

WASTE MANAGEMENT

5200 SW Macadam Avenue Suite 270 Portland, Oregon 97239-3834 (503) 242-9493 (503) 242-9123 Fax

July 22, 2005

Mr. Al Armstrong, Hydrogeologist Washington Department of Ecology 15 W Yakima Avenue, Suite 200 Yakima, Washington 98902

Subject: Summary Report of MTCA Remedial Investigations and Implementation of Corrective

Measures

Greater Wenatchee Regional Landfill (GWLF)

East Wenatchee, Washington

Dear Mr. Armstrong:

As you are aware, WM entered into an independent corrective action agreement with the Washington Department of Ecology (WDOE) under the State of Washington's Model Toxics Control Act (MTCA) in 2000. Since then, WM has been collaborating with WDOE and the Chelan-Douglas Health District (CDHD) in performing remedial investigations and corrective actions, including holding periodic meetings to discuss and formulate appropriate activities and to review data. As such, please find the above-referenced report of the remedial investigations and corrective action measures implemented to date. WM requests that WDOE provide a response to document concurrence with the activities performed to date.

We appreciate your help on this project over the past several years, and look forward to working with you through the completion of our corrective action measures. Please call either of the undersigned if you have any questions about the contents of the report.

Sincerely,

Waste Management, Inc.

Roger B. North

Engineering Manager, North West Region

James M. Obereiner, Senior Manager

Groundwater Protection Program

Attachment: Summary Report of MTCA Remedial Investigations and Implementation of Corrective Measures, Shaw Emcon/OWT, Inc., July 21,2005.

Copy: David Prosch, CDHD (with attachment)

Ted Woodard, WM (with attachment)

Louis Caruso, Emcon (with attachment)

SUMMARY REPORT OF MTCA REMEDIAL INVESTIGATIONS AND IMPLEMENTATION OF CORRECTIVE MEASURES

GREATER WENATCHEE REGIONAL LANDFILL EAST WENATCHEE, WASHINGTON

Prepared for

Waste Management of Washington, Inc. 191 South Webb Road East Wenatchee, Washington 98802

July 21, 2005

Prepared by

Shaw EMCON/OWT, Inc.
EMCON/OWT, Inc.
10300 SW Nimbus Ave, Suite B
Portland, Oregon 97223-4345

EMCON Project 842544.07002004

Summary Report of MTCA Remedial Investigations and Implementation of Corrective Measures Greater Wenatchee Regional Landfill East Wenatchee, Washington

The material and data in this report were prepared under the supervision and direction of the undersigned.

Shaw EMCON/OWT, Inc.

Louis Caruso, L.P.G., WA No. 1329

Senior Project Manager

CONTENTS

SIG	ATURE PAGE		II II
TAB	LES AND ILLUS	FRATIONS	iv
ACR	ONYMS AND AB	BREVIATIONS	v
1	INTRODUCTIO	ON	1-1
	1.1 Backgrou	nd	1-1
		rganization	1-2
2	RESULTS OF F	REMEDIAL INVESTIGATIONS	2-1
	2.1 Nature an	d Extent of VOCs in Groundwater	2-1
		VOCs in Groundwater	2-2
3	CORRECTIVE	ACTION MEASURES	3-1
4	SUMMARY AN	D CONCLUSIONS	4-1
LIM	TATIONS		
REF	ERENCES		
APP	ENDIX A: FEBRU CHCHD, AND V	UARY 2000 CORRESPONDENCES BET WM	TWEEN WDOE,
APP	ENDIX B: MONIT (EMCON, SEPT	TORING WELL MW-11 INSTALLATION (1997)	ON REPORT
APP		I GROUNDWATER ANALYTICAL RE LLECTED ON JULY 16 AND DECEMB	
APP		YTICAL RESULTS OF GAS AND GRO	
	SAMPLES COL	LECTED IN FIRST QUARTER 2004 F	OR MTCA
	GROUNDWAT	ER INVESTIGATION (EMCON, MAY	2004)
APP	ENDIX E: GEOCH	HEMICAL PIPER (TRILINEAR) DIAG	RAMS

TABLES AND ILLUSTRATIONS

Tables Following Report

1 VOCs Detected in Monitoring Well Groundwater Samples

Figures Following Report

- 1 Potentiometric Surface Contours (March 2005)
- 2 Volatile Organic Compounds in MW-01 Groundwater Samples
- 3 Volatile Organic Compounds in MW-01 Groundwater Samples

ACRONYMS AND ABBREVIATIONS

btoc below top of casing

CDCHD Chelan-Douglas County Health District

cis-1,2-DCE cis-1,2-dichloroethene
1,1-DCA 1,1-dichloroethane
DCDFM dichlorodifluoromethane
1,1-DCE 1,1-dichloroethene
EMCON EMCON/OWT, Inc.

GWPS groundwater protection standard GWLF Greater Wenatchee Regional Landfill

LFG landfill gas

MTCA Model Toxics Control Act
μg/L micrograms per liter
PCE tetrachloroethene
TCE trichloroethene

TCFM trichlorofluoromethane VOC volatile organic compound

WAC Washington Administrative Code

WDOE Washington State Department of Ecology

WM Waste Management, Inc.

1 INTRODUCTION

This report, prepared by EMCON/OWT Inc. (EMCON), a division of Shaw Environmental, Inc., on behalf of Waste Management Inc. (WM) summarizes remedial investigations performed at the Greater Wenatchee Regional Landfill (GWLF) in East Wenatchee, Washington. The investigations were conducted as part of WM's independent corrective action agreement with the Washington Department of Ecology (WDOE) under the State of Washington's Model Toxics Control Act (MTCA). The report (1) provides the technical basis supporting the finding that landfill gas (LFG) is the source of volatile organic compounds (VOCs) detected in groundwater collected from selected site monitoring wells and (2) summarizes the corrective action measures (LFG control and collection) implemented to mitigate the source of groundwater impacts.

This report was prepared as a follow-up to WM's meeting on May 18, 2005 with the Chelan-Douglas County Health District (CDCHD) and WDOE. The purpose of this report is to (1) document work performed under MTCA to assess the nature and extent of VOC impacts to groundwater and to mitigate impacts (i.e., LFG control measures) and (2) document regulatory approval of the findings of these investigations and the selection of LFG collection as the appropriate remedial alternative for the site.

1.1 Background

In February 2000, the WDOE placed the GWLF on its confirmed release list (WDOE, 2000a) after two VOCs (tetrachloroethene [PCE] and 1,1-dichloroethane [1,1-DCA]) were detected in groundwater above state of Washington Groundwater Protection Standard (GWPS) specified in Washington Administrative Code (WAC) 173-351-440(3)d)¹. In response to these detections, WM agreed to proceed with an independent corrective action, including assessment of the groundwater impact and selection and implementation of corrective measures (WM, 2000). As stated in a letter dated February 24, 2000, WDOE (1) approved WM's intent to proceed with an independent cleanup action, and (2) wanted WM to proceed with the installation of a final cover and gas collection system in the unlined portions of the landfill as an interim action, in accordance with WAC 173-340-430 (WDOE, 2000b). WDOE indicated in the letter dated February 3, 2000 (WDOE, 2000a) that the groundwater impacts did not appear to

As specified in the WDOE's February 3, 2000 letter (WDOE, 2000b), the GWPS for PCE and 1,1-DCA were set at 0.8 and 1.0 μg/L, consistent with the Water Quality Standards for Groundwaters of the State of Washington established under WAC 173-200-050(3)(b).

pose an imminent threat to the public health, and that the interim action would likely comprise the vast majority of the required corrective action measures. Copies of the letters referenced in this section are provided in Appendix A.

1.2 Report Organization

The remainder of this report is organized as follows:

- Section 2 presents remedial investigation results, including nature and extent of VOCs in groundwater and source of VOCs impacting groundwater.
- Section 3 describes corrective measures that were implemented to mitigate the source of groundwater impacts.
- Section 4 summarizes the results and presents conclusions.

2 RESULTS OF REMEDIAL INVESTIGATIONS

This section summarizes findings of groundwater and LFG analytical investigations performed to assess the source and extent of VOCs detected in groundwater. These data were collected as part of (1) focused remedial investigations conducted in response to GWLF's independent action agreement with the WDOE under its MTCA program, and (2) GWLF's routine (quarterly) compliance monitoring program. All remedial investigations, quarterly compliance monitoring, and related activities were undertaken in consultation with WDOE.

2.1 Nature and Extent of VOCs in Groundwater

VOC analytical results for groundwater samples collected from the site monitoring wells are presented in Table 1. VOCs have historically been detected at low concentrations (micrograms per liter [μg/L]) in MW-01 groundwater samples since at least 1994 and in MW-02A samples since 1998. MW-01 and MW-02A are located hydraulically upgradient and downgradient, respectively, of the unlined portion of the landfill (see Figure 1). In addition, the depth to groundwater in MW-01 (approximately 141 feet below the top-of-casing [btoc] in March 2005) is significantly shallower than in MW-02A (approximately 316 feet btoc in March 2005). VOCs detected in groundwater collected from wells MW-01 and MW-02A include PCE, 1,1-DCA, *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and DCDFM. Trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and trichlorofluoromethane (TCFM) have also been detected in MW-02A groundwater. Concentrations of PCE and 1,1-DCA in groundwater collected from MW-02A have been above the state of Washington GWPS since 1999.

Low concentrations ($\mu g/L$) of dichlorodifluoromethane (DCDFM) have also been detected in samples from MW-04 and P-07 since March 2000 and March 2001, respectively. MW-04 and P-07 are located hydraulically cross-gradient (west) of the current landfill footprint (see Figure 1).

As a result of these findings, and consistent with GWLF's independent corrective action agreement under MTCA and consultations with WDOE, WM implemented the following actions to further characterize the nature and extent of VOCs in groundwater:

- In October 2003, MW-07 was installed downgradient of existing well MW-02A to assess the extent of VOCs.²
- In December 2003, January 2004, and subsequent monitoring events, groundwater samples were collected from MW-07 to identify similar types and concentrations of VOCs as those detected in monitoring well MW-02A (see Table 1).
- In June and July 2004, an additional monitoring well (MW-11) was drilled, installed, and developed downgradient of well MW-07. WDOE and CHCHD verbally approved the location (shown in Figure 1) and design of well MW-11 during a meeting on June 9, 2004. A report documenting the installation of well MW-11 was submitted to the WDOE on September 9, 2004 (provided in Appendix B). VOCs were not detected in the MW-11 samples collected in July and December 2004 (laboratory reports are provided in Appendix C).

Analytical results of samples collected from site monitoring wells, including wells installed as part of the MTCA remedial investigations, demonstrate the limit of the downgradient extent of VOCs (i.e., south and west) of the unlined portions of the landfill. These limits are defined by the absence of VOCs in groundwater samples collected from MW-11 and MW-03A.

2.2 Source of VOCs in Groundwater

Groundwater and leachate analytical results from GWLF's routine compliance monitoring program, along with analytical results from several groundwater investigations, suggested that LFG, was the source of VOCs detected in groundwater samples collected from site monitoring wells. Key results supporting this conclusion included the following:

- VOCs were detected in groundwater samples collected from upgradient monitoring well MW-01 and cross-gradient piezometer P-07 of the existing landfill footprint (see Figure 1). VOCs impacts to groundwater associated with a leachate release would be transport through the movement of groundwater downgradient of the landfill waste cells.
- VOCs were detected in MW-02A groundwater a short time after an impermeable membrane cap was emplaced over Trench 1 in January 1999, except for two low-level detections of 1,1-DCA in May and August 1998 (see Figure 2). This

MTCA-summary report ver5 (final-july2005).doc

² The location and proposed design of well MW-07 was presented in the hydrogeologic characterization and geotechnical investigation work plan (EMCON, 2003) that was approved by the WDOE. Information documenting the drilling and installation of MW-07, along with groundwater elevation data and laboratory analytical results for samples collected from this well in December 2003 and January 2004 were presented in the 2003 annual environmental monitoring report (EMCON, 2004a).

3 CORRECTIVE ACTION MEASURES

This section summarizes corrective action measures implemented by WM in a phased manner since 2000, to mitigate the source of groundwater impacts. These measures were selected based upon the remedial investigation findings, and in consultation with WDOE, and are consistent with interim corrective action measures approved by WDOE (WDOE, 2000b). These measures and subsequent results include the following:

- Installation of sixteen vertical LFG wells with passive well head flares in 2000 and 2001 as part of the closure activities in the North Berm and Trench 1.
- Conversion of the passive LFG system to an active system in February 2002 following the addition of a flare and blowers. After the active LFG collection system began operating, methane concentrations (1) decreased to below detectable levels in gas probes GP-3, GP-4, and GP-10 and (2) were significantly reduced in gas probes GP-8-1 and GP-8-2, and GP-9 (see HWA, 2002).
- Installation of seven additional vertical wells in Trenches 1 and 2 (for a total of 23 vertical wells), and three horizontal wells in Modules 3 and 4, and incorporation of LCRS risers into the LFG collection system in 2004. After the new LFG extraction wells became operational in October 2004, the following were observed: (1) methane concentrations decreased to below detectable levels in gas probe GP-9, and (2) the number of surface emission monitoring (SEM) locations where methane emissions were detected decreased from 49 (in March 2004) to 5 (in December 2004)³ (EMCON, 2005).

Since installing the additional extraction wells in 2004, available LFG from previously-installed extraction wells adjacent to new wells has decreased. This indicates that vapor-phase VOCs associated with LFG are being captured, thus preventing them from infiltrating into the vadose zone and impacting site groundwater. Laboratory analysis of groundwater samples collected from the site monitoring wells have identified improvements in the concentrations of VOCs that are likely attributed to implementation of LFG source control and collection. These include the following:

³ Only 5 of 81 SEM monitoring locations showed detectable levels of methane in December 2004. In comparison, methane was detected at 49 of 81 monitoring locations in March 2004, 25 of 81 monitoring locations in June 2004, and 16 of 81 monitoring locations in September 2004 (EMCON, 2005a).

- PCE and DCDFM concentrations in MW-01 groundwater have decreased since 1999 (see Figure 2). In addition, other VOCs previously detected in MW-01 groundwater (1,1-DCA, cis-1,2-DCE, and vinyl chloride) have not been detected since the second quarter 2003 (see Figure 2).
- The concentrations of VOCs detected in MW-02A groundwater (including 1,1-DCA, PCE, TCE, 1,1-DCE, cis-1,2-DCE, DCDFM, and TCFM) have been relatively stable since the third quarter of 2002 (see Figure 3).
- Between March 2001 and September 2004, DCDFM concentrations in P-07 samples remained relatively stable and at levels (0.5 to 2.7 μg/L) just above the method reporting limit (see Table 1). DCFM was not detected in the groundwater sample collected from P-07 in December 2004 for the first time since the beginning of 2001.
- The concentrations of DCDFM detected in groundwater samples collected from MW-04 (since March 2000) have remained relatively stable, and at levels (0.66 to 2.8 μg/L) just above the method reporting limit (see Table 1).

LIMITATIONS

This report was prepared consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of separated portions of this report.

REFERENCES

- EMCON. 2003. Hydrogeologic Characterization and Geotechnical Investigation Work Plan, Greater Wenatchee Regional Landfill, East Wenatchee, Washington. Prepared for Waste Management, Inc., East Wenatchee, Washington. July 21.
- EMCON. 2004a. Annual and Fourth Quarter 2003 Environmental Monitoring Report, Greater Wenatchee Regional Landfill, East Wenatchee, Washington. Prepared for Waste Management, Inc., East Wenatchee, Washington. March 11.
- EMCON. 2004b. Letter (re: analytical results of gas and groundwater samples collected in first quarter 2004 for MTCA groundwater investigation, Greater Wenatchee Regional Landfill, East Wenatchee, Washington) to R. North, Waste Management, Inc., Portland, Oregon, from D. Higgins and L. Caruso, EMCON/OWT, Inc., Portland, Oregon. May 4.
- EMCON. 2004c. Second Quarter (June) 2004 Environmental Monitoring Report: Greater Wenatchee Regional Landfill, East Wenatchee, Washington. Prepared for Waste Management, Inc., East Wenatchee, Washington. September 2.
- EMCON. 2005. Fourth Quarter 2004 Surface Emissions Monitoring Results: Greater Wenatchee Regional Landfill, East Wenatchee, Washington. Prepared for Waste Management, Inc., East Wenatchee, Washington. January 6.
- HWA. 2002. Second Quarter 2002 Landfill Gas Migration and Subsurface Gas Monitoring Results: Greater Wenatchee Regional Landfill, East Wenatchee, Washington. Prepared for Waste Management, Inc., East Wenatchee, Washington. June 18.
- Washington Department of Ecology (WDOE). 2000a. Letter (re: groundwater protection standards, background values, and corrective action, Greater Wenatchee Regional Landfill) to R. Phillips, Chelan-Douglas Health District, Wenatchee, Washington, from J. Stormon, Washington Department of Ecology, Yakima, Washington. February 3.

- Washington Department of Ecology (WDOE). 2000b. Letter (re: groundwater protection standards and independent corrective action, Greater Wenatchee Regional Landfill) to R. Phillips, Chelan-Douglas Health District, Wenatchee, Washington, from J. Stormon, Washington Department of Ecology, Yakima, Washington. February 24.
- Waste Management (WM). 2000. Letter (re: independent corrective action, Greater Wenatchee Regional Landfill) to R. Phillips, Chelan-Douglas Health District, Wenatchee, Washington, from C. Thomas, Waste Management, East Wenatchee, Washington. February 14.
- Waste Management (WM). 1994. Evaluation of isotope and geochemical data for the Greater Wenatchee Landfill. Waste Management, Inc. March.

T ____ 1
Historical Detected VOCs in Groundwater Samples
(ug/L)
Greater Wenatchee Regional Landfill

Sample	Date	Tetra- chloro-	Tri- chloro-	1,1- Dichloro-	cis-1,2- Dichloro-	1,1- Dichloro-	1,1,1- Trichloro-	Vinyl	Trichloro- fluoro-	Dichloro- difluoro-	Chloro-	Methylene	2- Butanone	Chloro
Location	Collected	ethene	ethene	ethane	ethene	ethene	ethane	Chloride	methane	methane	ethane	Chloride	(MEK)	form
MW-01	4-Jun-91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23
MW-01	24-Aug-94	1.0	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND
MW-01	6-Oct-94	ND	ND	ND	ND	ND	1.0	1.0	ND	ND	ND	ND	ND	ND
MW-01	9-Nov-94	1.0	ND	ND	1.0	ND	1.0	1.0	ND	ND	ND	ND	ND	ND
MW-01	1-Jun-95	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND
MW-01	29-Aug-95	ND	ND	ND	1.0	ND	1.0	1.0	ND	ND	ND	ND	ND	ND
MW-01	30-Nov-95	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-01	27-Feb-96	ND	ND	ND	1.0	ND	1.0	ND	ND	ND	ND	ND	ND	ND
MW-01	22-May-96	ND	ND	ND	1.0	ND	1.0	ND	ND	ND	ND	ND	ND ND	ND
MW-01	6-Nov-96	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND	ND	ND ND	ND
MW-01	12-May-99	ND	ND	0.5	1.2	ND	0.5	ND	ND	2.7	ND	ND	ND ND	ND
MW-01	29-Jul-99	ND	ND	0.5	1.2	ND	0.5	ND	ND	2.5	ND	ND	ND	ND
MW-01	27-Oct-99	1.0	ND	0.5	1.0	ND	0.5	ND	ND	2.1	ND	ND	ND	ND
MW-01	8-Mar-00	0.76	ND	0.37	1.2	ND	ND	0.89	ND	1.8	ND	ND	ND	ND
MW-01	11-Apr-00	0.79	ND	0.75	1.2	ND	0.75	0.74	ND	1.6	ND	ND	ND	ND
MW-01	30-Aug-00	0.64	ND	0.37	1.2	ND	ND	ND	ND	1.4	ND	ND	ND	ND
MW-01	5-Dec-00	0.65	ND	0.37	1.3	ND	ND	0.69	ND	1.7	ND	ND	ND	ND
MW-01	26-Feb-01	0.71	ND	0.63 J	1.3	ND	0.37 J	0.73	ND	1.5	ND	ND	ND	ND
MW-01	10-May-01	0.8	ND	0.67 J	1.4	ND	0.39 J	0.76	ND	1.3	ND	1.6 J	ND	ND
MW-01 (Dup)	10-May-01	0.76	ND	0.67 J	1.3	ND	0.37 J	0.73	ND	1.4	ND	1.6 J	ND	ND
MW-01	17-Aug-01	0.56	ND	0.55 J	1.2	ND	0.33 J	0.6 J	ND	1.3	ND	ND	ND	ND
MW-01	19-Oct-01	0.56	ND	0.63 J	1.2	ND	0.3 J	0.66	ND	0.92	ND	ND	ND	ND
MW-01	15-Feb-02	0.61	ND	0.64 J	1.4	ND	0.36 J	0.75	ND	1.7	ND	ND	ND	ND
MW-01	10-May-02	0.67	ND	0.63 J	1.3	ND	ND	0.8	ND	1.2	ND	ND	ND	ND
MW-01	8-Aug-02	0.63	ND	0.57 J	1.1	ND	ND	0.33 J	ND	1.3	ND	ND	ND	ND
MW-01	3-Dec-02	0.53	ND	0.46 J	0.59	ND	ND	ND	ND	0.98	ND	ND	ND	ND
MW-01 (Dup)	3-Dec-02	0.54	ND	0.47 J	0.6	ND	ND	ND	ND	0.93	ND	ND	ND	ND
MW-01	18-Mar-03	0.52	ND	0.4 J	0.37 J	ND	ND	ND	ND	0.97	ND	ND	ND	ND
MW-01 (Dup)	18-Mar-03	0.52	ND	0.41 J	0.35 J	ND	ND	ND	ND	1.0	ND	ND	ND	ND
MW-01	17-Jun-03	0.49	ND	ND	ND	ND	ND	ND	ND	0.65	ND	ND	ND ND	ND
MW-01	16-Sep-03	0.52	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND ND	ND
MW-01	16-Dec-03	0.38	ND	ND	ND	ND	ND	ND	ND	0.95	ND	ND	ND	ND
MW-01	9-Mar-04	0.46	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND ND	ND

Table 1
Historical Detected VOCs in Groundwater Samples (ug/L)
Greater Wenatchee Regional Landfill

		Tetra-	Tri-	1,1-	cis-1,2-	1,1-	1,1,1-		Trichloro-	Dichloro-			2-	
Sample	Date	chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	Trichloro-	Vinyl	fluoro-	difluoro-	Chloro-	Methylene	Butanone	Chloro
Location	Collected	ethene	ethene	ethane	ethene	ethene	ethane	Chloride	methane	methane	ethane	Chloride	(MEK)	form
MW-01	8-Jun-04	0.46	ND	ND	ND	ND	ND	ND	ND	0.94	ND	ND	ND	ND
MW-01	8-Sep-04	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-01	14-Dec-04	0.41 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-01	9-Mar-05	0.48	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
MW-02A	17-Feb-98	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND
MW-02A	20-May-98	ND	ND	2.0	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND
MW-02A	13-Aug-98	ND	ND	2.0	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND
MW-02A	2-Dec-98	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND
MW-02A	9-Dec-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-02A	24-Mar-99	1.3	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-02A	12-May-99	1.9	ND	3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-02A	29-Jul-99	2.7	ND	3.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-02A	28-Oct-99	2.9	ND	3.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-02A	8-Mar-00	3.2	0.8	3.8	ND	0.8	ND	ND	1.2	1.2	ND	ND	ND	ND
MW-02A	11-Apr-00	3.5	0.89	4.4	ND	ND	ND	ND	1.2	1.1	ND	ND	ND	ND
MW-02A	12-Sep-00	2.6	0.75	4.0	ND	ND	ND	ND	ND	0.68	ND	ND	ND	ND
MW-02A	5-Dec-00	4.1	1.0	5.9	0.91	0.89	ND	ND	1.7	1.9	ND	ND	ND	ND
MW-02A	26-Feb-01	4.9	1.3	5.7	1.1	1.1	0.39 J	ND	1.5	1.7	ND	ND	ND	ND
MW-02A	10-May-01	5.8	1.2	6.4	1.3	1.0	0.37 J	ND	1.4	1.4	ND	1.4 J	ND	ND
MW-02A	17-Aug-01	4.3	1.3	6.5	1.5	1.1	0.37 J	ND	1.6	1.5	ND	ND	ND	ND
MW-02A	19-Oct-01	5.4	1.2	7.6	1.5	0.89	0.36 J	ND	1.1	1.3	ND	ND	ND	ND
MW-02A	15-Feb-02	5.6	1.4	8.5	2.0	1.5	0.47 J	ND	2.4	2.0	ND	ND	ND	ND
MW-02A	10-May-02	6.7	1.6	8.3	2.2	0.92	0.41 J	ND	1.7	1.9	ND	ND	ND	ND
MW-02A (Dup)	10-May-02	6.8	1.6	8.5	2.0	0.42 J	0.39 J	ND	1.6	1.9	ND	ND	ND	ND
MW-02A	8-Aug-02	8.0	1.9	9.8	2.4	1.7	0.53 J	ND	2.2	3.2	ND	ND	ND	ND
MW-02A	4-Dec-02	7.4	1.7	10	2.5	1.6	0.47	ND	2.3	3.0	ND	0.84 J	ND	0.32
MW-02A	18-Mar-03	7.7	1.7	11	2.4	1.6	0.48 J	ND	2.3	3.1	ND	ND	ND	0.35
MW-02A	17-Jun-03	6.7	1.8	11	2.8	1.5	ND	ND	ND	2.1	ND	ND	ND	0.4
MW-02A	16-Sep-03	7.8	1.5	11	2.4	1.6	0.52 J	ND	2.5	3.4	ND	0.86 J	ND	0.36
MW-02A	16-Dec-03	5.9	1.3	12	2.4	1.6	0.45 J	ND	2.4	2.8	ND	0.80 J	ND	0.37
MW-02A	9-Mar-04	7.3	1.7	14	2.5	1.9	0.42 J	ND	3.0	3.6	ND	1.0 J	ND ND	0.38
MW-02A (Dup)	9-Mar-04	7.2	1.6	14	2.5	1.9	0.43 J	ND	3.0	3.5	ND	1.0 J	ND ND	0.39
MW-02A	8-Jun-04	8.6	1.7	13	2.6	2.1	0.53 J	ND	3.2	3.6	ND	1.0 J	ND	0.44

T ____ 1
Historical Detected VOCs in Groundwater Samples
(ug/L)
Greater Wenatchee Regional Landfill

		Tetra-	Tri-	1,1-	cis-1,2-	1,1-	1,1,1-		Trichloro-	Dichloro-			2-	
Sample	Date	chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	Trichloro-	Vinyl	fluoro-	difluoro-	Chloro-	Methylene	Butanone	Chloro-
Location	Collected	ethene	ethene	ethane	ethene	ethene	ethane	Chloride	methane	methane	ethane	Chloride	(MEK)	form
MW-02A	8-Sep-04	9.4	1.9	13	2.7	2.9	ND	ND	4.2	ND	ND	0.94 J	ND	0.44
MW-02A (Dup)	8-Sep-04	6.5	1.3	9.6	2.1	1.7	ND	ND	2.6	ND	ND	1.2 J	ND	0.37
MW-02A	14-Dec-04	8.7	1.6	12	2.5	2.5	0.52 J	ND	3.6	5.1	ND	0.97 J	ND	0.49
MW-02A	8-Mar-05	8.3	1.6	13	2.2	2.7	0.54 J	ND	3.1	3.9	ND	ND	ND	0.48
MW-02A (Dup)	8-Mar-05	8.6	1.5	13	2.2	2.7	0.55 J	ND	2.9	4.2	ND	ND	ND	0.49
MW-03A	14-Dec-04	ND	ND	ND	ND	ND	ND	ND	ND	0.28 J	ND	ND	ND	ND
MW-04	30-Mar-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND
MW-04	7-Mar-00	ND	ND	ND	ND	ND	ND	ND	ND	2.8	ND	ND	ND	ND
MW-04	12-Apr-00	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND
MW-04	29-Aug-00	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
MW-04	19-Dec-00	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND
MW-04	1-Mar-01	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
MW-04	10-May-01	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
MW-04	17-Aug-01	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND
MW-04	19-Oct-01	ND	ND	ND	ND	ND	ND	ND	ND	0.66	ND	ND	ND	ND
MW-04	18-Feb-02	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND
MW-04	13-May-02	ND	ND	ND	ND	ND	ND	ND	ND	0.93	ND	ND	ND	ND
MW-04	9-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	2.7	ND	ND	ND	ND
MW-04	3-Dec-02	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
MW-04	18-Mar-03	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND
MW-04	17-Jun-03	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND	ND	ND	ND
MW-04	17-Sep-03	ND	ND	ND	ND	ND	ND	ND	ND	0.67	ND	ND	ND	ND
MW-04	17-Dec-03	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND
MW-04	10-Mar-04	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	0.77 J	ND	ND
MW-04	9-Jun-04	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND
MW-04	8-Sep-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-04	15-Dec-04	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	6.0	ND
MW-04	9-Mar-05	ND	ND	ND	ND	ND	ND	ND	ND	0.69	ND	ND	ND	ND
MW-07	17-Dec-03	7.2	1.7	10	3.0	0.94	0.46 J	ND	1.8	3.3	ND	ND	ND	ND
MW-07 (Dup)	17-Dec-03	7.2	1.6	9.8	2.9	0.97	0.47 J	ND	1.8	3.3	ND	ND	ND	ND
MW-07 (Resample)	15-Jan-04	8.3	2.0	11	3.2	1.1	0.50 J	ND	2.4	4.2	ND	ND	ND	ND
MW-07	10-Mar-04	7.9	2.0	11	3.2	1.1	0.43 J	ND	2.1	3.7	ND	1.4 J	ND	ND
MW-07 (Dup)	10-Mar-04	7.4	2.0	11	3.0	0.98	0.43 J	ND	2.0	3.5	ND	1.3 J	ND	ND

Table 1
Historical Detected VOCs in Groundwater Samples (ug/L)
Greater Wenatchee Regional Landfill

C 1	2	Tetra-	Tri-	1,1-	cis-1,2-	1,1-	1,1,1-		Trichloro-	Dichloro-	1 5 7			2-	
Sample	Date	chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	Trichloro-	Vinyl	fluoro-	difluoro-	Chloro-	Methyl	ene	Butanone	Chloro-
Location	Collected	ethene	ethene	ethane	ethene	ethene	ethane	Chloride	methane	methane	ethane	Chlori	de	(MEK)	form
MW-07	9-Jun-04	7.2	1.7	8.6	3.1	0.92	0.39 J	ND	1.4	2.9	ND	1.1	J	ND	ND
MW-07	8-Sep-04	8.9	1.7	9.5	2.9	0.81	0.43 J	ND	1.6	2.7	ND	1.0	J	ND	ND
MW-07	15-Dec-04	8.8	1.9	9.5	3.5	1.1	0.50 J	ND	2.0	3.9	ND	0.89	J	ND	ND
MW-07	9-Mar-05	8.4	1.9	9.7	3.6	1.2	0.50 J	ND	1.8	3.8	ND	0.79	B,J	ND	ND
MW-07 (Dup)	9-Mar-05	9.1	2.0	10	3.6	1.3	0.54 J	ND	2.1	4.5	ND	0.84	B,J	ND	0.29
MW-08A	15-Dec-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		7.2	ND
MW-08A	9-Mar-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		B,J	ND	ND
MW-10	10-Mar-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N. Williams	J	ND	ND
MW-10 (Dup)	10-Mar-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		J	ND	ND
P-07	1-Mar-01	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND	ND		ND	ND
P-07	10-May-01	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND		J	ND	ND
P-07	16-Aug-01	ND	ND	ND	ND	ND	ND	ND	ND /	2.1	ND	ND		ND	ND
P-07 (Dup)	16-Aug-01	ND	ND	ND	ND	ND	ND	ND	ND /	1.9	ND	ND		ND	ND
P-07	18-Oct-01	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND		ND	ND
P-07	15-Feb-02	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND		ND	ND
P-07 (Dup)	15-Feb-02	ND	ND	ND	ND	ND	ND	ND	0.56 J	2.4	ND	ND		ND	ND
P-07	10-May-02	ND	ND	ND	ND	ND	ND	ND	ND	2.0	ND	ND		ND	ND
P-07	9-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND		ND	ND
P-07 (Dup)	9-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	2.7	ND	ND		ND	ND
2-07	4-Dec-02	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND		ND	ND
2-07	18-Mar-03	ND	ND	ND '	ND	ND	ND	ND	ND	2.1	ND	ND		ND	ND
P-07	17-Jun-03	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND		ND	ND
P-07	16-Sep-03	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND		ND	ND
P-07	16-Dec-03	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND		ND	ND
P-07	9-Mar-04	ND	ND	ND	ND	ND	ND	ND	ND	2.0	ND	ND		ND ND	ND
P-07	9-Jun-04	ND	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND		ND ND	ND
P-07 (Dup)	9-Jun-04	ND	ND	ND	ND	ND	ND	ND	ND	2.1	. ND	ND		ND	ND
P-07	9-Sep-04	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND	ND		ND	ND
P-07	9-Mar-05	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND		ND	ND
P-08	11-Mar-04	2.7	0.42	7.2	0.94	1.0	1.7	1.0	2.9	9.1	0.63 J	3.0	\dashv	ND	ND

NOTE:

ug/L = microgram per liter; NT = analyte not tested, ND = analyte not detected at or above the method reporting limit; J = estimate value below method reporting limit.

membrane cap increased LFG pressures within Trench 1, which resulted in increased migration of LFG in the subsurface. The cap placement also appears to have affected VOC detections in MW-01 groundwater, for the reasons (see Figure 3).

