1 05/01/19	10:14							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
	mg/kg	mg/kg	%	%				
	0.125	0.123	98.8	64.0-132				
	0.125	0.152	121	56.0-147				
n-Butylbenzene	0.125	0.111	89.2	68.0-135				
sec-Butylbenzene	0.125	0.114	90.9	74.0-130				
tert-Butylbenzene	0.125	0.102	81.4	75.0-127				
Carbon tetrachloride	0.125	0.135	108	66.0-128				
Chlorobenzene	0.125	0.126	100	76.0-128				
Chlorodibromomethane	0.125	0.121	96.9	74.0-127				
Chloroethane	0.125	0.132	105	61.0-134				
Chloroform	0.125	0.120	96.2	72.0-123				
Chloromethane	0.125	0.148	119	51.0-138				
2-Chlorotoluene	0.125	0.116	92.8	75.0-124				
4-Chlorotoluene	0.125	0.127	102	75.0-124				
1,2-Dibromo-3-Chloropropane	0.125	0.0973	77.9	59.0-130				
1,2-Dibromoethane	0.125	0.118	94.8	74.0-128				
Dibromomethane	0.125	0.124	99.0	75.0-122				
1,2-Dichlorobenzene	0.125	0.128	103	76.0-124				
1,3-Dichlorobenzene	0.125	0.122	98.0	76.0-125				
1,4-Dichlorobenzene	0.125	0.124	99.0	77.0-121				
Dichlorodifluoromethane	0.125	0.204	164	43.0-156	<u>J4</u>			
1,1-Dichloroethane	0.125	0.114	91.5	70.0-127				
1,2-Dichloroethane	0.125	0.122	97.3	65.0-131				
1,1-Dichloroethene	0.125	0.129	104	65.0-131				
cis-1,2-Dichloroethene	0.125	0.120	96.3	73.0-125				
	0.125	0.125	99.8	71.0-125				
	0.125	0.120	95.6	74.0-125				
	0.125	0.119	94.9	73.0-125				
	0.125	0.121	96.5	80.0-125				
	0.125	0.115	91.9	76.0-127				
	0.125	0.127	101	73.0-127				
	0.125	0.139	111	59.0-135				
	0.125	0.110	87.7	60.0-136				
	0.125	0.117	93.9	74.0-126				
	0.125	0.109	87.2	57.0-150				
	0.125	0.120	96.0	72.0-127				
	0.125	0.114	91.6	72.0-133				
	0.625	0.572	91.6	30.0-160				
	0.125	0.113	90.1	68.0-123				
	0.625	0.695	111	56.0-143				
	0.025	0.033	70.1	66.0-132				

05/08/19 16:22

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093844-01,02,06,08,09,10

Laboratory Control Sample (LCS)

(LCS) R3407247-1 05/01/1	(LCS) R3407247-1 05/01/19 10:14									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Naphthalene	0.125	0.0842	67.3	59.0-130						
n-Propylbenzene	0.125	0.115	92.1	74.0-126						
Styrene	0.125	0.0977	78.2	72.0-127						
1,1,1,2-Tetrachloroethane	0.125	0.121	96.7	74.0-129						
1,1,2,2-Tetrachloroethane	0.125	0.120	96.0	68.0-128						
Tetrachloroethene	0.125	0.131	105	70.0-136						
Toluene	0.125	0.127	102	75.0-121						
1,1,2-Trichlorotrifluoroethane	0.125	0.139	111	61.0-139						
1,2,3-Trichlorobenzene	0.125	0.0900	72.0	59.0-139						
1,2,4-Trichlorobenzene	0.125	0.0956	76.4	62.0-137						
1,1,1-Trichloroethane	0.125	0.122	97.2	69.0-126						
1,1,2-Trichloroethane	0.125	0.123	98.8	78.0-123						
Trichloroethene	0.125	0.118	94.6	76.0-126						
Trichlorofluoromethane	0.125	0.131	105	61.0-142						
1,2,3-Trichloropropane	0.125	0.114	90.9	67.0-129						
1,2,3-Trimethylbenzene	0.125	0.123	98.5	74.0-124						
1,2,4-Trimethylbenzene	0.125	0.116	92.6	70.0-126						
1,3,5-Trimethylbenzene	0.125	0.124	99.1	73.0-127						
Vinyl chloride	0.125	0.152	122	63.0-134						
Xylenes, Total	0.375	0.377	101	72.0-127						
(S) Toluene-d8			105	75.0-131						

105

103

67.0-138

70.0-130

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1093844-01,06

Method Blank (MB)

(MB) R3408281-2 05/02/1	(MB) R3408281-2 05/02/19 13:20							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Naphthalene	U		0.00312	0.0125				
(S) Toluene-d8	108			75.0-131				
(S) 4-Bromofluorobenzene	92.8			67.0-138				
(S) 1,2-Dichloroethane-d4	97.4			70.0-130				

Laboratory Control Sample (LCS)

(LCS) R3408281-1	05/02/19	11:00
------------------	----------	-------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Naphthalene	0.125	0.128	103	59.0-130	
(S) Toluene-d8			104	75.0-131	
(S) 4-Bromofluorobenzene			106	67.0-138	
(S) 1,2-Dichloroethane-d4			98.8	70.0-130	

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1093844-07,08,09,10

Method Blank (MB)

(MB) R3407728-1 05/02/19	9 15:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	98.5			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3407728-2 05/02/	LCS) R3407728-2 05/02/19 15:15 • (LCSD) R3407728-3 05/02/19 15:28										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Diesel Range Organics (DRO)	25.0	22.4	23.0	89.6	92.0	50.0-150			2.64	20	
Residual Range Organics (RRO)	25.0	20.4	21.4	81.6	85.6	50.0-150			4.78	20	
(S) o-Terphenyl				78.8	76.3	18.0-148					

ONE LAB. NATIONWIDE.

PAGE: 37 of 47

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093844-01,04,05,07,08,09,10

Method Blank (MB)

Method Blank (MB)				
(MB) R3408627-3 05/04/1	9 15:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Acenaphthene	U		0.00642	0.0333
Acenaphthylene	U		0.00671	0.0333
Anthracene	U		0.00632	0.0333
Benzo(a)anthracene	U		0.00428	0.0333
Benzo(b)fluoranthene	U		0.00695	0.0333
Benzo(k)fluoranthene	U		0.00582	0.0333
Benzo(g,h,i)perylene	U		0.00721	0.0333
Benzo(a)pyrene	U		0.00548	0.0333
Bis(2-chlorethoxy)methane	U		0.00770	0.333
Bis(2-chloroethyl)ether	U		0.00896	0.333
Bis(2-chloroisopropyl)ether	U		0.00760	0.333
4-Bromophenyl-phenylether	U		0.0114	0.333
2-Chloronaphthalene	U		0.00639	0.0333
4-Chlorophenyl-phenylether	U		0.00627	0.333
Chrysene	U		0.00555	0.0333
Dibenz(a,h)anthracene	U		0.00821	0.0333
3,3-Dichlorobenzidine	U		0.0794	0.333
2,4-Dinitrotoluene	U		0.00607	0.333
2,6-Dinitrotoluene	U		0.00737	0.333
Fluoranthene	U		0.00496	0.0333
Fluorene	U		0.00682	0.0333
Hexachlorobenzene	U		0.00856	0.333
Hexachloro-1,3-butadiene	U		0.0100	0.333
Hexachlorocyclopentadiene	U		0.0587	0.333
Hexachloroethane	U		0.0134	0.333
Indeno(1,2,3-cd)pyrene	U		0.00772	0.0333
Isophorone	U		0.00522	0.333
Naphthalene	U		0.00889	0.0333
Nitrobenzene	U		0.00695	0.333
n-Nitrosodimethylamine	U		0.0647	0.333
n-Nitrosodiphenylamine	U		0.0900	0.333
n-Nitrosodi-n-propylamine	U		0.00906	0.333
Phenanthrene	U		0.00528	0.0333
Benzylbutyl phthalate	U		0.0103	0.333
Bis(2-ethylhexyl)phthalate	U		0.0120	0.333
Di-n-butyl phthalate	U		0.0109	0.333
Diethyl phthalate	U		0.00691	0.333
Dimethyl phthalate	U		0.00540	0.333
Di-n-octyl phthalate	U		0.00907	0.333
Pyrene	U		0.0123	0.0333

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093844-01,04,05,07,08,09,10

Method Blank (MB)

(MB) R3408627-3 05/04	/19 15:30					ľ
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/kg		mg/kg	mg/kg		2.
Pyridine	U		0.0628	0.333		L
1,2,4-Trichlorobenzene	U		0.00876	0.333		3
4-Chloro-3-methylphenol	U		0.00477	0.333		Ľ
2-Chlorophenol	U		0.00831	0.333		4
2-Methylphenol	U		0.00986	0.333		(
3&4-Methyl Phenol	U		0.00783	0.333		느
2,4-Dichlorophenol	U		0.00746	0.333		5
2,4-Dimethylphenol	U		0.0471	0.333		L
4,6-Dinitro-2-methylphenol	U		0.124	0.333	!	6
2,4-Dinitrophenol	U		0.0980	0.333		6
2-Nitrophenol	U		0.0130	0.333		
4-Nitrophenol	U		0.0525	0.333		7
Pentachlorophenol	U		0.0480	0.333		L
Phenol	U		0.00695	0.333		8
2,4,5-Trichlorophenol	U		0.0104	0.333		1
2,4,6-Trichlorophenol	U		0.00779	0.333		_
(S) Nitrobenzene-d5	21.7			10.0-122		9
(S) 2-Fluorobiphenyl	24.3			15.0-120		L
(S) p-Terphenyl-d14	35.1			10.0-120		
(S) Phenol-d5	22.8			10.0-120		
(S) 2-Fluorophenol	24.5			12.0-120		
(S) 2,4,6-Tribromophenol	26.6			10.0-127		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408627-1 05/04	LCS) R3408627-1 05/04/19 14:52 • (LCSD) R3408627-2 05/04/19 15:11										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acenaphthene	0.666	0.318	0.335	47.7	50.3	38.0-120			5.21	22	
Acenaphthylene	0.666	0.336	0.366	50.5	55.0	40.0-120			8.55	22	
Anthracene	0.666	0.378	0.377	56.8	56.6	42.0-120			0.265	20	
Benzo(a)anthracene	0.666	0.477	0.463	71.6	69.5	44.0-120			2.98	20	
Benzo(b)fluoranthene	0.666	0.455	0.436	68.3	65.5	43.0-120			4.26	22	
Benzo(k)fluoranthene	0.666	0.437	0.440	65.6	66.1	44.0-120			0.684	21	
Benzo(g,h,i)perylene	0.666	0.436	0.422	65.5	63.4	43.0-120			3.26	22	
Benzo(a)pyrene	0.666	0.447	0.428	67.1	64.3	45.0-120			4.34	20	
Bis(2-chlorethoxy)methane	0.666	0.198	0.265	29.7	39.8	20.0-120		<u>J3</u>	28.9	23	
Bis(2-chloroethyl)ether	0.666	0.195	0.289	29.3	43.4	16.0-120		<u>J3</u>	38.8	31	
Bis(2-chloroisopropyl)ether	0.666	0.178	0.258	26.7	38.7	23.0-120		<u>J3</u>	36.7	30	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093844-01,04,05,07,08,09,10

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408627-1 05/04/19 14:52 • (LCSD) R3408627-2 05/04/19 15:11
--

(LCS) R3408627-1 05/04/	19 14:52 • (LCSI	J) R3408627-	-2 05/04/19 15:	11							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
1-Bromophenyl-phenylether	0.666	0.394	0.388	59.2	58.3	40.0-120			1.53	21	
2-Chloronaphthalene	0.666	0.270	0.315	40.5	47.3	35.0-120			15.4	24	
1-Chlorophenyl-phenylether	0.666	0.410	0.394	61.6	59.2	40.0-120			3.98	22	
Chrysene	0.666	0.428	0.406	64.3	61.0	43.0-120			5.28	20	
Dibenz(a,h)anthracene	0.666	0.441	0.416	66.2	62.5	44.0-120			5.83	22	
3,3-Dichlorobenzidine	1.33	0.879	0.821	66.1	61.7	28.0-120			6.82	23	
2,4-Dinitrotoluene	0.666	0.425	0.426	63.8	64.0	45.0-120			0.235	21	
2,6-Dinitrotoluene	0.666	0.378	0.381	56.8	57.2	42.0-120			0.791	21	
Fluoranthene	0.666	0.431	0.420	64.7	63.1	44.0-120			2.59	21	
·luorene	0.666	0.378	0.379	56.8	56.9	41.0-120			0.264	22	
Hexachlorobenzene	0.666	0.392	0.395	58.9	59.3	39.0-120			0.762	21	
Hexachloro-1,3-butadiene	0.666	0.203	0.292	30.5	43.8	15.0-120		<u>J3</u>	36.0	28	
Hexachlorocyclopentadiene	0.666	0.252	0.362	37.8	54.4	15.0-120		<u>J3</u>	35.8	31	
lexachloroethane	0.666	0.170	0.260	25.5	39.0	17.0-120		<u>J3</u>	41.9	31	
ndeno(1,2,3-cd)pyrene	0.666	0.447	0.429	67.1	64.4	45.0-120			4.11	21	
sophorone	0.666	0.218	0.271	32.7	40.7	23.0-120			21.7	23	
laphthalene	0.666	0.192	0.259	28.8	38.9	18.0-120		<u>J3</u>	29.7	24	
litrobenzene	0.666	0.198	0.274	29.7	41.1	17.0-120		<u>J3</u>	32.2	26	
-Nitrosodimethylamine	0.666	0.210	0.291	31.5	43.7	10.0-125		_	32.3	33	
-Nitrosodiphenylamine	0.666	0.373	0.372	56.0	55.9	40.0-120			0.268	21	
-Nitrosodi-n-propylamine	0.666	0.217	0.287	32.6	43.1	26.0-120		<u>J3</u>	27.8	27	
Phenanthrene	0.666	0.377	0.373	56.6	56.0	42.0-120		_	1.07	20	
Benzylbutyl phthalate	0.666	0.456	0.429	68.5	64.4	40.0-120			6.10	21	
Bis(2-ethylhexyl)phthalate	0.666	0.449	0.432	67.4	64.9	41.0-120			3.86	21	
Di-n-butyl phthalate	0.666	0.424	0.417	63.7	62.6	43.0-120			1.66	20	
Diethyl phthalate	0.666	0.424	0.420	63.7	63.1	43.0-120			0.948	21	
Dimethyl phthalate	0.666	0.373	0.377	56.0	56.6	43.0-120			1.07	22	
Di-n-octyl phthalate	0.666	0.428	0.415	64.3	62.3	40.0-120			3.08	21	
Pyrene	0.666	0.443	0.432	66.5	64.9	41.0-120			2.51	21	
Pyridine	0.666	0.0905	0.159	13.6	23.9	10.0-120		<u>J3</u>	54.9	35	
,2,4-Trichlorobenzene	0.666	0.199	0.280	29.9	42.0	17.0-120		<u>J3</u>	33.8	26	
I-Chloro-3-methylphenol	0.666	0.333	0.344	50.0	51.7	28.0-120			3.25	20	
2-Chlorophenol	0.666	0.221	0.302	33.2	45.3	28.0-120		<u>J3</u>	31.0	28	
-Methylphenol	0.666	0.247	0.323	37.1	48.5	35.0-120		<u>J3</u>	26.7	24	
&4-Methyl Phenol	0.666	0.247	0.323	42.9	52.1	42.0-120		<u>30</u>	19.3	25	
,4-Dichlorophenol	0.666	0.264	0.316	39.6	47.4	25.0-120			17.9	21	
2,4-Dimethylphenol	0.666	0.256	0.296	38.4	44.4	15.0-120			14.5	26	
l,6-Dinitro-2-methylphenol	0.666	0.457	0.525	68.6	78.8	16.0-120			13.8	33	
2,4-Dinitrophenol	0.666	0.437	0.525	32.1	71.3	10.0-120		13	75.8	40	
2-Nitrophenol	0.666	0.214	0.475	35.3	50.5	20.0-120		<u>J3</u>	75.8 35.4	25	

PAGE:

39 of 47

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1093844-01,04,05,07,08,09,10

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408627-1	05/04/19 14:52	• (LCSD) R3408627-2	05/04/19 15:11

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
4-Nitrophenol	0.666	0.443	0.422	66.5	63.4	27.0-120			4.86	24
Pentachlorophenol	0.666	0.468	0.465	70.3	69.8	29.0-120			0.643	25
Phenol	0.666	0.246	0.322	36.9	48.3	28.0-120			26.8	27
2,4,5-Trichlorophenol	0.666	0.438	0.446	65.8	67.0	38.0-120			1.81	24
2,4,6-Trichlorophenol	0.666	0.377	0.398	56.6	59.8	37.0-120			5.42	24
(S) Nitrobenzene-d5				33.3	45.3	10.0-122				
(S) 2-Fluorobiphenyl				42.9	50.8	15.0-120				
(S) p-Terphenyl-d14				69.1	67.6	10.0-120				
(S) Phenol-d5				36.5	46.8	10.0-120				
(S) 2-Fluorophenol				36.3	50.6	12.0-120				
(S) 2,4,6-Tribromophenol				65.8	64.7	10.0-127				

SLR International Corp. - West Linn, OR

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L1093844-02,04

Method Blank (MB)

(MB) R3407838-3 05/03/19 08:16				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzo(a)anthracene	U		0.000600	0.00600
Benzo(a)pyrene	U		0.000600	0.00600
Benzo(b)fluoranthene	U		0.000600	0.00600
Benzo(k)fluoranthene	U		0.000600	0.00600
Chrysene	U		0.000600	0.00600
Dibenz(a,h)anthracene	U		0.000600	0.00600
Indeno(1,2,3-cd)pyrene	U		0.000600	0.00600
(S) Nitrobenzene-d5	83.3			14.0-149
(S) 2-Fluorobiphenyl	79.4			34.0-125
(S) p-Terphenyl-d14	79.3			23.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzo(a)anthracene	0.0800	0.0600	0.0599	75.0	74.9	45.0-120			0.167	20
Benzo(a)pyrene	0.0800	0.0538	0.0525	67.3	65.6	42.0-120			2.45	20
Benzo(b)fluoranthene	0.0800	0.0533	0.0539	66.6	67.4	42.0-121			1.12	20
Benzo(k)fluoranthene	0.0800	0.0557	0.0537	69.6	67.1	49.0-125			3.66	20
Chrysene	0.0800	0.0538	0.0541	67.3	67.6	49.0-122			0.556	20
Dibenz(a,h)anthracene	0.0800	0.0565	0.0564	70.6	70.5	47.0-125			0.177	20
ndeno(1,2,3-cd)pyrene	0.0800	0.0573	0.0570	71.6	71.3	46.0-125			0.525	20
(S) Nitrobenzene-d5				82.5	83.6	14.0-149				
(S) 2-Fluorobiphenyl				76.6	77.5	34.0-125				
(S) p-Terphenyl-d14				78.1	78.5	23.0-120				

L1093416-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1093416-01 05/03/19 13:31 • (MS) R3407838-4 05/03/19 13:52 • (MSD) R3407838-5 05/03/19 14:13												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzo(a)anthracene	0.0800	0.100	0.0696	0.0615	0.000	0.000	10	10.0-139	<u>J6</u>	<u>J6</u>	12.4	30
Benzo(a)pyrene	0.0800	0.118	0.0677	0.0607	0.000	0.000	10	10.0-141	<u>J6</u>	<u>J6</u>	10.9	31
Benzo(b)fluoranthene	0.0800	0.159	0.0850	0.0685	0.000	0.000	10	10.0-140	<u>J6</u>	<u>J6</u>	21.5	36
Benzo(k)fluoranthene	0.0800	ND	0.0601	0.0558	15.5	10.1	10	10.0-137			7.42	31
Chrysene	0.0800	0.105	0.0754	0.0667	0.000	0.000	10	10.0-145	<u>J6</u>	<u>J6</u>	12.2	30
Dibenz(a,h)anthracene	0.0800	ND	0.0625	0.0540	50.0	39.4	10	10.0-132			14.6	31
Indeno(1,2,3-cd)pyrene	0.0800	0.0730	0.0678	0.0595	0.000	0.000	10	10.0-137	<u>J6</u>	<u>J6</u>	13.0	32

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: SLR International Corp. - West Linn, OR 108.00228.00059 L1093844 05/08/19 16:22 41 of 47 (S) Nitrobenzene-d5

(S) 2-Fluorobiphenyl

(S) p-Terphenyl-d14

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

RPD Limits

%

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L1093844-02,04

126

120

76.9

MS Qualifier

14.0-149

34.0-125

23.0-120

RPD

%

MSD Qualifier

L1093416-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1093416-01 05/03/19) 13:31 • (MS) R3	3407838-4 05/	/03/19 13:52 • (N	/ISD) R340783	8-5 05/03/19 1	4:13			
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%	

84.3

122

84.5

11	
ш	Cn
ш	\sim P
ш	

SLR International Corp. - West Linn, OR

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L1093844-05,07,08,09,10

Method Blank (MB)

(MB) R3408716-2 05/07/19 08:27					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzo(a)anthracene	U		0.000600	0.00600	
Benzo(a)pyrene	U		0.000600	0.00600	
Benzo(b)fluoranthene	U		0.000600	0.00600	
Benzo(k)fluoranthene	U		0.000600	0.00600	
Chrysene	U		0.000600	0.00600	
Dibenz(a,h)anthracene	U		0.000600	0.00600	
Indeno(1,2,3-cd)pyrene	U		0.000600	0.00600	
(S) Nitrobenzene-d5	111			14.0-149	
(S) 2-Fluorobiphenyl	106			34.0-125	
(S) p-Terphenyl-d14	111			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3408716-1 05/0	_CS) R3408716-1 05/07/19 08:06					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzo(a)anthracene	0.0800	0.0638	79.8	45.0-120		
Benzo(a)pyrene	0.0800	0.0674	84.3	42.0-120		
Benzo(b)fluoranthene	0.0800	0.0628	78.5	42.0-121		
Benzo(k)fluoranthene	0.0800	0.0808	101	49.0-125		
Chrysene	0.0800	0.0739	92.4	49.0-122		
Dibenz(a,h)anthracene	0.0800	0.0649	81.1	47.0-125		
Indeno(1,2,3-cd)pyrene	0.0800	0.0653	81.6	46.0-125		
(S) Nitrobenzene-d5			109	14.0-149		
(S) 2-Fluorobiphenyl			101	34.0-125		
(S) p-Terphenyl-d14			104	23.0-120		

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appleviations and	a Deminions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
JO	JO: The identification of the analyte is acceptable, but the reported concentration is an estimate. The calibration met method criteria.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

State Accreditations

Otate / tool caltations	
Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

		and the		t _{al}		- 4												
SLR International Co OR 1800 Blankenship Road, Suit		t Linn,	1800 BI	ormation: ts Payable ankenship Rd nn, OR 97068		Pres Chk		Wind the second		Analysis	s / Cont	ainer / F	Preservati	ve			Chain of Custon	Page of of of or
Report to: Chris Kramer			Email To:	ckramer@slrcons	sulting.com;												12065 Lebanon R	
Project Description: Nord Door Project	- Everett, W	A		Dalana annialana an	venett, wt		S		nl/Syr	NoPres							Mount Juliet, TN : Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-585	37122 5858 5859
Phone: 503-723-4423 Fax: 503-723-4436	Client Project 108.00228		9	Lab Project # SLRWLOR-N	NORDDOOR		8ozClr-NoPres	res	leOH5r	8ozClr-NoPres							L# Llog3	
Collected by (print): Steven Loslaber	Site/Facility I			P.O. #				8ozClr-NoPres	Amb/N		NoPres						Acctnum: SLI	3037
Collected by (signature): Immediately Packed on Ice N Y		10 D	Day y (Rad Only) ay (Rad Only)		sults Needed	No.	NWTPHDX NOSGT	8270D	8260C 40mlAmb/MeOH5ml/Syr	CPAHS SV8270PAHSIMD	weight 2ozClr-NoPres						Template: T1 4 Prelogin: P7 (TSR: 110 - Bria PB:	48769 03216
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	IWTP	SVOCs	VOCs	PAHS	dry we					- 1	Shipped Via:	
GP-MW-11-55	Comp	SS	0-12	4/25/19	1510	3	2	X	×	0	0			- Java			Remarks	Sample # (lab only)
GP-MW-12-55	Comp	SS	0-10	4/25/19	1140	3			X	X						-	- 6.25	-01
GP-MW-12-55-18-19	Grab	SS	14-19	4/25/19	1118 0	>		*		弘		32	15		and the second	-	(1.1.0	-02
GP-MW-13-55	Comp	SS	0-12	4/25/19	0946	33		X		X	1					-	Hold	-04
GP-MW-14-55	Comp	SS	0-12	4/25/19	1415	11		X		X		RAD	SCRE	Ta.			1	
GP-4W-15-55	Comp	SS	0-12	4/26/19	1342	2			X					CIV:	0.5 mR/	724	- X	-05
GP-MW-16-SS	Comp	SS	0-12	4/26/19	1315	2	X	X	0	X						"		-05
MO GP-MW-17-55	Comp	SS	0-12"	4/26/19	1450	3	X	X	X	X						-		-07
GP-801-55	Comp	SS	0-12	4/26/19	0845	3	X	X	X	X						+		-08
GP-802-55	Comp	SS	0-12	4/26/19	1615	13	X	V	V	X						+		709
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Samples return UPS Fee	ned via: dExCour	ier		acking # 4/	01		(J.		pH Flow	27	Tem Othe			COC Signe Bottles a Correct h	ed/A arri	ve intact: les used: colume sent:	- NP + Y N N N N N N N N N N N N N N N N N N
Relinquished by : (Signature) Relinquished by : (Signature)		Date: 4/29//	9 Ti	me: Re	eceived by: (Signa		E	547		Trip Blan			es / No HCD / Me TBR	юН	VOA Zero Preservat	Head	If Applicab dspace: Correct/Che	LV N
		Date:	Ti	me: Re	eceived by: (Signa	ture)	100		SI	Temp:	0-1.		les Receive	Spe	If preservat	ion r	required by Log	gin: Date/Time
Relinquished by : (Signature)		Date:	Ti	me: Re	eceived for lab by:	(Signati	ure)			Date: 4/30	0/19	Time	e: 84		Hold:	1		Condition: NCF / OK

Evaluated by: ERIC STRUCK Date: 4/30/19 Client: SLRWLOR Login #:L1093844

Non-Conformance (check applicable items)

Sample Integrity	Chain of Custody Clarification	
Parameter(s) past holding time	X Login Clarification Needed	If Broken Container.
Temperature not in		
range	Chain of custody is incomplete	Insufficient packing material around container
Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Couri
Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
Broken container	Client did not "X" analysis.	Received by:
Broken container:	Chain of Custody is missing	Date/Time:
Sufficient sample remains		Temp./Cont. Rec./pH:
		Carrier:
		Tracking#

Login Comments:

-Did not receive GP-MW-12-SS-18-19.

Client informed by:	Call	Email	Voice Mail	Date:	Time	
					ann.	
TSR Initials:bjf	Client Conta	ct:				
	THE PERSON NAMED IN					

Login Instructions:

Proceed without GP-MW-12-SS-18-19

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT

May 15, 2019

Sample Delivery Group: L1096002

Samples Received: 05/07/2019

Project Number: 108.00228.00059

SLR International Corp. - West Linn, OR

Description: Nord Door

EVERETT, WA Site:

Report To: Chris Kramer

1800 Blankenship Road, Suite 440

West Linn, OR 97068

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

45

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-11A-0519 L1096002-01	6
MW-11B-0519 L1096002-02	9
MW-12-0519 L1096002-03	12
MW-13-0519 L1096002-04	14
MW-14-0519 L1096002-05	16
MW-16-0519 L1096002-06	18
MW-17-0519 L1096002-07	20
MW-15-0519 L1096002-08	24
Qc: Quality Control Summary	25
Mercury by Method 7470A	25
Metals (ICPMS) by Method 6020B	27
Volatile Organic Compounds (GC/MS) by Method 8260C	29
Semi-Volatile Organic Compounds (GC) \square by Method NWTPHDX-NO SGT	33
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	34
GI: Glossary of Terms	43
Al: Accreditations & Locations	44

PAGE:

2 of 47

Sc: Sample Chain of Custody

			Collected by	Collected date/time	Received da	te/time
MW-11A-0519 L1096002-01 GW			Steven L.	05/03/19 15:37	05/07/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1277537	1	05/07/19 21:00	05/08/19 10:13	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 15:58	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 15:43	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1279226	1	05/10/19 13:47	05/10/19 13:47	ACG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1277353	1	05/09/19 07:50	05/10/19 05:05	AO	Mt. Juliet, TN
MW 41D 0E40 14006002 02 CW			Collected by Steven L.	Collected date/time 05/03/19 16:17	Received da 05/07/19 08:	
MW-11B-0519 L1096002-02 GW			Steven E.	03/03/13 10:17	03/07/13 00.	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1279226	1	05/10/19 14:08	05/10/19 14:08	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1278026	1	05/08/19 17:50	05/11/19 00:43	SHG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1277353	1	05/09/19 07:50	05/10/19 05:26	AO	Mt. Juliet, TN
MW-12-0519 L1096002-03 GW			Collected by Steven L.	Collected date/time 05/03/19 11:20	Received da 05/07/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metiod	Batch	Dilution	date/time	date/time	Analyst	Location
Mercury by Method 7470A	WG1277537	1	05/07/19 21:00	05/08/19 10:16	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 16:17	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 16:02	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1279226	1	05/10/19 14:29	05/10/19 14:29	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-13-0519 L1096002-04 GW			Steven L.	05/03/19 10:25	05/07/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1277537	1	05/07/19 21:00	05/08/19 10:26	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 16:21	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 16:06	LD	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1278048	1	05/09/19 07:30	05/10/19 00:37	AO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-14-0519 L1096002-05 GW			Steven L.	05/03/19 12:07	05/07/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1277537	1	05/07/19 21:00	05/08/19 10:28	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 16:26	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 16:11	LD	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1278048	1	05/09/19 07:30	05/10/19 00:58	AO	Mt. Juliet, TN

SAMPLE SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

MW-16-0519 L1096002-06 GW

Method

Mercury by Method 7470A

Metals (ICPMS) by Method 6020B

Metals (ICPMS) by Method 6020B

Batch

WG1277537

WG1279590

WG1279590

WG1278048

Collected by

Steven L.

Preparation

05/07/19 21:00

05/13/19 15:03

05/13/19 15:03

05/09/19 07:30

date/time

Dilution

1

1

1

Collected date/time Received date/time

05/07/19 08:45

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Analyst

SD

LD

LD

AO

05/03/19 13:57

05/08/19 10:30

05/14/19 16:43

05/15/19 16:24

05/10/19 01:19

Analysis

date/time

NW 47 0540 14000000 07 0W			Collected by Steven L.	Collected date/time 05/03/19 14:44	Received da 05/07/19 08:	
MW-17-0519 L1096002-07 GW			Steven L.	05/05/19 14.44	03/07/19 06.	40
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1277537	1	05/07/19 21:00	05/08/19 10:33	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 16:48	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 16:29	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1279226	1	05/10/19 14:50	05/10/19 14:50	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC)☐ by Method NWTPHDX-NO SGT	WG1278026	1	05/08/19 17:50	05/11/19 01:05	SHG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270D	WG1278048	1	05/09/19 07:30	05/10/19 01:39	AO	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-15-0519 L1096002-08 GW			Steven L.	05/03/19 13:15	05/07/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1278941	1	05/10/19 08:11	05/12/19 12:08	TCT	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/14/19 16:52	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1279590	1	05/13/19 15:03	05/15/19 16:34	LD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

Sample Handling and Receiving

The following analysis were performed from an unpreserved, insufficiently or inadequately preserved sample.

Lab Sample ID L1096002-08 Project Sample ID MW-15-0519 Method 6020B

SAMPLE RESULTS - 01 L1096002

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 15:37

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/08/2019 10:13	WG1277537

Ss

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	05/15/2019 15:43	WG1279590
Arsenic	5.95	<u>J6</u>	0.250	2.00	1	05/14/2019 15:58	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 15:58	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 15:58	WG1279590
Chromium	20.5	J6 O1	0.540	2.00	1	05/14/2019 15:58	WG1279590
Copper	6.34	B O1	0.520	5.00	1	05/14/2019 15:58	WG1279590
Lead	1.01	<u>J</u>	0.240	2.00	1	05/14/2019 15:58	WG1279590
Nickel	4.17		0.350	2.00	1	05/14/2019 15:58	WG1279590
Selenium	0.490	ВJ	0.380	2.00	1	05/14/2019 15:58	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 15:58	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 15:58	WG1279590
Zinc	6.85	B J O1	2.56	25.0	1	05/14/2019 15:58	WG1279590

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	1.97	<u>J</u>	1.05	25.0	1	05/10/2019 13:47	WG1279226
Acrylonitrile	U	_	0.873	5.00	1	05/10/2019 13:47	WG1279226
Benzene	U		0.0896	0.500	1	05/10/2019 13:47	WG1279226
Bromobenzene	U		0.133	0.500	1	05/10/2019 13:47	WG1279226
Bromodichloromethane	U		0.0800	0.500	1	05/10/2019 13:47	WG1279226
Bromochloromethane	U		0.145	0.500	1	05/10/2019 13:47	WG1279226
Bromoform	U		0.186	0.500	1	05/10/2019 13:47	WG1279226
Bromomethane	U		0.157	2.50	1	05/10/2019 13:47	WG1279226
n-Butylbenzene	U		0.143	0.500	1	05/10/2019 13:47	WG1279226
sec-Butylbenzene	U		0.134	0.500	1	05/10/2019 13:47	WG1279226
tert-Butylbenzene	U		0.183	0.500	1	05/10/2019 13:47	WG1279226
Carbon disulfide	U		0.101	0.500	1	05/10/2019 13:47	WG1279226
Carbon tetrachloride	U		0.159	0.500	1	05/10/2019 13:47	WG1279226
Chlorobenzene	U		0.140	0.500	1	05/10/2019 13:47	WG1279226
Chlorodibromomethane	U		0.128	0.500	1	05/10/2019 13:47	WG1279226
Chloroethane	U		0.141	2.50	1	05/10/2019 13:47	WG1279226
Chloroform	U		0.0860	0.500	1	05/10/2019 13:47	WG1279226
Chloromethane	U		0.153	1.25	1	05/10/2019 13:47	WG1279226
2-Chlorotoluene	U		0.111	0.500	1	05/10/2019 13:47	WG1279226
1-Chlorotoluene	U		0.0972	0.500	1	05/10/2019 13:47	WG1279226
,2-Dibromo-3-Chloropropane	U		0.325	2.50	1	05/10/2019 13:47	WG1279226
,2-Dibromoethane	U		0.193	0.500	1	05/10/2019 13:47	WG1279226
Dibromomethane	U		0.117	0.500	1	05/10/2019 13:47	WG1279226
l,2-Dichlorobenzene	U		0.101	0.500	1	05/10/2019 13:47	WG1279226
l,3-Dichlorobenzene	U		0.130	0.500	1	05/10/2019 13:47	WG1279226
l,4-Dichlorobenzene	U		0.121	0.500	1	05/10/2019 13:47	WG1279226
Dichlorodifluoromethane	U		0.127	2.50	1	05/10/2019 13:47	WG1279226
,1-Dichloroethane	U		0.114	0.500	1	05/10/2019 13:47	WG1279226
,2-Dichloroethane	U		0.108	0.500	1	05/10/2019 13:47	WG1279226
,1-Dichloroethene	U		0.188	0.500	1	05/10/2019 13:47	WG1279226
cis-1,2-Dichloroethene	U		0.0933	0.500	1	05/10/2019 13:47	WG1279226
rans-1,2-Dichloroethene	U		0.152	0.500	1	05/10/2019 13:47	WG1279226
l,2-Dichloropropane	U		0.190	0.500	1	05/10/2019 13:47	WG1279226
l,1-Dichloropropene	U		0.128	0.500	1	05/10/2019 13:47	WG1279226

SLR International Corp. - West Linn, OR

1,2,3-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

U

U

U

U

U

94.1

112

103

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 15:37

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,3-Dichloropropane	U		0.147	1.00	1	05/10/2019 13:47	WG1279226
cis-1,3-Dichloropropene	U		0.0976	0.500	1	05/10/2019 13:47	WG1279226
trans-1,3-Dichloropropene	U		0.222	0.500	1	05/10/2019 13:47	WG1279226
trans-1,4-Dichloro-2-butene	U	<u>J0</u>	0.257	5.00	1	05/10/2019 13:47	WG1279226
2,2-Dichloropropane	U		0.0929	0.500	1	05/10/2019 13:47	WG1279226
Di-isopropyl ether	U		0.0924	0.500	1	05/10/2019 13:47	WG1279226
Ethylbenzene	U		0.158	0.500	1	05/10/2019 13:47	WG1279226
Hexachloro-1,3-butadiene	U		0.157	1.00	1	05/10/2019 13:47	WG1279226
2-Hexanone	U		0.757	5.00	1	05/10/2019 13:47	WG1279226
n-Hexane	U		0.305	5.00	1	05/10/2019 13:47	WG1279226
lodomethane	U		0.377	10.0	1	05/10/2019 13:47	WG1279226
Isopropylbenzene	U		0.126	0.500	1	05/10/2019 13:47	WG1279226
p-Isopropyltoluene	U		0.138	0.500	1	05/10/2019 13:47	WG1279226
2-Butanone (MEK)	U		1.28	5.00	1	05/10/2019 13:47	WG1279226
Methylene Chloride	U		1.07	2.50	1	05/10/2019 13:47	WG1279226
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00	1	05/10/2019 13:47	WG1279226
Methyl tert-butyl ether	U		0.102	0.500	1	05/10/2019 13:47	WG1279226
Naphthalene	0.188	ВJ	0.174	2.50	1	05/10/2019 13:47	WG1279226
n-Propylbenzene	U		0.162	0.500	1	05/10/2019 13:47	WG1279226
Styrene	U		0.117	0.500	1	05/10/2019 13:47	WG1279226
1,1,1,2-Tetrachloroethane	U		0.120	0.500	1	05/10/2019 13:47	WG1279226
1,1,2,2-Tetrachloroethane	U		0.130	0.500	1	05/10/2019 13:47	WG1279226
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/10/2019 13:47	WG1279226
Tetrachloroethene	U		0.199	0.500	1	05/10/2019 13:47	WG1279226
Toluene	U		0.412	0.500	1	05/10/2019 13:47	WG1279226
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/10/2019 13:47	WG1279226
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/10/2019 13:47	WG1279226
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/10/2019 13:47	WG1279226
1,1,2-Trichloroethane	U		0.186	0.500	1	05/10/2019 13:47	WG1279226
Trichloroethene	U		0.153	0.500	1	05/10/2019 13:47	WG1279226
Trichlorofluoromethane	U		0.130	2.50	1	05/10/2019 13:47	WG1279226
1,2,3-Trichloropropane	U		0.247	2.50	1	05/10/2019 13:47	WG1279226
1,2,4-Trimethylbenzene	0.151	<u>J</u>	0.123	0.500	1	05/10/2019 13:47	WG1279226

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

<u>J0</u>

0.0739

0.124

0.645

0.118

0.316

0.500

0.500

5.00

0.500

80.0-120

77.0-126

70.0-130

1.50

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	32.0		0.316	1.00	1	05/10/2019 05:05	WG1277353
Acenaphthylene	U		0.309	1.00	1	05/10/2019 05:05	WG1277353
Anthracene	U		0.291	1.00	1	05/10/2019 05:05	WG1277353
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 05:05	WG1277353
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 05:05	WG1277353
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 05:05	WG1277353
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 05:05	WG1277353
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 05:05	WG1277353
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 05:05	WG1277353
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 05:05	WG1277353
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 05:05	WG1277353

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

05/10/2019 13:47

WG1279226

WG1279226

WG1279226

WG1279226

WG1279226

WG1279226

WG1279226

WG1279226

Ср

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 15:37

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 05:05	WG1277353
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 05:05	WG1277353
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 05:05	WG1277353
Chrysene	U		0.332	1.00	1	05/10/2019 05:05	WG1277353
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/10/2019 05:05	WG1277353
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 05:05	WG1277353
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 05:05	WG1277353
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 05:05	WG1277353
Fluoranthene	U		0.310	1.00	1	05/10/2019 05:05	WG1277353
Fluorene	19.1		0.323	1.00	1	05/10/2019 05:05	WG1277353
Hexachlorobenzene	U		0.341	1.00	1	05/10/2019 05:05	WG1277353
Hexachloro-1,3-butadiene	U	<u>J4</u>	0.329	10.0	1	05/10/2019 05:05	WG1277353
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 05:05	WG1277353
Hexachloroethane	U	<u>J4</u>	0.365	10.0	1	05/10/2019 05:05	WG1277353
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/10/2019 05:05	WG1277353
Isophorone	U		0.272	10.0	1	05/10/2019 05:05	WG1277353
Naphthalene	U		0.372	1.00	1	05/10/2019 05:05	WG1277353
Nitrobenzene	U		0.367	10.0	1	05/10/2019 05:05	WG1277353
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 05:05	WG1277353
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 05:05	WG1277353
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 05:05	WG1277353
Phenanthrene	14.1		0.366	1.00	1	05/10/2019 05:05	WG1277353
Pyridine	U		1.37	10.0	1	05/10/2019 05:05	WG1277353
Benzylbutyl phthalate	U		0.275	3.00	1	05/10/2019 05:05	WG1277353
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/10/2019 05:05	WG1277353
Di-n-butyl phthalate	U		0.266	3.00	1	05/10/2019 05:05	WG1277353
Diethyl phthalate	U		0.282	3.00	1	05/10/2019 05:05	WG1277353
Dimethyl phthalate	U		0.283	3.00	1	05/10/2019 05:05	WG1277353
Di-n-octyl phthalate	U		0.278	3.00	1	05/10/2019 05:05	WG1277353
Pyrene	U		0.330	1.00	1	05/10/2019 05:05	WG1277353
1,2,4-Trichlorobenzene	U		0.355	10.0	1	05/10/2019 05:05	WG1277353
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/10/2019 05:05	WG1277353
2-Chlorophenol	U		0.283	10.0	1	05/10/2019 05:05	WG1277353
2,4-Dichlorophenol	U		0.284	10.0	1	05/10/2019 05:05	WG1277353
2,4-Dimethylphenol	U		0.264	10.0	1	05/10/2019 05:05	WG1277353
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/10/2019 05:05	WG1277353
2,4-Dinitrophenol	U		3.25	10.0	1	05/10/2019 05:05	WG1277353
2-Methylphenol	U		0.312	10.0	1	05/10/2019 05:05	WG1277353
3&4-Methyl Phenol	U		0.266	10.0	1	05/10/2019 05:05	WG1277353
2-Nitrophenol	U		0.320	10.0	1	05/10/2019 05:05	WG1277353
4-Nitrophenol	U		2.01	10.0	1	05/10/2019 05:05	WG1277353
Pentachlorophenol	U		0.313	10.0	1	05/10/2019 05:05	WG1277353
Phenol	1.29	<u>J</u>	0.334	10.0	1	05/10/2019 05:05	WG1277353
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/10/2019 05:05	WG1277353
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/10/2019 05:05	WG1277353
(S) 2-Fluorophenol	16.9			10.0-120		05/10/2019 05:05	WG1277353
(S) Phenol-d5	13.7			10.0-120		05/10/2019 05:05	WG1277353
(S) Nitrobenzene-d5	22.8			10.0-127		05/10/2019 05:05	WG1277353
(S) 2-Fluorobiphenyl	34.1			10.0-130		05/10/2019 05:05	WG1277353
(S) 2,4,6-Tribromophenol	45.6			10.0-155		05/10/2019 05:05	WG1277353
(S) p-Terphenyl-d14	48.7			10.0-128		05/10/2019 05:05	WG1277353

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 16:17

L1096002

Academic Au	Volatile Organic Co	ompound	ds (GC/MS)	by Metho	od 8260C			
Actione		Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Applearinin U 0.873 5.00 1 0.01012019-1008 09:179226 Bernacher U 0.0868 0.510 1 0.05102019-1008 09:179226 Bernacher U 0.0868 0.510 1 0.05102019-1008 09:179226 Bernacher U 0.0860 0.500 1 0.05102019-1008 09:179226 Bernacher U 0.0860 0.500 1 0.05102019-1008 09:179226 Bernacher U 0.0860 0.500 1 0.05102019-1008 09:179226 Bernacher U 0.0875 0.500 1 0.05102019-1008 09:179226 Bernacher U 0.0975 0.500 1 0.051	Analyte	ug/l		ug/l	ug/l		date / time	
Authors	Acetone	4.20	J	1.05	25.0	1	05/10/2019 14:08	WG1279226
Bernaldeterment	Acrylonitrile	U	_	0.873	5.00	1	05/10/2019 14:08	WG1279226
Browned for overhance	Benzene	U		0.0896	0.500	1	05/10/2019 14:08	WG1279226
Beneade formerchance	Bromobenzene	U		0.133	0.500	1	05/10/2019 14:08	WG1279226
Remotement U	Bromodichloromethane	U		0.0800	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
Bromedman U 0,866 0,500 1, 0500/2019 488 W02129226 Brommelman U 0,157 2,50 1 0500/2019 488 W0212926 Brommelman U 0,157 2,50 1 0500/2019 488 W0212926 Brommelman U 0,158 0,500 1 0500/2019 4808 W0212926 Brommelman U 0,158 0,500 1 0500/2019 4808 W0212926 Brommelman U 0,158 0,500 1 0500/2019 4808 W02129226 Brommelman U 0,159 0,500 1 0500/2019 4808 W02129226 Brommelman U 0,150 0,500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bromochloromethane	U		0.145	0.500	1	05/10/2019 14:08	WG1279226
Bulghorace U	Bromoform	U		0.186	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
	Bromomethane	U		0.157	2.50	1	05/10/2019 14:08	WG1279226
Left-Bully Michaelane	n-Butylbenzene	U		0.143	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
Cabon disabled U 0,105 0,500 1 0,510/2019 Holes Weit179275 Chibrochemene U 0,159 0,500 1 0,510/2019 Holes Weit179275 Chibrochemene U 0,128 0,500 1 0,510/2019 Holes Weit179275 Chibrochemene U 0,128 0,500 1 0,510/2019 Holes Weit179276 Chibrochemene U 0,153 1.55 1 0,510/2019 Holes Weit179276 Chibrocheme U 0,133 1.55 1 0,510/2019 Holes Weit179276 4-Chibrochelure U 0,972 0,500 1 0,510/2019 Holes Weit179276 4-Chibrochelure U 0,972 0,500 1 0,510/2019 Holes Weit179276 4-Chibrochelure U 0,972 0,500 1 0,510/2019 Holes Weit179276 1-2-Discons-Chilosephare U 0,133 0,500 1 0,510/2019 Holes Weit179276 1-2-Disconsophare U	sec-Butylbenzene	U		0.134	0.500	1	05/10/2019 14:08	WG1279226
Calcon tervalroide	tert-Butylbenzene	U		0.183	0.500	1	05/10/2019 14:08	WG1279226
Chloroderseee U 0,140 0,500 1 0,500 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,128 0,500 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,414 2,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,414 2,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,53 1,55 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,53 1,55 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,53 1,50 1,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,57 0,57 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,57 0,59 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,57 0,59 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,59 0,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,59 0,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,59 0,50 0,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,59 0,50 0,50 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 1 0,510/2019 Hu-08 W1779726 Chlorodersee U 0,50 0 0,50 0 0 1 0,510	Carbon disulfide	U		0.101	0.500	1	05/10/2019 14:08	WG1279226
Chloroetharnomethane U 0,141 2.50 1 0,500,2019 14-08 W5279228 Chloroethane U 0,141 2.50 1 0,500,2019 14-08 W5279228 Chloromethane U 0,153 1.25 1 0,500,2019 14-08 W5279228 Chloromethane U 0,153 1.25 1 0,500,2019 14-08 W5279228 Chloromethane U 0,015 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,0972 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,171 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,172 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,174 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,174 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,174 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,184 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,184 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,188 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,188 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,190 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,190 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,190 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,190 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,190 0,500 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,500 0 1 0,500,2019 14-08 W5279228 Chloromethane U 0,190 0,500 0 1 0,500,2019 14-08	Carbon tetrachloride	U		0.159	0.500	1	05/10/2019 14:08	WG1279226
Chlorodehane U	Chlorobenzene	U		0.140	0.500	1	05/10/2019 14:08	WG1279226
Chloridomethane U 0,153 1,25 1 0,510,2019 14-08 W6279226 2-Chinoteoluene U 0,111 0,500 1 1 0,510,2019 14-08 W6279226 4-Chinoteoluene U 0,0972 0,500 1 0,500,2019 14-08 W6279226 4-Chinoteoluene U 0,0972 0,500 1 0,500,2019 14-08 W6279226 4-Chinoteoluene U 0,333 0,500 1 0,500,2019 14-08 W6279226 1,2 Dibromoethane U 0,133 0,500 1 0,500,2019 14-08 W6279226 1,2 Dibromoethane U 0,137 0,500 1 0,500,2019 14-08 W6279226 1,2 Dibromoethane U 0,101 0,500 1 0,500,2019 14-08 W6279226 1,3 Dichinoteolenene U 0,101 0,500 1 0,500,2019 14-08 W6279226 1,3 Dichinoteolenene U 0,101 0,500 1 0,500,2019 14-08 W6279226 1,3 Dichinoteolenene U 0,121 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,127 2,50 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,104 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,104 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,1 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226 1,2 Dichinoteolenene U 0,108 0,500 1 0,500,2019 14-08 W6279226	Chlorodibromomethane	U		0.128	0.500	1	05/10/2019 14:08	WG1279226
Chloromelhane U 0 0.153 1.25 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0 0.111 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0 0.0972 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.0923 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.0923 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.010 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.012 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.018 0.018 0.500 1 0.500/020914/08 W617992/6 - Chlorotoluene U 0.018 0.018 0.000 1 0.500/020914/08 W617992/	Chloroethane	U		0.141	2.50	1	05/10/2019 14:08	WG1279226
2-Chlorololuene U 0.9972 0.500 1 0.5700/2019 14:08 MG1799226 4-Chilorotoluene U 0.9972 0.500 1 0.5700/2019 14:08 MG179926 12-Dibronon-Chinopropane U 0.935 2.500 1 0.5700/2019 14:08 MG179926 12-Dibronon-Chinopropane U 0.117 0.500 1 0.5700/2019 14:08 MG179926 12-Dibrionoroberzene U 0.101 0.500 1 0.5700/2019 14:08 MG179926 1.3-Dichloroberzene U 0.130 0.500 1 0.5700/2019 14:08 MG179926 1.4-Dichloroberzene U 0.121 0.500 1 0.5700/2019 14:08 MG179926 1.1-Dichloroberzene U 0.121 0.500 1 0.5700/2019 14:08 MG179926 1.1-Dichloroberzene U 0.188 0.500 1 0.5700/2019 14:08 MG179926 1.1-Dichloroberzene U 0.188 0.500 1 0.5700/2019 14:08 MG179926 1.1-D	Chloroform	1.32		0.0860	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
2-Chlorofoluene U 0.111 0.500 1 0.507/00/914/08 WG17279226 4-Chlorofoluene U 0.972 0.500 1 0.507/00/914/08 WG1727926 12-Dibromo-Chloropropane U 0.933 0.500 1 0.500/00/914/08 WG1729226 12-Dibromo-Chloropropane U 0.107 0.500 1 0.500/00/914/08 WG1729226 12-Dibriomorbitane U 0.101 0.500 1 0.500/00/914/08 WG1729226 1.3-Dichlorobetizene U 0.103 0.500 1 0.500/20/914/08 WG1729226 1.3-Dichlorobetizene U 0.121 0.500 1 0.500/20/914/08 WG1729226 1.1-Dichlorobetizene U 0.121 0.500 1 0.500/20/914/08 WG1729226 1.1-Dichlorobetizene U 0.144 0.500 1 0.500/20/914/08 WG1729226 1.1-Dichlorobetizene U 0.188 0.500 1 0.500/20/914/08 WG1729226 1.1-Dichloropro	Chloromethane	U		0.153	1.25	1	05/10/2019 14:08	WG1279226
ALChlorodulene	2-Chlorotoluene	U		0.111	0.500	1	05/10/2019 14:08	WG1279226
1.2 Dibromoethane	4-Chlorotoluene	U		0.0972	0.500	1	05/10/2019 14:08	
12-Dictoromethane	1,2-Dibromo-3-Chloropropane	U		0.325	2.50	1	05/10/2019 14:08	WG1279226
Dibromomethane	1,2-Dibromoethane	U		0.193	0.500	1	05/10/2019 14:08	
1.2-Dichlorobenzene	Dibromomethane	U		0.117	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
1.3-Dichlorobenzenee U 0.130 0.500 1 0.5010/2019 14:08 WG1279226 1.4-Dichlorobenzenee U 0.121 0.500 1 0.5010/2019 14:08 WG1279226 1.1-Dichlorocthanee U 0.127 2.50 1 0.5010/2019 14:08 WG1279226 1.1-Dichlorocthanee U 0.144 0.500 1 0.5010/2019 14:08 WG1279226 1.1-Dichlorocthanee U 0.188 0.500 1 0.5010/2019 14:08 WG1279226 1.1-Dichlorocthanee U 0.188 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichlorocthanee U 0.0933 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichlorocthanee U 0.0933 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichlorocthanee U 0.0152 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichloropropane U 0.0152 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichloropropane U 0.0128 0.500 1 0.5010/2019 14:08 WG1279226 1.3-Dichloropropane U 0.0147 1.00 1 0.5010/2019 14:08 WG1279226 1.3-Dichloropropane U 0.0976 0.500 1	1,2-Dichlorobenzene	U		0.101	0.500	1	05/10/2019 14:08	
1.4.Dichlorobenzene	1,3-Dichlorobenzene	U		0.130	0.500	1	05/10/2019 14:08	
Dichlorodifluoromethane U	1,4-Dichlorobenzene	U		0.121	0.500	1	05/10/2019 14:08	
1.1-Dichloroethane	Dichlorodifluoromethane	U		0.127	2.50	1	05/10/2019 14:08	
1.2-Dichloroethane U 0.1088 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloroethene U 0.0933 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloroethene U 0.0933 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloroethene U 0.0952 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloropropane U 0.199 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloropropane U 0.188 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloropropane U 0.188 0.500 1 0.5070/2019 14:08 WG1279226 1.1-Dichloropropane U 0.187 0.0976 0.500 1 0.5070/2019 14:08 WG1279226 0.500 1 0.5070/2019 14:08 WG1279226 0.501 0.501 0.5070/2019 14:08 WG1279226 0.502 0.502 0.503 0.5070/2019 14:08 WG1279226 0.503 0.5070/2019 14:08 WG1279226 0.503 0.5070/2019 14:08 WG1279226 0.5070/2019 1	1,1-Dichloroethane	U		0.114	0.500	1	05/10/2019 14:08	
cis-1,2-Dichloroethene U 0.0933 0.500 1 05/10/2019 14:08 WG1279226 trans-1,2-Dichloroethene U 0.152 0.500 1 05/10/2019 14:08 WG1279226 1,2-Dichloropropane U 0.190 0.500 1 0.5/10/2019 14:08 WG1279226 1,3-Dichloropropane U 0.147 1.00 1 0.5/10/2019 14:08 WG1279226 cis-1,3-Dichloropropane U 0.0976 0.500 1 0.5/10/2019 14:08 WG1279226 cis-1,3-Dichloropropane U 0.0976 0.500 1 0.5/10/2019 14:08 WG1279226 trans-1,3-Dichloropropane U 0.0227 5.00 1 0.5/10/2019 14:08 WG1279226 Ethyloenzene U JO 0.0924 0.500 1 0.5/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 0.5/10/2019 14:08 WG1279226 Ethylbenzene U 0.157 1.00 1 0.5/10/2019 14:08 WG1279226	1,2-Dichloroethane	U		0.108	0.500	1	05/10/2019 14:08	
cis-1,2-Dichloroethene U 0.0933 0.500 1 05/10/2019 14:08 WG1279226 trans-1,2-Dichloroethene U 0.152 0.500 1 05/10/2019 14:08 WG1279226 1,2-Dichloropropane U 0.128 0.500 1 0.5/10/2019 14:08 WG1279226 1,3-Dichloropropane U 0.147 1.00 1 0.5/10/2019 14:08 WG1279226 cis-1,3-Dichloropropane U 0.0976 0.500 1 0.5/10/2019 14:08 WG1279226 cis-1,3-Dichloropropane U 0.0976 0.500 1 0.5/10/2019 14:08 WG1279226 trans-1,3-Dichloropropane U JO 0.222 0.500 1 0.5/10/2019 14:08 WG1279226 2,2-Dichloropropane U JO 0.929 0.500 1 0.5/10/2019 14:08 WG1279226 Ethylbenzene U 0.0924 0.500 1 0.5/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 0.5/10/2019 14:08	1,1-Dichloroethene	U		0.188	0.500	1	05/10/2019 14:08	
1,2-Dichloropropane U 0,190 0,500 1 0,570/2019 14:08 WG1279226 1,1-Dichloropropene U 0,128 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,147 1,00 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropene U 0,0976 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropene U 0,0976 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropene U 0,0927 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropene U 0,0929 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,158 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,158 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,0757 0,00 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,0757 0,00 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,0305 0,00 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,0377 1,00 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,138 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 0,138 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 1,128 0,500 1 0,570/2019 14:08 WG1279226 1,3-Dichloropropane U 1,110 0,570/2019 14:08 WG1279226	cis-1,2-Dichloroethene	U		0.0933	0.500	1	05/10/2019 14:08	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane U 0,190 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropene U 0,128 0,500 1 0,510/2019 14:08 WG1279226 1,3-Dichloropropene U 0,147 1,00 1 0,510/2019 14:08 WG1279226 1,3-Dichloropropene U 0,0976 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropene U 0,0976 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropene U 0,0976 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropene U 0,0926 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropene U 0,0929 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,0924 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,158 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,157 0,00 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,138 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,157 0,500 1 0,510/2019 14:08 WG1279226 1,1-Dichloropropane U 0,117 0,500 1 0,510/2019 14:08 WG1279226	trans-1,2-Dichloroethene	U		0.152	0.500	1	05/10/2019 14:08	WG1279226
1,3-Dichloropropane U 0,147 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,0976 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,222 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,227 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,0929 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,0929 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,0924 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,0924 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,158 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,157 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,157 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,157 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,305 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,305 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,377 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,377 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,377 1,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,378 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,126 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,128 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,128 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,128 5,00 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,102 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,102 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,102 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Dichloropropene U 0,104 2,50 1 0,500 1 05/10/201914:08 WG1279226 Cis-1,3-Di	1,2-Dichloropropane	U		0.190	0.500	1	05/10/2019 14:08	
cis-1,3-Dichloropropene U 0.0976 0.500 1 05/10/2019 14:08 WG1279226 trans-1,3-Dichloropropene U 0.222 0.500 1 05/10/2019 14:08 WG1279226 2,2-Dichloropropane U 0.0929 0.500 1 05/10/2019 14:08 WG1279226 Di-isopropyl ether U 0.0924 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 1-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U	1,1-Dichloropropene	U		0.128	0.500	1	05/10/2019 14:08	WG1279226
trans-1,3-Dichloropropene U 0.222 0.500 1 05/10/2019 14:08 WG1279226 trans-1,4-Dichloro-2-butene U JO 0.257 5.00 1 05/10/2019 14:08 WG1279226 Di-isopropyl ether U 0.0924 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 Letwachloro-1,3-butadiene U 0.757 5.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.305 5.00 1 05/10/2019 14:08 WG1279226 I-Hexane U 0.337 10.0 1 05/10/2019 14:08 WG1279226 Isopropyltoluene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 Bethylere Chloride <td>1,3-Dichloropropane</td> <td>U</td> <td></td> <td>0.147</td> <td>1.00</td> <td>1</td> <td>05/10/2019 14:08</td> <td>WG1279226</td>	1,3-Dichloropropane	U		0.147	1.00	1	05/10/2019 14:08	WG1279226
trans-1,4-Dichloro-2-butene U JO 0.257 5.00 1 05/10/2019 14:08 WG1279226 2,2-Dichloropropane U 0.0929 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Hexachloro-1,3-butadiene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 1-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 Iodomethane U 0.3377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 P-Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride	cis-1,3-Dichloropropene	U		0.0976	0.500	1	05/10/2019 14:08	WG1279226
2,2-Dichloropropane U 0.0929 0.500 1 05/10/2019 14:08 WG1279226 Di-isopropyl ether U 0.0924 0.500 1 05/10/2019 14:08 WG1279226 Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Hexachloro-1,3-butadiene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 In-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 Iodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226	trans-1,3-Dichloropropene	U		0.222	0.500	1	05/10/2019 14:08	WG1279226
2,2-Dichloropropane U 0.0929 0.500 1 05/10/2019 14:08 WG1279226 Elthylbenzene U 0.0924 0.500 1 05/10/2019 14:08 WG1279226 Elthylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Hexachloro-1,3-butadiene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 n-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 lospropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 P-Isopropylbenzene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 Methyle	trans-1,4-Dichloro-2-butene	U	<u>J0</u>	0.257	5.00	1	05/10/2019 14:08	WG1279226
Ethylbenzene U 0.158 0.500 1 05/10/2019 14:08 WG1279226 Hexachloro-1,3-butadiene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 In-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 Idodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 Jebutanone (MEK) U 0.138 0.500 1 05/10/2019 14:08 WG1279226 Jebutanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl tert-butyl ether U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174<	2,2-Dichloropropane	U	_	0.0929	0.500	1	05/10/2019 14:08	WG1279226
Hexachloro-1,3-butadiene U 0.157 1.00 1 05/10/2019 14:08 WG1279226 2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 n-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 lsopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 p-lsopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U	Di-isopropyl ether	U		0.0924	0.500	1	05/10/2019 14:08	WG1279226
2-Hexanone U 0.757 5.00 1 05/10/2019 14:08 WG1279226 n-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 p-Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 Styrene <td>Ethylbenzene</td> <td>U</td> <td></td> <td>0.158</td> <td>0.500</td> <td>1</td> <td>05/10/2019 14:08</td> <td>WG1279226</td>	Ethylbenzene	U		0.158	0.500	1	05/10/2019 14:08	WG1279226
n-Hexane U 0.305 5.00 1 05/10/2019 14:08 WG1279226 lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 lsopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 p-lsopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 1.28 5.00 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 1.07 2.50 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.823 5.00 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.102 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.102 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 lsopropyltoluene U 0.120 0.500	Hexachloro-1,3-butadiene	U		0.157	1.00	1	05/10/2019 14:08	WG1279226
lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 p-Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U <td>2-Hexanone</td> <td>U</td> <td></td> <td>0.757</td> <td>5.00</td> <td>1</td> <td>05/10/2019 14:08</td> <td>WG1279226</td>	2-Hexanone	U		0.757	5.00	1	05/10/2019 14:08	WG1279226
lodomethane U 0.377 10.0 1 05/10/2019 14:08 WG1279226 Isopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226 p-Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U <td>n-Hexane</td> <td>U</td> <td></td> <td>0.305</td> <td>5.00</td> <td>1</td> <td>05/10/2019 14:08</td> <td>WG1279226</td>	n-Hexane	U		0.305	5.00	1	05/10/2019 14:08	WG1279226
Sopropylbenzene U 0.126 0.500 1 05/10/2019 14:08 WG1279226	lodomethane	U				1	05/10/2019 14:08	WG1279226
p-Isopropyltoluene U 0.138 0.500 1 05/10/2019 14:08 WG1279226 2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	Isopropylbenzene	U		0.126		1	05/10/2019 14:08	WG1279226
2-Butanone (MEK) U 1.28 5.00 1 05/10/2019 14:08 WG1279226 Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	p-lsopropyltoluene	U				1		
Methylene Chloride U 1.07 2.50 1 05/10/2019 14:08 WG1279226 4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	2-Butanone (MEK)	U		1.28	5.00	1	05/10/2019 14:08	
4-Methyl-2-pentanone (MIBK) U 0.823 5.00 1 05/10/2019 14:08 WG1279226 Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	Methylene Chloride	U				1		
Methyl tert-butyl ether U 0.102 0.500 1 05/10/2019 14:08 WG1279226 Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	4-Methyl-2-pentanone (MIBK)	U						
Naphthalene U 0.174 2.50 1 05/10/2019 14:08 WG1279226 n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	Methyl tert-butyl ether					1		
n-Propylbenzene U 0.162 0.500 1 05/10/2019 14:08 WG1279226 Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	Naphthalene							
Styrene U 0.117 0.500 1 05/10/2019 14:08 WG1279226 1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	n-Propylbenzene					1		
1,1,1,2-Tetrachloroethane U 0.120 0.500 1 05/10/2019 14:08 WG1279226	Styrene							
	1,1,1,2-Tetrachloroethane							· · · · · · · · · · · · · · · · · · ·
	1,1,2,2-Tetrachloroethane	U		0.130	0.500		05/10/2019 14:08	WG1279226

Ss

Cn

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 16:17

Volatile Organic Compounds (GC/MS) by Method 8260C

.1	Λ	a	6	Λ	Λ	2	
- 1	v	J	v	v	v	_	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/10/2019 14:08	WG1279226
Tetrachloroethene	U		0.199	0.500	1	05/10/2019 14:08	WG1279226
Toluene	U		0.412	0.500	1	05/10/2019 14:08	WG1279226
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/10/2019 14:08	WG1279226
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/10/2019 14:08	WG1279226
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/10/2019 14:08	WG1279226
1,1,2-Trichloroethane	U		0.186	0.500	1	05/10/2019 14:08	WG1279226
Trichloroethene	U		0.153	0.500	1	05/10/2019 14:08	WG1279226
Trichlorofluoromethane	U		0.130	2.50	1	05/10/2019 14:08	WG1279226
1,2,3-Trichloropropane	U		0.247	2.50	1	05/10/2019 14:08	WG1279226
1,2,4-Trimethylbenzene	U		0.123	0.500	1	05/10/2019 14:08	WG1279226
1,2,3-Trimethylbenzene	U		0.0739	0.500	1	05/10/2019 14:08	WG1279226
1,3,5-Trimethylbenzene	U		0.124	0.500	1	05/10/2019 14:08	WG1279226
Vinyl acetate	U	<u>J0</u>	0.645	5.00	1	05/10/2019 14:08	WG1279226
Vinyl chloride	U		0.118	0.500	1	05/10/2019 14:08	WG1279226
Xylenes, Total	U		0.316	1.50	1	05/10/2019 14:08	WG1279226
(S) Toluene-d8	92.8			80.0-120		05/10/2019 14:08	WG1279226
(S) 4-Bromofluorobenzene	105			77.0-126		05/10/2019 14:08	WG1279226
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		05/10/2019 14:08	WG1279226

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	05/11/2019 00:43	WG1278026
Residual Range Organics (RRO)	U		83.3	250	1	05/11/2019 00:43	WG1278026
(S) o-Terphenyl	91.1			52.0-156		05/11/2019 00:43	WG1278026

