

Data Summary Report

Site Investigation for the Kosmos Mill Oil Cleanup Kosmos Flats Area

Prepared for
Tacoma Power,
Tacoma Public Utilities

February 19, 2021 19499-00

A division of Haley & Aldrich

Data Summary Report

Site Investigation for the Kosmos Mill Oil Cleanup

Kosmos Flats Area

Prepared for
Tacoma Power,
Tacoma Public Utilities

February 19, 2021 19499-00

Prepared by Hart Crowser, a division of Haley & Aldrich

Angie Goodwin

Angie Goodwin, LHG Senior Associate Hydrogeologist Angie.Goodwin@hartcrowser.com

Julie K. W. Wukelic

Senior Principal Engineer
Julie.Wukelic@hartcrowser.com

CCOTT RADOR STATE OF WASHINGTON OF WASHINGTON OF WASHINGTON OF THE WASHING OF THE WASHINGTON OF THE WASHINGTON OF THE WASHINGTON OF THE WA

Andrew S. Kaparos, PE
Associate Environmental Engineer
andrew.kaparos@hartcrowser.com

Contents

1.1 Purpose and Objectives of the Site Investigation	1
2.0 SITE BACKGROUND	4
2.1 Site Description and Location	5
2.2 Previous Environmental Investigations	6
2.3 Geology and Hydrogeology	7
2.3.1 Geology	7
2.3.2 Hydrogeology	7
3.0 EMERGENCY INDEPENDENT REMEDIAL ACTION	8
4.0 CLEANUP STANDARDS	8
4.1 Cleanup Levels	9
5.0 SITE INVESTIGATION AND CHARACTERIZATION	9
5.1 Field Investigation Activities and Observations	9
5.1.1 Ground Penetrating Radar	9
5.1.2 Deviations from the Work Plan	10
5.1.3 Test Pit and Soil Borings Explorations	10
5.1.4 Grab Groundwater Samples	11
5.1.5 Emergency IRA Soil Samples	11
5.1.6 Emergency IRA Surface Water Samples	12
5.1.7 Chemical Data Quality Review	12
5.2 Soil Sample Chemical Analysis and Results	12
5.3 Grab Groundwater Sample Chemical Analysis and Results	14
5.4 Surface Water Sample Chemical Analysis and Results	16
5.4.1 Rainey Creek Surface Water	16
5.4.2 Ponded Water – Former Stockpile Area	19
6.0 NATURE AND EXTENT OF CONTAMINATION	19
6.1 Potential Contaminant Sources and Release Pathways	19
6.1.1 Contaminants of Concern	20
6.1.2 Media of Concern	21
6.2 Contamination Extents	21
6.2.1 Soil	21
6.2.2 Surface Water	24
7.0 DATA GAPS	24

ii | Contents

8.0	CONCLUSIONS AND RECOMMENDATIONS	25								
9.0	LIMITATIONS	26								
10.0	10.0 REFERENCES									
REF	ERENCES	9								
TAB	BLES	Page								
1	Summary of Field Screening and Chemical Analysis Sample Selection									
2	Analytical Results for Soil Boring and Test Pit Samples									
3	Analytical Results for Creek Bed and Bank Samples									
4	Analytical Results for Grab Groundwater Samples									
5	Analytical Results for Surface Water Samples during Excavation Activities									
6	Analytical Results for Surface Water Samples Collected by Tacoma Powe Activities	r after Excavation								
7	Summary of Soil Samples Exceeding CULs	13								
8	Proposed Soil CULs and Surface Water Indicator Levels	20								
FIG	URES									
1	Vicinity Map									
2	Site Features									
3	Site and Exploration Plan									
4	TPH Detections in Soil									
5	cPAH Detections in Soil									
6	Detections in Groundwater									
7	BMPs and Creek Sampling Locations	16								
8	Approximate Extent of Petroleum-Contaminated Soil									

APPENDIX A

Analytical Laboratory Reports from Tacoma Public Utilities, Tacoma Power

APPENDIX B

AIRO 1993 Site Assessment Report

APPENDIX C

Emergency Independent Remedial Action Completion Summary

APPENDIX D

Water Quality Protection Plan – Tacoma Public Utilities, Tacoma Power

APPENDIX E

Global Geophysics, LLC GPR and EM61 Report

APPENDIX F

Field Exploration Methods and Exploration Logs

APPENDIX G

Chemical Data Quality Review and Laboratory Reports

APPENDIX H

Ponded Water Analytical Laboratory Reports Provided by Tacoma Public Utilities, Tacoma Power

APPENDIX I

Reactive Core Mat Data Sheet

APPENDIX J

Cap Design Documents

APPENDIX K

Photo Log

APPENDIX L

Tacoma Power's Inspection Form

Data Summary Report

Site Investigation for the Kosmos Mill Oil Cleanup Kosmos Flats Area

1.0 INTRODUCTION

This Data Summary Report (DSR) details the site investigation and describes emergency independent remedial actions (IRA) conducted in association with the petroleum seep(s) observed in the area of the former Kosmos Mill (Site) in Morton, Washington. The Site is located approximately 7.3 miles southeast of Morton, Washington and is accessible off State Route 12 via Kosmos Road, followed by Champion Haul Road (Figure 1).

A seep of Bunker C oil was discovered along the bank of Rainey Creek near the Site (Figure 2). Tacoma Power immediately began investigations and implemented measures to mitigate risks to human and environmental health once the seep was discovered. The Site currently includes parts of the former Kosmos Lumber Mill and the bank of Rainey Creek as shown as the area of potential effect (APE) in Figure 2. The following is a detailed summary of events at the Site:

Seep Discovery:

- April 2019 The first seep was discovered and reported to the Washington State Department of Ecology (Ecology). On April 26, 2019, Ecology spills response staff received a report (Environmental Report Tracking System no. 688792) of "black oily liquid" coming out of the hill slope and into Rainey Creek. Ecology completed a site visit on April 27, 2019 and confirmed the presence of a black oily liquid seeping from the bank and layered in sediment along Rainey Creek, a tributary to Riffe Lake. Sampling of the seep material indicated the presence of Bunker C-range petroleum hydrocarbons (Bunker C). The laboratory analytical report for the seep sample (Bank#2) provided by Ecology is included in Appendix A.
- May 2019 Ecology requested periodic visual inspections of the Site by Tacoma Power. The water levels in Riffe Lake and Rainey Creek rose above the petroleum seep elevation. A Rainey Creek water quality sample result showed no evidence of Bunker C oil near the seep. The laboratory report for the water quality sample (Rainy Creek) provided by Tacoma Power is included Appendix A.

Remedial Investigation Begins:

■ July 2019 – Tacoma Power selected Hart Crowser as the environmental consultants to conduct a remedial investigation and feasibility study (RI/FS) for this project.

Tacoma Power updated the Kosmos Town and Mill site form (45LE529) and requested concurrence from the Department of Archaeology and Historic Preservation (DAHP) that the Site be not be eligible for inclusion in the National Register of Historic Places. Tacoma Power received agreement from DAHP in September 2019, after the cultural resources survey was completed (see September 2019 bullet below).

- August 2019 During a pre-investigation Site visit in August, material observed with tar-like consistency and petroleum-like odor was discovered in the upland area (labeled as "oil boils" in Figure 2). Tacoma Power collected a sample from the northern oil boil for chemical analysis and confirmed it contained petroleum in the oil range. The laboratory report for the oil boil sample (Kosmos-Upland) is included in Appendix A.
- September 2019 Tacoma Power's archeological consulting firm, Willamette Cultural Resource Associates, Ltd. (WCRA), completed an archeological survey of the proposed Site for permitting the APE. The APE was identified based on the archeological survey. Hart Crowser reviewed Tacoma Power's historical documents and completed an online records review of Ecology's documents and environmental database site assessment reports.

Sheen and Additional Seeps Discovered:

■ October 2019 – Water elevations of Riffe Lake and Rainey Creek decreased, and a sheen was observed in the creek. Tacoma Power immediately deployed Best Management Practices (BMPs) within the creek and along the bank and shoreline to prevent additional petroleum-impacted material from entering the creek. BMPs included oil-adsorbing pom poms, sweeps, pads, and booms in addition to plastic sheeting covering along the bank.

Tacoma Power collected a sample of the seep material and the results confirmed the presence of petroleum (oil and diesel) and polycyclic aromatic hydrocarbons (PAHs) in the sample. The laboratory analytical report for the seep sample (Kosmos Seep) is also included in Appendix A.

■ November 2019 – Tacoma Power declared an emergency in order to quickly implement an IRA to address the exposed seeps before the water levels in Riffe Lake rose and inundated the seep areas.

Additional petroleum-like seeps were observed along Rainey Creek's bank, south of the original seep and at a lower elevation, near the toe of the creek bank (Figure 2).

Site Investigation and Emergency Independent Remedial Action:

■ November 2019 – A geophysical survey was conducted in advance of preparing the Remedial Investigation Work Plan (Hart Crowser 2019), which was completed on December 6, 2019. The geophysical survey included the use of ground penetrating radar (GPR) and a time-domain electromagnetic (EM61) system.

Anderson Environmental Contractors (AEC), mobilized their equipment on-site in preparation for the emergency IRA and cap installation activities. Since excavators were on-site, three test pit explorations were conducted prior to the work plan being finalized (Figure 3). One exploration was just north of the ravine to assess potential petroleum-impacted soil and two were towards the south APE boundary to assess soil conditions for construction dewatering purposes.

■ December 2019 – The APE was expanded, a protective engineered cap was designed, the bank was excavated for the cap installation (which included excavation of impacted material), the cap was

installed, and the Site's work plan was completed and implemented. The work plan included conducting test pits, drilling borings, collecting soil samples, and collecting grab groundwater samples from boreholes.

- For the APE expansion, all newly proposed areas where soil would be disturbed was archaeologically surveyed. WCRA prepared a memorandum for Tacoma Power stating that the planned areas in the newly proposed APE were all within the historic Kosmos Mill Site, which was determined to be ineligible for listing on the NRHP. No new feature areas were observed and WCRA recommended Tacoma Power utilize their Inadvertent Discovery Plan and spot check sub-surface profile exposures moving forward.
- Hart Crowser designed the protective engineered cap to be placed on the bank to help reduce the potential for petroleum to discharge to Rainey Creek.
- After the cap design was completed, AEC, under the direction of Tacoma Power, excavated the bank and installed the cap. As part of the cap construction effort, water quality samples were collected at the request of Tacoma Power for their water quality permit with Ecology as required under their 401 Water Quality Certification for the Cowlitz Project. After the excavation for the cap area, soil samples were collected along the bank and creek bed to characterize soil that was remaining in-place. All excavated petroleum-impacted soil was stockpiled on-site for future disposal, which was completed in February 2020.
- While the creek bank was being excavated, test pit and drilling explorations were performed in general accordance with the work plan. Soil samples and grab groundwater samples were collected, selected for chemical analysis, and submitted to the laboratory.
- Excavation activities were completed on December 18, 2019, and Tacoma Power continued the surface water sampling and analysis from December 19, 2019 through March 3, 2020.
- January 2020 Ecology issues a potential liable person (PLP) status letter to Tacoma Power dated January 7, 2020, pursuant to RCW 70.105D.040(2) and WAC 173-340-500. Based on this change, the RI/FS was placed on hold to follow the Agreed Order process.
- February 2020 As part of the emergency IRA and in conformance with Tacoma Power's Water Quality Protection Plan (WQPP, provided in Appendix D), approximately 186,200 gallons of rainwater that was impacted by the oil seeps during the construction of the cap was pumped into holding treatment tanks and then disposed of at City of Morton's, PRS Group's, and City of Tacoma's wastewater treatment facilities. Additionally, approximately 10,956 tons of impacted soil previously excavated and stockpiled as part of the emergency IRA was disposed of off-site at the Cowlitz County Headquarters Landfill and Hillsboro Landfill. After the stockpile removal, the emergency IRA was completed as of February 7, 2020.
- March/April 2020 In March, Tacoma Power observed sheen on ponded water where the former petroleum-impacted stockpile was located and collected ponded water samples. The sheen was likely a result of some residual material from the former stockpile. Tacoma Power conducted routine follow-up

inspections and observed the ponded water dissipating. The area was seeded in April 2020 to promote vegetation growth and stabilize the Site.

■ Summer 2020 – Tacoma Power observed that the vegetation struggled to establish in the stockpile area, especially in the areas of ponded water. This water remained late into the summer. The area was monitored by Tacoma Power and they have developed a plan to further stabilize the area.

The investigation effort to-date is summarized in this DSR, which presents the results of the Site investigation activities including soil and grab groundwater sampling. Surface water and soil samples collected as part of the emergency IRA are also included in this report.

1.1 Purpose and Objectives of the Site Investigation

The purpose of the Site investigation was to characterize the nature and extent of contaminants in soil and groundwater to allow for future risk screening and to support an evaluation of potential cleanup actions that may be appropriate for the Site. The Site investigation objectives included the following:

- Identify contaminants of potential concern (COPCs) at the Site and their associated source(s). The primary COPC is Bunker C oil and other COPCs commonly found with Bunker C were also assessed for their presence (such as other intermediate and/or heavy-fuel oils);
- Determine the nature and extent of Site-related COPCs in environmental media at the Site;
- Identify historical areas and features of interest that could potentially have contributed to the discovered petroleum seep at the Site and evaluate the presence or absence of other potential contamination associated with those identified historical areas and features; and
- Characterize the nature and extent of hazardous substances present in environmental media at concentrations that are above Ecology's Model Toxics Control Act (MTCA) Method A cleanup levels (CULs).

Surface water characterization was not originally included in the scope of the Site investigation; however, surface water samples were collected as part of the emergency IRA during construction. In addition, the results from the soil characterization and confirmation samples collected during the emergency IRA were also used to assist in characterizing the nature and extent of the contamination. The surface water and additional soil data from the emergency IRA are also discussed in this Site investigation report in order to present the assessment of the whole Site.

2.0 SITE BACKGROUND

Prior to the Site investigation, Hart Crowser reviewed historical reports provided by Tacoma Power and conducted two site visits. Hart Crowser also completed a search of Ecology's online databases, reviewed environmental data reports, and electronic records for any listed sites within a 1-mile radius of the Site. The Ecology identifications for the Site include:

- Facility/Site ID is 61559576;
- Cleanup Site ID is 9890;
- UST ID is 200555; and
- Cleanup Site Name is Riffe Lake.

The records review indicated a single adjacent location, the former Kosmos townsite, within one-third mile to the northeast of the Site (Figure 1). The former Kosmos townsite was situated in the Rainey Valley, with the majority of the townsite having been located between Frost Creek to the north and Rainey Creek to the south. The townsite was established on a flood plain and experienced similar flood events as the Site.

The townsite and the associated lumber mill were established in 1904. Limited readily available information regarding the historic lumber mill and its operations was reviewed. Topographic maps from 1962 and 1963 show the former mill and a few photos of the operations, which were available from the University of Washington library. The former mill included railroad lines/tracks, several buildings, and a log pond (Figure 2). The City of Tacoma purchased the former Kosmos townsite and lumber mill in the 1960's and the inhabitants were relocated. The land was acquired to create the Riffe Lake reservoir for recreational use and power generation. The lumber mill facility was abandoned and demolished prior to the 1968 completion of Mossyrock Dam. Riffe Lake is currently a component of the power generating system operated by Tacoma Power.

The Site background and description information summarized below are based on Site visits and review of prior environmental data and documents.

2.1 Site Description and Location

The Site is located in Rainey Valley, within the Riffe Lake reservoir referred to as Kosmos Flats. Rainey Creek bounds the Site to the north and west, Champion Haul Road to the east, and Riffe Lake to the south. The Site topography generally slopes to the south towards Riffe Lake, but the local topography near the petroleum seep gradually slopes to the northwest, towards Rainey Creek.

The area commonly known as the Kosmos Flats, is a flat plateau and is referred to in this report as the upland area. This area was formerly the lumber mill and today the building foundations are still identifiable, as well as many of the railroad rails. Metal and concrete debris from the former mill was observed scattered in the upland area. Upstream of the protective cap, a ravine is still present from when the mill was in operation and was observed to contain debris. From the upland area there is a steep, nearly 38-foot drop to the creek edge and referred to in this report as the creek bank area. This slope of the creek bank in some areas exceeds a 1:1 slope and is nearly vertical. The construction of the protective cap excavated and laid back this area to a 3:1 slope. However, the slopes adjacent to the cap remain very steep.

Elevations discussed in this report are on the Tacoma City Light (TCL) datum, which is 3.96 feet below North American Vertical Datum of 1988 (NAVD 88) and when appropriate, both datums are provided. The figures in this report have base maps that are on NAVD 88 datum; however, important elevations are

provided in the figures with elevations in TCL datum such as the current reservoir full-pool operating elevation of 749 feet and the upland area elevation of 758 feet.

During the winter months the water levels in the reservoir drop, typically to elevations within 700 and 720 feet. However, in March of 2019, the reservoir water level decreased to and approximate elevation of 670 feet. The spillway at Mossyrock Dam is at elevation 728.5 feet. Historically, spring rainfall and snowmelt flood the Site up to an elevation of 781.2 feet, which is the maximum design flood. The normal reservoir's full-pool elevation is approximately 778.5 feet (774 feet NAVD 88), which would submerge the Site. However, in recent years the reservoir's full-pool water levels have been maintained at an approximate elevation of 749 feet (753 feet NAVD 88), due to seismic safety concerns with the piers on the spillways. This has allowed the Site to be exposed for extended durations and for vegetation to grow.

The Site's elevation ranges from approximately 718 feet (722 feet NAVD 88) near the petroleum seep area at the toe of Rainey Creek to approximately 758 feet (762 feet NAVD 88) in the upland area at the top of the bank near the old lumber mill foundations. Rainey Creek's bed is at an approximate elevation of 716 feet (720 feet NAVD 88) and the creek's water level was at its lowest during the Site investigation at approximately 719 feet (721 feet NAVD 88). The creek's water level rose during higher flows and then backwatered until the whole Site was fully submerged on February 8, 2020. After about a week, the water receded, and the upland area was visible again.

2.2 Previous Environmental Investigations

Two underground storage tanks (USTs) related to the lumber mill were discovered at the Site in 1992, which were subsequently removed by AIRO Environmental Services. The first UST was a 500-gallon steel tank, located south of the observed seeps and found partially exposed along an earthen bank of Rainey Creek, labeled Site D in Figure 2. It was filled with lake water and did not exhibit a sheen or other indicators for the presence of petroleum products. Sampling results were not detected at or above laboratory reporting limits for polychlorinated biphenyls (PCBs) and total halogens (AIRO 1993).

The second UST, a 5,000-gallon tank, was located below ground level near the remaining mill facility foundations, labeled Site A in Figure 2. The UST contained petroleum product with the presence of halogenated hydrocarbons. Soil containing heavy oil-range petroleum at concentrations exceeding MTCA Method A soil CULs surrounded the 5,000-gallon UST. A total volume of 87 cubic yards of contaminated soil was removed and disposed of at the Kitsap County Landfill (AIRO 1993).

The AIRO 1993 report is provided in Appendix B. The 500-gallon UST lake water sample results are summarized in Table B-1 and the 5,000-gallon UST soil and waste oil sample results are summarized in Table B-2 and B-3, respectively. Sample locations are provided in the AIRO report.

Ten additional USTs were also discovered at the former Kosmos townsite, located approximately one-third of a mile to the northeast of the Site and north of Rainey Creek (Figure 1). Approximately 25,900 tons of contaminated soil was excavated from the townsite, remediated on-site using thermal desorption, and used as backfill for the excavations. Groundwater data collected by DOWL Engineers within the townsite showed that contaminants did not migrate away from the UST perimeter set by the monitoring wells, but

concentrations above MTCA Method A CULs were detected in the suspected central area of the contaminated plume (DOWL 1993). As the Kosmos townsite is located a third of a mile northeast from the area of our Site investigation, the DOWL 1993 report is not included as an appendix to this report.

2.3 Geology and Hydrogeology

2.3.1 Geology

The Site is located along Rainey Creek in the Cowlitz River watershed. During the late Pleistocene, the Cowlitz glacier extended from its source on Mount Rainier, roughly to the town of Salkum, Washington, west of the Site. During this Epoch, the Cowlitz glacier advanced and retreated on at least four distinct occurrences. These glaciations produced three distinct outwash deposits. The earliest deposit was the Wingate Hill outwash followed by the Hayden Creek drift and most recently the Evans Creek outwash.

In the Rainey Creek valley, glacial deposits are represented as the Hayden Creek drift. The Hayden Creek drift is dominantly composed of outwash deposits expressed as poorly graded gravel deposits and localized till deposits. It is also common to find loess deposits up to 3 feet thick in the Hayden Creek formation. The entire Hayden Creek formation is heavily oxidized to depths up to 30 feet.

Soil from borings and test pits conducted by Hart Crowser are generally consistent with expected outwash deposits of the Hayden Creek formation. Commonly, soil in the upland area were composed of sandy silts to silty sands with gravel in the upper 5 to 15 feet and silty gravel with sand and some cobbles to poorly graded coarse sands below 15 feet. Additionally, localized fine-grained organic deposits of silt and clay were found in low lying vegetated areas. Fill was generally encounter between approximately 10 and 35 feet below ground surface (bgs) and contains concrete, wood, and metal debris. The outwash deposits were encountered below the fill. Till-like material was only observed in the bank samples taken on the west side of the creek, opposite of the Site. Based on observations during the emergency IRA construction and from a soil sample collected from the exposed creek bed of Rainey Creek, the creek bed material generally consisted of gray clayey sand with gravel and cobbles. Generally, finer grained soil, such as silts and clays, are less permeable than sands and gravel, and would slow the movement of contaminants through the soil.

2.3.2 Hydrogeology

Groundwater in the upland area was generally encountered from 37 to 47 feet bgs, which is an approximate elevation of 710 to 721 feet (714 to 725 feet NAVD 88). The elevation of Rainey Creek during the time of the investigation was at an approximate elevation of 719 feet (723 feet NAVD 88). Additionally, perched water (groundwater) was encountered 5 to 10 feet bgs in some explorations and seemed to be discontinuous in nature.

In 1992, Site groundwater was encounter during the excavation of Site A at approximately 10 to 11 feet bgs (AIRO 1993). In 1993, the former townsite (located to the northeast of the Site) groundwater was encountered during the assessment at approximately 6 to 11 feet bgs and flowed to the southwest, towards Riffe Lake, and that groundwater varies seasonally (DOWL 1993).

Based on the historical groundwater information and groundwater conditions at the time of the investigation, groundwater levels are inferred to be tied to the reservoir levels as we observed the lowered groundwater levels with lower lake levels and may fluctuate as water is retained and released from the Mossyrock Dam.

3.0 EMERGENCY INDEPENDENT REMEDIAL ACTION

This section briefly describes the effort during the emergency IRA. Details regarding the BMPs, protective cap design, construction effort, and material disposal are described in the emergency IRA completion summary presented in Appendix C. The WQPP, dated December 11, 2019 (Appendix D), provided the BMP and surface water sampling protocols and the surface water quality indicator levels.

As described above, Tacoma Power declared an emergency status for the Site to protect the reservoir while the seep was exposed/accessible and before the water levels were expected to rise above the seeps. Hart Crowser assisted with designing a protective cap for the bank to reduce the potential for petroleum to discharge from the bank into the creek. This emergency IRA included removing soil from the creek bank and sloping back the bank for proper placement of the cap.

During the excavation for cap installation, it was possible to identify additional petroleum-impacted soil at the seep areas and remove the impacted soil as much as possible. However, due to elevated flows in Rainey Creek as precipitation increased and major storm events were predicted, the full extent of contamination along the creek could not be identified before the final construction of the protective cap and before the creek water levels rose above the seep areas. Soil exceeding MTCA Method A CULs was stockpiled separately on-site and eventually hauled off-site for disposal. Approximately 10,956 tons of petroleum-impacted soil was disposed of at Cowlitz County Headquarters Landfill and Hillsboro Landfill. Approximately 186,200 gallons of impacted construction dewatering discharge water was disposed of off-site to the City of Morton's, PRS Group's, and City of Tacoma's wastewater treatment facilities.

The protective cap consisted of placement of clean sand (6-inch layer) followed by a granular Organoclay liner (to adsorb any non-aqueous phase liquids [NAPL] from water [Reactive Core MatTM with Organoclay® by Cetco]). Another layer of clean sand (8 inches) and a permeable composite geotextile was placed on top of the liner for protection prior to covering with an 18-inch thick layer of large quarry spalls (4-8 inch). The cap liner and quarry spalls were keyed into the existing grade at the toe of the creek. Additional details are provided in Appendix C.

In addition to assisting with the cap design and construction oversight, Hart Crowser representatives also assisted Tacoma Power staff with the creek surface water sampling, soil sampling along the creek bank and creek bed after excavation was completed, and stockpile soil sampling.

4.0 CLEANUP STANDARDS

According to MTCA, the cleanup standards for a particular site have two primary components: chemical-specific CULs and points of compliance (POCs) as described in WAC 173-340-700 through WAC 173-340-760. The CUL is the concentration of a chemical in a specific environmental medium that will not pose

unacceptable risks to human health or the environment. The POC is the location where the CUL must be met. Cleanup standards must also incorporate other state and federal regulatory requirements applicable to the cleanup action and/or its location as appropriate, including the Surface Water Quality Standards as described in WAC 173-201A.

4.1 Cleanup Levels

Soil and groundwater CULs and surface water standards are used to protect human health and the environment. The following CULs and standards were selected to compare the sample analytical results from the Site investigation and emergency IRA.

- Soil. MTCA Method A soil CULs for unrestricted land use;
- Groundwater. MTCA Method A groundwater CULs; and
- Surface Water. Indicator levels provided by Tacoma Power in their WQPP, which was approved by Ecology.

Section 6.0 describes the criteria for selecting the Site contaminants of concern (COCs), media of concern, and proposed Site CULs for the Site COCs.

5.0 SITE INVESTIGATION AND CHARACTERIZATION

5.1 Field Investigation Activities and Observations

The Site investigation was limited to the APE identified by Tacoma Power for cultural resource protection purposes during the Site investigation and emergency IRA (Figure 2). The APE is approximately 12.77 acres and is located directly to the east and southeast of Rainey Creek.

Prior to any ground disturbing activities for the investigation, private and public utility locate services were performed at the Site. AEC was Tacoma Power's general contractor; they performed the test pit explorations (as well as the cap construction). Holt Services, Inc. (Holt) was Hart Crowser's subcontractor and performed the borings and temporary well installations for grab groundwater sampling.

5.1.1 Ground Penetrating Radar

On November 12 and 15, 2019, a GPR survey (including the EM61 survey) was conducted by Global Geophysics LLC around the former foundations and roadways on the Site (associated with historic mill operations) to identify possible source locations for the downgradient petroleum seeps. The survey was conducted when the reservoir elevation was lower than 721 feet (725 feet NAVD 88). Several metal and/or dense object anomalies were identified by the GPR survey and some of the boring and test pit explorations were adjusted/relocated based on these anomalies to evaluate the potential metallic/dense objects and characterize the soil around these potential objects. The GPR survey report is provided in Appendix E.

Multiple pipes were encountered during the exploration effort as described below and identified (in green) on Figure 3. From the GPR survey in Appendix E, Figure E-1 illustrates the GPR anomalies overlaid on the

Site's aerial map. The overlay was approximate; however, there are distinct lines observed on the survey that are close to the pipes encountered during the Site investigation indicating the GPR survey was effective.

5.1.2 Deviations from the Work Plan

In general, there were very few deviations from the proposed work plan. Figure 3 shows the final exploration locations.

Three test pits (TP-1, TP-4, and TP-9) were unable to be completed due to the cap construction activities that were underway at the Site; however, additional observations and samples were obtained on the bank and along the toe of the creek.

Three additional test pit locations (TP-13 through TP-15) were added. Test pit TP-13 was added to characterize soil across the ravine as an asphalt-like material was observed. Test pits TP-14 and TP-15 were added to assist in identifying an area where construction dewatering discharge could be released.

Confirmation soil samples were collected and analyzed as part of the emergency IRA to characterize soil conditions prior to the cap installation. Soil samples UB-1 through UB-3 and LB-1 through LB-3 were collected from shallow surface soil along the slope within the cap excavation limits. Three additional soil samples (Westbank 1 through Westbank 3) were collected on the northwest bank of Rainey Creek, opposite of the petroleum seeps. One additional soil sample (Creekbed 1) was collected in Rainey Creek's creek bed, where AEC diverted flow for construction of the cap. See Figure 3 for sample locations. Samples collected on the slope and within the creek would not have been assessable without the construction activities occurring concurrently.

The last deviations from the work plan were related to the grab groundwater sampling. Limited amount of groundwater was encountered in boring B-2 and with the time constraint of excavating and installing the cap, we were not able to wait for the groundwater to recharge; therefore, a grab groundwater sample was not collected from this location. Additionally, the temporary well in boring B-4 was not purged prior to the collection of grab groundwater sample because of concerns of available groundwater and the boring location was in the active area of cap construction.

5.1.3 Test Pit and Soil Borings Explorations

Between November 26, 2019 and December 9, 2019 twelve test pits (TP-2, TP-3, TP-5 through TP-8, and TP-10 through TP-15) were excavated to depths of 5 to 20 feet in the upland area of the Site (Figure 3). Hart Crowser collected soil samples between 2.5- and 5-foot intervals for soil classification and potential chemical analysis.

Piping and a small 5-gallon drum were encountered in test pit TP-5. The pipes were approximately 2 to 3 inches in diameter and portions of the piping sections were removed, and the remaining in-place pipes were capped with a concrete plug. Residual tar-like material was observed in the small 5-gallon drum, which was also removed. While excavating test pit TP-6, two metal pipes with NAPL and oily water were discovered at approximately 1-foot bgs. The pipes were approximately 1.5 inch in diameter and appeared

to run parallel to the road to the south. One of the pipes in test pit TP-6 was chased (i.e., expanded test pit to observe the length of the pipe) for approximately 50 feet to the west, but the end of the pipe was not found due to time constraints. Other pipes and metal debris were found while excavating test pits TP-2 and TP-15 but did not contain NAPL. All observed pipe locations are shown on Figure 3.

Between December 10 and December 12, 2019, ten sonic borings (B-1 through B-10) were advanced using a mobile rig to depths of 40 to 50 feet in the upland area of the Site (Figure 3). Soil samples were collected at 5-foot intervals and grab groundwater samples were collected from four borings (B-4, B-6, B-7, and B-9).

Soil samples were field screened using sheen tests, visual and olfactory observations, and/or a photoionization detector (PID) to detect volatile organic compounds (VOCs) in the headspace. Headspace detections were noted in samples from borings B-2 and B-4 through B-6 and from test pits TP-5 through 8. Headspace volatiles were detected at concentrations up to 469.1 parts per million (ppm) and were generally observed between depths of 0 and 15 feet bgs. A sheen was noted from borings B-1 through B-6 and B-9 through B-10 and test pits TP-5 through TP-8 and TP-15, generally between depths of 0 and 10 feet bgs. Additionally, a petroleum-like odor was noted from borings B-1, B-2, and B-4 through B-7 and test pits TP-5 through TP-8 and TP-15, generally between depths of 0 and 10 feet bgs. NAPL was not observed in any of the borings. Field screening results are summarized in Table 1 and also shown on the boring and test pit logs in Appendix F.

Two areas were excavated by Tacoma Power and AEC to the south of the investigation area in the former log pond area (Figure 2) to an approximate depth of 18 inches bgs in order to assess soil conditions for construction dewatering purposes, no obvious indicators (visual and olfactory) of petroleum impacts were observed by Tacoma Power staff.

5.1.4 Grab Groundwater Samples

Grab groundwater samples were collected from four boring locations (B-4, B-6, B-7, and B-9) in the upland area of the Site (Figure 3). A 5-foot temporary well screen was set at the bottom of each borehole and groundwater was sampled approximately at the middle of the screened interval (additional details are provided in Appendix F). Due to the high turbidity encountered in the temporary wells, low-flow sampling was not conducted. The low-flow pump was silting up and a more powerful pump was used. Pumping rates were between approximately 0.5 to 1 gallon per minute. Water quality parameters and depth to water were measured prior to groundwater sample collection. No sheen, NAPL, or odor were observed during grab groundwater sampling.

5.1.5 Emergency IRA Soil Samples

As part of the emergency IRA, AEC excavated the creek bank and dredged and graded some creek bed material to temporarily divert part the lowest flows of Rainey Creek away from the work area to construct the slope key. No creek bed material was removed, and the limits of the creek bed were not altered. During this flow diversion, some NAPL was observed in the creek bed directly adjacent to the location of the petroleum seeps on the bank. One soil sample (Creekbed 1) was collected from the exposed creek bed. Three additional soil samples (Westbank 1 through Westbank 3) were collected from the bank opposite to the Site. The soil samples were collected between approximately 1.5 feet bgs and 2 feet bgs and the

excavations were excavated using hand tools and stopped when they hit refusal. A Tacoma Power archeologist was present during the soil sampling to document any cultural resource artifacts; however, no artifacts were observed. After the excavation for the area where the cap was to be installed, six samples (UB-1 through UB-3 and LB-1 through LB-3) were collected at or near the bank's ground surface.

A strong petroleum-like odor and staining were noted from Creekbed 1 and a slight sheen was observed during field screening of the sample. No odor or sheen was observed from samples Westbank 1 through Westbank 3 on the opposite side of the creek and the soil generally consisted of sand with varying amounts of gravel and cobbles. Moderate to slight petroleum-like odors were observed in bank samples LB-2, LB-6, and UB-1. A slight sheen was also observed in sample LB-2.

5.1.6 Emergency IRA Surface Water Samples

Surface water samples of Rainey Creek were required by Ecology to monitor the effectiveness of the BMPs during excavation activities, in general accordance with the WQPP. Grab surface water samples were collected by Hart Crowser approximately one to two hours after excavation activities began each day. Samples were collected using a pole with a bottle sampler attached and were collected just underneath the water surface. Water sampling locations were added and modified as directed by Ecology throughout the excavation process (see Section 5.4.1 for sample locations, descriptions, and analytical results). After excavation was completed, Tacoma Power performed the surface water sampling and analysis.

5.1.7 Chemical Data Quality Review

Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they meet project-specific data quality objectives. This review was performed consistent with accepted EPA procedures for evaluating laboratory analytical data and appropriate laboratory and method-specific guidelines (EPA 2004, 2008). The chemical data review summarizing data evaluation procedures, usability of data, and deviations from specific field data and/or laboratory methods for the investigation data are presented in Appendix G. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned. Sample results are presented in the following section.

5.2 Soil Sample Chemical Analysis and Results

Under standard chain-of-custody procedures, samples were submitted to Friedman and Bruya, Inc. (a Washington State accredited laboratory) for analyses. A subset of soil samples collected from the Site were analyzed for one or more of the following:

- Gasoline range total petroleum hydrocarbons (TPH-G);
- Diesel range total petroleum hydrocarbons (TPH-D);
- Heavy oil range total petroleum hydrocarbons (TPH-O);
- Benzene, ethylbenzene, toluene, and xylenes (BTEX);
- Polychlorinated biphenyls (PCBs);
- PAHs, including the carcinogenic PAHs (cPAHs);
- Total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver); and
- VOCs.

The selection of samples for analysis was based on observed potential impacts, field screening results, and sample location and depth. Soil sample identifications include the exploration type ("TP" for test pits and "B" for borings), the exploration number, then the sample depth in bgs. The emergency IRA soil sample identifications include location of the sample collected ("UB" refers to the upper bank and "LB" refers to the lower bank). The field screening results and selected chemical analyses are summarized in Table 1. The soil sample analytical results from the explorations and emergency IRA (bank and creek bed samples) are summarized in Tables 2 and 3, respectively. Figures 4 and 5 illustrate TPH and cPAH detections in soil, respectively.

The results were compared with MTCA Method A soil CULs for unrestricted land use. A summary table of samples with exceedances at depth intervals is presented in Table 7. The specific analytical results are also discussed following the table.

Site Location Exploration ID (a) 0 to 5 feet bgs 5 to 10 feet bgs 10+feet bgs B-5 TPH-O (no recovery) -- (10 to 15 feet bgs) B-6 TPH-D, TPH-O, cPAHs (b) -- (30 to 35 feet bgs) TP-5 (b), -- (2.5 to 5 feet bgs) TPH-G -- (15 to 19 feet bgs) **Upland Area** TP-6 -- (0 to 5 feet bgs) TPH-O -- (10 to 12 feet bgs) TP-7 TPH-D, TPH-O TPH-D, TPH-O, TPH-G -- (10 to 15 feet bgs) TP-12 TPH-O (d) TP-15 TPH-O -- (4 to 8 feet bgs) -- (11 to 14 feet bgs) Creek Bank LB-2 TPH-D, TPH-O, cPAHs Area Creekbed 1 TPH-D, TPH-O, cPAHs

Table 7 - Summary of Soil Samples Exceeding CULs

Notes:

- Only explorations that contained soil samples that exceeded CULs are listed.
- Field screening observations did not indicate presence of petroleum-impacted soil.
- "-" = Sample was collected and analytical results do not exceed CULs.
- d. Soil sample was not detected at or above laboratory reporting limits from sample depth 2.5 to 4 feet bgs.
- TPH-D was detected in seventeen of the seventy-six samples selected for analyses at concentrations of up to 39,000 milligrams per kilogram (mg/kg).
 - Six samples (B-6-5, TP-7-2.5, TP-7-7.5, TP-7-10, LB-2, and Creekbed 1) were detected at concentrations exceeding the MTCA Method A CUL of 2,000 mg/kg.
- TPH-O was detected in fifteen of the seventy-six samples selected for analyses at concentrations up to 26,000 mg/kg.
 - Nine samples (B-5-5, B-6-5, TP-6-8, TP-7-2.5, TP-7-7.5, TP-12-2.5, TP-15-4, LB-2, and Creekbed 1) were detected at concentrations exceeding the MTCA Method A CUL of 2,000 mg/kg.

- TPH-G was detected in twelve of the forty-eight samples selected for analyses at concentrations of up to 930 mg/kg.
 - Three samples (TP-5-8, TP-5-10, and TP-7-7.5) were detected at a concentration exceeding the MTCA Method A CUL of 100 mg/kg (when benzene is not present).
- BTEX was not detected at or above laboratory reporting limits in all 18 samples selected for BTEX analysis only.
- PCBs (specifically Aroclor 1254) was detected in one of the ten samples selected for analyses. Sample TP-15-4 had a concentration of 0.049 mg/kg, which is below the MTCA Method A CUL of 1 mg/kg for total PCBs.
- PAHs were detected in eight of the twenty-three samples selected for analyses.
 - Three samples (B-6-5, LB-2, and Creekbed 1) benzo(a)pyrene was detected at concentrations of 0.56, 0.21, and 3 mg/kg, respectively, above the MTCA Method A CUL 0.1 mg/kg. Additionally, these three samples calculated total carcinogenic PAHs toxic equivalents (cPAH TEQ) at concentrations of 0.57, 0.28, and 3.795 mg/kg, respectively, above the MTCA Method A CUL of 0.1 mg/kg.
- Total metals were detected in the twelve soil samples selected for analyses. Detected concentrations did not exceed respective MTCA Method A CULs.
- VOCs were detected in nine of the thirty soil samples selected. It should be noted that benzene was not detected at or above laboratory reporting limits in any of the soil samples.
 - Seven samples (B-5-5, TP-3-8, TP-5-8, TP-6-8, TP-8-15, TP-10-5, and TP-12-2.5) had methylene chloride detections at concentration ranging between 0.51 and 1.1 mg/kg, above the MTCA Method A CUL of 0.02 mg/kg. However, the methylene chloride detections were most likely the result of laboratory cleaning solution as the laboratory confirmed they use it throughout their equipment. The methylene chloride detections were flagged "lc" and will not be included as a COC for the Site.

5.3 Grab Groundwater Sample Chemical Analysis and Results

Grab groundwater samples were collected from four borings (B-4, B-6, B-7, and B-9) through temporary wells installed in the borehole from borings advanced in the upland area. Samples were analyzed by Friedman and Bruya for one or more of the following:

- TPH-G;
- TPH-D;
- TPH-O;
- VOCs;

- PCBs;
- PAHs:
- Total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver); and
- Total suspended solids (TSS).

The grab groundwater sample analytical results are summarized in Table 4 and illustrated in Figure 6. Analytical results were compared to MTCA Method A groundwater CULs and the results are summarized below.

- All grab groundwater samples were analyzed for TPH-D and TPH-O. TPH-D was detected in one sample (B-4-W) at a concentration of 150 micrograms per liter (µg/L), below the MTCA Method A CUL of 500 μg/L. TPH-O was not detected at or above laboratory reporting limits.
- All samples were analyzed for TPH-G and was not detected at or above laboratory reporting limits.
- All samples were analyzed for VOCs, which were not detected at or above laboratory reporting limits.
- One sample (B-4-W) was analyzed for PCBs, which were not detected at or above laboratory reporting limits.
- All samples were analyzed for PAHs. Three samples (B-4-W, B-6-W, and B-9-W) had detected concentrations of one or more PAHs, but below applicable MTCA Method A CULs.
- Two samples (B-4-W and B-6-W) were analyzed for total metals.
 - Arsenic was detected in both samples at concentrations of 37.6 and 11.6 μg/L, respectively, exceeding the MTCA Method A CUL of 5 µg/L.
 - Barium was detected in both samples up to a concentration of 2,420 µg/L. There is not a MTCA Method A CUL for barium.
 - Cadmium was detected in one sample (B-4-W) at a concentration of 6.22 µg/L, exceeding the MTCA Method A CUL of 5 µg/L.
 - Lead was detected in both samples. Sample B-4-W had a detected concentration of 128 μg/L, exceeding the MTCA Method A CUL of 15 µg/L.
 - Mercury, silver, and selenium were not detected at or above laboratory reporting limits.
- One sample (B-4-W) was analyzed for TSS, which was detected at a concentration of 19,000 milligrams per liter (mg/L). The elevated TSS could account for the elevated total metal concentrations.
- Turbidity was measured prior to sampling in locations B-4 and B-6 with turbidity concentration of 1,270 and 2,100 NTUs, respectively. The elevated turbidity could account for the elevated total metal concentrations.

5.4 Surface Water Sample Chemical Analysis and Results

5.4.1 Rainey Creek Surface Water

Surface water samples from Rainey Creek were collected during excavation activities from December 9 to 18, 2019 and collected after excavation was completed from December 19, 2019 to February 4, 2020. The creek samples were collected in the following locations starting upstream of the construction area, at the construction area, and downstream of the construction area (Figure 7):

Boom 6 Boom 5 Boom 3 Silt Curtain

Figure 7 - BMPs and Creek Sampling Locations

Note: Aerial for BMPs (noted in red) and creek sampling locations (noted in yellow) were provided by Tacoma Power.

- Location U-2 is approximately 300 feet upstream of the excavation area. Location U-2 was sampled once during excavation activities to establish natural background levels of Rainey Creek.
- Location U-3 is approximately 200 feet upstream of the excavation area. Location U-3 was sampled by Tacoma Power after the excavation was completed.
- Location U-1 is approximately 20 feet upstream of the excavation area. Location U-1 was sampled once during excavation activities to establish natural background levels of Rainey Creek.
- Locations D-1A and D-2 are inside the sea curtain at the base of the excavation. Location D-1A was sampled once. Location D-2 was frequently sampled throughout the excavation activities as well as after excavation was completed.
- Location D-1 is within the construction area, outside and towards the center of the sea curtain at the base of the excavation area. Location D-1 was collected four times until it was modified to location D-1B.

- Location D-1B is outside the sea curtain but downstream of the curtain, approximately 10 feet south from D-1. Location D-1B was regularly sampled throughout the remaining excavation activities as well as after excavation was completed.
- Location D-3 is downstream from the excavation area and inside a small boom on the southeast bank of Rainey Creek. Location D-3 was sampled once after a noticeable sheen was observed near the boom during excavation activities.
- Location D-4 (sample ID is Boom 1) is downstream of the excavation area and within Boom 1, which is located two booms upstream of the silt curtain. Location D-4 (sample Boom 1) was frequently sampled throughout the excavation activities, as well as after excavation was completed.
- Location D-5 (sample ID is Boom 2) is downstream of the excavation area and within Boom 2, which is located one booms upstream of the silt curtain). Location D-5 (sample Boom 2) was sampled once during excavation activities to further confirm the effectiveness of the BMPs implemented upstream.
- Location D-6 is downstream of the excavation area and between Booms 5 and 6, which is located two booms downstream of the silt curtain. Surface water at location D-6 was sampled by Tacoma Power after the excavation activities were completed.

Surface water samples collected during construction were analyzed by Friedman and Bruya Inc. (Friedman and Bruya) in Seattle, Washington. Samples collected by Tacoma Power after excavation activities were analyzed by Spectra Laboratories (Spectra), LLC in Tacoma, Washington. The surface water samples were analyzed for one or more of the following:

- pH;
- Turbidity;
- Hardness;
- TPH-D;
- TPH-O;
- TPH-G;
- Total metals (arsenic, cadmium, chromium, copper, lead, nickel, and zinc);
- Hexavalent chromium; and
- Low-level mercury.

Analytical results from surface water sampling during excavation and after excavation activities are summarized in Tables 5 and 6, respectively. The chemical data quality review and laboratory reports of samples submitted during excavation activities to Friedman and Bruya are provided in Appendix G. Additionally, Hart Crowser field measured turbidity with a handheld instrument for the majority of the sampling events during excavation activities. The field instrument was not functioning properly on a several occasions; therefore, turbidity could not be measured during these times.

Per the WQPP, the surface water samples were to be compared to indicator levels that are based on the acute-freshwater toxic substances criteria (WAC 173-201A-240) for metals and the laboratory quantitation limit for petroleum (gasoline, diesel, and heavy oil). Indicator levels for metals were revised in the WQPP based on calculations using Site-specific hardness concentrations.

Rainey Creek surface water samples collected during excavation activities. Samples that exceeded the indicator levels for surface water during construction activities were samples collected inside the sea curtain (D-2) adjacent to the excavation area and just outside of the sea curtain (D-1) at the base of the excavation area, see Figure 7 BMPs and Creek Sampling Locations.

- Sample D-2 (inside the sea curtain at the base of the excavation) exceeded indicator levels for the following constituents:
 - TPH-D on December 11, 14, and 16, 2019, with concentrations up to 1,100 μg/L and above the indicator level of 250 µg/L.
 - Copper on December 11 through 14, 2019, with concentrations up to 19 µg/L and above the indicator level of 7.2 μg/L.
 - Turbidity on December 11 and 13, 2019, with concentrations up to 203 NTU and above the indicator level of 25 NTU.
- Sample D-1 (outside the sea curtain at the base of the excavation) had a zinc concentration of 60 µg/L on December 6, 2019, which slightly exceeded the indicator level of 52.7 μg/L.

The majority of the surface water exceedances were contained within the sea curtain (directly adjacent to the excavation area as illustrated in Figure 7). The subsequent surface water samples from sample location D-1, located outside the sea curtain, and samples collected downstream were below zinc indicator levels. The laboratory reported issues with their equipment when analyzing for low-level hexavalent chromium and was unable to meet the low quantitation limits required in the WQPP; therefore, the laboratory subcontracted the samples to Fremont Analytical of Seattle, Washington. Fremont Analytical was also not able to get low-level quantitation limits for hexavalent chromium. However, the total chromium in all the surface water samples collected did not exceed the hexavalent chromium indicator level of 15 µg/L.

The remaining surface water samples were within indicator levels, confirming that the BMPs used during excavation activities were effective.

Rainey Creek surface water samples collected after excavation activities. Samples that exceeded the surface water indicator levels for copper, zinc, and TPH-O were samples collected inside Boom 6 (D-6), downstream of the cap area and upstream of the cap area (U-3); see Figure 7 BMPs and Creek Sampling Locations.

Creek samples typically contained pH levels lower than the indicator levels; however, these samples were analyzed out of the short hold time of 15 minutes. Turbidity was typically below the indicator level, except for two instances at locations at D-1B and U-3.

5.4.2 Ponded Water – Former Stockpile Area

From December 23, 2019 to March 3, 2020, Tacoma Power collected surface water samples (Stockpile #1, T-1, T-2, SOP 1, and COP 1) from ponded water near and in the former stockpiled area and collected surface water samples (Log Pond #1 and Log Pong #2) from the log pond area (Figure 2). To remove the stockpiles in an expedited manner, Tacoma Power had to maintain a low water level in the area. Due to heavy rains and surface runoff, the volume of water being was increasing in the stockpile area, requiring them to intermittently discharge to the log pond area for infiltration for approximately 8 hours on February 8, 2020. Tacoma Power submitted these samples to Spectra. Sample results are summarized in Table 6 with the creek surface water samples collected after excavation was completed and laboratory reports are provided in Appendix H. Some of the surface water sample results contained concentrations of pH, turbidity, copper, and zinc above indicator levels. Sample SOP 1 collected in March 2020 contained elevated concentrations of TPH-D and TPH-O above indicator levels.

There were no releases of the ponded water tested in March 2020 outside of the stockpile area. The stockpile area was seeded in April 2020 to promote vegetation growth. The vegetation struggled to establish within the stockpile area, especially in the depressed areas where water ponded. In September 2020, Tacoma Power submitted a plan to Ecology that was reviewed and approved to cover the stockpile area with bioretention soil and biofiltration seed. This temporary measure is to further stabilize the stockpile area, fill in the depressed areas to promote drainage, and to promote further vegetation growth.

6.0 NATURE AND EXTENT OF CONTAMINATION

6.1 Potential Contaminant Sources and Release Pathways

- TPH in Soil. The source of TPH-D, TPH-O, and TPH-G contamination at the Site has not been fully determined. Based on the history of the Site and results from the Site investigation, the source(s) are likely related to the former Kosmos mill operations and the USTs and its associated piping. Figure 8 illustrates the approximate extent of petroleum-contaminated soil at the Site.
 - Pipes with NAPL were discovered during the cap excavation and while excavating test pit TP-6 and residual tar-like material from a 5-gallon drum in test pit TP-5. The pipes near TP-5 ran perpendicular and parallel to the former road and the pipes near TP-6 ran parallel to the road. The pipe found during cap excavation appeared to be running in the direction of the seep areas. The full extent of the pipe network is currently unknown as is confirmation that the pipes are the source of the petroleum seeps. The locations of the discovered pipes are illustrated in Figures 3 through 6 and Figure 8.
 - During the emergency cap installation, an abandoned culvert and petroleum-like odor was observed in the drainage ravine located directly to the east/northeast of the cap location (Figures 3 through 6 and Figure 8). The drainage ravine may have been used as a dumping ground for the lumber mill as other trash and debris (metal scraps, drums, wood debris, etc.) were observed during construction. Soil samples were not collected in the ravine area due to the

time constraints of installing the protective cap before the water levels in the lake and creek rose above the working area.

- cPAHs in Soil. The source of cPAHs is unknown; however, cPAHs can be present in a variety of materials, including petroleum products, and are also formed during the incomplete burning of coal, oil and gas, or other organic substances. The source of cPAHs in soil is likely associated with the former use of the Site as a lumber mill since there is the potential for spills of petroleum products, exhaust from locomotives, or other related sources.
- Metals in Groundwater. The source of metals is unknown; however, elevated metal concentrations were not observed in soil samples and the elevated metal concentrations in the grab groundwater samples are likely the result of collecting the sample from temporary wells where elevated TSS and turbidity skewed the metal concentrations. Therefore arsenic, cadmium, chromium, and lead are not considered COCs for groundwater.
- Metals and TPH-D in Surface Water during Excavation Activities. The source of the metals (copper and zinc) and TPH-D in the creek's surface water samples is due to the excavation activities for installing the cap during the emergency IRA. The surface water samples collected downstream of the excavation area were within indicator levels confirming that the BMPs were effective.
- Metals and TPH-O in Surface Water after Excavation Activities. The source of the metals (copper and zinc) and TPH-O in the creek's surface water samples is possibly due to the increase in precipitation and runoff as excavation activities were completed. A sample (U-3) collected upstream of the cap area had metal and TPH-O concentrations exceeding indicator levels.
- Metals, TPH-D, and TPH-O Ponded Water in the Upland Area. The source of the metals (copper and zinc) in the ponded water observed and characterized in the upland area near the stormwater diversion trench (T-1), and by the former stockpiles (SOP 1) and concrete foundations (COP 1) is most likely due to the elevated turbidity in the sample skewing the total metal concentrations high. Both samples exceeded the indicator level. The source of the TPH-D and TPH-O in the ponded water by the former stockpile (SOP 1) is most likely residual petroleum impacts from the former stockpile used during the emergency IRA.

6.1.1 Contaminants of Concern

COCs at the Site include the following:

■ Soil: TPH-D, TPH-O, TPH-G, and cPAHs.

■ Groundwater: None.

■ Surface water: TPH-D, TPH-O, copper, and zinc

■ Air: None

6.1.2 Media of Concern

Soil and surface water have been identified as the primary affected mediums at the Site because of the elevated concentrations of the COCs and indicator levels detected in explorations and surface water quality samples.

Groundwater is not a medium of concern due to petroleum and petroleum-related constituents not exceeding MTCA Method A CULs. We ruled out the elevated metal concentrations as a COC due to the samples having elevated TSS and turbidity concentrations that skewed the metal concentrations high.

Based on the concentrations above MTCA Method A soil CULs at depths detected near the surface of the soil, soil vapor is a potential medium of concern. However, vapor intrusion is not a current concern because there are no buildings on the Site, so air is not identified as a medium of concern.

Table 8 below summarizes the proposed Site-specific soil and surface water CULs for the Site COCs.

Contaminant of Concern	Soil CUL (a) in mg/kg	Surface Water Indicator Levels in μg/L
TPH-D	2,000	250 (b)
TPH-O	2,000	250 (b)
TPH-G	100 (c)	250 (b)
cPAHs	0.1	26 (d)
Copper	280 (e)	7.2 (f)
Zinc	6,000 (e)	52.7 (f)

Table 8 - Proposed Soil CULs and Surface Water Indicator Levels

Notes:

- a. MTCA Method A soil CUL for unrestricted land use.
- b. There is no surface water standard and the value is laboratory quantitation level per Tacoma Power's WQPP.
- c. The MTCA Method A CUL is 30 mg/kg when benzene is present; 100 mg/kg when benzene is not detected. Benzene was not detected in soil samples during this Site investigation.
- d. MTCA Method B surface water CUL (noncancer).
- e. MTCA soil CUL (protective of groundwater in the vadose zone).
- f. Surface water quality standard for fresh water with aquatic life (173-201A WAC), corrected for hardness per Tacoma Power's WQPP.

6.2 Contamination Extents

6.2.1 Soil

This section describes the extent of contaminated soil discovered at the Site and is illustrated in Figure 8.

Upland Area. In general, the petroleum-contaminated soil was encountered in the upper 10 feet during the Site investigation in the upland area. The extent to the north of explorations TP-5 and B-6 and to the

south of explorations TP-15 and B-6 are unknown; however, the two areas excavated for dewatering purposes in the log pond area to the south did not exhibit any obvious environmental impacts. The petroleum-contaminated soil (specifically TPH-O) at exploration TP-12 was encountered in the upper 2.5 feet and the sample collected between depths of 2.5 and 4 feet bgs was not detected at or above laboratory reporting limits for TPH-D and TPH-O. Due to the proximity of the 1992 UST removal and cleanup at Site A, this may be residual petroleum encountered from the 1992 UST removal and cleanup at Site A.

Creek Bank Area. Additionally, petroleum-like odors and NAPL were observed in soil during construction of the cap to the northeast, east, and southwest of the seep area; however, the area could not be further investigated due to steep slopes and unstable soils, rising lake and creek water levels, and needing to install the cap in a timely manner.

In the creek bed and lower bank samples (Creekbed 1 and LB-2, respectively), TPH-D, TPH-O, and cPAHs were detected above MTCA Method A CULs. It is unknown how far the petroleum contamination reaches into the creek bed. Samples collected on the west bank were not detected at or above their respective reporting limits.

The COC's vertical extent are described in detail below.

TPH-D. In the upland area, TPH-D was detected in soil above the MTCA Method A CUL at approximately 0 to 5 feet bgs in explorations B-6 and TP-7; and from 5 to 10 feet bgs in exploration TP-7.

- Exploration B-6 exhibited petroleum-like odor and sheen in the upper 5 feet and exceeded for TPH-D (as well as TPH-O). Odor and sheen were not observed below 5 feet, except a sheen was observed from 30 to 35 feet bgs. A sample (B-6-35) was collected at this depth and did not contain detectable TPH-D (or TPH-O) concentrations.
- Exploration TP-7 had four samples collected in the excavation (0 to 2.5 feet, 5 to 7.5 feet, 7.5 to 10 feet, and 10 to 15 feet bgs). The samples collected in the upper 10 feet bgs (TP-7-2.5, TP-7-7.5, and TP-7-10) exceeded the CUL; however, the sample collected from 10 to 15 feet bgs (TP-7-15) had a low-level detection of 230 mg/kg, which is below the MTCA Method A CUL of 2,000 mg/kg.

Based on the analytical data and field screening observations, TPH-D-contaminated soil appears to be confined to the near-surface soil within the upper 10 feet bgs in the upland area.

In the creek bank area, TPH-D was detected above the MTCA Method A CUL in one of the creek bed and one of the lower bank soil samples (Creekbed 1 and LB-2, respectively), indicating that TPH-D is located in the creek bed, but the vertical extent of TPH-D-contaminated soil in the creek and bank areas are unknown.

TPH-O. In the upland area, TPH-O was detected in soil above the MTCA Method A CUL at approximately 0 to 5 feet bgs in explorations B-5,B-6, TP-7, TP-12, and TP-15; and from 5 to 8 feet bgs in explorations TP-6 and TP-7.

- Exploration B-5 exceeded the CUL in the sample collected from 0 to 5 feet bgs (B-5-5); however, the sample collected from 10 to 15 feet bgs (B-5-15) did not contain detectable TPH-O concentrations. There was no sample recovery from 5 to 10 feet bgs.
- Exploration B-6 contained both TPH-D and TPH-O, see above for summary in TPH-D section. Sample B-6-35 (collected from 30 to 35 feet bgs) did not contain detectable TPH-O concentrations.
- Exploration TP-6 exceeded the CUL in the sample collected from 5 to 8 feet bgs (TP-6-8); however, the sample collected from 10 to 12 bgs (TP-6-12) did not contain detectable TPH-O concentrations.
- Exploration TP-7 exceeded the CUL in samples collected from 0 to 2.5 feet and 5 to 7.5 feet bgs (TP-7-2.5 and TP-7-7.5, respectively); however, the sample collected from 7.5 to 10 feet bgs (TP-7-10) contained TPH-O concentration of 1,900 mg/kg, slightly below MTCA Method A CUL of 2,000 mg/kg and the sample collected from 10 to 15 feet bgs (TP-7-15) did not contain detectable TPH-O concentrations.
- Exploration TP-12 exceeded the CUL in the sample collected from 0 to 2.5 feet bgs (TP-12-2.5); however, the sample collected from 2.5 to 4 bgs (TP-12-4) did not contain detectable TPH-O concentrations.
- Exploration TP-15 exceeded the CUL in the sample collected from 0 to 4 feet bgs (TP-15-4); however, the sample collected from 4 to 6 bgs (TP-15-6) did not contain detectable TPH-O concentrations.

Based on the analytical data and field screening observations, TPH-O-contaminated soil appears to be confined to the near-surface soil within the upper 8 feet bgs in the upland area.

In the creek bank area, TPH-O was also detected above the MTCA Method A CUL in the creek bed and lower bank soil samples (Creekbed 1 and LB-2, respectively), indicating that TPH-O is located in the creek bed, but the vertical extent of TPH-O-contaminated soil in the creek and bank areas are unknown.

TPH-G. In the upland area, TPH-G was detected above the MTCA Method A CUL at approximately 5 to 10 feet bgs in explorations TP-5 and TP-7.

- Exploration TP-5 exceeded the CUL in samples collected from 5 to 10 feet bgs (TP-5-8 and TP-5-10); however, the sample collected from 15 to 19 bgs (TP-5-19) did not contain detectable TPH-G concentrations. Field screening observations showed elevated PID detections in samples to a depth of 15 feet bgs.
- Exploration TP-7 exceeded the CUL in the sample collected from 5 to 7.5 feet bgs (TP-7-7.5); however, the sample collected from 10 to 15 bgs (TP-7-15) did not contain detectable TPH-G concentrations. Field screening observations showed elevated PID detections in samples to a depth of 10 feet bgs.

Based on the analytical data and field screening observations, TPH-G-contaminated soil appears to be confined to the near-surface soil within the upper 10 to 15 feet bgs in the upland area.

cPAHs. In the upland area, cPAHs were detected above the MTCA Method A CUL at approximately 0 to 5 feet bgs in exploration B-6.

■ Exploration B-6 contained both TPH-D, TPH-O, and cPAHs, see summary in TPH-D section. Sample B-6-35 (collected from 30 to 35 feet bgs) did not contain detectable cPAHs concentrations.

Based on the analytical data and field screening observations, cPAH-contaminated soil appears to be confined to the near-surface soil within the upper 10 to 15 feet bgs in the upland area.

In the creek bank area, cPAHs were detected above the MTCA Method A CUL in the creek bed and lower bank soil samples (Creekbed 1 and LB-2, respectively), indicating that cPAHs are located in the creek bed, but the vertical extent of cPAH-contaminated soil in the creek and bank areas are unknown.

6.2.2 Surface Water

Creek surface water samples were collected during excavation activities and construction of the cap, per Tacoma Power's WQPP. Copper and zinc were found within the sea curtain (directly adjacent to the work area) at concentrations exceeding indicator levels, as well as one instance exceeding for zinc just outside the sea curtain. Metal debris and pipes were encountered during the cap excavation and could be the source of these metals in surface water. However, surface water samples collected downstream and behind additional BMPs were below indicator levels for copper and zinc, indicating the effectiveness of the installed BMPs. Additionally, TPH-D, TPH-O, copper, and zinc were detected in the ponded water sampled by Tacoma Power near the former petroleum-contaminated stockpile. The elevated metals and petroleum could be attributed to impacted material in the former stockpile.

7.0 DATA GAPS

Four data gaps have been identified following review of the Site investigation field and analytical results, as well as reviewing the field and analytical results of the creek bank area during construction and installation of the cap. These data gaps are discussed below, and further investigation of these data gaps would help in the complete understanding of the Site and extent of contamination.

Potential Data Gap 1. Petroleum-contaminated soil was identified in the upland area and on the creek bank and bed. In the upland area, the vertical extent of the petroleum-contaminated soil appears to be within the upper 10 to 15 feet bgs. The horizontal extent in the central area is not defined towards the southwest near TP-15, north and west near TP-5, east of TP-7, and northeast and north of B-6. Also, in the upland area, an isolated area north of the former Site A contained petroleum-contaminated soil from 0 to 2.5 feet bgs (Figure 8). Additional soil sampling and analysis in these areas would identify the horizontal extents in the upland area (including to the east and south of the former Site A cleanup area).

Petroleum-impacted soil was discovered during the cap excavation in the creek bed and along the creek bank south of the installed cap. The extents of these petroleum-impacts are unknown. Based on observations during the installation of the cap, the downstream edge of the cap was terminated at a location that had approximately four feet of clean native material adjacent to the creek edge and a vein of contaminated material appeared to continue to run parallel to the creek. This vein was an area of approximately ten square feet. Investigating the extent of the petroleum-contaminated soil in the creek and creek bank would be extremely difficult due to the steep terrain on the bank south of the cap, the inaccessibility of reaching the opposite (west) creek bank with equipment, and the creek water levels.

Routine inspections and monitoring are currently being conducted by Tacoma Power staff. If the petroleum-impacted material is observed beyond the extent of the installed cap, additional investigations can be considered at that time.

Potential Data Gap 2. During the Site investigation and construction of the cap, multiple pipes were encountered, a couple with observable NAPL. Some of the pipes or pipe segments were removed, but the complete pipe network associated with the former mill was not fully discovered. It is also not known if the pipes remaining contain any residual petroleum product. Therefore, this is considered a potential data gap for future investigations. GPR surveys could be used to further evaluate the extent of the pipe network.

Potential Data Gap 3. An abandoned culvert and petroleum-like odor was observed in the drainage ravine filled with debris and railroad ties to the north/northeast of the cap. Due to time limitations during the cap excavation and installation (with water levels anticipated to rise), the extent of impacts in the drainage ravine could not be further delineated. The upland area on the north side of the ravine could be investigated during future work to further define the extents.

Potential Data Gap 4. Elevated metals were detected in two grab groundwater samples (B-4-W and B-6-W). Since these were collected as grab groundwater samples from a temporary reconnaissance boring, there is the potential that the elevated metals are associated with high turbidity and not necessarily representative of the surrounding groundwater conditions. Field filtering the grab groundwater samples and analyzing for dissolved metals in future investigations may help understand if total metals are a COC in groundwater. Completing this investigation while the reservoir is high, may also provide better results.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Results of soil and groundwater sampling conducted in the upland area at the Site indicate the presence of TPH-D, TPH-O, TPH-G, and cPAHs in soil at concentrations above CULs primarily in near surface soils (approximately in the upper 10 to 15 feet bgs) from the bank where the seeps were located towards the east where piping was encountered around former building foundations and toward the center of the APE. An isolated area at TP-12 (near the former Site A [Figure 8]) was found to contain petroleum-contaminated soil, specifically TPH-O in the upper 2.5 feet bgs. Additionally, TPH-D, TPH-O, and cPAHs were found in soil above CULs in the creek bed and on the creek bank where the protective cap was installed. Surface water samples collected during the earthwork activities for emergency IRA showed elevated TPH-O, TPH-D, copper, and zinc in areas adjacent to the construction area.

We recommend conducting a data-gap investigation to collect additional soil and groundwater samples and conduct another GPR survey for further characterize the extent of contamination at the Site. Figure 8 illustrates the observed and estimated extent of contamination at the Site; an additional investigation will assist in understanding the full extent of contamination. This data-gap investigation would include the following:

■ Soil and groundwater sampling in the upland area to the north (near TP-5), north-central area (near B-6), northeast (near TP-12), southeast (near TP-15), and south-central area (near B-6).

- Include copper and zinc analyses for the soil and groundwater samples. Analyzing for these
 additional metals in soil during future investigations may help understand why these elevated
 metals are observed in the surface water
- Include total and dissolved metal analyses for the grab groundwater samples.
- Conduct additional GPR survey, specifically near already known pipes in Figure 8 to identify the extents.

The emergency IRA should be considered when evaluating the recommended next steps at the Site. A substantial protective cap was installed to prevent contaminates from seeping into Rainey Creek. Additionally, a significant amount of impacted material was removed (approximately 10,956 tons). This has greatly improved the overall environmental conditions at the Site. As mentioned above in Potential Data Gap 1, Tacoma Power is conducting routine inspections of the cap. If impacted material is observed beyond the extent of the installed cap, additional investigations can be considered at that time.

Based on these results and observations from the cap installation, Hart Crowser recommends Tacoma Power to continue to monitor the protective cap performance, the upland Kosmos flats area, and Rainey Creek bank over the next year. For the cap performance monitoring, if any additional sheens are observed within Rainey Creek in the proximity of the cap or downstream, BMP measures could be implemented to prevent downstream migration of contaminants. This is especially important following high energy disturbances at the Site, such as big storm events, in which the mechanism of the remedy can be damaged or when the water levels fluctuate at the Site. For example, storm events can expose impacted soil that was capped or erode those that were previously isolated. We understand Tacoma Power is working closely with Ecology's Water Quality Program to maintain the protective cap.

9.0 LIMITATIONS

Work for this project was performed, and this letter report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Tacoma Power for specific application to the referenced property. This letter report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

Any questions regarding our work and this letter report, the presentation of the information, and the interpretation of the data are welcome and should be referred to the undersigned

10.0 REFERENCES

Agency for Toxic Substances and Disease Registry 1995. Toxicology Profile for Polycyclic Aromatic Hydrocarbons. U.S. Department of Health and Human Services, Atlanta, Georgia.

AIRO 1993. Site Assessment Report, Riffe Lake Reservoir, Former Kosmos Mill Site, Glenoma, WA. Prepared for Tacoma Public Utilities. March 31, 1993.

DOWL 1993. Site Characterization Report and Cleanup Action Plan, Former Kosmos Townsite, Lewis Co., Washington. Prepared for Tacoma Public Utilities. August 27, 1993.

EPA 2004. USEPA contract laboratory program, national functional guidelines for inorganics data review. EPA 540/R-94/013. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. October 2004.

EPA 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June 2008.

Hart Crowser 2019. Remedial Investigation Work Plan, Kosmos Mill Oil Cleanup, Kosmos Flats Area. Prepared for Tacoma Public Utilities. December 6, 2019.

Hart Crowser 2020. Draft Emergency Independent Remedial Action Completion Report, Kosmos Mill Oil Cleanup, Kosmos Flats Area. Prepared for Tacoma Public Utilities. June 5, 2020.

Seattle Deposition Reporters 1995. No. C94-5056B Kosmos Site 30(b)(6) Deposition. January 23, 1995.

Washington State Department of Ecology (WSDOE). 2007. Model Toxics Control Act Regulation. Chapter 173-340 WAC. 12 October.

Washington State Department of Ecology (WSDOE). 1999. Natural Background Soil Metals Concentrations in Washington State. Toxics Cleanup Program, Department of Ecology. Publication #94-115. October 1999.

L:\Notebooks\1949900_Kosmos_Mill_Oil_Cleanup\Deliverables\Reports\Final DSR - 02192021\Final DSR 02-19-2021docx

Table 1 - Summary of Field Screening and Chemical Analysis Sample Selection

		Sample Depth Interval Feet	Approximate Elevation interval Feet	PID Reading (ppm)	a)			EPA 8260B (VOCs	8082A (PCBs	EPA 8270D (PAHs	NWTPH-Gx/BTEX	H-Gx	H-Dx	(q)		Lab Report No.
Sample ID	Collection Date	ample	Approx Elevati Feet	PID Re (ppm)	Odor (a)	Sheen	Matrix	PA 8%	EPA 8(PA 8;	WTP	VWTPH-Gx	NWTPH-Dx	Metals (b)	Hold	ab Re
B-1-5	12/11/2019		758 to 753	<0.1	SO	SS	S	Ш	Ш	Э	X	Z	X	2	エ	912215
B-1-3	12/11/2019		753 to 748	<0.1	NO	NS	S			Х			X			912215
B-1-10	12/11/2019		748 to 743	<0.1	NO	NS	S			X			X			912215
B-1-20	12/11/2019		743 to 738	<0.1	NO	NS	S								Χ	
B-1-25	12/11/2019		738 to 733	<0.1	NO	NS	S								Х	
B-1-30	12/11/2019		733 to 728	<0.1	NO	NS	S								Х	
B-1-35	12/11/2019		728 to 723	<0.1	NO	NS	S						Х		- 1	912215
B-1-40	12/11/2019		723 to 718	<0.1	NO	NS	S								Х	
B-2-5	12/11/2019		759 to 754	0.6	NO	SS	S	Х				Х	Х			912215
B-2-10	12/11/2019		754 to 749	0.1	NO	NS	S				Х		Х			912215
B-2-15	12/11/2019	10 to 15	749 to 744	<0.1	NO	NS	S								Х	
B-2-20	12/11/2019	15 to 20	744 to 739	<0.1	NO	NS	S			Χ			Х			912215
B-2-25	12/11/2019	20 to 25	739 to 734	<0.1	NO	NS	S								Х	
B-2-30	12/11/2019	25 to 30	734 to 729	<0.1	NO	NS	S								Χ	
B-2-35	12/11/2019	30 to 35	729 to 724	<0.1	NO	NS	S				Х		Х			912215
B-2-40	12/11/2019		724 to 719	<0.1	NO	SS	S						Х			912215
B-2-45	12/11/2019		719 to 714	<0.1	NO	NS	S								Х	
B-2-50	12/11/2019		714 to 709	<0.1	NO	NS	S								Χ	
B-3-5	12/10/2019	0 to 5	760 to 755	<0.1	NO	NS	S								Х	
B-3-15	12/10/2019	10 to 15	750 to 745	<0.1	NO	SS	S			Χ	Х		Х			912193
B-3-20	12/10/2019		745 to 740	<0.1	NO	NS	S				Х		Χ			912193
B-3-25	12/10/2019		740 to 735	<0.1	NO	NS	S								Χ	
B-3-30	12/10/2019		735 to 730	<0.1	NO	NS	S								Χ	0.10.100
B-3-35	12/10/2019		730 to 725	<0.1	NO	NS	S	Х			Χ		Х			912193
B-3-40	12/10/2019		725 to 720	<0.1	NO	NS	S								Х	040045
B-4-5	12/11/2019		760 to 755	0.7	NO	SS	S						X			912215 912215
B-4-15	12/11/2019		750 to 745	113.9	SO	NS	S	Х		Χ		Х	Χ		V	912215
B-4-20	12/11/2019		745 to 740	<0.1	NO SO	NS	S								Χ	912215
B-4-25	12/11/2019		740 to 735	2.3		NS	S S						Х		Х	912213
B-4-30	12/11/2019 12/11/2019		735 to 730	<0.1 8.3	NO SO	NS NS	S	Х		Х		Χ	Х		^	912215
B-4-35 B-4-40	12/11/2019		730 to 725 725 to 720	<0.1	NO	NS	S	^		^	Х	^	X			912215
B-5-5	12/11/2019		762 to 757	2.5	MO	SS	S	Х				Х	X			912215
B-5-15	12/11/2019		752 to 747	0.3	NO	NS	S				Х		X			912215
B-5-10	12/11/2019		747 to 742	<0.1	NO	NS	S								Χ	
B-5-25	12/11/2019		742 to 737	<0.1	NO	NS	S								Х	
B-5-30	12/11/2019		737 to 732	<0.1	NO	NS	S		1						Х	
B-5-35	12/11/2019		732 to 727	<0.1	NO	NS	S								Χ	
B-5-40	12/11/2019		727 to 722	<0.1	NO	NS	S								Χ	
B-6-5	12/12/2019		762 to 757	0.4	SO	SS	S	Х		Х		Х	Х			912215
B-6-10	12/12/2019		757 to 752	<0.1	NO	NS	S								Χ	
B-6-15	12/12/2019		752 to 747	<0.1	NO	NS	S								Χ	
B-6-20	12/12/2019	15 to 20	747 to 742	<0.1	NO	NS	S								Χ	
B-6-25	12/12/2019	20 to 25	742 to 737	<0.1	NO	NS	S								Χ	
B-6-30	12/12/2019	25 to 30	737 to 732	<0.1	NO	NS	S								Χ	
B-6-35	12/12/2019		732 to 727	0.3	NO	SS	S			Х	Х		Х			912215
B-6-40	12/12/2019	35 to 40	727 to 722	0.1	NO	NS	S				Х		Х			912215
B-6-45	12/12/2019		722 to 717	<0.1	NO	NS	S								Χ	
B-7-5	12/12/2019		762 to 757	<0.1	SO	NS	S				Х		Х			912215
B-7-10	12/12/2019	5 to 10	752 to 747	<0.1	NO	NS	S						Х			912215
B-7-15	12/12/2019		747 to 742	<0.1	NO	NS	S								Χ	
B-7-20	12/12/2019	15 to 20	742 to 737	<0.1	NO	NS	S					L	L		Χ	

Table 1 - Summary of Field Screening and Chemical Analysis Sample Selection

		Jepth Feet	Approximate Elevation interval Feet	ding				EPA 8260B (VOCs	8082A (PCBs	EPA 8270D (PAHs	NWTPH-Gx/BTEX	Š	χ̈́	(0		ort No.
Sample ID	Collection Date	Sample Depth Interval Feet	Approximate Elevation inte Feet	PID Reading (ppm)	Odor (a)	Sheen	Matrix	PA 826	EPA 808	PA 827	WTPH.	NWTPH-Gx	NWTPH-Dx	Metals (b)	Hold	Lab Report No.
B-7-25	12/12/2019		737 to 732	<0.1	NO	NS	S	Ш	ш	ш					X	
B-7-30	12/12/2019		732 to 727	<0.1	NO	NS	S								Х	
B-7-35	12/12/2019		727 to 722	<0.1	NO	NS	S								Х	
B-7-40	12/12/2019		722 to 717	<0.1	NO	NS	S								Х	
B-7-45	12/12/2019		717 to 712	<0.1	NO	NS	S								Х	
B-8-5	12/10/2019		761 to 756	<0.1	NO	SS	S						Х			912193
B-8-10	12/10/2019		756 to 751	<0.1	NO	SS	S	Х				Х	Х			912193
B-8-15	12/10/2019		751 to 746	<0.1	NO	NS	S								Х	
B-8-20	12/10/2019		746 to 741	<0.1	NO	NS	S								Х	
B-8-25	12/10/2019		741 to 736	<0.1	NO	NS	S								Х	
B-8-30	12/10/2019		736 to 731	<0.1	NO	NS	S								Χ	
B-8-35	12/10/2019		731 to 726	<0.1	NO	NS	S								Х	
B-8-40	12/10/2019		726 to 721	<0.1	NO	NS	S								Х	
B-9-5	12/12/2019		761 to 756	<0.1	00	SS	S						Х			912215
B-9-10	12/12/2019		756 to 751	<0.1	NO	SS	S								Х	
B-9-15	12/12/2019		751 to 746	<0.1	NO	NS	S						Х			912215
B-9-20	12/12/2019		746 to 741	<0.1	NO	NS	S								Х	
B-9-25	12/12/2019		741 to 736	<0.1	NO	MS	S						Х			912215
B-9-30	12/12/2019		736 to 731	0.1	NO	NS	S								Х	
B-9-35	12/12/2019		731 to 726	0.1	NO	NS	S								Х	
B-9-40	12/12/2019		726 to 721	0.3	NO	NS	S				Х		Х			912215
B-10-5	12/10/2019		762 to 757	<0.1	NO	NS	S				- , ,				Х	
B-10-10	12/10/2019		757 to 752	<0.1	NO	NS	S								Х	
B-10-15	12/10/2019		752 to 747	<0.1	NO	NS	S								Х	
B-10-20	12/10/2019		747 to 742	<0.1	NO	NS	S								Х	
B-10-25	12/10/2019		742 to 737	<0.1	NO	NS	S								Х	
B-10-30	12/10/2019		737 to 732	<0.1	NO	NS	S						Х			912193
B-10-35	12/10/2019		732 to 727	<0.1	NO	SS	S						X			912193
B-10-40	12/10/2019		727 to 722	<0.1	NO	NS	S								Х	
TP-2-4	11/26/2019		760 to 756	<0.1	NO	NS	S		Х		Х		Х	Х		911412
TP-2-8	11/26/2019		756 to 752	<0.1	NO	NS	S				X		Х			911412
TP-2-10.5	11/26/2019		752 to 749.5	<0.1	NO	NS	S								Χ	
TP-3-8	12/5/2019		752 to 749	<0.1	NO	NS	S	Х	Х			Х	Х			912095
TP-3-12	12/5/2019		749 to 745	<0.1	NO	NS	S				Х		Х			912095
TP-3-20	12/5/2019		742 to 737	<0.1	NO	NS	S						X			912095
TP-5-2.5	12/5/2020		758 to 755.5	<0.1	NO	NS	S						<u> </u>		Χ	
TP-5-5	12/5/2019		755.5 to 753	<0.1	NO	NS	S						Х			912095
TP-5-8	12/5/2019		753 to 750	400.1	НО	HS	S	Х				Х	Х	Х		912095
TP-5-10	12/5/2019		750 to 748	469.1	НО	HS	S	X	Х	Х		Х	X	X		912095
TP-5-12	12/5/2019		748 to 746	21.3	НО	SS	S			<u> </u>			X	<u> </u>		912095
TP-5-15	12/5/2019		746 to 743	21.6	MO	SS	S						X			912095
TP-5-19	12/5/2019		743 to 739	9.6	SO	NS	S	Х	Х	Х		Х	Х			912095
TP-6-5	12/6/2019		762 to 757	0.9	SO	SS	S			<u> </u>			X			912126
TP-6-8	12/6/2019		757 to 754	3.1	MO	HS	S	Х	Х			Х	Х			912126
TP-6-10	12/6/2019		754 to 752	<0.1	NO	NS	S	Ť	Ė				<u> </u>		Х	
TP-6-12	12/6/2019		752 to 750	<0.1	NO	SS	S						Х		-	912126
TP-7-2.5	12/6/2019		761 to 758.5	18.9	MO	SS	S						X			912126
TP-7-5	12/6/2019		758.5 to 756	53.7	MO	HS	S	1					 ^`		Χ	J.2.20
TP-7-7.5	12/6/2019		756 to 753.5	166.3	НО	HS	S	Х	Х	Х		Х	Х		- `	912126
TP-7-10	12/6/2019		753.5 to 751	132.6	НО	HS	S	<u> </u>	<u> </u>	 ^`			X			912126
TP-7-15	12/6/2019		751 to 746	6.7	NO	SS	S	Х		Х		Х	X			912126
	12/0/2019	.5 .5 .0	. 0 1 10 1 70	J.,))			1 ^			l ^\	Ī	1	0.2.20

Table 1 - Summary of Field Screening and Chemical Analysis Sample Selection

																, ,
Sample ID	Collection Date	Sample Depth Interval Feet	Approximate Elevation interval Feet	PID Reading (ppm)	Odor (a)	Sheen	Matrix	EPA 8260B (VOCs	EPA 8082A (PCBs	EPA 8270D (PAHs	NWTPH-Gx/BTEX	X9-H4LWN	NWTPH-Dx	Metals (b)	Hold	Lab Report No.
TP-8-6	12/6/2019		758.5 to 756	8.7	SO	MS	S	X		_	_	X	X		_	912126
TP-8-10.5	12/6/2019	6 to 10.5	756 to 751.5	6	SO	MS	S								Х	
TP-8-15	12/6/2019	10.5 to 15	751.5 to 747	0.1	NO	NS	S	Х				Х	Х			912126
TP-10-5	12/9/2019	0 to 5	761 to 756	<0.1	00	NS	S	Х				Χ	Х	Х		912147
TP-10-10	12/9/2019	5 to 10	756 to 751	<0.1	NO	NS	S								Х	
TP-10-15	12/9/2019	10 to 15	751 to 746	<0.1	NO	NS	S						Х			912147
TP-10-18	12/9/2019	15 to 18	746 to 743	<0.1	NO	NS	S						Х			912147
TP-11-5	12/9/2019	0 to 5	762 to 757	<0.1	NO	NS	S						Х			912147
TP-11-12	12/9/2019		757 to 750	<0.1	NO	NS	S								Х	
TP-11-15	12/9/2019	12 to 15	750 to 747	<0.1	NO	NS	S								Х	
TP-11-16.5	12/9/2019	15 to 16.5	747 to 744.5	<0.1	NO	NS	S						Х			912147
TP-12-2.5	12/9/2019	0 to 2.5	762 to 759.5	<0.1	NO	NS	S	Х				Х	Х	Х		912147
TP-12-4	12/9/2019		759.5 to 748	<0.1	NO	NS	S						Х			912147
TP-13-2.5	11/26/2019	0 to 2.5	737 to 734.5	<0.1	NO	NS	S	Х				Х	Х	Х		911412
TP-13-5	11/26/2019	2.5 to 5	734.5 to 732	<0.1	NO	NS	S								Х	
TP-13-9	11/26/2019		732 to 728	<0.1	NO	NS	S								Х	
TP-14-2.5	11/26/2019	0 to 2.5	761 to 758.5	<0.1	NO	NS	S								Х	
TP-14-5	11/26/2019	2.5 to 5	758.5 to 756	<0.1	NO	NS	S								Х	
TP-14-10	11/26/2019		756 to 751	<0.1	NO	NS	S	Х				Х	Х			911412
TP-15-4	11/26/2019	0 to 4	760 to 756	<0.1	so	SS	S		Х		Х		Х	Х		911412
TP-15-6	11/26/2019		756 to 752	<0.1	so	SS	S			Х		Х	Х			911412
TP-15-8	11/26/2019		752 to 750	<0.1	so	SS	S	Х	Х			Х	Х			911412
TP-15-11	11/26/2018	8 to 11	750 to 747	<0.1	NO	NS	S								Х	
TP-15-14	11/26/2019	11 to 14	747 to 744	<0.1	NO	NS	S			Х	Х		Х			911412
Creekbed 1	12/13/2019	0	723.3 to723	0.6	НО	SS	S	Х		Х		Х	Х			912244
LB-1	12/16/2019	0 to 0.3	723.3 to723	0.2	NO	NS	S	Х		Х		Х	Х			912263
LB-2	12/16/2019	0 to 0.3	723.3 to723	8.0	МО	SS	S	Х		Х		Х	Х			912263
LB-3	12/16/2019	0 to 0.3	723.3 to723	0.2	SO	NS	S	Х		Х		Х	Х			912263
UB-1	12/18/2019	0 to 0.3	750.3 to 750	0.7	SO	NS	S	Х		Х		Х	Х			912340
UB-2	12/18/2019		750.3 to 750	0.9	NO	NS	S	Х		Х		Х	Х			912340
UB-3	12/18/2019	0 to 0.3	750.3 to 750	0.4	NO	NS	S	Х		Х		Х	Х			912340
Westbank 1	12/17/2019	0 to 2.25	723.25 to 721	<0.1	NO	NS	S	Х		Х		Х	Х	Х		912296
Westbank 2	12/17/2019	0 to 2	725 to 723	<0.1	NO	NS	S	Х		Х		Х	Х	Х		912296
Westbank 3	12/17/2019	0 to 1.5	724.5 to723	<0.1	NO	NS	S	Х		Х			Х	Х		912296
B-4-W	12/11/2019	45 to 50	715 to 710	-	NO	NS	GW	Х	Х	Х		Х	Х	Х		912214
B-6-W	12/12/2019	45 to 50	716 to 711	-	NO	NS	GW	Х		Х		Х	Х	Х		912214
B-7-W	12/12/2019	45 to 50	716 to 711	-	NO	NS	GW	Х		Х		Х	Х			912214
B-9-W	12/12/2019	45 to 50	716 to 711	-	NO	NS	GW	Х		Х		Х	Х			912265

Notes:

- (a) Odors and sheens indicate petroleum-like chararacteristics unless otherwise noted with an "OO."
- (b) Metals analysis includes As, Ba, Cd, Cr, Pb, Hg, Se, and Ag.

Bold entries have analytical results above MTCA Method A cleanup levels.

NO = No odor NS = No sheen S = Soil

SO = Slight odor SS = Slight sheen GW = Groundwater

MO = Moderate odor MS = Moderate sheen HO = Heavy odor HS = Heavy Sheen

OO = Organic odor

Table 2 - Analytical Results for	or Soil E	Boring and	Test Pit Sa	mples											Sh	eet 1 of 10
Sample ID Sampling Date	MTCA Method A	B-1-5 12/11/2019	B-1-10 12/11/2019	B-1-15 12/11/2019	B-1-35 12/11/2019	B-2-5 12/11/2019	B-2-10 12/11/2019	B-2-20 12/11/2019	B-2-35 12/11/2019	B-2-40 12/11/2019	B-3-15 12/10/2019	B-3-20 12/10/2019	B-3-35 12/10/2019	B-4-5 12/11/2019	B-4-15 12/11/2019	B-4-25 12/11/2019
Sample Depth in feet Sample Elevation in feet (NAVD 88) Sample Elevation in feet (TCL)	Cleanup Level ^a	0 to 5 758 to 753 754 to 749	5 to 10 753 to 748 749 to 744	10 to 15 748 to 743 744 to 739	30 to 35 728 to 723 724 to 719	0 to 5 759 to 754 755 to 750	5 to 10 754 to 749 750 to 745	15 to 20 744 to 739 740 to 735	30 to 35 729 to 724 725 to 720	35 to 40 724 to 719 720 to 715	10 to 15 750 to 745 746 to 741	15 to 20 745 to 740 741 to 736	30 to 35 730 to 725 726 to 721	0 to 5 760 to 755 756 to 751	10 to 15 750 to 745 746 to 741	20 to 25 740 to 735 736 to 731
TPH in mg/kg																
Diesel Range Organics Lube Oil	2000 2000	50 U 250 U	250 U			250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	
Gasoline Range Organics Metals in mg/kg	30/100 °	5 U				8.7	5 U		5 U		5 U	5 U	5 U		12	
Arsenic Barium	20															
Cadmium	2															
Chromium Lead	19/2000 ° 250	•														
Mercury	230															
Selenium																
Silver																
BTEX in mg/kg Benzene	0.03	0.02 U					0.02 U		0.02 U		0.02 U	0.02 U	0.02 U			
Ethylbenzene	6	0.02 U					0.02 U		0.02 U		0.02 U					
Toluene	7	0.02 U					0.02 U		0.02 U		0.02 U					
Total Xylenes PCBs in mg/kg	9	0.06 U					0.06 U		0.06 U		0.06 U	0.06 U	0.06 U			
PCB-aroclor 1016																
PCB-aroclor 1221																
PCB-aroclor 1232 PCB-aroclor 1242																
PCB-aroclor 1242 PCB-aroclor 1248																
PCB-aroclor 1254																
PCB-aroclor 1260																
PCB-aroclor 1262 PCB-aroclor 1268																
Total PCBs	1															
Volatiles in mg/kg						0.05.11									0.05.11	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	2					0.05 U 0.05 U									0.05 U 0.05 U	
1,1,2,2-Tetrachloroethane	_					0.05 U									0.05 U	
1,1,2-Trichloroethane						0.05 U									0.05 U	
1,1-Dichloroethane 1,1-Dichloroethene						0.05 U 0.05 U									0.05 U 0.05 U	
1,1-Dichloropropene						0.05 U									0.05 U	
1,2,3-Trichlorobenzene						0.25 U									0.25 U	
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene						0.05 U 0.25 U									0.05 U 0.25 U	
1,2,4-Trichloroberizene 1,2,4-Trimethylbenzene						0.23 U									0.23 U 0.05 U	
1,2-Dibromo-3-chloropropane						0.5 U									0.5 U	
1,2-Dibromoethane						0.05 U									0.05 U	
1,2-Dichlorobenzene 1,2-Dichloroethane						0.05 U 0.05 U									0.05 U 0.05 U	
1,2-Dichloropropane						0.05 U									0.05 U	
1,3,5-Trimethylbenzene						0.05 U									0.05 U	
1,3-Dichlorobenzene 1,3-Dichloropropane						0.05 U 0.05 U									0.05 U 0.05 U	
1,4-Dichlorobenzene						0.05 U									0.05 U	
2,2-Dichloropropane						0.05 U									0.05 U	
2-Butanone 2-Chlorotoluene						0.5 U 0.05 U									0.5 U 0.05 U	
2-Unioroloidene 2-Hexanone						0.05 U 0.5 U									0.05 U 0.5 U	
4-Chlorotoluene						0.05 U									0.05 U	
Acetone	0.00					0.5 U									0.5 U	
Benzene	0.03					0.03 U									0.03 U	

Table 2 - Alialytical Results It	01 3011 D	orning and	1651 FIL Sai	IIIbiea											U 11.	0012 01 10
Sample ID	MTCA	B-1-5	B-1-10	B-1-15	B-1-35	B-2-5	B-2-10	B-2-20	B-2-35	B-2-40	B-3-15	B-3-20	B-3-35	B-4-5	B-4-15	B-4-25
Sampling Date	Method A	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/10/2019	12/10/2019	12/10/2019	12/11/2019	12/11/2019	12/11/2019
Sample Depth in feet	Cleanup		5 to 10	10 to 15	30 to 35	0 to 5	5 to 10	15 to 20	30 to 35	35 to 40	10 to 15	15 to 20	30 to 35	0 to 5	10 to 15	20 to 25
Sample Elevation in feet (NAVD 88)	Level a	758 to 753	753 to 748	748 to 743	728 to 723	759 to 754	754 to 749	744 to 739	729 to 724	724 to 719	750 to 745	745 to 740	730 to 725	760 to 755	750 to 745	740 to 735
Sample Elevation in feet (TCL)		754 to 749	749 to 744	744 to 739	724 to 719	755 to 750	750 to 745	740 to 735	725 to 720	720 to 715	746 to 741	741 to 736	726 to 721	756 to 751	746 to 741	736 to 731
		70110710	7 10 10 7 11	71110700	72110710			7 10 10 700	720 10 720	720 10 7 10	7 10 10 7 11	7 11 10 700	720 10 721	700 10 701		700 10 701
Bromobenzene						0.05 U									0.05 U	
Bromoform						0.05 U									0.05 U	
Bromomethane						0.5 U									0.5 U	
Carbon tetrachloride						0.05 U									0.05 U	
CFC-11						0.5 U									0.5 U	
CFC-12						0.5 U									0.5 U	
Chlorobenzene						0.05 U									0.05 U	
Chloroethane						0.5 U									0.5 U	
Chloroform						0.05 U									0.05 U	
Chloromethane						0.5 U									0.5 U	
cis-1,2-Dichloroethene						0.05 U									0.05 U	
cis-1,3-Dichloropropene						0.05 U									0.05 U	
Dibromochloromethane						0.05 U									0.05 U	
Dibromomethane						0.05 U									0.05 U	
Dichlorobromomethane						0.05 U									0.05 U	
Ethylbenzene	6					0.05 U									0.05 U	
Hexachlorobutadiene						0.25 U									0.25 U	
Hexane						0.25 U									0.25 U	
Isopropylbenzene (Cumene)						0.05 U									0.05 U	
Methyl isobutyl ketone						0.5 U									0.5 U	
Methyl t-butyl ether	0.1					0.05 U									0.05 U	
Methylene chloride	0.02					0.5 U									0.5 U	
Naphthalene	5					0.05 U									0.05 U	
n-Propylbenzene	J					0.05 U									0.05 U	
p-lsopropyltoluene						0.05 U									0.05 U	
sec-Butylbenzene						0.05 U									0.05 U	
Styrene						0.05 U									0.05 U	
tert-Butylbenzene						0.05 U									0.05 U	
Tetrachloroethene	0.05					0.025 U									0.025 U	
Toluene	7					0.05 U									0.05 U	
trans-1,2-Dichloroethene	,					0.05 U									0.05 U	
trans-1,3-Dichloropropene						0.05 U									0.05 U	
Trichloroethene	0.03					0.03 U									0.03 U	
Vinyl chloride	0.00					0.02 U									0.02 U	
m, p-Xylene						0.03 U									0.03 U	
o-Xylene						0.05 U									0.05 U	
Total Xylenes	9					0.03 U									0.03 U	
PAHs in mg/kg	9					0.1 0									0.1 0	
Acenaphthene			0.01 U	0.01 U				0.01 U			0.01 U				0.01 U	
Acenaphthylene			0.01 U					0.01 U			0.01 U				0.01 U	
Anthracene			0.01 U					0.01 U			0.01 U				0.01 U	
Benz[a]anthracene			0.01 U					0.01 U			0.01 U				0.01 U	
	0.1		0.01 U					0.01 U			0.01 U				0.01 U	
Benzo(a)pyrene	0.1		0.01 U					0.01 U			0.01 U				0.01 U	
Benzo(b)fluoranthene			0.01 U								0.01 U				0.01 U	
Benzo(ghi)perylene								0.01 U								
Benzo(k)fluoranthene			0.01 U					0.01 U			0.01 U				0.01 U	
Chrysene			0.01 U					0.01 U			0.01 U				0.01 U	
Dibenzo(a,h)anthracene			0.01 U					0.01 U			0.01 U				0.01 U	
Fluoranthene			0.01 U					0.01 U			0.01 U				0.01 U	
Fluorene			0.01 U					0.01 U			0.01 U				0.01 U	
Indeno(1,2,3-cd)pyrene	_		0.01 U					0.01 U			0.01 U				0.01 U	
Naphthalene	5		0.01 U					0.01 U			0.01 U				0.01 U	
Phenanthrene			0.01 U					0.01 U			0.01 U				0.01 U	
Pyrene	6.4		0.01 U					0.01 U			0.01 U				0.01 U	
Total cPAHs TEQ	0.1		NC	NC				NC			NC				NC	

Table 2 - Analytical Results for Sample ID Sampling Date	MTCA Method A	B-4-35 12/11/2019	B-4-40 12/11/2019	B-5-5 12/11/2019	B-5-15 12/11/2019	B-6-5 12/12/2019	B-6-35 12/12/2019	B-6-40 12/12/2019	B-7-5 12/12/2019	B-7-10 12/12/2019	B-8-5 12/10/2019	B-8-10 12/10/2019	B-9-5 12/12/2019	B-9-15 12/12/2019	B-9-25 12/12/2019	Sheet 3 of 10 B-9-40 12/12/2019
Sample Depth in feet Sample Elevation in feet (NAVD 88) Sample Elevation in feet (TCL)	Cleanup Level ^a	30 to 35 730 to 725 726 to 721	35 to 40 725 to 720 721 to 716	0 to 5 762 to 757 758 to 753	10 to 15 752 to 747 748 to 743	0 to 5 762 to 757 758 to 753	30 to 35 732 to 727 728 to 723	35 to 40 727 to 722 723 to 718	0 to 5 762 to 757 758 to 753	5 to 10 757 to 752 753 to 748	0 to 5 761 to 756 757 to 752	5 to 10 756 to 751 752 to 747	0 to 5 761 to 756 757 to 752	10 to 15 751 to 746 747 to 742	20 to 25 741 to 736 737 to 732	35 to 40 726 to 721 722 to 717
TPH in mg/kg Diesel Range Organics Lube Oil	2000 2000	50 U 250 U	50 U 250 U	730 2800	50 U 250 U	2000 5600	50 U 250 U	50 U 250 U								
Gasoline Range Organics Metals in mg/kg	30/100 b	7.3	5 U	82	5 U	93	5 U	5 U			250 0	5 U		230 0	250 0	5 U
Arsenic Barium	20															
Cadmium Chromium Lead	2 19/2000 ^c 250															
Mercury Selenium	2															
Silver BTEX in mg/kg																
Benzene Ethylbenzene Toluene	0.03 6 7		0.02 U 0.02 U 0.02 U		0.02 U 0.02 U 0.02 U		0.02 U 0.02 U 0.02 U	0.02 U 0.02 U 0.02 U	0.02 U	l						0.02 U 0.02 U 0.02 U
Total Xylenes PCBs in mg/kg	9		0.06 U		0.06 U		0.06 U	0.06 U								0.06 U
PCB-aroclor 1016 PCB-aroclor 1221 PCB-aroclor 1232																
PCB-aroclor 1242 PCB-aroclor 1248 PCB-aroclor 1254																
PCB-aroclor 1260 PCB-aroclor 1262																
PCB-aroclor 1268 Total PCBs Volatiles in mg/kg	1															
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	2	0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U						0.05 U 0.05 U				
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U						0.05 U 0.05 U				
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene		0.05 U 0.05 U 0.05 U		0.05 U 0.05 U 0.05 U		0.05 U 0.05 U 0.05 U						0.05 U 0.05 U 0.05 U				
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		0.25 U 0.05 U		0.25 U 0.05 U		0.25 U 0.05 U						0.25 U 0.05 U				
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		0.25 U 0.05 U 0.5 U		0.25 U 0.05 U 0.5 U		0.25 U 0.05 U 0.5 U						0.25 U 0.05 U 0.5 U				
1,2-Dibromoethane 1,2-Dichlorobenzene		0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U						0.05 U 0.05 U				
1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene		0.05 U 0.05 U 0.05 U		0.05 U 0.05 U 0.05 U		0.05 U 0.05 U 0.05 U						0.05 U 0.05 U 0.05 U				
1,3-Dichlorobenzene 1,3-Dichloropropane		0.05 U 0.05 U		0.05 U 0.05 U		0.05 U 0.05 U						0.05 U 0.05 U				
1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone		0.05 U 0.05 U 0.5 U		0.05 U 0.05 U 0.5 U		0.05 U 0.05 U 0.5 U						0.05 U 0.05 U 0.5 U				
2-Chlorotoluene 2-Hexanone		0.05 U 0.5 U		0.05 U 0.5 U		0.05 U 0.5 U						0.05 U 0.5 U				
4-Chlorotoluene Acetone Benzene	0.03	0.05 U 0.5 U 0.03 U		0.05 U 0.5 U 0.03 U		0.05 U 0.5 U 0.03 U						0.05 U 0.5 U 0.03 U				

0.1

NC

Total cPAHs TEQ

Table 2 - Analytical Results f	or Soil B	oring and	Test Pit Sar	nples												Sheet 4 of 10
Sample ID	MTCA	B-4-35	B-4-40	B-5-5	B-5-15	B-6-5	B-6-35	B-6-40	B-7-5	B-7-10	B-8-5	B-8-10	B-9-5	B-9-15	B-9-25	B-9-40
Sampling Date		12/11/2019	12/11/2019	12/11/2019	12/11/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/10/2019	12/10/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample Depth in feet		30 to 35	35 to 40	0 to 5	10 to 15	0 to 5	30 to 35	35 to 40	0 to 5	5 to 10	0 to 5	5 to 10	0 to 5	10 to 15	20 to 25	35 to 40
Sample Elevation in feet (NAVD 88)	Level ^á	730 to 725	725 to 720	762 to 757	752 to 747	762 to 757	732 to 727	727 to 722	762 to 757	757 to 752	761 to 756	756 to 751	761 to 756	751 to 746	741 to 736	726 to 721
Sample Elevation in feet (TCL)		726 to 721	721 to 716	758 to 753	748 to 743	758 to 753	728 to 723	723 to 718	758 to 753	753 to 748	757 to 752	752 to 747	757 to 752	747 to 742	737 to 732	722 to 717
Bromobenzene		0.05 U		0.05 U		0.05 U						0.05 L	J			
Bromoform		0.05 U		0.05 U		0.05 U						0.05 L				
Bromomethane		0.5 U		0.5 U		0.5 U						0.5 L				
Carbon tetrachloride		0.05 U		0.05 U		0.05 U						0.05 L				
CFC-11		0.5 U		0.5 U		0.5 U						0.5 L				
CFC-12		0.5 U		0.5 U		0.5 U						0.5 L				
Chlorobenzene		0.05 U		0.05 U		0.05 U						0.05 L	J			
Chloroethane		0.5 U		0.5 U		0.5 U						0.5 ل	J			
Chloroform		0.05 U		0.05 U		0.05 U						0.05 L	J			
Chloromethane		0.5 U		0.5 U		0.5 U						0.5 L				
cis-1,2-Dichloroethene		0.05 U		0.05 U		0.05 U						0.05 L				
cis-1,3-Dichloropropene		0.05 U		0.05 U		0.05 U						0.05 L				
Dibromochloromethane		0.05 U		0.05 U		0.05 U						0.05 L				
Dibromomethane		0.05 U		0.05 U		0.05 U						0.05 L				
Dichlorobromomethane	_	0.05 U		0.05 U		0.05 U						0.05 L				
Ethylbenzene	6	0.05 U		0.05 U		0.05 U						0.05 L				
Hexachlorobutadiene		0.25 U		0.25 U		0.25 U						0.25 L				
Hexane		0.25 U		0.25 U		0.25 U						0.25 L				
Isopropylbenzene (Cumene) Methyl isobutyl ketone		0.05 U		0.05 U 0.5 U		0.05 U 0.5 U						0.05 L 0.5 L				
Methyl t-butyl ether	0.1	0.5 U 0.05 U		0.05 U		0.5 U						0.5 t				
Methylene chloride	0.02	0.03 U		0.03 U		0.05 U						0.03 C				
Naphthalene	5	0.05 U		0.05 U		0.05 U						0.05 L				
n-Propylbenzene	J	0.05 U		0.05 U		0.05 U						0.05 L				
p-lsopropyltoluene		0.05 U		0.05 U		0.05 U						0.05 L				
sec-Butylbenzene		0.05 U		0.05 U		0.05 U						0.05 L				
Styrene		0.05 U		0.05 U		0.05 U						0.05 L				
tert-Butylbenzene		0.05 U		0.05 U		0.05 U						0.05 L				
Tetrachloroethene	0.05	0.025 U		0.025 U		0.025 U						0.025 L				
Toluene	7	0.05 U		0.05 U		0.05 U						0.05 L	J			
trans-1,2-Dichloroethene		0.05 U		0.05 U		0.05 U						0.05 L	J			
trans-1,3-Dichloropropene		0.05 U		0.05 U		0.05 U						0.05 L				
Trichloroethene	0.03	0.02 U		0.02 U		0.02 U						0.02 L				
Vinyl chloride		0.05 U		0.05 U		0.05 U						0.05 L				
m, p-Xylene		0.1 U		0.1 U		0.1 U						0.1 L				
o-Xylene		0.05 U		0.05 U		0.05 U						0.05 L				
Total Xylenes	9	0.1 U		0.1 U		0.1 U						0.1 L	J			
PAHs in mg/kg		0.01 U				0.5 U	0.01 U	ı								
Acenaphthene Acenaphthylene		0.01 U				0.5 U										
Anthracene		0.01 U				0.5 U										
Benz[a]anthracene		0.01 U				0.5 U										
Benzo(a)pyrene	0.1	0.01 U				0.56	0.01 U									
Benzo(b)fluoranthene	0.1	0.01 U				0.5 U										
Benzo(ghi)perylene		0.01 U				0.5 U										
Benzo(k)fluoranthene		0.01 U				0.5 U										
Chrysene		0.01 U				0.97	0.01 U									
Dibenzo(a,h)anthracene		0.01 U				0.5 U										
Fluoranthene		0.01 U				0.5 U										
Fluorene		0.01 U				0.5 U	0.01 U	l								
Indeno(1,2,3-cd)pyrene		0.01 U				0.5 U										
Naphthalene	5	0.01 U				0.5 U										
Phenanthrene		0.01 U				0.5 U										
Pyrene		0.01 U				1.8	0.01 U									
Total cPAHs TEO	0.1	NC				0.5697	NC									

0.5697

NC

Table 2 - Analytical Results f	or Soil B	oring and	Test Pit Sa	mples												Sheet 5 of 10
Sample ID	MTCA	B-10-30	B-10-35	- TP-2-4	TP-2-8	TP-3-8	TP-3-12	TP-3-20	TP-5-5	TP-5-8	TP-5-10	TP-5-12	TP-5-15	TP-5-19	TP-6-5	TP-6-8
Sampling Date	Method A	12/10/2019	12/10/2019	11/26/2019	11/26/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/6/2019	12/6/2019
Sample Depth in feet		25 to 30	30 to 35	0 to 4	4 to 8	5 to 8	8 to 12	15 to 20	2.5 to 5	5 to 8	8 to 10	10 to 12	12 to 15	15 to 19	0 to 5	5 to 8
Sample Elevation in feet (NAVD 88) Sample Elevation in feet (TCL)	Level ^a	737 to 732 733 to 728	732 to 727 728 to 723	760 to 756 756 to 752	756 to 752 752 to 748	752 to 749 748 to 745	749 to 745 745 to 741	742 to 737 738 to 733	755.5 to 753 751.5 to 749		750 to 748 746 to 744	748 to 746 744 to 742	746 to 743 742 to 739	743 to 739 739 to 735	762 to 757 758 to 753	757 to 754 753 to 750
TPH in mg/kg																
Diesel Range Organics	2000	50 U			50 U	50 U	J 50 U				610 J	50 L	JJ 50 U.			1300
Lube Oil	2000	250 U	J 250 U	J 250 L	JJ 250 L	JJ <u>650</u> J	1600 J	250 L	JJ 250 U	J 250 U	J 1600	3900				
Gasoline Range Organics	30/100 b			5 U	5 U	5 U	J 5 U	IJ		160 J	930 J			5 U	J	38
Metals in mg/kg																
Arsenic	20			1.74		1.02				1.05	1.72					
Barium	0			102		49.1				104	73.3					
Cadmium	2			1 U		1 U				1 U						
Chromium	19/2000°			19.7 J		14 J				19.5 J						
Lead	250			3.21		1.96				11	15.8					
Mercury Selenium	2			1 U 1 U		1 U 1 U				1 U 1 U						
Silver				1 U		1 U				1 U						
BTEX in mg/kg				10		1 0				1 0	1 0					
Benzene	0.03			0.02 U	0.02 U		0.02 U	IJ								
Ethylbenzene	6			0.02 U	0.02 U		0.02 U									
Toluene	7			0.02 U	0.02 U		0.02 U									
Total Xylenes	9			0.06 U	0.06 U		0.06 U									
PCBs in mg/kg																
PCB-aroclor 1016											0.02 U			0.02 U		0.2 U
PCB-aroclor 1221											0.02 U			0.02 U		0.2 U
PCB-aroclor 1232											0.02 U			0.02 U		0.2 U
PCB-aroclor 1242											0.02 U			0.02 U		0.2 U
PCB-aroclor 1248											0.02 U			0.02 U		0.2 U
PCB-aroclor 1254											0.02 U			0.02 U		0.2 U
PCB-aroclor 1260											0.02 U			0.02 U		0.2 U
PCB-aroclor 1262 PCB-aroclor 1268											0.02 U 0.02 U			0.02 U 0.02 U		0.2 U 0.2 U
Total PCBs	1										0.02 U			0.02 U		0.2 U
Volatiles in mg/kg	•										0.02 0			0.02 0		0.2 0
1,1,1,2-Tetrachloroethane						0.05 U	J			0.05 U	J 0.05 U	J		0.05 U	J	0.05 U
1,1,1-Trichloroethane	2					0.05 U				0.05 U				0.05 U		0.05 U
1,1,2,2-Tetrachloroethane						0.05 U				0.05 U				0.05 U		0.05 U
1,1,2-Trichloroethane						0.05 U				0.05 U				0.05 U		0.05 U
1,1-Dichloroethane						0.05 U				0.05 U				0.05 U		0.05 U
1,1-Dichloroethene						0.05 U				0.05 U				0.05 U		0.05 U
1,1-Dichloropropene						0.05 U				0.05 U				0.05 U		0.05 U
1,2,3-Trichlorobenzene						0.25 U				0.25 U				0.25 U		0.25 U
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene						0.05 U 0.25 U				0.05 U 0.25 U				0.05 U 0.25 U		0.05 U
1,2,4-Trimethylbenzene						0.25 U				0.25 U 0.05 U				0.25 U 0.05 U		0.25 U 0.05 U
1,2-Dibromo-3-chloropropane						0.05 U				0.05 U				0.05 U		0.05 U
1,2-Dibromoethane						0.05 U				0.05 U				0.05 U		0.05 U
1,2-Dichlorobenzene						0.05 U				0.05 U				0.05 U		0.05 U
1,2-Dichloroethane						0.05 U				0.05 U				0.05 U		0.05 U
1,2-Dichloropropane						0.05 U				0.05 U				0.05 U		0.05 U
1,3,5-Trimethylbenzene						0.05 U	J			0.05 U	J 0.05 U	J		0.05 U	J	0.05 U
1,3-Dichlorobenzene						0.05 U				0.05 U				0.05 U		0.05 U
1,3-Dichloropropane						0.05 U				0.05 U				0.05 U		0.05 U
1,4-Dichlorobenzene						0.05 U				0.05 U				0.05 U		0.05 U
2,2-Dichloropropane						0.05 U				0.05 U				0.05 U		0.05 U
2-Butanone						0.5 U				0.5 U				0.5 U		0.5 U
2-Chlorotoluene						0.05 U				0.05 U				0.05 U		0.05 U
2-Hexanone 4-Chlorotoluene						0.5 U				0.5 U				0.5 U		0.5 U
4-Chlorotoluene Acetone						0.05 U ₀ 0.5 U ₀				0.05 U 0.5 U				0.05 U 0.5 U		0.05 U 0.5 U
Benzene	0.03					0.03 U				0.03 U				0.3 U		0.03 U
50.120110	0.00					0.00 0	-			0.00 0	0.00 0	-		0.00 0	_	0.00 0

Table 2 - Allalytical Results II		•	Test Fit Sa	iiihiea												01100100110
Sample ID	MTCA	B-10-30	B-10-35	TP-2-4	TP-2-8	TP-3-8	TP-3-12	TP-3-20	TP-5-5	TP-5-8	TP-5-10	TP-5-12	TP-5-15	TP-5-19	TP-6-5	TP-6-8
Sampling Date	Method A	12/10/2019	12/10/2019	11/26/2019	11/26/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/5/2019	12/6/2019	12/6/2019
Sample Depth in feet	Cleanup	25 to 30	30 to 35	0 to 4	4 to 8	5 to 8	8 to 12	15 to 20	2.5 to 5	5 to 8	8 to 10	10 to 12	12 to 15	15 to 19	0 to 5	5 to 8
Sample Elevation in feet (NAVD 88)	Level ^a	737 to 732	732 to 727	760 to 756	756 to 752	752 to 749	749 to 745	742 to 737	755.5 to 753	753 to 750	750 to 748	748 to 746	746 to 743	743 to 739	762 to 757	757 to 754
Sample Elevation in feet (TCL)		733 to 728	728 to 723	756 to 752	752 to 748	748 to 745	745 to 741	738 to 733	751.5 to 749		746 to 744	744 to 742	742 to 739	739 to 735	758 to 753	753 to 750
Bromobenzene						0.05 L				0.05 U		1		0.05 L		0.05 U
Bromoform																
						0.05 L				0.05 U				0.05 L		0.05 U
Bromomethane						0.5 L				0.5 U				0.5 L		0.5 U
Carbon tetrachloride						0.05 L				0.05 U				0.05 L		0.05 U
CFC-11						0.5 L				0.5 U				0.5 L		0.5 U
CFC-12						0.5 L				0.5 U				0.5 L		0.5 U
Chlorobenzene						0.05 L				0.05 U				0.05 L		0.05 U
Chloroethane						0.5 L				0.5 U				0.5 L		0.5 U
Chloroform						0.05 L				0.05 U				0.05 L		0.05 U
Chloromethane						0.5 L				0.5 U				0.5 L		0.5 U
cis-1,2-Dichloroethene						0.05 L				0.05 U				0.05 L		0.05 U
cis-1,3-Dichloropropene						0.05 L				0.05 U				0.05 L		0.05 U
Dibromochloromethane						0.05 L				0.05 U				0.05 L		0.05 U
Dibromomethane						0.05 L				0.05 U				0.05 L		0.05 U
Dichlorobromomethane	•					0.05 L				0.05 U		J		0.05 L		0.05 U
Ethylbenzene	6					0.05 L				0.05 U				0.05 L		0.05 U
Hexachlorobutadiene						0.25 L				0.25 U		J		0.25 L		0.25 U
Hexane						0.25 L				0.25 U				0.25 L		0.25 U
Isopropylbenzene (Cumene)						0.05 \				0.05 U				0.05 L		0.05 U
Methyl isobutyl ketone						0.5 \				0.5 U				0.5 L		0.5 U
Methyl t-butyl ether	0.1					0.05 L				0.05 U				0.05 L		0.05 U
Methylene chloride	0.02					0.53 lo				0.68 Ic		J		0.5 L		1.1 lc
Naphthalene	5					0.05 \				0.05 U				0.05 L		0.05 U
n-Propylbenzene						0.05 L				0.075 J	0.52 J			0.05 L		0.05 U
p-Isopropyltoluene						0.05 \				0.05 U				0.05 L		0.05 U
sec-Butylbenzene						0.05 \				0.083 J	0.19 J	_		0.05 L		0.05 U
Styrene						0.05 L				0.05 U				0.05 L		0.05 U
tert-Butylbenzene						0.05 \				0.05 U				0.05 L		0.05 U
Tetrachloroethene	0.05					0.025 เ				0.025 U				0.025 L		0.025 U
Toluene	7					0.05 \				0.05 U				0.05 L		0.05 U
trans-1,2-Dichloroethene						0.05 L				0.05 U				0.05 L		0.05 U
trans-1,3-Dichloropropene						0.05 L				0.05 U				0.05 L		0.05 U
Trichloroethene	0.03					0.02 \				0.02 U				0.02 L		0.02 U
Vinyl chloride						0.05 L				0.05 U				0.05 L		0.05 U
m, p-Xylene						0.1 ს				0.1 U				0.1 L		0.1 U
o-Xylene	_					0.05 L	JJ			0.05 U	J 0.05 U	J		0.05 L	J	0.05 U
Total Xylenes	9															0.1 U
PAHs in mg/kg																
Acenaphthene											0.02 J			0.01 L		
Acenaphthylene											0.01 U			0.01 L		
Anthracene											0.01 U			0.01 L		
Benz[a]anthracene											0.01 U			0.01 L		
Benzo(a)pyrene	0.1										0.01 U			0.01 L		
Benzo(b)fluoranthene											0.01 U			0.01 L		
Benzo(ghi)perylene											0.01 U			0.01 L		
Benzo(k)fluoranthene											0.01 U			0.01 L		
Chrysene											0.01 U			0.01 L		
Dibenzo(a,h)anthracene											0.01 U	J		0.01 L		
Fluoranthene											0.011			0.01 L		
Fluorene											0.064			0.01 L		
Indeno(1,2,3-cd)pyrene											0.01 U			0.01 L		
Naphthalene	5										0.01 U			0.01 L		
Phenanthrene											0.1 J			0.01 L		
Pyrene											0.022 J			0.01 L	J	
Total cPAHs TEQ	0.1										NC			NC		