- Results of stable and radiogenic isotope analysis of MW-01 groundwater and site leachate samples performed in 1994 did not show evidence of groundwater impacts from landfill leachate (WM, 1994).
- Inorganic chemistry data derived from regular sampling events and remedial investigations suggests that leachate is not affecting groundwater, and therefore is not the source of the VOCs.

In order to test the hypothesis that LFG is the source of VOCs detected in groundwater samples, WM conducted several investigations as part of its independent action agreement with WDOE under MTCA. The investigations focused on characterizing the type, concentration, and distribution of vapor phase VOCs associated with LFG and evaluating the ionic composition of samples collected from VOC-impacted monitoring wells and composite leachate samples. Field and laboratory methods conducted as part of these investigations included installing depth-discrete LFG monitoring probes adjacent to monitoring wells MW-02A and MW-03A (probes GP-11 and GP-08, respectively), and collecting gas samples for VOC analysis from LFG probes, LFG extraction wells, and direct push probes (see EMCON 2004b provided in Appendix D).

Laboratory analytical results of gas samples collected as part of these investigations, along with groundwater analytical results, indicated that (1) an interaction between vaporphase VOCs present in LFG and groundwater is occurring under the unlined Trench 1 area, and (2) LFG is the source of VOCs detected in MW-01, MW-02A, MW-04, MW-07, and P-07. Key results supporting these conclusions, as presented in previous routine compliance monitoring reports and groundwater investigations (EMCON, 2004b; see Appendix D), are as follows:

- The same suite of chlorinated VOCs detected in groundwater samples collected from MW-02A and MW-07 were also detected at elevated concentrations in gas samples collected from LFG probes GP-08, GP-09, GP-11-2, and GP-11-3 and extraction wells GE-11, GE-12, GE-13, GE-14, GE-15, and GE-16. Furthermore, VOCs detected at the highest concentrations in leachate samples were not detected in groundwater samples.
- Extraction well GE-14 and selected LFG probes, where the highest chlorinated VOCs concentrations were detected in LFG, are located in and adjacent to the southern perimeter of the Trench 1 area (see EMCON, 2004b, Figure 2 provided in Appendix D).

• Geochemical analysis using Piper diagrams provided in Appendix E indicated that (1) groundwater samples collected from wells impacted with VOCs have a distinctly different ionic chemistry than that of site leachate and (2) mixing between groundwater and leachate has not occurred because the ionic chemistry of groundwater collected from MW-02A has remained relatively stable. Leachate impacts to groundwater would be expected to affect the ionic chemistry compared with samples collected from upgradient and cross-gradient wells.

FIGURES



Figure 2
Volatile Organic Compounds in MW-01 Groundwater Samples
Greater Wenatchee Regional Landfill

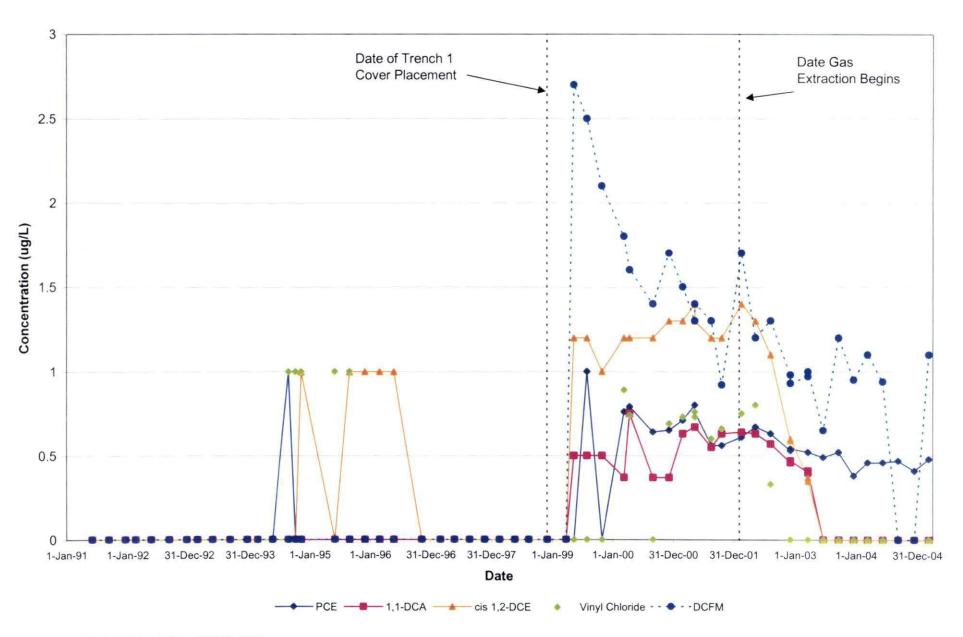
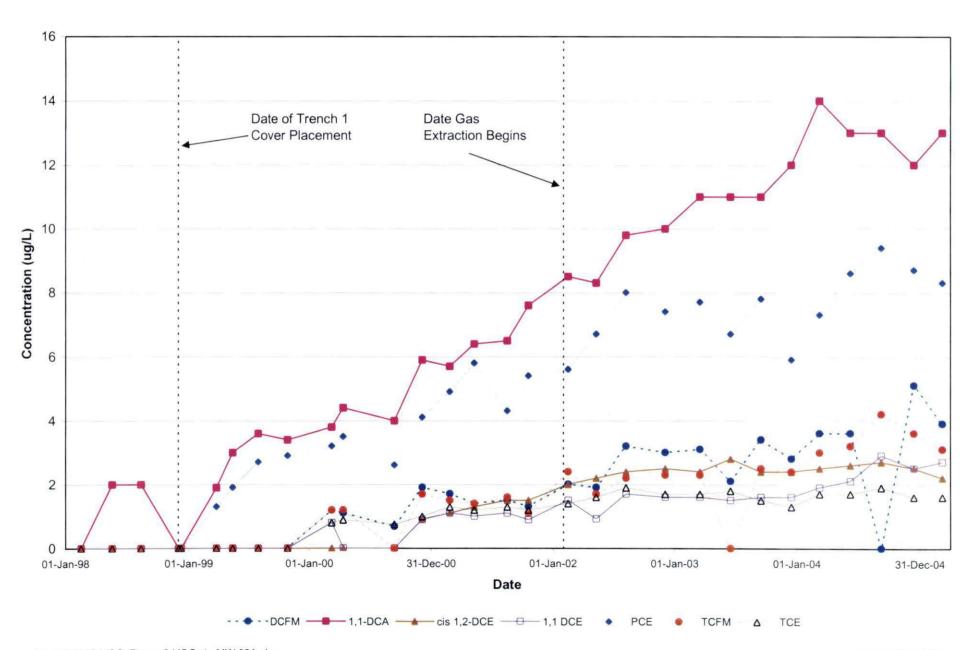



Figure 3
Volatile Organic Compounds in MW-02A in Groundwater Samples
Greater Wenatchee Regional Landfill

APPENDIX A

FEBRUARY 2000 CORRESPONDENCES BETWEEN WDOE, CHCHD, AND WM

DEPARTMENT OF ECOLOGY

15 West Yakima, Suite 200 • Yakima, Washington 98902-3452 • (509) 575-2490

February 3, 2000

Mr. Randy Phillips Chelan-Douglas Health District P.O. Box 429 Wenatchee, WA 98807

Re: C

Greater Wenatchee Landfill: Groundwater Protection Standard, Background Values and

Corrective Action.

Dear Mr. Phillips:

I have reviewed Waste Management's, January 31, 2000, letter with proposed background concentrations and groundwater protection standards. Although I don't agree with every aspect of the letter, on the most important points it appears that we do agree. Levels of the contaminants: 1,1-Dichoroethane and Tetrachloroethane, observed in the groundwater at MW-2A exceed the background concentration of WAC 173-351-440(3)(c) and the groundwater protection standard of WAC 173-351-440(3)(d). The Greater Wenatchee Landfill must complete the steps of WAC 173-351-440(6), including the assessment, selection and implementation of corrective measures under Ch 173-340 WAC, the Model Toxics Control Act. (MTCA) I am listing the Greater Wenatchee Landfill as a site with confirmed groundwater contamination on Ecology's contaminated sites register. Attached I have provided a technical memorandum that details the points on which we agree and disagree as well as my process for determining that corrective action is required.

My January 28, 2000 letter incorrectly asserts that Chapter 173-200 WAC lists a groundwater quality criterion for cis-1,2-Dichloroethene. No criterion has been established for the detected constituents: cis-1,2-Dichloroethene or Dichlorodiflouromethane.

We currently have enough information to confirm that there is a groundwater problem at the Greater Wenatchee Landfill that will require corrective action. The information available suggests that at this time the problem does not pose an imminent threat to the public health. A characterization of the extent of the problem, known as a remedial investigation and feasibility study or RI/FS, will follow. The RI/FS, among other things, will determine if there are public health issues that need to be addressed.

Mr. Randy Phillips February 3, 2000 Page 2

In corrective action the role and authority of Ecology and the Health District will change somewhat. Under WAC 173-351-460, Role of jurisdictional health department in corrective action, the Health District may participate in all parts of the corrective action, may comment upon and participate in all decisions involving the corrective action, and shall continue to regulate all MSWLF units during construction, operation, closure and post-closure. Under WAC 173-351-465, Role of the Department of Ecology in corrective action, Ecology shall carry out all the responsibilities assigned to it under the Model Toxics Control Act, chapter 70.105D RCW, during the corrective action process. Assessment groundwater monitoring as described in WAC 173-351-440 shall continue, unless an alternate groundwater monitoring program is approved under WAC 173-351-450 or Ch 173-340 WAC.

I hope MTCA will help to ensure that the Greater Wenatchee Landfill implements the appropriate measures to characterize and resolve these groundwater issues. Waste Management may proceed with an independent corrective action consistent with MTCA or may enter into a formal action with Ecology under a Consent Decree or Order. If Waste Management chooses to proceed with independent corrective action, I encourage them to work closely with the Department of Ecology and the Health District.

Work already planned, such as the installation of a final cover and gas collection system on the unlined portions of the landfill, (i.e. North Berm and Trench 1) may proceed as part of an independent corrective action. Moving forward quickly with appropriate independent actions could remove the necessity for Ecology to require any formal action in the future. The Department of Ecology will continue to be available for review, to provide written comments, and hopefully concurrence, with any submitted plans. It is likely that this final cover and gas collection system will comprise the vast majority of the corrective actions that will be required. The specific extent of the corrective actions will be determined based upon the findings of the RI/FS.

Ecology intends to work closely with the Chelan-Douglas Health District throughout this process. Please call me at 509-454-7293 if you have any questions or if I may be of additional assistance.

Sincerely,

John Stormon

Hydrogeologist

Solid Waste & Financial Assistance Program

c¢:

David Prosch, CDHD Chris Thomas, WMI Mark Verwiel, WMI Roger North, WMI

TECHNICAL MEMORANDUM: CORRECTIVE ACTION DETERMINATION FOR THE GREATER WENATCHEE LANDFILL

This technical memorandum makes the determination of the Groundwater Protection Standards and Background Concentration, as addressed in WAC 173-351-440(3). The determination uses the submitted sampling results from Greater Wenatchee Landfill, the "Statistical Methods for Groundwater Monitoring at the WMX Greater Wenatchee Landfill," (February 29, 1996), the Implementation Guidance for the Groundwater Quality Standards and, where possible, the January 31, 2000, proposed methods submitted by Waste Management. Waste Management's proposed methods do not meet the regulatory standard in some areas. These will be discussed below.

Corrective Action Is Required

Analytical results indicate that the background concentration, the statistical limit and the groundwater protection standard have been exceeded during assessment monitoring. The Greater Wenatchee Landfill must complete the steps of WAC 173-351-440(6), including the assessment, selection and implementation of corrective measures under Ch 173-340 WAC, the Model Toxics Control Act.

Groundwater Protection Standard

Chapter 173-200 WAC, the Water Quality Standards for Ground Waters of the State of Washington, requires that the enforcement limit (i.e. groundwater protection standard) may not exceed the groundwater quality criteria. [WAC 173-200-050(3)(b)] Waste Management's proposal incorrectly interprets my past comments as indicating that the groundwater quality criteria shall be the same as the enforcement limit. Chapter 173-200 WAC requires that the concept of AKART be used to determine how far below the criterion to set the enforcement limit/groundwater protection standard. In the following determination, I have listed the groundwater protection standard as less than or equal to a maximum value. This is sufficient to determine that the levels at the Greater Wenatchee Landfill require corrective action under Ch 173-340 WAC, the Model Toxics Control Act. (MTCA)

Background Wells

Waste Management's proposed method indicates that they wish to include analyses from P-7 in the background data. It appears that they have results from one grab sample at this well taken on 12/01/1994. I have not been able to locate a record of this sample in our files, so I can not assess its validity but one grab sample taken at least four years before assessment monitoring began will not be accepted as representative of the background chemical character of the groundwater at this facility. I would like to receive a copy of all of the information related to this sample, including field notes, so that we are working from the same information. No Volatile Organic Chemical (VOC) results from P-7 were provided.

WAC 173-351-430(2), <u>Background data development</u>, requires a minimum of eight independent samples collected within the first year for background data development. This requirement has been discussed with Mr. Michael Peterson, formerly of Waste Management, in relation to

beginning to use P-7 as a background well. The Greater Wenatchee Landfill has been in assessment monitoring for more than one year. If Waste Management wanted to use P-7, they had ample opportunity. It is too late for the current determination. The background wells are MW-5 and MW-6. If Waste Management wishes to use P-7 for future background discussions, I suggest that they immediately begin collecting sufficient background data to be representative. (i.e. Eight samples for the Appendix I constituents collected within the first year, no less than one month apart. [WAC 173-351-430(2)])

Establishing Groundwater Protection Standards for cis-1,2-Dichloroethene and Dichloroflouromethane

WAC 173-200-050(4) requires that for constituents that do not have an established criterion, the enforcement limit (i.e. groundwater protection standard) shall not exceed the PQL, unless clear and convincing evidence can be provided that a higher level will provide protection to human health and the environment. Waste Management indicates that they will work with Ecology and the Washington Department of Health to establish an enforcement limit/groundwater protection standard that meets this requirement.

Nitrate

Nitrate is a difficult constituent to reasonably assess using inter-well comparisons at this facility due to groundwater chemistry differences between wells that may be natural or may have resulted from waste management practices. Intra-well comparisons have shown a rising trend and a statistically significant increase in Nitrate levels at MW-4. This result is not likely to be due to natural variations and has indicated a statistically significant increase over background.

The statistical method to be used at this facility in assessment monitoring is defined in, "Statistical Methods for Groundwater Monitoring at the WMX Greater Wenatchee Landfill", February 29, 1996. This document, as amended, defines the method to be used in assessment monitoring as "prediction limits as described in the inter-well comparison section."

The background levels of Nitrate at MW-5 and MW-6 have ranged from below the PQL of 0.05 mg/l to 1.37 mg/l. Using the statistical methods described in Ecology's "Implementation Guidance for the Groundwater Quality Standards", April 1996, publication #96-02, and the landfill's statistical methods, the assessment monitoring statistical limit for Nitrate in the downgradient wells will be 1.37 mg/l. At the Greater Wenatchee Landfill the background value for Nitrate is 1.37 mg/l.

The Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200 WAC, sets the criterion for Nitrate in groundwater at 10 mg/l. The enforcement limit (i.e. groundwater protection standard) may not exceed this level. [WAC 173-200-050(3)(b)] The concept of AKART would be used to determine how far below this criterion to set the enforcement limit/groundwater protection standard. Waste Management's proposed methods state that the groundwater protection standard is 10 mg/l, but do not address AKART. At the Greater Wenatchee Landfill, the groundwater protection standard for Nitrate is less than, or equal to, 10 mg/l.

Nitrate levels have exceeded 1.37 mg/l at all other monitoring wells at this facility during the assessment monitoring event. Nitrate levels at MW-1 have exceeded the groundwater protection standard. Due to the possible unresolved natural variation problems in this statistical comparison, I suggest that the corrective action determination be based on the VOC's. Natural variations in groundwater chemistry should not be an issue for VOC's. The fact that intra-well comparisons have shown a statistically significant increase in Nitrate at MW-4, indicates that some groundwater effects have occurred. Nitrate levels at MW-4 have remained below 10 mg/l. Nitrate levels at MW-1 have not shown an intra-well statistically significant increase.

VOLATILE ORGANIC COMPOUNDS (VOC)

Constituent	Back- ground	Statistical Limit	Groundwater Protection Standard (GWPS)	MW-2A Above Background	MW-2A Above GWPS
1,1-Dichloroethene	1.0 ug/l	1.0 ug/l	< or = 1.0 ug/l	YES	YES
Tetrachloroethene	1.0 ug/l	1.0 ug/l	< or = 0.8 ug/l	YES	YES

1,1-Dichloroethane

The background level of 1,1-Dichloroethane at MW-5 and MW-6 has remained below the PQL of 1 ug/l during each of the assessment monitoring events. At the Greater Wenatchee Landfill, the background value for 1,1-Dichloroethane is 1 ug/l. (See section 6.3.3.2 of "Implementation Guidance for the Groundwater Quality Standards", April 1996, publication #96-02.) Waste Management's proposed methods indicate that the PQL should be used as the background concentration for all VOC's. Using the statistical methods described in the above Ecology Implementation Guidance and the "Statistical Methods for Groundwater Monitoring at the WMX Greater Wenatchee Landfill", February 29, 1996, the assessment monitoring statistical limit for 1,1-Dichloroethane in the downgradient wells will also be 1 ug/l.

The Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200 WAC, sets the criterion for 1,1-Dichoroethane in groundwater at 1 ug/l. The enforcement limit (i.e. groundwater protection standard) may not exceed this level. [WAC 173-200-050(3)(b)] The concept of AKART would be used to determine how far below this criterion to set the enforcement limit/groundwater protection standard. Waste Management's proposed methods state that the groundwater protection standard is 1.0 ug/l but do not address AKART. At the Greater Wenatchee Landfill, the groundwater protection standard for 1,1-Dichloroethane is less than or equal to 1 ug/l.

At MW-2A, the constituent 1,1-Dichlorocthane has been detected during assessment monitoring at levels ranging from 1.5 ug/l to 3.6 ug/l, or at an average level of 2.7 ug/l. The analytical results for 1,1-Dichlorocthane at MW-2A have exceeded the background level, the statistical limit and the groundwater protection standard.

Tetrachloroethene

The background level of Tetrachloroethene at MW-5 and MW-6 has remained below the PQL of 1 ug/1 during each of the assessment monitoring events. At the Greater Wenatchee Landfill, the background value for Tetrachloroethene is 1 ug/1. (See section 6.3.3.2 of "Implementation Guidance for the Groundwater Quality Standards", April 1996, publication #96-02.) Waste Management's proposed methods indicate that the PQL should be used as the background concentration for all VOC's. Using the statistical methods described in the above Ecology Implementation Guidance and the "Statistical Methods for Groundwater Monitoring at the WMX Greater Wenatchee Landfill", February 29, 1996, the assessment monitoring statistical limit for Tetrachloroethene in the downgradient wells will also be 1 ug/1.

The Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200. WAC, sets the criterion for Tetrachloroethene in groundwater at 0.8 ug/l. The enforcement limit (i.e. groundwater protection standard) may not exceed this level. [WAC 173-200-050(3)(b)] The concept of AKART would be used to determine how far below this criterion to set the enforcement limit/groundwater protection standard. Waste Management's proposed methods state that the groundwater protection standard is 0.8 ug/l. At the Greater Wenatchee Landfill, the groundwater protection standard for Tetrachloroethene is less than or equal to 0.8 ug/l.

At MW-2A, the constituent Tetrachloroethene has been detected during assessment monitoring at levels ranging from 1.1 ug/l to 2.9 ug/l, or at an average level of 2.0 ug/l. The analytical results for Tetrachloroethene at MW-2A have exceeded the background level, the statistical limit and the groundwater protection standard.

GREATER WENATCHEE REGIONAL LANDF AND RECYCLING FACILITY A WASTE MANAGEMENT COMPANY

P.O. Box 2963 Wenatchee, WA 98807-2963 (509) 884-2802 (509) 884-3724 Fax

February 14, 2000

Mr. Randy Phillips Chelan-Douglas Health District P.O. BOX 429 Wenatchee, WA 98807-0429

Subject:

Independent Corrective Action - Greater Wenatchee Regional Landfill, East

Wenatchee, Washington

Dear Mr. Phillips:

Waste Management, Inc. (WMI), as owners and operators of the Greater Wenatchee Regional Landfill, is proceeding with an "Independent Corrective Action" program in accordance with WAC 173-340-120(8)(b). WMI will continue to work closely with the State of Washington Department of Ecology (DOE) and Chelan-Douglas Health District (CDHD) throughout this process to promote the effective and timely outcome of this matter.

WMI is in the process of developing a schedule for completing the tasks outlined in WAC-351-440(6), including the assessment, selection, and implementation of corrective measures as required by WAC 173-340, the Model Toxics Control Act. WMI will provide DOE and CDHD with the schedule of upcoming tasks within the next few weeks.

If you have any questions, or if I can be of further assistance, please call me at (509) 884-2802.

Sincerely,

Chris Thomas

Site Manager

CC: John Storman

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

15 West Yakima, Suite 200 - Yakima, Washington 98902-3452 • (509) 575-2490

February 24, 2000

Mr. Randy Phillips Chelan-Douglas Health District P. O. Box 429 Wenatchee, WA 98807

Re:

Greater Wenatchee Landfill Groundwater Protection Standards and Independent

Corrective Action.

Dear Mr. Phillips:

This letter responds to two documents sent by Chris Thomas of Waste Management, each is dated February 14, 2000 but each was received by fax on February 17, 2000. First, I will respond to the proposed groundwater protection standards for dichlorodifluoromethane and cis-1,2-dichloroethene. This is followed by some comments on Waste Management's statement of intent to proceed with an Independent Corrective Action under Chapter 173-340 WAC, the Model Toxics Control Act Cleanup Regulations (MTCA).

Groundwater Protection Standards

I have reviewed the proposed groundwater protection standards using the risk based "Method B" groundwater cleanup levels prescribed under MTCA and in consultation with Mr. Chris McChord of the Washington Department of Health. My review verifies that the proposed groundwater protection standards meet the requirements of the State of Washington. I recommend that the Chelan-Douglas Health District approve the following groundwater protection standards as proposed by Waste Management.

Constituent	Groundwater Protection Standard
Dichlorodifluoromethane	390 ug/l
cis-1,2-Dichloroethene	61 ug/l

To date, the levels of Dichlorodifluoromethane and cis-1,2-Dichloroethene detected in laboratory analyses from groundwater samples collected at the Greater Wenatchee Landfill have remained below these groundwater protection standards.

Mr. Randy Phillips February 24, 2000 Page 2

Even though I have recommended their approval, I must point out that the proposed groundwater protection standards were not derived using the methods prescribed by the State of Washington or those described in Mark Verwiel's January 31, 2000 letter. That letter stated, "In accordance with WAC 173-200-050(4)(b), WMI is proposing to develop alternative GWPS for these compounds which will provide protection to human health and the environment. These alternative concentrations will be determined in consultation with DOE and the State of Washington Department of Health, and WMI is requesting guidance on development of these criteria."

It does not appear that the preparation of this proposal included any inquiries to the Departments of Health or Ecology. The proposal appears to be based solely upon documents published by the federal Environmental Protection Agency (EPA). The standards of the State of Washington should be used for all risk based determinations at this facility. The risk based standards prescribed in the State of Washington are in many cases more protective of human health and the environment than those prescribed by the EPA.

Independent Cleanup Action

I am very pleased that Waste Management's February 14, 2000 letter verified their intent to move forward with an independent cleanup action. I believe that this will allow for the most rapid and cost effective implementation of remedial measures. The Department of Ecology will continue to be available to review, provide comments and recommendations on any submitted plans. I encourage Waste Management to continue to work closely with Ecology and the Health District throughout this process.

I believe that we all agree that the installation of a final cover and gas collection system on the unlined portions of the landfill will help to reduce or prevent additional groundwater contamination. I suggest that this work proceed as an "Interim Action" as described in WAC 173-340-430. An interim action may occur anytime during the cleanup process [WAC 173-340-430(3)(a)]. The installation of an adequate final cover and gas collection system will reduce the threat to human health and the environment by eliminating or substantially reducing the potential pathways for exposure. It will be consistent with the final cleanup action and will not foreclose reasonable alternatives for the final cleanup action. The facility's current permit requires the closure of these unlined portions by November 1, 2000. Nothing in MTCA will prevent Waste Management from meeting this requirement.

Although I am very pleased about Waste Management's intent to proceed with an independent cleanup, I must point out that if necessary the Department of Ecology will step in and require remedial action under an Agreed Order, Consent Decree or Enforcement Order. I cannot set required goals or deadlines for an independent cleanup beyond those included in the regulation, but failure to meet the facility's permit requirements or to move forward in the coming months with the necessary groundwater investigative work will make it very likely that Ecology will step in and require an order or decree. I hope not to proceed down this path.

Mr. Randy Phillips February 24, 2000 Page 3

I recommend that we all attempt to maintain and improve our level of communication. A clear understanding of each of our goals, intentions and needs will only help to move the cleanup forward as quickly as possible. I will be happy to continue to provide assistance, verbal and/or in writing, as the need arises. Please call me at 509-454-7293 if you have any questions.

the state of the s

Sincerely,

John Stormon

Hydrogeologist

Solid Waste & Financial Assistance Program

The second secon

cc:

1762 .

David Prosch, CDHD
Chris Thomas, WMI
Mark Verwiel, WMI
Inter Discussion LFR

APPENDIX B

MONITORING WELL MW-11 INSTALLATION REPORT (EMCON, SEPTEMBER 2004)

10300 SW Nimbus Avenue Suite B, Building P Portland, OR 97223-4345 503.603.1000 Fax: 503.603.1001

September 9, 2004 Project # 842544-08002004

Mr. Roger B. North, P.E. Waste Management, Inc. 5200 SW Macadam Ave., Suite 270 Portland, OR 97201-3834

Re: Monitoring Well MW-11 Installation Report, Greater Wenatchee Regional Landfill, East Wenatchee, Washington

Dear Roger:

This report, prepared by EMCON-OWT, Inc. (EMCON: Portland, Oregon), on behalf of Waste Management, Inc. (WM), documents the drilling, installation, development, and surveying of monitoring well MW-11 at the Greater Wenatchee Regional Landfill (GWRL), in East Wenatchee, Washington. MW-11 was installed to further assess the extent of volatile organic compounds (VOCs) in groundwater downgradient of MW-07 (see Figure 1). Monitoring well MW-11 was sampled in July 2004. As discussed in the second quarter 2004 monitoring report (EMCON, 2004a¹) previously submitted to the Washington Department of Ecology (WDOE) and Chelan-Douglas Health District (CDHD), no VOCs were detected in MW-11. The analytical results for the groundwater sample collected from MW-11 are contained in the previous submittal, and are not included here.

The installation of the monitoring well MW-11 and its proposed location was recommended in a report submitted to the WDOE and CDHD on May 4, 2004 (EMCON, 2004a). The May 2004 report presented analytical results of gas and groundwater samples collected in the first quarter 2004 as part of WM's agreement with the WDOE under the State of Washington's Model Toxics Control Act (MTCA) to investigate the source and extent of VOC impacts to site groundwater. The WDOE and CDHD verbally approved the location and installation at meeting on June 9, 2004.

Monitoring well MW-11 was drilled and installed consistent with the methods used for installing monitoring well MW-07 (EMCON, 2004b²), as well as for the other monitoring

² EMCON. 2004b. Letter (re: Analytical results of gas and groundwater samples collected in first quarter 2004 for MTCA groundwater investigation: Greater Wenatchee Regional Landfill, East Wenatchee,

¹ EMCON. 2004a. Letter (re: Second quarter 2004 environmental monitoring report: Greater Wenatchee Regional Landfill, East Wenatchee, Washington) to R. North, Waste Management, Inc., Portland, Oregon, from J. Davendonis and L. Caruso, EMCON/OWT, Inc., Portland, Oregon. September 2.

Mr. Roger North September 8, 2004 Page 2

wells (MW-08, MW-09, and MW-10) installed during the additional hydrogeologic characterization investigation performed in 2003, as describe in subsequent sections. MW-11 was designed, constructed, and developed, consistent with WAC 173-160 "Minimum Standards for Construction and Maintenance of Wells" and standards specified in WAC 173-405-5.

DRILLING AND INSTALLTION OF MONITORING WELL MW-11

Monitoring well MW-11 was drilled and installed from June 14 to 24, 2004, by Tacoma Pump Drilling Company, Inc. (TPDC) of Graham, Washington. Before drilling was initiated, utility locates were conducted by the public utility locators, and TPDC filed a notice of intent to construct a monitoring well (notification number 62679) with the WDOE.

The exploratory boring for MW-11 was advanced and the monitoring well installed using a Foremost (Barber) DR-24HD dual-rotary drill rig operated by TPDC. The Barber air-rotary drilling method used a temporary 8-inch-inside-diameter welded steel casing with a 9.5-inch outside diameter cutting shoe that spins as the casing is advanced. Drilling was accomplished using a 6¾-inch tri-cone drill bit and by the cutting action of shoe welded to the casing.