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/10/2019 05:26	WG1277353
Acenaphthylene	U		0.309	1.00	1	05/10/2019 05:26	WG1277353
Anthracene	U		0.291	1.00	1	05/10/2019 05:26	WG1277353
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 05:26	WG1277353
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 05:26	WG1277353
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 05:26	WG1277353
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 05:26	WG1277353
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 05:26	WG1277353
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 05:26	WG1277353
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 05:26	WG1277353
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 05:26	WG1277353
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 05:26	WG1277353
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 05:26	WG1277353
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 05:26	WG1277353
Chrysene	U		0.332	1.00	1	05/10/2019 05:26	WG1277353
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/10/2019 05:26	WG1277353
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 05:26	WG1277353
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 05:26	WG1277353
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 05:26	WG1277353
Fluoranthene	U		0.310	1.00	1	05/10/2019 05:26	WG1277353
Fluorene	U		0.323	1.00	1	05/10/2019 05:26	WG1277353
Hexachlorobenzene	U		0.341	1.00	1	05/10/2019 05:26	WG1277353
Hexachloro-1,3-butadiene	U	<u>J4</u>	0.329	10.0	1	05/10/2019 05:26	WG1277353
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 05:26	WG1277353
Hexachloroethane	U	<u>J4</u>	0.365	10.0	1	05/10/2019 05:26	WG1277353

Cn

(S) 2,4,6-Tribromophenol

(S) p-Terphenyl-d14

60.0

72.7

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 16:17

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	·	ug/l	ug/l		date / time	
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/10/2019 05:26	WG1277353
Isophorone	U		0.272	10.0	1	05/10/2019 05:26	WG1277353
Naphthalene	U		0.372	1.00	1	05/10/2019 05:26	WG1277353
Nitrobenzene	U		0.367	10.0	1	05/10/2019 05:26	WG1277353
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 05:26	WG1277353
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 05:26	WG1277353
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 05:26	WG1277353
Phenanthrene	U		0.366	1.00	1	05/10/2019 05:26	WG1277353
Pyridine	U		1.37	10.0	1	05/10/2019 05:26	WG1277353
Benzylbutyl phthalate	U		0.275	3.00	1	05/10/2019 05:26	WG1277353
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/10/2019 05:26	WG1277353
Di-n-butyl phthalate	U		0.266	3.00	1	05/10/2019 05:26	WG1277353
Diethyl phthalate	U		0.282	3.00	1	05/10/2019 05:26	WG1277353
Dimethyl phthalate	U		0.283	3.00	1	05/10/2019 05:26	WG1277353
Di-n-octyl phthalate	U		0.278	3.00	1	05/10/2019 05:26	WG1277353
Pyrene	U		0.330	1.00	1	05/10/2019 05:26	WG1277353
1,2,4-Trichlorobenzene	U		0.355	10.0	1	05/10/2019 05:26	WG1277353
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/10/2019 05:26	WG1277353
2-Chlorophenol	U		0.283	10.0	1	05/10/2019 05:26	WG1277353
2,4-Dichlorophenol	U		0.284	10.0	1	05/10/2019 05:26	WG1277353
2,4-Dimethylphenol	U		0.264	10.0	1	05/10/2019 05:26	WG1277353
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/10/2019 05:26	WG1277353
2,4-Dinitrophenol	U		3.25	10.0	1	05/10/2019 05:26	WG1277353
2-Methylphenol	U		0.312	10.0	1	05/10/2019 05:26	WG1277353
3&4-Methyl Phenol	U		0.266	10.0	1	05/10/2019 05:26	WG1277353
2-Nitrophenol	U		0.320	10.0	1	05/10/2019 05:26	WG1277353
4-Nitrophenol	U		2.01	10.0	1	05/10/2019 05:26	WG1277353
Pentachlorophenol	U		0.313	10.0	1	05/10/2019 05:26	WG1277353
Phenol	2.89	<u>J</u>	0.334	10.0	1	05/10/2019 05:26	WG1277353
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/10/2019 05:26	WG1277353
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/10/2019 05:26	WG1277353
(S) 2-Fluorophenol	34.1			10.0-120		05/10/2019 05:26	WG1277353
(S) Phenol-d5	22.8			10.0-120		05/10/2019 05:26	WG1277353
(S) Nitrobenzene-d5	43.5			10.0-127		05/10/2019 05:26	WG1277353
(S) 2-Fluorobiphenyl	53.1			10.0-130		05/10/2019 05:26	WG1277353

10.0-155

10.0-128

05/10/2019 05:26

05/10/2019 05:26

WG1277353

WG1277353

SAMPLE RESULTS - 03 L1096002

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 11:20 Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/08/2019 10:16	WG1277537

Cn

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	6.55		0.754	2.00	1	05/15/2019 16:02	WG1279590
Arsenic	18.7		0.250	2.00	1	05/14/2019 16:17	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:17	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:17	WG1279590
Chromium	4.82		0.540	2.00	1	05/14/2019 16:17	WG1279590
Copper	7.26	В	0.520	5.00	1	05/14/2019 16:17	WG1279590
Lead	11.2		0.240	2.00	1	05/14/2019 16:17	WG1279590
Nickel	7.67		0.350	2.00	1	05/14/2019 16:17	WG1279590
Selenium	U		0.380	2.00	1	05/14/2019 16:17	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:17	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:17	WG1279590
Zinc	27.7	<u>B</u>	2.56	25.0	1	05/14/2019 16:17	<u>WG1279590</u>

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	46.1		1.05	25.0	1	05/10/2019 14:29	WG1279226
Acrylonitrile	U		0.873	5.00	1	05/10/2019 14:29	WG1279226
Benzene	0.207	<u>J</u>	0.0896	0.500	1	05/10/2019 14:29	WG1279226
Bromobenzene	U	_	0.133	0.500	1	05/10/2019 14:29	WG1279226
Bromodichloromethane	U		0.0800	0.500	1	05/10/2019 14:29	WG1279226
Bromochloromethane	U		0.145	0.500	1	05/10/2019 14:29	WG1279226
Bromoform	U		0.186	0.500	1	05/10/2019 14:29	WG1279226
Bromomethane	U		0.157	2.50	1	05/10/2019 14:29	WG1279226
n-Butylbenzene	U		0.143	0.500	1	05/10/2019 14:29	WG1279226
sec-Butylbenzene	U		0.134	0.500	1	05/10/2019 14:29	WG1279226
tert-Butylbenzene	U		0.183	0.500	1	05/10/2019 14:29	WG1279226
Carbon disulfide	2.87		0.101	0.500	1	05/10/2019 14:29	WG1279226
Carbon tetrachloride	U		0.159	0.500	1	05/10/2019 14:29	WG1279226
Chlorobenzene	U		0.140	0.500	1	05/10/2019 14:29	WG1279226
Chlorodibromomethane	U		0.128	0.500	1	05/10/2019 14:29	WG1279226
Chloroethane	U		0.141	2.50	1	05/10/2019 14:29	WG1279226
Chloroform	U		0.0860	0.500	1	05/10/2019 14:29	WG1279226
Chloromethane	U		0.153	1.25	1	05/10/2019 14:29	WG1279226
2-Chlorotoluene	U		0.111	0.500	1	05/10/2019 14:29	WG1279226
4-Chlorotoluene	U		0.0972	0.500	1	05/10/2019 14:29	WG1279226
1,2-Dibromo-3-Chloropropane	U		0.325	2.50	1	05/10/2019 14:29	WG1279226
1,2-Dibromoethane	U		0.193	0.500	1	05/10/2019 14:29	WG1279226
Dibromomethane	U		0.117	0.500	1	05/10/2019 14:29	WG1279226
1,2-Dichlorobenzene	U		0.101	0.500	1	05/10/2019 14:29	WG1279226
1,3-Dichlorobenzene	U		0.130	0.500	1	05/10/2019 14:29	WG1279226
1,4-Dichlorobenzene	U		0.121	0.500	1	05/10/2019 14:29	WG1279226
Dichlorodifluoromethane	U		0.127	2.50	1	05/10/2019 14:29	WG1279226
1,1-Dichloroethane	U		0.114	0.500	1	05/10/2019 14:29	WG1279226
1,2-Dichloroethane	U		0.108	0.500	1	05/10/2019 14:29	WG1279226
1,1-Dichloroethene	U		0.188	0.500	1	05/10/2019 14:29	WG1279226
cis-1,2-Dichloroethene	U		0.0933	0.500	1	05/10/2019 14:29	WG1279226
trans-1,2-Dichloroethene	U		0.152	0.500	1	05/10/2019 14:29	WG1279226
1,2-Dichloropropane	U		0.190	0.500	1	05/10/2019 14:29	WG1279226
1,1-Dichloropropene	U		0.128	0.500	1	05/10/2019 14:29	WG1279226

SLR International Corp. - West Linn, OR

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

111

99.7

SAMPLE RESULTS - 03 L1096002

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 11:20

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	Qualifici	ug/l	ug/l	Dilation	date / time	<u>buten</u>
1,3-Dichloropropane	U		0.147	1.00	1	05/10/2019 14:29	WG1279226
cis-1,3-Dichloropropene	U		0.0976	0.500	1	05/10/2019 14:29	WG1279226
trans-1,3-Dichloropropene	U		0.222	0.500	1	05/10/2019 14:29	WG1279226
trans-1,4-Dichloro-2-butene	U	<u>J0</u>	0.257	5.00	1	05/10/2019 14:29	WG1279226
2,2-Dichloropropane	U		0.0929	0.500	1	05/10/2019 14:29	WG1279226
Di-isopropyl ether	U		0.0924	0.500	1	05/10/2019 14:29	WG1279226
Ethylbenzene	U		0.158	0.500	1	05/10/2019 14:29	WG1279226
Hexachloro-1,3-butadiene	U		0.157	1.00	1	05/10/2019 14:29	WG1279226
2-Hexanone	U		0.757	5.00	1	05/10/2019 14:29	WG1279226
n-Hexane	4.74	J	0.305	5.00	1	05/10/2019 14:29	WG1279226
lodomethane	U	_	0.377	10.0	1	05/10/2019 14:29	WG1279226
Isopropylbenzene	U		0.126	0.500	1	05/10/2019 14:29	WG1279226
p-Isopropyltoluene	3.81		0.138	0.500	1	05/10/2019 14:29	WG1279226
2-Butanone (MEK)	4.21	<u>J</u>	1.28	5.00	1	05/10/2019 14:29	WG1279226
Methylene Chloride	U	_	1.07	2.50	1	05/10/2019 14:29	WG1279226
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00	1	05/10/2019 14:29	WG1279226
Methyl tert-butyl ether	U		0.102	0.500	1	05/10/2019 14:29	WG1279226
Naphthalene	U		0.174	2.50	1	05/10/2019 14:29	WG1279226
n-Propylbenzene	U		0.162	0.500	1	05/10/2019 14:29	WG1279226
Styrene	U		0.117	0.500	1	05/10/2019 14:29	WG1279226
1,1,1,2-Tetrachloroethane	U		0.120	0.500	1	05/10/2019 14:29	WG1279226
1,1,2,2-Tetrachloroethane	U		0.130	0.500	1	05/10/2019 14:29	WG1279226
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/10/2019 14:29	WG1279226
Tetrachloroethene	U		0.199	0.500	1	05/10/2019 14:29	WG1279226
Toluene	U		0.412	0.500	1	05/10/2019 14:29	WG1279226
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/10/2019 14:29	WG1279226
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/10/2019 14:29	WG1279226
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/10/2019 14:29	WG1279226
1,1,2-Trichloroethane	U		0.186	0.500	1	05/10/2019 14:29	WG1279226
Trichloroethene	U		0.153	0.500	1	05/10/2019 14:29	WG1279226
Trichlorofluoromethane	U		0.130	2.50	1	05/10/2019 14:29	WG1279226
1,2,3-Trichloropropane	U		0.247	2.50	1	05/10/2019 14:29	WG1279226
1,2,4-Trimethylbenzene	U		0.123	0.500	1	05/10/2019 14:29	<u>WG1279226</u>
1,2,3-Trimethylbenzene	U		0.0739	0.500	1	05/10/2019 14:29	WG1279226
1,3,5-Trimethylbenzene	U		0.124	0.500	1	05/10/2019 14:29	<u>WG1279226</u>
Vinyl acetate	U	<u>J0</u>	0.645	5.00	1	05/10/2019 14:29	WG1279226
Vinyl chloride	U		0.118	0.500	1	05/10/2019 14:29	WG1279226
Xylenes, Total	U		0.316	1.50	1	05/10/2019 14:29	WG1279226
(S) Toluene-d8	92.7			80.0-120		05/10/2019 14:29	WG1279226

77.0-126

70.0-130

05/10/2019 14:29

05/10/2019 14:29

WG1279226

WG1279226

ONE LAB. NATIONWIDE.

L1096002

Collected date/time: 05/03/19 10:25 Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.0664	J	0.0490	0.200	1	05/08/2019 10:26	WG1277537

²Tc

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	2.05		0.754	2.00	1	05/15/2019 16:06	WG1279590
Arsenic	4.38		0.250	2.00	1	05/14/2019 16:21	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:21	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:21	WG1279590
Chromium	2.45		0.540	2.00	1	05/14/2019 16:21	WG1279590
Copper	45.9		0.520	5.00	1	05/14/2019 16:21	WG1279590
Lead	23.6		0.240	2.00	1	05/14/2019 16:21	WG1279590
Nickel	2.96		0.350	2.00	1	05/14/2019 16:21	WG1279590
Selenium	0.683	ВЈ	0.380	2.00	1	05/14/2019 16:21	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:21	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:21	WG1279590
Zinc	20.0	ВЈ	2.56	25.0	1	05/14/2019 16:21	WG1279590

Sr

⁹Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/10/2019 00:37	WG1278048
Acenaphthylene	U		0.309	1.00	1	05/10/2019 00:37	WG1278048
Anthracene	U		0.291	1.00	1	05/10/2019 00:37	WG1278048
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 00:37	WG1278048
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 00:37	WG1278048
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 00:37	WG1278048
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 00:37	WG1278048
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 00:37	WG1278048
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 00:37	WG1278048
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 00:37	WG1278048
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 00:37	WG1278048
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 00:37	WG1278048
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 00:37	WG1278048
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 00:37	WG1278048
Chrysene	U		0.332	1.00	1	05/10/2019 00:37	WG1278048
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/10/2019 00:37	WG1278048
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 00:37	WG1278048
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 00:37	WG1278048
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 00:37	WG1278048
Fluoranthene	U		0.310	1.00	1	05/10/2019 00:37	WG1278048
Fluorene	U		0.323	1.00	1	05/10/2019 00:37	WG1278048
Hexachlorobenzene	U		0.341	1.00	1	05/10/2019 00:37	WG1278048
Hexachloro-1,3-butadiene	U		0.329	10.0	1	05/10/2019 00:37	WG1278048
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 00:37	WG1278048
Hexachloroethane	U		0.365	10.0	1	05/10/2019 00:37	WG1278048
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/10/2019 00:37	WG1278048
Isophorone	U		0.272	10.0	1	05/10/2019 00:37	WG1278048
Naphthalene	U		0.372	1.00	1	05/10/2019 00:37	WG1278048
Nitrobenzene	U		0.367	10.0	1	05/10/2019 00:37	WG1278048
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 00:37	WG1278048
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 00:37	WG1278048
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 00:37	WG1278048
Phenanthrene	U		0.366	1.00	1	05/10/2019 00:37	WG1278048
Pyridine	U		1.37	10.0	1	05/10/2019 00:37	WG1278048

(S) p-Terphenyl-d14

60.5

SAMPLE RESULTS - 04

Collected date/time: 05/03/19 10:25

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzylbutyl phthalate	U		0.275	3.00	1	05/10/2019 00:37	WG1278048
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/10/2019 00:37	WG1278048
Di-n-butyl phthalate	U		0.266	3.00	1	05/10/2019 00:37	WG1278048
Diethyl phthalate	U		0.282	3.00	1	05/10/2019 00:37	WG1278048
Dimethyl phthalate	U		0.283	3.00	1	05/10/2019 00:37	WG1278048
Di-n-octyl phthalate	U		0.278	3.00	1	05/10/2019 00:37	WG1278048
Pyrene	U		0.330	1.00	1	05/10/2019 00:37	WG1278048
1,2,4-Trichlorobenzene	U		0.355	10.0	1	05/10/2019 00:37	WG1278048
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/10/2019 00:37	WG1278048
2-Chlorophenol	U		0.283	10.0	1	05/10/2019 00:37	WG1278048
2,4-Dichlorophenol	U		0.284	10.0	1	05/10/2019 00:37	WG1278048
2,4-Dimethylphenol	U		0.264	10.0	1	05/10/2019 00:37	WG1278048
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/10/2019 00:37	WG1278048
2,4-Dinitrophenol	U		3.25	10.0	1	05/10/2019 00:37	WG1278048
2-Methylphenol	U		0.312	10.0	1	05/10/2019 00:37	WG1278048
3&4-Methyl Phenol	U		0.266	10.0	1	05/10/2019 00:37	WG1278048
2-Nitrophenol	U		0.320	10.0	1	05/10/2019 00:37	WG1278048
4-Nitrophenol	U		2.01	10.0	1	05/10/2019 00:37	WG1278048
Pentachlorophenol	U		0.313	10.0	1	05/10/2019 00:37	WG1278048
Phenol	1.40	<u>J</u>	0.334	10.0	1	05/10/2019 00:37	WG1278048
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/10/2019 00:37	WG1278048
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/10/2019 00:37	WG1278048
(S) 2-Fluorophenol	34.2			10.0-120		05/10/2019 00:37	WG1278048
(S) Phenol-d5	22.5			10.0-120		05/10/2019 00:37	WG1278048
(S) Nitrobenzene-d5	54.0			10.0-127		05/10/2019 00:37	WG1278048
(S) 2-Fluorobiphenyl	56.6			10.0-130		05/10/2019 00:37	WG1278048
(S) 2,4,6-Tribromophenol	55.5			10.0-155		05/10/2019 00:37	WG1278048

10.0-128

WG1278048

05/10/2019 00:37

SAMPLE RESULTS - 05 L1096002

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 12:07

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/08/2019 10:28	WG1277537

CII	l
⁵ Cr	

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	05/15/2019 16:11	WG1279590
Arsenic	16.6		0.250	2.00	1	05/14/2019 16:26	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:26	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:26	WG1279590
Chromium	3.55		0.540	2.00	1	05/14/2019 16:26	WG1279590
Copper	7.35	В	0.520	5.00	1	05/14/2019 16:26	WG1279590
Lead	2.10		0.240	2.00	1	05/14/2019 16:26	WG1279590
Nickel	2.85		0.350	2.00	1	05/14/2019 16:26	WG1279590
Selenium	0.413	ВJ	0.380	2.00	1	05/14/2019 16:26	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:26	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:26	WG1279590
Zinc	9.27	BJ	2.56	25.0	1	05/14/2019 16:26	WG1279590

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/10/2019 00:58	WG1278048
Acenaphthylene	U		0.309	1.00	1	05/10/2019 00:58	WG1278048
Anthracene	0.361	<u>J</u>	0.291	1.00	1	05/10/2019 00:58	WG1278048
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 00:58	WG1278048
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 00:58	WG1278048
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 00:58	WG1278048
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 00:58	WG1278048
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 00:58	WG1278048
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 00:58	WG1278048
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 00:58	WG1278048
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 00:58	WG1278048
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 00:58	WG1278048
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 00:58	WG1278048
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 00:58	WG1278048
Chrysene	U		0.332	1.00	1	05/10/2019 00:58	WG1278048
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/10/2019 00:58	WG1278048
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 00:58	WG1278048
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 00:58	WG1278048
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 00:58	WG1278048
Fluoranthene	U		0.310	1.00	1	05/10/2019 00:58	WG1278048
Fluorene	U		0.323	1.00	1	05/10/2019 00:58	WG1278048
Hexachlorobenzene	U		0.341	1.00	1	05/10/2019 00:58	WG1278048
Hexachloro-1,3-butadiene	U		0.329	10.0	1	05/10/2019 00:58	WG1278048
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 00:58	WG1278048
Hexachloroethane	U		0.365	10.0	1	05/10/2019 00:58	WG1278048
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/10/2019 00:58	WG1278048
Isophorone	U		0.272	10.0	1	05/10/2019 00:58	WG1278048
Naphthalene	U		0.372	1.00	1	05/10/2019 00:58	WG1278048
Nitrobenzene	U		0.367	10.0	1	05/10/2019 00:58	WG1278048
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 00:58	WG1278048
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 00:58	WG1278048
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 00:58	WG1278048
Phenanthrene	U		0.366	1.00	1	05/10/2019 00:58	WG1278048
Pyridine	U		1.37	10.0	1	05/10/2019 00:58	WG1278048

SLR International Corp. - West Linn, OR

(S) p-Terphenyl-d14

70.5

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 12:07

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzylbutyl phthalate	U		0.275	3.00	1	05/10/2019 00:58	WG1278048
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	05/10/2019 00:58	WG1278048
Di-n-butyl phthalate	U		0.266	3.00	1	05/10/2019 00:58	WG1278048
Diethyl phthalate	U		0.282	3.00	1	05/10/2019 00:58	WG1278048
Dimethyl phthalate	U		0.283	3.00	1	05/10/2019 00:58	WG1278048
Di-n-octyl phthalate	U		0.278	3.00	1	05/10/2019 00:58	WG1278048
Pyrene	U		0.330	1.00	1	05/10/2019 00:58	WG1278048
1,2,4-Trichlorobenzene	U		0.355	10.0	1	05/10/2019 00:58	WG1278048
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/10/2019 00:58	WG1278048
2-Chlorophenol	U		0.283	10.0	1	05/10/2019 00:58	WG1278048
2,4-Dichlorophenol	U		0.284	10.0	1	05/10/2019 00:58	WG1278048
2,4-Dimethylphenol	U		0.264	10.0	1	05/10/2019 00:58	WG1278048
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/10/2019 00:58	WG1278048
2,4-Dinitrophenol	U		3.25	10.0	1	05/10/2019 00:58	WG1278048
2-Methylphenol	U		0.312	10.0	1	05/10/2019 00:58	WG1278048
3&4-Methyl Phenol	U		0.266	10.0	1	05/10/2019 00:58	WG1278048
2-Nitrophenol	U		0.320	10.0	1	05/10/2019 00:58	WG1278048
4-Nitrophenol	U		2.01	10.0	1	05/10/2019 00:58	WG1278048
Pentachlorophenol	U		0.313	10.0	1	05/10/2019 00:58	WG1278048
Phenol	9.50	<u>J</u>	0.334	10.0	1	05/10/2019 00:58	WG1278048
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/10/2019 00:58	WG1278048
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/10/2019 00:58	WG1278048
(S) 2-Fluorophenol	41.7			10.0-120		05/10/2019 00:58	WG1278048
(S) Phenol-d5	27.0			10.0-120		05/10/2019 00:58	WG1278048
(S) Nitrobenzene-d5	62.2			10.0-127		05/10/2019 00:58	WG1278048
(S) 2-Fluorobiphenyl	62.7			10.0-130		05/10/2019 00:58	WG1278048
(S) 2,4,6-Tribromophenol	63.7			10.0-155		05/10/2019 00:58	WG1278048

10.0-128

Ss

WG1278048

05/10/2019 00:58

ONE LAB. NATIONWIDE.

_15 - 06 ONE LAB. NATION

Collected date/time: 05/03/19 13:57 Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/08/2019 10:30	WG1277537

²Tc

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	05/15/2019 16:24	WG1279590
Arsenic	3.03		0.250	2.00	1	05/14/2019 16:43	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:43	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:43	WG1279590
Chromium	1.24	<u>J</u>	0.540	2.00	1	05/14/2019 16:43	WG1279590
Copper	3.49	BJ	0.520	5.00	1	05/14/2019 16:43	WG1279590
Lead	1.79	<u>J</u>	0.240	2.00	1	05/14/2019 16:43	WG1279590
Nickel	1.34	<u>J</u>	0.350	2.00	1	05/14/2019 16:43	WG1279590
Selenium	U		0.380	2.00	1	05/14/2019 16:43	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:43	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:43	WG1279590
Zinc	3.95	BJ	2.56	25.0	1	05/14/2019 16:43	WG1279590

Cn

⁶Qc

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	05/10/2019 01:19	WG1278048
Acenaphthylene	U		0.309	1.00	1	05/10/2019 01:19	WG1278048
Anthracene	U		0.291	1.00	1	05/10/2019 01:19	WG1278048
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 01:19	WG1278048
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 01:19	WG1278048
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 01:19	WG1278048
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 01:19	WG1278048
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 01:19	WG1278048
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 01:19	WG1278048
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 01:19	WG1278048
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 01:19	WG1278048
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 01:19	WG1278048
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 01:19	WG1278048
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 01:19	WG1278048
Chrysene	U		0.332	1.00	1	05/10/2019 01:19	WG1278048
Dibenz(a,h)anthracene	U		0.279	1.00	1	05/10/2019 01:19	WG1278048
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 01:19	WG1278048
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 01:19	WG1278048
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 01:19	WG1278048
Fluoranthene	U		0.310	1.00	1	05/10/2019 01:19	WG1278048
Fluorene	U		0.323	1.00	1	05/10/2019 01:19	WG1278048
Hexachlorobenzene	U		0.341	1.00	1	05/10/2019 01:19	WG1278048
Hexachloro-1,3-butadiene	U		0.329	10.0	1	05/10/2019 01:19	WG1278048
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 01:19	WG1278048
Hexachloroethane	U		0.365	10.0	1	05/10/2019 01:19	WG1278048
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	05/10/2019 01:19	WG1278048
Isophorone	U		0.272	10.0	1	05/10/2019 01:19	WG1278048
Naphthalene	U		0.372	1.00	1	05/10/2019 01:19	WG1278048
Nitrobenzene	U		0.367	10.0	1	05/10/2019 01:19	WG1278048
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 01:19	WG1278048
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 01:19	WG1278048
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 01:19	WG1278048
Phenanthrene	U		0.366	1.00	1	05/10/2019 01:19	WG1278048
Pyridine	U		1.37	10.0	1	05/10/2019 01:19	WG1278048

(S) p-Terphenyl-d14

67.8

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

WG1278048

05/10/2019 01:19

Collected date/time: 05/03/19 13:57

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
ug/l		ug/l	ug/l		date / time	
U		0.275	3.00	1	05/10/2019 01:19	WG1278048
U		0.709	3.00	1	05/10/2019 01:19	WG1278048
U		0.266	3.00	1	05/10/2019 01:19	WG1278048
U		0.282	3.00	1	05/10/2019 01:19	WG1278048
U		0.283	3.00	1	05/10/2019 01:19	WG1278048
U		0.278	3.00	1	05/10/2019 01:19	WG1278048
U		0.330	1.00	1	05/10/2019 01:19	WG1278048
U		0.355	10.0	1	05/10/2019 01:19	WG1278048
U		0.263	10.0	1	05/10/2019 01:19	WG1278048
U		0.283	10.0	1	05/10/2019 01:19	WG1278048
U		0.284	10.0	1	05/10/2019 01:19	WG1278048
U		0.264	10.0	1	05/10/2019 01:19	WG1278048
U		2.62	10.0	1	05/10/2019 01:19	WG1278048
U		3.25	10.0	1	05/10/2019 01:19	WG1278048
U		0.312	10.0	1	05/10/2019 01:19	WG1278048
U		0.266	10.0	1	05/10/2019 01:19	WG1278048
U		0.320	10.0	1	05/10/2019 01:19	WG1278048
U		2.01	10.0	1	05/10/2019 01:19	WG1278048
U		0.313	10.0	1	05/10/2019 01:19	WG1278048
1.34	<u>J</u>	0.334	10.0	1	05/10/2019 01:19	WG1278048
U		0.297	10.0	1	05/10/2019 01:19	WG1278048
U		0.236	10.0	1	05/10/2019 01:19	WG1278048
37.6			10.0-120		05/10/2019 01:19	WG1278048
22.8			10.0-120		05/10/2019 01:19	WG1278048
59.0			10.0-127		05/10/2019 01:19	WG1278048
60.1			10.0-130		05/10/2019 01:19	WG1278048
58.8			10.0-155		05/10/2019 01:19	WG1278048
	U U U U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	U 0.275 U 0.709 U 0.266 U 0.282 U 0.283 U 0.278 U 0.330 U 0.355 U 0.263 U 0.283 U 0.283 U 0.264 U 0.264 U 0.264 U 0.264 U 0.312 U 0.312 U 0.366 U 0.320 U 0.313 1.34 U 0.297 U 0.236 37.6 22.8 59.0 60.1	U 0.275 3.00 U 0.709 3.00 U 0.266 3.00 U 0.282 3.00 U 0.283 3.00 U 0.278 3.00 U 0.278 3.00 U 0.330 1.00 U 0.355 10.0 U 0.263 10.0 U 0.263 10.0 U 0.283 10.0 U 0.264 10.0 U 0.264 10.0 U 0.264 10.0 U 0.266 10.0 U 0.312 10.0 U 0.312 10.0 U 0.312 10.0 U 0.313 10.0 U 0.313 10.0 U 0.313 10.0 U 0.313 10.0 U 0.314 10.0 U 0.320 10.0 U 0.315 10.0 U 0.316 10.0 U 0.317 10.0 U 0.318 10.0 U 0.319 10.0	U 0.275 3.00 1 U 0.709 3.00 1 U 0.266 3.00 1 U 0.282 3.00 1 U 0.283 3.00 1 U 0.278 3.00 1 U 0.330 1.00 1 U 0.355 10.0 1 U 0.263 10.0 1 U 0.283 10.0 1 U 0.264 10.0 1 U 0.264 10.0 1 U 0.264 10.0 1 U 0.325 10.0 1 U 0.266 10.0 1 U 0.312 10.0 1 U 0.312 10.0 1 U 0.320 10.0 1 U 0.320 10.0 1 U 0.313 10.0 1 U 0.313 10.0 1 U 0.314 10.0 1 U 0.315 10.0 1 U 0.316 10.0 1 U 0.317 10.0 1 U 0.318 10.0 1 U 0.318 10.0 1 U 0.319 10.0 1 U 0.319 10.0 1 U 0.310 10.0 1 U 0.310 10.0 1 U 0.311 10.0 1 U 0.311 10.0 1 U 0.313 10.0 1 U 0.313 10.0 1 U 0.314 10.0 1 U 0.315 10.0 1 U 0.316 10.0 1 U 0.317 10.0 1 U 0.318 10.0 1	U 0.275 3.00 1 05/10/2019 01:19 U 0.709 3.00 1 05/10/2019 01:19 U 0.266 3.00 1 05/10/2019 01:19 U 0.282 3.00 1 05/10/2019 01:19 U 0.283 3.00 1 05/10/2019 01:19 U 0.278 3.00 1 05/10/2019 01:19 U 0.330 1.00 1 05/10/2019 01:19 U 0.335 10.0 1 05/10/2019 01:19 U 0.263 10.0 1 05/10/2019 01:19 U 0.283 10.0 1 05/10/2019 01:19 U 0.283 10.0 1 05/10/2019 01:19 U 0.284 10.0 1 05/10/2019 01:19 U 0.284 10.0 1 05/10/2019 01:19 U 0.264 10.0 1 05/10/2019 01:19 U 0.266 10.0 1 05/10/2019 01:19 U 0.312 10.0 1 05/10/2019 01:19 U 0.320 10.0 1 05/10/2019 01:19 U 0.330 10.0 1 05/10/2019 01:19 U 0.331 10.0 1 05/10/2019 01:19 U 0.366 10.0 1 05/10/2019 01:19 U 0.366 10.0 1 05/10/2019 01:19 U 0.370 10.0 1 05/10/2019 01:19 U 0.331 10.0 1 05/10/2019 01:19 U 0.331 10.0 1 05/10/2019 01:19 U 0.331 10.0 1 05/10/2019 01:19 U 0.333 10.0 1 05/10/2019 01:19 U 0.334 10.0 1 05/10/2019 01:19 U 0.336 10.0 1 05/10/2019 01:19 U 0.297 10.0 1 05/10/2019 01:19 U 0.297 10.0 1 05/10/2019 01:19 U 0.236 10.0 1 05/10/2019 01:19

10.0-128

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 14:44

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/08/2019 10:33	WG1277537

Ср

4 0 -

⁵ Cr
Sr

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	05/15/2019 16:29	WG1279590
Arsenic	43.9		0.250	2.00	1	05/14/2019 16:48	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:48	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:48	WG1279590
Chromium	6.43		0.540	2.00	1	05/14/2019 16:48	WG1279590
Copper	2.27	BJ	0.520	5.00	1	05/14/2019 16:48	WG1279590
Lead	0.911	J	0.240	2.00	1	05/14/2019 16:48	WG1279590
Nickel	2.10		0.350	2.00	1	05/14/2019 16:48	WG1279590
Selenium	0.391	BJ	0.380	2.00	1	05/14/2019 16:48	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:48	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:48	WG1279590
Zinc	3.76	ВJ	2.56	25.0	1	05/14/2019 16:48	WG1279590

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	3.22	<u>J</u>	1.05	25.0	1	05/10/2019 14:50	WG1279226
Acrylonitrile	U		0.873	5.00	1	05/10/2019 14:50	WG1279226
Benzene	U		0.0896	0.500	1	05/10/2019 14:50	WG1279226
Bromobenzene	U		0.133	0.500	1	05/10/2019 14:50	WG1279226
Bromodichloromethane	U		0.080.0	0.500	1	05/10/2019 14:50	WG1279226
Bromochloromethane	U		0.145	0.500	1	05/10/2019 14:50	WG1279226
Bromoform	U		0.186	0.500	1	05/10/2019 14:50	WG1279226
Bromomethane	U		0.157	2.50	1	05/10/2019 14:50	WG1279226
n-Butylbenzene	U		0.143	0.500	1	05/10/2019 14:50	WG1279226
sec-Butylbenzene	U		0.134	0.500	1	05/10/2019 14:50	WG1279226
tert-Butylbenzene	U		0.183	0.500	1	05/10/2019 14:50	WG1279226
Carbon disulfide	U		0.101	0.500	1	05/10/2019 14:50	WG1279226
Carbon tetrachloride	U		0.159	0.500	1	05/10/2019 14:50	WG1279226
Chlorobenzene	U		0.140	0.500	1	05/10/2019 14:50	WG1279226
Chlorodibromomethane	U		0.128	0.500	1	05/10/2019 14:50	WG1279226
Chloroethane	U		0.141	2.50	1	05/10/2019 14:50	WG1279226
Chloroform	U		0.0860	0.500	1	05/10/2019 14:50	WG1279226
Chloromethane	U		0.153	1.25	1	05/10/2019 14:50	WG1279226
2-Chlorotoluene	U		0.111	0.500	1	05/10/2019 14:50	WG1279226
4-Chlorotoluene	U		0.0972	0.500	1	05/10/2019 14:50	WG1279226
1,2-Dibromo-3-Chloropropane	U		0.325	2.50	1	05/10/2019 14:50	WG1279226
1,2-Dibromoethane	U		0.193	0.500	1	05/10/2019 14:50	WG1279226
Dibromomethane	U		0.117	0.500	1	05/10/2019 14:50	WG1279226
1,2-Dichlorobenzene	U		0.101	0.500	1	05/10/2019 14:50	WG1279226
1,3-Dichlorobenzene	U		0.130	0.500	1	05/10/2019 14:50	WG1279226
1,4-Dichlorobenzene	U		0.121	0.500	1	05/10/2019 14:50	WG1279226
Dichlorodifluoromethane	U		0.127	2.50	1	05/10/2019 14:50	WG1279226
1,1-Dichloroethane	U		0.114	0.500	1	05/10/2019 14:50	WG1279226
1,2-Dichloroethane	U		0.108	0.500	1	05/10/2019 14:50	WG1279226
1,1-Dichloroethene	U		0.188	0.500	1	05/10/2019 14:50	WG1279226
cis-1,2-Dichloroethene	U		0.0933	0.500	1	05/10/2019 14:50	WG1279226
trans-1,2-Dichloroethene	U		0.152	0.500	1	05/10/2019 14:50	WG1279226
1,2-Dichloropropane	U		0.190	0.500	1	05/10/2019 14:50	WG1279226
1,1-Dichloropropene	U		0.128	0.500	1	05/10/2019 14:50	WG1279226

SLR International Corp. - West Linn, OR

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

111

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 14:44

L1096002

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
1,3-Dichloropropane	U		0.147	1.00	1	05/10/2019 14:50	WG1279226
cis-1,3-Dichloropropene	U		0.0976	0.500	1	05/10/2019 14:50	WG1279226
trans-1,3-Dichloropropene	U		0.222	0.500	1	05/10/2019 14:50	WG1279226
trans-1,4-Dichloro-2-butene	U	<u>J0</u>	0.257	5.00	1	05/10/2019 14:50	WG1279226
2,2-Dichloropropane	U		0.0929	0.500	1	05/10/2019 14:50	WG1279226
Di-isopropyl ether	U		0.0924	0.500	1	05/10/2019 14:50	WG1279226
Ethylbenzene	U		0.158	0.500	1	05/10/2019 14:50	WG1279226
Hexachloro-1,3-butadiene	U		0.157	1.00	1	05/10/2019 14:50	WG1279226
2-Hexanone	U		0.757	5.00	1	05/10/2019 14:50	WG1279226
n-Hexane	U		0.305	5.00	1	05/10/2019 14:50	WG1279226
lodomethane	U		0.377	10.0	1	05/10/2019 14:50	WG1279226
Isopropylbenzene	U		0.126	0.500	1	05/10/2019 14:50	WG1279226
p-Isopropyltoluene	U		0.138	0.500	1	05/10/2019 14:50	WG1279226
2-Butanone (MEK)	U		1.28	5.00	1	05/10/2019 14:50	WG1279226
Methylene Chloride	U		1.07	2.50	1	05/10/2019 14:50	WG1279226
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00	1	05/10/2019 14:50	WG1279226
Methyl tert-butyl ether	U		0.102	0.500	1	05/10/2019 14:50	WG1279226
Naphthalene	U		0.174	2.50	1	05/10/2019 14:50	WG1279226
n-Propylbenzene	U		0.162	0.500	1	05/10/2019 14:50	WG1279226
Styrene	U		0.117	0.500	1	05/10/2019 14:50	WG1279226
1,1,1,2-Tetrachloroethane	U		0.120	0.500	1	05/10/2019 14:50	WG1279226
1,1,2,2-Tetrachloroethane	U		0.130	0.500	1	05/10/2019 14:50	WG1279226
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500	1	05/10/2019 14:50	WG1279226
Tetrachloroethene	U		0.199	0.500	1	05/10/2019 14:50	WG1279226
Toluene	U		0.412	0.500	1	05/10/2019 14:50	WG1279226
1,2,3-Trichlorobenzene	U		0.164	0.500	1	05/10/2019 14:50	WG1279226
1,2,4-Trichlorobenzene	U		0.355	0.500	1	05/10/2019 14:50	WG1279226
1,1,1-Trichloroethane	U		0.0940	0.500	1	05/10/2019 14:50	WG1279226
1,1,2-Trichloroethane	U		0.186	0.500	1	05/10/2019 14:50	WG1279226
Trichloroethene	U		0.153	0.500	1	05/10/2019 14:50	WG1279226
Trichlorofluoromethane	U		0.130	2.50	1	05/10/2019 14:50	WG1279226
1,2,3-Trichloropropane	U		0.247	2.50	1	05/10/2019 14:50	WG1279226
1,2,4-Trimethylbenzene	U		0.123	0.500	1	05/10/2019 14:50	WG1279226
1,2,3-Trimethylbenzene	U		0.0739	0.500	1	05/10/2019 14:50	WG1279226
1,3,5-Trimethylbenzene	U		0.124	0.500	1	05/10/2019 14:50	WG1279226
Vinyl acetate	U	<u>J0</u>	0.645	5.00	1	05/10/2019 14:50	WG1279226
Vinyl chloride	U		0.118	0.500	1	05/10/2019 14:50	WG1279226
Xylenes, Total	U		0.316	1.50	1	05/10/2019 14:50	WG1279226
(S) Toluene-d8	98.0			80.0-120		05/10/2019 14:50	WG1279226

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	130	<u>J</u>	66.7	200	1	05/11/2019 01:05	WG1278026
Residual Range Organics (RRO)	U		83.3	250	1	05/11/2019 01:05	WG1278026
(S) o-Terphenyl	88.4			52.0-156		05/11/2019 01:05	WG1278026

05/10/2019 14:50

05/10/2019 14:50

WG1279226

WG1279226

77.0-126

70.0-130

O7 ONE LAB. NATIONWIDE.

Collected date/time: 05/03/19 14:44

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch
Acenaphthene	15.9		0.316	1.00	1	05/10/2019 01:39	WG1278048
Acenaphthylene	U		0.309	1.00	1	05/10/2019 01:39	WG1278048
Anthracene	U		0.291	1.00	1	05/10/2019 01:39	WG1278048
Benzo(a)anthracene	U		0.0975	1.00	1	05/10/2019 01:39	WG1278048
Benzo(b)fluoranthene	U		0.0896	1.00	1	05/10/2019 01:39	WG1278048
Benzo(k)fluoranthene	U		0.355	1.00	1	05/10/2019 01:39	WG1278048
Benzo(g,h,i)perylene	U		0.161	1.00	1	05/10/2019 01:39	WG1278048
Benzo(a)pyrene	U		0.340	1.00	1	05/10/2019 01:39	WG1278048
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	05/10/2019 01:39	WG1278048
Bis(2-chloroethyl)ether	U		1.62	10.0	1	05/10/2019 01:39	WG1278048
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	05/10/2019 01:39	WG1278048
4-Bromophenyl-phenylether	U		0.335	10.0	1	05/10/2019 01:39	WG1278048
2-Chloronaphthalene	U		0.330	1.00	1	05/10/2019 01:39	WG1278048
4-Chlorophenyl-phenylether	U		0.303	10.0	1	05/10/2019 01:39	WG1278048
Chrysene	U		0.332	1.00	1	05/10/2019 01:39	WG1278048
Dibenz(a,h)anthracene	U		0.332	1.00	1	05/10/2019 01:39	WG1278048
3,3-Dichlorobenzidine	U		2.02	10.0	1	05/10/2019 01:39	WG1278048
2,4-Dinitrotoluene	U		1.65	10.0	1	05/10/2019 01:39	WG1278048
2,6-Dinitrotoluene	U		0.279	10.0	1	05/10/2019 01:39	WG1278048
Fluoranthene	U		0.279	1.00	1	05/10/2019 01:39	WG1278048
Fluorene	U		0.310	1.00	1	05/10/2019 01:39	WG1278048
Hexachlorobenzene	U		0.323	1.00	1	05/10/2019 01:39	WG1278048
Hexachloro-1,3-butadiene	U		0.341	10.0	1	05/10/2019 01:39	
Hexachlorocyclopentadiene	U		2.33	10.0	1	05/10/2019 01:39	WG1278048 WG1278048
Hexachloroethane	U		0.365	10.0	1	05/10/2019 01:39	WG1278048
Indeno(1,2,3-cd)pyrene	U		0.303	1.00	1	05/10/2019 01:39	WG1278048
	U		0.279	10.0	1	05/10/2019 01:39	
Isophorone Naphthalene	U		0.272	1.00	1	05/10/2019 01:39	WG1278048 WG1278048
Nitrobenzene	U		0.372	10.0	1	05/10/2019 01:39	WG1278048
n-Nitrosodimethylamine	U		1.26	10.0	1	05/10/2019 01:39	WG1278048
n-Nitrosodiphenylamine	U		1.19	10.0	1	05/10/2019 01:39	
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	05/10/2019 01:39	WG1278048 WG1278048
Phenanthrene	U		0.403	1.00	1	05/10/2019 01:39	
Pyridine	U		1.37	10.0	1	05/10/2019 01:39	WG1278048 WG1278048
					1		
Benzylbutyl phthalate	U		0.275	3.00	1	05/10/2019 01:39	WG1278048
Bis(2-ethylhexyl)phthalate	U		0.709 0.266	3.00	1	05/10/2019 01:39	WG1278048
Di-n-butyl phthalate Diethyl phthalate					1	05/10/2019 01:39	WG1278048
* *	U		0.282	3.00	1	05/10/2019 01:39	WG1278048
Dimethyl phthalate	U		0.283	3.00	1	05/10/2019 01:39	WG1278048
Di-n-octyl phthalate	U		0.278	3.00	1	05/10/2019 01:39	WG1278048
Pyrene	U		0.330	1.00	1	05/10/2019 01:39	WG1278048
1,2,4-Trichlorobenzene	U		0.355	10.0	1	05/10/2019 01:39	WG1278048
4-Chloro-3-methylphenol	U		0.263	10.0	1	05/10/2019 01:39	WG1278048
2-Chlorophenol	U		0.283	10.0	1	05/10/2019 01:39	WG1278048
2,4-Dichlorophenol	U		0.284	10.0	1	05/10/2019 01:39	WG1278048
2,4-Dimethylphenol	U		0.264	10.0	1	05/10/2019 01:39	WG1278048
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	05/10/2019 01:39	WG1278048
2,4-Dinitrophenol	U		3.25	10.0	1	05/10/2019 01:39	WG1278048
2-Methylphenol	U		0.312	10.0	1	05/10/2019 01:39	WG1278048
3&4-Methyl Phenol	U		0.266	10.0	1	05/10/2019 01:39	WG1278048
2-Nitrophenol	U		0.320	10.0	1	05/10/2019 01:39	WG1278048
4-Nitrophenol	U		2.01	10.0	1	05/10/2019 01:39	WG1278048
Pentachlorophenol	U		0.313	10.0	1	05/10/2019 01:39	WG1278048
Phenol	3.08	<u>J</u>	0.334	10.0	1	05/10/2019 01:39	WG1278048
2,4,6-Trichlorophenol	U		0.297	10.0	1	05/10/2019 01:39	WG1278048
2,4,5-Trichlorophenol	U		0.236	10.0	1	05/10/2019 01:39	WG1278048

Ss

Cn

Gl

Sc

Collected date/time: 05/03/19 14:44

L1096002

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

		1 \	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
(S) 2-Fluorophenol	38.4			10.0-120		05/10/2019 01:39	WG1278048
(S) Phenol-d5	23.5			10.0-120		05/10/2019 01:39	WG1278048
(S) Nitrobenzene-d5	59.7			10.0-127		05/10/2019 01:39	WG1278048
(S) 2-Fluorobiphenyl	60.8			10.0-130		05/10/2019 01:39	WG1278048
(S) 2,4,6-Tribromophenol	54.6			10.0-155		05/10/2019 01:39	WG1278048
(S) p-Terphenyl-d14	64.0			10.0-128		05/10/2019 01:39	WG1278048

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

製

Collected date/time: 05/03/19 13:15 Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	05/12/2019 12:08	WG1278941

<u>Ср</u>

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	05/15/2019 16:34	WG1279590
Arsenic	0.587	<u>J</u>	0.250	2.00	1	05/14/2019 16:52	WG1279590
Beryllium	U		0.120	2.00	1	05/14/2019 16:52	WG1279590
Cadmium	U		0.160	1.00	1	05/14/2019 16:52	WG1279590
Chromium	1.29	<u>J</u>	0.540	2.00	1	05/14/2019 16:52	WG1279590
Copper	1.24	BJ	0.520	5.00	1	05/14/2019 16:52	WG1279590
Lead	U		0.240	2.00	1	05/14/2019 16:52	WG1279590
Nickel	U		0.350	2.00	1	05/14/2019 16:52	WG1279590
Selenium	U		0.380	2.00	1	05/14/2019 16:52	WG1279590
Silver	U		0.310	2.00	1	05/14/2019 16:52	WG1279590
Thallium	U		0.190	2.00	1	05/14/2019 16:52	WG1279590
Zinc	U		2.56	25.0	1	05/14/2019 16:52	WG1279590

Ss

ONE LAB. NATIONWIDE.

Mercury by Method 7470A L1096002-01,03,04,05,06,07

0.0490

0.200

JIMMARY ONE LAB. NATION

Method Blank (MB)

Mercury

(MB) R3409247-1 05/08/19	09:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l

U

- /		1000170	05/08/19 09:47 •	11 000	\ DO 4000 47 0	05/00/40 00.54
- (1 (\1 P <	4119747=7	115/11X/19 119 ¹ 4/	11 (\	1 2 34119 14 1-3	115/118/119 119 ¹ 54
١.		TUJZT/ Z	03/00/13 03.47	(LCSD	11134032473	05/00/15 05.54

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Mercury	3.00	2.72	2.92	90.6	97.5	80.0-120			7.35	20

⁶Qc

L1095453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1095453-01 05/08/19 09:56 • (MS) R3409247-4 05/08/19 09:59 • (MSD) R3409247-5 05/08/19 10:01

(00) 21000 100 01	(1110)	1101032171	00/00/10 00.	00 (11102) 110 1	00217 0 007	00/10 10.01							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Mercury	3.00	ND	2.90	3.17	96.8	106	1	75.0-125			8.80	20	

ONE LAB. NATIONWIDE.

L1096002-08

Method Blank (MB)

Mercury by Method 7470A

(MB) R3410472-1 05/12/19 12:01

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.0490	0.200

[']Cp

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3410472-2 05/12/19 12:03 • (LCSD) R3410472-3 05/12/19 12:05

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Mercury	3.00	2.60	2.78	86.7	92.8	80.0-120			6.84	20	

⁶Qc

(OS) L1096002-08 05/12/19 12:08 • (MS) R3410472-4 05/12/19 12:10 • (MSD) R3410472-5 05/12/19 12:13

(,	Spike Amount	Original Result		MSD Result		MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Mercury	3.00	U	3.25	3.25	108	108	1	75.0-125			0.0492	20

SLR International Corp. - West Linn, OR

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020B

L1096002-01,03,04,05,06,07,08

Method Blank (MB)

(MB) R3411195-1 05/14/19	15:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.250	2.00
Beryllium	U		0.120	2.00
Cadmium	U		0.160	1.00
Chromium	U		0.540	2.00
Copper	3.09	<u>J</u>	0.520	5.00
Lead	U		0.240	2.00
Nickel	U		0.350	2.00
Selenium	0.448	<u>J</u>	0.380	2.00
Silver	U		0.310	2.00
Thallium	U		0.190	2.00
Zinc	2.97	<u>J</u>	2.56	25.0

Method Blank (MB)

(MB) R3411551-1 05/	/15/19 15:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Antimony	U		0.754	2.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3411195-2 05/14	1/19 15:49 • (LCSD)	R3411195-3 C)5/14/19 15:54							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Arsenic	50.0	48.0	47.8	96.0	95.6	80.0-120			0.460	20
Beryllium	50.0	48.4	49.4	96.9	98.8	80.0-120			1.96	20
Cadmium	50.0	50.9	50.1	102	100	80.0-120			1.60	20
Chromium	50.0	48.9	48.7	97.9	97.3	80.0-120			0.528	20
Copper	50.0	47.7	47.5	95.3	95.0	80.0-120			0.335	20
Lead	50.0	49.6	49.4	99.2	98.8	80.0-120			0.365	20
Nickel	50.0	49.4	48.3	98.7	96.7	80.0-120			2.13	20
Selenium	50.0	52.8	52.0	106	104	80.0-120			1.64	20
Silver	50.0	49.5	49.7	99.0	99.4	80.0-120			0.406	20
Thallium	50.0	48.2	48.4	96.5	96.8	80.0-120			0.307	20
Zinc	50.0	49.2	50.3	98.3	101	80.0-120			2.24	20

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020B

L1096002-01,03,04,05,06,07,08

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3411551-2 05/15/19 15:34 • (LCSD) R3411551-3 05/15/19 15:39

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Antimony	50.0	46.7	49.3	93.4	98.6	80.0-120			5.43	20

L1096002-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1096002-01 05/14/19 15:58 • (MS) R3411195-5 05/14/19 16:07 • (MSD) R3411195-6 05/14/19 16:12

\ /	' '		١,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	50.0	5.95	42.9	50.3	73.9	88.7	1	75.0-125	<u>J6</u>		15.9	20
Beryllium	50.0	U	48.9	51.8	97.7	104	1	75.0-125			5.91	20
Cadmium	50.0	U	49.7	51.6	99.3	103	1	75.0-125			3.85	20
Chromium	50.0	20.5	54.8	66.0	68.5	91.0	1	75.0-125	<u>J6</u>		18.6	20
Copper	50.0	6.34	45.6	54.0	78.5	95.4	1	75.0-125			17.0	20
Lead	50.0	1.01	45.0	49.3	87.9	96.5	1	75.0-125			9.10	20
Nickel	50.0	4.17	42.0	50.0	75.7	91.7	1	75.0-125			17.4	20
Selenium	50.0	0.490	49.7	49.9	98.4	98.9	1	75.0-125			0.475	20
Silver	50.0	U	48.8	50.4	97.6	101	1	75.0-125			3.32	20
Thallium	50.0	U	43.7	47.2	87.3	94.5	1	75.0-125			7.84	20
Zinc	50.0	6.85	45.5	51.6	77.4	89.5	1	75.0-125			12.5	20

L1096002-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1096002-01 05/15/19 15:43 • (MS) R3411551-5 05/15/19 15:52 • (MSD) R3411551-6 05/15/19 15:57

(00) 11000002 01	00/10/13 10:10 (1110) 1	(01110010 00)	10/10 10.02	(INOD) NO INOOI	0 00/10/15	10.07							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Antimony	50.0	U	46.9	49.8	93.9	99.5	1	75.0-125			5.80	20	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1096002-01,02,03,07

Method Blank (MB)

Method Blank (MB)				
(MB) R3410741-3 05/10/19	10:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Acetone	U		1.05	25.0
Acrylonitrile	U		0.873	5.00
Benzene	U		0.0896	0.500
Bromobenzene	U		0.133	0.500
Bromodichloromethane	U		0.0800	0.500
Bromochloromethane	U		0.145	0.500
Bromoform	U		0.186	0.500
Bromomethane	U		0.157	2.50
n-Butylbenzene	U		0.143	0.500
sec-Butylbenzene	U		0.134	0.500
tert-Butylbenzene	U		0.183	0.500
Carbon disulfide	U		0.101	0.500
Carbon tetrachloride	U		0.159	0.500
Chlorobenzene	U		0.140	0.500
Chlorodibromomethane	U		0.128	0.500
Chloroethane	U		0.120	2.50
Chloroform	U		0.0860	0.500
Chloromethane	U		0.153	1.25
2-Chlorotoluene	U		0.133	0.500
4-Chlorotoluene	U		0.0972	0.500
			0.0372	2.50
1,2-Dibromoethane	U		0.323	0.500
Dibromomethane	U		0.193	0.500
	U			0.500
1,2-Dichlorobenzene			0.101 0.130	0.500
1,3-Dichlorobenzene	U			
1,4-Dichlorobenzene	U		0.121	0.500
Dichlorodifluoromethane	U		0.127	2.50
1,1-Dichloroethane	U		0.114	0.500
1,2-Dichloroethane	U		0.108	0.500
1,1-Dichloroethene	U		0.188	0.500
cis-1,2-Dichloroethene	U		0.0933	0.500
trans-1,2-Dichloroethene	U		0.152	0.500
1,2-Dichloropropane	U		0.190	0.500
1,1-Dichloropropene	U		0.128	0.500
1,3-Dichloropropane	U		0.147	1.00
cis-1,3-Dichloropropene	U		0.0976	0.500
trans-1,3-Dichloropropene	U		0.222	0.500
trans-1,4-Dichloro-2-butene	U		0.257	5.00
2,2-Dichloropropane	U		0.0929	0.500
Di-isopropyl ether	U		0.0924	0.500

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1096002-01,02,03,07

Method Blank (MB)

(MB) R3410741-3 05/10/19	10:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylbenzene	U		0.158	0.500
Hexachloro-1,3-butadiene	U		0.157	1.00
2-Hexanone	U		0.757	5.00
n-Hexane	U		0.305	5.00
lodomethane	U		0.377	10.0
Isopropylbenzene	U		0.126	0.500
p-Isopropyltoluene	U		0.138	0.500
2-Butanone (MEK)	U		1.28	5.00
Methylene Chloride	U		1.07	2.50
4-Methyl-2-pentanone (MIBK)	U		0.823	5.00
Methyl tert-butyl ether	U		0.102	0.500
Naphthalene	0.260	<u>J</u>	0.174	2.50
n-Propylbenzene	U		0.162	0.500
Styrene	U		0.117	0.500
1,1,1,2-Tetrachloroethane	U		0.120	0.500
1,1,2,2-Tetrachloroethane	U		0.130	0.500
1,1,2-Trichlorotrifluoroethane	U		0.164	0.500
Tetrachloroethene	U		0.199	0.500
Toluene	U		0.412	0.500
1,2,3-Trichlorobenzene	U		0.164	0.500
1,2,4-Trichlorobenzene	U		0.355	0.500
1,1,1-Trichloroethane	U		0.0940	0.500
1,1,2-Trichloroethane	U		0.186	0.500
Trichloroethene	U		0.153	0.500
Trichlorofluoromethane	U		0.130	2.50
1,2,3-Trichloropropane	U		0.247	2.50
1,2,4-Trimethylbenzene	U		0.123	0.500
1,2,3-Trimethylbenzene	U		0.0739	0.500
1,3,5-Trimethylbenzene	U		0.124	0.500
Vinyl acetate	U		0.645	5.00
Vinyl chloride	U		0.118	0.500
Xylenes, Total	U		0.316	1.50
(S) Toluene-d8	93.6			80.0-120
(S) 4-Bromofluorobenzene	101			77.0-126
(S) 1,2-Dichloroethane-d4	98.7			70.0-130

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

25.0

Di-isopropyl ether

24.9

24.2

L1096002-01,02,03,07

(LCS) R3410741-1 05/10/19	09:26 • (LCSD) R3410741-2	05/10/19 09:47								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acetone	125	123	123	98.1	98.2	19.0-160			0.147	27	
Acrylonitrile	125	122	117	97.7	93.5	55.0-149			4.45	20	
Benzene	25.0	27.0	25.7	108	103	70.0-123			4.95	20	
Bromobenzene	25.0	26.2	25.1	105	100	73.0-121			4.34	20	
Bromodichloromethane	25.0	24.6	23.4	98.4	93.7	75.0-120			4.89	20	
Bromochloromethane	25.0	26.7	26.6	107	106	76.0-122			0.541	20	
Bromoform	25.0	23.9	23.2	95.5	92.7	68.0-132			2.98	20	
Bromomethane	25.0	26.7	25.3	107	101	10.0-160			5.39	25	
n-Butylbenzene	25.0	25.1	24.6	100	98.2	73.0-125			2.21	20	
sec-Butylbenzene	25.0	26.6	26.4	106	106	75.0-125			0.735	20	
tert-Butylbenzene	25.0	27.3	27.4	109	110	76.0-124			0.309	20	
Carbon disulfide	25.0	25.3	23.2	101	92.8	61.0-128			8.58	20	
Carbon tetrachloride	25.0	25.8	24.9	103	99.8	68.0-126			3.42	20	
Chlorobenzene	25.0	25.5	24.3	102	97.4	80.0-121			4.80	20	
Chlorodibromomethane	25.0	23.6	23.1	94.5	92.4	77.0-125			2.26	20	
Chloroethane	25.0	25.8	24.3	103	97.2	47.0-150			5.84	20	
Chloroform	25.0	25.6	24.6	102	98.4	73.0-120			4.05	20	
Chloromethane	25.0	27.3	25.8	109	103	41.0-142			5.39	20	
2-Chlorotoluene	25.0	25.7	25.2	103	101	76.0-123			1.98	20	
4-Chlorotoluene	25.0	25.4	24.5	102	97.8	75.0-122			3.83	20	
1,2-Dibromo-3-Chloropropane	25.0	24.3	24.1	97.3	96.6	58.0-134			0.733	20	
1,2-Dibromoethane	25.0	24.8	23.4	99.3	93.5	80.0-122			5.94	20	
Dibromomethane	25.0	24.8	23.1	99.3	92.4	80.0-120			7.19	20	
1,2-Dichlorobenzene	25.0	25.6	25.2	102	101	79.0-121			1.62	20	
1,3-Dichlorobenzene	25.0	25.3	24.0	101	96.2	79.0-120			4.99	20	
1,4-Dichlorobenzene	25.0	24.7	23.9	99.0	95.6	79.0-120			3.54	20	
Dichlorodifluoromethane	25.0	27.5	27.7	110	111	51.0-149			0.504	20	
1,1-Dichloroethane	25.0	26.1	25.0	104	100	70.0-126			4.36	20	
1,2-Dichloroethane	25.0	25.8	24.9	103	99.8	70.0-128			3.29	20	
1,1-Dichloroethene	25.0	29.3	27.4	117	110	71.0-124			6.72	20	
cis-1,2-Dichloroethene	25.0	26.1	25.4	104	102	73.0-120			2.71	20	
trans-1,2-Dichloroethene	25.0	25.6	25.5	102	102	73.0-120			0.508	20	
1,2-Dichloropropane	25.0	24.9	23.6	99.4	94.5	77.0-125			5.10	20	
1,1-Dichloropropene	25.0	25.7	25.1	103	100	74.0-126			2.65	20	
1,3-Dichloropropane	25.0	23.7	22.8	94.8	91.3	80.0-120			3.86	20	
cis-1,3-Dichloropropene	25.0	23.9	22.1	95.4	88.6	80.0-123			7.47	20	
rans-1,3-Dichloropropene	25.0	23.9	22.3	95.5	89.2	78.0-124			6.76	20	
trans-1,4-Dichloro-2-butene	25.0	19.6	17.8	78.4	71.4	33.0-144			9.39	20	
2,2-Dichloropropane	25.0	21.7	21.2	86.9	84.7	58.0-130			2.61	20	
_,z-biciiiotopiopatie	2J.U	21.7	∠1.∠	00.3	04.7	30.0-130			2.01	20	

58.0-138

2.83

20

99.5

96.7

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1096002-01,02,03,07

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3410741-1 05/10/19	09:26 • (LCSD) R3410741-2	05/10/19 09:47								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Ethylbenzene	25.0	25.8	25.1	103	100	79.0-123			2.77	20	
Hexachloro-1,3-butadiene	25.0	26.4	26.3	105	105	54.0-138			0.0685	20	
2-Hexanone	125	118	115	94.2	92.4	67.0-149			1.96	20	
n-Hexane	25.0	25.8	24.8	103	99.1	57.0-133			3.92	20	
lodomethane	125	121	120	96.5	96.3	33.0-147			0.211	26	
Isopropylbenzene	25.0	25.9	25.7	104	103	76.0-127			0.669	20	
p-Isopropyltoluene	25.0	26.5	25.4	106	102	76.0-125			4.31	20	
2-Butanone (MEK)	125	114	107	90.9	85.9	44.0-160			5.65	20	
Methylene Chloride	25.0	26.5	25.5	106	102	67.0-120			3.79	20	
4-Methyl-2-pentanone (MIBK)	125	115	111	91.8	89.0	68.0-142			3.03	20	
Methyl tert-butyl ether	25.0	27.3	26.4	109	106	68.0-125			3.19	20	
Naphthalene	25.0	24.9	24.6	99.4	98.3	54.0-135			1.11	20	
n-Propylbenzene	25.0	27.4	26.3	110	105	77.0-124			4.20	20	
Styrene	25.0	26.0	24.3	104	97.4	73.0-130			6.49	20	
1,1,1,2-Tetrachloroethane	25.0	25.0	24.8	100	99.1	75.0-125			0.864	20	
1,1,2,2-Tetrachloroethane	25.0	25.6	24.7	102	98.8	65.0-130			3.54	20	
1,1,2-Trichlorotrifluoroethane	25.0	27.2	25.9	109	104	69.0-132			4.69	20	
Tetrachloroethene	25.0	25.1	24.5	101	97.8	72.0-132			2.72	20	
Toluene	25.0	24.8	23.7	99.0	94.9	79.0-120			4.30	20	
1,2,3-Trichlorobenzene	25.0	26.4	26.0	106	104	50.0-138			1.79	20	
1,2,4-Trichlorobenzene	25.0	26.1	26.0	104	104	57.0-137			0.366	20	
1,1,1-Trichloroethane	25.0	26.3	25.4	105	101	73.0-124			3.80	20	
1,1,2-Trichloroethane	25.0	24.7	22.8	98.8	91.3	80.0-120			7.84	20	
Trichloroethene	25.0	25.3	24.0	101	96.1	78.0-124			5.11	20	
Trichlorofluoromethane	25.0	28.3	27.2	113	109	59.0-147			4.03	20	
1,2,3-Trichloropropane	25.0	24.7	24.4	98.9	97.7	73.0-130			1.22	20	
1,2,4-Trimethylbenzene	25.0	24.8	24.7	99.1	98.8	76.0-121			0.326	20	
1,2,3-Trimethylbenzene	25.0	25.0	24.8	100	99.0	77.0-120			0.948	20	
1,3,5-Trimethylbenzene	25.0	28.2	27.5	113	110	76.0-122			2.67	20	
Vinyl acetate	125	83.9	78.2	67.2	62.6	11.0-160			7.05	20	
Vinyl chloride	25.0	27.9	27.0	112	108	67.0-131			3.35	20	
Xylenes, Total	75.0	77.0	77.1	103	103	79.0-123			0.130	20	
(S) Toluene-d8				95.1	95.2	80.0-120					

77.0-126

70.0-130

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

100

103

94.0

108

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC)[] by Method NWTPHDX-NO SGT

L1096002-02,07

Method Blank (MB)

(MB) R3410339-1 05/10/19	22:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	126			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3410339-2 05/10/1	9 23:14 • (LCSD) R3410339-3	05/10/19 23:37	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1510	1560	101	104	50.0-150			3.26	20
(S) o-Terphenyl				109	112	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-01,02

Method Blank (MB)

Method Blank (MB)				
(MB) R3410003-3 05/10/19	02:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Acenaphthene	U		0.316	1.00
Acenaphthylene	U		0.309	1.00
Anthracene	U		0.291	1.00
Benzo(a)anthracene	U		0.0975	1.00
Benzo(b)fluoranthene	U		0.0896	1.00
Benzo(k)fluoranthene	U		0.355	1.00
Benzo(g,h,i)perylene	U		0.161	1.00
Benzo(a)pyrene	U		0.340	1.00
Bis(2-chlorethoxy)methane	U		0.329	10.0
Bis(2-chloroethyl)ether	U		1.62	10.0
Bis(2-chloroisopropyl)ether	U		0.445	10.0
4-Bromophenyl-phenylether	U		0.445	10.0
			0.335	1.00
2-Chloronaphthalene	U			
4-Chlorophenyl-phenylether	U		0.303	10.0
Chrysene	U		0.332	1.00
Dibenz(a,h)anthracene	U		0.279	1.00
3,3-Dichlorobenzidine	U		2.02	10.0
2,4-Dinitrotoluene	U		1.65	10.0
2,6-Dinitrotoluene	U		0.279	10.0
Fluoranthene	U		0.310	1.00
Fluorene	U		0.323	1.00
Hexachlorobenzene	U		0.341	1.00
Hexachloro-1,3-butadiene	U		0.329	10.0
Hexachlorocyclopentadiene	U		2.33	10.0
Hexachloroethane	U		0.365	10.0
Indeno(1,2,3-cd)pyrene	U		0.279	1.00
Isophorone	U		0.272	10.0
Naphthalene	U		0.372	1.00
Nitrobenzene	U		0.367	10.0
n-Nitrosodimethylamine	U		1.26	10.0
n-Nitrosodiphenylamine	U		1.19	10.0
n-Nitrosodi-n-propylamine	U		0.403	10.0
Phenanthrene	U		0.366	1.00
Benzylbutyl phthalate	U		0.275	3.00
Bis(2-ethylhexyl)phthalate	U		0.709	3.00
Di-n-butyl phthalate	U		0.266	3.00
Diethyl phthalate	U		0.282	3.00
Dimethyl phthalate	U		0.282	3.00
Di-n-octyl phthalate			0.283	3.00
	U			
Pyrene	U		0.330	1.00