Sheet 6 of 10

Sample ID MTCA TP-6-12 TP-7-2.5 TP-7-7.5 TP-7-10 TP-7-15 TP-8-3.5 TP-8-6 TP-8-15 TP-10-15 TP-10-15 TP-10-18 TP-11-5 TP-11-16.5 TP-12-2.5 TP Sampling Date Method A 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/6/2019 12/9/2019 12/	eet 7 of 10 -12-4 /9/2019 5 to 4 9.5 to 758 5.5 to 754
Sampling Date Clear 10 to 1 21/2/2019 12/2/2	/9/2019 5 to 4 9.5 to 758 5.5 to 754
Sample Depth in feet Cleamy 10 to 12 10 to 12 10 to 15 15 to 16 15 to 18 10 to 15 15 to 16 15 to 16 to 16 15 to 16 to 16 to 16 15 to 16 to	5 to 4 9.5 to 758 5.5 to 754
Sample Elevation in feet (NAVD 88)	9.5 to 758 5.5 to 754
Samile Elevation in feet (TCL)	5.5 to 754
TPH in mg/kg	
Diesel Range Organics 2000 50 U 3900 U 2600 3900 U 2600 3000	50 II
Lube Oil 2000 250 U 26000 J 3100 1900 250 U 570 1500 250 U 2	อบ บ
Metals in mg/kg Arsenic 20 1.79 1.53 3.73 Barium 107 72.7 82.4 Cadmium 2 1 U 1 U 1.33 Chromium 19/2000° 13.9 J 16.7 J 14.3 J Lead 250 12 6.15 85.2 Mercury 2 1 U 1 U 1 U 1 U Silver 1 U 1 U 1 U 1 U BETX in mg/kg Benzene 0.03 Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCB-arroclor 1016 0.2 U PCB-arroclor 1221 0.2 U PCB-arroclor 1222 0.2 U PCB-arroclor 1223 0.2 U	250 U
Asenic 20 1.79 1.53 3.73 Barium 107 7.2 82.4 Cadmium 2 1 U 1 U 1 U 1.33 Chromium 19/2000° 13.9 J 16.7 J 1.2 14.3 J 1.43 J Lead 250 12 6.15 85.2 85.2 85.2 1.0 1 U 1	
Barium 107 72.7 82.4 Cadmilum 2 1 U 1 U 1.33 Chromium 19/2000 ° 13.9 J 16.7 J 1.43 J Lead 250 12 6.15 85.2 Mercury 2 1 U 1 U 1 U 1 U Selenium 1 U 1 U 1 U 1 U Silver 1 U 1 U 1 U 1 U Brezen 6.5 1 U 1 U 1 U 1 U Benzene 6.0 1 U	
Cadmium 2 1 U 1 U 1 U 1,33 Chromium 19/2000 ° 13.9 J 16.7 J 14.3 J Lead 250 12 6.15 85.2 Mercury 2 1 U 1 U 1 U 1 U Selenium 1 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U <td></td>	
Chromium 19/2000° 13.9 J 16.7 J 14.3 J Lead 250 12 6.15 85.2 Mercury 2 1 U 2 U 1 U 2 U <	
Lead 250 12 6.15 85.2 Mercury 2 1 U <	
Mercury 2 1 U <td< th=""><td></td></td<>	
Selenium 1 U 1 U 1 U Silver 1 U 1 U 1 U BEX in mg/kg Benzene 0.03 Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
Silver BTEX in mg/kg Benzene 0.03 Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
BTEX in mg/kg Benzene 0.03 Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
Benzene 0.03 Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
Ethylbenzene 6 Toluene 7 Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
Total Xylenes 9 PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
PCBs in mg/kg PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
PCB-aroclor 1016 0.2 U PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
PCB-aroclor 1221 0.2 U PCB-aroclor 1232 0.2 U	
PCB-aroclor 1232 0.2 U	
1 05 til 000 1212	
PCB-aroclor 1248 0.2 U	
PCB-aroclor 1254 0.2 U	
PCB-aroclor 1260 0.2 U	
PCB-aroclor 1262 0.2 U	
PCB-aroclor 1268 0.2 U	
Total PCBs 1 0.2 U	
Volatiles in mg/kg 1,1,1,2-Tetrachloroethane 0.05 U	
1,1,1-Trichloroethane 2 0.05 U	
1,1,2,2-Tetrachloroethane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,1,2-Trichloroethane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,1-Dichloroethane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,1-Dichloroethene 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,1-Dichloropropene 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,2,3-Trichlorobenzene 0.25 U	
1,2,3-Trichloropropane 0.05 U <	
1,2,4-Trimethylbenzene 0.25 U	
1,2-Dibromo-3-chloropropane 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
1,2-Dibromoethane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,2-Dichlorobenzene 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,2-Dichloroethane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,2-Dichloropropane 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
1,3,5-Trimethylbenzene 0.05 U	
1,3-Dichlorobenzene 0.05 U	
1,3-Dichloropropane 0.05 U	
2,2-Dichloropropane 0.05 U	
2-Butanone 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
2-Chlorotoluene 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
2-Hexanone 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
4-Chlorotoluene 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U	
Acetone 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
Benzene 0.03 0.03 U	

Table 2 - Analytical Results for	or Soil B	oring and	Test Pit Sar	nples												Sheet 8 of 10
Sample ID		TP-6-12	TP-7-2.5	- TP-7-7.5	TP-7-10	TP-7-15	TP-8-3.5	TP-8-6	TP-8-15	TP-10-5	TP-10-15	TP-10-18	TP-11-5	TP-11-16.5	TP-12-2.5	TP-12-4
Sampling Date	Method A		12/6/2019	12/6/2019	12/6/2019	12/6/2019	12/6/2019	12/6/2019	12/6/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019	12/9/2019
Sample Depth in feet	Cleanup		0 to 2.5	5 to 7.5	7.5 to 10	10 to 15	0 to 3.5	3.5 to 6	10.5 to 15	0 to 5	10 to 15	15 to 18	0 to 5	15 to 16.5	0 to 2.5	2.5 to 4
Sample Elevation in feet (NAVD 88)	Level ^á	752 to 750		756 to 753.5	753.5 to 751	751 to 746	762 to 758.5	758.5 to 756	751.5 to 747	761 to 756	751 to 746	746 to 743	762 to 757	747 to 745.5		
Sample Elevation in feet (TCL)		748 to 746		752 to 749.5	749.5 to 747	747 to 742	758 to 754.5	754.5 to 752	747.5 to 743	757 to 752	747 to 742	742 to 739	758 to 753	743 to 741.5		
Bromobenzene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Bromoform				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Bromomethane				0.5 U		0.05 U		0.5 U	0.5 U	0.05 U					0.05 U	
Carbon tetrachloride				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
CFC-11				0.5 U		0.5 U		0.5 U	0.5 U	0.5 U					0.5 U	
CFC-12				0.5 U		0.5 U		0.5 U	0.5 U	0.5 U					0.5 U	
Chlorobenzene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Chloroethane				0.5 U		0.5 U		0.5 U	0.5 U	0.5 U					0.5 U	
Chloroform				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Chloromethane				0.5 U		0.5 U		0.5 U	0.5 U	0.5 U					0.5 U	
cis-1,2-Dichloroethene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
cis-1,3-Dichloropropene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Dibromochloromethane				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Dibromomethane				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Dichlorobromomethane				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Ethylbenzene	6			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Hexachlorobutadiene				0.25 U		0.25 U		0.25 U	0.25 U	0.25 U					0.25 U	
Hexane				0.25 U		0.25 U		0.25 U	0.25 U	0.25 U					0.25 U	
Isopropylbenzene (Cumene)				0.05 U		0.14		0.05 U	0.05 U	0.05 U					0.05 U	
Methyl isobutyl ketone				0.5 U		0.5 U		0.5 U	0.5 U	0.5 U					0.5 U	
Methyl t-butyl ether	0.1			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Methylene chloride	0.02			0.5 U		0.5 U		0.5 U	0.54 lc	0.96 lc					0.71 lc	
Naphthalene	5			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
n-Propylbenzene				0.05 U		0.27		0.05 U	0.05 U	0.05 U					0.05 U	
p-Isopropyltoluene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
sec-Butylbenzene				0.05 U		0.15		0.05 U	0.05 U	0.05 U					0.05 U	
Styrene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
tert-Butylbenzene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Tetrachloroethene	0.05			0.025 U		0.025 U		0.025 U	0.025 U	0.025 U					0.025 U	
Toluene	7			0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
trans-1,2-Dichloroethene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
trans-1,3-Dichloropropene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Trichloroethene	0.03			0.02 U		0.02 U		0.02 U	0.02 U	0.02 U					0.02 U	
Vinyl chloride				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
m, p-Xylene				0.1 U		0.1 U		0.1 U	0.1 U	0.1 U					0.1 U	
o-Xylene				0.05 U		0.05 U		0.05 U	0.05 U	0.05 U					0.05 U	
Total Xylenes	9			0.1 U		0.1 U		0.1 U	0.1 U	0.1 U					0.1 U	
PAHs in mg/kg																
Acenaphthene				1.6		0.01 U										
Acenaphthylene				0.5 U		0.01 U										
Anthracene				0.5 U		0.01 U										

10101717101100	•	0.1 0	0.10
PAHs in mg/kg			
Acenaphthene		1.6	0.01 U
Acenaphthylene		0.5 U	0.01 U
Anthracene		0.5 U	0.01 U
Benz[a]anthracene		0.5 U	0.01 U
Benzo(a)pyrene	0.1	0.5 U	0.01 U
Benzo(b)fluoranthene		0.5 U	0.01 U
Benzo(ghi)perylene		0.5 U	0.01 U
Benzo(k)fluoranthene		0.5 U	0.01 U
Chrysene		0.5 U	0.01 U
Dibenzo(a,h)anthracene		0.5 U	0.01 U
Fluoranthene		0.5 U	0.01 U
Fluorene		4.4	0.013
Indeno(1,2,3-cd)pyrene		0.5 U	0.01 U
Naphthalene	5	0.5 U	0.01 U
Phenanthrene		5.3	0.041
Pyrene		0.5 U	0.01 U
Total cPAHs TEQ	0.1	NC	NC

Table 2 - Analytical Results	for Soil B	oring and 1	Γest Pit Sar	nples			
Sample ID Sampling Date Sample Depth in feet	MTCA Method A Cleanup	TP-13-2.5 11/26/2019 0 to 2.5	TP-14-10 11/26/2019 5 to 10	TP-15-4 11/26/2019 0 to 4	TP-15-6 11/26/2019 4 to 6	TP-15-8 11/26/2019 6 to 8	TP-15-14 11/26/2019 11 to 14
Sample Elevation in feet (NAVD 88) Sample Elevation in feet (TCL)	Level ^a	737 to 734.5 733 to 730.5	756 to 751 752 to 747	760 to 756 756 to 752	756 to 754 752 to 750	754 to 752 750 to 748	749 to 746 745 to 742
TPH in mg/kg		700 10 700.0	702 10 7 11	700 10 702	702 10 700	700 10 7 10	7 10 10 7 12
Diesel Range Organics Lube Oil	2000 2000	50 U 250 U	50 U 250 U	210 2500	50 U 250 U	50 U 250 U	50 U 250 U
Gasoline Range Organics Metals in mg/kg	30/100 ^b	5 U	5 U	5 U	5 U	5 U	5 U
Arsenic	20	2.67		2.57			
Barium Cadmium	2	68.3 1 U		84.6 1 U			
Chromium	19/2000 °	16.4 J		13.6 J			
Lead	250	2.94		51			
Mercury	2	1 U		1 U			
Selenium		1 U		1 U			
Silver		1 U		1 U			
BTEX in mg/kg Benzene	0.03			0.02 U	0.02 U		0.02 U
Ethylbenzene	6			0.02 U	0.02 U		0.02 U
Toluene	7			0.02 U	0.02 U		0.02 U
Total Xylenes	9			0.06 U	0.06 U		0.06 U
PCBs in mg/kg				0.00.11		0.00.11	
PCB-aroclor 1016 PCB-aroclor 1221				0.02 U 0.02 U		0.02 U 0.02 U	
PCB-aroclor 1221				0.02 U		0.02 U	
PCB-aroclor 1242				0.02 U		0.02 U	
PCB-aroclor 1248				0.02 U		0.02 U	
PCB-aroclor 1254				0.049		0.02 U	
PCB-aroclor 1260				0.02 U		0.02 U	
PCB-aroclor 1262 PCB-aroclor 1268				0.02 U 0.02 U		0.02 U 0.02 U	
Total PCBs	1			0.049		0.02 U	
Volatiles in mg/kg	-						
1,1,1,2-Tetrachloroethane		0.05 U	0.05 U			0.05 U	
1,1,1-Trichloroethane	2	0.05 U	0.05 U			0.05 U	
1,1,2,2-Tetrachloroethane		0.05 U	0.05 U			0.05 U 0.05 U	
1,1,2-Trichloroethane 1,1-Dichloroethane		0.05 U 0.05 U	0.05 U 0.05 U			0.05 U	
1,1-Dichloroethene		0.05 U	0.05 U			0.05 U	
1,1-Dichloropropene		0.05 U	0.05 U			0.05 U	
1,2,3-Trichlorobenzene		0.25 U	0.25 U			0.25 U	
1,2,3-Trichloropropane		0.05 U	0.05 U			0.05 U	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		0.25 U 0.05 U	0.25 U 0.05 U			0.25 U 0.05 U	
1,2-Dibromo-3-chloropropane		0.05 U	0.05 U			0.05 U	
1,2-Dibromoethane		0.05 U	0.05 U			0.05 U	
1,2-Dichlorobenzene		0.05 U	0.05 U			0.05 U	
1,2-Dichloroethane		0.05 U	0.05 U			0.05 U	
1,2-Dichloropropane		0.05 U	0.05 U			0.05 U	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene		0.05 U 0.05 U	0.05 U 0.05 U			0.05 U 0.05 U	
1,3-Dichloropenzene 1,3-Dichloropropane		0.05 U	0.05 U			0.05 U	
1,4-Dichlorobenzene		0.05 U	0.05 U			0.05 U	
2,2-Dichloropropane		0.05 U	0.05 U			0.05 U	
2-Butanone		0.5 U	0.5 U			0.5 U	
2-Chlorotoluene		0.05 U	0.05 U			0.05 U	
2-Hexanone 4-Chlorotoluene		0.5 U 0.05 U	0.5 U 0.05 U			0.5 U 0.05 U	
Acetone		0.05 U	0.05 U			0.05 U	
Benzene	0.03	0.03 U	0.03 U			0.03 U	

Table 2 - Analytical Results for Soil Boring and Test Pit Samples

Table 2 - Analytical Results f		_		_	TD 45 6	TD 15 0	
Sample ID Sampling Date	MTCA Method A	TP-13-2.5 11/26/2019	TP-14-10 11/26/2019	TP-15-4 11/26/2019	TP-15-6 11/26/2019	TP-15-8 11/26/2019	
Sample Depth in feet	Cleanup	0 to 2.5	5 to 10	0 to 4	4 to 6	6 to 8	
Sample Elevation in feet (NAVD 88)	Level a	737 to 734.5	756 to 751	760 to 756	756 to 754	754 to 752	
Sample Elevation in feet (TCL)		733 to 730.5	752 to 747	756 to 752	752 to 750	750 to 748	
Bromobenzene		0.05 U	0.05 U			0.05 U	
Bromoform		0.05 U	0.05 U			0.05 U	
Bromomethane		0.5 U	0.5 U			0.5 U	
Carbon tetrachloride		0.05 U	0.05 U			0.05 U	
CFC-11		0.5 U	0.5 U			0.5 U	
CFC-12		0.5 U	0.5 U			0.5 U	
Chlorobenzene		0.05 U	0.05 U			0.05 U	
Chloroethane		0.5 U	0.5 U			0.5 U	
Chloroform Chloromethane		0.05 U 0.5 U	0.05 U 0.5 U			0.05 U 0.5 U	
cis-1,2-Dichloroethene		0.5 U	0.5 U			0.05 U	
cis-1,3-Dichloropropene		0.05 U	0.05 U			0.05 U	
Dibromochloromethane		0.05 U	0.05 U			0.05 U	
Dibromomethane		0.05 U	0.05 U			0.05 U	
Dichlorobromomethane		0.05 U	0.05 U			0.05 U	
Ethylbenzene	6	0.05 U	0.05 U			0.05 U	
Hexachlorobutadiene		0.25 U	0.25 U			0.25 U	
Hexane		0.25 U	0.25 U			0.25 U	
Isopropylbenzene (Cumene)		0.05 U	0.05 U			0.05 U	
Methyl isobutyl ketone	0.4	0.5 U	0.5 U			0.5 U	
Methyl t-butyl ether Methylene chloride	0.1 0.02	0.05 U 0.5 U	0.05 U 0.5 U			0.05 U 0.5 U	
Naphthalene	5	0.05 U	0.05 U			0.05 U	
n-Propylbenzene	Ū	0.05 U	0.05 U			0.05 U	
p-Isopropyltoluene		0.05 U	0.05 U			0.05 U	
sec-Butylbenzene		0.05 U	0.05 U			0.05 U	
Styrene		0.05 U	0.05 U			0.05 U	
tert-Butylbenzene		0.05 U	0.05 U			0.05 U	
Tetrachloroethene	0.05	0.025 U	0.025 U			0.025 U	
Toluene	7	0.05 U	0.05 U			0.05 U	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene		0.05 U 0.05 U	0.05 U 0.05 U			0.05 U 0.05 U	
Trichloroethene	0.03	0.02 U	0.02 U			0.03 U	
Vinyl chloride	0.00	0.05 U	0.05 U			0.05 U	
m, p-Xylene		0.1 U	0.1 U			0.1 U	
o-Xylene		0.05 U	0.05 U			0.05 U	
Total Xylenes	9	0.1 U	0.1 U			0.1 U	
PAHs in mg/kg							
Acenaphthene				0.5 UJ			
Acenaphthylene				0.5 UJ 0.5 UJ			
Anthracene Benz[a]anthracene				0.5 UJ			
Benzo(a)pyrene	0.1			0.5 UJ			
Benzo(b)fluoranthene	0.1			0.5 UJ			
Benzo(ghi)perylene				0.5 UJ			
Benzo(k)fluoranthene				0.5 UJ	l		
Chrysene				0.5 UJ			
Dibenzo(a,h)anthracene				0.5 UJ			
Fluoranthene				0.5 UJ			
Fluorene				0.5 UJ			
Indeno(1,2,3-cd)pyrene Naphthalene	5			0.5 UJ 0.5 UJ			
Phenanthrene	J			0.5 UJ			
Pyrene				0.5 UJ			
Total cPAHs TEQ	0.1			NC			

TP-15-14 11/26/2019

11 to 14

749 to 746 745 to 742

U = Not detected at detection limit indicated.

J = Estimated.

NC = Not calculated.

Ic = Potential interference with laboratory cleaning solution.

a. Method A soil cleanup level for unrestricted land use.

b. 30 mg/kg when benzene is present; 100 when benzene is not detected.

c. 19 mg/kg as Chromium VI/2000 mg/kg as Chromium III.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

Table 3 - Analytical Results	for Creek	Bed and E	sank Sampi	es		Sneet
Sample ID Sampling Date	MTCA Method A	Creekbed 1 12/13/2019	LB-1 12/16/2019	LB-2 12/16/2019	LB-3 12/16/2019	UB-1 12/18/2019
Sample Depth in feet	Cleanup	0 to 0.3	0 to 0.3	0 to 0.3	0 to 0.3	0 to 0.3
Sample Elevation in feet (NAVD 88)	Level ^a	721 to 720.7	723 to 722.7	723 to 722.7	723 to 722.7	750 to 749.7
Sample Elevation in feet (TCL)		717 to 716.7	719 to 718.2	719 to 718.2	719 to 718.2	746 to 745.7
TPH in mg/kg						
Diesel Range Organics	2000	6100	50 U	3800	50 U	50 U
Lube Oil	2000	7600	250 U	3700	250 U	250 U
Gasoline Range Organics	30/100 ^b	25 U	5 U	73	5 U	5 U
Metals in mg/kg						
Arsenic	20					
Barium Cadmium	2					
Chromium	19/2000 °					
Lead	250					
Mercury	2					
Selenium						
Silver PCBs in mg/kg						
PCB-aroclor 1016		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1221		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1232		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1242		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1248 PCB-aroclor 1254		0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U
PCB-aroclor 1260		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1262		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PCB-aroclor 1268		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Total PCBs	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Volatiles in mg/kg 1,1,1,2-Tetrachloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,1-Trichloroethane	2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,2,2-Tetrachloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1,2-Trichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethene 1,1-Dichloropropene		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,2,3-Trichlorobenzene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2,3-Trichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,4-Trichlorobenzene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U
1,2-Dibromoethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichlorobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	0.05 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	0.05 U 0.05 U
1,3-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,4-Dichlorobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2,2-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2-Butanone 2-Chlorotoluene		0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U	0.5 U 0.05 U
2-Hexanone		0.05 U	0.5 U	0.05 U	0.03 U	0.5 U
4-Chlorotoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Acetone		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Bromobenzene Bromoform		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
Bromomethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Carbon tetrachloride		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
CFC-11		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-12		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene Chloroethane		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U
Ginoroctiano		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0

Table 3 - Analytical Results for Creek Bed and Bank Samples

Table 5 - Allalytical Results			-		1.0.0	
Sample ID	MTCA	Creekbed 1	LB-1	LB-2	LB-3	UB-1
Sampling Date		12/13/2019	12/16/2019	12/16/2019	12/16/2019	12/18/2019
Sample Depth in feet	Cleanup	0 to 0.3	0 to 0.3	0 to 0.3	0 to 0.3	0 to 0.3
Sample Elevation in feet (NAVD 88)	Level ^a	721 to 720.7	723 to 722.7	723 to 722.7	723 to 722.7	750 to 749.7
Sample Elevation in feet (TCL)		717 to 716.7	719 to 718.2	719 to 718.2	719 to 718.2	746 to 745.7
Chloroform		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
cis-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromochloromethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromomethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dichlorobromomethane	0	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Ethylbenzene	6	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Hexachlorobutadiene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Hexane		0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U
Isopropylbenzene (Cumene)		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Methyl isobutyl ketone Methyl t-butyl ether	0.1	0.05 U	0.05 U	0.05 U	0.05 U	0.5 U
Methylene chloride	0.1	0.5 U	0.5 U	0.5 U	0.5 U	0.05 U
Naphthalene	5	0.069	0.05 U	0.05 U	0.05 U	0.05 U
n-Propylbenzene	3	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
p-Isopropyltoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
sec-Butylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Styrene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
tert-Butylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Tetrachloroethene	0.05	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
Toluene	7	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-1,2-Dichloroethene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Trichloroethene	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Vinyl chloride		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
m, p-Xylene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
o-Xylene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Total Xylenes	9	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
PAHs in mg/kg						
Acenaphthene		3.4	0.01 U	0.48	0.05 U	0.05 U
Acenaphthylene		1 U	0.01 U	0.05 U	0.05 U	0.05 U
Anthracene		5.2	0.01 U	0.78	0.05 U	0.05 U
Benz[a]anthracene	0.4	5.9	0.01 U	0.51	0.05 U	0.05 U
Benzo(a)pyrene	0.1	3	0.01 U	0.21	0.05 U	0.05 U
Benzo(b)fluoranthene		1.1	0.01 U	0.11	0.05 U	0.05 U
Benzo(ghi)perylene		1 U 1 U	0.01 U	0.05 U	0.05 U	0.05 U 0.05 U
Benzo(k)fluoranthene		9.5	0.01 U 0.01 U	0.05 U 0.83	0.05 U 0.05 U	0.05 U 0.05 U
Chrysene Dibenzo(a,h)anthracene		9.5 1 U	0.01 U	0.05 U	0.05 U	0.05 U
Fluoranthene		2.2	0.01 U	0.03 0	0.05 U	0.05 U
Fluorene		5.7	0.01 U	0.23 0.79	0.05 U	0.05 U
Indeno(1,2,3-cd)pyrene		5.7 1 U	0.01 U	0.79 0.05 U	0.05 U	0.05 U
Naphthalene	5	1 U	0.01 U	0.05 U	0.05 U	0.05 U
Phenanthrene	5	19	0.01 U	2.8	0.05 U	0.05 U
Pyrene		19	0.01 U	1.9	0.05 U	0.05 U
Total cPAHs TEQ	0.1	3.795	NC	0.2803	NC	NC
	J. 1	51100		0.2000		

Table 3 - Analytical Results for Creek Bed and Bank Samples

Table 3 - Analytical Results	for Creek	Red and Ba	ank Samples	•		Sheet 3 of
Sample ID Sampling Date		UB-2 12/18/2019	UB-3 12/18/2019	Westbank 1 12/17/2019	Westbank 2 12/17/2019	Westbank 3 12/17/2019
Sample Depth in feet	Cleanup	0 to 0.3	0 to 0.3	0 to 2.3	0 to 2	0 to 1.5
Sample Elevation in feet (NAVD 88) Sample Elevation in feet (TCL)	Level ^a	750 to 749.7 746 to 745.7	750 to 749.7 746 to 745.7	725 to 722.7 721 to 718.7	724 to 722 720 to 718	724 to 722.5 720 to 718.5
TPH in mg/kg						
Diesel Range Organics	2000	50 U	90	50 U	50 U	50 U
Lube Oil	2000 30/100 ^b	250 U	250 U	250 U	250 U	250 U
Gasoline Range Organics	30/100	12	5 U	5 U	5 U	5 U
Metals in mg/kg Arsenic	20			1.29	2.63	1.51
Barium	20			28.3	80	58.7
Cadmium	2			1 U	1 U	1 U
Chromium	19/2000 ^c			7.85 J	17.1 J	11.7 J
Lead	250			1.93	3.83	2.41
Mercury	2			1 U	1 U	1 U
Selenium				1 U	1 U	1 U
Silver PCBs in mg/kg				1 U	1 U	1 U
PCB-aroclor 1016		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
PCB-aroclor 1221		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
PCB-aroclor 1232		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
PCB-aroclor 1242		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
PCB-aroclor 1248 PCB-aroclor 1254		0.02 U 0.02 U	0.02 U	0.02 U 0.02 U	0.2 U	0.2 U 0.2 U
PCB-aroclor 1260		0.02 U	0.02 U 0.02 U	0.02 U	0.2 U 0.2 U	0.2 U 0.2 U
PCB-aroclor 1262		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
PCB-aroclor 1268		0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
Total PCBs	1	0.02 U	0.02 U	0.02 U	0.2 U	0.2 U
Volatiles in mg/kg		0.05.11	0.05.11	0.05.11	0.05.11	0.05.11
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	2	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U
1,1,2,2-Tetrachloroethane	2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U 0.05 U
1,1,2-Trichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U	0.25 U 0.05 U
1,2,4-Trichlorobenzene		0.05 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2,4-Trimethylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dibromo-3-chloropropane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichlorobenzene 1,2-Dichloroethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichloropropane		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
1,3,5-Trimethylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3-Dichlorobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,3-Dichloropropane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,4-Dichlorobenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2,2-Dichloropropane 2-Butanone		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U
2-Chlorotoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
2-Hexanone		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Chlorotoluene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Acetone		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Bromobenzene Bromoform		0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U
Bromomethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
CFC-11		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CFC-12		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene Chloroethane		0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U	0.05 U 0.5 U
S. IIOI OCTI IAI IC		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0

Table 3 - Analytical Results for Creek Bed and Bank Samples

Sample ID Sampling Date	MTCA Method A	UB-2 12/18/2019	UB-3 12/18/2019	Westbank 1 12/17/2019	Westbank 2 12/17/2019	Westbank 3 12/17/2019
Sample Depth in feet	Cleanup	0 to 0.3	0 to 0.3	0 to 2.3	0 to 2	0 to 1.5
Sample Elevation in feet (NAVD 88)	Level ^a	750 to 749.7	750 to 749.7	725 to 722.7	724 to 722	724 to 722.5
Sample Elevation in feet (TCL)		746 to 745.7	746 to 745.7	721 to 718.7	720 to 718	720 to 718.5
Chloroform		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
cis-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromochloromethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dibromomethane		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dichlorobromomethane	•	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Ethylbenzene	6	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Hexachlorobutadiene		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Hexane		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Isopropylbenzene (Cumene)		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Methyl isobutyl ketone	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene ebleride	0.1 0.02	0.05 U	0.05 U	0.05 U	0.05 U 0.5 U	0.05 U
Methylene chloride	0.02 5	0.5 U	0.5 U	0.5 U		0.5 U
Naphthalene	Э	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
n-Propylbenzene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
p-Isopropyltoluene		0.05 U 0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
sec-Butylbenzene			0.05 U	0.05 U	0.05 U	0.05 U
Styrene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
tert-Butylbenzene Tetrachloroethene	0.05	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U 0.025 U	0.05 U
Toluene	7	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U 0.05 U
trans-1,2-Dichloroethene	,	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-1,3-Dichloropropene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Trichloroethene	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
Vinyl chloride	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
m, p-Xylene		0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
o-Xylene		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Total Xylenes	9	0.03 U	0.03 U	0.03 U	0.00 U	0.00 U
PAHs in mg/kg	Ü	0.1 0	0.1 0	0.1 0	0.1 0	0.1 0
Acenaphthene		0.01 U	0.051	0.01 U	0.01 U	0.01 U
Acenaphthylene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Anthracene		0.012	0.067	0.01 U	0.01 U	0.01 U
Benz[a]anthracene		0.01 U	0.065	0.01 U	0.01 U	0.01 U
Benzo(a)pyrene	0.1	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Benzo(ghi)perylene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Chrysene		0.016	0.077	0.01 U	0.01 U	0.01 U
Dibenzo(a,h)anthracene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluorene		0.015	0.093	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene		0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Naphthalene	5	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Phenanthrene		0.049	0.28	0.01 U	0.01 U	0.01 U
Pyrene		0.027	0.2	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ	0.1	0.00016	0.00727	NC	NC	NC

U = Not detected at detection limit indicated.

Detected concentrations are bolded.

Concentrations that exceed cleanup level are shaded.

J = Estimated.

a. Method A soil cleanup level for unrestricted land use.

<sup>b. 30 mg/kg when benzene is present; 100 when benzene is not detected.
c. 19 mg/kg as Chromium VI/2000 mg/kg as Chromium III.</sup>

Table 4 - Analytical Res	suits for t	orab Ground	water Sam	pies	
Sample ID Sampling Date	MTCA Method A	B-4-W 12/11/2019	B-6-W 12/12/2019	B-7-W 12/12/2019	B-9-W 12/12/2019
Depth to Water in feet		38	40.65	37.2	47.1
Field Turbidity in NTU		1270	2103	1182	580
Total Susp. Solids in mg/L		19000			
TPH in µg/L	500	4-6	50.11	50.11	70.11
Diesel Range Organics	500 800/1000 ^a	150	50 U	50 U	70 U
Lube Oil Gasoline Range Organics	500	350 U 100 U	250 U 100 U	250 U 100 U	350 U 100 U
Total Metals in µg/L	300	100 0	100 0	100 0	100 0
Arsenic	5	37	11.6		
Barium		2420 J	242		
Cadmium	5	6.22	1 U		
Chromium	50	334 J	40.8 J		
Lead	15 2	128 J 1 UJ	8.69 1 U		
Mercury Selenium	2	1 U	1 U		
Silver		1 U	1 U		
PCBs in µg/L		. 0	. 0		
PCB-aroclor 1016		0.1 U			
PCB-aroclor 1221		0.1 U			
PCB-aroclor 1232		0.1 U			
PCB-aroclor 1242		0.1 U			
PCB-aroclor 1248		0.1 U			
PCB-aroclor 1254		0.1 U			
PCB-arcelor 1260		0.1 U			
PCB-aroclor 1262 PCB-aroclor 1268		0.1 U 0.1 U			
Total PCBs		0.1 U			
Volatiles in µg/L		0.1 0			
1,1,1,2-Tetrachloroethane		1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	200	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane		1 U	1 U	1 U	1 U
1,1,2-Trichloroethane		1 U	1 U	1 U	1 U
1,1-Dichloroethane		1 U	1 U	1 U	1 U
1,1-Dichloroethene		1 U	1 U	1 U	1 U
1,1-Dichloropropene		1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2,4-Trichlorobenzene		1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene		1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane		10 U	10 U	10 U	10 U
1,2-Dibromoethane	0.01	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene		1 U	1 U	1 U	1 U
1,2-Dichloroethane	5	1 U	1 U	1 U	1 U
1,2-Dichloropropane		1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene		1 U 1 U	1 U	1 U	1 U
1,3-Dichlorobenzene 1,3-Dichloropropane		1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,4-Dichlorobenzene		1 U	1 U	1 U	1 U
2,2-Dichloropropane		1 U	1 U	1 U	1 U
2-Butanone		10 U	10 U	10 U	10 U
2-Chlorotoluene		1 U	1 U	1 U	1 U
2-Hexanone		10 U	10 U	10 U	10 U
4-Chlorotoluene		1 U	1 U	1 U	1 U
Acetone	-	50 U	50 U	50 U	50 U
Benzene	5	0.35 U	0.35 U	0.35 U	0.35 U
Bromobenzene Bromoform		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Diomolom		1 0	1 0	1 0	1 0

Table 4 - Analytical Results for Grab Groundwater Samples

Canada ID	MITOA	D 4 W	D.C.W	P.7.W	D 0 14/
Sample ID	MTCA	B-4-W	B-6-W	B-7-W	B-9-W
Sampling Date	Method A	12/11/2019	12/12/2019	12/12/2019	12/12/2019
Depth to Water in feet		38	40.65	37.2	47.1
Bromomethane		1 U	1 U	1 U	1 U
Carbon tetrachloride		1 U	1 U	1 U	1 U
CFC-11		1 U	1 U	1 U	1 U
CFC-12		1 U	1 U	1 U	1 U
Chlorobenzene		1 U	1 U	1 U	1 U
Chloroethane		1 U	1 U	1 U	1 U
Chloroform		1 U	1 U	1 U	1 U
Chloromethane		10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene		1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene		1 U	1 U	1 U	1 U
Dibromochloromethane		1 U	1 U	1 U	1 U
Dibromomethane		1 U	1 U	1 U	1 U
Dichlorobromomethane		1 U	1 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	1 U	1 U
Hexachlorobutadiene		1 U	1 U	1 U	1 U
Hexane		1 U	1 U	1 U	1 U
Isopropylbenzene (Cumene)		1 U	1 U	1 U	1 U
m, p-Xylene		2 U	2 U	2 U	2 U
Methyl isobutyl ketone		10 U	10 U	10 U	10 U
Methyl t-butyl ether	20	1 U	1 U	1 U	1 U
Methylene chloride	5	5 U	5 U	5 U	5 U
Naphthalene		1 U	1 U	1 U	1 U
n-Propylbenzene		1 U	1 U	1 U	1 U
o-Xylene		1 U	1 U	1 U	1 U
p-Isopropyltoluene		1 U	1 U	1 U	1 U
sec-Butylbenzene		1 U	1 U	1 U	1 U
Styrene		1 U	1 U	1 U	1 U
tert-Butylbenzene		1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U
Toluene	1000	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene		1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene		1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U
Vinyl chloride	0.2	0.2 U	0.2 U	0.2 U	0.2 U
PAHs in μg/L					
Acenaphthene		0.04 U	0.04 U	0.04 U	0.04 U
Acenaphthylene		0.04 U	0.04 U	0.04 U	0.04 U
Anthracene		0.04 U	0.04 U	0.04 U	0.04 U
Benz[a]anthracene		0.04 U	0.04 U	0.04 U	0.04 U
Benzo(a)pyrene	0.1	0.04 U	0.04 U	0.04 U	0.04 U
Benzo(b)fluoranthene		0.04 U	0.04 U	0.04 U	0.04 U
Benzo(ghi)perylene		0.04 U	0.04 U	0.04 U	0.04 U
Benzo(k)fluoranthene		0.04 U	0.04 U	0.04 U	0.04 U
Chrysene		0.04 U	0.047	0.04 U	0.04 U
Dibenzo(a,h)anthracene		0.04 U	0.04 U	0.04 U	0.04 U
Fluoranthene		0.071	0.18	0.04 U	0.04 U
Fluorene		0.04 U	0.04 U	0.04 U	0.04 U
Indeno(1,2,3-cd)pyrene		0.04 U	0.04 U	0.04 U	0.04 U
Naphthalene	160	0.4 U	0.4 U	0.4 U	0.4 U
Phenanthrene		0.12	0.19	0.04 U	0.072
Pyrene		0.086	0.23	0.04 U	0.043
Total cPAHs TEQ	0.1	NC	0.00047	NC	NC

U = Not detected at detection limit indicated.

Concentrations that exceed cleanup level are shaded.

Detected concentrations are bolded.

a. 800 when benzene present/1000 without benzene.

J = Estimated.

Table 5 - Analytical Results for Surface Water Samples during Excavation Activities

Sample ID Sampling Date Lab ID	Indicator Level	Boom 1 12/9/2019 912148-01	Boom 1 12/10/2019 912164-02	Boom1 12/11/2019 912192-03	Boom1 12/11/2019 RE	Boom1 12/12/2019 912213-03	Boom 1 12/13/2019 912243-01	Boom1 12/14/2019 912264-02	Boom1 12/16/2019 912264-05
Field Turbidity in NTU	25		1.16	22.2		8.05	13.01	3.28	
рН	6.5 to 8.5	7.8	7.9	7.6		7.6	7.4	7.5	
Turbdity in NTU									
Turbidity	25								
Conventionals in mg/L									
Calcium		9.85	10.7	10.7		9.91	7.38	8.54	8.98
Hardness (as CaCO3)		35.1	37.4	38		34.9	26.7	29.6	30.9
Magnesium		2.56	2.59	2.74		2.46	2.02	2	2.06
TPH in μg/L									
Diesel	250	250 U	250 U	250 U		50 U	250 U	250 U	250 U
Lube Oil	250					250 U			
Gasoline	250	100 U	100 U	100 U		100 U	100 U	100 U	100 U
BTEX in µg/L									
Benzene		1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Ethylbenzene		1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
Toluene		1 U	1 U	1 U	0.2 U	1 U	1 U	1 U	1 U
m, p-Xylene					0.4 U				
o-Xylene					0.2 U				
Total Xylenes		3 U	3 U	3 U	0.4 U	3 U	3 U	3 U	3 U
Total BTEX	2	6 U	6 U	6 U	1 U	6 U	6 U	6 U	6 U
Total Metals in µg/L									
Arsenic	360	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
Cadmium	1.5	0.25 U	0.25 U	0.25 U		0.25 U	0.25 U	0.25 U	0.25 U
Chromium	259	1 U	1 U	1 U		1 U	1 U	1 U	1 U
Copper	7.2	2 U	2 U	2 U		2 U	2.8	2 U	2 U
Lead	23.5	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.00094	0.0007 U	0.0017		0.0015	0.0034	0.002 E	0.00085
Nickel	652	0.522	0.5 U	0.683		0.695	0.849	0.5 U	0.51
Zinc	52.7	2.5 U	2.5 U	2.5 U		2.5 U	2.25	2.5 U	2.5 U
Hexavalent Chromium in	μg/L								
Chromium, Hexavalent	15	45 U	45 U	45 U		45 U	45 U		45 U

Table 5 - Analytical Results for Surface Water Samples during Excavation Activities

Sample ID Sampling Date Lab ID	Indicator Level	Boom1 12/17/2019 912295-02	Boom 2 12/10/2019 912164-01	D-1 12/5/2019 912095-14	D-1 12/6/2019 912124-01	D-1 12/7/2019 912133-01	D-1 12/8/2019 912133-02	D-1A 12/7/2019 912133-03	D-1B 12/9/2019 912148-02
Field Turbidity in NTU pH	25 6.5 to 8.5	2.05 7.5	1.39 7.8	0.85 8	7.7	2.17 7.8	1.07 7.8	7.7	7.5
Turbdity in NTU									
Turbidity	25								
Conventionals in mg/L									
Calcium		11.5	10.3	12.6	10.9	9.85	10.3	10.2	9.59
Hardness (as CaCO3)		38.4	36.2	44.3	38.3	34.8	36.2	37	34
Magnesium		2.36	2.54	3.11	2.7	2.47	2.54	2.79	2.45
TPH in µg/L									
Diesel	250	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Lube Oil	250								
Gasoline	250	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U
BTEX in µg/L									
Benzene		1 U	1 U		1 U	1 U	1 U	1 U	1 U
Ethylbenzene		1 U	1 U		1 U	1 U	1 U	1 U	1 U
Toluene		1 U	1 U		1 U	1 U	1 U	1 U	1 U
m, p-Xylene									
o-Xylene									
Total Xylenes		3 U	3 U		3 U	3 U	3 U	3 U	3 U
Total BTEX	2	6 U	6 U		6 U	6 U	6 U	6 U	6 U
Total Metals in µg/L									
Arsenic	360	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cadmium	1.5	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chromium	259	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Copper	7.2	2 U	2 U	2 U	2 U	2 U	2 U	2.82	2 U
Lead	23.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.0007 U	7E-04 U	0.0007 U	0.00096	0.0016	0.0015	0.0014	0.0012
Nickel	652	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.9	0.5 U
Zinc	52.7	2.5 U	2.5 U	2.5 U	60	2.5 U	2.5 U	2.76	2.5 U
Hexavalent Chromium in	μg/L								
Chromium, Hexavalent	15		45 U	45 U		45 U	45 U	45 U	45 U

Table 5 - Analytical Results for Surface Water Samples during Excavation Activities

	7/2019 !95-01
Field Turbidity in NTU 25 4.22 14.4 9.41 13.5 1.91	1.35
pH 6.5 to 8.5 7.8 7.4 7.5 7.3 7.5	7.7
Turbdity in NTU	
Turbidity 25	
Conventionals in mg/L	
Calcium 10.8 10.8 10.1 7.62 8.46 9.06	13.5
Hardness (as CaCO3) 37.8 38.5 35.3 27.1 29.3 31.3	45
Magnesium 2.64 2.8 2.46 1.96 1.98 2.11	2.74
TPH in µg/L	050 11
Diesel 250 250 U 250 U 72 250 U 250 U 250 U	250 U
Lube Oil 250 250 U	400 11
Gasoline 250 100 U	100 U
BTEX in μg/L	4.11
Benzene 1 U 1 U 0.2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U
Ethylbenzene 1 U 1 U 0.2 U 1 U	1 U 1 U
	1 0
m, p-Xylene 0.4 U	
o-Xylene 0.2 U Total Xylenes 3 U 3 U 0.4 U 3 U 3 U 3 U 3 U	3 U
Total Xylenes 3 U <	6 U
Total Metals in µg/L	6 0
Arsenic 360 0.5 U	0.5 U
Cadmium 1.5 0.25 U	0.5 U
Chromium 259 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U
	2 U
Copper 7.2 2 U 2 U 2 U 2.41 2 U 2 U Lead 23.5 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U
	0.5 0
Nickel 652 0.5 U 0.743 0.5 U 0.771 0.5 U 0.5 U	0.5 U
Zinc 52.7 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U	2.5 U
Hexavalent Chromium in µg/L	2.5 0
Chromium, Hexavalent 15 45 U 45 U 45 U 45 U 45 U 45 U	

Table 5 - Analytical Results for Surface Water Samples during Excavation Activities

Sample ID Sampling Date Lab ID	Indicator Level	D1B 12/18/2019 912329-01	D-2 12/5/2019 912095-12	D-2 12/10/2019 912164-04	D-2 12/11/2019 912192-02	D-2 12/11/2019 RE	D-2 12/12/2019 912213-02	D2 12/13/2019 912243-03	D2 12/14/2019 912264-03
Field Turbidity in NTU pH	25 6.5 to 8.5	7.6	3.77 7.7	7.7	147 7.4		16.31 7.6	203 7.2	3.28 7.1
Turbdity in NTU	0.0 10 0.0		• • • • • • • • • • • • • • • • • • • •					- · -	
Turbidity	25								
Conventionals in mg/L									
Calcium		9.75	12.3	11.3	12.7		11.2	9.69	10.9
Hardness (as CaCO3)		34.5	43.4	41.8	48.6		41.8	40.2	42.9
Magnesium		2.46	3.07	3.29	4.11		3.36	3.88	3.82
TPH in µg/L									
Diesel	250	250 U	250 U	250 U	270		150	250 U	1100
Lube Oil	250						250 U		
Gasoline	250	100 U	100 U	100 U	100 U		100 U	100 U	100 U
BTEX in µg/L									
Benzene		1 U		1 U	1 U	0.2 U	1 U	1 U	1 U
Ethylbenzene		1 U		1 U	1 U	0.2 U	1 U	1 U	1 U
Toluene		1 U		1 U	1 U	0.2 U	1 U	1 U	1 U
m, p-Xylene						0.4 U			
o-Xylene						0.2 U			
Total Xylenes		3 U		3 U	3 U	0.4 U	3 U	3 U	3 U
Total BTEX	2	6 U		6 U	6 U	1 U	6 U	6 U	6 U
Total Metals in µg/L									
Arsenic	360	0.5 U	0.5 U	0.5 U	0.722		0.5 U	0.965	0.654
Cadmium	1.5	0.25 U	0.25 U	0.25 U	0.25 U		0.25 U	0.25 U	0.25 U
Chromium	259	1 U	1 U	1.18	3.14		1.69	3.99	2.95
Copper	7.2	4.54	2 U	5.01	13.5		8.16	19	16.2
Lead	23.5	0.541	0.5 U	0.947	1.8		0.726	2.96	1.36
Mercury	2.1	0.0052	0.0007 U	0.0017	0.015		0.0034	0.0038	0.019
Nickel	652	1.3	0.571	1.55	3.3		1.77	3.87	1.92
Zinc	52.7	3.82	2.5 U	12.2	17.9		5.98	29.7	38.4
Hexavalent Chromium in									
Chromium, Hexavalent	15	45 U	45 U	45 U	45 U		45 U	45 U	

Table 5 - Analytical Results for Surface Water Samples during Excavation Activities

Sample ID Sampling Date Lab ID	Indicator Level	D2 12/16/2019 912264-06	D3 12/10/2019 912164-03	U-1 12/5/2019 912095-13	U-2 12/11/2019 912192-04	U-2 12/11/2019 RE
Field Turbidity in NTU	25		2.81	1.05	2.3 7.7	
pH	6.5 to 8.5		7	8	1.1	
Turbdity in NTU	25					
Turbidity	25					
Conventionals in mg/L		44.4	40.0	40.0	40.7	
Calcium		11.4	12.9	12.8	10.7	
Hardness (as CaCO3)		43	45.2	44.6	37.5	
Magnesium		3.54	3.15	3.07	2.63	
TPH in μg/L						
Diesel	250	450	250 U	250 U	250 U	
Lube Oil	250					
Gasoline	250	100 U	100 U	100 U	100 U	
BTEX in µg/L						
Benzene		1 U	1 U		1 U	0.2 U
Ethylbenzene		1 U	1 U		1 U	0.2 U
Toluene		1 U	1 U		1 U	0.2 U
m, p-Xylene						0.4 U
o-Xylene						0.2 U
Total Xylenes		3 U	3 U		3 U	0.4 U
Total BTEX	2	6 U	6 U		6 U	1 U
Total Metals in µg/L						
Arsenic	360	0.5 U	0.599	0.5 U	0.5 U	
Cadmium	1.5	0.25 U	0.25 U	0.25 U	0.25 U	
Chromium	259	1 U	1 U	1 U	1 U	
Copper	7.2	4.22	2 U	2 U	2 U	
Lead	23.5	0.5 U	0.5 U	0.5 U	0.5 U	
Mercury	2.1	0.0052	0.0007 U	0.0007 U	0.0007 U	
Nickel	652	0.5 U	0.608	0.527	0.5 U	
Zinc	52.7	47.7	2.5 U	22	2.5 U	
Hexavalent Chromium in	μg/L					
Chromium, Hexavalent	15	45 U	45 U	45 U	45 U	

U = Not detected at detection limit indicated.

Concentrations that exceed indicator level or outside the indicator level range are shaded.

Detected concentrations are bolded.

RE = Additional analysis by Friedman & Bruya Inc, Seattle WA.

Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 1 of 6

Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (TO	Level	B1 Boom #1 12/19/2019 Creek 709.93	Boom #1 12/20/2019 Creek 710.96	D1B 12/19/2019 Creek 709.93	D1B 12/20/2019 Creek 710.96	D1B 12/23/2019 Creek 723.87	D1B 12/26/2019 Creek 728.44	D1B 12/27/2019 Creek 729.10
pH *	6.5 to 8.5		2.7		5.78	6.07	6.23	5.44
Turbidity in NTU	25		24		51	7	4.3	2.5
TPH in ug/L								
Diesel	250	100 U	50 U	50 U	50 U	50 U	50 U	50 U
Oil	250	500 U	97	50 U	159	50 U	50 U	69.8
Diesel + Oil	250	600 U	147	100 U	209	100 U	100 U	119.8
Gasoline	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Metals in ug/L								
Arsenic	360	0.3 U	1	0.3	0.6	0.3 U	0.5	0.3 U
Cadmium	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	259	2.3	2.7	2	3.6	2.7	0.7	0.5 U
Copper	7.2	0.7	3.4	1	7	0.3 U	0.3 U	0.3 U
Lead	23.5	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.000658	0.0005 U	0.001	0.00848	0.00159	0.00077	0.000618
Nickel	652	0.5 U	1.2	0.5 U	2.2	0.8	0.5 U	0.5 U
Zinc	52.7	0.3	3.3	0.9	14.6	0.3 U	0.3 U	0.3 U
Hexavalent Chromium in mg/L	15		0.01 U		0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L								
Benzene		0.4 UJ		0.4 UJ		0.4 UJ	0.4 U	0.4 U
Ethylbenzene		0.4 UJ		0.4 UJ		0.4 UJ	0.4 U	0.4 U
Toluene		0.4 UJ		0.4 UJ		0.4 UJ	0.4 U	0.4 U
Total Xylenes		0.8 UJ		0.8 UJ		0.8 UJ	0.8 U	0.8 U
Total BTEX	2	2 UJ		2 UJ		2 UJ	2 U	2 U

Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 2 of 6

Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (TO	Indicator Level CL)	D1B 12/30/2019 Creek 730.54	D1B 12/31/2019 Creek 730.56	D1B 1/2/2020 Creek 733.88	D1B 1/3/2020 Creek 734.74	D6 12/26/2019 Creek 728.44	D6 12/27/2019 Creek 729.10	D6-Oil Curtain 12/23/2019 Creek 723.87
pH *	6.5 to 8.5	5.95	6.29	6.2	6.73	6.12	5.92	5.85
Turbidity in NTU	25	2.3	2.5	7.61	5.87	1.2	1.3	9.7
TPH in ug/L								
Diesel	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Oil	250	107	50 U	117	73	59	76	50 U
Diesel + Oil	250	157	100 U	167	123	109	126	100 U
Gasoline	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Metals in ug/L								
Arsenic	360	0.3 U	0.3 U	0.5	0.7	0.3 U	0.3 U	0.3 U
Cadmium	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	259	0.5 U	0.5	0.5	0.5 U	0.5 U	0.5 U	2.4
Copper	7.2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Lead	23.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.000806	0.000871	0.00216	0.00135	0.000788	0.000599	0.0005 U
Nickel	652	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Zinc	52.7	0.3 U	0.3 U	0.9	0.4	0.3 U	0.3 U	0.3 U
Hexavalent Chromium in mg/L	15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L								
Benzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Ethylbenzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Toluene		0.72	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Total Xylenes		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 UJ
Total BTEX	2	2.32	2 U	2 U	2 U	2 U	2 U	2 UJ

Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 3 of 6

Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (To	Indicator Level CL)	D6 12/30/2019 Creek 730.54	D6 12/31/2019 Creek 730.56	D6 1/2/2020 Creek 733.88	D6 1/3/2020 Creek 734.74	D2 1/3/2020 Creek 734.74	D2 1/6/2020 Creek 736.84	D2 1/13/2020 Creek 741.97
pH *	6.5 to 8.5	5.86	5.83	6.3	6.5	6.41	6.04	6.48
Turbidity in NTU	25	1.5	1	8.9	6.56	13	16	5.9
TPH in ug/L								
Diesel	250	50 U	50 U	50 U	50 U	50 U	50 U	120
Oil	250	117	318	258	50 U	129	72	50 U
Diesel + Oil	250	167	368	308	100 U	179	122	170
Gasoline	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Metals in ug/L								
Arsenic	360	0.3 U	0.3 U	0.5	0.3 U	0.3 U	0.3 U	0.6
Cadmium	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	259	0.5 U	0.5 U	0.6	0.5 U	0.5 U	3.4	1.1
Copper	7.2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Lead	23.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.0005 U	0.000596	0.00226	0.00152	0.00222	0.00164	0.0005 U
Nickel	652	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.5 U
Zinc	52.7	0.3 U	0.3 U	1.6	0.3	1.8	4	0.5
Hexavalent Chromium in mg/L	15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L								
Benzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Ethylbenzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Toluene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Total Xylenes		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Total BTEX	2	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 4 of 6

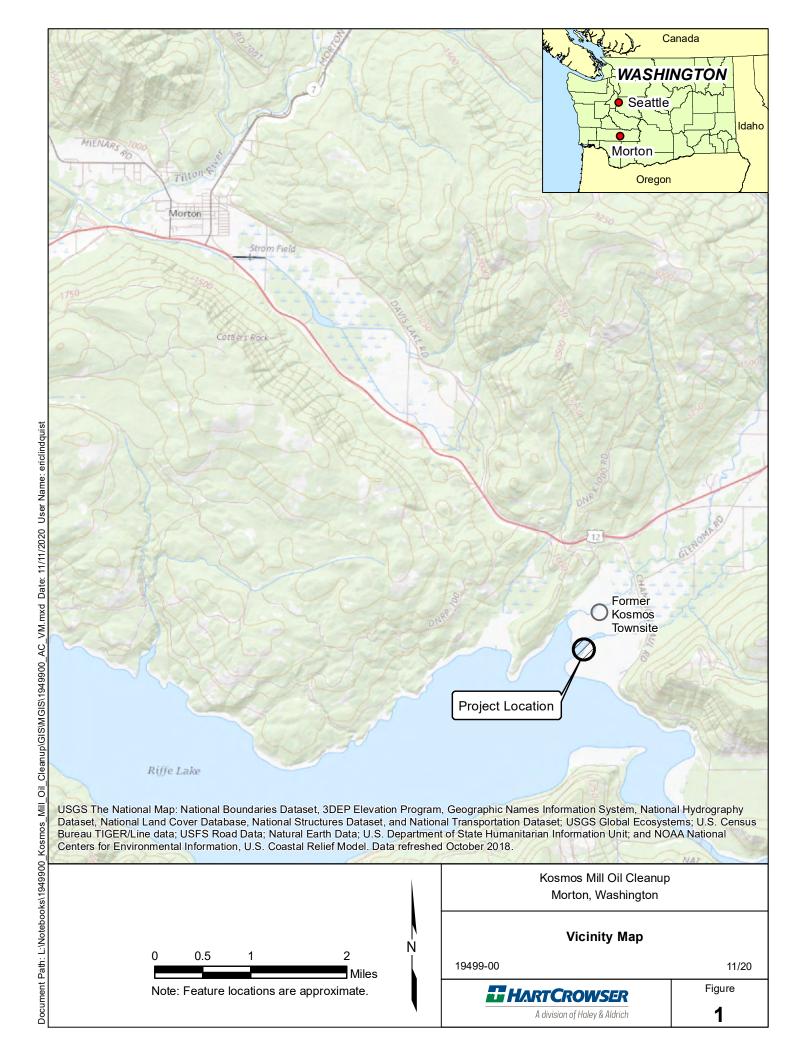
Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (T	Indicator Level	D2 1/21/2020 Creek 734.79	U-3 1/27/2020 Creek 738.45	U-3 1/28/2020 Creek 739.33	U-3 1/29/2020 Creek 740.45	U-3 1/31/2020 Creek 741.36	U-3 2/4/2020 Creek 747.43	Stockpile #1 12/23/2019 Upland Area 723.87
pH *	6.5 to 8.5	6.09	5.99	6.3	5.84	6.15	6.34	5.42
Turbidity in NTU	25	4.1	20	22.5	36.5	17.2	13	31
TPH in ug/L								
Diesel	250	70 U	140	50 U	100 U	100 U	50 U	50 U
Oil	250	50 U	230	50 U	100 U	100 U	210	269
Diesel + Oil	250	120	370	100 U	200 U	200 U	260	319
Gasoline	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Metals in ug/L								
Arsenic	360	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.9
Cadmium	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	259	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.1
Copper	7.2	0.3 U	1.2	1.3	2.6	1.7	13.3	0.3 U
Lead	23.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U
Mercury	2.1	0.00161	0.00502	0.00574	0.00598	0.00599	0.000536	0.00475
Nickel	652	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.7	1
Zinc	52.7	0.3 U	4	0.3 U	1.8	1.6	28.8	5.7
Hexavalent Chromium in mg/L	15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L								
Benzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Ethylbenzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Toluene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Total Xylenes		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 UJ
Total BTEX	2	2 U	2 U	2 U	2 U	2 U	2 U	2 UJ

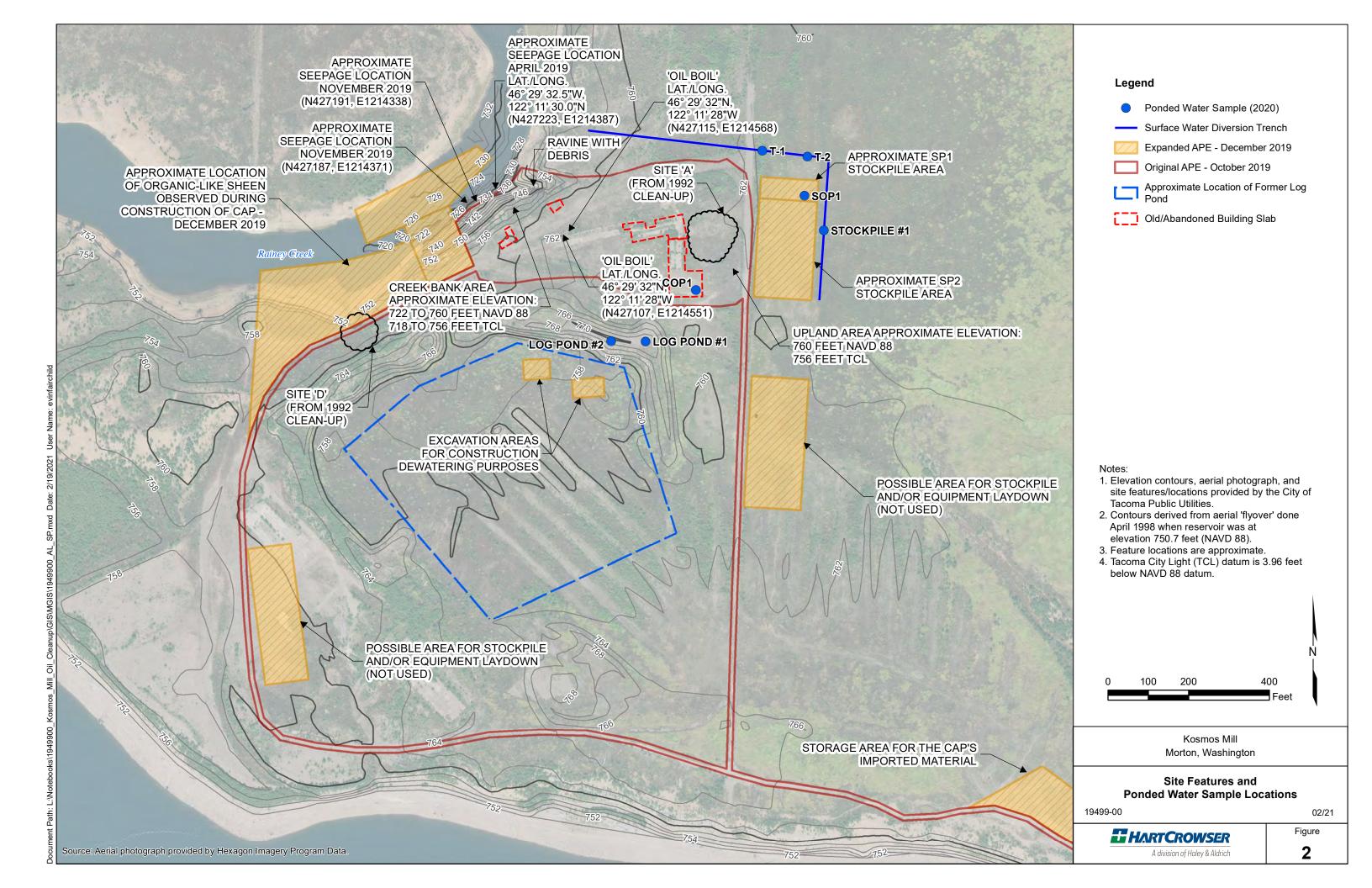
Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 5 of 6

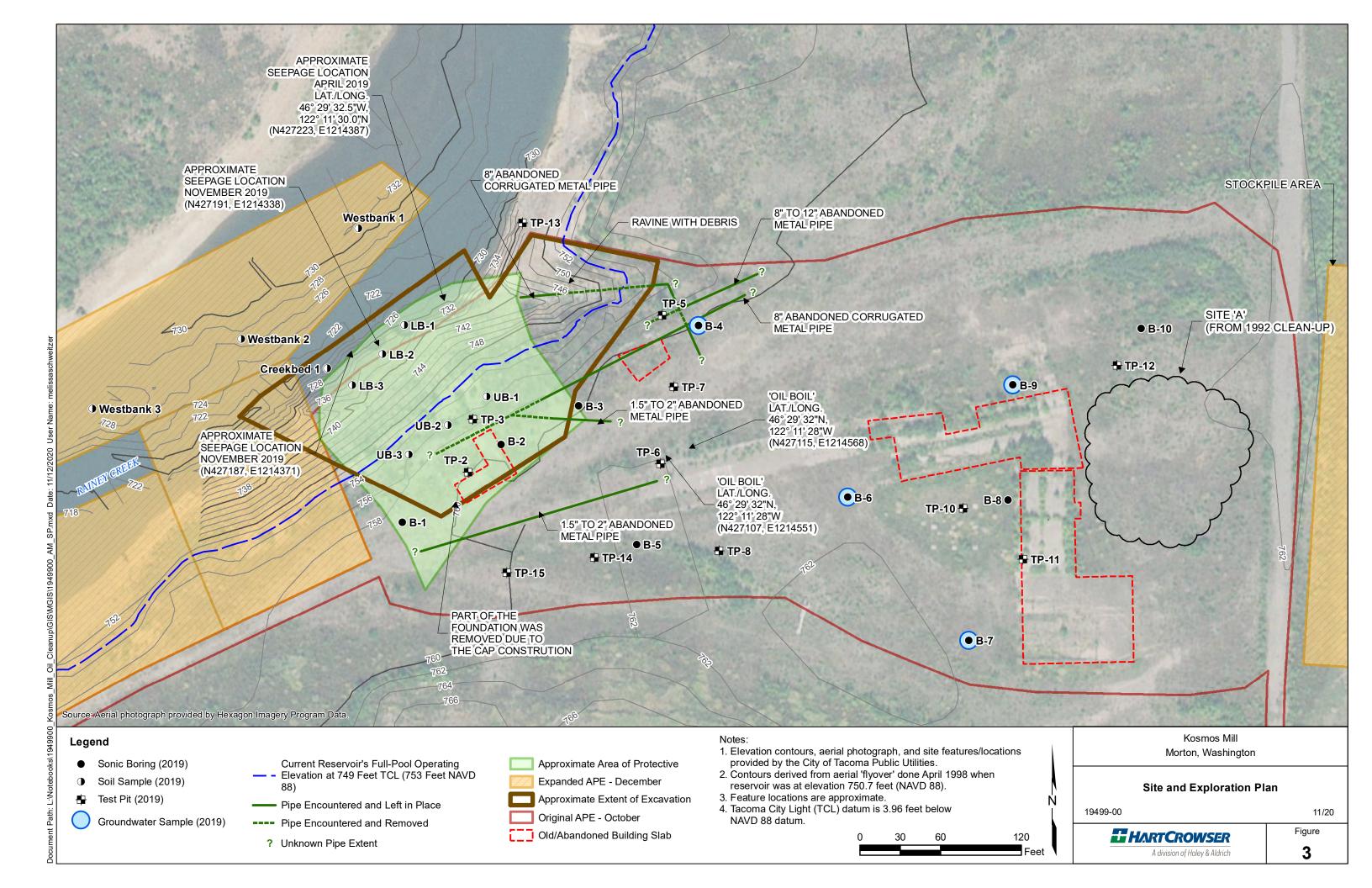
Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (T	Level	Baker Tank #1 1/2/2020 Upland Area 733.88	T-1 1/27/2020 Upland Area 738.45	T-1 1/28/2020 Upland Area 739.33	T-1 1/29/2020 Upland Area 740.45	T-1 1/31/2020 Upland Area 741.36	T-1 2/4/2020 Upland Area 747.43	T-2 2/4/2020 Upland Area 747.43
pH *	6.5 to 8.5	7.08	5.85	6.23	5.91	6.3	6.14	6.18
Turbidity in NTU	25	150	333	44.6	38.4	15.2	8.1	7.8
TPH in ug/L								
Diesel	250	50 U	50 U	50 U	100 U	100 U	50 U	50 U
Oil	250	124	76	83	100 U	100 U	110	100
Diesel + Oil	250	174	126	133	200 U	200 U	160	150
Gasoline	250	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Metals in ug/L								
Arsenic	360	3.3	0.8	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Cadmium	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	259	2.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Copper	7.2	15.7	12.8	2.5	2.6	1.7	1.9	2.1
Lead	23.5	4.2	4.8	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Mercury	2.1	0.0211	0.0005 U	0.00843	0.00825	0.00611	0.00293	0.0005 U
Nickel	652	5	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Zinc	52.7	84.2	16.8	0.3 U	0.3 U	0.3 U	0.8	1.3
Hexavalent Chromium in mg/L	15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L								
Benzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Ethylbenzene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Toluene		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Total Xylenes		0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Total BTEX	2	2 U	2 U	2 U	2 U	2 U	2 U	2 U

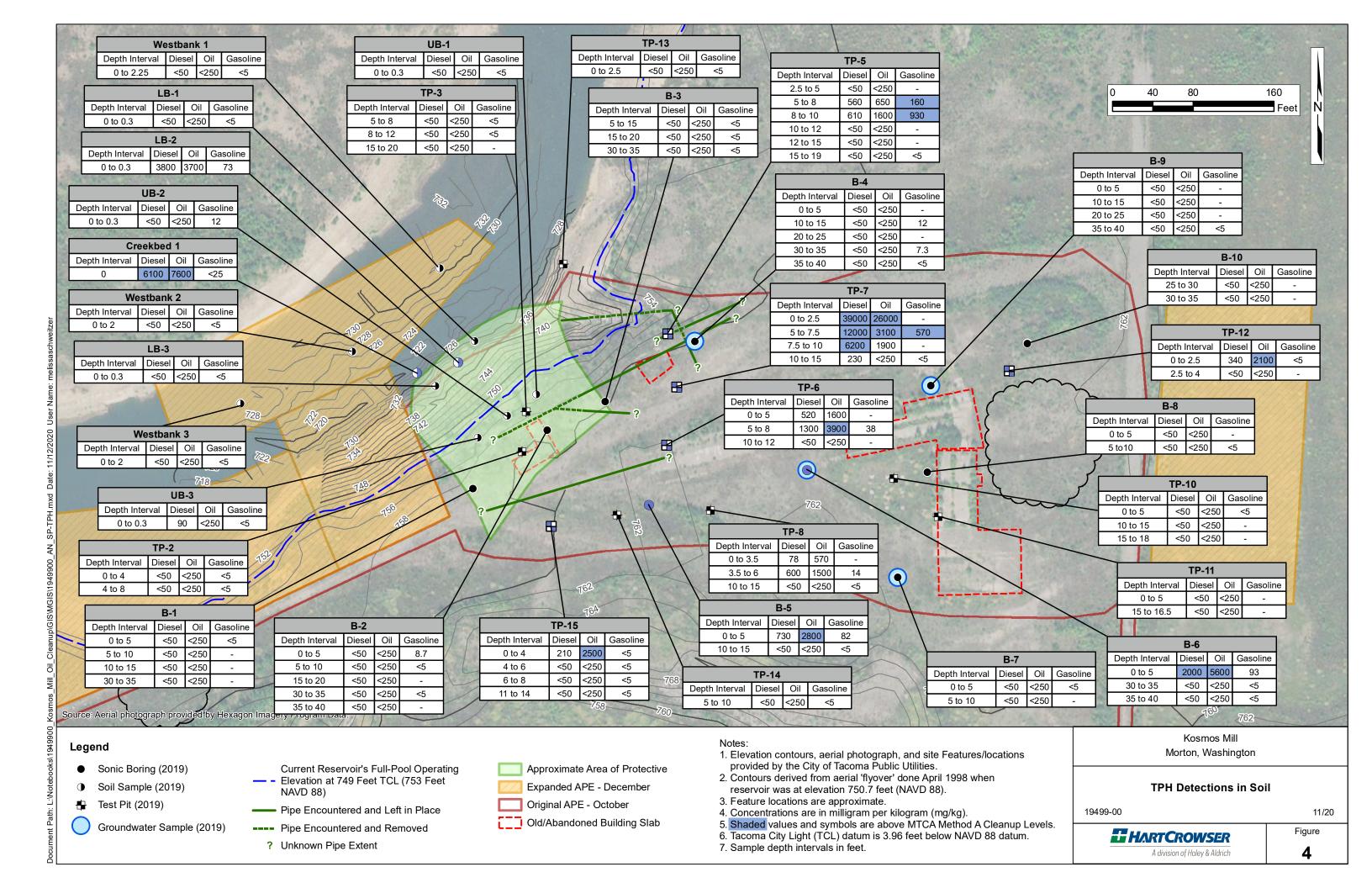
Table 6 – Analytical Results for Surface Water Samples Sampled by Tacoma Power after Excavation Activities Sheet 6 of 6

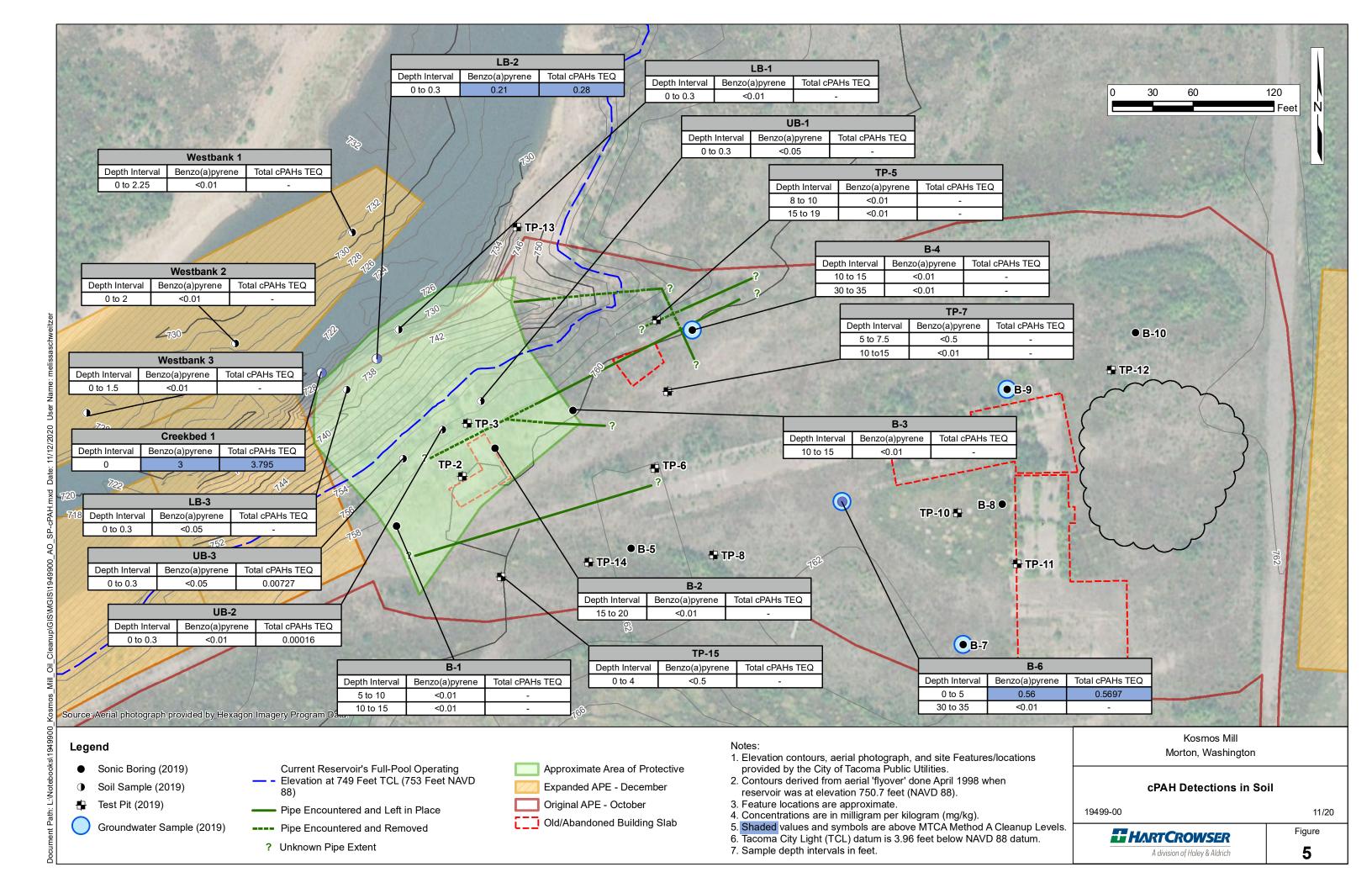
Sample ID Sampling Date Sample Location Riffe Lake Elevation in feet (TC	Level	Log Pond #1 2/8/2020 Log Pond Area 756.86	Log Pond #2 2/8/2020 Log Pond Area 756.86	SOP 1 3/3/2020 Upland Area 733.45	COP 1 3/3/2020 Upland Area 733.45
pH *	6.5 to 8.5	5.95	6.26	3.87	6.78
Turbidity in NTU	25	25	62	55	135
TPH in ug/L					
Diesel	250	50 U	50 U	3320	100 U
Oil	250	95	50 U	1250	500 U
Diesel + Oil	250	145	100 U	4570	600 U
Gasoline	250	50 U	50 U	50 U	50 U
Metals in ug/L					
Arsenic	360	0.3 U	0.8	2.1	0.9
Cadmium	1.5	0.2 U	0.2 U	0.3	0.3
Chromium	259	0.5 U	0.5 U	6.1	3.3
Copper	7.2	6.1	6.2	7.3	25.6
Lead	23.5	0.5 U	0.9	0.5	8.2
Mercury	2.1	0.009	0.0005 U	0.0005 U	0.0005 U
Nickel	652	0.8	1.7	5.1	4.7
Zinc	52.7	16.3	21.6	70.6	72.5
Hexavalent Chromium in mg/L	15	0.01 U	0.01 U	0.01 U	0.01 U
BTEX in ug/L					
Benzene		0.4 U	0.4 U	0.4 U	0.4 U
Ethylbenzene		0.4 U	0.4 U	0.4 U	0.4 U
Toluene		0.4 U	0.4 U	0.4 U	0.4 U
Total Xylenes		0.8 U	0.8 U	0.8 U	0.8 U
Total BTEX	2	2 U	2 U	2 U	2 U

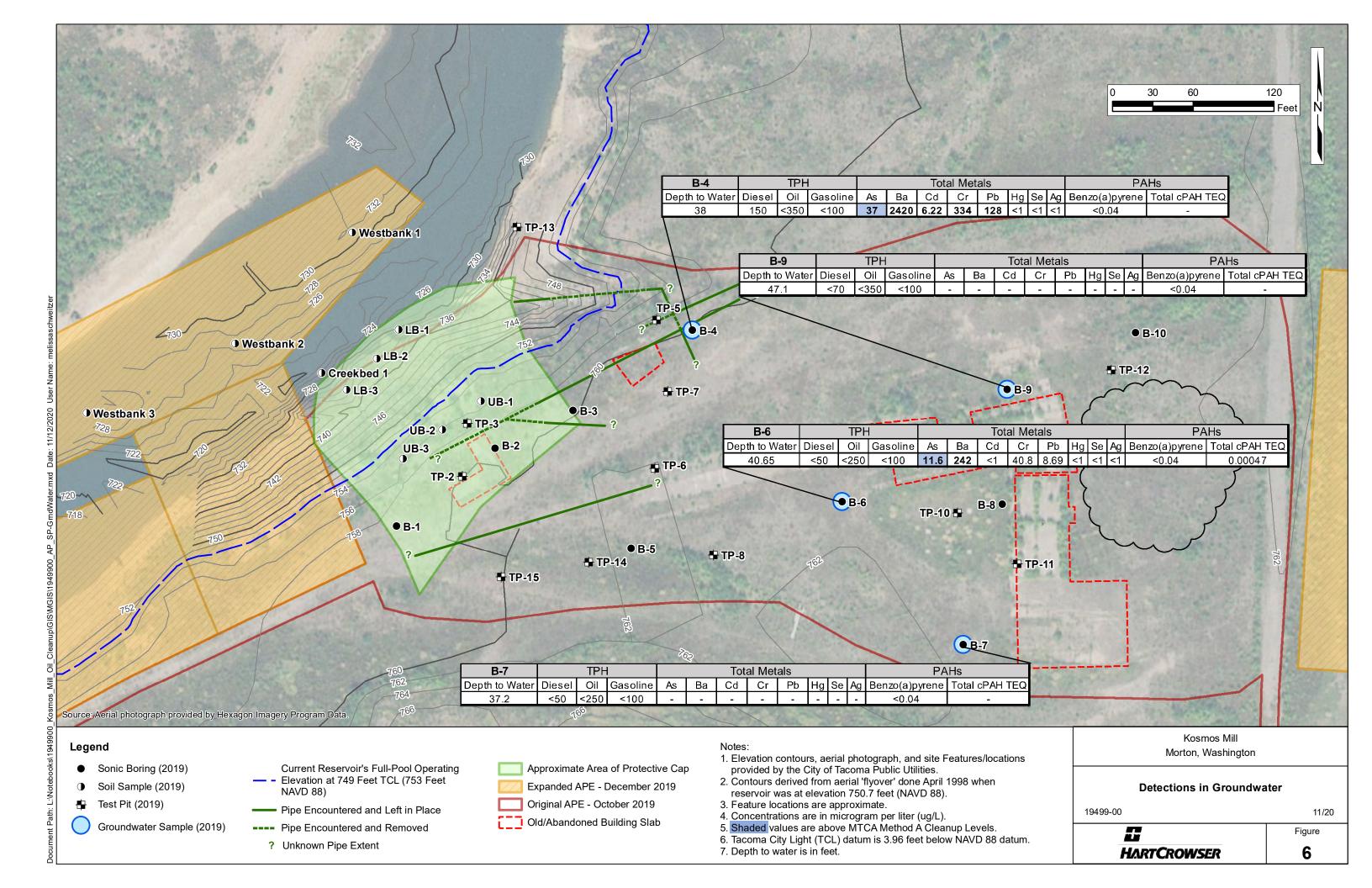

^{* =} The recommended holding time for pH analysis is only 15 minutes. All samples were received and analyzed past holding time.

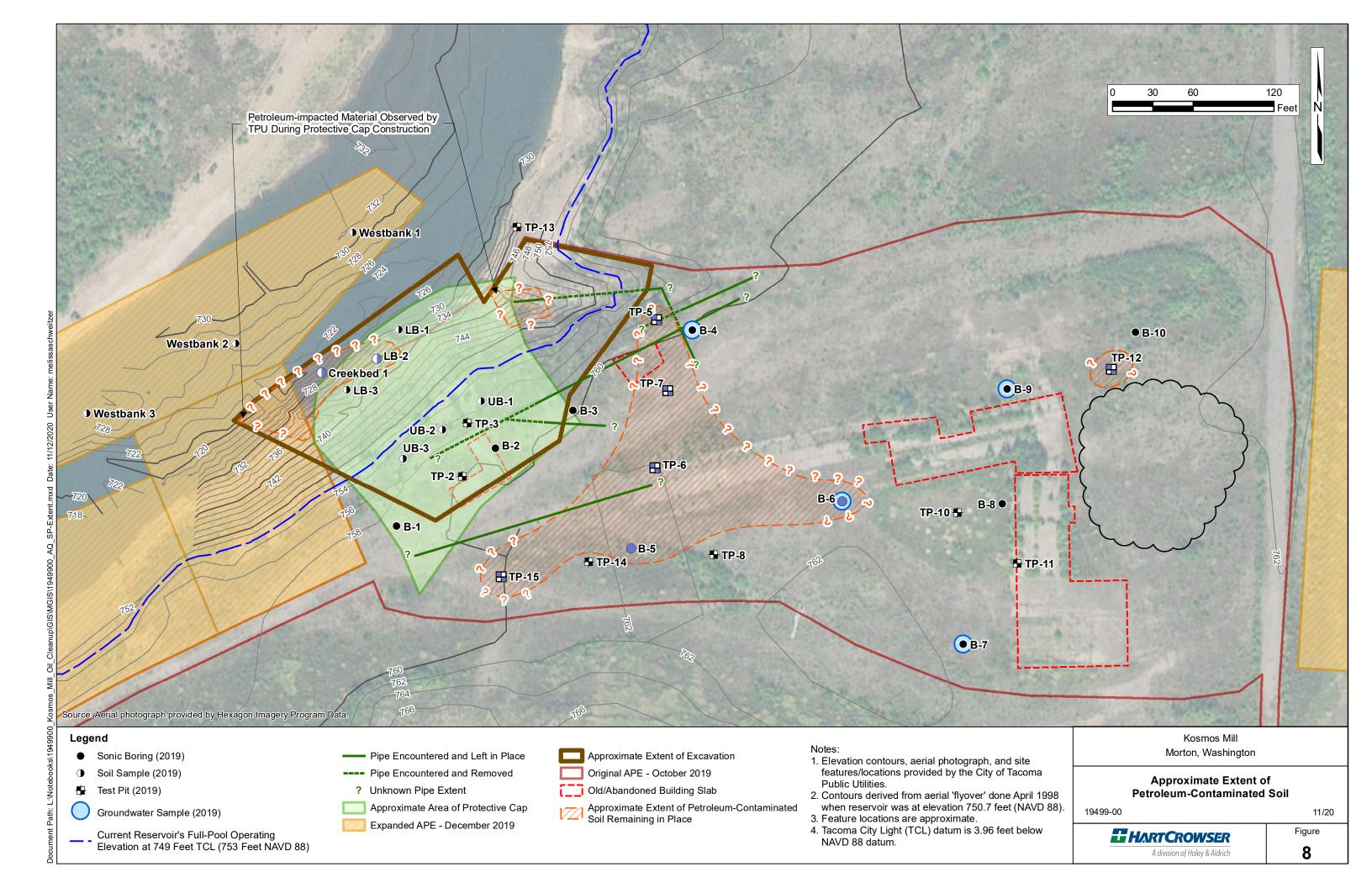

Concentrations that exceed indicator level or outside the indicator level range are shaded.


Detected concentrations are bolded.


U = Not detected at detection limit indicated.


J = Estimated value.





APPENDIX A Analytical Laboratory Reports from Tacoma Public Utilities, Tacoma Power

DEPARTMENT OF ECOLOGY

Manchester Environmental Laboratory
7411 Beach Drive East • Port Orchard, Washington 98366-8204

Case Narrative

April 29, 2019

To: Holcomb, Ron

Project: Kosmos Oil

Work Order: 1904068

Subject: Hydrocarbon Identification Qualitative

From: Dolores Montgomery Bl

Sample Receipt

Enclosed are the HCID results for the samples received by MEL on April 29, 2019. All samples were received in acceptable condition unless noted in Analyst Comments. All samples were prepared and analyzed within holding times unless noted in Analyst Comments.

Analytical Methods

These samples were prepared, analyzed, and verified by MEL according to the submitted chain-of-custody and MEL's procedures. A Sample Correlation Table with batch summary is located in Appendix A. The samples were:

• analyzed following method HYDRO-ID.

Result

Analyst Comments

The HCID analysis showed the following:

<u>Sample</u>

1904068-02

The sample contains Bunker C oil.

Washington State Department of Ecology Manchester Environmental Laboratory Final Analysis Report for

Project Name: Kosmos Oil Work Order: 1904068

Analyte: Hydrocarbon identification

Project Officer: Holcomb, Ron

Method: HYDRO-ID

Matrix: Oil/Solvent

Sample #

Sample ID

Collected

Result

1904068-02

Bank#2

04/27/19

Analyzed 4/29/2019

The sample contains Bunker C oil.

QC Results for Batch ID:B19D195

Method Blank

B19D195-BLK1 Blank

No detectable petroleum hydrocarbons or products found.

Authorized by:

912

Release Date:

04/29/19

Page 1 of 1

Appendix A Sample Correlation Table

Batch ID: B19D195 Prep Method: NA

Prepared: 4/29/2019 Analysis Method: HYDRO-ID

Field ID MEL ID

Bank#2 1904068-02 Blank B19D195-BLK1

06/12/2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Attn: Mike Rhubright

P.O.#:

Auth #19-06-06-112

Project: Client ID:

Rainy Creek

Kosmos

Sample Matrix: Water

Date Sampled: 06/05/2019
Date Received: 06/06/2019
Spectra Project: 2019060159

Spectra Number:1

Rush

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,4-Dichlorobenzene	<1	${\mu g/L}$	SW846 8260C
Oil	< 500	μg/L	NWTPH-D	2,2-Dichloropropane	<1	$\mu g/L$	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μ g/L	SW846 8260C	2-Butanone (MEK)	<10	$\mu g/L$	SW846 8260C
1,1,1-Trichloroethane	<1	μ g/ L	SW846 8260C	2-Chloroethylvinyl Ether	<10	$\mu g/L$	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	$\mu g/L$	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	$\mu g/L$	SW846 8260C
1,1-Dichloroethane	<1	μ g/ L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μ g/ L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<1	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μ g/ L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
1,2-Dibromoethane (EDB)	<1	$\mu g/L$	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
1,2-Dichlorobenzene	<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
1,2-Dichloroethane	<1	μg/L	SW846 8260C	Bromodichloromethane	<1	$\mu g/L$	SW846 8260C
1,2-Dichloropropane	<1	$\mu g/L$	SW846 8260C	Bromoform	<1	$\mu g/L$	SW846 8260C
1,3,5-Trimethylbenzene	<1	$\mu g/L$	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
1,3-Dichlorobenzene	<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
1,3-Dichloropropane	<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	μg/L	SW846 8260C

Surrogate

4-Bromofluorobenzene

Surrogate	Recovery	Method
p-Terphenyl	86	NWTPH-D
Dibromofluoromethane	114	SW846 8260C
1,2-Dichloroethane-d4	120	SW846 8260C
Toluene-d8	88	SW846 8260C

SPECTRA LABORATORIES

Cooper, Laboratory Manager

Page 1 of 2

Recovery

95

Method

SW846 8260C

06/12/2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Mike Rhubright

P.O.#:

Auth #19-06-06-112

Project:

Kosmos

Client ID:

Rainy Creek

Sample Matrix: Water

Date Sampled:

06/05/2019

Date Received: 06/06/2019

Spectra Project: 2019060159

Spectra Number:1

Rush

Analyte	Result	Units	Method
Chlorobenzene	<1	μ g/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	$\mu g/L$	SW846 8260C
Chloroform	<1	$\mu g/L$	SW846 8260C
Chloromethane	<1	$\mu g/L$	SW846 8260C
Dibromomethane	<1	$\mu g/L$	SW846 8260C
Dichlorodifluoromethane	<1	$\mu g/L$	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	$\mu g/L$	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	$\mu g/L$	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<2	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C

<u>Analyte</u>	Result	<u>Units</u>	Method
Vinyl chloride	<1	μg/L	SW846 8260C
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	$\mu g/L$	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	$\mu g/L$	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	$\mu g/L$	SW846 8260C

Surrogate	Recovery	Method
p-Terphenyl	86	NWTPH-D
Dibromofluoromethane	114	SW846 8260C
1,2-Dichloroethane-d4	120	SW846 8260C
Toluene-d8	88	SW846 8260C

<1

<10

μg/L

μg/L

SW846 8260C

SW846 8260C

Surrogate Recovery Method 4-Bromofluorobenzene 95 SW846 8260C

SPECTRA LABORATORIES

Cooper, Laboratory Manager

Trichlorofluoromethane

Vinyl Acetate

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 12, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Mike Rhubright

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019060159

Applies to Spectra #: 1

HYDROCARBON ANALYSIS **QUALITY CONTROL RESULTS**

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

6/10/2019

Units:

ug/L

Date Analyzed:

6/11/2019

Spike Spike

Sample Result

Added

Amount Amount Found

2257

Percent

Recovery

Diesel

Compound

<100

2500

90

METHOD BLANK

Date Extracted:

6/10/2019

Date Analyzed:

6/11/2019

Units:

ug/L

Diesel

<100

Heavy Oil

< 500

Surrogate Recoveries:

p-terphenyl

66%

SPECTRA LABORATORIES

er, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 7, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Sample matrix: Water

Spectra Project: Spectra # Applies to Samples Date Analyzed:

Dilution:
< = less than
2019060159
Method Blank

#1

6/6/2019

VOLATILE ORGANIC ANALYSIS			METHOD 624/8260
Compound	ug/L	Compound	ug/L
Acetone	< 10	1,2-Dichloropropane	< 1
Acrolein	< 10	1,3-Dichloropropane	< 1
Acrylonitrile	< 10	cis-1,3-Dichloropropene	< 1
Benzene	< 1	trans-1,3-Dichloropropene	< 1
Bromobenzene	< 1	2,2-Dichloropropane	< 1
Bromochloromethane	< 1	1,1-Dichloropropene	< 1
Bromodichloromethane	< 1	Ethylbenzene	< 1
Bromoform	< 1	2-Hexanone (MBK)	< 10
Bromomethane	< 1	Hexachlorobutadiene	< 1
2-Butanone (MEK)	< 10	iodomethane	< 10
n-Butylbenzene	< 1	Isopropylbenzene	< 1
sec-Butylbenzene	< 1	p-Isopropyltoluene	< 1
tert-Butylbenzene	< 1	Methylene chloride	< 5
Carbon Disulfide	< 10	4-Methyl-2-pentanone (MIBK)	< 10
Carbon tetrachloride	< 1	MTBE	< 1
Chlorobenzene	< 1	Naphthalene	< 1
Chlorodibromomethane	< 1	n-Propylbenzene	< 1
Chloroethane	< 1	Styrene	< 1
2-Chloroethyl Vinyl ether	< 10	1,1,1,2-Tetrachloroethane	< 1
Chloroform	< 1	1,1,2,2-Tetrachloroethane	< 1
Chloromethane	< 1	Tetrachloroethene	< 1
2-Chlorotoluene	< 1	Toluene	< 1
4-Chlorotoluene	< 1	Total Xylenes	< 2
1,2-Dibromo-3-Chloropropane (DBCP)	< 10	1,2,3-Trichlorobenzene	< 2
1,2-Dibromoethane (EDB)	< 1	1,2,4-Trichlorobenzene	< 2
Dibromomethane	< 1	1,1,1-Trichloroethane	< 1
1,2-Dichlorobenzene	< 1	1,1,2-Trichloroethane	< 1
1,3-Dichlorobenzene	< 1	Trichloroethene	< 1
1,4-Dichlorobenzene	< 1	Trichlorofluoromethane	< 1
Dichlorodifluoromethane	< 1	1,2,3-Trichloropropane	< 1
1,1-Dichloroethane	< 1	1,2,4-Trimethylbenzene	< 1
1,2-Dichloroethane	< 1	1,3,5-Trimethylbenzene	< 1
1,1-Dichloroethene	< 1	Vinyl Acetate	< 10
cis-1,2-Dichloroethene	< 1	Vinyl chloride	< 1
trans-1,2,-Dichloroethene	< 1	Gasoline	< 50
SURROGATE RECOVERIES			
Dibromofluoromethane	113 %		
1,2-Dichloroethane-d4	115 %		
Toluene-d8	90 %		
4-Bromofluorobenzene	95 %		

do experimental de la comperimental de la comp

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 7, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Sample Matrix: Water

EPA Method: 624/ 8260C

Spectra Project: 2019060159

Date Analyzed: 6/6/2019

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Laboratory Control Sample (LCS) Results

COMPOUND	SAMPLE	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
1,1-Dichloroethene	<1	10.00	10.6	106	
Benzene	<1	10.00	11.0	110	
Trichloroethene	<1	10.00	10.8	108	
Toluene	<1	10.00	10.8	108	
Chlorobenzene	<1	10.00	10.8	108	

Surrogate Recoveries (%)	LCS
Dibromofluoromethane	102
1,2-Dichloroethane-d4	103
Toluene-d8	100
4-Bromofluorobenzene	92

Laboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com SPECIAL INSTRUCTIONS/COMMENTS:

* VON Viles un proserved

CHAIN OF CUSTODY

Return Samples: Y 🔊

STANDARD

RUSH V

											-9	_					_									- 1.0	,01		
CLIENT: Tacoma Youler	ADDRESS:																		RESS ANGE										
CLIENT: Tacoma Power PROJECT: Kosmos CONTACT: Mike Rhulorisht SAMPLED BY: J. Hildenbrand/M. Rhubn		Н	YD	RO	CAF	RB	ONS			OF	RGA	NIC	S		М	ETA	LS	.S OTHER											
CONTACT: Mike Rhylorish+																													
SAMPLED BY: T Hildersbrand /M. Rhalo	AHS	_													0														
PHONE: 50 6 8 7 60 FAX:	TAIR						_ ←			SINI				3A 8	ECIF	α	CIFY	`											
Prefer FAX	CONTA			တ္			M (TPI	g g		SOLVI				S BCI	S (SP	aca	SPE							(FE)					
PURCHASE ORDER # 19-06-06-1/2 SAMPLE ID DATE SAMPLED DATE SAMPLED DATE SAMPLED MATRIX	ROF	NWTPH-HCID		BTEX/NWTPH-G	φ	ŏ	1664 SGT-HEM (TPH)	1664 HEM (FOG)	8260/624 VOA	8260 CHLOR SOLVENTS	8270 PAH/PNIA	8082/608 PCB		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCI D METALS BCBA 8	TCLP METALS (SPECIFY)		PH 9040/9045	ŏ	≥	FLASH POINT		SOLIDS (SPECIFY)					
PURCHASE ORDER # 19-06-06-112	MBE	TPH.	×	NX.	NWTPH-G	NWTPH-Dx	14 SG	4 HE	729/0	CH 0	A D	2/608		IAL №	IAL N	D W	∑ d		9040	TX/TOX/EOX	TURBIDITY	SHP		SOI					
SAMPLE ID SAMPLED MATRIX	(3)	Ž	ВТЕХ	E B	Ž	Ž	166	166	826	826	20 00	808		5	<u> </u>	Ē	į		표	×	Ē	FLA	BOD	SOI					
1 Rainy Creek 6/5/19 14:00 water	13					X			X																				
2																													
3																													
4																													
5																													
6																													
7						2								H															
8								T																					
9									1			T		Г															
10									1																			t	
LAB USE ONLY		_	5	SIGN	IATU	RE	0					PRI	NTE	NAM C	ME	4			COM	IPAN	Y			D/A	TE/			IME	
RELINQUISHED BY	-				16	1	1	1	10	1	1					6	1		7	*	2/	1	1	6	6	10		13	
RECEIVED BY	6	Y	01			7	3/0	0	P	-	N	700	71	1	1	bry to	7		Ç	201	4	1	1	1	1	9		يحد!	
RELINQUISHED BY		1		سو			1.42	_			,	,,,				U	1		1		·	u		2	,		JE		
RECEIVED BY																													
Payment Terms: Net 3 attorney's fees and all	30 day	s. Pa	st du	e ac	cour	nts s rega	subje	et to	1 1/2 whet	2% p∈ ther si	er mo	onth i	intere	st. C	CoV	mer a	grees	s to pa	ay all	l cos	ts of	colle	ectio	n inc	ludin	g reas	onab	le	

08/20/2019

PO Box 11007

Tacoma Public Utilities

Tacoma, WA 98411

Attn: Mike Rhubright

P.O.#:

Auth #19-08-13-155

Project:

Kosmos

Client ID:

Kosmos-Upland

Sample Matrix: Soil/Oil

Date Sampled:

08/09/2019

Date Received: 08/13/2019

Spectra Project: 2019080321

Spectra Number: 1

Analyte	Result	<u>Units</u>	Method
HCID- Gasoline	<11000	mg/Kg	NWTPH-HCID
HCID-Diesel	<11000	mg/Kg	NWTPH-HCID
HCID-Oil	present*	mg/Kg	NWTPH-HCID

*Chromatogram was present for heavy oil range organics, however the pattern was not exclusively heavy oil, possible mineral oil present. However the pattern difference is not able to be determined. *Surrogate diluted out of sample.

Surrogate	Recovery	Method
4-Bromofluorobenzene	0*	NWTPH-HCID
p-Terphenyl	0*	NWTPH-HCID

SPECTRA LABORATORIES

y Cooper, Laboratory Manager

August 20, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma WA 98411

Attn: Mike Rhubright

Method: WDOE NWTPH-HCID

Sample Matrix: Soil/Oil

Units: mg/Kg

Spectra Project: 2019080321

Applies to Spectra # 1

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

METHOD BLANK

Date Extracted:

8/19/2019

Date Analyzed:

8/19/2019

HCID-Gasoline

< 20

HCID-Diesel

< 50

Heavy Oil

<100

SPECTRA LABORATORIES

oper, Laboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com SPECIAL INSTRUCTIONS/COMMENTS:

**Droduct Identification
Suspected Bunkers

CHAIN OF CUSTODY

201908032

www.spectra-lab.com info@spectra-lab.com	Return Samples: Y N Page of STANDA												NDARD X RU									JSH										
CLIENT: Taloma Power PROJECT: Kosmos CONTACT: Mike Rhubright	ADE	RE	SS:																											DRE HAN		
PROJECT: KOSMOS		HYDROCARBONS											IIC:	S		_М	ET/	ALS	3						0	ГНЕ	R					
CONTACT: MIKE Phubright																																
ISAMPI ED RV	ERS															3																
PHONE: 25302 8520 FAX:	CONTAINERS						Ţ.			ENTS	4				BA 8	PECIF		3A 8	ECIF													
PHONE: 25302 8520 FAX: e-MAIL: Walls or e-MAIL or e-MAIL	JF CO	₽		PH-G			1664 SGT-HEM (TPH)	FOG)	Α	8260 CHLOR SOLVENTS	8270-625 SEMI VOA	AA	8		TOTAL METALS RCRA	TOTAL METALS (SPECIFY)		TCLP METALS RCRA 8	TOLP METALS (SPECIFY)		ਹੈ	Ų		F		SOLIDS (SPECIFY)						
PURCHASE ORDER # 19-08-13-155	BER (NWTPH-HCID		BTEX/NWTPH-G	μ Ω Ε	NWTPH-Dx	SGT-H	1664 HEM (FOG)	8260/624 VOA	CHLO	625 SI	8270 PAH/PNA	8082/608 PCB		- MET	- MET		META	META		PH 9040/9045	TX/TOX/EOX	Σ L L	FLASH POINT		S (SP						
PURCHASE ORDER # 19-08-13-155 SAMPLE ID DATE TIME SAMPLED SAMPLED MATRI	X	L N N	BTEX	ВТЕХ	NWTPH-G	NWI	1664	1664	8260/	8260	8270-	8270	8082/		TOTA	TOTA		TCLP	TCLP		PH 90	TX/T	TURBIDITY	FLASI	BOD	SOLIC						
Kosmos-40/and8/9/19 14:00 01/30	11	X																														
																													П			
LAB USE ONLY		.1	1	MGN	IATU	RE						1	PRIN	ŢED	NAM	ΛE	,	,		С	ОМ	PAN	Υ			DĄ	TE	1		TIM	E	
RELINQUISHED BY	1	10	14	0	1/2	4		5	1		1	(i)	Se	X	Th	ul	ni	34	4		1	K	U		8		3/	19	1	3.	36	6
RECEIVED BY			1	E	3	2	>	-	_	<	J	-	٠.	E	257	<u></u>	ب			-	P	\mathcal{O}			2	7/1	3/	19	1:	3 3	36	>
RELINQUISHED BY			e	-		>					=	3	e	_<	王	~	e		12	-	1	V			7	370	31.	7	11	05	2	
RECEIVED BY	1		2	_		2_	_) (V	ni	1	110	n	6	Zai	e	e	2	5/6	2e	A	12	2	8	13	1	9	11	0	52	•
Payment Terms: Net attorney's fees and al	30 day	s. Pa	st do	e ac	cou	nts si regai	ubje rdles	ss o	0 1 1 f wh	ethe	per r suit	mon	ith h	tere n Pie	st. C	usto Co \	mer WA v	agr	es t	o va	y all	cost	s of	colle	ectio	n incl		g rea				

10/25/2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Attn: Mike Rhubright

P.O.#:

Auth #19-10-11-178

Project:

Kosmos Town Site

Client ID:

Kosmos Seep

Sample Matrix: Soil

Date Sampled: 10/10/2019
Date Received: 10/11/2019
Spectra Project: 2019100391

Spectra Number: 1

<u>Analyte</u>	Result	Units	Method	Analyte	Result	<u>Units</u>	Method
Diesel	5210	mg/Kg	NWTPH-D	1,1-Dichloropropene	< 0.05	mg/Kg	SW846 8260C
Oil	9190	mg/Kg	NWTPH-D	1,2,3-Trichlorobenzene	< 0.05	mg/Kg	SW846 8260C
Gasoline	<5	mg/Kg	NWTPH-G	1,2,3-Trichloropropane	< 0.05	mg/Kg	SW846 8260C
Total Arsenic	< 2.5	mg/Kg	SW846 6010D	1,2,4-Trichlorobenzene	< 0.05	mg/Kg	SW846 8260C
Total Barium	42.5	mg/Kg	SW846 6010D	1,2-Dibromo3Chloropropane	< 0.5	mg/Kg	SW846 8260C
Total Cadmium	< 0.3	mg/Kg	SW846 6010D	1,2-Dichlorobenzene	< 0.05	mg/Kg	SW846 8260C
Total Chromium	12.8	mg/Kg	SW846 6010D	1,2-Dichloroethane	< 0.05	mg/Kg	SW846 8260C
Total Copper	45.2	mg/Kg	SW846 6010D	1,2-Dichloropropane	< 0.05	mg/Kg	SW846 8260C
Total Lead	< 2.5	mg/Kg	SW846 6010D	1,3-Dichlorobenzene	< 0.05	mg/Kg	SW846 8260C
Total Nickel	10.9	mg/Kg	SW846 6010D	1,3-Dichloropropane	< 0.05	mg/Kg	SW846 8260C
Total Selenium	< 2.5	mg/Kg	SW846 6010D	1,4-Dichlorobenzene	< 0.05	mg/Kg	SW846 8260C
Total Silver	< 0.7	mg/Kg	SW846 6010D	2,2-Dichloropropane	< 0.05	mg/Kg	SW846 8260C
Total Zinc	48.6	mg/Kg	SW846 6010D	2-Chlorotoluene	< 0.05	mg/Kg	SW846 8260C
Total Mercury	< 0.05	mg/Kg	SW846 7471B	4-Chlorotoluene	< 0.05	mg/Kg	SW846 8260C
PCB	< 0.01	mg/Kg	SW846 8082A	Benzene	< 0.05	mg/Kg	SW846 8260C
1,1,1,2-Tetrachloroethane	< 0.05	mg/Kg	SW846 8260C	Bromochloromethane	< 0.05	mg/Kg	SW846 8260C
1,1,1-Trichloroethane	< 0.05	mg/Kg	SW846 8260C	Bromodichloromethane	< 0.05	mg/Kg	SW846 8260C
1,1,2,2-Tetrachloroethane	< 0.05	mg/Kg	SW846 8260C	Carbon Tetrachloride	< 0.05	mg/Kg	SW846 8260C
1,1,2-Trichloroethane	< 0.05	mg/Kg	SW846 8260C	Chlorobenzene	< 0.05	mg/Kg	SW846 8260C
1,1-Dichloroethane	< 0.05	mg/Kg	SW846 8260C	Chlorodibromomethane	< 0.05	mg/Kg	SW846 8260C
1,1-Dichloroethene	< 0.05	mg/Kg	SW846 8260C	Chloroethane	< 0.05	mg/Kg	SW846 8260C

^{*}Surrogates diluted out of range.

Surrogate	Recovery	Method	Surrogate	Recovery	Method
Nitrobenzene-d5	0*	SW846 8270D	Dibromofluoromethane	96	SW846 8260C
2-Fluorobiphenyl	0*	SW846 8270D	4-Bromofluorobenzene	92	SW846 8260C
p-Terphenyl-d14	0*	SW846 8270D	1,2-Dichloroethane-d4	104	SW846 8260C
Toluene-d8	94	SW846 8260C	Decachlorobiphenyl	63	SW846 8082A

SPECTRA LABORATORIES

ooper, Laboratory Manager

Page 1 of 2

10/25/2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Mike Rhubright

P.O.#:

Auth #19-10-11-178

Project:

Kosmos Town Site

Client ID:

Kosmos Seep

Sample Matrix: Soil

Date Sampled: 10/10/2019

Date Received: 10/11/2019 Spectra Project: 2019100391

Spectra Number:1

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Chloroform	<0.05	mg/Kg	SW846 8260C	Anthracene	<4.1	mg/Kg	SW846 8270D
Chloromethane	< 0.05	mg/Kg	SW846 8260C	Benzo(a)Anthracene	<4.1	mg/Kg	SW846 8270D
Dichlorodifluoromethane	< 0.05	mg/Kg	SW846 8260C	Benzo(a)Pyrene	<4.1	mg/Kg	SW846 8270D
Ethylbenzene	< 0.05	mg/Kg	SW846 8260C	Benzo(b)Fluoranthene	<4.1	mg/Kg	SW846 8270D
Hexachlorobutadiene	< 0.05	mg/Kg	SW846 8260C	Benzo(ghi)Perylene	<4.1	mg/Kg	SW846 8270D
Methyl-tert-Butyl Ether	< 0.05	mg/Kg	SW846 8260C	Benzo(k)Fluoranthene	<4.1	mg/Kg	SW846 8270D
Methylene chloride	< 0.25	mg/Kg	SW846 8260C	Chrysene	5.36	mg/Kg	SW846 8270D
Tetrachloroethene	< 0.05	mg/Kg	SW846 8260C	Dibenz(a,h)Anthracene	<4.1	mg/Kg	SW846 8270D
Toluene	< 0.05	mg/Kg	SW846 8260C	Fluoranthene	<4.1	mg/Kg	SW846 8270D
Total Xylenes	< 0.1	mg/Kg	SW846 8260C	Fluorene	<4.1	mg/K.g	SW846 8270D
Trichloroethene	< 0.05	mg/Kg	SW846 8260C	Indeno(1,2,3-cd)Pyrene	<4.1	mg/Kg	SW846 8270D
Trichlorofluoromethane	< 0.05	mg/Kg	SW846 8260C	Naphthalene	<4.1	mg/Kg	SW846 8270D
Vinyl chloride	< 0.05	mg/Kg	SW846 8260C	Phenanthrene	10.5	mg/Kg	SW846 8270D
cis-1,2-Dichloroethene	< 0.05	mg/Kg	SW846 8260C	Pyrene	6.05	mg/Kg	SW846 8270D
cis-1,3-Dichloropropene	< 0.05	mg/Kg	SW846 8260C				

< 0.05

< 0.05

9.72

4.96

<4.1

<4.1

trans-1,2-Dichloroethene

1-Methylnaphthalene

2-Methylnaphthalene

Acenaphthene

Acenaphthylene

trans-1,3-Dichloropropene

Surrogate	Recovery	Method	Surrogate	Recovery	Method
Nitrobenzene-d5	0*	SW846 8270D	Dibromofluoromethane	96	SW846 8260C
2-Fluorobiphenyl	0*	SW846 8270D	4-Bromofluorobenzene	92	SW846 8260C
p-Terphenyl-d14	0*	SW846 8270D	1,2-Dichloroethane-d4	104	SW846 8260C
Toluene-d8	94	SW846 8260C	Decachlorobiphenyl	63	SW846 8082A
p-Terphenyl-d14	0*	SW846 8270D	1,2-Dichloroethane-d4	104	SW846 8260C

mg/Kg SW846 8260C

mg/Kg SW846 8260C

mg/Kg SW846 8270D

mg/Kg SW846 8270D

mg/Kg SW846 8270D

mg/Kg SW846 8270D

SPECTRA LABORATORIES

rev Cooper, Laboratory Manager

Page 2 of 2

^{*}Surrogates diluted out of range.