Subsurface stratigraphy was interpreted from cuttings collected during the drilling of the borehole. Discharged cuttings were monitored nearly continuously during borehole advancement. A grab sample was collected and bagged at 10-foot intervals. A Washington-registered hydrogeologist logged materials encountered during drilling, using standard logging procedures. Data on soil and rock types, such as bedding, structure, moisture content, grain size, color, consistency, hardness and weathering were recorded on geologic logging forms. The exploratory boring log for MW-11 is attached.

To prevent downhole contamination, soil boring and sampling equipment, including casings, drill rods, and samplers, were cleaned with potable, high-pressure hot water before use. Air was filtered after it has moved through the compressor and before being forced into the borehole.

The monitoring well was constructed with 4-inch diameter schedule 80 polyvinyl chloride (PVC) flush thread casing and screen connected with O-rings-fitted joints. The monitoring well was constructed inside the temporary steel casing used to advance the borehole. The steel casing was incrementally withdrawn as the annular materials for the well were added. The screen is approximately 19.5-feet long with 0.010-inch factory machine-cut slots. One centralizer was installed at the top and bottom of the screen within the sand pack interval and

Washington) to R. North, Waste Management, Inc., Portland, Oregon, from D. Higgins and L. Caruso, EMCON/OWT, Inc., Portland, Oregon. May 4.

Mr. Roger North September 8, 2004 Page 3

every 40 feet above the screen to the ground surface. Casings, screens, couplings, caps, and centralizers used to construct the monitoring wells were new. The annular space around the screen and approximately 2 feet above the top of the screen was filled with clean, 10-20 graded silica sand.

A filter pack seal constructed immediately above the filter pack consisted of a layer of 20-40 gradation silica sand approximately 2-feet thick, overlain by a 6-foot-thick seal of bentonite chips. The bentonite-chip seal was allowed to hydrate for approximately two hours before the annular grout seal was placed. The remaining annular space was filled with a high-solids (30-percent) bentonite slurry (grout seal). The grout seal was mixed to a weight equal to or greater than 9.5 pounds per gallon in a portable grout plant. The grout seal was pumped into the annular space through a tremie pipe constructed of new schedule 80 PVC, lowered to just above the bentonite-chip seal. The tremie pipe and temporary steel casing was withdrawn as the hole was grouted.

The grout batches were weighed with a Baroid, Inc. mud scale. The theoretical volume of grout required was calculated as 2.85 gallons per foot (approximately 1,211 gallons total) and approximately 2,306 gallons were actually used. Within the landslide deposits, the volume of grout used was close to the theoretical volume. However, the volume of grout used within the sand deposits was much greater than theoretical volume and is likely due to the relatively high permeability of the sand deposits. Overall, the volume of grout used to fill the borehole annular space was close to twice the theoretical amount required based on volumes calculated from the borehole and well casing diameters, which is consistent with the volumes of grout used for the installation of monitoring wells MW-07, MW-08A, MW-09A, and MW-10.

An above ground lockable steel protective casing was installed over the PVC well casing and secured in a concrete pad. Three steel protective posts were installed around the well pad. The well construction diagram for MW-11 is attached.

SURVEYING

Landline Surveyors, of Leavenworth, Washington (a Washington registered professional land surveyor) surveyed the new monitoring well. The ground surface at the wellhead and the top-of-casing elevations (at an inscribed mark) were surveyed to an accuracy of 0.01 foot based on the North American vertical datum of 1988. Horizontal coordinates were surveyed to an accuracy of 0.5 foot relative to state plane coordinates consistent with the current site practices. Survey results are shown on the attached monitoring well construction diagram.

Mr. Roger North September 8, 2004 Page 4

DEVELOPMENT

The new monitoring well was developed on July 12 and 13, 2004 by pumping and surging. TPDC installed an electric submersible pump and pumped the well for approximately 2 hours at a rate of approximately 6 gallons per minute on July 12. TPDC pumped the well for an additional hour on July 13 before removing the pump. A total of 960 gallons of water were purged from the well during the development process. Field parameters, including specific conductance, pH, temperature, and sediment content were measured during development and recorded on a well development field sheet (attached). The well was considered developed when the discharge water was visibly free of sediment and when the field parameters had stabilized to within 10 percent of the previous measurement.

PUMP INSTALLATION

A new dedicated QEDTM bladder pump was installed in the well on July 16, 2004 to accommodate routine groundwater quality monitoring using the low-flow purging method, consistent with the method used for sampling the other site monitoring wells as approved by the WDOE and CDHD.

Please contact EMCON if you have questions or require additional information.

Sincerely,

EMCON/OWT, INC.

Craig D. Fanshier, R.G.

Senior Hydrogeologist

Louis Caruso, R.G.

Hydrogeology Program Manager

Attachments: Figure 1, Monitoring Well Locations

Exploratory Boring Log for MW-11

Monitoring Well MW-11 Well Construction Diagram

Notice of Intent to Construct a Monitoring/Resource Protection Well

Washington State Resource Protection Well Report

Well Development Form

cc/att: Jim Obereiner, WM

Ted Woodard, WM Martin Anthis, WM

ATTACHMENTS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

MW-11 BORING NO. **PAGE** 1 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
								0 to 20.0 feet: SILTY SAND (SM); brown (10YR 4/3); 15 to 20 percent nonplastic fines; 80 to 85 percent fine to medium (5:1 F:M) subrounded sand; moist (irrigation from apple tree orchard).
				5-				@ approximately 4.0 to 8.0 feet: 1 to 3 percent fine gravel (4.75 mm to ½-inch).
	-			10 -	dub.			@ 7.0 feet: moist; brown as above.
				-				 @ 10.0 feet: sand is rounded to subrounded, 0.4 to 1 mm, approximately 10 to 15 percent fines. @ 12.0 to 315.0 feet: drilling dry.
				15 –				
		Carlo						
					mg.			

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. PAGE APPROX, GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 2 of 23 1230.50 456.0' 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					(M)			20.0 to 86.0 feet: SAND (SP); light olive brown to olive brown (2.5Y 5/3 to 4/3); 10 to 15 percent fines; 85 to 90 percent fine to medium sand (0.4 to 1 mm, 30 percent of sand >0.7 mm); slightly coarser sand than above; trace mica; damp.
				25 -	(3)			
				35 -				
				40-	LIN.			

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 3 of 23 1230.50 456.0" 6/16/04

SAMPLE METHOD	RECOVERY (feet)	BLOWS PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					<u></u>			20.0 to 86.0 feet: SAND (SP); continued.
				1				@ 42.0 feet: trace coarse sand.
				45 -		XXXXXX		@ 48.0 to 50.0 feet: 5 to 10 percent ½- to 1-inch rounded
				50 -				flat gravel.
				55 -				
								@ 56.0 feet: trace coarse sand 3 to 4.75 mm.
				60-	(M)			

REMARKS

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

BORING NO. **PAGE** APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 4 of 23 1230.50 456.0" 6/16/04

SAMPLE METHOD	RECOVERY (feet)	BLOWS PER 6-INCHES	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC	LITHOLOGIC DESCRIPTION
		6-INCHES (N-COMP)	GR. W.	o z	SAN	S21 K3	COLUMN	
					- Child			20.0 to 86.0 feet: SAND (SP); continued.
			-					@ 62.0 feet: 2 to 3 percent 3/4-inch fine rounded gravel.
			- - - -	65 -				
			- -					
				70 -	(A)			@ 70.0 feet: mostly 0.5 to 1.0 mm subangular to subrounded sand.
				_				
				75 –				
			-					
				80-	m.			

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed Shaw "EMCON/OWT, INC. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

BORING NO. MW-11 PAGE 5 of 23 APPROX. GROUND ELEV. 1230.50 456.0" TOTAL DEPTH DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	BLOWS PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					- Carlo			20.0 to 86.0 feet: SAND (SP); continued. @ 80.0 feet: 3 percent fine gravels.
				-				
				85 -				
								86.0 to 89.0 feet: SILTY SAND (SM); olive brown; 15 to 20 percent silt; 80 to 85 percent fine to medium sand (mostly finer than above); damp.
			-					@ 89.0 feet: 3 percent fine gravel. 89.0 to 111.0 feet: SAND (SP); olive brown (2.5Y 4/3); 5
				90 -				to 10 percent nonplastic fines; 90 to 95 percent fine to medium sand; damp.
,				70				
				95 –				
								@ 98.0 to 110.0 feet: coarser sand.

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 6 of 23 1230.50 456.0' 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					M.			89.0 to 111.0 feet: SAND (SP); continued. @ 100.0 feet: trace 3/8- to 1/2-inch gravels.
			-	105 -				@ 104.0 feet: trace fine gravel; 5 percent coarse sand (3 to 5 mm).
			- 1	110 -				@ 108.0 feet: trace angular gravel (1/2-inch by 3/4-inch).
								111.0 to 113.0 feet: SILTY SAND (SM); light olive brown (2.5Y 5/3); 20 to 30 percent nonplastic fines; 70 to 80 percent fine to medium sand; damp.
			- 1	115 –				113.0 to 138.0 feet: SAND (SP); olive brown; 10 to 15 percent nonplastic fines; 85 to 90 percent fine to medium sand; damp.

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed Shaw EMCON/OWT, INC. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. MW-11 PAGE 7 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	BLOWS PER 6-INCHES (N-COMP)	GROUND WATER LEVEL DEPTH	SAMPLES	WELL	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
							113.0 to 138.0 feet: SAND (SP); continued.
							@ 123.0 feet: medium sand.
			- 128 - - -	5			@ 125.0 feet: trace fine gravel.
							@ 128.0 feet: mostly fine to medium sand with 15 percent nonplastic fines.
			— 130 - - - - -	0 🖑			@ 130.0 feet: trace gravel.
			- - - 135	5-			@ 134.0 feet: trace (5 to 8 percent) gravel with fine to coarse sand.
							@ 136.0 feet: gravels have a SILTY SAND coating with 20 to 35 percent low plasticity fines with mica. Gravels are mostly angular with some rounded corners (not from drill bit); some staining or weathering on some surfaces.
				48			138.0 to 142.0 feet: SILTY SAND (SM); light olive brown (2.5Y 5/3); 20 to 30 percent nonplastic fines; 70 to 80 percent fine to medium sand; damp.

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed sample collected every 10 feet. A 4-inch PVC monitoring well was constructed sample collected every 10 feet. A 4-inch PVC monitoring well was constructed sample collected every 10 feet. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION **DRILLED BY DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

BORING NO.

MW-11 8 of 23 1230.50 456.0' 6/16/04

SAMPLE RECOVERY BLOWS WELL LITHO-LITHOLOGIC DEPTH IN FEET (feet) PER DETAILS LOGIC DESCRIPTION 6-INCHES COLUMN (N-COMP)

METHOD 138.0 to 142.0 feet: SILTY SAND (SM); continued. 142.0 to 171.0 feet: SAND (SP); olive brown; 10 to 15 percent nonplastic fines; 85 to 90 percent fine to medium sand; damp. 145 @ 145.0 feet: trace gravels. @ 148.0 feet: fine to medium sand (0.2 to 1 mm, mostly 0.4 to 0.6 mm). @ 154.0 feet: medium sand. 155 @ 159.0 feet: fine to medium sand. 160

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. MW-11 **PAGE** 9 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0" DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	DETAILS LO	THO- OGIC LUMN	LITHOLOGIC DESCRIPTION
								142.0 to 171.0 feet: SAND (SP); continued. @ 160.0 feet: fine to coarse sand, trace gravel.
				165 -				
ž.								@ 165.0 feet: trace gravels.
	- 4			170 –	an			@ 168.0 feet: trace gravels.@ 169.0 to 171.0 feet: slightly coarser sand, up to 2 mm.@ 171.0 feet: cobble in medium to coarse sand.
			-	-				171.0 to 180.0 feet: SAND WITH SILT (SP-SM); olive brown; 15 percent non to low plasticity fines; 75 to 80 percent poorly sorted, subangular to rounded, fine to coarse sand; 5 to 10 percent fine to medium subangular gravel (basalt); damp.
1				175 –				
					offe			@ 178.0 feet: 5 to 10 percent fine to medium subangular gravel (basalt).

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 10 of 23 1230.50 456.0' 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
				195 —				180.0 to 261.0 feet: SAND (SP); olive brown (2.5Y 4/30); 10 percent non to low plasticity fines; 90 percent poorly sorted fine to medium (0.1 to 1 mm), subrounded to rounded sand; damp. ② 189.0 feet: trace 1/2- to 3/4-inch angular gravel.

REMARKS

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. MW-11 PAGE 11 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
								180.0 to 261.0 feet: SAND (SP); continued.@ 201.0 feet: fine to medium sand, trace (<1 to 3 percent fine gravel, approximately 6 mm).
				205 -				
			:	210 -				@ 210.0 feet: trace ½- to 2-inch gravel, fine to medium sand (mostly quartz, feldspar, and granitic rock fragments).
				215 -				@ 215.0 feet: 10 to 15 percent nonplastic fines; fine to medium sand (mostly <1 mm).

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed **Shaw** EMCON/OWT, INC. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION **DRILLED BY DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

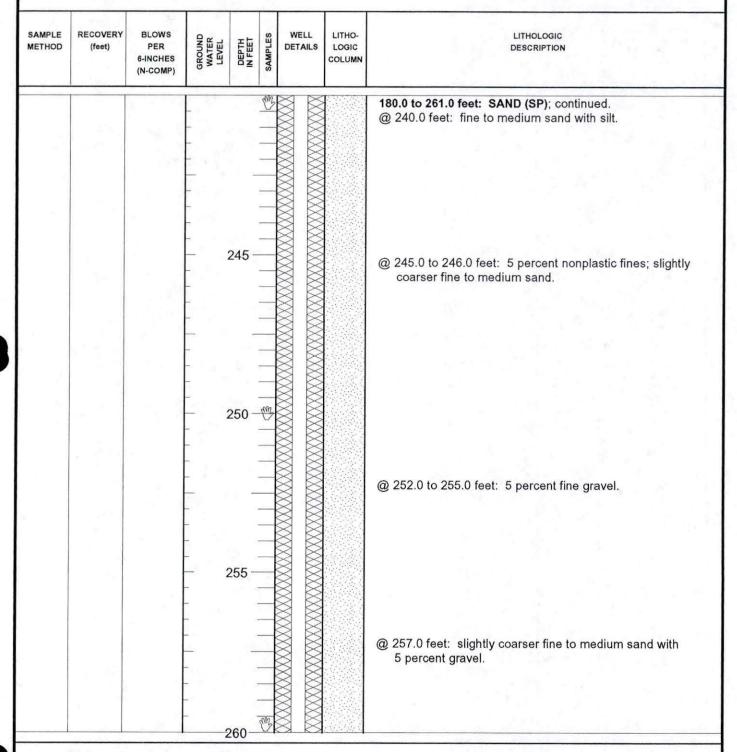
Craig Fanshier, R.G.

BORING NO. **PAGE** APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 12 of 23 1230.50 456.0" 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					CM3			180.0 to 261.0 feet: SAND (SP); continued.
			71					
			- 2	225 -				
								@ 225.0 to 226.0 feet: 10 to 15 percent nonplastic fines.
				_				
		, G14						
	4		_ 2	230 -	W			
			7	5				
				1 3				
	-			9				© 224 0 feets about 15 5
			_ 2	35 –				@ 234.0 feet: changes to 5 percent nonplastic fines, 95 percent fine to medium, angular to rounded, poorly sorted sand with more dark colored rock fragments
								(shale, gnessic); damp.
				: : : : : : : : : : : : : : : : : : :				
			-					@ 238.0 feet: trace gravel.
			- 2	40-	NY S	3 8		

REMARKS



PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

MW-11 PAGE 13 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0" DATE COMPLETED 6/16/04

REMARKS

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

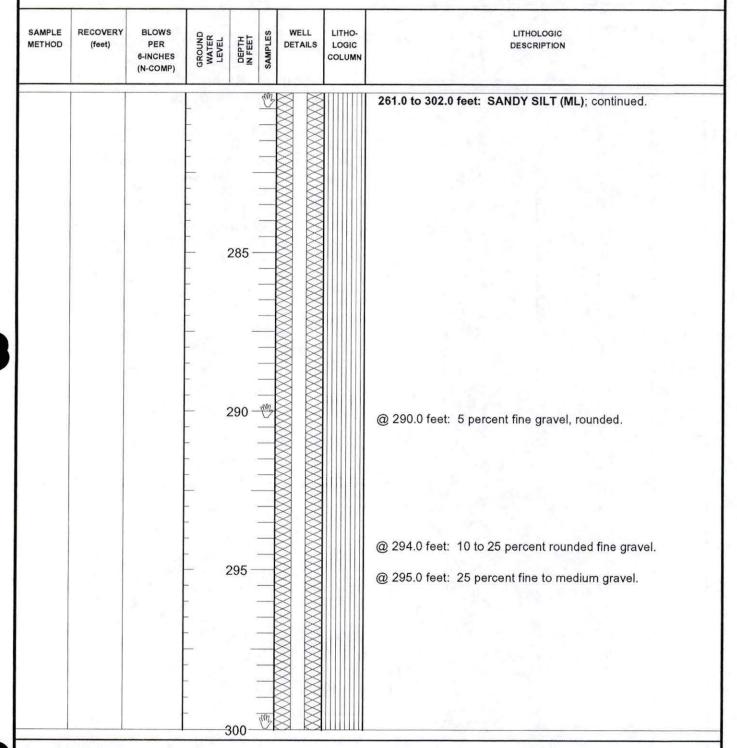
Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 14 of 23 1230.50 456.0" 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
		TA I			NB.	X X		180.0 to 261.0 feet: SAND (SP); continued.
								261.0 to 302.0 feet: SANDY SILT (ML); light olive brown (2.5Y 5/4); 50 to 60 percent nonplastic fines to low; 40 to 50 percent fine sand; damp.
				265 -				
			- 2	270 –	- Chin			
				3 2 3 3				
				275 -				
				-				

REMARKS



PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

MW-11 PAGE 15 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed **Shaw** in the boring (see well construction diagram for details).

EMCON/OWT, INC.

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. **Greater Wenatchee Regional Landfill** Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 16 of 23 1230.50 456.0' 6/16/04

302.0 to 302.0 feet: SANDY SILT (ML); continued. 302.0 to 341.0 feet: SILTY GRAVEL (GM); clive brown (2.5Y 4/4); 20 to 25 percent non to low plasticity fines; 20 to 25 percent fine sand; 50 to 60 percent 1/2- to 3-inch gravels, angular, basalt, silty coating on gravel faces. 304.0 feet: color changes to light yellowish brown (2.5Y 6/3), drilling rate decreases significantly. 315 315 316 317 318 319 319 3110	SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
(2.5Y 4/4); 20 to 25 percent non to low plasticity fines; 20 to 25 percent fine sand; 50 to 60 percent ½- to 3-inch gravels, angular, basalt, silty coating on gravel faces. (3.04.0 feet: color changes to light yellowish brown (2.5Y 6/3), drilling rate decreases significantly. (2.5Y 6/3), drilling rate decreases significantly.				_		8			261.0 to 302.0 feet: SANDY SILT (ML); continued.
315 (2.5Y 6/3), drilling rate decreases significantly. (2.5Y 6/3), drilling rate decreases significantly.		4,1		- - -					(2.5Y 4/4); 20 to 25 percent non to low plasticity fines; 20 to 25 percent fine sand; 50 to 60 percent ½- to 3-inch
@ 315.0 feet: hard drilling, SILTY GRAVEL with cobbles and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and smooth (drilling through rock), jerky (drilling past rock). @ 315.5 to 320.0 feet: fast drilling, add water to clean				- - -	305 -			00000	@ 304.0 feet: color changes to light yellowish brown (2.5Y 6/3), drilling rate decreases significantly.
@ 315.0 feet: hard drilling, SILTY GRAVEL with cobbles and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and smooth (drilling through rock), jerky (drilling past rock). @ 315.5 to 320.0 feet: fast drilling, add water to clean				-					
and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and smooth (drilling through rock), jerky (drilling past rock). @ 315.5 to 320.0 feet: fast drilling, add water to clean				- - - - 3	310 –	W.		000000	
and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and smooth (drilling through rock), jerky (drilling past rock). @ 315.5 to 320.0 feet: fast drilling, add water to clean									
and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and smooth (drilling through rock), jerky (drilling past rock). @ 315.5 to 320.0 feet: fast drilling, add water to clean									
@ 315.5 to 320.0 feet: fast drilling, add water to clean				- 3 - -	315				and boulders approximately 1- to 2-feet in diameter, inferred from drill action (jerky, biting into rock), and
				-	-				@ 315.5 to 320.0 feet: fast drilling, add water to clean

REMARKS

PROJECT NAME LOCATION **DRILLED BY DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

BORING NO. **PAGE** APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 17 of 23 1230.50 456.0' 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
				335 -				 302.0 to 341.0 feet: SILTY GRAVEL (GM); continued. ② 320.0 feet: all cuttings are dark gray to black, basalt boulder, angular. ② 325.0 feet: SILTY GRAVEL (GM); olive gray (5Y 4/2). ② 327.0 to 329.0 feet: basalt cobbles/boulder, damp.

REMARKS

PROJECT NAME LOCATION **DRILLED BY DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. PAGE APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

MW-11 18 of 23 1230.50 456.0' 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
					(M)	3 8	0000	302.0 to 341.0 feet: SILTY GRAVEL (GM); continued.
				_			0 0	341.0 to 345.0 feet: SILT (ML); light olive brown (2.5Y 5/4); 50 to 70 percent nonplastic fines to low; 40 to 50 percent fine sand; damp.
			-	345 -				345.0 to 456.0 feet: SILTY GRAVEL (GM); olive brown (2.5Y 4/3); 20 to 25 percent non to low plasticity fines; 20 to 25 percent fine sand; 50 to 60 percent gravel and cobbles (approximately 6- to 12-inch) with SILTY SAND matrix; angular gravel, moderate drilling rate, broken rock (Talus?) or very broken basalt with vesicular basalt.
			3	350 –	- Control of the cont			@ 349.0 to 352.0 feet: basalt boulder.
-			- 3	355				
		^			K.M.	\times		

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed **Shaw** EMCON/OWT, INC. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. MW-11 PAGE 19 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0" DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	BLOWS PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	IN FEET SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
				6M3			345.0 to 456.0 feet: SILTY GRAVEL (GM); continued.
			36	5 —			
			37	0 - 🖑			
			379	5			
			- - - - - - - - - - - - - - - - - - -	W.			

REMARKS

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary

Craig Fanshier, R.G.

APPROX. GROUND ELEV. TOTAL DEPTH DATE COMPLETED

BORING NO.

PAGE

MW-11 20 of 23 1230.50 456.0' 6/16/04

SAMPLE RECOVERY **BLOWS** WELL LITHO-LITHOLOGIC SAMPLES GROUND WATER LEVEL DEPTH IN FEET METHOD DETAILS (feet) PER LOGIC DESCRIPTION 6-INCHES COLUMN (N-COMP) 345.0 to 456.0 feet: SILTY GRAVEL (GM); continued. @ 380.0 feet: damp SILTY GRAVEL, drilling rate increases some. @ 382.0 feet: lose air circulation. 385 @ 389.0 to 394.0 feet: not a lot of cuttings return. Driller speculates voids between basalt gravels and small 390 cobble. Sandy silt matrix on gravel cutting. @ 394.0 feet: trace white rock chips and red rock chips. 395 @ 398.0 feet: mostly small basalt cuttings with sandy silt matrix.

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed in the boring (see well construction diagram for details).

400

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. MW-11 PAGE 21 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	DETAILS LO	THO- OGIC LUMN	LITHOLOGIC DESCRIPTION
				410 -			0000000	 345.0 to 456.0 feet: SILTY GRAVEL (GM); continued. 400.0 feet: trace moisture, cuttings damp to moist. 409.0 feet: SILTY GRAVEL (GM); olive brown (2.5Y 4/3); 30 percent non to low plasticity fines; 20 percent fine sand; 60 percent fine to coarse gravel with cobbles approximately <8-inches. 410.0 to 413.0 feet: 3-foot boulder in silty gravel matrix, damp to moist.

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed Shaw EMCON/OWT, INC. in the boring (see well construction diagram for details).

PROJECT NAME LOCATION DRILLED BY **DRILL METHOD** LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.

BORING NO. PAGE APPROX, GROUND ELEV. TOTAL DEPTH DATE COMPLETED

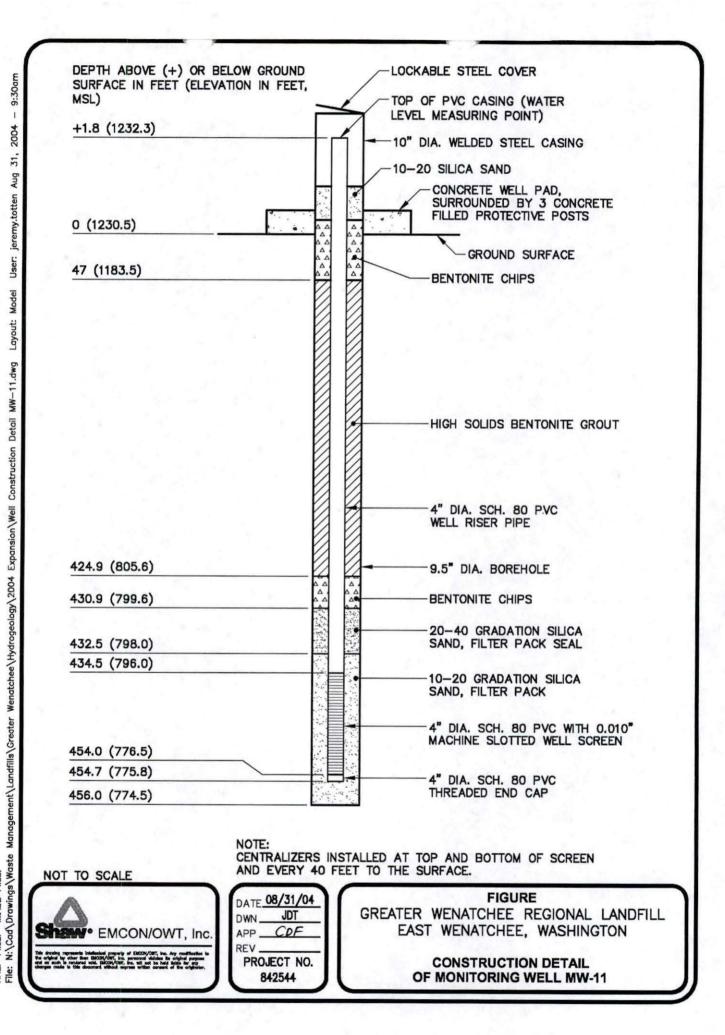
MW-11 22 of 23 1230.50 456.0" 6/16/04

SAMPLE RECOVERY (feet) PER e-INCHES (N-COMP) BLOWS PER e-INCHES (N-COMP) BLOWS (N
@ 420.0 feet: trace water.

REMARKS

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY

Waste Management, Inc. Greater Wenatchee Regional Landfill Tacoma Pump & Drilling Company, Inc. Air Rotary Craig Fanshier, R.G.


MW-11 PAGE 23 of 23 APPROX. GROUND ELEV. 1230.50 TOTAL DEPTH 456.0' DATE COMPLETED 6/16/04

SAMPLE METHOD	RECOVERY (feet)	PER 6-INCHES (N-COMP)	GROUND WATER LEVEL	DEPTH IN FEET	SAMPLES	WELL DETAILS	LITHO- LOGIC COLUMN	LITHOLOGIC DESCRIPTION
				445 -	(M)			345.0 to 456.0 feet: SILTY GRAVEL (GM); continued. @ 440.0 to 450.0 feet: easier drilling.
								 @ 446.0 feet: produces approximately 5 gpm. @ 448.0 feet: angular basalt cuttings, trace siltstone/sandstone rock fragments.
				450 -	(M)			
l _e e			- - - 4	155 —				Total depth borehole = 456.0 feet.

REMARKS

Boring advanced with temporary 8-inch I.D. (1/2-inch well) welded steel casing with a 9.5-inch O.D. shoe and a 6 3/4-inch tri-cone bit using a Foremost DR-24 HD dual-rotary drill rig and auxiliary air compressor. Samples for description collected from air-rotary discharge at surface nearly continuously and an archived bagged sample collected every 10 feet. A 4-inch PVC monitoring well was constructed Shaw EMCON/OWT, INC. in the boring (see well construction diagram for details).

Notification Number

NOTICE OF INTENT TO CONSTRUCT A MONITORING/RESOURCE PROTECTION WELL

R 62679

This form and required fees MUST BE RECEIVED by the Department of Ecology 72
HOURS BEFORE you construct a well.

Submit one form and required fee (check or money order ONLY) for each job site. Instructions for filling out this form are printed on the back. Mail this form to the Department of Ecology, P.O. Box 5128, Lacey, WA 98509-5128.