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-01,02

Method Blank (MB)

(S) 2,4,6-Tribromophenol

(MB) R3410003-3 05/10/	19 02:00				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Pyridine	U		1.37	10.0	
1,2,4-Trichlorobenzene	U		0.355	10.0	
4-Chloro-3-methylphenol	U		0.263	10.0	
2-Chlorophenol	U		0.283	10.0	
2-Methylphenol	U		0.312	10.0	
3&4-Methyl Phenol	U		0.266	10.0	
2,4-Dichlorophenol	U		0.284	10.0	
2,4-Dimethylphenol	U		0.264	10.0	
4,6-Dinitro-2-methylphenol	U		2.62	10.0	
2,4-Dinitrophenol	U		3.25	10.0	
2-Nitrophenol	U		0.320	10.0	
4-Nitrophenol	U		2.01	10.0	
Pentachlorophenol	U		0.313	10.0	
Phenol	U		0.334	10.0	
2,4,5-Trichlorophenol	U		0.236	10.0	
2,4,6-Trichlorophenol	U		0.297	10.0	
(S) Nitrobenzene-d5	32.0			10.0-127	
(S) 2-Fluorobiphenyl	39.1			10.0-130	
(S) p-Terphenyl-d14	79.2			10.0-128	
(S) Phenol-d5	17.9			10.0-120	
(S) 2-Fluorophenol	28.0			10.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

10.0-155

LCS) R3410003-1 05/10/19 00:58 • (LCSD) R3410003-2 05/10/19 01:19											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acenaphthene	50.0	27.9	27.4	55.8	54.8	41.0-120			1.81	22	
Acenaphthylene	50.0	29.5	28.9	59.0	57.8	43.0-120			2.05	22	
Anthracene	50.0	33.1	35.3	66.2	70.6	45.0-120			6.43	20	
Benzo(a)anthracene	50.0	35.6	39.8	71.2	79.6	47.0-120			11.1	20	
Benzo(b)fluoranthene	50.0	36.2	40.3	72.4	80.6	46.0-120			10.7	20	
Benzo(k)fluoranthene	50.0	35.1	39.5	70.2	79.0	46.0-120			11.8	21	
Benzo(g,h,i)perylene	50.0	33.5	37.6	67.0	75.2	48.0-121			11.5	20	
Benzo(a)pyrene	50.0	32.6	36.2	65.2	72.4	47.0-120			10.5	20	
Bis(2-chlorethoxy)methane	50.0	25.8	25.2	51.6	50.4	33.0-120			2.35	24	
Bis(2-chloroethyl)ether	50.0	26.9	24.0	53.8	48.0	23.0-120			11.4	33	
Bis(2-chloroisopropyl)ether	50.0	24.3	22.5	48.6	45.0	28.0-120			7.69	31	

43.7

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-01,02

Laboratory Contro	l Sample (L	CS) • Labo	oratory Con	itrol Samp	le Duplicat	e (LCSD)					
(LCS) R3410003-1 05/10/1	19 00:58 • (LCS	D) R3410003-	2 05/10/19 01:1	9							_
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4-Bromophenyl-phenylether	50.0	31.1	33.7	62.2	67.4	45.0-120			8.02	20	
2-Chloronaphthalene	50.0	25.3	23.8	50.6	47.6	37.0-120			6.11	25	
4-Chlorophenyl-phenylether	50.0	29.4	30.1	58.8	60.2	44.0-120			2.35	20	
Chrysene	50.0	32.3	36.2	64.6	72.4	48.0-120			11.4	20	Γ
Dibenz(a,h)anthracene	50.0	34.3	38.6	68.6	77.2	47.0-120			11.8	20	
3,3-Dichlorobenzidine	100	59.3	63.2	59.3	63.2	44.0-120			6.37	20	L
2,4-Dinitrotoluene	50.0	32.6	35.9	65.2	71.8	49.0-124			9.64	20	
2,6-Dinitrotoluene	50.0	31.3	32.7	62.6	65.4	46.0-120			4.37	21	
Fluoranthene	50.0	35.4	39.2	70.8	78.4	51.0-120			10.2	20	
Fluorene	50.0	30.9	31.2	61.8	62.4	47.0-120			0.966	20	
Hexachlorobenzene	50.0	30.8	32.4	61.6	64.8	44.0-120			5.06	20	
Hexachloro-1,3-butadiene	50.0	8.62	7.10	17.2	14.2	19.0-120	<u>J4</u>	<u>J4</u>	19.3	32	
Hexachlorocyclopentadiene	50.0	16.0	12.6	32.0	25.2	15.0-120			23.8	31	
Hexachloroethane	50.0	7.74	7.25	15.5	14.5	15.0-120		<u>J4</u>	6.54	37	
Indeno(1,2,3-cd)pyrene	50.0	33.8	38.4	67.6	76.8	49.0-122			12.7	20	
Isophorone	50.0	27.4	26.6	54.8	53.2	36.0-120			2.96	23	_ !
Naphthalene	50.0	21.2	19.3	42.4	38.6	27.0-120			9.38	27	
Nitrobenzene	50.0	24.6	22.7	49.2	45.4	27.0-120			8.03	29	_
n-Nitrosodimethylamine	50.0	13.3	11.5	26.6	23.0	10.0-120			14.5	40	
n-Nitrosodiphenylamine	50.0	31.0	32.1	62.0	64.2	47.0-120			3.49	20	
n-Nitrosodi-n-propylamine	50.0	28.2	27.4	56.4	54.8	31.0-120			2.88	28	
Phenanthrene	50.0	31.8	34.0	63.6	68.0	46.0-120			6.69	20	
Benzylbutyl phthalate	50.0	33.2	36.8	66.4	73.6	43.0-121			10.3	20	
Bis(2-ethylhexyl)phthalate	50.0	33.3	36.9	66.6	73.8	43.0-122			10.3	20	
Di-n-butyl phthalate	50.0	36.5	40.1	73.0	80.2	49.0-121			9.40	20	
Diethyl phthalate	50.0	32.8	34.8	65.6	69.6	48.0-122			5.92	20	
Dimethyl phthalate	50.0	31.1	32.6	62.2	65.2	48.0-120			4.71	20	
Di-n-octyl phthalate	50.0	33.0	36.1	66.0	72.2	42.0-125			8.97	20	
Pyrene	50.0	35.6	39.7	71.2	79.4	47.0-120			10.9	20	
Pyridine	50.0	8.59	9.62	17.2	19.2	10.0-120			11.3	38	
1,2,4-Trichlorobenzene	50.0	14.4	12.1	28.8	24.2	24.0-120			17.4	29	
4-Chloro-3-methylphenol	50.0	30.1	29.8	60.2	59.6	40.0-120			1.00	21	
2-Chlorophenol	50.0	25.6	23.1	51.2	46.2	25.0-120			10.3	35	
2-Methylphenol	50.0	24.5	22.5	49.0	45.0	28.0-120			8.51	29	
3&4-Methyl Phenol	50.0	26.1	24.3	52.2	48.6	31.0-120			7.14	30	
2,4-Dichlorophenol	50.0	27.1	26.1	54.2	52.2	36.0-120			3.76	26	
2,4-Dimethylphenol	50.0	27.1	26.3	54.2	52.6	33.0-120			3.00	26	
4,6-Dinitro-2-methylphenol	50.0	37.3	41.1	74.6	82.2	38.0-138			9.69	25	
2,4-Dinitrophenol	50.0	30.2	32.6	60.4	65.2	10.0-120			7.64	39	
0.1111	F0.0	07.7	20.5		50.0	04.0.400			4.40	00	

50.0

27.7

26.5

2-Nitrophenol

53.0

31.0-120

55.4

4.43

29

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CC) D2/110002 1	0E/10/10 00.E0	(LCSD) R3410003-2	OE/10/10 01:10
1LC31 K3410003-1	03/10/13 00.36 •	1LC3D1 K3410003-Z	03/10/13 01.13

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
4-Nitrophenol	50.0	15.8	15.6	31.6	31.2	10.0-120			1.27	33
Pentachlorophenol	50.0	27.8	30.7	55.6	61.4	23.0-120			9.91	25
Phenol	50.0	12.6	10.4	25.2	20.8	10.0-120			19.1	36
2,4,5-Trichlorophenol	50.0	32.1	31.8	64.2	63.6	44.0-120			0.939	22
2,4,6-Trichlorophenol	50.0	32.2	33.0	64.4	66.0	42.0-120			2.45	23
(S) Nitrobenzene-d5				51.5	47.7	10.0-127				
(S) 2-Fluorobiphenyl				54.6	53.0	10.0-130				
(S) p-Terphenyl-d14				66.8	76.0	10.0-128				
(S) Phenol-d5				23.0	19.0	10.0-120				
(S) 2-Fluorophenol				35.7	29.3	10.0-120				
(S) 2,4,6-Tribromophenol				58.0	65.0	10.0-155				

SLR International Corp. - West Linn, OR

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-04,05,06,07

Method Blank (MB)

(MB) R3409911-2 05/09/1	9 22:11				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acenaphthene	U		0.316	1.00	
Acenaphthylene	U		0.309	1.00	
Anthracene	U		0.291	1.00	
Benzo(a)anthracene	U		0.0975	1.00	
Benzo(b)fluoranthene	U		0.0896	1.00	
Benzo(k)fluoranthene	U		0.355	1.00	
Benzo(g,h,i)perylene	U		0.161	1.00	
Benzo(a)pyrene	U		0.340	1.00	
Bis(2-chlorethoxy)methane	U		0.329	10.0	
Bis(2-chloroethyl)ether	U		1.62	10.0	
Bis(2-chloroisopropyl)ether	U		0.445	10.0	
1-Bromophenyl-phenylether	U		0.335	10.0	
2-Chloronaphthalene	U		0.330	1.00	
-Chlorophenyl-phenylether	U		0.303	10.0	
Chrysene	U		0.332	1.00	
Dibenz(a,h)anthracene	U		0.279	1.00	
,3-Dichlorobenzidine	U		2.02	10.0	
2,4-Dinitrotoluene	U		1.65	10.0	
2,6-Dinitrotoluene	U		0.279	10.0	
luoranthene	U		0.310	1.00	
luorene	U		0.323	1.00	
Hexachlorobenzene	U		0.341	1.00	
Hexachloro-1,3-butadiene	U		0.329	10.0	
Hexachlorocyclopentadiene	U		2.33	10.0	
Hexachloroethane	U		0.365	10.0	
ndeno(1,2,3-cd)pyrene	U		0.279	1.00	
sophorone	U		0.272	10.0	
laphthalene	U		0.372	1.00	
litrobenzene	U		0.367	10.0	
-Nitrosodimethylamine	U		1.26	10.0	
n-Nitrosodiphenylamine	U		1.19	10.0	
-Nitrosodi-n-propylamine	U		0.403	10.0	
Phenanthrene	U		0.366	1.00	
Benzylbutyl phthalate	U		0.275	3.00	
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	
Di-n-butyl phthalate	U		0.266	3.00	
Diethyl phthalate	U		0.282	3.00	
Dimethyl phthalate	U		0.283	3.00	
Di-n-octyl phthalate	U		0.278	3.00	
Pyrene	U		0.330	1.00	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-04,05,06,07

Method Blank (MB)

(MB) R3409911-2 05/09/	19 22:11				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	ľ
Pyridine	U		1.37	10.0	L
1,2,4-Trichlorobenzene	U		0.355	10.0	3
4-Chloro-3-methylphenol	U		0.263	10.0	
2-Chlorophenol	U		0.283	10.0	4
2-Methylphenol	U		0.312	10.0	4
3&4-Methyl Phenol	U		0.266	10.0	<u> </u>
2,4-Dichlorophenol	U		0.284	10.0	5
2,4-Dimethylphenol	U		0.264	10.0	L
4,6-Dinitro-2-methylphenol	U		2.62	10.0	6
2,4-Dinitrophenol	U		3.25	10.0	6
2-Nitrophenol	U		0.320	10.0	
4-Nitrophenol	U		2.01	10.0	7
Pentachlorophenol	U		0.313	10.0	L
Phenol	U		0.334	10.0	8
2,4,5-Trichlorophenol	U		0.236	10.0	
2,4,6-Trichlorophenol	U		0.297	10.0	<u> </u>
(S) Nitrobenzene-d5	71.5			10.0-127	9
(S) 2-Fluorobiphenyl	68.8			10.0-130	L
(S) p-Terphenyl-d14	69.1			10.0-128	
(S) Phenol-d5	29.0			10.0-120	
(S) 2-Fluorophenol	47.4			10.0-120	
(S) 2,4,6-Tribromophenol	53.0			10.0-155	

Laboratory Control Sample (LCS)

(LCS) R3409911-1 05/09/1	CS) R3409911-1 05/09/19 21:50											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
Acenaphthene	50.0	38.0	76.0	41.0-120								
Acenaphthylene	50.0	42.1	84.2	43.0-120								
Anthracene	50.0	38.3	76.6	45.0-120								
Benzo(a)anthracene	50.0	40.2	80.4	47.0-120								
Benzo(b)fluoranthene	50.0	40.9	81.8	46.0-120								
Benzo(k)fluoranthene	50.0	39.5	79.0	46.0-120								
Benzo(g,h,i)perylene	50.0	43.1	86.2	48.0-121								
Benzo(a)pyrene	50.0	36.7	73.4	47.0-120								
Bis(2-chlorethoxy)methane	50.0	33.5	67.0	33.0-120								
Bis(2-chloroethyl)ether	50.0	37.3	74.6	23.0-120								
Bis(2-chloroisopropyl)ether	50.0	35.9	71.8	28.0-120								

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-04,05,06,07

Laboratory Control Sample (LCS)

Laboratory Contro	i Sample (L	US)			
(LCS) R3409911-1 05/09/	19 21:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
4-Bromophenyl-phenylether	50.0	39.3	78.6	45.0-120	
2-Chloronaphthalene	50.0	38.2	76.4	37.0-120	
4-Chlorophenyl-phenylether	50.0	40.2	80.4	44.0-120	
Chrysene	50.0	38.0	76.0	48.0-120	
Dibenz(a,h)anthracene	50.0	39.8	79.6	47.0-120	
3,3-Dichlorobenzidine	100	79.1	79.1	44.0-120	
2,4-Dinitrotoluene	50.0	40.2	80.4	49.0-124	
2,6-Dinitrotoluene	50.0	38.5	77.0	46.0-120	
Fluoranthene	50.0	41.2	82.4	51.0-120	
Fluorene	50.0	39.8	79.6	47.0-120	
Hexachlorobenzene	50.0	38.4	76.8	44.0-120	
Hexachloro-1,3-butadiene	50.0	36.0	72.0	19.0-120	
Hexachlorocyclopentadiene	50.0	34.2	68.4	15.0-120	
Hexachloroethane	50.0	36.5	73.0	15.0-120	
Indeno(1,2,3-cd)pyrene	50.0	37.2	74.4	49.0-122	
Isophorone	50.0	37.3	74.6	36.0-120	
Naphthalene	50.0	33.3	66.6	27.0-120	
Nitrobenzene	50.0	35.9	71.8	27.0-120	
n-Nitrosodimethylamine	50.0	29.2	58.4	10.0-120	
n-Nitrosodiphenylamine	50.0	38.6	77.2	47.0-120	
n-Nitrosodi-n-propylamine	50.0	39.6	79.2	31.0-120	
Phenanthrene	50.0	38.1	76.2	46.0-120	
Benzylbutyl phthalate	50.0	37.8	75.6	43.0-121	
Bis(2-ethylhexyl)phthalate	50.0	37.3	74.6	43.0-121	
	50.0	41.0	82.0	49.0-121	
Di-n-butyl phthalate		39.1	78.2	48.0-121	
Diethyl phthalate	50.0				
Dimethyl phthalate	50.0	40.4	80.8	48.0-120	
Di-n-octyl phthalate	50.0	37.2	74.4	42.0-125	
Pyrene	50.0	39.1	78.2	47.0-120	
Pyridine	50.0	21.2	42.4	10.0-120	
1,2,4-Trichlorobenzene	50.0	34.4	68.8	24.0-120	
4-Chloro-3-methylphenol	50.0	38.6	77.2	40.0-120	
2-Chlorophenol	50.0	37.4	74.8	25.0-120	
2-Methylphenol	50.0	35.5	71.0	28.0-120	
3&4-Methyl Phenol	50.0	37.1	74.2	31.0-120	
2,4-Dichlorophenol	50.0	38.0	76.0	36.0-120	
2,4-Dimethylphenol	50.0	37.6	75.2	33.0-120	
4,6-Dinitro-2-methylphenol	50.0	43.3	86.6	38.0-138	
2,4-Dinitrophenol	50.0	38.3	76.6	10.0-120	
2-Nitrophenol	50.0	38.0	76.0	31.0-120	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-04,05,06,07

Laboratory Control Sample (LCS)

(LCS) R3409911-1	05/09/19 21:50
------------------	----------------

(LC3) K3409911-1 03/09/	(C3) (C3+03311-1											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
4-Nitrophenol	50.0	17.2	34.4	10.0-120								
Pentachlorophenol	50.0	34.8	69.6	23.0-120								
Phenol	50.0	18.3	36.6	10.0-120								
2,4,5-Trichlorophenol	50.0	42.7	85.4	44.0-120								
2,4,6-Trichlorophenol	50.0	42.2	84.4	42.0-120								
(S) Nitrobenzene-d5			64.6	10.0-127								
(S) 2-Fluorobiphenyl			<i>7</i> 5.9	10.0-130								
(S) p-Terphenyl-d14			72.5	10.0-128								
(S) Phenol-d5			33.5	10.0-120								
(S) 2-Fluorophenol			53.5	10.0-120								
(S) 2,4,6-Tribromophenol			69.0	10.0-155								

$L1096042\text{-}01 \text{ Original Sample (OS)} \bullet \text{Matrix Spike (MS)} \bullet \text{Matrix Spike Duplicate (MSD)} \\$

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	U	34.1	33.6	68.2	67.2	1	28.0-120			1.48	25
Acenaphthylene	50.0	U	36.5	36.4	73.0	72.8	1	31.0-121			0.274	25
Anthracene	50.0	U	35.9	35.6	71.8	71.2	1	36.0-120			0.839	23
Benzo(a)anthracene	50.0	U	35.5	32.2	71.0	64.4	1	39.0-120			9.75	23
Benzo(b)fluoranthene	50.0	U	32.4	29.4	64.8	58.8	1	37.0-120			9.71	23
Benzo(k)fluoranthene	50.0	U	31.2	26.7	62.4	53.4	1	37.0-120			15.5	26
Benzo(g,h,i)perylene	50.0	U	38.3	34.0	76.6	68.0	1	37.0-123			11.9	25
Benzo(a)pyrene	50.0	U	30.4	27.3	60.8	54.6	1	37.0-120			10.7	24
Bis(2-chlorethoxy)methane	50.0	U	29.7	30.5	59.4	61.0	1	17.0-120			2.66	31
Bis(2-chloroethyl)ether	50.0	U	39.2	40.2	78.4	80.4	1	14.0-120			2.52	33
Bis(2-chloroisopropyl)ether	50.0	U	52.8	53.4	106	107	1	18.0-120			1.13	34
4-Bromophenyl-phenylether	50.0	U	37.1	36.2	74.2	72.4	1	37.0-120			2.46	24
2-Chloronaphthalene	50.0	U	32.9	32.3	65.8	64.6	1	29.0-120			1.84	28
4-Chlorophenyl-phenylether	50.0	U	36.7	35.4	73.4	70.8	1	36.0-120			3.61	23
Chrysene	50.0	U	32.6	29.9	65.2	59.8	1	38.0-120			8.64	23
Dibenz(a,h)anthracene	50.0	U	35.0	30.0	70.0	60.0	1	36.0-121			15.4	24
3,3-Dichlorobenzidine	100	U	ND	ND	0.000	0.000	1	10.0-134	<u>J6</u>	<u>J6</u>	0.000	30
2,4-Dinitrotoluene	50.0	U	37.8	39.5	75.6	79.0	1	39.0-125			4.40	25
2,6-Dinitrotoluene	50.0	U	38.3	38.6	76.6	77.2	1	36.0-120			0.780	27
Fluoranthene	50.0	U	37.2	34.7	74.4	69.4	1	41.0-121			6.95	22
Fluorene	50.0	U	35.7	35.3	71.4	70.6	1	37.0-120			1.13	24
Hexachlorobenzene	50.0	U	36.6	34.1	73.2	68.2	1	35.0-122			7.07	24

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D

L1096002-04,05,06,07

L1096042-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11096042-01 05/10/19 02:21 (MS) P3409911-3 05/10/19 02:42 (MSD) P3409911-4 05/10/19 03:03

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Hexachloro-1,3-butadiene	50.0	U	32.2	31.9	64.4	63.8	1	12.0-120			0.936	34
Hexachlorocyclopentadiene	50.0	U	21.6	17.4	43.2	34.8	1	10.0-120			21.5	33
Hexachloroethane	50.0	U	30.3	30.1	60.6	60.2	1	10.0-120			0.662	40
Indeno(1,2,3-cd)pyrene	50.0	U	35.4	30.8	70.8	61.6	1	38.0-125			13.9	24
Isophorone	50.0	U	32.9	33.0	65.8	66.0	1	21.0-120			0.303	27
Naphthalene	50.0	U	33.5	34.0	67.0	68.0	1	10.0-120			1.48	31
Nitrobenzene	50.0	U	36.1	36.6	72.2	73.2	1	12.0-120			1.38	30
n-Nitrosodimethylamine	50.0	953	46.7	44.9	0.000	0.000	1	10.0-120	$\underline{\vee}$	$\underline{\vee}$	3.93	40
n-Nitrosodiphenylamine	50.0	U	36.9	37.7	73.8	75.4	1	37.0-120	_	_	2.14	24
n-Nitrosodi-n-propylamine	50.0	U	92.6	94.4	185	189	1	16.0-120	<u>J5</u>	<u>J5</u>	1.93	30
Phenanthrene	50.0	U	35.2	34.8	70.4	69.6	1	33.0-120	_	_	1.14	22
Benzylbutyl phthalate	50.0	U	35.9	32.7	71.8	65.4	1	34.0-126			9.33	24
Bis(2-ethylhexyl)phthalate	50.0	1.57	33.1	28.6	63.1	54.1	1	33.0-126			14.6	25
Di-n-butyl phthalate	50.0	U	38.3	36.5	76.6	73.0	1	35.0-128			4.81	23
Diethyl phthalate	50.0	U	39.6	39.7	79.2	79.4	1	39.0-125			0.252	24
Dimethyl phthalate	50.0	U	36.4	36.6	72.8	73.2	1	37.0-120			0.548	24
Di-n-octyl phthalate	50.0	U	31.4	27.0	62.8	54.0	1	25.0-135			15.1	26
Pyrene	50.0	U	37.4	36.3	74.8	72.6	1	39.0-120			2.99	22
Pyridine	50.0	U	21.1	19.5	42.2	39.0	1	10.0-120			7.88	37
1,2,4-Trichlorobenzene	50.0	U	32.7	33.3	65.4	66.6	1	15.0-120			1.82	31
4-Chloro-3-methylphenol	50.0	U	44.9	45.6	89.8	91.2	1	26.0-120			1.55	27
2-Chlorophenol	50.0	U	32.1	32.5	64.2	65.0	1	18.0-120			1.24	34
2-Methylphenol	50.0	15.3	43.3	42.2	56.0	53.8	1	10.0-120			2.57	30
3&4-Methyl Phenol	50.0	53.3	93.6	92.7	80.6	78.8	1	10.0-120			0.966	36
2,4-Dichlorophenol	50.0	U	36.8	37.2	73.6	74.4	1	19.0-120			1.08	27
2,4-Dimethylphenol	50.0	U	49.2	49.7	98.4	99.4	1	15.0-120			1.01	28
4,6-Dinitro-2-methylphenol	50.0	U	38.6	37.1	77.2	74.2	1	10.0-144			3.96	39
2,4-Dinitrophenol	50.0	U	37.0	33.8	74.0	67.6	1	10.0-120			9.04	40
2-Nitrophenol	50.0	U	35.2	36.1	70.4	72.2	1	20.0-120			2.52	30
4-Nitrophenol	50.0	U	10.4	10.2	20.8	20.4	1	10.0-120			1.94	40
Pentachlorophenol	50.0	U	44.4	43.5	88.8	87.0	1	10.0-128			2.05	37
Phenol	50.0	34.5	54.9	56.1	40.8	43.2	1	10.0-120			2.16	40
2,4,5-Trichlorophenol	50.0	U	46.7	47.6	93.4	95.2	1	33.0-120			1.91	31
2,4,6-Trichlorophenol	50.0	U	42.2	43.0	84.4	86.0	1	26.0-120			1.88	31
(S) Nitrobenzene-d5					65.7	65.2		10.0-127				
(S) 2-Fluorobiphenyl					239	235		10.0-130	J1	J1		
(S) p-Terphenyl-d14					68.4	60.8		10.0-128	<u></u>			
(S) Phenol-d5					48.7	47.3		10.0-120				
(S) 2-Fluorophenol					32.3	33.0		10.0-120				
(S) 2,4,6-Tribromophenol					77.5	81.5		10.0-155				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

, to bre viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
JO	JO: The identification of the analyte is acceptable, but the reported concentration is an estimate. The calibration met method criteria.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Pace Analytical

CHAIN OF CUSTODY

	•	\mathbf{a}	A
	,	,	7
-	•	_	

1	1096	002
,		1 .

12065 Lebanon Rd, Mount Juliet, TN 37122	12065	Lebanon	Rd	Mount	Juliet,	TN	37	2216
--	-------	---------	----	-------	---------	----	----	------

phone: (800) 767-5454

Company: 5LR			Project 1	Mgr: C	hris	K	cem	es		1		Proje	ct Na	me:	Non	l	Doc	5			Proj	ject#	108.4	3022	8.00	005
Address: 1800 Blankership 1	ld, 5	te 440	We	st L	inn.	OR			Phone	150	3)	72	3-4	423	Fax:				Emai	il: ch	Crow	ner (estr	consu	Hig.	com
Sampled by: Steven Losebe			,						1									SRE	QUEST						,	
Other: SAMPLE ID	LAB ID#	DATE	TIME	MATRIX	# OF CONTAINERS	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	8260 VOCs Full List	8260 RBDM VOCs	8260 HVOCs	8260 BTEX VOCs	8270 SVOC	8270 SIM PAHs	8082 PCBs	OTT 009	RCRA Metals (8)	(8) sl	A1, (4) (5) (8) (8) (6) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		1200-Z	子はない				
MW-11A-0519		5/3/19	1537	water	6								X						X							
MW-11B-0519			1617	1	9		X		X				X												4	
MW-12-0519			1120		43				X										X							
MW-13-0519			1025			30							X						X							
MW-14-0519			1207		3								X						X							
MW-15-0519			1315		1														X							
MW-16-0519			1357		3								X						X							
MW-17-0519		V	1444	V	10		Х		X				X						Х							
Normal Turn Around Time (TAT) = 10 Busin	ness Day	ys		YES	>	NO					SPEC	IAL	INST	RUC	ΓΙΟΝ	S:										
TAT Requested (circle)	1 Day		2 Day 5 DAY		3 Day Other		51	TA.	rd							P	W.		# <0.5 m	aloh i						
SAMPL RELINQUISHED BY:	ES AR	E HELD	FOR 30 I							-	RELIN	NQUE	SHED	BY:	_	_		_	RECE	EIVED	BY:					NCF
signature:	Date:		Signature:	a	W			Date:	5/7	119	Signati	ure:						Date:	Signat	ure:				Date:		
rinted Name:	Time:		Printed Na	ame: C	olol	had	lwy	Time:	8:0	45	Printed	i Nam	e:					Time:	Printed	d Name	e;			Time:		
Company:			Company	P	AC	E			1		Compa	anv:							Compa	anv.					(00.	

Pace Analytical National Center for Testing & Innovation Cooler Receipt Form										
Client: CLLWLOL	SDG#	L	096002							
Cooler Received/Opened On: 5/7 /19	Temperature:	0.5								
Received By: Cole Medley										
Signature: (IMW										
Receipt Check List	NP	Yes	No							
COC Seal Present / Intact?		1								
COC Signed / Accurate?	是一次的一个位置的第三人称单									
Bottles arrive intact?		(
Correct bottles used?		1	Alexander and							
Sufficient volume sent?		1								
If Applicable		1								
VOA Zero headspace?										
Preservation Correct / Checked?			1							

ent: SLRWLOR Date: 5/7/19 Evaluated by: Troy Dunla
--

Ion-Conformance (check applicable items

	Sample Integrity	Chain of Custody Clarification	
- 63	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
	Temperature not in range	Chain of custody is incomplete	Insufficient packing material around container
	Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
×	pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
	Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
200	Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
	Broken container	Client did not "X" analysis.	Received by:
	Broken container:	Chain of Custody is missing	Date/Time:
	Sufficient sample remains		Temp./Cont. Rec./pH:
			Carrier:
-			Tracking#

Login Comments: Metals received unpreserved for MW-15.

Client informed by:	Call	Email X	Voice Mail	Date:05/07/19	Time:1615	
TSR Initials:bjf	Client Conta	ct: Chris Kram	ier			

Login Instructions:

Please preserve and note time/date of pH adjustment.

FINAL LAB REPORT

Prepared by Prepared for

SGS NORTH AMERICA

This report is approved by

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please do not hesitate to contact us.

The management and staff of SGS welcomes customer feedback, both positive and negative, as we continually improve our services. Please visit our web site at www.sgs.com/ultratrace and click on the 'Email Us' link or go to our survey here. Thank you for choosing SGS.

Any holder of this document is advised that it is a final submission and supersedes and voids all prior reports with the same report or identification number. The information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility in conducting the work herein is to its Client and does not exonerate parties to a transaction from exercising all of their rights and obligations under such applicable transaction documents. This report may be reproduced in full only. The Company expressly disclaims any and all liability for the Client's use of or reliance upon the data contained herein. Any alteration, forgery or falsification of the content or appearance of this document which is not expressly authorized by the Company is unlawful and offenders may be prosecuted to the fullest extent of the law.

Results reported relate only to the items tested.

SGS North America Inc. | Environment, Health & Safety 5500 Business Drive Wilmington, NC 28405 +1 910 350 1903 | +1 866 846 8290 www.sgs.com

PROJECT INFORMATION SUMMARY (When applicable, see QC Annotations for details)

Client Project
SGS Project #
Analytical Protocol(s)
No. Samples Submitted
Additional QC Sample(s)
No. Laboratory Method Blanks
No. OPRs / Batch CS3
Date Received
Condition Received
Temperature upon Receipt (°C)
Extraction within Holding Time
Analysis within Holding Time

QC ANNOTATIONS:

1. Please see Appendices attached for data qualifier/attribute and lab identifier descriptions which may be contained in the project.

APPENDIX A: GENERAL DATA QUALIFIERS / DATA ATTRIBUTES

В	The analyte was found in the method blank, at a concentration that was at least 10% of the concentration in the sample.
С	Two or more congeners co-elute. In EDDs, C denotes the lowest IUPAC congener in a co-elution group and additional co-eluters for the group are shown with the number of the lowest IUPAC co-eluter.
E	The reported concentration exceeds the calibration range (upper point of the calibration curve) and is an estimated value.
EMPC	Represents an Estimated Maximum Possible Concentration. EMPCs arise in cases where the signal/noise ratio is not sufficient for peak identification (the determined ion-abundance ratio is outside the allowed theoretical range), or where there is a co-eluting interference.
H/h	If the standard recovery is below the method or SOP specified value "H" is assigned. If the obtained value is less than half the specified value "h" is assigned.
J	Indicates that an analyte has a concentration below the reporting limit (lowest point of the calibration curve) and is an estimated value.
ND	Indicates a non-detect.
NR or R	Indicates a value that is not reportable.
PR	Due to interference, the associated congener is poorly resolved.
QI	Indicates the presence of a quantitative interference.
SI	Denotes "Single Ion Mode" and is utilized for PCBs where the secondary ion trace has a significantly elevated noise level due to background PFK. Responses for such peaks are calculated using an EMPC approach based solely on the primary ion area(s) and may be considered estimates.
U	The analyte was not detected. The estimated detection limit (EDL) may be reported for this analyte.
V	The labeled standard recovery was found to be outside of the method control limits.

APPENDIX B: DRBC/TMDL SPECIFIC DATA QUALIFIERS / DATA ATTRIBUTES

J	The reported result is an estimate. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL).
U	The analyte was not detected in the sample at the estimated detection limit (EDL).
E	The reported concentration is an estimate. The value exceeds the upper calibration range (upper point of the calibration curve).
D	Dilution Data. Result was obtained from the analysis of a dilution.
В	Analyte found in the sample and associated method blank.
С	Co-eluting congener
Схх	Co-elutes with the indicated congener, data is reported under the lowest IUPAC congener. 'Xx' denotes the IUPAC number with the lowest numerical designated congener.
NR	Analyte is not reportable because of problems in sample preparation or analysis.
٧	Labeled standard recovery is not within method control limits.
Х	Results from re-injection/repeat/second-column analysis.
EMPC	Estimated maximum possible concentration. Indicates that a peak is identified but did not meet the method specified ion-abundance ratio.

APPENDIX C: LAB IDENTIFIERS

AR	Indicates use of the archived portion of the sample extract.
CU	Indicates a sample that required additional clean-up prior to MS injection/processing.
D	Indicates a dilution of the sample extract. The number that follows the "D" indicates the dilution factor.
DE	Indicates a dilution performed with the addition of ES (extraction standard) solution.
DUP	Designation for a duplicate sample.
MS	Designation for a matrix spike.
MSD	Designation for a matrix spike duplicate.
RJ	Indicates a reinjection of the sample extract.
S	Indicates a sample split. The number that follows the "S" indicates the split factor.

SGS CERTIFICATIONS

Alaska	17-012
Arkansas	18-042-0
California (ELAP)	ELAP Cert #2914
CLIA	34D1013708
Connecticut	PH-0258
USDA Soil Permit	P330-17-00055
American Association for Laboratory Accreditation (A2LA)	2726.01 (ISO 17025:2005, 2009 TNI, DoD ELAP QSM 5.1)
Florida DOH	E87634
Louisiana DEQ	4115
Louisiana DOH	LA031
Maine	2018018
Massachusetts	M-NC919
Minnesota (Primary NELAP For Method 23)	1535636
Mississippi	Reciprocity
Montana	0106
New Hampshire	208318 & 208518
New Jersey	NC100
New York	11685
North Carolina DEQ	481
North Dakota	R-197
Oregon	NC200002
Pennsylvania	68-03675
South Carolina	99029002
Texas	T104704260
US Coast Guard	16714/159.317/SGS
Vermont	VT-87634
Virginia	10101
Washington	C913
West Virginia	293

Rev. 06-Mar-2019

B3350 page 6 of 12

Sample ID: MW-16-0519 Method 1613							d 1613B
Client Data		Sample Data		Laboratory Da	ata_		
Name:	SLR International Corp	Matrix:	Aqueous	Lab Project ID	: B3350	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.98 L	Lab Sample ID	B3350_16740_DF_001	Date Extracted:	11-Jun-2019
Date Collected:	03-May-2019	pH:	6	QC Batch No:	16740	Date Analyzed:	18-Jun-2019
	•	Split:	-	Dilution:	=	Time Analyzed:	2:57:40
Analyte	Conc. (pg/L)	DL (pg/L)	EMPC (pg/L)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND ,	1.54	(10)		ES 2378-TCDD	102	
12378-PeCDD	ND	1.14			ES 12378-PeCDD	93.4	
123478-HxCDD	ND	1.04			ES 123478-HxCDD	91.1	
123678-HxCDD	ND	1.11			ES 123678-HxCDD	85.9	
123789-HxCDD	ND	0.943			ES 123789-HxCDD	90	
1234678-HpCDD	ND	1.45			ES 1234678-HpCDD	95.7	
OCDD	7.21			J	ES OCDD	110	
	ND	4.40			50 0050 7005	0.4.0	
2378-TCDF	ND	1.49			ES 2378-TCDF	94.6	
12378-PeCDF	ND	1.05			ES 12378-PeCDF	92.7	
23478-PeCDF	ND	1.12			ES 23478-PeCDF	92.3	
123478-HxCDF	ND	0.737			ES 123478-HxCDF	86.7	
123678-HxCDF	ND	0.709			ES 123678-HxCDF	88	
234678-HxCDF	ND	0.739			ES 234678-HxCDF	86.2	
123789-HxCDF	ND	0.767			ES 123789-HxCDF	88.1	
1234678-HpCDF	ND	0.809			ES 1234678-HpCDF	88.1	
1234789-HpCDF	ND	0.89			ES 1234789-HpCDF	91.7	
OCDF	ND	1.2			ES OCDF	108	<u> </u>
Totals					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	103	
Total TCDD	ND	1.54	ND		CS 12347-PeCDD	102	
Total PeCDD	ND	1.14	ND		CS 12346-PeCDF	98.1	
Total HxCDD	ND	1.03	ND		CS 123469-HxCDF	92.1	
Total HpCDD	ND	1.45	ND		CS 1234689-HpCDF	90.5	
Total TCDF	ND	1.49	ND				
Total PeCDF	ND	1.08	ND				
Total HxCDF	ND ND	0.736	ND				
Total HpCDF	ND	0.848	ND				
Total PCDD/Fs	7.21	5.510	7.21				
WHO-2005 TEQs							
TEQ: ND=0	0.00216		0.00216		000	5	500 Business Drive
TEQ: ND=DL/2	1.92	1.92	1.92		SGS	Wilmingto	on, NC 28405, USA
TEQ: ND=DL	3.84	3.84	3.84		OUO	-	www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	Free 866 846-8290

Sample ID: Method Blank B3350_16740 Method 1613B							
Client Data		Sample Data		Laboratory Da	ata		
Name:	SLR International Corp	Matrix:	Aqueous	Lab Project ID	: B3350	Date Received:	n/a
Project ID:	Nord Door	Weight/Volume:	1.00 L	Lab Sample ID	MB1_16740_DF_TLX	Date Extracted:	11-Jun-2019
Date Collected:	n/a	pH:	n/a	QC Batch No:	16740	Date Analyzed:	18-Jun-2019
		Split:	-	Dilution:	-	Time Analyzed:	1:22:44
Analyte	Conc. (pg/L)	DL (pg/L)	EMPC (pg/L)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND ,	1.87	(10)		ES 2378-TCDD	94.4	
12378-PeCDD	ND	1.66			ES 12378-PeCDD	89.4	
123478-HxCDD	ND	1.71			ES 123478-HxCDD	90.6	
123678-HxCDD	ND	1.83			ES 123678-HxCDD	86.4	
123789-HxCDD	ND	1.62			ES 123789-HxCDD	84.5	
1234678-HpCDD	ND	2.04			ES 1234678-HpCDD	94.1	
OCDD	ND	2.95			ES OCDD	113	
2378-TCDF	ND	1.88			ES 2378-TCDF	92.9	
12378-PeCDF	ND	1.36			ES 12378-PeCDF	91.9	
23478-PeCDF	ND	1.3			ES 23478-PeCDF	91.9	
123478-HxCDF	ND	0.782			ES 123478-HxCDF	88.1	
123678-HxCDF	ND	0.812			ES 123678-HxCDF	86.4	
234678-HxCDF	ND	0.894			ES 234678-HxCDF	87.8	
123789-HxCDF	ND	0.887			ES 123789-HxCDF	86.7	
1234678-HpCDF	ND	0.773			ES 1234678-HpCDF	88.8	
1234789-HpCDF	ND	0.844			ES 1234789-HpCDF	91.8	
OCDF	ND	1.33			ES OCDF	112	
Totals					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	92.4	
Total TCDD	ND	1.87	ND		CS 12347-PeCDD	95.6	
Total PeCDD	ND	1.66	ND		CS 12346-PeCDF	90.9	
Total HxCDD	ND	1.72	ND		CS 123469-HxCDF	89	
Total HpCDD	ND	2.04	ND		CS 1234689-HpCDF	87.7	
Total TCDF	ND	1.88	ND				
Total PeCDF	ND	1.33	ND				
Total HxCDF	ND	0.841	ND				
Total HpCDF	ND	0.807	ND				
Total PCDD/Fs	ND		ND				
WHO-2005 TEQs							
TEQ: ND=0	0		0		000	59	500 Business Drive
TEQ: ND=DL/2	2.52	2.52	2.52		SGS	Wilmingto	on, NC 28405, USA
TEQ: ND=DL	5.04	5.04	5.04		000		www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	Free 866 846-8290

METHOD 1613B PCDD/F ONGOING PRECISION AND RECOVERY (OPR) FORM 8A

Lab Name: SGS North America

Initial Calibration: ICAL: MM3_DF_10122018_29OCT2018

Instrument ID: MM3 GC Column ID: ZB-5ms

VER Data Filename: 190617R17 Analysis Date: 17-JUN-2019 22:12:49

Lab ID: OPR1_16740_DF

	SPIKE	CONC.	RANGE			
NATIVE ANALYTES	CONC.	FOUND	(r	(ng/mL)		OK
2,3,7,8-TCDD	10	11.1	6.7	-	15.8	Υ
1,2,3,7,8-PeCDD	50	50.6	35	-	71	Υ
1,2,3,4,7,8-HxCDD	50	54.1	35	-	82	Υ
1,2,3,6,7,8-HxCDD	50	56.6	38	-	67	Υ
1,2,3,7,8,9-HxCDD	50	51.4	32	-	81	Υ
1,2,3,4,6,7,8-HpCDD	50	52.9	35	-	70	Υ
OCDD	100	111	78	-	144	Υ
2,3,7,8-TCDF	10	10.2	7.5	-	15.8	Υ
1,2,3,7,8-PeCDF	50	50.4	40	-	67	Υ
2,3,4,7,8-PeCDF	50	58	34	-	80	Υ
1,2,3,4,7,8-HxCDF	50	52.8	36	-	67	Υ
1,2,3,6,7,8-HxCDF	50	53.1	42	-	65	Υ
2,3,4,6,7,8-HxCDF	50	53.8	35	-	78	Υ
1,2,3,7,8,9-HxCDF	50	50.6	39	-	65	Υ
1,2,3,4,6,7,8-HpCDF	50	53.1	41	-	61	Υ
1,2,3,4,7,8,9-HpCDF	50	52.1	39	-	69	Υ
OCDF	100	106	63	-	170	Υ

Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

Processed: 18 Jun 2019 09:56 Analyst: pw

METHOD 1613B PCDD/F ONGOING PRECISION AND RECOVERY (OPR) FORM 8B

Lab Name: SGS North America

Initial Calibration: ICAL: MM3_DF_10122018_29OCT2018

Instrument ID: MM3 GC Column ID: ZB-5ms

VER Data Filename: 190617R17 Analysis Date: 17-JUN-2019 22:12:49

Lab ID: OPR1_16740_DF

LABELED ANALYTES	SPIKE CONC.	CONC. FOUND		RANGE		OK
LABELLO ANALTTES	CONC.	FOUND	(ng/mL)			OK
13C-2,3,7,8-TCDD	100	95.5	20	-	175	Υ
13C-1,2,3,7,8-PeCDD	100	92.6	21	-	227	Υ
13C-1,2,3,4,7,8-HxCDD	100	90.1	21	-	193	Υ
13C-1,2,3,6,7,8-HxCDD	100	85.4	25	-	163	Υ
13C-1,2,3,7,8,9-HxCDD	100	89.3	26	-	166	Υ
13C-1,2,3,4,6,7,8-HpCDD	100	97.3	26	-	166	Υ
13C-OCDD	200	232	26	-	397	Υ
13C-2,3,7,8-TCDF	100	94.9	22	_	152	Υ
13C-1,2,3,7,8-PeCDF	100	94.6	21	_	192	Ϋ́
13C-2,3,4,7,8-PeCDF	100	97.6	13	_	328	Ϋ́
13C-1,2,3,4,7,8-HxCDF	100	86.6	19	_	202	Ϋ́
13C-1,2,3,6,7,8-HxCDF	100	85.4	21	_	159	Ϋ́
13C-2,3,4,6,7,8-HxCDF	100	86.7	22	_	176	Ϋ́
13C-1,2,3,7,8,9-HxCDF	100	88	 17	-	205	Ϋ́
13C-1,2,3,4,6,7,8-HpCDF	100	90.2	21	-	158	Y
13C-1,2,3,4,7,8,9-HpCDF	100	92.6	20	-	186	Υ
13C-OCDF	200	222	26	-	397	Υ
CLEANUP STANDARD						
37CI-2,3,7,8-TCDD	40	38.5	12.4	_	76.4	Υ

Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

Processed: 18 Jun 2019 09:56 Analyst: pw

Sample Receipt Notification

5500 Business Drive Wilmington, NC 28405 USA Tel: 910 794-1613 Toll Free: 866 846-8290 Fax: 910 794-3919 Project Manager: Amy Boehm

Receipt Date & Time: 07-May-19 at 09:44

AP Project name: B3350
Requested TAT: 14 days
Projected due date: 18-Jun-19
Matrix: Aqueous
Phone#: 910-794-1613

Email Address: Amy.Boehm@sgs.com

Company Contact: Chris Kramer

Company: SLR International Corp

Project Name & Site: Nord Door

Project PO#: 108.00228.00059

QAAP/Contract #: n/a

Requested Analysis: Method 1613B
Phone#: 503-723-4423

Email Address: <u>ckramer@slrconsulting.com</u>

Client Smp ID	AP Smp ID	Sample Condition & Notes	Quantity	Size	Sampling Date	Sampling Time	Received Temp	Container #	Shipping #	
MW-16-0519	B3350_001	Water	1	1-Liter Amber	03-May-19	13:57	0.4	1	7870 8039 7271	
Preservation Type:										
Notes/Comments: Analyze sample MW-16-0519 fo	or D/Fs per client email.					Any un-extracted reporting date. A samples stored lon	dditional stora	ge fees may app		
	r						<i>C</i>	•		

Received by: Jay Burkamper Logged in by: Ashley Owens QC'ed by: AK 4 Jun 19

All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via: http://www.sgs.com/terms and conditions.htm

B3350 page 11 of 12

CHAIN OF CUSTODY

B3256 *B3350

	PROJECT INFO PROJECT: Nord Door PRO, #: 104.00228.00059		SPECIAL INSTRUCTIONS / COMMENTS										MENTS			SEND DOCUMENTATION / RESULTS TO COMPANY: SLR CONTACT: Unis Kramer					
	QUOTE #:							PRESERVATIVE											ADDRESS: 1800 Blankinghil Road, STE 940		
	SITE REF: TURN AROUND TIME: Standard																		ADDRESS: 1860 Blankment Road, Ste 440 PHONE: 503-723-4423 EMAIL: CLEANER STRONGLING. INVOICE TO (MICHECK IF SAME) COMPANY:		
	REPORT LEVEL: Level Level	III 🗌 Le	evel IV				ANA	LYSIS	& MI	ETHOL	D D								CONTACT:		
	SPECIAL DELIVERABLES: DoD EDD/Version: State of Origin:				104111111111111111111111111111111111111		5/ Furans	- %			·			, .				-	ADDRESS: PHONE: EMAIL:		
				am.			Diakins	82				ľ				M:	1	MS/ Dup	REMARKS		
~4	SAMPLE ID / DESCRIPTION		TIME		 		<u>~</u>		 	<u> </u>			_	-	+	-	-		newanno		
	MW-114-0519	5/3/H	1537	2	wate	x	4			<u> </u>		\dashv			+		_		Hold \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	MW-11B-0519	┼╂-	1617	2		\dashv	╁	X	ļ			+		-	_	_	\dashv		7010		
'00'	MW-12-0519	-	1120	2		-	1	Ŷ	ļ <u>.</u>	<u> </u>				+	_	1			Morting water		
'W	MW-13-0519	 		2			T	X	-	-					_				NI L MA P SV		
200	MW-14-0519 MW-15-0519	11-	 	2			1	X		 									M white ask.		
	MW-16-0519-X	H		2			\downarrow	X	ļ					\top	\top				Hay 7. 42, Corp. 226		
200	MW-17-0519	1		2	4		文	X						\top	\top	1			0 60 X		
الماحد	7 W 17 - 0317						<u> </u>											V	W.		
																					
Ç	COLLECTED/RELINQUISHED BY (1): DATE: 5/6/19						TIME:		RECEIVED BY:								h	······································	RECEIVED BY LABORATORY. DATE: TIME: 41.0-		
							13	Œ										Holy 7-19, 9:44 12:00			
	RELINQUISHED BY (2):		`		DATE	******	TIM	E:	REC	EIVE	D BY:				***************************************				COOLER SEAL MINTACT BROKEN DABSENT		
						}													CONTAINER SEALS INTACT BROKEN ABSENT		
	RELINQUISHED BY (3):		······································		DATE	:	TIM	E:	REC	EIVE	O BY:	1					······································	**************************************	CARRIER: TEMP: 9C 4.5" FO.4"		
			-	ĺ	Ì														TRACKING#:		

FINAL LAB REPORT

Prepared by **Prepared for**

SGS NORTH AMERICA

This report is approved by

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/terms and conditions.htm. Attention is drawn to the limitation of liability,indemnification and jurisdiction issues defined therein.

SGS remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please do not hesitate to contact us.

The management and staff of SGS welcomes customer feedback, both positive and negative, as we continually improve our services. Please visit our web site at www.sgs.com/ultratrace and click on the 'Email Us' link or go to our survey here. Thank you for choosing SGS.

Any holder of this document is advised that it is a final submission and supersedes and voids all prior reports with the same report or identification number. The information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility in conducting the work herein is to its Client and does not exonerate parties to a transaction from exercising all of their rights and obligations under such applicable transaction documents. This report may be reproduced in full only. The Company expressly disclaims any and all liability for the Client's use of or reliance upon the data contained herein. Any alteration, forgery or falsification of the content or appearance of this document which is not expressly authorized by the Company is unlawful and offenders may be prosecuted to the fullest extent of the law. Results reported relate only to the items tested.

> Environment, Health & Safety 5500 Business Drive Wilmington, NC 28405 +1 910 350 1903 | +1 866 846 8290 www.sgs.com SGS North America Inc.

PROJECT INFORMATION SUMMARY (When applicable, see QC Annotations for details)

Client Project
SGS Project #
Analytical Protocol(s)
No. Samples Submitted
Additional QC Sample(s)
No. Laboratory Method Blanks
No. OPRs / Batch CS3
Date Received
Condition Received
Temperature upon Receipt (°C)
Extraction within Holding Time
Analysis within Holding Time

QC ANNOTATIONS:

1. Please see Appendices attached for data qualifier/attribute and lab identifier descriptions which may be contained in the project.

APPENDIX A: GENERAL DATA QUALIFIERS / DATA ATTRIBUTES

В	The analyte was found in the method blank, at a concentration that was at least 10% of the concentration in the sample.
С	Two or more congeners co-elute. In EDDs, C denotes the lowest IUPAC congener in a co-elution group and additional co-eluters for the group are shown with the number of the lowest IUPAC co-eluter.
E	The reported concentration exceeds the calibration range (upper point of the calibration curve) and is an estimated value.
EMPC	Represents an Estimated Maximum Possible Concentration. EMPCs arise in cases where the signal/noise ratio is not sufficient for peak identification (the determined ion-abundance ratio is outside the allowed theoretical range), or where there is a co-eluting interference.
H/h	If the standard recovery is below the method or SOP specified value "H" is assigned. If the obtained value is less than half the specified value "h" is assigned.
J	Indicates that an analyte has a concentration below the reporting limit (lowest point of the calibration curve) and is an estimated value.
ND	Indicates a non-detect.
NR or R	Indicates a value that is not reportable.
PR	Due to interference, the associated congener is poorly resolved.
QI	Indicates the presence of a quantitative interference.
SI	Denotes "Single Ion Mode" and is utilized for PCBs where the secondary ion trace has a significantly elevated noise level due to background PFK. Responses for such peaks are calculated using an EMPC approach based solely on the primary ion area(s) and may be considered estimates.
U	The analyte was not detected. The estimated detection limit (EDL) may be reported for this analyte.
V	The labeled standard recovery was found to be outside of the method control limits.

APPENDIX B: DRBC/TMDL SPECIFIC DATA QUALIFIERS / DATA ATTRIBUTES

J	The reported result is an estimate. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL).
U	The analyte was not detected in the sample at the estimated detection limit (EDL).
E	The reported concentration is an estimate. The value exceeds the upper calibration range (upper point of the calibration curve).
D	Dilution Data. Result was obtained from the analysis of a dilution.
В	Analyte found in the sample and associated method blank.
С	Co-eluting congener
Схх	Co-elutes with the indicated congener, data is reported under the lowest IUPAC congener. 'Xx' denotes the IUPAC number with the lowest numerical designated congener.
NR	Analyte is not reportable because of problems in sample preparation or analysis.
٧	Labeled standard recovery is not within method control limits.
Х	Results from re-injection/repeat/second-column analysis.
EMPC	Estimated maximum possible concentration. Indicates that a peak is identified but did not meet the method specified ion-abundance ratio.

APPENDIX C: LAB IDENTIFIERS

AR	Indicates use of the archived portion of the sample extract.
CU	Indicates a sample that required additional clean-up prior to MS injection/processing.
D	Indicates a dilution of the sample extract. The number that follows the "D" indicates the dilution factor.
DE	Indicates a dilution performed with the addition of ES (extraction standard) solution.
DUP	Designation for a duplicate sample.
MS	Designation for a matrix spike.
MSD	Designation for a matrix spike duplicate.
RJ	Indicates a reinjection of the sample extract.
S	Indicates a sample split. The number that follows the "S" indicates the split factor.

SGS CERTIFICATIONS

Alaska	17-012
Arkansas	18-042-0
California (ELAP)	ELAP Cert #2914
CLIA	34D1013708
Connecticut	PH-0258
USDA Soil Permit	P330-17-00055
American Association for Laboratory Accreditation (A2LA)	2726.01 (ISO 17025:2005, 2009 TNI, DoD ELAP QSM 5.1)
Florida DOH	E87634
Louisiana DEQ	4115
Louisiana DOH	LA031
Maine	2018018
Massachusetts	M-NC919
Minnesota (Primary NELAP For Method 23)	1535636
Mississippi	Reciprocity
Montana	0106
New Hampshire	208318 & 208518
New Jersey	NC100
New York	11685
North Carolina DEQ	481
North Dakota	R-197
Oregon	NC200002
Pennsylvania	68-03675
South Carolina	99029002
Texas	T104704260
US Coast Guard	16714/159.317/SGS
Vermont	VT-87634
Virginia	10101
Washington	C913
West Virginia	293

Rev. 06-Mar-2019

B3256 page 6 of 31

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.96 L	Sample ID:	B3256_16680_PCB_0	03 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	Hq	8	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		EMPC		8.84	J	ES PCB-1	110
PCB-81 344'5-TeCB		ND	4.42			ES PCB-3	135
PCB-105 233'44'-PeCB		84.3				ES PCB-4	140
CB-114 2344'5-PeCB		ND	2.34			ES PCB-15	161 V
PCB-118 23'44'5-PeCB		249				ES PCB-19	155 V
PCB-123 23'44'5'-PeCB		ND	2.32			ES PCB-37	90.2
PCB-126 33'44'5-PeCB		ND	2.08			ES PCB-54	84.5
PCB-156/157 233'44'5/233	8'44'5'-HxCB	EMPC		19	JC	ES PCB-77	91.8
PCB-167 23'44'55'-HxCB		6.71			J	ES PCB-81	91.5
PCB-169 33'44'55'-HxCB		ND	2.09			ES PCB-104	94
CB-189 233'44'55'-HpCB	i.	ND	1.92			ES PCB-105	103
				•	•	ES PCB-114	103
TEQs (WHO 2005 M/H)						ES PCB-118	101
						ES PCB-123	104
ND = 0		0.0102		0.0116		ES PCB-126	104
ND = 0.5 x DL		0.147		0.148		ES PCB-153	102
ND = DL		0.283		0.284		ES PCB-155	104
						ES PCB-156/157	119
Totals						ES PCB-167	110
lono-CB		22.6				ES PCB-169	131
Di-CB		395		411		ES PCB-170	100
ri-CB		1,960				ES PCB-180	96.1
etra-CB		2,480		2,560		ES PCB-188	98.7
Penta-CB		2,400		2,410		ES PCB-189	104
lexa-CB		991		1,040		ES PCB-202	108
lepta-CB		159		249		ES PCB-205	115
Octa-CB		100		108		ES PCB-206	128
lona-CB		30.8				ES PCB-208	110
eca-CB		ND	3.24			ES PCB-209	143
						CS PCB-28	96.3
otal PCB (Mono-Deca)		8,530		8,790		CS PCB-111	103
						CS PCB-178	102

Checkcode: 195-161-GPP/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:20 Analyst: ah

B3256 page 7 of 31 5/28/2019 8:31 AM

Sample ID:	MW-12	-0519							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nor	d Door	Weight/Volume:		0.96 L	Sample ID:	B3256_1668	30_PCB_003	Date Extracted:		15-May-2019
Date Collected:	03-M	ay-2019	рН		8	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
			Units		pg/L	Checkcode:	195-16 ⁻	I-GPP/C	Time Analyzed:		16:15:33
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	22.6		PCB-19	72.2		PCB-54	(3.19)		PCB-72	(4.05)	
PCB-2	(3.81)		PCB-30/18	397	С	PCB-50/53	70.4	С	PCB-68	26.5	
PCB-3	(3.99)		PCB-17	232		PCB-45	60.1		PCB-57	(4.27)	
			PCB-27	35.6		PCB-51	66.3		PCB-58	(3.83)	
Conc.	22.6		PCB-24	(8.6)		PCB-46	[23.4]	EMPC	PCB-67	6.04	J
EMPC	22.6		PCB-16	172		PCB-52	531		PCB-63	[7.03]	J EMPC
			PCB-32	161		PCB-73	(3.27)		PCB-61/70/74/76	337	С
Di	Conc.	Qualifiers	PCB-34	(8.28)		PCB-43	9.51	J	PCB-66	187	
PCB-4	176		PCB-23	(8.36)		PCB-69/49	262	С	PCB-55	(3.89)	
PCB-10	6.6	J	PCB-26/29	51	С	PCB-48	58.1		PCB-56	82.5	
PCB-9	3.05	J	PCB-25	18.1		PCB-44/47/65	390	С	PCB-60	27.4	
PCB-7	3.14	J	PCB-31	245		PCB-59/62/75	[26.6]	J EMPC C	PCB-80	(4.04)	
PCB-6	18.3		PCB-28/20	318	С	PCB-42	96.7		PCB-79	(3.73)	
PCB-5	(3.08)		PCB-21/33	114	С	PCB-41	[10.8]	EMPC	PCB-78	(4.23)	
PCB-8	113		PCB-22	83.3		PCB-71/40	141	С	PCB-81	(4.42)	
PCB-14	(3)		PCB-36	(7.09)		PCB-64	127		PCB-77	[8.84]	J EMPC
PCB-11	[15.8]	B EMPC	PCB-39	(7.8)							
PCB-13/12	6.09	JC	PCB-38	(7.73)							
PCB-15	68.6		PCB-35	(8.07)							
			PCB-37	58.7							
Conc.	395		Conc.	1,960					Conc.	2,480	
EMPC	411		EMPC	1,960					EMPC	2,560	
			•		•		1				
	00	-	5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-1	Ггі		2,380	2	,390
	SG		Tel: +1 910 794-1613			Tetra-He	exa		5,870	6	,010
			www.us.sgs.com			Hepta-De	Hepta-Deca 290				387
						Mono-De	eca		8,530	8	,790

Sample ID:	MW-12	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.75)		PCB-109/119/86/97/125/87	236	С	PCB-155	(1.44)		PCB-165	(1.85)	
PCB-96	[4.08]	J EMPC	PCB-117	6.07	J	PCB-152	(1.33)		PCB-146	30.7	
PCB-103	[5.19]	J EMPC	PCB-116/85	48.4	С	PCB-150	(1.51)		PCB-161	(1.61)	
PCB-94	(3.78)		PCB-110	435		PCB-136	40.6		PCB-153/168	182	С
PCB-95	391		PCB-115	(1.87)		PCB-145	(1.4)		PCB-141	39.8	
PCB-100/93	(3.37)	С	PCB-82	33.8		PCB-148	(2.22)		PCB-130	[17.4]	EMPC
PCB-102	13.5		PCB-111	(2.33)		PCB-151/135	77.7	С	PCB-137	10.2	J
PCB-98	(3.3)		PCB-120	(1.89)		PCB-154	(2.07)		PCB-164	17.3	
PCB-88	(3.64)		PCB-108/124	[6.6]	J EMPC C	PCB-144	(2.25)		PCB-163/138/129	241	С
PCB-91	73.9		PCB-107	17.5		PCB-147/149	199	С	PCB-160	(1.89)	
PCB-84	142		PCB-123	(2.32)		PCB-134	[13.5]	EMPC	PCB-158	24.6	
PCB-89	(3.16)		PCB-106	(2.18)		PCB-143	(2.36)		PCB-128/166	35.8	С
PCB-121	(2.11)		PCB-118	249		PCB-139/140	(2.1)	С	PCB-159	(1.56)	
PCB-92	77		PCB-122	(2.76)		PCB-131	(2.5)		PCB-162	(1.84)	
PCB-113/90/101	403	С	PCB-114	(2.34)		PCB-142	(2.49)		PCB-167	6.71	J
PCB-83	21.8		PCB-105	84.3		PCB-132	86.3		PCB-156/157	[19]	J EMPC C
PCB-99	167		PCB-127	(2.36)		PCB-133	(2.18)		PCB-169	(2.09)	
PCB-112	(1.92)		PCB-126	(2.08)						` '	
	<u> </u>		Conc.	2,400					Conc.	991	
			EMPC	2,410			1		EMPC	1,040	
	<u>.</u>					<u></u>	-1		1		
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.02)		PCB-174	33.2		PCB-202	[7.27]	J EMPC	PCB-208	(5.76)	
PCB-179	17.2		PCB-177	[14.5]	EMPC	PCB-201	(1.56)		PCB-207	(5.85)	
PCB-184	(1.02)		PCB-181	(2.51)		PCB-204	(1.35)		PCB-206	30.8	
PCB-176	[3.88]	J EMPC	PCB-171/173	[7.13]	J EMPC C	PCB-197	(1.47)				
PCB-186	(0.897)		PCB-172	(2.89)		PCB-200	(1.4)		Conc.	30.8	
PCB-178	10.5		PCB-192	(1.94)		PCB-198/199	39.2	С	EMPC	30.8	
PCB-175	(2.88)		PCB-180/193	[64.9]	EMPC C	PCB-196	13.4				
PCB-187	51		PCB-191	(2.22)		PCB-203	24.9		Deca	Conc.	Qualifiers
PCB-182	(2.37)		PCB-170	26.3		PCB-195	(3.23)		PCB-209	(3.24)	
PCB-183	20.5		PCB-190	(2.33)		PCB-194	22.9			` '	
PCB-185	(2.83)		PCB-189	(1.92)		PCB-205	(2.74)				
			Conc.	159		Conc.	100				
			EMPC	249		EMPC	108	1		1	

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.98 L	Sample ID:	B3256_16680_PCB_0	004 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	pH	8	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
·		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		19				ES PCB-1	87
PCB-81 344'5-TeCB		ND	4.41			ES PCB-3	94.5
PCB-105 233'44'-PeCB		182				ES PCB-4	104
PCB-114 2344'5-PeCB		EMPC		8.73	J	ES PCB-15	96.9
PCB-118 23'44'5-PeCB		535				ES PCB-19	105
PCB-123 23'44'5'-PeCB		7.99			J	ES PCB-37	102
PCB-126 33'44'5-PeCB		ND	1.26			ES PCB-54	97.4
PCB-156/157 233'44'5/233'4	14'5'-HxCB	81.6			С	ES PCB-77	97.9
PCB-167 23'44'55'-HxCB		29.8				ES PCB-81	96.3
PCB-169 33'44'55'-HxCB		ND	2.23			ES PCB-104	98.1
PCB-189 233'44'55'-HpCB		EMPC		5.94	J	ES PCB-105	109
·						ES PCB-114	103
TEQs (WHO 2005 M/H)						ES PCB-118	103
						ES PCB-123	105
ND = 0		0.027		0.0274		ES PCB-126	105
ND = 0.5 x DL		0.124		0.125		ES PCB-153	106
ND = DL		0.221		0.222		ES PCB-155	104
						ES PCB-156/157	118
Totals						ES PCB-167	114
Mono-CB		24.5				ES PCB-169	132
Di-CB		1,240		1,260		ES PCB-170	97
ri-CB		7,660				ES PCB-180	93.4
Tetra-CB		8,140		8,160		ES PCB-188	98.2
Penta-CB		6,370		6,420		ES PCB-189	102
lexa-CB		4,120		4,140		ES PCB-202	107
lepta-CB		1,590		1,590		ES PCB-205	112
Octa-CB		404		440		ES PCB-206	125
lona-CB		78.1				ES PCB-208	107
Deca-CB				13.9		ES PCB-209	141
						CS PCB-28	101
otal PCB (Mono-Deca)		29,600		29,800		CS PCB-111	99.2
,		,				CS PCB-178	102

