Table 2-1 AOC Summaries Addressed in the Feasibility Study Boeing Auburn Feasibility Study Auburn, Washington

AOC	Building	Description	Primary Constituents of Concern	Locations Associated with AOC
A-01	17-06	Former USTs (TAU-01 and TAU-02)	GRO, ORO, DRO, BTEX	 Monitoring Wells: AGW009 – AGW017 Borings: B-1 – B-5, ASB0264 – ASB0270, ASB0280, and ASB0281
A-09	17-07	Acid Scrubber Drain Line Leak	Metals (cadmium, nickel, copper), Cyanide	 Monitoring Wells: AGW037, AGW046 to AGW050, AGW278-1 Soil Samples: AGR07-HA Series, AGR07-SC series, AGW046, AGW048, AGW049, AGW050, CB2 and CS2 Series, P2-AU and PAU/17-07 Series, S2-AU, and VS2-AU Series
A-13	17-06	Petroleum contamination in soil and groundwater on east side of Building 17-06	DRO, ORO	 Monitoring Wells: AGW041, AGW043, AGW044, AGW115 – AGW118, AGW127 – AGW130, AGW277, AGW279 – AGW282 Borings: ASB0159, ASB0160R, ASB0167 ASB0171, ASB0271 – ASB0275, ASB0286 – ASB0289
A-14	Site-wide	Site-wide TCE and VC contamination in soil and groundwater	TCE, VC	 Monitoring Wells: Interim Site-Wide Groundwater Monitoring Program (Currently Phase 9) VOC monitoring wells Current Pore Water Sampling Locations: PW-18a-2.5, PW-18a-5, PW-18b-2.5, PW-18b-5, PW-27a-2.5, and PW-27a-5
A-15	Site-wide	Site-wide TCE and VC in stormwater and/or surface water	TCE, VC	 Current stormwater monitoring network: SW-CD4, SW-14, and SW-16 Current surface water monitoring network: SW-17, SW-18, SW-20, and SW-27

Abbreviations/Acronyms:

- AOC = area of concern
- BTEX = benzene, toluene, ethylbenzene, and xylenes
- DRO = diesel-range organic
- GRO = gasoline-range organic
- ORO = oil-range organic
- TCE = trichloroethene
- UST = underground storage tank
- VC = vinyl chloride
- VOC = volatile organic compounds

Table 3-1 Applicable or Relevant and Appropriate Requirements Boeing Auburn Feasibility Study Auburn, Washington

ARARs for Development of Cleanup Levels	Source	Description/Rationale
Model Toxics Control Act	WAC 173-340	Establishes administrative processes and standards in Washington State to identify, investigate, and clean up facilities where hazardous substances have come
Washington State Surface Water Quality Standards	WAC 173-201A	Establishes water quality standards for surface waters of the state of Washington consistent with public health and public enjoyment of the waters and the pr provisions of chapter 90.48 RCW.
Federal Clean Water Act Water Quality Standards	40 CFR 131 and 40 CFR 131.45	Establishes the requirements and procedures for developing, reviewing, revising, and approving water quality standards by the States as authorized by section toxic pollutants in surface waters in Washington.
Washington State Maximum Contaminant Levels in Drinking Water	WAC 246-290-320	Establishes maximum contaminant levels allowed in public drinking water systems in Washington State.
National Primary Drinking Water Regulations	40 CFR 141	Establishes primary drinking water regulations pursuant to section 1412 of the Public Health Service Act, as amended by the Safe Drinking Water Act (Pub. L. 9
Potential Action Specific ARARs	Source	Description/Rationale
Washington Hazardous Waste Management Act and implementing regulations: Dangerous Waste Regulations	RCW 70.105; WAC 173-303	These regulations establish a comprehensive statewide framework for the planning, regulation, control, and management of dangerous waste. The regulation human health and the environment. The management of excavated contaminated soil from the Site would be conducted in accordance with these regulations the cleanup action.
Washington Solid Waste Management Act and its implementing regulation: Criteria for Municipal Solid Waste Landfills	RCW 70.95; WAC 173-351	These regulations establish a comprehensive statewide program for solid waste management including proper handling and disposal. The management of any with these regulations to the extent that this soil could be managed as solid waste instead of dangerous waste.
Hazardous Waste Operations	WAC 296-843	Establishes safety requirements for workers conducting investigation and cleanup operations at sites containing hazardous materials. These requirements work health and safety plan prepared specifically for these activities.
Federal NPDES Permit and State Construction Stormwater General Permit	WAC 173-220	Construction activities that disturb one or more acres of land typically need to obtain an NPDES Construction Stormwater General Permit from Ecology. A sub activities. The SWPPP would document planned procedures designed to prevent stormwater pollution by controlling erosion of exposed soil and by containing stormwater.
Clean Water Act, Section 401, Waster Quality Certification	33 USC 1340; WAC 173-225-010	Section 401 of the Federal Water Pollution Control Act provides that applicants for a license or permit from the federal government relating to any activity that certification from the state that the water quality standards will be met. Ecology's Water Quality Section would review any Nationwide Permit No. 38 issued b draft and final design of the chosen cleanup action alternative to document substantive compliance with the Washington State Water Pollution Control Act re
State Environmental Policy Act	RCW 43.21.036; WAC 173-11-250 through 268	Under the SEPA rules, MTCA and SEPA processes are to be combined to reduce duplication and improve public participation (WAC 97-11-250). Ecology is the le in WAC 197-11-253. Ecology is likely to determine that it will act as the lead agency for implementing the requirements of SEPA for cleanup actions at the Site Plan. It is expected that a determination of non-significance will be issued, as the alternatives evaluated in this FS are unlikely to have a significant adverse env
Washington Minimum Standards for Construction and Decommissioning	WAC 173-160-381	Ecology or its delegated authority establishes requirements for the installation and decommissioning of monitoring wells.
Electrical Equipment Installations	RCW 19.28	Electrical wiring and equipment may be needed to power active controls and blower motors for SVE and DGR treatments.
Underground Injection Control Program	WAC 173-218	UIC registration would be required for the injection of any materials below ground surface for the purposes of groundwater cleanup. This would include inject bioremediation, oxidants for chemical oxidation, or other chemical activation agents or catalysts; or reinjection of treated groundwater.
Uniform Environmental Covenants Act	RCW 64.70	Regulation that addresses recording environmental covenants on the Boeing Auburn facility. Institutional controls; an environmental covenant will be a require
Right-of-Way Use and Construction	AubMC Chapter 12.60 and 12.66; AlgMC Chapter 14.04	Requires a written permit for any proposed activities that use ROW, including construction activities and movement of equipment. It may be necessary to inst
Fire Hydrant Access	AubMC Chapter 13.16; AlgMC Chapter 13.02	Specifies an application and approval process for connecting to the City of Auburn water supply system. Fire hydrant access is possibly needed for injections.
Environmentally Critical Areas	AubMC Chapter 16.10; AlgMC Chapter 16.18	Specifies development standards for actions affecting environmentally critical areas, including wellhead protection areas, streams and riparian zones, wetland

Abbreviations and Acronyms:

AlgMC = Algona Municipal Code AubMC = Auburn Municipal Code ARARs = Applicable or relevant and appropriate requirements CFR = Code of Federal Regulations DGR = dynamic groundwater recirculation Ecology = Washington State Department of Ecology MTCA = Model Toxics Control Act Cleanup Regulation

NPDES = National Pollutant Discharge Elimination System Pub = publication ROW = right-of-way SEPA = State Environmental Policy Act

- Site = Boeing Auburn Plant
- SVE = soil vapor extraction
- SWPPP = stormwater pollution prevention plan
- WAC = Washington Administrative Code

RCW = Revised Code of Washington

- UIC = underground injection control
- USC = United States Code

e to be located.
ropagation and protection of fish, shellfish, and wildlife, pursuant to the
n 303(c) of the Clean Water Act. Promulgates human health criteria for priority
93-523); and related regulations applicable to public water systems.
is designate those solid wastes that are dangerous or extremely hazardous to s to the extent that any dangerous wastes are discovered or generated during
y contaminated soil removed from the Site would be conducted in accordance
uld be applicable to onsite cleanup activities and would be addressed in a Site
ostantive requirement would be to prepare a SWPPP prior to earthwork g soil stockpiles and other materials that could contribute pollutants to
at may result in any discharge into the navigable waters shall obtain a oy the US Army Corps of Engineers. Ecology would also review any associated equirements.
lead agency for implementing the substantive requirements of SEPA as described e. A SEPA checklist will be completed and attached to the draft Cleanup Action vironmental impact.
tion of reducing agents such as zero valent iron, electron donor substrates for
red element of the final remedy selected.
tall additional wells in ROWs.

ds, geological hazard areas, landslide areas, and erosion or seismic hazard areas.

Table 3-2 Soil Proposed Cleanup Levels **Boeing Auburn Feasibility Study** Auburn, Washington

		Method A	Meth	od B			Method C				
Analyte	RI Soil SL (mg/kg)	Method A Industrial Properties	Method B Non-Cancer Direct Contact	Method B Cancer Direct Contact	Constituent Exceeds pCUL in Groundwater	Soil Protective of Groundwater Vadose at 13°C	Method C Non-Cancer Direct Contact	Method C Cancer Direct Contact	Background Soil Metals Concentration (d)	Soil pCUL (mg/kg)	
VOLATILES											
Trichloroethene	0.00357	N/A	40	12	х	0.025	1,800	2,800	N/A	0.025/1,800	Soil p clean conta
TOTAL PETROLEUM HYDROCARBONS AND A	SSOCIATED VO	LATILES									
AOC A-01											
Benzene	0.00448	N/A	320	18			14,000	2,400	N/A	2,400	Meth
Ethylbenzene	6.05	N/A	8,000		х	5.9	350,000		N/A	5.9/350,000	Soil p clean conta
Toluene	0.00465	N/A	6,400				280,000		N/A	280,000	Meth
Total Xylenes	14.6	NA	16,000		х	14	700,000		N/A	14/350,000	Soil p clean conta
Diesel-Range Organics	2,000	2,000	(a)				(a)		N/A	2,000	Meth
Oil-Range Organics	2,000	2,000	(a)				(a)		N/A	2,000	Meth
Gasoline-Range Organics (b)	30/100	30/100	(a)		х	(a)	(a)		N/A	30/100	Meth
AOC A-13			1			1			1		
Total Petroleum Hydrocarbons	2,000	N/A	16,000			71,000	190,000		N/A	71,000	100% docu <i>Conto</i>
METALS AND CYANIDE											
Antimony	5.4	N/A	32				1,400		N/A	1,400	Meth (no d evalu
Cadmium	1.0	N/A	80		х	0.69	3,500		1.0	1.0/3,500	Prote grour C nor
Copper	284	N/A	3,200		х	280	140,000		36	280/140,000	Soil p clean conta
Nickel	130	N/A	1,600				70,000		48	70,000	Meth
Cyanide (c)	48	N/A	50		х		2,200		N/A	2,200	Meth

Abbreviations and Acronyms:

-- = not listed % = percent °C = degrees Celsius CLARC = Cleanup Levels and Risk Calculation COC = constituent of concern FS = feasibility study

mg/kg = milligrams per kilogram N/A = not applicable NAPL = non-aqueous-phase liquid pCUL = proposed cleanup level RI = remedial investigation SL = screening level

Notes:

A cleanup level for vinyl chloride in soil is not provided because it has never been detected in soil at the site.

Grey Shading = contaminant eliminated as a COC in media identified

(a) Method B/Method C values were not calculated.

(b) 30 mg/kg is used if benzene is detected; 100 mg/kg is used if benzene is not detected.

(c) CLARC calculations are evaluated based on free cyanide.

(d) Puget Sound Region 90th percentile value (Ecology. 1994. Natural Background Soil Metals Concentrations in Washington State. Publication #94-115.)

Basis for pCUL
· · · · · · · · · · · · · · · · · · ·
protective of groundwater. Once groundwater pCUL is met, nup level will be adjusted to Method C non-cancer direct act.
hod C cancer direct contact.
protective of groundwater. Once groundwater pCUL is met, nup level will be adjusted to Method C non-cancer direct act.
hod C non-cancer direct contact.
protective of groundwater. Once groundwater pCUL is met, nup level will be adjusted to Method C non-cancer direct cact.
hod A
hod A
hod A
% NAPL based on ASB0160R Hydrocarbon workbook as umented in <i>Guidance for Remediation of Petroleum</i> taminated Sites, Ecology 2016.
hod C non-cancer based on direct contact. Eliminated as a COC detections above the pCUL and not associated with an AOC uated as part of the FS).
ection of groundwater adjusted for natural background. Once indwater pCUL is met, cleanup level will be adjusted to Method on-cancer direct contact.
protective of groundwater. Once groundwater pCUL is met, nup level will be adjusted to Method C non-cancer direct act.
hod C non-cancer direct contact.
hod C non-cancer direct contact.

Table 3-3 **Groundwater Proposed Cleanup Levels Boeing Auburn Feasibility Study** Auburn, Washington

		Cleanup Levels Protective of Drinking Water									
Analyte	RI GW SL	ARAR Federal MCL	ARAR WA State MCL	Method A	Method B (Non-Cancer)	Method B (Cancer)	Adjusted 10-5	Background (g)	Groundwater pCUL (μg/L)	Basis	Surface Water Quality Standards in Groundwater (µg/L)
VOLATILES											
Trichloroethene	0.54	5.0	5.0	N/A	4.0	0.54	5.4	N/A	4	Method B Non-Cancer	0.3 (e)
Vinyl Chloride	0.029	2.0	2.0	N/A	24	0.029	0.29	N/A	0.29	Method B Cancer, adjusted to cancer risk 10 ⁻⁵ based on MCL rule.	0.02 (f)
TOTAL PETROLEUM HYDROCARBONS ANI	D ASSOCIATED	VOLATILES									
AOC A-01											
Benzene	0.795	5.0	5.0	N/A	32	0.8	8.0	N/A	5.0	Federal/State MCL	N/A
Ethylbenzene	700	700	700	N/A	800		N/A	N/A	700	Federal/State MCL	N/A
Toluene	640	1,000	1,000	N/A	640		N/A	N/A	640	Method B Non-Cancer	N/A
Total Xylenes	1,600	10,000	10,000	N/A	1,600		N/A	N/A	1,600	Method B Non-Cancer	N/A
Diesel-Range Organics	500			500	(a)	(a)	N/A	N/A	500	Method A	N/A
Oil-Range Organics	500			500	(a)	(a)	N/A	N/A	500	Method A	N/A
Gasoline-Range Organics (d)	800			800/1,000	(a)	(a)	N/A	N/A	800/1,000	Method A	N/A
AOC A-13					•						
Total Petroleum Hydrocarbons	N/A			N/A	20,000 (b)		N/A	N/A	20,000	Method B cleanup level (calculated at AGW128 and AGW281 and used median value as indicated in Guidance for Remediation of Petroleum Contaminated Sites, Ecology 2016).	N/A
METALS AND CYANIDE											
Arsenic	8.0	10	10	N/A	4.8	0.058	0.58	8.0	8.0	Background; Eliminated as a COC (no history of use, no history of release, natural occurrence).	N/A
Cadmium	5.0	5.0	5.0	NA	8.0			N/A	5.0	Federal/State MCL	N/A
Copper	640	1,300	1,300	NA	640			N/A	640	Method B non-cancer	N/A
Nickel	100		100	N/A	320			N/A	100	Federal/State MCL.	N/A
Cyanide	9.6	200	200	N/A	10			N/A	10 (c)	Method B non-cancer	N/A

Abbreviations and Acronyms:

-- = not Listed

- µg/L = micrograms per liter
- ARARs = applicable or relevant and appropriate requirements
- CFR = Code of Federal Regulations
- CLARC = Cleanup Levels and Risk Calculation
- COC = constituent of concern
- GW = groundwater
- MCL = Maximum Contaminant Level

N/A = not applicable pCUL = proposed cleanup level RI = remedial investigation SL = screening level SWQS = surface water quality standards TPH = total petroleum hydrocarbon WA = Washington

WAC = Washington Administrative Code

Notes:

- (a) Method B values were not calculated.
- (b) Method B values were calculated for groundwater collected from wells AGW128 (TPH Method B = 7,000 μ g/L) and AGW281 (TPH Method B = 32,000 μ g/L). The mean
- value (20,000) is used for the pCUL.
- (c) CLARC evaluated based on free cyanide.
- (d) 800 μ g/L is used if benzene is detected; 1,000 μ g/L is used if benzene is not detected.
- (e) Human Health Fresh Water 40 CFR 131.45.
- (f) Human Health Fresh Water WAC 173-201A.
- (g) Draft report Sections 1-7, Background Concentrations of Selected Chemicals in Water,
- Soil, Sediments, and Air of Washington State (PTI 1989).

Grey shading = Contaminant eliminated as a COC in media identified.

Table 3-4 Surface Water Proposed Cleanup Levels Boeing Auburn Feasibility Study Auburn Washington

	RI GW SL (a)	Federal ARAR Human Health - Fresh Water 40 CFR 131.45	Federal ARAR Human Health - Fresh Water CWA 304	WA State ARAR Human Health - Fresh Water WAC 173-201A	Method B Non-cancer	Method B Cancer	Surface Water pCUL	Basis
VOLATILES								
Trichloroethene	0.3	0.3	0.6	0.38	120	13	0.3	Federal ARAR 40 CFR 131.45
Vinyl Chloride	0.02		0.022	0.02	6,600	3.7	0.02	WA State ARAR WAC 173-201A

Abbreviations and Acronyms:

-- = not listed

ARAR = applicable or relevant and appropriate requirement

CFR = Code of Federal Regulations

CWA = Clean Water Act

GW = groundwater

pCUL = proposed cleanup level

RI = remedial investigation

SL = screening level

WA = Washington

WAC = Washington Administrative Code

Notes:

(a) SLs were provided for different areas in the RI report. The most conservative SLs are presented here.