OUTLINED IN THE BOXES ARE NOT	
1. Property Owner Waste Management And	Phone No.
Address (include city, state and zip) 10360 Sh	
2. Consulting Firm (if different from #1) Shaw-Emcon/C Address (include city, state and zip) 10300 SW Nimbru	
01-Adams, 02-Asotin, 03-Benton, 04-Chelan, 05-Clallam, 06-Clark, 07-Columbia, 08-Cowl Harbor, 15-Island, 16-Jefferson, 17-King, 18-Kitsap, 19-Kittitas, 20-Klickitat, 21-Lewis, 22- 27-Plerce, 28-San Juan, 29-Skagit, 30-Skamania, 31-Snohomish, 32-Spokane, 33-Stevens, 3 38-Whitman, 39-Yakima 3. Print CODE NUMBER and COUNTY NAME (e.g. 01-Adams) of well location from list above (DO NOT ABBREVIATE)	Lincoln, 23-Mason, 24-Okanogan, 25-Pacific, 26-Pend Oreille, 4-Thurston, 35-Wahklakum, 36-Walla Walla, 37-Whatcom, OA DouglaS
4. Well Location: SE 1/4 of the SW 1/4 Section 1/4 5. Approx construction start date 6-7-04	Township Range Range WWM
Latitude and Longitude (if available) NOTE: 1/4, 1/4, section, township a	nd range are REOLIPED
Lat Degrees Lat Time	36
Long Degrees Long Time Hori	zontal collection
6. Well Site Street Address 191 So Well Rd 8	ast Wensthee
7. Tax parcel number	
8. Contractor L & I Registration No. Tacompp 2039 F. 9. Well Drilling Company Name Jacoma Lump JDn. 10. Well Driller Name Mark Wesse.	Phone No 253-847-933 License No 2432
11. SEND THE ENTIRE FORM. The bottom portion of this notice will be address contained on the address label. This is the proof of notification. Ple NOTE: Please copy the Notification Number (located in the upper and lowereference this number when communicating with the Department of Ecology	ase fill out the portion below CAREFULLY.
Amt of payment: \$40 per well	25.0
This no	tification number must be d to your well driller:
RETURN NAME AND MAILING ADDRESS	
Name Jacomo Rump & Dulling	Client Name Agency Validation
Address 30316 mt Huy	CJ No
State Wa Zip 98338	Date

Washington State Resource Protection Well Report

Project Name; Well Identification:	Waste Management Inc. MW-11	Start Card No.: R62679 Unique No Location T 22 R 21E Sec		
Drilling Method:		SE 1/4 SW 1/4		
Rotary X Cable to	ol Auger Other	County: Douglas Address: Greater Wenatchee Re	acional I anfi	ill
New Construction X	Conversion Abandonment	Address. Greater Wellatonee No.	Salone Carin	
Driller:	Mark Wiese #2432			
	The state of the s			
Signature: Drilling Contractor:	Tacoma Pump and Drilling	Date: 8/30/04 Craig Fanshier, Shaw /	Emcon, Inc	
Protective	☐ Above ground			
Bollards	Protective Cover	Well Log:	From	To
		Silty sand, brown.	0	20
Monument	80 0 88	Sand, olive brown.	20	171
0_ft.	Casing	Sand with silt, olive brown.	171	180
70 3 ft.	Diameter 4 in.	Sand, olive brown.	180	261
3ft.	Material P.V.C. 80	Sandy silt, olive brown.	261	302
7 88	Threaded X Welded	Silty gravel, olive brown. Silt, olive brown.	302	341
	Glued	Silty gravel, olive brown cobbles	341	345
		@ 6-12"	343	
	Well Seal	basalt boulder @ 349-352'		456
	Material	5 g.p.m. @ 446'		
real	Bentonite Grout X			
3 ft.	Bentonite Chip			
To (Amount			
431 ft.	Gallons 2100			
	Sacks	1		
	Bore Hole Dlameter	1		
		-		
\ 88		1		
` 🕸	Bentonite Chip	I -		
. 83	Dentonite Chip	H		
(💸	Screen			
	Meterial PVC			
Fiter Pack	From 434 To 454			
431 ft.	Slot Size .010	Finished Depth 45	56 ft.	
To 1				
456 ft.	Filter Pack	Static Level 420	ft.	
	Size 10-20			
	Meterial PVC From 434 To 454 Slot Size .010 Filter Pack Size 10-20 Type Silica Sand	Date Started 6/	15/04	
(22		Date Finished 7/2	23/04	
(*		Date Finished 1	20104	

WELL DEVELOPMENT FOI

	N ™ EMC					Portland, (Ph: (503) (Fax: (503)	603-1000	., Suite B
Client: W	Juste r	Monay	must		Date: 7	12/04		
Project #:	84254	4			Well ID:	MW-11		
Site Name:	6 MBI	ν.	1.		Initial DTW:	1100		OFinal DTW: NR
Site Locatio	CONF	(0)	enatcher	, WA	Initial DTB:	450	22 455.	Final DTB: NR
Developmer Total Water		Submer	sible per	np	Casing Diame			E!
Water Conta			adloin)	WL Meter #:		1	
	specific capa		arge to well:		WE MICKEL III.	DIMU	model	101 6501
	Cumulative			Specific	Dissolved	DTW	1	
6	Gallons	pН	Temperature	Conductance	Oxygen	(TOC)	Silt/Sand	The second second
Time	Removed	S.U.	°F (°C)	(uS) mS	mg/L	ft-bgs	mL/1000mJ	Comments
18:10	0	7.60	20.2	5//	NR		8 Condlan	6 gallow mutist
10115	30	257	20.1	437	NR		1	terpid Who ten
18:20	90	743	20.4	402	NR			legal minutitus
18:40	180	541	20.3	400	NR		0.87mb/	
18:57	210	120	20.1	376	wa		V.O.moji	" II
0:52	240	7 39	20.3	295	NR			11 1
19:02	270	7.39	20. 1	397	NR			11 11
19:07	300	7.39	20.3	392	NR		0.25m/s/10	cons tubed (1/as
19:25	330	7.40	20.0	309	1010		10.2000	SCH 1 Stap Columbers 514 1 Stap Columbers 514 1 Stap Columbers
19:41	420	7.37	20.0	389	-			3(+ tube) 11 68
19 47	450	738	20.1	391				11 11
19:55	480	739	20./	390			0.05Ns/1	
20:00	510	739	20.0	389			10.00-11.0/	Mis le gell/m
20:10	370	2.41	20.0	390				(1 ')
20:15	600	7.41	19.9	389	_		0.1011	
7/13/04	000	7[-1-1-	301			J. J. M. J. J.	DOUBLE
8: 30	960	_	_	_	_	_	-	Pumped for I more hour.
	100		11					70. 70. 70.00
				1				
							One to the	
					1			

Signed:

Page____of____

APPENDIX C

MW-11 GROUNDWATER ANALYTICAL RESULTS FOR SAMPLES COLLECTED ON JULY 16 AND DECEMBER 15, 2004

STL Denver 4955 Yarrow Street Arvada, CO 80002

Tel: 303 736 0100 Fax: 303 431 7171 www.stl-inc.com

ANALYTICAL REPORT

Project No. Site 904

Greater Wenatchee

Lot #: D4G170191

Final Report MW-11

Reported to:

Steve Wulf

Waste Management, Inc. Greater Wenatchee 191 South Webb Road East Wenatchee WA 98802

Cc: Jason Davendonis

STL DENVER

Betsy Farnaus Project Manager

August 6, 2004

Case Narrative

Enclosed is the report for four samples received at STL Denver laboratory on July 17, 2004. The results included in this report have been reviewed for compliance with STL's Laboratory Quality Manual. The test results shown in this report meet all requirements of NELAC and any exceptions are noted below.

This report includes data with reporting limits (RLs) less than STL Denver's standard reporting limit. These data and reporting limits are being used specifically to meet the needs of this project. Note that, data are not customarily reported to these levels because they are inherently less reliable and potentially less defensible than the latest industry standards require.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

STL Denver utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D4G170191

Sample Receiving

- The cooler temperature upon receipt at the Denver laboratory was 3.3°C.
- > All sample bottles were received in acceptable condition.

Holding Times

All holding times were within established control limits.

Method Blanks

- Dissolved Barium and Dissolved Silver Method 6010B were detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.
- Chloride Method 300.0A was detected in the Method Blank above the project established reporting limit, however, the requested reporting limit for Chloride is below STL's standard reporting limit and, therefore, no corrective action has been taken for this anomaly. It must be noted that results reported below STL's standard reporting limits may result in false positive/false negative results, less accurate quantitation and potential misidentification at the lower concentrations.
- > All other Method Blanks were within established control limits.

Laboratory Control Samples

All Laboratory Control Samples were within established control limits.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

- Due to the result concentration exceeding the calibration range the MS/MSD results for Chloride and Sulfate Method 300.0A are estimated.
- > All other Matrix Spike and Matrix Spike Duplicate samples were within established control limits.

ION BALANCE REPORT

Lab Sample ID: D4G170191-001

Client Sample ID: MW-11

SAMPLE SUMMARY

Percent Difference	0.28
Total lons (meq/L)	8.13
TDS Ratio (measured/calculated)	1.00
Calculated TDS (cations+anions, mg/L)	269.31

CATION ANALYSES

Analyte	mg/L	meq/L
Calcium	35.00	1.75
Magnesium	18.00	1.48
Potassium	5.80	0.15
Sodium	16.00	0.70
Ammonia as N	0.03	0.00
Iron	0.03	0.00
Aluminum	NA	NA
Total Cations	74.86	4.08

ANION ANALYSES

Analyte	mg/L	meq/L
Chloride	4.10	0.12
Sulfate	17.00	0.35
Nitrate+Nitrite	3.35	0.24
Carbonate Alkalinity	ND	ND
Bicarbonate Alkalinity	170.00	3.34
Hydroxide Alkalinity	NA	NA
Total Alkalinity	NC	NC
Total Anions	194.45	4.05

OTHER ANALYSES

Analyte	mg/L
Total Dissolved Solids	270.00

ND - Not Detected

NA - Not Analyzed

NC - Not Calculated

Note: Calculations are most accurate under standard conditions. Extremes of pH or conductivity may lead to inaccuracy, as will high levels of cations or anions not analyzed.

EXECUTIVE SUMMARY - Detection Highlights

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-11	07/16/04 11:20 001				
	Antimony - DISSOLVED	0.75	0.60	ug/L	SW846 6020
	Arsenic - DISSOLVED	1.2	1.0	ug/L	SW846 6020
	Cadmium - DISSOLVED	0.038 B	0.50	ug/L	SW846 6020
	Lead - DISSOLVED	0.23 B	1.5	ug/L	SW846 6020
	Nickel - DISSOLVED	1.2 B	10	ug/L	SW846 6020
	Selenium - DISSOLVED	1.2	1.0	ug/L	SW846 6020
	Iron - DISSOLVED	25 B	30	ug/L	SW846 6010B
	Magnesium - DISSOLVED	18000	5000	ug/L	SW846 6010B
	Sodium - DISSOLVED	16000	5000	ug/L	SW846 6010B
	Barium - DISSOLVED	37 B,J	100	ug/L	SW846 6010B
	Calcium - DISSOLVED	35000	5000	ug/L	SW846 6010B
	Chromium - DISSOLVED	3.6 B	5.0	ug/L	SW846 6010B
	Manganese - DISSOLVED	150	5.0	ug/L	SW846 6010B
	Vanadium - DISSOLVED	13 B	50	ug/L	SW846 6010B
	Zinc - DISSOLVED	25	20	ug/L	SW846 6010B
	Potassium - DISSOLVED	5800	5000	ug/L	SW846 6010B
	Copper - DISSOLVED	1.3 B	25	ug/L	SW846 6010B
	Specific Conductance	410	2.0	umhos/cm	MCAWW 120.1
	рн	7.9	0.10	No Units	MCAWW 150.1
	Total Dissolved Solids	270	5.4	mg/L	MCAWW 160.1
	Chloride	4.1 J	0.50	mg/L	MCAWW 300.0A
	Sulfate	17	5.0	mg/L	MCAWW 300.0A
	Nitrate	3.2	0.050	mg/L	MCAWW 300.0A
	Hardness,	150	5.0	mg/L	SM18 2340B
	as CaCO3			3/	2
	Nitrite	0.15	0.060	mg/L	MCAWW 300.0A
	Ion Balance	1.8		8	SM18 1030F & API
	Difference				Dillo 10301 R FRI
	Total Anions	4.0	0.30	meg/L	SM17 1030F & API
	Total Cations	3.9	0.10	meg/L	SM17 1030F & API
	Bicarbonate	170	10	mg/L	MCAWW 310.1
	Alkalinity			9, 12	ACTIVITY SEC.E
	Total Alkalinity	170	5.0	mg/L	MCAWW 310.1
	Ammonia as N	0.030 B	0.040	mg/L	MCAWW 350.1
	Ionized Ammonia	0.029 B	0.040	mg/L	SM18 8010F
FB1 07	/16/04 10:45 002				
	Lead - DISSOLVED	0.11 B	1.5	ug/L	SW846 6020
	Silver - DISSOLVED	0.83 B,J	5.0	ug/L	SW846 6010B
	Magnesium - DISSOLVED	31 B	5000	ug/L	SW846 6010B
	Barium - DISSOLVED	1.6 B,J	100	ug/L	SW846 6010B

EXECUTIVE SUMMARY - Detection Highlights

D4G170191

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PARAMETER	Inogan	_ HIMII	ONLID	_ HBINOD
FB1 07/16/04 10:45 002				
Calcium - DISSOLVED	240 B	5000	ug/L	SW846 6010B
Zinc - DISSOLVED	7.3 B	20	ug/L	SW846 6010B
Copper - DISSOLVED	1.3 B	25	ug/L	SW846 6010B
Specific Conductance	2.3	2.0	umhos/cm	MCAWW 120.1
рн	7.4	0.10	No Units	MCAWW 150.1
Total Suspended Solids	4.5	3.0	mg/L	MCAWW 160.2
Chloride	1.1 J	0.50	mg/L	MCAWW 300.0A
Hardness, as CaCO3	0.86 B	5.0	mg/L	SM18 2340B
Total Anions	0.050 B	0.30	meq/L	SM17 1030F & API
Total Cations	0.020 B	0.10	meq/L	SM17 1030F & API
Bicarbonate Alkalinity	1.2 B	10	mg/L	MCAWW 310.1
Total Alkalinity	1.2 B	5.0	mg/L	MCAWW 310.1
Chemical Oxygen Demand (COD)	8.2 B	10	mg/L	MCAWW 410.4

PREPARATION METHODS SUMMARY

D4G170191

PREPARATION DESCRIPTION	PREPARATION METHOD	ANALYTICAL METHOD
рн	MCAWW 150.1	MCAWW 150.1
Acid Digestion for Total Metals by ICPMS	SW846 3020A	SW846 6020
Acid Digestion for Total Recoverable Metals	SW846 3005A	SW846 6010B
Ammonia preparation	MCAWW 350.1	MCAWW 350.1
Bicarbonate Alkalinity	MCAWW 310.1	MCAWW 310.1
Carbonate Alkalinity	MCAWW 310.1	MCAWW 310.1
Chemical Oxygen Demand	MCAWW 410.4	MCAWW 410.4
Chloride	MCAWW 300.0A	MCAWW 300.0A
Filterable Residue (TDS)	MCAWW 160.1	MCAWW 160.1
Ion Balance Difference	SM18 1030F & AP	SM18 1030F & AP
Ionized Ammonia	MCAWW 350.1	SM18 8010F
Nitrate	MCAWW 300.0A	MCAWW 300.0A
Nitrite	MCAWW 300.0A	MCAWW 300.0A
Non-Filterable Residue (TSS)	MCAWW 160.2	MCAWW 160.2
Potentiometric titration to preselected pH	MCAWW 310.1	MCAWW 310.1
Result obtained by calculation	SM18 2340B	SM18 2340B
Specific Conductance	MCAWW 120.1	MCAWW 120.1
Sulfate	MCAWW 300.0A	MCAWW 300.0A
Total Anions	SM17 1030F & AP	SM17 1030F & AP
Total Cations	SM17 1030F & AP	SM17 1030F & AP
Total Organic Carbon	MCAWW 415.1	MCAWW 415.1
Un-ionized Ammonia	MCAWW 350.1	SM18 8010F
25 mL Purge-and-Trap	SW846 5030B/826	SW846 8260B

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM17	"Standard Methods for the Examination of Water and Wastewater", 17th Edition, 1989.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

ANALYTICAL METHODS SUMMARY

D4G170191

PARAMETER	ANALYTICAL METHOD
pH (Electrometric)	MCAWW 150.1
Alkalinity	MCAWW 310.1
Ammonia (Ionized)	SM18 8010F
Bicarbonate Alkalinity	MCAWW 310.1
Carbonate Alkalinity	MCAWW 310.1
Chemical Oxygen Demand	MCAWW 410.4
Chloride	MCAWW 300.0A
Filterable Residue (TDS)	MCAWW 160.1
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Ion Balance (%Difference)	SM18 1030F & API
Ion Balance (Tot. Anions)	SM17 1030F & API
Ion Balance (Tot.Cations)	SM17 1030F & API
ICP-MS (6020)	SW846 6020
Nitrate as N	MCAWW 300.0A
Nitrite as N	MCAWW 300.0A
Nitrogen, Ammonia	MCAWW 350.1
Non-Filterable Residue (TSS)	MCAWW 160.2
Specific Conductance	MCAWW 120.1
Sulfate	MCAWW 300.0A
Total Hardness 6010B	SM18 2340B
Total Organic Carbon	MCAWW 415.1
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Un-Ionized Ammonia	SM18 8010F
Volatile Organics by GC/MS	SW846 8260B

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM17	"Standard Methods for the Examination of Water and Wastewater", 17th Edition, 1989.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D4G170191

ANALYTICAL		ANALYST
METHOD	ANALYST	<u>ID</u>
MCAWW 120.1	Maria Fayard	002596
MCAWW 150.1	Lowell Coon	016091
MCAWW 160.1	David Kendall	002164
MCAWW 160.2	Claire Likar	004382
MCAWW 300.0A	Andrita Scofield	004409
MCAWW 310.1	Maria Fayard	002596
MCAWW 350.1	Claire Likar	004382
MCAWW 410.4	Dave Elkin	000901
MCAWW 415.1	Dave Elkin	000901
SM17 1030F & API	Roxanne K. Sullivan	001200
SM18 1030F & API	Roxanne K. Sullivan	001200
SM18 2340B	Roxanne K. Sullivan	001200
SM18 8010F	Claire Likar	004382
SW846 6010B	Lynn-Anne Trudell	6645
SW846 6010B	Wendell Fischer	2255
SW846 6020	Doug Gomer	1796
SW846 8260B	Mike G. Hoffman	001880

References:

MCAWW	EPA-600/4-79-020, March 1983 and subsequent revisions.
SM17	"Standard Methods for the Examination of Water and Wastewater", 17th Edition, 1989.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

D4G170191

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
GLAXJ	001	MW-11	07/16/04	11:20
GLAXN	002	FB1	07/16/04	10:45
GLAXV	004	TRIP BLANK	07/16/04	

NOTE(S):

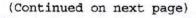
- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint fifter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #...: D4G170191-001 Work Order #...: GLAXJ1A9 Matrix..... WATER

 Date Sampled...:
 07/16/04 11:20 Date Received...:
 07/17/04


 Prep Date.....:
 07/29/04 Analysis Date...:
 07/29/04

 Prep Batch #...:
 4215389 Analysis Time...:
 14:18

Dilution Factor: 1

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Acetone	ND	13	ug/L	
Acrylonitrile	ND	9.0	ug/L	
Benzene	ND	0.69	ug/L	
Bromochloromethane	ND	0.62	ug/L	
Bromodichloromethane	ND	0.66	ug/L	
Bromoform	ND	0.61	ug/L	
Bromomethane	ND	1.3	ug/L	
2-Butanone (MEK)	ND	5.5	ug/L	
Carbon disulfide	ND	1.4	ug/L	
Carbon tetrachloride	ND	0.62	ug/L	
Chlorobenzene	ND	0.70	ug/L	
Dibromochloromethane	ND	0.38	ug/L	
Chloroethane	ND	1.1	ug/L	
Chloroform	ND	0.62	ug/L	
Chloromethane	ND	1.2	ug/L	
1,2-Dibromo-3-	ND	0.82	ug/L	
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.36	ug/L	
Dibromomethane	ND	0.77	ug/L	
1,2-Dichlorobenzene	ND	0.71	ug/L	
1,4-Dichlorobenzene	ND	0.57	ug/L	
trans-1,4-Dichloro-	ND	2.8	ug/L	
2-butene				
Dichlorodifluoromethane	ND	0.57	ug/L	
1,1-Dichloroethane	ND	0.74	ug/L	
1,2-Dichloroethane	ND	0.68	ug/L	
cis-1,2-Dichloroethene	ND	0.59	ug/L	
trans-1,2-Dichloroethene	ND	0.63	ug/L	
1,1-Dichloroethene	ND	0.59	ug/L	
1,2-Dichloropropane	ND	0.66	ug/L	
cis-1,3-Dichloropropene	ND	0.35	ug/L	
trans-1,3-Dichloropropene	ND	0.83	ug/L	
Ethylbenzene	ND	0.67	ug/L	
2-Hexanone	ND	1.8	ug/L	
Iodomethane	ND	0.68	ug/L	
Methylene chloride	ND	1.7	ug/L	
4-Methyl-2-pentanone	ND	1.4	ug/L	
Styrene	ND	0.39	ug/L	

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #: D4G170191-001	Work Order #: GLAXJ1A9	Matrix: WATER
-----------------------------	------------------------	---------------

PARAMETER	RESULT	REPORTING LIMIT	UNITS	
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L	
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L	
Tetrachloroethene	ND	0.45	ug/L	
Toluene	ND	0.71	ug/L	
1,1,1-Trichloroethane	ND	0.65	ug/L	
1,1,2-Trichloroethane	ND	0.72	ug/L	
Trichloroethene	ND	0.54	ug/L	
Trichlorofluoromethane	ND	1.1	ug/L	
1,2,3-Trichloropropane	ND	1.1	ug/L	
Vinyl acetate	ND	0.67	ug/L	
Vinyl chloride	ND	0.65	ug/L	
Xylenes (total)	ND	3.9	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	107	(76 - 116)		
1,2-Dichloroethane-d4	110	(59 - 129)		
4-Bromofluorobenzene	100	(74 - 114)		
Toluene-d8	102	(76 - 116)		

Client Sample ID: FB1

GC/MS Volatiles

Lot-Sample #...: D4G170191-002 Work Order #...: GLAXN1AL Matrix..... WATER

 Date Sampled...:
 07/16/04 10:45 Date Received...:
 07/17/04

 Prep Date.....:
 07/29/04
 Analysis Date...:
 07/29/04

 Prep Batch #...:
 4215389
 Analysis Time...:
 15:19

Dilution Factor: 1

Method....: SW846 8260B

		REPORTIN	IG .	
PARAMETER	RESULT	LIMIT	UNITS	
Acetone	ND	13	ug/L	
Acrylonitrile	ND	9.0	ug/L	
Benzene	ND	0.69	ug/L	
Bromochloromethane	ND	0.62	ug/L	
Bromodichloromethane	ND	0.66	ug/L	
Bromoform	ND	0.61	ug/L	
Bromomethane	ND	1.3	ug/L	
2-Butanone (MEK)	ND	5.5	ug/L	
Carbon disulfide	ND	1.4	ug/L	
Carbon tetrachloride	ND	0.62	ug/L	
Chlorobenzene	ND	0.70	ug/L	
Dibromochloromethane	ND	0.38	ug/L	
Chloroethane	ND	1.1	ug/L	
Chloroform	ND	0.62	ug/L	
Chloromethane	ND	1.2	ug/L	
1,2-Dibromo-3-	ND	0.82	ug/L	
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.36	ug/L	
Dibromomethane	ND	0.77	ug/L	
1,2-Dichlorobenzene	ND	0.71	ug/L	
1,4-Dichlorobenzene	ND	0.57	ug/L	
trans-1,4-Dichloro-	ND	2.8	ug/L	
2-butene				
Dichlorodifluoromethane	ND	0.57	ug/L	
1,1-Dichloroethane	ND	0.74	ug/L	
1,2-Dichloroethane	ND	0.68	ug/L	
cis-1,2-Dichloroethene	ND	0.59	ug/L	
trans-1,2-Dichloroethene	ND	0.63	ug/L	
1,1-Dichloroethene	ND	0.59	ug/L	
1,2-Dichloropropane	ND	0.66	ug/L	
cis-1,3-Dichloropropene	ND	0.35	ug/L	
trans-1,3-Dichloropropene	ND	0.83	ug/L	
Ethylbenzene	ND	0.67	ug/L	
2-Hexanone	ND	1.8	ug/L	
Iodomethane	ND	0.68	ug/L	
Methylene chloride	ND	1.7	ug/L	
4-Methyl-2-pentanone	ND	1.4	ug/L	
Styrene	ND	0.39	ug/L	

Client Sample ID: FB1

GC/MS Volatiles

Lot-Sample #: D4G170191-002	Work Order #: GLAXN1AL	Matrix WATER
-----------------------------	------------------------	--------------

PARAMETER	RESULT	REPORTING LIMIT	UNITS
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L
Tetrachloroethene	ND	0.45	ug/L
Toluene	ND	0.71	ug/L
1,1,1-Trichloroethane	ND	0.65	ug/L
1,1,2-Trichloroethane	ND	0.72	ug/L
Trichloroethene	ND	0.54	ug/L
Trichlorofluoromethane	ND	1.1	ug/L
1,2,3-Trichloropropane	ND	1.1	ug/L
Vinyl acetate	ND	0.67	ug/L
Vinyl chloride	ND	0.65	ug/L
Xylenes (total)	ND	3.9	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	2
Dibromofluoromethane	106	(76 - 116)	
1,2-Dichloroethane-d4	107	(59 - 129)	
4-Bromofluorobenzene	99	(74 - 114)	
Toluene-d8	102	(76 - 116)	

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: D4G170191-004 Work Order #...: GLAXV1AA Matrix..... WATER

Date Sampled...: 07/16/04

Prep Date....: 07/29/04

Prep Batch #...: 4215389

Dilution Factor: 1

Date Received..: 07/17/04

Analysis Date..: 07/29/04

Analysis Time..: 15:59

Method.....: SW846 8260B

PARAMETER	RESULT	REPORTIN	TING UNITS		
Acetone	ND RESULT	LIMIT 13	ug/L		
Acrylonitrile	ND	9.0	ug/L		
Benzene	ND	0.69	ug/L		
Bromochloromethane	ND		ug/L		
Bromodichloromethane	ND	0.62			
Bromoform	ND	0.66	ug/L		
Bromomethane	ND ND	0.61	ug/L		
2-Butanone (MEK)	The same of the sa	1.3	ug/L		
Carbon disulfide	ND	5.5	ug/L		
	ND	1.4	ug/L		
Carbon tetrachloride	ND	0.62	ug/L		
Chlorobenzene	ND	0.70	ug/L		
Dibromochloromethane	ND	0.38	ug/L		
Chloroethane	ND	1.1	ug/L		
Chloroform	ND	0.62	ug/L		
Chloromethane	ND	1.2	ug/L		
1,2-Dibromo-3-	ND	0.82	ug/L		
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.36	ug/L		
Dibromomethane	ND	0.77	ug/L		
1,2-Dichlorobenzene	ND	0.71	ug/L		
1,4-Dichlorobenzene	ND	0.57	ug/L		
trans-1,4-Dichloro-	ND	2.8	ug/L		
2-butene					
Dichlorodifluoromethane	ND	0.57	ug/L		
1,1-Dichloroethane	ND	0.74	ug/L		
1,2-Dichloroethane	ND	0.68	ug/L		
cis-1,2-Dichloroethene	ND	0.59	ug/L		
trans-1,2-Dichloroethene	ND	0.63	ug/L		
1,1-Dichloroethene	ND	0.59	ug/L		
1,2-Dichloropropane	ND	0.66	ug/L		
cis-1,3-Dichloropropene	ND	0.35	ug/L		
trans-1,3-Dichloropropene	ND	0.83	ug/L		
Ethylbenzene	ND	0.67	ug/L		
2-Hexanone	ND	1.8	ug/L		
Iodomethane	ND	0.68	ug/L		
Methylene chloride	ND	1.7	ug/L		
-Methyl-2-pentanone	ND	1.4	ug/L		
Styrene	ND	0.39	ug/L		

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: D4G170191-004	Work Order #: GLAXV1AA	Matrix WATER
-----------------------------	------------------------	--------------

	REPORTING				
RESULT	LIMIT	UNITS			
ND	0.53	ug/L			
ND	0.83	ug/L			
ND	0.45	ug/L			
ND	0.71	ug/L			
ND	0.65	ug/L			
ND	0.72	ug/L			
ND	0.54	ug/L			
ND	1.1	ug/L			
ND	1.1	ug/L			
ND	0.67	ug/L			
ND	0.65	ug/L			
ND	3.9	ug/L			
PERCENT	RECOVERY				
RECOVERY	LIMITS				
106	(76 - 116)	NB			
111	(59 - 129)				
99	(74 - 114)				
100	(76 - 116)				
	ND N	RESULT LIMIT ND 0.53 ND 0.83 ND 0.45 ND 0.71 ND 0.65 ND 0.72 ND 0.54 ND 1.1 ND 1.1 ND 1.1 ND 0.67 ND 0.65 ND 0.67 ND 3.9 PERCENT RECOVERY PERCOVERY LIMITS 106 (76 - 116) 111 (59 - 129) 99 (74 - 114)	RESULT	RESULT	RESULT

Client Sample ID: MW-11

DISSOLVED Metals

Lot-Sample #...: D4G170191-001 Matrix....: WATER

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

		REPORTIN	īG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Prep Batch #	. 4202510						
Antimony	0.75	0.60	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1C
		Dilution Fac	10.00	0.0000000000000000000000000000000000000	Time: 14:33		0.21
Arsenic	1.2	1.0	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1C
		Dilution Fac		Analysis	Time: 14:33		
Cadmium	0.038 В	0.50	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1C
		Dilution Fac	tor: 1	Analysis	Time: 14:33		
Lead	0.23 B	1.5	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1CI
		Dilution Fac	tor: 1	Analysis	Time: 14:33		
Nickel	1.2 B	10	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1CI
		Dilution Fac	tor: 1	Analysis	Time: 14:33		
Selenium	1.2	1.0	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1C
		Dilution Fac	tor: 1	Analysis	Time: 14:33		
Thallium	ND	0.20	ug/L	SW846	6020	07/22-07/23/04	GLAXJ1CN
		Dilution Fac	tor: 1	Analysis	Time: 14:33		
Prep Batch #	: 4202546						
Iron	25 B	30	uq/L	SW846	6010B	07/22-07/27/04	GLAXJIAV
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Magnesium	18000	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXJ1AV
		Dilution Fac	tor: 1	Analysis	Time: 19:12		
Sodium	16000	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXJIAX
		Dilution Fac	tor: 1	Analysis	Time: 19:12		
Barium	37 B,J	100	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A0
		Dilution Fact	tor: 1	Analysis	Time: 12:35		
Calcium	35000	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXJ1A1
		Dilution Fact	tor: 1	Analysis	Time: 19:12		
Chromium	3.6 B	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A2
		Dilution Fact			Time: 12:35		

Client Sample ID: MW-11

DISSOLVED Metals

Lot-Sample #...: D4G170191-001

Matrix..... WATER

PARAMETER	RESULT	REPORTIN LIMIT	IG UNITS	METHOI)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Manganese	150	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A3
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Vanadium	13 B	50	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A4
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Zinc	25	20	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A5
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Potassium	5800	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXJ1A6
		Dilution Fac	tor: 1	Analysis	Time: 19:12		
Copper	1.3 B	25	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1A7
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Bilver	ND	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1CA
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Cobalt	ND	50	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1
		Dilution Fac	tor: 1	Analysis	Time: 12:35		
Beryllium	ND	0.50	ug/L	SW846	6010B	07/22-07/27/04	GLAXJ1CP
		Dilution Fac	tor: 1	Analysis	Time: 12:35		

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FB1

DISSOLVED Metals

Lot-Sample #...: D4G170191-002

Date Sampled...: 07/16/04 10:45 Date Received..: 07/17/04

Matrix....: WATER

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI		ANALYSIS DATE	ORDER #
Prep Batch #	- 4202510						
Antimony	ND	0.60	ug/L	SW846	6020	07/22-07/23/04	CTAYN1 CC
into intolly		Dilution Fa		100000000000000000000000000000000000000	Time: 14:44	07/22-07/23/04	GIMMITCG
				7			
Arsenic	ND	1.0	ug/L	SW846	6020	07/22-07/23/04	GLAXN1CH
		Dilution Fa	ctor: 1	Analysis	Time: 14:44		
Cadmium	ND	0.50	ug/L	SW846	6020	07/22-07/23/04	GLAXN1CJ
		Dilution Fa	ctor: 1	Analysis	Time: 14:44		
Lead	0.11 B	1.5	uq/L	SW846	6020	07/22-07/23/04	GLAXN1CK
		Dilution Fa		Analysis	Time: 14:44		
Nickel	ND	10	ug/L	SW846	6020	07/22-07/23/04	GLAXN1CL
		Dilution Fa		Analysis	Time: 14:44		
Selenium	ND	1.0	ug/L	SW846	6020	07/22-07/23/04	GLAXN1 CM
		Dilution Fac		100,000,000,000	Time: 14:44	01,10	
Thallium	ND	0.20	ug/L	SW846	6020	07/22-07/23/04	GLAXN1CN
		Dilution Fac	ctor: 1	Analysis	Time: 14:44		
Prep Batch #.							
Iron	ND	30	ug/L	SW846		07/22-07/27/04	GLAXN1A7
		Dilution Fac	etor: 1	Analysis	Time: 13:05		
Magnesium	31 B	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXN1A8
		Dilution Fac	- OH. (C)	Analysis	Time: 19:48		
Sodium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXN1A9
		Dilution Fac	etor: 1	Analysis	Time: 19:48		
Barium	1.6 B,J	100	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1AA
		Dilution Fac		Analysis	Time: 13:05		
Calcium	240 B	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXN1AC
		Dilution Fac		Delegation and the second	Time: 19:48		- Andrewson Transaction Comments
Chromium	ND	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1AD
		Dilution Fac		Analysis	Time: 13:05		