Checkcode: 845-882-WBZ/C

SGS North America - PCB v0.83

Report Created: 28-May-2019 10:40 Analyst: ah

B3256 page 10 of 31 5/28/2019 11:14 AM

Sample ID:	MW-13	-0519							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	ational Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nor	d Door	Weight/Volume:		0.98 L	Sample ID:	B3256_166	30_PCB_004	Date Extracted:		15-May-2019
Date Collected:	03-M	ay-2019	рН		8	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
			Units		pg/L	Checkcode:	845-882	2-WBZ/C	Time Analyzed:		17:13:31
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	24.5		PCB-19	211		PCB-54	[3.57]	J EMPC	PCB-72	13.2	
PCB-2	(2.6)		PCB-30/18	1,420	С	PCB-50/53	334	С	PCB-68	19.9	
PCB-3	(2.72)		PCB-17	785		PCB-45	224		PCB-57	(4.26)	
			PCB-27	447		PCB-51	137		PCB-58	(3.82)	
Conc.	24.5		PCB-24	(4.68)		PCB-46	103		PCB-67	7.7	J
EMPC	24.5		PCB-16	90.1		PCB-52	2,160		PCB-63	[7.42]	J EMPC
			PCB-32	300		PCB-73	5.8	J	PCB-61/70/74/76	468	С
Di	Conc.	Qualifiers	PCB-34	(5.77)		PCB-43	8.06	J	PCB-66	300	
PCB-4	365		PCB-23	(5.83)		PCB-69/49	1,470	С	PCB-55	(3.87)	
PCB-10	4.51	J	PCB-26/29	1,910	С	PCB-48	48.6		PCB-56	87.1	
PCB-9	[12.3]	EMPC	PCB-25	975		PCB-44/47/65	1,220	С	PCB-60	29.4	
PCB-7	[13.3]	EMPC	PCB-31	796		PCB-59/62/75	191	С	PCB-80	(4.03)	
PCB-6	649		PCB-28/20	574	С	PCB-42	217		PCB-79	(3.72)	
PCB-5	(2.16)		PCB-21/33	72	С	PCB-41	[8.92]	J EMPC	PCB-78	(4.22)	
PCB-8	117		PCB-22	45.3		PCB-71/40	537	С	PCB-81	(4.41)	
PCB-14	(2.1)		PCB-36	(4.94)		PCB-64	537		PCB-77	19	
PCB-11	44.1	В	PCB-39	(5.44)							
PCB-13/12	37.7	С	PCB-38	(5.39)							
PCB-15	19.5		PCB-35	(5.63)							
			PCB-37	30.8							
Conc.	1,240		Conc.	7,660					Conc.	8,140	
EMPC	1,260		EMPC	7,660					EMPC	8,160	
	00		5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 28405	5, USA		Mono-1	Γri		8,920	8	,950
	SG		Tel: +1 910 794-1613			Tetra-He	exa		18,600	18	3,700
			www.us.sgs.com			Hepta-Deca 2,070			2,070	2,120	
						Mono-De	eca		29,600	29	9,800

Sample ID:	MW-13-	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.05)		PCB-109/119/86/97/125/87	498	С	PCB-155	(0.918)		PCB-165	(1.04)	
PCB-96	20.8		PCB-117	[16.6]	EMPC	PCB-152	(0.845)		PCB-146	116	
PCB-103	24.5		PCB-116/85	116	С	PCB-150	(0.963)		PCB-161	(0.903)	ı
PCB-94	(5.68)		PCB-110	1,340		PCB-136	153		PCB-153/168	702	С
PCB-95	1,290		PCB-115	(2.8)		PCB-145	(0.889)		PCB-141	163	I
PCB-100/93	[15.1]	J EMPC C	PCB-82	81.3		PCB-148	(1.24)		PCB-130	63.2	
PCB-102	42.9		PCB-111	(3.5)		PCB-151/135	310	С	PCB-137	43.3	ı
PCB-98	(4.95)		PCB-120	(2.83)		PCB-154	20.4		PCB-164	66.1	
PCB-88	(5.46)		PCB-108/124	19.2	JC	PCB-144	39.1		PCB-163/138/129	935	С
PCB-91	256		PCB-107	41.1		PCB-147/149	759	С	PCB-160	(1.06)	
PCB-84	437		PCB-123	7.99	J	PCB-134	53.3		PCB-158	87.5	ı
PCB-89	9.05	J	PCB-106	(3.28)		PCB-143	(1.32)		PCB-128/166	131	С
PCB-121	(3.17)		PCB-118	535		PCB-139/140	[15.9]	J EMPC C	PCB-159	(1.65)	I
PCB-92	196		PCB-122	[8.46]	J EMPC	PCB-131	13.9		PCB-162	(1.95)	
PCB-113/90/101	860	С	PCB-114	[8.73]	J EMPC	PCB-142	(1.4)		PCB-167	29.8	I
PCB-83	42.2		PCB-105	182		PCB-132	338		PCB-156/157	81.6	С
PCB-99	372		PCB-127	(3.08)		PCB-133	15.2		PCB-169	(2.23)	I
PCB-112	(2.88)		PCB-126	(1.26)							
			Conc.	6,370					Conc.	4,120	
			EMPC	6,420					EMPC	4,140	
											,
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.802)		PCB-174	196		PCB-202	33.5		PCB-208	14.4	1
PCB-179	90.8		PCB-177	106		PCB-201	[18.4]	EMPC	PCB-207	9.27	J
PCB-184	(0.807)		PCB-181	(2.59)		PCB-204	(1.22)		PCB-206	54.3	1
PCB-176	32.8		PCB-171/173	57.5	С	PCB-197	[3.65]	J EMPC			
PCB-186	(0.708)		PCB-172	32.1		PCB-200	[14.9]	EMPC	Conc.	78.1	
PCB-178	51.2		PCB-192	(2)		PCB-198/199	123	С	EMPC	78.1	
PCB-175	8.37	J	PCB-180/193	401	С	PCB-196	56.5				
PCB-187	240		PCB-191	7.13	J	PCB-203	68.3		Deca	Conc.	Qualifiers
PCB-182	(2.44)		PCB-170	188		PCB-195	34.1		PCB-209	[13.9]	EMPC
PCB-183	117		PCB-190	36.8		PCB-194	87.7				
PCB-185	20.6		PCB-189	[5.94]	J EMPC	PCB-205	(2.31)				
			Conc.	1,590		Conc.	404				
			EMPC	1,590		EMPC	440			1	

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.98 L	Sample ID:	B3256_16680_PCB_0	05 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	рН	7	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte	,	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		EMPC		7.77	J	ES PCB-1	77.8
PCB-81 344'5-TeCB		ND	4.12			ES PCB-3	88.8
PCB-105 233'44'-PeCB		201				ES PCB-4	96.7
PCB-114 2344'5-PeCB		EMPC		8.27	J	ES PCB-15	99.7
PCB-118 23'44'5-PeCB		682				ES PCB-19	102
PCB-123 23'44'5'-PeCB		EMPC		5.82	J	ES PCB-37	90.3
PCB-126 33'44'5-PeCB		ND	1.72			ES PCB-54	83.1
PCB-156/157 233'44'5/23	3'44'5'-HxCB	74.2			С	ES PCB-77	90.2
PCB-167 23'44'55'-HxCB		22.4				ES PCB-81	91
PCB-169 33'44'55'-HxCB		ND	2.1			ES PCB-104	95.2
PCB-189 233'44'55'-HpCl	В	ND	2.32			ES PCB-105	102
				•	•	ES PCB-114	102
TEQs (WHO 2005 M/H))					ES PCB-118	102
						ES PCB-123	102
ND = 0		0.0294		0.0306		ES PCB-126	102
ND = 0.5 x DL		0.148		0.149		ES PCB-153	102
ND = DL		0.266		0.266		ES PCB-155	108
						ES PCB-156/157	117
Totals						ES PCB-167	115
Mono-CB		25.5				ES PCB-169	124
Di-CB		181				ES PCB-170	99.5
Γri-CB		1,210				ES PCB-180	96.3
Tetra-CB		4,030		4,100		ES PCB-188	98.6
Penta-CB		6,320		6,370		ES PCB-189	102
Hexa-CB		3,220		3,260		ES PCB-202	104
Hepta-CB		662		723		ES PCB-205	111
Octa-CB		186		200		ES PCB-206	127
Nona-CB		29.8		36.4		ES PCB-208	109
Deca-CB		ND	2.47			ES PCB-209	142
						CS PCB-28	96.1
Total PCB (Mono-Deca)		15,900		16,100		CS PCB-111	101
						CS PCB-178	98.6

Checkcode: 639-692-BRQ/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:20 Analyst: ah

B3256 page 13 of 31 5/28/2019 8:31 AM

Sample ID:	MW-14	-0519							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nor	d Door	Weight/Volume:		0.98 L	Sample ID:	B3256_1668	30_PCB_005	Date Extracted:		15-May-2019
Date Collected:	03-M	ay-2019	pН		7	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
		-	Units		pg/L	Checkcode:	639-692	2-BRQ/C	Time Analyzed:		18:11:28
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	25.5		PCB-19	56.2		PCB-54	[5.17]	J EMPC	PCB-72	9.21	J
PCB-2	(2.42)		PCB-30/18	253	С	PCB-50/53	108	С	PCB-68	[10.2]	EMPC
PCB-3	(2.53)		PCB-17	127		PCB-45	55.8		PCB-57	(3.98)	
			PCB-27	23.2		PCB-51	95.6		PCB-58	(3.57)	
Conc.	25.5		PCB-24	(4.51)		PCB-46	34.7		PCB-67	(3.65)	
EMPC	25.5		PCB-16	79.4		PCB-52	1,060		PCB-63	[8.3]	J EMPC
			PCB-32	110		PCB-73	(1.98)		PCB-61/70/74/76	518	С
Di	Conc.	Qualifiers	PCB-34	(5.37)		PCB-43	[7.02]	J EMPC	PCB-66	304	
PCB-4	71.6		PCB-23	(5.43)		PCB-69/49	550	С	PCB-55	(3.62)	
PCB-10	3.18	J	PCB-26/29	61.3	С	PCB-48	46.6		PCB-56	74.9	
PCB-9	1.86	J	PCB-25	27.3		PCB-44/47/65	658	С	PCB-60	[17.3]	EMPC
PCB-7	3.71	J	PCB-31	154		PCB-59/62/75	32.1	С	PCB-80	(3.77)	
PCB-6	18.3		PCB-28/20	200	С	PCB-42	141		PCB-79	[5.17]	J EMPC
PCB-5	(2.5)		PCB-21/33	57	С	PCB-41	7.28	J	PCB-78	(3.94)	
PCB-8	40.8		PCB-22	39.4		PCB-71/40	187	С	PCB-81	(4.12)	
PCB-14	(2.42)		PCB-36	(4.6)		PCB-64	154		PCB-77	[7.77]	J EMPC
PCB-11	17.6	В	PCB-39	(5.06)							
PCB-13/12	5	JC	PCB-38	(5.02)							
PCB-15	19		PCB-35	(5.24)							
			PCB-37	21.5							
Conc.	181		Conc.	1,210					Conc.	4,030	
EMPC	181		EMPC	1,210					EMPC	4,100	
				•			•			•	
	00		5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-1	Γri		1,410	1	,410
_	SG		Tel: +1 910 794-1613			Tetra-He	exa		13,600	13	3,700
			www.us.sgs.com			Hepta-D	eca		877	- [959
						Mono-De	eca		15,900	16	5,100

Sample ID:	MW-14	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.911)		PCB-109/119/86/97/125/87	553	С	PCB-155	(0.557)		PCB-165	(0.679)	
PCB-96	[5.85]	J EMPC	PCB-117	23.6		PCB-152	(0.513)		PCB-146	104	
PCB-103	17.6		PCB-116/85	108	С	PCB-150	[3.28]	J EMPC	PCB-161	(0.591)	
PCB-94	7.03	J	PCB-110	1,180		PCB-136	112		PCB-153/168	561	С
PCB-95	1,030		PCB-115	(1.73)		PCB-145	(0.539)		PCB-141	110	
PCB-100/93	14.5	JC	PCB-82	74.8		PCB-148	4.05	J	PCB-130	43.9	
PCB-102	30.9		PCB-111	(2.16)		PCB-151/135	237	С	PCB-137	32.3	
PCB-98	(3.05)		PCB-120	4.49	J	PCB-154	17.6		PCB-164	51.4	
PCB-88	(3.36)		PCB-108/124	[18.1]	J EMPC C	PCB-144	[22.1]	EMPC	PCB-163/138/129	731	С
PCB-91	179		PCB-107	56.1		PCB-147/149	586	С	PCB-160	(0.693)	
PCB-84	342		PCB-123	[5.82]	J EMPC	PCB-134	49.6		PCB-158	66.8	
PCB-89	7.94	J	PCB-106	(2.02)		PCB-143	(0.866)		PCB-128/166	108	С
PCB-121	(1.95)		PCB-118	682		PCB-139/140	[14.2]	J EMPC C	PCB-159	(1.32)	
PCB-92	213		PCB-122	[4.82]	J EMPC	PCB-131	11.1		PCB-162	(1.56)	
PCB-113/90/101	1,080	С	PCB-114	[8.27]	J EMPC	PCB-142	(0.916)		PCB-167	22.4	
PCB-83	64.4		PCB-105	201		PCB-132	278		PCB-156/157	74.2	С
PCB-99	464		PCB-127	(1.94)		PCB-133	15.8		PCB-169	(2.1)	
PCB-112	(1.77)		PCB-126	(1.72)							
			Conc.	6,320					Conc.	3,220	
			EMPC	6,370					EMPC	3,260	
	•				•	•	•		•		
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.932)		PCB-174	87.3		PCB-202	[13.6]	EMPC	PCB-208	[6.61]	J EMPC
PCB-179	41.3		PCB-177	51.4		PCB-201	8.8	J	PCB-207	(4.67)	
PCB-184	(0.938)		PCB-181	(2.86)		PCB-204	(0.747)		PCB-206	29.8	
PCB-176	[13.6]	EMPC	PCB-171/173	27.2	С	PCB-197	(0.814)				
PCB-186	(0.823)		PCB-172	11.4		PCB-200	8.06	J	Conc.	29.8	
PCB-178	22.6		PCB-192	(2.21)		PCB-198/199	59.3	С	EMPC	36.4	
PCB-175	(3.28)		PCB-180/193	182	С	PCB-196	24.6				
PCB-187	120		PCB-191	(2.53)		PCB-203	33.8		Deca	Conc.	Qualifiers
PCB-182	(2.69)		PCB-170	94.1		PCB-195	14.1		PCB-209	(2.47)	
PCB-183	[47.6]	EMPC	PCB-190	14.5		PCB-194	37.5				
PCB-185	8.94	J	PCB-189	(2.32)		PCB-205	(3.06)				
			Conc.	662		Conc.	186				
			EMPC	723		EMPC	200				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	1.00 L	Sample ID:	B3256_16680_PCB_0	06 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	рН	7	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte	,	Conc.	DL	EMPC	Qualifier	Standard	Recovery
· · · · · · · · · · · · · · · · · · ·		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		ND	5.47			ES PCB-1	91
PCB-81 344'5-TeCB		ND	4.64			ES PCB-3	100
PCB-105 233'44'-PeCB		ND	1.96			ES PCB-4	105
PCB-114 2344'5-PeCB		ND	1.92			ES PCB-15	112
PCB-118 23'44'5-PeCB		EMPC		2.81	J	ES PCB-19	115
PCB-123 23'44'5'-PeCB		ND	2.04			ES PCB-37	85.8
PCB-126 33'44'5-PeCB		ND	2.32			ES PCB-54	78.9
PCB-156/157 233'44'5/233'4	14'5'-HxCB	ND	2.54		С	ES PCB-77	89.2
PCB-167 23'44'55'-HxCB		ND	1.78			ES PCB-81	90.7
PCB-169 33'44'55'-HxCB		ND	2.12			ES PCB-104	95.1
PCB-189 233'44'55'-HpCB		ND	2.4			ES PCB-105	104
· ·						ES PCB-114	103
TEQs (WHO 2005 M/H)						ES PCB-118	103
						ES PCB-123	104
ND = 0		0		0.0000844		ES PCB-126	98.4
ND = 0.5 x DL		0.149		0.149		ES PCB-153	104
ND = DL		0.298		0.298		ES PCB-155	99.9
						ES PCB-156/157	115
Totals						ES PCB-167	113
Mono-CB		ND	5.1			ES PCB-169	128
Di-CB				18.6		ES PCB-170	97.5
Tri-CB		ND	13.1			ES PCB-180	88.6
Tetra-CB		76.4		84.6		ES PCB-188	93.8
Penta-CB		4.68		12.8		ES PCB-189	97.8
Hexa-CB		3.99		9.33		ES PCB-202	102
Hepta-CB		ND	2.88			ES PCB-205	109
Octa-CB		ND	3.29			ES PCB-206	124
Nona-CB		ND	11.3			ES PCB-208	103
Deca-CB		ND	5.47			ES PCB-209	135
						CS PCB-28	85
Total PCB (Mono-Deca)		85.1		125		CS PCB-111	92
,						CS PCB-178	90.7

Checkcode: 889-084-JKY/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:21 Analyst: ah

B3256 page 16 of 31 5/28/2019 8:31 AM

Sample ID	: MW-15	-0519							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nore	d Door	Weight/Volume:		1.00 L	Sample ID:	B3256_1668	30_PCB_006	Date Extracted:		15-May-2019
Date Collected:	03-Ma	ay-2019	рН		7	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
			Units		pg/L	Checkcode:	889-08	4-JKY/C	Time Analyzed:		19:09:26
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(4.96)		PCB-19	(15.2)		PCB-54	(3.36)		PCB-72	(4.25)	
PCB-2	(5)		PCB-30/18	(10.8)	С	PCB-50/53	(4.31)	С	PCB-68	15.4	
PCB-3	(5.23)		PCB-17	(15.9)		PCB-45	(5.35)		PCB-57	(4.48)	
			PCB-27	(11.1)		PCB-51	42.4		PCB-58	(4.02)	
Conc.	0		PCB-24	(11.1)		PCB-46	(5.47)		PCB-67	(4.11)	
EMPC	0		PCB-16	(16.3)		PCB-52	[8.14]	J EMPC	PCB-63	(4.91)	
			PCB-32	(10.3)		PCB-73	(3.39)		PCB-61/70/74/76	(4.29)	С
Di	Conc.	Qualifiers	PCB-34	(11.6)		PCB-43	(4.34)		PCB-66	(4.16)	
PCB-4	(5.29)		PCB-23	(11.7)		PCB-69/49	(3.87)	С	PCB-55	(4.08)	
PCB-10	(3.75)		PCB-26/29	(11.4)	С	PCB-48	(4.66)		PCB-56	(4.21)	
PCB-9	(1.86)		PCB-25	(9.71)		PCB-44/47/65	18.7	JC	PCB-60	(4.98)	
PCB-7	(2.07)		PCB-31	(9.88)		PCB-59/62/75	(3.49)	С	PCB-80	(4.24)	
PCB-6	(1.76)		PCB-28/20	(10.8)	С	PCB-42	(5.11)		PCB-79	(3.92)	
PCB-5	(2.14)		PCB-21/33	(11.1)	С	PCB-41	(6.06)		PCB-78	(4.44)	
PCB-8	(1.71)		PCB-22	(9.99)		PCB-71/40	(4.06)	С	PCB-81	(4.64)	
PCB-14	(2.08)		PCB-36	(9.9)		PCB-64	(3.49)		PCB-77	(5.47)	
PCB-11	[18.6]	B EMPC	PCB-39	(10.9)							
PCB-13/12	(2.08)	С	PCB-38	(10.8)							
PCB-15	(1.84)		PCB-35	(11.3)							
			PCB-37	(11)							
Conc.	0		Conc.	0					Conc.	76.4	
EMPC	18.6		EMPC	0					EMPC	84.6	
					•		•			•	•
	00	0	5500 Business Drive			Totals	s		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-	Γri		0		18.6
	SG		Tel: +1 910 794-1613			Tetra-He	exa		85.1		107
			www.us.sgs.com			Hepta-D	eca		0		0
						Mono-De	eca		85.1		125

Sample ID:	MW-15	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(2.19)		PCB-109/119/86/97/125/87	(2.3)	С	PCB-155	(1.73)		PCB-165	(1.94)	
PCB-96	(2.14)		PCB-117	(2.15)		PCB-152	(1.59)		PCB-146	(1.93)	
PCB-103	(2.73)		PCB-116/85	(2.41)	С	PCB-150	(1.81)		PCB-161	(1.7)	
PCB-94	(3.33)		PCB-110	4.68	J	PCB-136	(1.9)		PCB-153/168	3.99	JBC
PCB-95	(2.85)		PCB-115	(1.64)		PCB-145	(1.67)		PCB-141	(2.41)	
PCB-100/93	(2.96)	С	PCB-82	(2.89)		PCB-148	(2.33)		PCB-130	(2.85)	
PCB-102	(2.19)		PCB-111	(2.05)		PCB-151/135	(2.3)	С	PCB-137	(2.44)	
PCB-98	(2.9)		PCB-120	(1.66)		PCB-154	(2.18)		PCB-164	(1.68)	
PCB-88	(3.2)		PCB-108/124	(2)	С	PCB-144	(2.36)		PCB-163/138/129	(2.16)	С
PCB-91	(2.73)		PCB-107	(1.92)		PCB-147/149	[5.35]	J EMPC C	PCB-160	(1.99)	
PCB-84	(3.37)		PCB-123	(2.04)		PCB-134	(2.68)		PCB-158	(1.72)	
PCB-89	(2.79)		PCB-106	(1.92)		PCB-143	(2.48)		PCB-128/166	(1.98)	С
PCB-121	(1.86)		PCB-118	[2.81]	J EMPC	PCB-139/140	(2.2)	С	PCB-159	(1.51)	
PCB-92	(3)		PCB-122	(2.27)		PCB-131	(2.63)		PCB-162	(1.79)	
PCB-113/90/101	[5.26]	J EMPC C	PCB-114	(1.92)		PCB-142	(2.62)		PCB-167	(1.78)	
PCB-83	(3.59)		PCB-105	(1.96)		PCB-132	(2.53)		PCB-156/157	(2.54)	С
PCB-99	(2.16)		PCB-127	(1.8)		PCB-133	(2.3)		PCB-169	(2.12)	
PCB-112	(1.69)		PCB-126	(2.32)							
			Conc.	4.68					Conc.	3.99	
			EMPC	12.8					EMPC	9.33	
		-									
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.4)		PCB-174	(3.63)		PCB-202	(2.02)		PCB-208	(7.16)	
PCB-179	(1.28)		PCB-177	(3.57)		PCB-201	(2.29)		PCB-207	(7.28)	
PCB-184	(1.41)		PCB-181	(3.37)		PCB-204	(1.98)		PCB-206	(15.5)	
PCB-176	(1.48)		PCB-171/173	(3.9)	С	PCB-197	(2.16)				
PCB-186	(1.24)		PCB-172	(3.88)		PCB-200	(2.06)		Conc.	0	
PCB-178	(1.96)		PCB-192	(2.6)		PCB-198/199	(2.55)	С	EMPC	0	
PCB-175	(3.86)		PCB-180/193	(3.15)	С	PCB-196	(2.92)				
PCB-187	(3.06)		PCB-191	(2.97)		PCB-203	(2.37)		Deca	Conc.	Qualifiers
PCB-182	(3.17)		PCB-170	(4.33)		PCB-195	(5.38)		PCB-209	(5.47)	
PCB-183	(3.44)		PCB-190	(3.07)		PCB-194	(5.19)				
PCB-185	(3.79)		PCB-189	(2.4)		PCB-205	(4.56)				
			Conc.	0		Conc.	0				
			EMPC	0		EMPC	0				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.97 L	Sample ID:	B3256_16680_PCB_0	007 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	рН	7	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte	,	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		ND	3.42			ES PCB-1	81.1
PCB-81 344'5-TeCB		ND	3.71			ES PCB-3	87.2
PCB-105 233'44'-PeCB		2.67			J	ES PCB-4	96.4
PCB-114 2344'5-PeCB		ND	0.904			ES PCB-15	93.7
PCB-118 23'44'5-PeCB		8.08			J	ES PCB-19	101
PCB-123 23'44'5'-PeCB		ND	0.922			ES PCB-37	87.4
PCB-126 33'44'5-PeCB		ND	1.32			ES PCB-54	75
PCB-156/157 233'44'5/233'4	4'5'-HxCB	ND	1.97		С	ES PCB-77	91.2
PCB-167 23'44'55'-HxCB		ND	1.34			ES PCB-81	88.2
PCB-169 33'44'55'-HxCB		ND	1.64			ES PCB-104	93.2
PCB-189 233'44'55'-HpCB		ND	1.44			ES PCB-105	105
· · · · · · · · · · · · · · · · · · ·						ES PCB-114	100
TEQs (WHO 2005 M/H)						ES PCB-118	103
•						ES PCB-123	101
ND = 0		0.000323		0.000323		ES PCB-126	101
ND = 0.5 x DL		0.0919		0.0919		ES PCB-153	101
ND = DL		0.183		0.183		ES PCB-155	96.5
						ES PCB-156/157	115
Totals						ES PCB-167	110
Mono-CB		ND	3.58			ES PCB-169	125
Di-CB		3.93		25.1		ES PCB-170	95.3
Tri-CB		ND	7.51			ES PCB-180	89.5
Tetra-CB		144				ES PCB-188	92.9
Penta-CB		33.6		65.8		ES PCB-189	99.1
Hexa-CB		26.9		39.3		ES PCB-202	106
Hepta-CB		12.1				ES PCB-205	108
Octa-CB		ND	1.82			ES PCB-206	125
Nona-CB		ND	9.08			ES PCB-208	104
Deca-CB		ND	3.32			ES PCB-209	136
						CS PCB-28	91.4
Total PCB (Mono-Deca)		221		286		CS PCB-111	99.4
,						CS PCB-178	96.7

Checkcode: 475-800-MFB/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:21 Analyst: ah

B3256 page 19 of 31 5/28/2019 8:31 AM

Sample ID:	MW-16	-0519							Λ	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nor	d Door	Weight/Volume:		0.97 L	Sample ID:	B3256_1668	30_PCB_007	Date Extracted:		15-May-2019
Date Collected:	03-M	ay-2019	рН		7	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
			Units		pg/L	Checkcode:	475-800)-MFB/C	Time Analyzed:		20:07:23
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(3.54)		PCB-19	(9.47)		PCB-54	(2.84)		PCB-72	(3.4)	
PCB-2	(3.46)		PCB-30/18	(6.75)	С	PCB-50/53	(3.77)	С	PCB-68	8.32	J
PCB-3	(3.62)		PCB-17	(9.95)		PCB-45	(4.68)		PCB-57	(3.59)	
			PCB-27	(6.92)		PCB-51	52.6		PCB-58	(3.22)	
Conc.	0		PCB-24	(6.95)		PCB-46	(4.78)		PCB-67	(3.29)	
EMPC	0		PCB-16	(10.1)		PCB-52	36.1		PCB-63	(3.93)	
			PCB-32	(6.4)		PCB-73	(2.96)		PCB-61/70/74/76	7.93	J C
Di	Conc.	Qualifiers	PCB-34	(5.84)		PCB-43	(3.79)		PCB-66	(3.33)	
PCB-4	(2.12)		PCB-23	(5.9)		PCB-69/49	7.67	JC	PCB-55	(3.26)	
PCB-10	(1.5)		PCB-26/29	(5.76)	С	PCB-48	(4.08)		PCB-56	(3.37)	
PCB-9	3.93	J	PCB-25	(4.9)		PCB-44/47/65	31.5	С	PCB-60	(3.99)	
PCB-7	(1.66)		PCB-31	(4.99)		PCB-59/62/75	(3.05)	С	PCB-80	(3.39)	
PCB-6	(1.41)		PCB-28/20	(5.44)	С	PCB-42	(4.47)		PCB-79	(3.13)	
PCB-5	(1.72)		PCB-21/33	(5.6)	С	PCB-41	(5.29)		PCB-78	(3.55)	
PCB-8	(1.37)		PCB-22	(5.05)		PCB-71/40	(3.55)	С	PCB-81	(3.71)	
PCB-14	(1.67)		PCB-36	(5)		PCB-64	(3.05)		PCB-77	(3.42)	
PCB-11	[21.2]	B EMPC	PCB-39	(5.5)							
PCB-13/12	(1.67)	С	PCB-38	(5.45)							
PCB-15	(1.47)		PCB-35	(5.69)							
			PCB-37	(5.55)							
Conc.	3.93		Conc.	0					Conc.	144	
EMPC	25.1		EMPC	0					EMPC	144	
	•		•		•		1			•	•
	00	0	5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-7	Γri		3.93	[25.1
	SG		Tel: +1 910 794-1613			Tetra-He	exa		205		249
			www.us.sgs.com			Hepta-D	eca		12.1		12.1
						Mono-De	eca		221		286

Sample ID:	MW-16	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.982)		PCB-109/119/86/97/125/87	7.26	JC	PCB-155	(0.841)		PCB-165	(0.948)	
PCB-96	(0.963)		PCB-117	(0.972)		PCB-152	(0.774)		PCB-146	(0.942)	
PCB-103	(1.23)		PCB-116/85	(1.09)	С	PCB-150	(0.881)		PCB-161	(0.826)	
PCB-94	(1.5)		PCB-110	12.8		PCB-136	3.41	J	PCB-153/168	[7.59]	J B EMPC C
PCB-95	[13.9]	EMPC	PCB-115	(0.743)		PCB-145	(0.814)		PCB-141	(1.17)	
PCB-100/93	(1.34)	С	PCB-82	(1.3)		PCB-148	(1.14)		PCB-130	(1.39)	
PCB-102	(0.99)		PCB-111	(0.928)		PCB-151/135	(1.12)	С	PCB-137	(1.19)	
PCB-98	(1.31)		PCB-120	(0.751)		PCB-154	(1.06)		PCB-164	(0.817)	
PCB-88	(1.45)		PCB-108/124	(0.903)	С	PCB-144	(1.15)		PCB-163/138/129	11.6	JBC
PCB-91	2.77	J	PCB-107	(0.866)		PCB-147/149	11.9	JC	PCB-160	(0.968)	
PCB-84	(1.52)		PCB-123	(0.922)		PCB-134	(1.31)		PCB-158	(0.837)	
PCB-89	(1.26)		PCB-106	(0.868)		PCB-143	(1.21)		PCB-128/166	(1.5)	С
PCB-121	(0.841)		PCB-118	8.08	J	PCB-139/140	(1.07)	С	PCB-159	(1.14)	
PCB-92	(1.36)		PCB-122	(1.07)		PCB-131	(1.28)		PCB-162	(1.35)	
PCB-113/90/101	[13.2]	J EMPC C	PCB-114	(0.904)		PCB-142	(1.28)		PCB-167	(1.34)	
PCB-83	(1.62)		PCB-105	2.67	J	PCB-132	[4.75]	J EMPC	PCB-156/157	(1.97)	С
PCB-99	[5.09]	J EMPC	PCB-127	(0.854)		PCB-133	(1.12)		PCB-169	(1.64)	
PCB-112	(0.763)		PCB-126	(1.32)							
			Conc.	33.6					Conc.	26.9	
			EMPC	65.8					EMPC	39.3	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.963)		PCB-174	(1.54)		PCB-202	(1.21)		PCB-208	(5.15)	
PCB-179	(0.877)		PCB-177	(1.52)		PCB-201	(1.37)		PCB-207	(5.24)	
PCB-184	(0.969)		PCB-181	(1.43)		PCB-204	(1.19)		PCB-206	(13)	
PCB-176	(1.02)		PCB-171/173	(1.66)	С	PCB-197	(1.29)				
PCB-186	(0.85)		PCB-172	(1.65)		PCB-200	(1.23)		Conc.	0	
PCB-178	(1.35)		PCB-192	(1.11)		PCB-198/199	(1.53)	С	EMPC	0	
PCB-175	(1.64)		PCB-180/193	4.52	JC	PCB-196	(1.75)				
PCB-187	4.23	J	PCB-191	(1.26)		PCB-203	(1.42)		Deca	Conc.	Qualifiers
PCB-182	(1.35)		PCB-170	3.36	J	PCB-195	(2.87)		PCB-209	(3.32)	
PCB-183	(1.46)		PCB-190	(1.27)		PCB-194	(2.77)				
PCB-185	(1.61)		PCB-189	(1.44)		PCB-205	(2.43)				
			Conc.	12.1		Conc.	0				
			EMPC	12.1		EMPC	0				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	07-May-2019
Project ID:	Nord Door	Weight/Volume:	0.98 L	Sample ID:	B3256_16680_PCB_0	008 Date Extracted:	15-May-2019
Date Collected:	03-May-2019	pН	6	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
· · · · · · · · · · · · · · · · · · ·		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		ND	2.24			ES PCB-1	72.4
PCB-81 344'5-TeCB		ND	2.14			ES PCB-3	81.4
PCB-105 233'44'-PeCB		ND	0.802			ES PCB-4	90.1
PCB-114 2344'5-PeCB		ND	0.77			ES PCB-15	99.6
PCB-118 23'44'5-PeCB		EMPC		3	J	ES PCB-19	98.8
PCB-123 23'44'5'-PeCB		ND	0.788			ES PCB-37	82.3
PCB-126 33'44'5-PeCB		ND	0.578			ES PCB-54	80.2
PCB-156/157 233'44'5/233'4	44'5'-HxCB	ND	1.08		С	ES PCB-77	87
PCB-167 23'44'55'-HxCB		ND	0.751			ES PCB-81	85.1
PCB-169 33'44'55'-HxCB		ND	0.888			ES PCB-104	87.7
PCB-189 233'44'55'-HpCB		ND	1.27			ES PCB-105	98.9
•						ES PCB-114	95.6
TEQs (WHO 2005 M/H)						ES PCB-118	96
,						ES PCB-123	97.2
ND = 0		0		0.00009		ES PCB-126	98.5
ND = 0.5 x DL		0.0428		0.0428		ES PCB-153	95.2
ND = DL		0.0855		0.0856		ES PCB-155	93
						ES PCB-156/157	109
Totals						ES PCB-167	103
Mono-CB		ND	2.2			ES PCB-169	119
Di-CB		14.9				ES PCB-170	92
Ггі-СВ		ND	4.34			ES PCB-180	85.8
Гetra-CB		120				ES PCB-188	86.6
Penta-CB		5.97		17.3		ES PCB-189	94.8
Hexa-CB		7.92		11.2		ES PCB-202	94.5
Hepta-CB		ND	1.3			ES PCB-205	107
Octa-CB		ND	1.17			ES PCB-206	120
Nona-CB		ND	5.21			ES PCB-208	101
Deca-CB		ND ND	1.7			ES PCB-209	137
		1.5				CS PCB-28	89
Total PCB (Mono-Deca)		149		164		CS PCB-111	96
(30 2000)		140		10-7		CS PCB-178	94.3

Checkcode: 168-688-PHF/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:21 Analyst: ah

B3256 page 22 of 31 5/28/2019 8:31 AM

Sample ID	MW-17	-0519							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		07-May-2019
Project ID:	Nor	d Door	Weight/Volume:		0.98 L	Sample ID:	B3256_166	30_PCB_008	Date Extracted:		15-May-2019
Date Collected:	03-M	ay-2019	рН		6	QC Batch No.:	16	680	Date Analyzed:		22-May-2019
			Units		pg/L	Checkcode:	168-68	8-PHF/C	Time Analyzed:		21:05:19
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(2.21)		PCB-19	(5.05)		PCB-54	(1.69)		PCB-72	(1.96)	
PCB-2	(2.1)		PCB-30/18	(3.6)	С	PCB-50/53	(1.87)	С	PCB-68	23.5	
PCB-3	(2.19)		PCB-17	(5.31)		PCB-45	(2.33)		PCB-57	(2.07)	
			PCB-27	(3.69)		PCB-51	47.3		PCB-58	(1.86)	
Conc.	0		PCB-24	(3.71)		PCB-46	(2.38)		PCB-67	(1.9)	
EMPC	0		PCB-16	(5.41)		PCB-52	26.7		PCB-63	(2.27)	
			PCB-32	(3.42)		PCB-73	(1.47)		PCB-61/70/74/76	(1.98)	С
Di	Conc.	Qualifiers	PCB-34	(3.82)		PCB-43	(1.88)		PCB-66	(1.92)	
PCB-4	(1.35)		PCB-23	(3.86)		PCB-69/49	(1.68)	С	PCB-55	(1.88)	
PCB-10	(0.954)		PCB-26/29	(3.77)	С	PCB-48	(2.03)		PCB-56	(1.94)	
PCB-9	(1.29)		PCB-25	(3.21)		PCB-44/47/65	22.8	JC	PCB-60	(2.3)	
PCB-7	(1.44)		PCB-31	(3.26)		PCB-59/62/75	(1.52)	С	PCB-80	(1.96)	
PCB-6	(1.23)		PCB-28/20	(3.56)	С	PCB-42	(2.22)		PCB-79	(1.81)	
PCB-5	(1.49)		PCB-21/33	(3.66)	С	PCB-41	(2.63)		PCB-78	(2.05)	
PCB-8	(1.19)		PCB-22	(3.3)		PCB-71/40	(1.77)	С	PCB-81	(2.14)	
PCB-14	(1.45)		PCB-36	(3.27)		PCB-64	(1.52)		PCB-77	(2.24)	
PCB-11	14.9	В	PCB-39	(3.6)							
PCB-13/12	(1.45)	С	PCB-38	(3.57)							
PCB-15	(1.28)		PCB-35	(3.72)							
			PCB-37	(3.63)							
Conc.	14.9		Conc.	0					Conc.	120	
EMPC	14.9		EMPC	0					EMPC	120	
	•			•	•		•			•	•
	00	0	5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 2840			Mono-7	Ггі		14.9	·	14.9
	SG		Tel: +1 910 794-1613			Tetra-He	exa		134		149
			www.us.sgs.com			Hepta-D	eca		0		0
						Mono-De	eca		149		164

Sample ID:	MW-17	-0519							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.774)		PCB-109/119/86/97/125/87	(0.888)	С	PCB-155	(0.594)		PCB-165	(0.666)	
PCB-96	(0.759)		PCB-117	(0.83)		PCB-152	(0.546)		PCB-146	(0.662)	
PCB-103	(1.05)		PCB-116/85	[1.02]	J EMPC C	PCB-150	(0.622)		PCB-161	(0.58)	
PCB-94	(1.29)		PCB-110	[3.9]	J EMPC	PCB-136	(0.653)		PCB-153/168	3.61	JBC
PCB-95	[3.41]	J EMPC	PCB-115	(0.635)		PCB-145	(0.575)		PCB-141	(0.825)	
PCB-100/93	(1.14)	С	PCB-82	(1.11)		PCB-148	(0.798)		PCB-130	(0.977)	
PCB-102	(0.846)		PCB-111	(0.793)		PCB-151/135	(0.787)	С	PCB-137	(0.837)	
PCB-98	(1.12)		PCB-120	(0.642)		PCB-154	(0.746)		PCB-164	(0.574)	
PCB-88	(1.24)		PCB-108/124	(0.772)	С	PCB-144	(0.809)		PCB-163/138/129	[3.24]	J B EMPC C
PCB-91	(1.05)		PCB-107	(0.74)		PCB-147/149	4.32	JC	PCB-160	(0.68)	
PCB-84	(1.3)		PCB-123	(0.788)		PCB-134	(0.918)		PCB-158	(0.588)	
PCB-89	(1.08)		PCB-106	(0.742)		PCB-143	(0.85)		PCB-128/166	(0.837)	С
PCB-121	(0.718)		PCB-118	[3]	J EMPC	PCB-139/140	(0.755)	С	PCB-159	(0.639)	
PCB-92	(1.16)		PCB-122	(0.91)		PCB-131	(0.901)		PCB-162	(0.756)	
PCB-113/90/101	5.97	J C	PCB-114	(0.77)		PCB-142	(0.898)		PCB-167	(0.751)	
PCB-83	(1.38)		PCB-105	(0.802)		PCB-132	(0.867)		PCB-156/157	(1.08)	С
PCB-99	(0.835)		PCB-127	(0.734)		PCB-133	(0.786)		PCB-169	(0.888)	
PCB-112	(0.652)		PCB-126	(0.578)							
			Conc.	5.97					Conc.	7.92	
			EMPC	17.3					EMPC	11.2	
	-										
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.631)		PCB-174	(1.54)		PCB-202	(0.566)		PCB-208	(3.32)	
PCB-179	(0.574)		PCB-177	(1.52)		PCB-201	(0.641)		PCB-207	(3.37)	
PCB-184	(0.635)		PCB-181	(1.43)		PCB-204	(0.555)		PCB-206	(7.11)	
PCB-176	(0.666)		PCB-171/173	(1.66)	С	PCB-197	(0.605)				
PCB-186	(0.557)		PCB-172	(1.65)		PCB-200	(0.576)		Conc.	0	
PCB-178	(0.885)		PCB-192	(1.11)		PCB-198/199	(0.716)	С	EMPC	0	
PCB-175	(1.64)		PCB-180/193	(1.34)	С	PCB-196	(0.818)				
PCB-187	(1.3)		PCB-191	(1.27)		PCB-203	(0.665)		Deca	Conc.	Qualifiers
PCB-182	(1.35)		PCB-170	(1.83)		PCB-195	(2.09)		PCB-209	(1.7)	
PCB-183	(1.46)		PCB-190	(1.3)		PCB-194	(2.01)				
PCB-185	(1.61)		PCB-189	(1.27)		PCB-205	(1.77)				
			Conc.	0		Conc.	0				
			EMPC	0		EMPC	0				

Client Data		Sample Data		Laboratory Data			
Name: SLR I	nternational Corp	Matrix:	Aqueous	Project No.:	B3256	Date Received:	n/a
Project ID:	Nord Door	Weight/Volume:	1.00 L	Sample ID:	MB1_16680_PCB_T	LX Date Extracted:	15-May-2019
Date Collected:	n/a	Hq	n/a	QC Batch No.:	16680	Date Analyzed:	22-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		ND	2.84			ES PCB-1	71.5
PCB-81 344'5-TeCB		ND	2.67			ES PCB-3	83.3
PCB-105 233'44'-PeCB		ND	1.84			ES PCB-4	88.1
PCB-114 2344'5-PeCB		ND	1.86			ES PCB-15	95.7
PCB-118 23'44'5-PeCB		ND	1.73			ES PCB-19	92.7
PCB-123 23'44'5'-PeCB		ND	1.77			ES PCB-37	85.3
PCB-126 33'44'5-PeCB		ND	1.52			ES PCB-54	79.1
PCB-156/157 233'44'5/233'44'5'-HxCE	3	ND	2.28		С	ES PCB-77	83.6
PCB-167 23'44'55'-HxCB		ND	1.54			ES PCB-81	83.6
PCB-169 33'44'55'-HxCB		ND	1.72			ES PCB-104	91.4
PCB-189 233'44'55'-HpCB		ND	2.02			ES PCB-105	100
·						ES PCB-114	96
TEQs (WHO 2005 M/H)						ES PCB-118	97.1
· · · · · · · · · · · · · · · · · · ·						ES PCB-123	100
ND = 0		0		0		ES PCB-126	98.4
ND = 0.5 x DL		0.102		0.102		ES PCB-153	97.4
ND = DL		0.205		0.205		ES PCB-155	95.9
						ES PCB-156/157	112
Totals						ES PCB-167	104
Mono-CB		ND	3.83			ES PCB-169	126
Di-CB				10.2		ES PCB-170	91.6
Tri-CB		ND	5.12			ES PCB-180	87.6
Tetra-CB		ND	3.02			ES PCB-188	90.6
Penta-CB		ND	1.68			ES PCB-189	96.2
Hexa-CB		2.84		5.61		ES PCB-202	104
Hepta-CB		ND	1.87			ES PCB-205	107
Octa-CB		ND	2.04			ES PCB-206	120
Nona-CB		ND	9.36			ES PCB-208	100
Deca-CB		ND	2.4			ES PCB-209	133
						CS PCB-28	91.6
otal PCB (Mono-Deca)		2.84		15.8		CS PCB-111	94.1
						CS PCB-178	91.8

Checkcode: 825-219-LLL/C SGS North America - PCB v0.83 Report Created: 24-May-2019 11:20 Analyst: ah

B3256 page 25 of 31 5/28/2019 8:31 AM

Sample ID:	Method	d Blank	B3256_16680)					N	lethod	1668C	
Client Data			Sample Data			Laboratory Data						
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	В3	256	Date Received:		n/a	
Project ID:	Nor	d Door	Weight/Volume:		1.00 L	Sample ID:	MB1_1668	0_PCB_TLX	Date Extracted:		15-May-2019	
Date Collected:		n/a	pН		n/a	QC Batch No.:	16	680	Date Analyzed:		22-May-2019	
			Units		pg/L	Checkcode:	825-21	9-LLL/C	Time Analyzed:		15:17:36	
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	
PCB-1	(3.92)		PCB-19	(6.29)		PCB-54	(2.8)		PCB-72	(2.45)		
PCB-2	(3.58)		PCB-30/18	(4.48)	С	PCB-50/53	(3.55)	С	PCB-68	(2.6)		
PCB-3	(3.75)		PCB-17	(6.61)		PCB-45	(4.41)		PCB-57	(2.58)		
			PCB-27	(4.6)		PCB-51	(3.49)		PCB-58	(2.32)		
Conc.	0		PCB-24	(4.61)		PCB-46	(4.5)		PCB-67	(2.37)		
EMPC	0		PCB-16	(6.74)		PCB-52	(3.25)		PCB-63	(2.83)		
			PCB-32	(4.25)		PCB-73	(2.79)		PCB-61/70/74/76	(2.47)	С	
Di	Conc.	Qualifiers	PCB-34	(4.16)		PCB-43	(3.57)		PCB-66	(2.39)		
PCB-4	(3.12)		PCB-23	(4.2)		PCB-69/49	(3.19)	С	PCB-55	(2.35)		
PCB-10	(2.21)		PCB-26/29	(4.1)	С	PCB-48	(3.84)		PCB-56	(2.42)		
PCB-9	(3.22)		PCB-25	(3.49)		PCB-44/47/65	(3.31)	С	PCB-60	(2.87)		
PCB-7	(3.59)		PCB-31	(3.56)		PCB-59/62/75	(2.87)	С	PCB-80	(2.44)		
PCB-6	(3.05)		PCB-28/20	(3.88)	С	PCB-42	(4.21)		PCB-79	(2.26)		
PCB-5	(3.72)		PCB-21/33	(3.99)	С	PCB-41	(4.98)		PCB-78	(2.56)		
PCB-8	(2.97)		PCB-22	(3.59)		PCB-71/40	(3.35)	С	PCB-81	(2.67)		
PCB-14	(3.61)		PCB-36	(3.56)		PCB-64	(2.88)		PCB-77	(2.84)		
PCB-11	[10.2]	EMPC	PCB-39	(3.92)								
PCB-13/12	(3.61)	С	PCB-38	(3.89)								
PCB-15	(3.19)		PCB-35	(4.06)								
			PCB-37	(3.95)								
Conc.	0		Conc.	0					Conc.	0		
EMPC	10.2		EMPC	0					EMPC	0		
	00	-	5500 Business Drive			Totals	5		Conc.	E	MPC	
	SG		Wilmington, NC 2840	5, USA		Mono-1	Ггі		0		10.2	
	JU		Tel: +1 910 794-1613			Tetra-He	exa		2.84		5.61	
			www.us.sgs.com			Hepta-De	eca		0		0	
						Mono-De	eca		2.84		15.8	

Sample ID:	Method	l Blank	B3256_16680						N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.36)		PCB-109/119/86/97/125/87	(2)	С	PCB-155	(1.2)		PCB-165	(1.36)	
PCB-96	(1.34)		PCB-117	(1.87)		PCB-152	(1.11)		PCB-146	(1.35)	
PCB-103	(2.37)		PCB-116/85	(2.09)	С	PCB-150	(1.26)		PCB-161	(1.19)	
PCB-94	(2.89)		PCB-110	(1.71)		PCB-136	(1.32)		PCB-153/168	2.84	JC
PCB-95	(2.47)		PCB-115	(1.43)		PCB-145	(1.17)		PCB-141	(1.69)	
PCB-100/93	(2.57)	С	PCB-82	(2.51)		PCB-148	(1.63)		PCB-130	(2)	
PCB-102	(1.9)		PCB-111	(1.78)		PCB-151/135	(1.61)	С	PCB-137	(1.71)	
PCB-98	(2.52)		PCB-120	(1.44)		PCB-154	(1.53)		PCB-164	(1.17)	
PCB-88	(2.78)		PCB-108/124	(1.74)	С	PCB-144	(1.65)		PCB-163/138/129	[2.77]	J EMPC C
PCB-91	(2.37)		PCB-107	(1.66)		PCB-147/149	(1.48)	С	PCB-160	(1.39)	
PCB-84	(2.92)		PCB-123	(1.77)		PCB-134	(1.88)		PCB-158	(1.2)	
PCB-89	(2.42)		PCB-106	(1.67)		PCB-143	(1.74)		PCB-128/166	(1.72)	С
PCB-121	(1.62)		PCB-118	(1.73)		PCB-139/140	(1.54)	С	PCB-159	(1.31)	
PCB-92	(2.61)		PCB-122	(2.2)		PCB-131	(1.84)		PCB-162	(1.55)	
PCB-113/90/101	(2.18)	С	PCB-114	(1.86)		PCB-142	(1.84)		PCB-167	(1.54)	
PCB-83	(3.11)		PCB-105	(1.84)		PCB-132	(1.77)		PCB-156/157	(2.28)	С
PCB-99	(1.88)		PCB-127	(1.69)		PCB-133	(1.61)		PCB-169	(1.72)	
PCB-112	(1.47)		PCB-126	(1.52)							
			Conc.	0					Conc.	2.84	
			EMPC	0					EMPC	5.61	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.37)		PCB-174	(1.93)		PCB-202	(1.35)		PCB-208	(5.64)	
PCB-179	(1.24)		PCB-177	(1.9)		PCB-201	(1.53)		PCB-207	(5.73)	
PCB-184	(1.38)		PCB-181	(1.79)		PCB-204	(1.32)		PCB-206	(13.1)	
PCB-176	(1.44)		PCB-171/173	(2.07)	С	PCB-197	(1.44)				
PCB-186	(1.21)		PCB-172	(2.06)		PCB-200	(1.37)		Conc.	0	
PCB-178	(1.92)		PCB-192	(1.38)		PCB-198/199	(1.71)	С	EMPC	0	
PCB-175	(2.05)		PCB-180/193	(1.68)	С	PCB-196	(1.95)				
PCB-187	(1.63)		PCB-191	(1.58)		PCB-203	(1.58)		Deca	Conc.	Qualifiers
PCB-182	(1.68)		PCB-170	(2.49)		PCB-195	(3.23)		PCB-209	(2.4)	
PCB-183	(1.83)		PCB-190	(1.76)		PCB-194	(3.11)				
PCB-185	(2.01)		PCB-189	(2.02)		PCB-205	(2.73)				
			Conc.	0		Conc.	0				
			EMPC	0		EMPC	0				

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8A

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190522S03 Analysis Date: 22-MAY-2019 14:19:38

Lab ID: OPR1_16680_PCB

	SPIKE		RANGE			
NATIVE ANALYTES	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
PCB-1 2-MoCB	50	109	60	_	135	Y
PCB-3 4-MoCB	50	107	60	_	135	Υ
PCB-4 22'-DiCB	50	113	60	_	135	Υ
PCB-15 44'-DiCB	50	101	60	_	135	Y
PCB-19 22'6-TrCB	50	108	60	_	135	Y
PCB-37 344'-TrCB	50	103	60	_	135	Υ
PCB-54 22'66'-TeCB	50	103	60	-	135	Υ
PCB-77 33'44'-TeCB	50	101	60	-	135	Υ
PCB-81 344'5-TeCB	50	91.2	60	-	135	Υ
PCB-104 22'466'-PeCB	50	93.3	60	-	135	Υ
PCB-105 233'44'-PeCB	50	101	60	-	135	Υ
PCB-114 2344'5-PeCB	50	95.2	60	-	135	Υ
PCB-118 23'44'5-PeCB	50	95.9	60	-	135	Υ
PCB-123 23'44'5'-PeCB	50	94	60	-	135	Υ
PCB-126 33'44'5-PeCB	50	111	60	-	135	Υ
PCB-155 22'44'66'-HxCB	50	90.4	60	-	135	Υ
PCB-156/157HxCB	100	96.8	60	-	135	Υ
PCB-167 23'44'55'-HxCB	50	98.5	60	-	135	Υ
PCB-169 33'44'55'-HxCB	50	105	60	-	135	Υ
PCB-188 22'34'566'-HpCB	50	102	60	-	135	Υ
PCB-189 233'44'55'-HpCB	50	94.8	60	-	135	Υ
PCB-202 22'33'55'66'-OcCB	50	99.4	60	-	135	Υ
PCB-205 233'44'55'6-OcCB	50	100	60	-	135	Υ
PCB-206 22'33'44'55'6-NoCB	50	110	60	-	135	Υ
PCB-208 22'33'455'66'-NoCB	50	98.9	60	-	135	Υ
PCB-209 DeCB	50	90.1	60	-	135	Υ

Contract-required recovery limits for OPR as specified in Table 6, Method 1668C.

Processed: 24 May 2019 11:19 Analyst: ah

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8B

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190522S03 Analysis Date: 22-MAY-2019 14:19:38

Lab ID: OPR1_16680_PCB

	SPIKE		RANGE			
LABELED STANDARDS	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
ES PCB-1	100	65.5	15	-	145	Υ
ES PCB-3	100	77.8	15	-	145	Υ
ES PCB-4	100	83.3	15	-	145	Υ
ES PCB-15	100	96.3	15	-	145	Υ
ES PCB-19	100	96.6	15	-	145	Υ
ES PCB-37	100	84.9	15	-	145	Υ
ES PCB-54	100	73	15	-	145	Υ
ES PCB-77	100	90	40	-	145	Υ
ES PCB-81	100	88.2	40	-	145	Υ
ES PCB-104	100	90.4	40	-	145	Υ
ES PCB-105	100	104	40	-	145	Υ
ES PCB-114	100	101	40	-	145	Υ
ES PCB-118	100	101	40	-	145	Υ
ES PCB-123	100	102	40	-	145	Υ
ES PCB-126	100	106	40	-	145	Υ
ES PCB-153	100	102	40	-	145	Υ
ES PCB-155	100	94.1	40	-	145	Υ
ES PCB-156/157	200	120	40	-	145	Υ
ES PCB-167	100	113	40	-	145	Υ
ES PCB-169	100	136	40	-	145	Υ
ES PCB-170	100	99.1	40	-	145	Υ
ES PCB-180	100	90.7	40	-	145	Υ
ES PCB-188	100	92.4	40	-	145	Υ
ES PCB-189	100	101	40	-	145	Υ
ES PCB-202	100	102	40	-	145	Υ
ES PCB-205	100	111	40	-	145	Υ
ES PCB-206	100	124	40	-	145	Υ
ES PCB-208	100	105	40	-	145	Υ
ES PCB-209	100	141	40	-	145	Υ
CLEANUP STANDARDS						
CS PCB-28	100	89.8	15	-	145	Υ
CS PCB-111	100	100	40	-	145	Υ
CS PCB-178	100	97.6	40	-	145	Υ

Processed: 24 May 2019 11:19 Analyst: ah

Sample Receipt Notification

5500 Business Drive Wilmington, NC 28405 USA Tel: 910 794-1613 Toll Free: 866 846-8290 Fax: 910 794-3919 Project Manager: Amy Boehm
Receipt Date & Time: 07-May-19 at 09:44

AP Project name: B3256
Requested TAT: 21 days
Projected due date: 28-May-19
Matrix: Aqueous
Phone#: 910-794-1613

Email Address: Amy.Boehm@sgs.com

Company Contact: Chris Kramer

Company: SLR International Corp

Project Name & Site: Nord Door

Project PO#: 108.00228.00059

QAAP/Contract #: n/a

Requested Analysis: *Method 1668C* **Phone#:** 503-723-4423

Email Address: <u>ckramer@slrconsulting.com</u>

Client Smp ID	AP Smp ID	Sample Condition & Notes	Quantity	Size	Sampling Date	Sampling Time	Received Temp	Container #	Shipping #
MW-11A-0519	B3256_001	water - D/F	2	1L amber	03-May-19	15:37	0.3, 0.4	1, 2	787080397260,787 080397271,
MW-11B-0519	B3256_002	water - HOLD	2	1L amber	03-May-19	16:17	0.4	2	787080397271
MW-12-0519	B3256_003	water - D/F & PCB	2	1L amber	03-May-19	11:20	0.3	1	787080397260
MW-13-0519	B3256_004	water - D/F & PCB	2	1L amber	03-May-19	00:00	0.3, 0.4	1, 2	787080397260,787 080397271,
MW-14-0519	B3256_005	water - D/F & PCB	2	1L amber	03-May-19	00:00	0.3, 0.4	1, 2	787080397260,787 080397271,
MW-15-0519	B3256_006	water - PCB	2	1L amber	03-May-19	00:00	0.3	1	787080397260
MW-16-0519	B3256_007	water - D/F & PCB	2	1L amber	03-May-19	00:00	0.4	2	787080397271
MW-17-0519	B3256_008	water - D/F & PCB	2	1L amber	03-May-19	00:00	0.4	2	787080397271

Preservation Type: Sample Seals: No

Notes/Comments:

*Hold all D/F analysis pending soil results.

Any un-extracted sample will be stored for 90 days from reporting date. Additional storage fees may apply for any samples stored longer than 90 days.

Received by: Jay Burkamper Logged in by: Jay Burkamper AK 7 May 19

All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via: http://www.sgs.com/terms and conditions.htm

B3256 page 30 of 31

SGS CHAIN OF CUSTODY

SGS NORTH AMERICA INC

	PROJECT INFO PROJECT: Nord Door					SPEC	IAL IN	ISTRU	CTION	IS / COI	MMEN	TS			SEND DOCUMENTATION / RESULTS TO COMPANY: SLR CONTACT: (Wis Kramer
	RO. #: 10%.0022%.0059 QUOTE #: SITE REF: TURN AROUND TIME: Standard REPORT LEVEL: Level I Level SPECIAL DELIVERABLES: DOD DEDD/Version: State of Origin:	II Le	vel IV	ату	MATRIX			TIVE	HOD			(MS	MS/	CONTACT: Chris Kramer ADDRESS: 1800 Blankinship Road, Ste 440 PHONE: 503 - 723 - 4423 EMAIL: CKRAME STRONGHING INVOICE TO (XCHECK IF SAME) COMPANY: CONTACT: ADDRESS: PHONE: EMAIL: REMARKS
2	MW-11A-0519	DATE	1537		water	X								1	5
. W. T. F.	MW-114-0517 MW-11B-0519	<i>ं।</i> ।	1617	2	Water	1									Hold \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
200	MW-112-0519	\Box	1120	2		k	X								m - m
۱۰۵۷ الحمد ۱۰	MW-12-0519 MW-13-0519 MW-14-0519 MW-15-0519		11,00	2		X	X								High Dava Journ
1-26	140-13-0519			2		X	X								ALL MANAGEMENT OF THE PARTY OF
, 9,02	1411)-15-0519			2			X								Hold marks results weak.
7.EX	x MW-16-0519			2		X	Х								the ways do in
. 10	6 MW-17 -0519	V		2	V	火	X								40,1
1											-				
	COLLECTED/RELINQUISHED BY (1):	,			DATE: 5/6/19	TIM 13	1E: 3 <i>O</i> E		IVED I	BY:					RECEIVED BY LABORATORY: DATE: TIME: 41.
	RELINQUISHED BY (2):	72-			DATE:	TIM			IVED E	3Y:			 		COOLER SEAL: ☑INTACT ☐ BROKEN ☐ ABSENT
											1				CONTAINER SEALS: ☐ INTACT ☐ BROKEN ☐ ABSENT
	RELINQUISHED BY (3):	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DATE:	TIN	1E:	RECE	IVED I	BY:			·		CARRIER: TEMP: °C O.3" + 0.4"
															TRACKING #:

FINAL LAB REPORT

Prepared by Prepared for

SGS NORTH AMERICA

This report is approved by

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please do not hesitate to contact us.

The management and staff of SGS welcomes customer feedback, both positive and negative, as we continually improve our services. Please visit our web site at www.sgs.com/ultratrace and click on the 'Email Us' link or go to our survey here. Thank you for choosing SGS.

Any holder of this document is advised that it is a final submission and supersedes and voids all prior reports with the same report or identification number. The information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility in conducting the work herein is to its Client and does not exonerate parties to a transaction from exercising all of their rights and obligations under such applicable transaction documents. This report may be reproduced in full only. The Company expressly disclaims any and all liability for the Client's use of or reliance upon the data contained herein. Any alteration, forgery or falsification of the content or appearance of this document which is not expressly authorized by the Company is unlawful and offenders may be prosecuted to the fullest extent of the law.

Results reported relate only to the items tested.

SGS North America Inc. | Environment, Health & Safety 5500 Business Drive Wilmington, NC 28405 +1 910 350 1903 | +1 866 846 8290 www.sgs.com

PROJECT INFORMATION SUMMARY (When applicable, see QC Annotations for details)

Client Project
SGS Project #
Analytical Protocol(s)
No. Samples Submitted
Additional QC Sample(s)
No. Laboratory Method Blanks
No. OPRs / Batch CS3
Date Received
Condition Received
Temperature upon Receipt (°C)
Extraction within Holding Time
Analysis within Holding Time

QC ANNOTATIONS:

1. Please see Appendices attached for data qualifier/attribute and lab identifier descriptions which may be contained in the project.

APPENDIX A: GENERAL DATA QUALIFIERS / DATA ATTRIBUTES

В	The analyte was found in the method blank, at a concentration that was at least 10% of the concentration in the sample.
С	Two or more congeners co-elute. In EDDs, C denotes the lowest IUPAC congener in a co-elution group and additional co-eluters for the group are shown with the number of the lowest IUPAC co-eluter.
E	The reported concentration exceeds the calibration range (upper point of the calibration curve) and is an estimated value.
EMPC	Represents an Estimated Maximum Possible Concentration. EMPCs arise in cases where the signal/noise ratio is not sufficient for peak identification (the determined ion-abundance ratio is outside the allowed theoretical range), or where there is a co-eluting interference.
H/h	If the standard recovery is below the method or SOP specified value "H" is assigned. If the obtained value is less than half the specified value "h" is assigned.
J	Indicates that an analyte has a concentration below the reporting limit (lowest point of the calibration curve) and is an estimated value.
ND	Indicates a non-detect.
NR or R	Indicates a value that is not reportable.
PR	Due to interference, the associated congener is poorly resolved.
QI	Indicates the presence of a quantitative interference.
SI	Denotes "Single Ion Mode" and is utilized for PCBs where the secondary ion trace has a significantly elevated noise level due to background PFK. Responses for such peaks are calculated using an EMPC approach based solely on the primary ion area(s) and may be considered estimates.
U	The analyte was not detected. The estimated detection limit (EDL) may be reported for this analyte.
V	The labeled standard recovery was found to be outside of the method control limits.

APPENDIX B: DRBC/TMDL SPECIFIC DATA QUALIFIERS / DATA ATTRIBUTES

J	The reported result is an estimate. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL).
U	The analyte was not detected in the sample at the estimated detection limit (EDL).
E	The reported concentration is an estimate. The value exceeds the upper calibration range (upper point of the calibration curve).
D	Dilution Data. Result was obtained from the analysis of a dilution.
В	Analyte found in the sample and associated method blank.
С	Co-eluting congener
Схх	Co-elutes with the indicated congener, data is reported under the lowest IUPAC congener. 'Xx' denotes the IUPAC number with the lowest numerical designated congener.
NR	Analyte is not reportable because of problems in sample preparation or analysis.
٧	Labeled standard recovery is not within method control limits.
Х	Results from re-injection/repeat/second-column analysis.
EMPC	Estimated maximum possible concentration. Indicates that a peak is identified but did not meet the method specified ion-abundance ratio.

APPENDIX C: LAB IDENTIFIERS

AR	Indicates use of the archived portion of the sample extract.
CU	Indicates a sample that required additional clean-up prior to MS injection/processing.
D	Indicates a dilution of the sample extract. The number that follows the "D" indicates the dilution factor.
DE	Indicates a dilution performed with the addition of ES (extraction standard) solution.
DUP	Designation for a duplicate sample.
MS	Designation for a matrix spike.
MSD	Designation for a matrix spike duplicate.
RJ	Indicates a reinjection of the sample extract.
S	Indicates a sample split. The number that follows the "S" indicates the split factor.

