Groundwater Monitoring Report, Second Quarter 2013

TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA 98043

Prepared for:

TOC Holdings Co. 2737 West Commodore Way Seattle, WA 98199

Prepared by:

Stantec Consulting Services Inc. 19101 36th Avenue West, Ste. 203 Lynnwood, WA 98036 Phone: 425.977.4994

February 11, 2015

Sign-off Sheet

This document entitled, *Groundwater Monitoring Report, Second Quarter 2013*, was prepared by **Stantec Consulting Services Inc. (Stantec)** on behalf of **TOC Holdings Co. (TOC)** for specific application to TOC Facility No. 01-176 in Mountlake Terrace, Washington. Services conducted by Stantec for this project were conducted in accordance with the Environmental Services Contract between **HydroCon Environmental, LLC (HydroCon)** and Stantec. Any reliance on this document by a third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and HydroCon. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

This document was prepared under the supervision and direction of the key staff identified below.

imstil

Prepared by:

Kim Vik, LG Project Geologist

Prepared by:

Andrea Pedersen Senior Project Coordinator

Reviewed by: Rebekah Brooks, LG, LHg Manager - Hydrogeology / Project Manager

Table of Contents

1.0		1
2.0	DESCRIPTION & BACKGROUND	3
2.1	DESCRIPTION OF TOC SITE	
2.2	DESCRIPTION OF ADJACENT PROPERTIES	3
2.3	SITE BACKGROUND	4
3.0	HYDROGEOLOGIC FRAMEWORK	5
4.0	REMEDIATION SYSTEM STATUS	7
5.0	GROUNDWATER MONITORING SCOPE OF WORK & PROTOCOLS	7
5.1	DEPTH-TO-GROUNDWATER/LNAPL LEVEL MEASUREMENTS	
5.2	GROUNDWATER SAMPLING	9
	5.2.1 SES Groundwater Sampling Method Rationale	9
	5.2.2 SES Groundwater Sampling Methods	
5.3	WELL PURGING & GROUNDWATER SAMPLING METHODS	.11
5.4	LABORATORY ANALYSES	.12
5.5	QA/QC SAMPLING METHODS & DATA QUALITY REVIEW	.13
6.0	GROUNDWATER MONITORING RESULTS	
6.1	GROUNDWATER ELEVATIONS	
	6.1.1 Intermediate Zone Wells	
	6.1.2 Deep Zone Wells	
	6.1.3 Well Screens Intersecting Multiple Zones	
6.2	GROUNDWATER QUALITY RESULTS	
	6.2.1 Shallow Zone Wells	
	6.2.2 Intermediate Zone Wells	
	6.2.3 Deep Zone Wells	
	6.2.4 Well Screens Intersecting Multiple Zones	
6.3	QA/QC & DATA QUALITY RESULTS	. 19
7.0	CONCLUSIONS	. 20
8.0	FUTURE TASKS	. 21
9.0	REFERENCES	. 22

Table of Contents

List of Tables

- 1-1 Groundwater Quality Results for Shallow Zone Wells
- 1-2 Groundwater Quality Results for Intermediate Zone Wells
- 1-3 Groundwater Quality Results for Shallow-Intermediate Zone Intersect Wells
- 2-1 Depth-to-Groundwater/LNAPL Level Measurements

List of Figures

- 1 Project Location
- 2 Site Map
- 3 Locations of Wells and Remediation Systems
- 4 Groundwater Elevation Contours, Shallow Zone
- 5 Groundwater Elevation Contours, Intermediate Zone
- 6 Groundwater Elevation Contours, Deep Zone
- 7 GRPH Concentrations in Groundwater, Shallow Zone
- 8 Benzene Concentrations in Groundwater, Shallow Zone
- 9 GRPH Concentrations in Groundwater, Intermediate Zone
- 10 Benzene Concentrations in Groundwater, Intermediate Zone

List of Appendices

- A Table A-1: Revised Monitoring Well Classifications
- B Laboratory Analytical Reports
 - B-1: TOC Property Wells (24205)
 - B-2: TOC/Farmasonis Property Wells (24225)
 - B-3: Drake Property Wells (24309)
 - B-4: 56th Avenue West Right-of-Way Wells
 - B-5: Herman Property Wells (24311)

Acronyms & Abbreviations

3Q2013 AO bgs BTEX CSM DPE DRPH Ecology EDB EDC EPA Friedman & Bruya FS GRPH IRA IRAWP LNAPL MDL ML MDL ML MDL ML MDL MDL ML MTE MRL MTE MRL MTCA NWTPH-DX NWTPH-DX NWTPH-DX NWTPH-GX ORPH PACE QA/QC RI ROW SES Stantec SVE TOC UST	Agreed Order below ground surface benzene, toluene, ethylbenzene, and total xylenes conceptual site model dual-phase extraction diesel-range petroleum hydrocarbons Washington State Department of Ecology ethylene dibromide (1,2-dibromoethane) ethylene dichloride (1,2-dicholoroethane) U.S. Environmental Protection Agency Friedman & Bruya, Inc. Feasibility Study gasoline-range petroleum hydrocarbons Interim Remedial Action Interim Remedial Action Interim Remedial Action Work Plan light non-aqueous phase liquid method detection limit millilers per minute multi-phase extraction method reporting limit methyl tert-butyl ether Model Toxics Control Act Northwest Total Petroleum Hydrocarbon - Diesel Range Organics Northwest Total Petroleum Hydrocarbon - Gasoline Range Organics other petroleum-related hydrocarbons PACE Engineers, Inc. Quality Assurance / Quality Control Remedial Investigation right-of-way SoundEarth Strategies, Inc.
VOC	volatile organic compound

List of Properties

TOC Property	24205 56th Avenue West; Mountlake Terrace, WA
TOC/Farmasonis Property	24225 56th Avenue West; Mountlake Terrace, WA
Drake Property	24309 56th Avenue West; Mountlake Terrace, WA
Herman Property	24311 56th Avenue West; Mountlake Terrace, WA
Shin/Choi Property	24325 56th Avenue West; Mountlake Terrace, WA

1.0 INTRODUCTION

This report presents the results of the Second Quarter 2013 (2Q2013) groundwater performance monitoring event for the interim remedial action (IRA) conducted at Facility No. 01-176 located in Mountlake Terrace, Washington. Field activities were performed by SoundEarth Strategies, Inc. (SES) and are reported by Stantec Consulting Services Inc. (Stantec) on behalf of TOC Holdings Co. (TOC). Ongoing groundwater monitoring is conducted under Agreed Order (AO) No. DE 8661 (entered in October 2011 between Washington Department of Ecology [Ecology] and TOC). The scope of work is defined in the Interim Remedial Action Work Plan (IRAWP; SES 2011) included as Exhibit C of the AO.

As specified in the AO and IRAWP, the "TOC Site" encompasses the following properties:

- TOC Property located at 24205 56th Avenue West;
- TOC/Farmasonis Property located at 24225 56th Avenue West;
- Drake Property located at 24309 56th Avenue West; and
- portions of the 56th Avenue West Right-of-Way (ROW).

The groundwater monitoring scope of work specified in the IRAWP encompasses the four properties identified as the "TOC Site" as well as the following three adjacent properties:

- Herman Property located downgradient of the TOC Site at 24311 56th Avenue West;
- Shin/Choi Property located downgradient of the TOC Site at 24325 56th Avenue West; and
- portions of the 242nd Street Southwest ROW located along the northern boundary of the TOC Site.

Quarterly groundwater monitoring is conducted to monitor and evaluate the performance and efficacy of the three multi-phase extraction (MPE) remediation systems (located on the TOC, TOC/Farmasonis and Drake Properties) and their effect on groundwater quality. The scope of work defined in the IRAWP for the second, third and fourth quarter monitoring events includes collecting depth-to-groundwater/light non-aqueous phase liquid (LNAPL) level measurements for all active monitoring wells (excluding MW71 through 74 located on the Shin/Choi Property and MW75 located in the 56th Ave ROW) and collecting groundwater samples from 30 active monitoring wells located on the TOC, TOC/Farmasonis and Drake properties. The scope of work for the annual monitoring event (performed during the first quarter of each year) includes measuring groundwater levels and collecting groundwater samples from all active monitoring wells (excluding MW71 through MW74 located on the Shin/Choi Property). It should be noted that at the time the IRAWP was completed in 2011, there were 84 active and five decommissioned monitoring wells located on the TOC Site, 242nd Street ROW and downgradient Shin/Choi Property. Since October 2011, 18 wells have been installed and two wells have been decommissioned. Currently, 101 active and six decommissioned monitoring wells are located on the TOC Site, 242nd Street ROW and downgradient Herman and Shin/Choi properties. Therefore, the scope of work for the guarterly and annual groundwater monitoring events has been updated to include the selected monitoring wells installed by SES from 2011 to 2013.

Introduction Groundwater Monitoring Report, 2Q2013

This report presents a description of 2Q2013 groundwater monitoring activities performed by SES in June and July 2013 and an evaluation of the field data and analytical results. Groundwater monitoring activities performed by SES included collecting depth-to-groundwater/LNAPL level measurements for all active wells (excluding MW71 through 74 and MW75 noted above) and collecting groundwater samples from 37 active wells. A Groundwater Monitoring, Second Quarter 2013 Draft Report was prepared by SES but never submitted to Ecology. Since that time, Stantec has been hired by TOC to take over environmental consulting responsibilities for the project. The results presented in this report have been re-evaluated by Stantec to accurately represent the data collected; however, data quality evaluations conducted by SES have not been reviewed/modified by Stantec. Additionally, during preparation of this report and during updates to the Conceptual Site Model (CSM), Stantec discovered that well monuments on several wells had been damaged and different survey datum had been used by SES. As a result of these findings, Stantec procured PACE Engineers, Inc. (PACE) to conduct a survey in April and May 2014 for all of the wells and site features using a single datum. The updated survey information has been used to revise previous groundwater elevation tables prepared by SES. Additionally, because of inconsistencies observed between the laboratory reports, draft data tables and information entered into the database by SES, a thorough quality control/quality assurance (QA/QC) review was performed for the data tables included in this report.

It should be noted that MW102 through MW107 were installed by SES on the Herman Property (located downgradient of the TOC Site) in June 2013 and developed in July 2013. Since well development occurred following the scheduled 2Q2013 field event (completed June 24-26, 2013), the wells were sampled on July 12, 2013. Monitoring of the Herman Property wells was originally scheduled for the Third Quarter 2013 (3Q2013) field event performed by SES in September 2013. However, because groundwater conditions were more similar to the 2Q2013 event than to the 3Q2013 event, and because of the close proximity of the sampling date to the 2Q2013 event, the results of the July 2013 sampling event for the wells located on the Herman Property are included herein.

Groundwater monitoring for MW84 (a remediation well located on the Drake Property and connected to a remediation system located on the TOC/Farmasonis Property) was scheduled for the 2Q2013 field event but could not be performed during June 2013 field activities because the remediation system was offline for repairs and MW84 was inactive. Therefore, groundwater monitoring for MW84 was performed at the same time as the Herman Property wells on July 12, 2013. Due to the close proximity of the sampling date to the 2Q2013 event, the results of the July 2013 sampling event for MW84 are also included herein.

2.0 DESCRIPTION & BACKGROUND

2.1 Description of TOC Site

As described in Section 1.0, the TOC Site encompasses three adjacent properties and a portion of the 56th Avenue West ROW in Mountlake Terrace, Washington. As shown on **Figures 1 and 2**, the TOC Site is located in a mixed residential and commercial area and surface topography slopes gently toward the south. The TOC Site is bordered by 242nd Street Southwest and commercial properties to the north; by residential properties to the east and west; and by the Herman Property and vacant Mountlake Senior Property to the south. A description of each property included within the TOC Site is provided below.

- **TOC Property:** The vacant TOC Property consists of vegetated land with the exception of an asphalt area and graveled and fenced area housing a MPE remediation system (described in Section 2.3).
- **TOC/Farmasonis Property:** The TOC/Farmasonis Property consists of one commercial building (operating as a restaurant at the time of the 2Q2013 field and currently vacant), an asphalt parking area, vegetated land, and a graveled and fenced area housing two MPE remediation systems (discussed in Section 2.3).
- **Drake Property:** The Drake Property consists of one commercial building (currently occupied by Getaway Tavern) and asphalt and gravel parking areas.
- 56th Avenue West ROW: The portion of the 56th Avenue ROW included in the TOC Site is adjacent to the TOC, TOC/Farmasonis and Drake properties.

2.2 Description of Adjacent Properties

In addition to the TOC Site, the scope of work (described in Section 1.0) includes a portion of the 242nd Street ROW (located directly north of the TOC Site) and two downgradient properties (the Herman and Shin/Choi properties located directly south of the TOC Site). As shown on **Figure 2**, The Herman Property is bordered by the TOC Site to the north and the Shin/Choi Property is directly south of the Herman Property. The Herman and Shin/Choi properties are bordered by the Mountlake Senior Property (currently vacant vegetated land) and residential properties to the east; 56th Avenue West (the southern portion of the street not included within TOC Site) and residential properties to the west; and 244th Street Southwest/205th Street Northeast to the south. The Snohomish County boundary is defined by 244th Street and the King County boundary is defined by 205th Street.

A description of the properties adjacent to the TOC Site and included in the scope of work for groundwater monitoring is provided below.

- Herman Property: The Herman Property consists of one commercial building (currently occupied by Dave's Auto Service), an asphalt parking area and vegetated land.
- Shin/Choi Property: The Shin/Choi Property consists of one building (currently occupied by the EZ Corner Mart) and an asphalt parking area.
- **242nd Street Southwest ROW:** The portion of the 242nd Avenue ROW included in the scope of work is adjacent to the north boundary of the TOC Property.

2.3 Site Background

TOC operated a retail gasoline station on the TOC Property between 1968 and 1990. The facility included three underground storage tanks (USTs), six fuel dispensers and associated product delivery lines. One 8,000-gallon and two 6,000-gallon USTs and ancillary equipment were removed from the TOC Property in 1991 and petroleum constituents in the form of gasoline-range petroleum hydrocarbons (GRPH), benzene, and total xylenes were observed in soil and groundwater in excess of the applicable Model Toxics Control Act (MTCA) Method A Cleanup Levels. Between 1992 and 2013, site investigations were conducted to determine the extent of petroleum contamination and 107 monitoring wells (six of which have been decommissioned) were installed in three groundwater zones (defined as Shallow, Intermediate, and Deep and further described in Section 3.0) on the TOC Site and three adjacent properties (described in Sections 2.1 and 2.2).

In 1996, a dual-phase extraction (DPE) remediation system was installed at the TOC Property to remediate Shallow Zone groundwater impacted by petroleum hydrocarbons and remove LNAPL. The DPE system operated from February 1997 to June 2005 and was later removed following confirmation that the system effectively remediated Shallow Zone Groundwater (SES 2013b). In 2006, groundwater monitoring results collected by SES confirmed gasoline-related contamination extended downgradient of the TOC Property to the south and west.

As described in Section 1.0, TOC and Ecology entered into an AO in October 2011. In accordance with the AO, SES initiated a remedial investigation (RI) at the TOC Site and three MPE remediation systems (further discussed in Section 4.0) were installed between November 2011 and August 2012 to remediate residual petroleum-contaminated groundwater, soil vapor and LNAPL (if present) in the Intermediate Zone beneath and downgradient of the TOC Site. As shown on **Figure 3**, the MPE remediation systems are located within fenced enclosures on the TOC Property and TOC/Farmasonis Property and are served by remediation wells installed on the TOC, TOC/Farmasonis and Drake properties.

Available information regarding historical operations on the TOC/Farmasonis and Drake properties do not indicate the presence of USTs. Historical operations on the downgradient Herman and Shin/Choi properties indicate three USTs were removed from the Shin/Choi Property in 1991 and two USTs were removed from the Herman Property in 2001; however five additional USTs may still exist on the Herman Property. Available information on the locations of historical or current USTs and associated equipment downgradient properties is shown on **Figure 3**.

3.0 HYDROGEOLOGIC FRAMEWORK

In the Draft Remedial Investigation Report (SES 2013b), three separate groundwater zones were identified at the TOC Site, based on the lithology, well screen intervals, and groundwater level measurements. Stantec has re-evaluated the data as part of updates and revisions to the CSM, as required by Ecology, based on comments provided to SES on the Draft Remedial Investigation Report (SES 2013b). The results of the revised CSM will be provided to Ecology in a separate deliverable and will be incorporated into the final RI report prepared by Stantec.

Stantec agrees that three groundwater zones can be identified at the TOC Site; however, these zones do not appear to be separate, but are interconnected, as evidenced by the geology, groundwater elevations and contaminant distribution data. Since first-hand observations were not possible, Stantec's conceptualization of the hydrogeology is based on geologic field interpretations (e.g., boring logs) provided by SES and other consultants that previously managed the project.