October 25, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Mike Rhubright

Method:

NWTPH-Dx

Sample Matrix:

Soil

1

Spectra Project:

2019100391

Applies to Spectra #:

Units:

mg/Kg

HYDROCARBON ANALYSIS **QUALITY CONTROL RESULTS**

BLANK SPIKE (LCS)

Date Extracted:

10/16/19

Date Analyzed:

10/17/19

Sample

Spike Amount

Percent

Compound

Result

Amount Added

125

Spike

Found

108.7

Recovery

Diesel

<10.0

87.0

METHOD BLANK

Date Extracted:

10/16/19

Date Analyzed:

10/17/19

Diesel

<10.0

mg/Kg

Heavy Oil

< 50.0

mg/Kg

Surrogate Recovery:

p-terphenyl

77%

SPECTRA LABORATORIES

per, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

10/17/2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s mg/Kg 2019100391

Analyst

lyst: SCJ

QUALITY CONTROL RESULTS ICP Metals SW846 6010D - Soil/Solids

Method Blank

Date Digested: 10/17/2019

Date Analyzed:

10/17/2019

Element	Blank Result
Arsenic	< 2.5
Barium	< 0.2
Cadmium	< 0.3
Chromium	< 0.7
Copper	< 0.6
Lead	< 2.5
Nickel	< 1.5
Selenium	< 2.5
Silver	< 0.7
Zinc	< 0.6

Laboratory Control Sample (LCS)

Date Digested: 10/17/2019

)19

Date Analyzed:

10/17/2019

	Spike	LCS	LCS
Element	Addition	Conc.	%Rec
Arsenic	200.0	190.0	95.0
Barium	200.0	192.9	96.5
Cadmium	200.0	187.2	93.6
Chromium	200.0	187.7	93.9
Copper	200.0	188.7	94.4
Lead	200.0	189.9	95.0
Nickel	200.0	193.8	96.9
Selenium	200.0	178.6	89.3
Silver	200.0	210.9	105.5
Zinc	200.0	196.7	98.4

LCS Recovery limits 80-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested: 10/17/2019 Sample Spiked: 2019100389-1 Date Analyzed:

10/17/2019

	Sample	Spike	MS	MS	MSD	MSD	
Element	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic	0.0	200.0	184.4	92.2	185.1	92.6	0.4
Barium	16.3	200.0	197.5	90.6	203.3	93.5	3.2
Cadmium	0.0	200.0	180.1	90.1	180.5	90.3	0.2
Chromium	1,2	200.0	183.3	91.1	184.0	91.4	0.4
Copper	102.6	200.0	321.6	109.5	286.2	91.8	17.6
Lead	0.0	200.0	177.7	88.9	178.6	89.3	0.5
Nickel	66.2	200.0	242.2	88.0	241.0	87.4	0.7
Selenium	0.0	200.0	163.7	81.9	164.0	82.0	0.2
Silver	0.0	200.0	208.5	104.3	206.5	103.3	1.0
Zinc	60.3	200.0	252.4	96.1	248 5	94.1	2.1

Recovery Limits 75-125% RPD Limit 20

Comment:

Spectra Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

October 16, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

SW846 7471B

Spectra Project:

2019100391

Applies to Spectra #'s:

Sample Matrix:

Soil

1

Units:

mg/Kg

Analyst:

CK

MERCURY

QUALITY CONTROL RESULTS

METHOD BLANK

Date Analyzed:

10/16/19

Mercury

< 0.05

LABORATORY CONTROL SAMPLE

Date Analyzed:

10/16/19

Sample

Spike

MS

%

Result

Added

Result

Recovery

Mercury

< 0.05

0.5000

0.487

97.4

Recovery Limit: 78-117%

MS/MSD

Date Analyzed:

Spiked Sample

10/16/19

Sample

Result

Spike Added

MS Result

% Recovery

MSD Result %

Recovery RPD

2019100389-1

0.000

0.4000

0.416

104.0

0.424

106.0

1.9

SPECTRA LABORATORIES

Jeffin Copper, Laboratory Manager

October 25, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Mike Rhubright

Method:

EPA Method 8082A

Sample Matrix:

Soil

1

Units:

mg/Kg

Spectra Project:

2019100391

Applies to Spectra #

PCB ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Date Extracted:

10/16/2019

Date Analyzed:

10/17/2019

Spike Spike

Compound

Sample

Amount Amount Percent

Result

Added

Found Recovery

AR1260

< 0.01

0.025

0.0193

77%

METHOD BLANK

Date Extracted:

10/16/2019

Date Analyzed:

10/17/2019

PCB's

< 0.01

Surrogate Recovery:

Decachlorobiphenyl

77%

SPECTRA LABORATORIES

Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

METHOD BLANK VOA SOLID ANALYSIS

Sample ID: Method Blank

Methanolic Extraction

Tacoma Public Utilities PO Box 11007

Date Analyzed: Sample Weight (g): 10/16/2019 5g

Sample Matrix: Soil Tacoma, WA 98407

< = less than

Spectra Project: 2019100391

VOLATILE ORGANIC ANALYSIS:			METHOD 8260C-MeOH Ext
Compound	mg/Kg	Compound	mg/Kg
cetone	< 0.50	1,2-Dichloropropane	< 0.05
enzene	< 0.05	1,3-Dichloropropane	< 0.05
romobenzene	< 0.05	cis-1,3-Dichloropropene	< 0.05
romochloromethane	< 0.05	trans-1,3-Dichloropropene	< 0.05
romodichloromethane	< 0.05	2,2-Dichloropropane	< 0.05
romoform	< 0.05	1,1-Dichloropropene	< 0.05
romomethane	< 0.05	Ethylbenzene	< 0.05
-Butanone (MEK)	< 0.50	2-Hexanone (MBK)	< 0.50
Butylbenzene	< 0.05	Hexachlorobutadiene	< 0.05
ec-Butylbenzene	< 0.05	Isopropylbenzene	< 0.05
ert-Butylbenzene	< 0.05	p-Isopropyltoluene	< 0.05
arbon tetrachloride	< 0.05	Methylene chloride	< 0.25
hlorobenzene	< 0.05	4-Methyl-2-pentanone (MIBK)	< 0.50
hlorodibromomethane	< 0.05	Naphthalene	< 0.05
hloroethane	< 0.05	n-Propylbenzene	< 0.05
hloroform	< 0.05	Styrene	< 0.05
hloromethane	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
-Chlorotoluene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
-Chlorotoluene	< 0.05	Tetrachloroethene	< 0.05
2-Dibromo-3-Chloropropane (DBCP)	< 0.50	Toluene	< 0.05
2-Dibromoethane (EDB)	< 0.05	1,2,3-Trichlorobenzene	< 0.05
ibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.05
2-Dichlorobenzene	< 0.05	1,1,1-Trichloroethane	< 0.05
3-Dichlorobenzene	< 0.05	1,1,2-Trichloroethane	< 0.05
4-Dichlorobenzene	< 0.05	Trichloroethene	< 0.05
ichlorodifluoromethane	< 0.05	Trichlorofluoromethane	< 0.05
1-Dichloroethane	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Dichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
s-1,2-Dichloroethene	< 0.05	Vinyl chloride	< 0.05
ans-1,2,-Dichloroethene	< 0.05	Total Xylenes	< 0.05
		Methyl tert-butyl ether	< 0.05
		Acrolein	< 0.50
		Acrylonitrile	< 0.50
		Vinyl Acetate	< 0.50
		Gasoline	< 5

SURROGATE RECOVERIES

Dibromofluoromethane % % % 1,2-Dichloroethane-d4 106 Toluene-d8 95 4-Bromofluorobenzene

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

October 21, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Soil
EPA Method: 8260C
Spectra Project: 2019100391

Date Analyzed: 10/16/2019

Units: mg/Kg

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Laboratory Control Sample (LCS) Results

COMPOUND	SPIKE	SPIKE	LCS	
1	AMOUNT	RESULT	%REC	
1,1-Dichloroethene	0.50	0.559	112	
Benzene	0.50	0.490	98.0	
Trichloroethene	0.50	0.517	103	
Toluene	0.50	0.525	105	
Chlorobenzene	0.50	0.491	98.2	
Gasoline	12.5	12.4	99.2	
Surrogate Recoveries (%)	LCS			
Dibromofluoromethane	99			
1,2-Dichloroethane-d4	102			
Toluene-d8	97			
4-Bromofluorobenzene	99			

Left Cooper Laboratory Manager

10/25/2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 **METHOD BLANK RESULTS**

Sample matrix:

Spectra Project:

Applies to:

Solid 2019100391

#1

Date Extracted: Date Analyzed:

Dilution: 1
< = less than

10/16/2019 10/17/2019

POLYNUCLEAR AROMATIC HYDROCARBON ANALYSIS METHOD 8270 Compound mg/Kg Compound mg/Kg Naphthalene < 0.033 Benzo(a)Anthracene < 0.033 2-Methylnaphthalene < 0.033 Chrysene < 0.033 Acenaphthylene < 0.033 Benzo(b)Fluoranthene < 0.033 Acenaphthene Benzo(k)Fluoranthene < 0.033 < 0.033 < 0.033 Fluorene Benzo(a)Pyrene < 0.033 Phenanthrene < 0.033 Indeno(1,2,3-cd)Pyrene < 0.033 Anthracene < 0.033 Dibenzo(a,h)Anthracene < 0.033 Fluoranthene < 0.033 Benzo(g,h,i)Perylene < 0.033 Pyrene < 0.033 1-Methylnaphthalene < 0.033

SURROGATE RECOVERIES

Nitrobenzene-d5	43	%
2-Fluorobiphenyl	39	%
p-Terphenyl-d14	74	%

Lateratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

October 25, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Spectra Project # Sample Spiked:

2019100391 Method Blank

Date Extracted:
Date Analyzed:

10/16/2019 10/17/2019

Units:

mg/Kg

Applies to Spectra #'s:

#1

GCMS Semi-Volatile Organic Analysis, Method 8270D (Scan Mode) Blank Spike (LCS) Results in Soil/ Solids

Compound	Blank	Spike	LCS	LCS	Rec.	
	Conc.	Added	Conc.	%Rec	Limits	
Phenol	<0.08	2.50	1.59	64	32-84	
2-Chlorophenol	< 0.08	2.50	1.57	63	35-84	
1,4-Dichlorobenzene	< 0.08	1.67	1.05	63	15-90	
N-Nitroso-Di-N-Propylamine	< 0.08	1.67	1.08	65	31-104	
1,2,4-Trichlorobenzene	< 0.08	1.67	1.10	66	24-82	
4-Chloro-3-Methylphenol	< 0.08	2.50	1.70	68	34-107	
Acenaphthene	< 0.03	1.67	1.16	70	34-98	
2,4-Dinitrotoluene	< 0.08	1.67	1.02	61	32-105	
4-Nitrophenol	< 0.08	2.50	1.99	80	26-156	
Pentachlorophenol	<0.08	2.50	0.64	25	0-85	
Pyrene	< 0.03	1.67	1.15	69	40-135	
Surrogates				%Rec		
2-Fluorophenol				63		
Phenol-d5				66		
Nitrobenzene-d5				76		
2-Fluorobiphenyl				70		
2,4,6-Tribromophenol				69		
p-Terphenyl-d14				78		

dei Moper Aboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

10

SPECIAL INSTRUCTIONS/COMMENTS:

RCRAS metals CHAIN OF CUSTODY

T Cu Ni + Zn 209100391

Return Samples: Y N Page of STANDARD RUSH

CLIENT: Tacoma	Pal	100	ADI	DRE	SS																					y					RESS	
CLIENT: Tacoma PROJECT: Kosmos CONTACT: Mike	Tou	Ju Si	10	I		RO	CAF	RBC	ONS	3		0	RG	AN	ICS	T		ME.	TAL	.s						01	THE	R		CHA	ANGE	
CONTACT: MIKE	Rh	ubria	ht															2														
SAMPLED BY: Jame	100	ZIC	NERS									တ္က					FY)	U	7	3												
PHONE: 502 8520	FAX: —	Prefer FA	CONTAINERS				0		TPH)			LVENT	OA			3CRA	SPECI	1:4	CRA 8	PECIF							۲)					
e-MAIL: Mrhubrigg PURCHASE ORDER # 19	eci,	or e-MAIL		<u> </u>		BTEX/NWTPH-G	M	×	1664 SGT-HEM (TPH)	1664 HEM (FOG)	VOA	8260 CHLOR SOLVENTS	8270-625 SEMI VOA	PNA	SCB	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)		_ (0)	TCLP METALS (SPECIFY)		045	×	Ļ	L L		SOLIDS (SPECIFY)					
	DATE		ZS HE WIN	NWTPH-HCID	×	X/NW	D-G-C	NWTPH-Dx	4 SGT-	4 HEM	8260/624 VOA	O CHL(0-625 8	8270 PAH/PNA	8082/608 PCB	AL ME	AL ME	2	P MET	P MET		PH 9040/9045	TX/TOX/EOX	TURBIDITY	FLASH POINT		S) SQI					
	SAMPLED	SAMPLED	MATRIX 3	Ž	ВТЕХ	BTE		Ž	166	166	826	826	827	827	808	Þ	P		1 2	고 고	Ш	PH 8	<u>¥</u>	15	FLA	BOD	SOL					
# Kosmos Seep	10/10/19	11.00	50 Jul 1	-		X						X		X	X_	X	X	4														
,		4	1					+	-	_																						
				-				+		+				+																		
																										_						
									-		Ц																					
									_																							
LAB USE ONLY						SIGN	ATI IF	RE .						PI	RINTE	D NA	ME				Щ	OM	DANI	,			DA	TE			IME	
LAB USE ONLY		RELINQUISH	IED BY	1	11:	K	2			6	A	_			111			20	. 6	15		- I	AIN	D.	11	15	2/1		9			,
		RECEIVED B	Y /	2	-		1	_	1	13		d	Pour	He	4/1	Yo	Zi	, (10	1	Ż	Δ	19	tr	7	10	1	11	9	09	4-	7
		RELINQUISH	IED BY						2		1	1			0		V.	_				P	~	4 10	-		1			۱ ب	V	
		RECEIVED B	Υ																													
		Payment Teri attorney's fee	ms: Net 30 da es and all othe	ys. Pa	ist di s of c	ue ac	coun	ts sı egar	ubje dles	ct to	1 1/ whe	2% ther	oer r suit	nontl is file	h inter ed in P	est. ierce	Cust	ome	er ag	rees ue.	to pa	y all etra L	cost abo	s of rato	colle ries,	ction	n incl	luding	reas	onab	le	

APPENDIX B AIRO 1993 Site Assessment Report

SITE ASSESSMENT REPORT RIFFE LAKE RESERVOIR FORMER KOSMOS MILL SITE GLENOMA, WA

Prepared for:

TACOMA PUBLIC UTILITIES 3628 SOUTH 35TH STREET TACOMA, WA 98411

Prepared by:

AIRO ENVIRONMENTAL SERVICES, INC. 4110 EAST 11TH STREET TACOMA, WA 98275

March 31, 1993

Site History:

The Riffe Lake reservoir is part of the power generating system operated by Tacoma Public Utilities (TPU). It is located south of the town of Morton, Washington, off Highway 12. When the reservoir was created in 1968, it flooded the town of Kosmos at the east end of the lake. Next to the town was a lumber mill that was abandoned at the same time. All buildings were torn down to their foundations before the water covered the former town and mill site. This area is under water most of the year. During winter drawdown, the water level in the reservoir drops exposing the area. Spring rainfall and snow melt normally reflood the site. Due to the extreme drought conditions in 1992, this area was dry and accessible to vehicular traffic for an extended time.

In July, 1992, TPU contacted AIRO Services, Inc. Campers at the reservoir had discovered two (2) tanks at the former mill site. AIRO mobilized to the site to remove the tanks.

Site Operations:

On July 21, 1992, AIRO sampled the two (2) USTs (Lab Report #72101 & 72102). The first tank was partially exposed sticking out of an earthen bank. It was filled with lake water. The tank appeared to be a 500 gallon steel tank. The water in the tank had no sheen or any indication of petroleum product. It appeared to have been emptied and left open when the area was originally flooded. The second tank was below ground level and contained product. It was next to the mill site foundations. The soil around the tank was contaminated with heavy oil. The fill opening was uncovered and the tank contents sampled. It appeared to be Bunker C fuel oil.

The tank filled with lake water was analyzed for PCBs and Total Halogens (TX). Neither compound was present. The tank with heavy oil was analyzed for HCID, PCBs, TX. Total Halogens were reported at 5,100 mg/kg. The sample was then further analyzed for semi-volatile and volatile organics per EPA Methods 8270 and 8240.

Between July 28 to July 30, 1992, the tanks were excavated, cleaned, and removed from the site. The 500 gallon tank was lifted from its location and emptied. The larger tank was excavated using a tracked excavator. It was a 5,000 gallon steel tank. The tanks were taken to a scrap metal facility.

The product removed from the large tank was classified as a dangerous waste, WTO2, under ECOLOGY Dangerous Waste Regulations, Chapter 173 - 303 WAC. This classification used due to the presence of halogenated hydrocarbon

compounds in the oil. 3900 gallons of oil w/ halogenated hydrocarbons was transported to Burlington Environmental, Inc. (BEI) for disposal on manifest #29414.

Soil from the excavation was stockpiled on-site. Approval to dispose of this soil at the Kitsap County Landfill was obtained. Approximately 87 cubic yards was transported and disposed at the landfill.

Site Assessment Sampling:

RIF-6

On July 30, 1992, samples were taken in the excavation area where the 5,000 gallon tank had been located. Sampling was done by Alex Koch of AIRO Environmental Services, Inc. Sample locations were determined at the time of sampling under the direction of Richard Walker, ECOLOGY. Soil samples were taken to Sound Analytical Services, in Fife. All soil samples were analyzed for Total Petroleum Hydrocarbons (TPH) by Method WTPH-418.1 Modified and Total Halogens (TX) per EPA Method 9076. Following are the analytical results from this sampling reported in mg/kg. Refer to Drawing No. 1 for sample locations:

Lab Report	#26037, dated August 3, 1992		
<u>Sample #</u>	<u>Location</u>	TPH	$\underline{\mathrm{TX}}$
RIF-1	NE corner, 9.5 ft bgs	<100	<10
RIF-2	Center floor, 9.5 ft bas	250	₹10
RIF-3	West wall, 6.5 ft bgs	310	₹10
RIF-4	Duplicate (RIF-3)	<100	₹10
RIF-5	Stockpiled material	4300	<10

Stockpiled material

The area was over excavated on August 6, 1992. Samples were retaken from the floor and west wall. Following are their results:

5300

< 10

Lab Report	#26173, dated August 11, 1992		
<u>Sample #</u>	<u>Location</u>	TPH	$\underline{\mathrm{TX}}$
RIF-2	Center floor, 11 feet bgs	300	<u>-11</u>
RIF-34	West wall, 7 feet bgs	360	(10

The area was again over excavated on August 14, 1992. Refer to Drawing #2 for sample locations. Samples were taken following this activity. Following are their results:

Lab Report	#26380, dated August 18, 1992		
<u>Sample #</u>	<u>Location</u>	$\underline{\mathrm{TPH}}$	$\underline{\mathrm{TX}}$
RIF-11	Center floor, 13 feet bgs	<100	<10
RIF-12	West wall, 7 feet bgs	<100	<10

Summary:

Based on the sampling results, no further excavation was done at the site. There were no piping system exposed during the excavation. The only remaining piping had been attached to the tank and did not continue out of the immediate area around the tank.

The level of ground water in the excavation was approximately ten to eleven feet below ground surface (bgs). There was a light sheen visible, but no floating product.

The soil excavated from around the Bunker C tank is normally lake bottom. It is best classified as organic silts and organic sily clays of low plasticity (OL). This material remained consistent to the depth of the excavation.

The area was turned back over to Tacoma Public Utilities.

AIRO Environmental Services, Inc. makes no warranty to the environmental condition of this property or to any bordering property or properties. AES has solely reported findings from specific actions taken as a result of decommissioning of USTs and from performing a site-specific assessment. AES does warranty that all its work performed was in accordance with state and federal regulations and with acceptable industry standards.

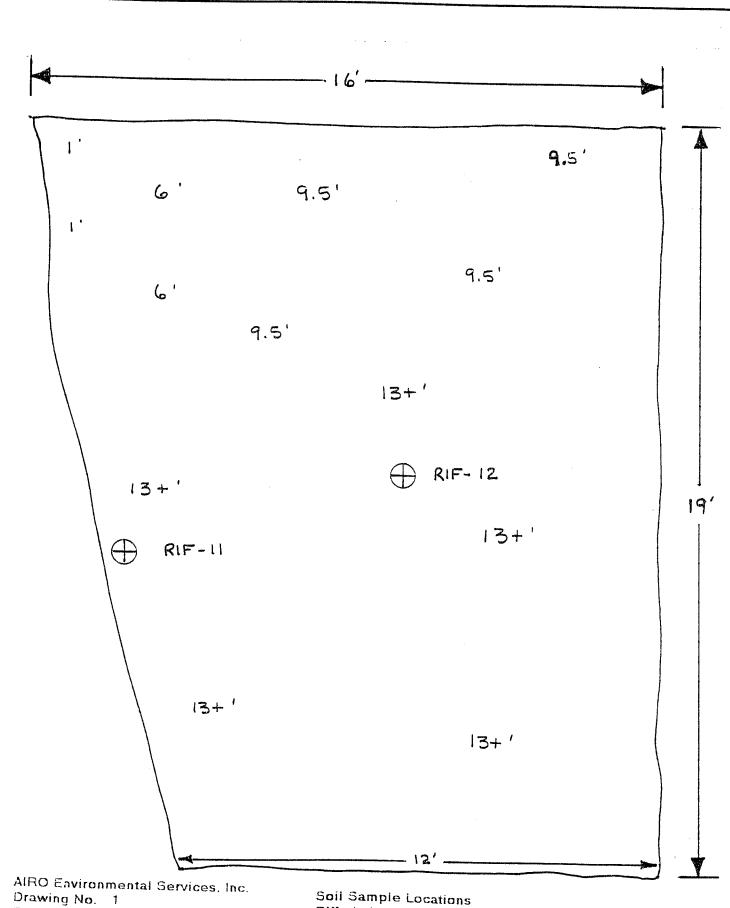
Alexander H. Koch

Site Assessment Manager

Michael W. Mattingly

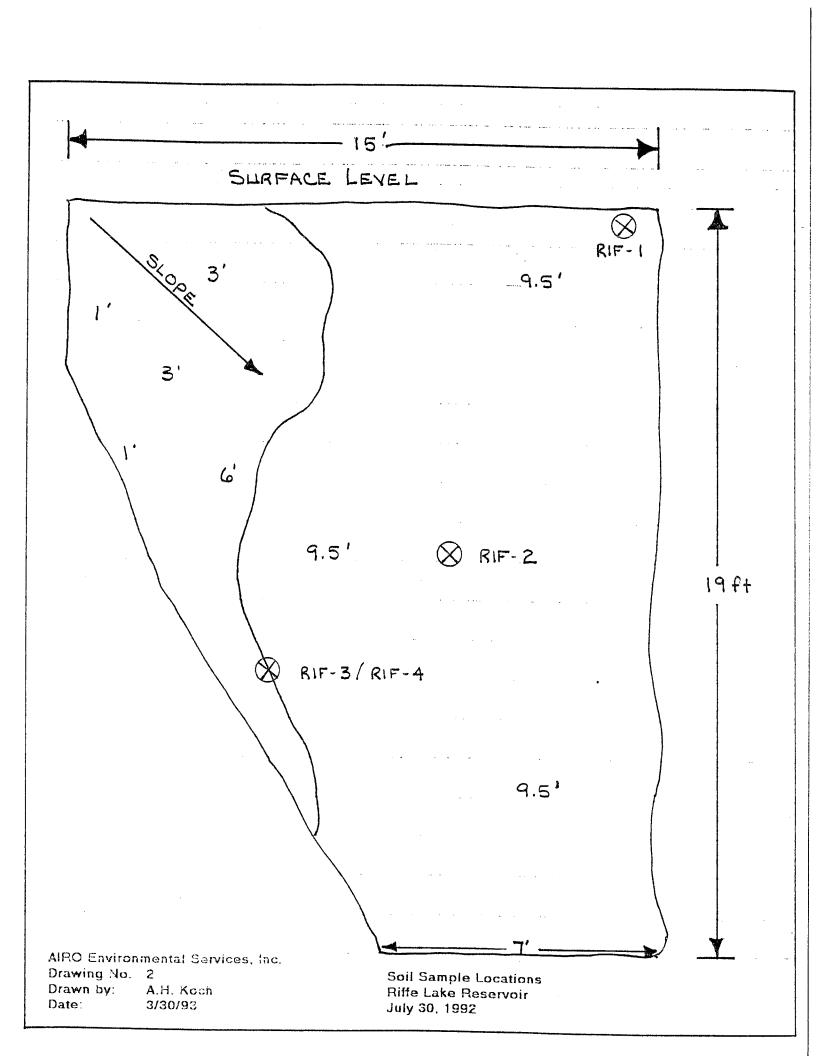
President

33193


Date

3-31-93

Date


EXHIBIT A

SITE LOCATION MAP AND AREA DRAWINGS

Drawn by: A.H. Koch 3/30/93

Soil Sample Locations Riffe Lake Reservoir August 14, 1992

EXHIBIT B

ANALYTICAL REPORTS

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Airo Services, Inc.

Date: July 23, 1992

Revised: July 27, 1992

Report On: Analysis of Waste Oil

& Oily Water

Lab No.: 25760

Page 1 of 8

IDENTIFICATION:

Samples received on 07-21-92

Project: 92ES043

ANALYSIS:

Lab No. 25760-1

Client ID: 72101 (Waste Oil)

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 7-24-92 Date Analyzed: 7-24-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND ND ND ND ND ND ND ND ND	450,000 450,000
		ND	900,000

ND - Not Detected

Airo Services, Inc. Project: 92ES043

Page 2 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101 (Waste Oil)

EPA Method 8270 Continued

DIA MECHOU	6270 Concinued		
CAS No.	Compounds	Concentration ug/kg	PQL
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 606-20-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene	2,600,000 ND ND ND ND ND ND ND *(130,000) ND ND ND ND ND ND ND ND ND ND	PQL 450,000 450,000 450,000 450,000 2,200,000 450,000 2,200,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 2,200,000 2,200,000 2,200,000 2,200,000 2,200,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000
84-74-2	Di-n-butylphthalate	ND	450,000

ND - Not Detected

Airo Services, Inc. Project: 92ES043

Page 3 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101 (Waste Oil)

EPA Method 8270 Continued

		 	
CAS No.	Compounds	Concentration ug/kg	PQL
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 117-81-7 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND *(240,000) ND ND *(120,000) ND *(240,000) ND	450,000 450,000 900,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	X8	35 - 114	23 - 120
	X8	43 - 116	30 - 115
	X8	33 - 141	18 - 137
	X8	10 - 94	24 - 113
	X8	21 - 100	25 - 121
	X8	10 - 123	19 - 122

Airo Services, Inc. Project: 92ES043 Page 4 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101

(Waste Oil)

WTPH-HCID

Date Extracted: 7-21-92 Date Analyzed: 7-21-92

Gasoline, mg/kg < 20

(C7 - C12)

Diesel, mg/kg > 50

(> C12 - C24)

Heavy Oil, mg/kg > 100

(C24+)

SURROGATE RECOVERY, %

1-chlorooctane X8 o-terphenyl X8

> TOX Per EPA Method 9076 Date Extracted: 7-21-92 Date Analyzed: 7-21-92

> > 5,100

Total Halogens, mg/kg

Airo Services, Inc. Project: 92ES043 Page 5 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101

(Waste Oil)

PCB'S Per EPA Method 8080 Date Extracted: 7-21-92 Date Analyzed: 7-22-92

PCB Compounds	Conc., mg/kg	POL
Aroclor 1016	ND	1.0
Aroclor 1221	ND	1.0
Aroclor 1232	ND	1.0
Aroclor 1242	ND	1.0
Aroclor 1248	ND	1.0
Aroclor 1254	ND	1.0
Aroclor 1260	ND	1.0

SURROGATE RECOVERY, %	
2,4,5,6-Tetrachloro-m-xylene	94
Decachlorobiphenyl	93

ND = Not Detected.

PQL - Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

Airo Services, Inc. Project: 92ES043

Page 6 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101

(Waste Oil)

Volatile Organics by Method 8240

Date Extracted: 7-23-92 Date Analyzed: 7-23-92

		I	1
CAS No.	Compounds	Concentration ug/kg	PQL
74-87-3 74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 71-55-6 56-23-5 108-05-4 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5	Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane	ND N	4,000 4,000 4,000 2,000

ND = Not Detected

Airo Services, Inc. Project: 92ES043

Page 7 of 8

Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-1

Client ID: 72101

(Waste Oil)

8240 Continued

CAS No.	Compounds	Concentration ug/kg	PQL
71-43-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 79-34-5 108-88-3 108-90-7 100-41-4 100-42-5 1330-20-7	Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes	*(1,200) ND ND ND ND ND ND ND 10,000 ND 5,800 ND 35,000	2,000 2,000 2,000 10,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000

ND - Not Detected

PQL - Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is an estimated quantity.

Results are reported Blank Corrected.

Volatile Surrogates

Surrogate	Percent Recovery	Control Limits
Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane D4	96 100 90	81 - 117 74 - 121 70 - 121

Continued

Airo Services, Inc. Project: 92ES043

Page 8 of 8 Lab No. 25760 July 23, 1992

Revised: July 27, 1992

Lab No. 25760-2

Client ID: 72102

(Oily Water)

PCB'S Per EPA Method 8080 Date Extracted: 7-21-92 Date Analyzed: 7-22-92

PCB Compounds	Conc., mg/l	POL
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	0.01 0.01 0.01 0.01 0.01 0.01

SURROGATE RECOVERY, %	
2,4,5,6-Tetrachloro-m-xylene	100
Decachlorobiphenyl	101

ND - Not Detected

PQL - Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

TOX Per EPA Method 9076 Date Extracted: 7-21-92 Date Analyzed: 7-21-92

Total Halogens, mg/l

< 10

SOUND ANALYTICAL SERVICES

MARTY FRENCH

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 · TELEPHONE (206)922-2310 · FAX (206)922-5047

QUALITY CONTROL REPORT

Page 1 of 2

Client:

Airo Services, Inc.

Lab No:

25760mb1

Units:

ug/kg

Date:

July 23, 1992

Blank No: V4195

METHOD BLANK

VOLATILE ORGANICS EPA SW-846 METHOD 8240 Compound Blank Value PQL Chloromethane ND 400 Bromomethane ND 400 Vinyl Chloride ND 400 Chloroethane ND 400 Methylene Chloride 950 200 Acetone 2,000 ND Carbon Disulfide ND 200 1,1-Dichloroethene ND 200 1,1-Dichloroethane 200 ND 1,2-Dichloroethene (Total) ND 200 Chloroform ND 200 1,2-Dichloroethane ND 200 2-Butanone ND 1,000 1,1,1-Trichloroethane ND 200 Carbon Tetrachloride ND 200 Vinyl Acetate 1,000 ND Bromodichloromethane ND 200 1,2-Dichloropropane ND 200 Cis-1,3-Dichloropropene ND 200 Trichloroethene ND 200 Dibromochloromethane ND 200 1,1,2-Trichloroethane ND 200 Benzene ND 200 Trans-1,3-Dichloropropene ND 200 Bromoform ND 200 4-Methyl-2-Pentanone ND 1,000 2-Hexanone ND 200 Tetrachloroethene ND 200 1,1,2,2-Tetrachloroethane 200 ND Toluene *(70) 200 Chlorobenzene ND 200 Ethyl Benzene *(71) 200 Styrene ND 200 Total Xylenes *(110) 200

Continued . . .

QUALITY CONTROL REPORT

Page 2 of 2

Client: Airo Services, Inc.

Lab No: 25760mb1

Units:

Date:

ug/kg July 23, 1992

Blank No: V4195

METHOD BLANK

VOLATILE ORGANICS EPA SW-846 METHOD 8240

ND = Not Detected

PQL = Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

*Compound was detected but below PQL. Value shown is estimated quantity.

VOLATILE SURROGATES

Surrogate	Percent Recovery	Control Limits Water Soil					
Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4	101	86 - 115	81 - 117				
	93	76 - 114	74 - 121				
	90	88 - 110	70 - 121				

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

WTPH-HCID

Client: Airo Services, Inc.

Lab No: 25760mb2

Units:

mg/kg

Date:

July 23, 1992

METHOD BLANK

Parameter	Blank Value	FLAGS
Gasoline (C ₇ -C ₁₂)	< 20	
Diesel (>C ₁₂ -C ₂₄)	< 50	
Heavy Petroleum Oil	< 100	
SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl	98 76	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

PCB'S by Method 8080

Client:

Airo Services, Inc.

Lab No: Units:

25760mb3

Date:

mg/kg July 23, 1992

METHOD BLANK

11111110	A TITUIL	
Compound	Blank Value	PQL
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0
SURROGATE RECOVERY% 2,4,5,6-TCMX Decachlorobiphenyl	103 101	

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Halogens

Client: Airo Services, Inc.

Lab No:

25760mb4

Units:

mg/l

Date:

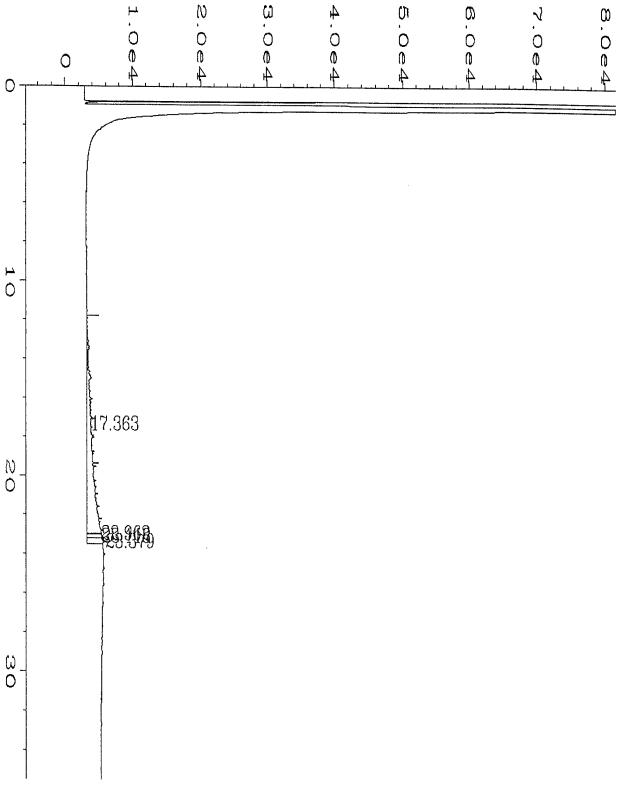
July 23, 1992

METHOD BLANK

Parameter Parameter	Blank Value
TOX	< 1

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

DATA QUALIFIER FLAGS


- ND: Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. This qualifier is used when estimating a TIC concentration or when the concentration of the analyte is less than the practical quantitation limit.
- C: The identification of this analyte was confirmed by GC/MS.
- B: This analyte was also detected in the associated method blank. There is a possibility of blank contamination.
- E: The concentration of this analyte exceeded the instrument calibration range.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- A: This TIC is a suspected aldol-condensation product.
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is non-homogeneous.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside QC limits due to matrix composition.
- X10: Surrogate recovery outside QC limits due to high contaminant levels.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

	A		011	, (11 4	0, 0,			<i>)</i>		_ \(\)		ו וכ	Oi	L L_/	JUC)	110		Δ 1	A_T	. I O	U						
CLIEN	IT:	i Da	Sv				ANA	LYSIS	REQU	JESTE	D:	····		·							y	,						
PROJI	ECT N	IAME()	255	04	3		tiles		PCB's		C/MS)	/WS)				TO	CLP Ex	tracti	on 									
CONT	ACT:	Ric	0	Him	20th	# of Containers	Halogenated Volatiles EPA 601/8010	Aromatic Volatiles EPA 602/8020	Chlorinated Pest., PCB's EPA 608/8080		Volatile Organics EPA 624/8240 (GC/MS)	Semi-volatiles EPA625/8270 (GC/MS)	-	ase	Total Metals (Specify below)			:= 89:	5 & 5 &	Q	2	·						
PHON	E NO:	353	-4/67	16		f Cont	ogena A 601/	matic 4 602/	orinate A 608/	PAH's	atile 0 4 624/	ni-vola 4625/8	TPH 418.1	Oil & Grease	al Met ecify b	8 Metals	Volatiles	Semi-volatiles	Pesticides & Herbicides	Ci	ζ	0						
LAB#		MPLE I.D.	DATE		MATRIX		표표	A Pro	유립	₹	N N	Ser EP,	TPI		Tog Sb	8	Vol	Ser	Pes	H		+						
	A	72101	7/21	8.000	Ultro	<u>L</u>					1		1	<u> </u>						メ	X	X	_					
		2102	721	B) car	10 William	 	<u> </u>														X	X						
											 																	
		,																							\neg		\dashv	 i
		····																										
				ļ		ļ																		ļ.—l				
· ·			 																							\dashv		
																									\dashv	-		
		·																									7	
																										\Box		
																									\dashv			
																									\dashv	\dashv	-	
1								丁				ل ـــــا	<u>_</u>			SPI	ECIAL	INSTE	RUCTIC	DNS/C	DMME	NTĘ:	-li	,! (R) And	$\frac{1}{2i\pi}$		L	\dashv
		Signat	ture		Printed	Nar	ne		F	irm		I	ime	/ Da	ate	_	The state of the s	128	FIC	1	OP	医系	PE		14			
Relinquish	ed By	Joh C	K	\int	ohn	()	dir		A	IM		089					D/	A	a	,	$\pm c$	X ($\frac{1}{2}$	Ŷ	
Received E	3y 4	56i	ang		56	; ; c	in	<u>, </u>	5	AS	5	84	<u> </u>	7/	2/		TC	1	ר		, •	,			0		hn	
Relinquish	ed By		\mathcal{L}				<u> </u>										HC	ル	D						_			\rightarrow
Received E	Зу												····				4	,	Oc.	7	~	7	$\gamma \sim 1$					
Relinquishe	ed By		· · · · · · · · · · · · · · · · · · ·			V 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1	rel	•	(A	5	1	11	نگرر				í	,
Received B	у													•			8)41	<u>) ((</u>	dd	cd	1/2	l. ∮) 11	M	<u>lX</u>	Cal	M
																		ι	M				Ì		,	,		


```
Data File Name
                 : C:\HPCHEM\1\DATA\072192_B\043R0101.D
Operator
                 : DAS/DMW
                                                 Page Number
                                                                     1
Instrument
                 : HP 5890
                                                 Vial Number
                                                                   : 43
Sample Name
                 : 25760-1 1:20
                                                 Injection Number:
                                                                     1
Run Time Bar Code:
                                                 Sequence Line
                                                                   : 1
Acquired on
                 : 22 Jul 92
                               07:19 AM
                                                 Instrument Method:
                                                                     TERPH-I.MTH
Report Created on: 22 Jul 92
                               08:14 AM
                                                 Analysis Method
                                                                   : II-HCID.MTH
Last Recalib on
                : 21 JUL 92 03:05 PM
                                                 Sample Amount
                                                                   : 0
Multiplier
                 : 1
                                                 ISTD Amount
```

External Standard Report

```
Data File Name : C:\HPCHEM\1\DATA\072192_B\043R0101.D
Operator : DAS/DMW
Instrument : HP 5890
Sample Name : 25760-1 1:20
                                         Page Number
                                                       : 1
                                         Vial Number : 43
                                         Injection Number: 1
Run Time Bar Code:
                                         Sequence Line : 1
Acquired on : 22 Jul 92 07:19 AM
                                         Instrument Method: TERPH-I.MTH
Report Created on: 22 Jul 92 08:14 AM
                                       Analysis Method : II-HCID.MTH
Last Recalib on : 21 JUL 92 03:05 PM
                                        Sample Amount : 0
Multiplier : 1
                                         ISTD Amount
Sig. 2 in C:\HPCHEM\1\DATA\072192_B\043R0101.D
Ret Time Area Type Width Ref# ng/ul
                                                    Name
```

Not all calibrated peaks were found

External Standard Report

		·	
ata File Name : C:\HPG	CHEM\1\DATA\072192_B\043	R0101.D	
perator : DAS/DI	MW	Page Number :	1
			43
ample Name : 25760	-1 1:20	Injection Number:	1
un Time Bar Code:		Sequence Line :	
cquired on : 22 Ju	.l 92 07:19 AM	Instrument Method:	
eport Created on: 22 Jul		Analysis Method:	
ast Recalib on : 26 JUI			0
(ultiplier : 1		ISTD Amount :	U
• -		ibib Amount .	
ig. 2 in C:\HPCHEM\1\DA	TA\072192 B\043R0101.D		
tet Time Area Typ	pe Width Ref# ng/ul	Name	
		_======================================	
8.297 273 BB	0.044 1 2.059	1-Cl-Octane	
19.358 2627 PV	_	o-Terphenyl	
	2002 2 200702	o rerbucily r	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Airo Services

Date: August 3, 1992

Report On: Analysis of Soil

Lab No.: 26037

IDENTIFICATION:

Samples received on 07-31-92

Project: 92ES043

ANALYSIS:

Lab No. 26037-1

Client ID: RIF-1

WTPH-418.1 Modified Date Extracted: 7-31-92 Date Analyzed: 8-2-92

Heavy petroleum oils, mg/kg
(C24+)

< 100

TOX Per EPA Method 9076 Date Extracted: 7-31-92 Date Analyzed: 7-31-92

Total Halogens, mg/kg

< 10

Continued

Airo Services Project: 92ES043 Page 3 of 4 Lab No. 26037 August 3, 1992

Lab No. 26037-4

Client ID: RIF-4

WTPH-418.1 Modified Date Extracted: 7-31-92 Date Analyzed: 8-2-92

Heavy petroleum oils, mg/kg (C24+)

< 100

TOX Per EPA Method 9076 Date Extracted: 7-31-92 Date Analyzed: 7-31-92

Total Halogens, mg/kg

< 10

Lab No. 26037-5

Client ID: RIF-5

WTPH-418.1 Modified Date Extracted: 7-31-92 Date Analyzed: 8-2-92

Heavy petroleum oils, mg/kg (C24+)

4,300

TOX Per EPA Method 9076 Date Extracted: 7-31-92 Date Analyzed: 7-31-92

Total Halogens, mg/kg

< 10

Continued

Airo Services Project: 92ES043 Page 4 of 4 Lab No. 26037 August 3, 1992

Lab No. 26037-6

Client ID: RIF-6

WTPH-418.1 Modified Date Extracted: 7-31-92 Date Analyzed: 8-2-92

Heavy petroleum oils, mg/kg
(C24+)

5,300

TOX Per EPA Method 9076 Date Extracted: 7-31-92 Date Analyzed: 7-31-92

Total Halogens, mg/kg

< 10

SOUND ANALYTICAL SERVICES

MARTY FRENCH

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

WTPH-418.1 Heavy Petroleum Oils (C24+)

Client:

Airo Servcies

Lab No:

26037qc

Matrix:

Soil

Units:

mg/kg

Date:

August 3, 1992

DUPLICATES

Dup No. 26037-5	.		.
Parameter	Sample (S)	Duplicate (D)	RPD
ТРН	5,300	4,600	14

RPD = Relative Percent Difference = $[(S - D) / ((S + D) / 2] \times 100$

METHOD BLANK

Parameter		Value
TPH	<	100

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

CLIENT: AIRO		ANA	LYSIS	REQU	ESTE	D:																
PROJECT NAME: 92ES043	-	tiles		PCB's		C/MS)	Semi-volatiles EPA625/8270 (GC/MS)				Т.	CLP E	ctracti	on		418.1						
CONTACT: Alex	iners	Halogenated Volatiles EPA 601/8010	Aromatic Volatiles EPA 602/8020	1 Pest., 080		Volatile Organics EPA 624/8240 (GC/MS)			eg.	s low)			Sa]	ళ		- 4						
PHONE NO: 383-4916	# of Containers	genate 6 601/8	natic \ 602/8	Chlorinated Pest., F EPA 608/8080	4,s	tile Or 624/8	i-volati 1625/82	TPH 418.1	Oil & Grease	Total Metals (Specify below)	8 Metais	Volatiles	Semi-volatiles	Pesticides & Herbicides		MTPH	10X					
LAB # SAMPLE I.D. DATE TIME MATRIX	•	Hal EP/	Arol EP/	Chl EP/	PAH's	Vols EP/	Sen EP/	ΤΡ	ō	Tota (Spe	8	Vol	Sen	Pes		3						
RIF-1 7/30/15 SOIL	<u> </u> 										-					X	X	 				-
RIF-2 /92 Soil																X	Х					
RIF-3 Soil																x	×	 	-			
NIT 2	_														_				\vdash	-		
RIF-4 + Soil																X	×					
RIF-5 16 Soll																×	х		-		-	-
60																						
RIF-6 + Soil																x	X	 ļ				ļ
																\dashv		 		_		
															_			 				
Signature Printed	Nai	ne		Fi	irm		Т	ime	/ Da	ate	SP	ECIAL	INSTI	RUCTIO	NS/CC	OMME	NTS:					
Relinquished By AHK	آمر.	h		AIR	0		7/3	192	<u>,</u>	9:				_								
Received By Many Cutters Mary (^		- 1				7/2	119		9:1		K	lt	St								
Relinquished By					<u>,,</u>		1	!-{&-		- 												
Received By					J7 - R																	
lelinquished By																						į
leceived By							•															

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Airo Services

Date: August 11, 1992

Report On: Analysis of Solid

Lab No.: 26173

IDENTIFICATION:

Sample received on 08-06-92

Project: 92ES043

ANALYSIS:

Lab No. 26173-1

Client ID: Rif -2

TPH per EPA Method 418.1 Date Extracted: 8-10-92 Date Analyzed: 8-10-92

Total Petroleum

Hydrocarbons, mg/kg

300

TOX per EPA Method 9076 Date Extracted: 8-6-92 Date Analyzed: 8-7-92

Total Halogens, mg/kg

< 10

Lab No. 26173-2

Client ID: Rif-34

TPH per EPA Method 418.1 Date Extracted: 8-10-92 Date Analyzed: 8-10-92

Total Petroleum Hydrocarbons, mg/kg

360

TOX per EPA Method 9076 Date Extracted: 8-6-92 Date Analyzed: 8-7-92

Total Halogens, mg/kg

< 10

SOUND ANALYTICAL SERVICES

MARTY FRENCH

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Airo Services

Date: August 18, 1992

Report On: Analysis of Soil

Lab No.: 26380

IDENTIFICATION:

Sample received on 08-14-92 Project: 92ES043 Lake Riffe

ANALYSIS:

Lab No. 26380-1

Client ID: RIF-11

WTPH-418.1 Modified Date Extracted: 8-16-92 Date Analyzed: 8-17-92

Heavy petroleum oils, mg/kg

< 100

(C24+)

TOX per EPA Method 9076 Date Extracted: 8-17-92 Date Analyzed: 8-17-92

Total Halogens, mg/kg

< 10

Lab No. 26380-2

Client ID: RIF-12

WTPH-418.1 Modified Date Extracted: 8-16-92 Date Analyzed: 8-17-92

Heavy petroleum oils, mg/kg

< 100

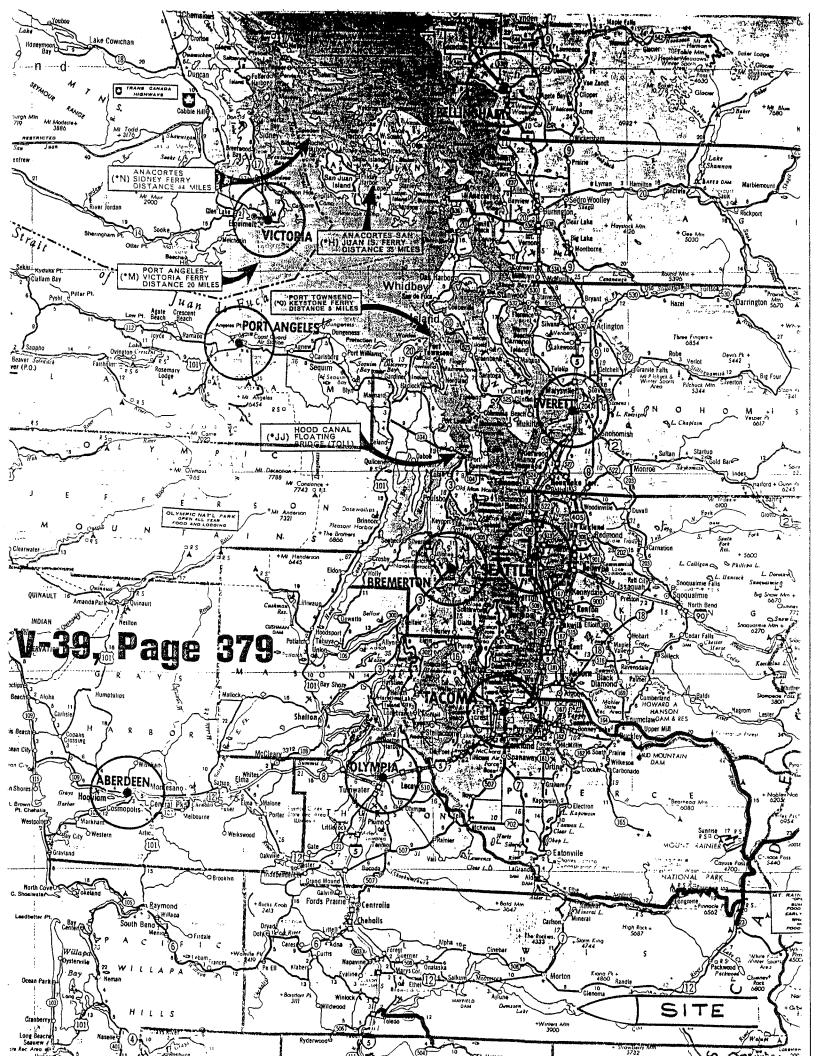
(C24+)

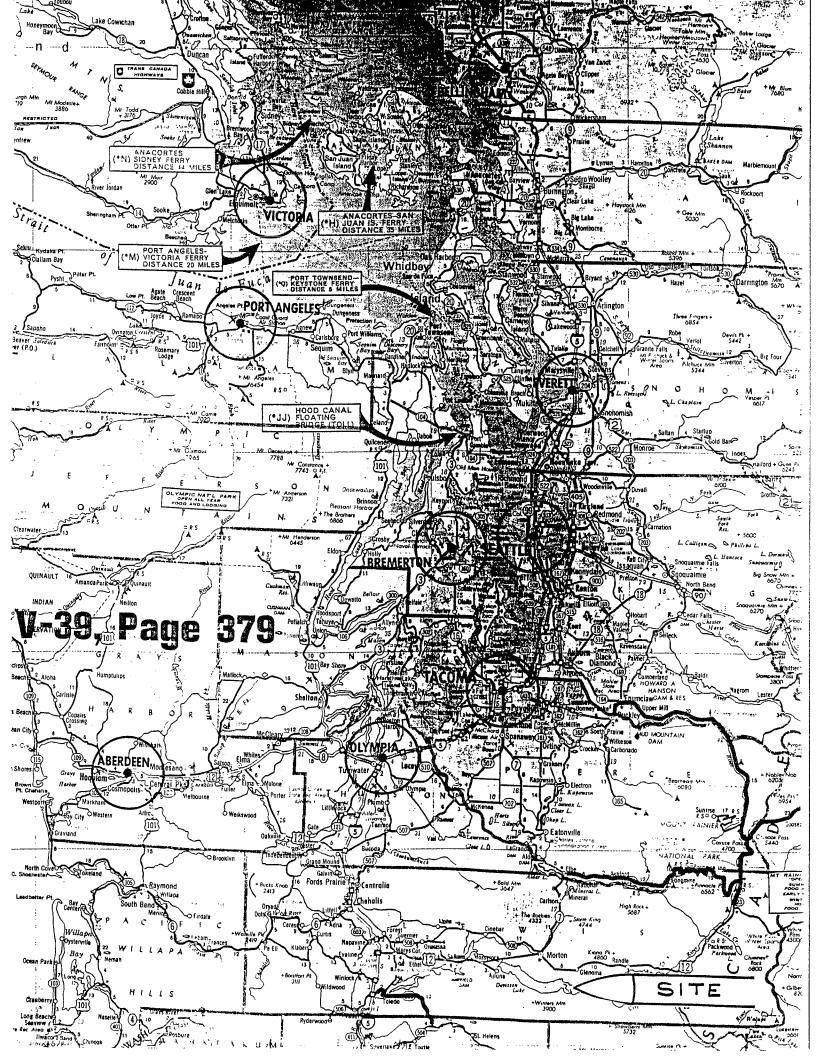
TOX per EPA Method 9076 Date Extracted: 8-17-92 Date Analyzed: 8-17-92

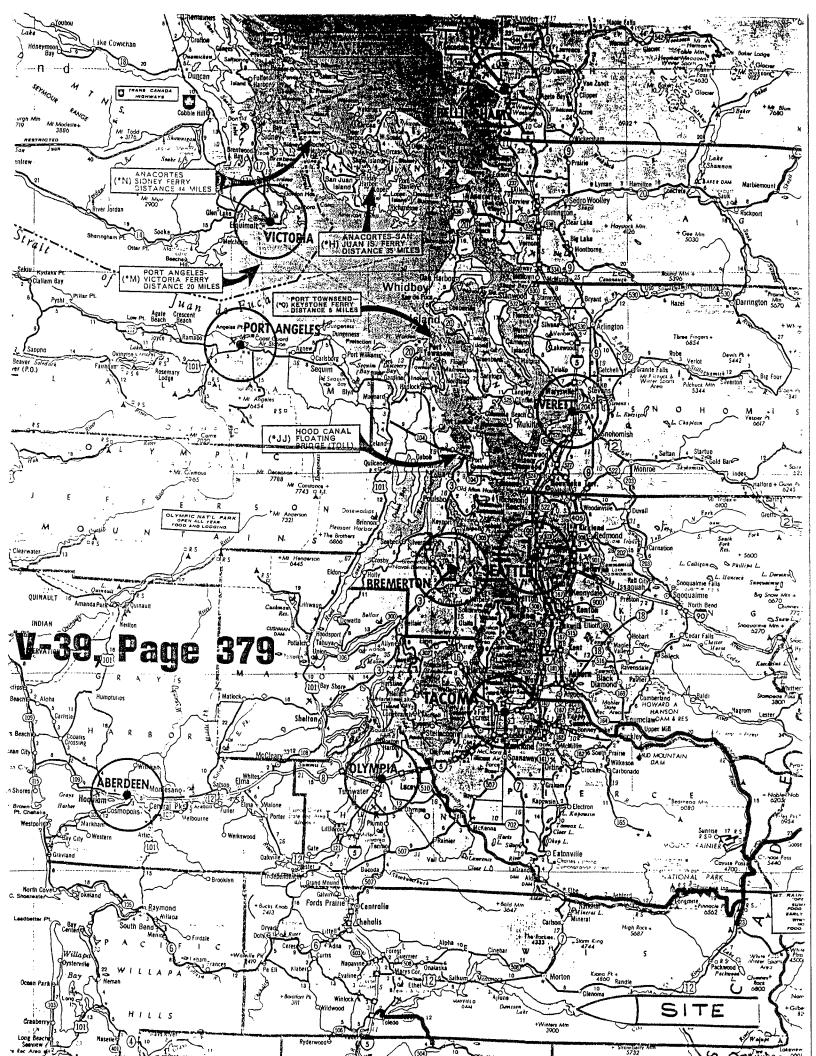
Total Halogens, mg/kg

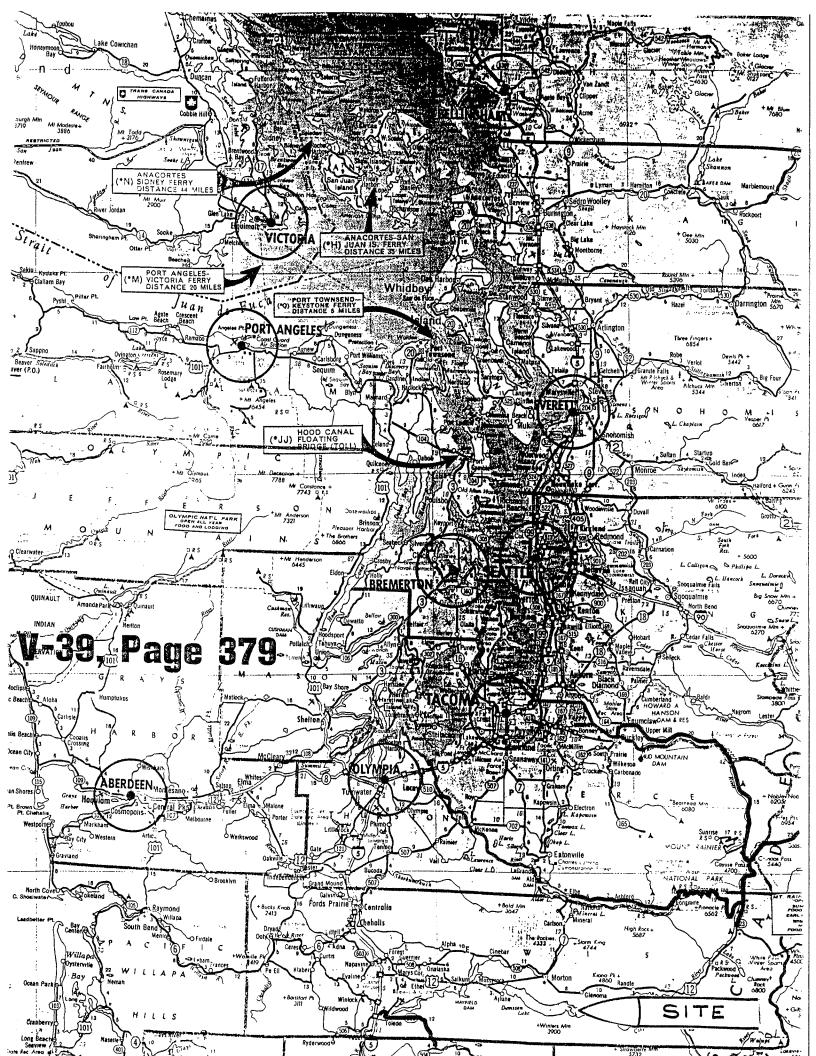
< 10

SOUND ANALYTICAL SERVICES


is report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with lustry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.


ANALYTICAL & ENVIRONMENTAL CHEMISTS


4813 Pacific Hwy. East. Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047


CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

0.151	<u> </u>	٨	$\overline{}$				1	ANA	LYSIS	REQU	ESTE	D:																	
CLIEN.	1:	<u>Au</u>	₹0 ≥€	ERYL	رحي	<u>S</u>			Τ	T	 	<u> </u>	ı —		Γ	1	T	CLP Ex	(tracti	on				Γ		l			Г
PROJE	ECT I	NAN	1E: L	ERYI AKE ZES	R1F	= 3 3		atiles	ş	Chlorinated Pest., PCB's EPA 608/8080		Volatife Organics EPA 624/8240 (GC/MS)	C/MS)				•				1.8.1								
PHONE NO: 383-4916			Containers	Halogenated Volatiles EPA 601/8010	Aromatic Volatiles EPA 602/8020	ad Pest 8080		rganics 8240 (C	Semi-volatiles EPA625/8270 (GC/MS)	трн 418.1	Oil & Grease	Total Metals (Specify below)	8 Metais	8 Metais Volatiles	atiles	8 & 85	4-4	,											
			Cont	ogena 6 601/	matic 4 602/	orinate A 608/	PAH's	atile C	ni-vola 4625/8						Semi-volatiles	Pesticides & Herbicides	WTPH	18											
LAB#			E I.D.	DATE	TIME	MATRIX	*	EPA	Aro EP/	EP/	PA	EP	Ser EP/	TP	ō	Tota (Sp	8 1	Vol	Ser	Pes									
	RIF	-	11	8/19/92	12	Soil	-					<u> </u>									×	×							
	RUF	= _	12	192	1	Soic															Χ	<							
								ļ																-					
					ļ	<u> </u>	 	-		-																-	-		
				-	 	ļ						<u> </u>												-	-			_	
					 		-																						
																							ļ		-				
				-		ļ							<u> </u>												-	 		<u> </u>	
				 																									
			Şigna	ature		Printed	l Na	me		F	irm		7	ſime	/ D	ate	SF	PECIAL	. INST	RUCTI	ONS/C	ОММі	ENTS:						
Relinquish	ed By		W		7 -	HKO	cl	\		A	RC	<u> </u>	•			144 27	.5		K	, Uʻ	St	+							
Received E	3у С	N	Tangl	r uotu	0 1	nary	Cu	rh	<u>S</u>	SA	5		8/	14K	ìa	2%	45	i Ion					_						
Relinquish	ed By		0			V												,	1										
Received E	Зу																												
Relinquishe	ed By																_												
Received E	Ву															· · ·						····							

UNDERGROUND STORAGE TANK

Site Check/Site Assessment Checklist

The purpose of this form is to certify the proper investigation of an UST site for the presence of a release. These activities shall be conducted in accordance with Chapter 173.360 WAC. A description of the various situations requiring a site check or site assessment is provided in the guidance document for UST site checks and site assessments.

This Site Check/Site Assessment Checklist shall be completed and signed by a person registered with the Department of Ecology to perform site assessments.

Two copies of the results of the site check or site assessment should be included with this checklist according to the reporting requirements in the guidance document for UST site checks and site assessments.

For further information about completing this form, please contact the Department of Ecology UST Program.

The completed checklist should be mailed to the following address:

Underground Storage Tank Section Department of Ecology Mail Stop PV-11 Olympia, WA 98504-8711

L			
1. UST SYSTEM OW	/NER AND LOCATION	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	
UST Owner/Operator:	Tacoma Public Utili	ties	
Owners Address:	•		
	Street		P.O. Box 11007
	Tacoma	WA	Р.О. Вох 98 411
Telephone:	City (206) 383-2471 Ext	State . 8513	ZIP-Code
Site ID Number (on invo	ice or available from Ecology if t	ank is registered):N/A	
Site/Business Name:	Riffe Lake Reservoi	r	
Site Address:	Former Kosmos Mill	Site	Lewis
	Street		County
	Glenoma	WA	98336
	J.,	State	ZIP-Code
2. SITE CHECK/SITE	ASSESSMENT CONDUCT	ED BY:	
Registered Person:	Alexander H. Koch (A	iro Environmental)	
Address:	4110 East 11th Stree		,
	Street		P.O. Box
	City	WA State	98421
Telephone:	(206) 383-4916	oldig	ZIP-Code

FCY 010-150

UNDERGROUND STORAGE TANK

Permanent Closure/Change-In-Service Checklist

The purpose of this form is to certify the proper closure/change-in-service of underground storage tank (UST) systems. These activities must be conducted in accordance with Chapter 173.360 WAC. Washington State UST rules require the tank owner or operator to notify Ecology in writing 30 days prior to closure or change-in-service of tanks. This must be done by completing the 30 Day Notice form (ECY 010-155).

This Permanent Closure Checklist shall be completed and signed by a Licensed Decommissioning Supervisor. The supervisor shall be on site when all tank permanent closure/change-in-service activities are being conducted. The firm which employs the licensed supervisor shall also be licensed by the Washington State Department of Ecology as a Service Provider. If any of the activities listed below have been supervised by a different licensed supervisor, a separate checklist must be filled out and signed by the licensed supervisor performing those activities.

For further information about completing this form, please contact the Department of Ecology UST Program.

A separate checklist must be completed for each UST system (tank and associated piping), except that UST systems at one site may be reported together by completing page 2 of this form separately for each system. The completed checklist should be mailed to the following address within 30 days of the completion of the closure or change-in-service.

Underground Storage Tank Section Department of Ecology Mail Stop PV-11 Olympia, WA 98504-8711

1. UST SYSTEM OW	NER AND LOCATION		
Site Owner/Operator:	Tacoma Public Utilities	70	
Owners Address:			P.O. Box 11007
	Street		P.O. Box 11007
	Tacoma City	WA	98411
Telephone:	(206) 383-2471 Ext. 8513	State	ZIP-Code
Site ID Number (on invol	ice or available from Ecology if tank is regis	stered):	N/A
Site Address:	Former Kosmos Mill Site		
	Street		Lewis County
	Glenoma	WA	98336
	City	State	ZIP-Code
2. TANK PERMANEI	NT CLOSURE/CHANGE-IN-SERVICE	PERFOR	MED BY:
Firm:	Airo Services, Inc.	•	License Number: 5002034
Address:	4110 East 11th Street		
	Street		P.O. 8ox
	Tacoma City	WA	98421
Telephone:	(206) 383-4916	State	ZIP-Code
Licensed Supervisor:	HENRY R. OHRAZDA		Decommissioning License Number: W002087

This page must be completed separately for each tank permanently closed (decommissioned) or change-in-service at the site. For additional tanks you may photocopy this form prior to completing.

3. TANK CLOSURE/CHANGE-IN-SERVICE INFORMATION	eung.	
Tank ID Number (as registered with Ecology): N/A Z. Year installed:	N/A	
3. Tank capacity in gallons: 5000 4. Date of last use:	N/A	
5. Last substance stored: Bunker C 6. Date of closure/change-in-		00 100
7. Type of closure: Closure with Texts Personal V	hange-in-Serv	
8. If in-place closure is used, the tank has been filled with the following substance:	11a1196-111-561V	ice
9. If change-in-service, indicate new substance stored in tank:		
10. Local permit(s) (if any) obtained from:		
Always contact local authorities regarding permit requirements.		
11. Has a site assessment been completed? Vec X		
Unless an external release detection system is operating at the time of closure or change in service, and a report is 173-360-390, a site assessment must be conducted. This site assessment must be conducted by a person register Ecology to perform site assessments. Results of the site assessment must be included with the Site Assessment Conducted.	provided as sp	ecified in WAC eartment of
4. CHECKLIST	necklist (ECY 01	0-158).
Each item of the following checklist shall be initialed by the licensed supervisor whose signature	annears hale	200
Has all liquid been removed from product lines?		No NA*
2. Has all product piping been capped or removed?		X
3. Have all non-product lines been capped or removed?		X
Have all liquid and accumulated sludges been removed from the tank?		X
5. Has the tank been properly purged or inerted?	X	
6. Have the drop tube, fill pipe, gauge pipe, pumps and other tank fixtures been removed?	Х	
		X
7. Have all tank openings been plugged or capped? NOTE: One plug should have 1/8 inch vent hole.		х
3. Have all sludges removed from the tank been designated and disposed of in accordance with the state of Washington's dangerous waste regulations (Chapter 173-303 WAC)?	X	
If removed, was tank properly labeled and disposed of in accordance with all applicable local, state and federal regulations?	X	
them not applicable Thereby certify that I have been the licensed supervisor present on site during the above listed permanent he best of my knowledge they have been conducted in compliance with all applicable state and federal la procedures pertaining to underground storage tanks.		ties and to
Persons submitting false information are subject to penalties under Chapter 173.360 WAC.		
3 · 3 / - 9 3 Date Signature of Dicerted Supervisor		
. ADDITIONAL REQUIRED SIGNATURES		-
3-31-93 Myla, ly Hall.		
Date Signifule of Ticensed Seque Provider filling Owner of Julhonzed Representative Date Signature of Tank Owner or Authorized Representative		

Table B-1 - Analytical Results for Water at Site D

Sample ID	71202
Sampling Date	7/21/1992
Media	Water

Total Halogens in mg/L EPA Method 9076

Total Halogens 10 U

PCBs in mg/L EPA Method 8080

Acroclor 1016	0.01 U
Acroclor 1221	0.01 U
Acroclor 1232	0.01 U
Acroclor 1242	0.01 U
Acroclor 1248	0.01 U
Acroclor 1254	0.01 U
Acroclor 1260	0.01 U

U = Not detected at detection limit indicated.

Table B-2 - Analytical Results for Soil Samples at Site A

Sample ID Sampling Date Media	RIF-1 7/30/1992 Soil	RIF-2 7/30/1992 Soil	RIF-3 7/30/1992 Soil	RIF-4 7/30/1992 Soil	RIF-5 7/30/1992 Soil	RIF-6 7/30/1992 Soil	RIF-2 8/6/1992 Soil	RIF-34 8/6/1992 Soil	RIF-11 8/18/1992 Soil	RIF-12 8/18/1992 Soil
Location Depth in feet	NE corner 9.5	Center floor 9.5	West wall 6.5	Duplicate (RIF-3) 6.5	Stockpile	Stockpile	Center floor 11	West wall 7	Center floor 13	West wall 12
TPH in mg/kg WTPH-418.1, WTPH-HCID Heavy Petroleum Oils C25+	100 U	250	310	100 U	4300	5300	300	360	100 U	100 U
Total Halogens in mg/kg EPA Method 9076 Total Halogens	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U

U = Not detected at detection limit indicated.

Table B-3 - Analytical Results for Waste Oil Sample at Site A

Sample ID 72101 Sampling Date 7/21/1992 Media Waste Oil

TPH in mg/kg

WTPH-418.1, WTPH-HCID

 Gasoline
 20 U

 Diesel
 50 U

 Heavy Oi
 100 U

Total Halogens in mg/kg

EPA Method 9076

Total Halogens 5100

VOCs in μg/kg

Method 8240

Chloromethane 4000 U 4000 U Bromomethane Vinyl Chloride 4000 U 4000 U Chloroethane Methylene Chloride 4000 U Acetone 20000 U 2000 U Carbon Disulfide 1,1-Dichloroethene 2000 U 1,1-Dichloroethane 2000 U 1,2-Dichloroetheen (Total) 2000 U Chloroform 2000 U 1.2-Dichloroethane 2000 U 2-Butande 10000 U 1,1,1-Trichloroethane 2000 U Carbon Tetrachloride 2000 U Vinyl Acetate 10000 U Bromodichloromethane 2000 U 1,2-Dichloropropane 2000 U Cis-1,3-Dichloropropene 2000 U Trichloroethene 2000 U Dibromochloromethane 2000 U 1,1,2-Trichloroethane 2000 U Benezene 1200 Trans-1,3-Dichloropropene 2000 U Bromoform 2000 U 4-Methyl1-2-Pentanone 2000 U 2-Hexanone 2000 U Tetrachloroethene 2000 U 1,1,2,2-Tetrachloroethane 2000 U Toluene 10000 Chlorobenzene 2000 U 5800 Ethyl Benzene Styrene 2000 U **Total Xylenes** 35000

SVOCs in µg/kg

EPA SW-846 Method 8270

Phenol

bis(2-Chloroethyl) ether 450000 U 2-Chlorophenol 450000 U 1,3-Dichlorobenzene 450000 U

Table B-3 - Analytical Results for Waste Oil Sample at Site A

Analytical Root	ito ioi viaoto
Sample ID	72101
Sampling Date	7/21/1992
Media	Waste Oil
1,4-Dichlorobenzene	450000 U
Benzyl Alcohol	450000 U
1,2-Dichlorobenzene	450000 U
2-Mehylphenol	450000 U
bis(2-chloroisopypl)ether	450000 U
	450000 U
N-Nitroso-Di-N-prpylamine	
Hexachloroethane	450000 U
Nitrobenzene	450000 U
Isophorone	450000 U
2-Nitrophenol	450000 U
2,4-Dimethylphenol	450000 U
Benzoic Acid	2200000
bis(2-Chloroethoxy)methane	450000 U
2,4-Dichlorophenol	450000 U
1,2,4-Trichlorobenzene	450000 U
Naphthalene	520000
4-Chlorozniline	900000 U
Hexachlorobutadiene	450000 U
4-Chloro-3-methylphenol	900000 U
2-Methylnaphthalene	2600000
Hexachlorocyclopentadiene	450000 U
2,4,6-Trichlorophenol	450000 U
2,4,5-Trichlorophenol	450000 U
2-Chloroaphthalene	450000 U
2-Nitroaniline	2200000 U
Dimethyl phthalate	450000 U
Acenaphthylene	450000 U
3-Nitroaniline	450000 U
Acenaphthene	130000
2,4-Dinitrophenol	2200000 U
4-Nitrophenol	2200000 U
Dibenzofuran	450000 U
2,4-Dinitrotoluene	450000 U
2,6-dinitrotoluene	450000 U
Diethylphthalate	450000 U
4-Chlorophenyl phenyl ether	450000 U
Fluorene	240000
4-Nitroaniline	2200000 U
4,6-Dinitro-2-methylphenol	2200000 U
N-Nitrosodiphenylamine	450000 U
4-Bromophenyl phenyl ether	450000 U
Hexachlorobenzene	450000 U
Pentachlorophenol	2200000 U
Phenanthrene	800000
Anthracene	190000
Di-n-butylphthalate	450000 U
Fluoranthene	450000 U
Pyrene	240000
Butyl benzyl phthalate	450000 U
3,3'-Dichlorobenzidine	900000 U
Benzo(a)anthracene	120000
bis(2-ehtylhexyl)phthalate	450000 U
Chrysene	240000
- ,	

Table B-3 - Analytical Results for Waste Oil Sample at Site A

Sample ID	72101
Sampling Date	7/21/1992
Media	Waste Oil
Di-n-octyl phthalte Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	450000 U 450000 U 450000 U 450000 U 450000 U 450000 U

PCB's in mg/kg

EPA Method 8080

Acroclor 1016	1 U
Acroclor 1221	1 U
Acroclor 1232	1 U
Acroclor 1242	1 U
Acroclor 1248	1 U
Acroclor 1254	1 U
Acroclor 1260	1 U

U = Not detected at detection limit indicated.

APPENDIX C Emergency Independent Remedial Action Completion Summary

APPENDIX C EMERGENCY INDEPENDENT REMEDIAL ACTION COMPLETION SUMMARY

Introduction

This emergency IRA completion summary details the excavation and off-site disposal of petroleum-contaminated soil and the construction and installation of a protective cap in association with the petroleum seeps observed in the area of the former Kosmos Mill Site. In April 2019, the seeps were reported to Ecology. Tacoma Power immediately began investigating the seep and implementing measures to mitigate risks to human and environmental health.

In November 2019, Tacoma Power declared an emergency in order to conduct an IRA at the Site while the seep was exposed/accessible and before the water levels were expected to rise. The emergency IRA included the following components:

- Installation of BMPs prior to construction;
- Design of an engineered cap;
- Soil excavation from the creek bank and sloping back the bank for proper cap placement;
- Surface water quality sampling during construction to verify BMP effectiveness;
- Temporarily collecting construction dewatering discharge;
- Temporarily stockpiling petroleum-impacted soil separately in the upland area of the Site;
- Soil sampling and analysis of the bank and creek bed material (remaining in-place) prior to placement of the cap;
- Stockpile sampling and analysis for off-site disposal of the excavated petroleum-contaminated soil;
- Disposal of approximately 186,200 gallons of construction dewatering discharge to the City of Morton's, PRS Group's, and City of Tacoma's wastewater treatment plants; and
- Disposal of approximately 10,956 tons of petroleum-impacted soil off-site at the Cowlitz County Headquarters Landfill and Hillsboro Landfill.

Details of these components are summarized below.

Best Management Practices

BMPs were installed by Tacoma Power, NRC Environmental, and AEC before earth work activities began. Ecology reviewed and approved a WQPP that outlined the proposed BMPs and water quality monitoring

that would be conducted during construction (Appendix D). The selected and approved BMPs were implemented in order to prevent, minimize, and control the discharge of waste and other controllable water quality factors associated with the emergency IRA. Erosion and sediment control measures were installed and in-place at all times during the emergency IRA work.

Temporary erosion control measures included plastic sheeting covering during significant weather events, straw bales, and plastic-lined silt fence at the bank toe of on Rainey Creek that contained the construction area. The silt fence was effectively keyed-in to the bank toe subsurface to prevent sediment discharge offsite and into the creek. Sea curtains and booms were installed in several locations within the creek, downstream of the work area (as shown in Figure 7). Water quality samples from the creek surface waters were collected in several locations to monitor and evaluate the effectiveness of the BMPs. The location of the BMPs and creek surface water sample locations are shown on Figure 7 in Section 5.4.1.

Cap Design

The protective cap consisted of placement of clean sand (6-inch layer) followed by a granular Organoclay liner to adsorb any NAPL from water (Reactive Core Mat[™] [RCM] with Organoclay® by Cetco). Another layer of clean sand (8 inches) and a permeable composite geotextile was placed on top of the liner for protection prior to covering with an 18-inch thick layer of large quarry spalls (4-8 inch). The cap liner and quarry spalls were keyed into the existing grade at the toe of the creek. The slope key is essentially an excavated trench at the toe of the slope to key in the liner and riprap. The sides and up-slope segments of the cap were also keyed into the respective existing grades with an anchor trench (as shown on Figure C-4) to properly secure the RCM liner. Based on the hydraulic calculations (presented in Appendix J), heavy riprap was recommended for the riprap slope key at the toe of the slope, and large spalls (or light-loose riprap) for the cap cover material.

Hart Crowser recommended a Reactive Core Mat[™] (RCM) with Organoclay® by Cetco as a potential BMP, because it is a permeable composite of geotextile and granular Organoclay that reliable absorbs NAPL and low solubility organics from water. This product is routinely used for embankment seepage control, groundwater remediation, and subaqueous caps for contaminated sediments. The product sheet and material technical data is provided in Appendix I. The use of the RCM was selected by Tacoma Power as a BMP based on the literature search and its application and effectiveness in similar situations. Since time was of the essence, as the water elevations in the lake and creek were anticipated to rise, the team proceeded with a protective cap utilizing Cetco's RCM with Organoclay as part of the IRA. No bench-scale or pilot study was conducted on the selected BMP based on the time constraints and therefore the design relied upon the published data, similar experiences, and collaboration with the Tacoma Power team and selected contractor (AEC).

In order to install the RCM and keep the product securely in place during any fluctuations in Rainey Creek water levels, Tacoma Power suggested installing a riprap cover to key-in the RCM product since there was limited time available to construct the cap while water levels were down (and the oil seeps were accessible). Hart Crowser estimated appropriate riprap sizing and provided a conceptual design that could be installed by AEC and field-fitted based on the changing (and unknown) conditions at the Site. The

conceptual cap design that was provided to Tacoma Power in November 2019 is illustrated on Figures C-1 through C-4 and the design details are provided below.

Basis of Design

Due to the emergency and urgent nature of the project, Hart Crowser used readily available information, similar project experience, and collaboration with AEC and the project team to prepare a conceptual-level design. Several assumptions were made in conducting hydrologic and hydraulic analyses, which included a high factor of safety to determine the required riprap size for the cap design. Surveyed cross sections of the bank, stream channel, and floodplains were not available. Typical bed and bank material descriptions and other details were researched but not available to assist in the hydrologic and hydraulic analyses, or to help obtain a deeper understanding of the flow conditions associated with the stream reach. The designed cap was successfully implemented and installed (field-fitted) in December 2019 by AEC, with oversight by Hart Crowser and Tacoma Power.

Flow Conditions. Typical stream bank restoration efforts are designed to convey the 2-year peak flow at a bank-full elevation. The United States Geological Survey (USGS) StreamStats Washington web-based GIS application (StreamStats), was used to determine the approximate drainage basin area for the ungauged creek. StreamStats provides basin characteristics and flow statistics; it also uses local regression equations to calculate the peak flows for a variety of storm events.

The contributing area from the Rainey Creek drainage basin area is approximately 20.22 square miles that is conveyed to/past the seep. The estimated creek flows (including stormwater runoff and snow melt) that is conveyed past the seep location is 856 cubic feet per second (cfs) for the 2-year peak flow (Q_2) and 2,940 cfs for the 100-year peak flow (Q_{100}) . Details are provided in Appendix J.

Riprap Sizing. The USGS riprap sizing method (USGS 1986) is based on analysis of field data from 26 sites across the northwest (and 39 large storm events at these sites) to relate the hydraulic conditions at the site to the performance of the riprap. This method utilizes an average channel velocity in the computation of median riprap size. Although this method typically provides overly conservative results, a safety factor was also applied due to the significant uncertainties associated with the design parameters, and to account for potential higher flow velocities and shear stresses that may occur along the cap structure.

The velocity and median riprap relationship were correlated resulting in the following equation and results are provided in Table C-1:

 $D_{50} = 0.01 V_a^{2.44}$

Where V_a = average channel velocity in feet per second (ft/s); and D_{50} = calculated median riprap size in feet

Table C-1 - Riprap Sizing Table

Flow Condition Scenario	Calculated Median Riprap Size (D ₅₀) ^a	Applied Safety Factor	Recommended Riprap Size
Low Water Levels	1.27 feet	1.5 x 1.27 = 1.91 feet	Heavy Riprap (WSDOT)
(slope key area)		3.0 x 1.27 = 3.81 feet	D ₅₀ = 2.2 feet
Higher Water Levels	0.34 feet	1.5 x 0.34 = 0.51 feet	Quarry Spalls or Light
(main cap cover material)		3.0 x 0.34 = 1.02 feet	Loose Riprap (WSDOT) b
			D ₅₀ = 0.5 feet
			D ₅₀ = 1.1 feet

Notes:

- a. Riprap size was calculated using the USGS method and checked against the Isbash curve to confirm the material size is acceptable.
- b. Large quarry spalls (D₅₀ of 4 to 8 inches) was the recommended minimum size for the cap cover material, but light loose riprap would also be acceptable and possibly more readily available and cost effective.

In addition to the cap design and construction oversight, Hart Crowser representatives also assisted Tacoma Power staff with the creek surface water sampling, soil sampling following the completion of excavation, and stockpile soil sampling.

Excavation of Petroleum-Impacted Soil

To properly install the cap, the creek bank needed to be sloped back to physically construct and accommodate the cap structure over the observed oil seep locations Figure 3 illustrates the location of the cap area.

The excavation for the cap area was approximately 160 to 175 feet (northeast to southwest) and approximately 130 to 160 feet (northwest to southeast). At the toe of the creek bank, the depth of the excavation ranged between approximately 10 feet towards the center of the bank near the oil seep and over 20 feet along the north edge. The excavation tapered to approximately 6 inches at the top of the slope.

The cap keyed-in on the top and sides with Detail 1 – RCM Anchor Trench Detail. The bottom of the cap was stabilized with Detail 3 - Riprap Slope Key. The depth and details on how they were generally constructed are shown on Figure C-4. All of the excavated soil was segregated and stockpiled on the eastern side of the Site as illustrated on Figure 2, labeled stockpile area.

During construction, AEC diverted some of the flow in the bottom of the creek bed away from the cap slope key to facilitate construction. The material was not removed, but instead was moved toward the silt fence. This work kept the lower flows more in the center of the creek bed and away from the construction. The channel that was more clearly defined by this work, was approximately 170 feet long, 7.5 feet wide, and 1.5 feet deep.

During soil excavation of the creek bank, a Hart Crowser field representative was periodically assessing soil for environmental impacts using field screening methods, including visual and olfactory observations,

sheen testing, and organic vapors monitoring using a PID. Based on field screening results, soil near the top of the bank did not have any obvious environmental impacts within approximately the first two feet bgs and tapered to approximately less than 4 inches near the toe of the creek bank. This overburden soil was segregated and stockpiled (SP1) in the upland area of the Site for further characterization and to determine eligibility for reuse as backfill or for the soil to remain at the Site.

Hart Crowser observed petroleum-impacted soil beneath the overburden where the oil seeps were located on the creek bank and towards upland area to the southeast, as well as in the creek bed adjacent to the observed oil seeps. The petroleum-impacted soil near the oil seeps (samples LB-2, LB-3, and UB-1) exhibited grey and black staining with strong petroleum-like odors. A strong petroleum-like odor was noted from the area of Rainey Creek's creek bed where sample Creekbed1 was collected. PID readings were generally elevated and ranged from approximately 60 to 400 ppm. Petroleum-impacted soil was observed below the surface during some grading work near the ravine area to the northeast. Tacoma Power staff observed petroleum-impacted soil southwest of the cap footprint as described in Section 7.0.

An abandoned pipe remnant and an old culvert were discovered while excavating the creek bank, at the top of the slope in the upland area east of the original oil seep area and in ravine area, respectively. The discovered pipe remnant and the culvert section had some noted seeping water and were removed. Another pipe remnant was discovered to the south while excavating near the former building foundations (Figure 8). The pipe contained some oily product (NAPL) and part of the pipe was removed. The pipe origin is unknown, but may have been related to the former USTs associated with historical mill operations.

Observed petroleum impacts appeared to extend across a majority of the face of the creek bank where the cap was to be placed, which was subsequently excavated and temporarily stockpiled (SP2) in the upland area of the Site.

The cap footprint and excavation were extended northeast to the edge of the ravine area and southeast to chase the petroleum-impacted soil. The petroleum-impacted soil was excavated as much as possible; however, the lake and creek water levels were rising as precipitation increased and major storm events were predicted. The excavation was terminated in order to install the cap and stabilize the Site in a timely manner. The petroleum-impacted soil extents were not fully evaluated or removed along the creek bed. Along the creek bank, the petroleum-impacted soil that was visible was covered by the cap. On the west side of the cap, a vein of petroleum-impacted soil was observed by Tacoma Power staff to be running parallel with the creek but covered with four feet of material that did not appear impacted. This vein of impacted material extended beyond the cap footprint; however, it is unknown how far it extends (as shown in Figure 8).

Although some residually impacted soil was left in-place, a large amount of petroleum-impacted soil was removed from the Site. Selected photos from the emergency IRA are provided in Appendix K.

After excavation was completed and before the cap was installed, soil confirmation samples were collected from the creek bank within the excavated footprint near the observed oil seep. These confirmation samples represent in-situ soil conditions and are described in detail in Section 5.2 and summarized in Table 3.

Rainey Creek Surface Water Monitoring

BMPs were monitored during excavation activities through surface water sampling of Rainey Creek, per the WQPP in Appendix D of this report. Figure 7 illustrates where the BMPs were installed in Rainey Creek. The analytical results of the surface water samples are described in Section 5.4.1 and summarized in Table 5 for samples collected during excavation activities and in Table 6 for samples collected by Tacoma Power after excavation activities. Most of the surface water exceedances observed during excavation activities were contained within the sea curtain across Rainey Creek (directly adjacent to the excavation area). Only one sample slightly exceeded the zinc indicator level outside the sea curtain; however, subsequent surface water sampling during excavation activities at this sample location and downstream were below zinc indicator levels. The remaining surface water samples collected during excavation activities were within indicator levels, confirming that the BMPs used were effective.

After excavation was completed, surface water samples that exceeded the indicator levels were possibly due to the increase in precipitation and runoff since excavation activities were completed and the upstream sample (U-3) contained copper and TPH-O concentrations exceeding indicator levels.

On-Site Water Treatment System

Dewatering was performed as needed by AEC on water that accumulated in the construction area between the bank and the plastic-lined silt fence for constructing the cap and slope key. The water was pumped up the bank to a treatment system that was installed for the purpose of treating the petroleumimpacted water encountered in the construction area. The dewatering operations and treatment system were designed and operated by AEC and their subcontractor, Hydrocon. A Water Treatment Plan by AEC/Hydrocon was submitted to Ecology for review and approval. Dewatering from cap construction activities was pumped to the uplands to on-site baker tanks for storage, treatment, and possible on-site disposal in the former log pond area, as approved by Ecology.

However, on-site disposal was not possible because of the lack of infiltration of the site soil and the heavy rains. Also, treated water was sampled and tested by Hydrocon for petroleum (gasoline, diesel, and oil), TSS, BTEX, and total metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc). The treated water did not meet the TSS, copper, and zinc water quality limits established in Table 1 of the WQPP. After several passes through the treatment system the water still appeared very cloudy and did not meet the water quality limits. Modifications to the treatment system were explored; however, there was not time to design and test a new system. Therefore, this water was hauled off-site for disposal. Approximately 186,200 gallons of impacted water was disposed of off-site at the City of Morton's, PRS Group's, and City of Tacoma's wastewater treatment facilities.

In the final days of hauling the petroleum-contaminated stockpile and construction water, large amounts of precipitation prevented the off-site disposal. A temporary surface water diversion trench was graded on the east and north sides of the stockpile area to keep the rainwater from accumulating in the stockpile area (Figure 2). The stockpile area was lined with plastic sheeting; however, the plastic sheeting was being removed when loading the petroleum-contaminated soil in trucks. The baker tanks that were used for temporary storage of impacted water were full and could not keep up with the heavy rains; therefore,

hauling of the decanted water from the petroleum-contaminated stockpile was limited to the available trucks. Sawdust and diatomaceous earth were added to the stockpile until the soil was dry enough to load on trucks. After conversations and an on-site visit with Ecology, some of the stockpile decanted water was pumped into the log pond for infiltration. This was necessary in order to keep the stockpile area dry enough to remove the petroleum-contaminated soil before the entire site was submerged. Pumping to the log pond was intermittent over an 8-hour period as required to keep the water level down in the stockpile area and began on the afternoon of February 6. On February 7, 2020, AEC was able to resume and complete hauling of petroleum-contaminated soil. On February 8, 2020, two water quality samples (Log Pond #1 and Log Pond #2, Figure 2) were taken and exceeded indicator levels as defined in the WQPP for pH in both samples and turbidity in sample Log Pond #2.

Soil Stockpile Characterization Summary

During excavation of the cap area, overburden soil was segregated into separate stockpiles based on observed petroleum impacts. Each stockpile was characterized for petroleum, petroleum-constituents, and metals. The temporary stockpiles were constructed in the upland area towards the east (Figure 2), and placed on and covered with, plastic sheeting. Around the perimeter of the stockpile area plastic-lined silt fence was installed, and outside of the silt fence a dewatering trench was constructed to keep stormwater runoff (via sheet flow) from contacting petroleum-contaminated soils within the stockpile area. During removal of the petroleum-contaminated soil, sumps were installed in the stockpile area to pump impacted water to baker tanks for removal. Stockpile BMPs were implemented and maintained by AEC and Tacoma Power.

Approximately 3,000 tons of the observed to be non-impacted soil was stockpiled (SP1) and approximately 10,956 tons of the petroleum-impacted soil was stockpiled (SP2). Five soil samples were collected from SP1 and eleven soil samples were collected from SP2.

Stockpile samples were analyzed by Friedman and Bruya for one or more of the following:

- TPH-D
- TPH-O
- TPH-G
- BTEX
- Total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver)
- PAHs, including cPAHs

The stockpile soil sample analytical results are summarized in Table C-2 and the chemical data quality review and laboratory reports are provided in Appendix G.

Analytical results were compared to the MTCA Method A soil CULs for unrestricted land use. Analytical results are summarized below.

Stockpile SP1 Analytical Results. All the stockpile soil sample results from SP1 were below MTCA Method A CULs or the laboratory reporting limits.

Stockpile SP2 Analytical Results. Several stockpile soil sample results from SP2 were above applicable MTCA CULs for TPH-D, TPH-O, TPH-G, and PAHs, confirming that the petroleum-impacted soil that was stockpiled needed to be disposed of off-site at a regulated landfill.

Petroleum-Impacted Soil Disposal

The petroleum-impacted stockpile (SP2) was removed and disposed of off-site at Cowlitz County Headquarters Landfill and Hillsboro Landfill, Inc. for a total of 10,955.79 tons. The disposal was completed on February 7, 2020.

Since stockpile SP1 did not exceed MTCA Method A soil cleanup levels, the stockpile was left on-site. In April 2020, the stockpile was graded and seeded for stabilization.

Ponded Water Monitoring

In March 2020, Tacoma Power collected surface water samples (SOP 1 and COP 1) from ponded water in the former stockpiled area (Figure 2). Grab samples were collected by directly submerging sample containers at the sampling location. The analytical results of the ponded water samples are described in Section 5.4.2 and sample results are summarized in Table 6. Both surface water sample results contained concentrations of turbidity, copper, and zinc above indicator levels. Sample SOP 1 contained elevated concentrations of TPH-D and TPH-O above indicator levels as well as below indicator levels for pH.

There were no releases of this ponded water outside of the stockpile area. Tacoma Power developed a plan to cover the stockpile area with bioretention soil and biofiltration seed to further stabilize the stockpile area, fill in the depressed areas to promote drainage, and to promote further vegetation growth.

Summary and Recommendations

Approximately 10,956 tons of petroleum-impacted soil and 186,200 gallons of impacted water was removed and disposed of off-site. A protective cap was installed along the Rainey Creek bank, which included a permeable RCM to treat any residual impacts that remain in-place following the excavation work. Some soil with elevated concentrations of TPH-O, TPH-D, and cPAHs were left in-place (samples LB-2 that was covered by the cap and Creekbed 1) as well as areas observed to have petroleum impacts during construction of the cap (northeast near the ravine and southwest near the toe of the creek that was covered with non-impacted soil during grading) due to limited time before water levels in the lake and creek rose.

The cap is currently being monitored by Tacoma Power staff through weekly inspections. The Tacoma Power inspection form is provided in Appendix L. Tacoma Power inspections began March 17, 2020, and shortly after were suspended due to COVID restrictions. Inspections resumed on June 2, 2020, and are ongoing.

Inspections of the protective cap can only be conducted when the cap is exposed. During the recreation season (May through September) the reservoir is operated with the goal of keeping the water level at elevation 749 feet (753 feet NAVD 88), which results in the cap mostly being underwater. The Tacoma

Power staff's routine visual inspections assess if the protective cap is performing as intended (physical isolation, soil stabilization, and chemical isolation). Specific items or processes that may be monitored include cap integrity, thickness, and consolidation; the need for cap replenishment; and chemical migration potential.

Capping and natural recovery performance should be monitored over time in order to confirm that the cap continues to isolate petroleum-impacted soil and/or that natural recovery processes continue to function. This is especially important following high energy disturbances at the Site, such as big storm events, in which the mechanism of the remedy can be damaged or when the water levels fluctuate at the Site. For example, storm events can expose petroleum-impacted soils that were capped or erode those that were previously isolated. Monitoring should confirm that:

- The thickness of the cap is maintained, and Tacoma Power staff should note any signs of failure such as slumping, scouring, and channeling.
- The edges of the cap are maintained.
- The bank upstream and downstream of the cap have been maintained. Erosion, especially downstream of the Site, shall be monitored for any additional seeps.

REFERENCES

USGS 1986. Rock riprap design for protection of stream channels near highway structures; Volume 2, Evaluation of Riprap design procedures. By J.C. Blodgett and C.E. McConaughy. Water-Resources Investigations Report 86-4128. 1986.

Table C-2 - Analytical Results for Stockpile Soil Samples

Sample ID Sampling Date	MTCA Method A Cleanup Level ^a	SP1-1 12/5/2019	SP1-2 12/5/2019	SP1-3 12/5/2019	SP1-4 12/5/2019	SP1-5 12/5/2019	SP2-1 12/5/2019	SP2-2 12/5/2019	SP2-3 12/5/2019	SP2-4 12/5/2019	SP2-5 12/5/2019	SP2-6 12/6/2019
TPH in mg/kg												
Diesel Range Organics	2000	50 U	83	50 U	50 U	110	50 U	74	170	50 U	50 U	660
Lube Oil	2000	250 U	600	250 U	250 U	620	250 U	480	250 U	250 U	250 U	2300
Gasoline Range Organics	30/100 b	5 U	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	25 UJ
Metals in mg/kg												
Arsenic	20	1.45	1.57	2.22	1.49	1.38	1.12	1.44	1.31	1 U	1.91	1.81
Barium		65.8	48.6	51.5	61.3	71.9	61.7	60.7	58.7	67	60.6	54.8
Cadmium	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chromium	19/2000 °	18.1	12.4	14	14.7	19.1	15.4	14.7	18.6	15.9	18.5	11
Lead	250	6.7	13.1	2.51	2.62	3.29	2.49	16.9	2.44	2.56	3.52	9.06
Mercury	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Selenium		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Silver		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BTEX in mg/kg												
Benzene	0.03	0.02 U	0.02 UJ									
Ethylbenzene	6	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.1 UJ
Toluene	7	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.1 UJ
Total Xylenes	9	0.06 U	0.3 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.3 UJ
PAHs in mg/kg												
Acenaphthene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.07
Acenaphthylene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Anthracene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.11
Benz[a]anthracene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.16
Benzo(a)pyrene	0.1	0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.14
Benzo(b)fluoranthene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Benzo(ghi)perylene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Benzo(k)fluoranthene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Chrysene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.3
Dibenzo(a,h)anthracene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Fluoranthene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.063
Fluorene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.14
Indeno(1,2,3-cd)pyrene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Naphthalene	5	0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.05 U	0.5 U	0.05 U	0.05 U	0.5 U	0.05 U
Phenanthrene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.052	0.5 U	0.072	0.05 U	0.5 U	0.41
Pyrene		0.5 U	0.5 U	0.01 U	0.01 U	0.5 U	0.054	0.5 U	0.072	0.05 U	0.5 U	0.66
Total cPAHs TEQ	0.1	NC	0.16									

Table C-2 - Analytical Results for Stockpile Soil Samples

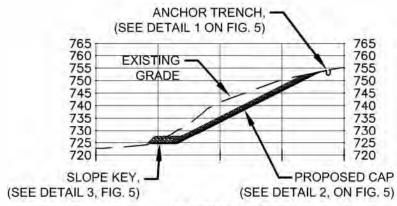
Sample ID Sampling Date	MTCA Method A Cleanup Level ^a	SP2-7 12/6/2019	SP2-8 12/8/2019	SP2-9 12/8/2019	SP2-10 12/8/2019	SP2-11 12/8/2019
TPH in mg/kg						
Diesel Range Organics	2000	12000	110	4300	440	1700
Lube Oil	2000	12000	250 U	4300	870	3000
Gasoline Range Organics	30/100 b	25 U	J 5 U	240	25 U	110
Metals in mg/kg						
Arsenic	20	2.18	1.61	1.59	1.79	1.79
Barium		70.1	52.5	42.6	56.9	50
Cadmium	2	1 U	1 U	1 U	1 U	1 U
Chromium	19/2000 °	12	14.3	12.4	13.5	16.1
Lead	250	21.8	13.5	6.19	6.45	4.91
Mercury	2	1 U	1 U	1 U	1 U	1 U
Selenium		1 U	1 U	1 U	1 U	1 U
Silver		1 U	1 U	1 U	1 U	1 U
BTEX in mg/kg						
Benzene	0.03	0.02 U	J 0.02 U	0.02 U	0.02 U	0.02 U
Ethylbenzene	6	0.1 U		0.1 U	0.1 U	0.1 U
Toluene	7	0.1 U		0.28	0.1 U	0.1 U
Total Xylenes	9	0.3 U	J 0.3 U	0.88	0.3 U	0.3 U
PAHs in mg/kg						
Acenaphthene		0.5 U		1.2	0.2	0.5 U
Acenaphthylene		0.5 U		0.5 U	0.05 U	0.5 U
Anthracene		0.5 U		2.1	0.38	0.66
Benz[a]anthracene		0.52	0.12	1.6	0.3	0.93
Benzo(a)pyrene	0.1	0.35	0.071	0.62	0.16	0.72
Benzo(b)fluoranthene		0.5 U		0.5 U	0.064	0.5 U
Benzo(ghi)perylene		0.5 U		0.5 U	0.05 U	0.5 U
Benzo(k)fluoranthene		0.5 U		0.5 U	0.05 U	0.5 U
Chrysene		0.96	0.19	2	0.52	1.6
Dibenzo(a,h)anthracene		0.5 U		0.5 U	0.05 U	0.5 U
Fluoranthene Fluorene		0.5 U 0.5 U		0.6 2.7	0.12 0.45	0.5 U 0.71
		0.5 U		2. <i>1</i> 0.5 U	0.45 0.05 U	0.71 0.5 U
Indeno(1,2,3-cd)pyrene Naphthalene	5	0.5 U		0.5 U	0.05 U	0.5 U
Phenanthrene	J	0.5 U 0.9	0.05 U	8.5	1.4	2.4
Pyrene		2.1	0.36	4.9	1.4	3.7
Total cPAHs TEQ	0.1	0.41	0.085	0.80	0.21	0.83
Total of All 3 TEQ	0.1	0.71	0.000	3.00	J.Z I	0.03

NC=Not Calculated

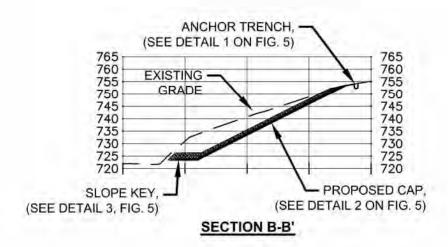
Detected concentrations are bolded.

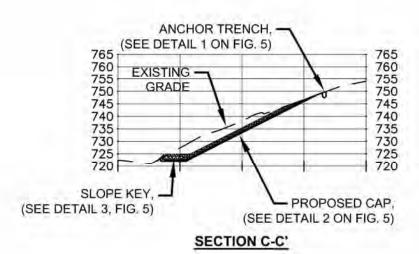
Concentrations that exceed cleanup level are shaded.

U = Not detected at detection limit indicated.

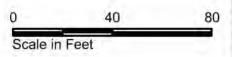

J = Estimated.

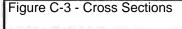
a. Method A soil cleanup level for unrestricted land use.

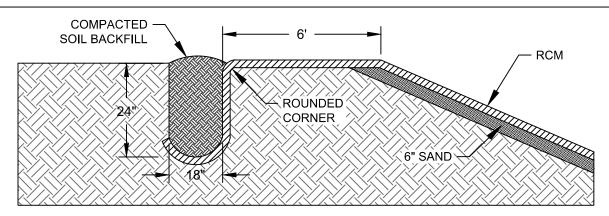

b. 30 mg/kg when benzene is present; 100 when benzene is not detected.

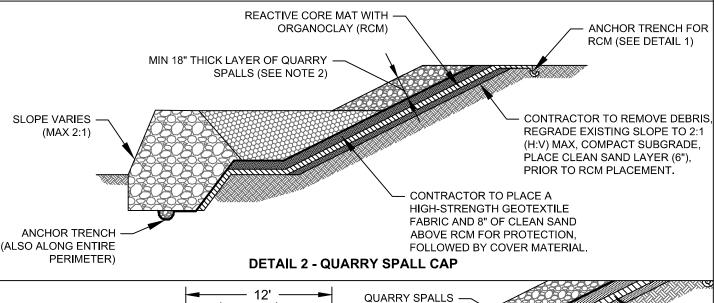

c. 19 mg/kg as Chromium VI/2000 mg/kg as Chromium III.

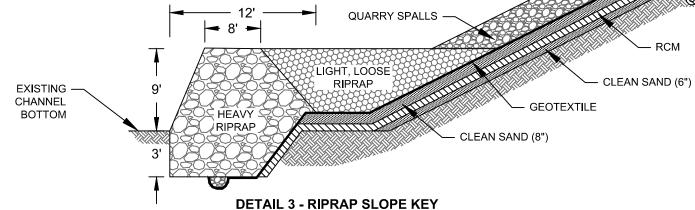
Date: 11/20/19




SECTION A-A'




Reference Number: Applicant Name: Tacoma Public Utilities Proposed Project:


Kosmos Oil Seep - Proposed Cap Location: Former Kosmos Mill Site

Date: 11/20/19

DETAIL 1 - RCM ANCHOR TRENCH DETAIL

- 1. Subgrade preparation. The subgrade surface must be relatively smooth and free of vegetation, sharp-edged rocks, stones, sticks, construction debris, and other foreign matter that could contact the RCM. All protrusions extending more than 1 inch from the subgrade surface shall be removed, crushed, or pushed into the surface. Contractor will then compact the existing subgrade and place a minimum 6" layer of clean sand.
- 2. Slope capping tolerance. The layer thickness shown on the plans for filter material and riprap slope capping materials is a minimum thickness. Slope capping materials shall be placed within a tolerance of +6 inches.
- 3. Any impacted soil encountered during earthwork/regrading of slope will be removed by Contractor and disposed of off-site at an appropriate disposal facility.
- 4. Contractor shall follow the RCM manufacturer's installation instructions. All RCM panels should lie flat, with no wrinkles or folds, especially at the exposed edges of the panels. The end of the RCM roll should be placed in an anchor trench at the top of the slope. RCM seams are constructed by overlapping adjacent panel edges and ends. Care should be taken to ensure that the overlap zone is not contaminated with loose soil or other debris. Seam should be overlapped by a minimum of 12 inches. If the RCM is damaged (torn, punctured, perforated, etc.) during installation, it may be possible to repair it by cutting a patch to fit over the

damaged area. Contractor shall place a high-strength geotextile fabric over the RCM for protection, prior to placing the quarry spalls.

5. Cover Material: Contractor shall carefully place large quarry spalls (4" - 8") and/or light loose riprap over the high-strength geotextile fabric as shown in the details above.

FIGURE C4 - CAP DETAILS

Reference Number:

Applicant Name: Tacoma Public Utilities

Proposed Project:

Kosmos Oil Seep - Proposed Cap Location: Former Kosmos Mill Site

Date: 11/20/19

APPENDIX D Water Quality Protection Plan Tacoma Public Utilities, Tacoma Power

Kosmos Oil Seep Exploration and Capping

Water Quality Protection Plan (WQPP)

12/2/2019 — 12/2/2022

Tacoma Power 12/2/2019 Revised 12/11/2019

Initial approval provided by Ecology on 12/06/2019

List of Acronyms and Abbreviations

Acronym / Abbreviation Explanation

303(d) Section of the Clean Water Act pertaining to Impaired Waterbodies

BFO Bellingham Field Office of the Department of Ecology

BMP(s) Best Management Practice(s)

CESCL Certified Erosion and Sediment Control Lead

CO₂ Carbon Dioxide

CRO Central Regional Office of the Department of Ecology

CSWGP Construction Stormwater General Permit

CWA Clean Water Act

DMR Discharge Monitoring Report

DO Dissolved Oxygen

Ecology Washington State Department of Ecology

EPA United States Environmental Protection Agency

ERO Eastern Regional Office of the Department of Ecology

ERTS Environmental Report Tracking System

ESC Erosion and Sediment Control

GULD General Use Level Designation

NPDES National Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Units

NWRO Northwest Regional Office of the Department of Ecology

pH Power of Hydrogen

RCW Revised Code of Washington

SPCC Spill Prevention, Control, and Countermeasure

su Standard Units

SWMMEW Stormwater Management Manual for Eastern Washington **SWMMWW** Stormwater Management Manual for Western Washington

SWPPP Stormwater Pollution Prevention Plan

TESC Temporary Erosion and Sediment Control

SWRO Southwest Regional Office of the Department of Ecology

TMDL Total Maximum Daily Load

VFO Vancouver Field Office of the Department of Ecology

WAC Washington Administrative Code

WSDOT Washington Department of Transportation

WWHM Western Washington Hydrology Model

Table of Contents

Introduction	6
General purpose of the WQPP	6
Existing permits and regulations	
Project Summary	
Project Location:	
Project Description:	
Project Narrative	
Work Sequence	
Erosion, Sediment and Pollution Control Best Management Practices (BMPs)	
General BMPs	
Site-Specific BMPsSite-specific Near- and/or In-Water BMP narrative	
Specific Work Areas/Activities	
1. Installation of BMPs	
Location of Activities and Associated BMPs	
2. Establishment/reinforcement of access roads	
Location of Activities and Associated BMPs	12
3. Excavation and grading	
Location of Activities and Associated BMPs	12
4. Transportation and storage of spoils	12
Location of Activities and Associated BMPs	
5. Creation of preferrential water path within the stream bed through limited dredging	10
actionsLocation of Activities and Associated BMPs	
6. Placement of rip-rap slope key	
Location of Activities and Associated BMPs	13
7. Construction of cap	13
Location of Activities and Associated BMPs	13
8. Removal of BMPs	13
Location of Activities and Associated BMPs	
Monitoring/Sampling Methodology	
Applicable project criteria and information:	_
Contingency PlanSite Inspections	
Reporting	
Appendices	
Appendix A: HPA	
Appendix B: NWP 38 letter of coverage	
Appendix C: Timeline (November 12, 2019)	
Appendix D: Site maps	

Appendix E: Table of parameters, analytical methods, detection limits and quantitation	1
levels	34
Appendix F: Table of project contacts	37
Appendix G: Site Inspection Form	

Introduction

General purpose of the WQPP

The Water Quality Protection Plan (WQPP) is a compliance tool that provides the Washington State Department of Ecology (Ecology) with "reasonable assurance" of the protection of water quality.

Existing permits and regulations

	Number	Date(s)
401 WQC	11-2001	01/15/2002
HPA	Emergency Verbal HPA (Scott Brummer) 2019-5-129+01	11/26/2019 12/06/2019 - 01/24/2020
USACE 404 Nationwide	NWS-2019-941-WRD (NWP 38 - Cleanup of Hazardous and Toxic Waste)	11/26/2019 - 03/18/2022

Project Summary

Project/Site Name: Kosmos Oil Seep Exploration and Capping

• Street/Location: Champion Haul Road

City: GlenomaCounty: LewisState: WA

• Zip code: 98336

• Parcel Number: 30775001000

Location (lat/long): 46.492262, -122.191761

• Waterbody: Riffe Lake/Rainey Creek

• FERC License Number: 2016

This document presents the Water Quality Protection Plan (WQPP) for activities related to the Kosmos Oil Seep Exploration and Capping located in Lewis County, Washington. Activities performed under this WQPP are covered by Tacoma Power's Hydraulic Project Approval (HPA) issued by Washington Department of Fish and Wildlife (WDFW) and Clean Water Act Section 404 Nationwide Permit (NWP) issued by the United States Army Corps of Engineers. WDFW (Scott Brummer) issued an emergency verbal permit on November 26, 2019. The Emergency HPA (Permit Number: 2019-5-129+01) was issued on December 6, 2019 and covers a period of November 26, 2019 through January 24, 2020 (Appendix A). Tacoma Power obtained coverage under NWP 38 – Cleanup of Hazardous and Toxic Waste from the USACOE in an emailed letter (NWS-2019-941-WRD) on November 26, 2019 (Appendix B). NWP authorization is valid until March 18, 2022, unless the NWP is modified, reissued, or revoked prior to that date.

This WQPP describes the project area, activities performed, and Best Management Practices (BMPs) utilized to prevent environmental degradation resulting from the actions of capping contaminated soils and exploratory drilling/test pits to characterize the source and extent of contamination. The Washington Department of Ecology (Ecology) regulates hydroelectric projects as it relates to Section 401 Water Quality Certification (WQC) of the Federal Water Pollution Control Act (Clean Water Act 33) (U.S.C § 1341). Specific WQC conditions for the Cowlitz Hydroelectric Project (FERC No.2016) are found in the WQCs dated 1/15/2002 (Order

11-2001), amended date 8/20/2002 (Amended Order No. DE02WQSR-4098A-01), and supplemental date 6/18/2003 (Supplemental Order in 01SEASR-3367). Tacoma Power, per Ecology's guidance, has prepared this WQPP to comply with the above referenced documents. It is our intent to proceed with this work as soon as Ecology has provided written approval of this document and all required permits have been obtained.

Project Location:

The site is located adjacent to both an abandoned industrial sawmill that was part of a 1992 environmental cleanup and the former town of Kosmos which was inundated following construction of Mossyrock Dam. It is situated along Rainey Creek in the Kosmos Flats area next to Riffe Lake. Rainey Creek flows into Riffe Lake and at times, Riffe Lake backwaters into Rainey Creek. From the intersection of Highway 12 and Kosmos Road continue south along Kosmos Road for approximately 0.1 miles and then take a sharp left onto Champion Haul Road. Continue along Champion Haul Road for approximately 1.8 miles and the entrance to the site is located on the right. The area is also known as the Dog Mountain landing zone, a site used by hang gliders and paragliders.

Project Description:

The objective of the project is to stabilize and temporarily cap an area on the left bank of Rainey Creek to prevent discharge of deleterious materials to waters of the state. Investivative actions will occur to characterize the extent and source of contamination. A subsequent remediation plan will be developed following exploratory/investigative actions and will include an additional or updated WQPP.

The cap is designed to protect Rainey Creek and Riffe Lake from discharge of Bunker C Oil, diesel, gasoline, and potential metals. Bunker C oil was discovered seeping from an eroded bank along Rainey Creek in April 2019 and reported to the Washington Department of Ecology (Ecology). Tacoma Power met with Ecology (Spills Program and Toxics Cleanup Program) on site and implemented periodic visual inpections following discovery of the initial seeps. Tacoma Power's environmental consultant assessed the site but the seeps were inundated by Riffe Lake during the evaluation. Following the recreation season, the elevation of Riffe Lake dropped and the site was again exposed. During subsequent visual inspections additional upland oil areas were discovered. Tacoma Power contracted with Hart Crowser to conduct exploratory actions to determine the source and extent of the contaminants and during the site visit additional upland oil areas were again observed. An oil sheen was first observed at the site on the surface of Rainey Creek in October 2019. Tacoma Power and our contractor (NRC Environmental Services) immediately installed BMP's (oil absorbant booms, oil snares, oil absorbant wattles), reported the oil sheen to Ecology and asked for technical assistance. Tacoma Power in collaboration with the regulatory agencies made a decision to design and install a temporary cap for protection of the site from potential bank failure associated with high inflow events and prevention of discharge of contaminents to Rainey Creek/Riffe Lake. Anderson Environmental Consulting (AEC) has been contracted to construct the cap and associated components of the project. Following construction of the cap, Hart Crowser will continue with exploratory/investigative actions to determine the pathway and source of contamination.

Ecology's Hydroelectric WQ Compliance Manager was provided a timeline on November 12, 2019 that included actions/events with corresponding water surface elevations of Riffe Lake that occurred since filling of an ERTS incident (#688792) on April 26, 2019 (Appendix C).

Project Narrative

Placement of the cap along a portion of the left bank of Rainey Creek is anticipated to occur while the elevation of Riffe Lake is below approximately 720 feet to facilitate working in the dry as is practical. When Riffe Lake elevations are below 720 feet the project site is not backwatered by Riffe Lake. Cap construction is expected to be completed in approximately ten (10) days. Best Management Practices (BMPs) will be installed prior to construction and monitored continually for effectivness throughout the project. Equipment utilized for the project will likely include excavators, bulldozers, heavy trucks and hand tools. Construction will consist of establishment/reinforcement of the construction entrance and access roads, excavation and grading the bank to create an approximate 2:1 slope with potential benches to support the cap materials, potential limited dredging of a small portion of the creek channel to facilitate creation of a preferential path for water in an attempt to keep the work area as dry as possible, transportation of spoils (both contaminated and uncontaminated) to stockpile locations. transportation of contaminated spoils to a disposal facility, placement of a rip-rap slope key at the toe of the slope and construction of the cap itself. The cap structure upslope of the rip-rap slope key will consist of the following: a layer of sand, an organoclay reactive core mat (RCM), an additional layer of sand, high strength geotextile fabric and a top layer of guarry spalls.

The majority of actions performed will be near- or in-water activities with only establishment/reinforcement of access roads, transportation of spoils, stockpiling of spoils and disposal of spoils occurring in the upland areas. Below is a description of each action addressed by this WQPP. Site maps included in Appendix D illustrate the locations of activities, monitoring compliance points and associated BMPs employed to minimize environmental impacts to the aquatic and terrestrial communities.

Work Sequence

- 1) Installation of BMPs (effectivness of BMPs will be monitored throughout the project and adaptive management employed to assure adequate protections are in place and functioning)
- 2) Establishment/reinforcement of access roads
- 3) Excavation and grading
- 4) Transportation and storage of spoils
- 5) Creation of preferrential water path within the stream bed through limited dredging
- 6) Placement of rip-rap slope key to support cap
- 7) Construction of cap
 - Placement and grading of sand
 - Placement of RCM
 - Placement and grading of sand
 - Placement of high strength geotextile fabric
 - Placement of quarry spalls
- 7) Removal of BMPs
- 8) Summary report sent to Ecology

Erosion, Sediment and Pollution Control Best Management Practices (BMPs)

This Water Quality Protection Plan (WQPP) describes BMPs associated with the Kosmos Oil Seep Exploration and Capping. Personnel noted in the Relevant Project Contacts section below will ensure proper implementation and effectiveness of the WQPP. Should the measures initially installed prove to be inadequate, the personnel identified in the Relevant Project Contacts section will immediately implement additional measures to protect receiving waters; and immediately contact Ecology's Hydroelectric WQ Compliance Manager, Carol Serdar. Where appropriate, additional contingency measures are not limited to those mentioned. This plan recognizes the obligation to employ all known and reasonable methods of prevention, control and treatment (AKART) to prevent pollution of the waters of the State of Washington. Appropriate BMPs to prevent erosion and sedimentation, and identify, reduce, eliminate or prevent water pollution associated with construction activities and capping of contaminated soils will be implemented.

This WQPP is a living document (with Ecology WQ Program oversight) and adaptive management employing AKART is expected at all locations. The following BMPs may be utilized and are included in the attached site plans (Appendix D).

General BMPs

- 1) Equipment utilized will be free of external petroleum based products while working in- or near-water.
- 2) Accumulations of soils or other debris will be removed from the drive mechanisms and undercarriage of utilized equipment prior to performing work.
- 3) Equipment will be checked for leaks and necessary repairs prior to commencing inor near-water actions.
- 4) Equipment will be positioned to protect and minimize disturbance to riparian vegetation.
- 5) Equipment will remain on developed roadways and structures as practical.
- 6) Equipment will operate below ordinary high water but drive mechanisms (wheels, tires, tracks, etc.) will not enter the wetted perimeter.
- 7) Refueling activities will be performed a minimum of 50 feet from waters of the state and secondary containment will be utilized.
- 8) All equipment with fuel will have secondary containment for 120% capacity of fuel potential in the equipment.
- 8) Dump truck bed will be sealed or lined to prevent leakage of saturated spoils and debris.
- 9) Spoils will not be stockpiled in or adjacent to waters of the state to prevent turbid backflow.
- 10) Water quality will be monitored as appropriate (see Monitoring section below; map of monitoring sites may be found in Appendix D).

Site-Specific BMPs

BMPs and methodologies found in the 2012 <u>Stormwater Management Manual for Western Washington</u> (updated 2014) that may be utilized include:

BMP C105: Stabilized Construction Entrance / Exit

BMP C107: Construction Road/Parking Area Stabilization

BMP C123: Plastic Covering BMP C150: Materials on Hand

BMP C153: Material Delivery, Storage and Containment BMP C160: Certified Erosion and Sediment Control Lead

BMP C162: Scheduling BMP C233: Silt Fence

BMP C236: Vegetative Filtration (for discharge of clean water)

BMP C251: Construction Stormwater Filtration

Pumps, lines and dispersion equipment

BMPs, details, and installation guidelines found in WSDOT's <u>Best Management Practices</u>, <u>Regional Road Maintenance Program List of BMPs</u>, and <u>Best Management Practices Field Guide for ESA § 4 (d) Habitat Protection</u> that may be utilized include:

Construction Access Road

Dewatering

Plastic Covering

Rip Rap

Sandbags

Silt Fence

Sweeping (of Champion Haul Rd. to assure any track out is addressed)

Turbidity Curtain/Sea Curtain

Alternative BMPs utilized but not included in the references above include:

Alternative BMP: Geomembrane Base

Alternative BMP: Plastic Lined Silt Fence

Alternative BMP: Reactive Core Mat (organoclay)

Alternative BMP: Absorbent Oil Booms (assure changing of booms occurs as needed

Alternative BMP: Hard Containment Boom

Alternative BMP: Oil Absorbent Pads

Alternative BMP: Plastic Lined Depression (to contain contaminated water)

Alternative BMP: Baker Tanks

Site-specific Near- and/or In-Water BMP narrative

1) Silt fencing installed along portion of access road adjacent to Riffe Lake.