SGS CERTIFICATIONS

Alaska	17-012
Arkansas	18-042-0
California (ELAP)	ELAP Cert #2914
CLIA	34D1013708
Connecticut	PH-0258
USDA Soil Permit	P330-17-00055
American Association for Laboratory Accreditation (A2LA)	2726.01 (ISO 17025:2005, 2009 TNI, DoD ELAP QSM 5.1)
Florida DOH	E87634
Louisiana DEQ	4115
Louisiana DOH	LA031
Maine	2018018
Massachusetts	M-NC919
Minnesota (Primary NELAP For Method 23)	1535636
Mississippi	Reciprocity
Montana	0106
New Hampshire	208318 & 208518
New Jersey	NC100
New York	11685
North Carolina DEQ	481
North Dakota	R-197
Oregon	NC200002
Pennsylvania	68-03675
South Carolina	99029002
Texas	T104704260
US Coast Guard	16714/159.317/SGS
Vermont	VT-87634
Virginia	10101
Washington	C913
West Virginia	293

Rev. 06-Mar-2019

B3246 page 6 of 19

Sample ID:	GP-801-GW	Sample Data		Laboratory Data			od 1668
Name:	SLR International Corp	Matrix:	Aqueous	Project No.:	B3246	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	0.98 L	Sample ID:	B3246_16671_PCB_0		08-May-2019
Date Collected:	26-Apr-2019	pH	0.98 L 6	QC Batch No.:	16671	Date Analyzed:	20-May-2019
Analyte	26-Api-2019	Conc.	DL DL	EMPC	Qualifier	Standard	Recovery
Analyte		pg/L	pg/L	pg/L	Qualifier	Standard	%
PCB-77 33'44'-TeCB		39.4	pg/L	ρg/∟		ES PCB-1	70.7
PCB-81 344'5-TeCB		ND	4.46			ES PCB-3	77.4
PCB-105 233'44'-PeCB		28.9	4.40			ES PCB-4	86.4
PCB-114 2344'5-PeCB		EMPC		3.52	J	ES PCB-15	83.7
PCB-118 23'44'5-PeCB		91.9		3.32	J	ES PCB-19	88.5
PCB-123 23'44'5'-PeCB		EMPC		2.39	J	ES PCB-37	84.8
PCB-126 33'44'5-PeCB		2.94		2.39	J	ES PCB-54	83.9
PCB-156/157 233'44'5/23	3'44'5'-HyCB	13.4			1 C	ES PCB-77	81.1
PCB-167 23'44'55'-HxCB	O TT O TINOD	5.78			J	ES PCB-81	80
PCB-169 33'44'55'-HxCB		3.03			J	ES PCB-104	94.8
PCB-189 233'44'55'-HpCE	2	ND	2.6		J	ES PCB-105	98.8
-CB-109 233 44 33 -HPCL		ND	2.0			ES PCB-103	95.4
TEQs (WHO 2005 M/H)	1					ES PCB-118	95.7
1EQ3 (WITO 2003 W/II))					ES PCB-123	98.7
ND = 0		0.393		0.393		ES PCB-126	96.1
ND = 0.5 x DL		0.393		0.393		ES PCB-153	97.3
ND = DL		0.394		0.394		ES PCB-155	101
ND = DL		0.394		0.394		ES PCB-155	112
Totals						ES PCB-167	105
Mono-CB		91.5				ES PCB-167	
Di-CB						ES PCB-109	122
Tri-CB		2,230		0.040		ES PCB-170 ES PCB-180	90.8
Fetra-CB		9,330		9,340		ES PCB-180 ES PCB-188	86.6
Penta-CB		4,530		4,570			95.9
		754		865		ES PCB-189	95.3
Hexa-CB		371		384		ES PCB-202	103
Hepta-CB		58.1		91.3		ES PCB-205	108
Octa-CB		27.5	40.0	33.5		ES PCB-206	118
Nona-CB		ND	10.6			ES PCB-208	98.5
Deca-CB		ND	4.1			ES PCB-209	129
5 / LDOD (14 B						CS PCB-28	90.5
Total PCB (Mono-Deca)		17,400		17,600		CS PCB-111	95.7
		ĺ	ĺ	I	I	CS PCB-178	98.7

Checkcode: 920-749-YNB/C

SGS North America - PCB v0.83

Report Created: 21-May-2019 09:16 Analyst: MS

B3246 page 7 of 19 5/21/2019 10:21 AM

Sample ID:	GP-801	-GW							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	ational Corp	Matrix:		Aqueous	Project No.:	B3	246	Date Received:		30-Apr-2019
Project ID:	Nore	d Door	Weight/Volume:		0.98 L	Sample ID:	B3246_166	71_PCB_001	Date Extracted:		08-May-2019
Date Collected:	26-A	or-2019	pН	oH 6 QC		QC Batch No.:	16	671	Date Analyzed:		20-May-2019
			Units	pg/L C		Checkcode:	920-74	9-YNB/C	Time Analyzed:		18:58:40
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	32.1		PCB-19	177		PCB-54	[2.9]	J EMPC	PCB-72	8.93	J
PCB-2	25.2		PCB-30/18	1,430	С	PCB-50/53	132	С	PCB-68	[16.1]	EMPC
PCB-3	34.2		PCB-17	845		PCB-45	189		PCB-57	[4.43]	J EMPC
			PCB-27	114		PCB-51	95.7		PCB-58	(3.67)	
Conc.	91.5		PCB-24	23.2		PCB-46	71.8		PCB-67	[19.6]	EMPC
EMPC	91.5		PCB-16	740		PCB-52	580		PCB-63	23.5	
			PCB-32	449		PCB-73	(3.15)		PCB-61/70/74/76	537	С
Di	Conc.	Qualifiers	PCB-34	[16.9]	EMPC	PCB-43	28.8		PCB-66	304	
PCB-4	357		PCB-23	(5.96)		PCB-69/49	466	С	PCB-55	[3.91]	J EMPC
PCB-10	10.8		PCB-26/29	628	С	PCB-48	121		PCB-56	138	
PCB-9	32.3		PCB-25	341		PCB-44/47/65	715	С	PCB-60	37.4	
PCB-7	25.4		PCB-31	1,390		PCB-59/62/75	97.2	С	PCB-80	(3.92)	
PCB-6	778		PCB-28/20	1,880	С	PCB-42	241		PCB-79	(3.66)	
PCB-5	7.12	J	PCB-21/33	426	С	PCB-41	37.6		PCB-78	(4.18)	
PCB-8	674		PCB-22	547		PCB-71/40	342	С	PCB-81	(4.46)	
PCB-14	(2.22)		PCB-36	(5.06)		PCB-64	319		PCB-77	39.4	
PCB-11	29.6	В	PCB-39	(5.6)							
PCB-13/12	79.3	С	PCB-38	(5.55)							
PCB-15	234		PCB-35	7.51	J						
			PCB-37	334							
Conc.	2,230		Conc.	9,330					Conc.	4,530	
EMPC	2,230		EMPC	9,340					EMPC	4,570	
				•	-		•				•
	00	-	5500 Business Drive			Totals	5		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-7	<u></u>		11,600	1	1,700
	SG		Tel: +1 910 794-1613			Tetra-He	exa		5,650		5,820
			www.us.sgs.com			Hepta-D	eca		85.5		125
						Mono-De	eca		17,400	1	7,600

Sample ID:	GP-801	-GW							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.43)		PCB-109/119/86/97/125/87	88.8	С	PCB-155	(1.05)		PCB-165	1.47	J
PCB-96	3.6	J	PCB-117	[4.42]	J EMPC	PCB-152	(0.987)		PCB-146	14.5	
PCB-103	(3.39)		PCB-116/85	23.1	С	PCB-150	(1.12)		PCB-161	(0.961)	
PCB-94	(4.13)		PCB-110	132		PCB-136	11.4		PCB-153/168	76.4	С
PCB-95	129		PCB-115	(2.46)		PCB-145	(1.04)		PCB-141	12.1	
PCB-100/93	(3.68)	С	PCB-82	16.3		PCB-148	(1.35)		PCB-130	6.38	J
PCB-102	[5.12]	J EMPC	PCB-111	(2.61)		PCB-151/135	25.7	С	PCB-137	6.31	J
PCB-98	(3.69)		PCB-120	[1.9]	J EMPC	PCB-154	3.49	J	PCB-164	5.51	J
PCB-88	(3.89)		PCB-108/124	5.6	JC	PCB-144	[1.94]	J EMPC	PCB-163/138/129	78.9	С
PCB-91	32		PCB-107	[8.37]	J EMPC	PCB-147/149	59.9	С	PCB-160	(1.1)	
PCB-84	[50.2]	EMPC	PCB-123	[2.39]	J EMPC	PCB-134	[4.34]	J EMPC	PCB-158	[6.46]	J EMPC
PCB-89	[4.98]	J EMPC	PCB-106	(2.4)		PCB-143	(1.41)		PCB-128/166	14.5	JC
PCB-121	(2.36)		PCB-118	91.9		PCB-139/140	4.2	JC	PCB-159	(1.3)	
PCB-92	[30.3]	EMPC	PCB-122	(2.9)		PCB-131	(1.5)		PCB-162	(1.51)	
PCB-113/90/101	132	С	PCB-114	[3.52]	J EMPC	PCB-142	(1.53)		PCB-167	5.78	J
PCB-83	11.7		PCB-105	28.9		PCB-132	28.4		PCB-156/157	13.4	JC
PCB-99	56.5		PCB-127	(2.27)		PCB-133	(1.34)		PCB-169	3.03	J
PCB-112	(2.29)		PCB-126	2.94	J						
			Conc.	754					Conc.	371	
			EMPC	865					EMPC	384	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.5)		PCB-174	11.2		PCB-202	2.94	J	PCB-208	(6.39)	
PCB-179	[5.31]	J EMPC	PCB-177	5.08	J	PCB-201	[1.4]	J EMPC	PCB-207	(6.54)	
PCB-184	(1.54)		PCB-181	(1.92)		PCB-204	(1.19)		PCB-206	(14.8)	
PCB-176	(1.65)		PCB-171/173	[4.35]	J EMPC C	PCB-197	(1.29)				
PCB-186	(1.36)		PCB-172	4.34	J	PCB-200	(1.27)		Conc.	0	
PCB-178	(2.16)		PCB-192	(1.49)		PCB-198/199	10.3	J C	EMPC	0	
PCB-175	(2.15)		PCB-180/193	23.9	С	PCB-196	[2.88]	J EMPC			
PCB-187	[13]	EMPC	PCB-191	(1.71)		PCB-203	7.49	J	Deca	Conc.	Qualifiers
PCB-182	(1.8)		PCB-170	13.6		PCB-195	[1.72]	J EMPC	PCB-209	(4.1)	
PCB-183	[6.82]	J EMPC	PCB-190	[2.44]	J EMPC	PCB-194	6.73	J			
PCB-185	[1.28]	J EMPC	PCB-189	(2.6)		PCB-205	(2.9)				
			Conc.	58.1		Conc.	27.5				
			EMPC	91.3		EMPC	33.5				

Client Data		Sample Data		Laboratory Data			
Name: SI	R International Corp	Matrix:	Aqueous	Project No.:	B3246	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	0.86 L	Sample ID:	B3246_16671_PCB_0	02 Date Extracted:	08-May-2019
Date Collected:	26-Apr-2019	pН	5	QC Batch No.:	16671	Date Analyzed:	20-May-2019
Analyte	·	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB		ND	4.74			ES PCB-1	67.4
PCB-81 344'5-TeCB		ND	4.18			ES PCB-3	71.8
PCB-105 233'44'-PeCB		EMPC		1.27	JB	ES PCB-4	79.1
PCB-114 2344'5-PeCB		ND	1.99			ES PCB-15	82.4
PCB-118 23'44'5-PeCB		4.5			JB	ES PCB-19	82.4
PCB-123 23'44'5'-PeCB		ND	1.95			ES PCB-37	77.4
PCB-126 33'44'5-PeCB		ND	1.5			ES PCB-54	68.4
PCB-156/157 233'44'5/233'44'5'-H	xCB	ND	2.28		С	ES PCB-77	73.6
PCB-167 23'44'55'-HxCB		ND	1.53			ES PCB-81	75.8
PCB-169 33'44'55'-HxCB		ND	1.97			ES PCB-104	84.9
PCB-189 233'44'55'-HpCB		ND	2.46			ES PCB-105	93.8
·				•		ES PCB-114	91.1
TEQs (WHO 2005 M/H)						ES PCB-118	91.9
						ES PCB-123	94.5
ND = 0		0.000135		0.000173		ES PCB-126	93.2
ND = 0.5 x DL		0.106		0.106		ES PCB-153	95.8
ND = DL		0.211		0.211		ES PCB-155	93.7
						ES PCB-156/157	109
Totals						ES PCB-167	104
Mono-CB		ND	4.6			ES PCB-169	120
Di-CB		2.31		24		ES PCB-170	86.8
Ггі-СВ		ND	8.21			ES PCB-180	83.9
Tetra-CB		102		115		ES PCB-188	92.1
Penta-CB		17		18.3		ES PCB-189	92.7
Hexa-CB		4.88		13.7		ES PCB-202	98.5
Hepta-CB		3.44				ES PCB-205	105
Octa-CB		ND	2.86			ES PCB-206	117
Nona-CB		ND	10.8			ES PCB-208	97.5
Deca-CB		ND	4.6			ES PCB-209	126
						CS PCB-28	82.5
otal PCB (Mono-Deca)		130		174		CS PCB-111	90.1
,						CS PCB-178	97

Checkcode: 667-905-RKN/C

SGS North America - PCB v0.83

Report Created: 21-May-2019 09:43 Analyst: MS

B3246 page 10 of 19 5/21/2019 10:22 AM

Sample ID:	GP-802	2-GW							N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Aqueous	Project No.:	В3	246	Date Received:		30-Apr-2019
Project ID:	Nore	d Door	Weight/Volume:	olume: 0.86 L S		Sample ID:	B3246_166	71_PCB_002	Date Extracted:		
Date Collected:	26-A	or-2019	рН	5 Q0		QC Batch No.:	16	671	Date Analyzed:		20-May-2019
			Units			Checkcode:	667-90	5-RKN/C	Time Analyzed:		19:56:07
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(4.37)		PCB-19	(9.65)		PCB-54	(3.28)		PCB-72	(3.6)	
PCB-2	(4.5)		PCB-30/18	(6.89)	С	PCB-50/53	(4.68)	С	PCB-68	[12.5]	EMPC
PCB-3	(4.83)		PCB-17	(10.1)		PCB-45	(5.65)		PCB-57	(3.85)	
			PCB-27	(7.2)		PCB-51	39.3		PCB-58	(3.44)	
Conc.	0		PCB-24	(6.99)		PCB-46	(5.91)		PCB-67	(3.51)	
EMPC	0		PCB-16	(10.4)		PCB-52	(4.22)		PCB-63	(4.21)	
			PCB-32	(6.52)		PCB-73	(3.59)		PCB-61/70/74/76	(3.72)	С
Di	Conc.	Qualifiers	PCB-34	(7.01)		PCB-43	(4.56)		PCB-66	(3.59)	
PCB-4	(3.54)		PCB-23	(7.08)		PCB-69/49	(4.15)	С	PCB-55	(3.53)	
PCB-10	(2.62)		PCB-26/29	(6.94)	С	PCB-48	(4.96)		PCB-56	(3.71)	
PCB-9	(2.46)		PCB-25	(5.96)		PCB-44/47/65	63.1	С	PCB-60	(4.45)	
PCB-7	(2.74)		PCB-31	(6.13)		PCB-59/62/75	(3.72)	С	PCB-80	(3.67)	
PCB-6	(2.35)		PCB-28/20	(6.62)	С	PCB-42	(5.42)		PCB-79	(3.42)	
PCB-5	(2.82)		PCB-21/33	(6.79)	С	PCB-41	(6.13)		PCB-78	(3.92)	
PCB-8	2.31	J	PCB-22	(6.13)		PCB-71/40	(4.41)	С	PCB-81	(4.18)	
PCB-14	(2.76)		PCB-36	(6.01)		PCB-64	(3.69)		PCB-77	(4.74)	
PCB-11	[21.7]	B EMPC	PCB-39	(6.65)							
PCB-13/12	(2.73)	С	PCB-38	(6.59)							
PCB-15	(2.55)		PCB-35	(6.85)							
			PCB-37	(6.78)							
Conc.	2.31		Conc.	0					Conc.	102	
EMPC	24		EMPC	0					EMPC	115	
	I.		•				L		•	I.	I
	00	-	5500 Business Drive			Total	s		Conc.	Е	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		2.31		24
	SG		Tel: +1 910 794-1613			Tetra-He	exa		124		147
			www.us.sgs.com			Hepta-D	eca		3.44		3.44
						Mono-D	eca		130		174

Sample ID:	GP-802	-GW							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.55)		PCB-109/119/86/97/125/87	(2.15)	С	PCB-155	(1.29)		PCB-165	(1.4)	
PCB-96	(1.56)		PCB-117	(2.07)		PCB-152	(1.21)		PCB-146	(1.41)	
PCB-103	(2.51)		PCB-116/85	(2.21)	С	PCB-150	(1.38)		PCB-161	(1.19)	
PCB-94	(3.07)		PCB-110	4.82	JB	PCB-136	(1.45)		PCB-153/168	[4.97]	J B EMPC C
PCB-95	3.28	JB	PCB-115	(1.83)		PCB-145	(1.28)		PCB-141	(1.73)	
PCB-100/93	(2.73)	С	PCB-82	(2.71)		PCB-148	(1.66)		PCB-130	(2.03)	
PCB-102	(2.03)		PCB-111	(1.93)		PCB-151/135	(1.66)	С	PCB-137	(1.87)	
PCB-98	(2.74)		PCB-120	(1.57)		PCB-154	(1.57)		PCB-164	(1.15)	
PCB-88	(2.88)		PCB-108/124	(1.89)	С	PCB-144	(1.68)		PCB-163/138/129	4.88	JBC
PCB-91	(2.59)		PCB-107	(1.71)		PCB-147/149	[3.84]	J B EMPC C	PCB-160	(1.35)	
PCB-84	(3.18)		PCB-123	(1.95)		PCB-134	(2.01)		PCB-158	(1.25)	
PCB-89	(2.62)		PCB-106	(1.78)		PCB-143	(1.74)		PCB-128/166	(1.7)	С
PCB-121	(1.75)		PCB-118	4.5	JВ	PCB-139/140	(1.57)	С	PCB-159	(1.3)	
PCB-92	(2.77)		PCB-122	(2.37)		PCB-131	(1.85)		PCB-162	(1.51)	
PCB-113/90/101	4.41	JBC	PCB-114	(1.99)		PCB-142	(1.88)		PCB-167	(1.53)	
PCB-83	(3.39)		PCB-105	[1.27]	J B EMPC	PCB-132	(1.75)		PCB-156/157	(2.28)	С
PCB-99	(1.86)		PCB-127	(1.87)		PCB-133	(1.65)		PCB-169	(1.97)	
PCB-112	(1.7)		PCB-126	(1.5)							
			Conc.	17					Conc.	4.88	
			EMPC	18.3					EMPC	13.7	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.42)		PCB-174	(2.96)		PCB-202	(1.83)		PCB-208	(6.29)	
PCB-179	(1.34)		PCB-177	(3.1)		PCB-201	(2.07)		PCB-207	(6.44)	
PCB-184	(1.46)		PCB-181	(2.88)		PCB-204	(1.78)		PCB-206	(15.3)	
PCB-176	(1.56)		PCB-171/173	(3.35)	С	PCB-197	(1.95)				
PCB-186	(1.28)		PCB-172	(3.27)		PCB-200	(1.91)		Conc.	0	
PCB-178	(2.05)		PCB-192	(2.24)		PCB-198/199	(2.35)	С	EMPC	0	
PCB-175	(3.22)		PCB-180/193	3.44	JC	PCB-196	(2.69)				
PCB-187	(2.63)		PCB-191	(2.57)		PCB-203	(2.16)		Deca	Conc.	Qualifiers
PCB-182	(2.7)		PCB-170	(3.78)		PCB-195	(4.61)		PCB-209	(4.6)	
PCB-183	(2.84)		PCB-190	(2.74)		PCB-194	(4.42)				
PCB-185	(3.51)		PCB-189	(2.46)		PCB-205	(3.88)				
			Conc.	3.44		Conc.	0				
			EMPC	3.44		EMPC	0				

Client Data	Sample Data		Laboratory Data			
Name: SLR International Co		Aqueous	Project No.:	B3246	Date Received:	n/a
Project ID: Nord Door	Weight/Volume:	1.00 L	Sample ID:	MB1_16671_PCB_T	LX Date Extracted:	08-May-2019
Date Collected: n/a	рН	n/a	QC Batch No.:	16671	Date Analyzed:	20-May-2019
Analyte	Conc.	DL	EMPC	Qualifier	Standard	Recovery
. ,	pg/L	pg/L	pg/L			%
PCB-77 33'44'-TeCB	ND	3.53	, ,		ES PCB-1	65
PCB-81 344'5-TeCB	ND	3.43			ES PCB-3	72
PCB-105 233'44'-PeCB	EMPC		1.51	J	ES PCB-4	83.2
PCB-114 2344'5-PeCB	ND	1.46			ES PCB-15	83.7
PCB-118 23'44'5-PeCB	2.41			J	ES PCB-19	87
PCB-123 23'44'5'-PeCB	ND	1.54			ES PCB-37	80
PCB-126 33'44'5-PeCB	ND	1.52			ES PCB-54	83.6
PCB-156/157 233'44'5/233'44'5'-HxCB	ND	1.62		С	ES PCB-77	79.2
PCB-167 23'44'55'-HxCB	ND	1.05			ES PCB-81	78.5
PCB-169 33'44'55'-HxCB	ND	1.43			ES PCB-104	93.5
PCB-189 233'44'55'-HpCB	ND	2.06			ES PCB-105	97.6
·				•	ES PCB-114	98.1
TEQs (WHO 2005 M/H)					ES PCB-118	97.2
					ES PCB-123	98.1
ND = 0	0.0000724		0.000118		ES PCB-126	102
ID = 0.5 x DL	0.0985		0.0985		ES PCB-153	95.9
ID = DL	0.197		0.197		ES PCB-155	93.9
					ES PCB-156/157	112
Totals					ES PCB-167	107
Iono-CB	ND	2.7			ES PCB-169	125
Di-CB			13.3		ES PCB-170	88.9
ri-CB	ND	5.73			ES PCB-180	85.5
etra-CB	ND	3.21			ES PCB-188	98.7
Penta-CB	2.41		12.4		ES PCB-189	93.7
łexa-CB	6.53		8.53		ES PCB-202	101
lepta-CB	ND	1.86			ES PCB-205	108
Octa-CB	ND	1.94			ES PCB-206	117
Iona-CB	ND	7.89			ES PCB-208	99
Deca-CB	ND	3.91			ES PCB-209	129
					CS PCB-28	86.7
otal PCB (Mono-Deca)	8.94		34.2		CS PCB-111	98.1
					CS PCB-178	101

Checkcode: 781-051-SZS/C

SGS North America - PCB v0.83

Report Created: 21-May-2019 09:11 Analyst: MS

B3246 page 13 of 19 5/21/2019 10:22 AM

Sample ID:	Method	Blank	B3246_16671						N	/lethod	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Interr	national Corp	Matrix:		Aqueous	Project No.:	B3	246	Date Received:		n/a
Project ID:	Nor	d Door	Weight/Volume:		1.00 L	Sample ID:	MB1_1667	1_PCB_TLX	Date Extracted:		08-May-2019
Date Collected:		n/a	pН	n/a QC		QC Batch No.:	16	671	Date Analyzed:		20-May-2019
			Units	nits pg/L Ch		Checkcode:	781-05	1-SZS/C	Time Analyzed:		18:01:14
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(2.67)		PCB-19	(6.43)		PCB-54	(2.62)		PCB-72	(2.96)	
PCB-2	(2.54)		PCB-30/18	(4.59)	С	PCB-50/53	(3.4)	С	PCB-68	(3.19)	
PCB-3	(2.73)		PCB-17	(6.7)		PCB-45	(4.1)		PCB-57	(3.16)	
			PCB-27	(4.8)		PCB-51	(3.36)		PCB-58	(2.83)	
Conc.	0		PCB-24	(4.65)		PCB-46	(4.3)		PCB-67	(2.88)	
EMPC	0		PCB-16	(6.94)		PCB-52	(3.06)		PCB-63	(3.45)	
			PCB-32	(4.34)		PCB-73	(2.61)		PCB-61/70/74/76	(3.05)	С
Di	Conc.	Qualifiers	PCB-34	(5.21)		PCB-43	(3.31)		PCB-66	(2.95)	
PCB-4	(2.14)		PCB-23	(5.25)		PCB-69/49	(3.02)	С	PCB-55	(2.9)	
PCB-10	(1.58)		PCB-26/29	(5.15)	С	PCB-48	(3.6)		PCB-56	(3.05)	
PCB-9	(1.66)		PCB-25	(4.42)		PCB-44/47/65	(3.12)	С	PCB-60	(3.65)	
PCB-7	(1.85)		PCB-31	(4.55)		PCB-59/62/75	(2.7)	С	PCB-80	(3.02)	
PCB-6	(1.58)		PCB-28/20	(4.91)	С	PCB-42	(3.94)		PCB-79	(2.81)	
PCB-5	(1.9)		PCB-21/33	(5.04)	С	PCB-41	(4.46)		PCB-78	(3.22)	
PCB-8	(1.55)		PCB-22	(4.55)		PCB-71/40	(3.2)	С	PCB-81	(3.43)	
PCB-14	(1.86)		PCB-36	(4.46)		PCB-64	(2.68)		PCB-77	(3.53)	
PCB-11	[13.3]	EMPC	PCB-39	(4.93)							
PCB-13/12	(1.84)	С	PCB-38	(4.89)							
PCB-15	(1.72)		PCB-35	(5.09)							
			PCB-37	(5.03)							
Conc.	0		Conc.	0					Conc.	0	
EMPC	13.3		EMPC	0					EMPC	0	
	00	6	5500 Business Drive			Totals	S		Conc.	E	MPC
	SG		Wilmington, NC 28405	5, USA		Mono-1	Ггі		0		13.3
			Tel: +1 910 794-1613			Tetra-He	exa		8.94		20.9
			www.us.sgs.com			Hepta-Deca			0		0
						Mono-De	eca		8.94		34.2

Sample ID:	Method	Blank	B3246_16671						N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(1.48)		PCB-109/119/86/97/125/87	(1.7)	С	PCB-155	(1.14)		PCB-165	(1.3)	
PCB-96	(1.49)		PCB-117	(1.64)		PCB-152	(1.07)		PCB-146	(1.31)	
PCB-103	(1.98)		PCB-116/85	(1.74)	С	PCB-150	(1.21)		PCB-161	(1.1)	
PCB-94	(2.42)		PCB-110	[2.65]	J EMPC	PCB-136	(1.28)		PCB-153/168	3.28	JC
PCB-95	[2.52]	J EMPC	PCB-115	(1.44)		PCB-145	(1.13)		PCB-141	(1.6)	
PCB-100/93	(2.15)	С	PCB-82	(2.14)		PCB-148	(1.54)		PCB-130	(1.88)	
PCB-102	(1.6)		PCB-111	(1.53)		PCB-151/135	(1.54)	С	PCB-137	(1.74)	
PCB-98	(2.16)		PCB-120	(1.24)		PCB-154	(1.46)		PCB-164	(1.07)	
PCB-88	(2.28)		PCB-108/124	(1.49)	С	PCB-144	(1.56)		PCB-163/138/129	3.25	JC
PCB-91	(2.04)		PCB-107	(1.35)		PCB-147/149	[2]	J EMPC C	PCB-160	(1.26)	
PCB-84	(2.51)		PCB-123	(1.54)		PCB-134	(1.87)		PCB-158	(1.16)	
PCB-89	(2.06)		PCB-106	(1.4)		PCB-143	(1.61)		PCB-128/166	(1.17)	С
PCB-121	(1.38)		PCB-118	2.41	J	PCB-139/140	(1.46)	С	PCB-159	(0.893)	
PCB-92	(2.19)		PCB-122	(1.74)		PCB-131	(1.72)		PCB-162	(1.04)	
PCB-113/90/101	[3.31]	J EMPC C	PCB-114	(1.46)		PCB-142	(1.75)		PCB-167	(1.05)	
PCB-83	(2.67)		PCB-105	[1.51]	J EMPC	PCB-132	(1.63)		PCB-156/157	(1.62)	С
PCB-99	(1.47)		PCB-127	(1.46)		PCB-133	(1.53)		PCB-169	(1.43)	
PCB-112	(1.34)		PCB-126	(1.52)							
			Conc.	2.41					Conc.	6.53	
			EMPC	12.4					EMPC	8.53	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(1.14)		PCB-174	(1.93)		PCB-202	(1.13)		PCB-208	(4.59)	
PCB-179	(1.08)		PCB-177	(2.02)		PCB-201	(1.28)		PCB-207	(4.7)	
PCB-184	(1.17)		PCB-181	(1.88)		PCB-204	(1.1)		PCB-206	(11.2)	
PCB-176	(1.25)		PCB-171/173	(2.19)	С	PCB-197	(1.2)				
PCB-186	(1.03)		PCB-172	(2.14)		PCB-200	(1.18)		Conc.	0	
PCB-178	(1.64)		PCB-192	(1.46)		PCB-198/199	(1.45)	С	EMPC	0	
PCB-175	(2.1)		PCB-180/193	(1.78)	С	PCB-196	(1.66)				
PCB-187	(1.72)		PCB-191	(1.68)		PCB-203	(1.33)		Deca	Conc.	Qualifiers
PCB-182	(1.76)		PCB-170	(2.73)		PCB-195	(3.27)		PCB-209	(3.91)	
PCB-183	(1.85)		PCB-190	(1.98)		PCB-194	(3.14)				
PCB-185	(2.29)		PCB-189	(2.06)		PCB-205	(2.75)				
			Conc.	0		Conc.	0				
			EMPC	0		EMPC	0				

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8A

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190520S09 Analysis Date: 20-MAY-2019 17:03:47

Lab ID: OPR1_16671_PCB

	SPIKE		RANGE			
NATIVE ANALYTES	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
PCB-1 2-MoCB	50	108	60	_	135	Υ
PCB-3 4-MoCB	50	108	60	-	135	Υ
PCB-4 22'-DiCB	50	110	60	-	135	Υ
PCB-15 44'-DiCB	50	102	60	-	135	Υ
PCB-19 22'6-TrCB	50	106	60	-	135	Υ
PCB-37 344'-TrCB	50	102	60	-	135	Υ
PCB-54 22'66'-TeCB	50	104	60	-	135	Υ
PCB-77 33'44'-TeCB	50	100	60	-	135	Υ
PCB-81 344'5-TeCB	50	90.6	60	-	135	Υ
PCB-104 22'466'-PeCB	50	93.7	60	-	135	Υ
PCB-105 233'44'-PeCB	50	99.3	60	-	135	Υ
PCB-114 2344'5-PeCB	50	96.5	60	-	135	Υ
PCB-118 23'44'5-PeCB	50	96.6	60	-	135	Υ
PCB-123 23'44'5'-PeCB	50	93.3	60	-	135	Υ
PCB-126 33'44'5-PeCB	50	116	60	-	135	Υ
PCB-155 22'44'66'-HxCB	50	88.7	60	-	135	Υ
PCB-156/157HxCB	100	97.2	60	-	135	Υ
PCB-167 23'44'55'-HxCB	50	99.6	60	-	135	Υ
PCB-169 33'44'55'-HxCB	50	109	60	-	135	Υ
PCB-188 22'34'566'-HpCB	50	99.6	60	-	135	Υ
PCB-189 233'44'55'-HpCB	50	98.2	60	-	135	Υ
PCB-202 22'33'55'66'-OcCB	50	95	60	-	135	Υ
PCB-205 233'44'55'6-OcCB	50	102	60	-	135	Υ
PCB-206 22'33'44'55'6-NoCB	50	108	60	-	135	Υ
PCB-208 22'33'455'66'-NoCB	50	99.2	60	-	135	Υ
PCB-209 DeCB	50	89	60	-	135	Υ

Contract-required recovery limits for OPR as specified in Table 6, Method 1668C.

Processed: 21 May 2019 09:11 Analyst: MS

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8B

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190520S09 Analysis Date: 20-MAY-2019 17:03:47

Lab ID: OPR1_16671_PCB

	SPIKE		RANGE			
LABELED STANDARDS	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
ES PCB-1	100	65.4	15	-	145	Υ
ES PCB-3	100	68.6	15	-	145	Υ
ES PCB-4	100	79.5	15	-	145	Υ
ES PCB-15	100	75.4	15	-	145	Υ
ES PCB-19	100	79.7	15	-	145	Υ
ES PCB-37	100	73.8	15	-	145	Υ
ES PCB-54	100	72.1	15	-	145	Υ
ES PCB-77	100	73.3	40	-	145	Υ
ES PCB-81	100	71.3	40	-	145	Υ
ES PCB-104	100	91.9	40	-	145	Υ
ES PCB-105	100	96.2	40	-	145	Υ
ES PCB-114	100	93.4	40	-	145	Υ
ES PCB-118	100	92.4	40	-	145	Υ
ES PCB-123	100	94.1	40	-	145	Υ
ES PCB-126	100	95.2	40	-	145	Υ
ES PCB-153	100	98	40	-	145	Υ
ES PCB-155	100	94.7	40	-	145	Υ
ES PCB-156/157	200	111	40	-	145	Υ
ES PCB-167	100	103	40	-	145	Υ
ES PCB-169	100	120	40	-	145	Υ
ES PCB-170	100	89.9	40	-	145	Υ
ES PCB-180	100	82.5	40	-	145	Υ
ES PCB-188	100	94.3	40	-	145	Υ
ES PCB-189	100	94.9	40	-	145	Υ
ES PCB-202	100	101	40	-	145	Υ
ES PCB-205	100	106	40	-	145	Υ
ES PCB-206	100	120	40	-	145	Υ
ES PCB-208	100	99.7	40	-	145	Υ
ES PCB-209	100	132	40	-	145	Υ
CLEANUP STANDARDS						
CS PCB-28	100	80	15	-	145	Υ
CS PCB-111	100	88.7	40	-	145	Υ
CS PCB-178	100	94.6	40	-	145	Υ

Processed: 21 May 2019 09:11 Analyst: MS

Sample Receipt Notification

5500 Business Drive Wilmington, NC 28405 USA Tel: 910 794-1613 Toll Free: 866 846-8290 Fax: 910 794-3919 Project Manager: Amy Boehm
Receipt Date & Time: 30-Apr-19 at 11:48

AP Project name: B3246
Requested TAT: 21 days
Projected due date: 21-May-19
Matrix: Aqueous
Phone#: 910-794-1613

Email Address: Amy.Boehm@sgs.com

Company Contact: Chris Kramer

Company: SLR International Corp

Project Name & Site: Nord Door

Project PO#: 108.00228.00059

QAAP/Contract #: n/a

Requested Analysis: Method 1668C
Phone#: 503-723-4423

Email Address: <u>ckramer@slrconsulting.com</u>

Client Smp ID	AP Smp ID	Sample Condition & Notes	Quantity	Size	Sampling Date	Sampling Time	Received Temp	Container #	Shipping #
GP-801-GW	B3246_001	Water	2	1-Liter Amber	26-Apr-19	09:00	0.9	1	7869 4161 1768
GP-802-GW	B3246_002**	Water	2	1-Liter Amber	26-Apr-19	16:35	0.9	1	7869 4161 1768
					<u> </u>		·		

Preservation Type:

Sample Seals:

No

Notes/Comments:

*Possible follow-up D/F analysis. **Sample 002 id on COC does not match id on sample, logged according sample label.

Any un-extracted sample will be stored for 90 days from reporting date. Additional storage fees may apply for any samples stored longer than 90 days.

Received by: Ashley Owens Logged in by: Ashley Owens AK 30 Apr 19

All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via: http://www.sgs.com/terms and conditions.htm

B3246 page 18 of 19

B3246

	PROJECT INFO PROJECT: Nord Doar RO. #: 106.00228.0059					SPE	CIAL	INST	RUCT	TONS	/ COMN	/IENTS				SEND DOCUMENTATION COMPANY: SLR		
	QUOTE #:					PRI	SERV	ATIVE			i					ADDRESS I HAD B	lankarship Rd	, ste 40
	SITE REF:														% <u>.</u>	PHONE: 503 - 723	5-4423 EMAIL: CACE	emer@ 5)rcangulttry
	TURN AROUND TIME: Standard	1 D	AT													INVOICE TO ACHEC	< IF SAME)	com
	REPORT LEVEL: Level 1 Leve		evel IV				<u> </u>									COMPANY:	,	
	SPECIAL DELIVERABLES:					ANA	ALYSI	S & M	ETHO	D	i _I		T			CONTACT:		
	☐ DoD ☐ EDD/Version: ☐ State of Origin:				•		3									ADDRESS:		
							77				4					PHONE:	EMAIL:	
						PCB	Drawn/							MS	MS/			-
-C)	SAMPLE ID / DESCRIPTION		TIME	ļ	MATRIX		රි							MSD	DUP	REMARKS		
	GR-401-GW	4/24/19		2	water	-										Possible Followay	Dioxin / Fura	on analysis
00Z	68-401-6W *	4/24/19	1635	2	water	X										11 . 11	11 10	
	* sample label reads														 			
	GP-802-6W										i							
	ak 4130/19																	
											. 3							
ŀ												_						
-																		
	COLLECTED/RELINQUISHED BY (1):																	
					DATE:	TIMI		REC	EIVED	BY:						RECEIVED BY LABORATO		TIME:
-	Atm table				4/29/19							-				ashleyou	us 4/30/10	1 11:48
	RELINQUISHED BY (2):				DATE:	TIME	Ē:	REC	EIVED	BY:	!					COOLER SEA	ITACT 🗌 BROKEN	ABSENT 4120/19
																CONTAINER SEALS: 🗍 //	NTACT 🗆 BROKEN	N Z ABSENT
	RELINQUISHED BY (3):				DATE:	TIME	<u>:</u> :	REC	EIVED	BY:	1					CARRIER: FEDEX	TEMP: ºC €) 9°
L											1					TRACKING #: 7869	KOFF LOUL	

FINAL LAB REPORT

Prepared by Prepared for

SGS NORTH AMERICA

This report is approved by

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please do not hesitate to contact us.

The management and staff of SGS welcomes customer feedback, both positive and negative, as we continually improve our services. Please visit our web site at www.sgs.com/ultratrace and click on the 'Email Us' link or go to our survey here. Thank you for choosing SGS.

Any holder of this document is advised that it is a final submission and supersedes and voids all prior reports with the same report or identification number. The information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility in conducting the work herein is to its Client and does not exonerate parties to a transaction from exercising all of their rights and obligations under such applicable transaction documents. This report may be reproduced in full only. The Company expressly disclaims any and all liability for the Client's use of or reliance upon the data contained herein. Any alteration, forgery or falsification of the content or appearance of this document which is not expressly authorized by the Company is unlawful and offenders may be prosecuted to the fullest extent of the law.

Results reported relate only to the items tested.

SGS North America Inc. | Environment, Health & Safety 5500 Business Drive Wilmington, NC 28405 +1 910 350 1903 | +1 866 846 8290 www.sgs.com

PROJECT INFORMATION SUMMARY (When applicable, see QC Annotations for details)

Client Project
SGS Project #
Analytical Protocol(s)
No. Samples Submitted
Additional QC Sample(s)
No. Laboratory Method Blanks
No. OPRs / Batch CS3
Date Received
Condition Received
Temperature upon Receipt (°C)
Extraction within Holding Time
Analysis within Holding Time

QC ANNOTATIONS:

1. Please see Appendices attached for data qualifier/attribute and lab identifier descriptions which may be contained in the project.

APPENDIX A: GENERAL DATA QUALIFIERS / DATA ATTRIBUTES

В	The analyte was found in the method blank, at a concentration that was at least 10% of the concentration in the sample.
С	Two or more congeners co-elute. In EDDs, C denotes the lowest IUPAC congener in a co-elution group and additional co-eluters for the group are shown with the number of the lowest IUPAC co-eluter.
E	The reported concentration exceeds the calibration range (upper point of the calibration curve) and is an estimated value.
EMPC	Represents an Estimated Maximum Possible Concentration. EMPCs arise in cases where the signal/noise ratio is not sufficient for peak identification (the determined ion-abundance ratio is outside the allowed theoretical range), or where there is a co-eluting interference.
H/h	If the standard recovery is below the method or SOP specified value "H" is assigned. If the obtained value is less than half the specified value "h" is assigned.
J	Indicates that an analyte has a concentration below the reporting limit (lowest point of the calibration curve) and is an estimated value.
ND	Indicates a non-detect.
NR or R	Indicates a value that is not reportable.
PR	Due to interference, the associated congener is poorly resolved.
QI	Indicates the presence of a quantitative interference.
SI	Denotes "Single Ion Mode" and is utilized for PCBs where the secondary ion trace has a significantly elevated noise level due to background PFK. Responses for such peaks are calculated using an EMPC approach based solely on the primary ion area(s) and may be considered estimates.
U	The analyte was not detected. The estimated detection limit (EDL) may be reported for this analyte.
V	The labeled standard recovery was found to be outside of the method control limits.

APPENDIX B: DRBC/TMDL SPECIFIC DATA QUALIFIERS / DATA ATTRIBUTES

J	The reported result is an estimate. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL).
U	The analyte was not detected in the sample at the estimated detection limit (EDL).
E	The reported concentration is an estimate. The value exceeds the upper calibration range (upper point of the calibration curve).
D	Dilution Data. Result was obtained from the analysis of a dilution.
В	Analyte found in the sample and associated method blank.
С	Co-eluting congener
Схх	Co-elutes with the indicated congener, data is reported under the lowest IUPAC congener. 'Xx' denotes the IUPAC number with the lowest numerical designated congener.
NR	Analyte is not reportable because of problems in sample preparation or analysis.
٧	Labeled standard recovery is not within method control limits.
Х	Results from re-injection/repeat/second-column analysis.
EMPC	Estimated maximum possible concentration. Indicates that a peak is identified but did not meet the method specified ion-abundance ratio.

APPENDIX C: LAB IDENTIFIERS

AR	Indicates use of the archived portion of the sample extract.
CU	Indicates a sample that required additional clean-up prior to MS injection/processing.
D	Indicates a dilution of the sample extract. The number that follows the "D" indicates the dilution factor.
DE	Indicates a dilution performed with the addition of ES (extraction standard) solution.
DUP	Designation for a duplicate sample.
MS	Designation for a matrix spike.
MSD	Designation for a matrix spike duplicate.
RJ	Indicates a reinjection of the sample extract.
S	Indicates a sample split. The number that follows the "S" indicates the split factor.

SGS CERTIFICATIONS

Alaska	17-012
Arkansas	18-042-0
California (ELAP)	ELAP Cert #2914
CLIA	34D1013708
Connecticut	PH-0258
USDA Soil Permit	P330-17-00055
American Association for Laboratory Accreditation (A2LA)	2726.01 (ISO 17025:2005, 2009 TNI, DoD ELAP QSM 5.1)
Florida DOH	E87634
Louisiana DEQ	4115
Louisiana DOH	LA031
Maine	2018018
Massachusetts	M-NC919
Minnesota (Primary NELAP For Method 23)	1535636
Mississippi	Reciprocity
Montana	0106
New Hampshire	208318 & 208518
New Jersey	NC100
New York	11685
North Carolina DEQ	481
North Dakota	R-197
Oregon	NC200002
Pennsylvania	68-03675
South Carolina	99029002
Texas	T104704260
US Coast Guard	16714/159.317/SGS
Vermont	VT-87634
Virginia	10101
Washington	C913
West Virginia	293
au 00 Mar 2010	

Rev. 06-Mar-2019

B3245 page 6 of 52

Sample ID	: GP-MW-11-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory D	<u>ata</u>		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	12.13 g	1	D B3245_16666_DF_001	Date Extracted:	07-May-2019
Date Collected:	25-Apr-2019	% Solid:	74.2 %	QC Batch No:		Date Analyzed:	13-May-2019
	- 1	Split:	_	Dilution:	-	Time Analyzed:	17:46:56
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	EMPC	(1-3-3)	0.33	J	ES 2378-TCDD	82.9	1333
12378-PeCDD	ND	0.211			ES 12378-PeCDD	67	
123478-HxCDD	EMPC		0.978	J	ES 123478-HxCDD	82.7	
123678-HxCDD	EMPC		5.49		ES 123678-HxCDD	85.8	
123789-HxCDD	EMPC		1.52	J	ES 123789-HxCDD	78.6	
1234678-HpCDD	149				ES 1234678-HpCDD	63.7	
OCDD	1,570				ES OCDD	43.1	
	.,0.0						
2378-TCDF	ND	0.246			ES 2378-TCDF	78.8	
12378-PeCDF	0.482			J	ES 12378-PeCDF	74	
23478-PeCDF	0.908			J	ES 23478-PeCDF	75	
123478-HxCDF	3.74				ES 123478-HxCDF	77.1	
123678-HxCDF	1.67			J	ES 123678-HxCDF	81.6	
234678-HxCDF	1.66			J	ES 234678-HxCDF	82.5	
123789-HxCDF	ND	0.271			ES 123789-HxCDF	68.5	
1234678-HpCDF	16.6				ES 1234678-HpCDF	81.6	
1234789-HpCDF	EMPC		0.684	J	ES 1234789-HpCDF	61	
OCDF	EMPC		11.8		ES OCDF	41.9	
Totals					Standard	CS Recoveries	•
					CS 37Cl-2378-TCDD	85.3	
Total TCDD	0.59		1.19		CS 12347-PeCDD	82.1	
Total PeCDD	1.85		1.85		CS 12346-PeCDF	84.8	
Total HxCDD	16.5		25.2		CS 123469-HxCDF	97.4	
Total HpCDD	264		264		CS 1234689-HpCDF	83.9	
Total TCDF	1.83		3.06				
Total PeCDF	16.4		16.6				
Total HxCDF	46.6		47.8				
Total HpCDF	43.6		45.1				
Total PCDD/Fs	1,960		1,980				
WHO-2005 TEQs							
TEQ: ND=0	3.12		4.26		000	55	500 Business Drive
TEQ: ND=DL/2	3.25	0.388	4.39		SGS	Wilmingto	on, NC 28405, USA
TEQ: ND=DL	3.38	0.776	4.52		OUO		www.us.sgs.com
					Tel: ·	+1 910 794-1613; Toll-	Free 866 846-8290

Checkcode: 510-733-NZF B3245 page 7 of 52

Sample ID	: GP-MW-12-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory D	<u>ata</u>		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	14.69 g	Lab Sample ID	D B3245_16666_DF_002	Date Extracted:	07-May-2019
Date Collected:	25-Apr-2019	% Solid:	89.3 %	QC Batch No:		Date Analyzed:	13-May-2019
	•	Split:	-	Dilution:	-	Time Analyzed:	18:34:57
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.154			ES 2378-TCDD	80.3	
12378-PeCDD	ND	0.17			ES 12378-PeCDD	76.1	
123478-HxCDD	ND	0.0924			ES 123478-HxCDD	78.2	
123678-HxCDD	EMPC		0.36	J	ES 123678-HxCDD	79.4	
123789-HxCDD	0.307			J	ES 123789-HxCDD	78	
1234678-HpCDD	5.61				ES 1234678-HpCDD	63.1	
OCDD	40.5				ES OCDD	43.1	
2378-TCDF	EMPC		0.25	J	ES 2378-TCDF	85.6	
12378-PeCDF	ND	0.165	0.20	9	ES 12378-PeCDF	78.1	
23478-PeCDF	ND	0.154			ES 23478-PeCDF	80.2	
123478-HxCDF	ND	0.0684			ES 123478-HxCDF	77	
123678-HxCDF	ND	0.0693			ES 123678-HxCDF	78.4	
234678-HxCDF	ND	0.0699			ES 234678-HxCDF	78.2	
123789-HxCDF	ND	0.0947			ES 123789-HxCDF	72.3	
1234678-HpCDF	EMPC	0.0017	0.788	J	ES 1234678-HpCDF	68.7	
1234789-HpCDF	ND	0.158	0.700	Ü	ES 1234789-HpCDF	62.3	
OCDF	2.33	0.100		J	ES OCDF	45.3	
Totals	2.00			J	Standard	CS Recoveries	<u> </u>
					CS 37Cl-2378-TCDD	96.4	
Total TCDD	1.18		1.55		CS 12347-PeCDD	95.7	
Total PeCDD	ND		1.08		CS 12346-PeCDF	93.4	
Total HxCDD	1.86		3.33		CS 123469-HxCDF	100	
Total HpCDD	20		20		CS 1234689-HpCDF	84.1	
	0.470		0.004				
Total TCDF	0.172		0.884				
Total PeCDF	ND		1.04				
Total HxCDF	1.72		1.72				
Total HpCDF	ND		2.33				
Total PCDD/Fs	67.8		74.8				
WHO-2005 TEQs							
TEQ: ND=0	0.0996		0.168		000		500 Business Drive
TEQ: ND=DL/2	0.308	0.223	0.377		SGS	Wilmingto	on, NC 28405, USA
TEQ: ND=DL	0.516	0.447	0.585				www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	Free 866 846-8290

Sample ID	: GP-MW-12-	SS-18-19				Metho	d 1613B
Client Data		Sample Data		Laboratory Da	ata_		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID		Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	9.35 g	-	B3245_16666_DF_003		07-May-2019
Date Collected:	25-Apr-2019	% Solid:	61.6 %	QC Batch No:		Date Analyzed:	13-May-2019
	,	Split:	-	Dilution:	-	Time Analyzed:	19:24:32
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	EMPC		0.596		ES 2378-TCDD	77.6	
12378-PeCDD	1.41			J	ES 12378-PeCDD	69.5	
123478-HxCDD	EMPC		1.72	J	ES 123478-HxCDD	74	
123678-HxCDD	EMPC		3.95		ES 123678-HxCDD	77.8	
123789-HxCDD	EMPC		1.96	J	ES 123789-HxCDD	78.3	
1234678-HpCDD	31.4				ES 1234678-HpCDD	62.9	
OCDD	111				ES OCDD	40.2	
2378-TCDF	1.78				ES 2378-TCDF	80.1	
12378-PeCDF	1.11			J	ES 12378-PeCDF	75.6	
23478-PeCDF	1.49			J	ES 23478-PeCDF	76	
123478-HxCDF	EMPC		1.17	J	ES 123478-HxCDF	78.4	
123678-HxCDF	EMPC		0.85	J	ES 123678-HxCDF	77.9	
234678-HxCDF	0.993		0.00	J	ES 234678-HxCDF	79	
123789-HxCDF	ND	0.196		ŭ	ES 123789-HxCDF	69.7	
1234678-HpCDF	4.87	0.100			ES 1234678-HpCDF	66.7	
1234789-HpCDF	EMPC		0.292	J	ES 1234789-HpCDF	63.7	
OCDF	2.15		0.202	J	ES OCDF	43	
Totals	2.10				Standard	CS Recoveries	
					CS 37CI-2378-TCDD	86.7	
Total TCDD	45.2		53		CS 12347-PeCDD	84.2	
Total PeCDD	50.6		51.5		CS 12346-PeCDF	88	
Total HxCDD	49.6		63.6		CS 123469-HxCDF	95.4	
Total HpCDD	63.9		63.9		CS 1234689-HpCDF	76.2	
Total TCDF	36.7		39.1				
Total PeCDF	20.1		20.9				
Total HxCDF	3.98		10.6				
Total HpCDF	7.58		7.87				
Total PCDD/Fs	391		424				
WHO-2005 TEQs							
TEQ: ND=0	2.56		4.12			55	500 Business Drive
TEQ: ND=DL/2	2.57	0.233	4.13		SGS		on, NC 28405, USA
TEQ: ND=DL	2.58	0.465	4.14		000	3**	www.us.sgs.com
					Tel: -	+1 910 794-1613; Toll-	=

Checkcode: 163-784-KJP B3245 page 9 of 52

Sample ID	: GP-MW-13-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory D	ata		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID		Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	13.81 g		B3245_16666_DF_004		07-May-2019
Date Collected:	25-Apr-2019	% Solid:	84.6 %	QC Batch No:		Date Analyzed:	13-May-2019
	•	Split:	-	Dilution:	-	Time Analyzed:	20:21:49
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.0744			ES 2378-TCDD	81.4	
12378-PeCDD	ND	0.239			ES 12378-PeCDD	73.7	
123478-HxCDD	ND	0.136			ES 123478-HxCDD	79.3	
123678-HxCDD	EMPC		0.424	J	ES 123678-HxCDD	82.8	
123789-HxCDD	EMPC		0.198	J	ES 123789-HxCDD	83.5	
1234678-HpCDD	5.56				ES 1234678-HpCDD	66.6	
OCDD	55.6				ES OCDD	44.4	
2378-TCDF	0.246			J	ES 2378-TCDF	85.1	
12378-PeCDF	ND	0.0967			ES 12378-PeCDF	81.7	
23478-PeCDF	ND	0.1			ES 23478-PeCDF	78.5	
123478-HxCDF	ND	0.102			ES 123478-HxCDF	80	
123678-HxCDF	ND	0.098			ES 123678-HxCDF	83	
234678-HxCDF	ND	0.0985			ES 234678-HxCDF	83.7	
123789-HxCDF	ND	0.121			ES 123789-HxCDF	76	
1234678-HpCDF	EMPC		1.43	J	ES 1234678-HpCDF	73.3	
1234789-HpCDF	ND	0.183			ES 1234789-HpCDF	66.4	
OCDF	3.66				ES OCDF	48.6	
Totals					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	96.1	
Total TCDD	0.727		1.94		CS 12347-PeCDD	98.1	
Total PeCDD	ND		0.632		CS 12346-PeCDF	103	
Total HxCDD	1.3		3.96		CS 123469-HxCDF	111	
Total HpCDD	16		16		CS 1234689-HpCDF	92.6	
Total TCDF	0.487		1.26				
Total PeCDF	ND		0.415				
Total HxCDF	1.91		1.91				
Total HpCDF	3.57		5				
Total PCDD/Fs	83.2		90.4				
WHO-2005 TEQs							
TEQ: ND=0	0.098		0.174		000	55	00 Business Drive
TEQ: ND=DL/2	0.3	0.221	0.376		SGS	Wilmingto	n, NC 28405, USA
TEQ: ND=DL	0.501	0.443	0.578		OUG		www.us.sgs.com
					Tel: -	+1 910 794-1613; Toll-	Free 866 846-8290

Sample ID	: GP-MW-14-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory Da	ata_		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	: B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	14.69 g	Lab Sample ID	B3245_16666_DF_005	Date Extracted:	07-May-2019
Date Collected:	25-Apr-2019	% Solid:	89.3 %	QC Batch No:	16666	Date Analyzed:	14-May-2019
	•	Split:	-	Dilution:	-	Time Analyzed:	1:31:37
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.0999			ES 2378-TCDD	93.5	
12378-PeCDD	ND	0.139			ES 12378-PeCDD	75.7	
123478-HxCDD	ND	0.138			ES 123478-HxCDD	81.5	
123678-HxCDD	EMPC		0.352	J	ES 123678-HxCDD	83.1	
123789-HxCDD	ND	0.142			ES 123789-HxCDD	80.5	
1234678-HpCDD	5.42				ES 1234678-HpCDD	83.7	
OCDD	41.9				ES OCDD	46.9	
2378-TCDF	0.164			J	ES 2378-TCDF	93.1	
12378-PeCDF	0.164 ND	0.102		J	ES 12378-PeCDF	85.7	
23478-PeCDF	ND ND	0.102			ES 23478-PeCDF	86.8	
123478-HxCDF	ND	0.108			ES 123478-HxCDF	81.4	
123678-HxCDF	ND ND	0.0928			ES 123678-HxCDF	83.3	
234678-HxCDF	ND	0.0926			ES 234678-HxCDF	82.3	
123789-HxCDF	ND ND	0.115			ES 123789-HxCDF	79.2	
1234678-HpCDF	EMPC	0.115	0.983	J	ES 1234678-HpCDF	78.7	
1234789-HpCDF	ND ND	0.0641	0.903	3	ES 1234789-HpCDF	73.7	
OCDF	3.18	0.0041		J	ES OCDF	54	
Totals	0.10				Standard	CS Recoveries	
					CS 37CI-2378-TCDD	101	
Total TCDD	1		1.41		CS 12347-PeCDD	93.1	
Total PeCDD	0.659		0.849		CS 12346-PeCDF	104	
Total HxCDD	1.96		3.1		CS 123469-HxCDF	106	
Total HpCDD	12.7		12.7		CS 1234689-HpCDF	94.2	
	0.404						
Total TCDF	0.164		0.327				
Total PeCDF	ND		0.297				
Total HxCDF	1.44		1.44				
Total HpCDF	2.73		3.71				
Total PCDD/Fs	65.7		68.9				
WHO-2005 TEQs			_				
TEQ: ND=0	0.0841		0.129		COC		500 Business Drive
TEQ: ND=DL/2	0.256	0.185	0.301		SGS	Wilmingto	n, NC 28405, USA
TEQ: ND=DL	0.427	0.369	0.472				www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	Free 866 846-8290

Sample ID	: GP-MW-16-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory Da	ata		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID		Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	14.20 g	· ·	B3245_16666_DF_007	Date Extracted:	07-May-2019
Date Collected:	26-Apr-2019	% Solid:	86.8 %	QC Batch No:		Date Analyzed:	14-May-2019
		Split:	-	Dilution:	-	Time Analyzed:	2:19:34
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	EMPC	(1 0 0)	0.27	J	ES 2378-TCDD	87.2	
12378-PeCDD	1.06			J	ES 12378-PeCDD	76.3	
123478-HxCDD	EMPC		1.43	J	ES 123478-HxCDD	84.1	
123678-HxCDD	10.6				ES 123678-HxCDD	81.4	
123789-HxCDD	3.96				ES 123789-HxCDD	82.3	
1234678-HpCDD	250				ES 1234678-HpCDD	73.9	
OCDD	1,680				ES OCDD	51.4	
2378-TCDF	1.15				ES 2378-TCDF	81.3	
12378-PeCDF	0.877			J	ES 12378-PeCDF	76.4	
23478-PeCDF	1.11			J	ES 23478-PeCDF	81	
123478-HxCDF	3.18				ES 123478-HxCDF	85.2	
123678-HxCDF	3.57				ES 123678-HxCDF	87.9	
234678-HxCDF	5.59				ES 234678-HxCDF	88.4	
123789-HxCDF	ND	0.182			ES 123789-HxCDF	82.9	
1234678-HpCDF	60.6				ES 1234678-HpCDF	81	
1234789-HpCDF	3.1				ES 1234789-HpCDF	70.8	
OCDF	115				ES OCDF	53.2	
Totals					Standard	CS Recoveries	
					CS 37Cl-2378-TCDD	97.5	
Total TCDD	13.2		14.5		CS 12347-PeCDD	96.3	
Total PeCDD	18.1		19.5		CS 12346-PeCDF	107	
Total HxCDD	119		121		CS 123469-HxCDF	110	
Total HpCDD	680		680		CS 1234689-HpCDF	93.9	
Total TCDF	43.3		45.6				
Total PeCDF	81.9		82.2				
Total HxCDF	112		113				
Total HpCDF	167		169				
Total PCDD/Fs	3,030		3,040				
WHO-2005 TEQs							
TEQ: ND=0	7.89		8.31			55	00 Business Drive
TEQ: ND=DL/2	7.9	0.186	8.32		SGS	Wilmingto	n, NC 28405, USA
TEQ: ND=DL	7.91	0.371	8.33		OUO	-	www.us.sgs.com
					Tel: -	+1 910 794-1613; Toll-	-

Sample ID	: GP-MW-17-	SS				Metho	d 1613B
Client Data		Sample Data		Laboratory Da	ata_		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	: B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	13.52 g		B3245_16666_DF_008	Date Extracted:	07-May-2019
Date Collected:	26-Apr-2019	% Solid:	83.5 %	QC Batch No:	16666	Date Analyzed:	14-May-2019
	'	Split:	_	Dilution:	-	Time Analyzed:	3:09:12
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.144	(1 0 0)		ES 2378-TCDD	89.1	
12378-PeCDD	ND	0.217			ES 12378-PeCDD	78.8	
123478-HxCDD	ND	0.198			ES 123478-HxCDD	83.3	
123678-HxCDD	EMPC		0.644	J	ES 123678-HxCDD	86.3	
123789-HxCDD	EMPC		0.294	J	ES 123789-HxCDD	85.6	
1234678-HpCDD	17.2				ES 1234678-HpCDD	71.1	
OCDD	233				ES OCDD	41.4	
2378-TCDF	ND	0.183			ES 2378-TCDF	90.2	
12378-PeCDF	ND	0.109			ES 12378-PeCDF	83.9	
23478-PeCDF	ND	0.113			ES 23478-PeCDF	86.2	
123478-HxCDF	0.361			J	ES 123478-HxCDF	88.1	
123678-HxCDF	EMPC		0.268	J	ES 123678-HxCDF	89	
234678-HxCDF	EMPC		0.414	J	ES 234678-HxCDF	88.1	
123789-HxCDF	ND	0.233			ES 123789-HxCDF	79.5	
1234678-HpCDF	6.01				ES 1234678-HpCDF	81.8	
1234789-HpCDF	0.321			J	ES 1234789-HpCDF	70.6	
OCDF	19.4				ES OCDF	50.8	
Totals					Standard	CS Recoveries	
					CS 37Cl-2378-TCDD	95.3	
Total TCDD	2.08		2.21		CS 12347-PeCDD	93.1	
Total PeCDD	1.17		1.52		CS 12346-PeCDF	98.1	
Total HxCDD	6.29		7.69		CS 123469-HxCDF	109	
Total HpCDD	39.5		39.5		CS 1234689-HpCDF	90.8	
Total TCDF	0.363		0.743				
Total PeCDF	2.28		2.42				
Total HxCDF	8.14		8.82				
Total HpCDF	20.4		20.4				
Total PCDD/Fs	332		335				
WHO-2005 TEQs							
TEQ: ND=0	0.347		0.509			55	500 Business Drive
TEQ: ND=DL/2	0.577	0.278	0.739		SGS		on, NC 28405, USA
TEQ: ND=DL	0.806	0.556	0.968		000		www.us.sgs.com
	2.300				Tel:	+1 910 794-1613; Toll-	-

Sample ID	: GP-801-SS					Metho	d 1613B
Client Data		Sample Data		Laboratory D	<u>ata</u>		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	13.90 g	Lab Sample ID	D B3245_16666_DF_009	Date Extracted:	07-May-2019
Date Collected:	26-Apr-2019	% Solid:	83.3 %	QC Batch No:	16666	Date Analyzed:	14-May-2019
	•	Split:	-	Dilution:	-	Time Analyzed:	3:58:50
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.0799	(1 0 0)		ES 2378-TCDD	90.7	
12378-PeCDD	EMPC		0.194	J	ES 12378-PeCDD	81.8	
123478-HxCDD	0.299			J	ES 123478-HxCDD	84.7	
123678-HxCDD	2				ES 123678-HxCDD	86.9	
123789-HxCDD	0.571			J	ES 123789-HxCDD	83.3	
1234678-HpCDD	63.5				ES 1234678-HpCDD	73	
OCDD	1,380				ES OCDD	45.2	
2378-TCDF	EMPC		0.223	J	ES 2378-TCDF	91.8	
12378-PeCDF	0.258			J	ES 12378-PeCDF	84.9	
23478-PeCDF	EMPC		0.276	J	ES 23478-PeCDF	87.8	
123478-HxCDF	0.579			J	ES 123478-HxCDF	84.9	
123678-HxCDF	0.807			J	ES 123678-HxCDF	85.8	
234678-HxCDF	1.07			J	ES 234678-HxCDF	86.9	
123789-HxCDF	ND	0.11			ES 123789-HxCDF	80.2	
1234678-HpCDF	7.32				ES 1234678-HpCDF	77.7	
1234789-HpCDF	0.62			J	ES 1234789-HpCDF	69.7	
OCDF	12				ES OCDF	52.1	
Totals					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	91.9	
Total TCDD	1.65		3.5		CS 12347-PeCDD	93.1	
Total PeCDD	3.73		5.15		CS 12346-PeCDF	96.9	
Total HxCDD	23.8		23.9		CS 123469-HxCDF	103	
Total HpCDD	147		147		CS 1234689-HpCDF	85.4	
Total TCDF	4.22		4.73				
Total PeCDF Total HxCDF	4.04 17.5		6.47 17.5				
Total HpCDF	30.5		30.5				
Total PCDD/Fs							
	1,620		1,630				
WHO-2005 TEQs	4.07		4.07				TOO Describe D. I
TEQ: ND=0	1.67	0.407	1.97		CCC		500 Business Drive
TEQ: ND=DL/2	1.72	0.167	2.02		SGS	Wilmingto	on, NC 28405, USA
TEQ: ND=DL	1.76	0.333	2.06			. 4 040 704 4040 T "	www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	ree 866 846-8290

Checkcode: 910-915-HRQ B3245 page 14 of 52

Sample ID	: GP-802-SS					Metho	d 1613B
Client Data		Sample Data		Laboratory D	ata_		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	: B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	14.43 g	Lab Sample ID	B3245_16666_DF_010	Date Extracted:	07-May-2019
Date Collected:	26-Apr-2019	% Solid:	90.5 %	QC Batch No:	16666	Date Analyzed:	14-May-2019
	•	Split:	-	Dilution:	-	Time Analyzed:	4:48:28
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.115	(1 0 0)		ES 2378-TCDD	82.2	
12378-PeCDD	0.903			J	ES 12378-PeCDD	74.7	
123478-HxCDD	1.24			J	ES 123478-HxCDD	85.2	
123678-HxCDD	7.66				ES 123678-HxCDD	85.3	
123789-HxCDD	3.21				ES 123789-HxCDD	71.2	
1234678-HpCDD	130				ES 1234678-HpCDD	67.7	
OCDD	1,300				ES OCDD	38	
	0.50					0= 4	
2378-TCDF	0.58				ES 2378-TCDF	87.1	
12378-PeCDF	0.375			J	ES 12378-PeCDF	77.6	
23478-PeCDF	0.411			J	ES 23478-PeCDF	84.9	
123478-HxCDF	EMPC		0.464	J	ES 123478-HxCDF	82.5	
123678-HxCDF	0.738			J	ES 123678-HxCDF	82.6	
234678-HxCDF	1.09			J	ES 234678-HxCDF	80.3	
123789-HxCDF	ND	0.173			ES 123789-HxCDF	73.6	
1234678-HpCDF	17.7				ES 1234678-HpCDF	69.3	
1234789-HpCDF	0.907			J	ES 1234789-HpCDF	65.8	
OCDF	27.8				ES OCDF	43.1	
Totals					Standard	CS Recoveries	
					CS 37CI-2378-TCDD	87.7	
Total TCDD	5.04		6.25		CS 12347-PeCDD	90.5	
Total PeCDD	6.55		9.95		CS 12346-PeCDF	96.2	
Total HxCDD	50.7		51.4		CS 123469-HxCDF	107	
Total HpCDD	268		268		CS 1234689-HpCDF	82.6	
Total TCDF	3.63		8.37				
Total PeCDF	7.27		7.27				
Total HxCDF	23.7		24.2				
Total HpCDF	58.2		58.2				
Total PCDD/Fs	1,760		1,770				
WHO-2005 TEQs							
TEQ: ND=0	4.37		4.42		000	- 55	00 Business Drive
TEQ: ND=DL/2	4.44	0.269	4.48		SGS	Wilmingto	n, NC 28405, USA
TEQ: ND=DL	4.5	0.538	4.55		000		www.us.sgs.com
					Tel: ·	+1 910 794-1613; Toll-	Free 866 846-8290

Checkcode: 137-283-NBS B3245 page 15 of 52

Sample ID	: Method Bla	nk B3245	_16666			Metho	d 1613B
Client Data		Sample Data		Laboratory Da	ata_		
Name:	SLR International Corp	Matrix:	Solid	Lab Project ID	: B3245	Date Received:	n/a
Project ID:	Nord Door	Weight/Volume:	10.00 g	Lab Sample ID	MB1_16666_DF_SDS	Date Extracted:	07-May-2019
Date Collected:	n/a	% Solid:	n/a	QC Batch No:	16666	Date Analyzed:	14-May-2019
		Split:	-	Dilution:	-	Time Analyzed:	0:34:19
Analyte	Conc. (pg/g)	DL (pg/g)	EMPC (pg/g)	Qualifiers	Standard	ES Recoveries	Qualifiers
2378-TCDD	ND	0.113			ES 2378-TCDD	84.9	
12378-PeCDD	ND	0.125			ES 12378-PeCDD	77.7	
123478-HxCDD	ND	0.084			ES 123478-HxCDD	83.9	
123678-HxCDD	ND	0.0777			ES 123678-HxCDD	88.1	
123789-HxCDD	ND	0.0844			ES 123789-HxCDD	83	
1234678-HpCDD	ND	0.0793			ES 1234678-HpCDD	72.3	
OCDD	ND	0.0892			ES OCDD	45.6	
2378-TCDF	ND	0.0788			ES 2378-TCDF	84.9	
12378-PeCDF	ND	0.0664			ES 12378-PeCDF	79.7	
23478-PeCDF	ND	0.0654			ES 23478-PeCDF	78.9	
123478-HxCDF	ND	0.053			ES 123478-HxCDF	79.2	
123678-HxCDF	ND	0.0572			ES 123678-HxCDF	80.5	
234678-HxCDF	ND	0.0547			ES 234678-HxCDF	78.7	
123789-HxCDF	ND	0.0686			ES 123789-HxCDF	75.7	
1234678-HpCDF	ND	0.0571			ES 1234678-HpCDF	79	
1234789-HpCDF	ND	0.0734			ES 1234789-HpCDF	70.4	
OCDF	ND	0.123			ES OCDF	49.4	
Totals		020			Standard	CS Recoveries	
					CS 37CI-2378-TCDD	93.9	
Total TCDD	ND	0.113	ND		CS 12347-PeCDD	89.9	
Total PeCDD	ND	0.125	ND		CS 12346-PeCDF	93.1	
Total HxCDD	ND	0.0818	ND		CS 123469-HxCDF	93.6	
Total HpCDD	ND	0.0793	ND		CS 1234689-HpCDF	84.9	
Total TCDF	ND	0.0788	ND				
Total PeCDF	ND	0.0659	ND				
Total HxCDF	ND	0.058	ND				
Total HpCDF	ND	0.0645	ND				
Total PCDD/Fs	ND	5.5515	ND				
WHO-2005 TEQs							
TEQ: ND=0	0		0		000	55	000 Business Drive
TEQ: ND=DL/2	0.159	0.159	0.159		SGS	Wilmingto	n, NC 28405, USA
TEQ: ND=DL	0.318	0.318	0.318				www.us.sgs.com
					Tel:	+1 910 794-1613; Toll-	Free 866 846-8290

