Second Quarter 2015 Remedial Systems Operations and RECEIVED Maintenance (O&M) Report

TOC Holdings Co. Facility No. 01-176 24205, 24225, 24309 56th Avenue West Mountlake Terrace, WA

> Prepared for: TOC Holdings Co. 2737 W. Commodore Way Seattle, WA 98199

> > October 7, 2015

Prepared by:

HydroCon, LLC 510 Allen Street, Suite B Kelso, Washington 98626 p: (360) 703-6079 f: (360) 703-6086 www.hydroconllc.net

Second Quarter 2015 **Remedial Systems O&M Report**

Prepared for:

TOC Holdings Co. 2737 West Commodore Way Seattle, Washington 98199

TOC Holdings Co. Facility No. 01-176 24205, 24225, 24309 56th Avenue West Mountlake Terrace, WA

Washington State Department of Ecology Agreed Order No. DE 8661

HydroCon Project No: 01-176

Prepared by:

Mark E. Selman, PE **Project Engineer**

Reviewed by:

Craig Hultgren, LHG Project Manager

October 7, 2015

TABLE OF CONTENTS

1	INT	RO	DUCTION	1
1	.1	sco	OPE OF WORK	1
1	.2	SU	MMARY OF Q2 2015 O&M ACTIVITIES	2
2	RE	ME	DIAL SYSTEMS MODIFICATIONS	3
3	SY	STE	EM PERFORMANCE	4
3	6.1	тос	C PROPERTY (UNIT 1)	4
3	.2	то	C/FARMASONIS PROPERTY (UNIT 2)	5
3	.3	DR/	AKE PROPERTY (UNIT 3)	6
4	SY	STE	EM OPTIMIZATION & FUTURE RECOMMENDATIONS	7
4	1.1	OPT		7
4	.2	OPT	TIMIZATION RECOMMENDED	7
	4.2.	1	Remediation Well Evaluation	
	4.2.	2	Enhanced Fluid Recovery	8
	4.2.	3	Future Optimization Efforts	9
5	LIN	ЛІТА	ATIONS	D

LIST OF FIGURES

Figure 1: Project Location Figure 2: Site Map

LIST OF TABLES

Table 1-1: Summary of System Performance – Unit 1 TOC Property

- Table 1-2: Vapor Stream; System Performance Monitoring Data; Unit 1 TOC Property
- Table 1-3: Liquid Stream; System Performance Monitoring Data; Unit 1 TOC Property
- Table 1-4: Vapor Stream Analytical Results; Unit 1 TOC Property
- Table 1-5: Liquid Stream Analytical Results; Unit 1 TOC Property
- Table 2-1: Summary of System Performance Unit 2 TOC Farmasonis Property
- Table 2-2: Vapor Stream; System Performance Monitoring Data; Unit 2 TOC Farmasonis Property
- Table 2-3: Liquid Stream; System Performance Monitoring Data; Unit 2 TOC Farmasonis Property
- Table 2-4: Vapor Stream Analytical Results; Unit 2 TOC Farmasonis Property
- Table 2-5: Liquid Stream Analytical Results; Unit 2 TOC Farmasonis Property
- Table 3-1: Summary of System Performance Unit 3 Drake Property
- Table 3-2: Vapor Stream; System Performance Monitoring Data; Unit 3 Drake Property
- Table 3-3: Liquid Stream; System Performance Monitoring Data; Unit 3 Drake Property
- Table 3-4: Vapor Stream Analytical Results; Unit 3 Drake Property
- Table 3-5: Liquid Stream Analytical Results; Unit 3 Drake Property

LIST OF APPENDICES

Appendix A– Remedial Systems Descriptions

Figure A-1: Remediation Systems and Site Details Map

Figure A-2: Piping and Instrumentation Diagram

Appendix B - TOC Facility No. 01-176 Permits

Figure B-1: State Waste Discharge Permit ST0007384–Outfall Sampling Locations Appendix C - Analytical Laboratory Reports

1 INTRODUCTION

This report was prepared by HydroCon Environmental, LLC (HydroCon) on behalf of TOC Holdings Co. (TOC) to document the Second Quarter 2015 (Q2 2015) remedial systems operation and maintenance (O&M) activities performed by both Stantec Consulting Services Inc. (Stantec; as a sub consultant to HydroCon) and HydroCon. Field activities associated with interim remedial actions were conducted from April through June 2015 at Facility No. 01-176 located in Mountlake Terrace, Snohomish County, Washington (Figure 1).

1.1 SCOPE OF WORK

Ongoing interim remedial actions are conducted under Agreed Order (AO) No. DE 8661, between TOC and the Washington State Department of Ecology¹ entered in October 2011 for TOC's Facility No. 01-176. The O&M scope of work is defined in the *Interim Remedial Action Work Plan²* (IRAWP). Per the requirements of the IRAWP, the O&M scope of work includes monthly and quarterly monitoring events.

As described in the IRAWP, the TOC Facility No. 01-176 is termed the "Interim Remedial Project Area" (IRPA) and consists of the following four properties located in Mountlake Terrace, Washington (Figure 2):

- TOC Property: 24205 56th Avenue West
- TOC/Farmasonis Property: 24225 56th Avenue West
- Drake Property: 24309 56th Avenue West
- Portions of the 56th Avenue West Right-of-Way (ROW): adjacent to the TOC, TOC/Farmasonis and Drake properties

O&M activities are conducted to monitor the performance of three multi-phase extraction (MPE) remediation systems currently operating at the IRPA. The MPE remediation systems were installed to remediate petroleum hydrocarbon-contaminated groundwater, soil vapor, and free product (where present). Unit 1 is located on the TOC Property; Units 2 and 3 are located on the TOC/Farmasonis Property. Unit 1 is associated with the operation of remediation wells installed on that property; Units 2 and 3 are associated with the operation of wells installed on the TOC/Farmasonis and Drake Properties, respectively.

Details on remediation well identification and locations are provided in the description of remedial systems in Appendix A.

¹ Washington State Department of Ecology (Ecology). 2011. Agreed Order No. DE 8661, TOC Facility No. 01-176. October 28.

² SoundEarth Strategies, Inc. (SES) 2011. Interim Remedial Action Work Plan. TOC Holdings Co. Facility No. 01-176; 24205 56th Avenue West, Mountlake Terrace, WA, Prepared for TOC Holdings Co. July 28.

Second Quarter 2015; Remedial Systems O&M Report TOC Holdings Co. Facility No. 01-176

1.2 SUMMARY OF Q2 2015 O&M ACTIVITIES

This report includes a description of permit compliance and remedial system performance and optimization efforts. A summary of the remedial system performance and maintenance activities performed by Stantec and HydroCon from April through June 2015 is provided below.

- O&M consisted of routine, scheduled maintenance activities (as described in the O&M Manual), as well as the following activities:
 - Installation of automatic feed system for biocide and sequestering agent for the Unit 1 groundwater treatment system
 - Temporary shutdown of the Unit 3 air compressor to evaluate an oil/water leak discovered during the April visit.
- A combined total of 12.2 pounds of vapor-phase hydrocarbons were removed during this reporting period. A cumulative total of approximately 4,370 pounds have been removed since startup in October 2012.
- A combined total volume of 515,805 gallons of groundwater were extracted, treated and discharged during this period. The total volume of water processed since system startup is approximately 3,385,362 gallons.
- Light nonaqueous-phase liquids (LNAPL) were not observed or recovered from the three MPE systems during this quarter. Also, the oil/water separator (OWS) for each system was inspected, and no LNAPL was visible.

System optimization activities during this reporting period focused on installing the biocide feed system for Unit 1. These activities are described in more detail in the following sections.

Second Quarter 2015; Remedial Systems O&M Report TOC Holdings Co. Facility No. 01-176

2 REMEDIAL SYSTEMS MODIFICATIONS

System modifications performed during this quarter included the installation of the biocide treatment for Unit 1. Prior to the installation, Stantec coordinated with Ecology's Water Quality Division to establish appropriate discharge thresholds for the active biocide ingredient: 20% Tetrakis-Hydroxymethyl Phosphonium Sulfate (THPS, or Tolcide[®]) and a sequestering compound AN-400, and to modify the State Waste Discharge (SWD) permit to include these limits. Ecology approved modification of the permit to include discharge limits of 10 milligrams per liter (mg/L) for THPS and 3.2 mg/L for AN-400. An addendum to the permit to authorize these modifications was issued by Ecology on May 11, 2015³.

Approximately 55-gallons of Tolcide[®] and AN-400 are stored within a single drum located in the OWS secondary containment tray. A chemical metering pump is secured on top of the drum lid and used to inject Tolcide[®] (70 ppm) and AN-400 (10 ppm) into influent system water. The metering pump is electrically connected to the system, and will only operate during groundwater extraction (the metering pump will not operate during a system shutdown) to prevent overdosing of the system. The metering pump is manually adjustable and the injection rate checked routinely and periodically adjusted, as necessary, based on the system influent groundwater flow rate. In the event of a spill/leak, a float switch in the OWS secondary containment tray will shut down the system and chemical metering pump.

Per the requirements in the SWD Permit, the concentrations of Tolcide[®] and AN-400 will be monitored using titration field test kits on a quarterly basis from the effluent sample ports of the first carbon drum and third carbon drum.

³ Ecology. 2015. Addendum to Fact Sheet; Permit No. ST0007384, TOC Holdings Co. May 11.

3 SYSTEM PERFORMANCE

The most recent annual groundwater sampling event conducted in First Quarter 2015⁴ showed that benzene, toluene, ethylbenzene, and total xylenes (BTEX) and/or gasoline-range petroleum hydrocarbons (GRPH) concentrations in groundwater have decreased and currently exceed the Model Toxics Control Act (MTCA) Method A levels in five of the 75 active wells installed in the Intermediate Zone, or wells that intersect shallow-intermediate and intermediate-deep zone conditions:

- Wells MW27 and MW90, located on the TOC Property;
- Well MW57, located on the TOC Farmasonis Property
- Well MW48, located in the 56th Avenue West ROW at the boundary of the TOC Farmasonis and Drake Properties, and
- Well MW69, located on the Drake Property.

3.1 TOC PROPERTY (UNIT 1)

The following is a summary of the Second Quarter 2015 system O&M at the TOC Property:

- The MPE operation time this quarter was approximately 87 percent (Table 1-1). System down time was attributable to bag filter change outs and installation of the biocide metering system.
- An automatic biocide and sequestering agent injection system was installed for the Unit 1 groundwater treatment system. More details on the installation are provided in Section 4.1.
- The vapor-phase hydrocarbon mass removal associated with the soil vapor extraction (SVE) system was approximately 4.9 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was approximately 0.07 pounds for this reporting period. The cumulative vapor- and aqueous-phase hydrocarbon removal to date is approximately 3,129 and 15.9 pounds, respectively (Tables 1-1, 1-2 and 1-3).
- The volume of groundwater extracted during this reporting period was 133,855 gallons (Tables 1-1 and 1-3). The average daily groundwater recovery flow rate during this quarter was 1,504 gallons (Tables 1-1 and 1-3).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.
- The SVE daily mass removal rate ranged from 0.05 to 0.07 pounds during this quarter (Table 1-2).
- Air flow through the catalytic oxidizer (CATOX) from the SVE blower was bypassed in

⁴ Stantec Consulting Services, Inc. (Stantec) 2015a. Groundwater Monitoring Report, 2015 Annual Event. TOC Holdings Co. Facility No. 01-176; 24205 56th Avenue West, Mountlake Terrace, WA 98043.

February 2015 because permit conditions for bypass were achieved. According to the Puget Sound Clean Air Agency (PSCAA) Notice of Construction (NOC) permit for each unit (1, 2, and 3), the CATOX may be removed or bypassed and directly vented to the atmosphere if benzene and GRPH concentrations in the untreated air remain below 0.5 and 50 parts per million by volume (ppmv), respectively, for a period of 3 consecutive months (refer to Appendix B for other permit conditions).

The concentrations of GRPH exiting the stack during this quarter were below the laboratory's lower reporting limit of 10 milligrams per cubic meter [10 mg/m³] which is equivalent to 3.37 ppmv using the estimated molecular weight of 72.5 as representative of the composite molecular weight of gasoline⁵. The conversion to ppmv from mg/m³ assumes a temperature of 25°C and standard pressure (1 atmosphere) (Table 1-4).

The concentrations of benzene exiting the stack during this quarter were below the laboratory's lower reporting limit of 0.1 mg/m³ which is equivalent to 0.03 ppmv at 25°C and standard pressure. Laboratory analytical reports are provided in Appendix C.

 All system operations were in compliance with the SWD and PSCAA Permit limits (Tables 1-3, 1-4, and 1-5).

3.2 TOC/FARMASONIS PROPERTY (UNIT 2)

The following is a summary of the Second Quarter 2015 system O&M at the TOC/Farmasonis Property:

- The MPE operational time this quarter was approximately 91 percent (Table 2-1). System down time was mostly attributable to bag filter change out and blower maintenance. However, the groundwater extraction and treatment portion of the system at Unit 2 was fully operational during the blower down-time.
- The vapor-phase hydrocarbon mass removal associated with the SVE system was approximately 1.6 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was 0.07 pounds for this reporting period. The cumulative vaporand aqueous-phase hydrocarbon removal to date is approximately 1,015 pounds and 0.8 pounds, respectively (Tables 2-1, 2-2, and 2-3).
- The volume of groundwater extracted during this quarter was approximately 160,177 gallons (Tables 2-1 and 2-3). The average daily groundwater recovery flow rate during this quarter was 1,800 gallons (Tables 2-1 and 2-3).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.

⁵ Fremont Analytical. 2015. Personal Communication. Response to email inquiry from Mark Selman. September 23.

- The daily vapor mass removal rate ranged from 0.03 to 0.1 pounds during this quarter (Table 2-2).
- Air flow through the CATOX from the SVE blower had been bypassed in September 2014 because permit conditions for bypass had been achieved. Effluent concentrations of benzene and GRPH exiting the stack during this quarter were below the laboratory's lower reporting limits of 0.1 and 10 mg/m³, respectively (Table 2-4). Laboratory analytical reports are provided in Appendix C.
- All system operations were in compliance with the SWD and PSCAA Permit limits (Tables 2-3, 2-4, and 2-5).

3.3 DRAKE PROPERTY (UNIT 3)

The following is a summary of the Second Quarter 2015 system O&M at the Drake Property:

- The MPE operation time this quarter was approximately 89 percent (Table 3-1). System down time was mostly attributable to blower maintenance and bag filter changes.
- The vapor-phase hydrocarbon mass removal associated with the SVE system was approximately 5.7 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was 0.09 pounds for this reporting period. The cumulative vaporand aqueous-phase hydrocarbon removal to date is approximately 226 and 2 pounds, respectively (Tables 3-1, 3-2 and 3-3).
- The volume of groundwater extracted during this reporting period was approximately 221,773 gallons (Tables 3-1 and 3-3). The average daily groundwater recovery flow rate was 2,492 gallons (Tables 3-1 and 3-3).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.
- The daily vapor mass removal rate was constant at 0.07 pounds during this quarter (Table 3-2).
- Air flow through the CATOX from the SVE blower had been bypassed in September 2014 because permit conditions for bypass had been achieved. Effluent concentrations of benzene and GRPH exiting the stack during this quarter were below the laboratory's lower reporting limits of 0.1 and 10 mg/m³, respectively (Table 3-4). Laboratory analytical reports are provided in Appendix C.
- All system operations were in compliance with the State Waste Discharge and PSCAA Permit limits (Tables 3-3, 3-4, and 3-5).

4 SYSTEM OPTIMIZATION & FUTURE RECOMMENDATIONS

The following is a summary of the Second Quarter 2015 system optimization and future recommendations for operation of the MPE systems.

The MPE remediation systems will continue to operate until the terms and conditions of the AO have been satisfied in accordance with Section IX (Satisfaction of Order), or until the work to be performed has been amended in accordance with Section VIII.L (Amendment of Order). Specifically, "the provisions of [the Agreed] Order shall be deemed satisfied upon TOC's receipt of written notification from Ecology that TOC has completed the remedial activity required by the [Agreed] Order, as amended by any modifications, and that TOC has complied with all other provisions of the [Agreed] Order."

Operational activities during this quarter continued to focus on dewatering the formation to optimize recovery of dissolved- and vapor-phase hydrocarbons.

4.1 OPTIMIZATION COMPLETED

Prior to this reporting period there were ongoing problems experienced with the Unit 1 groundwater treatment components and filters fouling with mineral fines and biological slimes. Stantec installed a biocide injection system during this quarter to control the formation of the biological slimes to reduce the accompanying maintenance problems. As a result of the installation of the system, slimes and filter clogging have been eliminated and the system maintenance has shown substantial improvement. The majority of these problems were experienced at the TOC Property (Unit 1) system; however, similar problems were also experienced at the Drake Property system (Unit 3). Unit 3 problems improved following the installation of a bag filter in 2013.

Stantec observed an oil/water mixture leaking from the Unit 3 compressor into the compressor containment area during the April 2015 O&M visit. The Unit 3 compressor was temporarily shut down to avoid further leaks and damage. Stantec's follow up consultation with the compressor repair company (Beckwith and Kuffel, Seattle) suggested draining the water and restarting the compressor. This apparently solved the leak because no leaks were observed in subsequent weekly and monthly inspections for this reporting period.

4.2 OPTIMIZATION RECOMMENDED

This section describes recommended methods to assess the effectiveness of each system and provides recommendations to optimizing system performance.

4.2.1 Remediation Well Evaluation

Recent groundwater monitoring results (Stantec 2015a) revealed that the MPE systems installed on the TOC Farmasonis and Drake properties (Units 2 and 3) have reduced contaminant levels in the

Second Quarter 2015; Remedial Systems O&M Report TOC Holdings Co. Facility No. 01-176

Intermediate Zone groundwater in the majority of the wells located on these parcels. In response, it is recommended that the operation of specific remediation wells currently connected to Units 2 and 3 be discontinued insofar as these wells have achieved the desired remedial objective and appear to no longer provide a discernable remedial benefit for these parcels. However, prior to disconnecting any wells, it is recommended that individual wells be evaluated for vapor and aqueous phase mass removal performance during the coming weekly and quarterly system checks. The reason is that the performance of an individual remediation well cannot be assessed solely by concentrations of contaminants detected in the combined influent vapor (SVE) and groundwater recovered at each remedial compound. Wells that produce high flows and low concentrations of contaminants will mask, through dilution, the mass recovery from other wells that generate lower flows and concentrations.

Assessing the vapor phase remedial performance of individual remediation wells involves measuring air flow and VOC, oxygen, and carbon dioxide concentrations using real-time monitoring instruments. The evaluation of the aqueous phase mass recovery of individual wells involves collecting samples of and analyzing contaminant concentrations in groundwater extracted from each well. Data generated by these evaluations would be used to justify the elimination of specific remediation wells from continued operation if it is confirmed they are not providing a discernable remedial benefit.

The advantages of this approach include cost savings from reductions in power consumption and maintenance, a better understanding of where residual contamination levels remain above remediation goals, and where to focus and maximize the existing remedial infrastructure to remediate those areas still needing remediation. For example, wells MW57 (a remediation well located on the TOC Farmasonis property connected to Unit 2) and MW96 (a remediation well located on the Drake property connected to Unit 3) exhibit GRPH concentrations in groundwater below the MTCA Method A cleanup level. However, these wells are in close proximity to well MW48 located on the 56th Avenue ROW that exhibits a high GRPH concentration, well above the cleanup level. Continued operation of Units 2 and 3 to maximize the mass recovery from wells MW57 and 96, respectively, is expected to hasten the remediation of the still high contaminant concentrations in well MW48. A similar evaluation is recommended for the performance of individual remediation wells connected to Unit 1.

4.2.2 Enhanced Fluid Recovery

Enhanced fluid recovery (EFR) events are recommended for wells where contaminant levels remain elevated above cleanup levels. EFR involves connecting a high capacity vacuum pump to a well to rapidly evacuate all fluids for the purpose of recovering accumulated contaminated media: groundwater, separate phase hydrocarbons, and/or contaminated formation materials that have entered the well through the well screen, or contaminated soil vapor within the vicinity of a contaminated well. The objective is to extract any residual source contaminants from the well to prevent those sources from continuing to generate detectable contaminants in the groundwater and soil vapor. Additionally, the vacuum will induce airflow from unsaturated soil within its radius of influence so that volatile vapor recovery can be achieved. The contaminated media that is recovered from the mobile vacuum unit would be transported to a pretreatment facility permitted by King County Industrial Waste prior to

discharge to the King County sewer system for additional treatment. Wells that currently exceed the cleanup levels include:

- Wells MW27 and MW90, located on the TOC Property;
- Well MW57, located on the TOC Farmasonis Property
- Well MW48, located in the 56th Avenue West ROW at the boundary of the TOC Farmasonis and Drake Properties, and
- Well MW69, located on the Drake Property.

EFR is recommended initially at well MW48 because it is not connected to any of the remediation systems and exhibits the highest contaminant concentrations compared to the other wells currently exceeding the cleanup levels. EFR at this well affords the opportunity to remove contaminated source material from the well and to evaluate contaminant concentrations in both recovered groundwater and soil vapor. Samples of contaminated groundwater and soil vapor would be collected for analysis of GRPH and BTEX prior to and immediately after each EFR event to evaluate the magnitude of residual contamination still sourcing from the well. Groundwater sampling would be performed using the low-flow protocol employed during quarterly and annual sampling events. Grab samples of vapor would be collected using Tedlar bags.

Upon approval by Ecology with this concept, a work plan will be developed to implement an EFR program.

4.2.3 Future Optimization Efforts

The results of the remediation well evaluation and EFR events will be critically reviewed to determine the operating configuration for each system (i.e., unit) that will produce the optimum mass recovery rates and thus achieve the remedial objectives as quickly as possible. If the recommended optimization efforts do not provide adequate and timely results, other remedial approaches and technologies to complement and/or replace existing technology will be evaluated.

Second Quarter 2015; Remedial Systems O&M Report TOC Holdings Co. Facility No. 01-176

5 LIMITATIONS

This document entitled, Second Quarter 2015 Remedial Systems Operations & Maintenance Report, was prepared by HydroCon Environmental, LLC exclusively for and on behalf of TOC Holdings Co. Material contained in this document reflects HydroCon's best judgments regarding the information available at the time of preparation and in accordance with industry-standard practices. Reliance on this document by a third party is the responsibility of the third party; therefore, HydroCon provides no warranty or guarantee related the unauthorized third party use of the information and findings presented herein. Finally, HydroCon accepts no responsibility for damages, if any, claimed by a third party as a result of the unauthorized use of this document.

Isers/Josh/Desktop/Autocad Backup/Hydrocon-Autocad/01-176 MLT/2015/pdf figure set/01-176_Figure Set dwg 2.17.2014

TABLES

ł

_

۰.

1

Ι

Ĭ

1

Table 1-1 Summary of System Performance Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

Reporting	Period				Volume of Treated	Average Daily Groundwater		GRPH Vapor-
Start Date	End Date	Days In Reporting Period	Days In Operation	System Run Time (%)	Groundwater Discharged (gallons)	Recovery Rate (gallons per day)	GRPH Aqueous- Phase Removal (lb)	Phase Removal (lb)
10/02/12	12/05/12	64	29.6	46%	34,569	540.1	3.67	1,353.0
12/05/12	03/04/13	89	35.6	40%	7,655.9	86.0	0.938	50.6
03/04/13	06/05/13	93	29.1	31%	4,915.8	52.9	0.604	7.2
06/05/13	09/04/13	91	69.0	76%	83,540.3	918.0	3.580	265.4
09/04/13	12/03/13	90	90.0	100%	75,825.2	842.5	1.226	1,061.1
12/03/13	01/31/14	59	26.1	44%	1,166.2	19.8	0.033	158.9
01/31/14	03/19/14	47	29.4	63%	29,991.7	638.1	0.872	35.1
03/19/14	06/16/14	89	69.7	78%	101,082.0	1,135.8	3.328	5.4
06/16/14	09/18/14	94	86.6	92%	101,780.0	1,082.8	1.097	51.2
09/18/14	12/09/14	82	68.7	84%	53,355.0	650.7	0.022	132.0
12/09/14	03/11/15	92	62.0	67%	103,289.0	1,122.7	0.470	4.2
03/11/15	06/08/15	89	77.7	87%	133,855.0	1,504.0	0.072	4.9
Total		979	674	69%	731,024.7	716.1	15.908	3,129.0

NOTES:

= data for current reporting period

% = percent GRPH = gasoline-range petroleum hydrocarbons Ib = pounds SVE = soil vapor extraction

Table 1-2 Vapor Stream - System Performance Monitoring Data Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

233.3	R	tun Time	SVE Par	ameters	Catalytic O	xidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
10/02/12	5.0	0.2	70	146.8	330	380	1,600	21.12	0.000
10/10/12	70.2	2.9	69	149.2	330	419	2,600	45.24	132.3
10/17/12	237.7	9.9	69	149.2	330	410	3,400	63.04	572.3
10/24/12	406.9	17.0	68	144.4	330	385	2,400	54.11	953.8
11/07/12	638.2	26.6	73	140.7	330	384	1,700	37.16	1311.9
12/05/12	714.2	29.8	67	148.0	330	344	150	12.98	1353.0
01/08/13	1,482.9	61.8	65	153.8	330	342	35	1.49	1400.8
01/17/13	1,533.7	63.9	76	153.0	330	350			
02/05/13	1,537.6	64.1	64	148.6	330	342	53	0.96	1403.0
03/04/13	1,569.4	65.4	27	173.0	330	342	<10	0.46	1403.6
04/03/13	1,587.2	66.1	60	157.4	330	342	14	0.25	1403.8
05/08/13	1,595.4	66.5	17	175.2	330	341	22	0.43	1403.9
06/05/13	2,267.7	94.5	36	166.0	330	340	<10	0.25	1410.8
07/02/13	2,789.8	116.2	39	168.0	330	340	26	0.43	1420.1
08/06/13	3,227.4	134.5	47	162.1	330	341	31	0.65	1432.0
08/09/13	3,302.8	137.6	64	157.1	330	345	-		
09/04/13	3,924.4	163.5	66	152.0	330	351	580	8.41	1676.2
10/07/13	4,715.2	196.5	66	153.1	330	356	710	13.71	2128.1
10/14/13	4,888.3	203.7	72	155.4	330	354			
10/15/13	4,913.7	204.7	70	154.7	330	355			
10/16/13	4,936.9	205.7	66	154.4	330	364			
11/06/13	5,434.8	226.5	45	173.7	330	349	240	8.74	2390.2
11/07/13	5,460.5	227.5	45	168.1	330	346			200012
12/03/13	6,084.2	253.5	74	158.2	330	355	740	12.83	2737.3
01/13/14	6,710.4	279.6	0	0.0				TEIOO	2101.0
01/31/14	6,711.6	279.7	47	174.0	330	342	37	6.08	2896.2
02/06/14	6,854.2	285.6	47	173.4	330	343	-	0.00	2000.2
02/07/14	6,877.1	286.5	47	174.9	330	342	110	2.02	2910.1
03/19/14	7.416.7	309.0	48	174.0	330	340	<10	0.94	2931.2
04/18/14	7,919.8	330.0	48	173.1	330	340	<10	0.04	2932.9
05/19/14	8,420.1	350.8	47	172.8	330	345	<10	0.08	2934.5
06/16/14	9,088.9	378.7	50	172.2	330	345	<10	0.08	2936.7
07/09/14	9,571.0	398.8	50	169.8	330	344	<10	0.08	2938.2
08/12/14	10,287.5	428.6	49	167.4	330	339	19	0.18	2943.6
09/18/14	11,168.4	465.4	48	170.1	330	341	140	1.21	2943.8
10/22/14	11,881.3	495.1	48	166.5	330	341	220	2.72	3068.8
11/17/14	12,301.8	512.6	52	175.0	330	341	63	2.12	3106.9
12/09/14	12,817.3	534.1	52	171.5	330	340	15	0.61	3105.9
01/13/15	13,215.2	550.6	54	174.6	330	340	<10	0.16	
02/18/15	13,815.2	575.6	57	40.7	CATOX	1	<10	0.16	3122.5
03/11/15	14,305.9	596.1	59	50.9	CATOX		<10	0.05	3123.7 3124.1

Table 1-2 Vapor Stream - System Performance Monitoring Data Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

The state	F	tun Time	SVE Para	meters	Catalytic O	xidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
The South Burger	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
04/22/15	15,074.4	628.1	67	165.6	CATOX	OFF	<10	0.05	3125.7
05/19/15	15,691.6	653.8	60	163.4	CATOX	OFF	<10	0.07	3127.6
06/08/15	16,171.3	673.8	60	163.7	CATOX	OFF	<10	0.07	3129.0
		PSCAA NOO	C- 10384 Conditions	max. 350	min. 240	max. 620		THE PARTY OF ANT AND	Part Contractor

NOTES:

⁽¹⁾Air flow rates calculated using an averaging flow sensor (Dwyer Model DS). Air flow rates between 2/7/14 and 12/09/14 calculated from data. Air flow rates from 1/12/15 forward calculated from averaging flow sensor.

⁽²⁾Influent vapor samples collected from SVE sample port prior to air treatment.

⁽³⁾Daily mass removal rate (lb/day) = average concentration (mg/m³) x average flow rate (scfm) x conversion (8.99x10-5 lb-m³-min/mg-ft³-day).
⁽⁴⁾Cumulative mass of benzene removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

-- = not analyzed, measured, or calculated GRPH = gasoline-range petroleum hydrocarbons

iow = inches of water Ib = pounds Ib/day = pounds per day mg/m³ = milligrams per cubic meter NOC - Notice of Construction PSCAA = Puget Sound Clean Air Agency scfm = standard cubic feet per minute SVE = soil vapor extraction

Hydro

Table 1-3 Liquid Stream - System Performance Monitoring Data Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

	EX	tracted Groundwa	ater	Hydrocar	bon Recovery - Aque	ous-Pnase
	Second State State		Average Daily	GRPH	Recovery - Aqueous	-Phase
	Discharge Flow Totalizer	Treated Between Visits	Flow Rate Between Visits	Influent GRPH Concentration ⁽¹⁾	GRPH Removed ⁽²⁾⁽³⁾	Cumulative GRPH Removed ⁽³⁾⁽⁴⁾
Date	(gallons)	(gallons)	(gallons per day)	(µg/L)	(Ib)	(Ib)
10/02/12	636	0	0		**	
10/10/12	5,761	5,125	641	18,000	0.770	0.77
10/17/12	14,898	9,137	1,305			
10/24/12	21,888	6,990	999			
11/07/12	31,362	9,473	677	6,100	2.574	3.34
12/05/12	35,205	3,843	137	14,000	0.322	3.67
01/08/13	38,077	2,872	84	19,000	0.395	4.06
01/17/13	40,712	2,636	293			
02/05/13	41,363	651	34	8,200	0.373	4.43
03/04/13	42,861	1,497	55	19,000	0.170	4.60
04/03/13	44,190	1,329	44	11,000	0.166	4.77
05/08/13	46,980	2,790	80	20,000	0.361	5.13
06/05/13	47,777	797	28	3,200	0.077	5.21
07/02/13	63,870	16,093	596	17,000	1.356	6.57
08/06/13	89,988	26,118	746	<100	1.858	8.42
08/09/13	95,563	5,575	1,858			
09/04/13	131,317	35,754	1,375	2,400	0.4	8.79
10/07/13	174,445	43,128	1,307	1,100	0.6	9.42
10/14/13	184,152	9,707	1,387			
10/15/13	184,982	831	831			
10/16/13	185,955	973	973			
11/06/13	187,065	1,110	53	3,800	0.3	9.68
11/07/13	188,072	1,007	1,007			
12/03/13	207,142	19,070	733	240	0.34	10.01
01/13/14	208,154	1.012	25		**	
01/31/14	208,308	155	9	6,600	0.03	10.05
02/06/14	214,154	5,846	974			
02/07/14	214,841	686	686	760	0.20	10.25
03/19/14	238,300	23,460	586	6,100	0.67	10.92
04/18/14	273,331	35,031	1,168	4,300	1.52	12.44
05/19/14	303,504	30,173	973	2,700	0.88	13.32
06/16/14	339,382	35,878	1,281	3,500	0.93	14.25
07/09/14	367,276	27,894	1,213	2,500	0.70	14.94
08/12/14	399,903	32,627	960	180	0.36	15.31
09/18/14	441,162	41,259	1,115	<100	0.03	15.34
10/22/14	464,280	23,118	680	<100	0.010	15.35
11/17/14	478,016	13,736	528	<100	0.006	15.36
12/09/14	494,517	16,501	750	<100	0.007	15.37
01/13/15	516,310	21,793	623	1,500	0.141	15.51
02/18/15	559,454	43,144	1,198	150	0.297	15.80
03/11/15	597,806	38,352	1,826	<100	0.032	15.84
04/23/15	658,574	60,768	1,413	<100	0.025	15.86
05/19/15	702,217	43,643	1,679	<100	0.018	15.88
06/08/15	731,661	29,444	1,472	180	0.028	15.91

NOTES:

Sample Analysis conducted by Friedman & Bruya, Inc.

⁽¹⁾Influent samples collected prior to treatment with liquid-phase granular activated carbon.

 $^{(2)}$ Mass removal weight (lb) = gallons recovered x concentration (µg/L)

x conversion factor (8.344E-9 lb-L/ μ g-gallon). ⁽³⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit. (4)Cumulative mass (lb) = mass removal between sampling visits (lb) + previous cumulative total (lb).

DEFINITIONS:

-- = not analyzed, measured, or calculated < = not detected at the concentration indicated

µg/L = micrograms per liter

GRPH = gasoline-range petroleum hydrocarbons

lb = pound

2
1.
5
, ch
-
1
÷.
100
-
4
5
N
õ
5
õ
N
-
¥
0
20
×
8

Image: Instant Vagor Samples ¹¹ Totuene ⁴⁰ Totuene ⁴⁰ Total Xylence ¹⁰ G 1,600 2.0 10.0 5.5 2.6 2 2,600 2.3 13.0 8.7 37 37 37 1,700 $<.5.5$ 7.0 9.4 11.0 42 39 1,700 $<.0.5$ 7.0 9.4 39 37 37 1,700 $<.0.5$ 7.0 7.3 37 37 37 1,700 $<.0.1$ 0.13 3.5 37 37 37 155 $<.0.1$ 0.13 0.13 0.78 37 35 $<.10$ $<.0.1$ 0.10 0.10 0.69 1 0.35 $<.10$ $<.0.1$ $<.0.1$ $<.0.1$ 0.78 0.79 1 $<.10$ $<.0.1$ $<.0.1$ $<.0.1$ $<.0.3$ 0.4 0.79 $<.10$ $<.0.1$ $<.0.1$ $<.$).3			<0.1	<10	0 70	<0.1	0.57	<0.1	63	11/18/14				
Introduction of the product o			<0.1	<0.1	<10	3.3	<0.1	3.00	<0.1	220	10/22/14				
Influent Vapor Sampler Tabuy Caputal Result Regent Effurent Vapor Sampler Fituent Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Total Vapor Sampler Influent Vapor Sampler Total Vapor Sampler Influent Vapor S	.ω		<0.1	<0.1	<10	1.6	0.54	0.23	<0.1	140	09/17/14				
Intrust vision Simpler Tabular Simpler Entrust vision Simpler Entrust vision Simpler Entrust vision Simpler GRMP1 ³ Barrant ⁴ Total Xylanst ⁴ Total Xylanst ⁴ GRM ⁴ Entrust vision Simpler Total Xylanst ⁴ Total Xylanst ⁴ Formation Xylanst ⁴ Entrust vision Xylanst ⁴ 2,000 2,3 7,0 4,2 4,10 4,01 <td>).3</td> <td></td> <td><0.1</td> <td><0.1</td> <td><10</td> <td><0.3</td> <td><0.1</td> <td>0.12</td> <td><0.1</td> <td>19</td> <td>08/11/14</td>).3		<0.1	<0.1	<10	<0.3	<0.1	0.12	<0.1	19	08/11/14				
Intruery Symples ⁽¹⁾ Table Security (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2).3		<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	07/09/14				
Intrume Variable (1) Intrume (1) (1) Intrume (1)	.3		<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	06/16/14				
Internet Vago Samples ⁽¹⁾ Textu Vago Samples ⁽¹⁾ Textu Vago Samples ⁽¹⁾ Effluent Vago Samples ⁽¹⁾ Textu Vago Samples ⁽¹⁾ Effluent Vago Samples ⁽¹⁾ Textu Vago Samples ⁽¹⁾ Textu Vago Samples ⁽¹⁾ 110 28 cill Textu Vago Samples ⁽¹⁾ 2.26 cill Cextu Vago Samples ⁽¹⁾ cill cill cill cill cill cill cill cill Cextu Vago Samples ⁽¹⁾ 2.26 cill cill cill cill cill cill cill cill).3		<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	05/19/14				
Intrust view interview interv).3		<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	04/18/14				
Intruer Value Valu).3		<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	03/19/14				
Analytical Results (mg/m ²) Tuluene ⁴⁰).3		<0.1	<0.1	<10	2.2	<0.1	0.77	<0.1	110	02/07/14				
Analytical Results (mg/m ³) Ethylbenzene ⁽ⁿ⁾ (n)).3		<0.1	<0.1	<10	0.75	<0.1	0.40	<0.1	37	01/31/14				
Intrust Variable National Results (mg/m ³) Ethylibenzane ⁽⁴⁾ Toluene ⁽⁴⁾ <th <="" colspan="4" th=""><td>).3</td><td></td><td><0.1</td><td><0.1</td><td><10</td><td>19.0</td><td><0.1</td><td>6.30</td><td><0.1</td><td>740</td><td>12/03/13</td></th>	<td>).3</td> <td></td> <td><0.1</td> <td><0.1</td> <td><10</td> <td>19.0</td> <td><0.1</td> <td>6.30</td> <td><0.1</td> <td>740</td> <td>12/03/13</td>).3		<0.1	<0.1	<10	19.0	<0.1	6.30	<0.1	740	12/03/13
Intuent Vapor Samples ⁽¹⁾ Total Xplenes ⁽⁴⁾ <t< th=""><td>).3</td><td></td><td><0.1</td><td><0.1</td><td><10</td><td>6.4</td><td><0.1</td><td>1.60</td><td><0.1</td><td>240</td><td>11/06/13</td></t<>).3		<0.1	<0.1	<10	6.4	<0.1	1.60	<0.1	240	11/06/13				
Interview).3		<0.1	<0.1	<10	22	<0.1	5.70	<0.1	710	10/07/13				
Intrust variables Intrust variables Intrust variables Total variables GRPH ⁴⁹ Benzene ⁴⁰ Caluene ⁴⁰ Ethylbenzene ⁴⁰ Caluene ⁴⁰ Ethylbenzene ⁴⁰ Total variables 2,600 2,0 10,0 5,5 2,6 <10 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1).3		<0.1	<0.1	<10	22	<0.1	5.00	<0.1	580	09/04/13				
Introduction of the section of).3		<0.1	<0.1	<10	0.79	0.14	0.21	<0.1	31	08/06/13				
).3		<0.1	<0.1	<10	0.48	<0.1	0.24	<0.1	26	07/02/13				
Interview of the series of the serie).3	_	<0.1	<0.1	<10	<0.3	<0.1	<0.1	<0.1	<10	06/05/13				
Interview of the second of the secon).3		<0.1	<0.1	<10	0.35	<0.1	0.23	<0.1	22	05/08/13				
Image: Interview of the second secon).3		<0.1	<0.1	<10	0.90	0.14	0.18	<0.1	14	04/03/13				
).3		<0.1	<0.1	<10	0.69	0.10	0.10	<0.1	<10	03/04/13				
).3		<0.1	<0.1	<10	0.78	0.13	0.30	<0.1	53	02/05/13				
Analytical Results (mg/m ³) Effluent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽²⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ 1,600 2.0 10.0 5.5 2.6 <10 <0.1 <0.1 <0.1 <0.3 2,600 2.3 13.0 8.7 37 <10 <0.1 <0.1 <0.1 <0.3 3,400 3.0 9.4 11.0 42 <10 <0.1 <0.1 <0.3 <0.3 2,400 1.5 7.0 9.4 39 <10 <0.1 <0.1 <0.3 <0.3 <0.3 <0.3 <0.1 <0.1 <0.3 <0.3 <0.3 <0.1 <0.3 <0.3 <0.3 <0.1 <0.3 <0.3 <0.1 <0.3 <0.3 <0.1 <0.3 <0.3 <0.1 <0.3 <0.1).3		0.16	<0.1	<10	0.86	0.18	0.19	<0.1	35	01/08/13				
Analytical Results (mg/m ³) Influent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽²⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Xylenes ⁽⁴⁾ 1,600 2.0 10.0 5.5 26 <10 <0.1 <0.1 <0.1 <0.3 2,600 2.3 13.0 8.7 37 <10 <0.1 <0.1 <0.1 <0.3 3,400 3.0 9.4 11.0 42 <10 <0.1 <0.1 <0.1 <0.3 2,400 1.5 7.0 9.4 39 <10 <0.1 <0.1 <0.3 <0.3 1,700 <0.5 7.0 9.4 39 <10 <0.1 <0.1 <0.3 <0.3 1,700 <0.5 7.0 7.3 37 <10 <0.1 <0.1 <0.1 <0.3 <0.3).3		<0.1	<0.1	<10	3.5	<0.1	0.23	<0.1	150	12/05/12				
Analytical Results (mg/m ³) Influent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽¹⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Xylenes ⁽⁴⁾ Analytical Results (mg/m ³) Benzene ⁽⁴⁾ Total Xylenes ⁽²⁾ Total Xylenes ⁽⁴⁾ Toluene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Xylenes ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Xylenes ⁽⁴⁾ Xylenes ⁽⁴⁾ Xylenes ⁽⁴⁾ Xylenes ⁽⁴⁾ C.1 <0.1).3		<0.1	<0.1	<10	37	7.3	7.0	<0.5	1,700	11/07/12				
Analytical Results (mg/m ³)Influent Vapor Samples ⁽¹⁾ Total Valor Samples ⁽¹⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ GRPH ⁽³⁾ Benzene ⁽⁴⁾ Toluene ⁽⁴⁾ Ethylbenzene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ 1,6002.010.05.526<10<0.1<0.1<0.32,6002.313.08.737<10<0.1<0.1<0.33,4003.09.411.042<10<0.1<0.1<0.1<0.3	0.3		<0.1	<0.1	<10	39	9.4	7.0	1.5	2,400	10/24/12				
Analytical Results (mg/m ³) Finduent Vapor Samples ⁽¹⁾ Effluent Vapor Samples ⁽²⁾ Effluent Vapor Samples ⁽¹⁾ Total Xylenes ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Xylenes ⁽⁴⁾ Xylenes ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Colspan= ⁽⁴⁾ Xylenes ⁽⁴⁾ 1,600 2.0 10.0 5.5 26 <10 <0.1 <0.1 <0.3 <0.3 <0.3 <0.3 <0.1 <0.20 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0).3		<0.1	<0.1	<10	42	11.0	9.4	3.0	3,400	10/17/12				
Analytical Results (mg/m ³) Finduent Vapor Samples ⁽¹⁾ Total SRPH ⁽³⁾ Benzene ⁽⁴⁾ Totuene ⁽⁴⁾ Total Xylenes ⁽⁴⁾ T	0.3		0.20	<0.1	<10	37	8.7	13.0	2.3	2,600	10/10/12				
Analytical Results (mg/m ³) Effluent Vapor Samples ⁽¹⁾ Total Samples ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Total Xylenes ⁽⁴⁾ Total Xylenes ⁽⁴⁾	-	-	_	<0.1	<10	26	5.5	10.0	2.0	1,600	10/02/12				
Analytical Results (mg/m ³) Effluent Vapor Samples ⁽²⁾	The second	thylbenzene ⁽⁴⁾	Toluene ⁽⁴⁾	Benzene ⁽⁴⁾	GRPH ⁽³⁾	Total Xylenes ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Toluene ⁽⁴⁾	Benzene ⁽⁴⁾	GRPH ⁽³⁾	Sample Date				
Analytical Results (mg/m ³)			nt Vapor Samples ⁽⁾	E			r Samples ⁽¹⁾	Influent Vapor							
					alytical Results	An		Series Strengthe		10 - 10 M					

1 of 2

Table 1-4 Vapor Stream Analytical Results Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

			States and	ATTA TRANSPORT	An	alytical Results (I	mg/m ³)	Ball Start Cont. St.		CUST HERE TH	
			Influent Vapo	or Samples ⁽¹⁾			Efflue	ent Vapor Sample	es ⁽²⁾	Startes a	No. Contractor
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH DRE% ⁽⁵⁾
01/13/15	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
02/18/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
03/11/15		CATO	X OFF - SAN	IPLED AT STACK	(14	<10	<0.1	<0.1	<0.1	< 0.3	
04/23/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
05/19/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
06/08/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
		PS	CAA NOC-1	0384 Restrictions	s and Conditions	max 214.7 ⁽⁵⁾			Standard Bank		95% ⁽⁵⁾⁽⁶⁾

NOTES:

Sample analysis conducted by Fremont Analytical in Seattle, Washington.

⁽¹⁾Influent vapor samples collected from SVE port on the pressure side of the blower

⁽²⁾Effluent vapor samples collected from the sample port on the effluent stack

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx

(4) Analyzed by U.S. EPA Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless the effluent GRPH concentration does not exceed 50 ppmv (or 214.7 mg/m³ assuming an average molecular weight for GRPH of 105)

DRE is calculated by [GRPH inf-GRPH eff]/[GRPH inf] x 100. For results below detection limit, 50% of the value of the detection limit is used in the calculation.

-- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

mg/m³ = milligrams per cubic meter

CATOX = catalytic oxidizer

DRE = destruction removal efficiency

GRPH = gasoline-range petroleum hydrocarbons

NOC = Notice of Construction

ppmv = parts per million by volume

PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Нус
dro
Con

Table 1-5 Liquid Stream Analytical Results Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

		Ground	Groundwater Influent ⁽¹⁾ µg/L	nt ⁽¹⁾ µg/L			Groundw	Groundwater Midstream ⁽²⁾ µg/L	1m ⁽²⁾ µg/L		al al a	G	roundwater I	Effluent ⁽³⁾	Groundwater Effluent ⁽³⁾ to POTW Discharge µg/L	charge µg/	-	
		Influent Sample (Sample ID: 1WINF)	nple (Sampl	e ID: 1WIN	NF)		Sar	Sample ID: 1GAC1	C1		New York			Effluent	Effluent (1WEFF)			
· ····································		1	1	i	Total					Total					Total	Total	Total	
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ^(o)	EB ⁽⁹⁾	Xylenes ⁽³⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽³⁾	EB ⁽⁵⁾	Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Xylenes ⁽⁵⁾	BTEX ⁽⁵⁾	Lead ⁽⁶⁾	pH ⁽⁷⁾
10/10/12	18,000	25.0	370.0	280	4,500	<100	4	7	4	۵	<100	7	7	~	<3	6	1	7.59
11/07/12	6,100	8.4	99.0	24	1,200	<100	4	7	^ <u>1</u>	۵	<100	4	4	7	\$	6>	1	7.61
12/05/12	14,000	12.0	250.0	200	2,700	<100	4	7	~	\$	<100	4	4	~	۵	-6	19.40	7.19
01/08/13	19,000	60.0	400.0	520	3,600	<100	4	~	^1	\$	<100	4	4	4	\$	6	1	7.71
02/05/13	8,200	11.0	83.0	61	1,200	<100	4	<	~	۵	<100	4	4	4	\$	6	1	6.86
03/04/13	19,000	20.0	200.0	460	3,900	<100	4	<1	^1	\$	<100	4	4	7	\$	~6	I	7.88
04/03/13	11,000	27.0	83.0	<40	2,500	<100	~	~	~	<3	<100	7	2	~	\$	6>	1	6.68
05/08/13	20,000	11.0	450.0	<10	3,400	<100	7	~1	~	\$	<100	4	4	^1	۵	6>	1	7.06
06/05/13	3,200	4.0	35.0	4	350	<100	4	^1	^1	\$	<100	4	4	<1	3.1	6>	3,33	6.80
07/02/13	17,000	9.9	290.0	190	3,200	<100	4	7	4	<3	<100	7	4	7	\$	6>	1	6.74
08/06/13	<100	4	7	<u>v</u>	\$	<100	^1	4	4	<3	<100	4	4	4	\$	6>	1	6.89
09/04/13	2,400	1.1	18.0	Ż	230	<100	4	7	^]	\$	<100	4	4	4	<3	6^	I	6.41
10/07/13	1,100	1.1	12.0	7	86	<100	4	7	7	\$	<100	4	4	7	\$	6>	1	6.89
11/06/13	3,800	27.0	150.0	26	810	<100	^1	~	^1	\$	<100	4	4	7	\$	6>	1	6.94
12/03/13	240	<1	3.7	4	19	<100	4	7	7	\$	<100	4	4	4	\$	6>	7.05	6.98
01/31/14	6,600	19.0	370.0	7	1,000	<100	~	7	4	~3	<100	7	<1	4	\$	6>	I	I
02/07/14	760	1.0	6.6	4	54	<100	4	~	4	\$	<100	4	<1	4	\$	6>	1	6.71
03/19/14	6,100	2.9	160.0	4	1,100	<100	4	^1	^1	\$	<100	4	7	4	۵	6>	1	8.49
04/18/14	4,300	4	100.0	4	650	<100	4	4	4	\$	<100	7	4	7	\$	6>	1	6.65
05/19/14	2,700	2.5	62.0	~	310	<100	<1	4	4	<3	<100	7	<1	4	\$	6>	1	6.90
06/16/14	3,500	2.0	86.0	4	520	<100	<1	4	7	\$	<100	7	7	7	۵	6	1.04	6.59
07/09/14	2,500	1.7	358.0	4	350	<100	<1	4	4	۵	<100	2	~	7	۵	6	1	7.20
08/12/14	180	<1	1.5	~	15	<100	~	4	7	۵	<100	7	4	7	~3	~6	I	7.29
09/17/14	<100	<1	4	4	۵	<100	<1	4	7	-3	<100	7	7	7	\$	~6	1	7.25
10/22/14	<100	^	1.4	~	4.0	<100	<1	4	~	\$	<100	~	7	~	4	6~	1	7.19
11/17/14	<100	4	7	4	۵	<100	~1	4	7	\$	<100	7	7	7	<3	6>	1	7.56
12/09/14	<100	~	7	7	۵	<100	<1	4	7	\$	<100	~1	^1	7	~3	6>	13.30	7.29
01/13/15	1,500	<1	35.0	4	270	<100	~	4	7	۵	<100	~	7	7	\$	6	1	7.37
02/18/15	150	7	3. 3	4	25	<100	4	7	7	۵	<100	7	~	7	\$	6>	1	7.25
03/11/15	<100	7	4	4	8.5	<100	~1	<1	4	\$	<100	7	~	7	<3	6>	1	7.15

01-176_Unit 1_OM_201502_DFCR.xlsx

Table 1-5 Liquid Stream Analytical Results Unit 1 - TOC Property TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA

25.0		Ground	water Influer	nt ⁽¹⁾ µg/L			Groundw	ater Midstrea	m ⁽²⁾ µg/L		ministel	G	roundwater E	Effluent ⁽³⁾	to POTW Dis	charge µg	/L	No. 1
	5.4.2	Influent San	ple (Sample	e ID: 1WI	NF)		Sar	nple ID: 1GA	C1			1		Effluen	t (1WEFF)	1.1.		
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Total BTEX ⁽⁵⁾	Total Lead ⁽⁶⁾	pH ⁽⁷⁾
04/23/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.25
05/19/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.38
06/08/15	180	<1	2.8	<1	28	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	5.64	6.5
					State W	aste Disch	arge Permit N	umber ST00	07384 Ef	fluent Limits	1,000	5	NS	NS	NS	100	1,090	6 to 10

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. in Seattle, Washington.

⁽¹⁾Three GAC vessels are operated in series mode. 1WINF sample is collected prior to first GAC vessel in series

⁽²⁾1GAC1 sample is collected downstream of GAC-1 and upstream of GAC-2 vessels in series

(3) Effluent sample collected downstream of third GAC vessel in series, which represents the quality of water discharged to the POTW

(4) Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by U.S. EPA Method 8021B

⁽⁶⁾Analyzed by U.S. EPA Method 200.8

⁽⁷⁾Analyzed by field instrumentation

-- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

BTEX = benzene, toluene, ethylbenzene, total xylenes

EB = ethylbenzene

GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

µg/L = micrograms per liter

NS = no standard

NWTPH = Northwest Total Petroleum Hydrocarbon

POTW = publicly-owned treatment works

Table 2-1 Summary of System Performance Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

Reportin	g Period		Surbar alis		The second second		Distant Property	AST DE P
Start Date	End Date	Days In Reporting Period	Days In Operation	System Run Time (%)	Volume of Treated Groundwater Discharged (gallons)	Average Daily Groundwater Recovery Rate (gallons per day)	GRPH Aqueous- Phase Removal (lb)	GRPH Vapor- Phase Removal (lb)
10/03/12	12/05/12	63	51.7	82%	12,461	197.8	0.01	671.8
12/05/12	03/04/13	89	52.5	59%	5,900	66.3	0.002	12.8
03/04/13	06/05/13	93	67.1	72%	106,670	1,147	0.356	7.4
06/05/13	09/04/13	91	82.2	90%	123,303	1,355	0.157	9.3
09/04/13	12/03/13	90	89.9	100%	89,204	991.2	0.037	163.5
12/03/13	01/13/14	41	41.1	100%	29,087	709	0.012	73.0
01/13/14	03/18/14	64	41.8	65%	29,578	462.2	0.012	49.7
03/18/14	06/16/14	90	85.4	95%	167,292	1,858.8	0.070	9.7
06/16/14	09/18/14	94	90.7	97%	120,848	1,285.6	0.050	6.2
09/18/14	12/09/14	82	53.9	66%	19,301	235.4	0.008	3.3
12/09/14	03/11/15 1	92	43.8	48%	39,860	433.3	0.017	7.1
03/11/15	06/08/15 1	89	81.1	91%	160,177	1,799.7	0.067	1.6
Total		978	781	80%	903,680.2	878.5	0.794	1,015.4

NOTES:

1.00

1

= data for current reporting period

An air sample was not collected during the March 11, 2015 site visit because the blower was not operational. Removal is estimated based on extrapolation to April vapor sample % = percent GRPH = gasoline-range petroleum hydrocarbons Ib = pounds SVE = soil vapor extraction

Table 2-2 Vapor Stream - System Performance Monitoring Data Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

STATES!	F	Run Time	SVE Par	ameters	Catalytic C	xidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
10/03/12	15.6	0.7	68	149.1	330	350	340	4.56	0.000
10/10/12	73.7	3.1	86	134.1	330	363	1,300	18.71	57.5
10/17/12	242.0	10.1	76	135.8	330	376	1,300	23.66	223.4
10/24/12	410.7	17.1	72	137.2	330	355	1,100	21.47	374,3
10/25/12	434.7	18.1	73	139.2	330	354		-	-
11/06/12	722.8	30.1	74	137.8	330	358	-	-	
11/07/12	748.2	31.2	74	138.6	330	352	660	15.00	585.3
12/05/12	1,257.4	52.4	74	124.3	330	338	15	4.08	671.8
12/06/12	1,266.4	52.8	75	135.6			-		
01/08/13	1,989.7	82.9	27	164.7	330	344	15	0.29	680.7
01/09/13	2,012.1	83.8	32	163.5	330	336	-		
01/17/13	2,037.9	84.9	27	166,5	331	336	-		
02/05/13	2,490.2	103.8	33	159.5	330	335	<10	0.18	684.5
02/06/13	2,514.5	104.8	38	157.5	330	335	-		
03/04/13	2,517.2	104.9	31	162.9	330	335	<10	0.11	684.6
03/12/13	2,705.4	112.7	32	161.7	330	335			
04/03/13	3,230.7	134.6	33	166.8	330	335	<10	0.11	687.9
05/08/13	3,454.7	143.9	33	164.5	330	338	<10	0.11	688.9
06/05/13	4,127.1	172.0	36	158.9	330	335	<10	0.11	692.0
06/19/13	4,438.7	184.9	34	166.7	330	335			
07/02/13	4,746.1	197.8	32	164.2	330	335	<10	0.11	694.8
08/06/13	5,403.6	225.2	10	175.5	330	335	<10	0,11	697.9
08/09/13	5,475.4	228.1	20	168.6	330	335			
09/04/13	6,098.7	254.1	20	170.1	330	335	<10	0.12	701.3
10/07/13	6,890.0	287.1	34	163.9	330	336	41	0.65	722.9
10/14/13	7,062.9	294.3	35	165.2	330	336			
10/15/13	7,088.0	295.3	74	146.5	330	342			
10/16/13	7,111.3	296.3	67	147.6	330	340			
11/06/13	7,610.8	317.1	73	150.7	330	338	140	2.27	791.0
11/07/13	7,635.3	318.1	65	148.2	330	338			
12/03/13	8,257.0	344.0	65	154.2	330	337	130	2.74	864.8
12/04/13	8,287.9	345.3	66	154.2	330	337			-
01/13/14	9,242.4	385.1	71	147.8	330	336	66	1.78	937.8
01/23/14	9,485.7	395.2	69	-	-	-	-	-	
01/31/14	9,675.8	403.2	68	147.3	330	335	-		
02/07/14	9,694,4	403.9	74	144.7	330	335	82	1.51	966.3
03/18/14	10,246.4		74	-	330	334	26	0.87	987.5
04/17/14	10,859.0	452.5	68	146.6	330	336	<10	0.23	993.2
05/20/14	11,645.2	485.2	72	146.9	330	338	<10	0.07	995.4

Table 2-2 Vapor Stream - System Performance Monitoring Data Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

Self as it	F	Run Time	SVE Para	meters	Catalytic O	xidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
06/16/14	12,296.4	512.4	62	152.4	330	338	<10	0.07	997.2
07/10/14	12,799.7	533.3	62	150.2	330	338	<10	0.07	998.6
08/12/14	13,588.2	566.2	61	149.4	330	338	<10	0.07	1000.9
09/18/14	14,474.1	603.1	48	158.3	CATOX	OFF	<10	0.07	1003,4
10/22/14	14,721.8	613.4	45	72.7	CATOX	OFF	<10	0.05	1004.0
11/17/14	15,242.7	635.1	47	166.6	CATOX	DFF	<10	0.05	1005.1
12/09/14	15,767.5	657.0	49	156.5	CATOX	DFF	<10	0.07	1006.7
01/13/15	16,495.6	687.3	56	156.0	CATOX	OFF	<10	0.07	1008.8
02/18/15	16,818.0	700.8			BLOWER	NWO			
03/11/15	16,818.0	700.8			BLOWER	NWO		-	**
04/22/15	17,642.7	735.1	59	149.5	CATOX	OFF	<10	0.10	1013.8
05/19/15	18,284.4	761.9	57	159.5	CATOX	OFF	<10	0.03	1014,7
06/08/15	18,764.9	781.9	65	158.8	CATOX	OFF	<10	0.04	1015.4
		PSCAA NO	C- 10384 Conditions	max. 350	min. 240	max. 620		1	Sec. 7. Durst

NOTES:

⁽¹⁾Air flow rates calculated using an averaging flow sensor (Dwyer Model DS). Air flow rates between 2/7/14 and 12/09/14 calculated from data. Air flow rates from 1/12/15 forward calculated from averaging flow sensor.

⁽²⁾Influent vapor samples collected from SVE sample port prior to air treatment.

⁽³⁾Daily mass removal rate (lb/day) = average concentration (mg/m³) x average flow rate (scfm) x conversion (8.99x10-5 lb-m³-min/mg-ft³-day).

(4)Cumulative mass of benzene removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

-- = not analyzed, measured, or calculated GRPH = gasoline-range petroleum hydrocarbons iow = inches of water ib = pounds Ib/day = pounds per day mg/m³ = milligrams per cubic meter NOC - Notice of Construction PSCAA = Puget Sound Clean Air Agency scfm = standard cubic feet per minute SVE = soil vapor extraction

Table 2-3 Liquid Stream - System Performance Monitoring Data Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

		xtracted Groundwat			bon Recovery - Aque	A CHARLES AND A CHARLES AND A
		S CLASS	Average Daily Flow	GRP	Recovery - Aqueous	-Phase
	Discharge Flow Totalizer	Treated Between Visits	Rate Between Visits	Influent GRPH Concentration ⁽¹⁾	GRPH Removed ⁽²⁾⁽³⁾	Cumulative GRPI Removed ⁽³⁾⁽⁴⁾
Date	(gallons)	(gallons)	(gallons per day)	(µg/L)	(lb)	(lb)
10/03/12	397.8	0	0	-		
10/10/12	562.6	165	24	<100	0.000	0.000
10/17/12	5,392.6	4,830	690			
10/24/12	8,170.9	2,778	397			
10/25/12	8,580.4	410	410		***	
11/06/12	10.624.2	2,044	170			
11/07/12	10,630.5	6	6	<100	0.004	0.004
12/05/12	12.858.4	2,228	80	<100	0.001	0.005
12/06/12	14,221.5	1,363	1,363	-		
01/08/13	18,643.2	4,422	134	<100	0.002	0.008
01/09/13	18,651.6	8	8	-		0.000
01/17/13	18,753.9	102	13			
02/05/13	18,753.9	0	0	<100	0.000	0.008
03/12/13	18,758.0	4	0	-		0.000
03/13/13	18,758.0	0	0	1,100	0.000	0.008
04/03/13	24,667.4	5,909	281	740	0.045	0.053
05/08/13	90,733.6	66,066	1,888	<100	0.218	0.27
06/05/13	125,427.8	34,694	1,239	590	0.093	0.36
06/19/13	131,990.5	6,563	469	-		
07/02/13	172,454.5	40,464	3,113	<100	0 126	0.49
08/06/13	223,496.3	51,042	1,458	<100	0.021	0.51
08/09/13	226,651.9	3,156	1,052	-	0.021	0.01
09/04/13	248,730.9	22.079	849	<100	0.011	0.52
10/07/13	269,136.3	20,405	618	<100	0.009	0.53
10/14/13	273,636.3	4,500	643		0.003	0.00
10/15/13	275,837.1	2,201	2,201			
10/16/13	277,480.5	1,643	1,643			
11/06/13	308,993.4	31,513	1,501	<100	0.017	0.55
11/07/13	310,249.2	1,256	1,256	- 100	0.017	0.55
12/03/13	337,935.2	27,686	1,065	<100	0.012	0.56
12/04/13	339,243.0	1,308	1,308	<100	0.012	0.56
01/13/14	367,022.0	27,779	694	<100	0.012	0.57
01/31/14	376,637.4	9,615	534	-		0.57
02/07/14	376,875.7	238	34	<100	0.004	0.57
03/18/14	396,600.0	19.724	506	<100	0.004	0.57
04/17/14	424,646.0	28,046	935	<100	0.008	0.58
05/20/14	497,115.0	72,469	2.196	<100	0.030	0.59
05/20/14	563.892.0	66,777	2,196	<100	0.030	0.62
06/16/14	603,616.0	39,724				
07/09/14		49,306	1,727	<100	0.017	0.67
08/12/14	652,922.0		1,450 884	<100	0.021	
10/22/14	684,740.0 687,370.0	31,818 2,630	75	<100	0.013	0.70
11/17/14	695,157.0	7,787	300	<100	0.001	
12/09/14		8,884	404		0.003	0.71
01/13/15	704,041.0 725,601.0	21,560	616	<100 <100	0.009	0.71
02/18/15	736,017.0	10,416	289	<100	0.009	0.72
03/11/15	743,901.0	7,884	375	<100	0.004	0.72
04/23/15	816,311.0	72,410	1,684	<100	0.030	0.73
04/23/15	867,016.0	50,705	1,950	<100		
	904.078.0	and the second se			0.021	0.78
06/08/15		37,062 T0007384 Limits	1,853 7,000	<100	0.015	0.79

NOTES:

Sample Analysis conducted by Friedman & Bruya, Inc.

⁽¹⁾Influent samples collected prior to treatment with liquid-phase granular activated carbon.

 $^{(2)}$ Mass removal weight (lb) = gallons recovered x concentration (µg/L)

x conversion factor (8.344E-9 lb-L/µg-gallon).

⁽³⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

⁽⁴⁾Cumulative mass (lb) = mass removal between sampling visits (lb) + previous cumulative total (lb)

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at the concentration indicated µg/L = micrograms per liter

GRPH = gasoline-range petroleum hydrocarbons lb = pound

01-176_Unit 2_OM_2015Q2_DFCR.xlsx

01-176_Unit 2_OM_2015Q2_DFCR.xlsx

				and an and an and an and an	An	Analytical Results (mg/m ³)	(mg/m ³)	Television and the second			
			Influent Vapo	nfluent Vapor Samples ⁽¹⁾			Efflue	nt Vapor Samples ⁽²⁾	(2) (2)		
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethvlbenzene ⁽⁴⁾	Total Xvlenes ⁽⁴⁾	GRPH DRE% ⁽⁵⁾
10/03/12	340	0.44	1.6	0.96	1.7	<10	<0.1	0.17	<0.1	-	98.5
10/10/12	1,300	0.77	<0.5	4.0	9.6	<10	<0.1	0.21	<0.1	<0.3	99.6
10/17/12	1,300	0.55	<0.5	3.7	7.9	<10	<0.1	<0.1	<0.1	<0.3	99.6
10/24/12	1,100	0.50	3.1	<0.1	11.0	<10	<0.1	<0.1	<0.1	<0.3	99.5
11/07/12	660	<0.1	2.7	<0.1	7.1	<10	<0.1	<0.1	<0.1	<0.3	99.2
12/05/12	15	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	66.7
01/08/13	15	<0.1	<0.1	<0.1	<0.3	<10	<0.1	0.10	<0.1	<0.3	66.7
02/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
03/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
04/03/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
05/08/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
06/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I.
07/02/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
08/06/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
10/07/13	41	<0.1	0.19	<0.1	0	<10	<0.1	<0.1	<0.1	<0.3	87.8
11/06/13	140	<0.1	0.52	<0.1	1.4	<10	<0.1	<0.1	<0.1	<0.3	96.4
12/03/13	130	<0.1	0.44	0.73	1.3	<10	<0.1	<0.1	<0.1	<0.3	96.2
01/13/14	66	<0.1	0.31	0.38	0.51	<10	<0.1	<0.1	<0.1	<0.3	92.4
02/07/14	82	<0.1	<0.1	0.73	0.65	<10	<0.1	<0.1	<0.1	<0.3	93.9
03/18/14	26	<0.1	<0.1	0.20	<0.3	<10	<0.1	<0.1	0.2	<0.3	80.8
04/17/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
05/20/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
06/16/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
07/09/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	J
08/11/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
09/17/14		CATO.	X OFF - SAN	CATOX OFF - SAMPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	1
10/22/14		CATO	X OFF - SAN	CATOX OFF - SAMPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	1
11/18/14		CATO	X OFF - SAN	CATOX OFF - SAMPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	1
		CATO	V DEE CAN	CATON OFE - SAMPIED AT STACK			10.4	10 4	104	5 0.2	

1 of 2

Table 2-4 Vapor Stream Analytical Results Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

				The second second	An	alytical Results (I	mg/m ³)	and the second second		D. H. H. HOLES	STORES DE
		Long - Valle	Influent Vapo	or Samples ⁽¹⁾			Efflue	ent Vapor Sample	es ⁽²⁾	1	1263
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH DRE% ⁽⁵⁾
01/13/15		CATO	X OFF - SAM	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
02/18/15		BLC	WER DOWN	- NO SAMPLE							
03/11/15		BLC	WER DOWN	- NO SAMPLE							
04/23/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
05/19/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
06/08/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
		PS	SCAA NOC-	10384 Restrictions	and Conditions	max 214.7 ⁽⁵⁾	S. E. S. Star	and second			95% ⁽⁵⁾⁽⁶⁾

NOTES:

Sample analysis conducted by Fremont Analytical in Seattle, Washington.

⁽¹⁾Influent vapor samples collected from SVE port on the pressure side of the blower

⁽²⁾Effluent vapor samples collected from the sample port on the effluent stack

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx

⁽⁴⁾Analyzed by U.S. EPA Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless the effluent GRPH concentration does not exceed 50 ppmv (or 214.7 mg/m³ assuming an average molecular weight for GRPH of 105)

DRE is calculated by [GRPH inf-GRPH eff]/[GRPH inf] x 100. For results below detection limit, 50% of the value of the detection limit is used in the calculation.

-- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

mg/m³ = milligrams per cubic meter

CATOX = catalytic oxidizer

DRE = destruction removal efficiency

GRPH = gasoline-range petroleum hydrocarbons

NOC = Notice of Construction

ppmv = parts per million by volume

PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Hydro 🃣 Con

Table 2-5 Liquid Stream Analytical Results Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

a state and a state of the		Groundw	Groundwater Influent ⁽¹⁾ µg/L	nt ⁽¹⁾ µg/L	the state of the state		Groundwa	Groundwater Midstream ⁽²⁾ µg/L	m(z) mg/L			5	oundwater	Effluent ⁽³)	Groundwater Effluent ⁽³⁾ to POTW Discharge ug/I	scharge ug	T	
	1	Influent Sample (Sample ID: 2WINF)	ple (Sample	e ID: 2WIN	JF)		San	Sample ID: 2GAC1	C1	the state	the state		and the second	Effluen	Effluent (2WEFF)	0		
Sample Date G	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xvienes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁶⁾	Total Xvlenes ⁽⁵⁾	Total BTEX ⁽⁵⁾	Total Lead ⁽⁶⁾	(J)Ha
10/10/12	<100			4	3.1	<100	-	<1	4	8	-				~	9>	1	7.59
11/07/12	<100	-1	V	4	Ŷ	<100	4	<1 ۲	۲.	Ŷ	<100	V	5	۲.	Q	92	1	7.71
12/05/12	<100	-1	4	۲.	Ŷ	<100	4	<1	4	8	<100	7	2	2	Ş	92	76.5	8.05
01/08/13	<100	4	4	5	Ŷ	<100	5	4	v	Ŷ	<100	۲.	Ŷ	۲.	ę	9>	1	7.29
02/05/13	<100	<1	<1	۲.	Ŷ	<100	۲	4	۲ <u>،</u>	ę	<100	7	~	4	ę	92	1	7.31
03/13/13	1,100	2.9	5	۲.	27	1	1	1	1	1	<100	2	2	4	ę	92	1	7.59
04/03/13	740	4	4	4	7.9	<100	4	< <u>-</u>	2	Ŷ	<100	5	۲	Ŷ	Ø	9>	1	7.08
05/08/13	<100	< <u>+</u>	۲.	Ŷ	5.1	<100	4	4	4	ę	<100	4	۲	Ÿ	Q	9>	1	7.51
06/05/13	590	2.0	1.8	14.0	120	<100	4	<1	5	ŝ	<100	Ÿ	۲- ۲	v	Q	9>	4.51	6.68
07/02/13	<100	۰ 1	4	v	ę	<100	4	4	ţ.	Ŷ	<100	5	~	<1	Ŷ	9>	1	6.97
08/06/13	<100	<1×	۲,	v	5.2	<100	₹-	4	×1	ŝ	<100	v	5	Ÿ	Ŷ	9>	1	7.10
09/04/13	<100	۲- ۲	2	v	Ø	<100	4	<1	4	ŝ	<100	Ŷ	۲.	4	Ŷ	9>	1	6.96
10/07/13	<100	۲.	٢	٧	Ŷ	<100	2	4	4	Ŷ	<100	4	2	4	Ŷ	9>	1	7.17
11/06/13	<100	4	5	v	Ŷ	<100	5	<1	۲.	Ŷ	<100	4	<1	< <u>-</u>	Ŷ	9>	1	6.92
12/03/13	<100	<1 ۲	7	7	Ŷ	<100	4	4	4	Ŷ	<100	Ŷ	5	4	ę	9>	1.59	7.04
01/13/14	<100	4	5	5	Ŷ	<100	4	4	4	Ş	<100	<1	<1	4	ę	9>	I	7.13
02/07/14	<100	4	2	v	Ŷ	<100	5	4	<1	Ŷ	<100	4	5	۰ ۲	ę	9>	1	7.45
03/18/14	<100	<1	<1>	۲.	Ŷ	<100	4	<1	4	ŝ	<100	<1	Ŷ	Ŷ	Ŷ	9>	1	7.86
04/17/14	<100	4	4	Ÿ	Ŷ	<100	4	4	2	ŝ	<100	2	5	5	Ŷ	9>	1	6.87
05/20/14	<100	</td <td>Ÿ</td> <td>v</td> <td>Ŷ</td> <td><100</td> <td>5</td> <td>4</td> <td>4</td> <td>Ŷ</td> <td><100</td> <td>5</td> <td>4</td> <td>2</td> <td>Ŷ</td> <td>9></td> <td>1</td> <td>7.18</td>	Ÿ	v	Ŷ	<100	5	4	4	Ŷ	<100	5	4	2	Ŷ	9>	1	7.18
06/16/14	<100	۲,	<1	ŕ	Ŷ	<100	4	4	4	ŝ	<100	~	Ŷ	v	Ŷ	9>	2	6.91
07/09/14	<100	۲>	۲	۲.	Ŷ	<100	۲.	~	ţ	Ŷ	<100	5	Ŷ	4	ę	9>	1	6.82
08/12/14	<100	4	2	5	Ŷ	<100	V	<1	ţ	Ŷ	<100	۲.	4	۲.	ę	9>	I	7.12
09/17/14	<100	V	4	V	Ÿ	<100	7	4	4	Ŷ	<100	5	4	٧	Ŷ	9>	1	7.04
10/22/14	<100	4	۲,	5	ç	<100	Ł	5	₹.	Ŷ	<100	4	4	V	Ŷ	9>	I	5.92
11/17/14	<100	5	5	V	Q	<100	ţ,	4	4	Ŷ	<100	₹.	5	4	ŝ	9>	1	7.83
12/09/14	<100	v	4	V	Ø	<100	₹	¢1	4	Ŷ	<100	< <u>-</u>	5	ţ,	Ŷ	9>	۲- ۲-	7.29
01/13/15	<100	۲,	5	Ÿ	Ŷ	<100	<۲-	4	v	Ŷ	<100	5	5	5	Ŷ	9>	1	7.45
02/18/15	<100	4	¥	5	Ŷ	<100	5	4	۲.	Ŷ	<100	v	7	۲,	ę	9>	I	7.07
03/11/15	<100	ţ.	Ÿ	V	Ŷ	<100	V	4	۰ ۲	Q	<100	~	5	2	Ŷ	9>	1	7.26

01-176_Unit 2_OM_2015Q2_DFCR.x6x

1 of 2

Table 2-5 Liquid Stream Analytical Results Unit 2 - TOC Farmasonis Property TOC Holdings Co. Facility No. 01-176 24225 56th Avenue West Mountlake Terrace, WA

		Groundy Influent Sam	water Influer					ater Midstrea			I STATE A	Gr	oundwater E		to POTW Dis	charge µg	/L	
		innuent San	ipie (Sampie	8 ID. 2991			Sar	TIPle ID: 2GA	61		1011			Effluen	t (2WEFF)			
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Total BTEX ⁽⁵⁾	Total Lead ⁽⁶⁾	pH ⁽⁷⁾
04/23/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.97
05/19/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.25
06/08/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	<1	7.0
					State Wa	aste Discha	arge Permit N	umber ST00	07384 Ef	fluent Limits	1,000	5	NS	NS	NS	100	1,090	6 to 10

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. in Seattle, Washington.

⁽¹⁾Three GAC vessels are operated in series mode. 2WINF sample is collected prior to first GAC vessel in series

⁽²⁾2GAC1 sample is collected downstream of GAC-1 and upstream of GAC-2 vessels in series

(3) Effluent sample collected downstream of third GAC vessel in series, which represents the quality of water discharged to the POTW

(4)Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by U.S. EPA Method 8021B

(6) Analyzed by U.S. EPA Method 200.8

⁽⁷⁾Analyzed by field instrumentation

- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

BTEX = benzene, toluene, ethylbenzene, total xylenes

EB = ethylbenzene

GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

µg/L = micrograms per liter

NS = no standard

NWTPH = Northwest Total Petroleum Hydrocarbon

POTW = publicly-owned treatment works

Table 3-1 Summary of System Performance Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

Reporting	Period	a here and a state		A States	A DE ANTINE CONTRACTOR	Des al Deserve		
Start Date	End Date	Days In Reporting Period	Days In Operation	System Run Time (%)	Volume of Treated Groundwater Discharged (gallons)	Average Daily Groundwater Recovery Rate (gallons per day)	GRPH Aqueous- Phase Removal (lb)	GRPH Vapor- Phase Removal (lb)
10/02/12	12/05/12	64	58.6	92%	69,982	1,093	0.03	60.8
12/05/12	03/04/13	89	73.3	82%	30,269	340	0.14	40.0
03/04/13	06/05/13	93	39.6	43%	74,016	796	0.49	4.1
06/05/13	09/04/13	91	58.1	64%	68,179	749	0.73	7.0
09/04/13	12/03/13	90	75.8	84%	211,043	2,345	0.09	9.4
12/03/13	01/13/14	41	41.0	100%	40,410	986	0.02	5.1
01/13/14	03/18/14	64	58.0	91%	132,724	2,074	0.06	68.3
03/18/14	06/16/14	90	71.3	79%	206,572	2,295	0.09	6.7
06/16/14	09/18/14	94	85.2	91%	225,458	2,398	0.09	7.0
09/18/14	12/09/14	82	70.8	86%	203,925	2,487	0.09	5.9
12/09/14	03/11/15	92	70.6	77%	266,301	2,895	0.11	5.7
03/11/15	06/08/15	89	79.5	89%	221,773	2,492	0.09	5.7
Cumulative Total or Average		979	782	80%	1,750,651	1,746	2.02	225.7

NOTES:

= data for current reporting period

% = percent GRPH = gasoline-range petroleum hydrocarbons lb = pounds SVE = soil vapor extraction

Table 3-2 Vapor Stream - System Performance Monitoring Data Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

18 18 18	F	Run Time	SVE Par	ameters	Catalytic C	Dxidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
	(hours)	(days)	(iow)	(scfm)	(°°)	(°C)	(mg/m ³)	(lb/day)	(lb)
10/03/12	11.2	0.5	70	143.8	330	340	13	0.17	0.000
10/10/12	75.7	3.2	73	140.4	330	338	12	0.24	0.75
10/17/12	243.7	10.2	74	141.7	330	337	<10	0.14	1.7
10/24/12	411.9	17.2	74	139.9	330	338	<10	0.09	2.4
10/25/12	436.7	18.2	74	142.8	330	338	<10	0.10	2.5
11/06/12	724.8	30.2	77	137.6	330	337			
11/07/12	750.3	31.3	76	139.1	330	338	<10	0.10	3.7
12/05/12	1,417.6	59.1	76	141.9	330	340	160	2.05	60.8
01/08/13	2,231.8	93.0	83	137.3	330	337	<10	1.07	97.0
02/05/13	2,731.0	113.8	70	144.2	330	337	<10	0.09	99.0
03/04/13	3,177.5	132.4	71	144.6	330	338	<10	0.10	100.8
04/03/13	3,894.4	162.3	64	152.4	330	338	<10	0.10	103.8
05/15/13	4,059.7	169.2	27	173.5	330	301	<10	0.11	104.5
06/05/13	4,126.8	172.0	27	172.9	330	338	<10	0.12	104.8
07/02/13	4,400.3	183.3	17	171.7	330	338	<10	0.12	106.2
08/06/13	5,055.3	210.6	10	182.6	330	338	<10	0.12	109.4
09/04/13	5,520.0	230.0	13	181.6	330	338	<10	0.12	111.8
10/07/13	6,311.3	263.0	13	183.7	330	337	<10	0.12	115.9
10/14/13	6,484.1	270.2	14	185.6	330	337			
10/15/13	6,509.2	271.2	15	184.9	330	337			
11/06/13	7,031.9	293.0	18	185.6	330	338	<10	0.12	119.6
11/07/13	7,056.6	294.0	18	172.7	330	337			
12/03/13	7,339.5	305.8	20	186.4	330	338	<10	0.13	121.2
12/04/13	7,368.7	307.0	25	185.1	330	338	<10	0.13	121.4
01/13/14	8,323.6	346.8	24	186.6	330	337	<10	0.13	126.4
01/31/14	8,620.1	359.2	26	186.1	330	338			
02/06/14	8,786.4	366.1	20	186.0	330	340			-
02/07/14	8,796.0	366.5	20	188.9	330	340	98	1.70	159.7
03/18/14	9,715.1	404.8	24	187	330	338	<10	0.91	194.7
04/18/14	10,370.2	432.1	27	183.5	330	340	<10	0.12	197.7
05/19/14	10,942.5	455.9	22	184.9	330	342	<10	0.08	199.7
06/16/14	11,425.1	476.0	26	181.8	330	342	<10	0.08	201.3
07/09/14	11,846.3	493.6	24	182.7	330	341	<10	0.08	202.8
08/13/14	12,607.6	525.3	26	181.7	330	337	<10	0.08	205.4
09/18/14	13,470,3	561.3	17	185.0	CATOX	1	<10	0.08	208.3
10/22/14	14,047.2	585.3	18	185.2	CATOX		<10	0.08	210.3
11/17/14	14.646.6	610.3	19	189.1	CATOX		<10	0.08	212.4
12/09/14	15,168.6	632.0	19	185.6	CATOX		<10	0.08	214.3
01/12/15	15,889.0	662.0	8	197.3	CATOX		<10	0.09	216.9

Table 3-2 Vapor Stream - System Performance Monitoring Data Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

KEEL ENGT	R	un Time	SVE Para	meters	Catalytic O	xidizer		GRPH Removal	
Date	SVE Hours	Total Time in Operation	SVE-Prefilter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Removal Rate ⁽³⁾	Cumulative Mass Recovered ⁽⁴⁾
	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
02/18/15	16,369.4	682.1	64	160.8	CATOX	OFF	<10	0.08	218.5
03/11/15	16,862.8	702.6	70	157.8	CATOX	OFF	<10	0.07	219,9
04/22/15	17,667.5	736.1	67	160.9	CATOX	OFF	<10	0.07	222.3
05/19/15	18,290.8	762.1	61	160.1	CATOX	OFF	<10	0.07	224.2
06/08/15	18,770.7	782.1	60	159.2	CATOX	OFF	<10	0.07	225.7
		PSCAA NO	C- 10384 Conditions	max. 350	min. 240	max. 620	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	and the second second	11 - 11

NOTES:

⁽¹⁾Air flow rates calculated using an averaging flow sensor (Dwyer Model DS). Air flow rates between 2/7/14 and 12/09/14 calculated from data. Air flow rates from 1/12/15 forward calculated from averaging flow sensor.

⁽²⁾Influent vapor samples collected from SVE sample port prior to air treatment.

⁽³⁾Daily mass removal rate (lb/day) = average concentration (mg/m³) x average flow rate (scfm) x conversion (8.99x10-5 lb-m³-min/mg-ft³-day).

(4)Cumulative mass of benzene removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

-- = not analyzed, measured, or calculated GRPH = gasoline-range petroleum hydrocarbons

iow = inches of water lb = pounds lb/day = pounds per day

mg/m³ = milligrams per cubic meter NOC - Notice of Construction

PSCAA = Puget Sound Clean Air Agency

scfm = standard cubic feet per minute

SVE = soil vapor extraction

Table 3-3 Liquid Stream - System Performance Monitoring Data Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

	E	xtracted Groundwat	er	Hydrocar	bon Recovery - Aque	ous-Phase
	TRACTING TRACE	1	Average Daily	GRPH	Recovery - Aqueous	-Phase
	Discharge Flow Totalizer	Treated Between Visits	Flow Rate Between Visits	Influent GRPH Concentration ⁽¹⁾	GRPH Removed ⁽²⁾⁽³⁾	Cumulative GRPI Removed ⁽³⁾⁽⁴⁾
Date	(gallons)	(gallons)	(gallons per day)	(µg/L)	(lb)	(lb)
10/02/12	1,178.0	0	0			
10/10/12	5,075.9	3,898	487	<100	0.001	0.001
10/17/12	15,755.8	10,680	1,526	-		
10/24/12	27,288.0	11,532	1,647			
10/25/12	28,809.6	1,522	1,522			
11/06/12	36,298.8	7,489	624	-		
11/07/12	38,565.1	2,266	2,266	<100	0.014	0.014
12/05/12	71,160.2	32,595	1,164	<100	0.014	0.028
01/08/13	71,627,1	467	14	<100	0.000	0.028
02/06/13	84,429,4	12,802	441	160	0.011	0.039
03/04/13	101,429.0	17,000	654	1,700	0.132	0.171
04/03/13	119,013.8	17,585	586	<100	0.128	0.299
05/08/13	157,058.4	38.045	1.087	1,500	0.246	0.55
06/05/13	175,444.9	18,387	657	<100	0.119	0.66
07/02/13	175,445.7	1	0	NM		
08/06/13	181,799.7	6,354	182	2,500	0.068	0.73
09/04/13	243,623.6	61,824	2,132	<100	0.658	1.39
10/07/13	333,942.9	90,319	2,737	<100	0.038	1.43
10/14/13	355,115,5	21,173	3,025	-		
10/15/13	358,033.9	2,918	2,918			
11/06/13	420,282.1	62,248	2.829	<100	0.036	1.46
11/07/13	423,365,1	3.083	3.083	-		
12/03/13	454,666,4	31,301	1,204	<100	0.014	1.48
12/04/13	458,180.0	3,514	3,514	-		1.40
01/13/14	495,076.1	36,896	922	<100	0.017	1.49
01/31/14	506,528.6	11,453	636			
02/07/14	523,790.1	17,262	2,466	<100	0.012	1.51
03/18/14	627,800.0	104.010	2.667	<100	0.043	1.55
04/18/14	722,961.0	95,161	3,070	<100	0.040	1.59
05/19/14	791,030.0	68,069	2,196	<100	0.028	1.62
06/16/14	834,372.0	43.342	1.548	<100	0.018	1.64
07/10/14	887,218.0	52.846	2.202	130	0.022	1.66
08/13/14	964,443.0	77,225	2,271	<100	0.032	1.69
09/18/14	1,059,830.0	95,387	2,650	<100	0.040	1.73
10/22/14	1,142,560.0	82,730	2,433	<100	0.035	1.76
11/17/14	1,205,945.0	63,385	2,433	<100	0.026	1.79
12/09/14	1,263,755.0	57,810	2,628	<100	0.024	1.82
01/13/15	1,351,575.0	87,820	2,509	<100	0.037	1.85
02/18/15	1,463,712.0	112,137	3,115	<100	0.037	1.90
03/11/15	1,530,056.0	66,344	3,159	<100	0.028	1.93
04/23/15	1,631,881.0	101,825	2.368	<100	0.042	1.93
05/19/15	1,705,576.0	73,695	2,300	<100	0.042	2.00
06/08/15	1,751,829.0	46,253	2,313	<100	0.019	2.02

NOTES:

Sample Analysis conducted by Friedman & Bruya, Inc.

⁽¹⁾Influent samples collected prior to treatment with liquid-phase granular activated carbon.

⁽²⁾ Mass removal weight (lb) = gallons recovered x concentration (µg/L)

x conversion factor (8.344E-9 lb-L/µg-gallon).

DEFINITIONS:

-- = not analyzed, measured, or calculated < = not detected at the concentration indicated

µg/L = micrograms per liter

GRPH = gasoline-range petroleum hydrocarbons

lb = pound

⁽³⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit. ⁽⁴⁾Cumulative mass (lb) = mass removal between sampling visits (lb) + previous cumulative total (lb).

Hydro Ѡ Con

Table 3.4 Vapor Stream Analytical Results Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

			Influent Vapor Sam	or Samples ⁽¹⁾	The second second			Effluent Vapor Samples ⁽²⁾	es ⁽²⁾	A lot that is the	
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH DRE% ⁽⁵⁾
10/02/12	13	<0.1	0.13	0.12	0.35	<10	<0.1	<0.1	<0.1	<0.3	-
10/10/12	12	<0.1	0.10	<0.1	<0.3	<10	<0.1	0.18	<0.1	<0.3	58.3
10/17/12	<10	<0.1	0.17	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
10/24/12	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
11/07/12	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	.1
12/05/12	160	<0.1	<0.1	1.50	0.99	<10	<0.1	<0.1	<0.1	<0.3	96.9
01/08/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	0.12	<0.1	<0.3	1
02/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
03/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
04/03/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
05/15/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
06/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
07/02/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
08/06/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
09/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
10/07/13	<10	<0.1	0.19	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
11/06/13	<10	<0.1	0.52	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
12/03/13	<10	<0.1	0.44	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
01/13/14	<10	<0.1	0.31	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
02/07/14	98	<0.1	<0.1	0.34	0.65	<10	<0.1	<0.1	<0.1	<0.3	94.9
03/18/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	0.2	<0.3	1
04/18/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
05/19/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	I
06/16/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
07/09/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
08/11/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	1
09/17/14		CATO.	CATOX OFF - SAMPLED	IPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	ł
10/22/14		CATO.	X OFF - SAM	CATOX OFF - SAMPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	1
11/18/14		CATO.	CATOX OFF - SAMPLED	IPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	ı
12/09/14		CATO.	CATOX OFF - SAMPLED	IPLED AT STACK		<10	<0.1	<0.1	<0.1	<0.3	1

01-176_Unit 3_OM_2015Q2_DFCR.xlsx

1 of 2

Table 3-4 Vapor Stream Analytical Results Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

		A COLUMN AND	and the second second	The second second	An	alytical Results (r	mg/m ³)	V June Bingers	STREET IN STREET		CALL STREAM AND AND
			Influent Vapo	or Samples ⁽¹⁾			Efflue	ent Vapor Sample	es ⁽²⁾		A CONTRACTOR
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH DRE% ⁽⁵⁾
01/13/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
02/18/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
03/11/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
04/23/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
05/19/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
06/08/15		CATO	X OFF - SAN	IPLED AT STACK		<10	<0.1	<0.1	<0.1	< 0.3	
		P	SCAA NOC-	0384 Restrictions	and Conditions	max 214.7 ⁽⁵⁾	N Shader				95% ⁽⁵⁾⁽⁶⁾

NOTES:

Sample analysis conducted by Fremont Analytical in Seattle, Washington.

⁽¹⁾Influent vapor samples collected from SVE port on the pressure side of the blower

⁽²⁾Effluent vapor samples collected from the sample port on the effluent stack

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx

(4)Analyzed by U.S. EPA Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless the effluent GRPH concentration does not exceed 50 ppmv (or 214.7 mg/m³ assuming an average molecular weight for GRPH of 105)

DRE is calculated by [GRPH inf-GRPH eff]/[GRPH inf] x 100. For results below detection limit, 50% of the value of the detection limit is used in the calculation.

-- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

mg/m³ = milligrams per cubic meter

CATOX = catalytic oxidizer

DRE = destruction removal efficiency

GRPH = gasoline-range petroleum hydrocarbons

NOC = Notice of Construction

ppmv = parts per million by volume

PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Hydro Con

 Table 3-5

 Liquid Stream Analytical Results

 Unit 3 - Drake Property

 TOC Holdings Co. Facility No. 01-176

 24309 56th Avenue West

 Mountlake Terrace, WA

	100	Ground	Groundwater Influent ⁽¹⁾ µg/L	ent ⁽¹⁾ µg/L			Groundw	Groundwater Midstream ⁽²⁾ µg/L	am ⁽²⁾ µg/L			G	roundwater E	ffluent ⁽³⁾	Groundwater Effluent ⁽³⁾ to POTW Discharge µg/L	charge ug	1	
		Influent Sample (Sample ID: 3WINF)	nple (Samp	ble ID: 3WI	NF)		Sa	Sample ID: 3GAC1	101					Effluent	Effluent (3WEFF)			
					Total					Total					Total	Total	Total	
Sample Date	GRPH	Benzene	Toluene	EBio	Xylenes	GRPH	Benzene	Toluene ^(a)	EB(a)	Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB(5)	Xylenes ⁽⁵⁾	BTEX ⁽⁵⁾	Lead ⁽⁶⁾	pH(7)
10/10/12	<100	4	7	7	۵	<100	4	4	7	۵	<100	<1	<1	<1	۵	6	1	7.87
11/07/12	<100	1	7	4	۵	<100	4	4	~	۵	<100	4	4	4	۵	6	,	7.83
12/05/12	<100	4	4	7	\$	<100	4	4	V	۵	<100	4	7	4	۵	6>	4.1	7.84
01/08/13	<100	4	7	4	۵	<100	4	4	7	۵	<100	7	7	4	۵	~6	1	7.06
02/05/13	160	4	V	1.8	5.8	<100	4	4	4	۵	<100	4	4	4	۵	6	I	7.02
03/04/13	1,700	2.9	1.4	24	160	Ē	I	1	1	1	<100	~	2	<u>^</u>	۵	6	1	7.64
04/03/13	<100	4	4	4	3.7	<100	4	4	4	۵	<100	4	4	<u>^</u>	۵.	6	,	68.9
05/08/13	1,500	7	<u>v</u>	16	120	<100	7	4	~	۵	<100	4	4	4	۵	6>	1	7.41
06/05/13	<100	2.0	1.8	^1	4.0	<100	4	4	4	۵	<100	<	2	4	۵	6	2.99	7.05
07/02/13	MN	MN	MN	MN	MN	NM	NM	NM	NM	MN	<100	~	7	7	۵	6	I	6.35
08/06/13	2,500	-	2.3	40	260.0	<100	7	4	~	۵	<100	<1	2	^1	۵	6>	1	8.07
09/04/13	<100	4	4	7	3.6	<100	4	7	~	۵	<100	<1	4	4	۵	6	1	7.03
10/07/13	<100	<1	4	~	\$	<100	7	4	^1	۵	<100	^1	4	4	۵	6	1	7.09
11/06/13	<100	^	7	~	5.7	<100	4	4	4	۵	<100	4	4	4	\$	6>	1	6.94
12/03/13	<100	~	4	7	5.7	<100	4	4	7	۵	<100	<1	4	4	۵	6	1.90	7.35
01/13/14	<100	<1	4	7	۵	<100	۵	~	4	۵	<100	<1	4	^	۵	°9	1	1
02/07/14	<100	4	4	7	ω	<100	4	^1	~	۵	<100	4	4	<1	۵	6	1	7.36
03/18/14	<100	1>	4	V.	۵	<100	7	4	7	۵	<100	<1	4	<1	۵	6	1	8.38
04/18/14	<100	<1	4	4	3	<100	4	~	~	۵	<100	<1	4	4	۵	6^	I	7.40
05/19/14	<100	1	4	7	5.6	<100	V	7	~		<100	~	4	^1	۵	6>	1	7.25
06/16/14	<100	~	4	<1	\$	<100	7	<	7	۵	<100	4	7	^	\$	6	1.05	5.94
07/09/14	130	4	4	<u>v</u>	3.8	<100	7	~	^1	۵	<100	^1	4	<1	۵	6	I	6.67
08/13/14	<100	<1	4	4	۵	<100	7	7	7	۵	<100	4	4	<1	\$	6	1	7.59
09/17/14	<100	<	7	7	\$	<100	7	4	7	۵	<100	^	4	~1	\$	6	1	7.10
10/22/14	<100	4	4	4	۵	<100	7	7	7	۵	<100	7	4	<1	\$	6^	i	5.97
11/17/14	<100	<1	~	~	۵	<100	7	4	4	۵	<100	~	4	<1	۵	6>	1	7.66
12/09/14	<100	<1	4	<	۵	<100	7	2	7	۵	<100	~	4	<1	۵	ę	1.09	6.89
01/13/15	<100	7	~	7	۵	<100	7	4	4	۵	<100	4	4	<1	\$	6>	I	6.25
02/18/15	<100	<1	4	4	\$	<100	4	~	~	۵	<100	4	4	<1	۵	\$	1	7.46
03/11/15	<100	4	^	^	<3	<100	7	4	~	۵	<100	4	4	~	۵	6~	1	7.36

01-176_Unit 3_OM_201502_DFCR.x8x

Table 3-5 Liquid Stream Analytical Results Unit 3 - Drake Property TOC Holdings Co. Facility No. 01-176 24309 56th Avenue West Mountlake Terrace, WA

		Ground Influent San	water Influe					ater Midstrea				Gr	oundwater E	0.01-	to POTW Dis	charge µg	/L	
Sample Date					Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾		EB ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽¹⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	EB ⁽⁵⁾	t (3WEFF) Total Xylenes ⁽⁵⁾	Total BTEX ⁽⁵⁾	Total Lead ⁽⁶⁾	pH ⁽⁷⁾
04/23/15	<100	<1	<1	<1	4.3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.80
05/19/15	<100	<1	<1	<1	4.5	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.19
06/08/15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	<1	7.0
					State Wa	aste Discha	arge Permit N	lumber ST00	07384 Eff	Iuent Limits	1,000	5	NS	NS	NS	100	1,090	6 to 10

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. in Seattle, Washington.

⁽¹⁾Three GAC vessels are operated in series mode. 3WINF sample is collected prior to first GAC vessel in series

⁽²⁾3GAC1 sample is collected downstream of GAC-1 and upstream of GAC-2 vessels in series

⁽³⁾ Effluent sample collected downstream of third GAC vessel in series, which represents the quality of water discharged to the POTW

(4)Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by U.S. EPA Method 8021B

⁽⁶⁾Analyzed by U.S. EPA Method 200.8

⁽⁷⁾Analyzed by field instrumentation

- = not analyzed, measured, or calculated

< = not detected above laboratory's reporting limit

BTEX = benzene, toluene, ethylbenzene, total xylenes

EB = ethylbenzene

GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

µg/L = micrograms per liter NS = no standard

no standard

NWTPH = Northwest Total Petroleum Hydrocarbon

POTW = publicly-owned treatment works

APPENDIX A

i.

1

ī.

]]_

]

۲.

<u>ر</u>

Remedial Systems Descriptions

APPENDIX A – REMEDIAL SYSTEMS DESCRIPTIONS

The following sections provide remedial systems background, and configurations, respectively.

A.1 BACKGROUND

TOC (formerly Time Oil Co.) operated a retail gasoline station on the TOC Property between 1968 and 1990. One 8,000-gallon and two 6,000-gallon underground storage tanks were removed from the TOC Property in 1991. The TOC Property is currently vacant. In 1996, a dual-phase extraction (DPE) remediation system was installed at the TOC Property to remediate Shallow Zone groundwater impacted by petroleum hydrocarbons and remove LNAPL. The DPE system operated from February 1997 to June 2005 and was later removed following confirmation that the system effectively remediated Shallow Zone groundwater. In 2006, groundwater monitoring results confirmed gasoline-related contamination extending directly downgradient of the TOC Property to the south and west.⁶

Between 1992 and 2013, site investigations were conducted to determine the extent of petroleum contamination which led to the installation of 107 monitoring and remediation wells on the TOC Site and three adjacent properties (a portion of the 242nd Street Southwest ROW and the downgradient Herman and Shin/Choi properties). Six wells have been decommissioned. Two additional wells were installed on the Herman property in July 2015. Currently, there are 103 active monitoring and/or remediation wells installed in three groundwater zones (defined as Shallow, Intermediate and Deep) on the TOC Site and three adjacent properties. Of the 103 active monitoring and remediation wells, 20 are installed in the Shallow Zone, 62 are installed in the Intermediate Zone, 6 are in the Deep Zone, and 15 have well screens intersecting multiple groundwater zones (either shallow-intermediate or intermediate-deep). The three groundwater zones are further discussed in SES 2013 and Stantec 2015a.

In accordance with the AO, SES initiated a remedial investigation (RI) at the TOC Site and determined that remediation by the former DPE system in the Shallow Zone on that property had been effective. The DPE system was removed and three MPE systems were installed in the Intermediate Zone between November 2011 and August 2012. The three MPE systems (Units 1, 2 and 3) began operating in October 2012. MPE is an in situ remedial technology that simultaneously extracts multiple fluid phases from remediation wells. The phases include soil vapor, dissolved (i.e., groundwater), and LNAPL or free product.

A.2 SYSTEM CONFIGURATIONS

Each MPE system is housed in a self-contained, aboveground equipment enclosure surrounded by chain link fence with locked gate. The MPE system for the TOC Property (Unit 1) is located on the TOC Property. The MPE systems for the TOC/Farmasonis Property (Unit

⁶ SES 2013. Draft Remedial Investigation Report, TOC Holdings Co. No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. November 27.

2) and Drake Property (Unit 3) are co-located within a single fenced enclosure on the TOC/Farmasonis Property. The three MPE systems are basically identical, with the exception of their orientation, mirror-image layouts, and the number of remediation wells serving each MPE system. A total of 22 remediation wells serve the three MPE systems: eight wells on the TOC Property, six wells on the TOC/Farmasonis Property, and eight wells on the Drake Property (Figure A-1).

Wells MW15 (installed on the TOC Property) and MW84 (installed on the Drake Property) were initially connected to Units 1 and 3 as remediation wells, but currently serve only as monitoring wells. The pump in MW15 was removed by Stantec on December 16, 2014 due to the consistent presence of biological buildup in the well. The pump in MW84 was removed by SES on September 17, 2013. Documentation of the purpose for removing the pump from MW84 is not available in the historical files.

The table below identifies the currently active remediation wells connected to each system and their locations.

stem Name	System Location	Re	mediation Well ID	Well Location
Unit 1	TOC Property	 MW11 MW18 MW24 MW27 	 MW29 MW32 MW90 MW91 	TOC Property
Unit 2	TOC/Farmasonis Property	MW31MW41MW57	MW92MW93MW94	TOC/Farmasonis Property
Unit 3	TOC Farmasonis Property	 MVV69 MVV70 MVV95 MVV96 	 MW97 MW98 MW99 MW101 	Drake Property

Wells Serving MPE Remediation Systems

The individual MPE equipment enclosures were custom fabricated in accordance with the Washington State Department of Labor and Industry requirements for factory-assembled structures. Each of the remediation wells is equipped with a down-well pneumatic pump to extract petroleum- impacted groundwater (dissolved-phase petroleum hydrocarbons) and recoverable LNAPL. In addition, each MPE system is equipped with a SVE blower. The SVE blowers are intended to extract soil vapors (vapor-phase petroleum hydrocarbons) from the remediation wells and surrounding soil. Buried piping is utilized to convey recovered fluids (groundwater and LNAPL) and vapor from the remediation wells to the MPE system enclosures for treatment. The piping and instrumentation diagram presented on Figure A-2 illustrates the typical process flow and major mechanical equipment associated with each MPE system.

Extracted groundwater is conveyed to each MPE system for phase separation, treatment, and permitted discharge to the sanitary sewer in accordance with Ecology State Waste Discharge Permit No. ST0007384. The extracted groundwater is processed through an OWS, which is designed to process up to 10 gallons per minute (gpm). The effluent from the OWS is pumped through three 55-gallon granular activated carbon (GAC) canisters to remove dissolved phase volatile organic compounds (VOCs) prior to being discharged to the sanitary sewer. When present, LNAPL recovered with the OWS is temporarily stored in a 55-gallon product drum prior to disposal or recycling at an offsite facility.

The SVE blowers create the vacuum necessary to extract soil vapors from the remediation wells. The extracted soil vapors are processed through an air/water separator (AWS) and previously through a CATOX. The AWS removes particulate and liquids from the air stream to prevent damage to the SVE blower and ancillary equipment. Previously, the vapors were thermally treated by the CATOX prior to being discharged to the atmosphere, in accordance with the Puget Sound Clean Air Agency (PSCCA) Notice of Construction (NOC) No. 10384.

MENT TO ATMOSPHERE TELEMETRY MAIN ----0 CONTROL COMPRESSOR IS SUITABLE FOR SERVICE IN A XP VENTILATION FAM -0---0-PANEL CLASS I, DIVISION 2, GROUP D HAZARDOUS -LOCATION BREAKER XP HEATER PANEL AIR SUPPLY LINE SMICH ->> 1º Ø SCHEDULE 40 GALVANIZED STEEL PRESSURE REGULATOR WITH PRESSURE GAUGE \$ HOA AND PARTICULATE, WATER, X CATOX AND OIL FILTERS CONTROL S (P1) PANEL AC ->-AIR LINE FE -CONDENSATE TRAP $\overline{\bigcirc}$ VACUUM RELIEF SET AT 150 INCHES OF WATER R * 1 1 FLOW DIRECTION (TYP.) (P2 (1) (1) OP CATOX (V1) TYP F1 SHH 2.INCH X 3-INCH Ø MANUAL SP (VI) DILUTION VALVE VCV **B1** ·M 2"Ø MINIMUM 0 ž≧ SVE BLOWER DISCHARGE PIPE SHALL BE 2-INCH DIAMETER SCHEDULE 40 0 ,0 / MANUAL CARBON STEEL MS-DRAIN SVE MANIFOLD VENT TO ATMOSPHERE CONDENSATE-TRAP TP1 1 1 VENTLINE WATER LINE AIR BLEED NHA -M P WATER LINE: 1-INCH Ø SCHEDULE 80 PVC PIPE ---Å × P XXX OWS 到了 (01) LSI LPGAC1 LPGAC2 LPGAC3 SKIMME PRODUCT AIR SUPPLY HOSE -AIR EXHAUST HOSE TERMINATE IN WELL TP2 GROUNDWATER DISCHARGE HOSE MAJOR EQUIPMENT LEGEND AIR COMPRESSOR SOIL VAPOR EXTRACTION BLOWER CATALYTIC OXIDIZER LIQUID PHASE GRANULAR ACTIVATED CARBON UNITS MOISTURE SEPARATOR OIL WATER SEPARATOR VACUUM INDICATOR TEMPERATURE INDICATOR FLOW TOTALIZER LEVEL SWITCH HIGH AC V1 T1 FT LSH AC B-1 CATOX LPGAC-1.2.3 MS F-1 TP-1.2 VCV WP XP HEATER FLOW FLEMENT DIFFERENTIAL PRESSURE INDICATOR LEVEL SWITCH LOW FE DPI LSHH F1 SP TYP PRESSURE INDICATOR HOA SAMPLE PORT GECI LSL TYPICAL THERMOSTAT NEC NATIONAL ELECTRICAL CODE WP PARTICULATE FILTER TRANSFER PUMPS VAPOR CONTROL VALVE WELL PUMP \bowtie VALVE - NORMALLY OPEN \bowtie PRESSURE/VACUUM RELIEF VALVE FILTER REGULATOR M VALVE NORMALLY CLOSED Ka SOLENOID VALVE Й CHECK VALVE XP HEATER DATE: 9-14-15

SOURCE: SOUND EARTH STRATEGIES, 2013 NOT TO SCALE

Hydro **W** Con 510 Allen St. Suite B Kelso, Wa 98626, Ph(360)-703-6086

DWN: JJT CHK: MS APPROVED: MS PRJ. MGR: CH PROJECT NO: 01-176

FIGURE A-2 PIPING AND INSTRUMENTATION DIAGRAM

TOC HOLDINGS CO. FACILITY NO. 01-176 24205 56TH AVENUE WEST MOUNTLAKE TERRACE, WA.

APPENDIX B

TOC Facility No. 01-176 Permits

ł

Ţ

Ĩ

Ţ

APPENDIX B – TOC FACILITY NO. 01-176 PERMITS

State, regional, and local permit requirements apply to the interim remedial action. Pursuant to the Revised Code of Washington 70.105D.090(1), TOC's interim remedial actions under the AO are exempt from the procedural requirements of any laws requiring or authorizing local government permits or approvals; however, TOC must comply with the substantive requirements of such permits or approvals.

Local requirements for clearing, grading, and erosion control activities were addressed through review under the State Environmental Policy Act (SEPA), which included a public comment period through September 26, 2011. State and regional permit requirements beyond the jurisdiction of the AO are discussed below in Sections B.1 (State Waste Discharge Permit), B.2 [Puget Sound Clean Air Agency (PSCAA) Order of Approval), and B.3 (Special Use Permit [SUP]).

B.1 STATE WASTE DISCHARGE PERMIT

State Waste Discharge Permit ST0007384 (SWD Permit) authorizes and regulates operation of and discharges from the three MPE systems on the TOC Site, effective July 2, 2012 through June 19, 2017.

Ecology's Water Quality Program administers the wastewater discharge permit, wastewater compliance sampling, record-keeping, and submittal schedule. Discharge Monitoring Reports (DMRs) are submitted to Ecology monthly. The DMR is a summary report which presents the monitoring data obtained during the monthly reporting period. A summary of the maximum daily effluent limits established by the permit are summarized below:

- The maximum daily volumes of water to be discharged to Monitoring Points 001 and 002 shall be 7,000 and 14,000 gallons per day (gallons/day), respectively.
- pH shall be between 6 and 10 standard units.
- Benzene concentrations shall not exceed 5 micrograms per liter (µg/L).
- Benzene, toluene, ethylbenzene and total xylene (BTEX) cumulative concentration shall not exceed 100 µg/L.
- Total petroleum hydrocarbons, gasoline range (GRPH) shall not exceed 1,000 μg/L.
- Total lead shall not exceed 1,090 µg/L.

The SWD Permit identifies two monitoring points (001 and 002) where compliance with the maximum daily effluent limits must be attained: the discharge from Unit 1 is monitored at monitoring point 001; the combined discharge from Units 2 and 3 is monitored at point 002. Treated groundwater from both monitoring points discharges to the City of Edmonds, Washington Wastewater Treatment Plant. Effluent from each of the three MPE systems is sampled on a monthly basis at points adjacent to each MPE system (Figure B-1). The minimum, maximum and average effluent concentrations are reported in the monthly DMR submitted to Ecology.

B.2 PSCAA ORDER OF APPROVAL

The PSCAA issued an Order of Approval for NOC 10384 on May 13, 2012, which established the conditions and restrictions for the operation of the CATOX units. The key conditions and restrictions are summarized below:

- Emissions from each of the three SVE blowers shall be routed through their associated CATOX.
- The flow through each CATOX shall not exceed 350 standard cubic feet per minute. The flow rate shall be monitored monthly.
- The temperature of the vapor entering the catalytic bed shall be at least 240 degrees Celsius (464 degrees Fahrenheit), and the temperature of the vapor exiting the oxidizer bed shall not exceed 620 degrees Celsius (1148 degrees Fahrenheit).
- The destruction and removal efficiency of the GRPH flowing into and out of the CATOX shall be 95 percent unless the concentration of GRPH in the vapor exiting the CATOX does not exceed 50 parts per million volume (ppmv).
- The CATOX units may be removed and SVE emissions can be vented directly to the atmosphere through a stack provided the benzene and GRPH concentrations remain below 0.5 and 50 ppmv, respectively, for a period of 3 consecutive months. [For this reason, the systems were modified to bypass the CATOX during Fourth Quarter 2014 (Units 2 and 3) and First Quarter 2015 (Unit 1)].
- The CATOX shall be reactivated if concentrations of benzene or GRPH exceed 0.5 or 50 ppmv, respectively. Samples are collected on a monthly basis to monitor the concentrations of benzene and GRPH from the stacks.

B.3 SPECIAL USE PERMIT

The SUP executed between TOC and the City of Mountlake Terrace (City) addresses interim remedial activities that extend into City rights-of-way (ROWs). Specifically, the SUP:

Allows the discharge of treated wastewater to the City sanitary sewer network for conveyance to the City of Edmonds publicly owned treatment works under the State Waste Discharge Permit, and

Retroactively administers the installation, maintenance, sampling, repair and/or decommissioning of monitoring wells that are located within City ROWs.

CIUsersUoshIDesktopNautocad BackupIHydrocon-AutocadI01-176 MLT/2015pdf figure set101-176_Figure Set. dwg 2:17:2014

APPENDIX C

.---

 $\frac{1}{1}$

i H

.-

, i

j

[| |

ł

Analytical Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 1, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 30, 2015 from the TOC_01-176, WORFDB8 F&BI 504564 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0501R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

I.

Ē

This case narrative encompasses samples received on April 30, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504564 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
504564 -01	1 VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504564 Date Extracted: 04/30/15 Date Analyzed: 04/30/15

İ.

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
1 VEFF 504564-01	<0.1	<0.1	<0.1	<0.3	<10	88
Method Blank 05-0866 MB	<0.1	<0.1	<0.1	<0.3	<10	86

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504564

1

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504482-03 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m³	<0.1	<0.1	nm
Ethylbenzene	mg/m³	<0.1	<0.1	nm
Xylenes	mg/m ³	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	80	70-130
Toluene	mg/m ³	5.0	81	70-130
Ethylbenzene	mg/m ³	5.0	86	70-130
Xylenes	mg/m ³	15	87	70-130
Gasoline	mg/m³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

i

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

504564				SAMPLE (CHAIN C)F (CUS	STC	DY	,	ME	: L	1/30	115						
Send Report To Rese	Kah	Brow	, ks	SAMPL	ERS (sign	atur	e)	rbf	h]	Page	#	OUND	of
Company <u>Stunter</u> Address <u>1910i W 3</u>	Gt Av	e Ste	205	PROJEC	CT NAME	/NC).					Ē	<u>20</u> #		- 	⊐ Sta ZRU Rush	ndaro SH chary	$\frac{1}{2}$	Weeks) whorize	ed by
City, State, ZIP <u>Lyn</u> Phone # <u>415-977499</u>	19 Fax	<i>WA 9</i> . «#	8036		RKS											≝ Dis ⊐ Ret	SAM pose um s	IPLE after ampl	DISPO	SAL s
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	T	· · · · · · · · · · · · · · · · · · ·		 					ALYS	SES R	EQI	JEST	ED			L		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								No	otes
IVEFF	OI B	4/30/15	0850	Vepor	2		K										1	╞		
				_		1														
											-							<u> </u>		
																	†—-	╀─	<u> </u>	
												-		-						
												-						<u>†</u>		
											-+					— —				
												s	amp	85 n	oceiv	ee a	t 4	21	°C.	
															L			<u> </u>		

<u>ب</u>ــــبر

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: A C				
Seattle, WA 98119-2029	Received by	Nothen C Magnusson	Stunter	4/30/15	1220
Scame, MA 90119-2029		Fer lla	Ex	NAL	030
Ph. (206) 285-8282	Relinquished by:	- Creyes-			23-
Fax (206) 283-5044	Received by:	· · · · · · · · · · · · · · · · · · ·			
Pax (200) 283-3044					
FORMS\COC\COC.DOC					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 30, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 24, 2015 from the TOC_01-176, WORFDB8 F&BI 504456 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0430R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 24, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504456 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
504456 -01	1WEFF
504456 -02	1GAC2
504456 -03	1GAC1
504456 -04	1WINF
504456 -05	TB-042415-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504456 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1WEFF 504456-01	<1	<1	<1	<3	<100	98
1GAC2 504456-02	<1	<1	<1	<3	<100	99
1GAC1 504456-03	<1	<1	<1	<3	<100	102
1WINF 504456-04	<1	<1	<1	<3	<100	104
TB-042415-1 504456-05	<1	<1	<1	<3	<100	94
Method Blank 05-820 MB	<1	<1	<1	<3	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504456

٢ -

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504456-01 (Duplicat	e)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	93	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	103	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To <u>Reb</u>		BI	ocks	- SAMPI	ERS (sign	atur NO	'e)⊂ .	\mathcal{P}_{ℓ}	in	11	He	Uh PO	1 1 #		ir the second s	TU TU Stand:	RNARO ard (2 W	OUND TI
Company <u>57 an Ta</u> Address 19101	W3				(m							10				RUSH	[thorized
City, State, ZIP <u>Lynnur</u> Phone # <u>425-977-4</u> 9	<u>194</u> Fax	VA 9A (#	26		REMARKS						Dispos Return	se after : 1 sample	DISPOS 30 days s instructi					
										ANÁ	LYSE	S REC	QUE	STEE)		- <u> </u>	
Sample ID	Lab ID	Date Sampled		Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS							Note
WEFF	010	4-23-15	1200	UV	3		Х	Х								+	+	
16ACZ	02	4-23-15	1205	W	3		$\mathbf{\lambda}$	Ŷ		+			+	╈	-	+	+	
IGACI	03	4-23-15	1210	w	3		$\mathbf{\nabla}$	У		-+	- .		+	+-				
IWENF	+ +	4-23 15	1215	W	3		X	$\mathbf{\hat{V}}$		-+			+-	+	+	-		
TB-042475-1	05	·		iv	ĺ		X	Â										
							_						+	_		+	+-	
<u></u>						-	-				-		-	Sam	pics		ived at	2
Friedman & Bruya, Inc.		SIGN	ATURE	<u> </u>			NA				 					<u> </u>	<u> </u>	
	Relinquis		anna Hant	+	DANA		NA	-						PAN			DAT	
,	Received Relinquis	oy. m/	Man		Nhan Phan			<u>STANTEL</u> FeBI				4/24/1	<u> </u>					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 1, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 30, 2015 from the TOC_01-176, WORFDB8 F&BI 504565 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0501R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 30, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504565 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
504565 -01	$2\mathrm{VEFF}$

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504565 Date Extracted: 04/30/15 Date Analyzed: 04/30/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
2 VEFF 504565-01	<0.1	<0.1	<0.1	<0.3	<10	92
Method Blank 05-0866 MB	<0.1	<0.1	<0.1	<0.3	<10	86

 $\mathbf{2}$

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504565

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504482-03 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m ³	<0.1	<0.1	nm
Ethylbenzene	mg/m ³	<0.1	<0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m ³	5.0	80	70-130
Toluene	mg/m³	5.0	81	70-130
Ethylbenzene	mg/m³	5.0	86	70-130
Xylenes	mg/m³	15	87	70-130
Gasoline	mg/m ³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

 $\rm nm$ - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

504565				SAMPLE	CHAIN O)F (CUS	STC	DDY		ME	Ĺ	ł]3	301	15				
Send Report To <u>Rebe</u> Company <u>Stanfee</u> Address <u>19101</u> W & City, State, ZIP <u>Lynk</u> Phone # <u>415-977-47</u>	St Are	e ste WA 9a	s 203 8036	SAMI PROJ	PLERS (sign ECT NAME DC ML	atur /NC	re)).	Na	h				0#			☐ Star 2 RU: Rush (2 Disj ☐ Ret	ndard SH charg <i>be k</i> SAM pose a urn sa	(2 Week 2 ches es autho 2 ches PLE DIS after 30 ches	rized by
			<u> </u>			•				ANA	LYS		FOI	IEST			_		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Tyr	e # of containers	TPH-Dicsel	TPH-Gasoline	BTEX by 8021B		0	HFS								Notes
QVEFF	01 B	4/30/15	0840	Vapor	2		×	x											
····												_							
	-								_		_	_							
												5	Line		-	ed a	21	C	
· · · · · · · · · · · · · · · · · · ·									-		-+	-+							
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	SIGN	ATURE		PR Northan			ME 1				54		MPA Lec	NY			DATE	
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received Relinquis		······	• • • •	Elic (Ĭ	、 い	م م م	<u></u>	<u></u>	-+-	- 10			\$			k715	्टर १३०

1

1

÷

Fax (206)	283-5044
-----------	----------

Received by:

- i

FORMS\COC\COC.DOC

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 30, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 24, 2015 from the TOC_01-176, WORFDB8 F&BI 504457 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0430R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

ł

١

Т

с 1 This case narrative encompasses samples received on April 24, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504457 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
504457 -01	$2 \mathrm{WEFF}$
504457 -02	2GAC2
504457 -03	2GAC1
504457 -04	2WINF

All quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504457 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2WEFF 504457-01	<1	<1	<1	<3	<100	103
2GAC2 504457-02	<1	<1	<1	<3	<100	106
2GAC1 504457-03	<1	<1	<1	<3	<100	106
2WINF 504457-04	<1	<1	<1	<3	<100	108
Method Blank 05-820 MB	<1	<1	<1	<3	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504457

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504456-01 (Duplicat	e)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	\mathbf{Result}	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	93	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	103	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

-+-|

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

504457	SAMPLE CHAIN OF CUSTODY $ME \frac{04}{2}$	4/15 11/1
Send Report To <u>Rebekah</u> Brooks Company <u>Stantec</u> Address <u>1910</u> / 36Th Ave Suite	SAMPLERS (signature) Dann Huldting PROJECT NAME/NO. PROJECT NAME/NO. PO# TOC MLT 203700/02	Page # of / TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP <u>LYNNwood</u> WH 98036 Phone # <u>425-977-4994</u> Fax #		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
	ANALYSES REQUES	TED

Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021	VOCs by826(SVOCs by 827	HFS							Note	es
ZWEFF	01 A-	4-23-15	0825	W	3		Х	Х				_							
2WEFF 2GACZ		4-23-15		W	3		X	X					-	,					
26AC/	03	4-23-15	0835	N	3		X	X											
2WINF	04V	4-23-15	0840	W	3		$\overline{\mathbf{X}}$	X											
						_													
												•							
									_						am	les (ecei	reit at	_•C

Friedman & Bruya, Inc.		PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by any Hick here	Danis Hotchins	STANTEC	4-24-15	1006
Seattle, WA 98119-2029	Received by: may and	Dhan Phan	Feb_T	4/24/15	1425
Ph. (206) 285-8282	Relinquished by:		1202		
Fax (206) 283-5044	Received by:			╉╼╼──┤	
FORMS\COC\COC,DOC	L			<u> </u>	

•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 1, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 30, 2015 from the TOC_01-176, WORFDB8 F&BI 504566 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0501R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 30, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504566 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
504566 -01	3 VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504566 Date Extracted: 04/30/15 Date Analyzed: 04/30/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
3 VEFF 504566-01	<0.1	<0.1	<0.1	<0.3	<10	85
Method Blank 05-0866 MB	<0.1	<0.1	<0.1	<0.3	<10	86

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/15 Date Received: 04/30/15 Project: TOC_01-176, WORFDB8 F&BI 504566

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504482-03 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m ³	<0.1	<0.1	nm
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m ³	5.0	80	70-130
Toluene	mg/m³	5.0	81	70-130
Ethylbenzene	mg/m³	5.0	86	70-130
Xylenes	mg/m ³	15	87	70-130
Gasoline	mg/m³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

Ť

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

504566				SAMPLE	CHAIN O	FC	CUS	STO	DY		UE	L	<u>13</u>	0	15					
Send Report To Reb	ekab	Remat	ke	SAMP	LERS (sign	atur	e)	LA	ne		4	-]	Page #	IAROUN	_ of	
Company <u>Stante</u> Address <u>19101</u> W	26 th A	lve Si	40 203	- PROJE	LERS (sign ECT NAME DC MU					2]	PO#		ت هر ۲	⊐ Sta RU Rush	ndard SH charg	(2 Week 2 day es autho	s) tized by	
City, State, ZIP <u>/ / / / / / / / / / / / / / / / / / /</u>	lood 1	<u>JA 9</u>	8036	REMA	RKS						_I					(Dis ∃ Ret	SAM spose turn sa	PLE DIS after 30 c amples with inst	POSAL lays	
		·····		······································						ANA	LYS	SES I	REQU	JEST	ED				<u> </u>	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Typ	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								Notes	
3VEFF	OI B	4/30/15	0830	Vaper	2		x	x												
				······································												 	╞			
																	<u> </u>			
										5	ame		ecel	ved ;	n_7	1	c			
Friedman & Bruya, Inc.	r	SIGN	ATURE					ME						MPA			<u></u> _	DATE	TIN	

Ph. (206) 285-8282
Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Nathan C. Magnussen	Statec	4/50/15	
Received by	Grad 911	# B	4/20/2	270
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 30, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on April 24, 2015 from the TOC_01-176, WORFDB8 F&BI 504458 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0430R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 24, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 504458 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{Stantec}$
504458 -01	3WEFF
504458 -02	3GAC2
504458 -03	3GAC1
504458 -04	3WINF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504458 Date Extracted: 04/27/15 Date Analyzed: 04/27/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
3WEFF 504458-01	<1	<1	<1	<3	<100	106
3GAC2 504458-02	<1	<1	<1	<3	<100	103
3GAC1 504458-03	<1	<1	<1	<3	<100	110
3WINF 504458-04	<1	<1	<1	4.3	<100	105
Method Blank 05-820 MB	<1	<1	<1	<3	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/15 Date Received: 04/24/15 Project: TOC_01-176, WORFDB8 F&BI 504458

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	504456-01 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	93	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	103	69 -134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

1-1

Ł

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

 \mathbf{x} - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

504458 SA	MPLE CHAIN OF CUSTODY	MG 04/2	4/15 V/
Send Report To <u>Rebekuh Brooks</u> Company <u>STANTEC</u> Address 1910/ W 3674 Ave ST2203	SAMPLERS (signature) Dawa PROJECT NAME/NO. TOC MLT 2037 Oc/o 2	Autom PO#	Page #of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP <u>Lynnwcocl</u> WA Clfc36 Phone # <u>425 - 977 - 4944</u> Fax #	REMARKS		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

.

f i

_|

- 7

.

- <u></u>			<u>r</u>					_		ANA	LŶŚ	ES R	EQU	JESŤ	ED						
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								Ň	otes	
3WEFF 3GACZ	OIE	423-15	(335	li	3		Х	X													
3GACZ	02	4.23-15	1340	W	; ; ;		X	Х													
36AC 3WINF	D 3	4-23-15	1345	W	3		X	$\boldsymbol{\lambda}$													
3WINF	oy V	4.2375	1350	iv	3		X	X													
							,										-				
																_					
																	 				
																					<u> </u>
														San	iples	rece	ived	at_	2	<u></u>	

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: Dawi Hut turs	Dana Hotchins	STANTIC	424.15	,050
Seattle, WA 98119-2029	Received by: marchan	Whan Phan	FEBT	4/24/15	1425
Ph. (206) 285-8282	Relinquished by:	What There	<u> </u>	5 100	1945
Fax (206) 283-5044	Received by:				
FORMS\COC\COC.DOC			· · · · · · · · · · · · · · · · · · ·		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505332 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

ł

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

1

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505332 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
505332 -01	1VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505332 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
1VEFF 505332-01	<0.1	<0.1	<0.1	<0.3	<10	106
Method Blank 05-1233 MB	<0.1	<0.1	<0.1	<0.3	<10	102

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505332

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505332-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m ³	<0.1	< 0.1	nm
Ethylbenzene	mg/m ³	<0.1	<0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	100	70-130
Toluene	mg/m ³	5.0	101	70-130
Ethylbenzene	mg/m³	5.0	108	70-130
Xylenes	mg/m³	15	106	70-130
Gasoline	mg/m³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

Ĵ.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505332				SAMPLE	CHAIN ()F (CUS	STC	DY	7			М	<u>c</u>	05	12	0/1	5
Send Report To <u>Re</u> Company <u>ST al</u>	beka NTCC	k Bro	oks	SAMPI PROJE	CHAIN (LERS (sign CT NAME	<i>atu</i> E/NC	re)	Ð	Ja	M	1 6	ruly PC	1 1 1 1 1 1		D St	TUR andar	NAROU d (2 We	of
Address 901 4	V 36-	36th Ave #203 TC			TOC MLT/203700102							RUSH Rush charges authorized by						
City, State, ZIP <u>400</u> Phone # <u>425-977</u>	1 4/00/ 1999 Fa	x #	9803 		RKS										🗆 Re	spose turn s	after 3 amples	
	<u> </u>	T	γ 		γ	—				ANA	ALYSE	<u>S RE</u>	QUES	STED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS							Notes
IVEFF	al AB	5-14-15	1015	Aic	2		X	Ż							+	+	╂───	
	_																	
								_			_				ļ.		· 	
												+-	+-	+				
												+	+	+-		+	<u> </u>	
															†			
													_					
							\dashv	-	_	-		s	amp	les nj	eeive	at at	23	<u>°C</u>
Friedman & Bruya, Inc.	 	SIGN	ATURE								<u> </u>				<u> </u>	L		
3012 16th Avenue West	Relinquis	had here of S	ama 1	AFF +	10		NA //		7.			(PANY	-		DATE	
Seattle, WA 98119-2029	Received	by			_Dani	1 7	HT.	KI	1/1	<u>ب</u>	+-	ر	10	<u>MT-</u>	<u>.</u>	- <u> </u> -	-201	
Ph. (206) 285-8282	Relinquis	Y Ai-		ŧ	Fic (20	wς					<u> </u>	2f	5		77	20	1290

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505335 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505335 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
505335 -01	1WEFF
505335 -02	1GAC2
505335 -03	1GAC1
505335 -04	1WINF
505335 -05	TB-051915-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505335 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1WEFF 505335-01	<1	<1	<1	<3	<100	100
1GAC2 505335-02	<1	<1	<1	<3	<100	96
1GAC1 505335-03	<1	<1	<1	<3	<100	105
1WINF 505335-04	<1	<1	<1	<3	<100	103
TB-051915-1 505335-05	<1	<1	<1	<3	<100	92
Method Blank 05-1231 MB2	<1	<1	<1	<3	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505335

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505312-01 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	106	65-118
Toluene	ug/L (ppb)	50	105	72 - 122
Ethylbenzene	ug/L (ppb)	50	107	73-126
Xylenes	ug/L (ppb)	150	104	74-118
Gasoline	ug/L (ppb)	1,000	98	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505335				SAMPLE	CHAIN C)F (CUS	то	DY	Μ	E	5 :	20/	15					γ	3
Send Report To <u>Reb</u> Company <u>STar</u>	172	<u></u>		FROJE	LERS (sign ECT NAME	atur /NC	e) <	Ŧ	an	ne	,2	tal. P	0#	>			andar	NAROU	of JND TII eks)	
Address 1910,1 W City, State, ZIP <u>Lyn</u> Phone # <u>425 - 977-4</u>	36Th 14/05/0 49.4 Fa	#væ # ?#	‡203 98034		<u></u> .rks	_/	203,	700	<u>XO Z</u>	- 						Rush ——— ∎Dis ⊐ Re	char SAN spose turn	MPLE D after 3 samples ll with in	ISPOSA) days	L
									A	NA		ËS RI	EOU	IEST	~ _					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	260	SVOCs by 8270	HFS								Notes	5
WEFF	01 ~-	5-195	1030	W	3		X	X		1	-		-				+	1		
16AC2	1 1	5-19-15		W	3		\mathbf{X}	\mathbf{X}		+	-+-	-+					╀╌	╉──		
1/2ACI		5-19-15	· · · · · · · · · · · · · · · · · · ·	W	3		\bigcirc	X		-+	+	+					╂			
IWENE		5-19-15	1045	W	3		QK	H		+	-+-	-+-	-			-	_			
TB-051915-1	05	~	-	W			X	X				_	_				┢			
·																	\square	1		
										╡							┢──	\uparrow		
							+	-†	-+	Ť		-†-					┢──	+		
												-†	Sa	mpl	es rc	ceiv	: ta	<u>t</u> 3	_°C	
L							T	T	T						•			1		
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis		ATURE		~		NAN	ле Г							NY		<u>Г</u>	DATE		ME
Seattle, WA 98119-2029	Received	<i>Na</i>	na that	tura	Dang	<u>}</u>	ŀŀΖ	Τc	hin	<u>}</u>	+		7	an	Te	.0	<u>_</u> 3	-201	10	900
Ph. (206) 285-8282	Relinquis	44			sulf.	$h \Lambda$	<u> </u>				+-		-9	Z			_\$	12-1 1	12	5
Fax (206) 283-5044	Received	/ by:			/												_Ĺ		<u> </u>	
FORMS\COC\COC.DOC		<u> </u>		l_				-							_					

×- --

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505333 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

1.

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505333 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
505333 -01	2VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505333 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
2VEFF 505333-01	<0.1	<0.1	<0.1	<0.3	<10	104
Method Blank 05-1233 MB	<0.1	<0.1	<0.1	<0.3	<10	102

2

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505332-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m³	<0.1	<0.1	nm
Ethylbenzene	mg/m³	<0.1	<0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m ³	5.0	100	70-130
Toluene	mg/m ³	5.0	101	70-130
Ethylbenzene	mg/m³	5.0	108	70-130
Xylenes	mg/m³	15	106	70-130
Gasoline	mg/m³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505333 SAMPLE CHAIN OF CUSTODY. ME_05/20/15 Send Report To Rebekah Blochs SAMPLERS (signature) Dama Hukuman Company STantec PROJECT NAME/NO. PO# TURNAROUND TIME Address 19/0 W 361h Aux. # 200 TOC MLT /20370063 PO# City, State, ZIP Lynnwood WH Glogs REMARKS Sample Disposale Phone # 425-977-4994 Fax # Page Image: Sample Disposale Sample Type # of Image: Signature Sample Type Image: Signature Image: Sig
City, State, ZIP <u>Lynnwood WH</u> <u>qgo36</u> Phone # <u>425-977-4444</u> Fax # Sample ID Lab Date Sampled Sampled Sample Type # of containers H of
Sample ID Lab ID Date Sampled Time Sampled Sample Type # of containers Image: Sample Samp
Sample ID Lab ID Date Sampled Time Sampled Sample Type # of containers # of containers Image: Sign of the second to the second to th
2VEFF AB 5-1915 1020 Air 2 XX
Samples roce ved at 23 °C
Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY DATE TIME 3012 16th Avenue West Relinquished by Dama Harting Dark Hirtonia S STANFEC 5-22-15 0960
Secure, WA 98119-2029 Received and the secure of the secur
Ph. (206) 285-8282 Relinquished by:
Forms/coc/coc.doc Received by:

-

N--- 1

.

يه مد مد

.

. - -

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505336 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505336 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
505336 -01	2 WEFF
505336 -02	2GAC2
505336 -03	2GAC1
505336 -04	2WINF

All quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505336 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2WEFF 505336-01	<1	<1	<1	<3	<100	101
2GAC2 505336-02	<1	<1	<1	<3	<100	105
2GAC1 505336-03	<1	<1	<1	<3	<100	109
2WINF 505336-04	<1	<1	<1	<3	<100	105
Method Blank 05-1234 MB	<1	<1	<1	<3	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505336

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505336-01 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	\mathbf{Result}	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	105	65-118
Toluene	ug/L (ppb)	50	103	72 - 122
Ethylbenzene	ug/L (ppb)	50	104	73-126
Xylenes	ug/L (ppb)	150	101	74-118
Gasoline	ug/L (ppb)	1,000	98	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dy - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505336 Send Report To _ Re Company _ STA	nto	r		SAMPI PROJE	LERS (sign CT NAME	atur I/NO	e) 4	\mathcal{D}	an	u t	PO	fa- #		K Sta	ndard		of ND TIME ks)
Address 19101 City, State, ZIP Ly10 Phone # 42.5.977-	1/30 1/14/00	STA A	ve #2 19803	REMAI	C ML RKS	-T _c	/20	<u>370</u>	202					Dis Ret	SAM pose	PLE DI after 30 amples	-
	<u> </u>	.π		L											l call	with in	structions
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B VOCs by8260		HFS	SRE	QUES	TED				Notes
2WEFF		5-19-15		W	3		X					+					
ZGACZ		5-19-15		W	3		$\langle \! \rangle$						-				
2WINF		5-1915 5-1915		W W	3 3		Å,						<u> </u>				
					· · · · · · ·		+	-				ampl	les re	caive	d at	7	°C
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	had here	ATURE	F	PR Dana		NAM	1				OMP Tran			- 1	DATE	TIME
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received Relinquis	60	nn 154		Tole	<u> </u>	la		<u> </u>		<u>, </u>	Tan	B		2	-22-15 725	1215

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505334 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
505334 -01	3VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505334 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
3VEFF 505334-01	<0.1	<0.1	<0.1	<0.3	<10	107
Method Blank 05-1233 MB	<0.1	<0.1	<0.1	<0.3	<10	102

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505332-01 (Duplic:	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m³	<0.1	<0.1	nm
Ethylbenzene	mg/m ³	<0.1	< 0.1	nm
Xylenes	mg/m^3	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	$\mathbf{n}\mathbf{m}$

			$\mathbf{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m ³	5.0	100	70-130
Toluene	mg/m^3	5.0	101	70-130
Ethylbenzene	mg/m ³	5.0	108	70-130
Xylenes	mg/m³	15	106	70-130
Gasoline	mg/m³	100	124	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

ľ

ļ

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505334					CHAIN (М	5	05	[6	01	15	1		1
Send Report To Rel	beika	h Ra	nti	SAM	PLERS (sign	atur	re)	4	\mathcal{F}_{i}		. /	4	7	_			age #_	_[of	<u> </u>
$\frac{1}{\sqrt{1-2}}$		<u>///</u>		- PROJ	ECT NAME	/NC).	9	Ŭ	114	Γ	<u>u</u>	$\frac{n}{0}$	and the second second	-	TURNAROUND TIME Standard (2 Weeks)				
$Company _ 510$	me	e			n I-	- /	/			1.0		•	0"				SH		•	
Address 1910/ 1	/ 36	Th A	VE THE	5 100	_ ///		20	75/	00	10%	-					Kusn (cnarge	s autho	rized b	у
City, State, ZIP/	nwoo	d W.H	9800	26 REM	ARKS		-								1 [LE DIS	SPOSAI	•
Send Report To Rebekah Brooks Company STanTec Address 19101 W 36Th Ave \$7263 City, State, ZIP Lynnwood WA 98036 Phone # 425-977-\$\$\$\$ Ave \$7263 Brooks BRODECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PO# Toc MLT/203700/02 REMARKS										□ Ret	urn sar	nples								
	× ×	· " <u>- · </u>		— L				<u> </u>							ון נ	J Wil	l call v	/ith ins	truction	s
		<u> </u>	·····	· · · · · · · · ·		 				ANA	LYS	ES R	LEQT	JEST	ED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Typ	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								Notes	
3VEFF	O/ AA	8-19-15	1020	Air	2		$\mathbf{\nabla}$	∇						┢───			╞╌┠			
			1070				\sim	\bowtie							 		╞─┤			
		· · · · · · · · · · · · · · · · · · ·												 					·	
																			·	
															 		┝──╂			
								┝─┤			-+				<u> </u>					
				· · · · ·											<u> </u>					
																				.
									Ī		Τ									
										\dashv	-+	-+		Sa	mole	3 150	eived	at 2	3	
					- 				-+		-+					<i>p.r.</i>				
					1										İ					
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	SIGN	ATURE		PR	INT	NA	ME					co	MP/	ANY		D	ATE	TIN	1E
	Romiquis	SIGN	ma H	the	Dar	И.	H	11	h	15		9	STANTER 5-20-15 6980							
Seattle, WA 98119-2029				'	Reic	J,	<u>ר</u> א	<u> </u>				Ā		F	>		64	dis	+	0
Ph. (206) 285-8282	Relinquis						نصو	<u> </u>						-+3	,		77	-(17	12	
Fax (206) 283-5044	Received	by:						<u> </u>	·		-+								<u> </u>	

--

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 26, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on May 20, 2015 from the TOC_01-176, WORFDB8 F&BI 505337 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0526R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 505337 project. Samples were logged in under the laboratory ID's listed below.

<u>Stantec</u>
3WEFF
3GAC2
3GAC1
3WINF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505337 Date Extracted: 05/21/15 Date Analyzed: 05/21/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
3WEFF 505337-01	<1	<1	<1	<3	<100	107
3GAC2 505337-02	<1	<1	<1	<3	<100	105
3GAC1 505337-03	<1	<1	<1	<3	<100	109
3WINF 505337-04	<1	<1	<1	4.5	<100	104
Method Blank 05-1234 MB	<1	<1	<1	<3	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 05/26/15 Date Received: 05/20/15 Project: TOC_01-176, WORFDB8 F&BI 505337

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	505336-01 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent									
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria						
Benzene	ug/L (ppb)	50	105	65-118						
Toluene	ug/L (ppb)	50	103	72-122						
Ethylbenzene	ug/L (ppb)	50	104	73-126						
Xylenes	ug/L (ppb)	150	101	74-118						
Gasoline	ug/L (ppb)	1,000	98	69-134						

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

1

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

505337 SA	MPLE CHAIN OF CUSTODY ME 5/20/15	V3
Send Report To Rebetiah Brooks	SAMPLERS (signature) Omegane Page # PROJECT NAME/NO. PO# V Standard	AROUND TIME
Company STANTEC Address 1910/ W 36th Avet 203		es authorized by
City, State, ZIP Lynnwood WH 90036	REMARKS SAM	
Phone #_425-477-4994 Fax #		mples with instructions
	ANALYSES REQUESTED	

Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 80211	VOCs by 8260	SVOCs by 827	HFS							Not	:es	
3WEFF 36ACZ 36AC 3WINF	01 0	5-19-15	1050	W	3		X	Х												
3GACZ		5-19-15		W	3		Х	Х				 								
36AC	03	5-19-15	1053	W	3		X	X												
3WINF	04	5-19-15	1055	W	3		X	Х				-								
	 												_							
																,				1
														-						
									_			Sa	npie	s rec	eive	l at	3	_•C		-
																		•	•	

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: Dama Hatching	n ll-th	STANTEC	5-20-15	0900
Seattle, WA 98119-2029	Received by:		TER		1215
Ph. (206) 285-8282	Refindutioned by:	Earce for-		Sholiz	
Fax (206) 283-5044	Received by:			+	
FORMS\COC\COC.DOC	· · ·		l	<u> </u>	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 17, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506182 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

G.l.

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0617R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506182 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> 506182 -01 HydroCon 1VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506182 Date Extracted: 06/11/15 Date Analyzed: 06/11/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
1VEFF 506182-01	<0.1	<0.1	<0.1	<0.3	<10	106
Method Blank 05-1278 MB	<0.1	<0.1	<0.1	<0.3	<10	109

 $\mathbf{2}$

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506180-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m³	< 0.1	<0.1	nm
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m ³	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	101	70-130
Toluene	mg/m³	5.0	101	70-130
Ethylbenzene	mg/m³	5.0	108	70-130
Xylenes	mg/m³	15	106	70-130
Gasoline	mg/m³	100	119	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

506182				SAMPLE ((E (- 60	08-				
Send Report To Crie	Alterer	s & Rehe	(ah Brock	SAMPL	ERS (sign	atur	re h	Þ	42	l	2] _г	I T	Page #		
Company HardoCon	3	(5	tunier)	PROJE	CT NAME	/NC).					PO	#	- ·	TURNAROUND TIME Standard (2 Weeks) RUSH			
Address 510 Aller St	int S	.te B		-	Tor 01-176										Rush charges authorized by			
City, State, ZIP Kelso w 98626			REMAI	RKS						1			┥┠	SAMPLE DISPOSAL				
Phone # 1 360 703-60			63 - 6086 1:0	_ [- <u></u>										🗆 Ret	um sa	after 30 amples with ins	days
		I		······	·····							S ŘEG	QUES	TED		_		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	3TEX by 8021B	VOCs by8260	SVOCs by 8270	HFS							Notes
IVEFP	SI PKB	6-4-15	0855	Vepor	2		Y					+-					<u> </u>	
								_					-	╂				
										-+	+			+	+			
	+	>					┝╌┨						+	┼╌	-			
										\uparrow			+	+	+			
	1											ſ	1	Ť				
	<u> </u>				/			_						Samp	ies n	celv	ed at _	2 <u>6_</u> °C
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinguis	SIGN	ATURE				'NA	_				Č	OMP	ANY			DATE	TIME
Seattle, WA 98119-2029	Received		any				luns	للمعو	<u>31-</u>			4	y chr	<u>Cn</u>			-1-15	1240
Ph. (206) 285-8282	Relinquis		200	<u> </u>	Dovo Fr					+B	2			<u>11</u>	12.1			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 12, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506183 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0612R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506183 project. Samples were logged in under the laboratory ID's listed below.

1

ł

<u>Laboratory ID</u>	<u>HydroCon</u>
506183 -01	1WINF
506183 -02	1GAC1
506183 -03	1GAC2
506183 -04	1WEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506183 Date Extracted: 06/08/15 Date Analyzed: 06/08/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1WINF 506183-01	<1	2.8	<1	28	180	111
1GAC1 506183-02	<1	<1	<1	<3	<100	104
1GAC2 506183-03	<1	<1	<1	<3	<100	110
1WEFF 506183-04	<1	<1	<1	<3	<100	104
Method Blank 05-1274 MB	<1	<1	<1	<3	<100	104

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

ì

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	1WEFF 06/08/15 06/10/15 06/10/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506183 506183-04 506183-04.029 ICPMS1 SP
Internal Standard: Holmium		% Recovery: 93	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		5.64		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/10/15 06/10/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506183 I5-344 mb I5-344 mb.027 ICPMS1 SP
Internal Standard: Holmium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

4

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506143-14 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	110	65-118
Toluene	ug/L (ppb)	50	108	72-122
Ethylbenzene	ug/L (ppb)	50	110	73-126
Xylenes	ug/L (ppb)	150	105	74-118
Gasoline	ug/L (ppb)	1,000	99	69 - 134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/12/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 506183-04 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	5.64	106	108	79-121	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	98	83-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dy - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

506183				SAM	PLE (CHAIN O	F (CUS	STO	DY	,		ME	0	6-0	8-	- 15		AIS	5 / V2
Send Report To Croix He Company Hughston	altypen	B Res.	ekal Bask	<u>د</u>		ERS (sign			ſ\$	-7.	N	V				ŀΓ	71	TURN	IAROUNI	DTIME
Company Hudson		Ĺ	(trater)	I	PROJECT NAME/NO. PO#						Standard (2 Weeks)									
Address 510 Allen Street Sent B									ges authori	zed by										
City, State, ZIP			· ·	Ī	REMAR	RKS						1							PLE DISP	
Phone # 36 703 6.79			6086	_ _													🗆 Ret	um s	after 30 da amples with instr	-
		r									ANA	LYS	SES I	REQU	JEST	ED	·		1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Samp	le Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	the head						·]	Notes
ININE	bi ki	6-8-15	0900	5	<u>ل</u> ہ	3		X	X								1			
164C1	02 T	1	0905			3		×									<u> </u>		1	
16+2	03		0110			3		7	7								1	<u> </u>	+	
1weff	sy k.)		2915			ų		۲	י א				X							
														 		 		<u> </u>	ļ	
	\rightarrow													L						
										_										
																				5
					< .								-		8	mp	les re	celv	ed at	€°C
													_							
Friedman & Bruya, Inc.		SIGN	ATURE			PR	INT	NA	ME)MP/	NY		<u>-</u>	DATE	TIME
3012 16th Avenue West	Relinquis	2 L J	hf			0.			erga				-		desc.				1240	
Seattle, WA 98119-2029	Received	by:				R.	,	 /}	_ ^				-		4-B			+	4	12:40
Ph. (206) 285-8282	Relinquis	hed by:		.		<u> </u>		<u> </u>			-	_†	_	-/	- 2		-	+	`	70
Fax (206) 283-5044	Received	by:	·									\uparrow		<u> </u>		<u>-</u>		╉		
FORMS\COC\COC.DOC		, -								· · .										لــــــــــــــــــــــــــــــــــــ

- - -1

- - · · _ J

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 17, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506181 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0617R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506181 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> 506181 -01

<u>HydroCon</u> 2VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506181 Date Extracted: 06/11/15 Date Analyzed: 06/11/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
2VEFF 506181-01	<0.1	<0.1	<0.1	<0.3	<10	104
Method Blank 05-1278 MB	<0.1	<0.1	<0.1	<0.3	<10	109

2

12

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506181

1

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506180-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m³	<0.1	< 0.1	nm
Ethylbenzene	mg/m³	<0.1	<0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m ³	<10	<10	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	<u>Criteria</u>
Benzene	mg/m ³	5.0	101	70-130
Toluene	mg/m³	5.0	101	70-130
Ethylbenzene	mg/m³	5.0	108	70-130
Xylenes	mg/m ³	15	106	70-130
Gasoline	mg/m ³	100	119	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
Send Report To <u>Craig Ha</u> Company <u>Hardwar</u>	81			SAMPLE (CHAIN O	F (CUS	STO	DY	•	M	ΕO	6-(-8	15	•		
Cond Derest The Control In	n	1 011	P 1	SAMPL	ERS (sign	atur	e) n	1	1					٦_	Р	age #_	1	
Send Report To Cr. A. H.	attanca	1 Kebeli (S7+1	h Douks the)	- PROIE	TNAME		70		<u> </u>		-	PO# Sta			M Star	TURNAROUND TIME tandard (2 Weeks)		
Company Hucher		<u> </u>			Toc 01-176								🗆 RUS	USH charges authorized by				
Address Sto Man St	Address Sio May St Sil B					.0									Rush c	harge	s autho:	rized by
City, State, ZIP Kulse 14 98626				REMAI	RKS													POSAL
				-											🗆 Disp 🗆 Reti		fter 30 a mples	lays
Phone # 360 703 6070	<u> </u>	(# <u>310-</u>	102 608	6 <u> </u>														ructions
······································		· · · · · · · · · · · · · · · · · · ·								ANĂ	LYS	ES RÊ	QUES	TED				
							Je	81	g	2	T							
6	Lab	Date	Time	1	# of	TPH-Diesel	TPH-Gasoline	802	VOCs by8260	y 82			1					
Sample ID	ID	Sampled	Sampled	Sample Type	containers	C-H	-Ga	X by	ې در	Cs b	HFS							Notes
						41	TPH	BTEX by 8021B	Š	SVOCs by 8270							ļ	
2VEFF	OIA-B		Cass		2	<u> </u>	۲						+	+		┝─┦	<u> </u>	
	loin	6-8-15	0.,,,	ναριτ	<u> </u>		-		-+		-+					┞╴┨		
	·																	
'																		
	$ \downarrow $																	
								•	-	-+	+		+			╞═╾╉		- <u></u> -
		\searrow											+	+		┝──╂		
																1		
/	1																	
			· · ·	<u>/</u>	-							+					l at _2	6 10
										-+	\rightarrow						1 al <u>- 47</u>	
Friedman & Bruya, Inc.	<u>n_1:</u>	SIGN	ATURE			INT					Τ	(COMI	PANY		ŢI	DATE	TIME
3012 16th Avenue West	Keiinquis	hed by:	a the	$\boldsymbol{\mathcal{U}}$	Rubert,	4,	Hun	الحك	~		T	H	ydre	ŝ			*15	1240
Seattle, WA 98119-2029	Received	by:	200										//	12:44				
Ph. (206) 285-8282	Relinquished by:				DAVE Fest							-+		+				

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506185 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

Ē

L

ł

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506185 project. Samples were logged in under the laboratory ID's listed below.

.

<u>Laboratory ID</u>	<u>HydroCon</u>
506185 -01	2WINF
506185 -02	2GAC1
506185 -03	2GAC2
506185 -04	2 WEFF
506185 -05	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506185 Date Extracted: 06/09/15 Date Analyzed: 06/09/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2WINF 506185-01	<1	<1	<1	<3	<100	106
2GAC1 506185-02	<1	<1	<1	<3	<100	108
2GAC2 506185-03	<1	<1	<1	<3	<100	111
2WEFF 506185-04	<1	<1	<1	<3	<100	97
Trip Blank 506185-05	<1	<1	<1	<3	<100	101
Method Blank 05-1276 MB	<1	<1	<1	<3	<100	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

i.

1

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2WEFF 06/08/15 06/10/15 06/10/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506185 506185-04 506185-04.033 ICPMS1 SP
Internal Standard: Holmium		% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

;_;

1---

ì.

ł

1

1_.

1.

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/10/15 06/10/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506185 I5-344 mb I5-344 mb.027 ICPMS1 SP
Internal Standard: Holmium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506185-04 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	106	65-118
Toluene	ug/L (ppb)	50	105	72-122
Ethylbenzene	ug/L (ppb)	50	106	73-126
Xylenes	ug/L (ppb)	150	103	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 506183-04 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	5.64	106	108	79-121	2

-

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	98	83-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

506185	_		1	SAMPLE (CHAIN O)F (CUS	то	DY	•	ΜĔ	5 0	16-0	8-1	5	<u>AT</u>	2/	12
		k Ritch	Ruske	SAMPLE (ERS (sign	atur	e)	2	6	l	$\overline{\mathcal{V}}$				P	age #		of
Send Report To Creiky H. Company Hugherin	<u></u>	(Sta-	ke)	PROJEC	CT NAME							PO# 1			TURNAROUND TIME Standard (2 Weeks)			
Address SW Alles St				-	The off	76						R				Rush charges authorized by		
City, State, ZIP <u>Kdcs</u> Phone # <u>360-763</u> 607	WA	48626		REMAR	RKS			<u> </u>			<u> </u>				🗆 Disj 🗆 Reti	SAMPLE pose after urn samp l call with	: 30 dá les	iys
	- <u></u>		•							ANA	ĹYS	ES R	EQUES					
• Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	_	2]	Notes
2-347	DIAC	6-8-15	1000	who	3		×	ኦ						\top	1-			
2.64C1	02 T	1	1005	1	3		¥	7							1			
26AC2	03		1010		3		X	$\boldsymbol{\lambda}$							1			
ZWEFF	OY NO		105	L	4		۲	X				x			1			··
TROP Bloomk	br							~								d	ded	in ta
	+				_												í sr	24 6/8/1
		\geq															t ·	<u>م</u> م
	\square					_												
											-					elvol e	5	<u></u>
Friedman & Bruya, Inc.		SIGN	ATURE	,		_						l	COM	I PAN'i	1 ?		TE	TIME
3012 16th Avenue West Seattle, WA 98119-2029	Relinquished by:				Robert A Husbarn					Hydrica			6-4	15	1240			
Ph. (206) 285-8282	Relinquished by:				30 00					FrBI			"		12:4			

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 17, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506180 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0617R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

1

1

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506180 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>HydroCon</u>
506180 -01	3VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506180 Date Extracted: 06/11/15 Date Analyzed: 06/11/15

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
3VEFF 506180-01	<0.1	<0.1	<0.1	<0.3	<10	103
Method Blank 05-1278 MB	<0.1	<0.1	<0.1	<0.3	<10	109

2

1)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/17/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506180

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506180-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m ³	<0.1	<0.1	nm
Toluene	mg/m³	<0.1	< 0.1	nm
Ethylbenzene	mg/m ³	< 0.1	< 0.1	nm
Xylenes	mg/m³	<0.3	<0.3	nm
Gasoline	mg/m³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	101	70-130
Toluene	mg/m³	5.0	101	70-130
Ethylbenzene	mg/m³	5.0	108	70-130
Xylenes	mg/m³	15	106	70-130
Gasoline	mg/m ³	100	119	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

1

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

506/	80			SAMPLE	CHAIN C)F (CUS	STO	DY	7	М	ΈC	<i>1</i> 6 -	-08	?_!	~			
Send Report To Carin	Halfer	. * V.														-	age #_		 D TIME
Send Report To <u>Caeir</u> Company <u>Kayelucia</u> Address <u>۲۵ مالام ج</u>	Seil B	(starter)	PROJE	CT NAME	NO).					P	0 #		E	l Stan I RUS	dard () H	2 Week	s) rized by
City, State, ZIP <u><u>Lisu</u> Phone #<u>360.703-607</u></u>	NA	98626	<u>-</u>		RKS				- <u> </u>		1					l Disp l Retu	ose af rn san	iter 30 a nples	POSAL lays ructions
		r						~		ANA	LYS	ES R	EQU	ESTE	D				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								Notes
3VEFF	OIP,	6-8-15	1035	Vepu-	2		ኦ	X				·							
	+												-	-	_				
										_	-		_						
			\geq	<u> </u>									+	-	_		-+		
/	4			<u> </u>				_											
				. <u> </u>				-+	-			-+	•		1	cet		ų	èc .
Friedman & Bruya, Inc.		SIGN	ATURE		<u>PR</u>	LI INT	NA	ME						 MPAI				ATE	TIME
012 16th Avenue West Seattle, WA 98119-2029	Relinquis Received		~		Robert			huy		e		મ	3400	ins			1	Kn5	1240
Ph. (206) 285-8282	Relinquished by:				50 00				1	Ľ€	82	2		6-8	1-15	12:40			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2015

Craig Hultgren, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Hultgren:

Included are the results from the testing of material submitted on June 8, 2015 from the TOC_01-176, WORFDB8 F&BI 506184 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

1

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Rob Honsberger, Rebekah Brooks HDC0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

1

This case narrative encompasses samples received on June 8, 2015 by Friedman & Bruya, Inc. from the HydroCon TOC_01-176, WORFDB8 F&BI 506184 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>HydroCon</u>
506184 -01	3WINF
506184 -02	3GAC1
506184 -03	3GAC2
506184 -04	3WEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506184 Date Extracted: 06/09/15 Date Analyzed: 06/09/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
3WINF 506184-01	<1	<1	<1	<3	<100	111
3GAC1 506184-02	<1	<1	<1	<3	<100	102
3GAC2 506184-03	<1	<1	<1	<3	<100	112
3WEFF 506184-04	<1	<1	<1	<3	<100	108
Method Blank 05-1276 MB	<1	<1	<1	<3	<100	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

1 -

> <u>د م</u> ا

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	3WEFF 06/08/15 06/10/15 06/10/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506184 506184-04 506184-04.032 ICPMS1 SP
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/10/15 06/10/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	HydroCon TOC_01-176, WORFDB8 F&BI 506184 I5-344 mb I5-344 mb.027 ICPMS1 SP
Internal Standard: Holmium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

l

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506184

Ξ.

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	506185-04 (Duplic	ate)		
	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	106	65-118
Toluene	ug/L (ppb)	50	105	72-122
Ethylbenzene	ug/L (ppb)	50	106	73-126
Xylenes	ug/L (ppb)	150	103	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/15 Date Received: 06/08/15 Project: TOC_01-176, WORFDB8 F&BI 506184

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 506183-04 (Matrix Spike) Percent Percent Reporting Spike Sample Recovery Recovery

	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	5.64	106	108	79-121	2

1

Laboratory Code: Laboratory Control Sample

	Percent								
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
Lead	ug/L (ppb)	10	98	83-115					
				:					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dy - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

506184	•			SAMPLE	CHAIN C)F (CUS	то	DY		ŀ	IE	06.	-08	- 63		A	52/v
														6-08-15 AT2/V Page # of				
Send Report To <u>Cruig Hulfagen & Rickin Barks</u> Company <u>Hughucun</u> Address 510 Allen Struf Sinte B					PROJECT NAME/NO.							PO#			□ Standard (2 Weeks) □ RUSH Rush charges authorized by			
City, State, ZIP <u><u>kdso</u> Phone # <u>360</u> 703-60</u>	vA	98626		REMA	RKS					<u></u>				1 [Disp Return Return Return	pose urn sa	after 30 amples	SPOSAL days structions
· · · · · · · · · · · · · · · · · · ·			<u></u>						4	<u>NA</u>	LYSE	S RE	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS Turkel Laced							Notes
3wDuf	ork	6-8-15	1040	Colabor .	3	1	x	7		Ť	Ť	╈		\uparrow				
36AC1	02 T		1045		3		Y	7							1			
36AL2	031		1050		3		X					T		\top			1	
3weff	or the		1255		ب		X				2	٢						
	+				<u>+</u>			-+	+	-	+	+	+-		<u> </u>			
			\leq						-			-						<u>-</u>
										tiples received at <u>5</u> °C								
Friedman & Bruya, Inc.		SIGN	ATURE	L	PR		<u>`NA</u>	ME	L					PANY			DATE	TIME
3012 16th Avenue West	- Wa they				Robert A. Huberger							Hydrocon				6-5-15 1240		
Seattle, WA 98119-2029 Ph. (206) 285-8282	un					Dovo							F-87 6-8					12:4