^{*}See attached maps in Appendix D for proposed locations of actions, BMPs and monitoring compliance locations.

- 2) Turbidity curtain installed downstream of site across entire channel.
- 3) Absorbent oil booms installed downstream of site across entire channel; these will be continually monitored, and replaced when booms become clogged with sediment/fines or oil. During replacement of booms the new boom will be installed downstream of the old boom prior to removal of the old boom.
- 4) Hard containment boom lined with oil absorbant boom installed along shoreline of seep slope; boom will be continually monitored, and replaced when clogged with sediment/fines or oil.
- 5) Oil absorbant pads utilized for clean-up of spot discharges along seep slope and for oil drips from vehicles; pads will be disposed of properly in plastic garbage bags.
- 6) Plastic-lined silt fencing installed at toe of seep slope.
- 7) Water collected on the upslope side of the plastic lined silt fencing will be pumped upland for vegatative/overland infiltration, deposited into a plastic lined depression or deposited into baker tanks for treatment if it is contaminated.
- 8) Base of stockpile location lined with plastic or geomembrane (if geomembrane is permeable it will not be used).
- 9) Stockpiles covered with plastic sheeting and sand bags; straw bales at base of slope will be wrapped with plastic covering to shed water off the stockpile.

Specific Work Areas/Activities

1. Installation of BMPs

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

BMPs installed for in- or near-water work.

2. Establishment/reinforcement of access roads

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

Placement of geotextile fabric on potential access roads, construction entrance and parking areas. Utilization of heavy trucks, bulldozers and excavators to place, grade and compact quarry spalls for access roads, construction entrance and parking areas.

3. Excavation and grading

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

Excavators and bulldozers utilized to remove material for establishment of approximate 2:1 grade with potential benching at several elevations; Removed spoils immediately loaded into dump truck with sealed beds. Removed spoils will not be allowed to dewater over water or along shorelines.

4. Transportation and storage of spoils

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

A depression(s) will be created and lined at the upland disposal site for deposition and containment of spoils; This location has no potential to discharge to waters of the state.

5. Creation of preferrential water path within the stream bed through limited dredging actions

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

Excavator utilized to remove material from the river right streambed and placed along the river left streambed to create a temporary pathway for water flow away from the project streambank. Dredged materials consisting of gravels, cobbles and fines will remain within the established bed of the channel.

6. Placement of rip-rap slope key

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

Excavator utilized for placement of rip-rap at toe of slope to function as a slope key for the cap.

7. Construction of cap

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

Excavator, bulldozer, and handwork utilized for sequenced placement of the following onto the prepared base substrate:

- Layer of sand
- Organoclay RCM
- Additional layer of sand
- High strength geotextile fabric
- Layer of quarry spall.

8. Removal of BMPs

Location of Activities and Associated BMPs

See attached maps (Appendix D).

Description of Activities:

BMPs will be removed and site conditions restored following completion of project. Note that several BMPs may be left in place for the remediation phase and will be addressed in an updated or new WQPP.

Monitoring/Sampling Methodology

Water quality sampling will be performed daily during active slope excavation and grading. Sampling will consists of: 1) grab samples to be analyzed by an accredited laboratory; and 2) insitu sampling (for turbidity and pH) performed using calibrated instrumentation or strip technology. All holding times for the methodologies required will be adhered to. The table included in Appendix E describes the parameters, analytical methods, detection limits (DLs) and quantitation levels (QLs) Ecology requires for these activities. All final sample reports and

chains of custody with be provided to Ecology within 24-hour of receipt. Sampling will continue as directed until Ecology has provided authorization to modify the sampling regime.

Sampling water in Rainey Creek and Riffe Lake will occur to establish hardness values; this will be reported to Ecology's Hydroelectric WQ Compliance Manager to ensure the table included in Appendix E remains adequate for protecting waters specific to Rainey Creek and Riffe Lake.

Initial grab sampling will be performed at four locations. These include: 1) approximately 100 feet upstream of the site (to establish background levels); 2) on the upslope side of the alternative BMP consisting of silt fence lined with plastic (to establish if water seeping from the site is contaminated); 3) Live water located immediately outside (waterward) of alternative BMP consisting of silt fence lined with plastic (to establish if containment by BMPs is effective and if additional measures need to be implemented); and 4) in Rainey Creek downstream of excavation area (between booms where new oil contamination of booms was found on December 6, 2019). Sampling at the upstream location and upslope of the silt fence lined with plastic will only occur the initial day of sampling but may be modified as needed. Sampling of live water immediately outside of the installed BMPs (identified as location 3 above) will occur daily during active slope excavation and grading.

Insitu sampling for turbidity and pH will occur by instrumentation or other reliable technologies in conjunction with all grab samples in addition to locations 150 feet and 300 feet downstream of the active site. All data will be recorded in a site log and provided to Ecology.

Visual turbidity monitoring of Rainey Creek will be performed throughout construction. Visual turbidity monitoring will be employed throughout construction actions. Per WAC 173-201A-200 (1)(e)(i), a temporary area of mixing shall be as follows:

- (A) For waters up to 10 cfs flow at the time of actions, the point of compliance shall be one hundred feet downstream of the activity causing the turbidity exceedance.
- (B) For waters above 10 cfs up to 100 cfs flow at the time of actions, the point of compliance shall be two hundred feet downstream of the activity causing the turbidity exceedance.
- (C) For waters above 100 cfs flow at the time of actions, the point of compliance shall be three hundred feet downstream of the activity causing the turbidity exceedance.
- (D) For projects within or along lakes, ponds, wetlands, or other non-flowing waters, the point of compliance shall be at a radius of one hundred fifty feet from the activity causing the turbidity exceedance.

Rainey Creek flows during the actions will be approximately 100 cfs or more, therefore the intended points of compliance for visual turbidity monitoring are as follows:

- 300 feet downstream of actions when site is not backwatered from Riffe Lake
- 150 foot radius from actions when site is backwatered by Riffe Lake

If a visible turbidity plume is observed at a point of compliance, it will be documented on a site inspection form/logbook, actions will be temporarily suspended and Ecology's SWRO Federal Permit Coordinator, Carol Serdar (360-407-6269 or 360-742-9751) will be notified. Work stoppage will continue until the turbidity plume has completely dissipated and no visual difference in turbidity is perceived. A visible plume is defined as any difference between

upstream of the action location and at the downstream compliance points (300 feet downstream of action causing discharge), or outside of the 150-foot radius from the activity for work within a lake or reservoir. See Appendix F for a table of relevant project contacts.

All sampling locations are included in Appendix D.

Applicable project criteria and information:

Aquatic Life Use Category: Core Summer Salmonid Habitat

Aquatic Life Turbidity Criteria in Freshwater: 5 NTU over background when the background is 50 NTU or less; or A 10 percent increase in turbidity when the background turbidity is more than 50 NTU.

Flow at time of construction: 100 cfs or more

Temporary area of mixing for turbidity: 300 feet downstream or 150 feet radius (water elevation dependant.

Aquatic Life pH Criteria in Freshwater: pH shall be within the range of 6.5 to 8.5, with a human-caused variation within the above range of less than 0.2 units.

Aquatic Life Dissolved Oxygen Criteria: > 9.5 mg/L

Aquatic Life Temperature Criteria (Highest 7DAD Max): 16°C (60.8°F)

Aquatic Life Dissolved Gas Criteria: Total dissolved gas shall not exceed 110 percent of saturation at any point of sample collection.

Contingency Plan

A contingency plan develops a set of actions to be considered to adaptively manage the project site and associated BMPs for the protection of waters from site contaminants. The primary contingency plan considered for this project is a water treatment plan. Protective measures that may include capturing and treatment of contaminated water within Rainey Creek immediately down gradient of the observed seeps may be implemented. HydroCon (environmental contractor) is preparing a water treatment plan that will be reviewed and approved by Ecology. Flexibility in managing contaminated stormwater and/or contaminated dewatering water will be included in the water treatment plan. The general water treatment plan can be characterized as follows:

- Removal of surface water through utilization of pumps and transportation through hoses to a series of temporary storage tanks stored in the upland area.
- Contaminated water pumped through sand filter to reduce turbidity and then through a series of granular activated carbon (GAC) to remove contaminants.
- Once analytical testing demonstrates compliance with standards the treated effluent will be discharged to an upland location(s) that is acceptable to Ecology.

Site Inspections

Daily site monitoring/inspections and any other required monitoring will be led by a Certified Erosion and Sediment Control Lead (CESCL). A site monitoring/inspections log containing monitoring/inspection data (including tables) and comments will be kept on site at all times along with this WQPP. A sample site inspection form is included as Appendix G of this document. The CESCL will examine discharge for the presence of suspended sediment, turbidity, discoloration, and sheen throughout the site (including puddles). They will evaluate and document in the monitoring/inspection log the effectiveness of the installed BMPs and determine if repair or replacement of any BMP is warranted to improve the quality of project discharge. Any major changes to the WQPP and associated BMPs will be reviewed and approved by Ecology.

Surveys for dead, dying or distressed organisms within and downstream of the project site will be performed throughout construction and during subsequent water quality sampling events. If dead, dying or distressed organisms are observed during surveys all activities causing harm will immediately stop and Tacoma Power will notify both the Washington Department of Fish and Wildlife and Ecology. Organisms discovered during surveys will be documented on the site inspection form and the description will include species identification, count and location. Photos of organisms will be included as well.

Reporting

The timeline of actions/events with corresponding water surface elevations of Riffe Lake that was supplied to Ecology on November 12, 2019 will be updated bimonthly (every two weeks) and provided to Ecology.

A summary report will be provided to Ecology WQ Program within one month of BMP removal. The report will include additional water quality monitoring proposed during the time period before additional remediation of contaminated soil and groundwater begins. An additional or modified WQPP will be developed for the next phase of the project.

Appendices

Appendix A: HPA

Appendix B: NWP 38 letter of coverage

Appendix C: Timeline (November 12, 2019)

Appendix D: Site maps

Appendix E: Table of parameters, analytical methods, detection limits and

quantitation levels

Appendix F: Table of project contacts

Appendix G: Site Inspection Form

Appendix A: Hydraulic Project Approval	

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Permit Number: 2019-5-129+01 Issued Date: December 06, 2019 Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

PERMITTEE	AUTHORIZED AGENT OR CONTRACTOR
Tacoma Power	
ATTENTION: Matthew Peter	
3628 S 35th St	
Tacoma, WA 98409-3115	

Project Name: Kosmos Mill Site Oil Seep

Project Description: Tacoma Power requests issuance of an Emergency HPA from Washington Department of Fish and Wildlife for the temporary capping of the Kosmos Mill Site Oil Seep. The Kosmos Oil seep exploratory project has grown and necessitates capping during the exploratory phase to assure the streambank is protected as Rainey Creek rises. In April of this year, Bunker C oil was discovered seeping out of an eroded bank along Rainey Creek near Riffe Lake adjacent an abandoned industrial sawmill site. At that time, Washington State Department of Ecology requested visual inspections of the site. Tacoma started the process to hire a consultant to perform a remedial investigation and feasibility study. At that time, the cleanup was not considered an emergency and the seeping was thought to be stable. Following the recreation season, the elevation of Riffe Lake dropped and the site was exposed. On October 4th, a sheen was discovered. Best Management Practices were installed to stabilize the oil, but these elements will not protect the environment sufficiently if they are inundated. As we move further into the rainy season. Power Management cannot guarantee lake levels that are required prevent inundation due to possible high inflows caused by storm events. Additional seeps have been discovered within the last several weeks along with some stress cracks along the top of the slope. Additional BMPs were deployed and a plan to temporarily cap the site was developed. The Kosmos Mill Oil Seep Cap is designed to protect Rainey Creek and Riffe Lake from Bunker C Oil, diesel, and gasoline that is seeping from an eroded bank of the creek. Tacoma has declared an emergency and the director has approved waiving the formal bidding process to mobilize a contractor to install stabilization measures immediately.

PROVISIONS

TIMING - PLANS - INVASIVE SPECIES CONTROL

1. TIMING LIMITATION: You may begin the project on November 26, 2019 and you must complete the project by January 24, 2020.

NOTIFICATION REQUIREMENTS

- 2. PHOTOGRAPHS: You, your agent, or contractor must take photographs of the job site before the work begins and after the work is completed. You must upload the photographs to the post-permit requirement page in the Aquatic Protection Permitting System (APPS) or mail them to Washington Department of Fish and Wildlife at Post Office Box 43234, Olympia, Washington 98504-3234 within 30-days after the work is completed.
- 3. FISH KILL/ WATER QUALITY PROBLEM NOTIFICATION: If a fish kill occurs or fish are observed in distress at the job site, immediately stop all activities causing harm. Immediately notify the Washington Department of Fish and Wildlife of the problem. If the likely cause of the fish kill or fish distress is related to water quality, also notify the

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Issued Date: December 06, 2019 Permit Number: 2019-5-129+01
Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

Washington Military Department Emergency Management Division at 1-800-258-5990. Activities related to the fish kill or fish distress must not resume until the Washington Department of Fish and Wildlife gives approval. The Washington Department of Fish and Wildlife may require additional measures to mitigate impacts.

4. POST-EMERGENCY HPA ISSUANCE: You, your agent, or contractor must contact the Washington Department of Fish and Wildlife by e-mail at HPAapplications@dfw.wa.gov; mail to Post Office Box 43234, Olympia, Washington 98504-3234; or fax to (360) 902-2946 within ten calendar days after the expiration date of this emergency/imminent danger HPA to arrange a site visit. The notification must include the permittee's name, project location, starting date, and the Hydraulic Project Approval permit number. The Habitat Biologist will meet onsite with you or your agent or contractor to identify impacts that resulted from the emergency work that must be mitigated. The Department will require a mitigation plan and a memorandum of agreement if the mitigation actions will exceed the statutory time limitation of this HPA.

STAGING, JOB SITE ACCESS, AND EQUIPMENT

- 5. Establish staging areas (used for equipment storage, vehicle storage, fueling, servicing, and hazardous material storage) in a location and manner that will prevent contaminants such as petroleum products, hydraulic fluid, fresh concrete, sediments, sediment-laden water, chemicals, or any other toxic or harmful materials from entering waters of the state.
- 6. This Hydraulic Project Approval authorizes the construction of new temporary access roads.
- 7. Design and locate new temporary access roads to prevent erosion and sediment delivery to waters of the state.
- 8. Clearly mark boundaries to establish the limit of work associated with site access and construction.
- 9. Retain all natural habitat features on the bed or banks including large woody material and boulders. You may move these natural habitat features during construction but you must place them near the preproject location before leaving the job site.
- 10. Station and operate equipment used for this project landward of the ordinary high water line.
- 11. Equipment used for this project may operate waterward of the ordinary high water line, provided the drive mechanisms (wheels, tracks, tires, etc.) do not enter or operate waterward of the ordinary high water line.
- 12. Remove soil or debris from the drive mechanisms (wheels, tires, tracks, etc.) and undercarriage of equipment prior to operating the equipment waterward of the ordinary high water line.
- 13. Check equipment daily for leaks and complete any required repairs in an upland location before using the equipment in or near the water.
- 14. Use environmentally acceptable lubricants composed of biodegradable base oils such as vegetable oils, synthetic esters, and polyalkylene glycols in equipment operated in or near the water.

CONSTRUCTION-RELATED SEDIMENT, EROSION AND POLLUTION CONTAINMENT

- 15. Protect all disturbed areas from erosion. Maintain erosion and sediment control until all work and cleanup of the job site is complete.
- 16. All erosion control materials that will remain onsite must be composed of 100% biodegradable materials.
- 17. Straw used for erosion and sediment control, must be certified free of noxious weeds and their seeds.
- 18. Stop all hydraulic project activities except those needed to control erosion and siltation, if flow conditions arise that will result in erosion or siltation of waters of the state.
- 19. Prevent project contaminants, such as petroleum products, hydraulic fluid, fresh concrete, sediments, sediment-laden water, chemicals, or any other toxic or harmful materials, from entering or leaching into waters of the state.
- 20. Route construction water (wastewater) from the project to an upland area above the limits of anticipated floodwater. Remove fine sediment and other contaminants before discharging the construction water to waters of the state.

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Issued Date: December 06, 2019 Permit Number: 2019-5-129+01 Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

- 21. Deposit waste material from the project, such as construction debris, silt, excess dirt, or overburden, in an upland area above the limits of anticipated floodwater unless the material is approved by the Washington Department of Fish and Wildlife for reuse in the project.
- 22. Deposit all trash from the project at an appropriate upland disposal location.

STREAM BANK PROTECTION

- 23. Install the toe to protect the integrity of bank protection material.
- 24. Use clean angular rock to construct the bank protection. The rock must be large enough and installed to withstand wave action from the reservoir and stream flow. The rock shall be place to depth that will protect the underlying cap fabric and maintain slope stability.
- 25. Do not release overburden material into the waters of the state when resloping the bank.
- 26. Place bank protection or shoreline stabilization material and biodegradable filter blanket material from the bank or a barge. Dumping material onto the bank face may occur only if the toe is established and the material can be confined to the bank face.
- 27. Reslope the banks to a two foot horizontal and one foot vertical slope or less.

DEMOBILIZATION AND CLEANUP

- 28. Upon completion of the project, restore the disturbed bed, banks, and riparian zone to preproject condition to the extent possible.
- 29. Seed areas disturbed by construction activities with a native seed mix suitable for the site that has at least one quick-establishing plant species.

LOCATION #1:	Site Name: Kosmos Mill Site 100 Champion Haul Rd, Morton, WA							
WORK START:	November 26,	vember 26, 2019 WORK END: J						
<u>WRIA</u>		Waterbody:		Tributary to:				
26 - Cowlitz	Cowlitz Rainey Creek (rb)				Cowlitz River			
1/4 SEC:	Section:	Township: Range: Latitude:		Longitude:	County:			
W 1/2	27	12 N 05 E 46.492841			-122.191316	Lewis		
Location #1 Drivi	ing Directions							

APPLY TO ALL HYDRAULIC PROJECT APPROVALS

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Issued Date: December 06, 2019 Permit Number: 2019-5-129+01 Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

This Hydraulic Project Approval pertains only to those requirements of the Washington State Hydraulic Code, specifically Chapter 77.55 RCW. Additional authorization from other public agencies may be necessary for this project. The person(s) to whom this Hydraulic Project Approval is issued is responsible for applying for and obtaining any additional authorization from other public agencies (local, state and/or federal) that may be necessary for this project.

This Hydraulic Project Approval shall be available on the job site at all times and all its provisions followed by the person (s) to whom this Hydraulic Project Approval is issued and operator(s) performing the work.

This Hydraulic Project Approval does not authorize trespass.

The person(s) to whom this Hydraulic Project Approval is issued and operator(s) performing the work may be held liable for any loss or damage to fish life or fish habitat that results from failure to comply with the provisions of this Hydraulic Project Approval.

Failure to comply with the provisions of this Hydraulic Project Approval could result in civil action against you, including, but not limited to, a stop work order or notice to comply, and/or a gross misdemeanor criminal charge, possibly punishable by fine and/or imprisonment.

All Hydraulic Project Approvals issued under RCW 77.55.021 are subject to additional restrictions, conditions, or revocation if the Department of Fish and Wildlife determines that changed conditions require such action. The person(s) to whom this Hydraulic Project Approval is issued has the right to appeal those decisions. Procedures for filing appeals are listed below.

MINOR MODIFICATIONS TO THIS HPA: You may request approval of minor modifications to the required work timing or to the plans and specifications approved in this HPA unless this is a General HPA. If this is a General HPA you must use the Major Modification process described below. Any approved minor modification will require issuance of a letter documenting the approval. A minor modification to the required work timing means any change to the work start or end dates of the current work season to enable project or work phase completion. Minor modifications will be approved only if spawning or incubating fish are not present within the vicinity of the project. You may request subsequent minor modifications to the required work timing. A minor modification of the plans and specifications means any changes in the materials, characteristics or construction of your project that does not alter the project's impact to fish life or habitat and does not require a change in the provisions of the HPA to mitigate the impacts of the modification. If you originally applied for your HPA through the online Aquatic Protection Permitting System (APPS), you may request a minor modification through APPS. A link to APPS is at http://wdfw.wa.gov/licensing/hpa/. If you did not use APPS you must submit a written request that clearly indicates you are seeking a minor modification to an existing HPA. Written requests must include the name of the applicant, the name of the authorized agent if one is acting for the applicant, the APP ID number of the HPA, the date issued, the permitting biologist, the requested changes to the HPA, the reason for the requested change, the date of the request, and the requestor's signature. Send by mail to: Washington Department of Fish and Wildlife, PO Box 43234, Olympia, Washington 98504-3234, or by email to HPAapplications@dfw.wa.gov. You should allow up to 45 days for the department to process your request.

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Issued Date: December 06, 2019 Permit Number: 2019-5-129+01 Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

MAJOR MODIFICATIONS TO THIS HPA: You may request approval of major modifications to any aspect of your HPA. Any approved change other than a minor modification to your HPA will require issuance of a new HPA. If you originally applied for your HPA through the online Aquatic Protection Permitting System (APPS), you may request a major modification through APPS. A link to APPS is at http://wdfw.wa.gov/licensing/hpa/. If you did not use APPS you must submit a written request that clearly indicates you are requesting a major modification to an existing HPA. Written requests must include the name of the applicant, the name of the authorized agent if one is acting for the applicant, the APP ID number of the HPA, the date issued, the permitting biologist, the requested changes to the HPA, the reason for the requested change, the date of the request, and the requestor's signature. Send your written request by mail to: Washington Department of Fish and Wildlife, PO Box 43234, Olympia, Washington 98504-3234. You may email your request for a major modification to HPAapplications@dfw.wa.gov. You should allow up to 45 days for the department to process your request.

APPEALS INFORMATION

If you wish to appeal the issuance, denial, conditioning, or modification of a Hydraulic Project Approval (HPA), Washington Department of Fish and Wildlife (WDFW) recommends that you first contact the department employee who issued or denied the HPA to discuss your concerns. Such a discussion may resolve your concerns without the need for further appeal action. If you proceed with an appeal, you may request an informal or formal appeal. WDFW encourages you to take advantage of the informal appeal process before initiating a formal appeal. The informal appeal process includes a review by department management of the HPA or denial and often resolves issues faster and with less legal complexity than the formal appeal process. If the informal appeal process does not resolve your concerns, you may advance your appeal to the formal process. You may contact the HPA Appeals Coordinator at (360) 902-2534 for more information.

A. INFORMAL APPEALS: WAC 220-660-460 is the rule describing how to request an informal appeal of WDFW actions taken under Chapter 77.55 RCW. Please refer to that rule for complete informal appeal procedures. The following information summarizes that rule.

A person who is aggrieved by the issuance, denial, conditioning, or modification of an HPA may request an informal appeal of that action. You must send your request to WDFW by mail to the HPA Appeals Coordinator, Department of Fish and Wildlife, Habitat Program, PO Box 43234, Olympia, Washington 98504-3234; e-mail to HPAapplications@dfw.wa.gov; fax to (360) 902-2946; or hand-delivery to the Natural Resources Building, 1111 Washington St SE, Habitat Program, Fifth floor. WDFW must receive your request within 30 days from the date you receive notice of the decision. If you agree, and you applied for the HPA, resolution of the appeal may be facilitated through an informal conference with the WDFW employee responsible for the decision and a supervisor. If a resolution is not reached through the informal conference, or you are not the person who applied for the HPA, the HPA Appeals Coordinator or designee may conduct an informal hearing or review and recommend a decision to the Director or designee. If you are not satisfied with the results of the informal appeal, you may file a request for a formal appeal.

B. FORMAL APPEALS: WAC 220-660-470 is the rule describing how to request a formal appeal of WDFW actions taken under Chapter 77.55 RCW. Please refer to that rule for complete formal appeal procedures. The following information summarizes that rule.

Washington Department of Fish & Wildlife PO Box 43234 Olympia, WA 98504-3234

(360) 902-2200

Issued Date: December 06, 2019 Permit Number: 2019-5-129+01 Project End Date: January 24, 2020 FPA/Public Notice Number: N/A

Application ID: 20088

A person who is aggrieved by the issuance, denial, conditioning, or modification of an HPA may request a formal appeal of that action. You must send your request for a formal appeal to the clerk of the Pollution Control Hearings Boards and serve a copy on WDFW within 30 days from the date you receive notice of the decision. You may serve WDFW by mail to the HPA Appeals Coordinator, Department of Fish and Wildlife, Habitat Program, PO Box 43234, Olympia, Washington 98504-3234; e-mail to HPAapplications@dfw.wa.gov; fax to (360) 902-2946; or hand-delivery to the Natural Resources Building, 1111 Washington St SE, Habitat Program, Fifth floor. The time period for requesting a formal appeal is suspended during consideration of a timely informal appeal. If there has been an informal appeal, you may request a formal appeal within 30 days from the date you receive the Director's or designee's written decision in response to the informal appeal.

C. FAILURE TO APPEAL WITHIN THE REQUIRED TIME PERIODS: If there is no timely request for an appeal, the WDFW action shall be final and unappealable.

Habitat Biologist Scott.Brummer@dfw.wa.gov

Scott Brummer 360-785-0472

for Director

WDFW

Appendix B:	Nationwide Permit Verification Letter

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, SEATTLE DISTRICT P.O. BOX 3755 SEATTLE, WASHINGTON 98124-3755

Regulatory Branch

November 26, 2019

Mr. Matt Peter Tacoma Power 3628 South 35th Street Tacoma, Washington 98409

Reference: NWS-2019-941-WRD

Tacoma Power

(Kosmos Oil Remediation)

Dear Mr. Peter:

We have reviewed your request to excavate 4,500 square feet of potentially contaminated soil and place in two temporary plastic-lined holding areas totaling 4.25 acres, place fill (quarry spalls, rip rap, sand, and reactive core matting) in 4,500 square feet of bank, and place fill (quarry spalls) over 7420 square feet (temporary access road) for the purpose of stabilization and containment (and facilitation of the containment) of an unknown source of Bunker C oil below the ordinary high water mark of Riffe Lake and Rainey Creek near Glenoma, Lewis County, Washington. Based on the information you provided to us, Nationwide Permit (NWP) 38, *Cleanup of Hazardous and Toxic Waste* (Federal Register January 6, 2017, Vol. 82, No. 4), authorizes your proposal as depicted on the enclosed drawings dated November 22, 2019.

In order for this authorization to be valid, you must ensure the work is performed in accordance with the enclosed *NWP 38*, *Terms and Conditions* and the following special conditions:

- a. You must implement and abide by the Endangered Species Act (ESA) requirements and/or agreements set forth in your request for emergency action transmitted by email on November 22, 2019 in its entirety. The U.S. Army Corps of Engineers (Corps) made a determination of No Effect for all species and critical habitat based on this document. Failure to comply with the commitments made in this document constitutes non-compliance with the ESA and your Corps permit.
- b. You must conduct the work in accordance with the attached *Water Quality Certification*, *Order #01SEASR-3367*.

We have reviewed your project pursuant to the requirements of the Endangered Species Act, the Magnuson-Stevens Fishery Conservation and Management Act and the National Historic Preservation Act. We have determined this project complies with the requirements of these laws provided you comply with all of the permit general and special conditions.

The Federal Energy Regulatory Commission completed National Historic Preservation Act for the proposed activity. For the purpose of this Department of the Army authorization, we have determined this project will comply with the requirements of these laws provided you comply with all of the permit conditions.

As part of our permit application review process, we notified Native American tribes that have an interest in this area. The multiple tribes requested to be informed of inadvertent discoveries (as noted below) and to be informed of cultural resource monitoring efforts. Based on our coordination, you agreed to provide these reports to the tribes with interest in the area which include, but are not limited to the Chehalis Indian Tribe, Cowlitz Indian Tribe, Nisqually Tribe, Quinault Indian Nation, and Squaxin Island Tribe.

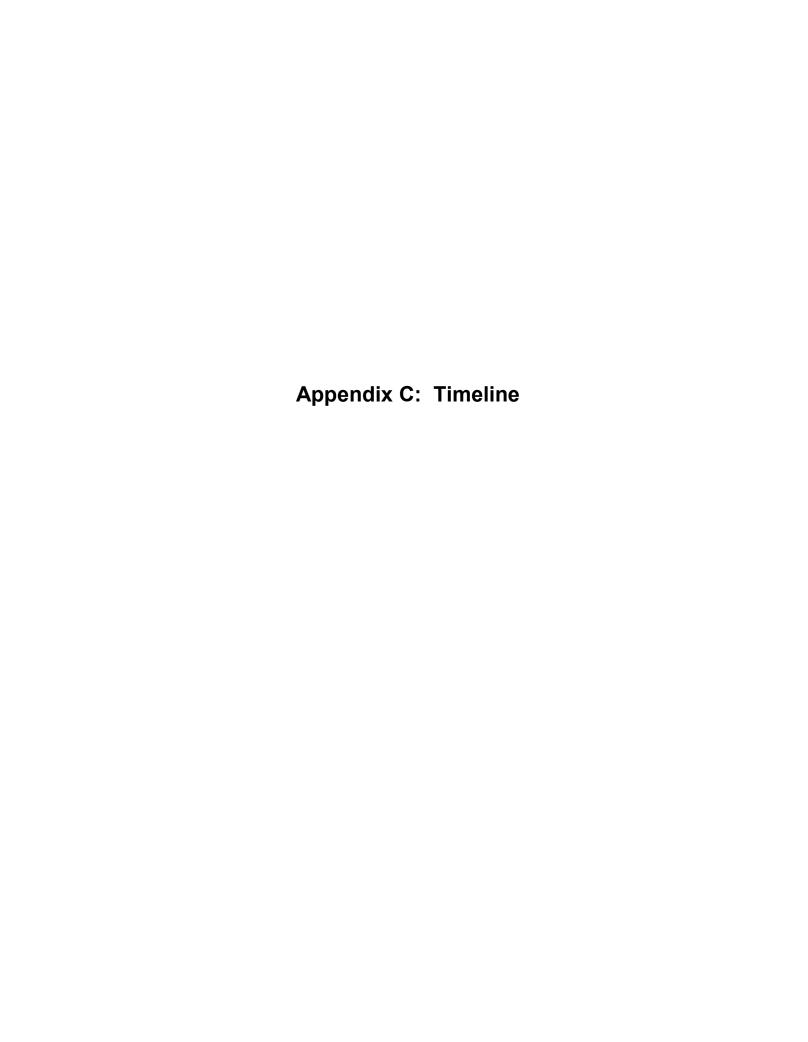
Please note that National General Condition 21, *Discovery of Previously Unknown Remains and Artifacts*, found in the *Nationwide Permit Terms and Conditions* enclosure, details procedures that must be followed should an inadvertent discovery occur. You must ensure that you comply with this condition during the construction of your project.

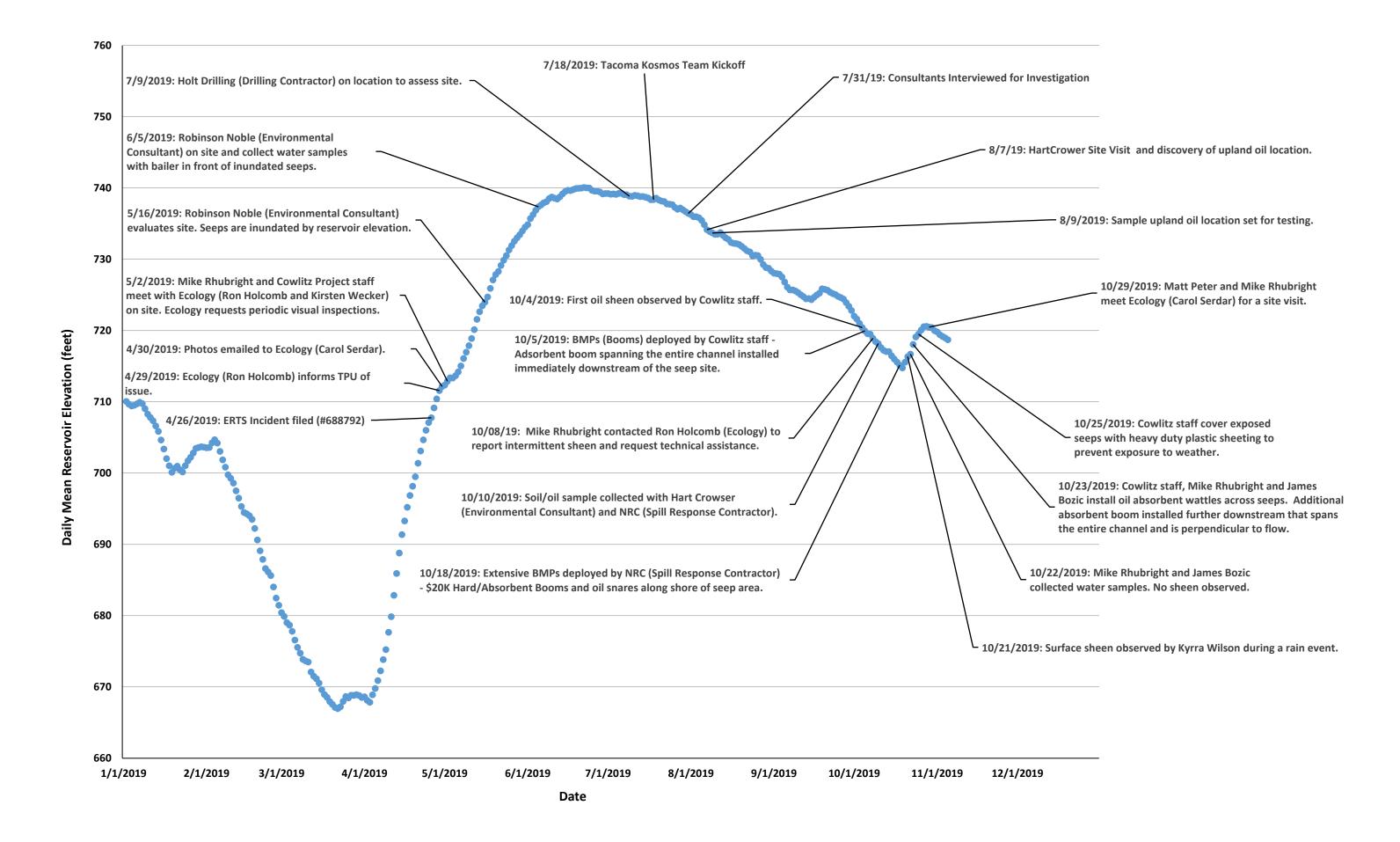
The authorized work complies with the Washington State Department of Ecology's (Ecology) Water Quality Certification (WQC) requirements as noted in Special Condition "b". No further coordination with Ecology for WQC is required.

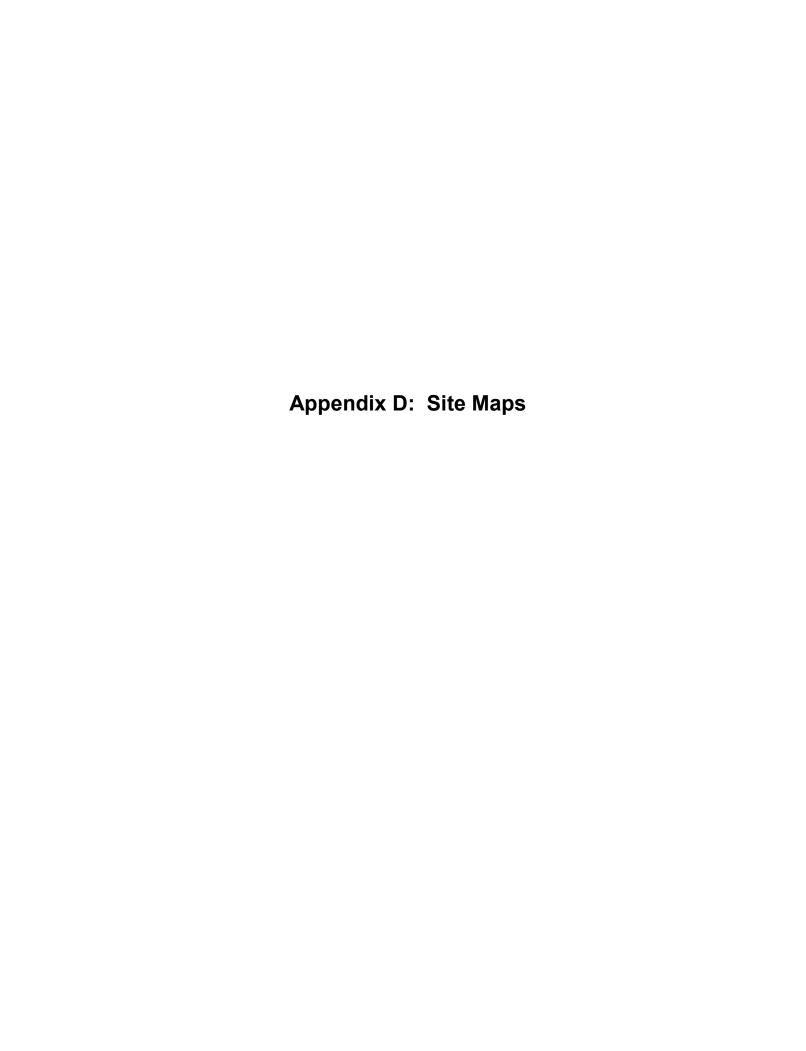
You have not requested a jurisdictional determination for this proposed project. If you believe the U.S. Army Corps of Engineers does not have jurisdiction over all or portions of your project you may request a preliminary or approved jurisdictional determination (JD). If one is requested, please be aware that we may require the submittal of additional information to complete the JD and work authorized in this letter may not occur until the JD has been completed.

Our verification of this NWP authorization is valid until March 18, 2022, unless the NWP is modified, reissued, or revoked prior to that date. If the authorized work has not been completed by that date and you have commenced or are under contract to commence this activity before March 18, 2022, you will have until March 18, 2023, to complete the activity under the enclosed terms and conditions of this NWP. Failure to comply with all terms and conditions of this NWP verification invalidates this authorization and could result in a violation of Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act. You must also obtain all local, State, and other Federal permits that apply to this project.

Upon completing the authorized work, you must fill out and return the enclosed *Certificate of Compliance with Department of the Army Permit*. Thank you for your cooperation during the permitting process. We are interested in your experience with our Regulatory Program and encourage you to complete a customer service survey. These documents and information about our program are available on our website at www.nws.usace.army.mil, select "Regulatory Branch, Permit Information" and then "Contact Us." If you have any questions, please contact Mr. Daniel Krenz at daniel.a.krenz@usace.army.mil or (206) 316-3153.


Sincerely,


Jacalen Printz, Section Chief


Regulatory Branch∽

Enclosures

cc: letter only via email to Washington Department of Ecology, Federal Permit Coordinator at: ecyrefedpermits@ecy.wa.gov

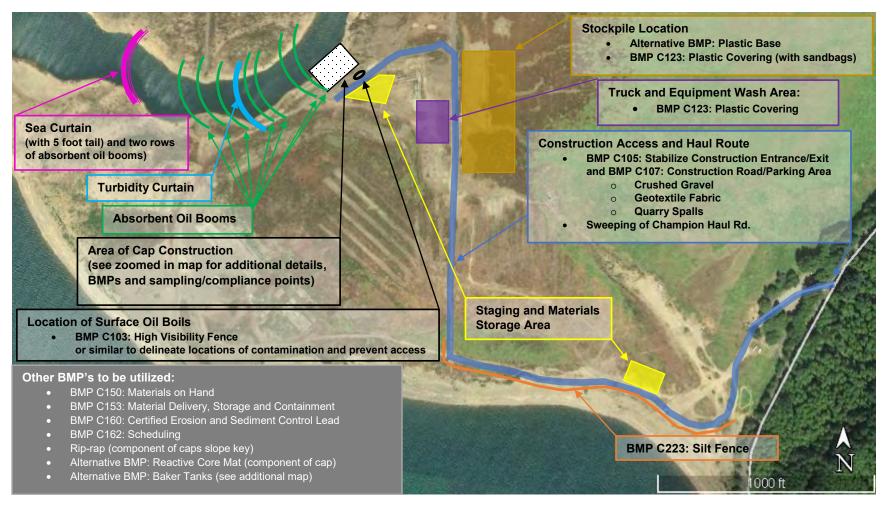


Figure 1. Generalized location of actions and associated Best Management Practices (BMPs).

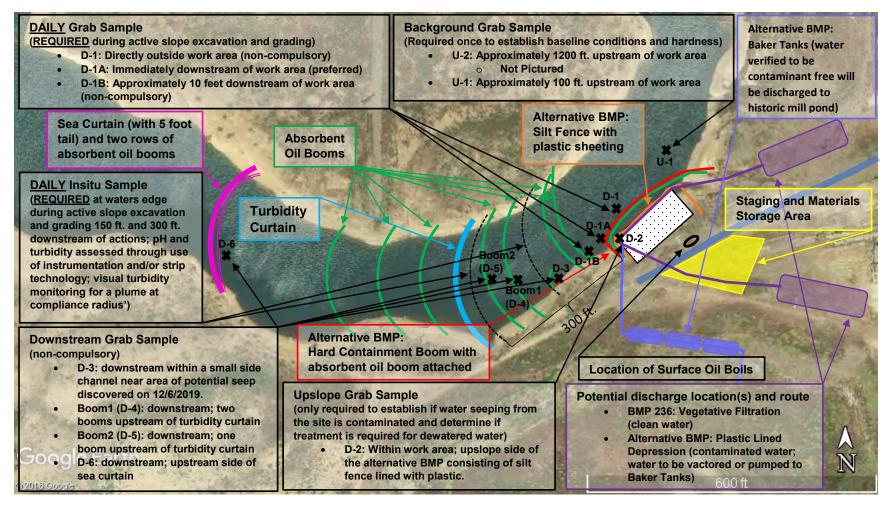


Figure 2. Zoomed in site locations of actions, BMPs and sampling/compliance points.

Appendix E: Table of Parameters, Analytical Methods, Detection Limits, and Quantitation Levels

Table. Parameters, analytical methods, detection limits (DLs) and quantitation levels (QLs) shown below, shall be used for water quality monitoring. Other methods may be used but must produce measurable results in the sample and be an EPA-approved method in 40 CFR Part 136. If an alternative method is used that is not specified in an order or listed below the test method, DL, and QL will be defined in lab and/or monitoring reports. Indicator level values at or below those specified in the table are within compliance.

Pollutant & CAS No. (if available)	Sampling Frequency	Sample Type	Indicator Level, μg/L (unless noted)	Required Analytical Protocol	Detection Level, μg/L	Quantitation Level, μg/L
			METALS			
Arsenic, Total (7440-38-2)	Daily*	Grab	360 ^a	200.8	0.1	0.5
Chromium, (hex) (18540-29-9)	Daily*	Grab	15 ^b	SM3500-Cr EC	0.3	1.2
Chromium, Total (7440-47-3)	Daily*	Grab	259 ^d	200.8	0.2	1.0
Lead, Total (7439-92-1)	Daily*	Grab	23.5ª	200.8	0.1	0.5
Cadmium (7440-43-9)	Daily*	Grab	1.5ª	200.8	0.05	0.25
Mercury (7439-97-6)	Daily*	Grab	2.10 a	1631E	0.0002	0.0005
Copper (7440-50-8)	Daily*	Grab	7.2 ª	200.8	0.4	2.0
Nickel (7440-02-0)	Daily*	Grab	652 ª	200.8	0.1	0.5
Zinc (7440-66-6)	Daily*	Grab	52.7 ª	200.8	0.5	2.5
		NONCONV	ENTIONAL POLLUTANTS	5		
BTEX (benzene + toluene + ethylbenzene + m, o, p xylenes)	Daily*	Grab	2.0	EPA SW 846 8021/8260	1.0	2.0
		PETROLE	UM HYDROCARBONS			
Gasoline-Range Hydrocarbons (NWTPH-Gx) ^c	Daily*	Grab	250 ^d	NWTPH-Gx	250	250
Diesel-Range Hydrocarbons (NWTPH-Dx)e	Daily*	Grab	250 ^d	NWTPH-Dx	250	250
	St	ormwater G	eneral Permit Benchma	arks		
Parameter			Benchmar	k	Analytical N	/lethod
Turbidity	Daily*	Grab	25 NTU		SM2130 ^f	
рН	Daily*	Grab	6.5 - 8.5 SU	J	SM4500-H ⁺ B	

а	Acute – Freshwater Toxic Substances Criteria (WAC 173-201A-240); metals for receiving waterbody of hardness value = 40. Hardness will need
	to be verified through sampling and criteria adjusted accordingly. Heavy metal toxicity general decreases in freshwater as hardness increases.
b	Indicator Level total chromium is actually for hexavalent chromium using Acute – Freshwater Toxic Substances Criteria (WAC 173-201A-240),
	National Toxics Rule (40 CFR 131.36).
С	NWTPH-Gx = Northwest Total Petroleum Hydrocarbons –Volatile petroleum products (includes aviation and automotive gasolines, mineral
	spirits, Stoddard solvent and naphtha).
d	No surface water standard, value is laboratory quantitation level.
е	NWTPH-Dx = Northwest Total Petroleum Hydrocarbons – Semi-volatile ("diesel") for diesel range organics and heavy oils (includes jet fuels,
	kerosene, diesel-oils, hydraulic fluids, mineral oils, lubricating oils, and fuel oils).
f	Or equivalent.
*	Sampling to occur daily during active slope excavation and grading. Frequency and parameters assessed will be modified following cap
	completion.

Appendix F: Table of Project Contacts	

Relevant Project Contacts

Table. Project contacts for actions associated with the Kosmos Oil Seep Exploration and Capping.

Title	Name	Phone Contact	Email Contact
Project Manager	Jessica Knickerbocker	Office: 253-502-8250 Cell: 253-389-8044	jknicker@cityoftacoma.org
Water Quality Contact	Matt Peter	Office: 253-502-8726 Cell: 253-740-8609	mpeter@cityoftacoma.org
Field Crew Lead	Willy Kroll (CESCL)	Office: 253-441-4463 Cell: 253-405-4245	wkroll@cityoftacoma.org
Ecology Contact	Carol Serdar	Office: 360-407-6269 Cell: 360-742-9751	cser461@ecy.wa.gov
Emergency Owner Contact	Chad Chalmers	Office: 253-779-7557 Cell: 360-520-0598	cchalmers@cityoftacoma.org
Monitoring Personnel	Willy Kroll (CESCL)	Office: 253-441-4463 Cell: 253-405-4245	wkroll@cityoftacoma.org

Appendix G:	Site Inspectio	n Form	

Inspection Report

Inspections to be completed daily, after storm events, or to follow up on BMP effectiveness

DATE:	TIME:
PROJECT NAME:	Kosmos Mill Oil Cleanup
TYPE OF INSPECTION:	☐ Weekly ☐ Post Storm Event
WEATHER CONDITION:	☐Clear ☐Cloudy ☐ Mist ☐ Rain ☐ Wind ☐ Fog Temperature
Approx. rainfall in la	ast 24hrs (in inches) Approx. rainfall since last inspection
OBSERVATIONS:	
	formance as intended. plete contact with water ning and not discharging oil
Inspection of slope for new No seep observed Note size and location:	oil seeps.
Inspection of slope for obvi No erosion damage ove	ous signs erosion. Note size and location: er 2 inches deep
Oil present in new swee	utside/downstream of BMPs eps/location/greater volume sediment, turbidity, or discoloration in water is observed outside/downstream of BMPs
Other Observations:	
INSERT PHOTOS:	

Inspection Report

Inspections to be completed daily, after storm events, or to follow up on BMP effectiveness

REQUIRED ACTION:	
Prepared By:	Representing:
Others Present:	Representing:

Saved: Ebuilder Documents \ C Permit Management \ 02 Inspections and Monitoring \ Visual Inspections

APPENDIX E Global Geophysics, LLC GPR and EM61 Report

P. O. Box 2229 Redmond, WA 98053 Tel: 425-890-4321 Fax: 206-582-0838

November 19, 2019 Our Ref.: 109-1108.000

Hart Crowser, Inc. 3131 Elliot Avenue Suite 600 Seattle, WA 98121

Attention: Ms. Angie Goodwin

RE: REPORT ON THE GEOPHYSICAL SURVEYS COSMOS MILL, MORTON, WA

Dear Ms. Goodwin:

Global Geophysics conducted geophysical surveys on November 12th and 15th, 2019 at Cosmos Mill, near Morton, WA. The proposed objective of the geophysical investigation is to assist in locating potential buried tanks.

METHODOLOGY AND INSTRUMENTATION

EM61 and GPR were used for this study. The following paragraphs describe the methods and field procedures.

Time Domain Electromagnetic (EM61)

The time-domain electromagnetic system is capable of detecting buried metal objects. It transmits a pulsed electromagnetic field into the ground, which induces eddy currents in buried metallic objects. These eddy currents generate secondary electromagnetic fields that are detected by the system. The time duration or decay rate, of the secondary EM field is related to the electrical conductivity characteristics of the buried object.

A four-channel (gate) high sensitivity metal detector, Geonics EM61 Mk2, was used to collect the data along the traverses at 2.5 ft interval. The low channel number (1) represents anomalies produced by shallow objects and the high channel number (4) represents anomalies produced by deeper objects. The subsurface depth range is from approximately 1 to 15 feet. The data was stored digitally and downloaded after the survey for analysis and mapping.

Ground Penetrating Radar

The GPR method uses electromagnetic pulses, emitted at regular intervals by an antenna to map subsurface features. The electromagnetic pulses are reflected where changes in electrical properties of materials occur such as changes in lithology or where underground

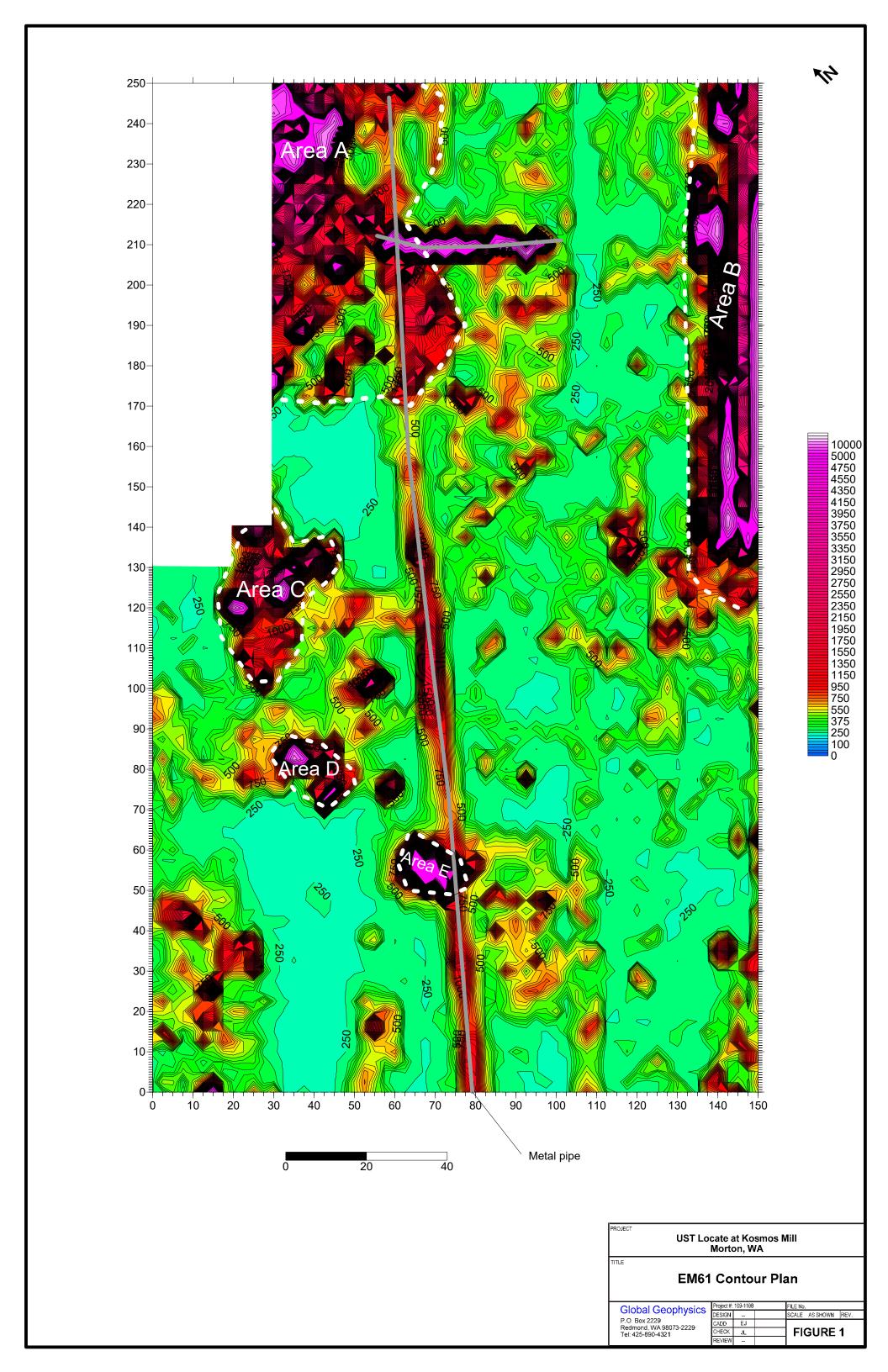
utilities are present. The reflected electromagnetic energy is received by an antenna, converted into an electrical signal, and recorded on the GPR unit. The data is recorded and viewed in real time on a graphical display that depicts a continuous profile or cross-section image of the subsurface directly beneath the path of the antenna.

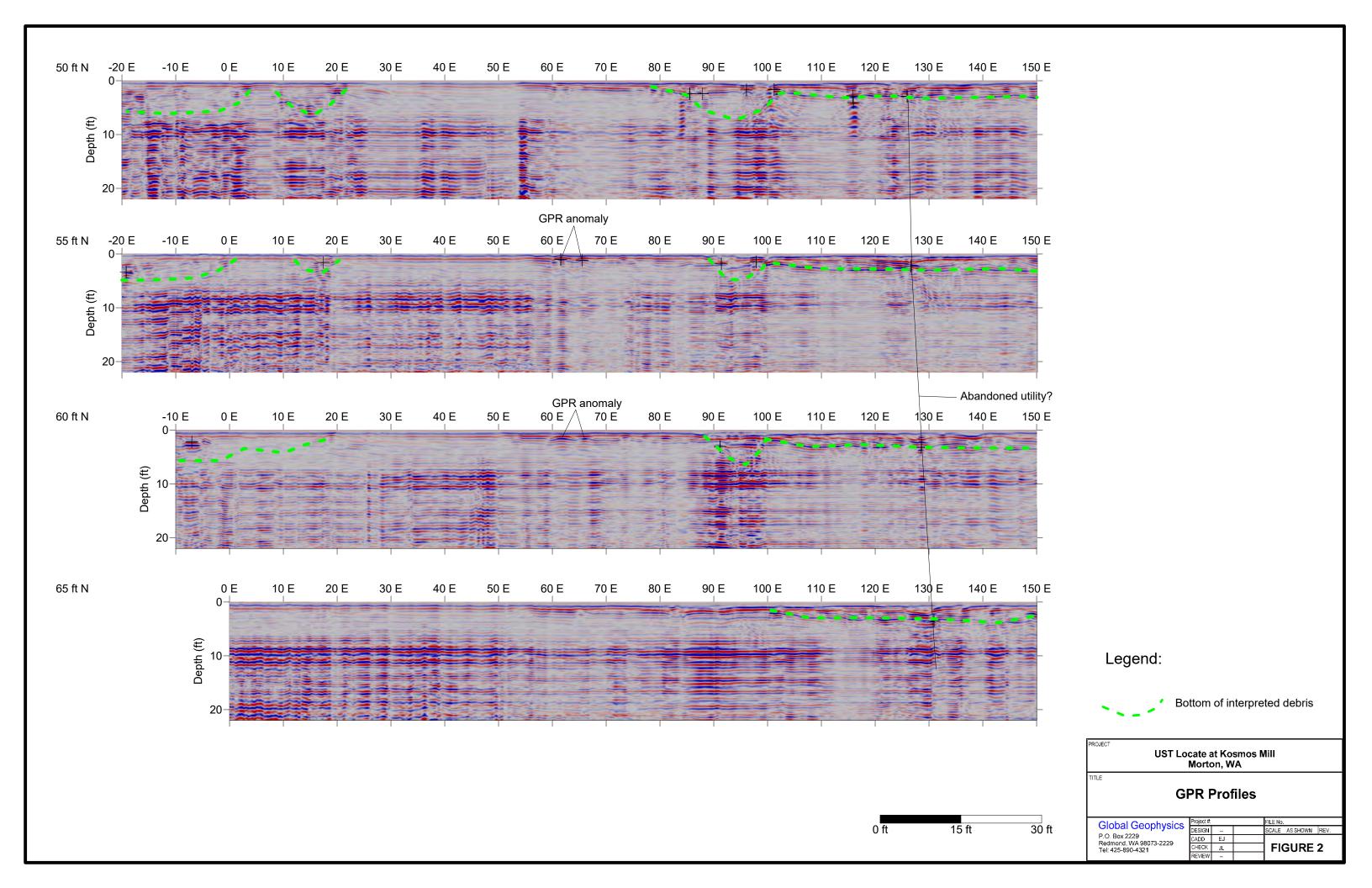
The depth of penetration of the GPR signal varies according to antenna frequency and the conductivity of the subsurface material. The depth of subsurface penetration with GPR decreases with an increase in the frequency of the antenna and an increase in soil conductivity. Low frequency antennas (50 to 500 MHz) provide the best compromise between obtaining good subsurface penetration and resolution.

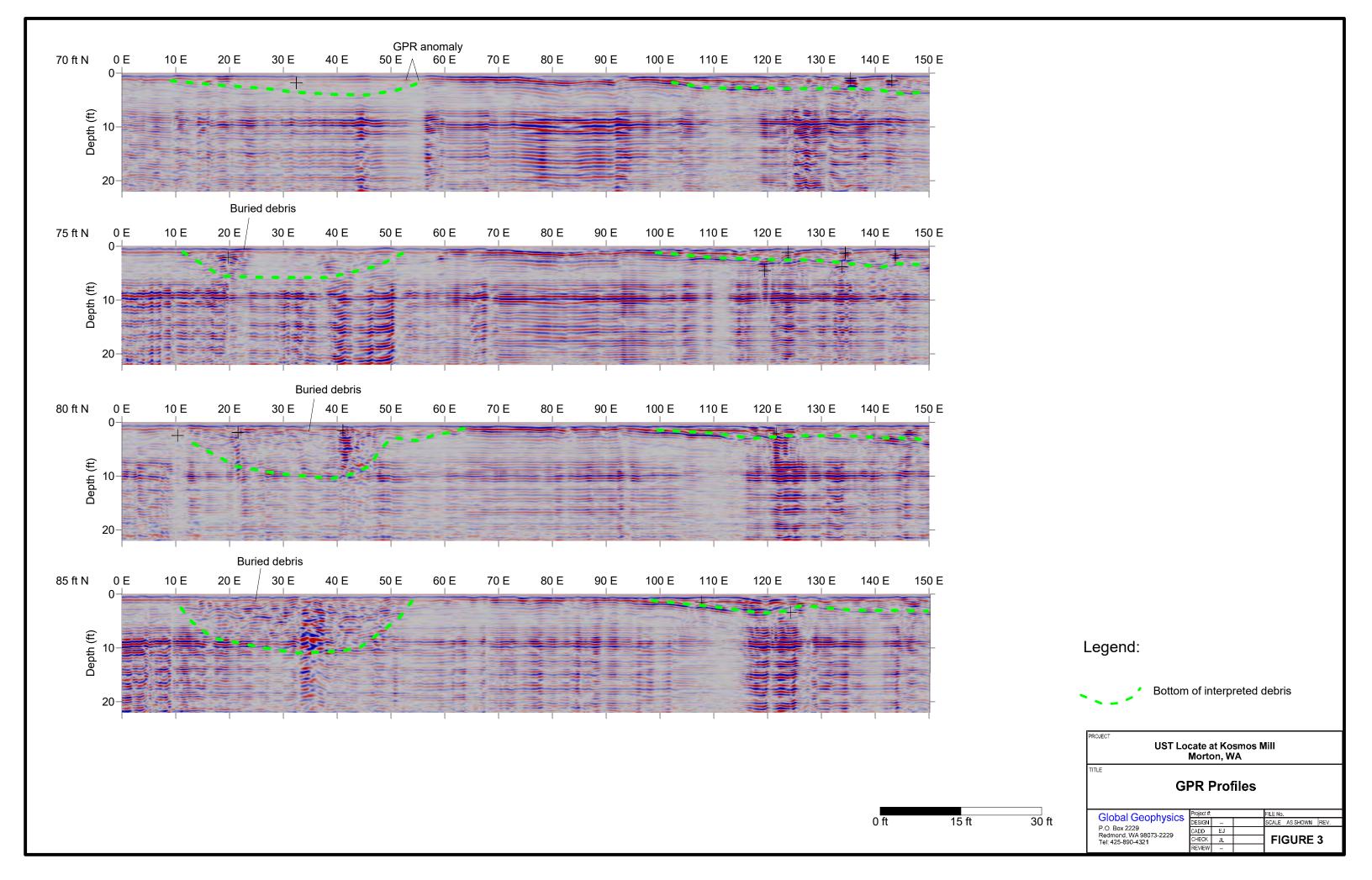
The data were collected along the transects at 5 ft interval using Geophysical Survey Systems, Inc. (GSSI) SIR 2000 GPR system with antennas having a center frequency of 200 MHz. The data was digitally recorded for post processing.

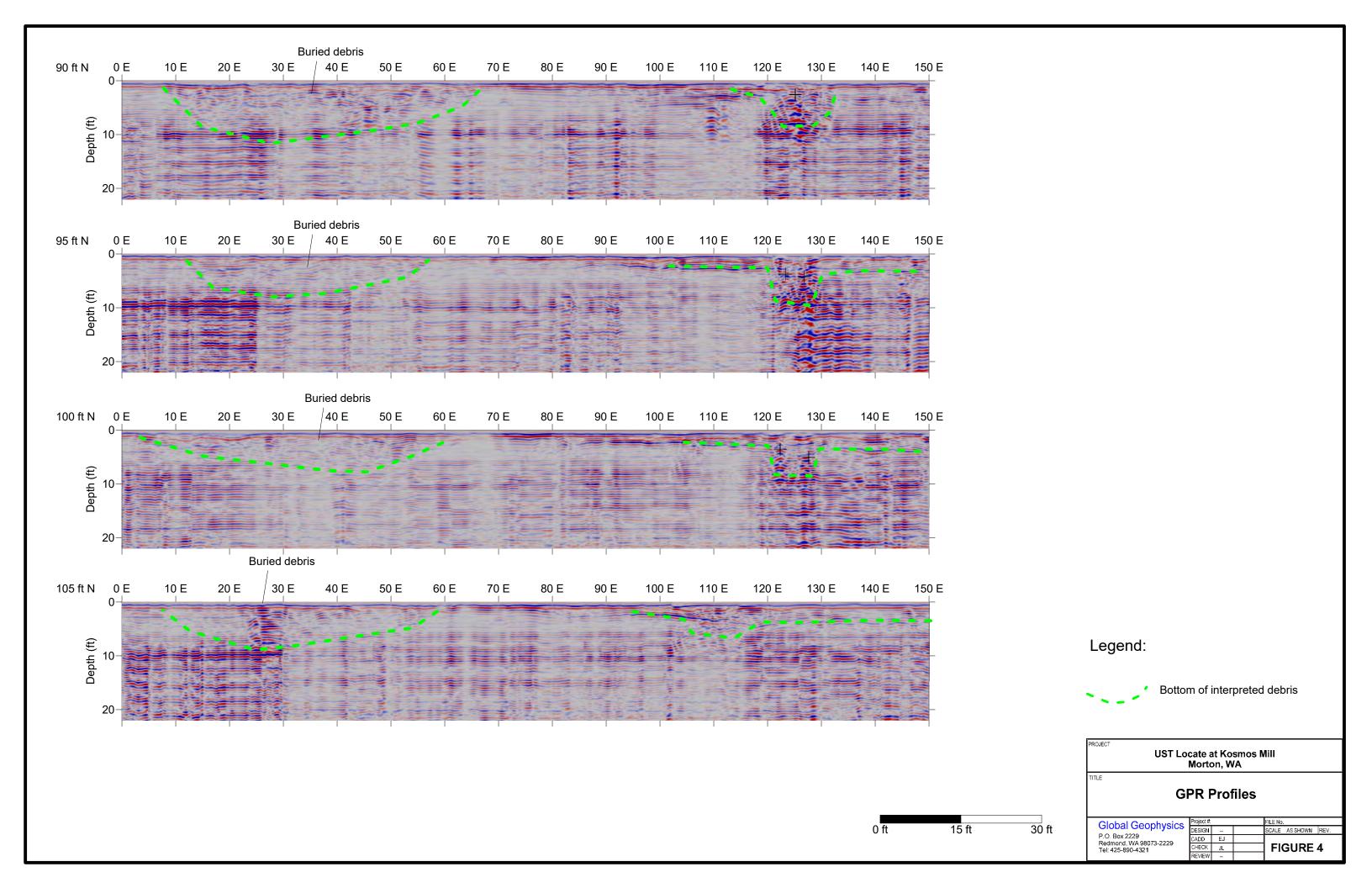
RESULTS

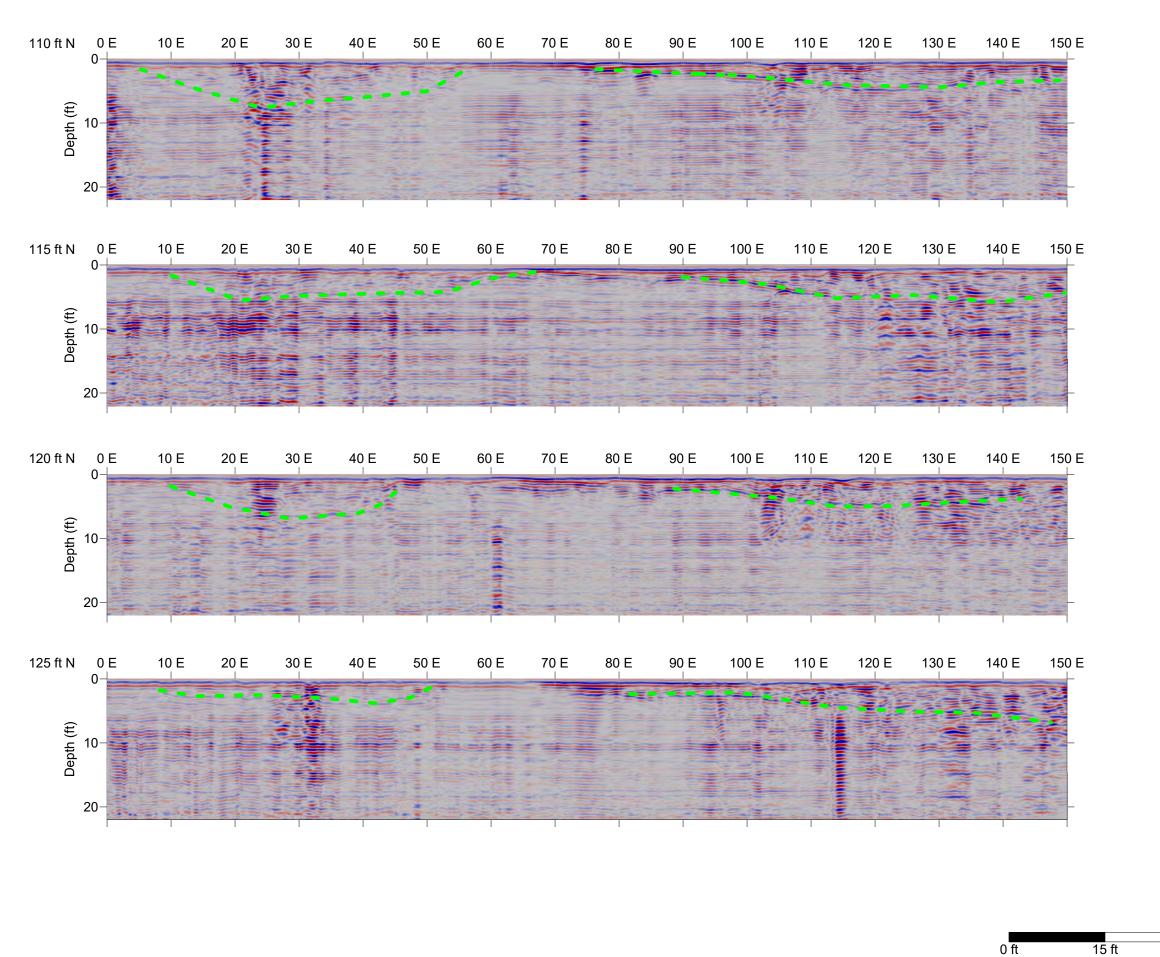
- 1. Area 1: 150 ft in EW direction and 250 ft in NS direction.
 - The EM61 data are contoured and presented in Figure 1. 2D GPR profiles are shown in Figures 2 -12. There are 5 high EM response areas: Area A to Area E. Area A has a lot of surface metal objects and possible buried metal objects. Area B has concrete slabs. Area C and Area D probably have buried metal objects. Area D has two metal objects either small UST or broken pipes.
- 2. Area 2: along foundation of an abandoned structure (Figure 13).
 - The EM61 and GPR profiles are presented in Figures 14-16. One large EM anomaly locate between ST 148-156 between points E and F may be a UST or concrete slab. GPR anomalies are between ST138-146 and a possible trench.

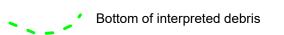

LIMITATIONS OF THE GEOPHYSICAL METHOD

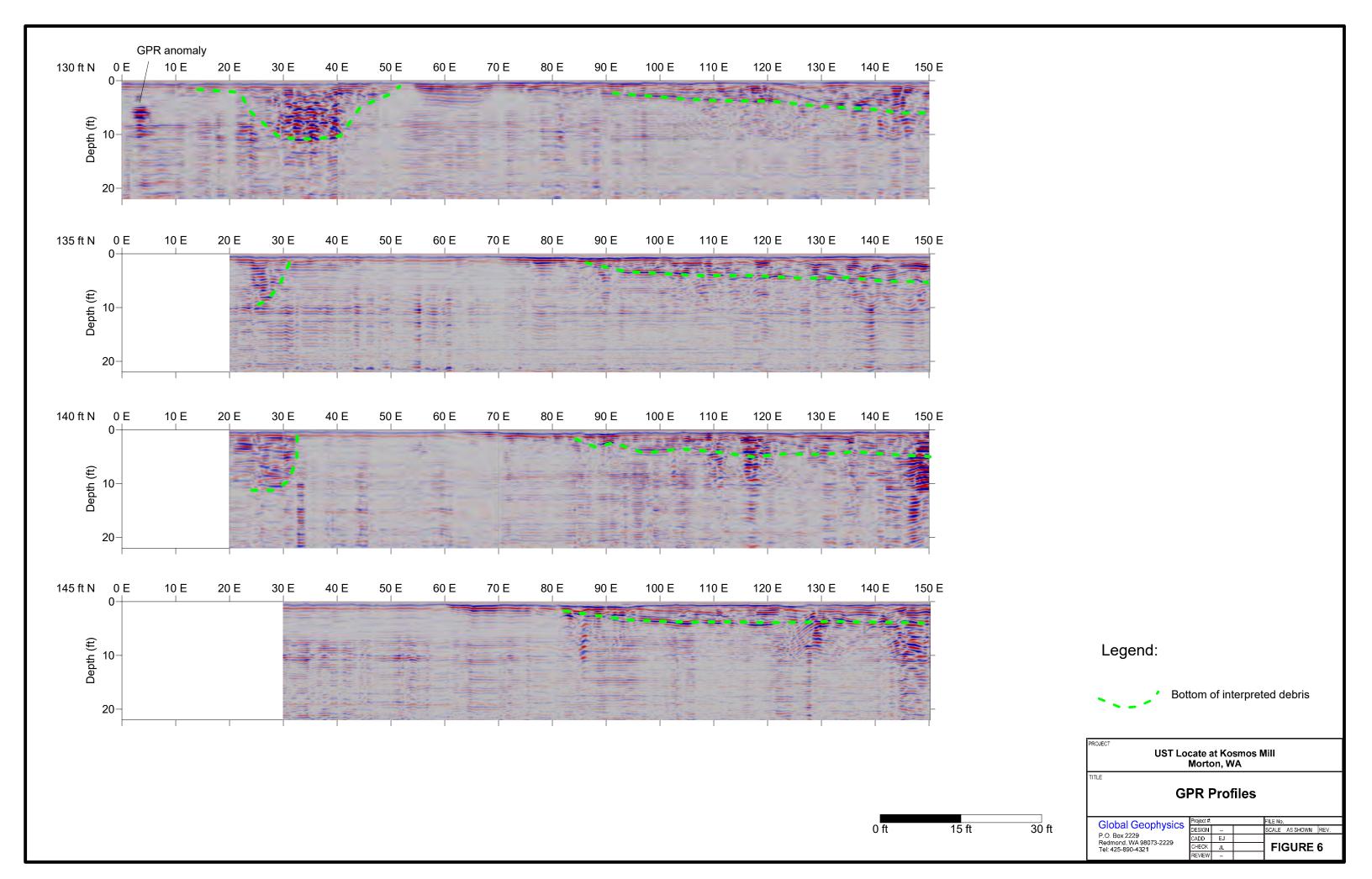

Global geophysics services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. GPR and EM61 are remote sensing geophysical methods that may not detect all subsurface conditions due to the limitations of the methods, soil conditions, size of the features and their depths.

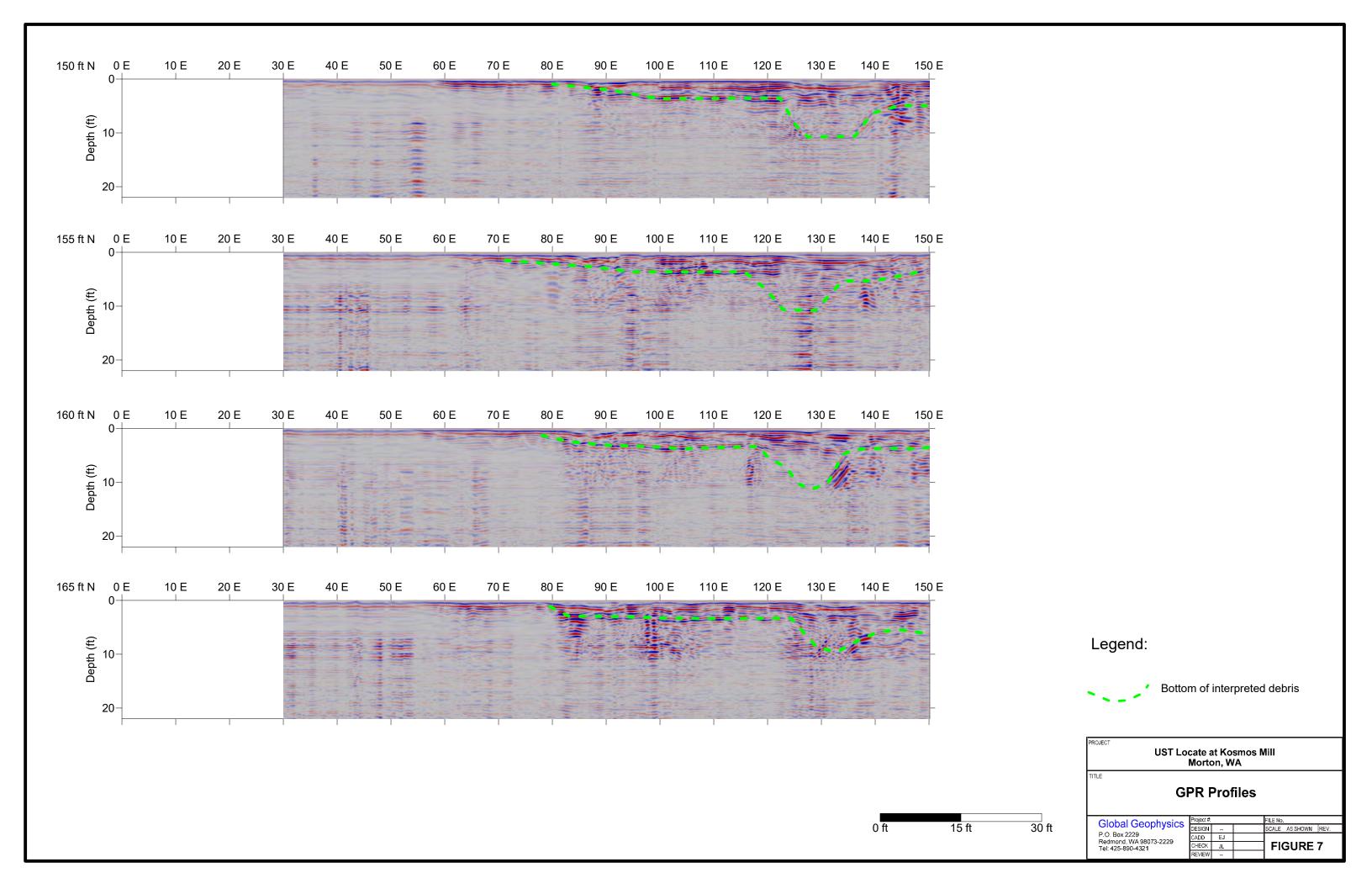

Sincerely,

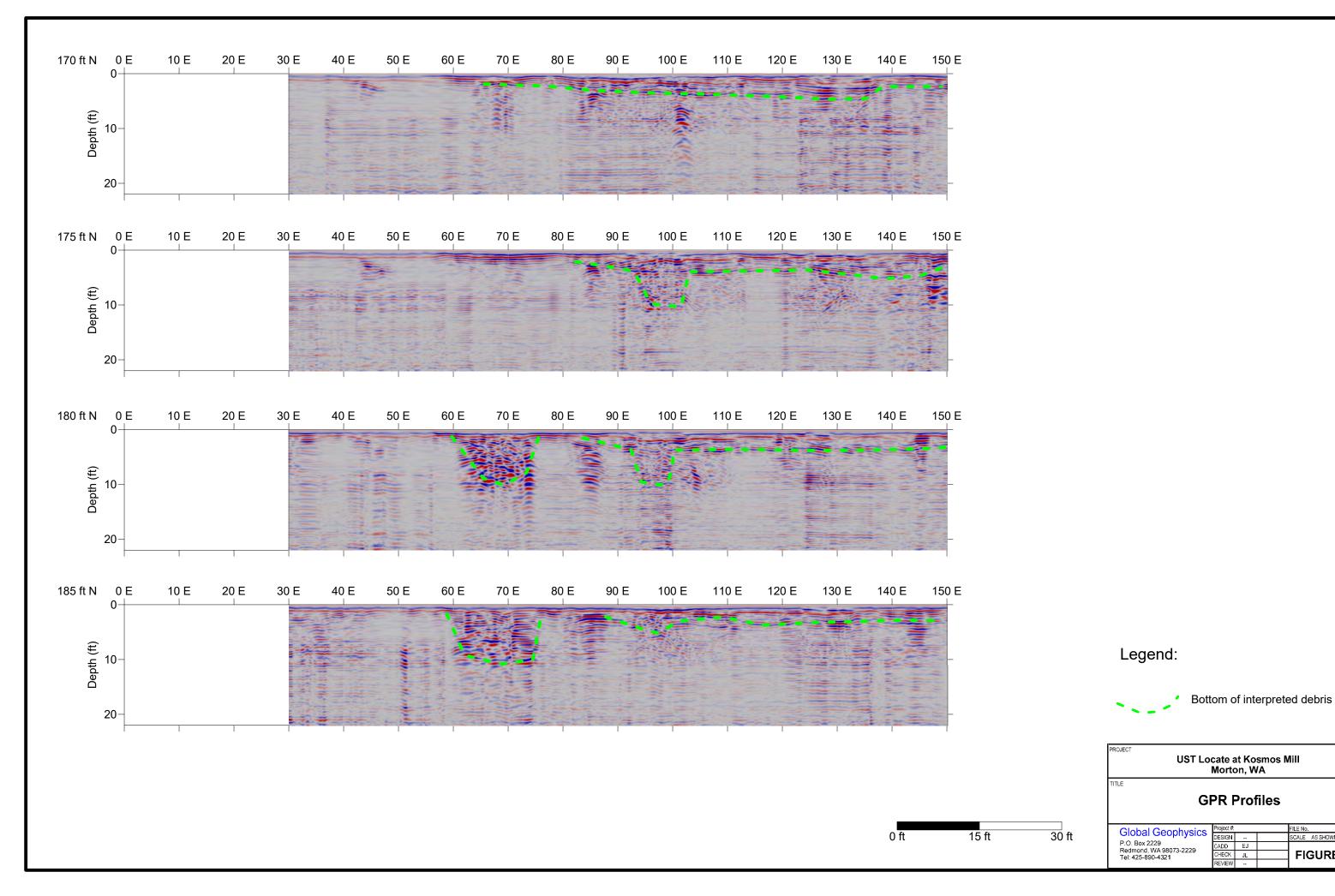

Global Geophysics


John Liu, Ph.D., R.G. Principal Geophysicist



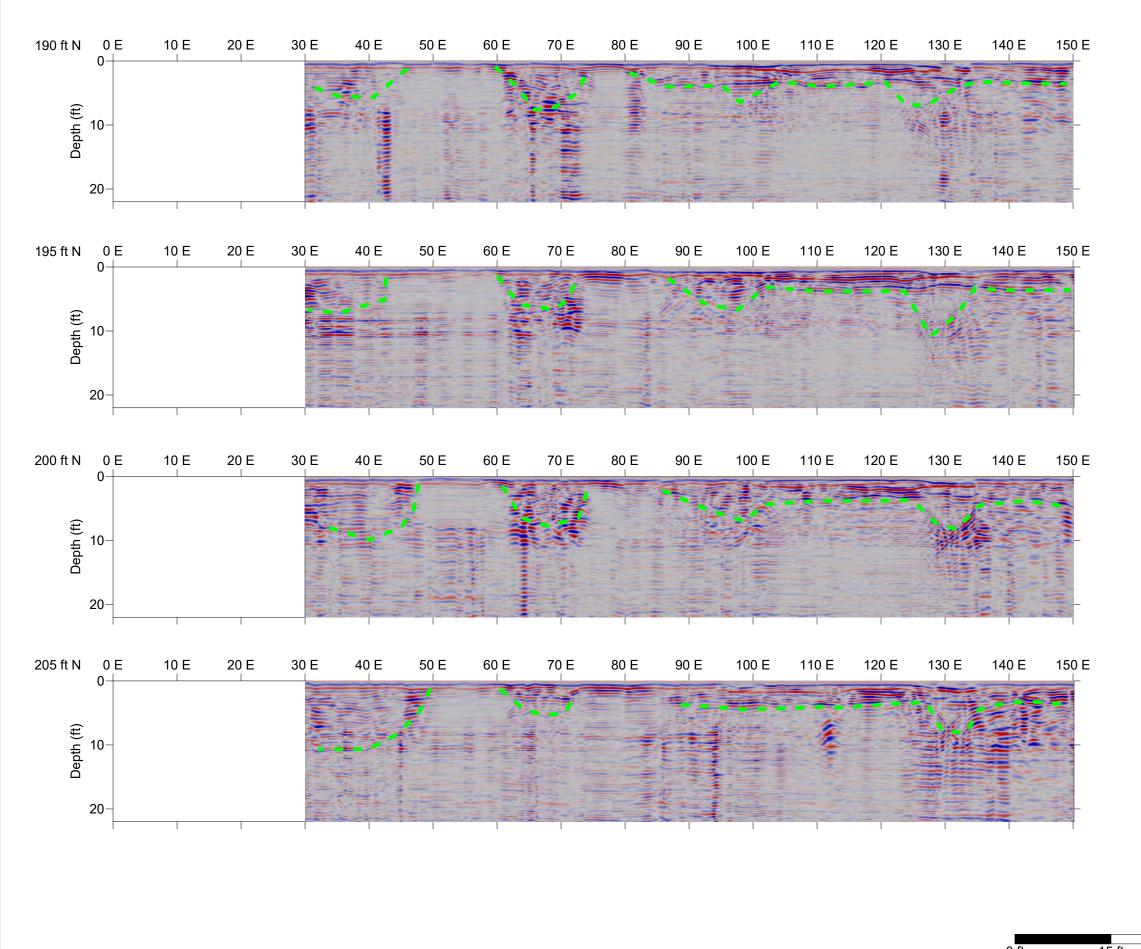


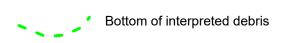

Legend:



PROJECT UST Locate at Kosmos Mill Morton, WA						
GPR Profiles						
Global Geophysics	Project #: DESIGN			FILE No. SCALE AS SHOWN REV.		
P.O. Box 2229 Redmond, WA 98073-2229 Tel: 425-890-4321	CADD CHECK	EJ JL		FIGURE 5		

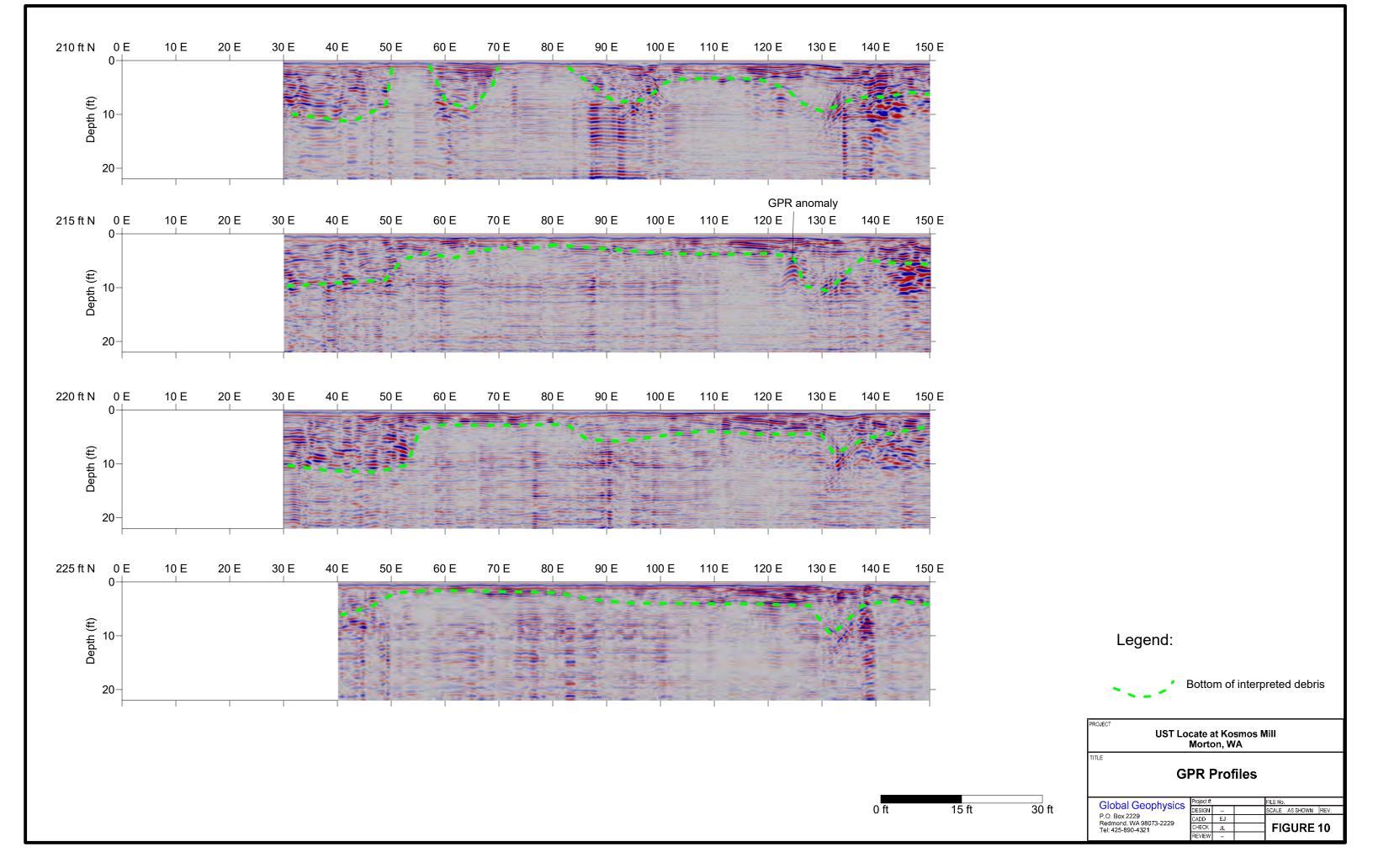
30 ft

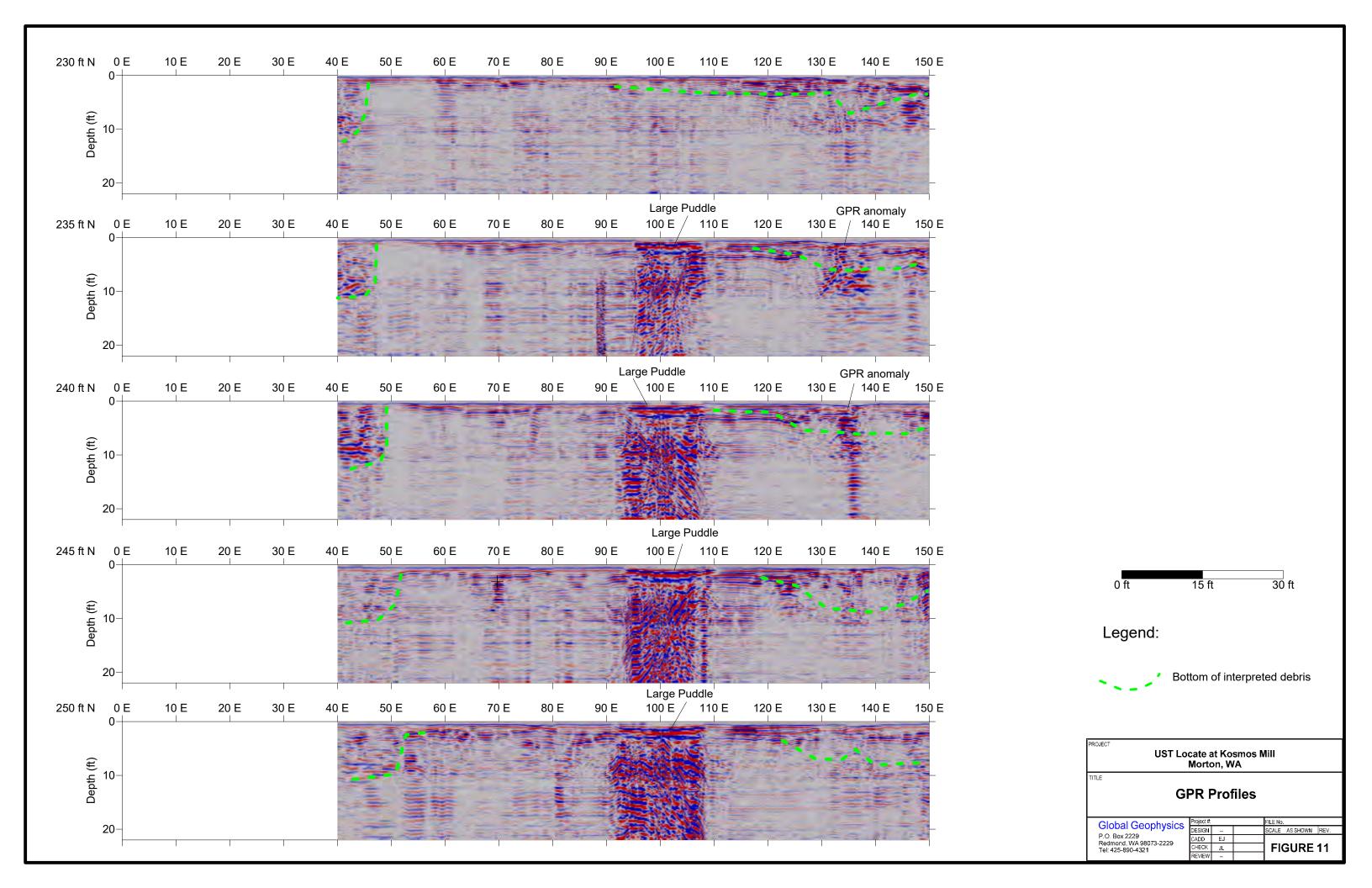


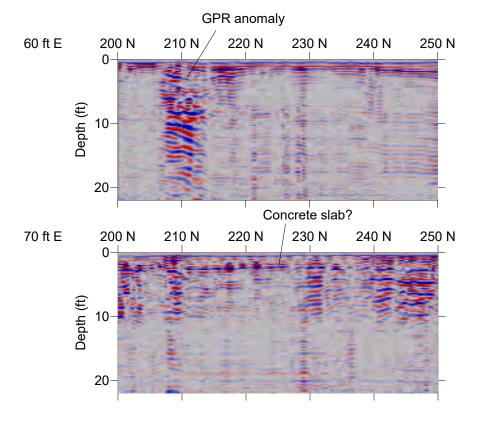


FILE No. SCALE AS SHOWN REV.

FIGURE 8

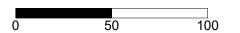



Legend:

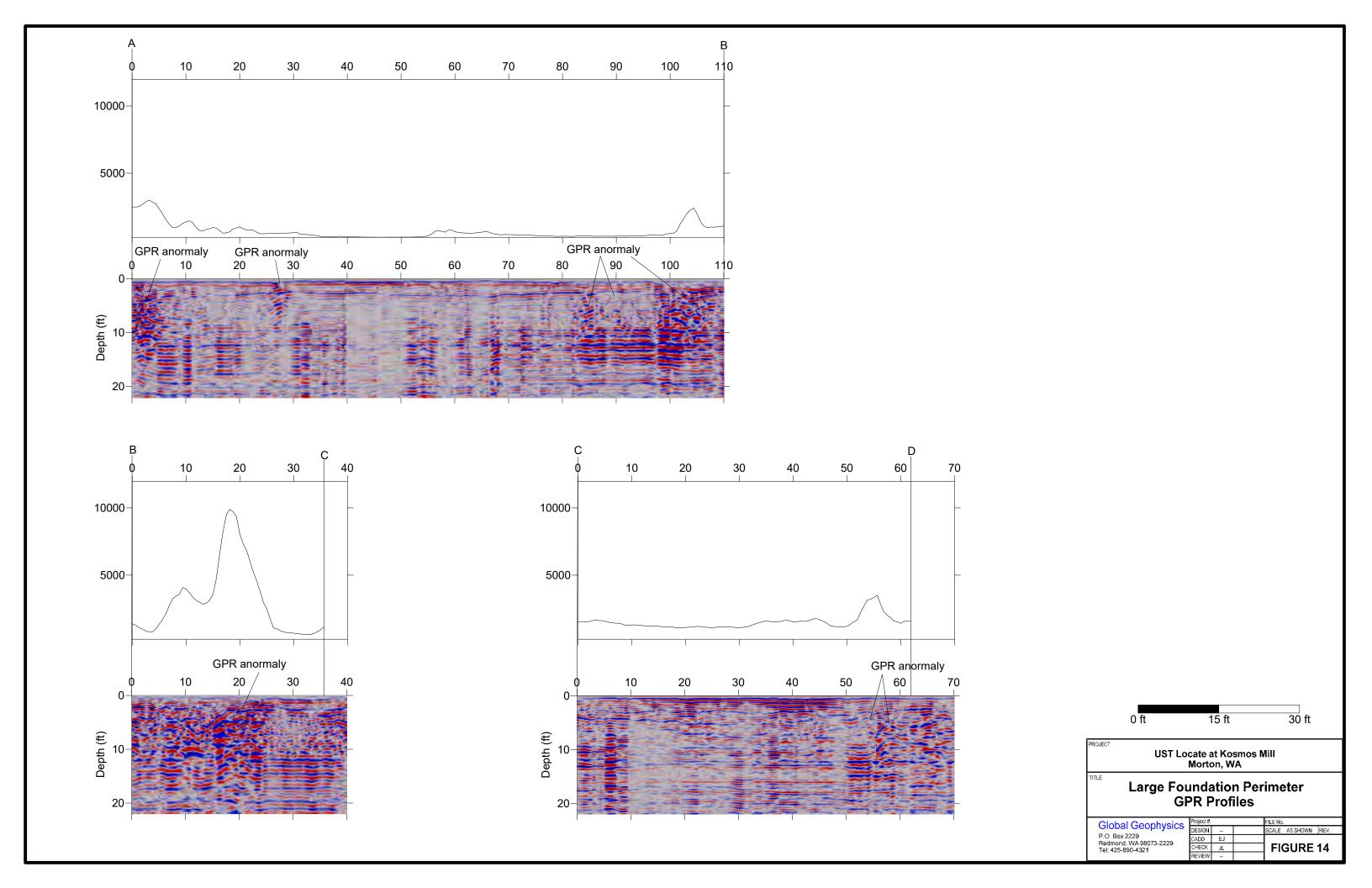


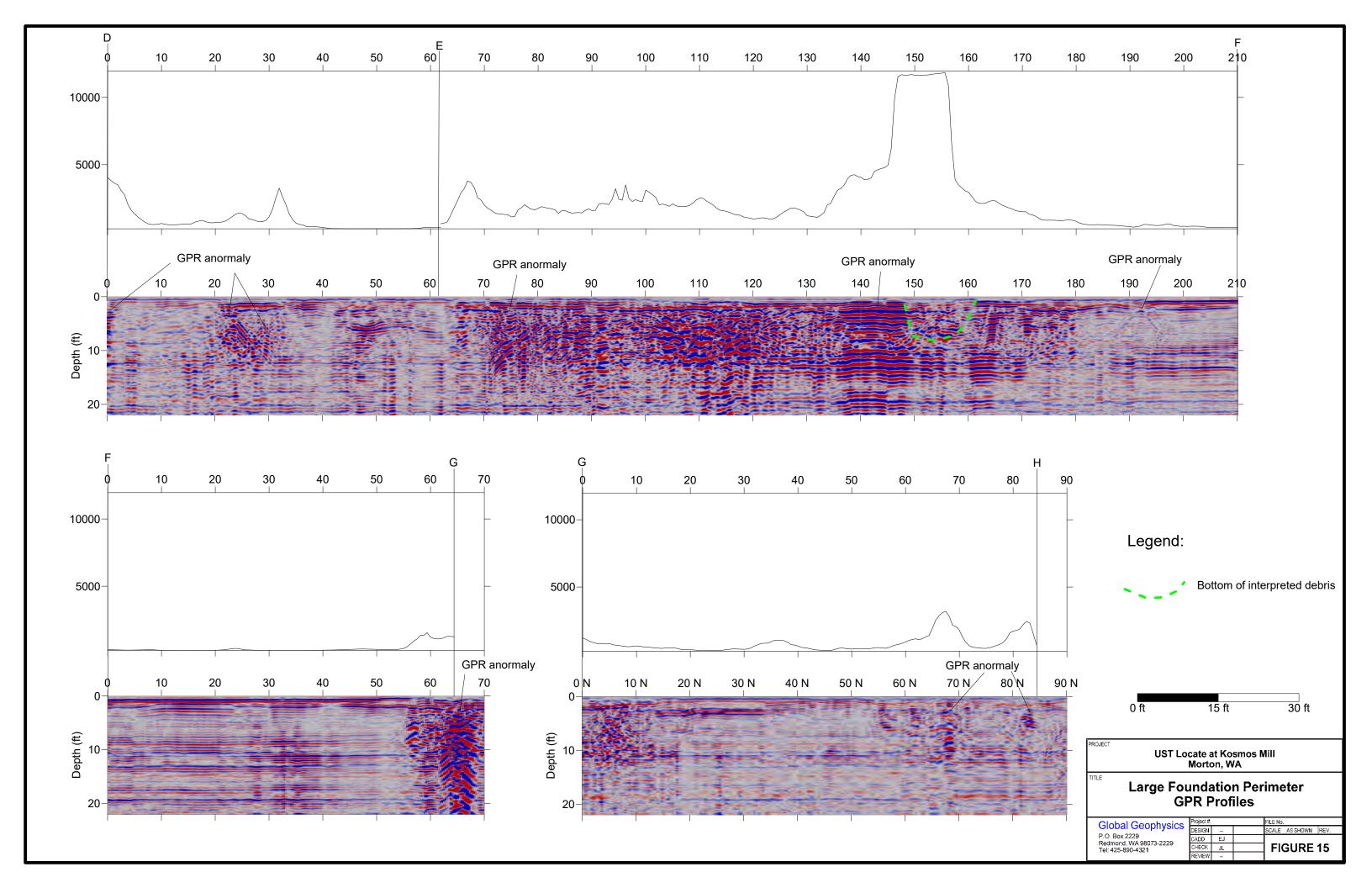
PROJECT UST LO	cate a			/lill		
G G	PR I	Pro	files			
Clobal Coophysics	Project #:			FILE No.		
Global Geophysics P.O. Box 2229	DESIGN	_		SCALE	AS SHOWN	REV.
	CADD	EJ				
Redmond, WA 98073-2229 Tel: 425-890-4321	CHECK	JL] FI	GURE	9

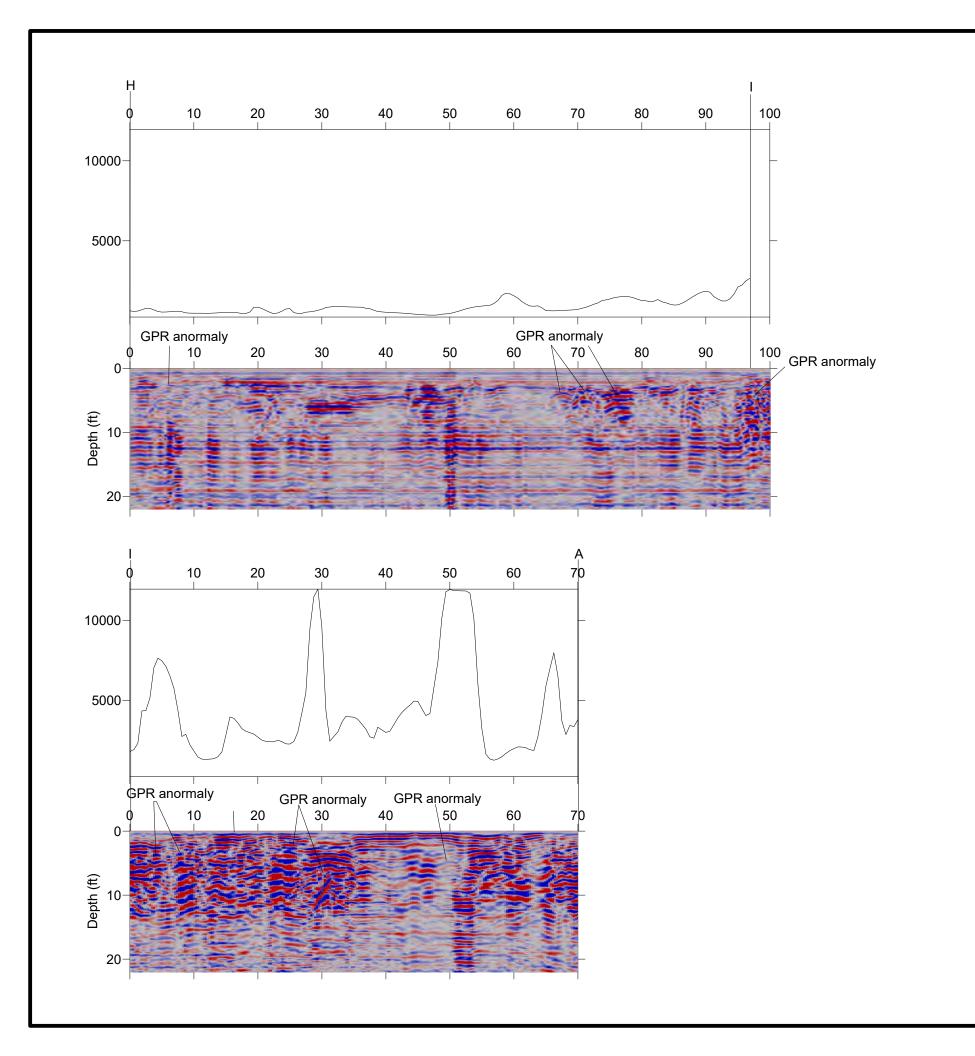
0 ft 15 ft 30 ft

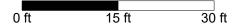


PROJECT UST LO	cate a			Mill
TITLE	R Pro	ofile	es EV	V
	Project #:			FILE No.
Global Geophysics	DESIGN	_		SCALE AS SHOWN REV.
P.O. Box 2229 Redmond, WA 98073-2229	CADD	EJ		
Tel: 425-890-4321	CHECK	JL] FIGURE 12
	REVIEW			

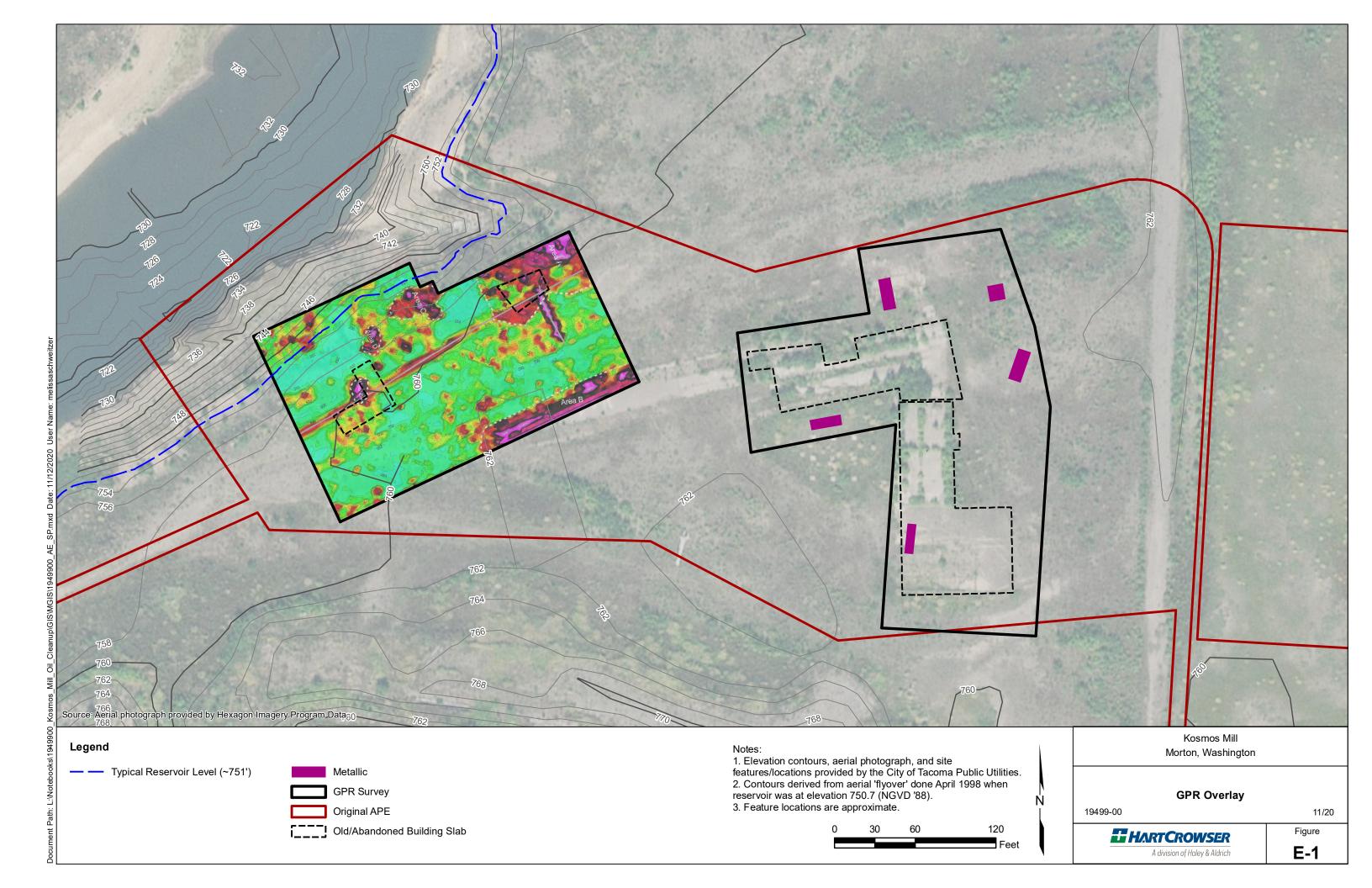



F	PROJECT UST Locate at Kosmos Mill Morton, WA	
F	TITLE	


Large Foundation Perimeter Site Map


Global Geophysics			
• •	DE:		
P.O. Box 2229			
Redmond, WA 98073-2229 Tel: 425-890-4321			

	Project #:			FILE No.		
	DESIGN	-		SCALE	AS SHOWN	REV.
	CADD	AK				
	CHECK	JL		FIGURE 13		
	REVIEW					



PROJECT	UST Lo	cate at Kos Morton, W	
TITLE	Larga Ea	undation	Darimatar
	_	PR Profi	n Perimeter les

Global Geophysics
P.O. Box 2229
Redmond, WA 98073-2229
Tel: 425-890-4321

Seophysics	FTOJECU#.		FILE NO.			
eophysics	DESIGN	-	SCALE AS SHOWN REV.			
9 A 98073-2229	CADD	EJ				
4321	CHECK	JL	FIGURE 16			
	REVIEW					

APPENDIX F Field Exploration Methods and Exploration Logs

APPENDIX F FIELD EXPLORATION METHODS AND EXPLORATION LOGS

This appendix documents the field exploration methods we used to further assess the environmental quality of the soil and groundwater at the Site. The sections are:

- Explorations and Their Location;
- Sonic Borings;
- Test Pits;
- Soil Sampling Procedures;
- Soil Screening and Analysis;
- Groundwater Level Measurements;
- Groundwater Sampling Procedures;
- Sample Handling and Laboratory Analysis; and
- Investigation-Derived Waste Storage and Disposal.

Explorations and Their Location

Subsurface explorations for the Site investigation and characterization were sonic borings and test pits. Grab groundwater samples were collected from four of the borings. Exploration logs in this appendix show our interpretation of the sampling and testing data. The logs indicate the depth at which the physical characteristics of soils change; however, the change may be gradual. In the field, we classified the samples taken from the explorations according to the methods on Figure F-1 – Key to Exploration Logs. This figure's legend explains the symbols and abbreviations used in the logs.

Figure 3 shows where the explorations were located.

Sonic Borings

Ten sonic borings (B-1 through B-10) were drilled to depths of 40 to 50 feet bgs on December 10, 11, and 12, 2019. The borings were advanced with an approximately 8-inch diameter sonic drill using a mobile tracked rig by a licensed driller (Holt Service, Inc.) subcontracted to Hart Crowser. An environmental engineer from Hart Crowser continuously observed the drilling. We obtained soil samples at 5-foot depth intervals. All soil samples were classified in accordance with American Society for Testing and Materials (ASTM) Method D2488, and pertinent characteristics of the subsurface conditions were recorded on boring logs. Detailed logs for each boring are presented at the end of this appendix.

The sonic drill was steam cleaned between borings to prevent cross-contamination.

Test Pits

Four test pits were excavated to depths of 9 to 14 feet bgs on November 11, 2019. Nine test pits were excavated to depths of 5 to 20 feet bgs between December 6 and 9, 2019. The test pits were excavated using an excavator by a licensed operator (AEC) contracted to Tacoma Power. An environmental engineer from Hart Crowser continuously observed the excavation. We obtained soil samples at 2.5 to 5-foot depth

intervals. All soil samples were classified in accordance with American Society for Testing and Materials (ASTM) Method D2488, and pertinent characteristics of the subsurface conditions were recorded on boring logs. Detailed logs for each boring are presented at the end of this appendix.

Soil Sampling Procedures

Soil samples were collected for chemical analysis directly from the sonic drill sleeve with a clean stainlesssteel spoon and/or clean disposable nitrile gloves and placed in pre-cleaned, laboratory-supplied glass sample jars and 40-milliliter (ml) volatile organics analysis (VOA) bottles supplied by the laboratory. Sufficient soil was removed to overfill the 4-ounce glass sample jars. VOA bottles were filled with a 5-gram soil plug according to Environmental Protection Agency (EPA) Method 5035 procedures. The jars were sealed and labeled. Filled sample jars were stored in an ice-chilled cooler and submitted to the analytical laboratory under chain-of-custody protocols.

Soil Screening and Analysis

No sheen (NS)

Field screening results were used as a general guideline to identify potential chemical constituents in soil samples. In addition, field screening results were used as a basis for selecting soil samples for chemical analysis.

Soil samples were field screened at 2.5- to 5-foot depth intervals for evidence of volatile organic compounds (VOCs)-related impacts using (1) visual and olfactory observations, (2) sheen screening, and (3) headspace vapor screening using a MiniRAE PID. The effectiveness of field screening varies with temperature, moisture content, organic content, soil type, and age of the constituents. Visual examination consists of inspecting the soil for evidence of discoloration, staining, and/or abnormal components. Visual screening is generally more effective when impacts are related to heavy petroleum hydrocarbons, such as motor or hydraulic oil, or when hydrocarbon concentrations are high.

We tested water sheen by placing a small volume of soil in a pan of water and observing the water surface for signs of sheen. Sheens were classified as follows:

No visible sheen on water surface.

Slight sheen (SS)	Light colorless film, spotty to globular; spread is irregular, not rapid; areas of no sheen remain; film dissipates rapidly.
Moderate sheen (MS)	Light to heavy film, may have some color or iridescence; globular to stringy; spread is irregular to flowing; few remaining areas of no sheen on water surface.
Heavy sheen (HS)	Heavy colorful film with iridescence; stringy; spread is rapid; sheen flows off the sample; most of the water surface may be covered with sheen.

Headspace vapor screening is intended to indicate the presence of volatile organic vapors; it involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The PID probe is then inserted in the bag and the instrument measures the concentration of organic vapors in the sample headspace. The highest vapor reading for each sample is then recorded on the boring log. The PID measures concentrations in ppm, is calibrated to isobutylene, and can typically quantify organic vapor concentrations in the range of 0 to 1,000 ppm.

All field screening observations were recorded on the boring logs, and this information was used to select which samples to submit for chemical analysis. In general, samples with the highest readings were selected for analysis.