METHOD 1613B PCDD/F ONGOING PRECISION AND RECOVERY (OPR) FORM 8A

Lab Name: SGS North America

Initial Calibration: ICAL: HRMS2_DF_10122018_26NOV2018

Instrument ID: HRMS2 GC Column ID: ZB-5ms

VER Data Filename: 190513B14 Analysis Date: 13-MAY-2019 22:55:08

Lab ID: OPR1_16666_DF

NATIVE ANALYTES	SPIKE CONC.	CONC. FOUND		ANGE		OK
2,3,7,8-TCDD	10	10.2	6.7	-	15.8	Υ
1,2,3,7,8-PeCDD	50	50.3	35	-	71	Υ
1,2,3,4,7,8-HxCDD	50	55.3	35	-	82	Υ
1,2,3,6,7,8-HxCDD	50	54.5	38	-	67	Υ
1,2,3,7,8,9-HxCDD	50	52.6	32	-	81	Υ
1,2,3,4,6,7,8-HpCDD	50	53.1	35	-	70	Υ
OCDD	100	113	78	-	144	Υ
2,3,7,8-TCDF	10	11.6	7.5	-	15.8	Υ
1,2,3,7,8-PeCDF	50	51	40	-	67	Υ
2,3,4,7,8-PeCDF	50	56.6	34	-	80	Υ
1,2,3,4,7,8-HxCDF	50	53.8	36	-	67	Υ
1,2,3,6,7,8-HxCDF	50	55.2	42	-	65	Υ
2,3,4,6,7,8-HxCDF	50	54.8	35	-	78	Υ
1,2,3,7,8,9-HxCDF	50	50.1	39	-	65	Υ
1,2,3,4,6,7,8-HpCDF	50	53.1	41	-	61	Υ
1,2,3,4,7,8,9-HpCDF	50	50.7	39	-	69	Υ
OCDF	100	106	63	-	170	Υ

Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

Processed: 17 May 2019 13:31 Analyst: FS

METHOD 1613B PCDD/F ONGOING PRECISION AND RECOVERY (OPR) FORM 8B

Lab Name: SGS North America

Initial Calibration: ICAL: HRMS2_DF_10122018_26NOV2018

Instrument ID: HRMS2 GC Column ID: ZB-5ms

VER Data Filename: 190513B14 Analysis Date: 13-MAY-2019 22:55:08

Lab ID: OPR1_16666_DF

	SPIKE	CONC.	F	RANGI	Ε	
LABELED ANALYTES	CONC.	FOUND	(ng/mL	.)	OK
13C-2,3,7,8-TCDD	100	87.3	20	-	175	Υ
13C-1,2,3,7,8-PeCDD	100	78.9	21	-	227	Υ
13C-1,2,3,4,7,8-HxCDD	100	84.1	21	-	193	Υ
13C-1,2,3,6,7,8-HxCDD	100	89.5	25	-	163	Υ
13C-1,2,3,7,8,9-HxCDD	100	83.1	26	-	166	Υ
13C-1,2,3,4,6,7,8-HpCDD	100	73.8	26	-	166	Υ
13C-OCDD	200	91.5	26	-	397	Υ
13C-2,3,7,8-TCDF	100	90.4	22	-	152	Υ
13C-1,2,3,7,8-PeCDF	100	88.6	21	-	192	Υ
13C-2,3,4,7,8-PeCDF	100	85.9	13	-	328	Υ
13C-1,2,3,4,7,8-HxCDF	100	86.1	19	-	202	Υ
13C-1,2,3,6,7,8-HxCDF	100	89.6	21	-	159	Υ
13C-2,3,4,6,7,8-HxCDF	100	86.8	22	-	176	Υ
13C-1,2,3,7,8,9-HxCDF	100	80.2	17	-	205	Υ
13C-1,2,3,4,6,7,8-HpCDF	100	80.6	21	-	158	Υ
13C-1,2,3,4,7,8,9-HpCDF	100	74.5	20	-	186	Υ
13C-OCDF	200	103	26	-	397	Υ
CLEANUP STANDARD						
37CI-2,3,7,8-TCDD	40	39.2	12.4	-	76.4	Υ

Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

Processed: 17 May 2019 13:31 Analyst: FS

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.03 g	Sample ID:	B3245_16683_PCB_001-R	Date Extracted:	15-May-2019
Date Collected:	25-Apr-2019	% Solid	74.2 %	QC Batch No.:	16683	Date Analyzed:	19-May-2019
Analyte	'	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		ND	0.495			ES PCB-1	63
PCB-81 344'5-TeCB		ND	0.48			ES PCB-3	71.9
PCB-105 233'44'-PeCB		1.5				ES PCB-4	78.3
PCB-114 2344'5-PeCB		ND	0.275			ES PCB-15	84.4
PCB-118 23'44'5-PeCB		4.25				ES PCB-19	85.4
PCB-123 23'44'5'-PeCB		ND	0.277			ES PCB-37	82.5
PCB-126 33'44'5-PeCB		ND	0.243			ES PCB-54	76.1
PCB-156/157 233'44'5/233'44'	5'-HxCB	EMPC		0.729	JC	ES PCB-77	84
PCB-167 23'44'55'-HxCB		EMPC		0.354	J	ES PCB-81	83.6
PCB-169 33'44'55'-HxCB		ND	0.326			ES PCB-104	96
PCB-189 233'44'55'-HpCB		ND	0.259			ES PCB-105	102
						ES PCB-114	100
TEQs (WHO 2005 M/H)						ES PCB-118	100
						ES PCB-123	103
ND = 0		0.000173		0.000205		ES PCB-126	98.6
ND = 0.5 x DL		0.0174		0.0174		ES PCB-153	99.4
ND = DL		0.0345		0.0345		ES PCB-155	94.6
						ES PCB-156/157	114
Totals						ES PCB-167	106
Mono-CB		ND	0.554			ES PCB-169	106
Di-CB		3.77				ES PCB-170	93.8
Tri-CB		4.04				ES PCB-180	90.2
Tetra-CB		10.5		13.1		ES PCB-188	100
Penta-CB		37.1		39.4		ES PCB-189	102
Hexa-CB		33.9		42.5		ES PCB-202	102
Hepta-CB		16.4		20.7		ES PCB-205	111
Octa-CB		16		17.8		ES PCB-206	127
Nona-CB		25.7				ES PCB-208	103
Deca-CB		11.2				ES PCB-209	138
						CS PCB-28	92.3
Total PCB (Mono-Deca)		159		178		CS PCB-111	103
,						CS PCB-178	107

Checkcode: 747-153-MYC/C SGS North America - PCB v0.83 Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 19 of 52 5/21/2019 12:31 PM

Sample ID:	GP-MW	/-11-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	l Door	Weight/Volume:		10.03 g	Sample ID:	B3245_16683	3_PCB_001-R1	Date Extracted:		15-May-2019
Date Collected:	25-Ap	or-2019	% Solid		74.2 %	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	747-153	3-MYC/C	Time Analyzed:		17:24:32
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(0.557)		PCB-19	(0.742)		PCB-54	(0.367)		PCB-72	(0.431)	
PCB-2	(0.517)		PCB-30/18	0.918	JC	PCB-50/53	(0.452)	С	PCB-68	(0.458)	
PCB-3	(0.551)		PCB-17	(0.796)		PCB-45	(0.531)		PCB-57	(0.452)	
			PCB-27	(0.566)		PCB-51	(0.458)		PCB-58	(0.405)	
Conc.	0		PCB-24	(0.554)		PCB-46	(0.57)		PCB-67	(0.41)	
EMPC	0		PCB-16	(0.833)		PCB-52	2.14		PCB-63	(0.495)	
			PCB-32	(0.515)		PCB-73	(0.348)		PCB-61/70/74/76	3.29	JC
Di	Conc.	Qualifiers	PCB-34	(0.589)		PCB-43	(0.452)		PCB-66	2.14	
PCB-4	(0.468)		PCB-23	(0.585)		PCB-69/49	1.22	JC	PCB-55	(0.419)	
PCB-10	(0.347)		PCB-26/29	(0.575)	С	PCB-48	(0.483)		PCB-56	[0.74]	J EMPC
PCB-9	(0.201)		PCB-25	(0.493)		PCB-44/47/65	[1.89]	J EMPC C	PCB-60	(0.515)	
PCB-7	(0.226)		PCB-31	1.08		PCB-59/62/75	(0.369)	С	PCB-80	(0.43)	
PCB-6	(0.192)		PCB-28/20	1.31	J C	PCB-42	(0.538)		PCB-79	(0.39)	
PCB-5	(0.234)		PCB-21/33	(0.56)	С	PCB-41	(0.621)		PCB-78	(0.458)	
PCB-8	0.667	J	PCB-22	(0.511)		PCB-71/40	0.803	JC	PCB-81	(0.48)	
PCB-14	(0.222)		PCB-36	(0.505)		PCB-64	0.897	J	PCB-77	(0.495)	
PCB-11	2.49	В	PCB-39	(0.555)						, ,	
PCB-13/12	(0.225)	С	PCB-38	(0.552)							
PCB-15	0.612	J	PCB-35	(0.572)							
			PCB-37	0.738	J						
Conc.	3.77		Conc.	4.04					Conc.	10.5	
EMPC	3.77		EMPC	4.04					EMPC	13.1	
				•	•		•				
	00	-	5500 Business Drive			Total	s		Conc.	EI	MPC
	- "		Wilmington, NC 2840	5, USA		Mono-	Tri		7.81	7	.81
	SG		Tel: +1 910 794-1613	;		Tetra-H	exa		81.5		95
			www.us.sgs.com			Hepta-D	eca		69.3	7	5.3
		-				Mono-D	eca		159	1	78

Sample ID:	GP-MW	/-11-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.172)		PCB-109/119/86/97/125/87	3.48	J C	PCB-155	(0.178)		PCB-165	(0.194)	
PCB-96	(0.175)		PCB-117	(0.285)		PCB-152	(0.166)		PCB-146	1.76	
PCB-103	(0.369)		PCB-116/85	[0.989]	J EMPC C	PCB-150	(0.191)		PCB-161	(0.171)	
PCB-94	(0.447)		PCB-110	8.42		PCB-136	[1.37]	EMPC	PCB-153/168	7.7	С
PCB-95	6.66		PCB-115	(0.227)		PCB-145	(0.174)		PCB-141	[1.26]	EMPC
PCB-100/93	(0.401)	С	PCB-82	(0.389)		PCB-148	(0.235)		PCB-130	[1]	EMPC
PCB-102	(0.288)		PCB-111	(0.275)		PCB-151/135	[3.12]	EMPC C	PCB-137	(0.249)	
PCB-98	(0.421)		PCB-120	(0.227)		PCB-154	(0.22)		PCB-164	0.721	J
PCB-88	(0.419)		PCB-108/124	(0.273)	С	PCB-144	(0.239)		PCB-163/138/129	9.61	С
PCB-91	1.32		PCB-107	0.444	J	PCB-147/149	8.34	С	PCB-160	(0.2)	
PCB-84	2.65		PCB-123	(0.277)		PCB-134	(0.273)		PCB-158	[0.752]	J EMPC
PCB-89	(0.386)		PCB-106	(0.263)		PCB-143	(0.256)		PCB-128/166	1.61	JC
PCB-121	(0.258)		PCB-118	4.25		PCB-139/140	(0.222)	С	PCB-159	(0.222)	
PCB-92	[1.29]	EMPC	PCB-122	(0.336)		PCB-131	(0.268)		PCB-162	(0.26)	
PCB-113/90/101	5.79	С	PCB-114	(0.275)		PCB-142	(0.264)		PCB-167	[0.354]	J EMPC
PCB-83	(0.477)		PCB-105	1.5		PCB-132	4.15		PCB-156/157	[0.729]	J EMPC C
PCB-99	2.62		PCB-127	(0.285)		PCB-133	(0.232)		PCB-169	(0.326)	
PCB-112	(0.237)		PCB-126	(0.243)							
			Conc.	37.1					Conc.	33.9	
			EMPC	39.4					EMPC	42.5	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.145)		PCB-174	2.71		PCB-202	1.56		PCB-208	6.23	
PCB-179	[0.942]	J EMPC	PCB-177	1.48		PCB-201	0.721	J	PCB-207	1.9	
PCB-184	(0.15)		PCB-181	(0.288)		PCB-204	(0.187)		PCB-206	17.5	
PCB-176	[0.388]	J EMPC	PCB-171/173	0.69	J C	PCB-197	(0.199)				
PCB-186	(0.132)		PCB-172	(0.335)		PCB-200	(0.207)		Conc.	25.7	
PCB-178	[0.861]	J EMPC	PCB-192	(0.228)		PCB-198/199	6.97	С	EMPC	25.7	
PCB-175	(0.323)		PCB-180/193	5.82	С	PCB-196	[1.77]	EMPC			
PCB-187	4.08		PCB-191	(0.262)		PCB-203	3.37		Deca	Conc.	Qualifiers
PCB-182	(0.276)		PCB-170	[2.06]	EMPC	PCB-195	0.726	J	PCB-209	11.2	
PCB-183	1.62		PCB-190	(0.29)		PCB-194	2.7				
PCB-185	(0.358)		PCB-189	(0.259)		PCB-205	(0.387)				
			Conc.	16.4		Conc.	16				
			EMPC	20.7		EMPC	17.8				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	9.85 g	Sample ID:	B3245_16683_PCB_002-R1	Date Extracted:	15-May-2019
Date Collected:	25-Apr-2019	% Solid	89.3 %	QC Batch No.:	16683	Date Analyzed:	19-May-2019
Analyte	, , , , ,	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		ND	0.607	, , ,		ES PCB-1	53.4
PCB-81 344'5-TeCB		ND	0.596			ES PCB-3	62.4
PCB-105 233'44'-PeCB		3.83				ES PCB-4	64.5
CB-114 2344'5-PeCB		ND	0.254			ES PCB-15	72.8
PCB-118 23'44'5-PeCB		8.51				ES PCB-19	72.3
PCB-123 23'44'5'-PeCB		ND	0.237			ES PCB-37	83.1
PCB-126 33'44'5-PeCB		ND	0.388			ES PCB-54	68.6
PCB-156/157 233'44'5/23	3'44'5'-HxCB	2			JC	ES PCB-77	84.4
PCB-167 23'44'55'-HxCB		0.977			J	ES PCB-81	85.4
PCB-169 33'44'55'-HxCB		ND	0.655			ES PCB-104	85.9
CB-189 233'44'55'-HpCE	3	ND	0.84			ES PCB-105	98
•				<u> </u>	•	ES PCB-114	95.5
TEQs (WHO 2005 M/H)						ES PCB-118	98.6
						ES PCB-123	99.3
ND = 0		0.00046		0.00046		ES PCB-126	93.3
ND = 0.5 x DL		0.0298		0.0298		ES PCB-153	98.5
ND = DL		0.0592		0.0592		ES PCB-155	103
						ES PCB-156/157	109
Totals						ES PCB-167	102
lono-CB				2.65		ES PCB-169	98.9
Di-CB		9.46				ES PCB-170	109
ri-CB		9.79		11		ES PCB-180	106
etra-CB		19.4		23.3		ES PCB-188	100
enta-CB		63.1		63.6		ES PCB-189	101
lexa-CB		95.5		100		ES PCB-202	96.6
lepta-CB		66.5		69.9		ES PCB-205	105
Octa-CB		25.8		29		ES PCB-206	118
lona-CB		9.05				ES PCB-208	109
Deca-CB				3.45		ES PCB-209	120
						CS PCB-28	93.9
otal PCB (Mono-Deca)		299		321		CS PCB-111	97.1
						CS PCB-178	98

Checkcode: 711-719-JDY/C

SGS North America - PCB v0.83 Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 22 of 52 5/21/2019 12:31 PM

Sample ID:	GP-MW	/-12-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		9.85 g	Sample ID:	B3245_16683	_PCB_002-R1	Date Extracted:		15-May-2019
Date Collected:	25-Ap	or-2019	% Solid		89.3 %	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	711-71	9-JDY/C	Time Analyzed:		18:22:01
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	[2.65]	EMPC	PCB-19	(0.906)		PCB-54	(0.401)		PCB-72	(0.534)	
PCB-2	(0.557)		PCB-30/18	[1.17]	J EMPC C	PCB-50/53	(0.549)	С	PCB-68	(0.567)	
PCB-3	(0.595)		PCB-17	(0.972)		PCB-45	(0.645)		PCB-57	(0.56)	
			PCB-27	(0.691)		PCB-51	(0.557)		PCB-58	(0.503)	
Conc.	0		PCB-24	(0.676)		PCB-46	(0.693)		PCB-67	(0.508)	
EMPC	2.65		PCB-16	(1.02)		PCB-52	3.29		PCB-63	(0.614)	
			PCB-32	(0.629)		PCB-73	(0.423)		PCB-61/70/74/76	7.37	С
Di	Conc.	Qualifiers	PCB-34	(0.682)		PCB-43	(0.55)		PCB-66	[3.95]	EMPC
PCB-4	0.666	J	PCB-23	(0.677)		PCB-69/49	1.75	JC	PCB-55	(0.52)	
PCB-10	(0.333)		PCB-26/29	(0.665)	С	PCB-48	(0.587)		PCB-56	1.52	
PCB-9	(0.35)		PCB-25	(0.571)		PCB-44/47/65	2.81	JC	PCB-60	1.13	
PCB-7	(0.393)		PCB-31	2.29		PCB-59/62/75	(0.448)	С	PCB-80	(0.534)	
PCB-6	0.635	J	PCB-28/20	3.44	С	PCB-42	(0.654)		PCB-79	(0.483)	
PCB-5	(0.407)		PCB-21/33	1.45	JC	PCB-41	(0.755)		PCB-78	(0.567)	
PCB-8	2.79		PCB-22	0.855	J	PCB-71/40	(0.522)	С	PCB-81	(0.596)	
PCB-14	(0.387)		PCB-36	(0.585)		PCB-64	1.51		PCB-77	(0.607)	
PCB-11	4.09	В	PCB-39	(0.642)							
PCB-13/12	(0.391)	С	PCB-38	(0.639)							
PCB-15	1.27		PCB-35	(0.663)							
			PCB-37	1.75							
Conc.	9.46		Conc.	9.79					Conc.	19.4	
EMPC	9.46		EMPC	11					EMPC	23.3	
			•	•	•		'	•			
	00	0	5500 Business Drive			Total			Conc.		MPC
			Wilmington, NC 2840			Mono-	Tri		19.2	2	23.1
	SG		Tel: +1 910 794-1613			Tetra-H	exa		178		187
			www.us.sgs.com			Hepta-D	Deca		101	,	111
						Mono-D	eca		299	;	321

Sample ID:	GP-MW	/-12-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.193)		PCB-109/119/86/97/125/87	5.02	J C	PCB-155	(0.183)		PCB-165	(0.213)	
PCB-96	(0.197)		PCB-117	(0.244)		PCB-152	(0.171)		PCB-146	3.28	
PCB-103	(0.316)		PCB-116/85	1.98	J C	PCB-150	(0.196)		PCB-161	(0.188)	
PCB-94	(0.383)		PCB-110	16.3		PCB-136	3.16		PCB-153/168	14.2	С
PCB-95	8.18		PCB-115	(0.194)		PCB-145	(0.179)		PCB-141	3.19	
PCB-100/93	(0.344)	С	PCB-82	(0.334)		PCB-148	(0.257)		PCB-130	[1.45]	EMPC
PCB-102	(0.247)		PCB-111	(0.236)		PCB-151/135	8.06	С	PCB-137	[0.747]	J EMPC
PCB-98	(0.361)		PCB-120	(0.194)		PCB-154	(0.242)		PCB-164	[1.93]	EMPC
PCB-88	(0.359)		PCB-108/124	0.456	JC	PCB-144	(0.261)		PCB-163/138/129	25.3	С
PCB-91	1.56		PCB-107	[0.56]	J EMPC	PCB-147/149	20.4	С	PCB-160	(0.219)	
PCB-84	2.92		PCB-123	(0.237)		PCB-134	1.11		PCB-158	2.38	
PCB-89	(0.331)		PCB-106	(0.225)		PCB-143	(0.281)		PCB-128/166	4.19	С
PCB-121	(0.221)		PCB-118	8.51		PCB-139/140	[0.454]	J EMPC C	PCB-159	(0.362)	
PCB-92	1.72		PCB-122	(0.311)		PCB-131	(0.294)		PCB-162	(0.424)	
PCB-113/90/101	8.47	С	PCB-114	(0.254)		PCB-142	(0.289)		PCB-167	0.977	J
PCB-83	(0.409)		PCB-105	3.83		PCB-132	7.11		PCB-156/157	2	JC
PCB-99	4.16		PCB-127	(0.241)		PCB-133	(0.254)		PCB-169	(0.655)	
PCB-112	(0.203)		PCB-126	(0.388)							
			Conc.	63.1					Conc.	95.5	
			EMPC	63.6					EMPC	100	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.169)		PCB-174	8.22		PCB-202	[2.03]	EMPC	PCB-208	1.82	
PCB-179	4.02		PCB-177	5.29		PCB-201	[1.08]	EMPC	PCB-207	(0.928)	
PCB-184	(0.174)		PCB-181	(0.658)		PCB-204	(0.293)		PCB-206	7.23	
PCB-176	1.26		PCB-171/173	2.36	С	PCB-197	(0.313)				
PCB-186	(0.154)		PCB-172	[1.31]	EMPC	PCB-200	(0.326)		Conc.	9.05	
PCB-178	[2.05]	EMPC	PCB-192	(0.519)		PCB-198/199	8.83	С	EMPC	9.05	
PCB-175	(0.737)		PCB-180/193	17.8	С	PCB-196	3.47				
PCB-187	13.2		PCB-191	(0.598)		PCB-203	4.8		Deca	Conc.	Qualifiers
PCB-182	(0.629)		PCB-170	7.6		PCB-195	2.18		PCB-209	[3.45]	EMPC
PCB-183	5.32		PCB-190	1.41		PCB-194	6.57				
PCB-185	(0.817)		PCB-189	(0.84)		PCB-205	(0.867)				
			Conc.	66.5		Conc.	25.8				
_			EMPC	69.9		EMPC	29				_

Sample ID:	GP-MW-13-SS			I ah anatami Data		1110111	od 1668
<u>Client Data</u> Name:	01.0.1	Sample Data	0.484	Laboratory Data	D0045	Data Danahundi	00 4 0040
	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID: Date Collected:	Nord Door	Weight/Volume: % Solid	10.04 g	Sample ID: QC Batch No.:	B3245_16683_PCB_004-R		15-May-2019
	25-Apr-2019		84.6 %		16683	Date Analyzed:	19-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
PCB-77 33'44'-TeCB		pg/g	pg/g	pg/g		ES PCB-1	% 47.9
PCB-77 33 44 - TeCB PCB-81 344'5-TeCB		1.89	0.745			ES PCB-1	
		ND	0.745				56.4
PCB-105 233'44'-PeCB		9.56				ES PCB-4	60
PCB-114 2344'5-PeCB		0.61			J	ES PCB-15	71.5
PCB-118 23'44'5-PeCB		20.7				ES PCB-19	67.8
PCB-123 23'44'5'-PeCB		0.58	0.010		J	ES PCB-37	76.1
PCB-126 33'44'5-PeCB		ND	0.313		_	ES PCB-54	59.2
PCB-156/157 233'44'5/233'	44'5'-HxCB	3.34			С	ES PCB-77	85.3
PCB-167 23'44'55'-HxCB		EMPC		1.23		ES PCB-81	84
PCB-169 33'44'55'-HxCB		ND	0.365			ES PCB-104	78.1
PCB-189 233'44'55'-HpCB		ND	0.462			ES PCB-105	102
						ES PCB-114	96.4
TEQs (WHO 2005 M/H)						ES PCB-118	98.7
						ES PCB-123	98.2
ND = 0		0.00123		0.00127		ES PCB-126	98.7
ND = 0.5 x DL		0.0225		0.0225		ES PCB-153	97.6
ND = DL		0.0437		0.0438		ES PCB-155	87.7
						ES PCB-156/157	117
Totals						ES PCB-167	107
Mono-CB		ND	0.806			ES PCB-169	113
Di-CB		5.63		10.5		ES PCB-170	96.3
Γri-CB		24.4		28.2		ES PCB-180	91.7
Tetra-CB		94.4		95.4		ES PCB-188	94.3
Penta-CB		158		159		ES PCB-189	106
Hexa-CB		140		146		ES PCB-202	103
Hepta-CB		67.4		70.3		ES PCB-205	114
Octa-CB		10.3		23.9		ES PCB-206	129
Nona-CB		7.46				ES PCB-208	105
Deca-CB		5.56				ES PCB-209	137
						CS PCB-28	85.8
Total PCB (Mono-Deca)		514		546		CS PCB-111	94.5
,						CS PCB-178	101

Checkcode: 143-730-JNV/C SGS North America - PCB v0.83 Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 25 of 52 5/21/2019 12:32 PM

Sample ID	: GP-MW	/-13-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	l Door	Weight/Volume:		10.04 g	Sample ID:	B3245_16683	_PCB_004-R1	Date Extracted:		15-May-2019
Date Collected:	25-Ap	or-2019	% Solid		84.6 %	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	143-73	0-JNV/C	Time Analyzed:		19:19:27
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(0.801)		PCB-19	(1.48)		PCB-54	(0.508)		PCB-72	(0.668)	
PCB-2	(0.759)		PCB-30/18	4.1	С	PCB-50/53	1.81	J C	PCB-68	(0.709)	
PCB-3	(0.811)		PCB-17	[2.06]	EMPC	PCB-45	1.87		PCB-57	(0.7)	
			PCB-27	(1.13)		PCB-51	(0.642)		PCB-58	(0.628)	
Conc.	0		PCB-24	(1.11)		PCB-46	(0.799)		PCB-67	(0.635)	
EMPC	0		PCB-16	(1.66)		PCB-52	13.6		PCB-63	(0.767)	
			PCB-32	[1.73]	EMPC	PCB-73	(0.488)		PCB-61/70/74/76	20.4	С
Di	Conc.	Qualifiers	PCB-34	(0.763)		PCB-43	(0.634)		PCB-66	12.3	
PCB-4	0.969	J	PCB-23	(0.757)		PCB-69/49	7.4	С	PCB-55	(0.65)	
PCB-10	(0.368)		PCB-26/29	(0.744)	С	PCB-48	1.51		PCB-56	5.05	
PCB-9	(0.513)		PCB-25	(0.638)		PCB-44/47/65	11.8	С	PCB-60	2.61	
PCB-7	(0.577)		PCB-31	5.35		PCB-59/62/75	[0.975]	J EMPC C	PCB-80	(0.667)	
PCB-6	(0.491)		PCB-28/20	7.11	С	PCB-42	3.2		PCB-79	(0.604)	
PCB-5	(0.598)		PCB-21/33	2.76	С	PCB-41	(0.871)		PCB-78	(0.709)	
PCB-8	2.33		PCB-22	1.95		PCB-71/40	5.32	С	PCB-81	(0.745)	
PCB-14	(0.568)		PCB-36	(0.654)		PCB-64	5.63		PCB-77	1.89	
PCB-11	[4.88]	B EMPC	PCB-39	(0.718)							
PCB-13/12	(0.574)	С	PCB-38	(0.714)							
PCB-15	2.33		PCB-35	(0.741)							
			PCB-37	3.17							
Conc.	5.63		Conc.	24.4					Conc.	94.4	
EMPC	10.5		EMPC	28.2					EMPC	95.4	
				•			•	•			
	00	0	5500 Business Drive			Total	s		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		30.1	3	38.7
	SG		Tel: +1 910 794-1613			Tetra-H	exa		393		400
			www.us.sgs.com			Hepta-D	eca eca		90.8		107
						Mono-D	eca		514		546

Sample ID:	GP-MW	/-13-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.202)		PCB-109/119/86/97/125/87	14.2	С	PCB-155	(0.199)		PCB-165	(0.192)	
PCB-96	(0.206)		PCB-117	[0.527]	J EMPC	PCB-152	(0.185)		PCB-146	4.24	
PCB-103	(0.489)		PCB-116/85	4.65	С	PCB-150	(0.213)		PCB-161	(0.17)	
PCB-94	(0.592)		PCB-110	31.3		PCB-136	4.57		PCB-153/168	25.7	С
PCB-95	21.2		PCB-115	(0.301)		PCB-145	(0.194)		PCB-141	4.86	
PCB-100/93	(0.532)	С	PCB-82	3.03		PCB-148	(0.233)		PCB-130	2.58	
PCB-102	0.735	J	PCB-111	(0.365)		PCB-151/135	9.89	С	PCB-137	[1.5]	EMPC
PCB-98	(0.559)		PCB-120	(0.301)		PCB-154	(0.219)		PCB-164	2.56	
PCB-88	(0.556)		PCB-108/124	1.06	JC	PCB-144	[1.22]	EMPC	PCB-163/138/129	36.8	С
PCB-91	3.96		PCB-107	1.69		PCB-147/149	24.4	С	PCB-160	(0.198)	
PCB-84	7.17		PCB-123	0.58	J	PCB-134	[1.73]	EMPC	PCB-158	3.87	
PCB-89	(0.512)		PCB-106	(0.349)		PCB-143	(0.254)		PCB-128/166	5.66	С
PCB-121	(0.342)		PCB-118	20.7		PCB-139/140	0.677	J C	PCB-159	(0.256)	
PCB-92	4.44		PCB-122	(0.447)		PCB-131	(0.266)		PCB-162	(0.3)	
PCB-113/90/101	21.2	С	PCB-114	0.61	J	PCB-142	(0.262)		PCB-167	[1.23]	EMPC
PCB-83	1.64		PCB-105	9.56		PCB-132	11		PCB-156/157	3.34	С
PCB-99	10.6		PCB-127	(0.348)		PCB-133	(0.23)		PCB-169	(0.365)	
PCB-112	(0.314)		PCB-126	(0.313)							
			Conc.	158					Conc.	140	
			EMPC	159					EMPC	146	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.275)		PCB-174	8.24		PCB-202	1.95		PCB-208	1.76	
PCB-179	3.58		PCB-177	5.08		PCB-201	[1.08]	EMPC	PCB-207	(1.06)	
PCB-184	(0.284)		PCB-181	(0.455)		PCB-204	(0.357)		PCB-206	5.71	
PCB-176	1.34		PCB-171/173	2.53	С	PCB-197	(0.381)				
PCB-186	(0.251)		PCB-172	[1.37]	EMPC	PCB-200	(0.397)		Conc.	7.46	
PCB-178	1.98		PCB-192	(0.359)		PCB-198/199	[6.76]	EMPC C	EMPC	7.46	
PCB-175	(0.51)		PCB-180/193	19.2	С	PCB-196	3.26				
PCB-187	11.2		PCB-191	(0.414)		PCB-203	[3.9]	EMPC	Deca	Conc.	Qualifiers
PCB-182	(0.435)		PCB-170	9.38		PCB-195	[1.84]	EMPC	PCB-209	5.56	
PCB-183	4.88		PCB-190	[1.47]	EMPC	PCB-194	5.11				
PCB-185	(0.565)		PCB-189	(0.462)		PCB-205	(0.894)				
			Conc.	67.4		Conc.	10.3				
			EMPC	70.3		EMPC	23.9				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	9.96 g	Sample ID:	B3245_16683_PCB_005-R1	Date Extracted:	15-May-2019
Date Collected:	25-Apr-2019	% Solid	89.3 %	QC Batch No.:	16683	Date Analyzed:	19-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		EMPC		1	J	ES PCB-1	64.9
PCB-81 344'5-TeCB		ND	0.696			ES PCB-3	70.1
PCB-105 233'44'-PeCB		12.5				ES PCB-4	73.6
PCB-114 2344'5-PeCB		ND	0.301			ES PCB-15	75.6
PCB-118 23'44'5-PeCB		28				ES PCB-19	76.9
PCB-123 23'44'5'-PeCB		0.483			J	ES PCB-37	81.1
PCB-126 33'44'5-PeCB		ND	0.255			ES PCB-54	67.9
PCB-156/157 233'44'5/233'	44'5'-HxCB	5.29			С	ES PCB-77	87.6
PCB-167 23'44'55'-HxCB		2.08				ES PCB-81	87.1
PCB-169 33'44'55'-HxCB		ND	0.422			ES PCB-104	82.2
PCB-189 233'44'55'-HpCB		ND	0.404			ES PCB-105	98.4
		<u>. </u>			<u> </u>	ES PCB-114	95.9
TEQs (WHO 2005 M/H)						ES PCB-118	95.4
						ES PCB-123	96.5
ND = 0		0.00145		0.00155		ES PCB-126	98.8
ND = 0.5 x DL		0.0207		0.0208		ES PCB-153	94.1
ND = DL		0.0399		0.04		ES PCB-155	92.3
						ES PCB-156/157	116
Totals						ES PCB-167	106
/lono-CB		6.77		8.32		ES PCB-169	111
Di-CB		17.1				ES PCB-170	90.5
Γri-CB		24.1		29.9		ES PCB-180	87.2
Tetra-CB		84.6		87.7		ES PCB-188	95.5
Penta-CB		209		221		ES PCB-189	98.1
Hexa-CB		234		234		ES PCB-202	105
lepta-CB		97.3		101		ES PCB-205	111
Octa-CB		47.2				ES PCB-206	131
lona-CB		16.4				ES PCB-208	100
Deca-CB				4.51		ES PCB-209	130
						CS PCB-28	88
otal PCB (Mono-Deca)		736		768		CS PCB-111	96.7
,						CS PCB-178	99.8

Checkcode: 575-042-MTY/C

SGS North America - PCB v0.83

Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 28 of 52 5/21/2019 12:32 PM

Sample ID	: GP-MW	/-14-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		9.96 g	Sample ID:	B3245_16683	_PCB_005-R1	Date Extracted:		15-May-2019
Date Collected:	25-Ap	or-2019	% Solid		89.3 %	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	575-042	2-MTY/C	Time Analyzed:		20:16:54
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	3.89		PCB-19	(1.18)		PCB-54	(0.528)		PCB-72	(0.624)	
PCB-2	[1.55]	EMPC	PCB-30/18	[3]	EMPC C	PCB-50/53	1.46	J C	PCB-68	(0.663)	
PCB-3	2.88		PCB-17	[1.9]	EMPC	PCB-45	1.06		PCB-57	(0.654)	
			PCB-27	(0.901)		PCB-51	(0.663)		PCB-58	(0.587)	
Conc.	6.77		PCB-24	(0.882)		PCB-46	(0.826)		PCB-67	(0.593)	
EMPC	8.32		PCB-16	(1.33)		PCB-52	15.6		PCB-63	(0.717)	
			PCB-32	1.86		PCB-73	(0.504)		PCB-61/70/74/76	19.6	С
Di	Conc.	Qualifiers	PCB-34	(0.895)		PCB-43	(0.655)		PCB-66	11.1	
PCB-4	0.998	J	PCB-23	(0.888)		PCB-69/49	5.96	С	PCB-55	(0.608)	
PCB-10	(0.243)		PCB-26/29	[0.868]	J EMPC C	PCB-48	[1.19]	EMPC	PCB-56	4.75	
PCB-9	(0.406)		PCB-25	(0.748)		PCB-44/47/65	9.96	С	PCB-60	2.76	
PCB-7	(0.456)		PCB-31	5.56		PCB-59/62/75	[0.92]	J EMPC C	PCB-80	(0.624)	
PCB-6	0.986	J	PCB-28/20	7.55	С	PCB-42	2.53		PCB-79	(0.564)	
PCB-5	(0.472)		PCB-21/33	3.19	С	PCB-41	(0.9)		PCB-78	(0.663)	
PCB-8	3.06		PCB-22	2.09		PCB-71/40	3.9	С	PCB-81	(0.696)	
PCB-14	(0.449)		PCB-36	(0.767)		PCB-64	5.89		PCB-77	[1]	J EMPC
PCB-11	8.15	В	PCB-39	(0.842)							
PCB-13/12	0.556	J C	PCB-38	(0.838)							
PCB-15	3.38		PCB-35	(0.869)							
			PCB-37	3.89							
Conc.	17.1		Conc.	24.1					Conc.	84.6	
EMPC	17.1		EMPC	29.9					EMPC	87.7	
	00	0	5500 Business Drive			Total	s		Conc.	E	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		48.1	5	55.4
	SG		Tel: +1 910 794-1613			Tetra-H	exa		527		543
			www.us.sgs.com			Hepta-D	eca		161	·	170
						Mono-D	eca		736	-	768

Sample ID:	GP-MW	/-14-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.226)		PCB-109/119/86/97/125/87	20.8	С	PCB-155	(0.22)		PCB-165	(0.258)	
PCB-96	(0.23)		PCB-117	[0.668]	J EMPC	PCB-152	(0.205)		PCB-146	5.5	
PCB-103	(0.391)		PCB-116/85	5.37	С	PCB-150	(0.235)		PCB-161	(0.227)	
PCB-94	(0.473)		PCB-110	43.9		PCB-136	6.62		PCB-153/168	42.4	С
PCB-95	30.9		PCB-115	(0.24)		PCB-145	(0.214)		PCB-141	9.48	
PCB-100/93	(0.425)	С	PCB-82	3.56		PCB-148	(0.312)		PCB-130	3.68	
PCB-102	0.777	J	PCB-111	(0.291)		PCB-151/135	15.9	С	PCB-137	3.52	
PCB-98	(0.446)		PCB-120	(0.24)		PCB-154	(0.293)		PCB-164	3.59	
PCB-88	(0.444)		PCB-108/124	1.25	JC	PCB-144	2.44		PCB-163/138/129	58.1	С
PCB-91	4.88		PCB-107	[1.96]	EMPC	PCB-147/149	38.6	С	PCB-160	(0.266)	
PCB-84	[9.43]	EMPC	PCB-123	0.483	J	PCB-134	2.99		PCB-158	6.39	
PCB-89	(0.409)		PCB-106	(0.279)		PCB-143	(0.34)		PCB-128/166	8.72	С
PCB-121	(0.273)		PCB-118	28		PCB-139/140	[0.809]	J EMPC C	PCB-159	(0.281)	
PCB-92	6.72		PCB-122	(0.368)		PCB-131	0.734	J	PCB-162	(0.33)	
PCB-113/90/101	34.1	С	PCB-114	(0.301)		PCB-142	(0.351)		PCB-167	2.08	
PCB-83	1.81		PCB-105	12.5		PCB-132	17.5		PCB-156/157	5.29	С
PCB-99	14		PCB-127	(0.284)		PCB-133	(0.308)		PCB-169	(0.422)	
PCB-112	(0.251)		PCB-126	(0.255)							
			Conc.	209					Conc.	234	
			EMPC	221					EMPC	234	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.22)		PCB-174	12		PCB-202	3.9		PCB-208	3.72	
PCB-179	5.39		PCB-177	6.42		PCB-201	2.16		PCB-207	(1.11)	
PCB-184	(0.227)		PCB-181	(0.422)		PCB-204	(0.215)		PCB-206	12.7	
PCB-176	1.73		PCB-171/173	4.02	С	PCB-197	(0.23)				
PCB-186	(0.2)		PCB-172	[1.38]	EMPC	PCB-200	1.38		Conc.	16.4	
PCB-178	[2.35]	EMPC	PCB-192	(0.333)		PCB-198/199	14.7	С	EMPC	16.4	
PCB-175	[0.438]	J EMPC	PCB-180/193	27.4	С	PCB-196	5.06				
PCB-187	15.1		PCB-191	(0.384)		PCB-203	7.37		Deca	Conc.	Qualifiers
PCB-182	(0.403)		PCB-170	13.9		PCB-195	2.69		PCB-209	[4.51]	EMPC
PCB-183	7.78		PCB-190	2.41		PCB-194	9.96				
PCB-185	1.11		PCB-189	(0.404)		PCB-205	(1.02)				
			Conc.	97.3		Conc.	47.2				
			EMPC	101		EMPC	47.2				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.04 g	Sample ID:	B3245_16683_PCB_006-R1	Date Extracted:	15-May-2019
Date Collected:	26-Apr-2019	% Solid	72.2 %	QC Batch No.:	16683	Date Analyzed:	19-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		8.19		, , ,		ES PCB-1	59.8
PCB-81 344'5-TeCB		ND	0.921			ES PCB-3	70.1
PCB-105 233'44'-PeCB		52.1				ES PCB-4	71.5
PCB-114 2344'5-PeCB		3.1				ES PCB-15	76.7
PCB-118 23'44'5-PeCB		91.1				ES PCB-19	76.5
PCB-123 23'44'5'-PeCB		2.78				ES PCB-37	77.4
PCB-126 33'44'5-PeCB		ND	0.685			ES PCB-54	74.1
PCB-156/157 233'44'5/233'	'44'5'-HxCB	12.7			С	ES PCB-77	77.8
PCB-167 23'44'55'-HxCB		5.21				ES PCB-81	77.2
PCB-169 33'44'55'-HxCB		ND	1.1			ES PCB-104	91.9
PCB-189 233'44'55'-HpCB		ND	0.899			ES PCB-105	88.8
·				<u> </u>	_	ES PCB-114	87.1
TEQs (WHO 2005 M/H)						ES PCB-118	89.2
						ES PCB-123	93.7
ND = 0		0.00583		0.00583		ES PCB-126	85.1
ND = 0.5 x DL		0.0567		0.0567		ES PCB-153	97.6
ND = DL		0.108		0.108		ES PCB-155	108
						ES PCB-156/157	106
Totals						ES PCB-167	99
/lono-CB		10.6				ES PCB-169	99.1
Di-CB		21.7				ES PCB-170	102
Γri-CB		134				ES PCB-180	94.5
Гetra-CB		661		669		ES PCB-188	102
Penta-CB		879		887		ES PCB-189	97.4
Hexa-CB		791		808		ES PCB-202	99.4
Hepta-CB		419		439		ES PCB-205	109
Octa-CB		172		177		ES PCB-206	132
lona-CB		66.9				ES PCB-208	105
Deca-CB		28.1				ES PCB-209	132
						CS PCB-28	96.8
otal PCB (Mono-Deca)		3,180		3,240		CS PCB-111	93.4
,		,				CS PCB-178	104

Checkcode: 882-041-MWZ/C SGS North America - PCB v0.83

Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 31 of 52 5/21/2019 12:32 PM

Sample ID:	: GP-MW	/-15-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		10.04 g	Sample ID:	B3245_16683	3_PCB_006-R1	Date Extracted:		15-May-2019
Date Collected:	26-Ap	or-2019	% Solid		72.2 %	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	882-041	I-MWZ/C	Time Analyzed:		21:14:20
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	2.37		PCB-19	(1.29)		PCB-54	(0.408)		PCB-72	(0.826)	
PCB-2	4.26		PCB-30/18	11.1	С	PCB-50/53	9.83	С	PCB-68	(0.877)	
PCB-3	3.94		PCB-17	6.51		PCB-45	9.89		PCB-57	(0.866)	
			PCB-27	(0.981)		PCB-51	[2.29]	EMPC	PCB-58	1.51	
Conc.	10.6		PCB-24	(0.96)		PCB-46	[3.74]	EMPC	PCB-67	1.4	
EMPC	10.6		PCB-16	4.87		PCB-52	87.6		PCB-63	4.04	
			PCB-32	7.19		PCB-73	(0.565)		PCB-61/70/74/76	142	С
Di	Conc.	Qualifiers	PCB-34	(1)		PCB-43	[2.22]	EMPC	PCB-66	68.3	
PCB-4	1.11		PCB-23	(0.996)		PCB-69/49	46.2	С	PCB-55	(0.804)	
PCB-10	(0.261)		PCB-26/29	3.45	С	PCB-48	16.6		PCB-56	41.3	
PCB-9	(0.268)		PCB-25	1.6		PCB-44/47/65	77.1	С	PCB-60	23.9	
PCB-7	(0.301)		PCB-31	29.1		PCB-59/62/75	6.41	С	PCB-80	(0.825)	
PCB-6	0.941	J	PCB-28/20	34.6	С	PCB-42	21.6		PCB-79	(0.747)	
PCB-5	(0.312)		PCB-21/33	15.3	С	PCB-41	5.47		PCB-78	(0.877)	
PCB-8	3.93		PCB-22	9.27		PCB-71/40	41.2	С	PCB-81	(0.921)	
PCB-14	0.343	J	PCB-36	(0.86)		PCB-64	48.1		PCB-77	8.19	
PCB-11	8.38	В	PCB-39	(0.945)							
PCB-13/12	2.82	С	PCB-38	(0.94)							
PCB-15	4.19		PCB-35	(0.974)							
			PCB-37	11.2							
Conc.	21.7		Conc.	134					Conc.	661	
EMPC	21.7		EMPC	134					EMPC	669	
			•						ı		
	00	-	5500 Business Drive			Total	s		Conc.	Е	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		166		166
	SG		Tel: +1 910 794-1613			Tetra-H	exa		2,330	2	,360
			www.us.sgs.com			Hepta-D	eca		686	-	711
						Mono-D	eca		3,180	3	,240

Sample ID:	GP-MW	/-15-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.253)		PCB-109/119/86/97/125/87	88.3	С	PCB-155	(0.226)		PCB-165	(0.277)	
PCB-96	[1.76]	EMPC	PCB-117	3.92		PCB-152	(0.21)		PCB-146	25.4	
PCB-103	1.85		PCB-116/85	28.1	С	PCB-150	(0.242)		PCB-161	(0.244)	
PCB-94	(0.489)		PCB-110	149		PCB-136	25.7		PCB-153/168	154	С
PCB-95	107		PCB-115	(0.248)		PCB-145	(0.22)		PCB-141	32.4	
PCB-100/93	[1.94]	J EMPC C	PCB-82	19		PCB-148	(0.335)		PCB-130	11.9	
PCB-102	4.17		PCB-111	(0.301)		PCB-151/135	69.1	С	PCB-137	[4.55]	EMPC
PCB-98	[0.715]	J EMPC	PCB-120	(0.248)		PCB-154	4.04		PCB-164	[9.21]	EMPC
PCB-88	(0.459)		PCB-108/124	[3.85]	EMPC C	PCB-144	9.07		PCB-163/138/129	170	С
PCB-91	28		PCB-107	7.98		PCB-147/149	159	С	PCB-160	(0.285)	
PCB-84	41.9		PCB-123	2.78		PCB-134	9.86		PCB-158	16.5	
PCB-89	2.5		PCB-106	(0.288)		PCB-143	(0.365)		PCB-128/166	22.5	С
PCB-121	(0.282)		PCB-118	91.1		PCB-139/140	[1.66]	J EMPC C	PCB-159	[1.35]	EMPC
PCB-92	28.5		PCB-122	2.46		PCB-131	1.91		PCB-162	(0.812)	
PCB-113/90/101	147	С	PCB-114	3.1		PCB-142	(0.377)		PCB-167	5.21	
PCB-83	6.41		PCB-105	52.1		PCB-132	58.8		PCB-156/157	12.7	С
PCB-99	64.7		PCB-127	(0.291)		PCB-133	2.84		PCB-169	(1.1)	
PCB-112	(0.259)		PCB-126	(0.685)							
			Conc.	879					Conc.	791	
			EMPC	887					EMPC	808	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.205)		PCB-174	54		PCB-202	13.5		PCB-208	15.7	
PCB-179	22.5		PCB-177	31.5		PCB-201	7.92		PCB-207	5.6	
PCB-184	(0.212)		PCB-181	(0.919)		PCB-204	(0.323)		PCB-206	45.5	
PCB-176	8.27		PCB-171/173	[14]	EMPC C	PCB-197	1.58				
PCB-186	(0.187)		PCB-172	8.68		PCB-200	[5.12]	EMPC	Conc.	66.9	
PCB-178	13.2		PCB-192	(0.725)		PCB-198/199	53.1	С	EMPC	66.9	
PCB-175	2.64		PCB-180/193	113	С	PCB-196	20.9				
PCB-187	76.9		PCB-191	[1.42]	EMPC	PCB-203	30.1		Deca	Conc.	Qualifiers
PCB-182	(0.879)		PCB-170	45.8		PCB-195	10.3		PCB-209	28.1	
PCB-183	35.2		PCB-190	7.31		PCB-194	34.4				
PCB-185	[5.22]	EMPC	PCB-189	(0.899)		PCB-205	(1.23)				
			Conc.	419		Conc.	172		_		
			EMPC	439		EMPC	177				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.07 g	Sample ID:	B3245_16683_PCB_007-R1	-D2 Date Extracted:	15-May-2019
Date Collected:	26-Apr-2019	% Solid	86.8 %	QC Batch No.:	16683	Date Analyzed:	20-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		12.5		, , ,		ES PCB-1	54.5
PCB-81 344'5-TeCB		ND	2.12			ES PCB-3	68.9
PCB-105 233'44'-PeCB		71.6				ES PCB-4	70
PCB-114 2344'5-PeCB		4.08				ES PCB-15	82.5
PCB-118 23'44'5-PeCB		187				ES PCB-19	81.5
PCB-123 23'44'5'-PeCB		EMPC		3.28		ES PCB-37	78.9
PCB-126 33'44'5-PeCB		EMPC		8.27		ES PCB-54	79.6
PCB-156/157 233'44'5/233	'44'5'-HxCB	52.9			С	ES PCB-77	66.4
PCB-167 23'44'55'-HxCB		33.8				ES PCB-81	66.2
PCB-169 33'44'55'-HxCB		ND	3.47			ES PCB-104	113
CB-189 233'44'55'-HpCB		EMPC		7.51		ES PCB-105	77.6
•				<u> </u>	•	ES PCB-114	76.6
TEQs (WHO 2005 M/H)						ES PCB-118	79.1
						ES PCB-123	83.3
ND = 0		0.0117		0.839		ES PCB-126	59.4
ND = 0.5 x DL		0.224		0.892		ES PCB-153	106
ND = DL		0.436		0.944		ES PCB-155	136
						ES PCB-156/157	88.6
Totals						ES PCB-167	89.5
lono-CB		4.78		8.56		ES PCB-169	73.5
Di-CB		37.5				ES PCB-170	105
ri-CB		188		192		ES PCB-180	115
etra-CB		653		657		ES PCB-188	116
enta-CB		2,020		2,040		ES PCB-189	96.9
łexa-CB		2,480		2,480		ES PCB-202	87.5
lepta-CB		1,280		1,290		ES PCB-205	108
Octa-CB		223		274		ES PCB-206	123
Iona-CB		67.4				ES PCB-208	108
eca-CB		21.8				ES PCB-209	130
						CS PCB-28	103
otal PCB (Mono-Deca)		6,980		7,070		CS PCB-111	92.8
						CS PCB-178	109

Checkcode: 778-496-NFL/C SGS North America - PCB v0.83 Report Created: 21-May-2019 09:17 Analyst: ah

B3245 page 34 of 52 5/21/2019 12:32 PM

Sample ID:	GP-MW	/-16-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		10.07 g	Sample ID:	B3245_16683_	PCB_007-R1-D2	Date Extracted:		15-May-2019
Date Collected:	26-Ap	or-2019	% Solid		86.8 %	QC Batch No.:	16	683	Date Analyzed:		20-May-2019
			Units		pg/g	Checkcode:	778-49	6-NFL/C	Time Analyzed:		13:13:45
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	[3.78]	EMPC	PCB-19	2.66		PCB-54	(0.661)		PCB-72	(1.83)	
PCB-2	(0.859)		PCB-30/18	21.2	С	PCB-50/53	19.1	С	PCB-68	(1.97)	
PCB-3	4.78		PCB-17	11.6		PCB-45	15.2		PCB-57	(1.95)	
			PCB-27	[1.87]	EMPC	PCB-51	[3.84]	EMPC	PCB-58	(1.75)	
Conc.	4.78		PCB-24	(1.06)		PCB-46	10.1		PCB-67	(1.78)	
EMPC	8.56		PCB-16	10.7		PCB-52	133		PCB-63	(2.13)	
			PCB-32	7.35		PCB-73	(1.02)		PCB-61/70/74/76	116	С
Di	Conc.	Qualifiers	PCB-34	(1.47)		PCB-43	(1.3)		PCB-66	60.3	
PCB-4	3.95		PCB-23	(1.48)		PCB-69/49	43.3	С	PCB-55	(1.79)	
PCB-10	(0.522)		PCB-26/29	5.96	С	PCB-48	11.4		PCB-56	26.5	
PCB-9	(0.377)		PCB-25	[2.13]	EMPC	PCB-44/47/65	79.2	С	PCB-60	18	
PCB-7	(0.42)		PCB-31	35.1		PCB-59/62/75	8.13	С	PCB-80	(1.86)	
PCB-6	2.03		PCB-28/20	42.5	С	PCB-42	19.8		PCB-79	2.98	
PCB-5	(0.433)		PCB-21/33	20.8	С	PCB-41	6.98		PCB-78	(1.99)	
PCB-8	10.4		PCB-22	12.1		PCB-71/40	33.6	С	PCB-81	(2.12)	
PCB-14	(0.424)		PCB-36	(1.26)		PCB-64	37.2		PCB-77	12.5	
PCB-11	7.08	В	PCB-39	(1.39)							
PCB-13/12	2.77	С	PCB-38	(1.38)							
PCB-15	11.4		PCB-35	(1.43)							
			PCB-37	18							
Conc.	37.5		Conc.	188					Conc.	653	
EMPC	37.5		EMPC	192					EMPC	657	
			•	•	•		'	1			
1	00	-	5500 Business Drive			Total	s		Conc.	EI	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		230	2	238
	SG		Tel: +1 910 794-1613			Tetra-H	exa		5,150	5,	180
			www.us.sgs.com			Hepta-D	eca		1,600	1,	660
						Mono-D	eca		6,980	7,	,070

Sample ID:	GP-MW	/-16-SS							IV	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.344)		PCB-109/119/86/97/125/87	171	С	PCB-155	(0.415)	1	PCB-165	(0.682)	
PCB-96	2.78		PCB-117	4.05		PCB-152	(0.389)		PCB-146	83.4	
PCB-103	2.93		PCB-116/85	41.7	С	PCB-150	(0.441)		PCB-161	(0.58)	
PCB-94	(2.18)		PCB-110	363		PCB-136	77.4		PCB-153/168	379	С
PCB-95	391		PCB-115	(1.29)		PCB-145	(0.41)		PCB-141	97.8	
PCB-100/93	(1.94)	С	PCB-82	31.3		PCB-148	(0.812)		PCB-130	46.9	
PCB-102	12.1		PCB-111	(1.37)		PCB-151/135	214	С	PCB-137	24.5	
PCB-98	(1.94)		PCB-120	(1.11)		PCB-154	8.81		PCB-164	30.7	
PCB-88	(2.05)		PCB-108/124	12.5	С	PCB-144	30.5		PCB-163/138/129	518	С
PCB-91	59		PCB-107	19.5		PCB-147/149	488	С	PCB-160	(0.662)	
PCB-84	136		PCB-123	[3.28]	EMPC	PCB-134	33.9		PCB-158	50.8	
PCB-89	5.87		PCB-106	(1.26)		PCB-143	(0.849)		PCB-128/166	76.1	С
PCB-121	(1.24)		PCB-118	187		PCB-139/140	11.5	С	PCB-159	4.24	
PCB-92	65.6		PCB-122	[3.15]	EMPC	PCB-131	[7.04]	EMPC	PCB-162	(2.21)	
PCB-113/90/101	319	С	PCB-114	4.08		PCB-142	(0.921)		PCB-167	33.8	
PCB-83	22.9		PCB-105	71.6		PCB-132	203		PCB-156/157	52.9	С
PCB-99	99.7		PCB-127	(1.44)		PCB-133	9.72		PCB-169	(3.47)	
PCB-112	(1.21)		PCB-126	[8.27]	EMPC						
			Conc.	2,020					Conc.	2,480	
			EMPC	2,040					EMPC	2,480	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.466)		PCB-174	179		PCB-202	[19]	EMPC	PCB-208	15.3	
PCB-179	51.8		PCB-177	99.5		PCB-201	14.8		PCB-207	5.8	
PCB-184	(0.476)		PCB-181	(2.37)		PCB-204	(0.531)		PCB-206	46.3	
PCB-176	20		PCB-171/173	54.3	С	PCB-197	(0.58)				
PCB-186	(0.42)		PCB-172	29.8		PCB-200	9.48		Conc.	67.4	
PCB-178	30.6		PCB-192	(1.84)		PCB-198/199	66.9	С	EMPC	67.4	
PCB-175	7.03		PCB-180/193	321	С	PCB-196	37.6				
PCB-187	186		PCB-191	5.27		PCB-203	[32.4]	EMPC	Deca	Conc.	Qualifiers
PCB-182	(2.23)		PCB-170	159		PCB-195	22.9		PCB-209	21.8	
PCB-183	109		PCB-190	19.7		PCB-194	71.1				
PCB-185	12.8		PCB-189	[7.51]	EMPC	PCB-205	(2.73)				
			Conc.	1,280		Conc.	223				
			EMPC	1,290		EMPC	274				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.07 g	Sample ID:	B3245_16683_PCB_008-R1-F	RJ Date Extracted:	15-May-2019
Date Collected:	26-Apr-2019	% Solid	83.5 %	QC Batch No.:	16683	Date Analyzed:	20-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		ND	0.74			ES PCB-1	45
PCB-81 344'5-TeCB		ND	0.831			ES PCB-3	59.6
PCB-105 233'44'-PeCB		2.42				ES PCB-4	63.3
PCB-114 2344'5-PeCB		ND	0.475			ES PCB-15	74.5
PCB-118 23'44'5-PeCB		5.86				ES PCB-19	72
PCB-123 23'44'5'-PeCB		ND	0.532			ES PCB-37	80.6
PCB-126 33'44'5-PeCB		ND	0.65			ES PCB-54	64.7
PCB-156/157 233'44'5/233	8'44'5'-HxCB	2.48			С	ES PCB-77	77.5
PCB-167 23'44'55'-HxCB		EMPC		1.59		ES PCB-81	77.6
PCB-169 33'44'55'-HxCB		ND	1.57			ES PCB-104	84.9
CB-189 233'44'55'-HpCB		ND	1.44			ES PCB-105	94.1
•				<u> </u>	_	ES PCB-114	97.4
TEQs (WHO 2005 M/H)						ES PCB-118	94.4
						ES PCB-123	92.7
ND = 0		0.000323		0.00037		ES PCB-126	91.4
ND = 0.5 x DL		0.0566		0.0566		ES PCB-153	100
ND = DL		0.113		0.113		ES PCB-155	102
						ES PCB-156/157	117
Totals						ES PCB-167	103
/lono-CB		14.9				ES PCB-169	96.5
Di-CB		9.92				ES PCB-170	96.7
ri-CB		4.98		6.64		ES PCB-180	90.3
etra-CB		18.5		21.3		ES PCB-188	105
Penta-CB		42		45		ES PCB-189	100
Hexa-CB		128		137		ES PCB-202	98.8
lepta-CB		91		103		ES PCB-205	111
Octa-CB		24.2		27.1		ES PCB-206	130
lona-CB		ND	3.19			ES PCB-208	107
Deca-CB		ND	1.81			ES PCB-209	145
						CS PCB-28	96.6
otal PCB (Mono-Deca)		333		365		CS PCB-111	102
						CS PCB-178	106

Checkcode: 653-026-ZFL/C SGS North America - PCB v0.83

Report Created: 21-May-2019 09:17 Analyst: ah

B3245 page 37 of 52 5/21/2019 12:32 PM

Sample ID	: GP-MW	/-17-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		10.07 g	Sample ID:	B3245_16683_	PCB_008-R1-RJ	Date Extracted:		15-May-2019
Date Collected:	26-Ap	or-2019	% Solid		83.5 %	QC Batch No.:	16	683	Date Analyzed:		20-May-2019
			Units		pg/g	Checkcode:	653-02	6-ZFL/C	Time Analyzed:		14:11:16
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	14.9		PCB-19	(1.87)		PCB-54	(0.772)		PCB-72	(0.716)	
PCB-2	(0.767)		PCB-30/18	(1.34)	С	PCB-50/53	(0.95)	С	PCB-68	(0.773)	
PCB-3	(0.824)		PCB-17	(1.96)		PCB-45	(1.14)		PCB-57	(0.765)	
			PCB-27	(1.4)		PCB-51	(0.939)		PCB-58	(0.684)	
Conc.	14.9		PCB-24	(1.36)		PCB-46	(1.2)		PCB-67	(0.697)	
EMPC	14.9		PCB-16	(2.02)		PCB-52	3.05		PCB-63	(0.836)	
			PCB-32	(1.27)		PCB-73	(0.728)		PCB-61/70/74/76	6.03	С
Di	Conc.	Qualifiers	PCB-34	(1.29)		PCB-43	(0.924)		PCB-66	3.32	
PCB-4	1.07		PCB-23	(1.3)		PCB-69/49	[1.66]	J EMPC C	PCB-55	(0.701)	
PCB-10	(0.338)		PCB-26/29	(1.28)	С	PCB-48	(1.01)		PCB-56	[1.18]	EMPC
PCB-9	(0.443)		PCB-25	(1.1)		PCB-44/47/65	3.32	С	PCB-60	(0.884)	
PCB-7	(0.494)		PCB-31	2.2		PCB-59/62/75	(0.754)	С	PCB-80	(0.73)	
PCB-6	(0.423)		PCB-28/20	2.79	С	PCB-42	(1.1)		PCB-79	(0.681)	
PCB-5	(0.508)		PCB-21/33	(1.25)	С	PCB-41	(1.24)		PCB-78	(0.779)	
PCB-8	1.46		PCB-22	(1.13)		PCB-71/40	1.15	JC	PCB-81	(0.831)	
PCB-14	(0.497)		PCB-36	(1.1)		PCB-64	1.59		PCB-77	(0.74)	
PCB-11	5.61	В	PCB-39	(1.22)							
PCB-13/12	(0.492)	С	PCB-38	(1.21)							
PCB-15	1.78		PCB-35	(1.26)							
			PCB-37	[1.66]	EMPC						
Conc.	9.92		Conc.	4.98					Conc.	18.5	
EMPC	9.92		EMPC	6.64					EMPC	21.3	
	00	-	5500 Business Drive			Total	s		Conc.	Е	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		29.8	3	31.4
	SG		Tel: +1 910 794-1613			Tetra-H	exa		188	:	203
			www.us.sgs.com			Hepta-D)eca		115		130
						Mono-D	eca		333	;	365

Sample ID:	GP-MW	/-17-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.403)		PCB-109/119/86/97/125/87	3.78	1 C	PCB-155	(0.394)		PCB-165	(0.5)	
PCB-96	(0.406)		PCB-117	(0.566)		PCB-152	(0.37)		PCB-146	5.15	
PCB-103	(0.686)		PCB-116/85	[1.95]	J EMPC C	PCB-150	(0.42)		PCB-161	(0.425)	
PCB-94	(0.837)		PCB-110	12.4		PCB-136	[2.65]	EMPC	PCB-153/168	23.1	С
PCB-95	5.3		PCB-115	(0.498)		PCB-145	(0.39)		PCB-141	[2.48]	EMPC
PCB-100/93	(0.745)	С	PCB-82	(0.74)		PCB-148	(0.596)		PCB-130	[2.65]	EMPC
PCB-102	(0.555)		PCB-111	(0.528)		PCB-151/135	5.13	С	PCB-137	2.21	
PCB-98	(0.747)		PCB-120	(0.428)		PCB-154	(0.564)		PCB-164	3.67	
PCB-88	(0.787)		PCB-108/124	(0.517)	С	PCB-144	(0.602)		PCB-163/138/129	39.6	С
PCB-91	1.33		PCB-107	0.667	J	PCB-147/149	23.3	С	PCB-160	(0.486)	
PCB-84	[1.11]	EMPC	PCB-123	(0.532)		PCB-134	(0.721)		PCB-158	4.12	
PCB-89	(0.713)		PCB-106	(0.486)		PCB-143	(0.623)		PCB-128/166	8.23	С
PCB-121	(0.477)		PCB-118	5.86		PCB-139/140	0.887	JC	PCB-159	(0.811)	
PCB-92	1.22		PCB-122	(0.566)		PCB-131	(0.664)		PCB-162	(0.946)	
PCB-113/90/101	6.01	С	PCB-114	(0.475)		PCB-142	(0.676)		PCB-167	[1.59]	EMPC
PCB-83	(0.924)		PCB-105	2.42		PCB-132	9.89		PCB-156/157	2.48	С
PCB-99	3.05		PCB-127	(0.464)		PCB-133	(0.592)		PCB-169	(1.57)	
PCB-112	(0.464)		PCB-126	(0.65)							
			Conc.	42					Conc.	128	
			EMPC	45					EMPC	137	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.434)		PCB-174	12.8		PCB-202	(1.5)		PCB-208	(1.85)	
PCB-179	3.57		PCB-177	7.84		PCB-201	(1.7)		PCB-207	(1.89)	
PCB-184	(0.444)		PCB-181	(1.54)		PCB-204	(1.46)		PCB-206	(4.54)	
PCB-176	1.09		PCB-171/173	3.84	С	PCB-197	(1.6)				
PCB-186	(0.391)		PCB-172	2.22		PCB-200	(1.57)		Conc.	0	
PCB-178	2.73		PCB-192	(1.2)		PCB-198/199	8.61	С	EMPC	0	
PCB-175	(1.73)		PCB-180/193	28.4	С	PCB-196	3.69				
PCB-187	17.8		PCB-191	(1.38)		PCB-203	5.77		Deca	Conc.	Qualifiers
PCB-182	(1.45)		PCB-170	[11.8]	EMPC	PCB-195	[2.87]	EMPC	PCB-209	(1.81)	
PCB-183	8.19		PCB-190	2.52		PCB-194	6.16				
PCB-185	(1.88)		PCB-189	(1.44)		PCB-205	(2.64)				
	` '		Conc.	91		Conc.	24.2				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.06 g	Sample ID:	B3245_16683_PCB_009-R1-	RJ Date Extracted:	15-May-2019
Date Collected:	26-Apr-2019	% Solid	83.3 %	QC Batch No.:	16683	Date Analyzed:	20-May-2019
Analyte	'	Conc.	DL	EMPC	Qualifier	Standard	Recovery
•		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		EMPC		3.24		ES PCB-1	37.6
PCB-81 344'5-TeCB		ND	0.636			ES PCB-3	49.2
PCB-105 233'44'-PeCB		14.3				ES PCB-4	51.1
PCB-114 2344'5-PeCB		EMPC		0.694	J	ES PCB-15	75.9
PCB-118 23'44'5-PeCB		44				ES PCB-19	65.6
PCB-123 23'44'5'-PeCB		1.17				ES PCB-37	80
PCB-126 33'44'5-PeCB		ND	0.319			ES PCB-54	61
PCB-156/157 233'44'5/233'44'5	5'-HxCB	9.66			С	ES PCB-77	86.1
PCB-167 23'44'55'-HxCB		4.19				ES PCB-81	86.9
PCB-169 33'44'55'-HxCB		ND	0.444			ES PCB-104	75.3
PCB-189 233'44'55'-HpCB		1.49				ES PCB-105	103
-						ES PCB-114	97.5
TEQs (WHO 2005 M/H)						ES PCB-118	98.5
						ES PCB-123	99.1
ND = 0		0.00225		0.00259		ES PCB-126	96.1
ND = 0.5 x DL		0.025		0.0253		ES PCB-153	99.8
ID = DL		0.0478		0.0481		ES PCB-155	96.2
						ES PCB-156/157	119
Totals						ES PCB-167	114
lono-CB		ND	0.779			ES PCB-169	119
Di-CB		12.8				ES PCB-170	99.2
ri-CB		59.7		65.8		ES PCB-180	94
etra-CB		194		212		ES PCB-188	99.6
Penta-CB		504		516		ES PCB-189	101
lexa-CB		669		671		ES PCB-202	104
lepta-CB		276		284		ES PCB-205	113
Octa-CB		64.2		66.2		ES PCB-206	126
Iona-CB		8.14				ES PCB-208	105
eca-CB		4.76				ES PCB-209	133
						CS PCB-28	97.4
otal PCB (Mono-Deca)		1,790		1,840		CS PCB-111	101
,		.,		.,,,,,		CS PCB-178	112

