Operations & Maintenance Report Fourth Quarter 2014

TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace WA 98043

Prepared for:

TOC Holdings Co. 2737 West Commodore Way Seattle WA 98199

Prepared by:

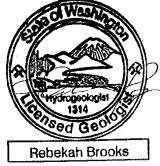
Stantec Consulting Services Inc. 19101 36th Avenue West, Ste. 203 Lynnwood WA 98036 Phone: 425.977.4994

March 27, 2015

Sign-off Sheet

This document entitled **Operations and Maintenance Report**, **Fourth Quarter 2014**, was prepared by **Stantec Consulting Services Inc. (Stantec)** on behalf of **TOC Holdings Co. (TOC)** for specific application to TOC Facility No. 01-176 in Mountlake Terrace, Washington. Services conducted by Stantec for this project were conducted in accordance with the Environmental Services Contract between **HydroCon Environmental**, **LLC (HydroCon)** and Stantec. Any reliance on this document by a third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and HydroCon. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

This document was prepared under the supervision and direction of the following key staff.


Prepared by: Jeremy Fleege, PE Environmental Engineer

Reviewed by: Rebekah Brooks, LG, LHg Senior Associate, Hydrogeology / Project Manager

aturi Minter

Reviewed by: Marty Minter, PG, RG Manager, Geology

8.0	REFERENCES 1	6
7.0	LIMITATIONS 1	5
6.0	SYSTEM OPTIMIZATION & FUTURE RECOMMENDATIONS 1	4
5.0 5.1 5.2 5.3 5.4	TOLCIDE/AN-400 INJECTION PILOT TEST RESULTS1BACKGROUND1PILOT TESTING1PILOT TEST RESULTS1INJECTION IMPLEMENTATION1	1 1 2
4.0 4.1 4.2 4.3	SYSTEM PERFORMANCE. TOC PROPERTY (UNIT 1) TOC / FARMASONIS PROPERTY (UNIT 2) DRAKE PROPERTY (UNIT 3)	8 9
3.0 3.1 3.2 3.3	PERMITS STATE WASTE DISCHARGE PERMIT PSCAA ORDER OF APPROVAL SPECIAL USE PERMIT	6 7
2.0 2.1 2.2 2.3	REMEDIATION SYSTEM DESCRIPTION SYSTEM BACKGROUND SYSTEM CONFIGURATIONS SYSTEM MODIFICATIONS	3 4
1.0 1.1 1.2	INTRODUCTION SCOPE OF WORK FOURTH QUARTER 2014 O&M ACTIVITIES	1

Table of Contents

List of Tables

- Table 1-1:
 Summary of System Performance Unit 1
- Table 1-2:
 Vapor Stream System Performance Monitoring Data Unit 1
- Table 1-3:
 Liquid Stream System Performance Monitoring Data Unit 1
- Table 1-4:
 Vapor Stream Analytical Results Unit 1
- Table 1-5:
 Liquid Stream Analytical Results Unit 1
- Table 2-1:Summary of System Performance Unit 2
- Table 2-2:
 Vapor Stream System Performance Monitoring Data Unit 2
- Table 2-3:Liquid Stream System Performance Monitoring Data Unit 2
- Table 2-4:Vapor Stream Analytical Results Unit 2
- Table 2-5:Liquid Stream Analytical Results Unit 2
- Table 3-1:
 Summary of System Performance Unit 3
- Table 3-2:
 Vapor Stream System Performance Monitoring Data Unit 3
- Table 3-3:
 Liquid Stream System Performance Monitoring Data Unit 3
- Table 3-4:Vapor Stream Analytical Results Unit 3
- Table 3-5:Liquid Stream Analytical Results Unit 3

List of Figures

- Figure 1: Project Location Map
- Figure 2: Site Map
- Figure 3: Remediation Systems and Site Details Map
- Figure 4: Piping and Instrumentation Diagram
- Figure 5: Outfall Sampling Locations

List of Appendices

Appendix A: Laboratory Analytical Reports – Vapor

- Unit 1: TOC Property (24205)
- Unit 2: TOC/Farmasonis Property (24225)
- Unit 3: Drake Property (24309)
- Appendix B: Laboratory Analytical Reports Water
 - Unit 1: TOC Property (24205)
 - Unit 2: TOC/Farmasonis Property (24225)
 - Unit 3: Drake Property (24309)
- Appendix C: Biocide Product Test Kit Information Tolcide & AN-400 MSDS & Product Information Titration Test Kit Information
- Appendix D: Pilot Test Field Notes & Photographs

Acronyms & Abbreviations

h@\r	micrograms per liter
AO	Agreed Order
AWS	Air/Water Separator
BTEX	Benzene, Toluene, Ethylbenzene and Total Xylenes
CatOx	Catalytic Oxidizer
City	City of Mountlake Terrace, Washington
DMR	Discharge Monitoring Report
DPE	Dual-Phase Extraction
Ecology	Washington State Department of Ecology
GAC	Granular-Activated Carbon
gallons/day	gallons per day
gallons/minute	gallons per minute
GRPH	Gasoline-Range Petroleum Hydrocarbons
HydroCon	HydroCon Environmental, LLC
IRAWP	Interim Remedial Action Work Plan
lb/day	pounds per day
LNAPL	Light Nonaqueous-Phase Liquid
mg/m ³	milligrams per cubic meter
mL	milliliter
MPE	Multi-Phase Extraction
MSDS	Material Safety Data Sheets
MTCA	Model Toxics Control Act
NOC	Notice of Construction
0&M	Operation and Maintenance
OWS	Oil/Water Separator
ppm	parts per million
ppmv	parts per million by volume
PSCAA	Puget Sound Clean Air Agency
ROW	Right-of-Way
SEPA	State Environmental Protection Act
SES	SoundEarth Strategies, Inc.
Stantec	Stantec Consulting Services Inc.
SUP	Special Use Permit
SVE	Soil Vapor Extraction
SWD	State Waste Discharge
THPS	Tetrakis-Hydroxymethyl Phosphonium Sulfate
TOC	TOC Holdings Co.
VOC	Volatile Organic Compound

1.0 INTRODUCTION

This report documents the **Fourth Quarter 2014** operation and maintenance (O&M) activities performed by Stantec Consulting Services Inc. (Stantec) on behalf of TOC Holdings Co. (TOC). Field activities associated with interim remedial actions were conducted from October through December 2014 at Facility No. 01-176 located in Mountlake Terrace, Snohomish County, Washington.

1.1 SCOPE OF WORK

Ongoing interim remedial actions are conducted under Agreed Order (AO) No. DE 8661, entered in October 2011 between TOC and the Washington State Department of Ecology (Ecology 2011) at Facility No. 01-176. The O&M scope of work is defined in the *Interim Remedial Action Work Plan* (IRAWP) prepared by the previous consultant overseeing the project, SoundEarth Strategies, Inc. (SES), and is included as Exhibit C of the AO (SES 2011). Per the requirements of the IRAWP, the O&M scope of work includes monthly and quarterly field events. As specified in the IRAWP, the "TOC Site" encompasses the following four properties located in Mountlake Terrace, Washington:

- TOC Property: 24205 56th Avenue West
- TOC/Farmasonis Property: 24225 56th Avenue West
- Drake Property: 24309 56th Avenue West
- 56th Avenue West Right-of-Way (ROW): adjacent to the TOC, TOC/Farmasonis and Drake properties

Elements of the O&M scope of work defined in the IRAWP encompass the four properties identified as the "TOC Site" as well as the following two adjacent properties:

- Shin/Choi Property: 24325 56th Avenue West (downgradient of the TOC Site)
- 242nd Street Southwest ROW: adjacent to the TOC Property (upgradient of the TOC Site)

Following completion of the IRAWP, monitoring wells were installed on the following property:

Herman Property: 24311 56th Avenue West (downgradient of the TOC Site)

O&M activities are conducted to document the performance of three multi-phase extraction (MPE) remediation systems (described in Section 2.0) located on the TOC Site. The MPE remediation systems were installed on the TOC Site for remediation of petroleum hydrocarbon-contaminated groundwater, vapor and free product (where present). The Unit 1 remediation system is located on the TOC Property and is associated with operation of remediation wells installed on the TOC Property. The Unit 2 and Unit 3 remediation systems are located on the TOC/Farmasonis Property and are associated with operation of remediation wells installed on the TOC/Farmasonis and Drake properties, respectively.

1.2 FOURTH QUARTER 2014 O&M ACTIVITIES

This report includes a description of the MPE systems, permit compliance, and performance and optimization efforts. A summary of the MPE system performance and maintenance activities performed by Stantec from October through December 2014 is provided below.

- O&M consisted of routine, scheduled maintenance activities (as described in the O&M Manual), as well as the following activities:
 - routine bag filter replacements;
 - replacement of steel Granular-Activated Carbon (GAC) canisters with stainless steel canisters at all units (three drums at Unit 1, one drum at Unit 2, and three drums at Unit 3), because of rusting and leakage; and
 - installation of valves (drain and bleed) on the bag filter housing at Unit 2 and Unit 3.
- A combined total of 141.2 pounds of vapor-phase hydrocarbons was removed during this reporting period, and a cumulative total of approximately 3,038 pounds has been removed since startup in October 2012.
- A combined total volume of 276,581 gallons of groundwater was extracted, treated and discharged during this period. The total volume of water processed since system startup is approximately 2,462,313 gallons.
- No light nonaqueous-phase liquid (LNAPL) was recovered from the three MPE systems during this quarter. Also, the oil/water separator (OWS) for each system was inspected, and no LNAPL was visible on the liquid contents.
- System optimization activities during this reporting period focused on balancing the flow of water through the OWS and addressing issues associated with the GAC canisters. These activities are described in more detail in the following sections.

2.0 **REMEDIATION SYSTEM DESCRIPTION**

The following sections provide a brief description of the remedial system history, current system configurations and a description of system modifications during this Quarter.

2.1 SYSTEM BACKGROUND

TOC (formerly Time Oil Co.) operated a retail gasoline station on the TOC Property between 1968 and 1990. One 8,000-gallon and two 6,000-gallon underground storage tanks were removed from the TOC Property in 1991. The TOC Property is currently vacant. In 1996, a dual-phase extraction (DPE) remediation system was installed at the TOC Property to remediate Shallow Zone groundwater impacted by petroleum hydrocarbons and remove LNAPL. The DPE system operated from February 1997 to June 2005 and was later removed following confirmation that the system effectively remediated Shallow Zone groundwater (SES 2013). In 2006, groundwater monitoring results collected by SES confirmed gasoline-related contamination extended directly downgradient of the TOC Property to the south and west.

Between 1992 and 2013, site investigations were conducted to determine the extent of petroleum contamination and led to the installation of 107 monitoring and remediation wells on the TOC Site and three adjacent properties (a portion of the 242nd Street Southwest ROW and the downgradient Herman and Shin/Choi properties). Six wells have been decommissioned. Currently, 101 active monitoring and remediation wells are installed in three groundwater zones (defined as Shallow, Intermediate, and Deep) on the TOC Site and three adjacent properties. Of the 101 active monitoring and remediation wells, 20 are installed in the Shallow Zone, 60 are installed in the Intermediate Zone, six wells are in the Deep Zone, and 15 wells have well screens intersecting multiple groundwater zones (either shallow-intermediate or intermediate-deep). The three groundwater zones are further discussed in the quarterly and annual groundwater monitoring reports prepared by Stantec.

In accordance with the AO entered between Ecology and TOC in October 2011 (described in Section 1.1), SES initiated a remedial investigation (RI) at the TOC Site and determined that remediation by the former DPE system in the Shallow Zone was effective, the DPE system was removed and three MPE systems were installed in the Intermediate Zone between November 2011 and August 2012. The three MPE systems (Units 1, 2 and 3) began operating in October 2012. MPE is an in situ remedial technology that simultaneously extracts multiple fluid phases from remediation wells. The phases generally include vapor phase, dissolved phase (i.e., groundwater), and LNAPL or free product.

2.2 SYSTEM CONFIGURATIONS

Each MPE system consists of a self-contained, aboveground equipment enclosure. The MPE system for the TOC Property (Unit 1) is located within a fenced enclosure on the TOC Property. The MPE systems for the TOC/Farmasonis Property (Unit 2) and Drake Property (Unit 3) are co-located within a single fenced enclosure on the TOC/Farmasonis Property. The three MPE systems are basically identical, with the exception of their orientation, mirror-image layouts, and the number of remediation wells serving each MPE system. A total of 23 remediation wells serve the three MPE systems: nine wells on the TOC Property, six wells on the TOC/Farmasonis Property, and eight wells on the Drake Property (**Figure 3**). It should be noted that MW84 (installed on the Drake Property and connected to Unit 3) was originally plumbed as a remediation well but currently serves as a monitoring well. According to SES field notes, the pump was removed from MW84 in July 2013 and reinstalled later the same month. The pump was again removed from MW84 in September 2013. Documentation of the purpose for removing the pump from MW84 does not exist in the SES files acquired by Stantec.

The table below identifies the remediation wells connected to each system and their location.

System Name	System Location	Remediation Well ID	Remediation Well Location
Unit 1	TOC Property	 MW11 MW29 MW15 MW32 MW18 MW90 MW24 MW91 MW27 	TOC Property
Unit 2	TOC/Farmasonis Property	 MW31 MW92 MW41 MW93 MW57 MW94 	TOC/Farmasonis Property
Unit 3	TOC/Farmasonis Property	 MW69 MW70 MW98 MW95 MW96 MW101 	Drake Property

Wells Serving MPE Remediation Systems

The individual MPE equipment enclosures were custom fabricated in accordance with the Washington State Department of Labor and Industry requirements for factory-assembled structures. Each of the remediation wells is equipped with a down-hole pneumatic pump to extract petroleum-impacted groundwater (dissolved-phase petroleum hydrocarbons) and recoverable LNAPL. In addition, each MPE system is equipped with a soil vapor extraction (SVE) blower. The SVE blowers are intended to extract soil vapors (vapor-phase petroleum hydrocarbons) from the remediation wells and surrounding soil. Process piping is utilized to convey recovered fluids (groundwater and LNAPL) and vapor from the remediation wells to the MPE system enclosures. The piping and instrumentation diagram presented on **Figure 4** illustrates the process flow and major mechanical equipment associated with treatment systems. Extracted groundwater is conveyed to each MPE system for phase separation, treatment, and permitted discharge to the sanitary sewer in

accordance with Ecology State Waste Discharge Permit No. ST0007384. The extracted groundwater is processed through an OWS, which is designed to process up to 10 gallons per minute (gpm). The effluent from the OWS is pumped through three 55-gallon GAC canisters to remove dissolved phase volatile organic compounds (VOCs) prior to being discharged to the sanitary sewer. When present, LNAPL recovered with the OWS is temporarily stored in a 55-gallon product drum prior to disposal or recycling at an offsite facility.

The SVE blower(s) creates the vacuum pressure necessary to extract soil vapors from the remediation wells. The extracted soil vapors are processed through an air/water separator (AWS) and a catalytic oxidizer (CatOx), except as recently modified (see Section 2.3). The AWS removes particulate and liquids from the air stream to prevent damage to the SVE blower and ancillary equipment. The vapors are thermally treated by the CatOx prior to being discharged to the atmosphere, in accordance with the Puget Sound Clean Air Agency (PSCCA) Notice of Construction (NOC) No. 10384.

2.3 SYSTEM MODIFICATIONS

System modifications that were performed during this quarter are summarized below.

- Valves (drain and bleed) were installed on the bag filter housing at Unit 2 and Unit 3 to better facilitate bag filter change outs. This was completed during the Third Quarter 2014 at Unit 1.
- All remaining steel drums (GAC canisters) were replaced with stainless steel drums. This
 included replacing all three drums at Unit 1, one drum at Unit 2, and all three drums at Unit 3.
 The steel drums were replaced to address leakage caused from rusting, and to minimize
 drum degradation.
- Notification was provided to PSCAA on October 22, 2014, regarding shut-down of the CatOx unit at Unit 1 and commencing the 30-day notice for the CatOx removal. Prior to removal of the CatOx at Unit 1, an exceedance occurred on the influent sample (collected on October 22, 2014); therefore, the CatOx was not shut-down. The Unit 1 influent sample concentration of Gasoline-Range Petroleum Hydrocarbons (GRPH) on October 22, 2014 was 51.2 ppmv, exceeding the allowable, non-treated discharge value of 50 ppmv. Continued sampling and analysis will determine if a subsequent request for CatOx removal at Unit 1 can be made.

3.0 PERMITS

State, regional and local permit requirements apply to the interim remedial action. Pursuant to the Revised Code of Washington 70.105D.090(1), TOC's interim remedial actions under the AO are exempt from the procedural requirements of any laws requiring or authorizing local government permits or approvals; however, TOC must comply with the substantive requirements of such permits or approvals.

Local requirements for clearing, grading, and erosion control activities were addressed through review under the State Environmental Policy Act (SEPA), which included a public comment period through September 26, 2011. State and regional permit requirements beyond the jurisdiction of the AO are discussed below in Sections 3.1 (State Waste Discharge Permit), 3.2 (PSCAA Order of Approval), and 3.3 (Special Use Permit [SUP]).

3.1 STATE WASTE DISCHARGE PERMIT

State Waste Discharge Permit ST0007384 (SWD Permit) authorizes and regulates operation of and discharges from the three MPE systems on the TOC Site, effective July 2, 2012 through June 19, 2017.

Ecology's Water Quality Program administers the wastewater discharge permit, wastewater compliance sampling, record-keeping, and submittal schedule. Discharge Monitoring Reports (DMRs) are submitted to Ecology monthly. The DMR is a summary report which presents the monitoring data obtained during the monthly reporting period. A summary of the maximum daily effluent limits established by the permit are summarized below:

- The maximum daily volumes of water to be discharged to Outfalls 001 and 002 shall be 7,000 and 14,000 gallons per day (gallons/day), respectively.
- pH shall be between 6 and 10 Standard Units.
- Benzene concentrations shall not exceed 5 micrograms per liter (µg/L).
- Benzene, toluene, ethylbenzene and total xylene (BTEX) cumulative concentration shall not exceed 100 μg/L.
- Total petroleum hydrocarbons, gasoline range (GRPH) shall not exceed 1,000 µg/L.
- Total lead shall not exceed 1,090 μg/L.

The SWD Permit identifies two outfall locations where compliance with the maximum daily effluent limits must be attained: the MPE system for the TOC Property (Unit 1) discharges to Outfall 001; the MPE systems for the TOC/Farmasonis Property (Unit 2) and the Drake Property (Unit 3) discharge to Outfall 002. Effluent from each of the three MPE systems is sampled on a monthly basis at points adjacent to each MPE system (Figure 5). Discharges from Units 2 and 3 combine after the effluent sampling points at approximately the location of Outfall 002. The minimum, maximum and average effluent concentrations are reported in the DMR submitted to Ecology.

3.2 PSCAA ORDER OF APPROVAL

PSCAA issued an Order of Approval for NOC 10384 on May 13, 2012, which establishes the conditions and restrictions for the operation of the CatOx units. The key conditions and restrictions are summarized below:

- All emissions from each of the three SVE blowers shall be routed through their associated CatOx.
- The flow through each CatOx shall not exceed 350 standard cubic feet per minute. The flow rate shall be monitored monthly.
- The temperature of the vapor entering the catalytic bed shall be at least 240 degrees Celsius (464 degrees Fahrenheit), and the temperature of the vapor exiting the oxidizer bed shall not exceed 620 degrees Celsius (1148 degrees Fahrenheit).
- The destruction and removal efficiency of the GRPH flowing into and out of the CatOx shall be 95 percent unless the concentration of GRPH in the vapor exiting the CatOx does not exceed 50 parts per million volume (ppmv).
- The CatOx units may be removed and SVE emissions can be vented directly to the atmosphere through a stack provided the benzene and GRPH concentrations remain below 0.5 and 50 ppmv, respectively, for a period of 3 consecutive months. The CatOx shall be reactivated if concentrations of benzene or GRPH exceed 0.5 or 50 ppmv, respectively.

3.3 SPECIAL USE PERMIT

The SUP executed between TOC and the City of Mountlake Terrace (City) addresses interim remedial activities that extend into City ROWs. Specifically, the SUP: (1) allows the discharge of treated wastewater to the City sanitary sewer network for conveyance to the City of Edmonds publicly owned treatment works under the State Waste Discharge Permit, and (2) retroactively administers the installation, maintenance, sampling, repair and/or decommissioning of monitoring wells that are located within City ROWs.

4.0 SYSTEM PERFORMANCE

According to SES data, prior to system startup in 2012, concentrations of BTEX and/or GRPH in groundwater exceeded their respective Washington State Model Toxics Control Act (MTCA) Method A Cleanup Levels in 17 of the 73 intermediate zone wells, including wells that intersect shallow-intermediate and intermediate-deep zone conditions. (Note that Stantec has re-evaluated the groundwater zone classifications at each well and some wells have been reclassified. This information is included in the groundwater monitoring reports.) Thirteen of these wells are connected to one of the three remediation systems. Based on groundwater data collected during the December 2014 sampling event, BTEX and/or GRPH concentrations in groundwater have decreased and only exceed the MTCA Method A levels in three (MW48, MW57 and MW73) of the 75 active wells installed in the Intermediate Zone, or wells that intersect shallow-intermediate and intermediate-deep zone conditions. One of these wells (MW57) is connected to a remediation system. These data will be presented in the *Fourth Quarter 2014 Groundwater Monitoring Report* prepared by Stantec.

4.1 TOC PROPERTY (UNIT 1)

The following is a summary of the **Fourth Quarter 2014** system O&M at the TOC Property:

- The MPE operation time this quarter was approximately 84 percent (**Table 1-1**). System down time was attributed to OWS high level conditions, mainly due to bag filter fouling, as well as containment high level in the GAC containment tray. The containment high level in the GAC containment tray. The containment high level in the GAC containment tray.
- The vapor-phase hydrocarbon mass removal associated with the SVE system was approximately 132.0 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was approximately 0.022 pounds for this reporting period. The cumulative vapor-phase and aqueous-phase hydrocarbon removal to date is approximately 2,183.9 pounds (Tables 1-1, 1-2 and 1-3).
- The volume of groundwater extracted during this reporting period was 53,355 gallons (Tables 1-1 and 1-3). The average flow rate of groundwater recovery was 650.7 gallons/day (Tables 1-1 and 1-3).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.
- The SVE daily mass removal rate ranged from 0.61 to 2.72 pounds per day (lb/day) during this Quarter (**Table 1-2**).
- The effluent concentration of GRPH exiting the CatOx was not detected at concentrations above the laboratory's lower reporting limit of 10 milligrams per cubic meter (mg/m³; 2.329 ppmv; Table 1-4).
- All system operations were in compliance with Ecology's Water Quality Program and PSCAA permits (Tables 1-4 and 1-5).

4.2 TOC / FARMASONIS PROPERTY (UNIT 2)

The following is a summary of the Fourth Quarter 2014 system O&M at the TOC/Farmasonis Property:

- The MPE operation time this quarter was approximately 66 percent (Table 2-1). System down time was mostly attributed to containment high level in the GAC containment tray. This was due to a leak in the second GAC, which was temporarily isolated from the treatment system until after the stainless steel GAC canisters were installed.
- The vapor-phase hydrocarbon mass removal associated with the SVE system was approximately 3.3 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was 0.008 pounds for this reporting period. The cumulative vaporphase and aqueous-phase hydrocarbon removal to date is approximately 711.8 pounds (Tables 2-1, 2-2 and 2-3).
- The volume of groundwater extracted during this reporting period was approximately 19,301 gallons (Tables 2-1 and 2-3). The average flow rate of groundwater recovery was 235.4 gallons/day (Tables 2-1 and 2-3).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.
- The daily vapor mass removal rate ranged from 0.05 to 0.07 lb/day during this quarter (Table 2-2).
- The effluent concentration of GRPH exiting the SVE system (with the CatOx not being operated, per the PSCAA permit allowance) was not detected at concentrations above the laboratory's lower reporting limit of 10 mg/m3 (2.329 ppmv; **Table 2-4**).
- All system operations were in compliance with Ecology's Water Quality Program and PSCAA permits, with the exception being effluent pH during the October 2014 event (Tables 2-4 and 2-5). The effluent pH reading during the October 2014 event was 5.92, and is the only time during the entire system operation that a pH value was measured outside of the allowable pH range (6 to 10). This is assumed to be an anomaly, and will be confirmed during continued monthly measurements during the routine O&M events.

4.3 DRAKE PROPERTY (UNIT 3)

The following is a summary of the Fourth Quarter 2014 system O&M at the Drake Property:

- The MPE operation time this quarter was approximately 86 percent (**Table 3-1**). System down time was attributed to containment high level in the GAC containment tray. This was due to a leak in the second GAC, which was temporarily isolated from the treatment system until after the stainless steel GAC canisters were installed.
- The vapor-phase hydrocarbon mass removal associated with the SVE system was approximately 5.9 pounds, and aqueous-phase hydrocarbon removal associated with the GAC treatment process was 0.085 pounds for this reporting period. The cumulative vaporphase and aqueous-phase hydrocarbon removal to date is approximately 156.9 pounds (Tables 3-1, 3-2 and 3-3).