Groundwater Level Measurements

Water level measurements were recorded before groundwater samples were collected on December 11 and 12, 2019. Depth to water was measured using a water level indicator or oil-water interface probe. The probe was cleaned between measurements to prevent cross-contamination of wells.

Grab Groundwater Sampling Procedures

Grab groundwater samples were collected from four borings (B-4, B-6, B-7, and B-9) on December 11 and 12, 2019, and samples were submitted for chemical analysis. Grab groundwater samples were collected from temporary wells installed in each borehole location. This consisted of placing a 2-inch diameter, schedule-40 slotted screen (0.01-inch or 0.02-inch machine-slotted screen) with polyvinyl chloride (PVC) riser into the boring and allowing the system to rest until the water levels stabilizes. A temporary well was installed by lowering a five-foot screen section to a depth of 45 to 50 feet below ground surface.

Prior to sampling, field personnel recorded the depth to water in the borings using a water level indicator. Due to the high turbidity encountered in the temporary wells, low-flow sampling was not conducted. The low-flow pump was silting up and a more powerful Whale® submersible pump was used. Wells were purged at pumping rates were between approximately 0.5 to 1 gallon per minute and sampled at approximately 47.5 feet bgs (the middle of the 5-foot temporary well screen e of each boring). Water quality parameters were measured using a YSI meter with a flow-through cell. The temporary well was purged until conventional parameters (temperature, pH, and conductivity) varied by less than 10 percent. Approximately 2 to 4 gallons of water were purged from each temporary well except at boring B-4. The temporary well in boring B-4 was not purged prior to the collection of grab groundwater sample because of concerns of available groundwater and the boring location was in the active area of cap construction.

Grab groundwater samples were collected directly from the polyethylene tubing (3/8 inch) into the precleaned containers provided by the analytical laboratory. The containers were sealed, labeled, and stored in an ice-chilled cooler and submitted to the chemistry laboratory under chain-of-custody protocols.

To prevent cross-contamination of the wells, disposable polyethylene tubing was discarded after each use and the pump was refitted with new tubing at each grab groundwater location. The water level indicator

and pump were decontaminated between well locations using a non-phosphate-based cleaner and deionized water. Decontamination generally consisted of the following:

- Tap-water rinse (may consist of an equivalent high-pressure hot-water rinse). Visible soil to be removed by scrubbing.
- Non-phosphate detergent wash, consisting of a dilute mixture of Liqui-Nox® (or equivalent) and tap water.
- Distilled-water rinse.

Sample Handling and Laboratory Analysis

At the time of collection, soil and grab groundwater samples were placed in an ice-chilled cooler and submitted to the laboratory using chain-of-custody protocols. Soil and grab groundwater samples were submitted to Friedman and Bruya, Inc. (F&B) of Seattle, Washington, for chemical analysis. F&B subcontracted groundwater analyses for Low Level Mercury and hexavalent chromium to Fremont Analytical, Inc. (Fremont) in Seattle, Washington.

Investigation-Derived Waste Storage and Disposal

Soil cuttings generated during exploration activities were placed alongside soil stockpiled from the protective cap excavation and disposed along with the petroleum-impacted soil after the construction was completed. Purge water generated during grab groundwater sampling activities was placed in the baker tank being used by the contractor during the protective cap construction and disposed of off-site.

Exploration Logs

Sample Description

Identification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. ASTM D 2488 visual-manual identification methods were used as a guide. Where laboratory testing confirmed visual-manual identifications, then ASTM D 2487 was used to classify the soils.

Relative Density/Consistency

Soil density/consistency in borings is related primarily to the standard penetration resistance (N). Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on

SAND or GRAVEL Relative Density	N (Blows/Foot)	SILT or CLAY Consistency	N (Blows/Foot)
Very loose	0 to 4	Very soft	0 to 1
Loose	5 to 10	Soft	2 to 4
Medium dense	11 to 30	Medium stiff	5 to 8
Dense	31 to 50	Stiff	9 to 15
Very dense	>50	Very stiff	16 to 30
-		Hard	>30

Moisture

-OGS (SOIL ONLY) - J'GINTHC LIBRARY GLB - 10/15/20 19:50 - \\SEAFS\PROJECTS\NOTEBOOKS\1949900 KOSMOS MILL OIL CLEANUP\FIELD DATA\PERM GINT FILES\1949900-BL.GPJ

Dry Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Wet Visible free water, usually soil is below water table

USCS Soil Classification Chart (ASTM D 2487)

	las Divisias		Syn	nbols	Typical
IVIa	ijor Divisions		Graph	USCS	Descriptions
		Clean Gravels		GW	Well-Graded Gravel; Well-Graded Gravel with Sand
		(<5% fines)	00°	GP	Poorly Graded Gravel; Poorly Graded Gravel with Sand
	Gravel and			GW-GM	Well-Graded Gravel with Silt; Well-Graded Gravel with Silt and Sand
	Gravelly Soils	Gravels		GW-GC	Well-Graded Gravel with Clay; Well-Graded Gravel with Clay and Sand
	More than 50% of Coarse Fraction	(5-12% fines)		GP-GM	Poorly Graded Gravel with Silt; Poorly Graded Gravel with Silt and Sand
	Retained on No. 4 Sieve			GP-GC	Poorly Graded Gravel with Clay; Poorly Graded Gravel with Clay and Sand
Coarse		Gravels with	0 D	GM	Silty Gravel; Silty Gravel with Sand
Grained Soils		Fines (>12% fines)		GC	Clayey Gravel; Clayey Gravel with Sand
More than 50% of Material Retained on		Sands with	•	sw	Well-Graded Sand; Well-Graded Sand with Gravel
No. 200 Sieve	Sand and	few Fines (<5% fines)		SP	Poorly Graded Sand; Poorly Graded Sand with Gravel
		Sands (5-12% fines)		SW-SM	Well-Graded Sand with Silt Well-Graded Sand with Silt and Gravel
	Sandy Soils		• //	SW-SC	Well-Graded Sand with Clay; Well-Graded Sand with Clay and Grave
	More than 50% of Coarse Fraction			SP-SM	Poorly Graded Sand with Silt; Poorly Graded Sand with Silt and Grave
	Passing No. 4 Sieve			SP-SC	Poorly Graded Sand with Clay; Poorly Graded Sand with Clay and Grave
		Sands with		SM	Silty Sand; Silty Sand with Gravel
		Fines (>12% fines)		sc	Clayey Sand; Clayey Sand with Gravel
	Silts			ML	Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt
Fine Grained Soils	Silts	•		МН	Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt
More than 50% of Material	Silty C (based on Atte			CL-ML	Silty Clay; Silty Clay with Sand or Grave Gravelly or Sandy Silty Clay
Passing No. 200 Sieve	Class			CL	Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay
	Clay	<u>.</u>		СН	Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay
	Organ	ics		OL/OH	Organic Soil; Organic Soil with Sand or Gravel; Sandy or Gravelly Organic Soil
	Highly Organic % organic materia	<i>I)</i>	د علد	PT	Peat - Decomposing Vegetation - Fibrous to Amorphous Texture

Minor Constituents	Estimated Percentage
Sand, Gravel	
Trace	<5
Few	5 - 15
Cobbles, Boulders	
Trace	<5
Few	5 - 10
Little	15 - 25
Some	30 - 45

Soil Test Symbols Percent Passing No. 200 Sieve Atterberg Limits (%) Liquid Limit (LL) Water Content (WC) Plastic Limit (PL) CA Chemical Analysis CAUC Consolidated Ánisotropic Undrained Compression CAUE Consolidated Anisotropic Undrained Extension CBR California Bearing Ratio Consolidated Drained Isotropic Triaxial Compression CIDC CIUC Consolidated Isotropic Undrained Compression Consolidated Drained k0 Triaxial Compression CK0DC **CKODSS** Consolidated k0 Undrained Direct Simple Shear CK0UC Consolidated k0 Undrained Compression CK0UE Consolidated k0 Undrained Extension CRSCN Constant Rate of Strain Consolidation DS Direct Shear DSS Direct Simple Shear In Situ Density DT GS Grain Size Classification HYD Hydrometer Incremental Load Consolidation K0CN k0 Consolidation Constant Head Permeability Falling Head Permeability MD Moisture Density Relationship OC OT Organic Content Tests by Others Pressuremeter PID Photoionization Detector Reading PP Pocket Penetrometer SG Specific Gravity TRS Torsional Ring Shear Torvane UC **Unconfined Compression** Unconsolidated Undrained Triaxial Compression UUC WC Water Content (%)

Groundwater Indicators

 $\overline{\Delta}$ Groundwater Level on Date or At Time of Drilling (ATD)

T Groundwater Level on Date Measured in Piezometer

Groundwater Seepage (Test Pits)

Sample Symbols

1.5" I.D. Split Spoon

Rock Core Run

3.25" O.D. Split Spoon

Sonic Core Thin-walled Sampler

Cuttings Push Probe

Well Symbols

Monument Surface Seal Signal Bentonite Seal Well Casing Vibrating Sand Pack Wire Piezometer Well Tip or Slotted Screen (VP) Slough

HARTCROWSER

Project: Kosmos Mill Oil Cleanup

Location:

Project No.: 19499-00

Key to **Exploration Logs**

F-1 Figure Sheet

1 of 1

Date Started: <u>12/11/19</u>	Date Completed: 12/11/19	Contractor/Crew: Holt Services, Inc.			
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mounted drill rig			
Location: N: 427,060.05 E: 1,214,354.8	39 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA		
Ground Surface Elevation: 785.53 feet	(NAVD 88)	Total Depth: 40 feet	Depth to Groundwater: Not Identified		
Comments: GS Elev in ft (Tacoma City	Light Datum): 781.57				

		L	_	San	nple Data	_			_	
Elevation (feet)	Denth (feet)	Deptit (reet)	Recovery	Length (inches)	Number Tests	Sheen	Graphic Log	Material Description	Well Construction	Depth (feet)
785	C)	7			1		SILT WITH GRAVEL (ML), moist, dark gray, frequent black hydrocarbon staining.		c
		3) } }		B-1-5 Slight petroleum			SILT WITH SAND (ML), moist, brown. [FILL]	<u> </u>	
) iii	60	petroleum	SS				F
780	5	; 	7					CLAYEY SAND WITH GRAVEL (SC), moist, brown. [FILL]	 	<u></u>
_			\ 		D 4 40			0=11=1		Ė
		- <) jë	60	<u>B-1-10</u> No odor	NS				F
		-{								١.
775	10) <u> </u> (7				1	SILTY GRAVEL WITH SAND (GM), some cobbles, moist, black hydrocarbon staining at 13 feet. [FILL]	† - -	-1
		-	ءِ اٰ		<u>B-1-15</u> No odor	NS	24			F
		-{) -	60	No odor	INS	69			F
_	15	;					34		L	_1
770							60	POORLY GRADED GRAVEL WITH SAND (GP), some cobbles, moist, brown.		F .
		-	60in.	60	<u>B-1-20</u> No odor	NS	Po			F
		3	\int_{0}^{∞}		140 0001		20			
765	20) -	3					SILTY GRAVEL WITH SAND (GM), moist, dark brown to gray.	<u></u>	-2
7		-	┨.					SILT CHAVLE WITH SAND (CIM), Moist, dark blown to gray.		H
		3	9 in	60	<u>B-1-25</u> No odor	NS	(1)			Ē
		-{								F
260	25	5 	7				191			-2
		3) } _:		B-1-30				L	F
		-{) jej	60	<u>B-1-30</u> No odor	NS	60	POORLY GRADED GRAVEL WITH SAND (GP), moist, gray-brown.		F
	30	<u>.</u>					0			- -3
755	30	<u> </u>						SILTY GRAVEL (GM), moist, gray.		"
		-{	60in.	60	<u>B-1-35</u> No odor	NS	1			F
)		NO Odor					Ľ
Q	35	; <u> </u>	3							<u> </u>
750		-{					9			-
		3) 90 9	60	<u>B-1-40</u> No odor	NS				
		-{								F
745	40	+	2				1911 1	Bottom of Borehole at 40.0 feet.		-4
. ~]								F
		+								-
	4 -	-								L ,
740	45	,]								-4 -
		+								-
		+								L
		ral N								Ĺ

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.

Kosmos Mill Oil Cleanup Project:

Location:

Project No.: 19499-00

Sonic Core Log **B-1**

F-2 Figure Sheet 1 of 1

Date Started: <u>12/10/19</u>	Date Completed: <u>12/10/19</u>	Contractor/Crew: Holt Services, Inc.					
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mounted drill rig					
Location: N: 427,117.94 E: 1,214,428	.27 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA				
Ground Surface Elevation: 759.40 fee	et (NAVD 88)	Total Depth: 50 feet	Depth to Groundwater: Not Identified				
Comments: GS Elev in ft (Tacoma City	/ Light Datum): 755.44						
Temporary well. Unable to collect group	ndwater sample.						

				Sample Da	ıta					
Elevation (feet)	Depth (feet)	Type Recovery	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	Well Construction	Depth (feet)
755	- - - -	60in.	60	B-2-5 Slight petroleum odor	0.6	SS		SILTY SAND (SM), moist to wet, gray. [FILL]		 - - -
2 -	5	60in.	60	<u>B-2-10</u> No odor	0.1	NS		SILTY GRAVEL WITH SAND (GM), some cobbles, moist, brown. [FILL]		- 5 - - -
5 7 7	10	60in.	60	<u>B-2-15</u> No odor	<0.1	NS		POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, dark brown to brown. [FILL]	 to	- 10 - - -
740 745 750	15 — - - -	60in.	60	<u>B-2-20</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), some cobbles, moist, gray-brown. [FILL] Frequent black hydrocarbon staining.		— 15 - - - -
5 740	20	60in.	60	<u>B-2-25</u> No odor	<0.1	NS		Becomes brown.		20
725 730 735	25 - - - -	60in.	60	<u>B-2-30</u> No odor	<0.1	NS		Becomes dark brown to gray with frequent black hydrocarbon staining.		25
5 730	30	90in.	60	<u>B-2-35</u> No odor	<0.1	NS				- 30 - - -
	35 - - - -	60in.	60	<u>B-2-40</u> No odor	<0.1	SS		Becomes gray-brown. SILTY GRAVEL WITH SAND (GM), some cobbles, moist, gray-brown.		- 35 - - - -
5 720	40	60in.	60	<u>B-2-45</u> No odor	<0.1	NS	IJЧ	POORLY GRADED SAND WITH GRAVEL (SP), wet, gray, coarse sand.		- 40 - - -
2) 710 715 720 720 720 720 720 720 720 720 720 720	45 - - - -	60in.	60	<u>B-2-50</u> No odor	<0.1	NS				- - 45 - - -
, o.o.	neral							Bottom of Borehole at 50.0 feet.		<u> </u>

- Refer to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Kosmos Mill Oil Cleanup Project:

Location:

Project No.: 19499-00

Sonic Core Log **B-2**

F-3 Figure Sheet

1 of 1

Date Started: <u>12/10/19</u>	Date Completed: 12/10/19	Contractor/Crew: Holt Services, Inc.	
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mou	ınted drill rig
Location: N: 427,146.23 E: 1,214,486.0	05 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA
Ground Surface Elevation: 759.76 feet	(NAVD 88)	Total Depth: 40 feet	Depth to Groundwater: Not Identified
Comments: GS Elev in ft (Tacoma City	Light Datum): 755.80		

				Sample Da	ata					
Elevation (feet)	Depth (feet)	Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	Well Construction	Depth (feet)
755	0 — - - - 5 —		60	<u>B-3-5</u> No odor	<0.1	NS		SILTY GRAVEL (GM), some cobbles, moist, dark brown to light brown. [FILL] No recovery.		(- - - - 5
750	-		<u>.</u> 60	B-3-10						- - - -
	10 - - -		60	<u>B-3-15</u> No odor	<0.1	SS		POORLY GRADED GRAVEL WITH SAND (GP), few cobbles, moist, light brown. [FILL] SILT WITH GRAVEL (ML), moist, dark gray, frequent black hydrocarbon staining. [FILL]		11
745	15		60	<u>B-3-20</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), some cobbles, moist, gray. [FILL] Frequent iron oxide staining. Frequent black hydrocarbon staining.		 1
735 740	20 25		60	<u>B-3-25</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), some cobbles, moist, dark brown.		- -2 - - - -
730	-		60	<u>B-3-30</u> No odor	<0.1	NS				
	30		60	<u>B-3-35</u> No odor	<0.1	NS				 3 - - -
725	35 — - -		60	<u>B-3-40</u> No odor	<0.1	NS				-3 - - -
720	40 —	51					h	Bottom of Borehole at 40.0 feet.		- 4(
715	- - - 45 — -									- - - - 4! -
	neral Refer			F-1 for ex	planatio	n of o	descri	ptions and symbols.		_

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.

Kosmos Mill Oil Cleanup Project: Location:

Project No.: 19499-00

B-3

Sonic Core Log

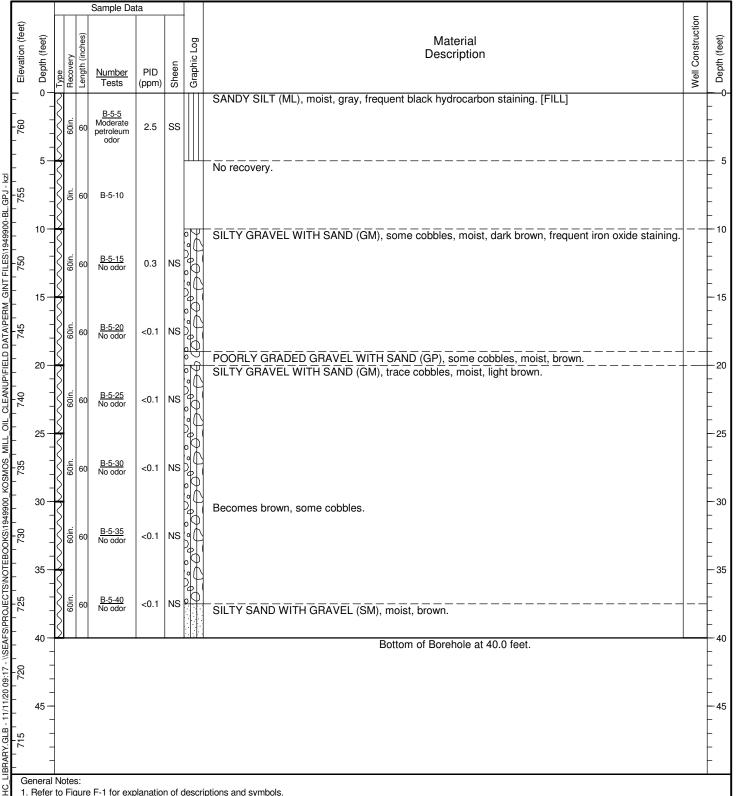
Figure Sheet

F-4 1 of 1

Date Started: <u>12/11/19</u>	Date Completed: 12/11/19	Contractor/Crew: Holt Services, Inc.							
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mou	unted drill rig						
Location: N: 427,205.95 E: 1,214,574.9	98 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA						
Ground Surface Elevation: 760.04 feet	(NAVD 88)	Total Depth: 50 feet	Depth to Groundwater: 38 feet						
omments: GS Elev in ft (Tacoma City Light Datum): 756.08									
Temporary well (B-4-W) Grab groundwater was collected from a temporary well screened from a depth of 45 to 50 feet.									

ſ					Sample Da	ıta					\Box
	Elevation (feet)	O Depth (feet)	lype Recovery	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	WallePpastruction	Depth (feet)
-			60in.	60	<u>B-4-5</u> No odor	0.7	SS		SILT WITH SAND AND GRAVEL (ML), moist, gray. [FILL]		- - -
.GPJ - kzl	755	5	Oin.	60	B-4-10						- - 5 - -
IT FILES\194		10 -	60in.	60	B-4-15 Slight petroleum odor	113.9	NS		SILTY GRAVEL WITH SAND (GM), some cobbles, moist, gray. [FILL]		10
NATA\PERM_GII	745	15 -	60in.	60	<u>B-4-20</u> No odor	<0.1	NS		Becomes red-brown to gray, frequent iron oxide staining.		15
CLEANUP\FIELD [740	20 -	60in.	60	B-4-25 Slight petroleum	2.3	NS		Becomes wet, gray to light brown.		- 20 - -
	735	25 -	60in.	60	odor <u>B-4-30</u> No odor	<0.1	NS		Becomes moist, red-brown, frequent iron oxide staining.		- 25 - -
1949900_KOSM	730	30 -			B-4-35 Slight						- - -30 -
NOTEBOOKS	725	35	90in	60	Slight petroleum odor	8.3	NS		Becomes brown. SILTY GRAVEL WITH SAND (GM), some cobbles, moist, brown.	_	- - - -35
FS/PROJECTS		40	60in.	60	<u>B-4-40</u> No odor	<0.1	NS			ATI ∑	- - - - 40
1/20 09:17 - \\SEA		- (60in.	60	<u>B-4-45</u> No odor	<0.1	NS				- - -
C_LIBRARY.GLB - 11/11/20 09:17 - \\SEAFS\PROJECTS\NOTEBOOKS\1949900_KOSMOS_MILL_OIL	714	45	60in.	60	<u>B-4-50</u> No odor	<0.1	NS				45 - - - -
J. LIBF	Gei	neral N	∑ Notes	<u> </u>				띠	Bottom of Borehole at 50.0 feet.	Ш	Щ

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.


Project: Kosmos Mill Oil Cleanup Location:

Project No.: 19499-00

Sonic Core Log **B-4**

F-5 Figure Sheet 1 of 1

Date Started: <u>12/11/19</u>	Date Completed: 12/11/19	Contractor/Crew: Holt Services, Inc.	
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mou	inted drill rig
Location: N: 427,043.54 E: 1,214,529.1	15 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA
Ground Surface Elevation: 762.52 feet	(NAVD 88)	Total Depth: 40 feet	Depth to Groundwater: Not Identified
Comments: GS Elev in ft (Tacoma City	Light Datum): 758.56		

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Project: Kosmos Mill Oil Cleanup Location:

Project No.: 19499-00

Sonic Core Log **B-5**

Figure Sheet

F-6 1 of 1

Date Started: <u>12/12/19</u>	Date Completed: 12/12/19	Contractor/Crew: Holt Services, Inc.							
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mou	ınted drill rig						
Location: N: 427,078.44 E: 1,214,685.9	99 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA						
Ground Surface Elevation: 761.67 feet	(NAVD 88)	Total Depth: 50 feet	Depth to Groundwater: 40.65 feet						
comments: GS Elev in ft (Tacoma City Light Datum): 757.71									
Temporary well (B-6-W) Grab groundwater was collected from a temporary well screened from a depth of 45 to 50 feet.									

Sample Data													
(+009) so j+0101	Elevation (leet)	Depth (feet)	l ype Recovery	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description			WatePeastruction	Depth (feet)
- C	00/	-	60in.	60	<u>B-6-5</u> Slight odor	0.4	SS		SILT WITH GRAVEL AND SAND (ML), scattered organ [FILL]	nics, frequent black hydrocarbo	on staining.		- - - -
J-BL.GPJ - kzl	CC /	5 -	60in.	60	<u>B-6-10</u> No odor	<0.1	NS		SANDY SILT (ML), moist, gray-brown. [FILL] SILTY SAND (SM), moist, gray-brown. [FILL]				- 5 - - -
INT FILES\194990		10 -	60in.	60	<u>B-6-15</u> No odor	<0.1	NS	0000	SILTY GRAVEL WITH SAND (GM), moist, brown, frequ	uent iron oxide staining.			10
CLEANUP\FIELD DATA\PERM GINT FILES\1949900-BL.GPJ - kz		15 -	60in.	60	<u>B-6-20</u> No odor	<0.1	NS		Becomes gray, frequent iron oxide staining.				15 - - - -
OIL CLEANUP\FIEL		20 - - - -	60in.	60	<u>B-6-25</u> No odor	<0.1	NS						- 20 - - - -
		25 - - - -	60in.	60	<u>B-6-30</u> No odor	<0.1	NS		Becomes gray.				- 25 - - - -
EBOOKS\1949900		30 -	60in.	60	<u>B-6-35</u> No odor	0.3	SS		CLAYEY GRAVEL WITH SAND (GC), moist, gray to be	rown.		_	-30 - - - -
S/PROJECTS/NOT		35 -	60in.	60	<u>B-6-40</u> No odor	0.1	NS		POORLY GRADED GRAVEL WITH SAND (GP), moist	t to wet, brown to black.		_	-35 - - - -
/20 09:17 - \\SEAF		40 -	60in.	60	<u>B-6-45</u> No odor	<0.1	NS	000000				ATD ☑	- 40 - - - -
JAGINTHC LIBRARY.GLB - 11/11/20 09:17 - \SEAFS\PROJECTS\NOTEBOOKS\1949900 KOSMOS MILL		45 - - - -	4										45
'	4. Groundwater level, it indicated, is at time of drilling/excavation (1115) of for date specified. Level may vary with time.						ntacts.						
HC PUSH PRC	Sonic Core Log Figure Location:				-	F-7 1 of	- 1						

- Refer to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HARTCROWSER
A division of Haley & Aldrich

Date Started: <u>12/12/19</u>	Date Completed: 12/12/19	Contractor/Crew: Holt Services, In	nc.							
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Trac	ck-mounted drill rig							
Location: N: 426,972.13 E: 1,214,776.2	20 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA							
Ground Surface Elevation: 761.95 feet	(NAVD 88)	Total Depth: 50 feet	Depth to Groundwater: 37.2 feet							
Comments: GS Elev in ft (Tacoma City Light Datum): 757.99										
Temporary well (B-7-W) Grab groundwater was collected from a temporary well screened from a depth of 45 to 50 feet.										

				Sample Da	ıta						\neg
Elevation (feet)	Depth (feet)	Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description		WatePeastruction	Depth (feet)
1 760	- - -	i i i	60	B-7-5 Slight petroleum odor	<0.1	NS		SANDY SILT (ML), moist, gray to light brown. [FILL]			 - - -
L.GPJ - kzl 755	5— 5— - -		60	<u>B-7-10</u> No odor	<0.1	NS		Becomes brown.			- - 5 - -
750 T T T T T T T T T T T T T T T T T T T	10 —		60	<u>B-7-15</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), trace cobbles, moist, dark brown, frequent iron oxide st	aining.		- 10 - - -
745	15 — - - -		60	<u>B-7-20</u> No odor	<0.1	NS		Becomes gray to light brown, some cobbles.			- 15 - - -
CLEANUPFIELD DATA/PERM GINT FILES/1949900-BL.GPJ. KZ	20 —		60	<u>B-7-25</u> No odor	<0.1	NS		Perched water at 20 feet. CLAYEY GRAVEL WITH SAND (GC), some cobbles, wet, brown to gray.			- 20 - -
KOSMOS MILL OIL	25 — - - -		60	<u>B-7-30</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), moist, red-brown.			25
TS/NOTEBOOKS/1949900_KOSMOS_MILL 5	30 —	ig i	60	<u>B-7-35</u> No odor	<0.1	NS					30
NPROJECTS/NOT	35 — - - -	ig ig	60	<u>B-7-40</u> No odor	<0.1	NS		Becomes dark brown.		ATD	35
20 09:17 - \\SEAF9	40	ig Sig	60	<u>B-7-45</u> No odor	<0.1	NS		Becomes brown.			40
- J:\GINT\HC_LIBRARY.GLB - 11/11/20 09:17 - \\SEAFS\PROJEC - J:\GINT\HC_LIBRARY.GLB - 11/11/20 09:17 - \\GINT\HC_LIBRARY.GLB - 11/11/20 09:17 - \\GINT\HC_LIBRARY.GLB - 17/11/20 09:17 - \\GINT\HC_LIBRA	45 — - - -										45
G G	eneral			F4'			<u>rъЦ</u>	Bottom of Borehole at 50.0 feet.		Ш	\dashv
	Mater USCS Groun	rial st G des ndwa	ratur igna ter le	m lines are tions are ba evel, if indic	interpre ased on ated, is	tive a visua at tin	and a al-ma ne of	ptions and symbols. ctual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approx nual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487). drilling/excavation (ATD) or for date specified. Level may vary with time. approximate.	ximate conta	cts.	
	H	V.	Ci	ONSE		oject		Kosmos Mill Oil Cleanup Sonic Core Log Figu	re F	-8	
HC PUSH						of 1	ĺ				

- Refer to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).

 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.

 5. Location and ground surface elevations are approximate.

HART CROWSER	
A division of Haley & Aldrich	

Date Started: <u>12/10/19</u>	Date Completed: 12/10/19	Contractor/Crew: Holt Services, Inc.						
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mounted drill rig						
Location: N: 427,076.55 E: 1,214,805.2	23 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA					
Ground Surface Elevation: 761.43 feet	(NAVD 88)	Total Depth: 40 feet	Depth to Groundwater: Not Identified					
Comments: GS Elev in ft (Tacoma City Light Datum): 757.47								

					Sample Da	ta				_	
Elevation (feet)	Depth (feet)	Type	Recovery	Length (inches)	<u>Number</u> Tests	PID (ppm)	Sheen	Graphic Log	Material Description	Well Construction	Depth (feet)
. 092	0 - - -	3	60in.	60	<u>B-8-5</u> No odor	<0.1	SS		SILTY GRAVEL WITH SAND (GM), moist, dark brown. [FILL] SILT WITH SAND (ML), moist, light brown. [FILL]		 - -
755	5 - -	- <u>}</u>	60in.	60 0	B-8-10 rganic odor	<0.1	SS		SILTY GRAVEL WITH SAND (GM), trace cobbles, moist, light brown to gray. [FILL]		- - -
750	10 -	} } })9	000	rganic odor	30.1			POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, light brown. [FILL]		- - 10 -
1/	- - - 15	3	60in.	60	<u>B-8-15</u> No odor	<0.1	NS		[· ·]		- - - -1
745	- - -	- - - - -	60in.	60	<u>B-8-20</u> No odor	<0.1	NS				- - - -
740	20	 	60in.	60	<u>B-8-25</u> No odor	<0.1	NS		SILTY GRAVEL WITH SAND (GM), moist, dark brown. [FILL]		2
735	25 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	60in.	60	<u>B-8-30</u> No odor	<0.1	NS		Concrete debris at 25 feet.		2 _ - -
730	30 -	- <u>}</u> - <u>}</u>	60in.	60	<u>B-8-35</u> No odor	<0.1	NS				- 3 -
7.55	35 –	<u>}</u> <u>}</u>	9		No odor	30.1			Becomes light brown.		- - -3
	40 -	3	60in.	60	<u>B-8-40</u> No odor	<0.1	NS		Bottom of Borehole at 40.0 feet.		- - - 4
720	-										- - -
715	45 - - -										4:
	eneral Refer				F-1 for exp	olanatio	n of o	descr	iptions and symbols.		L

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.

Kosmos Mill Oil Cleanup Project:

Location:

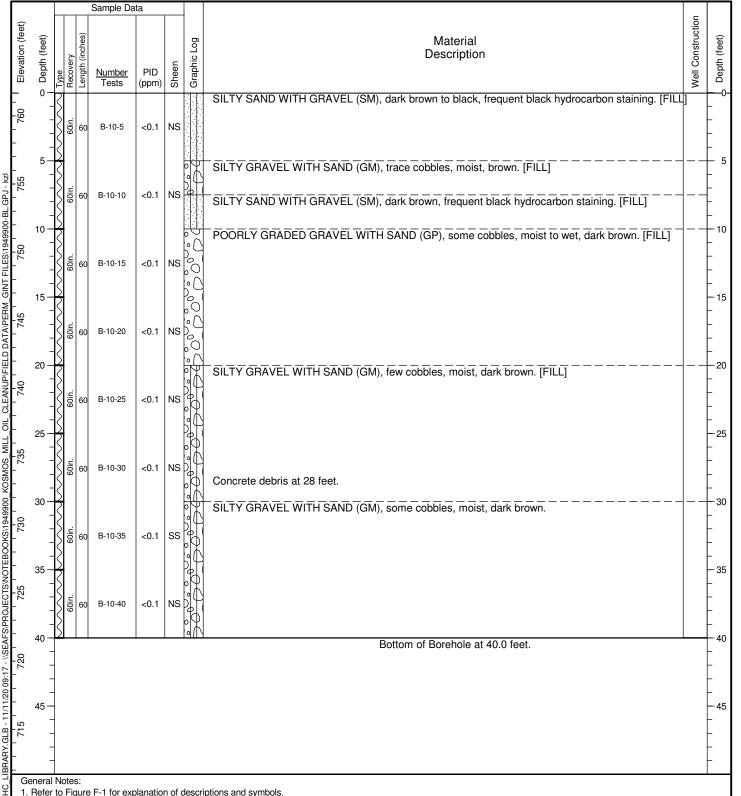
Project No.: 19499-00

Sonic Core Log **B-8**

Figure

Sheet 1 of 1

F-9


Date Started: <u>12/12/19</u>	Date Completed: 12/12/19	Contractor/Crew: Holt Services, Inc.							
Logged by: J. Higgins	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mou	ınted drill rig						
Location: N: 427,161.94 E: 1,214,808.9	90 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA						
Ground Surface Elevation: 761.5 feet (NAVD 88)	Total Depth: 50 feet	Depth to Groundwater: 47.1 feet						
omments: GS Elev in ft (Tacoma City Light Datum): 757.54									
Temporary well (B-9-W) Grab groundwater was collected from a temporary well screened from a depth of 45 to 50 feet.									

ſ					Sample Da	ta						П	
	Elevation (feet)	Depth (feet)	Type Recovery	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Materia Descript	ion		Wall-Construction	Depth (feet)
	1, 092	-	60in.	60	<u>B-9-5</u> Organic odor	<0.1	SS		SILTY SAND WITH GRAVEL (SM), moist, dark brow				
10-BL.GPJ - kzl	755	5	. 60in.	60	<u>B-9-10</u> No odor	<0.1	SS		CLAYEY GRAVEL WITH SAND (GC), trace cobbles	, moist, light brown.			- 5 - - -
INT FILES\194990	1 250	10	60in.	60	<u>B-9-15</u> No odor	<0.1	NS		SILTY SAND WITH GRAVEL (SM), moist, light to da	ark brown.			10
CLEANUP/FIELD DATA/PERM_GINT FILES\1949900-BL.GPJ - kzl	745	15 - - - -	90in.	60	<u>B-9-20</u> No odor	<0.1	NS		Becomes light brown.				15
	740	20 -	. 60ji.	60	<u>B-9-25</u> No odor, SS to MS	<0.1			Becomes dark gray. SILTY GRAVEL WITH SAND (GM), some cobbles, r	noist, dark brown.			20 - - - -
TS\NOTEBOOKS\1949900 KOSMOS MILL OIL	735	25 - - - -	90in.	60	<u>B-9-30</u> No odor	0.1	NS		Becomes dark brown to gray, moist.				25
EBOOKS\1949900	730	30	60in.	60	<u>B-9-35</u> No odor	0.1	NS		Becomes dark brown.				-30 - - -
	725	35 — - - -	60in.	60	<u>B-9-40</u> No odor	0.3	NS						-35 - - -
20 09:17 - \\SEAF	720	40 -	90in.	60	<u>B-9-45</u> No odor	<0.1	NS						40
J.\GINT\HC_LIBRARY.GLB - 11/11/20 09:17 - \\SEAFS\PROJEC	715	45 - - - -	90in.	60	<u>B-9-50</u> No odor	<0.1	NS		POORLY GRADED GRAVEL WITH SILT AND SANI	D (GP-GM), wet, dark brown.		ATD ∑	45 - - - -
General Notes: Bottom of Borehole at 50.0 feet. 1. Refer to Figure F-1 for explanation of descriptions and symbols.								닉					
PROBE - J:\GINT\HC	2. I 3. I 4. (Materi JSCS Groun	al sti desi dwat	atur gnat er le	m lines are i tions are ba evel, if indica	nterpre sed on ated, is	tive a visua at tin	and ad al-mai ne of	stions and symbols. tual changes may be gradual. Solid lines indicate distinct contact ual identification (ASTM D 2488), unless otherwise supported by drilling/excavation (ATD) or for date specified. Level may vary with approximate.	/ laboratory testing (ASTM D 2487).	r approximate co	ontacts	.]
	1	Ш	RT	()	OWSER		oject		Kosmos Mill Oil Cleanup	Sonic Core Log	Figure	F-1	0
HC PUSH					of Haley & Aldric	L.	catio oject		19499-00	B-9	Sheet	1 of	- 1
	_	-			_						_	_	

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HARTCROWSER
A division of Haley & Aldrich

Date Started: <u>12/10/19</u>	Date Completed: 12/10/19	Contractor/Crew: Holt Services, Inc.				
Logged by: A. Nakahara	Checked by: C. Kroskie	Rig Model/Type: TSi 150CC / Track-mounted drill rig				
Location: N: 427,204.00 E: 1,214,904.2	28 (WGS 84)	Hole Diameter: 8 inches	Casing Diameter: NA			
Ground Surface Elevation: 761.7 feet (NAVD 88)	Total Depth: 40 feet	Depth to Groundwater: Not Identified			
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.74					

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

Project: Kosmos Mill Oil Cleanup

Location:

Project No.: 19499-00

Sonic Core Log **B-10**

F-11 Figure Sheet

1 of 1

Date Started: 11/26/19	Date Completed: 11/26/19	Contractor/Crew: Anderson Environ	mental Contracting, LLC
Logged by: J. Higgins	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,097.36 E: 1,214,403.	78 (WGS 84)	Total Depth: 10.5 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 759.92 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 755.96		
7' x 13'			

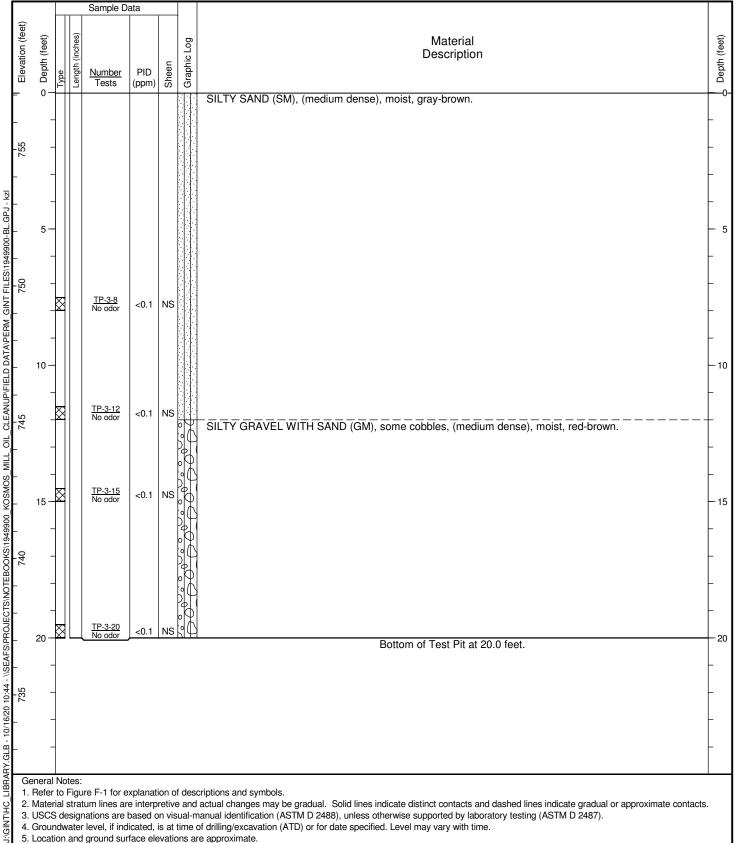
		Sample Data							
Elevation (feet)		Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	Depth (feet)
r	0 –							SILTY SAND (SM), (medium dense), moist, brown.	0-
ŀ	-							Debate (eigen) and E feed	-
ŀ	-							Debris (pipe) at 1.5 feet.	-
<u> </u>	-	-							-
i - 		×		TP-2-4 No odor	<0.1	NS			-
755	5-	-							- 5
-	-								-
-	-								_
-	-	X		TP-2-8 No odor	<0.1	NS		POORLY GRADED GRAVEL WITH SAND (GP), (medium dense), moist, brown.	_
	-							(5.7), (_
750	10 -	\boxtimes		TP-2-10.5	<0.1	No			- 10
		×	Ц	TP-2-10.5 No odor	<0.1	NS	<u>ا ۷</u>	Bottom of Test Pit at 10.5 feet.	
	-								
	-								
	-								
745	15 -								- 15
-									-
-	-								_
-	-								-
745 750 755	-								-
-	Genera			 4 £-	la '	law - '		printings and symbols	

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.

J:\GINT\HC_

Kosmos Mill Oil Cleanup Project:

Location:


Project No.: 19499-00

Test Pit Log **TP-2**

Figure Sheet

F-12 1 of 1

Date Started: 12/5/19 Date Completed: 12/5/19	Contractor/Crew: Anderson Environmental Contracting, LLC							
Logged by: J. Higgins Checked by: C. Kroskie	Rig Model/Type:							
Location: N: 427,136.76 E: 1,214,407.47 (WGS 84)	Total Depth: 20 feet Depth to Seepage: Not Encountered							
Ground Surface Elevation: 757.09 feet (NAVD 88)								
Comments: GS Elev in ft (Tacoma City Light Datum): 753.13								
<u>5' x 10'</u>								

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.

F-13

1 of 1

- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HC TEST PIT

Date Started: 12/5/19	Date Completed: 12/5/19	Contractor/Crew: Anderson Environm	ental Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,213.76 E: 1,214,548.	19 (WGS 84)	Total Depth: 19.5 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 758.45 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 754.49		
<u>5' x 20'</u>			

				Sample D	ata						
Elevation (feet)	Depth (feet)	Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Mater Descrip	ial tion		Depth (feet)
-	0 —							SILTY SAND (SM), (medium dense), moist, brown.			
755	-	<u> </u>		<u>TP-5-2.5</u> No odor	<0.1	NS		Debris (5-gallon drum and pipes).			-
	5-	<u> </u>		TP-5-5 No odor	<0.1	NS					- -
750	-	_ 		TP-5-8 Strong petroleum odor	400.1	HS		SANDY SILT (ML), (hard), moist, gray. Perched groundwater at 8 feet.			
-	10 —	×		TP-5-10 Strong petroleum odor	469.1	HS					-1
-	-	×		TP-5-12 Strong petroleum odor	21.3	SS		SILTY SAND (SM), (medium dense), moist, gray, free	uent iron oxide staining.		
745	- 15 — -	- - ×		TP-5-15 Moderate petroleum odor	21.6	SS		SILTY GRAVEL WITH SAND (GM), some cobbles, m	oist, gray, frequent iron oxide sta	ining.	- 1
740	- - 20 —	- - - -		TP-5-20 Slight petroleum odor	9.6	NS		Bottom of Test P	it at 19.5 feet.		-2
735	-										-
1. F 2. F 3. U 4. O	Mater JSCS Grour	to I rial s S de ndw	Figu strat sigr ater	um lines are lations are level, if inc	e interp based o licated,	retive on vis is at t	and ual-m ime o	riptions and symbols. actual changes may be gradual. Solid lines indicate distinct conta anual identification (ASTM D 2488), unless otherwise supported b f drilling/excavation (ATD) or for date specified. Level may vary wi e approximate.	y laboratory testing (ASTM D 2487).	r approximate cc	ontacts.
_	G AR	? T (CR	O WSE	_ L	roje ocat roje	ion:	Kosmos Mill Oil Cleanup	Test Pit Log TP-5	Figure Sheet	F-14 1 of 1

- General Notes:

 1. Refer to Figure F-1 for explanation of descriptions and symbols.

 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.

 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).

 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.

 5. Location and ground surface elevations are approximate.

HARTCROWSER

Date Started: 12/6/19 Date Completed:	12/6/19 Contractor/Crew: An	nderson Environmental Contracting, LLC						
Logged by: A. Nakahara Checked by: C. Ki	roskie Rig Model/Type:	Rig Model/Type:						
Location: N: 427,103.39 E: 1,214,546.89 (WGS 84)	Total Depth: 12 feet	Depth to Seepage: Not Encountered						
Ground Surface Elevation: 762.08 feet (NAVD 88)								
Comments: GS Elev in ft (Tacoma City Light Datum): 758.12								
Two pipes were discovered, one below the oil boil and one below the 6-inch concrete slab. Pipes run east-west.								

Post	
SANDY SILT (ML), gray to black. Debris (Two 1.5-inch pipes and seeping oil). TP-8-5 Slight petroleum odor 3.1 HS No door TP-8-10 No door	Depth (feet)
SANDY SILT (ML), gray to black. Debris (Two 1.5-inch pipes and seeping oil). TP-6-5 Slight petrolum odor 3.1 HS TP-6-10 No odor O.1 NS TP-6-12 TP-6-12 O.1 SS FT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-gray.	
TP-8-5 Slight petroleum odor 0.9 SS	
TP-6-15 No odor 0.9 SS TP-6-10 No odor 0.1 NS TP-6-10 No odor 10 SS TP-6-12 TP-	
TP-6-15 No odor 0.9 SS TP-6-10 No odor 0.1 NS TP-6-10 No odor 0.1 NS TP-6-12 OLI SS PT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	
5 Petroleum odor TP-6-8 Moderate petroleum odor 10 TP-6-10 No odor	
5 Petroleum odor TP-6-8 Moderate petroleum odor 10 TP-6-10 No odor	
5 Petroleum odor TP-6-8 Moderate petroleum odor 10 TP-6-10 No odor	
5 Petroleum odor TP-6-8 Moderate petroleum odor TP-6-10 No odor TP-6-12 O.1 SS PYT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	ļ.
5 Petroleum odor TP-6-8 Moderate petroleum odor TP-6-10 No odor TP-6-12 O.1 SS PYT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	
TP-6-8 Moderate petroleum odor 10 TP-6-10 No odor	
Moderate petroleum odor TP-6-10 No odor No odor No odor NS TP-6-12 COLUMNS POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	
Moderate petroleum odor TP-6-10 No odor No odor No odor NS TP-6-12 co.1 SS OT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	-
Moderate petroleum odor TP-6-10 No odor No odor No odor NS TP-6-12 OL SS OF POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	
TP-6-10 No odor <0.1 NS TP-6-12 CO.1 SS PT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	F
TP-6-10 No odor <0.1 NS TP-6-12 OD 1 SS OF POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	
TP-6-12 on 1 SS PT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-gray.	
TP-6-12 on 1 SS PT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-gray.	
TP-6-12 on 1 SS PY POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-gray.	
TP-6-12 co.1 SS PM POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-gray.	-10
TP-6-12 on 1 SS PT POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), some cobbles, moist, brown-grav.	"
	L
KXLL 11 20 12 1 20 1 199 PITH POURLY GRADED GRAVEL WITH SILL AND SAND (GP-GW), some copples, moist, prown-dray,	
Bottom of Test Pit at 12.0 feet.	
Bollotti of Test Pit at 12.0 feet.	
_	-
-	F
15 —	- 1
<u> </u>	
45	
	L
	Ĺ
General Notes:	

- Refer to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).

 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.

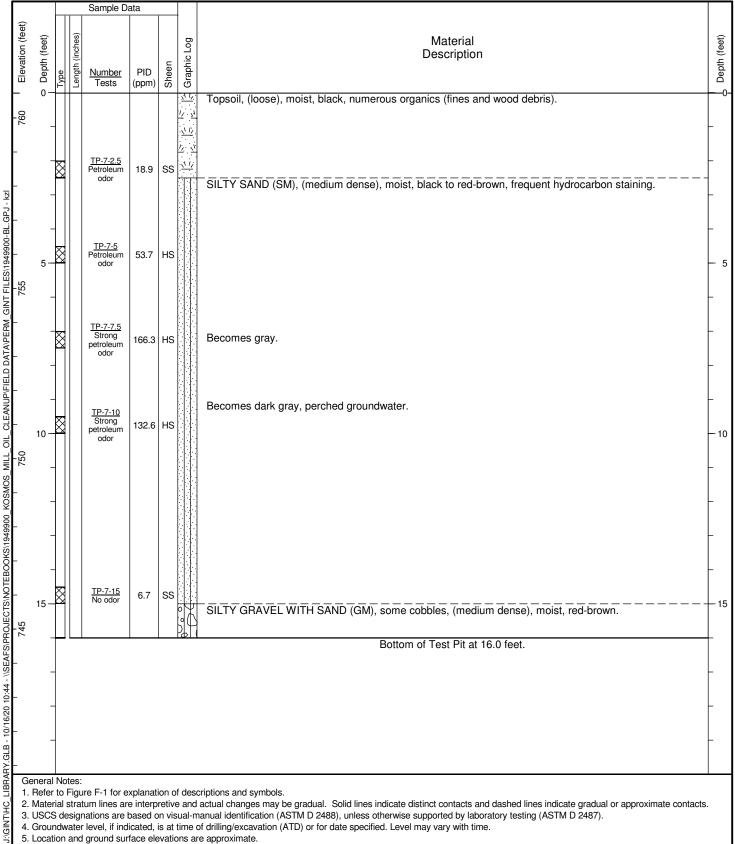
 5. Location and ground surface elevations are approximate.

HARTCROWSER	

HC TEST PIT - J:\GINT\HC_L

Project: Kosmos Mill Oil Cleanup

Location:


Project No.: 19499-00

Test Pit Log **TP-6**

Figure Sheet

F-15 1 of 1

Date Started: 12/6/19	Date Completed: 12/6/19	Contractor/Crew: Anderson Environmenta	al Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,160.69 E: 1,214,556.	65 (WGS 84)	Total Depth: 16 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 760.74 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 756.78		
<u>4' x 16'</u>			

- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HART	CROWSER

Project: Kosmos Mill Oil Cleanup Location:

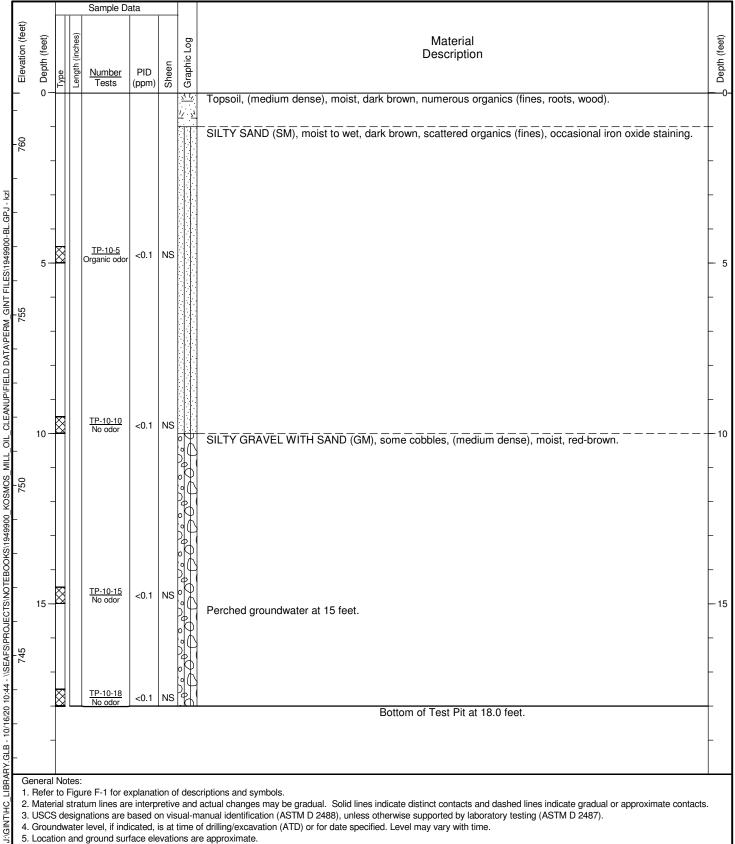
Project No.: 19499-00

Test Pit Log

F-16 Figure Sheet

TP-7

1 of 1


Date Started: 12/6/19	Date Completed: 12/6/19	Contractor/Crew: Anderson Environmen	tal Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,038.81 E: 1,214,590.54 (WGS 84)		Total Depth: 15 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 761.78 feet (NAVD 88)			
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.82		

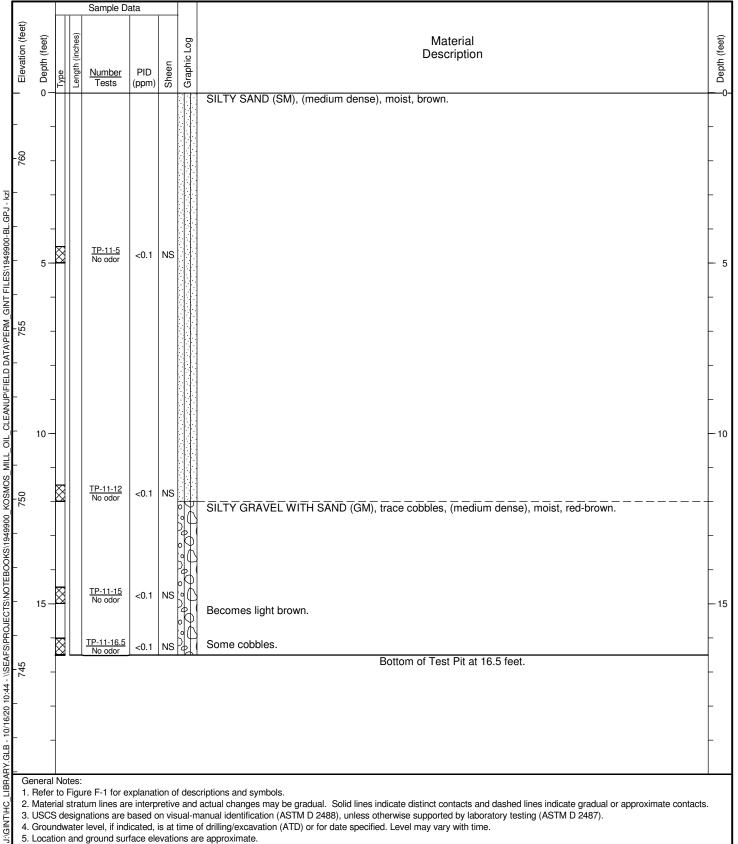
			Sample D	ata						
Elevation (feet)	Type	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Mater Descrip	tion		Cooth (foot)
- '							SILTY SAND (SM), brown, scattered organics (wood),	metal debris.		
760										
2										-
	×		TP-8-3.5 Slight odor	1.3	NS					-
	-									-
į	5-		TP-8-6	8.7	MS		Perched water at 5 feet. Becomes gray.			F
ភ្	×		TP-8-6 Slight odor	6.7	IVIS		Decomes gray.			-
CC/	-									-
	-									-
	1									-
10	0		TP-8-10.5 Slight odor	6.0	MS		SANDY SILT (ML), moist to wet, gray.			-+
o	-									-
09/	-									-
	-									-
	-		<u>TP-8-15</u>	0.1	NC		POORLY GRADED GRAVEL WITH SAND (GP), som	a cobbles, wet brown		
15	5	<u> </u>	No odor	0.1	INS		Bottom of Test Pi			
0	-									-
(42	-									+
	-									-
	-									-
Gene				ynlanat	ion o	f desc	priptions and symbols.			
2. Ma 3. US	ateria SCS c	l stra lesigi	tum lines ar nations are	e interp based o	retive on vis	and ual-m	actual changes may be gradual. Solid lines indicate distinct contact lanual identification (ASTM D 2488), unless otherwise supported by of drilling/excavation (ATD) or for date specified. Level may vary with	laboratory testing (ASTM D 2487).	r approximate conta	icts.
	cation			face ele	evatic	ns ar	e approximate.		<u> </u>	
ii ii			OWSE	_ L	roje ocat	ion:	Kosmos Mill Oil Cleanup .: 19499-00	Test Pit Log TP-8		- 17 of 1

- Neter to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
 USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
 Location and ground surface elevations are approximate.

Loc	oject: Kosmos Mill Oil Cleanup ication: oject No.: 19499-00	Test Pit Log TP-8	Figure Sheet	F-17 1 of 1
-----	---	--------------------------	-----------------	--------------------

Date Started: 12/9/19	Date Completed: 12/9/19	Contractor/Crew: Anderson Environment	al Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,070.47 E: 1,214,772.	03 (WGS 84)	Total Depth: 18 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 761.52 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.56		
4' x 15'			

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.


HARTCROWSER	

Project: Kosmos Mill Oil Cleanup

Location: Project No.: 19499-00 Test Pit Log **TP-10**

F-18 Figure Sheet 1 of 1

Date Started: 12/9/19	Date Completed: 12/9/19	Contractor/Crew: Anderson Env	ironmental Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,032.54 E: 1,214,816.23 (WGS 84)		Total Depth: 16.5 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 761.93 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.97		

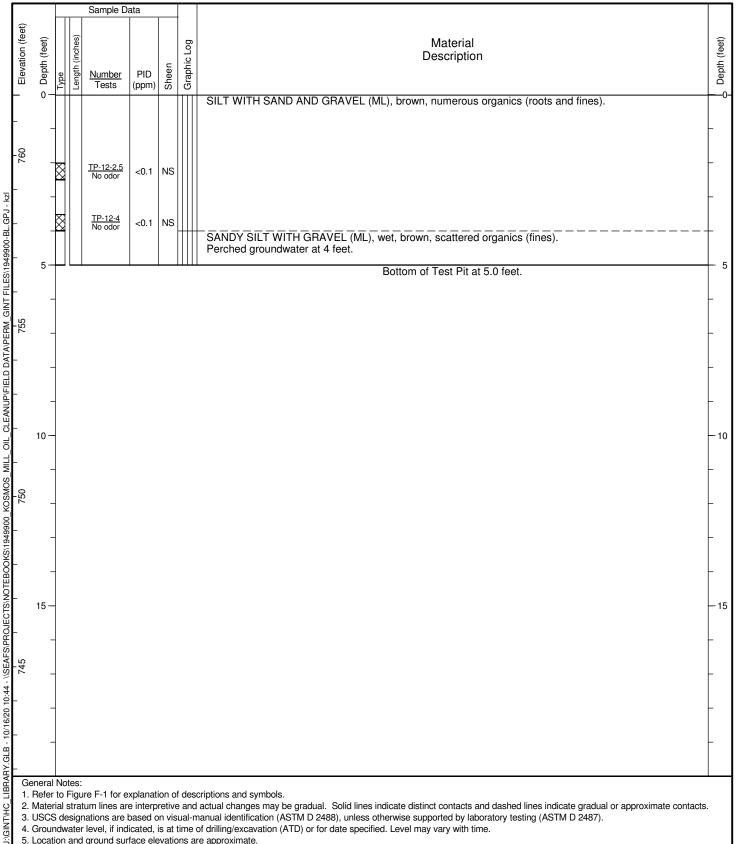
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HARTCROWSER

Project: Kosmos Mill Oil Cleanup

Project No.: 19499-00

Location:


Test Pit Log

F-19 Figure Sheet

TP-11

1 of 1

Date Started: 12/9/19	Date Completed: 12/9/19	Contractor/Crew: Anderson Environment	al Contracting, LLC
Logged by: J. Higgins/A. Nakahara	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,176.63 E: 1,214,886.25 (WGS 84)		Total Depth: 5 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 761.79 feet (NAVD 88)			
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.83		
Perched groundwater filled the test pit.			

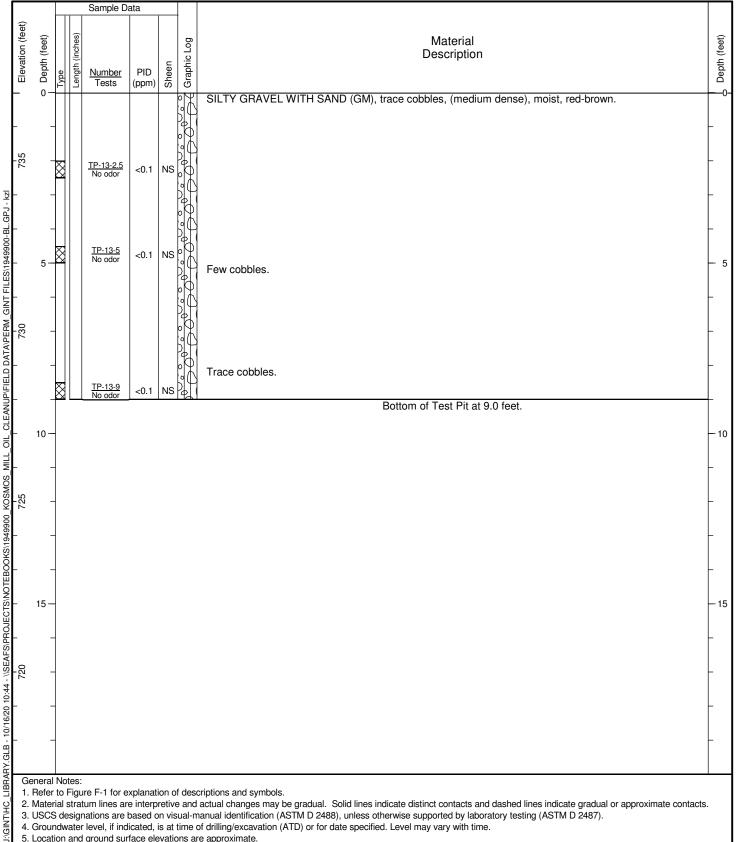
- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HARTCROWSER

ե

Project: Kosmos Mill Oil Cleanup

Location:


Project No.: 19499-00

Test Pit Log **TP-12**

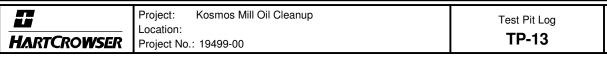
F-20 Figure Sheet

1 of 1

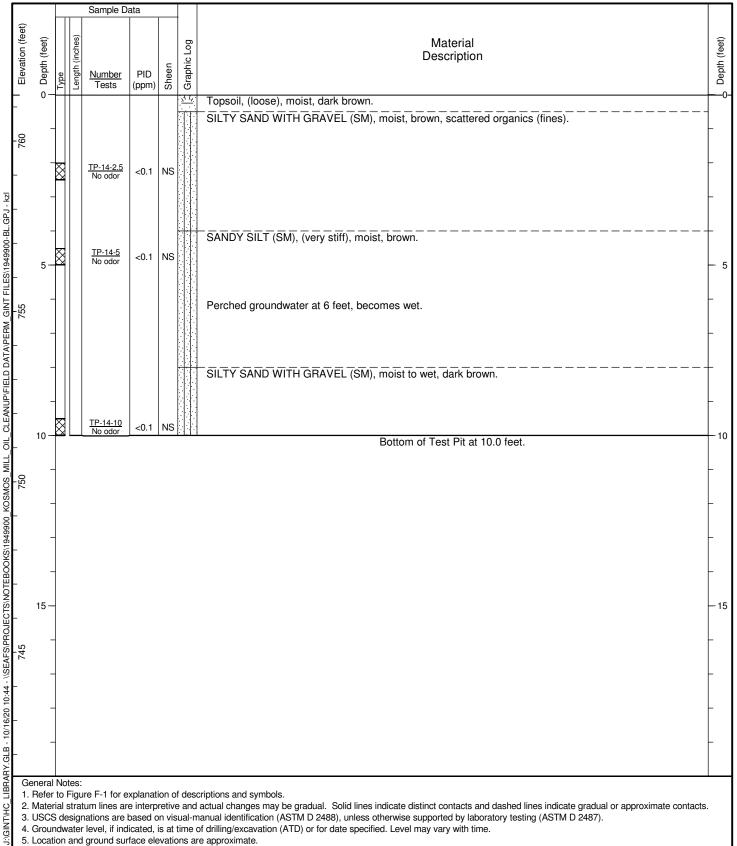
Date Started: 11/26/19	Date Completed: 11/26/19	Contractor/Crew: Anderson En	vironmental Contracting, LLC
Logged by: J. Higgins	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,286.07 E: 1,214,440.	92 (WGS 84)	Total Depth: 9 feet	Depth to Seepage: Not Encountered
Ground Surface Elevation: 737.0 feet (NAVD 88)	_	
Comments: GS Elev in ft (Tacoma City	Light Datum): 733.04		
<u>7' x 11'</u>			

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.

F-21


1 of 1

Figure


Sheet

- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

ե

Date Started: 11/26/19	Date Completed: 11/26/19	Contractor/Crew: Anderson Environmental Contracting, LLC
Logged by: J. Higgins	Checked by: C. Kroskie	Rig Model/Type:
Location: N: 427,032.63 E: 1,214,487.17 (WGS 84)		Total Depth: 10 feet Depth to Seepage: Not Encountered
Ground Surface Elevation: 761.36 feet (NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 757.40	
6' x 9' Slight organic sheen noticed at bo	ottom of the hole.	

- 1. Refer to Figure F-1 for explanation of descriptions and symbols.
- 2. Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.
- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

HARTCROWSER	

Project: Kosmos Mill Oil Cleanup Location:

Project No.: 19499-00

Test Pit Log **TP-14**

F-22 Figure Sheet 1 of 1

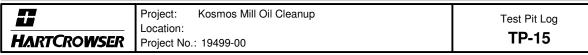
Date Started: 11/26/19	Date Completed: 11/26/19	Contractor/Crew: Anderson Environmental C	Contracting, LLC
Logged by: J. Higgins	Checked by: C. Kroskie	Rig Model/Type:	
Location: N: 427,026.39 E: 1,214,432.	10 (WGS 84)	Total Depth: 14 feet De	epth to Seepage: Not Encountered
Ground Surface Elevation: 759.94 feet	(NAVD 88)		
Comments: GS Elev in ft (Tacoma City	Light Datum): 755.98		
<u>6' x 9'</u>			

				Sample D	ata				
Elevation (feet)	Depth (feet)	Туре	Length (inches)	Number Tests	PID (ppm)	Sheen	Graphic Log	Material Description	Depth (feet)
-	0 —	-						SILTY SAND (SM), (dense), moist, black, hydrocarbon staining.	-
	-	X		TP-15-4 Slight petroleum odor	<0.1	SS		Perched groundwater at 4 feet.	-
755	5-	X		TP-15-6 Slight petroleum odor	<0.1	SS			-
	_	<u>.</u>		TP-15-8 Slight petroleum odor	<0.1	SS		Debris (pipe). SILTY SAND WITH GRAVEL (SM), moist to wet, gray to black, frequent iron oxide staining.	- - -
750	10 —	-		<u>TP-15-11</u> No odor	<0.1	NS		Becomes moist, red-brown.	- -1 -
	-	<u>.</u>		<u>TP-15-14</u> No odor	<0.1	NS	, X	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), moist, red-brown. Bottom of Test Pit at 14.0 feet.	
/45	15 —								-1
	-								
	-								_
	neral							criptions and symbols.	

- Refer to Figure F-1 for explanation of descriptions and symbols.
 Material stratum lines are interpretive and actual changes may be gradual. Solid lines indicate distinct contacts and dashed lines indicate gradual or approximate contacts.

F-23

1 of 1


Figure

Sheet

- 3. USCS designations are based on visual-manual identification (ASTM D 2488), unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling/excavation (ATD) or for date specified. Level may vary with time.
- 5. Location and ground surface elevations are approximate.

J:\GINT\HC_L

HC TEST PIT

APPENDIX G Chemical Data Quality Review and Laboratory Reports

APPENDIX G CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

Chemical Data Quality Review

This chemical data quality review includes the soil and grab groundwater samples collected for the Site investigation as well as the creek bed, creek bank, creek surface water, and stockpile samples collected during the construction and excavation of the emergency IRA.

On November 26, 2019 fourteen soil samples were collected; on December 5, 2019, 21 soil samples and three surface water samples were collected; on December 6, 2019, 15 soil samples and one surface water sample was collected; on December 7, 2019 one surface water sample was collected; on December 8, 2019, four soil samples and two surface water samples were collected; on December 9, 2019, ten soil samples and two surface water samples were collected; on December 10, 2019, twenty-three soil samples and five surface water samples were collected; on December 11, 2019, fifty-eight soil samples, one grab groundwater, and three surface water samples were collected; on December 12, 2019, three soil samples, three grab groundwater samples, and two surface water samples were collected; on December 13, 2019, one soil sample and three surface water samples were collected; on December 14, 2019, four surface water samples were collected; on December 16, 2019, three soil samples and three surface water samples were collected; on December 17, 2019, three soil samples were collected; and on December 18, 2019, three soil samples and one surface water sample was collected. The samples were submitted to Friedman & Bruya, Inc. (F&B), in Seattle, Washington, for chemical analysis. The laboratory reported results as Reference Nos.912244, 912263, 912296, 912340, 912095, 912124, 912133, 912148, 912164, 912192, 912213, 912243, 912264, 912192, 912213, 912295, 912329, 911412, 912095, 912126, 912147, 912193, 912214, 912215, 912265, 912125, and 912132.

Soil samples were analyzed for one or more of the following:

- Total petroleum hydrocarbons as diesel- and lube-oil-range organics (TPH-D) by Washington State Department of Ecology (Ecology) method NWTPH-Dx;
- Total petroleum hydrocarbons as gasoline-range organics (TPH-G) by Ecology method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM;
- Volatile Organic Compounds (VOCs) by EPA Method 8260C;
- Total metals (arsenic, cadmium, chromium, and lead) by EPA Method 6010C;
- Total mercury by EPA Method 7471B; and
- Polychlorinated biphenyls (PCBs) by EPA Method 8082A.

Water samples were analyzed for one or more of the following:

- Diesel and lube oil range organics by Ecology method NWTPH-Dx;
- Gasoline range organics by Ecology method NWTPH-Gx;

- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B;
- PAHs by EPA Method 8270D-SIM;
- Total metals (arsenic, cadmium, chromium, and lead) by EPA Method 200.8;
- Total mercury by EPA Method 1631E;
- pH by EPA Method 150.2;
- Hardness by EPA Method 200.8 and SM 2340B; and
- Hexavalent Chromium by SM 3500 Cr B.

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews. Hart Crowser reviewed summary reports to check that they met data quality objectives for the project.

The following criteria were evaluated during the standard data quality review process:

- Holding times;
- Reporting limits;
- Method blanks;
- Surrogate recoveries;
- Laboratory duplicate relative percent differences (RPDs);
- Spike blank (SB) recoveries; and
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries.

The data were determined to be acceptable for use with some qualifications; the complete laboratory report is presented at the end of this appendix. The data review is summarized below.

Sample Receiving Notes

912296. Westbank 2 sample had one empty VOA.

911412. TP-15-8 sample was added to the COC by the laboratory on 11/27/2019. "Gasoline range organics, diesel and lube oil range organics, PAHs and VOC" analyses were requested outside of the holding times. Sample SP2-3 was received with only 3 VOAs.

912126, 912147, 912193, 912214, 912215. Sample analyses were added on December 19, 2019.

912265. One sample was not labeled.

912125. Sample SP2-7 entry on the COC was crossed out by HC field staff. SP1-5 was added to the COC by laboratory on December 9, 2019.

912132. "Copper, zinc, and Nickel" analyses were added to the COC on January 1, 2020.

Soil Results

Diesel and Lube Oil by NWTPH-Dx

Holding times and reporting limits were acceptable with the following exceptions:

912095. Analyses was requested outside of holding time and source analyte was flagged as J/UJ.

No method blank contamination was detected. Surrogate recoveries were within method control limits. SB and MS recoveries were within laboratory control limits. The sample data was acceptable with the following exception:

912126. In sample TP-7-2.5, the analyte response exceeded the valid instrument calibration range. The value reported is an estimate and flagged as J.

Gas and BTEX by NWTPH-Gx/EPA 8021B

Holding times and reporting limits were acceptable with the following exception:

912095. Analyses was requested outside of holding time and source analyte was flagged as J/UJ.

No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. Spike blank recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable, as the sample and duplicate results were below the reporting limit. The sample data was acceptable with the following exception:

- 912125. The analyte concentration is reported below the lowest calibration standard for SP2-6 and SP2-7. The value reported is an estimate and the samples are flagged as J/UJ.
- 912132. Benzene concentration was reported below the lowest calibration standard in all the samples. The value reported is an estimate and the samples are flagged J/UJ.

PAHs by EPA 8270D-SIM

Holding times and reporting limits were acceptable with the following exception:

912095. Analyses was requested outside of holding time and source analyte was flagged as J/UJ.

No method blank contamination was detected. SB and surrogate recoveries were within laboratory control limits with the following exception:

911412. Internal standard associated with Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene was out of limits and the source analyte is qualified as J/UJ.

PCBs by EPA 8082A

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB, MS, and surrogate recoveries were within laboratory control limits.

VOCs by EPA 8260C

Holding times and reporting limits were acceptable. No method blank contamination was detected. The laboratory duplicate RPDs were within control limits or were not applicable when the sample and duplicate results were below the reporting limit. MS and surrogate recoveries were within laboratory control limits. The sample data was acceptable with the following exception:

912095, 912126, 912215. Methylene Chloride detections in the samples were due to laboratory contamination and the source analyte was qualified as lc.

Total Metals by EPA 6010C

Holding times and reporting limits were acceptable. No method blank contamination was detected. The laboratory duplicate RPDs were within control limits or were not applicable when the sample and duplicate results were below the reporting limit.

SB and MS recoveries were within method control limits with the following exception:

912296, 911412, 912095, 912126, 912147, 912214, 912125, 912132. – the internal standard associated with chromium is out of limits and the source analyte is qualified as J/UJ.

Water Results

Gas and BTEX by NWTPH-Gx/EPA 8021B

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. SB recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable, as the sample and duplicate results were below the reporting limit.

Diesel and Lube Oil by NWTPH-Dx

Holding times and reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within method control limits. SB recoveries were within laboratory control limits. The laboratory duplicate RPDs were not applicable, as the sample and duplicate results were below the reporting limit.

PAHs by EPA 8270D-SIM

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB recoveries were within laboratory control limits. Surrogate recoveries were within laboratory control limits.

Total Metals by EPA 200.8

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB and MS recoveries were within method control limits.

Total Mercury by EPA 7470A

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB and MS recoveries were within method control limits.

Hardness by EPA Method 200.8 and SM 2340B

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB and surrogate recoveries were within laboratory control limits.

pH by EPA Method 150.2

Holding times and reporting limits were acceptable.

Hexavalent Chromium by SM 3500 Cr B

Holding times and reporting limits were acceptable. No method blank contamination was detected. SB and MS recoveries were within method control limits. The laboratory duplicate RPDs were not applicable, as the sample and duplicate results were below the reporting limit.

Laboratory Reports (Laboratory reports will be provided as separate files)

APPENDIX H Ponded Water Analytical Laboratory Reports Provided by Tacoma Public Utilities, Tacoma Power

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

01/30/2020		P.O.#:	Auth #19-19-12-214
01/30/2020		Project:	Kosmos
		Client ID:	DIB
Tacoma Public Utilities		Sample Matrix:	Water
PO Box 11007		Date Sampled:	12/19/2019
Tacoma, WA 98411		Date Received:	12/19/2019
Attn: Doug Boettner		Spectra Project:	2019120577
		Spectra Number	: 1
			Rush
Analyte	Result	Units	Method
Total Mercury	0.00100*	μg/L	EPA 1631E
Arsenic	0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	2.0	μg/L	EPA 200.8
Copper	1.0	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	$\mu g/L$	EPA 200.8
Zinc	0.9	μg/L	EPA 200.8
Diesel	<100	μg/L	NWTPH-D
Oil	<500	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
Benzene	<0.4J	μg/L	SW846 8260C
Ethylbenzene	<0.4J	μg/L	SW846 8260C
Toluene	<0.4J	μg/L	SW846 8260C
Total Xylenes	<0.8J	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample results with "J Flags" are estimates below calibration level but at or above the MDL.

Surrogate	% Recovery	Method		
Toluene-d8	89	NWTPH-G		
4-Bromofluorobenzene	92	NWTPH-G		
p-Terphenyl	85	NWTPH-D		

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

		E 2 2 2		
01/30/2020		P.O.#:	Auth #19-19-12-214	
		Project:	Kosmos	
		Client ID:	B1 Boom #1	
Tacoma Public Utilities		Sample Matrix:	Water	
PO Box 11007		Date Sampled:	12/19/2019	
Tacoma, WA 98411		Date Received:	12/19/2019	
Attn: Doug Boettner		Spectra Project:	2019120577	
No. of the Control of		Spectra Number	: 2	
			Rush	
Analyte	Result	Units	Method	
Total Mercury	0.000658*	μg/L	EPA 1631E	
Arsenic	< 0.3	μg/L	EPA 200.8	
Cadmium	< 0.2	μg/L	EPA 200.8	
Chromium	2.3	μg/L	EPA 200.8	
Copper	0.7	μg/L	EPA 200.8	
Lead	< 0.5	μg/L	EPA 200.8	
Nickel	< 0.5	μg/L	EPA 200.8	
Zinc	0.3	μg/L	EPA 200.8	
Diesel	<100	μg/L	NWTPH-D	
Oil	<500	μg/L	NWTPH-D	
Gasoline	<50	μg/L	NWTPH-G	
Benzene	<0.4J	μg/L	SW846 8260C	
Ethylbenzene	<0.4J	μg/L	SW846 8260C	
Toluene	<0.4J	μg/L	SW846 8260C	
Total Xylenes	<0.8J	μg/L	SW846 8260C	

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample results with "J Flags" are estimates below calibration level but at or above the MDL.

Surrogate	% Recovery	Method		
Toluene-d8	92	NWTPH-G		
4-Bromofluorobenzene	90	NWTPH-G		
p-Terphenyl	89	NWTPH-D		

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 2 of 2

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

December 20, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2019120577 1-2

Analyst:

SCJ

QUALITY CONTROL RESULTS

		Laborator	y Reagent Blank (LRB)		
Date Digested:	12/20/2019		Date A	analyzed:	12/20/2019
		Element	CAS#	Result	
		Arsenic	7440-38-2	< 0.3	7
		Cadmium	7440-43-9	< 0.2	
		Chromium	7440-47-3	< 0.5	
		Copper	7440-50-8	< 0.3	
		Lead	7439-92-1	< 0.5	
		Nickel	7439-98-7	< 0.5	
		Zinc	7440-66-6	< 0.3	

Laborator	Fastified.	Diant	TED.
Laboratory	rorunea	DISHK	LPDI

Date Digested:	12/20/2019	Date Analyzed:	12/20/2019
The state of the state of the state of			

Element	Spike Added	LCS Conc.	LCS %Rec	
Arsenic	100.0	109.47	109.5	-
Cadmium	100.0	99.26	99.3	
Chromium	100.0	108.15	108.2	
Copper	100.0	96.43	96.4	
Lead	100.0	96.59	96.6	
Nickel	100.0	94.63	94.6	
Zinc	100.0	104.64	104.6	

LCS Recovery limits 85-115%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested: 12/20/2019 Date Analyzed: 12/20/2019
Sample Spiked: 2019120575-1

	Sample	Spike	MS	MS	MSD	MSD	
Element	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic	3.43	100.0	113.88	110.5	118.45	115.0	4.1
Cadmium	0.00	100.0	96,99	97.0	97.49	97.5	0.5
Chromium	2.46	100.0	109.51	107.1	112.62	110.2	2.9
Copper	1.35	100.0	89.83	88.5	92.04	90.7	2.5
Lead	0.00	100.0	92,94	92.9	94.17	94.2	1.3
Nickel	1.64	100.0	90.34	88.7	92.70	91.1	2.6
Zinc	21.74	100.0	111.09	89.3	114.41	92.7	3.6

Comment:

Recovery Limits 70-130%

RPD Limit 20

SPECTRA LABORATORIES

Survivory Manager

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

December 30, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120577

Applies to Spectra #: 1-2

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

Compound

LCS

Date Extracted:

12/20/19

Units:

ug/L

Date Analyzed:

12/21/19

Spike Spike

Sample Amount Amount Result

Added

Percent

Found

Recovery

Diesel

<100

2500

1830

73

METHOD BLANK

Date Extracted:

12/20/19

Date Analyzed:

12/21/19

Units:

ug/L

Diesel

<100

Heavy Oil

<500

Surrogate Recoveries:

p-terphenyl

104%

SPECTRA LABORATORIES

oper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 30, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120577 Date Analyzed: 12/20/2019

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
Benzene	<0.4J	10.0	10.6	106	
Toluene	<0.43	10.0	9.68	96.8	
Ethylbenzene	<0.4J	10.0	9.85	98.5	
Total Xylenes	<0.8J	30.0	30.6	101.9	
Gasoline	<50	250	239	96	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	90	92	Benzene	<0.4J
1,2-Dichloroethane-d4	87	92	Toluene	<0.4J
Toluene-d8	98	94	Ethylbenzene	<0.4J
4-Bromofluorobenzene	102	108	Total Xylenes	<0.8J
			Gasoline	<50

Authorized by: Kristin Hintz

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120577

Work Order Number: 1912420

December 31, 2019

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 12/24/2019 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 12/31/2019

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2019120577 Work Order: 1912420

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1912420-001
 120577-1
 12/19/2019 12:00 AM
 12/24/2019 10:17 AM

 1912420-002
 120577-2
 12/19/2019 12:00 AM
 12/24/2019 10:17 AM

Case Narrative

WO#: 1912420 Date: 12/31/2019

CLIENT: Spectra Laboratories

Project: 2019120577

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1912420

Date Reported: 12/31/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1912420

Date Reported: 12/31/2019

CLIENT: Spectra Laboratories

Project: 2019120577

Lab ID: 1912420-001 Collection Date: 12/19/2019

Client Sample ID: 120577-1 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Mercury by Method 1631E Batch ID: 26969 Analyst: WF

Mercury 1.00 0.500 ng/L 1 12/30/2019 11:58:15 PM

Lab ID: 1912420-002 Collection Date: 12/19/2019

Client Sample ID: 120577-2 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Mercury by Method 1631E Batch ID: 26969 Analyst: WF

Mercury 0.658 0.500 ng/L 1 12/31/2019 12:09:03 AM

Work Order:

1912420

CLIENT:

Spectra Laboratories

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 2019120577 Sample IO: MB-26969 SampType: MBLK Units: ng/L Prep Date: 12/30/2019 RunNo: 56306 Client ID: MBLKW Batch ID: 26969 Analysis Date: 12/30/2019 SegNo: 1122071 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Marcury ND 0.500 Sample ID: MB2-26969 SampType: MBLK Units: ng/L Prep Date: 12/30/2019 RunNo: 58306 Client ID: MBLKW Batch ID: 26969 Analysis Date: 12/30/2019 SeqNo: 1122072 Analyte Result SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDUmit Qual Mercury ND 0.500 Sample ID: MB3-29969 SampType: MBLK Units: ng/L Prep Date: 12/38/2019 RunNo: 58306 Client ID: MIBLIOW Batch IO: 26969 Analysis Date: 12/30/2019 SeqNo: 1122022 Analyte Result RI. SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLImit Qual Mercury ND 0.500 Sample ID: LCS-26969 SampType: LCS Units: ng/L Prep Date: 12/30/2019 RunNo: 58306 Client ID: LCSW Batch ID: 26969 Analysis Date: 12/30/2019 SeqNo: 1122023 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDUmit Qual Mercury 22.1 0.500 25.00 88.4 120 Sample ID: 1912450-003ADUP SampType: DUP Units: ng/L Prep Date: 12/30/2019 RunNo: 56306 Client ID: BATCH Batch ID: 26969 Analysis Date: 12/30/2019 SeqNo: 1122025 Analyte Result RL SPK value SPK Ref Val. %REC LowLimit HighLimit RPD Ref Val %RPD RPOLIMR Qual Mercury 4.61 0.500 4.750 2.99

24

Date: 12/31/2019

Work Order:

1912420

CLIENT:

Spectra Laboratories

Project:

2019120577

QC SUMMARY REPORT

0.391

24

Mercury by Method 1631E

Sample ID: 1912450-003AMS Client ID: BATCH	SampType: MS Batch ID: 26969			Units: ng/L		Prep De Analysis De	te: 12/30/2		RunNo: 563 SeqNo: 112		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	25.5	0.500	25.00	4.750	83.0	71	125				
Sample ID: 1912450-003AMSD	SampType: MSD			Units: ng/L		Prep Da	te: 12/30/	2019	RunNo: 563	306	
Client ID: BATCH	Betch ID: 26969					Analysis Da	ta: 12/30/2	2019	SeqNo: 112	22027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qual
Mercury	25.6	0.500	25.00	4.750	83.4	71	125	25.50	0.391	24	

25,50

Sample Log-In Check List

Client Name:	SPECTRA	Work Order Numi	ber: 1912420		
Logged by:	Carissa True	Date Received:	12/24/20	19 10:17:00 AM	
Chain of Cust	ody				
1. Is Chain of C	custody complete?	Yes 🗹	No 🗆	Not Present	
2. How was the	sample delivered?	UPS			
Log In					
3. Coolers are p	present?	Yes 🗹	No 🗆	NA 🗆	
4. Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗆		
	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗹	Not Required	
6. Was an atter	npt made to cool the samples?	Yes 🗌	No 🗸	NA 🗆	
120 00000000000000000000000000000000000		Inknown prior to re		7.00	
7. Were all item	s received at a temperature of >0°C to 10.0°C*	Y [No 🗹	NA 🗆	
	Plea	se refer to item info	rmation.		
8. Sample(s) in	proper container(s)?	Yes	No 🗆		
9. Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗆		
10. Are samples	properly preserved?	Yes 🗹	No 🗆		
11. Was preserve	ative added to bottles?	Yes 🗹	No 🗆	NA 🗆	
				Cl added to 001-002	
12. Is there head	space in the VOA vials?	Yes 🔲	No 🗆	NA 🗹	
13, Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆		
14. Does paperw	ork match bottle labels?	Yes 🗹	No 🗆		
15. Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗆		
16. Is it clear wha	at analyses were requested?	Yes 🗹	No 🗆		
17. Were all hold	ing times able to be met?	Yes 🗹	No 🗆		
Special Handli	ng (if applicable)				
18, Was client no	tified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹	
Person	Notified: Date		_		
By Who	m: Via:	☐ •Meii ☐ Pa	ane Fex	In Person	
Ragardi	ne:				
Cuansin	structions.			-	
19, Additional ren	narks:				
tem information					
ATT INDIMISION	Item # Temp ℃				
Cooler 1	10.1				
Sample 1	9.9				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

CHAIN of CUSTODY

SPECTRA Laboratories

2221 Rots Way * Tecoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

PAGE 1 of 1 9
STANDARD X RUSH \$

CLIENT: Sp	ectra Labs				ADC	RE	SS:	22	21	Ro	ss	Wa	у Та	co	ma	w	A 9	844	5												HANGE
PROJECT: 20	19120577					L	HY	DR	oc	ARI	80	NS	1	0	RG	IN	C8	1	N	ET	ALS						_	OTH	IER	_	
CONTACT: Ma PHONE: 253-27 e-MAIL: marieh	2-4850		3-572-9838 Prefer FA or e-MAIL	x 🗆	F CONTAINERS			54			1664 SGT-HEM (TPH)	(50		CHLOR SOLVENTS	HVOA			A COURT AND AND A SECURE OF	TOTAL METALS MARKETY	ICLP WETALS RCRA 8	S (SPECIFY)							CIEN			
PURCHASE ORI					BER OF	HHCID		STEXAMMIPH-G	9	ğ	GT-HE	BBM HEM (FOG)	SHOWER VOA	HO.	1270/125 SEM VOA	AHN	OR2/EGB PCB	VALUE	META	METAL	TCLP WETALS	BSTE	11:3040/8045	TX/TOX 8976	MT.	FLASH POWT		sours (specim)			
SAMPLE	Ю	DATE	SAMPLED	MATRIX	SACANE SACANE	MMTPI	BTEX	этем	D-HALLMI	MATPH-DK	1004 S	1884 24	2000	8280	8270vE	8270 PAHPINA	8062/6		TOTAL	3	100	Hgby 1831E	PH-904	DTXT	TURBIDITY	FLASH	900	SOUD	H0C4		
120577-1		12/19/19		Water	1														T	I		X									
120577-2		12/19/19		Water	1															I		x									
																		1	1												
						L	L					Ц	1	L			П	1	1	1	L							Ц			
						L		Ц				Ц	1	L	L		Ц	1	1		L								-		
						L							1	-				4	1	-	1								1		1
						L		Ц					+	1	L	-	Н	+	+	+	1	L			_				+		-
						-		Н	_		_	1	+	+	-	-	H	+	+	+	+	H	-	Н				Н	+	\Box	
				-		L	H	Н	_		_	1	+	+	-	-	H	+	+	+	+	H			_	-		Н	+	Н	++
					L	L						Ц	1	1					1	_											
SPECIAL INSTRU	CTIONS/COM	IMENTS:	RELINIOURSH			1		SIGH	-			_	Τ.	1.			TED N	ANE			T			PAN				DA		T	TIME
			RECEIVED B		K	7	74	4	13	W	2	_	1	77	Ora	_		_	_	-		Pect		-	-	12	1		28/19 11/7	1	3:00 PM
					-	=	-	4	_		_	-	+	-	2N	C	_	-	-	-	4	T	11	_	-	10	7	_	FLI	+	1
			RELINGUISH		-	_	_	_	_	_	_	-	+	-	-	-	_	-	-	-	+	_	-	_	-		-	_	_	-	
			RECEIVED B		20.4		Dani.	dia.		Mark-	-	Cam =	1	5 62			h leter	on all	Curr	-	_				-	10 -4	- And the		a learning	Spe is	
RETURN SAMPLES	DISPOSE S	AMPLES	Paymont To ettorney's fo																										-	9 69	REST TRANSPORT

Marie Holt

From: Knickerbocker, Jessica < JKnicker@ci.tacoma.wa.us>

Sent: Tuesday, January 07, 2020 2:13 PM
To: Marie Holt; cser461@ecy.wa.gov

Cc: Ryan, Terry; Rhubright, Mike; Jeff Cooper; Kroll, Willy

Subject: RE: KOSMOS - BTEX Issue

Please run the samples that can still be run. And just provide a final report on the others

Jessica Knickerbocker, PE | Tacoma Power Engineering Manager Plant Engineering & Construction Services P: (253) 502-8250 | C: (253) 389-8044

From: Marie Holt <MarieH@spectra-lab.com>
Sent: Monday, January 6, 2020 2:00 PM

To: Knickerbocker, Jessica < JKnicker@ci.tacoma.wa.us>; cser461@ecy.wa.gov

Cc: Ryan, Terry <TRYAN@ci.tacoma.wa.us>; Rhubright, Mike <MRhubrig@ci.tacoma.wa.us>; Jeff Cooper <jeffc@spectra-

lab.com>; Kroll, Willy <WKROLL@ci.tacoma.wa.us>

Subject: KOSMOS - BTEX Issue

Hi Jessica,

Spectra received a call from Carol with Ecology regarding the Kosmos project. She spoke with our Laboratory Manager Jeff on Friday while I was out. BTEX is a required parameter for this project. BTEX has a 14 day holding time, which means a few of the samples are beyond the hold time for analysis. I've attached a table showing which samples are still within hold time and which are beyond. Spectra will be running the BTEX at the low quantitation level required by your WQPP on the samples within hold time. We will need to know how you and Ecology want to handle the samples already beyond the 14 day holding time.

- We can analyze the three projects (seven samples) for BTEX beyond the hold time to achieve the 2.0 Quantitation Level.
- We can report the BTEX results from the original GCMS analysis (NWTPH-G), though the Quantitation Level will be 2.5 (0.5 above the level listed in the WQPP.

Please let us know by tomorrow, if possible, which of the above options you would like.

Thank you!

Marie Holt

Customer Support and Office Manager

SPECTRA Laboratories

2221 Ross Way

Communications Record

Internal Document

Client: TPU

Client Contact: Doug Boettner & Mike Rhubright

Date: 12-19-19

Time: 3:58

Spectra Contact: Marie Holt

Project: Kosmos

Spectra Project: 2019120577

Spectra didn't receive the 250 poly non preserved. We won't be able to perform the pH, Turbidity & Hex Chrom.

Mike and Doug will come up with a non-preserved bottle for the next sample collection.

Also explained that the rush turnaround will be delayed due to the low level mercury analysis, the sample arrived after UPS had picked up today (Thursday). We can't ship on Friday due to the weekend. We will ship Monday for Tuesday deliver (approved with Fremont).

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

"Refer to attached list of required methods and detection ilmits

* As, Cd, Cr, Cu, Pb, NI, Zn (EPA Method 200.8), Ng (EPA

CHAIN of CUSTODY

2019 1205

STANDARD RUSH www.spectra-lab.com info@spectra-lab.com Return Samples Y Page ADDRESS. Tacoma Power (TPU) CLIENT: 3628 South 35th Street Tacoma, WA 98409 CHANGE PROJECT: Kosmos HYDROCARBONS **ORGANICS** METALS OTHER CONTACT SUBCONTRUC SAMPLED BY: Doug Boether CONTAINERS 625 ide by 07257-10 8UB 133 PHONE: 253-244-0539 FAX: TESTING BY CLP METALS RCRAB ide by 4500B, SGT-FEM (TPH) TO PHARE IN e-MAIL: d boothward Cr. taran WEIALS BER PURCHASE ORDER # 19-14-12- 214 SAMPLE ID SAMPLED. XX X Boom# 19/19/12 12:08 SIGNATURE PRINTED NAME COMPANY DATE TIME Spectra Internal Instructions RELINQUISHED BY RECEIVED BY Spencer Beck Spectra 3:00 12/19/19 RELINDUISHED BY RECEIVED BY Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including responsible.

attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue, Spectra Analytical, LLC

Kosmos

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

Project:

01/13/2020 P.O.#: Auth #19-20-12-220

Tacoma Public Utilities Client ID: D1B
Sample Matrix: Water

 PO Box 11007
 Date Sampled:
 12/20/2019

 Tacoma, WA 98411
 Date Received:
 12/20/2019

 Attn: Doug Boettner
 Spectra Project:
 2019120643

Spectra Number: 1

Analyte	Result	Units	Method
The state of the s	A CONTRACTOR OF THE		
Total Mercury	0.00848*	ug/L	EPA 1631E
Turbidity	51	NTU	EPA 180.1
Arsenic	0.6	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	3.6	µg/L	EPA 200.8
Copper	7.0	μg/L	EPA 200.8
Lead	1.4	μg/L	EPA 200.8
Nickel	2.2	μg/L	EPA 200.8
Zinc	14.6	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	159	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5.78	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	82	NWTPH-D	
Toluene-d8	98	NWTPH-G	
4-Bromofluorobenzene	101	NWTPH-G	

SPECTRA LABORATORIES

donner, Cooper, Laboratory Manager

Page 1 of 2

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#: Auth #19-20-12-220 01/13/2020

Client ID: Boom #1 Sample Matrix: Water Tacoma Public Utilities

Date Sampled: 12/20/2019 PO Box 11007 Date Received: 12/20/2019 Tacoma, WA 98411

Spectra Project: 2019120643 Attn: Doug Boettner

Spectra Number: 2

Kosmos

Project:

Analyte	Result	Units	Method
Total Mercury	ND*	ug/L	EPA 1631E
Turbidity	24	NTU	EPA 180.1
Arsenic	1.0	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	2.7	μg/L	EPA 200.8
Copper	3.4	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	1.2	μg/L	EPA 200.8
Zinc	3.3	μg/L	EPA 200.8
Diesel	< 50	μg/L	NWTPH-D
Oil	96.6	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	2.70	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	80	NWTPH-D
Toluene-d8	100	NWTPH-G
4-Bromofluorobenzene	101	NWTPH-G

SPECTRA LABORATORIES

ooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 23, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s

Analyst:

ug/L 2019120643 1-2 SCJ

QUALITY CONTROL RESULTS ICP-MS Metals - EPA Method 200.8 - Water

		Laborator	y Reagent Blank (LRB)		
Date Digested:	12/23/2019		Date A	Analyzed:	12/23/2019
		Element	CAS#	Result	
		Arsenic	7440-38-2	< 0.3	7
		Cadmium	7440-43-9	< 0.2	
		Chromium	7440-47-3	< 0.5	
		Copper	7440-50-8	< 0.3	
		Lead	7439-92-1	< 0.5	
		Nickel	7439-98-7	< 0.5	
		Zinc	7440-66-6	< 0.3	

Laboratory Fortified Blank (LFB)

Date Digested: 12/23/2019 Date Analyzed: 12/23/2019

	Spike	LCS	LCS
Element	Added	Conc.	%Rec
Arsenic	100.0	104.84	104.8
Cadmium	100.0	91.38	91.4
Chromium	100.0	92.98	93.0
Copper	100.0	97.36	97.4
Lead	100.0	95.87	95.9
Nickel	100.0	93.18	93.2
Zinc	100.0	94.79	94.8

LCS Recovery limits 85-115%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested: 12/23/2019 Date Analyzed: 12/23/2019
Sample Spiked: 2019120635-1

	Sample	Spike	MS	MS	MSD	MSD	
Element	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic	0.00	100.0	101,29	101.3	98.62	98.6	2.7
Cadmium	0.00	100.0	93.38	93.4	92.44	92.4	1.0
Chromium	2.96	100.0	95.22	92.3	92.44	89.5	3.1
Copper	4.70	100.0	100.37	95.7	96.82	92.1	3.8
Lead	0.58	100.0	99.91	99.3	97.07	96.5	2.9
Nickel	0.00	100.0	94.27	94.3	91.18	91.2	3.3
Zinc	14.52	100.0	107.84	93.3	103.97	89.5	4.2

Comment:

Recovery Limits 70-130%

RPD Limit 20

SPECTRA LABORATORIES

ry Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 27, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120643

Applies to Spectra #: 1-2

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

12/26/19

Units:

ug/L

Date Analyzed:

12/27/19

Spike

Sample Amount Amount

Percent

Result

Added

Found Recovery

Diesel

Compound

<100

2500

1912

Spike

76

METHOD BLANK

Date Extracted:

12/26/19

Date Analyzed:

12/27/19

Units:

ug/L

Diesel

<100

Heavy Oil

< 500

, Laboratory Manager

Surrogate Recoveries:

p-terphenyl

88%

SPECTRA LABORATORIES

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 23, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120643 Date Analyzed: 12/20/2019

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

BLANK	SPIKE	SPIKE	LCS	
RESULT	AMOUNT	RESULT	%REC	
<1	10.0	10.8	108	
<1	10.0	10.6	106	
<1	10.0	9.68	96.8	
<1	10.0	9.85	98.5	
<2	30.0	30.6	102	
<50	250	239	95.6	
	<1 <1 <1 <1 <1 <1 <2	RESULT AMOUNT <1	RESULT AMOUNT RESULT <1	RESULT AMOUNT RESULT %REC <1

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	90	92	Benzene	<1
1,2-Dichloroethane-d4	87	92	Toluene	<1
Toluene-d8	98	94	Ethylbenzene	<1
4-Bromofluorobenzene	102	108	Total Xylenes	<2
			MTBE	<1

aboratory Manager

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

December 27, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Units:

ug/L

Spectra Project:

2019120643

Applies to Spectra # 1-2

QUALITY CONTROL RESULTS

Hexavalent Chromium in Water/Liquid - Method SM 3500 Cr-D/ SW846 7196A

Method Blank

Date Analyzed:

12/20/2019

Result

Hexavalent Chromium

Blank Spike (LCS)

Date Analyzed:

12/20/2019

Spike Added

LCS Conc.

0.049

LCS

Hexavalent Chromium

0.05

%Rec

98

LCS Recovery limits 73-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed: 12/20/2019

Sample Spiked:

2019120628-1

Sample

Spike

MS

MS

MSD

MSD

Conc.

%Rec

Conc

%Rec RPD

Hexavalent Chromium < 0.01

Conc.

Conc. 0.1

0.09

90

0.085

85

5.7

Recovery Limits 75-125%

RPD Limit 20

SPECTRA LABORATORIES

atory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www spectra-lab com info@spectra lab o

SPECIA	LINST	RUCTIO	ONS/CO	MMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)/ Return Samples Y

CHAIN of CUSTODY

SPECTRA PROJECT #

1019170	Lett	9	
TANDARD	X	RUSH	

www.spectra-rab.com imowsp	bectra-rab, com	110			р.	_	Ė	_		_	ra	g-	_	_		_	_	_	_			"			_				10	0		_
CLIENT: Tacoma Power (TPU)					36	28	So	uth	n 3	5th	St	ree	et T	ac	om	a,	WA	4 9	840	9											DDR	
PROJECT: Kosmos			L	Н	DR	oc	ARE	во	NS			OF	RGA	ANIC	cs			ME	TAI	LS						-	ОТН	HEF	R			
CONTACT:										П									П									П				П
SAMPLED BY: Doug Roe	Hner	ERS								П	0		625 TTO			808	Н	-										20	Bn		IRACT	
PHONE: 253-244 653 FAX: TES	STING	ONTAINERS									BY 624 TTO	KTS	BY 62			BY (A 8	(SPECIFY)		80	(SPECIFY)						TSS	3; 4500C	D7237-10 SUB		SCON	
e-MAIL: d boethner of tacoma was	Prefer FAX Sor e-MAIL	F CON			9			1664 SGT-HEM (TPH)	(90		A BY 6	8260 CHLOR SOLVENTS	VOA	A	_	PesuPCB BY 608				TCLP METALS RCRA 8							(SPECIFY)	by 4500B;	by D7237	Chromium	Nitrogen SUBCONTRACT	
PURCHASE ORDER #: 19-20-12		ER 0	HHO		WYTP	Ď.	ě	GT-HE	EM (F		24 VO/	HLOR	25 SEA	AH/PN	2	chlor P	METALS	META		ETALS	METALS	3/9045	9076	È	POINT			anide	anide t	ent Ch	ia Mitro	
SAMPLE ID DATE SAMPLED	SAMPLED MATRI	NUMBER	NWTPH	втех	BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1664 S	1664 HEM (FOG)		8260/824 VOA	8260 C	8270/63	8270 PAH/PNA	8082/608	Organo	TOTAL	TOTAL METALS		TCLP N	TCLP N	PH 9040/9045	TX/TOX	TURBIDITY	FLASH	GOB	SOLIDS	Total Cy	Free Cy	Heraval	Ammoni	
DIB. 19-20-12	-10:45					Х	X											X				Χ		Χ						Х		
Boom#1 19-20-12	-10:18					X	×											*				*		X				П		X		
															3																	
					-																											
		\perp				_																										
		\perp																														
		\perp	L	Н	Ц	4				Ц																						
		\perp		Ш	Ц	4		4		Ц								\Box														
		\perp		Ц	Ц	4		4		Ц		_		_																		
		Ш	L																				4									
Spectra Internal Instructions	RELINQUISHED BY	T		4	SIGN	OI	RE	-	_	-	7	_	-	0	EDA			_	$\overline{}$	_	0	OMF	PANY			1-1	DA /					ME
	RECEIVED BY	1)5-	نخ	Soc	~	1	_	_	\dashv	_	bu	_				40.		+		(-	1	_	_	\dashv	_	120	_	_	_	13	
-	RELINQUISHED BY	11)	en	11	_	U	n	^	n	-		10	C	20	. (٥	n	N	^	3	20	ود	4	O.	4	12	12	0/1	19	10	1.3	30
-	RECEIVED BY	V	_	_	_	_	_	_	_	\dashv	-	_	_	_	_	_	_	_	+	_	_	_	_	_	4	_	_	_	_	-	_	
F	Payment Terms: Net attorney's fees and a	30 da Il othe	ys, P	ast of	tue a	ccou	unts :	subj ardi	ject i	to 1 of w	1/2 !	% pe	er mo	onth	inte	rest. Piero	Cus ce Cu	storr	ier a	gree	es to	pay	all o	costs	s of o	colle	ctio	n inc	dudi	ng re	3350	nable

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120643

Work Order Number: 1912419

January 09, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 12/24/2019 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/09/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2019120643 Work Order: 1912419

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1912419-001
 120643-1
 12/20/2019 12:00 AM
 12/24/2019 10:17 AM

 1912419-002
 120643-2
 12/20/2019 12:00 AM
 12/24/2019 10:17 AM

Case Narrative

WO#: 1912419 Date: 1/9/2020

CLIENT: Spectra Laboratories

Project: 2019120643

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

NO#: 1912419

Date Reported: 1/9/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

1912419

Date Reported:

1/9/2020

CLIENT:

Spectra Laboratories

Project:

2019120643

Lab ID: 1912419-001

Client Sample ID: 120643-1

Collection Date: 12/20/2019

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Batch ID: 26969

Date Analyzed

Mercury by Method 1631E

Mercury

8.48

ND

0.500

ng/L

12/31/2019 1:24:46 AM

Analyst: WF

Lab ID: 1912419-002

Client Sample ID: 120643-2

Collection Date: 12/20/2019

Matrix: Water

Analyses

Mercury

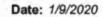
Result

RL Qual

Units

DF **Date Analyzed**

Mercury by Method 1631E


0.500

ng/L

Batch ID: 26969

12/31/2019 1:35:34 AM

Analyst: WF

Work Order: 1912419

CLIENT: Spectra Laboratories

Project: 2019120643

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 201912064:	3				mercury by method 1031
Sample ID: MB-26969	SampType: MBLK			Units: ng/L	Prep Date: 12/30/2019 RunNo: 56306
Client ID: MBLKW	Batch ID: 26969				Analysis Date: 12/30/2019 SeqNo: 1122071
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB2-26969	SampType: MBLK			Units: ng/L	Prep Date: 12/30/2019 RunNo: 56306
Client ID: MBLKW	Batch ID: 26969				Analysis Date: 12/30/2019 SeqNo: 1122072
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB3-26969	SampType: MBLK			Units: ng/L	Prep Date: 12/30/2019 RunNo: 56306
Client ID: MBLKW	Batch ID: 26969				Analysis Date: 12/30/2019 SeqNo: 1122022
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: LCS-26969	SampType: LCS			Units: ng/L	Prep Date: 12/30/2019 RunNo: 56306
Client ID: LCSW	Batch ID: 26969				Analysis Date: 12/30/2019 SeqNo: 1122023
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	22.1	0.500	25.00	0	88.4 80 120
Sample ID: 1912450-003ADUP	SampType: DUP			Units: ng/L	Prep Date: 12/30/2019 RunNo: 56306
Client ID: BATCH	Batch ID: 26969				Analysis Date: 12/30/2019 SeqNo: 1122025
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	4.61	0.500			4.750 2.99 24

Date: 1/9/2020

Work Order: 1912419

CLIENT: Spectra Laboratories

Project: 2019120643

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 1912450-003AMS	SampType: MS			Units: ng/L		Prep Da	te: 12/30/2	2019	RunNo: 563	306	
Client ID: BATCH	Batch ID: 26969					Analysis Da	te: 12/30/2	2019	SeqNo: 112	22026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	25.5	0.500	25.00	4.750	83.0	71	125				

Sample ID: 1912450-003AMSD Client ID: BATCH	SampType: MSD Batch ID: 26969			Units: ng/L		Prep Da Analysis Da	te: 12/30/2 te: 12/30/2	3.7	RunNo: 563 SeqNo: 112	100	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	25.6	0.500	25.00	4.750	83.4	71	125	25.50	0.391	24	

Sample Log-In Check List

Client Name:	SPECTRA	Work Order Numl	ber: 1912419	
Logged by:	Carissa True	Date Received:	12/24/20	19 10:17:00 AM
Chain of Cus	tody			
1. Is Chain of	Custody complete?	Yes 🛂	No 🗌	Not Present
	e sample delivered?	UPS		
Log In				
3. Coolers are	present?	Yes 🔽	No 🗆	NA 🗆
4 Shipping on	ntainer/egoler in good condition?	Yes 🗸	No 🗆	
	ntainer/cooler in good condition?		No 🗹	Net Desilved [7]
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes 🗀	NO E	Not Required
6. Was an atte	mpt made to cool the samples?	Yes	No 🗸	NA 🗌
	1	Jnknown prior to re	ceipt	
7. Were all iter	ms received at a temperature of >0°C to 10.0°C*	Yes 🗌	No 🗸	NA 🗌
	Plea	se refer to item info	ormation.	
8. Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9. Sufficient sa	imple volume for indicated test(s)?	Yes 🗹	No 🗆	
10. Are samples	s properly preserved?	Yes 🗹	No 🗆	
11. Was presen	vative added to bottles?	Yes 🗹	No 🗌	NA 🗆
			Bri	Cl added to 001-002
12. Is there hea	dspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹
13. Did all samp	oles containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does papen	work match bottle labels?	Yes 🗹	No 🗆	
15. Are matrices	s correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
16. Is it clear wh	nat analyses were requested?	Yes 🗹	No 🗌	
17. Were all hol	ding times able to be met?	Yes 🗹	No 🗌	
Special Hand	ling (if applicable)			
	ootified of all discrepancies with this order?	Yes 🗆	No 🗆	NA 🗹
Person	Notified: Date	: [
By Who		Annual State of the State of th	one Fax	In Person
Regard		Дапат Д.	4116	
	nstructions:			
19. Additional re				
19, Additional re	angina.			
Item Information				
27.000	Item# Temp °C			
Cooler 1	10.1			
Sample 1	9.9			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

CHAIN of CUSTODY

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

CLIENT: Spectra Lat	os			ADE	RE	SS:	222	21	Ro	ss	Wa	Ta	co	ma	W	A 9	844	15												CHANGE
PROJECT: 201912064	3					HY	DR	oc	ARE	301	NS		O	RGA	INA	cs	1		MET	ALS	3					-	ОТН	IER		
CONTACT: Marie H				CONTAINERS	l							1					-	5		1		ı								
PHONE: 253-272-4850	FAX: 25	3-572-9838		NTAI	ı					9		ı	/ENTS	4		П	1	CRAB	PECH	ECIFY		ı								
e-MAIL: marieh@spectra-	lab.com	Prefer FAX or e-MAIL	_	P	CHD		BTEX/MWTPH-G			1664 SGT-HEM (TPH)	1664 HEM (FOG)	AOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	PNA	ES CB	1	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFT)	TOLP METALS (SPECIFY)	u u	045	92		INT		SOLIDS (SPECIFY)			
PURCHASE ORDER #				NUMBER	NWTPH-HCID		CNNN	NWTPH-G	NWTPH-Dx	SGT.	HEM	8260/624 VOA	SEC	625 5	8270 PAH/PNA	8082/508 PCB	1	IL ME	L ME	MET	Hg by 1631E	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT		DS (S			
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NO	NWT	втех	8TE)	NA.	ž	1664	1864	8260	8260	8270	8270	8082		101	5 5	1 2	Hab	E S	5	TJR.	FLAS	BOD	SOLI	HOGs		
120643-1	12/20/19		Water	1			6														X				1					
120643-2	12/20/19		Water	1			15				3							-			×								1	
											1																			
																	1	1												
								4		_		1	L				4	4	1	1	1			L					1	
				L				_					_				4	1	1	1	-	1		_					1	
				-	L			-				1	-		-		4	+	+	+	+	1						-	1	
				-	L	-	Н	-	Н			+	H		L		4	1	+	+	+	+						-	+	
	-		-	+	-	-		4			-	+	-	-	-	Н	+	+	+	+	+	+	-	-	-	H		-	+	-
						L							L	_	L	TED N	1445		1	1	1	-			_	L	- 04	TE	1	TIME
SPECIAL INSTRUCTIONS/CO	OMMENTS:	RELINQUISHE	ED BY	T	I	24	SIGN	1				Τ.				IEUN	AME			T		CON	IPAN	Y						
		RECEIVED BY		+	7	C	1	K	al	re	n	Je	n L	rav	ven.	1	_	_	-	1	peo	A	7	-		17	12	23/1	9	3:00 PM
		RELINQUISH		+	1		V	_	-	_	_	+	-	10	M	00	_	_	_	+	V	10	1	-		-	14	4	+	VI
		RECEIVED BY		+		-		_	_			+	_	_	-	-	-	_	_	+	_	_	-	-		-	_	_	+	
		Payment Te		30 d	avs I	Past	due	acco	unts	sub	elect to	1.1/	2 % 1	oer m	nonti	h inte	rest	Cus	tome	er ao	nes	to pa	av all	cos	ts of	coll	ectio	n inch	idina i	easonable
RETURN SAMPLES DISPOSE	E SAMPLES	attorney's fe																										. mere		

CHAIN of CUSTODY

PECTRA Laboratories	PAGE _	1	_ of	1	
rectra Laboratories					Ξ

CLIENT: Spectra La	ibs			ADI	RE	SS:	22	21	Ro	ss	Wa	у Та	co	ma	W	A 9	844	5												ADDRE	
PROJECT: 201912064	43		, IS SHE	1 0	erun.	HY	DR	ОС	AR	ВО	NS	-	O	RG/	ANI	cs		1	MET	TAL	S	1		-		70.70	от	HE	2		
CONTACT: Marie H				VERS	Г							Т					Т	1		Т	T	T	Т	T	T	Τ	Г		П		
PHONE: 253-272-4850	FAX: 25	3-572-9838	3	CONTAINERS	ı					٩		П	STA				1	5		HCRA 8		ı	1								
e-MAIL: marieh@spectra	-lab.com	Prefer FA or e-MAIL		_			9			E W	(g)	1	SOLVE	NOA II	4		0	2 2	20 25	S RCR		١			1.		CIFY				
PURCHASE ORDER #				ER OF	4-HCID		WTP	97	ğ	1664 SGT-HEM (TPH)	1664 HEM (FOG)	24 VOA	HLOR	25 SEN	AHIPN	3082/608 PCB		WEIN	MEIA	CLP METALS	100	100	C CONTRACTOR	2/04	POINT		(SPE				
SAMPLE ID	DATE	TIME	MATRIX	NUMBER	NWTP	втех	BTEX/WYTPH-G	NWTPH-G	NWTPH-Dx	1664 S	1664 H	8250/624 VOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	8270 PAH/PNA	8082/60	74	TOTAL METALS MURA	TOTAL METALS (SPECIFY)	TCLP METALS RCRA 8	1	60 60	PH MOSONAGE		FI ASH POINT	900	SOLIDS (SPECIFY)	HOCs			
120643-1	12/20/19		Water	1						П	8	20					0	Ó	Till St	3	100	(V	100				10 mg	0	
120643-2	12/20/19		Water	1								81					100	900	100	i i	,	(0.0		Į.					100	
											8						ŝ				6	ě	8							100	8
											9	(4)		100			9000		200				1000	3	9		13		S		63
									Ti-									1	2000		200			Sell Control	1	9			7.0	68	39
		15			43				3		8	12					-	2	8	Ü	1		100	Sough	à						18
(C)	(G)(D)	17					B.				10	8					000		200	9	9	0	000		8		18				15
	0											180		題版			2000		200	200	9	1	7000		1						12
																	1		1000		8	2								13	8
											33	1					1	8	2000	REGRES	200		100	á	0					150	539
SPECIAL INSTRUCTIONS/C	OMMENTS:				,		SIGN	ATU	RE					P	RINT	ED N	AME			_		CC	MPA	NY		_	DA	TE		TIM	E
		RELINQUISHE	D BY		4	n	1	n	40	re	n	Je	n D	rav	en					S	pe	ctra	1			L	12/	23/	19	3:0	0 PM
		RECEIVED BY										\perp								1											
		RELINQUISHE	D BY																				•								
		RECEIVED BY										Т								T				Т		Г			T		

(Shipping Fee Applies)

Marie Holt

From: Brianna Barnes
bbarnes@fremontanalytical.com>

Sent: Monday, January 13, 2020 1:26 PM

To: Marie Holt

Subject: RE: Verification - 1912419-001

Hi Marie,

Our department manager reviewed the data again this morning and didn't find any errors. Let me know if you'd like the sample to be re-analyzed.