Checkcode: 308-818-VBT/C SGS North America - PCB v0.83

Report Created: 21-May-2019 09:17 Analyst: ah

B3245 page 40 of 52 5/21/2019 12:32 PM

Sample ID:	GP-801	-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	B3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		10.06 g	Sample ID:	B3245_16683_	PCB_009-R1-RJ	Date Extracted:		15-May-2019
Date Collected:	26-Ap	or-2019	% Solid		83.3 %	QC Batch No.:	16	683	Date Analyzed:		20-May-2019
			Units		pg/g	Checkcode:	308-81	8-VBT/C	Time Analyzed:		15:08:49
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(0.827)		PCB-19	(1.36)		PCB-54	(0.378)		PCB-72	[1.24]	EMPC
PCB-2	(0.682)		PCB-30/18	6.38	С	PCB-50/53	4.92	С	PCB-68	1.61	
PCB-3	(0.732)		PCB-17	4.34		PCB-45	[3.78]	EMPC	PCB-57	(0.586)	
			PCB-27	(1.01)		PCB-51	[1.11]	EMPC	PCB-58	(0.524)	
Conc.	0		PCB-24	(0.984)		PCB-46	2.21		PCB-67	(0.534)	
EMPC	0		PCB-16	3.04		PCB-52	26.1		PCB-63	(0.641)	
			PCB-32	4.79		PCB-73	(0.397)		PCB-61/70/74/76	37.9	С
Di	Conc.	Qualifiers	PCB-34	(0.893)		PCB-43	(0.504)		PCB-66	27.8	
PCB-4	0.895	J	PCB-23	(0.9)		PCB-69/49	18.5	С	PCB-55	(0.537)	
PCB-10	(0.42)		PCB-26/29	1.94	JC	PCB-48	[2.71]	EMPC	PCB-56	10.2	
PCB-9	(0.449)		PCB-25	(0.759)		PCB-44/47/65	27.8	С	PCB-60	[4.73]	EMPC
PCB-7	(0.5)		PCB-31	12.1		PCB-59/62/75	2.33	J C	PCB-80	(0.559)	
PCB-6	0.406	J	PCB-28/20	17.7	С	PCB-42	9.29		PCB-79	0.813	J
PCB-5	(0.515)		PCB-21/33	5.51	С	PCB-41	[0.835]	J EMPC	PCB-78	(0.597)	
PCB-8	2.16		PCB-22	3.99		PCB-71/40	12.3	С	PCB-81	(0.636)	
PCB-14	(0.504)		PCB-36	(0.765)		PCB-64	12.2		PCB-77	[3.24]	EMPC
PCB-11	4.47	В	PCB-39	(0.846)							
PCB-13/12	(0.499)	С	PCB-38	(0.839)							
PCB-15	4.83		PCB-35	(0.872)							
			PCB-37	[6.06]	EMPC						
Conc.	12.8		Conc.	59.7					Conc.	194	
EMPC	12.8		EMPC	65.8					EMPC	212	
			-								
	00	0	5500 Business Drive			Total	s		Conc.	EI	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		72.5	7	8.5
	SG		Tel: +1 910 794-1613			Tetra-H	lexa		1,370	1,	400
			www.us.sgs.com			Hepta-D	Deca		353	(363
						Mono-D	eca		1,790	1	840

Sample ID:	GP-801	-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.189)		PCB-109/119/86/97/125/87	36.2	С	PCB-155	(0.222)		PCB-165	(0.245)	
PCB-96	1.02		PCB-117	2.95		PCB-152	(0.209)		PCB-146	28.3	
PCB-103	[2.29]	EMPC	PCB-116/85	9.29	С	PCB-150	1.42		PCB-161	(0.209)	
PCB-94	(0.587)		PCB-110	103		PCB-136	26.3		PCB-153/168	128	С
PCB-95	79.8		PCB-115	(0.349)		PCB-145	(0.22)		PCB-141	24.8	
PCB-100/93	2.62	С	PCB-82	[7.47]	EMPC	PCB-148	0.766	J	PCB-130	9.53	
PCB-102	2.71		PCB-111	(0.37)		PCB-151/135	51.5	С	PCB-137	5.27	
PCB-98	(0.523)		PCB-120	1.33		PCB-154	7.52		PCB-164	8.46	
PCB-88	(0.551)		PCB-108/124	2.1	С	PCB-144	6.18		PCB-163/138/129	136	С
PCB-91	21.4		PCB-107	4.02		PCB-147/149	133	С	PCB-160	(0.238)	
PCB-84	26.6		PCB-123	1.17		PCB-134	8.34		PCB-158	12.4	
PCB-89	[0.988]	J EMPC	PCB-106	(0.34)		PCB-143	(0.306)		PCB-128/166	16.4	С
PCB-121	(0.334)		PCB-118	44		PCB-139/140	2.72	С	PCB-159	[0.897]	J EMPC
PCB-92	20.2		PCB-122	[0.771]	J EMPC	PCB-131	[1.51]	EMPC	PCB-162	(0.322)	
PCB-113/90/101	82.9	С	PCB-114	[0.694]	J EMPC	PCB-142	(0.332)		PCB-167	4.19	
PCB-83	5.05		PCB-105	14.3		PCB-132	44.1		PCB-156/157	9.66	С
PCB-99	42.8		PCB-127	(0.336)		PCB-133	3.54		PCB-169	(0.444)	
PCB-112	(0.325)		PCB-126	(0.319)							
			Conc.	504					Conc.	669	
			EMPC	516					EMPC	671	
	•	•	•		•	•	•	•	•		
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.205)		PCB-174	35		PCB-202	3.43		PCB-208	1.91	
PCB-179	14.6		PCB-177	21		PCB-201	2.89		PCB-207	(0.977)	
PCB-184	(0.21)		PCB-181	(0.502)		PCB-204	(0.355)		PCB-206	6.23	
PCB-176	5.2		PCB-171/173	11.2	С	PCB-197	(0.388)				
PCB-186	(0.185)		PCB-172	5.42		PCB-200	[1.96]	EMPC	Conc.	8.14	
PCB-178	[6.97]	EMPC	PCB-192	(0.39)		PCB-198/199	17.6	С	EMPC	8.14	
PCB-175	1.39		PCB-180/193	74	С	PCB-196	9.53				
PCB-187	42.4		PCB-191	[1.26]	EMPC	PCB-203	9.97		Deca	Conc.	Qualifiers
PCB-182	(0.472)		PCB-170	34.1		PCB-195	6.58		PCB-209	4.76	
PCB-183	19.8		PCB-190	6.78		PCB-194	14.2				
PCB-185	3.37		PCB-189	1.49		PCB-205	(1.13)				
			Conc.	276		Conc.	64.2				
			EMPC	284		EMPC	66.2				

Client Data		Sample Data		Laboratory Data			
Name:	SLR International Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	30-Apr-2019
Project ID:	Nord Door	Weight/Volume:	10.09 g	Sample ID:	B3245_16683_PCB_010-R	Date Extracted:	15-May-2019
Date Collected:	26-Apr-2019	% Solid	90.5 %	QC Batch No.:	16683	Date Analyzed:	20-May-2019
Analyte		Conc.	DL	EMPC	Qualifier	Standard	Recovery
		pg/g	pg/g	pg/g			%
PCB-77 33'44'-TeCB		10.6	100	100		ES PCB-1	32.9
PCB-81 344'5-TeCB		ND	0.792			ES PCB-3	47.5
PCB-105 233'44'-PeCB		20.1				ES PCB-4	49.8
PCB-114 2344'5-PeCB		EMPC		1.2		ES PCB-15	73.4
PCB-118 23'44'5-PeCB		63.3				ES PCB-19	62.1
PCB-123 23'44'5'-PeCB		1.16				ES PCB-37	78.6
PCB-126 33'44'5-PeCB		ND	0.331			ES PCB-54	51
PCB-156/157 233'44'5/233	8'44'5'-HxCB	9.04			С	ES PCB-77	83.4
PCB-167 23'44'55'-HxCB		3.12				ES PCB-81	83.6
PCB-169 33'44'55'-HxCB		ND	0.701			ES PCB-104	75.6
PCB-189 233'44'55'-HpCB		ND	0.518			ES PCB-105	100
				<u> </u>	•	ES PCB-114	97.6
TEQs (WHO 2005 M/H)						ES PCB-118	100
						ES PCB-123	102
ND = 0		0.00396		0.004		ES PCB-126	95.4
ND = 0.5 x DL		0.0312		0.0312		ES PCB-153	97
ND = DL		0.0584		0.0584		ES PCB-155	95.9
						ES PCB-156/157	109
Totals						ES PCB-167	105
Mono-CB		3.67		7.11		ES PCB-169	110
Di-CB		379				ES PCB-170	101
Tri-CB		1,800		1,800		ES PCB-180	95.8
Tetra-CB		881		887		ES PCB-188	92.9
Penta-CB		534		539		ES PCB-189	98.3
Hexa-CB		393		404		ES PCB-202	98.4
Hepta-CB		139		143		ES PCB-205	112
Octa-CB		43.5		55		ES PCB-206	129
Nona-CB		12.9		17.7		ES PCB-208	106
Deca-CB		12.2				ES PCB-209	134
						CS PCB-28	95.8
Total PCB (Mono-Deca)		4,200		4,250		CS PCB-111	105
,						CS PCB-178	105

Checkcode: 735-146-TYR/C SGS North America - PCB v0.83 Report Created: 21-May-2019 09:16 Analyst: ah

B3245 page 43 of 52 5/21/2019 12:32 PM

Sample ID:	GP-802	2-SS								Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	В3	245	Date Received:		30-Apr-2019
Project ID:	Nord	d Door	Weight/Volume:		10.09 g	Sample ID:	B3245_16683	_PCB_010-R1	Date Extracted:		15-May-2019
Date Collected:	26-Ap	or-2019	% Solid		90.5 %	QC Batch No.:	16	683	Date Analyzed:		20-May-2019
			Units		pg/g	Checkcode:	735-14	6-TYR/C	Time Analyzed:		01:04:07
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	3.67		PCB-19	36.7		PCB-54	(0.644)		PCB-72	[1.56]	EMPC
PCB-2	(0.631)		PCB-30/18	311	С	PCB-50/53	19.1	С	PCB-68	(0.755)	
PCB-3	[3.44]	EMPC	PCB-17	195		PCB-45	27.2		PCB-57	(0.745)	
			PCB-27	27		PCB-51	[5]	EMPC	PCB-58	(0.669)	
Conc.	3.67		PCB-24	6.41		PCB-46	11		PCB-67	4.45	
EMPC	7.11		PCB-16	179		PCB-52	107		PCB-63	4.89	
			PCB-32	110		PCB-73	(0.473)		PCB-61/70/74/76	148	С
Di	Conc.	Qualifiers	PCB-34	[2.61]	EMPC	PCB-43	4.59		PCB-66	91.5	
PCB-4	82.5		PCB-23	(1.28)		PCB-69/49	76	С	PCB-55	(0.692)	
PCB-10	2.27		PCB-26/29	72.8	С	PCB-48	27.8		PCB-56	45.1	
PCB-9	5.08		PCB-25	36.5		PCB-44/47/65	115	С	PCB-60	11.3	
PCB-7	3.52		PCB-31	220		PCB-59/62/75	15	С	PCB-80	(0.71)	
PCB-6	72.3		PCB-28/20	301	С	PCB-42	40.5		PCB-79	(0.643)	
PCB-5	1.38		PCB-21/33	135	С	PCB-41	8.55		PCB-78	(0.755)	
PCB-8	133		PCB-22	97.4		PCB-71/40	58	С	PCB-81	(0.792)	
PCB-14	(0.403)		PCB-36	(1.1)		PCB-64	55.4		PCB-77	10.6	
PCB-11	7.43	В	PCB-39	(1.21)							
PCB-13/12	9.65	С	PCB-38	(1.21)							
PCB-15	61		PCB-35	(1.25)							
			PCB-37	76.4							
Conc.	379		Conc.	1,800					Conc.	881	
EMPC	379		EMPC	1,800					EMPC	887	
			•								
	00	0	5500 Business Drive			Total	s		Conc.	Е	MPC
			Wilmington, NC 2840	5, USA		Mono-	Tri		2,180	2	,190
	SG		Tel: +1 910 794-1613			Tetra-H	exa		1,810	1	,830
			www.us.sgs.com			Hepta-D)eca		207	:	228
						Mono-D	eca		4,200	4	,250

Sample ID:	GP-802	-SS							N	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.307)		PCB-109/119/86/97/125/87	52.3	С	PCB-155	(0.239)		PCB-165	(0.284)	
PCB-96	0.923	J	PCB-117	1.55		PCB-152	(0.223)		PCB-146	14.1	
PCB-103	1.63		PCB-116/85	13.6	С	PCB-150	(0.256)		PCB-161	(0.251)	
PCB-94	(0.503)		PCB-110	94.9		PCB-136	12.8		PCB-153/168	70.5	С
PCB-95	71		PCB-115	(0.255)		PCB-145	(0.233)		PCB-141	13	
PCB-100/93	(0.452)	С	PCB-82	9		PCB-148	(0.344)		PCB-130	8.99	
PCB-102	2.34		PCB-111	(0.309)		PCB-151/135	28.4	С	PCB-137	4.66	
PCB-98	(0.474)		PCB-120	(0.255)		PCB-154	2.42		PCB-164	[5.44]	EMPC
PCB-88	(0.472)		PCB-108/124	2.06	С	PCB-144	2.9		PCB-163/138/129	91.5	С
PCB-91	13.9		PCB-107	5.77		PCB-147/149	68.4	С	PCB-160	(0.293)	
PCB-84	29.2		PCB-123	1.16		PCB-134	[5.41]	EMPC	PCB-158	8.94	
PCB-89	(0.434)		PCB-106	(0.296)		PCB-143	(0.375)		PCB-128/166	14.8	С
PCB-121	(0.29)		PCB-118	63.3		PCB-139/140	1.9	JC	PCB-159	(0.479)	
PCB-92	20		PCB-122	0.947	J	PCB-131	1.29		PCB-162	(0.562)	
PCB-113/90/101	90.2	С	PCB-114	[1.2]	EMPC	PCB-142	(0.387)		PCB-167	3.12	
PCB-83	[4.7]	EMPC	PCB-105	20.1		PCB-132	34.4		PCB-156/157	9.04	С
PCB-99	39.7		PCB-127	(0.335)		PCB-133	1.75		PCB-169	(0.701)	
PCB-112	(0.266)		PCB-126	(0.331)							
			Conc.	534					Conc.	393	
			EMPC	539					EMPC	404	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.192)		PCB-174	17.4		PCB-202	5.32		PCB-208	[4.81]	EMPC
PCB-179	7.92		PCB-177	10.8		PCB-201	2.91		PCB-207	(1.28)	
PCB-184	(0.198)		PCB-181	(0.465)		PCB-204	(0.296)		PCB-206	12.9	
PCB-176	3.14		PCB-171/173	5.74	С	PCB-197	(0.316)				
PCB-186	(0.175)		PCB-172	2.72		PCB-200	[1.85]	EMPC	Conc.	12.9	
PCB-178	[3.88]	EMPC	PCB-192	(0.367)		PCB-198/199	16.8	С	EMPC	17.7	
PCB-175	(0.522)		PCB-180/193	35.4	С	PCB-196	6.22				
PCB-187	25.4		PCB-191	(0.423)		PCB-203	8.81		Deca	Conc.	Qualifiers
PCB-182	(0.445)		PCB-170	15.1		PCB-195	3.5		PCB-209	12.2	
PCB-183	10.6		PCB-190	2.83		PCB-194	[9.63]	EMPC			
PCB-185	1.65		PCB-189	(0.518)		PCB-205	(1.01)				
			Conc.	139		Conc.	43.5				
			EMPC	143		EMPC	55			_	

Sample ID: Met		B3245_16683		Laboratory Data			
	nternational Corp	Matrix:	Solid	Project No.:	B3245	Date Received:	n/a
Project ID:	Nord Door	Weight/Volume:	10.00 g	Sample ID:	MB1_16683_PCB_S		15-May-2019
Date Collected:	n/a	% Solid	n/a	QC Batch No.:	16683	Date Analyzed:	19-May-2019
Analyte	11/4	Conc.	DL	EMPC	Qualifier	Standard	Recovery
Allalyto		pg/g	pg/g	pg/g	Quantiti	Otandara	%
PCB-77 33'44'-TeCB		ND	0.853	P9/9		ES PCB-1	69.1
PCB-81 344'5-TeCB		ND	0.866			ES PCB-3	72.6
PCB-105 233'44'-PeCB		ND	0.361			ES PCB-4	82.3
PCB-114 2344'5-PeCB		ND	0.335			ES PCB-15	76.1
PCB-118 23'44'5-PeCB		ND	0.339			ES PCB-19	86.5
PCB-123 23'44'5'-PeCB		ND	0.338			ES PCB-37	73.7
PCB-126 33'44'5-PeCB		ND	0.457			ES PCB-54	79.4
PCB-156/157 233'44'5/233'44'5'-HxCE	3	ND	0.628		С	ES PCB-77	77.7
PCB-167 23'44'55'-HxCB		ND	0.413			ES PCB-81	75.9
PCB-169 33'44'55'-HxCB		ND	0.532			ES PCB-104	90.5
PCB-189 233'44'55'-HpCB		ND	0.611			ES PCB-105	93
·						ES PCB-114	88.4
TEQs (WHO 2005 M/H)						ES PCB-118	92.2
·						ES PCB-123	89.8
ND = 0		0		0		ES PCB-126	87.2
ND = 0.5 x DL		0.031		0.031		ES PCB-153	96.1
ND = DL		0.062		0.062		ES PCB-155	96.7
						ES PCB-156/157	108
Totals						ES PCB-167	102
Mono-CB		ND	0.888			ES PCB-169	105
Di-CB		2.68				ES PCB-170	92.8
Гri-CB		ND	1.33			ES PCB-180	86.9
etra-CB		ND	0.888			ES PCB-188	98.5
Penta-CB		ND	0.365			ES PCB-189	98.2
Hexa-CB		ND	0.47			ES PCB-202	101
lepta-CB		ND	0.572			ES PCB-205	110
Octa-CB		ND	0.486			ES PCB-206	120
lona-CB		ND	2.36			ES PCB-208	104
Deca-CB		ND	0.94			ES PCB-209	132
						CS PCB-28	85.4
otal PCB (Mono-Deca)		2.68		2.68		CS PCB-111	89.3
						CS PCB-178	99.4

Checkcode: 143-962-JLX/C SGS North America - PCB v0.83 Report Created: 21-May-2019 09:14 Analyst: ah

B3245 page 46 of 52 5/21/2019 12:32 PM

Sample ID:	Method	Blank	B3245_1668	3						Method	1668C
Client Data			Sample Data			Laboratory Data					
Name:	SLR Intern	ational Corp	Matrix:		Solid	Project No.:	B3	245	Date Received:		n/a
Project ID:	Nord	l Door	Weight/Volume:		10.00 g	Sample ID:	MB1_16683	B_PCB_SDS	Date Extracted:		15-May-2019
Date Collected:	r	n/a	% Solid		n/a	QC Batch No.:	16	683	Date Analyzed:		19-May-2019
			Units		pg/g	Checkcode:	143-96	2-JLX/C	Time Analyzed:		16:27:04
Mono	Conc.	Qualifiers	Tri	Conc.	Qualifiers	Tetra	Conc.	Qualifiers	Tetra	Conc.	Qualifiers
PCB-1	(0.887)		PCB-19	(1.5)		PCB-54	(0.629)		PCB-72	(0.776)	
PCB-2	(0.834)		PCB-30/18	(1.11)	С	PCB-50/53	(1.1)	С	PCB-68	(0.825)	
PCB-3	(0.89)		PCB-17	(1.61)		PCB-45	(1.29)		PCB-57	(0.814)	
			PCB-27	(1.14)		PCB-51	(1.11)		PCB-58	(0.73)	
Conc.	0		PCB-24	(1.12)		PCB-46	(1.39)		PCB-67	(0.738)	
EMPC	0		PCB-16	(1.68)		PCB-52	(0.995)		PCB-63	(0.892)	
			PCB-32	(1.04)		PCB-73	(0.848)		PCB-61/70/74/76	(0.79)	С
Di	Conc.	Qualifiers	PCB-34	(1.19)		PCB-43	(1.1)		PCB-66	(0.764)	
PCB-4	(0.629)		PCB-23	(1.18)		PCB-69/49	(0.986)	С	PCB-55	(0.756)	
PCB-10	(0.466)		PCB-26/29	(1.16)	С	PCB-48	(1.18)		PCB-56	(0.8)	
PCB-9	(0.4)		PCB-25	(0.993)		PCB-44/47/65	(1.02)	С	PCB-60	(0.928)	
PCB-7	(0.45)		PCB-31	(1.02)		PCB-59/62/75	(0.897)	С	PCB-80	(0.776)	
PCB-6	(0.382)		PCB-28/20	(1.09)	С	PCB-42	(1.31)		PCB-79	(0.702)	
PCB-5	(0.466)		PCB-21/33	(1.13)	С	PCB-41	(1.51)		PCB-78	(0.825)	
PCB-8	(0.367)		PCB-22	(1.03)		PCB-71/40	(1.05)	С	PCB-81	(0.866)	
PCB-14	(0.443)		PCB-36	(1.02)		PCB-64	(0.891)		PCB-77	(0.853)	
PCB-11	2.68		PCB-39	(1.12)							
PCB-13/12	(0.448)	С	PCB-38	(1.11)							
PCB-15	(0.419)		PCB-35	(1.15)							
			PCB-37	(1.16)							
Conc.	2.68		Conc.	0					Conc.	0	
EMPC	2.68		EMPC	0					EMPC	0	
			5500 Business Drive		•	Totals		I	Conc.		MPC
	00			E LICA		Totals					
	SG		Wilmington, NC 2840 Tel: +1 910 794-1613			Mono-T Tetra-He			2.68	2	2.68 0
	-		www.us.sgs.com			Hepta-Deca			0		0
						Mono-De	eca		2.68	2	2.68

Sample ID:	Method	l Blank	B3245_16683	}					IV	lethod	1668C
Penta	Conc.	Qualifiers	Penta	Conc.	Qualifiers	Hexa	Conc.	Qualifiers	Hexa	Conc.	Qualifiers
PCB-104	(0.364)		PCB-109/119/86/97/125/87	(0.374)	С	PCB-155	(0.309)		PCB-165	(0.407)	
PCB-96	(0.371)		PCB-117	(0.348)		PCB-152	(0.288)		PCB-146	(0.41)	
PCB-103	(0.45)		PCB-116/85	(0.397)	С	PCB-150	(0.331)		PCB-161	(0.359)	
PCB-94	(0.545)		PCB-110	(0.316)		PCB-136	(0.343)		PCB-153/168	(0.382)	С
PCB-95	(0.48)		PCB-115	(0.277)		PCB-145	(0.301)		PCB-141	(0.52)	
PCB-100/93	(0.49)	С	PCB-82	(0.475)		PCB-148	(0.492)		PCB-130	(0.607)	
PCB-102	(0.351)		PCB-111	(0.335)		PCB-151/135	(0.485)	С	PCB-137	(0.522)	
PCB-98	(0.514)		PCB-120	(0.277)		PCB-154	(0.462)		PCB-164	(0.352)	
PCB-88	(0.511)		PCB-108/124	(0.333)	С	PCB-144	(0.5)		PCB-163/138/129	(0.459)	С
PCB-91	(0.477)		PCB-107	(0.313)		PCB-147/149	(0.447)	С	PCB-160	(0.419)	
PCB-84	(0.559)		PCB-123	(0.338)		PCB-134	(0.573)		PCB-158	(0.37)	
PCB-89	(0.471)		PCB-106	(0.321)		PCB-143	(0.537)		PCB-128/166	(0.488)	С
PCB-121	(0.315)		PCB-118	(0.339)		PCB-139/140	(0.466)	С	PCB-159	(0.374)	
PCB-92	(0.506)		PCB-122	(0.41)		PCB-131	(0.562)		PCB-162	(0.438)	
PCB-113/90/101	(0.421)	С	PCB-114	(0.335)		PCB-142	(0.553)		PCB-167	(0.413)	
PCB-83	(0.582)		PCB-105	(0.361)		PCB-132	(0.529)		PCB-156/157	(0.628)	С
PCB-99	(0.359)		PCB-127	(0.334)		PCB-133	(0.485)		PCB-169	(0.532)	
PCB-112	(0.289)		PCB-126	(0.457)							
			Conc.	0					Conc.	0	
			EMPC	0					EMPC	0	
Hepta	Conc.	Qualifiers	Hepta	Conc.	Qualifiers	Octa	Conc.	Qualifiers	Nona	Conc.	Qualifiers
PCB-188	(0.296)		PCB-174	(0.641)		PCB-202	(0.261)		PCB-208	(1.43)	
PCB-179	(0.28)		PCB-177	(0.645)		PCB-201	(0.297)		PCB-207	(1.51)	
PCB-184	(0.307)		PCB-181	(0.604)		PCB-204	(0.256)		PCB-206	(3.29)	
PCB-176	(0.326)		PCB-171/173	(0.709)	С	PCB-197	(0.273)				
PCB-186	(0.27)		PCB-172	(0.703)		PCB-200	(0.285)		Conc.	0	
PCB-178	(0.432)		PCB-192	(0.477)		PCB-198/199	(0.347)	С	EMPC	0	
PCB-175	(0.678)		PCB-180/193	(0.579)	С	PCB-196	(0.389)				
PCB-187	(0.562)		PCB-191	(0.55)		PCB-203	(0.312)		Deca	Conc.	Qualifiers
PCB-182	(0.578)		PCB-170	(0.889)		PCB-195	(0.875)		PCB-209	(0.94)	
PCB-183	(0.593)		PCB-190	(0.634)		PCB-194	(0.847)				
PCB-185	(0.75)		PCB-189	(0.611)		PCB-205	(0.711)				
			Conc.	0		Conc.	0				
			EMPC	0		EMPC	0	1			

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8A

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190519S02 Analysis Date: 19-MAY-2019 15:29:33

Lab ID: OPR1_16683_PCB

	SPIKE		RANGE			
NATIVE ANALYTES	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
PCB-1 2-MoCB	50	111	60	_	135	Υ
PCB-3 4-MoCB	50 50	109	60	-	135	Ϋ́
PCB-4 22'-DiCB	50 50	113	60	-	135	Υ
PCB-15 44'-DiCB	50 50	98.2	60	-	135	Υ
PCB-19 22'6-TrCB	50	105	60	-	135	Y
PCB-37 344'-TrCB	50	97.9	60	-	135	Y
PCB-54 22'66'-TeCB	50	97.8	60	-	135	Y
PCB-77 33'44'-TeCB	50	97.2	60	-	135	Y
PCB-81 344'5-TeCB	50	86.3	60	-	135	Y
PCB-104 22'466'-PeCB	50	88.8	60	-	135	Y
PCB-105 233'44'-PeCB	50	97.4	60	-	135	Υ
PCB-114 2344'5-PeCB	50	91.7	60	-	135	Υ
PCB-118 23'44'5-PeCB	50	91.5	60	-	135	Υ
PCB-123 23'44'5'-PeCB	50	88.5	60	-	135	Υ
PCB-126 33'44'5-PeCB	50	110	60	-	135	Υ
PCB-155 22'44'66'-HxCB	50	87.5	60	-	135	Υ
PCB-156/157HxCB	100	92.7	60	-	135	Υ
PCB-167 23'44'55'-HxCB	50	94.9	60	-	135	Υ
PCB-169 33'44'55'-HxCB	50	103	60	-	135	Υ
PCB-188 22'34'566'-HpCB	50	97.4	60	-	135	Υ
PCB-189 233'44'55'-HpCB	50	96.3	60	-	135	Υ
PCB-202 22'33'55'66'-OcCB	50	93.5	60	-	135	Υ
PCB-205 233'44'55'6-OcCB	50	96.9	60	-	135	Υ
PCB-206 22'33'44'55'6-NoCB	50	106	60	-	135	Υ
PCB-208 22'33'455'66'-NoCB	50	100	60	-	135	Υ
PCB-209 DeCB	50	88.6	60	-	135	Υ

Contract-required recovery limits for OPR as specified in Table 6, Method 1668C.

Processed: 21 May 2019 09:13 Analyst: ah

METHOD 1668C PCB ONGOING PRECISION AND RECOVERY (OPR) FORM 8B

Lab Name: SGS North America

Initial Calibration: ICAL: MM4_PCB_08292018_04Jan2019
Instrument ID: MM4 GC Column ID:

VER Data Filename: 190519S02 Analysis Date: 19-MAY-2019 15:29:33

Lab ID: OPR1_16683_PCB

	SPIKE		RANGE			
LABELED STANDARDS	CONC. (pg/uL)	RECOVERY (%)	(%)			OK
ES PCB-1	100	72.4	15	-	145	Υ
ES PCB-3	100	74.3	15	-	145	Υ
ES PCB-4	100	80.8	15	-	145	Υ
ES PCB-15	100	78.6	15	-	145	Υ
ES PCB-19	100	85.1	15	-	145	Υ
ES PCB-37	100	73.1	15	-	145	Υ
ES PCB-54	100	73.2	15	-	145	Υ
ES PCB-77	100	78.1	40	-	145	Υ
ES PCB-81	100	77.8	40	-	145	Υ
ES PCB-104	100	84.3	40	-	145	Υ
ES PCB-105	100	94.9	40	-	145	Υ
ES PCB-114	100	91.4	40	-	145	Υ
ES PCB-118	100	91.3	40	-	145	Υ
ES PCB-123	100	92.8	40	-	145	Υ
ES PCB-126	100	95.2	40	-	145	Υ
ES PCB-153	100	89.7	40	-	145	Υ
ES PCB-155	100	87.1	40	-	145	Υ
ES PCB-156/157	200	108	40	-	145	Υ
ES PCB-167	100	101	40	-	145	Υ
ES PCB-169	100	115	40	-	145	Υ
ES PCB-170	100	89	40	-	145	Υ
ES PCB-180	100	84.2	40	-	145	Υ
ES PCB-188	100	88.1	40	-	145	Υ
ES PCB-189	100	98.1	40	-	145	Υ
ES PCB-202	100	97.2	40	-	145	Υ
ES PCB-205	100	108	40	-	145	Υ
ES PCB-206	100	124	40	-	145	Υ
ES PCB-208	100	98	40	-	145	Υ
ES PCB-209	100	135	40	-	145	Y
CLEANUP STANDARDS						
CS PCB-28	100	90.4	15	-	145	Υ
CS PCB-111	100	93.9	40	-	145	Υ
CS PCB-178	100	98.5	40	-	145	Υ

Processed: 21 May 2019 09:13 Analyst: ah

Sample Receipt Notification

5500 Business Drive Wilmington, NC 28405 USA Tel: 910 794-1613 Toll Free: 866 846-8290 Fax: 910 794-3919 Project Manager: Amy Boehm

Receipt Date & Time: 30-Apr-19 at 11:48

AP Project name: B3245
Requested TAT: 21 days
Projected due date: 21-May-19
Matrix: Soil

Phone#: 910-794-1613

Email Address: <u>Amy.Boehm@sgs.com</u>

Company Contact: Chris Kramer

Company: SLR International Corp

Project Name & Site: Nord Door

Project PO#: 108.00228.00059

QAAP/Contract #: n/a

Requested Analysis: M1613B & M1668C

Phone#: 503-723-4423

Email Address: <u>ckramer@slrconsulting.com</u>

Client Smp ID	AP Smp ID	Sample Condition & Notes	Quantity	Size	Sampling Date	Sampling Time	Received Temp	Container #	Shipping #
GP-MW-11-SS	B3245_001	Soil - D/F & PCB	1	4oz Amber	25-Apr-19	15:10	0.9	1	7869 4161 1768
GP-MW-12-SS	B3245_002	Soil - D/F & PCB	1	4oz Amber	25-Apr-19	11:40	0.9	1	7869 4161 1768
GP-MW-12-SS-18-19	B3245_003	Soil - D/F	1	4oz Amber	25-Apr-19	11:18	0.9	1	7869 4161 1768
GP-MW-13-SS	B3245_004	Soil - D/F & PCB	2	4oz Amber	25-Apr-19	09:40	0.9	1	7869 4161 1768
GP-MW-14-SS	B3245_005	Soil - D/F & PCB	1	4oz Amber	25-Apr-19	14:15	0.9	1	7869 4161 1768
GP-MW-15-SS	B3245_006	Soil - PCB	1	4oz Amber	26-Apr-19	13:42	0.9	1	7869 4161 1768
GP-MW-16-SS	B3245_007	Soil - D/F & PCB	1	4oz Amber	26-Apr-19	13:15	0.9	1	7869 4161 1768
GP-MW-17-SS	B3245_008	Soil - D/F & PCB	1	4oz Amber	26-Apr-19	14:50	0.9	1	7869 4161 1768
GP-801-SS	B3245_009	Soil - D/F & PCB	1	4oz Amber	26-Apr-19	08:45	0.9	1	7869 4161 1768
GP-802-SS	B3245_010	Soil - D/F & PCB	1	4oz Amber	26-Apr-19	16:15	0.9	1	7869 4161 1768

Preservation Type: Notes/Comments: Sample Seals:

No

Samples received intact

Any un-extracted sample will be stored for 90 days from reporting date. Additional storage fees may apply for any samples stored longer than 90 days.

Received by: Ashley Owens

Logged in by: Ashley Owens

QC'ed by: AK 30 Apr 19

All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via:

http://www.sgs.com/terms and conditions.htm

SGS North America

SGS CHAIN OF CUSTODY

	PROJECT INFO PROJECT: Nord Door		•			SPE	CIAL	INSTE	RUCTI	ONS/	COMM	ENTS					SEND DOCUMENTATION / RESULTS TO COMPANY: SLR
	PO. #: 104.00228. 00059										-				1		CONTACT: Chris Kramer ADDRESS: 1800 Blankonship Rd, ste 440
	QUOTE #:					PRE	SERV	ATIVE	T		· .						
	SITE REF:		_												-		PHONE: \$03-723-4423 EMAIL: Chramer@ 5) From
	TURN AROUND TIME: Standard	TAT										1		1			INVOICE TO (TCHECK IF SAME)
	REPORT LEVEL: Level I Leve	ell 🗌 Le	vel IV					<u></u>	<u></u>	<u></u>			<u>, L</u>		i i		COMPANY:
	SPECIAL DELIVERABLES:					ANA	ALYSI	S & MI	ETHOL) 		1	·				CONTACT:
	□ DoD □ EDD/Version:					3					1						ADDRESS:
	State of Origin:					3						; ;	į.				PHONE: EMAIL:
	SAMPLE ID / DESCRIPTION	DATE	TIME	QTY	MATRIX	O'comes/	6.69.								MS MSD	MS/ DUP	REMARKS
001	GP-MW-11-55	4/25/19	1510	1	soil	X	Y						1				
	6P-MW-12-55	4/25/19		1	50:1	X	X		·								
	6P-MW-12-55-18-19	4/25/19	-		Soi	X		1									**analyze for D/Fs per email
	GP-MW-13-55	4/25/4	1		Soil	X	X										AK 5/1/19
005	GP-MW-14-55	4/25/19		†	50:1	Х	Х	-									7
	6P-MW-15-55	4/24/19	1342	ı	Soil		X										
007	GP-MW-16-55	4/26/19	1315	1	Soil	X	Х)						
	GP-MW-17-55	4/26/4	1450	ı	Soil	X	X					1					
009	GP-801-55	4/24/19	0845	1	5.:1	Х	X										
010	6P-80Z-55	4/24/19	16.75	11	30:1	Х	X										
	COLLECTED/RELINQUISHED BY (1)	:			DATE:	TIM	E:	REC	EIVED	BY:			,)			RECEIVED BY LABORATORY: DATE: TIME:
	Atin Tales				4/29/19	140	90			;		ì		٠.			ashey owens 4/30/19 11:48
	RELINQUISHED BY (2):				DATE:	TIM	E:	REC	EIVED	BY:	(-		COOLER SEAL: INTACT BROKEN ABSENT
									-			ĺ	:	-			CONTAINER SEALS: ☐ INTACT / ☐ BROKEN 💋 ABSENT
	RELINQUISHED BY (3):				DATE:	TIM	E:	REC	EIVED		1			1			CARRIER: TEMP: 95 0.90
										¥	ĺ	Ì)			TRACKING #:

B3245 page 52 of 52

ENVIRONMENT, HEALTH & SAFETY 5500 Business Drive Wilmington, NC 28405 910 350 1903 | 866 846 8290 www.us.sgs.com/environment

21 May 2019

Chris Kramer SLR International Corporation 22118 20th Avenue SE G202 Bothell, WA 98021

RE: Former E.A, Nord

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19E0097

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Shelly Frisher

Accreditation # 66169

Chain of Custody Record & Laboratory Analysis Request Analytical Resources, Incorporated ARI Assigned Number: Turn-around Requested: Page: of Analytical Chemists and Consultants Standard ARI Client Company: 5LR 4611 South 134th Place, Suite 100 Date: Ice Tukwila, WA 98168 Present? 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com ckramer@stronsulting.com Coolers: Temps: Client Project Name: Analysis Requested Notes/Comments Nord 1 Client Project #: Samplers: Steven Loslobin 168.00228.00059 Sample ID Date Time Matrix No. Containers MW-11A-0519 Water 5/3/19 1537 1617 MW-12-0519 MW-13-0519 1025 1207 X 1357 MW-17-0519 1444 Comments/Special Instructions Relinquished by: Received by: Relinquished by: Received by:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

(Signature)

Company:

Date & Time:

Printed Name:

(Signature)

Company

Date & Time

Printed Name:

(Signature)

Lesleben

(a 1000)

Steven

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

(Signature)

Company:

Date & Time:

Printed Name

Analytical Report

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059 Reported:
Bothell WA, 98021 Project Manager: Chris Kramer 21-May-2019 14:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-11A-0519	19E0097-01	Water	03-May-2019 15:37	07-May-2019 10:56
MW-11B-0519	19E0097-02	Water	03-May-2019 16:17	07-May-2019 10:56
MW-12-0519	19E0097-03	Water	03-May-2019 11:20	07-May-2019 10:56
MW-13-0519	19E0097-04	Water	03-May-2019 10:25	07-May-2019 10:56
MW-14-0519	19E0097-05	Water	03-May-2019 12:07	07-May-2019 10:56
MW-16-0519	19E0097-06	Water	03-May-2019 13:57	07-May-2019 10:56
MW-17-0519	19E0097-07	Water	03-May-2019 14:44	07-May-2019 10:56

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received May 7, 2019 under ARI work order 19E0097. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Polynuclear Aromatic Hydrocarbons (PAH) - EPA Method SW8270D-SIM

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

WORK ORDER

19E0097

Client: SLR Project: Form	International Corporation er E.A, Nord	Project Manager: Shelly Fishel Project Number: [none]							
Report To:	100	Invoice To:							
SLR Internation	nal Corporation	SLR International Corporation							
Chris Kramer		Chris Kramer							
22118 20th Ave	enue SE G202	22118 20th Avenue SE G202							
Bothell, WA 98	021	Bothell, WA 98021							
Phone: (503) 90	05-3205	Phone :(503) 905-3205							
Fax: -		Fax: -							
Date Due:	21-May-2019 18:00 (10 day TAT)								
Received By:	Erin I. Salle	Date Received: 07-May-2019 10:56							
Logged In By:	Erin I. Salle	Date Logged In: 08-May-2019 08:07							
Samples Received a			-						
Custody papers Was sufficient ic All bottles arrive Number of conta Correct bottles u Analyses/bottles	signed and dated custody seals attached to outside of properly filled out (in, signed, analyses requested, etce used (if appropriate))	lo lo les les						
Analysis	Due	TAT Expires Comments							

Printed: 5/8/2019 8:12:48AM

WORK ORDER

19E0097

Project Manager: Shelly Fishel Client: SLR International Corporation Project Number: [none] Project: Former E.A, Nord TAT Comments Analysis Due **Expires** 19E0097-01 MW-11A-0519 [Water] Sampled 03-May-2019 15:37 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL8270D-SIM PAH Low (0.01 ug/L - 0.5 t21-May-2019 15:00 10 10-May-2019 15:37 19E0097-02 MW-11B-0519 [Water] Sampled 03-May-2019 16:17 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL 10-May-2019 16:17 8270D-SIM PAH Low (0.01 ug/L - 0.5 ι21-May-2019 15:00 10 19E0097-03 MW-12-0519 [Water] Sampled 03-May-2019 11:20 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mL A = Glass NM, Amber, 500 mL 10 10-May-2019 11:20 8270D-SIM PAH Low (0.01 ug/L - 0.5 t21-May-2019 15:00 19E0097-04 MW-13-0519 [Water] Sampled 03-May-2019 10:25 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL 8270D-SIM PAH Low (0.01 ug/L - 0.5 ι21-May-2019 15:00 10-May-2019 10:25 19E0097-05 MW-14-0519 [Water] Sampled 03-May-2019 12:07 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL 8270D-SIM PAH Low (0.01 ug/L - 0.5 t21-May-2019 15:00 10 10-May-2019 12:07 19E0097-06 MW-16-0519 [Water] Sampled 03-May-2019 13:57 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL8270D-SIM PAH Low (0.01 ug/L - 0.5 t21-May-2019 15:00 10-May-2019 13:57 19E0097-07 MW-17-0519 [Water] Sampled 03-May-2019 14:44 (GMT-08:00) Pacific Time (US & Canada) B = Glass NM, Amber, 500 mLA = Glass NM, Amber, 500 mL10-May-2019 14:44 8270D-SIM PAH Low (0.01 ug/L - 0.5 121-May-2019 15:00 10

Reviewed By	Date	Page 2 of 2

Cooler Receipt Form

NA	Project Name: 101 101 101 101 101 101 101 101 101 10	er Hand Delivered Otho	
NA	Delivered by: Fed-Ex UPS Court		
	The probabilities		
	Tracking No:		(NA)
tady soals attached to th	a autoide of the applor?	VEC	NO
		YES	
			NO
		YES	NO
54 2.0 0.0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28		
Il out form 00070E		Temp Gun ID#: DOOF	570C
	A/1/16)		2600
		1000	-
liete custody forms and	d attach all shipping documents		
cooler?		Y	ES NO
? Bubble Wrag	Wet Ice Gel Packs Baggies Foam B	Block Paper Other: Go	charte
		NA CY	ES NO
		Individually Gro	uped Not
oroken)?		Y	ES NO
9?		Y	ES) NO
C match with the number	er of containers received?	Y	ES NO
stody papers?	***************************************	Y	ES NO
sted analyses?		Y	ES NO
eservation? (attach pres	ervation sheet, excluding VOCs)	NA Y	ES NO
		(NA) YI	ES NO
ach bottle?	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(YI	ES NO
		NA _	
S Date/Time:	Equipment:	Split by	y:
214/12	2.1.4	7	Rw
Date: <u>5/8/19</u>	Time: 0807 Lab	els checked by:	15 W
otify Project Manager o	f discrepancies or concerns **		
ample ID on COC	Sample ID on Bottle	Sample ID on	COC
	ler?	Date: 5/7/9 Time: Date: 5/8/19 Labertify Project Manager of discrepancies or concerns **	ll out form 00070F Date: 5/4/9 Temp Gun ID#, DOOF Temp Gun ID#, DOOF DoOF Date: 5/6 Date: 5/4/9 Time: 6/6 Date: 5/6 Temp Gun ID#, DOOF Date: 5/6 Temp Gun ID#, DOOF Date: 5/6 Date: 5/6 Temp Gun ID#, DOOF Date: 5/6 Temp Gun ID#, DOOF Date: 5/6 Temp Gun ID#, DOOF Date: 5/6 Time: 6/6 Packs Baggies Foam Block Paper Other: 6/6 NA Individually Grooroken)? Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Grooroken)? Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Secondary Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Secondary Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Secondary Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individually Yellow Condenses Foam Block Paper Other: 6/6 NA Individua

0016F 01/17/2018 Cooler Receipt Form

Revision 014A

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-11A-0519 19E0097-01 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 15:37

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/14/2019 17:19

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-01 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene		218-01-9	1	0.0009	0.010	0.001	ug/L	J
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene	-d10				42-120 %	68.7	%	
Surrogate: Dibenzo[a,h]anthrace	ene-d14				29-120 %	76.4	%	
Surrogate: Fluoranthene-d10					57-120 %	81.0	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-11B-0519 19E0097-02 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 16:17

 Instrument: NT11
 Analyst: VTS

 Analyzed: 05/14/2019 17:49

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-02 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

	area: 00 May 2019	i mai voidine: e						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene		218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10					42-120 %	77.0	%	
Surrogate: Dibenzo[a,h]anthracene-d14	1				29-120 %	84.7	%	
Surrogate: Fluoranthene-d10					57-120 %	87.8	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-12-0519 19E0097-03 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 11:20

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/14/2019 18:18

 Sample Preparation:
 Preparation Method: EPA 3510C SepF
 Extract ID: 19E0097-03 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL

Prepared: 08-May-2019 Final Volume: 0.5 mL

	a: 00 May 2019	i mai voiame: o						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	0.002	ug/L	J
Chrysene		218-01-9	1	0.0009	0.010	0.004	ug/L	J
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	0.002	ug/L	J
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10					42-120 %	79.9	%	
Surrogate: Dibenzo[a,h]anthracene-d14					29-120 %	79.0	%	
Surrogate: Fluoranthene-d10					57-120 %	102	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-13-0519 19E0097-04 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 05/03/2019 10:25 Instrument: NT11 Analyst: VTS Analyzed: 05/14/2019 18:48 Extract ID: 19E0097-04 A 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

	Trepared: 00 May 2019	i mai voiame:	IIIL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	0.019	ug/L	
Chrysene		218-01-9	1	0.0009	0.010	0.023	ug/L	
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	0.018	ug/L	
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	0.007	ug/L	J
Benzo(a)pyrene		50-32-8	1	0.002	0.010	0.014	ug/L	
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	0.010	ug/L	J
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	0.003	ug/L	J
Surrogate: 2-Methylnaphthalene-	-d10				42-120 %	79.4	%	
Surrogate: Dibenzo[a,h]anthrace	ene-d14				29-120 %	85.1	%	
Surrogate: Fluoranthene-d10					57-120 %	94.7	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-13-0519 19E0097-04RE1 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 10:25

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/16/2019 19:34

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-04RE1 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

	repared: 00 May 2019	i mai voiame:						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	0.018	ug/L	
Chrysene		218-01-9	1	0.0009	0.010	0.022	ug/L	
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	0.016	ug/L	
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	0.007	ug/L	J
Benzo(a)pyrene		50-32-8	1	0.002	0.010	0.014	ug/L	
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	0.011	ug/L	
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	0.004	ug/L	J
Surrogate: 2-Methylnaphthalene-d1	0				42-120 %	77.1	%	
Surrogate: Dibenzo[a,h]anthracene	:-d14				29-120 %	91.0	%	
Surrogate: Fluoranthene-d10					57-120 %	88.7	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-14-0519 19E0097-05 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 12:07

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/14/2019 19:18

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-05 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

	a. 00 111ay 2019	i mai voiame: o						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene		218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10					42-120 %	87.7	%	
Surrogate: Dibenzo[a,h]anthracene-d14					29-120 %	93.7	%	
Surrogate: Fluoranthene-d10					57-120 %	66.7	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord
22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-14-0519 19E0097-05RE1 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 12:07

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/18/2019 12:57

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-05RE1 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

-201) Tiliai voidille.	0.5 IIIL					
		Detection	Reporting			
CAS Number	Dilution	Limit	Limit	Result	Units	Notes
56-55-3	1	0.0008	0.010	0.001	ug/L	J
218-01-9	1	0.0009	0.010	0.002	ug/L	J
205-99-2	1	0.0005	0.010	ND	ug/L	U
207-08-9	1	0.003	0.010	ND	ug/L	U
50-32-8	1	0.002	0.010	ND	ug/L	U
193-39-5	1	0.001	0.010	ND	ug/L	U
53-70-3	1	0.001	0.010	ND	ug/L	U
			42-120 %	81.2	%	
			29-120 %	87.6	%	
			57-120 %	61.5	%	
	CAS Number 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8 193-39-5	CAS Number Dilution 56-55-3 1 218-01-9 1 205-99-2 1 207-08-9 1 50-32-8 1 193-39-5 1	CAS Number Dilution Detection Limit 56-55-3 1 0.0008 218-01-9 1 0.0009 205-99-2 1 0.0005 207-08-9 1 0.003 50-32-8 1 0.002 193-39-5 1 0.001	CAS Number Dilution Detection Limit Reporting Limit 56-55-3 1 0.0008 0.010 218-01-9 1 0.0009 0.010 205-99-2 1 0.0005 0.010 207-08-9 1 0.003 0.010 50-32-8 1 0.002 0.010 193-39-5 1 0.001 0.010 53-70-3 1 0.001 0.010 42-120 % 29-120 %	CAS Number Dilution Detection Limit Reporting Limit Result 56-55-3 1 0.0008 0.010 0.001 218-01-9 1 0.0009 0.010 0.002 205-99-2 1 0.0005 0.010 ND 207-08-9 1 0.003 0.010 ND 50-32-8 1 0.002 0.010 ND 193-39-5 1 0.001 0.010 ND 53-70-3 1 0.001 0.010 ND 42-120 % 81.2 29-120 % 87.6	CAS Number Dilution Limit Reporting Limit Result Units 56-55-3 1 0.0008 0.010 0.001 ug/L 218-01-9 1 0.0009 0.010 0.002 ug/L 205-99-2 1 0.0005 0.010 ND ug/L 207-08-9 1 0.003 0.010 ND ug/L 50-32-8 1 0.002 0.010 ND ug/L 193-39-5 1 0.001 0.010 ND ug/L 53-70-3 1 0.001 0.010 ND ug/L 42-120 % 81.2 % 29-120 % 87.6 %

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-16-0519 19E0097-06 (Water)

Semivolatile Organic Compounds - SIM

Method: EPA 8270D-SIM Sampled: 05/03/2019 13:57 Instrument: NT11 Analyst: VTS Analyzed: 05/14/2019 19:47 Extract ID: 19E0097-06 A 01

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

	11eparea: 00 1/10/ 2019	I mai comme	0.0 1112					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
		56-55-3	1		0.010	ND		T.T.
Benzo(a)anthracene			1	0.0008	0.010	ND	ug/L	U
Chrysene		218-01-9	1	0.0009	0.010	0.001	ug/L	J
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-c	d10				42-120 %	85.5	%	
Surrogate: Dibenzo[a,h]anthracen	ne-d14				29-120 %	94.9	%	
Surrogate: Fluoranthene-d10					57-120 %	94.1	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059
Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

MW-17-0519 19E0097-07 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 05/03/2019 14:44

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/14/2019 20:17

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0097-07 A 01

Preparation Batch: BHE0199 Sample Size: 500 mL Prepared: 08-May-2019 Final Volume: 0.5 mL

Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Anaryte		CAS Number	Dilution	Liiiit	Liiiit	Result	Onns	notes
Benzo(a)anthracene		56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene		218-01-9	1	0.0009	0.010	ND	ug/L	U
Benzo(b)fluoranthene		205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene		207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene		50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene		193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene		53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalen	ne-d10				42-120 %	85.6	%	
Surrogate: Dibenzo[a,h]anthra	acene-d14				29-120 %	81.5	%	
Surrogate: Fluoranthene-d10					57-120 %	92.7	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Bothell WA, 98021 Project Manager: Chris Kramer

Reported: 21-May-2019 14:39

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHE0199 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHE0199-BLK1)				Prep	ared: 08-May	y-2019 A	nalyzed: 14-	May-2019	15:21		
Benzo(a)anthracene	ND	0.0008	0.010	ug/L							U
Chrysene	ND	0.0009	0.010	ug/L							U
Benzo(b)fluoranthene	ND	0.0005	0.010	ug/L							U
Benzo(k)fluoranthene	ND	0.003	0.010	ug/L							U
Benzo(a)pyrene	ND	0.002	0.010	ug/L							U
Indeno(1,2,3-cd)pyrene	0.002	0.001	0.010	ug/L							J
Dibenzo(a,h)anthracene	0.003	0.001	0.010	ug/L							J
Surrogate: 2-Methylnaphthalene-d10	0.235			ug/L	0.300		78.4	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.271			ug/L	0.300		90.4	29-120			
Surrogate: Fluoranthene-d10	0.259			ug/L	0.300		86.4	57-120			
LCS (BHE0199-BS1)				Prep	ared: 08-May	y-2019 A	nalyzed: 14-	May-2019	15:51		
Benzo(a)anthracene	0.265	0.0008	0.010	ug/L	0.300		88.5	42-120			
Chrysene	0.269	0.0009	0.010	ug/L	0.300		89.6	44-120			
Benzo(b)fluoranthene	0.256	0.0005	0.010	ug/L	0.300		85.5	44-120			
Benzo(k)fluoranthene	0.273	0.003	0.010	ug/L	0.300		91.1	50-120			
Benzo(a)pyrene	0.223	0.002	0.010	ug/L	0.300		74.4	35-120			
Indeno(1,2,3-cd)pyrene	0.269	0.001	0.010	ug/L	0.300		89.6	37-120			
Dibenzo(a,h)anthracene	0.265	0.001	0.010	ug/L	0.300		88.4	34-120			
Surrogate: 2-Methylnaphthalene-d10	0.249			ug/L	0.300		83.2	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.280			ug/L	0.300		93.3	29-120			
Surrogate: Fluoranthene-d10	0.280			ug/L	0.300		93.2	57-120			

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord 22118 20th Avenue SE G202 Project Number: 108.00228.00059 Reported: Bothell WA, 98021 Project Manager: Chris Kramer 21-May-2019 14:39

O-----

Certified Analyses included in this Report

Analyte		Certifications						
EPA 8270D-SII	M in Water							
Naphthalene		ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
2-Methylnaph	thalene	ADEC,DoD-ELAP,NELAP,CAL	AP					
1-Methylnaph	thalene	ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Biphenyl		NELAP						
Acenaphthyle	ene	ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Acenaphthen	е	ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Dibenzofuran		ADEC,DoD-ELAP,NELAP,CAL	.AP					
Fluorene		ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Phenanthren	е	ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Anthracene		ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Carbazole		NELAP						
Fluoranthene		ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Pyrene		ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Benzo(a)anth	racene	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Chrysene		ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Benzo(b)fluoi	anthene	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Benzo(k)fluor	anthene	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Benzo(j)fluora	anthene	ADEC,DoD-ELAP,NELAP,WAD	DOE					
Benzo(e)pyre	ne	NELAP						
Benzo(a)pyre	ne	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Perylene		ADEC,NELAP,CALAP						
Indeno(1,2,3-	cd)pyrene	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Dibenzo(a,h)	anthracene	ADEC, DoD-ELAP, NELAP, CAL	AP,WADOE					
Benzo(g,h,i)p	erylene	ADEC,DoD-ELAP,NELAP,CAL	AP,WADOE					
Code	Description		Number	Expires				
ADEC	Alaska Dept of Environmenta	l Conservation	17-015	01/31/2021				
CALAP	California Department of Pub		2748	06/30/2019				
DoD-ELAP	DoD-Environmental Laborato	66169	01/01/2021					
NELAP	ORELAP - Oregon Laborator	RELAP - Oregon Laboratory Accreditation Program WA100006-012 05/12/2020						

ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

SLR International Corporation
Project: Former E.A, Nord

22118 20th Avenue SE G202
Project Number: 108.00228.00059
Reported:

Bothell WA, 98021
Project Manager: Chris Kramer
21-May-2019 14:39

Notes and Definitions

*	Flagged value	is not with	in established	control limits.

J Estimated concentration value detected below the reporting limit.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

15 May 2019

Chris Kramer SLR International Corporation 22118 20th Avenue SE G202 Bothell, WA 98021

RE: Former E.A, Nord

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19E0011

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entire the contract of the contrac

Chain of Custody Record & Laboratory Analysis Request ARI Assigned Number: Analytical Resources, Incorporated Turn-around Requested: Page: of 19FCOOIL Standard Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 ARI Client Company: Phone: Ice Present? Date: Tukwila, WA 98168 4/29/19 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com Chris ckramer@s/rconsulting.com Coolers: Temps: Client Project Name: Analysis Requested Notes/Comments Client Project #: Samplers: 108.00228.00059 Steven Losleben PAHS Sample ID Date Time Matrix No. Containers water 0900 water 635 Comments/Special Instructions Received by: Relinquished by: Received by: (Signature) (Signature) Printed Name Printed Name:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

12:38

Company:

Date & Time:

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Company:

Date & Time:

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-801-GW	19E0011-01	Water	26-Apr-2019 09:00	01-May-2019 12:38
GP-802-GW	19E0011-02	Water	26-Apr-2019 16:35	01-May-2019 12:38

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

Work Order Case Narrative

Sample receipt

Samples as listed on the preceding page were received May 1, 2019 under ARI work order 19E0011. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Polynuclear Aromatic Hydrocarbons (PAH) - EPA Method SW8270D-SIM

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits except in sample 19E 0011-02 Dibenzo(a,h)antracene was out of control high and is flagged.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

WORK ORDER

19E0011

Client: SLR Project: Form	International Corporation er E.A, Nord		oject Manage oject Number	r: Shelly Fishel : Inonel				
Report To:	2000		Invoice To:					
SLR Internation	al Corporation		R Internationa	l Corporation				
Chris Kramer	Con Mond Case Notes		nris Kramer	. co.peranen				
22118 20th Ave	nue SE G202		118 20th Avenu	ue SE G202				
Bothell, WA 98	021		othell, WA 9802					
Phone: (503) 90	05-3205		ione :(503) 905					
Fax: -			x: -					
Date Due:	15-May-2019 18:00 (10 day TAT)							
Received By:	Erin I. Salle	D	ate Received:	01-May-2019 12:38				
Logged In By:	Erin I. Salle		ate Logged In:	02-May-2019 07:58				
Number of conta Correct bottles u Analyses/bottles	d in good condition (unbroken)	YeYe.luding VOC). No	Bottle labels All VOC vi Sufficient a	abels complete and legible	Yes			
Analysis	Due	TAT	Expires	Comments				
19E0011-01 G	P-801-GW [Water] Sampled 26-Apr- S & Canada)	2019 09:00 (C	GMT-08:00)					
Pacific Time (U A = Glass NM, Amb	per. 500 mL							
Pacific Time (U A = Glass NM, Amb	er. 500 mL Low (0.01 ug/L - 0.5 t15-May-2019 15:00	10 03	3-May-2019 09:0	00	***************************************			
Pacific Time (U A = Glass NM, Amb 8270D-SIM PAH	Low (0.01 ug/L - 0.5 t15-May-2019 15:00 P-802-GW [Water] Sampled 26-Apr-2			00				
Pacific Time (UA = Glass NM, Amb 8270D-SIM PAH 19E0011-02 G	Low (0.01 ug/L - 0.5 t15-May-2019 15:00 P-802-GW [Water] Sampled 26-Apr-2 S & Canada)			00				

Reviewed By

Date

Page 1 of 1

Cooler Receipt Form

ARI Client: SLR		Project Name: Nord Do			
COC No(s):	NA	Delivered by: Fed-Ex UPS Cou	urier Hand Delivere	ed Other:	
Assigned ARI Job No: 19 EOC	2[]	Tracking No:		u 0 i/loi	NA
Preliminary Examination Phase:					_ IVA
Were intact, properly signed and	dated custody seals attached to the	ne outside of the cooler?	YE	s (NO
	ith the cooler?		YE	1	NO
	ed out (ink, signed, etc.)ecommended 2.0-6.0 °C for chemi		YE	ES	NO
If cooler temperature is out of cor	mpliance fill out form 00070F	4	Temp Gun ID#:	D007 56	5
Cooler Accepted by:	LUL .	Date: 4708 5/1/19 Time	: 1238		
	Complete custody forms an	d attach all shipping documents	e. 120		
Log-In Phase:		The state of the s		-	
What kind of packing material Was sufficient ice used (if appro How were bottles sealed in plas Did all bottles arrive in good con Were all bottle labels complete a Did the number of containers lis Did all bottle labels and tags agr Were all bottles used correct for Do any of the analyses (bottles) Were all VOC vials free of air bu Was sufficient amount of sample	priate)?	er of containers received?	NA Individually NA NA NA	YES Grouped YES YES YES YES YES YES YES YES Split by:	NO Not NO
Sample ID on Pottle	P1- IP 200		_		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
					-
Additional Notes, Discrepanci	es, & Resolutions:				
Bv: Da	ite.				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

GP-801-GW 19E0011-01 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 04/26/2019 09:00

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/09/2019 12:43

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0011-01 A 01

Preparation Batch: BHE0086 Sample Size: 500 mL Prepared: 03-May-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	0.077	ug/L	
Chrysene	218-01-9	1	0.0009	0.010	0.132	ug/L	
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	0.090	ug/L	
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	0.052	ug/L	
Benzo(a)pyrene	50-32-8	1	0.002	0.010	0.106	ug/L	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	0.074	ug/L	
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	0.017	ug/L	
Surrogate: 2-Methylnaphthalene-d10				42-120 %	88.9	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	96.0	%	
Surrogate: Fluoranthene-d10				57-120 %	97.0	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

GP-801-GW 19E0011-01RE1 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 04/26/2019 09:00

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/09/2019 14:14

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0011-01RE1 A 01

Preparation Batch: BHE0086 Sample Size: 500 mL
Prepared: 03-May-2019 Final Volume: 0.5 mI

Prepared: 03-May-2019	Final Volume: (0.5 mL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene	56-55-3	10	0.008	0.100	0.104	ug/L	D
Chrysene	218-01-9	10	0.009	0.100	0.160	ug/L	D
Benzo(b)fluoranthene	205-99-2	10	0.005	0.100	0.099	ug/L	J, D
Benzo(k)fluoranthene	207-08-9	10	0.032	0.100	0.061	ug/L	J, D
Benzo(a)pyrene	50-32-8	10	0.025	0.100	0.122	ug/L	D
Indeno(1,2,3-cd)pyrene	193-39-5	10	0.010	0.100	0.123	ug/L	D
Dibenzo(a,h)anthracene	53-70-3	10	0.013	0.100	0.052	ug/L	J, D
Surrogate: 2-Methylnaphthalene-d10				42-120 %	88.5	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	107	%	
Surrogate: Fluoranthene-d10				57-120 %	78.4	%	

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

GP-802-GW 19E0011-02 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 04/26/2019 16:35

 Instrument: NT11 Analyst: VTS
 Analyzed: 05/09/2019 13:13

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 19E0011-02 A 01

Preparation Batch: BHE0086 Sample Size: 500 mL Prepared: 03-May-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzo(a)anthracene	56-55-3	1	0.0008	0.010	ND	ug/L	U
Chrysene	218-01-9	1	0.0009	0.010	0.001	ug/L	J
Benzo(b)fluoranthene	205-99-2	1	0.0005	0.010	ND	ug/L	U
Benzo(k)fluoranthene	207-08-9	1	0.003	0.010	ND	ug/L	U
Benzo(a)pyrene	50-32-8	1	0.002	0.010	ND	ug/L	U
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.001	0.010	ND	ug/L	U
Dibenzo(a,h)anthracene	53-70-3	1	0.001	0.010	ND	ug/L	U
Surrogate: 2-Methylnaphthalene-d10				42-120 %	94.7	%	
Surrogate: Dibenzo[a,h]anthracene-d14				29-120 %	127	%	*
Surrogate: Fluoranthene-d10				57-120 %	109	%	

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHE0086 - EPA 3510C SepF

Instrument: NT11 Analyst: VTS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHE0086-BLK1)				Prep	ared: 03-Ma	y-2019 A	nalyzed: 09-	May-2019	11:43		
Benzo(a)anthracene	ND	0.0008	0.010	ug/L							U
Chrysene	ND	0.0009	0.010	ug/L							U
Benzo(b)fluoranthene	ND	0.0005	0.010	ug/L							U
Benzo(k)fluoranthene	ND	0.003	0.010	ug/L							U
Benzo(a)pyrene	ND	0.002	0.010	ug/L							U
Indeno(1,2,3-cd)pyrene	ND	0.001	0.010	ug/L							U
Dibenzo(a,h)anthracene	ND	0.001	0.010	ug/L							U
Surrogate: 2-Methylnaphthalene-d10	0.266			ug/L	0.300		88.6	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.309			ug/L	0.300		103	29-120			
Surrogate: Fluoranthene-d10	0.310			ug/L	0.300		103	57-120			
LCS (BHE0086-BS1)				Prep	ared: 03-Ma	y-2019 A	nalyzed: 09-	May-2019	12:13		
Benzo(a)anthracene	0.288	0.0008	0.010	ug/L	0.300		96.1	42-120			
Chrysene	0.292	0.0009	0.010	ug/L	0.300		97.4	44-120			
Benzo(b)fluoranthene	0.287	0.0005	0.010	ug/L	0.300		95.8	44-120			
Benzo(k)fluoranthene	0.321	0.003	0.010	ug/L	0.300		107	50-120			
Benzo(a)pyrene	0.295	0.002	0.010	ug/L	0.300		98.2	35-120			
Indeno(1,2,3-cd)pyrene	0.305	0.001	0.010	ug/L	0.300		102	37-120			
Dibenzo(a,h)anthracene	0.315	0.001	0.010	ug/L	0.300		105	34-120			
Surrogate: 2-Methylnaphthalene-d10	0.276			ug/L	0.300		92.0	42-120			
Surrogate: Dibenzo[a,h]anthracene-d14	0.349			ug/L	0.300		116	29-120			
Surrogate: Fluoranthene-d10	0.313			ug/L	0.300		104	57-120			

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202Project Number: [none]Reported:Bothell WA, 98021Project Manager: Chris Kramer15-May-2019 11:25

Certified Analyses included in this Report

Analyte	Certifications	

EPA 8270D-SIM in Water	
Naphthalene	ADEC,DoD-ELAP,NELAP,CALAP,WADOE
2-Methylnaphthalene	ADEC,DoD-ELAP,NELAP,CALAP
1-Methylnaphthalene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Biphenyl	NELAP
Acenaphthylene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Acenaphthene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Dibenzofuran	ADEC,DoD-ELAP,NELAP,CALAP
Fluorene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Phenanthrene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Anthracene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Carbazole	NELAP
Fluoranthene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Pyrene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Benzo(a)anthracene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Chrysene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Benzo(b)fluoranthene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Benzo(k)fluoranthene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Benzo(j)fluoranthene	ADEC, DoD-ELAP, NELAP, WADOE
Benzo(e)pyrene	NELAP
Benzo(a)pyrene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Perylene	ADEC,NELAP,CALAP
Indeno(1,2,3-cd)pyrene	ADEC,DoD-ELAP,NELAP,CALAP,WADOE
Dibenzo(a,h)anthracene	ADEC, DoD-ELAP, NELAP, CALAP, WADOE
Benzo(g,h,i)perylene	ADEC,DoD-ELAP,NELAP,CALAP,WADOE

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

SLR International Corporation Project: Former E.A, Nord

22118 20th Avenue SE G202 Project Number: [none] Reported:

Bothell WA, 98021 Project Manager: Chris Kramer 15-May-2019 11:25

Notes and Definitions

* Flagged value is not within established control limits.	*	Flagged value	is not	within	established	control limits.
---	---	---------------	--------	--------	-------------	-----------------

D The reported value is from a dilution

J Estimated concentration value detected below the reporting limit.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

APPENDIX C

Laboratory Analytical Data Review

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

SLR International Corp 1800 Blankenship Road, Suite 440 West Linn, OR 97068 ATTN: Mr. Chris Kramer ckramer@slrconsulting.com June 18, 2019

SUBJECT: NORD, Data Validation

Dear Mr. Kramer,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on May 31, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #45192:

SDG #	Fraction				
B3245, B3246 B3256	Polychlorinated Congeners	Dioxins/Dibenzofurans,	Polychlorinated	Biphenyls	as

The data validation was performed under Level IV validation guidelines. The analyses were validated using the following documents and variances, as applicable to each method:

- USEPA National Functional Guidelines for High Resolution Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

heistina Rink

1,971 pages - ADV Attachment 1 LDC #45192 (SLR International Corp. - Bothell, WA / NORD) Level IV **PCB** (3) DATE DATE **Dioxins** Cong. LDC SDG# REC'D DUE (1668C) (1613B) S W S W s W s W S W S W s w s W S W s s w s S W S W S W Matrix: Water/Soil B3245 05/31/19 06/21/19 0 9 0 9 05/31/19 06/21/19 В B3246 0 С B3256 05/31/19 06/21/19 6 T/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: NORD

LDC Report Date: June 17, 2019

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: SGS North America, Inc.