Client Sample ID: FB1

DISSOLVED Metals

Lot-Sample #...: D4G170191-002

Matrix..... WATER

PARAMETER	RESULT	REPORTIN		METHO		PREPARATION-	WORK
Manganese	ND KESULT		UNITS ug/L		6010B	ANALYSIS DATE 07/22-07/27/04	ORDER #
		Dilution Fac		(2)	Time: 13:05	APPLIES TO CONTRACT TO STATE OF THE STATE OF	
Vanadium	ND	50	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1AF
		Dilution Fac	tor: 1	Analysis	Time: 13:05		
Zinc	7.3 B	20	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1AG
		Dilution Fac	tor: 1	Analysis	Time: 13:05		
Potassium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLAXN1AH
		Dilution Fac	tor: 1	Analysis	Time: 19:48		
Copper	1.3 B	25	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1AJ
		Dilution Fac	tor: 1	Analysis	Time: 13:05		
Silver	0.83 B,J	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1CA
		Dilution Fac	tor: 1	Analysis	Time: 13:05		
Cobalt	ND	50	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1
		Dilution Fac	tor: 1	Analysis	Time: 13:05		
Beryllium	ND	0.50	ug/L	SW846	6010B	07/22-07/27/04	GLAXN1CP
		Dilution Fac	tor: 1	Analysis	Time: 13:05		

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-11

General Chemistry

Lot-Sample #...: D4G170191-001 Work Order #...: GLAXJ Matrix.....: WATER

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

PARAMETER	RESUL	T RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
рН	7.9	0.10	No Units	MCAWW 150.1	07/17/04	4199121
		Dilution Fact	cor: 1	Analysis Time: 17:2		
Ammonia as N	0.030	B 0.040	mg/L	MCAWW 350.1	07/27/04	4210346
		Dilution Fact	or: 1	Analysis Time: 21:0	00	
Bicarbonate Alkalinity	170	10	mg/L	MCAWW 310.1	07/24/04	4208121
		Dilution Fact	or: 1	Analysis Time: 19:1	.6	
Carbonate Alkalinity	ND	10	mg/L	MCAWW 310.1	07/24/04	4208122
		Dilution Fact	or: 1	Analysis Time: 19:1	.6	
Chemical Oxygen Demand (COD)	ND	10	mg/L	MCAWW 410.4	07/26/04	4209240
		Dilution Fact	or: 1	Analysis Time: 10:3	0	
Chloride	4.1 J	0.50	mg/L	MCAWW 300.0A	07/17/04	4201497
		Dilution Fact		Analysis Time: 16:4	CONTRACTOR SECTION	
Hardness, as CaCO3	150	5.0	mg/L	SM18 2340B	08/03/04	4216246
		Dilution Fact	or: 1	Analysis Time: 09:0	0	
Ion Balance Difference	1.8		*	SM18 1030F & AP	08/03/04	4216281
		Dilution Fact	or: 1	Analysis Time: 09:0	0	
Ionized Ammonia	0.029	B 0.040	mg/L	SM18 8010F	08/01/04	4214030
		Dilution Fact	or: 1	Analysis Time: 16:0	0	
Nitrate	3.2	0.050	mg/L	MCAWW 300.0A	07/17/04	4201500
		Dilution Fact	or: 1	Analysis Time: 16:4	1	
Nitrite	0.15	0.060	mg/L	MCAWW 300.0A	07/17/04	4201501
		Dilution Fact	or: 1	Analysis Time: 16:4	i	
Specific Conductance	410	2.0	umhos/cm	MCAWW 120.1	07/26/04	4208366
		Dilution Fact	or: 1	Analysis Time: 12:2	4	
Sulfate	17	5.0	mg/L	MCAWW 300.0A	07/17/04	4201499
		Dilution Fact	or: 1	Analysis Time: 16:4	1	

Client Sample ID: MW-11

General Chemistry

Lot-Sample #...: D4G170191-001

Work Order #...: GLAXJ

Matrix....: WATER

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alkalinity	170	5.0 Dilution Fac	mg/L	MCAWW 310.1 Analysis Time: 19:16	07/24/04	4208120
Total Anions	4.0	0.30	meq/L	SM17 1030F & API	08/03/04	4216282
Total Cations	3.9	0.10	meq/L	Analysis Time: 09:00 SM17 1030F & API	08/03/04	4216283
Total Dissolved	270	Dilution Fac	mg/L	Analysis Time: 09:00 MCAWW 160.1	07/22/04	4204511
SOLIGE		Dilution Fac	tor: 1	Analysis Time: 16:50		
Total Organic Carbon	ND	1.0 Dilution Fac	mg/L tor: 1	MCAWW 415.1 Analysis Time: 10:56	08/02/04	4216180
Total Suspended	ND	3.0	mg/L	MCAWW 160.2	07/22/04	420703
		Dilution Fac	tor: 1	Analysis Time: 20:00		
Un-Ionized Ammonia	ND	0.040 Dilution Fac	mg/L tor: 1	SM18 8010F Analysis Time: 16:00	08/01/04	4214031

NOTE (S):

RL Reporting Limit

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FB1

General Chemistry

Lot-Sample #...: D4G170191-002 Work Order #...: GLAXN Matrix.....: WATER

Date Sampled...: 07/16/04 10:45 Date Received..: 07/17/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
рН	7.4	0.10 Dilution Fac	No Units	MCAWW 150.1 Analysis Time: 17:37	07/17/04	4199121
Ammonia as N	ND	0.040	mg/L	MCAWW 350.1 Analysis Time: 21:00	07/27/04	4210346
Bicarbonate Alkalinity	1.2 B	10	mg/L	MCAWW 310.1	07/24/04	4208121
		Dilution Fac	tor: 1	Analysis Time: 19:16		
Carbonate Alkalinity	ND	10 Dilution Fac	mg/L	MCAWW 310.1 Analysis Time: 19:16	07/24/04	4208122
Chemical Oxygen Demand (COD)	8.2 B	10	mg/L	MCAWW 410.4	07/26/04	4209240
Delicing (COD)		Dilution Fact	tor: 1	Analysis Time: 10:30		
Chloride	1.1 J	0.50	mg/L	MCAWW 300.0A Analysis Time: 18:28	07/17/04	4201497
Hardness, as CaCO3	0.86 B	5.0	mg/L	SM18 2340B	08/03/04	4216246
		Dilution Fact	tor: 1	Analysis Time: 09:00		
Ion Balance Difference	ND	-	8	SM18 1030F & API	08/03/04	4216281
		Dilution Fact	cor: 1	Analysis Time: 09:00		
Ionized Ammonia	ND	0.040 Dilution Fact	mg/L	SM18 8010F Analysis Time: 16:00	08/01/04	4214030
Nitrate	ND	0.050	mg/L	MCAWW 300.0A Analysis Time: 18:28	07/17/04	4201500
Nitrite	ND	0.060	mg/L	MCAWW 300.0A Analysis Time: 18:28	07/17/04	4201501
Specific Conductance	2.3	2.0 Dilution Fact	umhos/cm	MCAWW 120.1 Analysis Time: 12:24	07/26/04	4208366

Client Sample ID: FB1

General Chemistry

Lot-Sample #...: D4G170191-002

Work Order #...: GLAXN

Matrix..... WATER

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Sulfate	ND	5.0 Dilution Fac	mg/L	MCAWW 300.0A Analysis Time: 18:28	07/17/04	4201499
Total Alkalinity	1.2 B	5.0 Dilution Fac	mg/L	MCAWW 310.1 Analysis Time: 19:16	07/24/04	4208120
Total Anions	0.050	tea supor	meq/L	SM17 1030F & API Analysis Time: 09:00	08/03/04	4216282
Total Cations	0.020	B 0.10 Dilution Fac	meq/L	SM17 1030F & API Analysis Time: 09:00	08/03/04	4216283
Total Dissolved Solids	ND	5.4	mg/L	MCAWW 160.1	07/22/04	4204511
		Dilution Fac	tor: 1	Analysis Time: 16:50		
Total Organic Carbon	ND	1.0 Dilution Fac	mg/L tor: 1	MCAWW 415.1 Analysis Time: 10:56	08/02/04	421618
Total Suspended Solids	45	3.0	mg/L	MCAWW 160.2	07/22/04	4207039
		Dilution Fac	tor: 1	Analysis Time: 20:00		
Un-Ionized Ammonia	ND	0.040 Dilution Fac	mg/L tor: 1	SM18 8010F Analysis Time: 16:00	08/01/04	4214031

NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

I Method blank contamination. The associated method blank contains the target analyte at a reportable level.

QC DATA ASSOCIATION SUMMARY

D4G170191

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	MCAWW 120.1		4208366	4208227
	WATER	MCAWW 150.1		4199121	4199054
	WATER	MCAWW 160.1		4204511	4209275
	WATER	MCAWW 160.2		4207039	4211276
	WATER	MCAWW 310.1		4208122	
	WATER	MCAWW 300.0A		4201497	4208313
	WATER	MCAWW 300.0A		4201499	4208319
	WATER	MCAWW 300.0A		4201500	4208317
	WATER	MCAWW 415.1		4216180	4216126
	WATER	SM18 2340B		4216246	
	WATER	MCAWW 300.0A		4201501	4208315
	WATER	SW846 6020		4202510	4202307
	WATER	SW846 8260B		4215389	4215248
	WATER	SW846 6010B		4202546	4202342
	WATER	SM18 1030F & API		4216281	
	WATER	SM17 1030F & API		4216282	
	WATER	SM17 1030F & API		4216283	
	WATER	MCAWW 310.1		4208121	
	WATER	SM18 8010F		4214031	
	WATER	MCAWW 310.1		4208120	4208234
	WATER	MCAWW 350.1		4210346	4210211
	WATER	MCAWW 410.4		4209240	4209133
	WATER	SM18 8010F		4214030	
002	WATER	MCAWW 120.1		4208366	4208227
	WATER	MCAWW 150.1		4199121	4199054
	WATER	MCAWW 160.1		4204511	4209275
	WATER	MCAWW 160.2		4207039	4211276
	WATER	MCAWW 310.1		4208122	
	WATER	MCAWW 300.0A		4201497	4208313
	WATER	MCAWW 300.0A		4201499	4208319
	WATER	MCAWW 300.0A		4201500	4208317
	WATER	MCAWW 415.1		4216180	4216126
	WATER	SM18 2340B		4216246	
	WATER	MCAWW 300.0A		4201501	4208315
	WATER	SW846 6020		4202510	4202307
	WATER	SW846 8260B		4215389	4215248
	WATER	SW846 6010B		4202546	4202342
	WATER	SM18 1030F & API		4216281	
	WATER	SM17 1030F & API		4216282	
	WATER	SM17 1030F & API		4216283	
	WATER	MCAWW 310.1		4208121	
	WATER	SM18 8010F		4214031	
	5/5-5/10/7/8/TV			1011031	

QC DATA ASSOCIATION SUMMARY

D4G170191

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
002	WATER	MCAWW 310.1		4208120	4208234
	WATER	MCAWW 350.1		4210346	4210211
	WATER	MCAWW 410.4		4209240	4209133
	WATER	SM18 8010F		4214030	
003	WATER	SW846 8260B		4215389	4215248
004	WATER	SW846 8260B		4215389	4215248

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D4G170191 Work Order #...: GMA6J1AA Matrix...... WATER

MB Lot-Sample #: D4H020000-389

Prep Date....: 07/29/04 Analysis Time..: 09:54

Analysis Date..: 07/29/04 Prep Batch #...: 4215389

Dilution Factor: 1

	REPORTING		NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Acetone	ND	13	ug/L	SW846 8260B	
Acrylonitrile	ND	9.0	ug/L	SW846 8260B	
Benzene	ND	0.69	ug/L	SW846 8260B	
Bromochloromethane	ND	0.62	ug/L	SW846 8260B	
Bromodichloromethane	ND	0.66	ug/L	SW846 8260B	
Bromoform	ND	0.61	ug/L	SW846 8260B	
Bromomethane	ND	1.3	ug/L	SW846 8260B	
2-Butanone (MEK)	ND	5.5	ug/L	SW846 8260B	
Carbon disulfide	ND	1.4	ug/L	SW846 8260B	
Carbon tetrachloride	ND	0.62	ug/L	SW846 8260B	
Chlorobenzene	ND	0.70	ug/L	SW846 8260B	
Dibromochloromethane	ND	0.38	ug/L	SW846 8260B	
Chloroethane	ND	1.1	ug/L	SW846 8260B	
Chloroform	ND	0.62	ug/L	SW846 8260B	
Chloromethane	ND	1.2	ug/L	SW846 8260B	
1,2-Dibromo-3-	ND	0.82	ug/L	SW846 8260B	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.36	ug/L	SW846 8260B	
Dibromomethane	ND	0.77	ug/L	SW846 8260B	
1,2-Dichlorobenzene	ND	0.71	ug/L	SW846 8260B	
1,4-Dichlorobenzene	ND	0.57	ug/L	SW846 8260B	
trans-1,4-Dichloro-	ND	2.8	ug/L	SW846 8260B	
2-butene					
Dichlorodifluoromethane	ND	0.57	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	0.74	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	0.68	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	0.59	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	0.63	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	0.59	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	0.66	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	0.35	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	0.83	ug/L	SW846 8260B	
Ethylbenzene	ND	0.67	ug/L	SW846 8260B	
2-Hexanone	ND	1.8	ug/L	SW846 8260B	
Iodomethane	ND	0.68	ug/L	SW846 8260B	
Methylene chloride	ND	1.7	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	1.4	ug/L	SW846 8260B	
Styrene	ND	0.39	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L	SW846 8260B	
etrachloroethene	ND	0.45	ug/L	SW846 8260B	

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: D4G170191	Work Order	#: GMA6J1	LAA	Matrix WATE
PARAMETER	RESULT	REPORTIN	NG UNITS	METHOD
Toluene	ND	0.71	ug/L	SW846 8260B
				Service of the Hill officers
1,1,1-Trichloroethane	ND	0.65	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	0.72	ug/L	SW846 8260B
Trichloroethene	ND	0.54	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.1	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.1	ug/L	SW846 8260B
Vinyl acetate	ND	0.67	ug/L	SW846 8260B
Vinyl chloride	ND	0.65	ug/L	SW846 8260B
Xylenes (total)	ND	3.9	ug/L	SW846 8260B
	PERCENT	RECOVERY	Z.	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	100	(73 - 11	L8)	
1,2-Dichloroethane-d4	100	(62 - 12	28)	

(78 - 118)

(77 - 117)

NOTE(S):

Toluene-d8

4-Bromofluorobenzene

Calculations are performed before rounding to avoid round-off errors in calculated results.

97

103

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D4G170191 Work Order #...: GMA6J1AC Matrix.....: WATER

LCS Lot-Sample#: D4H020000-389

Prep Date....: 07/29/04 Analysis Date..: 07/29/04 Prep Batch #...: 4215389 Analysis Time..: 09:24

Dilution Factor: 1

PARAMETER	PERCENT	RECOVERY	Mamuon
	RECOVERY	LIMITS	METHOD
Benzene	97	(75 - 120)	SW846 8260B
Chlorobenzene	92	(78 - 118)	SW846 8260B
1,1-Dichloroethene	88	(66 - 132)	SW846 8260B
Toluene	92	(78 - 118)	SW846 8260B
Trichloroethene	99	(79 - 122)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		98	(73 - 118)
1,2-Dichloroethane-d4		98	(62 - 128)
4-Bromofluorobenzene		97	(78 - 118)
Toluene-d8		103	(77 - 117)

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D4G170191 Work Order #...: GMA6J1AC Matrix.....: WATER

LCS Lot-Sample#: D4H020000-389

Prep Date....: 07/29/04 Analysis Date..: 07/29/04 Prep Batch #...: 4215389 Analysis Time..: 09:24

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Benzene	10.0	9.66	ug/L	97	SW846 8260B
Chlorobenzene	10.0	9.25	ug/L	92	SW846 8260B
1,1-Dichloroethene	10.0	8.84	ug/L	88	SW846 8260B
Toluene	10.0	9.25	ug/L	92	SW846 8260B
Trichloroethene	10.0	9.86	ug/L	99	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		98	(73 - 118)		
1,2-Dichloroethane-d4		98	(62 - 128)		
4-Bromofluorobenzene		97	(78 - 118)		
Toluene-d8		103	(77 - 117)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D4G170191 Work Order #...: GLAXJ1D3-MS Matrix..... WATER

MS Lot-Sample #: D4G170191-001 GLAXJ1D4-MSD

 Date Sampled...:
 07/16/04
 11:20
 Date Received..:
 07/17/04

 Prep Date....:
 07/29/04
 Analysis Date..:
 07/29/04

 Prep Batch #...:
 4215389
 Analysis Time..:
 14:38

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	100	(75 - 120)	-		SW846 8260B
	100	(75 - 120)	0.25	(0-21)	SW846 8260B
Chlorobenzene	96	(78 - 118)			SW846 8260B
	96	(78 - 118)	0.54	(0-20)	SW846 8260B
1,1-Dichloroethene	82	(66 - 132)			SW846 8260B
	81	(66 - 132)	1.2	(0-26)	SW846 8260B
Toluene	96	(78 - 118)			SW846 8260B
	97	(78 - 118)	0.72	(0-22)	SW846 8260B
Trichloroethene	104	(79 - 122)			SW846 8260B
	104	(79 - 122)	0.24	(0-23)	SW846 8260B

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	106	(73 - 118)		
	106	(73 - 118)		
1,2-Dichloroethane-d4	111	(62 - 128)		
	108	(62 - 128)		
4-Bromofluorobenzene	99	(78 - 118)		
	101	(78 - 118)		
Toluene-d8	101	(77 - 117)		
	101	(77 - 117)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D4G170191 Work Order #...: GLAXJ1D3-MS Matrix..... WATER

MS Lot-Sample #: D4G170191-001 GLAXJ1D4-MSD

 Date Sampled...:
 07/16/04 11:20
 Date Received...:
 07/17/04

 Prep Date....:
 07/29/04
 Analysis Date...:
 07/29/04

 Prep Batch #...:
 4215389
 Analysis Time...:
 14:38

Dilution Factor: 1

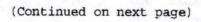
PARAMETER	SAMPLE	SPIKE AMT	MEASRD	UNITS	PERCNT	RPD	METHOI)	
Benzene	ND	10.0	9.98	ug/L	100	CIE.TL.		8260B	
	ND	10.0	10.0	ug/L	100	0.25	SW846	8260B	
Chlorobenzene	ND	10.0	9.57	ug/L	96		SW846	8260B	
	ND	10.0	9.62	ug/L	96	0.54	SW846	8260B	
1,1-Dichloroethene	ND	10.0	8.16	ug/L	82		SW846	8260B	
	ND	10.0	8.07	ug/L	81	1.2	SW846	8260B	
Toluene	ND	10.0	9.64	ug/L	96		SW846	8260B	
	ND	10.0	9.71	ug/L	97	0.72	SW846	8260B	
Trichloroethene	ND	10.0	10.4	ug/L	104		SW846	8260B	
	ND	10.0	10.4	ug/L	104	0.24	SW846	8260B	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	106	(73 - 118)
	106	(73 - 118)
1,2-Dichloroethane-d4	111	(62 - 128)
	108	(62 - 128)
4-Bromofluorobenzene	99	(78 - 118)
	101	(78 - 118)
Toluene-d8	101	(77 - 117)
	101	(77 - 117)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters


METHOD BLANK REPORT

DISSOLVED Metals

Client Lot #...: D4G170191

Matrix....: WATER

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
	e #: D4G20000		Batch #:	4202510			
Antimony	ND	0.60	ug/L	SW846	6020	07/22-07/23/04	GLGG91A
		Dilution Fac	ctor: 1				
		Analysis Ti	me: 14:03				
Arsenic	ND	1.0	ug/L	SW846	6020	07/22-07/23/04	GLGG91A
		Dilution Fac	ctor: 1				
		Analysis Tir	me: 14:03				
Cadmium	ND	0.50	ug/L	SW846	6020	07/22-07/23/04	GLGG91A
		Dilution Fac	ctor: 1				
		Analysis Tir	ne: 14:03				
Lead	ND	1.5	ug/L	SW846	6020	07/22-07/23/04	GLGG91AI
		Dilution Fac				43.36	
		Analysis Tim	ne: 14:03				
Nickel	ND	10	ug/L	SW846	6020	07/22-07/23/04	GLGG91AI
		Dilution Fac	2000000				
		Analysis Tim	ne: 14:03				
Selenium	ND	1.0	ug/L	SW846	6020	07/22-07/23/04	GLGG91A
		Dilution Fac	tor: 1				
		Analysis Tim	ie: 14:03				
Thallium	ND	0.20	ug/L	SW846	6020	07/22-07/23/04	GLGG91AF
		Dilution Fac					
		Analysis Tim	ne: 14:03				
MB Lot-Sample	#- D4G20000	0-546 Prep 1	atch # .	4202E46			
Iron	ND	30	ug/L		6010B	07/22-07/27/04	GLGJ71AA
		Dilution Fac				0.702 0.72.701	0100 / 111
		Analysis Tim	e: 12:01				
Magnesium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLGJ71AC
		Dilution Fac					
		Analysis Tim	e: 18:32				
Sodium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLGJ71AD
		Dilution Fac		Markett, 27, 53	SEASTINE PROPERTY	2001 max 201 aut 33	CONTRACTOR MODERN
		Analysis Tim					
		ramery DID TIM	10:32				

METHOD BLANK REPORT

DISSOLVED Metals

Client Lot #...: D4G170191

Matrix....: WATER

PARAMETER	RESULT	REPORTIN	IG UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Barium	0.48 B	100	ug/L	SW846	6010B	07/22-07/27/04	
		Dilution Fac	tor: 1				
		Analysis Tim	ne: 12:01				
Calcium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLGJ71AF
		Dilution Fac					
		Analysis Tim	e: 18:32				
Chromium	ND	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AG
		Dilution Fac					
		Analysis Tim	e: 12:01				
Manganese	ND	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AH
		Dilution Fac	tor: 1				
		Analysis Tim	e: 12:01				
Vanadium	ND	50	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AJ
		Dilution Fac	tor: 1				
		Analysis Tim	e: 12:01				
Zinc	ND	20	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71A
		Dilution Fac	tor: 1				
		Analysis Tim	e: 12:01				
Potassium	ND	5000	ug/L	SW846	6010B	07/22-07/31/04	GLGJ71AL
		Dilution Fac	tor: 1				
		Analysis Tim	e: 18:32				
Copper	ND	25	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AM
		Dilution Fac	tor: 1				
		Analysis Tim	e: 12:01				
Silver	0.91 B	5.0	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AN
		Dilution Fac	tor: 1				
		Analysis Time	e: 12:01				
Cobalt	ND	50	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AP
		Dilution Fact	79-10				
		Analysis Time	e: 12:01				
Beryllium	ND	0.50	ug/L	SW846	6010B	07/22-07/27/04	GLGJ71AO
		Dilution Fact			coscientification (
		Analysis Time					
		,					

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #:	D4G170191				Matrix	WATE
PARAMETER		RECOVERY LIMITS			PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#:	D4G200000	-510 Prep Ba	tch #.	: 4202510		
Antimony						GLGG91AJ
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Arsenic	98	(87 - 109)	SW846	6020	07/22-07/23/04	GLGG91AK
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Cadmium	101	(89 - 110)	SW846	6020	07/22-07/23/04	GLGG91AL
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Lead	107				07/22-07/23/04	
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Nickel	108				07/22-07/23/04	
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Selenium	93				07/22-07/23/04	GLGG91AP
		Dilution Facto	or: 1	Analysis	Time: 14:07	
Thallium	108	(84 - 120)	SW846	6020	07/22-07/23/04	GLGG91AQ
		Dilution Facto	or: 1	Analysis	Time: 14:07	
LCS Lot-Sample#:						
Iron	96				07/22-07/27/04	GLGJ71AR
		Dilution Facto	r: 1	Analysis	Time: 12:05	
Magnesium	103				07/22-07/31/04	GLGJ71AT
		Dilution Facto	r: 1	Analysis	Time: 18:36	
Sodium	98				07/22-07/31/04	GLGJ71AU
		Dilution Facto	r: 1	Analysis	Time: 18:36	
Barium	101				07/22-07/27/04	GLGJ71AV
		Dilution Facto	r: 1	Analysis	Time: 12:05	
Calcium	98	(89 - 110)		5 to = 5-37	07/22-07/31/04	GLGJ71AW
		Dilution Facto	r: 1	Analysis	Time: 18:36	
Chromium	96	(89 - 112)	SW846	6010B	07/22-07/27/04	GLGJ71AX
		Dilution Facto	r: 1	Analysis	Time: 12:05	

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #: D4G17019	C1.	ient	Lot	#	. :	D4G1	70191
------------------------	-----	------	-----	---	-----	------	-------

Client Lot #:	D4G170191			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS MET	THOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Manganese	97	(90 - 110) SW8 Dilution Factor: 1		07/22-07/27/04 Time: 12:05	GLGJ71A0
Vanadium	98	(88 - 112) SW8		07/22-07/27/04 Time: 12:05	GLGJ71A1
Zinc	93	(85 - 110) SW8		07/22-07/27/04 Time: 12:05	GLGJ71A2
Potassium	100	(86 - 111) SWE Dilution Factor: 1		07/22-07/31/04 Time: 18:36	GLGJ71A3
Copper	96	(86 - 110) SW8		07/22-07/27/04 Time: 12:05	GLGJ71A4
Silver	97	(85 - 114) SWE Dilution Factor: 1		07/22-07/27/04 Time: 12:05	GLGJ71A5
Cobalt	94	(86 - 107) SW8		07/22-07/27/04 Time: 12:05	GLGJ71A6
Beryllium	97	(88 - 112) SW8 Dilution Factor: 1		07/22-07/27/04 Time: 12:05	GLGJ71A7

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot							Matrix:	
PARAMETER	SPIKE	MEASUREI AMOUNT	UNITS	PERCNT	MEMBO		PREPARATION-	WORK
PARAPISTER	AMOUNT	AMOUNT	UNITS	RECVRY	MATHO	<u> </u>	ANALYSIS DATE	ORDER #
LCS Lot-Sam	mple#: D4G	200000-51	10 Prep Bate	ch #	: 4202	510		
Antimony	40.0	40.4	ug/L	101	SW846	6020	07/22-07/23/04	GLGG91A
		1	Dilution Factor	: 1	Anal	ysis Time:	14:07	
Arsenic	40.0	39.3	ug/L	98	SW846	6020	07/22-07/23/04	GLGG91A
		r	Dilution Factor	1	Anal	ysis Time:	14:07	
Cadmium	40.0	40.5	ug/L	101	SW846	6020	07/22-07/23/04	GLGG91A
		I	dilution Factor	: 1	Analy	ysis Time:	14:07	
Lead	40.0	42.8	ug/L	107	SW846	6020	07/22-07/23/04	GLGG91AI
		I	Dilution Factor	: 1		ysis Time:		
Nickel	40.0	43.4	ug/L	108	SW846	6020	07/22-07/23/04	GLGG91A
		r	ilution Factor:	1	Analy	ysis Time:	14:07	
Selenium	40.0	37.3	ug/L	93	SW846	6020	07/22-07/23/04	GLGG91AI
1.00		r	ilution Factor:	: 1	Analy	ysis Time:	14:07	
Thallium	40.0	43.0	ug/L	108	SW846	6020	07/22-07/23/04	GLGG91A
		D	ilution Factor:	1	Analy	ysis Time:	14:07	
LCS Lot-Sam	ple#: D4G	200000-54	6 Prep Bate	h #:	42025	546		
Iron	1000	965	ug/L	96	SW846	6010B	07/22-07/27/04	GLGJ71AF
		D	ilution Factor:	1	Analy	sis Time:	12:05	
Magnesium	50000	51400	ug/L	103	SW846	6010B	07/22-07/31/04	GLGJ71A7
		D	ilution Factor:	1	Analy	sis Time:	18:36	
Sodium	50000	49200	ug/L	98	SW846	6010B	07/22-07/31/04	GLGJ71AU
<i>-</i>		D	ilution Factor:	1	Analy	rsis Time:	18:36	
Barium	2000	2030	ug/L	101	SW846	6010B	07/22-07/27/04	GLGJ71AV
		D	ilution Factor:	1	Analy	sis Time:	12:05	
Calcium	50000	49000	ug/L	98	SW846	6010B	07/22-07/31/04	GLGJ71AW
		D	ilution Factor:	1	Analy	sis Time:	18:36	
Chromium	200	192	ug/L	96	SW846	6010B	07/22-07/27/04	GLGJ71AX
		р	ilution Factor:	1	Analy	sis Time:	12:05	

LABORATORY CONTROL SAMPLE DATA REPORT

DISSOLVED Metals

Matrix....: WATER

07/22-07/27/04 GLGJ71A6

07/22-07/27/04 GLGJ71A7

Client Lot #...: D4G170191

SPIKE MEASURED PERCNT PREPARATION-WORK ANALYSIS DATE ORDER # UNITS PARAMETER TRUOMA AMOUNT RECVRY METHOD Manganese 500 483 SW846 6010B 07/22-07/27/04 GLGJ71A0 ug/L 97 Dilution Factor: 1 Analysis Time..: 12:05 Vanadium 500 uq/L 98 SW846 6010B 07/22-07/27/04 GLGJ71A1 488 Dilution Factor: 1 Analysis Time..: 12:05 Zinc SW846 6010B 07/22-07/27/04 GLGJ71A2 500 466 ug/L 93 Dilution Factor: 1 Analysis Time..: 12:05 Potassium 07/22-07/31/04 GLGJ71A3 50000 49800 ug/L 100 SW846 6010B Dilution Factor: 1 Analysis Time..: 18:36 Copper SW846 6010B 07/22-07/27/04 GLGJ71A4 250 239 uq/L 96 Dilution Factor: 1 Analysis Time..: 12:05 Silver 07/22-07/27/04 GLGJ71A5 50.0 48.3 ug/L 97 SW846 6010B Dilution Factor: 1 Analysis Time..: 12:05

94

97

SW846 6010B

SW846 6010B

Analysis Time..: 12:05

Analysis Time..: 12:05

NOTE(S):

Beryllium

Cobalt

Calculations are performed before rounding to avoid round-off errors in calculated results.

472

48.6

uq/L

uq/L

Dilution Factor: 1

Dilution Factor: 1

500

50.0

MATRIX SPIKE SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #:	D4G170191	Matrix: WATER
Date Sampled:	07/16/04 10:45 Date Received: 07/17/04	

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIM		PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sam	ple #: D4G1	70191-002 Prep Batch	#: 4202510		
Antimony	100	(80 - 117)	SW846 6020	07/22-07/23/04	GLAXN1CQ
	103	(80 - 117) 2.7 (0-	30) SW846 6020	07/22-07/23/04	GLAXN1CR
		Dilution Factor:	1		
		Analysis Time:	14:55		
Arsenic	96	(79 - 120)	SW846 6020	07/22-07/23/04	GLAXN1CT
	98	(79 - 120) 1.1 (0-	30) SW846 6020	07/22-07/23/04	GLAXN1CU
		Dilution Factor:	1		
		Analysis Time:	14:55		
Cadmium	98	(82 - 115)	SW846 6020	07/22-07/23/04	GLAXN1CV
	99	(82 - 115) 0.89 (0-	30) SW846 6020	07/22-07/23/04	GLAXN1CW
		Dilution Factor:	1		
		Analysis Time:	14:55		
Lead	105	(79 - 119)	SW846 6020	07/22-07/23/04	GLAXN1CX
	106	(79 - 119) 0.85 (0-	30) SW846 6020	07/22-07/23/04	GLAXN1C0
		Dilution Factor:	1		
		Analysis Time:	14:55		
Nickel	107	(76 - 119)	SW846 6020	07/22-07/23/04	GLAXN1C1
	109	(76 - 119) 1.4 (0-	30) SW846 6020	07/22-07/23/04	GLAXN1C2
		Dilution Factor: 1			
		Analysis Time: 1	14:55		
Selenium	89	(64 - 134)	SW846 6020	07/22-07/23/04	GLAXN1C3
	92	(64 - 134) 2.4 (0-3	35) SW846 6020	07/22-07/23/04	GLAXN1C4
		Dilution Factor: 1			
		Analysis Time: 1	4:55		
Thallium	105	(77 - 124)	SW846 6020	07/22-07/23/04	GLAXN1C5
	105	(77 - 124) 0.87 (0-3	30) SW846 6020	07/22-07/23/04	
		Dilution Factor: 1	The state of the s	W 17	
		Analysis Time: 1	4:55		

NOTE (S):

MATRIX SPIKE SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot #...: D4G170191 Matrix..... WATER Date Sampled...: 07/16/04 10:45 Date Received..: 07/17/04 SAMPLE SPIKE MEASRD PREPARATION-WORK PERCNT PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER # MS Lot-Sample #: D4G170191-002 Prep Batch #...: 4202510 Antimony 07/22-07/23/04 GLAXN1CQ ND 40.0 40.2 uq/L 100 SW846 6020 ND 40.0 103 2.7 SW846 6020 07/22-07/23/04 GLAXN1CR 41.3 ug/L Dilution Factor: 1 Analysis Time ..: 14:55 Arsenic 07/22-07/23/04 GLAXN1CT ND 40.0 38.6 ug/L 96 SW846 6020 ND 40.0 39.0 ug/L 98 1.1 SW846 6020 07/22-07/23/04 GLAXN1CU Dilution Factor: 1 Analysis Time..: 14:55 Cadmium 40.0 SW846 6020 07/22-07/23/04 GLAXN1CV ND 39.2 uq/L 98 ND 40.0 39.6 uq/L 99 0.89 SW846 6020 07/22-07/23/04 GLAXN1CW Dilution Factor: 1 Analysis Time ..: 14:55 Lead 0.11 40.0 42.0 07/22-07/23/04 GLAXN1CX uq/L 105 SW846 6020 07/22-07/23/04 GLAXN1C0 0.11 40.0 42.3 ug/L 106 0.85 SW846 6020 Dilution Factor: 1 Analysis Time..: 14:55 Nickel ND 40.0 43.0 ug/L 107 SW846 6020 07/22-07/23/04 GLAXN1C1 ND 40.0 43.6 1.4 SW846 6020 07/22-07/23/04 GLAXN1C2 ug/L 109 Dilution Factor: 1 Analysis Time ..: 14:55 Selenium ND 40.0 35.8 uq/L SW846 6020 07/22-07/23/04 GLAXN1C3 89 ND 40.0 36.6 ug/L 07/22-07/23/04 GLAXN1C4 92 SW846 6020 2.4 Dilution Factor: 1 Analysis Time..: 14:55 Thallium ND 40.0 41.8 07/22-07/23/04 GLAXN1C5 uq/L 105 SW846 6020 ND 40.0 42.2 uq/L 07/22-07/23/04 GLAXN1C6 105 0.87 SW846 6020 Dilution Factor: 1 Analysis Time ..: 14:55

NOTE (S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: D4G170191 Matrix.....: WATER

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
200					
		0191-001 Prep Batch #.	: 4202546		
Iron	97	(52 - 155)	SW846 6010B	07/22-07/27/04	
	102	(52 - 155) 4.6 (0-25) Dilution Factor: 1	SW846 6010B	07/22-07/27/04	GLAXJ1CF
		Analysis Time: 12:56			
Magnesium	104	(62 - 146)	SW846 6010B	07/22-07/31/04	GLAXJ1CT
	107	(62 - 146) 2.3 (0-25) Dilution Factor: 1	SW846 6010B	07/22-07/31/04	
		Analysis Time: 19:39			
Sodium	99	(70 - 203)	SW846 6010B	07/22-07/31/04	GLAXJ1CV
	103	(70 - 203) 2.3 (0-40)	SW846 6010B	07/22-07/31/04	
		Dilution Factor: 1 Analysis Time: 19:39			
Barium	101	(85 - 120)	SW846 6010B	07/22-07/27/04	GLAXJ1CX
	103	(85 - 120) 1.5 (0-25)	SW846 6010B	07/22-07/27/04	
1		Dilution Factor: 1 Analysis Time: 12:56			
Calcium	94	(48 - 153)	SW846 6010B	07/22-07/31/04	GLAXJ1C1
	96	(48 - 153) 1.1 (0-25) Dilution Factor: 1 Analysis Time: 19:39	SW846 6010B	07/22-07/31/04	
Chromium	94	(73 - 135)	SW846 6010B	07/22-07/27/04	GT NV T1 G2
CIII OIIII UIII	96	(73 - 135) 2.2 (0-25)	SW846 6010B	07/22-07/27/04	
		Dilution Factor: 1 Analysis Time: 12:56		01/22-01/21/04	012110104
Manganese	95	(79 - 121)	SW846 6010B	07/22-07/27/04	GLAXJ1C5
est.	98	(79 - 121) 1.9 (0-25)	SW846 6010B	07/22-07/27/04	Control of the Contro
		Dilution Factor: 1 Analysis Time: 12:56			
Vanadium	96	(85 - 120)	SW846 6010B	07/22-07/27/04	GLAXJ1C7
	98	(85 - 120) 2.0 (0-25) Dilution Factor: 1	SW846 6010B	07/22-07/27/04	
		Analysis Time: 12:56			

MATRIX SPIKE SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: D4G170191 Matrix....: WATER

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	B METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Zi.nc	92	(60 - 137)	SW846 6010B	07/22-07/27/04	GLAXJ1C9
	94	(60 - 137) 2.5 (0-25)	SW846 6010B	07/22-07/27/04	GLAXJ1DA
		Dilution Factor: 1			
		Analysis Time: 12:	56		
Potassium	98	(76 - 132)	SW846 6010B	07/22-07/31/04	
	101	(76 - 132) 2.3 (0-25)	SW846 6010B	07/22-07/31/04	GLAXJ1DD
		Dilution Factor: 1			
		Analysis Time: 19:3	39		
Copper	96	(82 - 129)	SW846 6010B	07/22-07/27/04	GLAXJ1DE
	98	(82 - 129) 1.5 (0-25)	SW846 6010B	07/22-07/27/04	GLAXJ1DF
		Dilution Factor: 1			
		Analysis Time: 12:	56		
Silver	95	(75 - 141)	SW846 6010B	07/22-07/27/04	GLAXJ1DG
	98	(75 - 141) 2.8 (0-25)	SW846 6010B	07/22-07/27/04	GLAXJ1DH
		Dilution Factor: 1			
		Analysis Time: 12:	56		
Cobalt	92	(82 - 119)	SW846 6010B	07/22-07/27/04	
	94	(82 - 119) 2.1 (0-25)	SW846 6010B	07/22-07/27/04	GLAXJ1DK
		Dilution Factor: 1			
		Analysis Time: 12:5	56		
Beryllium	95	(79 - 121)	SW846 6010B	07/22-07/27/04	GLAXJ1DL
	96	(79 - 121) 1.6 (0-25)	SW846 6010B	07/22-07/27/04	GLAXJ1DM
		Dilution Factor: 1			
		Analysis Time: 12:5	56		

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot # ...: D4G170191 Matrix....: WATER Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04 SAMPLE SPIKE MEASRD PERCNT PREPARATION-WORK PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER # MS Lot-Sample #: D4G170191-001 Prep Batch #...: 4202546 Iron 25 1000 1000 uq/L 97 SW846 6010B 07/22-07/27/04 GLAXJ1CQ 25 1000 1050 uq/L 102 4.6 SW846 6010B 07/22-07/27/04 GLAXJ1CR Dilution Factor: 1 Analysis Time ..: 12:56 Magnesium 18000 50000 70300 ug/L 104 SW846 6010B 07/22-07/31/04 GLAXJ1CT 18000 50000 71900 ug/L 107 2.3 SW846 6010B 07/22-07/31/04 GLAXJ1CU Dilution Factor: 1 Analysis Time..: 19:39 Sodium 16000 50000 65600 uq/L 07/22-07/31/04 GLAXJ1CV 99 SW846 6010B 16000 50000 67200 uq/L 103 2.3 SW846 6010B 07/22-07/31/04 GLAXJ1CW Dilution Factor: 1 Analysis Time ..: 19:39 Barium 37 2000 2060 ug/L 101 SW846 6010B 07/22-07/27/04 GLAXJ1CX 37 2000 2090 uq/L 103 1.5 SW846 6010B 07/22-07/27/04 GLAXJ1C0 Dilution Factor: 1 Analysis Time..: 12:56 Calcium 35000 50000 82000 ug/L 94 SW846 6010B 07/22-07/31/04 GLAXJ1C1 35000 50000 82900 uq/L 96 1.1 SW846 6010B 07/22-07/31/04 GLAXJ1C2 Dilution Factor: 1 Analysis Time ..: 19:39 Chromium 3.6 200 192 ug/L 94 SW846 6010B 07/22-07/27/04 GLAXJ1C3 3.6 200 196 ug/L 96 2.2 SW846 6010B 07/22-07/27/04 GLAXJ1C4 Dilution Factor: 1 Analysis Time ..: 12:56 Manganese 150 500 623 ug/L 95 SW846 6010B 07/22-07/27/04 GLAXJ1C5 150 500 635 ug/L 98 SW846 6010B 1.9 07/22-07/27/04 GLAXJ1C6 Dilution Factor: 1

(Continued on next page)

Analysis Time..: 12:56

MATRIX SPIKE SAMPLE DATA REPORT

DISSOLVED Metals

Matrix..... WATER

Client Lot #...: D4G170191

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

PARAMETER	SAMPLE		MEASRD AMOUNT	UNITS		PERCNT RECVRY	DDD	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Vanadium			- 11100111	<u>onilio</u>	_	METAL		шино		IIIIIIIII DIN	Old II
	13	500	494	ug/L		96		SW846	6010B	07/22-07/27/04	GLAXJ1C'
	13	500	504	ug/L		98	2.0	SW846	6010B	07/22-07/27/04	
			Dilut	ion Factor:	1						
			Analy	sis Time:	12	:56					
linc											
ille	25	500	483	ug/L		92		SW846	6010B	07/22-07/27/04	GT.AX.T1 C
	25	500	495	ug/L		94	2.5		6010B	07/22-07/27/04	
		500	73 - 70 0.55	ion Factor:	1	,,	2.5	DNOTO	00102	07/22 07/27/01	OLI III O LD
			0.7507676.476.27	sis Time:	1000	:56					
otassium	ĭ										
Occubbran	5800	50000	54800	ug/L		98		SW846	6010B	07/22-07/31/04	GLAXJ1DO
	5800	50000	56100	ug/L		101	2.3		6010B	07/22-07/31/04	
			Dilut	ion Factor:	1						
				rsis Time:		:39					
opper											-
(00)	1.3	250	242	ug/L		96		SW846	6010B	07/22-07/27/04	GLAXIT
	1.3	250	246	ug/L		98	1.5		6010B	07/22-07/27/04	
			Dilut	ion Factor:	1	1 //	257/18/5				
				sis Time:		:56					
ilver											
	ND	50.0	48.1	ug/L		95		SW846	6010B	07/22-07/27/04	GLAX.T1D
	ND	50.0	49.4	ug/L		98	2.8		6010B	07/22-07/27/04	
				ion Factor:	1	30	2.0	0010	00102	07/22 07/27/01	CIMILO ID.
				sis Time:		:56					
obalt											
	ND	500	463	ug/L		92		SW846	6010B	07/22-07/27/04	GLAXJ1D
	ND	500	473	ug/L		94	2.1		6010B	07/22-07/27/04	
			Dilut	ion Factor:	1						
			Analy	sis Time:	12	: 56					
eryllium	í										
	ND	50.0	47.4	ug/L		95		SW846	6010B	07/22-07/27/04	GLAXII DI
	ND	50.0	48.1	ug/L		96	1.6		6010B	07/22-07/27/04	
				ion Factor:	1	The particular of the particul	- 5	22.0	30202	-1,22 01,21,01	Jan 110 1DI
				sis Time:	-	. 56					

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D4G170191

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	Work Order #: GL2AA1AA 0.040 mg/L Dilution Factor: 1 Analysis Time: 21:00			4210346
Chemical Oxygen Demand (COD)		Work Order #: GLXCC1AA	MB Lot-Sample #:	D4G270000-240	
	ND	10 mg/L Dilution Factor: 1 Analysis Time: 10:30	MCAWW 410.4	07/26/04	4209240
Chloride	1.1	Work Order #: GLVXM1AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 16:26	MB Lot-Sample #: MCAWW 300.0A	D4G190000-497 07/17/04	4201497
Nitrate	ND	Work Order #: GLV0A1AA 0.050 mg/L Dilution Factor: 1 Analysis Time: 16:26	MB Lot-Sample #: MCAWW 300.0A	D4G190000-500 07/17/04	4201500
Nitrite	ND	Work Order #: GLVX61AA 0.060 mg/L Dilution Factor: 1 Analysis Time: 16:26	MB Lot-Sample #: MCAWW 300.0A	D4G190000-501 07/17/04	4201501
Specific Conducta	nce	Work Order #: GLVG41AA	MB Lot-Sample #:	D4G260000-366	
	ND	2.0 umhos/cm Dilution Factor: 1 Analysis Time: 12:24	MCAWW 120.1	07/26/04	4208366
Sulfate	ND	Work Order #: GLV0L1AA 5.0 mg/L Dilution Factor: 1 Analysis Time: 16:26	MB Lot-Sample #: MCAWW 300.0A	D4G190000-499 07/17/04	4201499
Total Alkalinity	ND	Work Order #: GLVJC1AA 5.0 mg/L Dilution Factor: 1 Analysis Time: 19:16	MB Lot-Sample #: MCAWW 310.1	D4G260000-120 07/24/04	4208120
Total Dissolved Solids		Work Order #: GLON21AA	MB Lot-Sample #:	D4G220000-511	
	ND	5.4 mg/L Dilution Factor: 1 Analysis Time: 16:50	MCAWW 160.1	07/22/04	4204511

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D4G170191

Matrix....: WATER

		REPORTIN	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Total Organic Carl	bon	Work Order	#: GMDFF1AA	MB Lot-Sample		
	ND	1.0 Dilution Fact	mg/L	MCAWW 415.1	08/02/04	4216180
		Analysis Time	29212010 520			
Total Suspended Solids		Work Order	#: GL5P61AA	MB Lot-Sample	‡: D4G250000-039	
	ND	3.0	mg/L	MCAWW 160.2	07/22/04	4207039
		Dilution Fact	or: 1			
		Analysis Time	20:00			
NOTE(S):						

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Matrix....: WATER

	Client	Lot	#:	D4G170191	
--	--------	-----	----	-----------	--

PARAMETER	PERCENT RECOVERY	RECOVERY PREPARATION- LIMITS METHOD ANALYSIS DATE	A STATE OF THE STA
рН		Work Order #: GLCLX1AA LCS Lot-Sample#: D4G1	70000-121
	101	(97 - 102) MCAWW 150.1 07/17/04	4199121
		Dilution Factor: 1 Analysis Time: 16:53	
Ammonia as N		Work Order #: GL2AA1AC LCS Lot-Sample#: D4G28	30000-346
	98	(90 - 110) MCAWW 350.1 07/27/04	4210346
		Dilution Factor: 1 Analysis Time: 21:00	
Chemical Oxygen Demand (COD)		Work Order #: GLXCC1AC LCS Lot-Sample#: D4G27	
	108	(86 - 114) MCAWW 410.4 07/26/04	4209240
		Dilution Factor: 1 Analysis Time: 10:30	
Chloride		Work Order #: GLVXM1AC LCS Lot-Sample#: D4G19	
	92	(90 - 110) MCAWW 300.0A 07/17/04	4201497
		Dilution Factor: 1 Analysis Time: 15:56	
Nitrate		Work Order #: GLV0A1AC LCS Lot-Sample#: D4G19	
	91	(90 - 110) MCAWW 300.0A 07/17/04	4201500
		Dilution Factor: 1 Analysis Time: 15:56	
Nitrite		Work Order #: GLVX61AC LCS Lot-Sample#: D4G19	
	94	(90 - 110) MCAWW 300.0A 07/17/04	4201501
		Dilution Factor: 1 Analysis Time: 15:56	
Specific Conduc	tance	Work Order #: GLVG41AC LCS Lot-Sample#: D4G26	
	98	(89 - 109) MCAWW 120.1 07/26/04	4208366
		Dilution Factor: 1 Analysis Time: 12:24	
Sulfate		Work Order #: GLV0L1AC LCS Lot-Sample#: D4G19	
	92	(90 - 110) MCAWW 300.0A 07/17/04	4201499
		Dilution Factor: 1 Analysis Time: 15:56	
Total Alkalinity		Work Order #: GLVJC1AC LCS Lot-Sample#: D4G26	
	96	(95 - 110) MCAWW 310.1 07/24/04	4208120
		Dilution Factor: 1 Analysis Time: 19:16	
Total Dissolved Solids		Work Order #: GLON21AC LCS Lot-Sample#: D4G22	0000-511
	101	(86 - 106) MCAWW 160.1 07/22/04	4204511
		Dilution Factor: 1 Analysis Time: 16:50	
		A STATE OF THE PARTY OF THE PAR	

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D4G170191

Matrix....: WATER

PERCENT RECOVERY PREPARATION-LIMITS METHOD PARAMETER RECOVERY BATCH # ANALYSIS DATE Total Organic Carbon Work Order #: GMDFF1AC LCS Lot-Sample#: D4H030000-180 (90 - 110) MCAWW 415.1 08/02/04 4216180 Dilution Factor: 1 Analysis Time..: 10:56 Total Suspended Work Order #: GL5P61AC LCS Lot-Sample#: D4G250000-039 Solids

107

(86 - 114) MCAWW 160.2

07/22/04

4207039

Dilution Factor: 1 Analysis Time..: 20:00

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #: D4G170191	Matrix: WATER
-------------------------	---------------

	PIKE	MEASURI		PERCNT		PREPARATION-	PREP
	MOUNT	TRUOMA			METHOD		
рн					1AA LCS Lot-Sample		
7	.00	7.04	No Units		MCAWW 150.1		4199121
			Dilution Fact	or: 1	Analysis Time: 16	:53	
Ammonia as N			Work Order	#: GL2AA	IAC LCS Lot-Sample	e#: D4G280000-3	46
4	.00	3.94	mg/L	98	MCAWW 350.1	07/27/04	4210346
			Dilution Fact	or: 1	Analysis Time: 21		
Chemical Oxyge Demand (COD)	n		Work Order	#: GLXCC	1AC LCS Lot-Sample	e#: D4G270000-2	40
1	00	108	mg/L	108	MCAWW 410.4	07/26/04	4209240
			Dilution Fact	or: 1	Analysis Time: 10	:30	
Chloride			Work Order	#: GLVXM	AC LCS Lot-Sample	e#: D4G190000-4	97
2	0.0	18.5	mg/L	92	MCAWW 300.0A		
			Dilution Fact		Analysis Time: 15:		
Nitrate			Work Order	#: GLV0A:	AC LCS Lot-Sample	e#: D4G190000-5	00
4	.00	3.64	mg/L	91	MCAWW 300.0A	07/17/04	4201500
			Dilution Fact	or: 1	Analysis Time: 15:	56	
Nitrite			Work Order	#: GLVX6:	AC LCS Lot-Sample	#: D4G190000-5	01
4	.00				MCAWW 300.0A		
					Analysis Time: 15:		
Specific Conduc	rtance		Work Order	# · GLVGA1	AC LCS Lot-Sample	#. DAG260000-3	66
		1380	umhos/cm		MCAWW 120.1		
			TATAMAN COMMINGER		Analysis Time: 12:		4200300
Sulfate			Work Order	#: GLV01.1	AC LCS Lot-Sample	# · D4G190000-4	9.9
20	0.0	18.4			MCAWW 300.0A		4201499
			Dilution Fact		Analysis Time: 15:		
Total Alkalinit	y		Work Order	#: GLVJC1	AC LCS Lot-Sample	#: D4G260000-1	20
20	00	191	mg/L		MCAWW 310.1		
			Dilution Facto				
Total Dissolved	ì		Work Order	#: GL0N21	AC LCS Lot-Sample	#: D4G220000-5	11
50	00	507	mg/L Dilution Factor		MCAWW 160.1 Analysis Time: 16:	07/22/04	4204511

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D4G170191

Matrix....: WATER

PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	UNITS	PERCNT RECVRY	METHOD		PREPARAT:		PREP BATCH #
Total Organic	c Carbon		Work Order	#: GMDFF	AC LCS	Lot-Sample	#: D4H030	0000-1	80
	25.0	24.7	mg/L	99	MCAWW 41	15.1	08/02/	/04	4216180
			Dilution Fact	or: 1	Analysi	s Time: 10:	56		
Total Suspend	ied		Work Order	#: GL5P61	AC LCS	Lot-Sample	#: D4G250	0000-0	39
	94.2	101	mg/L Dilution Fact	107 or: 1	MCAWW 16	0.2 s Time: 20:	07/22/	04	4207039

NOTE (S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D4G170191 Matrix.....: WATER

Date Sampled...: 07/14/04 16:30 Date Received..: 07/15/04

	PER	CENT	REC	OV	ERY		RPD				PREPARAT	ION-	PREP
PARAMETER		OVERY				RPD	LIMITS	METHO	0		ANALYSIS		
Ammonia as N							L1AQ-MS/			MS			4G090195-003
	92		(44	_	130)	Gatgas			350.1		07/27		4210346
	92					0.16	(0-30)				07/27		4210346
							ctor: 1		550.2		0.727		1210310
							me: 21:0	10					
					mary	315 11	uc 21.0						
Chemical Oxy	gen				WO# -	GK7D	51AII-MS/	GK7D51	U-MSD	MS	Lot-Sample	# · D	4G150389-003
Demand (COD)	3					GIC! D.	, , ,	OIC / DO I	11 1100	. 10	not bumpre	w. D	10130307 000
(83		(74	_	109)			MCAWW	410.4		07/26	104	4209240
	87				109)	2.8	(0-11)		THE REAL PROPERTY.		07/26/		4209240
							ctor: 1	11011///	110.1		01/20/	0.1	1207210
							ne: 10:3	0					
					mary	518 110	ue 10.3	V					
Chloride					WO# .	CT.ADI	71 PA _MC /	CT. NDV1	ZE-MCD	MC	Tot-Cample	# . D	4G170164-008
011101110	107	т	(90		120)	Junio	TITE IN		300.0A				4 4201497
	107		0.00			0 11	(0-10)						4 4201497
	107	_	(00)				(0-10)	MCAWW	300.0A		07/17-07/	18/0	4 4201497
							ne: 01:1	0					
					Analy	SIS TIN	ie; 01;1	8					TW.
Chloride					WO# .	CT.AV.	TI DT_MC /	CT AV.T1	MOD TI	MO	Tot-Cample	# . D	4G170191-001
Cintollac	93		(80		120)	GLIANC	TDI-145/		300.0A	Ma	07/17/		4201497
	94					0 69	(0-10)				07/17/		4201497
	24		(00)				tor: 1	MCAWN	300.UA		0//1//	04	4201497
					Anary	sis Tim	ne: 16:5	6					
Nitrate					WO# .	CI AV	TIDY MO/	OT 3 V T1 T	O Man	MC	Tot Comple	# . D	4G170191-001
niciace	105		190	540	120)	GLIAAC	TDY-M9/		300.0A	MS	07/17/		4201500
	105					0 22	(0-10)				07/17/		
	103		100				tor: 1	MCHWW	300.UA		0//1//	04	4201500
							e: 16:5						
					Allary	318 110	le: 10:5	0					
Nitrite					WO# ·	GI.AY.	11DW_MQ/	ατ. λ.Υ. τ1Γ	M_MCD	MC	Lot-Cample	# . D/	IG170191-001
11101100	93		(80	_	120)	GLIANO	IDV-PB/		300.0A	Cari	07/17/		4201501
	94					U 83	(0-10)				07/17/		4201501
	21		100				tor: 1	MCANN	300.UA		0//1//	04	4201501
							e: 16:50						
					MidLys	ars irm	e 16:50	0					
Sulfate					WO# .	CLADE	1B8-MS/	מר אסעיו ה	O MCD	MC	Tot Comple	# . D	0170164 000
	108	Т	(80	_	120)	GLIMIKI	TEO-113/			MD			G170164-008
	108					0 06	(0-10)		300.0A		07/17-07/		
	100	-	100	276				MWW	300.0A		07/17-07/	18/04	4201499
						on Fac							
					Analys	is Tim	e: 01:18	3					

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D4G170191

Matrix....: WATER

Date Sampled...: 07/14/04 16:30 Date Received..: 07/15/04

PARAMETER	PERCENT RECOVERY	REC	72000		RPD	RPD LIMITS	метног)		PREPARATION ANALYSIS DA	
Sulfate				WO# :	GLAX	J1D1-MS/	GLAXJ1	02-MSD	MS	Lot-Sample #:	D4G170191-001
	106	(80	-	120)			MCAWW	300.0A		07/17/04	4201499
	106	(80	-	120)	0.27	(0-10)	MCAWW	300.0A		07/17/04	4201499
				Dilut	ion Fa	ctor: 1					
				Analy	sis Ti	me: 16:5	66				
Total Organ	ic Carbon			WO#:	GK5R	N1FM-MS/	GK5RN11	N-MSD	MS	Lot-Sample #:	D4G150194-003
	100	(85	-	117)			MCAWW	415.1		08/02/04	4216182
	100	(85	-	117)	0.35	(0-10)	MCAWW	415.1		08/02/04	4216182
				Dilut	ion Fa	ctor: 1					
				Analy	sis Ti	me: 01:2	:9				

NOTE(S):

¹ Estimated result. Result concentration exceeds the calibration range.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D4G170191 Matrix..... WATER

Date Sampled...: 07/14/04 16:30 Date Received..: 07/15/04

	SAMPLE	SPIKE	MEASRD		PERCNT			PREPARATION-	PREP
PARAME		AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD	ANALYSIS DATE	BATCH
Ammoni	a as N		WO#:	GKQXL1AQ-N	IS/GKQXL1	AR-MSI	MS Lot-Sam	ple #: D4G090195	-001
	0.041	4.00	3.73	mg/L	92		MCAWW 350.1	07/27/04	421034
	0.041	4.00	3.72	mg/L	92	0.16	MCAWW 350.1	07/27/04	421034
			Dilut	ion Factor: 1					
			Analy	sis Time: 2	1:00				
	al Oxygen		WO#:	GK7D51AU-M	IS/GK7D51	V-MSI	MS Lot-Sam	ple #: D4G150389	-003
Demand	(COD)								
	27	50.0	68.9	mg/L	83		MCAWW 410.4	07/26/04	4209240
	27	50.0	70.9	mg/L	87	2.8	MCAWW 410.4	07/26/04	4209240
			Dilut	ion Factor: 1					
			Analys	sis Time: 1	0:30				
Chlori	de		WO#:		S/GLARK1E			ple #: D4G170164	-008
	760	500	1300 I	mg/L	107		MCAWW 300.0A	07/17-07/18/04	420149
	760	500	1300 I	mg/L	107	0.11	MCAWW 300.0A	07/17-07/18/04	420149
				on Factor: 1					
			Analys	is Time: 0	1:18				
Chlorie									
Chiori								ole #: D4G170191	
4	4.1	25.0	27.4	mg/L	93		MCAWW 300.0A	07/17/04	4201497
	4.1	25.0	27.5	mg/L	94	0.69	MCAWW 300.0A	07/17/04	4201497
				on Factor: 1					
			Analys	is Time: 16	5:56				
Nitrate	e		WOH.	GT.AV.T1DV_M	c/ctavitin	A MOT	MC Tot Com	ole #: D4G170191	001
	3.2	5.00	8.47	mg/L	105		MCAWW 300.0A	07/17/04	4201500
	3.2	5.00	8.49	mg/L			MCAWW 300.0A	07/17/04	
	5.2	5.00	COR PLANTED	on Factor: 1	103	0.23	MCAWW 300.0A	07/17/04	4201500
				is Time: 16	.56				
			Aldrys	is itme, ic	,, 50				
Nitrite	e		WO#:	GLAXJ1DV-M	S/GLAXITID	W-MSD	MS Lot-Samr	ole #: D4G170191	-001
	0.15	5.00	4.79	mg/L	93		MCAWW 300.0A	07/17/04	4201501
	0.15	5.00	4.83	mg/L			MCAWW 300.0A	07/17/04	4201501
				on Factor: 1				01/21/01	1201501
			Analys	is Time: 16	:56				
Sulfate	9		WO#:	GLARK1E8-M	S/GLARK1E	9-MSD	MS Lot-Samp	le #: D4G170164	-008
	460	500		mg/L	108		MCAWW 300.0A	07/17-07/18/04	
	460	500	1000 I	mg/L			MCAWW 300.0A	07/17-07/18/04	
				on Factor: 1			3001011	-1, 2. 31, 20, 04	-201177
				is Time: 01					

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D4G170191

Matrix....: WATER

Date Sampled...: 07/14/04 16:30 Date Received..: 07/15/04

PARAMETER	SAMPLE AMOUNT	CONTRACTOR OF THE PARTY OF THE	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	метно	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Sulfate			WO#:	GLAXJ1D1-MS	GLAXJ1	2-MSI	MS	Lot-Samp	le #: D4G170191	-001
	17	25.0	43.6	mg/L	106		MCAWW	300.0A	07/17/04	4201499
	17	25.0	43.7	mg/L	106	0.27	MCAWW	300.0A	07/17/04	4201499
			Diluti	on Factor: 1						
			Analys	sis Time: 16:	56					
Total Org	anic Carl	oon	WO#:	GK5RN1FM-MS	GK5RN1	N-MSI	MS :	Lot-Sampl	e #: D4G150194	-003
	ND	25.0	25.5	mg/L	100		MCAWW	415.1	08/02/04	4216182
	ND	25.0	25.4	mg/L	100	0.35	MCAWW	415.1	08/02/04	4216182
			Diluti	on Factor: 1						
			Analys	is Time: 01:2	29					

NOTE(S):

I Estimated result. Result concentration exceeds the calibration range.

General Chemistry

Client Lot #...: D4G170191

Work Order #...: GLAWO-SMP

Matrix....: WATER

Date Sampled...: 07/16/04

Date Received..: 07/17/04

GLAWO-DUP

Analysis Time..: 16:50

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Dissolved Solids					SD Lot-Sample #	: D4G170182-017	
700	690	mg/L	1.0	(0-20)	MCAWW 160.1	07/22/04	4204511

Dilution Factor: 1

General Chemistry

Client Lot #...: D4G170191

Work Order #...: GLAJV-SMP

Matrix....: WATER

GLAJV-DUP

Date Sampled...: 07/16/04 09:10 Date Received..: 07/17/04

PARAM RESULT Total Suspended Solids	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D4G170133-001	PREP BATCH #
82	84	mg/L Dilution Fac	3.4 tor: 1	(0-20) Ana	MCAWW 160.2 alysis Time: 20:00	07/22/04	4207039
рH 8.2	8.3	No Units		(0-5.0) Ana	SD Lot-Sample #: MCAWW 150.1 alysis Time: 16:59	D4G170133-001 07/17/04	4199121

General Chemistry

Client Lot #...: D4G170191 Work Order #...: GK9RE-SMP

Matrix....: WATER

GK9RE-DUP

Date Sampled...: 07/15/04 09:39 Date Received..: 07/16/04

PARAM	RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total	Alkalinity					SD Lot-Sample #:	D4G160354-001	
	1200	1200	mg/L	0.25	(0-10)	MCAWW 310.1	07/24/04	4208120
			Dilution Fact	or: 1	Ana	lvsis Time . 19:16		

General Chemistry

Client Lot #...: D4G170191

Work Order #...: GLAXJ-SMP

Matrix....: WATER

GLAXJ-DUP

Date Sampled...: 07/16/04 11:20 Date Received..: 07/17/04

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Specific Conduc	tance				SD Lot-Sample #:	D4G170191-001	
410	410	umhos/cm	0.98	(0-7.0)	MCAWW 120.1	07/26/04	4208366
		Dilution Fact	or. 1	Ana	lugic Time . 12.24		

JB TIM

から

Severn Trent Laboratories, Inc.

STL Denver 4955 Yarrow Street Arvada, CO 80002

Client WASH Management		Manage		W.	ath						Di	ate 7 /	11.1	101		Cha	in of Custody	689
Address 19) S. Veblo Rock City, State Zip Code	Site Co	one Num	ber (Area		202	eh /(505)	860	-37	Ut		b Num				Pag	1	of _
Project Name and Location (State) We der We nather Contract/Purchase Order/Quote Not 104 25607 A	Ma	Waybill	And Number	25	Co	_			Con of	AE IN	nalys ore sp	is (Att.	ach liss need	t if ed)	donce		Special Condition	Instructions/ ns of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date 7////04	Time 1/20	Air Aqueous	Sed.		Unpres.	2 HCI	NaOH ZnAc/ NaOH	×1/×	\$	VOV	1	\$ 100 V	18 18 18	かない	1767			
FB1 7/16/04	1045	Ŷ		-		3		X	X,	(X	X		X		X	4	WIO.	_
Trip Blank 7/14/09	120	Ŷ	5			2				-				1		7	HOL	D
										F		1						<u> </u>
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	Unknown	1	e Dispos		☐ Disp	osal By	Lab [Archiv	re For		_ A	tonths	(A fe	e may	be ass	essed	if samples are	retained
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days 21 Days Relinquished By	Other	er	Time	,10		quirem	ents (Specif		P.		1					l Da	nte//	Time
A Relinquished By 3. Relinquished By	Date	y	Time	X	2. Rece		HANDY		an	olf						100	117/04 ate	0845 Time
Comments	Date		Time	4	3. Rece	ived B	/									Da	te	Time

STL Denver 4955 Yarrow Street Arvada, CO 80002

Tel: 303 736 0100 Fax: 303 431 7171 www.stl-inc.com

ANALYTICAL REPORT

Project No. Site 904

Greater Wenatchee

Lot #: D4L170138

Final Report MW07 and MW11

Reported to:

Steve Wulf

Waste Management, Inc. Greater Wenatchee 191 South Webb Road East Wenatchee, WA 98802

Cc: Jason Davendonis

STL DENVER

Betsy Farnaus Project Manager

January 27, 2005

Case Narrative

Enclosed is the report for three samples received at STL Denver laboratory on December 17, 2004. The results included in this report have been reviewed for compliance with STL's Laboratory Quality Manual. The test results shown in this report meet all requirements of NELAC and any exceptions are noted below.

This report may include data with reporting limits (RLs) less than STL Denver's standard reporting limit. These data and reporting limits are being used specifically to meet the needs of this project. Note that, data are not customarily reported to these levels because they are inherently less reliable and potentially less defensible than the latest industry standards require.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

STL Denver utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D4L170138

Sample Receiving

- > The cooler temperature upon receipt at the Denver laboratory was 1.8°C.
- > The sample bottles were received in acceptable condition.

Holding Times

> The holding times were met.

Method Blanks

> All Method Blanks were within established control limits.

Laboratory Control Samples

➤ The Laboratory Control Sample recoveries were within established control limits.

Matrix Spike Samples

- ➤ The percent recoveries of the MS/MSD and/or the relative percent difference were not calculated for Dissolved Sodium during Method 6010B analysis because the sample concentration was greater than four times the spike amount.
- Due to the result concentration exceeding the calibration range the MS/MSD results for Nitrate Method 300.0A are estimated.

> All other Matrix Spike and Matrix Spike Duplicate recoveries were within established control limits.

EXECUTIVE SUMMARY - Detection Highlights

D4L170138

		REPORTIN	IG	ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-07 12/15/04 15:15 001				
MW-07 12/15/04 15:15 001				
Iron - DISSOLVED	29 B	30	ug/L	SW846 6010B
Magnesium - DISSOLVED	22000	5000	ug/L	SW846 6010B
Sodium - DISSOLVED	19000	5000	ug/L	SW846 6010B
Calcium - DISSOLVED	46000	5000	ug/L	SW846 6010B
Potassium - DISSOLVED	6800	5000	ug/L	SW846 6010B
Dichlorodifluoromethane	3.9	0.57	ug/L	SW846 8260B
1,1-Dichloroethane	9.5	0.74	ug/L	SW846 8260B
cis-1,2-Dichloroethene	3.5	0.59	ug/L	SW846 8260B
1,1-Dichloroethene	1.1	0.59	ug/L	SW846 8260B
Methylene chloride	0.89 J	1.7	ug/L	SW846 8260B
Tetrachloroethene	8.8	0.45	ug/L	SW846 8260B
1,1,1-Trichloroethane	0.50 J	0.65	ug/L	SW846 8260B
Trichloroethene	1.9	0.54	ug/L	SW846 8260B
Trichlorofluoromethane	2.0	1.1	ug/L	SW846 8260B
Chloride	3.8	0.50	mg/L	MCAWW 300.0A
Sulfate	18	5.0	mg/L	MCAWW 300.0A
Nitrate	4.6	0.050	mg/L	MCAWW 300.0A
Ion Balance Difference	1.7		%	SM18 1030F & AP
Total Anions	4.9	0.30	meq/L	SM17 1030F & API
Total Cations	5.1	0.10	meq/L	SM17 1030F & API
Bicarbonate, as CaCO3	210	10	mg/L	MCAWW 310.1
Total Alkalinity	210	5.0	mg/L	MCAWW 310.1
Ammonia as N	0.030 B	0.040	mg/L	MCAWW 350.1
Ionized Ammonia	0.029 B	0.040	mg/L	SM18 8010F
MW-11 12/15/04 14:25 002				
Magnesium - DISSOLVED	22000	5000	ug/L	SW846 6010B
Sodium - DISSOLVED	22000	5000	ug/L	SW846 6010B
Calcium - DISSOLVED	41000	5000	ug/L	SW846 6010B
Potassium - DISSOLVED	7000	5000	ug/L	SW846 6010B
Chloride	3.5	0.50	mg/L	MCAWW 300.0A
Sulfate	28	5.0	mg/L	MCAWW 300.0A
Nitrate	5.5	0.050	mg/L	MCAWW 300.0A
Ion Balance Difference	1.8	5.990 (0.0) A	ફ	SM18 1030F & API
Total Anions	4.8	0.30	meg/L	SM17 1030F & API
Total Cations	5.0	0.10	meg/L	SM17 1030F & API
Bicarbonate, as CaCO3	190	10	mg/L	MCAWW 310.1
Total Alkalinity	190	5.0	mg/L	MCAWW 310.1

PREPARATION METHODS SUMMARY

D4L170138

PREPARATION DESCRIPTION	PREPARATION METHOD	ANALYTICAL METHOD
Acid Digestion for Total Recoverable Metals	SW846 3005A	SW846 6010B
Ammonia preparation	MCAWW 350.1	MCAWW 350.1
Bicarbonate Alkalinity	MCAWW 310.1	MCAWW 310.1
Carbonate Alkalinity	MCAWW 310.1	MCAWW 310.1
Chloride	MCAWW 300.0A	MCAWW 300.0A
Ion Balance Difference	SM18 1030F & AP	SM18 1030F & AP
Ionized Ammonia	MCAWW 350.1	SM18 8010F
Nitrate	MCAWW 300.0A	MCAWW 300.0A
Nitrite	MCAWW 300.0A	MCAWW 300.0A
Potentiometric titration to preselected pH	MCAWW 310.1	MCAWW 310.1
Sulfate	MCAWW 300.0A	MCAWW 300.0A
Total Anions	SM17 1030F & AP	SM17 1030F & AP
Total Cations	SM17 1030F & AP	SM17 1030F & AP
Un-ionized Ammonia	MCAWW 350.1	SM18 8010F
25 mL Purge-and-Trap	SW846 5030B/826	SW846 8260B

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM17	"Standard Methods for the Examination of Water and Wastewater", 17th Edition, 1989.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

ANALYTICAL METHODS SUMMARY

D4L170138

PARAMETER	ANALYTICAL METHOD		
Alkalinity	MCAWW 310.1		
Ammonia (Ionized)	SM18 8010F		
Bicarbonate Alkalinity	MCAWW 310.1		
Carbonate Alkalinity	MCAWW 310.1		
Chloride	MCAWW 300.0A		
Inductively Coupled Plasma (ICP) Metals	SW846 6010B		
Ion Balance (%Difference)	SM18 1030F & API		
Ion Balance (Tot. Anions)	SM17 1030F & API		
Ion Balance (Tot.Cations)	SM17 1030F & API		
Nitrate as N	MCAWW 300.0A		
Nitrite as N	MCAWW 300.0A		
Nitrogen, Ammonia	MCAWW 350.1		
Sulfate	MCAWW 300.0A		
Un-Ionized Ammonia	SM18 8010F		
Volatile Organics by GC/MS	SW846 8260B		

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM17	"Standard Methods for the Examination of Water and Wastewater", 17th Edition, 1989.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D4L170138

ANALYTI	CAL		ANALYST
METHOD		ANALYST	ID
MCAWW 3	00.0A	Andrita Scofield	004409
MCAWW 3	10.1	Maria Fayard	002596
MCAWW 3	50.1	Claire Likar	004382
SM17 10	30F & API	Sherry Scaggiari	002016
SM18 10	30F & API	Sherry Scaggiari	002016
SM18 80	10F	Claire Likar	004382
SW846 6	010B	Janel Motichka	2862
SW846 8	260B	Dan Appelhans	001008
MCAWW	"Methods for Ch	emical Analysis of Water and Wastes", 0, March 1983 and subsequent revision	
SM17		ds for the Examination of Water and th Edition, 1989.	
SM18		ds for the Examination of Water and th Edition, 1992.	
SW846		or Evaluating Solid Waste, Physical/C Edition, November 1986 and its update	

SAMPLE SUMMARY

D4L170138

WO # 5	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP
G1CDM	001	MW-07	12/15/04	15:15
G1CDP	002	MW-11	12/15/04	14:2!
G1CDQ	003	TRIP BLANK	12/15/04	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-07

GC/MS Volatiles

Lot-Sample #...: D4L170138-001 Work Order #...: G1CDM1AE Matrix..... WATER

 Date Sampled...:
 12/15/04
 15:15
 Date Received...:
 12/17/04

 Prep Date....:
 12/28/04
 Analysis Date...:
 12/28/04

 Prep Batch #...:
 4364500
 Analysis Time...:
 14:49

 Dilution Factor:
 1

Method.....: SW846 8260B

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Acetone	ND	13	ug/L
Acrylonitrile	ND	9.0	ug/L
Benzene	ND	0.69	ug/L
Bromochloromethane	ND	0.62	ug/L
Bromodichloromethane	ND	0.66	ug/L
Bromoform	ND	0.61	ug/L
Bromomethane	ND	1.3	ug/L
2-Butanone (MEK)	ND	5.5	ug/L
Carbon disulfide	ND	1.4	ug/L
Carbon tetrachloride	ND	0.62	ug/L
Chlorobenzene	ND	0.70	ug/L
Dibromochloromethane	ND	0.38	ug/L
Chloroethane	ND	1.1	ug/L
Chloroform	ND	0.62	ug/L
Chloromethane	ND	1.2	ug/L
1,2-Dibromo-3-	ND	0.82	ug/L
chloropropane (DBCP)			
1,2-Dibromoethane (EDB)	ND	0.36	ug/L
Dibromomethane	ND	0.77	ug/L
1,2-Dichlorobenzene	ND	0.71	ug/L
1,4-Dichlorobenzene	ND	0.57	ug/L
trans-1,4-Dichloro- 2-butene	ND	2.8	ug/L
Dichlorodifluoromethane	3.9	0.57	ug/L
1,1-Dichloroethane	9.5	0.74	ug/L
1,2-Dichloroethane	ND	0.68	ug/L
cis-1,2-Dichloroethene	3.5	0.59	ug/L
trans-1,2-Dichloroethene	ND	0.63	ug/L
1,1-Dichloroethene	1.1	0.59	ug/L
1,2-Dichloropropane	ND	0.66	ug/L
cis-1,3-Dichloropropene	ND	0.35	ug/L
trans-1,3-Dichloropropene	ND	0.83	ug/L
Ethylbenzene	ND	0.67	ug/L
2-Hexanone	ND	1.8	ug/L
Iodomethane	ND	0.68	ug/L
Methylene chloride	0.89 J	1.7	ug/L
4-Methyl-2-pentanone	ND	1.4	ug/L
Styrene	ND	0.39	ug/L

Client Sample ID: MW-07

GC/MS Volatiles

Lot-Sample #: D4L170138-001	Work Order #: G1CDM1AE	Matrix WATER
-----------------------------	------------------------	--------------

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L		
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L		
Tetrachloroethene	8.8	0.45	ug/L		
Toluene	ND	0.71	ug/L		
1,1,1-Trichloroethane	0.50 J	0.65	ug/L		
1,1,2-Trichloroethane	ND	0.72	ug/L		
Trichloroethene	1.9	0.54	ug/L		
Trichlorofluoromethane	2.0	1.1	ug/L		
1,2,3-Trichloropropane	ND	1.1	ug/L		
Vinyl acetate	ND	0.67	ug/L		
Vinyl chloride	ND	0.65	ug/L		
Xylenes (total)	ND	3.9	ug/L		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	109	(73 - 118)			
1,2-Dichloroethane-d4	106	(62 - 128)			
4-Bromofluorobenzene	100	(78 - 118)			
	110	(77 - 117)			

J Estimated result. Result is less than RL.

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #...: D4L170138-002 Work Order #...: G1CDP1AE Matrix..... WATER

 Date Sampled...:
 12/15/04
 14:25
 Date Received...:
 12/17/04

 Prep Date....:
 12/28/04
 Analysis Date...:
 12/28/04

 Prep Batch #...:
 4364500
 Analysis Time...:
 15:11

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	13	ug/L
Acrylonitrile	ND	9.0	ug/L
Benzene	ND	0.69	ug/L
Bromochloromethane	ND	0.62	ug/L
Bromodichloromethane	ND	0.66	ug/L
Bromoform	ND	0.61	ug/L
Bromomethane	ND	1.3	ug/L
2-Butanone (MEK)	ND	5.5	ug/L
Carbon disulfide	ND	1.4	ug/L
Carbon tetrachloride	ND	0.62	ug/L
Chlorobenzene	ND	0.70	ug/L
Dibromochloromethane	ND	0.38	ug/L
Chloroethane	ND	1.1	ug/L
Chloroform	ND	0.62	ug/L
Chloromethane	ND	1.2	ug/L
1,2-Dibromo-3-	ND	0.82	ug/L
chloropropane (DBCP)			
1,2-Dibromoethane (EDB)	ND	0.36	ug/L
Dibromomethane	ND	0.77	ug/L
1,2-Dichlorobenzene	ND	0.71	ug/L
1,4-Dichlorobenzene	ND	0.57	ug/L
trans-1,4-Dichloro-	ND	2.8	ug/L
2-butene			
Dichlorodifluoromethane	ND	0.57	ug/L
1,1-Dichloroethane	ND	0.74	ug/L
1,2-Dichloroethane	ND	0.68	ug/L
cis-1,2-Dichloroethene	ND	0.59	ug/L
trans-1,2-Dichloroethene	ND	0.63	ug/L
1,1-Dichloroethene	ND	0.59	ug/L
1,2-Dichloropropane	ND	0.66	ug/L
cis-1,3-Dichloropropene	ND	0.35	ug/L
trans-1,3-Dichloropropene	ND	0.83	ug/L
Ethylbenzene	ND	0.67	ug/L
2-Hexanone	ND	1.8	ug/L
Iodomethane	ND	0.68	ug/L
Methylene chloride	ND	1.7	ug/L
4-Methyl-2-pentanone	ND	1.4	ug/L
Styrene	ND	0.39	ug/L

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #.	: D4L170138-002	Work Order	#: G1CDP1AE	Matrix:	WATER
---------------	-----------------	------------	-------------	---------	-------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L
Tetrachloroethene	ND	0.45	ug/L
Toluene	ND	0.71	ug/L
1,1,1-Trichloroethane	ND	0.65	ug/L
1,1,2-Trichloroethane	ND	0.72	ug/L
Trichloroethene	ND	0.54	ug/L
Trichlorofluoromethane	ND	1.1	ug/L
1,2,3-Trichloropropane	ND	1.1	ug/L
Vinyl acetate	ND	0.67	ug/L
Vinyl chloride	ND	0.65	ug/L
Xylenes (total)	ND	3.9	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	108	(73 - 118))
1,2-Dichloroethane-d4	103	(62 - 128))
4-Bromofluorobenzene	96	(78 - 118))
Toluene-d8	106	(77 - 117))

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: D4L170138-003 Work Order #...: G1CDQ1AA Matrix..... WATER

 Date Sampled...:
 12/15/04
 Date Received..:
 12/17/04

 Prep Date....:
 12/28/04
 Analysis Date..:
 12/28/04

 Prep Batch #...:
 4364500
 Analysis Time..:
 15:34

Dilution Factor: 1

Method....: SW846 8260B

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	
Acetone	ND	13	ug/L	
Acrylonitrile	ND	9.0	ug/L	
Benzene	ND	0.69	ug/L	
Bromochloromethane	ND	0.62	ug/L	
Bromodichloromethane	ND	0.66	ug/L	
Bromoform	ND	0.61	ug/L	
Bromomethane	ND	1.3	ug/L	
2-Butanone (MEK)	ND	5.5	ug/L	
Carbon disulfide	ND	1.4	ug/L	
Carbon tetrachloride	ND	0.62	ug/L	
Chlorobenzene	ND	0.70	ug/L	
Dibromochloromethane	ND	0.38	ug/L	
Chloroethane	ND	1.1	ug/L	
Chloroform	ND	0.62	ug/L	
Chloromethane	ND	1.2	ug/L	
1,2-Dibromo-3-	ND	0.82	ug/L	
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.36	ug/L	
Dibromomethane	ND	0.77	ug/L	
1,2-Dichlorobenzene	ND	0.71	ug/L	
1,4-Dichlorobenzene	ND	0.57	ug/L	
trans-1,4-Dichloro-	ND	2.8	ug/L	
2-butene				
Dichlorodifluoromethane	ND	0.57	ug/L	
1,1-Dichloroethane	ND	0.74	ug/L	
1,2-Dichloroethane	ND	0.68	ug/L	
cis-1,2-Dichloroethene	ND	0.59	ug/L	
trans-1,2-Dichloroethene	ND	0.63	ug/L	
1,1-Dichloroethene	ND	0.59	ug/L	
1,2-Dichloropropane	ND	0.66	ug/L	
cis-1,3-Dichloropropene	ND	0.35	ug/L	
trans-1,3-Dichloropropene	ND	0.83	ug/L	
Ethylbenzene	ND	0.67	ug/L	
2-Hexanone	ND	1.8	ug/L	
Iodomethane	ND	0.68	ug/L	
Methylene chloride	ND	1.7	ug/L	
4-Methyl-2-pentanone	ND	1.4	ug/L	
Styrene	ND	0.39	ug/L	

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: D4L170138-003	Work Order #	: G1CDO1AA	Matrix:	WATER
-----------------------------	--------------	------------	---------	-------

DA DA MIZIMINO	DD0111 B	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L
Tetrachloroethene	ND	0.45	ug/L
Toluene	ND	0.71	ug/L
1,1,1-Trichloroethane	ND	0.65	ug/L
1,1,2-Trichloroethane	ND	0.72	ug/L
Trichloroethene	ND	0.54	ug/L
Trichlorofluoromethane	ND	1.1	ug/L
1,2,3-Trichloropropane	ND	1.1	ug/L
Vinyl acetate	ND	0.67	ug/L
Vinyl chloride	ND	0.65	ug/L
Xylenes (total)	ND	3.9	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(73 - 118)	R
1,2-Dichloroethane-d4	99	(62 - 128)	
4-Bromofluorobenzene	93	(78 - 118)	
Toluene-d8	102	(77 - 117)	

Client Sample ID: MW-07

DISSOLVED Metals

	Lot-Sample #:	D4L170138-001	Matrix:	WATER
--	---------------	---------------	---------	-------

Date Sampled...: 12/15/04 15:15 Date Received..: 12/17/04

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHOI		PREPARATION- ANALYSIS DATE	WORK ORDER #
PARAMETER	THUGAN	TIMII	UNITS	METHOI	,	ANALISIS DATE	ORDER #
Prep Batch #	: 4352660						
Iron	29 B	30	ug/L	SW846	6010B	12/21/04	G1CDM1AM
		Dilution Fac	tor: 1	Analysis	Time: 22:38		
Magnesium	22000	5000	ug/L	SW846	6010B	12/21/04	G1CDM1AN
		Dilution Fac	tor: 1	Analysis	Time: 22:38		
Sodium	19000	5000	ug/L	SW846	6010B	12/21/04	G1CDM1AP
		Dilution Fact	tor: 1	Analysis	Time: 22:38		
Calcium	46000	5000	ug/L	SW846	6010B	12/21/04	G1CDM1AQ
		Dilution Fact	tor: 1	Analysis	Time: 22:38		
Manganese	ND	5.0	ug/L	SW846	6010B	12/21/04	G1CDM1AR
		Dilution Fact	tor: 1	Analysis	Time: 22:38		3
Potassium	6800	5000	ug/L	SW846	6010B	12/21/04	G1CDM1AT
		Dilution Fact	tor: 1	Analysis	Time: 22:38		

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: MW-11

DISSOLVED Metals

Matrix....: WATER

Lot-Sample #...: D4L170138-002

Date Sampled...: 12/15/04 14:25 Date Received..: 12/17/04

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 4352660 SW846 6010B Iron 30 ug/L 12/21/04 G1CDP1AM Dilution Factor: 1 Analysis Time ..: 22:42 Magnesium 22000 5000 ug/L SW846 6010B 12/21/04 G1CDP1AN Dilution Factor: 1 Analysis Time..: 22:42 Sodium 22000 5000 ug/L SW846 6010B 12/21/04 G1CDP1AP Dilution Factor: 1 Analysis Time..: 22:42 Calcium 41000 5000 ug/L SW846 6010B 12/21/04 G1CDP1AQ Dilution Factor: 1 Analysis Time..: 22:42 Manganese ND SW846 6010B 12/21/04 G1CDP1AR 5.0 uq/L Dilution Factor: 1 Analysis Time..: 22:42 Potassium 7000 5000 uq/L SW846 6010B 12/21/04 G1CDF Dilution Factor: 1 Analysis Time..: 22:42

Client Sample ID: MW-07

General Chemistry

Lot-Sample #...: D4L170138-001 Work Order #...: G1CDM Matrix....: WATER Date Sampled...: 12/15/04 15:15 Date Received..: 12/17/04

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.030	B 0.040	mg/L	MCAWW 350.1	12/22/04	4362416
		Dilution Fac	tor: 1	Analysis Time: 16:00		
Bicarbonate, as CaCO	210	10	mg/L	MCAWW 310.1	12/22/04	4362242
		Dilution Fact	tor: 1	Analysis Time: 21:48		
Carbonate, as CaCO3	ND	10	mg/L	MCAWW 310.1	12/22/04	4362241
		Dilution Fact	tor: 1	Analysis Time: 21:48		
Chloride	3.8	0.50	mg/L	MCAWW 300.0A	12/17/04	4355611
		Dilution Fact	tor: 1	Analysis Time: 14:01		
Ion Balance Difference	1.7		*	SM18 1030F & API	12/29/04	4364424
		Dilution Fact	cor: 1	Analysis Time: 12:00		
Ionized Ammonia	0.029 H	0.040	mg/L	SM18 8010F	12/27/04	4362489
		Dilution Fact	or: 1	Analysis Time: 16:00		
Nitrate	4.6	0.050	mg/L	MCAWW 300.0A	12/17/04	4355612
		Dilution Fact	or: 1	Analysis Time: 14:01		
Nitrite	ND	0.50	mg/L	MCAWW 300.0A	12/17/04	4355613
		Dilution Fact	or: 1	Analysis Time: 14:01		
Sulfate	18	5.0	mg/L	MCAWW 300.0A	12/17/04	4355610
		Dilution Fact	or: 1	Analysis Time: 14:01		
Total Alkalinity	210	5.0	mg/L	MCAWW 310.1	12/22/04	4362239
		Dilution Fact	or: 1	Analysis Time: 21:48		
Total Anions	4.9	0.30	meq/L	SM17 1030F & API	12/29/04	4364426
		Dilution Fact	or: 1	Analysis Time: 12:00		
Total Cations	5.1	0.10	meq/L	SM17 1030F & API	12/29/04	4364425
		Dilution Fact	or: 1	Analysis Time: 12:00		
Un-Ionized Ammonia	ND	0.040	mg/L	SM18 8010F	12/27/04	4362490
		Dilution Fact	or: 1	Analysis Time: 16:00		
NORTH (G)						

NOTE (S):

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-11

General Chemistry

Matrix....: WATER

Lot-Sample #...: D4L170138-002 Wor

Work Order #...: G1CDP

Date Sampled...: 12/15/04 14:25 Date Received..: 12/17/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	0.040 Dilution Fact	mg/L tor: 1	MCAWW 350.1 Analysis Time: 16:00	12/22/04	4362416
Bicarbonate, as CaCO	190	10	mg/L	MCAWW 310.1	12/22/04	4362242
		Dilution Fact	tor: 1	Analysis Time: 21:48		
Carbonate, as CaCO3	ND	10 Dilution Fact	mg/L tor: 1	MCAWW 310.1 Analysis Time: 21:48	12/22/04	4362241
Chloride	3.5	0.50 Dilution Fact	mg/L	MCAWW 300.0A Analysis Time: 13:44	12/17/04	4355611
Ion Balance Difference	1.8		8	SM18 1030F & API	12/29/04	4364424
		Dilution Fact	tor: 1	Analysis Time: 12:00		
Ionized Ammonia	ND	0.040 Dilution Fact	mg/L cor: 1	SM18 8010F Analysis Time: 16:00	12/27/04	4362489
Nitrate	5.5	0.050 Dilution Fact	mg/L	MCAWW 300.0A Analysis Time: 13:44	12/17/04	4355612
Nitrite	ND	0.50 Dilution Fact	mg/L cor: 1	MCAWW 300.0A Analysis Time: 13:44	12/17/04	4355613
Sulfate	28	5.0 Dilution Fact	mg/L	MCAWW 300.0A Analysis Time: 13:44	12/17/04	4355610
Total Alkalinity	190	5.0 Dilution Fact	mg/L	MCAWW 310.1 Analysis Time: 21:48	12/22/04	4362239
Total Anions	4.8	0.30 Dilution Fact	meq/L	SM17 1030F & API Analysis Time: 12:00	12/29/04	4364426
Total Cations	5.0	0.10 Dilution Fact	meq/L	SM17 1030F & API Analysis Time: 12:00	12/29/04	4364425
Un-Ionized Ammonia	ND	0.040 Dilution Fact	mg/L	SM18 8010F Analysis Time: 16:00	12/27/04	4362490

QC DATA ASSOCIATION SUMMARY

D4L170138

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	MCAWW 310.1		4362241	
	WATER	MCAWW 300.0A		4355611	4358116
	WATER	MCAWW 300.0A		4355610	4358125
	WATER	MCAWW 300.0A		4355612	4358121
	WATER	MCAWW 300.0A		4355613	4358117
	WATER	SW846 8260B		4364500	4364306
	WATER	SW846 6010B		4352660	4352361
	WATER	SM18 1030F & API		4364424	
	WATER	SM17 1030F & API		4364426	
	WATER	SM17 1030F & API		4364425	
	WATER	MCAWW 310.1		4362242	
	WATER	SM18 8010F		4362490	
	WATER	MCAWW 310.1		4362239	4363286
	WATER	MCAWW 350.1		4362416	4362240
	WATER	SM18 8010F		4362489	
002	WATER	MCAWW 310.1		4362241	
	WATER	MCAWW 300.0A		4355611	4358116
	WATER	MCAWW 300.0A		4355610	4358125
	WATER	MCAWW 300.0A		4355612	4358121
	WATER	MCAWW 300.0A		4355613	4358117
	WATER	SW846 8260B		4364500	4364306
	WATER	SW846 6010B		4352660	4352361
	WATER	SM18 1030F & API		4364424	
	WATER	SM17 1030F & API		4364426	
	WATER	SM17 1030F & API		4364425	
	WATER	MCAWW 310.1		4362242	
	WATER	SM18 8010F		4362490	
	WATER	MCAWW 310.1		4362239	4363286
	WATER	MCAWW 350.1		4362416	4362240
	WATER	SM18 8010F		4362489	
003	WATER	SW846 8260B		4364500	4364306

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D4L170138 Work Order #...: G10FA1AA Matrix..... WATER

MB Lot-Sample #: D4L290000-500 Prep Date.....: 12/28/04 Analysis Time..: 11:07

Analysis Date..: 12/28/04 Prep Batch #...: 4364500

Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	13	ug/L	SW846 8260B
Acrylonitrile	ND	9.0	ug/L	SW846 8260B
Benzene	ND	0.69	ug/L	SW846 8260B
Bromochloromethane	ND	0.62	ug/L	SW846 8260B
Bromodichloromethane	ND	0.66	ug/L	SW846 8260B
Bromoform	ND	0.61	ug/L	SW846 8260B
Bromomethane	ND	1.3	ug/L	SW846 8260B
2-Butanone (MEK)	ND	5.5	ug/L	SW846 8260B
Carbon disulfide	ND	1.4	ug/L	SW846 8260B
Carbon tetrachloride	ND	0.62	ug/L	SW846 8260B
Chlorobenzene	ND	0.70	ug/L	SW846 8260B
Dibromochloromethane	ND	0.38	ug/L	SW846 8260B
Chloroethane	ND	1.1	ug/L	SW846 8260B
Chloroform	ND	0.62	ug/L	SW846 8260B
Chloromethane	ND	1.2	ug/L	SW846 8260B
1,2-Dibromo-3-	ND	0.82	ug/L	SW846 8260B
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.36	ug/L	SW846 8260B
Dibromomethane	ND	0.77	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	0.71	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	0.57	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	2.8	ug/L	SW846 8260B
2-butene				
Dichlorodifluoromethane	ND	0.57	ug/L	SW846 8260B
1,1-Dichloroethane	ND	0.74	ug/L	SW846 8260B
1,2-Dichloroethane	ND	0.68	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	0.59	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	0.63	ug/L	SW846 8260B
1,1-Dichloroethene	ND	0.59	ug/L	SW846 8260B
1,2-Dichloropropane	ND	0.66	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	0.35	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	0.83	ug/L	SW846 8260B
Ethylbenzene	ND	0.67	ug/L	SW846 8260B
2-Hexanone	ND	1.8	ug/L	SW846 8260B
Iodomethane	ND	0.68	ug/L	SW846 8260B
Methylene chloride	ND	1.7	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	1.4	ug/L	SW846 8260B
Styrene	ND	0.39	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	0.53	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	0.83	ug/L	SW846 8260B
Tetrachloroethene	ND	0.45	ug/L	SW846 8260B

(Continued on next page)

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: D4L170138	Work Order #: G10FA1AA	Matrix: WATER
-------------------------	------------------------	---------------

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHO	D -
Toluene	ND	0.71	ug/L	SW846	8260B
1,1,1-Trichloroethane	ND	0.65	ug/L	SW846	8260B
1,1,2-Trichloroethane	ND	0.72	ug/L	SW846	8260B
Trichloroethene	ND	0.54	ug/L	SW846	8260B
Trichlorofluoromethane	ND	1.1	ug/L	SW846	8260B
1,2,3-Trichloropropane	ND	1.1	ug/L	SW846	8260B
Vinyl acetate	ND	0.67	ug/L	SW846	8260B
Vinyl chloride	ND	0.65	ug/L	SW846	8260B
Xylenes (total)	ND	3.9	ug/L	SW846	8260B
	PERCENT	RECOVERS	7		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	103	(73 - 11	L8)		
1,2-Dichloroethane-d4	99	(62 - 12	28)		
4-Bromofluorobenzene	93	(78 - 11	L8)		
Toluene-d8	102	(77 - 11	L7)		

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D4L170138 Work Order #...: G10FA1AC Matrix.....: WATER

LCS Lot-Sample#: D4L290000-500

Dilution Factor: 1

PARAMETER	PERCENT	RECOVERY LIMITS	METHOD
Benzene	105	(75 - 120)	SW846 8260B
Chlorobenzene	97	(78 - 118)	SW846 8260B
1,1-Dichloroethene	100	(66 - 132)	SW846 8260B
Toluene	99	(78 - 118)	SW846 8260B
Trichloroethene	107	(79 - 122)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		111	(73 - 118)
1,2-Dichloroethane-d4		107	(62 - 128)
4-Bromofluorobenzene		99	(78 - 118)
Toluene-d8		107	(77 - 117)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D4L170138 Work Order #...: G10FA1AC Matrix..... WATER

LCS Lot-Sample#: D4L290000-500

Prep Date....: 12/28/04 Analysis Date..: 12/28/04 Prep Batch #...: 4364500 Analysis Time..: 10:44

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHO	D
Benzene	10.0	10.5	ug/L	105	SW846	8260B
Chlorobenzene	10.0	9.70	ug/L	97	SW846	8260B
1,1-Dichloroethene	10.0	10.0	ug/L	100	SW846	8260B
Toluene	10.0	9.87	ug/L	99	SW846	8260B
Trichloroethene	10.0	10.7	ug/L	107	SW846	8260B
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
Dibromofluoromethane		111	(73 - 118)			
1,2-Dichloroethane-d4		107	(62 - 128)			
4-Bromofluorobenzene		99	(78 - 118)			
Toluene-d8		107	(77 - 117)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D4L170138 Work Order #...: G1X6Q1AC-MS Matrix.....: WATER

MS Lot-Sample #: D4K020271-067 G1X6Q1AD-MSD

 Date Sampled...:
 12/27/04 07:00 Date Received..:
 12/27/04

 Prep Date....:
 12/28/04 Analysis Date..:
 12/28/04

 Prep Batch #...:
 4364500 Analysis Time..:
 13:40

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
Benzene	108	(75 - 120)	112.0	2020	SW846 8260B
	99	(75 - 120)	5.5	(0-21)	SW846 8260B
Chlorobenzene	99	(78 - 118)			SW846 8260B
	97	(78 - 118)	2.1	(0-20)	SW846 8260B
1,1-Dichloroethene	99	(66 - 132)			SW846 8260B
	99	(66 - 132)	0.61	(0-26)	SW846 8260B
Toluene	98	(78 - 118)			SW846 8260B
	87	(78 - 118)	5.9	(0-22)	SW846 8260B
Trichloroethene	109	(79 - 122)			SW846 8260B
	103	(79 - 122)	6.1	(0-23)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Dibromofluoromethane		108		(73 - 118	1)
		106		(73 - 118	1)
1,2-Dichloroethane-d4		105		(62 - 128	1)
		101		(62 - 128)	1)
4-Bromofluorobenzene		99		(78 - 118	1)
		99		(78 - 118	1)
Toluene-d8		108		(77 - 117	")
		108		(77 - 117	")

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D4L170138 Work Order #...: G1X6Q1AC-MS Matrix..... WATER

MS Lot-Sample #: D4K020271-067 G1X6Q1AD-MSD Date Sampled...: 12/27/04 07:00 Date Received..: 12/27/04

Prep Batch #...: 4364500 Bate Received.:: 12/27/04

Analysis Date.:: 12/28/04

Analysis Time.:: 13:40

Dilution Factor: 1

PARAMETER	SAMPLE	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOI	
Benzene	5.6	10.0	16.4	ug/L	108		SW846	8260B
	5.6	10.0	15.5	ug/L	99	5.5	SW846	8260B
Chlorobenzene	ND	10.0	9.95	ug/L	99		SW846	8260B
	ND	10.0	9.74	ug/L	97	2.1	SW846	8260B
1,1-Dichloroethene	ND	10.0	9.93	ug/L	99		SW846	8260B
	ND	10.0	9.87	ug/L	99	0.61	SW846	8260B
Toluene	8.6	10.0	18.4	ug/L	98		SW846	8260B
	8.6	10.0	17.3	ug/L	87	5.9	SW846	8260B
Trichloroethene	ND	10.0	10.9	ug/L	109		SW846	8260B
	ND	10.0	10.3	ug/L	103	6.1	SW846	8260B

SURROGATE	PERCENT	RECOVERY LIMITS		
Dibromofluoromethane	108	(73 - 118)		
	106	(73 - 118)		
1,2-Dichloroethane-d4	105	(62 - 128)		
	101	(62 - 128)		
4-Bromofluorobenzene	99	(78 - 118)		
	99	(78 - 118)		
Toluene-d8	108	(77 - 117)		
	108	(77 - 117)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

DISSOLVED Metals

Client Lot #...: D4L170138

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample	#: D4L17000	0-660 Prep Batch #:	4352660		
Iron	ND	30 ug/L	SW846 6010B	12/21/04	G1FA11AC
		Dilution Factor: 1			
		Analysis Time: 22:16			
Magnesium	ND	5000 ug/L	SW846 6010B	12/21/04	G1FA11AE
		Dilution Factor: 1			
		Analysis Time: 22:16			
722	0.000			10/01/01	G1 F1 1 1 1 G
Sodium	ND	5000 ug/L	SW846 6010B	12/21/04	G1FA11AG
		Dilution Factor: 1			
		Analysis Time: 22:16			
Calcium	ND	5000 ug/L	SW846 6010B	12/21/04	G1FA11AD
Calcium	ND	5000 ug/L Dilution Factor: 1	SW040 0010B	12/21/04	GIFALIAD
		Analysis Time: 22:16			
		Analysis lime: 22:16			
Manganese	ND	5.0 ug/L	SW846 6010B	12/21/04	G1FA1
	.,	Dilution Factor: 1			
		Analysis Time: 22:16			
		an absolute Academic Constant and Constant a			
Potassium	ND	5000 ug/L	SW846 6010B	12/21/04	G1FA11AF
		Dilution Factor: 1			
		Analysis Time: 22:16			
NOTE(S):					

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #: D4L170138	Matrix WATER

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#:	D4L170000	-660 Prep Ba	tch #: 4352660		
Iron	104	(88 - 110)	SW846 6010B	12/21/04	G1FA11AK
		Dilution Fact	or: 1 Analysis	Time: 22:20	
Magnesium	102	(91 - 111)	SW846 6010B	12/21/04	G1FA11AM
		Dilution Fact	or: 1 Analysis	Time: 22:20	
Sodium	101	(91 - 112)	SW846 6010B	12/21/04	G1FA11AP
		Dilution Facto	or: 1 Analysis	Time: 22:20	
Calcium	104	(89 - 110)	SW846 6010B	12/21/04	G1FA11AL
		Dilution Facto	or: 1 Analysis	Time: 22:20	
Manganese	100	(90 - 110)	SW846 6010B	12/21/04	G1FA11AJ
		Dilution Facto	or: 1 Analysis	Time: 22:20	
Potassium	101	(86 - 111)	SW846 6010B	12/21/04	G1FA11AN
		Dilution Facto	or: 1 Analysis	Time: 22:20	
Your (a)					

LABORATORY CONTROL SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot	#: D4I	170138		Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT UNITS	PERCNT RECVRY METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sam	ple#: D4I	170000-660 Prep Ba	atch #: 4352660		
Iron	1000	1040 ug/L Dilution Fact	104 SW846 6010B or: 1 Analysis Time		G1FA11AK
Magnesium	50000	51100 ug/L Dilution Fact			G1FA11AM
Sodium	50000	50500 ug/L Dilution Fact			G1FA11AP
Calcium	50000	51900 ug/L Dilution Fact			G1FA11AL
Manganese	500	501 ug/L Dilution Factor		12/21/04	G1FA11AJ
Potassium	50000	50400 ug/L Dilution Factor			G1FA11AN

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE (S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: D4L170138 Matrix..... WATER

Date Sampled...: 12/16/04 09:30 Date Received..: 12/17/04

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	метно	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	le #: D4L17	0210-001 Pr	ер В	atch #	.: 435	2660		
Iron	102	(52 - 155)				6010B	12/21/04	G1C1A1A
	98	(52 - 155) Dilutio		3000	SW846	6010B	12/21/04	G1C1A1A
		Analysi	s Time	22:31				
Magnesium	104	(62 - 146)			SW846	6010B	12/21/04	G1C1A1A
	94	(62 - 146)	4.5	(0-25)	SW846	6010B	12/21/04	G1C1A1A
		Dilutio	n Fact	or: 1				
		Analysi	s Time	22:31				
Sodium	NC, MSB	(70 - 203)			SW846	6010B	12/21/04	G1C1A1A8
	NC, MSB	(70 - 203)		(0-40)	SW846	6010B	12/21/04	G1C1A1A9
		Dilution	n Fact	or: 1				
		Analysi	s Time	: 22:31				
Calcium	104	(48 - 153)			SW846	6010B	12/21/04	G1C1A1A2
	97	(48 - 153)	4.0	(0-25)	SW846	6010B	12/21/04	G1C1A1A3
		Dilution Analysi:		or: 1				
Manganese	100	(79 - 121)			SW846	6010B	12/21/04	G1C1A1AW
	96	(79 - 121)	3.7	(0-25)	SW846	6010B	12/21/04	G1C1A1AX
		Dilution	n Fact	or: 1				
		Analysis	s Time	: 22:31				
Potassium	102	(76 - 132)			SW846	6010B	12/21/04	G1C1A1A6
	95	(76 - 132)	4.7	(0-25)	SW846	6010B	12/21/04	G1C1A1A7
		Dilution	Fact	or: 1				
		Analysis	Time	: 22:31				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

NC The recovery and/or RPD were not calculated.

MATRIX SPIKE SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot #:	D4L170138	Matrix:	WATER
CTTCHE THE H	D4111/0130	PIGLE LA	MANTE

Date Sampled...: 12/16/04 09:30 Date Received..: 12/17/04

PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCN	IT RY RPD	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S	ample #:	D4L1702	210-001	Prep Batch	#:	435266	0			
Iron				1					and the same of th	
	33	1000	1060	ug/L	102			6010B	12/21/04	G1C1A1A
	33	1000	1020	ug/L	98	3.9	SW846	6010B	12/21/04	G1C1A1A
			577 A0070 1752 575	tion Factor:						
			Anal	ysis Time:	22:31					
Magnesiu	n									
	65000	50000	117000	ug/L	104		SW846	6010B	12/21/04	G1C1A1A4
	65000	50000	112000	ug/L	94	4.5	SW846	6010B	12/21/04	G1C1A1A!
			Dilu	tion Factor:	1					
			Anal	ysis Time:	22:31					
Sodium				2.0					211 2	
	500000	50000	554000	ug/L			SW846	6010B	12/21/04	G1C1A1A
				lifiers: NC	, MSB			c 0 1 0 m	10/01/01	91.91
	500000	50000	528000	The second secon	Man		SW846	6010B	12/21/04	G1C1
				lifiers: NC tion Factor: 1						
				ysis Time:						
			Midi	yara rime	22.31					
Calcium										
	26000	50000	78300	ug/L	104		SW846	6010B	12/21/04	G1C1A1A2
	26000	50000	75200	ug/L	97	4.0		6010B	12/21/04	G1C1A1A3
			Dilu	tion Factor: :	1					
			Anal	ysis Time: 2	22:31					
Manganese		Marting Plant	Production	Can.				CHARGOTTONICAL	CONTRACTOR DESCRIPTION	
	ND	500	500	ug/L	100	20 20		6010B	12/21/04	G1C1A1AV
	ND	500	482	ug/L	96	3.7	SW846	6010B	12/21/04	G1C1A1AX
				tion Factor:						
			Anaı	ysis Time: 2	42:31					
Potassiur	n									
	25000	50000	75500	ug/L	102		SW846	6010B	12/21/04	G1C1A1A6
	25000	50000	72100	ug/L	95	4.7	SW846		12/21/04	G1C1A1A7
			Dilu	tion Factor:	L				3	
			Anal	ysis Time: 2	22:31					
				77.7						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D4L170138

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	Work Order #: G1TJX1AA 0.040 mg/L Dilution Factor: 1 Analysis Time: 16:00	MB Lot-Sample #: MCAWW 350.1	D4L270000-416 12/22/04	4362416
Chloride	ND	Work Order #: G1Q241AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 12:01	MB Lot-Sample #: MCAWW 300.0A	D4L200000-611 12/17/04	4355611
Nitrate	ND	Work Order #: G1Q291AA 0.050 mg/L Dilution Factor: 1 Analysis Time: 12:01	MB Lot-Sample #: MCAWW 300.0A	D4L200000-612 12/17/04	4355612
Nitrite	ND	Work Order #: G1Q261AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 12:01	MB Lot-Sample #: MCAWW 300.0A	D4L200000-613 12/17/04	4355613
Sulfate	ND	Work Order #: G1Q3H1AA 5.0 mg/L Dilution Factor: 1 Analysis Time: 12:01	MB Lot-Sample #: MCAWW 300.0A	D4L200000-610 12/17/04	4355610
Total Alkalinity	ND	Work Order #: G1WG41AA 5.0 mg/L Dilution Factor: 1 Analysis Time: 21:48	MB Lot-Sample #: MCAWW 310.1	D4L270000-239 12/22/04	4362239
NOTE (C).					

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #	.: D4L17013	8 Matrix	: WATER
PARAMETER		RECOVERY PREPARATION- LIMITS METHOD ANALYSIS DATE	
Ammonia as N		Work Order #: GITJX1AC LCS Lot-Sample#: D4L270000-	416
	102	(90 - 110) MCAWW 350.1 12/22/04 Dilution Factor: 1 Analysis Time: 16:00	4362416
Chloride		Work Order #: G1Q241AC LCS Lot-Sample#: D4L200000-	611
	98	(90 - 110) MCAWW 300.0A 12/17/04 Dilution Factor: 1 Analysis Time: 11:27	
Nitrate		Work Order #: G1Q291AC LCS Lot-Sample#: D4L200000-	612
	97	(90 - 110) MCAWW 300.0A 12/17/04 Dilution Factor: 1 Analysis Time: 11:27	4355612
Nitrite		Work Order #: G1Q261AC LCS Lot-Sample#: D4L200000-	613
	99	(90 - 110) MCAWW 300.0A 12/17/04 Dilution Factor: 1 Analysis Time: 11:27	4355613
Sulfate		Work Order #: G1Q3H1AC LCS Lot-Sample#: D4L200000-	610
	100	THE PARTY OF THE P	4355610
Total Alkalini	ty	Work Order #: G1WG41AC LCS Lot-Sample#: D4L270000-	239
	99	(95 - 110) MCAWW 310.1 12/22/04 Dilution Factor: 1 Analysis Time: 21:48	4362239

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D4L170138

PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT	ED UNITS	PERCNT RECVRY	METHOD	PRE	EPARATION- ALYSIS DATE	PREP BATCH #
Ammonia as N					IAC LCS Lot-Sampl			
T. A.S.	4.00	4.08	The state of the s		MCAWW 350.1 Analysis Time: 16		12/22/04	4362416
Chloride			Work Order #	: G1Q241	IAC LCS Lot-Sampl	Le#:	D4L200000-6	11
	20.0	19.6			MCAWW 300.0A Analysis Time: 11		12/17/04	4355611
Nitrate			Work Order #	: G1Q291	IAC LCS Lot-Sampl	e#:	D4L200000-6	12
	4.00	3.87			MCAWW 300.0A Analysis Time: 11		12/17/04	4355612
Nitrite			Work Order #	: G1Q261	AC LCS Lot-Sampl	.e#:	D4L200000-6	13
	4.00	3.97			MCAWW 300.0A Analysis Time: 11		12/17/04	4355613
Sulfate			Work Order #	: G1Q3H1	IAC LCS Lot-Sampl	e#:	D4L200000-6	10
	20.0	20.0			MCAWW 300.0A Analysis Time: 11		12/17/04	4355610
Total Alkali	nity		Work Order #	: G1WG41	LAC LCS Lot-Sampl	e#:	D4L270000-2	39
	200		mg/L	99	MCAWW 310.1 Analysis Time: 21			

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D4L170138 Matrix.....: WATER

Date Sampled...: 12/15/04 09:20 Date Received..: 12/17/04

	PERCENT	RECOVERY	RPD	PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS RPD	LIMITS METHOD	ANALYSIS DAT	
Ammonia as N		WO#: G1CD	N1D7-MS/G1CDN1D8-MSD	MS Lot-Sample #: 1	
	94	(44 - 130)	MCAWW 350.1	12/22/04	4362416
	92	(44 - 130) 1.4	(0-30) MCAWW 350.1	12/22/04	4362416
		Dilution Fa		None of the second	
		Analysis Ti	me: 16:00		
Chloride		WO#: G1CD	M1A0-MS/G1CDM1A1-MSD	MS Lot-Sample #: 1	D4L170138-001
	98	(80 - 120)	MCAWW 300.0A	12/17/04	4355611
	101	(80 - 120) 2.9	(0-20) MCAWW 300.0A	12/17/04	4355611
		Dilution Fa	ctor: 1		
		Analysis Ti	me: 14:53		
Nitrate		WO#: G1CD	M1A4-MS/G1CDM1A5-MSD	MS Lot-Sample #: I	D4L170138-001
	109 I	(80 - 120)	MCAWW 300.0A	12/17/04	4355612
	111 I	(80 - 120) 1.2	(0-20) MCAWW 300.0A	12/17/04	4355612
		Dilution Fa	ctor: 1		
		Analysis Ti	me: 14:53		
Nitrate		WO#: G1C1	A1CF-MS/G1C1A1CG-MSD	MS Lot-Sample #: I	D4L170210-001
	99	(80 - 120)	MCAWW 300.0A	12/17/04	4355612
	101	(80 - 120) 1.2	(0-20) MCAWW 300.0A	12/17/04	4355612
		Dilution Fa	ctor: 1		
		Analysis Ti	me: 21:09		
Nitrite		WO#: G1CD	M1A2-MS/G1CDM1A3-MSD	MS Lot-Sample #: I	D4L170138-001
	99	(80 - 120)	MCAWW 300.0A	12/17/04	4355613
	101	(80 - 120) 1.8	(0-20) MCAWW 300.0A	12/17/04	4355613
		Dilution Fa	ctor: 1		
		Analysis Ti	me: 14:53		
Sulfate		WO#: G1CD	M1A6-MS/G1CDM1A7-MSD	MS Lot-Sample #: I	D4L170138-001
	111	(80 - 120)	MCAWW 300.0A	12/17/04	4355610
	112		(0-20) MCAWW 300.0A	12/17/04	4355610
		Dilution Fa			
		Analysis Ti	me: 14:53		

NOTE(S):

I Estimated result. Result concentration exceeds the calibration range.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D4L170138 Matrix..... WATER

Date Sampled...: 12/15/04 09:20 Date Received..: 12/17/04

PARAMETER	SAMPLE		MEASRD	UNITS	PERCNT RECVRY	RDD	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as	-	2011		-				le #: D4L170141	
	ND	4.00	3.76	mg/L	94		MCAWW 350.1	12/22/04	4362416
	ND	4.00	3.71	mg/L	92	1.4	MCAWW 350.1	12/22/04	4362416
				ion Factor: 1					
			Analy	sis Time: 16:	00				
Chloride			WO#:	G1CDM1A0-MS	/G1CDM17	1-MSI	MS Lot-Sampl	le #: D4L170138	-001
	3.8	25.0	28.3	mg/L	98		MCAWW 300.0A	12/17/04	4355611
	3.8	25.0	29.1	mg/L	101	2.9	MCAWW 300.0A	12/17/04	4355611
			Dilut	ion Factor: 1					
			Analy	sis Time: 14:	53				
Nitrate			WO#:	G1CDM1A4-MS	/G1CDM1	5-MSI	MS Lot-Sampl	e #: D4L170138	-001
	4.6	5.00	10.0 I	mg/L	109		MCAWW 300.0A	12/17/04	4355612
	4.6	5.00	10.1 I	mg/L	111	1.2	MCAWW 300.0A	12/17/04	4355612
			Dilut	ion Factor: 1					
			Analy	sis Time: 14:	53				
Nitrate			WO#:		/G1C1A1C	G-MSI	MS Lot-Sampl	e #: D4L170210	-001
	0.97	5.00	5.93	mg/L	99		MCAWW 300.0A	12/17/04	4355612
	0.97	5.00	6.00	mg/L	101	1.2	MCAWW 300.0A	12/17/04	4355612
				on Factor: 1					
			Analys	sis Time: 21:0	09				
Nitrite			WO#:	G1CDM1A2-MS/	G1CDM1A	3-MSI	MS Lot-Sampl	e #: D4L170138	-001
	ND	5.00	4.95	mg/L	99		MCAWW 300.0A	12/17/04	4355613
	ND	5.00	5.04 Dilut:	mg/L on Factor: 1	101	1.8	MCAWW 300.0A	12/17/04	4355613
			Analys	sis Time: 14:	53				
Sulfate			WO#:	G1CDM1A6-MS/	G1CDM1A	7-MSI	MS Lot-Sampl	e #: D4L170138	-001
	18	25.0	45.8	mg/L	111		MCAWW 300.0A	12/17/04	4355610
	18	25.0	46.2	mg/L	112	0.84	MCAWW 300.0A	12/17/04	4355610
			Diluti	on Factor: 1					
			Analys	is Time: 14:5	53				

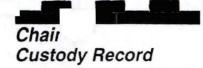
NOTE(S):

I Estimated result. Result concentration exceeds the calibration range.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D4L170138


Work Order #...: G1AKR-SMP

Matrix....: WATER

G1AKR-DUP

Date Sampled...: 12/14/04 14:08 Date Received..: 12/16/04

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH
Total Alkalinity				(a) (3.500-3.500) - 2.000-300	SD Lot-Sample #:	D4L160456-028	
57	56	mg/L	1.1	(0-10)	MCAWW 310.1	12/22/04	4362240
		Dilution Fa	ctor: 1	Ana	alvsis Time : 21:48		

12-17-54

STL Denver 4955 Yarrow Stree Arvada, CO 80002

Severn Trent Laboratories, Inc.

STL-4124 (0901) Client Project Manager Telephone Number (Area Code)/Fax Number Page Zip Code Analysis (Attach list if more space is needed) Farrau Carrier/Waybill Number Project Name and Location (State) Special Instructions/ Contract/Purchase Order/Quote No. Conditions of Receipt Containers & Matrix Preservatives Sample I.D. No. and Description Date (Containers for each sample may be combined on one line) Dropped I Voc Vic 2 Possible Hazard Identification (A fee may be assessed if samples are retained Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B ☐ Unknown ☐ Return To Client ☐ Disposal By Lab ☐ Archive For . longer than 1 month) Turn Around Time Required QC Requirements (Specify) 24 Hours 48 Hours 7 Days 14 Days 21 Days Other. 1. Relinquished By 1. Received By 2 Relinquished By 3. Relinquished By Date Time 3. Received By Date Time Comments

		FIELD IN	FORMAT	TION FORM	И	V	
Name Site	" LWKS	This form	is to be completed, in a	nformation Form is Requi edition to any State Forms. Costody Forms that accom-	The Field Form is	Laboratory Use Only/L	ih ID:
No.:	9 6 H Sample Point: MU		and the same of th	it is returned to the laborato	· · · · · · · · · · · · · · · · · · ·	MUZ	0138-001
PURGE	PURGE DATE PURGE (MM DD YY) Note: For Passive Sampling, replace "Water Va	ETIME ELAPSE Ill Clock) thread "Well Vols Pursus" in Casing" and "Well Vols Pursus"	ńn)	WATER VOL IN CAS (Gallons) use Flow Cell and Tubing/Fl		L VOL PURGED (Gallons) Mark changes, record for	WELL VOLS PURGED
PURGE/SAMPLE EQUIPMENT	Pureing and Sampling Equipment Dedicate	d: Y or N sible Pump D-Bailer	Filter 5 Filt	er Type:	A-In-line Disposabl 3-Pressure A-Teflon 3-Stainless Steel	g (circle or e C-Vacuum X-Other	
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water (I (II/msl) (from TOC) Stick Up (II) (from ground eleva	199		Groundwater Elevat site datum, from TO Casing Air		(fl/msl)
STABILIZATION DATA (Optional)	Note: Total Well Depth, Strick Up, Casing Id. etc. Sample Time 2400 Hr Clock) 14:47 14:50 14:50 14:53 14:56 14:56 14:59 15:08 16:08 17:05 16:08 17:05	Conductance (SC/EC) (µmhos/em @ 25 °C) 1 ³¹	Temp. (°C) 125 134 142 143 143 143 145	Turbiclity (ntu)	D.O. (mg/L-ppm) 8.03 7.82 7.46 7.42 7.43 7.36 7.34 7.31	cH/ORP (mV) 450.0 448.2 449.6 446.1 452.6 453.6 452.9 451.7 448.5 46.29 46.1 46.1 6.1 6.1 6.2 6.2 6.2 6.2 6.2	DTW (fi) 342.63 342.63 342.63 342.63 342.63 342.63 342.63 342.63 342.63
31	nal Field Readings are required (i.e. record field	measurements, final stabilized r		ole readings before sampli	73/ ing for all field parar	neters required by States	34268 Permii/Site.
W	remple Appearance: USAR Peather Conditions (required daily, or as conditions) Pecific Comments (including purge/well voluments) SAMPLE TIME					35 Other: 1230 Perecipitation 124 Min	
HERE SOME	certify that sampling procedures were in account of the procedure of the p	Asserting a fill and the second secon	Lion Signature	USL	Co	EMCON	

Sit.	FIELD INF	ORMATION FOR	RM	V	$\sqrt{\Lambda}$
Site	This form is to	anagement Field Information Form is R be completed, in addition to any State For	ms. The Field Form is	WAS	TE MANAGEMENT
).:		g with the Chain of Custody Forms that ac with the cooler that is returned to the labe	Company me sample	DY LI70	138-002
PURGE	PURGE DATE PURGE TIME ELAPSED II (MM DD YY) (2400 Ht Clock) (hrs.min) Now: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/	(Gallons)	(G	VOL PURGED iallons) ark changes, record fiel	WELL VOLS PURGED
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated:	Filter Device: ar 1 Filter Type: A Sample Tube Type: C	A-In-line Disposable B-Pressure A-Teflon	jų (circle or	fill in)
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC) Depth to Water (DTV (from TOC) Stick Up (from ground elevation)	14/17/8/4	Groundwater Elevation (site datum, from TOC Casing (in)	Casing Material 1	PVC
STABILIZAT ATA (Optional) States of the state of the stat	Note: Total Well Depth. Stick Up. Casing Id. etc. are optional and can be from historical ample Time and the Indian Ph (std) (umhos/cm @ 25 °C)	Temp. Turbidity (ntu) 97 110 110 110 110 1	D.O. (mg/L-ppm) 10.04 9.15 8.75 8.56 8.58 8.44 8.44 4.10% e fields can be used where ely to Site. Hmore fields at DO (mg/L-ppm)	eH/ORP 46793 4756 4767 4767 4571 4571 4571 4507 4574 4590 7000 1000 1000 1000 1000 1000 1000 10	DTW (ft) 419 84 419 84 419 84 419 84 419 84 419 84 419 84 419 84 419 84 419 84 419 84
San	127 (22 19 8)	r: NONE (ion/Speed: Out	Color: COLOR LESS	Other:Precipitation	
FIELD COMMENTS	SAMPLE TIME = 1425			u N	
	tify that sampling procedures were in accordance with applicable EPA, State, 2,15,04 BEN UHL Signature Sig	and WM protocols (if more than one Bu WW enature	e sampler, all should sign	EMEON	

ION BALANCE REPORT

Lab Sample ID: D4L170138-001 Client Sample ID: MW-07

SAMPLE SUMMARY

Percent Difference	1.68
Total lons (meq/L)	10.05
TDS Ratio (measured/calculated)	NC
Calculated TDS (cations+anions, mg/L)	330.26

CATION ANALYSES

Analyte	mg/L	meq/L
Calcium	46.00	2.30
Magnesium	22.00	1.81
Potassium	6.80	0.17
Sodium	19.00	0.83
Ammonia as N	0.03	0.00
Iron	0.03	0.00
Aluminum	NA	NA
Total Cations	93.86	5.11

ANION ANALYSES

Analyte	mg/L	meq/L
Chloride	3.80	0.11
Sulfate	18.00	0.37
Nitrate+Nitrite	4.60	0.33
Carbonate Alkalinity	NA	NA
Bicarbonate Alkalinity	NA	NA
Hydroxide Alkalinity	NA	NA
Total Alkalinity	210.00	4.13
Total Anions	236.40	4.94

OTHER ANALYSES

Analyte	mg/L
Total Dissolved Solids	NA

ND - Not Detected

NA - Not Analyzed

NC - Not Calculated

Note: Calculations are most accurate under standard conditions. Extremes of pH or conductivity may lead to inaccuracy, as will high levels of cations or anions not analyzed.

ION BALANCE REPORT

Lab Sample ID: D4L170138-002 Client Sample ID: MW-11

SAMPLE SUMMARY

Percent Difference	1.85
Total lons (meq/L)	9.80
TDS Ratio (measured/calculated)	NC
Calculated TDS (cations+anions, mg/L)	319.00

CATION ANALYSES

Analyte	mg/L	meq/L
Calcium	41.00	2.05
Magnesium	22.00	1.81
Potassium	7.00	0.18
Sodium	22.00	0.96
Ammonia as N	ND	ND
Iron	ND	ND
Aluminum	NA	NA
Total Cations	92.00	4.99

ANION ANALYSES

Analyte	mg/L	meq/L
Chloride	3.50	0.10
Sulfate	28.00	0.58
Nitrate+Nitrite	5.50	0.39
Carbonate Alkalinity	NA	NA
Bicarbonate Alkalinity	NA	NA
Hydroxide Alkalinity	NA	NA
Total Alkalinity	190.00	3.74
Total Anions	227.00	4.81

OTHER ANALYSES

Analyte	mg/L
Total Dissolved Solids	NA

ND - Not Detected

NA - Not Analyzed

NC - Not Calculated

Note: Calculations are most accurate under standard conditions. Extremes of pH or conductivity may lead to inaccuracy, as will high levels of cations or anions not analyzed.