- The volume of groundwater extracted during this reporting period was approximately 203,925 gallons (**Tables 3-1 and 3-3**). The average flow rate of groundwater recovery was 2,486.9 gallons/day (**Tables 3-1 and 3-3**).
- No LNAPL was recovered from the OWS. Also, the OWS was inspected, and no LNAPL or sheen was visible on the liquid contents.
- The average daily vapor mass removal rate was 0.1 lb/day during this Quarter (Table 3-2).
- The effluent concentration of GRPH exiting the SVE system (with the CatOx not being operated) was not detected at concentrations above the laboratory's lower reporting limit of 10 mg/m3 (2.329 ppmv; **Table 3-4**).
- All system operations were in compliance with PSCAA and Ecology's Water Quality Program permits, with the exception being effluent pH during the October 2014 event (Tables 3-4 and 3-5). The effluent pH reading during the October 2014 event was 5.97, and is the only time during the entire system operation that a pH value was measured outside of the allowable pH range (6 to 10). This is assumed to be an anomaly, and will be confirmed during continued monthly measurements during the routine O&M events.

5.0 TOLCIDE/AN-400 INJECTION PILOT TEST RESULTS

A pilot test was completed by Stantec at the Unit 1 MPE remediation system located on the TOC Property on November 5, 2014. The pilot test was conducted to evaluate if concentrations of a biocide (Tolcide PS20A) and sequestering agent (AN-400) were observed in the Unit 1 treatment system effluent water above Ecology discharge thresholds following injection. An email describing the pilot test procedures was sent by Adam Valenti (Stantec Project Engineer) to Jeanne Tran (Ecology Water Quality Project Manager) on September 4, 2014 (Valenti 2014); the pilot test was verbally approved by Ms. Tran during a telephone conversation with Mr. Valenti on October 13, 2014. Treated effluent water is discharged under Ecology State Waste Discharge (SWD) Permit #ST0007384 to outfall location 001Site-specific discharge thresholds (3.6 ppm for Tolcide PS20A and 3 ppm for AN-400), were established by Ecology and relayed to Stantec in the telephone conversation between Mr. Valenti and Ms. Tran on October 13, 2014.

5.1 BACKGROUND

The MPE remediation system utilizes carbon filtration to remove petroleum hydrocarbon concentrations from extracted groundwater. Since system startup in 2012, bio-fouling has significantly limited the treatment flow rate at Unit 1. To improve system operation, Stantec recommends chemical injection of a biocide (Tolcide PS20A) and sequestering agent (AN-400) prior to filtration and granular activated carbon treatment.

The active ingredient of the proposed biocide (Tolcide PS20A) is 20% Tetrakis-Hydroxymethyl Phosphonium Sulfate (THPS), which displays rapid control of a broad spectrum of microorganisms. THPS has a benign environmental toxicity profile and degrades rapidly. AN-400 is a sequestering agent specifically formulated with active ingredients that are environmentally safe, and do not promote bio-fouling. Material Safety Data Sheets (MSDS) and product information for Tolcide PS20A and AN-400 are included as **Appendix C**.

5.2 PILOT TESTING

Stantec conducted the Tolcide/AN-400 pilot test on November 5, 2014. The pilot test was conducted for approximately six hours and consisted of 3 phases of monitoring: pre-injection (background), chemical injection, and post-injection. During pilot testing, system effluent water was routed and stored inside a 630-gallon tote.

During each phase of monitoring, water samples were collected from inside the oil-water separator (influent) and from a sample port following treatment in the granulated activated carbon drums (effluent). Each sample was collected using a 40-milliliter (mL) vial, included with the THPS and AN-400 titration test kits. A syringe was then used to precisely remove sample volume until the exact quantity required was obtained within the sample vial (10 mL). The sample was then titrated in accordance with the test kit instructions, including addition of specific chemical agents provided in the THPS and AN-400 test kits. A color change indicated the concentration of THPS within 2 parts per million (ppm) accuracy and AN-400 within 0.4 ppm accuracy. The sample vial and syringe were

triple rinsed with Alconox® and distilled water between each sample. Titration test kit information is included as **Appendix C**.

Using the titration test kits, background measurements were recorded for two hours prior to the addition of Tolcide and AN-400 in the OWS. The background measurements were used to determine the amount of chemical interference caused by naturally occurring chemical species, such as phosponates, present in extracted groundwater that would cause color changes using the titration test kits. Average background concentrations representing naturally occurring chemical species were 10 ppm and 1.0 ppm as measured by the THPS and AN-400 test kits, respectively.

After average background concentrations were established, Tolcide and AN-400 were added to the OWS for approximately 3-hours. During the first two hours of chemical injection, approximately 70 ppm of THPS and 10 ppm of AN-400 were added in batches to the OWS. During the last hour of injection, approximately 210 ppm of THPS and 30 ppm of AN-400 (three times the recommended dosage rate) were added to the OWS. The dosage was increased during the latter part of the test to provide a conservative evaluation of potential breakthrough from the carbon treatment drums. Influent and effluent concentrations were regularly monitored during the test. Based on the system water flow rate (approximately 0.7 gallons per minute), sufficient time (4 hours) was allowed for test agents to pass through the three 55-gallon carbon drums for the evaluation of breakthrough. Stantec's field notes and photographs taken during the pilot test are provided in **Appendix D**.

5.3 PILOT TEST RESULTS

THPS and AN-400 species were not observed in system effluent water based on comparison of the average background values with the average THPS and AN-400 concentrations collected during injection or post-injection monitoring. Color changes noted in the background samples were consistent with (i.e., at the same concentration as) injection and post-injection readings, indicating that no breakthrough of the THPS or AN-400 species occurred during the pilot test. When compared with the average background concentrations, the average effluent concentration of THPS and AN-400 was 0 ppm. Effluent concentrations were also below Ecology's site-specific discharge thresholds (3.6 ppm for THPS and 3 ppm for AN-400).

Following post-injection monitoring, Stantec discharged approximately 250-gallons of water collected during pilot testing to the Unit 1 discharge location. Treated water was discharged based on Ecology's allowable discharge thresholds. Field photographs and notes, including the background, injection and post-injection readings and average values, are provided in **Appendix D**.

5.4 INJECTION IMPLEMENTATION

Based on the pilot test results, Stantec intends to implement injections of Tolcide and AN-400 at Unit 1 as long as the remediation system is operating, beginning in the first quarter of 2015. Approximately 55-gallons of Tolcide and AN-400 will be stored within a single drum located in the OWS secondary containment tray. A chemical metering pump will be secured on top of the drum lid and used to inject Tolcide (70 ppm) and AN-400 (10 ppm) into influent system water. The metering pump will be electrically connected to the system, and will only operate during

groundwater extraction (the metering pump will not operate during a system shutdown) to prevent overdosing of the system. The metering pump will be manually adjustable and the injection rate will be checked routinely and periodically adjusted, as necessary, based on the system influent groundwater flow rate. In the event of a spill/leak, a float switch in the OWS secondary containment tray will shut down the system and chemical metering pump.

Stantec proposes to monitor the concentrations of THPS and AN-400 using titration field test kits on a quarterly basis from the effluent sample ports of the first carbon drum and third carbon drum. More frequent monitoring will be conducted if required by Ecology. In the event breakthrough is observed above discharge thresholds, Stantec will replace the spent carbon drum with new granular activated carbon.

6.0 SYSTEM OPTIMIZATION & FUTURE RECOMMENDATIONS

The following is a summary of the **Fourth Quarter 2014** system optimization and future recommendations for each of the MPE systems.

The MPE remediation systems will continue to operate until the terms and conditions of the AO have been satisfied in accordance with Section IX (Satisfaction of Order), or until the work to be performed has been amended in accordance with Section VIII.L (Amendment of Order). Specifically, "the provisions of [the Agreed] Order shall be deemed satisfied upon TOC's receipt of written notification from Ecology that TOC has completed the remedial activity required by [the Agreed] Order, as amended by any modifications, and that TOC has complied with all other provisions of [the Agreed] Order."

Operational activities during this quarter continued to focus on dewatering the formation to optimize recovery of dissolved phase hydrocarbons and hydrocarbon vapors. System optimization activities during this reporting period focused on balancing the flow of water through the OWS. These activities, any system modifications, and observations are summarized below.

- Field personnel continued to optimize the system flows to balance the flow rate of the OWS. System adjustments were made to minimize high level conditions, which triggered the systems to shut down. Generally, the program adjustments stopped the flow of water to the OWS for a brief period of time while the OWS transfer pumps discharged water to the GAC canisters.
- The remaining steel GAC containers were changed to stainless steel containers. This included the change out of three drums at Unit 1, one drum at Unit 2, and three drums at Unit 3.
- The blower units at all units need to be serviced, including inspection of belts. This is especially necessary for the blower unit at Unit 2, which has developed a small oil leak on the blower motor.
- Sand, silt and biological byproducts continued to accumulate within the lead GAC canisters. This buildup of materials restricts the discharge of wastewater from the OWS and eventually causes the systems to shut down. The majority of this loading has been observed at the TOC Property (Unit 1) system. This loading was also observed at the Drake Property system (Unit 3) during previous quarters but has been reduced following installation of a bag filter in 2013. An additional bag filter may need to be installed in Unit 1 in the future. In addition as presented in Section 5.0, a biocide pilot test was conducted during the fourth quarter 2014 to increase more effective performance at Unit 1 by reducing the biological byproduct. Full implementation of the biocide treatment at Unit 1 is anticipated to occur in the first quarter of 2015.
- Benzene and GRPH concentrations continue to remain below thresholds for continued operation of the CatOx units. As specified in the PSCAA Order of Approval, if benzene and GRPH concentrations remain below 0.5 and 50 ppmv, respectively, for a period of three consecutive months, then the CatOx may be turned off (bypassed). Currently, the CatOx units have been removed from operation at Units 2 and 3, and continued vapor sampling will determine if the CatOx at Unit 1 can be bypassed. It is anticipated that Unit 1 CatOx may be removed in the first quarter of 2015, as sampling has indicated below threshold values for two consecutive events (November and December 2014).

7.0 LIMITATIONS

This document, **Operations & Maintenance Report**, **Fourth Quarter 2014**, was prepared by Stantec Consulting Services Inc. on behalf of TOC Holdings Co. The material presented reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this document, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.

8.0 **REFERENCES**

- SoundEarth Strategies, Inc. (SES). 2011. Interim Remedial Action Work Plan (IRAWP), TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. July 28.
- SoundEarth Strategies, Inc. (SES). 2013. Draft Remedial Investigation Report, TOC Holdings Co. No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. November 27.
- Valenti, Adam (Stantec Consulting Services Inc.). 2014. Email to Jean Tran (Washington State Department of Ecology). September 4.
- Washington State Department of Ecology (Ecology). 2011. Agreed Order No. DE 8661, TOC Facility No. 01-176. October 28.

Tables

- Table 1-1: Summary of System Performance Unit 1
- Table 1-2: Vapor Stream System Performance Monitoring Data Unit 1
- Table 1-3:
 Liquid Stream System Performance Monitoring Data Unit 1
- Table 1-4: Vapor Stream Analytical Results Unit 1
- Table 1-5:
 Liquid Stream Analytical Results Unit 1
- Table 2-1:
 Summary of System Performance Unit 2
- Table 2-2:
 Vapor Stream System Performance Monitoring Data Unit 2
- Table 2-3:
 Liquid Stream System Performance Monitoring Data Unit 2
- Table 2-4:
 Vapor Stream Analytical Results Unit 2
- Table 2-5:
 Liquid Stream Analytical Results Unit 2
- Table 3-1:
 Summary of System Performance Unit 3
- Table 3-2:
 Vapor Stream System Performance Monitoring Data Unit 3
- Table 3-3:
 Liquid Stream System Performance Monitoring Data Unit 3
- Table 3-4:
 Vapor Stream Analytical Results Unit 3
- Table 3-5:
 Liquid Stream Analytical Results Unit 3

Unit 1: TOC Property (24205)

Table 1-1 Unit 1 - TOC Property (24205) Summary of System Performance

TOC Holdings Facility No. 01-176

Reportin	ng Period				Volume of	Average	GRPH	GRPH
Start Date	End Date	Duration of Reporting Period (days)	System Run Time (days)	System Run Time (%)	Groundwater Discharged (gallons)	Groundwater Recovered Flow Rate (gallons/day)	Aqueous-Phase Removal (lb)	Vapor-Phase Removal (lb)
10/02/12	12/05/12	64	30	46%	35,204.9	550.1	2.522	917.8
12/05/12	03/04/13	89	36	40%	7,655.9	86.0	0.918	42.1
03/04/13	06/05/13	93	29	31%	4,915.8	52.9	0.609	6.0
06/05/13	09/04/13	91	69	76%	83,540.3	918.0	3.121	138.0
09/04/13	12/03/13	90	90	100%	75,825.2	842.5	0.836	698.5
12/03/13	01/31/14	59	26	44%	1,166.2	19.8	0.064	151.7
01/31/14	03/19/14	47	29	63%	29,991.7	638.1	1.235	28.2
03/19/14	06/16/14	89	70	78%	101,082.0	1,135.8	2.984	5.4
06/16/14	09/18/14	94	87	92%	101,780.0	1,082.8	0.648	51.2
09/18/14	12/09/14	82	69	84%	53,355.0	650.7	0.022	132.0
Averag	ge System Run Time	\times	\sim	67%			\sim	
	Totals for Quarter	82	69	84%	53,355	650.7	0.022	132.0

NOTES:

shaded cells = data for reporting quarter

DEFINITIONS:

% = percent

gallons/day = gallons per day

GRPH = gasoline-range petroleum hydrocarbons

lb = pound(s)

<u>Table 1-2</u> Unit 1 - TOC Property (24205) Vapor Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

	Run	Гime	SVE Pa	rameters	Catalytic	Oxidizer		GRPH Removal	
Site Visit	SVE Hour Meter	Total Time in Operation	SVE Pre-Filter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Recovery Rate ^{(3) (4)}	Cumulative Recovered ⁽⁵⁾
Date	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
10/02/12	5.0	0.21	70	146.8	330	380	1,600	21.1	0.00
10/10/12	70.2	2.93	69	149.2	330	419	2,600	27.9	75.91
10/17/12	237.7	9.90	69	149.2	330	410	3,400	40.2	356.74
10/24/12	406.9	16.95	68	144.4	330	385	2,400	38.3	626.56
11/07/12	638.2	26.59	73	140.7	330	384	1,700	26.3	879.75
12/05/12	714.2	29.76	67	148.0	330	344	150	12.0	917.76
01/08/13	1,482.9	61.79	65	153.8	330	342	35	1.3	957.95
01/17/13	1,533.7	63.90	76	153.0	330	350			
02/05/13	1,537.6	64.07	64	148.6	330	342	53	0.60	959.32
03/04/13	1,569.4	65.39	27	173.0	330	342	<10	0.42	959.87
04/03/13	1,587.2	66.13	60	157.4	330	342	14	0.14	959.98
05/08/13	1,595.4	66.48	17	175.2	330	341	22	0.27	960.07
06/05/13	2,267.7	94.49	36	166.0	330	340	<10	0.21	965.87
07/02/13	2,789.8	116.24	39	168.0	330	340	26	0.23	970.93
08/06/13	3,227.4	134.48	47	162.1	330	341	31	0.42	978.64
08/09/13	3,302.8	137.62	64	157.1	330	345			
09/04/13	3,924.4	163.52	66	152.0	330	351	580	4.31	1,103.91
10/07/13	4,715.2	196.47	66	153.1	330	356	710	8.85	1,395.37
10/14/13	4,888.3	203.68	72	155.4	330	354			
10/15/13	4,913.7	204.74	70	154.7	330	355			
10/16/13	4,936.9	205.70	66	154.4	330	364			
11/06/13	5,434.8	226.45	45	173.7	330	349	240	6.98	1,604.58
11/07/13	5,460.5	227.52	45	168.1	330	346			
12/03/13	6,084.2	253.51	74	158.2	330	355	740	7.31	1,802.39
01/13/14	6,710.4	279.60	0	0.0					
01/31/14	6,711.6	279.65	47	174.0	330	342	37	5.80	1,954.04
02/06/14	6,854.2	285.59	47	173.4	330	343			
02/07/14	6,877.1	286.55	47	174.9	330	342	110	1.15	1,961.99
3/22/14(6)	7,416.7	309.03	48	174.0 (1)	330	340	<10	0.90	1,982.27
04/18/14	7,919.8	329.99	48	173.1	330	340	<10	0.08	1,983.90
05/19/14	8,420.1	350.84	47	172.8	330	345	<10	0.08	1,985.52
06/16/14	9,088.9	378.70	50	172.2	330	345	<10	0.08	1,987.68
07/09/14	9,571.0	398.79	50	169.8	330	344	<10	0.08	1,989.23
08/12/14	10,287.5	428.65	49	167.4	330	339	19	0.18	1,994.66
09/18/14	11,168.4	465.35	48	170.1	330	341	140	1.21	2,038.92
10/22/14	11,881.3	495.05	48	166.5	330	342	220	2.72	2,119.82
11/17/14	12,301.8	512.58	52	175.0	330	341	63	2.17	2.157.88
12/09/14	12,301.3	534.05	52	175.0	330	340	15	0.61	2,170.93
, ,	estrictions and Conditio		52	max. 350	min. 240	max. 620	XXXXXXXX		XXXXXX

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Air flow rates through 02/07/14 calculated using an averaging flow sensor (Dwyer Model DS). Air flow rates after 02/07/14 calculated from data. Air flow rate from 03/22/14 is assumed value for subsequent calculations.

⁽²⁾Influent vapor-phase samples collected from SVE sample port prior to air treatment.

⁽³⁾Daily removal rate (lb/day) = ave. concentration (mg/m³) x ave. flow rate (scfm) x conversion (8.99x10⁻⁵ lb-m³-min/mg-ft³-day)

⁽⁴⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in italics .

⁽⁵⁾Cumulative mass of GRPH removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

⁽⁶⁾Samples were collected on 3/19/14, while hour readings were from 3/22/14.

DEFINITIONS:

= not analyzed, measured, or calculated	m ³ = cubic meter
< = not detected at concentration above the	max. = maximum
laboratory reporting limit	mg = milligrams
° C = degrees Celsius	min. = minimum
ave. = average	NOC = Notice of Construction
ft ³ = cubic feet	PSCAA = Puget Sound Clean Air Agency
GRPH = gasoline-range petroleum hydrocarbons	scfm = standard cubic feet per meter
iow = inches of water	SVE = soil vapor extraction
lb = pounds	Temp. = temperature
lb/day = pounds per day	

Table 1-3 Unit 1 - TOC Property (24205) Liquid Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

Site Visit		Extracted Groundwater		Hydi	Hydrocarbon Recovery - Aqueous-Phase					
Date	Flow Totalizer	Treated Between Visits	Average Flow Rate	Influent GRPH Concentration	GRPH Removed ^{(1) (2) (3)}	Cumulative GRPH Removed ^{(3) (4}				
	(gallons)	(gallons)	(gallons/day)	(µg/L)	(lb)	(lb)				
10/02/12	636.3	0	0							
10/10/12	5,761.0	5,124.7	641	18,000	0.770	0.770				
10/17/12	14,898.1	9,137.1	1,305							
10/24/12	21,888.4	6,990.3	999							
11/07/12	31,361.8	9,473.4	677	6,100	1.303	2.073				
12/05/12	35,204.9	3,843.1	137	14,000	0.449	2.522				
01/08/13	38,076.5	2,871.6	84	19,000	0.455	2.977				
01/17/13	40,712.0	2,635.5	293							
02/05/13	41,363.4	651.4	34	8,200	0.225	3.202				
03/04/13	42,860.8	1,497.4	55	19,000	0.237	3.439				
04/03/13	44,190.2	1,329.4	44	11,000	0.122	3.561				
05/08/13	46,979.7	2,789.5	80	20,000	0.466	4.027				
06/05/13	47,776.6	796.9	28	3,200	0.021	4.048				
07/02/13	63,869.9	16,093.3	596	17,000	2.283	6.331				
08/06/13	89,987.5	26,117.6	746	<100	0.011	6.342				
08/09/13	95,562.8	5,575.3	1,858							
09/04/13	131,316.9	35,754.2	1,375	2,400	0.828	7.169				
10/07/13	174,445.2	43,128.3	1,307	1,100	0.396	7.565				
10/14/13	184,151.7	9,706.5	1,387							
10/15/13	184,982.4	830.7	831							
10/16/13	185,955.0	972.6	973							
11/06/13	187,065.4	1,110.4	53	3,800	0.400	7.965				
11/07/13	188,072.0	1,006.6	1,007							
12/03/13	207,142.1	19,070.1	733	240	0.040	8.006				
01/13/14	208,153.8	1,011.7	25							
01/31/14	208,308.3	154.5	9	6,600	0.064	8.070				
02/06/14	214,154.3	5,846.0	974							
02/07/14	214,840.5	686.2	686	760	0.041	8.111				
03/19/14	238,300	23,459.5	586	6,100	1.194	9.305				
04/18/14	273,331	35,031	1,168	4,300	1.257	10.562				
05/19/14	303,504	30,173	973	2,700	0.680	11.242				
06/16/14	339,382	35,878	1,281	3,500	1.048	12.290				
07/09/14	367,276	27,894	1,213	2,500	0.582	12.872				
08/12/14	399,903	32,627	960	180	0.049	12.921				
09/18/14	441,162	41,259	1,115	<100	0.017	12.938				
10/22/14	464,280	23,118	680	<100	0.010	12.947				
11/17/14	478,016	13,736	528	<100	0.006	12.953				
12/09/14	494,517	16,501	750	<100	0.007	12.960				
ate Waste Discharg	ge Permit Number ST0007384	Maximum Daily Limits	7,000		*******					

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Influent samples collected prior to discharging to the City of Mountlake Terrace sanitary sewer.

⁽²⁾ Mass removal weight (lb) = gallons recovered x concentration (µg/L) x conversion factor (8.344E-9 lb-L/µg-gallon).

 $^{\rm (3)}$ Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in *italics* .

⁽⁴⁾Cumulative mass of GRPH removed (lb) = GRPH mass removal between sampling visits (lb) + previous cumulative total (lb).

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at concentration exceeding the laboratory reporting limit

µg/L = micrograms per liter

µg-gallon = micrograms - gallon conversion

gallons/day = gallons per day

GRPH = gasoline-range petroleum hydrocarbons

lb = pound(s)

lb-L = pounds - liter conversion

Table 1-4Unit 1 - TOC Property (24205)Vapor Stream Analytical ResultsTOC Holdings Facility No. 01-176

					Ana	llytical Results (mg	:/m ³)				
Comula Data		Inf	luent Vapor Sample	es ⁽¹⁾			Eff	luent Vapor Sampl	es ⁽²⁾		GRPH
Sample Date	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	DRE ⁽⁵⁾
	(mg/m ³)	(mg/m^3)	(mg/m ³)	(mg/m^3)	(mg/m^3)	(mg/m ³)	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	
10/02/12	1,600	2.0	10	5.5	26	<10	<0.1	<0.1	<0.1	<0.3	99.7
10/10/12	2,600	2.3	13	8.7	37	<10	<0.1	0.20	<0.1	<0.3	99.8
10/17/12	3,400	3.0	9.4	11	42	<10	<0.1	<0.1	<0.1	<0.3	99.9
10/24/12	2,400	1.5	7.0	9.4	39	<10	<0.1	<0.1	<0.1	<0.3	99.8
11/07/12	1,700	<0.5	7.0	7.3	37	<10	<0.1	<0.1	<0.1	<0.3	99.7
12/05/12	150	<0.1	0.23	<0.1	3.5	<10	<0.1	<0.1	<0.1	<0.3	96.7
01/08/13	35	<0.1	0.19	0.18	0.86	<10	<0.1	0.16	<0.1	<0.3	85.7
02/05/13	53	<0.1	0.30	0.13	0.78	<10	<0.1	<0.1	<0.1	<0.3	90.6
03/04/13	<10	<0.1	0.10	0.10	0.69	<10	<0.1	<0.1	<0.1	<0.3	
04/03/13	14	<0.1	0.18	0.14	0.90	<10	<0.1	<0.1	<0.1	<0.3	64.3
05/08/13	22	<0.1	0.23	<0.1	0.35	<10	<0.1	<0.1	<0.1	<0.3	77.3
06/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/02/13	26	<0.1	0.24	<0.1	0.48	<10	<0.1	<0.1	<0.1	<0.3	80.8
08/06/13	31	<0.1	0.21	0.14	0.79	<10	<0.1	<0.1	<0.1	<0.3	83.9
09/04/13	580	<0.1	5.0	<0.1	22	<10	<0.1	<0.1	<0.1	<0.3	99.1
10/07/13	710	< 0.1	5.7	<0.1	22	<10	<0.1	<0.1	< 0.1	<0.3	99.3
11/06/13	240	<0.1	1.6	<0.1	6.4	<10	<0.1	<0.1	<0.1	<0.3	97.9
12/03/13	740	<0.1	6.3	<0.1	19	<10	<0.1	<0.1	<0.1	<0.3	99.3
01/31/14	37	< 0.1	0.40	<0.1	0.75	<10	<0.1	<0.1	< 0.1	<0.3	86.5
02/07/14	110	<0.1	0.77	<0.1	2.2	<10	<0.1	<0.1	<0.1	<0.3	95.5
03/19/14	<10	< 0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	< 0.1	<0.3	
04/18/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
05/19/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
06/16/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/09/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
08/11/14	19	<0.1	0.12	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	73.7
09/17/14	140	<0.1	0.23	0.54	1.6	<10	<0.1	<0.1	<0.1	<0.3	96.4
10/22/14	220	<0.1	3.0	<0.1	3.3	<10	<0.1	<0.1	<0.1	<0.3	97.7
11/18/14	63	<0.1	0.57	<0.1	0.72	<10	<0.1	<0.1	<0.1	<0.3	92.1
12/09/14	15	<0.1	0.29	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	66.7
SCAA NOC-10384	Restrictions and Co	onditions			min. 214.7 ⁽⁵⁾	XXXXXXX	\times	*****		95% ^{(5) (6)}	

NOTES:

shaded cells = data for reporting quarter

 $^{(1)}$ Influent vapor-phase samples collected from SVE sample port on the pressure side of the blower.