Sample Delivery Group (SDG): B3245

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-MW-11-SS	B3246-01	Soil	04/25/19
GP-MW-12-SS	B3246-02	Soil	04/25/19
GP-MW-12-SS-18-19	B3246-03	Soil	04/25/19
GP-MW-13-SS	B3246-04	Soil	04/25/19
GP-MW-14-SS	B3246-05	Soil	04/25/19
GP-MW-16-SS	B3246-07	Soil	04/26/19
GP-MW-17-SS	B3246-08	Soil	04/26/19
GP-801-SS	B3246-09	Soil	04/26/19
GP-802-SS	B3246-010	Soil	04/26/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was less than or equal to 10,000 (10% valley definition) at m/z 330.9792 and greater than or equal to 8000 throughout the mass range.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each unlabeled compound and greater than or equal to 10 for each labeled compound.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG B3245	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to compounds reported as EMPCs, data were qualified as estimated in nine samples.

No results were rejected in this SDG.

NORD
Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG B3245

Sample	Compound	Flag	A or P	Reason
GP-MW-11-SS GP-MW-12-SS GP-MW-12-SS-18-19 GP-MW-13-SS GP-MW-14-SS GP-MW-16-SS GP-MW-17-SS GP-801-SS GP-802-SS	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

NORD

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG B3245

No Sample Data Qualified in this SDG

NORD

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG B3245

No Sample Data Qualified in this SDG

DC #: 45192A21 VALIDATION COMPLETENESS WORKSHEET Date: 60 DC #: 45192A21 Level IV aboratory: SGS North America, Inc. Reviewer: 7 2nd Reviewer: 2							
TETHOD: HRGC/HRMS Polychlorinat The samples listed below were reviewe alidation findings worksheets.		•	·	ation findings are	noted in attac		
Validation Area			Cor	nments			
Sample receipt/Technical holding time	s A/A						
II. HRGC/HRMS Instrument performance	Α,						
III. Initial calibration	À	RSD = 20	135				
IV. Continuing calibration	A	& limi	(s	,			
V. Laboratory Blanks	A		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
VI. Field blanks	, i						
✓II. Matrix spike/Matrix spike duplicates	N			· · · · · · · · · · · · · · · · · · ·			
/III. Laboratory control samples	1	OPR					
IX. Field duplicates							
X. Labeled Compounds	Ĭ.						
XI. Compound quantitation RL/LOQ/LODs	s V	M	EMPC-Ja	ts/A			
XII. Target compound identification	A		<u> </u>				
KIII. System performance	A						
(IV. Overall assessment of data	A						
te: A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compound R = Rinsate FB = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER:	rce blank		
Client ID			Lab ID	Matrix	Date		
GP-MW-11-SS			B3246-01	Soil	04/25/19		
GP-MW-12-SS			B3246-02	Soil	04/25/19		
GP-MW-12-SS-18-19 B3246-03 Soil 04/25/15					04/25/19		
GP-MW-13-SS			B3246-04	Soil	04/25/19		

B3246-05

B3246-07

B3246-08

B3246-09

B3246-010

Soil

Soil

Soil

Soil

Soil

04/25/19

04/26/19

04/26/19

04/26/19

04/26/19

GP-MW-14-SS

GP-MW-16-SS

GP-MW-17-SS

GP-801-SS

GP-802-SS

MB1 16666

9

10

Notes:

LDC #: 45792421

VALIDATION FINDINGS CHECKLIST

Page: lof > Reviewer: A 2nd Reviewer:

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments	
I. Technical holding times					
All technical holding times were met.					
Cooler temperature criteria was met.					
II. GC/MS Instrument performance check		<u>, ,</u>			
Was PFK exact mass 380.9760 verified?					
Were the retention time windows established for all homologues?					
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25% ?	/				
Is the static resolving power at least 10,000 (10% valley definition)?		/			
Was the mass resolution adequately check with PFK?					
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?					
Illa. Initial calibration					
Was the initial calibration performed at 5 concentration levels?					
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled compounds and \leq 35% for unlabeled compounds?					
Did all calibration standards meet the Ion Abundance Ratio criteria?					
Was the signal to noise ratio for each target compound and labeled compound \geq 10?					
IIIb. Initial Calibration Verification					
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		/			
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits?	,				
IV. Continuing calibration					
Was a continuing calibration performed at the beginning and end of each 12 hour period?					
Were all concentrations for the unlabeled compounds and for labeled compounds within QC limits (Method 1613B, Table 6)?		-			
Did all continuing calibration standards meet the Ion Abundance Ratio criteria?					
V. Blanks					
Was a method blank associated with every sample in this SDG?		,			
Was a method blank performed for each matrix and whenever a sample extraction was performed?					
Was there contamination in the method blanks?					
VI. Field blanks					
Were field blanks identified in this SDG?					
Were target compounds detected in the field blanks?					
VII. Matrix spike/Matrix spike duplicates			_		
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?					
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?					

LDC#: 45192421

VALIDATION FINDINGS CHECKLIST

Page: <u>>of ≥</u>
Reviewer: ► ↑
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples	<u> </u>		•	
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?			ł	
Were target compounds detected in the field duplicates?		•		
X. Labeled Compounds			•	
Were labeled compounds within the 25-150% criteria?	/			
Was the minimum S/N ratio of all labeled compound peaks ≥ 10?				
XI. Compound quantitation		7		
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?			/	
Were the correct labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	4		7	E .
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	1		
XII. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?		•		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	\	,		
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound ≥2.5 and ≥10 for the labeled compound?				
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	/			
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?			/	
Was an acceptable lock mass recorded and monitored?				
XIII. System performance				
System performance was found to be acceptable.				
XIV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	l_of	
R	eviewer:	T	
2nd R	leviewer:_	à	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

 A_x = Area of compound, C_x = Concentration of compound, $A_{\rm is}$ = Area of associated internal standard $C_{\rm is}$ = Concentration of internal standard X = Mean of the RRFs

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs,

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CS std)	RRF (CS3 std)	%RSD	%RSD
1	19th	11/26/18	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1,00	1.00	1.03	1.03	4.3	4.3
		,	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.16	1.16	1.15	1.15	2.0	2, [
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1,1	1.1		1.1	3,4	3.4
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	0.99	0.99	0.99	0.99	5.4	5.3
			OCDF (¹³ C-OCDF)	1.05	1.04	1.06	1.06	2.6	2.4
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (¹³ C-OCDF)						
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments:	Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 1	0.0% of the recalculated
results.		

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	<u> </u>
Reviewer:_	5
2nd Reviewer:_	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound,

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Conc (CC)	Conc (CC)	%D	%D
1	190513304	5/13/19	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1,00	10	10		
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.16	9.5	9.5		
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.11	48.9	48,8		
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	0.99	50,4	50.2		
			OCDF (13C-OCDF)	1.05	98.5	98.4		
2	190513813	5/13/19	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)		10.5	10.6		
	,	•	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)		0.1	0.		
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)		52.	52.0		
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)		51.2	50.9		
			OCDF (¹³ C-OCDF)		10	0		
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDF)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

V:\Validation Worksheets\Dioxins\1613\CONCLC16.wpd

VALIDATION FINDINGS WORKSHEET Ongoing Precision and Recovery Results Verification

Page:_	lof
Reviewer:	R
2nd Reviewer:	à,

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent recoveries (%R) of the Ongoing Precision and Recovery (OPR) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SSCD = Duplicate Spiked sample concentration

SA = Spike added

RPD = I SSC- SSCDI * 2/(SSC+ SSCD)

OPR ID: OPR

	Ac	pike Id ∉ d	Spiked S Concent (NG/M	Sample tration		PR	OP		OPR/C	DPRD
Compound	(1)	/mL)	ingh	L)	Percent	Recovery	Percent F	Recovery	RPD	
	OPR OPR	OPRD	OPR	OPRD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
2,3,7,8-TCDD	10		10.2		NA	102				
1,2,3,7,8-PeCDD	50		50.3		1	101				
1,2,3,4,7,8-HxCDD			55.3			111				
1,2,3,4,7,8,9-HpCDF	<u></u>		50.7			101				
OCDF	100		106		V	106				
						<u> </u>				

LDC #: 45192421

%S

only.

VALIDATION FINDINGS WORKSHEET

Were all reported results recalculated and verified for all level IV samples?

Sample Calculation Verification

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Page: lof / Reviewer: 7 2nd reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Concent	ration	$= \frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
Is	=	Amount of internal standard added in nanograms (ng)
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.

Percent solids, applicable to soil and solid matrices

Example:	
Sample I.D,	:
Conc. = (1,1427 1,29e7) (0.99) (16.75) (0.74)
= 147 pg/	Í

#	Sample ID	Compound	Reported Concentration (PA/G)	Calculated Concentration (DA/ G)	Qualification
	1	F	149	147	_
ļ	A1177		10.000		
				- MAMORIA - CO.	
		:		A 14 V 4	
	1.0	*****			
			77.49.44.77.1		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Nord

LDC Report Date: June 17, 2019

Parameters: Polychlorinated Biphenyls Congeners

Validation Level: Level IV

Laboratory: SGS North America, Inc.

Sample Delivery Group (SDG): B3245

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-MW-11-SS	B3246-01	Soil	04/25/19
GP-MW-12-SS	B3246-02	Soil	04/25/19
GP-MW-13-SS	B3246-04	Soil	04/25/19
GP-MW-14-SS	B3246-05	Soil	04/25/19
GP-MW-15-SS	B3246-06	Soil	04/26/19
GP-MW-16-SS	B3246-07	Soil	04/26/19
GP-MW-17-SS	B3246-08	Soil	04/26/19
GP-801-SS	B3246-09	Soil	04/26/19
GP-802-SS	B3246-010	Soil	04/26/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls Congeners by Environmental Protection Agency (EPA) Method 1668C

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all congeners. The chromatographic resolution between the congeners PCB-23 and PCB-34 and congeners PCB-182 and PCB-187 was resolved with a valley of less than or equal to 40%.

The static resolving power was less than or equal to 10,000 (10% valley definition) at m/z 330.9792 and greater than or equal to 8000 throughout the mass range.

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within QC limits.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB 16666	05/15/19	PCB-11 Total dichlorobiphenyl	2.68 pg/g 2.68 pg/g	All samples in SDG B3245

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
GP-MW-11-SS	PCB-11	2.49 pg/g	2.49U pg/g
	Total dichlorobiphenyl	3.77 pg/g	3.77J pg/g
GP-MW-12-SS	PCB-11	4.09 pg/g	4.09U pg/g
	Total dichlorobiphenyl	9.46 pg/g	9.46J pg/g
GP-MW-13-SS	PCB-11	4.88 pg/g	4.88U pg/g
	Total dichlorobiphenyl	10.5 pg/g	10.5J pg/g
GP-MW-14-SS	PCB-11	8.15 pg/g	8.15U pg/g
GP-MW-15-SS	PCB-11	8.38 pg/g	8.38U pg/g
GP-MW-16-SS	PCB-11	7.08 pg/g	7.08U pg/g
GP-MW-17-SS	PCB-11	5.61 pg/g	5.61U pg/g
	Total dichlorobiphenyl	9.92 pg/g	9.92J pg/g
GP-801-SS	PCB-11	4.47 pg/g	4.47U pg/g
	Total dichlorobiphenyl	12.8 pg/g	12.8J pg/g
GP-802-SS	PCB-11	7.43 pg/g	7.43U pg/g

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG B3245	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

XII. Target Compound Identification

All target compound identifications were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
GP-MW-11-SS	PCB-8 PCB-15 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects) J (all detects)	Р
GP-MW-12-SS	PCB-4 PCB-5 PCB-15 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	Р

Sample	Compound	Finding	Criteria	Flag	A or P
GP-MW-13-SS	PCB-4 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects)	Р
GP-MW-14-SS GP-MW-16-SS	PCB-4 PCB-6 PCB-13/12 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	Р
GP-MW-15-SS	PCB-4 PCB-6 PCB-14 PCB-13/12 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	P
GP-MW-17-SS	PCB-4 PCB-8 PCB-15 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	Р
GP-801-SS	PCB-4 PCB-6 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects) J (all detects)	Р
GP-802-SS	PCB-10 PCB-5 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects) J (all detects)	Р

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to compounds reported as EMPCs and single ion quantitation, data were qualified as estimated in nine samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in nine samples.

No results were rejected in this SDG.

Nord Polychlorinated Biphenyls Congeners - Data Qualification Summary - SDG B3245

				_
Sample	Compound	<u>Flag</u>	A or P	Reason
GP-MW-11-SS GP-MW-12-SS GP-MW-13-SS GP-MW-14-SS GP-MW-15-SS GP-MW-16-SS GP-MW-17-SS GP-801-SS GP-802-SS	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Compound quantitation (EMPC)
GP-MW-11-SS	PCB-8 PCB-15 Total dichlorobiphenyl	J (all detects) J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)
GP-MW-12-SS	PCB-4 PCB-5 PCB-15 Total dichlorobiphenyl	J (all detects)	Р	Target compound identification (single ion quantitation)
GP-MW-13-SS	PCB-4 Total dichlorobiphenyl	J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)
GP-MW-14-SS GP-MW-16-SS	PCB-4 PCB-6 PCB-13/12 Total dichlorobiphenyl	J (all detects) J (all detects) J (all detects) J (all detects)	P	Target compound identification (single ion quantitation)
GP-MW-15-SS	PCB-4 PCB-6 PCB-14 PCB-13/12 Total dichlorobiphenyl	J (all detects)	Р	Target compound identification (single ion quantitation)
GP-MW-17-SS	PCB-4 PCB-8 PCB-15 Total dichlorobiphenyl	J (all detects)	Р	Target compound identification (single ion quantitation)
GP-801-SS	PCB-4 PCB-6 Total dichlorobiphenyl	J (all detects) J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)
GP-802-SS	PCB-10 PCB-5 Total dichlorobiphenyl	J (all detects) J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)

Nord Polychlorinated Biphenyls Congeners - Laboratory Blank Data Qualification Summary - SDG B3245

Sample	Compound	Modified Final Concentration	A or P
GP-MW-11-SS	PCB-11 Total dichlorobiphenyl	2.49U pg/g 3.77J pg/g	А
GP-MW-12-SS	PCB-11 Total dichlorobiphenyl	4.09U pg/g 9.46J pg/g	А
GP-MW-13-SS	PCB-11 Total dichlorobiphenyl	4.88U pg/g 10.5J pg/g	А
GP-MW-14-SS	PCB-11	8.15U pg/g	А
GP-MW-15-SS	PCB-11	8.38U pg/g	А
GP-MW-16-SS	PCB-11	7.08U pg/g	А
GP-MW-17-SS	PCB-11 Total dichlorobiphenyl	5.61U pg/g 9.92J pg/g	А
GP-801-SS	PCB-11 Total dichlorobiphenyl	4.47U pg/g 12.8J pg/g	А
GP-802-SS	PCB-11	7.43U pg/g	А

Nord

Polychlorinated Biphenyls Congeners - Field Blank Data Qualification Summary - SDG B3245

No Sample Data Qualified in this SDG

SDG #	#:45192A31VALIDATIO #:B3245 ratory:SGS North America, Inc.\$		PLETEN Level IV	ESS WORKSHEE		Date: 6/1/ Page: 1 of 1 Reviewer: 17 Reviewer:
The sa	HOD: HRGC/HRMS Polychlorinated Biphe amples listed below were reviewed for eaction findings worksheets.					- ,
	Validation Area			Comi	ments	
l. I.	Sample receipt/Technical holding times	4,4				
II.	HRGC/HRMS Instrument performance check	<u> </u>				
111.	Initial calibration/ICV	A	RSD =			
IV.	Continuing calibration	A	Qéh	inte		
V.	Laboratory Blanks	SW		·		
VI.	Field blanks	1				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	4	OPR			
IX.	Field duplicates	N				
Χ.	Labeled Compounds	A				
XI.	Compound quantitation RL/LOQ/LODs	SW	Ju	- EMPC - J	acts/A	
XII.	Target compound identification	SW	\			
XIII.	System performance	Ā			·	
XIV.	Overall assessment of data	À				
Note:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER:	irce blank
	Client ID			Lab ID	Matrix	Date
1 (GP-MW-11-SS			B3246-01	Soil	04/25/19
2 (GP-MW-12-SS			B3246-02	Soil	04/25/19
3 (GP-MW-13-SS			B3246-04	Soil	04/25/19
4 (GP-MW-14-SS			B3246-05	Soil	04/25/19
5 (GP-MW-15-SS			B3246-06	Soil	04/26/19
6 (GP-MW-16-SS			B3246-07	Soil	04/26/19
7 (GP-MW-17-SS			B3246-08	Soil	04/26/19
8 (GP-801-SS			B3246-09	Soil	04/26/19
9 GP-802-SS B3246-010 Soil					04/26/19	
10						
11						
lotes:			- <u> </u>		<u> </u>	
			_			

LDC#: 45192431

VALIDATION FINDINGS CHECKLIST

Page: __lof __ Reviewer: ____ 2nd Reviewer: ____

Method: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Validation Area	Yes	No	NA	Findings/Comments	
I. Technical holding times					
All technical holding times were met.		-			
Cooler temperature criteria was met.					
II. GC/MS Instrument performance check					
Was PFK exact mass 330.9792 verified?					
Were the retention time windows established for all homologues?					
Was the chromatographic resolution (valley) between PCB 23 and PCB 34 and between PCB 182 and PCB 187 ≤ 40% ?					
Is the static resolving power ≥10,000 at m/z 330.9792 and ≥ 8000 throughout the mass range?					
Was the mass resolution adequately checked with PFK?					
III. Initial calibration/Initial calibration verification					
Was the initial calibration performed at 5 concentration levels?					
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled and labeled compounds?		,			
Did all calibration standards meet the Ion Abundance Ratio criteria?					
Was the signal to noise ratio for each target compound and internal standard ≥ 10?					
Were all initial calibration verification (ICV) percent differences (%D) within QC limits for unlabeled and labeled compounds?					
IV. Continuing calibration					
Was a continuing calibration performed at the beginning of each 12 hour period?					
Were all percent differences (%D) \le 25% for unlabeled and percent recoveries (%R) for labeled compounds within 50-145%?		•			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?					
Was the signal to noise ratio for each target compound and internal standard ≥ 10?					
V. Laboratory Blanks					
Was a method blank associated with every sample in this SDG?					
Was a method blank performed for each matrix and concentration?					
Was there contamination in the method blanks? If yes, please see the blanks validation findings worksheet.	/				
VI. Field blanks					
Were field blanks identified in this SDG?			/		
Were target compounds detected in the field blanks?					
VII. Matrix spike/Matrix spike duplicates					
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?					
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?					
VIII. Laboratory control samples					

VALIDATION FINDINGS CHECKLIST

Page: <u>▶</u>of <u>▶</u>
Reviewer:

2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments			
Was an LCS analyzed per extraction batch?							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/						
IX. Field duplicates	X. Field duplicates						
Were field duplicate pairs identified in this SDG?							
Were target compounds detected in the field duplicates?							
X. Labeled Compounds							
Were labeled compound recoveries within the QC criteria?		_					
Was the minimum S/N ratio of all labeled compound peaks ≥ 10?				J			
XI. Compound quantitation							
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?							
Were the labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?		,					
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?							
XII. Target compound identification							
For polychlorinated biphenyl congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?		,					
For polychlorinated biphenyl congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?		,					
For other polychlorinated biphenyl congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?		,					
Did compound spectra contain all characteristic ions listed in the table attached?							
Was the Ion Abundance Ratio for the two quantitation ions within criteria?							
Was the signal to noise ratio for each target compound and labeled standard ≥ 2.5 ?							
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?							
Was an acceptable lock mass recorded and monitored?							
XIII. System performance							
System performance was found to be acceptable.							
XIV. Overall assessment of data							
Overall assessment of data was found to be acceptable.	/						

BLDC #: 451924>1

VALIDATION FINDINGS WORKSHEET Blanks

	Page:	<u>l</u> of <u>l</u>
	Reviewer:_	53
2nd	Reviewer:	\rightarrow

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were all samples associated with a method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated? If yes, please see qualification below.

Blank extraction date: Blank analysis date:

Conc. units: 29/9		Jiank analys	is date/·_		ted samples	:_ fu	Snal	u, 7	otal J	
Compound	Blank ID	6666			, s	ample Identific	ation		1	
	MB183245	- 1	2	3	4	5	b	1	8	9
PCB-11	2.68	2.49	4.09	4.88*	8.15	8,38	7.08	5.6	4.47	7.43
total Di-CB	2.68	3.17	9.46	10.5 *				9.92	2.8	
							<u> </u>			

Blank extraction date:____ Blank analysis date:____ Associated samples:____

Compound	Blank ID	Sample Identification						
						_		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 45192431

VALIDATION FINDINGS WORKSHEET <u>Target Compound Identification</u>

	Page: _	! of	
Rev	iewer:	~	
2nd Rev	iewer:	a	

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Was the Ion Abundance Ratio for the two quantitation ions within criteria?

Y N/N/A Was the signal to noise ratio for each target compound and labeled standard ≥ 2.5 ?

Y N/A Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?

#	Date	Commis ID	Associated Community		
	Date	Sample ID	Associated Compounds	Finding	Qualifications
		1	PCB-8,15	Congeners were quantitated using single ion mode. The	Jdets/P (+ Total Di-CB)
		2	PCB-4, 6, 15	second ion is not integrated or reported due to PFK	
		3	PCB-4	interference. Quantitation should be performed using the	
		4,6	PCB-4,6,13/12	area of the primary and secondary ions.	
		5	PCB-46,14 13/12		
		7	PCB-4.8.15		
		8	PCB - 4.6		
		9	PCB-10,5		
		•			
		-			
		7			
 		t _e			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	of	
	Reviewer:	R	
2nd	Reviewer:		

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 C_x = Concentration of compound,

S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (50 std)	RRF (50 std)	%RSD	%RSD
1	1046	1/4/19	PCB 77 (¹³ C-PCB 77)	1.02	1.02	0.98	0.98	6.0	5.9
	·	,	PCB 105 (¹³ C-PCB 105)	0.96	0.96	0.96	0.96	7.9	7.9
			PCB 167 (¹³ C-PCB 167)	1.02	1.02	1.04	1.04	7.	5.7
			PCB 189 (¹³ C-PCB 189)	1.02	1.02	0.97	0.97	7.6	7.7
2			PCB 77 (¹³ C-PCB 77)						,
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)						
			PCB 189 (¹³ C-PCB 189)						
3			PCB 77 (¹³ C-PCB 77)						
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)						
			PCB 189 (¹³ C-PCB 189)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 45192471

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	
Reviewer: 2nd Reviewer:	76

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	190519501	5/19/19	PCB 77 (¹³ C-PCB 77)	1.02	0.97	0,98	4.7	4.3
		,	PCB 105 (¹³ C-PCB 105)	0.96	0.92	0.92	3.6	4.2
			PCB 167 (¹³ C-PCB 167)	1.02	0.95	0.95	6.4	6.9
			PCB 189 (¹³ C-PCB 189)	1.02	0.96	0.97	1.	5.2
2	190520503	5/20/19	PCB 77 (¹³ C-PCB 77)	1.02	0.99	0,99	₹.0	2.6
			PCB 105 (¹³ C-PCB 105)	0.96	0.94	0.94	2.2	2,6
			PCB 167 (¹³ C-PCB 167)	1.07	1.00	1,0	1.0	1,4
			PCB 189 (¹³ C-PCB 189)	1.02	0.96	0.96	1.5	5.6
3			PCB 77 (¹³ C-PCB 77)					
			PCB 105 (¹³ C-PCB 105)					
			PCB 167 (¹³ C-PCB 167)					
			PCB 189 (¹³ C-PCB 189)					
4			PCB 77 (¹³ C-PCB 77)					
			PCB 105 (¹³ C-PCB 105)					
			PCB 167 (¹³ C-PCB 167)					
			PCB 189 (¹³ C-PCB 189)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Ongoing Precision and Recovery Results Verification

	Page:_		of_	<u>r</u>
	Reviewer:	8		
2nd	Reviewer:	\subset	7	

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent recoveries (%R) of the Ongoing Precision and Recovery (OPR) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SSCD = Duplicate Spiked sample concentration

SA = Spike added

RPD = I SSC- SSCDI * 2/(SSC+ SSCD)

OPR ID:	<u>opri</u>

	Spike Added		Spiked Sample		OPR		OPR D		OPR/OPRD	
Compound	AC (+)	9/UL	Concept (pc) (Percent Recovery		Percent Recovery		RPD	
	OPR	OPRD	OPR	OPRD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PCB 15	50		49.1		98.2	98.2				
PCB 77			48.6		97.2	97.2				
PCB 169			51.4		03	103				
PCB 206	<u> </u>		52.9	:	106	106				

LDC #: 45192431

only.

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: 1 of / Reviewer: 2nd reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

\bigcirc	N	N/A
(\checkmark)	Ν	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration	on = $\frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(%S)}$	Example:
A _x =	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. $\frac{1}{\sqrt{28-8}}$:
A _{is} =	Area of the characteristic ion (EICP) for the specific internal standard	
I _s =	Amount of internal standard added in nanograms (ng)	Conc. = (1.87e5) (200) (352) (0.342)
V _o =	Volume or weight of sample extract in milliliters (ml) or grams (g).	,
RRF =	Relative Response Factor (average) from the initial calibration	= 0. leble ps/g.
Df =	Dilution Factor.	
%S =	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration (P4/9)	Calculated Concentration	Qualification
	1	POB-8	0.667	0.666	
 					
	***	1.000			
				- · · · · · · · · · · · · · · · · · · ·	

	X-2				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date: June 17, 2019

Parameters: Polychlorinated Biphenyls Congeners

Nord

Validation Level: Level IV

Laboratory: SGS North America, Inc.

Sample Delivery Group (SDG): B3246

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-801-GW	B3246-001	Water	04/26/19
GP-802-GW	B3246-002	Water	04/26/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls Congeners by Environmental Protection Agency (EPA) Method 1668C

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all congeners. The chromatographic resolution between the congeners PCB-23 and PCB-34 and congeners PCB-182 and PCB-187 was resolved with a valley of less than or equal to 40%.

The static resolving power was less than or equal to 10,000 (10% valley definition) at m/z 330.9792 and greater than or equal to 8000 throughout the mass range.

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within QC limits.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB1 16671	05/08/19	PCB-11 PCB-95 PCB-113/90/101 PCB-110 PCB-118 PCB-105 PCB-147/149 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total pentachlorobiphenyl Total hexachlorobiphenyl	13.3 pg/L 2.52 pg/L 3.31 pg/L 2.65 pg/L 2.41 pg/L 1.51 pg/L 2 pg/L 3.28 pg/L 3.25 pg/L 13.3 pg/L 12.4 pg/L 8.53 pg/L	All samples in SDG B3246

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
GP-801-GW	PCB-11	29.6 pg/L	29.6U pg/L
GP-802-GW	PCB-11 PCB-95 PCB-113/90/101 PCB-110 PCB-118 PCB-105 PCB-147/149 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total pentachlorobiphenyl Total hexachlorobiphenyl	21.7 pg/L 3.28 pg/L 4.41 pg/L 4.82 pg/L 4.5 pg/L 1.27 pg/L 3.84 pg/L 4.97 pg/L 4.88 pg/L 24 pg/L 18.3 pg/L 13.7 pg/L	21.7U pg/L 3.28U pg/L 4.41U pg/L 4.82U pg/L 4.5U pg/L 1.27U pg/L 3.84U pg/L 4.97U pg/L 4.88U pg/L 24J pg/L 18.3J pg/L 13.7J pg/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG B3246	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

XII. Target Compound Identification

All target compound identifications were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
GP-801-GW	PCB-10 PCB-5	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects)	Р
GP-802-GW	PCB-8	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	Р

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to compounds reported as EMPCs and single ion quantitation, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in two samples.

No results were rejected in this SDG.

Nord Polychlorinated Biphenyls Congeners - Data Qualification Summary - SDG B3246

Sample	Compound	Flag	A or P	Reason
GP-801-GW GP-802-GW	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Compound quantitation (EMPC)
GP-801-GW	PCB-10 PCB-5	J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)
GP-802-GW	PCB-8	J (all detects)	Р	Target compound identification (single ion quantitation)

Nord Polychlorinated Biphenyls Congeners - Laboratory Blank Data Qualification Summary - SDG B3246

Sample	Compound	Modified Final Concentration	A or P
GP-801-GW	PCB-11	29.6U pg/L	Α
GP-802-GW	PCB-11 PCB-95 PCB-113/90/101 PCB-110 PCB-118 PCB-105 PCB-147/149 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total pentachlorobiphenyl Total hexachlorobiphenyl	21.7U pg/L 3.28U pg/L 4.41U pg/L 4.82U pg/L 4.5U pg/L 1.27U pg/L 3.84U pg/L 4.97U pg/L 4.88U pg/L 24J pg/L 18.3J pg/L 13.7J pg/L	A

Nord

Polychlorinated Biphenyls Congeners - Field Blank Data Qualification Summary - SDG B3246

No Sample Data Qualified in this SDG

	#: <u>45192B31</u> VALIDATIO #: B3246		LETENES Level IV	SS WORKSHE	ET	Date: <u>6/4/1</u>
	ratory: SGS North America, Inc.S		Page: 1 of Reviewer: 1			
METI	HOD: HRGC/HRMS Polychlorinated Bipho	envi Conge	eners (EPA N	Method 1668C)	2nd	Reviewer:
			·	·		
	amples listed below were reviewed for ea tion findings worksheets.	ich of the fo	ollowing valid	dation areas. Valid	dation findings are	noted in attache
	1		<u> </u>	weeth was a		-
	Validation Area	 v ,		Co	mments	
<u> </u>	Sample receipt/Technical holding times	1 A/A				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11.	HRGC/HRMS Instrument performance check	<u> A</u>				
III.	Initial calibration/feV-	 	RS) ≤:	20		
IV.	Continuing calibration	<u> </u>	QU L'n	nts_		
V.	Laboratory Blanks	SW				The State of
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	7				
VIII.	Laboratory control samples	4	OPR			
IX.	Field duplicates	7	Ī			
X.	Labeled Compounds	Å				
XI.	Compound quantitation RL/LOQ/LODs	SW	20_	EMPC - Tab	, DC ZX	
XII.		SW	7 4 -	CM/C Jan	4.74	
	Target compound identification	X	<u> </u>			
XIII.	System performance	1				
XIV.	Overall assessment of data	1 4				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	GP-801-GW			B3246-001	Water	04/26/19
2	GP-802-GW			B3246-002	Water	04/26/19
3						
4						
5						
6						
7		1				
8						
9		·				
10						
lotes:						
١	131 16671					-

VALIDATION FINDINGS CHECKLIST

Page: __lof___ Reviewer: __K___ 2nd Reviewer:____

Method: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		_		
All technical holding times were met.		/.		
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 330.9792 verified?		4		
Were the retention time windows established for all homologues?				
Was the chromatographic resolution (valley) between PCB 23 and PCB 34 and between PCB 182 and PCB 187 \leq 40% ?				
Is the static resolving power ≥10,000 at m/z 330.9792 and ≥ 8000 throughout the mass range?				
Was the mass resolution adequately checked with PFK?		•		
III. Initial calibration/Initial calibration verification				
Was the initial calibration performed at 5 concentration levels?				•
Were all percent relative standard deviations (%RSD) ≤20% for unlabeled and labeled compounds?		_		
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound and internal standard ≥ 10?				
Were all initial calibration verification (ICV) percent differences (%D) within QC limits for unlabeled and labeled compounds?				
IV. Continuing calibration				
Was a continuing calibration performed at the beginning of each 12 hour period?				
Were all percent differences (%D) ≤25% for unlabeled and percent recoveries (%R) for labeled compounds within 50-145%?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound and internal standard ≥ 10?				
V. Laboratory Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks			_	
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		-		
VIII. Laboratory control samples				200.000.00

VALIDATION FINDINGS CHECKLIST

Page: of 2
Reviewer: 2
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		,		
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?			/	
X. Labeled Compounds				
Were labeled compound recoveries within the QC criteria?				
Was the minimum S/N ratio of all labeled compound peaks ≥ 10?				
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	1		/	
Were the labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	./			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. Target compound identification				
For polychlorinated biphenyl congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?				
For polychlorinated biphenyl congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?		_		
For other polychlorinated biphenyl congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?		,		
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?		,		
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	4			
Was an acceptable lock mass recorded and monitored?				
XIII. System performance				
System performance was found to be acceptable.				
XIV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: 45192B31

VALIDATION FINDINGS WORKSHEET Blanks

Pag	e: <u> </u>
Review	
2nd Review	er:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all samples associated with a method blank?

Y/N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

N N/A Was the method blank contaminated? If yes, please see qualification below.

Blank extraction date: 5/8/19 Blank analysis date: 5/20/19

Conc. units: pg/L					Associated s	amples:	All	Qualify U	Total J	
Compound	Blank ID	Sample Identification								
	MB1 16671	5X	1	2						
PCB-11	13.3*	66.5	29.6	21.7						
PCB-95	2.52*	12.6		3.28						
PCB-113/90/101	3.31*	16.55		4.41						
PCB-110	2.65*	13.25		4.82						
PCB-118	2.41	12.05		4.5						
PCB-105	1.51*	7.55		1.27						
PCB-147/149	2*	10		3.84						
PCB-153/168	3.28	16.4		4.97						
PCB-163/138/129	3.25	16.25		4.88			:			
Total Di-CB	13.3*	66.5		24/J						
Total Penta-CB	12.4*	62		18.3/J						
Total Hexa-CB	8.53*	42.65		13.7/J						

^{*}EMPC

LDC #: 45792831

VALIDATION FINDINGS WORKSHEET Target Compound Identification

	Page:	<i>_/</i> of_/
	Reviewer:	K
2nd	Reviewer:	0

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Was the Ion Abundance Ratio for the two quantitation ions within criteria?

Y N N/A Was the signal to noise ratio for each target compound and labeled standard > 2.5?

YN N/A Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?

#	Date	Sample ID	Associated Compounds	Finding	Qualifications
	Date	\	Angeles and the second		
 		1	PCB-105	Congeners were quantitated using single ion mode. The	Jdets/P (+ Total Di-CB)
		2	PCB - 8	second ion is not integrated or reported due to PFK	
				interference. Quantitation should be performed using the	·
				area of the primary and secondary ions.	
<u> </u>					

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	
Reviewer:	R
2nd Reviewer:	

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

$$\label{eq:RRF} \begin{split} &RRF = (A_x)(C_{is})/(A_{is})(C_x)\\ &average\ RRF = sum\ of\ the\ RRFs/number\ of\ standards \end{split}$$

 A_x = Area of compound,

A_{is} = Area of associated internal standard

C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X) S = Standard deviation of the RRFs, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (50 std)	RRF (50 std)	%RSD	%RSD
1	1046	1/4/19	PCB 77 (¹³ C-PCB 77)	1.02	1.02	0.98	0.98	6.0	5.9
		•	PCB 105 (¹³ C-PCB 105)	0.96	0.96	0.96	0.96	7.9	7.9
		,	PCB 167 (¹³ C-PCB 167)	1.02	1.02	1.04	1.04	5.5	5.7
			PCB 189 (¹³ C-PCB 189)	1.02	1.02	0.97	0.97	1.6	7.7
2		:	PCB 77 (¹³ C-PCB 77)						
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)		.,				
			PCB 189 (¹³ C-PCB 189)						
3			PCB 77 (¹³ C-PCB 77)						
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)						
			PCB 189 (¹³ C-PCB 189)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	<i>l</i> of_ <i>_/</i>
Reviewer:	1
2nd Reviewer:]	

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

 C_x = Concentration of compound,

RRF = continuing calibration RRF A_x = Area of compound.

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

				Reported	Recalculated	Reported	Recalculated
#	Calibra Standard ID Date		Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	190520507 5/20	PCB 77 (13C-PCB 77)	1.02	0.99	0.99	2.0	2.6
		PCB 105 (¹³ C-PCB 105)	6.96	0.94	0.94	2.7	2.6
		PCB 167 (¹³ C-PCB 167)	1.02	1.00	1.01	1.0	1.4
		PCB 189 (¹³ C-PCB 189)	1.02	0.96	0.96	5.1	5.6
2		PCB 77 (¹³ C-PCB 77)					
		PCB 105 (¹³ C-PCB 105)					
		PCB 167 (¹³ C-PCB 167)					
		PCB 189 (¹³ C-PCB 189)					
3		PCB 77 (¹³ C-PCB 77)					
		PCB 105 (¹³ C-PCB 105)					
		PCB 167 (¹³ C-PCB 167)					
		PCB 189 (¹³ C-PCB 189)					
4		PCB 77 (¹³ C-PCB 77)					
		PCB 105 (¹³ C-PCB 105)					
		PCB 167 (¹³ C-PCB 167)					
		PCB 189 (¹³ C-PCB 189)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Ongoing Precision and Recovery Results Verification

Page:_	of
Reviewer:	n
2nd Reviewer:	\bigcirc

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent recoveries (%R) of the Ongoing Precision and Recovery (OPR) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SSCD = Duplicate Spiked sample concentration

SA = Spike added

RPD = I SSC- SSCDI * 2/(SSC+ SSCD)

OPR ID:	OPRI

Compound	Ac	oike Ided √UU	Spiked S Concent (60/0	tration	OP Percent F		OPF		OPR/C	
	OPR	OPRD	OPR	OPRD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PCB 15	50		5.2		102	102			-	
PCB 77	1		50		100	100				·
PCB 169			54.6		109	109				
PCB 206	J		538		108	108				
					,					
1										

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: _____lof___ Reviewer: ______ 2nd reviewer: ______

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

Y N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concent		= $(A_x)(I_s)(DF)$ $(A_{is})(RRF)(V_o)(\%S)$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
ls	=	Amount of internal standard added in nanograms (ng)
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices only.

conc. = (1,05eb)(2000)()()(0,98)()) = 34.56 pg/L

#	Sample ID	Compound	Reported Concentration	Calculated Concentration (ァクノム)	Qualification
	1	PCB-3	₹,>	34.6	
		AND THE PROPERTY OF THE PROPER			
					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Nord

LDC Report Date: June 17, 2019

Parameters: Polychlorinated Biphenyls Congeners

Validation Level: Level IV

Laboratory: SGS North America, Inc.

Sample Delivery Group (SDG): B3256

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-12-0519	B3256-003	Water	05/03/19
MW-13-0519	B3256-004	Water	05/03/19
MW-14-0519	B3256-005	Water	05/03/19
MW-15-0519	B3256-006	Water	05/03/19
MW-16-0519	B3256-007	Water	05/03/19
MW-17-0519	B3256-008	Water	05/03/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls Congeners by Environmental Protection Agency (EPA) Method 1668C

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all congeners. The chromatographic resolution between the congeners PCB-23 and PCB-34 and congeners PCB-182 and PCB-187 was resolved with a valley of less than or equal to 40%.

The static resolving power was less than or equal to 10,000 (10% valley definition) at m/z 330.9792 and greater than or equal to 8000 throughout the mass range.

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within QC limits.

The ion abundance ratios for all compounds were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB1 16680	05/15/19	PCB-11 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total hexachlorobiphenyl	10.2 pg/L 2.84 pg/L 2.77 pg/L 10.2 pg/L 5.61 pg/L	All samples in SDG B3256

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
MW-12-0519	PCB-11	15.8 pg/L	15.8U pg/L
MW-13-0519	PCB-11	44.1 pg/L	44.1U pg/L
MW-14-0519	PCB-11	17.6 pg/L	17.6U pg/L
MW-15-0519	PCB-11 PCB-153/168 Total dichlorobiphenyl Total hexachlorobiphenyl	18.6 pg/L 3.99 pg/L 18.6 pg/L 9.33 pg/L	18.6U pg/L 3.99U pg/L 18.6U pg/L 9.33J pg/L
MW-16-0519	PCB-11 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl	21.2 pg/L 7.59 pg/L 11.6 pg/L 25.1 pg/L	21.2U pg/L 7.59U pg/L 11.6U pg/L 25.1J pg/L
MW-17-0519	PCB-11 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total hexachlorobiphenyl	14.9 pg/L 3.61 pg/L 3.24 pg/L 14.9 pg/L 11.2 pg/L	14.9U pg/L 3.61U pg/L 3.24U pg/L 14.9U pg/L 11.2J pg/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	%R (Limits)	Affected Compound	Flag	A or P
MW-12-0519	13-PCB-15	161 (5-145)	PCB-9 PCB-7 PCB-6 PCB-5 PCB-8 PCB-14 PCB-11 PCB-13/12 PCB-15 Total dichlorobiphenyl	J (all detects) UJ (all non-detects)	Р
MW-12-0519	13C-PCB-19	155 (5-145)	PCB-19 PCB-30/18 PCB-17 PCB-27 PCB-24 PCB-16 PCB-32 Total trichlorobiphenyl	J (all detects) UJ (all non-detects)	Р

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identification

All target compound identifications were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
MW-12-0519 MW-14-0519	PCB-10 PCB-9 PCB-7 PCB-13/12 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects)	Р
MW-13-0519	PCB-10 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects)	Р
MW-16-0519	PCB-9 Total dichlorobiphenyl	Results were quantitated using single ion mode. The area for the secondary ion trace was not integrated due to significantly elevated noise levels from PFK.	The quantitation should be performed using the area of the primary and secondary ions.	J (all detects) J (all detects)	Р

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to labeled compounds %R and single ion quantitation, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in six samples.

No results were rejected in this SDG.

Nord Polychlorinated Biphenyls Congeners - Data Qualification Summary - SDG B3256

Sample	Compound	Flag	A or P	Reason
MW-12-0519	PCB-9 PCB-7 PCB-6 PCB-5 PCB-8 PCB-14 PCB-11 PCB-13/12 PCB-15 Total dichlorobiphenyl PCB-19 PCB-30/18 PCB-17 PCB-27 PCB-24 PCB-16 PCB-32 Total trichlorobiphenyl	J (all detects) UJ (all non-detects)	P	Labeled compounds (%R)
MW-12-0519 MW-14-0519	PCB-10 PCB-9 PCB-7 PCB-13/12 Total dichlorobiphenyl	J (all detects)	Р	Target compound identification (single ion quantitation)
MW-13-0519	PCB-10 Total dichlorobiphenyl	J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)
MW-16-0519	PCB-9 Total dichlorobiphenyl	J (all detects) J (all detects)	Р	Target compound identification (single ion quantitation)

Nord Polychlorinated Biphenyls Congeners - Laboratory Blank Data Qualification Summary - SDG B3256

Sample	Compound	Modified Final Concentration	A or P
MW-12-0519	PCB-11	15.8U pg/L	А
MW-13-0519	PCB-11	44.1U pg/L	Α
MW-14-0519	PCB-11	17.6U pg/L	Α
MW-15-0519	PCB-11 PCB-153/168 Total dichlorobiphenyl Total hexachlorobiphenyl	18.6U pg/L 3.99U pg/L 18.6U pg/L 9.33J pg/L	А

Sample	Compound	Modified Final Concentration	A or P
MW-16-0519	PCB-11 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl	21.2U pg/L 7.59U pg/L 11.6U pg/L 25.1J pg/L	A
MW-17-0519	PCB-11 PCB-153/168 PCB-163/138/129 Total dichlorobiphenyl Total hexachlorobiphenyl	14.9U pg/L 3.61U pg/L 3.24U pg/L 14.9U pg/L 11.2J pg/L	А

Nord Polychlorinated Biphenyls Congeners - Field Blank Data Qualification Summary -SDG B3256

No Sample Data Qualified in this SDG

SDG #	#:45192C31 VALIDATIO #:B3256 atory:SGS North America, Inc		PLETENES: Level IV	S WORKSHEE	ΞT	Date: 6/14/ Page:l_of_ Reviewer:îr_
Γhe sa	IOD: HRGC/HRMS Polychlorinated Biphamples listed below were reviewed for eation findings worksheets.		•	·	2nd	Reviewer:
	Validation Area			Com	nments	
I.	Sample receipt/Technical holding times	4,4				
11.	HRGC/HRMS Instrument performance check	A				
III.	Initial calibration#€∀	A	R9 4 2	>		
IV.	Continuing calibration	A	De hims	3		
V.	Laboratory Blanks	SW				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	λ	OPI2			
IX.	Field duplicates	N				
Χ.	Labeled Compounds	SW				
XI.	Compound quantitation RL/LOQ/LODs	SW	M-E	MPC - Jack	<u>/</u>	
XII.	Target compound identification	SW	7	MIC Sasy	/ 9 \	
XIII.	System performance	Ā		,		
XIV.	Overall assessment of data	À				•
ote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
	∕/W-12-0519			B3256-003	Water	05/03/19
N	лW-13-0519			B3256-004	Water	05/03/19
	//W-14-0519	B3256-005	Water	05/03/19		
N	//W-15-0519			B3256-006	Water	05/03/19
N	//W-16-0519			B3256-007	Water	05/03/19
	//W-17-0519			B3256-008	Water	05/03/19

Note	es:			 	
	MBI	16680			

VALIDATION FINDINGS CHECKLIST

Method: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 330.9792 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution (valley) between PCB 23 and PCB 34 and between PCB 182 and PCB 187 \leq 40% ?	/			
Is the static resolving power ≥10,000 at m/z 330.9792 and ≥ 8000 throughout the mass range?				
Was the mass resolution adequately checked with PFK?				
III. Initial calibration/Initial calibration verification				
Was the initial calibration performed at 5 concentration levels?		•		
Were all percent relative standard deviations (%RSD) ≤20% for unlabeled and labeled compounds?				
Did all calibration standards meet the Ion Abundance Ratio criteria?		_		
Was the signal to noise ratio for each target compound and internal standard ≥ 10?				
Were all initial calibration verification (ICV) percent differences (%D) within QC limits for unlabeled and labeled compounds?				
IV. Continuing calibration				
Was a continuing calibration performed at the beginning of each 12 hour period?				
Were all percent differences (%D) ≤25% for unlabeled and percent recoveries (%R) for labeled compounds within 50-145%?		_		
Did all routine calibration standards meet the Ion Abundance Ratio criteria?	\Box			
Was the signal to noise ratio for each target compound and internal standard ≥ 10?				
V. Laboratory Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?				·
Were target compounds detected in the field blanks?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: 1 2nd Reviewer: 2

	T	i	1	
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
X. Labeled Compounds				
Were labeled compound recoveries within the QC criteria?				
Was the minimum S/N ratio of all labeled compound peaks ≥ 10?				
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?			/	
Were the labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	/	/		
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	/		
XII. Target compound identification				
For polychlorinated biphenyl congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/	1		
For polychlorinated biphenyl congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/	/		
For other polychlorinated biphenyl congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?	/			
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?				
Was an acceptable lock mass recorded and monitored?				
XIII. System performance				_
System performance was found to be acceptable.				
XIV. Overall assessment of data		_		
Overall assessment of data was found to be acceptable.				

LDC #: 45192C31

VALIDATION FINDINGS WORKSHEET Blanks

Page:	<u> </u>
Reviewer:_	
2nd Reviewer:	2

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a method blank?

Y/N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

√ N N/A Was the method blank contaminated? If yes, please see qualification below.

Blank extraction date: 5/15/19 Blank analysis date: 5/22/19

Conc. units: pg/L				Associated s	amples:	All	Qualify U To	otal U,J		
Compound	Blank ID	Sample Identification								
	MB1 16680	5X	1	2	3	4	5	6		
PCB-11	10.2*	51	15.8	44.1	17.6	18.6	21.2	14.9		
PCB-153/168	2.84	14.2				3.99	7.59	3.61		
PCB-163/138/129	2.77*	13.85					11.6	3.24		
Total Di-CB	10.2*	51				18.6/U	25.1/J	14.9/U		
Total Hexa-CB	5.61*	28.05				9.33/J		11.2/J		
						***	<u> </u>			
			<u></u>				<u> </u>			

*EMPC

VALIDATION FINDINGS WORKSHEET <u>Labeled Compounds</u>

Page: lof | Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y(N/N/A Were all labeled compound recoveries and ion abundance ratios (IAR) within the QC criteria?

Y\N N/A Was the S/N ratio	all labeled compound (peaks > 10?
---------------------------	------------------------	-------------

		T	VVas tile 5/N ratio ali labeled compound peaks ≥ 10?								
#	Date	Lab ID/Reference	Labeled Compound	Ion Abundance Ratio (Limit:)	Qualifications						
		1 (dets/Np)	130-pcg-15	16 (5-145)	JUJ/P + Total Di-OB						
		1	1 19	6 (5-145) SS (])	ty Total Thi-CR						
├ ──					(su attached)						
				()							
				()							
-				, ,							
 											
				()							
				()							
				()							
				()							
				()							
				()							
 				()							
				()							
				()							
				()							
				()							
				()							
				()							
				()							

Analyte

Compound	Standard
PCB-1 2-MoCB	ES PCB-1
PCB-2 3-MoCB	ES PCB-3
PCB-3 4-MoCB	ES PCB-3
PCB-4 22'-DiCB	ES PCB-4
PCB-10 26-DICB	ES PCB-4
PCB-9 25-DiCB	ES PCB-15
PCB-7 24-DICB	ES PCB-15
PCB-6 23'-DiCB	ES PCB-15
PCB-5 23-DICB	ES PCB-15
PCB-8 24'-DiCB	ES PCB-15
PCB-14 35-DiCB	ES PCB-15
PCB-11 33'-DiCB	ES PCB-15
PCB-13/12 34'/34-DiCB	ES PCB-15
PCB-15 44'-DiCB	ES PCB-15
PCB-19 22'6-TrCB	ES PCB-19
PCB-30/18 246/22'5-TrCB	ES PCB-19
PCB-17 22'4-TrCB	ES PCB-19
PCB-27 23'6-TrCB	ES PCB-19
PCB-24 236-TrCB	ES PCB-19
PCB-16 22'3-TrCB	ES PCB-19
PCB-32 24'6-TrCB	ES PCB-19
PCB-34 23'5'-TrCB	ES PCB-37
PCB-23 235-TrCB	ES PCB-37
PCB-26/29 23'5/245-TrCB	ES PCB-37
PCB-25 23'4-TrCB	ES PCB-37
PCB-31 24'5-TrCB	ES PCB-37
PCB-28/20 244'/233'-TrCB	ES PCB-37
PCB-21/33 234/23'4'-TrCB	ES PCB-37
PCB-22 234'-TrCB	ES PCB-37
PCB-36 33'5-TrCB	ES PCB-37
PCB-39 34'5-TrCB	ES PCB-37
PCB-38 345-TrCB	ES PCB-37
PCB-35 33'4-TrCB	ES PCB-37
PCB-37 344'-TrCB	ES PCB-37
PCB-54 22'66'-TeCB	ES PCB-54
PCB-77 33'44'-TeCB	ES PCB-77

Compound	Standard
PCB-50/53 22'46/22'56'-TeCE	ES PCB-81
PCB-45 22'36-TeCB	ES PCB-81
PCB-51 22'46'-TeCB	ES PCB-81
PCB-46 22'36'-TeCB	ES PCB-81
PCB-52 22'55'-TeCB	ES PCB-81
PCB-73 23'5'6-TeCB	ES PCB-81
PCB-43 22'35-TeCB	ES PCB-81
PCB-69/49 23'46/22'45'-TeCE	ES PCB-81
PCB-48 22'45-TeCB	ES PCB-81
PCB-44/47/65TeCB	ES PCB-81
PCB-59/62/75TeCB	ES PCB-81
PCB-42 22'34'-TeCB	ES PCB-81
PCB-41 22'34-TeCB	ES PCB-81
PCB-71/40 23'4'6/22'33'-TeCl	ES PCB-81
PCB-64 234'6-TeCB	ES PCB-81
PCB-72 23'55'-TeCB	ES PCB-81
PCB-68 23'45'-TeCB	ES PCB-81
PCB-57 233'5-TeCB	ES PCB-81
PCB-58 233'5'-TeCB	ES PCB-81
PCB-67 23'45-TeCB	ES PCB-81
PCB-63 234'5-TeCB	ES PCB-81
PCB-61/70/74/76TeCB	ES PCB-81
PCB-66 23'44'-TeCB	ES PCB-81
PCB-55 233'4-TeCB	ES PCB-81
PCB-56 233'4'-TeCB	ES PCB-81
PCB-60 2344'-TeCB	ES PCB-81
PCB-80 33'55'-TeCB	ES PCB-81
PCB-79 33'45'-TeCB	ES PCB-81
PCB-78 33'45-TeCB	ES PCB-81
PCB-81 344'5-TeCB	ES PCB-81
PCB-104 22'466'-PeCB	ES PCB-104
PCB-96 22'366'-PeCB	ES PCB-104
PCB-105 233'44'-PeCB	ES PCB-105
PCB-127 33'455'-PeCB	ES PCB-105
PCB-114 2344'5-PeCB	ES PCB-114
PCB-122 233'4'5'-PeCB	ES PCB-114

Compound	Standard
DOD 440 001445 D 0D	E0 D0D 440
PCB-118 23'44'5-PeCB	ES PCB-118
PCB-103 22'45'6-PeCB	ES PCB-123
PCB-94 22'356'-PeCB	ES PCB-123
PCB-95 22'35'6-PeCB	ES PCB-123
PCB-100/93 22'44'6/22'356-P	ES PCB-123
PCB-102 22'456'-PeCB	ES PCB-123
PCB-98 22'34'6'-PeCB	ES PCB-123
PCB-88 22'346-PeCB	ES PCB-123
PCB-91 22'34'6-PeCB	ES PCB-123
PCB-84 22'33'6-PeCB	ES PCB-123
PCB-89 22'346'-PeCB	ES PCB-123
PCB-121 23'45'6-PeCB	ES PCB-123
PCB-92 22'355'-PeCB	ES PCB-123
PCB-113/90/101PeCB	ES PCB-123
PCB-83 22'33'5-PeCB	ES PCB-123
PCB-99 22'44'5-PeCB	ES PCB-123
PCB-112 233'56-PeCB	ES PCB-123
PCB-108/119/86/97/125Pe	ES PCB-123
PCB-117 234'56-PeCB	ES PCB-123
PCB-116/85 23456/22'344'-Pc	ES PCB-123
PCB-110 233'4'6-PeCB	ES PCB-123
PCB-115 2344'6-PeCB	ES PCB-123
PCB-82 22'33'4-PeCB	ES PCB-123
PCB-111 233'55'-PeCB	ES PCB-123
PCB-120 23'455'-PeCB	ES PCB-123
PCB-107/124PeCB	ES PCB-123
PCB-109 233'46-PeCB	ES PCB-123
PCB-106 233'45-PeCB	ES PCB-123
PCB-123 23'44'5'-PeCB	ES PCB-123
PCB-126 33'44'5-PeCB	ES PCB-126
PCB-155 22'44'66'-HxCB	ES PCB-155
PCB-152 22'3566'-HxCB	ES PCB-155
PCB-150 22'34'66'-HxCB	ES PCB-155
PCB-136 22'33'66'-HxCB	ES PCB-155
PCB-145 22'3466'-HxCB	ES PCB-155

Compound	Standard
PCB-148 22'34'56'-HxCB	ES PCB-153
PCB-151/135HxCB	ES PCB-153
PCB-154 22'44'56'-HxCB	ES PCB-153
PCB-144 22'345'6-HxCB	ES PCB-153
PCB-147/149HxCB	ES PCB-153
PCB-134 22'33'56-HxCB	ES PCB-153
PCB-143 22'3456'-HxCB	ES PCB-153
PCB-139/140HxCB	ES PCB-153
PCB-131 22'33'46-HxCB	ES PCB-153
PCB-142 22'3456-HxCB	ES PCB-153
PCB-132 22'33'46'-HxCB	ES PCB-153
PCB-133 22'33'55'-HxCB	ES PCB-153
PCB-165 233'55'6-HxCB	ES PCB-153
PCB-146 22'34'55'-HxCB	ES PCB-153
PCB-161 233'45'6-HxCB	ES PCB-153
PCB-153/168HxCB	ES PCB-153
PCB-141 22'3455'-HxCB	ES PCB-153
PCB-130 22'33'45'-HxCB	ES PCB-153
PCB-137 22'344'5-HxCB	ES PCB-153
PCB-164 233'4'5'6-HxCB	ES PCB-153
PCB-163/138/129HxCB	ES PCB-153
PCB-160 233'456-HxCB	ES PCB-153
PCB-158 233'44'6-HxCB	ES PCB-153
PCB-156/157HxCB	S PCB-156/15
PCB-167 23'44'55'-HxCB	ES PCB-167
PCB-128/166HxCB	ES PCB-167
PCB-159 233'455'-HxCB	ES PCB-167
PCB-162 233'4'55'-HxCB	ES PCB-167
PCB-169 33'44'55'-HxCB	ES PCB-169
PCB-188 22'34'566'-HpCB	ES PCB-188
PCB-179 22'33'566'-HpCB	ES PCB-188
PCB-184 22'344'66'-HpCB	ES PCB-188
PCB-176 22'33'466'-HpCB	ES PCB-188
PCB-186 22'34566'-HpCB	ES PCB-188
PCB-178 22'33'55'6-HpCB	ES PCB-188

Compound	Standard
PCB-175 22'33'45'6-HpCB	ES PCB-180
PCB-187 22'34'55'6-HpCB	ES PCB-180
PCB-182 22'344'56'-HpCB	ES PCB-180
PCB-183 22'344'5'6-HpCB	ES PCB-180
PCB-185 22'3455'6-HpCB	ES PCB-180
PCB-174 22'33'456'-HpCB	ES PCB-180
PCB-177 22'33'45'6'-HpCB	ES PCB-180
PCB-181 22'344'56-HpCB	ES PCB-180
PCB-171/173HpCB	ES PCB-180
PCB-172 22'33'455'-HpCB	ES PCB-180
PCB-192 233'455'6-HpCB	ES PCB-180
PCB-180/193HpCB	ES PCB-180
PCB-191 233'44'5'6-HpCB	ES PCB-180
PCB-170 22'33'44'5-HpCB	ES PCB-170
PCB-190 233'44'56-HpCB	ES PCB-170
PCB-189 233'44'55'-HpCB	ES PCB-189
PCB-202 22'33'55'66'-OcCB	ES PCB-202
PCB-201 22'33'45'66'-OcCB	ES PCB-202
PCB-204 22'344'566'-OcCB	ES PCB-202
PCB-197 22'33'44'66'-OcCB	ES PCB-202
PCB-200 22'33'4566'-OcCB	ES PCB-202
PCB-198/199OcCB	ES PCB-202
PCB-196 22'33'44'56'-OcCB	ES PCB-202
PCB-203 22'344'55'6-OcCB	ES PCB-202
PCB-195 22'33'44'56-OcCB	ES PCB-205
PCB-194 22'33'44'55'-OcCB	ES PCB-205
PCB-205 233'44'55'6-OcCB	ES PCB-205
PCB-208 22'33'455'66'-NoCB	ES PCB-208
PCB-207 22'33'44'566'-NoCB	ES PCB-208
PCB-206 22'33'44'55'6-NoCB	ES PCB-206
PCB-209 DeCB	ES PCB-209

VALIDATION FINDINGS WORKSHEET Target Compound Identification

	Page: _	<u>l</u> _of	
	Reviewer:	_7?	'
2nd	Reviewer:	Ŏ	

METHOD: HRGC/HRMS Polychlorinated Biphenyls (EPA Method 1668C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N\N/A Was the Ion Abundance Ratio for the two quantitation ions within criteria?

Y N N/A Was the signal to noise ratio for each target compound and labeled standard ≥ 2.5 ?

YWN/A Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?

#	Date	Sample ID	Associated Compounds	Finding	Qualifications
		1,3	PCB-10, 9, 7, 13/12	Congeners were quantitated using single ion mode. The	Jdets/P (+ Total Di-CB)
		2	10	second ion is not integrated or reported due to PFK	
		5	1 9	interference. Quantitation should be performed using the	
<u> </u>				area of the primary and secondary ions.	
ļ					
ļ					
 					
-				-	· · · · · · · · · · · · · · · · · · ·

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Reviewer: 2nd Reviewer: C

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

 A_x = Area of compound, A_i = Area of associated internal standard C_x = Concentration of compound, C_s = Concentration of internal standard

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs, X = Mean of the RRFs

		-		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (50 std)	RRF (50 std)	%RSD	%RSD
1	1046	1/4/19	PCB 77 (¹³ C-PCB 77)	1.02	1.02	0.98	0.98	6.0	5.9
			PCB 105 (¹³ C-PCB 105)	0.96	0.96	0.96	0.96	7.9	7.9
			PCB 167 (¹³ C-PCB 167)	1.02	1.02	1.04	1.04	5.5	5.7
			PCB 189 (¹³ C-PCB 189)	1.02	1.02	0.97	0.97	7.6	7.7
2			PCB 77 (¹³ C-PCB 77)				,		,
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)						
			PCB 189 (¹³ C-PCB 189)						
3			PCB 77 (¹³ C-PCB 77)			,			
			PCB 105 (¹³ C-PCB 105)						
			PCB 167 (¹³ C-PCB 167)						
			PCB 189 (¹³ C-PCB 189)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of	
Reviewer:	25	
2nd Reviewer:		

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, Ais = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	190572501	5/22/19	PCB 77 (¹³ C-PCB 77)	1.02	0.98	0.98	4-3	4.2
		,	PCB 105 (¹³ C-PCB 105)	0.96	0.96	0.96	0.3	0
			PCB 167 (¹³ C-PCB 167)	1.02	0.99	0.99	2.2	2.7
			PCB 189 (¹³ C-PCB 189)	1.02	0.93	0.94	8.0	8.3
2			PCB 77 (¹³ C-PCB 77)					
			PCB 105 (¹³ C-PCB 105)					
			PCB 167 (¹³ C-PCB 167)					
			PCB 189 (¹³ C-PCB 189)					
3			PCB 77 (¹³ C-PCB 77)					
			PCB 105 (¹³ C-PCB 105)					
			PCB 167 (¹³ C-PCB 167)					
			PCB 189 (¹³ C-PCB 189)					
4			PCB 77 (¹³ C-PCB 77)					
			PCB 105 (¹³ C-PCB 105)					
			PCB 167 (¹³ C-PCB 167)					
			PCB 189 (¹³ C-PCB 189)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Ongoing Precision and Recovery Results Verification

Pag	ge: <u> </u>	
Review	/er:_ SC	
2nd Review	/er:	

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

The percent recoveries (%R) of the Ongoing Precision and Recovery (OPR) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SSCD = Duplicate Spiked sample concentration

SA = Spike added

RPD = I SSC- SSCDI * 2/(SSC+ SSCD)

OPR ID: _____

Compound	Spike Added (ÞQ/UL-)		Spiked Sample Concentration (Ph/hL)		OPR Percent Recovery		OPR D Percent Recovery		OPR/OPRD RPD	
Affect of the second of the se	OPR_	OPRD	OPR	OPRD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PCB 15	50		50,4		101	101				
PCB 77			50.5		101	101				
PCB 169			52.6		105	105				
PCB 206	V		55		110	110				
					,	_				

LDC #: 45792(31

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

METHOD: HRGC/HRMS PCB Congeners (EPA Method 1668C)

N	Ν	N/A		
Y	Ν	N/A		

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

С	oncentratio	$ = \frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)} $
Α	. =	Area of the characteristic ion (EICP) for the compound to be measured
Α	s =	Area of the characteristic ion (EICP) for the specific internal standard
Is	=	Amount of internal standard added in nanograms (ng)
V	_ =	Volume or weight of sample extract in milliliters (ml) or grams (g).
R	RF =	Relative Response Factor (average) from the initial calibration
D	f =	Dilution Factor.
%	S =	Percent solids, applicable to soil and solid matrices only.

Sample I.D	
Conc. = (1.92eb)(2000)() (6.00e7)(0.97)(0.96)()
= 68.7 20/2	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration (P4/L)	Qualification
		PCB-15	68.6	68.7	1

<u> </u>					
					