Page 1 of 1

Table 4-1 AOC A-01 Aquifer Redox Parameter Results Boeing Auburn Feasibility Study Auburn, Washington

				Aquif	fer Redox (Conditions		Baseline Electron Donor Indicator	
Sample Location	Sample Date	DO (mg/L)	ORP (mV)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Sulfate (mg/L)	Aquifer Redox State	Total Organic Carbon (mg/L)	Notes
AGW009	6/5/2017	1.44	-23.2	0.25	2.0	12	Aerobic to Iron- Reducing	3.6	
AGW010	6/5/2017	0.77	-89.9	< 0.10	4.0	11.9	Iron- to Sulfate- Reducing	5.3	Petroleum Hydrocarbons detected
AGW011	6/5/2017	1.39	-24.7	19.0	4.0	35.5	Aerobic to Iron- Reducing	3.9	
AGW014	6/5/2017	4.20	-18.5	22.1	2.0	24.9	Aerobic to Iron- Reducing	2.9	
AGW016	6/5/2017	1.30	-21.1	0.13	1.0	5.3	Aerobic to Sulfate- Reducing	1.3	

Abbreviations and Acronyms:

DO = dissolved oxygen

mg/L = milligrams per liter

mV = millivolts

ORP = oxidation reduction potential

Table 4-2 AOC A-01 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Petroleun	n Hydrocarbons (m	ıg/kg) (a)	BTEX by SW-846 8260C (mg/kg) (a)							
Sample	Sample	Sample	Gasoline-Range	Diesel-Range	Oil-Range						Total		
Location	Depth (ft)	Date	Organics	Organics	Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes		
		Soil pCUL	30/100 (b)	2,000	2,000	2,400	280,000	5.9	N/A	N/A	14		
AGW010	15.5	8/23/1990		240			0.039	0.25			1.2		
AGW011	13.0	8/23/1990									0.034		
AGW012	6.5	8/23/1990									0.048		
AGW013	13.0	7/31/1991	10 U	10 U		0.0014	0.011	0.0016			0.0098		
AGW014	13.0	7/31/1991	10 U	10 U		0.0012 U	0.0032	0.0012 U			0.0009 J		
AGW015	9.0	8/2/1991				0.0009 J	0.0079	0.0006 J			0.0038 J		
AGW016	9.5	8/2/1991	10 U	10 U		0.0019	0.014	0.0008 J			0.0053		
AGW017	1.0	8/6/1991	10 U	10 U		0.0011 U	0.0011 U	0.0011 U			0.0022 U		
	5.0	8/6/1991	10 U	10		0.0012 U	0.0012 U	0.0012 U			0.0012 U		
	13.0	8/5/1991		10									
ASB0264	11.0	6/28/2017	7.6 U	8.6 U	37 U	0.006	0.006 U	0.006 U	0.006 U	0.006 U			
	15.0	6/28/2017	5.1 U	7.9 U	34 U	0.0009 U	0.005 U	0.005 U	0.005 U	0.005 U			
ASB0265	11.0	6/28/2017	490	100 J	42	0.099 U	0.5 U	1.4	4.2	1.3	5.5		
	19.0	6/28/2017	12,000 J	820	76 U	0.21 U	1.1 U	130	600	120	720		
	22.5	6/28/2017	970 J	50	33 U	0.072 U	0.36 U	1.9	9	0.96	9.96		
ASB0266	11.0	6/29/2017	5.4 U	7.9 U	34 U	0.001 U	0.005 U	0.005 U	0.005 U	0.005 U			
	15.0	6/29/2017	5.8 U	7.8 U	33 U	0.001 U	0.005 U	0.005 U	0.005 U	0.005 U			
ASB0267	11.0	6/29/2017	5.3 U	7.9 U	34 U	0.0009 U	0.004 U	0.004 U	0.004 U	0.004 U			
	15.0	6/29/2017	6.4 U	8.3 U	36 U	0.001 U	0.006 U	0.006 U	0.006 U	0.006 U			
ASB0268	11.0	6/29/2017	5.3 U	8.1 U	35 U	0.001 U	0.005 U	0.005 U	0.005 U	0.005 U			
	13.0	6/29/2017	380	7.6 U	32 U	0.042 U	0.21 U	0.21 U	0.21 U	0.21 U			
	23.0	6/29/2017	5.3 U	8.1 U	35 U	0.0009 U	0.005 U	0.005 U	0.005 U	0.005 U			
ASB0269	10.0	6/29/2017	7.3	8.5 U	37 U	0.0009 U	0.005 U	0.005 U	0.005 U	0.005 U			
	11.5	6/29/2017	6.5 U	8.8 U	38 U	0.001	0.005 U	0.005 U	0.005 U	0.005 U			

Page 1 of 2

Table 4-2 AOC A-01 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Petroleum Hydrocarbons (mg/kg) (a)			BTEX by SW-846 8260C (mg/kg) (a)						
Sample	Sample	Sample	Gasoline-Range	Diesel-Range	Oil-Range						Total	
Location	Depth (ft)	Date	Organics	Organics	Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes	
		Soil pCUL	30/100 (b)	2,000	2,000	2,400	280,000	5.9	N/A	N/A	14	
ASB0270	10.0	6/29/2017	4.4 U	7.4 U	32 U	0.002	0.004 U	0.004 U	0.004 U	0.004 U		
	12.0	6/29/2017	4.4 U	7.6 U	33 U	0.0008 U	0.004 U	0.004 U	0.004 U	0.004 U		
ASB0280	2.0	8/31/2017	4.2 U	45 U	45 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U		
	6.0	8/31/2017	4.2 U	53 U	53 U	0.0019 U	0.0019 U	0.0019 U	0.0019 U	0.0019 U		
	17.5	8/31/2017	4.3 U	54 U	54 U	0.0019 U	0.0019 U	0.0019 U	0.0019 U	0.0019 U		
	24.0	8/31/2017	5.7 U	59 U	59 U	0.0020 U	0.0020 U	0.0020 U	0.0020 U	0.0020 U		
ASB0281	7.8	8/31/2017	18	54 U	54 U	0.0020 U	0.0020 U	0.0020 U	0.0020 U	0.0020 U		
	27.5	8/31/2017	6.3 J	52 U	52 U	0.0018 UJ	0.0018 UJ	0.0029 J	0.0018 UJ	0.0018 UJ		
	34.0	8/31/2017	3.4 J	48 U	48 U	0.0016 UJ	0.0016 UJ	0.0041 J	0.0016 UJ	0.0016 UJ		
B-1	3.0	7/30/1991	10 U	10 U		0.0011 U	0.012	0.0011 U			0.0031	
B-2	10.5	7/30/1991	10 U	10 U		0.001 U	0.001 U	0.001 U			0.0021 U	
	15.0	7/30/1991				0.0025	0.0007 J	0.0007 J			0.0022 U	
B-3	5.5	7/30/1991	10 U	10 U		0.0011 U	0.0017	0.0011 U			0.0009 J	
B-4	13.0	8/1/1991	1,300	250		0.63 U	4.2	9.4			64	
B-5	7.0	8/6/1991	12	10 U		0.011 U	0.011 U	0.011 U			0.18	

Notes:

Bold text indicates detected analyte.

Green shading indicates detected analyte exceeds applicable soil pCUL

Soil borings are identified by the ASB prefix.

(a) Petroleum hydrocarbons analyzed by NWTPH-dx, -Gx, and SW-846 8015.

VOCs were analyzed by SW-846 8260, 8260 SIM, and 8015. In the event

total xylenes were calculated, the sum consists of detections of m,p-xylene and o-xylene.

(b) 30 mg/kg is used if benzene is detected; 100 mg/kg is used if benzene is not detected.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Acronyms/Abbreviations:

-- = not analyzed BTEX = benzene, toluene, ethylbenzene, and xylenes ft = feet mg/kg = milligrams per kilogram N/A = not applicable pCUL = proposed cleanup level VOC = volatile organic compound

Table 4-3 AOC A-01 Groundwater Results **Boeing Auburn Feasibility Study** Auburn, Washington

		Petrole	eum Hydrocarbons (μ	g/L) (a)			BTEX (µ	ıg/L) (a)			
Sample	Sample	Gasoline-Range	Diesel-Range	Oil-Range						Total	
Location	Date	Organics	Organics	Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes	
	Groundwater pCUL	800/1,000 (b)	500	500	5	640	700	N/A	N/A	1,600	
AGW009	6/20/2016				0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
	6/5/2017	250 U	99 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
AGW010	6/20/2016	6,100	1,200	240 U	2.0 U	4.7	290	96	20	116	
	11/29/2016	10,000	530	240 U	2.0 U	5.9	630	460	66	526	
	6/5/2017	1,500	300	240 U	0.3	0.5	42	16 J	2.0 J	18.0 J	
	12/1/2017	8,700 J	330	250 U	0.76 J	3.9 J	570	490	77	567	
	5/31/2018	2,000 J	330	350 U	0.85	1.4	190	37	7.1	44.1	
	12/12/2018	41,500	733	200 U	1.35	11.4 J	1,150	2150	453	2,600	
AGW011	6/5/2017	250 U	100 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
AGW012	12/5/2004	250 U	250 U	500 U	1 U	1 U	1 U	1 U	1 U	ND	
AGW013	12/5/2004	250 U	250 U	500 U	1 U	1 U	1 U	1 U	1 U	ND	
AGW014	6/5/2017	250 U	100 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
AGW015	9/7/2017	250 U	130 J	260 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U	ND	
AGW016	6/5/2017	250 U	100 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
AGW017	12/5/2004	250 U	250 U	500 U	1 U	1 U	1 U	1 U	1 U	ND	
	6/9/2009				0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	ND	
		Petrole	eum Hydrocarbons (μ	g/L) (a)	BTEX (µg/L) (a)						
Sample	Sample	Gasoline-Range	Diesel-Range	Oil-Range						Total	
Location	Date	Organics	Organics	Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes	
ASB0264-15	6/28/2017	1,900	440	250 U	0.7	0.6	17	8.3	1.4	9.7	
ASB0265-13.5	6/28/2017	70,000	1,900 J	250 U	7.0	150	2,000	6,300	1,800	8,100	
ASB0266-15	6/29/2017	250 U	100 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
ASB0267-15	6/29/2017	250 U	100 U	250 U	0.2 U	1.4	0.5 U	0.5 U	0.5 U	ND	
ASB0268-15	6/29/2017	2,000	500	250 U	0.2	0.2 U	5.0	0.5 U	0.5 U	ND	
ASB0269-14.5	6/29/2017	3,900	840	250 U	1.0 U	1.0 U	54	4.6	2.5 U	4.6	
ASB0270-14	6/29/2017	250 U	100 U	250 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	ND	
ASB0280-18	8/31/2017	250 U	100 U	260 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U	ND	
ASB0281-17	8/31/2017	250 U	100 U	310	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U	ND	

Notes:	Acronyms/Abbrevia
Bold text indicates detected analyte	= not analyzed
Green shading indicates detected analyte exceeds applicable groundwater pCUL (based on drinking water).	μg/L = microgram
Groundwater monitoring locations are identified by the AGW prefix.	BTEX = benzene,
Boring sample designations include the location name followed by the depth at which the sample was collected.	N/A = not applica
Groundwater concentrations from temporary boring grab samples are not considered a reliable estimate of actual groundwater	
concentrations and are, therefore, not compared to pCULs.	ND = not detecte
(a) Petroleum hydrocarbons were analyzed by NWTPH-dx, -Gx, and SW-846 8015. VOCs were analyzed by SW-846 8260, 8260 Selected Ion Monitoring (SIM), and 8015. In the event total xylenes were calculated, the sum consists of detections of m,p-xylene and o-xylene. (b) 800 μg/L is used if benzene is detected; 1,000 μg/L is used if benzene is not detected.	pCUL = proposed VOC = volatile or

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.

iations:

ns per liter

, toluene, ethylbenzene, and xylenes

able

ed

d cleanup level rganic compound

Table 4-4 AOC A-09 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Total Metals (mg/kg) (a)			Cyanide (mg/kg) (a)		
Sample	Sample	Sample					Cyanide	Cyanide
Location	Depth (ft)	Date	Cadmium	Copper	Nickel	Cyanide	After Chlorination	Amenable
		Soil pCUL	1.0	280	70,000	2,200	N/A	N/A
AGR07-HA1	1.0	9/12/1996	0.2 U	19.2	14	0.21 U	1.4	0.21 U
	3.0	9/12/1996	0.2 U	26.5	17	0.21 U	0.36	0.21 U
	6.5	9/12/1996	248	378	27	62	89	4.7 U
AGR07-HA2	3.8	9/13/1996	0.3	21.9	14	1.6	1.9	0.23 U
	6.0	9/13/1996	0.2 U	385	31	200	390	4.7 U
AGR07-HA3	2.5	9/13/1996	0.3	32.9	12	0.21 U	0.21 U	0.21 U
AGR07-SC4A	0.7	12/22/1997	0.4	21.7	14	0.34		
	1.5	12/22/1997	0.2	16.7	13	0.4		
AGR07-SC4B	0.5	12/22/1997	0.4	22.4	13	0.34		
	1.5	12/22/1997	0.2 U	19.2	12	0.34		
AGR07-SC4C	0.5	12/22/1997	0.2 U	20.8	16	0.32		
	1.5	12/22/1997	0.2 U	23.4	13	0.39		
AGR07-SC4D	0.5	12/22/1997	0.2	21.2	13	0.33		
	1.5	12/22/1997	0.2 U	17.1	10	0.28		
AGR07-SC4E	0.5	12/22/1997	0.2 U	22.6	16	0.32		
	1.5	12/22/1997	0.3	18.1	12	0.43		
	2.0	12/22/1997	0.2 U	18	13	0.29		
AGW046	5.0	9/13/1996	0.2 U	12.4	9	0.23 U	0.86	0.23 U
	15.0	9/13/1996	0.2 U	11.6	8	0.24 U	0.23 U	0.24 U
AGW048	5.0	9/13/1996	0.2 U	20.3	11	0.22 U	0.33	0.22 U
	15.0	9/13/1996	0.3	11.8	5	0.76	0.7	0.25 U
AGW049	2.0	9/13/1996	0.2 U	19.4	19	0.2 U	0.21 U	0.2 U
	7.5	9/13/1996	37.8	242	37	350	530	23 U
	10.0	9/13/1996	0.5	619	30	19	21	0.45 U
	12.5	9/13/1996	0.2 U	123	17	0.53	1.7	0.21 U
AGW050	5.0	9/12/1996	0.3	17.2	11	0.22 U	0.38	0.22 U
	13.0	9/12/1996	0.5	15.2	11	0.21 U	0.21 U	0.21 U

Table 4-4 AOC A-09 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Total Metals (mg/kg) (a)			Cyanide (mg/kg) (a)		
Sample	Sample	Sample					Cyanide	Cyanide
Location	Depth (ft)	Date	Cadmium	Copper	Nickel	Cyanide	After Chlorination	Amenable
		Soil pCUL	1.0	280	70,000	2,200	N/A	N/A
CB2-AU-17-07-22	N/A	7/31/1996	0.3	9.6	7	0.59		
CS2-AU/17-07-11	N/A	7/30/1996	0.8	28	12	1		
CS2-AU/17-07-19	N/A	7/31/1996	642	81.5	10	200		
P2-AU/17-07-16	N/A	7/30/1996	492	94.3	22	73		
PAU/17-07-24	N/A	8/1/1996	0.2 U	13.2	8	0.22 U		
PAU/17-07-25	N/A	8/1/1996	124	64	18	110		
PAU/17-07-39	N/A	8/1/1996	163	35.4	16	77		
PAU/17-07-40	N/A	8/1/1996	146	90.6	28	28		
PAU/17-07-41	N/A	8/1/1996	84	80	9	41		
PAU/17-07-42	N/A	8/1/1996	1.5	19.8	13	2.9		
PAU/17-07-43	N/A	8/1/1996	0.5	36.6	15	0.44		
PAU/17-07-44	N/A	8/1/1996	0.2 U	21.2	13	0.22 U		
PAU/17-07-45	N/A	8/6/1996	148	131	32	5.3		
PAU/17-07-46	N/A	8/6/1996	15	102	15	18		
PAU/17-07-47	N/A	8/6/1996	0.4	21.4	11			
S2-AU/17-07-12	N/A	7/30/1996	353	181	17	75		
VS2-AU/17-07-17	N/A	7/31/1996	1	16	14	2.2		
VS2-AU/17-07-18	N/A	7/31/1996	169	108	36	16		
VS2-AU/17-07-20	N/A	7/31/1996	77.9	22.6	21	21		
VS2-AU/17-07-21	N/A	7/31/1996	224	93.5	25	13		

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable pCUL for soil.

(a) Total metals were analyzed by SW-846 6010, 6020, and EPA 200.8.

Cyanide was analyzed by EPA 335.1, 335.2, ASTM D6888-09, ASTM D7237-10, and ASTM D7511-12.

Acronyms/Abbreviations:

-- = not analyzed

EPA = US Environmental Protection Agency

ft = feet

mg/kg = milligrams per kilogram

N/A = not applicable

pCUL = proposed cleanup level

		Dissolved Metals (µg/L) (a)				Cyanide (µg/L) (a)
Sample	Sample				Total	Available	Free
Location	Date	Cadmium	Copper	Nickel	Cyanide	Cyanide	Cyanide
	Groundwater pCUL	5.0	640	100	10	N/A	10
AGW037	12/10/2004	2 U	2 U	10 U			
	11/28/2017				5.00 U		
	3/12/2018				5.00 U		
	6/5/2018				5.00 U		
AGW046	9/26/1996	0.2 U	2 U	10 U	4 U		
	12/10/2004	2 U	2 U	10 U			
AGW047	12/10/2004	2 U	5	10 U			
	6/6/2017				140		
	11/29/2017				23.3		
	3/12/2018				97.7		
	6/5/2018				62.6	2.00 U	5.00 U
	12/4/2018				18.4		
AGW048	12/10/2004	5	10	10 U			
	6/16/2016	1.2		2.1			
	6/6/2017	3.3		2.0 U	65		
	11/28/2017				74.0		
	3/12/2018				79.8		
	6/5/2018	3.8		1.3 J	50.3	2.00 U	5.00 U
	12/4/2018				147		
AGW049	6/16/2016	12.9		56.4			
	11/29/2016	12.4		66.7			
	6/6/2017	6.2	745	52.5	53		
	11/28/2017	8.8	760	60	7.48		
	3/12/2018				18.5		
	6/5/2018	4.0	180	14 J	15.3 J	2.00 U	5.00 U
	12/4/2018	11.5	730	57.3	5.00 U		

Table 4-5 AOC A-09 Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

		Disso	olved Metals (µg/	L) (a)		Cyanide (µg/L) (a)
Sample	Sample				Total	Available	Free
Location	Date	Cadmium	Copper	Nickel	Cyanide	Cyanide	Cyanide
	Groundwater pCUL	5.0	640	100	10	N/A	10
AGW050	12/10/2004	14	21	20			
	6/16/2016	18.5		38.3			
	11/29/2016	16.2		16.4			
	6/6/2017	51.9		174	2,000		
	11/28/2017	12		12 J	296		
	3/12/2018				3,620		
	6/5/2018	24		62	4,670	24.8 J	10.9 J
	9/5/2018				166	2.5	5 U
	12/4/2018	10.7		13.7	351		
AGW278-1	11/28/2017				15.8		
	3/12/2018				8.90 J		
	6/5/2018				39.3 J	2.00 U	169 J
	9/5/2018				48.7 J	2 UJ	262 EJ
	12/4/2018				5.00 U		

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable

groundwater pCUL (based on drinking water).

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected.

(a) Dissolved metals were analyzed by SW-846 6010, 6020, and EPA 200.8.

Cyanide was analyzed by EPA 335.1, 335.2, ASTM D6888-09, ASTM D7237-10, and ASTM D7511-12.

U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

E = Estimated value; the result is above the calibration range of the instrument.

Acronyms/Abbreviations:

-- = not analyzed

 μ g/L = micrograms per liter

EPA = US Environmental Protection Agency

N/A = not applicable

pCUL = proposed cleanup level

Table 4-6 AOC A-13 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Petrole	um Hydrocarbons (m	g/kg) (a)
Sample	Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Depth (ft)	Date	Hydrocarbons	Organics	Organics
		Soil pCUL	71,000	N/A	N/A
AGW127	15.0	9/8/2008	5.3	5.3	11 U
AGW128	18.5	9/12/2008	5,280	880	4,400
AGW129	12.5	9/11/2008	12	5.7 U	12
AGW130	14.0	9/11/2008	5.6	5.6	11 U
AGW277	8.0	8/12/2017	ND	51 U	51 U
	17.0	8/12/2017	15,200	2,200	13,000
	21.0	8/13/2017	1,500	500 U	1,500
	24.5	8/13/2017	ND	51 U	51 U
	26.0	8/13/2017	110	56 U	110
	29.5	8/13/2017	ND	69 U	69 U
AGW279	12.5	12/27/2017	ND	54 U	54 U
	22.0	12/27/2017	ND	51 U	51 U
AGW280	13.0	12/28/2017	ND	53 U	53 U
	23.5	12/28/2017	ND	57 U	57 U
AGW281	13.0	12/29/2017	ND	56 U	56 U
	16.0	12/29/2017	170	52 U	170
	18.5	12/29/2017	18,100	3,100	15,000
	21.0	12/29/2017	770	140	630
	25.5	12/29/2017	496	96	400
	26.5	12/29/2017	170	50 U	170
	27.5	12/29/2017	ND	59 U	59 U
AGW282	11.5	12/29/2017	95	49 U	95
	16.0	12/29/2017	ND	53 U	53 U
	17.0	12/29/2017	ND	58 U	58 U
	21.0	12/29/2017	ND	50 U	50 U
	22.5	12/29/2017	ND	60 U	60 U
ASB0159	16.0	8/30/2004	ND	5 U	10 U
ASB0160	17.5	9/7/2004	36,800	4,800	32,000
ASB0167	5.0	9/7/2004	ND		
	20.0	9/7/2004	ND	5 U	10 U
ASB0168	15.0	9/8/2004	1,570	170	1,400
	17.5	9/8/2004	268	28	240
ASB0169	15.0	9/8/2004	2,420	320	2,100
	17.5	9/8/2004	3,360	460	2,900
ASB0170	15.0	9/9/2004	23,900	3,900	20,000
	17.5	9/9/2004	15,200	2,200	13,000
ASB0171	15.0	9/9/2004	11,100	1,600	9,500
	17.5	9/9/2004	8,200	1,200	7,000
ASB0271	11.0	8/12/2017	ND	51 U	51 U
	18.0	8/12/2017	9,100	1,600	7,500
	24.0	8/12/2017	1,290	290	1,000
ASB0272	11.0	8/12/2017	ND	50 U	50 U
	17.0	8/12/2017	13,300	2,300	11,000
	19.0	8/12/2017	18,500	3,500	15,000

Table 4-6 AOC A-13 Soil Results Boeing Auburn Feasibility Study Auburn, Washington

			Petroleum Hydrocarbons (mg/kg) (a)			
Sample	Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range	
Location	Depth (ft)	Date	Hydrocarbons	Organics	Organics	
		Soil pCUL	71,000	N/A	N/A	
ASB0274	10.0	8/12/2017	92	49 U	92	
	16.0	8/12/2017	ND	55 U	55 U	
	19.0	8/12/2017	ND	49 U	49 U	
ASB0275	8.0	8/13/2017	ND	50 U	50 U	
	10.0	8/13/2017	62	51 U	62	
	20.0	8/13/2017	ND	68 U	68 U	
	23.0	8/13/2017	ND	50 U	50 U	
ASB0286	11.0	12/27/2017	ND	51 U	51 U	
	16.0	12/27/2017	326	56	270	
	18.0	12/27/2017	13,600	2,600	11,000	
	22.0	12/27/2017	ND	51 U	51 U	
ASB0287	12.0	12/28/2017	ND	50 U	50 U	
	22.0	12/28/2017	ND	56 U	56 U	
ASB0288	10.5	12/28/2017	120	50 U	120	
	12.0	12/28/2017	5,630	930	4,700	
	13.5	12/28/2017	3,960	660	3,300	
	18.0	12/28/2017	19,500	3,500	16,000	
	22.5	12/28/2017	2,090	390	1,700	
	25.0	12/28/2017	ND	52 U	52 U	
	29.0	12/28/2017	ND	60 U	60 U	
ASB0289	12.0	12/29/2017	ND	52 U	52 U	
	17.0	12/29/2017	120	53 U	120	
	20.5	12/29/2017	423	93	330	
	22.0	12/29/2017	100	56 U	100	
	25.0	12/29/2017	ND	52 U	52 U	
	27.0	12/29/2017	ND	58 U	58 U	

Notes:

Bold text indicates detected analyte

- (a) Petroleum hydrocarbons analyzed by NWTPH-dx, -Gx, and SW-846 8015. Total petroleum hydrocarbons were calculated by summing detections of diesel range and oil range organics.
- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations and Acronyms:

-- = not analyzed ft = feet mg/kg = milligrams per kilogram N/A = not applicable ND = not detected pCUL = proposed cleanup level

		Petrol	leum Hydrocarbons (με	g/L) (a)
Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Date	Hydrocarbons	Organics	Organics
	Groundwater pCUL	20,000	N/A	N/A
AGW041	6/13/2013	ND	95 U	240 U
AGW043	1/15/2009	ND	250 U	500 U
AGW044	6/20/2016	2,530	1,800	730
	5/31/2017	180	180	240 U
	6/8/2018	1,300	1,300	350 U
AGW115	12/11/2013	ND	94 U	230 U
AGW116	12/11/2013	ND	95 U	240 U
AGW117	12/10/2013	ND	94 U	240 U
AGW118	12/11/2013	ND	94 U	230 U
AGW127	12/10/2013	ND	95 U	240 U
AGW128	6/17/2016	1,450	1,100	350
	12/1/2016	3,400 J	2,200 J	1,200
	5/31/2017	2,400	1,100	1,300
	12/5/2017	7,600	1,800	5,800
	6/7/2018	3,400 J	1,500 J	1,900 J
	12/11/2018	2,885	455	2,430
AGW129	12/11/2013	ND	95 U	240 U
AGW130	6/20/2016	ND	94 U	230 U
	12/1/2016	ND	95 U	240 U
	5/31/2017	ND	98 U	240 U
	12/5/2017	290	100 U	290
	6/8/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U
AGW277	9/6/2017	1,430 J	450 J	980 J
	12/5/2017	1,810	310	1,500
	3/14/2018	140	140	350 U
	6/7/2018	230	230	350 U
	9/4/2018	200	200	350 U
	12/11/2018	ND	100 U	200 U
AGW279	3/14/2018	ND	110 U	350 U
	6/7/2018	ND	110 U	350 U
	9/4/2018	ND	110 U	350 U
	12/11/2018	ND	100 U	200 U
AGW280	3/14/2018	ND	110 U	350 U
	6/7/2018	ND	110 U	350 U
	9/5/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U
AGW281	3/13/2018	690	150	540
	6/7/2018	190	190	350 U
	9/5/2018	890	190	700
	12/12/2018	250	100 U	250
AGW282	3/13/2018	4,260	660	3,600
	6/7/2018	490	490	350 U
	9/5/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U

Table 4-7 AOC A-13 Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

		Petroleum Hydrocarbons (μg/L) (a)			
Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range	
Location	Date	Hydrocarbons	Organics	Organics	
	Groundwater pCUL	20,000	N/A	N/A	
AGW277-20	8/12/2017	891,000 J	21,000 J	870,000	
ASB0159-19	8/30/2004	ND	250 U	500 U	
ASB0160R-18	9/7/2004	11,500	1,500	10,000	
ASB0167-18	9/7/2004	ND	250 U	500 U	
ASB0168-18	9/8/2004	2,120	320	1,800	
ASB0169-18	9/8/2004	3,160	460	2,700	
ASB0170-18	9/9/2004	4,390	690	3,700	
ASB0171-18	9/9/2004	4,010	610	3,400	
ASB0271-20	8/12/2017	248,000	38,000	210,000	
ASB0272-20	8/12/2017	352,000	62,000	290,000	
ASB0274-18	8/12/2017	520	110	410	
ASB0275-19	8/13/2017	ND	100 U	250 U	
ASB0286-16	12/27/2017	25,600 J	4,600 J	21,000	
ASB0287-17.5	12/28/2017	ND	100 U	250 U	
ASB0288-16	12/28/2017	49,900 J	9,900 J	40,000 J	
ASB0289-16	12/29/2017	3,900	1,100	2,800	

Notes:

Bold text indicates detected analyte

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected. Groundwater concentrations from temporary boring grab samples are not considered a reliable estimate of actual groundwater concentrations and are, therefore, not compared to pCULs.

(a) Petroleum hydrocarbons were analyzed by NWTPH-dx, -Gx, and SW-846 8015.

Total petroleum hydrocarbons were calculated by summing detections of diesel range and oil range organics.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

-- = not analyzed
 µg/L = micrograms per liter
 N/A = not applicable
 ND = not detected
 pCUL = proposed cleanup level

Table 4-8 AOC A-14 Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (a) (μg/L)		
Location	Date	Trichloroethene	Vinyl Chloride	
	Groundwater pCUL	4.0	0.29	
	SWQS in Groundwater	0.3	0.02	
AGW001R	12/5/2018	1.51	0.0200 U	
AGW002R	12/5/2018	0.200 U	0.0416	
AGW006R	12/6/2018	0.560	0.0335	
AGW009	6/8/2018	0.23	0.020 U	
AGW010	12/12/2018	0.200 U	0.0200 U	
AGW024	12/10/2018	0.200 U	1.09 J	
AGW025	12/10/2018	0.200 U	1.98 J	
AGW026	12/10/2018	0.737	0.0328 J	
AGW027	12/7/2018	0.200 U	0.447	
AGW029	6/1/2018	0.20 U	0.020 U	
AGW030	6/1/2018	0.20 U	0.020 U	
AGW031R	12/6/2018	0.839	0.0252	
AGW032	12/10/2018	0.200 U	0.0796 J	
AGW033	12/6/2018	0.200 U	0.0229	
AGW034	6/11/2018	1.4	0.020 U	
AGW035	6/1/2018	1.8	0.020 U	
AGW037	12/7/2018	2.12	0.134	
AGW039	5/31/2018	0.41	0.020 U	
AGW040	5/31/2018	0.65	0.020 U	
AGW041	6/8/2018	0.23	0.020 U	
AGW044	6/8/2018	0.20 U	0.020 U	
AGW053R	12/5/2018	1.11	0.118	
AGW055R	12/6/2018	0.516	0.0284	
AGW057R	12/5/2018	0.838	0.0200 U	
AGW058R	6/6/2018	0.20 U	0.020 U	
AGW059R	6/6/2018	0.20 U	0.020 U	
AGW060R	12/5/2018	0.827	0.0544	
AGW064	12/6/2018	0.790	0.0200 U	
AGW065	6/1/2018	0.20 U	0.020 U	
AGW066	12/5/2018	3.56	0.0200 U	
AGW067	12/6/2018	3.91	0.0200 U	
AGW068	6/5/2018	0.20 U	0.020 U	
AGW069	12/6/2018	0.200 U	0.0200 U	
AGW072	12/5/2018	1.11	0.0200 U	
AGW073	12/5/2018	0.206	0.0200 U	
AGW074	12/7/2018	0.200 U	0.0200 U	
AGW078	6/8/2018	0.20 U	0.020 0	
AGW079	12/10/2018	0.200 0	0.321 J	
AGWU81	6/11/2018	0.20 U	0.020 U	
AG VV 085	12/10/2018	0.503	0.0200 UJ	
AGW087	12/7/2018	0.200 0	0.0200 U	
AGWU88	12/7/2018	0.200 U	0.0200 U	
AGW089	12/7/2018	0.200 0	0.0200 U	
AGW090	12/7/2018	0.200 U	0.0200 U	
AGWU91	12/7/2018	0.200 0	0.0200 U	

Page 1 of 7

Sample	Sample	Volatile Organic Compounds (a) (μg/L)		
Location	Date	Trichloroethene	Vinyl Chloride	
	Groundwater pCUL	4.0	0.29	
	SWQS in Groundwater	0.3	0.02	
AGW095R	12/6/2018	0.746	0.0200 U	
AGW098R	12/6/2018	0.385	0.0200 U	
AGW104	6/12/2018	0.20 U	0.020 U	
AGW105R	12/6/2018	0.761	0.532	
AGW106R	12/5/2018	0.200 U	0.0200 U	
AGW110R	12/5/2018	0.200 U	0.102	
AGW112R	12/5/2018	1.81	0.353	
AGW115	12/10/2018	0.200 U	0.268 J	
AGW116	12/10/2018	0.200 U	0.0200 UJ	
AGW117	12/10/2018	0.200 U	0.0200 UJ	
AGW118	12/10/2018	0.292	0.0200 UJ	
AGW119	12/7/2018	0.200 U	0.0200 U	
AGW120	12/7/2018	0.200 U	0.0200 U	
AGW125	12/6/2018	7.08	0.0337	
AGW126	12/6/2018	6.75	0.0938	
AGW127	6/11/2018	0.20 U	0.020 U	
AGW128	12/11/2018	0.200 U	0.0200 U	
AGW129	12/10/2018	0.458	0.0200 UJ	
AGW130	12/12/2018	0.244	0.0270	
AGW131	12/12/2018	0.200 U	2.89	
AGW133	6/12/2018	0.20 U	0.020 U	
AGW134	12/6/2018	0.200 U	0.0200 U	
AGW135	12/6/2018	1.15	0.0289	
AGW136	12/6/2018	2.25	0.0200 U	
AGW137	12/6/2018	3.07	0.0200 U	
AGW138	12/6/2018	0.465	0.0200 U	
AGW139	12/13/2018	1.78	0.0200 U	
AGW140	12/6/2018	3.10	0.146	
AGW141	12/6/2018	1.68	0.0200 U	
AGW142	12/6/2018	0.200 U	0.0200 0	
AGW143	12/7/2018	0.200 0	0.0200 0	
AGW144	12/7/2018	0.408	0.400	
AGW145	12/7/2018	2 76	0.832	
AGW140	12/7/2018	0.200 11	0.0338	
AGW147	12/7/2018	0.200 0	0.0200 03	
AGW148	12/7/2018	3.00	0.0307	
AGW149 AGW150	12/1/2018	5.55	0.0200 U	
AGW150 AGW151	12/11/2018	0.44	0.0200 0	
AGW151 AGW152	12/0/2018	0.449	2.07	
ΔGW/152	6/12/2010	0.200 0	0.020 11	
ΔGW/15/	12/7/2010	0.20 0	0.020 0	
AGW134 AGW/155	12/10/2010	0.270	4 23 1	
AGW155	12/7/2018	0.200 0	1 17	
AGW150	12/7/2018	0.383	0.430	
,,	12/1/2010	0.303	0.430	

Table 4-8 AOC A-14 Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (a) (μg/L)		
Location	Date	Trichloroethene	Vinyl Chloride	
	Groundwater pCUL	4.0	0.29	
	SWQS in Groundwater	0.3	0.02	
AGW158	12/13/2018	1.74	0.0263	
AGW159	12/13/2018	3.50	0.0540	
AGW160	12/4/2018	6.72	0.0266	
AGW161	12/3/2018	1.27	0.0200 U	
AGW162	12/11/2018	0.572	0.0200 U	
AGW163	12/10/2018	3.76	0.0407 J	
AGW164	12/7/2018	1.42	0.0551	
AGW165	12/7/2018	2.07	0.169	
AGW166	12/13/2018	0.200 U	0.286	
AGW167	12/13/2018	5.16	0.130	
AGW168	12/13/2018	3.87	0.0348	
AGW169	12/13/2018	4.58	0.0373	
AGW170	12/13/2018	2.01	0.0276	
AGW171	12/13/2018	1.79	0.0200 U	
AGW172	12/4/2018	3.79	0.0200 U	
AGW173	12/4/2018	0.200 U	0.0200 U	
AGW174	12/3/2018	1.51	0.0200 U	
AGW175	12/3/2018	1.78	0.0200 U	
AGW176	12/4/2018	3.52	0.0200 U	
AGW177	12/4/2018	3.97	0.0200 U	
AGW178	12/4/2018	4.06	0.0200 U	
AGW179	12/4/2018	0.255	0.104	
AGW180	12/4/2018	3.05	0.0200 U	
AGW181	12/6/2018	4.01	0.0399	
AGW182	12/13/2018	1.46	0.161	
AGW183	12/13/2018	0.200 U	0.0200 U	
AGW184	12/12/2018	0.386	0.0200 U	
AGW185	12/3/2018	2.36	0.0200 U	
AGW186	12/12/2018	0.539	0.0200 U	
AGW187	12/3/2018	1.70	0.0200 U	
AGW188	12/6/2018	4.56	0.0315	
AGW189	12/12/2018	0.513	0.0200 U	
AGW190	12/10/2018	1.18	0.0200 U	
AGW191	12///2018	0.200 U	0.0200 U	
AGW192	12/7/2018	0.200 U	0.0200 U	
AGW193	12/13/2018	2.98	0.157	
AGW194	12/13/2018	1.58	0.0200 U	
AGW195	12/4/2018	7.19	0.0200 0	
AGW196	12/4/2018	0.200 0	2.63	
AGW197	12/4/2018	8.66	0.0200 U	
AGW198	12/4/2018	5.80	0.0200 U	
AGW199	12/4/2018	6.34	0.0263	
	12/12/2018	0.314	1.4/	
AGW200-5	12/12/2018	0.955	1.40	
AG VV 200-0	12/12/2018	0.904	0.738	

Page 3 of 7

Sample	Sample	Volatile Organic Compounds (a) (μg/L)		
Location	Date	Trichloroethene	Vinyl Chloride	
	Groundwater pCUL	4.0	0.29	
	SWQS in Groundwater	0.3	0.02	
AGW201-2	12/13/2018	0.344	1.81	
AGW201-5	12/13/2018	2.90	0.549	
AGW201-6	12/13/2018	5.26	0.278	
AGW202-2	12/13/2018	0.871	1.14	
AGW202-4	12/13/2018	1.46	0.210	
AGW202-6	12/13/2018	0.773	0.0293	
AGW203-2	12/13/2018	0.625	0.0200 U	
AGW203-4	12/13/2018	2.27	0.0200 U	
AGW203-6	12/13/2018	0.200 U	0.0200 U	
AGW204	6/12/2018	0.20 U	0.020 U	
AGW205	6/11/2018	0.20 U	0.020 U	
AGW206	12/10/2018	0.976	0.0200 UJ	
AGW207-2	12/12/2018	4.28	0.131	
AGW207-4	12/12/2018	4.79	0.0869	
AGW207-7	12/12/2018	4.72	0.0213	
AGW208-2	12/5/2018	1.26	0.634	
AGW208-4	12/5/2018	0.342	0.345	
AGW208-6	12/5/2018	4.74	0.0200 U	
AGW209-2	12/5/2018	0.200 U	1.60	
AGW209-5	12/5/2018	1.79	1.39	
AGW209-6	12/5/2018	4.48	0.0314	
AGW210-2	6/4/2018	0.20 U	0.020 U	
AGW210-5	12/5/2018	0.666	0.0490	
AGW210-6	12/5/2018	3.77	0.0298	
AGW211-2	6/4/2018	0.20 U	0.020 U	
AGW211-5	12/5/2018	2.33	0.0200 U	
AGW211-6	12/5/2018	1.42	0.0200 U	
AGW212-2	6/1/2018	0.20 U	0.020 0	
AGW212-5	12/10/2018	1.54	0.0200 0	
AGW212-7	12/10/2018	3.82	0.0200 0	
AGW213	12/6/2018	0.200 0	0.0225	
AGW214	12/3/2018	0.200 //	0.0228 J	
AGW215	12/0/2018	0.200 0	0.0200 U	
AGW210 AGW217	12/3/2010	1.62	0.0200 0	
AGW217 AGW/218	12/5/2010	2.05	0.0244 J	
AGW218	12/0/2018	0.200	0.0209	
AGW219	12/3/2018	0.200 0	0.0200 0	
ΔGW/220	12/3/2010	0.213	0.0200 0	
AGW/221 AGW/222	12/3/2018	0.200 0	0.0200 0	
AGW222 AGW223	6/8/2018	0.430	0.0200 03	
AGW223	6/5/2018	0.20 0	0.020 0	
AGW224 AGW225	12/7/2018	2 17	0.020 0	
AGW226	12/3/2018	0 200 11	0.295	
AGW220	12/6/2018	1 52	0.235	
	12, 0, 2010	1.52	0.207	

Sample	Sample	Volatile Organic Compounds (a) (μg/L)		
Location	Date	(~) (p	-87 -7	
		Trichloroethene	Vinyl Chloride	
	Groundwater pCUL	4.0	0.29	
	SWQS in Groundwater	0.3	0.02	
AGW228	12/6/2018	3.34	0.214	
AGW229	12/13/2018	1.63	0.0391	
AGW230	12/12/2018	0.924	0.0200 U	
AGW231	12/4/2018	0.200 U	2.51	
AGW232	12/4/2018	0.200 U	5.43	
AGW233	12/3/2018	0.200 U	0.0200 U	
AGW234	12/10/2018	8.00	0.0704	
AGW235-2	12/11/2018	0.200 U	3.64	
AGW235-4	12/11/2018	1.44	0.168	
AGW235-7	12/11/2018	0.200 U	0.0200 U	
AGW236	12/6/2018	2.27	0.451	
AGW237	12/6/2018	2.25	0.0394	
AGW238	12/6/2018	0.200 U	0.0200 U	
AGW239	12/6/2018	0.200 UJ	1.16	
AGW240-1	12/7/2018	0.200 U	0.0531	
AGW240-5	12/7/2018	0.200 U	0.0237	
AGW241-1	12/12/2018	0.200 U	0.0200 U	
AGW241-5	12/12/2018	0.200 U	0.0200 U	
AGW242-1	12/12/2018	0.200 U	0.217	
AGW242-2	12/12/2018	0.200 U	0.0200 U	
AGW242-5	12/12/2018	0.200 U	0.0200 U	
AGW243-1	12/5/2018	0.200 U	0.382 J	
AGW243-3	12/5/2018	0.200 U	0.0200 U	
AGW243-5	12/6/2018	0.200 U	0.0200 U	
AGW244	12/3/2018	0.200 U	0.0200 U	
AGW245	12/3/2018	0.200 U	0.0200 U	
AGW246	12/3/2018	0.200 U	0.0200 U	
AGW247-1	12/3/2018	0.200 U	0.369	
AGW247-5	12/3/2018	0.200 U	1.72	
AGW248-1	12/7/2018	0.200 U	0.0200 U	
AGW248-5	12/7/2018	3.93	0.103	
AGW249-1	12/12/2018	0.200 U	0.461	
AGW249-5	12/12/2018	5.69	0.0722	
AGW250-1	12/6/2018	0.200 U	0.0200 U	
AGW250-2	12/6/2018	0.200 U	0.0317	
AGW250-3	12/6/2018	0.466	0.0510	
AGW250-6	12/6/2018	0.200 U	0.0200 U	
AGW251-1	12/13/2018	0.200 U	0.105	
AGW251-2	12/13/2018	0.200 U	0.714	
AGW251-3	12/13/2018	0.200 U	4.99	
AGW251-6	12/13/2018	0.200 U	0.250	
AGW252	12/10/2018	0.200 U	0.0200 U	
AGW253	5/31/2018	0.20 U	0.020 U	
AGW254-1	12/10/2018	0.200 U	0.0200 U	
AGW254-2	12/10/2018	0.200 U	0.0442	

Sample	Sample	Volatile Organic Compounds (a) (μg/L)	
Location	Date	Trichloroethene	Vinyl Chloride
	Groundwater pCUL	4.0	0.29
	SWQS in Groundwater	0.3	0.02
AGW254-5	12/10/2018	0.200 U	0.0200 U
AGW255-1	12/12/2018	0.510	0.189
AGW255-3	12/12/2018	0.200 U	0.142
AGW255-5	12/12/2018	0.200 U	0.161
AGW256	12/4/2018	0.818	0.0200 U
AGW257	12/4/2018	0.200 U	0.0200 U
AGW258	12/4/2018	0.200 U	0.0200 U
AGW259	12/10/2018	0.200 U	0.0200 U
AGW260	12/12/2018	0.200 U	0.0200 U
AGW261	12/12/2018	2.59	0.145
AGW262	12/12/2018	0.200 U	0.0940
AGW263	12/7/2018	0.561	0.0256
AGW264	12/7/2018	0.200 U	0.0200 U
AGW265	12/7/2018	0.200 U	0.0200 U
AGW266	12/6/2018	0.200 U	0.0217
AGW267	12/5/2018	0.200 U	0.0200 U
AGW268	12/5/2018	0.200 U	0.0200 U
AGW269	12/4/2018	0.200 U	0.159
AGW270	12/4/2018	0.200 U	1.26 J
AGW271	12/4/2018	0.200 U	0.214
AGW272	12/4/2018	0.261	1.76
AGW273	12/5/2018	0.200 U	3.09
AGW274	12/5/2018	0.200 U	0.116
AGW275	12/5/2018	0.200 U	0.0295
AGW276-2	12/6/2018	0.320	1.27
AGW276-5	12/6/2018	0.200 U	2.40
AGW276-6	12/6/2018	2.82	0.0992
AGW278-1	12/4/2018	0.571	0.831 J
AGW278-2	12/7/2018	0.852	0.278
AGW278-4	12/7/2018	0.200 U	2.47
AGW278-6	12/7/2018	0.200 U	0.0200 U
APP-057	12/10/2018	0.200 U	0.0200 U
IW34	12/4/2018	0.200 U	0.670
IW36	12/4/2018	0.200 U	2.65
IW37	12/5/2018	0.200 U	0.309
PW-18A-2.5	10/15/2018	0.20 U	0.020 U
PW-18A-5	10/15/2018	0.20 U	0.061
PW-18B-2.5	10/15/2018	0.20 U	0.020 U
PW-18B-5	10/15/2018	0.20 U	0.020 U
PW-23	9/24/2015	0.2 U	0.020 U
PW-24	9/24/2015	0.2 U	0.020 U
PW-25	9/24/2015	0.2 U	0.020 U

Table 4-8 AOC A-14 Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (a) (μg/L)	
Location	Location Date		Vinyl Chloride
Groundwater pCUL		4.0	0.29
SWQS in Groundwater		0.3	0.02
PW-26	9/24/2015	0.2 U	0.020 U
PW-27A-2.5	9/19/2018	0.20 U	0.020 UJ
PW-27A-5	9/19/2018	0.20 U	0.020 UJ

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable groundwater pCUL (based on drinking water). Blue shading indicates concentrations above SWQS in groundwater.

(a) VOCs were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring (SIM).

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations and Acronyms:

 μ g/L = micrograms per liter

- pCUL = proposed cleanup level
- SWQS = surface water quality standards
- VOC = volatile organic compound

Table 4-9 AOC A-14 Building 17-07 Release Area Soil Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Sample	Volatile Organic Compounds (mg/kg) (a)	
Location	Depth (ft)	Date	Trichloroethene	Vinyl Chloride
		Soil pCUL	0.025	N/A
AGW037	10	1/8/1996	0.05 U	0.05 U
AGW278	7.5	8/18/2017	0.0019	0.0015 U
	11	8/18/2017	0.0016 U	0.0016 U
	15	8/18/2017	0.0015 U	0.0015 U
B1	9	1/8/1996	0.05 U	0.05 U
	11	1/8/1996	0.05 U	0.05 U
B2	8	1/8/1996	0.05 U	0.05 U
	10	1/8/1996	0.05 U	0.05 U
B3	8	1/8/1996	0.05 U	0.05 U
	10	1/8/1996	0.05 U	0.05 U

Notes:

Bold text indicates detected analyte.

- (a) VOCs were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.
- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

ft = feet

mg/kg = milligrams per kilogram

N/A = not applicable

pCUL = proposed cleanup level

VOC = volatile organic compound

Table 4-10 AOC A-14 Building 17-07 Release Area Soil Gas Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (µg/m ³) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
SSV23	10/6/2011	2.1 U	3.8
SSV24	4/22/2011	24.2	1 U
SSV26	4/22/2011	2.2 U	1 U
SSV27	10/6/2011	72	190
SSV28	10/6/2011	190	0.51 U
SSV29	4/22/2011	1,010	0.97 U
SSV30	4/22/2011	32.7	0.81 U
SSV31	4/22/2011	36.5	0.5 U
SSV32	4/22/2011	168	0.45 U
SSV076	6/28/2017	2.3	1.0 U
SSV077	6/28/2017	21 U	9.8 U
SSV078	6/28/2017	3.8 U	1.8 U
SSV079	6/28/2017	2.1 U	1.0 U
SSV080	6/28/2017	3.7	1.0 U
SSV081	6/28/2017	2.1 U	1.0 U
SSV082	6/28/2017	1,800	1.0 U
SSV083	6/28/2017	110	41
SSV084	6/28/2017	16	1.5
SSV085	6/28/2017	84	1.0 U
SSV086	6/28/2017	2.1 U	1.0 U

Notes:

Bold text indicates detected analyte

No soil gas pCUL developed because vapor intrusion is an incomplete exposure pathway at the Site.

(a) Volatile organic compounds analyzed by TO-15.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

 μ g/m³ = micrograms per cubic meter pCUL = proposed cleanup level

Table 4-11 AOC A-14 Building 17-07 Release Area Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

		Volatile Organic Compounds	
Sample	Sample	(µg/L) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
	Groundwater pCUL	4.0	0.29
	SWQS in Groundwater	0.3	0.02
AGR07-C9	6/21/2017	1.1	0.18
AGW037	6/16/2016	2.6	0.3
	11/29/2016	2.6	0.18
	5/30/2017	1.8	0.19
	11/28/2017	2.1	0.21
	6/5/2018	1.5	0.17
	12/7/2018	2.12	0.134
AGW047	9/29/2010	1	0.02 U
AGW048	9/29/2010	1.1	0.02 U
AGW049	9/29/2010	1.6	0.02 U
AGW050	9/29/2010	1.1	0.02 U
AGW165	6/16/2016	2.3	0.3
	11/29/2016	2.6	0.18
	5/30/2017	2.4	0.80
	12/4/2017	2.1	0.18
	6/11/2018	2.1	0.40
	12/7/2018	2.07	0.169
AGW278-1	9/6/2017	0.55	0.35 J
	10/9/2017	0.52	0.50
	11/28/2017	0.43	0.63
	3/12/2018	0.74	0.64
	6/5/2018	0.66	0.51
	9/5/2018	0.61	0.83
	12/4/2018	0.571	0.831 J
AGW278-2	9/6/2017	0.72	0.020 UJ
	10/9/2017	0.80	0.29
	12/4/2017	0.91	0.27
	3/12/2018	1.0	0.29
	6/11/2018	0.67	0.020 U
	9/5/2018	0.96	0.22
	12/7/2018	0.852	0.278
AGW278-4	9/6/2017	0.20 U	2.7 J
	10/9/2017	0.20 U	2.2
	12/4/2017	0.20 U	2.0
	3/12/2018	0.20 U	3.2
	6/11/2018	0.20 U	2.5
	9/6/2018	0.20 U	3.1
	12/7/2018	0.200 U	2.47

Table 4-11 AOC A-14 Building 17-07 Release Area Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (μg/L) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
	Groundwater pCUL	4.0	0.29
	SWQS in Groundwater	0.3	0.02
AGW278-6	9/6/2017	0.20 U	0.020 UJ
	10/9/2017	0.20 U	0.020 U
	12/5/2017	0.20 U	0.020 U
	3/12/2018	0.20 U	0.020 U
	6/11/2018	0.20 U	0.020 U
	9/6/2018	0.20 U	0.020 U
	12/7/2018	0.200 U	0.0200 U
ASB0157-17	8/24/2004	0.2 U	0.94

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable groundwater pCUL (based on drinking water).

Blue shading indicates concentrations above SWQS in groundwater.

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected.

(a) VOCs were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations and Acronyms:

μg/L = micrograms per liter

- pCUL = proposed cleanup level
- SWQS = Surface Water Quality Standards
- VOC = volatile organic compound

Table 4-12 AOC A-14 Former Building 17-03 Release Area Soil Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Sample	Volatile Organic Compounds (mg/kg) (a)	
Location	Depth (ft)	Date	Trichloroethene	Vinyl Chloride
		Soil pCUL	0.025	N/A
AGW097	16	12/3/2003	ND	ND
AGW099	16	12/9/2003	ND	ND
ASB0290	12	12/17/2018	0.0445	0.00092 U
	16	12/17/2018	0.0653	0.00092 U
ASB0291	12	12/18/2018	0.00117 U	0.00117 U
	17.5	12/18/2018	0.00118 U	0.00118 U
ASB0293	11	12/20/2018	0.00113 U	0.00113 U
	15	12/20/2018	0.00105 U	0.00105 U
ASB0276	7.5	8/28/2017	0.0020 UJ	0.0020 UJ
	9.5	8/28/2017	0.0023 UJ	0.0023 UJ
	17.9	8/28/2017	0.0019 UJ	0.0019 UJ
ASB0277	6.2	8/28/2017	0.0024 U	0.0024 U
	11	8/28/2017	0.0038	0.0019 U
ASB0278	7.5	8/28/2017	0.0020 U	0.0020 U
	9	8/28/2017	0.0020 U	0.0020 U
ASB0282	9	9/1/2017	0.0018 U	0.0018 U
	16.5	9/1/2017	0.0080	0.0016 U
ASB0283	16.5	9/8/2017	0.0016 U	0.0016 U
ASB0284	6.5	9/8/2017	0.0017 U	0.0017 U
	8.5	9/8/2017	0.0023 U	0.0023 U
ASB0285	2.5	9/11/2017	0.0018 U	0.0018 U
	9.7	9/11/2017	0.0020 U	0.0020 U
ASB0279	6.5	8/30/2017	0.0019 U	0.0019 U
	12.5	8/30/2017	0.0017	0.0016 U
	18.5	8/30/2017	0.0015 U	0.0015 U
SS-26	8.5	10/28/1992	ND	ND
SS-27	8.5	10/28/1992	ND	ND
SS-28	8.5	10/28/1992	ND	ND
SS-29	8.5	10/28/1992	ND	ND

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable soil pCUL

(a) VOCs were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

Abbreviations and Acronyms:

ft = feet

mg/kg = milligrams per kilogram

- N/A = not applicable
- ND = not detected
- pCUL = proposed cleanup level

VOC = volatile organic compound

Page 1 of 1

Table 4-13 AOC A-14 Former Building 17-03 Release Area Soil Gas Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (µg/m³) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
ASG001	6/26/2017	1,000	2.4 U
ASG002	6/26/2017	1,400	3.2 U
ASG003	6/26/2017	1,700	5.9 U
ASG004	6/26/2017	420	1.0 U
ASG005	6/26/2017	700	3.2 U
ASG006	6/26/2017	77	1.0 U

Notes:

Bold text indicates detected analyte.

No soil gas pCUL developed because vapor intrusion is an incomplete exposure pathway at the Site.

(a) Volatile organic compounds analyzed by TO-15.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

µg/m³ = micrograms per cubic meter pCUL = proposed cleanup level

Comula	Comula	Volatile Organic Compounds	
Sample	Sample	(µg/	L) (a)
Location	Date	1 numbroethene	
	SWOS in Groundwater	4.0	0.29
1.014/00/1.0		0.3	0.02
AGW001R	6/22/2016	1.9	0.020 0
	11/30/2016	2.2	0.2 0
	6/7/2017	1.2	0.020 U
	11/29/2017	1.6	0.020 U
	6/6/2018	1.1	0.020 U
	12/5/2018	1.51	0.0200 U
AGW097	12/7/2004	0.2 U	0.02 U
AGW099	12/7/2004	0.2 U	0.02 U
ASB0276-20	8/28/2017	4.44	0.0200 U
ASB0276-30	8/28/2017	1.43	0.0200 U
ASB0276-40	8/29/2017	0.39 J	0.0200 U
ASB0277-20	8/28/2017	9.21	0.0200 U
ASB0277-30	8/29/2017	1.48	0.0200 U
ASB0277-40	8/29/2017	11.0	0.0200 U
ASB0278-20	8/30/2017	7.19	0.0200 U
ASB0278-30	8/30/2017	3.46	0.0200 U
ASB0278-40	8/30/2017	2.17	0.0200 U
ASB0278-50	8/30/2017	0.46	0.0200 U
ASB0279-20	8/30/2017	0.40	0.0200 U
ASB0279-30	8/31/2017	0.20 U	0.0200 U
ASB0279-40	8/31/2017	0.20 U	0.0200 U
ASB0279-50	8/31/2017	0.20 U	0.0200 U
ASB0282-20	9/1/2017	3.85 J	0.0200 U
ASB0282-30	9/1/2017	3.75 J	0.0200 U
ASB0282-40	9/1/2017	3.68 J	0.0200 U
ASB0282-50	9/1/2017	0.78	0.020 UJ
ASB0283-21	9/8/2017	1.2	0.020 U
ASB0283-30	9/8/2017	1.4	0.020 U
ASB0283-40	9/8/2017	0.56	0.020 U
ASB0283-50	9/8/2017	0.45	0.020 U
ASB0284-20	9/8/2017	1.9	0.020 U
ASB0284-30	9/11/2017	2.8	0.020 U
ASB0284-40	9/11/2017	0.69	0.020 U
ASB0284-50	9/11/2017	2.3	0.020 U
ASB0285-20	9/11/2017	0.45	0.020 U
ASB0285-30	9/11/2017	1.6	0.020 U
ASB0285-40	9/11/2017	1.0	0.020 U
ASB0290-20	12/17/2018	5.61	0.0200 U
ASB0290-30	12/17/2018	1.40	0.0200 U
ASB0290-40	12/18/2018	0.879	0.0200 U
ASB0291-20	12/18/2018	1.17	0.0200 U
ASB0291-30	12/18/2018	0.950	0.0200 U
ASB0291-40	12/19/2018	0.689 J	0.0200 UJ
ASB0292-20	12/19/2018	1.96	0.0200 U
ASB0292-29.5	12/19/2018	3.24 J	0.0200 UJ

Table 4-14 AOC A-14 Former Building 17-03 Release Area Groundwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (μg/L) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
	Groundwater pCUL	4.0	0.29
	SWQS in Groundwater	0.3	0.02
ASB0292-40	12/20/2018	1.30 J	0.0200 UJ
ASB0293-20	12/20/2018	0.370	0.0200 U
ASB0293-30	12/20/2018	0.471	0.0200 U
ASB0293-40	12/20/2018	0.646 UJ	0.0200 UJ

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable

groundwater pCUL (based on drinking water).

Blue shading indicates concentrations above SWQS in groundwater.

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected.

(a) VOCs were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.

- U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations and Acronyms:

- µg/L = micrograms per liter
- pCUL = proposed cleanup level
- SWQS = surface water quality standards
- VOC = volatile organic compound

Table 4-15 AOC A-15 Stormwater Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (µg/L) (a)	
Location	Date	Trichloroethene	Vinyl Chloride
SW-3	3/24/2014	0.2 U	0.02 U
SW-5	6/20/2012	0.2 U	0.02 U
SW-6	6/20/2012	0.2 U	0.02 U
SW-10	3/24/2014	0.2 U	0.02 U
SW-11	6/19/2012	0.2 U	0.087
SW-12	4/2/2014	0.2 U	0.02 U
SW-14	8/30/2016	1.0	0.2
	9/15/2017	0.76	0.020 U
	9/27/2018	0.47	0.31
SW-15	9/5/2014	0.2 U	0.02 U
SW-16	8/30/2016	0.2 U	0.026
	9/15/2017	0.31	0.020 U
	9/27/2018	0.33	0.22
SW-19	9/5/2014	0.2 U	0.13
SW-CD1	9/17/2012	1.3	0.059
SW-CD2	9/5/2014	0.2 U	0.10
SW-CD3	9/17/2012	0.2 U	0.02 U
SW-CD4	3/18/2016	0.5	0.28
(formerly SW-4)	8/30/2016	2.4	0.11
	3/20/2017	0.5	0.2
	9/15/2017	1.7	0.020 U
	3/6/2018	0.47	0.23
	9/27/2018	1.8	0.14
SW-CD13	12/2/2014	0.2 U	0.54

Notes:

Bold text indicates detected analyte

(a) Volatile organic compounds were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

 μ g/L = micrograms per liter

Table 4-16 AOC A-15 Surface Water Results Boeing Auburn Feasibility Study Auburn, Washington

Sample	Sample	Volatile Organic Compounds (µg/L) (a)					
Location	Date	Trichloroethene	Vinyl Chloride				
	Surface Water pCUL	0.3	0.02				
SW-1 (c)	6/19/2012	0.2 U	0.02 U				
SW-2	6/19/2012	0.2 U	0.02 U				
SW-7 (c)	6/19/2012	0.2 U	0.04 U				
SW-8 (c)	6/19/2012	0.2 U	0.02 U				
SW-9 (c)	6/19/2012	0.2 U	0.04 U				
SW-17 (b)	8/30/2016	0.2 U	0.050				
	9/15/2017	0.20 U	0.020 U				
	9/27/2018	0.20 U	0.020 UJ				
SW-18	8/30/2016	0.2 U	0.027				
	9/21/2016	0.2 U	0.022				
	3/20/2017	0.2 U	0.020 U				
	9/15/2017	0.20 U	0.020 U				
	9/19/2018	0.20 U	0.020 UJ				
	10/15/2018	0.20 U	0.020 U				
SW-20 (c)	8/30/2016	0.2 U	0.020 U				
	9/15/2017	0.20 U	0.020 U				
	9/27/2018	0.20 U	0.020 UJ				
SW-21	9/5/2014	0.2 U	0.02 U				
SW-22 (c)	3/24/2014	0.2 U	0.02 U				
SW-23	9/24/2015	0.2 U	0.020 U				
SW-24	9/24/2015	0.2 U	0.020 U				
SW-25 (c)	9/24/2015	0.2 U	0.020 U				
SW-26 (c)	9/24/2015	0.2 U	0.020 U				
SW-27	9/15/2017	0.20 U	0.020 U				
	9/27/2018	0.20 U	0.020 UJ				

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds the surface water pCUL.

(a) Volatile organic compounds were analyzed by SW-846 8260 and 8260 Selected Ion Monitoring.

- (b) SW-17 is collected from the Auburn 400 north retention basin discharge to the wetland and is not necessarily representative of surface water conditions in the wetland.
- (c) Human health surface water quality standards based on fish consumption that apply to Mill Creek do not apply to these wetlands.
- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

Abbreviations and Acronyms:

- μ g/L = micrograms per liter
- pCUL = proposed cleanup level

Table 5-1 Summary of Retained Technologies Boeing Auburn Feasibility Study Auburn, Washington

	Treatment Technologies											
	Area of 0	Concern A-01	Area o (Metals and Cya	of Concern A-09 nide near Building 17-07)	Area of Cor (Building 17-06 Hyd	ncern A-13 rocarbon Release)	Area of Concern A-14 TCE and VC Contamination (Soil and Groundwater)					
Treatment Category	Retained	Screened Out	Retained	Screened Out	Retained	Screened Out	Retained	Screened Out				
Containment (Physical/Hydraulic)	• Cap (contain in place)	 Vertical barrier (slurry walls, low- permeability barrier walls, or sheet pile walls) 	• Cap (contain in place)	Vertical barrier (slurry walls, low- permeability barrier walls, or sheet pile walls)	• Cap (contain in place)	 Vertical barrier (slurry walls, low- permeability barrier walls, or sheet pile walls) 	None	 Slurry walls, low-permeability barrier walls, or sheet pile walls Interceptor trench or extraction wells 				
Ex Situ Physical/Chemical Treatment	None	 Pump and treat (various ex situ treatment options) 	None	 Pump and treat (various <i>ex situ</i> treatment options) 	 Pump and treat (various <i>ex situ</i> treatment options) 	None	None None					
Enhanced Groundwater Flushing	N/A	N/A	N/A	N/A	N/A	N/A	N/A • DGR					
In Situ Biological Treatment	Enhanced bioremediation (reductive) Enhanced bioremediation (oxidative) MNA	None	None	Enhanced bioremediation	• MNA	 Enhanced bioremediation (reductive) Enhanced bioremediation (oxidative) 	Enhanced bioremediation (reductive) MNA	None				
In Situ Chemical/Physical Treatment	Air/ozone spargeChemical oxidation	Thermal treatment	 Chemical treatment (e.g., zero valent iron) MNA 	 Chemical oxidation Air/ozone sparging; biosparging 	• Surfactant	Air spargeChemical oxidationThermal treatment	 SVE (soil only) Chemical treatment (reductive; e.g., zero valent iron) 	 Air sparge Chemical treatment (oxidative) Thermal treatment 				
Physical Removal (Soil)	Excavation	None	Excavation	None	Excavation	None	None	• Excavation				
Product Recovery	N/A	N/A	N/A	N/A	Passive (sorbent sock)	Dual-phase extractionActive (belt skimmer)	N/A	N/A				
Institutional Controls	 Restrictive environmental covenant, fencing, signage 	None	Restrictive environmental covenant, fencing, signage	None	 Restrictive environmental covenant, fencing, signage 	None	 Restrictive environmental covenant, fencing, signage 	None				

Abbreviations and Acronyms: DGR = dynamic groundwater recirculation MNA = monitored natural attenuation

N/A = not applicable

SVE = soil vapor extraction TCE = trichloroethene VC = vinyl chloride

Table 5-2 AOC A-09 Remedial Action Alternatives Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:	Alternative B1	Alternative B2	
Alternative Name:	Monitored Containment and MNA	In Situ Groundwater Treatment	Future
Alternative Description:	 Containment of soil and groundwater including: Containment of contaminated soil by maintaining the asphalt/concrete. Routine inspection and reporting of containment. Routine groundwater sampling of existing monitoring wells and monitoring of geochemistry for MNA of metals. Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil and groundwater, and which outlines the required continued maintenance for the cap over soil concentrations exceeding CULs protective of groundwater. 	 In situ groundwater treatment including: In situ groundwater treatment in areas with metals and cyanide contamination above pCULs (conceptual design: sulfidated colloidal ZVI injection; two injection rows with wells on 12-foot centers targeting the shallow zone; one row 24 feet long [three injection wells] upgradient of contamination; and one row 60 feet long [six injection wells] located at wells exceeding groundwater pCULs, will consist of 4 injection events performed every 2 years). This alternative assumes that saturated soils will be treated by the groundwater remediation. In addition, soil concentrations protective of groundwater will be empirically demonstrated, and only direct contact CULs will be needed. 	Future excavation • Excavation of co • Routine groundw concentrations are • Until excavation groundwater will c inspection and rep sampling of existin
Point of Compliance - Soil:	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-Wide	Standard; Site-Wic
Point of Compliance - Groundwater:	Standard; Site-Wide	Standard; Site-Wide	Standard; Site-Wic

Abbreviations and Acronyms:

CUL = cleanup level (specifically referencing general MTCA cleanup levels rather than proposed cleanup levels developed as part of the feasibility study)

MNA = monitored natural attenuation

MTCA = Model Toxics Control Act

pCUL = proposed cleanup level

ZVI = zero valent iron

Alternative B3
e Excavation (and Monitored Containment)
n of soil contamination:
ontaminated soils when Building 17-07 is demolished. water sampling after soil is removed until groundwater re below pCULs. In can occur, containment of contaminated soil and continue by maintaining the asphalt/concrete, routine porting of containment, and routine groundwater ng monitoring wells.
de
de

Table 5-3 AOC A-14 Remedial Action Alternatives Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:	Alternative D1	Alternative D2	
Alternative Name:	Site-Wide MNA	SVE and EISB at Release Areas and MNA	SVE and D
Alternative Description:	Containment of soil and MNA for the entire plume:	Soil vapor extraction system, EISB injection at release areas, and MNA:	Soil vapor extraction sys
	 Continue containing of containinated solvatie-wide with pavement and buildings acting as a cap. Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance for the cap to soil concentrations exceeding protection of groundwater. 	 Soli and soli gas containination is cleaned up by SVE in the valuese zone at the Former Building 17-03 release area (conceptual design: 12 SVE wells installed to a depth of 10 feet operating for 5 years). Soil and soil gas contamination is cleaned up by SVE in the valuese zone at the Building 17-07 release area (conceptual design: 7 SVE wells installed to a depth of 10 feet operating for 5 years). In situ groundwater treatment using EISB in the Building 17-07 release area (conceptual design: 2 injection rows [60-foot line with 5 well clusters and 75-foot line with 6 well clusters] targeting all groundwater zones [SZ, IZ, DZ], will consist of 3 injection events over a span of 10 years). In situ groundwater treatment using EISB in the former Building 17-03 release area (conceptual design: 2 injection rows [75-foot lines with 6 wells each] targeting the SZ [20 to 40 feet bgs], will consist of 3 injection events over a span of 10 years). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. 	 Son and son gas contain zone at the Building 17-C <i>extraction wells installea</i> Soil and soil gas contar zone at the Former Build <i>soil vapor extraction well</i> <i>years</i>). DGR targeting the Build <i>installation of 6 extraction</i> <i>clusters [SZ and DZ] with</i> DGR around the Former <i>design: installation of 7 e</i> <i>injection well clusters [SZ for 29 years).</i> Remediation of ground abiotic degradation and monitoring with routine
Point of Compliance - Soil:	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-Wide	Standard; Site-Wide
Point of Compliance - Groundwater:	Standard; Site-Wide	Standard; Site-Wide	Standard; Site-Wide

Alternative D3

OGR at Release Areas and MNA

stem, DGR, and MNA:

amination is cleaned up by SVE in the vadose -07 release area (*conceptual design: 7 soil vapor ed to a depth of 10 feet operating for 5 years*). Amination is cleaned up by SVE in the vadose Iding 17-03 release area (*conceptual design: 12 ells installed to a depth of 10 feet operating for 5*

lding 17-07 release area (conceptual design: ion well clusters [SZ, IZ, DZ] and 5 injection well h 1 treatment system operating for 17 years). er Building 17-03 release area (conceptual extraction well clusters [SZ, IZ, DZ] and 12 Z and DZ] with 1 treatment system operating

dwater through naturally occurring biotic and I other attenuation processes (MNA). Continued groundwater sampling.

Table 5-3 AOC A-14 Remedial Action Alternatives Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:	Alternative D4A	Alternative D4B	
Alternative Name:	EISB PRB at Facility Boundary and MNA	ZVI PRB at Facility Boundary and MNA	SVE and El
Alternative Description:	Containment of soil and <i>in situ</i> groundwater treatment by creating a PRB at the Facility boundary, and MNA including:	Containment of soil and <i>in situ</i> groundwater treatment by creating a PRB at the Facility boundary, and MNA including:	SVE system, enh
	 Contribute containment of containinated soli site-wide with pavement and buildings acting as a cap. In situ groundwater treatment along the Building 17-07 Facility boundary using an EISB PRB installed via injection (conceptual design: 1,120-foot long injection row with 33 injection well clusters [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ], will consist of 5 injection events performed every 2 years over a span of 10 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). In situ groundwater treatment along the Prologis property boundary using an EISB PRB installed via injection (conceptual design: 1,120-foot long injection row with 33 injection events performed every 2 years over a span of 10 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). In situ groundwater treatment along the Prologis property boundary using an EISB PRB installed via injection (conceptual design: 1,120-foot long injection row with 33 injection well clusters [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ], will consist of 5 injection events performed every 2 years over a span of 10 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance for the cap to soil concentrations exceeding protection of groundwater pCULs. 	 Continue containment of containmated soil site-wide with pavement and buildings acting as a cap. In situ groundwater treatment along the Building 17-07 Facility boundary using a sulfidated colloidal ZVI PRB installed via injection (conceptual design: 1,116-foot long injection row with 94 injection well clusters [12-foot centers] targeting all groundwater zones [SZ, IZ, DZ], will consist of 5 injection events performed every 4 years for a span of 20 years of active treatment). In situ groundwater treatment along the Prologis property boundary using a sulfidated micro-scale ZVI PRB installed via injection (conceptual design: 1,116-foot long injection row with 94 injection well clusters [12-foot centers] targeting all groundwater zones [SZ, IZ, DZ], will consist of 5 injection events performed every 4 years for a span of 20 years of active treatment). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance for the cap to soil concentrations exceeding protection of groundwater pCULs. 	 In situ ground property bound boundary in Alter clusters [35-foot injection events] followed by 10 y diffusion). In situ ground design: 980-foot a total of 29 wel events over a spe In situ ground (conceptual desi injection row on centers] targetin located on the so [35-foot centers] tar events performe sustained treatm Remediation on degradation and routine groundw
Point of Compliance - Soil:	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-W
Point of Compliance - Groundwater:	Standard; Site-Wide	Standard; Site-Wide	Standard; Site-W

Abbreviations and Acronyms:

AOC = area of concernMNA = monitored natural attenuationbgs = below ground surfacepCUL = proposed cleanup levelDGR = dynamic groundwater recirculationPRB = permeable reactive barrierDZ = deep zoneSVE = soil vapor extractionEISB = enhanced *in situ* bioremediationSZ = shallow zoneIZ = intermediate zoneZVI = zero valent iron

Alternative D5 SB at Release Areas, EISB Downgradient Focus Areas, and MNA hanced *in situ* bioremediation injection at release areas, and MNA: nents in Alternative D2 plus: water treatment using EISB at the Focus Area of the Building 17-07 dary (conceptual design is same as PRB at Building 17-07 property ernative D4A: 1,120-foot long injection row with 33 injection well t centers] targeting all groundwater zones [SZ, IZ, DZ], will consist of 5 performed every 2 years over a span of 10 years of active treatment years of sustained treatment due to endogenous decay and donor back water treatment using EISB in the Algona Focus Area (conceptual t long injection row adding on to the pilot test injection row [5 wells] for ells targeting the shallow groundwater zone 3, will consist of 3 injection oan of 10 years). water treatment using EISB in The Outlet Collection Focus Area sign: 6 injection rows surrounding the building; one 385-foot long n the west side of the building including 12 injection well clusters [35-foot ng all groundwater zones [SZ, IZ, DZ]; three 980-foot long injection rows outh side of the building including 29 injection well clusters for each row] targeting all groundwater zones [SZ, IZ, DZ]; two 700-foot long rows le of the building including 21 injection well clusters for each row [35rgeting all groundwater zones [SZ, IZ, DZ]; will consist of 5 injection ed every 2 years for 10 years of active treatment followed by 10 years of ment due to endogenous decay and donor back diffusion). of groundwater through naturally occurring biotic and abiotic other attenuation processes (MNA). Continued monitoring with water sampling.

Wide

Wide

Table 6-1 AOC A-09 Summary of Remedial Alternatives Compliance with MTCA Threshold Requirements Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:	Jer: Alternative B1 Alternative B2				
Description:	Monitored Containment and MNA	In Situ Groundwater Treatment	Fi		
Compliance with MTCA Threshold Criteria (WAC 173-	-340-360[2][a])				
Protect human health and the environment.	Yes - Alternative will protect human health and the environment through containment of contaminated soil and groundwater.	Yes - Alternative will protect human health and the environment through treatment of contaminated groundwater that will allow for empirical demonstration of protection of groundwater and use of direct contact soil CULs.	Yes - Altern through exc of contamir		
Comply with cleanup standards (WAC 173-360-700 through 760).	Yes - Containment and ICs used for soil not complying with pCULs; groundwater complies with pCULs after cleanup remedy is completed.	Yes - Soil and groundwater complies with pCULs after cleanup remedy is completed.	Yes - Soil ar completed.		
Comply with applicable state/federal laws (WAC 173-360-710).		Yes - Alternative complies with applicable laws (see FS report Section 3.0).			
Provide for compliance monitoring (WAC 173-360-410).	Yes - Alternative includes provisions for compliance monitoring (soil cap monitoring for ICs, long-term routine groundwater monitoring).	Yes - Alternative includes provisions for compliance monitoring (H&S monitoring during construction/O&M, groundwater confirmation monitoring).	Yes - Altern monitoring monitoring)		
Compliance with other requirements (WAC 173-340-	360[2][b])				
Permanent Solutions to the Maximum Extent Practic	able (WAC 173-340-360[3])				
Permanent to the maximum extent practicable.	Yes - See Disproportionate Cost Analysis (Table 6-2 of this FS report).	No - See Disproportionate Cost Analysis (Table 6-2 of this FS report).	(Table 6-2 c		
Reasonable Restoration Time Frame (WAC 173-340-3	360[4][b])	-			
Provide for a reasonable restoration time frame.	Yes - Estimated restoration time frame for cadmium and copper in groundwater is approximately 8 years. Additional data collection will be required to determine the cyanide in groundwater restoration time frame. For purposes of cost estimation, 30 years is assumed. See factors below.	Yes - Estimated restoration time frame is approximately 10 years for design, construction, implementation, and monitoring. See factors below.	Yes - Estima occurs, to d including lo compliance		
Potential risk to human health and environment (1).	Low - Contaminated soil concent There are no curr	rations do not exceed direct contact CULs. Contaminated groundwater is not b rent risks to human health and the environment from the contaminants preser	veing used as d It at the Site.		
Practicability of achieving shorter restoration time frame.		See Disproportionate Cost Analysis (Table 6-2 of this FS report).			
Current use of Site, surrounding area, and associated resources that are, or may be, affected by releases from the Site.		Onsite: Industrial Surrounding areas: Industrial, Commercial Resources: None			
Potential future use of Site, surrounding area, and resources that are, or may be, affected by releases from the Site.		Onsite: Industrial Surrounding areas: Industrial, Commercial Resources: Drinking water			

Alternative R2
iture Excavation (and Monitored Containment)
ative will protect human health and the environment avation of contaminated soil, which will lead to remediation lated groundwater.
d groundwater complies with pCULs after cleanup remedy is
ative includes provisions for compliance monitoring (H&S
during excavation, and soil and groundwater confirmation .
proportionate Cost Analysis f this FS report).
ited restoration time frame is 2 years, from after excavation emonstrate that groundwater pCULs are met. Containment ng-term routine monitoring of groundwater to ensure until future excavation occurs. See factors below.
rinking water.

Table 6-1 AOC A-09 Summary of Remedial Alternatives Compliance with MTCA Threshold Requirements Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:	Alternative B1	Alternative B2	Alternative B3					
Description:	Monitored Containment and MNA In Situ Groundwater Treatment		Future Excavation (and Monitored Containment)					
Availability of alternative water supplies.	Yes. The Site is located within the Auburn/Algona/Pacific city limits, which are supplied by municipal water supplies.							
Likely effectiveness/reliability of institutional controls. (1)	High. Fenced and access-controlled industrial site. Not Applicable. ICs not required for this remedial alternative.		High. Fenced and access-controlled industrial site. Not Applicable. ICs not required for this remedial alternative. Not Applicable. ICs not required for this remedial alternative.		Not Applicable. ICs not required for this remedial alternative.			
Ability to monitor migration of hazardous substances. (1)	High. Appropriate groundwater monitoring r	High. Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation.						
Toxicity of hazardous substances at the site. (1)	Contaminant and media dependent: Soil (dermal contact): low Water (drinking water beneficial uses): low to moderate							
Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar conditions.	Possible ; some metals have shown evidence	Possible; some metals have shown evidence of decreasing concentrations, while other have variable concentrations; cyanide data insufficient to identify trends.						
Consider Public Concerns (WAC 173-340-600[13])								
Consider public concerns.	Yes - Public notice and public comment period will be provided for review of the FS/CAP. No comments from public with concerns about cleanup alternatives that would occur at the Boeing Auburn Facility have been received to date.							

Notes:

(1) Ratings used: Low, Moderate, or High.

Abbreviations and Acronyms:

CAP = cleanup action plan

CULs = cleanup levels (specifically referencing general MTCA cleanup levels rather than proposed cleanup levels developed as part of the feasibility study)

ICs = institutional controls

FS = feasibility study

H&S = health and safety

MTCA = Model Toxics Control Act

O&M = operations and maintenance

pCUL = proposed cleanup level

WAC = Washington Administrative Code

Table 6-2 AOC A-09 Disproportionate Cost Analysis Relative Benefits Ranking Considerations Boeing Auburn Feasibility Study Auburn, Washington

Alternative Num	nber:		Alternative B1		Alternative B2		
Alternative Name:			Monitored Containment and MNA		In Situ Groundwater Chemical Treatment		Future Ex
			Relative E	Benefi	ts Ranking for DCA		
Evaluation Criteria: WAC 173-340-360(3)(f)	Weighting Factor	Benefit Score	Ranking Considerations (1)	Benefit Score	Ranking Considerations (1)	Benefit Score	
Overall Protectiveness (subsection [i])	30%	7	 Excellent Soil concentrations do not exceed direct-contact CULs. Cap to mitigate risk of groundwater infiltration through contaminated soil. Continued routine groundwater monitoring to confirm that groundwater concentrations are not migrating. 	8	 Excellent Soil concentrations do not exceed direct-contact CULs. In situ groundwater chemical treatment provides long-term treatment of contaminated groundwater. 	9	Superior • Soil concent • Removal of d disposal. • Compliance groundwater d
Permanence (subsection [ii])	20%	6	 Good Contaminated soil left in place. Permanence of containment maintained through institutional controls. Groundwater contamination is relatively immobile. 	8	 Excellent Contaminated soil left in place, but contamination is below direct-contact CULs. Implementation of groundwater treatment will remove impacts of contaminated groundwater. Contamination not destroyed, but will be immobilized. 	8	Excellent • Permanent r • Groundwate remedial exca cleanup is con
Long-Term Effectiveness (subsection [iv])	20%	7	 Excellent Exposure and risk is mitigated by cap and by low concentrations of contaminated soil and groundwater. Long-term effectiveness relies on existing cap, monitoring, and institutional controls, which will be very reliable at this fenced, access-controlled site. 	5	 Good Long-term effectiveness for soil contamination relies on empirical demonstration that soil concentrations are protective of groundwater. Residual soil concentrations are below direct- contact CULs. Treatment of groundwater is intended to immobilize contamination; however, success and irreversibility of treatment is uncertain. 	9	Superior • Removal of s groundwater. • Containmen • Moderate qu landfill.
Manageability of Short-Term Risk (subsection [v])	10%	10	Superior Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	7	 Excellent Minimal worker health risk from contact with contaminated media during drilling and installation of <i>in situ</i> groundwater treatment systems; will be completed by HAZWOPER-certified drillers and contractors. Moderate risks with construction and implementation occurring at an active facility and at a high-hazard location at the building. Long-term O&M of injection wells and treatment system present minor risks. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	8	Excellent • Moderate ris groundwater of be completed Work is assum demolished. • Disturbance impacts to gro • Minimal woon media during remedy and at

Alternative B3

cavation (and Monitored Containment)

Ranking Considerations (1)

rations do not exceed direct-contact CULs. contaminated soil creates additional offsite risks for

groundwater monitoring to confirm that concentrations decrease after source is removed.

removal of contaminated soil.

er cleanup anticipated to be permanent as result of avation (will be monitored to confirm after soil npleted).

soil permanently removes risk of leaching to

t will be in place until excavation can occur. uantities of contaminated soil moved to engineered

isk of contact with contaminated soil and during excavation, transportation, and disposal; will d by HAZWOPER-certified drillers and contractors. med to be completed after the building is

e of contaminated soil could increase short-term oundwater.

orker health risk from contact with contaminated ongoing groundwater sampling during containment after implementation of cleanup activities.

Table 6-2 AOC A-09 Disproportionate Cost Analysis Relative Benefits Ranking Considerations Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number: Alternative Name:			Alternative B1	4	Alternative B2	_	
			Monitored Containment and MNA In Situ Groundwater Chemical Treatment			Future Ex	
		• •	Relative	Benefi	ts Ranking for DCA		<u></u>
Implementability (subsection [vi])	10%	Superior • Technical in groundwater • Administrat 10	nplementation uncomplicated; continued routine monitoring to confirm containment. ion implementation includes filing institutional controls.	4	 Fair Technical implementation challenges: complicated at active buildings. proper treatment of cyanide and metals in groundwater provides moderate technical challenges. Will need a series of bench-tests to evaluate most appropriate injection solution for treatment of metals and cyanide, if needed. Long- term O&M of injection wells and treatment system may present challenges. Administration implementation includes permitting for injection (UIC permit) and filing institutional controls. 	8	Excellent • Technical ir excavation will of contaminat after source re pCULs. • Administrati for excavation future excavat
Consideration of Public Concerns (subsection [vii])	10%	8 Excellent (ass • Protective of • Provides at • Public comment per	sumed equal for all alternatives) of human health and the environment. least the minimum level of protection under MTCA. ments/concerns will be addressed during FS/CAP public riod(s).	8	 Excellent (assumed equal for all alternatives) Protective of human health and the environment. Provides at least the minimum level of protection under the MTCA. Public comments/concerns will be addressed during FS/CAP public comment period(s). 	8	Excellent (assu • Protective of • Provides at I • Public comm public comme
Estimated Present Value Cost (\$) (subsection [iii])			\$187,000	\$857,000			
Overall Weighted Benefi	t Score	7.5	Excellent	6.9 Good/Excellent		8.5	
Comparative Overall Ber	nefit/Cost (2)		7.5		1.5		

Notes:

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied) by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figure 6-1 of this FS report.

Abbreviations and Acronyms:

% = percent

AOC = area of concern

CAP = cleanup action plan

CULs = cleanup levels (specifically referencing general MTCA cleanup levels rather than proposed cleanup levels developed as part of the feasibility study)

DCA = disproportionate cost analysis

FS = feasibility study

HAZWOPER = Hazardous Waste Operations and Emergency Response

- MNA = monitored natural attenuation
- MTCA = Model Toxics Control Act
- O&M = operations and maintenance
- pCUL = proposed cleanup level
- UIC = Underground Injection Control
- WAC = Washington Administrative Code

Alternative B3

cavation (and Monitored Containment)

nplementation provides moderate challenges; I have to wait until building is demolished; removal ed soil; continued routine groundwater monitoring emoved until groundwater concentrations are below

ion implementation challenges include permitting a. Containment will have to be maintained until tion can occur.

umed equal for all alternatives)

f human health and the environment. least the minimum level of protection under MTCA. nents/concerns will be addressed during FS/CAP ent period(s).

\$718,000

Excellent/Superior

2.2

Table 6-3 AOC A-09 Summary of MTCA Alternatives Relative Benefits Ranking Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number and Name:	Alternative B1			Alternative B2				Alternative B3				
	Monitored Containment and Monitored Natural Attenuation				In Situ Groundwater Treatment				Future Excavation (and Monitored Containment)			
Relative Benefits Ranking for Disproportionate Cost Analysis (Washington Administrative Code [WAC] 173-340-360[2][b][i] and WAC 173-340-36093[f])		_										
Comparative Overall Benefit (1)		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score
Overall Protectiveness	Excellent	7	0.3	2.1	Excellent	8	0.3	2.4	Superior	9	0.3	2.7
Permanence	Good	6	0.2	1.2	Excellent	8	0.2	1.6	Excellent	8	0.2	1.6
Long-Term Effectiveness	Excellent	7	0.2	1.4	Good	5	0.2	1	Superior	9	0.2	1.8
Manageability of Short-Term Risk	Superior	10	0.1	1	Excellent	7	0.1	0.7	Excellent	8	0.1	0.8
Implementability	Superior	10	0.1	1	Fair	4	0.1	0.4	Excellent	8	0.1	0.8
Consideration of Public Concerns	Excellent	8	0.1	0.8	Excellent	8	0.1	0.8	Excellent	8	0.1	0.8
Overall Weighted Benefit Score				7.5				6.9				8.5
	l											

Disproportionate Cost Analysis - Quantitative Evaluation

Overall Weighted Benefit Score	7.5	6.9	8.5
Estimated Remedy Present Value Cost	\$187,000	\$857,000	\$718,000
Estimated Remedy Total Cost (Undiscounted)	\$226,000	\$913,000	\$766,000
Relative Benefit/Cost Ratio (2)	7.5	1.5	2.2
Most Permanent Solution	No	No	Yes
Lowest Cost Alternative	Yes	No	No
Costs Disproportionate to Incremental Benefits	No	Yes	Yes
Remedy Permanent to the Maximum Extent Practicable?	Yes	No	No
Preferred Alternative	Yes	No	No

Cost of Lowest Present Value Cost Alternative	\$187,
Benefit Score of Highest Ranked Alternative	8.5
Cost of Highest Present Value Cost Alternative	\$857,

\$187,000 8.5 \$857,000

Notes:

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied)

by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figure 6-1 of this FS report.

Page 1 of 1

Table 6-4 AOC A-09 Cost Estimate Summary Boeing Auburn Feasibility Study Auburn, Washington

Alternative	T (un	otal Cost discounted)	Present Value Total Cost (1)
Alternative B1: Monitored Containment and MNA	\$	226,000	\$ 187,000
Alternative B2: In situ Chemical Treatment	\$	913,000	\$ 857,000
Alternative B3: Future Excavation (and Monitored Containment)	\$	766,000	\$ 718,000

Notes:

 Present Value Project Costs for long term operations, maintenance, and monitoring (Assume 1.5% discount rate - real discount, 30-year note, Per Office of Management and Budget, Circular A-94 Appendix C, Revised Nov. 2018).

Detailed cost estimates are provided in Appendix G.

Table 6-5 AOC A-14 Summary of Remedial Alternatives Compliance with MTCA Threshold Requirements **Boeing Auburn Feasibility Study** Auburn, Washington

Alternative Number:	Alternative D1	Alternative D2	Alternative D3	Alternative D4 (A/B)	Alternative D5		
Description:	Site-Wide MNA	SVE and EISB at Release Areas and MNA	SVE and DGR at Release Areas and MNA	PRB at Facility Boundary and MNA	SVE and EISB at Release Areas, EISB at Downgradient Focus Areas, and MNA		
Compliance with MTCA Threshold Criteria (WAC 1	73-340-360[2][a])						
- Protect human health and the environment.	Yes - Alternative will protect human health and the environment through containment of contaminated soil and MNA of groundwater.	Yes - Alternative will protect human health and the environment through treatment of contaminated soil, treatment of groundwater in former release areas, and MNA of groundwater.	Yes - Alternative will protect human health and the environment through treatment of contaminated soil, treatment of groundwater in former release areas, and MNA of groundwater.	Yes - Alternative will protect human health and the environment through containment of contaminated soil, treatment of groundwater emanating from the Facility, and MNA of groundwater.	Yes - Alternative will protect human health and the environment through treatment of contaminated soil, treatment of groundwater in former release areas and focus areas at the Facility boundary and downgradient, and MNA of groundwater.		
- Comply with cleanup standards (WAC 173-360-700 through 760).	Yes - Containment and ICs used for soil not complying with pCULs; groundwater complies with pCULs after cleanup remedy is completed.	Yes - Soil and groundwater complies with pCULs after cleanup remedy is completed.	Yes - Soil and groundwater complies with pCULs after cleanup remedy is completed.	Yes - Containment and ICs used for soil not complying with pCULs; groundwater complies with pCULs after cleanup remedy is completed.	Yes - Soil and groundwater complies with pCULs after cleanup remedy is completed.		
- Comply w/applicable state/federal laws (WAC 173-360-710).		Yes - Alter	native complies with applicable laws (see Section 3.0 of this	FS report).			
- Provide for compliance monitoring (WAC 173-360-410).	Yes - Alternative includes provisions for compliance monitoring (soil cap monitoring for ICs and long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (H&S monitoring during construction/O&M, long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (H&S monitoring during construction/O&M, long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (H&S monitoring during construction/O&M, soil cap monitoring for ICs, long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (H&S monitoring during construction/O&M, long-term routine groundwater monitoring during MNA and confirmation sampling).		
Compliance with Other Requirements (WAC 173-3	340-360[2][b])						
Permanent Solutions to the Maximum Extent Pra							
- Permanent to the Maximum Extent Practicable.	Yes - See Disproportionate Cost Analysis (Table 6-6 of this FS report).	No - See Disproportionate Cost Analysis (Table 6-6 of this FS report).	No - See Disproportionate Cost Analysis (Table 6-6 of this FS report).	No - See Disproportionate Cost Analysis (Table 6-6 of this FS report).	No - See Disproportionate Cost Analysis (Table 6-6 of this FS report).		
Reasonable Restoration Time Frame (WAC 173-34		•					
- Provide for a reasonable restoration time frame.	No - Long-restoration time frame due to the aquifer heterogeneity and life stage of the CVOC plumes. Approximately 95 years to meet groundwater pCULs. Approximately 233 years to meet SWQS in groundwater.	No - Long-restoration time frame due to the aquifer heterogeneity and life stage of the CVOC plumes. Approximately 94 years to meet groundwater pCULs. Approximately 230 years to meet SWQS in groundwater.	No - Long-restoration time frame due to the aquifer heterogeneity and life stage of the CVOC plumes. Approximately 85 years to meet groundwater pCULs. Approximately 208 years to meet SWQS in groundwater.	No - Long-restoration time frame due to the aquifer heterogeneity and life stage of the CVOC plumes. Approximately 86 years to meet groundwater pCULs. Approximately 212 years to meet SWQS in groundwater.	No - Long-restoration time frame due to the aquifer heterogeneity and life stage of the CVOC plumes. Approximately 86 years to meet groundwater pCULs. Approximately 210 years to meet SWQS in groundwater.		
- Potential risk to human health and environment (1).	Low . Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater is not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the Site.	Low. Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater is not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the Site.	Moderate . Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater is not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the Site. Implementation of DGR system could cause contaminants to move in different directions that could cause impacts to groundwater where there is no current contamination.	Low . Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater is not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the Site.	Moderate. Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater is not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the Site. Implementation of groundwater cleanup activities closer to stormwater/surface water features and the large amount of injected donor needed to treat the downgradient focus areas could create reduced groundwater conditions that increase solubility of natura metals (e.g., arsenic, iron, and manganese) causing wate quality concerns.		
 Practicability of achieving shorter restoration time frame. 		No practicable alternatives allow for significant reduction	in restoration time frame because of heterogeneity of aquif	er/saturated soil matrix and life stage of the CVOC plumes.			

Table 6-5 AOC A-14 Summary of Remedial Alternatives Compliance with MTCA Threshold Requirements **Boeing Auburn Feasibility Study** Auburn, Washington

Alternative Number:	Alternative D1	Alternative D2	Alternative D3	Alternative D4 (A)									
Description:	Site-Wide MNA	SVE and EISB at Release Areas and MNA	SVE and DGR at Release Areas and MNA	PRB at Facility Boundary									
 Current use of Site, surrounding area, and associated resources that are, or may be affected by releases from the Site. 			Onsite: Industrial Surrounding areas: Industrial, Commercial, Residential Resources: Stormwater (2)										
 Potential future use of Site, surrounding area, and resources that are, or may be, affected by releases from the Site. 		Onsite: Industrial Surrounding areas: Industrial, Commercial, Residential Resources: Groundwater as drinking water and surface water as drinking water											
- Availability of alternative water supplies.	Yes. The Site is located within the Auburn/Algona/Pacific city limits, which are supplied by municipal wate												
- Likely effectiveness/reliability of institutional controls. (1)	High. Site is fenced and access-controlled industrial site.	Not Applicable . ICs not required for this remedial alternative.	Not Applicable . ICs not required for this remedial alternative.	High. Site is fenced and access cont									
- Ability to monitor migration of hazardous substances. (1)	High . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation.	High . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation.	Moderate . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation. However, mounding created by DGR alternative can cause concentrations to migrate to unexpected areas that might not be monitored.	High . Appropriate groundwater mo present and will be supplemented, adequately monitor groundwater a implementation.									
- Toxicity of hazardous substances at the site. (1)		Wate	Contaminant and media dependent - Soil (dermal contact): L ow er (drinking water/surface water beneficial uses): L ow to mc	oderate									
 Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar conditions. 		High; natural attenuation has been proven to be an active natural process that reduces concentrations of TCE and reductive dechlorination breakdown											
Consider Public Concerns (WAC 173-340-600[13])													
- Consider public concerns.	No comments fro	Yes - Public not public with concerns about Site cleanup alternatives hav	otice and public comment period will be provided for reviev e been received. However, assumptions about public conce	v of the FS/CAP. rns are taken into account in the Dispr									

Notes:

(1) Ratings used: Low, Moderate, or High.

(2) Stormwater is not required to meet pCULs until the final discharge point of the stormwater into surface water bodies.

Abbreviations and Acronyms:

CAP = cleanup action plan	MNA = monitored natural attenuation
CULs = cleanup levels (specifically referencing general MTCA cleanup levels rather than	MTCA = Model Toxics Control Act
proposed cleanup levels developed as part of the feasibility study)	O&M = operations and maintenance
CVOC = chlorinated volatile organic compound	pCUL = proposed cleanup level
DGR = dynamic groundwater recirculation	PRB = permeable reactive barrier
EISB = enhanced in situ bioremediation	SVE = soil vapor extraction
ICs = institutional controls	SWQS = surface water quality standards
FS = feasibility study	TCE = trichloroethene
H&S = health and safety	WAC = Washington Administrative Code

/B)	Alternative D5
and MNA	SVE and EISB at Release Areas, EISB at Downgradient Focus Areas, and MNA
ntrolled industrial Site.	Not Applicable . ICs not required for this remedial alternative.
onitoring network is , as necessary, to after	Moderate . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation. However, remediation activities closer to stormwater/surface water features could cause increases of naturally occurring metals to migrate to stormwater/surface water bodies and be difficult to monitor.
products at the Site.	
roportionate Cost Anal	lysis (See Table 6-5)

Table 6-6 AOC A-14 Disproportionate Cost Analysis Relative Benefits Ranking Considerations **Boeing Auburn Feasibility Study** Auburn, Washington

Alternative Number	er:	Alternative D1	Alternative D2		Alternative D3	Alternative D4A		Alternative D4B		Alternative D5
Alternative Name	. .	Sito wido MNA	SVE and EISB at		SVE at DGR at	EISB PRB at Facility		ZVI PRB at Facility		SVE and EISB at Release Areas,
Alternative Name			Release Areas and MNA		Release Areas and MNA	Boundary and MNA		Boundary and MNA		EISB Downgradient Focus Areas, and MNA
					Relative Benefits Ranking	for DCA				
Evaluation Criteria: WAC 173-340-360(3)(f) - Overall Protectiveness (subsection [i])	Weighting Factor Benefit	Ranking Considerations (1) Good • ICs and containment to limit infiltration of water and direct human contact with contaminated soil. • Current risks to human health and the environment are negligible, therefore, protectiveness is not appreciably greater through remedy implementation . • Time required to meet SWQS in groundwater is extensive.	Yungan Solution Ranking Considerations (1) Good • Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. • Current risks to human health and the environment are negligible, therefore, protectiveness is not appreciably greater through remedy implementation • Time required to meet SWQS in groundwater is extensive.	с Score	Ranking Considerations (1) Good • Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. • Current risks to human health and the environment are negligible, therefore, so protectiveness is not appreciably greater through remedy implementation • Time required to meet SWQS in groundwater is extensive.	tig Banking Considerations (1) Good • ICs and containment to limit infiltration of water to contact contaminated soil. • Current risks to human health and the environment are negligible, therefore, protectiveness is not appreciably greater through remedy implementation 5 • Time required to meet SWQS in groundwater is extensive.	د Score	Ranking Considerations (1) Good • ICs and containment to limit infiltration of water to contact contaminated soil. • Current risks to human health and the environment are negligible, therefore, protectiveness is not appreciably greater through remedy implementation • Time required to meet SWQS in groundwater is extensive.	G Benefit Score	Ranking Considerations (1) Good • Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. • Current risks to human health and the environment are negligible, therefore, protectiveness is not appreciably greater through remedy implementation • Time required to meet SWQS in groundwater is extensive.
- Permanence (subsection [ii])	20% 8	 Excellent Contaminated soil left in place at the Facility; however, no concentrations above direct-contact CULs. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. Treatment is actively taking place via natural processes and the effectiveness of those natural processes will be monitored during implementation of the cleanup. 	 Superior Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. Implementation of EISB at release areas will remove impacts of contaminated groundwater in those areas; however, other areas still affect Site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 	6	 Good Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. Implementation of DGR at release areas will remove impacts of contaminated groundwater in those areas; however, other areas still affect Site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. Spent carbon created from <i>ex situ</i> treatment of DGR system will need to be treated or disposed offsite as solid or hazardous waste. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 	 Excellent Implementation of EISB at Facility boundary will remove impacts of contaminated groundwater in those areas; however, other areas still affect Site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 	8	 Excellent Implementation of ZVI at Facility boundary will remove impacts of contaminated groundwater in those areas; however, other areas still affect Site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 	9	 Superior Implementation of SVE will remove impacts of contaminated soil and soil gas contributions to groundwater. Implementation of EISB at release areas and downgradient focus areas; however, other areas still affect Site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met.
- Long-Term Effectiveness (subsection [iv])	20% 3	 Fair ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. Technical ability for any treatment to meet SWQS in groundwater very uncertain; however, MNA may achieve after extensive time frame. 	 Fair SVE may be effective in reducing soil and soil gas contamination. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. 3 rechnical ability of EISB to meet SWQS in groundwater at release areas very uncertain and not possible for site-wide groundwater; however, MNA may achieve after extensive time frame. 	3	 Fair SVE may be effective in reducing soil and soil gas contamination. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. Technical ability of DGR to meet SWQS in groundwater at release areas very uncertain and not possible for site-wide groundwater; however, MNA may achieve after extensive time frame. 	 Fair ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. Technical ability of EISB PRB to meet SWQS in groundwater at property boundary very uncertain and not possible for site-wide groundwater; however, MNA may achieve after extensive time frame. 	3	 Fair ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. Technical ability of ZVI PRB to meet SWQS in groundwater at property boundary very uncertain and not possible for site-wide groundwater; however, MNA may achieve after extensive time frame. 	3	 Fair SVE may be effective in reducing soil and soil gas contamination. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for in site destruction and detoxification of contaminants to reach pCULs in groundwater and surface water. Technical ability of EISB to meet SWQS in groundwater at release areas and downgradient focus areas very uncertain and not possible for site-wide groundwater; however, MNA may achieve after extensive time frame.

ve D4B	Alternative D5
Facility	SVE and EISB at Release Areas,
and MNA	EISB Downgradient Focus Areas, and MNA

Table 6-6 AOC A-14 Disproportionate Cost Analysis Relative Benefits Ranking Considerations Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number:		Alternative D1		Alternative D2	Alternative D3		Alternative D4A		Alternative D4B	Alternative D5	
Alternative Name	e:		Site-wide MNA		SVE and EISB at Release Areas and MNA	SVE at DGR at Release Areas and MNA		EISB PRB at Facility Boundary and MNA		ZVI PRB at Facility Boundary and MNA	SVE and EISB at Release Areas, EISB Downgradient Focus Areas, and MNA
						Relative Benefits Ranking f	or DC	A			
- Manageability of Short-Term Risk (subsection [v])	10%	10	Superior • Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling.	5	Good • Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of SVE and EISB systems; will be completed by HAZWOPER-certified drillers and contractors. • Long-term 0&M of SVE system and operation during bio-injection events present minor risks. • Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling.	 Poor Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of SVE and EISB systems; will be completed by HAZWOPER-certified drillers and contractors. Long-term O&M of extraction/injection wells and treatment system present minor risks. Moderate short-term risks of moving contaminants to new areas during the injection/extraction process Moderate risk of causing settlement during implementation. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	4	 Fair Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of EISB treatment barriers; will be completed by HAZWOPER-certified drillers and contractors. Long-term O&M of injection wells and operations during EISB PRB injection events present minor risks. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	4	 Fair Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of ZVI treatment barriers; will be completed by HAZWOPER-certified drillers and contractors. Long-term O&M of injection wells and operations during ZVI PRB injection events present minor risks. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	 Poor Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of SVE and extensive EISB injection systems; will be completed by HAZWOPER-certified drillers and contractors. Long-term O&M of SVE system present minor risks Operation of pumps and equipment for long periods of time during extensive bio-injection events present additional risks to workers. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. Moderate short-term risks from implementation of groundwater remediation closer to stormwater/surface water features that could create reduced water conditions and cause higher concentrations of naturally occurring metals (iron, manganese, and arsenic) and migrate to stormwater/surface water features.
- Implementability (subsection [vi])	10%	10	Superior • Technical implementation uncomplicated; continued routine groundwater monitoring until pCULs are met. • Administration implementation includes filing ICs.	6	 Good Technical implementation challenges: complicated at active buildings and other actively used properties. proper treatment of groundwater provides limited technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges with injection solution mounding and entering subsurface utilities). Long-term O&M of injection wells and treatment system may present challenges such as rehabilitation of injection/extraction wells and additional equipment required. Administration implementation challenges include permitting for discharge of treated air and permitting for injection (UIC permit). 	 Poor Technical implementation challenges: Complicated at active buildings and other actively used properties. Needed locations for extraction and injection wells may not be accessible due to location of buildings, infrastructure, off-property access restrictions. Proper hydraulic modification of groundwater provides technical challenges. Significant precautions and care would need to be taken to ensure that no settlement to surrounding buildings or structures would occur. Long-term O&M and fouling rehabilitation of extraction/injection wells and treatment system may present challenges. Administration implementation challenges include permitting for discharge of treated air and permitting for injection (UIC permit). 	5	Good • Technical implementation challenges: - Complicated to install PRB at Facility boundary along active roadways. - Proper treatment of groundwater provides limited technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low- permeability zones, and challenges with injection solution mounding and entering subsurface utilities) Uncertainty with barrier uniformity and longevity. • Administration implementation includes filing ICs and permitting for injection to install PRB (UIC permit).	5	 Good Technical implementation challenges: Complicated to install PRB at Facility boundary along active roadways. Proper treatment of groundwater provides limited technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges with injection solution mounding and entering subsurface utilities). Uncertainty with barrier uniformity and longevity. Administration implementation includes filing ICs and permitting for injection to install PRB (UIC permit). 	 Poor Technical implementation challenges: Complicated at active buildings and other actively used properties. Drilling and injection activities in publicly used parking areas and active areas around The Outlet Collection extremely difficult. Needed locations for injection wells may not be accessible due to location of buildings, infrastructure, off-property access restrictions. Proper treatment of groundwater provides limited technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges with injection solution mounding and entering subsurface utilities). Long-term O&M of injection wells and treatment system may present challenges. Planned injection locations are closer to stormwater/surface water features and could cause water quality concerns due to increased solubility of natural metals (e.g., arsenic, iron, and manganese). No access under the building (approximately 70% of area will remain untreated). Administration implementation challenges include permitting for injection (UIC permit), and off-property site access/access agreements.
- Consideration of Public Concerns (subsection [vii])	10%	4	Fair • Protective of human health and the environment. • Public may not understand that MNA is an active and protective treatment remedy. • Public comments/concerns will be addressed during FS/CAP public comment period(s).	6	Good • Protective of human health and the environment. • Public may appreciate that release area treatment is occurring, but not understand that MINA is an active and protective treatment remedy. • Public comments/concerns will be addressed during FS/CAP public comment period(s).	 Fair Protective of human health and the environment. Public may appreciate that release area treatment is occurring, but not understand that MNA is an active and protective treatment remedy. Public may be concerned about the possibility of settlement during implementation and movement of contaminants to new locations with groundwater movement in different directions. Public comments/concerns will be addressed during FS/CAP public comment period(s). 	7	Excellent Protective of human health and the environment. Public may appreciate that Facility treatment and treatment along Facility boundary is occurring, but not understand that MNA is an active and protective treatment remedy. Public comments/concerns will be addressed during FS/CAP public comment period(s).	7	Excellent • Protective of human health and the environment. • Public may appreciate that Facility treatment and treatment along Facility boundary is occurring, but not understand that MNA is an active and protective treatment remedy • Public comments/concerns will be addressed during FS/CAP public comment period(s). 7	 Excellent Protective of human health and the environment. Public may appreciate that release area and downgradient focus area treatment is occurring, but not understand that MNA is an active and protective treatment remedy. Additional public concerns may be created by extensive activity in public and commercial areas and near residential areas for downgradient focus area treatments. Public perception of risk at focus areas (Algona and The Outlet Collection) could cause false perception of environmental risk and create lost revenue for commercial businesses (within The Outlet Collection) impacted by treatment of focus areas. Public comments/concerns will be addressed during FS/CAP public comment period(s).

Table 6-6 AOC A-14 Disproportionate Cost Analysis Relative Benefits Ranking Considerations **Boeing Auburn Feasibility Study** Auburn, Washington

Alternative Num	ber:		Alternative D1		Alternative D2		Alternative D3		Alternative D4A		Alternative D4B		Alternative D5				
Alternative Name:			Site-wide MNA		SVE and EISB at Release Areas and MNA	SVE at DGR at Release Areas and MNA			EISB PRB at Facility Boundary and MNA		ZVI PRB at Facility Boundary and MNA		SVE and EISB at Release Areas, EISB Downgradient Focus Areas, and MNA				
							Relative Benefits Ranking f	or DC/	4								
Estimated Present	esent pCULs \$3,900,000			\$8,410,000		\$25,800,000		\$17,100,000		\$38,200,000	\$44,800,000						
Value Cost (\$) (subsection [iii])	SWQS in GW		\$7,700,000		\$12,100,000		\$39,000,000		\$20,800,000		\$41,800,000	\$48,500,000					
Overall Weighted Benefit	t Score	6.1	Good/Excellent	5.6	Good	4	Fair	5.3	Good	5.3	Good	4.9	Good				
Comparative Overall Ben GW pCULs (2)	nparative Overall Benefit/Cost 6.1		6.1		2.6		0.6		1.2		0.5	0.4					
Comparative Overall Ben SWQS in GW (2)	efit/Cost		6.1		3.6		0.8		2.0		1.0		0.8				

Notes:

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied)

by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figure 6-1 of this FS report.

Abbreviations and Acronyms: CAP = cleanup action plan

CULs = Cleanup Levels (specifically referencing general MTCA cleanup levels rather than proposed cleanup levels developed as part of the feasibility study)

DGR = dynamic groundwater recirculation

EISB = enhanced *in situ* bioremediation

GW = groundwater ICs = institutional controls FS = feasibility study HAZWOPER = hazardous waste operations and emergency SVE = soil vapor extraction MNA = monitored natural attenuation

O&M = operations and maintenance pCUL = proposed cleanup level PRB = permeable reactive barrier SWQS = surface water quality standards UIC = Underground Injection Control WAC = Washington Administrative Code ZVI = zero-valent iron

Table 6-7 AOC A-14 Summary of MTCA Alternatives Relative Benefits Ranking Boeing Auburn Feasibility Study Auburn, Washington

Alternative Number and Name		Alternat	tive D1		Alternative D2					Alterna		Alternat	ive D4A			Alternat	tive D4B		Alternative D5							
		Site-Wid	le MNA		SVE and El	SB at Rele	ase Areas	and MNA	SVE at D	GR at Relea	ise Areas a	and MNA	EISB PRB a	at Facility	Boundary a	and MNA	ZVI PRB a	t Facility E	Boundary a	and MNA	SVE and Downgrad	SVE and EISB at Release Areas, EISB Downgradient Focus Areas, and MNA				
Relative Benefits Ranking for Disproportionate Cost Analysis WAC 173-340-360(2)(b)(i) and WAC 173-340-36093)(f)																										
Comparative Overall Benefit (1)		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		
- Overall Protectiveness	Good 5 0.3 1.5 (Good	5	0.3	1.5	Good	5	0.3	1.5	Good	5	0.3	1.5	Good	5	0.3	1.5	Good	5	0.3	1.5		
- Permanence	Excellent	8	0.2	1.6	Superior	9	0.2	1.8	Good	6	0.2	1.2	Excellent	8	0.2	1.6	Excellent	8	0.2	1.6	Superior	9	0.2	1.8		
- Long-Term Effectiveness	Fair	3	0.2	0.6	Fair	3	0.2	0.6	Fair	3	0.2	0.6	Fair	3	0.2	0.6	Fair	3	0.2	0.6	Fair	3	0.2	0.6		
- Manageability of Short-Term Risk	Superior	10	0.1	1	Good	5	0.1	0.5	Poor	2	0.1	0.2	Fair	4	0.1	0.4	Fair	4	0.1	0.4	Poor	2	0.1	0.2		
- Implementability	Superior	10	0.1	1	Good	6	0.1	0.6	Poor	1	0.1	0.1	Good	5	0.1	0.5	Good	5	0.1	0.5	Poor	1	0.1	0.1		
- Consideration of Public Concerns	Fair	4	0.1	0.4	Good	6	0.1	0.6	Fair	4	0.1	0.4	Excellent	7	0.1	0.7	Excellent	7	0.1	0.7	Excellent	7	0.1	0.7		
Overall Weighted Benefit Score 6.1							5.6				4.0				5.3				5.3				4.9			
Disproportionate Cost Analysis Quantitative Evaluation	-																									
Overall Weighted Benefit Score		6.3	1			5.6			4.0			5.3				5.3					4.	9				
Estimated Remedy Present Value Cost to meet GW pCULs		\$3,900),000		\$8,410,000				\$25,800,000					\$17,10	0,000		\$38,200,000				\$44,800,000					
Estimated Remedy Total Cost (Undiscounted) to meet GW pCULs		\$7,030),000			\$11,700,000				\$29,300,000				\$20,700,000				\$44,400,000				\$50,600,000				
Relative Benefit/Cost Ratio (2) for GW pCULs		6.	1			2.	.6			0.	6			1.	2			0.	.5			0.	4			
Estimated Remedy Present Value Cost to meet SWQS in GW		\$7,700),000			\$12,10	0,000			\$39,00	0,000			\$20,80	0,000			\$41,80	0,000			\$48,50	0,000			
Estimated Remedy Total Cost (Undiscounted) to meet SWQS in GW		\$26,90	0,000			\$31,10	0,000			\$57,80	0,000			\$34,90	0,000			\$58,60	0,000			\$68,30	0,000			
Relative Benefit/Cost Ratio (2) for SWQS in GW		6.	1			3.	.6			0.	8			2.	0			1.	.0			0.	8			
Most Permanent Solution		N	0			N	0			N	0			N	0			N	0			N	D			
Lowest Cost Alternative		Ye	s			N	0			N	0			N	0			N	0			N	D			
Costs Disproportionate to Incremental Benefits		N	0			Ye	es			Ye	es			Ye	25			Ye	es			Ye	s			
Remedy Permanent to the Maximum Extent Practicable?		Ye	es			No				No				Ν	0			Ν	0		No					
Preferred Alternative		Yes				N	0			No				N	0		No				No					
Cost of Lowest Present Value Cost Alternative (pCUL)		\$3,900	0,000						Cost of	Lowest Pr	esent Va	lue Cost	Alternativ	e (SWQS)		\$7,7	00,000									

Benefit Score of Highest Ranked Alternative (pCUL) Cost of Highest Present Value Cost Alternative (pCUL) 6.1 \$44,800,000 Cost of Lowest Present Value Cost Alternative (SWQS) Benefit Score of Highest Ranked Alternative (SWQS) Cost of Highest Present Value Cost Alternative (SWQS) \$7,700,000 6.1 \$48,500,000

Notes:

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied)

by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figure 6-1 of this FS report.

Abbreviations and Acronyms:

DGR = dynamic groundwater recirculation EISB = enhanced *in situ* bioremediation FS = feasibility study GW = groundwater MNA = monitored natural attenuation pCUL = proposed cleanup level PRB = permeable reactive barrier SVE = soil vapor extraction SWQS = surface water quality standards WAC = Washington Administrative Code ZVI = zero-valent iron

Table 6-8 AOC A-14 Cost Estimate Summary Boeing Auburn Feasibility Study Auburn, Washington

		Treatment to Meet Groundwater pCULs			Treatment to Meet				
		Length of Treatment	1	Fotal Cost	Pro	esent Value	Length of Treatment	(Total
Alternative	lechnology	(Teals)	(un		- TC		(Teals)	(ui	
Alternative D1:	MNA	95	\$ •	7,030,000	\$ •	3,900,000	233	\$ •	26,
	I otal Cost		\$ ¢	7,030,000	\$ ¢	3,900,000		ې د	26,
	SVE at Former Building 17-03	5	Ş	702,000	ې د	544,000	5	ې د	
Altomative D2.	EISB at Former Building 17-03	10	Ş	702,000	Ş	661,000	10	ې د	
Alternative DZ: SVE and EISB at Belease Areas and MNA	SVE at Building 17-07	5	Ş	561,000	Ş	561,000	5	Ş	
SVE and EISD at Release Aleas and IvinA	EISB at Building 17-07	10	Ş	3,020,000	Ş	2,860,000	10	Ş	3,
	MNA	94	Ş	6,850,000	Ş 	3,780,000	230	Ş A	26,
	Total Cost		Ş	11,680,000	Ş	8,410,000		Ş	31,
	SVE at Former Building 17-03	5	Ş	544,000	Ş	544,000	5	Ş	
Alternative D3:	SVE at Building 17-07	5	\$	561,000	\$	561,000	5	\$	
SVE and DGR at Release Areas and MNA	DGR at Release Areas	6	\$	22,200,000	\$	21,200,000	29	\$	33,
	MNA	85	\$	6,010,000	\$	3,460,000	208	\$	23,
	Total Cost		\$	29,300,000	\$	25,800,000		\$	57,
	EISB at Building 17-07 Facility Boundary	20	\$	7,240,000	\$	6,790,000	20	\$	7,
Alternative D4A:	EISB at Prologis Facility Boundary	20	\$	7,240,000	\$	6,790,000	20	\$	7,
EISB PRB at Facility Boundary and MNA	MNA	86	\$	6,180,000	\$	3,550,000	212	\$	20,
	Total Cost		\$	20,700,000	\$	17,100,000		\$	34,
	ZVI at Building 17-07 Facility Boundary	20	\$	19,100,000	\$	17,300,000	20	\$	19,
Alternative D4B:	ZVI at Prologis Facility Boundary	20	\$	19,100,000	\$	17,300,000	20	\$	19,
ZVI PRB at Facility Boundary and MNA	MNA	86	\$	6,180,000	\$	3,550,000	212	\$	20,
	Total Cost		\$	44,400,000	\$	38,200,000		\$	58,
	SVE at Former Building 17-03	5	\$	544,000	\$	544,000	5	\$	
	EISB at Former Building 17-03	10	\$	702,000	\$	661,000	10	\$	
	SVE at Building 17-07	5	\$	561,000	\$	561,000	5	\$	
Alternative D5:	EISB at Building 17-07	10	\$	3,020,000	\$	2,860,000	10	\$	3,
SVE and EISB at Release Areas, EISB Downgradient	Facility boundary EISB	20	\$	7,240,000	\$	6,790,000	20	\$	7,
Focus Areas, and MNA	Algona EISB	20	\$	2,700,000	\$	2,050,000	20	\$	2,
	Outlet Collection EISB	20	\$	29,700,000	\$	27,800,000	20	\$	29,
	MNA	86	\$	6,180,000	\$	3,550,000	210	\$	23,
	Total Cost		\$	50,600,000	\$	44,800,000		\$	68,

Notes:

(1) Present value project costs for long-term operations, maintenance, and monitoring

(Assume 1.5% discount rate - real discount, 30-year note, per Office of Management and Budget, Circular A-94 Appendix C, Revised Nov. 2018) Detailed cost estimates are provided in Appendix G.

Detailed information about assumed length of treatment is provided in Appendices D, E, and F.

Abbreviations and Acronyms:

DGR = dynamic groundwater recirculation	PRB = permeable reactive barrier
EISB = enhanced in situ bioremediation	SVE = soil vapor extraction
MNA = monitored natural attenuation	SWQS = surface water quality standards
pCULS = proposed cleanup levels	ZVI = zero-valent iron

DRAFT

leet SWQS in Groundwater					
otal Cost discounted)	Present Value Total Cost (1)				
26,900,000	\$	7,697,000			
26,900,000	\$	7,697,000			
544,000	\$	544,000			
702,000	\$	661,000			
561,000	\$	561,000			
3,020,000	\$	2,860,000			
26,300,000	\$	7,470,000			
31,100,000	\$	12,100,000			
544,000	\$	544,000			
561,000	\$	561,000			
33,400,000	\$	30,800,000			
23,300,000	\$	7,050,000			
57,800,000	\$	39,000,000			
7,240,000	\$	6,790,000			
7,240,000	\$	6,790,000			
20,400,000	\$	7,210,000			
34,900,000	\$	20,800,000			
19,100,000	\$	17,300,000			
19,100,000	\$	17,300,000			
20,400,000	\$	7,210,000			
58,600,000	\$	41,800,000			
544,000	\$	544,000			
702,000	\$	661,000			
561,000	\$	561,000			
3,020,000	\$	2,860,000			
7,240,000	\$	6,790,000			
2,700,000	\$	2,050,000			
29,700,000	\$	27,800,000			
23,800,000	\$	7,200,000			
68,300,000	\$	48,500,000			

Table 7-1 Summary of Selected Remedial Alternatives Boeing Auburn Feasibility Study Auburn, Washington

AOC	Building	Description	Primary Constituents of Concern	Remedial Alternatives	Selected Remedy	Description of Selected Remedy	Point of Compliance (Soil)	Point of Compliance (Groundwater)
A-01	17-06	Former USTs (TAU-01 and TAU-02)	GRO, ORO, DRO, BTEX	A1: Excavation and Chemical Oxidation	A1: Excavation and Chemical Oxidation	Excavation of soil contamination; Application of <i>in situ</i> groundwater chemical treatment to excavation backfill. Periodic groundwater sampling after soil is removed until groundwater concentrations are below pCULs.	Standard; Site-Wide	Standard; Site-Wide
A-09	17-07	Acid Scrubber Drain Line Leak	Metals (cadmium, nickel, copper), Cyanide	B1: Monitored Containment and MNA B2: <i>In Situ</i> Groundwater Treatment B3: Future Excavation (and Monitored Containment)	B3: Future Excavation (and Monitored Containment)	Future excavation of soil contamination when Building 17-07 is demolished. Periodic groundwater sampling after soil is removed until groundwater concentrations are below pCULs. Until excavation can occur, containment of contaminated soil and groundwater will continue by maintaining the asphalt/concrete, routine inspection and reporting of containment and periodic groundwater sampling of existing monitoring wells.	Standard; Site-Wide	Standard; Site-Wide
A-13	17-06	Petroleum contamination in soil and groundwater on east side of Building 17-06	DRO, ORO	No contamination above pCULs in soil or groundwater; no remedial alternatives evaluated	No Remediation Required	N/A	N/A	N/A
A-14	Site-wide	Site-wide TCE and VC contamination in soil and groundwater	TCE, VC	D1: Site-Wide MNA D2: SVE and EISB at Release Areas and MNA D3: SVE and DGR at Release Areas and MNA D4: PRB at Facility Boundary and MNA D5: SVE and EISB at Release Areas, EISB at Downgradient Focus Areas, and MNA	D1: Site-Wide MNA	Continue containment of contaminated soil Site-wide with pavement and buildings acting as a cap. Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continue to monitor concentrations in groundwater with periodic groundwater sampling. Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil and outline the required continued maintenance for the cap to soil concentrations exceeding protection of groundwater.	Standard; Site-Wide (with institutional controls for residual soil contamination)	Option 1: Standard; Site-Wide with RELs equal to pCULs protective of Drinking Water Option 2: CPOC Off-Facility in Groundwater Near Surface Water Option 3: Area-Wide CPOC Off-Facility Option 4: CPOC at Facility Boundary with RELs equal to pCULs protective of Drinking Water
A-15	Site-wide	Site-wide TCE and VC in stormwater and/or surface water	TCE, VC	Remediation of AOC A-14 will provide cleanup of AOC A-15	Remediation will be completed with AOC A-14	N/A	N/A	N/A

Abbreviations and Acronyms:

AOC = area of concern	N/A = not applicable
BTEX = benzene, toluene, ethylbenzene, xylenes	ORO = oil-range organics
CPOC = conditional point of compliance	pCUL = proposed cleanup levels
DGR = dynamic groundwater recirculation	PRB = permeable reactive barrier
DRO = diesel-range organics	REL = remediation level
EISB = enhanced <i>in situ</i> bioremediation	SVE = soil vapor extraction
GRO = gasoline-range organics	TCE = trichloroethene
MNA = monitored natural attenuation	UST = underground storage tank
	VC = vinyl chloride