⁽²⁾Effluent vapor-phase samples collected from sample port on the effluent stack.

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx.

⁽⁴⁾Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless effluent GRPH vapor leaving the catox does not exceed 50 ppmv (214.7 mg/m³ assuming a molecular weight of 105). ⁽⁶⁾DRE = (1-[GRPH_{influent}/GRPH_{effluent}]) x 100; non-detected influent concentrations assumed to be 50% of the laboratory's reporting limit.

DRE % based on this assumption are shown in *italics*.

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit

% = percent

catox = catalytic oxidizer

DRE = destruction and removal efficiency

GRPH = gasoline-range petroleum hydrocarbons

mg/m³ = milligrams per cubic meter

min. = minimum

NOC = Notice of Construction

ppmv = part per million volume

PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Table 1-5Unit 1- TOC Property (24205)Liquid Stream Analytical ResultsTOC Holdings Facility No. 01-176

	Groun	dwater Influ	ent - Pre GA	C Treatment	(µg/L)	Groun	dwater Influ	ent - Mid GA	C Treatment	: (µg/L)			Groundwate	er Effluent - P	ost GAC Treat	ment (μg/L)	
		GAC-1	Influent Sa	mple ⁽¹⁾			GAC-2	Influent Sa	mple ⁽²⁾				E	ffluent Disch	arge Sample ⁽³	;)		
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Total BTEX	Total Lead ⁽⁶⁾	рН ⁽⁷⁾
10/10/12	18,000	25	370	280	4,500	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.59
11/07/12	6,100	8.4	99	24	1,200	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.61
12/05/12	14,000	12	250	200	2,700	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	19.4	7.19
01/08/13	19,000	60	400	520	3,600	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.71
02/05/13	8,200	11	83	61	1,200	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.86
03/04/13	19,000	20	200	460	3,900	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.88
04/03/13	11,000	27	83	<40	2,500	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.68
05/08/13	20,000	11	450	<10	3,400	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.06
06/05/13	3,200	4.0	35	<1	350	<100	<1	<1	<1	<3	<100	<1	<1	<1	3.1	<6	3.33	6.8
07/02/13	17,000	9.9	290	190	3,200	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.74
08/06/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.89
09/04/13	2,400	1.1	18	<1	230	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.41
10/07/13	1,100	1.1	12	<1	86	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.89
11/06/13	3,800	27	150	26	810	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.94
12/03/13	240	<1	3.7	<1	19	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	7.05	6.98
01/31/14	6,600	19	370	<1	1,000	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		
02/07/14	760	1.0	6.6	<1	54	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.71
03/19/14	6,100	2.9	160	<1	1,100	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		8.49
04/18/14	4,300	<1	100	<1	650	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.65
05/19/14	2,700	2.5	62	<1	310	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.90
06/16/14	3,500	2.0	86	<1	520	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	1.04	6.59
07/09/14	2,500	1.7	35	<1	350	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.20
08/12/14	180	<1	1.5	<1	15	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.29
09/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.25
10/22/14	<100	<1	1.4	<1	4.0	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.19
11/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.56
12/09/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	13.3	7.29
State Waste Disc	charge Perm	it Number S	r0007384 Eff	luent Limits							1,000	5	∞	$\times \times \times \times$	$\infty \infty \infty$	100	1,090	6 to 10

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Inffluent samples collected prior to first GAC canister.

⁽²⁾Inffluent samples collected prior to second GAC canister.

⁽³⁾Effluent samples collected prior to sewer discharge.

⁽⁴⁾Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by EPA Method 8021B.

⁽⁶⁾Analyzed by EPA Method 200.8.

⁽⁷⁾Field measurement

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit</p>

µg/L = micrograms per liter

BTEX = benzene, toluene, ethylbenzene and xylenes

EPA = U.S. Environmental Protection Agency

GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons for gasoline-range organics

<u>Table 2-1</u> Unit 2 - TOC/Farmasonis Property (24225) Summary of System Performance

TOC Holdings Facility No. 01-176

Reportin	g Period				Volume of	Average	GRPH	GRPH
Start Date	End Date	Duration of Reporting Period (days)	System Run Time (days)	System Run Time (%)	Groundwater Discharged (gallons)	Groundwater Recovered Flow Rate (gallons/day)	Aqueous-Phase Removal (lb)	Vapor-Phase Removal (lb)
10/03/12	12/05/12	63.0	51.7	82%	12,858	204	0.005	477.4
12/05/12	03/04/13	89	52.5	59%	5,900	66	0.002	9.1
03/04/13	06/05/13	93	67.1	72%	106,670	1,147	0.235	4.9
06/05/13	09/04/13	91	82.2	90%	123,303	1,355	0.051	6.2
09/04/13	12/03/13	90	89.9	100%	89,204	991	0.046	99.6
12/03/13	01/13/14	41	41.1	100%	29,087	709	0.012	54.6
01/13/14	02/07/14	25	18.8	75%	9,854	394	0.004	18.3
02/07/14	06/16/14	129	108.4	84%	187,016	1,450	0.078	31.6
06/16/14	09/18/14	94	91	97%	120,848	1,286	0.050	6.2
09/18/14	12/09/14	82	54	66%	19,301	235.4	0.008	3.3
Averag	e System Run Time	******	\times	82%		*********		
	Totals for Quarter	82	54	66%	19,301	235.4	0.008	3.3

NOTES:

shaded cells = data for reporting quarter

DEFINITIONS:

% = percent gallons/day = gallons per day GRPH = gasoline-range petroleum hydrocarbons lb = pound(s) O&M = operations and maintenance

<u>Table 2-2</u> Unit 2 - TOC/Farmasonis Property (24225) Vapor Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

	Run 1	Гіme	SVE Par	ameters	Catalytic	c Oxidizer		GRPH Removal	
Site Visit	SVE Hour Meter	Total Time in Operation	SVE Pre-Filter Vacuum	Air Flow Rate ⁽¹⁾	Catalyst Entrance Temp.	Catalyst Exit Temp.	Influent Concentration ⁽²⁾	Daily Mass Recovery Rate ^{(3) (4)}	Cumulative Recovered ⁽⁵⁾
Date	(hours)	(days)	(iow)	(scfm)	(°C)	(°C)	(mg/m ³)	(lb/day)	(lb)
10/03/12	15.6	0.7	68	149.1	330	350	340	4.56	0.00
10/10/12	73.7	3.1	86	134.1	330	363	1,300	10.44	25.26
10/17/12	242.0	10.1	76	135.8	330	376	1,300	15.77	135.86
10/24/12	410.7	17.1	70	135.0	330	355	1,100	14.73	239.37
10/25/12	434.7	18.1	73	139.2	330	355			
11/06/12	722.8	30.1	74	137.8	330	358			
11/07/12	748.2	31.2	74	138.6	330	352	660	10.91	392.78
12/05/12	1.257.4	52.4	74	124.3	330	338	15	3.99	477.40
12/06/12	1,266.4	52.8	75	135.6					
01/08/13	1,989.7	82.9	27	164.7	330	344	15	0.19	483.35
01/09/13	2,012.1	83.8	32	163.5	330	336			
01/17/13	2,012.1	84.9	27	166.5	331	336			
02/05/13	2,490.2	103.8	33	159.5	330	335	<10	0.15	486.39
02/06/13	2,514.5	103.0	38	157.5	330	335			
03/04/13	2,517.2	104.0	31	162.9	330	335	<10	0.07	486.47
03/12/13	2,705.4	112.7	32	161.7	330	335			
04/03/13	3.230.7	134.6	33	166.8	330	335	<10	0.07	488.67
05/08/13	3,454.7	143.9	33	164.5	330	338	<10	0.07	489.37
06/05/13	4,127.1	172.0	36	158.9	330	335	<10	0.07	491.40
06/19/13	4.438.7	184.9	34	166.7	330	335			
07/02/13	4,746.1	197.8	32	164.2	330	335	<10	0.07	493.28
08/06/13	5,403.6	225.2	10	175.5	330	335	<10	0.08	495.37
08/09/13	5,475.4	228.1	20	168.6	330	335			
09/04/13	6,098.7	254.1	20	170.1	330	335	<10	0.08	497.62
10/07/13	6,890.0	287.1	34	163.9	330	336	41	0.35	509.00
10/14/13	7,062.9	294.3	35	165.2	330	336			
10/15/13	7,088.0	295.3	74	146.5	330	342			
10/16/13	7,111.3	296.3	67	147.6	330	340			
11/06/13	7,610.8	317.1	73	150.7	330	338	140	1.28	547.44
11/07/13	7,635.3	318.1	65	148.2	330	338			
12/03/13	8,257.0	344.0	65	154.2	330	337	130	1.85	597.26
12/04/13	8.287.9	345.3	66	154.2	330	337			
01/13/14	9,242.4	385.1	71	147.8	330	336	66	1.33	651.88
01/23/14	9,485.7	395.2	69						
01/31/14	9,675.8	403.2	68	147.3	330	335			
02/07/14	9,694.4	403.9	74	144.7	330	335	82	0.97	670.20
03/18/14			74		330	334	26		
04/17/14	10,859.0	452.5	68	146.6	330	336	<10	0.57	697.84
05/20/14	11,645.2	485.2	72	146.9	330	338	<10	0.07	700.00
06/16/14	12,296.4	512.4	62	152.4	330	338	<10	0.07	701.83
07/10/14	12,799.7	533.3	62	150.2	330	338	<10	0.07	703.25
08/12/14	13,588.2	566.2	61	149.4	330	338	<10	0.07	705.47
09/18/14	14,474.1	603.1	48	158.3				0.07	708.02
10/22/14	14,721.8	613.4	45	72.7				0.05	708.55
11/17/14	15,242.7	635.1	47	166.6				0.05	709.72
12/09/14	15,767.5	657.0	49	156.5				0.07	711.31
	strictions and Condition			max. 350	min. 240	max. 620	8888888	88888888	\$\$\$\$\$\$\$

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Air flow rates through 02/07/14 calculated using an averaging flow sensor (Dwyer Model DS).

Air flow rates after 02/07/14 calculated from data.

 $^{\rm (2)}$ Influent vapor-phase samples collected from SVE sample port prior to air treatment.

(3) Daily removal rate (lb/day) = ave. concentration (mg/m³) x ave. flow rate (scfm) x conversion (8.99x10⁻⁵ lb-m³-min/mg-ft³-day)

⁽⁴⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in *italics* .

⁽⁵⁾Cumulative mass of GRPH removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

DEFINITIONS:

= not analyzed, measured, or calculated	m ³ = cubic meter
< = not detected at concentration above the	max. = maximum
laboratory reporting limit	mg = milligrams
° C = degrees Celsius	min. = minimum
ave. = average	NOC = Notice of Construction
ft ³ = cubic feet	PSCAA = Puget Sound Clean Air Agency
GRPH = gasoline-range petroleum hydrocarbons	scfm = standard cubic feet per meter
iow = inches of water	SVE = soil vapor extraction
lb = pounds	Temp. = temperature
lb/day = pounds per day	

<u>Table 2-3</u> Unit 2 - TOC/Farmasonis Property (24225) Liquid Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

Site Visit		Extracted Groundwater		Hyd	Hydrocarbon Recovery - Aqueous-Phase				
Date	Flow Totalizer	Treated Between Visits	Average Flow Rate	Influent GRPH Concentration	GRPH Removed ^{(1) (2) (3)}	Cumulative GRPH Removed ^{(3) (4}			
	(gallons)	(gallons)	(gallons/day)	(µg/L)	(lb)	(lb)			
10/03/12	397.8	0	0						
10/10/12	562.6	164.8	24	<100	0.000	0.000			
10/17/12	5,392.6	4,830.0	690						
10/24/12	8,170.9	2,778.3	397						
10/25/12	8,580.4	409.5	410						
11/06/12	10,624.2	2,043.8	170						
11/07/12	10,630.5	6.3	6	<100	0.004	0.004			
12/05/12	12,858.4	2,227.9	80	<100	0.001	0.005			
12/06/12	14,221.5	1,363.1	1,363						
01/08/13	18,643.2	4,421.7	134	<100	0.002	0.008			
01/09/13	18,651.6	8.4	8						
01/17/13	18,753.9	102.3	13						
02/05/13	18,753.9	0.0	0	<100	0.000	0.008			
03/12/13	18,758.0	4.1	0	1,100	0.000	0.008			
03/13/14	18,758.0	0.0	0						
04/03/13	24,667.4	5,909.4	-17	740	0.036	0.044			
05/08/13	90,733.6	66,066.2	1,888	<100	0.028	0.072			
06/05/13	125,427.8	34,694.2	1,239	590	0.171	0.243			
06/19/13	131,990.5	6,562.7	469						
07/02/13	172,454.5	40,464.0	3,113	<100	0.020	0.262			
08/06/13	223,496.3	51,041.8	1,458	<100	0.021	0.283			
08/09/13	226,651.9	3,155.6	1,052						
09/04/13	248,730.9	22,079.0	849	<100	0.011	0.294			
10/07/13	269,136.3	20,405.4	618	<100	0.018	0.312			
10/14/13	273,636.3	4,500.0	643						
10/15/13	275,837.1	2,200.8	2,201						
10/16/13	277,480.5	1,643.4	1,643						
11/06/13	308,993.4	31,512.9	1,501	<100	0.017	0.328			
11/07/13	310,249.2	1,255.8	1,256						
12/03/13	337,935.2	27,686.0	1,065	<100	0.012	0.340			
12/04/13	339,243.0	1,307.8	1,308						
01/13/14	367,022.0	27,779.0	694	<100	0.012	0.353			
01/23/14									
01/31/14	376,637.4	9,615.4	534						
02/07/14	376,875.7	238.4	34	<100	0.004	0.357			
03/18/14	396,600	19,724.3	506	<100	0.008	0.365			
04/17/14	424,646	28,046	935	<100	0.012	0.377			
05/20/14	497,115	72,469	2,196	<100	0.030	0.407			
06/16/14	563,892	66,777	2,473	<100	0.028	0.435			
7/10/2014	603616	39,724	1,655	<100	0.017	0.451			
8/12/2014	652922	49,306	1,494	<100	0.021	0.472			
9/18/2014	684740	31,818	860	<100	0.013	0.485			
10/22/2014	687370	2,630	77	<100	0.001	0.486			
11/17/2014	695157	7,787	300	<100	0.003	0.489			
12/9/2014	704041	8,884	404	<100	0.004	0.493			
	e Permit Number ST0007384		7,000		XXXXXXXXXX	XXXXXXXXXXXX			

NOTES:

shaded cells = data for reporting quarter

 $^{\rm (1)} {\sf Effluent}$ samples collected prior to discharging to the City of Mountlake Terrace sanitary sewer.

⁽²⁾Mass removal weight (lb) = gallons recovered x concentration (µg/L) x conversion factor (8.344E-9 lb-L/µg-gallon).

⁽³⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in italics .

⁽⁴⁾Cumulative mass of GRPH removed (lb) = GRPH mass removal between sampling visits (lb) + previous cumulative total (lb).

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at concentration exceeding the laboratory reporting limit

µg/L = micrograms per liter

μg-gallon = micrograms - gallon conversion

GRPH = gasoline-range petroleum hydrocarbons

gallons/day = gallons per day lb = pound(s)

lb-L = pounds - liter conversion

Table 2-4 Unit 2 - TOC/Farmasonis Property (24225) Vapor Stream Analytical Results TOC Holdings Facility No. 01-176

	Analytical Results (mg/m ³)										
		Inf	luent Vapor Sampl	es ⁽¹⁾			Eff	luent Vapor Sample	es ⁽²⁾		GRPH
	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	DRE ⁽⁵⁾
Sample Date	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	%
10/03/12	340	0.44	1.6	0.96	1.7	<10	<0.1	0.17	<0.1	<0.3	98.5
10/10/12	1,300	0.77	<0.5	4.0	9.6	<10	<0.1	0.21	<0.1	<0.3	99.6
10/17/12	1,300	0.55	<0.5	3.7	7.9	<10	<0.1	<0.1	<0.1	<0.3	99.6
10/24/12	1,100	0.50	3.1	<0.1	11	<10	<0.1	<0.1	<0.1	<0.3	99.5
11/07/12	660	<0.1	2.7	<0.1	7.1	<10	<0.1	<0.1	<0.1	<0.3	99.2
12/05/12	15	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	66.7
01/08/13	15	<0.1	<0.1	<0.1	<0.3	<10	<0.1	0.10	<0.1	<0.3	66.7
02/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
03/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
04/03/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
05/08/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
06/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/02/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
08/06/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
10/07/13	41	<0.1	0.19	<0.1	0.4	<10	<0.1	<0.1	<0.1	<0.3	87.8
11/06/13	140	<0.1	0.52	<0.1	1.4	<10	<0.1	<0.1	<0.1	<0.3	96.4
12/03/13	130	<0.1	0.44	0.73	1.3	<10	<0.1	<0.1	<0.1	<0.3	96.2
01/13/14	66	<0.1	0.31	0.38	0.51	<10	<0.1	<0.1	<0.1	<0.3	92.4
02/07/14	82	<0.1	<0.1	0.73	0.65	<10	<0.1	<0.1	<0.1	<0.3	93.9
03/18/14	26	<0.1	<0.1	0.20	<0.3	<10	<0.1	<0.1	0.15	<0.3	80.8
04/17/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
05/20/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
06/16/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/09/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
08/11/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/17/14						<10	<0.1	<0.1	<0.1	<0.3	
10/22/14						<10	<0.1	<0.1	<0.1	<0.3	
11/18/14						<10	<0.1	<0.1	<0.1	<0.3	
12/09/14						<10	<0.1	<0.1	<0.1	<0.3	
PSCAA NOC-10384 F	Restrictions and Co	onditions			min. 214.7 ⁽⁵⁾	$\otimes \otimes \otimes \otimes \otimes$	******	******	******	95% ^{(5) (6)}	

NOTES:

shaded cells = data for reporting quarter

 $^{\rm (1)}$ Influent vapor-phase samples collected from SVE sample port on the pressure side of the blower.

⁽²⁾Effluent vapor-phase samples collected from sample port on the effluent stack.

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx.

⁽⁴⁾Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless effluent GRPH vapor leaving the catox does not exceed 50 ppmv (214.7 mg/m³ assuming a molecular weight of 105).

⁽⁶⁾DRE = (1-[GRPH_{influent}/GRPH_{effluent}]) x 100; non-detected influent concentrations assumed to be 50% of the laboratory's reporting limit.

DRE % based on this assumption are shown in italics.

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit

% = percent

catox = catalytic oxidizer

DRE = destruction and removal efficiency

GRPH = gasoline-range petroleum hydrocarbons

mg/m³ = milligrams per cubic meter

min. = minimum

NOC = Notice of Construction

ppmv = part per million volume

PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Table 2-5 Unit 2 - TOC/Farmasonis Property (24225) Liquid Stream Analytical Results TOC Holdings Facility No. 01-176

	Groundwater Influent - Pre GAC Treatment (µg/L) GAC-1 Influent Sample ⁽¹⁾					Groun	Groundwater Influent - Mid GAC Treatment ($\mu g/L$)				Groundwater Effluent - Post GAC Treatment (µg/L)							
							GAC-2	Influent Sa	mple ⁽²⁾		Effluent Discharge Sample ⁽³⁾							
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Total BTEX	Total Lead ⁽⁶⁾	рН ⁽⁷⁾
10/10/12	<100	<1	<1	<1	3.1	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.59
11/07/12	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.71
12/05/12	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	76.5	8.05
01/08/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.29
02/05/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.31
03/13/13	1,100	2.9	<1	14	27	-					<100	<1	<1	<1	<3	<6		7.59
04/03/13	740	<1	<1	<1	7.9	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.08
05/08/13	<100	<1	<1	<1	5.1	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.51
06/05/13	590	2.0	1.8	14	120	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	4.51	6.68
07/02/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.97
08/06/13	<100	<1	<1	<1	5.2	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.10
09/04/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.96
10/07/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.17
11/06/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.92
12/03/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	1.59	7.04
01/13/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.13
02/07/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.45
03/18/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.86
04/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.87
05/20/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.18
06/16/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	<1	6.91
07/09/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.82
08/12/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.12
09/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.04
10/22/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		5.92
11/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.83
12/09/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	<1	7.29
State Waste Dis	state Waste Discharge Permit Number ST0007384 Effluent Limits									1,000 5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					6 to 10			

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Inffluent samples collected prior to first GAC canister.

 $\ensuremath{^{(2)}}\xspace$ Inffluent samples collected prior to second GAC canister.

⁽³⁾Effluent samples collected prior to sewer discharge.

⁽⁴⁾Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by EPA Method 8021B.

⁽⁶⁾Analyzed by EPA Method 200.8.

⁽⁷⁾Field measurement

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit

µg/L = micrograms per liter

BTEX = benzene, toluene, ethylbenzene and xylenes

EPA = U.S. Environmental Protection Agency

GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons for gasoline-range organics

Table 3-1 Unit 3 - Drake Property (24309) Summary of System Performance

TOC Holdings Facility No. 01-176

Reportin	Reporting Period					Average			
Start Date	End Date	Duration of Reporting Period (days)	System Run Time (days)	System Run Time (%)	Volume of Groundwater Discharged (gallons)	Groundwater Recovered Flow Rate (gallons/day)	GRPH Aqueous-Phase Removal (lb)	GRPH Vapor-Phase Removal (lb)	
10/02/12	12/05/12	64	58.6	92%	71,160	1,111.9	0.029	31.5	
12/05/12	03/04/13	89	73.3	82%	30,268.8	340.1	0.258	37.6	
03/04/13	06/05/13	93	39.6	43%	74,015.9	795.9	0.491	2.7	
06/05/13	09/04/13	91	58.1	64%	68,178.7	749.2	0.158	4.6	
09/04/13	12/03/13	90	75.8	84%	211,042.8	2,344.9	0.088	6.3	
12/03/13	01/13/14	41	41.0	100%	40,409.7	985.6	0.017	3.4	
01/13/14	03/18/14	64	58.0	91%	132,723.9	2,073.8	0.055	50.4	
03/18/14	06/16/14	90	71.3	79%	206,572.0	2,295.2	0.086	5.9	
06/16/14	09/18/14	94	85.2	91%	225,458.0	2,398.5	0.129	7.0	
09/18/14	12/09/14	82	70.8	86%	203,925.0	2,486.9	0.085	5.9	
Averag	ge System Run Time	****		79%		*****	\times	****	
	Totals for Quarter	82	70.8	86%	203,925	2,486.9	0.085	5.9	

NOTES:

shaded cells = data for reporting quarter

DEFINITIONS:

% = percent gallons/day = gallons per day GRPH = gasoline-range petroleum hydrocarbons lb = pound(s)

<u>Table 3-2</u> Unit 3 - Drake Property (24309) Vapor Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

Hour Meter (hours) 11.2 75.7 243.7 411.9 436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,166.8 4,400.3 5,520.0 6,311.3	Total Time in Operation (days) 0.47 3.15 10.15 17.16 18.20 30.20 31.3 59.1 93.0 113.8 132.4 166.2 177.0 183.3 210.6 230.0	SVE Pre-Filter Vacuum (iow) 70.0 73.0 74.0 74.0 74.0 76 76 76 71 64 27 17 10 13	Air Flow Rate ⁽¹⁾ (scfm) 143.8 140.4 141.7 139.9 142.8 137.6 139.1 141.9 137.3 144.2 144.2 144.6 152.4 173.5 172.9 171.7 182.6	Catalyst Entrance Temp. (°C) 330.0 330.0 330 330	Catalyst Exit Temp. (*C) 340 338 337 338 338 338 338 338 338 340 337 338 337 338 337 338 337 338 337 338 338	Influent Concentration ⁽²⁾ (mg/m ³) 13 12 <10 <10 160 <10 160 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Daily Mass Recovery Rate ⁽³⁾⁽⁴⁾ (lb/day) 0.2 0.1 0.1 0.1	Cumulative Recovered ⁽⁵⁾ (b) 0.00 0.43 1.18 1.63 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.63 71.85 72.73 74.91
11.2 75.7 243.7 411.9 436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	0.47 3.15 10.15 17.16 18.20 30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	70.0 73.0 74.0 74.0 74.0 74.0 76 76 76 70 71 64 27 27 17 10	143.8 140.4 141.7 139.9 142.8 137.6 139.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330.0 330.0 330.0 330.0	340 338 337 338 338 337 338 340 337 337 337 337 338 338 338 338 338.0 338.0	13 12 <10 <10	0.2 0.2 0.1 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1	0.00 0.43 1.18 1.63 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
75.7 243.7 411.9 436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,552.0 6,311.3	3.15 10.15 17.16 18.20 30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	73.0 74.0 74.0 74.0 76 76 76 76 70 71 64 27 27 27 17 10	140.4 141.7 133.9 142.8 137.6 133.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330.0 330.0 330.0	338 337 338 338 338 337 338 340 337 337 337 337 338 338 301.0 338.0 338.0	12 <10 -	0.2 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.43 1.18 1.63 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
243.7 411.9 436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,005.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	10.15 17.16 18.20 30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	74.0 74.0 74.0 77.0 76 83 70 71 64 27 27 27 17 10	141.7 139.9 142.8 137.6 139.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330 330 330	337 338 338 337 338 340 337 337 337 337 338 338 338 338 338.0 338.0 338	<10 <10 	0.1 0.1 0.1 1.0 1.0 0.1 0.1 0.1 0.1 0.1	1.18 1.63 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
411.9 436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	17.16 18.20 30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	74.0 74.0 77.0 76 83 70 71 64 27 27 27 17 10	139.9 142.8 137.6 139.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330 330 330	338 337 338 340 337 337 337 337 338 338 338 338 338.0 338.0 338.0	<10 	0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1 0.1	1.63 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
436.7 724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	18.20 30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	74.0 77.0 76 83 70 71 64 27 27 27 17 10	142.8 137.6 133.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330 330. 330.0 330.0 330.0 330.0	338 337 338 340 337 337 338 338 338 301.0 338.0 338.0 338			 2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
724.8 750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	30.20 31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	77.0 76 83 70 71 64 27 27 17 10	137.6 139.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330 330.0 330.0 330.0 330.0	337 338 340 337 337 338 338 301.0 338.0 338.0 338		 0.1 1.0 1.0 0.1 0.1 0.1 0.1 0.1	2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
750.3 1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	31.3 59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	76 76 83 70 71 64 27 27 17 10	139.1 141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330 330.0 330.0 330.0	338 340 337 337 338 338 301.0 338.0 338.0 338	<10 160 <10 <10 <10 <10 <10 <10 <10 <1	0.1 1.0 1.0 0.1 0.1 0.1 0.1 0.1	2.51 31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
1,417.6 2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	59.1 93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	76 83 70 71 64 27 27 17 10	141.9 137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330 330 330.0 330.0 330.0 330.0	340 337 337 338 338 301.0 338.0 338.0 338.0	160 <10 <10 <10 <10 <10 <10 <10 <10	1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1	31.48 66.61 67.93 69.13 71.13 71.63 71.85 72.73
2,231.8 2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	93.0 113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	83 70 71 64 27 27 27 17 10	137.3 144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330 330.0 330.0 330.0 330.0	337 337 338 338 301.0 338.0 338	<10 <10 <10 <10 <10 <10 <10 <10	1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	66.61 67.93 69.13 71.13 71.63 71.85 72.73
2,731.0 3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	113.8 132.4 162.3 169.2 172.0 183.3 210.6 230.0	70 71 64 27 27 17 10	144.2 144.6 152.4 173.5 172.9 171.7 182.6	330 330 330 330.0 330.0 330.0 330.0	337 338 338 301.0 338.0 338	<10 <10 <10 <10 <10 <10 <10	0.1 0.1 0.1 0.1 0.1 0.1 0.1	67.93 69.13 71.13 71.63 71.85 72.73
3,177.5 3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	132.4 162.3 169.2 172.0 183.3 210.6 230.0	71 64 27 27 17 10	144.6 152.4 173.5 172.9 171.7 182.6	330 330 330.0 330.0 330.0 330.0	338 338 301.0 338.0 338	<10 <10 <10 <10 <10 <10	0.1 0.1 0.1 0.1 0.1 0.1	69.13 71.13 71.63 71.85 72.73
3,894.4 4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	162.3 169.2 172.0 183.3 210.6 230.0	64 27 27 17 10	152.4 173.5 172.9 171.7 182.6	330 330.0 330.0 330.0 330	338 301.0 338.0 338	<10 <10 <10 <10 <10	0.1 0.1 0.1 0.1	71.13 71.63 71.85 72.73
4,059.7 4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	169.2 172.0 183.3 210.6 230.0	27 27 17 10	173.5 172.9 171.7 182.6	330.0 330.0 330	301.0 338.0 338	<10 <10 <10	0.1 0.1 0.1	71.63 71.85 72.73
4,126.8 4,400.3 5,055.3 5,520.0 6,311.3	172.0 183.3 210.6 230.0	27 17 10	172.9 171.7 182.6	330.0 330	338.0 338	<10 <10	0.1 0.1	71.85 72.73
4,400.3 5,055.3 5,520.0 6,311.3	183.3 210.6 230.0	17 10	171.7 182.6	330	338	<10	0.1	72.73
5,055.3 5,520.0 6,311.3	210.6 230.0	10	182.6					
5,520.0 6,311.3	230.0			330	338		0.1	74.04
6,311.3		13				<10	0.1	74.91
	262.0		181.6	330	338	<10	0.1	76.49
		13	183.7	330	337	<10	0.1	79.20
6.484.1	270.2	14	185.6	330	337			
6,509.2	271.2	15	184.9	330	337			
7,031.9	293.0	18	185.6	330	338	<10	0.1	81.69
7,056.6	294.0	18	172.7	330	337			
7,339.5	305.8	20	186.4	330	338	<10	0.1	82.76
7,368.7	307.0	25	185.1	330	338			
8,323.6	346.8	24	186.6	330	337	<10	0.1	86.20
8,620.1	359.2	26	186.1	330	338			
8,786.4	366.1	20	186.0	330	340			
8,766.0	365.3	20	188.9	330	340	98	0.9	102.22
9,715.1	404.8	24	187.0	330	338	<10	0.9	136.63
10,370.2	432.1	27	183.5	330	340	<10	0.1	138.91
10,942.5			184.9	330		<10	0.1	140.88
11,425.1	476.0		181.8	330	342	<10	0.1	142.54
11.846.3							0.1	143.98
12,607.6								146.57
13.470.3								149.54
								151.54
14.646.6						-		153.64
								155.47
13,100.0		10				XXXXXXX		
1 1 1 1 1 1	9,766.0 9,715.1 0,370.2 0,942.5 1,425.1 1,846.3 2,607.6 3,470.3 4,047.2 4,646.6 5,168.6	8,766.0 365.3 9,715.1 404.8 0,370.2 432.1 0,942.5 455.9 1,425.1 476.0 1,846.3 493.6 2,607.6 525.3 3,470.3 561.3 4,047.2 585.3 4,646.6 610.3	8,766.0 365.3 20 9,715.1 404.8 24 0,370.2 432.1 27 0,942.5 455.9 22 1,425.1 476.0 26 1,846.3 493.6 24 2,607.6 525.3 26 3,470.3 561.3 17 4,047.2 585.3 18 4,646.6 610.3 19 5,168.6 632.0 19	8,766.0 365.3 20 188.9 9,715.1 404.8 24 187.0 0,370.2 432.1 27 183.5 0,942.5 455.9 22 184.9 1,425.1 476.0 26 181.8 1,846.3 493.6 24 182.7 2,607.6 525.3 26 181.7 3,470.3 561.3 17 185.0 4,047.2 585.3 18 185.2 4,646.6 610.3 19 189.1 5,168.6 632.0 19 185.6	5,766.0 365.3 20 188.9 330 9,715.1 404.8 24 187.0 330 0,370.2 432.1 27 183.5 330 0,942.5 455.9 22 184.9 330 1,425.1 476.0 26 181.8 330 1,846.3 493.6 24 182.7 330 2,607.6 525.3 26 181.7 330 3,470.3 561.3 17 185.0 4,047.2 585.3 18 185.2 4,646.6 610.3 19 185.6 5,168.6 632.0 19 185.6	5,766.0 365.3 20 188.9 330 340 9,715.1 404.8 24 187.0 330 338 0,370.2 432.1 27 183.5 330 340 0,942.5 455.9 22 184.9 330 342 1,425.1 476.0 26 181.8 330 342 1,846.3 493.6 24 182.7 330 341 2,607.6 525.3 26 181.7 330 337 3,470.3 561.3 17 185.0 4,047.2 585.3 18 185.2 4,646.6 610.3 19 185.6 5,168.6 632.0 19 185.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Air flow rates through 02/07/14 calculated using an averaging flow sensor (Dwyer Model DS). Air flow rates after 02/07/14 calculated from data. Air flow rate from 03/18/14 is assumed value for subsequent calculations.

(2) a contract of the second sec

⁽²⁾Influent vapor-phase samples collected from SVE sample port prior to air treatment.

 $^{(3)}$ Daily removal rate (lb/day) = ave. concentration (mg/m³) x ave. flow rate (scfm) x conversion (8.99x10⁻⁵ lb-m³-min/mg-ft³-day) ⁽⁴⁾Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in *italics* .

⁽⁵⁾Cumulative mass of GRPH removed (lb) = daily removal rate (lb/day) x time in operation (days) + previous cumulative total (lb).

DEFINITIONS:

= not analyzed, measured, or calculated	m ³ = cubic meter
< = not detected at concentration above the	max. = maximum
laboratory reporting limit	mg = milligrams
° C = degrees Celsius	min. = minimum
ave. = average	NOC = Notice of Construction
ft ³ = cubic feet	PSCAA = Puget Sound Clean Air Agency
GRPH = gasoline-range petroleum hydrocarbons	scfm = standard cubic feet per meter
iow = inches of water	SVE = soil vapor extraction
lb = pounds	Temp. = temperature
lb/day = pounds per day	

<u>Table 3-3</u> Unit 3 - Drake Property (24309) Liquid Stream - System Performance Monitoring Data

TOC Holdings Facility No. 01-176

Site Visit		Extracted Groundwater		Hyd	rocarbon Recovery - Aqueous-	Phase
	Flow Totalizer	Treated Between Visits	Average Flow Rate	Influent GRPH Concentration	GRPH Removed ^{(1) (2) (3)}	Cumulative GRPH Removed ^{(3) (4)}
Date	(gallons)	(gallons)	(gallons/day)	(µg/L)	(lb)	(lb)
10/02/12	1,178.0					
10/10/12	5,075.9	3,897.9	487	<100	0.002	0.002
10/17/12	15,755.8	10,679.9	1,526			
10/24/12	27,288.0	11,532.2	1,647			
10/25/12	28,809.6	1,521.6	1,522			
11/06/12	36,398.8	7,589.2	632			
11/07/12	38,565.1	2,166.3	2,166	<100	0.014	0.016
12/05/12	71,160.2	32,595.1	1,164	<100	0.014	0.029
01/08/13	71,627.1	466.9	14	<100	0.000	0.029
02/06/13	84,429.4	12,802.4	441	160	0.017	0.046
03/04/13	101,429.0	16,999.6	654	1,700	0.241	0.288
04/03/13	119,013.8	17,584.8	586	<100	0.007	0.295
05/08/13	157,058.4	38,044.6	1,087	1,500	0.476	0.771
06/05/13	175,444.9	18,386.5	657	<100	0.008	0.779
07/02/13	175,445.7	0.8	0			
08/06/13	181,799.7	6,354.0	182	2,500	0.133	0.911
09/04/13	243,623.6	61,823.9	2,132	<100	0.026	0.937
10/07/13	333,942.9	90,319.3	2,737	<100	0.038	0.975
10/14/13	355,115.5	21,172.6	3,025			
10/15/13	358,033.9	2,918.4	2,918			
11/06/13	420,282.1	62,248.2	2,829	<100	0.036	1.011
11/07/13	423,365.1	3,083.0	3,083			
12/03/13	454,666.4	31,301.3	1,204	<100	0.014	1.025
12/04/13	458,180.0	3,513.6	3,514			
01/13/14	495,076.1	36,896.1	922	<100	0.017	1.042
01/31/14	506,528.6	11,452.5	636			
02/07/14	523,790.1	17,261.5	2,466	<100	0.012	1.054
03/18/14	627,800	104,010	2,667	<100	0.043	1.097
04/18/14	722,961	95,161	3,070	<100	0.040	1.137
05/19/14	791,030	68,069	2,196	<100	0.028	1.166
06/16/14	834,372	43,342	1,548	<100	0.018	1.184
07/10/14	887,218	52,846	2,202	130	0.057	1.241
08/13/14	964,443	77,225	2,271	<100	0.032	1.273
09/18/14	1,059,830	95,387	2,650	<100	0.040	1.313
10/22/14	1,142,560	82,730	2,433	<100	0.035	1.347
11/17/14	1,205,945	63,385	2,438	<100	0.026	1.374
12/09/14	1,263,755	57,810	2,628	<100	0.024	1.398
1 1	ge Permit Number ST0007384	Maximum Daily Limits	7,000		*******	

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Effluent samples collected prior to discharging to the City of Mountlake Terrace sanitary sewer.

⁽²⁾ Mass removal weight (lb) = gallons recovered x concentration (µg/L) x conversion factor (8.344E-9 lb-L/µg-gallon).

 $^{\rm (3)}$ Nondetectable influent concentrations assumed to be 50% of the laboratory's lower reporting limit.

Removal rates based upon this assumption are shown in *italics*.

⁽⁴⁾Cumulative mass of GRPH removed (lb) = GRPH mass removal between sampling visits (lb) + previous cumulative total (lb).

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at concentration exceeding the laboratory reporting limit

µg/L = micrograms per liter

µg-gallon = micrograms - gallon conversion

gallons/day = gallons per day

GRPH = gasoline-range petroleum hydrocarbons

lb = pound(s)

Ib-L = pounds - liter conversion

Table 3-4Unit 3 - Drake Property (24309)Vapor Stream Analytical ResultsTOC Holdings Facility No. 01-176

					Ana	alytical Results (mg	/m³)				
		Inf	uent Vapor Sample	es ⁽¹⁾			Eff	luent Vapor Sampl	es ⁽²⁾		GRPH
	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	GRPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	DRE ⁽⁵⁾
Sample Date	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	(mg/m ³)	%
10/02/12	13	<0.1	0.13	0.12	0.35	<10	<0.1	<0.1	<0.1	<0.3	61.5
10/10/12	12	<0.1	0.10	<0.1	<0.3	<10	<0.1	0.18	<0.1	<0.3	58.3
10/17/12	<10	<0.1	0.17	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
10/24/12	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
11/07/12	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
12/05/12	160	<0.1	<0.1	1.50	0.99	<10	<0.1	<0.1	<0.1	<0.3	96.9
01/08/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	0.12	<0.1	<0.3	
02/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
03/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
04/03/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
05/15/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
06/05/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/02/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
08/06/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/04/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
10/07/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
11/06/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
12/03/13	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
01/13/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
02/07/14	98	<0.1	<0.1	0.34	0.65	<10	<0.1	<0.1	<0.1	<0.3	94.9
03/18/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
04/18/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
05/19/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
06/16/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
07/09/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
08/11/14	<10	<0.1	<0.1	<0.1	<0.3	<10	<0.1	<0.1	<0.1	<0.3	
09/17/14						<10	<0.1	<0.1	<0.1	<0.3	
10/22/14						<10	<0.1	<0.1	<0.1	<0.3	
11/18/14						<10	<0.1	<0.1	<0.1	<0.3	
12/09/14						<10	<0.1	<0.1	<0.1	<0.3	
PSCAA NOC-10384	Restrictions and Co	nditions				min. 214.7 ⁽⁵⁾		******	******	XXXXXXXX	95% ^{(5) (6)}

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Influent vapor-phase samples collected from SVE sample port on the pressure side of the blower.

 $\ensuremath{^{(2)}}\xspace$ Effluent vapor-phase samples collected from sample port on the effluent stack.

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Gx.

⁽⁴⁾Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁽⁵⁾DRE shall be at least 95% unless effluent GRPH vapor leaving the catox does not exceed 50 ppmv (214.7 mg/m³ assuming a molecular weight of 105).

⁽⁶⁾DRE = (1-[GRPH_{influent}/GRPH_{effluent}]) x 100; non-detected influent concentrations assumed to be 50% of the laboratory's reporting limit.

DRE % based on this assumption are shown in italics .

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit

% = percent

catox = catalytic oxidizer

DRE = destruction and removal efficiency

GRPH = gasoline-range petroleum hydrocarbons mg/m^3 = milligrams per cubic meter

ng/m = mingrums per

min. = minimum

NOC = Notice of Construction

ppmv = part per million volume PSCAA = Puget Sound Clean Air Agency

SVE = soil vapor extraction

Table 3-5Unit 3 - Drake Property (24309)Liquid Stream Analytical ResultsTOC Holdings Facility No. 01-176

	Groun	dwater Influ	ent - Pre GA	C Treatment	(µg/L)	Groun	dwater Influ	ent - Mid GA	C Treatment	: (µg/L)			Groundwate	er Effluent - P	ost GAC Trea	<mark>tment</mark> (μg/L)	
		GAC-1	Influent Sa	mple ⁽¹⁾			GAC-2	Influent Sa	mple ⁽²⁾				E	ffluent Disch	arge Sample ⁽	3)		
Sample Date	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	GRPH ⁽⁴⁾	Benzene ⁽⁵⁾	Toluene ⁽⁵⁾	Ethyl- benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Total BTEX	Total Lead ⁽⁶⁾	pH ⁽⁷⁾
10/10/12	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.87
11/07/12	<100	1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.83
12/05/12	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	4.05	7.84
01/08/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.06
02/05/13	160	<1	<1	1.8	5.8	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.02
03/04/13	1,700	<1	1.4	24	160	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.64
04/03/13	<100	<1	<1	<1	3.7	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.89
05/08/13	1,500	<1	<1	16	120	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.41
06/05/13	<100	<1	<1	<1	4.0	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	2.99	7.05
07/02/13	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	<100	<1	<1	<1	<3	<6		6.35
08/06/13	2,500	1	2.3	40	260	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		8.07
09/04/13	<100	<1	<1	<1	3.6	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.03
10/07/13	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.09
11/06/13	<100	<1	<1	<1	5.7	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.94
12/03/13	<100	<1	<1	<1	5.7	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	1.9	7.35
01/13/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		
02/07/14	<100	<1	<1	<1	3.3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.36
03/18/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		8.38
04/18/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.40
05/19/14	<100	<1	<1	<1	5.6	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.25
06/16/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	1.05	5.94
07/09/14	130	<1	<1	<1	3.8	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		6.67
08/13/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.59
09/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.10
10/22/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		5.97
11/17/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6		7.66
12/09/14	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<100	<1	<1	<1	<3	<6	1.09	6.89
State Waste Dise	charge Perm	it Number S	0007384 Eff	luent Limits							1,000	5	8.885	$\times \times \times$	$\infty \infty \infty$	100	1,090	6 to 10

NOTES:

shaded cells = data for reporting quarter

⁽¹⁾Inffluent samples collected prior to first GAC canister.

 $\ensuremath{^{(2)}}\xspace$ Inffluent samples collected prior to second GAC canister.

⁽³⁾Effluent samples collected prior to sewer discharge.

⁽⁴⁾Analyzed by Method NWTPH-Gx.

⁽⁵⁾Analyzed by EPA Method 8021B.

⁽⁶⁾Analyzed by EPA Method 200.8.

⁽⁷⁾Field measurement

DEFINITIONS:

-- = not analyzed, measured, or calculated

< = not detected at a concentration exceeding the laboratory reporting limit</p>

µg/L = micrograms per liter

BTEX = benzene, toluene, ethylbenzene and xylenes

EPA = U.S. Environmental Protection Agency

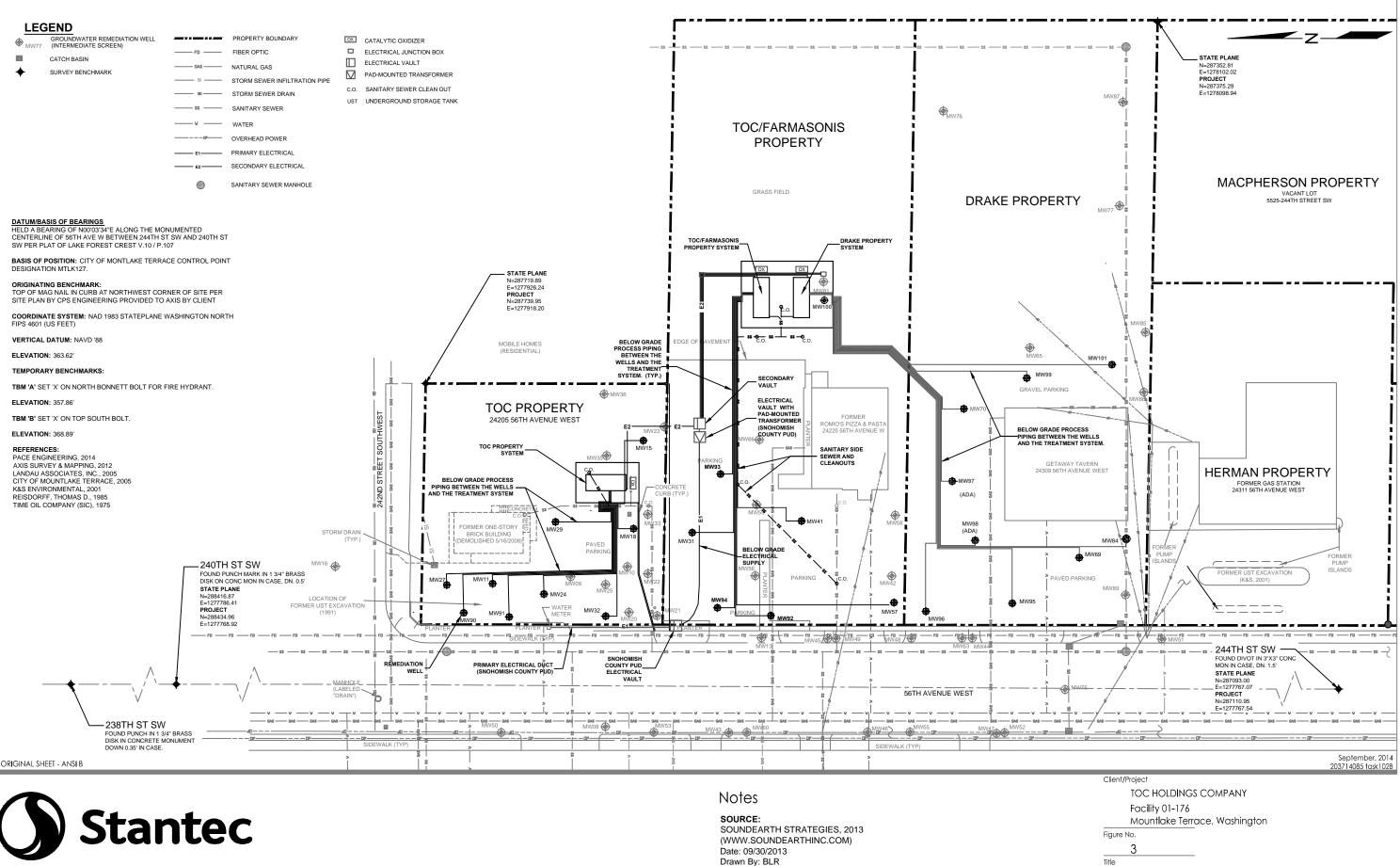
GAC = granular activated carbon

GRPH = gasoline-range petroleum hydrocarbons

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons for gasoline-range organics

Figures

- Figure 1: Project Location Map
- Figure 2: Site Map
- Figure 3: Remediation Systems and Site Details Map
- Figure 4: Piping and Instrumentation Diagram
- Figure 5: Outfall Sampling Locations



Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

WA\Clients\Time_OihTOC-MountlakeTerrace_BA1402800\MXDs\WorkingMXDs\Figure2_S

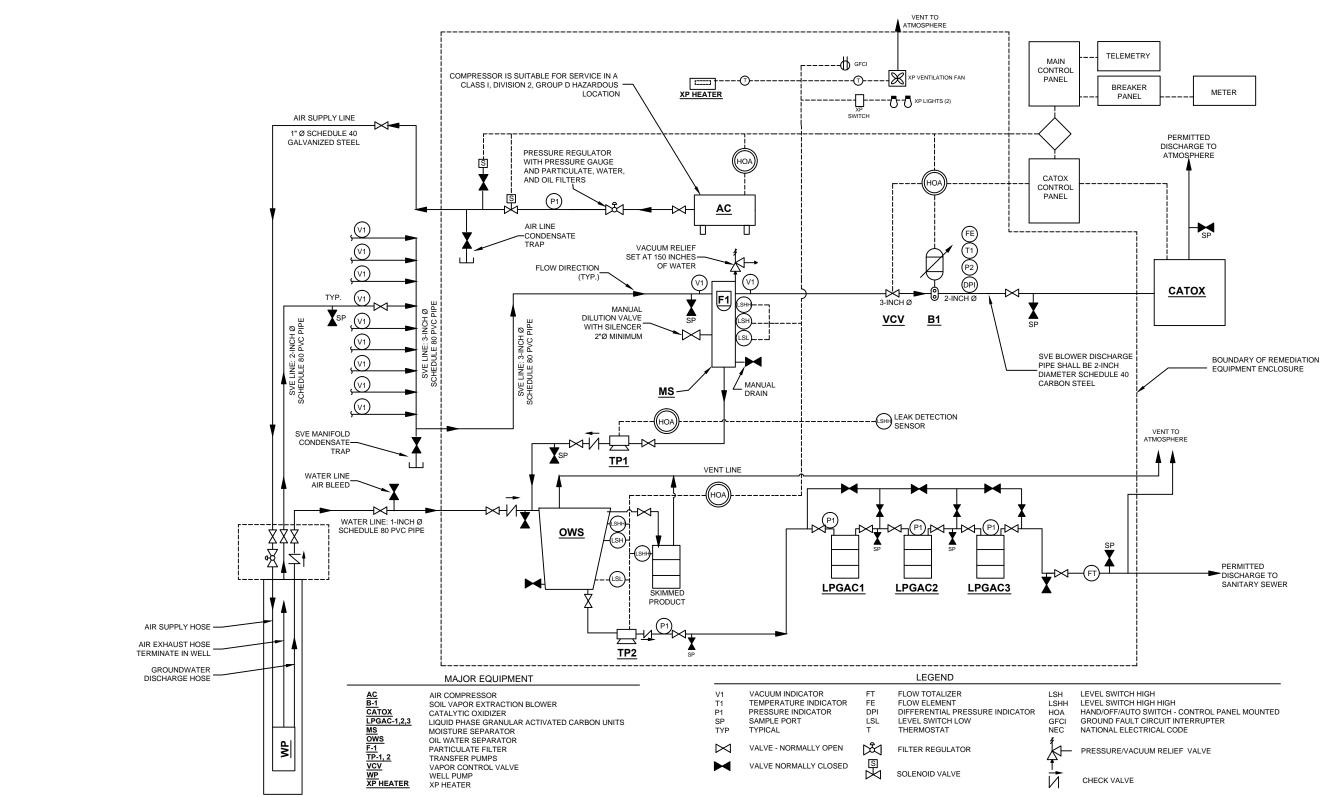
Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

10101 36th Ave. W, Ste. 203 Lynnwood, Washington 98036

dwb

Map.