Based on re-evaluation of the available data by Stantec, the three groundwater zones are defined as follows:

Shallow Water-Bearing Zone (or Shallow Zone): The Shallow Zone is a perched zone in the artificial fill or upper portion of the glacial till, at depths between approximately 5 to 20 feet below ground surface (bgs) throughout the TOC Site, depending on seasonal fluctuations of the water table. The saturation in these horizons can be seasonally discontinuous, as evidenced by some monitoring wells that are seasonally dry (e.g., MW04 during the December 2012 event), while others in the same season contain water. The primary source of recharge to the Shallow Zone is infiltration of natural precipitation through emplaced fill and native soil in unpaved areas. Other potential sources of recharge to the Shallow Zone reportedly included a former topographically closed depression, where surface runoff previously ponded, and a former stormwater infiltration pit, both of which were located in the southeast portion of the TOC Property (Figure 3). According to a 1975 TOC blueprint, the stormwater infiltration pit is located in proximity to MW18 and MW33; measures 10 feet square by 4 feet deep; and was backfilled with coarse gravel (Time Oil Co. 1975). Surface runoff intercepted by a catch basin located near the southeast corner of the paved asphalt area formerly discharged into the stormwater infiltration pit via a 6-inch-diameter drain pipe, which has been capped. Stantec was unable to confirm the location of the closed depression or the stormwater infiltration pit on the TOC Property during March 2014 site work.

Intermediate Water-Bearing Zone (or Intermediate Zone): The Intermediate Zone is an unconfined groundwater zone that is observed at depths between approximately 20 and 60 feet bgs. As reported by SES (2013b), this zone consists of glacial till deposits between approximately 20 and 40 feet bgs and discontinuous sand and/or gravel-rich glacial deposits within the lower portion of the glacial till between approximately 40 and 60 feet bgs. As discussed further in Section 6.1, groundwater elevations in the Intermediate Zone of the TOC Property appear to be mounded such that the upper boundary of the Intermediate Zone appears closer to the base of the Shallow Zone in the vicinity of the UST excavation fill area and former stormwater infiltration pit. Explanations for the observed groundwater mounding are likely

Hydrogeologic Framework Groundwater Monitoring Report, 2Q2013

related to artificial recharge within the backfill of the former UST cavity, depression, and infiltration pit; the presence of low permeable deposits near the downgradient edge of the property; and/or from localized influence of the vacuum from the soil vapor extraction (SVE) system for the remediation system located on the TOC Property (see Section 4.0). The low permeable deposits in the upper portion of the intermediate groundwater bearing zone impede the vertical percolation of water into the deeper groundwater zones and decrease the horizontal flux of the groundwater in the immediate vicinity. The prevalence of low permeable deposits correlates with the location of steeper horizontal hydraulic gradients in this area (see Section 6.0). In downgradient areas where the Intermediate Zone consists primarily of higher permeability units (i.e., sands and gravels), the thickness of unsaturated materials and the distance between the Shallow and Intermediate Zones increase. The higher permeable deposits contribute to a flattening of the horizontal hydraulic gradient. The Intermediate Zone appears to receive recharge from natural precipitation via the Shallow Zone. A comparison of groundwater elevations and analytical data suggests that the Intermediate Zone is considered to be the current primary contaminant transport pathway at the TOC Site.

Deep Water-Bearing Zone (or Deep Zone): The Deep Zone consists of glacial sand and gravel located at depths greater than 60 feet bgs, based on deep well screen intervals. Within and in the vicinity of the artificial recharge area on the TOC Property, the groundwater elevation data indicate that downward vertical gradients appear to exist between all three zones. In downgradient areas, the groundwater elevation data suggest that vertical gradients shift from downward (between the Shallow and Intermediate Zones) to neutral or slightly upward (between the Intermediate and Deep Zones). Based on these observations and the presence of fully saturated well screens, these groundwater level conditions could be a reflection of a higher permeability zone at the base of a single groundwater unit that includes both the Intermediate and Deep Zones is not obvious in the available data. The presence of upward vertical gradients between the two zones is not obvious in the available data. The presence of upward vertical gradients between the Deep and Intermediate Zones appear to be effective in inhibiting downward migration of contamination in downgradient areas and effectively bounding the extent of vertical contamination.

4.0 **REMEDIATION SYSTEM STATUS**

As described in Section 1.0, TOC and Ecology entered into an AO in October 2011. In accordance with the AO, SES initiated a RI at the TOC Site and three MPE remediation systems were installed between November 2011 and August 2012 to remediate residual petroleum-contaminated groundwater, soil vapor and LNAPL (if present) in the Intermediate Zone beneath and downgradient of the TOC Site. As shown on **Figure 3**, the MPE remediation systems are located within fenced enclosures on the TOC Property and TOC/Farmasonis Property and are served by remediation wells installed on the TOC, TOC/Farmasonis and Drake properties.

At the time of 2Q2013 field event, 24 remediation wells served the remediation systems. Operation of all three MPE remediation systems is ongoing. The table below identifies the remediation wells connected to each system and their location.

System Name	System Location	Remediation Well ID	Remediation Well Location
Unit 1	TOC Property	• MW11 • MW29	TOC Property
		• MW15 • MW32	
		• MW18 • MW90	
		• MW24 • MW91	
		• MW27	
Unit 2	TOC/Farmasonis Property	• MW31 • MW92	TOC/Farmasonis Property
		• MW41 • MW93	
		• MW57 • MW94	
Unit 3	TOC/Farmasonis Property	• MW69 • MW97	Drake Property
		• MW70 • MW98	
		• MW84* • MW99	
		• MW95 • MW101	
		• MW96	

Wells Serving MPE Remediation Systems

*The pump was removed from MW84 following the 2Q2013 field event. Therefore, the MW84 is currently used as a monitoring well and no longer serves as a remediation well connected to Unit 3.

Additional information describing the operation and performance of the MPE remediation systems was provided in the Draft Operation and Maintenance Report, Second Quarter 2013 (SES 2013a).

5.0 GROUNDWATER MONITORING SCOPE OF WORK & PROTOCOLS

The 2Q2013 groundwater monitoring event was conducted by SES from June 24-26, 2013, in accordance with the scope of work defined in the IRAWP. As previously discussed in Section 1.0, monitoring wells MW102 through MW107 were installed on the Herman Property in June 2013 and developed in July 2013. Since well development occurred following the 2Q2013 field event, SES sampled the wells on July 12, 2013. Monitoring of the Herman Property wells was originally scheduled for the 3Q2013 field event performed by SES in September. However, because groundwater conditions were more similar to the 2Q2013 event than to the 3Q2013 event, and because of the close proximity of the sampling date to the 2Q2013 event, the results of the July 2013 sampling event for the wells located on the Herman Property are included herein.

Groundwater monitoring for MW84 (a remediation well located on the Drake Property and connected to the remediation system on the TOC/Farmasonis Property) was scheduled for the 2Q2013 field event but could not be performed during June 2013 field activities because the remediation system was offline for repairs and MW84 was inactive. Therefore, groundwater monitoring for MW84 was performed at the same time as the Herman Property wells on July 12, 2013. Due to the close proximity of the sampling date to the 2Q2013 event, the results of the July 2013 sampling event for MW84 are also included herein.

The sections below summarize the field methods and protocols used by SES for the 2Q2013 groundwater monitoring event.

5.1 Depth-to-Groundwater/LNAPL Level Measurements

Depth-to-groundwater/LNAPL levels were measured by SES personnel from June 24-26, 2013 for the monitoring wells identified in the IRAWP scope of work. As described in Section 1.0, MW84 and the newly installed Herman Property wells were measured by SES personnel on July 12, 2013. According to SES, after opening the wells, groundwater levels were permitted to equilibrate with atmospheric pressure prior to recording the measurements. SES measured and recorded depthto-groundwater/LNAPL levels relative to the top of the well casings to an accuracy of 0.01 feet using an electronic water level meter or an oil/water interface probe. Where LNAPL was previously observed or expected to occur, SES used an oil/water interface probe to check for the presence of LNAPL and measure the depth-to-groundwater. SES personnel recorded the depth-to-groundwater measurements in monitoring well MW09 (located on the TOC Property) using each of the water level meters and interface probes to check for consistency between the probes used for the measurement event. Depth-to-groundwater/LNAPL level and groundwater elevation results are presented in Section 6.1.

The wells identified in the table below were included in the quarterly groundwater monitoring scope of work but were not gauged for the reasons stated.

Well ID & Location (Property Name)	Explanation
• MW84 (Drake)	SES did not provide explanation.
• MW44 (56 th ROW)	Well was dry.

Wells not Gauged during Field Event

5.2 Groundwater Sampling

The quarterly groundwater monitoring scope of work included collecting samples from 37 wells. The wells identified in the table below were included in the scope of work but were not sampled for the reasons stated.

Well ID & Location (Property Name)	Explanation
• MW33 (TOC)	Insufficient water to fill sample containers.
• MW69 (Drake)	
• MW70 (Drake)	

Wells not Sampled during Field Event

The groundwater sampling methods, protocols and rationale used by SES were identified in their *Draft Groundwater Monitoring Report, Second Quarter 2013*, and are summarized in this section. The rationale they used for selection of sampling methodology is provided in the following section.

5.2.1 SES Groundwater Sampling Method Rationale

According to SES, peristaltic pumps are the default, low-flow sample collection method for the groundwater monitoring events, but they are ineffective for collection of samples deeper than approximately 31 feet. Since the depth-to-groundwater level exceeds 31 feet in over half of the monitoring wells, SES considered the advantages and disadvantages of the sampling methods identified below and provided the following conclusions for the sampling methodology used for the quarterly events (see Section 5.2.2):

- Peristaltic pumps and dedicated tubing allow collection of representative low turbidity samples, pose the least risk of sample cross-contamination, and meet the criteria for low-flow protocols (EPA 1996), but are limited to collection of samples shallower than approximately 31 feet.
- Disposable bailers are not depth-limited and do not pose any greater risk of crosscontamination than peristaltic pumps but retrieve turbid samples and potentially volatilize petroleum hydrocarbons, resulting in overstated or understated petroleum hydrocarbon concentrations compared to samples collected in accordance with lowflow protocols.

- Bladder pumps and submersible pumps are not depth-limited and retrieve representative low turbidity samples but pose risks for sample cross-contamination because each sample contacts the interior of the pump, requiring extensive decontamination between samples.
- The use of submersible pumps to collect groundwater samples from the Intermediate Zone is precluded by insufficient groundwater recharge rates, insufficient water column heights, and/or the potential to entrain pump-damaging levels of turbidity. Submersible pumps are feasible for sampling monitoring wells in the Deep Zone, but so are bailers and bladder pumps. Furthermore, historical analytical results indicated that purging and sampling Deep Zone monitoring wells by bailer method would be protective of the project data quality objectives.
- Each remediation well is equipped with a dedicated pneumatic pump to suppress groundwater elevations under induced vacuum. A pneumatic pump delivers groundwater to surface elevations using pulses of compressed air, resulting in a loss of volatile compounds. Pneumatic wells obstruct the use of other groundwater sampling methods; therefore, pneumatic pumps are used to collect performance groundwater samples from selected remediation wells.

5.2.2 SES Groundwater Sampling Methods

Based on the rationale provided above, SES used four sampling methods (peristaltic pump, bladder pump, bailer and pneumatic pump) and elected not to use submersible pumps for groundwater sampling. The SES groundwater sampling protocols and methods used for the sampling events included the following:

- For monitoring wells connected to a remediation unit, SES collected groundwater samples using a dedicated downhole pneumatic pump (MW15, MW27, MW31 and MW32). The pneumatic pumps deliver a pulse of groundwater to the wellhead whenever the groundwater table rises above the pump intake.
- For monitoring wells with depth-to-groundwater levels were less than approximately 31 feet bgs and the well was not connected to a remediation unit, SES collected groundwater samples in accordance with low-flow protocols using a peristaltic pump (MW09, MW10, MW22, MW102, MW104 and MW106).
- For monitoring wells with depth-to-groundwater levels exceeding approximately 31 feet bgs, SES collected samples using a bottom-loading bladder pump in accordance with low-flow protocols (MW09, MW20, MW55, MW56, MW58, MW59, MW60, MW63, MW65, MW77, MW84, MW85, MW86, MW89, MW103, MW105 and MW107) or a disposable polyethylene bailer (MW09, MW45, MW48 through MW53 and MW66).
- In order to evaluate the effects of sample method on data quality, SES collected three samples from MW09 using different sampling methods (bladder pump, peristaltic pump and bailer).
- SES collected field duplicate samples for QA/QC purposes (see Section 5.5) from MW09 using a peristaltic pump, MW31 using a pneumatic pump, MW66 using a bailer, and MW86 and MW103 using a bladder pump.

5.3 Well Purging & Groundwater Sampling Methods

Well purging and groundwater sampling with a peristaltic pump was performed using dedicated polyethylene tubing at flow rates ranging from 50 to 188 milliliters per minute (mL/min). For wells where the screened interval was fully saturated at the time of the monitoring event, the tubing intake was placed at the mid-point of the screened interval. The groundwater level in MW60, MW63, MW65, MW84, and MW102 through MW106 was below the top of the screen and therefore, the tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater.

Well purging and groundwater sampling with a bottom-loading bladder pump was performed using disposable polyethylene tubing at flow rates ranging from 40 to 400 mL/min. Bladder pumps were suspended approximately 2 to 3 feet below the surface of the groundwater or at least 1 foot above the bottom of each monitoring well where the water level was below the top of the screen. In wells with a fully-saturated screen (MW60, MW63, MW65 and MW107), the bladder pump was placed approximately mid-screen.

When purging and sampling in accordance with low-flow protocols, SES monitored water quality using Quanta and YSI Inc. water quality meters equipped with a flow-through cell. Field parameters, including temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential, were monitored and recorded. Following purging and stabilization of the field parameters, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into laboratory-prepared sample containers.

Well purging and groundwater sampling with disposable bailers required the removal of at least three well volumes from each monitoring well prior to sampling. SES did not monitor field parameters during purging and sampling with bailers, or sampling with the pneumatic pumps. Upon removal of at least three well volumes of groundwater, water samples were collected from the bailer directly into laboratory-prepared sample containers. Fewer than three well volumes were purged from the following wells prior to collecting a groundwater sample:

- MW51 and MW52 bailed dry upon removal of one well-volume of groundwater. The wells were allowed to recharge and were sampled later the same day.
- MW45, MW50 and MW53 bailed dry upon removal of approximately two well-volumes of groundwater. The wells were allowed to recharge, and were sampled later the same day.

Purge water generated during this sampling event was placed in labeled 55-gallon steel drums and temporarily stored on the TOC Property for transfer to the remediation systems for treatment and permitted discharge to the sanitary sewer.

Each set of sample containers was labeled with a unique sample identification number, placed on ice in a cooler and transported to Friedman & Bruya, Inc. (Friedman & Bruya) under standard chain-of-custody protocols for laboratory analysis.

5.4 Laboratory Analyses

The types of laboratory analyses performed by Friedman & Bruya for the groundwater samples are identified in the table below. The data were reportedly validated by SES and, in some cases, qualifiers were assigned. Results are reported between the method detection limits (MDLs) and the method reporting limits (MRLs) for all data packages. Results are typically reported as "not detected" when below the MRLs. In cases where the MRLs were not below MTCA Method A Cleanup Levels for groundwater, the results are reported between the MDL and MRL and are considered estimates that are used for informational purposes only.

Hazardous Substance	Method of Analysis	Sample Location / Well ID							
GRPH	NWTPH-Gx	Analyses performed for all							
		groundwater samples collected							
		during field event.							
DRPH & ORPH	NWTPH-Dx	• MW102 • MW104 • MW106							
		• MW103 • MW105 • MW107							
BTEX	EPA Method 8260C	or Analyses performed for all							
	8021B	groundwater samples collected							
		during field event.							
MTBE	EPA Method 8260C	• MW65 • MW85 • MW102							
		• MW77 • MW86 • MW104							
		• MW84 • MW89 • MW106							
EDB & EDC	EPA Method 8260C	• MW84 • MW104 • MW106							
		• MW102 • MW105 • MW107							
		• MW103							
EDB	EPA Method 8011M	• MW102 • MW104 • MW106							
		• MW103 • MW105 • MW107							
Lead (Total & Dissolved)	EPA Method 200.8	• MW31 • MW104 • MW106							
		• MW102 • MW105 • MW107							
		• MW103							
Acronyms:									
BTEX = Benzene, Toluene, Ethylber	izene, and Total Xylenes	MTBE = Methyl Tertiary-Butyl Ether							
DRPH = Diesel-Range Petroleum H	ydrocarbons	NWTPH-Dx = Northwest Total Petroleum Hydrocarbon -							
EDB = ethylene dibromide (1,2-dib	romoethane)	diesel-range organics analysis method							
EDC = ethylene dichloride (1,2-dic	holoroethane)	NWTPH-Gx = Northwest Total Petroleum Hydrocarbon –							
EPA = U.S. Environmental Protectic	on Agency	gasoline-range organics analysis method							
GRPH = Gasoline-Range Petroleur	n Hydrocarbons	ORPH = Oil-Range Petroleum Hydrocarbons							

Laboratory Analyses for Groundwater Samples

5.5 QA/QC Sampling Methods & Data Quality Review

The scope of work for the quarterly groundwater monitoring events included collection and laboratory analyses of groundwater samples for QA/QC purposes. QA/QC samples collected for the 2Q2013 groundwater monitoring event are summarized below.