Thank you!

Brianna Barnes Project Manager

3600 Fremont Ave N. Seattle, WA 98103

Tel: 206.352.3790 Fax: 206.352.7178

www.FremontAnalytical.com

CONFIDENTIALITY NOTICE: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.

From: Marie Holt <MarieH@spectra-lab.com> Sent: Monday, January 13, 2020 9:53 AM

To: Brianna Barnes

bbarnes@fremontanalytical.com>

Subject: Verification - 1912419-001

Hi Brianna,

Can you please ask the lab to double check the Mercury at 8.48 ng/L for your sample 1912419-001, Spectra #2019120643-1.

We don't typically ask this, though this particular sample result was approx. 10 times higher than other samples from this site, so we want to be certain there wasn't a reporting error. No need to reanalyze, just verify there aren't any errors.

Thanks so much!

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

01/20/2020	P.O.#:	Auth #19-23-12-221
01/30/2020	Project:	Kosmos
	Client ID:	D1B
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	12/23/2019
Tacoma, WA 98411	Date Received:	12/23/2019
Attn: Doug Boettner	Spectra Project:	2019120694
ELIC AND SERVICE AND ADDRESS OF THE PERSON O	Spectra Number	: 1

Analyte	Result	Units	Method
Total Mercury	0.00159*	ug/L	EPA 1631E
Turbidity	7.0	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	2.7	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	0.8	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.07	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4J	μg/L	SW846 8260C
Ethylbenzene	<0.4J	μg/L	SW846 8260C
Toluene	<0.4J	μg/L	SW846 8260C
Total Xylenes	<0.8J	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample results with "J Flags" are estimates below calibration level but ar or above the MDL.

Surrogate	% Recovery	Method
p-Terphenyl	94	NWTPH-D
Toluene-d8	96	NWTPH-G
4-Bromofluorobenzene	98	NWTPH-G

SPECTRA PABORATORIES

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

01/30/2020 P.O.#: Auth #19-23-12-221 Project: Kosmos

Client ID: D6-Oil Curtain

Tacoma Public Utilities Sample Matrix: Water

 PO Box 11007
 Date Sampled:
 12/23/2019

 Tacoma, WA 98411
 Date Received:
 12/23/2019

 Attn: Doug Boettner
 Spectra Project:
 2019120694

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	ND*	ug/L	EPA 1631E
Turbidity	9.7	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	2.4	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5.85	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4J	μg/L	SW846 8260C
Ethylbenzene	<0.4J	μg/L	SW846 8260C
Toluene	<0.4J	μg/L	SW846 8260C
Total Xylenes	<0.8J	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample results with "J Flags" are estimates below calibration level but ar or above the MDL.

Surrogate	% Recovery	Method
p-Terphenyl	95	NWTPH-D
Toluene-d8	97	NWTPH-G
4-Bromofluorobenzene	99	NWTPH-G

SPECTRA ABORATORIES

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

01/20/2020	P.O.#:	Auth #19-23-12-221
01/30/2020	Project:	Kosmos
	Client ID:	Stockpile #1
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	12/23/2019
Tacoma, WA 98411	Date Received:	12/23/2019
Attn: Doug Boettner	Spectra Project:	2019120694
The Add to the Add to the Add to	Spectra Number	: 3

Analyte	Result	Units	Method
Total Mercury	0.00475*	ug/L	EPA 1631E
Turbidity	31	NTU	EPA 180.1
Arsenic	0.9	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	3.1	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	1.0	μg/L	EPA 200.8
Zinc	5.7	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	269	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5.42	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4J	μg/L	SW846 8260C
Ethylbenzene	<0.4J	μg/L	SW846 8260C
Toluene	<0.4J	μg/L	SW846 8260C
Total Xylenes	<0.8J	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample results with "J Flags" are estimates below calibration level but ar or above the MDL.

Surrogate	% Recovery	Method
p-Terphenyl	87	NWTPH-D
Toluene-d8	97	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

December 27, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2019120694

Analyst:

1-3 SCJ

				Method 200. gent Blank (L				
Date Digested:	12/27/2019	200	and J and	•	Date Analy	zed:	12/27/2019	
and a Berran	1-411-412	Element		CAS#		Result	122112017	
		Arsenic		7440-38-2		< 0.3	_	
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
Se Section S. T	TAC 7777 TO	Labor	ratory For	ified Blank (L		W. S.	0.27.37.1	
Date Digested:	12/27/2019				Date Analy	zed:	12/27/2019	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	104.84	104.8	-	
		Cadmium		100.0	91.38	91.4		
		Chromium		100.0	92.98	93.0		
		Copper		100.0	97.36	97.4		
		Lead		100.0	95.87	95.9		
		Nickel		100.0	93.18	93.2		
		Zinc		100.0	94.79	94.8		
LCS Recovery limit	s 85-115%			- 200				
		Matrix Spike	/Matrix Sp	ike Duplicate	(MS/MSD)			
Date Digested: Sample Spiked:	12/27/2019 2019120635-1				Date Analy	zed;	12/27/2019	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPI
Arsenic	==	0.00	100.0	101.29	101.3	98.62	98.6	2.7
Cadmium		0.00	100.0	93.38	93.4	92.44	92.4	1.0
Chromium		2.96	100.0	95.22	92.3	92.44	89.5	3.1
Copper		4.70	100.0	100.37	95.7	96.82	92.1	3.8
Lead		0.58	100.0	99.91	99.3	97.07	96.5	2.9
Nickel		0.00	100.0	94.27	94.3	91.18	91.2	3.3
Zine		14.52	100.0	107.84	93.3	103.97	89.5	4.2
Comment:								
Recovery Limits 70-	130%							
RPD Limit 20								

SPECTRA LABORATORIES

Jeff ev noper

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

December 30, 2019

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120694

Applies to Spectra #: 1-3

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

12/29/19

Units:

ug/L

Date Analyzed:

12/30/19

Spike

Sample Amount Amount

nt Per

Percent

Compound

Result

Added

Found

Spike

Recovery

Diesel

<100

2500

1584

63

METHOD BLANK

Date Extracted:

12/29/19

Date Analyzed:

12/30/19

Units:

ug/L

Diesel

<100

Heavy Oil

<500

Surrogate Recoveries:

p-terphenyl

95%

SPECTRA LABORATORIES

reveloper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 30, 2020

Tacoma Public Utilities PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120694

Spectra Project: 2019120694 Date Analyzed: 12/26/2019

Units: ug/L

Applies to Spectra #'s: #1-3

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
T	RESULT	AMOUNT	RESULT	%REC	
			1.5		
Benzene	<0.4J	10.0	9.8	98	
Toluene	<0.4J	10.0	10.37	103.7	
Ethylbenzene	<0.4J	10.0	10.00	100.0	
Total Xylenes	<0.8J	30.0	30.3	101.0	
Gasoline	<50	250	284	114	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	98	Benzene	<0.4J
1,2-Dichloroethane-d4	97	97	Toluene	<0.4J
Toluene-d8	100	100	Ethylbenzene	<0.4J
4-Bromofluorobenzene	100	98	Total Xylenes	<0.8J
			Gasoline	<50

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120694

Work Order Number: 1912450

December 31, 2019

Attention Marie Holt:

Fremont Analytical, Inc. received 3 sample(s) on 12/27/2019 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 12/31/2019

CLIENT: Spectra Laboratories

Project: 2019120694 Work Order: 1912450 **Work Order Sample Summary**

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1912450-001	120694-1	12/23/2019 11:00 AM	12/27/2019 1:33 PM
1912450-002	120694-2	12/23/2019 10:20 AM	12/27/2019 1:33 PM
1912450-003	120694-3	12/23/2019 12:50 PM	12/27/2019 1:33 PM

Case Narrative

WO#: 1912450 Date: 12/31/2019

CLIENT:

Spectra Laboratories

Project:

2019120694

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 191245

Date Reported: 12/31/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

1912450

Date Reported: 12/31/2019

CLIENT:

Spectra Laboratories

Project:

2019120694

Lab ID:

1912450-001

Client Sample ID: 120694-1

Collection Date: 12/23/2019 11:00:00 AM

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Batch ID: 26969

Date Analyzed

Mercury by Method 1631E

Mercury

1.59

0.500

ng/L

Analyst: WF

12/30/2019 11:36:40 PM

Lab ID: 1912450-002

Client Sample ID: 120694-2

Collection Date: 12/23/2019 10:20:00 AM

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Date Analyzed

Mercury by Method 1631E

Mercury

ND

0.500

ng/L

Batch ID: 26969

12/30/2019 11:47:27 PM

Analyst: WF

Lab ID:

1912450-003

Client Sample ID: 120694-3

Collection Date: 12/23/2019 12:50:00 PM

Matrix: Water

Analyses

RL Qual

Units

DF

Batch ID: 26969

Date Analyzed

Mercury by Method 1631E

Result

0.500

Analyst: WF

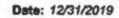
Mercury

4.75

ng/L

12/30/2019 10:31:49 PM

Work Order:


1912450

CLIENT:

Spectra Laboratories

QC SUMMARY REPORT

Project: 201912069	4							Mercury by Method	1631E
Sample ID: MB-26969	SampType: MBLK			Units: ng/L		Prep Dete:	12/30/2019	RunNo; 56306	
Client ID: MBLKW	Betch ID: 28969					Analysis Date:	12/30/2019	SeqNo: 1122071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLIMIT	Qual
Mercury	ND	0.500							
Sample ID: MB2-26969	SampType: MBLK			Units: ng/L		Prep Date:	12/30/2019	RunNo: 58306	
Client ID: MBLKW	Betch ID: 26969					Analysis Date:	12/30/2019	SeqNo: 1122072	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPOLIMIT	Qual
Mercury	ND	0.500							
Sample ID: MB3-26969	SampType: MBLK			Units: ng/L		Prep Date:	12/30/2019	RunNo: 56366	
Client ID: MBLKW	Batch ID: 26969					Analysis Date:	12/30/2019	SeqNo: 1122022	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLImit	Qual
Mercury	ND	0.500							
Sample ID: LCS-28989	SampType: LC8			Units: ng/L		Prep Dete:	12/30/2019	RunNo: 56306	
Client ID: LCSW	Batch ID: 28969					Analysis Date:	12/30/2019	SeqNo: 1122023	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Vel	%RPD RPDLImit	Qual
Mercury	22.1	0.500	25.00	0	88.4	80	120		
Sample ID: 1912450-003ADUP	SampType: DUP			Unite: ng/L		Prep Dete:	12/30/2019	RunNo: 56306	
Client ID: 120694-3	Batch ID: 26969					Analysis Date:	12/30/2019	SeqNo: 1122025	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	4.61	0.500					4,750	2.99 24	

Work Order:

1912450

CLIENT:

Spectra Laboratories

Project:

2019120694

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 1912450-803AMS Client ID: 120694-3	SampType: M3 Batch ID: 26969			Units: ng/L		Prep De Analysis Da	te: 12/30/2		RunNo: 563 SegNo: 112	100	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD		Qual
Mercury	25.5	0.500	25.00	4.750	83.0	71	125				
Sample ID: 1912450-003AMSD	SampType: MSD			Units: ng/L		Prep De	te: 12/30/2	2019	RunNo: 56:	306	
Client ID: 120694-3	Batch ID: 26969					Analysis Da	ta: 12/30/2	2019	SeqNo: 112	22027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	25.6	0.500	25.00	4.750	83.4	71	125	25.50	0.301	24	

Sample Log-In Check List

Client Name	SPECTRA	Work Order Numi	ber: 1912450	
Logged by:	Carissa True	Date Received:	12/27/201	19 1:33:00 PM
Chain of Cu	stody			
	f Custody complete?	Yes 🗹	No 🗆	Not Present
2. How was t	he sample delivered?	UPS		
<u>Log In</u>				74.7TU
3. Coolers ar	e present?	Yes 🗹	No 🗀	NA 🗆
4. Shipping o	container/cooler in good condition?	Yes 🗹	No 🗆	
	eals present on shipping container/cooler?	Yes 🗆	No 🗹	Not Required
(Refer to d	comments for Custody Seals not intact)			
6. Was an at	tempt made to cool the samples?	Yes 🗌	No 🗹	NA 🗆
		received at appropria		
7. Were all it	ems received at a temperature of >0°C to 10.0°C*	Yan 🗹	No 🗆	NA 🗆
8, Sample(s)	in proper container(s)?	Yes 🗹	No 🗆	
	sample volume for indicated test(s)?	Yes 🗹	N₀ □	
	es properly preserved?	Yes 🗹	No 🗆	
	ervative added to bottles?	Yes 🗆	No 🗹	NA 🗆
CA Treatment	*1575 1 201000 111000	75,000	1 2 10 - 2 20	
12. Is there he	adspace in the VOA vials?	Yes 🗌	No 🗆	NA 💌
13. Did all san	ples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does pape	erwork match bottle labels?	Yes 🗹	No 🗆	
15 Are matric	es correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
	vhat analyses were requested?	Yes 🗹	No 🗆	
	olding times able to be met?	Yes 🔽	No 🖂	
Special Han	dling (if applicable)		-	0.5
18, Was client	notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹
Paras	n Notified: De	tal		
B _y W	Nom: Vi	a: AMail Ph	one Fee	In Person
Rega	rding:			
Cuen	Instructions:			
19, Additional	remarks:			
tem Information				
A STATE OF THE STA	Item# Temp °C			
Cooler 1	8.0			
Sample 1	8.1			

^{*} Note: DoD/ELAP and TNI require Items to be received at 4°C +/- 2°C

CHAIN of CUSTODY

LIENT: Spectra Labs					Ī					BON		T	UCALI	RG/	-	A 98	T	-	ETA	10	7		_	-	-	_	-	en.	CHA	ANGE
ROJECT: 2019120694			-	120	H	1	COPPE		- I	J	40	+	0	10/	75.41	U-O	+	m	EIA	-					1	-	1384	ER	1	TT
ONTACT: Marie H			-	APME		П						П	90				1-	3		3	1						- 1			П
HONE: 253-272-4850	FAX: 253	-572-9838 Profer FA	X	CONTAINERS						1			LVEN	8			20	Daug)	CR	PICE	1						-			
-MAIL: merich @spectra-la	b.com	or a MAIL		8	000		STEXMATTHE			SEEA BOT-ANDA (TPM)	MAN HEM (FOG)	8	RESIS CHLOR SOLVENTS	GETWARE SETA VOA	ž	8	TOTAL BETALS ROTA B	TOTAL METALS (SPECET)	TCLP WITTALS BORN B	TOLP METALS (SPECIFY)		8	8		4		SOUDS (SPECSTY)			П
URCHASE ORDER				BER	NWTPH-HCID	H	XVION	импри-0	MWTPH-DI	9QT	ğ.	EDDORGE VOA	CHLC	1028	ESTO PANUFINA	SCIENCE POR	13	AL Se	P LANET	D MET	Hg by 1051E	PH BOSONDAS	TXTCX 8976	Tuttatorn	RASH POHT		8			
SAMPLE ID	SAMPLED	SAMPLED	MATRIX	ž	ě	STEX	310	£	§.	260	1	ğ	620	84270	#B#	8	Įž	Ē		5	2	£	5	2	3	908	2	2		
	12/23/19	1100	Water	1			S		E								1				X				83	I	3			
20694-1	12/23/19	1020	Water	1					3			16					(3)		lie e		X				I		8	. 10	18	
120694-2 120694-3	12/23/19	1250	Water	1		-		-		-		100	-				-	H	日間	H	X	-		-	N N	-		- 60	12	H
												100				9		L				1				1				П
				+		H							-			-		H			10	+		+		1		129	18	H
			-	F		-	19	H	四	-			H	程值	-	8	H	F	100			-		-		-		100	No.	H
	+	-		+	H	H		Н			8	100	H			-	10	Н		Н	最	\exists	H	+	8	+	Ħ	- 13	- 13	H
SPECIAL INSTRUCTIONS/CO	DMENTS:		_	+	Jes		SIGN	MATU	RE	_		Lan	-	7	RIN	TED NA	ME.	-			C	OMP	ANY	_		-	DAT	E	T	ME
ASAP TAT PERMIT	12/30/19	RELINGUISH	ED 6Y	I	1	w	T	10	1/4	41		Je	n D	rav	en					Sp	ect	n				1	2/2	6/19	3:	00 PA
Cour Lan Lore at	my	RECEMED 8	W		M	de	1	-	-	-		m			-	. /		1	. 1	5	112	7			1	2	1	2/10	1.	-7
		WELWQUISH	ED BY	T																					1					
		RECEIVED B	ny .	T								1													1					
		Payment To	arms: Mail	30 6	lays.	Paul	due	8000	unts	due	fect to	11/2	% p	97 m	onth	Inform	e£ C	usto	THEFT	1070	ee 10	pey	añ c	coete	of c	nowar	dlon	Includie	o rese	onable

Marie Holt

From: Knickerbocker, Jessica < JKnicker@ci.tacoma.wa.us>

Sent: Tuesday, January 07, 2020 2:13 PM
To: Marie Holt; cser461@ecy.wa.gov

Cc: Ryan, Terry; Rhubright, Mike; Jeff Cooper; Kroll, Willy

Subject: RE: KOSMOS - BTEX Issue

Please run the samples that can still be run. And just provide a final report on the others

Jessica Knickerbocker, PE | Tacoma Power Engineering Manager Plant Engineering & Construction Services P: (253) 502-8250 | C: (253) 389-8044

From: Marie Holt <MarieH@spectra-lab.com> Sent: Monday, January 6, 2020 2:00 PM

To: Knickerbocker, Jessica < JKnicker@ci.tacoma.wa.us>; cser461@ecy.wa.gov

Cc: Ryan, Terry <TRYAN@ci.tacoma.wa.us>; Rhubright, Mike <MRhubrig@ci.tacoma.wa.us>; Jeff Cooper <jeffc@spectra-

lab.com>; Kroll, Willy <WKROLL@ci.tacoma.wa.us>

Subject: KOSMOS - BTEX Issue

Hi Jessica,

Spectra received a call from Carol with Ecology regarding the Kosmos project. She spoke with our Laboratory Manager Jeff on Friday while I was out. BTEX is a required parameter for this project. BTEX has a 14 day holding time, which means a few of the samples are beyond the hold time for analysis. I've attached a table showing which samples are still within hold time and which are beyond. Spectra will be running the BTEX at the low quantitation level required by your WQPP on the samples within hold time. We will need to know how you and Ecology want to handle the samples already beyond the 14 day holding time.

- We can analyze the three projects (seven samples) for BTEX beyond the hold time to achieve the 2.0 Quantitation Level.
- We can report the BTEX results from the original GCMS analysis (NWTPH-G), though the Quantitation Level will be 2.5 (0.5 above the level listed in the WQPP.

Please let us know by tomorrow, if possible, which of the above options you would like.

Thank you!

Marie Holt

Customer Support and Office Manager

SPECTRA Laboratories 2221 Ross Way

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E) Return Samples Y N Page 1 of 1 2019120104

CHAIN of CUSTODY

SPECTRA PROJECT #

TANDARD RUSH

CLIENT: Tacoma Pow	ver (TPU)		-		_		36	28	So	out	h 35	5th	Stre	eet	Ta	com	na,	W	A 984	109											CHANG	
PROJECT: Kosmos					L	HY	DR	oc	AR	ВО	NS	1	-	ORG	AN	ICS			MET	ALS						(отн	HER	2			
CONTACT:												П							П	Г												T
SAMPLED BY: Doug	Bue	Home	_	ERS			П				П	Ι,		BY 625 TTO			808											2	97		RACT	
PHONE: 253-244-05		STING		CONTAINERS	ı					_	П		5 8	BY 62		L	BY 608	9	ECIFY		(SPECIFY)						133	3; 4800	-10 St		CONT	
e-MAIL boother = ci.	tecome	Prefer FA	× DXI	OF CON	٥		94	,	,	(664 SQT-HEM (TPH)	68		SCOURCE VON BY BEAT	DATE SENI VOA			PeetPCB	METALS RCRAB	TOTAL METALS (SPECIFY)	TOLP METALS ROPA 8		,					(SPECIFY)	Total Cyanide by 4500B; 4500C	Cyanida by 07237-10 SUB	slent Chrombum	Mingen SUBCONTRACT	
PURCHASE ORDER #: 19	/23/12-	221		MBER	H-HCID		STEXMWTPH-G	WYTPH-G ~	#O#	0T-#	664 HEM (FOG)		2 2	38 85	2270 PANIPNA	606 PCB	chlor F		WETA	KETAL	KETAL	8000	9076	E	POW			anide	anida	20 20	in Niles	
SAMPLE ID	SAMPLED	TIME	MATRIX	NUM	NWTP	BTEX	втехи	NWTP	MWTPH-Dx	1664 8	1664		320000 4260 C	AUTOR	3270 P	906270	Organic	TOTAL	TOTAL	TOLP	TOLP METALS	PH 9040/9045	TAUTOX 9076	TURBIOTY	FLASH POINT	900	SOLIDS	Total C	Free Cy	texava	VMMON	1
DIB	19/24/2	11:00A					80	X	X				I	1	I	0			X	Ī		X	1	X	=			Ï		X		1
D 6- Oil curtain	19/23/12	10120 ad	Ma					X	×					Ü					X			×	23	×	-					×	81	1
Stock Pile # 1	19/25/12							×	Y			1		1	L				X			X		×						x		T
				Н		_				L	100	4	Į.	-1	L	8	Н		- 6	L			2									
	-			H		-		-		-	를	4	4	H	H		H		-	H		-	100	_		Н		Ц		_		1
				Н				-	2	H		+	H	÷	H	H	H		- 8	Н		H	2	_		H		Н		-	1	14
				Н					93	H		1	۰	Ħ	H	H			- 1	Н		H	10			Н		Н	200	+	-	-
										H		1	r	B	-				-					-		Н		Н		\dashv		-
			1	П							-		N.	8				a	-		7									+		-
							SIGN	ATU	RE						PRIN	TED	NAM	E			-	COM	PAN	,	in the second		DA	TE		_	TIME	100
Spectra Internal Instru	ctions	RELINQUIS	HED BY	I	June	5	B	Z	X	J	0			6	رم	T	20	et	the	-	1	PI	L			12	/23	/1	5	1	3:11	7
		RECEIVE	DBY		8	3	4	1					10	ri.	L	GA	ui)	14	n	5	01	1	ts	A				19			51-	
		RELINQUIS	HED BY		_							ľ			11	,,,	_	-		7	-							-		-		
		RECEIVE	D BY																										_			

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#: Auth #19-26-12-223 01/13/2020 Project: Kosmos Client ID: D₁B Sample Matrix: Water Tacoma Public Utilities Date Sampled: 12/26/2019 PO Box 11007 12/26/2019 Date Received: Tacoma, WA 98411 Spectra Project: 2019120761 Attn: Doug Boettner

Spectra Number: 1

Analyte	Result	Units	Method
Total Mercury	0.000770*	ug/L	EPA 1631E
Turbidity	4.3	NTU	EPA 180.1
Arsenic	0.5	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	0.7	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.23	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. * Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	78	NWTPH-D
Toluene-d8	94	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Cooper, Laboratory Manager

Page 1 of 2

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

01/13/2020 P.O.#: Auth #19-26-12-223 Project: Kosmos

Tacoma Public Utilities Client ID: D6
Sample Matrix: Water

PO Box 11007 Date Sampled: 12/26/2019

Tacoma, WA 98411 Date Received: 12/26/2019
Attn: Doug Boettner Spectra Project: 2019120761

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	0.000788*		EPA 1631E
Turbidity	1.2	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	59.0	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.12	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	µg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. * Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	79	NWTPH-D
Toluene-d8	94	NWTPH-G
4-Bromofluorobenzene	96	NWTPH-G

SPECTRA LABORATORIES

opper, Laboratory Manager

Page 2 of 2

...Where experience matters

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120761

Applies to Spectra #: 1-2

HYDROCARBON ANALYSIS **QUALITY CONTROL RESULTS**

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/03/20

Units:

ug/L

Date Analyzed:

01/06/20

Spike Spike

Sample Amount Amount

1750

Percent

Compound

Result

Added

Found

Recovery

Diesel

<100

2500

70

METHOD BLANK

Date Extracted:

01/03/20

Date Analyzed:

01/06/20

Units:

ug/L

Diesel

<100

Heavy Oil

< 500

Surrogate Recoveries:

p-terphenyl

94%

SPECTRA LABORATORIES

oper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 27, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2019120761 1-2

Analyst:

SCJ

QUALITY CONTROL RESULTS

		Labo	ratory Rea	gent Blank (I	RB)			
Date Digested:	12/27/2019	2000			Date Analy	zed:	12/27/2019	
		Element		CAS#		Result		
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	ratory Fort	tified Blank (I	LFB)		170 4. 4000	
Date Digested:	12/27/2019				Date Analy	zed:	12/27/2019	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	104.84	104.8		
		Cadmium		100.0	91.38	91.4		
		Chromium		100.0	92.98	93.0		
		Copper		100.0	97.36	97.4		
		Lead		100.0	95.87	95.9		
		Nickel		100.0	93.18	93.2		
		Zinc		100.0	94.79	94.8		
LCS Recovery limit	ts 85-115%		A 200 CO Sec	25 27 12V V				
22		Matrix Spike	Matrix Sp	ike Duplicate	Acres and the second se		tomentou	
Date Digested: Sample Spiked:	12/27/2019 2019120635-1				Date Analy	zed:	12/27/2019	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenie		0.00	100.0	101.29	101.3	98.62	98.6	2.7
Cadmium		0.00	100.0	93.38	93.4	92.44	92.4	1.0
Chromium		2.96	100.0	95.22	92.3	92.44	89.5	3.1
Copper		4.70	100.0	100.37	95.7	96.82	92.1	3.8
Lead		0.58	100.0	99.91	99.3	97.07	96.5	2.9
Nickel		0.00	100.0	94.27	94.3	91.18	91.2	3.3
Zinc		14.52	100.0	107.84	93.3	103.97	89.5	4.2
Comment:								
Recovery Limits 70-	-130%							
RPD Limit 20								

SPECTRA LABORATORIES

Cooper Cooper

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 30, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120761 Date Analyzed: 12/27/2019

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

BLANK	SPIKE	SPIKE	LCS	
RESULT	AMOUNT	RESULT	%REC	
<1	10.0	9.93	99.3	
<1	10.0	10.1	101	
<1	10.0	10.1	101	
<1	10.0	9.86	98.6	
<2	30.0	30.0	100	
<50	250	248	99.2	
	<pre></pre>	RESULT AMOUNT <1	RESULT AMOUNT RESULT <1	RESULT AMOUNT RESULT %REC <1

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	102	102	Benzene	<1
1,2-Dichloroethane-d4	104	107	Toluene	<1
Toluene-d8	98	99	Ethylbenzene	<1
4-Bromofluorobenzene	96	97	Total Xylenes	<2
			MTBE	<1

Jeffey Cooper Laboratory Manager

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120761 Date Analyzed: 1/8/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
<1	10.0	10.3	103
<1	10.0	10.1	101
<1	10.0	9.80	98.0
<1	10.0	9.45	94.5
<2	30.0	28.2	94.0
	<1 <1 <1 <1 <1	RESULT AMOUNT <1 10.0 <1 10.0 <1 10.0 <1 10.0 <1 10.0	RESULT AMOUNT RESULT <1

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

definey cooper Laboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 SPECIAL INSTRUCTIONS/COMMENTS:

2019120761 CHAIN OF CUSTODY

See # 201912 OF 97

www.spectra-lab.com info@spectra-lab.com STANDARD X RUSH Return Samples: Y N **ADDRESS** ADDRESS: 3628 South 35th Street, Tacoma, WA 98409 CLIENT: Tacoma Power (TPU) CHANGE PROJECT: Thosmas **HYDROCARBONS ORGANICS** METALS OTHER CONTACT: Chromius SAMPLED BY: Thewin Smith TOTAL METALS (SPECIFY) TOLP METALS (SPECIFY) 8260 CHLOR SOLVENTS PHONE: 253-502 - 8686 FAX: TOTAL METALS RCRA (664 SGT-HEM (TPH) ICLP METALS RCRA 8270-625 SEMI VOA SOLIDS (SPECIFY) Prefer FAX Hexavalor e-MAIL: Kesmith @ City of towns . Dry or e-MAIL 8270 PAH/PNA 9 8082/608 PCB NWTPH-HCID FLASH POINT TX/TOX/EOX TURBIDITY NWTPH-Dx NUMBER PURCHASE ORDER # DATE TIME SAMPLE ID MATRIX SAMPLED SAMPLED X 010 X 12/26/19 1:00 PM 12/26/19 2: 00 PM 06 XX 10 SIGNATURE PRINTED NAME COMPANY LAB USE ONLY TPU Thewin Smith RELINQUISHED BY MARIE HOLT Spectra 12-26-195:00pm RECEIVED BY RELINQUISHED BY RECEIVED BY Payment Terms: Net 30 days. Past due accounts subject to 1 1/2% per month interest. Customer agrees to pay all costs of collection including reasonable attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Laboratories, LLC

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120761

Work Order Number: 2001006

January 07, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/2/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 01/07/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2019120761 Work Order: 2001006

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001006-001
 120761-1
 12/26/2019 1:00 PM
 01/02/2020 1:00 PM

 2001006-002
 120761-2
 12/26/2019 2:00 PM
 01/02/2020 1:00 PM

Case Narrative

WO#: 2001006 Date: 1/7/2020

CLIENT: Spectra Laboratories

Project: 2019120761

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2001006

Date Reported:

1/7/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001006

Date Reported:

1/7/2020

CLIENT:

Spectra Laboratories

Project:

2019120761

Lab ID: 2001006-001

Collection Date: 12/26/2019 1:00:00 PM

Client Sample ID: 120761-1

Matrix: Water

Analyses

Result

RL Qual

Units

DF **Date Analyzed**

Mercury by Method 1631E

Batch ID: 27010

Analyst: WF

Mercury

0.770

0.500

ng/L

1/6/2020 4:55:00 PM

Lab ID: 2001006-002

Client Sample ID: 120761-2

Collection Date: 12/26/2019 2:00:00 PM

Matrix: Water

DF

Batch ID: 27010

Analyses

Mercury

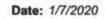
Result

RL Qual

Units

Date Analyzed

Analyst: WF


Mercury by Method 1631E

0.788

0.500

ng/L

1/6/2020 5:06:00 PM

Work Order: 2001006

CLIENT: Spectra Laboratories **QC SUMMARY REPORT**

Project: 201912076	1				M	lercury by Method 1631
Sample ID: MB-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124084
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124085
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124086
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27010	SampType: LCS			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: LCSW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124087
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	25.2	0.500	25.00	0	101 80 120	
Sample ID: 2001011-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: BATCH	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124089
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500			0	24

Date: 1/7/2020

Work Order:

2001006

CLIENT:

Spectra Laboratories

Project:

2019120761

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001011-001EMS

SampType: MS

Units: ng/L

Prep Date: 1/3/2020

RunNo: 56431

Client ID: BATCH

Batch ID: 27010

Analysis Date: 1/6/2020

SeqNo: 1124090

Analyte

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLImit Qual

Mercury

Result 23.3

0.500

25.00

0.4250

91.5

71

Sample ID: 2001011-001EMSD

SampType: MSD

Units: ng/L

Prep Date: 1/3/2020

125

RunNo: 56431

Analysis Date: 1/6/2020

SeqNo: 1124091

Client ID: BATCH Batch ID: 27010

%REC LowLimit HighLimit RPD Ref Val

Analyte

Result

SPK value SPK Ref Val

125 23.30 %RPD RPDLimit Qual

Mercury

23.6 0.500

25.00 0.4250 92.7

71

1.28

24

Sample Log-In Check List

Client Name:	SPECTRA	Work O	rder Num	ber: 2001006	
Logged by:	Clare Griggs	Date Re	eceived:	1/2/2020	1:00:00 PM
Chain of Cus	tody				
1. Is Chain of	Custody complete?	Yes	V	No 🗆	Not Present
2. How was the	e sample delivered?	UPS			
Log In					
3. Coolers are	present?	Yes		No 🗆	NA 🗆
J. Cooleis ale	prosent:	165	(2)	NO L	MA L
4. Shipping co	ntainer/cooler in good condition?	Yes	~	No 🗆	
	als present on shipping container/co mments for Custody Seals not intac			No 🗹	Not Required
6. Was an atte	empt made to cool the samples?	Yes	V	No 🗆	NA 🗆
7. Were all iter	ms received at a temperature of >0°	°C to 10.0°C* Yes		No 🗹	NA 🗆
		Refer to ite	m inform	ation.	
8. Sample(s) in	n proper container(s)?	Yes	~	N _B	
9. Sufficient sa	ample volume for indicated test(s)?	Yes	~	No D	
10. Are samples	s properly preserved?	Yes	~	No 🗆	
11. Was presen	vative added to bottles?	Yes		No 🗹	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes		No 🗆	NA 💌
13. Did all samp	oles containers arrive in good conditi	on(unbroken)? Yes	•	No 🗆	
14, Does paper	work match bottle labels?	Yes	•	No 🗆	
15. Are matrices	s correctly identified on Chain of Cus	stody? Yes	•	No 🗆	
16. Is it clear wh	nat analyses were requested?	Yes	~	No 🗆	
17. Were all hole	ding times able to be met?	Yes	V	No 🗆	
Special Hand	ling (if applicable)				
18. Was client n	notified of all discrepancies with this	order? Yes		No 🗌	NA 🗷
Person	Notified:	Date		_	
By Wn	om!		(□Рь	one Fax	In Person
Regard					
Cuent	nstructions.				
19. Additional re	emarks:				
tem Information					
will iniviniation	Item# Ten	np °C			
Cooler		1.0			
Sample		1.9			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fremont

SPECTRA Laboratories

CHAIN of CUSTODY

PAGE	1	of _	1 %
STANDARD		RUS	зн 🌋

CLIENT: Spectra La	bs			ADE	RE	SS:	22	21	Ro	SS	Way	y Ta	COI	ma	W	A 98	3445	5												CHAN	
PROJECT: 201912076	019120761					HY	DR	OC	ARE	30	NS		OF	RGA	ANIC	cs		ME	ETA	LS						(ОТІ	HER			
CONTACT: Marie H				VERS													Т	-			П							П			
PHONE: 253-272-4850	FAX: 25	3-572-9838	3	CONTAINERS						£		1	STA				₹ 8	ECIFY	A 8	CIFY)	П									11	
e-MAIL: marieh@spectra-	-lab.com	Prefer FAX Or e-MAIL		OF CO			9			M (TP	6	L	SOLVE	MI VOA	×	_	LS RC	LS (SP	SRCR	S (SPE	П						CIFY)			П	
PURCHASE ORDER #					+HCIL		WITP	9	ğ	GT-HE	EM (FC	24 VO	HLOR	25 SEA	AHIPN	8 PCE	META	META	ETAL	ETAL	631E	0/9045	9076	F	POINT		S (SPE			П	
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER	NWTPH-HCID	BTEX	BTEX/WWTPH-G	NWTPH-G	NWTPH-Dx	1684 SGT-HEM (TPH)	1864 HEM (FOG)	8280/624 VOA	8260 CHLOR SOLVENTS	8270/825 SEMI VOA	8270 PAHIPNA	8082/608 PCB	TOTAL METALS RCRA	TOTAL METALS (SPECIFY)	TCLP METALS RCRA 8	TCLP METALS (SPECIFY)	Hg by 1631E	PH 9040/9045	370X 907XT	TURBIDITY	FLASH POINT	BOD	SOLIDS (SPECIFY)	HOCs			
120761-1	12/26/19	1300	Water	1				T		Ī				G			9				X		13						7.		0
120761-2	12/26/19	1400	Water	1						Ī	8		П					П			x										0
							I												H										1	100	13
		1																										1			10
																							10							R	
										\Box							18		III.				-								10
				Ш						╝				6														- 3			
				Ш				\perp		╝			Ц										10							8	
													Ш																0		
SPECIAL INSTRUCTIONS/CO	OMMENTS:				1	-	SIGN				_	Т				ED NA	ME				C	OME	PANY	1	\neg		DA	TE		TIM	E
		RELINQUISHE		-	N	n	_		ver	_	_	_	n D	_			^	_	\rightarrow	_	ecti	ra	_	_	-	-	12/3	30/1	9		0 PM
		RECEIVED BY			Mo	11		1	1	-3		11	10	re	n	174	M	14	M		Ę.	A	-			1	17	111	9	133	00
		RELINQUISHE	D BY	-			_					+							4										\perp		
		RECEIVED BY	1	-																											

French	
SPECTRA Laboratories	
21. To A Was . The Cold WAY 98(2) . 9. 1(259) 274 (98(2) . 9. 748)	Ministra

CHAIN of CUSTODY

PAGE 1 STANDARD ADDRESS: 2221 Ross Way Tacoma WA 98445 Spectra Labs CLIENT: CHANGE **HYDROCARBONS** PROJECT: 2019120761 **ORGANICS METALS** OTHER CONTACT: Marie H PHONE: 253-272-4850 FAX: 253-572-9838 e-MAIL: marieh@spectra-lab.com PURCHASE ORDER # SAMPLE ID SAMPLED SAMPLED 12/26/19 1300 Water 120761-1 12/26/19 1400 Water 120761-2 SPECIAL INSTRUCTIONS/COMMENTS: SIGNATURE PRINTED NAME COMPANY DATE TIME RELINQUISHED BY Jen Draven Spectra 12/30/19 3:00 PM RECEIVED BY RELINQUISHED BY RECEIVED BY Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable DISPOSE SAMPLES Attorney's fees and all other costs of collection regardless of whether sult is filed in Pierce Co., WA venue. Spectra Analytical, Inc. RETURN SAMPLES /Shinning Fee Apples

Communications Record

Internal Document

Client: Tacoma Public Utilities

Client Contact: Mike Rhubright

Date: 12-30-19

Time: 9:57

Spectra Contact: Marie Holt

Project: Kosmos

Spectra Project: 2019120761

I called Mike and explained that two samples were delivered on Thursday after UPS pickup, and they couldn't be shipped Friday because they would sit in the UPS warehouse over the weekend and would not stay at temperature. Therefore, we are shipping on Monday and need to know what turnaround time to select. The COC reads standard, though if we request standard turnaround it will be 10 business days before the low-level mercury results are received.

Mike approved rush mercury analysis for these two samples.

He then emailed after looking at the email from Kevin and said standard turnaround will be fine. Though at this point we are already on the second-third day due to the delivery time and weekend. I will put it though on a 3-day turnaround with Fremont in order to get results within the 10-day turnaround time. We should then have results on Monday Jan. 6th.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#: Auth #19/27/12-225 01/13/2020 Project: Kosmos Client ID: D₁B Sample Matrix: Water Tacoma Public Utilities Date Sampled: 12/27/2019 PO Box 11007 Date Received: 12/30/2019 Tacoma, WA 98411 Spectra Project: 2019120809

Spectra Number: 1

Analyte	Result	Units	Method
Total Mercury	0.000618 *	ug/L	EPA 1631E
Turbidity	2.5	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	69.8	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	5.44	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	<0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	77	NWTPH-D	
Toluene-d8	94	NWTPH-G	
4-Bromofluorobenzene	98	NWTPH-G	

SPECTRA LABORATORIES

Attn: Doug Boettner

ooper, Laboratory Manager

Kosmos

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

Project:

P.O.#: Auth #19/27/12-225 01/13/2020

Client ID: D6

Sample Matrix: Water **Tacoma Public Utilities**

Date Sampled: 12/27/2019 PO Box 11007 Date Received: 12/30/2019 Tacoma, WA 98411 Spectra Project: 2019120809 Attn: Doug Boettner

Spectra Number: 2

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.000599 *	ug/L	EPA 1631E
Turbidity	1.3	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	75.7	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	5.92	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	73	NWTPH-D
Toluene-d8	93	NWTPH-G
4-Bromofluorobenzene	93	NWTPH-G

ooper, Laboratory Manager

SPECTRA LABORATORIES

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120809

Applies to Spectra #: 1

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/03/20

Units:

ug/L

Date Analyzed:

01/06/20

Spike Spike

Sample Amount Amount

Percent

Compound

Result

Added

Found

1750

Recovery

Diesel

<100

2500

70

METHOD BLANK

Date Extracted:

01/03/20

Date Analyzed:

01/06/20

Units:

ug/L

Diesel

<100

Heavy Oil

<500

Surrogate Recoveries:

p-terphenyl

94%

SPECTRA LABORATORIES

oper, Laboratory Manager

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 3, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2019120809

Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS

		Labo	ratory Rea	gent Blank (L				
Date Digested:	1/3/2020				Date Analy		1/3/2020	
		Element		CAS#		Result		
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	atory Fort	ified Blank (I	FB)			
Date Digested:	1/3/2020		2111-41-211		Date Analy:	zed:	1/3/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	92.38	92.4		
		Cadmium		100.0	96.33	96.3		
		Chromium		100.0	95.27	95.3		
		Copper		100.0	99.25	99.2		
		Lead		100.0	93.94	93.9		
		Nickel		100.0	94.91	94.9		
		Zinc		100.0	110.98	111.0		
LCS Recovery limit	ts 85-115%			10.10		100		
		Matrix Spike	/Matrix Sp	ike Duplicate				
Date Digested: Sample Spiked:	1/3/2020 2020010022-1				Date Analyz	zed:	1/3/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPL
Arsenic		0.53	100.0	87.81	87.3	87.57	87.0	0.3
Cadmium		0.00	100.0	90.77	90.8	90.28	90.3	0.6
		0.65	100.0	91.53	90.9	88.50	87.9	3.4
Chromium		0.00	100.0	92.58	92.6	91.30	91.3	1.4
		0.00	100.0	88.87	88.9	88.09	88.1	0.9
Chromium Copper Lead		0.00		91.99	92.0	87.66	87.7	4.8
Chromium Copper		0.00	100.0					
Chromium Copper Lead			100.0 100.0	92.80	91.2	91.44	89.9	1.5
Chromium Copper Lead Nickel Zinc Comment;		0.00				91.44	89.9	1.5
Chromium Copper Lead Nickel Zinc	-130%	0.00				91.44	89.9	1.5

SPECTRA LABORATORIES

Telland Comper

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

December 31, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120809 Date Analyzed: 12/31/2019

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

	SPIKE	SPIKE	LCS	
RESULT	AMOUNT	RESULT	%REC	_
<1	10.0	9.52	95.2	
<1	10.0	9.5	95.2	
<1	10.0	9.2	91.8	
<1	10.0	9.33	93.3	
<2	30.0	28.2	94.0	
<50	250	256	102	
	<1 <1 <1 <2	RESULT AMOUNT <1	RESULT AMOUNT RESULT <1	RESULT AMOUNT RESULT %REC <1

Su	rrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
	Dibromofluoromethane	102	101	Benzene	<1
	1,2-Dichloroethane-d4	114	116	Toluene	<1
	Toluene-d8	97	94	Ethylbenzene	<1
	4-Bromofluorobenzene	95	97	Total Xylenes	<2
				MTBE	<1

Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120809 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

RE		AMOUNT	RESULT	%REC
MIDE	- 4	40.0	0.50	OF
MTBE	<1	10.0	9.50	95
Benzene	<1	10.0	10.6	106
Toluene	<1	10.0	10.7	107
Ethylbenzene	<1	10.0	11.4	114
Total Xylenes	<2	30.0	34.4	115
Gasoline	<50	250	286	114

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

Jamey Cooper Laboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, NI, Zn (EPA Method 200.8), Hg (EPA

CHAIN of CUSTODY

SPECTRA PROJECT #

Wanno	809		
STANDARD	V	DITEL	Г

www,spectra-lab.com	info@s	pectra-lab	.com	Re	turr	Sa	mpl	es	Y	_	N	_	Pag	ge	1	_	of		1		S	1/	AN	ID	Α	RL	וכ	\geq		R	ίU	Sh	1	
CLIENT: Tacoma Pow	er (TPU)						36	28	So	uth	35	5th	Sti	ree	t T	acc	oma	a, \	NA	98	340	9											DDRE	
PROJECT: Kosmos					L	Н	DR	oc.	ARI	ВО	NS			OR	GA	NIC	s			ME	TAL	s						(отн	1EF	2			
CONTACT:					ı										0			1			Т	T	Т				П							
SAMPLED BY: RICK	Wit			ERS	ı							-			625 TTO			808		اہ			1							8	UB :		TRACT	
PHONE: 253-502	FAX: TE	STING		ONTAINERS	ı							١	24 TTO	STS	BY 62			BY 608	AB	ECIFY			(SPECIFY)						TSS	B; 4500C	7-10 S		SCON	
e-MAIL: Kesmin @con of	Tacona	Dig or e-MAIL		OFC	HCID		ITEX/NWTPH-G	9	УД	664 SGT-HEM (TPH)	1664 HEM (FOG)		VOA BY 624		VOA	VPNA	PCB	vior Pest/PCB	METALS RCRA B	TOTAL METALS (SPECIFY)	TAI O DOOR	-		9045	9076	7	DINT		(SPECIFY)	nide by 4500B;	ide by D7237-10 SUB	cavalent Chromium	Nitrogen SUBCONTRACT	
SAMPLE ID	DATE SAMPLED	TIME	MATRIX	NUMBER	H-H-H-H	втех	BTEX/NV	NWTPH-G	NWTPH-Dx	1664 SG	1664 HE		8250/624 VOA	8260 CH	8270/825	\$270 PAH/PNA	8082/608 PCB	Organoct	TOTAL M	TOTAL N	0.00	ICLP ME	TCLP METALS	PH 9040/9045	вис воли	TURBIDITY	FLASH POINT	800	SOLIDS	Total Cyanide by	Free Cyanide	Hexavale	Ammonia	
D1B	12-27-19	2:00						Х	X					П		T		T		x		T	T	х		Χ						Х		
D4		2:20						X	X											X				X		X						X		
				L															1															
200				L		-		×	18									-		4			7	X.		X								
						Ш		X	X											4				X		X						X.		
				L		Ц		_	_	\perp	4	4		4		4	1	4	4	4		1	4	_										
				L	_	-		4		4		4	4	4	4	4	4	4	4	4	1	4	4	4						Ц				
				H		Ц	-	4	-	4	-	4	4	4	4	4	-	4	1	4		4	1	4		_		Ц		\Box				
				H		Н	-	4	-	\dashv		4	4	4	-	4	1	4	4	4	+	4	1	4				Ц				Ц		
						Ш	21011		-					_				_				_		_										20
Spectra Internal Instruc	ctions	RELINQUISI	HED BY	-	1		SIGN	NIU	ME			Т	T	bu			SOE			-	Т		C	- 0	ANY	_		17	DAT			4.	AN	120
Open to sur	2	RECEIVE	DBY	1	00	3	1		_		-	1	,	or	_	-	an				+	(C		de		+	12:	30			-	/ 4	25
analysis ou	et	RELINQUISI	HED BY									7			-			-	16	-	1		1	-	42		7		4	7	7	-	4	25
analysis on	2	RECEIVE	DBY									7									\dagger						7				+			
The state of	4	Payment Ten attorney's fee	ms: Net :	30 da othe	ys. P	ast d	ue a	ction	unts n reg	subj jardi	ect t	of w	1/2 9 heth	% pe er su	r mo	nth i	intere	est.	Cus e Co	tom	er ag	nue	s to	pay	all o	costs	s of (colle	ction	incl	ludin	ng re	asor	nable

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120809

Work Order Number: 2001024

January 07, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/3/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 01/07/2020

CLIENT: Project: Spectra Laboratories

2019120809

Work Order:

2001024

Work Order Sample Summary

Lab Sample ID

Client Sample ID

120809-1

2001024-001 2001024-002

120809-2

Date/Time Collected

12/27/2019 2:00 PM

12/27/2019 2:20 PM

Date/Time Received

01/03/2020 2:04 PM

01/03/2020 2:04 PM

Case Narrative

WO#: 2001024 Date: 1/7/2020

CLIENT: Spectra Laboratories

Project: 2019120809

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2001024

Date Reported: 1/7/2020

Qualifiers:

* - Flagged value is not within established control limits

B - Analyte detected in the associated Method Blank

D - Dilution was required

E - Value above quantitation range

H - Holding times for preparation or analysis exceeded

I - Analyte with an internal standard that does not meet established acceptance criteria

J - Analyte detected below Reporting Limit

N - Tentatively Identified Compound (TIC)

Q - Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)

S - Spike recovery outside accepted recovery limits

ND - Not detected at the Reporting Limit

R - High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001024

Date Reported:

1/7/2020

CLIENT:

Spectra Laboratories

Project:

2019120809

Lab ID:

2001024-001

Client Sample ID:

Collection Date: 12/27/2019 2:00:00 PM

Analyst: WF

Matrix: Water

Batch ID: 27010

Analyses

Mercury

Result

RL Qual

Units

DF **Date Analyzed**

Mercury by Method 1631E

0.618

0.500

ng/L

1/6/2020 5:17:00 PM

Lab ID:

2001024-002

Client Sample ID: 120809-2

Collection Date: 12/27/2019 2:20:00 PM

Matrix: Water

Analyses

Result

RL Qual

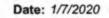
Units

DF **Date Analyzed**

Mercury by Method 1631E

Mercury

0.599


0.500

ng/L

Batch ID: 27010

1/6/2020 5:27:00 PM

Analyst: WF

Work Order: 2001024

CLIENT: Spectra Laboratories **QC SUMMARY REPORT**

Mercury by Method 1631F

Project: 201912080	9				, M	lercury by Method 1631
Sample ID: MB-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124084
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124085
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124086
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27010	SampType: LCS			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: LCSW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124087
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	25.2	0.500	25.00	0	101 80 120	
Sample ID: 2001011-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: BATCH	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124089
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500			0	24

Date: 1/7/2020

Work Order:

2001024

CLIENT:

Spectra Laboratories

Project:

2019120809

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001011-001EMS

SampType: MS

Units: ng/L

Prep Date: 1/3/2020

RunNo: 56431

Client ID: BATCH

Batch ID: 27010

Analysis Date: 1/6/2020

SeqNo: 1124090

Analyte

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Qual

Mercury

23.3

Result

0.500 25.00

RL

0.4250

SPK value SPK Ref Val

91.5

71 125

Sample ID: 2001011-001EMSD

SampType: MSD

Units: ng/L

Prep Date: 1/3/2020

RunNo: 56431

Analysis Date: 1/6/2020

SeqNo: 1124091

Client ID: BATCH

Batch ID: 27010

Analyte

Result

SPK value SPK Ref Val

%REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit

Mercury

23.6

0.500 25.00 0.4250

92.7

71

125

1.28

23.30

24

Sample Log-In Check List

Client Name:	SPECTRA	Work Order Numb	er: 2001024	
Logged by:	Clare Griggs	Date Received:	1/3/2020	2:04:00 PM
Chain of Cus	tody			
	Custody complete?	Yes 🗹	No 🗆	Not Present
2. How was the	e sample delivered?	<u>UPS</u>		
Log In				
3. Coolers are	present?	Yes 🗸	No 🗆	NA 🗆
4 Shinning co	ntainer/cooler in good condition?	Yes 🗸	No 🗆	
5. Custody Sea	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes 🗌	No 🗷	Not Required
	empt made to cool the samples?	Yes 🗌	No 🗸	NA 🗆
		nknown prior to re		A. C.
7. Were all iter	ms received at a temperature of >0°C to 10.0°C *	Yus 🗌	No 🔽	NA 🗆
		efer to item informa	ation.	
8. Sample(s) in	n proper container(s)?	Yes 🐼	No.	
g. Sufficient sa	ample volume for indicated test(s)?	Yes V	No 🗆	
10. Are samples	s properly preserved?	Yes 🔽	No 🗌	
11. Was presen	vative added to bottles?	Yes	No 🗹	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹
13. Did all samp	oles containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
14. Does paper	work match bottle labels?	Yes 🗹	No 🗆	
15, Are matrices	s correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
	nat analyses were requested?	Yes 🗹	No 🗆	
17. Were all hol	ding times able to be met?	Yes 🗹	No 🗌	
Special Hand	lling (if applicable)			
18. Was client r	notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person	Notified: Date	1		
B _x W _n	om: Via:	☐ aMaii ☐ Ph	one Fex	In Parson
Regard	aing:			-
Chent	natructions;			
19, Additional re	emarks:			
Item Information				
	Item# Temp °C			
Cooler	13.1			
Sample	13.5			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

(Shipping Fee Applies)

CHAIN of CUSTODY

PAGE 1 of 15

SPEC	IKA	Labor	ator	rie	S	*							99	ii.			21	DI	07						1	_	7			нζ	2/0
2221 Ross Way *	Tacoma, WA	98421 •	(253) 2	72-48	50	•	Pax	(253	57	2-98	38	. 4	ww.	spect	ra-b	b.com	1			ST	ΓΑΙ	ND	\$F	SD	la	M	-	AF	RUS	HE	15
CLIENT: Spectra Labs	S			ADD	RE	SS:	22	21	Ro	ss	Wa	у Та	co	ma	W	A 98	445	5								J				DORESS	- 1
PROJECT: 2019120809	1				L	Н	DR	ОС	AR	во	NS	L	OI	RG/	ANIC	cs	L	M	ETA	LS		L			_	-	TH	ER			_
CONTACT: Marie H				NERS								П					L	3													
PHONE: 253-272-4850	FAX: 25	3-572-9838		CONTAINERS		П		П		NWTPH-DX 1864 SGT-HEM (TPH) 1864 HEM (FOG)	П	ENTS	ENTS	88 WA	CRA 8	TOTAL METALS RCRA 8 TOTAL METALS (SPECIFY)		TCLP METALS RCRA 6 TCLP METALS (SPECIFY)													
e-MAIL: marieh@spectra-la	ab.com	Prefer FA or e-MAIL	_	OF CO	۵		9H-G				FOG)	l _s	8260 CHLOR SOLVENTS 8260 CHLOR SOLVENTS 8270/825 SEMI VOA 8270 PAH/PNA		ALS R					45	10	g . ½	F	BOD SOLIDS (SPECIFY) HOCs							
PURCHASE ORDER #					NWTPH-HCID		BTEX/NWTPH-G	9Hg	NWTPH-Dx	SGT-H	1664 HEM (FOG)	8260/624 VOA	CHLO	8270/625 SEMI	8270 PAH/PNA	8082/608 PCB	L MET	L MET	META	META	Hg by 1631E	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT		S (SP				
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER	Š	BTEX	BTEX	NWTPH-G	NWT	1664	1664	82604	8280	8270/	8270	8082/	TOTA	TOTA	TCLP	TCLP	Hg by	PH 90	DT/XT	TURB	FLAS	800	SOLIC	E SCS			
120809-1	12/27/19	1400	Water	1			15				-										X		10					- 8			1
120809-2	12/27/19	1420	Water	1				Ц			ä		L		Ц		13	L			x					Ц	3	9			
				L				Ц		Ц		100			Ц		N	L	1	Ш	Ties		3			Ц		-			
				\vdash		L		Н		Н		15	-		Н			H	10			L				Н	23	-			
	-		-	\vdash		Н		Н		Н	10	-	H		H		8	H	150	Н		H		_		Н		-	-		89
	-		-	+		H		Н		Н		-	Н		H		100	\vdash		Н	155	H		H	27 P	Н		- 9	-	S0 1	100
	+		-	+		Н		Н		Н		- 10	Н				-	Н	200	Н	100	\vdash	100	-		Н		+		200	
	+		-	+		Н	15	Н		Н		-	Н		Н		0	Н	90	Н		H		H	対	Н	D)	1		80	H
	+			+		Н	100	Н		Н		-			\vdash		ii.		100	Н	100					Н		1			8
SPECIAL INSTRUCTIONS/COM	MMENTS:		_	_			SIG	NATU	IRE				_	-	PRIN	ED N	ME	_				COM	PAN	Y			DA	TE		TIME	Iss
		RELINQUISH	ED BY	_	fu	n	1	rai	re	n		Je	n D)rav	/en					Sp	ect	ra					01/	02/2	0	3:00	PN
		RECEIVED B	Y	i	M	S	,	V	W	10	_	V	No	N	er	740	5 0	10.h	h		É	EA				0	11	031	20	143	24
		RELINQUISH	ED BY	L																											
		RECEIVED B	Y																												
RETURN SAMPLES DISPOSE	SAMPLES	Payment Te attorney's fe	rms: Net	30 da	ays.	Past sts of	due f col	acco	ounts on re	s sub	ject t	o 1 1/2 of whe	2 % p	per m suit i	nonti	inten	est. C	Co.,	mer WA	agre	ies t	o pa	y all tra A	cos	ts of	colle , Inc	ection	inclu	iding n	easonal	ble

CHAIN of CUSTODY

PAGE	1	of	1
11100		٠.	

SPECTRA Laboratories

STANDARD 2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com ADDRESS: 2221 Ross Way Tacoma WA 98445 Spectra Labs CLIENT: CHANGE PROJECT: 2019120809 **ORGANICS** HYDROCARBONS METALS OTHER CONTAINERS CONTACT: Marie H TOTAL METALS (SPECIFY) TCLP METALS (SPECIFY) 3260 CHLOR SOLVENTS TOTAL METALS RCRA 8 ICLP METALS RCRA 8 PHONE: 253-272-4850 FAX: 253-572-9838 664 SGT-HEM (TPH) 3270/625 SEMI VOA SOLIDS (SPECIFY) 664 HEM (FOG) e-MAIL: marieh@spectra-lab.com BTEX/NWTPH-G or e-MAIL 6 8270 PAH/PNA 082/608 PCB FLASH POINT PH 9040/9045 BYTOX 9078 Hg by 1831E TURBIDITY NUMBER WYPH-DX NWTPH-G PURCHASE ORDER # DATE TIME 800 MATRIX SAMPLE ID SAMPLED SAMPLED 12/27/19 1400 Water 1 120809-1 12/27/19 1420 Water 120809-2 SIGNATURE PRINTED NAME COMPANY SPECIAL INSTRUCTIONS/COMMENTS: DATE TIME RELINQUISHED BY 3:00 PM Jen Draven Spectra 01/02/20 RECEIVED BY RELINQUISHED BY

RETURN SAMPLES DISPOSE SAMPLES (Shipping Fee Applies)

RECEIVED BY

Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable pispose samples attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Analytical, Inc.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

01/13/2020 P.O.#: Auth #19/30/12-226

Tacoma Public Utilities Client ID: D1B
Sample Matrix: Water

PO Box 11007 Date Sampled: 12/30/2019
Tacoma, WA 98411 Date Received: 12/30/2019

Attn: Doug Boettner Spectra Project: 2019120810

Spectra Number: 1

Kosmos

Project:

Analyte	Result	_Units	Method
Total Mercury	0.000806 *	ug/L	EPA 1631E
Turbidity	2.3	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	107	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5.95	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	0.72	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	77	NWTPH-D
Toluene-d8	91	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

coper, Laboratory Manager

a5/jiic

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

01/13/2020 P.O.#: Auth #19/30/12-226

Tacoma Public Utilities Client ID: D6
Sample Matrix: Water

PO Box 11007 Date Sampled: 12/30/2019
Tacoma, WA 98411 Date Received: 12/30/2019

Attn: Doug Boettner Spectra Project: 2019120810

Spectra Number: 2

Kosmos

Project:

Analyte	Result	Units	Method
Total Mercury	ND **	ug/L	EPA 1631E
Turbidity	1.5	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	117*	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5.86	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

*Sample contains heavy oil range organics. ** Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	70	NWTPH-D
Toluene-d8	91	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120810

Applies to Spectra #: 1

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/06/20

Units:

ug/L

Date Analyzed:

01/07/20

Spike Spike

Sample Amount Amount

Percent

Compound

Result

Added

Found Recovery

Diesel

<100

5000

4190

84

METHOD BLANK

Date Extracted:

01/06/20

Date Analyzed:

01/07/20

Units:

ug/L

Diesel

<100

Heavy Oil

< 500

Surrogate Recoveries:

p-terphenyl

77%

SPECTRA LABORATORIES

ooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120810

Applies to Spectra #: 2

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/07/20

Units:

ug/L

Date Analyzed:

01/07/20

Spike

Spike Sample Amount Amount

Percent

Compound

Result

Added

Found

Recovery

Diesel

<100

2500

2040

82

METHOD BLANK

Date Extracted:

01/07/20

Date Analyzed:

01/07/20

Units:

ug/L

Diesel

<100

Heavy Oil

<500

Surrogate Recoveries:

p-terphenyl

93%

SPECTRA LABORATORIES

ooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 3, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2019120810

Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS

		ICP-MS M	etals - EPA	Method 200.	8 - Water			
				gent Blank (L				
Date Digested:	1/3/2020				Date Analy		1/3/2020	
		Element		CAS#		Result	3	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	ratory Fort	tified Blank (I	FB)			
Date Digested:	1/3/2020				Date Analy	zed:	1/3/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	92.38	92.4		
		Cadmium		100.0	96.33	96.3		
		Chromium		100.0	95.27	95.3		
		Copper		100.0	99.25	99.2		
		Lead		100.0	93.94	93.9		
		Nickel		100.0	94.91	94.9		
		Zinc		100.0	110.98	111.0		
LCS Recovery limit	s 85-115%			1112/	1100			
		Matrix Spike	/Matrix Sp	ike Duplicate				
Date Digested: Sample Spiked:	1/3/2020 2020010022-1				Date Analyz	zed:	1/3/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Cone	%Rec	RPD
Arsenic		0.53	100.0	87.81	87.3	87.57	87.0	0.3
Cadmium		0.00	100.0	90.77	90.8	90.28	90.3	0.6
Chromium		0.65	100.0	91.53	90.9	88.50	87.9	3.4
Copper		0.00	100.0	92.58	92.6	91.30	91.3	1.4
Lead		0.00	100.0	88.87	88.9	88.09	88.1	0.9
Nickel		0.00	100.0	91.99	92.0	87.66	87.7	4.8
Zinc		1.56	100.0	92.80	91.2	91.44	89.9	1.5
Comment:								
Recovery Limits 70-	130%							
RPD Limit 20								

SPECTRA LABORATORIES

Jeji Looper Junatory Manager

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

December 31, 2019

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120810 Date Analyzed: 12/31/2019

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
MTBE	<1	10.0	9.52	95.2
Benzene	<1	10.0	9.5	95.2
Toluene	<1	10.0	9.2	91.8
Ethylbenzene	<1	10.0	9.33	93.3
Total Xylenes	<2	30.0	28.2	94.0
Gasoline	<50	250	256	102

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	102	101	Benzene	<1
1,2-Dichloroethane-d4	114	116	Toluene	<1
Toluene-d8	97	94	Ethylbenzene	<1
4-Bromofluorobenzene	95	97	Total Xylenes	<2
			MTBE	<1

Jeffrey Cooper

aboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120810 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS
	RESULT	AMOUNT	RESULT	%REC
MTBE	<1	10.0	9.50	95
Benzene	<1	10.0	10.6	106
Toluene	<1	10.0	10.7	107
Ethylbenzene	<1	10.0	11.4	114
Total Xylenes	<2	30.0	34.4	115
Gasoline	<50	250	286	114
	1977			

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBF	<1

Sentey Cooper

aboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838

SPECIAL INSTR	UCTIONS/C	OMMENTS:
---------------	-----------	----------

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA

CHAIN of CUSTODY

SPECTRA PROJECT #

2019110810

www.spectra-lab.com	info@s	pectra-lab	o.com	Re	turn	Sa	mpl	es	Υ	_	N_	Pa	ige		_	0	f_	_ 1	_	5	1/	41	ID	Α	ΚL	ו		\downarrow	K	(U	SI	1	
CLIENT: Tacoma Pow	er (TPU))		_	_		36	28	Sol	uth	35t	h S	tree	et T	ac	om	a,	WA	98	340	9											DORE	
PROJECT: Kosmos					L	Н	DR	oc	ARE	BON	IS	L	OI	RGA	NIC	cs			ME	TAL	s		_			_	(ОТН	IER	2			
CONTACT:												ı		0			١					1									П	_	
SAMPLED BY: Dowg	130	ettr	er	AINERS						1		9		625 TTO			809		٥			ı						60	4500C	BU:		TRAC	
PHONE: 255-244-053	FAX: TE	STING		ONTAIN						۵		324 T	SNTS	BY 6			в ву	SA B	PECIF		10	(SPECIFY)						TSS	0B; 450	D7237-10 SUB		SUBCONTRACT	
e-MAIL:		Prefer FA or e-MAIL	CTT	JF CO!			H-G			(664 SGT-HEM (TPH)	(90	2260/624 VOA BY 624 TTO	3260 CHLOR SOLVENTS	1270/625 SEMI VOA	8	m	Pest/PCB	TOTAL METALS RCRA	TOTAL METALS (SPECIFY)		Y								by 4500B;	by D72	exavalent Chromium	Nitrogen St.	
PURCHASE ORDER #: 19/	130/12	- 226		BER (H-HCI		STEX/NWTPH-G	PP	Ϋ́	3GT-HE	(664 HEM (FOG)	24 VO	HLOR	125 SEI	1270 PAHIPNA	082/608 PCB	ochlor 8	META	META		METAL	TCLP METALS	H 9040/9045	X/TOX 9076	DITY	LASH POINT			otal Cyanide by	anide	alent Ct	nia Nitr	
SAMPLE ID	DATE SAMPLED	TIME	MATRIX	NUMB	HALIMN	BTEX	BTEX/	NWTPH-G	NWTPH-Dx	1664 8	1664	8/09/8	3260 0	8270/8	3270 P	8082/6	Organ	TOTAL	TOTAL		d CLP	TCLP	PH 90	DYXT	TURBIDITY	FLASH	008	SOLIDS	Total C	Free Cy	Hexava	Атти	
DIB	19/30/12	10:25	2:00					Х	X										X		T		Х		Х						X		
D6	19/30/12	- 11:00	2:20					X	×										X	0			X		Χ						F		
				L			Ц	4	4	4							Ц		4		4						Ц				Ц		
				\vdash		Н	Н	4	-	4	+	+	L		4		_		_		4	4	4		Ц		Ц		_		Ц		
				\vdash		H		-	+	+	+	+	H		\dashv	-	-	-	4	+	4	4	4		_		\dashv	4	\dashv	Ц	Н		+
			_	+		Н	Н	+	+	+	+	+	H		\dashv		\dashv	-	+	+	+	+	+	-	-	\blacksquare	\dashv	4	\dashv		Н	-	-
				+		Н	Н	+	+	+	+	+	H		\dashv	-	\dashv	+	+	+	+	+	+		\dashv		\dashv	\dashv	\dashv	\vdash	\vdash	\dashv	+
				+		Н		+	+	+		t	H		\dashv		+	+	+	+	+	+	+		\dashv	\dashv	\dashv	+	\dashv		\dashv	\vdash	+
		 		_			SIGN	ATU	RE,	_	_	_	_	P	RINT	EDN	IAME		_	_	_	0	OMP	PANY			_	DAT	TE		\perp	TIM	E
Spectra Internal Instruc	ctions	RELINQUIS	HED BY	7	35	2	2	0)	u	>	1),	ug	B	oe	4.	ues			_			n			12	1/3		14			
		RECEIVE	ED BY	10	1	in	2	Co	4	N	1	1	7								8	Qe	6	-	_						lu	1:2	San
		RELINOUIS	HED BY	V																													
		RECEIVI																															
		Payment Te attorney's fe	rms: Net es and al	30 da	r cos	ast of	due a	ctio	unts :	subje	ect to	1 1/2 whe	% p	er m	onth	inter	rest.	Cu:	storr	er a	gree	s to	pay	all e	cost	s of o	colle	ction	inc	dudir	ng re	asor	able

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120810

Work Order Number: 2001028

January 07, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/3/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/07/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2019120810 Work Order: 2001028

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001028-001
 120810-1
 12/30/2019 2:00 PM
 01/03/2020 2:22 PM

 2001028-002
 120810-2
 12/30/2019 2:20 PM
 01/03/2020 2:22 PM

Case Narrative

WO#: 2001028 Date: 1/7/2020

CLIENT:

Spectra Laboratories

Project:

2019120810

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#

2001028

Date Reported:

1/7/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001028

Date Reported:

1/7/2020

CLIENT:

Spectra Laboratories

Project:

2019120810

Analyses

Mercury

Lab ID: 2001028-001

Collection Date: 12/30/2019 2:00:00 PM

Client Sample ID: 120810-1

Result RL Qual Units

Matrix: Water

DF

Date Analyzed

Analyst: WF

Mercury by Method 1631E

0.806

0.500

ng/L

Lab ID: 2001028-002

Collection Date: 12/30/2019 2:20:00 PM

1/6/2020 5:38:00 PM

Client Sample ID: 120810-2

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Batch ID: 27010

Date Analyzed

Mercury by Method 1631E

Batch ID: 27010

1

Analyst: WF

Mercury

ND

0.500

ng/L

1/6/2020 5:49:00 PM

Date: 1/7/2020

Work Order:

2001028

CLIENT:

Spectra Laboratories

Project:

2019120810

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 201912081	0				Mercury by Method 163
Sample ID: MB-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020 RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020 SeqNo: 1124084
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB2-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020 RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020 SeqNo: 1124085
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB3-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020 RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020 SeqNo: 1124086
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury	ND	0.500			
Sample ID: LCS-27010	SampType: LCS			Units: ng/L	Prep Date: 1/3/2020 RunNo: 56431
Client ID: LCSW	Batch ID: 27010				Analysis Date: 1/6/2020 SeqNo: 1124087
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	25.2	0.500	25.00	0	101 80 120
Sample ID: 2001011-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/3/2020 RunNo: 56431
Client ID: BATCH	Batch ID: 27010				Analysis Date: 1/6/2020 SeqNo: 1124089
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			0 24

Date: 1/7/2020

Work Order: 2001028

CLIENT: Spectra Laboratories

Project: 2019120810

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001011-001EMS	SampType: MS			Units: ng/L		Prep Da	te: 1/3/202	20	RunNo: 564	131	
Client ID: BATCH	Batch ID: 27010					Analysis Da	ite: 1/6/202	20	SeqNo: 112	24090	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	23.3	0.500	25.00	0.4250	91.5	71	125				

Sample ID: 2001011-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 1/3/202	20	RunNo: 564	131	
Client ID: BATCH	Batch ID: 27010					Analysis Da	te: 1/6/202	0	SeqNo: 112	24091	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	23.6	0.500	25.00	0.4250	92.7	71	125	23.30	1.28	24	

Sample Log-In Check List

C	lient Name:	SPECTRA	Work Order Nu	mber: 2001028	All I
L	ogged by:	Clare Griggs	Date Received:	1/3/2020	2:22:00 PM
Cha	ain of Cust	tody			
1	Is Chain of C	Custody complete?	Yes 🔽	No 🗌	Not Present
160		e sample delivered?	UPS		
		2002			
Loc	<u>LIn</u>				
3.	Coolers are	present?	Yes 🗹	No 🗆	NA 🗆
4.	Shipping cor	ntainer/cooler in good condition?	Yes 🗹	No L	SAS CAR
5.		als present on shipping container/cooler? mments for Custody Seals not intact)	Yes 🗆	No 🗹	Not Required \square
6.	Was an atte	mpt made to cool the samples?	Yes 🗌	No 🗹	NA 🗆
		L. L.	Inknown prior to	Andrew Control	
7.	Were all iten	ns received at a temperature of >0°C to 10.0°C*	Yes	No 🗹	NA 🗆
		6	tefer to item info	rmation.	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sa	mple volume for indicated test(s)?	Yes 🗸	No 🗆	
10.	Are samples	properly preserved?	Yes 🗹	No 🗆	
11.	Was preserv	vative added to bottles?	Yes 🗌	No 🗹	NA 🗆
12.	Is there head	dspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹
13.	Did all samp	les containers arrive in good condition(unbroken)?	Yes 🗸	No 🗆	
14.	Does paperv	vork match bottle labels?	Yes 🗹	No 🗆	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗆	
16.	Is it clear wh	at analyses were requested?	Yes 🗸	No 🗆	
17.	Were all hold	ding times able to be met?	Yes 🗸	No 🗆	
Spe	cial Handi	ling (if applicable)			
18.	Was client n	otified of all discrepancies with this order?	Yes	No 🗆	NA 🗷
	Person	Notified: Date			/ 1-1
	By Was	Via:	□ aMaii □ I	Phone Fax	In Person
	Regero				
	10.00	nstructions.			
19.	Additional re	marks:			
tem	Information				
Zelli.	moniguon	Item# Temp ℃			
	Cooler	12.3			
	Sample	11.1			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

CHAIN of CUSTODY

SPECTRA Laboratories

PAGE 1 of 19
2001028
STANDARD RUSH

CLIENT: Spectra La	bs			ADD	RE	SS:	222	1 R	088	Wa	y Ta	CO	ma	W	A 9	844	15												CHANGE	J
PROJECT: 201912081	0				L	HY	DRC	CAF	RBC	ONS	L	O	RGA	NIC	cs	1	-	MET	AL	s	1	_	_	_	_	от	HER	_		
CONTACT: Marie H				CONTAINERS						П	1					1		-			1									
PHONE: 253-272-4850	FAX: 25	3-572-9838	3	NTAI	П				£	П	ı	ENTS		И	П		200	ECIF	200		П							П		
e-MAIL: marieh@spectra	-lab.com	Prefer FA or e-MAIL		OF CO	۱		9		W (P	9	L	SOLV	W NOV	<	_		LS RC	12 (3)	S KC		I.					CIF				
PURCHASE ORDER #					NWTPH-HCID		WTP	ğ	1864 SGT-HEM (TPH)	EM (F	24 VQ	8280 CHLOR SOLVENTS	25 SEA	AHVPN	De PC6		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TO DIMETALS ROPE 6	881E	PH BOADISOAS	TX/TOX 9076	Ł	POIN		S (SPE		П		1
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER	NWTP	BTEX	BTEXNWTPH-G	NWTPH-DK	1884 S	1664 HEM (FOG)	8260/624 VOA	8280 0	8270/825 SEMI VOA	8270 PAH/PNA	8082/608 PCB		TOTAL	TOTAL	10.01	Ho by 1631F	NO HO	TX/TO	TURBIDITY	FLASH POINT	800	SOLIDS (SPECIFY)	HOCs			
120810-1	12/30/19	1400	Water	1																>	(I								
120810-2	12/30/19	1420	Water	1							1									>	c								9	
					1			1			1									1		I								
								1	L											1				1						
								1	L		11										L	1	1	18						
				Ц		Ц		1	L		H		1			1	4	1		1	Į.	ц	L							
						Ц		-	L			L				4	Ц	-	Į.	1	ļ.	1	ļ.	1	L		- 12			
	-							-	1			L				4		-	Į.	-	1	4	H	1	L		- 10	Н		
	+					Н		-	L		10	L				4	И	-	4	-	H	4	H	H	H			Н		
					10				L	23			14		1	_	3				II.	8		18	L			Ш		
SPECIAL INSTRUCTIONS/C	OMMENTS:	RELINQUISH	ED BY		1	10	T	TURE		. 40	Τ.	-			TED N	AME			T			MPA	NY		T		TE		TIME	
		RECEIVED BY		1	3	1	*	NO	VV2	n	1		rav			- 10		. 0		pe			-	-	+		02/20	_	3:00 PI 1472	
		RELINQUISH			//	0	A+	-	V	4	+	IVE	40	nn	10	elv	1h	104	7	t	21			_	+	1	3173	1	14 26	=
		RECEIVED BY		-		-	-	-	-		+	-	_	_	_	-	-	_	+	-	_	-		-	+			+		
		Payment Te		_			_		_		_	_	_	_		_	_	_	1	_		_			_	_		_		4

CHAIN of CUSTODY

PAGE	1	of	1
1 / 10-		OI	

SPECTRA Laboratories

(Shipping Fee Applies)

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

_		_
STANDARD	RUSH	4
3 0011 TA	0	_

CLIENT: Spectra Lab	3		- 1	ADL	IKE	55:	22.	21	NO	55	vva	T a	COI	na	VV	A 98	544)	_	_	-	_		_	_	_	_	_		CHAN	NGE
PROJECT: 2019120810					L	HY	DR	OC	ARE	301	IS	┖	OF	RGA	NIC	CS	1	M	ETA	LS				_	_	(OTH	IER			
CONTACT: Marie H				NERS													ı	2		_											
PHONE: 253-272-4850 e-MAIL: marieh@spectra-la	FAX: 253	3-572-983 Prefer FA	x 🗆	CONTAINERS			φ			(TPH)	6		SOLVENTS	NOA	,		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCLP METALS RCRA 8	(SPECIFY)							(K-K)				
PURCHASE ORDER #				ER OF	NWTPH-HCID		BTEX/NWTPH-G	9	žQ.	1664 SGT-HEM	1664 HEM (FOG)	8260/624 VOA	HLOR:	8270/625 SEMI	8270 PAHIPNA	8082/608 PCB	METAI	METAI	METALS	TCLP METALS	631E	PH 9040/9045	9206	ΥLIC	POINT		sonos (specify)				
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER	NWTP	BTEX	BTEX	NWTPH-G	NWTPH-Dx	1664 S	1864 H	8260/6	8260 CHLOR	8270/6	8270 P.	8082/60	TOTAL	TOTAL	TCLP	TCLPA	Hg by 1631E	PH 904	TX/TOX 9078	TURBIDITY	FLASH POINT	ВОО	SOLID	HOCs			
120810-1	12/30/19	1400	Water	1			S)					10									X										
120810-2	12/30/19	1420	Water	1							U	(4)		įų,					Q.		x		1				9				
											8	11		B			1														
					16					4		1				X.	0		TO								100				
							43							13			1		18		1						8		H		
								4		1								-	N.										10	10	
						-		4	1	4	35	if	-			13	-	-	1							Н		Н			
				-	_	-	41	4		-	22	1					-	-		L					100			Н			
				-	_	-		-		-	8	100	-				-		5	H			0			H	QU I			100	
											400	1.6		15			1						13						0		
SPECIAL INSTRUCTIONS/CO	MMENTS;	RELINQUISH	ED BY	Г	1	N	SIGN	7		100	n	I.e	n C	rav		TED N	AME			Sr	ect		PAN	_				02/	20		ME DO PM
	- 3	RECEIVED B	Y		J	- (4	24	W	10	-	1		iav	CII							, a					0 1/	UZI	-	0.0	70 1 10
		RELINQUISH	ED BY									1																	1		
		RECEIVED B	Y																										1		

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#: Auth #19-31-12-227 01/13/2020

Project: Client ID: D6 Sample Matrix: Water Tacoma Public Utilities

Date Sampled: 12/31/2019 PO Box 11007 Tacoma, WA 98411 Date Received: 12/31/2019

Attn: Doug Boettner Spectra Project: 2019120849

Spectra Number: 1

Kosmos

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.000596 *	ug/L	EPA 1631E
Turbidity	1.0	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	318**	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pН	5.83	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. **Sample contains heavy oil range organics.

Surrogate	% Recovery	Method
p-Terphenyl	75	NWTPH-D
Toluene-d8	89	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Coper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#: Auth #19-31-12-227 01/13/2020 Project: Kosmos Client ID: DIB Sample Matrix: Water Tacoma Public Utilities Date Sampled: 12/31/2019 PO Box 11007 Date Received: Tacoma, WA 98411 12/31/2019 Spectra Project: 2019120849 Attn: Doug Boettner

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	0.000871 *	ug/L	EPA 1631E
Turbidity	2.5	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	, 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.29	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	74	NWTPH-D
Toluene-d8	89	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Jenrey Cooper, Laboratory Manager

Page 2 of 2

...Where experience matters

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2019120849

Applies to Spectra #: 1-2

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/07/20

Units:

ug/L

Date Analyzed:

01/07/20

Spike Spike

Sample

Amount Amount

Percent

Compound

Added

Recovery

Result

Found

Diesel

<100

2500

2040

82

METHOD BLANK

Date Extracted:

01/07/20

Date Analyzed:

01/07/20

Units:

ug/L

Diesel

<100

Heavy Oil

< 500

Surrogate Recoveries:

p-terphenyl

93%

SPECTRA LABORATORIES

per, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2019120849 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
MTBE	<1	10.0	9.50	95
Benzene	<1	10.0	10.6	106
Toluene	<1	10.0	10.7	107
Ethylbenzene	<1	10.0	11.4	114
Total Xylenes	<2	30.0	34.4	115
Gasoline	<50	250	286	114

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

Jeffrey Cooper Jaboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 3, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project; Applies to Spectra #'s ug/L 2019120849

Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS

		ICP-MS M	etals - EPA	Method 200	8 - Water			
	3.5.5.1	Labo	ratory Rea	gent Blank (I	RB)	4	1.575	
Date Digested:	1/3/2020				Date Analy		1/3/2020	
		Element		CAS#		Result		
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	ratory Fort	tified Blank (I	LFB)		7727	
Date Digested:	1/3/2020				Date Analy	zed:	1/3/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	92.38	92.4		
		Cadmium		100.0	96.33	96.3		
		Chromium		100.0	95.27	95.3		
		Copper		100.0	99.25	99.3		
		Lead		100.0	93.94	93.9		
		Nickel		100.0	94.91	94.9		
		Zinc		100.0	110.98	111.0		
LCS Recovery limit	ts 85-115%					- 1000		
		Matrix Spike	/Matrix Sp	ike Duplicate				
Date Digested: Sample Spiked:	1/3/2020 2020010022-1				Date Analy	zed:	1/3/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic	= 7	0.53	100.0	87.81	87.3	87.57	87.0	0.3
Cadmium		0.00	100.0	90.77	90.8	90.28	90.3	0.5
Chromium		0.65	100.0	91.53	90.9	88.50	87.9	3.4
Copper		0.00	100.0	92.58	92.6	91.30	91.3	1.4
Lead		0.00	100.0	88.87	88.9	88.09	88.1	0.9
Nickel		0.00	100.0	91.99	92.0	87.66	87.7	4.8
Zinc		1.56	100.0	92.80	91.2	91.44	89.9	1,5
Comment:								
Recovery Limits 70-	-130%							
RPD Limit 20								

SPECTRA LABORATORIES

Jeroey Caper Laboratory Manager

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com_info@spectra-lab.com

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of 1

CHAIN of CUSTODY .

SPECTRA PROJECT #

2019110849

STANDARD X RUSH

1	1111000	Protest stee	TOURIE	-						_		_		_				_		_					_	_	_	$\overline{}$	_	$\overline{}$	_	_		-
CLIENT: Tacoma Pow	er (TPU)						36	28	So	uth	h 3	5th	St	ree	t T	acc	oma	a, l	WA	9	840	9											CHAI	
PROJECT: Kosmos						н	DR	ОС	AR	во	NS			OR	GA	NIC	s			ME	TAL	s						(ОТН	IEF	2			
CONTACT:																	П	٦			П	1	٦						П					
SAMPLED BY: Doug	Boett	wer.		RS									0		625 TTO			809				1	١						_	2	Br		RACT	
PHONE: 253-244-0539	FAX: TE			ONTAINERS								П	4 TT(TS	BY 62			B	8 1 8	ECIFY			E.						TSS	3; 4500C	D7237-10 SUB		CONT	
	7700	Prefer FA	777	CON			_			(TPH)	_	П	3Y 62	LVEN				NPCB	RCRA 8	(SP)		SCRA	(SPECIFY)	1					(FY)	45008;	07237	milm	n SUB	
e-MAIL: \	21 12 -	or e-MAIL	لما	ROF	CID		BTEX/NWTPH-G		ĸ	1664 SGT-HEM (TPH)	1664 HEM (FOG)		8260/624 VOA BY 624 TTO	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	PNA	SCB	Organochlor Pest/PCB	TOTAL METALS	TOTAL METALS (SPECIFY)		TOLP METALS RORA 8	ALS	045	976	×	TNIC		(SPECIFY)	anida by	vide by	alent Chromium	Ammonia Nitrogen SUBCONTRACT	
PURCHASE ORDER #: 19-	DATE	TIME		1111	WWTPH-HCID	×	XVVV	NWTPH-G	NWTPH-Dx	SGT	HEN	П	1/624	CHE	1,625	8270 PAH/PNA	8082/608 PCB	nochi	AL ME	AL ME		P ME	TCLP METALS	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT			Cyan	Cyan	walen	ionia	
SAMPLE ID		SAMPLED	MATRIX	NUMBE	ž	BTEX	BTE	ž	N.	1664	1664		8260	8260	8270	8270	8082	Orga	TOT	10		릴	헏	PH 9	ž	Ę	Ä	ООВ	SOLIDS	Total Cys	Fribe	Hexa	Атт	
D-6	19-31-12	12:30						X	X											х		П		Х		Х						Х		
DIB	19/11/12	10:29		Г				×	×							\neg				X		T		X		X	Ţ.			П		X		
				Т												\neg		T				T						П		П				
Released				T				¥	1			-	=			٩	4	-	4	X		4	-	ź		×						V		
				T												T		\exists				7	7											
that Dat				T				×	_						4	4		\exists		1		4				_						*		
End Port				T				×	×						4					V		4				A X								
				T		Г	Ĩ															7										,-		
				T												7	1	1		\forall	1	7	7	T					П	Н		H		
				T												1		\forall			1	+	+	\forall					Н	H		H		
				_			SIGN	IATU	IRE					_	P	RINT	ED N	IAME		_	_	_	-	OME	PAN	,		=	DA	TE			TI	ME
Spectra Internal Instruc	ctions	RELINQUIS	HED BY	1	>	5	B	Es.	1	0	_		6	2	u	0 5	3		+	tu.		_	T	V	5	(12	/31		1	2		53
		RECEIVE	ED BY	T		7	8	1	3				3	Sp	en	œ	-4	3e	ck			5	_		to				23			-	_	52
		RELINQUIS	HED BY					_						_							\dashv								-	+		Ė		_
		RECEIVE	EDBY	T																	\forall													
		Payment Ter attorney's fe	ms: Net	30 da	ays. I	Past of	due :	acco	unts	gard	bject dess	to 1	1/2 vheth	% pe	er mo	onth	inter	rest.	Cu ce C	ston	ner a	gree	es to	pay	all all	cost	s of	colle	ection	n inc	dudi	ng re	easo	nable

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2019120849

Work Order Number: 2001029

January 08, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/3/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 01/08/2020

CLIENT:

Spectra Laboratories

Project:

2001029-001

2001029-002

2019120849

Work Order: 2001029 **Work Order Sample Summary**

Lab Sample ID

Client Sample ID

120849-1

120849-2

Date/Time Collected

12/31/2019 12:30 PM

12/31/2019 10:29 AM

01/03/2020 2:13 PM

Date/Time Received

01/03/2020 2:13 PM

Case Narrative

WO#: 2001029 Date: 1/8/2020

CLIENT: Spectra Laboratories

Project: 2019120849

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2

2001029

Date Reported:

1/8/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001029

Date Reported:

1/8/2020

CLIENT:

Spectra Laboratories

Project:

2019120849

Lab ID:

2001029-001

Collection Date: 12/31/2019 12:30:00 PM

Client Sample ID: 120849-1

Matrix: Water

Analyses

Mercury

Result

RL Qual

Units

DF

Batch ID: 27010

Date Analyzed

Mercury by Method 1631E

0.596

0.500

ng/L

1/6/2020 6:00:00 PM

Analyst: WF

Lab ID:

2001029-002

Client Sample ID: 120849-2

Collection Date: 12/31/2019 10:29:00 AM

Analyst: WF

Matrix: Water

Analyses

Mercury

Result

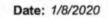
RL Qual

Units

DF

Batch ID: 27010

Date Analyzed


Mercury by Method 1631E

0.871

0.500

ng/L

1/6/2020 6:11:00 PM

Work Order: 2001029

CLIENT: Spectra Laboratories

Project: 2019120849

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 2019120848						STERLY, COP 10, 10
Sample ID: MB-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124084
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124085
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500				
Sample ID: MB3-27010	SampType: MBLK			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: MBLKW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124086
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500				
Sample ID: LCS-27010	SampType: LCS			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: LCSW	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124087
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	25.2	0.500	25.00	0	101 80 120	
Sample ID: 2001011-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/3/2020	RunNo: 56431
Client ID: BATCH	Batch ID: 27010				Analysis Date: 1/6/2020	SeqNo: 1124089
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500			0	24

Date: 1/8/2020

Work Order: 2001029

CLIENT: Spectra Laboratories

Project: 2019120849

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001011-001EMS Client ID: BATCH	SampType: MS Batch ID: 27010			Units: ng/L		Prep Da Analysis Da	te: 1/3/202 te: 1/6/202		RunNo: 564 SeqNo: 112		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	23.3	0.500	25.00	0.4250	91.5	71	125				

Sample ID: 2001011-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 1/3/202	10	RunNo: 564	131	
Client ID: BATCH	Batch ID: 27010					Analysis Da	te: 1/6/202	20	SeqNo: 112	24091	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	23.6	0.500	25.00	0.4250	92.7	71	125	23.30	1.28	24	

Sample Log-In Check List

Client Name:	SPECTRA	Work Or	der Numb	er: 2001	029
Logged by:	Clare Griggs	Date Re	ceived:	1/3/2	020 2:13:00 PM
Chain of Cus	tody				
1. Is Chain of	Custody complete?	Yes	~	No [Not Present
2. How was the	e sample delivered?	UPS			
Log In					
3. Coolers are	present?	Yes	•	No [NA 🗆
4. Shipping co	ntainer/cooler in good condition?	Yes	•	No	1
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes		No 🗸	Not Required
6. Was an atte	mpt made to cool the samples?	Yes		No 🗸	NA 🗆
0.		Unknown p	rior to re	ceipt.	
7. Were all iter	ns received at a temperature of >0°C to 10.0°C *	Yes		No.	NA 🗆
		Refer to iter	n inform	ation.	
8. Sample(s) in	n proper container(s)?	Yes	€	No _]
9. Sufficient sa	imple volume for indicated test(s)?	Yes	1	No _]
10. Are samples	s properly preserved?	Yes	1	No []
11. Was presen	vative added to bottles?	Yes		No 🛂	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes		No [NA ☑
13. Did all samp	oles containers arrive in good condition(unbroken)?	Yes	•	No []
14. Does paper	work match bottle labels?	Yes	•	No 🗆]
15. Are matrices	s correctly identified on Chain of Custody?	Yes	1	No [3
16. Is it clear wh	nat analyses were requested?	Yes	~	No [3
17. Were all hol	ding times able to be met?	Yes	~	No 🗆]
Special Hand	ling (if applicable)				
18. Was client r	notified of all discrepancies with this order?	Yes		No 🗆	NA ☑
Person	Notinea: Der				
By Wh	om: Via:	☐ •Mai	Ph	one [] F	ax IIn Person
Regard	ting				
Chent	nstructions				
19. Additional re	emarks:				
tem Information					
	ltem # Temp ℃				
Cooler	11.0				
Sample	11.0				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

2001029 PAGE 1 of 1 2 RUSH 2

CHAIN of CUSTODY

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 www.spectra-Jab.com Spectra Labs ADDRESS: 2221 Ross Way Tacoma WA 98445 CLIENT: CHANGE **HYDROCARBONS** PROJECT: 2019120849 **ORGANICS** METALS OTHER CONTAINERS CONTACT: Marie H TOTAL METALS (SPECIFY) TOLP METALS (SPECIFY) 280 CHLOR SOLVENTS TOTAL METALS RCRA 8 CLP METALS RCRA 8 PHONE: 253-272-4850 FAX: 253-572-9838 864 SGT-HEM (TPH) 270/E25 SEMI VOA Prefer FAX SOLIDS (SPECIFY) e-MAIL: marieh@spectra-lab.com TEXMWTPH-G 884 HEM (FOG) or e-MAIL PP 270 PAHIPNA 82/608 PCB TLASH POINT X/TOX 9076 1g by 1831E NUMBER URBIDITY PURCHASE ORDER # MATRIX SAMPLE ID SAMPLED SAMPLED 12/31/19 1230 Water 1 1 120849-1 12/31/19 1029 Water 1 2 120849-2 SPECIAL INSTRUCTIONS/COMMENTS: SIGNATURE PRINTED NAME COMPANY DATE TIME RELINQUISHED BY Jen Draven 3:00 PM Spectra 01/02/20 RECEIVED BY 0 1 23/1 RELINQUISHED BY RECEIVED BY Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable

attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Analytical, Inc.

DISPOSE SAMPLES

RETURN SAMPLES (Shipping Fee Applies)

RETURN SAMPLES

(Shipping Fee Applies)

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

CHAIN of CUSTODY

PAGE	1	of	1

		1	-
STANDARD		RUSH	4
3 day TAT	pla	ase.	-

CLIENT: Spectra Lab			Ť		I				-	700	****	1	400	1110	VV	A 9	1	70	-					_	_	_	_	_	_	_	CH	ANGE	믁
PROJECT: 2019120849					L	HY	DR	oc	AR	во	NS	1	ORGANICS META				TA	ALS				OTHER											
CONTACT: Marie H				NERS	П							П							4														
PHONE: 253-272-4850	FAX: 25	3-572-983		CONTAINERS	ı					(TPH)		П	SOLVENTS	4		Н		CRA 8	PECIF	8 8	ECIFY												
e-MAIL: marieh@spectra-la	ab.com	Prefer FA or e-MAII		P	HCID		лен-6		×	-HEM (TF	A (FOG)	VOA		SEMI VO	WPNA.	PCB		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCLP METALS RCRA	TCLP METALS (SPECIFY)	1631E	3045	940	7	TNIC		SPECIFY)					
PURCHASE ORDER #	DATE SAMPLED	TIME	MATRIX	NUMBER	NWTPH-	BTEX	BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1884 SGT-HEM	1664 HEM (FOG)	8260/624 VOA	8260 CHLOR	8270/625 SEMI	8270 PAH/PNA	8082/808 PCB		TOTAL M	TOTAL M	TCLP ME	TCLP ME	Hg by 163	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT	BOD	SOLIDS (SPECIFY)	HOCs				
120849-1	12/31/19	1230	Water	1			18		1		8			13		H						X				3		M.		W			
120849-2	12/31/19 1029	Water	1					N									Ü				x												
	1					H	1/4 E2			-			-		H		-		-				-	0	-	104					+		
				H		-			99			1	-	183	-			16		Cal						31		55	-	80	+		
									(1)			Ü		8																O)			7
												0				13		6														1	
				H		H	N.					8		100	H	12	-		-	-3				13	H	34	H	U.S		100	+		
												-								7						A.							
SPECIAL INSTRUCTIONS/CO	MMENTS:						SIGN	IATL	JRE			_			PRIN	TED	NAM	E				(Ю	PAN'	Y			DA	TE			TIME	
		RELINQUISH	ED BY		J	W	4	H	a	re	4	J	en [Drav	ven						Sp	ect	ra					01/	02/	20	3	3:00 F	PM
		RECEIVED B	Υ			_						1																		1			
		RELINQUISH				_		_		_	_	+			_	_					_	_	_							-			
		RECEIVED B	Y																														

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

01/08/0000	P.O.#:	Auth #
01/28/2020	Project:	Kosmos
	Client ID:	D6
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/02/2020
Tacoma, WA 98411	Date Received:	01/02/2020
Attn: Doug Boettner	Spectra Project:	2020010022
	Spectra Number:	1

Analyte	Result	Units	Method
Total Mercury	0.00226*	ug/L	EPA 1631E
Turbidity	8.90	NTU	EPA 180.1
Arsenic	0.5	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	0.6	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	1.6	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	258*	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.30	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached. *Sample contains heavy oil range organics.

Surrogate	% Recovery	Method
p-Terphenyl	76	NWTPH-D
Toluene-d8	91	NWTPH-G
4-Bromoftuorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

01/28/2020	P.O.#:	Auth#
01/28/2020	Project:	Kosmos
	Client ID:	D1B
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/02/2020
Tacoma, WA 98411	Date Received:	01/02/2020
Attn: Doug Boettner	Spectra Project:	2020010022
	Spectra Number:	: 2

Analyte	Result	Units	Method
Total Mercury	0.00216*	ug/L	EPA 1631E
Turbidity	7.61	NTU	EPA 180.1
Arsenic	0.5	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	0.9	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	117	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.20	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	75	NWTPH-D
Toluene-d8	91	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 2 of 2

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 3, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411
 Units:
 ug/L

 Spectra Project:
 2020010022

 Applies to Spectra #'s
 1-2

 Analyst:
 SCJ

QUALITY CONTROL RESULTS
P-MS Metals - EPA Method 200 8 - Wate

				Method 200				
		Labo	ratory Rea	gent Blank (I			Nurlakina III	
Date Digested:	1/3/2020				Date Analy		1/3/2020	
		Element		CAS#		Result	-	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	atory Fort	ified Blank (I	LFB)			
Date Digested:	1/3/2020				Date Analy	zed:	1/3/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	92.38	92.4	70	
		Cadmium		100.0	96.33	96.3		
		Chromium		100.0	95.27	95.3		
		Copper		100.0	99.25	99.2		
		Lead		100.0	93.94	93.9		
		Nickel		100.0	94.91	94.9		
		Zinc		100.0	110.98	111.0		
LCS Recovery limit	s 85-115%							
		Matrix Spike	/Matrix Sp	ike Duplicate				
Date Digested: Sample Spiked:	1/3/2020 2020010022-1				Date Analy:	zed:	1/3/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic		0.53	100.0	87.81	87.3	87.57	87.0	0.3
Cadmium		0.00	100.0	90.77	90.8	90.28	90.3	0.6
Chromium		0.65	100.0	91.53	90.9	88.50	87.9	3.4
Copper		0.00	100.0	92,58	92.6	91.30	91.3	1.4
Lead		0.00	100.0	88.87	88.9	88.09	88.1	0.9
Nickel		0.00	100.0	91.99	92.0	87.66	87.7	4.8
Zinc		1.56	100.0	92.80	91.2	91.44	89.9	1.5
Comment:								
Recovery Limits 70-	-130%							
RPD Limit 20								

SPECTRA LABORATORIES

Jeffrey Cooper Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2020010022 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
мтве	<1	10.0	9.50	95
Benzene	<1	10.0	10.6	106
Toluene	<1	10.0	10.7	107
Ethylbenzene	<1	10.0	11.4	114
Total Xylenes	<2	30.0	34.4	115
Gasoline	<50	250	286	114

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

Jeffrey Cooper

Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 28, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Stormwater

Spectra Project:

2020010022

Applies to Sample # 1 & 2

STORMWATER HYDROCARBON ANALYSIS

QUALITY CONTROL RESULTS BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/13/20

Units:

mg/L

Date Analyzed:

01/15/20

Spike Spike

Sample Amount Amount

Percent

Result

Added

2.50

Found

2.24

Recovery

Compound

Diesel

< 0.15

90

METHOD BLANK

Date Extracted:

01/13/20

Date Analyzed:

01/15/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

130%

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010022

Work Order Number: 2001108

January 09, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/7/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/09/2020

CLIENT: Spectra Laboratories

Project: 2020010022 Work Order: 2001108 **Work Order Sample Summary**

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001108-001
 010022-1
 01/02/2020 11:50 AM
 01/07/2020 12:20 PM

 2001108-002
 010022-2
 01/02/2020 11:15 AM
 01/07/2020 12:20 PM

Case Narrative

WO#: 2001108 Date: 1/9/2020

CLIENT:

Spectra Laboratories

Project:

2020010022

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2001108

Date Reported:

1/9/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001108

Date Reported: 1/9/2020

Client: Spectra Laboratories Collection Date: 1/2/2020 11:50:00 AM

Project: 2020010022 Lab ID: 2001108-001

D: 2001108-001 Matrix: Water

Client Sample ID: 010022-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Bato	h ID: 27052	Analyst: WF
Mercury	2.26	0.500		ng/L	1	1/8/2020 9:48:11 PM

Analytical Report

Work Order:

2001108

Date Reported:

1/9/2020

Client: Spectra Laboratories

Collection Date: 1/2/2020 11:15:00 AM

Project: 2020010022

Lab ID: 2001108-002

Matrix: Water

Client Sample ID: 010022-2

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Bato	h ID: 270	052 Analyst: WF
Mercury	2.16	0.500		ng/L	1	1/8/2020 9:59:01 PM

Date: 1/9/2020

Work Order: 2001108

CLIENT: Spectra Laboratories **QC SUMMARY REPORT**

Margury by Mathad 1621E

Project: 202001002	2				Mercury by Method 16318
Sample ID: MB-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020 RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020 SeqNo: 1125531
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB2-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020 RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020 SeqNo: 1125532
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: MB3-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020 RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020 SeqNo: 1125533
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			
Sample ID: LCS-27052	SampType: LCS			Units: ng/L	Prep Date: 1/8/2020 RunNo: 56507
Client ID: LCSW	Batch ID: 27052				Analysis Date: 1/8/2020 SeqNo: 1125534
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	24.6	0.500	25.00	0	98.4 80 120
Sample ID: 2001097-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/8/2020 RunNo: 56507
Client ID: BATCH	Batch ID: 27052				Analysis Date: 1/8/2020 SeqNo: 1125536
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Mercury	ND	0.500			0 24

Date: 1/9/2020

Work Order: 2001108

CLIENT: Spectra Laboratories

Project: 2020010022

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001097-001EMS	SampType: MS			Units: ng/L		Prep Da	te: 1/8/202	20	RunNo: 56	507	
Client ID: BATCH	Batch ID: 27052					Analysis Da	te: 1/8/202	20	SeqNo: 112	25537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	6.20	0.500	25.00	0	24.8	71	125				s

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2001097-001EMSD	SampType: MSD			Units: ng/L		Prep Da	ite: 1/8/202	20	RunNo: 565	507	
Client ID: BATCH	Batch ID: 27052					Analysis Da	ite: 1/8/202	20	SeqNo: 112	25538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	6.07	0.500	25.00	0	24.3	71	125	6.200	2.12	24	s

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

Client Name:	SPECTRA	Work Ord	ler Numb	per: 2001108	
Logged by:	Matt Langston	Date Rec	eived:	1/7/2020	12:20:00 PM
Chain of Cus	tody				
1. Is Chain of	Custody complete?	Yes	•	No 🗆	Not Present
	e sample delivered?	UPS			
Log In					
3. Coolers are	present?	Yes	1	No 🗆	NA 🗆
4. Shipping co	ntainer/cooler in good condition?	Yes	✓	No 🗆	and the state of t
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes		No 🗹	Not Required
6. Was an atte	empt made to cool the samples?	Yes		No 🗹	NA 🗆
		Mercury in wa	ter, pre	served	
7. Were all iter	ms received at a temperature of >0°C to 10.0°C*	Yes		No 🗆	NA 🗹
8 Sample(s) in	n proper container(s)?	Yes	~	No [
	ample volume for indicated test(s)?		~	No 🗆	
100	s properly preserved?	Yes	~	No 🗆	
	vative added to bottles?	Yes		No 🗹	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes		No 🗆	NA 🗹
	oles containers arrive in good condition(unbroken)?	? Yes	•	No 🗆	
14. Does papen	work match bottle labels?	Yes	V	No 🗆	
15. Are matrices	s correctly identified on Chain of Custody?	Yes	~	No 🔲	
	nat analyses were requested?	Yes	~	No 🗆	
17. Were all hol	ding times able to be met?	Yes	~	No 🗆	
Special Hand	ling (if applicable)				
18, Was client r	notified of all discrepancies with this order?	Yes		No 🗆	NA 🗷
Person	Notified: D.	ate			
By Wh	v.m.	a: Mall	☐ Ph	onn 🗌 Fax	In Person
Regard	sing)				
Chene	nstructions:				
19. Additional re	emarks:				
Item Information					
- T	Item # Temp °C				
Cooler	15.1				
Sample	16.8				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA I		ADBRIGADE II	nattere					lahı	m	Sam	nlas						prove	Requir		100			-0					CT#		
CLIENT: Spectra Lab				100	NDC	00.		60			0.1					AVA						-	-0					24		DRESS
Line Line			- í		I							Y	ac	OHI	a,	WA	т			_	_	_	_		P.	-	84	21	C	HANGE L
PROJECT: 2020010022	!		_	Ш	L	HY	DR	OC	ARE	BON	S	┖	OF	RGA	IN	CS	₽	ME	ALS	3	Ц	_	_	_	_	01	HE	R	_	
CONTACT: Marie Holt					ı							ı	1				П	П		П									П	
SAMPLED BY:				ERS	ı	П			1			L		П		П	ш	6			П								Ш	11
PHONE: 2	53-272-485	0		ITAIN	ı	П					1	L	NTS			П	w X	(SPECIFY)	8	(SPEC#Y)	П						or MF		П	11
e-MAIL: marieh	@spectra-lg	b.com		OF CONTAINERS			9	1		SEA SOT-HEM (TPH)		L	O CHLOR SOLVENTS	VOA			SRCF		RCR	(SPI		M				SIFY	- MPN		П	11
PURCHASE ORDER #				ABER OF	HCB		TEXANVIPH-G	9	ğ	T-HEM (50/624 VOA	HOR S	OWERS SEMI VOA	PAHIPNA	MOS PCB	METAL	METAL	ETALS	ETALS	3/8045	9008	È	POINT		(SPEC	alform	STE	П	
SAMPLE ID	DATE- SAMPLED	TIME SAMPLED	MATRIX	NUMB	NWTPH	BITEX	BTEXAN	NWTPH	NWTPH-Dx	1664 SGT.		8260/62	8260 C)	8270/82	8270 PA	9062/50	TOTAL METALS RCRA	TOTAL METALS	TCLP METALS RCRA 8	TCLP METALS	PH 9040/9045	DATOX 9078	TURBIDITY	FLASH POINT	800	SOLIDS (SPECIFY)	Fecal Coilorn -	Hg by 1631E	Ш	
010022-1	01/02/20	1150	Water	1								0		-			III.											×		
010022-2	01/02/20	1115	Water	1																133						U		×		
				Ц		Ц		_	П	1							100	Ц												
				Ц			Щ			1	L							Ц				息					1			
						Ц		1	Щ	-	L							Ц			Ц									
				Ц		Ц		4	4	4	L	Щ					10	Ц			Ц					4	4			
				Ц		Ц		1		10	L										Ц						-			
				Ц	8	Ц	8	4	ц	4	L	ш					100	Ц	1		Ц				4		4		Щ	
Providence in the second secon	1													P		10				0										
SPECIAL INSTRUCTIONS/COMMI	INIS:																													
Sample Recept (lab use	only)				7	5	KIN	ATUR	RE				-	Pf	RINT	ED N	ME		T		co	MPA	NY				DATI	E		TIME
Total # of containers	9	RELINQUIS			1	Ma	6	no	NE	ev		Je	n, D	rav	/en						Sp	_			\Box	01	/06	/19	3:	00 PM
COC seals present? Inta		RECEIVE		0	K	_	_					(1/1	wh	_				-	- 6	A	- 4	A	I	4	1	7	20	13	20
Temp at receipt	deg C.	RECEIVE	_	_	_	_	_	_	_	_	_	-	-	_	_	_		_	+	_	_	_	_	_	+	_		_	-	
Received within hold time? Proper sample containers?		RELINQUIS	_	-	_	_	-	_	-	-	-	+	_	-	-	_		_	+	-	-	-	-	_	+	-	_	_		
Intelled via Co.		RECEIVE	-	_	_	_	_	_	_		_	-	_	_	_	_	_	_	+		_	_	_	_	-	_	_	_	\vdash	

Turnaround Time Requested

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA Return Samples Y

CHAIN of CUSTODY

SPECTRA PROJECT #

12020010022

The state of the s	· moos	beenter inc	- COLLE					_	_	_		_	-	9-	_	_	_	<u> </u>	_	_	_				_		_ \	1999		-		•		100	т
CLIENT: Tacoma Pow	er (TPU)						36	28	So	uth	h 3	5th	St	ree	et T	ac	om	a,	WA	1 9	340	_				_	-	-				AI	DDRE	SS F	
PROJECT: Kosmos						н	DR	ОС	AR	во	NS			OF	RGA	NIC	cs			ME	TAI	LS	П					-	отн	IEF	2				_
CONTACT:													П								П									\Box				Т	_
SAMPLED BY: Doug	Boet	ner		RS											625 TTO			80												0	Br		RACT		
PHONE 253-244-0539				ONTAINE	ı								4 TTO	TS TS	BY 62			BY 608	18	CIFY			(IFY)						TSS	3; 4500C	-10 SI		CONT		
e-MAIL:		Prefer FA	100	F CONT			9			1664 SGT-HEM (TPH)	(90		BY 624	8260 CHLOR SOLVENTS				nor Pest/PCB	METALS RCRA 8	TOTAL METALS (SPECIFY)		TCLP METALS RCRA 8	(SPECIFY)							by 4500B;	Free Cyanide by D7237-10 SUB	ralent Chromium	Ammonia Nitrogen SUBCONTRACT		
PURCHASE ORDER #: 20/	12/1-1			ER O	H-HCID		BTEX/NWTPH-G	9-	*O+	GT-HE	HEM (FOG)		\$260/624 VOA	HLOR:	8270/625 SEMI VOA	8270 PAH/PNA	8082/608 PCB	chlor P	METAI	METAL		METALS	METALS	0/9045	9076	YTIC	POINT			/anide /	anide t	ent Ch	ia Nitro		
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER	HMTWN	BTEX	BTEX	NWTPH-G	NWTPH-Dx	1664.8	1664 H		970928	\$260 C	8270/63	8270 P	8082/60	Organo	TOTAL	TOTAL		TCLP	TCLP METALS	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT	BOD	SOLIDS	Total Cyanide by	Free C)	Hexava	Ammon		
D6	20/2/1	11:50						Х	Х											Х		\exists		Χ		X						Х			
DIB	20/2/1	11:15						×	×											X				×		×						×			
BAKER TANK !!	20/1	2.13					-	×	×											X	-	-	7	×		4			7	J	4	×			
		-		L		L																													
Spectra Internal Instruc	ctions	RELINQUIS	UED BY	-			SIGN	ATU	RE (١.	_	_	_	_			EDN			_	_				PANY				DAT		\neg		TIM		_
Special Internal Internal	otiono			7) in	Ş	2	2		0	P	\dashv	1	\geq	5~	40	7	当	et	ne	1	-		PL			_		2-			_	115	_	_
		RECEIVE		⊢	_	1	01	5	_	_	_	\dashv		DP.	enc	ar	1	ec	K		4	5	Pe	ct	VP(4	1/	2/	20	4	4	. : 5	57	_
		RELINQUIS		⊢	_		_	_	_	_	_	4	_			_	_				4	_					4		_	_	4	_			_
		RECEIVE		20.7	-				-				4.00	-1	_																\perp				
		Payment Ter attorney's fee	ms: Net i	othe	r cos	ts of	colle	ctio	unts n reg	sub	ject less	of w	heth	% pe	uit is	onth file	inte	rest. Plen	Cu ce C	stom o., V	er a	gree enue	e. Sp	pay	all o	cost:	s of o	LLC	ction	inc	ludin	ig re	ason	able	

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

01/10/2020		P.O.#:	Auth #20/2/1-002	
12.30.2423		Project:	Kosmos	
		Client ID:	Baker Tank #1	
Tacoma Public Utilities		Sample Matrix:	Water	
PO Box 11007		Date Sampled:	01/02/2020	
Tacoma, WA 98411		Date Received:	01/02/2020	
Attn: Doug Boettner		Spectra Project:	2020010021	
		Spectra Number:	1	
		201312	Rush	
Analyte	Result	Units	Method	
Total Mercury	0.0211*	ug/L	EPA 1631E	
Turbidity	150	NTU	EPA 180.1	
Arsenic	3.3	μg/L	EPA 200.8	
Cadmium	< 0.2	μg/L	EPA 200.8	
Chromium	2.8	μg/L	EPA 200.8	
Copper	15.7	μg/L	EPA 200.8	
Lead	4.2	μg/L	EPA 200.8	
Nickel	5.0	μg/L	EPA 200.8	
Zinc	84.2	μg/L	EPA 200.8	
Diesel	<50	μg/L	NWTPH-D	
Oil	124	μg/L	NWTPH-D	
Gasoline	<50	μg/L	NWTPH-G	
pH	7.08	pH Units	SM 4500-H+B	
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B	
Benzene	<0.4	μg/L	SW846 8260C	

< 0.4

< 0.4

< 0.8

 $\mu g/L$

µg/L

µg/L

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method	_
p-Terphenyl	99	NWTPH-D	
Toluene-d8	92	NWTPH-G	
4-Bromofluorobenzene	93	NWTPH-G	

SPECTRA LABORATORIES

ooper, Laboratory Manager

a5/mlh

Toluene

Ethylbenzene

Total Xylenes

SW846 8260C

SW846 8260C SW846 8260C 2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Stormwater

Spectra Project:

2020010021

Applies to Sample # 1

STORMWATER HYDROCARBON ANALYSIS

QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/03/20

Units:

mg/L

Date Analyzed:

01/06/20

Spike Spike

Sample Amount Amount

Percent

Compound

Result

Added

Found

Recovery

Diesel

< 0.10

2.50

1.75

70

METHOD BLANK

Date Extracted:

01/03/20

Date Analyzed:

01/06/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

94%

SPECTRA LABORATORIES

oper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 10, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2020010021 Date Analyzed: 1/3/2020

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
МТВЕ	<1	10.0	10.5	105
Benzene	<1	10.0	11.0	110
Toluene	<1	10.0	10.4	104
Ethylbenzene	<1	10.0	10.0	100
Total Xylenes	<2	30.0	29.6	98.7
Gasoline	<50	250	282	113

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	110	102	Benzene	<1
1,2-Dichloroethane-d4	114	107	Toluene	<1
Toluene-d8	97	95	Ethylbenzene	<1
4-Bromofluorobenzene	94	83	Total Xylenes	<2
			MTBE	<1

Jeffersper

Laboratory Manager

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010021

Work Order Number: 2001104

January 09, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 1 sample(s) on 1/7/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 01/09/2020

CLIENT: Spectra Laboratories

2020010021

Work Order: 2001104

Project:

Lab Sample ID

Work Order Sample Summary

Client Sample ID **Date/Time Collected**

Date/Time Received 01/07/2020 12:30 PM

2001104-001 010021-1 01/02/2020 2:15 PM

Case Narrative

WO#: 2001104 Date: 1/9/2020

CLIENT:

Spectra Laboratories

Project:

2020010021

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

NO#: 20

2001104

Date Reported:

1/9/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: 2001104

Date Reported: 1/9/2020

Client: Spectra Laboratories

Collection Date: 1/2/2020 2:15:00 PM

Project: 2020010021 Lab ID: 2001104-001

Matrix: Water

Client Sample ID: 010021-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Bato	h ID: 270	052 Analyst: WF
Mercury	21.1	0.500		ng/L	1	1/8/2020 8:54:12 PM

Date: 1/9/2020

Work Order: 2001104

CLIENT: Spectra Laboratories QC SUMMARY REPORT

Sample ID: MB-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052			Olits. IIg/L	Analysis Date: 1/8/2020	
	10-11-11-11-11-11-11-11-11-11-11-11-11-1	0.		cano any		SeqNo: 1125531
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125532
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125533
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27052	SampType: LCS			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: LCSW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125534
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	24.6	0.500	25.00	0	98.4 80 120	
Sample ID: 2001097-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: BATCH	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125536
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500			0	24

Date: 1/9/2020

Work Order:

2001104

CLIENT: S

Spectra Laboratories

Project:

2020010021

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001097-001EMS	SampType: MS			Units: ng/L		Prep Da	ite: 1/8/202	20	RunNo: 565	507	
Client ID: BATCH	Batch ID: 27052				Analysis Da	ite: 1/8/202	20	SeqNo: 112			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	6.20	0.500	25.00	0	24.8	71	125				S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2001097-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 1/8/202	10	RunNo: 565	507	
Client ID: BATCH	Batch ID: 27052					Analysis Da	te: 1/8/202	20	SeqNo: 112	25538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	6.07	0.500	25.00	0	24.3	71	125	6.200	2.12	24	S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

Client Name:	SPECTRA	Work Or	der Numbe	er: 20	01104	
Logged by:	Matt Langston	Date Re	ceived:	1/7	/2020	12:30:00 PM
Chain of Cus	tody					
1. Is Chain of	Custody complete?	Yes	•	No		Not Present
2. How was th	e sample delivered?	UPS				
Log In						
3. Coolers are	present?	Yes	•	No		NA 🗆
4. Shipping co	ntainer/cooler in good condition?	Yes	•	No		
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes		No	~	Not Required
6. Was an atte	empt made to cool the samples?	Yes		No	~	NA 🗆
		Jnknown p	rior to rec	eipt.		
7. Were all ite	ms received at a temperature of >0°C to 10.0°C*	Yes		No	~	NA 🗌
	Plea	se refer to	item infor	matio	n.	
8. Sample(s) i	n proper container(s)?	Yes	~	No		
9. Sufficient sa	ample volume for indicated test(s)?	Yes	V	No		
10. Are sample	s properly preserved?	Yes	~	No		
11. Was preser	vative added to bottles?	Yes		No	~	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes		No		NA 🗹
13. Did all samp	ples containers arrive in good condition(unbroken)?	Yes	~	No		
14. Does paper	work match bottle labels?	Yes	•	No		
15. Are matrice	s correctly identified on Chain of Custody?	Yes	•	No		
16. Is it clear wi	hat analyses were requested?	Yes	~	No		
17. Were all ho	lding times able to be met?	Yes	•	No		
Special Hand	lling (if applicable)					
18. Was client r	notified of all discrepancies with this order?	Yes		No		NA 🗹
Person	Notified: Date				_	
By Wn	Via:	_ aMa	Pho.	о е	Fax	In Person
Regard	ding:					
Chent	Inscriptions					
19. Additional re	emarks:					
Item Information						
	Item# Temp °C					
Cooler	17.9					
Sample	16.4					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA Laboratories

www.spectra-lab.com info@spectra-lab.com 2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838

SPECIAL INSTRUCTIONS/COMMENTS:

(same metals, Return Samples: Y N Priority above all other CHAIN OF CUSTODY Kosmos

STANDARD 2020010021

RUSH ADDRESS

Page

					LAB USE ONLY	Bakeretank#1 20/2/	SAMPLE ID SAM	PURCHASE ORDER # 20/2/1-	e-MAIL:	PHONE:263- 244-055 FAX:	SAMPLED BY: DOWS BO	CONTACT:	PROJECT: KOSMOS	CLIENT:
G 77					L		SAMPLED	1		1.0	to the			
Payment Terms: Net 30 days. Past due accounts subject to 1 1/2% per month attorney's fees and all other costs of collection regardless of whether suit is filed	RECEIVED BY	RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY		2115	SAMPLED		or e-MAIL		TAN			
ms: Net 3	Y	NED BY	Y	ED BY			MATRIX							
o day			3	+			NUM	BER (OF CC	NTAI	NERS			ADDRESS:
s. Pas costs		-		T			NWT	PH-HC	ID				I	RES
of co			33	1) 05		BTEX						HYDROCARBONS	Ś
lecti			6	2	SIGNATURE	~		ONWT	PH-G				õ	
on re			2	1	T L	×	NWT	PH-G PH-Dx					AR	
gard US SI			~	1	m	-				PLI)			BO	
bjec			6		П				EOG)	rn)			SN	
of v			4	V				HEM (-
hett				۸	+				R SOL	VENIT	0		-	
% pe			3	0					EMI VO		3		유	
er m			#	9				PAH/P		<i>y</i> n		_	ORGANICS	
filec			市	2	PR		-	608 P		_			Z	
inte			.,	W	PRINTED NAME		0002	0001	00				လိ	
est.		-	T.	Rose	DN		TOTA	LMET	ALS R	CRA 8	3	_		
Cus				+	ME	×			ALS (S					
tome			+	100									METALS	
ar ag				7			TOLP	META	LS RO	BAR			Ā	
nes.				1			TCLP	META	LS (SI	PECIF	Y)		'n	
Spe			P	7										
ay al			8	V	COMPANY	×	PH 9	040/90	45					1
Cos			6	5	IPAN		TX/T	OX/EO	X					
ts of ovation			0	1	~	X	TURE	BIDITY						
colle ories,		(<u> </u>				FLAS	H POI	NT					
LLC dio			-	_			BOD						9	
inc			è	12	P				ECIFY				OTHER	
interest. Customer agrees to pay all costs of collection including reasonable in Pierce Co., WA venue. Spectra Laboratories, LLC			8	1-2-20	DATE	X	He	¥	Cr	10	m		20	
asor			4	1										. :
lable			5)	4:57	≓									CHANGE
			7	7	TIME									GE

d 10 co

o cn 4 ω N

SPECTRA Laboratories					S	TA			RD	Sa	R	US	Н	X		PE	CIA	pprov	_	Dequired	u	1	HA		SF	PEC	TRA	PR	OJE	IS'		OE	YC	
CLIENT: Spectra La	boratories			ADI	ORE	SS									m		WA										IP:		84		_	ADDR	RESS NGE	
PROJECT: 202001002	21				L	HY	DR	oc	AF	RBC	ONS	3	L	OR	GA	IN	cs	1	N	AETA	LS		Ц		_	_	_	OT	HE	R	_	_	_	
CONTACT: Marie Holt												П						1	1				П								1		П	
SAMPLED BY:				ERS		ı						П	П				П	1	15	-	П		П											
PHONE:	253-272-485	0		UMBER OF CONTAINERS								П		STITE			П	Ŀ	a la	100	84	(SPECIFY)			П				Or MF	1	П		П	
e-MAIL: marie	eh@spectra-la	ab.com		F CO		1	9			964 \$GT-HEM (TPH)	(90	П		SOLVE	NO.				2 0	3	RCR			į.				CIEN	N.		ı		П	
PURCHASE ORDER #:				ERO	HOLD		TEXAMITPH-G	9	ĕ	3T-KE	MEM (FOG)	П	DIESA VOA	HO.	S SEN	HAPA	e PCB		C I	MEIN	ETÁL	ETAT:	0,0045	9076	È	POINT		SPE	ofform	3100			П	
SAMPLE ID	DATE	TIME	MATRIX	NUMB	NWITPH	втех	BTEXA	NWTPH-G	NWTPH-Dy	1664 50	1664 HE		8260/62	IZNO CHLOR SOLVENTS	RETONEZS SEMI VOA	8270 PAHIPNA	èpez/soe PCB	a contract of the same	TOTAL METALS TURNS	1015	TOLP METALS RORA 8	TOUR METALS	SP08/0906 Hd	TX/TOX 9076	TURBIDITY	FLASH POINT	800	sorios (speciery)	Fecal Colform - MPN	Ha by 1631F				
010021-1	01/02/20	1415	Water	1	1/2		1				10)	6			
		-				L							屋					1	Ų.		Ц				Ц		\Box		1	3		L		
						L	9			L	13			Ц	8			4	Į.	100	Н		Н		Ц		4	4	4	4	1	L		
			-	H		H		H				H	5	Н		Н	н	+	H		Н		Н				4	4	4	-	H	+		-11
	1		-	H		H		H		H	12	H	든	Н		-		+	H	-	Н		Н		Н	3	+	-	+	-	H	+		
	-			Н		Н		H	8	H	H	Н	=	Н	8	-		+	H	-	Н		Н	믈	Н		\dashv		+	-	Ŧ	+		
						Н	100			Н	100			Н	8			+	۰	н	Н		Н				\exists		+		Ħ	H		
					1					H			Ē					1	۳	т	Н					m	1		1		T			
										Г								1	T				П	F	П		7		1		T	T		П
SPECIAL INSTRUCTIONS/COM	MENTS:																																	
0-1-0-0-0-0-0	W-1014			_			S(D)		ine.	_					_						_						_	_			_	_		
Sample Receipt (lab ur Total # of containers	se only)	RELINQUE	SHED BY		#	m	7	MATU		er	1		Jei	n D	_	_	ED N	AME					Sp	_			+	_	DAT	E/19	+	_	D PN	4
COC seals present? in	tad?	RECEIV	ED BY		6	Ū	n		_	2.0	t		(OV								7					-	-	20		12:3	_	
ACCOUNT OF THE PARTY OF THE PAR	_40 C	RELINQUIS																									1				T			
Received within hold time?	-	RECEIV		-	_	_	_	_	_	_	_	_	_	_	_	_		_	_		-	_	_	_	_	_	-				+			
Proper sample containers?		RELINQUIS	MED BY																															

RECEIVED BY

Marie Holt

2020010021

From:

Marie Holt

Sent:

Thursday, January 02, 2020 5:04 PM

To:

Jeff Cooper; Jesse Bynum; Jennifer Draven

Subject:

FYI - RUSH KOSMOS

Importance:

High

Hi,

TPU brought in 3 more Kosmos samples today. One of them (Baker Tank) is a rush priority, if possible it should go before any other Kosmos samples. He understands that the mercury alone will probably take until Wed. or Thursday of next week, though if the petroleum is complete before then, they may want a partial.