Details

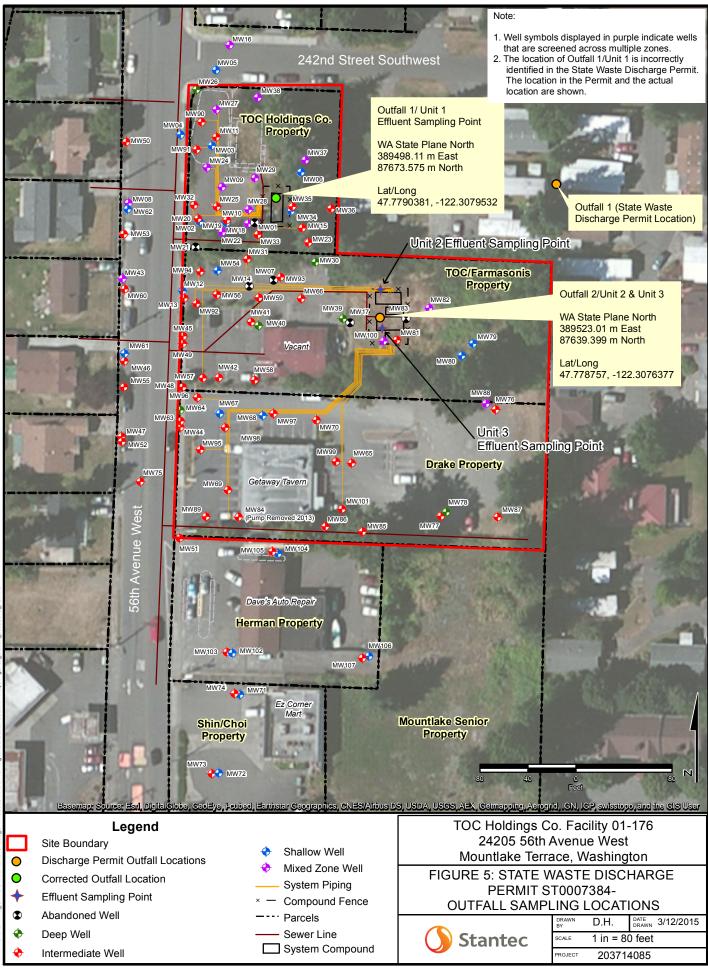

And Site [

S

2:\WA\TOC_Holdings_Co 203714085\Figure 3 Remediation Syster 2014/10/16 10:07 AM By: Pixton, Connie

Drawn By: BLR Checked By: DHG/TSM CadFile: 01-176_2012Q4_O&MI_FIG01

Remediation Systems and Site Details Map


10101 36th Ave. W, Ste. 203 Lynnwood, Washington 98036

Notes

SOURCE: SOUNDEARTH STRATEGIES, 2013 (WWW.SOUNDEARTHINC.COM) Date: 12/03/2012 Drawn By: EAM/BLR Checked By: MES/TSM CadFile: 01-176_2013Q3_PID

September, 2014 203714085 task102B

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Appendix A

Laboratory Analytical Reports – Vapor

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410424 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410424 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
410424 -01	1VINF
410424 -02	1VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410424 Date Extracted: 10/24/14 Date Analyzed: 10/24/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
1VINF 410424-01	<0.1	3.0	<0.1	3.3	220	100
1VEFF 410424-02	<0.1	<0.1	<0.1	<0.3	<10	94
Method Blank 04-2122 MB	<0.1	<0.1	<0.1	<0.3	<10	97

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	410354-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m³	0.10	0.12	15
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m³	< 0.3	< 0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	89	70-130
Toluene	mg/m³	5.0	90	70-130
Ethylbenzene	mg/m ³	5.0	93	70-130
Xylenes	mg/m ³	15	91	70-130
Gasoline	mg/m ³	100	102	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

4200424	24			SAMPLE CHAIN OF CUSTODY	CHAIN (OF	CU	STC	NDC		7	ME		10-	10 10 10	60	41-					
Send Report To	ebe kah	Brooks		SAMPI	SAMPLERS (signature) Hda	natu	re)	å		. Valt	2					┑║	Page #	e #	Page # of		S F	
ante				PROJE	PROJECT NAME/NO.	N		ľ	ļ				PO#	#			X Standard (2 Weeks)	urd (2	Week	s) t	Ē	
19 101	W 36th	Ave	£ 202													R .	Rush charges authorized by	urges	author	rized	by	
	Lynnwood	×4	98036	REMARKS	RKS						ŀ						SAMPLE DISPOS	MPI se aft	SAMPLE DISPOSAL pose after 30 days	POS. ays	F	
Phone # 425-917-4994Fax #	994 Hax	#															G Return samples	all w	ples ith inst	ructio	Suc	
										AN/	ANALYSES REQUESTED	SES	REC	QUE	STE	D		_				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	PH-Gasoline	ГЕХ by 8021B	/OCs by8260	VOCs by 8270	HFS									Notes	ŝ	
JVINE	di k-B	10/22/14	1445	Air	2		×	×														
TVERE	02 T	10/22/14	1455	Air	2		$\boldsymbol{\star}$	×														
													<u> </u>		<u> </u>							
													1	+								
													1					_				
																Sa	Samples received at	e ei	ved at	₹[20°0	0
Friedman & Bruya, Inc.	SIC Relinquished by	SIGN	SIGNATURE		`	PRINT NAME	NA	ME			\perp			COMPANY	PA	R		Þ	DATE		TIME	
	Received by:	y: per			Nath	4	-12	h	152	1		12	F		ľ			10	ilit	6	(990)	
	Relinquished by:	ed b		1	Mr. H		15	n.		6		-		R	r	1		to /	22	5	220	
¥ 	Received by:)y:																				
FORMS\COC\COC.DOC									Í		Ļ											

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 25, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411305 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1125r.doc

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411305 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
411305 -01	1 V INF
411305 -02	1 V EFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411305 Date Extracted: 11/20/14 Date Analyzed: 11/20/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
1 V INF 411305-01	<0.1	0.57	<0.1	0.72	63	89
1 V EFF 411305-02	<0.1	<0.1	<0.1	<0.3	<10	77
Method Blank 04-2359 MB	<0.1	<0.1	<0.1	<0.3	<10	88

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411305

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 411305-01 (Duplicate) Duplicate RPD Reporting Sample Units Result Analyte Result (Limit 20) Benzene mg/m³ < 0.1 < 0.1 nm Toluene mg/m³ 0.57 0.55 4 Ethylbenzene mg/m³ < 0.1 < 0.1 nm Xylenes mg/m³ 0.80 0.72 11 Gasoline mg/m³ 17 63 75

Laboratory Code: Laboratory Control Sample

		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Benzene	mg/m³	5.0	82	70-130				
Toluene	mg/m ³	5.0	82	70-130				
Ethylbenzene	mg/m ³	5.0	87	70-130				
Xylenes	mg/m ³	15	86	70-130				
Gasoline	mg/m ³	100	114	70-130				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

HII305 SAMPLE CHAIN OF CUSTODY HE H-1/2 H SamPterson Followich SAMPLERS (ignume) Huddon TUC MUST TUC MUST Company Shaft TOC MUST FOR Sample D Sample D TOC MUST Formation Sample D Lab Date Time Sample D Date Time Sample D Sample D Sample D Sample D Sample D Sample D Date Time Sample D Sample Type Sample D	FORM	Fax	Ph. (Seat	3012	Frie							<u> </u>	2	>			Pho	City	Add	Sent	
SAMPLE CHAIN OF CUSTODY ME 11-18 - 14 SAMPLERS (signature) + Undern TOC MLT / 203700102 REMARKS Unit A Sample Type containers and 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	FORMS/COC/COC.DOC	Fax (206) 283-5044	(206) 285-8282	tle, WA 98119-2029	2 16th Avenue West	dman & Bruya, Inc.								1 V EFF	AN INE	Sample ID		ne # 425-917-	, State, ZIP Lyn	ress 1910 W	a Report To Kepak	411305
SAMPLE CHAIN OF CUSTODY ME 11-18 - 14 SAMPLERS (signature) + Undern TOC MLT / 203700102 REMARKS Unit A Sample Type containers and 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		Receive	Relinqu	Keceive	Relinqu									02 A	0/ } -	ID B		HONE	505	364	ind b	
SAMPLE CHAIN OF CUSTODY ME 11-18 - 14 SAMPLERS (signature) + Undern TOC MLT / 203700102 REMARKS Unit A Sample Type containers and 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		:d by:	ished by	d by:	ushed b			+			 			5	17 11-	· · · · · · · · · · · · · · · · · · ·		ax #	å S	Ne	Nool	
SAMPLE CHAIN OF CUSTODY ME 11 - 18 - 14 SAMPLERS (signature) + Undern TOC MLT / 203700102 REMARKS Unit A Sample Type containers I PH-Diesel ANALYSES REQUESTED OIC 2 HFB I PH-Diesel I PH-Die				1	× ×	SIGN									18	hate npled			¥ o	#2	5	
SAMPLE CHAIN OF CUSTODY ME 11 - 18 - 14 SAMPLERS (signature) + Under PO# TO C MLT / 203700102 REMARKS Unit A Sample Type containers ANALYSES REQUESTED OIC 2 HPL-Dissel ANALYSES REQUESTED OIC 2 HPL-Dissel TPH-Dissel ANALYSES REQUESTED OIC 2 HPL-Dissel Notes Sample Standard (2 Week) Reman samples Will call with instructions Will call with instructions Will call with instructions Notes Standard (2 Week) Notes Sample Standard (2 Week) Notes Standard (2 Week) Standard (2 Week) Stand				MM	polon	ATURE								50%0	Ofoo	Time Sampled			18036	203		re
ME II-IX - I4 Poge # of TURNAROUND TIME PO# PO# PO# PO# PO# PO# PO# PO#														¢-	air	Sample Type			!	DOL	PROJE	SAMPLE
ME II-IX - I4 Poge # of TURNAROUND TIME PO# PO# PO# PO# PO# PO# PO# PO#				VIN	Anto	PR								r	<i>Y</i>			nit 1	RKS	mut	CT NAME	CHAIN O
ME II-IX-IU Poge # of TURNAROUND TIME PO# PO# PO# PO# PO# PO# PO# PO#				H	Ng	TNI					 							5		20	ature NO.	FC
ME II-IX - I4 rage # of TURNAROUND TIME PO# PO# PO# PO# PO# PO# PO# PO#					F	NAM					 			X	++		$\left \right $			376		
ME II - IX - IU $rage # of$ $TURNAROUND TIME PO# PO# PO# PO# PO# PO# PO# PO# PO# PO#$					5	Π									\mathbf{X}		$\left \right $			R	X	
ME II-IX - IU PO# TURNAROUND TIME PO# Standard (2 Weeks) INUSH Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days INICESTED Will call with instructions INICESTED Notes FS Sample Sample Notes HFS Sample Sample Notes HFS Initial with instructions					ž		-				 		[₽			0 N	E S	X
Formation Fage #											 						A			1~	Ĕ	·
- 14 Page #											 					пгз	YSES				3	E
- 14 Page #				Ħ	5	0					 						REQ				PO	חי
- 14 TURNAROUND TIME Standard (2 Weeks) □ RUSH Rush charges authorized by □ Return samples □ Will call with instructions □ Notes Notes 11-18/14 2:00				81	Ę	OMI		\$			 						UES				T	1
- 14 - Page #					F	ĂN		13 E			 					<u> </u>	TED					81
					ρ	×	<u> </u>	18			 	<u> </u>					$\left \right $		Ř	Rus		
		\square					┝			·								eturn fill ca	SA	n cha	TUF anda USH	2
				1-)	Ī	DA					 						H	samp dl wit	MPLI e afte	rges :	rd (2	, +
				2/2	1+8	TTE				i								les h inst	E DIS	autho	Week	
	F															Note		ructi	POS/ lays	rized) fr
					. 0	IME		n								ŭ		suc	AL	Ьу	ME	
					<u> </u>						 											

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412182 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412182 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
412182 -01	1VINF
412182 -02	1VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412182 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
1VINF 412182-01	<0.1	0.29	<0.1	<0.3	15	78
1VEFF 412182-02	<0.1	<0.1	<0.1	<0.3	<10	79
Method Blank 04-2479 MB	<0.1	<0.1	<0.1	<0.3	<10	80

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412177-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m³	< 0.1	< 0.1	nm
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m³	< 0.3	< 0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	81	70-130
Toluene	mg/m³	5.0	78	70-130
Ethylbenzene	mg/m ³	5.0	80	70-130
Xylenes	mg/m ³	15	79	70-130
Gasoline	mg/m ³	100	103	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS/COC/COC.DOC	4			Friedman & Bruya, Inc.					(VEFF	1 V INF	Sample ID		Phone # 425 977-4994 Fax #	City, State, ZIP LYML	Address 1910 W 36th Ave #203	Company Stank	Send Report To Kubahah Brooks	412182
$\frac{1}{2g}$	Received by:	elinquis	Received by:						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101B	Lab ID		14 Fax	1000	E	13	Jah	-
	by:	Relinquished by:	Received by:	SIGN/					12-9-14	12-9-14 1355	Date Sampled		(#	EA A	364 M		Brook	
			uder	SIGNATURE					1350	135s	Time Sampled			98036	re. #20.		5	
		<u> </u>							Air	Air	Sample Type			R		P	SAMPL	SAMPLE CHAIN OF CUSTODY
		Stephenie Then	Antonielo	PRI					2	2	# of containers			RKS	TUC MLI/203700102	PROJECT NAME/NO.	SAMPLERS (signature)	CHAIN O
		A.		PRINT NAME			 		2	\	TPH-Diesel				2	∖ 0	uture)	FCU
			Jaclor	IAM			 			メメ	TPH-Gasoline BTEX by 8021B)37		-	JST
		i	Q	Π			 		/		VOCs by8260				8		A	0D
											SVOCs by 8270	AN			202	ŀ	<u>È</u>	ĸ
 			4								HFS	ANALYSES REQUESTED			<u>\</u>		Hubdar	2
		11	S			-						ES I					-	ME 12/10/14
	Sam	FBI	ta,	2								REQU				PO#		Plic
	ples		Stanfec	COMPANY							<u> </u>	JEST						E C
				YNY								ED		2	H			1
	Samples rectined a] Retu	Dis	Rush (Standa		
ł	T	12	5										urn sa l call	SAM bose	charg	ndard	Page #	
	Ħ	12/10/14	12-1014	DATE		T							Return samples Will call with ir	SAMPLE DISPOSAL	es aut	Standard (2 Weeks)	ARO	
ļ	്റ്		1.	E							Z		s instru	DISPO	thoriz	eeks)		>
		1400	1400	TIME							Notes		 Return samples Will call with instructions)SAL	Rush charges authorized by		Page # of	ن المح مرو

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410425 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410425 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
410425 -01	2VEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410425 Date Extracted: 10/24/14 Date Analyzed: 10/24/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
2VEFF 410425-01	<0.1	<0.1	<0.1	<0.3	<10	96
Method Blank 04-2122 MB	<0.1	<0.1	<0.1	<0.3	<10	97

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 410354-01 (Duplicate)											
	Reporting	Sample	Duplicate	RPD							
Analyte	Units	Result	Result	(Limit 20)							
Benzene	mg/m³	< 0.1	<0.1	nm							
Toluene	mg/m³	0.10	0.12	15							
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm							
Xylenes	mg/m³	< 0.3	< 0.3	nm							
Gasoline	mg/m³	<10	<10	nm							

Laboratory Code: Laboratory Control Sample

		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Benzene	mg/m³	5.0	89	70-130				
Toluene	mg/m³	5.0	90	70-130				
Ethylbenzene	mg/m ³	5.0	93	70-130				
Xylenes	mg/m ³	15	91	70-130				
Gasoline	mg/m ³	100	102	70-130				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

410425	10 57			SAMPLE CHAIN OF CUSTODY	CHAIN C)F (U CUS	STC	ND		HE		i0	1	23-14	12	21							
Send Report To Rebe	ebelah B	Brooks		SAMPI	SAMPLERS (signature)	atur	re)						1	- / [-V		Page #	Z # ∧ ₽		Page # of			
r F	1 1			PROJE	PROJECT NAME/NO.	NO							PO#	-+=			□ Standard (2 Weeks) □ RUSH	ndaro	1(2)	Weel	is)			
		Ave W	#203					I			·					R	ush c	harg	ges a	uthe	Rush charges authorized by	d by		
e, ZIP _	ba	WA		REMARKS	RKS						ŀ						SAMPLE DISPOS	SAN	IPLE after	1 DIS	SAMPLE DISPOSAL pose after 30 days	AL		
Phone # 425-977 - 4984 Fax #	try Fax	#															Retu	urn s	amp witi	les h ins	□ Return samples □ Will call with instructions	ions		L
										AN/	ANALYSES REQUESTED	SES	REC	UE	TE									!
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS										Notes	es		
JVEFF	Qi A ID	10/22/H	1515	Air	2		×	×																L
														┟──┼	\vdash									
																\rightarrow								
																								<u> </u>
																— šám	Samples	Der	ž	received at		10	ဂီ	
Friedman & Bruya, Inc. 3012 16th Avenue West	SIG Relinquished by	SIGN,	SIGNATURE		PR	PRINT NAME	NA	ME			+			COMPANY	PAN	Y		+ -	DATE	ΤE		TIME	H	• •
Seattle, WA 98119-2029	Received by:				N. K.	Ho		15	TSL-23	ř			んえ	sit					10/23	2 2	2 -	120	6 °	
Ph. (206) 285-8282	Relinquished by	, X								ľ		†	k	-	ſ	1		-	Ľ					
Fax (206) 283-5044	Received by:	, ,																						

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 25, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411306 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1125R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411306 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
411306 -01	2 V EFF

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411306 Date Extracted: 11/20/14 Date Analyzed: 11/20/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
2 V EFF 411306-01	<0.1	<0.1	<0.1	<0.3	<10	81
Method Blank 04-2359 MB2	<0.1	<0.1	<0.1	<0.3	<10	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411306

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, **XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx**

Laboratory Code: 411305-01 (Duplicate) Reporting Sample

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m³	0.57	0.55	4
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m ³	0.72	0.80	11
Gasoline	mg/m ³	63	75	17

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	82	70-130
Toluene	mg/m³	5.0	82	70-130
Ethylbenzene	mg/m ³	5.0	87	70-130
Xylenes	mg/m ³	15	86	70-130
Gasoline	mg/m ³	100	114	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

														Y	Received by:		Fax (206)
2:07	11/2/14			20	FB					Ŧ	VINH			Relinquished by:	inquish	Seattle, WA 98119-2029 K	Seattle, M Ph. (206)
2:07	148-14	Í .	AC	Stoutec	27	 	ž	Jacobor		6	motonelo	7	balan	ed by:	dinquish		3012 16t
TIME	DATE	×	PAN	COMPANY					NAME	PRINT I	PR		TURE	SIGNATURE		Friedman & Bruya, Inc.	Friedman
۲ °	ived at /		Sample	5													
										<u> </u>							
										ļ							
										[
							 			 							
		$\left \right $	$\left - \right $		$\left \right $				<u> </u>								
			\dashv	-+			\neg		-+								
								\sim	Â		3	oùr	0745		81-11 ETY 10		DIEFF
Notes						HFS	SVOCs by 8270	BTEX by 8021B VOCs by8260	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled S	Date Sampled	Lab ID	Sample ID	- -
			STEL	QUE	ANALYSES REQUESTED	ALYS	AN		$\left \right $								
ructions	 Return samples Will call with instructions 	D Ret								N	Unit 2			#	1 Fax	Phone #135-917-4994 Fax #	Phone #
POSAL	SAMPLE DISPOSAL Dispose after 30 days	X Dis									S	REMARKS	036	WA 98	00a	City, State, ZIP Lynnwood WA 98036	City, Sta
rized by	Rush charges authorized by	Rush (Ň	ÖC	370	2	TOC-MLT / 2005700102	TOC-		NC#203	Aype	19101 W30th Nre #203	Address_
s	RUSH (2 Weeks)	RUS		¥	PO#					NO.	[NAME/	PROJECT NAME/NO.			t	, stantec	Company
D TIME	Page #				1	3	Albohon	F		ıture	RS (sign	SAMPLERS (signature)			S	Send Report To R. Brooks	Send Rep
		11-8-14	81.		ME								06			ti jue	Į

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412183 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412183 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
412183 -01	2VEFF

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412183 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
2VEFF 412183-01	<0.1	<0.1	<0.1	<0.3	<10	74
Method Blank 04-2479 MB	<0.1	<0.1	<0.1	<0.3	<10	80

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412183

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412177-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	< 0.1	<0.1	nm
Toluene	mg/m³	< 0.1	< 0.1	nm
Ethylbenzene	mg/m³	< 0.1	< 0.1	nm
Xylenes	mg/m³	< 0.3	< 0.3	nm
Gasoline	mg/m ³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/m³	5.0	81	70-130
Toluene	mg/m³	5.0	78	70-130
Ethylbenzene	mg/m³	5.0	80	70-130
Xylenes	mg/m ³	15	79	70-130
Gasoline	mg/m ³	100	103	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Chy, State, Zir Thin Phone # 426-911-4 Sample ID Sample ID Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 285-8282 ForMSVCOCCOCCDOC	Address 1910 W 36th Ave Suite 203	Company Stant	Send Report To,
	5 8	B	Rebe
H Fax # H Fax # ID S ID S Relinquished ID Received by: S		t	eliah
H Fax # Lab Date Time ID Sampled Sampled Sampled Sampled Sampled C1 AB 2.9.144 12.30 SIGNATURE SIGNATURE SIGNATURE Reclinquished by: Munology Munology Received by: Munology Munology	HVE SW		Brooks
Time Sampled NATURE	Pr 203		
			
Stephenic PRINT PRINT PRINT PRINT PRINT PRINT PRINT	10C MLT /203700102	PROJECT NAME/NO.	SAMPLERS (signature)
PRINT NAME TPH-Diesel N X TPH-Gasoline N BTEX by 8021B	305	ENNO.	nature
NAME X TPH-Gasoline B B B B VOCs by8260 VOCs by8260	200		2
S ^(h) VOCs by8260	5		
SVOCs by 8270			2
SVOCs by 8270 ANALYSES REQUESTED HFS SVOCs by 8270 HFS Storman Storman <t< td=""><td></td><td></td><td>bolor</td></t<>			bolor
		F	3 1
REQUIRE REQUIRE		PO#	
COMPANY COMPANY			-/12
			[2/12 \$ H
Di Retri	ush	RUSH	
B Dispose after 30 days Will call with instruct Will call with instruct DATE Land Land Land Land Land Land Land Land Land Land Land Land Land Land Land	SAM	RUSH RUSH	Page #
DATE DATE	PLE I	(2 W	ARO
ATE No No	DISP	eeks)	
	Rush charges authorized by SAMPLE DISPOSAL		Page # of
	` ¥		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410423 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410423 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
410423 -01	3VEFF