- Two equipment rinsate samples were collected from water poured through the bladder pumps used for sampling at the following locations:
 - o MW86 (sample 01176-20130626-R1)
 - o MW103 (sample 01176-20130712-R1)
- Three groundwater sampling equipment methods were used at MW09 to compare the sampling method effects (if any) on the variability of analytical results. The sampling methods included a bladder pump (sample MW09-20130625-BL), a peristaltic pump (sample MW09-20130625-PE) and a bailer (sample MW09-20130625-BA).
- Two blind field duplicate samples were collected from the following locations using the same sampling equipment methods:
 - MW09 using a peristaltic pump (samples MW09-20130625-PE and MW999-20130625-PE).
 - MW103 using a bladder pump (samples MW103-20130712-BL and MW999-20130712-BL).
- Three non-blind field duplicate samples were collected at the following locations using the same sampling equipment methods:
 - MW31 using a pneumatic pump (sample MW31-20130626-PN and method duplicate sample MW31-20130626).
 - MW66 using a bailer (sample MW66-20130625-BA and method duplicate sample MW66-20130625-BA2).
 - MW86 using a bladder pump (sample MW86-20130625-BL and method duplicate sample MW86-20130625-BL2).

6.0 **GROUNDWATER MONITORING RESULTS**

As described in Section 3.0, the hydrogeologic framework of the TOC Site includes three groundwater zones (Shallow, Intermediate and Deep) that appear to be interconnected. Based on re-evaluation of available SES data by Stantec and a comparison of site-specific lithology and groundwater elevations collected during multiple sampling events, 16 monitoring wells appear to have screen intervals that intersect multiple groundwater zones. At these locations, groundwater elevations do not correlate with a single, unique zone and appear to reflect some combination of the two intersected zones (either intersecting Shallow and Intermediate Zones or Intermediate and Deep Zones). Wells that are screened in multiple intervals are not considered to be representative of a single, unique groundwater zone and, therefore, were not used by Stantec for groundwater elevation contouring. Therefore, the monitoring wells were placed into five different categories based on well screen intervals and intersected groundwater zones. The five categories include:

- 1. Shallow Zone Wells,
- 2. Intermediate Zone Wells,
- 3. Deep Zone Wells,
- 4. Shallow-Intermediate Zone Intersect Wells, and
- 5. Intermediate-Deep Zone Intersect Wells.

Table A-1 (**Appendix A**) provides a side-by-side comparison of SES well classifications (provided in the *Draft Remediation Investigation Report* [SES 2013b]) with Stantec's revised well classifications for the five categories described above. The revised well classifications are based on a comprehensive evaluation of data by Stantec during updates to the CSM.

Groundwater monitoring results for the 2Q2013 field event are organized by monitoring well categories and summarized below. Historical groundwater elevations and analytical results since June 1992 are presented and discussed in the annual (first quarter) groundwater monitoring reports.

6.1 Groundwater Elevations

The groundwater elevations were contoured by Stantec and used to identify groundwater flow direction and hydraulic gradients (**Figures 4 through 6**). The depth-to-groundwater/LNAPL level measurements and groundwater elevations are summarized in the following sections and provided on **Table 2-1** (attached to this report). Field data was corrected by SES for differences between instruments based on the measurements recorded for monitoring well MW09 (maximum 0.01 feet). The groundwater elevations provided on **Table 2-1** were updated by Stantec based a survey performed by PACE in 2014 (see Section 1.0). It should be noted that depth-to-groundwater/LNAPL level measurements were collected by SES when the remediation systems were operating and therefore, may not represent baseline (i.e., non-pumping) groundwater flow patterns.

Depth-to-groundwater/LNPAL level measurements ranged from 10.25 feet for MW12 (located in the Shallow Zone) to 44.52 feet for MW16 (located in the Intermediate-Deep Zone intersect). LNAPL was not observed in any of the monitoring wells during the 2Q2013 field event. Shallow Zone Wells

Groundwater flow in the Shallow Zone appears to be predominantly to the south-southeast based on groundwater elevations measured during the 2Q2013 event, with a relatively consistent horizontal hydraulic gradient ranging from 0.02 to 0.05 feet/feet across the TOC Site, as shown on **Figure 4**.

6.1.1 Intermediate Zone Wells

Similar to the Shallow Zone, groundwater flow in the Intermediate Zone appears to be generally to the south-southeast based on groundwater elevations measured during the 2Q2013 event with horizontal hydraulic gradients ranging from 0.01 to 0.1 feet/feet across the TOC Site. As discussed in Section 3.0 and shown on **Figure 5**, steepening in the slope of the horizontal gradient is apparent in the vicinity of the TOC Property's southern boundary and is thought to be related to mounding of groundwater in the area of the TOC Property. This mounding could reflect influences of the following: artificial recharge associated with emplaced fill in the former UST area and stormwater infiltration pit and depression; and/or the apparent presence of a low permeability material in that area. Also, mounding effects appear to be present in direct vicinity to some of the remediation wells (MW15, MW32 and MW91), likely associated with vacuum effects from the SVE components of the remediation systems. As groundwater moves downgradient and encounters higher permeability layers (e.g., gravels and sands), the horizontal hydraulic gradient flattens significantly as is evident from the potentiometric surface on **Figure 5**.

6.1.2 Deep Zone Wells

Groundwater flow in the Deep Zone appears to be generally to the south-southeast based on groundwater elevations measured during the 2Q2013 event. The horizontal hydraulic gradient is relatively flat at an average of about 0.01 feet/feet likely because the wells are screened in high permeability material. Within and in the vicinity of the artificial recharge area on the TOC Property, the groundwater elevation data indicate that downward vertical gradients appear to exist between all three zones; however, Deep Zone data in this area are limited. Downgradient of this area, the groundwater elevation data appear to indicate that vertical gradients shift from downward (between the Shallow and Intermediate Zones) to upward (between the Intermediate and Deep Zone s imilar, but the Deep Zone elevations are typically slightly elevated above the Intermediate Zone in downgradient areas. The presence of upward vertical gradients between the Deep and Intermediate Zones, downgradient of the TOC Property appear to be effective in inhibiting downward vertical flow of groundwater and migration of contamination in downgradient areas and effectively bounding the extent of vertical contamination.

6.1.3 Well Screens Intersecting Multiple Zones

As previously mentioned, 16 monitoring wells appear to intersect conditions of multiple groundwater zones. Since the elevations for these wells appear to be anomalous and do not correlate with a single, unique zone, they were not used for groundwater contouring but are shown on **Figure 5**. The two intersecting groundwater zones are defined below.

- Shallow-Intermediate Zone Intersect Wells: Fifteen wells appear to have screened intervals that intersect both Shallow and Intermediate Zone conditions (MW08, MW09, MW18, MW22, MW24, MW27, MW28, MW29, MW37, MW38, MW43, MW82, MW83, MW88 and MW100). Groundwater elevations for these wells are typically lower than Shallow Zone wells but higher than Intermediate Zone wells due to influence of groundwater conditions from both the Shallow and Intermediate Zones. These wells were previously classified by SES as "Intermediate Zone" or "Upper Intermediate Zone" wells (as shown on Table A-1, Appendix A).
- Intermediate-Deep Zone Intersect Wells: One well (MW16) appears to have a screened interval that intersects both Intermediate and Deep Zone conditions. The well has been dry during many sampling events but the groundwater elevations measured are typically lower than other Intermediate Zone wells due to influence from the Deep Zone. This well was previously classified by SES as an "Intermediate Zone" well (as shown on Table A-1, Appendix A).

6.2 Groundwater Quality Results

The types of laboratory analyses performed by Friedman & Bruya for the groundwater samples collected during the quarterly event are identified on the table in Section 5.3. Analytical reports are provided in **Appendix B**.

Tables 1-1 through 1-3 summarize analytical results for the wells sampled during the quarterly event. As shown on the attached tables, the analytical results indicate several constituents were detected in groundwater samples at concentrations above the MRLs (i.e., detected concentrations) and above MTCA Method A Cleanup Levels. A summary of the analytical results that exceed the MTCA Method A Cleanup Levels for each monitoring well category is provided in the following sections.

6.2.1 Shallow Zone Wells

The scope of work defined in the IRAWP does not require quarterly groundwater sampling of any of the 20 active wells in the Shallow Zone. However, three Shallow Zone wells (MW102, MW104 and MW106) were installed on the Herman Property following completion of the IRAWP and, therefore, are included quarterly groundwater monitoring scope of work.

The table on the following page identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Shallow Zone wells. **Table 1-1** (attached to this report) summarizes the analytical results for all groundwater samples collected from Shallow Zone wells. Concentration distribution maps for GRPH and benzene in groundwater within the Shallow Zone are provided on **Figures 7 and 8**, respectively.

			- · ··
	MTCA Method A	Well ID & Location	Concentration
Analyte	Cleanup Level (µg/L)	(Property Name)	Exceeding
		(hopeny Name)	Cleanup Level (µg/L)
GRPH	1,000 or 800 when	MW102 (Herman)	180,000
	benzene is present	MW104 (Herman)	58,000
DRPH	500	MW102 (Herman)	8,400
		MW104 (Herman)	11,000
Benzene	5	MW102 (Herman)	9,600
		MW104 (Herman)	17
Toluene	1,000	MW102(Herman)	48,000
		MW104 (Herman)	3,200
Ethylbenzene	700	MW102 (Herman)	3,100
		MW104 (Herman)	2,600
Total Xylenes	1,000	MW102 (Herman)	20,100
		MW104 (Herman)	14,600
MTBE	20	MW102 (Herman)	52
EDB	0.01	MW102 (Herman)	0.88
		MW104 (Herman)	0.034
EDC	5	MW102 (Herman)	120
Lead (Dissolved)	15	MW102 (Herman)	16.7
Lead (Total)	15	MW102 (Herman)	15.6

6.2.2 Intermediate Zone Wells

The scope of work defined in the IRAWP requires quarterly groundwater sampling of 28 of the 64 active wells in the Intermediate Zone. One well scheduled for quarterly monitoring (MW21 on the TOC Property) was decommissioned in 2012 following completion of the IRAWP. Three Intermediate Zone wells (MW103, MW105 and MW107) were installed on the Herman Property following completion of the IRAWP and were added to the scope of work for the quarterly monitoring events. Twelve additional Intermediate Zone wells (MW90 through MW101) were installed in 2011 after completion of the IRAWP but were not included during this quarterly event (SES did not document their reasoning for excluding these wells from the scope of work for the 2Q213 event). Therefore, a total of 31 active wells are included quarterly groundwater monitoring scope of work.

The table on the following page identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Intermediate Zone wells. **Table 1-2** (attached to this report) summarizes the analytical results for all groundwater samples collected from Intermediate Zone wells. Concentration distribution maps for GRPH and benzene in groundwater within the Intermediate Zone are provided on **Figures 9 and 10**, respectively.

•	MTCA Method A	Well ID & Location	Concentration Exceeding			
Analyte	Cleanup Level (µg/L)	(Property Name)	Cleanup Level (µg/L)			
GRPH	1,000 or 800 when	MW15 (TOC)	1,800			
	benzene is present	MW20 (TOC)	8,600			
		MW32 (TOC)	8,000			
		MW45 (TOC/Farmasonis)	8,300			
		MW48 (TOC/Farmasonis)	11,000			
		MW103 (Herman)	2,900			
DRPH	500	MW103 (Herman)	1,500			
Benzene 5		MW20 (TOC)	25			
		MW32 (TOC)	11			
		MW103 (Herman)	1,400			
Total Xylenes 1,000		MW20 (TOC)	1,200			
		MW32 (TOC)	1,900			
MTBE	20	MW103 (Herman)	260			
EDB	0.01	MW103 (Herman)	0.094			
EDC	5	MW103 (Herman)	34			
Lead (Total)	15	MW31 (TOC/Farmasonis)	19.9			

Analytical Results for Groundwater Samples Exceeding Cleanup Levels (Intermediate Zone Wells)

6.2.3 Deep Zone Wells

The scope of work defined in the IRAWP does not require quarterly groundwater sampling of any of the six active wells in the Deep Zone.

6.2.4 Well Screens Intersecting Multiple Zones

As described in the opening paragraph of Section 6.0, 16 monitoring wells appear to have wells screens that intersect conditions of multiple groundwater zones. The groundwater quality results for monitoring wells in these zones are discussed below.

6.2.4.1 Shallow-Intermediate Zone Intersect Wells

The scope of work defined in the IRAWP requires quarterly groundwater sampling for three of the 15 active wells that intersect Shallow and Intermediate Zone conditions (MW09, MW22 and MW27 located on the TOC Property). For illustration purposes, GRPH and benzene concentrations within wells screened across both Shallow and Intermediate Zones are shown with the Intermediate Zone wells on **Figures 9 and 10**, respectively.

The table on the following page identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Shallow-Intermediate Zone intersect wells. **Table 1-3** (attached to this report) summarizes the analytical results for groundwater samples collected from Shallow-Intermediate Zone intersect wells.

Analyte	MTCA Method A	Well ID & Location	Concentration Exceeding
Andryte	Cleanup Level (µg/L)	(Property Name)	Cleanup Level (µg/L)
GRPH	1,000 or 800 when	MW09 (TOC)	960
benzene is present		MW27 (TOC)	9,200
Total Xylenes	1,000	MW27 (TOC)	3,300

Analytical Results for Groundwater Samples Exceeding Cleanup Levels (Shallow-Intermediate Zone Intersect Wells)

6.2.4.2 Intermediate-Deep Zone Intersect Wells

The scope of work defined in the IRAWP does not require quarterly groundwater monitoring for the wells that intersect Intermediate and Deep Zone conditions (MW16 located on the 242nd St ROW).

6.3 QA/QC & Data Quality Results

As described in Section 5.5, the scope of work for the quarterly groundwater monitoring events included the collection and laboratory analyses of groundwater samples for QA/QC purposes. SES reportedly performed a QA/QC review of the analytical results, which included a review of accuracy and precision of data supplied by the laboratory. Analytical results for field duplicate samples are provided for the applicable wells identified on **Tables 1-2 and 1-3** and analytical results for all other QA/QC samples are provided with the laboratory reports in **Appendix B**. SES indicated that in the event that a result for any chemical of concern in a QA/QC sample exceeded the primary sample result, and the QA/QC sample was collected using the same method as the primary sample, then the higher of the two values was reported. However, if the sample collection methods differed, then the primary sample results are reported, regardless of the QA/QC analytical result.

7.0 CONCLUSIONS

Stantec's conclusions for the 2Q2013 groundwater monitoring event are summarized below and based on field data collected by SES.

- The overall direction of groundwater flow through the Shallow, Intermediate, and Deep Zones is toward the south-southeast.
- The distribution of petroleum hydrocarbons in Intermediate Zone groundwater, relative to the former UST excavation at the TOC Property, is consistent with the overall direction of groundwater flow toward the south and southeast.
- Mounded groundwater conditions within the Intermediate Zone appear to be centered beneath the southern portion of the former UST excavation. The location and elevation of the mounded conditions and the vertical and lateral distributions of petroleum hydrocarbons support the working hypothesis that contamination associated with the former UST excavation appears to be associated with contaminated groundwater within the Shallow Zone and portions of the Intermediate Zone on the TOC, TOC-Farmasonis and Drake Properties.
- Shallow Zone: Petroleum-related constituents were not detected in groundwater sampled as part of the 2Q2013 event at the TOC Site, as shown on Figures 7 and 8. Concentrations of GRPH and benzene exceeding MTCA Method A Cleanup Levels were observed in the southwest (MW102) and central-north (MW104) areas of the Herman Property, but based on historical groundwater concentration patterns are likely not associated with historical operations on the TOC Property.
- Intermediate Zone: As shown on Figure 9, concentrations of GRPH exceeding MTCA Method A Cleanup Levels were focused in the southeast area of the TOC Property near MW15 and in the southwest area of the TOC Property near MW20 and MW32 (downgradient from the historical UST excavation area); on the eastside of the 56th Avenue ROW near MW45 and MW48 (adjacent to the TOC/Farmasonis Property line), and in the southwest area of the Herman Property near MW103 (downgradient from historical UST excavations on the Herman Property). As shown on Figure 10, concentrations of benzene exceeding MTCA Method A Cleanup Levels were also focused near MW20 and MW32 on the TOC Property and 103 on the Herman Property.
- **Deep Zone:** Groundwater samples were not collected from wells within the Deep Zone during this quarterly event.
- Shallow-Intermediate Zone Intersect Wells: As shown on Figure 9, concentrations of GRPH exceeding MTCA Method A Cleanup Levels were focused in the northwest area of the TOC Property near MW 27 (in the historical UST excavation area) and further south near MW09 (downgradient from the historical UST excavation area).

8.0 FUTURE TASKS

SES conducted groundwater monitoring for the 3Q2013 field event in September 2013. The results will be presented in a subsequent groundwater monitoring report prepared by Stantec.

9.0 **REFERENCES**

Axis Survey & Mapping. 2012. Existing Site Exhibit, Sheet 1 OF 1, SE ¹/₄, SW ¹/₄, SEC. 33, TWP. 27 N., RGE. 4 E., W.M. Mountlake Terrace, Snohomish County, Washington. April 6.

City of Mountlake Terrace. 2005. As-Built Utilities, 24205 56th Ave. W. Area. October 3.

- Environmental Science & Engineering, Inc. (ES&E). 1992. Results of Site Assessment, Time Oil Property #01-176, Located at 24205 56th Avenue West, Mountlake Terrace, Washington. September 16.
- K&S Environmental, Inc. (K&S). 2001. UST Decommissioning and Site Assessment Report, R&R Auto, 24311 56th Ave. W., Mountlake Terrace, WA. January 16.
- Landau Associates, Inc. (Landau). 2005. Groundwater Status Report, Time Oil Property 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington. January 25.

Reisdorff, Thomas D. 1985. Herman Short Plat No. 106. January 31.

- Snohomish County Assessor's Office. 2009. Snohomish County On-Line Property Information, accessed at http://gis.snoco.org/maps/property/index.htm. November.
- SES. 2011. Interim Remedial Action Work Plan (IRAWP), TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. July 28.
- SES. 2013a. Draft Operation and Maintenance Report, Second Quarter 2013, TOC Holdings Co. No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. September 27.
- SES. 2013b. Draft Remedial Investigation Report, TOC Holdings Co. No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. November 27.
- SES. 2014. Draft Groundwater Monitoring Report, Second Quarter 2013, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. February 12.
- Time Oil Company [sic] (Time Oil Co.). 1975. Blueprint Drawing No. 1390: Conduits, Piping, Electrical Service, Lighting, Retaining Wall & Lot Drainage, Mountlake Terrace, Wash. September 8 with undated maintenance notes in red-orange pencil.
- U.S. Environmental Protection Agency (EPA). 1992. RCRA Ground-Water Monitoring Draft Technical Guidance. Office of Solid Waste. Washington, D.C. November.
- U.S. Environmental Protection Agency (EPA). 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells. July 30.
- U.S. Geological Survey (USGS). 2002. Urban-250mm Aerial Photograph of 24200 Block of Mountlake Terrace, Washington.

Tables

- 1-1 Groundwater Quality Results for Shallow Zone Wells, 2Q2013
- 1-2 Groundwater Quality Results for Intermediate Zone Wells, 2Q2013
- 1-3 Groundwater Quality Results for Shallow-Intermediate Zone Intersect Wells, 2Q2013
- 2-1 Groundwater Level Measurements, 2Q2013

<u>TABLE 1-1</u> Groundwater Quality Results for Shallow Zone Wells (0 to 20 feet bgs) Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

					Analytical Results (µg/L) ⁽¹⁾											
				Total Petrole	Total Petroleum Hydrocarbons Volatile Organic Compounds							Me	tals			
				Method NWTPH-Gx	EPA Method 8260C					EPA Method 8011M	EPA Met	nod 200.8				
Well ID	Property	Sample Date	Sample ID ⁽²⁾	GRPH	DRPH	ORPH	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	EDB	Lead (dissolved)	Lead (total)
MW102	Herman	7/12/2013	MW102-20130712-PE	180,000	8,400	250U	9,600	48,000	3,100	20,100 ^(a)	52	120	1U	0.88	16.7	15.6
MW104	Herman	7/12/2013	MW104-20130712-PE	58,000	11,000	320	17	3,200	2,600	14,600 ^(b)	1U	1U	1U	0.034	1U	1U
MW106	Herman	7/12/2013	MW106-20130712-PE	100U	140	250U	0.35U	1U	1U	3U	1U	1U	1U	0.01U	1U	1U
MTCA Method A Cleanup Level ⁽³⁾		1,000/800 ⁽⁴⁾	500	500	5	1,000	700	1,000	20	5	0.01	0.01	15	15		

NOTES:

Field data was collected by SoundEarth Strategies, Inc.

Red denotes concentration exceeds MTCA Method A Cleanup Levels for groundwater.

U = Indicates the compound was undetected at the reported concentration.

⁽¹⁾ Groundwater samples were analyzed by Friedman & Bruya, Inc. of Seattle WA.

⁽²⁾ Sample ID suffix indicates type of sampling method used. (PE = peristaltic pump)

⁽³⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the WAC, revised November 2007.

 $^{(4)}$ 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

^(a) Total reported concentration for m, p-Xylene and o-Xylene was 20,100 (14,000 for m, p-Xylene and 6,100 for o-Xylene). ^(b) Total reported concentration for m, p-Xylene and o-Xylene was 14,600 (10,000 for m, p-Xylene and 4,600 for o-Xylene).

LIST OF PROPERTIES:

Herman = 24311 56th Avenue West, Mountlake Terrace WA

ACRONYMS & ABBREVIATIONS:

μg/L = micrograms per liter

bgs = below ground surface

DRPH = diesel-range petroleum hydrocarbons

- EDB = ethylene dibromide (1,2-dibromoethane)
- EDC = ethylene dichloride (1,2-dicholoroethane)
- EPA = U.S. Environmental Protection Agency
- GRPH = gasoline-range petroleum hydrocarbons
- MTBE = methyl tertiary-butyl ether
- MTCA = Model Toxics Control Act
- NWTPH-Dx = Northwest Total Petroleum Hydrocarbon diesel-range organics

NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

ORPH = oil-range petroleum hydrocarbons

WAC = Washington Administrative Code

<u>TABLE 1-2</u> Groundwater Quality Results for Intermediate Zone Wells (20 to 60 feet bgs) Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

				Analytical Results (μg/L) ⁽²⁾													
				Total Petrole	Volatile Organic Compounds								Metals				
						Method NWTPH-Dx		EPA Method 8021B or 8260C				EPA Method 8260C			EPA Method 200.8		
Well ID ⁽¹⁾	Property	Sample Date	Sample ID ⁽³⁾	GRPH	DRPH	ORPH	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDC	EDB	EDB	Lead (dissolved)	Lead (total)	
MW10	тос	6/25/2013	MW10-20130625-PE	410	NA	NA	4.5	3.1	12	80	NA	NA	NA	NA	NA	NA	
MW15 (RW)	тос	6/26/2013	MW15-20130626-PN	1,800	NA	NA	1U	2	49	120	NA	NA	NA	NA	NA	NA	
MW20	тос	6/26/2013	MW20-20130626-BL	8,600	NA	NA	25	98	200	1,200	NA	NA	NA	NA	NA	NA	
MW31 (2" RW)	TOC/Farmasonis	6/26/2013	MW31-20130626	170	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
IVIVUST (Z KVV)	TOC/Farmasonis	6/26/2013	MW31-20130626-PN	150	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	3.09	19.9	
MW32 (RW)	тос	6/26/2013	MW32-20130626-PN	8,000	NA	NA	11	93	280	1,900	NA	NA	NA	NA	NA	NA	
MW33	тос	6/26/2013	not sampled ^(a)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
MW45	ROW (56th)	6/26/2013	MW45-20130626-BA	8,300	NA	NA	1U	1U	1U	340	NA	NA	NA	NA	NA	NA	
MW48	ROW (56th)	6/26/2013	MW48-20130626-BA	11,000	NA	NA	5U	12	130	810	NA	NA	NA	NA	NA	NA	
MW49	ROW (56th)	6/26/2013	MW49-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW50	ROW (56th)	6/26/2013	MW50-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW51	ROW (56th)	6/26/2013	MW51-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW52	ROW (56th)	6/26/2013	MW52-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW53	ROW (56th)	6/26/2013	MW53-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW55	ROW (56th)	6/26/2013	MW55-20130626-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW56	TOC/Farmasonis	6/26/2013	MW56-20130626-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW58	TOC/Farmasonis	6/26/2013	MW58-20130626-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW59	TOC/Farmasonis	6/26/2013	MW59-20130626-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW60	ROW (56th)	6/26/2013	MW60-20130626-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW63	ROW (56th)	6/25/2013	MW63-20130625-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW65	Drake	6/25/2013	MW65-20130625-BL	100U	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
MW66	TOC/Farmasonis	6/25/2013	MW66-20130626-BA	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
141 44 66	TOC/Farmasonis	6/25/2013	MW66-20130626-BA2	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW69	Drake	6/25/2013	not sampled ^(a)	NA	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW70	Drake	6/25/2013	not sampled ^(a)	NA	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
MW84 (RW) ⁽⁴⁾	Drake	7/12/2013	MW84-20130712-BL	240	NA	NA	0.35U	1U	1.1	3.9 ^(b)	1U	1U	0.01U	NA	NA	NA	
MW85	Drake	6/25/2013	MW85-20130625-BL	100U	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
MW86	Drake	6/25/2013	MW86-20130625-BL	100U	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
101000	Diake	6/25/2013	MW86-20130626-BL2	100U	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
MW89	Drake	6/25/2013	MW89-20130626-BL	100U	NA	NA	1U	1U	1U	3U	1U	NA	NA	NA	NA	NA	
MTCA Method A C	Cleanup Level (5)			1,000/800 ⁽⁶⁾	500	500	5	1,000	700	1,000	20	5	0.01	0.01	15	15	

TABLE 1-2 Groundwater Quality Results for Intermediate Zone Wells (20 to 60 feet bgs) Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

				Analytical Results (μg/L) ⁽²⁾												
				Total Petroleu	Total Petroleum Hydrocarbons					Metals						
				Method NWTPH-Gx			EPA Method 8021B or 8260C			EPA Method 8260C			EPA Method 8011M	EPA Method 200.8		
Well ID ⁽¹⁾	Property	Sample Date	Sample ID ⁽³⁾	GRPH	DRPH	ORPH	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	EDB	Lead (dissolved)	Lead (total)
MW103	Herman	7/12/2013	MW103-20130712-BL	2,900	1,500	250U	1,400	42	100	240 ^(c)	260	34	0.01U	0.094	3.34	3.16
10100103	пеннан	7/12/2013	MW999-20130712-BL	2,600	1,400	250U	970	63	77	240 ^(d)	240	24	0.01U	0.087	NA	NA
MW105	Herman	7/12/2013	MW105-20130712-BL	100U	50U	250U	0.35U	1U	1U	3U	1U	1U	0.01U	0.01U	1U	1U
MW107	Herman	7/12/2013	MW107-20130712-BL	100U	62	250U	0.52	1U	1U	3U	1U	1U	0.01U	0.01U	1U	1U
MTCA Method A Cleanup Level ⁽⁵⁾			1,000/800 ⁽⁶⁾	500	500	5	1,000	700	1,000	20	5	0.01	0.01	15	15	

NOTES:

Field data was collected by SoundEarth Strategies. Inc.

Red denotes concentration exceeds MTCA Method A Cleanup Levels for groundwater.

U = Indicates the compound was undetected at the reported concentration.

⁽¹⁾ Remediation wells are identified as "RW." RWs are 4" (unless noted as 2") and are connected to a remediation system. ⁽²⁾ Groundwater samples were analyzed by Friedman & Bruya, Inc. of Seattle WA.

- ⁽³⁾ Sample ID suffix indicates type of sampling method used. (BA = bailer [disposable polyethylene],
- BL = bladder pump [bottom-loading], PE = peristaltic pump, PN = pneumatic pump)
- ⁽⁴⁾ The pump was removed from MW84 following the 2Q2013 field event. Therefore, MW84 is currently used as a monitoring well and no longer serves as a remediation well.
- ⁽⁵⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the WAC, revised November 2007.
- $^{(6)}$ 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

^(a) MW33, MW69 and MW70 were not sampled due to insufficient groundwater to fill the sample containers.

^(b) Total reported concentration for m, p-Xylene and o-Xylene was 3.9 (3.9 for m, p-Xylene and 1U for o-Xylene).

- ^(c) Total reported concentration for m, p-Xylene and o-Xylene was 240 (120 for m, p-Xylene and 120 for o-Xylene).
- ^(d) Total reported concentration for m, p-Xylene and o-Xylene was 240 (130 for m, p-Xylene and 110 for o-Xylene).

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA

Drake = 24309 56th Avenue West, Mountlake Terrace WA

Herman = 24311 56th Avenue West. Mountlake Terrace WA

ROW (56th) = portion of 56th Avenue West, Mountlake Terrace WA

ACRONYMS & ABBREVIATIONS:

 $\mu g/L = micrograms per liter$ bgs = below ground surface DRPH = diesel-range petroleum hydrocarbons

- EDB = ethylene dibromide (1,2-dibromoethane)
- EDC = ethylene dichloride (1,2-dicholoroethane)
- EPA = U.S. Environmental Protection Agency
- GRPH = gasoline-range petroleum hydrocarbons
- MTBE = methyl tertiary-butyl ether
- MTCA = Model Toxics Control Act
- NA = not analyzed
- NWTPH-Dx = Northwest Total Petroleum Hydrocarbon diesel-range organics
- NWTPH-Gx = Northwest Total Petroleum Hydrocarbon gasoline-range organics
- ORPH = oil-range petroleum hydrocarbons
- ROW = right-of-way
- WAC = Washington Administrative Code

<u>TABLE 1-3</u> Groundwater Quality Results for Shallow-Intermediate Zone Intersect Wells Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

					Analytical Results (μg/L) ⁽²⁾												
				Total Petroleum Hydrocarbons			Volatile Organic Compounds									Metals	
				Method Method NWTPH-Gx NWTPH-Dx		EPA Method 8021B			EPA Method 8260C			EPA Method 8011M	EPA Method 200.8				
Well ID ⁽¹⁾	Property	Sample Date	Sample ID ⁽³⁾	GRPH	DRPH	ORPH	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDC	EDB	EDB	Lead (dissolved)	Lead (total)	
		6/25/2013	MW09-20130625-BA	960	NA	NA	2.5	1.3	9.3	69	NA	NA	NA	NA	NA	NA	
MW09	тос	6/25/2013	MW09-20130625-BL	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
1010009		6/25/2013	MW09-20130625-PE	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
		6/25/2013	MW999-20130625-PE	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW22	тос	6/25/2013	MW22-20130625-PE	100U	NA	NA	1U	1U	1U	3U	NA	NA	NA	NA	NA	NA	
MW27 (2" RW)	тос	6/26/2013	MW27-20130626-PN	9,200	NA	NA	5U	18	180	3,300	NA	NA	NA	NA	NA	NA	
MTCA Method A Cleanup Level ⁽⁴⁾			1,000/800 ⁽⁵⁾	500	500	5	1,000	700	1,000	20	5	0.01	0.01	15	15		

NOTES:

Field data was collected by SoundEarth Strategies, Inc.

Red denotes concentration exceeds MTCA Method A Cleanup Levels for groundwater.

U = Indicates the compound was undetected at the reported concentration.

⁽¹⁾ Remediation wells are identified as "RW." RWs are 4" (unless noted as 2") and are connected to MPE system.

⁽²⁾ Groundwater samples were analyzed by Friedman & Bruya, Inc. of Seattle WA.

⁽³⁾ Sample ID suffix indicates type of sampling method used. (BA = bailer [disposable polyethylene],

BL = bladder pump [bottom-loading], PE = peristaltic pump, PN = pneumatic pump)

⁽⁴⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the WAC, revised November 2007.

 $^{(5)}$ 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA

ACRONYMS & ABBREVIATIONS:

 μ g/L = micrograms per liter

bgs = below ground surface

- DRPH = diesel-range petroleum hydrocarbons
- EDB = ethylene dibromide (1,2-dibromoethane)
- EDC = ethylene dichloride (1,2-dicholoroethane)
- EPA = U.S. Environmental Protection Agency
- GRPH = gasoline-range petroleum hydrocarbons
- LNAPL = light non-aqueous phase liquid
- MTBE = methyl tertiary-butyl ether
- MTCA = Model Toxics Control Act

NA = not analyzed

NWTPH-Dx = Northwest Total Petroleum Hydrocarbon - diesel-range organics

NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

ORPH = oil-range petroleum hydrocarbons

ROW = right-of-way

WAC = Washington Administrative Code

TABLE 2-1 Depth-to-Groundwater/LNAPL Level Measurements Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

Well ID ⁽¹⁾	Property	Date	Reference Elevation (feet) ⁽²⁾	DTW (feet) ⁽³⁾	Groundwater Elevation (feet) ^(2, 4)	LNAPL Thickness (feet)	NOTES
MW01	тос	NA	NA	NA	NA		Decommissioned 10/2/2009
MW02	тос	06/24/2013	358.71	10.90	347.81		
MW03	тос	06/24/2013	361.85	11.82	350.03		
MW04	ROW (56th)	06/24/2013	361.96	10.68	351.28		
MW05	ROW (242nd)	06/24/2013	363.70	11.02	352.68		
MW06	тос	06/24/2013	358.98	12.17	346.81		
MW07	TOC/Farmasonis	NA	NA	NA	NA		Decommissioned 11/29/2004
MW08	ROW (56th)	06/24/2013	360.34	20.28	340.06		
MW09	тос	06/25/2013	360.32	26.25	334.07		
MW10	тос	06/25/2013	357.91	29.29	328.62		
MW11 (RW)	тос	06/24/2013	362.34	32.81	329.53		
MW12	ROW (56th)	06/24/2013	357.65	10.25	347.40		
MW13	ROW (56th)	06/24/2013	357.34	40.78	316.56		
MW14	TOC/Farmasonis	NA	NA	NA	NA		Decommissioned 11/29/2004
MW15 (RW)	тос	06/26/2013	357.56	36.34	321.22		
MW16	ROW (242nd)	06/24/2013	365.18	44.52	320.66		
MW17	TOC/Farmasonis	NA	NA	NA	NA		Decommissioned 11/29/2004
MW18 (RW)	тос	06/24/2013	357.91	28.60	329.31		
MW19	тос	06/24/2013	358.86	12.62	346.24		
MW20	тос	06/26/2013	359.93	34.23	325.70		
MW21	тос	NA	NA	NA	NA		Decommissioned 04/16/2012
MW22	тос	06/25/2013	358.52	28.84	329.68		
MW23	тос	06/24/2013	357.08	39.09	317.99		
MW24 (RW)	тос	06/24/2013	361.97	33.16	328.81		
MW25	тос	06/24/2013	358.70	29.08	329.62		
MW26	тос	06/24/2013	363.81	44.34	319.47		
MW27 (2" RW)	тос	06/26/2013	362.51	18.85	343.66		
MW28	тос	06/24/2013	358.41	28.10	330.31		
MW29 (2" RW)	тос	06/24/2013	358.93	12.93	346.00		
MW30	TOC/Farmasonis	06/24/2013	356.46	38.27	318.19		
MW31 (2" RW)	TOC/Farmasonis	06/26/2013	357.08	33.02	324.06		
MW32 (RW)	тос	06/26/2013	359.95	28.69	331.26		
MW33	тос	06/24/2013	358.24	34.26	323.98		
MW34	тос	06/24/2013	357.88	11.65	346.23		
MW35	тос	06/24/2013	358.46	39.46	319.00		
MW36	тос	06/24/2013	357.98	41.89	316.09		
MW37	тос	06/24/2013	358.90	18.28	340.62		
MW38	тос	06/24/2013	364.42	20.34	344.08		
MW39	TOC/Farmasonis	06/24/2013	355.88	38.38	317.50		
MW40	TOC/Farmasonis	06/24/2013	356.32	38.30	318.02		
MW41 (2" RW)	TOC/Farmasonis	06/24/2013	356.14	34.80	321.34		
MW42	TOC/Farmasonis	06/24/2013	356.43	39.64	316.79		
MW43	ROW (56th)	06/24/2013	358.84	35.12	323.72		
MW44	ROW (56th)	06/24/2013	354.93	Dry	Dry		
MW45	ROW (56th)	06/26/2013	356.49	37.89	318.60		
MW46	ROW (56th)	06/24/2013	357.00	40.20	316.80		
MW40 MW47	ROW (56th)	06/24/2013	355.47	39.99	315.48		
MW48	ROW (56th)	06/26/2013	355.41	39.99	315.48		
MW49	ROW (56th)	06/26/2013	356.44	40.89	315.55		
MW50	ROW (56th)	06/26/2013	361.99	35.36	326.63		
MW51 ⁽⁵⁾	ROW (56th)			38.90			
MW51 ⁽⁵⁾	ROW (56th)	06/26/2013	352.66		313.76		
MW51 MW52	ROW (56th)	07/12/2013	352.66	39.56	313.10		
MW53		06/26/2013	355.61	40.23	315.38		
MW54	ROW (56th) TOC/Farmasonis	06/26/2013	359.85	40.73	319.12		
-		06/24/2013	357.93	10.98	346.95		
MW55	ROW (56th)	06/26/2013	356.50	40.19	316.31		

TABLE 2-1 Depth-to-Groundwater/LNAPL Level Measurements Second Quarter 2013

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

			Reference	DTW	Groundwater	LNAPL	
Well ID ⁽¹⁾	Property	Date	Elevation (feet) ⁽²⁾	(feet) ⁽³⁾	Elevation (feet) ^(2, 4)	Thickness (feet)	NOTES
MW56	TOC/Farmasonis	06/26/2013	357.49	42.79	314.70		
MW57 (RW)	TOC/Farmasonis	06/24/2013	356.42	43.02	313.40		
MW58	TOC/Farmasonis	06/26/2013	355.40	40.22	315.18		
MW59	TOC/Farmasonis	06/26/2013	356.51	41.69	314.82		
MW60	ROW (56th)	06/26/2013	358.58	41.44	317.14		
MW61	ROW (56th)	06/24/2013	357.17	10.30	346.87		
MW62	ROW (56th)	06/24/2013	360.50	11.62	348.88		
MW63	ROW (56th)	06/25/2013	355.11	39.94	315.17		
MW64	ROW (56th)	06/24/2013	355.18	37.70	317.48		
MW65	Drake	06/25/2013	353.08	38.66	314.42		
MW66	TOC/Farmasonis	06/26/2013	355.75	40.87	314.88		
MW67	Drake	06/24/2013	355.73	12.25	343.48		
MW68	Drake	06/24/2013	355.11	12.07	343.04	-	
MW69 (RW)	Drake	06/24/2013	353.76	38.96	314.80	-	
MW70 (2" RW)	Drake	06/24/2013	354.17	39.28	314.89		
MW71	Shin/Choi	06/24/2013	347.92	NM	NM		Not included in quarterly event SOW (per IRAWP).
MW72	Shin/Choi	06/24/2013	347.38	NM	NM		Not included in quarterly event SOW (per IRAWP).
MW73	Shin/Choi	06/24/2013	347.33	NM	NM		Not included in quarterly event SOW (per IRAWP).
MW74	Shin/Choi	06/24/2013	347.94	NM	NM		Not included in quarterly event SOW (per IRAWP).
MW75	ROW (56th)	06/24/2013	354.78	NM	NM		Not included in quarterly event SOW (per IRAWP).
MW76	Drake	06/24/2013	351.69	37.25	314.44		
MW77 ⁽⁵⁾	Drake	06/25/2013	349.95	36.07	313.88		
MW77 ⁽⁵⁾	Drake	07/12/2013	349.95	36.83	313.12		
MW78	Drake	06/24/2013	349.90	34.34	315.56		
MW79	TOC/Farmasonis	06/24/2013	353.98	13.79	340.19		
MW80	TOC/Farmasonis	06/24/2013	353.83	14.43	339.40		
MW81	TOC/Farmasonis	06/24/2013	355.60	40.80	314.80		
MW82	TOC/Farmasonis	06/24/2013	355.59	29.60	325.99		
MW83	TOC/Farmasonis	NA	NA	NA	NA		Decommissioned 11/21/2011
MW84 (RW) ⁽⁶⁾	Drake	07/12/2013	353.75	40.23	313.52		
MW85 (5)	Drake	06/25/2013	351.28	37.21	314.07		
MW85 ⁽⁵⁾	Drake	07/12/2013	351.28	38.03	313.25		
MW86 (5)	Drake	06/25/2013	352.72	38.69	314.03		
MW86 ⁽⁵⁾	Drake	07/12/2013	352.72	39.42	313.30		
MW87	Drake	06/24/2013	349.72	36.10	313.62		
MW88	Drake	06/24/2013	351.63	16.45	335.18		
MW89	Drake	06/25/2013	353.86	39.31	314.55		
MW90 (RW)	тос	06/24/2013	362.87	34.65	328.22		
MW91 (RW)	тос	06/24/2013	362.67	32.33	330.34		
MW92 (RW)	TOC/Farmasonis	06/24/2013	357.91	44.45	313.46		
MW93 (RW)	TOC/Farmasonis	06/24/2013	355.97	41.18	314.79		
MW94 (RW)	TOC/Farmasonis	06/24/2013	357.94	41.70	316.24		
MW95 (RW)	Drake	06/24/2013	354.67	39.60	315.07		
MW96 (RW)	Drake	06/24/2013	356.00	40.63	315.37		
MW97 (RW)	Drake	06/24/2013	354.29	39.23	315.06		
MW98 (RW)	Drake	06/24/2013	354.75	39.65	315.10		
MW99 (RW)	Drake	06/24/2013	353.58	39.10	314.48		
MW100	TOC/Farmasonis	06/24/2013	355.75	16.15	339.60		
MW101 (RW)	Drake	06/24/2013	352.05	37.66	314.39		
MW102 ⁽⁷⁾	Herman	07/12/2013	352.39	14.70	337.69		
MW103 ⁽⁷⁾	Herman	07/12/2013	352.21	40.56	311.65		
MW104 ⁽⁷⁾	Herman	07/12/2013	353.00	12.62	340.38		
MW105 ⁽⁷⁾	Herman	07/12/2013	353.05	39.83	313.22		
MW106 ⁽⁷⁾	Herman	07/12/2013	349.24	14.54	313.22		
MW107 ⁽⁷⁾	Herman	07/12/2013	349.56	37.41	312.15		
		01/12/2013	J-J.JU	J7.41	J12.1J		

TABLE 2-1 Depth-to-Groundwater/LNAPL Level Measurements Second Quarter 2013 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace WA

NOTES:

Field data was collected by SoundEarth Strategies, Inc.

Dry = Top of pump was encountered prior to groundwater/LNAPL level.

⁽¹⁾ Remediation wells are identified as "RW." RWs are 4 inches in diameter (unless noted as 2 inches) and are connected to multi-phase remediation system.

⁽²⁾ Reference elevation is the north side of the top of the well casing (except for MW25 where the reference elevation is the high point on the polyvinyl chloride (PVC) casing and the reference elevation for MW99 is the top of the well cap). Elevations were measured in feet above MSL (NAVD88 Datum).

⁽³⁾ DTW as measured from a marked measuring point on the well casing rim. According to the SoundEarth Strategies, the DTW measurements had been corrected for differences between instruments based on the measurements recorded for MW09.

⁽⁴⁾ Groundwater elevations corrected for LNAPL thickness, assuming specific gravities of 0.80 for gasoline, and 1.0 for groundwater. Where LNAPL thickness measured, groundwater elevation adjusted to account for the presence of LNAPL in the well using the method in "Estimation of Free Hydrocarbon Volume from Fluid Levels in Monitoring Wells" [Lenhard and Parker 1990; Groundwater 28(1):57-67].

⁽⁵⁾ MW51, MW7, MW85 and MW86 were gauged in June and July 2013. Groundwater elevations collected in June were used for groundwater contours.

⁽⁶⁾ The pump was removed from MW84 following the 2Q2013 field event. Therefore, MW84 is currently used as a monitoring well and no longer serves as a remediation well. MW84 could not be gauged during June field activities and was gauged in July 2013. Since groundwater conditions were more similar to the 2Q2013 event than to the 3Q2013 event, and because of the close proximity to the 2Q2013 event, the results of the July 2013 event are included herein.

⁽⁷⁾ Wells on the Herman Property were installed in June 2013 and developed in July 2013 (after the 2Q2013 field event). Since groundwater conditions were more similar to the 2Q2013 event than to the 3Q2013 event, and because of the close proximity to the 2Q2013 event, the results of the July 2013 event are included herein.

ACRONYMS & ABBREVIATIONS:

-- = no measurable product or odor observed DTW = depth to water IRAWP = Interim Remedial Action Work Plan LNAPL = light non-aqueous phase liquid MSL = mean sea level NA = not applicable NAVD88 = North American Vertical Datum of 1988 NM = not measured SOW = scope of work

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA ROW (56th) = portion of 56th Avenue West, Mountlake Terrace WA ROW (242nd) = portion of 242nd Street Southwest, Mountlake Terrace WA

Figures

- 1 Project Location
- 2 Site Map
- 3 Locations of Wells and Remediation Systems
- 4 Groundwater Elevation Contours, Shallow Zone, June 2013
- 5 Groundwater Elevation Contours, Intermediate Zone, June 2013
- 6 Groundwater Elevation Contours, Deep Zone, June 2013
- 7 GRPH Concentrations in Groundwater, Shallow Zone, July 2013
- 8 Benzene Concentrations in Groundwater, Shallow Zone, July 2013
- 9 GRPH Concentrations in Groundwater, Intermediate Zone, June-July 2013
- 10 Benzene Concentrations in Groundwater, Intermediate Zone, June-July 2013

WA\Clients\Time_OihTOC-MountlakeTerrace_BA1402800\MXDs\WorkingMXDs\Figure2_S

Appendix A

Monitoring Well Zones

Table A-1 Revised Monitoring Well Classifications

TABLE A-1 **Revised Monitoring Well Classifications** TOC Holdings Co. Site 01-176; Mountlake Terrace WA

Well ID ⁽¹⁾	Property	MW Zone Classification (Stantec)	MW Zone Classification (SoundEarth Strategies)
MW01*	тос	Shallow	Shallow
MW02	тос	Shallow	Shallow
MW03	тос	Shallow	Shallow
MW04	ROW (56th)	Shallow	Shallow
MW05	ROW (242nd)	Shallow	Shallow
MW06	тос	Shallow	Shallow
MW07*	TOC/Farmasonis	Intermediate	Shallow
MW08	ROW (56th)	Shallow-Intermediate Intersect	Intermediate
MW09	тос	Shallow-Intermediate Intersect	Intermediate
MW10	тос	Intermediate	Intermediate
MW11 (RW)	тос	Intermediate	Intermediate
MW12	ROW (56th)	Shallow	Shallow
MW13	ROW (56th)	Intermediate	Intermediate
MW14*	TOC/Farmasonis	Intermediate	Intermediate
MW15 (RW)	TOC	Intermediate	Intermediate
MW19 (RW) MW16	ROW (242nd)	Intermediate-Deep Intersect	Intermediate
	, ,	Intermediate	Intermediate
MW17*	TOC/Farmasonis		
MW18 (RW)	TOC	Shallow-Intermediate Intersect	Intermediate
MW19	TOC	Shallow	Shallow
MW20	TOC	Intermediate	Intermediate
MW21*	TOC	Intermediate	Intermediate
MW22	TOC	Shallow-Intermediate Intersect	Intermediate
MW23	тос	Intermediate	Intermediate
MW24 (RW)	тос	Shallow-Intermediate Intersect	Intermediate
MW25	тос	Intermediate	Intermediate
MW26	тос	Deep	Deep
MW27 (2" RW)	тос	Shallow-Intermediate Intersect	Upper Intermediate
MW28	тос	Shallow-Intermediate Intersect	Upper Intermediate
MW29 (2" RW)	тос	Shallow-Intermediate	Upper Intermediate
MW30	TOC/Farmasonis	Deep	Deep
MW31 (2" RW)	TOC/Farmasonis	Intermediate	Intermediate
MW32 (RW)	тос	Intermediate	Intermediate
MW33	TOC	Intermediate	Intermediate
MW34	тос	Shallow	Shallow
MW35	тос	Intermediate	Intermediate
MW35	тос	Intermediate	Intermediate
MW30	тос		
	тос	Shallow-Intermediate Intersect	Upper Intermediate
MW38		Shallow-Intermediate Intersect	Upper Intermediate
MW39	TOC/Farmasonis	Deep	Deep
MW40	TOC/Farmasonis	Deep	Deep
VIW41 (2" RW)	TOC/Farmasonis	Intermediate	Intermediate
MW42	TOC/Farmasonis	Intermediate	Intermediate
MW43	ROW (56th)	Shallow-Intermediate Intersect	Intermediate
MW44	ROW (56th)	Intermediate	Intermediate
MW45	ROW (56th)	Intermediate	Intermediate
MW46	ROW (56th)	Intermediate	Intermediate
MW47	ROW (56th)	Intermediate	Intermediate
MW48	ROW (56th)	Intermediate	Intermediate
MW49	ROW (56th)	Intermediate	Intermediate
MW50	ROW (56th)	Intermediate	Intermediate
MW51	ROW (56th)	Intermediate	Intermediate
MW52	ROW (56th)	Intermediate	Intermediate
MW53	ROW (56th)	Intermediate	Intermediate
MW54	TOC/Farmasonis	Shallow	Shallow
MW55 MW55	ROW (56th)	Intermediate	Intermediate
	, ,		
MW56 MW57 (RW)	TOC/Farmasonis	Intermediate	Intermediate
	TOC/Farmasonis	Intermediate	Intermediate
, ,			
MW58	TOC/Farmasonis	Intermediate	Intermediate
MW59 (NW) MW58 MW59 MW60	TOC/Farmasonis TOC/Farmasonis ROW (56th)	Intermediate Intermediate	Intermediate Intermediate Intermediate

TABLE A-1 Revised Monitoring Well Classifications

TOC Holdings Co. Site 01-176; Mountlake Terrace WA

Well ID ⁽¹⁾	Property	MW Zone Classification (Stantec)	MW Zone Classification (SoundEarth Strategies)
MW62	ROW (56th)	Shallow	Shallow
MW63	ROW (56th)	Intermediate	Intermediate
MW64	ROW (56th)	Deep	Deep
MW65	Drake	Intermediate	Intermediate
MW66	TOC/Farmasonis	Intermediate	Intermediate
MW67	Drake	Shallow	Shallow
MW68	Drake	Shallow	Shallow
MW69 (RW)	Drake	Intermediate	Intermediate
MW70 (2" RW)	Drake	Intermediate	Intermediate
MW71	Shin/Choi	Shallow	Shallow
MW72	Shin/Choi	Shallow	Shallow
MW73	Shin/Choi	Intermediate	Intermediate
MW74	Shin/Choi	Intermediate	Intermediate
MW75	ROW (56th)	Intermediate	Intermediate
MW76	Drake	Intermediate	Intermediate
MW77	Drake	Intermediate	Intermediate
MW78	Drake	Deep	Deep
MW79	TOC/Farmasonis	Shallow	Shallow
MW80	TOC/Farmasonis	Shallow	Upper Intermediate
MW81	TOC/Farmasonis	Intermediate	Intermediate
MW82	TOC/Farmasonis	Shallow-Intermediate Intersect	Upper Intermediate
MW83*	TOC/Farmasonis	Shallow-Intermediate Intersect	Upper Intermediate
MW84	Drake	Intermediate	Intermediate
MW85	Drake	Intermediate	Intermediate
MW86	Drake	Intermediate	Intermediate
MW87	Drake	Intermediate	Intermediate
MW88	Drake	Shallow-Intermediate Intersect	Upper Intermediate
MW89	Drake	Intermediate	Intermediate
MW90 (RW)	тос	Intermediate	Intermediate
MW91 (RW)	тос	Intermediate	Intermediate
MW92 (RW)	TOC/Farmasonis	Intermediate	Intermediate
MW93 (RW)	TOC/Farmasonis	Intermediate	Intermediate
MW94 (RW)	TOC/Farmasonis	Intermediate	Intermediate
MW95 (RW)	Drake	Intermediate	Intermediate
MW96 (RW)	Drake	Intermediate	Intermediate
MW97 (RW)	Drake	Intermediate	Intermediate
MW98 (RW)	Drake	Intermediate	Intermediate
MW99 (RW)	Drake	Intermediate	Intermediate
MW100	TOC/Farmasonis	Shallow-Intermediate Intersect	Upper Intermediate
MW101 (RW)	Drake	Intermediate	Intermediate
MW102	Herman	Shallow	Shallow
MW103	Herman	Intermediate	Intermediate
MW104	Herman	Shallow	Shallow
MW105	Herman	Intermediate	Intermediate
MW106	Herman	Shallow	Shallow
MW107	Herman	Intermediate	Intermediate

NOTES:

⁽¹⁾ Remediation wells are identified as "RW." RWs are 4" (unless noted as 2") and are connected to a remediation system.

*Decommissioned Well

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA ROW (56th) = portion of 56th Avenue West, Mountlake Terrace WA ROW (242nd) = portion of 242nd Street Southwest, Mountlake Terrace WA

Appendix B

Laboratory Analytical Reports

- B-1 TOC Property Wells (24205)
- B-2 TOC/Farmasonis Property Wells (24225)
- B-3 Drake Property Wells (24309)
- B-4 56th Avenue West Right-of-Way Wells
- B-5 Herman Property Wells (24311)

B-1

TOC Property Wells (24205)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 5, 2013

Dee Gardner, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms. Gardner:

Included are the results from the testing of material submitted on June 27, 2013 from the TOC_01-176_20130627 WORFDB7, F&BI 306474 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Audrey Hackett, Beau Johnson SOU0705R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 27, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies TOC_01-176_20130627 WORFDB7, F&BI 306474 project. Samples were logged in under the laboratory ID's listed below.

SoundEarth Strategies
MW09-20130625-PE
MW999-20130625-PE
MW09-20130625-BL
MW09-20130625-BA
MW10-20130625-PE
MW15-20130626-PN
MW20-20130626-BL
MW22-20130625-PE
MW27-20130626-PN
MW32-20130626-PN
Trip-24205
01176-2013026-R1
MW31-20130626
Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306474 Date Extracted: 07/01/13 Date Analyzed: 07/01/13 and 07/02/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID E	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW09-20130625-PE 306474-01	<1	<1	<1	<3	<100	94
MW999-20130625-PI 306474-02	E <1	<1	<1	<3	<100	95
MW09-20130625-BL 306474-03	<1	<1	<1	<3	<100	93
MW09-20130625-BA 306474-04	2.5	1.3	9.3	69	960	96
MW10-20130625-PE 306474-05	4.5	3.1	12	80	410	94
MW15-20130626-PN 306474-06	<1	2.0	49	120	1,800	97
MW20-20130626-BL 306474-07 1/5	25	98	200	1,200	8,600	94
MW22-20130625-PE 306474-08	<1	<1	<1	<3	<100	90
MW27-20130626-PN 306474-09 1/5	<5	18	180	3,300	9,200	92
MW32-20130626-PN 306474-10 1/5	11	93	280	1,900	8,000	85
Trip-24205 306474-11	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306474 Date Extracted: 07/01/13 Date Analyzed: 07/01/13 and 07/02/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
01176-2013026-R1 306474-12	<1	<1	<1	<3	<100	90
MW31-20130626 306474-13	<1	<1	<1	<3	170	90
Method Blank 03-1268 MB	<1	<1	<1	<3	<100	93

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 306474-08 (Duplicate) RPD Reporting Sample Duplicate Units Result Result (Limit 20) Analyte Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	98	72-119
Toluene	ug/L (ppb)	50	97	71-113
Ethylbenzene	ug/L (ppb)	50	103	72-114
Xylenes	ug/L (ppb)	150	92	72-113
Gasoline	ug/L (ppb)	1,000	95	70-119

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Х °С	Samples received at	Samples	~					•					Kevision 1)	EMOKI.DUC (- Cross (COC (Orsoursmort), DOC (Revision 1)
													Mederved by:		EUDAG/UUU/SEGU
															For 10061 083 5044
ų	11	82	8	FX				d	00 1			l by:	Relinquished by:		Ph. (206) 285-8282
-	C1.1 8 / 8			۱ ,	-		1	I KNW	10100			1	Received by:		Seattle, WA 98119-
-	101/						-	3	2			1 by:	Relinquished by:		3012 16th Avenue West
TIME	DATE	COMPANY	COM				ME	PRINT NAME	PR		SIGNATURE	SIG		~ ~~	Friedman & Bri
SN MANU	- John					5		J.	101.01			NY PI		1	Try Black
121 mp					×	<		N	(s)aler	1221	4/24/2	1 51		26 PNX	MW31-20309:
					7	5		ω	Wester	06.30	51/26/3	(2h-4		RI	0176-20130626-R1
12	2/6-1				Ň			3d .	Watar			(1 A. 3		ĿŖ,	ちゃく シッション
	· · · ·				. <u>\</u>		1.1	5	mater	1128	010 A 2 - 2			172 W.W.	201306210-28
					\			44	しまちまいて	711	00/36/23	20		LY Putt	201306210- TN
					1	K		~	Nat	1714	02 22/12	8	5.) 171	11-12-22	201206757-PE
					Ń	1		11	water	0221	2036/13	07 1		CIT M M	20-50-26 - RL
					Ń	Ň		1 ₂₄	Water	115-2	06/26/13	06		multi	
					Ń			برز	intat au	1773	25713	8		21 20 10	
					/	۲		5	iliater	100		24		margh	20-30-35-3A
Time ay UGA	T>>				Λ	Ň		3	water	25.	5. 15. 13	03	28	そうびょ	2013012 - 3 L
					Ń	Ň	14. (A)	<i>w</i>	- Marin	330	22 23	02	30	Juck M. M.	201300025-PE
					1	Ň		د در	Nater	156	W. 55 ; 3	0(,A.~	20	きょう	MW - 29:300 25-55 MW 493-
Notes	×	RCRA-8 Metals	SVOC's by 8270	VOC's by 8260	BTEX by 8021B	NWTPH-Gx	NWTPH-Dx	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample Depth	Sample Location	Sample ID
	QUESTED	S RE		ANA						•					
is istructions	 Return samples Will call with instructions 			N N							300.110-	1 1	Fax # <u></u>	Y2. 1900	Phone # <u>206,30</u>
NSPOSAL	SAMPLE DISPOSAL Dispose after 30 days			15110		9 8.	es garage	S N	KS THE BLACK	REMARKS		02	WA 98:02	P 500 10	City, State, ZIP
thorized by:	Rush charges authorized by:	· 전 0		•		(01-176)	(i	••• • •	24/11 - 230 - 18 24/205		10 2000	1 1111	中国の	Fairy)en Av	Address 2811 Fairy)en Avanne
celcs)	"Standard (2 Weeks)		#	PO		140	. i F	NO.	T NAME /I	PROJEC			Strategies		Company Sound Earth
	TURNAROUND			where a	D. Nav.	N.C.	S. Menel	tant	, c.Perter T	L. Namba			dner	o Dee han	Send Report To Dee hardner
11			1		17 0			-				,		•	L + AAC
10	JOL CI	er er	ฏ	[] 9 -		YG	STODY	F CU	CHAIN O	SAMPLE CHAIN OF CU				·	

rampies received at -

B-2

TOC/Farmasonis Property Wells (24225)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 5, 2013

Dee Gardner, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms. Gardner:

Included are the results from the testing of material submitted on June 27, 2013 from the TOC_01-176_20130627 WORFDB7, F&BI 306472 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Audrey Hackett, Beau Johnson SOU0705R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 27, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies TOC_01-176_20130627 WORFDB7, F&BI 306472 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
306472 -01	MW31-20130626-PN
306472 -02	MW56-20130626-BL
306472 -03	MW58-20130626-BL
306472 -04	MW59-20130626-BL
306472 -05	MW66-20130626-BA
306472 -06	MW66-20130626-BA2
306472 -07	Trip-24225

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306472 Date Extracted: 06/28/13 Date Analyzed: 06/28/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>enzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW31-20130626-PN 306472-01	<1	<1	<1	<3	150	92
MW56-20130626-BL 306472-02	<1	<1	<1	<3	<100	78
MW58-20130626-BL 306472-03	<1	<1	<1	<3	<100	90
MW59-20130626-BL 306472-04	<1	<1	<1	<3	<100	89
MW66-20130626-BA 306472-05	<1	<1	<1	<3	<100	84
MW66-20130626-BA2 306472-06	<1	<1	<1	<3	<100	84
Method Blank ^{03-1212 MB}	<1	<1	<1	<3	<100	84

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306472 Date Extracted: 06/28/13 Date Analyzed: 06/28/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (50-150)
Trip-24225 306472-07	<1	<1	<1	<3	87
Method Blank ^{03-1212 MB}	<1	<1	<1	<3	84

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW31-20130626-PN 06/27/13 07/01/13 07/02/13 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306472-01 306472-01.028 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 84	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	19.9		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 07/01/13 07/02/13 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 I3-396 mb I3-396 mb.013 ICPMS1 AP
Internal Standard: Holmium	9	% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:		oncentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW31-20130626-PN 06/27/13 07/01/13 07/02/13 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306472-01 306472-01.012 ICPMS1 AP					
Internal Standard: Holmium	% Recovery: 92	Lower Limit: 60	Upper Limit: 125					
Analyte:	Concentration ug/L (ppb)							
Lead	3.09							

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 07/01/13 07/02/13 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 I3-395 mb I3-395 mb.008 ICPMS1 AP
Internal Standard: Holmium	%	Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		ncentration ıg/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306472

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 306449-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent			
Reporting	Spike	Recovery	Acceptance		
Units	Level	LCS	Criteria		
ug/L (ppb)	50	94	65-118		
ug/L (ppb)	50	91	72-122		
ug/L (ppb)	50	94	73-126		
ug/L (ppb)	150	93	74-118		
ug/L (ppb)	1,000	99	69-134		
	Únits ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 150	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 94 ug/L (ppb) 50 91 ug/L (ppb) 50 94 ug/L (ppb) 150 93		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306472

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	100	104	79-121	4
	de: Laboratory C			100	104	79-121	<u>-</u>

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	102	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306472

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: Laboratory Control Sample Percent Percent Reporting Spike Recovery Acceptance RPD Recovery Units Level LCS LCSD Criteria (Limit 20) Analyte Lead ug/L (ppb) 10 94 96 83-115 2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mbox{ca} - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Fax (206) 283-5044	Ph (206) 285-8282	Seattle, WA 98119-	Friedinan as Bruya, Inc. 3012 16th Avenue West						1012 - 14225	e.	. 1	20130626-26-	20130626-BC	20130626-BL	MWSG- PN	-		Phone #	Address <u>28/1</u>	Company_	Send Report To_
- Constant (CCC (Second MSK1.DCC (Revision 1)	3-5044	·	· · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	י 	ž		•		TB	2 multi	+	_			mw31			Phone # <u>206 306 1900</u>			
(Kevision 1)	Received by:	Relinquished by:	Received by:	SI Relinquished by:				-					45	43.5			Sample Depth			tainview Avenue East	n Stratesies	Dee Cardner
		, A	1	SIGN			-		-	 1×10		1	Έ	+	-17-	· · ·	Lab ID		206.	is last	ies	
		Ň		SIGNATURE							06/25/13	06/25/13	86126/13	00/26/13	06/26/13	00/26 / 13	Date Sampled		306 1400 D	Suite 20		
-		Ó	^) }							1405	1350	1227	1137	1317	212	Time Sampled			2000 PREMA	PROJE	L. Mamba
		De	Land	PRINT						water	Walter	Water	whiter	water	water	writer	Matrix		nk provided by	0440 - 030 - , 24225 REMARKS http://od	PROJECT NAME/NO. Tec Heldings - Meuntlake	Mamba, C. Porter, T. Zana
		ľð								2	3	3	(s)	2	3	5	# of jars		11 ~~-	$\mathbf{v} = \mathbf{\hat{v}}$		T. Zandi D. Mendel
			Mondel	ME			-								* . * A.* 2		NWTPH-Dx		Ha va		naco	D. ME
					\vdash					 		· \ - \	1	1	Ň	1	NWTPH-Gx		in the		1 L	
ŀ				$\left \right $	-	+		+			\ 	5	7	1	\	<u>\</u>	BTEX by 8021B	- >	G		<u> </u>	D. Navhar
		Fr	S	S	-	+		+		 							VOC's by 8260	NALY	GEMS Y		PO #	2
Samp		C & T	U	COMPANY						 							SVOC's by 8270	SES R	/ Y			
les re		13						†		 						~	RCRA-8 Metals Total Pb	EQUE		Ru		٦
Samples received at		40	6 197/13	DATE						 							by 20018 Dissolved 76 by 20018	ANALYSES REQUESTED	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by:	Standard (2 Weeks)	Page #
6-		+		E									, I				7		E DISF er 30 d iples h instr	autho	2 Wœk	
ဂီ		2	1710	TIME											-		Notes		OSAL lays uction:	rized b	s)	e.
B-3

Drake Property Wells (24309)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 9, 2013

Dee Gardner, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms. Gardner:

Included are the results from the testing of material submitted on June 27, 2013 from the TOC_01-176_20130627 WORFDB7, F&BI 306473 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Audrey Hackett, Beau Johnson SOU0709R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 27, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies TOC_01-176_20130627 WORFDB7, F&BI 306473 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
306473 -01	MW65-20130625-BL
306473 -02	MW77-20130626-BL
306473 -03	MW85-20130625-BL
306473 -04	MW86-20130625-BL
306473 -05	MW86-20130626-BL2
306473 -06	MW89-20130626-B
306473 -07	Trip-24309

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/09/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306473 Date Extracted: 06/28/13 Date Analyzed: 06/28/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

<u>Sample ID</u> Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery</u>) Limit (50-150)
Trip-24309 306473-07	<1	<1	<1	<3	80
Method Blank 03-1266 MB	<1	<1	<1	<3	90

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/09/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306473 Date Extracted: 06/28/13 Date Analyzed: 06/28/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Be Laboratory ID	enzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW65-20130625-BL 306473-01	<1	<1	<1	<3	<100	93
MW77-20130626-BL 306473-02	<1	<1	<1	<3	<100	92
MW85-20130625-BL 306473-03	<1	<1	<1	<3	<100	83
MW86-20130625-BL 306473-04	<1	<1	<1	<3	<100	86
MW86-20130626-BL2 306473-05	<1	<1	<1	<3	<100	89
MW89-20130626-B 306473-06	<1	<1	<1	<3	<100	93
Method Blank 03-1266 MB	<1	<1	<1	<3	<100	90

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW65-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	0625-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-01 062811.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	102	57	121
Toluene-d8		100	63	127
4-Bromofluorobenze	ene	103	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW77-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	0626-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-02 062812.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		100	63	127
4-Bromofluorobenze	ene	106	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW85-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	80625-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-03 062813.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	102	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	80625-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-04 062814.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	103	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	0626-BL2	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-05 062815.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	102	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW89-2013 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)	0626-B	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-06 062816.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	57	121
Toluene-d8		97	63	127
4-Bromofluorobenze	ene	102	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip-24309 06/27/13 06/28/13 06/28/13 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 306473-07 062809.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	57	121
Toluene-d8		103	63	127
4-Bromofluorobenze	ene	103	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan NA 06/28/13 06/28/13 Water ug/L (ppb)	ık	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130627 WORFDB7 03-1280 mb 062808.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	102	57	121
Toluene-d8		98	63	127
4-Bromofluorobenze	ene	103	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/09/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306473

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 306473-01 (Duplicate)

A	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/L (ppb)	50	101	72-119
ug/L (ppb)	50	99	71-113
ug/L (ppb)	50	104	72-114
ug/L (ppb)	150	95	72-113
ug/L (ppb)	1,000	92	70-119
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 101 ug/L (ppb) 50 99 ug/L (ppb) 50 104 ug/L (ppb) 150 95

ENVIRONMENTAL CHEMISTS

Date of Report: 07/09/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306473

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 306473-06 (Matrix Spike)

	- I			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	86	74-127

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	93	90	64-147	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mbox{ca} - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

°C ℃	vived at	Samples received at	Sam			,				<i>.</i>				• •	
					-								levision 1)	MSRI DOC (F	FORMS COC SESGEMSRI DOC (Revision 1)
													Received by:		Fax (206) 283-5044
~	u		<u>I</u> S	t x				69	90		·	ष्	Relinquished by:		Ph. (206) 285-8282
- 1000	Ċ				+		ŕ		>		\mathcal{V}	1	Received by:		Seattle, WA 98119-
	NUG 2		א	SEC		<u>``</u>	tore !	۲ ۲	h:mol	<u> </u>)			1	
TIME	DATE	Y	COMPANY	8			ME	PRINT NAME	PRI		SIGNATURE	SIGN	Relinguished by		Sol 2 16th Avenue West
														7	Friday a D
			╉	-	+	-								5	
				-+	-+							 			
			 												
					Ĩ			N	Water			В		<u> </u>	1.1.2.2.1
						1		1-1	Water	1550	00125/13	-440	75		This - susce
				-	1				waren	1114	06/25/15			10 M M M	20,201 21
			+-	+				5						19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
			+	-				Ľ.	(Jator		00/2-1/3		41	muse	20130625-65
		1	-		7	١.	Ĩ	2	water	1230	01/25/13		39.5	111185	
Wr H Kl		K		• •			-C - A.	5	water	1940	26125/12	æ		PR WT7	20136426 - Phz
	t 90	Ĭ			1	5		r.	Water	1330	06125113	A In	26.9	1	
unallaer	MR	m	+	, 	B			T				_		S.	mulus-
		CRA-8 Metals	SVOC's by 8270	VOC's by 8260	3TEX by 8021B	NWTPH-Gx	NWTPH-Dx	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample Depth	Sample Location	Sample ID
	TED	REQUESTED	- 0	ANALYSE											
A ACTORIS															
	C Return samples		ا ~	Z							706,1907	Fax # 206. 306,	Fax #	1900	Phone # <u>206.306.1900</u>
days	P Dispose after 30 days	e Dist	Y 	GEMS V /	P	ka Na			No	Laboratory		20101		<u> </u>	City, Daw, Lif
						4	Susphan		REMARKS TAL Blank			ð í sv	1.JA 0	D	City State 7
vorized by:	Rush charges authorized by:	Rush ch		•	×	•		30-13	21-050 - 04 hg		Saile 2000	E ST	Avenue East	Fairview	Address 281
ika)	Standard (2 Weeks)	D Sta	•	PO #	2			NO Vake	TOC Hold AT- MOLATIAKE	PROJEC		8	Strates	und Earth	Company Sound Earth Stratesies
	TIRNAROUND TIME		10	DUNAN	de	mender	10 1	C.Porter	n. T. Zandi	- Lindon			raner	o ree trai	Sand report 10 Fee Garaner
یر 33		6107412	0					ture)	SAMPLERS (signature)	SAMPLE					
	J	120/	1	ב ז		AG	STODY	FCU	CHAIN O	SAMPLE CHAIN OF CUS					と ヒ カ ツ ロ Є

B-4

56th Avenue West Right-of-Way Wells

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 5, 2013

Dee Gardner, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms. Gardner:

Included are the results from the testing of material submitted on June 27, 2013 from the TOC_01-176_20130627 WORFDB7, F&BI 306475 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Audrey Hackett, Beau Johnson SOU0705R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 27, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies TOC_01-176_20130627, F&BI 306475 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
306475-01	MW45-20130626-BA
306475-02	MW48-20130626-BA
306475-03	MW49-20130626-BA
306475-04	MW50-20130626-BA
306475-05	MW51-20130626-BA
306475-06	MW52-20130626-BA
306475-07	MW53-20130626-BA
306475-08	MW55-20130626-BL
306475-09	MW60-20130626-BL
306475-10	MW63-20130625-BL
306475-11	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306475 Date Extracted: 07/01/13 Date Analyzed: 07/01/13 and 07/02/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW45-20130626-BA 306475-01	A <1	<1	<1	340	8,300	94
MW48-20130626-BA 306475-02 1/5	A <5	12	130	810	11,000	99
MW49-20130626-BA 306475-03	A <1	<1	<1	<3	<100	94
MW50-20130626-BA 306475-04	A <1	<1	<1	<3	<100	92
MW51-20130626-BA 306475-05	A <1	<1	<1	<3	<100	94
MW52-20130626-BA 306475-06	A <1	<1	<1	<3	<100	91
MW53-20130626-BA 306475-07	A <1	<1	<1	<3	<100	93
MW55-20130626-BI 306475-08	L <1	<1	<1	<3	<100	92
MW60-20130626-BI 306475-09	L <1	<1	<1	<3	<100	92
MW63-20130625-BI 306475-10	_ <1	<1	<1	<3	<100	93
Method Blank ^{03-1270 MB}	<1	<1	<1	<3	<100	94

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/13 Date Received: 06/27/13 Project: TOC_01-176_20130627 WORFDB7, F&BI 306475

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 306475-04 (Duplicate) RPD Reporting Sample Duplicate Units Result Result (Limit 20) Analyte Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	96	72-119
Toluene	ug/L (ppb)	50	95	71-113
Ethylbenzene	ug/L (ppb)	50	100	72-114
Xylenes	ug/L (ppb)	150	91	72-113
Gasoline	ug/L (ppb)	1,000	92	70-119

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mbox{ca} - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\text{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r °C	Samples received at	vles rece	Samy		F									Revision 1)	EMSRI.DOC	FORMS\COC\SESGEMSRI.DOC (Revision 1)
$\frac{1}{125}$ Sample Sample Lab Charles Control Sample Sample Lab Charles Control Note Contro															eccived by	044	Fax (206) 283-5
$\frac{1}{45}$ Sample Sample Lab Sample Sample Lab Date Sample Lab Time Sample Lab Numerical Sample Lab <td></td> <td><u> </u></td> <td></td> <td>1 by:</td> <td>telinquishe</td> <td></td> <td>rn (200) 285-82</td>												<u> </u>		1 by:	telinquishe		rn (200) 285-82
TS Sample Charlos Sample Charlos Sample Charlos Control RC	2	"		87	T X				$\boldsymbol{\Sigma}$		2	р —	1 2 2	12	deceived by		Seattle, WA 981
$\frac{1}{75}$ Sumple Sumple Sumple Sumple CHAIN OF CUSTODY $MC = 06/3$ $\frac{1}{2011}$ $\frac{1}{$	2)	~		N	Ň			S'		いえ	5	N.	12 - C	u oy:	dmsne	west	COLS TOUL VIEL
$\frac{1}{2S}$ Sample Sample Lab Sampl	TIME	DATE	Y	MPAN	CO			চ	VT NAN	PRI			VATURE	SIG		• ••••••	Friedman & Bru
$\frac{1}{2S}$ Sample Sample Sample Lab Date Time Matrix for CUSTODY $MC = 06/2$ $MC = 06/2$ 3211 $a_1r/ver/wer/wer/wer/wer/wer/wer/wer/wer/wer/w$					╞╼╋╸		$\left - \right $	$\left - \right $									
$\frac{1}{2S}$ Sample Nulley Matrix # of Nulley Nulley <td>2</td> <td>Her</td> <td></td> <td></td> <td></td> <td></td> <td>7 7</td> <td></td> <td>2</td> <td>···</td> <td>way</td> <td></td> <td></td> <td>A II</td> <td></td> <td>ā</td> <td>Inip - Kow</td>	2	Her					7 7		2	···	way			A II		ā	Inip - Kow
$\frac{1}{125}$ Sample Grant of a construct of the construct of t							$\frac{1}{1}$		W	E.	Wite	1640	16/25/13	0-		mw63	
$\frac{1}{2S}$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\left \right\rangle$</td> <td></td> <td> </td> <td>21</td> <td>ter 1</td> <td>Weg</td> <td>/0.30</td> <td></td> <td>+</td> <td>47,5</td> <td>mubo</td> <td>1</td>						$\left \right\rangle$		 	21	ter 1	Weg	/0.30		+	47,5	mubo	1
$\frac{1}{2S}$ Sample Sample </td <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td><u>\</u> \ \</td> <td></td> <td>47</td> <td>ter</td> <td>wa</td> <td>1125</td> <td>1261</td> <td></td> <td></td> <td>MW55</td> <td>11</td>							<u>\</u> \ \		47	ter	wa	1125	1261			MW55	11
TS SAMPLE CHAN OF CUSTODY $ME oG/2$ TS Sample Curve State Chan of Custody $ME oG/2$ TS Sample Curve Sample Custody $ME oG/2$ $ME oG/2$ TS Sample Curve Sample Custody $ME oG/2$ $Me of Custody Me of Custody Me of Custody M$						$\left \right\rangle$	7		W	ten -	E an	1570				mw53	1'
TS TS						<u> </u>	\ \ \		(vi	ter	Wa	15-10		06/		MWSZ	11
TS TS							7		Ś	ter-	E.	1455	06/26/13	Ľ		mw51	20130626-84
TS TS NC						1	<u>\</u> 		U)	iter	E.	1500				MWSU	20130/02/0-84
The second Earth Strategies Sample Sample Sample Sample Sample Lab Date 1D Sample Sample Sample Lab Date Time Natrix # of 1D Sample Sample Sample Lab Date Time Nutrix # of 1D Sample Sample Lab Date Time Nutrix # of 1D Sample Sample Lab Date Time Nutrix # of 1D Sample Sample Lab Date Time Nutrix # of 1D Sample Cost by 8021B VOC's by 8260 Sampled Sampled Sampled 1D RCRA-8 Metals RCRA-8 Metals Sampled Sampled Sampled						X	2		λ	itor Itor	5	1425	06/26/13	-		1912-111	201306216 - BA
Stand Earth Strategies Shample Rest chain of Custory ME 06/2 Sound Earth Strategies Shample Rest cool Shample Rest cool The Lee Conclusion Earth Strategies Shample Rest cool Sample Sample Bar # 206, 306, Pto 7 Provider Name of the Custory Sample Sample Lab Date Time Location Depth ID Sampled Sampled Sample Sampled Sampled Sampled Sampled Sound Earth Strategies Time NWTPH-Ox NUTSES Reported by Social of the Custory							۲ ۱		63	tin	E	1412		44		muito	
Sample Sample <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>1</td> <td></td> <td>ł</td> <td>ater</td> <td>E</td> <td>1310</td> <td>06/26/13</td> <td>9 VP</td> <td></td> <td>MILL 45</td> <td>7013062 6 -BA</td>						<u> </u>	1		ł	ater	E	1310	06/26/13	9 VP		MILL 45	7013062 6 -BA
Dee Carcher SAMPLERS Islandure ME 06/2 and Earth Strategies SAMPLERS Islandure Indextante airvier Anenue Fast 2000 PROJECT NAME/NO. Diskyler, Dimmelel, electer P Seattle WA 98/102 Project Nomentake Terrate (11-118) Po# 206: 1900 Pax # 206: 306, MC1 Memarks Trip Blank Supplied by Po# 206: 1900 Pax # 206: 306, MC1 Maboratory Mathematical supplied by N N N N	Note			······································	••••••••••••••••••••••••••••••••••••••			NWTPH-Dx	# of jars		Ma	Time Sampled	Date Sampled	Lab ID	Sample Depth	Sample Location	Sample ID
P Sea the WA 95/02 Startier Mean 95/02 Startier Mean 1200 Start 1200 PROJECT NAME/NO. PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PROJECT NAME/NO. PO # PO #		ED	QUEST		ALYS	AN	-	-			-						
P Seattle WA 98/102 SAMPLERS (Signature) SAMPLERS (Signature) L.Manba, T. Bard, D.Mayler, D. mundel, C. Porter PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. PROJECT NAME/NO. REMARKS Trip Blank Supplied by Aboratory	Huch	rn samples all with ins	C Retu		N	de la								206,	Fax #	06,1900	
airvier Avenue 125 2000 BAMPLERS Isignature) Tairvier Avenue 125 2000 BCCT NAME/NO. Toc Hodings - Mountlake Terrate (01-176) PO#	iPOS/	SAMPLE DIS	D Dispo	-	NO V		494	m udde		rip Ble	`	REMA	2	28/10			City, State, ZI
o Dee Carcher Sharpies Isimature Lulamba, T. Zarti, D. Nkylor, D. Mendel, C. Porter	orize	dard (2 Wee H harges auth	C RUSI Rush c	1	00 #		(211-12)	mace (u	take Ter	- Mounth	dings		000			nd Barth	
SAMPLE CHAIN OF CUSTODY ME 06/2		URNAROUN			ortes	1	ndel.	Dime	ne) D. Maylo	tord .	ERS (L. Man		ľ	1	Lee	Sent report h
	4		7/1-	2/0	[`	ME		ODY	CUST	IN OF	CHA	SAMPLE					306475

÷.,

B-5

Herman Property Wells (24311)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 23, 2013

Dee Gardner, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms. Gardner:

Included are the results from the testing of material submitted on July 12, 2013 from the TOC_01-176_20130712 WORFDB7, F&BI 307179 project. There are 41 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Audrey Hackett, Beau Johnson SOU0723R.DOC

CASE NARRATIVE

This case narrative encompasses samples received on July 12, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies TOC_01-176_20130712 WORFDB7, F&BI 307179 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
307179 -01	MW102-20130712-PE
307179 -02	MW103-20130712-BL
307179 -03	MW104-20130712-PE
307179 -04	MW105-20130712-BL
307179 -05	MW106-20130712-PE
307179 -06	MW107-20130712-BL
307179 -07	MW999-20130712-BL
307179 -08	01-176-20130712-R1
307179 -09	Trip 24311

The 8260C benzene concentration in sample MW104-20130712-PE (pg. 23) was qualified due to carryover from a previous sample injection.

The 8011 EDB concentration of sample MW102-20130712-PE exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

Date of Report: 07/23/13 Date Received: 07/12/13 Project: TOC_01-176_20130712 WORFDB7, F&BI 307179 Date Extracted: 07/15/13 and 07/16/13 Date Analyzed: 07/15/13 and 07/16/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Surrogate Gasoline Range (% Recovery) Sample ID Laboratory ID (Limit 51-134) MW102-20130712-PE 180,000 117 307179-01 1/40 MW103-20130712-BL 2,900 107 307179-02 MW104-20130712-PE 58,000 112 307179-03 1/40 MW105-20130712-BL <100 94 307179-04 MW106-20130712-PE <100 92 307179-05 MW107-20130712-BL <100 94 307179-06 MW999-20130712-BL 2,600 118 307179-07 01-176-20130712-R1 <100 88 307179-08 Method Blank <100 95 03-1352 MB

Results Reported as ug/L (ppb)

Date of Report: 07/23/13 Date Received: 07/12/13 Project: TOC_01-176_20130712 WORFDB7, F&BI 307179 Date Extracted: 07/15/13 Date Analyzed: 07/16/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW102-20130712-PE 307179-01	8,400 x	<250	94
MW103-20130712-BL 307179-02	1,500 x	<250	96
MW104-20130712-PE 307179-03	11,000 x	320 x	83
MW105-20130712-BL 307179-04	<50	<250	96
MW106-20130712-PE 307179-05	140 x	<250	96
MW107-20130712-BL 307179-06	62 x	<250	101
MW999-20130712-BL 307179-07	1,400 x	<250	96
Method Blank 03-1390 MB	<50	<250	101

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW102-20130712-PE 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-01 307179-01.047 ICPMS1
Units:	ug/L (ppb)	Operator:	AP
Internal Standard: Holmium	% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	15.6		

Client ID:	MW103-20130712-BL	Client:	SoundEarth Strategies
Date Received:	07/12/13	Project:	TOC_01-176_20130712 WORFDB7
Date Extracted:	07/15/13	Lab ID:	307179-02
Date Analyzed:	07/16/13	Data File:	307179-02.043
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	95	60	125
	Concentration		
Analyte:	ug/L (ppb)		
Lead	3.16		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104-20130712-PE 07/12/13 07/15/13 07/16/13 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-03 307179-03.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW105-20130712-BL 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-04 307179-04.045 ICPMS1
Units:	ug/L (ppb)	Operator:	AP
Internal Standard: Holmium	% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW106-20130712-PE 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-05 307179-05.046 ICPMS1
Units:	ug/L (ppb)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	90	60	125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107-20130712-BL 07/12/13 07/15/13 07/16/13 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-06 307179-06.040 ICPMS1 AP
Internal Standard:	% Recovery:	Lower Limit:	Upper Limit:
Holmium Analyte:	97 Concentration ug/L (ppb)	60	125
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 07/15/13 07/16/13 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 I3-419 mb I3-419 mb.034 ICPMS1 AP
Internal Standard: Holmium	0 11	6 Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		oncentration ug/L (ppb)		
Lead		<1		
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW102-20130712-PE 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-01 307179-01.013 ICPMS1	
--	--	---	--	
Units:	ug/L (ppb)	Operator:	AP	
Internal Standard: Holmium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125	
Analyte:	Concentration ug/L (ppb)			
Lead	16.7			

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103-20130712-BL 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-02 307179-02.014 ICPMS1 AP
	ug/L (ppb)	Operator: Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	91	60	125
Analyte:	Concentration ug/L (ppb)		
Lead	3.34		

Client ID: Date Received:	MW104-20130712-PE 07/12/13	Client: Project:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7
Date Extracted:	07/15/13	Lab ID:	307179-03
Date Analyzed:	07/16/13	Data File:	307179-03.015
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	AP
		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Holmium	89	60	125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW105-20130712-BL 07/12/13 07/15/13 07/16/13 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-04 307179-04.016 ICPMS1
Units:	ug/L (ppb)	Operator:	AP
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted:	MW106-20130712-PE 07/12/13 07/15/13	Client: Project: Lab ID:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-05
Date Analyzed:	07/16/13	Data File:	307179-05.017
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107-20130712-BL 07/12/13 07/15/13 07/16/13 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-06 307179-06.010 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

Client ID:	Method Blank	i	Client:	SoundEarth Strategies
Date Received:	NA		Project:	TOC_01-176_20130712 WORFDB7
Date Extracted:	07/15/13		Lab ID:	I3-420 mb
Date Analyzed:	07/16/13		Data File:	I3-420 mb.008
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:	(% Recovery:	Limit:	Limit:
Holmium		97	60	125
	С	oncentration		
Analyte:		ug/L (ppb)		
Lead		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW102-202 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-PE	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-01 071513.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		88	50	150
4-Bromofluorobenz	zene	101	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	52		
1,2-Dichloroethane	e (EDC)	120		
1,2-Dibromoethane	e (EDB)	<1		
Benzene		1,400 ve		
Toluene		3,900 ve		
Ethylbenzene		900 ve		
m,p-Xylene		3,100 ve		
o-Xylene		2,200 ve		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW102-202 07/12/13 07/15/13 07/16/13 Water ug/L (ppb)	130712-PE	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-01 1/1000 071607.D GCMS7 JS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 103 100	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	EDC)	<1,000 <1,000 <1,000 9,600 48,000 3,100 14,000 6,100		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103-201 07/12/13 07/15/13 07/16/13 Water ug/L (ppb)	l30712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-02 071608.D GCMS7 JS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 103 102	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	(EDC)	250 ve 34 <1 730 ve 42 100 120 120		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-02 1/10 071521.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		100	50	150
4-Bromofluorobenz	ene	98	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	260		
1,2-Dichloroethane		37		
1,2-Dibromoethane	(EDB)	<10		
Benzene		1,400		
Toluene		30		
Ethylbenzene		72		
m,p-Xylene		74		
o-Xylene		89		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	l30712-PE	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-03 071515.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	zene	100	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		17		
Toluene		1,400 ve		
Ethylbenzene		810 ve		
m,p-Xylene		2,700 ve		
o-Xylene		1,900 ve		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-PE	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-03 1/100 071523.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	101	50	150
Toluene-d8		103	50	150
4-Bromofluorobenz	zene	99	50	150
Commente		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<100		
1,2-Dichloroethane	e (EDC)	<100		
1,2-Dibromoethane	e (EDB)	<100		
Benzene		72 c		
Toluene		3,200		
Ethylbenzene		2,600		
m,p-Xylene		10,000		
o-Xylene		4,600		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW105-202 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-04 071508.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	102	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	zene	99	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	e (EDC)	<1		
1,2-Dibromoethane	e (EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW106-202 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-PE	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-05 071509.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	50	150
Toluene-d8		96	50	150
4-Bromofluorobenz	ene	94	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	l 30712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-06 071510.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	50	150
Toluene-d8		102	50	150
4-Bromofluorobenz	zene	100	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		0.52		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW999-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	130712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-07 071511.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	50	150
Toluene-d8		98	50	150
4-Bromofluorobenz	zene	96	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	250 ve		
1,2-Dichloroethane		24		
1,2-Dibromoethane	(EDB)	<1		
Benzene		660 ve		
Toluene		63		
Ethylbenzene		77		
m,p-Xylene		130		
o-Xylene		110		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW999-201 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	l 30712-BL	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-07 1/10 071520.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		101	50	150
4-Bromofluorobenz	ene	100	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	240		
1,2-Dichloroethane		26		
1,2-Dibromoethane	(EDB)	<10		
Benzene		970		
Toluene		64		
Ethylbenzene		81		
m,p-Xylene		130		
o-Xylene		110		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	01-176-2013 07/12/13 07/15/13 07/15/13 Water ug/L (ppb)	30712-R1	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-08 071507.D GCMS7 JS
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 98 96	Lower Limit: 50 50 50	Upper Limit: 150 150 150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	e (EDC)	<1 <1 <0.35 <1 <1 <2 <1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip 24311 07/12/13 07/16/13 07/16/13 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 307179-09 071608.D GCMS9 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		104	50	150
4-Bromofluorobenzene		101	50	150
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane		<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylen e		<2		
o-Xylene		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla NA 07/15/13 07/15/13 Water ug/L (ppb)	nk	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 03-1313 mb 071506.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	50	150
Toluene-d8		97	50	150
4-Bromofluorobenz	zene	95	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla NA 07/16/13 07/16/13 Water ug/L (ppb)	nk	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies TOC_01-176_20130712 WORFDB7 03-1316 mb 071607.D GCMS9 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	50	150
Toluene-d8		100	50	150
4-Bromofluorobenz	zene	98	50	150
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
1,2-Dibromoethane	(EDB)	<1		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

Date of Report: 07/23/13 Date Received: 07/12/13 Project: TOC_01-176_20130712 WORFDB7, F&BI 307179 Date Extracted: 07/17/13 Date Analyzed: 07/17/13

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	<u>EDB</u>
MW102-20130712-PE 307179-01	0.88 ve
MW103-20130712-BL 307179-02	0.094
MW104-20130712-PE 307179-03	0.034
MW105-20130712-BL 307179-04	< 0.01
MW106-20130712-PE 307179-05	< 0.01
MW107-20130712-BL 307179-06	< 0.01
MW999-20130712-BL 307179-07	0.087
01-176-20130712-R1 307179-08	< 0.01
Trip 24311 307179-09	< 0.01
Method Blank	< 0.01

EDB 1,2-Dibromoethane

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 307179-05 (Duplicate)							
	Reporting	Sampl	le Du	plicate	RPD		
Analyte	Units	Resul	lt R	esult	(Limit 20)		
Gasoline	ug/L (ppb)	<100	<	:100	nm		
Laboratory Code: Laboratory Control Sample Percent							
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Gasoline	ug/L (ppb)	1,000	94	69-134	-		

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: L	aboratory Contro	ol Sample	<u>)</u>			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	100	58-134	0

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Co	ode: 307179-06	(Matrix Sp	oike)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	89	103	79-121	15
Laboratory Co	ode: Laboratory	Control Sa	ample				

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	99	83-115

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	93	105	79-121	12

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	94	83-115

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 307179-04 (Matrix Spike)

-	-			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	102	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	106	50-150
Benzene	ug/L (ppb)	50	< 0.35	102	50-150
Toluene	ug/L (ppb)	50	<1	107	50-150
Ethylbenzene	ug/L (ppb)	50	<1	105	50-150
m,p-Xylene	ug/L (ppb)	100	<2	110	50-150
o-Xylene	ug/L (ppb)	50	<1	104	50-150

Laboratory Code: Laboratory Control Sample

ntrol Sample					
		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	103	103	70-130	0
ug/L (ppb)	50	100	99	70-130	1
ug/L (ppb)	50	101	97	70-130	4
ug/L (ppb)	50	98	98	70-130	0
ug/L (ppb)	50	98	99	70-130	1
ug/L (ppb)	50	100	100	70-130	0
ug/L (ppb)	100	102	103	70-130	1
ug/L (ppb)	50	99	103	70-130	4
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Reporting Units Spike Level ug/L (ppb) 50 ug/L (ppb) 100	Percent Reporting Units Spike Level Percent ug/L (ppb) 50 103 ug/L (ppb) 50 100 ug/L (ppb) 50 101 ug/L (ppb) 50 98 ug/L (ppb) 50 98 ug/L (ppb) 50 100 ug/L (ppb) 50 98 ug/L (ppb) 50 100 ug/L (ppb) 50 100 ug/L (ppb) 100 102	Reporting Spike Percent Percent Reporting Spike Recovery Recovery Units Level LCS LCSD ug/L (ppb) 50 103 103 ug/L (ppb) 50 100 99 ug/L (ppb) 50 101 97 ug/L (ppb) 50 98 98 ug/L (ppb) 50 98 99 ug/L (ppb) 50 100 100 ug/L (ppb) 50 103 103	Reporting Spike Percent Percent Percent Reporting Spike Recovery Recovery Acceptance Units Level LCS LCSD Criteria ug/L (ppb) 50 103 103 70-130 ug/L (ppb) 50 101 97 70-130 ug/L (ppb) 50 98 98 70-130 ug/L (ppb) 50 98 99 70-130 ug/L (ppb) 50 100 100 70-130 ug/L (ppb) 50 98 99 70-130 ug/L (ppb) 50 100 100 70-130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 307176-01 (Matrix Spike)

	· · · · /				
-	-			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	97	68-125
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	97	78-113
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	106	83-114
Benzene	ug/L (ppb)	50	< 0.35	95	79-109
Toluene	ug/L (ppb)	50	<1	95	73-117
Ethylbenzene	ug/L (ppb)	50	<1	95	71-120
m,p-Xylene	ug/L (ppb)	100	<2	95	63-128
o-Xylene	ug/L (ppb)	50	<1	96	64-129

Laboratory Code: Laboratory Control Sample

ntroi Sampie					
		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	103	102	70-122	1
ug/L (ppb)	50	98	96	79-109	2
ug/L (ppb)	50	109	109	85-113	0
ug/L (ppb)	50	96	95	81-108	1
ug/L (ppb)	50	95	95	83-108	0
ug/L (ppb)	50	97	96	84-110	1
ug/L (ppb)	100	97	96	84-112	1
ug/L (ppb)	50	97	97	82-113	0
	Reporting Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Reporting Units Spike Level ug/L (ppb) 50 ug/L (ppb) 100	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 103 ug/L (ppb) 50 98 ug/L (ppb) 50 109 ug/L (ppb) 50 96 ug/L (ppb) 50 95 ug/L (ppb) 50 95 ug/L (ppb) 50 97 ug/L (ppb) 100 97	Reporting Spike Percent Percent Reporting Spike Recovery Recovery Units Level LCS LCSD ug/L (ppb) 50 103 102 ug/L (ppb) 50 98 96 ug/L (ppb) 50 109 109 ug/L (ppb) 50 96 95 ug/L (ppb) 50 95 95 ug/L (ppb) 50 97 96 ug/L (ppb) 100 97 96	Reporting Spike Percent Percent Percent Reporting Spike Recovery Recovery Acceptance Units Level LCS LCSD Criteria ug/L (ppb) 50 103 102 70-122 ug/L (ppb) 50 98 96 79-109 ug/L (ppb) 50 109 109 85-113 ug/L (ppb) 50 96 95 81-108 ug/L (ppb) 50 95 95 83-108 ug/L (ppb) 50 97 96 84-110 ug/L (ppb) 100 97 96 84-112

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD **8011** MODIFIED

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laborato			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 10)
1,2-Dibromoethane	ug/L (ppb)	0.10	113	103	70-130	9

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\mathsf{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

↓°C	ed at	Samples received at	ample	S										evision 1)	MSRI.DOC R	FORMS \COC \SESGEMSR1.DOC (Revision 1)
						_								Received by:)44 Re	Fax (206) 283-5044
1804	7/12/13			T & P			Luscu	Jer		×**			4	Relinquished by:	·	Ph. (206) 285-8282
1804	07/12/13	0		5155			ba	Man ba	4	Lerr			12	Received by:		Seattle, WA 98119-
TIME	DATE		ANA	COMPANY		+		PRINT NAME	RINT	PI		SIGNATURE	SIGN/	S. Relinquished by:	~~ <u>~</u>	3012 16th Avenue West
		-	-													
				-				· :: •								
							╏╴╴┤						+		-	
						 						-				
					₹	Ŕ			2	Water-			OP A-B	Q	TB	Trip 2431
					7	7	5		×.	Water	0925	67/12/13	08 A.H.6		Rinsale	6- FH 6
					5	1	5	م م	a	Water	1545	e1112/13	o TYZD		WPC 144	312-61
5/12	/ +	۲ ۱			5	\	, <		1	Water		CT/12/13		48,45 0	mw 107	70130712-B-
	*	<u>\</u> \) N				-11	Water	1601	07/12/13	05 10		mwich	20130712-PE
		$\left \right $							1	Water	1427	07/12/13		41.5 0	MUIOS	20130712 - BL
10 11 19 19 19 19 19 19 19 19 19 19 19 19					Ń	ر ب	(1	Water	1657	57/12/13	03 A-B 6	157 0	mulcy	NOIZCTIZ-PE
Porofied in C. An	Daral	7			$\overline{\mathbf{x}}$				1	Water	15, 30	07/12/13	02A-Ju	40.56 0	mw103	20150712-BL mw/n4-
								Ę		Water	13.09	87/12/13	OIA-K	16 0	MUICZ	20130712-76
Notes		Totu 1 pb Preserved Ph	RCRA-8 Metals	SVOC's by 8270	MTBE & EDC. 1516	NWTPH-Gx EDB BTEX by 8021B	NWTPH-Dx	jars		Matrix	Time Sampled	Date Sampled	Lab ID	Sample Depth	Sample Location	Sample ID
	6D	QUESTED	SRE	LYSE	ANA			+	┥┤							
tructions	 Return samples Will call with instructions 	D Return		A SK	GEMS Y		laberntery			Reserved. TB privide	Preserve	306.1907	1 1	Fax # 206	306,1900	Phone # <u>206, 306, 1900</u>
SPOSAL	SAMPLE DISPOSAL	a Siene	·			-4	Altered &	field f		d 76 samples	Pissolved 7		1.0	WA 98102	Sentte	City, State, ZIP_
B RUSH <u>Acrossed 54 Dee</u> Rush charges authorized by:	Herrynygel	FRUSE Rush ch			• •	 (01-176	9 		-030 -14		Saite 2000	4	venue En	Fairview A	Address 2811 Fairview Avenue East
sks)	ndard (2 Wycks)	0 Stand		PO #	CUMS PC		N.I.	NO. NO. Mountlat & Tearry O	NO	PROJECT NAME/NO.	PROJEC		5	Strateries	Earth	Company Saine
of /	*	Page		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1			ature	SAMPLERS (signature)	SAMPLE			Gardyor	R R	Send Report To
1/2	5/ BE4/	Aas	12	07-15-	40	ME	ODY	CUSTODY	•	CHIAIN	SAMPLE CHAIN OF				179	307