Jen, please send this mercury on a 2 day turnaround.

Marie Holt

Customer Support and Office Manager

SPECTRA Laboratories

2221 Ross Way
Tacoma, WA 98421
P (253) 272-4850
F (253) 572-9838
marieh@spectra-lab.com

Auth #20/3/1-003

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#:

01/23/2020		
01/23/2020	Project:	Kosmos
	Client ID:	D1B
Tacoma Public Utilities	Sample Matrix:	Water

Tacoma Public UtilitiesSample Matrix:WaterPO Box 11007Date Sampled:01/03/2020Tacoma, WA 98411Date Received:01/03/2020Attn: Doug BoettnerSpectra Project:2020010076

Spectra Number: 1

Analyte	Result	Units	Method
Total Mercury	0.00135*	<u>_g/L</u>	EPA 1631E
Turbidity	5.87	NTU	EPA 180.1
Arsenic	0.7	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	0.4	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	73.0	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.73	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4	μg/L	SW846 8260C
Ethylbenzene	<0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	82	NWTPH-D
Toluene-d8	93	NWTPH-G
4-Bromofluorobenzene	92	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Devan Salter

Kosmos

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

Project:

01/23/2020 P.O.#: Auth #20/3/1-003

Tacoma Public Utilities Client ID: D6
Sample Matrix: Water

 PO Box 11007
 Date Sampled:
 01/03/2020

 Tacoma, WA 98411
 Date Received:
 01/03/2020

 Attn: Doug Boettner
 Spectra Project:
 2020010076

Spectra Number: 2

Analyte	Result	_Units	Method
Total Mercury	0.00152*	μg/L	EPA 1631E
Turbidity	6.56	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μ g/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	0.3	μ g/ L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.50	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4	μ g /L	SW846 8260C
Ethylbenzene	<0.4	μ g /L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	67	NWTPH-D	
Toluene-d8	93	NWTPH-G	
4-Bromofluorobenzene	92	NWTPH-G	

SPECTRA LABORATORIES

Authorized by: I van Salter

01/02/0020	P.O.#:	Auth #20/3/1-003
01/23/2020	Project:	Kosmos
	Client ID:	D2
Tacoma Public Utilities	Sample Matrix:	Water

Tacoma Public Utilities

PO Box 11007

Date Sampled: 01/03/2020

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

01/03/2020

Date Received: 01/03/2020

Spectra Project: 2020010076

Spectra Number: 3

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.00222*	μg/L	EPA 1631E
Turbidity	13.0	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μ g/ L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	1.8	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	129	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.41	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μ g/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	72	NWTPH-D
Toluene-d8	93	NWTPH-G
4-Bromofluorobenzene	91	NWTPH-G

SPECTRA LABORATORIES

January 6, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Units:

Spectra Project:

ug/L

Applies to Spectra #'s

2020010076 1-3

Analyst:

SCJ

QUALITY CONTROL RESULTS

LCS Recovery limits 85-115% Date Digested: 1/6/202	Element Arsenic Cadmium Chromium Copper Lead Nickel Zinc Labora	atory Reag	CAS # 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (L	RB) Date Analy: -	zed: Result < 0.3 < 0.2 < 0.5 < 0.3 < 0.5 < 0.3 < 0.5 < 0.5	1/6/2020	
Date Digested: 1/6/202 LCS Recovery limits 85-115% Date Digested: 1/6/202	Element Arsenic Cadmium Chromium Copper Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	CAS # 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (L	.FB)	Result < 0.3 < 0.2 < 0.5 < 0.3 < 0.5 < 0.5 < 0.5		
LCS Recovery limits 85-115% Date Digested: 1/6/202	Arsenic Cadmium Chromium Copper Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (I.		< 0.3 < 0.2 < 0.5 < 0.3 < 0.5 < 0.5 < 0.5		
LCS Recovery limits 85-115% Date Digested: 1/6/202	Cadmium Chromium Copper Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (I.		< 0.3 < 0.2 < 0.5 < 0.3 < 0.5 < 0.5 < 0.5	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Chromium Copper Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7440-47-3 7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (L		< 0.5 < 0.3 < 0.5 < 0.5 < 0.3	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Copper Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7440-50-8 7439-92-1 7439-98-7 7440-66-6 ified Blank (L.		< 0.3 < 0.5 < 0.5 < 0.3	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Lead Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7439-92-1 7439-98-7 7440-66-6 ified Blank (L Spike		< 0.5 < 0.5 < 0.3	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Nickel Zinc Labora 0 Element Arsenic	ntory Forti	7439-98-7 7440-66-6 ified Blank (L Spike		< 0.5 < 0.3	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Zinc Labora 0 Element Arsenic	ntory Forti	7440-66-6 ified Blank (L. Spike		< 0.3	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Labora 0 Element Arsenic	ntory Forti	ified Blank (I. Spike		_	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Element Arsenic	ntory Forti	Spike		zed:	1/6/2020	
LCS Recovery limits 85-115% Date Digested: 1/6/202	Element Arsenic		Spike	Date Analyz	zed:	1/6/2020	
Date Digested: 1/6/202	Arsenic					1/0/2020	
Date Digested: 1/6/202	Arsenic			LCS	LCS		
Date Digested: 1/6/202	Arsenic		Added	Conc.	%Rec		
Date Digested: 1/6/202			100.0	107.50	107.5	-	
Date Digested: 1/6/202			100.0	109.79	109.8		
Date Digested: 1/6/202	Chromium		100.0	109.58	109.6		
Date Digested: 1/6/202	Copper		100.0	110.92	110.9		
Date Digested: 1/6/202	Lead		100.0	109.87	109.9		
Date Digested: 1/6/202	Nickel		100.0	110.94	110.9		
Date Digested: 1/6/202	Zinc		100.0	109.80	109.8		
-			10010	107.00	107.0		
	Matrix Spike/	Matrix Spi	ike Duplicate	(MS/MSD)			
Sample Spiked: 2020010	0			Date Analyz	zed:	1/6/2020	
	0076-1						
	Sample	Spike	MS	MS	MSD	MSD	
Element	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPI
Arsenic	0.65	100.0	118.70	118.1	118.54	117.9	0.1
Cadmium	0.00	100.0	111.15	111.1	110.92	110.9	0.2
Chromium	0.00	100.0	115.61	115.6	116.64	116.6	0.9
Copper	0.00	100.0	112.44	112.4	111.05	111.0	1.2
Lead	0.00	100.0	111.33	111.3	111.79	111.8	0.4
Nickel	0.00	100.0	117.29	117.3	117.35	117.3	0.0
Zinc	0.40	100.0	113.68	113.3	115.24	114.8	1.4

SPECTRA LABORATORIES

FOR

Jeffrey Cooper Laboratory Manager

RPD Limit 20

January 23, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020010076

Applies to Sample # 1-3

STORMWATER HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/14/20

Units:

mg/L

Date Analyzed:

01/17/20

Compound

Sample Result

Spike Spike Added

Amount Amount Found

1.75

Percent Recovery

Diesel

< 0.10

2.50

70

METHOD BLANK

Date Extracted:

01/14/20

Date Analyzed:

01/17/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

93%

SPECTRA LABORATORIES

Authorized by: Jesse J. Bynum

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2020010076 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1-3

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
MTBE	<1	10.0	9.50	95	
Benzene	<1	10.0	10.6	106	
Toluene	<1	10.0	10.7	107	
Ethylbenzene	<1	10.0	11.4	114	
Total Xylenes	<2	30.0	34.4	115	
Gasoline	<50	250	286	114	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

Jeffrey Cooper

Laboratory Manager

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010076

Work Order Number: 2001107

January 09, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 3 sample(s) on 1/7/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/09/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2020010076 **Work Order:** 2001107

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2001107-001	010076-1	01/03/2020 12:55 PM	01/07/2020 12:27 PM
2001107-002	010076-2	01/03/2020 12:05 PM	01/07/2020 12:27 PM
2001107-003	010076-3	01/03/2020 12:45 PM	01/07/2020 12:27 PM

Case Narrative

WO#: 2001107 Date: 1/9/2020

CLIENT: Spectra Laboratories

Project: 2020010076

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2

2001107

Date Reported:

1/9/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: 2001107

Date Reported: 1/9/2020

Client: Spectra Laboratories

Collection Date: 1/3/2020 12:55:00 PM

Project: 2020010076 Lab ID: 2001107-001

Matrix: Water

Client Sample ID: 010076-1

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27052
 Analyst: WF

 Mercury
 1.35
 0.500
 ng/L
 1
 1/8/2020 9:15:49 PM

Work Order:

2001107

Date Reported:

1/9/2020

Client: Spectra Laboratories

Collection Date: 1/3/2020 12:05:00 PM

Project: 2020010076

Matrix: Water

Lab ID: 2001107-002 Client Sample ID: 010076-2

Analyses Result RL Qual Units DF Date Analyzed

Mercury by Method 1631E

Batch ID: 27052

1

Analyst: WF

Mercury

1.52

0.500

ng/L

1/8/2020 9:26:36 PM

Work Order:

2001107

Date Reported:

1/9/2020

Client:

Spectra Laboratories

Collection Date: 1/3/2020 12:45:00 PM

Project: 2020010076

Matrix: Water

Lab ID: 2001107-003

Client Sample ID: 010076-3 Analyses

Result RL Qual Units DF

Mercury by Method 1631E

Batch ID: 27052

Analyst: WF

Date Analyzed

Mercury

2.22

0.500

ng/L

1/8/2020 9:37:23 PM

Date: 1/9/2020

Work Order: 2001107

CLIENT: Spectra Laboratories QC SUMMARY REPORT

Project: 202001007	6				N	fercury by Method 1631
Sample ID: MB-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125531
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27052	SampType: MBLK			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125532
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27052	SampType: MBLK	-		Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: MBLKW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125533
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27052	SampType: LCS			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: LCSW	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125534
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	24.6	0.500	25.00	0	98.4 80 120	
Sample ID: 2001097-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/8/2020	RunNo: 56507
Client ID: BATCH	Batch ID: 27052				Analysis Date: 1/8/2020	SeqNo: 1125536
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

24

0

Mercury

ND

0.500

Date: 1/9/2020

Work Order:

2001107

CLIENT:

Spectra Laboratories

Project:

2020010076

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001097-001EMS

SampType: MS

Units: ng/L

Prep Date: 1/8/2020

RunNo: 56507

Client ID: BATCH

Batch ID: 27052

Analysis Date: 1/8/2020

SeqNo: 1125537

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

Mercury

6.20

6.07

0.500

25.00

25.00

24.8

71

125

%RPD RPDLimit Qual

S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

RL

Sample ID: 2001097-001EMSD

SampType: MSD

Units: ng/L

Prep Date: 1/8/2020

RunNo: 56507

Client ID: BATCH

Batch ID: 27052

0

Analysis Date: 1/8/2020

71

SeqNo: 1125538

Analyte

Result SPK value SPK Ref Val RL 0.500

%REC

24.3

LowLimit HighLimit RPD Ref Val

125

6.200

%RPD

2.12

RPDLimit Qual 24

S

Mercury NOTES:

S - Outlying spike recovery(les) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

С	lient Name:	SPECTRA	Work Order Numb	per: 2001107	
L	ogged by:	Matt Langston	Date Received:	1/7/2020	12:27:00 PM
Cha	in of Cust	ody			
		Custody complete?	Yes 🗸	No 🗆	Not Present
		sample delivered?	UPS		
۲.					
Log	<u>l In</u>				
3.	Coolers are	present?	Yes 🗹	No 🗆	NA 🗌
4.	Shipping cor	tainer/cooler in good condition?	Yes 🗹	No 🗆	
5.		ils present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗹	Not Required
6	Was an atter	mpt made to cool the samples?	Yes	No 🗸	NA 🗌
٥.			lercury in water, pre		
7.	Were all item	ns received at a temperature of >0°C to 10.0°C *	Yes 🗆	N. \square	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sa	mple volume for indicated test(s)?	Yes	N. \square	
10.	Are samples	properly preserved?	Yeş 🗹	No 🗆	
11.	Was preserv	ative added to bottles?	Yes	No 🗸	NA 🗆
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗹
13.	Did all samp	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
14.	Does paperv	ork match bottle labels?	Yes 🗹	No 🗆	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗆	
		at analyses were requested?	Yes 🗹	No 🗆	
		ling times able to be met?	Yes 🗸	No 🗆	
Spe	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date			
	By Wha			one T Fav	□ In Person
	Regard				
	1 1/2/2017	nstructions:			
10					
19.	Additional re	nains.			
ltem	Information				
		Item # Temp °C			
	Cooler	15.1			
	Sample	14.5			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

CLIENT: Spectra Laboratories PROJECT: 2020010076 CONTACT: Marie Holt SAMPLED BY: PHONE: 253-272-48 e-MAIL: marieh@spectra- PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 01/03/2 01/03/2 01/03/2 SPECIAL INSTRUCTIONS/COMMENTS:	50	*	NUMBER OF CONTAINERS						BON		Ė	OR		NICS							_	_	ZIP:		984			CHANGE L
CONTACT: Marie Holt SAMPLED BY: PHONE: 253-272-48 e-MAIL: marieh@spectra- PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 010076-1 01/03/2 010076-2 01/03/2	lab.com	*	NTAINERS		Н	DR	oc	ARI	BON	IS	₽	OR	GA	NIC														
SAMPLED BY: PHONE: 253-272-48 e-MAIL: marieh@spectra- PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 010076-1 01/03/2 010076-2 01/03/2 010076-3 01/03/2	lab.com	~	NTAINERS					1 1	- 17				T	T		Н	MET	ALS	Н		Т	Т	Т	r	THE	K	T	П
PHONE: 253-272-48 e-MAIL: marieh@spectra- PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 010076-1 01/03/2 010076-2 01/03/2	lab.com	*	NTAINER		П	1 1		, ,	- 1		1		1	1				1	П	Н	1	1	-			1	-	111
PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 010076-1 01/03/2 010076-2 01/03/2	lab.com	*	NTAI			1 1		Ш			L				П		3		6	П	1	1				П	П	Π
PURCHASE ORDER #: SAMPLE ID DATE SAMPLE 010076-1 01/03/2 010076-3 01/03/2	lab.com		15			П		П			ı	SIL			П	8	PEGII	4	(SPECIFY)	П	1	1			or MF			
PURCHASE ORDER #: SAMPLE ID DATE			8			9		П	Ē	9	L	SOLVE	ğ		Ш	S RC	8 68	RCR			1			2	4			
SAMPLE ID SAMPLE 010076-1 01/03/2 010076-2 01/03/2 010076-3 01/03/2	TIME		BER OF	WTPH-HCID		TEXMMITTE	WIPH-G	WTPH-Dx	NOA SGT-HEM (TPH)	THE LEG	260/524 VOA	80 CHLOR SOLVENTS	TOWERS SEAN VOA	AZIBOB PCB		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCLP METALS RCRA'S	TOLP METALS	H 9040/9045	TX/TOX 9079	TURBIDITY	H POINT	SOLIDS (SPECIFY)	ecal Colform - MPN		arout yab.	
01/03/2 010076-3 01/03/2		MATRIX	NEW	EW.	BTEX	BTEX	NWTF	MVM	1884	1004	8280	8260	8270	80828		TOTA	TOTA	TOLD	70.0	28 Hd	5	D'A	808	SOLI	Fecsi		200	Ш
01/03/2	0 1255	Water	1											I												10	×	100
	0 1205	Water	1								100		0	п		鷾			题								×	
SPECIAL INSTRUCTIONS/COMMENTS:	0 1245	Water	1																								X	
SPECIAL INSTRUCTIONS/COMMENTS:					L				- 1	10	1			-11				ш			Щ	1	8		Ц			
SPECIAL INSTRUCTIONS/COMMENTS:					L					1	8		Щ	-	1			1		Ц	Щ	4	1	Щ	П		-	
SPECIAL INSTRUCTIONS/COMMENTS:			L		L				-				Щ	-				L		Ц	ц	4	1		Ш		+	
EPECIAL INSTRUCTIONS/COMMENTS:					L				-	1		Ц	4	-	Н	2	-	1		Ц	щ	4	-	H	Ш		+	1 1
PECIAL INSTRUCTIONS/COMMENTS:	-	-			L		Ц		-	4	8	Ц	4	-	-		- 8				8	4	4		Н		-	1 1
SPECIAL INSTRUCTIONS/COMMENTS:	-	-	-		L				-	-	100	Ц	Щ	-			- 0	-		4	Щ	4	-	1	\sqcup		+	1 1
SPECIAL INSTRUCTIONS/COMMENTS:					L	1					753	Ш	П					Ц.,				1			Ш		-	
Sample Receipt (lab use only)	1		_	-		SIGN	ATU	IRE		_	_	_	PR	INTE	NAN	E	_	T		CON	APAN	lY	_		DA	TE	T	TIME
Total # of containers	RELINGU	ISHED BY		J	n	1	no	w	en	1	Je	ηP						I			ect			C	_	6/18	_	3:00 PM
COC seals present?Intact?		VED BY	-	6	P	-					1 (玖	oh	1						12	E			1	1	120	+	727

Payment Terror: Net 30 days. Past due ecopuris subject to 1 1/2 % per mush interest. Customer agrees to pay all costs of collection including resistantly a field entered all other costs of collection regardless of whether suit is filled in Plants Co., WA versus

RECEIVED BY RELINQUISHED BY

RECEIVED BY

Received within hold time?

Proper sample containers?

Table. Parameters, analytical methods, detection limits (DLs) and quantitation levels (QLs) shown below, shall be used for water quality monitoring. Other methods may be used but must produce measurable results in the sample and be an EPA-approved method in 40 CFR Part 136. If an alternative method is used that is not specified in an order or listed below the test method, DL, and QL will be defined in lab and/or monitoring reports. Indicator level values at or below those specified in the table are within compliance.

Pollutant & CAS No. (if available)	Sampling Frequency	Sample Type	Indicator Level, µg/L (unless noted)	Required Analytical Protocol	Detection Level, μg/L	Quantitation Level, µg/L
			METALS			
Arsenic, Total (7440-38-2)	Daily*	Grab	360°	360° 200.8 0.1		0.5
Chromium, (hex) (18540-29-9)	Daily*	Grab	15 ^b	SM3500-Cr EC	0.3	1.2
Chromium, Total (7440-47-3)	Daily*	Grab	259 d	200.8	0.2	1.0
Lead, Total (7439-92-1)	Daily*	Grab	23.5ª	200.8	0.1	0.5
Cadmium (7440-43-9)	Daily*	Grab	1.5ª	200.8	0.05	0.25
Mercury (7439-97-6)	Daily*	Grab	2.10 a	1631E	0.0002	0.0005
Copper (7440-50-8)	Daily*	Grab	7.2"	200.8	0.4	2.0
Nickel (7440-02-0)	Daily*	Grab	652 *	200.8	0.1	0.5
Zinc (7440-66-6)	Daily*	Grab	52.7°	200.8	0.5	2.5
		NONCONV	ENTIONAL POLLUTANTS	S		
BTEX (benzene + toluene + ethylbenzene + m, o, p xylenes)	Daily*	Grab	2.0	EPA SW 846 8021/8260	1.0	2.0
		PETROLE	EUM HYDROCARBONS			
Gasoline-Range Hydrocarbons (NWTPH-Gx) ^c	Daily*	Grab	250 ^d	NWTPH-Gx	250	250
Diesel-Range Hydrocarbons (NWTPH-Dx)e	Daily*	Grab	250 d	NWTPH-Dx	250	250
	St	ormwater (General Permit Benchma	arks		
Parameter *			Benchmar	k	Analytical N	lethod
Turbidity	Daily*	Grab	25 NTU		SM213	0 f
pH	Daily*	Grab	6.5 - 8.5 SU	J	SM4500-	H+B

а	Acute – Freshwater Toxic Substances Criteria (WAC 173-201A-240); metals for receiving waterbody of hardness value = 40. Hardness will need to be verified through sampling and criteria adjusted accordingly. Heavy metal toxicity general decreases in freshwater as hardness increases.
b	Indicator Level total chromium is actually for hexavalent chromium using Acute – Freshwater Toxic Substances Criteria (WAC 173-201A-240), National Toxics Rule (40 CFR 131.36).
С	NWTPH-Gx = Northwest Total Petroleum Hydrocarbons –Volatile petroleum products (includes aviation and automotive gasolines, mineral spirits, Stoddard solvent and naphtha).
d	No surface water standard, value is laboratory quantitation level.
е	NWTPH-Dx = Northwest Total Petroleum Hydrocarbons – Semi-volatile ("diesel") for diesel range organics and heavy oils (includes jet fuels, kerosene, diesel-oils, hydraulic fluids, mineral oils, lubricating oils, and fuel oils).
f	Or equivalent.
•	Sampling to occur daily during active slope excavation and grading. Frequency and parameters assessed will be modified following cap completion.

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com_info@spectra-lab.com

COCCIAI	INSTRUCTIONS/COMMENTS:	

Return Samples Y

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

202001	F00	6	
STANDARD	D	RUSH	

CLIENT: Tacoma Pov	ver (TPU)						362	28	So	uth	h 3	5th	St	ree	t T	aco	om	a,	WA	9	840	9						1					DDR	
PROJECT: Kosmos					L	Н	DR	OC.	AR	во	NS			OF	GA	NIC	cs			ME	TAI	s		отн				THER						
CONTACT:															0								٦											
SAMPLED BY: Doug	Boet	twer		NERS									10		BY 625 TTO			608		F.33			٥						TSS	4500C	suB		Nitrogen SUBCONTRACT	
PHONE: 253-244-0539	FAX: TE	STING Prefer FA		ONTAIL						PH)			8250/624 VOA BY 624 TTO	8250 CHLOR SOLVENTS				CB BY	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)		RA B	(SPECIFY)		d					4500B; 42	D7237-10 SUB	um m	SUBCO	
e-MAIL:		or e-MAIL	(X)	OF C	9		PHG			1664 SGT-HEM (TPH)	FOG)		DA B	R SOL	8270/625 SEMI VOA	2	8	Pest/PCB	ALSR	ALS		œ I	m	55	10		Þ		(SPECIFY)		de by D	valent Chromium	hogen	
PURCHASE ORDER #: 22	0/3/1=	003		BER	H-HC		BTEXNWTPH-G	H-G	NWTPH-Dx	SGT-H	1664 HEM (FOG)		824 VC	CHLO	\$25 SE	8270 PAH/PNA	8082/608 PCB	ochlor	LMET	LMET		META	TCLP METALS	PH 9040/9045	TX/TOX 9076	DITY	1 POIL			Total Cyanide by	Cyanid	alant (nia Nii	
SAMPLE ID	SAMPLED	SAMPLED	MATRIX	NUMBER	NWTPH	втех	втех	NWTPH-G	NWT	1664	1664		82604	8260	8270/	8270	8082/6	Organ	TOTA	TOTA		TCLP	TOLP	PH 90	DYXT	TURBIDITY	FLASH POINT	800	SOLIDS	Total (Free C	Hexav	Amma	
DIB	293/1	12:55						Х	X											X				X		X						Х		
D.6	2/3/1	12105						×	×											х				×	1	×						N		
DIE inside	20/1																																	
D2	20/3/1	12:45						χ	X											×				X		X						×		
																											6							
																					T													
						Ц																												
Spectra Internal Instru	otions			1		_	SIGN	ATU	RE			-				_	EDN						0	OMF	ANY	*		- /		TE			Til	
Dease Refer to	the	RELINQUIS		+):	3	4	4)	1	7	0	7)	15		R	é	+	hos	5	7	P	u	_			1	3/	20	>	5	13	54
Please Refer to Kosmos O. I seep C	ing	RECEIVE	D BY	1	10	11/	2	0	v	-			J	ev	L	re	2.V	121	4	_	4	5	De	4	0	t		1/3/20			1554			
(WAPP) Table 1 P	aramdes	RELINQUIS	HED BY	1																	\perp													
methods. Detection	n limits	RECEIVE																																
and levels		Payment Ter attorney's fee	ms: Net es and al	30 de	ays. I	ast of	colle	cco	unts n re	sub	pject	to 1	1/2 vheth	% pe	er mo	filed	inter	Pier	Cu ce C	ston	ner a	gree	to to	pay	all a	cost	s of	colle	actio	n inc	dud	ng r	easo	nable

01/22/2020	P.O.#:	Auth #20-6-1-007
01/22/2020	Project:	Kosmos
	Client ID:	D2
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/06/2020
Tacoma, WA 98411	Date Received:	01/06/2020
Attn: Doug Boettner	Spectra Project:	2020010099
20, 20, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	Spectra Number:	1

Analyte	Result	Units	Method
Total Mercury	0.00164 *	ug/L	EPA 1631E
Turbidity	16	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	3.4	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	0.7	$\mu g/L$	EPA 200.8
Zinc	4.0	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	72	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	6.04	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	$\mu g/L$	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

% Recovery	Method
74	NWTPH-D
93	NWTPH-G
91	NWTPH-G
	74 93

SPECTRA LABORATORIES

Authorized by: Jesse J. Bynum

January 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2020010099 Date Analyzed: 1/10/2020

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

BLANK	SPIKE	SPIKE	LCS	
RESULT	AMOUNT	RESULT	%REC	
<1	10.0	9.50	95	
<1	10.0	10.6	106	
<1	10.0	10.7	107	
<1	10.0	11.4	114	
<2	30.0	34.4	115	
<50	250	286	114	
	<pre></pre>	RESULT AMOUNT <1	RESULT AMOUNT RESULT <1	RESULT AMOUNT RESULT %REC <1

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	101	Benzene	<1
1,2-Dichloroethane-d4	105	108	Toluene	<1
Toluene-d8	96	94	Ethylbenzene	<1
4-Bromofluorobenzene	87	89	Total Xylenes	<2
			MTBE	<1

Jeffrey Cooper

Laboratory Manager

January 23, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Stormwater

Spectra Project:

2020010099

Applies to Sample # 1

STORMWATER HYDROCARBON ANALYSIS

QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/16/20

Units:

mg/L

Date Analyzed:

01/21/20

Spike

2.50

Sample Amount Amount

Percent

Compound

Result

Added

Found

1.88

Spike

Recovery

Diesel

< 0.10

75

METHOD BLANK

Date Extracted:

01/16/20

Date Analyzed:

01/21/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

98%

SPECTRA LABORATORIES

by: Jesse J. Bynum

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010099

Work Order Number: 2001134

January 14, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 1 sample(s) on 1/9/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/14/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2020010099 Work Order: 2001134

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2001134-001 010099-1 01/06/2020 12:30 PM 01/09/2020 9:49 AM

Case Narrative

WO#: 2001134 Date: 1/14/2020

CLIENT: Spectra Laboratories

Project: 2020010099

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 20

2001134

Date Reported:

1/14/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001134

Date Reported: 1/14/2020

Client: Spectra Laboratories Collection Date: 1/6/2020 12:30:00 PM

Project: 2020010099 Lab ID: 2001134-001

D: 2001134-001 Matrix: Water

Client Sample ID: 010099-1

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27110
 Analyst: WF

 Mercury
 1.64
 0.500
 ng/L
 1
 1/13/2020 8:57:17 PM

Date: 1/14/2020

Work Order: 2001134

CLIENT: Spectra Laboratories

Project: 2020010099

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 202001009	9					iercury by Method 1631
Sample ID: MB-27110	SampType: MBLK			Units: ng/L	Prep Date: 1/13/2020	RunNo: 56609
Client ID: MBLKW	Batch ID: 27110				Analysis Date: 1/13/2020	SeqNo: 1127809
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27110	SampType: MBLK			Units: ng/L	Prep Date: 1/13/2020	RunNo: 56609
Client ID: MBLKW	Batch ID: 27110				Analysis Date: 1/13/2020	SeqNo: 1127810
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27110	SampType: MBLK			Units: ng/L	Prep Date: 1/13/2020	RunNo: 56609
Client ID: MBLKW	Batch ID: 27110				Analysis Date: 1/13/2020	SeqNo: 1127811
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27110	SampType: LCS			Units: ng/L	Prep Date: 1/13/2020	RunNo: 56609
Client ID: LCSW	Batch ID: 27110				Analysis Date: 1/13/2020	SeqNo: 1127812
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	26.2	0.500	25.00	0	105 80 120	
Sample ID: 2001134-001ADUP	SampType: DUP			Units: ng/L	Prep Date: 1/13/2020	RunNo: 56609
Client ID: 010099-1	Batch ID: 27110				Analysis Date: 1/13/2020	SeqNo: 1127814
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	1.51	0.500			1.640	8.25 24

Date: 1/14/2020

Work Order:

2001134

CLIENT:

Spectra Laboratories

Project:

2020010099

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001134-001AMS

SampType: MS

Units: ng/L

Prep Date: 1/13/2020

RunNo: 56609

Client ID: 010099-1

Batch ID: 27110

Analysis Date: 1/13/2020

SeqNo: 1127815

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

125

Analyte Mercury Result 27.7

0.500 25.00

RL

1.640

104

71

%RPD RPDLimit Qual

Sample ID: 2001134-001AMSD

SampType: MSD

Units: ng/L

Prep Date: 1/13/2020

RunNo: 56609

Analysis Date: 1/13/2020

Client ID: 010099-1

Batch ID: 27110

SPK value SPK Ref Val

SeqNo: 1127816

%RPD RPDLimit Qual

Analyte Mercury Result 27.9

0.500 25.00

1.640

105

%REC LowLimit HighLimit RPD Ref Val 71 125

27.70

0.719

24

Sample Log-In Check List

Client Name:	SPECTRA	Work O	rder Numb	er: 2001134	
Logged by:	Carissa True	Date Re	eceived:	1/9/2020	9:49:00 AM
Chain of Cus	tody				
1. Is Chain of	Custody complete?	Yes	•	No 🗆	Not Present
2. How was the	e sample delivered?	UPS			
Log In					
3. Coolers are	present?	Yes	•	No 🗆	NA 🗆
4. Shipping co	ntainer/cooler in good condition?	Yes		No 🗆	
	als present on shipping container/cooler mments for Custody Seals not intact)	? Yes		No 🗹	Not Required
6. Was an atte	mpt made to cool the samples?	Yes		No 🗸	NA 🗆
		Unknown	prior to re	ceipt	
7. Were all iter	ms received at a temperature of >0°C to	10.0°C* Yes		No 🔽	NA 🗔
		Please refer to	item info	rmation	
8. Sample(s) in	proper container(s)?	Yes	•	No 🗆	
9. Sufficient sa	imple volume for indicated test(s)?	Yes	1	No 🗆	
10. Are samples	s properly preserved?	Yes	1	No 🗆	
11. Was presen	vative added to bottles?	Yes		No 🗹	NA 🗆
12. Is there hea	dspace in the VOA vials?	Yes		No 🗆	NA 🗸
13. Did all samp	eles containers arrive in good condition(unbroken)? Yes	~	No 🗆	
14. Does paper	work match bottle labels?	Yes	~	No 🗆	
15. Are matrices	s correctly identified on Chain of Custod	y? Yes	~	No 🗌	
16. Is it clear wh	nat analyses were requested?	Yes	~	No 🗆	
17. Were all hol	ding times able to be met?	Yes	~	No 🗆	
Special Hand	ling (if applicable)				
18. Was client n	otified of all discrepancies with this orde	er? Yes		No 🗌	NA 🗹
Person	Notified.	Date:		_	
By Wn	om?	Via: 🔲 eMa	II Pho	ne Fax	In Person
Regard	nog.				
Chanci	nstructions.				
19. Additional re	marks:				
Item Information					
	Item # Temp %	C			
Cooler	9.4				
Sample	10.1				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA I		ries	nailers		S	ГА						SH S Y		sı		CIA Lab A	L 2	3 0 al Re	lau	31	co	H.	A	S	PEC	of IRA	PH	E LOSE	CI #	54			9 of
CLIENT: Spectra Lab	oratories			ADD	RE	SS	22	21	R	oss	s W	ay T	ac	om	a,	WA									Z	P:		984	21		ADDE	RESS	Pag
PROJECT: 2020010099)					н	DR	ОС	AR	ВО	NS	T	O	RGA	ANI	cs	T	M	ETA	LS							01	THE	R				
CONTACT: Marie Holt											П	Т				П	Т	T	T			П	W						1	T	Т	П	
SAMPLED BY:				ERS			П	П			П	ı				П	1	5				И											
PHONE: 25	53-272-485	0		CONTAINERS	ı					0	П	ı	NTS.				1	PECIF		80	(SPECIFY)			П				or MF					
e-MAIL: marieh	@spectra-la	b.com			٥		9-H			1884 SGT-HEM (TPH)	(00)	1	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	4	8	a record or rest of the contract	TOTAL METALS (SPECIEW		TCLP METALS RCRA 8		9			F		ECIFY)	MPN - m				П	
PURCHASE ORDER #:				SER (H-HCI		NWTP	9	H-D×	GT-H	EM (F	24 8	HLOF	25 SE	AHP	98 PG	1	MET		META	META	0/804	K 907	DITY	PO S		S (SP)	olifor	1	0215			
SAMPLE ID	DATE	TIME	MATRIX	NUMBER OF	NWTP	BTEX	BTEX/NWTPH-G	NWTPH-G	NWTPH-DX	1664 S	1864 HEM (FOG)	8260/624 VOA	8260 C	8270/6	8270 PAHIPNA	8082/508 PCB	T ALVA	TOTAL		TCLP A	TCLP METALS	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT	900	SOLIDS (SPECIFY)	Fecal Colforn	7	Hg by 1631E			
010099-1	01/06/20	1230	Water	1							6			2					0		Y				7				100	x			
				L			7		23		10		L								6				1								
									7			-	L		Ц	8	1	1							24	4		4	1				
											130		L					1	83							1		1		1			
										Ц		-	L				4	1				Ц				4		4					
											18	8	L				4	1			0.7		9	Ц		4		4	4	1	1		
						L			6		100			li		20	4	1			99		0			4		1		1			
							20	Ц	E			-	L	M	Ц		-	L			b					_		4					
						L		Ц					L		Ц	8	4	L				Ц	37			4							
							17					19	L	3					70						W								
SPECIAL INSTRUCTIONS/COMME	ENTS:																																
Sample Receipt (lab use	only)			_	_	_	SIGN	ATU	RE			_		P	RINT	FED N	AME					CO	MPA	NY					rEG(Т	IME	
Total # of containers		RELINQUIS		-	#	n	h	Mg	46	1		Je	_	Drav	_							Sp	ec	ra		4	0	18	20	1		0 PN	_
COC seals present? inta		RECEIVE		-	4	#	/	6	X	_	_	+	(0	14	1		10	1-75	2	-	_	1	47	_	_	-	1/	2/	20	+	09	49	
Received within hold time?	_ deg. C	RECEIVE		-	_	-	-		_	_	_	+	_	_	_	_	_	_		-	_	_	_	-	-	+	-	_	_	+	_	_	_
Proper sample containers?	Diname I	RELINQUIS		-		_	_	_	_	_		+	_		_		_	-			_		_		-	+	-	-		+	-		-
CARL PROPERTY AND ADDRESS OF THE PARTY AND ADD	oler?	RECEIV										1														1				+			-
Payment Terms: Net 30 days. Past due as		1/2 % per month	interest. Cu	ustome	r agre	es io	pay si	cost	a of o	xillect	lon incl	uding n	Nason	able a	tionne	y's foo	s and	all oth	er cost	s of co	ilecti	on reg	gardi	eas of	whee	HOT BE	uit is !	filed in	Piero	e Co.	. WA v	enue.	

Turnaround Tirbe Requested

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

1971 ANG

70000		
STANDARD	RUSH	

				_			_		_	_	_	_		_		_		_								_	_	$\overline{}$	-	$\overline{}$	$\overline{}$	_	
CLIENT: Tacoma Pow	er (TPU)						362	28	So	uth	35	ith	Str	ee	t Ta	aco	ma,	W	A 9	84	09											DDRE	
PROJECT: Kosmos						Н	DR	oc.	ARE	301	NS			OR	GAI	NIC	s	Г	м	ETA	LS		OTHER										
CONTACT:								1	П	П	П	1	П	T	\Box	Т	T	Г	Г			П									П		
SAMPLED BY: Doug	Boet	ner		RS		П						١			BY 625 TTO		80	ı	_			П							O	# B/		RACT	
PHONE:253-244-0530				ONTAINERS		П						١	Ĭ,	2	37 62		BY 608		SCIFY		80	(K-JI)						TBS	4500	-10 SL		CONT	
		Prefer FA	-	CON			,	1		(FE	٥	1	BY 62	I VEN			1/PCB	RCR/	(SPI		CRA	(SPECIFY)						(L)	4500E	07237	minm	n SUB	
e-MAIL: PURCHASE ORDER #: 20	1-6-1	- DD		ER OF	CHOID	П	BTEX/NWTPH-G	9	ž	1664 SGT-HEM (TPH)	1664 HEM (FOG)	١	8260/624 VOA BY 624	8260 CHLOR SOLVENTS	8270/825 SEMI VOA	A DCB	Organochlor Pest/PCB	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)		TCLP METALS RCRA 8	ETALS	19045	9076	μλ	TNIO		(SPECIFY)	anide by	inide by	ant Chro	Nitroge	
SAMPLE ID	DATE	TIME	MATRIX	NUMBER	NWTPH-HOID	втех	BTEXN	NWTPH-G	NWTPH-Dx	1664 SC	1664 HE		R260/62	8260 CH	8270/62	8270 PAHVPNA	Organoc	TOTAL	TOTAL		TCLP M	TCLP METALS	PH 9040/9045	TX/TOX 9076	TURBIDITY	FLASH POINT	BOD	SOLIDS	Total Cyanide by 4500B; 4500C	Free Cyanide by D7237-10 SUB	Hexavalent Chromium	Ammonia Nibogen SUBCONTRACT	
1 D2	1/6/20	12:30		T		П	X	W	X	T		Ī		T	Ī	Ť	T	Ī	X				Х		Х		T				X		
				T			-	7		T		T		1	T												\exists						
						Ц																											
						Ц		4																									
				L		Ц		4						4			L																
				L		Ц	-	4	1	4	4	4		4			L																
Spectra Internal Instruc	ctions	RELINQUIS	HED DV	+		- 5	IGN/	TUF	SE	_		1				_	NAM		_			С	OMP	ANY		_		DAT	ΓE	_		TIM	E
Please Refer to H	ve			-		500	1	39	2	a	>	+	1			$\overline{}$	300		to	ev			P	1	_	4	1/		120	$\overline{}$	3	13	
Kosmos Oil sex	c p	RECEIVE		\vdash		_	10	1	2	-	_	4	S	per	ice	-6	Sec	K		_	0	SPI	ec	fra		4	1/	6/	20)		15	3,6
(wapp) Table 1.	-	RELINQUIS	HED BY	_								1																					
Parameters me	Lhud	RECEIVE																		1													
and levels	ni +s	Payment Ter attorney's fee	syment Terms: Net 30 days. Past due accounts subject to 1 corney's fees and all other costs of collection regardless of v					o 1 t	1/2 % nethe	o per	moi	nth in filed i	teres	t. C	istor	ner a	gree	es to	pay	all o	costs	of o	collec	ction	ind	ludir	ig re	asor	able				

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

P.O.#; Auth #20-13-1-009 02/07/2020 Project: Kosmos Client ID: D-2 Sample Matrix: Water Tacoma Public Utilities Date Sampled: 01/13/2020 PO Box 11007 Tacoma, WA 98411 Date Received: 01/13/2020 Attn: Doug Boettner Spectra Project: 2020010349 Spectra Number: 1

Analyte	Result	Units	Method
Total Mercury	ND*		EPA 1631E
Turbidity	5.9	NTU	EPA 180.1
Arsenic	0.6	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	1.1	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	0.5	μg/L	EPA 200.8
Diesel	120	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.48	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	$\mu g/L$	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Total Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	111	NWTPH-D
Toluene-d8	98	NWTPH-G
4-Bromofluorobenzene	102	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Devan Salter

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

January 15, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units:

Spectra Project:

ug/L 2020010349

Applies to Spectra #'s Analyst: 1 SCJ

QUALITY CONTROL RESULTS

		ICP-MS M	etals - EPA	Method 200.	8 - Water			
				gent Blank (L				
Date Digested:	1/15/2020				Date Analy	zed:	1/15/2020	
		Element		CAS#		Result		
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	ratory Fort	ified Blank (I	FB)			
Date Digested:	1/15/2020				Date Analy	zed:	1/15/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	94.31	94.3		
		Cadmium		100.0	93.56	93.6		
		Chromium		100.0	91.85	91.9		
		Copper		100.0	94.27	94.3		
		Lead		100.0	96.20	96.2		
		Nickel		100.0	93.88	93.9		
		Zinc		100.0	93.50	93.5		
LCS Recovery limit	ts 85-115%							
	540742000	Matrix Spike	/Matrix Sp	ike Duplicate			de/old/s/d	
Date Digested:	1/15/2020				Date Analy	zed;	1/15/2020	
Sample Spiked:	2020010320-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element	_	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic		0.00	100.0	102.55	102.6	108.77	108.8	5.9
Cadmium		0.00	100.0	93.82	93.8	97.60	97.6	4.0
Chromium		0.00	100.0	107.90	107.9	114.34	114.3	5.8
Copper		0.36	100.0	91.96	91.6	96.40	96.0	4.7
Lead		0.00	100.0	89.02	89.0	93.14	93.1	4.5
Nickel		0.00	100.0	95.06	95.1	98.53	98.5	3.6
		20.01	100.0	123.39	94.6	128.19	99.4	4.9
Zinc		28.81	100.0	224.44				
Zínc		28.81	100.0	,,,,,,,				
	-130%	28.81	100.0	1200				

SPECTRA LABORATORIES

Jeffrey Cooper Laboratory Manager

January 16, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020010349 Date Analyzed: 1/14/2020

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
MTBE	<1	10.0	9.6	96
Benzene	<1	10.0	9.5	95
Toluene	<1	10.0	9.03	90.3
Ethylbenzene	<1	10.0	10.37	103.7
Total Xylenes	<2	30.0	31.1	103.8
Gasoline	<50	250	295	118

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	94	94	Benzene	<0.4
1,2-Dichloroethane-d4	96	95	Toluene	<0.4
Toluene-d8	90	94	Ethylbenzene	< 0.4
4-Bromofluorobenzene	89	91	Total Xylenes	<0.8
			MTBE	< 0.4
1 /11			Gasoline	<50

Jeffrey Cooper

Laboratory Manager

...Where experience matters

2221 Ross Way . Tacoma, WA 98421 . (253) 272-4850 . Fax (253) 572-9838 . www.spectra-lab.com

February 7, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020010349

Applies to Sample # 1

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/28/20

Units:

mg/L

Date Analyzed:

02/03/20

Spike Sample Amount Amount

Spike

Percent

Compound

Result

Added

Found

2.10

Recovery

Diesel

< 0.10

2.50

84

METHOD BLANK

Date Extracted:

01/28/20

Date Analyzed:

02/03/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

104%

SPECTRA LABORATORIES

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010349

Work Order Number: 2001217

January 17, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 1 sample(s) on 1/14/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/17/2020

CLIENT:

Spectra Laboratories

Project:

2020010349

Work Order:

2001217

Lab Sample ID 2001217-001

Client Sample ID

. .

010349-1

Work Order Sample Summary

Date/Time Collected

Date/Time Received

01/13/2020 10:00 AM

01/14/2020 12:52 PM

Case Narrative

WO#: 2001217 Date: 1/17/2020

CLIENT:

Spectra Laboratories

Project:

2020010349

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2

2001217

Date Reported:

1/17/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001217
Date Reported: 1/17/2020

Client: Spectra Laboratories Collection Date: 1/13/2020 10:00:00 AM

Project: 2020010349 Lab ID: 2001217-001

Matrix: Water

Client Sample ID: 010349-1

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27164
 Analyst: WF

 Mercury
 ND
 0.500
 ng/L
 1
 1/17/2020 4:34:12 PM

Date: 1/17/2020

Work Order: 2001217

CLIENT: Spectra Laboratories

2020010349 Project:

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: MB-27164 SampType: MBLK Units: ng/L Prep Date: 1/17/2020 RunNo: 56730 Client ID: MBLKW Batch ID: 27164 Analysis Date: 1/17/2020 SegNo: 1130283 Analyte Result RL SPK value SPK Ref Val. LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB2-27164 SampType: MBLK Units: ng/L Prep Date: 1/17/2020 RunNo: 56730 Client ID: MBLKW Batch ID: 27164 Analysis Date: 1/17/2020 SeqNo: 1130284 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB3-27164 SampType: MBLK Units: ng/L Prep Date: 1/17/2020 RunNo: 56730 Client ID: MBLKW Batch ID: 27164 Analysis Date: 1/17/2020 SeqNo: 1130285 Analyte Result SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury ND 0.500 Sample ID: LCS-27164 SampType: LCS Units: ng/L Prep Date: 1/17/2020 RunNo: 56730 Client ID: LCSW Batch ID: 27164 Analysis Date: 1/17/2020 SeqNo: 1130286 Result Analyte RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 33.4 0.500 25.00 0 Mercury 134 80 120 S NOTES: S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required. Sample ID: 2001217-001ADUP SampType: DUP Units: ng/L Prep Date: 1/17/2020 RunNo: 56730

SPK value SPK Ref Val

Analysis Date: 1/17/2020

LowLimit HighLimit RPD Ref Val

%REC

24

Qual

SeqNo: 1130289

0

%RPD RPDLimit

Client ID:

Analyte

Mercury

010349-1

Batch ID:

27164

ND

0.500

Result

Date: 1/17/2020

Work Order:

2001217

CLIENT:

Spectra Laboratories

Project:

2020010349

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001217-001AMS

SampType: MS

Units: ng/L

Prep Date: 1/17/2020

RunNo: 56730

Client ID: 010349-1

Batch ID: 27164

Analysis Date: 1/17/2020

SeqNo: 1130290

Analyte Mercury Result 33.4 RL SPK value SPK Ref Val

25.00

25.00

0.4180

%REC 132

%REC

135

71

LowLimit HighLimit RPD Ref Val 125

LowLimit HighLimit RPD Ref Val

125

%RPD RPDLimit

Qual

S

S

NOTES:

S - Outlying spike recovery observed.

Sample ID: 2001217-001AMSD

SampType: MSD

Units: ng/L

Prep Date: 1/17/2020

33.40

RunNo: 56730

Client ID: 010349-1

Batch ID: 27164

0.500

0.500

0.4180

Analysis Date: 1/17/2020

SeqNo: 1130291

Result

34.1

RL

SPK value SPK Ref Val

71

2.07

%RPD RPDLimit Qual

24

Analyte Mercury

> NOTES: S - Outlying spike recovery observed.

Sample Log-In Check List

Client Name:	SPECTRA		Work O	rder Numi	ber: 200121	7
Logged by:	Carissa True		Date Re	eceived:	1/14/20	20 12:52:00 PM
Chain of Cus	tody					
	Custody complete?		Yes	~	No 🗌	Not Present
	e sample delivered?		UPS			
Log In				-		2.50
Coolers are	present?		Yes	•	No 🗌	NA 🗌
A Shipping co	ntainer/cooler in good cond	lition?	Yes		No 🔲	
	als present on shipping cor		Yes	1-1	No 🗆	Not Required
	mments for Custody Seals				114	har hadenaa 12
6. Was an atte	empt made to cool the sam	ples?	Yes		No 🗸	NA 🗆
		Samples re	eceived at	appropri	ate tempera	ture
7. Were all iter	ms received at a temperatu	re of >0°C to 10.0°C*	Yes		No 🗆	NA 🗹
8. Sample(s) is	n proper container(s)?		Yes	•	No 🗆	
	imple volume for indicated	test(s)?	Yes		No 🗆	
	s properly preserved?		Yes	100	No 🗆	
	vative added to bottles?		Yes		No 🗆	NA 🗆
1103300						BrCl added to 001
12. Is there hea	dspace in the VOA vials?		Yes		No 🗆	NA 🗹
13. Did all samp	oles containers arrive in go	od condition(unbroken)?	Yes	~	No 🗆	
14. Does paper	work match bottle labels?		Yes		No 🗆	
15. Are matrices	s correctly identified on Cha	ain of Custody?	Yes		No 🗆	
16, Is it clear wh	nat analyses were requeste	ed?	Yes		No 🗆	
17. Were all hol	ding times able to be met?		Yes		No 🗆	
Special Hand	ling (if applicable)					
Toronty 43 los	notified of all discrepancies	with this order?	Yes		No 🗆	NA 🗹
Person	Notified:	Date			_	
By Wh	om:	Via:	еМа	il 🗌 Ph	one 🗌 Fax	☐ In Person
Regard	ding:					
Client	Instructions:					
19. Additional re	emarks:					
Item Information						
The state of the s	Item #	Temp °C				
Cooler 1		8.3				
Sample 1		7.4				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

A		
A	SPECTRA	Laboratories
-	Trees, which we have a	The section of the section of

STANDARD RUSH SPECIAL 3 day CHAIN of CUSTODY

Lub Approval Required SPECTRA PROJECT#

	Where e	xperience n	nattern				F	Ret	urn	Sa	mple	s Y	es_	_	N	o_X					P	Ve	a	K	-		2	0	01	2	17		2
CLIENT: Spectra Labo	oratories			ADD	RE	SS	22	21	R	oss	s Wa	ay T	ac	om	a,	WA										IP:		984		-	ADDR	ESS NGE	9
PROJECT: 2020010349					L	HY	DR	OC	AR	BC	ONS		O	RG/	ANI	cs	1		MET	ALS		L					01	THE	R				Day
CONTACT: Marie Holt												ı					1																
SAMPLED BY:				ERS	ı		П				Ш	ı				П	1		-		_	ı										П	
PHONE: 25	3-272-4850			CONTAINERS						F		ı	SNTS			Ш	1	8	La Cal	8	(SPECIFY)	ı						or Mi				П	М
e-MAIL: marieh@	@spectra-la	b.com		OF CO	٥		9-Hc			1664 SGT-HEM (TPH)	F0G)	ķ	8280 CHLOR SOLVENTS	8270/625 SEMI VOA	¥	8	ı	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCLP METALS RCRA B	LS (SP	9	9		Þ		SOLIDS (SPECIFY)	ecal Coliforn - MPN or MF					
PURCHASE ORDER #:				NUMBER	IWTPH-HCID		BTEXMMTPH-G	NWTPH-G	H-Dx	SGT-H	(684 HEM (FOG)	\$260/624 VOA	CHLO	825 SE	PAHVP	308 PC	1	WE	, we	META	TOLP METALS	PH 9040/9045	1X 907	DITY	H POIN		S (SP	Colifor	1631	100		П	М
SAMPLE ID	DATE SAMPLED	SAMPLED	MATRIX	Š	N V V	BTEX	BTEX	NWT	NWTF	1664	1664	8250/	8280	8270A	8270 PAH/PNA	8082/		TOTA	101	TOLP	TCLP	PH 90	DYXT	TURBIDITY	FLAS	900	SOLIC	Fecal	Hobs	1			
010349-1	01/13/20	1000	Water	1					1		題	10											4		1)	K I		34	
										L		1	L				4		9			L								-			
	-		-	-		H		H		H	3	-			H		+		1	H		H				-		4	1	-			
	-		-	+	8	H	80		200 200 200 200 200 200 200 200 200 200	H		-	H		H		+	1	+	Н		\vdash	0	Н		Н	2	+	-	-	Н		
						H						i	H				1	ii.	t			\vdash		H				1	1	8			
				T			10				-	B	Т				1		ı									T	0	1			
											100	1		0					-										9				
												1							1		8		D									N.	
	12			L	100	L		L		L	20	12	L	81					1	L													
SPECIAL INSTRUCTIONS/COMME	ENTS:																																
Sample Receipt (lab use	(Vide			_	1	,-	SIG			, ,	,	-		_	_	TED N	AME			F		_	MPA	_				DAT		T		ME	
Total # of containers		RELINQUIS		-	4	14	14	M	4	N	1	Je	en [_				_	_	+	_	_	_	tra		-	_	1/13	_	_	_	PN	1
COC seals present?inta Temp at receipt		RECEIV		+	71	T	K	7	~	_	_	+	a	14	N		CIV	22:	91	+	+	A.	L		-	-	11	14/	20	1	25	_	-
Received within hold time?		RECEIV	ED BY	+								+																		+			
Proper sample containers?		RELINQUI	SHED BY																														
CONTRACTOR OF THE PARTY OF THE	oler?	RECEIV	ED BY									T																		1			
Payment Terms: Not 30 days. Past due a	cocurts subject to	1 1/2 % per mont	h Interest. Co	ustome	er agre	es to	pay s	il cos	ts of c	collec	tion incl	uding r	eason	able (sttorre	oy's for	es and	all o	ther co	sts of o	plied	tion re	gard	iess o	f who	ther s	uit is	filed in	Piero	Co.	WA ve	inue.	

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838

SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

turn Samples Y N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

2020010	034g
STANDARD	RUSH

www.spectra-iao.com	1 mows	pectra-lat	com.	110	tuii	1 00	шр	169	_	_	14	_	га	ge.		_		<u>"</u>	_	_	_	-	<u> </u>	12	_		-			, I	·	9		_	
CLIENT: Tacoma Pow	er (TPU)						36	28	So	uth	h 3	5th	St	ree	t T	ac	om	a,	WA	4 9	840	09											CHA		Ē
PROJECT: Kosmos						н	DR	oc	AR	во	NS			OF	RGA	NIC	cs			ME	TA	LS							ОТН	HEF	2				
CONTACT: SAMPLED BY: Dang T PHONE: 253 e-MAIL: PURCHASE ORDER #: 20	FAX: TE	STING Prefer FA or e-MAIL	=	ER OF CONTAINERS	HCID		BTEXNWTPH-G	-G	-Dx	1664 SGT-HEM (TPH)	1664 HEM (FOG)		3260/624 VOA BY 624 TTO	8260 CHLOR SOLVENTS	VOA BY 625 TTO			Organischior Pest/PCB BY 608	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)		TCLP METALS RCRA 8	ETALS (SPECIFY)	79045	9076	ITY	TNIO		(SPECIFY) TSS	4500B; 4500C	Free Cyanide by D7237-10 SUB **	Hexavalent Chromium	Ammonia Nilrogen SUBCONTRACT		
SAMPLE ID	DATE	TIME	MATRO	NUMBER	NWTPH-HCID	BTEX	BTEXN	NWTPH-G	NWTPH-Dx	1664 SC	1664 HE		3260/62	8260 CH	8270/62	8270 PAH/PNA	8082/608 PCB	Organo	TOTAL	TOTAL		TCLP M	TCLP METALS	PH 9040/9045	1X/TOX 9076	TURBIDITY	FLASH POINT	ВОБ	SOLIDS	Total Cyanide by	Free Cyr	Hexavale	Ammonis		
D-2	20-13-1	10:00		T			_	×												Х				X		X				Ī		X		Ħ	
								B																										П	
				\perp		L										\Box																			
				\perp								Ц				4				Ц															
	-			+	L	H		Н		_		Н		Ц		4				Ц														Ц	
			-	+	-	H				_		Н				4				Н		_										L		Н	
				+	-	H		H		_		Н		Н	Н	\dashv				Н		_				_				_				Н	
				Ш			FICE	LATI	Inc.	_		Ш				010.10			Ш			_												Ш	
Spectra Internal Instruc	ctions	RELINQUIS	HED BY	1	>	94		NATU R		D			7	ود	· ·		ED!					-	T	_	PAN			1-		-Z	0	ī	0:0		_
Refer to the Ko oil seep wapp. I Pavaneters me of deladure lin	sucs	RECEIVE	ED BY				4	2	81	2					eno			_		pro		_	Sex							20			73	-	_
1 Parameters me	They d	RELINQUIS	HED BY						-																				-			Γ,	0	20	
of databuse lin	1+5	RECEIVE	ED BY																																
and levels		Payment Ter	ms: Net	30 da	ys. F	Past	due	acco	unts	sut	oject	to 1	1/2	% p	er mo	onth	inte	rest	. Cu	ston	nera	agre	es lo	pa	y all	cost	s of	colle	ectio	n in	cludi	ng r	easo	nable	е

01/31/2020

Tacoma Public Utilities

PO Box 11007 Tacoma, WA 98411

Attn: Doug Boettner

P.O.#:

Auth #20-20-1-012

Project:

Kosmos

Client ID:

D-2

Sample Matrix: Water

Date Sampled:

01/21/2020

Date Received:

01/21/2020

Spectra Project: 2020010572

Spectra Number: 1

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.00161*	ug/L	EPA 1631E
Turbidity	4.1	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	< 0.3	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8

^{*} Mercury analyzed by Fremont Analytical. Please see complete report attached.

Surrogate	Recovery	Method
p-Terphenyl	91	NWTPH-D
Toluene-d8	93	NWTPH-G
4-Bromofluorobenzene	103	NWTPH-G

SPECTRA LABORATORIES

a6/stb

Page 1 of 2

01/31/2020	P.O.#:	Auth #20-20-1-012
01/31/2020	Project:	Kosmos
	Client ID:	D-2
Tagoma Dublia Litilities	Sample Matrix	Water

Tacoma Public Utilities Sample Matrix: Water
PO Box 11007 Date Sampled: 01/21/2020

Tacoma, WA 98411 Date Received: 01/21/2020 Attn: Doug Boettner Spectra Project: 2020010572

Spectra Number: 1

Diesel	<70	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pН	6.09	pH Units	SM 4500-H+B
Hexavalent Chromium	<0.01	mg/L	SM3500-CR B
Benzene	<0.4	μg/L	SW846 8260C
Ethylbenzene	<0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see complete report attached.

Surrogate	Recovery	Method
p-Terphenyl	91	NWTPH-D
Toluene-d8	93	NWTPH-G
4-Bromofluorobenzene	103	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

January 22, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s

Analyst:

ug/L 2020010572 1 SCJ

QUALITY CONTROL RESULTS

		ICP-MS M	etals - EPA	Method 200	.8 - Water			
				gent Blank (I				
Date Digested:	1/22/2020				Date Analy	zed:	1/22/2020	
		Element		CAS#		Result	_	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	atory Fort	ified Blank (I	LFB)			
Date Digested:	1/22/2020				Date Analyz	zed:	1/22/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec	21	
		Arsenic		100.0	99.73	99.7	_	
		Cadmium		100.0	96.51	96.5		
		Chromium		100.0	99.44	99.4		
		Copper		100.0	97.42	97.4		
		Lead		100.0	95.07	95.1		
		Nickel		100.0	106.49	106.5		
		Zinc		100.0	105.00	105.0		
LCS Recovery limit	s 85-115%							
		Matrix Spike	/Matrix Sp	ike Duplicate	(MS/MSD)			
Date Digested:	1/22/2020				Date Analyz	zed:	1/22/2020	
Sample Spiked:	2020010221-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic		0.92	100.0	103.28	102.4	103.60	102.7	0.3
Cadmium		0.00	100.0	93.86	93.9	96.26	96.3	2.5
Chromium		1.11	100.0	98.55	97.4	99.13	98.0	0.6
Copper		0.57	100.0	93.69	93.1	95.19	94.6	1.6
Lead		0.00	100.0	91.37	91.4	92.18	92.2	0.9
Nickel		2.28	100.0	102.01	99.7	106.87	104.6	4.8
Zinc		59.89	100.0	161.85	102.0	159.91	100.0	1.9
Comment:								
Recovery Limits 70-	-130%							
RPD Limit 20								

SPECTRA/LABORATORIES

Authorized by:

January 23, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020010572

Date Analyzed: 1/22/2020

Units: ug/L

Applies to Spectra #'s: #1

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
		1			
MTBE	<0.4	10.0	11.5	115	
Benzene	<0.4	10.0	11.3	113	
Toluene	<0.4	10.0	9.40	94.0	
Ethylbenzene	<0.4	10.0	10.24	102.4	
Total Xylenes	<0.8	30.0	29.7	99.0	
Gasoline	<50	250	264	105	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	102	100	Benzene	<0.4
1,2-Dichloroethane-d4	110	110	Toluene	<0.4
Toluene-d8	93	91	Ethylbenzene	<0.4
4-Bromofluorobenzene	100	100	Total Xylenes	<0.8
			MTBE	<0.4
			Gasoline	<50

Authorized by:

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010572

Work Order Number: 2001335

January 27, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 1 sample(s) on 1/22/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 01/27/2020

CLIENT: Project: Spectra Laboratories

2020010572

Work Order:

2001335

Lab Sample ID

Client Sample ID

Date/Time Collected

Date/Time Received

Work Order Sample Summary

2001335-001

010572-1

01/21/2020 11:10 AM

01/22/2020 9:00 AM

Case Narrative

WO#: 2001335 Date: 1/27/2020

CLIENT: Spectra Laboratories

Project: 2020010572

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

200133

Date Reported:

1/27/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001335
Date Reported: 1/27/2020

Client: Spectra Laboratories Collection Date: 1/21/2020 11:10:00 AM

Project: 2020010572

Lab ID: 2001335-001 Matrix: Water

Client Sample ID: 010572-1

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27239
 Analyst: WF

 Mercury
 1.61
 0.500
 ng/L
 1
 1/23/2020 10:57:09 PM

Date: 1/27/2020

Work Order:

2001335

CLIENT:

Spectra Laboratories

32.5

0.500

Project:

2020010572

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 202001057	2				mercury by metrica rec
Sample ID: MB-27239	SampType: MBLK			Units: ng/L	Prep Date: 1/23/2020 RunNo: 56873
Client ID: MBLKW	Batch ID: 27239				Analysis Date: 1/23/2020 SeqNo: 1133904
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury	ND	0.500			
Sample ID: MB2-27239	SampType: MBLK			Units: ng/L	Prep Date: 1/23/2020 RunNo: 56873
Client ID: MBLKW	Batch ID: 27239				Analysis Date: 1/23/2020 SeqNo: 1133905
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury	ND	0.500			
Sample ID: MB3-27239	SampType: MBLK			Units: ng/L	Prep Date: 1/23/2020 RunNo: 56873
Client ID: MBLKW	Batch ID: 27239				Analysis Date: 1/23/2020 SeqNo: 1133906
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury	ND	0.500			
Sample ID: LCS-27239	SampType: LCS			Units: ng/L	Prep Date: 1/23/2020 RunNo: 56873
Client ID: LCSW	Batch ID: 27239				Analysis Date: 1/23/2020 SeqNo: 1133907
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Mercury	22.0	0.500	25.00	0	88.0 80 120
Sample ID: 2001350-001ADUP	SampType: DUP			Units: ng/L	Prep Date: 1/23/2020 RunNo: 56873
Client ID: BATCH	Batch ID: 27239				Analysis Date: 1/23/2020 SeqNo: 1133856
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua

24

1.53

33.00

Mercury

Date: 1/27/2020

Work Order: 2001335

CLIENT: Spectra Laboratories

59.1

0.500

25.00

Project: 2020010572

QC SUMMARY REPORT

1.71

24

125

71

58.10

Mercury by Method 1631E

Sample ID: 2001350-001AMS Client ID: BATCH	SampType: MS Batch ID: 27239			Units: ng/L		Prep Da Analysis Da	ite: 1/23/20 ite: 1/23/20		RunNo: 568 SeqNo: 113		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	58.1	0.500	25.00	33.00	100	71	125				
Sample ID: 2001350-001AMSD Client ID: BATCH	SampType: MSD Batch ID: 27239			Units: ng/L		Prep Da Analysis Da	ite: 1/23/20	50	RunNo: 568 SeqNo: 113		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

33.00

104

Mercury

Sample Log-In Check List

Clie	nt Name:	SPECTRA		Work O	rder Numb	ber: 2001335	
Log	ged by:	Carissa True		Date Re	ceived:	1/22/202	0 9:00:00 AM
Chain	of Cust	ody					
		Custody complete?		Yes	✓	No 🗆	Not Present
2. H	ow was the	sample delivered?		UPS			
2/32							
Log II	<u>n</u>						
3. C	oolers are	present?		Yes	V	No 🗌	NA 🗌
4 S	hinning cor	ntainer/cooler in good cond	ition?	Yes	•	No 🗆	
		als present on shipping con		Yes		No 🗹	Not Required
		mments for Custody Seals		103		140 🖭	Not Required \square
6. W	las an atte	mpt made to cool the samp	oles?	Yes		No 🗸	NA \square
			Me	ercury in w	vater, pre	served	
7. W	ere all iten	ns received at a temperatur	re of >0°C to 10.0°C*	Yes		No 🗆	NA 🗹
8. S	ample(s) in	proper container(s)?		Yes	•	No 🗆	
		mple volume for indicated t	est(s)?	Yes	✓	N. 🗆	
10. A	re samples	properly preserved?		Yes	•	No 🗌	
11. W	as preserv	ative added to bottles?		Yes		No 🗸	NA \square
12. ls	there head	dspace in the VOA vials?		Yes		No 🗌	NA 🗹
		les containers arrive in goo	d condition(unbroken)?	Yes	✓	No 🗆	
14. D	oes paperv	vork match bottle labels?		Yes	✓	No 🗆	
15. A	re matrices	correctly identified on Cha	in of Custody?	Yes	•	No 🗆	
		at analyses were requested		Yes	✓	No 🗆	
17. W	ere all hold	ding times able to be met?		Yes	✓	No 🗆	
Speci	ial Handl	ing (if applicable)					
		otified of all discrepancies	with this order?	Yes		No \square	NA 🗹
	Person	Notified:	Date	:			
	By Who	om:	Via:	_ oMa	II Ph	one Fex	In Person
	Regard	ing:					
	CHank	structions:					
19. A	dditional re	marks:					
ltem Inf	formation						
		Item #	Temp °C				
	ooler 1		12.0				
Sa	ample 1		12.1				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA	Laborato	ries			S	TA	ND	AF	RD	uma	R	US	H	X	SF	00	CIA	L	3 val F	dequire	u	C	H	A	rs	PEC	ZIR/	A PR	ROJE	ECT#		0[YC	. 61
	Where	experience n	natters				F	Ret	um	Sa	mp	les	Ye	s		No	X								1	20	00	11	3	35	5			0
CLIENT: Spectra La	aboratories			ADD	RE	SS	22	21	R	os	s V	Vay	Ta	acc	oma	a,	WA	1								Z	IP:	!	984	121		ADDR	RESS	130
PROJECT: 20200105	72		7 8			Н	DR	oc	AR	BC	ONS			OR	GA	NI	cs			MET	ALS	3						0	THE	R				
CONTACT: Marie Holt						Г						П					П	1		T	T		Г								T	T		Г
SAMPLED BY:				RS	1							П	П			М	П	-					ı								1			
	050 070 405			CONTAINERS	ı				Ш				П	20				-		CIFY	-	3	ı						MF					
PHONE:	253-272-4850	0	-	INO	ı					PH)		П		VEN	8			١	SCR.	SPE	8	(SPECIFY)	П					2	PNO					
PURCHASE ORDER #:	eh@spectra-la	ib.com		NUMBER OF C	NWTPH-HCID		BTEX/NWTPH-G	1-6	4-Dx	1664 SGT-HEM (TPH)	1664 HEM (FOG)		8260/624 VOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	8270 PAH/PNA	8082/608 PCB		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCLP METALS RCRA 8	TCLP METALS (0/9045	9076	YTIC	POINT		SOLIDS (SPECIFY)	Fecal Coliform - MPN or MF		1631E			
SAMPLE ID	DATE	TIME	MATRIX	NUME	NWITP	BTEX	BTEXA	NWTPH-G	NWTPH-Dx	1664 S	1864 H		8260/63	8260 C	8270/6	8270 P	8082/60		TOTAL	TOTAL	TCLP	TCLP	PH 9040/9045	9708 XOT/XT	TURBIDITY	FLASH POINT	BOD	SOLIDS	Fecal C		Hg by			
010572-1	01/21/20	1110	Water	1	6						8		To the		II.				i,					No.						-	x	Í		
					N.	L					-63									1		3										3		
						L	143		1			Ц					1					9				101								
						L		1					1		9		24		1													1		
											1						10			- 1											-			
							8		n		惠				9															33	1	9		
											1		U				14																	
					ij			11			南								90			8	3									1		
											1				18							3		13							T	M		
					O				100						15		8	1				N					П	11		8	1			
SPECIAL INSTRUCTIONS/CON	MENTS:																	_				_			_				_		-	_		
Sample Receipt (lab u	ise only)				1		SIGN	IATI.	JRE						PF	RINT	ED N	IAM	E		T		CO	MPA	NY				DA	TE	Т	T	IME	
Total # of containers		RELINQUIS	SHED BY		1	w	10	ra	ire	ev	1		Jer	n D	rav	/en	1						S	ec	tra			0	1/2	1/20		3:00	O PI	N
COC seals present? in		RECEIV		1	nu	44	Je	1	0	_			21	nw	a	140	Imi	25			1		F	+1				-1	22	20	1	0900)	
Temp at receipt	deg. C	RECEIV		-	_		_	_	_	_	_	-	_	_		_	_	_	_		+	_	_		_	_		-	_		+	_	_	_
Received within hold time? _ Proper sample containers? _		RELINQUIS			-	-		-	-		-				_	_					+	_	-		_	_	-	-	_		+	_		-
Topat Bompre Contaments	COLUMN TO SERVICE STATE OF THE PERSON SERVICE STATE SERVICE STATE SERVICE STATE OF THE PERSON SERVICE STATE SERVICE STATE SERVICE STATE SERVIC	25255		-	_	_	_	_	_	_	_	\rightarrow	_	_	_	_	_	_			+	_	_	_		_	-		_		+			_

Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue.

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 SPECIAL INSTRUCTIONS/COMMENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E) Return Samples Y

CHAIN of CUSTODY

SPECTRA PROJECT #

202	001	05	72	
STANDAR	RD	\checkmark	RUSH	Γ

www.spectra-rab.com	n intows	pectra-rat	o,com	Inc	Luii	100	тір	163	_		14		Га	ge	_	_	_	"		_	_	-		41	_	1/1	_	1			10	3		
CLIENT: Tacoma Pov	ver (TPU)				_		36	28	So	ut	h 3	5th	St	ree	et T	ac	om	a,	WA	4 9	840	9									-		CHAN	
PROJECT: Kosmos						Н	DR	ОС	AR	вс	NS			OF	RG/	ANI	cs			ME	TA	LS						- (отн	HEF	R			
CONTACT:															0																			
SAMPLED BY: Dong T	Boethra	u		AINERS											BY 625 TTO			808		_									10	8	. BO		FRACT	
PHONE 153 - 244-0539	FAX: TE	STING		TAIN									624 TTO	TIS	BY 62			APCB BY 608	A 8	(SPECIFY)		60	(SPECIFY)						TSS	3; 450	D7237-10 SUB		NODE	
e-MAIL:		Prefer FA	-	CON			9			(TPH)	6		BY 6	OLVE)				st/PCB	SRCR	S (SP		RCRA							CIFY)	y 4500B;	0723	mnimo	en SUE	
	-21-1-			ER OF	HCID		WTPH-	Q	ŏ	ST-HEN	M (FO		4 VOA	LOR S	5 SEMI	HPNA	8 PCB	Mor Pe	METALS RCRA 8	METAL		ETALS	ETALS	/9045	9078	TY	POINT		(SPECIFY)	anide by	Cyanide by	ant Chro	Nitrog	
SAMPLE ID	DATE	TIME	MATRIX	NUMBER	NWTPH-HCID	втех	BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1664 SGT-HEM (TPH)	1864 HEM (FOG)		8200/624 VOA BY	8280 CHLOR SOLVENTS	8270/825 SEMI VOA	1270 PAHIPNA	9092/508 PCB	Organoc	TOTAL	TOTAL METALS		TCLP METALS RCRA 8	ICLP METALS	PH 9040/9045	TX/TOX 9078	TURBIDITY	FLASH POINT	800	sonos	Total Cyanide by	Free Cyr	Hexavalent Chromium	Ammonia Nitrogen SUBCONTRACT	
D-2	421/20	11:10	~				X	桜	Х			Ī								X	T		-	X		X						X		
								100																										
												Г																П		П				
															T													П						
																				-														
														1																				
Control to the little of				_			SIGN	UTAL	RE								TED				_		0	OM	PANY	1		=	DA	TE			TIM	AE .
Spectra Internal Instru		RELINQUIS	HED BY	1)	2	1	30	3	4		>	L	P	~9	1	3	Ge	the	-	-		1	7	1.0	人		1-	21	1-2	10	1:	45	1
Please Rela to .	(una po)	RECEIVE	ED BY	N	So	V		2	N	1	1	-,	N	14	PI							2	De	C	6	a		1.	21	-2	0	1	4	5
table 1 2	(osari)	RELINQUIS	HED BY										,														-							
Kosmos Oil seep table I Pavamete method of detecti limits and leve	on	RECEIVE	ED BY		,																													
limits and leve	2 (5	Payment Ter attorney's fer	ms: Net es and al	30 da I othe	ys. P	ast of	due a	ectio	unts in reg	sub	oject dless	to 1	1/2 wheth	% p	er m sult is	onth	inte	rest Pier	. Cu	ston	ner a	gre	es to e. 5)	pay	y all	cost	s of	colle	ection	n Inc	cludi	ng re	easo	nable

02/06/2020	P.O.#:	Auth #20-27-1-015	
02/06/2020	Project:	Kosmos	
	Client ID:	U-3	
Tacoma Public Utilities	Sample Matrix:	Water	

PO Box 11007 Date Sampled: 01/27/2020
Tacoma, WA 98411 Date Received: 01/27/2020
Attn: Doug Boettner Spectra Project: 2020010734

Spectra Number: 1

Analyte	Result	Units	Method
	No. of Particular Control of the Con		and the second second second second second
Total Mercury	0.00502*	ug/L	EPA 1631E
Turbidity	20	NTU	EPA 180.1
Arsenic	< 0.3	μ g/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	1.2	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	4.0	μg/L	EPA 200.8
Diesel	140	μg/L	NWTPH-D
Oil	230	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	5,99	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Total Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	83	NWTPH-D
Toluene-d8	98	NWTPH-G
4-Bromofluorobenzene	102	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

02/06/2020 P.O.#: Auth #20-27-1-015
Project: Kosmos
Client ID: T-1

Tacoma Public Utilities Sample Matrix: Water
PO Box 11007 Date Sampled: 01/27/2020

Tacoma, WA 98411 Date Received: 01/27/2020 Attn: Doug Boettner Spectra Project: 2020010734

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	ND*	ug/L	EPA 1631E
Turbidity	333	NTU	EPA 180.1
Arsenic	0.8	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	12.8	μg/L	EPA 200.8
Lead	4.8	μg/L	EPA 200.8
Nickel	1.4	μg/L	EPA 200.8
Zinc	16.8	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	76	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	5.85	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Total Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	110	NWTPH-D
Toluene-d8	98	NWTPH-G
4-Bromofluorobenzene	97	NWTPH-G

SPECTRA LABORATORIES

February 7, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix:

Water

Spectra Project #

2020010734

Applies to Spectra #

1-2

QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
Analyte	Method	Date	Analyst	Result	Rec.	Limits	RPD	Limits
Turbidity	EPA 180.1	01/28/20	HDE	< 0.1	97.7	90.6-107	2.53	≤20
pH	SM 4500-H+B	01/28/20	HDE	N/A	100.6	± 0.2 pH	4.07	≤20

SPECTRA LABORATORIES

January 28, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: ug/L
Spectra Project: 2020010734
Applies to Spectra #'s 1-2
Analyst: SCJ

QUALITY CONTROL RESULTS P-MS Metals - EPA Method 200 8 - Water

		ICP-MS M	etals - EPA	Method 200	8 - Water			
		Labo	ratory Rea	gent Blank (L	RB)			
Date Digested:	1/28/2020				Date Analyzed:			
		Element		CAS#		Result	_	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	ratory Fort	tified Blank (I	LFB)	_		
Date Digested:	1/28/2020		THE Y		Date Analy	zed:	1/28/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	94.20	94.2		
		Cadmium		100.0	96.78	96.8		
		Chromium		100.0	101.58	101.6		
		Copper		100.0	103.29	103.3		
		Lead		100.0	98.92	98.9		
		Nickel		100.0	99.53	99.5		
		Zinc		100.0	103.50	103.5		
LCS Recovery limit	ts 85-115%			Contract Contract				
Day Diagram	1/00/0000	Matrix Spike	/Matrix Sp	ike Duplicate			1,00,000	
Date Digested: Sample Spiked:	1/28/2020 2020010723-1				Date Analys	zed:	1/28/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic		0.00	100.0	98.18	98.2	102.22	102.2	4.0
Cadmium		0.00	100.0	94.89	94.9	98.47	98.5	3.7
Chromium		0.00	100.0	103.05	103.1	107.69	107.7	4.4
Copper		3.93	100.0	106.85	102.9	113,64	109.7	6.4
Lead		0.00	100.0	94.39	94.4	96.70	96.7	2.4
Nickel		0.00	100.0	101.54	101.5	105.55	105.6	3.9
Zinc		60.81	100.0	166.72	105.9	175.22	114.4	7.7

Comment:

Recovery Limits 70-130%

RPD Limit 20

SPECTRA LABORATORIES

February 7, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Stormwater

Spectra Project:

2020010734

Applies to Sample # 1-2

STORMWATER HYDROCARBON ANALYSIS

QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample: LCS

Date Extracted:

Date Analyzed:

01/29/20

Units:

Diesel

mg/L

Spike

01/30/20

Compound

Sample Amount Amount Result

Added

Spike

2.50

Found

Percent Recovery

< 0.10

2.59

104

METHOD BLANK

Date Extracted:

01/29/20

Date Analyzed:

01/30/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

84%

SPECTRA LABORATORIES

February 6, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Units:

mg/L

Spectra Project:

2020010775

Applies to Spectra #'s:1,2

QUALITY CONTROL RESULTS

Hexavalent Chromium in Water/Liquid - Method SM 3500 Cr-D/ SW846 7196A

Method Blank

Date Analyzed:

1/28/2020

Result

Hexavalent Chromium

< 0.01

Blank Spike (LCS)

Date Analyzed:

1/28/2020

Spike LCS LCS

Added Conc. %Rec

Hexavalent Chromium 0.05 0.045 90

LCS Recovery limits 73-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed:

12/18/2019

Sample Spiked:

010734-1

	Sample	Spike	MS	MS	MSD	MSD	
	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Hexavalent Chromium	<0.1	0.05	0.049	98	0.051	102	4.0

Low recovery due to matrix interference

RPD Limit 20

SPECTRA LABORATORIES

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

January 28, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020010734 Date Analyzed: 1/28/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC
MTBE	<1	10.0	11.6	116
Benzene	<1	10.0	12.4	124
Toluene	<1	10.0	12.20	122.0
Ethylbenzene	<1	10.0	12.43	124.3
Total Xylenes	<2	30.0	37.2	123.9
Gasoline	<50	250	251	100

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	99	102	Benzene	< 0.4
1,2-Dichloroethane-d4	98	114	Toluene	< 0.4
Toluene-d8	100	88	Ethylbenzene	< 0.4
4-Bromofluorobenzene	96	103	Total Xylenes	<0.8
			MTBE	<0.4
/			Gasoline	<50

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010734

Work Order Number: 2001466

February 03, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/29/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 02/03/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2020010734 Work Order: 2001466

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001466-001
 010734-1
 01/27/2020 10:35 AM
 01/29/2020 9:16 AM

 2001466-002
 010734-2
 01/27/2020 10:50 AM
 01/29/2020 9:16 AM

Case Narrative

WO#: 2001466 Date: 2/3/2020

CLIENT: Spectra Laboratories

Project: 2020010734

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2001466

Date Reported:

2/3/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001466

Date Reported: 2/3/2020

Client: Spectra Laboratories Collection Date: 1/27/2020 10:35:00 AM

Project: 2020010734 Lab ID: 2001466-001

66-001 Matrix: Water

Client Sample ID: 010734-1

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27314
 Analyst: WF

 Mercury
 5.02
 0.500
 ng/L
 1
 1/31/2020 4:28:00 PM

Analytical Report

Work Order: 2001466

Date Reported: 2/3/2020

Client: Spectra Laboratories

Collection Date: 1/27/2020 10:50:00 AM

Project: 2020010734 Lab ID: 2001466-002

Matrix: Water

Client Sample ID: 010734-2

client Sample ID: 010734-2

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27314
 Analyst: WF

 Mercury
 ND
 0.500
 ng/L
 1
 1/31/2020 4:42:00 PM

Date: 2/3/2020

Work Order: 2001466

CLIENT:

Spectra Laboratories

ND

0.500

QC SUMMARY REPORT

Mercury by Method 1631E

2020010734 Project: Sample ID: MB-27314 Units: ng/L SampType: MBLK Prep Date: 1/31/2020 RunNo: 57059 Client ID: MBLKW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137730 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury ND 0.500 Sample ID: MB2-27314 SampType: MBLK Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: MBLKW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137731 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury ND 0.500 Units: ng/L Sample ID: MB3-27314 SampType: MBLK Prep Date: 1/31/2020 RunNo: 57059 MBLKW Batch ID: 27314 Client ID: Analysis Date: 1/31/2020 SeqNo: 1137732 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury ND 0.500 Sample ID: LCS-27314 SampType: LCS Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Analysis Date: 1/31/2020 Client ID: LCSW Batch ID: 27314 SeqNo: 1137733 Result RL SPK value SPK Ref Val %REC Analyte LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury 27.1 0.500 25.00 0 108 80 120 Sample ID: 2001475-001EDUP SampType: DUP Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Batch ID: 27314 Client ID: BATCH Analysis Date: 1/31/2020 SegNo: 1137735 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

24

0

Mercury

Date: 2/3/2020

Work Order: 2

2001466

CLIENT:

Spectra Laboratories

Project:

2020010734

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001475-001EMS	SampType: MS			Units: ng/L		Prep Dat	te: 1/31/20	20	RunNo: 57	059	
Client ID: BATCH	Batch ID: 27314					Analysis Dat	te: 1/31/20	20	SeqNo: 11	37736	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Mercury 18.3 0.500 25.00 0.2860 72.1 71 125

Sample ID: 2001475-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 1/31/20	20	RunNo: 570	059	
Client ID: BATCH	Batch ID: 27314					Analysis Da	te: 1/31/20	20	SeqNo: 113	37737	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	17.2	0.500	25.00	0.2860	67.7	71	125	18.30	6.20	24	s

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample Log-In Check List

Client Name:	SPECTRA	Work Order	Number: 2001466	6	
Logged by:	Carissa True	Date Receiv	ed: 1/29/202	20 9:16:00 AM	
Chain of Cus	tody				
1. Is Chain of	Custody complete?	Yes 🗸	No 🗆	Not Present	
2. How was the	e sample delivered?	UPS			
Log In					
3. Coolers are	present?	Yes 🗹	No 🗆	NA 🗆	
4. Shipping co	ntainer/cooler in good condition?	Yes 🗸	No 🗆		
	als present on shipping container/cooler mments for Custody Seals not intact)	? Yes 🗌	No 🗸	Not Required	
6. Was an atte	empt made to cool the samples?	Yes 🗌	No 🔽	NA 🗆	
		LL Hg. Pre	served		
7. Were all iter	ms received at a temperature of >0°C to	0 10.0°C* Yes □	Na 🛚	NA 🔽	
8. Sample(s) in	n proper container(s)?	Yes 🗸	N. 🗆		
9. Sufficient sa	ample volume for indicated test(s)?	Yes 🔽	No 🗆		
10. Are samples	s properly preserved?	Yes 🗹	No 🗌		
11. Was presen	vative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
12. Is there hea	dspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹	
13. Did all samp	oles containers arrive in good condition(unbroken)? Yes 🗹	No 🗆		
14. Does paper	work match bottle labels?	Yes 🗸	No 🗆		
15. Are matrices	s correctly identified on Chain of Custod	y? Yes ☑	No 🗆		
16. Is it clear wh	nat analyses were requested?	Yes 🗹	No 🗆		
17. Were all hol	ding times able to be met?	Yes 🗹	No 🗆		
Special Hand	ling (if applicable)				
18. Was client n	notified of all discrepancies with this order	er? Yes 🗆	No 🗆	NA 🗹	
Person	Noured:	Date			
By Wh	o m :	Via: Mail	Phone Fax	In Person	
Regard	ung:				
Chent	nstructions:				
19, Additional re	emarks:				
Item Information					
	Item # Temp *	С			
Cooler 1	11.7				
Sample 1	12.4				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Turnaround Time Requested STANDARD RUSH X SPECIAL **SPECTRA** Laboratories Lab Approval Required Dease ... Where experience matters

CHAIN	of	CUS	TO	DY
////				

SPECTRA PROJECT # Return Samples Yes No X 98421 ADDRESS: 2221 Ross Way Tacoma, WA **METALS** OTHER **HYDROCARBONS ORGANICS** CONTAINERS TOTAL METALS (SPECIFY) ICLP METALS (SPECIFY) ecal Coliform - MPN or MF **1280 CHLOR SOLVENTS** TOTAL METALS RCRA 8 TCLP METALS RCRAB 664 SGT-HEM (TPH) 1270/625 SEMI VOA SOLIDS (SPECIFY) STEX/NWTPH-G 664 HEM (FOG) NUMBER OF 1270 PAHIPNA FLASH POINT PH 9040/9045 082/608 PCB 8708 XOT/X by 1631E TURBIDITY WTPH-Dx WTPH-G 800 무 Water Water COMPANY TIME SIGNATURE PRINTED NAME DATE 01/28/20 3:00 PM Jen Draven Spectra Holmes FA-1 (29/26 8mma 09:16

Sample Receipt (lab use only) RELINQUISHED BY Total # of containers RECEIVED BY COC seals present? ____ Intact?_ deg. C. RELINQUISHED BY Temp at receipt RECEIVED BY Received within hold time? RELINQUISHED BY Proper sample containers? RECEIVED BY Cooler? Received via Payment Terms: Net 30 days, Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable attorney's fees and all other costs of collection regardless of whether suit is filled in Pierce Co., WA venue.

Spectra Laboratories

253-272-4850

marieh@spectra-lab.com

DATE

SAMPLED SAMPLED

01/27/20 1035

01/27/20 1050

TIME

CLIENT:

PHONE:

e-MAIL:

010734-1

2 010734-2

SAMPLED BY:

PROJECT: 2020010734

CONTACT: Marie Holt

PURCHASE ORDER #:

SAMPLE ID

SPECIAL INSTRUCTIONS/COMMENTS:

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

SPECIAL	INSTRUCT	TIONS/COM	MENTS:

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA

CHAIN of CUSTODY

SPECTRA PROJECT #

20200	10	734	
STANDARD	X	RUSH	

www.spectra-lab.co	m info@s	pectra-lab	o.com	Re	turr	ı Sa	mp	les	Υ		N		Pa	ge		1	-	of		1		ST	Al	NE)A	RI	0	2	<	F	₹Ŭ	SI	H	
CLIENT: Tacoma Po	wer (TPU))					36	328	Sc	out	h 3	35th	St	tree	et 7	Гас	on	na,	W	A 9	84	09											DDRE	
PROJECT: Kosmos						Н	DR	ROC	AR	ВС	NS	5		OF	RG	ANI	cs			ME	ETA	LS							ОТІ	HEI	R			
CONTACT:					ı										0																			
SAMPLED BY: Doug	Boet	ner		ERS	ı								0		TT 52			809	ı	-									10	8	# BU		TRACT	
				TAIN	ı								24 TT	NTS	BY 62			BY BY	8 W	ECIFY		80	CIFY)						TS	B; 450	7-10 S		BCON	
e-MAIL;			1777	CON	ı		ģ			I (TPH	6			SOLVE	NOA			sst/PCE	S RCR	S (SP		RCRA							CIFY)	y 4500	y D723	mimo	ns ual	
	0-27-1			ER OF	HCID		WTPH	g	×Q-	3T-HEA	M (FO		4 VOA	#OR S	5 SEM	NH/PNA	8 PCB	chlor Pe	METAL	METAL		ETALS	ETALS	379045	9076	Y.	POINT				anide by	ant Chn	a Nitrog	
SAMPLE ID	DATE	TIME	MATRI	NUMB	NWTPH	втех	BTEXN	NWTPH	NWTPH	1664 SC	1664 HE		8250/62	8250 CH	8270/62	8270 PA	8082/60	Organo	TOTAL	TOTAL		TCLP M	TCLP M	PH 9040	TX/TOX	TURBID	FLASH	GOB	SOLIDS	Total Cy	Free Cyv	Hexaval	Ammoni	
U-3	1-27-20	10:35					X	嚴	X											Х				X		Х		\Box				Х		
4-1	1-27-28	10:50					X	4B	×											×				X		X						×		
				\perp	L																													
				Ш								L																						
				Ш		L						L																						
				Н	L							L																						
				Ш	L							L																						
				Ш	L							L																						
				Ш																														
Spectra Internal Instru	uctions	DEI INOLIIS	HED BY	L	-	7	SIGN	TAV	RE		_				_	_										1		4			_			
Please Refer to -	the -		_	1	300	7	0	1	~			-	7	bu	1	K	set	1	1		\dashv	_	/		A	_	\dashv				\neg	1		
Tosmos oil seep	(wapp)			1	ie	27	_	1	_	_	-	_	Ź,	pr	1	11	111	11	to	1	\dashv		NO	16	H	1.	-	1.	27	-)	0	1	40	25-
method of doloc	tion			+	_	_	_	_	_	_	_		_	_	_	_			_	_	4	_	_			_	_	_		_	_			
limits + Levels				20 :							_		_							-									_					
	PRECEDED BY RECINOUSHED BY R																																	

02/07/2020	P.O.#:	Auth #20-28-1-019
02/07/2020	Project:	Kosmos
	Client ID:	U-3
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/28/2020
Tacoma, WA 98411	Date Received:	01/28/2020
Attn: Doug Boettner	Spectra Project:	2020010775
	Spectra Number:	1

Analyte	<u>Result</u>	<u>Units</u>	Method
Total Mercury	0.00574*		EPA 1631E
Turbidity	22.5	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μ g /L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	1.3	μg/L	EPA 200.8
Lead	< 0.5	μ g/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	<50	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pН	6.3	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	83	NWTPH-D
Toluene-d8	96	NWTPH-G
4-Bromofluorobenzene	103	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 1 of 2

a5/mlh

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

02/07/2020	P.O.#:	Auth #20-28-1-019
02/07/2020	Project:	Kosmos
	Client ID:	T-1
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/28/2020
Tacoma, WA 98411	Date Received:	01/28/2020
Attn: Doug Boettner	Spectra Project:	2020010775
	Spectra Number	: 2

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.00843*		EPA 1631E
Turbidity	44.6	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μ g/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	2.5	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	< 0.3	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	83	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
рH	6.2	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	<0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	55	NWTPH-D
Toluene-d8	96	NWTPH-G
4-Bromofluorobenzene	105	NWTPH-G

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 2 of 2

February 7, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix:

Spectra Project #

Water

2020010775

Applies to Spectra #

1-2

QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
Analyte	Method	Date	Analyst	Result	Rec.	Limits	RPD	Limits
Turbidity	EPA 180.1	01/28/20	HDE	< 0.1	97.7	90.6-107	2.53	≤20
pH	SM 4500-H+B	01/28/20	HDE	N/A	100.6	$\pm 0.2 \text{ pH}$	4.07	≤20

SPECTRA LABORATORIES

January 31, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411

Units: ug/L Spectra Project: 2020010775 Applies to Spectra #'s

Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS

		Labo	ratory Rea	gent Blank (L	RB)			
Date Digested:	1/31/2020				Date Analy	zed:	1/31/2020	
Date Digested: 1/31/2020 Element CAS # Result Arsenic 7440-38-2 < 0.3 Cadmium 7440-43-9 < 0.5 Cadmium 7440-50-8 < 0.3 Cadmium 7440-66-6 < 0.3 Cadmium Cas Cas								
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
	-	Labor	atory Fort	ified Blank (I	LFB)			
Date Digested:	1/31/2020					zed:	1/31/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	94.40	94.4	7.0	
		Cadmium		100.0	95.31	95.3		
		Chromium		100.0	101.10	101.1		
		Copper		100.0	103.40	103.4		
		Lead		100.0	101.04	101.0		
		Nickel		100.0	100.08	100.1		
		Zinc		100.0	104.58	104.6		
LCS Recovery limit	s 85-115%							
		Matrix Spike	/Matrix Sp				Alexander and	
					Date Analy:	zed:	1/31/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element					%Rec			RPD
	_						96.4	2.9
Cadmium		0.00						1.8
Chromium		0.00					98.6	3.9
		1.29	100.0	96.89	95.6	99.61	98.3	2.8
Lead		0.00	100.0	93.66	93.7	96.99	97.0	3.5
Nickel		0.00	100.0	94.37	94.4	96.03	96.0	1.7
Zinc		0.00	100.0	94.93	94.9	102.17	102.2	7.4
Comment:								
Recovery Limits 70-	-130%							
RPD Limit 20								

SPECTRA LABORATORIES

February 7, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix: Spectra Project: Stormwater 2020010775

Applies to Sample # 1-2

STORMWATER HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

01/30/20

Units:

mg/L

Date Analyzed:

02/03/20

Spike Spike

Sample Amount Amount

Percent

Compound

Result

Added

Found

2.20

Recovery

Diesel

< 0.10

2.50

88

METHOD BLANK

Date Extracted:

01/30/20

Date Analyzed:

02/03/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

71%

SPECTRA LABORATORIES

February 6, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Units:

mg/L

Spectra Project:

Project: 2020010734

Applies to Spectra #'s:1,2

QUALITY CONTROL RESULTS

Hexavalent Chromium in Water/Liquid - Method SM 3500 Cr-D/ SW846 7196A

Method Blank

Date Analyzed:

1/28/2020

Result

Hexavalent Chromium

< 0.01

Blank Spike (LCS)

Date Analyzed:

1/28/2020

Spike LCS

S LCS

Added 0.05 Conc. %R

Hexavalent Chromium

0.045

%Rec 90

LCS Recovery limits 73-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed:

12/18/2019

Sample Spiked:

010734-1

	Sample	Spike	MS	MS	MSD	MSD	
	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Hexavalent Chromium	<0.1	0.05	0.049	98	0.051	102	4.0

Low recovery due to matrix interference

RPD Limit 20

SPECTRA LABORATORIES

January 30, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 202001077!

Date Analyzed: 1/29/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK RESULT	SPIKE AMOUNT	SPIKE RESULT	LCS %REC	
	NEODE1	AWOON	RECOLI	MILO	
Benzene	<0.4	10.0	10.2	102	
Toluene	< 0.4	10.0	9.99	99.9	
Ethylbenzene	< 0.4	10.0	9.89	98.9	
Total Xylenes	<0.8	30.0	29.7	99.1	
Gasoline	<50	250	239	95	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	100	Benzene	<0.4
1,2-Dichloroethane-d4	102	104	Toluene	< 0.4
Toluene-d8	98	97	Ethylbenzene	<0.4
4-Bromofluorobenzene	100	102	Total Xylenes	<0.8
			Gasoline	<50

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010775

Work Order Number: 2001502

February 04, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/30/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 02/04/2020

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2020010775 Work Order: 2001502

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001502-001
 010775-1
 01/28/2020 12:00 AM
 01/30/2020 12:26 PM

 2001502-002
 010775-2
 01/28/2020 12:00 AM
 01/30/2020 12:26 PM

Case Narrative

WO#: 2001502 Date: 2/4/2020

CLIENT: Spectra Laboratories

Project: 2020010775

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2001502

Date Reported:

2/4/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001502

Date Reported:

2/4/2020

CLIENT:

Spectra Laboratories

Project:

2020010775

Lab ID:

Analyses

2001502-001

Client Sample ID: 010775-1

Collection Date: 1/28/2020

Result

5.74

RL Qual

Matrix: Water

DF **Date Analyzed**

Mercury by Method 1631E

Mercury

0.500

ng/L

Units

Batch ID: 27314

1/31/2020 4:52:00 PM

Analyst: WF

2001502-002 Lab ID:

Client Sample ID: 010775-2

Collection Date: 1/28/2020

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Date Analyzed

Mercury by Method 1631E

Mercury

8.43

0.500

ng/L

Batch ID: 27314

1/31/2020 5:03:00 PM

Analyst: WF

Date: 2/4/2020

Work Order: 2001502

CLIENT: Spectra Laboratories

Project: 2020010775

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 202001077	5					lercury by Metriou 103
Sample ID: MB-27314	SampType: MBLK			Units: ng/L	Prep Date: 1/31/2020	RunNo: 57059
Client ID: MBLKW	Batch ID: 27314				Analysis Date: 1/31/2020	SeqNo: 1137730
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27314	SampType: MBLK			Units: ng/L	Prep Date: 1/31/2020	RunNo: 57059
Client ID: MBLKW	Batch ID: 27314				Analysis Date: 1/31/2020	SeqNo: 1137731
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27314	SampType: MBLK			Units: ng/L	Prep Date: 1/31/2020	RunNo: 57059
Client ID: MBLKW	Batch ID: 27314				Analysis Date: 1/31/2020	SeqNo: 1137732
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27314	SampType: LCS			Units: ng/L	Prep Date: 1/31/2020	RunNo: 57059
Client ID: LCSW	Batch ID: 27314				Analysis Date: 1/31/2020	SeqNo: 1137733
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	27.1	0.500	25.00	0	108 80 120	
Sample ID: 2001475-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 1/31/2020	RunNo: 57059
Client ID: BATCH	Batch ID: 27314				Analysis Date: 1/31/2020	SeqNo: 1137735
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500			0	24

Date: 2/4/2020

Work Order: 20

2001502

CLIENT:

Spectra Laboratories

Project:

2020010775

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001475-001EMS	SampType: MS			Units: ng/L		Prep Da	te: 1/31/20	020	RunNo: 570)59	
Client ID: BATCH	Batch ID: 27314					Analysis Da	te: 1/31/20	020	SeqNo: 113	37736	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	18.3	0.500	25.00	0.2860	72.1	71	125				

Sample ID: 2001475-001EMSD Client ID: BATCH	SampType: MSD Batch ID: 27314			Units: ng/L			te: 1/31/20		RunNo: 570		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC		te: 1/31/20 HighLimit	RPD Ref Val	SeqNo: 11:	RPDLimit	Qual
Mercury	17.2	0.500	25.00	0.2860	67.7	71	125	18.30	6.20	24	s

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample Log-In Check List

Client Name:	SPECTRA	Work Order Num	nber: 2001502	
Logged by:	Carissa True	Date Received:	1/30/2020 12:26:00 PM	
Chain of Cus	tody			
1. Is Chain of	Custody complete?	Yes 🔽	No Not Present	
	e sample delivered?	UPS		
Log In				
3. Coolers are	present?	Yes 🗹	No □ NA □	
0.				
4. Shipping co	ntainer/cooler in good condition?	Yes 🗸	No 🗌	
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes 🗌	No ☑ Not Required □	
6. Was an atte	mpt made to cool the samples?	Yes 🗌	No ☑ NA □	
		ercury in water, pro		
7. Were all iter	ns received at a temperature of >0°C to 10.0°C*	Yes 🗌	N₀ □ NA ☑	
8. Sample(s) in	proper container(s)?	Yes 🗹	No	
9. Sufficient sa	imple volume for indicated test(s)?	Yes 🗸	No 🗌	
10. Are samples	s properly preserved?	Yes 🗹	No 🗆	
11. Was presen	vative added to bottles?	Yes	No ☑ NA □	
12. Is there hea	dspace in the VOA vials?	Yes	No □ NA ☑	
	eles containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
	work match bottle labels?	Yes 🔽	No 🗆	
15 Are matrices	s correctly identified on Chain of Custody?	Yes 🗸	No 🗔	
	nat analyses were requested?	Yes 🗸	No 🗆	
1,200	ding times able to be met?	Yes 🗸	No 🗆	
114		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Special Hand	ling (if applicable)			
18. Was client n	otified of all discrepancies with this order?	Yes 🗌	No □ NA 🗹	
Parran	Natified: Dat			1
By Wh		The second second	none Fex In Person	
Regard			19110 11 11 11 11 11 11 11 11 11 11 11 11	
	nstructions			
19. Additional re				Į.
Item Information	N			
Cooler 1	Item # Temp °C 12.0			
Sample 1	14.6			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

STANDARD RUSH SPECIAL 3 day HAIN of CUSTODY Turnaround Time Requested Tease SPECTRA PROJECT # SPECTRA Laboratories ... Where experience matters Return Samples Yes No X Spectra Laboratories ADDRESS: 2221 Ross Way Tacoma, WA CLIENT: 98421 PROJECT: 2020010775 **HYDROCARBONS ORGANICS METALS** OTHER CONTACT: Marie Holt CONTAINERS SAMPLED BY: TOTAL METALS (SPECIFY) TCLP METALS (SPECIFY) 280 CHLOR SOLVENTS 253-272-4850 PHONE: TCLP METALS RCRA 8 864 SGT-HEM (TPH) 1270/625 SEMI VOA SOLIDS (SPECIFY) e-MAIL: marieh@spectra-lab.com NUMBER OF 270 PAH/PNA TX/TOX 9076 by 1631E PURCHASE ORDER #: TIME SAMPLE ID MATRIX SAMPLED SAMPLED 1 010775-1 01/28/20 Water 2 010775-2 01/28/20 Water X SPECIAL INSTRUCTIONS/COMMENTS: PRINTED NAME Sample Receipt (lab use only) COMPANY DATE TIME RELINQUISHED BY Jen Draven 3:00 PM Total # of containers Spectra 01/29/20 was beeres-May RECEIVED BY 1/30/20 COC seals present? Intact? RELINQUISHED BY Temp at receipt deg. C.

Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all bosts of collection including researcable attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co... WA venue.

RECEIVED BY RELINQUISHED BY

RECEIVED BY

Received within hold time?

Proper sample containers?

Received via

Cooler?

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

Please use Clean Water Act Methods "Refer to attached list of required methods and detection limits

As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA

Return Samples Y

CHAIN of CUSTODY

SPECTRA PROJECT #

STANDARD RUSH

																															_	_^	DDR	ESS
LIENT: Tacoma Pow	er (TPU)				_	_	36	28	Sc	out	h 3	5th	St	ree	et T	ac	om	a,	WA	49	840	9	_	_	_	_	_	_	_	_	_		CHAP	
ROJECT: Kosmos					L	H	DR	00	AR	во	NS		L	OF	RG/	ANI	cs	┙	Ц	ME	TA	LS	_	L	_	_	_		ОТ	HEF	3	_		
ONTACT:					ı										0																			
AMPLED BY: Dong B	atta	94		RS	ı										S TT			808		_									100	9	1 90		TRAC	
HONE: 263-244-0539				CONTAINERS									4 TT	TS	70/625 SEMI VOA BY 625 TTO			WPCB BY 608	10	TOTAL METALS (SPECIFY)		rp on	CIPY						TES	R. 4500C	Cyanide by D7237-10 SUB		nia Nitrogen SUBCONTRACT	
	IAA. IL	Profer FA)		NO.	ı					TPH)			1Y 62	SOLVENTS	OA E			PCB	METALS RCRA 8	(SPE		CLP METALS RCRA 8	(SPECIFY						E	10000	0723	nijem	n Stue	
MAIL:		ore-MAIL	IXI	P	8		PH4G			4EM	(FOG)		OA B	R SO	EMI V	VNc	CB	r Pest	TALS	TALS		ALS R	ALS	948	92		늏		(SPECET)	nide by	da by	Check	Broge	
URCHASE ORDER #: 20				MUMBER	2446		STEX/NWTPH-G	WTPH-G	WTPH-Ds	664 SGT-HEM (TPH)	664 HEM (FOG)		DIS24 VOA BY	SO CHLOR	8229	270 PAH/PNA	082/608 PC8	ochlo	_	IL ME		MET	CLP METALS	04000	2VTOX 9076	NRBIDITY	LASH POINT			Cyans	Cyank	railmot	orsis N	
SAMPLE ID	DATE	TIME SAMPLED	MATRI)	Ş	WAT	BTEX	BTEX	NWT	NWT	1664	1664		1260/	8260	6270/	8270	8082	Organ	TOTAL	TOTA		700	ğ	N Hd	1201	TURE	FLAS	900	SOUDS	Total Cy	Free	Hexa	Arram	
U-3	1-28-20	10:00				Г	X	安	X		1		4							X				X	3	X						X		
T-1	1-28-20		-			Г	9	V6	×											X			>	X		X						X		
DB							~		*											×				*	7	*						×		
	Lance					١.	×	-	X	-	-									×	7			*	1	×					-	×		
						Г					71				9				-									Г						
				\top					3				P				F	П										Г				Г		
				T			1						F		-	П												Г						
				†		T				Г			-															Г		П		Г		П
				$^{+}$							L	П				П						7		П				Н		Н		Н		
				+		H		Н	-							Н						7				Н								\forall
				_		_	SIG	HATL	JRE	_					P	RINT	ED 1	LANGE		_		_	-	OM	PAN	Y		_	DV	ATE		_	TW	ME
Spectra Internal Instruc	ctions	RELINQUIS	HED BY	T	2	9	2	-		_			T	0		B					П	_	TF	> 1	L			1-	28	-2	٥	2	10	17
Please Refer to to	me napp)	RECEIVE	DBY	1		-	8	10	5						3	CB	ec	k					SP.					$\overline{}$	_	120	_		144	-
The I Pavameters		RELINQUIS	HED BY	+				_							_	. ()					\forall		-							_				
nathed of detect	non	RECEIVE		+	_		_			_											+		_										_	
limpts + levels		Davidsoni Ter		30.4		Sant	due	8000	ni unite		blact	in 4	122	04.0	er en	anth	inte	rael	C	etoo	nor o	ans	oc In	na	v all	con	te of	colli	netic	n in	chief	ing s	2000	nahi

attorney's fees and all other costs of collection regardless of whether sull is filed in Pierce Co., WA venue. Spectra Analytical, LLC

P.O.#: Auth #20-29-1-020 02/10/2020 Project: Kosmos Client ID: U3 Sample Matrix: Water Tacoma Public Utilities Date Sampled: 01/29/2020 PO Box 11007 Date Received: 01/29/2020 Tacoma, WA 98411 Spectra Project: 2020010835 Attn: Doug Boettner Spectra Number: 1

Analyte Result Units Method 0.00598* Total Mercury ug/L **EPA 1631E** NTU Turbidity 36.5 EPA 180.1 Arsenic < 0.3 **EPA 200.8** µg/L Cadmium < 0.2 µg/L EPA 200.8 Chromium < 0.5 EPA 200.8 µg/L 2.6 Copper µg/L **EPA 200.8** Lead < 0.5 µg/L EPA 200.8 Nickel < 0.5 µg/L EPA 200.8 Zinc 1.8 μg/L EPA 200.8 Diesel <100 µg/L NWTPH-D Oil <100 µg/L NWTPH-D <50 Gasoline µg/L NWTPH-G 5.84 pH Units pH SM 4500-H+B Hexavalent Chromium < 0.01 SM3500-CR B mg/L < 0.4 Benzene µg/L SW846 8260C Ethylbenzene < 0.4 SW846 8260C µg/L < 0.4 Toluene µg/L SW846 8260C Total Xylenes < 0.8 SW846 8260C µg/L

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	118	NWTPH-D
Toluene-d8	99	NWTPH-G
4-Bromofluorobenzene	107	NWTPH-G

SPECTRA LABORATORIES

02/10/2020 P.O.#: Auth #20-29-1-020 Project: Kosmos

Tacoma Public Utilities Client ID: T1
Sample Matrix: Water

 PO Box 11007
 Date Sampled:
 01/29/2020

 Tacoma, WA 98411
 Date Received:
 01/29/2020

 Attn: Doug Boettner
 Spectra Project:
 2020010835

Spectra Number: 2

Dagult	Unite	Method
Control of the contro		
0.00825*	ug/L	EPA 1631E
38.4	NTU	EPA 180.1
< 0.3	μg/L	EPA 200.8
< 0.2	μg/L	EPA 200.8
< 0.5	μg/L	EPA 200.8
2.6	μg/L	EPA 200.8
< 0.5	μg/L	EPA 200.8
< 0.5	μg/L	EPA 200.8
< 0.3	μg/L	EPA 200.8
<100	μg/L	NWTPH-D
<100	μg/L	NWTPH-D
<50	μg/L	NWTPH-G
5.91	pH Units	SM 4500-H+B
< 0.01	mg/L	SM3500-CR B
<0.4	μg/L	SW846 8260C
<0.4	μg/L	SW846 8260C
<0.4	μg/L	SW846 8260C
<0.8	μg/L	SW846 8260C
	< 0.3 < 0.2 < 0.5 2.6 < 0.5 < 0.5 < 0.3 < 100 < 100 < 50 5.91 < 0.4 < 0.4 < 0.4	0.00825* ug/L 38.4 NTU < 0.3

^{*} Mercury analyzed by Fremont Analytical. Please see the complete report attached.