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410423 Date Extracted: 10/24/14 Date Analyzed: 10/24/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
3VEFF 410423-01	<0.1	<0.1	<0.1	<0.3	<10	96
Method Blank 04-2122 MB	<0.1	<0.1	<0.1	<0.3	<10	97

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410423

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 410354-01 (Duplicate)									
	Reporting	Sample	Duplicate	RPD					
Analyte	Units	Result	Result	(Limit 20)					
Benzene	mg/m³	< 0.1	< 0.1	nm					
Toluene	mg/m ³	0.10	0.12	15					
Ethylbenzene	mg/m ³	< 0.1	< 0.1	nm					
Xylenes	mg/m ³	< 0.3	< 0.3	nm					
Gasoline	mg/m ³	<10	<10	nm					

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	mg/m³	5.0	89	70-130			
Toluene	mg/m ³	5.0	90	70-130			
Ethylbenzene	mg/m ³	5.0	93	70-130			
Xylenes	mg/m ³	15	91	70-130			
Gasoline	mg/m ³	100	102	70-130			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 25, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411307 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1125R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411307 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
411307 -01	3 V EFF

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411307 Date Extracted: 11/20/14 Date Analyzed: 11/20/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
3 V EFF 411307-01	<0.1	<0.1	<0.1	<0.3	<10	86
Method Blank 04-2359 MB2	<0.1	<0.1	<0.1	<0.3	<10	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/25/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411307

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

0.80

75

RPD

(Limit 20)

nm

4

nm

11

17

Laboratory Code: 411305-01 (Duplicate) Duplicate Reporting Sample Units Result Analyte Result Benzene mg/m³ < 0.1 < 0.1 Toluene mg/m³ 0.57 0.55 Ethylbenzene mg/m³ < 0.1 < 0.1

0.72

63

Laboratory Code: Laboratory Control Sample

mg/m³

mg/m³

Xylenes

Gasoline

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	mg/m³	5.0	82	70-130			
Toluene	mg/m ³	5.0	82	70-130			
Ethylbenzene	mg/m ³	5.0	87	70-130			
Xylenes	mg/m ³	15	86	70-130			
Gasoline	mg/m ³	100	114	70-130			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

							 			r										F
Fax (200) 283-3044 Formsvcocvcoc.doc	F (200) 202-0202	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.							BY	3VEFF	Sample ID		Phone # 425-917-4994 Fax #	City, State, ZIP WINNOOD WA 98036		Company Stanker	Го	411 307
Acceived by.	Deneived	Received by: Relinquished hv:	Kelinquis									0147	Lab ID		<u>994</u> Fay	MODY	w 364	گر	R. Brooks	
vy.	here of t	by:	ined by M	SIG								81-11 524	Date Sampled		(#	NA	h Ave.			
		alun	Keiinguished by Waolon	SIGNATURE					<u> </u>			0750	Time Sampled			98036	井203			
) which	Sample Type				Toc	PROJE	SAMPI	SAMPLE CHAIN OF CUSTODY
		NING	Antonielio Vader	P								પ્ર	# of containers		Unit 3	RKS	TOC MLT /203700102	PROJECT NAME/NO.	SAMPLERS (signature)	CHAIN (
		Z	6	PRINT NAME									TPH-Diesel	Π	W I		б	NC	iatui	OF
		I	Vax	[NA								\succ	TPH-Gasoline				2		re)	Suc
			Ę	Ă								X	BTEX by 8021B				0		X	TO
													VOCs by8260				ର୍		Hundren	YŪ
							 						SVOCs by 8270	ANA			٢		6	
			<u> </u>	\square									HFS	LYS		ĺ			5	2
		~												ES F						RE
		5	ਰ				-							VEQ				PO#		2
		~	rontec	MP										ANALYSES REQUESTED						- /
				COMPANY		San							· · · · · · · · · · · · · · · · · · ·	TED		<u></u>			_	18-
	l			$\left \right $			 										Rusł			2
						200	 								fill ca	<u>SA</u>	n cha	Standa	Page #	
		1/18/1	1H8-14	DATE		c ived at	 								□ Return samples □ Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by	Standard (2 Weeks) RUSH	Page # of	-
	\vdash												Notes		tructi	SPOS days	rized	(s)		
		2:001	2:00 P	TIME		°c °c							8		ons	AL	l by		ME	-
		3	ž	••	,		 	-	•				······		L				 .	}

5 2

•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412184 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412184 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
412184 -01	3VEFF

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412184 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING MODIFIED METHODS 8021B AND NWTPH-Gx

Results Reported as mg/m³

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
3VEFF 412184-01	<0.1	<0.1	<0.1	<0.3	<10	77
Method Blank 04-2479 MB	<0.1	<0.1	<0.1	<0.3	<10	80

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412184

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF VAPOR SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING MODIFIED EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412177-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/m³	<0.1	<0.1	nm
Toluene	mg/m ³	< 0.1	< 0.1	nm
Ethylbenzene	mg/m ³	< 0.1	< 0.1	nm
Xylenes	mg/m³	< 0.3	< 0.3	nm
Gasoline	mg/m³	<10	<10	nm

Laboratory Code: Laboratory Control Sample

		Percent						
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Benzene	mg/m³	5.0	81	70-130				
Toluene	mg/m³	5.0	78	70-130				
Ethylbenzene	mg/m³	5.0	80	70-130				
Xylenes	mg/m ³	15	79	70-130				
Gasoline	mg/m ³	100	103	70-130				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

τ°ς	Samples rendired at			FORMSICOCICOC.DOC
			Received by:	Fax (206) 283-5044
0-11 10/17			Relinquished by:	Ph. (206) 285-8282
	FRI	Sucharat, The	Received by:	Seattle, WA 98119-2029
12.10-14 1400	Stender	Antonelo Vadon	Keunquished by: Warden	SULZ 10th Avenue West
DATE TIME	COMPANY	PRINT NAME	SIGNATURE	Friedman & Bruya, Inc.
			:	
		2 XX	01AB 12-9-14 1245 air	SVEFF
Notes	λ, 	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260	Lab Date Time ID Sampled Sampled Sample Type	Sample ID
	ANALYSES REQUESTED	ANALY		
□ Return samples □ Will call with instructions			1994Fax #	Phone # 425-977-4994Fax #
SAMPLE DISPOSAL Dispose after 30 days	S/	REMARKS '	YMMUDO d WA 9036 RE	City, State, ZIP
Rush charges authorized by	Rush ch	OCMIT/203700/02	10/ W 26 th hr. #203 7	p
Standard (2 Weeks)	PO#	PROJECT NAME/NO.	,	Company Stol
Page # of		SAMPLERS (signature)		send Report To Rebeliah Brooks
	ME 12/10/14	SAMPLE CHAIN OF CUSTODY		1181011

Appendix B

Laboratory Analytical Reports – Water

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410426 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410426 project. Samples were logged in under the laboratory ID's listed below.

<u>Stantec</u>
1WINF
1WEFF
1GAC1
1GAC2
TB-102214

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410426 Date Extracted: 10/23/14 and 10/24/14 Date Analyzed: 10/23/14 and 10/24/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1WINF 410426-01	<1	1.4	<1	4.0	<100	97
1WEFF 410426-02	<1	<1	<1	<3	<100	96
1GAC1 410426-03	<1	<1	<1	<3	<100	95
1GAC2 410426-04	<1	<1	<1	<3	<100	94
TB-102214 410426-05	<1	<1	<1	<3	<100	98
Method Blank 04-2165 MB	<1	<1	<1	<3	<100	95

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410426

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 410426-02 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	102	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	94	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

410426	126			SAMPLE CHAIN OF CUSTODY	CHAIN O)F (SUC	TO	DY		. H	ME 10		83	-14	£.			121	7		
Send Report To Reb	Rebelah Bri	Rrocks		SAMPL	SAMPLERS (signature)	atur	<u> </u>	de la	- Keel	1	\mathbf{A}		- 11		-4	Pa TI	Page #	<u>N</u>	Page # of TTURNAROIND TIME		Ξ	
tan				PROJEC	PROJECT NAME/NO.	NO				0			PO#			Standard (2 Weeks)	Hard	(2 W	eeks)		16	
16	act the	#	# 203													Rush charges authorized by	large	's aut	thoris	sed b	'y	, I
tte, ZIP			98036	REMARKS	RKS						ľ					SAMPLE DISPOS	AMF ose a	LE I fter 3	SAMPLE DISPOSAL pose after 30 days	VSC VSC		[]
Phone # 425-977-494 #	- ५९९ #ax #														L	□ Return samples □ Will call with instructions	m sau call v	mple: vith i	s nstru	ction	SI SI	
	-					Π				ANALYSES REQUESTED	LYS	ES R	EQU	JES	TED							
Sample ID	Lab D ID San	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS								z	Notes		
LWINF	012-4 10/2	hiredol	1410	Water	3		×	\times														
LMER	c/01 10/2	10/22/14	1420		3		\times	\times														
1 GAC1	c/a/ 80	10/22/14	1412		3		\times	×										ĺ				
1GAC2	04 10/2	10/22/14	1416	Ċ	3		×	\times														
TB-102214	2 05 10 20	10 22 14	1430	water	ч		×	×														
									<u> </u>	 												
														(0)	an l	Samples received at		dat		2 °C	0	<u>l</u>
												ļ										
Friedman & Bruya, Inc. 3012 16th Avenue West	SIGNATURE	SIGN	ATURE O		PR Heckham,	PRINT NAME	$\frac{1}{2}$	ME		3		4	28	COMPANY	AN N		<u>8</u>	DATE		₹ E	TIME	
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received by: Relinquisted by				mett	10	4	57	25				H				0	2		N	U	
Fax (206) 283-5044	Received by:			-															\rightarrow			
FORMS\COC\COC.DOC											$\left \right $											

そ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 24, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411308 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411308 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Stantec
411308 -01	1 W INF
411308 -02	1 W EFF
411308 -03	1 GAC1
411308 -04	1 GAC2
411308 -05	TB-111814

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411308 Date Extracted: 11/19/14 Date Analyzed: 11/19/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1 W INF 411308-01	<1	<1	<1	<3	<100	83
1 W EFF 411308-02	<1	<1	<1	<3	<100	85
1 GAC1 411308-03	<1	<1	<1	<3	<100	78
1 GAC2 411308-04	<1	<1	<1	<3	<100	82
TB-111814 411308-05	<1	<1	<1	<3	<100	80
Method Blank 04-2335 MB	<1	<1	<1	<3	<100	79

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411308

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 411277-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	94	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

L	ಗೆ	2	vamples received at	npies.	van													FORMSICOCICOCIDOC	-
<u> </u>				•												by:	Received by:	Fax (206) 283-5044	
I						ļ									-		Relinquished by:	Ph. (206) 285-8282	
24	10017	4/18/111		1	1 B						7	イヤ	イン		glynla		Received by:	Seattle, WA 98119-2029	-
X	2:00	11-18-14	f)ter	stonte	5			ぎ	8	5	চ	Antonelo Vaulon	P	Avladion	hed by: H	Kelinquis.	3012 16th Avenue West	
	TIME	DATE	Y	COMPANY	C O J					PRINT NAME	TN	RIN	P		ATURE	SIGNATURE		Friedman & Bruya, Inc.	
												\vdash							
				-+															1
L																			
																			T
												-						-	
									-	$\overline{\mathbf{x}}$	×		٨	←			50	TB - 111814	r
1									_	攵	X		ს		וצוצ	Ŀ	0y V	1 GAC2	T
1										$\hat{\mathbf{x}}$	$\mathbf{\mathbf{x}}$		ىں		orci		03	1 GAC 1	T
]										S			س		1205		O2	1WEFF	T
<u> </u>									-	X			υ	Water	1200	11-17	0/4	W INF	1
	Notes				⁴		HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Diesei TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	1
				ANALYSES REQUESTED	EQUI	ES R	LYS	AN,				$\left \right $							
L	uctions	 Return samples Will call with instructions 	Retur Will c									>	Unit 1			#	14 Fax	Phone # 4259174994 Fax #	
	POSAL ays	SAMPLE DISPOSAL	S. Dispo										RKS	REMARKS	036	WA 98	wood	City, State, ZIP LYNN	
ı	ized by	Rush charges authorized by	Rush ch					Ν	00	gr	V	B	TOC MLT / 2033 700102	Toc		ve#203	Soth A	Address 19101 W 36th Ne#203	
	s)	Standard (2 Weeks) RUSH	Standa		PO#	P					0	EN	PROJECT NAME/NO.	PROJEC			V.	Company Stonler	
	_ of	TURNAROUND TIME]]	11	,	-	adan	Sol	R	ure)	nati	SAMPLERS (signature) AU	SAMPL			raoks	Send Report To R. brooks	
5	+	•	h1-81	//~	Ĩ	Z		Y	0D)	IST	CU	OF	HAIN	SAMPLE CHAIN OF CUSTODY	_			411308	_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412185 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
412185 -01	1WEFF
412185 -02	1WGAC2
412185 -03	1WGAC1
412185 -04	1WINF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412185 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
1WEFF 412185-01	<1	<1	<1	<3	<100	78
1WGAC2 412185-02	<1	<1	<1	<3	<100	79
1WGAC1 412185-03	<1	<1	<1	<3	<100	75
1WINF 412185-04	<1	<1	<1	<3	<100	80
Method Blank 04-2438 MB	<1	<1	<1	<3	<100	76

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	1WEFF 12/10/14 12/11/14 12/11/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412185 412185-01 412185-01.027 ICPMS1 AP
Internal Standard:		% Recovery:	Lower Limit:	Upper Limit:
Holmium		69	60	125
Analyte:		Concentration ug/L (ppb)		
Lead		13.3		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 12/11/14 12/11/14 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412185 I4-793 mb I4-793 mb.019 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412178-02 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	89	65-118
Toluene	ug/L (ppb)	50	87	72-122
Ethylbenzene	ug/L (ppb)	50	89	73-126
Xylenes	ug/L (ppb)	150	85	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Coc	le: 412157-05 (N	Matrix Spil	ke)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	111	106	79-121	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	113	83-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				FORMS\COC\COC_DOC
	se received at C		Received by:	Fax (206) 283-5044
101-17-W			Relinquished by:	Ph. (206) 285-8282
in invitation	F4 BT	Than Malchess	Received by: JNW Moghmy	Seattle, WA 98119-2029
14	Sontec	Montanela Vadion	slinguished by: Mualon	т —
DATE TIME	COMPANY	PRINT NAME	SIGNATURE	Friedman & Bruya, Inc.
Samples required at Or •C	Samples P			
		XX	04 J 1415 J	AWINF
		3 XX	63 1410	AW GACA
		3 XX	02/2 1 1405 1	1 WGAC2
	×	4 XX	015 [2.9-14] 400 water	NWEPP
Notes	HFS	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270	I.ab Date Time ID Sampled Sampled Sample	Sample ID
	ANALYSES REQUESTED	ANAI		
SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		REMARKS	wA 98036	City, State, ZIP <u>UNNWOOD</u> Phone # UN-971-4994 Fax #
Rush charges authorized by	Rus)C MUT/20 37 80102	101 W 36th Arr #203 16	
RUSH (2 Weeks)	PO#	PROJECT NAME/NO.		Company Stappiec
Page # of		SAMPLERS (signature)	-	Send Report To Plankah Brooks
	1E 12/10/14	SAMPLE CHAIN OF CUSTODY	SAMPL	41218S
ノシノオレン				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410427 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410427 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
410427 -01	2WEFF
410427 -02	2GAC1
410427 -03	2WINF
410427 -04	2GAC2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410427 Date Extracted: 10/23/14 Date Analyzed: 10/23/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
2WEFF 410427-01	<1	<1	<1	<3	<100	97
2GAC1 410427-02	<1	<1	<1	<3	<100	98
2WINF 410427-03	<1	<1	<1	<3	<100	95
2GAC2 410427-04	<1	<1	<1	<3	<100	97
Method Blank 04-2165 MB	<1	<1	<1	<3	<100	95

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 410426-02 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	102	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	94	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To <u>Rebelach</u>	Brooks	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)	IPLE CHAIN OF CU SAMPLERS (signature) PROJECT NAME/NO.	F CUSTOI	DDY	WE	10 PO#	\sim		Page # TURNAROUND Standard (2 Weeks)	t AROUJ (2 Wee	Page # of TURNAROUND TIME andard (2 Weeks)	TE V2
19 ol e, ZIP 425-9	36th Ave W # 203 Lynnwood WA 98036 77-4994Fax #	REMARKS	TOC - MLT							Rush charges authorize SAMPLE DISPOS Dispose after 30 days Return samples Will call with instruct	es authors and after 30 annales with instant	Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days Return samples	L S
					AN	ANALYSES REQUESTED	S REQ	UEST	ED				
Sample ID	Lab Date Time ID Sampled Sampled	Sample Type	# of containers	TPH-Diesel TPH-Gasoline BTEX by 8021B	VOCs by8260	HFS						Notes	
JUINE	10/22/14 1516	Water	3	XX									
JWEFF	dik 10/22/14 1515		ω	××									
a GAC1	02 [10/22/14 1520	Ç	З	XX									
JGACa	10/22/14 1525	Water	3	XX									
JUINF	0	with	Y										
264402	04 T 10/23/14 0950	Unk	8	> X									
											ed at	ب	ဂိ
Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029	SIGNATURE		Nerthen	PRINT NAME	Ju -		St.C	COMPANY	YN		DATE		TIME /ひと/
Ph. (206) 285-8282	Relinquished by.		heatt	15	2 2 2		7=13	12-		0	22	2	0
Fax (206) 283-5044	Received by:												

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 24, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411309 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411309 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
411309 -01	2 W INF
411309 -02	2 W EFF
411309 -03	2 GAC1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411309 Date Extracted: 11/19/14 Date Analyzed: 11/19/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2 W INF 411309-01	<1	<1	<1	<3	<100	86
2 W EFF 411309-02	<1	<1	<1	<3	<100	86
2 GAC1 411309-03	<1	<1	<1	<3	<100	87
Method Blank 04-2335 MB	<1	<1	<1	<3	<100	79

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 411277-01 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	94	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	ſ		andres and at														FORMS\COC\COC.DOC	Ŧ
	2	N				╈									y:	Received by:	Fax (206) 283-5044	T.
-										. [Į					Relinquished by:	Ph. (206) 285-8282	7
ž	2:00 P	41/8/111		[BI	П					+	< T	シンマ		Junha		Received by:	Seattle, WA 98119-2029	5
4Q	2:00	11-28-14	+	Stantec	4			3	Red	\leq	B	Antonello Vaud	A	Vandon	ed by:	Kelinquisned by:	U12 Ioth Avenue West	, u
	TIME	DATE	YY	COMPANY	0				ME	PRINT NAME	RIN	P		SIGNATURE	SIGN/		Friedman & Bruya, Inc.	
								<u> </u>										
																		Ι
																		Τ
									<u> </u>									1
					1		╂───		<u> </u>		1							Т
									\times	X.		س	4-	1125	4	NEO NEO	2 GAC1	h a
-									\times	X		ω		1120		02	JWEFF	h.
									メ	X		υ	Water	1115	11-17	0/2	AWINF	62
	Notes	7	·····			HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	1
				ANALYSES REQUESTED	REQ	YSES	NAL											
·	uctions	Return samples Will call with instructions	□ Return □ Will c							N	17	Unit 2			#	h-4994 Fax #	Phone # 425-971-49	H
	'OSAL ^{iys}	SAMPLE DISPOSAL Dispose after 30 days	SA SA SA								-	KS	REMARKS	98036		lood V	City, State, ZIP 12 nnwood WA	~
	zed by	Rush charges authorized by	Rush cha				~	ŏ.	Ŕ	63	5	TDC MLT/203700102	TDC		·#203	th Are	19/10	~
	Ŭ	Standard (2 Weeks)	Standa		PO#				,).	NN	L NAWE	PROJECT NAME/NO.			((đ	~
	of	age #of /				3	Hubblen	2	L	re)	natu	RS (sign	SAMPLERS (signature)		E	R. Brooks	Send Report To R.	ro 8 e
	2	~	11-18-14	11-1	ME			DY	TO	CUS	OF	HAIN	SAMPLE CHAIN OF CUSTODY	S			411309	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412186 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412186 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
412186 -01	2WEFF
412186 -02	2WGAC2
412186 -03	2WGAC1
412186 -04	2WINF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412186 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2WEFF 412186-01	<1	<1	<1	<3	<100	76
2WGAC2 412186-02	<1	<1	<1	<3	<100	72
2WGAC1 412186-03	<1	<1	<1	<3	<100	72
2WINF 412186-04	<1	<1	<1	<3	<100	75
Method Blank 04-2438 MB	<1	<1	<1	<3	<100	76

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2WEFF 12/10/14 12/11/14 12/11/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412186 412186-01 412186-01.028 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 65	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 12/11/14 12/11/14 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412186 I4-793 mb I4-793 mb.019 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412186

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412178-02 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	89	65-118
Toluene	ug/L (ppb)	50	87	72-122
Ethylbenzene	ug/L (ppb)	50	89	73-126
Xylenes	ug/L (ppb)	150	85	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412186

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Co	ode: 412157-05 (N	Matrix Spil	ke)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	111	106	79-121	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	113	83-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Samples received at	receivi	ples	San									by:	Received by:	Fax (206) 285-5044 Forms/coc/coc.doc	FORM
				+												1
14/10/14 14:00			BT	T.4				Ň	She	Thuo Molsness	<u> </u>	Murth	by: hed by:	Relinquished by:	Seattle, WA 98119-2029 Ph (206) 285-8282	Seat
121014/400		pc	Stoutec	52			2	12		Antonelo Valan		Hadon	hed by:	Relinquis	2 16th Avenue West	301
DATE TIME	NY	COMPANY					Ē	PRINT NAME	T	PR		ATURE	SIGNATURE		Friedman & Bruya, Inc.	Frie
							<u> </u>									
							7	X		Ś	4	1330	12-1-14 1330	o4Ac	2W INF	2
							X	X		5		1325	12-9.14	03A-C	2W CACA	CX
							X	X		W -		1320	02 AC 12-9.14	02 A-C	2W GAC2	5
			/ •	۲.			$\mathbf{\Sigma}$	X	104	4	Waten	13/5	129 14 1315	OIAD	2WEFF	N
Notes		·····	IV IAL HAV	HFS TOTAL HAD	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
	Ð	ANALYSES REQUESTED	REQ	YSE	NAL	Þ										
SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	SAMPLE D Dispose after 30 Return samples Will call with it									KS ,	REMARKS	2036	MMWOOD WA 98036	499/Fax #	ute, ZIP (City Pho
Rush charges authorized by	Rush char			1	N	102	00	203700	B	MUT	3 TR	hr #20	W 36 th Are #203	N 10 1	Address /9/0	Add
I UKNAKUUND IIME Standard (2 Weeks)	Standard		PO#		[Ś	F		, õ	PROJECT NAME/NO.	PROJEC			an to	Send Report To <u>/ (</u>	Send
Page # of	ן	WE 12/10/14	1	ہ ۲		halar			ture	SAMPLERS (signature)	SAMPLE	Brache		Republication	k .	1
VIIATZ	-		5	t,	-						CAMPLE CHAIN OF CHETONY	n				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 28, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on October 23, 2014 from the TOC_01-176, WORFDB8 F&BI 410428 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 410428 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
410428 -01	3WINF
410428 -02	3GAC2
410428 -03	3WEFF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410428 Date Extracted: 10/23/14 Date Analyzed: 10/23/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
3WINF 410428-01	<1	<1	<1	<3	<100	98
3GAC2 410428-02	<1	<1	<1	<3	<100	97
3WEFF 410428-03	<1	<1	<1	<3	<100	97
Method Blank 04-2165 MB	<1	<1	<1	<3	<100	95

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/14 Date Received: 10/23/14 Project: TOC_01-176, WORFDB8 F&BI 410428

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 410426-02 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	102	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	94	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

					-						FORMS/COC/COC/DOC
									W.	Received hv	Fax (206) 283-5011
1755 1.12	T IS TEN			(L		1			ed by!	Relinquished by	Ph. (206) 285-8282
+	+ 12/		2	R		T			y:	Received by:	Seattle, WA 98119-2029
Ort/ 55/01	Skyler	255	K	Λ	, f	Nach			en byruch	Reinquisned by	SULZ IOIN Avenue West
DATE TIME	COMPANY		ME	TNA	PRINT NAME			SIGNATURE	SIGN/	D _1:1	Friedman & Bruya, Inc.
3											
received at 2. "6	Sample										
			_	-							
			_								
			_	-							
					_						
			\times	\times		S	water	1545	10/22/14	031	3WEFF
			×	×		w	water	1550	10/22/14	02 T	3GAC2
			×	X		ω	water	1540	10/22/14	<u>م</u> ۲	ZWINF
Notes		VOCs by8260 SVOCs by 8270 HFS	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	ANALYSES REQUESTED	ANALY			$\left \right $						
□ Return samples □ Will call with instructions									#	Ч914 Fax	Phone #
SAMPLE DISPOSAL Dispose after 30 days	×	-				RKS	REMARKS		WA	mad	City, State, ZIP Lynnwed
Rush charges authorized by	Ru	<u></u>				i Ş		# 203	₩ ₩	- Ave	ā
X Standard (2 Weeks)	PO#			0.	ME/N		PROJECT NAME/NO.				ten
Page # of TURNAROUND TIME		te va	A	ure)	signatu	,ERS (SAMPLERS (signature)		Brooks	Rebekah	Send Report To
r 12	E 10-23-14	DY ME	STOI	CU	N OF	CHAI	SAMPLE CHAIN OF CUSTODY			~	40428

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 24, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on November 18, 2014 from the TOC_01-176, WORFDB8 F&BI 411310 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 411310 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
411310 -01	3 W INF
411310 -02	3 W EFF
411310 -03	3 GAC1
411310 -04	3 GAC2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411310 Date Extracted: 11/19/14 Date Analyzed: 11/19/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
3 W INF 411310-01	<1	<1	<1	<3	<100	78
3 W EFF 411310-02	<1	<1	<1	<3	<100	84
3 GAC1 411310-03	<1	<1	<1	<3	<100	82
3 GAC2 411310-04	<1	<1	<1	<3	<100	81
Method Blank 04-2335 MB	<1	<1	<1	<3	<100	79

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/14 Date Received: 11/18/14 Project: TOC_01-176, WORFDB8 F&BI 411310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 411277-01 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	94	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	89	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	<u> </u>	AN TOALS AND THE REAL												-	r	FORM
	4		Complete	╞									ÿ:	Received by:	Fax (206) 283-5044	Fax
-				+				ŀ						Relinquished by:	Ph. (206) 285-8282	Ph.
2	118/14 2:00 P	///	FBI					Ť	ج ج	く		alunt		Received by:	Seattle, WA 98119-2029	Seat
2m	HR-4 2:00		stante			$\left[\right]$	B	an	a	Intravela Vacuon	A	norm	Kennquisned by: AVJuchow	rennquisn		<i>301</i>
-	DATE TIME		COMPANY				ME	FNA	PRINT NAME	P		SIGNATURE	SIGNA		Friedman & Bruya, Inc.	Frie
					$\left - \right $											
									+							
					-+											
							Ì									
					-+		\times	\times		\leftarrow	-	1045	←	04 H	36AC2	ŝ
							\leq	\triangleleft				1040		03	3 GACI	رى
							X	X				1035	-	202	3WEFF	S
							X	X		دں	ination	1030	11-17	01 2	JMINE	0
<u> </u>	Notes			HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
			ANALYSES REQUESTED	YSES	NAL			11								Π
L.,	□ Return samples □ Will call with instructions	☐ Return samples ☐ Will call with ir							V	Unit 3			#	19_{Fax}	Phone # 425977-499 Fax #	Phc
L	SAMPLE DISPOSAL	SAMF Dispose a								KS	REMARKS	8036	WA 90	800	ite, Z	Cit
	Rush charges authorized by	Rush charge			۲	х о	70	13	- 2	TDC-MUT / 203700102	Top		Tre.	1 1	191	Ado
	(2 Weeks)	Standard (2 Weeks)	PO#					1	ENC	T NAMI	PROJECT NAME/NO.		1	C	121	Col
_	Page # of	Page #			ğ	8	£		natu	ERS (sig	SAMPLERS (signature)			coho	Send Report To R. Brooks	Sen
W	V3	- 14	E 11-18	ME		DY	STO	CU	OF	HAIN	SAMPLE CHAIN OF CUSTO	S			411310	7

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 15, 2014

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on December 10, 2014 from the TOC_01-176, WORFDB8 F&BI 412190 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN1215R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2014 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 412190 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
412190 -01	3WEFF
412190 -02	3WGAC1
412190 -03	3WINF

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412190 Date Extracted: 12/11/14 Date Analyzed: 12/11/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
3WEFF 412190-01	<1	<1	<1	<3	<100	94
3WGAC1 412190-02	<1	<1	<1	<3	<100	90
3WINF 412190-03	<1	<1	<1	<3	<100	92
Method Blank 04-2438 MB	<1	<1	<1	<3	<100	76

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	3WEFF 12/10/14 12/11/14 12/11/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412190 412190-01 412190-01.029 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 66	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		1.09		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 12/11/14 12/11/14 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 412190 I4-793 mb I4-793 mb.019 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 412178-02 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	89	65-118
Toluene	ug/L (ppb)	50	87	72-122
Ethylbenzene	ug/L (ppb)	50	89	73-126
Xylenes	ug/L (ppb)	150	85	74-118
Gasoline	ug/L (ppb)	1,000	91	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 12/15/14 Date Received: 12/10/14 Project: TOC_01-176, WORFDB8 F&BI 412190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Ŭ	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Analyte		Level	Result	IVIS	MSD	Cinteria	(Linnt 20)
Lead	ug/L (ppb)	10	<1	111	106	79-121	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	113	83-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \hat{F} $	Samples received at _	amples	5										y:	Received by:	Fax (206) 283-5044	1
12/10/14		Ť	T+B			Ń	2ar	510	Z	Thuo Moisness	- Ha	Marty	ed by:	Relinquished by	Seattle, WA 90119-2029 Ph. (206) 285-8282	H 0
12-10-14	YC:	+ hinite c	t.			Ş	Valuan	Ō	1 cyevery	Amt		A Julian		Keiinquisn		
DATE	YN	COMPANY				רח דו	PRINT NAME	VTN	PRIM			ITURE	SIGNATURE		Friedman & Bruya, Inc.	
\vdash								$\left - \right $	$\left - \right $							
																-
		-														<u> </u>
	 					· /			<u> </u>							1
																1
															•	1
																T
							1	×		(j)	4	1255		03A-C	JNINE	r .
							イズ	\times		دى ا		es cl		02A-C	3WGACA	k
			X				イイ	×		7	water	1245	01 A-2 12. 17. 14	OLA-D	SWEFF	
			TOTAL LEAS	HFS	SVOCs by 8270	VOCs by8260	TPH-Gasoline BTEX by 8021B	TPH-Diesel		# of containers	Sample Type	Time Sampled S	Date Sampled	Lab ID	Sample, ID	I
+		ANALYSES REQUESTED	SES RE	ALYS			+	-	+							
l samp	□ Return samples □ Will call with instructions													HAYFax #	45-972	
SAMPLE DISPOSAL	SA Ministra									KS	REMARKS	WA 98036	WA-9	bod	TTP LYMM	-
urges	Rush charges authorized by			1	q	5/0	1203700/02	8		M	TOC MUT	W 26 th Ave # 203	5 th Am	W 32	Address $ 9/0 $	~
TURNAROUND TIME andard (2 Weeks) ISH	TURNAROUND Standard (2 Weeks)	#	PO#	E	Ŵ			Õ	MEN	F NAN	PROJECT NAME/NO.			p .	ort To	
e #	ſ			abra	5	2	ľ	ure)	ignati	RS (su	SAMPLERS (signature)	1	bolkah Bronks	des	0	
	イイ	12/10/14		Z (T)	×	ODy	JSTO	, CI	IOF	HAIN	SAMPLE CHAIN OF CUSTODY	\mathbf{S}_{t}		412190	6/h	ls o

į

Appendix C

Tolcide & AN-400 Information

ANALYTIX TECHNOLOGIES, LLC.

Anlytix AN-400

Hardness Salts Scale-Control Additive

DESCRIPTION:

AN-400 scale-control additives is a highly concentrated, proprietary aqueous solution of water treatment chemicals specifically formulated to inhibit scaling by hardness salts and metal oxides, such as Fe and Mn, in groundwater remediation systems. It will also help clean and remove existing inorganic deposits when used continuously.

AN-400 is formulated with active ingredients that are environmentally safe, and do not promote biofouling. The active ingredients in AN-400 have been approved by US FDA per 21CFR173.310 for use in NSF ANSI 60 drinking water and other food grade applications.

APPLICATION:

AN-400 is specifically designed for use in systems with low to moderate levels of hardness salts, and dissolved metal oxides.

Typical starting dosage for most systems operating with air strippers ranges from 2 to 25 mg/l, as product.

TYPICAL PROPERTIES:

Active Components:

• Organic Scale Inhibitor/Sequestrant

Appearance: pH Density (60°F) Specific Gravity Viscosity (77°F) Water Solubility Clear to Yellow <2 ~ 10.9 lbs/gallon ~ 1.3 40 cps Complete

SAFETY AND HANDLING:

AN-400 scale-control additive is readily pumpable at temperatures above 32°F. It is stable over long periods of time.

This is an industrial chemical. It should be handled with the same precautions used with water treatment chemicals, alkalis and acids. Skin and eye contact should be avoided, and contaminated areas should be washed with plenty of water. Please refer to MSDS for more specific information regarding proper storage, handling, and disposal of the product.

PACKAGING:

AN-400 is available in 275 gallon PE tote; 55, 30, 15 and 5 gallon PE containers.

Rev. 01/2012 NT

Page 1 of 4

Analytix Technologies, LLC.

P.O. Box 590466, Houston, TX 77259-0466, Tel: (281) 286-7562

Date Prepared: 06/01/2002 Last Revision: 05/01/2013

1. CHEMICAL IDENTIFICATION

2. COMPOSITION INFORMATION ON INGREDIENTS

Chemical Name	CAS No.
Organic Phosphorus Compound	2809-21-4
Water	7732-18-5

3. HAZARD IDENTIFICATION

Appearance: Pale yellow liquid with slight odor

Primary Routes of Exposure: Eye, Skin

Potential Health Effects - The product causes eye burns. It is slightly irritating to skin, and irritating to respiratory and gastrointestinal membranes. It is no more than slightly toxic if swallowed, i.e. significant adverse health effects are not expected if less than a mouthful is swallowed.

4. FIRST AID

NOTES TO MEDICAL DOCTOR: The product is corrosive to the eyes and is expected to be irritating to the mucous membranes of the respiratory and gastrointestinal tracts. Treatment is controlled removal of exposure with symptomatic and supportive care.

5. FIRE FIGHTING MEASURES

Flash Point and Method.....Not applicable Flammable Limits.....Not applicable Autoignition TemperatureNot applicable Extinguishing MediaNot applicable (aqueous solution) Sensitivity to Static Discharge.....No data available Sensitivity to Impact.....No data available

6. ACCIDENTAL RELEASE MEASURES

Release Notes - Keep spilled concentrated material out of drains and water courses. Absorb with sand or other absorbent material. Dispose of as solid waste in accordance with local regulations (e.g. incinerate). Flush the spill area with plenty of water.

7. HANDLING AND STORAGE

Handling - Avoid contact with eyes, skin and clothing.

Storage: Store at > 32 °F, away from nitrites, sulphites and alkaline materials. Do not store in mild steel or Aluminum. Suitable materials are: PVC, polypropylene, polyethylene and glass-reinforced plastics. Keep containers tightly closed when not in use and when in transit.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Personal Protective Equipment- Wear safety glasses or goggles Protective Clothing- Wearing protective PVC gloves, overalls or apron is recommended. Avoid breathing vapor or mist.

Facilities storing or utilizing this material should be equipped with an eyewash and shower facility.

9. PHYSICAL AND CHEMICAL PROPERTIES

Odor	Slight
pH	Acidic < 2
Vapor Density	Not applicable
Freezing Point	25°C
Specific Gravity	1.20 – 1.31 @ 20 ⁰ C

Appearance	Pale yellow liquid
Vapor Pressure	$\dots 17.5 \text{ mm Hg} (\hat{a}) 20^{\circ} \text{C}$
Boiling Point	101°C to 103°C
Solubility in Water	Complete

Note: The above physical data are typical values. They should not be construed as specification for the product.

10. STABILITY AND REACTIVITY

Stability	Stable
Polymerization	
Hazardous Decomposition Products	None

11. TOXICOLOGICAL INFORMATION

Acute Effects from Overexposure- The product is corrosive to the eyes and is irritating to the mucous membranes of the respiratory and gastrointestinal tracts.

Carcinogenicity - Not listed with IARC, NTP, OSHA, ACGIH

Material Safety Data Sheet AN-400

12. ECOLOGICAL INFORMATION

Algae	(Selenastrum Capricornutum), 96 Hour EC50:		3.0	mg/l
0	NOEC:		1.3	mg/l
Fish	Bluegill Sunfish (Lepomis macrochirus), 96 Hour LC50	>	800	mg/l
	NOEC:		529	mg/l
	Rainbow Trout (Salmo gairdneri), 96 Hour LC50:	>	350	mg/l
	NOEC:		151	mg/l
	Sheephead Minnow, 96 Hour LC50:	>	2100	mg/l
	NOEC:		104	mg/l
	Channel Catfish, 96 Hour, 96 Hour LC50	>	650	mg/l
	NOEC:		529	mg/l
Invertebrates	Daphnia Magna, 48 Hour EC50:	>	500	mg/l
	NOEC:		400	mg/l
	Grass Shrimp (Palaemonetes Pugio), 96 Hour EC50:	>	1700	mg/l
	NOEC:		104	mg/l

According to the criteria adopted by the European Economic Community (EEC) for aquatic organism toxicity this product is practically non-toxic to fish and invertebrates. Algal growth inhibition is due to ability of the product to complex materials and not to toxicity per se.

Chemical Fate Information – This product has slow to intermediate biodegradation classification, and is not expected to bioaccumulate.

13. DISPOSAL CONSIDERATION

Disposal Method : Absorb spillage onto sand or other absorbent material and dispose of as solid waste as per local regulations (e.g. incineration). Surplus product can be incinerated.

If the product was supplied in a single use container, care should be taken to dispose of the container in a responsible manner and in accordance with applicable regulations. Label precautions should be followed for any residual material in the container. Whenever possible, our company encourages recycling of containers.

14. TRANSPORT INFORMATION

U.S. DOT (Department of Transportation) Proper Shipping Name – Corrosive liquid, acidic, organic, N.O.S. (Contains 1-Hydroxyethylidine-1, 1-Diphosphonic Acid) Primary hazard Class/Division - 8 (Corrosive) UN/NA Number – UN 3265 Packing Group – III Placards – Corrosive Label – Corrosive Other Shipping Information – DOT Marking – Not applicable Hazardous Substance/RQ – Not applicable 49 STCC Number – Not applicable

CANADA Transport of Dangerous Goods Proper Shipping Name – Corrosive Liquid N.O.S. (Phosphonic Acid) Primary Hazard Class/Division – 8 (Corrosive) Secondary Hazard Class/Division – 9.2 UN/NA Number – UN3265 Packing Group – III

Keep container tightly closed. Protect against physical damage. No rail shipments of this product.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE 3 (Superfund Amendments and Reauthorization Act) – Not listed
 Section 302 Extremely Hazardous Substances (40 CFR 355) – Not listed
 Section 311 Hazard Category (40 CFR 370) – Immediate (Acute) Health Hazard
 Section 312 Threshold Planning Quantity (40 CFR 370) – 10,000 lbs
 Section 313 Reportable Ingredients (40 CFR 372) – Not listed

CERCLA (Comprehensive Environmental Response Compensation and Liability Act) (40 CFR 302.4)-Not listed.

TSCA (Toxic Substance Control Act) (40 CFR 710) – Listed

FDA regulations (21 CFR 173.315(a)(5)), permit the use of this product at concentrations not to exceed 4.6 - 4.8 ppm in water to wash fresh fruits and vegetables.

STATE REGULATIONS: (California Proposition 65) This product does not contain any substances which are defined by the State of California to cause cancer, birth defects, or other reproductive effects.

CANADA

WHMIS (Workplace hazardous Materials Information System) Ingredients Disclosure List – Not listed Hazard Classification – Toxic, Corrosive, D.2.B, E Product Identification No. – Not available Domestic Substance List - Listed

16. OTHER INFORMATION

HMIS Ratings -	Health - 3	Flammability - 0	Reactivity - 1	Protection - D
NFPA Rating	Health - 3	Flammability - 0	Reactivity - 1	Special - None

HMIS Rating notes - Protection D= Face shield, gloves, chemical apron

The information contained herein is to the best of our knowledge and belief, accurate, but any recommendations or suggestions made are without warranty or guarantee of results, expressed or implied. We therefore, assume no liability for loss or damage incurred by following these suggestions. Any determination of fitness for a particular purpose is the buyer's responsibility. Analytix Technologies urges persons receiving this information to make their own determination as to the information's suitability and completeness for their particular application. Analytix Technologies' only obligation will be to replace such quantity of product proved to be defective. User assumes all risks and liability whatsoever in connection with the suitability of the product for the users intended application. Analytix Technologies shall not be responsible in tort, contract or under any theory for any loss or damage, incidental or consequential, arising out of the use of or the inability to use this product.

ANALYTIX TECHNOLOGIES, LLC. P. O. BOX 590466 HOUSTON, TX 77259-0466 PHONE (281) 286-7562 FAX (305) 847-0963 E-MAIL: analytix@earthlink.net

PRODUCT BULLETIN

Tolcide PS-20A

Microbiocide

Introduction:

Tolcide PS- is a low viscosity aqueous biocide formulation containing 20% w/w THPS (Tetrakis-Hydroxymethyl Phosphonium Sulfate). THPS displays rapid activity against a broad spectrum of microorganisms, and is particularly effective against Iron Related and Sulfate Reducing Bacteria (IRB, SRB). THPS has also been shown to provide effective control of both Legionella and algae in cooling water systems.

THPS has an unusually benign environmental toxicity profile for an industrial biocide, and degrades rapidly upon discharge to non-toxic compounds. These properties result in safer handling and reduced environmental impact; two important factors influencing biocide selection. THPS has received the U.S. Presidential Green Chemistry Award, which was designed by EPA to promote the use of chemicals with reduced environmental risks.

Tolcide PS- is miscible with all types of water and is compatible with water treatment and paper process chemicals. Tolcide PS- is stable and effective over a pH range of 3 to 10.

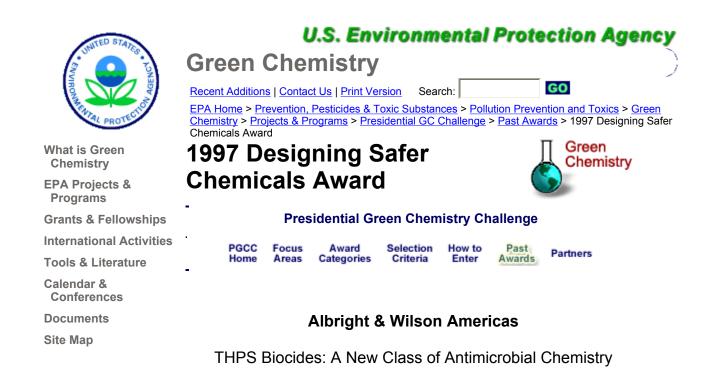
Typical Properties:

Active Content	20% THPS
Appearance	Clear to slightly hazy liquid
Specific Gravity (25 °C)	1.20 – 1.25
Viscosity	~ 2 cps
Flash point	Non-flammable
pH	4 - 5
Solubility in water	. Miscible with all water types
Odor	Pungent

Application:

In industrial water treatment, the benefits of using Tolcide PS-20A are ease of handling, rapid and broad spectrum activity, and effective slime control. Tolcide PS-20A is extremely effective against Legionella, and can also be used for control of algae in cooling towers.

In the oilfield industry, formulations containing THPS display excellent activity against problem microorganisms, particularly Sulfate Reducing Bacteria (SRB), a major source of hydrogen sulfide reservoir souring and pipeline corrosion. THPS has also been shown to dissolve iron sulfide and reduce formation souring. Tolcide PS-20A can be used in applications where microbiological contamination is present, including injection water, topside systems, pipeline protection, drilling fluids, and well stimulation fluids.


Key Product Features:

- Fast acting, broad spectrum biocide
- Low foaming
- Miscible with water and compatible with a wide range of water treatment additives
- Easy, on-site analysis
- Excellent environmental profile

Safety and Handling:

Improper handling of this product can be injurious to workers. Observe all safety precautions shown on the label and in the Material Safety Data Sheet.

Recommendations given in this bulletin are based on tests believed to be reliable. However, the use of the product is beyond the control of Analytix Technologies, LLC, and no guarantee, expressed or implied, in made as to the effects of such or the results to be obtained if not used in accordance with directions or established safe practice. The buyer must assume all responsibility, including injury or damage, resulting from misuse of the product as such, or in combination with other materials. This bulletin is not to be taken as a license to operate under or recommendation to infringe any patent.

Conventional biocides, used to control the growth of bacteria, algae, and fungi in industrial cooling systems, oil fields, and process applications, are highly toxic to humans and aquatic life and often persist in the environment, leading to long-term damage. To address this problem, a new and relatively benign biocide, tetrakis(hydroxymethyl)phosphonium sulfate (THPS), has been discovered by Albright & Wilson Americas. THPS biocides represent a completely new class of antimicrobial chemistry that combines superior antimicrobial activity with a relatively benign toxicology profile. THPS's benefits include low toxicity, low recommended treatment level, rapid breakdown in the environment, and no bioaccumulation. When substituted for more toxic biocides, THPS biocides provide reduced risks to both human health and the environment.

THPS is so effective as a biocide that, in most cases, the recommended treatment level is below that which would be toxic to fish. In addition, THPS rapidly breaks down in the environment through hydrolysis, oxidation, photodegradation, and biodegradation. In many cases, it substantially breaks down before the treated water enters the environment. The degradation products have been shown to possess a relatively benign toxicology profile. Furthermore, THPS does not bioaccumulate and, therefore, offers a much reduced risk to higher life forms.

THPS biocides are aqueous solutions and do not contain volatile organic compounds. Because THPS is halogen-free, it does not contribute to dioxin or AOX formation. Because of its low overall toxicity and easier handling when compared to alternative products, THPS provides an opportunity to reduce the risk of health and safety incidents.

THPS has been applied to a range of industrial water systems for the successful control of microorganisms. The U.S. industrial water treatment market for nonoxidizing biocides alone is 42 million pounds per year and growing at 6 to 8 percent annually. There are over 500,000 individual use sites in this industry category. Because of its excellent environmental profile, THPS has already been approved for use in environmentally sensitive areas around the world and is being used as a replacement for the higher risk alternatives.

Note: Disclaimer

Read on about the 1997 Small Business Award.

Return to Past Awards page.

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Friday, January 3rd, 2003 URL: http://www.epa.gov/docs/gcc/dsca97.html

Date Prepared: 2/01/07

Supersedes Date: 11/01/06

1. PRODUCT AND COMPANY DESCRIPTION

Product Name: Tolcide PS20A

Supplied By:

Analytix Technologies, LLC. P.O. Box 590466 Houston, TX 77259-0466 (281)-286-7562

Manufactured by:

RHODIA INC. RHODIA NOVECARE CN7500 8 Cedar Brook Drive Cranbury NJ 08512-7500

Emergency Phone Numbers:

FOR ÉMERGENCIES INVOLVING A SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT CONTACT: CHEMTREC (800-424-9300 within the United States or 703-527-3887 for international collect calls) or Rhodia CAERS (Communication and Emergency Response System) at 800-916-3232.

For Product Information: (888) 776-7337

EPA FIFRA Registration Number: 4564-18

Chemical Name or Synonym: TETRAKIS(HYDROXYMETHYL) PHOSPHONIUM SULFATE; THPS

Molecular Formula: 2(C4H12O4P) O4S

Component	CAS Reg Number	OSHA Hazard Percentage
2. COMPOSITION/INFORMATION ON ING	REDIENTS	5

	Number	nazaiu	
TETRAKIS(HYDROXYMETHYL) PHOSPHONIUM SULFATE	55566-30-8	Y	~ 18 - 22

3. HAZARDS IDENTIFICATION

A. EMERGENCY OVERVIEW:

Physical Appearance and Odor: colorless / liquid, characteristic odor.

Warning Statements: DANGER! RISK OF SERIOUS DAMAGE TO EYES. HARMFUL IF INHALED. HARMFUL IF SWALLOWED. MAY CAUSE ALLERGIC SKIN REACTION.

3. HAZARDS IDENTIFICATION (continued)

B. POTENTIAL HEALTH EFFECTS:

Acute Eye: Expected to cause significant irritation to the eyes. Can cause tearing, pain, burns, permanent damage to the cornea.

Acute Skin: May cause irritation upon prolonged contact. May cause sensitization.

Acute Inhalation: Harmful if inhaled. May cause coughing, shortness of breath, chest pain. Acute Ingestion: Harmful if ingested. May cause nausea, vomiting.

Chronic Effects: (See Section 11-Chronic for a discussion of animal studies.) Repeated, prolonged ingestion may cause liver damage.

4. FIRST AID MEASURES

FIRST AID MEASURES FOR ACCIDENTAL:

Eye Exposure: Hold eyelids open and flush with a steady, gentle stream of water for at least 15 minutes. Seek immediate medical attention.

Skin Exposure: In case of contact, immediately wash with plenty of soap and water for at least 15 minutes. Seek medical attention. Remove contaminated clothing and shoes while washing. Clean contaminated clothing and shoes before re-use or discard if they cannot be thoroughly cleaned.

Inhalation: Remove victim from immediate source of exposure and assure that the victim is breathing. If breathing is difficult, administer oxygen, if available. If victim is not breathing, administer CPR (cardio-pulmonary resuscitation). Seek medical attention.

Ingestion: Wash out mouth with water and keep at rest. Seek immediate medical attention. Do not induce vomiting unless instructed to do so by a physician.

MEDICAL CONDITIONS POSSIBLY AGGRAVATED BY EXPOSURE: Skin contact may aggravate existing skin disease.

NOTES TO PHYSICIAN: All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

Treat symptomatically. No specific antidote available.

5. FIRE FIGHTING MEASURES

FIRE HAZARD DATA:

Flash Point: Not Applicable

Extinguishing Media:

Recommended: water fog, carbon dioxide, dry chemical, foam.

Special Fire Fighting Procedures:

Firefighters should wear NIOSH/MSHA approved self-contained breathing apparatus and full protective clothing. Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind; keep out of low areas. Evacuate residents who are downwind of fire.

Unusual Fire and Explosion Hazards:

Containers may explode (due to the build-up of pressure) when exposed to extreme heat.

Hazardous Decomposition Materials (Under Fire Conditions):

oxides of sulfur oxides of phosphorus oxides of carbon

6. ACCIDENTAL RELEASE MEASURES

Evacuation Procedures and Safety:

Ventilate closed spaces before entering. Personnel handling this material should be thoroughly trained to handle spills and releases. Wear appropriate protective gear for the situation. See Personal Protection information in Section 8. Evacuate and isolate spill area.

Containment of Spill:

Stop leak if it can be done without risk. Dike spill using absorbent or impervious materials such as earth, sand or clay. Dike area to prevent runoff. Collect and contain contaminated absorbent and dike material for disposal.

Cleanup and Disposal of Spill:

Recover material, if possible. DO NOT RETURN MATERIAL TO ITS ORIGINAL CONTAINER. Absorb with an inert absorbent. Shovel up into an appropriate closed container (see Section 7: Handling and Storage). Clean up residual material by washing area with water. Collect washings for disposal. The material should be properly packaged and disposed of in compliance with applicable regulations. Decontaminate tools and equipment following cleanup.

Environmental and Regulatory Reporting:

Do not flush to drain. Runoff from fire control or dilution water may cause pollution. Prevent material from entering public sewer system or any waterways. Spills may be reportable to the National Response Center (800-424-8802) and to state and/or local agencies.

7. HANDLING AND STORAGE

Minimum/Maximum Storage Temperatures:

Not Available

Handling:

Personnel handling this product should be thoroughly trained as to its hazards. Do not get on skin or in eyes. Do not breathe vapors and mists. Avoid direct or prolonged contact with skin and eyes. Use only as directed.

** HAZARD WARNING: This product belongs to a chemical family that HAS BEEN TESTED in combination with Trimethylolpropane, Trimethylolpropane derived products or their corresponding Trimethylolpropane homologs for toxicity of the thermal decomposition products in the absence of flame. Products in this chemical family PRODUCED NO SIGNIFICANT ADVERSE HEALTH EFFECTS in laboratory animals. However, there is a possibility that this thermal decomposition may produce bicyclic phosphates and/or phosphites in combination with certain other phosphorus compounds. Bicyclic phosphates and phosphites have acute neurotoxic properties and may cause convulsive seizures in laboratory test animals. Follow all precautionary measures outlined in this Material Safety Data Sheet and/or contact Rhodia Inc.

Storage:

Store in an area that is clean, cool, dry, well-ventilated, Store away from; bases, oxidizers, reducing agents, Store in tightly closed containers. Container material to avoid: ordinary steel, Recommended container material: high density, high molecular weight polyethylene containers. Store in original container.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Introductory Remarks:

These recommendations provide general guidance for handling this product. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. While developing safe handling procedures, do not overlook the need to clean equipment and piping systems for maintenance and repairs. Waste resulting from these procedures should be handled in accordance with Section 13: Disposal Considerations.

Assistance with selection, use and maintenance of worker protection equipment is generally available from equipment manufacturers.

Exposure Guidelines:

Exposure limits represent regulated or recommended worker breathing zone concentrations measured by validated sampling and analytical methods, meeting the regulatory requirements. The following limits apply to this material, where, if indicated, S=skin and C=ceiling limit:

8. EXPOSURE CONTROLS/PERSONAL PROTECTION (continued)

Notes

TETRAKIS(HYDROXYMETHYL) PHOSPHONIUM SULFATE

ACGIH

TWA 2 mg/cu m

STEL

Engineering Controls:

Where engineering controls are indicated by use conditions or a potential for excessive exposure exists, the following traditional exposure control techniques may be used to effectively minimize employee exposures: general area dilution/exhaust ventilation.

Respiratory Protection:

When respirators are required, select NIOSH/MSHA approved equipment based on actual or potential airborne concentrations and in accordance with the appropriate regulatory standards and/or industrial recommendations.

Eye/Face Protection:

Eye and face protection requirements will vary dependent upon work environment conditions and material handling practices. Appropriate ANSI Z87 approved equipment should be selected for the particular use intended for this material.

Eye contact should be prevented through use of chemical safety glasses with side shields or splash proof goggles. An emergency eye wash must be readily accessible to the work area. Face contact should be prevented through use of a face shield.

Skin Protection:

Skin contact should be prevented through use of suitable protective clothing, gloves and footwear, selected with regard for use conditions and exposure potential. Consideration must be given both to durability as well as permeation resistance.

Work Practice Controls:

Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this material:

- (1) Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this material is stored.
- (2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet.
- (3) Wash exposed skin promptly to remove accidental splashes or contact with this material.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical properties here represent typical properties of this product.

Physical Appearance: colorless / liquid.

Odor: characteristic odor.

pH: ~ 3 to 6 at 100 wt/wt%.

Specific Gravity: 0.95 to 1.15 at 20 C (68 F).

Density: 1.09 g/ml at 20 C (68 F).

Water Solubility: soluble

Melting Point Range: Not Available

Freezing Point Range: ~ -3 C (27 F)

Boiling Point Range: 108 c (226 F) at 759 mmHg

Vapor Pressure: Not Available

Vapor Density: Not Available

Viscosity: viscosity (centistokes) : ~ 22 cs at 24 C (75 F).

Molecular Weight: 406.3

10. STABILITY AND REACTIVITY

Chemical Stability:

This material is stable under normal handling and storage conditions described in Section 7. Under unusual conditions, such as very high temperatures and/or in the presence of strong reducing agents, the product may break down to form hazardous decomposition products noted below. The customer is advised to seek further advice from Rhodia Water Technical Service personnel when considering such applications.

10. STABILITY AND REACTIVITY (continued)

Conditions To Be Avoided:

Heat , Temperatures above 160C. See HAZARD WARNING under HANDLING : in Section 7.

Materials/Chemicals To Be Avoided:

strong bases strong acids strong oxidizing agents strong reducing agents

Decomposition Temperature Range: > 160 C (320 F)

The Following Hazardous Decomposition Products Might Be Expected:

Decomposition Type: thermal oxides of sulfur oxides of phosphorus oxides of carbon phosphine gas

Hazardous Polymerization Will Not Occur.

Avoid The Following To Inhibit Hazardous Polymerization: not applicable

11. TOXICOLOGICAL INFORMATION

Acute Eye Irritation:

Toxicological Information and Interpretation:

eye - eye irritation, rabbit. Severely irritating. This material is expected to cause significant irritation to the eyes.

Acute Skin Irritation:

Toxicological Information and Interpretation:

skin - skin irritation, rabbit. Minimally irritating. This material is not expected to cause significant irritation to the skin.

skin - sensitization, guinea pig. Sensitizing. May cause significant allergic skin reaction.

Acute Dermal Toxicity:

The following data is for similar or related products.

Toxicological Information and Interpretation:

LD50 - lethal dose 50% of test species, > 2000 mg/kg, rat. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate.

11. TOXICOLOGICAL INFORMATION (continued)

Acute Respiratory Irritation:

No test data found for product.

Toxicological Information and Interpretation:

lung - lung irritation (qualitative), **. This material is not expected to cause significant irritation to the respiratory tract.

Acute Inhalation Toxicity:

The following data is for similar or related products.

Toxicological Information and Interpretation:

LC50 - lethal concentration 50% of test species, 0.59 mg/l/4 hr, rat. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate.

Acute Oral Toxicity:

The following data is for similar or related products.

Toxicological Information and Interpretation:

LD50 - lethal dose 50% of test species, 575 mg/kg, rat. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate.

Chronic Toxicity:

This product does not contain any substances that are considered by OSHA, NTP, IARC or ACGIH to be "probable" or "suspected" human carcinogens.

The following data is for similar or related products.

Toxicological Information and Interpretation - REPRODUCTIVE TOXICITY, rat. Material is not a reproductive toxin. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate. - CARCINOGENICITY, **. There was no evidence of carcinogenicity in F344/N rats and B6C3F1 mice (both sexes) dosed by gavage at 5 or 10 mg THPS/kg/day for 2 years. aref. NTP study report TR296, 1987]. - CHRONIC EXPOSURE, **. Medical surveillance for over 30 years of employees in our manufacturing facility has shown no evidence of developmental toxicity from long-term exposure nor from exposure following an acute incident, for example, a major or minor spillage, - MUTAGENICITY, **. Ames Test: Negative, -MUTAGENICITY, **. Chinese hamester ovary cells (chromosomal aberrations): Positive. -TERATOGENICITY, **. Studies in both rats and rabbits showed no indications of developmental toxicity in the absence of marked maternal (parental) toxicity. No observed effect level for development 15 mg/kg/body weight. No observed effect level for development 18 mg/kg body weight. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate. - MUTAGENICITY, **. Dominant Lethal Assay arat| (in vivo): Negative. - MUTAGENICITY, **. Mouse micronucleus (in vivo): Negative. - MUTAGENICITY, **. Unscheduled DNA synthesis assay: Negative. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate. - SUB-CHRONIC EXPOSURE, 1 mg/kg/90 days, rat. Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate.

12. ECOLOGICAL INFORMATION

Ecotoxicological Information:

The following data is based on the technical grade active ingredient(s) (TGAI). Ecotoxological information and Interpretation:

LC50 - lethal concentration 50% of test species, 19.4 mg/l/48 hr, Daphnia magna. LC50 - lethal concentration 50% of test species, 93 mg/l/96 hr, bluegill sunfish (Lepomis macrochirus).

LC50 - lethal concentration 50% of test species, 119 mg/l/96 hr, rainbow trout (Oncorhynchus mykiss).

LC50 - lethal concentration 50% of test species, 86 mg/l/96 hr, Juvenile Plaice.

LC50 - lethal concentration 50% of test species, 340 mg/l/96 hr, Brown Shrimp.

LC50 - ecotox Method for association with dry sediment weight., 2174 mg/kg/10 days, Corophium volutator. (dry sediment weight).

LD50 - lethal dose 50% of test species, 311 mg/kg, Mallard duck (Anas platyrhynchos). Material tested was a 75% aqueous solution of Tetrakis (hydroxymethyl) phosphonium sulfate.

Chemical Fate Information:

Product is not expected to bioaccumulate. The following data is for similar or related product. This product is readily biodegradable under aerobic and anaerobic conditions in a sediment-water system. 28 days (aerobic) and 30 days (anaerobic). THPS has been shown to degrade rapidly once diluted to sub-ppm concentrations and forms trishydroxymethyl phosphine oxide which is classified as non-toxic.

13. DISPOSAL CONSIDERATIONS

Waste Disposal Method:

Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal laws and regulations. Consult state and local regulations regarding the proper disposal of this material.

EPA Hazardous Waste - NO

14. TRANSPORTATION INFORMATION

Transportation Status: IMPORTANT! Statements below provide additional data on listed DOT classification.

The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

14. TRANSPORTATION INFORMATION (continued)

US Department of Transportation Shipping Name: NOT REGULATED

15. REGULATORY INFORMATION

Inventory Status

Inventory	Status
UNITED STATES (TSCA)	Y
CANADA (DSL)	Ν
EUROPE (EINECS/ELINCS)	P
AUSTRALIA (AICS)	N
JAPAN (MITI)	Ν
SOUTH KOREA (KECL)	N

Y = All ingredients are on the inventory.

E = All ingredients are on the inventory or exempt from listing.

P = One or more ingredients fall under the polymer exemption or are on the no longer polymer

list. All other ingredients are on the inventory or exempt from listing.

N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing.

FEDERAL REGULATIONS

Inventory Issues:

This product is excluded from TSCA because it is solely for FIFRA regulated use.

SARA Title III Hazard Classes:

Fire Hazard	- NO
Reactive Hazard	- NO
Release of Pressure	- NO
Acute Health Hazard	- YES
Chronic Health Hazard	- YES

STATE REGULATIONS:

This product contains the following components that are regulated under California Proposition 65:

Ingredient Name	Cancer	Reprod.	No Sign. Risk	Lvl (ug/day)
	List	List	California	RPI
FORMALDEHYDE	Y	N	40	ND

16. OTHER INFORMATION

National Fire Protection Association Hazard Ratings--NFPA(R):

- 2 Health Hazard Rating--Moderate
- 0 Flammability Rating--Minimal
- 1 Instability Rating--Slight

National Paint & Coating Hazardous Materials Identification System--HMIS(R):

- 2 Health Hazard Rating--Moderate
- 0 Flammability Rating--Minimal
- 1 Reactivity Rating--Slight

Reason for Revisions:

Change and/or addition made to Section 3, Warning Statements in Section 3, Section 11, SARA 313 Information in Section 15

Key Legend Information:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissable Exposure Limit

TWA - Time Weighted Average

STEL - Short Term Exposure Limit

NTP - National Toxicology Program

IARC - International Agency for Research on Cancer

ND - Not determined

RPI - Rhodia Established Exposure Limits

Disclaimer:

The information and recommendations contained in this Material Safety Data Sheet have been compiled from sources believed to be reliable and to represent the best opinion on the subject as of the date on this sheet. However, no warranty, guarantee or representation, express or implied, is made as to the correctness or sufficiency of this information or to the results to be obtained for the use thereof.

Determination of Tetrakishydroxymethyl Phosphonium Sulfate (THPS) in Tolcide[®] PS Biocides

CODE 4-8776-01

QUANTITY	CONTENTS	CODE
120 mL	*DSP Reagent, 10% Solution	*4133-J
120 mL	*Borate Buffer Solution	*4135-J
120 mL	*PSSA Reagent, 5% Solution	*4134-J
30 mL	Starch Indicator Solution	4170WT-G
60 mL	*Iodine Solution, 0.025N	*6377-Н
15 mL	*Zinc Acetate, 2N	*3843-Е
1	Test Tube, plastic, 5-10-25 mL, w/cap	0715
3	Pipets, 1 mL, plastic	0354
1	Direct Reading Titrator, 0 - 100 Range	0381
1	Dispenser Cap	0601

*WARNING: Reagents marked with a * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our website. To obtain a printed copy, contact us by e-mail, phone or fax.

To order individual reagents or test kit components, use the specified code number.

INTERFERENCES: Hydrogen sulfide can interfere with the determination of THPS. Pretreatment with zinc acetate will remove the interference. Add 5 drops of *Zinc Acetate, 2N (3843) for every 100 ppm hydrogen sulfide present in a 50 mL sample. Filter off the white precipitate that forms and proceed with Steps 1-11 using the filtrate.

PROCEDURE

- 1. Fill the test tube (0715) to the 25 mL line with the sample to be tested.
- 2. For fresh water samples, use a 1 mL pipet (0354) to add 2.0 mL *DSP Reagent, 10% Solution (4133). For saltwater samples, use another
- 3. 1 mL pipet (0354) to add 2.0 mL *Borate Buffer Solution (4135).
- 4. Use another 1 mL pipet (0354) to add 2.0 mL of *PSSA Reagent, 5% Solution (4134). Swirl to mix.
- 5. Add 6 drops of Starch Indicator Solution (4170WT). Swirl to mix.
- 6. Replace the regular cap on the bottle of *Iodine Solution, 0.025N (6377) with the special dispenser cap (0601).

NOTE: Replace the regular cap on the Iodine Solution 0.025N bottle for storage.

- 7. Fill the Direct Reading Titrator (0381) with the *Iodine Solution, 0.025N (6377).
- 8. Slowly add *Iodine Solution, 0.025N (6377) to the test tube by depressing the plunger. Swirl the test tube after each drop to mix reagents.
- 9. Continue adding *Iodine Solution, 0.025N (6377) until 1 drop results in a blue/ black color that remains for 30 seconds.
- Read the concentration (in ppm) of THPS directly from the scale on the Titrator. NOTE: Take the titrator reading where the plunger meets the titrator scale. Each small division is equal to 2 ppm.
- 11. Repeat Steps 1-9 on a blank (system water without biocide) to determine background levels.
- 12. Subtract the blank reading from the reacted sample reading to determine the concentration of THPS in the sample.

NOTE: This test measures ppm active THPS. To obtain ppm of formulation, divide ppm THPS by the activity (in percent) of the formulation, and multiply by 100.

LaMOTTE COMPANY

Helping People Solve Analytical Challenges®

PO Box 329 • Chestertown • Maryland • 21620 • USA 800-344-3100 • 410-778-3100 (Outside U.S.A.) • Fax 410-778-6394 Visit us on the web at www.lamotte.com

68776-01 3/12

PHOSPHONATE KIT

DIRECT READING TITRATOR

CODE 7530-DR-01

QUANTITY	CONTENTS	CODE
15 mL	*Hydrochloric Acid, 1.0N	*6130-Е
15 mL	*Fluoride Inhibitor	*3929-Е
15 mL	Sodium Thiosulfate, 0.1N	6155-Е
10 g	Xylenol Orange Powder	6165-D
60 mL	Thorium Nitrate Solution	6158PS-H
1	Test Tube, 5-10-15 mL, w/cap	0778
1	Dispenser Cap	0601
1	Spoon, 0.1 g	0699
1	Direct Reading Titrator, 0-20 Range	0378
1	pH paper, 1.3-4.4	2958

*WARNING: Reagents marked with an * are considered to be potential health hazards. To view or print a Material Safety Data Sheet (MSDS) for these reagents go to www.lamotte.com. To obtain a printed copy, contact LaMotte by e-mail, phone or fax.

To order individual reagents or test kit components, use the specified code number.

Carefully read the instruction manual for the Direct Reading Titrator before performing the titration procedure described below. The Titrator is calibrated in terms of parts per million Phosphonate, and each minor division on the Titrator scale equals 0.4 ppm.

NOTE: This test has been calibrated for Dequest 2006. When a different compound is to be tested, the amount of Thorium Nitrate added should be multiplied by a conversion factors below to determine ppm Phosphonate. If any other phosphonate compound is used, the factor must be determined experimentally using standard solutions of that compound.

Phosphonate	Compound Name	Factor
Dequest 2000	AMP(NTP)	0.8
Dequest 2006	NaAMP	1.0
Dequest 2010	HEDP(A)	0.6
Belcor 575		0.5

PROCEDURE

For most accurate results, a blank test should be run on a sample of the water containing no phosphonate. Any result from this blank test should be subtracted from the result recorded in Step 6.

- 1. Fill the test tube (0778) to the 10 mL line with sample water.
- 2. Add 1 drop of Sodium Thiosulfate (6155) and 5 drops of *Fluoride Inhibitor (3929).
- 3. Use the 0.1 g measuring spoon (0699) to add one level measure of Xylenol Orange (6165). Swirl to dissolve.
- 4. Best results are obtained in the pH range 2.5-3.0. This adjustment is made by adding *Hydrochloric Acid (6130) drop by drop to the sample and using the pH paper (2958) to test the solution. After each addition of *Hydrochloric Acid (6130) dip a strip of pH paper, torn from the roll, into the test solution for 5 seconds. Compare the resulting color with the color standards on the side of the pH paper container. Add *Hydrochloric Acid (6130) until the color of the pH paper matches the pH 2.8 color standard. The sample will be yellow.
- 5. Replace the regular cap on the bottle of Thorium Nitrate (6158PS) with the dispenser cap (0601). Fill the Direct Reading Titrator (0378) with this reagent. Insert the Titrator into the center hole of the titration tube cap.

NOTE: Replace the regular cap on the Thorium Nitrate bottle for storage.

6. While gently swirling the titration tube, slowly press the plunger to titrate until the solution changes from yellow to pink. Read the test result directly from the scale where the large ring on the Titrator meets the Titrator barrel. Record the result in ppm phosophonate.

LaMOTTE COMPANY Helping People Solve Analytical Challenges®

PO Box 329 • Chestertown • Maryland • 21620 • USA 800-344-3100 • 410-778-3100 (Outside U.S.A.) • Fax 410-778-6394 Visit us on the web at www.lamotte.com 67530-DR-01 6/12

Appendix D

Pilot Test Field Notes & Photographs

SITE OBSERVATION REPORT

Project: Contractor: Owner: Location:

TOC-MLT	File No.	
Stantec	Project No.	203700107
Toc	Project No.	
Mountlake Terrace	Date:	11/5/14
	Page	f of L

Stantec

Weather: The following items were noted: concluct bipcicle pilot 0700 On-site test M w late 1.56 0830 Baker observed Sidne Restaute rarbon down 106 singled Concentration ected 0915 Keroun See Concen measu sheet I dose ~ 4.75m1 THPS AN400 injection 5 biocido Starter 1110 1 dose ~ 0.90 m1 AN-400 ows OWS THPS AN-400 Dese Time XĨ 1110 _ 1125 xI 68 ppm 1138 xI XI 1201 _ 1228 ×I 1253 X [8 x I 1318 23 1345 × 3 56ppm -1417 ×3 1448 × I

ows THPS concentration AN.-400 1159 measured AN400 = 10 pm THPS= 6800m At 1340 measured OWS TPHS N400 concentration THPS= 68ppm / AN400= 8ppm Valenti Prepared by: End test @ 1632 Flowmeter start: 469,168

= 241 gailons total

Signature

Revised: 2007-06-27

Flowmeter End 469,409

http://tng1a006.comp.acs:7782/ponal/page/contal/STANNET2_CONTENT/PAFS/PracticeRiskManagement/Site_Observation_Report-print.acc

TOC - MLT Biocide Injection Pilot Test

Date: Personnel:

11/5/14

10

Add **4.75 ml** of THPS to final compartment of OWS each fill cycle to reach target THPS concentration 70 ppm Add **0.9 ml** of AN-400 to final compartment of OWS each fill cycle to reach target AN400 concentration 10 ppm THPS and AN400 measured from sample port of effluent carbon drum

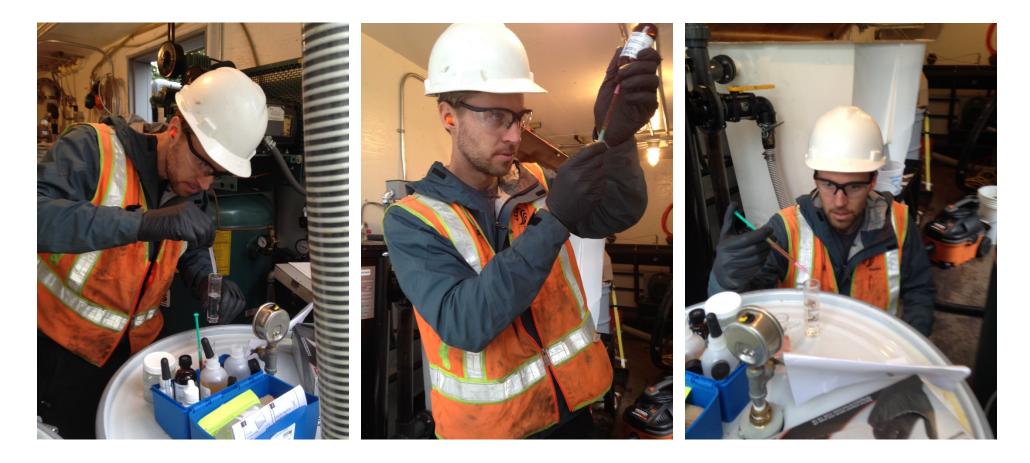
For discharge do not exceed 3.6 ppm for THPS and 3 ppm for AN400 Jean Tran 425-649-7078 (Ecology)

Time	Background Concen. (THPS ppm)	Background Concen. (AN400 ppm)	Notes
915	9/10	0.8	Added Idrop for A.V
945	10	0.8	Added 2 drops for A
010	10	0,8	
018	12	1.2 DIS OTTEAN	
040	9	1.2	
105	io	1.2	

Average

1.0

Time	THPS Concentration (ppm)	AN400 Concentration	Notes
1230	10	0,8	
1315	12	0.8	
1340	12	0,8	GAC 1 AN-400 = 1.2ppin & THPS= 10p GAC 1 AN-400 = 1.2ppin & THPS= 1
1410	10	0.8	GAC 1 AN-400 = 1. 2ppm 2 THPS=1
1442	8	1.2	
1509	10	0.8	
		14-	16
		(


Time	THPS Concentration (ppm)	AN400 Concentration	Notes
1536	12	1.2	
1407	io	0.8	
1832	10	- 1.2	Test End - No break throng observed during test
			observed during test

Notes: The average background concentration was subtracted from the THPS and AN400 test concentrations to obtain each test concentration.

1110 added biocide/ANHED to OWS (Test Start at 1110) Stopped biocide/AN400 additions@ 1520 [last addition at 1448]

Biocide Pilot Test Field Photos

November 5, 2014