Surrogate	% Recovery	Method		
p-Terphenyl	119	NWTPH-D		
Toluene-d8	100	NWTPH-G		
4-Bromofluorobenzene	106	NWTPH-G		

SPECTRA LABORATORIES

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix:

Water

Spectra Project #

Applies to Spectra #

2020010835

1-2

QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
Analyte	Method	Date	Analyst	Result	Rec.	Limits	RPD	Limits
Turbidity	EPA 180.1	01/29/20	MMO	< 0.1	98.3	90.6-107	6.71	≤20
pH	SM 4500-H ⁺ B	01/29/20	MMO	N/A	99.9	$\pm 0.2 \text{ pH}$	2.34	≤20

SPECTRA LABORATORIES

January 31, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s ug/L 2020010835 1-2 SCJ

Analyst:

alyst:

QUALITY CONTROL RESULTS
ICP-MS Metals - EPA Method 200.8 - Water

		Labo	ratory Reas	ent Blank (L				
Date Digested:	1/31/2020				Date Analy		1/31/2020	
		Element		CAS#		Result	_	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	atory Forti	fied Blank (I	FB)			
Date Digested:	1/31/2020				Date Analy	zed:	1/31/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	94.40	94.4	_	
		Cadmium		100.0	95.31	95.3		
		Chromium		100.0	101.10	101.1		
		Copper		100.0	103.40	103.4		
		Lead		100.0	101.04	101.0		
		Nickel		100.0	100.08	100.1		
		Zinc		100.0	104.58	104.6		
LCS Recovery limits	s 85-115%							
		Matrix Spike	/Matrix Spi				1 dr 6423	
Date Digested: Sample Spiked:	1/31/2020 202010775-1				Date Analy	zed:	1/31/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPL
Arsenic		0.00	100.0	93.60	93.6	96.36	96.4	2.9
Cadmium		0.00	100.0	92.73	92.7	94.37	94.4	1.8
Chromium		0.00	100.0	94.85	94.9	98.65	98.6	3.9
Copper		1.29	100.0	96.89	95.6	99.61	98.3	2.8
Lead		0.00	100.0	93.66	93.7	96.99	97.0	3.5
Nickel		0.00	100.0	94.37	94.4	96.03	96.0	1.7
Zinc		0.00	100.0	94.93	94.9	102.17	102.2	7.4
Comment:								
Recovery Limits 70-	130%							
RPD Limit 20	CAMPAGE.							

SPECTRA LABORATORIES

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020010835

Applies to Sample # 1-2

STORMWATER HYDROCARBON ANALYSIS **QUALITY CONTROL RESULTS**

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

02/03/20

Units:

mg/L

Date Analyzed:

02/06/20

Spike Spike

Sample

Amount Amount

Percent

Compound

Result

Added

Found

Recovery

Diesel

< 0.15

2.50

2.52

101

METHOD BLANK

Date Extracted:

02/03/20

Date Analyzed:

02/06/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.15

Surrogate Recoveries:

p-terphenyl

100%

SPECTRA LABORATORIES

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020010835

Date Analyzed: 2/5/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
Benzene	<0.4	10.0	9.3	93	
Toluene	<0.4	10.0	9.25	92.5	
Ethylbenzene	<0.4	10.0	9.77	97.7	
Total Xylenes	<0.8	30.0	20.4	68.1	
Gasoline	<50	250	254	102	

Surrogate Recoveries (%)	LCS	МВ	Method Blank	ug/L
Dibromofluoromethane	100	102	Benzene	<0.4
1,2-Dichloroethane-d4	101	106	Toluene	<0.4
Toluene-d8	105	100	Ethylbenzene	< 0.4
4-Bromofluorobenzene	100	108	Total Xylenes	<0.8
			Gasoline	<50

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010835

Work Order Number: 2001523

February 05, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 1/31/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

Date: 02/05/2020

CLIENT:

Spectra Laboratories

Project:

2020010835

Work Order:

2001523

Work Order Sample Summary

Lab Sample ID

Client Sample ID

Date/Time Collected

Date/Time Received

2001523-001

010835-1

01/29/2020 10:50 AM 01/29/2020 11:20 AM 01/31/2020 9:30 AM

2001523-002

010835-2

01/31/2020 9:30 AM

Case Narrative

WO#: 2001523 Date: 2/5/2020

CLIENT: Spectra Laboratories

Project: 2020010835

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2001523

Date Reported:

2/5/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001523
Date Reported: 2/5/2020

Client: Spectra Laboratories Collection Date: 1/29/2020 10:50:00 AM

Project: 2020010835

Lab ID: 2001523-001 Matrix: Water

Client Sample ID: 010835-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Bato	ch ID: 27	314 Analyst: WF
Mercury	5.98	0.500		ng/L	1	1/31/2020 5:14:00 PM

Analytical Report

Work Order: 2001523 Date Reported:

2/5/2020

Client: Spectra Laboratories

Collection Date: 1/29/2020 11:20:00 AM

Project: 2020010835 Lab ID: 2001523-002

Matrix: Water

Client Sample ID: 010835-2

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Bato	h ID: 27:	314 Analyst: WF
Mercury	8.25	0.500		ng/L	1	1/31/2020 5:25:00 PM

2001523 Work Order:

CLIENT: Spectra Laboratories

ND

0.500

2020010835

QC SUMMARY REPORT

Mercury by Method 1631E

Project: Sample ID: MB-27314 SampType: MBLK Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: MBLKW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137730 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB2-27314 SampType: MBLK Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: MBLKW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137731 Result RL SPK value SPK Ref Val Analyte LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB3-27314 SampType: MBLK Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: MBLKW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137732 SPK value SPK Ref Val Analyte Result RL %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: LCS-27314 SampType: LCS Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: LCSW Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137733 Analyte Result RI SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 27.1 0.500 0 108 80 Mercury 25.00 120 Sample ID: 2001475-001EDUP SampType: DUP Units: ng/L Prep Date: 1/31/2020 RunNo: 57059 Client ID: BATCH Batch ID: 27314 Analysis Date: 1/31/2020 SeqNo: 1137735 Analyte Result RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %REC %RPD RPDLimit Qual

24

0

Mercury

Date: 2/5/2020

Work Order: 2001523

NOTES:

CLIENT: Spectra Laboratories

Project: 2020010835 QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2001475-001EMS Client ID: BATCH	SampType: MS Batch ID: 27314			Units: ng/L		Prep Da Analysis Da			RunNo: 570 SeqNo: 11:	77	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	18.3	0.500	25.00	0.2860	72.1	71	125				
Sample ID: 2001475-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 1/31/20	020	RunNo: 570	059	
Client ID: BATCH	Batch ID: 27314					Analysis Da	te: 1/31/20	020	SeqNo: 113	37737	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	17.2	0.500	25.00	0.2860	67.7	71	125	18.30	6.20	24	S

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample Log-In Check List

Client Name:	SPECTRA	Work C	rder Numl	ber: 2001523	0.
Logged by:	Clare Griggs	Date Re	eceived:	1/31/202	0 9:30:00 AM
Chain of Cus	tody				
- 70,000,000	Custody complete?	Yes	~	No 🗆	Not Present
	e sample delivered?	UPS			4250,4250,4454
	7 x 3 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4	177			
<u>Log In</u>				460	
Coolers are	present?	Yes		No 🗌	NA 🗆
4 Shipping co	ontainer/cooler in good condition?	Yes	~	No 🗆	
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			No 🗆	Not Required 🗹
	als present on shipping container/cooler? Imments for Custody Seals not intact)	Yes		NO L	Not Required 🖭
6. Was an atte	empt made to cool the samples?	Yes		No 🗹	NA 🗆
Prof. 15 Lance		LL Hg in w	ater, pres	erved.	
7. Were all ite	ms received at a temperature of >0°C to 10.0°C*	Yes		No 🗌	NA 🗹
			_		
8. Sample(s) i	n proper container(s)?	Yes	•	No 🗆	
9. Sufficient sa	ample volume for indicated test(s)?	Yes	~	No 🗆	
10. Are sample	s properly preserved?	Yes	~	No 🗆	
11. Was preser	vative added to bottles?	Yes		No 🗹	NA 🗆
10 le there has	dspace in the VOA vials?	Yes		No 🗆	NA 🗹
	ples containers arrive in good condition(unbroken)?			No 🗆	INA Œ
	work match bottle labels?	Yes	~	No 🗆	
14. 5555 8565	79.0	,	-	J. 17	
15. Are matrice	s correctly identified on Chain of Custody?	Yes	•	No 🗌	
16. Is it clear wi	hat analyses were requested?	Yes	~	No 🗌	
17. Were all ho	Iding times able to be met?	Yes	~	No 🗌	
TO STORY THE	lling (if applicable)		_		1.2
18, Was client r	notified of all discrepancies with this order?	Yes	Ц	No 🗆	NA 🗹
Person	Notified: Da	ta:		_	
By Wn	om: Via	.:M.	n Ph	one Fax	In Person
Regard	d(ng)				
Cilent	nstructions:				
19. Additional re	emarks:				
tem Information					
em momacon	Item# Temp ℃				
Cooler	12.3				
Sample	14.7				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA	Laborato	ries			S	TA	ND	AF		_	RU		\	-	-	FC	CIA	2 proval	Req	La										S CT		JC	YC
	Where	espertence i	watters				F	Reti	um !	San	nple	s 1	res				x					L			_	2	BO	16	573	3			
CLIENT: Spectra La	aboratories			ADD	RE	SS			Ro		100															z	IP:	5	984	21	Toy		NGE
PROJECT: 20200108	35					ну	DR	oc	AR	ВО	NS	T		OR	GA	NIC	28	Τ	M	ETA	LS	П						01	THE	R			
CONTACT: Marie Holt					Г	Γ		Ĭ	П	Ĭ	Ĭ	†	T	T	T	T	Ť	t	Г			П	П				П	Ť	T	Ť	T	T	П
				12	ı	П			П		н	1	1	1	1	1		п			Ш		П								1	ш	ш
SAMPLED BY:			_	NE.	ı					П		ı	1		1			ı	3		Ш	8	П	Ш					B.		1		ш
PHONE:	253-272-485	0		CONTAINERS	ı				П	9		١	1	S. I	.	-		RCRA 8	PEG		A B	(SPECIFY)	П						0.0		1		Ш
e-MAIL: mari	eh@spectra-la	ab.com		OF CO			HG			154 SGT-HEM (TPH)	60	I.	SOUGH VICE	SOLV	DIGZS SEMI VOA	5		ALS RC	TOTAL METALS (SPECIFY)		ICLP METALS RCRA B		50.					CIFY	ecal Colliprm - MPN				Ш
PURCHASE ORDER #:					SHCID		WTP	9	ğ	3T-H	EN (F	200		TON I	285	PAHIPNA	800	MET	META		ETAL	ETAI	0.504	9026	YTY.	POIN		(SPE	Pit pi	1	Teste		П
SAMPLE ID	DATE SAMPLED	TIME	MATRIX	NUMBER	MWIF	BTEX	BTEXMWTPH-G	NWTP	NWTP	1864 S	1664 HEM (FOG)	on worke	action out on	20929	827D/62	8270 Py	9082/80	TOTAL METALS	TOTAL		TOLPA	TOLP METALS	рн водолоче	TX/TOX 9076	TURBIDITY	FLASH POINT	BÖD	SOUDS (SPECIFY)	Fecal	1	60		
010835-1	01/29/20	1050	Water	1	0					П	ij.	-		1	U	T		13	Г								П			1	x		
010835-2	94/01/20	1120	Water	1	1			П			ii	T			ī	1	10	100	Г					NI.	П		П		П	,	x		
	1/20/20				10	Г	All I	П		7	-	1	ı	1	ı	1		П		1	П	13				Ĭ	П				Ť		100
	property			П	N	Г	1	П		7	B	1	ı	1	ı	1		10	t	i	П		П	ī			П		1		Ť	1	
	Mrsis						8	П		7	11	1	ı	1	ı	1	1	Ħ	H		П	0		ã	Н		П		\neg		Ť	1	
				Н		Н	ã			1	1	1	۰	1	Ħ	+		10	Н		Н			ă	Н		Н		\vdash		Ť		
				Н	i	Н	H	\exists		+	3	t	۰	1	ı	+		10	Н	10	Н						\vdash				Ť	+	
				Н	E	Н	8	\forall		+	8	+	٠	+	۰	+		10	Н		Н				Н		Н		-	-	Ť	+	
	_			Н		H	8	\forall		+	8	+	٠	+	H	+		-	Н		Н		Н	=	Н		\vdash		+		Ŧ	+	
	_			Н	Н	Н		\vdash		+	9	-	Н	+	٠	+	-	-	H	쁦	-		-		Н		Н		+	-	Ŧ	+	
SPECIAL INSTRUCTIONS/COM	IMENTS:		-	ш		_	100			_	100	-		-	4	_	-		_		Ш		Ц		Ш		Ц		_	_	_	_	
office characteristic																																	
Sample Receipt (lab u	ase only)					1	sigy	ATU	RE						PR	INTE	ED NA	ME					CO	MPA	NY				DAT	E	T	T	ME
Total # of containers		RELINQUIS	SHED BY						an				en										Sp	éc	tra			0	1/30)/20	I	3:00	PM C
COC seek present? in		RECEIV		8	W	rot	He	14	-	-		1	EM	(m	A	He	Inv	25					F	14				4	31/2	0	1	093	0
AND ADDRESS OF THE PARTY OF THE	deg.C.	RELINQUIS		-		_	_	_	_	_	_	-	_	_	_	_	_	_	_			_		_	_		_	_			+		
Received within hold time? _		RELINQUIS		-	_	_	_	_	_	_	_	+	_	_	_	_	_	_	_	-	-	_	_	_	_	_	-	_	_		+	_	
Proper sample containers? Received via	Cooler?	RECEIVE		-	_	_	_	_	_	_	_	+	-	_	_	_		_	-	-	-	-	_	_	-	-	+	-	_		+	_	
Payment Terms: Net 30 days Past du				Somer	ove	na 100 C	ine dit	cost	a of or	Mantie	or lock	intro	nine	nonin'il	n mile	widow	a fair	and a	olbe	recei		dam	rus rus	hand	Den /d	Luckeni		of the	filed in	Pierr	1.50	WAW	

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, NI, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

2020010835

STANDARD RUSH

LIENT: Tacoma Por	wer (TPU)				_		36	28	So	utl	h 3	5th	S	ree	et T	ac	om	a,	WA	19	84	09											CHA	ess [
ROJECT: Kosmos					L	н	/DR	OC	AR	во	NS			O	RG/	IN	cs			ME	ETA	LS		L		_		-	OTI	HEF	2	_		
ONTAGT:															0																		-	
AMPLED BY: Doug	Boeth	nev		SRS	ı										625 TTO			809		c									40	200	:. BUE		TRAC	
HONE: 253-244-653		STING		TAINERS	ı								24 TTO	STI	BY 62			8 BY 608	5	ECIF		81	(SPECIFY)						TSS	4500B; 4500C	32-10 \$		NBCON	
-MAIL:		Profer PA or e-MAIL		CONT			9			и (трн	(5)		BY 8	BOLVE	VOA			estPCB	METALS RCRA 8	S (S)		ROR							(SPECIFY)		by 072:	romina	igen St	
URCHASE ORDER #: 2	0-29-1-			ER OF	WYPH-HC/D		STEXMWTPH-G	9-	жо-н	(634 SGT-HEM (TPH)	1654 HEM (FOG)		REDIEZA VOA, BY 824	S250 CHLOR SOLVENTS	270/625 SEMI VOA	9270 PAH/PNA	SOB PCB	action P	META	TOTAL METALS (SPECIFY)		TOLP METALS RORA 8	TOLP METALS	PH 9040/9045	EXTOX 9976	DITY	FLASH POINT			Total Cyanida by	Free Cyanida by D7237-10 SUB "	slent Chr	monia Nilrogen SUBCONTRACT	
SAMPLE ID	DATE	WILL 1889	MATRIX	NUMBER	MMTP	втек	BTEX	D-HALLAN	NWTPH-Dx	1634 S	1654 H		20908	8250 0	8270/E	\$270 P	8082/6	Organo	TOTAL	TOTAL		TOLP	TOLP	PH 90	TXTO	TURBIDITY	FLASH	800	SOLIDS	Total C	Free C	Hexava	Аптино	
113	1-29-20	16:50		Т			X	X	Х											Х				X	V	X	8					X		
TI	_	14:20					X		×											×				X	- 1	X						X	b	
									100																-									
																							7								2			
				L		L						L																			3		A.	4
				L		L					1														-		100							
				L	L	L												Ц				Ц				L								4
				\perp																		Ц				L			-					4
				1														Щ			-													+
				\perp									2													L							- 51	-
Spectra Internal Instr	uctions	RELINQUIS	HED BY	1	1	5	SIG	MATE	RE				-				ED	_	et	4	_	-	1	COM	PAN D	Y		1-	29	TE -2	0	2	13	ME
Please Reser to .	the	RECEIVE	ED BY	1	-	3	8	1/4	2	4	_		\vdash		>00	$\overline{}$	36	_		h.	_	<	SP		Inp	1		-	29	_	_	-	43	
Julia 1 Erremeter	-5	RELINGUIS	HED BY	+		-		16	_				\vdash			/ 2	_		_			-	74	ec	110	_		1				Ť		1
method as dete	ction	RECEIVE		+	_		-		_	_	_					_	_		_	_				_					_				_	_
hurles -		Payment Ter	rms: Net	30 da	ys. F	Past	due	accc	unti	sut	bject	lo 1	1/2	% p	er m	onti	inte	rest	Cu	istoi	mer	agre	es t	о ра	y all	cos	ts of	colle	ectio	n inc	cludi	ing r	easc	nable
		attorney's fee	es and al	I othe	r cos	sts of	fool	ectio	on re	gard	fless	of	whet	her i	HORT E	s file	id in	Pler	ce C	O.,	WA	venu	e. S	pec	tra A	Inaly	rtica	LL	C					

02/10/2020	P.O.#:	Auth #20-31-1-021
02/10/2020	Project:	Kosmos
	Client ID:	U3
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	01/31/2020
Tacoma, WA 98411	Date Received:	01/31/2020
Attn: Doug Boettner	Spectra Project:	2020010921
	Spectra Number	: 1

Analyte	Result	<u>Units</u>	Method
Total Mercury	0.00599*	ug/L	EPA 1631E
Turbidity	17.2	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	1.7	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	1.6	μg/L	EPA 200.8
Diesel	<100	μg/L	NWTPH-D
Oil	<100	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.15	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Analyzed by Fremont Analytical. See complete report attached.

Surrogate	% Recovery	Method
p-Terphenyl	140	NWTPH-D
Toluene-d8	99	NWTPH-G
4-Bromofluorobenzene	106	NWTPH-G

SPECTRA LABORATORIES

02/10/2020

PO Box 11007

Tacoma Public Utilities

Tacoma, WA 98411

Attn: Doug Boettner

P.O.#:

Auth #20-31-1-021

Project:

Kosmos

Client ID:

T1

Sample Matrix: Water

Date Sampled:

01/31/2020

Date Received:

01/31/2020

Spectra Project: 2020010921

Spectra Number: 2

Analyte	Result	_Unit
Total Mercury	0.00611*	ug/L
Turbidity	15.2	NTU
Arsenic	< 0.3	μg/L
Cadmium	< 0.2	μg/L
Chromium	< 0.5	μg/L
Copper	1.7	μg/L
Lead	< 0.5	μg/L
Nickel	< 0.5	μg/L
Zinc	< 0.3	μg/L
Diesel	<100	μg/L
Oil	<100	μg/L
Gasoline	< 50	μg/L
pH	6.30	pH Un
Hexavalent Chromium	< 0.01	mg/I
Benzene	< 0.4	μg/L
Ethylbenzene	< 0.4	μg/L
Toluene	< 0.4	μg/L
Total Xylenes	< 0.8	μg/L

<u>Units</u>	Method
ug/L	EPA 1631E
NTU	EPA 180.1
μ g /L	EPA 200.8
μg/L	NWTPH-D
μg/L	NWTPH-D
μg/L	NWTPH-G
pH Units	SM 4500-H+B
mg/L	SM3500-CR B
μg/L	SW846 8260C

Surrogate	% Recovery	Method	
p-Terphenyl	155	NWTPH-D	
Toluene-d8	99	NWTPH-G	
4-Bromofluorobenzene	105	NWTPH-G	

SPECTRA LABORATORIES

a5/djs Authorized by: Kristin Hintz

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix:

Spectra Project #

Water

2020010921

Applies to Spectra #

1-2

QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
Analyte	Method	<u>Date</u>	Analyst	Result	Rec.	Limits	<u>RPD</u>	Limits
Turbidity	EPA 180.1	01/31/20	MMO	< 0.1	98.1	90.6-107	0	≤20
pН	$SM 4500-H^{+}B$	01/31/20	MMO	N/A	99.9	$\pm 0.2 \text{ pH}$	1.76	≤20

SPECTRA LABORATORIES

February 4, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units:

Spectra Project:

ug/L

Applies to Spectra #'s

2020010921 1-2

Analyst:

SCJ

QUALITY CONTROL RESULTS
ICP-MS Metals - EPA Method 200.8 - Water

		Laboi	atory Reas	gent Blank (L				
Date Digested:	2/4/2020				Date Analy		2/4/2020	
		Element		CAS#		Result	_20	
		Arsenic		7440-38-2		< 0.3		
		Cadmium		7440-43-9		< 0.2		
		Chromium		7440-47-3		< 0.5		
		Copper		7440-50-8		< 0.3		
		Lead		7439-92-1		< 0.5		
		Nickel		7439-98-7		< 0.5		
		Zinc		7440-66-6		< 0.3		
		Labor	atory Fort	ified Blank (L	FB)			
Date Digested:	2/4/2020				Date Analy	zed:	2/4/2020	
				Spike	LCS	LCS		
		Element		Added	Conc.	%Rec		
		Arsenic		100.0	92.63	92.6	_	
		Cadmium		100.0	93.99	94.0		
		Chromium		100.0	98.12	98.1		
		Copper		100.0	102.00	102.0		
		Lead		100.0	97.94	97.9		
		Nickel		100.0	98.20	98.2		
		Zinc		100.0	100.49	100.5		
LCS Recovery limit	ts 85-115%							
		Matrix Spike	/Matrix Sp	-			211/2020	
Date Digested:	2/4/2020				Date Analy	zed:	2/4/2020	
Sample Spiked:	2020020007-1							
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPI
Arsenic		0.00	100.0	93.34	93.3	92.03	92.0	1.4
Cadmium		0.00	100.0	88.58	88.6	86.13	86.1	2.8
Chromium		0.00	100.0	100.95	101.0	99.00	99.0	2.0
Copper		0.00	100.0	102.42	102.4	99.10	99.1	3.3
Lead		0.00	100.0	90.92	90.9	90.84	90.8	0.1
Nickel		0.00	100.0	98.24	98.2	97.68	97.7	0.6
Zinc		57.19	100.0	164.05	106.9	158.90	101.7	4.9
Comment:	1000/							
Recovery Limits 70	-130%							
RPD Limit 20								

SPECTRA LABORATORIES

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020010921

Applies to Sample # 1-2

STORMWATER HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

02/03/20

Units:

Diesel

mg/L

Date Analyzed:

02/06/20

Compound

Sample

Spike Spike

Amount Amount **Found**

2.52

Percent

Recovery

Result

< 0.15

<u>Added</u>

2.50

101

METHOD BLANK

Date Extracted:

02/03/20

Date Analyzed:

02/06/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.15

Surrogate Recoveries:

p-terphenyl

100%

SPECTRA LABORATORIES

February 10, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020010921

Date Analyzed: 2/5/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
Benzene	<0.4	10.0	9.3	93	
Toluene	<0.4	10.0	9.25	92.5	
Ethylbenzene	< 0.4	10.0	9.77	97.7	
Total Xylenes	<0.8	30.0	20.4	68.1	
Gasoline	<50	250	254	102	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	102	Benzene	<0.4
1,2-Dichloroethane-d4	101	106	Toluene	<0.4
Toluene-d8	105	100	Ethylbenzene	<0.4
4-Bromofluorobenzene	100	108	Total Xylenes	<0.8
			Gasoline	<50

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020010921

Work Order Number: 2002019

February 07, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 2/4/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 02/07/2020

CLIENT:

Spectra Laboratories

Project:

2020010921

Work Order: 2002019 **Work Order Sample Summary**

Lab Sample ID

2002019-001

2002019-002

Client Sample ID

010921-1

010921-2

Date/Time Collected

01/31/2020 11:00 AM

01/31/2020 10:30 AM

Date/Time Received

02/04/2020 9:10 AM 02/04/2020 9:10 AM

Case Narrative

WO#: **2002019**Date: **2/7/2020**

CLIENT:

Spectra Laboratories

Project:

2020010921

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2002019

Date Reported:

2/7/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2002019

Date Reported:

2/7/2020

Client: Spectra Laboratories

Collection Date: 1/31/2020 11:00:00 AM

Project: 2020010921

Lab ID: 2002019-001

Matrix: Water

Client Sample ID: 010921-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by Method 1631E				Batcl	n ID: 27	337 Analyst: WF
Mercury	5.99	0.500		ng/L	1	2/5/2020 5:10:00 PM

Analytical Report

Work Order:

2002019

Date Reported:

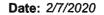
2/7/2020

Client: Spectra Laboratories

Collection Date: 1/31/2020 10:30:00 AM

Project: 2020010921

Lab ID: 2002019-002


Matrix: Water

Client Sample ID: 010921-2

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Mercury by Method 1631E
 Batch ID: 27337
 Analyst: WF

 Mercury
 6.11
 0.500
 ng/L
 1
 2/5/2020 5:21:00 PM

Work Order: 2002019

CLIENT: Spectra Laboratories

Project: 2020010921

QC SUMMARY REPORT

SeqNo: 1139439

2.54

%RPD RPDLimit

Mercury by Method 1631E

Sample ID: MB-27337 SampType: MBLK Units: ng/L Prep Date: 2/4/2020 RunNo: 57154 Client ID: MBLKW Batch ID: 27337 Analysis Date: 2/5/2020 SeqNo: 1139434 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB2-27337 SampType: MBLK Units: ng/L Prep Date: 2/4/2020 RunNo: 57154 Client ID: MBLKW Batch ID: 27337 Analysis Date: 2/5/2020 SeqNo: 1139435 Analyte Result RL SPK value SPK Ref Val. LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: MB3-27337 SampType: MBLK Units: ng/L Prep Date: 2/4/2020 RunNo: 57154 Client ID: MBLKW Batch ID: 27337 Analysis Date: 2/5/2020 SeqNo: 1139436 Analyte RL SPK value SPK Ref Val Result %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: LCS-27337 SampType: LCS Units: ng/L Prep Date: 2/4/2020 RunNo: 57154 Client ID: LCSW Batch ID: 27337 Analysis Date: 2/5/2020 SeqNo: 1139437 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 25.7 0.500 Mercury 25.00 103 80 120 Sample ID: 2002010-001EDUP SampType: DUP Units: ng/L Prep Date: 2/4/2020 RunNo: 57154

Analysis Date: 2/5/2020

LowLimit HighLimit RPD Ref Val

1.990

%REC

Qual

24

Analyte

Mercury

Client ID: BATCH

Batch ID: 27337

Result

1.94

RL

0.500

SPK value SPK Ref Val

Fremont

27.4

0.500

25.00

Date: 2/7/2020

Work Order: 2002019

CLIENT: Spectra Laboratories

Project: 2020010921

QC SUMMARY REPORT

1.84

24

Mercury by Method 1631E

Sample ID: 2002010-001EMS	SampType: MS			Units: ng/L		Prep Date: 2/4/2020	RunNo: 57154
Client ID: BATCH	Batch ID: 27337					Analysis Date: 2/5/2020	SeqNo: 1139440
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	26.9	0.500	25.00	1.990	99.6	71 125	
Sample ID: 2002010-001EMSD	SampType: MSD			Units: ng/L		Prep Date: 2/4/2020	RunNo: 57154
Client ID: BATCH	Batch ID: 27337					Analysis Date: 2/5/2020	SeqNo: 1139441
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

1.990

102

71

125

26.90

Mercury

Sample Log-In Check List

С	lient Name:	SPECTRA		Work Order Numb	er: 2002019	
Le	ogged by:	Clare Griggs		Date Received:	2/4/2020 9:	10:00 AM
<u>Cha</u>	in of Cust	ody				
1.	ls Chain of C	Custody complete?		Yes 🗹	No 🗌	Not Present
2.	How was the	sample delivered?		<u>UPS</u>		
Log	ıIn					
-	Coolers are	orecent?		Yes 🗹	No 🗆	NA \square
٥.	Coolers are	present:		res 💌	NO 🗆	NA L
4.	Shipping cor	tainer/cooler in good condition	in?	Yes 🗹	No 🗌	
5.		ls present on shipping contai nments for Custody Seals no		Yes	No 🗹	Not Required
6.	Was an atter	mpt made to cool the sample	s?	Yes 🗹	No 🗆	NA \square
7.	Were all item	ns received at a temperature	of >2°C to 6°C *	Yes 🗀	No 🗹	NA 🗆
			<u>M</u>	ercury in water. pres	erved.	
8.	Sample(s) in	proper container(s)?		Yes 🗸	No 🗆	
9.	Sufficient sai	mple volume for indicated tes	t(s)?	Yes 🛂	No 🗆	
10.	Are samples	properly preserved?		Yes 🗹	No 🗌	
11.	Was preserv	ative added to bottles?		Yes 🗌	No 🗹	NA 🗆
12.	Is there head	Ispace in the VOA vials?		Yes	No 🗆	NA 🗹
13.	Did all sampl	es containers arrive in good	condition(unbroken)?	Yes 🗹	No 🗆	
14.	Does paperw	ork match bottle labels?		Yes 🗹	No 🗆	
15.	Are matrices	correctly identified on Chain	of Custody?	Yes 🗸	No \square	
16.	Is it clear wha	at analyses were requested?		Yes 🗸	No 🗆	
17.	Were all hold	ling times able to be met?		Yes 🗸	No \square	
Spe	cial Handl	ing (if applicable)				
-		otified of all discrepancies wit	h this order?	Yes	No 🗆	NA 🗸
	Person	Notified:	Date	a :		
	By Who	m:	Via	BeMall Pho	ne Fax	In Person
	Regardi	ng:				
	Client Ir	structions				
19.	Additional rer	marks:				
ltem I	nformation					
		Item #	Temp ⁰C			
	Cooler		9.6			
	Sample		8.6			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA Laboratories ... Where experien

The state of the s	Where ex	perience m	alters				R	etu	m :	Sar	nples	Ye	s_	_	No	_X_	_	1	X	1	10	W	U	7		_	V	UU	1/	01	ADDR	FSS I
a Laborat	tories		F	ADD	RES	SS:	22	21	Ro	SS	Wa	уΤ	acc	om	a, \	NΑ									Z	P:		984	21		CHA	
10921						HY	DRO)C	AR	во	NS		OF	RGA	NIC	cs		M	ET/	ALS		L	_				0.	THE	R	_		
Holt				ERS				7									١	5														
	72-4850			CONTAINERS			(1)			(тРН)			OLVENTS	VOA			a vaca	TOTAL METALS (SPECIFY)		RCRA 8	TCLP METALS (SPECIFY)						IFY)	Fecal Coliform - MPN or MF				
marieh@sr #:				NUMBER OF	NWTPH-HCID		BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1664 SGT-HEM (TPH)	1664 HEM (FOG)	8260/624 VOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	8270 PAH/PNA	8082/608 PCB	ACTAL METAL & DCBA	AL METAL		TCLP METALS RCRA 8	P METALS	PH 9040/9045	370X 907XT	TURBIDITY	FLASH POINT		SOLIDS (SPECIFY)	al Coliform		Hg by 1631E		
S	DATE AMPLED	SAMPLED	MATRIX	2	Š Ž	BTEX	BTE	N.	NWT	1664	1664	8260	8260	8270	8270	8082	Ę			101	15 12	품	٤	뛽	Ā	BOD	SOL	Te C	Ц	훈		Щ
	01/31/20	1100	Water	1							110						- 5		10				T							x		
	1/31/20		Water	1			100				Tues .								18				8		N.					X	3	
												10	L									_	70		100		10			-		100
					805		3.5		3							MI.			1	-	10		-81			_		_	1.5	-		
											-				L			1	1			L		_	W	L		_		-	0	110
									20										1			-		_	100		100	-		-		-
				-					18			18			-	10	-	15	13	1		-				-		-		-		
				_	100	-	10			L		18.	-		-		-		-	-	150	-		-	115	-	100	+		-	811	
				+		-	35	-		-		E3	-	3	-		+		-	+	15	-	-			-	100	+	200			138
(OCAMACINIT	· · ·				SE SE					L				8	1				1	-	17/4			_	18	_		_			1	
COMMENT	3.																															
	4.0	1		_			SIG	NAT	URE		_	-			PRIN	TED N	AME					CI	OMP	ANY			T	D/	ATE		1	TIME
(lab use on	ny)	RELINQUI	SHED BY	T		N	W	>			en	J	en l							Spectra						02/03/20				3:00 PM		
Intact?		RECEIV	ED BY	I	Y	A	56		L	/		1	200	+	v	7	0	ΛN:	Sor		FAI					2/4/20				091	0	
d	leg. C.	RELINQUI	SHED BY			-																										

Spectra Laboratories

CLIENT:

PHONE:

e-MAIL:

1 010921-1

2 010921-2

SAMPLED BY:

PROJECT: 2020010921

CONTACT: Marie Holt

PURCHASE ORDER #:

SAMPLE ID

SPECIAL INSTRUCTIONS/COMMENTS:

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (PA Method 200.8), Hg (EPA

Page

CHAIN of CUSTODY

SPECTRA PROJECT #

20201092

STANDARD www.spectra-lab.com info@spectra-lab.com RUSH Return Samples Y ADDRESS Tacoma Power (TPU) CLIENT: 3628 South 35th Street Tacoma, WA 98409 CHANGE PROJECT: Kosmos **HYDROCARBONS ORGANICS METALS OTHER** CONTACT: 625 TTO Ammonia Nitrogen SUBCONTRACT CONTAINERS SAMPLED BY: 1 Free Cyanide by 07237-10 SUB TOTAL METALS (SPECIFY) TSS (SPECIFY) 50 3260 CHLOR SOLVENTS ≽ B OTAL METALS RORA 8 Total Cyanide by 4500B; TCLP METALS RCRA 8 1664 SGT-HEM (TPH) Prefer FAX 8270/625 SEMI VOA Hexavalent Chromlum (SPECIFY) X e-MAIL: 1664 HEM (FOG) BTEX/NWTPH-G or e-MAIL NUMBER OF 8260/624 VOA FOLP METALS 8082/608 PCB PH 9040/9045 FLASH POINT DATOX 9076 PURCHASE ORDER #: TURBIDITY SOLIDS TIME SAMPLE ID 800 SAMPLED SAMPLED 110,00 X 17:30 SIGNATURE PRINTED NAME COMPANY DATE TIME Spectra Internal Instructions RELINQUISHED BY 1109 1-31-20 RECEIVED BY RELINQUISHED BY RECEIVED BY Payment Terms: Net 30 days. Past due accounts subject to 1 1/2 % per month interest. Customer agrees to pay all costs of collection including reasonable attorney's fees and all other costs of collection regardless of whether suit is filed in Pierce Co., WA venue. Spectra Analytical, LLC

02/12/2020	P.O.#:	Auth #20-4-2-024
02/12/2020	Project:	Kosmos
	Client ID:	U-3
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	02/04/2020
Tacoma, WA 98411	Date Received:	02/04/2020
Attn: Doug Boettner	Spectra Project:	2020020049
	Spectra Number	1

Analyte	Result	Units	Method
Total Mercury	0.000536*	ug/L	EPA 1631E
Turbidity	13	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	13.3	μg/L	EPA 200.8
Lead	1.3	μ g/L	EPA 200.8
Nickel	3.7	μg/L	EPA 200.8
Zinc	28.8	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	210	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.34	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Analyzed by Fremont Analytical. See complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	100	NWTPH-D	
Toluene-d8	100	NWTPH-G	
4-Bromofluorobenzene	107	NWTPH-G	

02/12/2020 P.O.#: Auth #20-4-2-024

Project: Kosmos
Client ID: T-1
Tacoma Public Utilities
PO Box 11007
Date Sampled: 02/04/2020
Tacoma WA 98411
Date Received: 02/04/2020

Tacoma, WA 98411 Date Received: 02/04/2020 Attn: Doug Boettner Spectra Project: 2020020049

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	0.00293*	ug/L	EPA 1631E
Turbidity	8.1	NTU	EPA 180.1
Arsenic	< 0.3	$\mu g/L$	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	1.9	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	0.8	μg/L	EPA 200.8
Diesel	<50	μg/L	NWTPH-D
Oil	110	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.14	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	<0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Analyzed by Fremont Analytical. See complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	102	NWTPH-D	
Toluene-d8	99	NWTPH-G	
4-Bromofluorobenzene	105	NWTPH-G	

SPECTRA LABORATORIES

P.O.#: Auth #20-4-2-024 02/12/2020

Project: Client ID: T-2 Sample Matrix: Water Tacoma Public Utilities

Date Sampled: 02/04/2020 PO Box 11007 Tacoma, WA 98411 Date Received: 02/04/2020

Spectra Project: 2020020049 Attn: Doug Boettner

Spectra Number: 3

Kosmos

Analyte	Result	Units	Method
Total Mercury	ND*	ug/L	EPA 1631E
Turbidity	7.8	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	2.1	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	< 0.5	μg/L	EPA 200.8
Zinc	1.3	μg/L	EPA 200.8
Diesel	< 50	μg/L	NWTPH-D
Oil	100	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	6.18	pH Units	SM 4500-H+B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Analyzed by Fremont Analytical. See complete report attached.

Surrogate	% Recovery	Method	
p-Terphenyl	101	NWTPH-D	
Toluene-d8	99	NWTPH-G	
4-Bromofluorobenzene	109	NWTPH-G	

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 3 of 3

SPECTRA Laboratories

2221 Ross Way * Tacoma, WA 98421 * (253) 272-4850 * Fax (253) 572-9838 * www.spectra-lab.com

February 7, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: Applies to Spectra #'s Analyst: ug/L 2020020049 1-3 SCJ

QUALITY CONTROL RESULTS ICP-MS Metals - EPA Method 200.8 - Water

Laboratory Reagent Blank (LRB)

Date Digested:	2/7/2020		Date A	Analyzed:	2/7/2020
Action Assessed		Element	CAS#	Result	_
		Arsenic	7440-38-2	< 0.3	
		Cadmium	7440-43-9	< 0.2	
		Chromium	7440-47-3	< 0.5	
		Copper	7440-50-8	< 0.3	
		Lead	7439-92-1	< 0.5	
		Nickel	7439-98-7	< 0.5	
		Zinc	7440-66-6	< 0.3	

-		Laboratory	Fortified Blank (LFB)		- A-W1 - 3
Date Digested:	2/7/2020			Date Analyz	zed:	2/7/2020
			Spike	LCS	LCS	
		Element	Added	Conc.	%Rec	
		Arsenic	100.0	93.43	93.4	
		Cadmium	100.0	93.72	93.7	
		Chromium	100.0	99.51	99.5	
		Copper	100.0	103.38	103.4	
		Lead	100.0	105.54	105.5	
		Nickel	100.0	98.77	98.8	
		Zinc	100.0	103.10	103.1	

10-11-11-11		Matrix Spike	Matrix Spi	ke Duplicate	(MS/MSD)	H		
Date Digested: Sample Spiked:	2/7/2020 2020020170-1				zed:	2/7/2020		
Element		Sample Conc.	Spike Conc.	MS Conc.	MS %Rec	MSD Conc	MSD %Rec	RPD
Arsenic	-	0.26	100.0	103.86	103.6	105.31	105.1	1.4
Cadmium		0.00	100.0	86.51	86.5	88.33	88.3	2.1
Chromium		1.09	100.0	102.03	100.9	101.20	100.1	0.8
Copper		12.63	100.0	116.27	103.6	115,91	103.3	0.4
Lead		0.55	100.0	104.39	103.8	104.11	103.6	0.3
Nickel		8,59	100.0	110.55	102.0	110.33	101.7	0.2
Zinc		113.58	100.0	217.50	103.9	219.53	105.9	1.9

Comment: Recovery Limits 70-130% RPD Limit 20

SPECTRA LABORATORIES

February 10, 2020

Tacoma Public Utilities

PO Box 11007 Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020020049 Date Analyzed: 2/5/2020

Units: ug/L

Applies to Spectra #'s: #1-3

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

RESULT AMOUNT RESULT Senzene <0.4 10.0 9.3	
Benzene <0.4 10.0 9.3	T %REC
Benzene <0.4 10.0 9.3	- 7.5
	93
Toluene <0.4 10.0 9.25	92.5
Ethylbenzene <0.4 10.0 9.77	97.7
Total Xylenes <0.8 30.0 20.4	68.1
Gasoline <50 250 244	98

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	102	Benzene	<0.4
1,2-Dichloroethane-d4	101	106	Toluene	<0.4
Toluene-d8	105	100	Ethylbenzene	<0.4
4-Bromofluorobenzene	100	108	Total Xylenes	<0.8
			Gasoline	<50

February 12, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Units:

mg/L

Spectra Project:

2020020049

Applies to Spectra #'s 1-3

QUALITY CONTROL RESULTS

Hexavalent Chromium in Water/Liquid - Method SM 3500 Cr-D/ SW846 7196A

Method Blank

Date Analyzed:

2/4/2020

Result

Hexavalent Chromium

< 0.01

Blank Spike (LCS)

Date Analyzed:

2/4/2020

Spike LCS LCS

Added Conc. %Rec

Hexavalent Chromium 0.05 0.047 94

LCS Recovery limits 73-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed:

2/4/2020

Sample Spiked:

020006-1

	Sample	Spike	MS	MS	MSD	MSD	
	Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Hexavalent Chromium	<0.1	0.05	0.069	138	0.058	116	17.3

RPD Limit 20

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020020049

Work Order Number: 2002045

February 10, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 3 sample(s) on 2/5/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 02/10/2020

CLIENT: Spectra Laboratories

Project: 2020020049 Work Order: 2002045 **Work Order Sample Summary**

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2002045-001	020049-1	02/04/2020 10:45 AM	02/05/2020 12:05 PM
2002045-002	020049-2	02/04/2020 11:00 AM	02/05/2020 12:05 PM
2002045-003	020049-3	02/04/2020 11:20 AM	02/05/2020 12:05 PM

Case Narrative

WO#: 2002045 Date: 2/10/2020

CLIENT: Spectra Laboratories

Project: 2020020049

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2002045

Date Reported: 2/10/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2002045

Date Reported:

2/10/2020

CLIENT: Spectra Laboratories

Client Sample ID: 020049-1

Project: 2020020049

2002045-001 Lab ID:

Collection Date: 2/4/2020 10:45:00 AM

Matrix: Water

Units DF **Date Analyzed** Analyses Result RL Qual

Mercury by Method 1631E

Batch ID: 27337

Analyst: WF

0.500

ng/L

2/5/2020 7:00:00 PM

Lab ID: 2002045-002

Mercury

0.536

Result

Collection Date: 2/4/2020 11:00:00 AM

Matrix: Water

Client Sample ID: 020049-2 Analyses

RL Qual

Units

Batch ID: 27337

DF **Date Analyzed**

Mercury by Method 1631E

2.93 0.500 ng/L

2/5/2020 7:11:00 PM

Analyst: WF

Lab ID: 2002045-003

Client Sample ID: 020049-3

Collection Date: 2/4/2020 11:20:00 AM

Matrix: Water

Analyses

Mercury

RL Qual

Date Analyzed

Mercury by Method 1631E

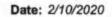
Result

Batch ID: 27337

DF

Analyst: WF

Mercury


ND

0.500

ng/L

Units

2/5/2020 7:22:00 PM

Work Order: 2002045

CLIENT: Spectra Laboratories

Project: 2020020049

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 202002004	9					
Sample ID: MB-27337	SampType: MBLK			Units: ng/L	Prep Date: 2/4/2020	RunNo: 57154
Client ID: MBLKW	Batch ID: 27337				Analysis Date: 2/5/2020	SeqNo: 1139434
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500				
Sample ID: MB2-27337	SampType: MBLK			Units: ng/L	Prep Date: 2/4/2020	RunNo: 57154
Client ID: MBLKW	Batch ID: 27337				Analysis Date: 2/5/2020	SeqNo: 1139435
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500				
Sample ID: MB3-27337	SampType: MBLK			Units: ng/L	Prep Date: 2/4/2020	RunNo: 57154
Client ID: MBLKW	Batch ID: 27337				Analysis Date: 2/5/2020	SeqNo: 1139436
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	ND	0.500				
Sample ID: LCS-27337	SampType: LCS			Units: ng/L	Prep Date: 2/4/2020	RunNo: 57154
Client ID: LCSW	Batch ID: 27337				Analysis Date: 2/5/2020	SeqNo: 1139437
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	25.7	0.500	25.00	0	103 80 120	
Sample ID: 2002010-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 2/4/2020	RunNo: 57154
Client ID: BATCH	Batch ID: 27337				Analysis Date: 2/5/2020	SeqNo: 1139439
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Mercury	1.94	0.500			1.990	2.54 24

Date: 2/10/2020

Work Order: 2002045

CLIENT: Spectra Laboratories

Project: 2020020049 QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2002010-001EMS Client ID: BATCH	SampType: MS Batch ID: 27337			Units: ng/L		Prep Da Analysis Da	ite: 2/4/202		RunNo: 57* SeqNo: 11:		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	26.9	0.500	25.00	1.990	99.6	71	125				
Sample ID: 2002010-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 2/4/202	20	RunNo: 57	154	
Client ID: BATCH	Batch ID: 27337					Analysis Da	ite: 2/5/202	20	SeqNo: 113	39441	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	27.4	0.500	25.00	1.990	102	71	125	26.90	1.84	24	

Sample Log-In Check List

Client Name:	SPECTRA		Work O	rder Numb	per: 2002045	
Logged by:	Carissa True		Date Re	eceived:	2/5/2020	12:05:00 PM
Chain of Cus	tody					
1. Is Chain of	Custody complete?		Yes	•	No 🗆	Not Present
	e sample delivered?		UPS			
1.50						
<u>Log In</u>	and the second second					100 A
Coolers are	present?		Yes	•	No 🗌	NA 🗔
4. Shipping co	ntainer/cooler in good condition?		Yes	•	No 🗌	
	als present on shipping container/ mments for Custody Seals not into		Yes	•	No 🗆	Not Required
6. Was an atte	empt made to cool the samples?		Yes		No 🔽	NA 🗆
300		Me	rcury in v	vater, pre	served	
7. Were all iter	ms received at a temperature of >	2°C to 6°C *	Yes		No 🗆	NA 🗷
9 Sample(e) in	n proper container(s)?		Yes	•	No 🗆	
- Miles & Ref. (44)	ample volume for indicated test(s)	2	Yas	V	No 🗆	
	s properly preserved?		Yes	V	No 🗌	
	vative added to bottles?		Yes		No 🗹	NA 🗆
40. In these bear	denses in the VOA viels?		Van		No 🗆	NA 🗹
	dspace in the VOA vials?	dition/unbroken\2	Yes	V	No 🗆	NA 🖭
771.54.4 1.4.2	oles containers arrive in good cont work match bottle labels?	aldon(dhbroken) i	Yes	V	No 🗆	
14. Does paper	work materi bottle labels (163	(2)	140	
15. Are matrices	s correctly identified on Chain of C	Custody?	Yes	•	No 🗌	
16. Is it clear wh	nat analyses were requested?		Yes	V	No 🗆	
17. Were all hol	ding times able to be met?		Yes	•	No 🗌	
Special Hand	ling (if applicable)					
	notified of all discrepancies with th	is order?	Yes		No 🗌	NA 🗹
Person	Notified:	Date:				
ByWh	a m'i	Vie	□ •Ma	n Ph	one Fax	In Person
Regard	ing:					
Cirent	natruebons:					
19. Additional re	emarks:					
Custod	y seal from Corcer J. 2/4					
tem Information						
	Item #	emp °C				
Cooler 1		10.8				
Sample 1		10.6				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SPECTRA L	aborato	ries			S	ΓΑΙ	ND	AR	RD		RL	JSH	K	SF	PE	CIA Lab Ap	L	3 al Re	quired	u	3	H.	AI	SF	EC	TRA	PR	OJE	CT	#		Y	
377		zperience m	atters				F	Retu	urn	Sai	mple	s Y	es		No	X	X)		1/	4	1	a	10	us	e	,	7	0	a:		45	
CLIENT: Spectra Labo	oratories		,	ADD	RE	SS:						ay T		om			V						1		Z	P:	-	984	21		ADDR	RESS	000
PROJECT: 2020020049										ВО		T		RGA			T	N	IET/	AI S							01	THE	R				٥
					H	Ï						+	T			П	†	T	Τ΄	T								Ī	Ť	T	Т	П	
CONTACT: Marie Holt			_	S	ı							1					1			П	П					П					1	Ш	
SAMPLED BY:				Ä	ı							П					1	1	=		3		П					MF.				П	
PHONE: 25	53-272-4850)		CONTAINERS	ı			Ш		£		1	ENTS			П		5		8 8	(SPECIFY)							5				Ш	
e-MAIL: marieh	@spectra-la	b.com		OF CO			9			M (TP	(90		SOLV	N VO	4			TO ME	9	SRCF					_		CIFY)	N-MPN				Ш	
PURCHASE ORDER #:					무		WTP	9	ě	3T-HE	EM (F)	/O ×	HOR	S SEA	WHYPN	8 PCE		MEIN	MC 10	ETAL	ETAL	0/904	9026	£1Ω	POIN		S (SPE	oliforn		1631E		Ш	
SAMPLE ID	DATE	TIME	MATRIX	NUMBER	NWTPH-HCID	BTEX	BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1664 SGT-HEM (TPH)	1684 HEM (FOG)	8260/624 VOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	8270 PAHPNA	8082/808 PCB		TOTAL	וסוטר שבוטרס (פובמונו)	TCLP METALS RCRA 8	TCLP METALS	PH 9040/9045	TX/TOX 9078	TURBIDITY	FLASH POINT	BOD	SOLIDS (SPECIFY)	Fecal Colform -		Hg by 1			
020049-1	02/04/20	1045	Water	1	13		H				İ					(3)			3		10		H							x		17	
020049-2	02/04/20	1100	Water	1	V		M		3		1	- 10				9			100								95		Į.	x			
020049-3	02/04/20	1120	Water	1	1						- I	- 11							2		1				3				2	х	9		
							1		夏		P	(1)		100		(1)			13														
							113		B			9						ij	1				N.				6		N			1	
							US									6			1												ij.		
							W.				1	1				1			9		17		al.				Ŧ.						
							1		13			18		di							1					b							
					1		10		E.		1	- 6		9					100		14		b				68						
									0		3	1									255										1		
SPECIAL INSTRUCTIONS/COMM	ENTS:																																
Sample Receipt (lab use	o only)					1	SIG	IJAN	URE					F	PRIN	TED N	IAME			I		CC	MPA	NY				DA	TE	I	1	IME	
Total # of containers	E Dina	RELINQUI	SHED BY		9	h	1/	1	W	ve	11			Dra	_	$\overline{}$								tra			0	2/0	4/2	0	3:0	0 PN	Л
COC seals present? Inta	act?	RECEIV		-	4	21	4	11	9	_	_	1	EW	W	a	1+	oln	ne	5	+	_	F	A	1	_	-	2	5	20	+	121	CS	_
Temp at receipt	_ deg. C.	RELINQUE		-	_	_			_	_	_	+	_	_	_		_	_		+	_	_	_	_	_	-	-	_	-	+	_	_	_
Received within hold time?		RECEIV	_	+	-	_	-	_	_		_	+					_			+	_	_								+			-
Proper sample containers? Received via Co	oler?	RECEIV	/ED BY	1								1								1													
Payment Terms: Net 30 days. Past due a	accounts subject to	1 1/2 % per mont	th interest. C	ustom	er agr	ees to	pay	all cos	sts of	collec	tion in	cluding	otaen	nable i	attom	vay's fe	es an	d all o	ther oo	ats of	collec	tion n	egard	ess o	of with	ther	suit is	filed	in Pie	rce Co	. WA v	remus.	

Turnaround Time Requested

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com Please use Clean Water Act Methods
"Refer to attached list of required methods and detection
limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

202000049

STANDARD RUSH

CLIENT: Tacoma Pow	ver (TPU)			_			36	28	So	out	13	5th	St	ree	t T	ac	om	a,	W/	19	840	9							,				CHAP	
PROJECT: Kosmos						н	DF	200	AR	во	NS			OF	RGA	NIC	cs			ME	TA	LS						(OTH	(EF	2			
CONTACT:																																		
SAMPLED BY: Dous	Boet	twee		ERS									01		625 TTO			808		3									67	4500C	908		SUBCONTRACT	
PHONE:253-244-0539		STING		CONTAINERS						=			124 11	ENTS	BY 63			è	8 A.8	(SPECIFY)		8 Y	(SPECIFY)						15.5		D7237-10 SUB		JBCGN	
-MAIL:		Prefer FA or e-MAIL	COST				g			W (TPH	(5)		BY 6	SOLVE	VOA			set/PO	SRC	8 (8		DE							(SPECIFY)	by 4500B;	y D72	raminu	gen Si	
PURCHASE ORDER #: 20	0-4-2			SER OF	WWTPH-HCID		CHWTPH-G	2	KO.	1884 SGT-НЕМ (ТРН)	1654 HEM (FOG)		6260/624 VOA	8260 CHLOR SOLV	1270/625 SEMI VOA	PAMERA	BOLLEGE	schlor P	METALS RORA	METALS		TOUR METALS HORA 8	TOLP METALS	40/9045	DX/TOX 9078	DITY	FLASH POINT		_	Total Cyanide by	yantide by	valent Chromium	nia Neltro	
SAMPLE ID	DATE	700 00	MATRIX	NUMB	MWTP	ВТЕХ	BTEXA	NWTPHS	NWTPH-0x	1954 \$	165a H		2/0929	8260 C	82706	82769	90000	Organo	TOTAL	TOTAL		200	TOLP	06 Hd	TAVTO	TURBIDITY	FLASH	GOB	sonos	Total C	Free C	Hexave	Arretion	
U-3	2-4-20	10:45					X	案	X											X			1	Χ		X						Х		
T-1	2-4-20	11:00					×		X											X				X		×						X		
T. 2	2-4-20	11:20					X		×		7								9	×				X		X						X		
																																		8
					L																										14			
				L		L																												
				L		L																												
									3																									
Constant Internal Instant	-N			-		_	SIG	NATE	JRE 1	_	_	_		_		_	EDN			_	_	_	0	OM	PAN			_	DA		_	_	TIA	
Spectra Internal Instru Please Refer to		RELINQUIS	HED BY	7	ىدار	C	> }	Su	J	4	~	4	1)0	45	_	13	08	+	tre	V	_	1	T	1	_	_	2-	4	21	0	1	.4	4
		RECEIVE	ED BY	7	0	2	ui	2	4	6	B	e	1	nA	R	E		14	61	I	4	S	20	20	D	10	,	2.	4.	2	0	_	1.9	14
Kosmos oil se	ducantes	RELINQUIS	HED BY		/																	-												
washed of det	edion	RECEIVE	ED BY																															
limits + levels		Payment Ter																												n inc	dudi	ng ne	aso	nable

02/04/2020	P.O.#:	Auth #20-8-2-026
03/04/2020	Project:	Kosmos
	Client ID:	Log Pond #1
Tacoma Public Utilities	Sample Matrix:	Water
PO Box 11007	Date Sampled:	02/08/2020
Tacoma, WA 98411	Date Received:	02/10/2020
Attn: Doug Boettner	Spectra Project:	2020020269
	Spectra Number:	1

Analyte	Result	<u>Units</u>	<u>Method</u>
Total Mercury	0.009*	ug/L	EPA 1631E
Turbidity	25	NTU	EPA 180.1
Arsenic	< 0.3	μg/L	EPA 200.8
Cadmium	< 0.2	μg/L	EPA 200.8
Chromium	< 0.5	μg/L	EPA 200.8
Copper	6.1	μg/L	EPA 200.8
Lead	< 0.5	μg/L	EPA 200.8
Nickel	0.8	μ g /L	EPA 200.8
Zinc	163	μg/L	EPA 200.8
Diesel	< 50	μg/L	NWTPH-D
Oil	95	μg/L	NWTPH-D
Gasoline	< 50	μg/L	NWTPH-G
pH	5.95	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

^{*} Analyzed by Fremont Analytical. See complete report attached.

Surrogate	% Recovery	Method
Toluene-d8	94	NWTPH-G
4-Bromofluorobenzene	101	NWTPH-G
p-Terphenyl	107	NWTPH-D

SPECTRA LABORATORIES

03/04/2020

P.O.#:

Auth #20-8-2-026

Project: Client ID: Kosmos

Tacoma Public Utilities

Sample Matrix:

Log Pond #2 Water

PO Box 11007

Date Sampled:

02/08/2020

Tacoma, WA 98411

Date Received:

02/10/2020

Attn: Doug Boettner

Spectra Project: 2020020269

Spectra Number: 2

Analyte Result **Total Mercury** ND* **Turbidity** 62 Arsenic 0.8 < 0.2 Cadmium Chromium < 0.5 Copper 6.2 0.9 Lead Nickel 1.7 Zinc 21.6 Diesel < 50 Oil < 50 < 50 Gasoline 6.26 pН Hexavalent Chromium < 0.01 < 0.4 Benzene Ethylbenzene < 0.4 Toluene < 0.4 Total Xylenes < 0.8

<u>Units</u>	Method
ug/L	EPA 1631E
NTU	EPA 180.1
μg/L	EPA 200.8
μg/L	NWTPH-D
μg/L	NWTPH-D
μg/L	NWTPH-G
pH Units	SM 4500-H+ B
mg/L	SM3500-CR B
μg/L	SW846 8260C

Surrogate	% Recovery	Method	_
Toluene-d8	94	NWTPH-G	
4-Bromofluorobenzene	100	NWTPH-G	
p-Terphenyl	120	NWTPH-D	

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

a5/sks

March 5, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix:

Spectra Project #

Water 2020020269

Applies to Spectra#

1-2

QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
<u>Analyte</u>	Method	<u>Date</u>	<u>Analyst</u>	Result	Rec.	Limits	<u>RPD</u>	Limits
Turbidity	EPA 180.1	2/10/20	HDE	< 0.1	97.7	96-110	1.57	≤20
pН	$SM 4500-H^{\dagger}B$	2/10/20	HDE	N/A	99	$\pm 0.2 \text{ pH}$	0.66	≤20

SPECTRA LABORATORIES

February 13, 2020

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units:

Spectra Project: Applies to Spectra #'s ug/L 2020020269

Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS ICP-MS Metals - EPA Method 200.8 - Water

Laboratory Reagent Blank (LRB)

Date Digested:	2/13/2020		Date A	nalyzed:	2/13/2020
J		Element	CAS#	Result	
		Arsenic	7440-38-2	< 0.3	-15
		Cadmium	7440-43-9	< 0.2	
		Chromium	7440-47-3	< 0.5	
		Copper	7440-50-8	< 0.3	
		Lead	7439-92-1	< 0.5	
		Nickel	7439-98-7	< 0.5	
		Zinc	7440-66-6	< 0.3	

Laboratory	Fautified.	Diank	/I ED
Laboratory	rornnea	піяпк	(L/PB)

Date Digested:

2/13/2020

Date Analyzed:

2/13/2020

	Spike	LCS	LCS
Element	Added	Conc.	%Rec
Arsenic	100,0	93.40	93.4
Cadmium	100.0	91.15	91.1
Chromium	100.0	95.43	95.4
Copper	100.0	100.97	101.0
Lead	100.0	92.39	92.4
Nickel	100.0	96.01	96.0
Zinc	100.0	103,00	103.0

LCS Recovery limits 85-115%

Date Digested: Sample Spiked: 2/13/2020 2020020143-1 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed:

2/13/2020

Element	Sample Conc.	Spike Conc.	MS Conc.	MS %Rec	MSD Conc	MSD %Rec	RPD
Arsenic	0.92	100.0	88.71	87.8	105.31	104.4	17.3
Cadmium	0.00	100.0	81.28	81.3	81.94	81.9	0.8
Chromium	0.00	100.0	87.22	87.2	87.42	87.4	0.2
Copper	7.10	100.0	98.9	91.8	96.1	89.0	3.1
Lead	0.00	100.0	80.32	80.3	81.04	81.0	0.9
Nickel	0.00	100.0	84.21	84.2	84.97	85.0	0.9
Zinc	80.39	100.0	169.4	89.0	174.0	93.6	5.0

Comment:

Recovery Limits 70-130%

RPD Limit 20

SPECTRA LABORATORIES

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

March 5, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020010269

Applies to Sample # 1-2

STORMWATER HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

BLANK SPIKE (LCS)

Spiked Sample:

LCS

Date Extracted:

02/20/20

Units:

mg/L

Date Analyzed:

02/25/20

Compound

Sample Amount Amount

Spike

2.24

Percent

Result

Added

Spike

2.50

Found

Recovery

Diesel

< 0.10

90

METHOD BLANK

Date Extracted:

02/20/20

Date Analyzed:

02/25/20

Units:

mg/L

Total Petroleum Hydrocarbons

< 0.10

Surrogate Recoveries:

p-terphenyl

111%

SPECTRA LABORATORIES

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

March 4, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Units:

mg/L

Spectra Project:

20200269

Applies to Spectra #'s:1-2

QUALITY CONTROL RESULTS

Hexavalent Chromium in Water/Liquid - Method SM 3500 Cr-D/ SW846 7196A

Method Blank

Date Analyzed:

2/10/2020

Result

Hexavalent Chromium

< 0.01

Blank Spike (LCS)

Date Analyzed:

2/10/2020

Spike

LCS

LCS

Added

200

Hexavalent Chromium

0.05

Conc. 0.047

%Rec 94

LCS Recovery limits 73-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Analyzed:

2/10/2020

Sample Spiked:

020269-1

Sample Spike MS MS **MSD MSD** Conc. Conc. Conc. %Rec Conc %Rec **RPD** Hexavalent Chromium < 0.1 0.05 0.041 82 0.035 70 15.8

RPD Limit 20

SPECTRA LABORATORIES

February 13, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020020269

Date Analyzed: 2/11/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
	RESULT	AMOUNT	RESULT	%REC	
Benzene	<0.4	10.0	11.4	114	
Toluene	< 0.4	10.0	10.94	109.4	
Ethylbenzene	<0.4	10.0	10.63	106.3	
Total Xylenes	<0.8	30.0	32.2	107.2	
Gasoline	<50	250	249	100	

Surrogate Recoveries (%)	LCS	МВ	Method Blank	ug/L
Dibromofluoromethane	99	102	Benzene	<0.4
1,2-Dichloroethane-d4	100	107	Toluene	<0.4
Toluene-d8	97	93	Ethylbenzene	<0.4
4-Bromofluorobenzene	92	103	Total Xylenes	<0.8
			Gasoline	<50

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020020269

Work Order Number: 2002161

February 18, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 2/11/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 02/18/2020

CLIENT:

Spectra Laboratories

Work Order Sample Summary

Project:

2020020269

Work Order:

2002161

Lab Sample ID

Client Sample ID

020269-1

2002161-001 2002161-002

020269-2

Date/Time Collected

02/08/2020 9:20 AM

02/08/2020 10:10 AM

Date/Time Received

02/11/2020 9:37 AM 02/11/2020 9:37 AM

Case Narrative

WO#: **2002161**Date: **2/18/2020**

CLIENT:

Spectra Laboratories

Proiect:

2020020269

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2002161

Date Reported:

2/18/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2002161

Date Reported:

2/18/2020

CLIENT:

Spectra Laboratories

Project:

2020020269

Lab ID:

2002161-001

Client Sample ID: 020269-1

Collection Date: 2/8/2020 9:20:00 AM

Matrix: Water

Analyses

Mercury

Result

9.00

RL Qual

Units

DF **Date Analyzed**

Mercury by Method 1631E

0.500

ng/L

2/18/2020 1:22:00 PM

Analyst: WF

Lab ID:

2002161-002

Client Sample ID: 020269-2

Collection Date: 2/8/2020 10:10:00 AM

Batch ID: 27444

Matrix: Water

Analyses

Mercury

Result

RL Qual

Units

DF

Date Analyzed

Mercury by Method 1631E

ND

0.500

ng/L

1

Batch ID: 27444

2/18/2020 1:32:00 PM

Analyst: WF

Date: 2/18/2020

Work Order:

2002161

CLIENT:

Spectra Laboratories

Project:

2020020269

QC SUMMARY REPORT

Mercury by Method 1631E

Project: 2020020265	9					nordary by moundariou
Sample ID: MB-27444	SampType: MBLK			Units: ng/L	Prep Date: 2/17/2020	RunNo: 57417
Client ID: MBLKW	Batch ID: 27444				Analysis Date: 2/18/2020	SeqNo: 1145163
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB2-27444	SampType: MBLK			Units: ng/L	Prep Date: 2/17/2020	RunNo: 57417
Client ID: MBLKW	Batch ID: 27444				Analysis Date: 2/18/2020	SeqNo: 1145164
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: MB3-27444	SampType: MBLK			Units: ng/L	Prep Date: 2/17/2020	RunNo: 57417
Client ID: MBLKW	Batch ID: 27444				Analysis Date: 2/18/2020	SeqNo: 1145165
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.500				
Sample ID: LCS-27444	SampType: LCS			Units: ng/L	Prep Date: 2/17/2020	RunNo: 57417
Client ID: LCSW	Batch ID: 27444				Analysis Date: 2/18/2020	SeqNo: 1145166
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	23.1	0.500	25.00	0	92.4 80 120	
Sample ID: 2002152-001EDUP	SampType: DUP			Units: ng/L	Prep Date: 2/17/2020	RunNo: 57417
Client ID: BATCH	Batch ID: 27444				Analysis Date: 2/18/2020	SeqNo: 1145168
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	7.10	0.500			7.100	0 24

Date: 2/18/2020

Work Order: 2002161

CLIENT: Spectra Laboratories

Project: 2020020269

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2002152-001EMS	SampType: MS			Units: ng/L		Prep Da	te: 2/17/2 0	20	RunNo: 574	117	
Client ID: BATCH	Batch ID: 27444				Analysis Date: 2/18/2020 See					l51 6 9	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	27.1	0.500	25.00	7.100	80.0	71	125				

Sample ID: 2002152-001EMSD	SampType: MSD			Units: ng/L		Prep Da	te: 2/17/20	20	RunNo: 574	117	
Client ID: BATCH	Batch ID: 27444					Analysis Da	te: 2/18/2 0	20	SeqNo: 114	I5170	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	27.5	0.500	25.00	7.100	81.6	71	125	27.10	1.47	24	

Sample Log-In Check List

Client Name: SPECTRA	Work Order Numb	ber: 2002161	
Logged by: Carissa True	Date Received:	2/11/2020	9:37:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>UPS</u>		
<u>Log In</u>			
3. Coolers are present?	Yes ⊻	No 🗆	NA 🗌
5. Obbiers are present:	103 🖭	110	
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
5. Custody Seals present on shipping container/cooler?	Yes 🗌	No 🗹	Not Required
(Refer to comments for Custody Seals not intact)			
6. Was an attempt made to cool the samples?	Yes 🗆	No 🗹	NA 🗔
1	Mercury in water, pr		NA 🗹
7. Were all items received at a temperature of >2°C to 6°C *	Yes L	No L	INA 💌
8 Sample(s) in proper container(s)?	Yes 🗹	N。 🗌	
Sufficient sample volume for indicated test(s)?	Yes 🗸	N. \Box	
10. Are samples properly preserved?	Yes 🗸	No \square	
11. Was preservative added to bottles?	Yes	No 🗹	NA \square
12. Is there headspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14. Does paperwork match bottle labels?	Yes 🗹	No 🗆	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗆	
16. Is it clear what analyses were requested?	Yes 🗸	No 🗆	
17. Were all holding times able to be met?	Yes 🗸	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Dat			
By Whom:		опе П Fax	In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			
tem Information			

Item #	Temp °C
Cooler 1	9.9
Sample 1	9.9

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

STANDARD RUSH SPECIAL 3 du CHAIN of CUSTODY

SPECTRA PROJECT #

CDECTDA Laboratories

SPECTRA	Laborator	ies											Ĺ			LBD A	pprov	/air	equire	, u	,			_		~	2 \	d	\ \			9
	Where ex	operience m	aiters				R	etu	rn S	Sam	ples	Ye	s_		N	o_X	_	_	_					2				الد			ADDRI	
LIENT: Spectra La	boratories			ADD	RE	SS:	222	21	Ro	SS	Wa	уΤ	ac	on	na,	WA	4					_			Z	IP:	9	984	21		CHAI	NGE L
						HY	DRO)C/	ARE	301	4S		O	RG	AN	ICS		METALS			3	OTHER										
					Г					1		T		T																		
CONTACT: Marie Holt				ဖွ																												
SAMPLED BY:				盟			М					1	ر ا		1						3	ı						¥				
PHONE:	253-272-4850)		NTA ATA						ξĺ		1	Ē	4				S. C.R.	(SPE	88	SPEC						ç	N N				
e-MAIL: <u>marie</u>	eh@spectra-la	b.com		NUMBER OF CONTAINERS	ē		HG			1664 SGT-HEM (TPH)	(j)	8	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	PNA ANA	8		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCI P METALS RCRA8	TCLP METALS (SPECIFY)	045	976	>	INT		SOLIDS (SPECIFY)	Fecal Coliform - MPN or MF	ļ	<u> </u>		
PURCHASE ORDER #:				BER	NWTPH-HCID		BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	SGT-	1664 HEM (FOG)	8260/624 VOA	딍	/625 S	8270 PAH/PNA	8082/608 PCB	П	AL ME	AL ME	P ME	P MET	9040/9	7X/TOX 9076	TURBIDITY	FLASH POINT		SQI	al Coff		Hg by 1631E		
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	N S	N N	втех	BE	¥2	N N	1664	<u>\$</u>	8260	8260	8270	8270	8082	Ц	TOT	<u>5</u>	Ę	둳	Œ	X	15	F.F.	BOD	801	P. P.	-	_	+	1
020269-1	02/08/20	0920	Water	1									1		-					-		-	-	-	_	H		H	-	X	+	
)20269-2	02/08/20	1010	Water	1		-				-		+	+	+	+	-			+	+	+	+	+	-	-			H		X	+	
				+		+				1	+		t	1	+																	
															N.			i.													-	1
									¥					1	-	1. 5	-		Н	-	1	+	-	-	-	-		\vdash		+	+	+
				-		1	-					1	+	+	+	.5,	-	-	Н	-	ł.,.	+	-	+	-	-				+	+	+
				-	1	-		-			8	+	+	+	-		+		H		+	+	+	+	+	+	-	-		+	+	++
			-	1	1		20	-	-		1	-	+	+	+	+	-	-	H	+	+	1	+	+	+	-				1	1	11
	ALL SENTO		1						100		143	1	_	_	1				_			-	_	1	_	-	-	1		-		
SPECIAL INSTRUCTIONS/COM	MMENIS:																															
Sample Receipt (lab.	uee only)			_		1	SIG	NĄT	URE						PR	INTE) NAI	ME		1				PANY					ATE	1	_	TIME
Total # of containers	use only)	RELINQU	IISHED BY		1	p	il	No	av	ev	1	J	en	Di	rav	en	,	۸.	- 1-					ctra	1				10/2		3:0	937
	Intact?	RECEI	VED BY	1	Nd	Λ	V	1	-		_		W	al	61	11	/	W	wh	17	_	6	A	_	_		+	L	11)	ש	0	137
COC seals present? Temp at receipt			IISHED BY	1	lo							-	_	_			_	_		+	_	_	_	_	_		+			-		
Received within hold time?	54 1		VED BY	+				_	_	_		+	_	_		_		_	_	+							+	_				
Proper sample containers?			JISHED BY	-	_			_		_		+		_		-		_		-	_	_		_			+					
		RECEI	IVED BY					_0	nta -/	anite:	ntion in	oludioa	ros	ennot	nle att	omev'i	s feas	and a	ill othe	r costs	of col	lection	n rega	rdless	of w	hethe	r suit	is file	d in Pie	erce C	o., WA	venue.

Communications Record

Internal Document

Client: TPU

Client Contact: Doug

Date: 2/10/20

Time: 0845

Spectra Contact: Spencer

Project Number:

Note: pH, Turbidity, and Cr6 out of hold – run what you can or out of hold, samples primarily for checking for oil/fuel.

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

Please use Clean Water Act Methods
*Refer to attached list of required methods and detection
limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of

CHAIN of CUSTODY

SPECTRA PROJECT #

20200203/269

STANDARD RUSH

CLIENT: Tacoma Power (TP	U)				36	328	Sc	out	h 3	5th	h S	tre	et T	Гас	on	na,	W	A 9	84	09												DDRI		
PROJECT: Kosmos		HYDROCARBONS ORGA								ANI	cs			M	ETA	LS							0	TH	ER									
CONTACT:																						Ī	T	T	T	T	T	T	Ť					
SAMPLED BY: Dong Boe	ttner	IRS I											625 TTO			80													0	: B		RACT		
HONE:253-244-0539 FAX:	TESTING	CONTAINERS									07. 17.0	100	8270/625 SEMI VOA BY 62			BY 608	Ø	(SPECIFY)		20	(SPECIFY)				1	1	700		% 4500C	-10 S		SON		
-MAIL:	Prefer FAX or e-MAIL				စ္			1664 SGT-HEM (TPH)	(5)		BY 624	8260 CHLOR SOLVENTS		_			8082/608 PCB Organochlor Pest/PC8	est/PC8	TOTAL METALS RCRA 8		RCRA	144	/ ₁₀						(ABECIEV)	f e 250	Total Cyanide by 4500B;	Free Cyanide by D7237-10 SUB	mulma	Ammonia Nitrogen SUBCONTRACT
URCHASE ORDER#: 20-8-	1-026	SER OF	NWTPH-HOID		BTEX/NWTPH-G	ပ္	H DX	GT-HE	1664 HEM (FOG)		6280/624 VOA	HLOR S	25 SEN	8270 PAHIPNA	8082/603 PCB	chlor Pe	METAL	TOTAL METALS		ETALS	TCLP METALS	0/9045	9076	E	TAICO	:	200	1	anide p	anide b	ent Chr	a Nitrog		
SAMPLE ID DATE SAMPLE	TIME MATRI	NUMBER	NWTP	втех	BTEX	NWTPH-G	NWTPH-Dx	1664 S	1664 H		8260/6	8260 C	8270/6	8270 P	8082/6	Orgeno	TOTAL	TOTAL		TCLP N	TCLP A	PH 9040/9045	TXTOX 9076	THRRIDITY	EL ACIA DOUNT		SOI IOS	2 2	Total C	Free Cy	Hexavalent Chromium	Ammon		
Log Pond = 1 2/8/2 Log Pond = 2 2/8/2	0 9:20				X	4	X						Ē		187			X				X	T	1>		1	1	1			X	Ì		
Log Pond# 2 2/8/3	10:10 AM				X		X											X				X		×						-	X			
Boston or 1																														1				
					71		-																	1		1		1	1					
																								1		+		+		+	1			
		T																						H		+	+	+		1			-	
		Н																						H	+	+	+	+	-	+	+		+	
		Н																		-					+	-	+	+	-	+	\dashv	-	+	
	1	\forall		H					to 1							\dashv		-		+	-	-		-	-	+	+	+		+	-	-		
		+											8			\dashv		\dashv		4				-		+	-	+		1	_			
		Ш		Ц	eich.	IATU	DC		-					-																		- 1		
Spectra Internal Instructions	RELINQUISHED BY	1		(SIGN	VATO.	1			-	1				EDN				1			MO	PAN	iY_	_	1	Bo	ATE	20	Т		TIM		
	RECEIVED BY	-	70	7	3	0	0	V	0	-	1	100	\ \frac{1}{5}	Z	ال	1	rib	_	+		4		u	-			- 1			+			.5	
		-	_	_	1	2	2	4		_		(2	Se		_			- (ècc	41	2			2	-/10	1	20	1	D8	82	<u>8 </u>	
	RELINQUISHED BY	-				_		_		_									4											1				
	RECEIVED BY	20 4-			lee e					100	4/2	n/					-													\perp				
	Payment Terms: Net attorney's fees and all	othe	cosi	s of	colle	ectio	unts n reg	sub jard	ject less	of w	vheth	70 P	er mo uit is	onth file	intei d in l	est. Piero	e C	ston o., V	ier a /A v	gree enue	s to s. Sp	pay	y all Ira /	cos Anal	its o <i>ytice</i>	f cot al, LL	lection	on ii	nclu	ding) rea	ison	able	

P.O.#: Auth #20-3-3-041 03/17/2020 Project: Kosmos Client ID: Stockpile Pond SOP 1 Sample Matrix: Liquid Tacoma Public Utilities Date Sampled: 03/03/2020 PO Box 11007 Date Received: 03/03/2020 Tacoma, WA 98411 Spectra Project: 2020030049 Attn: Doug Boettner Spectra Number: 1

Analyte	Result	Units	Method
Total Mercury	ND*		EPA 1631E
Turbidity	55	NTU	EPA 180.1
Arsenic	2,1	μg/L	EPA 200.8
Cadmium	0.3	μg/L	EPA 200.8
Chromium	6.1	μg/L	EPA 200.8
Copper	7.3	μg/L	EPA 200.8
Lead	0.5	μg/L	EPA 200.8
Nickel	5.1	μg/L	EPA 200.8
Zinc	70.6	μg/L	EPA 200.8
Diesel	3320*	μg/L	NWTPH-D
Oil	1250	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	3.87	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0.4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	<0.8	μg/L	SW846 8260C

^{*} Mercury analyzed by Fremont Analytical. See complete report attached. *Sample pattern does not match the laboratory reference for diesel, sample was quantified with diesel response.

Surrogate	% Recovery	Method	
p-Terphenyl	102	NWTPH-D	_
Toluene-d8	94	NWTPH-G	
4-Bromofluorobenzene	109	NWTPH-G	

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

a5/sks

02/17/2020	P.O.#:	Auth #20-3-3-041
03/17/2020	Project:	Kosmos
	Client ID:	Concrete Oil Pond COP 1
Tacoma Public Utilities	Sample Matrix:	Liquid
PO Box 11007	Date Sampled:	03/03/2020
Tacoma, WA 98411	Date Received:	03/03/2020
Attn: Doug Boettner	Spectra Project:	2020030049

Spectra Number: 2

Analyte	Result	Units	Method
Total Mercury	ND*		EPA 1631E
Turbidity	135	NTU	EPA 180.1
Arsenic	0.9	μg/L	EPA 200.8
Cadmium	0.3	μg/L	EPA 200.8
Chromium	3.3	μg/L	EPA 200.8
Copper	25.6	μg/L	EPA 200.8
Lead	8.2	μg/L	EPA 200.8
Nickel	4.7	μg/L	EPA 200.8
Zinc	72.5	μg/L	EPA 200.8
Diesel	<100	μg/L	NWTPH-D
Oil	<500	μg/L	NWTPH-D
Gasoline	<50	μg/L	NWTPH-G
pH	6.78	pH Units	SM 4500-H+ B
Hexavalent Chromium	< 0.01	mg/L	SM3500-CR B
Benzene	< 0,4	μg/L	SW846 8260C
Ethylbenzene	< 0.4	μg/L	SW846 8260C
Toluene	< 0.4	μg/L	SW846 8260C
Total Xylenes	< 0.8	μg/L	SW846 8260C

% Recovery	Method
119	NWTPH-D
92	NWTPH-G
109	NWTPH-G
	119 92

SPECTRA LABORATORIES

Authorized by: Kristin Hintz

Page 2 of 2

March 18, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Method:

NWTPH-Dx

Sample Matrix:

Water

Spectra Project:

2020030049

Applies to Spectra #: 1-2

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

LCS/LCSD

Spiked Sample:

Method Blank

Date Extracted:

3/11/2020

Units:

mg/L

Date Analyzed:

3/17/2020

Spike Spike

Sample Amount Amount

Percent

Compound

Result

Added

Found

Recovery

Diesel

< 0.10

2.50

2.19

88

METHOD BLANK

Date Extracted:

3/11/2020

Date Analyzed:

3/17/2020

Units:

mg/L

Diesel

< 0.10

Heavy Oil

< 0.05

Surrogate Recovery:

p-terphenyl

199%

SPECTRA LABORATORIES

Authorized by: Devan Salter

March 5, 2020

Tacoma Public Utilities

PO Box 11007

Tacoma, WA 98411

Attn: Doug Boettner

Sample Matrix: Water

EPA Method: 624/8260C

Spectra Project: 2020030049

Date Analyzed: 3/4/2020

Units: ug/L

Applies to Spectra #'s: #1-2

GCMS VOLATILE ORGANIC ANALYSIS Method Blank and Laboratory Control Sample (LCS) Results

COMPOUND	BLANK	SPIKE	SPIKE	LCS	
A 10 - Con	RESULT	AMOUNT	RESULT	%REC	_
Benzene	<0.4	10.0	11.7	117	
Toluene	<0.4	10.0	10.54	105.4	
Ethylbenzene	<0.4	10.0	11.04	110.4	
Total Xylenes	<0.8	30.0	33.7	112.2	
Gasoline	<50	250	234	93	

Surrogate Recoveries (%)	LCS	MB	Method Blank	ug/L
Dibromofluoromethane	100	111	Benzene	<0.4
1,2-Dichloroethane-d4	94	111	Toluene	<0.4
Toluene-d8	99	91	Ethylbenzene	<0.4
4-Bromofluorobenzene	96	112	Total Xylenes	<0.8
			Gasoline	<50

March 5, 2020

Date Digested:

Tacoma Public Utilities PO Box 11007 Tacoma, WA 98411 Units: Spectra Project: ug/L 2020030049

Applies to Spectra #'s
Analyst:

1-2 SCJ

QUALITY CONTROL RESULTS ICP-MS Metals - EPA Method 200.8 - Water

Laboratory Reagent Blank (LRB)

Date Digested:	3/5/2020		Date A	nalyzed:	3/5/2020
		Element	CAS#	Result	
		Arsenic	7440-38-2	< 0.3	
		Cadmium	7440-43-9	< 0.2	
		Chromium	7440-47-3	< 0.5	
		Copper	7440-50-8	< 0.3	
		Lead	7439-92-1	< 0.5	
		Nickel	7439-98-7	< 0.5	
		Zinc	7440-66-6	< 0.3	

	Laboratory	Fortined Blank (LFB)			
3/5/2020		Date Analyzed:			3/5/2020	
		Spike	LCS	LCS		
	Element	Added	Conc.	%Rec		
	Arsenic	100,0	87.62	87.6		
	Cadmium	100.0	92.82	92.8		
	Chromium	100.0	94.41	94.4		
	Copper	100.0	104.20	104.2		
	Lead	100.0	96.44	96.4		
	Nickel	100.0	100.71	100.7		
	Zinc	100.0	105.21	105.2		

		Matrix Spike	Matrix Spi	ke Duplicat	e (MS/MSD)	0		
Date Digested: Sample Spiked:	3/5/2020 2020020730-1			Date Analyzed:			3/5/2020	
		Sample	Spike	MS	MS	MSD	MSD	
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Arsenic		1.84	100.0	97.28	95.4	98.45	96.6	1.2
Cadmium		0.00	100.0	92.98	93.0	95.77	95.8	3.0
Chromium		0.00	100.0	94.15	94.1	95.66	95.7	1.6
Copper		2.36	100.0	107.27	104,9	112.62	110.3	5.0
Lead		0.00	100.0	92.58	92.6	96,03	96.0	3.7
Nickel		0.00	100.0	99.99	100.0	107,76	107.8	7.5
Zinc		19.34	100.0	122.57	103.2	132.54	113.2	9.2

Comment: Recovery Limits 70-130% RPD Limit 20

SPECTRA LABORATORIES

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Spectra Laboratories Marie Holt 2221 Ross Way Tacoma, WA 98421

RE: 2020030049

Work Order Number: 2003055

March 10, 2020

Attention Marie Holt:

Fremont Analytical, Inc. received 2 sample(s) on 3/5/2020 for the analyses presented in the following report.

Mercury by Method 1631E

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

030049-2

Date: 03/10/2020

03/05/2020 1:12 PM

CLIENT: Spectra Laboratories Work Order Sample Summary

Project: 2020030049 Work Order: 2003055

2003055-002

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2003055-001
 030049-1
 03/03/2020 10:30 AM
 03/05/2020 1:12 PM

03/03/2020 10:40 AM

Case Narrative

WO#: 2003055 Date: 3/10/2020

CLIENT:

Spectra Laboratories

Project:

2020030049

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

2003055

Date Reported:

3/10/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2003055

Date Reported:

3/10/2020

CLIENT:

Spectra Laboratories

Project:

2020030049

Lab ID:

2003055-001

Client Sample ID: 030049-1

Collection Date: 3/3/2020 10:30:00 AM

Matrix: Water

Analyses

Result

RL Qual

Units

Date Analyzed

Mercury by Method 1631E

Batch ID: 27683

DF

Analyst: WF

Mercury

ND

0.500

ng/L

3/10/2020 3:09:20 PM

Lab ID:

2003055-002

Client Sample ID: 030049-2

Collection Date: 3/3/2020 10:40:00 AM

Matrix: Water

Analyses

Result

RL Qual

Units

DF

Date Analyzed

Mercury by Method 1631E

Mercury

ND

0.500

ng/L

Batch ID: 27683

3/10/2020 3:52:32 PM

Analyst: WF

Date: 3/10/2020

Work Order:

2003055

CLIENT:

Spectra Laboratories

2020030049

QC SUMMARY REPORT

Mercury by Method 1631E

Project: Sample ID: MB-27683 SampType: MBLK Units: ng/L Prep Date: 3/10/2020 RunNo: 57913 Client ID: MBLKW Batch ID: 27683 Analysis Date: 3/10/2020 SeqNo: 1156418 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result ND 0.500 Mercury Prep Date: 3/10/2020 RunNo: 57913 Sample ID: MB2-27683 SampType: MBLK Units: ng/L MBLKW Batch ID: 27683 Analysis Date: 3/10/2020 SeqNo: 1156419 Client ID: Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte ND 0.500 Mercury Sample ID: MB3-27683 SampType: MBLK Units: ng/L Prep Date: 3/10/2020 RunNo: 57913 Client ID: MBLKW Batch ID: 27683 Analysis Date: 3/10/2020 SeqNo: 1156420 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val Analyte Result RL %RPD RPDLimit Qual ND 0.500 Mercury Sample ID: LCS-27683 SampType: LCS Units: ng/L Prep Date: 3/10/2020 RunNo: 57913 Client ID: LCSW Batch ID: 27683 Analysis Date: 3/10/2020 SeqNo: 1156421 SPK value SPK Ref Val Analyte Result RL %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 24.2 0.500 25.00 0 96.8 80 120 Mercury Sample ID: 2003055-001ADUP SampType: DUP Units: ng/L Prep Date: 3/10/2020 RunNo: 57913 Analysis Date: 3/10/2020 Client ID: 030049-1 Batch ID: 27683 SeqNo: 1156423 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 0 24 ND 0.500 Mercury

Date: 3/10/2020

Work Order:

2003055

Spectra Laboratories

CLIENT: Project:

2020030049

QC SUMMARY REPORT

Mercury by Method 1631E

Sample ID: 2003055-001AMS	SampType: MS			Units: ng/L		Prep Da	te: 3/10/20	20	RunNo: 579	913	
Client ID: 030049-1	Batch ID: 27683					Analysis Da	ite: 3/10/20	20	SeqNo: 11	56424	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	3.50	0.500	25.00	0.3000	12.8	71	125				S

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2003055-001AMSD Client ID: 030049-1	SampType: MSD Batch ID: 27683			Units: ng/L		Prep Da Analysis Da	te: 3/10/20 te: 3/10/20	RunNo: 57913 SeqNo: 1156425					
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Mercury	2.80	0.500	25.00	0.3000	10.0	71	125	3.500	22.2	24	S		

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

Client Name:	SPECTRA	Work O	rder Numb	er: 2003055	
Logged by:	Carissa True	Date Re	eceived:	3/5/2020	1:12:00 PM
hain of Cus	tody				
1. Is Chain of	Custody complete?	Yes	~	No 🗆	Not Present
How was the	e sample delivered?	UPS			
og In					
3. Coolers are	present?	Yes	•	No 🗌	NA 🗆
4. Shipping co	ntainer/cooler in good condition?	Yes	•	No 🗆	
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes		No 🗸	Not Required
6. Was an atte	mpt made to cool the samples?	Yes		No 🗸	NA 🗆
	M	ercury in y	vater, pre	served	
7. Were all iter	ns received at a temperature of >2°C to 6°C *	Yes		No 🗌	NA 🗹
8. Sample(s) in	n proper container(s)?	Yes	•	No 🔲	
9. Sufficient sa	ample volume for indicated test(s)?	Yes	•	No 🗆	
). Are samples	s properly preserved?	Yes	•	No 🗌	
1, Was presen	vative added to bottles?	Yes		No 🔽	NA 🗆
2. Is there hea	dspace in the VOA vials?	Yes		No 🗆	NA 🗹
	oles containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
4, Does paper	work match bottle labels?	Yes	V	No 🗆	
5. Are matrices	s correctly identified on Chain of Custody?	Yes	•	No 🗆	
6, Is it clear wh	nat analyses were requested?	Yes	4	No 🗌	
7, Were all hol	ding times able to be met?	Yes	~	No 🗆	
pecial Hand	ling (if applicable)				
18. Was client r	notified of all discrepancies with this order?	Yes		No 🗆	NA 🗷
Parson	Noziried: Date				
By Wn	Via:	□ «M»	D Ph	one Far	In Person
Regard	ang:				
Chent	nstructions				
9. Additional re	emarks:				
m Information					
	Item # Temp ℃				
Sample 1	15.9				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Turnaround Time Requested STANDARD

Lab Approval Required

CHAIN of CUSTODY

SPECTRA PROJECT #

SPECTRA Laboratories

... Where experience matters No X Return Samples Yes

2003055

CLIENT: Spectra Labo	oratories			ADD	RE	SS:	22	21	R	oss	s W	ay T	ac	on	na,	WA	1									Z	IP:	(984	121			RESS	
PROJECT: 2020030049						HY	DR	oc	AF	RBO	NS		O	RG	AN	cs			MET	AL	S		OTHER							1				
CONTACT: Marie Holt																						1												
SAMPLED BY:				IERS															3															
PHONE: 25	3-272-4850)		NTAIN						Î			ENTS			П	1	RA 8	PECIF	A B	SEC. IE.								N or MF					
e-MAIL: marieh@	@spectra-la	b.com		F CO			9			M (TP	(50		SOLV	AI VOA	A	_		ILS RC	LS (S	SRCE	20/ 0					_		CIFY)	n-MPI					
PURCHASE ORDER #:				SER O	F-HCIE		NWTP	H-G	H-DX	GT-HE	EM (F	24 VO/	HLOR	25 SE	AH/PN	08 PC	1	META	META	TCI P METALS RCRA R	NETA.	MEIAL	10/804	x 9076	PITA	FLASH POINT		S (SPE	Fecal Coliform - MPN		1631E			
SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUMBER OF CONTAINERS	NWTPH-HCID	BTEX	BTEX/NWTPH-G	NWTPH-G	NWTPH-Dx	1664 SGT-HEM (TPH)	1664 HEM (FOG)	8260/624 VOA	8260 CHLOR SOLVENTS	8270/625 SEMI VOA	8270 PAH/PNA	8082/608 PCB		TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)	TCIP	TO DIMETALS JEBECIEVA	100	PH 9040/9045	1X/10X 9076	TURBIDITY	FLASH	BOD	SOLIDS (SPECIFY)	Fecal		Hg by 1631E			
030049-1	03/03/20	W30	Water	1																	T	1									X			
030049-2	03/03/20	1040	Water	1																											X			
											Jij.																							
											0																							
											10									1														
											1																							
SPECIAL INSTRUCTIONS/COMME	ENTS:																																	
Sample Receipt (lab use	only)			_	I		STON					_		_	_	TED I	MAN	E		T		_	CON	-	_				_	TE	T		TIME	_
Total # of containers		RELINQUE			_		_	_	_	ev		Je	en l	_						-		,	Spe	ect	ra			-	_	4/2	_		00 F	
COC seals present? Inta	ict?	RECEIV		15	en	Ull	14	CA	4	_		+	8	MA	m	1	01	40	25	+	_		9	71		_		2	1/5	/20)	13	12	-
Temp at receipt	_deg. C.	RELINQUIS		-					_			+		_				_	_	+	_						_	_	_		-		_	
Received within hold time?		RECEIV		-		_			_	_		-	_		_		_			-		_	_	_	_	_		-		_	-			
Proper sample containers?		RELINQUIS		-			_	_	_	_		-	_		_			_		+		_	_	_	_	_		-			-			
Received via Coo	oler?	RECEIV		I .	N. BO.	or Ic	oau z	III one	te es	collec	tion ico	luding	0300	nable	attor	soule to		nd all	other -	nete o	f coll	actio	0 (0.0	nrell-	** **	Ludio	lhor		filed	in Rin		14/4		

SPECTRA Laboratories

2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com

Please use Clean Water Act Methods

*Refer to attached list of required methods and detection limits

* As, Cd, Cr, Cu, Pb, Ni, Zn (EPA Method 200.8), Hg (EPA 1631E)

Return Samples Y N Page 1 of

CHAIN of CUSTODY

1010030049

STANDARD RUSH

CLIENT: Tacoma Power (TPU)				36	28	So	out	h 3	5th	St	tree	et 7	ac	on	a,	W	49	840	9											DDRE	
PROJECT: Kosmos				Н	DR	100	AR	ВС	NS			OI	RG/	ANI	cs			ME	TAI	S						-	ОТН	HEF	2			
CONTACT:													0																			
SAMPLED BY: Doug Book	ver	SKS	1								0		625 TTO			809		0									50	00	UB **		TRAC	
PHONE: 253. 244-0539FAX: TI	ESTING	TAIN	1					_			BY 624 TTO	NTS	BY 62			3 BY 608	14.8	ECIFY		00	(SPECIFY)						TSS	B; 450	7-10 S		BCON	
e-MAIL:	Prefer FAX Or e-MAIL	OF CONTAINERS			9-F			1664 SGT-HEM (TPH)	(90			8260 CHLOR SOLVENTS		A		Organochlor Pest/PCB	TOTAL METALS RCRA 8	TOTAL METALS (SPECIFY)		000							(SPECIFY)	Total Cyanide by 4500B; 4500C	Free Cyanide by D7237-10 SUB	Hexavalent Chromium	Ammonia Nitrogen SUBCONTRACT	
PURCHASE ORDER#: 20-3-3	-041		WTPH-HCID		BTEX/NWTPH-G	D'H	жо-н	GT-HE	1664 HEM (FOG)		8260/624 VOA	HLOR	8270/625 SEMI VOA	8270 PAH/PNA	8082/608 PCB	schlor P	METAI	META		AETALS	TCLP METALS	PH 9040/9045	TX/TOX 9076	YTIO	FLASH POINT			yanide	/anide l	lent Ch	ia Nitro	
SAMPLE ID DATE SAMPLED	TIME MATE	NUMBER	NWTP	BTEX	BTEXA	NWTPH-G	NWTPH-Dx	1664 S	1664 H		8260/6	8260 C	8270/6	8270 P	8082/6	Organo	TOTAL	TOTAL		TCLP	TCLP	PH 904	TX/TO)	TURBIDITY	FLASH	BOD	SOLIDS	Total C	Free Cy	Нехала	Ammor	
Stakfile Pand 5.0P.1 3-3-20	10:30 L	6				X	X				W		1					X		T		Χ		Х						Х		
Stakfile Pand S.O.P. 1 3-3-20 Concrete oil C.O. P. 1 3-3-20	10:40 L	4				X	X				120		Tr. Co					×				×	No.	×						X		
											200																					Į.
		_									20																					-
		-		-			-											_		-						Ш						
		-	-	-				_							10	-		-		+	-	_				Н		\perp		\Box		8
		-	-	-		H			10		661	_		-		\dashv		\dashv	-	+	+	-				\dashv		-		\dashv		+
		+		-		H		_		-				-		\dashv		\dashv	-	+	+	-						-		\dashv		
		+	-			\vdash		_								\dashv		+		+	-	-						-		\dashv		
					SIGN	VATU	JRE	_			27		P	RINT	EDI	AME		_			0	OMI	PAN	1	-	_	DA	TE			TIM	NE NE
Spectra Internal Instructions	RELINQUISHED B	I Y	2	5	8.		Y	P	~	1	1	\sum_{ϵ}	ne	1	R	æ	W	na	-	_	T	7	0	u		3	-3	-2	0	1	13	57
10000 127152 Acct.	RECEIVED BY	9	th	10	ri	K	1						ga							S							3.		\rightarrow			12
	RELINQUISHED B	Y																												-		
2.8 č	RECEIVED BY																															
æ.0°	Payment Terms: N attorney's fees and	et 30 da	ays. F	Past of	due a	acco	unts on re	sub	oject dless	to 1 of w	1/2 heth	% p	er m	onth	inte d in	rest.	Cu e C	stom	er ag	gree	s to	pay	all ra A	cost	s of	colle	ction	inc	ludir	ng re	asor	nable

APPENDIX I Reactive Core Mat Data Sheet

REACTIVE CORE MATTM

WITH ORGANOCLAY®

DESCRIPTION

ORGANOCLAY® REACTIVE CORE MAT™ is a permeable composite of geotextiles and granular Organoclay that reliably adsorbs NAPL and low solubility organics from water. Batch isotherm testing by a university determined the following partition coefficients:

- Naphthalene, Kd = 3280 L/kg
- Phenanthrene, Kd = 117,000 L/kg
- Pyrene, Kd 286,000 L/kg

APPLICATION

ORGANOCLAY® REACTIVE CORE MAT™ is designed for use in the following applications:

- In situ subaqueous cap for contaminated sediments or post-dredge residual sediments
- Embankment seepage control
- · Groundwater remediation

BENEFITS

- ORGANOCLAY® REACTIVE CORE MAT™ provides a reactive material that treats contaminants carried by advective/diffusive flow
- Reactive cap allows for thinner cap thickness than a traditional sand cap
- Geotextiles provide stability and physical isolation of contaminants

AVAILABILITY

ORGANOCLAY® REACTIVE CORE MAT™ is available from the following CETCO plant locations:

• 92 Highway 37, Lovell, WY

15' by 100' rolls, packaged on 4" PVC core tubes wrapped with polyethylene plastic packaging.

REACTIVE CORE MAT™ is designed to provide a simple method of placing active materials into subaqueous sediment caps.

TESTING DATA

PHYSICAL PROPERTIES		
PROPERTY	TEST METHOD	RESULTS
ORGANOCLAY ¹		
Bulk Density Range	ASTM D 7481	44 - 56 lbs/ft³
Oil Adsorption Capacity	CETCO Test Method	0.5 lb of oil per lb of Organoclay, min
Quaternary Amine Content	ASTM D 7626	25 – 33% quaternary amine loading
FINISHED RCM PRODUCT		
Organoclay Mass per Area	CETCO Test Method	0.8 lb/ft²
Mat Grab Strength ²	ASTM D4632	90 lbs. MARV
Hydraulic Conductivity ³	ASTM D4491	1 x 10 ⁻³ cm/sec minimum

NOTES

North America: 847.851.1800 | 800.527.9948 | www.cetco.com

UPDATED: MAY 2017

© 2017 Minerals Technologies Inc. IMPORTANT: The information contained herein supersedes all previous printed versions, and is believed to be accurate and reliable. For the most up-to-date information, please visit www.cetco.com. CETCO accepts no responsibility for the results obtained through application of this product. All products are sold on the understanding that the user is solely responsible for determining their suitability for the intended use and for proper use and disposal of the product. CETCO MAKES NO WARRANTY OF MERCHANTABILITY OF ANY PARTICULAR PURPOSE IN CONNECTION WITH ANY SALE OF THE PRODUCTS DESCRIBED HEREIN. CETCO reserves the right to update information without notice.

¹Organoclay properties performed periodically on material prior to incorporation into the RCM

² All tensile testing is performed in the machine direction

³ Permittivity at constant head of 2 inches and converted to hydraulic conductivity using Darcy's Law and RCM thickness per ASTM D5199 for geotextiles

APPENDIX J Cap Design Documents

StreamStats Report

Region ID: WA

Workspace ID: WA20191117182524978000

Clicked Point (Latitude, Longitude): 46.49195, -122.19342

Time: 2019-11-17 10:25:41 -0800

Rainey Creek near the former Kosmos Mill Site.

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	20.22	square miles
PRECPRIS10	Basin average mean annual precipitation for 1981 to 2010 from PRISM	76.3	inches

Peak-Flow Statistics Parameters[Peak Region 4 2016 5118]

11/17/2019

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	20.22	square miles	0.18	2230
PRECPRIS10	Mean Annual Precip PRISM 1981 2010	76.3	inches	11.9	187

Peak-Flow Statistics Flow Report[Peak Region 4 2016 5118]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	856	ft^3/s	163	4490	52.5
5 Year Peak Flood	1330	ft^3/s	260	6820	50.6
10 Year Peak Flood	1700	ft^3/s	325	8900	50.5
25 Year Peak Flood	2170	ft^3/s	387	12200	51.7
50 Year Peak Flood	2540	ft^3/s	428	15100	52.9
100 Year Peak Flood	2940	ft^3/s	467	18500	54.2
200 Year Peak Flood	3290	ft^3/s	494	21900	55.5
500 Year Peak Flood	3880	ft^3/s	532	28300	58

Peak-Flow Statistics Citations

11/17/2019 StreamStats

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E.,2016, Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014 (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5118, 70 p. (http://dx.doi.org/10.3133/sir20165118)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

https://streamstats.usgs.gov/ss/

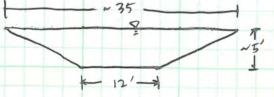
HARTCROWSER

Project KOSMOS OIL SEEP - CAP DESIEW

Calculations for PERMITTING

JOB NO. 19499-00 Date 11/18/2019 Made By A. KAPAROS Checked By

THE FOLLOWING CALCS WERE USED TO SIZE RIPRAP FOR AN EMERSEACY CAP CONSTRUCTION AT THE KOSMOS OIL SEEP AREA, PER TPU'S REQUEST,


ONLY LIMITED SURVEY DATA IS AVAILABLE. NO STORAM FLOW DATA IS AVAILABLE AND THREE IS NOT TIME TO SURVEY CREEK AND/OR GET STREAM PLOWS, THEREFORE, STREAM STATS WEBFBASED 615 TOOL THAT PRONDES SPATIAL ANALYTICAL TOOLS TO DELINEATE DRAINAGE TREAS FOR UNGAGED STREAMS (I.E. RAINCY CREEK), AND PROVIDES BASIN MARACTERISTICS AND FLOW STATISTICS, AND LOCAL REGRESSION ZOVATIONS TO CALCULATE ESTIMATED FLOWS, SS IS PROVIDED BY US 65,

SEE ATTACHED STEEPAMSTATS OUTPUT FOR RAINEY CREEK AT THE SITE, SINCE WATER LEVELS CAN FLUTUATE BASED ON RIFFE LAKE RESERVOIR EPERATIONS, TWO SCENARIOS ARE EVALUATED.

- 1) FLOW WHEN WATER LEVELS ARE LOW 2) FLOW WHEN WATER LEVELS RISE.
- 1) LOW WATER LEVELS

FROM STOREAMSTATS, THE 2-YEAR PEAK FLOW (QZ) = 856 ft 3/s

USING AVAILABLE SURVEY, A ROUGH FORTIMATE OF THE CHANNEL CROSS SECTION IS BELOW

AREA = 117,5 fr2

Q2 = 856 fr3/s

Q=VA => V= 856 = 7,29 R/s

RIPRAP SIZING BY USGS METHOD

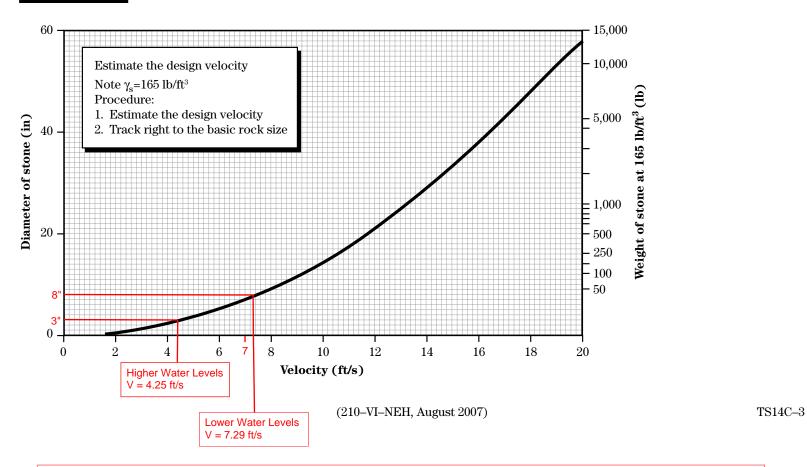
D50 = 0,01 (7.29) = 1,27 ft

D50 = 0,01 V 2,44

SAPETY PACTOR = 1.5 (SIGNIFICANT UNCERTAINTY IN DESIGN PARAMETERS)
DEO = 1.5 × 1.27 fg = 1.91 ft & 2' => WEDOT HEAVY RIPRAP (DEO = 2.2 ft)

HARTCROWSER

Page 2 of 2 Job No. 19499-00 Date 11/18/2019 LOSMO: OIL SEEP - CAP DESIGN Made By A. KAPAROS Checked By


Calculations for PERMITTING

(2) PEAR FLOW / HIGHER WATER LEVELS FROM STREAMSTATS, 100-YEAR PRAK FLOW (0,00) = 2,940 to 3/s USING THE AVAILABLE SURVEY AND OBSERVATIONS OF WATER LEVELS, A BOUGH ESTIMATE OF THE ASSUMED CHANNEL CROSS SECTION IS BELOW: AREA FROM O * 12'-t AREA = 692,5 ft (INCLUDES 117.5 HT FROM SCENARIOI) Q100 = 2940 fr/s V = 0/ = 2940 = 4,25 fz/s RIPPAP SIZE USING USGS RIPPAP MEDIOD: Doo = 0.01 V 2.44 = 0.01 (4.25) 2.44 = 0.34ft SAFETY FACTOR: DOO x 1,5 = 0,51 AT (WSDOT QUARRY SPALLS) DED x 3,0 = 1,02 Ft (WSDOT LIGHT LOOSE RIPRAP) KELOMMENDATIONS: COULD USE THEAVY RIPRAP FOR RIPRAP SLOPE KEY AND LARGE SPALLS OR

LIGHT LOOSE RIPLAP IF MORE COST EFFECTIVE) FOR CAP COVER MATERIAL.

The Isbash curve is used for quick estimates or comparison to calculated riprap size.

Figure TS14C-5 Rock size based on Isbash curve

For Higher Water Levels where V = 4.25 ft/s, the Isbash Curve predicts a required stone diameter (D_{50}) of 3". Applying a safety factor (of 1.5 to 3): $D_{50} = 0.4$ ' to 0.8', which makes sense since the USGS Method is a more conservative estimation of riprap sizing. This confirms that the proposed use of guarry spalls ($D_{50} = 0.5$ ') or light loose riprap ($D_{50} = 1.1$ ') is more than adequate.

Lower Water Levels V = 7.29 ft/s, the Isbash Curve predicts a required stone diameter (D_{so}) of 8". Applying a safety factor (of 1.5 to 3): D_{so} = 1' to 2', which again makes sense since the USGS Method is a more conservative estimation of riprap sizing. This confirms that the proposed heavy riprap (D_{so} = 2.2') is more than adequate.

APPENDIX K Photo Log

Photograph 1: Sea curtain at the bottom of the cap excavation area.

Photograph 2: Sea curtain lining creek at the bottom of cap excavation area.

Photograph 3: Booms placed downstream of excavation area.

Photograph 4: Boom containing water sheen from moving further downstream.

Photograph 5: Cap excavation area looking northeast.

Photograph 6: Northeast sidewall of excavation area.

Photograph 7: Stockpile SP1 – Overburden and observed non-impacted soil.

Photograph 8: Covered stockpile SP1.

Photographs 9 and 10: On-site dewatering system.

Photograph 11: Completed excavation for the cap installation.

Photograph 12: Completed slope key with heavy riprap. View looking northeast.

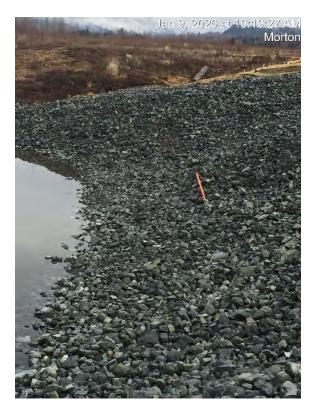
Photographs 13 and 14: Reactive Core Mat (RCM) with Organoclay.

Photograph 15: Installing RCM over clean sand layer.

Photograph 16: Installing RCM over clean sand. View looking north/northeast.

Photograph 17: Placing clean sand over the RCM.

Photograph 18: Placing high-strength geotextile over the clean sand layer.


Photograph 19: Keying in the RCM and geotextile at the top of the slope.

Photograph 20: Placing large quarry spalls over the geotextile.

Photograph 21: Completed cap and elevated water level. View looking east.

Photograph 22: Completed cap and elevated water level. View looking east, towards the former ravine drainage area.

APPENDIX L Tacoma Power's Inspection Form

Survey/Inspection Report

Surveys/inspections are required to be performed weekly. Additional surveys/inspections are required if decreases in Riffe Lake Reservoir elevation approach five feet or more between subsequent monitoring events or follow-up to assess effectiveness of BMPs is needed.

PROJECT NAME: Kosmos M	ill Oil Clean-up			
DATE:	TIM	E:		
SURVEYOR(S):		REPRESENTING	Э:	
LAKE ELEVATION (FT.):		TEMPERA	ATURE (°F):	
WEATHER CONDITIONS:	CLEAR CLOUE	DY MIST RAIN	WIND	FOG
OBSERVATIONS/ACTIONS:				
Inspect BMPs to assure performa	ance/effectiveness	condition (*include s	stockpile sta	ging area).
☐ BMPs functioning prop	erly			
Maintenance/installation	n needed			
Description:				
☐ Maintenance/installation	n performed			
Description:				
Additional follow-up ne	eded (notify appro	priate contact)		
Description:				
F				
Photos attached	_			

Page 1

	ifluence with the Riffe Lake Sl 60.407.6300).	noreline. If additional s	eeps or sheen are obs	served call Écology to report an
	No new seep(s) or sheen	observed		
	Additional seep(s) or she	en observed	ERTS Tracking I	Number:
	GPS location(s) ID#: Lat.: Description:		Matrix: Long.:	
	ID#: Lat.: Description:		Matrix: Long.:	
	Sample(s) obtained			
	ID#:		Matrix:	
	ID#:		Matrix:	
	No dead, dying or distres	sed organisms obse	erved	
	Presence of dead, dying	or distressed organi	sms	
	Species: GPS location(s) Lat.: Description:	Count: _	Long.:	
	Species:	Count: _		
	GPS location(s) Lat.: Description:		Long.:	
	Photos attached			
Ad	ditional Notes (attach supp	lemental pages as r	needed):	
l attest th	nat the above information is	s true and correct to	the best of my know	vledge.
→	PREPARED BY SIGNA	TURE: Page 2		DATE:

Inspect the Rainey Creek reach (banks and waterway) from 500 feet upstream of the temporary cap downstream

OBSERVATIONS/ACTIONS CONTINUED: